'

ULTRIX Worksystem Software

Reference Pages,
Sections 3Dwt, 3X11, and 3Xt

Order Number: AA-MA99B-TE

Product Version: ULTRIX Worksystem Software, Version 2.2
Operating System and Version: ULTRIX-32, Version 3.1 or higher

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of
DFARS 252.227-7013.

© Digital Equipment Corporation 1989
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license
agreements with AT&T and the Regents of the University of California. © AT&T 1979, 1984. All
Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license
agreement with Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984,
1985, 1986, 1988.

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

CDA DTIF VAXstation

DEC MASSBUS VMS

DECUS MicroVAX VMS/ULTRIX Connection
DECnet Q-bus vT

DECstation ULTRIX XUI

DECwindows ULTRIX Mail Connection

DDIF ULTRIX Worksystem Software Engnan

DDIS VAX

UNIX is a registered trademark of AT&T in the USA and other countries.
X Window System, X, and X11 are registered trademarks of MIT.

This manual was written and produced by the Open Software Publications group.

About This Manual

Organization

The ULTRIX Worksystem Software Reference Pages, Sections 3Dwt, 3X11,
and 3Xt contain the reference pages for the XUI Toolkit functions, the XUI
Toolkit intrinsics, and the Xlib functions.

Format
Each reference page has the following general format.

Each has a title header consisting of the subject name and the appropriate
section number, for example, DwtAttachedDB(3Dwt),
XOpenDisplay(3X11), and XtCreateApplicationContext(3Xt).

The remaining subsections provide the specific information that is relevant to
the topic. In general, the following subsection titles are used where
appropriate:

Name
Lists the topic name and a short description of the entry.

Syntax

Provides the function definition. Boldface indicates characters typed
literally. Italics indicates variable information that is to be specified by the
user. An ellipsis (...) indicates that the preceding argument can be repeated.
Square brackets [] enclose optional arguments.

Arguments
Describes each arguments that passed to or returned by the function.

Description

Describes the function, its usage, and its effects. Note that all references to
chapters and sections in the Description section are for the respective,
companion descriptive guide listed in the See Also section at the end of that
page.

Diagnostics

Describes the diagnostic and error messages that may appear. In most cases,
self-explanatory messages are not listed.

Restrictions
Describes all known restrictions or limitations for that function.

Files
Lists the related files that are either used or created by the function.

See Also
Lists references to related functions in the same library and to other, related
documents.

Related Documents
XUI Style Guide

Describes the XUI user interface and, hence, the ‘‘look and feel’’ of an
XUI application.

Guide to Writing Applications Using XUI Toolkit Widgets
Describes how to create an application using the XUI Toolkit.
Guide to the XUI Toolkit: C Language Binding

Describes the widgets (user interface abstractions) that you can use to
write your XUlI-based application.

Guide to the XUI Toolkit Intrinsics: C Language Binding

Describes the Intrinsics functions that you can use to write your XUI-
based application or widget.

Guide to the Xlib Library: C Language Binding

Describes the low-level C functions that you can use to write your X-
based application.

X Window System Protocol: X Version 11
Describes the precise semantics of the X11 protocol specification.

Conventions
The following typeface conventions are used in this manual:
special In text, all function names, events, errors, constant names,

and pathnames are presented in this type.

UPPERCASE Although the ULTRIX system differentiates between
lowercase and uppercase characters, uppercase is used
intentionally in this manual where it is applicable.

In addition, the following conventions are used in this manual:

¢ To eliminate any ambiguity between those arguments that you pass and
those that a function returns to you, the explanations for all arguments

iv About This Manual

that you pass start with the word specifies or, in the case of multiple
arguments, the word specify. The explanations for all arguments that
are returned to you start with the word returns or, in the case of
multiple arguments, the word return. The explanations for all
arguments that you can pass and are returned start with the words
specifies and returns.

Any pointer to a structure that is used to return a value is designated as
such by the _return suffix as part of its name. All other pointers passed
to these functions are used for reading only. A few arguments use
pointers to structures that are used for both input and output and are
indicated by the _in_out suffix.

About This Manual v

XUI Toolkit Functions

Insert tabbed
divider here.
Then discard
this sheet.

DwtActivateWidget (3Dwt)

Name
DwtActivateWidget — Allows the application to simulate push button
activation.
Syntax
void DwtActivateWidget(widget)
Widget widget;
Arguments
widget Specifies a pointer to the widget data structure.
Description

The DwtActivateWidget function allows the application to simulate
push button activation. DwtActivateWidget generates the same
highlighting and callbacks that would occur if the user clicks on a push
button. For example, an application might contain functions that a user could
choose either by selecting a menu option or by activating a push button. If
the user selected the menu option, the application could activate the
corresponding push button to maintain a consistent user interface. Only push
buttons are currently supported by DwtActivateWidget.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-1

DwtAddFontList (3Dwt)

Name
DwtAddFontList — Adds an entry to a font list.

Syntax

DwtFontList DwtAddFontList(list, font, charset)
DwtFontList list;
XFontStruct *font;
long charset;

Arguments
list Specifies a pointer to the font list to which an entry will be
added.
font Specifies a pointer to the font structure to be added to the
list.
charset Specifies the character set identifier for the font. Values for
this argument can be found in the required file
/usr/include/cda_def.h.
Description

The DwtAddFontList function adds an entry to a font list.

Return Value
This function returns the new font list.

See Also

DwtCreateFontList (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-2 Subroutines

DwtAttachedDB (3Dwt)

Name

DwtAttachedDB, DwtAttachedDBCreate, DwtAttachedDBPopupCreate —
Creates an attached dialog box or a pop-up attached dialog box widget to
contain other information/request (dialog) subwidgets.

Syntax

Widget DwtAttachedDB (parent_widget, name, default_position,

X, y, title, style,
map_callback, help_callback)

Widget parent_widget;

char *name;

Boolean default_position;

Position x, y;

DwtCompString title;

unsigned char style;

DwtCallbackPtr map_callback, help_callback;

Widget DwtAttachedDBCreate (parent_widget, name,
override_arglist, override_argcount)
Widget parent_widget;
char *name;
ArgList override_arglist,
int override_argcount;

Widget DwtAttachedDBPopupCreate (parent_widget, name,
override_arglist,
override_argcount)

Widget parent widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

default_position
Specifies a boolean value that, when True, causes DwtNx
and DwtNy to be ignored and forces the default widget
position. The default widget position is centered in the
parent window. If False, the specified DwtNx and

Subroutines 3-3

DwtAttachedDB (3Dwt)

title

style

map_callback

help_callback

DwtNy attributes are used to position the widget. This
argument sets the DwtNdefaultPosition attribute
associated with DwtDialogBoxCreate.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the compound-string label. The label is given to
the window manager for the title bar if the DwtNstyle
attribute associated with DwtDialogBoxPopupCreate
is DwtModal or DwtModeless. However, the label is
used in the border if the DwtNstyle attribute associated
with DwtDialogBoxCreate is DwtWorkarea.

The attribute name associated with this argument is
DwtNtitle.

Specifies the style of the dialog box widget. You can pass
DwtModal, DwtModeless, or DwtWorkarea. This
argument sets the DwtNstyle attribute associated with
DwtDialogBoxCreate.

Specifies the callback function or functions called when the
window is about to be mapped. For this callback, the reason
is DwtCRMap. This argument is ignored if DwtNstyle is
DwtWorkarea.

This argument sets the DwtNmapCallback attribute
associated with DwtDialogBoxPopupCreate.

Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

override_arglist

Specifies the application override argument list.

override_argcount

3-4 Subroutines

Specifies the number of attributes in the application override
argument list (override_arglist).

DwtAttachedDB (3Dwt)

Description

The DwtAttachedDB and DwtAttachedDBCreate functions create an
instance of an attached dialog box widget or an attached dialog box pop-up
widget and return its associated widget ID. The
DwtAttachedDBPopupCreate function creates an instance of a pop-up
attached dialog box widget and returns its associated widget ID. The
attached dialog box acts as a container only, and provides no input semantics
over and above the semantics of the widgets that it contains. It differs from
the dialog box in its handling of child widgets. Constraints are placed on
each child widget at the time of creation. The default values for the
constraint attributes are placed on the child unless you specify values for the
constraint attributes. You specify these values either in the override_arglist
or by calling XtSetValues.

By using the constraint attributes, you can attach each of the four sides of a
child widget (top, bottom, right side, and left side) to a side of the parent
attached dialog box, a side of another child widget, to a relative position
within the attached dialog box, to itself, or to nothing. The possible
attachments for each of the four sides are described in the Constraint
Attributes section. Specifying these attachments allows you to maintain the
position of child widgets within the attached dialog box as resizing occurs.

If only one attachment in a direction is specified with no width or height, the
default width or height for the widget is used.

For all attachment types, you can optionally specify an offset in pixels or font
units. The offset determines the amount of space between the side of the
child widget and the side or position you attach it to. By default, the child
widgets are positioned in an attached dialog box in terms of font units rather
than pixel units. (That is, DwtNunits is DwtFontUnits.) The X font
units are defined to be one-fourth the width of whatever font is supplied for
the common attribute DwtNfont. The Y font units are defined to be one-
eighth the width of whatever font is supplied for DwtNfont.

The offsets given are automatically negated when dealing with right and
bottom sides. For example, a displacement of 5 means that the side stays S
units to the right of its attachment if a left side, and 5 units to the left if a
right side.

Displacements default to a value specified in the attached dialog box for
attachments to the attached dialog box and the widget, and half the value
specified if attached to a position. Attaching to a point allows several
widgets to grow proportionally; the space between them should be the default
displacement. There are separate horizontal and vertical defaults.

Subroutines 3-5

DwtAttachedDB (3Dwt)

You can determine whether the attached dialog box will honor resize
geometry requests from a given child widget by appropriately setting the
DwtNresize attribute for that child. If it does honor a request, the attached
dialog box reconfigures all child widgets based on the initial coordinate
information. You can add child widgets after the attached dialog box widget
has been realized. If there is extra room in the attached dialog box, the new
child widget will appear. If there is not enough room, the attached dialog
box will ask the geometry manager for permission to resize.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometr,
manager

DwtNy Position Determined by the geometr
manager

DwtNwidth Dimension Widget-specific

DwtNheight Dimension Widget-specific

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensit:
attributes

DwtNaccelerators XtTranslations NULL

DwtNdepth int Depth of the parent windoy

DwtNtranslations XtTranslations NULL

DwtNmappedWhenManaged Boolean True

DwtNscreen Screen * The parent screen

DwtNdestroyCallback DwtCallbackPtr NULL

Constraint Attributes

3-6 Subroutines

DwtAttachedDB (3Dwt)

DwtNadbTopAttachment DwtAttachmentType DwtAttachadb if
DwtNrubberPositioning
is False
DwtAttachSelf if
DwtNrubberPositioning
is True

DwtNadbBottomAttachment DwtAttachmentType The default is
DwtAttachNone if
DwtNrubberPositioning
is False.

The default is
DwtAttachSelf if
DwtNrubberPositioning
is True.

DwtNadbLeftAttachment DwtAttachmentType The default is
DwtAttachAdb if
DwtNrubberPositioning
is False.

The default is
DwtAttachSelf if
DwtNrubberPositioning
is True.

DwtNadbRightAttachment DwtAttachmentType The default is
DwtAttachNone if
DwtNrubberPositioning
is False.

The default is
DwtAttachSelf if
DwtNrubberPositioning

is True.
DwtNadbTopWidget Widget NULL
DwtNadbBottomWidget Widget NULL
DwtNadbLeftWidget Widget NULL
DwtNadbRightWidget Widget NULL
DwtNadbTopPosition int Zero
DwtNadbBottomPosition int Zero
DwtNadbLeftPosition int Zero
DwtNadbRightPosition int Zero
DwtNadbTopOffset int The value specified with
DwtNdefaultVerticalOffset.
However, if
DwtNadbTopAttachment

is DwtAttachPosition or
DwtAttachSelf, the

default is one-half the value
specified with
DwtNdefaultVerticalOffset.

Subroutines 3—-7

DwtAttachedDB (3Dwt)

DwtNadbBottomOffset int
DwtNadbLeftOffset int
DwtNadbRightOffset int
DwtNresizable Boolean

Dialog Attributes

DwtNforeground Pixel
DwtNhighlight Pixel
DwtNhighlightPixmap Pixmap
DwtNuserData Opaque *
DwtNfont DwtFontList
DwtNhelpCallback DwtCallbackPtr
DwtNdirectionRToL unsigned char
DwtNunits unsigned char

3-8 Subroutines

The default is the value

specified with
DwtNdefaultVerticalOffset.
However, if
DwtNadbBottomAttachment

is DwtAttachPosition or
DwtAttachSelf, the

default is one-half the value
specified with
DwtNdefaultVerticalOffset.
The default is the value

specified with
DwtNdefaultHorizontalOffs«
However, if
DwtNadbLeftAttachment

is DwtAttachPosition or
DwtAttachSelf, the

default is one-half the value of
DwtNdefaultHorizontalOffs
The value specified with
DwtNdefaultHorizontalOffs
However, if
DwtNadbRightAttachment

is DwtAttachPosition or
DwtAttachSelf, the

default is one-half the value
specified with
DwtNdefaultHorizontalOffs

True

Default foreground color
Default foreground color
NULL

NULL

The default XUI Toolkit font
NULL
DwtDirectionRightDown
DwtFontUnits

DwtAttachedDB (3Dwt)

DwtNstyle unsigned char For
DwtDialogBoxCreate, the
default is DwtWorkarea.
For
DwtDialogBoxPopupCreate,
the default is

DwtModeless.
DwtNfocusCallback DwtCallbackPtr NULL
DwtNtextMergeTranslations XtTranslations NULL
DwtNmarginWidth Dimension For

DwtDialogBoxCreate, the

default is One pixel.

For

DwtDialogBoxPopupCreate,

the default is 3 pixels.
DwtNmarginHeight Dimension For

DwtDialogBoxCreate, the

default is One pixel.

For

DwtDialogBoxPopupCreate,

the default is 3 pixels.

DwtNdefaultPosition Boolean False

DwtNchildOverlap Boolean True

DwtNresize unsigned char DwtResizeGrowOnly

DwtNgrabKeySyms KeySym The default array contains the
Tab key symbol.

DwtNgrabMergeTranslations XtTranslations The default syntax is:
"~Shift<KeyPress>0x{f09:
DWTDIMOVEFOCUSNEXT(O\Nm\
Shift<KeyPress>0xff09:
DWTDIMOVEFOCUSPREV()";

The following constraint attributes belong to any widget that is made a child
of an attached dialog box widget. You cannot set these attributes on the
attached dialog box itself; you must set them on the child widget. Several of
these constraint attributes take an enumerated data type. You should not
change attachment attributes in an attached dialog box with XtSetValues,
as this could result in an infinite loop.
typedef enum DwtAttachmentType {

DwtAttachNone,

DwtAttachAdb,

DwtAttachWidget,

DwtAttachPosition,

DwtAttachSelf,

DwtAttachOppWidget,

DwtAttachOppAdb,

Subroutines 3-9

DwtAttachedDB (3Dwt)

} DwtAttachmentType;

DwtNadbTopAttachment
Specifies how the top side of the child widget is
attached to its parent attached dialog box widget,
another child widget, a position, or itself.

The following describes the enumerated data type
values as they apply to this attribute:

Value Meaning

DwtAttachNone Do not attach this side. This type of attachment
may be overridden by the defaults of other
attachments that affect this side.

DwtAttachAdb Attach the top side of the child widget to the top
side of its parent attached dialog box.

DwtAttachOppAdb Attach the top side of the child widget to the
bottom side of its parent attached dialog box.

DwtAttachWidget Attach the top side of the child widget to the
bottom side of another child widget within the
parent attached dialog box.

DwtAttachOppWidget Attach the top side of the child widget to the top
side of another child widget.

DwtAttachPosition Attach the top side of the child widget to a
relative position inside the parent attached dialog
box. Specify the relative position as a fraction
of the total width or height of the attached
dialog box.

DwtAttachSelf Attach the top side of the child widget to a
relative position corresponding to the side’s
initial position in the attached dialog box.

DwtNadbBottomAttachment
Specifies how the bottom side of the widget is
attached to the side of its parent attached dialog box
widget, another child widget, a position, or itself.

The following describes the enumerated data type
values as they apply to this attribute:

3-10 Subroutines

Value
DwtAttachNone

DwtAttachAdb

DwtAttachOppAdb

DwtAttachWidget

DwtAttachOppWidget

DwtAttachPosition

DwtAttachSelf

DwtAttachedDB (3Dwt)

Meaning

Do not attach this side. This type of attachment
overrides any default attachment that might
affect the side.

Attach this side to the bottom side of its parent
attached dialog box.

Attach this side to the top side of the parent
attached dialog box.

Attach this side to the top side of another child
widget within the parent attached dialog box.

Attach this side to the bottom side of another
child widget.

Attach this side to a relative position inside the
parent attached dialog box. Specify the relative
position as a fraction of the total width or height
of the attached dialog box.

Attach this to a relative position corresponding
to the side’s initial position inside the parent
attached dialog box.

DwtNadbLeftAttachment

Value
DwtAttachNone

DwtAttachAdb

DwtAttachOppAdb

Specifies how the left side of the widget is attached
to the side of its parent attached dialog box widget,
another child widget, a position, or itself.

The following describes the enumerated data type
values as they apply to this attribute:

Meaning

Do not attach this side. This type of attachment
overrides any default attachment that might
affect the side.

Attach this side to the left side of its parent
attached dialog box.

Attach this side to the right side of the parent
attached dialog box.

Subroutines 3-11

DwtAttachedDB (3Dwt)

DwtAttachWidget Attach this side to the right side of another child
widget within the parent attached dialog box.

DwtAttachOppWidget Attach this side to the left side of another child
widget.
DwtAttachPosition Attach this side to a relative position inside the

parent attached dialog box. Specify the relative
position as a fraction of the total width or height
of the attached dialog box.

DwtAttachSelf Attach this side to a relative position
corresponding to the side’s initial position in the
parent attached dialog box.

DwtNadbRightAttachment
Specifies how the right side of the widget is attached
to the side of its parent attached dialog box, another
child widget, a position, or itself.

The following describes the enumerated data type
values as they apply to this attribute:

Value Meaning

DwtAttachNone Do not attach this side. This type of attachment
overrides any default attachment that might
affect the side.

DwtAttachAdb Attach this side to the right side of its parent
attached dialog box.

DwtAttachOppAdb Attach this side to the left side of the parent
attached dialog box.

DwtAttachWidget Attach this side to the left side of another child
widget within the parent attached dialog box.

DwtAttachOppWidget Attach this side to the right side of another child
widget.
DwtAttachPosition Attach this side to a relative position inside the

parent attached dialog box. Specify the relative
position as a fraction of the total width or height
of the attached dialog box.

3-12 Subroutines

DwtAttachedDB (3Dwt)

DwtAttachSelf Attach this side to a relative position
corresponding to the side’s initial position in the
parent attached dialog box.

DwtNadbTopWidget
Specifies the child widget that the top side is
attached to if DwtNadbTopAttachment is
DwtAttachWidget or DwtAttachOppWidget.
Otherwise, this attribute is ignored.

DwtNadbBottomWidget
Specifies the widget that the bottom side is attached
to if DwtNadbBottomAttachment is
DwtAttachWidget or DwtAttachOppWidget.
Otherwise, this attribute is ignored.

DwtNadbLeftWidget
Specifies the widget that the left side is attached to if
DwtNadbLeftAttachment is
DwtAttachWidget or DwtAttachOppWidget.
Otherwise, this attribute is ignored.

DwtNadbRightWidget
Specifies the widget that the right side is attached to
if DwtNadbRightAttachment is
DwtAttachWidget or DwtAttachOppWidget.
Otherwise, this attribute is ignored.

DwtNtopPosition Specifies the numerator used with
DwtNfractionBase to determine the relative
positioning of the top side if
DwtNadbTopAttachment is
DwtAttachPosition. Otherwise, this attribute is
ignored.

DwtNadbBottomPosition
Specifies the numerator used with
DwtNfractionBase to determine the relative
positioning of the bottom side if
DwtNadbBottomAttachment is
DwtAttachPosition. Otherwise, this attribute is
ignored.

DwtNadbLeftPosition
Specifies the numerator used with
DwtNfractionBase to determine the relative

Subroutines 3—13

DwtAttachedDB (3Dwt)

positioning of the left side if
DwtNadbLeftAttachment is
DwtAttachPosition. Otherwise, this attribute is
ignored.

DwtNadbRightPosition
Specifies the numerator used with the
DwtNfractionBase to determine the relative
positioning of the right side if
DwtNadbRightAttachment is
DwtAttachPosition. Otherwise, this attribute is
ignored.

DwtNadbTopOffset
Specifies the offset of the top side from the position,
widget, or attached dialog box.

DwtNadbBottomOffset
Specifies the offset of the bottom side from the
position, widget, or attached dialog box.

DwtNadbLeftOffset
Specifies the offset of the left side from the position,
widget, or attached dialog box.

DwtNadbRightOffset
Specifies the offset of the right side from the
position, widget, or attached dialog box.

DwtNresizable Specifies a boolean value that, when True,
indicates that the attached dialog box can change the
size of the child widget. If False, indicates that
the attached dialog box cannot change the size of the

child widget.
Widget-Specific Attributes
Attribute Name Data Type Default
DwtNdefaultHorizontalOffset int Zero
DwtNdefaultVerticalOffset int Zero
DwtNrubberPositioning Boolean False
DwtNfractionBase int 100

3-14 Subroutines

DwtAttachedDB (3Dwt)

DwtNdefaultHorizontalOffset
Specifies the default horizontal offset for right and
left attachments. The offset determines the amount
of space between the left or right side of a child
widget and the side or position to which it is
attached.

DwtNdefaultVerticalOffset
Specifies the default vertical offset for the top and
bottom attachments. The offset determines the
amount of space between the top or bottom side of a
child widget and the side or position to which it is
attached.

DwtNrubberPositioning
Specifies a boolean value that, when False,
indicates that the child widget left and top sides
default to being attached to the left and top of the
attached dialog box. If True, the child widget sides
default to being attached to the left and top of the
attached dialog box.

DwtNfractionBase
Specifies the denominator used in specifying
fractional positioning.

Return Value
These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRMap The attached dialog box is about to be
mapped.

DwtCRHelpRequested The user selected Help.

Subroutines 3—15

DwtAttachedDB (3Dwt)

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on

XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-16 Subroutines

Name

DwtBeginCopyToClipboard (3Dwt)

DwtBeginCopyToClipboard — Sets up storage and data structures to receive

clipboard data.

Syntax

int DwtBeginCopyToClipboard (display, window, clip _label,

widget, callback, item_id)

Display *display;

Window window;
DwtCompString clip_label;
Widget widget;

VoidProc callback;

long *item_id;

Arguments

display

window

clip_label

widget

callback

Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

Specifies the label to be associated with the data item. This
argument is used to identify the data item, for example, in a
clipboard viewer. An example of a label is the name of the
application that places the data in the clipboard.

Specifies the ID of the widget that will receive messages
requesting data previously passed by name. This argument
must be present in order to pass data by name. Any valid
widget ID in your application can be used. All message
handling is done by the cut and paste functions.

Specifies the address of the callback function that is called
when the clipboard needs data that was originally passed by
name. This is also the callback to receive the DELETE
message for items that were originally passed by name. This
argument must be present in order to pass data by name.

Subroutines 3—-17

DwtBeginCopyToClipboard (3Dwt)

item_id Specifies the number assigned to this data item. The
application uses this number in calls to
DwtCopyToClipboard, DwtEndCopyToClipboard,
and DwtCancelCopyToClipboard.

Description

The DwtBeginCopyToClipboard function sets up storage and data
structures to receive clipboard data. An application calls
DwtBeginCopyToClipboard during a cut or copy operation. The data
item that these structures receive then becomes the next-paste item in the
clipboard.

The widget and callback arguments must be present in order to pass data by
name. The callback format is as follows:

function name(widget, data_id, private_id, reason)
Widget *widget;
int *data_id;
int *private_id;
int *reason;

widget Specifies the ID of the widget passed to
DwtBeginCopyToClipboard.

data_id Specifies the identifying number returned by
DwtCopyToClipboard, which identifes the pass-by-name
data.

private_id Specifies the private information passed to
DwtCopyToClipboard.

reason Specifies the reason, which is either

DwtCRClipboardDataDelete or
DwtCRClipboardDataRequest.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

3-18 Subroutines

DwtBeginCopyToClipboard (3Dwt)

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

DwtCopyToClipboard (3Dwt), DwtEndCopyToClipboard (3Dwt),
DwtCancelCopyToClipboard (3Dwt), DwtStartCopyToClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-19

DwtCancelCopyFormat (3Dwt)

Name

DwtCancelCopyFormat — Indicates that the application will no longer supply
a data item to the clipboard that the application had previously passed by
name.

Syntax

int DwtCancelCopyFormat(display, window, data_id)
Display *display;
Window window;
int data_id;

Arguments

display Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

window Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

data_id Specifies an identifying number assigned to the data item that
uniquely identifies the data item and the format. This was
assigned to the item when it was originally passed by
DwtCopyToClipboard.

Description
The DwtCancelCopyFormat function indicates that the application will
no longer supply a data item to the clipboard that the application had
previously passed by name.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

3-20 Subroutines

DwtCancelCopyFormat (3Dwt)

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-21

DwtCancelCopyToClipboard (3Dwt)

Name

DwtCancelCopyToClipboard — Cancels the copy to clipboard that is in

progress.

Syntax

void DwtCancelCopyToClipboard(display, window, item_id)
Display *display;
Window window;
long item_id,

Arguments

display

window

item_id

Description

Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

Specifies the number assigned to this data item. This number
was returned by a previous call to
DwtBeginCopyToClipboard.

The DwtCancelCopyToClipboard function cancels the copy to
clipboard that is in progress. DwtCancelCopyToClipboard also frees
up temporary storage. If DwtCancelCopyToClipboard is called, then
DwtEndCopyToClipboard does not have to be called. A call to
DwtCancelCopyToClipboard is valid only after a call to
DwtBeginCopyToClipboard and before a call to
DwtEndCopyToClipboard.

See Also

DwtBeginCopyToClipboard (3Dwt), DwtEndCopyToClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-22 Subroutines

DwtCautionBox (3Dwt)

Name

DwtCautionBox, DwtCautionBoxCreate — Creates a caution box widget for
the application to display caution messages.

Syntax

Widget DwtCautionBox (parent_widget, name, default_position,

x, y, style, label,
yeslabel, nolabel, cancel label,
default push_button, callback,
help_callback)

Widget parent widget;

char *name;

Boolean default position;

Position x, y;

int style;

DwtCompString label;

DwtCompString yeslabel;

DwtCompString nolabel;

DwtCompString cancel_label;

int default_push_button;

DwtCallbackPtr callback, help_callback;

Widget DwtCautionBoxCreate (parent_widget, name,
override_arglist,
override_argcount)

Widget parent_widget;
char *name;

ArglList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

default_position
Specifies a boolean value that, when True, causes DwtNx
and DwtNy to be ignored and forces the default widget
position. The default widget position is centered in the
parent window. If False, the specified DwtNx and
DwtNy attributes are used to position the widget. This

Subroutines 3-23

DwtCautionBox (3Dwt)

style

label

yeslabel

nolabel

cancel_label

argument sets the DwtNdefaultPosition attribute
associated with DwtDialogBoxCreate.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the style of the caution box widget. You can pass
DwtModal (modal) or DwtModeless (modeless). This
argument sets the DwtNstyle attribute associated with
DwtDialogBoxPopupCreate.

Specifies the text in the message line or lines. This argument
sets the DwtNlabel attribute associated with
DwtCautionBoxCreate.

Specifies the label for the Yes push button. If the label is a
zero length string, the button is not displayed. This
argument sets the DwtNyesLabel attribute associated with
DwtCautionBoxCreate.

Specifies the label for the No push button. If the label is a
zero length string, the button is not displayed. This
argument sets the DwtNnoLabel attribute associated with
DwtCautionBoxCreate.

Specifies the label for the Cancel push button. If the label is
a NULL string, the button is not displayed. This argument
sets the DwtNcancelLabel attribute associated with
DwtCautionBoxCreate.

default_push_button

callback

3-24 Subroutines

Specifies the push button that represents the default user
action. You can pass DwtYesButton, DwtNoButton,
or DwtCancelButton. This argument sets the
DwtNdefaultPushbutton attribute associated with
DwtCautionBoxCreate.

Specifies the callback function or functions called when the
user activates the Yes, No, or Cancel buttons. This argument
sets the DwtNyesCallback, DwtNnoCallback, and

DwtCautionBox (3Dwt)

DwtNcancelCallback attributes associated with
DwtCautionBoxCreate.

help_callback Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtCautionBox and DwtCautionBoxCreate functions create a
caution box widget and return its associated widget ID. When calling
DwtCautionBox, you set the caution box widget attributes presented in the
formal parameter list. For DwtCautionBoxCreate, however, you
specify a list of attribute name/value pairs that represent all the possible
caution box widget attributes.

A caution box warns the user of the application of the consequences of
carrying out an action. It stops application activity and requires the user to
provide instructions on how to proceed. Your application should generate a
caution box when an action by the user could destroy data or cause a simialr
irrevocable event. The caution box usually contains Yes, No, and Cancel
push buttons. When possible, caution messages should be written as
inquiries. In all cases, the default push button should be the least destructive
operation. If DwtNstyle is DwtModal when the user activates any push
button, the widget is cleared from the screen, but not destroyed. You can
redisplay the widget by calling XtManageChild.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

Subroutines 3—-25

DwtCautionBox (3Dwt)

DwtNy

DwtNwidth

DwtNheight
DwtNborderWidth
DwtNborder
DwtNborderPixmap
DwtNbackground
DwtNbackgroundPixmap
DwtNcolormap
DwtNsensitive
DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Dialog Pop-Up Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNfont
DwtNhelpCallback
DwtNdirectionRToL
DwtNunits

DwtNtitle

DwtNstyle
DwtNmapCallback
DwtNunmapCallback
DwtNfocusCallback
DwtNtextMergeTranslations
DwtNmarginWidth
DwtNmarginHeight
DwtNdefaultPosition

3-26 Subroutines

Position

Dimension
Dimension
Dimension
Pixel
Pixmap
Pixel
Pixmap
Colormap
Boolean
Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap
Opaque *
DwtFontList
DwtCallbackPtr
NOT SUPPORTED
NOT SUPPORTED
DwtCompString
unsigned char
DwtCallbackPtr
DwtCallbackPtr
DwtCallbackPtr
NOT SUPPORTED
Dimension
Dimension
Boolean

Determined by the geometry
manager

5 pixels

5 pixels

One pixel

Default foreground color
NULL

Default background color
NULL

Default color map

True

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL

The default XUI Toolkit font
NULL

Widget name
DwtModal
NULL
NULL
NULL

12 pixels
10 pixels
False

DwtCautionBox (3Dwt)

DwtNchildOverlap NOT SUPPORTED
DwtNresize unsigned char DwtResizeShrinkWrap
DwtNtakeFocus Boolean True for modal dialog box
False for modeless dialog
box
DwtNnoResize Boolean True (that is, no window
manager resize button)
DwtNautoUnmanage Boolean True
DwtNdefaultButton NOT SUPPORTED
DwtNcancelButton NOT SUPPORTED
Widget-Specific Attributes
Attribute Name Data Type Default
DwtNlabel DwtCompString Widget name
DwtNyesLabel DwtCompString "Yes"
DwtNnoLabel DwtCompString "No"
DwtNcancelLabel DwtCompString "Cancel"”
DwtNdefaultPushbutton unsigned char DwtYesButton
DwtNyesCallback DwtCallbackPtr NULL
DwtNnoCallback DwtCallbackPtr NULL
DwtNcancelCallback DwtCallbackPtr NULL
DwtNlabel Specifies the text in the message line or lines.
DwtNyesLabel Specifies the label for the Yes push button. If the
label is a zero length string, the button is not
displayed.
DwtNnoLabel Specifies the label for the No push button. If the
label is a zero length string, the button is not
displayed.

DwtNcancelLabel Specifies the label for the Cancel push button. If the
label is a NULL string, the button is not displayed.

DwtNdefaultPushbutton
Specifies the push button that represents the default
user action. You can pass DwtYesButton,
DwtNoButton, or DwtCancelButton.

DwtNyesCallback Specifies the callback function or functions called
when the user clicks on the Yes button. For this
callback, the reason is DwtCRYes.

Subroutines 3-27

DwtCautionBox (3Dwt)

DwtNnoCallback Specifies the callback function or functions called
when the user clicks on the No button. For this
callback, the reason is DwtCRNo.

DwtNcancelCallback
Specifies the callback function or functions called
when the user clicks on the Cancel button. For this
callback, the reason is DwtCRCancel.

Return Value
These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRYes The user activated the Yes button.

DwtCRNo The user activated the No button.

DwtCRCancel The user activated the Cancel button.

DwtCRFocus The caution box has received the input
focus.

DwtCRHelpRequested The user selected Help somewhere in the
caution box.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

3-28 Subroutines

DwtCautionBox (3Dwt)
See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—29

DwtClipboardLock (3Dwt)

Name
DwtClipboardLock — Locks the clipboard from access by other applications.

Syntax
int DwtClipboardLock(display, window)
Display *display;
Window window;

Arguments
display Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the XIib Library: C Language
Binding.
window Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.
Description

The DwtClipboardLock function locks the clipboard from access by
another application until you call DwtClipboardUnlock. All clipboard
functions lock and unlock the clipboard to prevent simultaneous access. The
DwtClipboardlLock and DwtClipboardUnlock functions allow the
application to keep the clipboard data from changing between calls to the
inquire functions and other clipboard functions. The application does not
need to lock the clipboard between calls to
DwtBeginCopyToClipboard and DwtEndCopyToClipboard.

If the clipboard is already locked by another application,
DwtClipboardLock returns an error status.

Multiple calls to DwtClipboardLock by the same application increase
the lock level.
Return Value

This function returns one of these status return constants:

ClipboardSuccess The function is successful.

3-30 Subroutines

DwtClipboardLock (3Dwt)

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

DwtClipboardUnlock (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-31

DwtClipboardRegisterFormat (3Dwt)

Name

DwtClipboardRegisterFormat — Registers the length of the data for formats
not specified by ICCCM conventions.

Syntax

int DwtClipboardRegisterFormat(display, format_name,
format length)
Display *display;
char * format_name;
unsigned long format length;

Arguments

display Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

format name Specifies a name string for the format. See the table of Data
Format Names for the formats defined by ICCCM
conventions.

format length Specifies the format length in bits: 8, 16, or 32.

Description

The DwtClipboardRegisterFormat function allows an application to
register the data length for formats not specified by the ICCCM conventions.
Failure to register the length of the data results in applications being
incompatible across platforms that have different byte-swapping orders.

The following table lists the formats defined by the conventions:

Format Name Format Length Description

TARGETS 32 List of valid target atoms

MULTIPLE 32 Look in the ConvertSelection property

TIMESTAMP 32 Timestamping used to acquire
selection

STRING 8 ISO Latin 1 (+TAB+NEWLINE) text

TEXT 8 Text in owner’s encoding

3-32 Subroutines

LIST_LENGTH
PIXMAP
DRAWABLE
BITMAP
FOREGROUND
BACKGROUND
COLORMAP
ODIF

OWNER_OS
FILE_NAME
HOST_NAME
CHARACTER_POSITION
LINE_NUMBER
COLUMN_NUMBER
LENGTH

USER

PROCEDURE
MODULE

PROCESS

TASK

CLASS

NAME
CLIENT_WINDOW

DwtClipboardRegisterFormat (3Dwt)

32
32
32
32
32
32
32

320r8
320r8
8

8

32

Number of disjoint parts of selection
Pixmap ID

Drawable ID

Bitmap ID

Pixel value

Pixel value

Colormap ID

ISO Office Document Interchange
Format

Operating system of owner

Full path name of a file

See WM_CLIENT_MACHINE
Start and end of selection in bytes
Start and end line numbers

Number of bytes in selection
Name of user running owner
Name of selected procedure
Name of selected module

Process ID of owner

Task ID of owner

Class of owner—See WM_CLASS
Name of owner-See WM_NAME
Top-level window of owner

For information on the built-in selection property names
WM_CLIENT_MACHINE, WM_CLASS, and WM_NAME, see the Guide

to the XlIib Library: C Language Binding.

Return Value

This function returns one of these status return constants:

ClipboardSuccess
ClipboardLocked

The function is successful.

The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

Subroutines 3—-33

DwtClipboardRegisterFormat (3Dwt)

ClipboardBadFormat The function failed because the
format_name or format_length was
inappropriate. A NULL format_name or a
format_length other than 8, 16, or 32, for
example, would be inappropriate.

ClipboardFail The function failed because the application
tried to redefine a predefined format. See
the table of Data Format Names for the
predefined formats.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-34 Subroutines

DwtClipboardUnlock (3Dwt)

Name

DwtClipboardUnlock — Unlocks the clipboard, enabling other applications to
access it.

Syntax

int DwtClipboardUnlock(display, window, remove_all_locks)
Display *display;
Window window;
Boolean remove_all_locks;

Arguments
display Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.
window Specifies the window ID that relates the application window

to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

remove_all_locks
Specifies a boolean value that, when True, indicates that all
nested locks should be removed. If False, indicates that
only one level of lock should be removed.

Description

The DwtClipboardUnlock function unlocks the clipboard, enabling it to
be accessed by other applications.

If multiple calls to DwtClipboardLock have occurred, then the same
number of calls to DwtClipboardUnlock is necessary to unlock the
clipboard, unless the remove_all _locks argument is True.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

Subroutines 3-35

DwtClipboardUnlock (3Dwt)

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

DwtClipboardLock (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-36 Subroutines

DwtCloseHierarchy (3Dwt)

Name
DwtCloseHierarchy — Closes a UID hierarchy.

Syntax

#include <X11/DwtAppl.h>
Cardinal DwtCloseHierarchy(hierarchy_id)
DRMHierarchy hierarchy_id;

Arguments

hierarchy id Specifies the ID of a previously opened UID hierarchy. The
hierarchy _id was returned in a previous call to
DwtOpenHierarchy.

Description
The DwtCloseHierarchy function closes a UID hierarchy previously
opened by DwtOpenHierarchy. All files associated with the hierarchy
are closed by DRM and all associated memory is returned.

Return Value
This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMFailure The function failed.
See Also

DwtOpenHierarchy(3Dwt)

Subroutines 3—37

DwtColorMixCreate (3Dwt)

Name

DwtColorMixCreate — Creates a color mixing widget, which is a pop-up
dialog box containing a default color display subwidget and a default color
mixer subwidget.

Syntax

Widget DwtColorMixCreate (parent_widget, name,
override_arglist, override_argcount)
Widget parent_widget;
char *name;
ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtColorMixCreate function creates a color mixing widget and
returns its associated widget ID. Note that unlike most of the other widgets
in the XUI toolkit, a color mixing widget cannot be created with a high-level
function. When calling DwtColorMixCreate, you specify a list of
attribute name/value pairs that represents all the possible color mixing widget
attributes.

The color mixing widget is a composite widget; that is, it is composed of a
parent widget and several child widgets at creation time. The parent widget
is a pop-up dialog box that has some labels, handles geometry management,
calls back to the application and contains the following child widgets by
default:

. A color display subwidget that displays the colors being mixed

o A color mixer subwidget that allows the user to specify colors

3-38 Subroutines

DwtColorMixCreate (3Dwt)

. An optional work area widget

While the color mixing widget contains these three child widgets by default,
the application can replace either or both the color display and color mixer
subwidgets. Thus, applications can provide any type of color display or
color mixer tool model.

The default color display widget displays both the original color (the color
value supplied by the application when the mixing began) and the current
new color. Applications can set the following values:

° The original color values for red, green, and blue

* The new color values for red, green, and blue

o The background color of the display widget

. The dimensions of the color display windows and background area

If the display device is a gray scale, pseudo color, or static color
device, the color display widget allocates a maximum of three color
cells whenever it becomes managed. If fewer than three color cells are
available, the order of precedence is as follows:

1 Original color cell

2 New color cell

3 Background color cell

These color cells are deallocated whenever the widget becomes unmanaged.

