
ULTRIX 
Worksystem Software 

Reference Pages, 
Sections 3Dwt, 3X 11, and 3Xt 

Order Number: AA-MA99B-TE 



UL TRIX Worksystem Software 

Reference Pages, 
Sections 3Dwt, 3X11, and 3Xt 

Order Number: AA-MA99B-TE 

Product Version: UL TRIX Worksystem Software, Version 2.2 
Operating System and Version: UL TRIX-32, Version 3.1 or higher 

digital equipment corporation 
maynard, massachusetts 



Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as 
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of 
DFARS 252.227-7013. 

© Digital Equipment Corporation 1989 
All rights reserved. 

Portions of the information herein are derived from copyrighted material as permitted under license 
agreements with AT&T and the Regents of the University of California. © AT&T 1979, 1984. All 
Rights Reserved. 

Portions of the information herein are derived from copyrighted material as permitted under a license 
agreement with Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved. 

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 
1985, 1986, 1988. 

The information in this document is subject to change without notice and should not be construed as a 
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no 
responsibility for any errors that may appear in this document. 

The software described in this document is furnished under a license and may be used or copied only in 
accordance with the terms of such license. 

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by 
Digital or its affiliated companies. 

The following are trademarks of Digital Equipment Corporation: 

CDA 
DEC 
DECUS 
DECnet 
DEC station 
DECwindows 
DDIF 
DDIS 

DTIF 
MASSBUS 
MicroVAX 
Q-bus 
ULTRIX 
UL TRIX Mail Connection 
UL TRIX Worksystem Software 
VAX 

VAX station 
VMS 
VMS/UL TRIX Connection 
VT 
XUI 

~DmDDmD 

UNIX is a registered trademark of AT&T in the USA and other countries. 

X Window System, X, and XII are registered trademarks of MIT. 

This manual was written and produced by the Open Software Publications group. 



About This Manual 

Organization 
The ULTRIX Worksystem Software Reference Pages, Sections 3Dwt, 3Xii, 
and 3Xt contain the reference pages for the XUI Toolkit functions, the XUI 
Toolkit intrinsics, and the Xlib functions. 

Format 
Each reference page has the following general format. 

Each has a title header consisting of the subject name and the appropriate 
section number, for example, DwtAt tachedDB(3Dwt), 
XOpenDisplay(3Xll), and XtCreateApplicationContext(3Xt). 

The remaining subsections provide the specific information that is relevant to 
the topic. In general, the following subsection titles are used where 
appropriate: 

Name 
Lists the topic name and a short description of the entry. 

Syntax 
Provides the function definition. Boldface indicates characters typed 
literally. Italics indicates variable information that is to be specified by the 
user. An ellipsis ( ... ) indicates that the preceding argument can be repeated. 
Square brackets [ ] enclose optional arguments. 

Arguments 
Describes each arguments that passed to or returned by the function. 

Description 
Describes the function, its usage, and its effects. Note that all references to 
chapters and sections in the Description section are for the respective, 
companion descriptive guide listed in the See Also section at the end of that 
page. 

Diagnostics 
Describes the diagnostic and error messages that may appear. In most cases, 
self-explanatory messages are not listed. 



Restrictions 
Describes all known restrictions or limitations for that function. 

Files 
Lists the related files that are either used or created by the function. 

See Also 
Lists references to related functions in the same library and to other, related 
documents. 

Related Documents 
XUI Style Guide 

Describes the XUI user interface and, hence, the "look and feel" of an 
XUI application. 

Guide to Writing Applications Using XUI Toolkit Widgets 

Describes how to create an application using the XUI Toolkit. 

Guide to the XUI Toolkit: C Language Binding 

Describes the widgets (user interface abstractions) that you can use to 
write your XUI-based application. 

Guide to the XUI Toolkit Intrinsics: C Language Binding 

Describes the Intrinsics functions that you can use to write your XUI­
based application or widget. 

Guide to the Xlib Library: C Language Binding 

Describes the low-level C functions that you can use to write your X­
based application. 

X Window System Protocol: X Version 11 

Describes the precise semantics of the XII protocol specification. 

Conventions 
The following typeface conventions are used in this manual: 

special 

UPPERCASE 

In text, all function names, events, errors, constant names, 
and pathnames are presented in this type. 

Although the UL TRIX system differentiates between 
lowercase and uppercase characters, uppercase is used 
intentionally in this manual where it is applicable. 

In addition, the following conventions are used in this manual: 

• To eliminate any ambiguity between those arguments that you pass and 
those that a function returns to you, the explanations for all arguments 

iv About This Manual 



that you pass start with the word specifies or, in the case of multiple 
arguments, the word specify. The explanations for all arguments that 
are returned to you start with the word returns or, in the case of 
multiple arguments, the word return. The explanations for all 
arguments that you can pass and are returned start with the words 
specifies and returns. 

• Any pointer to a structure that is used to return a value is designated as 
such by the _return suffix as part of its name. All other pointers passed 
to these functions are used for reading only. A few arguments use 
pointers to structures that are used for both input and output and are 
indicated by the jn_out suffix. 

About This Manual v 





XUI Toolkit Functions 

Insert tabbed 
divider here. 
Then discard 
this sheet. 





Name 

DwtActivateWidget (3Dwt) 

DwtActivateWidget - Allows the application to simulate push button 
activation. 

Syntax 
void DwtActivate Widget( widget) 

Widget widget; 

Arguments 

widget Specifies a pointer to the widget data structure. 

Description 
The DwtActi vateWidget function allows the application to simulate 
push button activation. DwtActi vateWidget generates the same 
highlighting and callbacks that would occur if the user clicks on a push 
button. For example, an application might contain functions that a user could 
choose either by selecting a menu option or by activating a push button. If 
the user selected the menu option, the application could activate the 
corresponding push button to maintain a consistent user interface. Only push 
buttons are currently supported by DwtActi vateWidget. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-1 



DwtAddFontList (3Dwt) 

Name 
DwtAddFontList - Adds an entry to a font list. 

Syntax 
DwtFontList DwtAddFontList( list, font, charset) 

DwtFontList list; 
XFontStruct * font; 
long charset; 

Arguments 

list 

font 

charset 

Description 

Specifies a pointer to the font list to which an entry will be 
added. 

Specifies a pointer to the font structure to be added to the 
list. 

Specifies the character set identifier for the font. Values for 
this argument can be found in the required file 
/usr/include/cda_def.h. 

The DwtAddFontList function adds an entry to a font list. 

Return Value 
This function returns the new font list. 

See Also 
DwtCreateFontList (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-2 Subroutines 



Name 

DwtAttachedDB (3Dwt) 

DwtAttachedDB, DwtAttachedDBCreate, DwtAttachedDBPopupCreate­
Creates an attached dialog box or a pop-up attached dialog box widget to 
contain other information/request (dialog) subwidgets. 

Syntax 
Widget DwtAttachedDB (parent_widget, name, default yosition, 

x, y, title, style, 
map callback, help callback) 

Widget parent widget; -
char * name; -
Boolean default yosition; 
Position x, y; 
DwtCompString title; 
unsigned char style; 
DwtCallbackPtr map_callback, help_callback; 

Widget DwtAttachedDBCreate (parent_widget, name, 
override _ argUst, override _ argcount) 

Widget parent widget; 
char * name; -
ArgList override argUst; 
int override _ argcount; 

Widget DwtAttachedDBPopupCreate (parent_widget, name, 
override _ argUst, 
override _ argcount) 

Widget parent widget; 
char * name; -
ArgList override argUst; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

default yosition 
Specifies a boolean value that, when True, causes DwtNx 
and DwtNy to be ignored and forces the default widget 
position. The default widget position is centered in the 
parent window. If False, the specified DwtNx and 

Subroutines 3-3 



DwtAttachedDB (3Dwt) 

DwtNy attributes are used to position the widget. . This 
argument sets the DwtNdefaultPosition attribute 
associated with DwtDialogBoxCreate. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

title Specifies the compound-string label. The label is given to 
the window manager for the title bar if the DwtNstyle 
attribute associated with DwtDialogBoxPopupCreate 
is DwtModalor DwtModeless. However, the label is 
used in the border if the DwtNstyle attribute associated 
with DwtDialogBoxCreate is DwtWorkarea. 

The attribute name associated with this argument is 
DwtNtitle. 

style Specifies the style of the dialog box widget. You can pass 
DwtModal, DwtModeless, or DwtWorkarea. This 
argument sets the DwtNstyle attribute associated with 
DwtDialogBoxCreate. 

map _callback Specifies the callback function or functions called when the 
window is about to be mapped. For this callback, the reason 
is DwtCRMap. This argument is ignored if DwtNstyle is 
DwtWorkarea. 

This argument sets the DwtNmapCallback attribute 
associated with DwtDialogBoxPopupCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

override _ argUst 
Specifies the application override argument list. 

override _ argcount 

3-4 Subroutines 

Specifies the number of attributes in the application override 
argument list (override _argUst). 



DwtAttachedDB (3Dwt) 

Description 
The DwtAttachedDB and DwtAttachedDBCreate functions create an 
instance of an attached dialog box widget or an attached dialog box pop-up 
widget and return its associated widget ID. The 
DwtAttachedDBPopupCreate function creates an instance of a pop-up 
attached dialog box widget and returns its associated widget ID. The 
attached dialog box acts as a container only, and provides no input semantics 
over and above the semantics of the widgets that it contains. It differs from 
the dialog box in its handling of child widgets. Constraints are placed on 
each child widget at the time of creation. The default values for the 
constraint attributes are placed on the child unless you specify values for the 
constraint attributes. You specify these values either in the override argUst 
or by calling XtSetValues. -

By using the constraint attributes, you can attach each of the four sides of a 
child widget (top, bottom, right side, and left side) to a side of the parent 
attached dialog box, a side of another child widget, to a relative position 
within the attached dialog box, to itself, or to nothing. The possible 
attachments for each of the four sides are described in the Constraint 
Attributes section. Specifying these attachments allows you to maintain the 
position of child widgets within the attached dialog box as resizing occurs. 

If only one attachment in a direction is specified with no width or height, the 
default width or height for the widget is used. 

For all attachment types, you can optionally specify an offset in pixels or font 
units. The offset determines the amount of space between the side of the 
child widget and the side or position you attach it to. By default, the child 
widgets are positioned in an attached dialog box in terms of font units rather 
than pixel units. (That is, DwtNunits is DwtFontUnits.) The X font 
units are defined to be one-fourth the width of whatever font is supplied for 
the common attribute DwtNfont. The Y font units are defined to be one­
eighth the width of whatever font is supplied for DwtNfont. 

The offsets given are automatically negated when dealing with right and 
bottom sides. For example, a displacement of 5 means that the side stays 5 
units to the right of its attachment if a left side, and 5 units to the left if a 
right side. 

Displacements default to a value specified in the attached dialog box for 
attachments to the attached dialog box and the widget, and half the value 
specified if attached to a position. Attaching to a point allows several 
widgets to grow proportionally; the space between them should be the default 
displacement. There are separate horizontal and vertical defaults. 

Subroutines 3-5 



DwtAttachedDB (3Dwt) 

You can determine whether the attached dialog box will honor resize 
geometry requests from a given child widget by appropriately setting the 
DwtNresize attribute for that child. If it does honor a request, the attached 
dialog box reconfigures all child widgets based on the initial coordinate 
information. You can add child widgets after the attached dialog box widget 
has been realized. If there is extra room in the attached dialog box, the new 
child widget will appear. If there is not enough room, the attached dialog 
box will ask the geometry manager for permission to resize. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Constraint Attributes 

3-6 Subroutines 

Data Type 

Position 

Position 

Dimension 
Dimension 
Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Default 

Determined by the geometr: 
manager 
Determined by the geometr: 
manager 
Widget-specific 
Widget-specific 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensit~ 

attributes 
NULL 
Depth of the parent windm 
NULL 
True 
The parent screen 
NULL 



DwtNadbTopAttachment 

DwtNadbBottomAttachment 

DwtNadbLeftAttachment 

DwtNadbRightAttachment 

DwtNadbTopWidget 
DwtNadbBottomWidget 
DwtNadbLeftWidget 
DwtNadbRightWidget 
DwtNadbTopPosition 
DwtNadbBottomPosition 
DwtNadbLeftPosition 
DwtNadbRightPosition 
DwtNadbTopOffset 

OwtAttachedOB (30wt) 

DwtAttachmentType 

DwtAttachmentType 

DwtAttachmentType 

DwtAttachmentType 

Widget 
Widget 
Widget 
Widget 
int 
int 
int 
int 
int 

DwtAttachAdbif 
DwtNrubberPositioning 
is False 
DwtAttachSelf if 
DwtNrubberPositioning 
is True 
The default is 
DwtAttachNoneif 
DwtNrubberPositioning 
is False. 
The default is 
DwtAttachSelfif 
DwtNrubberPositioning 
is True. 
The default is 
DwtAttachAdbif 
DwtNrubberPositioning 
is False. 
The default is 
DwtAttachSelf if 
DwtNrubberPositioning 
is True. 
The default is 
DwtAttachNone if 
DwtNrubberPositioning 
is False. 
The default is 
DwtAttachSelf if 
DwtNrubberPositioning 
is True. 
NULL 
NULL 
NULL 
NULL 
Zero 
Zero 
Zero 
Zero 
The value specified with 
DwtNdefaultVerticalOffset. 
However, if 
DwtNadbTopAttachment 
is DwtAttachPosition or 
DwtAttachSelf, the 
default is one-half the value 
specified with 
DwtNdefaultVerticalOffset. 

Subroutines 3-7 



DwtAttachedDB (3Dwt) 

DwtNadbBottomOffset 

DwtNadbLeftOffset 

DwtNadbRightOffset 

DwtNresizable 

Dialog Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNfont 
DwtNhelpCallback 
DwtNdirectionRToL 
DwtNunits 

3-8 Subroutines 

int 

int 

int 

Boolean 

Pixel 
Pixel 
Pixmap 

Opaque * 
DwtFontList 
DwtCallbackPtr 
unsigned char 
unsigned char 

The default is the value 
specified with 
DwtNdefaultVerticalOffset. 
However, if 
DwtNadbBottomAttachment 
is DwtAttachPosition or 
DwtAttachSelf, the 
default is one-half the value 
specified with 
DwtNdefaultVerticalOffset. 
The default is the value 
specified with 
DwtNdefaultHorizontalOffs4 
However, if 
DwtNadbLeftAttachment 
is DwtAttachPosition or 
DwtAttachSelf, the 
default is one-half the value of 
DwtNdefaultHorizontalOffs 
The value specified with 
DwtNdefaultHorizontalOffs 
However, if 
DwtNadbRightAttachment 
is DwtAttachPosition or 
DwtAttachSelf, the 
default is one-half the value 
specified with 
DwtNdefaultHorizontalOffs 

True 

Default foreground color 
Default foreground color 
NULL 
NULL 
The default XUI Toolkit font 
NULL 
DwtDirectionRightDown 
DwtFontUnits 



DwtNstyle 

DwtNfocusCallback 
DwtNtextMergeTranslations 
DwtNmarginWidth 

DwtNmarginHeight 

DwtNdefaultPosition 
DwtNchildOverlap 
DwtNresize 
DwtNgrabKeySyms 

DwtNgrabMergeTranslations 

unsigned char 

DwtCallbackptr 
XtTranslations 
Dimension 

Dimension 

Boolean 
Boolean 
unsigned char 
KeySym 

XtTranslations 

DwtAttachedDB (3Dwt) 

For 
DwtDialogBoxCreate,ilie 
default is DwtWorkarea. 
For 
DwtDialogBoxPopupCreate, 
the default is 
DwtModeless. 
NULL 
NULL 
For 
DwtDialogBoxCreate, the 
default is One pixel. 
For 
DwtDialogBoxPopupCreate, 
the default is 3 pixels. 
For 
DwtDialogBoxCreate, the 
default is One pixel. 
For 
DwtDialogBoxPopupCreate, 
the default is 3 pixels. 
False 
True 
DwtResizeGrowOnly 
The default array contains the 
Tab key symbol. 
The default syntax is: 
"-Shift<KeyPress>Oxff09: 
DWTDIMOVEFOCUSNEXTO\n\ 
Shift<KeyPress>Oxff09: 
DWTDIMOVEFOCUSPREVO"; 

The following constraint attributes belong to any widget that is made a child 
of an attached dialog box widget. You cannot set these attributes on the 
attached dialog box itself; you must set them on the child widget. Several of 
these constraint attributes take an enumerated data type. You should not 
change attachment attributes in an attached dialog box with XtSetValues, 
as this could result in an infinite loop. 
typedef enum _DwtAttachmentType { 

DwtAttachNone, 
DwtAttachAdb, 
DwtAttachWidget, 
DwtAttachPosition, 
DwtAttachSelf, 
DwtAttachOppWidget, 
DwtAtt a chOppAdb , 

Subroutines 3-9 



DwtAttachedDB (3Dwt) 

} DwtAttachmentType; 

DwtNadbTopAttachment 

Value 

DwtAttachNone 

DwtAttachAdb 

DwtAttachOppAdb 

DwtAttachWidget 

DwtAttachOppWidget 

DwtAttachPosition 

DwtAttachSelf 

Specifies how the top side of the child widget is 
attached to its parent attached dialog box widget, 
another child widget, a position, or itself. 

The following describes the enumerated data type 
values as they apply to this attribute: 

Meaning 

Do not attach this side. This type of attachment 
may be overridden by the defaults of other 
attachments that affect this side. 

Attach the top side of the child widget to the top 
side of its parent attached dialog box. 

Attach the top side of the child widget to the 
bottom side of its parent attached dialog box. 

Attach the top side of the child widget to the 
bottom side of another child widget within the 
parent attached dialog box. 

Attach the top side of the child widget to the top 
side of another child widget. 

Attach the top side of the child widget to a 
relative position inside the parent attached dialog 
box. Specify the relative position as a fraction 
of the total width or height of the attached 
dialog box. 

Attach the top side of the child widget to a 
relative position corresponding to the side's 
initial position in the attached dialog box. 

DwtNadbBottomAttachment 

3-10 Subroutines 

Specifies how the bottom side of the widget is 
attached to the side of its parent attached dialog box 
widget, another child widget, a position, or itself. 

The following describes the enumerated data type 
values as they apply to this attribute: 



Value 

DwtAttachNone 

DwtAttachAdb 

DwtAttachOppAdb 

DwtAttachWidget 

DwtAttachOppWidget 

DwtAttachPosition 

DwtAttachSelf 

DwtAttachedDB (3Dwt) 

Meaning 

Do not attach this side. This type of attachment 
overrides any default attachment that might 
affect the side. 

Attach this side to the bottom side of its parent 
attached dialog box. 

Attach this side to the top side of the parent 
attached dialog box. 

Attach this side to the top side of another child 
widget within the parent attached dialog box. 

Attach this side to the bottom side of another 
child widget. 

Attach this side to a relative position inside the 
parent attached dialog box. Specify the relative 
position as a fraction of the total width or height 
of the attached dialog box. 

Attach this to a relative position corresponding 
to the side's initial position inside the parent 
attached dialog box. 

DwtNadbLeftAttachment 

Value 

DwtAttachNone 

DwtAttachAdb 

DwtAttachOppAdb 

Specifies how the left side of the widget is attached 
to the side of its parent attached dialog box widget, 
another child widget, a position, or itself. 

The following describes the enumerated data type 
values as they apply to this attribute: 

Meaning 

Do not attach this side. This type of attachment 
overrides any default attachment that might 
affect the side. 

Attach this side to the left side of its parent 
attached dialog box. 

Attach this side to the right side of the parent 
attached dialog box. 

Subroutines 3-11 



DwtAttachedDB (3Dwt) 

DwtAttachWidget 

DwtAttachOppWidget 

DwtAttachPosition 

DwtAttachSelf 

Attach this side to the right side of another child 
widget within the parent attached dialog box. 

Attach this side to the left side of another child 
widget. 

Attach this side to a relative position inside the 
parent attached dialog box. Specify the relative 
position as a fraction of the total width or height 
of the attached dialog box. 

Attach this side to a relative position 
corresponding to the side's initial position in the 
parent attached dialog box. 

DwtNadbRightAttachment 

Value 

DwtAttachNone 

DwtAttachAdb 

DwtAttachOppAdb 

DwtAttachWidget 

DwtAttachOppWidget 

DwtAttachPosition 

3-12 Subroutines 

Specifies how the right side of the widget is attached 
to the side of its parent attached dialog box, another 
child widget, a position, or itself. 

The following describes the enumerated data type 
values as they apply to this attribute: 

Meaning 

Do not attach this side. This type of attachment 
overrides any default attachment that might 
affect the side. 

Attach this side to the right side of its parent 
attached dialog box. 

Attach this side to the left side of the parent 
attached dialog box. 

Attach this side to the left side of another child 
widget within the parent attached dialog box. 

Attach this side to the right side of another child 
widget. 

Attach this side to a relative position inside the 
parent attached dialog box. Specify the relative 
position as a fraction of the total width or height 
of the attached dialog box. 



DwtAttachSelf 

DwtNadbTopWidget 

DwtAttachedDB (3Dwt) 

Attach this side to a relative position 
corresponding to the side's initial position in the 
parent attached dialog box. 

Specifies the child widget that the top side is 
attached to if DwtNadbTopAttachrnent is 
DwtAttachWidget or DwtAttachOppWidget. 
Otherwise, this attribute is ignored. 

DwtNadbBottomWidget 
Specifies the widget that the bottom side is attached 
to if DwtNadbBottomAttachment is 
DwtAttachWidget or DwtAttachOppWidget. 
Otherwise, this attribute is ignored. 

DwtNadbLeftWidget 
Specifies the widget that the left side is attached to if 
DwtNadbLeftAttachmentis 
DwtAttachWidget or DwtAttachOppWidget. 
Otherwise, this attribute is ignored. 

DwtNadbRightWidget 
Specifies the widget that the right side is attached to 
if DwtNadbRightAttachment is 
DwtAttachWidget or DwtAttachOppWidget. 
Otherwise, this attribute is ignored. 

DwtNtopPos i tion Specifies the numerator used with 
DwtNfractionBase to determine the relative 
positioning of the top side if 
DwtNadbTopAttachmentis 
DwtAttachPosi tion. Otherwise, this attribute is 
ignored. 

DwtNadbBottomPosition 
Specifies the numerator used with 
DwtNfractionBase to determine the relative 
positioning of the bottom side if 
DwtNadbBottomAttachmentis 
DwtAttachPosi tion. Otherwise, this attribute is 
ignored. 

DwtNadbLeftPosition 
Specifies the numerator used with 
DwtNfractionBase to determine the relative 

Subroutines 3-13 



DwtAttachedDB (3Dwt) 

positioning of the left side if 
DwtNadbLeftAttachmentis 
DwtAttachPosition. Otherwise, this attribute is 
ignored. 

DwtNadbRightPosition 

DwtNadbTopOffset 

Specifies the numerator used with the 
DwtNfractionBase to determine the relative 
positioning of the right side if 
DwtNadbRightAttachmentis 
DwtAttachPosition. Otherwise, this attribute is 
ignored. 

Specifies the offset of the top side from the position, 
widget, or attached dialog box. 

DwtNadbBottomOffset 
Specifies the offset of the bottom side from the 
position, widget, or attached dialog box. 

DwtNadbLeftOffset 
Specifies the offset of the left side from the position, 
widget, or attached dialog box. 

DwtNadbRightOffset 

DwtNresizable 

Specifies the offset of the right side from the 
position, widget, or attached dialog box. 

Specifies a boolean value that, when True, 
indicates that the attached dialog box can change the 
size of the child widget. If Fa 1 s e, indicates that 
the attached dialog box cannot change the size of the 
child widget. 

Widget-Specific Attributes 

Attribute Name Data Type 

DwtNdefaultHorizontalOffset int 

DwtNdefaultVerticalOffset int 

DwtNrubberPositioning Boolean 
DwtNfractionBase int 

3-14 Subroutines 

Default 

Zero 
Zero 
False 
100 



DwtAttachedDB (3Dwt) 

DwtNdefaultHorizontalOffset 
Specifies the default horizontal offset for right and 
left attachments. The offset determines the amount 
of space between the left or right side of a child 
widget and the side or position to which it is 
attached. 

DwtNdefaultVerticalOffset 
Specifies the default vertical offset for the top and 
bottom attachments. The offset determines the 
amount of space between the top or bottom side of a 
child widget and the side or position to which it is 
attached. 

DwtNrubberPositioning 

DwtNfractionBase 

Return Value 

Specifies a boolean value that, when False, 
indicates that the child widget left and top sides 
default to being attached to the left and top of the 
attached dialog box. If True, the child widget sides 
default to being attached to the left and top of the 
attached dialog box. 

Specifies the denominator used in specifying 
fractional positioning. 

These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

} DwtAnyCallbackStruct; 

int reason; 
XEvent *event; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRMap The attached dialog box is about to be 
mapped. 

DwtCRHelpRequested The user selected Help. 

Subroutines 3-15 



DwtAttachedDB (3Dwt) 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-16 Subroutines 



Name 

DwtBeginCopyToClipboard (3Dwt) 

DwtBeginCopyToClipboard - Sets up storage and data structures to receive 
clipboard data. 

Syntax 
int DwtBeginCopyToClipboard(display, window, clip_label, 

widget, callback, item id) 
Display * display; -
Window window; 
DwtCompString clip label; 
Widget widget; -
VoidProc callback; 
long * item _id; 

Arguments 

display 

window 

widget 

callback 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

Specifies the label to be associated with the data item. This 
argument is used to identify the data item, for example, in a 
clipboard viewer. An example of a label is the name of the 
application that places the data in the clipboard. 

Specifies the ID of the widget that will receive messages 
requesting data previously passed by name. This argument 
must be present in order to pass data by name. Any valid 
widget ID in your application can be used. All message 
handling is done by the cut and paste functions. 

Specifies the address of the callback function that is called 
when the clipboard needs data that was originally passed by 
name. This is also the callback to receive the DELETE 
message for items that were originally passed by name. This 
argument must be present in order to pass data by name. 

Subroutines 3-17 



DwtBeginCopyToClipboard (3Dwt) 

item id 

Description 

Specifies the number assigned to this data item. The 
application uses this number in calls to 
DwtCopyToClipboar~ DwtEndCopyToClipboar~ 

and DwtCancelCopyToClipboard. 

The DwtBeginCopyToClipboard function sets up storage and data 
structures to receive clipboard data. An application calls 
DwtBeginCopyToClipboard during a cut or copy operation. The data 
item that these structures receive then becomes the next-paste item in the 
clipboard. 

The widget and callback arguments must be present in order to pass data by 
name. The callback format is as follows: 

function name ( widget, data id, private id, reason) 
Widget *widget; - -
int * data id; 
int * private id; 
int * reason; 

widget 

data id 

private_id 

reason 

Return Value 

Specifies the ID of the widget passed to 
DwtBeginCopyToClipboard. 

Specifies the identifying number returned by 
DwtCopyToClipboard, which identifes the pass-by-name 
data. 

Specifies the private information passed to 
DwtCopyToClipboard. 

Specifies the reason, which is either 
DwtCRClipboardDataDelete or 
DwtCRClipboardDataRequest. 

This function returns one of these status return constants: 

ClipboardSuccess The function is successful. 

3-18 Subroutines 



ClipboardLocked 

See Also 

DwtBeginCopyToClipboard (3Dwt) 

The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

DwtCopyToClipboard (3Dwt), DwtEndCopyToClipboard (3Dwt), 
DwtCancelCopyToClipboard (3Dwt), DwtStartCopyToClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-19 



DwtCancelCopyFormat (3Dwt) 

Name 
DwtCancelCopyFormat - Indicates that the application will no longer supply 
a data item to the clipboard that the application had previously passed by 
name. 

Syntax 
int DwtCancelCopyFormat(display, window, data id) 

Display * display; -
Window window; 
int data _id; 

Arguments 

display 

window 

data id 

Description 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

Specifies an identifying number assigned to the data item that 
uniquely identifies the data item and the format. This was 
assigned to the item when it was originally passed by 
DwtCopyToClipboard 

The DwtCancelCopyFormat function indicates that the application will 
no longer supply a data item to the clipboard that the application had 
previously passed by name. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess The function is successful. 

3-20 Subroutines 



ClipboardLocked 

See Also 

OwtCancelCopyFormat (30wt) 

The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-21 



DwtCancelCopyToClipboard (3Dwt) 

Name 
DwtCancelCopyToClipboard - Cancels the copy to clipboard that is in 
progress. 

Syntax 
void DwtCancelCopyToClipboard (display, window, item _id) 

Display * display; 
Window window; 
long item _id; 

Arguments 

display 

window 

item id 

Description 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

Specifies the number assigned to this data item. This number 
was returned by a previous call to 
DwtBeginCopyToClipboard. 

The DwtCancelCopyToClipboard function cancels the copy to 
clipboard that is in progress. DwtCancelCopyToClipboard also frees 
up temporary storage. If DwtCancelCopyToClipboard is called, then 
DwtEndCopyToClipboard does not have to be called. A call to 
DwtCancelCopyToClipboard is valid only after a call to 
DwtBeginCopyToClipboard and before a call to 
DwtEndCopyToClipboard. 

See Also 
DwtBeginCopyToClipboard (3Dwt), DwtEndCopyToClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-22 Subroutines 



Name 

OwtCautionBox (30wt) 

DwtCautionBox, DwtCautionBoxCreate - Creates a caution box widget for 
the application to display caution messages. 

Syntax 
Widget DwtCautionBox(parent_widget, name, dejaultyosition, 

x, y, style, label, 
yeslabel, nolabel, cancel_label, 
default yush _button, callback, 
help_callback) 

Widget parent widget; 
char * name; -
Boolean default yosition; 
Position x, y; 
int style; 
DwtCompString label; 
DwtCompString yeslabel; 
DwtCompString nolabel; 
DwtCompString cancel_label; 
int default yush _button; 
DwtCallbackPtr callback, help _callback; 

Widget DwtCautionBoxCreate (parent widget, name, 
override argUst,-
override - argcount) 

Widget parent_widget; -
char *name; 
ArgList override argUst; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

default yosition 
Specifies a boolean value that, when True, causes DwtNx 
and DwtNy to be ignored and forces the default widget 
position. The default widget position is centered in the 
parent window. If False, the specified DwtNx and 
DwtNy attributes are used to position the widget. This 

Subroutines 3-23 



DwtCautionBox (3Dwt) 

x 

y 

style 

label 

argument sets the DwtNdefaultPosition attribute 
associated with DwtDialogBoxCreate. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

Specifies the style of the caution box widget. You can pass 
DwtModal (modal) or DwtModeless (modeless). This 
argument sets the DwtNstyle attribute associated with 
DwtDialogBoxPopupCreate. 

Specifies the text in the message line or lines. This argument 
sets the DwtNlabel attribute associated with 
DwtCautionBoxCreate. 

yeslabel Specifies the label for the Yes push button. If the label is a 
zero length string, the button is not displayed. This 
argument sets the DwtNyesLabel attribute associated with 
DwtCautionBoxCreate. 

nolabel Specifies the label for the No push button. If the label is a 
zero length string, the button is not displayed. This 
argument sets the DwtNnoLabel attribute associated with 
DwtCautionBoxCreate. 

cancel label Specifies the label for the Cancel push button. If the label is 
a NULL string, the button is not displayed. This argument 
sets the DwtNcancelLabel attribute associated with 
DwtCautionBoxCreate. 

default yush _button 

callback 

3-24 Subroutines 

Specifies the push button that represents the default user 
action. You can pass DwtYesButton, DwtNoButton, 
or DwtCancelButton. This argument sets the 
DwtNdefaul tPushbutton attribute associated with 
DwtCautionBoxCreate. 

Specifies the callback function or functions called when the 
user activates the Yes, No, or Cancel buttons. This argument 
sets the DwtNyesCallback, DwtNnoCallback, and 



DwtCautionBox (3Dwt) 

DwtNcancelCallback attributes associated with 
DwtCautionBoxCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override _ arglist 
Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arglist). 

Description 
The DwtCautionBox and DwtCautionBoxCreate functions create a 
caution box widget and return its associated widget ID. When calling 
DwtCautionBox, you set the caution box widget attributes presented in the 
formal parameter list. For DwtCautionBoxCreate, however, you 
specify a list of attribute name/value pairs that represent all the possible 
caution box widget attributes. 

A caution box warns the user of the application of the consequences of 
carrying out an action. It stops application activity and requires the user to 
provide instructions on how to proceed. Your application should generate a 
caution box when an action by the user could destroy data or cause a simialr 
irrevocable event. The caution box usually contains Yes, No, and Cancel 
push buttons. When possible, caution messages should be written as 
inquiries. In all cases, the default push button should be the least destructive 
operation. If DwtNstyle is DwtModal when the user activates any push 
button, the widget is cleared from the screen, but not destroyed. You can 
redisplay the widget by calling XtManageChild. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

Data Type 

Position 

Default 

Determined by the geometry 
manager 

Subroutines 3-25 



DwtCautionBox (3Dwt) 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Dialog Pop-Up Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNfont 
DwtNhelpCallback 
DwtNdirectionRToL 
DwtNunits 
DwtNtitle 
DwtNstyle 
DwtNmapCallback 
DwtNunmapCallback 
DwtNfocusCallback 
DwtNtextMergeTranslations 
DwtNmarginWidth 
DwtNmarginHeight 
DwtNdefaultPosition 

3-26 Subroutines 

position 

Dimension 
Dimension 
Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
DwtFontList 
DwtCallbackptr 
NOT SUPPORTED 
NOT SUPPORTED 
DwtCompString 
unsigned char 
DwtCallbackPtr 
DwtCallbackPtr 
DwtCallbackPtr 
NOT SUPPORTED 
Dimension 
Dimension 
Boolean 

Determined by the geometry 
manager 
5 pixels 
5 pixels 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
The default XUI Toolkit font 
NULL 

Widget name 
DwtModal 
NULL 
NULL 
NULL 

12 pixels 
10 pixels 
False 



DwtNchildOverlap 
DwtNresize 
DwtNtakeFocus 

DwtNnoResize 

DwtNautoUnmanage 
DwtNdefaultButton 
DwtNcancelButton 

DwtCautionBox (3Dwt) 

NOT SUPPORTED 
unsigned char 
Boolean 

Boolean 

Boolean 
NOT SUPPORTED 
NOT SUPPORTED 

DwtResizeShrinkWrap 
Truefor modal dialog box 
Fa 1 s e for modeless dialog 
box 
True (that is, no window 
manager resize button) 
True 

Widget-Specific Attributes 

Attribute Name 

DwtNlabel 
DwtNyesLabel 
DwtNnoLabel 
DwtNcancelLabel 
DwtNdefaultPushbutton 
DwtNyesCallback 
DwtNnoCallback 
DwtNcancelCallback 

Data Type 

DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 
unsigned char 
DwtCallbackPtr 
DwtCallbackPtr 
DwtCallbackPtr 

Default 

Widget name 
"Yes" 

"No" 
"Cancel" 
DwtYesButton 
NULL 
NULL 
NULL 

DwtNlabel 

DwtNyesLabel 

Specifies the text in the message line or lines. 

Specifies the label for the Yes push button. If the 
label is a zero length string, the button is not 

DwtNnoLabel 

displayed. 

Specifies the label for the No push button. If the 
label is a zero length string, the button is not 
displayed. 

DwtNcancelLabel Specifies the label for the Cancel push button. If the 
label is a NULL string, the button is not displayed. 

DwtNdefaultPushbutton 
Specifies the push button that represents the default 
user action. You can pass DwtYesButton, 
DwtNoButton, or DwtCancelButton. 

DwtNyesCallback Specifies the callback function or functions called 
when the user clicks on the Yes button. For this 
callback, the reason is Dwt CR Yes. 

Subroutines 3-27 



DwtCautionBox (3Dwt) 

DwtNnoCallback Specifies the callback function or functions called 
when the user clicks on the No button. For this 
callback, the reason is DwtCRNo. 

DwtNcancelCallback 

Return Value 

Specifies the callback function or functions called 
when the user clicks on the Cancel button. For this 
callback, the reason is DwtCRCancel. 

These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *eventi 

} DwtAnyCallbackStructi 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRYes The user activated the Yes button. 

DwtCRNo The user activated the No button. 

DwtCRCancel The user activated the Cancel button. 

DwtCRFocus The caution box has received the input 
focus. 

DwtCRHelpRequested The user selected Help somewhere in the 
caution box. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

3-28 Subroutines 



DwtCautionBox (3Dwt) 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-29 



DwtClipboardLock (3Dwt) 

Name 
DwtClipboardLock - Locks the clipboard from access by other applications. 

Syntax 
int DwtClipboardLock( display, window) 

Display * display; 
Window window; 

Arguments 

display 

window 

Description 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

The DwtClipboardLock function locks the clipboard from access by 
another application until you call DwtClipboardUnlock. All clipboard 
functions lock and unlock the clipboard to prevent simultaneous access. The 
DwtClipboardLock and DwtClipboardUnlock functions allow the 
application to keep the clipboard data from changing between calls to the 
inquire functions and other clipboard functions. The application does not 
need to lock the clipboard between calls to 
DwtBeginCopyToClipboardood DwtEndCopyToClipboard. 

If the clipboard is already locked by another application, 
DwtClipboardLock returns an error status. 

Multiple calls to DwtClipboardLock by the same application increase 
the lock level. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess The function is successful. 

3-30 Subroutines 



ClipboardLocked 

See Also 

OwtClipboardLock (30wt) 

The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

DwtClipboardUnlock (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-31 



DwtClipboardRegisterFormat (3Dwt) 

Name 
DwtClipboardRegisterFormat - Registers the length of the data for formats 
not specified by ICCCM conventions. 

Syntax 
int DwtClipboardRegisterFormat (display, format name, 

format_length) -
Display * display; 
char * format name; 
unsigned long format_length; 

Arguments 

display Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

format_name Specifies a name string for the format. See the table of Data 
Format Names for the formats defined by ICCCM 
conventions. 

format_length Specifies the format length in bits: 8, 16, or 32. 

Description 
The DwtClipboardRegisterFormat function allows an application to 
register the data length for formats not specified by the ICCCM conventions. 
Failure to register the length of the data results in applications being 
incompatible across platforms that have different byte-swapping orders. 

The following table lists the formats defined by the conventions: 

Format Name Format Length Description 

TARGETS 32 List of valid target atoms 
MULTIPLE 32 Look in the ConvertSelection property 

TIMESTAMP 32 Timestamping used to acquire 
selection 

STRING 8 ISO Latin 1 (+ T AB+NEWLINE) text 
TEXT 8 Text in owner's encoding 

3-32 Subroutines 



OwtClipboardRegisterFormat (30wt) 

LIST_LENGTH 32 Number of disjoint parts of selection 
PIXMAP 32 Pixmap ID 
DRAWABLE 32 Drawable ID 
BITMAP 32 Bitmap ID 
FOREGROUND 32 Pixel value 
BACKGROUND 32 Pixel value 
COLORMAP 32 Colormap ID 
ODIF 8 ISO Office Document Interchange 

Format 
OWNER_OS 8 Operating system of owner 
FILE_NAME 8 Full path name of a file 
HOST_NAME 8 See WM_CLIENT _MACHINE 
CHARACTER_POSITION 32 Start and end of selection in bytes 
LINE_NUMBER 32 Start and end line numbers 
COLUMN_NUMBER 32 
LENGTH 32 Number of bytes in selection 
USER 8 Name of user running owner 
PROCEDURE 8 Name of selected procedure 
MODULE 8 Name of selected module 
PROCESS 32 or 8 Process ID of owner 
TASK 32 or 8 Task ID of owner 
CLASS 8 Class of owner-See WM_ CLASS 
NAME 8 Name of owner-See WM_NAME 
CLIENT_WINDOW 32 Top-level window of owner 

For infonnation on the built-in selection property names 
WM_CLIENT_MACHINE, WM_CLASS, and WM_NAME, see the Guide 
to the Xlib Library: C Language Binding. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

Subroutines 3-33 



DwtClipboardRegisterFormat (3Dwt) 

ClipboardBadFormat The function failed because the 
format name or format length was 
inappropriate. A NULL format_name or a 
format length other than 8, 16, or 32, for 
example, would be inappropriate. 

ClipboardFail The function failed because the application 
tried to redefine a predefined format. See 
the table of Data Format Names for the 
predefined formats. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-34 Subroutines 



Name 

DwtClipboardUnlock (3Dwt) 

DwtClipboardUnlock - Unlocks the clipboard, enabling other applications to 
access it. 

Syntax 
int DwtClipboardUnlock(display, window, remove all locks) 

Display * display; - -
Window window; 
Boolean remove_all_locks; 

Arguments 

display 

window 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

remove all locks 

Description 

Specifies a boolean value that, when True, indicates that all 
nested locks should be removed. If False, indicates that 
only one level of lock should be removed. 

The DwtClipboardUnlock function unlocks the clipboard, enabling it to 
be accessed by other applications. 

If mUltiple calls to DwtClipboardLock have occurred, then the same 
number of calls to DwtClipboardUnlock is necessary to unlock the 
clipboard, unless the remove_all_locks argument is True. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess The function is successful. 

Subroutines 3-35 



DwtClipboardUnlock (3Dwt) 

ClipboardLocked 

See Also 
DwtClipboardLock (3Dwt) 

The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-36 Subroutines 



DwtCloseHierarchy (3Dwt) 

Name 
DwtCloseHierarchy - Closes a UID hierarchy. 

Syntax 
#inc1ude <Xll/DwtAppl.h> 
Cardinal DwtCloseHierarchy (hierarchy _id) 

DRMHierarchy hierarchy _id; 

Arguments 

hierarchy_id Specifies the ID of a previously opened UID hierarchy. The 
hierarchy _id was returned in a previous call to 
DwtOpenHierarchy. 

Description 
The DwtCloseHierarchy function closes a UID hierarchy previously 
opened by DwtOpenHierarchy. All files associated with the hierarchy 
are closed by DRM and all associated memory is returned. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMFailure 

See Also 
DwtOpenHierarchy(3Dwt) 

The function executed successfully. 
The function failed. 

Subroutines 3-37 



DwtColorMixCreate (3Dwt) 

Name 
DwtColorMixCreate - Creates a color mixing widget, which is a pop-up 
dialog box containing a default color display subwidget and a default color 
mixer subwidget. 

Syntax 
Widget DwtColorMixCreate (parent widget, name, 

override arglist,-override argcount) 
Widget parent_widget; - -
char *name; 
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override _ arglist 
Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _arglist). 

Description 
The DwtColorMixCreate function creates a color mixing widget and 
returns its associated widget ID. Note that unlike most of the other widgets 
in the XUI toolkit, a color mixing widget cannot be created with a high-level 
function. When calling DwtColorMixCreate, you specify a list of 
attribute name/value pairs that represents all the possible color mixing widget 
attributes. 

The color mixing widget is a composite widget; that is, it is composed of a 
parent widget and several child widgets at creation time. The parent widget 
is a pop-up dialog box that has some labels, handles geometry management, 
calls back to the application and contains the following child widgets by 
default: 

• A color display subwidget that displays the colors being mixed 

• A color mixer subwidget that allows the user to specify colors 

3-38 Subroutines 



DwtColorMixCreate (3Dwt) 

• An optional work area widget 

While the color mixing widget contains these three child widgets by default, 
the application can replace either or both the color display and color mixer 
subwidgets. Thus, applications can provide any type of color display or 
color mixer tool model. 

The default color display widget displays both the original color (the color 
value supplied by the application when the mixing began) and the current 
new color. Applications can set the following values: 

• The original color values for red, green, and blue 

• The new color values for red, green, and blue 

• The background color of the display widget 

• The dimensions of the color display windows and background area 

If the display device is a gray scale, pseudo color, or static color 
device, the color display widget allocates a maximum of three color 
cells whenever it becomes managed. If fewer than three color cells are 
available, the order of precedence is as follows: 

1 Original color cell 

2 New color cell 

3 Background color cell 

These color cells are deallocated whenever the widget becomes unmanaged. 

If an application replaces the default color display subwidget, the application 
may provide a function to allow the color mixing widget to pass the current 
new color value from the color mixer subwidget. Otherwise, the color 
mixing widget cannot inform the color display subwidget of color changes. 
The application can return to the default color display subwidget at any time 
by using XtSetValues to set DwtNdisplayWindow to NULL. 

The default RGB color mixer subwidget provides three scales, each of which 
represents a percentage of red, green, and blue. Users may also type in the 
actual X color values (0 to 65535) in the entry fields. When color mixing 
begins, the color mixer subwidget is set to the current new color values. 

If an application replaces the default color mixer subwidget, the new color 
mixer subwidget must inform the color mixing widget of changes to the 
current color value. The fastest way to do this is to call the convenience 
function DwtColorMixSetNewColor, although you can also use 

Subroutines 3-39 



DwtColorMixCreate (3Dwt) 

XtSetValues. The application can return to the default color mixer 
subwidget at any time by using XtSetValues to set 
DwtNmixerWindow to NULL. 

Note that setting DwtNdisplayWindow and DwtNmixerWindow to 
NULL when the color mixing widget is created results in no color display 
subwidget and no color mixer subwidget. Setting these attributes to NULL 
after the color mixing widget is created results in returning to the default 
color display and color mixer subwidgets. 

The color mixing widget runs on any XUI display device. On gray scale 
devices, the default color display subwidget shows the RGB values in gray 
scale. On static gray (monochrome) devices, the default color display 
subwidget is not visible. 

As far as geometry management is concerned, the color mixing widget 
conforms to the size of its children. 

As far as resizing is concerned, the color mixing widget uses the dialog box 
shrink wrap mode. It expands and shrinks relative to the size of its children. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 

3-40 Subroutines 

Data Type 

Position 

Position 

Dimension 
Dimension 
Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 

Default 

Detennined by the geometry 
manager 
Detennined by the geometry 
manager 
Zero pixels 
Zero pixels 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget'S 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 



DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Dialog Box Pop-Up Attributes 
DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 
DwtNunits 
DwtNstyle 
DwtNfocusCallback 
DwtNtextMergeTranslations 
DwtNmarginWidth 
DwtNmarginHeight 
DwtNdefaultPosition 
DwtNchildOverlap 
DwtNresize 
DwtNnoResize 
DwtNtitle 
DwtNmapCallback 
DwtNunmapCallback 
DwtNtakeFocus 

DwtNautoUnmanage 
DwtNdefaultButton 
DwtNcancelButton 
DwtNgrabKeySyms 

DwtNgrabMergeTranslations 

DwtColorMixCreate (3Dwt) 

int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 
DwtCallbackPtr 
unsigned char 
unsigned char 
DwtCallbackptr 

XtTranslations 
Dimension 
Dimension 
Boolean 
Boolean 
unsigned char 
Boolean 
DwtCompString 
DwtCallbackptr 
DwtCallbackPtr 
Boolean 

Boolean 
Widget 
Widget 
KeySym 

XtTranslations 

Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI Toolkit font 
NULL 
DwtFontUnits 
DwtModeless 
NULL 
NULL 
10 pixels 
10 pixels 
False 
True 
DwtResizeShrinkWrap 
True 
"Color Mixing" 
NULL 
NULL 
True for modal dialog box 
Fa 1 s e for modeless dialog 
box 
False 
NULL 
NULL 
The default array contains the 
Tab key symbol. 
The default syntax is: 
" -Shift<KeyPress>Oxff09: 
DWTDIMOVEFOCUSNEXTO\n\ 
Shift<KeyPress>Oxff09: 
DWTDIMOVEFOCUSPREVO"; 

Subroutines 3-41 



DwtColorMixCreate (3Dwt) 

Widget-Specific Attributes 

Attribute Name 

DwtNmainLabel 
DwtNdisplayLabel 
DwtNmixerLabel 
DwtNorigRedValue 
DwtNorigGreenValue 
DwtNorigBlueValue 
DwtNnewRedValue 

DwtNnewGreenValue 

DwtNnewBlueValue 

DwtNdisplayWindow 

DwtNsetNewColorProc 

DwtNmixerWindow 

DwtNworkWindow 
DwtNokLabel 
DwtNapplyLabel 
DwtNresetLabel 

3-42 Subroutines 

Data Type 

DwtCompString 
DwtCompString 
DwtCompString 
unsigned short 
unsigned short 
unsigned short 
unsigned short 

unsigned short 

unsigned short 

Widget 

char * 

Widget 

Widget 
DwtCompString 
DwtCompString 
DwtCompString 

Default 

NULL 
NULL 
NULL 
Zero 
Zero 
Zero 
Zero, unless 
DwtNmatchColors is 
True, in which case 
DwtNnewRedValue is set 
to match 
DwtNorigRedValue 
whenever the widget is 
created and mapped. 
Zero, unless 
DwtNmatchColors is 
True, in which case 
DwtNnewGreenValueis 
set to match 
DwtNorigGreenValue 
whenever the widget is 
created and mapped. 
Zero, unless 
DwtNmatchColors is 
True, in which case 
DwtNnewBlueValue~sct 
to match 
DwtNorigBlueValue 
whenever the widget is 
created and mapped. 
The color mixing widget 
display subwidget 
The function used by the 
color mixing widget to 
update the new color values 
displayed in the color display 
subwidget. 
The color mixing widget's 
ROB color mixer subwidget 
NULL 
"OK" 

"Apply" 
"Reset" 



OwtColorMixCreate (30wt) 

DwtNcancelLabel DwtCompString "Cancel" 
DwtNokCallback DwtCallbackPtr NULL 
DwtNapplyCallback DwtCallbackptr NULL 
DwtNcancelCallback DwtCallbackptr NULL 
DwtNmatchColors Boolean True 

This attribute can be set only 
if the default color display 
widget is used. 