If an application replaces the default color display subwidget, the application
may provide a function to allow the color mixing widget to pass the current
new color value from the color mixer subwidget. Otherwise, the color
mixing widget cannot inform the color display subwidget of color changes.
The application can return to the default color display subwidget at any time
by using XtSetValues to set DwtNdisplayWindow to NULL.

The default RGB color mixer subwidget provides three scales, each of which
represents a percentage of red, green, and blue. Users may also type in the
actual X color values (0 to 65535) in the entry fields. When color mixing
begins, the color mixer subwidget is set to the current new color values.

If an application replaces the default color mixer subwidget, the new color
mixer subwidget must inform the color mixing widget of changes to the
current color value. The fastest way to do this is to call the convenience
function DwtColorMixSetNewColor, although you can also use

Subroutines 3—-39

DwtColorMixCreate (3Dwt)

XtSetValues. The application can return to the default color mixer
subwidget at any time by using XtSetValues to set
DwtNmixerWindow to NULL.

Note that setting DwtNdisplayWindow and DwtNmixerWindow to
NULL when the color mixing widget is created results in no color display
subwidget and no color mixer subwidget. Setting these attributes to NULL
after the color mixing widget is created results in returning to the default
color display and color mixer subwidgets.

The color mixing widget runs on any XUI display device. On gray scale
devices, the default color display subwidget shows the RGB values in gray
scale. On static gray (monochrome) devices, the default color display
subwidget is not visible.

As far as geometry management is concerned, the color mixing widget
conforms to the size of its children.

As far as resizing is concerned, the color mixing widget uses the dialog box
shrink wrap mode. It expands and shrinks relative to the size of its children.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Zero pixels

DwtNheight Dimension Zero pixels

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

DwtNaccelerators XtTranslations NULL

3-40 Subroutines

DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Dialog Box Pop-Up Attributes
DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback
DwtNunits

DwtNstyle
DwtNfocusCallback
DwtNtextMergeTranslations
DwtNmarginWidth
DwtNmarginHeight
DwtNdefaultPosition
DwtNchildOverlap
DwtNresize
DwtNnoResize
DwtNtitle
DwtNmapCallback
DwtNunmapCallback
DwtNtakeFocus

DwtNautoUnmanage
DwtNdefaultButton
DwtNcancelButton
DwtNgrabKeySyms

DwtNgrabMergeTranslations

DwtColorMixCreate (3Dwt)

int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap
Opaque *
unsigned char
DwtFontList
DwtCallbackPtr
unsigned char
unsigned char
DwtCallbackPtr
XtTranslations
Dimension
Dimension
Boolean
Boolean

unsigned char
Boolean
DwtCompString
DwtCallbackPtr
DwtCallbackPtr
Boolean

Boolean
Widget
Widget
KeySym

XtTranslations

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown
The default XUI Toolkit font
NULL

DwtFontUnits
DwtModeless

NULL

NULL

10 pixels

10 pixels

False

True
DwtResizeShrinkWrap
True

"Color Mixing"

NULL

NULL

True for modal dialog box

False for modeless dialog

box

False

NULL

NULL

The default array contains the
Tab key symbol.

The default syntax is:
"~Shift<KeyPress>0xff09:
DWTDIMOVEFOCUSNEXT(\n\
Shift<KeyPress>0xff09:
DWTDIMOVEFOCUSPREV()";

Subroutines 3—41

DwtColorMixCreate (3Dwt)
Widget-Specific Attributes

Attribute Name

Data Type

Default

DwtNmainLabel
DwitNdisplayLabel
DwtNmixerLabel
DwtNorigRedValue
DwtNorigGreenvValue
DwtNorigBlueValue
DwtNnewRedValue

DwtNnewGreenvValue

DwtNnewBlueValue

DwtNdisplayWindow

DwtNsetNewColorProc

DwtNmixerWindow

DwtNworkWindow
DwtNokLabel

DwtNapplyLabel
DwtNresetLabel

3-42 Subroutines

DwtCompString
DwtCompString
DwtCompString
unsigned short
unsigned short
unsigned short
unsigned short

unsigned short

unsigned short

Widget

char *

Widget

Widget

DwtCompString
DwtCompString
DwtCompString

NULL

NULL

NULL

Zero

Zero

Zero

Zero, unless
DwtNmatchColors is
True, in which case
DwtNnewRedValue is set
to match
DwtNorigRedValue
whenever the widget is
created and mapped.

Zero, unless
DwtNmatchColors is
True, in which case
DwtNnewGreenvValue is
set to match
DwtNorigGreenValue
whenever the widget is
created and mapped.

Zero, unless
DwtNmatchColors is
True, in which case
DwtNnewBlueValue is set
to match
DwtNorigBlueValue
whenever the widget is
created and mapped.

The color mixing widget
display subwidget

The function used by the
color mixing widget to
update the new color values
displayed in the color display
subwidget.

The color mixing widget’s
RGB color mixer subwidget
NULL

"OK"

llApplyll
"Reset"

DwtNcancellLabel
DwtNokCallback
DwtNapplyCallback
DwtNcancelCallback
DwtNmatchColors

DwtNresize

DwtNbackGreenvValue

DwtNbackBlueValue

DwtNdisplayColWinWidth

DwtNdisplayColWinHeight

DwtNdispWinMargin

DwtNsliderLabel

DwtNvalueLabel

DwtNredLabel

DwtColorMixCreate (3Dwt)

DwtCompString
DwtCallbackPtr
DwtCallbackPtr
DwtCallbackPtr
Boolean

unsigned short

unsigned short

unsigned short

Dimension

Dimension

Dimension

DwtCompString

DwtCompString

DwtCompString

"Cancel"
NULL
NULL
NULL

True

This attribute can be set only
if the default color display
widget is used.

Gray (32767)

This attribute can be set only
if the default color display
widget is used.

Gray (32767)

This attribute can be set only
if the default color display
widget is used.

Gray (32767)

This attribute can be set only
if the default color display
widget is used.

80 pixels

This attribute can be set only
if the default color display
widget is used.

80 pixels

This attribute can be set only
if the default color display
widget is used.

20 pixels

This attribute can be set only
if the default color display
widget is used.

"Percentage"

This attribute can be set only
if the default color mix tool
widget is used.

"Value"

This attribute can be set only
if the default color mix tool
widget is used.

"Red"

This attribute can be set only
if the default color mix tool
widget is used.

Subroutines 3-43

DwtColorMixCreate (3Dwt)

DwtNgreenLabel DwtCompString "Green"
This attribute can be set only
if the default color mix tool
widget is used.
DwtNbluelabel DwtCompString "Blue"
This attribute can be set only
if the default color mix tool
widget is used.

DwtNmainLabel Specifies the text of the main label, which is centered
at the top of the color mixing widget.

DwtNdisplayLabel
Specifies the text of the label centered above the
color display widget.

DwtNmixerLabel Specifies the text of the label centered color mixing
widget.

DwtNorigRedValue
Specifies the original red color value for the color
mixing widget. Applications should set the original
red value.

DwtNorigGreenValue
Specifies the original green color value for the color
mixing widget. Applications should set the original
green value.

DwtNorigBlueValue
Specifies the original blue color value for the color
mixing widget. Applications should set the original
blue value.

DwtNnewRedValue Specifies the new red color value for the color
mixing widget.

DwtNnewGreenValue
Specifies the new green color value for the color
mixing widget.

DwtNnewBlueValue
Specifies the new blue color value for the color
mixing widget.

DwtNdisplayWindow
Specifies the color display widget. Setting this
attribute to NULL at widget creation time causes the

3-44 Subroutines

DwtColorMixCreate (3Dwt)

color display widget to not be displayed.

If an application substitutes its own color display
widget for the default color display widget, the
application is responsible for managing the widget,
that is, making it visible and controlling its geometry
management. An application can return to the
default color display widget by using
XtSetValues to set this attribute to NULL.

DwtNsetNewColorProc

DwtNmixerWindow

DwtNworkWindow

Specifies the function used by the color mixing
widget to update the new color values displayed in
the color display subwidget. If the application
replaces the default color display subwidget and
wants the color mixing widget to update the new
color, the application must set this attribute.
Otherwise, replacing the default color display
subwidget sets this attribute to NULL.

Specifies the color mixer subwidget. The default
color mixer subwidget is based on the red, green, and
blue (RGB) color model. Setting this attribute to
NULL at widget creation time causes the color mixer
subwidget to not be displayed.

If an application substitutes its own color mixer
subwidget for the default color mixer subwidget, the
application is responsible for managing the widget,
that is, making it visible and controlling its geometry
management. An application can later return to the
default color mixer subwidget by using
XtSetValues to set this attribute to NULL.

Applications that use the default color mixer
subwidget need not worry about updating the new
color. However, applications that provide their own
color mixer subwidget are responsible for updating
the new color. Applications can do this by using
either XtSetValues or
DwtColorMixSetNewColor. Using
DwtColorMixSetNewColor is recommended
because it is more efficient.

Specifies an optional work area widget. If this
attribute is set and the application manages this

Subroutines 3—45

DwtColorMixCreate (3Dwt)

widget, the work window is placed below the color
display and color mixer subwidgets (if present) and
above the color mixing widget push buttons.

DwtNokLabel Specifies the label for the OK push button.
DwtNapplyLabel Specifies the label for the Apply push button.
DwtNresetLabel Specifies the label for the Reset push button.
DwtNcancelLabel Specifies the label for the Cancel push button.

DwtNokCallback Specifies the callback function or functions called
when the user clicks on the OK push button. For
this callback, the reason is DwtCRActivate.

DwtNapplyCallback
Specifies the callback function or functions called
when the user clicks on the Apply push button. For
this callback, the reason is DwtCRApply.

DwtNcancelCallback
Specifies the callback function or functions called
when the user clicks on the Cancel button. For this
callback, the reason is DwtCRCancel.

DwtNmatchColors Specifies a boolean value that, when True,
indicates that the new color values are matched to
original color values. If False, new color values
are not matched to original color values.

This attribute can be set only if the default color
display widget is used.

DwtNbackRedValue
Specifies the default color display widget’s red

background color. This attribute can be set only if
the default color display widget is used.

DwtNbackGreenValue
Specifies the default color display widget’s green
background color. This attribute can be set only if
the default color display widget is used. '

DwtNbackBlueValue
Specifies the default color display widget’s blue
background color. This attribute can be set only if
the default color display widget is used.

3—-46 Subroutines

DwtColorMixCreate (3Dwt)

DwtNdisplayColWinWidth

Specifies the width of the original and new color
display windows. This attribute can be set only if
the default color display widget is used.

DwtNdisplayColWinHeight

Specifies the height of the original and new color
display windows. This attribute can be set only if
the default color display widget is used.

DwtNdispWinMargin

DwtNsliderLabel

DwtNvalueLabel

DwtNredLabel

DwtNgreenLabel

DwtNbluelabel

Return Value

Specifies the margin between the original and the
new color display windows and the edge of the color
display widget. The margin is the area affected by
the background attributes (set gray by default).

This attribute can be set only if the default color
display widget is used.

Specifies the text of the label above the slider
representing the RGB scales. This attribute can be
set only if the default color mix tool widget is used.

Specifies the text of the label above the RGB text
entry fields. This attribute can be set only if the
default color mix tool widget is used.

Specifies the label for the RGB red scale widget.
This attribute can be set only if the default color mix
tool widget is used.

Specifies the label for the RGB green scale widget.
This attribute can be set only if the default color mix
tool widget is used.

Specifies the label for the RGB blue scale widget.
This attribute can be set only if the default color mix
tool widget is used.

This function returns the ID of the created widget.

Subroutines 3-47

DwtColorMixCreate (3Dwt)

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
unsigned short newred;
unsigned short newgrn;
unsigned short newblu;
unsigned short origred;
unsigned short origgrn;
unsigned short origblu;
} DwtColorMixCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRActivate The user has activated the OK push button.

DwtCRApply The user has selected the Apply push
button.

DwtCRCancel The user has activated the Cancel push
button.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

The newred member is set to the new red color value for the color mix
widget. The newgrn member is set to the new green color value for the color
mix widget. The newblu member is set to the new blue color value for the
color mix widget.

The origred member is set to the original red color value for the color mix
widget. The origgrn member is set to the original green color value for the
color mix widget. The origblu member is set to the original blue color value
for the color mix widget.

See Also

DwtColorMixSetNewColor (3Dwt), DwtColorMixGetNewColor (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-48 Subroutines

DwtColorMixGetNewColor (3Dwt)

Name

DwtColorMixGetNewColor — Returns the red, green, and blue color values to
the color mixing widget.

Syntax

void DwtColorMixGetNewColor(cmw, red, green, blue)
Widget cmw;
unsigned short *red;
unsigned short * green;
unsigned short *blue;

Arguments
cmw Specifies the widget ID of the color mixing widget.
red Specifies the current new color red value.
green Specifies the current new color green value.
blue Specifies the current new color blue value.
See the section on colormap functions in the Guide to the
Xlib Library: C Language Binding for more information on
X color values.
Description

The DwtColorMixGetNewColor function allows the color mixing
widget to pass the current color value created by the color mixer subwidget
to the color display subwidget. If the application uses the default color mixer
subwidget, using DwtColorMixGetNewColor is faster than using
XtGetValues.

See Also

DwtColorMixSetNewColor (3Dwt), DwtColorMixCreate (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-49

DwtColorMixSetNewColor (3Dwt)

Name

DwtColorMixSetNewColor — Sets the new red, green, and blue color values
in the color mixing widget.

Syntax

void DwtColorMixSetNewColor(cmw, red, green, blue)
Widget cmw;
unsigned short red;
unsigned short green;
unsigned short blue;

Arguments
cmw Specifies the widget ID of the color mixing widget.
red Specifies the new color red value. You can express the value
in percentages or by the X color values (0 to 65535).
green Specifies the new color green value. You can express the
value in percentages or by the X color values (0 to 65535).
blue Specifies the new color blue value. You can express the

value in percentages or by the X color values (0 to 65535).

See the section on colormap functions in the Guide to the
Xlib Library: C Language Binding for more information on
X color values.

Description

The DwtColorMixSetNewColor function allows the user-supplied color
mixer subwidget to pass the current color values to the color mixing widget.
Using DwtColorMixSetNewColor is more efficient than using
XtSetValues.

See Also

DwtColorMixGetNewColor (3Dwt), DwtColorMixCreate (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-50 Subroutines

DwtCommandAppend (3Dwt)

Name

DwtCommandAppend — Appends the passed string to the current command
line and executes it, if required.

Syntax
void DwtCommandAppend (widget, command)
Widget widget;
char *command,
Arguments
widget Specifies the ID of the command window widget to whose
command line you want to append the passed string.
command Specifies the text to be appended to the command line. This
argument is a NULL-terminated string.
Description

The DwtCommandAppend function appends the passed string to the
current command line, within the command window widget. If the string
sent is terminated with a carriage return (<CR>) or carriage return and/or
linefeed (<CR><LF>) character, then the command is executed, the
application is informed, the command is moved to the command history, and
a new prompt is issued.

See Also

DwtCommandWindow (3Dwt), DwtCommandErrorMessage (3Dwt),
DwtCommandSet (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-51

DwtCommandErrorMessage (3Dwt)

Name

DwtCommandErrorMessage — Writes an error message in the command
window and refreshes the command line.

Syntax
void DwtCommandErrorMessage(widget, error)
Widget widget;
char *error;
Arguments
widget Specifies the ID of the command window widget in whose
command window you want to write an error message.
error Specifies the error message to be placed in the bottom-most
history line in the command window widget. This argument
is a NULL-terminated string.
Description

The DwtCommandErrorMessage function writes an error message in the
history area within the command window widget. The history is first
scrolled up.

See Also

DwtCommandWindow (3Dwt), DwtCommandAppend (3Dwt),
DwtCommandSet (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-52 Subroutines

DwtCommandSet (3Dwt)

Name

DwtCommandSet — Replaces the current command string with the one passed
and executes it, if required.

Syntax
void DwtCommandSet(widget, command)
Widget widget;
char * command,
Arguments
widget Specifies the ID of the command window widget whose
current command string you want to replace.
command Specifies the text to replace the text currently on the
command line. This argument is a NULL-terminated string.
Description

The DwtCommandSet function replaces the current command string with
the passed string within the command window widget. A zero length string
is used to clear the current command line. If the string is terminated by a
carriage return (<CR>), linefeed (<LF>), or carriage return and/or linefeed
(<CR><LF>), then the command is executed, the application is informed, the
command is moved to the command history, and a new prompt is issued.

See Also

DwtCommandWindow (3Dwt), DwtCommandAppend (3Dwt),
DwtCommandErrorMessage (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-53

DwtCommandWindow (3Dwt)

Name

DwtCommandWindow, DwtCommandWindowCreate — Creates a command

window widget.

Syntax

Widget DwtCommandWindow (parent widget, name, prompt,

lines, callback, help _callback)

Widget parent_widget;

char * name;

DwtCompString prompt;

int lines;

DwtCallbackPtr callback, help _callback;
Widget DwtCommandWindowCreate (parent_widget, name,

override_arglist,
override_argcount)

Widget parent_widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget
name

prompt

lines

callback

help_callback

3-54 Subroutines

Specifies the parent widget ID.
Specifies the name of the created widget.

Specifies the command line prompt. This argument sets the
DwtNprompt attribute associated with
DwtCommandWindowCreate.

Specifies the number of command history lines visible in the
command window widget. This argument sets the
DwtNlines attribute associated with
DwtCommandWindowCreate.

Specifies the callback function or functions called when the
user enters a command or changes the contents of a
command line. This argument sets the
DwtNcommandEnteredCallback and
DwtNvalueChangedCallback attributes associated with
DwtCommandWindowCreate.

Specifies the callback function or functions called when a

DwtCommandWindow (3Dwt)

help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtCommandWindow and DwtCommandWindowCreate functions
create an instance of a command window widget and return its associated
widget ID. The command window widget handles command line entry,
command line history, and command line recall. When calling
DwtCommandWindow, you set the command window widget attributes
presented in the formal parameter list. For DwtCommandWindowCreate,
however, you specify a list of attribute name/value pairs that represent all the
possible command window widget attributes.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwWENx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Zero

DwtNheight Dimension zero

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

Subroutines 3-55

DwtCommandWindow (3Dwt)

DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Dialog Pop-Up Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNfont
DwtNhelpCallback
DwtNdirectionRToL
DwtNunits

DwtNtitle

DwtNstyle
DwtNmapCallback
DwtNunmapCallback
DwtNfocusCallback
DwtNtextMergeTranslations
DwtNmarginWidth
DwtNmarginHeight
DwtNdefaultPosition

DwtNchildOverlap
DwtNresize
DwtNtakeFocus

DwtNnoResize

DwtNautoUnmanage

3--56 Subroutines

Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap
Opagque *
DwtFontList
DwtCallbackPtr
NOT SUPPORTED
NOT SUPPORTED
DwtCompString
unsigned char
DwtCallbackPtr
DwtCallbackPtr
DwtCallbackPtr
NOT SUPPORTED
Dimension
Dimension
Boolean

NOT SUPPORTED
NOT SUPPORTED
Boolean

Boolean

Boolean

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL

The default XUI Toolkit font
NULL

Widget name
DwtModal
NULL
NULL
NULL

12 pixels

10 pixels

True

This causes the command
window to be positioned in
the bottom left-hand corner
of the parent widget.

True for modal dialog box

False for modeless dialog
box

True (that is, no window
manager resize button)

True

DwiCommandWindow (3Dwt)

DwtNdefaultButton NOT SUPPORTED

DwtNcancelButton Widget NULL

DwtNcancelButton NOT SUPPORTED

Widget-Specific Attributes

Attribute Name Data Type Default

DwtNvalue char * NULL

DwtNprompt DwtCompString ">

DwtNlines short Two lines

DwtNhistory char * "

DwtNcommandEnteredCallback DwtCallbackPtr NULL

DwtNvalueChangedCallback DwtCallbackPtr NULL

DwtNtTranslation XtTranslations NULL

DwtNvalue Specifies the current contents of the command line
string. When a command-entered callback is made,
this attribute will be the command line that just
executed.

DwtNprompt Specifies the command line prompt.

DwtNlines Specifies the number of command history lines
visible in the command window widget.

DwtNhistory Specifies the contents of the command line history.

Multiple lines should be separated by a linefeed
character (<LF>).

DwtNcommandEnteredCallback

Specifies the callback function or functions called
when the user terminated the command line with a
carriage return/line feed. For this callback, the
reason is DwtCRCommandEntered.

DwtNvalueChangedCallback

DwtNtTranslation

Specifies the callback function or functions called
when the contents of the command line have
changed. For this callback, the reason is
DwtCRValueChanged.

Specifies the translations used for the command line
text field.

Subroutines 3-57

DwtCommandWindow (3Dwt)

Return Value
These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
int length;
char *value;

} DwtCommandWindowCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRCommandEntered The user terminated the command line with
a carriage return/line feed.

DwtCRValueChanged The contents of the command line have
changed.
DwtCRFocus The command window widget has received

the input focus.

DwtCRHelpRequested The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding. The length member is set to the length of the current
command line contents. The value member is set to the current command
line contents.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-58 Subroutines

Name

DwtCopyFromClipboard (3Dwt)

DwtCopyFromClipboard — Retrieves a data item from the clipboard.

Syntax

int DwtCopyFromClipboard (display, window, format_name,

buffer, length,
num_bytes, private_id)

Display *display;

Window window;

char *format name;

char *buffer;

unsigned long length;
unsigned long * num_bytes;
int *private_id;

Arguments

display

window

format_name
buffer

length
num_bytes

private_id

Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

Specifies the name of a format in which the data is stored on
the clipboard.

Specifies the buffer to which the application wants the
clipboard to copy the data.

Specifies the length of the application buffer.

Specifies the number of bytes of data copied into the
application buffer.

Specifies the private data stored with the data item by the
application that placed the data item on the clipboard. If the
application did not store private data with the data item, this
argument returns zero.

Subroutines 3—-59

DwtCopyFromClipboard (3Dwt)

Description

The DwtCopyFromClipboard function retrieves the current next-paste
item from clipboard storage.

DwtCopyFromClipboard returns a warning under the following
circumstances:

. The data needs to be truncated because the buffer length is too short
. The clipboard is locked
. There is no data on the clipboard

Return Value
This function returns one of these status return constants:

ClipboardSuccess All data on the clipboard has been copied
successfully. A successful copy can be a
one-time operation using
DwtCopyFromClipboard alone, or an
incremental operation using multiple calls
to DwtCopyFromClipboard between
calls to
DwtStartCopyFromClipboard and
DwtEndCopyFromClipboard.

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

ClipboardTruncate If using DwtCopyFromClipboard
alone, the data returned is truncated because
the user did not provide a buffer that was
large enough to hold the data. If using
multiple calls to
DwtCopyFromClipboard in between
calls to
DwtStartCopyFromClipboard and
DwtEndCopyFromClipboard, more
data in the requested format remains to be
copied from the clipboard.

3-60 Subroutines

DwtCopyFromClipboard (3Dwt)

ClipboardNoData The function could not find data on the
clipboard corresponding to the format
requested. This could occur because: (1)
the clipboard is empty; (2) there is data on
the clipboard but not in the requested
format; and (3) the data in the requested
format was passed by name and is no
longer available.

See Also

DwtStartCopyFromClipboard (3Dwt), DwtEndCopyFromClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—61

DwtCopyToClipboard (3Dwt)

Name

DwtCopyToClipboard — Copies a data item to the clipboard.

Syntax

int DwtCopyToClipboard(display, window, item_id,

format_name, buffer, length,
private_id, data_id)

Display *display;
Window window:;
long item_id;

char *format_name;
char *buffer;
unsigned long length;
int private_id;

int *data_id,

Arguments

display

window

item_id

format_name

buffer
length
private_id

data_id

3-62 Subroutines

Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

Specifies the number assigned to this data item. This number
was returned by a previous call to
DwtBeginCopyToClipboard.

Specifies the name of the format in which the data item is
stored.

Specifies the buffer from which the clipboard copies the data.
Specifies the length of the data being copied to the clipboard.

Specifies the private data that the application wants to store
with the data item.

Specifies an identifying number assigned to the data item that
uniquely identifies the data item and the format. This
argument is required only for data that is passed by name.

DwtCopyToClipboard (3Dwt)

Description

The DwtCopyToClipboard function copies a data item to clipboard
storage. The data item is not actually entered in the clipboard data structure
until the call to DwtEndCopyToClipboard. Additional calls to
DwtCopyToClipboard before a call to DwtEndCopyToClipboard
add data item formats to the same data item or append data to an existing
format.

If the buffer argument is NULL, the data is considered passed by name. If
data passed by name is later needed by another application, the application
that owns the data receives a callback with a request for the data. The
application that owns the data must then transfer the data to the clipboard
with the DwtReCopyToClipboard function. When a data item that was
passed by name is deleted from the clipboard, the application that owns the
data receives a callback that states that the data is no longer needed.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

DwtEndCopyToClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-63

DwtCreateFontList (3Dwt)

Name
DwtCreateFontList — Creates a new font list.

Syntax

DwtFontList DwtCreateFontList(font, charset)
XFontStruct *font;
long charset;

Arguments
font Specifies a pointer to a font structure for which the new font
list is generated.
charset Specifies the character set identifier for the font. Values for
this argument can be found in the required file
/usr/include/cda_def.h.
Description

The DwtCreateFontList function creates a new font list for the font
and character set. It also allocates the space for the font list. The end of the
font list is marked by an element whose character set value is -1.

Return Value

This function returns a new font list. However, it returns NULL if the font
specified in font is NULL.

See Also

DwtAddFontList (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3—-64 Subroutines

DwtCSbytecmp (3Dwt)

Name
DwtCSbytecmp — Determines if two compound-strings are identical.

Syntax

int DwtCSbytecmp (compound_stringl, compound_string2)
DwtCompString compound_stringl, compound_string2 ;

Arguments

compound_stringl
Specifies a compound-string to be compared with
compound_string2.

compound_string2
Specifies a compound-string to be compared with
compound_stringl.

Description

The DwtCSbytecmp function returns zero if compound_stringl and
compound_string2 are exactly the same (byte to byte). It returns one if they
are not the same.

Return Value

Zero if compound_stringl and compound_string2 are exactly the same (byte
to byte). It returns one if they are not the same.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—65

DwtCSempty (3Dwt)

Name

DwtCSempty — Determines if the compound-string contains any text
segments.

Syntax
int DwtCSempty (compound_string)
DwtCompString compound_string;

Arguments

compound_string
Specifies the compound-string.

Description

The DwtCSempty function determines if the compound-string contains any
text segments. DwtCSempty returns True if all text segments in the
compound-string are empty. Otherwise, it returns False.

Return Value

DwtCSempty returns True if all text segments in the compound-string are
empty. Otherwise, it returns False.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3—-66 Subroutines

Name

DwtCSString (3Dwt)

DwtCSString — Creates a compound-string.

Syntax

DwtCompString DwtCSString (text, charset, direction_r_to 1,

char *text;

language, rend)

unsigned long charset;
char direction_r_to_l;
unsigned long language;
DwtRendMask rend;

Arguments

text

charset

Specifies the text string to be converted to a compound-
string.

Specifies the character set for the compound-string. Values
for this argument can be found in the required file
/usr/include/cda_def.h.

direction_r_to_l

language

rend

Description

Specifies the direction in which the text is drawn and wraps.
You can pass DwtDirectionLeftDown (text is drawn
from left to right and wraps down);
DwtDirectionRightUp (text is drawn from left to right
and wraps up); DwtDirectionLeftDown (text is drawn
from right to left and wraps down); or
DwtDirectionLeftUp (text is drawn from right to left
and wraps up).

Included for future use.

Included for future use.

The DwtCSString function creates a compound-string from information in
the argument list. Space for the resulting string is allocated within the
function. After using this function, you should free the space by calling

XtFree.

Subroutines 3—-67

DwtCSString (3Dwt)

Return Value
This function returns the resulting compound-string. However, it returns a
NULL pointer if the input string is NULL.

See Also

DwtLatin1String (3Dwt), DwtString (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-68 Subroutines

Name

DwtCSText (3Dwt)

DwtCSText, DwtCSTextCreate — Creates a compound-string text widget.

Syntax

Widget DwtCSText(parent_widget, name, x, y, cols, rows, value)
Widget parent_widget;
char *name;
Position x, y;
Dimension cols, rows;
DwtCompString value;

Widget DwtCSTextCreate (parent_widget, name,

override_arglist, override_argcount)

Widget parent _widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.

name

X

cols

rows

value

Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the top of the widget
window relative to the inner upper left corer of the parent
window. This argument sets the DwtNy core widget
attribute.

Specifies the width of the text window measured in character
cells. This argument sets the DwtNcols attribute
associated with DwtCSTextCreate.

Specifies the height of the text window measured in character
cells or number of lines. This argument sets the DwtNrows
attribute associated with DwtCSTextCreate.

Specifies the text contents of the compound-string text
widget. This argument sets the DwtNvalue attribute
associated with DwtCSTextCreate.

Subroutines 3—69

DwtCSText (3Dwt)

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtCSText and DwtCSTextCreate functions create an instance of
a compound-string text widget and return its associated widget ID. When
calling DwtCSText, you set the compound-string text widget attributes
presented in the formal parameter list. For DwtCSTextCreate, however,
you specify a list of attribute name/value pairs that represent all the possible
compound-string text widget attributes. The compound-string text widget
enables the application to display a single or multiline field of text for input
and editing by the user. By default the text window expands or shrinks as
the user enters or deletes text characters. Note that the text window does not
shrink below the initial size set at creation time.

The compound-string text widget does not support children; therefore, there
is no geometry or resize semantics.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DWtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Set as large as necessary to

display the DwtNrows and
DwtNcols with the
specified
DwtNmarginWidth and
DwtNmarginHeight
DwtNheight Dimension Set as large as necessary to
display the DwtNcols and
DwtNrows with the
specified
DwtNmarginHeight and
DwtNmarginWidth

DwtNborderWidth Dimension One pixel

3-70 Subroutines

DwtNborder Pixel
DwtNborderPixmap Pixmap
DwtNbackground Pixel
DwtNbackgroundPixmap Pixmap
DwtNcolormap Colormap
DwtNsensitive Boolean
DwtNancestorSensitive Boolean
DwtNaccelerators XtTranslations
DwtNdepth int
DwtNtranslations XtTranslations
DwtNmappedWhenManaged Boolean
DwtNscreen Screen *
DwtNdestroyCallback DwtCallbackPtr

DwtCSText (3Dwt)

Default foreground color
NULL

Default background color
NULL

Default color map

True

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Widget-Specific Attributes

You can set the following widget-specifc attributes in the override_arglist:

Attribute Name Data Type Default
DwtNmarginWidth Dimension 2 pixels
DwtNmarginHeight Dimension Two pixels
DwtNcols Dimension 20 characters
DwtNrows Dimension 1 character
DwtNtopPosition DwtTextPosition Zero
DwtNwordWrap Boolean False
DwtNscrollVertical Boolean False
DwtNresizeHeight Boolean True
DwtNresizeWidth Boolean True
DwtNvalue char * "
DwtNeditable Boolean True
DwtNmaxLength int 2%%31-1
DwtNfocusCallback DwtCallbackPtr NULL
DwtNhelpCallback DwtCallbackPtr NULL
DwtNlostFocusCallback DwtCallbackPtr NULL
DwtNvalueChangedCallback DwtCallbackPtr NULL
DwtNinsertionPointVisible Boolean True
DwtNautoShowInsertPoint Boolean True
DwtNinsertionPosition int Zero

Subroutines 3-71

DwtCSText (3Dwt)

DwtNforeground Pixel The current server’s default
foreground
DwtNfont DwtFontList The current server’s
DwtFontList
DwtNblinkRate int 500 milliseconds
DwtNscrollLeftSide Boolean False
DwtNhalfBorder Boolean True
DwtNpendingDelete Boolean True
DwtNdirectionRToL unsigned char DwtDirectionRightDowr
DwtNtextPath int Left to right
DwtNeditingPath int Left to right
DwtNbidirectionalCursor Boolean False
DwtNnofontCallback DwtCallbackPtr NULL

DwtNmarginWidth Specifies the number of pixels between the left or

DwtNmarginHeight

right edge of the window and the text.

Specifies the number of pixels between the top or
bottom edge of the window and the text.

DwtNcols Specifies the width of the text window measured in
character spaces.

DwtNrows Specifies the height of the text window measured in
character heights or number of line spaces.

DwtNtopPosition Specifies the position to display at the top of the
window.

DwtNwordWrap Specifies a boolean value that, when True,
indicates that lines are broken at word breaks and
text does not run off the right edge of the window.

DwtNscrollVertical
Specifies a boolean value that, when True, adds a
scroll bar that allows the user to scroll vertically
through the text.

DwtNresizeHeight

3-72 Subroutines

Specifies a boolean value that, when True,
indicates that the compound-string text widget resizes
its height to accommodate all the text contained in
the widget. If this is set to True, the text will
always be displayed starting from the first position in
the source, even if instructed otherwise. This
attribute is ignored if DwtNscrollVertical is

DwtCSText (3Dwt)

True.

DwtNresizeWidth Specifies a boolean value that, when True,
indicates that the compound-string text widget resizes
its width to accommodate all the text contained in
the widget. This argument is ignored if
DwtNwordWrap is True.

DwtNvalue Specifies the text contents of the compound-string
text widget. If you accept the default of NULL, the
text path and editing path are set to
DwtDirectionRightDown. Otherwise, the text
path and editing path are set from the direction of the
first segment of the value.

DwtNeditable Specifies a boolean value that, when True,
indicates that the user can edit the text in the
compound-string text widget. If False, prohibits
the user from editing the text.

DwtNmaxLength Specifies the maximum length of the text string, in
characters, in the compound-string text widget.

DwtNfocusCallback
Specifies the callback function or functions called
when the compound-string text widget accepted the
input focus. For this callback, the reason is
DwtCRFocus.

DwtNhelpCallback
Specifies the callback function or functions called
when a help request is made. For this callback, the
reason is DwtCRHelpRequested.

DwtNlostFocusCallback
Specifies the callback function or functions called
when the compound-string text widget loses input
focus. For this callback, the reason is
DwtCRLostFocus.

DwtNvalueChangedCallback
Specifies the callback function or functions called
when the value of the compound-string text widget
changes. For this callback, the reason is
DwtCRValueChanged.

DwtNinsertionPointVisible

Subroutines 3—73

DwtCSText (3Dwt)

Specifies a boolean value that, when True,
indicates that the insertion point is marked by a
blinking text cursor.

DwtNautoShowInsertPoint

Specifies a boolean value that, when True, ensures
that the text visible in the compound-string text
widget window contains the insertion point. This
means that if the insertion point changes, the
contents of the compound-string text widget window
might scroll in order to bring the insertion point into
the window.

DwtNinsertionPosition

DwtNforeground

DwtNfont

DwtNblinkRate

Specifies the current location of the insertion point.

Specifies the pixel for the foreground of the
compound-string text widget.

Specifies the font list to be used for the compound-
string text widget.

Specifies the blink rate of the text cursor in
milliseconds.

DwtNscrollLeftSide

DwtNhalfBorder

Specifies a boolean value that, when True,
indicates that the vertical scroll bar should be placed
on the left side of the compound-string text window.
This attribute is ignored if
DwtNscrollVertical is False.

Specifies a boolean value that, when True,
indicates that a border is displayed only on the
starting edge and bottom edge of the compound-
string text widget.

DwtNpendingDelete

Specifies a boolean value that, when True,
indicates that selected text containing the insertion
point is deleted when new text is entered.

DwtNdirectionRToL

3-74 Subroutines

Specifies the direction in which the text is drawn and
wraps. You can pass DwtDirectionLeftDown
(text is drawn from left to right and wraps down);
DwtDirectionRightUp (text is drawn from left

DwtNtextPath

DwtNeditingPath

DwtCSText (3Dwt)

to right and wraps up);

DwtDirectionLeftDown (text is drawn from
right to left and wraps down); or
DwtDirectionLeftUp (text is drawn from right
to left and wraps up). The DwtNdirectionRToL
attribute only affects the direction toward which the
window is resized.

Specifies a read-only value that holds the main text
path (direction) of the text in the compound-string
text widget. It is set from the initial compound-
string value of the widget. This attribute is used
only if DwtNvalue is NULL.

Specifies a read-only value that holds the current
editing text path (direction) in the compound-string
text widget. It is set initially equal to
DwtNtextPath. This attribute is used only if
DwtNvalue is NULL.

DwtNbidirectionalCursor

Specifies a boolean value that, when True,
indicates that the shape of the cursor at the insertion
point will be dependent on the current editing
direction.

DwtNnofontCallback

Return Value

Specifies a callback function called when the
compound-string text widget has failed to find a font
needed for the display of a text tagged by a specific
character set. For this callback, the reason is
DwtCRNoFont.

These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {

int reason;

XEvent *event;

char *charset;

unsigned int charset_len;

} DwtCSTextCallbackStruct;

Subroutines 3-75

DwtCSText (3Dwt)

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRFocus The compound-string text widget has
received the input focus.

DwtCRLostFocus The compound-string text widget has lost
the input focus.

DwtCRValueChanged The user changed the value of the text in
the compound-string text widget.

DwtCRHelpRequested The user selected Help.

DwtCRNoFont The widget font list contained no entry for
the required character set.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the XIib Library: C
Language Binding.

The charset member is set to the character set ID for which the widget has no
matching font in its font list. The callback should modify the widget font list
to include an entry for the required character set.

The charset_len member is set to the length of the charset string.

See Also

DwtCSTextReplace (3Dwt), DwtCSTextGetString (3Dwt),
DwtCSTextSetString (3Dwt), DwtCSTextGetEditable (3Dwt),
DwtCSTextSetEditable (3Dwt), DwtCSTextGetMaxLength (3Dwt),
DwtCSTextSetMaxLength (3Dwt), DwtCSTextSetSelection (3Dwt),
DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-76 Subroutines

DwtCSTextClearSelection (3Dwt)

Name

DwtCSTextClearSelection — Clears the global selection highlighted in the
compound-string text widget.

Syntax
void DwtCSTextClearSelection(widget, time)
Widget widget;
Time time;
Arguments
widget Specifies the ID of the compound-string text widget.
time Specifies the time of the event that led to the call to
XSetSelectionOwner. You can pass either a timestamp
or CurrentTime. Whenever possible, however, use the
timestamp of the event leading to the call.
Description

The DwtCSTextClearSelection function clears the global selection
highlighted in the compound-string text widget.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt),
DwtCSTextGetString (3Dwt), DwtCSTextSetString (3Dwt),
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt),
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt),
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-77

DwtCSTextGetEditable (3Dwt)

Name

DwtCSTextGetEditable — Obtains the current edit permission state indicating
whether the user can edit the text in the compound-string text widget.

Syntax

Boolean DwtCSTextGetEditable (widget)
Widget widget;

Arguments

widget Specifies the ID of the compound-string text widget.

Description

The DwtCSTextGetEditable function returns the current edit-
permission-state, which indicates whether the user can edit the text in the
compound-string text widget. If the function returns True, the user can edit
the string text in the compound-string text widget. If it returns False, the
user cannot edit the text.

Return Value

Specifies a boolean value that, when True, indicates the user can edit the
text in the compound string text widget. When False, the user cannot edit
the text.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt),
DwtCSTextSetString (3Dwt), DwtCSTextSetEditable (3Dwt),
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt),
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-78 Subroutines

DwtCSTextGetMaxLength (3Dwt)

Name

DwtCSTextGetMaxLength — Obtains the current maximum allowable length
of the text in the compound-string text widget.

Syntax
int DwtCSTextGetMaxLength(widget)
Widget widget;
Arguments

widget Specifies the ID of the compound-string text widget.

Description

The DwtCSTextGetMaxLength function returns the current maximum
allowable length of the text in the compound-string text widget.

Return Value

This function returns the maximum length, in characters, of the text in the
compound string text widget.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt),
DwtCSTextGetString (3Dwt), DwtCSTextSetString (3Dwt),
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt),
DwtCSTextSetMaxLength (3Dwt), DwtCSTextSetSelection (3Dwt),
DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-79

DwtCSTextGetSelection (3Dwt)

Name

DwtCSTextGetSelection — Retrieves the global selection, if any, currently
highlighted, in the compound string text widget.

Syntax
DwtCompString DwtCSTextGetSelection(widget)
Widget widget;

Arguments

widget Specifies the ID of the compound-string text widget.

Description
The DwtCSTextGetSelection function retrieves the text currently
highlighted (selected) in the compound string text widget. It returns a NULL

pointer if no text is selected in the widget. The application is responsible for
freeing the storage associated with the text by calling XtFree.

Return Value
This function returns a pointer to the selected compound string text.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt),
DwtCSTextGetString (3Dwt), DwtCSTextSetString (3Dwt),
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt),
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt),
DwtCSTextSetSelection (3Dwt),

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-80 Subroutines

DwtCSTextGetString (3Dwt)

Name
DwtCSTextGetString — Retrieves all text from the compound-string text
widget.
Syntax
DwtCompString DwtCSTextGetString (widget)
Widget widget;
Arguments
widget Specifies the ID of the compound-string text widget.
Description

The DwtCSTextGetString function retrieves the current compound-
string from the compound-string text widget. The application is responsible
for freeing the storage associated with the string by calling XtFree.

Return Value

This function returns a pointer to a compound string holding all the current
text in the compound string text widget.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt),
DwtCSTextSetString (3Dwt), DwtCSTextGetEditable (3Dwt),
DwtCSTextSetEditable (3Dwt), DwtCSTextGetMaxLength (3Dwt),
DwtCSTextSetMaxLength (3Dwt), DwtCSTextSetSelection (3Dwt),
DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-81

DwtCSTextReplace (3Dwt)

Name

DwtCSTextReplace — Replaces a portion of the current text in the
compound-string text widget or inserts some new text into the current text of
the compound-string text widget.

Syntax

void DwtCSTextReplace(widget, from_pos, to_pos, value)
Widget widget;
int from_pos, to_pos;
DwtCompString value;

Arguments
widget Specifies the ID of the compound-string text widget.
from_pos Specifies the first character position of the compound-string
text being replaced.
to_pos Specifies the last character position of the compound-string
text being replaced.
value Specifies the text to replace part of the current text in the
compound-string text widget.
Description

The DwtCSTextReplace function replaces part of the text in the
compound-string text widget. Within the widget, positions are numbered
starting at 0 and increasing sequentially. For example, to replace the second
and third characters in the text, from_pos should be 1 and ¢to_pos should be
3. To insert text after the fourth character, from_pos and to_pos should both
be 4.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextSetString (3Dwt),
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt),
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt),
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-82 Subroutines

DwtCSTextSetEditable (3Dwt)

Name

DwtCSTextSetEditable — Sets the permission state that determines whether
the user can edit text in the compound-string text widget.

Syntax
void DwtCSTextSetEditable (widget, editable)
Widget widget;
Boolean editable;
Arguments
widget Specifies the ID of the compound-string text widget.
editable Specifies a boolean value that, when True, indicates that
the user can edit the text in the compound-string text widget.
If False, prohibits the user from editing the text.
Description

The DwtCSTextSetEditable function sets the edit permission state
information concerning whether the user can edit text in the compound-string
text widget.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt),
DwtCSTextSetString (3Dwt), DwtCSTextGetEditable (3Dwt),
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt),
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-83

DwtCSTextSetMaxLength (3Dwt)

Name

DwtCSTextSetMaxLength — Sets the maximum allowable length of the text
in the compound-string text widget.

Syntax

void DwtCSTextSetMaxLength (widget, max_length)
Widget widget;
int max_length;

Arguments

widget Specifies the ID of the compound-string text widget.

max_length Specifies the maximum length, in characters, of the text in
the compound string text widget. This argument sets the
DwtNmaxLength attribute associated with
DwtCSTextCreate.

Description

The DwtCSTextSetMaxLength function sets the maximum allowable
length of the text in the compound-string text widget and prevents the user
from entering text longer than this limit.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt),
DwtCSTextSetString (3Dwt), DwtCSTextGetEditable (3Dwt),
DwtCSTextSetEditable (3Dwt), DwtCSTextGetMaxLength (3Dwt),
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-84 Subroutines

DwtCSTextSetSelection (3Dwt)

Name

DwtCSTextSetSelection — Highlights the specified text in the compound-
string text widget and makes it the current global selection.

Syntax
void DwtCSTextSetSelection(widget, first, last, time)
Widget widget;
int first, last;
Time time;
Arguments
widget Specifies the ID of the compound-string text widget.
first Specifies the first character position of the selected
compound-string text.
last Specifies the last character position of the selected
compound-string text.
time Specifies the time of the event that led to the call to
XSetSelectionOwner. You can pass either a timestamp
or CurrentTime. Whenever possible, however, use the
timestamp of the event leading to the call.
Description

The DwtCSTextSetSelection function makes the specified text in the
compound-string text widget the current global selection and highlights it in
the compound-string text widget. Within the text window, first marks the
first character position and /ast marks the last position. The field characters
start at O and increase sequentially.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt),
DwtCSTextGetString (3Dwt), DwtCSTextSetString (3Dwt),
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt),
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt),
DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—85

DwtCSTextSetString (3Dwt)

Name
DwtCSTextSetString — Changes the text in the compound-string text widget.

Syntax
void DwtCSTextSetString (widget, value)
Widget widget;
DwtCompString value;

Arguments

widget Specifies the ID of the compound-string text widget.

value Specifies the text that replaces all text in the current
compound-string text widget.

Description

The DwtCSTextSetString function completely changes the text in the
compound-string text widget.

See Also

DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt),
DwtCSTextGetString (3Dwt), DwtCSTextGetEditable (3Dwt),
DwtCSTextSetEditable (3Dwt), DwtCSTextGetMaxLength (3Dwt),
DwtCSTextSetMaxLength (3Dwt), DwtCSTextSetSelection (3Dwt),
DwtCSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3—86 Subroutines

DwtCStrcat (3Dwt)

Name

DwtCStrcat, DwtCStrncat — Appends a copy of a compound-string to the end
of another compound-string.

Syntax

DwtCompString DwtCStrcat(compound_stringl,
compound_string2)
DwtCompString compound_stringl, compound_string2;

DwtCompString DwtCStrncat(compound_stringl,
compound_string2,
num_chars)
DwtCompString compound_stringl, compound_string2;
int num_chars;

Arguments

compound_stringl
Specifies a compound-string to which a copy of
compound_string2 is appended.

compound_string2
Specifies a compound-string that is appended to the end of
compound_stringl.

num_chars Specifies the number of characters to be appended to the
specified compound-string. If num_chars is less than the
length of compound_string2, the resulting string will not be a
valid compound-string.

Description

The DwtCStrcat function appends compound_string2 to the end of
compound_stringl and returns the resulting string. The original strings are
preserved. The space for the resulting compound-string is allocated within
the function. After using this function, you should free this space by calling
XtFree.

The DwtCStrncat function appends no more than the number of
characters specified in num_chars, which includes tag and length sections of
the compound-string.

Subroutines 3—-87

DwtCStrcat (3Dwt)

Return Value

These functions return a pointer to the resulting compound-string.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-88 Subroutines

DwtCStrcpy (3Dwt)

Name
DwtCStrcpy, DwtCStrncpy — Copies a compound-string.

Syntax

DwtCompString DwtCStrcpy (compound_stringl)
DwtCompString compound_stringl ;

DwtCompString DwtCStrncpy (compound_stringl, num_chars)
DwtCompString compound_stringl ;
int num_chars;

Arguments
compound_stringl
Specifies a compound-string to be copied to the output string.

num_chars Specifies the number of characters to be copied. If
num_chars is less than the length of compound_stringl, the
resulting string will not be a valid compound-string.

Description
The DwtCStrcpy function copies the string in compound_stringl.

The DwtCStrncpy function copies exactly the number of characters
specified in num_chars, including the headers and trailers.

The space for the resulting compound-string is allocated with these functions.
After using these functions, you should free this space by calling XtFree.

Return Value
These functions return a pointer to the resulting compound-string.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-89

DwtCStrien (3Dwt)

Name
DwiCStrlen — Returns the number of bytes in a compound-string.

Syntax

int DwtCStrlen(compound_stringl)
DwtCompString compound_stringl ;

Arguments

compound_stringl
Specifies a compound-string whose length is determined.

Description

The DwtCStrlen function returns the number of bytes in
compound_stringl, including compound-string terminators for headers and
trailers. If the compound-string has an invalid stucture, zero is returned.

Return Value

This function returns the number of bytes in compound_stringl, including
compound-string terminators for headers and trailers. If the compound-string
has an invalid stucture, zero is returned.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3—-90 Subroutines

DwtDialogBox (3Dwt)

Name

DwtDialogBox, DwtDialogBoxCreate, DwtDialogBoxPopupCreate — Creates
a dialog box widget to contain other subwidgets.

Syntax

Widget DwtDialogBox (parent_widget, name, default _position,

X, y, title, style,
map_callback, help_callback)

Widget parent_widget;

char *name;

Boolean default position;

Position x, y;

DwtCompString title;

unsigned char style;

DwtCallbackPtr map_callback, help_callback;

Widget DwtDialogBoxCreate (parent_widget, name,
override_arglist, override_argcount)
Widget parent widget;
char *name;
ArgList override_arglist;
int override_argcount;

Widget DwtDialogBoxPopupCreate (parent_widget, name,
override_arglist,
override_argcount)

Widget parent_widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

default position
Specifies a boolean value that, when True, causes DwtNx
and DwtNy to be ignored and forces the default widget
position. The default widget position is centered in the
parent window. If False, the specified DwtNx and
DwtNy attributes are used to position the widget.

Subroutines 3—91

DwtDialogBox (3Dwt)

title

style

map_callback

3-92 Subroutines

If the dialog box is displayed partially off the screen as a
result of being centered in the parent window, the centering
rule is violated. When this occurs, the parent window is
repositioned so that the entire dialog box is displayed on the
screen.

The pop-up dialog box is recentered every time it is popped
up. Consequently, if the parent moves in between
invocations of the dialog box, the box pops up centered in
the parent window’s new location. However, the dialog box
does not dynamically follow its parent while it is displayed.
If the parent is moved, the dialog box will not move until the
next time it is popped up.

If the user moves the dialog box with the window manager,
the toolkit turns off DwtNdefaultPosition. This
results in the dialog box popping up in the location specified
by the user on each subsequent invocation. This argument
sets the DwtNdefaultPosition attribute associated
with DwtDialogBoxCreate.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corer of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the compound-string label. The label is given to
the window manager for the title bar if DwtNstyle is
DwtModeless. This argument sets the DwtNtitle
attribute associated with DwtDialogBoxPopupCreate.

Specifies the style of the dialog box widget. You can pass
DwtModal, DwtModeless, or DwtWorkarea. You
cannot change DwtNstyle after the widget is created.
This argument sets the DwtNstyle attribute associated
with DwtDialogBoxCreate or
DwtDialogBoxPopupCreate.

Specifies the callback function or functions called when the
window is about to be mapped. For this callback, the reason
is DwtCRMap. Note that map callback is supported only if

DwtDialogBox (3Dwt)

style is DwtModal or DwtModeless. If style is
DwtWorkarea, map_callback is ignored.

This argument sets the DwtNmapCallback attribute
associated with DwtDialogBoxPopupCreate.

help_callback Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

Depending on the constant you pass to DwtNstyle, the DwtDialogBox
function creates a dialog box or a pop-up dialog box widget. The
DwtDialogBoxCreate function creates a dialog box widget, and
DwtDialogBoxPopupCreate creates a pop-up dialog box widget. Upon
completion, these functions return the associated widget ID. When calling
DwtDialogBox, you set the dialog box widget attributes presented in the
formal parameter list. For DwtDialogBoxCreate and
DwtDialogBoxPopupCreate, however, you specify a list of attribute
name/value pairs that represent all the possible dialog box widget attributes.

The dialog box widget is a composite widget that contains other subwidgets.
Each subwidget displays information or requests and/or handles input from
the user.

The dialog box widget functions as a container only, and provides no input
semantics over and above the expressions of the widgets it contains.

Subwidgets can be positioned within the dialog box in two ways: by font
units and by pixel units. By default, subwidgets are positioned in terms of
font units (that is, DwtNunits is DwtFontUnits). The X font units are
defined to be one-fourth the width of whatever font is supplied for the
common attribute DwtNfont. The Y font units are defined to be one-
eighth the width of whatever font is supplied for DwtNfont. (Width is
taken from the QUAD_WIDTH property of the font.) Subwidgets can also
be positioned in terms of pixel units (that is, DwtNunits is
DwtPixelUnits).

Subroutines 3—93

DwtDialogBox (3Dwt)

Note that when changing DwtNtextMergeTranslations, the existing
widgets are not affected. The new value for
DwtNtextMergeTranslations acts only on widgets that are added
after the pop-up dialog box is created.

Pop-up dialog box widgets create their own shells as parents. Therefore, to
set the colormap of a pop-up dialog box, you must set the colormap of its
parent shell. (To find the parent shell, use XtParent.) For nonpop-up
widgets, the shell widget ID is returned from XtInitialize. You need
only set the colormap once on the returned shell widget.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Set as large as necessary to
hold all child widgets

DwtNheight Dimension Set as large as necessary to
hold all child widgets

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the

parent widget’s
DwtNsensitive and
DwtNancestorSensitive

attributes
DwtNaccelerators XtTranslations NULL
DwtNdepth int Depth of the parent window
DwtNtranslations XtTranslations NULL
DwtNmappedWhenManaged Boolean True
DwtNscreen Screen * The parent screen
DwtNdestroyCallback DwtCallbackPtr NULL

3-94 Subroutines

Widget-Specific Attributes

DwtDialogBox (3Dwt)

Attribute Name Data Type Default
DwtNforeground Pixel Default foreground color
DwtNhighlight Pixel Default foreground color
DwtNhighlightPixmap Pixmap NULL
DwtNuserData Opaque * NULL
DwtNfont DwtFontList The default XUI Toolkit font
DwtNhelpCallback DwtCallbackPtr NULL
DwtNdirectionRToL unsigned char DwtDirectionRightDown
DwtNunits unsigned char DwtFontUnits
DwtNstyle unsigned char For
DwtDialogBoxCreate, the
default is DwtWorkarea.
For
DwtDialogBoxPopupCreate,
the default is
DwtModeless.
DwtNfocusCallback DwtCallbackPtr NULL
DwtNtextMergeTranslations XtTranslations NULL
DwtNmarginWidth Dimension For
DwtDialogBoxCreate, the
default is One pixel.
For
DwtDialogBoxPopupCreate,
the default is 3 pixels.
DwtNmarginHeight Dimension For
DwtDialogBoxCreate, the
default is One pixel.
For
DwtDialogBoxPopupCreate,
the default is 3 pixels.
DwtNdefaultPosition Boolean False
DwtNchildOverlap Boolean True
DwtNresize unsigned char DwtResizeGrowOnly
DwtNgrabKeySyms KeySym The default array contains the
Tab key symbol.
DwtNgrabMergeTranslations XtTranslations The default syntax is:
"~Shift<KeyPress>0xff09:
DWTDIMOVEFOCUSNEXT(O\\
Shift<KeyPress>0xff09:
DWTDIMOVEFOCUSPREV()";

Subroutines 3—-95

DwtDialogBox (3Dwt)

The following table lists the widget-specific attributes for the pop-up dialog

box widget.

Attribute Name Data Type Default

DwtNtitle DwtCompString When DwtNstyle is
DwtModal, the default is
NULL
When DwtNstyle is
DwtModeless, the default
is the widget name

DwtNmapCallback DwtCallbackPtr NULL

DwtNunmapCallback DwtCallbackPtr NULL

DwtNtakeFocus Boolean True for modal dialog box
False for modeless dialog
box

DwtNnoResize Boolean True (that is, no window
manager resize button)

DwtNautoUnmanage Boolean True

DwtNdefaultButton Widget NULL

DwtNcancelButton Widget NULL

DwtNautoUnrealize Boolean False

DwtNforeground Specifies the color of foreground gadget children in
the widget window.

DwtNhighlight Specifies the color used for highlighting gadge
children. ,

DwtNhighlightPixmap
Specifies the pattern and color used for highlighting
gadget children.

DwtNuserData Specifies any user private data to be associated with
the widget. The XUI Toolkit does not interpret this
data.

DwtNdirectionRToL
Specifies the direction in which the text is drawn and
wraps. You can pass DwtDirectionLeftDown
(text is drawn from left to right and wraps down);
DwtDirectionRightUp (text is drawn from left
to right and wraps up);
DwtDirectionLeftDown (text is drawn from
right to left and wraps down); or
DwtDirectionLeftUp (text is drawn from right

3-96 Subroutines

DwtDialogBox (3Dwt)

to left and wraps up).
DwtNfont Specifies the font of the text used in gadget children.

DwtNhelpCallback
Specifies the callback function or functions called
when a help request is made.

DwtNunits Specifies the type of units for the DwtNx and .
DwtNy attributes. You use these when adding child
widgets to the dialog box. The DwtNunits
attribute cannot be changed after the widget is
created. You can pass DwtPixelUnits or
DwtFontUnits.

DwtNstyle Specifies the style of the dialog box widget. For
DwtDialogBoxPopupCreate you can pass
DwtModal or DwtModeless. For
DwtDialogBoxCreate you can pass
DwtWorkarea. You cannot change DwtNstyle
after the widget is created.

DwtNfocusCallback
Specifies the callback function or functions called
when the dialog box accepted the input focus. For
this callback, the reason is DwtCRFocus.

DwtNtextMergeTranslations
Specifies the translation manager syntax that will be
merged with each text widget.

DwtNmarginWidth Specifies the number of pixels between the maximum
right border of a child widget window and the dialog
box.

DwtNmarginHeight
Specifies the number of pixels between the maximum
bottom border of a child widget window and the
dialog box.

DwtNdefaultPosition
Specifies a boolean value that, when True, causes
DwtNx and DwtNy to be ignored and forces the
default widget position. The default widget position
is centered in the parent window. If False, the
specified DwtNx and DwtNy attributes are used to
position the widget.

Subroutines 3—-97

DwtDialogBox (3Dwt)

DwtNchildOverlap

DwtNresize

3-98 Subroutines

If the dialog box is displayed partially off the screen
as a result of being centered in the parent window,
the centering rule is violated. When this occurs, the
parent window is repositioned so that the entire
dialog box is displayed on the screen.

The pop-up dialog box is recentered every time it is
popped up. Consequently, if the parent moves in
between invocations of the dialog box, the box pops
up centered in the parent window’s new location.
However, the dialog box does not dynamically
follow its parent while it is displayed. If the parent
is moved, the dialog box will not move until the next
time it is popped up.

If the user moves the dialog box with the window
manager, the toolkit turns off
DwtNdefaultPosition. This results in the
dialog box popping up in the location specified by
the user on each subsequent invocation.

Specifies a boolean value that, when True,
indicates that the dialog box approves geometry
requests from its children that result in one child
overlapping other children. If False, the dialog
box disapproves these geometry requests.

Specifies how the dialog box resizes when its
children are managed and unmanaged and when
geometry requests occur. You can pass
DwtResizeFixed, DwtResizeGrowOnly, or
DwtResizeShrinkWrap.

DwtResizeFixed indicates that the dialog box
does not change its size when children are added or
deleted, or on geometry requests from its children.

DwtResizeGrowOnly indicates that the dialog
box always attempts to grow as necessary when
children are added or deleted, or on geometry
requests from its children.

DwtResizeShrinkWrap indicates that the dialog
box always attempts to grow or shrink to fit its
current set of managed children as children are added

DwtNgrabKeySyms

DwtDialogBox (3Dwt)

or deleted, or on geometry requests from its children.

Specifies a NULL-terminated array of keysyms. The
dialog box calls the Xlib function XGrabKey for
each keysym. XGrabKey specifies
AnyModifier for modifiers, GrabModeAsync
for pointer_mode, and GrabModeSync for
keyboard_mode. The dialog box uses the
XGrabKey function in conjunction with the value of
DwtNgrabMergeTranslations to implement
moving the focus among its children in a
synchronous manner. You cannot change this
attribute after the widget is created.

DwtNgrabMergeTranslations

DwtNtitle

DwtNmapCallback

Specifies the parsed translation syntax to merge into
the dialog box syntax to handle the key events. The
syntax is merged when the dialog box is first
realized. Any change made to this attribute after the
dialog box is realized will not have any effect.

Specifies the compound-string label. The label is
given to the window manager for the title bar if
DwtNstyle is DwtModeless.

Specifies the callback function or functions called
when the window is about to be mapped. For this
callback, the reason is DwtCRMap.

DwtNunmapCallback

DwtNtakeFocus

DwtNnoResize

DwtNautoUnmanage

Specifies the callback function or functions called
when the window was unmapped. For this callback,
the reason is Dwt CRUnmap.

Specifies a boolean value that, when True,
indicates that the dialog box takes the input focus
when managed.

Specifies a boolean value that, when True,
indicates that a modal or modeless dialog box does
not have a window manager resize button. When
False, the dialog box has a window manager resize
button.

Specifies a boolean value that, when True,
indicates that the dialog box unmanages itself when

Subroutines 3—99

DwtDialogBox (3Dwt)

any push button is activated. This attribute cannot be
changed after widget creation.

DwtNdefaultButton
Specifies the ID of the push button widget that is
activated when the user presses the RETURN or
ENTER key.

DwtNcancelButton
Specifies the ID of the push button widget that is
activated when the user presses the Shift and Return
keys simultaneously.

DwtNautoUnrealize
Specifies a boolean value that, when False,
indicates that the dialog box creates the window(s)
for itself and its children when it is first managed,
and never destroys them. If True, the dialog box
re-creates the window(s) every time it is managed,
and destroys them when it is unmanaged.

The setting of this attribute is a performance tradeoff
between the client cpu load (highest when set to
True), and the server window load (highest when
setto False).

The following constraint attributes are passed on to any widget that is made a
child of a dialog box widget. These constraint values are used only for
dialog boxes that have the DwtNunits attribute set to DwtFontUnits.

DwtNfontX Specifies the placement of the left hand side of the
widget window in font units. The default is the
value of DwtNx.

DwtNfontY Specifies the placement of the top of the widget
window in font units. The default is the value of
DwtNy.

Return Value
These functions return the ID of the created widget.

3-100 Subroutines

DwtDialogBox (3Dwt)

Callback Information
The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For the callbacks associated with
DwtDialogBoxCreate, the reason member can be set to:

DwtCRFocus The dialog box has received the input
focus.

DwtCRHelpRequested The user has selected Help.

For the callbacks associated with DwtDialogBoxPopupCreate, the
reason member can be set to:

DwtCRMap The dialog box is about to be mapped.

Dwt CRUnmap The dialog box is about to be unmapped.

DwtCRFocus The dialog box has received the input
focus.

DwtCRHelpRequested The user has selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—101

DwtDisplayCSMessage (3Dwt)

Name
DwtDisplayCSMessage — Displays a compound-string message.

Syntax

Widget DwtDisplayCSMessage(parent_widget, name,

default _position, x, y,
style, message_vector,
widget_id convert_proc,
ok_callback, help_callback)

Widget parent_widget;

char *name;

int default_position;

int x, y;

int style;

int *message_vector;

Widget *widget;

int (*convert_proc)();

DwtCallbackPtr ok_callback;

DwtCallbackPtr help_callback;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

default_position
Specifies a boolean value that, when True, indicates that
DwtNx and DwtNy are to be ignored forcing the widget to
be centered in the parent window.

X Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window.

y Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window.

style Specifies the style of the message box widget. You can pass
DwtModal (modal) or DwtModeless (modeless).

message_vector
Specifies the message argument vector identifying the

3-102 Subroutines

widget _id

C onvert_pr ocC

ok_callback

help_callback

Description

DwtDisplayCSMessage (3Dwt)

message identifier and associated information.

The first longword contains the number of longwords in the
message blocks to follow. The first longword in each
message block contains a pointer to the compound-string.
The next word consists of the FAO parameter count. The
final n longwords in the message block are the FAO
parameters.

This argument contains the widget ID of an already-existing
message box widget. If this argument is nonzero, a new
message box is not created. An XtSetValues will be
performed on this widget to change the text of the message
to match this new message. This is an input/output
argument. That is, the function fills in widget id after you
call it.

Specifies a pointer to a function that is executed after the
message is formatted but before it is displayed.

A pointer to the formatted compound-string is passed to the
function as a parameter. This parameter is a NULL-
terminated character string.

Specifies the callback function or functions called when the
user clicks on the Acknowledged push button. For this
callback, the reason is DwtCRYes.

Specifies the callback function or functions called when a
help request is made.

The DwtDisplayCSMessage function accepts an array of compound-
strings, formats them, and creates a message box.

If the function returns a zero, the message is not appended to the messages to

be displayed.

Return Value

Upon completion, DwtDisplayCSMessage retumns to the calling program
the ID of the created message box widget.

Subroutines 3—103

DwtDisplayCSMessage (3Dwt)
See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-104 Subroutines

Name

DwtDisplayVmsMessage (3Dwt)

DwtDisplay VmsMessage — Accepts and displays a VMS message.

Syntax

Widget DwtDisplay VmsMessage(parent_widget, name,

default position, x, y,

style, message_vector,
widget id, convert_proc,
ok_callback, help_callback)

Widget parent widget;
char *name;
int default_position;

int x, y;
int style;

int *message_vector;

Widget *widget id;

int (*convert _proc)();
DwtCallbackPtr ok_callback;
DwtCallbackPtr help_callback;

Arguments

parent_widget
name

default_position

style

message_vector

Specifies the parent widget ID.
Specifies the name of the created widget.

Specifies a boolean value that, when True, indicates that
DwtNx and DwtNy are to be ignored forcing the widget to
be centered in the parent window.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window.

Specifies the style of the message box widget. You can pass
DwtModal (modal) or DwtModeless (modeless).

Specifies the message argument vector identifying the

Subroutines 3—-105

DwtDisplayVmsMessage (3Dwt)

widget_id

conver t_pl” oc

ok_callback

help_callback

Description

message identifier and associated information. This
argument is identical to the VMS $PUTMSG system service.

The first longword contains the number of longwords in the
message blocks to follow. The first longword in each
message block contains a pointer to the VMS message
identifier. Message identifiers are passed by value.

If the message is user-supplied, the next word consists of the
$FAO parameter count. The final n longwords in the
message block are the $FAO parameters.

This argument contains the widget ID of an already-existing
message box widget. If this argument is nonzero, a new
message box is not created. An XtSetValues will be
performed on this widget to change the text of the message
to match this new message. This is an input/output
argument. That is, the function fills in widget id after you
call it.

Specifies a pointer to a function that is executed after the
message is formatted but before it is displayed. A pointer to
the formatted string is passed to the function as a parameter.
This parameter is a NULL-terminated character string.

Specifies the callback function or functions called when the
user clicks on the Acknowledged push button. For this
callback, the reason is DwtCRYes.

Specifies the callback function or functions called when a
help request is made.

The DwtDisplayVmsMessage function accepts standard VMS message
vectors (as defined by the $PUTMSG system service), retrieves the messages,
formats them, and creates a message box in which to display the message.

This parameter is a NULL-terminated character string.

Return Value

Upon completion, DwtDisplayVmsMessage returns to the calling
program the ID of the created message box widget.

3-106 Subroutines

DwtDisplayVmsMessage (3Dwt)
See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-107

DwtDrmFreeResourceContext (3Dwt)

Name
DwtDrmFreeResourceContext — Frees a resource context.

Syntax

#include <X11/DwtAppl.h>
Cardinal DwtDrmFreeResourceContext(context _id)
DRMResourceContextPtr context_id;

Arguments

context_id Specifies the resource context to be freed.

Description

The DwtDrmFreeResourceContext function frees the memory buffer
and the resource context.

Return Value
This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMBadContext Invalid resource context.
See Also

DwtDrmGetResourceContext(3Dwt)

3-108 Subroutines

DwtDrmGetResourceContext (3Dwt)

Name
DwtDrmGetResourceContext — Gets a resource context.

Syntax

#include <X11/DwtAppl.h>
Cardinal DwtDrmGetResourceContext(alloc_func, free_func,
size, context_id_return)
char *((*alloc_func) ());

void (*free_func) ();
DRMSize size;
DRMResourceContextPtr *context_id_return;
Arguments
alloc_func Specifies the function to use in allocating memory for this
resource context. A NULL pointer means use the default,
which is XtMalloc.
free_func Specifies the function to use in freeing memory for this
context. A NULL pointer means use the default, which is
XtFree.
size Specifies the size of the memory buffer to allocate.

context_id_return
Returns the new resource context.

Description

The DwtDrmGetResourceContext function allocates a new resource
context and a memory buffer of the requested size. It then associates the
buffer with the context.

Return Value
This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMFailure The function failed.

Subroutines 3—109

DwiDrmGetResourceContext (3Dwt)

See Also
DwtDrmFreeResourceContext(3Dwt)

3-110 Subroutines

DwiDrmHGetIndexedLiteral (3Dwt)

Name

DwtDrmHGetIndexedLiteral — Fetches indexed literals from a DRM
hierarchy.

Syntax

Cardinal DwtDrmHGetIndexedLiteral(hierarchy_id, index, context_id)
DRMHierarchy hierarchy_id;
String index;
DRMResourceContextPtr context_id;

Arguments
hierarchy id Specifies the hierarchy to be searched.
index Specifies the case-sensitive index of the desired literal.
context_id Specifies the resource context into which the literal is read.
Description

The DwtDrmHGetIndexedLiteral function searches a DRM search
hierarchy for a literal, given the literal’s index. That is, it gets a public literal
from a DRM search hierarchy. This function returns the literal as the
contents of the context buffer. The group that is fetched is always
DRMgLiteral. The literal type filter is taken from the context. If
unmeodified in the context obtained from DwtDrmGetResourceContext,
there is no filtering (type = RGMtNul). In general, you do not need to set
any of the fields in the context, except possibly type. The following buffer
contents are for some common literal types obtained from a UID file. Note
that in some cases the caller must cause offsets to be memory pointers.

DwtDrmRCType (context_id) == RGMrTypeChar8:

DwtDrmRCBuffer (context_id) contains a null-terminated ASCII string

DwtDrmRCType (context_id) == RGMrTypeCString:

DwtDrmRCBuffer (context_id) contains a compound-string (DwtCompString)

DwtDrmRCType (context_id) == RGMrTypeChar8Vector:

DwtDrmRCType (context_id) == RGMrTypeCStringVector:
DwtDrmRCBuffer (context_id) contains an RGM text vector
or stringtable (RGMTextVector). The items in the
text vector contain offsets into the buffer that
locate either null-terminated ASCII strings or
compound-strings. You can relocate these to memory
pointers by adding the buffer address to the offset:

Subroutines 3—-111

DwiDrmHGetIindexedLiteral (3Dwt)

item[n].textitem.pointer = item[n].textitem.offset+bufadr

Return Value

This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMNotFound Literal not found.
DRMFailure The function failed.

Invalid resource context.

3-112 Subroutines

DwtDrmRCBuffer (3Dwt)

Name
DwtDrmRCBuffer — Returns a pointer to the memory buffer.

Syntax

#include <X11/DwtAppl.h>
char * DwtDrmRCBuffer(context_id)
DRMResourceContextPtr context_id;

Arguments

context_id Specifies the resource context to read.

Description
The DwtDrmRCBuffer macro returns a pointer to the memory buffer that
contains the data for this resource context. No validity checking is done on
the resource context; the caller must ensure that the resource context pointer
is valid.

Return Value

Pointer to the memory buffer.

Subroutines 3—-113

DwitDrmRCSetType (3Dwt)

Name
DwtDrmRCSetType — Modifies the type of a resource context.

Syntax

#include <X11/DwtAppl.h>

DwtDrmRCSetType(context_id, type)
DRMResourceContextPtr context_id;
DRMTYype *type;

Arguments

context_id Specifies the resource context to modify.

type Specifies the new value for the resource context type.
Description

The DwtDrmRCSetType function modifies the type of the specified
resource context. No validity checking is done on the resource context; the
caller must ensure that the resource context pointer is valid. No return code
is defined.

See Also
DwtDrmRCType(3Dwt)

3-114 Subroutines

DwtDrmRCSize (3Dwt)

Name

DwtDrmRCSize — Returns the size of a resource context.

Syntax

#include <X11/DwtAppl.h>
DRMSize DwtDrmRCSize(context_id)
DRMResourceContextPtr context_id;

Arguments
context_id Specifies the resource context to read.

Description

The DwtDrmRCSize macro returns the size of the specified resource
context. Note that no validity checking is done on the resource context; the
caller must ensure that the context pointer is valid.

Return Value
This macro can return one of the following status return constants:

DRMSuccess The function executed successfully.
DRMSize The size in bytes of the resource context.
DRMFailure Invalid resource context.

Subroutines 3—115

DwtDrmRCType (3Dwt)

Name
DwtDrmRCType — Returns the type of a resource context.

Syntax

#include <X11/DwtAppl.h>
DRMType DwtDrmRCType(context_id)
- DRMResourceContextPtr context_id;

Arguments

context_id Specifies the resource context to read.

Description
The DwtDrmRCType macro returns the type of the specified resource
context. Note that no validity checking is done on the resource context. The
caller must ensure that the resource context pointer is valid.

Return Value

This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMType The type of the resource context.
DRMInvalid Invalid resource context.

See Also
DwtDrmRCSetType(3Dwt)

3-116 Subroutines

DwtEndCopyFromClipboard (3Dwt)

Name

DwtEndCopyFromClipboard — Notifies the cut and paste functions that the
application has completed copying an item from the clipboard and unlocks
the clipboard.

Syntax

int DwtEndCopyFromClipboard(display, window)
Display *display;
Window window;

Arguments
display Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.
window Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.
Description

The DwtEndCopyFromClipboard function unlocks the clipboard when
the application has copied all data from the clipboard. If the application calls
DwtStartCopyFromClipboard, it must call
DwtEndCopyFromClipboard. These two functions lock and unlock the
clipboard and allow the application to copy data from the clipboard
incrementally.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

Subroutines 3—-117

DwtEndCopyFromClipboard (3Dwt)

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

DwtCopyFromClipboard (3Dwt), DwtStartCopyFromClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-118 Subroutines

DwtEndCopyToClipboard (3Dwt)

Name
DwtEndCopyToClipboard — Places data in the clipboard data structure.

Syntax
int DwtEndCopyToClipboard(display, window, item_id)
Display *display;
Window window;

long item_id;
Arguments
display Specifies a pointer to the Display structure that was

returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

window Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

item_id Specifies the number assigned to this data item. This number
was returned by a previous call to
DwtBeginCopyToClipboard.

Description

The DwtEndCopyToClipboard function locks the clipboard from access
by other applications, places data in the clipboard data structure, and unlocks
the clipboard. Data items copied to the clipboard by
DwtCopyToClipboard are not actually entered in the clipboard data
structure until the call to DwtEndCopyToClipboard.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

Subroutines 3—119

DwtEndCopyToClipboard (3Dwt)

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

DwtCopyToClipboard (3Dwt), DwtBeginCopyToClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-120 Subroutines

DwtFetchColorLiteral (3Dwt)

Name
DwtFetchColorLiteral — Fetches a named color literal from a UID file.

Syntax

#include <X11/DwtAppl.h>
int DwtFetchColorLiteral (hierarchy_id, index, display, colormap_id,
pixel_return)

DRMHierarchy hierarchy_id;

String index;

Display *display;

Colormap colormap_id,;

Pixel *pixel_return;

Arguments

hierarchy id Specifies the ID of the UID hierarchy that contains the
specified literal. The hierarchy id was returned in a previous
call to DwtOpenHierarchy.

index Specifies the UIL name of the color literal to fetch. You must
define this name in UIL as an exported value.

display Specifies the display used for the pixmap. The display
argument specifies the connection to the X server. For more
information on the Display structure see the Xlib function
XOpenDisplay.

colormap_id Specifies the ID of the color map. If NULL, the default
color map is used.

pixel _return Returns the ID of the color literal.

Description

The DwtFetchColorLiteral function fetches a named color literal
from a UID file, and converts the color literal to a pixel color value.

Return Value
This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMNotFound The color literal was not found in the UIL
file.

Subroutines 3—121

DwtFetchColorLiteral (3Dwt)

DRMFailure The function failed.

See Also
DwtFetchlconLiteral(3Dwt), DwtFetchLiteral(3Dwt)

3—-122 Subroutines

DwtFetchiconLiteral (3Dwt)

Name

DwtFetchIconLiteral — Fetches a named icon literal from a hierarchy.
Syntax

#include <X11/DwtAppl.h>

int DwtFetchIconLiteral(hierarchy id, index, screen,
display, fgpix, bgpix, pixmap_return)
DRMHierarchy hierarchy_id;
String index;
Screen *screen;
Display *display;
Pixel fgpix;
Pixel bgpix;
Pixmap *pixmap_return;

Arguments

hierarchy id Specifies the ID of the UID hierarchy that contains the
specified icon literal. The hierarchy id was returned in a
previous call to DwtOpenHierarchy.

index Specifies the UIL name of the icon literal to fetch.

screen Specifies the screen used for the pixmap. The screen
argument specifies a pointer to the Xlib structure Screen
which contains the information about that screen and is
linked to the Display structure. For more information on
the Display and Screen structures see the Xlib function
XOpenDisplay and the associated screen information
macros.

display Specifies the display used for the pixmap. The display
argument specifies the connection to the X server. For more
information on the Display structure see the Xlib function

XOpenDisplay.
fepix Specifies the foreground color for the pixmap.
bgpix Specifies the background color for the pixmap.

pixmap_return Returns the resulting X pixmap value.

Subroutines 3—-123

DwtFetchiconLiteral (3Dwt)

Description

The DwtFetchIconLiteral function fetches a named icon literal from a
DRM hierarchy, and converts the icon literal to an X pixmap.

Return Value

This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMNotFound The icon literal was not found in the
hierarchy.
DRMFailure The function failed.
See Also

DwtFetchLiteral(3Dwt), DwtFetchColorLiteral(3Dwt)

3—124 Subroutines

Name

DwtFetchinterfaceModule (3Dwt)

DwtFetchInterfaceModule — Fetches all the widgets defined in an interface
module in the UID hierarchy.

Syntax

#include <X11/DwtAppl.h>
Cardinal DwtFetchInterfaceModule(hierarchy _id, module _name,

parent_widget, widget _return)

DRMHierarchy hierarchy id;
char *module_name;

Widget parent widget;
Widget *widget _return;

Arguments
hierarchy_id

module_name

parent_widget

widget_return

Description

Specifies the ID of the UID hierarchy that contains the
interface definition. The hierarchy_id was returned in a
previous call to DwtOpenHierarchy.

Specifies the name of the interface module, which you
specified in the UIL module header. By convention, this is
usually the generic name of the application.

Specifies the parent widget ID for the topmost widgets being
fetched from the module. The topmost widgets are those that
have no parents specified in the UIL module. The parent
widget is usually the top-level widget returned by
XtInitialize.

Returns the widget ID for the last main window widget
encountered in the UIL module, or NULL if no main window
widget is found.

The DwtFetchInterfaceModule function fetches all the widgets
defined in a UIL module in the UID hierarchy. Typically, each application
has one or more modules that define its interface. Each must be fetched in
order to initialize all the widgets the application requires. Applications do
not need to define all their widgets in a single module.

Subroutines 3-125

DwtFetchinterfaceModule (3Dwt)

If the module defines a main window widget,
DwtFetchInterfaceModule returns its widget ID. If no main window
widget is contained in the module, DwtFetchInterfaceModule returns
NULL and no widgets are realized.

The application can obtain the IDs of widgets other than the main window
widget by using creation callbacks.

Return Value
This function returns one of these status return constants:

DRMSuccess The function executed successfully.