DwtNresize unsigned short Gray (32767) 
This attribute can be set only 
if the default color display 
widget is used. 

DwtNbackGreenValue unsigned short Gray (32767) 
This attribute can be set only 
if the default color display 
widget is used. 

DwtNbackBlueValue unsigned short Gray (32767) 
This attribute can be set only 
if the default color display 
widget is used. 

DwtNdisplayColWinWidth Dimension 80 pixels 
This attribute can be set only 
if the default color display 
widget is used. 

DwtNdisplayColWinHeight Dimension 80 pixels 
This attribute can be set only 
if the default color display 
widget is used. 

DwtNdispWinMargin Dimension 20 pixels 
This attribute can be set only 
if the default color display 
widget is used. 

DwtNsliderLabel DwtCompString "Percentage" 
This attribute can be set only 
if the default color mix tool 
widget is used. 

DwtNvalueLabel DwtCompString "Value" 
This attribute can be set only 
if the default color mix tool 
widget is used. 

DwtNredLabel DwtCompString "Red" 
This attribute can be set only 
if the default color mix tool 
widget is used. 

Subroutines 3-43 



DwtColorMixCreate (3Dwt) 

DwtNgreenLabel 

DwtNblueLabel 

DwtNmainLabel 

DwtNdisplayLabel 

DwtCompString 

DwtCompString 

"Green" 
This attribute can be set only 
if the default color mix tool 
widget is used. 
"Blue" 
This attribute can be set only 
if the default color mix tool 
widget is used. 

Specifies the text of the main label, which is centered 
at the top of the color mixing widget. 

Specifies the text of the label centered above the 
color display widget. 

DwtNmixerLabel Specifies the text of the label centered color mixing 
widget. 

DwtNorigRedValue 
Specifies the original red color value for the color 
mixing widget. Applications should set the original 
red value. 

DwtNorigGreenValue 
Specifies the original green color value for the color 
mixing widget. Applications should set the original 
green value. 

DwtNorigBlueValue 
Specifies the original blue color value for the color 
mixing widget. Applications should set the original 
blue value. 

DwtNnewRedVal ue Specifies the new red color value for the color 
mixing widget. 

DwtNnewGreenValue 

DwtNnewBlueValue 

Specifies the new green color value for the color 
mixing widget. 

Specifies the new blue color value for the color 
mixing widget. 

DwtNdisplayWindow 

3-44 Subroutines 

Specifies the color display widget. Setting this 
attribute to NULL at widget creation time causes the 



OwtColorMixCreate (30wt) 

color display widget to not be displayed. 

If an application substitutes its own color display 
widget for the default color display widget, the 
application is responsible for managing the widget, 
that is, making it visible and controlling its geometry 
management. An application can return to the 
default color display widget by using 
xtSetValues to set this attribute to NULL. 

DwtNsetNewColorProc 
Specifies the function used by the color mixing 
widget to update the new color values displayed in 
the color display subwidget. If the application 
replaces the default color display subwidget and 
wants the color mixing widget to update the new 
color, the application must set this attribute. 
Otherwise, replacing the default color display 
subwidget sets this attribute to NULL. 

DwtNmixerWindow Specifies the color mixer subwidget. The default 
color mixer subwidget is based on the red, green, and 
blue (ROB) color model. Setting this attribute to 
NULL at widget creation time causes the color mixer 
subwidget to not be displayed. 

If an application substitutes its own color mixer 
subwidget for the default color mixer subwidget, the 
application is responsible for managing the widget, 
that is, making it visible and controlling its geometry 
management. An application can later return to the 
default color mixer subwidget by using 
XtSetValues to set this attribute to NULL. 

Applications that use the default color mixer 
subwidget need not worry about updating the new 
color. However, applications that provide their own 
color mixer subwidget are responsible for updating 
the new color. Applications can do this by using 
either XtSetValues or 
DwtColorMixSetNewColor. Using 
DwtColorMixSetNewColor is recommended 
because it is more efficient. 

DwtNworkWindow Specifies an optional work area widget. If this 
attribute is set and the application manages this 

Subroutines 3-45 



DwtColorMixCreate (3Dwt) 

widget, the work window is placed below the color 
display and color mixer subwidgets (if present) and 
above the color mixing widget push buttons. 

DwtNokLabel Specifies the label for the OK push button. 

DwtNapplyLabel Specifies the label for the Apply push button. 

DwtNresetLabel Specifies the label for the Reset push button. 

DwtNcancelLabel Specifies the label for the Cancel push button. 

DwtNokCallback Specifies the callback function or functions called 
when the user clicks on the OK push button. For 
this callback, the reason is DwtCRActi vate. 

DwtNapplyCallback 
Specifies the callback function or functions called 
when the user clicks on the Apply push button. For 
this callback, the reason is Dwt CRApp 1 y. 

DwtNcancelCallback 
Specifies the callback function or functions called 
when the user clicks on the Cancel button. For this 
callback, the reason is DwtCRCancel. 

DwtNrnatchColors Specifies a boolean value that, when True, 
indicates that the new color values are matched to 
original color values. If False, new color values 
are not matched to original color values. 

DwtNbackRedValue 

This attribute can be set only if the default color 
display widget is used. 

Specifies the default color display widget's red 
background color. This attribute can be set only if 
the default color display widget is used. 

DwtNbackGreenValue 
Specifies the default color display widget's green 
background color. This attribute can be set only if 
the default color display widget is used. 

DwtNbackBlueValue 

3-46 Subroutines 

Specifies the default color display widget's blue 
background color. This attribute can be set only if 
the default color display widget is used. 



DwtColorMixCreate (3Dwt) 

DwtNdisplayColWinWidth 
Specifies the width of the original and new color 
display windows. This attribute can be set only if 
the default color display widget is used. 

DwtNdisplayColWinHeight 
Specifies the height of the original and new color 
display windows. This attribute can be set only if 
the default color display widget is used. 

DwtNdispWinMargin 
Specifies the margin between the original and the 
new color display windows and the edge of the color 
display widget. The margin is the area affected by 
the background attributes (set gray by default). 

This attribute can be set only if the default color 
display widget is used. 

DwtNsliderLabel Specifies the text of the label above the slider 
representing the RGB scales. This attribute can be 
set only if the default color mix tool widget is used. 

DwtNvalueLabel Specifies the text of the label above the RGB text 
entry fields. This attribute can be set only if the 
default color mix tool widget is used. 

DwtNredLabe 1 Specifies the label for the RGB red scale widget. 
This attribute can be set only if the default color mix 
tool widget is used. 

DwtNgreenLabel Specifies the label for the ROB green scale widget. 
This attribute can be set only if the default color mix 
tool widget is used. 

DwtNbl ueLabel Specifies the label for the ROB blue scale widget. 

Return Value 

This attribute can be set only if the default color mix 
tool widget is used. 

This function returns the ID of the created widget. 

Subroutines 3-47 



DwtColorMixCreate (3Dwt) 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
unsigned short newred; 
unsigned short newgrn; 
unsigned short newblu; 
unsigned short origred; 
unsigned short origgrn; 
unsigned short origblu; 

DwtColorMixCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRActivate 

DwtCRApply 

DwtCRCancel 

The user has activated the OK push button. 

The user has selected the Apply push 
button. 

The user has activated the Cancel push 
button. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

The newred member is set to the new red color value for the color mix 
widget. The newgrn member is set to the new green color value for the color 
mix widget. The newblu member is set to the new blue color value for the 
color mix widget. 

The origred member is set to the original red color value for the color mix 
widget. The origgrn member is set to the original green color value for the 
color mix widget. The origblu member is set to the original blue color value 
for the color mix widget. 

See Also 
DwtColorMixSetNewColor (3Dwt), DwtColorMixGetNewColor (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-48 Subroutines 



Name 

DwtColorMixGetNewColor (3Dwt) 

DwtColorMixGetNewColor - Returns the red, green, and blue color values to 
the color mixing widget. 

Syntax 
void DwtColorMixGetNewColor(cmw, red, green, blue) 

Widget cmw; 
unsigned short * red; 
unsigned short * green; 
unsigned short * blue; 

Arguments 

cmw 

red 

Specifies the widget ID of the color mixing widget. 

Specifies the current new color red value. 

green 

blue 

Description 

Specifies the current new color green value. 

Specifies the current new color blue value. 

See the section on colormap functions in the Guide to the 
Xlib Library: C Language Binding for more information on 
X color values. 

The DwtColorMixGetNewColor function allows the color mixing 
widget to pass the current color value created by the color mixer subwidget 
to the color display subwidget. If the application uses the default color mixer 
subwidget, using DwtColorMixGetNewColor is faster than using 
XtGetValues. 

See Also 
DwtColorMixSetNewColor (3Dwt), DwtColorMixCreate (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-49 



DwtColorMixSetNewColor (3Dwt) 

Name 
DwtColorMixSetNewColor - Sets the new red, green, and blue color values 
in the color mixing widget. 

Syntax 
void DwtColorMixSetNewColor(cmw, red, green, blue) 

Widget cmw; 
unsigned short red; 
unsigned short green; 
unsigned short blue; 

Arguments 

cmw Specifies the widget ID of the color mixing widget. 

red Specifies the new color red value. You can express the value 
in percentages or by the X color values (0 to 65535). 

green Specifies the new color green value. You can express the 
value in percentages or by the X color values (0 to 65535). 

blue Specifies the new color blue value. You can express the 
value in percentages or by the X color values (0 to 65535). 

Description 

See the section on colormap functions in the Guide to the 
Xlib Library: C Language Binding for more information on 
X color values. 

The DwtColorMixSetNewColor function allows the user-supplied color 
mixer subwidget to pass the current color values to the color mixing widget. 
Using DwtColorMixSetNewColor is more efficient than using 
XtSetValues. 

See Also 
DwtColorMixGetNewColor (3Dwt), DwtColorMixCreate (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-50 Subroutines 



Name 

DwtCommandAppend (3Dwt) 

DwtCommandAppend - Appends the passed string to the current command 
line and executes it, if required. 

Syntax 
void DwtCommandAppend( widget, command) 

Widget widget; 
char * command; 

Arguments 

widget Specifies the ID of the command window widget to whose 
command line you want to append the passed string. 

command 

Description 

Specifies the text to be appended to the command line. This 
argument is a NULL-terminated string. 

The DwtCornrnandAppend function appends the passed string to the 
current command line, within the command window widget. If the string 
sent is terminated with a carriage return «CR» or carriage return and/or 
linefeed «CR><LF» character, then the command is executed, the 
application is informed, the command is moved to the command history, and 
a new prompt is issued. 

See Also 
DwtCommandWindow (3Dwt), DwtCommandErrorMessage (3Dwt), 
DwtCommandSet (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-51 



DwtCommandErrorMessage (3Dwt) 

Name 
DwtCommandErrorMessage - Writes an error message in the command 
window and refreshes the command line. 

Syntax 
void DwtCommandErrorMessage( widget, error) 

Widget widget; 
char * error; 

Arguments 

widget 

error 

Description 

Specifies the ID of the command window widget in whose 
command window you want to write an error message. 

Specifies the error message to be placed in the bottom-most 
history line in the command window widget. This argument 
is a NULL-terminated string. 

The DwtConunandErrorMessage function writes an error message in the 
history area within the command window widget. The history is first 
scrolled up. 

See Also 
DwtCommandWindow (3Dwt), DwtCommandAppend (3Dwt), 
DwtCommandSet (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-52 Subroutines 



Name 

OwtCommandSet (30wt) 

DwtCommandSet - Replaces the current command string with the one passed 
and executes it, if required. 

Syntax 
void DwtCommandSet( widget, command) 

Widget widget; 
char * command; 

Arguments 

widget Specifies the ID of the command window widget whose 
current command string you want to replace. 

command 

Description 

Specifies the text to replace the text currently on the 
command line. This argument is a NULL-terminated string. 

The DwtCommandSet function replaces the current command string with 
the passed string within the command window widget. A zero length string 
is used to clear the current command line. If the string is terminated by a 
carriage return «CR», linefeed «LF», or carriage return and/or linefeed 
«CR><LF», then the command is executed, the application is informed, the 
command is moved to the command history, and a new prompt is issued. 

See Also 
DwtCommandWindow (3Dwt), DwtCommandAppend (3Dwt), 
DwtCommandErrorMessage (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-53 



DwtCommandWindow (3Dwt) 

Name 
DwtCommandWindow, DwtCommandWindowCreate - Creates a command 
window widget. 

Syntax 
Widget DwtCommandWindow (parent_widget, name, prompt, 

lines, callback, help_callback) 
Widget parent_widget; 
char * name; 
DwtCompString prompt; 
int lines; 
DwtCallbackPtr callback, help _callback; 

Widget DwtCommandWindowCreate (parent widget, name, 
override _ arglist, -
override argcount) 

Widget parent widget; -
char * name· -, 
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

prompt 

lines 

callback 

Specifies the name of the created widget. 

Specifies the command line prompt. This argument sets the 
DwtNprompt attribute associated with 
DwtCommandWindowCreate. 

Specifies the number of command history lines visible in the 
command window widget. This argument sets the 
DwtNlines attribute associated with 
DwtCommandWindowCreate. 

Specifies the callback function or functions called when the 
user enters a command or changes the contents of a 
command line. This argument sets the 
DwtNcommandEnteredCallback and 
DwtNvalueChangedCallback attributes associated with 
DwtCommandWindowCreate. 

help_callback Specifies the callback function or functions called when a 

3-54 Subroutines 



DwtCommandWindow (3Dwt) 

help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override arglist 
- Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arglist). 

Description 
The DwtComrnandWindow and DwtComrnandWindowCreate functions 
create an instance of a command window widget and return its associated 
widget ID. The command window widget handles command line entry, 
command line history, and command line recall. When calling 
DwtComrnandWindow, you set the command window widget attributes 
presented in the formal parameter list. For DwtComrnandWindowCreate, 
however, you specify a list of attribute name/value pairs that represent all the 
possible command window widget attributes. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 

Data Type 

Position 

Position 

Dimension 
Dimension 
Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
zero 
zero 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 

Subroutines 3-55 



OwtCommandWindow (30wt) 

DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Dialog Pop-Up Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 

DwtNfont 
DwtNhelpCallback 

DwtNdirectionRToL 
DwtNunits 
DwtNtitle 

DwtNstyle 
DwtNmapCallback 
DwtNunmapCallback 
DwtNfocusCallback 
DwtNtextMergeTranslations 
DwtNmarginWidth 
DwtNmarginHeight 
DwtNdefaultPosition 

DwtNchildOverlap 
DwtNresize 
DwtNtakeFocus 

DwtNnoResize 

DwtNautoUnmanage 

3-56 Subroutines 

Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
DwtFontList 
DwtCallbackPtr 
NOT SUPPORTED 
NOT SUPPORTED 
DwtCompString 
unsigned char 
DwtCallbackPtr 
DwtCallbackptr 
DwtCallbackptr 
NOT SUPPORTED 
Dimension 
Dimension 
Boolean 

NOT SUPPORTED 
NOT SUPPORTED 
Boolean 

Boolean 

Boolean 

The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
The default XUI Toolkit font 
NULL 

Widget name 
DwtModal 
NULL 
NULL 
NULL 

12 pixels 
10 pixels 
True 
This causes the command 
window to be positioned in 
the bottom left-hand comer 
of the parent widget. 

True for modal dialog box 
False for modeless dialog 
box 
True (that is, no window 
manager resize button) 
True 



DwtNdefaultButton 
DwtNcancelButton 
DwtNcancelButton 

DwtCommandWindow (3Dwt) 

NOT SUPPORTED 
Widget 
NOT SUPPORTED 

NULL 

Widget-Specific Attributes 

Attribute Name 

DwtNvalue 
DwtNprompt 
DwtNlines 

Data Type 

char * 
DwtCompString 
short 

Default 

NULL 

">" 
Two lines 

DwtNhistory 
DwtNcommandEnteredCallback 
DwtNvalueChangedCallback 
DwtNtTranslation 

char * 
DwtCallbackPtr 
DwtCallbackptr 
XtTranslations 

NULL 

NULL 
NULL 

DwtNvalue 

DwtNprornpt 

DwtNlines 

DwtNhistory 

Specifies the current contents of the command line 
string. When a command-entered callback is made, 
this attribute will be the command line that just 
executed. 

Specifies the command line prompt. 

Specifies the number of command history lines 
visible in the command window widget. 

Specifies the contents of the command line history. 
Multiple lines should be separated by a linefeed 
character ( <LF». 

DwtNcommandEnteredCallback 
Specifies the callback function or functions called 
when the user terminated the command line with a 
carriage retum/line feed. For this callback, the 
reason is DwtCRCommandEntered. 

DwtNvalueChangedCallback 

DwtNtTranslation 

Specifies the callback function or functions called 
when the contents of the command line have 
changed. For this callback, the reason is 
DwtCRValueChanged. 

Specifies the translations used for the command line 
text field. 

Subroutines 3-57 



DwtCommandWindow (3Dwt) 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
int length; 
char *value; 

DwtCommandWindowCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRCommandEntered The user terminated the command line with 
a carriage retum/line feed. 

DwtCRValueChanged 

DwtCRFocus 

DwtCRHelpRequested 

The contents of the command line have 
changed. 

The command window widget has received 
the input focus. 

The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. The length member is set to the length of the current 
command line contents. The value member is set to the current command 
line contents. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-58 Subroutines 



OwtCopyFromClipboard (30wt) 

Name 
DwtCopyFromClipboard - Retrieves a data item from the clipboard. 

Syntax 
int DwtCopyFromClipboard (display, window, format name, 

buffer, length, -
num bytes, private id) 

Display * display; - -
Window window; 
char * format name; 
char *buffer;-
unsigned long length; 
unsigned long * num _bytes; 
int * private _id; 

~rguments 

display Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

window Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

format_name Specifies the name of a format in which the data is stored on 
the clipboard. 

buffer Specifies the buffer to which the application wants the 
clipboard to copy the data. 

length Specifies the length of the application buffer. 

num _bytes Specifies the number of bytes of data copied into the 
application buffer. 

private _id Specifies the private data stored with the data item by the 
application that placed the data item on the clipboard. If the 
application did not store private data with the data item, this 
argument returns zero. 

Subroutines 3-59 



DwtCopyFromClipboard (3Dwt) 

Description 
The DwtCopyFromClipboard function retrieves the current next-paste 
item from clipboard storage. 

DwtCopyFromClipboard returns a warning under the following 
circumstances: 

• The data needs to be truncated because the buffer length is too short 

• The clipboard is locked 

• There is no data on the clipboard 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 

ClipboardLocked 

ClipboardTruncate 

3-60 Subroutines 

All data on the clipboard has been copied 
successfully. A successful copy can be a 
one-time operation using 
DwtCopyFromClipboard alone, or an 
incremental operation using multiple calls 
to DwtCopyFromClipboard between 
calls to 
DwtStartCopyFromClipboardand 
DwtEndCopyFromClipboard. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 
If using DwtCopyFromClipboard 
alone, the data returned is truncated because 
the user did not provide a buffer that was 
large enough to hold the data. If using 
multiple calls to 
DwtCopyFromClipboard in between 
calls to 
DwtStartCopyFromClipboardand 
DwtEndCopyFromClipboard, more 
data in the requested format remains to be 
copied from the clipboard. 



ClipboardNoData 

See Also 

OwtCopyFromClipboard (30wt) 

The function could not find data on the 
clipboard corresponding to the format 
requested. This could occur because: (1) 
the clipboard is empty; (2) there is data on 
the clipboard but not in the requested 
format; and (3) the data in the requested 
format was passed by name and is no 
longer available. 

DwtStartCopyFromClipboard (3Dwt), DwtEndCopyFromClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-61 



OwtCopyToClipboard (30wt) 

Name 
DwtCopyToClipboard - Copies a data item to the clipboard. 

Syntax 
int DwtCopyToClipboard (display, window, item id, 

format_name, buffer, length, -
private id, data id) 

Display * display; - -
Window window; 
long item _id; 
char * format name; 
char * buffer;­
unsigned long length; 
int private id; 
int *data_ld; 

Arguments 

display Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

window Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

item id Specifies the number assigned to this data item. This number 
was returned by a previous call to 
DwtBeginCopyToClipboard. 

format_name Specifies the name of the format in which the data item is 
stored. 

buffer Specifies the buffer from which the clipboard copies the data. 

length Specifies the length of the data being copied to the clipboard. 

private _id Specifies the private data that the application wants to store 
with the data item. 

data id Specifies an identifying number assigned to the data item that 
uniquely identifies the data item and the format. This 
argument is required only for data that is passed by name. 

3-62 Subroutines 



DwtCopyToClipboard (3Dwt) 

Description 
The DwtCopyToClipboard function copies a data item to clipboard 
storage. The data item is not actually entered in the clipboard data structure 
until the call to DwtEndCopyToClipboard. Additional calls to 
DwtCopyToClipboard before a call to DwtEndCopyToClipboard 
add data item formats to the same data item or append data to an existing 
format. 

If the buffer argument is NULL, the data is considered passed by name. If 
data passed by name is later needed by another application, the application 
that owns the data receives a callback with a request for the data. The 
application that owns the data must then transfer the data to the clipboard 
with the DwtReCopyToClipboard function. When a data item that was 
passed by name is deleted from the clipboard, the application that owns the 
data receives a callback that states that the data is no longer needed. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

See Also 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

DwtEndCopyToClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-63 



DwtCreateFontList (3Dwt) 

Name 
DwtCreateFontList - Creates a new font list. 

Syntax 
DwtFontList DwtCreateFontList(jont, charset) 

XFontStruct * font; 
long charset; 

Arguments 

font 

charset 

Description 

Specifies a pointer to a font structure for which the new font 
list is generated. 

Specifies the character set identifier for the font. Values for 
this argument can be found in the required file 
/usr/include/cda def.h. 

The DwtCreateFontList function creates a new font list for the font 
and character set. It also allocates the space for the font list. The end of the 
font list is marked by an element whose character set value is -1. 

Return Value 
This function returns a new font list. However, it returns NULL if the font 
specified in font is NULL. 

See Also 
DwtAddFontList (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-64 Subroutines 



DwtCSbytecmp (3Dwt) 

Name 
DwtCSbytecmp - Determines if two compound-strings are identical. 

Syntax 
int DwtCSbytecmp(compound_string], compound_string2) 

DwtCompString compound_string], compound _string2; 

Arguments 

compound_string] 
Specifies a compound-string to be compared with 
compound _ string2. 

compound string2 
- Specifies a compound-string to be compared with 

compound_string]. 

Description 
The DwtCSbytecmp function returns zero if compound_string] and 
compound_string2 are exactly the same (byte to byte). It returns one if they 
are not the same. 

Return Value 
Zero if compound string] and compound string2 are exactly the same (byte 
to byte). It returns one if they are not the-same. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-65 



DwtCSempty(3Dwt) 

Name 
DwtCSempty - Determines if the compound-string contains any text 
segments. 

Syntax 
int DwtCSempty (compound_string) 

DwtCompString compound_string; 

Arguments 

compound string 
- Specifies the compound-string. 

Description 
The DwtCSernpty function determines if the compound-string contains any 
text segments. DwtCSempty returns True if all text segments in the 
compound-string are empty. Otherwise, it returns False. 

Return Value 
DwtCSempty returns True if all text segments in the compound-string are 
empty. Otherwise, it returns Fa 1 s e. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-66 Subroutines 



DwtCSString (3Dwt) 

Name 
DwtCSString - Creates a compound-string. 

Syntax 
DwtCompString DwtCSString(text, charset, direction r to I, 

language, rend) - - -
char *text; 
unsigned long charset; 
char direction r to I; 
unsigned long-language; 
DwtRendMask rend; 

Arguments 

text 

charset 

direction r to 

language 

rend 

Description 

Specifies the text string to be converted to a compound­
string. 

Specifies the character set for the compound-string. Values 
for this argument can be found in the required file 
/usr/include/cda def.h. 

Specifies the direction in which the text is drawn and wraps. 
You can pass DwtDirectionLeftDown (text is drawn 
from left to right and wraps down); 
DwtDirectionRightUp (text is drawn from left to right 
and wraps up); DwtDirectionLeftDown (text is drawn 
from right to left and wraps down); or 
DwtDirectionLeftUp (text is drawn from right to left 
and wraps up). 

Included for future use. 

Included for future use. 

The DwtCSString function creates a compound-string from information in 
the argument list. Space for the resulting string is allocated within the 
function. After using this function, you should free the space by calling 
XtFree. 

Subroutines 3-67 



DwtCSString (3Dwt) 

Return Value 
This function returns the resulting compound-string. However, it returns a 
NULL pointer if the input string is NULL. 

See Also 
DwtLatinlString (3Dwt), DwtString (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit lntrinsics: C Language Binding 

3-68 Subroutines 



OwtCSText (30wt) 

Name 
DwtCSText, DwtCSTextCreate - Creates a compound-string text widget. 

Syntax 
Widget DwtCSText(parent widget, name, x, y, cols, rows, value) 

Widget parent_widget; -
char *name; 
Position x, y; 
Dimension cols, rows; 
DwtCompString value; 

Widget DwtCSTextCreate (parent_widget, name, 
override arglist, override argcount) 

Widget parent_widget; -
char *name; 
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

y Specifies, in pixels, the placement of the top of the widget 
window relative to the inner upper left comer of the parent 
window. This argument sets the DwtNy core widget 
attribute. 

cols Specifies the width of the text window measured in character 
cells. This argument sets the DwtN co 1 s attribute 
associated with DwtCSTextCreate. 

rows Specifies the height of the text window measured in character 
cells or number of lines. This argument sets the DwtNrows 
attribute associated with DwtCSTextCreate. 

value Specifies the text contents of the compound-string text 
widget. This argument sets the DwtNval ue attribute 
associated with DwtCSTextCreate. 

Subroutines 3-69 



DwtCSText(3Dwt) 

override _ arglist 
Specifies the application override argument list. 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _ arglist). 

Description 
The DwtCSText and DwtCSTextCreate functions create an instance of 
a compound-string text widget and return its associated widget ID. When 
calling DwtCSText, you set the compound-string text widget attributes 
presented in the formal parameter list. For DwtCSTextCreate, however, 
you specify a list of attribute name/value pairs that represent all the possible 
compound-string text widget attributes. The compound-string text widget 
enables the application to display a single or multiline field of text for input 
and editing by the user. By default the text window expands or shrinks as 
the user enters or deletes text characters. Note that the text window does not 
shrink below the initial size set at creation time. 

The compound-string text widget does not support children; therefore, there 
is no geometry or resize semantics. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 

3-70 Subroutines 

Data Type 

Position 

position 

Dimension 

Dimension 

Dimension 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Set as large as necessary to 
display the DwtNrows and 
DwtNcols with the 
specified 
DwtNmarginWidth and 
DwtNmarginHeight 
Set as large as necessary to 
display the DwtNcols and 
DwtNrows with the 
specified 
DwtNmarginHeight and 
DwtNmarginWidth 
One pixel 



DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Widget-Specific Attributes 

Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackptr 

DwtCSText (3Dwt) 

Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

You can set the following widget-specifc attributes in the override _ arglist: 

Attribute Name Data Type Default 

DwtNmarginWidth Dimension 2 pixels 
DwtNmarginHeight Dimension Two pixels 
DwtNcols Dimension 20 characters 
DwtNrows Dimension 1 character 

DwtNtopPosition DwtTextPosition Zero 
DwtNwordWrap Boolean False 
DwtNscrollVertical Boolean False 
DwtNresizeHeight Boolean True 
DwtNresizeWidth Boolean True 
DwtNvalue char * 
DwtNeditable Boolean True 
DwtNmaxLength int 2**31-1 
DwtNfocusCallback DwtCallbackPtr NULL 
DwtNhelpCallback DwtCallbackPtr NULL 
DwtNlostFocusCallback DwtCallbackPtr NULL 

DwtNvalueChangedCallback DwtCallbackPtr NULL 
DwtNinsertionPointVisible Boolean True 
DwtNautoShowlnsertPoint Boolean True 
DwtNinsertionPosition int Zero 

Subroutines 3-71 



OwtCSText (30wt) 

DwtNforeground 

DwtNfont 

Pixel 

DwtFontList 

The current server's default 
foreground 
The current server's 
DwtFontList 

DwtNblinkRate 
DwtNscrollLeftSide 
DwtNhalfBorder 
DwtNpendingDelete 
DwtNdirectionRToL 
DwtNtextPath 
DwtNeditingPath 
DwtNbidirectionalCursor 
DwtNnofontCallback 

int 
Boolean 
Boolean 
Boolean 
unsigned char 
int 
int 
Boolean 
DwtCallbackPtr 

500 milliseconds 
False 
True 
True 
DwtDirectionRightDowr. 
Left to right 
Left to right 
False 
NULL 

DwtNmarginWidth Specifies the number of pixels between the left or 
right edge of the window and the text. 

DwtNmarginHeight 
Specifies the number of pixels between the top or 
bottom edge of the window and the text. 

DwtNcols Specifies the width of the text window measured in 
character spaces. 

DwtNrows Specifies the height of the text window measured in 
character heights or number of line spaces. 

DwtNt opP 0 sit i on Specifies the position to display at the top of the 
window. 

DwtNwordWrap Specifies a boolean value that, when True, 
indicates that lines are broken at word breaks and 
text does not run off the right edge of the window. 

DwtNscrollVertical 

DwtNresizeHeight 

~-72 Subroutines 

Specifies a boolean value that, when True, adds a 
scroll bar that allows the user to scroll vertically 
through the text. 

Specifies a boolean value that, when True, 
indicates that the compound-string text widget resizes 
its height to accommodate all the text contained in 
the widget. If this is set to True, the text will 
always be displayed starting from the first position in 
the source, even if instructed otherwise. This 
attribute is ignored if DwtNscroll Vertical is 



DwtCSText (3Dwt) 

True. 

DwtNresizeWidth Specifies a boolean value that, when True, 
indicates that the compound-string text widget resizes 
its width to accommodate all the text contained in 
the widget. This argument is ignored if 
DwtNwordWrap is True. 

DwtNval ue Specifies the text contents of the compound-string 
text widget. If you accept the default of NULL, the 
text path and editing path are set to 
DwtDirectionRightDown. Otherwise, the text 
path and editing path are set from the direction of the 
first segment of the value. 

DwtNeditable Specifies a boolean value that, when True, 
indicates that the user can edit the text in the 
compound-string text widget. If False, prohibits 
the user from editing the text. 

DwtNmaxLength Specifies the maximum length of the text string, in 
characters, in the compound-string text widget. 

DwtNfocusCallback 

DwtNhelpCallback 

Specifies the callback function or functions called 
when the compound-string text widget accepted the 
input focus. For this callback, the reason is 
DwtCRFocus. 

Specifies the callback function or functions called 
when a help request is made. For this callback, the 
reason is DwtCRHelpRequested. 

DwtNlostFocusCallback 
Specifies the callback function or functions called 
when the compound-string text widget loses input 
focus. For this callback, the reason is 
DwtCRLostFocus. 

DwtNvalueChangedCallback 
Specifies the callback function or functions called 
when the value of the compound-string text widget 
changes. For this callback, the reason is 
DwtCRValueChanged. 

DwtNinsertionPointVisible 

Subroutines 3-73 



DwtCSText(3Dwt) 

Specifies a boolean value that, when True, 
indicates that the insertion point is marked by a 
blinking text cursor. 

DwtNautoShowlnsertPoint 
Specifies a boolean value that, when True, ensures 
that the text visible in the compound-string text 
widget window contains the insertion point. This 
means that if the insertion point changes, the 
contents of the compound-string text widget window 
might scroll in order to bring the insertion point into 
the window. 

DwtNinsertionPosition 
Specifies the current location of the insertion point. 

DwtNforeground Specifies the pixel for the foreground of the 
compound-string text widget. 

DwtNfont Specifies the font list to be used for the compound­
string text widget. 

DwtNblinkRate Specifies the blink rate of the text cursor in 
milliseconds. 

DwtNscrollLeftSide 
Specifies a boolean value that, when True, 
indicates that the vertical scroll bar should be placed 
on the left side of the compound-string text window. 
This attribute is ignored if 
DwtNscrollVerticalis False. 

DwtNhalfBorder Specifies a boolean value that, when True, 
indicates that a border is displayed only on the 
starting edge and bottom edge of the compound­
string text widget. 

DwtNpendingDelete 
Specifies a boolean value that, when True, 
indicates that selected text containing the insertion 
point is deleted when new text is entered. 

DwtNdirectionRToL 

3-74 Subroutines 

Specifies the direction in which the text is drawn and 
wraps. You can pass DwtDirectionLeftDown 
(text is drawn from left to right and wraps down); 
DwtDirectionRightUp (text is drawn from left 



DwtCSText(3Dwt) 

to right and wraps up); 
DwtDirectionLeftDown (text is drawn from 
right to left and wraps down); or 
DwtDirectionLeftUp (text is drawn from right 
to left and wraps up). The DwtNdirectionRToL 
attribute only affects the direction toward which the 
window is resized. 

DwtNtextPath Specifies a read-only value that holds the main text 
path (direction) of the text in the compound-string 
text widget. It is set from the initial compound­
string value of the widget. This attribute is used 
only if DwtNval ue is NULL. 

DwtNedi tingPath Specifies a read-only value that holds the current 
editing text path (direction) in the compound-string 
text widget. It is set initially equal to 
DwtNtextPath. This attribute is used only if 
DwtNvalue is NULL. 

DwtNbidirectionalCursor 
Specifies a boolean value that, when True, 
indicates that the shape of the cursor at the insertion 
point will be dependent on the current editing 
direction. 

DwtNnofontCallback 

Return Value 

Specifies a callback function called when the 
compound-string text widget has failed to find a font 
needed for the display of a text tagged by a specific 
character set. For this callback, the reason is 
DwtCRNoFont. 

These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
char *charset; 
unsigned int charset_len; 

DwtCSTextCallbackStruct; 

Subroutines 3-75 



DwtCSText(3Dwt) 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRFocus The compound-string text widget has 
received the input focus. 

DwtCRLostFocus The compound-string text widget has lost 
the input focus. 

DwtCRVal ueChanged The user changed the value of the text in 
the compound-string text widget. 

DwtCRHelpRequested The user selected Help. 

DwtCRNoFont The widget font list contained no entry for 
the required character set. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

The charset member is set to the character set ID for which the widget has no 
matching font in its font list. The callback should modify the widget font list 
to include an entry for the required character set. 

The charset_Ien member is set to the length of the charset string. 

See Also 
DwtCSTextReplace (3Dwt), DwtCSTextGetString (3Dwt), 
DwtCSTextSetString (3Dwt), DwtCSTextGetEditable (3Dwt), 
DwtCSTextSetEditable (3Dwt), DwtCSTextGetMaxLength (3Dwt), 
DwtCSTextSetMaxLength (3Dwt), DwtCSTextSetSelection (3Dwt), 
DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-76 Subroutines 



Name 

OwtCSTextClearSelection (30wt) 

DwtCSTextClearSelection - Clears the global selection highlighted in the 
compound-string text widget. 

Syntax 
void DwtCSTextClearSelection( widget, time) 

Widget widget; 
Time time; 

Arguments 

widget 

time 

Description 

Specifies the ID of the compound-string text widget. 

Specifies the time of the event that led to the call to 
XSetSelectionOwner. You can pass either a timestamp 
or Current Time. Whenever possible, however, use the 
timestamp of the event leading to the call. 

The DwtCSTextClearSelection function clears the global selection 
highlighted in the compound-string text widget. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt), 
DwtCSTextGetString (3Dwt), DwtCSTextSetString (3Dwt), 
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt), 
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt), 
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-77 



DwtCSTextGetEditable (3Dwt) 

Name 
DwtCSTextGetEditable - Obtains the current edit permission state indicating 
whether the user can edit the text in the compound-string text widget. 

Syntax 
Boolean DwtCSTextGetEditable (widget) 

Widget widget; 

Arguments 

widget Specifies the ID of the compound-string text widget. 

Description 
The DwtCSTextGetEditable function returns the current edit­
permission-state, which indicates whether the user can edit the text in the 
compound-string text widget. If the function returns True, the user can edit 
the string text in the compound-string text widget. If it returns False, the 
user cannot edit the text. 

Return Value 
Specifies a boolean value that, when True, indicates the user can edit the 
text in the compound string text widget. When F a Is e, the user cannot edit 
the text. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt), 
DwtCSTextSetString (3Dwt), DwtCSTextSetEditable (3Dwt), 
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt), 
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-78 Subroutines 



Name 

DwtCSTextGetMaxLength (30wt) 

DwtCSTextGetMaxLength - Obtains the current maximum allowable length 
of the text in the compound-string text widget. 

Syntax 
int DwtCSTextGetMaxLength ( widget) 

Widget widget; 

Arguments 

widget Specifies the ID of the compound-string text widget. 

Description 
The DwtCSTextGetMaxLength function returns the current maximum 
allowable length of the text in the compound-string text widget. 

Return Value 
This function returns the maximum length, in characters, of the text in the 
compound string text widget. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt), 
DwtCSTextGetString (3Dwt), DwtCSTextSetString (3Dwt), 
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt), 
DwtCSTextSetMaxLength (3Dwt), DwtCSTextSetSelection (3Dwt), 
DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-79 



DwtCSTextGetSelection (3Dwt) 

Name 
DwtCSTextGetSelection - Retrieves the global selection, if any, currently 
highlighted, in the compound string text widget. 

Syntax 
DwtCompString DwtCSTextGetSelection ( widget) 
Widget widget; 

Arguments 

widget Specifies the ID of the compound-string text widget. 

Description 
The DwtCSTextGetSelection function retrieves the text currently 
highlighted (selected) in the compound string text widget. It returns a NULL 
pointer if no text is selected in the widget. The application is responsible for 
freeing the storage associated with the text by calling XtFree. 

Return Value 
This function returns a pointer to the selected compound string text. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt), 
DwtCSTextGetString (3Dwt), DwtCSTextSetString (3Dwt), 
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt), 
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt), 
DwtCSTextSetSelection (3Dwt), 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-80 Subroutines 



Name 

DwtCSTextGetString (3Dwt) 

DwtCSTextGetString - Retrieves all text from the compound-string text 
widget. 

Syntax 
DwtCompString DwtCSTextGetString ( widget) 

Widget widget; 

Arguments 

widget Specifies the ID of the compound-string text widget. 

Description 
The DwtCSTextGetString function retrieves the current compound­
string from the compound-string text widget. The application is responsible 
for freeing the storage associated with the string by calling XtFree. 

Return Value 
This function returns a pointer to a compound string holding all the current 
text in the compound string text widget. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt), 
DwtCSTextSetString (3Dwt), DwtCSTextGetEditable (3Dwt), 
DwtCSTextSetEditable (3Dwt), DwtCSTextGetMaxLength (3Dwt), 
DwtCSTextSetMaxLength (3Dwt), DwtCSTextSetSelection (3Dwt), 
DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-81 



DwtCSTextReplace (3Dwt) 

Name 
DwtCSTextReplace - Replaces a portion of the current text in the 
compound-string text widget or inserts some new text into the current text of 
the compound-string text widget. 

Syntax 
void DwtCSTextReplace (widget, from yos, to yos, value) 

Widget widget; 
int from yos, to yos; 
DwtCompString value; 

Arguments 

widget 

fromyos 

toyos 

value 

Description 

Specifies the ID of the compound-string text widget. 

Specifies the first character position of the compound-string 
text being replaced. 

Specifies the last character position of the compound-string 
text being replaced. 

Specifies the text to replace part of the current text in the 
compound-string text widget. 

The DwtCSTextReplace function replaces part of the text in the 
compound-string text widget. Within the widget, positions are numbered 
starting at 0 and increasing sequentially. For example, to replace the second 
and third characters in the text, from yos should be 1 and to yos should be 
3. To insert text after the fourth character,from yos and to yos should both 
be 4. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextSetString (3Dwt), 
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt), 
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt), 
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-82 Subroutines 



DwtCSTextSetEditable (3Dwt) 

Name 
DwtCSTextSetEditable - Sets the permission state that determines whether 
the user can edit text in the compound-string text widget. 

Syntax 
void DwtCSTextSetEditable (widget, editable) 

Widget widget; 
Boolean editable; 

Arguments 

widget 

editable 

Specifies the ID of the compound-string text widget. 

Specifies a boolean value that, when True, indicates that 
the user can edit the text in the compound-string text widget. 
If Fa 1 s e, prohibits the user from editing the text. 

Description 
The DwtCSTextSetEditable function sets the edit permission state 
information concerning whether the user can edit text in the compound-string 
text widget. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt), 
DwtCSTextSetString (3Dwt), DwtCSTextGetEditable (3Dwt), 
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt), 
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI T~olkit Intrinsics: C Language Binding 

Subroutines 3-83 



DwtCSTextSetMaxLength (3Dwt) 

Name 
DwtCSTextSetMaxLength - Sets the maximum allowable length of the text 
in the compound-string text widget. 

Syntax 
void DwtCSTextSetMaxLength (widget, max_length) 

Widget widget; 
int max_length; 

Arguments 

widget 

max_length 

Description 

Specifies the ID of the compound-string text widget. 

Specifies the maximum length, in characters, of the text in 
the compound string text widget. This argument sets the 
DwtNmaxLength attribute associated with 
DwtCSTextCreate. 

The DwtCSTextSetMaxLength function sets the maximum allowable 
length of the text in the compound-string text widget and prevents the user 
from entering text longer than this limit. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt), 
DwtCSTextSetString (3Dwt), DwtCSTextGetEditable (3Dwt), 
DwtCSTextSetEditable (3Dwt), DwtCSTextGetMaxLength (3Dwt), 
DwtCSTextSetSelection (3Dwt), DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-84 Subroutines 



Name 

DwtCSTextSetSelection (3Dwt) 

DwtCSTextSetSelection - Highlights the specified text in the compound­
string text widget and makes it the current global selection. 

Syntax 
void DwtCSTextSetSelection( widget, first, last, time) 

Widget widget; 
int first, last; 
Time time; 

Arguments 

widget 

first 

last 

time 

Description 

Specifies the ID of the compound-string text widget. 

Specifies the first character position of the selected 
compound-string text. 

Specifies the last character position of the selected 
compound-string text. 

Specifies the time of the event that led to the call to 
XSetSelectionOwner. You can pass either a timestamp 
or Current Time. Whenever possible, however, use the 
timestamp of the event leading to the call. 

The DwtCSTextSetSelection function makes the specified text in the 
compound-string text widget the current global selection and highlights it in 
the compound-string text widget. Within the text window, first marks the 
first character position and last marks the last position. The field characters 
start at 0 and increase sequentially. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt), 
DwtCSTextGetString (3Dwt), DwtCSTextSetString (3Dwt), 
DwtCSTextGetEditable (3Dwt), DwtCSTextSetEditable (3Dwt), 
DwtCSTextGetMaxLength (3Dwt), DwtCSTextSetMaxLength (3Dwt), 
DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-85 



DwtCSTextSetString (3Dwt) 

Name 
DwtCSTextSetString - Changes the text in the compound-string text widget. 

Syntax 
void DwtCSTextSetString(widget, value) 

Widget widget; 
DwtCompString value; 

Arguments 

widget 

value 

Description 

Specifies the ID of the compound-string text widget. 

Specifies the text that replaces all text in the current 
compound-string text widget. 

The DwtCSTextSetString function completely changes the text in the 
compound-string text widget. 

See Also 
DwtCSText (3Dwt), DwtCSTextCreate (3Dwt), DwtCSTextReplace (3Dwt), 
DwtCSTextGetString (3Dwt), DwtCSTextGetEditable (3Dwt), 
DwtCSTextSetEditable (3Dwt), DwtCSTextGetMaxLength (3Dwt), 
DwtCSTextSetMaxLength (3Dwt), DwtCSTextSetSelection (3Dwt), 
DwtCSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-86 Subroutines 



DwtCStrcat (3Dwt) 

Name 
DwtCStrcat, DwtCStrncat - Appends a copy of a compound-string to the end 
of another compound-string. 

Syntax 
DwtCompString DwtCStrcat( compound string1, 

compound string2) -
DwtCompString compound_string 1, compound _ string2 ; 

DwtCompString DwtCStrncat (compound string 1, 
compound string2, -
num chars) 

DwtCompString compound string 1, compound _string2 ; 
int num_chars; -

Arguments 

compound_string 1 
Specifies a compound-string to which a copy of 
compound _string2 is appended. 

compound _ string2 
Specifies a compound-string that is appended to the end of 
compound _string1. 

num chars Specifies the number of characters to be appended to the 
specified compound-string. If num chars is less than the 
length of compound_string2, the resulting string will not be a 
valid compound-string. 

Description 
The DwtCStrcat function appends compound_string2 to the end of 
compound _string1 and returns the resulting string. The original strings are 
preserved. The space for the resulting compound-string is allocated within 
the function. After using this function, you should free this space by calling 
XtFree. 

The DwtCStrncat function appends no more than the number of 
characters specified in num_chars, which includes tag and length sections of 
the compound-string. 

Subroutines 3-87 



DwtCStrcat (3Dwt) 

Return Value 
These functions return a pointer to the resulting compound-string. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-88 Subroutines 



DwtCStrcpy (3Dwt) 

Name 
DwtCStrcpy, DwtCStrncpy - Copies a compound-string. 

Syntax 
DwtCompString DwtCStrcpy (compound_string 1 ) 

DwtCompString compound_string 1 ; 

DwtCompString DwtCStrncpy (compound_string 1, num _chars) 
DwtCompString compound string 1 ; 
int num_chars; -

Arguments 

compound string 1 
- Specifies a compound-string to be copied to the output string. 

num chars Specifies the number of characters to be copied. If 

Description 

num chars is less than the length of compound string 1, the 
resulting string will not be a valid compound-string. 

The DwtCStrcpy function copies the string in compound_string1. 

The DwtCStrncpy function copies exactly the number of characters 
specified in num _chars, including the headers and trailers. 

The space for the resulting compound-string is allocated with these functions. 
After using these functions, you should free this space by calling XtFree. 

Return Value 
These functions return a pointer to the resulting compound-string. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-89 



DwtCStrlen (3Dwt) 

Name 
DwtCStrlen - Returns the number of bytes in a compound-string. 

Syntax 
int DwtCStrlen (compound string 1 ) 

DwtCompString compound_string 1 ; 

Arguments 

compound string 1 
- Specifies a compound-string whose length is detennined. 

Description 
The DwtCStrlen function returns the number of bytes in 
compound _string1, including compound-string terminators for headers and 
trailers. If the compound-string has an invalid stucture, zero is returned. 

Return Value 
This function returns the number of bytes in compound string 1, including 
compound-string tenninators for headers and trailers. If the compound-string 
has an invalid stucture, zero is returned. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-90 Subroutines 



Name 

OwtOialogBox (30wt) 

DwtDialogBox, DwtDialogBoxCreate, DwtDialogBoxPopupCreate - Creates 
a dialog box widget to contain other subwidgets. 

Syntax 
Widget DwtDialogBox(parent_widget, name, defaultyosition, 

x, y, title, style, 
map callback, help callback) 

Widget parent widget; -
char * name; -
Boolean default yosition; 
Position x, y; 
DwtCompString title; 
unsigned char style; 
DwtCallbackPtr map _callback, help _callback; 

Widget DwtDialogBoxCreate (parent widget, name, 
override _ argUst, override _ argcount) 

Widget parent_widget; 
char *name; 
ArgList override _ argUst; 
int override _ argcount; 

Widget DwtDialogBoxPopupCreate (parent_widget, name, 
override _ arglist, 
override _ argcount) 

Widget parent widget; 
char * name; -
ArgList override _ argUst; 
int override _ argcount; 

Arguments 

parent _widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

default yosition 
Specifies a boolean value that, when True, causes DwtNx 
and DwtNy to be ignored and forces the default widget 
position. The default widget position is centered in the 
parent window. If False, the specified DwtNx and 
DwtNy attributes are used to position the widget. 

Subroutines 3-91 



DwtDialog Box (3Dwt) 

If the dialog box is displayed partially off the screen as a 
result of being centered in the parent window, the centering 
rule is violated. When this occurs, the parent window is 
repositioned so that the entire dialog box is displayed on the 
screen. 

The pop-up dialog box is recentered every time it is popped 
up. Consequently, if the parent moves in between 
invocations of the dialog box, the box pops up centered in 
the parent window's new location. However, the dialog box 
does not dynamically follow its parent while it is displayed. 
If the parent is moved, the dialog box will not move until the 
next time it is popped up. 

If the user moves the dialog box with the window manager, 
the toolkit turns off DwtNdefaultPosi tion. This 
results in the dialog box popping up in the . location specified 
by the user on each subsequent invocation. This argument 
sets the DwtNdefaultPosition attribute associated 
with DwtDialogBoxCreate. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

title Specifies the compound-string label. The label is given to 
the window manager for the title bar if DwtNstyle is 
DwtModeless. This argument sets the DwtNtitle 
attribute associated with DwtDialogBoxPopupCreate. 

style Specifies the style of the dialog box widget. You can pass 
DwtModal, DwtModeless, or DwtWorkarea. You 
cannot change DwtNstyle after the widget is created. 
This argument sets the DwtNstyle attribute associated 
with DwtDialogBoxCreate or 
DwtDialogBoxPopupCreate. 

map _callback Specifies the callback function or functions called when the 
window is about to be mapped. For this callback, the reason 
is DwtCRMap. Note that map _callback is supported only if 

3-92 Subroutines 



DwtDialogBox (3Dwt) 

style is DwtModal or DwtModeless. If style is 
DwtWorkarea, map_callback is ignored. 

This argument sets the DwtNrnapCallback attribute 
associated with DwtDialogBoxPopupCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

override arglist 
- Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arglist). 

Description 
Depending on the constant you pass to DwtNstyle, the DwtDialogBox 
function creates a dialog box or a pop-up dialog box widget. The 
DwtDialogBoxCreate function creates a dialog box widget, and 
DwtDialogBoxPopupCreate creates a pop-up dialog box widget. Upon 
completion, these functions return the associated widget ID. When calling 
DwtDialogBox, you set the dialog box widget attributes presented in the 
formal parameter list. For DwtDialogBoxCreate and 
DwtDialogBoxPopupCreate, however, you specify a list of attribute 
name/value pairs that represent all the possible dialog box widget attributes. 

The dialog box widget is a composite widget that contains other subwidgets. 
Each subwidget displays information or requests and/or handles input from 
the user. 

The dialog box widget functions as a container only, and provides no input 
semantics over and above the expressions of the widgets it contains. 

Subwidgets can be positioned within the dialog box in two ways: by font 
units and by pixel units. By default, sub widgets are positioned in terms of 
font units (that is, DwtNunits is DwtFontUnits). The X font units are 
defined to be one-fourth the width of whatever font is supplied for the 
common attribute DwtNfont. The Y font units are defined to be one­
eighth the width of whatever font is supplied for DwtNfont. (Width is 
taken from the QUAD_WIDTH property of the font.) Subwidgets can also 
be positioned in terms of pixel units (that is, DwtNuni ts is 
DwtPixelUnits). 

Subroutines 3-93 



DwtDialog8ox (3Dwt) 

Note that when changing DwtNtextMergeTranslations, the existing 
widgets are not affected. The new value for 
DwtNtextMergeTranslations acts only on widgets that are added 
after the pop-up dialog box is created. 

Pop-up dialog box widgets create their own shells as parents. Therefore, to 
set the colormap of a pop-up dialog box, you must set the colormap of its 
parent shell. (To find the parent shell, use XtParent.) For nonpop-up 
widgets, the shell widget ID is returned from Xtlnitialize. You need 
only set the colormap once on the returned shell widget. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

3-94 Subroutines 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackptr 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Set as large as necessary to 
hold all child widgets 
Set as large as necessary to 
hold all child widgets 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 



Widget-Specific Attributes 

Attribute Name 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNfont 
DwtNhelpCallback 
DwtNdirectionRToL 
DwtNunits 
DwtNstyle 

DwtNfocusCallback 
DwtNtextMergeTranslations 
DwtNmarginWidth 

DwtNmarginHeight 

DwtNdefaultPosition 
DwtNchildOverlap 
DwtNresize 
DwtNgrabKeySyms 

DwtNgrabMergeTranslations 

OwtOialogBox (30wt) 

Data Type 

Pixel 
Pixel 
Pixmap 

Opaque * 
DwtFontList 
DwtCallbackPtr 
unsigned char 
unsigned char 
unsigned char 

DwtCallbackPtr 
XtTranslations 
Dimension 

Dimension 

Boolean 
Boolean 
unsigned char 
KeySym 

XtTranslations 

Default 

Default foreground color 
Default foreground color 
NULL 
NULL 
The default XUI Toolkit font 
NULL 
DwtDirectionRightDown 
DwtFontUnits 
For 
DwtDialogBoxCreate, the 
default is DwtWorkarea. 
For 
DwtDialogBoxPopupCreate, 
the default is 
DwtModeless. 
NULL 
NULL 
For 
DwtDialogBoxCreate, the 
default is One pixel. 
For 
DwtDialogBoxPopupCreate, 
the default is 3 pixels. 
For 
DwtDialogBoxCreate, the 
default is One pixel. 
For 
DwtDialogBoxPopupCreate, 
the default is 3 pixels. 
False 
True 
DwtResizeGrowOnly 
The default array contains the 
Tab key symbol. 
The default syntax is: 
" ..... Shift<KeyPress>Oxff09: 
DWTDIMOVEFOCUSNEXTO\n\ 
Shift<KeyPress>Oxff09: 
DWTDIMOVEFOCUSPREVO"; 

Subroutines 3-95 



DwtDialogBox (3Dwt) 

The following table lists the widget-specific attributes for the pop-up dialog 
box widget. 

Attribute Name Data Type Default 

DwtNtitle DwtCompString When DwtNstyle is 
DwtModal, the default is 
NULL 
When DwtNstyle is 
DwtModeless, the default 
is the widget name 

DwtNmapCallback DwtCallbackPtr NULL 
DwtNunmapCallback DwtCallbackptr NULL 
DwtNtakeFocus Boolean True for modal dialog box 

False for modeless dialog 
box 

DwtNnoResize 

DwtNautoUnmanage 
DwtNdefaultButton 
DwtNcancelButton 
DwtNautoUnrealize 

Boolean 

Boolean 
Widget 
Widget 
Boolean 

True (that is, no window 
manager resize button) 
True 
NULL 
NULL 
False 

DwtNforeground Specifies the color of foreground gadget children in 
the widget window. 

DwtNhighlight Specifies the color used for highlighting gadget 
children. 

DwtNhighlightPixmap 

DwtNuserData 

Specifies the pattern and color used for highlighting 
gadget children. 

Specifies any user private data to be associated with 
the widget. The XUI Toolkit does not interpret this 
data. 

DwtNdirectionRToL 

3-96 Subroutines 

Specifies the direction in which the text is drawn and 
wraps. You can pass DwtDirectionLeftDown 
(text is drawn from left to right and wraps down); 
DwtDirectionRightUp (text is drawn from left 
to right and wraps up); 
DwtDirectionLeftDown (text is drawn from 
right to left and wraps down); or 
DwtDirectionLeftUp (text is drawn from right 



OwtOialogBox (30wt) 

to left and wraps up). 

DwtNfont Specifies the font of the text used in gadget children. 

DwtNhelpCallback 
Specifies the callback function or functions called 
when a help request is made. 

DwtNuni t s Specifies the type of units for th~ DwtNx and 
DwtNy attributes. You use these when adding child 
widgets to the dialog box. The DwtNuni t s 
attribute cannot be changed after the widget is 
created. You can pass DwtPixelUnits or 
DwtFontUni ts. 

DwtNstyle Specifies the style of the dialog box widget. For 
DwtDialogBoxPopupCreate you can pass 
DwtModal or DwtModeless. For 
DwtDialogBoxCreate you can pass 
DwtWorkarea. You cannot change DwtNstyle 
after the widget is created. 

DwtNfocusCallback 
Specifies the callback function or functions called 
when the dialog box accepted the input focus. For 
this callback, the reason is DwtCRFocus. 

DwtNtextMergeTranslations 
Specifies the translation manager syntax that will be 
merged with each text widget. 

DwtNmarginWidth Specifies the number of pixels between the maximum 
right border of a child widget window and the dialog 
box. 

DwtNmarginHeight 
Specifies the number of pixels between the maximum 
bottom border of a child widget window and the 
dialog box. 

DwtNdefaultPosition 
Specifies a boolean value that, when True, causes 
DwtNx and DwtNy to be ignored and forces the 
default widget position. The default widget position 
is centered in the parent window. If False, the 
specified DwtNx and DwtNy attributes are used to 
position the widget. 

Subroutines 3-97 



DwtDialogBox (3Dwt) 

DwtNchildOverlap 

DwtNresize 

3-98 Subroutines 

If the dialog box is displayed partially off the screen 
as a result of being centered in the parent window, 
the centering rule is violated. When this occurs, the 
parent window is repositioned so that the entire 
dialog box is displayed on the screen. 

The pop-up dialog box is recentered every time it is 
popped up. Consequently, if the parent moves in 
between invocations of the dialog box, the box pops 
up centered in the parent window's new location. 
However, the dialog box does not dynamically 
follow its parent while it is displayed. If the parent 
is moved, the dialog box will not move until the next 
time it is popped up. 

If the user moves the dialog box with the window 
manager, the toolkit turns off 
DwtNdefaultPosition. This results in the 
dialog box popping up in the location specified by 
the user on each subsequent invocation. 

Specifies a boolean value that, when True, 
indicates that the dialog box approves geometry 
requests from its children that result in one child 
overlapping other children. If Fa 1 s e, the dialog 
box disapproves these geometry requests. 

Specifies how the dialog box resizes when its 
children are managed and unmanaged and when 
geometry requests occur. You can pass 
DwtResizeFixed, DwtResizeGrowOnly, or 
DwtResizeShrinkWrap. 

DwtResizeFixed indicates that the dialog box 
does not change its size when children are added or 
deleted, or on geometry requests from its children. 

DwtResizeGrowOnly indicates that the dialog 
box always attempts to grow as necessary when 
children are added or deleted, or on geometry 
requests from its children. 

DwtResizeShrinkWrap indicates that the dialog 
box always attempts to grow or shrink to fit its 
current set of managed children as children are added 



OwtOialog Box (30wt) 

or deleted, or on geometry requests from its children. 

DwtNgrabKeySyms Specifies a NULL-terminated array of keysyms. The 
dialog box calls the Xlib function XGrabKey for 
each keysym. XGrabKey specifies 
AnyModifier for modifiers, GrabModeAsync 
for pointer mode, and GrabModeSync for 
keyboard_mode. The dialog box uses the 
XGrabKey function in conjunction with the value of 
DwtNgrabMergeTranslations to implement 
moving the focus among its children in a 
synchronous manner. You cannot change this 
attribute after the widget is created. 

DwtNgrabMergeTranslations 
Specifies the parsed translation syntax to merge into 
the dialog box syntax to handle the key events.· The 
syntax is merged when the dialog box is first 
realized. Any change made to this attribute after the 
dialog box is realized will not have any effect. 

DwtNt it 1 e Specifies the compound-string label. The label is 
given to the window manager for the title bar if 
DwtNstyle is DwtModeless. 

DwtNmapCallback Specifies the callback function or functions called 
when the window is about to be mapped. For this 
callback, the reason is DwtCRMap. 

DwtNunmapCallback 
Specifies the callback function or functions called 
when the window was unmapped. For this callback, 
the reason is DwtCRUnmap. 

DwtNtakeFocus Specifies a boolean value that, when True, 
indicates that the dialog box takes the input focus 
when managed. 

DwtNnoResize 

DwtNautoUnmanage 

Specifies a boolean value that, when True, 
indicates that a modal or modeless dialog box does 
not have a window manager resize button. When 
False, the dialog box has a window manager resize 
button. 

Specifies a boolean value that, when True, 
indicates that the dialog box unmanages itself when 

Subroutines 3-99 



DwtDialogBox (3Dwt) 

any push button is activated. This attribute cannot be 
changed after widget creation. 

DwtNdefaultButton 

DwtNcancelButton 

Specifies the ID of the push button widget that is 
activated when the user presses the RETURN or 
ENTER key. 

Specifies the ID of the push button widget that is 
activated when the user presses the Shift and Return 
keys simultaneously. 

DwtNautoUnrealize 
Specifies a boolean value that, when False, 
indicates that the dialog box creates the window(s) 
for itself and its children when it is first managed, 
and never destroys them. If True, the dialog box 
re-creates the window(s) every time it is managed, 
and destroys them when it is unmanaged. 

The setting of this attribute is a performance tradeoff 
between the client cpu load (highest when set to 
True), and the server window load (highest when 
set to False). 

The following constraint attributes are passed on to any widget that is made a 
child of a dialog box widget. These constraint values are used only for 
dialog boxes that have the DwtNunits attribute set to DwtFontUnits. 

DwtNfontX Specifies the placement of the left hand side of the 
widget wiridow in font units. The default is the 
value of DwtNx. 

DwtNfontY 

Return Value 

Specifies the placement of the top of the widget 
window in font units. The default is the value of 
DwtNy. 

These functions return the ID of the created widget. 

3-100 Subroutines 



DwtDialogBox (3Dwt) 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reasoni 
XEvent *eventi 

} DwtAnyCallbackStructi 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For the callbacks associated with 
DwtDialogBoxCreate, the reason member can be set to: 

DwtCRFocus The dialog box has received the input 
focus. 

DwtCRHelpRequested The user has selected Help. 

For the callbacks associated with DwtDialogBoxPopupCreate, the 
reason member can be set to: 

DwtCRMap The dialog box is about to be mapped. 

DwtCRUnmap The dialog box is about to be unmapped. 

DwtCRFocus The dialog box has received the input 
focus. 

DwtCRHelpRequested The user has selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XU! Toolkit Intrinsics: C Language Binding 

Subroutines 3-101 



DwtDisplayCSMessage (3Dwt) 

Name 
DwtDisplayCSMessage - Displays a compound-string message. 

Syntax 
Widget DwtDisplayCSMessage(parent_widget, name, 

defaultyosition, x, y, 
style, message vector, 
widget _id convert yroc, 
ok callback, help callback) 

Widget parent_widget; -
char *name; 
int default yosition; 
int x, y; 
int style; 
int * message vector; 
Widget *widget; 
int (*convertyroc)O; 
DwtCallbackPtr ok callback; 
DwtCallbackPtr helP_callback; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

default yosition r 

Specifies a boolean value that, when True, indicates that 
DwtNx and DwtNy are to be ignored forcing the widget to 
be centered in the parent window. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. 

style Specifies the style of the message box widget. You can pass 
DwtModal (modal) or DwtModeless (modeless). 

message vector 
- Specifies the message argument vector identifying the 

3-102 Subroutines 



DwtDisplayCSMessage (3Dwt) 

message identifier and associated information. 

The first longword contains the number of longwords in the 
message blocks to follow. The first longword in each 
message block contains a pointer to the compound-string. 
The next word consists of the FAO parameter count. The 
final n longwords in the message block are the FAO 
parameters. 

widget _id This argument contains the widget ID of an already-existing 
message box widget. If this argument is nonzero, a new 
message box is not created. An XtSetValues will be 
performed on this widget to change the text of the message 
to match this new message. This is an input/output 
argument. That is, the function fills in widget _id after you 
call it. 

convert yroc Specifies a pointer to a function that is executed after the 
message is formatted but before it is displayed. 

A pointer to the formatted compound-string is passed to the 
function as a parameter. This parameter is a NULL­
terminated character string. 

ok callback Specifies the callback function or functions called when the 
user clicks on the Acknowledged push button. For this 
callback, the reason is DwtCRYes. 

help _callback Specifies the callback function or functions called when a 
help request is made. 

Description 
The DwtDisplayCSMessage function accepts an array of compound­
strings, formats them, and creates a message box. 

If the function returns a zero, the message is not appended to the messages to 
be displayed. 

Return Value 
Upon completion, DwtDisplayCSMessage returns to the calling program 
the ID of the created message box widget. 

Subroutines 3-103 



DwtDisplayCSMessage (3Dwt) 

See Also 
Guide to the XU! Toolkit: C Language Binding 
Guide to the XU! Toolkit lntrinsics: C Language Binding 

3-104 Subroutines 



DwtDisplayVmsMessage (3Dwt) 

Name 
DwtDisplayVmsMessage - Accepts and displays a VMS message. 

Syntax 
Widget DwtDisplayVmsMessage(parent_widget, name, 

defaultyosition, x, y, 
style, message vector, 
widget _id, convert yroc, 
ok callback, help callback) 

Widget parent_widget; -
char *name; 
int default yosition ; 
int x, y; 
int style; 
int * message vector; 
Widget * wiiiet id; 
int (*convertyroc)O; 
DwtCallbackPtr ok callback; 
DwtCallbackPtr help_callback; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

default yosition 
Specifies a boolean value that, when True, indicates that 
DwtNx and DwtNy are to be ignored forcing the widget to 
be centered in the parent window. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. 

style Specifies the style of the message box widget. You can pass 
DwtModal (modal) or DwtModeless (modeless). 

message_vector 
Specifies the message argument vector identifying the 

Subroutines 3-105 



DwtDisplayVmsMessage (3Dwt) 

message identifier and associated information. This 
argument is identical to the VMS $PUTMSG system service. 

The first longword contains the number of longwords in the 
message blocks to follow. The first longword in each 
message block contains a pointer to the VMS message 
identifier. Message identifiers are passed by value. 

If the message is user-supplied, the next word consists of the 
$FAO parameter count. The final n longwords in the 
message block are the $FAO parameters. 

widget _id This argument contains the widget ID of an already-existing 
message box widget. If this argument is nonzero, a new 
message box is not created. An XtSetValues will be 
performed on this widget to change the text of the message 
to match this new message. This is an input/output 
argument. That is, the function fills in widget id after you 
call it. -

convert yroc Specifies a pointer to a function that is executed after the 
message is formatted but before it is displayed. A pointer to 
the formatted string is passed to the function as a parameter. 
This parameter is a NULL-terminated character string. 

ok callback Specifies the callback function or functions called when the 
user clicks on the Acknowledged push button. For this 
callback, the reason is DwtCRYes. 

help _callback Specifies the callback function or functions called when a 
help request is made. 

Description 
The DwtDisplayVmsMessage function accepts standard VMS message 
vectors (as defined by the $PUTMSG system service), retrieves the messages, 
formats them, and creates a message box in which to display the message. 

This parameter is a NULL-terminated character string. 

Return Value 
Upon completion, DwtDisplayVmsMessage returns to the calling 
program the ID of the created message box widget. 

3-106 Subroutines 



DwtDisplayVmsMessage. (3Dwt) 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-107 



DwtDrmFreeResourceContext (3Dwt) 

Name 
DwtDrmFreeResourceContext - Frees a resource context. 

Syntax 
#include <Xll/DwtAppl.h> 
Cardinal DwtDrmFreeResourceContext( context _id) 

DRMResourceContextPtr context _id; 

Arguments 

context id Specifies the resource context to be freed. 

Description 
The DwtDrmFreeResourceContext function frees the memory buffer 
and the resource context. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMBadContext 

The function executed successfully. 
Invalid resource context. 

See Also 
DwtDrmGetResourceContext(3Dwt) 

3-108 Subroutines 



DwtDrmGetResourceContext (3Dwt) 

Name 
DwtDrmGetResourceContext - Gets a resource context. 

Syntax 
#include <Xll/DwtAppl.h> 
Cardinal DwtDrmGetResourceContext( alloc Junc, free Junc, 

size, context id return) 
char * «* alloc Junc) 0); - -
void (* free Junc) 0; 
DRMSize size; 
DRMResourceContextPtr * context _id _return; 

Arguments 

allocJunc 

freeJunc 

size 

Specifies the function to use in allocating memory for this 
resource context. A NULL pointer means use the default, 
which is XtMalloc. 

Specifies the function to use in freeing memory for this 
context. A NULL pointer means use the default, which is 
XtFree. 

Specifies the size of the memory buffer to allocate. 

context id return 
Returns the new resource context. 

Description 
The DwtDrmGetResourceContext function allocates a new resource 
context and a memory buffer of the requested size. It then associates the 
buffer with the context. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMFailure 

The function executed successfully. 
The function failed. 

Subroutines 3-109 



DwtDrmGetResourceContext (3Dwt) 

See Also 
DwtDrmFreeResourceContext(3Dwt) 

3-110 Subroutines 



Name 

DwtDrmHGetlndexedLiteral (3Dwt) 

DwtDrmHGetIndexedLiteral- Fetches indexed literals from a DRM 
hierarchy. 

Syntax 
Cardinal DwtDrmHGetIndexedLiteral(hierarchy id, index, context id) 

DRMHierarchy hierarchy id; - -
String index; -
DRMResourceContextPtr context _id; 

Arguments 

hierarchy _id Specifies the hierarchy to be searched. 

index Specifies the case-sensitive index of the desired literal. 

context id Specifies the resource context into which the literal is read. 

Description 
The DwtDrmHGetlndexedLiteral function searches a DRM search 
hierarchy for a literal, given the literal's index. That is, it gets a public literal 
from a DRM search hierarchy. This function returns the literal as the 
contents of the context buffer. The group that is fetched is always 
DRMgLiteral. The literal type filter is taken from the context. If 
unmodified in the context obtained from DwtDrmGetResourceContext, 
there is no filtering (type = RGMtNul). In general, you do not need to set 
any of the fields in the context, except possibly type. The following buffer 
contents are for some common literal types obtained from a UID file. Note 
that in some cases the caller must cause offsets to be memory pointers. 
DwtDrmRCType(context id) == RGMrTypeChar8: 

DwtDrmRCBuffer(context_id) contains a null-terminated ASCII string 

DwtDrmRCType(context id) == RGMrTypeCString: 
DwtDrmRCBuffer(context_id) contains a compound-string (DwtCompString) 

DwtDrmRCType(context id) == RGMrTypeChar8Vector: 
DwtDrmRCType(context-id) == RGMrTypeCStringVector: 

DwtDrmRCBuffer(context id) contains an RGM text vector 
or stringtable (RGMTextVector). The items in the 
text vector contain offsets into the buffer that 
locate either null-terminated ASCII strings or 
compound-strings. You can relocate these to memory 
pointers by adding the buffer address to the offset: 

Subroutines 3-111 



DwtDrmHGetlndexedLiteral (3Dwt) 

item[n] .textitem.pointer = item[n] .textitem.offset+bufadr 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMNotFound 
DRMFailure 

3-112 Subroutines 

The function executed successfully. 
Literal not found. 
The function failed. 
Invalid resource context. 



DwtDrmRCBuffer (3Dwt) 

Name 
DwtDrmRCBuffer - Returns a pointer to the memory buffer. 

Syntax 
#include <x 11/DwtAppl.h> 
char * DwtDrmRCBuffer( context id) 

DRMResourceContextPtr context _id; 

Arguments 

context id Specifies the resource context to read. 

Description 
The DwtDrrnRCBuffer macro returns a pointer to the memory buffer that 
contains the data for this resource context. No validity checking is done on 
the resource context; the caller must ensure that the resource context pointer 
is valid. 

Return Value 
Pointer to the memory buffer. 

Subroutines 3-113 



DwtDrmRCSetType (3Dwt) 

Name 
DwtDrmRCSetType - Modifies the type of a resource context. 

Syntax 
#inc1ude <Xll/DwtAppl.h> 
DwtDrmRCSetType (context id, type) 

DRMResourceContextPtr context id; 
DRMType *type; -

Arguments 

context id Specifies the resource context to modify. 

type Specifies the new value for the resource context type. 

Description 
The DwtDrmRCSetType function modifies the type of the specified 
resource context. No validity checking is done on the resource context; the 
caller must ensure that the resource context pointer is valid. No return code 
is defined. 

See Also 
DwtDrmRCType(3Dwt) 

3-114 Subroutines 



DwtDrmRCSize (3Dwt) 

Name 
DwtDrmRCSize - Returns the size of a resource context. 

Syntax 
#inc1ude <Xll/DwtAppl.h> 
DRMSize DwtDrmRCSize( context id) 

DRMResourceContextPtr context _id; 

Arguments 

context id Specifies the resource context to read. 

Description 
The DwtDrmRCSize macro returns the size of the specified resource 
context. Note that no validity checking is done on the resource context; the 
caller must ensure that the context pointer is valid. 

Return Value 
This macro can return one of the following status return constants: 

DRMSuccess 
DRMSize 
DRMFailure 

The function executed successfully. 
The size in bytes of the resource context. 
Invalid resource context. 

Subroutines 3-115 



DwtDrmRCType (3Dwt) 

Name 
DwtDrmRCType - Returns the type of a resource context. 

Syntax 
#include <x 11/DwtAppl.h> 
DRMType DwtDrmRCType( context _id) 

DRMResourceContextPtr context _id; 

Arguments 

context id Specifies the resource context to read. 

Description 
The DwtDrmRCType macro returns the type of the specified resource 
context. Note that no validity checking is done on the resource context. The 
caller must ensure that the resource context pointer is valid. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMType 
DRMlnvalid 

See Also 
DwtDrmRCSetType(3Dwt) 

3-116 Subroutines 

The function executed successfully. 
The type of the resource context. 
Invalid resource context. 



DwtEndCopyFromClipboard (3Dwt) 

Name 
DwtEndCopyFromClipboard - Notifies the cut and paste functions that the 
application has completed copying an item from the clipboard and unlocks 
the clipboard. 

Syntax 
int DwtEndCopyFromClipboard(display, window) 

Display * display; 
Window window; 

Arguments 

display 

window 

Description 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

The DwtEndCopyFrornClipboard function unlocks the clipboard when 
the application has copied all data from the clipboard. If the application calls 
DwtStartCopyFrornClipboard, it must call 
DwtEndCopyFrornClipboard. These two functions lock and unlock the 
clipboard and allow the application to copy data from the clipboard 
incrementally. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess The function is successful. 

Subroutines 3-117 



DwtEndCopyFromClipboard (3Dwt) 

ClipboardLocked 

See Also 

The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

DwtCopyFromClipboard (3Dwt), DwtStartCopyFromClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-118 Subroutines 



DwtEndCopyToClipboard (3Dwt) 

Name 
DwtEndCopyToClipboard - Places data in the clipboard data structure. 

Syntax 
int DwtEndCopyToClipboard(display, window, item_id) 

Display * display; 
Window window; 
long item_id; 

Arguments 

display 

window 

item id 

Description 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
infonnation on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

Specifies the number assigned to this data item. This number 
was returned by a previous call to 
DwtBeginCopyToClipboard. 

The DwtEndCopyToClipboard function locks the clipboard from access 
by other applications, places data in the clipboard data structure, and unlocks 
the clipboard. Data items copied to the clipboard by 
DwtCopyToClipboard are not actually entered in the clipboard data 
structure until the call to DwtEndCopyToClipboard. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess The function is successful. 

Subroutines 3-119 



DwtEndCopyToClipboard (3Dwt) 

ClipboardLocked 

See Also 

The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

DwtCopyToClipboard (3Dwt), DwtBeginCopyToClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-120 Subroutines 



DwtFetchColorLiteral (3Dwt) 

Name 
DwtFetchColorLiteral - Fetches a named color literal from a UID file. 

Syntax 
#include <Xll/DwtAppl.h> 
int DwtFetchColorLiteral(hierarchy_id, index, display, colormap _id, 
pixel_return) 

DRMHierarchy hierarchy id; 
String index; -
Display * display; 
Colormap colormap _id; 
Pixel * pixel_return; 

Arguments 

hierarchy _id Specifies the ID of the UID hierarchy that contains the 
specified literal. The hierarchy _id was returned in a previous 
call~ DwtOpenHierarchy. 

index Specifies the UIL name of the color literal to fetch. You must 
define this name in UIL as an exported value. 

display Specifies the display used for the pixmap. The display 
argument specifies the connection to the X server. For more 
information on the Display structure see the Xlib function 
XOpenDisplay. 

colormap _id Specifies the ID of the color map. If NULL, the default 
color map is used. 

pixel_return Returns the ID of the color literal. 

Description 
The DwtFetchColorLiteral function fetches a named color literal 
from a UID file, and converts the color literal to a pixel color value. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMNotFound 

The function executed successfully. 
The color literal was not found in the UIL 
file. 

Subroutines 3-121 



DwtFetchColorLiteral (3Dwt) 

DRMFailure The function failed. 

See Also 
DwtFetchIconLiteral(3Dwt), DwtFetchLiteral(3Dwt) 

3-122 Subroutines 



OwtFetchlconLiteral (30wt) 

Name 
DwtFetchIconLiteral - Fetches a named icon literal from a hierarchy. 

Syntax 
#incIude <Xll/DwtAppl.h> 
int DwtFetchIconLiteral(hierarchy id, index, screen, 

display,fgpix, bgpix, pixmap return) 
DRMHierarchy hierarchy id; -
String index; -
Screen * screen; 
Display * display; 
Pixelfgpix; 
Pixel bgpix; 
Pixmap * pixmap _return; 

Arguments 

hierarchy _id Specifies the ID of the UID hierarchy that contains the 
specified icon literal. The hierarchy id was returned in a 
previous calI to DwtOpenHierarchy. 

index Specifies the UIL name of the icon literal to fetch. 

screen Specifies the screen used for the pixmap. The screen 
argument specifies a pointer to the Xlib structure Screen 
which contains the information about that screen and is 
linked to the Display structure. For more information on 
the Displayand Screen structures see the Xlib function 
XOpenDisplay and the associated screen information 
macros. 

display 

fgpix 

bgpix 

Specifies the display used for the pixmap. The display 
argument specifies the connection to the X server. For more 
information on the Display structure see the Xlib function 
XOpenDisplay. 

Specifies the foreground color for the pixmap. 

Specifies the background color for the pixmap. 

pixmap _return Returns the resulting X pixmap value. 

Subroutines 3-123 



DwtFetchlcon Literal (3Dwt) 

Description 
The DwtFetchlconLiteral function fetches a named icon literal from a 
DRM hierarchy, and converts the icon literal to an X pixmap. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMNotFound 

DRMFailure 

See Also 

The function executed successfully. 
The icon literal was not found in the 
hierarchy. 
The function failed. 

DwtFetchLiteral(3Dwt), DwtFetchColorLiteral(3Dwt) 

3-124 Subroutines 



DwtFetchlnterfaceModule (3Dwt) 

Name 
DwtFetchInterfaceModule - Fetches all the widgets defined in an interface 
module in the UID hierarchy. 

Syntax 
#include <Xll/DwtAppl.h> 
Cardinal DwtFetchInterfaceModule(hierarchy id, module name, 

parent widget, widget return) -
DRMHierarchy hierarchy _ id; -
char * module name; 
Widget parent widget; 
Widget * widget_return; 

Arguments 

hierarchy _id Specifies the ID of the UID hierarchy that contains the 
interface definition. The hierarchy id was returned in a 
previous call to DwtOpenHierarchy. 

module name Specifies the name of the interface module, which you 
specified in the UIL module header. By convention, this is 
usually the generic name of the application. 

parent_widget Specifies the parent widget ID for the topmost widgets being 
fetched from the module. The topmost widgets are those that 
have no parents specified in the UIL module. The parent 
widget is usually the top-level widget returned by 
XtInitialize. 

widget _return Returns the widget ID for the last main window widget 
encountered in the UIL module, or NULL if no main window 
widget is found. 

Description 
The DwtFetchlnterfaceModule function fetches all the widgets 
defined in a UIL module in the UID hierarchy. Typically, each application 
has one or more modules that define its interface. Each must be fetched in 
order to initialize all the widgets the application requires. Applications do 
not need to define all their widgets in a single module. 

Subroutines 3-125 



DwtFetchlnterfaceModule (3Dwt) 

If the module defines a main window widget, 
DwtFetchInterfaceModule returns its widget ID. If no main window 
widget is contained in the module, DwtFetchInterfaceModule returns 
NULL and no widgets are realized. 

The application can obtain the IDs of widgets other than the main window 
widget by using creation callbacks. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMFailure 
DRMNotFound 

3-126 Subroutines 

The function executed successfully. 
The function failed. 
The interface module or topmost widget not 
found. 



DwtFetchLiteral (3Dwt) 

Name 
DwtFetchLiteral - Fetches a named literal from a UID file. 

Syntax 
#include <Xll/DwtAppl.h> 
int DwtFetchLiteral (hierarchy _id, index, display, value _return, type_return) 

DRMHierarchy hierarchy _id; 
String index; 
Display * display; 
caddr_t * value_return; 
DRMCode * type _return; 

Arguments 

hierarchy _id Specifies the ID of the UID hierarchy that contains the 
specified literal. The hierarchy _id was returned in a previous 
call~ DwtOpenHierarchy. 

index Specifies the UIL name of the literal (pixmap) to fetch. You 
must define this name in UIL as an exported value. 

display Specifies the display used for the pixmap. The display 
argument specifies the connection to the X server. For more 
information on the Display structure see the Xlib function 
XOpenDisplay. 

value return Returns the ID of the named literal's value. 

type _return Returns the named literal's data type. 

Description 
The DwtFetchLiteral function reads and returns the value and type of a 
literal (named value) that is stored as a public resource in a single UID file. 
This function returns a pointer to the value of the literal. For example, an 
integer is always returned as a pointer to an integer, and a string is always 
returned as a pointer to a string. 

Applications should not use DwtFetchLi teral for fetching icon or color 
literals. If this is attempted, DwtFetchLi teral returns an error. 

Subroutines 3-127 



DwtFetchLiteral (3Dwt) 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMWrongType 

DRMNotFound 
DRMFailure 

See Also 

The function executed successfully. 
The operation encountered an unsupported 
literal type. 
The literal was not found in the DID file. 
The function failed. 

DwtFetchIconLiteral(3Dwt), DwtFetchColorLiteral(3Dwt) 

3-128 Subroutines 



DwtFetchSetValues (3Dwt) 

Name 
DwtFetchSet Values - Fetches the values to be set from literals stored in UID 
files. 

Syntax 
#include <Xll/DwtAppl.h> 
Cardinal DwtFetchSetValues(hierarchy id, widget, args, num args) 

DRMHierarchy hierarchy id; - -
Widget widget; 
ArgList args; 
Cardinal num_ args; 

Arguments 

hierarchy _id Specifies the ID of the UID hierarchy that contains the 
specified literal. The hierarchy _id was returned in a previous 
call to DwtOpenHierarchy. 

widget Specifies the widget that is modified. 

args Specifies an argument list that identifies the widget 
arguments to be modified as well as the index (UIL name) of 
the literal that defines the value for that argument. The name 
part of each argument (args[n].name) must begin with the 
string DwtN followed by the name that uniquely identifies 
this attribute tag. For example, DwtNwidth is the attribute 
name associated with the core argument width. The value 
part (args[n].value) must be a string that gives the index (UIL 
name) of the literal. You must define all literals in UIL as 
exported values. 

num _ args Specifies the number of entries in args. 

Description 
The DwtFetchSetValues function is similar to XtSetValues, except 
that the values to be set are defined by the UIL named values that are stored 
in the UID hierarchy. DwtFetchSetValues fetches the values to be set 
from literals stored in UID files. 

This function sets the values on a widget, evaluating the values as public 
literal resource references resolvable from a UID hierarchy. Each literal is 
fetched from the hierarchy, and its value is modified and converted as 

Subroutines 3-129 



DwtFetchSetValues (3Dwt) 

required. This value is then placed in the argument list and used as the actual 
value for an XtSetValues call. DwtFetchSetValues allows a widget 
to be modified after creation using UID file values exactly as is done for 
creation values in DwtFetchWidget. 

As in DwtFetchWidget, each argument whose value can be evaluated 
from the UID hierarchy is set in the widget. Values that are not found or 
values in which conversion errors occur are not modified. 

Each entry in the argument list identifies an argument to be modified in the 
widget. The name part identifies the tag, which begins with DwtN. The 
value part must be a string whose value is the index of the literal. Thus, the 
following code would modify the label resource of the widget to have the 
value of the literal accessed by the index OK_button_label in the hierarchy: 
args[n] . name = DwtNlabel; 
args[n] .value "OK_button_label"; 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMFailure 

See Also 
XtSet V alues(3Dwt) 

3-130 Subroutines 

The function executed successfully. 
The function failed. 



Name 

DwtFetchWidget (3Dwt) 

DwtFetch Widget - Fetches and then creates any indexed (UIL named) 
application widget and its children. 

Syntax 
#include <Xll/DwtAppl.h> 
Cardinal DwtFetchWidget(hierarchy id, index, parent widget, 
widget return, class return) - -

DRMHierarchy hierarchy _id; 
String index; 
Widget parent widget; 
Widget * widget_return; 
DRMType * class_return; 

Arguments 

hierarchy _id Specifies the ID of the UID hierarchy that contains the 
interface definition. The hierarchy _id was returned in a 
previous call to DwtOpenHierarchy. 

index Specifies the UIL name of the widget to fetch. 

parent_widget Specifies the parent widget ID. 

widget _return Returns the widget ID of the created widget. If this is not 
NULL when you call DwtFetchWidgetOverride, 
DRM assumes that the widget has already been created and 
DwtFetchWidgetOverride returns DRMFailure. 

class return Returns the class code identifying DRM's widget class. The 
widget class code for the main window widget, for example, 
is DRMwcMainWindow. Literals identifying DRM widget 
class codes are defined in DRM. h. 

Description 
The DwtFetchWidget function fetches and then creates an indexed 
application widget and its children. The indexed application widget is any 
widget that is named in UIL and that is not the child of any other widget in 
the UID hierarchy. In fetch operations, the fetched widget's subtree is also 
fetched and created. This widget must not appear as the child of a widget 
within its own subtree. DwtFetchWidget does not execute 
XtManageChild for the newly created widget. 

Subroutines 3-131 



OwtFetchWidget (30wt) 

DwtFetchWidget fetches widgets where 
DwtFetchlnterfaceModule is not used. DwtFetchWidget 
provides specific control over which widgets are fetched from a UIL file; 
DwtFetchlnterfaceModule, on the other hand, fetches all widgets in a 
single call. An application can fetch any named widget in the UID hierarchy 
using DwtFetchWidget. DwtFetchWidget can be called at any time 
to fetch a widget that was not fetched at application startup. 
DwtFetchWidget determines if a widget has already been fetched by 
checking widget _return for a NULL value. Non-NULL values signify that 
the widget already has been fetched, and DwtFetchWidget fails. 
DwtFetchWidget can be used to defer fetching pop-up widgets until they 
are first referenced (presumably in a callback), and then used to fetch them 
once. 

DwtFetchWidget can also create multiple instances of a widget (and its 
subtree). In this case, the UID definition functions as a template; a widget 
definition can be fetched any number of times. An application can use this to 
make multiple instances of a widget, for example, in a dialog box box or 
menu. 

The index (UIL name) that identifies the widget must be known to the 
application. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMNotFound 
DRMFailure 

See Also 

The function executed successfully. 
Widget not found in UID hierarchy. 
The function failed. 

DwtFetch WidgetOverride(3Dwt) 

3-132 Subroutines 



DwtFetch WidgetOverride (3Dwt) 

Name 
DwtFetch WidgetOverride - Fetches any indexed (UIL named) application 
widget. It overrides the arguments specified for this application widget in 
UIL. 

Syntax 
#incIude <Xll/DwtAppl.h> 
Cardinal DwtFetchWidgetOverride(hierarchy id, index, parent widget, 

override name, override-args, 
override=num_args, widget_return, 

class_return) 
DRMHierarchy hierarchy _id; 
String index; 
Widget parent widget; 
String override name; 
ArgList override args; 
Cardinal override num args; 
Widget * widget_return; 
DRMType * class_return; 

Arguments 

hierarchy _id Specifies the ID of the UID hierarchy that contains the 
interface definition. The hierarchy id was returned in a 
previous call to DwtOpenHiera~chy. 

index Specifies the UIL name of the widget to fetch. 

parent_widget Specifies the parent widget ID. 

override name Specifies the name to override the widget name. Use a NULL 
value if you do not want to override the widget name. 

override _ args Specifies the override argument list, exactly as would be 
given to XtCreateWidget (conversion complete and so 
forth). Use a NULL value if you do not want to override the 
argument list. 

override num args 
- - Specifies the number of arguments in override _ args. 

widget_return Returns the widget ID of the created widget. If this is not 
NULL when you call DwtFetchWidgetOverride, 
DRM assumes that the widget has already been created and 

Subroutines 3-133 



DwtFetchWidgetOverride (3Dwt) 

DwtFetchWidgetOverride returns DRMFailure. 

class return Returns the class code identifying DRM's widget class. The 
widget class code for the main window widget, for example, 
is DRMwcMainWindow. Literals identifying DRM widget 
class codes are defined in DRM. h. 

Description 
The DwtFetchWidgetOverride function is the extended version of 
DwtFetchWidget. It is identical to DwtFetchWidget, except that it 
allows the caller to override the widget's name and any arguments that 
DwtFetchWidget would otherwise retrieve from the UID file or one of the 
defaulting mechanisms. That is, the override argument list is not limited to 
those arguments in the UID file. 

The override arguments apply only to the widget fetched and returned by this 
function. Its children (subtree) do not receive any override parameters. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMNotFound 
DRMFailure 

See Also 
DwtFetch Widget(3Dwt) 

3-134 Subroutines 

The function executed successfully. 
Widget not found in DID hierarchy. 
The function failed. 



DwtFileSelection (3Dwt) 

Name 
DwtFileSelection, DwtFileSelectionCreate - Creates a file selection box 
widget for the application to query the user for a file selection. 

Syntax 
Widget DwtFileSelection(parent widget, name, x, y, 

title, value, dirmask, 
visible_items _count, style, default yosition, 
default yosition, callback, 
help callback) 

Widget parent widget; 
char * name; -
Position x, y; 
DwtCompString title; 
DwtCompString value; 
DwtCompString dirmask; 
int visible items count; 
int style; - -
Boolean default yosition ; 
DwtCallbackPtr callback, help _callback; 

Widget DwtFileSelectionCreate (parent_widget, name, 
override _ arglist, 
override argcount) 

Widget parent widget; -
char * name; -
ArgList override argUst; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

x 

y 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 

Subroutines 3-135 



DwtFileSelection (3Dwt) 

title 

value 

dirmask 

widget attribute. 

Specifies the text that appears in the banner of the file 
selection box. This argument sets the DwtNtitle attribute 
associated with DwtDialogBoxPopupCreate. 

Specifies the selected file. The file name appears in the text 
entry field and is highlighted in the list box, if present. This 
argument sets the DwtNval ue attribute associated with 
DwtSelectionCreate. 

Specifies the directory mask used in determining the files 
displayed in the file selection list box. This argument sets 
the DwtNdirMask attribute associated with 
DwtFileSelectionCreate. 

visible items count 
Specifies the maximum number of files visible at one time in 
the file selection list box. This argument sets the 
DwtNvisiblelternsCount attribute associated with 
DwtSelectionCreate. 

style Specifies the style of the pop-up dialog box widget. You can 
pass DwtModal (modal) or DwtModeless (modeless). 
This argument sets the DwtNstyle attribute associated 
with DwtDialogBoxPopupCreate. 

default yosition 
Specifies a boolean value that, when True, causes DwtNx 
and DwtNy to be ignored and forces the default widget 
position. The default widget position is centered in the 
parent window. If False, the specified DwtNx and 
DwtNy attributes are used to position the widget. This 
argument sets the DwtNdefaultPosition attribute 
associated with DwtDialogBoxCreate. 

callback Specifies the callback function or functions called when the 
user makes or cancels a selection, or there is no match for the 
item selected by the user. This argument sets the 
DwtNacti vateCallback, DwtNcancelCallback, 
and DwtNnoMatchCallback attributes associated with 
DwtSelectionCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

3-136 Subroutines 



DwtFileSelection (3Dwt) 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override arglist 
- Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arglist). 

Description 
The DwtFileSelection and DwtFileSelectionCreate functions 
create an instance of a file selection widget for the application to query the 
user for a file selection and return its associated widget ID. When calling 
DwtFileSelection, you set the file selection box widget attributes 
presented in the formal parameter list. For DwtFileSelectionCreate, 
however, you specify a list of attribute name/value pairs that represent all the 
possible file selection box widget attributes. 

This is a subclass of the selection widget, which is a subclass of the dialog 
widget. The file selection widget is a specialized pop-up dialog box, 
supporting either modal or modeless formats. 

A file selection widget contains the following: 

• A list box displaying the file names from which to choose 

• A directory mask text entry field 

• A selection text entry field 

• An Apply push button to apply the dirmask to generate a new list of 
files 

• An Ok push button to inform the application that the user made a 
selection 

• A Cancel push button to inform the application that the user canceled a 
selection 

Note that the callback data structure also includes the current DwtNval ue 
and DwtNdirMask. This allows user input text and directory information 
to be passed back. 

The file selection widget supports remote file search between nodes on a 
network. You can perform remote file searches from VMS to UL TRIX 
systems, but currently not from UL TRIX to VMS systems. 