DRMFailure The function failed.

DRMNotFound The interface module or topmost widget not
found.

3-126 Subroutines

Name

DwtFetchLiteral (3Dwt)

DwtFetchLiteral — Fetches a named literal from a UID file.

Syntax

#include <X11/DwtAppl.h>
int DwtFetchLiteral (hierarchy_id, index, display, value_return, type return)
DRMHierarchy hierarchy id;
String index:;
Display *display;
caddr_t *value_return;
DRMCode *type_return;

Arguments

hierarchy_id

index

display

value_return

type_return

Description

Specifies the ID of the UID hierarchy that contains the
specified literal. The hierarchy id was returned in a previous
call to DwtOpenHierarchy.

Specifies the UIL name of the literal (pixmap) to fetch. You
must define this name in UIL as an exported value.

Specifies the display used for the pixmap. The display
argument specifies the connection to the X server. For more
information on the Display structure see the Xlib function
XOpenDisplay.

Returns the ID of the named literal’s value.
Returns the named literal’s data type.

The DwtFetchLiteral function reads and returns the value and type of a
literal (named value) that is stored as a public resource in a single UID file.
This function returns a pointer to the value of the literal. For example, an
integer is always returned as a pointer to an integer, and a string is always
returned as a pointer to a string.

Applications should not use DwtFetchLiteral for fetching icon or color
literals. If this is attempted, DwtFetchLiteral returns an error.

Subroutines 3-127

DwtFetchLiteral (3Dwt)

Return Value

This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMWrongType The operation encountered an unsupported
literal type.
DRMNotFound The literal was not found in the UID file.
DRMFailure The function failed.
See Also

DwtFetchIconLiteral(3Dwt), DwtFetchColorLiteral(3Dwt)

3-128 Subroutines

Name

DwtFetchSetValues (3Dwt)

DwtFetchSetValues — Fetches the values to be set from literals stored in UID

files.

Syntax

#include <X11/DwtAppl.h>
Cardinal DwtFetchSetValues(hierarchy _id, widget, args, num_args)
DRMHierarchy hierarchy_id;
Widget widget;
ArgList args;
Cardinal num_args;

Arguments

hierarchy id

widget
args

num_args

Description

Specifies the ID of the UID hierarchy that contains the
specified literal. The hierarchy_id was returned in a previous
call to DwtOpenHierarchy.

Specifies the widget that is modified.

Specifies an argument list that identifies the widget
arguments to be modified as well as the index (UIL name) of
the literal that defines the value for that argument. The name
part of each argument (args[n].name) must begin with the
string DwtN followed by the name that uniquely identifies
this attribute tag. For example, DwtNwidth is the attribute
name associated with the core argument width. The value
part (args[n].value) must be a string that gives the index (UIL
name) of the literal. You must define all literals in UIL as
exported values.

Specifies the number of entries in args.

The DwtFetchSetValues function is similar to XtSetValues, except
that the values to be set are defined by the UIL named values that are stored
in the UID hierarchy. DwtFetchSetValues fetches the values to be set
from literals stored in UID files.

This function sets the values on a widget, evaluating the values as public
literal resource references resolvable from a UID hierarchy. Each literal is
fetched from the hierarchy, and its value is modified and converted as

Subroutines 3-129

DwtFetchSetValues (3Dwt)

required. This value is then placed in the argument list and used as the actual
value for an XtSetValues call. DwtFetchSetValues allows a widget
to be modified after creation using UID file values exactly as is done for
creation values in DwtFetchWidget.

As in DwtFetchWidget, each argument whose value can be evaluated
from the UID hierarchy is set in the widget. Values that are not found or
values in which conversion errors occur are not modified.

Each entry in the argument list identifies an argument to be modified in the
widget. The name part identifies the tag, which begins with DwtN. The
value part must be a string whose value is the index of the literal. Thus, the
following code would modify the label resource of the widget to have the
value of the literal accessed by the index OK_button_label in the hierarchy:

args[n] .name = DwtNlabel;
args[n].value = "OK_button_label";

Return Value
This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMFailure The function failed.

See Also
XtSetValues(3Dwt)

"~ 3-130 Subroutines

Name

DwtFetchWidget (3Dwt)

DwtFetchWidget — Fetches and then creates any indexed (UIL named)
application widget and its children.

Syntax

#include <X11/DwtAppl.h>
Cardinal DwtFetchWidget(hierarchy_id, index, parent widget,
widget_return, class_return)

DRMHierarchy hierarchy_id;

String index;

Widget parent _widget;

Widget *widget return;

DRMType

Arguments

hierarchy_id

index
parent_widget
widget_return

class_return

Description

*class_return;

Specifies the ID of the UID hierarchy that contains the
interface definition. The hierarchy id was returned in a
previous call to DwtOpenHierarchy.

Specifies the UIL name of the widget to fetch.
Specifies the parent widget ID.

Returns the widget ID of the created widget. If this is not
NULL when you call DwtFetchWidgetOverride,
DRM assumes that the widget has already been created and
DwtFetchWidgetOverride returns DRMFailure.

Returns the class code identifying DRM’s widget class. The
widget class code for the main window widget, for example,
is DRMwcMainWindow. Literals identifying DRM widget
class codes are defined in DRM. h.

The DwtFetchWidget function fetches and then creates an indexed
application widget and its children. The indexed application widget is any
widget that is named in UIL and that is not the child of any other widget in
the UID hierarchy. In fetch operations, the fetched widget’s subtree is also
fetched and created. This widget must not appear as the child of a widget
within its own subtree. DwtFetchWidget does not execute
XtManageChild for the newly created widget.

Subroutines 3—131

DwtFetchWidget (3Dwt)

DwtFetchWidget fetches widgets where
DwtFetchInterfaceModule is not used. DwtFetchWidget
provides specific control over which widgets are fetched from a UIL file;
DwtFetchInterfaceModule, on the other hand, fetches all widgets in a
single call. An application can fetch any named widget in the UID hierarchy
using DwtFetchWidget. DwtFetchWidget can be called at any time
to fetch a widget that was not fetched at application startup.
DwtFetchWidget determines if a widget has already been fetched by
checking widget_return for a NULL value. Non-NULL values signify that
the widget already has been fetched, and DwtFetchWidget fails.
DwtFetchWidget can be used to defer fetching pop-up widgets until they
are first referenced (presumably in a callback), and then used to fetch them
once.

DwtFetchWidget can also create multiple instances of a widget (and its
subtree). In this case, the UID definition functions as a template; a widget
definition can be fetched any number of times. An application can use this to
make multiple instances of a widget, for example, in a dialog box box or
menu.

The index (UIL name) that identifies the widget must be known to the
application.
Return Value

This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMNotFound Widget not found in UID hierarchy.
DRMFailure The function failed.

See Also

DwtFetchWidgetOverride(3Dwt)

3-132 Subroutines

DwtFetchWidgetOverride (3Dwt)

Name

DwtFetchWidgetOverride — Fetches any indexed (UIL named) application
widget. It overrides the arguments specified for this application widget in
UIL.

Syntax

#include <X11/DwtAppl.h>
Cardinal DwtFetchWidgetOverride(hierarchy_id, index, parent_widget,
override_name, override_args,
override_num_args, widget_return,
class_return)
DRMHierarchy hierarchy_id;
String index;
Widget parent widget;
String override name;
ArgList override_args;
Cardinal override num_args;
Widget *widget return;
DRMType *class_return;

Arguments

hierarchy id Specifies the ID of the UID hierarchy that contains the
interface definition. The hierarchy_id was returned in a
previous call to DwtOpenHierarchy.

index Specifies the UIL name of the widget to fetch.
parent_widget Specifies the parent widget ID.

override_name Specifies the name to override the widget name. Use a NULL
value if you do not want to override the widget name.

override_args Specifies the override argument list, exactly as would be
given to XtCreateWidget (conversion complete and so
forth). Use a NULL value if you do not want to override the
argument list.

override_num_args
Specifies the number of arguments in override_args.

widget_return Returns the widget ID of the created widget. If this is not
NULL when you call DwtFetchWidgetOverride,
DRM assumes that the widget has already been created and

Subroutines 3—133

DwtFetchWidgetOverride (3Dwt)

DwtFetchWidgetOverride returns DRMFailure.

class_return Returns the class code identifying DRM’s widget class. The
widget class code for the main window widget, for example,
is DRMwcMainWindow. Literals identifying DRM widget
class codes are defined in DRM. h.

Description

The DwtFetchWidgetOverride function is the extended version of
DwtFetchWidget. It is identical to DwtFetchWidget, except that it
allows the caller to override the widget’s name and any arguments that
DwtFetchWidget would otherwise retrieve from the UID file or one of the
defaulting mechanisms. That is, the override argument list is not limited to
those arguments in the UID file.

The override arguments apply only to the widget fetched and returned by this
function. Its children (subtree) do not receive any override parameters.

Return Value
This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMNotFound Widget not found in UID hierarchy.
DRMFailure The function failed.

See Also
DwtFetchWidget(3Dwt)

3-134 Subroutines

Name

DwtFileSelection (3Dwt)

DwtFileSelection, DwtFileSelectionCreate — Creates a file selection box
widget for the application to query the user for a file selection.

Syntax

Widget DwtFileSelection (parent_widget, name, x, y,

title, value, dirmask,
visible_items_count, style, default position,
default_position, callback,
help_callback)

Widget parent_widget;

char *name;

Position x, y;

DwtCompString title;

DwtCompString value;

DwtCompString dirmask;

int visible_items_count;

int style;

Boolean default_position;

DwtCallbackPtr callback, help_callback;

Widget DwtFileSelectionCreate (parent_widget, name,

override_arglist,
override_argcount)
Widget parent_widget;
char *name;
ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.

name Specifies the name of the created widget.

X

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core

Subroutines 3-135

DwtFileSelection (3Dwt)

title

value

dirmask

widget attribute.

Specifies the text that appears in the banner of the file
selection box. This argument sets the DwtNtitle attribute
associated with DwtDialogBoxPopupCreate.

Specifies the selected file. The file name appears in the text
entry field and is highlighted in the list box, if present. This
argument sets the DwtNvalue attribute associated with
DwtSelectionCreate.

Specifies the directory mask used in determining the files
displayed in the file selection list box. This argument sets
the DwtNdirMask attribute associated with
DwtFileSelectionCreate.

visible_items_count

style

default_position

callback

help_callback

3—-136 Subroutines

Specifies the maximum number of files visible at one time in
the file selection list box. This argument sets the
DwtNvisibleItemsCount attribute associated with
DwtSelectionCreate.

Specifies the style of the pop-up dialog box widget. You can
pass DwtModal (modal) or DwtModeless (modeless).
This argument sets the DwtNstyle attribute associated
with DwtDialogBoxPopupCreate.

Specifies a boolean value that, when True, causes DwtNx
and DwtNy to be ignored and forces the default widget
position. The default widget position is centered in the
parent window. If False, the specified DwtNx and
DwtNy attributes are used to position the widget. This
argument sets the DwtNdefaultPosition attribute
associated with DwtDialogBoxCreate.

Specifies the callback function or functions called when the
user makes or cancels a selection, or there is no match for the
item selected by the user. This argument sets the
DwtNactivateCallback, DwtNcancelCallback,
and DwtNnoMatchCallback attributes associated with
DwtSelectionCreate.

Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

DwtFileSelection (3Dwt)

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtFileSelection and DwtFileSelectionCreate functions
create an instance of a file selection widget for the application to query the
user for a file selection and return its associated widget ID. When calling
DwtFileSelection, you set the file selection box widget attributes
presented in the formal parameter list. For DwtFileSelectionCreate,
however, you specify a list of attribute name/value pairs that represent all the
possible file selection box widget attributes.

This is a subclass of the selection widget, which is a subclass of the dialog
widget. The file selection widget is a specialized pop-up dialog box,
supporting either modal or modeless formats.

A file selection widget contains the following:

. A list box displaying the file names from which to choose
U] A directory mask text entry field

. A selection text entry field

. An Apply push button to apply the dirmask to generate a new list of
files

. An Ok push button to inform the application that the user made a
selection

. A Cancel push button to inform the application that the user canceled a
selection

Note that the callback data structure also includes the current DwtNvalue
and DwtNdirMask. This allows user input text and directory information
to be passed back.

The file selection widget supports remote file search between nodes on a
network. You can perform remote file searches from VMS to ULTRIX
systems, but currently not from ULTRIX to VMS systems.

Subroutines 3—137

DwtFileSelection (3Dwt)
Inherited Attributes

Attribute Name Data Type Defaulit

Core Attributes

DwtNx Position Centered in the parent window

DwtNy Position Centered in the parent window

DwtNwidth Dimension The width of the list box, plus
the width of the push buttons,
plus three times
DwtNmarginWidth. The
list box will grow to
accommodate items wider
than the title.

DwtNheight Dimension The height of the list box, plus
the height of the text edit
field, plus the height of the
label, plus three times
DwtNmarginHeight.

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

DwtNaccelerators XtTranslations NULL

DwtNdepth int Depth of the parent window

DwtNtranslations XtTranslations NULL

DwtNmappedWhenManaged Boolean True

DwtNscreen Screen * The parent screen

DwtNdestroyCallback DwtCallbackPtr NULL

Dialog Pop-Up Attributes

DwtNforeground Pixel Default foreground color

DwtNhighlight Pixel Default foreground color

DwtNhighlightPixmap Pixmap NULL

DwtNuserData Opagque * NULL

3-138 Subroutines

DwtNfont
DwtNhelpCallback
DwtNdirectionRToL
DwtNunits

DwtNstyle
DwtNfocusCallback
DwtNtextMergeTranslations
DwtNmarginWidth
DwtNmarginHeight
DwtNdefaultPosition
DwtNchildOverlap
DwtNresize
DwtNnoResize

DwtNtitle
DwtNmapCallback
DwtNunmapCallback
DwtNtakeFocus

DwtNautoUnmanage
DwtNdefaultButton
DwtNcancelButton

Selection Attributes

DwtNlabel

DwtNvalue
DwtNokLabel
DwtNcancellabel
DwtNactivateCallback
DwtNcancelCallback
DwtNnoMatchCallback
DwtNvisibleItemsCount
DwtNitems
DwtNitemsCount
DwtNmustMatch
DwtNselectionLabel

DwtFileSelection (3Dwt)

DwtFontList
DwtCallbackPtr
unsigned char
unsigned char
unsigned char
DwtCallbackPtr
XtTranslations
Dimension
Dimension
Boolean
Boolean

unsigned char
Boolean

DwtCompString
DwtCallbackPtr
DwtCallbackPtr
Boolean

Boolean
Widget
Widget

DwtCompString
DwtCompString
DwtCompString
DwtCompString
DwtCallbackPtr
DwtCallbackPtr
DwtCallbackPtr
int
DwtCompString *
int

Boolean
DwtCompString

The default XUI Toolkit font
NULL
DwtDirectionRightDown
DwtFontUnits
DwtModal

NULL

NULL

5 pixels

5 pixels

False

True
DwtResizeGrowOnly

True (that is, no window
manager resize button)

"Open"
NULL
NULL
True for modal dialog box

False for modeless dialog
box

True
NULL
NULL

"Items’
"OK"
"Cancel"
NULL
NULL
NULL

8

NULL
Zero
False
"Files in"

Subroutines 3—-139

DwtFileSelection (3Dwt

)

Widget-Specific Attributes

Attribute Name Data Type Default
DwtNfilterLabel DwtCompString "File filter"
DwtNapplyLabel DwtCompString "Filter"
DwtNdirMask DwtCompString Mk &N
DwtNdirSpec DwtCompString "
DwtNfileSearchProc VoidProc FileSelectionSearch
(ULTRIX default directory
file search function)
DwtNlistUpdated Boolean False
DwtNfileToExternProc VoidProc NULL
DwtNfileToInternProc VoidProc NULL
DwtNmaskToExternProc VoidProc NULL
DwtNmaskToInternProc VoidProc NULL

DwtNfilterLabel Specifies the label for the search filter located above
the text-entry field.

DwtNapplyLabel Specifies the label for the Apply push button.

DwtNdirMask Specifies the directory mask used in determining the
files displayed in the file selection list box.

DwtNdirSpec Specifies the full ULTRIX file specification. This
attribute is write only and cannot be modified by
XtSetValues.

DwtNfileSearchProc

3-140 Subroutines

Specifies a directory search procedure to replace the
default file selection search procedure. The file
selection widget’s default file search procedure
fulfills the needs of most applications. However, it is
impossible to cover the requirements of all
applications; therefore, you can replace the default
search procedure.

You call the file search procedure with two
arguments: the file selection widget and the
DwtFileSelectionCallbackStruct
structure. The callback structure contains all required
information to conduct a directory search, including
the current file search mask. Once called, it is up to
the search routine to generate a new list of files and
update the file selection widget by using

DwtFileSelection (3Dwt)

XtSetValues.

You must set these attributes: DwtNitems,
DwtNitemsCount, DwtNlistUpdated, and
DwtNdirSpec. Set DwtNitems to the new list
of files. If there are no files, set this attribute to
NULL. This argument sets the DwtNitems
attribute associated with DwtSelectionCreate.

If there are no files set DwtNitemsCount to zero.
This argument sets the DwtNitemsCount
associated with DwtSelectionCreate. Always
set DwtNlistUpdatedto True when updating
the file list using a search procedure, even if there are
no files. Setting DwtNdirSpec is optional, but
recommended. Set this attribute to the full file
specification of the directory searched. The directory
specification is displayed above the list box.

DwtNlistUpdated Specifies an attribute that is set only by the file
search procedure. Setto True, if the file list has
been updated.

DwtNfileToExternProc
Converts native, internal file names to custom,
external file names displayed to the user.

DwtNfileToInternProc
Converts custom, external file names displayed to the
user to native, internal file names.

DwtNmaskToExternProc
Converts native, internal directory masks to custom,
external directory masks displayed to the user.

DwtNmaskToInternProc
Converts custom, external directory masks displayed
to the user to native, internal directory masks.

Return Value
These functions return the ID of the created widget.

Subroutines 3—141

DwtFileSelection (3Dwt)

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event:;
DwtCompString value;
int value_len;
DwtCompString dirmask;
int dirmask_len;

} DwtFileSelectionCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRActivate The user activated the Ok push button.
DwtCRCancel The user activated the Cancel button.

DwtCRHelpRequested The user selected help somewhere in the
file selection box.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding. The value member is set to the current selection when the
callback occurred. The value_len member is set to the length of the selection
compound-string. The dirmask member is set to the current directory mask
when the callback occurred. The dirmask_len member is set to the length of
the directory mask compound-string.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-142 Subroutines

DwtFileSelectionDoSearch (3Dwt)

Name
DwtFileSelectionDoSearch — Initiates a search with a directory mask option.
Otherwise, the current directory mask is used.

Syntax

void DwtFileSelectionDoSearch(widget, dirmask)
FileSelectionWidget widget;
DwtCompString dirmask;

Arguments
widget Specifies the pointer to the file selection widget data
structure.
dirmask Specifies the directory mask used in determining the files
displayed in the file selection list box. This is an optional
attribute. If you do not specify a directory mask, the default
directory mask is used. This argument sets the
DwtNdirMask attribute associated with
DwtFileSelectionCreate.
Description
The file selection widget initiates file searches when any of the following
occur:

. The file selection widget becomes visible (managed).
. You use XtSetValues to change the directory mask.
. The user clicks on the Apply push button.

° The application calls DwtFileSelectionDoSearch, which is
another way for applications to initiate a directory search. This may be
useful, for example, when the application creates a new file and wants
to reflect this change in a mapped file search widget.

See Also

DwtFileSelection (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-143

DwtGetNextSegment (3Dwt)

Name

DwtGetNextSegment — Gets information about the next segment in the
compound-string.

Syntax

int DwtGetNextSegment(context, text_return,

charset_return, direction_r_to I return,
lang return, rend_return)

DwtCompStringContext * context;

char *text return;

long *charset_return;

int *direction_r to | _return;

long *lang return;

long *rend_return;

Arguments
context Specifies the context for the call to
DwtInitGetSegment. You initialize the context by
calling DwtInitGetSegment, and it gets incremented
each time you call DwtGetNextSegment.
text_return Returns the text in the next segment.

charset_return Returns the character set in the next segment. Values for this
argument can be found in the required file
/usr/include/cda_def.h.

direction_r_to_|_return
Returns the character direction value.

lang return For future use.

rend_return For future use.

Description

The DwtGetNextSegment function obtains information about the next
segment of the compound-string as determined by the context. The space for
the resulting compound-string is allocated with this function. After using
this function, you should free this space by calling XtFree.

3-144 Subroutines

DwtGetNextSegment (3Dwt)

Return Value

This function returns one of these status return constants:

DwtEndCS The context is at the end of the compound-
string.
DwtFail The context is not valid.
DwtSuccess Normal completion.
See Also

DwthnitGetSegment (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—145

DwtGetUserData (3Dwt)

Name
DwtGetUserData — Returns the user data associated with the widget.

Syntax

char * DwtGetUserData(widget)
Widget widget;

Arguments

widget Specifies a pointer to the widget data structure.

Description
The DwtGetUserData function returns any private user data associated
with the widget. The returned data is not interpreted by the toolkit.

Return Value

Any private user data to be associated with the widget. The data is not
interpreted by the toolkit.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3—-146 Subroutines

DwtHelp (3Dwt)

Name
DwtHelp, DwtHelpCreate — Creates a help menu widget.

Syntax

Widget DwtHelp(parent_widget, name, default _position,

X, y, application_name,
library_type, library_spec, first_topic,
overview_topic, glossary_topic, unmap_callback)

Widget parent_widget;

DwtCompString name;

Boolean default position;

Position x, y;

DwtCompString application_name;

int library_type;

DwtCompString library_spec;

DwtCompString first_topic;

DwtCompString overview_topic;

DwtCompString glossary_topic;

DwtCallbackPtr unmap_callback;

Widget DwtHelpCreate (parent_widget, name,
override_arglist, override_argcount)
Widget parent_widget;
char *name;
ArglList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

default position
Specifies a boolean value that, when True, indicates that
DwtNx and DwtNy will be ignored forcing the default. By
default the help widget is positioned so that it does not
occlude the parent widget on the screen. This argument sets
the DwtNdefaultPosition attribute associated with
DwtHelpCreate.

X Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the

Subroutines 3—-147

DwtHelp (3Dwt)

parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

application_name

library type

library_spec

first_topic

overview_topic

glossary topic

Specifies the application name to be used in the widget title
bar. This argument sets the DwtNapplicationName
attribute associated with DwtHelpCreate.

Specifies the type of help topic library specified by
DwtNlibrarySpec. You can pass DwtTextLibrary,
which is an ULTRIX help directory. This argument sets the
DwtNlibraryType attribute associated with
DwtHelpCreate.

Specifies a host system file specification that identifies the
help topic library, for example, /usr/help/decwhelp
on UNIX-based systems. This argument sets the
DwtNlibrarySpec attribute associated with
DwtHelpCreate.

Specifies the first help topic to be displayed. If you pass a
NULL string, the help menu widget displays a list of level
one topics. This argument sets the DwtNoverviewTopic
attribute associated with DwtHelpCreate.

Specifies the application overview topic. This argument sets
the DwtNoverviewTopic attribute associated with
DwtHelpCreate.

Specifies the application glossary topic. If you pass a NULL
string, the Visit Glossary entry does not appear in the
widget’s View pull-down menu. This argument sets the
DwtNglossaryTopic attribute associated with
DwtHelpCreate.

unmap_callback

3-148 Subroutines

Specifies the callback function or functions called when the
help menu widget window was unmapped. For this callback,
the reason is DwtCRUnmap. This argument sets the
DwtCRUnmap attribute associated with DwtHelpCreate.

DwtHelp (3Dwt)

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtHelp and DwtHelpCreate functions create an instance of a
help menu widget and return its associated widget ID.

The help menu widget is a modeless widget that allows the application to
display appropriate user assistance information in response to a user request.
The help menu widget displays an initial help topic and then gives the user
the ability to select and view additional help topics.

The DwtNfirstTopic attribute allows the application to provide
context-sensitive help by selecting a specific topic based on implicit or
explicit cues from the user.

The format of the DwtNfirstTopic, DwtNoverviewTopic, and
DwtNglossaryTopic compound-strings depends on
DwtNlibraryType. If DwtNlibraryType is DwtTextLibrary,
the topic string is a sequence of help library keys separated by one or more
spaces.

Once the widget has been created, you can change the help topic by
specifying a new DwtNfirstTopic by calling XtSetValues, and then
causing the help menu widget to appear by calling XtManageChild.

‘When the user terminates a help session (using the Exit function), the widget
is automatically unmanaged.

Inherited Attributes

Attribute Name Data Type Defauit

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

Subroutines 3—-149

DwtHelp (3Dwt)

DwtNwidth

DwtNheight

DwtNborderWidth
DwtNborder
DwtNborderPixmap
DwtNbackground
DwtNbackgroundPixmap
DwtNcolormap
DwtNsensitive
DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

Dimension

Dimension

Dimension
Pixel
Pixmap
Pixel
Pixmap
Colormap
Boolean
Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

Pixel

Pixel |

Pixmap
Opaque *
unsigned char
DwtFontList
DwtCallbackPtx

Cannot be set by the caller.
The help menu widget
calculates the width, based on
the size of the text window
(DwtNcols and
DwtNrows).

Cannot be set by the caller.
The help menu widget
calculates the height, based on
the size of the text window
(DwtNcols and
DwtNrows).

One pixel

Default foreground color
NULL

Default background color
NULL

Default color map

True

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown
The default XUI Toolkit font
NULL

3-150 Subroutines

Widget-Specific Attributes

DwtHelp (3Dwt)

Attribute Name Data Type Default
DwtNaboutLabel DwtCompString "About"
DwtNaddtopicLabel DwtCompString " Additional topics"
DwtNapplicationName DwtCompString NULL
DwtNbadframeMessage DwtCompString "Couldn’t find frame !CS"
DwtNbadlibMessage DwtCompString "Couldn’t open library !CS"
DwtNcacheHelpLibrary Boolean False
DwtNcloseLabel DwtCompString "Exit"
DwtNcols int Language-dependent. The
American English default is
55.
DwtNcopyLabel DwtCompString "Copy"
DwtNdefaultPosition Boolean True
DwtNdismissLabel DwtCompString "Dismiss"
DwtNeditLabel DwtCompString "Edit"
DwtNerroropenMessage DwtCompString "Error opening file !CS"
DwtNexitLabel DwtCompString "Exit"
DwtNfileLabel DwtCompString "File"
DwtNfirstTopic DwtCompString NULL
DwtNglossaryLabel DwtCompString "Glossary"
DwtNglossaryTopic DwtCompString NULL
DwtNgobackLabel DwtCompString "Go Back"
DwtNgobacktopicLabel DwtCompString "Go Back"
DwtNgooverLabel DwtCompString "Go To Overview"
DwtNgotoLabel DwtCompString "Go To"
DwtNgototopicLabel DwtCompString "Go To Topic"
DwtNhelpAcknowledgeLabel DwtCompString "Acknowledge"
DwtNhelpFont DwtFontList Language-dependent. The
American English default is
"—*-TERMINAL-
MEDIUM~-R-NARROW-—-*—
140-
—~C~*-TIS08859-1"
DwtNhelpLabel DwtCompString "Using Help"
DwtNhelphelpLabel DwtCompString "Overview"
DwtNhelpOnHelpTitle DwtCompString "Using Help"
DwtNhelpontitleLabel DwtCompString "Help on "
DwtNhelptitleLabel DwtCompString "Help"
DwtNhistoryLabel DwtCompString "History..."
DwtNhistoryboxLabel DwtCompString "Search Topic History"
DwtNkeywordLabel DwtCompString "Keyword..."

Subroutines 3—-151

DwtHelp (3Dwt)

DwtNkeywordsLabel DwtCompString "Keyword "
DwtNlibrarySpec DwtCompString NULL
DwtNlibraryType int DwtTextLibrary
DwtNnokeywordMessage DwtCompString "Couldn’t find keyword !CS"
DwtNnotitleMessage DwtCompString "No title to match string
ICS"
DwtNnulllibMessage DwtCompString "No library specified\n"
DwtNmapCallback DwtCallbackPtr NULL
DwtNoverviewTopic DwtCompString NULL
DwtNrows int Language-dependent. The
American English default is
20.
DwtNsaveasLabel DwtCompString "Save As..."
DwtNsearchapplyLabel DwtCompString "Apply"
DwtNsearchkeywordboxLabel DwtCompString "Search Topic Keywords"
DwtNsearchLabel DwtCompString "Search"
DwtNsearchtitleboxLabel DwtCompString "Search Topic Titles"
DwtNselectallLabel DwtCompString "Select All"
DwtNtitleLabel DwtCompString "Title..."
DwtNtitlesLabel DwtCompString "Title "
DwtNtopictitlesLabel DwtCompString "Topic Titles "
DwtNunmapCallback DwtCallbackPtr NULL
DwtNviewLabel DwtCompString "View"
DwtNvisitglosLabel DwtCompString "Visit Glossary"
DwtNvisitLabel DwtCompString "Visit"
DwtNvisittopicLabel DwtCompString "Visit Topic"
DwtNaboutLabel Specifies the text for one of the pull-down menu
entries displayed when the user clicks on the Help
entry on the menu bar.
DwtNaddtopicLabel
Specifies the text for the label indicating additional
topics for help.
DwtNapplicationName
Specifies the application name to be used in the
widget title bar.
DwtNbadframeMessage
Specifies the text for the message displayed when a
frame could not be found.
DwtNbadlibMessage

Specifies the text for the message displayed when a

3-152 Subroutines

DwtHelp (3Dwt)

requested library could not be found.

DwtNcacheHelpLibrary
Specifies a boolean value that, when True,
indicates that the text is stored in cache memory. If
False, the text is not stored in cache memory.

DwtNcloseLabel Specifies the label for the Exit push button in the
help widget window.

DwtNcols Specifies the width, in characters, of the Help Menu
text window.

DwtNcopyLabel Specifies the text for the copy entry on the pull-down
menu under Edit on the help widget menu bar.

DwtNdefaultPosition
Specifies a boolean value that, when True,
indicates that DwtNx and DwtNy will be ignored
forcing the default. By default the help widget is
positioned so that it does not occlude the parent
widget on the screen.

DwtNdismissLabel
Specifies the text for the push button label used to
dismiss a help widget dialog box (for example,
Search History, Search Title, Search Keyword
boxes).

DwtNeditLabel Specifies the text for the edit entry on the help
window menu bar.

DwtNerroropenMessage
Specifies the text for the error message displayed
when a file cannot be opened.

DwtNexitLabel Specifies the text for the push button or pull-down
menu entry that allows the user to exit from help.

DwtNfileLabel Specifies the text for the file entry on the help
window menu bar.

DwtNfirstTopic Specifies the first help topic to be displayed. If you
pass a NULL string, the help menu w1dget displays a
list of level one topics.

DwtNglossaryLabel
Specifies the text for the glossary entry on the pull-
down menu under Help on a help window menu bar.

Subroutines 3-153

DwtHelp (3Dwt)

DwtNglossaryTopic
Specifies the application glossary topic. If you pass
a NULL string, the Visit Glossary entry does not
appear in the widget’s View pull-down menu.

DwtNgobackLabel Specifies the text for a label used on the pull-down
menu under View. Clicking on this object returns the
user to the previous topic displayed.

DwtNgobacktopicLabel
Specifies the label for the Go Back push button in
the help widget window.

DwtNgooverLabel Specifies the text for a label used on the pull-down
menu under View. Clicking on this label causes the
Overview of Help to appear in the Help window.

DwtNgotoLabel Specifies the text for the label used on a push button
in the help widget’s dialog boxes. Clicking on this
object after selecting a new topic displays help on the
new topic in the same Help window.

DwtNgototopicLabel
Specifies the label for the Go To Topic menu entry
in the View pull-down menu.

DwtNhelpAcknowledgeLabel
' Specifies the label for the Acknowledge push button
in the error message box.

DwtNhelpFont Specifies the font of the text displayed in the help
menu widget.
DwtNhelphelpLabel

Specifies the label for the Overview menu item in the
Using Help pull-down menu.

DwtNhelpLabel Specifies the text for the label on the pull-down
menu under Help.

DwtNhelpOnHelpTitle
Specifies the label for the title bar in the Help-on-
Help help widget.

DwtNhelpontitleLabel
Specifies the label for the help widget title bar used
in conjunction with the application name.

3-154 Subroutines

DwtHelp (3Dwt)

DwtNhelptitleLabel
Specifies the label for the help widget title bar when
no application name is specified.

DwtNhistoryLabel
Specifies the text for the label in the pull-down menu
under Help.

DwtNhistoryboxLabel
Specifies the text for the label used in a history box.

DwtNkeywordLabel
Specifies the text for the label in the pull-down menu
under Help.

DwtNkeywordsLabel
Specifies the text for the label used in a Search Topic
Keyword box to identify the text entry field.

DwtNlibrarySpec Specifies a host system file specification that
identifies the help topic library, for example,
/usr/help/decwhelp on UNIX-based systems.

DwtNlibraryType Specifies the type of help topic library specified by
DwtNlibrarySpec. You can pass
DwtTextLibrary, which is an ULTRIX help
directory.

DwtNmapCallback Specifies the callback function or functions called
when the help widget is about to be mapped.

DwtNnokeywordMessage
Specifies the text for the message displayed when a
requested keyword cannot be found.

DwtNnotitleMessage
Specifies the text for the message displayed when a
requested title cannot be found.

DwtNnulllibMessage
Specifies the text for the message displayed when no
library has been specified.

DwtNoverviewTopic
Specifies the application overview topic.

DwtNrows Specifies the height, in characters, of the Help Menu
text window. ‘

Subroutines 3—155

DwtHelp (3Dwt)

DwtNsaveasLabel Specifies the text for an entry on a pull-down menu
under File on the Help menu bar. Clicking on this
entry allows a user to save the current help text in a
file. A file selection dialog box is displayed.

DwtNsearchapplyLabel
Specifies the text for the push button label used to
initiate a search action in a Search dialog box.

DwtNsearchkeywordboxLabel
Specifies the text for the label used in a Search Topic
Keywords box.

DwtNsearchLabel Specifies the text for an entry on a Help window
menu bar.

DwtNsearchtitleboxLabel
Specifies the text for the title of a Search Topic
Titles box.

DwtNselectallLabel
Specifies the text for an entry on the pull-down menu
under Edit. Clicking on this entry selects all the text
in the work area (text widget only).

DwtNtitleLabel Specifies the text for an entry on the pull-down menu
under Search. Clicking on this entry allows a user to
search for a topic by title.

DwtNtitlesLabel Specifies the text for the label that identifies the text
entry field on the Search Topic Titles box.

DwtNtopictitlesLabel
Specifies the text for the label that identifies the
topics found as a result of a title search in a Search

Topic Titles box.

DwtNviewLabel Specifies the text for the View entry on a help menu
bar.

DwtNvisitglosLabel

Specifies the text for the pull-down menu entry under
View. Clicking on this entry causes the glossary to
be displayed in a new Help window.

3-156 Subroutines

DwtHelp (3Dwt)

DwtNvisitLabel Specifies the text for an entry on a push button in a
help widget’s dialog boxes. Clicking on this object

causes information on a new topic to be displayed in
a new window.

DwtNvisittopicLabel
Specifies the label for the Visit Topic menu entry in
the View pull-down menu.

DwtNunmapCallback
Specifies the callback function or functions called

when the help menu widget window was unmapped.
For this callback, the reason is Dwt CRUnmap.

Return Value
These functions return the ID of the created widget.

Callback Information
The following structure is returned to your callback:

typedef struct (
int reason;

XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRUnmap The help window was unmapped.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C

Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-157

DwtlnitGetSegment (3Dwt)

Name

DwitlInitGetSegment — Returns the initialized context of the compound-string.

Syntax

int DwtInitGetSegment(context, compound_string)
DwtCompStringContext *context;
DwtCompString compound_string;

Arguments

context Specifies a context to be filled by this function. You should
have previously allocated this context.

compound_string
Specifies the compound-string.

Description

The DwtInitGetSegment function returns the initialized context
associated with the compound-string you specified (compound_string). You
must use this returned context in a call to DwtGetNextSegment.

Note that the performance of DwtInitGetSegment (used in conjunction
with DwtGetNextSegment to fetch multiple segments from a
compound-string) has degraded from Version 1.0 of the toolkit.

A new function, DwtStringInitContext, not only provides better
performance, it also creates the context structure that you must allocate
separately when using DwtInitGetSegment. To improve performance,
convert calls from DwtInitGetSegment to
DwtStringInitContext, and use DwtStringFreeContext to free
the context structure when you are finished with it.

Return Value

This function returns one of these status return constants:

DwtSuccess Normal completion.

DwtEndCS The string specified in compound_string is
NULL.

DwtFail The string specified in compound_string is

not a compound-string.

3-158 Subroutines

DwtlnitGetSegment (3Dwt)

See Also

DwtGetNextSegment (3Dwt), DwtStringFreeContext (3Dwt),
DwtStringInitContext (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—159

DwtlnitializeDRM (3Dwt)

Name

DwitlnitializeDRM - Prepares an application to use DRM widget-fetching
facilities.

Syntax
void DwtlnitializeDRM ()

Description

The DwtInitializeDRM function must be called to prepare an
application to use DRM widget-fetching facilities. You must call this
function prior to fetching a widget. However, it is good programming
practice to call DwtInitializeDRM prior to performing any DRM
operations.

DwtInitializeDRM initializes the internal data structures that DRM
needs to successfully perform type conversion on arguments and to
successfully access widget creation facilities. An application must call
DwtInitializeDRM before it uses other DRM functions.
DwtInitializeDRM can be called more than once. All calls after the first
have no effect.

3-160 Subroutines

Name

DwtinquireNextPasteCount (3Dwt)

DwtInquireNextPasteCount — Returns the number of data item formats
available for the next paste item in the clipboard.

Syntax

int DwtInquireNextPasteCount(display, window, count,

max_format_name_length)

Display *display;
Window window;

int *count;

int *max_format_name_length;

Arguments

display

window

count

Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

Specifies the window ID that relates the applicatién window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

Returns the number of data item formats available for the
next-paste item in the clipboard. If no formats are available,
this argument equals zero. The count includes the formats
that were passed by name.

max_format_name_length

Description

Specifies the maximum length of all format names for the
next-paste item in the clipboard.

The DwtInquireNextPasteCount function returns the number of data
item formats available for the next-paste item in the clipboard. This function
also returns the maximum name length for all formats in which the next-paste

item is stored.

Subroutines 3—-161

DwtlnquireNextPasteCount (3Dwt)

Return Value

This function returns one of these status return constants:

ClipboardSuccess
ClipboardLocked

ClipboardNoData

See Also

The function is successful.

The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.
Information could not be obtained from an
application using the ICCCM clipboard
selection mechanism. This return value
indicates that the data was not available in
the requested format.

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-162 Subroutines

Name

DwtinquireNextPasteFormat (3Dwt)

DwtInquireNextPasteFormat — Returns a specified format name for the next-
paste item in the clipboard.

Syntax

int DwtInquireNextPasteFormat(display, window,

number, format_name_buf,
buffer_len, copied_len)

Display *display;
Window window;

int number;

char *format_name_buf;,
unsigned long buffer len;
unsigned long *copied_len;

Arguments

display

window

number

Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

Specifies the number of format names to be obtained. If this
number 7 is greater than the number of formats for the data
item, DwtInquireNextPasteFormat returns a zero in
the copied_len argument.

format_name_buf

buffer_len
copied_len

Specifies the buffer that receives the format name.
Specifies the number of bytes in the format name buffer.

Specifies the number of bytes in the string copied to the
buffer. If this argument equals zero, there is no nth format
for the next-paste item.

Subroutines 3—-163

DwtinquireNextPasteFormat (3Dwt)

Description

The DwtInquireNextPasteFormat function returns a specified format
name for the next-paste item in the clipboard. If the name must be truncated,
the function returns a warning status.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

ClipboardTruncate The data returned is truncated because the
user did not provide a buffer that was large
enough to hold the data.