Subroutines 3-137 



DwtFileSelection (3Dwt) 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 
DwtNy 
DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Dialog Pop-Up Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 

3-138 Subroutines 

Data Type 

position 
Position 
Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackptr 

Pixel 
Pixel 
Pixmap 

Opaque * 

Default 

Centered in the parent window 
Centered in the parent window 
The width of the list box, plus 
the width of the push buttons, 
plus three times 
DwtNmarginWidth. The 
list box will grow to 
accommodate items wider 
than the title. 
The height of the list box, plus 
the height of the text edit 
field, plus the height of the 
label, plus three times 
DwtNmarginHeight. 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitivE 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 



DwtNfont 
DwtNhelpCallback 
DwtNdirectionRToL 
DwtNunits 
DwtNstyle 
DwtNfocusCallback 
DwtNtextMergeTranslations 
DwtNmarginWidth 
DwtNmarginHeight 
DwtNdefaultPosition 
DwtNchildOverlap 
DwtNresize 
DwtNnoResize 

DwtNtitle 
DwtNmapCallback 
DwtNunmapCallback 
DwtNtakeFocus 

DwtNautoUnmanage 
DwtNdefaultButton 
DwtNcancelButton 

Selection Attributes 

DwtNlabel 
DwtNvalue 
DwtNokLabel 
DwtNcancelLabel 
DwtNactivateCallback 
DwtNcancelCallback 
DwtNnoMatchCallback 
DwtNvisibleItemsCount 
DwtNitems 
DwtNitemsCount 
DwtNmustMatch 
DwtNselectionLabel 

OwtFileSelection (30wt) 

DwtFontList 
DwtCallbackptr 
unsigned char 
unsigned char 
unsigned char 
DwtCallbackPtr 
XtTranslations 
Dimension 
Dimension 
Boolean 
Boolean 
unsigned char 
Boolean 

DwtCompString 
DwtCallbackPtr 
DwtCallbackPtr 
Boolean 

Boolean 
Widget 
Widget 

DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 
DwtCallbackPtr 
DwtCallbackPtr 
DwtCallbackPtr 
int 

DwtCompString * 
int 
Boolean 
DwtCompString 

The default XUI Toolkit font 
NULL 
DwtDirectionRightDown 
DwtFontUnits 
DwtModal 
NULL 
NULL 
5 pixels 
5 pixels 
False 
True 
DwtResizeGrowOnly 
True (that is, no window 
manager resize button) 
"Open" 
NULL 
NULL 
True for modal dialog box 
False for modeless dialog 
box 
True 
NULL 
NULL 

"Items" 

"Ok" 
"Cancel" 
NULL 
NULL 
NULL 
8 
NULL 
Zero 
False 
"Files in" 

Subroutines 3-139 



DwtFileSelection (3Dwt) 

Widget-Specific Attributes 

Attribute Name 

DwtNfilterLabel 
DwtNapplyLabel 
DwtNdirMask 
DwtNdirSpec 
DwtNfileSearchProc 

DwtNlistUpdated 
DwtNfileToExternProc 
DwtNfileToInternProc 
DwtNmaskToExternProc 
DwtNmaskToInternProc 

Data Type 

DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 
VoidProc 

Boolean 
VoidProc 
VoidProc 
VoidProc 
VoidProc 

Default 

"File filter" 
"Filter" 
"*.*" 

FileSelectionSearch 
(UL TRIX default directory 
file search function) 
False 
NULL 
NULL 
NULL 
NULL 

DwtNfilterLabel Specifies the label for the search filter located above 
the text-entry field. 

DwtNapplyLabel Specifies the label for the Apply push button. 

DwtNdirMask 

DwtNdirSpec 

Specifies the directory mask used in determining the 
files displayed in the file selection list box. 

Specifies the full UL TRIX file specification. This 
attribute is write only and cannot be modified by 
XtSetValues. 

DwtNfileSearchProc 

3-140 Subroutines 

Specifies a directory search procedure to replace the 
default file selection search procedure. The file 
selection widget's default file search procedure 
fulfills the needs of most applications. However, it is 
impossible to cover the requirements of all 
applications; therefore, you can replace the default 
search procedure. 

You call the file search procedure with two 
arguments: the file selection widget and the 
DwtFileSelectionCallbackStruct 
structure. The callback structure contains all required 
information to conduct a directory search, including 
the current file search mask. Once called, it is up to 
the search routine to generate a new list of files and 
update the file selection widget by using 



DwtFileSelection (3Dwt) 

XtSetValues. 

You must set these attributes: DwtNitems, 
DwtNitemsCount, DwtNlistUpdated, and 
DwtNdirSpec. Set DwtNi terns to the new list 
of files. If there are no files, set this attribute to 
NULL. This argument sets the DwtNitems 
attribute associated with DwtSelectionCreate. 

If there are no files set DwtNi terns Count to zero. 
This argument sets the DwtNi temsCount 
associated with DwtSelectionCreate. Always 
set DwtNlistUpdated to True when updating 
the file list using a search procedure, even if there are 
no files. Setting DwtNdirSpec is optional, but 
recommended. Set this attribute to the full file 
specification of the directory searched. The directory 
specification is displayed above the list box. 

DwtNlistUpdated Specifies an attribute that is set only by the file 
search procedure. Set to True, if the file list has 
been updated. 

DwtNfileToExternProc 
Converts native, internal file names to custom, 
external file names displayed to the user. 

DwtNfileTolnternProc 
Converts custom, external file names displayed to the 
user to native, internal file names. 

DwtNrnaskToExternProc 
Converts native, internal directory masks to custom, 
external directory masks displayed to the user. 

DwtNmaskTolnternProc 

Return Value 

Converts custom, external directory masks displayed 
to the user to native, internal directory masks. 

These functions return the ID of the created widget. 

Subroutines 3-141 



DwtFileSelection (3Dwt) 

Callback Information 
The following structure is returned to your callback: 

typedef struct { 
int reason; 
XEvent *event; 
DwtCompString value; 
int value_len; 
DwtCompString dirmask; 
int dirmask len; 

DwtFileSelectionCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRActivate The user activated the Ok push button. 

DwtCRCancel The user activated the Cancel button. 

DwtCRHelpRequested The user selected help somewhere in the 
file selection box. 

The event member is a pointer to the XIib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. The value member is set to the current selection when the 
callback occurred. The value_len member is set to the length of the selection 
compound-string. The dirmask member is set to the current directory mask 
when the callback occurred. The dirmask_Ien member is set to the length of 
the directory mask compound-string. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-142 Subroutines 



Name 

DwtFileSelectionDoSearch (3Dwt) 

DwtFileSelectionDoSearch - Initiates a search with a directory mask option. 
Otherwise, the current directory mask is used. 

Syntax 
void DwtFileSelectionDoSearch(widget, dirmask) 

FileSelection Widget widget; 
DwtCompString dirmask; 

Arguments 

widget 

db"mask 

Description 

Specifies the pointer to the file selection widget data 
structure. 

Specifies the directory mask used in determining the files 
displayed in the file selection list box. This is an optional 
attribute. If you do not specify a directory mask, the default 
directory mask is used. This argument sets the 
DwtNdirMask attribute associated with 
DwtFileSelectionCreate. 

The file selection widget initiates file searches when any of the following 
occur: 

• The file selection widget becomes visible (managed). 

• You use XtSetValues to change the directory mask. 

• The user clicks on the Apply push button. 

• The application calls DwtFileSelectionDoSearch, which is 
another way for applications to initiate a directory search. This may be 
useful, for example, when the application creates a new file and wants 
to reflect this change in a mapped file search widget. 

See Also 
DwtFileSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-143 



DwtGetNextSegment (3Dwt) 

Name 
DwtGetNextSegment - Gets information about the next segment in the 
compound-string. 

Syntax 
int DwtGetNextSegment( context, text return, 

charset return, direction r to I return, 
lang return, rend return") - --

DwtCompStringContext * context; 
char * text_return; 
long * charset return; 
int *direction-r to I return; 
long * lang return;--
long * rend=return; 

Arguments 

context 

text return 

Specifies the context for the call to 
DwtlnitGetSegment. You initialize the context by 
calling DwtlnitGetSegment, and it gets incremented 
each time you call DwtGetNextSegment. 

Returns the text in the next segment. 

charset return Returns the character set in the next segment. Values for this 
argument can be found in the required file 
/usr/include/cda_def.h. 

direction r to I return 

lang_return 

rend return 

Description 

Returns the character direction value. 

For future use. 

For future use. 

The DwtGetNextSegment function obtains information about the next 
segment of the compound-string as determined by the context. The space for 
the resulting compound-string is allocated with this function. After using 
this function, you should free this space by calling XtFree. 

3-144 Subroutines 



DwtGetNextSegment (3Dwt) 

Return Value 
This function returns one of these status return constants: 

DwtEndCS 

DwtFail 
DwtSuccess 

See Also 
DwtInitGetSegment (3Dwt) 

The context is at the end of the compound­
string. 
The context is not valid. 
Normal completion. 

Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-145 



DwtGetUserData (3Dwt) 

Name 
DwtGetUserData - Returns the user data associated with the widget. 

Syntax 
char * DwtGetU serData( widget) 

Widget widget; 

Arguments 

widget Specifies a pointer to the widget data structure. 

Description 
The DwtGetUserData function returns any private user data associated 
with the widget. The returned data is not interpreted by the toolkit. 

Return Value 
Any private user data to be associated with the widget. The data is not 
interpreted by the toolkit. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-146 Subroutines 



DwtHelp (3Dwt) 

Name 
DwtHelp, DwtHelpCreate - Creates a help menu widget. 

Syntax 
Widget DwtHelp(parent_widget, name, defaultyosition, 

x, y, application name, 
library type, library spec,first topic, 
overview topic, glosSary topic-:unmap callback) 

Widget parent_widget; - -
DwtCompString name; 
Boolean default yosition; 
Position x, y; 
DwtCompString application_name; 
int library type; 
DwtCompString library_spec; 
DwtCompString first_topic; 
DwtCompString overview _topic; 
DwtCompString glosswy _topic; 
DwtCallbackPtr unmap _callback; 

Widget DwtHelpCreate (parent widget, name, 
override argliSt, override argcount) 

Widget parent_widget; -
char * name; 
ArgList override _ arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

default yosition 

x 

Specifies a boolean value that, when True, indicates that 
DwtNx and DwtNy will be ignored forcing the default. By 
default the help widget is positioned so that it does not 
occlude the parent widget on the screen. This argument sets 
the DwtNdefaul tPosition attribute associated with 
DwtHelpCreate. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 

Subroutines 3-147 



DwtHelp (3Dwt) 

y 

parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left corner of 
the widget window relative to the inner upper left corner of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

application name 
- Specifies the application name to be used in the widget title 

bar. This argument sets the DwtNapplicationName 
attribute associated with DwtHelpCreate. 

library_type Specifies the type of help topic library specified by 
DwtNlibrarySpec. You can pass DwtTextLibrary, 
which is an ULTRIX help directory. This argument sets the 
DwtNlibraryType attribute associated with 
DwtHelpCreate. 

library _spec Specifies a host system file specification that identifies the 
help topic library, for example, /usr /help/ decwhelp 
on UNIX-based systems. This argument sets the 
DwtNlibrarySpec attribute associated with 
DwtHelpCreate. 

first _topic Specifies the first help topic to be displayed. If you pass a 
NULL string, the help menu widget displays a list of level 
one topics. This argument sets the DwtNoverviewTopic 
attribute associated with DwtHelpCreate. 

overview _topic Specifies the application overview topic. This argument sets 
the DwtNoverviewTopic attribute associated with 
DwtHelpCreate. 

glossary _topic Specifies the application glossary topic. If you pass a NULL 
string, the Visit Glossary entry does not appear in the 
widget's View pull-down menu. This argument sets the 
DwtNglossaryTopic attribute associated with 
DwtHelpCreate. 

unmap callback 
- Specifies the callback function or functions called when the 

help menu widget window was unmapped. For this callback, 
the reason is DwtCRUnmap. This argument sets the 
DwtCRUnmap attribute associated with DwtHelpCreate. 

3-148 Subroutines 



DwtHelp (3Dwt) 

override _ arglist 
Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arglist). 

Description 
The DwtHelp and DwtHelpCreate functions create an instance of a 
help menu widget and return its associated widget ID. 

The help menu widget is a modeless widget that allows the application to 
display appropriate user assistance information in response to a user request. 
The help menu widget displays an initial help topic and then gives the user 
the ability to select and view additional help topics. 

The DwtNfirstTopic attribute allows the application to provide 
context-sensitive help by selecting a specific topic based on implicit or 
explicit cues from the user. 

The fonnat of the DwtNfirstTopic, DwtNoverviewTopic, and 
DwtNglossaryTopic compound-strings depends on 
DwtNlibraryType. If DwtNlibraryType is DwtTextLibrary, 
the topic string is a sequence of help library keys separated by one or more 
spaces. 

Once the widget has been created, you can change the help topic by 
specifying a new DwtNfirstTopic by calling XtSetValues, and then 
causing the help menu widget to appear by calling XtManageChild. 

When the user tenninates a help session (using the Exit function), the widget 
is automatically unmanaged. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

Data Type 

position 

position 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 

Subroutines 3-149 



DwtHelp (3Dwt) 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

3-150 Subroutines 

Dimension 

Dimension 

Dimension 
Pixel 

Pi~map 

Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 
DwtCallbackPtr 

Cannot be set by the caller. 
The help menu widget 
calculates the width, based on 
the size of the text window 
(DwtNcols and 
DwtNrows). 
Cannot be set by the caller. 
The help menu widget 
calculates the height, based on 
the size of the text window 
(DwtNcols and 
DwtNrows). 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI Toolkit font 
NULL 



Widget-Specific Attributes 

Attribute Name 

DwtNaboutLabel 

DwtNaddtopicLabel 
DwtNapplicationName 
DwtNbadframeMessage 
DwtNbadlibMessage 
DwtNcacheHelpLibrary 
DwtNcloseLabel 
DwtNcols 

DwtNcopyLabel 
DwtNdefaultPosition 
DwtNdismissLabel 

DwtNeditLabel 

DwtNerroropenMessage 
DwtNexitLabel 

DwtNfileLabel 
DwtNfirstTopic 

DwtNglossaryLabel 

DwtNglossaryTopic 

DwtNgobackLabel 

DwtNgobacktopicLabel 
DwtNgooverLabel 

DwtNgotoLabel 
DwtNgototopicLabel 
DwtNhelpAcknowledgeLabel 

DwtNhelpFont 

DwtNhelpLabel 
DwtNhelphelpLabel 

DwtNhelpOnHelpTitle 

DwtNhelpontitleLabel 

DwtNhelptitleLabel 
DwtNhistoryLabel 

DwtNhistoryboxLabel 

DwtNkeywordLabel 

Data Type 

DwtCompString 

DwtCompString 
DwtCompString 
DwtCompString 

DwtCompString 
Boolean 
DwtCompString 
int 

DwtCompString 
Boolean 
DwtCompString 

DwtCompString 
DwtCompString 

DwtCompString 

DwtCompString 
DwtCompString 

DwtCompString 

DwtCompString 
DwtCompString 

DwtCompString 
DwtCompString 
DwtCompString 

DwtCompString 
DwtCompString 
DwtFontList 

DwtCompString 

DwtCompString 

DwtCompString 

DwtCompString 

DwtCompString 
DwtCompString 

DwtCompString 

DwtCompString 

DwtHelp (3Dwt) 

Default 

"About" 
" Additional topics" 
NULL 
"Couldn't find frame !CS" 
"Couldn't open library !CS" 
False 
"Exit" 
Language-dependent. The 
American English default is 
55. 
"Copy" 
True 
"Dismiss" 
"Edit" 
"Error opening file !CS" 
"Exit" 
"File" 

NULL 
"Glossary" 
NULL 
"Go Back" 
"Go Back" 
"Go To Overview" 
"Go To" 
"Go To Topic" 
"Acknowledge" 
Language-dependent. The 
American English default is 
"-*-TERMINAL­
MEDIUM-R-NARROW--*-
140-
*-*-C-*-IS08859-1" 
"Using Help" 
"Overview" 
"Using Help" 
"Help on " 
"Help" 
"History ... " 
"Search Topic History" 
"Keyword ... " 

Subroutines 3-151 



DwtHelp (3Dwt) 

DwtNkeywordsLabel 
DwtNlibrarySpec 
DwtNlibraryType 
DwtNnokeywordMessage 
DwtNnotitleMessage 

DwtNnulllibMessage 
DwtNmapCallback 
DwtNoverviewTopic 
DwtNrows 

DwtNsaveasLabel 
DwtNsearchapplyLabel 
DwtNsearchkeywordboxLabel 
DwtNsearchLabel 
DwtNsearchtitleboxLabel 
DwtNselectallLabel 
DwtNtitleLabel 
DwtNtitlesLabel 
DwtNtopictitlesLabel 
DwtNunmapCallback 
DwtNviewLabel 
DwtNvisitglosLabel 
DwtNvisitLabel 
DwtNvisittopicLabel 

DwtCompString 
DwtCompString 
int 
DwtCompString 
DwtCompString 

DwtCompString 
DwtCallbackptr 
DwtCompString 
int 

DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 
DwtCallbackptr 

DwtCompString 
DwtCompString 
DwtCompString 
DwtCompString 

"Keyword" 
NULL 
DwtTextLibrary 
"Couldn't find keyword !CS" 
"No title to match string 
!CS" 
"No library specified\n" 
NULL 
NULL 
Language-dependent. The 
American English default is 
20. 

"Save As ... " 
"Apply" 
"Search Topic Keywords" 
"Search" 
"Search Topic Titles" 
"Select All" 
"Title ... " 
"Title" 
"Topic Titles " 
NULL 
"View" 
"Visit Glossary" 
"Visit" 
"Visit Topic" 

DwtNaboutLabel Specifies the text for one of the pull-down menu 
entries displayed when the user clicks on the Help 
entry on the menu bar. 

DwtNaddtopicLabel 
Specifies the text for the label indicating additional 
topics for help. 

DwtNapplicationName 
Specifies the application name to be used in the 
widget title bar. 

DwtNbadframeMessage 
Specifies the text for the message displayed when a 
frame could not be found. 

DwtNbadlibMessage 
Specifies the text for the message displayed when a 

3-152 Subroutines 



DwtHelp (3Dwt) 

requested library could not be found. 

DwtNcacheHelpLibrary 
Specifies a boolean value that, when True, 
indicates that the text is stored in cache memory. If 
False, the text is not stored in cache memory. 

DwtNcloseLabel Specifies the label for the Exit push button in the 
help widget window. 

DwtNcols 

DwtNcopyLabel 

Specifies the width, in characters, of the Help Menu 
text window. 

Specifies the text for the copy entry on the pull-down 
menu under Edit on the help widget menu bar. 

DwtNdefaultPosition 

DwtNdismissLabel 

DwtNeditLabel 

Specifies a boolean value that, when True, 
indicates that DwtNx and DwtNy will be ignored 
forcing the default. By default the help widget is 
positioned so that it does not occlude the parent 
widget on the screen. 

Specifies the text for the push button label used to 
dismiss a help widget dialog box (for example, 
Search History, Search Title, Search Keyword 
boxes). 

Specifies the text for the edit entry on the help 
window menu bar. 

DwtNerroropenMessage 
Specifies the text for the error message displayed 
when a file cannot be opened. 

DwtNexi tLabel Specifies the text for the push button or pull-down 
menu entry that allows the user to exit from help. 

DwtNfileLabel Specifies the text for the file entry on the help 
window menu bar. 

Dwt N fir s t Top i c Specifies the first help topic to be displayed. If you 
pass a NULL string, the help menu widget displays a 
list of level one topics. 

DwtNglossaryLabel 
Specifies the text for the glossary entry on the pull­
down menu under Help on a help window menu bar. 

Subroutines 3-153 



OwtHelp (30wt) 

DwtNglossaryTopic 
Specifies the application glossary topic. If you pass 
a NULL string, the Visit Glossary entry does not 
appear in the widget's View pull-down menu. 

DwtNgobackLabel Specifies the text for a label used on the pull-down 
menu under View. Clicking on this object returns the 
user to the previous topic displayed. 

DwtNgobacktopicLabel 
Specifies the label for the Go Back push button in 
the help widget window. 

DwtNgooverLabel Specifies the text for a label used on the pull-down 
menu under View. Clicking on this label causes the 
Overview of Help to appear in the Help window. 

DwtNgotoLabel Specifies the text for the label used on a push button 
in the help widget's dialog boxes. Clicking on this 
object after selecting a new topic displays help on the 
new topic in the same Help window. 

DwtNgototopicLabel 
Specifies the label for the Go To Topic menu entry 
in the View pull-down menu. 

DwtNhelpAcknowledgeLabel 
Specifies the label for the Acknowledge push button 
in the error message box. 

DwtNhelpFont Specifies the font of the text displayed in the help 
menu widget. 

DwtNhelphelpLabel 

DwtNhelpLabel 

Specifies the label for the Overview menu item in the 
Using Help pull-down menu. 

Specifies the text for the label on the pull-down 
menu under Help. 

DwtNhelpOnHelpTitle 
Specifies the label for the title bar in the Help-on­
Help help widget. 

DwtNhelpontitleLabel 

3-154 Subroutines 

Specifies the label for the help widget title bar used 
in conjunction with the application name. 



OwtHelp (30wt) 

DwtNhelptitleLabel 

DwtNhistoryLabel 

Specifies the label for the help widget title bar when 
no application name is specified. 

Specifies the text for the label in the pull-down menu 
under Help. 

DwtNhistoryboxLabel 

DwtNkeywordLabel 

Specifies the text for the label used in a history box. 

Specifies the text for the label in the pull-down menu 
under Help. 

DwtNkeywordsLabel 
Specifies the text for the label used in a Search Topic 
Keyword box to identify the text entry field. 

DwtNlibrarySpec Specifies a host system file specification that 
identifies the help topic library, for example, 
/usr /help/ decwhelp on UNIX-based systems. 

DwtNlibraryType Specifies the type of help topic library specified by 
DwtNlibrarySpec. You can pass 
DwtTextLibrary, which is an ULTRIX help 
directory. 

DwtNmapCallback Specifies the callback function or functions called 
when the help widget is about to be mapped. 

DwtNnokeywordMessage 
Specifies the text for the message displayed when a 
requested keyword cannot be found. 

DwtNnotitleMessage 
Specifies the text for the message displayed when a 
requested title cannot be found. 

DwtNnulllibMessage 
Specifies the text for the message displayed when no 
library has been specified. 

DwtNoverviewTopic 
Specifies the application overview topic. 

DwtNrows Specifies the height, in characters, of the Help Menu 
text window. 

Subroutines 3-155 



DwtHelp (3Dwt) 

DwtNsaveasLabel Specifies the text for an entry on a pull-down menu 
under File on the Help menu bar. Clicking on this 
entry allows a user to save the current help text in a 
file. A file selection dialog box is displayed. 

DwtNsearchapplyLabel 
Specifies the text for the push button label used to 
initiate a search action in a Search dialog box. 

DwtNsearchkeywordboxLabel 
Specifies the text for the label used in a Search Topic 
Keywords box. 

DwtNsearchLabel Specifies the text for an entry on a Help window 
menu bar. 

DwtNsearchtitleboxLabel 
Specifies the text for the title of a Search Topic 
Titles box. 

DwtNselectallLabel 
Specifies the text for an entry on the pull-down menu 
under Edit. Clicking on this entry selects all the text 
in the work area (text widget only). 

DwtNtitleLabel Specifies the text for an entry on the pull-down menu 
under Search. Clicking on this entry allows a user to 
search for a topic by title. 

DwtNtitlesLabel Specifies the text for the label that identifies the text 
entry field on the Search Topic Titles box. 

DwtNtopictitlesLabel 

DwtNviewLabel 

Specifies the text for the label that identifies the 
topics found as a result of a title search in a Search 
Topic Titles box. 

Specifies the text for the View entry on a help menu 
bar. 

DwtNvisitglosLabel 

3-156 Subroutines 

Specifies the text for the pull-down menu entry under 
View. Clicking on this entry causes the glossary to 
be displayed in a new Help window. 



DwtHelp (3Dwt) 

DwtNv is it Labe 1 Specifies the text for an entry on a push button in a 
help widget's dialog boxes. Clicking on this object 
causes infonnation on a new topic to be displayed in 
a new window. 

DwtNvisittopicLabel 
Specifies the label for the Visit Topic menu entry in 
the View pull-down menu. 

DwtNunrnapCallback 
Specifies the callback function or functions called 
when the help menu widget window was unmapped. 
For this callback, the reason is DwtCRUnrnap. 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

} DwtAnyCallbackStruct; 

int reason; 
XEvent *event; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRUnmap The help window was unmapped. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-157 



DwtlnitGetSegment (3Dwt) 

Name 
DwtInitGetSegment - Returns the initialized context of the compound-string. 

Syntax 
int DwtInitGetSegment( context, compound_string) 

DwtCompStringContext * context; 
DwtCompString compound_string; 

Arguments 

context Specifies a context to be filled by this function. You should 
have previously allocated this context. 

compound_string 
Specifies the compound-string. 

Description 
The Dwt Ini tGetSegment function returns the initialized context 
associated with the compound-string you specified (compound _string). You 
must use this returned context in a call to DwtGetNextSegment. 

Note that the performance of DwtlnitGetSegment (used in conjunction 
with DwtGetNextSegment to fetch multiple segments from a 
compound-string) has degraded from Version 1.0 of the toolkit. 

A new function, DwtStringlni tContext, not only provides better 
performance, it also creates the context structure that you must allocate 
separately when using DwtlnitGetSegment. To improve performance, 
convert calls from DwtlnitGetSegment to 
DwtStringlnitContext, and use DwtStringFreeContext to free 
the context structure when you are finished with it. 

Return Value 
This function returns one of these status return constants: 

DwtSuccess 
DwtEndCS 

DwtFail 

3-158 Subroutines 

Normal completion. 
The string specified in compound _string is 
NULL. 
The string specified in compound _string is 
not a compound-string. 



DwtlnitGetSegment (3Dwt) 

See Also 
DwtGetNextSegment (3Dwt), DwtStringFreeContext (3Dwt), 
DwtStringlnitContext (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-159 



DwtlnitializeDRM (3Dwt) 

Name 
DwtlnitializeDRM - Prepares an application to use DRM widget-fetching 
facilities. 

Syntax 
void DwtInitializeDRM() 

Description 
The DwtInitializeDRM function must be called to prepare an 
application to use DRM widget-fetching facilities. You must call this 
function prior to fetching a widget. However, it is good programming 
practice to call DwtInitializeDRM prior to performing any DRM 
operations. 

DwtInitializeDRM initializes the internal data structures that DRM 
needs to successfully perform type conversion on arguments and to 
successfully access widget creation facilities. An application must call 
DwtInitializeDRM before it uses other DRM functions. 
DwtInitializeDRM can be called more than once. All calls after the first 
have no effect. 

3-160 Subroutines 



Name 

DwtlnquireNextPasteCount (3Dwt) 

DwtlnquireNextPasteCount - Returns the number of data item formats 
available for the next paste item in the clipboard. 

Syntax 
int DwtInquireNextPasteCount(display, window, count, 

max Jormat _ name_length) 
Display * display; 
Window window; 
int *count; 
int * max Jormat _name _length; 

Arguments 

display 

window 

count 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

Returns the number of data item formats available for the 
next-paste item in the clipboard. If no formats are available, 
this argument equals zero. The count includes the formats 
that were passed by name. 

max Jormat _name _length 

Description 

Specifies the maximum length of all format names for the 
next-paste item in the clipboard. 

The DwtlnquireNextPasteCount function returns the number of data 
item formats available for the next-paste item in the clipboard. This function 
also returns the maximum name length for all formats in which the next,:"paste 
item is stored. 

Subroutines 3-161 



OwtlnquireNextPasteCount (30wt) 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

ClipboardNoData 

See Also 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 
Information could not be obtained from an 
application using the ICCCM clipboard 
selection mechanism. This return value 
indicates that the data was not available in 
the requested format. 

Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-162 Subroutines 



Name 

OwtlnquireNextPasteFormat (30wt) 

DwtInquireNextPasteFormat - Returns a specified format name for the next­
paste item in the clipboard. 

Syntax 
int DwtInquireNextPasteFormat( display, window, 

number, format name buf, 
buffer len, copied len") 

Display * display; - -
Window window; 
int number; 
char * format name buf; 
unsigned long buffer_len; 
unsigned long * copied_len; 

Arguments 

display 

window 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

number Specifies the number of format names to be obtained. If this 
number n is greater than the number of formats for the data 
item, DwtlnquireNextPasteFormat returns a zero in 
the copied _len argument. 

format name buf 
- - Specifies the buffer that receives the format name. 

buffer_len 

copied_len 

Specifies the number of bytes in the format name buffer. 

Specifies the number of bytes in the string copied to the 
buffer. If this argument equals zero, there is no nth format 
for the next-paste item. 

Subroutines 3-163 



DwtlnquireNextPasteFormat (3Dwt) 

Description 
The DwtInquireNextPasteFormat function returns a specified fonnat 
name for the next-paste item in the clipboard. If the name must be truncated, 
the function returns a warning status. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

ClipboardTruncate 

ClipboardNoData 

See Also 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 
The data returned is truncated because the 
user did not provide a buffer that was large 
enough to hold the data. 
Information could not be obtained from an 
application using the ICCCM clipboard 
selection mechanism. This return value 
indicates that the data was not available in 
the requested format. 

Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-164 Subroutines 



DwtlnquireNextPasteLength (3Dwt) 

Name 
DwtInquireNextPasteLength - Returns the length of the data stored under a 
specified format name for the next-paste item in the clipboard. 

Syntax 
int DwtInquireN extPasteLength ( display, window, 

format name, length) 
Display * display; -
Window window; 
char * format name; 
unsigned long * length; 

Arguments 

display 

window 

format_name 

length 

Description 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

Specifies the name of the format for the next -paste item. 

Specifies the length of the next data item in the specified 
format. This argument equals zero if no data is found for the 
specified format, or if there is no item on the clipboard. 

The DwtlnquireNextPasteLength function returns the length of the 
data stored under a specified format name for the next paste clipboard data 
item. 

If no data is found for the specified format, or if there is no item on the 
clipboard, DwtlnquireNextPasteLength returns a value of zero. 

NOTE 

Any format passed by name is assumed to have the length passed 
in a call to DwtCopyToClipboard, even though the data has 
not yet been transferred to the clipboard in that format. 

Subroutines 3-165 



DwtlnquireNextPasteLength (3Dwt) 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

ClipboardNoData 

See Also 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 
Information could not be obtained from an 
application using the ICCCM clipboard 
selection mechanism. This return value 
indicates that the data was not available in 
the requested format. 

DwtCopyToClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-166 Subroutines 



DwtLabel (3Dwt) 

Name 
DwtLabel, DwtLabelCreate - Creates a label widget for the application to 
display identification information (label) on the screen. 

Syntax 
Widget DwtLabel(parent widget, name, x, y, label, help callback) 

Widget parent widget; -
char * name; -
Position x, y; 
DwtCompString label; 
DwtCallbackPtr help _callback; 

Widget DwtLabelCreate (parent_widget, name, 
override argUst, override argcount) 

Widget parent widget; -
char * name; -
ArgList override _ argUst; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

label Specifies the label for the text style. This argument sets the 
DwtNlabel attribute associated with DwtLabelCreate. 

help_callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

override argUst 
- Specifies the application override argument list. 

Subroutines 3-167 



DwtLabel (3Dwt) 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _ arglist). 

Description 
The DwtLabel and DwtLabelCreate functions create an instance of a 
label widget and return its associated widget ID. When calling DwtLabel, 
you set the label widget attributes presented in the formal parameter list. For 
DwtLabelCreate, however, you specify a list of attribute name/value 
pairs that represent all the possible label widget attributes. 

The application uses the label widget to display read only information (label) 
anywhere within the parent widget window. It has no standard callback other 
than DwtNhelpCallback. 

Because a label widget does not support children, it always refuses geometry 
requests. The label widget does nothing on a resize by its parents. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 

3-168 Subroutines 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
The width of the label or 
pixmap, plus two times 
DwtNmarginWidth 
The height of the label or 
pixmap, plus two times 
DwtNmarginHeight 
zero pixels 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 



DwtLabel (3Dwt) 

DwtNancestorSensitive Boolean The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

xtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 
DwtCallbackPtr 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI Toolkit font 
NULL 

Widget-Specific Attributes 

Attribute Name Data Type Default 

DwtNlabelType unsigned char DwtCString 
DwtNlabel DwtCompString Widget name 
DwtNmarginWidth Dimension Two pixels for text 

Zero pixels for pixmap 
DwtNmarginHeight Dimension Two pixels for text 

Zero pixels for pixmap 
DwtNalignment unsigned char DwtAlignmentCenter 
DwtNpixmap Pixmap NULL 
DwtNmarginLeft Dimension Zero 
DwtNmarginRight Dimension Zero 
DwtNmarginTop Dimension Zero 
DwtNmarginBottom Dimension Zero 
DwtNconformToText Boolean True, if the widget is 

created with a width and 
height of zero 

Subroutines 3-169 



OwtLabel (30wt) 

DwtNlabelType 

DwtNlabel 

False, if the widget is 
created with a non-zero 
width and height 

Specifies the label type. You can pass 
DwtCString (compound string) or DwtP ixmap 
(icon data in pixmap). 

Specifies the label for the text style. 

DwtNmarginWidth Specifies the number of pixels between the border of 
the widget window and the label. 

DwtNmarginHeight 
Specifies the number of pixels between the border of 
the widget window and the label. 

DwtNalignment Specifies the label alignment for text style. You can 
pass DwtAlignmentCenter (center alignment), 
DwtAlignmentBeginning (alignment at the 
beginning), or DwtAlignmentEnd (alignment at 
the end). 

DwtNpixmap Supplies icon data for the label. Pixmap is used 
when DwtNlabelType is defined as 
DwtNpixmap. 

DwtNmarginLeft Specifies the number of pixels that are to remain 
inside the left margin (DwtNmarginWidth) of the 
widget before the label is drawn. 

DwtNmarginRight Specifies the number of pixels that are to remain 
inside the right margin (DwtNmarginWidth) of 
the widget before the label is drawn. 

DwtNmarginTop 

DwtNmarginBottom 

Specifies the number of pixels that are to remain 
inside the top margin (DwtNmarginTop) of the 
widget before the label is drawn. 

Specifies the number of pixels that are to remain 
inside the bottom margin (DwtNmarginTop) of the 
widget before the label is drawn. 

DwtNconformToText 

3-170 Subroutines 

Specifies a boolean value that indicates whether or 
not the widget always attempts to be just big enough 
to contain the label. If True, an XtSetValues 



DwtLabel (3Dwt) 

with a new label string causes the widget to attempt 
to shrink or expand to fit exactly (accounting for 
margins) the new label string. Note that the results 
of the attempted resize are up to the geometry 
manager involved. If False, the widget never 
attempts to change size on its own. 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 

} DwtAnyCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-171 



DwtLabelGadgetCreate (3Dwt) 

Name 
DwtLabelGadgetCreate - Creates a label gadget. 

Syntax 
Widget DwtLabelGadgetCreate (parent_widget, name, 

override _ arglist, override _ argcount) 
Widget parent_widget; 
char *name; 
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override _ arglist 
Specifies the application override argument list. 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _ arglist). 

Description 
The DwtLabelGadgetCreate function creates an instance of the label 
gadget and returns its associated gadget ID. A label gadget is similar in 
appearance and semantics to a label widget. Like all gadgets, the label 
gadget does not have a window but uses the window of the closest antecedent 
widget. Thus, the antecedent widget provides all event dispatching for the 
gadget. This currently restricts gadgets to being descendents of menu or 
dialog class (or subclass) widgets. Drawing information such as font and 
color are also those of the closest antecedent widget. 

Inherited Attributes 

Attribute Name 

Rectangle Attributes 
DwtNx 

3-172 Subroutines 

Data Type 

Position 

Default 

Determined by the geometry 
manager 



DwtNy 

DwtNwidth 

DwtNheight 

OwtLabelGadgetCreate (30wt) 

Position 

Dimension 

Dimension 

Determined by the geometry 
manager 
The width of the label plus 
margins 
The height of the label plus 
margins 

DwtNborderWidth 
DwtNsensitive 
DwtNancestorSensitive 

Dimension 
Boolean 
Boolean 

zero pixels 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 

Widget-Specific Attributes 

Attribute Name Data Type Default 

DwtNlabel DwtCompString Widget name 
DwtNalignment unsigned char DwtAlignmentCenter 
DwtNdirectionRToL Boolean False 
DwtNhelpCallback DwtCallbackPtr NULL 

DwtNlabel 

DwtNalignrnent 

Specifies the label for the text style. 

Specifies the label alignment for text style. You can 
pass DwtAlignrnentCenter (center alignment), 
DwtAlignrnentBeginning (alignment at the 
beginning), or DwtAlignrnentEnd (alignment at 
the end). 

DwtNdirectionRToL 

DwtNhelpCallback 

Return Value 

Specifies a boolean value that, when False, 
indicates that the text is drawn from left to right. If 
True, the text is drawn from right to left. 

Specifies the callback function or functions called 
when a help request is made. 

This function returns the ID of the created widget. 

Subroutines 3-173 



DwtLabelGadgetCreate (3Dwt) 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 

} DwtAnyCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-174 Subroutines 



DwtLatin1 String (3Dwt) 

Name 
DwtLatiniString - Creates a compound-string for the LATINI character set. 

Syntax 
DwtCompString DwtLatin I String (text) 

char *text; 

Arguments 

text Specifies the text string to be converted to a compound­
string. 

Description 
The DwtLatinlString function creates a compound-string and is 
provided for those application programmers who do not need to mix 
compound-strings containing different character sets and directions. 
DwtLatinlString assumes the character encoding of the text to be 
ISO_LATINI and the writing direction to be from left to right. 

Return Value 
This function returns the resulting compound-string. It has the following 
default values: 

• For charset the default is CDA$K ISO LATINI. - -
• For direction r to I the default is False (text is drawn from left to 

right). - - -

• For language the default is DwtLanguageNotSpecified. 

• For rend the default is DwtRendMaskNone. 

See Also 
DwtCSString (3Dwt), DwtString (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-175 



DwtListBox (3Dwt) 

Name 
DwtListBox, DwtListBoxCreate - Creates a list box widget for the 
application to display large numbers of item choices or entries in a list 
format. 

Syntax 
Widget DwtListBox(parent widget, name, x, y, 

items, item count, visible items count, 
callback, help callback, ,-:esize, horiz) 

Widget parent_widget;-
char *name; 
Position x, y; 
DwtCompString * items; 
int item count, visible items count; 
DwtCallbackPtr callback, help _callback; 
Boolean resize; 
Boolean horiz; 

Widget DwtListBoxCreate (parent widget, name, 
override arglist-:override argcount) 

Widget parent _ widget;- -
char *name; 
ArgList override arglist; 
int override argcount; 

Arguments 

parent _widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

items Specifies the list of items to be displayed by the list box 
widget. The list of items must be unique. This argument 

3-176 Subroutines 



item count 

DwtListBox (3Dwt) 

sets the DwtN items attribute associated with 
DwtListBoxCreate. 

Specifies the total number of items in the list. This argument 
sets the DwtNi temsCount associated with 
DwtListBoxCreate. 

visible items count 

callback 

Specifies the maximum number of visible items contained in 
the list box. For example, if DwtNi temsCount is 20, but 
DwtNvisibleltemsCount is 5, only 5 items are visible 
at anyone time. This argument sets the 
DwtNvisibleltemsCount attribute associated with 
DwtListBoxCreate. 

Specifies the callback function or functions called when 
single callback, single confirm callback, extend callback, and 
extend confirm callback functions are activated. This 
argument sets the DwtNsingleCallback, 
DwtNsingleConfirmCallback, 
DwtNextendCallback,and 
DwtNextendConfirmCallback attributes associated 
with DwtListBoxCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

resize 

horiz 

Specifies a boolean value that, when True, indicates the list 
box increases its width to accommodate items too wide to fit 
inside the box. If False, the width remains constant unless 
the caller changes the width by calling XtSetValues. If 
you set DwtNresize to False, it is recommended that 
you set DwtNhorizontal to True. This argument sets 
the DwtNresize attribute associated with 
DwtListBoxCreate. 

Specifies a boolean value that, when True, indicates the list 
box contains a horizontal scroll bar. If False, the list box 
does not contain a horizontal scroll bar. A horizontal scroll 
bar cannot be deleted or added to a list box after the list box 
is created. This argument sets the 
DwtNscrollHorizontal attribute associated with 
DwtListBoxCreate. 

Subroutines 3-177 



DwtListBox (3Dwt) 

override arglist 
- Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _argUst). 

Description 
The DwtListBox and DwtListBoxCreate functions create an instance 
of a list box widget and return its associated widget ID. The list box widget 
is a composite widget that consists of a list box, a menu with gadgets, and 
scroll bars. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 

3-178 Subroutines 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Set as large as necessary to 
hold the longest item without 
exceeding the size of its 
parent 
Set as large as necessary to 
hold the number of items 
specified by 
DwtNvisibleltemsCount, 
without exceeding the size of 
the parent widget 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 



DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Scroll Window Attributes 

DwtNhorizontalScrollBar 
DwtNverticalScrollBar 
DwtNworkWindow 
DwtNshownValueAutomaticHoriz 
DwtNshownValueAutomaticVert 

Widget-Specific Attributes 

Attribute Name 

DwtNmarginWidth 
DwtNmarginHeight 
DwtNspacing 
DwtNitems 
DwtNitemsCount 
DwtNselectedItems 
DwtNselectedItemsCount 

Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
NOT SUPPORTED 
NOT SUPPORTED 

Widget 
Widget 
Widget 
Boolean 
Boolean 

Data Type 

Dimension 
Dimension 
Dimension 
DwtCompString * 
int 
DwtCompString * 
int 

DwtListBox (3Dwt) 

The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 

NULL 
NULL 
NULL 

True 
False 

Default 

10 pixels 
4 pixels 
1 pixel 
NULL 
Zero 
NULL 
Zero 

Subroutines 3-179 



DwtListBox (3Dwt) 

DwtNvisibleItemsCount mt 

DwtNsingleSelection Boolean 
DwtNresize Boolean , 
DwtNhorizontal Boolean 
DwtNsingleCallback DwtCallbackPtr 
DwtNsingleConfirmCallback DwtCallbackPtr 
DwtNextendCallback DwtCallbackPtr 
DwtNextendConfirmCallback DwtCallbackPtr 

As many items as can fit in 
the core attribute 
DwtNheight. The 
minimum is l. 
True 
True 
False 
NULL 
NULL 
NULL 
NULL 

DwtNmarginWidth Specifies the number of pixels between the border of 
the widget window and the items. This attribute sets 
the list box menu margin width. 

DwtNmarginHeight 
Specifies the number of pixels between characters of 
each pair of consecutive items. This attribute sets 
the list box menu margin height. 

DwtNspacing Specifies in pixels the spacing between list box 
entries. 

DwtNi tems Specifies the list of items to be displayed by the list 
box widget. The list of items must be unique. When 
modifying DwtNi tems, always update 
DwtNitemsCount~d 

DwtNselectedltemsCount. When 
DwtNitems is NULL, DwtNitemsCount and 
DwtNselectedltemsCount must be zero. 

DwtNi temsCount Specifies the total number of items in the list. When 
DwtNitemsCount is zero, DwtNitems does not 
have to be NULL. The list box widget uses 
DwtNitemsCount~d 
DwtNselectedltemsCount, not DwtNi tems, 
to determine if the list contains any items. 
Therefore, you must specify DwtNi temsCount 
whenever you modify DwtNitems. 

DwtNselectedltems 
Specifies the list of items that are selected in the list 
box. The last selected item is visible in the list box. 

DwtNselectedltemsCount 

3-180 Subroutines 



OwtListBox (30wt) 

Specifies the number of items selected in the list box. 
When DwtNselectedlternsCount is zero, 
DwtNselectedlterns does not have to be NULL. 
The list box uses DwtNselectedlternsCount 
not DwtNselectedltems to detennine if the list 
contains any selected items. Therefore, you must 
specify DwtNselectedltemsCount whenever 
you modify DwtNselectedltems. 

DwtNvisibleltemsCount 
Specifies the maximum number of visible items 
contained in the list box. For example, if 
DwtNitemsCount~2~b~ 

DwtNvisibleltemsCount is 5, only 5 items are 
visible at anyone time. 

The list box widget is designed so that its height is 
based on DwtNvisibleltemsCount. Therefore, 
it is preferable to control the list box height by using 
DwtNvisibleltemsCount rather than 
DwtNheight. 

Applications that control list box height through the 
core attribute DwtNheight are responsible for 
handling font changes. 

DwtNsingleSelection 

DwtNresize 

Specifies a boolean value that, when True, 
indicates only one item can be selected at a time. 

Specifies a boolean value that, when True, 
indicates the list box increases its width to 
accommodate items too wide to fit inside the box. If 
False, the width remains constant unless the caller 
changes the width by calling XtSetValues. If 
you set DwtNresize to False, it is 
recommended that you set DwtNhorizontal to 
True. 

DwtNhorizontal Specifies a boolean value that, when True, 
indicates the list box contains a horizontal scroll bar. 
If F a I s e, the list box does not contain a horizontal 
scroll bar. A horizontal scroll bar cannot be deleted 
or added to a list box after the list box is created. 

DwtNsingleCallback 

Subroutines 3-181 



DwtListBox (3Dwt) 

3-182 Subroutines 

Specifies the callback function or functions called 
when the user selects a single item by clicking MB 1 
on a single item. For this callback, the reason is 
DwtCRSingle. 



DwtListBox (3Dwt) 

DwtNsingleConfirmCallback 
Specifies the callback function or functions called 
when the user double clicked MB 1 on an item. For 
this callback, the reason is 
DwtCRSingleConfirm. 

DwtNextendCallback 
Specifies the callback function or functions called 
when the user single clicks MB 1 while depressing 
the Shift key when more than one item is selected 
(multiple selection callback). See the 
DwtNsingleSelection attribute. For this 
callback, the reason is DwtCRExtend. 

DwtNextendConfirmCallback 

Return Value 

Specifies the callback function or functions called 
when the user double clicks MB 1 while depressing 
the Shift key when more than one item is selected 
(multiple selection callback). See the 
DwtNsingleSelection attribute. For this 
callback, the reason is DwtCRExtend. 

These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
DwtCompString item; 
int item_length; 
int item number; 

DwtListBoxCallbackStruct; -

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRSingle The user selected a single item in the list by 
clicking MB 1 on the item. 

Subroutines 3-183 



DwtListBox (3Dwt) 

DwtCRSingleConfirm The user selected a single item in the list 
and confirmed another action to be taken 
(by a callback) by double clicking on an 
item. For example, a double click on a file 
in the file selection box selects that file and 
confirms another action to be taken. 

DwtCRExtend The user selected an item (by clicking MBI 
on a single item while depressing the shift 
key) while there is at least one other 
selected item. The user clicked MB 1 once 
while pressing the Shift key on an item 
when more than one is selected (multiple 
selection callback). 

DwtCRExtendConfirm The user selected an item and confirmed 
another action to be taken (by double 
clicking MB 1 on a single item while 
depressing the Shift key) while there is at 
least one other selected item. This reason 
applies only if DwtNsingleSelection 
is True. 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

The item member is set to the last item selected when the callback occurred. 
Note that only the last item, not all selected items, is returned. The 
item_length member is set to the selected item's length when the callback 
occurred. The item_number member is set to the item's position in the list 
box when the callback occurred. The first position is one, not zero. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-184 Subroutines 



DwtListBoxAddltem (3Dwt) 

Name 
DwtListBoxAddItem - Adds an item to the list within a list box widget. 

Syntax 
void DwtListBoxAddItem( widget, item, position) 

Widget widget; 
DwtCompString item; 
int position; 

Arguments 

widget 

item 

position 

Description 

Specifies the ID of the list box widget from whose list you 
want to add an item. 

Specifies the text of the item to be added to the list box. 

Specifies the placement of the item within the list in terms of 
its cell position. It uses an insert mode/cell number scheme 
with a 1 specifying the topmost entry position and a 0 
specifying the bottom entry for adding an item to the bottom 
of the list. 

The DwtListBoxAddltem function adds an item to a list within the list 
box widget. 

See Also 
DwtListBoxDeleteltem (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-185 



DwtListBoxDeleteltem (3Dwt) 

Name 
DwtListBoxDeleteltem - Deletes an item from the list within a list box 
widpet. 

Syntax 
void DwtListBoxDeleteltem( widget, item) 

Widget widget; 
DwtCompString item; 

Arguments 

widget 

item 

Description 

Specifies the ID of the list box widget from whose list you 
want to delete an item. 

Specifies the text of the item to be deleted from the list box. 

The DwtListBoxDeleteltem function deletes an item from a list within 
the list box widget. The function searches the list for the item, removes it, 
and moves any subsequent entries up one cell position throughout the 
remaining list. 

See Also 
DwtListBoxAddItem (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-186 Subroutines 



Name 

DwtListBoxDeletePos (3Dwt) 

DwtListBoxDeletePos - Deletes an item identified by its position from the 
list within a list box widget. 

Syntax 
void DwtListBoxDeletePos (widget, position) 

Widget widget; 
int position; 

Arguments 

widget Specifies the ID of the list box widget from whose list you 
want to delete an item identified by its position. 

position Specifies the position of the item to be deleted from the list. 

Description 
The DwtListBoxDeletePos function deletes an item from a list within 
the list box widget. The item to be deleted is identified by its position in the 
list. The function searches the list for the specified position, removes the 
item in that position, and moves any subsequent entries up one cell position 
throughout the remaining list. 

See Also 
DwtListBoxDeleteltem (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-187 



DwtListBoxDeselectAliltems (3Dwt) 

Name 
DwtListBoxDeselectAllltems - Deselects all of the previously selected items 
in a list box. 

Syntax 
void DwtListBoxDeselectAllltems ( widge t) 

Widget widget; 

Arguments 

widget 

Description 

Specifies the ID of the list box widget from whose list you 
want to delete all previously selected items. 

The DwtListBoxDeselectAllltems function deselects (removes 
highlighting) all items previously selected, and removes them from the list of 
selected items. 

See Also 
DwtListBoxDeselectltem (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-188 Subroutines 



DwtListBoxDeselectitem (3Dwt) 

Name 
DwtListBoxDeselectltem - Deselects a previously selected item in a list box. 

Syntax 
void DwtListBoxDeselectItem( widget, item) 

Widget widget; 
DwtCompString item; 

Arguments 

widget Specifies the ID of the list box widget from whose list you 
want to delete a single previously selected item. 

item Specifies the item in the list box to be deselected 
(highlighting removed). 

Description 
The DwtListBoxDeselectltern function deselects (removes 
highlighting) an item previously selected, and removes it from the list of 
selected items. 

See Also 
DwtListBoxDeselectAlIltems (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-189 



DwtListBoxDeselectPos (3Dwt) 

Name 
DwtListBoxDeselectPos - Deselects an item identified by its position in the 
list box. 

Syntax 
void DwtListBoxDeselectPos( widget, position) 

Widget widget; 
int position; 

Arguments 

widget 

position 

Description 

Specifies the ID of the list box widget from whose list you 
want to deselect an item. 

Specifies an integer that identifies the position of the item to 
be deselected in the list box. 

The DwtListBoxDeselectPos function deselects an item (removes 
highlighting) based on its position in a list box and removes the item from 
the selected list. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-190 Subroutines 



DwtListBoxltemExists (3Dwt) 

Name 
DwtListBoxItemExists - Verifies the existence of a particular item in a list 
box. 

Syntax 
int DwtListBoxltemExists (widget, item) 

Widget widget; 
DwtCompString item; 

Arguments 

widget Specifies the ID of the list box widget from whose list you 
want to verify the existence of a specified item. 

item Specifies the item in the list box that is being searched for. 

Description 
The DwtListBoxIternExists function searches through a list box to 
determine if an item exists. If the specified item is found, 
DwtListBoxIternExists returns an integer that gives the position of the 
item in the list box. If the item is not found, DwtListBoxIternExists 
returns a zero. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-191 



DwtListBoxSelectltem (3Dwt) 

Name 
DwtListBoxSelectltem - Selects an item in the list box. 

Syntax 
void DwtListBoxSelectItem(widget, item, notify) 

Widget widget; 
DwtCompString item; 
Boolean notify; 

Arguments 

widget 

item 

notify 

Description 

Specifies the ID of the list box widget from whose list you 
want to select an item. 

Specifies the text of the item to be added to the list box. 

Specifies a boolean value that, when True, indicates use of 
this widget results in a callback to the application. 

The DwtListBoxSelectItem function selects an item in a list box, adds 
it to a selected item list, and calls back to the application if notify is True. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-192 Subroutines 



DwtListBoxSelectPos (3Dwt) 

Name 
DwtListBoxSelectPos - Selects an item identified by its position in the list 
box. 

Syntax 
void DwtListBoxSelectPos (widget, position, notify) 

Widget widget; 
int position; 
Boolean notify; 

Arguments 

widget 

position 

notify 

Description 

Specifies the ID of the list box widget from whose list you 
want to select an item. 

Specifies an integer that identifies the position of the item to 
be selected in the list box. 

Specifies a boolean value that, when True, indicates use of 
this widget results in a callback to the application. 

The DwtListBoxSelectPos function selects an item in a list box based 
on its position in the list, adds it to a selected item list, and calls back to the 
application, if notify is True. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-193 



DwtListBoxSetHorizPos (3Dwt) 

Name 
DwtListBoxSetHorizpos - Sets the horizontal position to a specified position. 

Syntax 
void DwtListBoxSetHorizpos (widget, position) 

Widget widget; 
int position; 

Arguments 

widget 

position 

Description 

Specifies the ID of the list box widget whose horizontal 
scroll bar position you want to set. 

Specifies the position of the horizontal scroll bar in the list 
box widget. 

The DwtListBoxSetHorizPos function is used only if the list box has 
a horizontal scroll bar and the list box contains items too wide to be visible 
within the current list box width. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-194 Subroutines 



Name 

DwtListBoxSetltem (3Dwt) 

DwtListBoxSetItem - Makes a specified item (if it exists) the first visible 
item in a list box, or as close to the top as possible. The item always 
becomes visible. 

Syntax 
void DwtListBoxSetItem (widget, item) 

Widget widget; 
DwtCompString item; 

Arguments 

Specifies the widget ID. widget 

item Specifies the item to be made the first item in the list box. 

Description 
The DwtListBoxSet Item function makes the specified item (if it exists) 
the first visible item In a list box. The function determines which item in the 
list box is displayed at the top of the list box, the choice of which is limited 
by the DwtNitemsCount and DwtNvisibleItemsCount attributes to \ 
the list box widget. When DwtNvisibleItemsCount is greater than 1 
and less than DwtNitemsCount, the list box widget fills the list box with 
the maximum visible items regardless of the position value. 

For example, if DwtNi temsCount is 10 and 
DwtNvisibleItemsCount is 5, you cannot make item 8 display at the 
top of the list box. Instead, items 6 through 10 would be displayed. Setting 
item to the fourth item in the list would make items 4 through 8 display. If 
DwtNvisibleItemsCount is 1, you can make any item in the list be 
displayed at the top of the list box. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XU! Toolkit Intrinsics: C Language Binding 

Subroutines 3-195 



DwtListBoxSetPos (3Dwt) 

Name 
DwtListBoxSetPos - Makes a specified position (item number in the list) the 
top visible position in a list box, or as close to the top as possible. 

Syntax 
void DwtListBoxSetPos (widget, position) 

Widget widget; 
int position; 

Arguments 

widget 

position 

Description 

Specifies the ID of the list box widget whose specified item 
number in the list you want displayed in the top position. 

Specifies the item number in the list displayed in the top 
position in the list box. 

The DwtListBoxSetPos function makes the specified position (the item 
number in the list) the top visible position in a list box. The function 
determines which item in the list box is displayed at the top of the list box, 
the choice of which is limited by the DwtNitemsCount and 
DwtNvisibleltemsCount attributes to the list box widget. When 
DwtNvisibleltemsCount is greater than 1 and less than 
DwtNi temsCount, the list box widget fills the list box with the maximum 
visible items regardless of the position value. 

For example, if DwtNi temsCount is 10 and 
DwtNvisibleltemsCount is 5, you cannot make item 8 be displayed at 
the top of the list box. Instead, items 6 through 10 would be displayed. 
Setting position to 4 would make items 4 through 8 be displayed. If 
IDwtNvisibleltemsCount is 1, you can make any item in the list be 
displayed at the top of the list box. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-196 Subroutines 



Name 

DwtListPendingltems (3Dwt) 

DwtListPendingItems - Returns a list of data ID/private ID pairs for a 
specified format name. 

Syntax 
int DwtListPendingItems (display, window, format name, 

item list, count) -
Display * display; -
Window window; 
char *format name; 
DwtClipboardPendingList * item_list; 
unsigned long * count; 

Arguments 

display Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

window Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

format _name Specifies a string that contains the name of the format for 
which the list of data ID/private ID pairs is to be obtained. 

item list Specifies the address of the array of data ID/private ID pairs 
for the specified format name. This argument is a type 
DwtClipboardPendingList. The application is 
responsible for freeing the memory provided by this function 
for storing the list. 

item count Specifies the number of items returned in the list. If there is 
no data for the specified format name, or if there is no item 
on the clipboard, this argument equals zero. 

Description 
The DwtListPendingltems function returns a list of data ID/private ID 
pairs for a specified format name. For the purposes of this function, a data 
item is considered pending if the application originally passed it by name, the 

Subroutines 3-197 



DwtListPendingltems (3Dwt) 

application has not yet copied the data, and the item has not been deleted 
from the clipboard. 

The application is responsible for freeing the memory provided by this 
function to store the list. 

This function is used by an application when exiting to determine if the data 
that it passed by name should be sent to the clipboard. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

See Also 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-198 Subroutines 



Name 

DwtMainSetAreas (3Dwt) 

DwtMainSetAreas - Sets up or adds the menu bar, command window, work 
window, and scroll bar widgets to the main window widget of the 
application. 

Syntax 
void DwtMainSetAreas( widget, menu bar, work window, 

command window, horizontal scroll bar, 
vertical scroll bar) --

Widget widget; - -
Widget menu bar; 
Widget work~window, command_window; 
Widget horizontal_scroll_bar, vertical_scroll_bar; 

Arguments 

widget Specifies the main window widget ID. 

menu bar Specifies the widget ID for the menu bar to be associated 
with the main window widget. You can set this ID only after 
creating an instance of the main window widget. The 
attribute name associated with this argument is 
DwtNmenuBar. 

work window Specifies the widget ID for the work window to be associated 
with the main window widget. You can set this ID only after 
creating an instance of the main window widget. The 
attribute name associated with this argument is 
DwtNworkWindow. 

command window 
Specifies the widget ID for the command window to be 
associated with the main window widget. You can set this 
ID only after creating an instance of the main window 
widget. The attribute name associated with this argument is 
DwtNcommandWindow. 

horizontal scroll bar 
Specifies the scroll bar widget ID for the horizontal scroll bar 
to be associated with the main window widget. You can set 
this ID only after creating an instance of the main window 
widget. The attribute name associated with this argument is 
DwtNhorizontalScrollBar. 

Subroutines 3-199 



DwtMainSetAreas (3Dwt) 

vertical scroll bar 
- - Specifies the scroll bar widget ID for the vertical scroll bar to 

Description 

be associated with the main window widget. You can set 
this ID only after creating an instance of the main window 
widget. The attribute name associated with this argument is 
DwtNverticalScrollBar. 

The DwtMainSetAreas function sets up or adds the menu bar, work 
window, command window, and scroll bar widgets to the application's main 
window widget. You must set these areas up before the main window widget 
is realized, that is, before calling the X intrinsics function 
XtRealizeWidget. 

Each area is optional; therefore, you can pass NULL to one or more of these 
arguments. The title bar is provided by the window manager. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-200 Subroutines 



DwtMainWindow(3Dwt) 

Name 
DwtMain Window, DwtMain Window Create - Creates the main window 
widget. 

Syntax 
Widget DwtMainWindow(parent widget, name, x, y, width, height) 

Widget parent widget; -
char * name; -
Position x, y; 
Dimension width, height; 

Widget DwtMainWindowCreate (parent_widget, name, 
override arglist, override argcount) 

Widget parent widget; - -
char * name; -
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. For some applications, the 
parent widget ID for the main window widget is the ID 
returned by Xtlnitialize. However, the main window 
widget is not restricted to this type of parent. 

name 

x 

y 

width 

height 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

Specifies in pixels the width of the !yidget window. This 
argument sets the DwtNwidth core widget attribute. 

Specifies in pixels the height of the widget window. This 
argument sets the DwtNheight core widget attribute. 

override arglist 
- Specifies the application override argument list. 

Subroutines 3-201 



DwtMainWindow(3Dwt) 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _argUst). 

Description 
The DwtMainWindowand DwtMainWindowCreate functions create an 
instance of the main window widget and return its associated widget ID. 
When calling DwtMainWindow, you set the main window widget attributes 
presented in the formal parameter list. For DwtMainWindowCreate, 
however, you specify a list of attribute name/value pairs that represent all the 
possible attributes of the main window widget. 

The main window widget can contain a menu bar region, a work area with 
optional scroll bars, and a command area. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 

3-202 Subroutines 

Data Type 

Position 

Position 

Dimension 
Dimension 
Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
5 pixels 
5 pixels 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 



DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

DwtMainWindow(3Dwt) 

Screen * The parent screen 
DwtCallbackPtr NULL 

Pixel Default foreground color 
NOT SUPPORTED 
NOT SUPPORTED 
Opaque * NULL 
unsigned char DwtDirectionRightDown 
NOT SUPPORTED 
DwtCallbackPtr NULL 

Widget-Specific Attributes 

Attribute Name Data Type Default 

DwtNcommandWindow Widget NULL 
DwtNworkWindow Widget NULL 
DwtNmenuBar Widget NULL 
DwtNhorizontalScrollBar Widget NULL 
DwtNverticalScrollBar Widget NULL 
DwtNacceptFocus Boolean False 
DwtNfocusCallback DwtCallbackPtr NULL 

DwtNcornrnandWindow 
Specifies the widget ID for the command window to 
be associated with the main window widget. You 
can set this ID only after creating an instance of the 
main window widget. 

DwtNworkWindow Specifies the widget ID for the work window to be 
associated with the main window widget. You can 
set this ID only after creating an instance of the main 
window widget. 

DwtNmenuBar Specifies the widget ID for the menu bar to be 
associated with the main window widget. You can 
set this ID only after creating an instance of the main 
window widget. 

DwtNhorizontalScrollBar 
Specifies the scroll bar widget ID for the horizontal 
scroll bar in the main window widget. You can set 

Subroutines 3-203 



DwtMainWindow (3Dwt) 

this ID only after creating an instance of the main 
window widget. 

DwtNverticalScrollBar 
Specifies the scroll bar widget ID for the vertical 
scroll bar in the main window widget. You can set 
this ID only after creating an instance of the main 
window widget. 

DwtNacceptFocus Specifies a boolean value that, when False, 
indicates that the main window widget does not 
accept the input focus. When the main window 
widget is asked to accept the input focus, it attempts 
to give the input focus first to DwtNworkWindow 
and then to DwtNcommandWindow. If neither 
accepts the input focus and DwtNacceptFocus is 
True, the main window widget accepts the input 
focus. 

DwtNfocusCallback 

Return Value 

Specifies the callback function or functions called 
when the main window has accepted the input focus. 
For this callback, the reason is DwtCRFocus. 

These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 

} DwtAnyCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRFocus The main window widget has received the 
input focus. 

DwtCRHelpRequested The user selected help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 

3-204 Subroutines 



DwtMainWindow(3Dwt) 

XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-205 



DwtMenu (3Dwt) 

Name 
DwtMenu, DwtMenuCreate, DwtMenuPulldownCreate, 
DwtMenuPopupCreate - Creates a menu widget to contain other menu items 
(subwidgets) for the display of application menus. 

Creates a pull-down (pop-up) menu. 

Creates a pop-up menu (MB2 only). 

Syntax 
Widget DwtMenu(parent_widget, name, x, y,format, 

orientation, entry callback, map callback, 
help callback) - -

Widget parent_widget; 
char *name; 
Position x, y; 
intformat; 
unsigned char orientation; 
DwtCallbackPtr entry_callback; 
DwtCallbackPtr map callback; 
DwtCallbackPtr help= callback; 

Widget DwtMenuCreate (parent_widget, name, 
override argUst, override argcount) 

Widget parent_widget; -
char *name; 
ArgList override _ argUst; 
int override _ argcount; 

Widget DwtMenuPulldownCreate (parent_widget, name, 
override argUst, 
override-argcount) 

Widget parent_widget; -
char *name; 
ArgList override _ arg list; 
int override _ argcount; 

Widget DwtMenuPopupCreate (parent_widget, name, 
override arglist, override argcount) 

Widget parent_widget; - -
char *name; 
ArgList override _ arglist; 
int override _ argcount; 

3-206 Subroutines 



DwtMenu (3Dwt) 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

x 

y 

format 

orientation 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the\ upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

Specifies the type of menu widget. You can pass 
DwtMenuPopup, DwtMenuPulldown, or 
DwtMenuWorkArea. 

Specifies whether the menu list is vertical or horizontal. You 
can pass DwtOrientationHorizontal or 
DwtOrientationVertical. This argument sets the 
DwtNor ientat ion attribute associated with 
DwtMenuCreate. 

entry_callback If this callback is defined, all menu entry activation callbacks 
are revectored to call back through this callback. If this 
callback is NULL, the individual menu entry callbacks work 
as usual. For this callback, the reason is 
DwtCRActi vate. This argument sets the 
DwtNentryCallback attribute associated with 
DwtMenuCreate. 

map _callback Specifies the callback function or functions called when the 
window is about to be mapped. For this callback, the reason 
is DwtCRMap. The map _callback argument is supported 
only if format is DwtMenuPopup or 
DwtMenuPulldown. The map callback argument is 
ignored if format is DwtMenuW~rkArea. 

This argument sets the DwtNmapCallback attribute 
associated with DwtMenuCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

Subroutines 3-207 



DwtMenu (3Dwt) 

override _ arglist 
Specifies the application override argument list. 

override _argcount 

Description 

Specifies the number of attributes in the application override 
argument list (override _ arglist). 

The DwtMenu and DwtMenuCreate functions create an instance of a 
menu widget and return its associated widget ID. The 
DwtMenuPulldownCreate function creates an instance of a pull-down 
menu widget and returns its associated widget ID. The 
DwtMenuPopupCreate function creates an instance of a pop-up menu 
widget and returns its associated widget ID. A menu is a composite widget 
that contains other widgets (push buttons, pull-down menus, toggle buttons, 
labels, and separators). The subwidgets handle most I/O that display 
information and query the user for input. The menu widget provides no 
input semantics over and above the semantics of its subwidgets. The menu 
widget works with these widget subclasses: push buttons, toggle buttons, 
pull-down menu entries, labels, and separators. If DwtNentryCallback 
is non-NULL when activated, all subwidgets call back to this callback. 
Otherwise, the individual subwidgets handle the activated callbacks. 

Inherited Attributes 
The following table lists the attributes inherited by the menu widget. 

Attribute Name Data Type 

Core Attributes 

DwtNx Position 

DwtNy Position 

DwtNwidth Dimension 

3-208 Subroutines 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
If menu orientation is 
DwtOrientationVertical, 
default is the maximum entry 
DwtNwidth or 16 pixels. 
If menu orientation is 
DwtOrientationHorizontal, 
default is the sum of 
DwtNwidth and 
DwtNspacing or 16 pixels. 



DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 

DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 

Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 
Screen * 
DwtCallbackPtr 

DwtMenu (3Dwt) 

If menu orientation is 
DwtOrientationvertical, 
default is the sum of 
DwtNheight and 
DwtNspacing or 16 pixels. 
If menu orientation is 
DwtOrientationHorizontal, 
default is the maximum entry 
DwtNheight or 16 pixels. 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
Setting the sensitivity of the 
menu causes all widgets 
contained in that menu to be 
set to the same sensitivity. 
The bitwise AND of the 
parent widget's 
DwtNsensitiveand 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Subroutines 3-209 



DwtMenu (3Dwt) 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 
DwtCallbackptr 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI Toolkit font 
NULL 

The following table lists the attributes inherited by the pull-down menu and 
pop-up menu widgets. 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 

3-210 Subroutines 

Data Type 

position 

position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 

Default 

For 
DwtMenuPopupCreate, 
determined by the geometry 
manager 
For 
DwtMenuPulldownCreate, 
this attribute is not supported 
For 
DwtMenuPopupCreate, 
determined by the geometry 
manager 
For 
DwtMenuPulldownCreate, 
this attribute is not supported 
Set as large as necessary to 
hold all child widgets 
Set as large as necessary to 
hold all child widgets 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 



DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Menu Attributes 

DwtNspacing 
DwtNmarginHeight 
DwtNmarginWidth 
DwtNorientation 
DwtNadjustMargin 
DwtNentryBorder 
DwtNmenuAlignment 
DwtNentryAlignment 
DwtNmenuPacking 

DwtNmenuNumColumns 
DwtNmenuRadio 

DwtNradioAlwaysOne 
DwtNmenuIsHomogeneous 

Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 
DwtCallbackptr 

Dimension 
Dimension 
Dimension 
unsigned char 
Boolean 
short 
Boolean 
unsigned char 
unsigned char 

short 
Boolean 

Boolean 
Boolean 

DwtMenu (3Dwt) 

The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI Toolkit font 
NULL 

Zero pixels 
3 pixels 
Three pixels 
DwtOrientationVertical 

True 
Zero pixels 
True 
DwtAlignmentBeginning 
DwtMenuPackingTight 
(for all menu types except for 
radio boxes) 
DwtMenuPackingColumn 
(for radio boxes) 
One row or column 
False 
True (for radio boxes) 
True 
False 

Subroutines 3-211 



OwtMenu (30wt) 

DwtNmenuEntryClass 

DwtNmenuHistory 
DwtNentryCallback 
DwtNmenuHelpWidget 
DwtNchangeVisAtts 
DwtNmenuExtendLastRow 

Widget-Specific Attributes 

WidgetClass 

Widget 
DwtCallbackptr 
Widget 
Boolean 
Boolean 

True (for radio boxes) 
NULL 
Radio boxes, however, default 
to the togglebuttonwidgetclass. 
Zero 
NULL 
NULL 
True 
True 

The following table lists the widget-specific attributes for the menu widget. 
Descriptions of these attributes follow the table. 

Attribute Name Data Type Default 

DwtNspacing 
DwtNmarginHeight 
DwtNmarginWidth 
DwtNorientation 
DwtN~dju~tMargin 

DwtNentryBorder 
DwtNmenuAlignment 
DwtNentryAlignment 
DwtNmenuPacking 

DwtNmenuNumColumns 
DwtNmenuRadio 

DwtNradioAlwaysOne 
DwtNmenuIsHomogeneous 

DwtNmenuEntryClass 

DwtNmenuHistory 
DwtNentryCallback 
DwtNmenuHelpWidget 
DwtNchangeVisAtts 

3-212 Subroutines 

Dimension 
Dimension 
Dimension 
unsigned char 
Boolean 
short 
Boolean 
unsigned char 
unsigned char 

short 
Boolean 

Boolean 

Boolean 

WidgetClass 

Widget 
DwtCallbackPtr 
Widget 
Boolean 

Zero pixels 
3 pixels 
Three pixels 
DwtOrientationVertical 
True 
Zero pixels 
True 
DwtAlignmentBeginning 
DwtMenuPackingTight 
(for all menu types except 
for radio boxes) 
DwtMenuPackingColumn 
(for radio boxes) 
One row or column 
False 
True (for radio boxes) 
True 

False 
True (for radio boxes) 
NULL 
Radio boxes, however, 
default to the 
togglebuttonwidgetclass. 
Zero 
NULL 
NULL 
True 



DwtMenu (3Dwt) 

DwtNmenuExtendLastRow Boolean True 

DwtNspacing Specifies in pixels the spacing between menu bar 
entry windows. 

DwtNmarginHeight 
Specifies the number of pixels remaining around the 
entries. The height is the number of blank pixels 
above the first entry and below the last entry (for 
vertical menus). 

DwtNmarginWidth Specifies the number of pixels remaining around the 
entries. The width is the number of blank pixels 
between the left and right edges of the menu and the 
border of the entries. 

DwtNorientation Specifies whether the menu list is vertical or 
horizontal. You can pass 
DwtOrientationHorizontalor 
DwtOrientationVertical. 

DwtNadjustMargin 
Specifies a boolean value that indicates whether the 
inner minor dimension margins of all entries should 
be set to the same value. 

All label subclass widgets have two types of 
margins. The two outer margins 
(DwtNm~rginWidth and DwtNmarginHeight) 
are symmetrical about the center of the widget. The 
number of pixels specified in DwtNmarginWidth 
are blank to the right and the left of the widget. The 
four inner margins (DwtNmarginLeft, 
DwtNmarginRight, DwtNmarginTop, and 
DwtNmarg inBot t om) specify the number of pixels 
to leave on each side inside the outer margins. 

The outer margins are used to accommodate such 
things as the border highlighting of widgets. The 
inner margins are used to accommodate such things 
as pull-down widget hot spots and toggle button 
indicators. 

If True, all entries in a given column or row will 
have exactly the same minor dimension margins. (If 
DwtNorientationis 

Subroutines 3-213 



OwtMenu (30wt) 

DwtOrientationHorizontal, the minor 
dimension is vertical; if DwtNorientation is 
DwtOrientationVertical, the minor 
dimension is horizontal.) All margins will have the 
value of the largest individual margin in the group. 
This keeps the left edge of text lined up, regardless 
of whether some entries have toggle indicators. 

DwtNentryBorder Specifies the border width of windows on the entry 
widgets. 

DwtNmenuAlignment 
Specifies a boolean value that, when True, 
indicates all entries are aligned. If Fa 1 s e, entry 
alignment is unchanged. This is applied only to 
subclasses of labelwidgetclass. 

DwtNentryAlignment 
Specifies the type of label alignment that is enforced 
for all entries when DwtNmenuAlignment is 
True. You can pass DwtAlignmentCenter 
(center alignment), DwtAlignmentBeginning 
(alignment at the beginning), or 
DwtAlignmentEnd (alignment at the end). 

DwtNmenuPacking Specifies how to pack the entries of a menu into the 
whole menu. The value of DwtNorientation 
determines the major dimension. You can pass 
DwtMenuPackingTight, 
DwtMenuPackingColumn,or 
DwtNmenuPackingNone. 

3-214 Subroutines 

DwtMenuPackingTight indicates that given the 
current major dimension of the menu, entries are 
placed one after the other until the menu must wrap. 
When the menu wraps, it extends in the minor 
dimension as many times as required. 

Each entry's major dimension is left unaltered; its 
minor dimension is set to the same value as the 
greatest entry in that particular row or column. Note 
that the minor dimension of any particular row or 
column is independent of other rows or columns. 

DwtMenuPackingColumn indicates that all 
entries are placed in identically sized boxes. The box 



DwtMenu (3Dwt) 

is based on the size of the largest entry while the 
value of DwtNmenuNumColumns determines how 
many boxes are placed in the major dimension before 
extending in the minor dimension. 

DwtNmenuPackingNone indicates that no packing 
is performed. The DwtNx and DwtNy attributes of 
each entry are left alone and the menu attempts to 
become large enough to enclose all entries. 

DwtNmenuNumColumns 

DwtNmenuRadio 

Specifies the number of minor dimension extensions 
that will be made to accommodate the entries. This 
attribute is used only if DwtNmenuPacking is set 
to DwtMenuPackingColumn. 

For menus with an orientation of 
DwtOrientationVertical, this attribute 
indicates how many columns will be built. The 
number of entries per column will be adjusted to 
maintain this number of columns (if possible). For 
menus with an orientation of 
DwtOrientationHorizontal, this attribute 
indicates how many rows will be built. 

Specifies a boolean value that, when True, 
indicates that when one button is already on and 
another button is turned on, the first button is turned 
off automatically. 

DwtNradioAlwaysOne 
Specifies a boolean value that indicates if the radio 
button exclusivity should also ensure that one button 
must always be on. If True, when the only radio 
button on is turned off, it will automatically be 
turned back on. Note that this attribute has no effect 
unless DwtNmenuRadio is True. 

DwtNmenuIsHomogeneous 
Specifies a boolean value that indicates if the menu 
should enforce exact homogeneity among the 
children of this menu. If True, only the 
DwtNmenuEntryClass class (not subclass but 
exact class) will be allowed as children of this menu. 

DwtNmenuEntryClass 

Subroutines 3-215 



DwtMenu (3Dwt) 

Specifies the only widget class that can be added to 
the menu. For this to occur, the 
DwtNmenuI sHomogeneous attribute must be 
True. All other widget classes will not be added to 
the menu. 

DwtNmenuHistory Holds the widget ID of the last menu entry that was 
activated. If DwtNmenuRadio is True, 
DwtNmenuHistory holds the widget ID of the last 
toggle button to change from off to on. This 
attribute may be set to precondition option menus 
and pop-up menus 

DwtNentryCallback 
If this callback is defined, all menu entry activation 
callbacks are revectored to call back through this 
callback. If this callback is NULL, the individual 
menu entry callbacks work as usual. For this 
callback, the reason is DwtCRActi vate. 

DwtNmenuHelpWidget 
If non-NULL, the help menu widget points to the 
menu item to be placed in the lower right comer of 
the menu bar. 

DwtNchangeVisAtts 
Specifies a boolean value that, when True, 
indicates that a menu widget can optionally make 
these changes to its children: (1) Set the border to a 
uniform widget; (2) align labels; (3) make margins 
for the border highlight at least 2 pixels wide; (4) set 
the indicator shape to oval for toggle buttons in radio 
boxes; (5) set DwtNvisibleWhenOff to False 
for toggle buttons. 

When DwtNchangeVisAtts is False, a menu 
widget cannot make any of these changes. 

DwtNmenuExtendLastRow 

3-216 Subroutines 

Specifies the boolean value that indicates whether the 
active area of each menu entry extends to the width 
of the menu (for vertical menus) or the height of the 
menu (for horizontal menus). 

If True for vertical menus, all menu entries extend 
to the menu width; if False, menu entries vary in 



DwtMenu (3Dwt) 

length depending on the length of the label in the 
menu entry. If True for horizontal menus, all 
menu entries extend to the menu height; if False, 
menu entries vary in height, depending on the length 
of the label in the menu entry. 

The following table lists the widget-specific attributes for the pull-down and 
pop-up menu widgets. Descriptions of these attributes follow the table. 

Attribute Name Data Type Default 

DwtNmapCallback 
DwtNunmapCallback 

DwtCallbackPtr NULL 
DwtCallbackptr NULL 

DwtNmapCallback Specifies the callback function or functions called 
when the menu is mapped. 

DwtNunmapCallback 
Specifies the callback function or functions called 
when the menu is unmapped. 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
Widget s_widget; 
char *s_tag; 
char *s_callbackstruct; 

DwtMenuCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRActi vate The user selected a menu entry. 

DwtCRMap The menu window is about to be mapped. 

DwtCRUnmap The menu window was just unmapped. 

DwtCRHelpRequested The user selected help. 

Subroutines 3-217 



DwtMenu (3Dwt) 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. The s_widget member is set to the ID of the activating 
subwidget. The s_tag member is set to the tag supplied by the application 
programmer when the subwidget callback function was specified. The 
s_callbackstruct member is set to the subwidget's callback structure. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-218 Subroutines 



Name 

OwtMenuBar (30wt) 

DwtMenuBar, DwtMenuBarCreate - Creates a menu bar widget to contain 
menus. 

Syntax 
Widget DwtMenuBar(parent widget, name, ently callback, 

help_callback) -
Widget parent_widget; 
char *name; 
DwtCallbackPtr entry callback; 
DwtCallbackPtr help callback; 

Widget DwtMenuBarCreate (parent_widget, name, 
override arglist, override argcount) 

Widget parent widget;- -
char * name; -
ArgList override _ arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

entry_callback If this callback is defined, all menu entry activation callbacks 
are revectored to call back through this callback. If this 
callback is NULL, the individual menu entry callbacks work 
as usual. For this callback, the reason is 
DwtCRActi vate. This argument sets the 
DwtNentryCallbackattribute associated with 
DwtMenuCreate. 

help_callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override arglist 
- Specifies the application override argument list. 

Subroutines 3-219 



DwtMenuBar{3Dwt) 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _arglist). 

Description 
The DwtMenuBar and DwtMenuBarCreate functions create an instance 
of the menu bar widget and return its associated widget ID. When calling 
DwtMenuBar, you set the menu bar widget attributes presented in the 
formal parameter list. For DwtMenuBarCreate, you specify a list of 
attribute name/value pairs that represent all the possible menu bar widget 
attributes. 

A menu bar widget is a composite widget that contains pull-down menu 
entry subwidgets. The subwidgets handle most of the I/O activity that 
display information and query the user for input. The menu bar widget 
provides no input semantics over and above those provided by its 
subwidgets. 

If the menu bar does not have enough room to fit all its subwidgets on a 
single line, the menu bar attempts to wrap the remaining entries onto 
additional lines (if allowed by the geometry manager of the parent widget). 

The menu bar widget works with these widget classes: pull-down menu 
entries, labels, and separators. 

If DwtNentryCallback is not NULL when it is activated, all subwidgets 
call back to this callback. Otherwise, the individual subwidgets handle the 
activation callbacks. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 

DwtNborderWidth 

3-220 Subroutines 

Data Type 

Position 

Position 

Dimension 
Dimension 

Dimension 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
16 pixels 
Number of lines needed to 
display all entries 
One pixel 



DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 

DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Menu Attributes 

DwtNspacing 
DwtNmarginHeight 
DwtNmarginWidth 
DwtNorientation 
DwtNadjustMargin 
DwtNentryBorder 

Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 

Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackptr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 
DwtCallbackPtr 

Dimension 
Dimension 
Dimension 
unsigned char 
Boolean 
short 

DwtMenuBar (3Dwt) 

Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
Note that setting the 
sensitivity of the menu bar 
causes all widgets contained in 
that menu bar to be set to the 
same sensitivity as the menu 
bar. 
The bitwise AND of the 
parent widget's 
DwtNsensitiveand 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
Used only by gadget children 
NULL 

One pixel 
Zero pixels 
Three pixels 
DwtOrientationVertical 
True 
Zero pixels 

Subroutines 3-221 



DwtMenuBar(3Dwt) 

DwtNmenuAlignment 
DwtNentryAlignment 
DwtNmenuPacking 

DwtNmenuNumColumns 
DwtNmenuRadio 

DwtNradioAlwaysOne 
DwtNmenuIsHomogeneous 

DwtNmenuEntryClass 

DwtNmenuHistory 
DwtNentryCallback 
DwtNmenuHelpWidget 
DwtNchangeVisAtts 
DwtNmenuExtendLastRow 

Widget-Specific Attributes 

Boolean 
unsigned char 
unsigned char 

short 
Boolean 

Boolean 
Boolean 

WidgetClass 

Widget 
DwtCallbackPtr 
Widget 
Boolean 
Boolean 

True 
DwtAlignmentBeginning 
DwtMenuPackingTight 
(for all menu types except for 
radio boxes) 
DwtMenuPackingColumn 
(for radio boxes) 
One row or column 
False 
True (for radio boxes) 
True 
False 
True (for radio boxes) 
NULL 
Radio boxes, however, default 
to the togglebuttonwidgetclass. 
Zero 
NULL 
NULL 
True 
True 

The menu bar widget does not currently support any widget-specific 
attributes. 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
Widget s_widget; 
char *s_tag; 
char *s_callbackstruct; 

DwtMenuCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

3-222 Subroutines 



OwtMenuBar (30wt) 

DwtCRActi vate The user selected a menu entry. 

DwtCRMap The menu window is about to be mapped. 

DwtCRUnmap The menu window was just unmapped. 

DwtCRHelpRequested The user selected help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. The s_widget member is set to the ID of the activating 
subwidget. The s_tag member is set to the tag supplied by the application 
programmer when the subwidget callback function was specified. The 
s_callbackstruct member is set to the subwidget's callback structure. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-223 



DwtMenuPosition (3Dwt) 

Name 
DwtMenuPosition - Positions menu when user presses MB2. 

Syntax 
void DwtMenuPosition(position, event) 

Widget position; 
XEvent * event; 

Arguments 

position 

event 

Description 

Specifies the position of the menu. 

Specifies the event passed to the action procedure which 
manages the pop-up menu. 

The DwtMenuPosi tion function positions the menu when the user 
presses MB2. This must be called before managing the pop-up menu. 

See Also 
DwtPullDownMenuEntryHilite (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-224 Subroutines 



Name 

DwtMessageBox (3Dwt) 

DwtMessageBox, DwtMessageBoxCreate - Creates a message box widget 
for the application to display text to the user. 

Syntax 
Widget DwtMessageBox (parent_widget, name, default yosition, 

x, y, style, ok_label, label, 
callback, help callback) 

Widget parent_widget; -
char *name; 
Boolean default yosition ; 
Position x, y; 
int style; 
DwtCompString ok_label, label; 
DwtCallbackPtr callback; 
DwtCallbackPtr help _callback; 

Widget DwtMessageBoxCreate (parent_widget, name, 
override _ arglist, 
override argcount) 

Widget parent widget; -
char * name· -, 
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

default yosition 
Specifies a boolean value that, when True, causes DwtNx 
and DwtNy to be ignored and forces the default widget 
position. The default widget position is centered in the 
parent window. If False, the specified DwtNx and 
DwtNy attributes are used to position the widget. This 
argument sets the DwtNdefaul tPosi tion attribute 
associated with DwtDialogBoxCreate. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 

Subroutines 3-225 



DwtMessageBox (3Dwt) 

attribute. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left corner of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

style Specifies the style of the dialog box widget. You can pass 
DwtModal (modal) or DwtModeless (modeless). This 
argument sets the DwtNstyle attribute associated with 
DwtDialogBoxPopupCreate. 

label Specifies the text in the message line or lines. This argument 
sets the DwtNlabel attribute associated with 
DwtMessageBoxCreate. 

ok label Specifies the label for the Ok push button. If the label is a 
NULL string, the button is not displayed. This argument sets 
the DwtNokLabel attribute associated with 
DwtMessageBoxCreate. 

callback Specifies the callback function or functions called when the 
user activates the OK push button. This argument sets the 
DwtNyesCallback attribute associated with 
DwtMessageBoxCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override arg list 
- Specifies the application override argument list. 

override _ argcount 

Description 

Specifies the number of attributes in the application override 
argument list (override _arglist). 

The DwtMessageBox and DwtMessageBoxCreate functions create an 
instance of the message box widget and return its associated widget ID. 
When calling DwtMessageBox, you set the message box attributes 
presented in the formal parameter list. For DwtMessageBoxCreate, 
however, you specify a list of attribute name/value pairs that represent all the 
possible message box widget attributes. 

3-226 Subroutines 



DwtMessageBox (3Dwt) 

The DwtMessageBoxCreate function conforms to the XUI Style Guide 
by providing optional secondary text below the primary text. This function 
also supports alignment mode for both the DwtNlabelAlignment and 
DwtNsecondLabelAlignment attributes. 

The message box widget is a dialog box that allows the application to display 
informational messages to the user. You call this function to create a 
message box when the user does something unexpected, or when your 
application needs to display information to the user. The message box 
widget may contain an OK push button. When the style is DwtModal, the 
message box freezes the application and requires the user to explicitly 
dismiss the message box before the application proceeds. If the style is 
DwtModal when the user selects the OK push button, the widget is cleared 
from the screen but not destroyed. You can redisplay the widget by calling 
XtManageChild. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 

Data Type 

Position 

Position 

Dimension 
Dimension 
Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 

Boolean 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
5 pixels 
5 pixels 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 

Subroutines 3-227 



DwtMessage80x (3Dwt) 

DwtNscreen 
DwtNdestroyCallback 

Dialog Pop-Up Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNfont 
DwtNhelpCallback 
DwtNdirectionRToL 
DwtNunits 
DwtNtitle 
DwtNstyle 
DwtNmapCallback 
DwtNunmapCallback 
DwtNfocusCallback 
DwtNtextMergeTranslations 
DwtNmarginWidth 
DwtNmarginHeight 
DwtNdefaultPosition 
DwtNchildOverlap 
DwtNresize 
DwtNtakeFocus 

DwtNnoResize 

DwtNautoUnmanage 
DwtNdefaultButton 
DwtNcancelButton 

Widget-Specific Attributes 

Attribute Name 

DwtNlabel 
DwtNokLabel 
DwtNyesCallback 
DwtNsecondLabel 
DwtNlabelAlignment 

3-228 Subroutines 

Screen * 
DwtCallbackptr 

Pixel 
Pixel 
Pixmap 

Opaque * 
DwtFontList 
DwtCallbackPtr 
NOT SUPPORTED 
NOT SUPPORTED 

DwtCompString 
unsigned char 
DwtCallbackPtr 
DwtCallbackPtr 
DwtCallbackptr 
NOT SUPPORTED 
Dimension 
Dimension 
Boolean 
NOT SUPPORTED 
unsigned char 

Boolean 

Boolean 

Boolean 
NOT SUPPORTED 
NOT SUPPORTED 

Data Type 

DwtCompString 
DwtCompString 
DwtCallbackPtr 
DwtCompString 
unsigned char 

The parent screen 
NULL 

Default foreground color 

Default foreground color 
NULL 

NULL 
The default XUI TooL<it font 

NULL 

Widget name 
DwtModal 
NULL 
NULL 
NULL 

12 pixels 

10 pixels 
False 

DwtResizeShrinkWrap 
True for modal dialog box 
Fa 1 s e for modeless dialog 
box 
True (that is, no window 
manager resize button) 

True 

Default 

Widget name 
"Acknowledged" 
NULL 
NULL 
DwtAlignmentCenter 



DwtNsecondLabelAlignment 
DwtNiconPixmap 

unsigned char 
Pixmap 

DwtMessageBox (3Dwt) 

DwtAlignmentBeginning 
The default is the standard icon 
provided for each message­
class widget as follows: (1) 
the default caution box icon is 
an exclamation point; (2) the 
default message box icon is an 
asterisk; (3) the default work 
box icon is the wait cursor 
(watch). See the XUI Style 
Guide for illustrations of the 
icons for each message class 
widget. 

DwtNlabel Specifies the text in the message line or lines. 

DwtNokLabel Specifies the label for the Ok push button. If the 
label is a NULL string, the button is not displayed. 

DwtNyesCallback Specifies the callback function or functions called 
when the user clicks on the Yes button. For this 
callback, the reason is DwtCRYes. 

DwtNsecondLabel Specifies the text for the secondary label. If the 
application specifies a second label and then wants to 
remove it, it should use XtSetValues to set 
DwtNsecondLabel to NULL or to an empty 
compound-string. 

DwtNlabelAlignment 
Specifies the alignment for the primary label. You 
can pass DwtAlignmentCenter (center 
alignment), DwtAlignmentBeginning 
(alignment at the beginning), or 
DwtAlignmentEnd (alignment at the end). 

DwtNsecondLabelAlignment 
Specifies the alignment for the secondary label. You 
can pass DwtAlignmentCenter (center 
alignment), DwtAlignmentBeginning 
(alignment at the beginning), or 
DwtAlignmentEnd (alignment at the end). 

DwtNiconP ixmap Specifies the pixmap used for the icon. 

Subroutines 3-229 



DwtMessageBox (3Dwt) 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

} DwtAnyCallbackStruct; 

int reason; 
XEvent *event; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRYes The user activated the Yes button. 

DwtCRFocus The message box has received the input 
focus. 

DwtCRHelpRequested The user selected Help somewhere in the 
message box. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-230 Subroutines 



DwtOpenHierarchy (3Dwt) 

Name 
DwtOpenHierarchy - Allocates a hierarchy ID and opens all the UID files in 
the hierarchy. 

Syntax 
#include <Xll/DwtAppl.h> 
Cardinal DwtOpenHierarchy( num Jdes, file _names_list, 
ancillary _structures_list, 

hierarchy id return) 
DRMCount num Ji1es; - -
String file names list []; 
IDBOSOpenParaillPtr * ancillary structures list; 
DRMHierarchy * hierarchy _id_return; -

Arguments 

numJi1es Specifies the number of files in the name list. 

file _ names _list Specifies an array of pointers to character strings that identify 
the . u i d files. 

ancillary structures list 
- A list of operating system-dependent ancillary structures 

corresponding to such things as file names, clobber flag, and 
so forth. This argument should be NULL for most 
operations. If you need to reference this structure, see the 
definition of IDBOSOpenPararnPtr in DwtAppl. h for 
more information. 

hierarchy id return 
- - Returns the search hierarchy ID. The search hierarchy ID 

identifies the list of .uid files that DRM will search (in 
order) when performing subsequent fetch calls. 

Description 
The DwtOpenHierarchy function allows the user to specify the list of 
UID files that DRM will search in subsequent fetch operations. All 
subsequent fetch operations will return the first occurrence of the named item 
encountered while traversing the UID hierarchy from the first list element 
(UID file specification) to the last list element. This function also allocates a 
hierarchy ID and opens all the UID files in the hierarchy. It initializes the 
optimized search lists in the hierarchy. If DwtOpenHierarchy 

Subroutines 3-231 



OwtOpenHierarchy (30wt) 

encounters any errors during its execution, any files that were opened are 
closed. 

Each DID file specified in file names list can specify either a full directory 
pathname or a file name. If a DID file does not specify the pathname it will 
not contain any embedded slashes (/), and it will be accessed through the 
DIDPATH environment variable. 

The DIDP A TH environment variable specifies search paths and naming 
conventions associated with DID files. It can contain the substitution fields 
%L and %N, where the current setting of the LANG environment variable is 
substituted for %L and the .uid name passed to DwtOpenHierarchy is 
substituted for %N. For example, the following DID path and 
DwtOpenHierarchy call would cause DRM to open two separate .uid 
files: 

UIDPATH=/uidlib/%L/%N.uid:/uidlib/%N/%L 
static char *uid files[] = {"/usr/users/me/test.uid", "test2"}; 

DRMHierarchy *Hierarchy id; 
DwtOpenHierarchy((DRMCount)2,uid_files, NULL, Hierarchy_id) 

The first file, /usr /users/me/test. uid, would be opened as 
specified, as this file specification includes a pathname. The second file, 
test2, would be looked for first in /uidlib/ $LANG/test2. uid, and 
second in /uidlib/test2/$LANG. 

After DwtOpenHierarchy opens the DID hierarchy, you should not 
delete or modify the DID files until you close the DID hierarchy by calling 
DwtCloseHierarchy. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMNotFound 
DRMFailure 

See Also 
DwtCloseHierarchy(3Dwt) 

3-232 Subroutines 

The function executed successfully. 
File not found. 
The function failed. 



Name 

DwtOptionMenu (3Dwt) 

DwtOptionMenu, DwtOptionMenuCreate - Creates an option menu widget to 
display and handle an application option list of attributes or modes of the 
menu topic. It allows just one option selected from the list in the menu. 

Syntax 
Widget DwtOptionMenu(parent_widget, name, x, y, 

label, sub menu id, 
entry _callback, help _callback) 

Widget parent widget; 
char * name; -
Position x, y; 
DwtCompString label; 
Widget sub _ menu _id; 
DwtCallbackPtr entry_callback, help _callback; 

Widget DwtOptionMenuCreate (parent_widget, name, 
override arglist, override argcount) 

Widget parent widget; - -
char * name; -
ArgList override _ arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

label Specifies the text in the menu label. This argument sets the 
DwtNlabel attribute associated with DwtMenuCreate. 

sub menu id Specifies the widget ID of the pull-down menu associated 
with the option menu during the creation phase. 

Subroutines 3-233 



DwtOptionMenu (3Dwt) 

entry_callback If this callback is defined, all menu entry activation callbacks 
are revectored to call back through this callback. If this 
callback is NULL, the individual menu entry callbacks work 
as usual. For this callback, the reason is 
DwtCRActi vate. This argument sets the 
DwtNentryCallback attribute associated with 
DwtMenuCrea teo 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override _arglist 
Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arglist). 