ClipboardNoData Information could not be obtained from an
application using the ICCCM clipboard
selection mechanism. This return value
indicates that the data was not available in
the requested format.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-164 Subroutines

Name

DwtinquireNextPasteLength (3Dwt)

DwtlnquireNextPasteLength — Returns the length of the data stored under a
specified format name for the next-paste item in the clipboard.

Syntax

int DwtInquireNextPasteLength(display, window,

format_name, length)

Display *display;
Window window;

char *format_name;
unsigned long *length;

Arguments

display

window

format _name

length

Description

Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

Specifies the name of the format for the next-paste item.

Specifies the length of the next data item in the specified
format. This argument equals zero if no data is found for the
specified format, or if there is no item on the clipboard.

The DwtInquireNextPasteLength function returns the length of the
data stored under a specified format name for the next paste clipboard data

item.

If no data is found for the specified format, or if there is no item on the
clipboard, Dwt InquireNextPasteLength returns a value of zero.

NOTE

Any format passed by name is assumed to have the length passed
inacall to DwtCopyToClipboard, even though the data has
not yet been transferred to the clipboard in that format.

Subroutines 3—-165

DwtinquireNextPastelLength (3Dwt)

Return Value

This function returns one of these status return constants:

ClipboardSuccess
ClipboardLocked

ClipboardNoData

See Also

The function is successful.

The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.
Information could not be obtained from an
application using the ICCCM clipboard
selection mechanism. This return value
indicates that the data was not available in
the requested format.

DwtCopyToClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-166 Subroutines

Name

DwtLabel (3Dwt)

DwtLabel, DwtLabelCreate — Creates a label widget for the application to
display identification information (label) on the screen.

Syntax

Widget DwtLabel(parent_widget, name, x, y, label, help_callback)
Widget parent widget;
char * name;
Position x, y;
DwtCompString label;
DwtCallbackPtr kelp_callback;

Widget DwtLabelCreate (parent_widget, name,

override_arglist, override_argcount)

Widget parent widget;
char *name;

ArgList override_arglist;
int override_argcount,

Arguments

parent_widget Specifies the parent widget ID.

name

X

label

help_callback

Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the label for the text style. This argument sets the
DwtNlabel attribute associated with DwtLabelCreate.

Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

override_arglist

Specifies the application override argument list.

Subroutines 3—~167

DwtLabel (3Dwt)

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtLabel and DwtLabelCreate functions create an instance of a
label widget and return its associated widget ID. When calling DwtLabel,
you set the label widget attributes presented in the formal parameter list. For
DwtLabelCreate, however, you specify a list of attribute name/value
pairs that represent all the possible label widget attributes.

The application uses the label widget to display read only information (label)
anywhere within the parent widget window. It has no standard callback other
than DwtNhelpCallback.

Because a label widget does not support children, it always refuses geometry
requests. The label widget does nothing on a resize by its parents.

Inherited Attributes

Attribute Name Data Type Defauit

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension The width of the label or
pixmap, plus two times
DwtNmarginWidth

DwtNheight Dimension The height of the label or
pixmap, plus two times
DwtNmarginHeight

DwtNborderWidth Dimension zero pixels

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

3-168 Subroutines

DwtLabel (3Dwt)

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes
DwtNaccelerators XtTranslations NULL
DwtNdepth int Depth of the parent window
DwtNtranslations XtTranslations NULL
DwtNmappedWhenManaged Boolean True
DwtNscreen Screen * The parent screen
DwtNdestroyCallback DwtCallbackPtr NULL
Common Attributes
DwtNforeground Pixel Default foreground color
DwtNhighlight Pixel Default foreground color
DwtNhighlightPixmap Pixmap NULL
DwtNuserData Opagque * NULL
DwtNdirectionRToL unsigned char DwtDirectionRightDown
DwtNfont DwtFontList The default XUI Toolkit font
DwtNhelpCallback DwtCallbackPtr NULL
Widget-Specific Attributes
Attribute Name Data Type Default
DwtNlabelType unsigned char DwtCString
DwtNlabel DwtCompString Widget name
DwtNmarginWidth Dimension Two pixels for text
Zero pixels for pixmap
DwtNmarginHeight Dimension Two pixels for text
Zero pixels for pixmap
DwtNalignment unsigned char DwtAlignmentCenter
DwtNpixmap Pixmap NULL
DwtNmarginLeft Dimension Zero
DwtNmarginRight Dimension Zero
DwtNmarginTop Dimension Zero
DwtNmarginBottom Dimension Zero
DwtNconformToText Boolean True, if the widget is

created with a width and
height of zero

Subroutines 3-169

DwtLabel (3Dwt)

False, if the widget is
created with a non-zero
width and height

DwtNlabelType

DwtNlabel
DwtNmarginWidth

DwtNmarginHeight

DwtNalignment

DwtNpixmap

DwtNmarginLeft

DwtNmarginRight

DwtNmarginTop

DwtNmarginBottom

Specifies the label type. You can pass
DwtCString (compound string) or DwtPixmap
(icon data in pixmap).

Specifies the label for the text style.

Specifies the number of pixels between the border of
the widget window and the label.

Specifies the number of pixels between the border of
the widget window and the label.

Specifies the label alignment for text style. You can
pass DwtAlignmentCenter (center alignment),
DwtAlignmentBeginning (alignment at the
beginning), or DwtAlignmentEnd (alignment at
the end).

Supplies icon data for the label. Pixmap is used
when DwtNlabelType is defined as
DwtNpixmap.

Specifies the number of pixels that are to remain
inside the left margin (DwtNmarginWidth) of the
widget before the label is drawn.

Specifies the number of pixels that are to remain
inside the right margin (DwtNmarginWidth) of
the widget before the label is drawn.

Specifies the number of pixels that are to remain
inside the top margin (DwtNmarginTop) of the
widget before the label is drawn.

Specifies the number of pixels that are to remain
inside the bottom margin (DwtNmarginTop) of the
widget before the label is drawn.

DwtNconformToText

3-170 Subroutines

Specifies a boolean value that indicates whether or
not the widget always attempts to be just big enough
to contain the label. If True, an XtSetValues

DwtLabel (3Dwt)

with a new label string causes the widget to attempt
to shrink or expand to fit exactly (accounting for
margins) the new label string. Note that the results

of the attempted resize are up to the geometry
manager involved. If False, the widget never
attempts to change size on its own.

Return Value
These functions return the ID of the created widget.

Callback Information
The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:
DwtCRHelpRequested The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of

the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C

Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—171

DwtLabelGadgetCreate (3Dwt)

Name
DwtLabelGadgetCreate — Creates a label gadget.

Syntax

Widget DwtLabelGadgetCreate (parent_widget, name,
override_arglist, override_argcount)
Widget parent_widget;
char *name;
ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

override_arglist
Specifies the application override argument list.

override_argcount

Specifies the number of attributes in the application override

argument list (override_arglist).

Description

The DwtLabelGadgetCreate function creates an instance of the label
gadget and returns its associated gadget ID. A label gadget is similar in
appearance and semantics to a label widget. Like all gadgets, the label
gadget does not have a window but uses the window of the closest antecedent
widget. Thus, the antecedent widget provides all event dispatching for the
gadget. This currently restricts gadgets to being descendents of menu or
dialog class (or subclass) widgets. Drawing information such as font and
color are also those of the closest antecedent widget.

Inherited Attributes

Attribute Name Data Type Default

Rectangle Attributes

DwtNx Position Determined by the geometry
manager

3-172 Subroutines

DwtLabelGadgetCreate (3Dwt)

DwtNy Position
DwtNwidth Dimension
DwtNheight Dimension
DwtNborderWidth Dimension
DwtNsensitive Boolean

DwtNancestorSensitive Boolean

Determined by the geometry
manager

The width of the label plus
margins

The height of the label plus
margins

zero pixels

True

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

Widget-Specific Attributes

Attribute Name Data Type Defaulit

DwtNlabel DwtCompString Widget name
DwtNalignment unsigned char DwtAlignmentCenter
DwtNdirectionRToL Boolean False
DwtNhelpCallback DwtCallbackPtr NULL

DwtNlabel Specifies the label for the text style.

DwtNalignment Specifies the label alignment for text style. You can
pass DwtAlignmentCenter (center alignment),
DwtAlignmentBeginning (alignment at the
beginning), or DwtAlignmentEnd (alignment at

the end).
DwtNdirectionRToL

Specifies a boolean value that, when False,
indicates that the text is drawn from left to right. If
True, the text is drawn from right to left.

DwtNhelpCallback

Specifies the callback function or functions called
when a help request is made.

Return Value

This function returns the ID of the created widget.

Subroutines 3—173

DwtLabelGadgetCreate (3Dwt)

Callback Information
The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:
DwtCRHelpRequested The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-174 Subroutines

DwtLatin1String (3Dwt)

Name

DwtLatin1String — Creates a compound-string for the LATIN1 character set.

Syntax
DwtCompString DwtLatin1String (fext)
char *rext;

Arguments

text Specifies the text string to be converted to a compound-
string.
Description

The DwtLatinlString function creates a compound-string and is
provided for those application programmers who do not need to mix
compound-strings containing different character sets and directions.
DwtLatinlString assumes the character encoding of the text to be
ISO_LATIN1 and the writing direction to be from left to right.

Return Value

This function returns the resulting compound-string. It has the following
default values:

. For charset the default is CDASK_ISO_ LATINI.

. For direction_r_to [the default is False (text is drawn from left to
right).

. For language the default is DwtLanguageNotSpecified.
° For rend the default is DwtRendMaskNone.

See Also

DwtCSString (3Dwt), DwtString (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-175

DwtListBox (3Dwt)

Name

DwtListBox, DwtListBoxCreate — Creates a list box widget for the
application to display large numbers of item choices or entries in a list

format.

Syntax

Widget DwtListBox (parent_widget, name, x, y,

items, item_count, visible_items _count,
callback, help _callback, resize, horiz)

Widget parent_widget;

char *name;

Position x, y;

DwtCompString *items;

int item_count, visible_items _count;
DwtCallbackPtr callback, help callback;
Boolean resize;

Boolean horiz;

Widget DwtListBoxCreate (parent_widget, name,

override_arglist, override_argcount)

Widget parent_widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.

name

X

items

3-176 Subroutines

Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the list of items to be displayed by the list box
widget. The list of items must be unique. This argument

item_count

DwiListBox (3Dwt)

sets the DwtNitems attribute associated with
DwtListBoxCreate.

Specifies the total number of items in the list. This argument
sets the DwtNitemsCount associated with
DwtListBoxCreate.

visible_items_count

callback

help_callback

resize

horiz

Specifies the maximum number of visible items contained in
the list box. For example, if DwtNitemsCount is 20, but
DwtNvisibleItemsCount is 5, only 5 items are visible
at any one time. This argument sets the
DwtNvisibleItemsCount attribute associated with
DwtListBoxCreate.

Specifies the callback function or functions called when
single callback, single confirm callback, extend callback, and
extend confirm callback functions are activated. This
argument sets the DwtNsingleCallback,
DwtNsingleConfirmCallback,
DwtNextendCallback, and
DwtNextendConfirmCallback attributes associated
with DwtListBoxCreate.

Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

Specifies a boolean value that, when True, indicates the list
box increases its width to accommodate items too wide to fit
inside the box. If False, the width remains constant unless
the caller changes the width by calling XtSetValues. If
you set DwtNresize to False, it is recommended that
you set DwtNhorizontal to True. This argument sets
the DwtNresize attribute associated with
DwtListBoxCreate.

Specifies a boolean value that, when True, indicates the list
box contains a horizontal scroll bar. If False, the list box
does not contain a horizontal scroll bar. A horizontal scroll
bar cannot be deleted or added to a list box after the list box
is created. This argument sets the
DwtNscrollHorizontal attribute associated with
DwtListBoxCreate.

Subroutines 3-177

DwtListBox (3Dwt)

override_arglist

Specifies the application override argument list.

override_argcount

Specifies the number of attributes in the application override

argument list (override_arglist).

Description

The DwtListBox and DwtListBoxCreate functions create an instance
of a list box widget and return its associated widget ID. The list box widget
is a composite widget that consists of a list box, a menu with gadgets, and

scroll bars.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Set as large as necessary (0
hold the longest item without
exceeding the size of its
parent

DwtNheight Dimension Set as large as necessary to
hold the number of items
specified by
DwtNvisibleItemsCount,
without exceeding the size of
the parent widget

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

3-178 Subroutines

DwitListBox (3Dwt)

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes
DwtNaccelerators XtTranslations NULL
DwtNdepth int Depth of the parent window
DwtNtranslations XtTranslations NULL
DwtNmappedWhenManaged Boolean True
DwtNscreen Screen * The parent screen
DwtNdestroyCallback DwtCallbackPtr NULL
Common Attributes
DwtNforeground Pixel Default foreground color
DwtNhighlight Pixel Default foreground color
DwtNhighlightPixmap Pixmap NULL
DwtNuserData Opague * NULL
DwtNdirectionRToL unsigned char DwtDirectionRightDown
DwtNfont NOT SUPPORTED
DwtNhelpCallback NOT SUPPORTED
Scroll Window Attributes
DwtNhorizontalScrollBar Widget NULL
DwtNverticalScrollBar Widget NULL
DwtNworkWindow Widget NULL
DwtNshownValueAutomaticHoriz Boolean True
DwtNshownValueAutomaticVert Boolean False
Widget-Specific Attributes
Attribute Name Data Type Default
DwtNmarginWidth Dimension 10 pixels
DwtNmarginHeight Dimension 4 pixels
DwtNspacing Dimension 1 pixel
DwtNitems DwtCompString * NULL
DwtNitemsCount int Zero
DwtNselectedItems DwtCompString * NULL
DwtNselectedItemsCount int Zero

Subroutines 3-179

DwtListBox (3Dwt)

DwtNvisibleItemsCount int As many items as can fit in
the core attribute
DwtNheight. The
minimum is 1.

DwtNsingleSelection Boolean True
DwtNresize Boolean . True
DwtNhorizontal Boolean False
DwtNsingleCallback DwtCallbackPtr NULL
DwtNsingleConfirmCallback DwtCallbackPtr NULL
DwtNextendCallback DwtCallbackPtr NULL

DwtNextendConfirmCallback DwtCallbackPtr NULL

DwtNmarginWidth Specifies the number of pixels between the border of
the widget window and the items. This attribute sets
the list box menu margin width.

DwtNmarginHeight
Specifies the number of pixels between characters of
each pair of consecutive items. This attribute sets
the list box menu margin height.

DwtNspacing Specifies in pixels the spacing between list box
entries.
DwtNitems Specifies the list of items to be displayed by the list

box widget. The list of items must be unique. When
modifying DwtNitems, always update
DwtNitemsCount and
DwtNselectedItemsCount. When
DwtNitems is NULL, DwtNitemsCount and
DwtNselectedItemsCount must be zero.

DwtNitemsCount Specifies the total number of items in the list. When
DwtNitemsCount is zero, DwtNitems does not
have to be NULL. The list box widget uses
DwtNitemsCount and
DwtNselectedItemsCount, not DwtNitems,
to determine if the list contains any items.
Therefore, you must specify DwtNitemsCount
whenever you modify DwtNitems.

DwtNselectedItems
Specifies the list of items that are selected in the list
box. The last selected item is visible in the list box.

DwtNselectedItemsCount

3-180 Subroutines

DwiListBox (3Dwt)

Specifies the number of items selected in the list box.
When DwtNselectedItemsCount is zero,
DwtNselectedItems does not have to be NULL.
The list box uses DwtNselectedItemsCount
not DwtNselectedItems to determine if the list
contains any selected items. Therefore, you must
specify DwtNselectedItemsCount whenever
you modify DwtNselectedItems.

DwtNvisibleItemsCount

Specifies the maximum number of visible items
contained in the list box. For example, if
DwtNitemsCount is 20, but
DwtNvisibleItemsCount is 5, only 5 items are
visible at any one time.

The list box widget is designed so that its height is
based on DwtNvisibleItemsCount. Therefore,
it is preferable to control the list box height by using
DwtNvisibleItemsCount rather than
DwtNheight.

Applications that control list box height through the
core attribute DwtNheight are responsible for
handling font changes.

DwtNsingleSelection

DwtNresize

DwtNhorizontal

Specifies a boolean value that, when True,
indicates only one item can be selected at a time.

Specifies a boolean value that, when True,
indicates the list box increases its width to
accommodate items too wide to fit inside the box. If
False, the width remains constant unless the caller
changes the width by calling XtSetValues. If
you set DwtNresize to False,itis
recommended that you set DwtNhorizontal to
True.

Specifies a boolean value that, when True,
indicates the list box contains a horizontal scroll bar.
If False, the list box does not contain a horizontal
scroll bar. A horizontal scroll bar cannot be deleted
or added to a list box after the list box is created.

DwtNsingleCallback

Subroutines 3—181

DwtListBox (3Dwt)

Specifies the callback function or functions called
when the user selects a single item by clicking MB1
on a single item. For this callback, the reason is
DwtCRSingle.

3-182 Subroutines

DwtListBox (3Dwt)

DwtNsingleConfirmCallback

Specifies the callback function or functions called
when the user double clicked MB1 on an item. For
this callback, the reason is
DwtCRSingleConfirm.

DwtNextendCallback

Specifies the callback function or functions called
when the user single clicks MB1 while depressing
the Shift key when more than one item is selected
(multiple selection callback). See the
DwtNsingleSelection attribute. For this
callback, the reason is DwtCRExtend.

DwtNextendConfirmCallback

Return Value

Specifies the callback function or functions called
when the user double clicks MB1 while depressing
the Shift key when more than one item is selected
(multiple selection callback). See the
DwtNsingleSelection attribute. For this
callback, the reason is DwtCRExtend.

These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {

int reason;

XEvent *event;
DwtCompString item;
int item_ length;
int item number;

} DwtListBoxCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRSingle

The user selected a single item in the list by
clicking MB1 on the item.

Subroutines 3—-183

DwtListBox (3Dwt)

DwtCRSingleConfirm The user selected a single item in the list
and confirmed another action to be taken
(by a callback) by double clicking on an
item. For example, a double click on a file
in the file selection box selects that file and
confirms another action to be taken.

DwtCRExtend The user selected an item (by clicking MB1
on a single item while depressing the shift
key) while there is at least one other
selected item. The user clicked MB1 once
while pressing the Shift key on an item
when more than one is selected (multiple
selection callback).

DwtCRExtendConfirm The user selected an item and confirmed
another action to be taken (by double
clicking MB1 on a single item while
depressing the Shift key) while there is at
least one other selected item. This reason
applies only if DwtNsingleSelection
is True.

DwtCRHelpRequested The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

The item member is set to the last item selected when the callback occurred.
Note that only the last item, not all selected items, is returned. The
item_length member is set to the selected item’s length when the callback
occurred. The item_number member is set to the item’s position in the list
box when the callback occurred. The first position is one, not zero.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-184 Subroutines

DwtListBoxAdditem (3Dwt)

Name
DwtListBoxAddItem — Adds an item to the list within a list box widget.

Syntax
void DwtListBoxAddlItem(widget, item, position)
Widget widget;
DwtCompString item;
int position;

Arguments
widget Specifies the ID of the list box widget from whose list you
want to add an item.

item Specifies the text of the item to be added to the list box.

position Specifies the placement of the item within the list in terms of
its cell position. It uses an insert mode/cell number scheme
with a 1 specifying the topmost entry position and a 0
specifying the bottom entry for adding an item to the bottom
of the list.

Description
The DwtListBoxAddItem function adds an item to a list within the list
box widget.

See Also

DwtListBoxDeleteltem (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—185

DwtListBoxDeleteltem (3Dwt)

Name
DwiListBoxDeleteltem — Deletes an item from the list within a list box
widget.
Syntax
void DwtListBoxDeleteltem(widget, item)
Widget widget;
DwtCompString item;
Arguments
widget Specifies the ID of the list box widget from whose list you
want to delete an item.
item Specifies the text of the item to be deleted from the list box.
Description

The DwtListBoxDeleteItem function deletes an item from a list within
the list box widget. The function searches the list for the item, removes it,
and moves any subsequent entrics up one cell position throughout the
remaining list.

See Also

DwiListBoxAddItem (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-186 Subroutines

DwtListBoxDeletePos (3Dwt)

Name

DwtListBoxDeletePos — Deletes an item identified by its position from the
list within a list box widget.

Syntax
void DwtListBoxDeletePos(widget, position)
Widget widget;
int position;
Arguments
widget Specifies the ID of the list box widget from whose list you
want to delete an item identified by its position.
position Specifies the position of the item to be deleted from the list.
Description

The DwtListBoxDeletePos function deletes an item from a list within
the list box widget. The item to be deleted is identified by its position in the
list. The function searches the list for the specified position, removes the
item in that position, and moves any subsequent entries up one cell position
throughout the remaining list.

See Also

DwtListBoxDeleteltem (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—187

DwtListBoxDeselectAllltems (3Dwt)

Name

DwtListBoxDeselectAllltems — Deselects all of the previously selected items
in a list box.

Syntax
void DwtListBoxDeselectAllltems(widget)
Widget widget;
Arguments

widget Specifies the ID of the list box widget from whose list you
. want to delete all previously selected items.

Description

The DwtListBoxDeselectAllItems function deselects (removes
highlighting) all items previously selected, and removes them from the list of
selected items.

See Also

DwtListBoxDeselectltem (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-188 Subroutines

DwtListBoxDeselectltem (3Dwt)

Name
DwtListBoxDeselectltem — Deselects a previously selected item in a list box.

Syntax

void DwtListBoxDeselectltem(widget, item)
Widget widget;
DwtCompString item;

Arguments
widget Specifies the ID of the list box widget from whose list you

want to delete a single previously selected item.

item Specifies the item in the list box to be deselected
(highlighting removed).

Description

The DwtListBoxDeselectItem function deselects (removes
highlighting) an item previously selected, and removes it from the list of
selected items.

See Also

DwtListBoxDeselectAllltems (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-189

DwiListBoxDeselectPos (3Dwt)

Name
DwtListBoxDeselectPos — Deselects an item identified by its position in the
list box.
Syntax
void DwtListBoxDeselectPos(widget, position)
Widget widget;
int position;
Arguments
widget Specifies the ID of the list box widget from whose list you
want to deselect an item.
position Specifies an integer that identifies the position of the item to
be deselected in the list box.
Description

The DwtListBoxDeselectPos function deselects an item (removes
highlighting) based on its position in a list box and removes the item from
the selected list.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-190 Subroutines

DwtListBoxItemEXxists (3Dwt)

Name

DwtListBoxItemExists — Verifies the existence of a particular item in a list
box.

Syntax

int DwtListBoxItemExists (widget, item)
Widget widget;
DwtCompString item;

Arguments
widget Specifies the ID of the list box widget from whose list you
want to verify the existence of a specified item.

item Specifies the item in the list box that is being searched for.

Description

The DwtListBoxItemExists function searches through a list box to
determine if an item exists. If the specified item is found,
DwtListBoxItemExists returns an integer that gives the position of the
item in the list box. If the item is not found, DwtListBoxItemExists
returns a zero.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—191

DwtListBoxSelectltem (3Dwt)

Name

DwtListBoxSelectItem — Selects an item in the list box.

Syntax

void DwtListBoxSelectltem (widget, item, notify)
Widget widget;
DwtCompString item;
Boolean notify;

Arguments

widget

item

notify

Description

Specifies the ID of the list box widget from whose list you
want to select an item.

Specifies the text of the item to be added to the list box.

Specifies a boolean value that, when True, indicates use of
this widget results in a callback to the application.

The DwtListBoxSelectItem function selects an item in a list box, adds
it to a selected item list, and calls back to the application if notify is True.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-192 Subroutines

DwtListBoxSelectPos (3Dwt)

Name
DwtListBoxSelectPos — Selects an item identified by its position in the list
box.
Syntax
void DwtListBoxSelectPos(widget, position, notify)
Widget widget;
int position;
Boolean notify;
Arguments
widget Specifies the ID of the list box widget from whose list you
want to select an item.
position Specifies an integer that identifies the position of the item to
be selected in the list box.
notify Specifies a boolean value that, when True, indicates use of
this widget results in a callback to the application.
Description

The DwtListBoxSelectPos function selects an item in a list box based
on its position in the list, adds it to a selected item list, and calls back to the
application, if notify is True.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-193

DwtListBoxSetHorizPos (3Dwt)

Name
DwtListBoxSetHorizPos — Sets the horizontal position to a specified position.

Syntax

void DwtListBoxSetHorizPos(widget, position)
Widget widget;
int position;

Arguments
widget Specifies the ID of the list box widget whose horizontal

scroll bar position you want to set.

position Specifies the position of the horizontal scroll bar in the list
box widget.

Description

The DwtListBoxSetHorizPos function is used only if the list box has
a horizontal scroll bar and the list box contains items too wide to be visible
within the current list box width.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-194 Subroutines

DwtListBoxSetltem (3Dwt)

Name

DwtListBoxSetltem — Makes a specified item (if it exists) the first visible
item in a list box, or as close to the top as possible. The item always
becomes visible.

Syntax
void DwtListBoxSetltem (widget, item)
Widget widget;
DwtCompString item;
Arguments
widget Specifies the widget ID.
item Specifies the item to be made the first item in the list box.
Description

The DwtListBoxSetItem function makes the specified item (if it exists)
the first visible item 1n a list box. The function determines which item in the
list box is displayed at the top of the list box, the choice of which is limited
by the DwtNitemsCount and DwtNvisibleItemsCount attributes to °
the list box widget. When DwtNvisibleItemsCount is greater than 1
and less than DwtNitemsCount, the list box widget fills the list box with
the maximum visible items regardless of the position value.

For example, if DwtNitemsCount is 10 and
DwtNvisibleItemsCount is 5, you cannot make item 8 display at the
top of the list box. Instead, items 6 through 10 would be displayed. Setting
item to the fourth item in the list would make items 4 through 8 display. If
DwtNvisibleItemsCount is 1, you can make any item in the list be
displayed at the top of the list box.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—195

DwtListBoxSetPos (3Dwt)

Name

DwtListBoxSetPos — Makes a specified position (item number in the list) the
top visible position in a list box, or as close to the top as possible.

Syntax
void DwtListBoxSetPos (widget, position)
Widget widget;
int position;
Arguments
widget Specifies the ID of the list box widget whose specified item
number in the list you want displayed in the top position.
position Specifies the item number in the list displayed in the top
position in the list box.
Description

The DwtListBoxSetPos function makes the specified position (the item
number in the list) the top visible position in a list box. The function
determines which item in the list box is displayed at the top of the list box,
the choice of which is limited by the DwtNitemsCount and
DwtNvisibleItemsCount attributes to the list box widget. When
DwtNvisibleItemsCount is greater than 1 and less than
DwtNitemsCount, the list box widget fills the list box with the maximum
visible items regardless of the position value.

For example, if DwtNitemsCount is 10 and
DwtNvisibleItemsCount is 5, you cannot make item 8 be displayed at
the top of the list box. Instead, items 6 through 10 would be displayed.
Setting position to 4 would make items 4 through 8 be displayed. If
DwtNvisibleItemsCount is 1, you can make any item in the list be
displayed at the top of the list box.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-196 Subroutines

Name

DwtListPendingitems (3Dwt)

DwtListPendingltems — Returns a list of data ID/private ID pairs for a
specified format name.

Syntax

int DwtListPendingltems (display, window, format_name,

item_list, count)

Display *display;

Window window;

char *format_name;
DwtClipboardPendingList *item_list;
unsigned long * count;

Arguments

display

window

format_name

item_list

item_count

Description

Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

Specifies a string that contains the name of the format for
which the list of data ID/private ID pairs is to be obtained.

Specifies the address of the array of data ID/private ID pairs
for the specified format name. This argument is a type
DwtClipboardPendingList. The application is
responsible for freeing the memory provided by this function
for storing the list.

Specifies the number of items returned in the list. If there is
no data for the specified format name, or if there is no item
on the clipboard, this argument equals zero.

The DwtListPendingItems function returns a list of data ID/private ID
pairs for a specified format name. For the purposes of this function, a data
item is considered pending if the application originally passed it by name, the

Subroutines 3—-197

DwtListPendingltems (3Dwt)

application has not yet copied the data, and the item has not been deleted
from the clipboard.

The application is responsible for freeing the memory provided by this
function to store the list.

This function is used by an application when exiting to determine if the data
that it passed by name should be sent to the clipboard.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3—198 Subroutines

Name

DwtMainSetAreas (3Dwt)

DwtMainSetAreas — Sets up or adds the menu bar, command window, work
window, and scroll bar widgets to the main window widget of the

application.

Syntax

void DwtMainSetAreas(widget, menu_bar, work_window,

command_window, horizontal_scroll_bar,
vertical_scroll_bar)

Widget widget;

Widget menu_bar;

Widget work_window, command_window;

Widget horizontal_scroll_bar, vertical_scroll_bar;

Arguments

widget

menu_bar

work_window

Specifies the main window widget ID.

Specifies the widget ID for the menu bar to be associated
with the main window widget. You can set this ID only after
creating an instance of the main window widget. The
attribute name associated with this argument is
DwtNmenuBar.

Specifies the widget ID for the work window to be associated
with the main window widget. You can set this ID only after
creating an instance of the main window widget. The
attribute name associated with this argument is
DwtNworkWindow.

command_window

Specifies the widget ID for the command window to be
associated with the main window widget. You can set this
ID only after creating an instance of the main window
widget. The attribute name associated with this argument is
DwtNcommandWindow.

horizontal_scroll_bar

Specifies the scroll bar widget ID for the horizontal scroll bar

- to be associated with the main window widget. You can set

this ID only after creating an instance of the main window
widget. The attribute name associated with this argument is
DwtNhorizontalScrollBar.

Subroutines 3—199

DwtMainSetAreas (3Dwt)

vertical_scroll_bar
Specifies the scroll bar widget ID for the vertical scroll bar to
be associated with the main window widget. You can set
this ID only after creating an instance of the main window
widget. The attribute name associated with this argument is
DwtNverticalScrollBar.

Description

The DwtMainSetAreas function sets up or adds the menu bar, work
window, command window, and scroll bar widgets to the application’s main
window widget. You must set these areas up before the main window widget
is realized, that is, before calling the X intrinsics function
XtRealizeWidget.

Each area is optional; therefore, you can pass NULL to one or more of these
arguments. The title bar is provided by the window manager.
See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-200 Subroutines

Name

DwtMainWindow (3Dwt)

DwtMainWindow, DwtMainWindowCreate — Creates the main window

widget.

Syntax

Widget DwtMainWindow (parent_widget, name, x, y, width, height)
Widget parent_widget;
char *name;
Position x, y;
Dimension width, height,

Widget DwtMainWindowCreate (parent_widget, name,

override_arglist, override_argcount)

Widget parent_widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID. For some applications, the

name

width

height

parent widget ID for the main window widget is the ID
returned by XtInitialize. However, the main window
widget is not restricted to this type of parent.

Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies in pixels the width of the widget window. This
argument sets the DwtNwidth core widget attribute.

Specifies in pixels the height of the widget window. This
argument sets the DwtNheight core widget attribute.

override_arglist

Specifies the application override argument list.

Subroutines 3—201

DwtMainWindow (3Dwt)

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtMainWindow and DwtMainWindowCreate functions create an
instance of the main window widget and return its associated widget ID.
When calling DwtMainWindow, you set the main window widget attributes
presented in the formal parameter list. For DwtMainWindowCreate,
however, you specify a list of attribute name/value pairs that represent all the
possible attributes of the main window widget.

The main window widget can contain a menu bar region, a work area with
optional scroll bars, and a command area.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension 5 pixels

DwtNheight Dimension 5 pixels

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

DwtNaccelerators XtTranslations NULL

DwtNdepth int Depth of the parent window

DwtNtranslations XtTranslations NULL

DwtNmappedWhenManaged Boolean True

3-202 Subroutines

DwtNscreen
DwtNdestroyCallback

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

DwtMainWindow (3Dwt)

Screen * The parent screen
DwtCallbackPtr NULL

Pixel Default foreground color

NOT SUPPORTED

NOT SUPPORTED

Opaque * NULL

unsigned char DwtDirectionRightDown
NOT SUPPORTED

DwtCallbackPtr NULL

Widget-Specific Attributes

Attribute Name Data Type Default
DwtNcommandWindow Widget NULL
DwtNworkWindow Widget NULL
DwtNmenuBar Widget NULL
DwtNhorizontalScrollBar Widget NULL
DwtNverticalScrollBar Widget NULL
DwtNacceptFocus Boolean False
DwtNfocusCallback DwtCallbackPtr NULL

DwtNcommandWindow

DwtNworkWindow

DwtNmenuBar

Specifies the widget ID for the command window to
be associated with the main window widget. You
can set this ID only after creating an instance of the
main window widget.

Specifies the widget ID for the work window to be
associated with the main window widget. You can
set this ID only after creating an instance of the main
window widget.

Specifies the widget ID for the menu bar to be
associated with the main window widget. You can
set this ID only after creating an instance of the main
window widget.

DwtNhorizontalScrollBar

Specifies the scroll bar widget ID for the horizontal
scroll bar in the main window widget. You can set

Subroutines 3-203

DwtMainWindow (3Dwt)

this ID only after creating an instance of the main
window widget.

DwtNverticalScrollBar
Specifies the scroll bar widget ID for the vertical
scroll bar in the main window widget. You can set
this ID only after creating an instance of the main
window widget.

DwtNacceptFocus Specifies a boolean value that, when False,
indicates that the main window widget does not
accept the input focus. When the main window
widget is asked to accept the input focus, it attempts
to give the input focus first to DwtNworkWindow
and then to DwtNcommandWindow. If neither
accepts the input focus and DwtNacceptFocus is
True, the main window widget accepts the input
focus.

DwtNfocusCallback
Specifies the callback function or functions called
when the main window has accepted the input focus.
For this callback, the reason is DwtCRFocus.

Return Value
These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRFocus The main window widget has received the
input focus.

DwtCRHelpRequested The user selected help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on

3-204 Subroutines

DwtMainWindow (3Dwt)

XEvent and event processing, see the Guide to the XIib Library: C
Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-205

DwtMenu (3Dwt)

Name

DwtMenu, DwtMenuCreate, DwtMenuPulldownCreate,
DwtMenuPopupCreate — Creates a menu widget to contain other menu items
(subwidgets) for the display of application menus.

Creates a pull-down (pop-up) menu.
Creates a pop-up menu (MB2 only).

Syntax

Widget DwtMenu(parent_widget, name, x, y, format,
orientation, entry_callback, map_callback,
help_callback)

Widget parent_widget;

char *name;

Position x, y;

int format;

unsigned char orientation;
DwtCallbackPtr entry callback;
DwtCallbackPtr map_callback;
DwtCallbackPtr help callback;

Widget DwtMenuCreate (parent_widget, name,
override_arglist, override_argcount)
Widget parent_widget;
char *name;
ArgList override_arglist;
int override_argcount;

Widget DwtMenuPulldownCreate (parent_widget, name,
override_arglist,
override_argcount)

Widget parent_widget;
char *name;

ArgList override_arglist,
int override_argcount;

Widget DwtMenuPopupCreate (parent_widget, name,
override_arglist, override_argcount)
Widget parent widget;
char *name;
ArglList override_arglist;
int override_argcount;

3-206 Subroutines

Arguments

parent_widget
name

X

format

orientation

entry_callback

map_callback

help_callback

DwtMenu (3Dwt)

Specifies the parent widget ID.
Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the type of menu widget. You can pass
DwtMenuPopup, DwtMenuPulldown, or
DwtMenuWorkArea.

Specifies whether the menu list is vertical or horizontal. You
can pass DwtOrientationHorizontal or
DwtOrientationVertical. This argument sets the
DwtNorientation attribute associated with
DwtMenuCreate.

If this callback is defined, all menu entry activation callbacks
are revectored to call back through this callback. If this
callback is NULL, the individual menu entry callbacks work
as usual. For this callback, the reason is

DwtCRActivate. This argument sets the
DwtNentryCallback attribute associated with
DwtMenuCreate.

Specifies the callback function or functions called when the
window is about to be mapped. For this callback, the reason
is DwtCRMap. The map_callback argument is supported
only if format is DwtMenuPopup or
DwtMenuPulldown. The map_callback argument is
ignored if format is DwtMenuWorkArea.

This argument sets the DwtNmapCallback attribute
associated with DwtMenuCreate.

Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

Subroutines 3—-207

DwtMenu (3Dwt)

override_arglist
Specifies the application override argument list.
override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtMenu and DwtMenuCreate functions create an instance of a
menu widget and return its associated widget ID. The
DwtMenuPulldownCreate function creates an instance of a pull-down
menu widget and returns its associated widget ID. The
DwtMenuPopupCreate function creates an instance of a pop-up menu
widget and returns its associated widget ID. A menu is a composite widget
that contains other widgets (push buttons, pull-down menus, toggle buttons,
labels, and separators). The subwidgets handle most I/O that display
information and query the user for input. The menu widget provides no
input semantics over and above the semantics of its subwidgets. The menu
widget works with these widget subclasses: push buttons, toggle buttons,
pull-down menu entries, labels, and separators. If DwtNentryCallback
is non-NULL when activated, all subwidgets call back to this callback.
Otherwise, the individual subwidgets handle the activated callbacks.

Inherited Attributes
The following table lists the attributes inherited by the menu widget.

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension If menu orientation is

DwtOrientationVertical,
default is the maximum entry
DwtNwidth or 16 pixels.

If menu orientation is
DwtOrientationHorizontal,
default is the sum of

DwtNwidth and

DwtNspacing or 16 pixels.

3-208 Subroutines

DwtNheight

DwtNborderWidth
DwtNborder
DwtNborderPixmap
DwtNbackground
DwtNbackgroundPixmap
DwtNcolormap
DwtNsensitive

DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Dimension

Dimension
Pixel
Pixmap
Pixel
Pixmap
Colormap
Boolean

Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

DwtMenu (3Dwt)

If menu orientation is
DwtOrientationVertical,
default is the sum of
DwtNheight and
DwtNspacing or 16 pixels.
If menu orientation is
DwtOrientationHorizontal,
default is the maximum entry
DwtNheight or 16 pixels.
One pixel

Default foreground color
NULL

Default background color
NULL

Default color map

True

Setting the sensitivity of the
menu causes all widgets
contained in that menu to be
set to the same sensitivity.
The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Subroutines 3—209

DwtMenu (3Dwt)

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

Pixel
Pixel
Pixmap
Opadque *
unsigned char

DwtFontList
DwtCallbackPtr

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown
The default XUI Toolkit font
NULL

The following table lists the attributes inherited by the pull-down menu and

pop-up menu widgets.

Attribute Name Data Type Default

Core Attributes

DwtNx Position For
DwtMenuPopupCreate,
determined by the geometry
manager
For
DwtMenuPulldownCreate,
this attribute is not supported

DwtNy Position For
DwtMenuPopupCreate,
determined by the geometry
manager
For
DwtMenuPulldownCreate,
this attribute is not supported

DwtNwidth Dimension Set as large as necessary to
hold all child widgets

DwtNheight Dimension Set as large as necessary to
hold all child widgets

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

3-210 Subroutines

DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

Menu Attributes

DwtNspacing
DwtNmarginHeight
DwtNmarginWidth
DwtNorientation
DwtNadjustMargin
DwtNentryBorder
DwtNmenuAlignment
DwtNentryAlignment
DwtNmenuPacking

DwtNmenuNumColumns
DwtNmenuRadio

DwtNradioAlwaysOne
DwtNmenulIsHomogeneous

Boolean

XtTranslations
int
XtTranslations
Boolean
Screen ¥
DwtCallbackPtr

Pixel

Pixel

Pixmap

Opaque *

unsigned char
DwtFontList
DwtCallbackPtr

Dimension
Dimension
Dimension
unsigned char
Boolean
short
Boolean
unsigned char
unsigned char

short
Boolean

Boolean
Boolean

DwtMenu (3Dwt)

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown
The default XUI Toolkit font
NULL

Zero pixels

3 pixels

Three pixels
DwtOrientationVertical
True

Zero pixels

True
DwtAlignmentBeginning

DwtMenuPackingTight
(for all menu types except for
radio boxes)

DwtMenuPackingColumn
(for radio boxes)

One row or column
False

True (for radio boxes)
True

False

Subroutines 3—211

DwtMenu (3Dwt)

DwtNmenuEntryClass

DwtNmenuHistory
DwtNentryCallback
DwtNmenuHelpWidget
DwtNchangeVisAtts
DwtNmenuExtendLastRow

WidgetClass

Widget
DwtCallbackPtr
Widget
Boolean
Boolean

True (for radio boxes)

NULL
Radio boxes, however, default
to the togglebuttonwidgetclass.