Description 
The DwtOptionMenu and DwtOptionMenuCreate functions create an 
instance of the option menu widget and return its associated widget ID. 
When calling DwtOptionMenu, you set the option menu widget attributes 
presented in the formal parameter list. For DwtOptionMenuCreate, 
however, you specify a list of attribute name/value pairs that represent all the 
possible option menu widget attributes. The option menu widget is a 
composite widget containing other subwidgets (toggle button widgets). It 
displays and handles an application option list of attributes or modes of the 
menu topic. Basically, the option menu consists of a label identifying the 
menu and an active area to the right. This composite widget contains other 
subwidgets (toggle button widgets) in the active area. It displays the current 
option selected, and, on request, generates a pop-up menu with specific 
options available. In addition, it ensures that a user can select only one 
choice at any given time. 

If DwtNentryCallback is non-NULL, then all the toggle button 
callbacks will execute the entry callback function, rather than the procedure 
specified in the toggle. OtherWIse, if DwtNentryCallback is NULL, 
then the individual callbacks work as usual. 

3-234 Subroutines 



DwtOptionMenu (3Dwt) 

Option menus also position the pop-up part of the menu so that the menu 
history widget covers the selection part of the option menu. Option menus 
also copy the label of the menu history widget into the selection part. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Set as large as necessary to 
hold all child widgets 
Set as large as necessary to 
hold all child widgets 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 

Subroutines 3-235 



DwtOptionMenu (3Dwt) 

DwtNfont 

DwtNhelpCallback 

Menu Attributes 

DwtNspacing 
DwtNmarginHeight 
DwtNmarginWidth 
DwtNorientation 
DwtNadjustMargin 
DwtNentryBorder 
DwtNmenuAlignment 
DwtNentryAlignment 
DwtNmenuPacking 

DwtNmenuNumColumns 
DwtNmenuRadio 

DwtNradioAlwaysOne 
DwtNmenuIsHomogeneous 

DwtNmenuEntryClass 

DwtNmenuHistory 
DwtNentryCallback 
DwtNmenuHelpWidget 
DwtNchangeVisAtts 
DwtNmenuExtendLastRow 

Widget-Specific Attributes 

DwtFontList 

DwtCallbackPtr 

Dimension 
Dimension 
Dimension 
unsigned char 
Boolean 
short 
Boolean 
unsigned char 
unsigned char 

short 
Boolean 

Boolean 
Boolean 

WidgetClass 

Widget 
DwtCallbackPtr 
Widget 
Boolean 
Boolean 

Attribute Name Data Type Default 

The default XUI Toolkit font 
Used only by gadget children 
NULL 

Zero pixels 
3 pixels 
Three pixels 
DwtOrientationVertical 
True 
Zero pixels 
True 
DwtAlignmentBeginning 
DwtMenuPackingTight 
(for all menu types except for 
radio boxes) 
DwtMenuPackingColumn 
(for radio boxes) 
One row or column 
False 
True (for radio boxes) 
True 
False 
True (for radio boxes) 
NULL 
Radio boxes, however, default 
to the togglebuttonwidgetclass. 
Zero 
NULL 
NULL 
True 
True 

DwtNlabel 
DwtNsubMenuld 

DwtCompString 
Widget 

Widget name 
Zero 

DwtNlabel 

3-236 Subroutines 

Specifies the label that will be placed to the left of 
the current value. 



DwtOptionMenu (3Dwt) 

DwtNsubMenuld Specifies the widget ID of the pull-down menu 
associated with the option menu during the creation 
phase. 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
Widget s_widget; 
char *s_tag; 
char *s_callbackstruct; 

DwtMenuCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRAct i vate The user selected a menu entry. 

DwtCRHelpRequested The user selected help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. The s_widget member is set to the ID of the activating 
subwidget. The s_tag member is set to the tag supplied by the application 
programmer when the subwidget callback function was specified. The 
s_callbackstruct member is set to the subwidget's callback structure. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-237 



DwtPuIiDownMenuEntry(3Dwt) 

Name 
DwtPullDownMenuEntry, DwtPullDownMenuEntryCreate - Creates an 
instance of the pull-down menu entry widget. 

Syntax 
Widget DwtPullDownMenuEntry(parent widget, name, 

x, y, label, -
menu id, callback, help callback) 

Widget parent widget;- -
char * name; -
Position x, y; 
DwtCompString label; 
Widget menu id; 
DwtCallbackPtr callback, help_callback; 

Widget DwtPullDownMenuEntryCreate (parent widget, name, 
override arglist, -
override-argcount) 

Widget parent widget; -
char * name; -
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

x 

y 

label 

menu id 

3-238 Subroutines 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left corner of 
the widget window relative to the inner upper left corner of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

Specifies the text of the label entry in the parent menu. This 
argument sets the DwtNlabel attribute associated with 
DwtLabelCreate. 

Specifies the ID of the pull-down menu widget. 



DwtPuliDownMenuEntry (3Dwt) 

callback Specifies the callback function or functions called back when 
a button inside a pull-down menu entry widget is activated. 
This argument sets the DwtNacti vateCallback and 
DwtNpullingCallback attributes associated with 
DwtPullDownMenuEntryCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override _ argUst 
Specifies the application override argument list. 

override _ argcount 

Description 

Specifies the number of attributes in the application override 
argument list (override _ argUst). 

The DwtPullDownMenuEntryand 
DwtPullDownMenuEntryCreate functions create an instance of the 
pull-down menu entry widget and return its associated widget ID. When 
calling DwtPullDownMenuEntry, you set the pull-down menu entry 
widget attributes presented in the formal parameter list. For 
DwtPullDownMenuEntryCreate, however, you specify a list of 
attribute name/value pairs that represent all the possible pull-down menu 
entry widget attributes. 

A pull-down menu entry widget is made up of two parts: a label (within the 
parent menu) and a select area or "hotspot." The hotspot is the full widget 
window. Otherwise, the hotspot is a separate rectangle on the right side of 
the entry label. 

Inherited Attributes 

Attribute Name Data Type 

Core Attributes 

DwtNx Position 

Default 

Determined by the geometry 
manager 

Subroutines 3-239 



DwtPuIiDownMenuEntry(3Dwt) 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

3-240 Subroutines 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 
Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 
Opaque * 
unsigned char 
DwtFontList 
DwtCallbackPtr 

Determined by the geometry 
manager 
The DwtNlabel width, plus 
the DwtNhot SpotP ixmap 
width or the DwtNpixmap 
width, plus 
DwtNmarginWidth times 
two 
The DwtNlabelor 
DwtNpixmap height, plus 
DwtNmarginHeight times 
two 
zero pixels 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI Toolkit font 
NULL 



Label Attributes 

DwtNlabelType 
DwtNlabel 
DwtNmarginWidth 

DwtNmarginHeight 

DwtNalignment 
DwtNpixmap 
DwtNmarginLeft 
DwtNmarginRight 
DwtNmarginTop 
DwtNmarginBottom 
DwtNconformToText 

DwtPuliDownMenuEntry (3Dwt) 

unsigned char 
DwtCompString 
Dimension 

Dimension 

unsigned char 
Pixmap 
Dimension 
Dimension 
Dimension 
Dimension 
Boolean 

DwtCString 
Widget name 
Two pixels for text 
Zero pixels for pixmap 
Two pixels for text 
Zero pixels for pixmap 
DwtAlignmentCenter 
NULL 
Zero 
Zero 
Zero 
Zero 
True, if the widget is created 
with a width and height of 
zero 
False, if the widget is 
created with a non-zero width 
and height 

Widget-Specific Attributes 
You can set the following widget-specifc attributes in the override _ arglist: 

Attribute Name Data Type Default 

DwtNsubMenuld 
DwtNactivateCallback 
DwtNpullingCallback 
DwtNhotSpotPixmap 

DwtNsubMenuld 

Widget 
DwtCallbackptr 
DwtCallbackPtr 
Pixmap 

NULL 
NULL 
NULL 
NULL 

Specifies the widget ID of the submenu that will be 
displayed when the pull-down menu is activated. 

DwtNactivateCallback 
Specifies the callback that is executed when the user 
releases a button inside the pull-down menu widget. 
For this callback, the reason is DwtCRActi vate. 

DwtNpullingCallback 
Specifies the callback function or functions called 
just prior to pulling down the submenu. This 
callback occurs just before the submenu's map 
callback. You can use this callback to defer the 

Subroutines 3-241 



DwtPuliDownMenuEntry (3Dwt) 

creation of the submenu. For this callback, the 
reason is DwtCRActi vate. 

DwtNhotSpotPixmap 
Specifies the pixmap to use for the hotspot icon. 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 

} DwtAnyCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRActivate The user selected the pull-down menu 
entry. 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-242 Subroutines 



DwtPuliDownMenuEntryHilite (3Dwt) 

Name 
DwtPullDownMenuEntryHilite - Highlights a menu entry. 

Syntax 
void DwtPullDownMenuEntryHilite(pulldown, highlight) 

Widget pulldown; 
int highlight; 

Arguments 

Specifies the pulldown menu .. position 

highlight Specifies whether a menu entry is highlighted. If the value is 
one, the entry is highlighted. If the value is zero, the entry is 
not highlighted. 

Description 
The DwtPullDownMenuEntryHilite function keeps an entry highlight 
after the user clicks on a menu item. 

See Also 
DwtMenuPosition (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-243 



DwtPuliEntryGadgetCreate (3Dwt) 

Name 
DwtPullEntryGadgetCreate - Creates a pull-down menu entry gadget. 

Syntax 
Widget DwtPullEntryGadgetCreate (parent widget, name, 

override _ arglist, -
override argcount) 

Widget parent_widget; -
char *name; 
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override _ arglist 
Specifies the application override argument list. 

override _ argcount 

Description 

Specifies the number of attributes in the application override 
argument list (override _ arglist). 

The DwtPullEntryGadgetCreate function creates an instance of the 
pull-down menu entry gadget and returns its associated gadget ID. 

A pull-down menu entry gadget is similar in appearance and semantics to a 
pull-down menu entry widget. Like all gadgets, it does not have a window 
but uses the window of the closest antecedent widget. This gadget must be a 
child of a menu class widget. 

Because a pull-down menu entry gadget is not a subclass of composite, 
children are not supported. 

The sizing of the gadget is affected by the font and the label. 

3-244 Subroutines 



OwtPuliEntryGadgetCreate (30wt) 

Inherited Attributes 

Attribute Name 

Rectangle Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNsensitive 
DwtNancestorSensitive 

Label Gadget Attributes 

DwtNlabel 
DwtNalignment 
DwtNdirectionRToL 
DwtNhelpCallback 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Boolean 
Boolean 

DwtCompString 
unsigned char 
Boolean 
DwtCallbackPtr 

Widget-Specific Attributes 

Attribute Name 

DwtNsubMenuld 
DwtNactivateCallback 
DwtNpullingCallback 

Data Type 

Widget 
DwtCallbackptr 
DwtCallbackPtr 

Default 

Detennined by the geometry 
manager 
Detennined by the geometry 
manager 
The label width, plus the 
hotspot width, plus 2 times 
DwtNmarginWidth 
The text label or pixmap 
label height plus 2 times 
DwtNmarginHeight 
Zero pixels 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 

Widget name 
DwtAlignmentCenter 
False 
NULL 

Default 

NULL 
NULL 
NULL 

DwtNsubMenuld Specifies the widget ID of the submenu that will be 
displayed when the pull-down menu is activated. 

DwtNactivateCallback 
Specifies the callback that is executed when the user 
releases a button inside the pull-down menu widget. 

Subroutines 3-245 



DwtPullEntryGadgetCreate (3Dwt) 

For this callback, the reason is DwtCRActivate. 

DwtNpullingCallback 

Return Value 

Specifies the callback function or functions called 
just prior to pulling down the submenu. This 
callback occurs just before the submenu's map 
callback. You can use this callback to defer the 
creation of the submenu. For this callback, the 
reason is DwtCRActi vate. 

This function returns the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 

} DwtAnyCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRActivate The user selected the pull-down menu 
entry. 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
DwtPullDownMenuEntry (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-246 Subroutines 



DwtPushButton (3Dwt) 

Name 
DwtPushButton, DwtPushButtonCreate - Creates a push button widget. 

Syntax 
Widget DwtPushButton (parent widget, name, x, y, 

label, callback, help callback) 
Widget parent widget; -
char * name' -, 
Position x, y; 
DwtCompString label; 
DwtCallbackPtr callback, help _callback; 

Widget DwtPushButtonCreate (parent_widget, name, 
override arglist, override argcount) 

Widget parent widget; - -
char *name; 
ArgList override argUst; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

x 

y 

label 

callback 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

Specifies the push button label. This argument sets the 
DwtNlabel attribute associated with DwtLabeJ..Create. 

Specifies the callback function or functions called back when 
a push button is activated. This argument sets the 
DwtNactivateCallback, DwtNarmCallback,and 
DwtNdisarmCallback attributes associated with 
DwtPushButtonCreate. 

help_callback Specifies the callback function or functions called when a 

Subroutines 3-247 



DwtPushButton (3Dwt) 

help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

override _ arglist 
Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arglist). 

Description 
The DwtPushButton and DwtPushButtonCreate functions create an 
instance of the push button widget and return its associated widget ID. When 
calling DwtPushButton, you set the push button widget attributes 
presented in the formal parameter list. For DwtPushButtonCreate, 
however, you specify a list of attribute name/value pairs that represent all the 
possible push button widget attributes. 

The push button is a primitive widget that displays a rectangular border 
around a label. The label defines the immediate action of the button (for 
example, Ok or Cancel in a dialog box). 

The sizing is affected by spacing, font (affects indicator), and label. See the 
description for DwtLabel and DwtLabelCreate. 

The push button widget follows the same rules for geometry management as 
its superclass the label widget, which you create by calling Dwt Labe 1 or 
DwtLabelCreate. Like the label widget, the push button widget does not 
support children; therefore, it always refuses geometry requests. 

The push button widget follows the same rules for resizing as its superclass 
the label widget, which you create by calling Dwt Labe 1 or 
DwtLabelCreate. Like the label widget, the p'ush button widget does 
nothing on a resize by its parents. • 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

3-248 Subroutines 

Data Type 

Position 

Position 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 



DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 

DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Label Attributes 

DwtNlabelType 
DwtNlabel 
DwtNmarginWidth 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 

Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackptr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 
DwtCallbackptr 

unsigned char 
DwtCompString 
Dimension 

DwtPushButton (3Dwt) 

The width of the label or 
pixmap plus 
DwtNmarginWidth times 
two 
The height of the label or 
pixmap plus 
DwtNmarginHeight times 
two 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI Toolkit font 
NULL 

DwtCString 
Widget name 
Two pixels for text 
Zero pixels for pixmap 

Subroutines 3-249 



DwtPushButton (3Dwt) 

DwtNmarginHeight 

DwtNalignment 
DwtNpixmap 
DwtNmarginLeft 
DwtNmarginRight 
DwtNmarginTop 
DwtNmarginBottom 
DwtNconformToText 

Dimension 

unsigned char 
Pixmap 
Dimension 
Dimension 
Dimension 
Dimension 
Boolean 

Two pixels for text 
Zero pixels for pixmap 
DwtAlignmentCenter 
NULL 
Zero 
Zero 
Zero 
Zero 
True, if the widget is created 
with a width and height of 
zero 
False, if the widget is 
created with a non-zero width 
and height 

Widget-Specific Attributes 

Attribute Name Data Type Default 

DwtNbordHighlight Boolean False 
DwtNfillHighlight Boolean False 
DwtNshadow Boolean True 
DwtNactivateCallback DwtCallbackPtr NULL 
DwtNarmCallback DwtCallbackPtr NULL 
DwtNdisarmCallback DwtCallbackPtr NULL 
DwtNacceleratorText DwtCompString NULL 
DwtNbuttonAccelerator char * NULL 
DwtNinsensitivePixmap Pixmap NULL 

DwtNbordHighlight 
Specifies a boolean value that, when True, 
highlights the border. 

DwtNfillHighlight 

DwtNshadow 

Specifies a boolean value that, when True, fills the 
highlighted button. 

Specifies whether the shadow of the push button is 
displayed. 

DwtNactivateCallback 

3-250 Subroutines 

Specifies the callback function or functions called 
when the push button is activated. The button is 
activated when the user presses and releases MB 1 
while the pointer is inside the push button widget. 



DwtPushButton (3Dwt) 

Activating the push button also disarms the push 
button. For this callback, the reason is 
DwtCRActi vate. 

DwtNarmCallback Specifies the callback function or functions called 
when the push button is armed. The push button is 
armed when the user presses and releases MB 1 while 
the pointer is inside the push button widget. For this 
callback, the reason is Dwt CRArm. 

DwtNdisarmCallback 
Specifies the callback function or functions called 
when the push button is disarmed. The button is 
disarmed in two ways. After the user activates the 
button (presses and releases MB 1 while the pointer is 
inside the push button widget), the button is 
disarmed. When the user presses MB 1 while the 
pointer is inside the push button widget but moves 
the pointer outside the push button before releasing 
MB 1, the button is disarmed. For this callback, the 
reason is DwtCRDisarm. 

DwtNacceleratorText 
Specifies the compound-string text displayed for the 
accelerator. 

DwtNbuttonAccelerator 
Sets an accelerator on a push button widget. This is 
the same as the DwtNtranslations core 
attribute except that only the left side of the table is 
to be passed as a character string, not compiled. The 
application is responsible for calling 
XtlnstallA11Accelerators to install the 
accelerator where the application needs it. 

DwtNinsensitivePixmap 

Return Value 

Specifies the pixmap used when the push button is 
set to insensitive. This attribute applies only if the 
push button label is specified as a pixmap. 

These functions return the ID of the created widget. 

Subroutines 3-251 



DwtPushButton (3Dwt) 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 

} DwtAnyCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRActi vate The user activated the push button by 
pressing MB 1 while the pointer was inside 
the push button widget. 

DwtCRArm The user armed the push button by pressing 
MB 1 while the pointer was inside the push 
button widget. 

DwtCRDisarm The user disarmed the push button in one of 
two ways. The user pressed MB 1 while the 
pointer was inside the push button widget, 
but did not release it until after moving the 
pointer outside the push button widget. Or, 
the user activated the push button, which 
also disarms it. 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-252 Subroutines 



DwtPushButtonGadgetCreate (3Dwt) 

Name 
DwtPushButtonGadgetCreate - Creates a push button gadget. 

Syntax 
Widget DwtPushButtonGadgetCreate (parent widget, name, 

override argUst, -
override - argcount) 

Widget parent widget; -
char * name; -
ArgList override argUst; 
int override argcount; 

Arguments 

parent _widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override _ argUst 
Specifies the application override argument list. 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _ arglist). 

Description 
The DwtLabelGadgetCreate function creates an instance of the label 
gadget and returns its associated gadget ID. A label gadget is similar in 
appearance and semantics to a label widget. Like all gadgets, the label 
gadget does not have a window but uses the window of the closest antecedent 
widget. Thus, the antecedent widget provides all event dispatching for the 
gadget. This currently restricts gadgets to being descendents of menu or 
dialog class (or subclass) widgets. Drawing information such as font and 
color are also those of the closest antecedent widget. 

Inherited Attributes 

Attribute Name Data Type Default 

Rectangle Attributes 

Subroutines 3-253 



DwtPushButtonGadgetCreate (3Dwt) 

DwtNx Position 

DwtNy Position 

DwtNwidth Dimension 

DwtNheight Dimension 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
The width of the label plus 
margins 
The height of the label plus 
margins 

DwtNborderWidth 
DwtNsensitive 
DwtNancestorSensitive 

Dimension 
Boolean 
Boolean 

1 pixel 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 

Widget-Specific Attributes 

Attribute Name Data Type Default 

DwtNlabel DwtCompString NULL 
NULL 
NULL 
NULL 

DwtNactivateCallback DwtCallbackPtr 
DwtNacceleratorText DwtCompString 
DwtNbuttonAccelerator char * 

DwtNlabel Specifies the push button label. 

DwtNactivateCallback 
Specifies the callback function or functions called 
when the push button is activated. The button is 
activated when the user presses and releases MB 1 
while the pointer is inside the push button gadget. 
For this callback, the reason is DwtCRActi vate. 

DwtNacceleratorText 
Specifies the compound-string text displayed for the 
accelerator. 

DwtNbuttonAccelerator 

3-254 Subroutines 

Sets an accelerator on a push button widget. This is 
the same as the DwtNtranslations core 
attribute except that only the left side of the table is 
to be passed as a character string, not compiled. The 
application is responsible for calling 
Xt InstallAllAccelerators to install the 



DwtPushButtonGadgetCreate (3Dwt) 

accelerator where the application needs it. 

Return Value 
This function returns the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 

} DwtAnyCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRActivate The user activated the push button. 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-255 



DwtRadioBox (3Dwt) 

Name 
DwtRadioBox, DwtRadioBoxCreate - Creates a radio box widget for the 
application to display multiple toggle buttons. 

Syntax 
Widget DwtRadioBox(parent_widget, name, x, y, 

entry _callback, help_callback) 
Widget parent widget; 
char * name; -
Position x, y; 
DwtCallbackPtr entry_callback, help _callback; 

Widget DwtRadioBoxCreate (parent _widget, name, 
override _ arglist, override _ argcount) 

Widget parent_widget; 
char *name; 
ArgList override _ arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

entry_callback If this callback is defined, all menu entry activation callbacks 
are revectored to call back through this callback. If this 
callback is NULL, the individual menu entry callbacks work 
as usual. For this callback, the reason is 
DwtCRActivate. This argument sets the 
DwtNentryCallback attribute associated with 
DwtMenuCreate. 

help _callback Specifies the callback function or functions called when a 

3-256 Subroutines 



DwtRadioBox (3Dwt) 

help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

override arglist 
- Specifies the application override argument list. 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _ arg list). 

Description 
The radio box is a composite widget that contains multiple toggle button 
widgets. The radio box arbitrates and ensures that only one toggle button is 
on at anyone given time. When calling DwtRadioBox, you set the radio 
box widget attributes presented in the formal parameter list. For 
DwtRadioBoxCreate, however, you specify a list of attribute name/value 
pairs that represent all the possible radio box widget attributes. After you 
create an instance of this widget, you can manipulate it using the appropriate 
X intrinsics functions. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 

Data Type 

position 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Set as large as necessary to 
hold all child widgets 
Set as large as necessary to 
hold all child widgets 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 

Subroutines 3-257 



DwtRadioBox (3Dwt) 

DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 

DwtNhelpCallback 

Menu Attributes 

DwtNspacing 
DwtNmarginHeight 
DwtNmarginWidth 
DwtNorientation 
DwtNadjustMargin 
DwtNentryBorder 
DwtNmenuAlignment 
DwtNentryAlignment 
DwtNmenuPacking 

DwtNmenuNumColumns 
DwtNmenuRadio 

3-258 Subroutines 

Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 

DwtCallbackPtr 

Dimension 
Dimension 
Dimension 
unsigned char 
Boolean 
short 
Boolean 
unsigned char 
unsigned char 

short 
Boolean 

Setting the sensitivity of the 
radio box causes all widgets 
contained in that radio box to 
be set to the same sensitivity. 
The bitwise AND of the 
parent widget's 
DwtNsensi ti ve and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI Toolkit font 
NULL 

Zero pixels 
3 pixels 
Three pixels 
DwtOrientationVertical 
True 
Zero pixels 
True 
DwtAlignmentBeginning 
DwtMenuPackingTight 
(for all menu types except for 
radio boxes) 
DwtMenuPackingColumn 
(for radio boxes) 
One row or column 
False 



DwtNradioAlwaysOne 
DwtNmenuIsHomogeneous 

DwtNmenuEntryClass 

DwtNmenuHistory 
DwtNentryCallback 
DwtNmenuHelpWidget 
DwtNchangeVisAtts 
DwtNmenuExtendLastRow 

Return Value 

Boolean 
Boolean 

WidgetClass 

Widget 
DwtCallbackptr 

Widget 
Boolean 
Boolean 

DwtRadioBox (3Dwt) 

True (for radio boxes) 
True 
False 
True (for radio boxes) 
NULL 
Radio boxes, however, default 
to the togglebuttonwidgetclass. 
Zero 
NULL 
NULL 
True 
True 

These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
Widget s_widget; 
char *s_tag; 
char *s_callbackstruct; 

DwtRadioBoxCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRValueChanged 

DwtCRMap 

DwtCRHelpRequested 

The user activated the toggle button to 
change state. 

The radio box is about to be mapped. 

The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. The s_widget member is set to the ID of the activating 
subwidget. The s_tag member is set to the tag supplied by the application 
programmer when the subwidget callback function was specified. The 

Subroutines 3-259 



DwtRadioBox (3Dwt) 

s_callbackstruct member is set to the subwidget's callback structure. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-260 Subroutines 



DwtReCopyToClipboard (3Dwt) 

Name 
DwtReCopyToClipboard - Copies a data item previously pased by name to 
the clipboard. 

Syntax 
int DwtReCopyToClipboard(display, window, data id, 

buffer, length, private id) -
Display * display; -
Window window; 
int data id; 
char * bUJJer; 
unsigned long length; 
int private _id; 

Arguments 

display 

window 

data id 

buffer 

length 

private_id 

Description 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

Specifies an identifying number assigned to the data item that 
uniquely identifies the data item and the format. This 
number was assigned by DwtCopyToClipboard to the 
data item. 

Specifies the buffer from which the clipboard copies the data. 

Specifies the number of bytes in the data item. 

Specifies the private data that the application wants to store 
with the data item. 

The DwtReCopyToClipboard function copies the actual data for a data 
item that was previously passed by name to the clipboard. Additional calls 
to DwtReCopyToClipboard append new data to the existing data. This 
function cannot be used to pass data by name. 

Subroutines 3-261 



DwtReCopyToClipboard (3Dwt) 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

See Also 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

DwtCopyToClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-262 Subroutines 



Name 

DwtRegisterClass(3Dwt) () 

DwtRegisterClass - Saves the information needed for DRM to access the 
widget creation function for user-defined widgets. 

Syntax 
#include <Xll/DwtAppl.h> 
Cardinal DwtRegisterClass(class code, class name, create name, 

create yroc, class_record) -
DRMType class code; 
String class name; 
String create name; 
Widget (* create yroc) 0; 
WidgetClass class_record; 

Arguments 

class code Specifies the code name of the class. For all application­
defined widgets, this code name is DRMwcUnknown. For 
all XUI Toolkit widgets, each code name begins with the 
letters DRMwc. The code names for all application widgets 
are defined in DRM. h. 

class name Specifies the case-sensitive name of the class. The class 
names for all XUI Toolkit widgets are defined in DRM. h. 
Each class name begins with the letters DRMwcn. 

create name Specifies the case-sensitive name of the low-level widget 
creation function for the class. An example from the XUI 
Toolkit is DwtLabelCreate. Arguments are 
parent widget, name, override arglist, and 
override _ argcount. -

For user-defined widgets, create name is the creation 
procedure in the UIL that defines this widget. 

create yroc Specifies the address of the creation function that you named 
in create name. 

class record Specifies a pointer to the class record. 

Subroutines 3-263 



DwtRegisterClass(3Dwt) () 

Description 
The DwtRegisterClass function allows DRM to access user-defined 
widget classes. This function registers the necessary information for DRM to 
create widgets of this class. You must call DwtRegisterClass prior to 
fetching any user-defined class widget. 

DwtRegisterClass saves the information needed to access the widget 
creation function and to do type conversion of argument lists by using the 
information in DRM databases. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMFailure 

3-264 Subroutines 

The function executed successfully. 
The allocation of the class descriptor failed. 



Name 

DwtRegisterDRMNames (3Dwt) 

DwtRegisterDRMNames - Registers the values associated with the names 
referenced in UIL (for example, UIL callback function names or UIL 
identifier names). 

Syntax 
#include <Xll/DwtAppl.h> 
Cardinal DwtRegisterDRMNames(register list, register count) 

DRMRegisterArglist register list; - -
DRMCount register_count; -

Arguments 

Specifies a list of name/value pairs for the names to be 
registered. Each name is a case-sensitive, NULL-terminated 
ASCII string. Each value is a 32-bit quantity, interpreted as 
a procedure address if the name is a callback function, and 
un interpreted otherwise. 

register_count Specifies the number of entries in register_list. 

Description 
The DwtRegisterDRMNames function registers a vector of names and 
associated values for access in DRM. The values can be callback functions, 
pointers to user-defined data, or any other values. The information provided 
is used to resolve symbolic references occurring in UID files to their run-time 
values. For callbacks, this information provides the procedure address 
required by the XUI Toolkit. For names used as identifiers in UIL, this 
information provides any run-time mapping the application needs. 

The names in the list are case-sensitive. The list can be either ordered or 
unordered. 

Callback functions registered through DwtRegisterDRMNames can be 
either regular or creation callbacks. Regular callbacks have declarations 
determined by XUI Toolkit and user requirements. Creation callbacks have 
the same format as any other callback: 

void CallBackProc (widget _id, tag, callback_data) 
Widget * widget _id; 
Opaque tag; 
DwtAnyCallbackStruct * callback_data; 

Subroutines 3-265 



DwtRegisterDRMNames (3Dwt) 

tag 

Specifies the widget ID associated with the widget 
performing the callback (as in any callback function). 

Specifies the tag value (as in any callback function). 

callback data Specifies a widget-specific data structure. This data structure 
has a minimum of two members: event and reason. The 
reason member is always set to DwtCRCreate. 

Note that the widget name and parent are available from the widget record 
accessible through widget _id. 

Return Value 
This function returns one of these status return constants: 

DRMSuccess 
DRMFailure 

3-266 Subroutines 

The function executed successfully. 
Memory allocation failed. 



Name 

DwtResolvePartOffsets (3Dwt) 

DwtResolvePartOffsets - Allows writing of upward-compatible applications 
and widgets. 

Syntax 
void DwtResolvePartOffsets(widget class, offset) 

WidgetClass widget_class; -
DwtOffsetPtr * offset; 

Arguments 

widget_class Specifies the widget class pointer for the created widget. 

offset Specifies the offset record. 

Description 
The use of offset records requires one extra global variable per widget class. 
The variable consists of a pointer to an array of offsets into the widget record 
for each part of the widget structure. The DwtResol vePartOffsets 
function allocates the offset records needed by an application to guarantee 
upward-compatible applications and widgets. These offset records are used 
by the widget to access all of the widget's variables. A widget needs to take 
the following steps: 

• Instead of creating a resource list, the widget creates an offset resource 
list. To help you accomplish this, use the DwtPartResource 
structure and the DwtPartOffset macro. The 
DwtPartResource data structure looks just like a resource list, but 
instead of having one integer for its offset, it has two shorts. This gets 
put into the class record as if it were a nonnal resource list. Instead of 
using XtOffset for the offset, it uses DwtPartOffset. 

• Instead of putting the widget size in the class record, the widget puts 
the widget part in the same field. 

• Instead of putting XtVersion in the class record, the widget puts 
Xt VersionDontCheck in the class record. 

• The widget defines a variable to point to the offset record. This can be 
part of the widget's class record or a separate global variable. 

• In class initialization, the widget calls DwtResol vePartOffsets, 
passing it the offset address and the class record. This does several 
things: 

Subroutines 3-267 



DwtResolvePartOffsets (3Dwt) 

• Adds the superclass (which, by definition, has already been 
initialized) size field to the part size field. 

• Allocates an array based upon the number of superclasses. 

• Fills in the offsets of all the widget parts with the appropriate 
values, determined by examining the size fields of all superclass 
records. 

• Uses the part offset array to modify the offset entries in the 
resource list to be real offsets, in place. 

• Instead of accessing fields directly, the widget must always go through 
the offset table. You will probably define macros for each field to 
make this easier. Assume an integer field "xyz": 

See Also 

#define BarXyz(w) (*(int *) «(char *) w) + offset[BarIndex] + 
XtOffset(BarPart,xyz») 

The DwtField macro helps you access these fields. Because the 
DwtPartOffset and DwtField macros concatenate arguments, 
you must ensure there is no space before or after the part argument. 
For example, the following do not work because of the space before or 
after the part (Label) argument: 
DwtField(w, offset, Label, text, char *) 
DwtPartOffset( Label, text). 

Therefore, you must not have any spaces before or after the part 
(Label) argument, as illustrated here: 
DwtField(w, offset, Label, text, char *) 

Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-268 Subroutines 



OwtScale (30wt) 

Name 
DwtScale, DwtScaleCreate - Creates a scale widget that allows an 
application to display a scale for vernier control of a parameter while 
displaying the current value and range. 

Syntax 
Widget DwtScale(parent_widget, name, x, y, 

width, height, scale width, scale height, 
title, min_value, max_value, deciinal yoints, 
value, orientation, callback, 
drag callback, help callback) 

Widget parent widget; -
char * name· -, 
Position x, y; 
Dimension width, height; 
Dimension scale width, scale height; 
DwtCompString title; -
int min value, max value; 
int dectmal yoints;-
int value; 
unsigned char orientation; 
DwtCallbackPtr callback, drag_callback, help_callback; 

Widget DwtScaleCreate (parent widget, name, 
override arglis!, override argcount) 

Widget parent widget; -
char * name; -
ArgList override arglist; 
int override _ argCount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

x 

y 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left corner of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left corner of 
the widget window relative to the inner upper left corner of 

Subroutines 3-269 



DwtScale(3Dwt) 

the parent window. This argument sets the DwtNy core 
widget attribute. 

width Specifies the width of the widget window. (The window 
width is calculated based on the scale width, the label widths, 
and orientation.) This argument sets the DwtNwidth core 
widget attribute. 

height Specifies the height of the widget window. (The window 
height is calculated based on the scale height, the labels, and 
orientation.) This argument sets the DwtNheight core 
widget attribute. 

scale width Specifies the width of the scale, excluding the scale labels. 
This argument sets the DwtNscaleWidth attribute 
associated with DwtScaleCreate. 

scale_height Specifies the height of the scale, excluding the scale labels. 
This argument sets the DwtNscaleHeight attribute 
associated with DwtScaleCreate. 

title Specifies the title text string to appear in the scale window 
widget. This argument sets the DwtNt it le attribute 
associated with DwtScaleCreate. 

min value Specifies the value represented by the top or left end of the 
scale. This argument sets the DwtNminValue attribute 
associated with DwtScaleCreate. 

max value Specifies the value represented by the bottom or right end of 
the scale. This argument sets the DwtNmaxValue attribute 
associated with DwtScaleCreate. 

decimal yoints Specifies the number of decimal points to shift the current 
slider value for display of the next slider position. This 
argument sets the DwtNdecimalPoints attribute 
associated with DwtScaleCreate. 

value 

orientation 

3-270 Subroutines 

Specifie~ the current slider position along the scale (the value 
selected by the user). This argument sets the DwtNvalue 
attribute associated with DwtScaleCreate. 

Specifies whether the scale is displayed vertically or 
horizontally. You can pass 
DwtOrientationHorizontalor 
DwtOrientationVertical. This argument sets the 
DwtNorientation attribute associated with 
DwtScaleCreate. 



DwtScale (3Dwt) 

callback Specifies the callback function or functions called back when 
the value of the scale changes. This argument sets the 
DwtNvalueChangedCallback attribute associated with 
DwtScaleCreate. 

drag_callback Specifies the callback function or functions called when the 
user is dragging the scale slider. For this callback, the reason 
is DwtCRDrag. This argument sets the 
DwtNdragCallback attribute associated with 
DwtScaleCreate. 

help_callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

override arglist 
- Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arglist). 

Description 
The DwtScale and DwtScaleCreate functions create an instance of 
the scale widget and return its associated widget ID. The scale widget is a 
primitive widget figure that allows the application to display a scale for 
vernier control of a specific parameter by the user. The user moves or drags 
a slider, which is part of the scale widget, and places the slider at a position 
representing the desired value. The scale may have labeled text at any 
number of points identifying the values corresponding to the points. The 
scale can be made insensitive and used as an output value indicator only (for 
example, a thennometer or percent completion indicator). 

The application passes lower and upper values for the scale as integers and 
can (optionally) indicate a decimal point position. For example, a 
DwtNminValue of 100, a DwtNmaxValue of 10000, and a 
DwtNdecimalPoints of 2 would produce a scale from 1.00 to 100.00. 
Possible values returned from this example could be 230 or 5783. 

Scale widget labels are provided by its children. The labels can be any 
widgets created using the scale widget as the parent. 

Subroutines 3-271 



DwtScale (3Dwt) 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 

DwtNhelpCallback 

3-272 Subroutines 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 
DwtCallbackptr 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Calculated based on scale 
width, the label widths, and 
the orientation 
Calculated based on scale 
height, the label widths, and 
the orientation 
zero pixels 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI ToolkitJont 
NULL 



Widget-Specific Attributes 

Attribute Name 

DwtNvalue 
DwtNtitle 
DwtNorientation 
DwtNscaleWidth 
DwtNscaleHeight 
DwtNminValue 
DwtNmaxValue 
DwtNdecimalPoints 
DwtNshowValue 
DwtNdragCallback 
DwtNvalueChangedCallback 

DwtScale{3Dwt) 

Data Type Default 

int zero 
DwtCompString Scale name 
unsigned char DwtOrientationHorizontal 
Dimension 100 pixels 
Dimension 20 pixels 
int Zero 
int 100 
short Zero 
Boolean True 
DwtCallbackPtr NULL 
DwtCallbackptr NULL 

DwtNval ue Specifies the current slider position along the scale 
(the value selected by the user). 

DwtNt it 1 e Type Specifies the title type. You can pass 
DwtCString or DwtPixmap. 

DwtNtitle Specifies the title text string to appear in the scale 
window widget. 

DwtNorientation Specifies whether the scale is displayed vertically or 
horizontally . You can pass 
DwtOrientationHorizontalor 
DwtOrientationVertical. 

DwtNscaleWidth Specifies the thickness in pixels of the scale itself, 
not counting the labels. 

DwtNscaleHeight Specifies the height of the scale, excluding the scale 
labels. 

DwtNminVal ue Specifies the value represented by the top or left end 
of the scale. 

DwtNmaxVal ue Specifies the value represented by the bottom or right 
end of the scale. 

DwtNdecimalPoints 
Specifies the number of decimal points to shift the 
current slider value for display of the next slider 
position. 

Subroutines 3-273 



OwtScale (30wt) 

DwtNshowValue 

DwtNdragCallback 

Specifies a boolean value that, when True, states 
that the current value of the slider label string will be 
displayed next to the slider. 

Specifies the callback function or functions called 
when the user is dragging the scale slider. For this 
callback, the reason is DwtCRDrag. 

DwtNvalueChangedCallback 

Return Value 

Specifies the callback function or functions called 
when the scale value was changed. For this callback, 
the reason is DwtCRVal ueChanged. 

These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
int value; 

DwtScaleCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRValueChanged The user moved the slider in the scale with 
drag or click. 

DwtCRDrag The user is dragging the slider. 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

The value member is set to the current value of the scale. 

3-274 Subroutines 



See Also 
DwtScaleGetSlider (3Dwt), DwtScaleSetSlider (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 

DwtScale{3Dwt) 

Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-275 



DwtScaleGetSlider (3Dwt) 

Name 
DwtScaleGetSlider - Gets the current value of the slider position displayed in 
the scale. 

Syntax 
void DwtScaleGetSlider( widget, value_return) 

Widget widget; 
int * value _return; 

Arguments 

widget Specifies the scale widget ID. 

value return Returns the current slider position value. 

Description 
The DwtScaleGetSlider function returns the current slider position 
value displayed in the scale for the application. 

See Also 
DwtScaleSetSlider (3Dwt), DwtScale (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-276 Subroutines 



Name 

DwtScaleSetSlider (3Dwt) 

DwtScaleSetSlider - Sets or changes the current value of the slider position 
displayed in the scale. 

Syntax 
void DwtScaleSetSlider( widget, value) 

Widget widget; 
int value; 

Arguments 

Specifies the scale widget ID. widget 

value Specifies the current slider position along the scale (the value 
selected by the user). This argument sets the DwtNvalue 
attribute associated with DwtScaleCreate. 

Description 
The DwtScaleSetSlider function sets or changes the current slider 
position value within the scale widget display for the application. 

See Also 
DwtScaleGetSlider (3Dwt), DwtScale (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-277 



OwtScroliBar (30wt) 

Name 
DwtScrollBar, DwtScrollBarCreate - Creates a scroll bar widget for the 
application to display and process scroll bar screen operations. 

Syntax 
Widget DwtScrollBar(parent_widget, name, x, y, 

width, height, inc, page_inc, 
shown, value, min value, max value, 
orientation, callback, help callback, 
unit inc callback, unit dec callback, 
page inc callback, page iec callback, 
to top catlback, to bottom callback) 
drag callback) - -

Widget parent_widget; 
char *name; 
Position x, y; 
Dimension width, height; 
int inc, page_inc; 
int shown; 
int value; 
int min_value, max_value; 
int orientation; 
DwtCallbackPtr callback, help callback; 
DwtCallbackPtr unit inc callback, unit dec callback; 
DwtCallbackPtr page_inc_callback, page _ dec'_callback; 
DwtCallbackPtr to top callback, to bottom callback; 
DwtCallbackPtr d,ug_callback; - -

Widget DwtScrollBarCreate (parent_widget, name, 
override _ arglist, override _ argcount) 

Widget parent widget; 
char * name; -
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

x Specifies the placement, in pixels, of the left side of the 

3-278 Subroutines 



y 

width 

height 

inc 

shown 

value 

min value 

max value 

orientation 

DwtScroliBar (3Dwt) 

widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

Specifies the width of the widget window. This argument 
sets the DwtNwidth core widget attribute. 

Specifies the height of the widget window. This argument 
sets the DwtNheight core widget attribute. 

Specifies the amount of button increment and decrement. If 
this argument is nonzero, the scroll bar widget automatically 
adjusts the slider when an increment or decrement action 
occurs. This argument sets the DwtNinc attribute 
associated with DwtScrollBarCreate. 

Specifies the amount of page increment and decrement. If 
this argument is nonzero, the scroll bar widget automatically 
adjusts the slider when an increment or decrement action 
occurs. This argument sets the DwtNpage Inc attribute 
associated with DwtScrollBarCreate. 

Specifies the size of the slider as a value between zero and 
the absolute value of DwtNmaxVal ue minus 
DwtNminValue. The size of the slider varies, depending 
on how much of the slider scroll area it represents. This 
argument sets the DwtN shown attribute associated with 
DwtScrollBarCreate. 

Specifies the scroll bar's top thumb position between 
DwtNminValue and DwtNmaxValue. This sets the 
DwtNvalue attribute associated with 
DwtScrollBarCreate. 

Specifies the scroll bar's minimum value. This argument sets 
the DwtNminValue attribute associated with 
DwtScrollBarCreate. 

Specifies the scroll bar's maximum value. This argument 
sets the DwtNmaxVal ue attribute associated with 
DwtScrollBarCreate. 

Specifies whether the scroll bar is displayed vertically or 

Subroutines 3-279 



DwtScroliBar (3Dwt) 

callback 

horizontally . You can pass 
DwtOrientationHorizontalor 
DwtOrientationVertical. This argument sets the 
DwtNorientation attribute associated with 
DwtScrollBarCreate. 

Specifies the callback function or functions called back when 
the value of the scroll bar changes. This argument sets the 
DwtNvalueChangedCallback attribute associated with 
DwtScrollBarCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

unit inc callback 
Specifies the callback function or functions called when the 
user selected the down or right unit scroll function. For this 
callback, the reason is DwtCRUni t Inc. This argument 
sets the DwtNuni t IncCallback attribute associated 
wiili DwtScrollBarCreate. 

unit dec callback 
Specifies the callback function or functions called when the 
user selected the above or left unit scroll function. For this 
callback, the reason is DwtCRUni tDec. This argument 
sets the DwtNuni tDecCallback attribute associated 
with DwtScrollBarCreate. 

page _inc_callback 
Specifies the callback function or functions called when the 
user selected the below or right page scroll function. For this 
callback, the reason is DwtCRPageInc. This argument 
sets the DwtNpageIncCallback attribute associated 
wiili DwtScrollBarCreate. 

page dec callback 
- - Specifies the callback function or functions called when the 

user selected the above or left page scroll function. For this 
callback, the reason is DwtCRPageDec. This argument 
sets the DwtNpageDecCallback attribute associated 
wiili DwtScrollBarCreate. 

to _top _ callback 

3-280 Subroutines 

Specifies the callback function or functions called when the 
user selected the current line to top scroll function. For this 



DwtScroliBar (3Dwt) 

callback, the reason is DwtCRToTop. The scroll bar does 
not automatically change the scroll bar's DwtNvalue for 
this callback. This argument sets the 
DwtNtoTopCallback attribute associated with 
DwtScrollBarCreate. 

to bottom callback 
Specifies the callback function or functions called when the 
user selected the current line to bottom scroll function. For 
this callback, the reason is DwtCRToBottom. The scroll 
bar does not automatically change the scroll bar's 
DwtNvalue for this callback. This argument sets the 
DwtNtoBottomCallback attribute associated with 
DwtScrollBarCreate. 

drag_callback Specifies the callback function or functions called when the 
user is dragging the scroll bar slider. For this callback, the 
reason is DwtCRDrag. This argument sets the 
DwtNdragCallback attribute associated with 
DwtScrollBarCreate. 

override _ arglist 
Specifies the application override argument list. 

override _ argcount 

Description 

Specifies the number of attributes in the application override 
argument list (override _ arglist). 

The DwtScrollBar and DwtScrollBarCreate functions create an 
instance of a scroll bar widget and return its associated widget ID. The scroll 
bar widget is a screen object that the application or user uses to scroll 
through display data too large for the screen. This widget consists of two 
stepping arrows at either end of an elongated rectangle called the scroll 
region. The scroll region is overlaid with a slider bar (thumb) that is 
adjusted in size and position (thumb shown) as scrolling occurs using the 
function attributes. The stepping arrows and the exposed scroll areas behind 
the slider are the scroll activator objects providing the user interface syntax 
"feel. " 

If the default core widget attributes DwtNwidth or DwtNheight (0) are 
used, the scroll bar is set to the DwtNheight of the parent window 
(vertical) or to the DwtNwidth of the parent window (horizontal). If the 
default core widget attributes DwtNx or DwtNy (0) are used, the scroll bar 
is set to the right of the parent window (vertical) or to the bottom of the 

Subroutines 3-281 



DwtScrollBar (3Dwt) 

parent window (horizontal). This is also true if you specify DwtNwidth, 
DwtNheight, DwtNx, or DwtNy in the call to XtSetValues. 

Note that the DwtNtoTopCallback and DwtNtoBottomCallback 
callbacks do not automatically set the thumb as the other callbacks do. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

3-282 Subroutines 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
For vertical scroll bars, 17 
pixels. 
For horizontal scroll bars, the 
width of the parent minus 17 
pixels. 
For horizontal scroll bars, 17 
pixels. 
For vertical scroll bars, the 
height of the parent minus 17 
pixels. 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 



Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Widget-Specific Attributes 

Attribute Name 

DwtNvalue 
DwtNminValue 
DwtNmaxValue 
DwtNorientation 
DwtNtranslationsl 
DwtNtranslations2 
DwtNshown 
DwtNinc 
DwtNpagelnc 
DwtNvalueChangedCallback 
DwtNunitlncCallback 
DwtNunitDecCallback 
DwtNpagelncCallback 
DwtNpageDecCallback 
DwtNtoTopCallback 
DwtNtoBottomCallback 
DwtNdragCallback 
DwtNshowArrows 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 

NOT SUPPORTED 

DwtCallbackPtr 

Data Type 

int 

int 
int 

unsigned char 

XtTranslations 
XtTranslations 
int 

int 

int 

DwtCallbackPtr 
DwtCallbackptr 
DwtCallbackptr 
DwtCallbackPtr 
DwtCallbackPtr 
DwtCallbackPtr 
DwtCallbackPtr 
DwtCallbackPtr 
Boolean 

OwtScroliBar (30wt) 

Default foreground color 

Default foreground color 

NULL 
NULL 
DwtDirectionRightDown 

NULL 

Default 

Zero 

Zero 

100 
DwtOrientationVertical 
NULL 
NULL 
10 units 

10 units 

10 units 

NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
True 

DwtNvalue Specifies the scroll bar's top thumb position between 
DwtNminValue and DwtNmaxValue. This 
attribute also appears as a member in 
DwtScrollBarCallbackStruct. 