Zero
NULL
NULL
True
True

Widget-Specific Attributes

The following table lists the widget-specific attributes for the menu widget.

Descriptions of these attributes follow the table.

Attribute Name Data Type Default

DwtNspacing Dimension Zero pixels
DwtNmarginHeight Dimension 3 pixels

DwtNmarginWidth Dimension Three pixels
DwtNorientation unsigned char DwtOrientationVertical
DwtNadjustMargin Boolean True

DwtNentryBorder short Zero pixels
DwtNmenuAlignment Boolean True
DwtNentryAlignment unsigned char DwtAlignmentBeginning
DwtNmenuPacking unsigned char DwtMenuPackingTight

DwtNmenuNumColumns
DwtNmenuRadio

DwtNradioAlwaysOne
DwtNmenuIsHomogeneous

DwtNmenuEntryClass

DwtNmenuHistory
DwtNentryCallback
DwtNmenuHelpWidget
DwtNchangeVisAtts

3—-212 Subroutines

short
Boolean

Boolean
Boolean

WidgetClass

Widget
DwtCallbackPtr
Widget

Boolean

(for all menu types except
for radio boxes)

DwtMenuPackingColumn
(for radio boxes)

One row or column
False

True (for radio boxes)
True

False

True (for radio boxes)

NULL

Radio boxes, however,
default to the
togglebuttonwidgetclass.

Zero
NULL
NULL
True

DwtMenu (3Dwt)

DwtNmenuExtendLastRow Boolean True

DwtNspacing

DwtNmarginHeight

DwtNmarginWidth

DwtNorientation

DwtNadjustMargin

Specifies in pixels the spacing between menu bar
entry windows.

Specifies the number of pixels remaining around the
entries. The height is the number of blank pixels
above the first entry and below the last entry (for
vertical menus).

Specifies the number of pixels remaining around the
entries. The width is the number of blank pixels
between the left and right edges of the menu and the
border of the entries.

Specifies whether the menu list is vertical or
horizontal. You can pass
DwtOrientationHorizontal or
DwtOrientationVertical.

Specifies a boolean value that indicates whether the
inner minor dimension margins of all entries should
be set to the same value.

All label subclass widgets have two types of
margins. The two outer margins
(DwtNmarginWidth and DwtNmarginHeight)
are symmetrical about the center of the widget. The
number of pixels specified in DwtNmarginWidth
are blank to the right and the left of the widget. The
four inner margins (DwtNmarginLeft,
DwtNmarginRight, DwtNmarginTop, and
DwtNmarginBottom) specify the number of pixels
to leave on each side inside the outer margins.

The outer margins are used to accommodate such
things as the border highlighting of widgets. The
inner margins are used to accommodate such things
as pull-down widget hot spots and toggle button
indicators.

If True, all entries in a given column or row will
have exactly the same minor dimension margins. (If
DwtNorientation is

Subroutines 3-213

DwtMenu (3Dwt)

DwtNentryBordexr

DwtOrientationHorizontal, the minor
dimension is vertical; if DwtNorientation is
DwtOrientationVertical, the minor
dimension is horizontal.) All margins will have the
value of the largest individual margin in the group.
This keeps the left edge of text lined up, regardless
of whether some entries have toggle indicators.

Specifies the border width of windows on the entry
widgets.

DwtNmenuAlignment

Specifies a boolean value that, when True,
indicates all entries are aligned. If False, entry
alignment is unchanged. This is applied only to
subclasses of labelwidgetclass.

DwtNentryAlignment

DwtNmenuPacking

3-214 Subroutines

Specifies the type of label alignment that is enforced
for all entries when DwtNmenuAlignment is
True. You can pass DwtAlignmentCenter
(center alignment), DwtAlignmentBeginning
(alignment at the beginning), or
DwtAlignmentEnd (alignment at the end).

Specifies how to pack the entries of a menu into the
whole menu. The value of DwtNorientation
determines the major dimension. You can pass
DwtMenuPackingTight,
DwtMenuPackingColumn, or
DwtNmenuPackingNone.

DwtMenuPackingTight indicates that given the
current major dimension of the menu, entries are
placed one after the other until the menu must wrap.
When the menu wraps, it extends in the minor
dimension as many times as required.

Each entry’s major dimension is left unaltered; its
minor dimension is set to the same value as the
greatest entry in that particular row or column. Note
that the minor dimension of any particular row or
column is independent of other rows or columns.

DwtMenuPackingColumn indicates that all
entries are placed in identically sized boxes. The box

DwtMenu (3Dwt)

is based on the size of the largest entry while the
value of DwtNmenuNumColumns determines how
many boxes are placed in the major dimension before
extending in the minor dimension.

DwtNmenuPackingNone indicates that no packing
is performed. The DwtNx and DwtNy attributes of
each entry are left alone and the menu attempts to
become large enough to enclose all entries.

DwtNmenuNumColumns

Specifies the number of minor dimension extensions
that will be made to accommodate the entries. This
attribute is used only if DwtNmenuPacking is set
to DwtMenuPackingColumn.

For menus with an orientation of
DwtOrientationVertical, this attribute
indicates how many columns will be built. The
number of entries per column will be adjusted to
maintain this number of columns (if possible). For
menus with an orientation of
DwtOrientationHorizontal, this attribute
indicates how many rows will be built.

DwtNmenuRadio Specifies a boolean value that, when True,
indicates that when one button is already on and
another button is turned on, the first button is turned
off automatically.

DwtNradioAlwaysOne

Specifies a boolean value that indicates if the radio
button exclusivity should also ensure that one button
must always be on. If True, when the only radio
button on is turned off, it will automatically be
turned back on. Note that this attribute has no effect
unless DwtNmenuRadio is True.

DwtNmenuIsHomogeneous

Specifies a boolean value that indicates if the menu
should enforce exact homogeneity among the
children of this menu. If True, only the
DwtNmenuEntryClass class (not subclass but
exact class) will be allowed as children of this menu.

DwtNmenuEntryClass

Subroutines 3—-215

DwtMenu (3Dwt)

DwtNmenuHistory

Specifies the only widget class that can be added to
the menu. For this to occur, the
DwtNmenulsHomogeneous attribute must be
True. All other widget classes will not be added to
the menu.

Holds the widget ID of the last menu entry that was
activated. If DwtNmenuRadio is True,
DwtNmenuHistory holds the widget ID of the last
toggle button to change from off to on. This
attribute may be set to precondition option menus
and pop-up menus

DwtNentryCallback

If this callback is defined, all menu entry activation
callbacks are revectored to call back through this
callback. If this callback is NULL, the individual
menu entry callbacks work as usual. For this
callback, the reason is DwtCRActivate.

DwtNmenuHelpWidget

If non-NULL, the help menu widget points to the
menu item to be placed in the lower right corner of
the menu bar.

DwtNchangeVisAtts

Specifies a boolean value that, when True,
indicates that a menu widget can optionally make
these changes to its children: (1) Set the border to a
uniform widget; (2) align labels; (3) make margins
for the border highlight at least 2 pixels wide; (4) set
the indicator shape to oval for toggle buttons in radio
boxes; (5) set DwtNvisibleWhenOff to False
for toggle buttons.

When DwtNchangeVisAttsis False, a menu
widget cannot make any of these changes.

DwtNmenuExtendLastRow

3-216 Subroutines

Specifies the boolean value that indicates whether the
active area of each menu entry extends to the width
of the menu (for vertical menus) or the height of the
menu (for horizontal menus).

If True for vertical menus, all menu entries extend
to the menu width; if False, menu entries vary in

DwtMenu (3Dwt)

length depending on the length of the label in the
menu entry. If True for horizontal menus, all
menu entries extend to the menu height; if False,
menu entries vary in height, depending on the length
of the label in the menu entry.

The following table lists the widget-specific attributes for the pull-down and
pop-up menu widgets. Descriptions of these attributes follow the table.

Attribute Name Data Type Default

DwtNmapCallback DwtCallbackPtr NULL

DwtNunmapCallback DwtCallbackPtr NULL

DwtNmapCallback Specifies the callback function or functions called
when the menu is mapped.

DwtNunmapCallback

Return Value

Specifies the callback function or functions called
when the menu is unmapped.

These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {

int reason;

XEvent *event;

Widget s_widget:;

char *s_tag;

char *s_callbackstruct:;
} DwtMenuCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRActivate

DwtCRMap

DwtCRUnmap

The user selected a menu entry.
The menu window is about to be mapped.

The menu window was just unmapped.

DwtCRHelpRequested The user selected help.

Subroutines 3—-217

DwtMenu (3Dwt)

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding. The s_widget member is set to the ID of the activating
subwidget. The s_tag member is set to the tag supplied by the application
programmer when the subwidget callback function was specified. The
s_callbackstruct member is set to the subwidget’s callback structure.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-218 Subroutines

Name

DwtMenuBar (3Dwt)

DwtMenuBar, DwtMenuBarCreate — Creates a menu bar widget to contain

menus.

Syntax

Widget DwtMenuBar(parent_widget, name, entry_callback,

help_callback)

Widget parent_widget;

char *name;

DwtCallbackPtr entry_callback;
DwtCallbackPtr help_callback;

Widget DwtMenuBarCreate (parent_widget, name,

override_arglist, override_argcount)

Widget parent_widget;
char *name;

ArglList override_arglist;
int override_argcount;

Arguments

parent_widget
name

entry_callback

help_callback

parent_widget

name

Specifies the parent widget ID.
Specifies the name of the created widget.

If this callback is defined, all menu entry activation callbacks
are revectored to call back through this callback. If this
callback is NULL, the individual menu entry callbacks work
as usual. For this callback, the reason is

DwtCRActivate. This argument sets the
DwtNentryCallback attribute associated with
DwtMenuCreate.

Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

Specifies the parent widget ID.
Specifies the name of the created widget.

override_arglist

Specifies the application override argument list.

Subroutines 3—219

DwtMenuBar (3Dwt)

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtMenuBar and DwtMenuBarCreate functions create an instance
of the menu bar widget and return its associated widget ID. When calling
DwtMenuBar, you set the menu bar widget attributes presented in the
formal parameter list. For DwtMenuBarCreate, you specify a list of
attribute name/value pairs that represent all the possible menu bar widget
attributes.

A menu bar widget is a composite widget that contains pull-down menu
entry subwidgets. The subwidgets handle most of the I/O activity that
display information and query the user for input. The menu bar widget
provides no input semantics over and above those provided by its
subwidgets.

If the menu bar does not have enough room to fit all its subwidgets on a
single line, the menu bar attempts to wrap the remaining entries onto
additional lines (if allowed by the geometry manager of the parent widget).

The menu bar widget works with these widget classes: pull-down menu
entries, labels, and separators.

If DwtNentryCallback is not NULL when it is activated, all subwidgets
call back to this callback. Otherwise, the individual subwidgets handle the
activation callbacks.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension 16 pixels

DwtNheight Dimension Number of lines needed to
display all entries

DwtNborderWidth Dimension One pixel

3-220 Subroutines

DwtNborder
DwtNborderPixmap
DwtNbackground
DwtNbackgroundPixmap
DwtNcolormap
DwtNsensitive

DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

Menu Attributes

DwtNspacing
DwtNmarginHeight
DwtNmarginWidth
DwtNorientation
DwtNadjustMargin
DwtNentryBorder

Pixel
Pixmap
Pixel
Pixmap
Colormap
Boolean

Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap
Opaque *
unsigned char
DwtFontList
DwtCallbackPtr

Dimension
Dimension
Dimension
unsigned char
Boolean
short

DwtMenuBar (3Dwt)

Default foreground color
NULL

Default background color
NULL

Default color map

True

Note that setting the
sensitivity of the menu bar
causes all widgets contained in
that menu bar to be set to the
same sensitivity as the menu
bar.

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown
Used only by gadget children
NULL

One pixel

Zero pixels

Three pixels
DwtOrientationVertical
True

Zero pixels

Subroutines 3-221

DwtMenuBar (3Dwt)

DwtNmenuAlignment Boolean True
DwtNentryAlignment unsigned char DwtAlignmentBeginning
DwtNmenuPacking unsigned char DwtMenuPackingTight

(for all menu types except for
radio boxes)

DwtMenuPackingColumn

(for radio boxes)
DwtNmenuNumColumns short One row or column
DwtNmenuRadio Boolean False

True (for radio boxes)
DwtNradioAlwaysOne Boolean True
DwtNmenulIsHomogeneous Boolean False

True (for radio boxes)
DwtNmenuEntryClass WidgetClass NULL

Radio boxes, however, default
to the toggiebuttonwidgetclass.

DwtNmenuHistory Widget Zero
DwtNentryCallback DwtCallbackPtr NULL
DwtNmenuHelpWidget Widget NULL
DwtNchangeVisAtts Boolean True
DwtNmenuExtendLastRow Boolean True

Widget-Specific Attributes

The menu bar widget does not currently support any widget-specific
attributes.

Return Value
These functions return the ID of the created widget.

Callback Information
The following structure is returned to your callback:

typedef struct {

int reason;

XEvent *event;

Widget s widget;

char *s_tag;

char *s_callbackstruct;
} DwtMenuCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

3-222 Subroutines

DwtMenuBar (3Dwt)

DwtCRActivate The user selected a menu entry.
DwtCRMap The menu window is about to be mapped.
DwtCRUnmap The menu window was just unmapped.

DwtCRHelpRequested The user selected help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding. The s_widget member is set to the ID of the activating
subwidget. The s_tag member is set to the tag supplied by the application
programmer when the subwidget callback function was specified. The
s_callbackstruct member is set to the subwidget’s callback structure.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—223

DwtMenuPosition (3Dwt)

Name
DwtMenuPosition — Positions menu when user presses MB2.

Syntax

void DwtMenuPosition (position, event)
Widget position;
XEvent *event;

Arguments

position Specifies the position of the menu.

event Specifies the event passed to the action procedure which
manages the pop-up menu.

Description
The DwtMenuPosition function positions the menu when the user
presses MB2. This must be called before managing the pop-up menu.

See Also

DwtPullDownMenuEntryHilite (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-224 Subroutines

DwtMessageBox (3Dwt)

Name

DwtMessageBox, DwtMessageBoxCreate — Creates a message box widget
for the application to display text to the user.

Syntax

Widget DwtMessageBox (parent widget, name, default_position,
X, y, style, ok_label, label,
callback, help_callback)

Widget parent_widget;

char * name;

Boolean default position;
Position x, y;

int style;

DwtCompString ok_label, label;
DwtCallbackPtr callback;
DwtCallbackPtr help_callback;

Widget DwtMessageBoxCreate (parent_widget, name,
override_arglist,
override_argcount)

Widget parent_widget;
char *name;

ArglList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

default_position
Specifies a boolean value that, when True, causes DwtNx
and DwtNy to be ignored and forces the default widget
position. The default widget position is centered in the
parent window. If False, the specified DwtNx and
DwtNy attributes are used to position the widget. This
argument sets the DwtNdefaultPosition attribute
associated with DwtDialogBoxCreate.

X Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget

Subroutines 3—225

DwtMessageBox (3Dwt)

style

label

ok_label

callback

help callback

parent_widget

name

attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the style of the dialog box widget. You can pass
DwtModal (modal) or DwtModeless (modeless). This
argument sets the DwtNstyle attribute associated with
DwtDialogBoxPopupCreate.

Specifies the text in the message line or lines. This argument
sets the DwtNlabel attribute associated with
DwtMessageBoxCreate.

Specifies the label for the Ok push button. If the label is a
NULL string, the button is not displayed. This argument sets
the DwtNokLabel attribute associated with
DwtMessageBoxCreate.

Specifies the callback function or functions called when the
user activates the OK push button. This argument sets the
DwtNyesCallback attribute associated with
DwtMessageBoxCreate.

Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

Specifies the parent widget ID.
Specifies the name of the created widget.

override_arglist

Specifies the application override argument list.

override_argcount

Description

Specifies the number of attributes in the application override
argument list (override_arglist).

The DwtMessageBox and DwtMessageBoxCreate functions create an
instance of the message box widget and return its associated widget ID.
When calling DwtMessageBox, you set the message box attributes
presented in the formal parameter list. For DwtMessageBoxCreate,
however, you specify a list of attribute name/value pairs that represent all the
possible message box widget attributes.

3—226 Subroutines

DwtMessageBox (3Dwt)

The DwtMessageBoxCreate function conforms to the XUI Style Guide
by providing optional secondary text below the primary text. This function
also supports alignment mode for both the DwtNlabelAlignment and

DwtNsecondLabelAlignment attributes.

The message box widget is a dialog box that allows the application to display
informational messages to the user. You call this function to create a
message box when the user does something unexpected, or when your
application needs to display information to the user. The message box
widget may contain an OK push button. When the style is DwtModal, the
message box freezes the application and requires the user to explicitly
dismiss the message box before the application proceeds. If the style is
DwtModal when the user selects the OK push button, the widget is cleared
from the screen but not destroyed. You can redisplay the widget by calling

XtManageChild.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension S pixels

DwtNheight Dimension 5 pixels

DwtNborderWidth Dimension One pixel

DwtNborder ‘ Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

DwtNaccelerators XtTranslations NULL

DwtNdepth int Depth of the parent window

DwtNtranslations XtTranslations NULL

DwtNmappedWhenManaged Boolean True

Subroutines 3—227

DwtMessageBox (3Dwt)

3-228 Subroutines

DwtNscreen Screen * The parent screen

DwtNdestroyCallback DwtCallbackPtr NULL

Dialog Pop-Up Attributes

DwtNforeground Pixel Default foreground color

DwtNhighlight Pixel Default foreground color

DwtNhighlightPixmap Pixmap NULL

DwtNuserData Opagque * NULL

DwtNfont DwtFontList The default XUI Toolxit font

DwtNhelpCallback DwtCallbackPtr NULL

DwtNdirectionRToL NOT SUPPORTED

DwtNunits NOT SUPPORTED

DwtNtitle DwtCompString Widget name

DwtNstyle unsigned char DwtModal

DwtNmapCallback DwtCallbackPtr NULL

DwtNunmapCallback DwtCallbackPtr NULL

DwtNfocusCallback DwtCallbackPtr NULL

DwtNtextMergeTranslations NOT SUPPORTED

DwtNmarginWidth Dimension 12 pixels

DwtNmarginHeight Dimension 10 pixels

DwtNdefaultPosition Boolean False

DwtNchildOverlap NOT SUPPORTED

DwtNresize unsigned char DwtResizeShrinkWrap

DwtNtakeFocus Boolean True for modal dialog box
False for modeless dialog
box

DwtNnoResize Boolean True (that is, no window
manager resize button)

DwtNautoUnmanage Boolean True

DwtNdefaultButton NOT SUPPORTED

DwtNcancelButton NOT SUPPORTED

Widget-Specific Attributes

Attribute Name Data Type Default

DwtNlabel DwtCompString Widget name

DwtNokLabel DwtCompString "Acknowledged"

DwtNyesCallback DwtCallbackPtr NULL

DwtNsecondLabel DwtCompString NULL

DwtNlabelAlignment unsigned char DwtAlignmentCenter

DwtMessageBox (3Dwt)

DwtNsecondLabelAlignment unsigned char DwtAlignmentBeginning

DwtNiconPixmap

Pixmap The default is the standard icon
provided for each message-
class widget as follows: (1)
the default caution box icon is
an exclamation point; (2) the
default message box icon is an
asterisk; (3) the default work
box icon is the wait cursor
(watch). See the XUI Style
Guide for illustrations of the
icons for each message class
widget.

DwtNlabel
DwtNokLabel

DwtNyesCallback

DwtNsecondLabel

Specifies the text in the message line or lines.

Specifies the label for the Ok push button. If the
label is a NULL string, the button is not displayed.

Specifies the callback function or functions called
when the user clicks on the Yes button. For this
callback, the reason is DwtCRYes.

Specifies the text for the secondary label. If the
application specifies a second label and then wants to
remove it, it should use XtSetValues to set
DwtNsecondLabel to NULL or to an empty
compound-string.

DwtNlabelAlignment

Specifies the alignment for the primary label. You
can pass DwtAlignmentCenter (center
alignment), DwtAlignmentBeginning
(alignment at the beginning), or
DwtAlignmentEnd (alignment at the end).

DwtNsecondLabelAlignment

DwtNiconPixmap

Specifies the alignment for the secondary label. You
can pass DwtAlignmentCenter (center
alignment), DwtAlignmentBeginning
(alignment at the beginning), or
DwtAlignmentEnd (alignment at the end).

Specifies the pixmap used for the icon.

Subroutines 3—229

DwtMessageBox (3Dwt)

Return Value
These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRYes The user activated the Yes button.
DwtCRFocus The message box has received the input
focus.

DwtCRHelpRequested The user selected Help somewhere in the
message box.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-230 Subroutines

DwtOpenHierarchy (3Dwt)

Name

DwtOpenHierarchy — Allocates a hierarchy ID and opens all the UID files in
the hierarchy.

Syntax

#include <X11/DwtAppl.h>
Cardinal DwtOpenHierarchy(num_files, file_names_list,
ancillary_structures_list,
hierarchy_id_return)

DRMCount num_files;

String file_names_list [];

IDBOSOpenParamPtr *ancillary_structures_list;

DRMHierarchy * hierarchy _id_return;

Arguments

num_files Specifies the number of files in the name list.

file_names _list Specifies an array of pointers to character strings that identify
the .uid files.

ancillary_structures_list
A list of operating system-dependent ancillary structures
corresponding to such things as file names, clobber flag, and
so forth. This argument should be NULL for most
operations. If you need to reference this structure, see the
definition of IDBOSOpenParamPtr in DwtAppl.h for
more information.

hierarchy _id_return
Returns the search hierarchy ID. The search hierarchy ID
identifies the list of .uid files that DRM will search (in
order) when performing subsequent fetch calls.

Description

The DwtOpenHierarchy function allows the user to specify the list of
UID files that DRM will search in subsequent fetch operations. All
subsequent fetch operations will return the first occurrence of the named item
encountered while traversing the UID hierarchy from the first list element
(UID file specification) to the last list element. This function also allocates a
hierarchy ID and opens all the UID files in the hierarchy. It initializes the
optimized search lists in the hierarchy. If DwtOpenHierarchy

Subroutines 3—231

DwtOpenHierarchy (3Dwt)

encounters any errors during its execution, any files that were opened are
closed.

Each UID file specified in file_names_list can specify either a full directory
pathname or a file name. If a UID file does not specify the pathname it will
not contain any embedded slashes (/), and it will be accessed through the
UIDPATH environment variable.

The UIDPATH environment variable specifies search paths and naming
conventions associated with UID files. It can contain the substitution fields
%L and %N, where the current setting of the LANG environment variable is
substituted for %L and the .uid name passed to DwtOpenHierarchy is
substituted for %N. For example, the following UID path and
DwtOpenHierarchy call would cause DRM to open two separate .uid

files:
UIDPATH=/uidlib/%$L/%$N.uid:/uidlib/%N/%L
static char *uid _files[] = {"/usr/users/me/test.uid", "test2"};

DRMHierarchy *Hierarchy_id;
DwtOpenHierarchy ((DRMCount) 2,uid_files, NULL, Hierarchy id)

The first file, /usr/users/me/test.uid, would be opened as
specified, as this file specification includes a pathname. The second file,
test2, would be looked for first in /uidlib/$LANG/test2.uid, and
second in /uidlib/test2/$LANG.

After DwtOpenHierarchy opens the UID hierarchy, you should not
delete or modify the UID files until you close the UID hierarchy by calling
DwtCloseHierarchy.

Return Value

This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMNotFound File not found.
DRMFailure The function failed.

See Also

DwtCloseHierarchy(3Dwt)

3-232 Subroutines

Name

DwtOptionMenu (3Dwt)

DwtOptionMenu, DwtOptionMenuCreate — Creates an option menu widget to
display and handle an application option list of attributes or modes of the
menu topic. It allows just one option selected from the list in the menu.

Syntax

Widget DwtOptionMenu(parent_widget, name, x, y,

label, sub_menu_id,
entry callback, help_callback)

Widget parent widget;

char *name;

Position x, y;

DwtCompString label;

Widget sub_menu_id,;

DwtCallbackPtr entry callback, help_callback;

Widget DwtOptionMenuCreate (parent_widget, name,

override_arglist, override_argcount)

Widget parent_widget;
char *name;

ArglList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.

name

X

label

sub_menu_id

Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the text in the menu label. This argument sets the
DwtNlabel attribute associated with DwtMenuCreate.

Specifies the widget ID of the pull-down menu associated
with the option menu during the creation phase.

Subroutines 3—-233

DwtOptionMenu (3Dwt)

entry callback 1f this callback is defined, all menu entry activation callbacks
are revectored to call back through this callback. If this
callback is NULL, the individual menu entry callbacks work
as usual. For this callback, the reason is
DwtCRActivate. This argument sets the
DwtNentryCallback attribute associated with
DwtMenuCreate.

help_callback Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtOptionMenu and DwtOptionMenuCreate functions create an
instance of the option menu widget and return its associated widget ID.
When calling DwtOptionMenu, you set the option menu widget attributes
presented in the formal parameter list. For DwtOptionMenuCreate,
however, you specify a list of attribute name/value pairs that represent all the
possible option menu widget attributes. The option menu widget is a
composite widget containing other subwidgets (toggle button widgets). It
displays and handles an application option list of attributes or modes of the
menu topic. Basically, the option menu consists of a label identifying the
menu and an active area to the right. This composite widget contains other
subwidgets (toggle button widgets) in the active area. It displays the current
option selected, and, on request, generates a pop-up menu with specific
options available. In addition, it ensures that a user can select only one
choice at any given time.

If DwtNentryCallback is non-NULL, then all the toggle button
callbacks will execute the entry_callback function, rather than the procedure
specified in the toggle. Otherwise, if DwtNentryCallback is NULL,
then the individual callbacks work as usual.

3-234 Subroutines

DwtOptionMenu (3Dwt)

Option menus also position the pop-up part of the menu so that the menu
history widget covers the selection part of the option menu. Option menus
also copy the label of the menu history widget into the selection part.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Set as large as necessary to
hold all child widgets

DwtNheight Dimension Set as large as necessary to
hold all child widgets

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundP ixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

DwtNaccelerators XtTranslations NULL

DwtNdepth int Depth of the parent window

DwtNtranslations XtTranslations NULL

DwtNmappedWhenManaged Boolean True

DwtNscreen Screen * The parent screen

DwtNdestroyCallback DwtCallbackPtr NULL

Common Attributes

DwtNforeground Pixel Default foreground color

DwtNhighlight Pixel Default foreground color

DwtNhighlightPixmap Pixmap NULL

DwtNuserData Opaque * NULL

DwtNdirectionRToL unsigned char DwtDirectionRightDown

Subroutines 3—-235

DwtOptionMenu (3Dwt)

DwtNfont DwtFontList
DwtNhelpCallback DwtCallbackPtr
Menu Attributes

DwtNspacing Dimension
DwtNmarginHeight Dimension
DwtNmarginWidth Dimension
DwtNorientation unsigned char
DwtNadjustMargin Boolean
DwtNentryBorder short
DwtNmenuAlignment Boolean
DwtNentryAlignment unsigned char
DwtNmenuPacking unsigned char

The default XUI Toolkit font
Used only by gadget children
NULL

Zero pixels

3 pixels

Three pixels
DwtOrientationVertical
True

Zero pixels

True
DwtAlignmentBeginning
DwtMenuPackingTight
(for all menu types except for
radio boxes)
DwtMenuPackingColumn
(for radio boxes)

DwtNmenuNumColumns short One row or column
DwtNmenuRadio Boolean False

True (for radio boxes)
DwtNradioAlwaysOne Boolean True
DwtNmenulsHomogeneous Boolean False

True (for radio boxes)
DwtNmenuEntryClass WidgetClass NULL

Radio boxes, however, default

to the togglebuttonwidgetclass.
DwtNmenuHistory Widget Zero
DwtNentryCallback DwtCallbackPtr NULL
DwtNmenuHelpWidget Widget NULL
DwtNchangeVisAtts Boolean True
DwtNmenuExtendLastRow Boolean True

Widget-Specific Attributes

Attribute Name Data Type Default
DwtNlabel DwtCompString Widget name
DwtNsubMenuld Widget Zero
DwtNlabel Specifies the label that will be placed to the left of

3-236 Subroutines

the current value.

DwtOptionMenu (3Dwt)

DwtNsubMenuId Specifies the widget ID of the pull-down menu
associated with the option menu during the creation
phase.

Return Value
These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {

int reason;

XEvent *event;

Widget s_widget;

char *s_tag;

char *s_callbackstruct;
} DwtMenuCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRActivate The user selected a menu entry.

DwtCRHelpRequested The user selected help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding. The s_widget member is set to the ID of the activating
subwidget. The s_tag member is set to the tag supplied by the application
programmer when the subwidget callback function was specified. The
s_callbackstruct member is set to the subwidget’s callback structure.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-237

DwtPullDownMenuEntry (3Dwt)

Name

DwtPullDownMenuEntry, DwtPullDownMenuEntryCreate — Creates an
instance of the pull-down menu entry widget.

Syntax

Widget DwtPullDownMenuEntry (parent_widget, name,

X, y, label,
menu_id, callback, help_callback)

Widget parent _widget;

char *name;

Position x, y;

DwtCompString label;

Widget menu_id;

DwtCallbackPtr callback, help_callback;

Widget DwtPullDownMenuEntryCreate (parent_widget, name,

override_arglist,
override_argcount)

Widget parent_widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.

name
X

label

menu_id

3-238 Subroutines

Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the text of the label entry in the parent menu. This
argument sets the DwtNlabel attribute associated with
DwtLabelCreate.

Specifies the ID of the pull-down menu widget.

DwtPullDownMenuEntry (3Dwt)

callback Specifies the callback function or functions called back when
a button inside a pull-down menu entry widget is activated.
This argument sets the DwtNactivateCallback and
DwtNpullingCallback attributes associated with
DwtPullDownMenuEntryCreate.

help_callback Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtPullDownMenuEntry and
DwtPullDownMenuEntryCreate functions create an instance of the
pull-down menu entry widget and return its associated widget ID. When
calling DwtPullDownMenuEntry, you set the pull-down menu entry
widget attributes presented in the formal parameter list. For
DwtPullDownMenuEntryCreate, however, you specify a list of
attribute name/value pairs that represent all the possible pull-down menu
entry widget attributes.

A pull-down menu entry widget is made up of two parts: a label (within the
parent menu) and a select area or ‘‘hotspot.”” The hotspot is the full widget
window. Otherwise, the hotspot is a separate rectangle on the right side of
the entry label.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

Subroutines 3—-239

DwtNy

DwtNwidth

DwtNheight

DwtNborderWidth
DwtNborder
DwtNborderPixmap
DwtNbackground
DwtNbackgroundPixmap
DwtNcolormap
DwtNsensitive
DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

3-240 Subroutines

DwtPullDownMenuEntry (3Dwt)

Position

Dimension

Dimension

Dimension
Pixel
Pixmap
Pixel
Pixmap
Colormap
Boolean
Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap
Opaque *
unsigned char
DwtFontList
DwtCallbackPtr

Determined by the geometry
manager

The DwtNlabel width, plus
the DwtNhotSpotPixmap
width or the DwtNpixmap
width, plus
DwtNmarginWidth times
two

The DwtNlabel or
DwtNpixmap height, plus
DwtNmarginHeight times
two

zero pixels

Default foreground color
NULL

Default background color
NULL

Default color map

True

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown
The default XUI Toolkit font
NULL

DwtPullDownMenuEntry (3Dwt)

Label Attributes
DwtNlabelType unsigned char DwtCString
DwtNlabel DwtCompString Widget name
DwtNmarginWidth Dimension Two pixels for text

Zero pixels for pixmap
DwtNmarginHeight Dimension Two pixels for text

Zero pixels for pixmap
DwtNalignment unsigned char DwtAlignmentCenter
DwtNpixmap Pixmap NULL
DwtNmarginLeft Dimension Zero
DwtNmarginRight Dimension Zero
DwtNmarginTop Dimension Zero
DwtNmarginBottom Dimension Zero
DwtNconformToText Boolean True, if the widget is created

with a width and height of
Zero

False, if the widget is
created with a non-zero width
and height

Widget-Specific Attributes

You can set the following widget-specifc attributes in the override_arglist:

Attribute Name Data Type Default

DwtNsubMenuId Widget NULL
DwtNactivateCallback DwtCallbackPtr NULL
DwtNpullingCallback DwtCallbackPtr NULL
DwtNhotSpotPixmap Pixmap NULL

DwtNsubMenulId Specifies the widget ID of the submenu that will be
displayed when the pull-down menu is activated.

DwtNactivateCallback
Specifies the callback that is executed when the user
releases a button inside the pull-down menu widget.
For this callback, the reason is DwtCRActivate.

DwtNpullingCallback
Specifies the callback function or functions called
just prior to pulling down the submenu. This
callback occurs just before the submenu’s map
callback. You can use this callback to defer the

Subroutines 3—241

DwtPullDownMenuEntry (3Dwt)

creation of the submenu. For this callback, the
reason is DwtCRActivate.

DwtNhot SpotPixmap
Specifies the pixmap to use for the hotspot icon.

Return Value
These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRActivate The user selected the pull-down menu
entry.

DwtCRHelpRequested The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-242 Subroutines

DwtPullDownMenuEntryHilite (3Dwt)

Name
DwtPullDownMenuEntryHilite — Highlights a menu entry.
Syntax
void DwtPullDownMenuEntryHilite (pulldown, highlight)
Widget pulldown;
int highlight;
Arguments
position Specifies the pulldown menu..
highlight Specifies whether a menu entry is highlighted. If the value is
one, the entry is highlighted. If the value is zero, the entry is
not highlighted.
Description

The DwtPullDownMenuEntryHilite function keeps an entry highlight
after the user clicks on a menu item.

See Also

DwtMenuPosition (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—243

DwtPullEntryGadgetCreate (3Dwt)

Name
DwtPullEntryGadgetCreate — Creates a pull-down menu entry gadget.

Syntax

Widget DwtPullEntryGadgetCreate (parent_widget, name,
override_arglist,
override_argcount)

Widget parent widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.
override_arglist
Specifies the application override argument list.
override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtPullEntryGadgetCreate function creates an instance of the
pull-down menu entry gadget and returns its associated gadget ID.

A pull-down menu entry gadget is similar in appearance and semantics to a
pull-down menu entry widget. Like all gadgets, it does not have a window
but uses the window of the closest antecedent widget. This gadget must be a
child of a menu class widget.

Because a pull-down menu entry gadget is not a subclass of composite,
children are not supported.

The sizing of the gadget is affected by the font and the label.

3-244 Subroutines

Inherited Attributes

DwtPullEntryGadgetCreate (3Dwt)

Attribute Name Data Type Default

Rectangle Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension The label width, plus the
hotspot width, plus 2 times
DwtNmarginWidth

DwtNheight Dimension The text label or pixmap
label height plus 2 times
DwtNmarginHeight

DwtNborderWidth Dimension Zero pixels

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

Label Gadget Attributes

DwtNlabel DwtCompString Widget name

DwtNalignment unsigned char DwtAlignmentCenter

DwtNdirectionRToL Boolean False

DwtNhelpCallback DwtCallbackPtr NULL

Widget-Specific Attributes

Attribute Name Data Type Default

DwtNsubMenuId Widget NULL

DwtNactivateCallback DwtCallbackPtr NULL

DwtNpullingCallback DwtCallbackPtr NULL

DwtNsubMenuId Specifies the widget ID of the submenu that will be

displayed when the pull-down menu is activated.

DwtNactivateCallback
Specifies the callback that is executed when the user
releases a button inside the pull-down menu widget.

Subroutines 3—245

DwtPullEntryGadgetCreate (3Dwt)

For this callback, the reason is DwtCRActivate.

DwtNpullingCallback
Specifies the callback function or functions called
just prior to pulling down the submenu. This
callback occurs just before the submenu’s map
callback. You can use this callback to defer the
creation of the submenu. For this callback, the
reason is DwtCRActivate.

Return Value
This function returns the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRActivate The user selected the pull-down menu
entry.

DwtCRHelpRequested The user selected Help.

The event-member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the XIib Library: C
Language Binding.

See Also

DwtPullDownMenuEntry (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-246 Subroutines

Name

DwtPushButton (3Dwt)

DwtPushButton, DwtPushButtonCreate — Creates a push button widget.

Syntax

Widget DwtPushButton (parent widget, name, x, y,

label, callback, Tielp_callback)

Widget parent_widget;,

char *name;

Position x, y;

DwtCompString label;

DwtCallbackPtr callback, help callback;

Widget DwtPushButtonCreate (parent widget, name,

override_arglist, override_argcount)

Widget parent_widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.

name

X

label

callback

help_callback

Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left comer of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the push button label. This argument sets the
DwtNlabel attribute associated with DwtLabelCreate.

Specifies the callback function or functions called back when
a push button is activated. This argument sets the
DwtNactivateCallback, DwtNarmCallback, and
DwtNdisarmCallback attributes associated with
DwtPushButtonCreate.

Specifies the callback function or functions called when a

Subroutines 3-247

DwtPushButton (3Dwt)

help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtPushButton and DwtPushButtonCreate functions create an
instance of the push button widget and return its associated widget ID. When
calling DwtPushButton, you set the push button widget attributes
presented in the formal parameter list. For DwtPushButtonCreate,
however, you specify a list of attribute name/value pairs that represent all the
possible push button widget attributes.

The push button is a primitive widget that displays a rectangular border
around a label. The label defines the immediate action of the button (for
example, Ok or Cancel in a dialog box).

The sizing is affected by spacing, font (affects indicator), and label. See the
description for DwtLabel and DwtLabelCreate.

The push button widget follows the same rules for geometry management as
its superclass the label widget, which you create by calling DwtLabel or
DwtLabelCreate. Like the label widget, the push button widget does not
support children; therefore, it always refuses geometry requests.

The push button widget follows the same rules for resizing as its superclass
the label widget, which you create by calling DwtLabel or
DwtLabelCreate. Like the label widget, the push button widget does
nothing on a resize by its parents.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

3-248 Subroutines

DwtNwidth

DwtNheight

DwtNbordexWidth
DwtNborder
DwtNborderPixmap
DwtNbackground
DwtNbackgroundPixmap
DwtNcolormap
DwtNsensitive
DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

Label Attributes
DwtNlabelType

DwtNlabel
DwtNmarginWidth

Dimension

Dimension

Dimension
Pixel
Pixmap
Pixel
Pixmap
Colormap
Boolean
Boolean

XtTranslations
int
XtTranslations
Boolean

Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap
Opaque *
unsigned char
DwtFontList
DwtCallbackPtr

unsigned char
DwtCompString
Dimension

DwtPushButton (3Dwt)

The width of the label or
pixmap plus
DwtNmarginWidth times
two

The height of the label or
pixmap plus
DwtNmarginHeight times
two

One pixel

Default foreground color
NULL

Default background color
NULL

Default color map

True

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown
The default XUI Toolkit font
NULL

DwtCString
Widget name

Two pixels for text
Zero pixels for pixmap

Subroutines 3—249

DwtPushButton (3Dwt)

DwtNmarginHeight

DwtNalignment
DwtNpixmap
DwtNmarginLeft
DwtNmarginRight
DwtNmarginTop
DwtNmarginBottom
DwtNconformToText

Dimension

unsigned char
Pixmap
Dimension
Dimension
Dimension
Dimension
Boolean

Two pixels for text

Zero pixels for pixmap
DwtAlignmentCenter
NULL

Zero

Zero

Zero

Zero

True, if the widget is created
with a width and height of
Zero

False, if the widget is
created with a non-zero width
and height

Widget-Specific Attributes

Attribute Name Data Type Default
DwtNbordHighlight Boolean False
DwtNfillHighlight Boolean False
DwtNshadow Boolean True
DwtNactivateCallback DwtCallbackPtr NULL
DwtNarmCallback DwtCallbackPtr NULL
DwtNdisarmCallback DwtCallbackPtr NULL
DwtNacceleratorText DwtCompString NULL
DwtNbuttonAccelerator char * NULL
DwtNinsensitivePixmap Pixmap NULL
DwtNbordHighlight

Specifies a boolean value that, when True,

highlights the border.
DwtNfillHighlight

Specifies a boolean value that, when True, fills the
highlighted button.