DwtNminValue Specifies the scroll bar's minimum value. 

DwtNmaxValue Specifies the scroll bar's maximum value. 

DwtNorientation Specifies whether the scroll bar is displayed 
vertically or horizontally. You can pass 

Subroutines 3-283 



DwtScroliBar (3Dwt) 

DwtOrientationHorizontalor 
DwtOrientationVertical. 

DwtNtranslationsl 
Specifies the translation table for events after being 
parsed by the X intrinsics function 
XtParseTranslationTable for the decrement 
button. 

DwtNtranslations2 

DwtNshown 

DwtNinc 

DwtNpagelnc 

Specifies the translation table for events after being 
parsed by the X intrinsics function 
XtParseTranslationTable for the increment 
button. 

Specifies the size of the slider as a value between 
zero and the absolute value of DwtNmaxVal ue 
minus DwtNminValue. The size of the slider 
varies, depending on how much of the slider scroll 
area it represents. 

Specifies the amount of button increment and 
decrement. If this argument is nonzero, the scroll bar 
widget automatically adjusts the slider when an 
increment or decrement action occurs. 

Specifies the amount of page increment and 
decrement. If this argument is nonzero, the scroll bar 
widget automatically adjusts the slider when an 
increment or decrement action occurs. 

DwtNvalueChangedCallback 
Specifies the callback function or functions called 
when the value of the scroll bar slider was changed. 
For this callback, the reason is 
DwtCRVal ueChanged. 

DwtNunitlncCallback 

3-284 Subroutines 

Specifies the callback function or functions called 
when the user selected the down or right unit scroll 
function. For this callback, the reason is 
DwtCRUni t Inc. 



OwtScrol1 Bar (30wt) 

DwtNunitDecCallback 
Specifies the callback function or functions called 
when the user selected the above or left unit scroll 
function. For this callback, the reason is 
DwtCRUni tDec. 

DwtNpageIncCallback 
Specifies the callback function or functions called 
when the user selected the below or right page scroll 
function. For this callback, the reason is 
Dwt CRP age Inc. 

DwtNpageDecCallback 
Specifies the callback function or functions called 
when the user selected the above or left page scroll 
function. For this callback, the reason is 
DwtCRPageDec. 

DwtNtoTopCallback 
Specifies the callback function or functions called 
when the user selected the current line to top scroll 
function. For this callback, the reason is 
DwtCRToTop. The scroll bar does not 
automatically change the scroll bar's DwtNvalue 
for this callback. 

DwtNtoBottomCallback 

DwtNdragCallback 

Specifies the callback function or functions called 
when the user selected the current line to bottom 
scroll function. For this callback, the reason is 
DwtCRToBottom. The scroll bar does not 
automatically change the scroll bar's DwtNvalue 
for this callback. 

Specifies the callback function or functions called 
when the user is dragging the scroll bar slider. For 
this callback, the reason is DwtCRDrag. The scroll 
bar does not automatically change the scroll bar's 
DwtNvalue for this callback. 

DwtNshowArrows Specifies a boolean value that, when True, 
indicates there are arrows. If Fa 1 s e, there are no 
arrows. 

Subroutines 3-285 



DwtScroliBar (3Dwt) 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
int value; 
int pixel; 

DwtScrollBarCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRVal ueChanged The user changed the value of the scroll bar 
slider. 

DwtCRUnitlnc The user selected the down or right unit 
scroll function. 

DwtCRUni tDec The user selected the up or left unit scroll 
function. 

DwtCRPageDec The user selected the above or left page 
scroll function. 

DwtCRPagelnc The user selected the below or right page 
scroll function. 

DwtCRToTop The user selected the current line to top 
scroll function. 

DwtCRToBottom The user selected the current line to bottom 
scroll function. 

DwtCRDrag The user is dragging the scroll bar slider. 

DwtCRHelpRequested The user selected help. 

The event member is a pointer to the Xlib structure XEven t, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 

3-286 Subroutines 



DwtScroliBar (3Dwt) 

XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. The value member is set to the slider's current value and 
maps to the DwtNval ue attribute. The pixel member is set to the pixel 
value from the top right of the scroll bar where the event occurred. This 
pixel value is used for the DwtNtoTopCallback and 
DwtNtoBottomCallback attributes. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-287 



DwtScrol1 BarGetSI ider (3Dwt) 

Name 
DwtScrollBarGetSlider - Retrieves the current size and position parameters 
of the slider in the scroll bar widget. 

Syntax 
void DwtScrollBarGetSlider(widget, value _return, shown_return, 

inc return, pageinc return) 
Widget widget; - -
int *value return; 
int * shown return; 
int * inc return' 

- ' 
int * page inc _return; 

Arguments 

widget Specifies the scroll bar widget ID. 

value return Returns the scroll bar's top thumb (slider) position between 
the DwtNminValue and DwtNmaxValue attributes to 
the scroll bar widget. 

shown return Returns the size of the slider as a value between zero and the 
absolute value of DwtNmaxValue minus 
DwtNminValue. The size of the slider varies, depending 
on how much of the slider scroll area it represents. 

inc return Returns the amount of button increment and decrement. 

page inc_return Returns the amount of page increment and decrement. 

Description 
The DwtScrollBarGetSlider function returns the currently displayed 
size/position values of the slider in the scroll bar widget. The scroll region is 
overlaid with a slider bar that is adjusted in size and position using the main 
scroll bar or set slider function attributes. The stepping arrows and the slider 
are the scroll activator objects providing the user interface syntax "feeL" 

See Also 
DwtScrollBarSetSlider (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-288 Subroutines 



DwtScroll BarSetSlider (3Dwt) 

Name 
DwtScrollBarSetSlider - Sets or changes the current size/position parameters 
of the slider in the scroll bar widget. 

Syntax 
void DwtScrollBarSetSlider(widget, value, shown, inc, 

page inc, notify) 
Widget widget; -
int value; 
int shown; 
int inc, page _inc; 
Boolean notify; 

Arguments 

widget 

value 

shown 

inc 

page_inc 

notify 

Specifies the scroll bar widget ID. 

Specifies the scroll bar's top thumb (slider) position between 
DwtNminValue and DwtNmaxValue. The attribute 
name associated with this argument is DwtNval ue. 

Specifies the size of the slider as a value between zero and 
the absolute value of DwtNmaxValue minus 
DwtNminValue. The size of the slider varies, depending 
on how much of the slider scroll area it represents. This 
argument sets the DwtNshown attribute associated with 
DwtScrollBarCreate. 

Specifies the amount of button increment and decrement. If 
this argument is nonzero, the scroll bar widget automatically 
adjusts the slider when an increment or decrement action 
occurs. This argument sets the DwtNinc attribute 
associated with DwtScrollBarCreate. 

Specifies the amount of page increment and decrement. If 
this argument is nonzero, the scroll bar widget automatically 
adjusts the slider when an increment or decrement action 
occurs. This argument sets the DwtNpage Inc attribute 
associated with DwtScrollBarCreate. 

Specifies a boolean value that, when True, indicates a 
change in the scroll bar value and that the scroll bar widget 
automatically activates the 

Subroutines 3-289 



DwtScroll BarSetSlider (3Dwt) 

Description 

DwtNvalueChangedCallback with the recent change. 
If False, no change in the scroll bar's value has occurred 
and DwtNvalueChangedCallback is not activated. 

The DwtScrollBarSetSlider function sets or changes the currently 
displayed scroll bar widget slider for the application. The scroll region is 
overlaid with a slider bar that is adjusted in size and position using the main 
scroll bar or set slider function attributes. The stepping arrows and the slider 
are the scroll activator objects providing the user interface syntax "feeL" 

See Also 
DwtScrollBarGetSlider (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-290 Subroutines 



Name 

OwtScroliWindow (30wt) 

DwtScrollWindow, DwtScrollWindowCreate - Creates a scroll window 
widget for simple applications in the main window widget work area. 

Syntax 
Widget DwtScrollWindow(parent_widget, name, x, y, 

width, height) 
Widget parent_widget; 
char *name; 
Position x, y; 
Dimension width, height; 

Widget DwtScrollWindowCreate (parent_widget, name, 
override _ arglist, 
override argcount) 

Widget parent_widget; -
char *name; 
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

x 

y 

width 

height 

override _ arglist 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the top of the widget 
window relative to the inner upper left comer of the parent 
window. This argument sets the DwtNy core widget 
attribute. 

Specifies in pixels the width of the widget window. This 
argument sets the DwtNwidth core widget attribute. 

Specifies in pixels the height of the widget window. This 
argument sets the DwtNheight core widget attribute. 

Specifies the application override argument list. 

Subroutines 3-291 



DwtScroIiWindow(3Dwt) 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _ arglist). 

Description 
The DwtScrollWindowand DwtScrollWindowCreate functions 
create an instance of a scroll window widget and return its associated widget 
ID. This widget provides a more direct XUI interface for applications with 
scroll bars. When calling DwtScrollWindow, you set the scroll window 
widget attributes presented in the formal parameter list. For 
DwtScrollWindowCreate, you specify a list of attribute name/value 
pairs that represent all the possible scroll window widget attributes. 

The DwtScrollWindowand DwtScrollWindowCreate functions 
create a composite widget that can contain vertical and horizontal scroll bar 
widgets and any widget as the window region. Scroll bar positioning and 
scroll bar slider sizes are automatically maintained. The scroll window 
widget simplifies programming by allowing you to create an application with 
scroll bars directly in the scroll window widget work area. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 

3-292 Subroutines 

Data Type 

Position 

Position 

Dimension 
Dimension 
Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Widget-specific 
Widget-specific 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 



OwtScroliWindow (30wt) 

DwtNsensitive 

DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Widget-Specific Attributes 

Boolean 

Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
NOT SUPPORTED 
NOT SUPPORTED 

True 
Setting the sensitivity of the 
scroll window causes all 
widgets contained in that 
window to be set to the same 
sensitivity as the scroll 
window. 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 

You can set the following widget-specifc attributes in the override _ arglist: 

Attribute Name Data Type Default 

DwtNhorizontalScrollBar Widget NULL 
DwtNverticalScrollBar Widget NULL 
DwtNworkWindow Widget NULL 
DwtNshownValueAutomaticHoriz Boolean True 
DwtNshownValueAutomaticVert Boolean True 

DwtNhorizontalScrollBar 
Specifies the scroll bar widget ID for the horizontal 
scroll bar to be associated with the scroll window 
widget. You can set this ID only after creating an 

Subroutines 3-293 



DwtScrollWi ndow (3Dwt) 

instance of the main window widget. 

DwtNverticalScrollBar 
Specifies the scroll bar widget ID for the vertical 
scroll bar to be associated with the scroll window 
widget. You can set this ID only after creating an 
instance of the main window widget. 

DwtNworkWindow Specifies the widget ID for the work window to be 
associated with the scroll window widget. You can 
set this ID only after creating an instance of the main 
window widget. 

DwtNshownValueAutomaticHoriz 
Specifies a boolean value that, when True, 
indicates that DwtScrollWindowautomatically 
sets the value for the DwtNshown attribute for the 
specified horizontal scroll bar widget. 

DwtNshownValueAutomaticVert 

Return Value 

Specifies a boolean value that, when True, 
indicates that DwtScrollWindowautomatically 
sets the value for the DwtNshown attribute for the 
specified vertical scroll bar widget. 

These functions return the ID of the created widget. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-294 Subroutines 



Name 

DwtScroliWindowSetAreas (3Dwt) 

DwtScrollWindowSetAreas - Sets up or adds the window region, and the 
horizontal or vertical scroll bar widgets to the scroll window widget. 

Syntax 
void DwtScrollWindowSetAreas( widget, horizontal scroll bar, 

vertical_scroll_bar, work_region) -
Widget widget; 
Widget horizontal scroll bar; 
Widget vertical scroll bar; 
Widget work_region; -

Arguments 

widget Specifies the scroll window widget ID. 

horizontal scroll bar 
- Specifies the scroll bar widget ID for the horizontal scroll bar 

to be associated with the scroll window widget. You can set 
or specify this ID only after creating an instance of the main 
window widget. The attribute name associated with this 
argument is DwtNhorizontalScrollBar. 

vertical scroll bar 
- - Specifies the scroll bar widget ID for the vertical scroll bar to 

be associated with the scroll window widget. You can set or 
specify this ID only after creating an instance of the main 
window widget. The attribute name associated with this 
argument is DwtNverticalScrollBar. 

work_region Specifies the widget ID for the window to be associated with 
the scroll window work area. You can set or specify this ID 
only after you create an instance of the main window widget. 

Description 
The DwtScrollWindowSetAreas function adds or changes a window 
work region and a horizontal or vertical scroll bar widget to the scroll 
window widget for the application. You must call this function before the 
scroll window widget is realized, that is, before calling the X intrinsics 
function XtRealizeWidget. Each widget is optional and may be passed 
as NULL. 

Subroutines 3-295 



DwtScroliWindowSetAreas (3Dwt) 

See Also 
DwtScrollWindow (3Dwt), DwtWindow (3Dwt), 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-296 Subroutines 



DwtSelection (3Dwt) 

Name 
DwtSelection, DwtSelectionCreate - Creates a selection box widget. 

Syntax 
Widget DwtSelection(parent _widget, name, x, y, 

title, value, items, 
item count, visible items count, style, 
default yosition, callback, help _callback) 

Widget parent widget; 
char * name; -
Position x, y; 
DwtCompString title; 
DwtCompString value; 
DwtCompString * items; 
int item count, visible items count; 
int style; --
Boolean default yosition; 
DwtCallbackPtr callback, help _callback; 

Widget DwtSelectionCreate (parent_widget, name, 
override arglist, override argcount) 

Widget parent widget; - -
char * name; -
ArgList override _ argUst; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

y Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

title Specifies the text that appears in the banner of the selection 

Subroutines 3-297 



DwtSelection (3Dwt) 

value 

items 

item count 

box. This argument sets the DwtNtitle attribute 
associated with DwtDialogBoxCreate. 

Specifies the text in the text edit field. This argument sets 
the DwtNvalue attribute associated with 
DwtSelectionCreate. 

Specifies the items in the selection widget's list box. This 
argument sets the DwtN items attribute associated with 
DwtSelectionCreate. 

Specifies the number of items in the selection widget's list 
box. This argument sets the DwtNi temsCount associated 
with DwtSelectionCreate. 

visible items count 
Specifies the number of items displayed in the selection 
widget's list box. This argument sets the 
DwtNvisibleltemsCount attribute associated with 
DwtSelectionCreate. 

style Specifies the style of the pop-up dialog box widg~. You can 
pass DwtModal (modal) or DwtModeless (modeless). 
This argument sets the DwtNstyle attribute associated 
wiili DwtDialogBoxPopupCreate. 

default yosition 
Specifies a boolean value that, when True, causes DwtNx 
and DwtNy to be ignored and forces the default widget 
position. The default widget position is centered in the 
parent window. If False, the specified DwtNx and 
DwtNy attributes are used to position the widget. This 
argument sets the DwtNdefaultPosition attribute 
associated with DwtDialogBoxCreate. 

callback Specifies the callback function or functions called when the 
user makes or cancels a selection, or there is no match for the 
item selected by the user. This argument sets the 
DwtNacti vateCallback, DwtNcancelCallback, 
and DwtNnoMatchCallback attributes associated with 
DwtSelectionCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

override _ arglist 

3-298 Subroutines 



DwtSelection (3Dwt) 

Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arg list). 

Description 
The DwtSelection and DwtSelectionCreate functions create an 
instance of a selection box widget and return its associated widget ID. 

When calling DwtSelection, you set the selection box widget attributes 
presented in the formal parameter list. For DwtSelectionCreate, 
however, you specify a list of attribute name/value pairs that represent all the 
possible selection box widget attributes. The selection widget is a pop-up 
dialog box containing a label widget, a text entry widget holding the current 
value, a list box displaying the current item list, and Ok and Cancel push 
buttons. 

When realized, the selection widget displays the item list passed by the 
caller. The current value is displayed in the text entry field. Users make 
selections by clicking the mouse in the list box or by typing item names in 
the text entry field. The selection widget does not do file searches. To 
perform file searches, use DwtF ileSelectionCreate. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 
DwtNy 
DwtNwidth 

DwtNheight 

DwtNborderWidth 

Data Type 

Position 
Position 
Dimension 

Dimension 

Dimension 

Default 

Centered in the parent window 
Centered in the parent window 
The width of the list box, plus 
the width of the push buttons, 
plus three times 
DwtNmarginWidth. The 
list box will grow to 
accommodate items wider 
than the title. 
The height of the list box, plus 
the height of the text edit 
field, plus the height of the 
label, plus three times 
DwtNmarginHeight. 
One pixel 

Subroutines 3-299 



DwtSelection (3Dwt) 

DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Dialog Pop-Up Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNfont 
DwtNhelpCallback 
DwtNdirectionRToL 
DwtNunits 
DwtNstyle 
DwtNfocusCallback 
DwtNtextMergeTranslations 
DwtNmarginWidth 
DwtNmarginHeight 
DwtNdefaultPosition 
DwtNchildOverlap 
DwtNresize 
DwtNnoResize 

DwtNtitle 
DwtNmapCallback 
DwtNunmapCallback 
DwtNtakeFocus 

3-300 Subroutines 

Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackptr 

Pixel 
Pixel 
Pixmap 

Opaque * 
DwtFontList 
DwtCallbackptr 
unsigned char 
unsigned char 
unsigned char 
DwtCallbackptr 
XtTranslations 
Dimension 
Dimension 
Boolean 
Boolean 
unsigned char 
Boolean 

DwtCompString 
DwtCallbackPtr 
DwtCallbackPtr 
Boolean 

Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
The default XUI Toolkit font 
NULL 
DwtDirectionRightDown 
DwtFontUnits 
DwtModal 
NULL 
NULL 
5 pixels 
5 pixels 
False 
True 
DwtResizeGrowOnly 
True (that is, no window 
manager resize button) 
"Open" 
NULL 
NULL 
True for modal dialog box 



DwtNautoUnmanage 
DwtNdefaultButton 
DwtNcancelButton 

Boolean 
Widget 
Widget 

DwtSelection (3Dwt) 

False for modeless dialog 
box 
True 
NULL 
NULL 

Widget-Specific Attributes 

Attribute Name Data Type Default 

DwtNlabel DwtCompString "Items" 
DwtNvalue DwtCompString 
DwtNokLabel DwtCompString "Ok" 
DwtNcancelLabel DwtCompString "Cancel" 
DwtNactivateCallback DwtCallbackptr NULL 
DwtNcancelCallback DwtCallbackptr NULL 
DwtNnoMatchCallback DwtCallbackptr NULL 
DwtNvisibleltemsCount int 8 
DwtNitems 
DwtNitemsCount 
DwtNmustMatch 

DwtNselectionLabel 

DwtNlabel 

DwtNvalue 

DwtCompString * NULL 
int Zero 
Boolean False 
DwtCompString "Selection" 

Specifies the label to appear above the list box 
containing the items. 

Specifies the text in the text edit field. 

DwtNselectionLabel 

DwtNokLabel 

Specifies the label above the selection text entry 
field. 

Specifies the label for the Ok push button. If the 
label is a NULL string, the button is not displayed. 

DwtNcancelLabel Specifies the label for the Cancel push button. If the 
label is a NULL string, the button is not displayed. 

DwtNactivateCallback 
Specifies the callback function or functions called 
when the user makes a selection. For this callback, 
the reason is DwtCRActi vate. 

DwtNcancelCallback 
Specifies the callback function or functions called 
when the user clicks on the Cancel button. For this 

Subroutines 3-301 



DwtSelection (3Dwt) 

callback, the reason is DwtCRCancel. 

DwtNnoMatchCallback 
Specifies the callback function or functions called 
when the user's selection does not have an exact 
match with any items in the list box. This callback 
is activated only if DwtNrnustMatch is True. 
For this callback, the reason is DwtCRNoMatch. 

DwtNvisiblelternsCount 
Specifies the number of items displayed in the 
selection widget's list box. 

DwtNi terns Specifies the items in the selection widget's list box. 

DwtNi ternsCount Specifies the number of items in the selection 
widget's list box. 

DwtNrnustMatch Specifies a boolean value that, when True, 

Return Value 

indicates that the selection widget checks whether the 
user's selection has an exact match in the list box. If 
the selection does not have an exact match, the 
DwtNnoMatchCallback is activated. If the 
selection has an exact match, the 
DwtNacti vateCallback is activated. 

These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
DwtCompString value; 
int value_len; 

DwtSelectionCallbackStructi 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRActivate 

3-302 Subroutines 

The user activated the Ok push button or 
double clicked on an item that has an exact 
match in the list box. 



DwtCRNoMatch 

DwtSelection (3Dwt) 

The user activated the Ok push button or 
double clicked on an item that does not 
have an exact match in the list box. 

DwtCRCancel The user activated the Cancel button. 

DwtCRHelpRequested The user selected help somewhere in the 
file selection box. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. The value member is set to the current selection when the 
callback occurred. The value_len member is set to the length of the selection 
compound-string. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-303 



DwtSeparator (3Dwt) 

Name 
DwtSeparator, DwtSeparatorCreate - Creates a separator widget for the 
application to define a border between items in a display. 

Syntax 
Widget DwtSeparator(parent widget, name, x, y, orientation) 

Widget parent_widget; -
char *name; 
Position x, y; 
unsigned char orientation; 

Widget DwtSeparatorCreate (parent_widget, name, 
override arglist, override argcount) 

Widget parent_widget; - -
char *name; 
ArgList override _arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

x 

y 

orientation 

3-304 Subroutines 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

Specifies whether the separator is displayed vertically or 
horizontally . You can pass 
DwtOrientationHorizontalor 
DwtOrientationVertical. This argument sets the 
DwtNorientation attribute associated with 
DwtSeparatorCreate. 

A separator widget draws a centered single pixel line 
between the appropriate margins. For example, a horizontal 
separator draws a horizontal line from the left margin to the 



DwtSeparator (3Dwt) 

right margin. It is placed vertically in the middle of the 
widget. 

override _ arglist 
Specifies the application override argument list. 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _ arglist). 

Description 
The DwtSeparator and DwtSeparatorCreate functions create an 
instance of the separator widget and return its associated widget ID. When 
calling DwtSeparator, you set the widget attributes presented in the 
formal parameter list. For DwtSeparatorCreate, however, you specify 
a list of attribute name/value pairs that represent all the possible separator 
widget attributes. 

The separator widget is a screen object that allows the application to draw a 
separator between items in a display. The separator widget draws horizontal 
or vertical lines in inactive areas of a window (typically menus). Because a 
separator widget does not support children, it always refuses geometry 
requests. The separator widget does nothing on a resize by its parents. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 

Data Type 

Position 

Position 

Dimension 
Dimension 
int 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
3 pixels 
3 pixels 
zero 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 

Subroutines 3-305 



DwtSeparator (3Dwt) 

DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Label Attributes 

DwtNlabelType 
DwtNlabel 
DwtNmarginWidth 

DwtNmarginHeight 

DwtNalignment 
DwtNpixmap 
DwtNmarginLeft 
DwtNmarginRight 
DwtNmarginTop 
DwtNmarginBottom 
DwtNconformToText 

3-306 Subroutines 

Boolean 

XtTranslations 
int 
NOT SUPPORTED 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
NOT SUPPORTED 
NOT SUPPORTED 

unsigned char 
DwtCompString 
Dimension 

Dimension 

unsigned char 
Pixmap 
Dimension 
Dimension 
Dimension 
Dimension 
Boolean 

The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 

True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 

DwtCString 
Widget name 
Two pixels for text 
Zero pixels for pixmap 
Two pixels for text 
Zero pixels for pixmap 
DwtAlign~entCenter 

NULL 
Zero 
Zero 
Zero 
Zero 
T rue, if the widget is created 
with a width and height of 
zero 
False, if the widget is 
created with a non-zero width 
and height 



DwtSeparator (3Dwt) 

Widget-Specific Attributes 

Attribute Name Data Type Default 

DwtNorientation unsigned char DwtOrientationHorizontal 

DwtNorientation Specifies whether the separator is displayed vertically 
or horizontally. You can pass 
DwtOrientationHorizontal or 
DwtOrientationVertical. A separator widget 
draws a centered single pixel line between the 
appropriate margins. For example, a horizontal 
separator draws a horizontal line from the left margin 
to the right margin. It is placed vertically in the 
middle of the widget. 

Return Value 
These functions return the ID of the created widget. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-307 



DwtSeparatorGadgetCreate (3Dwt) 

Name 
DwtSeparatorGadgetCreate - Creates a separator gadget. 

Syntax 
Widget DwtSeparatorGadgetCreate (parent widget, name, 

override argUst, -
override argcount) 

Widget parent widget; -
char * name; -
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override _ argUst 
Specifies the application override argument list. 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _ argUst). 

Description 
The DwtSeparatorGadgetCreate function creates an instance of the 
separator gadget and returns its associated gadget ID. A separator gadget is 
similar in appearance and semantics to a separator widget. Like all gadgets, 
DwtSeparatorGadgetCreate does not have a window but uses the 
window of the closest antecedent widget. Thus, the antecedent widget 
provides all event dispatching for the gadget. This currently restricts gadgets 
to being descendents of menu or dialog class (or subclass) widgets. 

Inherited Attributes 

Attribute Name 

Rectangle Attributes 
DwtNx 

3-308 Subroutines 

Data Type 

Position 

Default 

Determined by the geometry 
manager 



DwtSeparatorGadgetCreate (3Dwt) 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNsensitive 
DwtNancestorSensitive 

Widget-Specific Attributes 

Position 

Dimension 
Dimension 
Dimension 
Boolean 
Boolean 

Attribute Name Data Type Default 

Determined by the geometry 
manager 

3 pixels 
3 pixels 

zero 

True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 

DwtNorientation unsigned char DwtOrientationHorizontal 

DwtNorientation Specifies whether the separator is displayed vertically 
or horizontally. You can pass 
DwtOrientationHorizontalor 
DwtOrientationVertical. A separator gadget 
draws a centered single pixel line between the 
appropriate margins. For example, a horizontal 
separator draws a horizontal line from the left margin 
to the right margin. It is placed vertically in the 
middle of the gadget. 

Return Value 
This function returns the ID of the created widget. 

Callback Information 
There is no callback for this gadget. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-309 



DwtStartCopyFromClipboard (3Dwt) 

Name 
DwtStartCopyFromClipboard - Indicates that the application is ready to start 
copying data from the clipboard and locks the clipboard. 

Syntax 
int DwtStartCopyFromClipboard(display, window, time) 

Display * display; 
Window window; 
Time time; 

Arguments 

display 

window 

time 

Description 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

Specifies the timestamping of the event that triggered the 
copy. 

The DwtStartCopyFromClipboard function notifies the cut and paste 
functions that the application is ready to start copying data from the 
clipboard. DwtStartCopyFromClipboard locks the clipboard and 
remains locked until you call DwtEndCopyFromClipboard. 

After calling DwtStartCopyFromClipboard, an application can make 
multiple calls to DwtCopyFromClipboard requesting data in one or 
several formats. You specify the format by setting the format_name 
argument to DwtCopyFrornClipboard. Each call to 
DwtCopyFromClipboard in a specified format results in data being 
incrementally copied from the clipboard until all data with the specified 
format has been copied. When all data in a specified format has been 
successfully copied, DwtCopyFromClipboard returns 
ClipboardSuccess. When more data remains to be copied in the 
specified format, DwtCopyFrornClipboard returns 
ClipboardTruncate. An application can copy data in as many formats 

3-310 Subroutines 



OwtStartCopyFromClipboard (30wt) 

as desired before calling DwtEndCopyFromClipboard. 

It is recommended that any calls to inquire routines needed by the application 
be made between the call to DwtStartCopyFromClipboard and the 
call to DwtEndCopyFromClipboard. That way, the application does 
not need to call DwtClipboardLock and DwtClipboardUnlock. 

To perform cut and paste operations between your application and an 
application using the ICCCM clipboard selection mechanism, you must use 
DwtStartCopyToClipboard and provide a timestamping value for time, 
not a Current Time value. Use of the value Current Time for time may 
cause the ICCCM interface to fail. 

Applications do not need to use DwtStartCopyFromClipboard and 
DwtEndCopyFromClipboar~~whkhcMe 
DwtCopyFromClipboard works as documented. However, using these 
two functions allows incremental copying from the clipboard and ensures 
ICCCM compatibility. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

See Also 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

DwtCopyFromClipboard (3Dwt), DwtEndCopyFromClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-311 



DwtStartCopyToClipboard (3Dwt) 

Name 
DwtStartCopyToClipboard - Sets up storage and data structures to receive 
clipboard data. 

Syntax 
int DwtStartCopyToClipboard(display, window, clip label, 

time, widget, callback, item id) -
Display * display; -
Window window; 
DwtCompString clip _label; 
Time time; 
Widget widget; 
VoidProc callback; 
long * item _id; 

Arguments 

display 

window 

time 

widget 

callback 

3-312 Subroutines 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

Specifies the label to be associated with the data item. This 
argument is used to identify the data item, for example, in a 
clipboard viewer. An example of a label is the name of the 
application that places the data in the clipboard. 

Specifies the timestamping of the event that triggered the 
copy. 

Specifies the ID of the widget that will receive messages 
requesting data previously passed by name. This argument 
must be present in order to pass data by name. Any valid 
widget ID in your application can be used. All message 
handling is done by the cut and paste functions. 

Specifies the address of the callback function that is called 
when the clipboard needs data that was originally passed by 



item id 

Description 

DwtStartCopyToClipboard (3Dwt) 

name. This is also the callback to receive the DELETE 
message for items that were originally passed by name. This 
argument must be present in order to pass data by name. 

Specifies the number assigned to this data item. The 
application uses this number in calls to 
DwtCopyToClipboar~ DwtEndCopyToClipboar~ 

IDd DwtCancelCopyToClipboard. 

The DwtStartCopyToClipboard function sets up storage IDd data 
structures to receive clipboard data. An application calls 
DwtStartCopyToClipboard during a cut or copy operation. The data 
item that these structures receive through calls to DwtCopyToClipboard 
then becomes the next item to be pasted (the next-paste item) in the clipboard 
after the call to DwtEndCopyToClipboard. 

DwtStartCopyToClipboard is like DwtBeginCopyToClipboard 
except that it has the time argument to support the ICCCM clipboard 
selection mechanism. To perform cut and paste operations between your 
application and an application using the ICCCM clipboard selection 
mechIDism, you must use DwtStartCopyToClipboard and provide a 
timestamping value for time, not a Current Time value. Use of the value 
CurrentTime for time may cause the ICCCM interface to fail. 

The window and callback arguments must be present in order to pass data by 
name. 

The callback format is as follows: 

function name ( widget, data _id, private _id, reason) 
Widget *widget; 
int * data _id; 
int * private _id; 
int * reason; 

widget Specifies the ID of the widget passed to 
DwtStartCopyToClipboard. 

data id Specifies the identifying number returned by 
DwtCopyToClipboard, which identifes the pass-by-name 
data. 

private_id 

reason 

Specifies the private information passed to 
DwtCopyToClipboard. 

Specifies the reason, which is either 

Subroutines 3-313 



DwtStartCopyToClipboard (3Dwt) 

Return Value 

DwtCRClipboardDataDeleteor 
DwtCRClipboardDataRequest. 

This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

See Also 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

DwtCopyToClipboard (3Dwt), DwtEndCopyToClipboard (3Dwt), 
DwtCancelCopyToClipboard (3Dwt), DwtBeginCopyToClipboard (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-314 Subroutines 



OwtSText (30wt) 

Name 
DwtSText, DwtSTextCreate - Creates a simple text widget for the 
application to display a single or multiline text field. The user can enter and 
edit text in this field. 

Syntax 
Widget DwtSText(parent widget, name, x, y, eols, rows, value) 

Widget parent_widget; 
char *name; 
Position x, y; 
Dimension eols, rows; 
char * value; 

Widget DwtSTextCreate (parent_widget, name, 
override arglist, override argeount) 

Widget parent_widget; -
char *name; 
ArgList override argUst; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left corner of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

y Specifies, in pixels, the placement of the upper left corner of 
the widget window relative to the inner upper left corner of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

eols Specifies the width of the text window measured in character 
spaces. 888 This argument sets the DwtNcols attribute 
associated with DwtSTextCreate. 

rows Specifies the height of the text window measured in character 
heights or number of line spaces. This argument sets the 
DwtNrows attribute associated with DwtSTextCreate. 

value Specifies the actual text to display. This argument sets the 

Subroutines 3-315 



DwtSText (3Dwt) 

DwtNvalue attribute associated with DwtSTextCreate. 

override _ argUst 
Specifies the application override argument list. 

override _argcount 
Specifies the number of attributes in the application override 
argument list (override _argUst). 

Description 
The DwtSText and DwtSTextCreate functions create an instance of a 
simple text widget and return its associated widget ID. When calling 
DwtSText, you set the text widget attributes presented in the formal 
parameter list. For DwtSTextCreate, however, you specify a list of 
attribute name/value pairs that represent all the possible simple text widget 
attributes. 

The text widget enables the application to display a single or multiline field 
of text for input and edit manipulation by the user. By default, the text 
window grows or shrinks as the user enters or deletes text characters. Note 
that the text window does not shrink below the initial size set at creation 
time. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 

3-316 Subroutines 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Set as large as necessary to 
display the DwtNrows with 
the specified 
DwtNmarginWidth 
As large as necessary to 
display the DwtNcols with 
the specified 
DwtNmarginHeight 
One pixel 
Default foreground color 
NULL 
Default background color 



DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Widget-Specific Attributes 

Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 
Screen * 
DwtCallbackPtr 

DwtSText (3Dwt) 

NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

You can set the following widget-specifc attributes in the override _ arglist: 

Attribute Name Data Type Default 

DwtNmarginWidth Dimension 2 pixels 
DwtNmarginHeight Dimension Two pixels 
DwtNcols Dimension 20 characters 
DwtNrows Dimension 1 character 
DwtNtopPosition DwtTextPosition Zero 
DwtNwordWrap Boolean False 
DwtNscrollVertical Boolean False 
DwtNresizeHeight Boolean True 
DwtNresizeWidth Boolean True 
DwtNvalue char * 
DwtNeditable Boolean True 
DwtNmaxLength int 2**31-1 

DwtNfocusCallback DwtCallbackPtr NULL 

DwtNhelpCallback DwtCallbackPtr NULL 

DwtNlostFocusCallback DwtCallbackptr NULL 
DwtNvalueChangedCallback DwtCallbackPtr NULL 

DwtNinsertionPointVisible Boolean True 
DwtNautoShowlnsertPoint Boolean True 
DwtNinsertionPosition int Zero 
DwtNforeground Pixel The current server's default 

foreground 
DwtNfont DwtFontList The current server font list. 
DwtNblinkRate int 500 milliseconds 

Subroutines 3-317 



DwtSText(3Dwt) 

DwtNscrollLeftSide 
DwtNhalfBorder 
DwtNpendingDelete 

DwtNuserData 

Boolean 
Boolean 
Boolean 

Opaque * 

False 
True 
True 

NULL 

DwtNmarginWidth Specifies the number of pixels between the left or 
right edge of the window and the text. 

DwtNmarginHeight 
Specifies the number of pixels between the top or 
bottom edge of the window and the text. 

DwtNcols Specifies the width of the text window measured in 
character spaces. 

DwtNrows Specifies the height of the text window measured in 
character heights or number of line spaces. 

DwtNtopPosition Specifies the position to display at the top of the 
window. 

DwtNwordWrap Specifies a boolean value that, when True, 
indicates that lines are broken at word breaks and 
text does not run off the right edge of the window. 

DwtNscrollVertical 

DwtNresizeHeight 

Specifies a boolean value that, when True, adds a 
scroll bar that allows the user to scroll vertically 
through the text. 

Specifies a boolean value that, when True, 
indicates that the simple text widget will attempt to 
resize its height to accommodate all the text 
contained in the widget. If this is set to True, the 
text will always be displayed starting from the first 
position in the source, even if instructed otherwise. 
This attribute is ignored if 
DwtNscroll Vertical is True. 

DwtNresizeWidth Specifies a boolean value that, when True, 
indicates that the simple text widget will attempt to 
resize its width to accommodate all the text 
contained in the widget. This argument is ignored if 
DwtNwordWrap is True. 

DwtNval ue Specifies the actual text to display. 

3-318 Subroutines 



DwtNeditable 

DwtNmaxLength 

OwtSText (30wt) 

Specifies a boolean value that, when True, 
indicates that the user can edit the text string in the 
simple text widget. If False, prohibits the user 
from editing the text string. 

Specifies the maximum length of the text string in 
the simple text widget. 

DwtNfocusCallback 

DwtNhelpCallback 

Specifies the callback function or functions called 
when the simple text widget accepted the input focus. 
For this callback, the reason is DwtCRFocus. 

Specifies the callback function or functions called 
when a help request is made. 

DwtNlostFocusCallback 
Specifies the callback function or functions called 
when the simple text widget loses focus. For this 
callback, the reason is DwtCRLostFocus. 

DwtNvalueChangedCallback 
Specifies the callback function or functions called 
when the simple text widget value changed. For this 
callback, the reason is DwtCRVal ueChanged. 

DwtNinsertionPointVisible 
Specifies a boolean value that, when True, 
indicates that the insertion point is marked by a 
blinking text cursor. 

DwtNautoShowInsertPoint 
Specifies a boolean value that, when True, ensures 
that the text visible in the simple text widget window 
will contain the insertion point. This means that if 
the insertion point changes, the contents of the 
simple text widget window may scroll in order to 
bring the insertion point into the window. 

DwtNinsertionPosition 
Specifies the current location of the insertion point. 

DwtNforeground Specifies the pixel for the foreground of the simple 
text widget. 

DwtNfont Specifies the font list to be used for the simple text 
widget. 

Subroutines 3-319 



DwtSText(3Dwt) 

DwtNblinkRate Specifies the blink rate of the text cursor in 
milliseconds. 

DwtNscrollLeftSide 
Specifies a boolean value that, when True, 
indicates that the vertical scroll bar should be placed 
on the left side of the simple text window. This 
attribute is ignored if DwtNscroll Vertical is 
False. 

DwtNhalfBorder Specifies a boolean value that, when True, 
indicates that a border is displayed only on the left 
and bottom edges of the simple text widget. 

DwtNpendingDelete 

DwtNuserData 

Return Value 

Specifies a boolean value that, when True, 
indicates that selected text containing the insertion 
point is deleted when new text is entered. 

Specifies any user private data to be associated with 
the widget. The XUI Toolkit does not interpret this 
data. 

These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

} DwtAnyCallbackStruct; 

int reason; 
XEvent *event; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRFocus 

DwtCRLostFocus 

DwtCRValueChanged 

3-320 Subroutines 

The simple text widget has received the 
input focus. 

The simple text widget has lost the input 
focus. 

The user changed the value of the text 
string in the simple text widget. 



DwtSText (3Dwt) 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
DwtSTextGetString (3Dwt), DwtSTextSetString (3Dwt), DwtSTextReplace 
(3Dwt), DwtSTextGetEditable (3Dwt), DwtSTextSetEditable (3Dwt), 
DwtSTextGetMaxLength (3Dwt), DwtSTextSetMaxLength (3Dwt), 
DwtSTextSetSelection (3Dwt), DwtSTextClearSelection (3Dwt), 
DwtSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-321 



DwtSTextClearSelection (3Dwt) 

Name 
DwtSTextClearSelection - Clears the global selection highlighted in the 
simple text widget. 

Syntax 
void DwtSTextClearSelection( widget, time) 

Widget widget; 
Time time; 

Arguments 

widget 

time 

Description 

Specifies the widget ID. 

Specifies the time of the event that led to the call to 
XSetSelectionOwner. You can pass either a timestamp 
or CurrentTime. Whenever possible, however, use the 
timestamp of the event leading to the call. 

The OwtSTextClearSelection function clears the global selection 
highlighted in the simple text widget. 

See Also 
DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable 
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt), 
DwtSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-322 Subroutines 



Name 

DwtSTextGetEditable (3Dwt) 

DwtSTextGetEditable - Obtains the current edit permission state indicating 
whether the user can edit the text in the simple text widget. 

Syntax 
Boolean DwtSTextGetEditable( widget) 

Widget widget; 

Arguments 

widget Specifies the ID of the simple text widget whose edit 
pennission state you want to obtain. 

Description 
The DwtSTextGetEdi table function returns the current edit­
pennission-state, which indicates whether the user can edit the text in the 
simple text widget. If the function returns True, the user can edit the string 
text in the simple text widget. If it returns False, the user cannot edit the 
text. 

Return Value 
This function returns the current pennission state concerning the editing of 
the text field in the widget. 

See Also 
DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable 
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextSetMaxLength (3Dwt), 
DwtSTextSetSelection (3Dwt), DwtSTextClearSelection (3Dwt), 
DwtSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-323 



DwtSTextGetMaxLength (3Dwt) 

Name 
DwtSTextGetMaxLength - Gets the current maximum allowable length of 
the text string in the simple text widget. 

Syntax 
int DwtSTextGetMaxLength (widget) 

Widget widget; 

Arguments 

widget 

Description 

Specifies the ID of the simple text widget whose maximum 
text string length you want to obtain. 

The DwtSTextGetMaxLength function returns the current maximum 
allowable length of the text string in the simple text widget. 

Return Value 
This function returns the maximum length of the text widget. 

See Also 
DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable 
(3Dwt), DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt), 
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-324 Subroutines 



Name 

DwtSTextGetSelection (3Dwt) 

DwtSTextGetSelection - Retrieves the global selection, if any, currently 
highlighted in the simple text widget. 

Syntax 
char * DwtSTextGetSelection ( widget) 
Widget widget; 

Arguments 

widget Specifies the widget ID. 

Description 
The DwtSTextGetSelection function retrieves the text currently 
highlighted (selected) in the simple text widget. It returns a NULL-pointer if 
no text is selected in the widget. The application is responsible for freeing 
the storage associated with the string by calling XtFree. 

Return Value 
This function returns the text currently highlighted on the screen. 

See Also 
DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable 
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextGetMaxLength (3Dwt), 
DwtSTextSetSelection (3Dwt), DwtSTextClearSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-325 



DwtSTextGetString (3Dwt) 

Name 
DwtSTextGetString - Retrieves the text string from the simple text widget. 

Syntax 
char * DwtSTextGetString( widget) 

Widget widget; 

Arguments 

widget Specifies the ID of the simple text widget 

Description 
The DwtSTextGetString function returns a pointer to the current string 
in the simple text widget window. The application is responsible for freeing 
the storage associated with the string by calling XtFree. 

Return Value 
This function returns the pointer to the string currently displayed in the given 
text widget window. 

See Also 
DwtSTextSetString (3Dwt), DwtSTextReplace (3Dwt), DwtSTextGetEditable 
(3Dwt), DwtSTextSetEditable (3Dwt), DwtSTextGetMaxLength (3Dwt), 
DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt), 
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-326 Subroutines 



Name 

DwtSTextReplace (3Dwt) 

DwtSTextReplace - Replaces a portion of the current text string in the simple 
text widget or inserts a new substring in the text. 

Syntax 
void DwtSTextReplace(widget,fromyos, toyos, value) 

Widget widget; 
int from yos, to yos; 
DwtCompString value; 

Arguments 

widget 

fromyos 

toyos 

value 

Description 

Specifies the ID of the simple text widget whose text string 
you want to replace. 

Specifies the beginning character position within the text 
string marking the text being replaced. 

Specifies the last character position within the text string 
marking the text being replaced. 

Specifies the text to replace part of the current text in the 
simple text widget. 

The DwtSTextReplace function replaces part of the text string in the 
simple text widget. Within the window, the positions are numbered starting 
from 0 and increasing sequentially. For example, to replace the second and 
third characters in the string, from yos should be 1 and to yos should be 3. 
To insert a string after the fourth character,from yos and to yos should both 
be 4. 

See Also 
DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextGetEditable 
(3Dwt), DwtSTextSetEditable (3Dwt), DwtSTextGetMaxLength (3Dwt), 
DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt), 
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-327 



DwtSTextSetEditable (3Dwt) 

Name 
DwtSTextSetEditable - Sets the pennission state that detennines whether the 
user can edit text in the simple text widget. 

Syntax 
void DwtSTextSetEditable( widget, editable) 

Widget widget; 
Boolean editable; 

Arguments 

widget 

editable 

Description 

Specifies the ID of the simple text widget whose edit 
pennission state you want to set. 

Specifies a boolean value that, when True, indicates that 
the user can edit the text string in the simple text widget. If 
False, prohibits the user from editing the text string. 

The DwtSTextSetEdi table function sets the edit pennission state 
infonnation concerning whether the user can edit text in the simple text 
widget. 

See Also 
DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextGetMaxLength 
(3Dwt), DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt), 
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-328 Subroutines 



Name 

DwtSTextSetMaxLength (3Dwt) 

DwtSTextSetMaxLength - Sets the maximum allowable length of the text 
string in the simple text widget. 

Syntax 
void DwtSTextSetMaxLength( widget, max length) 

Widget widget; -
int max_length; 

Arguments 

widget 

Description 

Specifies the ID of the simple text widget whose maximum 
text string length you want to set. 

Specifies the maximum length of the text string in the simple 
text widget. This argument sets the DwtNmaxLength 
attribute associated with DwtSTextCreate. 

The DwtSTextSetMaxLength function sets the maximum allowable 
length of the text in the simple text widget and prevents the user from 
entering text larger than this limit. 

See Also 
DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable 
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt), 
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-329 



DwtSTextSetSelection (3Dwt) 

Name 
DwtSTextSetSelection - Makes the specified text in the simple text widget 
the current global selection and highlights it in the simple text widget. 

Syntax 
void DwtSTextSetSelection (widget, first, last, time) 

Widget widget; 
int first, last; 
Time time; 

Arguments 

widget 

first 

last 

time 

Description 

Specifies the widget ID. 

Specifies the first character position of the selected string. 

Specifies the last character position of the selected string. 

Specifies the time of the event that led to the call to 
XSetSelectionOwner. You can pass either a timestamp 
or Current Time. Whenever possible, however, use the 
timestamp of the event leading to the call. 

The DwtSTextSetSelection function makes the specified text in the 
simple text widget the current global selection and highlights it in the simple 
text widget. Within the text window, first marks the first character position 
and last marks the last position. The field characters are numbered in 
sequence starting at O. 

See Also 
DwtSText (3Dwt), DwtSTextGetString (3Dwt), DwtSTextSetEditable 
(3Dwt), DwtSTextGetMaxLength (3Dwt), DwtSTextGetMaxLength (3Dwt), 
DwtSTextGetSelection (3Dwt), DwtSTextClearSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-330 Subroutines 



DwtSTextSetString (3Dwt) 

Name 
DwtSTextSetString - Sets the text string in the simple text widget. 

Syntax 
void DwtSTextSetString (widget, value) 

Widget widget; 
char * value; 

Arguments 

widget Specifies the ID of the simple text widget whose text string 
you want to set. 

value 

Description 

Specifies the text that replaces all text in the current text 
widget window. 

The DwtSTextSetString function completely changes the string in the 
simple text widget. 