DwtNshadow

displayed.

DwtNactivateCallback
Specifies the callback function or functions called
when the push button is activated. The button is
activated when the user presses and releases MB1
while the pointer is inside the push button widget.

3-250 Subroutines

Specifies whether the shadow of the push button is

DwtPushButton (3Dwt)

Activating the push button also disarms the push
button. For this callback, the reason is
DwtCRActivate.

DwtNarmCallback Specifies the callback function or functions called
when the push button is armed. The push button is
armed when the user presses and releases MB1 while
the pointer is inside the push button widget. For this
callback, the reason is DwtCRArm.

DwtNdisarmCallback
Specifies the callback function or functions called
when the push button is disarmed. The button is
disarmed in two ways. After the user activates the
button (presses and releases MB1 while the pointer is
inside the push button widget), the button is
disarmed. When the user presses MB1 while the
pointer is inside the push button widget but moves
the pointer outside the push button before releasing
MB1, the button is disarmed. For this callback, the
reason is DwtCRDisarm.

DwtNacceleratorText
Specifies the compound-string text displayed for the
accelerator.

DwtNbuttonAccelerator
Sets an accelerator on a push button widget. This is
the same as the DwtNtranslations core
attribute except that only the left side of the table is
to be passed as a character string, not compiled. The
application is responsible for calling
XtInstallAllAccelerators to install the
accelerator where the application needs it.

DwtNinsensitivePixmap
Specifies the pixmap used when the push button is
set to insensitive. This attribute applies only if the
push button label is specified as a pixmap.
Return Value

These functions return the ID of the created widget.

Subroutines 3—-251

DwtPushButton (3Dwt)

Callback Information

The following structure is returned to your callback:

typedef struct {

int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRActivate

DwtCRArm

DwtCRDisarm

DwtCRHelpRequested

The user activated the push button by
pressing MB1 while the pointer was inside
the push button widget.

The user armed the push button by pressing
MB1 while the pointer was inside the push
button widget.

The user disarmed the push button in one of
two ways. The user pressed MB1 while the
pointer was inside the push button widget,
but did not release it until after moving the
pointer outside the push button widget. Or,
the user activated the push button, which
also disarms it.

The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C

Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-252 Subroutines

DwtPushButtonGadgetCreate (3Dwt)

Name
DwtPushButtonGadgetCreate — Creates a push button gadget.

Syntax

Widget DwtPushButtonGadgetCreate (parent widget, name,
override_arglist,
override_argcount)

Widget parent_widget;
char *name;

ArglList override_arglist;
int override_argcount;

Arguments

parent_widger Specifies the parent widget ID.
name Specifies the name of the created widget.
override_arglist

Specifies the application override argument list.
override_argcount

- Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtLabelGadgetCreate function creates an instance of the label
gadget and returns its associated gadget ID. A label gadget is similar in
appearance and semantics to a label widget. Like all gadgets, the label
gadget does not have a window but uses the window of the closest antecedent
widget. Thus, the antecedent widget provides all event dispatching for the
gadget. This currently restricts gadgets to being descendents of menu or
dialog class (or subclass) widgets. Drawing information such as font and
color are also those of the closest antecedent widget.

Inherited Attributes

Attribute Name Data Type Default

Rectangle Attributes

Subroutines 3—253

DwtPushButtonGadgetCreate (3Dwt)

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension The width of the label plus
margins

DwtNheight Dimension The height of the label plus
margins

DwtNborderWidth Dimension 1 pixel

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the

parent widget’s
DwtNsensitive and
DwtNancestorSensitive

attributes
Widget-Specific Attributes
Attribute Name Data Type Default
DwtNlabel DwtCompString NULL
DwtNactivateCallback DwtCallbackPtr NULL
DwtNacceleratorText DwtCompString NULL
DwtNbuttonAccelerator char * NULL
DwtNlabel Specifies the push button label.

DwtNactivateCallback
Specifies the callback function or functions called
when the push button is activated. The button is
activated when the user presses and releases MB1
while the pointer is inside the push button gadget.
For this callback, the reason is DwtCRActivate.

DwtNacceleratorText
Specifies the compound-string text displayed for the
accelerator.

DwtNbuttonAccelerator
Sets an accelerator on a push button widget. This is
the same as the DwtNtranslations core
attribute except that only the left side of the table is
to be passed as a character string, not compiled. The
application is responsible for calling
XtInstallAllAccelerators to install the

3-254 Subroutines

DwtPushButtonGadgetCreate (3Dwt)

accelerator where the application needs it.

Return Value
This function returns the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:
DwtCRActivate The user activated the push button.

DwtCRHelpRequested The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-255

DwtRadioBox (3Dwt)

Name

DwtRadioBox, DwtRadioBoxCreate — Creates a radio box widget for the
application to display multiple toggle buttons.

Syntax

Widget DwtRadioBox (parent _widget, name, x, y,

entry_callback, help_callback)

Widget parent_widget;

char *name;

Position x, y;

DwtCallbackPtr entry callback, help_callback;

Widget DwtRadioBoxCreate (parent_widget, name,

override_arglist, override_argcount)

Widget parent_widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.

name

X

Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

entry callback If this callback is defined, all menu entry activation callbacks

are revectored to call back through this callback. If this
callback is NULL, the individual menu entry callbacks work
as usual. For this callback, the reason is
DwtCRActivate. This argument sets the
DwtNentryCallback attribute associated with
DwtMenuCreate.

help_callback Specifies the callback function or functions called when a

3-256 Subroutines

DwtRadioBox (3Dwt)

help request is made. This argument sets the

DwtNhelpCallback common widget attribute.
override_arglist

Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The radio box is a composite widget that contains multiple toggle button
widgets. The radio box arbitrates and ensures that only one toggle button is
on at any one given time. When calling DwtRadioBox, you set the radio
box widget attributes presented in the formal parameter list. For
DwtRadioBoxCreate, however, you specify a list of attribute name/value
pairs that represent all the possible radio box widget attributes. After you
create an instance of this widget, you can manipulate it using the appropriate
X intrinsics functions.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Set as large as necessary to
hold all child widgets

DwtNheight Dimension Set as large as necessary to
hold all child widgets

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

Subroutines 3—-257

DwtRadioBox (3Dwt)

DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

Menu Attributes

DwtNspacing
DwtNmarginHeight
DwtNmarginWidth
DwtNorientation
DwtNadjustMargin
DwtNentryBorder
DwtNmenuAlignment
DwtNentryAlignment
DwtNmenuPacking

DwtNmenuNumColumns
DwtNmenuRadio

3-258 Subroutines

Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap
Opaque *
unsigned char
DwtFontList
DwtCallbackPtr

Dimension
Dimension
Dimension
unsigned char
Boolean
short
Boolean
unsigned char
unsigned char

short
Boolean

Setting the sensitivity of the
radio box causes all widgets
contained in that radio box to
be set to the same sensitivity.

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown
The default XUI Toolkit font
NULL

Zero pixels

3 pixels

Three pixels
DwtOrientationVertical
True

Zero pixels

True
DwtAlignmentBeginning

DwtMenuPackingTight
(for all menu types except for
radio boxes)

DwtMenuPackingColumn
(for radio boxes)

One row or column
False

DwtNradiocAlwaysOne
DwtNmenulsHomogeneous

DwtNmenuEntryClass

DwtNmenuHistory
DwtNentryCallback
DwtNmenuHelpWidget
DwtNchangeVisAtts
DwtNmenuExtendLastRow

Boolean
Boolean

WidgetClass

Widget
DwtCallbackPtr
Widget

Boolean
Boolean

DwtRadioBox (3Dwt)

True (for radio boxes)
True

False

True (for radio boxes)

NULL
Radio boxes, however, default
to the togglebuttonwidgetclass.

Zero
NULL
NULL
True
True

Return Value

These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {

int reason;
XEvent *event;
Widget s_widget;
char *s_tag;
char *s_callbackstruct;

} DwtRadioBoxCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRValueChanged

DwtCRMap

DwtCRHelpRequested

The user activated the toggle button to
change state.

The radio box is about to be mapped.

The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding. The s_widget member is set to the ID of the activating
subwidget. The s_tag member is set to the tag supplied by the application
programmer when the subwidget callback function was specified. The

Subroutines 3-259

DwtRadioBox (3Dwt)

s_callbackstruct member is set to the subwidget’s callback structure.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-260 Subroutines

DwtReCopyToClipboard (3Dwt)

Name

DwtReCopyToClipboard — Copies a data item previously pased by name to
the clipboard.

Syntax

int DwtReCopyToClipboard(display, window, data_id,
buffer, length, private_id)
Display *display;
Window window:;
int data_id;
char *buffer;
unsigned long length;
int private_id;

Arguments
display Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.
window Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.
data_id Specifies an identifying number assigned to the data item that
uniquely identifies the data item and the format. This
number was assigned by DwtCopyToClipboard to the
data item.
buffer Specifies the buffer from which the clipboard copies the data.
length Specifies the number of bytes in the data item.
private_id Specifies the private data that the application wants to store
with the data item.
Description

The DwtReCopyToClipboard function copies the actual data for a data
item that was previously passed by name to the clipboard. Additional calls
to DwtReCopyToClipboard append new data to the existing data. This
function cannot be used to pass data by name.

Subroutines 3-261

DwtReCopyToClipboard (3Dwt)

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

DwtCopyToClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-262 Subroutines

Name

DwtRegisterClass(3Dwt) ()

DwtRegisterClass — Saves the information needed for DRM to access the
widget creation function for user-defined widgets.

Syntax

#include <X11/DwtAppl.h>
Cardinal DwtRegisterClass(class_code, class_name, create_name,

create_proc, class_record)

DRMType class_code;
String class_name;

String create_name;
Widget (* create_proc) ();
WidgetClass class_record,

Arguments

class_code

class_name

create_name

create_proc

class_record

Specifies the code name of the class. For all application-
defined widgets, this code name is DRMwcUnknown. For
all XUI Toolkit widgets, each code name begins with the
letters DRMwc. The code names for all application widgets
are defined in DRM.h.

Specifies the case-sensitive name of the class. The class
names for all XUI Toolkit widgets are defined in DRM. h.
Each class name begins with the letters DRMwcn.

Specifies the case-sensitive name of the low-level widget
creation function for the class. An example from the XUI
Toolkit is DwtLabelCreate. Arguments are
parent_widget, name, override_arglist, and
override_argcount.

For user-defined widgets, create_name is the creation
procedure in the UIL that defines this widget.

Specifies the address of the creation function that you named
in create_name.

Specifies a pointer to the class record.

Subroutines 3—-263

DwtRegisterClass(3Dwt) ()

Description

The DwtRegisterClass function allows DRM to access user-defined
widget classes. This function registers the necessary information for DRM to
create widgets of this class. You must call DwtRegisterClass prior to
fetching any user-defined class widget.

DwtRegisterClass saves the information needed to access the widget
creation function and to do type conversion of argument lists by using the
information in DRM databases.

Return Value
This function returns one of these status refurn constants:

DRMSuccess The function executed successfulily.
DRMFailure The allocation of the class descriptor failed.

3-264 Subroutines

DwtRegisterDRMNames (3Dwt)

Name

DwtRegisterDRMNames — Registers the values associated with the names
referenced in UIL (for example, UIL callback function names or UIL
identifier names).

Syntax

#include <X11/DwtAppl.h>

Cardinal DwtRegisterDRMNames(register_list, register_count)
DRMRegisterArglist register_list;
DRMCount register_count;

Arguments

register_list Specifies a list of name/value pairs for the names to be
registered. Each name is a case-sensitive, NULL-terminated
ASCII string. Each value is a 32-bit quantity, interpreted as
a procedure address if the name is a callback function, and
uninterpreted otherwise.

- register_count Specifies the number of entries in register_list.

Description

The DwtRegisterDRMNames function registers a vector of names and
associated values for access in DRM. The values can be callback functions,
pointers to user-defined data, or any other values. The information provided
is used to resolve symbolic references occurring in UID files to their run-time
values. For callbacks, this information provides the procedure address
required by the XUI Toolkit. For names used as identifiers in UIL, this
information provides any run-time mapping the application needs.

The names in the list are case-sensitive. The list can be either ordered or
unordered.

Callback functions registered through DwtRegisterDRMNames can be
either regular or creation callbacks. Regular callbacks have declarations
determined by XUI Toolkit and user requirements. Creation callbacks have
the same format as any other callback:

void CallBackProc(widget id, tag, callback_data)
Widget *widget_id;
Opaque tag;
DwtAnyCallbackStruct *callback_data;

Subroutines 3—265

DwtRegisterDRMNames (3Dwt)

widget_id Specifies the widget ID associated with the widget
performing the callback (as in any callback function).

tag Specifies the tag value (as in any callback function).

callback_data Specifies a widget-specific data structure. This data structure
has a minimum of two members: event and reason. The
reason member is always set to DwtCRCreate.

Note that the widget name and parent are available from the widget record
accessible through widget_id.
Return Value

This function returns one of these status return constants:

DRMSuccess The function executed successfully.
DRMFailure Memory allocation failed.

3-266 Subroutines

DwtResolvePartOffsets (3Dwt)

Name
DwtResolvePartOffsets — Allows writing of upward-compatible applications
and widgets.

Syntax

void DwtResolvePartOffsets(widget_class, offset)
WidgetClass widget _class;

DwtOffsetPtr * offset;
Arguments
widget class Specifies the widget class pointer for the created widget.
offset Specifies the offset record.
Description

The use of offset records requires one extra global variable per widget class.
The variable consists of a pointer to an array of offsets into the widget record
for each part of the widget structure. The DwtResolvePartOffsets
function allocates the offset records needed by an application to guarantee
upward-compatible applications and widgets. These offset records are used
by the widget to access all of the widget’s variables. A widget needs to take
the following steps:

] Instead of creating a resource list, the widget creates an offset resource
list. To help you accomplish this, use the DwtPartResource
structure and the DwtPartOffset macro. The
DwtPartResource data structure looks just like a resource list, but
instead of having one integer for its offset, it has two shorts. This gets
put into the class record as if it were a normal resource list. Instead of
using XtOffset for the offset, it uses DwtPartOffset.

. Instead of putting the widget size in the class record, the widget puts
the widget part in the same field.

. Instead of putting XtVersion in the class record, the widget puts
XtVersionDontCheck in the class record.

. The widget defines a variable to point to the offset record. This can be
part of the widget’s class record or a separate global variable.

] In class initialization, the widget calls DwtResolvePartOffsets,
passing it the offset address and the class record. This does several
things:

Subroutines 3—-267

DwtResolvePartOffsets (3Dwt)

. Adds the superclass (which, by definition, has already been
initialized) size field to the part size field.

Allocates an array based upon the number of superclasses.

. Fills in the offsets of all the widget parts with the appropriate
values, determined by examining the size fields of all superclass
records.

. Uses the part offset array to modify the offset entries in the

resource list to be real offsets, in place.

. Instead of accessing fields directly, the widget must always go through
the offset table. You will probably define macros for each field to
make this easier. Assume an integer field ‘‘xyz’’:

#define BarXyz(w) (*(int *) (({(char *) w) + offset[BarlIndex]
XtOffset (BarPart, xyz)))

The DwtField macro helps you access these fields. Because the
DwtPartOffset and DwtField macros concatenate arguments,
you must ensure there is no space before or after the part argument.
For example, the following do not work because of the space before or
after the part (Label) argument:

DwtField(w, offset, Label, text, char *)
DwtPartOffset (Label, text).

Therefore, you must not have any spaces before or after the part
(Label) argument, as illustrated here:

DwtField(w, offset,Label, text, char *)
See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-268 Subroutines

Name

DwtScale (3Dwt)

DwtScale, DwtScaleCreate — Creates a scale widget that allows an
application to display a scale for vernier control of a parameter while
displaying the current value and range.

Syntax

Widget DwtScale(parent widget, name, x, y,

width, height, scale_width, scale_height,
title, min_value, max_value, decimal_points,
value, orientation, callback,
drag_callback, help_callback)

Widget parent widget;

char *name;

Position x, y;

Dimension width, height;

Dimension scale_width, scale_height;

DwtCompString title;

int min_value, max_value;

int decimal_points;

int value;

unsigned char orientation;

DwtCallbackPtr callback, drag_callback, help_callback;

Widget DwtScaleCreate (parent _widget, name,

override_arglist, override_argcount)
Widget parent_widget;
char *name;
ArgList override_arglist;
int override_argcount,

Arguments

parent_widget Specifies the parent widget ID.

name Specifies the name of the created widget.

X

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of

Subroutines 3—269

DwtScale (3Dwt)

width

height

scale_width

scale_height

title

min_value

max_value

decimal_points

value

orientation

3—270 Subroutines

the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the width of the widget window. (The window
width is calculated based on the scale width, the label widths,
and orientation.) This argument sets the DwtNwidth core
widget attribute.

Specifies the height of the widget window. (The window
height is calculated based on the scale height, the labels, and
orientation.) This argument sets the DwtNheight core
widget attribute.

Specifies the width of the scale, excluding the scale labels.
This argument sets the DwtNscaleWidth attribute
associated with DwtScaleCreate.

Specifies the height of the scale, excluding the scale labels.
This argument sets the DwtNscaleHeight attribute
associated with DwtScaleCreate.

Specifies the title text string to appear in the scale window
widget. This argument sets the DwtNtitle attribute
associated with DwtScaleCreate.

Specifies the value represented by the top or left end of the
scale. This argument sets the DwtNminValue attribute
associated with DwtScaleCreate.

Specifies the value represented by the bottom or right end of
the scale. This argument sets the DwtNmaxValue attribute
associated with DwtScaleCreate.

Specifies the number of decimal points to shift the current
slider value for display of the next slider position. This
argument sets the DwtNdecimalPoints attribute
associated with DwtScaleCreate.

Specifies the current slider position along the scale (the value
selected by the user). This argument sets the DwtNvalue
attribute associated with DwtScaleCreate.

Specifies whether the scale is displayed vertically or
horizontally. You can pass
DwtOrientationHorizontal or
DwtOrientationVertical. This argument sets the
DwtNorientation attribute associated with
DwtScaleCreate.

DwtScale (3Dwt)

callback Specifies the callback function or functions called back when
the value of the scale changes. This argument sets the
DwtNvalueChangedCallback attribute associated with
DwtScaleCreate.

drag_callback Specifies the callback function or functions called when the
user is dragging the scale slider. For this callback, the reason
is DwtCRDrag. This argument sets the
DwtNdragCallback attribute associated with
DwtScaleCreate.

help _callback Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtScale and DwtScaleCreate functions create an instance of
the scale widget and return its associated widget ID. The scale widget is a
primitive widget figure that allows the application to display a scale for
vernier control of a specific parameter by the user. The user moves or drags
a slider, which is part of the scale widget, and places the slider at a position
representing the desired value. The scale may have labeled text at any
number of points identifying the values corresponding to the points. The
scale can be made insensitive and used as an output value indicator only (for
example, a thermometer or percent completion indicator).

The application passes lower and upper values for the scale as integers and
can (optionally) indicate a decimal point position. For example, a
DwtNminValue of 100, a DwtNmaxValue of 10000, and a
DwtNdecimalPoints of 2 would produce a scale from 1.00 to 100.00.
Possible values returned from this example could be 230 or 5783.

Scale widget labels are provided by its children. The labels can be any
widgets created using the scale widget as the parent.

Subroutines 3-271

DwiScale (3Dwt)
Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwEtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Calculated based on scale
width, the label widths, and
the orientation

DwtNheight Dimension Calculated based on scale
height, the label widths, and
the orientation

DwtNborderWidth Dimension zero pixels

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

DwtNaccelerators XtTranslations NULL

DwtNdepth int Depth of the parent window

DwtNtranslations XtTranslations NULL

DwtNmappedWhenManaged Boolean True

DwtNscreen Screen * The parent screen

DwtNdestroyCallback DwtCallbackPtr NULL

Common Attributes

DwtNforeground Pixel Default foreground color

DwtNhighlight Pixel Defauit foreground color

DwtNhighlightPixmap Pixmap NULL

DwtNuserData Opaque * NULL

DwtNdirectionRToL unsigned char DwtDirectionRightDown

DwtNfont DwtFontList The default XUI Toolkit font

DwtNhelpCallback DwtCallbackPtr NULL

3-272 Subroutines

DwtScale (3Dwt)

Widget-Specific Attributes

Attribute Name Data Type Default
DwtNvalue int ZEero
DwtNtitle DwtCompString Scale name
DwtNorientation unsigned char DwtOrientationHorizontal
DwtNscaleWidth Dimension 100 pixels
DwtNscaleHeight Dimension 20 pixels
DwtNminValue int Zero
DwtNmaxValue int 100
DwtNdecimalPoints short Zero
DwtNshowValue Boolean True
DwtNdragCallback DwtCallbackPtr NULL
DwtNvalueChangedCallback DwtCallbackPtr NULL

DwtNvalue Specifies the current slider position along the scale
(the value selected by the user).

DwtNtitleType Specifies the title type. You can pass
DwtCString or DwtPixmap.

DwtNtitle Specifies the title text string to appear in the scale
window widget.

DwtNorientation Specifies whether the scale is displayed vertically or
horizontally. You can pass
DwtOrientationHorizontal or
DwtOrientationVertical.

DwtNscaleWidth Specifies the thickness in pixels of the scale itself,
not counting the labels.

DwtNscaleHeight Specifies the height of the scale, excluding the scale
labels.

DwtNminValue Specifies the value represented by the top or left end
of the scale.

DwtNmaxValue Specifies the value represented by the bottom or right

end of the scale.

DwtNdecimalPoints
Specifies the number of decimal points to shift the
current slider value for display of the next slider
position.

Subroutines 3—-273

DwtScale (3Dwt)

DwtNshowValue Specifies a boolean value that, when True, states
that the current value of the slider label string will be
displayed next to the slider.

DwtNdragCallback
Specifies the callback function or functions called
when the user is dragging the scale slider. For this
callback, the reason is DwtCRDrag.

DwtNvalueChangedCallback
Specifies the callback function or functions called
when the scale value was changed. For this callback,
the reason is DwtCRValueChanged.

Return Value
These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct
int reason;
XEvent *event;
int value;

} DwtScaleCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:
DwtCRValueChanged The user moved the slider in the scale with

drag or click.

DwtCRDrag The user is dragging the slider.

DwtCRHelpRequested The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

The value member is set to the current value of the scale.

3-274 Subroutines

DwtScale (3Dwt)

See Also

DwtScaleGetSlider (3Dwt), DwtScaleSetSlider (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-275

DwtScaleGetSlider (3Dwt)

Name
DwtScaleGetSlider — Gets the current value of the slider position displayed in
the scale.
Syntax
void DwtScaleGetSlider(widget, value_return)
Widget widget;
int *value_return;
Arguments
widget Specifies the scale widget ID.

value_return Returns the current slider position value.

Description

The DwtScaleGetSlider function returns the current slider position
value displayed in the scale for the application.

See Also

DwtScaleSetSlider (3Dwt), DwtScale (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-276 Subroutines

DwtScaleSetSlider (3Dwt)

Name

DwtScaleSetSlider — Sets or changes the current value of the slider position
displayed in the scale.

Syntax
void DwtScaleSetSlider(widget, value)
Widget widget;
int value;
Arguments
widget Specifies the scale widget ID.
value Specifies the current slider position along the scale (the value
selected by the user). This argument sets the DwtNvalue
attribute associated with DwtScaleCreate.
Description

The DwtScaleSetSlider function sets or changes the current slider
position value within the scale widget display for the application.

See Also

DwtScaleGetSlider (3Dwt), DwtScale (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-277

DwtScrollBar (3Dwt)

Name

DwtScrollBar, DwtScrollBarCreate — Creates a scroll bar widget for the
application to display and process scroll bar screen operations.

Syntax

Widget DwtScrollBar(parent_widget, name, x, y,

width, height, inc, page_inc,
shown, value, min_value, max_value,
orientation, callback, help_. callback,
unit_inc_callback, unit_dec_callback,
page_inc_callback, page_ dec callback,
fo_top . callback, to_bottom callback)
drag_callback)

Widget parent_widget;

char *name;

Position x, y;

Dimension width, height;

int inc, page_inc;

int shown;

int value;

int min_value, max_value;

int orientation;

DwtCallbackPtr callback, help_callback;

DwtCallbackPtr unit_inc_callback, unit_dec_callback;

DwtCallbackPtr page_inc_callback, page_ dec_callback;

DwtCallbackPtr to_top callback, to_bottom callback

DwtCallbackPtr drag_callback;

Widget DwtScrollBarCreate (parent_widget, name,
override_arglist, override_argcount)
Widget parent_widget;
char *name;
ArgList override_arglist;
int override_argcount;

Arguments
parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.
X Specifies the placement, in pixels, of the left side of the

3-278 Subroutines

width
height

inc

page_inc

shown

value

min_value

max_value

orientation

DwtScrollBar (3Dwt)

widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the width of the widget window. This argument
sets the DwtNwidth core widget attribute.

Specifies the height of the widget window. This argument
sets the DwtNheight core widget attribute.

Specifies the amount of button increment and decrement. If
this argument is nonzero, the scroll bar widget automatically
adjusts the slider when an increment or decrement action
occurs. This argument sets the DwtNinc attribute
associated with DwtScrollBarCreate.

Specifies the amount of page increment and decrement. If
this argument is nonzero, the scroll bar widget automatically
adjusts the slider when an increment or decrement action
occurs. This argument sets the DwtNpageInc attribute
associated with DwtScrollBarCreate.

Specifies the size of the slider as a value between zero and
the absolute value of DwtNmaxValue minus
DwtNminValue. The size of the slider varies, depending
on how much of the slider scroll area it represents. This
argument sets the DwtNshown attribute associated with
DwtScrollBarCreate.

Specifies the scroll bar’s top thumb position between
DwtNminValue and DwtNmaxValue. This sets the
DwtNvalue attribute associated with
DwtScrollBarCreate.

Specifies the scroll bar’s minimum value. This argument sets
the DwtNminValue attribute associated with
DwtScrollBarCreate.

Specifies the scroll bar’s maximum value. This argument
sets the DwtNmaxValue attribute associated with
DwtScrollBarCreate.

Specifies whether the scroll bar is displayed vertically or

Subroutines 3—-279

DwtScroliBar (3Dwt)

callback

help_callback

horizontally. You can pass
DwtOrientationHorizontal or
DwtOrientationVertical. This argument sets the
DwtNorientation attribute associated with
DwtScrollBarCreate.

Specifies the callback function or functions called back when
the value of the scroll bar changes. This argument sets the
DwtNvalueChangedCallback attribute associated with
DwtScrollBarCreate.

Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

unit_inc_callback

Specifies the callback function or functions called when the
user selected the down or right unit scroll function. For this
callback, the reason is DwtCRUnitInc. This argument
sets the DwtNunitIncCallback attribute associated
with DwtScrollBarCreate.

unit_dec_callback

Specifies the callback function or functions called when the
user selected the above or left unit scroll function. For this
callback, the reason is DwtCRUnitDec. This argument
sets the DwtNunitDecCallback attribute associated
with DwtScrollBarCreate.

page_inc_callback

Specifies the callback function or functions called when the
user selected the below or right page scroll function. For this
callback, the reason is DwtCRPageInc. This argument
sets the DwtNpageIncCallback attribute associated
with DwtScrollBarCreate.

page_dec_callback

Specifies the callback function or functions called when the
user selected the above or left page scroll function. For this
callback, the reason is DwtCRPageDec. This argument
sets the DwtNpageDecCallback attribute associated
with DwtScrollBarCreate.

to_top_callback

3-280 Subroutines

Specifies the callback function or functions called when the
user selected the current line to top scroll function. For this

DwtScroliBar (3Dwt)

callback, the reason is DwtCRToTop. The scroll bar does
not automatically change the scroll bar’s DwtNvalue for
this callback. This argument sets the
DwtNtoTopCallback attribute associated with
DwtScrollBarCreate.

to_bottom_callback
Specifies the callback function or functions called when the
user selected the current line to bottom scroll function. For
this callback, the reason is DwtCRToBottom. The scroll
bar does not automatically change the scroll bar’s
DwtNvalue for this callback. This argument sets the
DwtNtoBottomCallback attribute associated with
DwtScrollBarCreate.

drag_callback Specifies the callback function or functions called when the
user is dragging the scroll bar slider. For this callback, the
reason is DwtCRDrag. This argument sets the
DwtNdragCallback attribute associated with
DwtScrollBarCreate.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtScrollBar and DwtScrollBarCreate functions create an
instance of a scroll bar widget and return its associated widget ID. The scroll
bar widget is a screen object that the application or user uses to scroll
through display data too large for the screen. This widget consists of two
stepping arrows at either end of an elongated rectangle called the scroll
region. The scroll region is overlaid with a slider bar (thumb) that is
adjusted in size and position (thumb shown) as scrolling occurs using the
function attributes. The stepping arrows and the exposed scroll areas behind
the slider are the scroll activator objects providing the user interface syntax
““feel.”’

If the default core widget attributes DwtNwidth or DwtNheight (0) are
used, the scroll bar is set to the DwtNheight of the parent window
(vertical) or to the DwtNwidth of the parent window (horizontal). If the
default core widget attributes DwtNx or DwtNy (0) are used, the scroll bar
is set to the right of the parent window (vertical) or to the bottom of the

Subroutines 3—281

DwtScrollBar (3Dwt)

parent window (horizontal). This is also true if you specify DwtNwidth,
DwtNheight, DwtNx, or DwtNy in the call to XtSetValues.

Note that the DwtNtoTopCallback and DwtNtoBottomCallback
callbacks do not automatically set the thumb as the other callbacks do.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension For vertical scroll bars, 17
pixels.
For horizontal scroll bars, the
width of the parent minus 17
pixels.

DwtNheight Dimension For horizontal scroll bars, 17
pixels.
For vertical scroll bars, the
height of the parent minus 17
pixels.

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

DwtNancestorSensitive Boolean The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

DwtNaccelerators XtTranslations NULL

DwtNdepth int Depth of the parent window

DwtNtranslations XtTranslations NULL

DwtNmappedWhenManaged Boolean True

DwtNscreen Screen * The parent screen

DwtNdestroyCallback DwtCallbackPtr NULL

3-282 Subroutines

Common Attributes

DwtScroliBar (3Dwt)

DwtNforeground Pixel Default foreground color
DwtNhighlight Pixel Default foreground color
DwtNhighlightPixmap Pixmap NULL
DwtNuserData Opaque * NULL
DwtNdirectionRToL unsigned char DwtDirectionRightDown
DwtNfont NOT SUPPORTED
DwtNhelpCallback DwtCallbackPtr NULL
Widget-Specific Attributes
Attribute Name Data Type Default
DwtNvalue int Zero
DwtNminValue int Zero
DwtNmaxValue int 100
DwtNorientation unsigned char DwtOrientationVertical
DwtNtranslationsl XtTranslations NULL
DwtNtranslations2 XtTranslations NULL
DwtNshown int 10 units
DwtNinc int 10 units
DwtNpageInc int 10 units
DwtNvalueChangedCallback DwtCallbackPtr NULL
DwtNunitIncCallback DwtCallbackPtr NULL
DwtNunitDecCallback DwtCallbackPtr NULL
DwtNpageIncCallback DwtCallbackPtr NULL
DwtNpageDecCallback DwtCallbackPtr NULL
DwtNtoTopCallback DwtCallbackPtr NULL
DwtNtoBottomCallback DwtCallbackPtr NULL
DwtNdragCallback DwtCallbackPtr NULL
DwtNshowArrows Boolean True
DwtNvalue Specifies the scroll bar’s top thumb position between
DwtNminValue and DwtNmaxValue. This
attribute also appears as a member in
DwtScrollBarCallbackStruct.
DwtNminValue Specifies the scroll bar’s minimum value.
DwtNmaxValue Specifies the scroll bar’s maximum value.
DwtNorientation Specifies whether the scroll bar is displayed

vertically or horizontally. You can pass

Subroutines 3—283

DwtScroliBar (3Dwt)

DwtOrientationHorizontal or
DwtOrientationVertical.

DwtNtranslationsl
Specifies the translation table for events after being
parsed by the X intrinsics function
XtParseTranslationTable for the decrement
button.

DwtNtranslations?2
Specifies the translation table for events after being
parsed by the X intrinsics function
XtParseTranslationTable for the increment
button.

DwtNshown Specifies the size of the slider as a value between
zero and the absolute value of DwtNmaxValue
minus DwtNminValue. The size of the slider
varies, depending on how much of the slider scroll
area it represents.

DwtNinc Specifies the amount of button increment and
decrement. If this argument is nonzero, the scroll bar
widget automatically adjusts the slider when an
increment or decrement action occurs.

DwtNpagelInc Specifies the amount of page increment and
decrement. If this argument is nonzero, the scroll bar
widget automatically adjusts the slider when an
increment or decrement action occurs.

DwtNvalueChangedCallback
Specifies the callback function or functions called
when the value of the scroll bar slider was changed.
For this callback, the reason is
DwtCRValueChanged.

DwtNunitIncCallback
Specifies the callback function or functions called
when the user selected the down or right unit scroll
function. For this callback, the reason is
DwtCRUnitInc.

3-284 Subroutines

DwtScroliBar (3Dwt)

DwtNunitDecCallback
Specifies the callback function or functions called
when the user selected the above or left unit scroll
function. For this callback, the reason is
DwtCRUnitDec.

DwtNpageIncCallback
Specifies the callback function or functions called
when the user selected the below or right page scroll
function. For this callback, the reason is
DwtCRPageInc.

DwtNpageDecCallback
Specifies the callback function or functions called
when the user selected the above or left page scroll
function. For this callback, the reason is
DwtCRPageDec.

DwtNtoTopCallback
Specifies the callback function or functions called
when the user selected the current line to top scroll
function. For this callback, the reason is
DwtCRToTop. The scroll bar does not
automatically change the scroll bar’s DwtNvalue
for this callback.

DwtNtoBottomCallback
Specifies the callback function or functions called
when the user selected the current line to bottom
scroll function. For this callback, the reason is
DwtCRToBottom. The scroll bar does not
automatically change the scroll bar’s DwtNvalue
for this callback.

DwtNdragCallback
Specifies the callback function or functions called
when the user is dragging the scroll bar slider. For
this callback, the reason is DwtCRDrag. The scroll
bar does not automatically change the scroll bar’s
DwtNvalue for this callback.

DwtNshowArrows Specifies a boolean value that, when True,
indicates there are arrows. If False, there are no
arrows.

Subroutines 3—285

DwtScrollBar (3Dwt)

Return Value

These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {
int reason;
XEvent *event;
int value;
int pixel;

} DwtScrollBarCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRValueChanged The user changed the value of the scroll bar
slider.

DwtCRUnitInc The user selected the down or right unit
- scroll function.

DwtCRUnitDec The user selected the up or left unit scroll
function.
DwtCRPageDec The user selected the above or left page

scroll function.

DwtCRPageInc The user selected the below or right page
scroll function.

DwtCRToTop The user selected the current line to top
scroll function.

DwtCRToBottom The user selected the current line to bottom
scroll function.

DwtCRDrag The user is dragging the scroll bar slider.

DwtCRHelpRequested The user selected help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on

3-286 Subroutines

DwtScroliBar (3Dwt)

XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding. The value member is set to the slider’s current value and
maps to the DwtNvalue attribute. The pixel member is set to the pixel
value from the top right of the scroll bar where the event occurred. This
pixel value is used for the DwtNtoTopCallback and
DwtNtoBottomCallback attributes.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-287

DwtScroliBarGetSlider (3Dwt)

Name

DwtScrollBarGetSlider — Retrieves the current size and position parameters
of the slider in the scroll bar widget.

Syntax

void DwtScrollBarGetSlider(widget, value_return, shown_return,
inc_return, pageinc_return)
Widget widget;
int *value_return;
int *shown_return;
int *inc_return;
int *pageinc_return;

Arguments

widget Specifies the scroll bar widget ID.

value_return Returns the scroll bar’s top thumb (slider) position between
the DwtNminValue and DwtNmaxValue attributes to
the scroll bar widget.

shown_return Returns the size of the slider as a value between zero and the
absolute value of DwtNmaxValue minus
DwtNminValue. The size of the slider varies, depending
on how much of the slider scroll area it represents.

inc_return Returns the amount of button increment and decrement.

pageinc_return Returns the amount of page increment and decrement.

Description

The DwtScrollBarGetSlider function returns the currently displayed
size/position values of the slider in the scroll bar widget. The scroll region is
overlaid with a slider bar that is adjusted in size and position using the main
scroll bar or set slider function attributes. The stepping arrows and the slider
are the scroll activator objects providing the user interface syntax ‘‘feel.”’

See Also

DwtScrollBarSetSlider (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-288 Subroutines

DwtScrollBarSetSlider (3Dwt)

Name

DwtScrollBarSetSlider — Sets or changes the current size/position parameters
of the slider in the scroll bar widget.

Syntax

void DwtScrollBarSetSlider(widget, value, shown, inc,
page_inc, notify)
Widget widget;
int value;
int shown;
int inc, page_inc;
Boolean notify;

Arguments

widget Specifies the scroll bar widget ID.

value Specifies the scroll bar’s top thumb (slider) position between
DwtNminValue and DwtNmaxValue. The attribute
name associated with this argument is DwtNvalue.

shown Specifies the size of the slider as a value between zero and
the absolute value of DwtNmaxValue minus
DwtNminValue. The size of the slider varies, depending
on how much of the slider scroll area it represents. This
argument sets the DwtNshown attribute associated with
DwtScrollBarCreate.

inc Specifies the amount of button increment and decrement. If
this argument is nonzero, the scroll bar widget automatically
adjusts the slider when an increment or decrement action
occurs. This argument sets the DwtNinc attribute
associated with DwtScrollBarCreate.

page_inc Specifies the amount of page increment and decrement. If
this argument is nonzero, the scroll bar widget automatically
adjusts the slider when an increment or decrement action
occurs. This argument sets the DwtNpageInc attribute
associated with DwtScrollBarCreate.

notify Specifies a boolean value that, when True, indicates a
change in the scroll bar value and that the scroll bar widget
automatically activates the

Subroutines 3—289

DwtScrollBarSetSlider (3Dwt)

DwtNvalueChangedCallback with the recent change.
If False, no change in the scroll bar’s value has occurred
and DwtNvalueChangedCallback is not activated.

Description

The DwtScrollBarSetSlider function sets or changes the currently
displayed scroll bar widget slider for the application. The scroll region is
overlaid with a slider bar that is adjusted in size and position using the main
scroll bar or set slider function attributes. The stepping arrows and the slider
are the scroll activator objects providing the user interface syntax ‘‘feel.’”’

See Also

DwtScrollBarGetSlider (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-290 Subroutines

DwtScrollWindow (3Dwt)

Name

DwtScrollWindow, DwtScrollWindowCreate — Creates a scroll window
widget for simple applications in the main window widget work area.

Syntax

Widget DwtScrollWindow (parent_widget, name, x, y,
width, height)
Widget parent_widget;
char *name;
Position x, y;
Dimension width, height;

Widget DwtScrollWindowCreate (parent_widget, name,
override_arglist,
override_argcount)

Widget parent widget;
char *nname;

ArgList override_arglist;
int override_argcount;

Arguments
parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.
X Specifies the placement, in pixels, of the left side of the

widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

y Specifies, in pixels, the placement of the top of the widget
window relative to the inner upper left corner of the parent
window. This argument sets the DwtNy core widget
attribute.

width Specifies in pixels the width of the widget window. This
argument sets the DwtNwidth core widget attribute.

height Specifies in pixels the height of the widget window. This
argument sets the DwtNheight core widget attribute.

override_arglist
Specifies the application override argument list.

Subroutines 3-291

DwtScrollWindow (3Dwt)

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtScrollWindow and DwtScrollWindowCreate functions
create an instance of a scroll window widget and return its associated widget
ID. This widget provides a more direct XUI interface for applications with
scroll bars. When calling DwtScrollWindow, you set the scroll window
widget attributes presented in the formal parameter list. For
DwtScrollWindowCreate, you specify a list of attribute name/value
pairs that represent all the possible scroll window widget attributes.

The DwtScrollWindow and DwtScrollWindowCreate functions
create a composite widget that can contain vertical and horizontal scroll bar
widgets and any widget as the window region. Scroll bar positioning and
scroll bar slider sizes are automatically maintained. The scroll window
widget simplifies programming by allowing you to create an application with
scroll bars directly in the scroll window widget work area.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Widget-specific

DwtNheight Dimension Widget-specific

DwtNborderWidth Dimension One pixel

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

3-292 Subroutines

DwtNsensitive

DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

DwtScrollWindow (3Dwt)

Boolean

Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap

Opaque *
unsigned char

NOT SUPPORTED
NOT SUPPORTED

True

Setting the sensitivity of the
scroll window causes all
widgets contained in that
window to be set to the same
sensitivity as the scroll
window.

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown

Widget-Specific Attributes

You can set the following widget-specifc attributes in the override_arglist:

Attribute Name Data Type Default
DwtNhorizontalScrollBar Widget NULL
DwtNverticalScrollBar Widget NULL
DwtNworkWindow Widget NULL
DwtNshownValueAutomaticHoriz Boolean True
DwtNshownValueAutomaticVert Boolean True

DwtNhorizontalScrollBar
Specifies the scroll bar widget ID for the horizontal
scroll bar to be associated with the scroll window
widget. You can set this ID only after creating an

Subroutines 3—293

DwtScrollWindow (3Dwt)

instance of the main window widget.

DwtNverticalScrollBar
Specifies the scroll bar widget ID for the vertical
scroll bar to be associated with the scroll window
widget. You can set this ID only after creating an
instance of the main window widget.

DwtNworkWindow Specifies the widget ID for the work window to be
associated with the scroll window widget. You can
set this ID only after creating an instance of the main
window widget.

DwtNshownValueAutomaticHoriz
Specifies a boolean value that, when True,
indicates that DwtScrollWindow automatically
sets the value for the DwtNshown attribute for the
specified horizontal scroll bar widget.

DwtNshownValueAutomaticVert
Specifies a boolean value that, when True,
indicates that DwtScrollWindow automatically
sets the value for the DwtNshown attribute for the
specified vertical scroll bar widget.

Return Value
These functions return the ID of the created widget.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-294 Subroutines

Name

DwtScrollWindowSetAreas (3Dwt)

DwtScrollWindowSetAreas — Sets up or adds the window region, and the
horizontal or vertical scroll bar widgets to the scroll window widget.

Syntax

void DwtScrollWindowSetAreas(widget, horizontal_scroll_bar,

vertical_scroll_bar, work_region)

Widget widget;

Widget horizontal_scroll_bar;
Widget vertical_scroll_bar;
Widget work_region;

Arguments

widget

Specifies the scroll window widget ID.

horizontal_scroll_bar

Specifies the scroll bar widget ID for the horizontal scroll bar
to be associated with the scroll window widget. You can set
or specify this ID only after creating an instance of the main
window widget. The attribute name associated with this
argument is DwtNhorizontalScrollBar.

vertical_scroll_bar

work_region

Description

Specifies the scroll bar widget ID for the vertical scroll bar to
be associated with the scroll window widget. You can set or
specify this ID only after creating an instance of the main
window widget. The attribute name associated with this
argument is DwtNverticalScrollBar.

Specifies the widget ID for the window to be associated with
the scroll window work area. You can set or specify this ID
only after you create an instance of the main window widget.

The DwtScrollWindowSetAreas function adds or changes a window
work region and a horizontal or vertical scroll bar widget to the scroll
window widget for the application. You must call this function before the
scroll window widget is realized, that is, before calling the X intrinsics
function XtRealizeWidget. Each widget is optional and may be passed

as NULL.

Subroutines 3—295

DwtScrollWindowSetAreas (3Dwt)

See Also

DwtScrollWindow (3Dwt), DwtWindow (3Dwt),
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

3-296 Subroutines

Name

DwtSelection (3Dwt)

DwtSelection, DwtSelectionCreate — Creates a selection box widget.

Syntax

Widget DwtSelection(parent_widget, name, x, y,

title, value, items,
item_count, visible_items_count, style,
default_position, callback, help_callback)
Widget parent_widget;
char * name;
Position x, y;
DwtCompString title;
DwtCompString value;
DwtCompString *items;
int item_count, visible_items_count;
int style;
Boolean default position;;
DwtCallbackPtr callback, help_callback;

Widget DwtSelectionCreate (parent_widget, name,

override_arglist, override_argcount)
Widget parent widget;
char *name;
ArglList override arglist;
int override_argcount;

Arguments
parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.
b Specifies the placement, in pixels, of the left side of the

title

widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the text that appears in the banner of the selection

Subroutines 3—-297

DwtSelection (3Dwt)

value

items

item_count

box. This argument sets the DwtNtitle attribute
associated with DwtDialogBoxCreate.

Specifies the text in the text edit field. This argument sets
the DwtNvalue attribute associated with
DwtSelectionCreate.

Specifies the items in the selection widget’s list box. This
argument sets the DwtNitems attribute associated with
DwtSelectionCreate.

Specifies the number of items in the selection widget’s list
box. This argument sets the DwtNitemsCount associated
with DwtSelectionCreate.

visible_items_count

style

default_position

callback

help_callback

Specifies the number of items displayed in the selection
widget’s list box. This argument sets the
DwtNvisibleItemsCount attribute associated with
DwtSelectionCreate.

Specifies the style of the pop-up dialog box widget. You can
pass DwtModal (modal) or DwtModeless (modeless).
This argument sets the DwtNstyle attribute associated
with DwtDialogBoxPopupCreate.

Specifies a boolean value that, when True, causes DwtNx
and DwtNy to be ignored and forces the default widget
position. The default widget position is centered in the
parent window. If False, the specified DwtNx and
DwtNy attributes are used to position the widget. This
argument sets the DwtNdefaultPosition attribute
associated with DwtDialogBoxCreate.

Specifies the callback function or functions called when the
user makes or cancels a selection, or there is no match for the
item selected by the user. This argument sets the
DwtNactivateCallback, DwtNcancelCallback,
and DwtNnoMatchCallback attributes associated with
DwtSelectionCreate.

Specifies the callback function or functions called when a
help request is made. This argument sets the
DwtNhelpCallback common widget attribute.

override_arglist

3-298 Subroutines

DwtSelection (3Dwt)

Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtSelection and DwtSelectionCreate functions create an
instance of a selection box widget and return its associated widget ID.

When calling DwtSelection, you set the selection box widget attributes
presented in the formal parameter list. For DwtSelectionCreate,
however, you specify a list of attribute name/value pairs that represent all the
possible selection box widget attributes. The selection widget is a pop-up
dialog box containing a label widget, a text entry widget holding the current
value, a list box displaying the current item list, and Ok and Cancel push
buttons.

When realized, the selection widget displays the item list passed by the
caller. The current value is displayed in the text entry field. Users make
selections by clicking the mouse in the list box or by typing item names in
the text entry field. The selection widget does not do file searches. To
perform file searches, use DwtFileSelectionCreate.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Centered in the parent window
DwtNy Position Centered in the parent window
DwtNwidth Dimension The width of the list box, plus

the width of the push buttons,
plus three times
DwtNmarginWidth. The
list box will grow to
accommodate items wider
than the title.

DwtNheight Dimension The height of the list box, plus
the height of the text edit
field, plus the height of the
label, plus three times
DwtNmarginHeight.

DwtNborderWidth Dimension One pixel

Subroutines 3—-299

DwtSelection (3Dwt)

DwtNborder
DwtNborderPixmap
DwtNbackground
DwtNbackgroundPixmap
DwtNcolormap
DwtNsensitive
DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Dialog Pop-Up Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNfont
DwtNhelpCallback
DwtNdirectionRToL
DwtNunits

DwtNstyle
DwtNfocusCallback
DwtNtextMergeTranslations
DwtNmarginWidth
DwtNmarginHeight
DwtNdefaultPosition
DwtNchildOverlap
DwtNresize
DwtNnoResize

DwtNtitle
DwtNmapCallback
DwtNunmapCallback
DwtNtakeFocus

3-300 Subroutines

Pixel
Pixmap
Pixel
Pixmap
Colormap
Boolean
Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap
Opaque *
DwtFontList
DwtCallbackPtr
unsigned char
unsigned char
unsigned char
DwtCallbackPtr
XtTranslations
Dimension
Dimension
Boolean
Boolean

unsigned char
Boolean

PwtCompString
DwtCallbackPtr
DwtCallbackPtr
Boolean

Default foreground color
NULL

Default background color
NULL

Default color map

True

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window
NULL

True

The parent screen

NULL

Default foreground color
Default foreground color
NULL

NULL

The default XUI Toolkit font
NULL
DwtDirectionRightDown
DwtFontUnits
DwtModal

NULL

NULL

5 pixels

5 pixels

False

True
DwtResizeGrowOnly

True (that is, no window
manager resize button)

"Open"
NULL
NULL
True for modal dialog box

DwiSelection (3Dwt)

False for modeless dialog

box
DwtNautoUnmanage Boolean True
DwtNdefaultButton Widget NULL
DwtNcancelButton Widget NULL
Widget-Specific Attributes
Attribute Name Data Type Default
DwtNlabel DwtCompString "Items"
DwtNvalue DwtCompString "
DwtNokLabel DwtCompString "Ok"
DwtNcancelLabel DwtCompString "Cancel"
DwtNactivateCallback DwtCallbackPtr NULL
DwtNcancelCallback DwtCallbackPtr NULL
DwtNnoMatchCallback DwtCallbackPtr NULL
DwtNvisibleItemsCount int 8
DwtNitems DwtCompString * NULL
DwtNitemsCount int Zero
DwtNmustMatch Boolean False
DwtNselectionLabel DwtCompString "Selection”
DwtNlabel Specifies the label to appear above the list box
containing the items.
DwtNvalue Specifies the text in the text edit field.
DwtNselectionLabel
Specifies the label above the selection text entry
field.
DwtNokLabel Specifies the label for the Ok push button. If the

label is a NULL string, the button is not displayed.

DwtNcancelLabel Specifies the label for the Cancel push button. If the
label is a NULL string, the button is not displayed.

DwtNactivateCallback
Specifies the callback function or functions called
when the user makes a selection. For this callback,
the reason is DwtCRActivate.

DwtNcancelCallback
Specifies the callback function or functions called
when the user clicks on the Cancel button. For this

Subroutines 3—-301

DwitSelection (3Dwt)

callback, the reason is DwtCRCancel.

DwtNnoMatchCallback

Specifies the callback function or functions called
when the user’s selection does not have an exact
match with any items in the list box. This callback
is activated only if DwtNmustMatch is True.
For this callback, the reason is DwtCRNoMatch.

DwtNvisibleItemsCount

DwtNitems

DwtNitemsCount

DwtNmustMatch

Return Value

Specifies the number of items displayed in the
selection widget’s list box.

Specifies the items in the selection widget’s list box.

Specifies the number of items in the selection
widget’s list box.

Specifies a boolean value that, when True,
indicates that the selection widget checks whether the
user’s selection has an exact match in the list box. If
the selection does not have an exact match, the
DwtNnoMatchCallback is activated. If the
selection has an exact match, the
DwtNactivateCallback is activated.

These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {

int reason;

XEvent *event;
DwtCompString value;
int value_ len;

} DwtSelectionCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRActivate

3-302 Subroutines

The user activated the Ok push button or
double clicked on an item that has an exact
match in the list box.

DwtSelection (3Dwt)

DwtCRNoMatch The user activated the Ok push button or
double clicked on an item that does not
have an exact match in the list box.

DwtCRCancel The user activated the Cancel button.

DwtCRHelpRequested The user selected help somewhere in the
file selection box.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding. The value member is set to the current selection when the
callback occurred. The value_len member is set to the length of the selection
compound-string.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-303

DwtSeparator (3Dwt)

Name

DwtSeparator, DwtSeparatorCreate — Creates a separator widget for the
application to define a border between items in a display.

Syntax

Widget DwtSeparator(parent_widget, name, x, y, orientation)
Widget parent_widget;
char *name;
Position x, y;
unsigned char orientation;

Widget DwtSeparatorCreate (parent_widget, name,
override_arglist, override_argcount)
Widget parent_widget;
char *name;
ArgList override_arglist;
int override_argcount;

Arguments
parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.
X Specifies the placement, in pixels, of the left side of the

widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

y Specifies, in pixels, the placement of the upper left comer of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

orientation Specifies whether the separator is displayed vertically or
horizontally. You can pass
DwtOrientationHorizontal or
DwtOrientationVertical. This argument sets the
DwtNorientation attribute associated with
DwtSeparatorCreate.

A separator widget draws a centered single pixel line
between the appropriate margins. For example, a horizontal
separator draws a horizontal line from the left margin to the

3-304 Subroutines

DwtSeparator (3Dwt)

right margin. It is placed vertically in the middle of the
widget.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtSeparator and DwtSeparatorCreate functions create an
instance of the separator widget and return its associated widget ID. When
calling DwtSeparator, you set the widget attributes presented in the
formal parameter list. For DwtSeparatorCreate, however, you specify
a list of attribute name/value pairs that represent all the possible separator
widget attributes.

The separator widget is a screen object that allows the application to draw a
separator between items in a display. The separator widget draws horizontal
or vertical lines in inactive areas of a window (typically menus). Because a
separator widget does not support children, it always refuses geometry
requests. The separator widget does nothing on a resize by its parents.

Inherited Attributes

Attribute Nam:e Data Type Defaulit

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension 3 pixels

DwtNheight Dimension 3 pixels

DwtNborderWidth int Zero

DwtNborder Pixel Default foreground color

DwtNborderPixmap Pixmap NULL

DwtNbackground Pixel Default background color

DwtNbackgroundPixmap Pixmap NULL

DwtNcolormap Colormap Default color map

DwtNsensitive Boolean True

Subroutines 3-305

DwitSeparator (3Dwt)

DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Common Attributes

DwtNforeground
DwtNhighlight
DwtNhighlightPixmap
DwtNuserData
DwtNdirectionRToL
DwtNfont
DwtNhelpCallback

Label Attributes

DwtNlabelType
DwtNlabel
DwtNmarginWidth

DwtNmarginHeight

DwtNalignment
DwtNpixmap
DwtNmarginLeft
DwtNmarginRight
DwtNmarginTop
DwtNmarginBottom
DwtNconformToText

Boolean

XtTranslations
int

NOT SUPPORTED
Boolean

Screen *
DwtCallbackPtr

Pixel

Pixel

Pixmap

Opaque *
unsigned char
NOT SUPPORTED
NOT SUPPORTED

unsigned char
DwtCompString
Dimension

Dimension

unsigned char
Pixmap
Dimension
Dimension
Dimension
Dimension
Boolean

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL
Depth of the parent window

True
The parent screen
NULL

Default foreground color
Default foreground color
NULL

NULL
DwtDirectionRightDown

DwtCString
Widget name

Two pixels for text
Zero pixels for pixmap
Two pixels for text
Zero pixels for pixmap
DwtAlignmentCenter
NULL

Zero

Zero

Zero

Zero

True, if the widget is created
with a width and height of
zero

False, if the widget is
created with a non-zero width
and height

3-306 Subroutines

DwtSeparator (3Dwt)
Widget-Specific Attributes

Attribute Name Data Type Default

DwtNorientation unsigned char DwtOrientationHorizontal

DwtNorientation Specifies whether the separator is displayed vertically
or horizontally. You can pass
DwtOrientationHorizontal or
DwtOrientationVertical. A separator widget
draws a centered single pixel line between the
appropriate margins. For example, a horizontal
separator draws a horizontal line from the left margin
to the right margin. It is placed vertically in the
middle of the widget.

Return Value
These functions return the ID of the created widget.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-307

DwtSeparatorGadgetCreate (3Dwt)

Name
DwtSeparatorGadgetCreate — Creates a separator gadget.

Syntax

Widget DwtSeparatorGadgetCreate (parent_widget, name,
override_arglist,
override_argcount)

Widget parent widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.
name Specifies the name of the created widget.

override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtSeparatorGadgetCreate function creates an instance of the
separator gadget and returns its associated gadget ID. A separator gadget is
similar in appearance and semantics to a separator widget. Like all gadgets,
DwtSeparatorGadgetCreate does not have a window but uses the
window of the closest antecedent widget. Thus, the antecedent widget
provides all event dispatching for the gadget. This currently restricts gadgets
to being descendents of menu or dialog class (or subclass) widgets.

Inherited Attributes

Attribute Name Data Type Default

Rectangle Attributes

DwtNx Position Determined by the geometry
manager

3-308 Subroutines

DwtNy

DwtNwidth

DwtNheight
DwtNborderWidth
DwtNsensitive
DwtNancestorSensitive

DwtSeparatorGadgetCreate (3Dwt)

Position

Dimension
Dimension
Dimension
Boolean
Boolean

Determined by the geometry
manager

3 pixels

3 pixels

zero

True

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

Widget-Specific Attributes

Attribute Name

Data Type

Default

DwtNorientation

unsigned char

DwtOrientationHorizontal

DwtNorientation Specifies whether the separator is displayed vertically
or horizontally. You can pass
DwtOrientationHorizontal or
DwtOrientationVertical. A separator gadget
draws a centered single pixel line between the
appropriate margins. For example, a horizontal
separator draws a horizontal line from the left margin
to the right margin. It is placed vertically in the
middle of the gadget.

Return Value

This function returns the ID of the created widget.

Callback Information

There is no callback for this gadget.

See Also

Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-309

DwtStartCopyFromClipboard (3Dwt)

Name
DwtStartCopyFromClipboard — Indicates that the application is ready to start
copying data from the clipboard and locks the clipboard.

Syntax

int DwtStartCopyFromClipboard (display, window, time)
Display *display;
Window window;

Time time;
Arguments
display Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.
window Specifies the window ID that relates the application window
to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.
time Specifies the timestamping of the event that triggered the
copy.
Description

The DwtStartCopyFromClipboard function notifies the cut and paste
functions that the application is ready to start copying data from the
clipboard. DwtStartCopyFromClipboard locks the clipboard and
remains locked until you call DwtEndCopyFromClipboard.

After calling DwtStartCopyFromClipboard, an application can make
multiple calls to DwtCopyFromClipboard requesting data in one or
several formats. You specify the format by setting the format_name
argument to DwtCopyFromClipboard. Each call to
DwtCopyFromClipboard in a specified format results in data being
incrementally copied from the clipboard until all data with the specified
format has been copied. When all data in a specified format has been
successfully copied, DwtCopyFromClipboard returns
ClipboardSuccess. When more data remains to be copied in the
specified format, DwtCopyFromClipboard returns
ClipboardTruncate. An application can copy data in as many formats

3-310 Subroutines

DwtStartCopyFromClipboard (3Dwt)

as desired before calling DwtEndCopyFromClipboard.

It is recommended that any calls to inquire routines needed by the application
be made between the call to DwtStartCopyFromClipboard and the
call to DwtEndCopyFromClipboard. That way, the application does
not need to call DwtClipboardLock and DwtClipboardUnlock.

To perform cut and paste operations between your application and an
application using the ICCCM clipboard selection mechanism, you must use
DwtStartCopyToClipboard and provide a timestamping value for time,
not a CurrentTime value. Use of the value CurrentTime for time may
cause the ICCCM interface to fail.

Applications do not need to use DwtStartCopyFromClipboard and
DwtEndCopyFromClipboard, in which case
DwtCopyFromClipboard works as documented. However, using these
two functions allows incremental copying from the clipboard and ensures
ICCCM compatibility.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

DwtCopyFromClipboard (3Dwt), DwtEndCopyFromClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding
Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-311

DwtStartCopyToClipboard (3Dwt)

Name

DwtStartCopyToClipboard — Sets up storage and data structures to receive
clipboard data.

Syntax

int DwtStartCopyToClipboard(display, window, clip_label,
time, widget, callback, item_id)
Display *display;
Window window;
DwtCompString clip_label;
Time time;
Widget widget;
VoidProc callback;
long *item_id;

Arguments

display Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay. For
information on XOpenDisplay and the Display
structure, see the Guide to the Xlib Library: C Language
Binding.

window Specifies the window ID that relates the application window

to the clipboard. The same application instance should pass
the same window ID to each clipboard function that it calls.

clip_label Specifies the label to be associated with the data item. This
argument is used to identify the data item, for example, in a
clipboard viewer. An example of a label is the name of the
application that places the data in the clipboard.

time Specifies the timestamping of the event that triggered the
copy.

widget Specifies the ID of the widget that will receive messages
requesting data previously passed by name. This argument
must be present in order to pass data by name. Any valid
widget ID in your application can be used. All message
handling is done by the cut and paste functions.

callback Specifies the address of the callback function that is called
when the clipboard needs data that was originally passed by

3-312 Subroutines

DwtStartCopyToClipboard (3Dwt)

name. This is also the callback to receive the DELETE
message for items that were originally passed by name. This
argument must be present in order to pass data by name.

item_id Specifies the number assigned to this data item. The
application uses this number in calls to
DwtCopyToClipboard, DwtEndCopyToClipboard,
and DwtCancelCopyToClipboard.

Description

The DwtStartCopyToClipboard function sets up storage and data
structures to receive clipboard data. An application calls
DwtStartCopyToClipboard during a cut or copy operation. The data
item that these structures receive through calls to DwtCopyToClipboard
then becomes the next item to be pasted (the next-paste item) in the clipboard
after the call to DwtEndCopyToClipboard.

DwtStartCopyToClipboard is like DwtBeginCopyToClipboard
except that it has the time argument to support the ICCCM clipboard
selection mechanism. To perform cut and paste operations between your
application and an application using the ICCCM clipboard selection
mechanism, you must use DwtStartCopyToClipboard and provide a
timestamping value for time, not a CurrentTime value. Use of the value
CurrentTime for time may cause the ICCCM interface to fail.

The window and callback arguments must be present in order to pass data by
name.

The callback format is as follows:

function name(widget, data_id, private_id, reason)
Widget *widget;
int *data_id;
int *private_id;
int *reason;

widget Specifies the ID of the widget passed to
DwtStartCopyToClipboard.

data_id Specifies the identifying number returned by
DwtCopyToClipboard, which identifes the pass-by-name
data.

private_id Specifies the private information passed to
DwtCopyToClipboard.

reason Specifies the reason, which is either

Subroutines 3—-313

DwtStartCopyToClipboard (3Dwt)

DwtCRClipboardDataDelete or
DwtCRClipboardDataRequest.

Return Value
This function returns one of these status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard
was locked by another application. The
application can continue to call the function
with the same parameters until the
clipboard is unlocked. Optionally, the
application can ask if the user wants to
keep trying or to give up on the operation.

See Also

DwtCopyToClipboard (3Dwt), DwtEndCopyToClipboard (3Dwt),
DwtCancelCopyToClipboard (3Dwt), DwtBeginCopyToClipboard (3Dwt)
Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-314 Subroutines

Name

DwtSText(3Dwt)

DwtSText, DwtSTextCreate — Creates a simple text widget for the
application to display a single or multiline text field. The user can enter and
edit text in this field.

Syntax

Widget DwtSText(parent widget, name, x, y, cols, rows, value)
Widget parent_widget;
char *name;
Position x, y;
Dimension cols, rows;

char

*value;

Widget DwtSTextCreate (parent widget, name,

override_arglist, override_argcount)

Widget parent_widget;
char *name;

ArgList override_arglist;
int override_argcount;

Arguments

parent_widget Specifies the parent widget ID.

name

X

cols

rows

value

Specifies the name of the created widget.

Specifies the placement, in pixels, of the left side of the
widget window relative to the inner upper left corner of the
parent window. This argument sets the DwtNx core widget
attribute.

Specifies, in pixels, the placement of the upper left corner of
the widget window relative to the inner upper left corner of
the parent window. This argument sets the DwtNy core
widget attribute.

Specifies the width of the text window measured in character
spaces. 888 This argument sets the DwtNcols attribute
associated with DwtSTextCreate.

Specifies the height of the text window measured in character
heights or number of line spaces. This argument sets the
DwtNrows attribute associated with DwtSTextCreate.

Specifies the actual text to display. This argument sets the

Subroutines 3—315

DwtSText (3Dwt)

DwtNvalue attribute associated with DwtSTextCreate.
override_arglist
Specifies the application override argument list.

override_argcount
Specifies the number of attributes in the application override
argument list (override_arglist).

Description

The DwtSText and DwtSTextCreate functions create an instance of a
simple text widget and return its associated widget ID. When calling
DwtSText, you set the text widget attributes presented in the formal
parameter list. For DwtSTextCreate, however, you specify a list of
attribute name/value pairs that represent all the possible simple text widget
attributes.

The text widget enables the application to display a single or multiline field
of text for input and edit manipulation by the user. By default, the text
window grows or shrinks as the user enters or deletes text characters. Note
that the text window does not shrink below the initial size set at creation
time.

Inherited Attributes

Attribute Name Data Type Default

Core Attributes

DwtNx Position Determined by the geometry
manager

DwtNy Position Determined by the geometry
manager

DwtNwidth Dimension Set as large as necessary to
display the DwtNrows with
the specified
DwtNmarginWidth

DwtNheight Dimension As large as necessary to
display the DwtNcols with
the specified

DwtNmarginHeight
DwtNborderWidth Dimension One pixel
DwtNborder Pixel Default foreground color
DwtNborderPixmap Pixmap NULL
DwtNbackground Pixel Default background color

3-316 Subroutines

DwtNbackgroundPixmap
DwtNcolormap
DwtNsensitive
DwtNancestorSensitive

DwtNaccelerators
DwtNdepth
DwtNtranslations
DwtNmappedWhenManaged
DwtNscreen
DwtNdestroyCallback

Pixmap
Colormap
Boolean
Boolean

XtTranslations
int
XtTranslations
Boolean
Screen *
DwtCallbackPtr

DwtSText (3Dwt)

NULL

Default color map

True

The bitwise AND of the
parent widget’s
DwtNsensitive and
DwtNancestorSensitive
attributes

NULL

Depth of the parent window

NULL
True

The parent screen

NULL

Widget-Specific Attributes

You can set the following widget-specifc attributes in the override arglist:

Attribute Name Data Type Default
DwtNmarginWidth Dimension 2 pixels
DwtNmarginHeight Dimension Two pixels
DwtNcols Dimension 20 characters
DwtNrows Dimension 1 character
DwtNtopPosition DwtTextPosition Zero
DwtNwordWrap Boolean False
DwtNscrollVertical Boolean False
DwtNresizeHeight Boolean True
DwtNresizeWidth Boolean True
DwtNvalue char * "
DwtNeditable Boolean True
DwtNmaxLength int 2%*31-1
DwtNfocusCallback DwtCallbackPtr NULL
DwtNhelpCallback DwtCallbackPtr NULL
DwtNlostFocusCallback DwtCallbackPtr NULL
DwtNvalueChangedCallback DwtCallbackPtr NULL
DwtNinsertionPointVisible Boolean True
DwtNautoShowInsertPoint Boolean True
DwtNinsertionPosition int Zero
DwtNforeground Pixel The current server’s default
foreground
DwtNfont DwtFontList The current server font list.
DwtNblinkRate int 500 milliseconds

Subroutines 3-317

DwtSText (3Dwt)

DwtNscrollLeftSide
DwtNhalfBorder
DwtNpendingDelete
DwtNuserData

Boolean False
Boolean True
Boolean True
Opaque * NULL

DwtNmarginWidth

DwtNmarginHeight

DwtNcols

DwtNrows

DwtNtopPosition

DwtNwordWrap

Specifies the number of pixels between the left or
right edge of the window and the text.

Specifies the number of pixels between the top or
bottom edge of the window and the text.

Specifies the width of the text window measured in
character spaces.

Specifies the height of the text window measured in
character heights or number of line spaces.

Specifies the position to display at the top of the
window.

Specifies a boolean value that, when True,
indicates that lines are broken at word breaks and
text does not run off the right edge of the window.

DwtNscrollVertical

DwtNresizeHeight

DwtNresizeWidth

DwtNvalue

3-318 Subroutines

Specifies a boolean value that, when True, adds a
scroll bar that allows the user to scroll vertically
through the text.

Specifies a boolean value that, when True,
indicates that the simple text widget will attempt to
resize its height to accommodate all the text
contained in the widget. If this is set to True, the
text will always be displayed starting from the first
position in the source, even if instructed otherwise.
This attribute is ignored if
DwtNscrollVerticalis True.

Specifies a boolean value that, when True,
indicates that the simple text widget will attempt to
resize its width to accommodate all the text
contained in the widget. This argument is ignored if
DwtNwordWrap is True.

Specifies the actual text to display.

DwtSText (3Dwt)

DwtNeditable Specifies a boolean value that, when True,
indicates that the user can edit the text string in the
simple text widget. If False, prohibits the user
from editing the text string.

DwtNmaxLength Specifies the maximum length of the text string in
the simple text widget.

DwtNfocusCallback
Specifies the callback function or functions called
when the simple text widget accepted the input focus.
For this callback, the reason is DwtCRFocus.

DwtNhelpCallback
Specifies the callback function or functions called
when a help request is made.

DwtNlostFocusCallback
Specifies the callback function or functions called
when the simple text widget loses focus. For this
callback, the reason is DwtCRLostFocus.

DwtNvalueChangedCallback
Specifies the callback function or functions called
when the simple text widget value changed. For this
callback, the reason is DwtCRValueChanged.

DwtNinsertionPointVisible
Specifies a boolean value that, when True,
indicates that the insertion point is marked by a
blinking text cursor.

DwtNautoShowInsertPoint
Specifies a boolean value that, when True, ensures
that the text visible in the simple text widget window
will contain the insertion point. This means that if
the insertion point changes, the contents of the
simple text widget window may scroll in order to
bring the insertion point into the window.

DwtNinsertionPosition
Specifies the current location of the insertion point.

DwtNforeground Specifies the pixel for the foreground of the simple
text widget.

DwtNfont Specifies the font list to be used for the simple text
widget.

Subroutines 3—319

DwtSText (3Dwt)

DwtNblinkRate

Specifies the blink rate of the text cursor in
milliseconds.

DwtNscrollLeftSide

DwtNhalfBorder

Specifies a boolean value that, when True,
indicates that the vertical scroll bar should be placed
on the left side of the simple text window. This
attribute is ignored if DwtNscrollVertical is
False.

Specifies a boolean value that, when True,
indicates that a border is displayed only on the left
and bottom edges of the simple text widget.

DwtNpendingDelete

DwtNuserData

Return Value

Specifies a boolean value that, when True,
indicates that selected text containing the insertion
point is deleted when new text is entered.

Specifies any user private data to be associated with
the widget. The XUI Toolkit does not interpret this
data.

These functions return the ID of the created widget.

Callback Information

The following structure is returned to your callback:

typedef struct {

int reason;
XEvent *event;

} DwtAnyCallbackStruct;

The reason member is set to a constant that represents the reason why this
callback was invoked. For this callback, the reason member can be set to:

DwtCRFocus

DwtCRLostFocus

DwtCRValueChanged

3-320 Subroutines

The simple text widget has received the
input focus.

The simple text widget has lost the input
focus.

The user changed the value of the text
string in the simple text widget.

DwtSText (3Dwt)

DwtCRHelpRequested The user selected Help.

The event member is a pointer to the Xlib structure XEvent, which
describes the event that generated this callback. This structure is a union of
the individual structures declared for each event type. For information on
XEvent and event processing, see the Guide to the Xlib Library: C
Language Binding.

See Also

DwtSTextGetString (3Dwt), DwtSTextSetString (3Dwt), DwtSTextReplace
(3Dwt), DwtSTextGetEditable (3Dwt), DwtSTextSetEditable (3Dwt),
DwtSTextGetMaxLength (3Dwt), DwtSTextSetMaxLength (3Dwt),
DwtSTextSetSelection (3Dwt), DwtSTextClearSelection (3Dwt),
DwtSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-321

DwtSTextClearSelection (3Dwt)

Name

DwtSTextClearSelection — Clears the global selection highlighted in the
simple text widget.

Syntax
void DwtSTextClearSelection(widget, time)
Widget widget;
Time time;
Arguments
widget Specifies the widget ID.
time Specifies the time of the event that led to the call to
XSetSelectionOwner. You can pass either a timestamp
or CurrentTime. Whenever possible, however, use the
timestamp of the event leading to the call.
Description

The DwtSTextClearSelection function clears the global selection
highlighted in the simple text widget.

See Also

DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt),
DwtSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-322 Subroutines

DwtSTextGetEditable (3Dwt)

Name

DwtSTextGetEditable — Obtains the current edit permission state indicating
whether the user can edit the text in the simple text widget.

Syntax

Boolean DwtSTextGetEditable(widget)
Widget widget;

Arguments

widget Specifies the ID of the simple text widget whose edit
permission state you want to obtain.

Description

The DwtSTextGetEditable function returns the current edit-
permission-state, which indicates whether the user can edit the text in the
simple text widget. If the function returns True, the user can edit the string
text in the simple text widget. If it returns False, the user cannot edit the
text.

Return Value

This function returns the current permission state concerning the editing of
the text field in the widget.

See Also

DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextSetMaxLength (3Dwt),
DwtSTextSetSelection (3Dwt), DwtSTextClearSelection (3Dwt),
DwtSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-323

DwtSTextGetMaxLength (3Dwt)

Name

DwtSTextGetMaxLength — Gets the current maximum allowable length of
the text string in the simple text widget.

Syntax
int DwtSTextGetMaxLength(widget)
Widget widget;
Arguments

widget Specifies the ID of the simple text widget whose maximum
text string length you want to obtain.

Description

The DwtSTextGetMaxLength function returns the current maximum
allowable length of the text string in the simple text widget.

Return Value
This function returns the maximum length of the text widget.

See Also

DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable
(3Dwt), DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt),
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-324 Subroutines

DwtSTextGetSelection (3Dwt)

Name

DwtSTextGetSelection — Retrieves the global selection, if any, currently
highlighted in the simple text widget.

Syntax
char *DwtSTextGetSelection(widget)
Widget widget;

Arguments

widget Specifies the widget ID.

Description

The DwtSTextGetSelection function retrieves the text currently
highlighted (selected) in the simple text widget. It returns a NULL-pointer if
no text is selected in the widget. The application is responsible for freeing
the storage associated with the string by calling XtFree.

Return Value
This function returns the text currently highlighted on the screen.

See Also

DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwitSTextSetEditable
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextGetMaxLength (3Dwt),
DwtSTextSetSelection (3Dwt), DwtSTextClearSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-325

DwtSTextGetString (3Dwt)

Name
DwtSTextGetString — Retrieves the text string from the simple text widget.

Syntax
char *DwtSTextGetString(widget)
Widget widget;
Arguments

widget Specifies the ID of the simple text widget

Description

The DwtSTextGetString function returns a pointer to the current string
in the simple text widget window. The application is responsible for freeing
the storage associated with the string by calling XtFree.

Return Value

This function returns the pointer to the string currently displayed in the given
text widget window.

See Also

DwtSTextSetString (3Dwt), DwtSTextReplace (3Dwt), DwtSTextGetEditable
(3Dwt), DwtSTextSetEditable (3Dwt), DwtSTextGetMaxLength (3Dwt),
DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt),
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-326 Subroutines

DwtSTextReplace (3Dwt)

Name

DwtSTextReplace — Replaces a portion of the current text string in the simple
text widget or inserts a new substring in the text.

Syntax

void DwtSTextReplace(widget, from_pos, to_pos, value)
Widget widget;
int from_pos, to_pos;
DwtCompString value;

Arguments
widget Specifies the ID of the simple text widget whose text string
you want to replace.
from_pos Specifies the beginning character position within the text
string marking the text being replaced.
to_pos Specifies the last character position within the text string
marking the text being replaced.
value Specifies the text to replace part of the current text in the
simple text widget.
Description

The DwtSTextReplace function replaces part of the text string in the
simple text widget. Within the window, the positions are numbered starting
from 0 and increasing sequentially. For example, to replace the second and
third characters in the string, from_pos should be 1 and to_pos should be 3.
To insert a string after the fourth character, from_pos and to_pos should both
be 4.

See Also

DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextGetEditable
(3Dwt), DwtSTextSetEditable (3Dwt), DwtSTextGetMaxLength (3Dwt),
DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt),
DwiSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3-327

DwtSTextSetEditable (3Dwt)

Name

DwtSTextSetEditable — Sets the permission state that determines whether the
user can edit text in the simple text widget.

Syntax
void DwtSTextSetEditable (widget, editable)
Widget widget;
Boolean editable;
Arguments
widget Specifies the ID of the simple text widget whose edit
permission state you want to set.
editable Specifies a boolean value that, when True, indicates that
the user can edit the text string in the simple text widget. If
False, prohibits the user from editing the text string.
Description

The DwtSTextSetEditable function sets the edit permission state
information concerning whether the user can edit text in the simple text
widget.

See Also

DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextGetMaxLength
(3Dwt), DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt),
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-328 Subroutines

DwtSTextSetMaxLength (3Dwt)

Name

DwtSTextSetMaxLength — Sets the maximum allowable length of the text
string in the simple text widget.

Syntax

void DwtSTextSetMaxLength(widget, max_length)
Widget widget;
int max_length;

Arguments

widget Specifies the ID of the simple text widget whose maximum
text string length you want to set.

max_length Specifies the maximum length of the text string in the simple
text widget. This argument sets the DwtNmaxLength
attribute associated with DwtSTextCreate.

Description

The DwtSTextSetMaxLength function sets the maximum allowable
length of the text in the simple text widget and prevents the user from
entering text larger than this limit.

See Also

DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt),
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

Subroutines 3—-329

DwtSTextSetSelection (3Dwt)

Name

DwtSTextSetSelection — Makes the specified text in the simple text widget
the current global selection and highlights it in the simple text widget.

Syntax
void DwtSTextSetSelection(widget, first, last, time)
Widget widget;
int first, last;
Time time;
Arguments
widget Specifies the widget ID.
first Specifies the first character position of the selected string.
last Specifies the last character position of the selected string.
time Specifies the time of the event that led to the call to
XSetSelectionOwner. You can pass either a timestamp
or CurrentTime. Whenever possible, however, use the
timestamp of the event leading to the call.
Description

The DwtSTextSetSelection function makes the specified text in the
simple text widget the current global selection and highlights it in the simple
text widget. Within the text window, first marks the first character position
and last marks the last position. The field characters are numbered in
sequence starting at 0.

See Also

DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextGetMaxLength (3Dwt),
DwtSTextGetSelection (3Dwt), DwtSTextClearSelection (3Dwt)

Guide to the XUI Toolkit: C Language Binding

Guide to the XUI Toolkit Intrinsics: C Language Binding

3-330 Subroutines

DwtSTextSetString (3Dwt)

Name
DwtSTextSetString — Sets the text string in the simple text widget.

Syntax

void DwtSTextSetString (widget, value)
Widget widget;
char *value;

Arguments

widget Specifies the ID of the simple text widget whose text string
you want to set.

value Specifies the text that replaces all text in the current text
widget window.

Description

The DwtSTextSetString function completely changes the string in the
simple text widget.

See Also

DwtSTextGetString (3Dwt), DwtSTextReplace (3Dwt), DwtSTextGetEditable
(3Dwt), DwtSTextSetEditable (3Dwt), DwtSTextGetMaxLength (3Dwt),
DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt),
DwtSTextC