See Also 
DwtSTextGetString (3Dwt), DwtSTextReplace (3Dwt), DwtSTextGetEditable 
(3Dwt), DwtSTextSetEditable (3Dwt), DwtSTextGetMaxLength (3Dwt), 
DwtSTextSetMaxLength (3Dwt), DwtSTextSetSelection (3Dwt), 
DwtSTextClearSelection (3Dwt), DwtSTextGetSelection (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-331 



DwtString (3Dwt) 

Name 
DwtString - Creates a compound-string. 

Syntax 
DwtCompString DwtString(text, charset, direction r to l) 

char * text; - - -
unsigned long charset; 
char direction _r _to _I; 

Arguments 

text 

charset 

Specifies the text string to be converted to a compound­
string. 

Specifies the character set for the compound-string. Values 
for this argument can be found in the required file 
/usr/include/cda def.h. 

direction r to I 

Description 

Specifies the direction in which the text is drawn and wraps. 
You can pass DwtDirectionLeftDown (text is drawn 
from left to right and wraps down); 
DwtDirectionRightUp (text is drawn from left to right 
and wraps up); DwtDirectionLeftDown (text is drawn 
from right to left and wraps down); or 
DwtDirectionLeftUp (text is drawn from right to left 
and wraps up). 

The Dwt St ring function creates a compound-string from information in 
the argument list. It has a simpler interface than the one used for 
DwtCSString. 

Dwt St ring assumes the following default values: 

• For language the default is DwtLanguageNotSpecified. 

• For rend the default is DwtRendMaskNone. The space for the 
resulting compound-string is allocated within the function. After using 
this function, you should free this space by calling XtFree. 

3-332 Subroutines 



DwtString (3Dwt) 

Return Value 
This function returns the resulting compound-string. However, it returns a 
NULL pointer if the text is NULL. 

See Also 
DwtCSString (3Dwt), DwtLatinlString (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-333 



DwtStringFreeContext (3Dwt) 

Name 
DwtStringFreeContext - Frees a compound-string context structure. 

Syntax 
void DwtStringFreeContext ( context) 

DwtCompStringContext * context; 

Arguments 

context 

Description 

Specifies the compound-string context structure initialized by 
DwtStringlnitContext. 

The DwtStringFreeContext function frees the compound-string 
context structure returned by DwtStringlnitContext. When your 
application has finished with the context, it should call 
DwtStringFreeContext. 

See Also 
DwtStringInitContext (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-334 Subroutines 



Name 

DwtStringlnitContext (3Dwt) 

DwtStringInitContext - Initializes a compound-string context structure 
needed by DwtGetNextSegment 

Syntax 
Boolean DwtStringInitContext (context, compound string) 

DwtCompStringContext context; -
DwtCompString compound_string; 

Arguments 

context Specifies the compound-string context structure initialized by 
DwtStringlnitContext. 

compound string 
- Specifies the compound-string. 

Description 
The DwtStringlni tContext function initializes a compound-string 
context structure. The context structure is needed for calling 
DwtGetNextSegment. For performance reasons, 
DwtStringlnitContext is preferred over DwtlnitGetSegment. 

After fetching the necessary segments using DwtGetNextSegment, call 
DwtStringFreeContext to free the context structure. 

Return Value 
This function returns one of these status return constants: 

True 

False 

See Also 

The compound-string context structure has 
been successfully initialized. 
The compound-string context structure has 
not been successfully initialized. 

DwtGetNextSegment (3Dwt), DwtStringFreeContext (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-335 



DwtToggleButton (3Dwt) 

Name 
DwtToggleButton, DwtToggleButtonCreate - Creates a toggle button widget 
for the application to display screen settable switches for the user. 

Syntax 
Widget DwtToggleButton(parent widget, name, x, y, 

label, value, callback, help callback) 
Widget parent widget; 
char * name; -
Position x, y; 
DwtCompString label; 
Boolean value; 
DwtCallbackPtr callback; 
DwtCallbackPtr help _callback; 

Widget DwtToggleButtonCreate (parent_widget, name, 
override _ arglist, override _ argcount) 

Widget parent_widget; 
char *name; 
ArgList override _arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

x 

y 

label 

value 

3-336 Subroutines 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

Specifies the text in the toggle button label/indicator. This 
argument sets the DwtNlabel attribute associated with 
DwtLabelCreate. 

Specifies a boolean value that, when False, indicates the 
button state is off. If True, the button state is on. This 



DwtToggleButton (3Dwt) 

argument sets the DwtNvalue attribute associated with 
DwtToggleButtonCreate. 

callback Specifies the callback function or functions called back when 
the value of the toggle button changes. This argument sets 
the DwtNarmCallback, DwtNdisarmCallback, and 
DwtNvalueChangedCallback attributes associated with 
DwtToggleButtonCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

override _arglist 
Specifies the application override argument list. 

override _ argcount 

Description 

Specifies the number of attributes in the application override 
argument list (override _ arg!ist). 

The DwtToggleButton and DwtToggleButtonCreate functions 
create an instance of a toggle button widget and return its associated widget 
ID. When calling DwtToggleButton, you set the common toggle button 
widget attributes presented in the formal parameter list. For 
Dwt ToggleButtonCreate, however, you specify a list of attribute 
name/value pairs that represent all the possible toggle button widget 
attributes. 

The toggle button widget consists of either a label and indicator button 
combination or simply a pixmap (icon). Toggle buttons imply an on or off 
state. These functions use their attributes to configure the visual 
representation, "looks," and the user interface syntax "feel," for the 
application. Note that the callback data structure includes a value member, 
which allows the callback data function to pass the status of the toggle switch 
back to the application. 

The sizing is affected by spacing, font (affects indicator), and label. See the 
description for DwtLabel and DwtLabelCreate. 

The sizing is affected by these attributes: DwtNspacing, DwtNfont 
(text label), and DwtNlabel. For more information, see DwtLabel and 
DwtLabelCreate. 

Subroutines 3-337 



DwtToggleButton (3Dwt) 

The DwtNindicator size is based on the height of the toggle button 
minus twice the margin height. The DwtNindicator width is equal to 
the indicator height. 

The default margin height is four pixels. The default margin width is five 
pixels. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

3-338 Subroutines 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackptr 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Width of the label or pixmap, 
plus three times 
DwtNmarginWidth, plus 
the width of 
DwtNindicator 
The height of the label or 
pixmap, plus two times 
DwtNmarginHeight 
zero pixels 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 



Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Label Attributes 

DwtNlabelType 
DwtNlabel 
DwtNmarginWidth 

DwtNmarginHeight 

DwtNalignment 
DwtNpixmap 
DwtNmarginLeft 
DwtNmarginRight 
DwtNmarginTop 
DwtNmarginBottom 
DwtNconformToText 

Widget-Specific Attributes 

DwtToggleButton (3Dwt) 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 
DwtFontList 
DwtCallbackPtr 

unsigned char 
DwtCompString 
Dimension 

Dimension 

unsigned char 
Pixmap 
Dimension 
Dimension 
Dimension 
Dimension 
Boolean 

Default foreground color 
Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 
The default XUI Toolkit font 
NULL 

DwtCString 
Widget name 
Two pixels for text 
Zero pixels for pixmap 
Two pixels for text 
Zero pixels for pixmap 
DwtAlignmentCenter 
NULL 
Zero 
Zero 
Zero 
Zero 
True, if the widget is created 
with a width and height of 
zero 
False, if the widget is 
created with a non-zero width 
and height 

You can set the following widget-specifc attributes in the override _ arglist: 

Attribute Name Data Type Default 

DwtNshape unsigned char DwtRectangular 
DwtNvisibleWhenOff Boolean True 
DwtNspacing short 4 pixels 
DwtNpixmapOn Pixmap NULL 
DwtNpixmapOff Pixmap NULL 
DwtNvalue Boolean False 

Subroutines 3-339 



DwtToggleButton (3Dwt) 

DwtNarmCallback 
DwtNdisarmCallback 

DwtNvalueChangedCallback 
DwtNindicator 

DwtCallbackptr 
DwtCallbackptr 

DwtCallbackPtr 

Boolean 

NULL 
NULL 
NULL 
True when the label is 
DwtCString 

F al se when the label is 
DwtPixmap 

DwtNacceleratorText 

DwtNbuttonAccelerator 

DwtNinsensitivePixmapOn 

DwtNinsensitivePixmapOff 

DwtCompString 

char * 
Pixmap 

Pixmap 

NULL 
NULL 
NULL 
NULL 

DwtNshape Specifies the toggle button indicator shape. You can 
pass DwtRectangular or DwtOval. 

DwtNvisibleWhenOff 

DwtNspacing 

DwtNpixmapOn 

DwtNpixmapOff 

DwtNvalue 

Specifies a boolean value that, when True, 
indicates that the toggle button is visible when in the 
off state. 

Specifies the number of pixels between the label and 
the button if DwtNlabelType is 
DwtCompString. 

Specifies the pixmap to be used as the button label if 
DwtNlabelType is DwtPixmap and the toggle 
button is in the on state. 

Specifies the pixmap to be used as the button label if 
DwtNlabelType is DwtPixmap and the toggle 
button is in the off state. 

Specifies a boolean value that, when False, 
indicates the button state is off. If True, the button 
state is on. 

DwtNarmCallback Specifies the callback function or functions called 
when the toggle button is armed. The toggle button 
is armed when the user presses and releases MB 1 
while the pointer is inside the toggle button widget. 
For this callback, the reason is Dwt CRArm. 

DwtNdisarmCallback 

3-340 Subroutines 

Specifies the callback function or functions called 
when the button is disarmed. The button is disarmed 
when the user presses MB 1 while the pointer is 
inside the toggle button widget, but moves the 



DwtToggleButton (3Dwt) 

pointer outside the toggle button before releasing 
MB 1. For this callback, the reason is 
DwtCRDisarm. 

DwtNvalueChangedCallback 

DwtNindicator 

Specifies the callback function or functions called 
when the toggle button value was changed. For this 
callback, the reason is DwtCRVal ueChanged. 

Specifies a boolean value that, when True, signifies 
that the indicator is present in the toggle button. If 
False, signifies that the indicator is not present in 
the toggle button. 

DwtNacceleratorText 
Specifies the compound-string text displayed for the 
accelerator. 

DwtNbuttonAccelerator 
Sets an accelerator on a toggle button widget. 

DwtNinsensitivePixmapOn 
Specifies the pixmap used when the toggle button is 
on and is insensitive. This attribute applies only if 
the toggle button label is specified as a pixmap. 

DwtNinsensitivePixmapOff 
Specifies the pixmap used when the toggle button is 
off and is insensitive. This attribute applies only if 
the toggle button label is specified as a pixmap. 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
int value; 

DwtTogglebuttonCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

Subroutines 3-341 



DwtToggleButton (3Dwt) 

DwtCRVal ueChanged The user activated the toggle button to 
change state. 

Dwt CRArm The user armed the toggle button by 
pressing MB 1 while the pointer was inside 
the toggle button widget. 

DwtCRDisarm The user disarmed the toggle button by 
pressing MB 1 while the pointer was inside 
the toggle button widget, but did not release 
it until after moving the pointer outside the 
toggle button widget. 

DwtCRHelpRequested The user selected Help. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

The value member is set to the toggle button's current state when the 
callback occurred, either True (on) or False (off). 

See Also 
DwtToggleButtonGetState (3Dwt), DwtToggleButtonSetState (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-342 Subroutines 



DwtToggleButtonGadgetCreate (3Dwt) 

Name 
DwtToggleButtonGadgetCreate - Creates a toggle button gadget. 

Syntax 
Widget DwtToggleButtonGadgetCreate (parent_widget, name, 

override arglist, 
override - argcount) 

Widget parent widget; -
char * name; -
ArgList override argUst; 
int override _ argcount; 

Arguments 

parent _widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

override argUst 
- Specifies the application override argument list. 

override _ argcount 

Description 

Specifies the number of attributes in the application override 
argument list (override _ argUst). 

The DwtToggleButtonGadgetCreate function creates an instance of 
the toggle button gadget and returns its associated gadget ID. A toggle 
button gadget is similar in appearance and semantics to a toggle button 
widget. Like all gadgets, Dwt ToggleButtonGadgetCreate does not 
have a window but uses the window of the closest antecedent widget. Thus, 
the antecedent widget provides all event dispatching for the gadget. This 
currently restricts gadgets to being descendents of menu or dialog class (or 
subclass) widgets. 

Subroutines 3-343 



DwtToggleButtonGadgetCreate (3Dwt) 

Inherited Attributes 

Attribute Name 

Rectangle Attributes 
DwtNx 

DwtNy 

DwtNwidth 

DwtNheight 

DwtNborderWidth 
DwtNsensitive 
DwtNancestorSensitive 

Label Attributes 

DwtNlabel 
DwtNalignment 
DwtNdirectionRToL 
DwtNhelpCallback 

Widget-Specific Attributes 

Attribute Name 

DwtNshape 
DwtNvalue 
DwtNvisibleWhenOff 
DwtNvalueChangedCallback 
DwtNbuttonAccelerator 
DwtNacceleratorText 

Data Type 

Position 

Position 

Dimension 

Dimension 

Dimension 
Boolean 
Boolean 

DwtCompString 
unsigned char 
Boolean 
DwtCallbackptr 

Data Type 

unsigned char 
Boolean 
Boolean 
DwtCallbackptr 

char * 
DwtCompString 

Default 

Detennined by the geometry 
manager 
Detennined by the geometry 
manager 
The width of the label plus 
margins 
The height of the label plus 
margins 
zero 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 

Widget name 
DwtAlignmentCenter 

False 
NULL 

Default 

DwtRectangular 
False 

True 
NULL 
NULL 
NULL 

DwtNshape Specifies the toggle button indicator shape. You can 
pass DwtRectangular or DwtOval. 

DwtNvalue Specifies a boolean value that, when False, 

3-344 Subroutines 



DwtToggleButtonGadgetCreate (3Dwt) 

indicates the button state is off. If True, the button 
state is on. 

DwtNvisibleWhenOff 
Specifies a boolean value that, when True, 
indicates that the toggle button is visible when in the 
off state. 

DwtNvalueChangedCallback 
Specifies the callback function or functions called 
when the toggle button value was changed. For this 
callback, the reason is DwtCRValueChanged. 

DwtNbuttonAccelerator 
Sets an accelerator on a toggle button widget. This 
is the same as the DwtNtranslations core 
attribute except that only the left side of the table is 
to be passed as a character string, not compiled. The 
application is responsible for calling 
XtlnstallAllAccelerators to install the 
accelerator where the application needs it. 

DwtNacceleratorText 
Specifies the compound-string text displayed for the 
accelerator. 

Return Value 
This function returns the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent *event; 
int value; 

DwtTogglebuttonCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRValueChanged The user activated the toggle button to 
change state. 

DwtCRHelpRequested The user selected Help. 

Subroutines 3-345 



DwtToggleButtonGadgetCreate (3Dwt) 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

The value member is set to the toggle button's current state when the 
callback occurred, either True (on) or False (oft). 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-346 Subroutines 



OwtToggleButtonGetState (30wt) 

Name 
DwtToggleButtonGetState - Gets the current state of the toggle button. 

Syntax 
Boolean DwtToggleButtonGetState (widget) 

Widget widget; 

Arguments 

widget Specifies the widget ID. 

Description 
The DwtToggleButtonGetState function returns the current state 
(value) of the toggle button, either True (on) or False (off). 

Return Value 
This function returns the toggle button's current state: True (on) or False 
(off). 

See Also 
DwtToggleButton (3Dwt), DwtToggleButtonSetState (3Dwt) 
Guide to the XUl Toolkit: C Language Binding 
Guide to the XUl Toolkit lntrinsics: C Language Binding 

Subroutines 3-347 



DwtToggleButtonSetState (3Dwt) 

Name 
DwtToggleButtonSetState - Sets or changes the current state of the toggle 
button. 

Syntax 
void DwtToggleButtonSetState(widget, value, notify) 

Widget widget; 
Boolean value; 
Boolean notify; 

Arguments 

widget 

value 

notify 

Description 

Specifies the widget ID. 

Specifies a boolean value that, when False, indicates the 
button state is off. If True, the button state is on. This 
argument sets the DwtNvalue attribute associated with 
DwtToggleButtonCreate. 

Specifies a boolean value that, when True, indicates a 
recent change in the on/off state of the toggle button and 
DwtNvalueChangedCallback should be activated with 
the recent change. If Fa 1 s e, no change in state has 
occurred and DwtNval ueChangedCallback should not 
be activated. 

The DwtToggleButtonSetState function sets or changes the toggle 
button's current state (value) within the display. 

See Also 
DwtToggleButton (3Dwt), DwtToggleButtonGetState (3Dwt) 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-348 Subroutines 



DwtUndoCopyToClipboard (3Dwt) 

Name 
DwtUndoCopyToClipboard - Deletes the last item placed on the clipboard. 

Syntax 
int DwtUndoCopyToClipboard(display, window) 

Display * display; 
Window window; 

Arguments 

display 

window 

Description 

Specifies a pointer to the Display structure that was 
returned in a previous call to XOpenDisplay. For 
information on XOpenDisplay and the Display 
structure, see the Guide to the Xlib Library: C Language 
Binding. 

Specifies the window ID that relates the application window 
to the clipboard. The same application instance should pass 
the same window ID to each clipboard function that it calls. 

The DwtUndoCopyToClipboard function deletes the last item placed on 
the clipboard if the item was placed there by an application with the passed 
display and window arguments. Any data item deleted from the clipboard by 
the original call to DwtCopyToClipboard is restored. If the display or 
window IDs do not match the last copied item, no action is taken and this 
function has no effect. 

Return Value 
This function returns one of these status return constants: 

ClipboardSuccess 
ClipboardLocked 

The function is successful. 
The function failed because the clipboard 
was locked by another application. The 
application can continue to call the function 
with the same parameters until the 
clipboard is unlocked. Optionally, the 
application can ask if the user wants to 
keep trying or to give up on the operation. 

Subroutines 3-349 



DwtUndoCopyToClipboard (3Dwt) 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-350 Subroutines 



DwtWindow{3Dwt) 

Name 
DwtWindow, DwtWindowCreate - Creates a window widget for simple 
applications to display in the main window widget work area. 

Syntax 
Widget DwtWindow(parent_widget, name, x, y, width, 

height, callback) 
Widget parent_widget; 
char *name; 
Position x, y; 
Dimension width, height; 
DwtCallbackPtr callback; 

Widget DwtWindowCreate (parent_widget, name, 
override arglist, override argcount) 

Widget parent_widget; -
char *name; 
ArgList override argUst; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name 

x 

y 

width 

height 

callback 

Specifies the name of the created widget. 

Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left corner of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Specifies, in pixels, the placement of the top of the widget 
window relative to the inner upper left comer of the parent 
window. This argument sets the DwtNy core widget 
attribute. 

Specifies in pixels the width of the widget window. This 
argument sets the DwtNwidth core widget attribute. 

Specifies in pixels the height of the widget window. This 
argument sets the DwtNheight core widget attribute. 

Specifies the callback function or functions called when an 
Expo s e event occurs. This argument sets the 
DwtNexposeCallback attribute associated with 

Subroutines 3-351 



DwtWindow(3Dwt) 

DwtWindowCreate. 

override _ argUst 
Specifies the application override argument list. 

override _ argcount 
Specifies the number of attributes in the application override 
argument list (override _ argUst). 

Description 
The DwtWindowand DwtWindowCreate functions create an instance of 
the window widget and return its associated widget ID. The window widget 
simplifies programming allowing you to create an application display directly 
in the main window widget work area. the window widget simplifies 
programming by allowing you to create an application display directly in the 
main window widget work area. When calling DwtWindow, you set the 
window widget attributes presented in the formal parameter list. For 
DwtWindowCreate, you specify a list of attribute name/value pairs that 
represent all the possible window widget attributes. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 

DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 

3-352 Subroutines 

Data Type 

Position 

Position 

Dimension 
Dimension 
Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
Widget-specific 
Widget-specific 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
Setting the sensitivity of the 
window causes all widgets 
contained in that window to 
be set to the same sensitivity 
as the window. 



DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Common Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 
DwtNuserData 
DwtNdirectionRToL 
DwtNfont 
DwtNhelpCallback 

Widget-Specific Attributes 

Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 
unsigned char 

NOT SUPPORTED 

NOT SUPPORTED 

Attribute Name Data Type 

DwtNexposeCallback DwtCallbackPtr 

DwtNexposeCallback 

DwtWindow(3Dwt) 

The bitwise AND of the 
parent widget's 
DwtNsensitiveand 
DwtNancestorSensitive 
attributes 

NULL 
Depth of the parent window 
NULL 
True 
The parent screen 

NULL 

Default foreground color 

Default foreground color 
NULL 
NULL 
DwtDirectionRightDown 

Default 

NULL 

Specifies the callback function or functions called 
when the window had an Expose event. For this 
callback, the reason is DwtCRExpose. 

Return Value 
These functions return the ID of the created widget. 

Subroutines 3-353 



DwtWindow(3Dwt) 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XExposeEvent *event; 
Window w; 

DwtWindowCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRExpose The window widget had an Expo se event. 

The event member is a pointer to the Xlib structure XExposeEvent. This 
structure is associated with exposure event processing, and, specifically, with 
Expo s e events. For information on exposure event processing, see the 
Guide to the Xlib Library: C Language Binding. 

The members of the XExposeEvent structure associated with Expose 
events are window, x, y, width, height, and count. The window member is 
set to the window ID of the exposed (damaged) window. The x and y 
members are set to the coordinates relative to the drawable's origin and 
indicate the upper-left comer of the rectangle. The width and height 
members are set to the size (extent) of the rectangle. The count member is 
set to the number of Expose events that are to follow. If count is set to 
zero (0), no more Expose events follow for this window. However, if 
count is set to nonzero, at least count Expose events and possibly more 
follow for this window. Simple applications that do not want to optimize 
redisplay by distinguishing between subareas of its windows can just ignore 
all Expose events with nonzero counts and perform full redisplays on 
events with zero counts. 

The w member is set to the X window ID where the Expo s e event 
occurred. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

3-354 Subroutines 



Name 

OwtWorkBox (30wt) 

DwtWorkBox, DwtWorkBoxCreate - Creates a work-in-progress box widget 
for the application to display work in progress messages. 

Syntax 
Widget DwtWorkBox(parent_widget, name, defaultyosition, 

x, y, style, label, cancel label, 
callback, help callback) 

Widget parent_widget; -
char *name; 
Boolean default yosition; 
Position x, y; 
int style; 
DwtCompString label, cancel label; 
DwtCallbackPtr callback, help_callback; 

Widget DwtWorkBoxCreate (parent_widget, name, 
override _ arglist, override _ argcount) 

Widget parent_widget; 
char *name; 
ArgList override arglist; 
int override _ argcount; 

Arguments 

parent_widget Specifies the parent widget ID. 

name Specifies the name of the created widget. 

default yosition 
Specifies a boolean value that, when True, causes DwtNx 
and DwtNy to be ignored and forces the default widget 
position. The default widget position is centered in the 
parent window. If False, the specified DwtNx and 
DwtNy attributes are used to position the widget. This 
argument sets the DwtNdefaultPosition attribute 
associated with DwtDialogBoxCreate. 

x Specifies the placement, in pixels, of the left side of the 
widget window relative to the inner upper left comer of the 
parent window. This argument sets the DwtNx core widget 
attribute. 

Subroutines 3-355 



DwtWorkBox (3Dwt) 

y 

style 

label 

Specifies, in pixels, the placement of the upper left comer of 
the widget window relative to the inner upper left comer of 
the parent window. This argument sets the DwtNy core 
widget attribute. 

Specifies the style of the dialog box widget. You can pass 
DwtModal (modal) or DwtModeless (modeless). This 
argument sets the DwtNstyle attribute associated with 
DwtDialogBoxPopupCreate. 

Specifies the text in the message line or lines. This argument 
sets the DwtNlabel attribute associated with 
DwtWorkBoxCreate. 

cancel label Specifies the label for the Cancel push button. If the label is 
a NULL string, the button is not displayed. This argument 
sets the DwtNcancelLabel attribute associated with 

callback 

DwtWorkBoxCreate. 

Specifies the callback function or functions called back when 
the Cancel button is activated. This argument sets the 
DwtNcancelCallback attribute associated with 
DwtWorkBoxCreate. 

help _callback Specifies the callback function or functions called when a 
help request is made. This argument sets the 
DwtNhelpCallback common widget attribute. 

override arglist 
- Specifies the application override argument list. 

override argcount 
- Specifies the number of attributes in the application override 

argument list (override _ arglist). 

Description 
The DwtWorkBox and DwtWorkBoxCreate functions create an instance 
of a work-in-progress box widget and return its associated widget ID. When 
calling DwtWorkBox, you set the work-in-progress box widget attributes 
presented in the formal parameter list. For DwtWorkBoxCreate, 
however, you specify a list of attribute name/value pairs that represent all the 
possible work-in-progress box widget attributes. The work-in-progress box 
widget is a dialog box that allows the application to display work in progress 
messages to the user. When the application determines that an operation will 
take longer than five seconds, it is recommended that the application call this 
function to display a work-in-progress box with a message such as "Work in 

3-356 Subroutines 



DwtWorkBox(3Dwt) 

Progress.lPlease Wait." The work-in-progress box may contain a push 
button labeled "Cancel Operation." Do not include the push button if the 
operation cannot be canceled. If the style is DwtModal when the user 
selects the Cancel push button, the widget is cleared from the screen, but not 
destroyed. The widget can be redisplayed by calling XtManageChild. 

Inherited Attributes 

Attribute Name 

Core Attributes 

DwtNx 

DwtNy 

DwtNwidth 
DwtNheight 
DwtNborderWidth 
DwtNborder 
DwtNborderPixmap 
DwtNbackground 
DwtNbackgroundPixmap 
DwtNcolormap 
DwtNsensitive 
DwtNancestorSensitive 

DwtNaccelerators 
DwtNdepth 
DwtNtranslations 
DwtNmappedWhenManaged 
DwtNscreen 
DwtNdestroyCallback 

Dialog Pop-Up Attributes 

DwtNforeground 
DwtNhighlight 
DwtNhighlightPixmap 

DwtNuserData 

Data Type 

Position 

Position 

Dimension 
Dimension 
Dimension 
Pixel 
Pixmap 
Pixel 
Pixmap 
Colormap 
Boolean 
Boolean 

XtTranslations 
int 
XtTranslations 
Boolean 

Screen * 
DwtCallbackPtr 

Pixel 
Pixel 
Pixmap 

Opaque * 

Default 

Determined by the geometry 
manager 
Determined by the geometry 
manager 
5 pixels 
5 pixels 
One pixel 
Default foreground color 
NULL 
Default background color 
NULL 
Default color map 
True 
The bitwise AND of the 
parent widget's 
DwtNsensitive and 
DwtNancestorSensitive 
attributes 
NULL 
Depth of the parent window 
NULL 
True 
The parent screen 
NULL 

Default foreground color 
Default foreground color 
NULL 
NULL 

Subroutines 3-357 



DwtWorkBox (3Dwt) 

DwtNfont 
DwtNhelpCallback 
DwtNdirectionRToL 
DwtNunits 
DwtNtitle 
DwtNstyle 
DwtNmapCallback 
DwtNunmapCallback 
DwtNfocusCallback 
DwtNtextMergeTranslations 
DwtNmarginWidth 
DwtNmarginHeight 
DwtNdefaultPosition 
DwtNchildOverlap 
DwtNresize 
DwtNtakeFocus 

DwtNnoResize 

DwtNautoUnmanage 
DwtNdefaultButton 
DwtNcancelButton 

Widget-Specific Attributes 

DwtFontList 
DwtCallbackPtr 
NOT SUPPORTED 
NOT SUPPORTED 
DwtCompString 
unsigned char 
DwtCallbackPtr 
DwtCallbackPtr 
DwtCallbackPtr 
NOT SUPPORTED 
Dimension 
Dimension 
Boolean 
NOT SUPPORTED 
unsigned char 

Boolean 

Boolean 

Boolean 
NOT SUPPORTED 
NOT SUPPORTED 

Attribute Name Data Type Default 

The default XUI Toolkit font 
NULL 

Widget name 
DwtModal 
NULL 
NULL 
NULL 

12 pixels 
10 pixels 

False 

DwtResizeShrinkWrap 
True for modal dialog box 
False for modeless dialog 
box 
True (that is, no window 
manager resize button) 
True 

DwtNlabel 
DwtNcancelLabel 
DwtNcancelCallback 

DwtCompString 
DwtCompString 
DwtCallbackptr 

Widget name 
"Cancel" 
NULL 

DwtNlabel Specifies the text in the message line or lines. 

DwtNcancelLabel Specifies the label for the Cancel push button. If the 
label is a NULL string, the button is not displayed. 

DwtNcancelCallback 

3-358 Subroutines 

Specifies the callback function or functions called 
when the user clicks on the Cancel button. For this 
callback, the reason is DwtCRCancel. 



OwtWorkBox (30wt) 

Return Value 
These functions return the ID of the created widget. 

Callback Information 
The following structure is returned to your callback: 
typedef struct { 

int reason; 
XEvent * event; 

} DwtAnyCallbackStruct; 

The reason member is set to a constant that represents the reason why this 
callback was invoked. For this callback, the reason member can be set to: 

DwtCRCancel The user activated the cancel push button. 

DwtCRFocus The work-in-progress box has received the 
input focus. 

DwtCRHelpRequested The user selected Help somewhere in the 
work-in-progress box. 

The event member is a pointer to the Xlib structure XEvent, which 
describes the event that generated this callback. This structure is a union of 
the individual structures declared for each event type. For information on 
XEvent and event processing, see the Guide to the Xlib Library: C 
Language Binding. 

See Also 
Guide to the XUI Toolkit: C Language Binding 
Guide to the XUI Toolkit Intrinsics: C Language Binding 

Subroutines 3-359 





XUI Toolkit Intrinsics 

Insert tabbed 
divider here. 
Then discard 
this sheet. 





Name 

AIiPlanes (3X11 ) 

AllPlanes, BlackPixel, WhitePixel, ConnectionNumber, DefaultColormap, 
DefaultDeptb, DefaultGC, DefaultRootWindow, DefaultScreenOfDisplay, 
DefaultScreen, DefaultVisual, DisplayCells, DisplayPlanes, DisplayString, 
LastKnownRequestProcessed, NextRequest, ProtocolVersion, 
ProtocolRevision, QLength, RootWindow, ScreenCount, ScreenOfDisplay, 
ServerVendor, VendorRelease - Display macros 

Syntax 
AllPlanes( ) 

BlackPixel (display, screen_number) 

WhitePixel (display, screen_number) 

ConnectionNumber( display) 

DefaultColormap( display, screen_number) 

DefaultDeptb( display, screen_number) 

DefaultGC( display, screen number) 

DefaultRootWindow( display) 

DefaultScreenOfDisplay( display) 

DefaultS creen ( display) 

Default Visual (display, screen_number) 

DisplayCells (display, . screen_number) 

DisplayPlanes (display, screen_number) 

DisplayString (display) 

LastKnownRequestProcessed( display) 

NextRequest( display) 

ProtocolVersion (display) 

ProtocolRevision (display) 

QLengtb( display) 

RootWindow (display, screen_number) 

ScreenCount( display) 

Subroutines 3-361 



AIiPlanes (3X11) 

S creenOfDi splay ( display, screen_number) 

Server Vendor( display) 

VendorRelease( display) 

Arguments 

display Specifies the connection to the X server. 

screen_number Specifies the appropriate screen number on the host server. 

Description 
The AllP lanes macro returns a value with all bits set to 1 suitable for use 
in a plane argument to a procedure. 

The BlackPixel macro returns the black pixel value for the specified 
screen. 

The Whi teP ixel macro returns the white pixel value for the specified 
screen. 

The ConnectionNumber macro returns a connection number for the 
specified display. 

The DefaultColormap macro returns the default colormap ID for 
allocation on the specified screen. 

The Defaul tDepth macro returns the depth (number of planes) of the 
default root window for the specified screen. 

The Defaul tGC macro returns the default GC for the root window of the 
specified screen. 

The Defaul tRootWindow macro returns the root window for the default 
screen. 

The DefaultScreenOfDisplay macro returns the default screen of the 
specified display. 

The Defaul tScreen macro returns the default screen number referenced 
in the XOpenDisplay routine. 

The Defaul tVisual macro returns the default visual type for the specified 
screen. 

The DisplayCells macro returns the number of entries in the default 
colormap. 

3-362 Subroutines 



AIiPlanes (3X11) 

The DisplayPlanes macro returns the depth of the root window of the 
specified screen. 

The DisplayString macro returns the string that was passed to 
XOpenDisplay when the current display was opened. 

The LastKnownRequestProcessed macro extracts the full serial 
number of the last request known by Xlib to have been processed by the X 
server. 

The NextRequest macro extracts the full serial number that is to be used 
for the next request. 

The ProtocolVersion macro returns the major version number (11) of 
the X protocol associated with the connected display. 

The ProtocolRevision macro returns the minor protocol revision 
number of the X server. 

The QLength macro returns the length of the event queue for the connected 
display. 

The RootWindow macro returns the root window. 

The ScreenCount macro returns the number of available screens. 

The ScreenOfDisplay macro returns a pointer to the screen of the 
specified display. 

The ServerVendor macro returns a pointer to a null-terminated string that 
provides some identification of the owner of the X server implementation. 

The VendorRelease macro returns a number related to a vendor's release 
of the X server. 

See Also 
BlackPixeIOfScreen(3Xll), ImageByteOrder(3Xl1), IsCursorKey(3Xll) 
Guide to the Xlib Library 

Subroutines 3-363 



BlackPixelOfScreen (3X11 ) 

Name 
BlackPixelOfScreen, WhitePixelOfScreen, CellsOfScreen, 
DefaultColormapOfScreen, DefaultDepthOfScreen, DefaultGCOfScreen, 
DefaultVisualOfScreen, DoesBackingStore, DoesSaveUnders, 
DisplayOfScreen, EventMaskOfScreen, HeightOfScreen, 
HeightMMOfScreen, MaxCmapsOfScreen, MinCmapsOfScreen, 
PlanesOfScreen, RootWindowOfScreen, WidthOfScreen, WidthMMOfScreen 
- screen information macros 

Syntax 
BlackPixelOfScreen( screen) 

WhitePixelOfScreen( screen) 

Cell sOfS creen (screen) 

DefaultColormapOfScreen(screen) 

DefaultDepthOfScreen( screen) 

DefaultGCOfScreen(screen) 

Default VisualOfScreen( screen) 

DoesBackingStore( screen) 

DoesSaveUnders(screen) 

DisplayOfScreen (screen) 

EventMaskOfScreen(screen) 

HeightOfScreen(screen) 

HeightMMOfScreen( screen) 

MaxCmapsOfScreen( screen) 

MinCmapsOfScreen(screen) 

PlanesOfScreen(screen) 

RootWindowOfScreen(screen) 

WidthOfScreen(screen) 

WidthMMOfScreen(screen) 

3-364 Subroutines 



BlackPixelOfScreen (3X11 ) 

Arguments 

screen Specifies a pointer to the appropriate Screen structure. 

Description 
The BlackP ixelOfScreen macro returns the black pixel value of the 
specified screen. 

The Whi teP ixelOfScreen macro returns the white pixel value of the 
specified screen. 

The CellsOfScreen macro returns the number of colonnap cells in the 
default colormap of the specified screen. 

The DefaultColormapOfScreen macro returns the default colormap of 
the specified screen. 

The Defaul tDepthOfScreen macro returns the default depth of the root 
window of the specified screen. 

The Defaul tGCOfScreen macro returns the default GC of the specified 
screen, which has the same depth as the root window of the screen. 

The Defaul tVisualOfScreen macro returns the default visual of the 
specified screen. 

The DoesBackingStore macro returns WhenMapped, NotUseful, or 
Always, which indicate whether the screen supports backing stores. 

The DoesSaveUnders macro returns a Boolean value indicating whether 
the screen supports save unders. 

The DisplayOfScreen macro returns the display of the specified screen. 

The EventMaskOfScreen macro returns the root event mask of the root 
window for the specified screen at connection setup time. 

The HeightOfScreen macro returns the height of the specified screen. 

The HeightMMOfScreen macro returns the height of the specified screen 
in millimeters. 

The MaxCmapsOfScreen macro returns the maximum number of installed 
colormaps supported by the specified screen. 

The MinCmapsOfScreen macro returns the minimum number of installed 
colormaps supported by the specified screen. 

The P lanesOfScreen macro returns the number of planes in the root 
window of the specified screen. 

Subroutines 3-365 



BlackPixelOfScreen (3X11 ) 

The RootWindowOfScreen macro returns the root window of the 
specified screen. 

The WidthOfScreen macro returns the width of the specified screen. 

The Wi dthMMO f Screen macro returns the width of the specified screen in 
millimeters. 

See Also 
AIlPlanes(3Xll), ImageByteOrder(3Xll), IsCursorKey(3Xll) 
Guide to the Xlib Library 

3-366 Subroutines 



Name 

ImageByteOrder (3X11 ) 

ImageByteOrder, BitmapBitOrder, BitmapPad, BitmapUnit, DisplayHeight, 
DisplayHeightMM, DisplayWidth, DisplayWidthMM - image format macros 

Syntax 
ImageByteOrder( display) 

BitmapBitOrder( display) 

BitmapPad (display) 

BitmapUnit (display) 

DisplayHeight( display, screen_number) 

DisplayHeightMM(display, screen_number) 

DisplayWidth( display, screen_number) 

DisplayWidthMM( display, screen number) 

Arguments 

display Specifies the connection to the X server. 

screen_number Specifies the appropriate screen number on the host server. 

Description 
The ImageByteOrder macro specifies the required byte order for images 
for each scanline unit in XY format (bitmap) or for each pixel value in Z 
format. 

The BitmapBitOrder macro returns LSBFirst or MSBFirst to 
indicate whether the leftmost bit in the bitmap as displayed on the screen is 
the least or most significant bit in the unit. 

The Bi tmapP ad macro returns the number of bits that each scanline must 
be padded. 

The Bi tmapUni t macro returns the size of a bitmap's scanline unit in bits. 

The DisplayHeight macro returns the height of the specified screen in 
pixels. 

The DisplayHeightMM macro returns the height of the specified screen in 
millimeters. 

Subroutines 3-367 



ImageByteOrder (3X11 ) 

The DisplayWidth macro returns the width of the screen in pixels. 

The DisplayWidthMM macro returns the width of the specified screen in 
millimeters. 

See Also 
AllPlanes(3Xll), BlackPixeIOfScreen(3Xll), IsCursorKey(3Xll) 
Guide to the Xlib Library 

3-368 Subroutines 



Name 

IsCursorKey (3X11 ) 

IsCursorKey, IsFunctionKey, IsKeypadKey, IsMiscFunctionKey, 
IsModiferKey, IsPFKey - keysym classification macros 

Syntax 
IsCursorKey( keysym) 

IsFunctionKey( keysym) 

IsKeypadKey( keysym) 

IsMiscFunctionKey (keysym) 

IsModifierKey( keysym) 

IsPFKey (keysym) 

Arguments 

keysym Specifies the KeySym that is to be tested. 

Description 
The IsCursorKey macro returns True if the specified KeySym is a cursor 
key. 

The IsFunctionKey macro returns True if the KeySym is a function 
key. 

The I sKeypadKey macro returns True if the specified KeySym is a 
keypad key. 

The IsMiscFunctionKey macro returns True if the specified KeySym is 
a miscellaneous function key. 

The IsModiferKey macro returns True if the specified KeySym is a 
modifier key. 

The IsPFKey macro returns True if the specified KeySym is a PF key. 

See Also 
AIIPlanes(3Xll), BlackPixeIOfScreen(3Xll), ImageByteOrder(3Xll) 
Guide to the Xlib Library 

Subroutines 3-369 



XAddHost (3X11 ) 

Name 
XAddHost, XAddHosts, XListHosts, XRemoveHost, XRemoveHosts, 
XSetAccessControl, XEnableAccessControl, XDisableAccessContro - control 
host access 

Syntax 
XAddHost( display, host) 

Display *display; 
XHostAddress * host; 

XAddHosts (display, hosts, num _hosts) 
Display *display; 
XHostAddress * hosts; 
int num _hosts; 

XHostAddress *XListHosts (display, nhosts _return, state _return) 
Display *display; 
int * nhosts return; 
Bool * stat~return ; 

XRemoveHost( display, host) 
Display *display; 
XHostAddress * host; 

XRemoveHosts( display, hosts, num hosts) 
Display *display; -
XHostAddress * hosts; 
int num _hosts; 

XSetAccessControl( display, mode) 
Display *display; 
int mode; 

XEnableAccessControl( display) 
Display *display; 

XDisableAccessControl( display) 
Display *display; 

Arguments 

display 

host 

hosts 

3-370 Subroutines 

Specifies the connection to the X server. 

Specifies the host that is to be added or removed. 

Specifies each host that is to be added or removed. 



XAddHost{3X11) 

mode Specifies the mode. You can pass EnableAccess or 
DisableAccess. 

nhosts return Returns the number of hosts currently in the access control 
list. 

num hosts 

state return 

Description 

Specifies the number of hosts. 

Returns the state of the access control. 

The XAddHost function adds the specified host to the access control list for 
that display. The server must be on the same host as the client issuing the 
command, or a BadAccess error results. 

XAddHost can generate BadAccess and BadValue errors. 

The XAddHosts function adds each specified host to the access control list 
for that display. The server must be on the same host as the client issuing 
the command, or a BadAccess error results. 

XAddHosts can generate BadAccess and BadValue errors. 

The XListHosts function returns the current access control list as well as 
whether the use of the list at connection setup was enabled or disabled. 
XListHosts allows a program to find out what machines can make 
connections. It also returns a pointer to a list of host structures that were 
allocated by the function. When no longer needed, this memory should be 
freed by calling XFree. 

The XRemoveHost function removes the specified host from the access 
control list for that display. The server must be on the same host as the 
client process, or a BadAccess error results. If you remove your machine 
from the access list, you can no longer connect to that server, and this 
operation cannot be reversed unless you reset the server. 

XRemoveHost can generate BadAccess and BadValue errors. 

The XRemoveHosts function removes each specified host from the access 
control list for that display. The X server must be on the same host as the 
client process, or a BadAccess error results. If you remove your machine 
from the access list, you can no longer connect to that server, and this 
operation cannot be reversed unless you reset the server. 

XRemoveHosts can generate BadAccess and BadValue errors. 

The XSetAccessControl function either enables or disables the use of 
the access control list at each connection setup. 

Subroutines 3-371 



XAddHost (3X11 ) 

XSetAccessControl can generate BadAccess and BadValue errors. 

The XEnableAccessControl function enables the use of the access 
control list at each connection setup. 

XEnableAccessControl can generate a BadAccess error. 

The XDisableAccessControl function disables the use of the access 
control list at each connection setup. 

XDisableAccessControl can generate a BadAccess error. 

Diagnostics 

BadAccess A client attempted to modify the access control list from 
other than the local (or otherwise authorized) host. 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

See Also 
Guide to the Xlib Library 

3-372 Subroutines 



Name 

XAliocColor (3X11 ) 

XAllocColor, XAllocNamedColor, XAllocColorCells, XAllocColorPlanes, 
XFreeColors - allocate and free colors 

Syntax 
Status XAllocColor(display, colormap, screen_in_out) 

Display *display; 
Colormap colormap; 
XColor *screen_in_out; 

Status XAllocNamedColor(display, colormap, color_name, 
screen def return, exact def return) 

DiSplay *display; - -
Colormap colormap; 
char *color name; 
XColor *screen_def_return, *exact_def_return; 

Status XAllocColorCells (display, colormap, contig, plane _masks_return, 
nplanes, pixels_return, npixels) 

Display *display; 
Colormap colormap; 
Bool contig; 
unsigned long plane_masks _return[] ; 
unsigned int nplanes; 
unsigned long pixels return[]; 
unsigned int npixels; 

Status XAllocColorPlanes (display, colormap, contig, pixels_return, ncolors, 
nreds, ngreens, nblues, rmask return, gmask return, bmask return) 

Display *display; - - -
Colormap colormap; 
Bool contig; 
unsigned long pixels _return[] ; 
int ncolors; 
int nreds, ngreens, nblues; 
unsigned long *rmask_return, * gmask _return, *bmask _return; 

XFreeColors(display, colormap, pixels, npixels, planes) 
Display *display; 
Colormap colormap; 
unsigned long pixels []; 
int npixels; 
unsigned long planes; 

Subroutines 3-373 



XAliocColor{3X11 ) 

Arguments 

color name 

colormap 

contig 

display 

Specifies the color name string (for example, red) whose 
color definition structure you want returned. 

Specifies the colormap. 

Specifies a Boolean value that indicates whether the planes 
must be contiguous. 

Specifies the connection to the X server. 

exact_del_return 

ncolors 

npixels 

nplanes 

nreds 
ngreens 
nblues 

pixels 

Returns the exact RGB values. 

Specifies the number of pixel values that are to be returned in 
the pixels_return array. 

Specifies the number of pixels. 

Specifies the number of plane masks that are to be returned 
in the plane masks array. 

Specify the number of red, green, and blue planes. The value 
you pass must be nonnegative. 

Specifies an array of pixel values. 

pixels return Returns an array of pixel values. 

plane mask return 
- - Returns an array of plane masks. 

planes Specifies the planes you want to free. 

rmask return 
gmask-return 
bmask -return Return bit masks for the red, green, and blue planes. 

screen de! return 
- - Returns the closest RGB values provided by the hardware. 

screen in out Specifies and returns the values actually used in the 
colormap. 

3-374 Subroutines 



XAliocColor (3X11 ) 

Description 
The XAllocColor function allocates a read-only colormap entry 
corresponding to the closest RGB values supported by the hardware. 
XAllocColor returns the pixel value of the color closest to the specified 
RGB elements supported by the hardware and returns the RGB values 
actually used. The corresponding colormap cell is read-only. In addition, 
XAllocColor returns nonzero if it succeeded or zero if it failed. Read­
only colormap cells are shared among clients. When the last client 
deallocates a shared cell, it is deallocated. XAllocColor does not use or 
affect the flags in the XColor structure. 

XAllocColor can generate a BadColor error. 

The XAllocNamedColor function looks up the named color with respect 
to the screen that is associated with the specified colormap. It returns both 
the exact database definition and the closest color supported by the screen. 
The allocated color cell is read-only. You should use the ISO Latin-l 
encoding; uppercase and lowercase do not matter. 

XAllocNamedColor can generate a BadColor error. 

The XAllocColorCells function allocates read/write color cells. The 
number of colors must be positive and the number of planes nonnegative, or 
a BadVal ue error results. If ncolors and nplanes are requested, then ncolors 
pixels and nplane plane masks are returned. No mask will have any bits set 
to 1 in common with any other mask or with any of the pixels. By ORing 
together each pixel with zero or more masks, ncolors * 2nplanes distinct pixels 
can be produced. All of these are allocated writable by the request. For 
GrayScale or PseudoColor, each mask has exactly one bit set to 1. For 
DirectColor, each has exactly three bits set to 1. If contig is True and 
if all masks are ORed together, a single contiguous set of bits set to 1 will be 
formed for GrayScale or PseudoColor and three contiguous sets of bits 
set to 1 (one within each pixel subfield) for DirectColor. The RGB 
values of the allocated entries are undefined. XAllocColorCells returns 
nonzero if it succeeded or zero if it failed. 

XAllocColorCells can generate BadColor and BadValue errors. 

The specified ncolors must be positive; and nreds, ngreens, and nblues must 
be nonnegative, or a BadVal ue error results. If ncolors colors, nreds reds, 
ngreens greens, and nblues blues are requested, ncolors pixels are returned; 
and the masks have nreds, ngreens, and nblues bits set to 1, respectively. If 
contig is True, each mask will have a contiguous set of bits set to 1. No 
mask will have any bits set to 1 in common with any other mask or with any 
of the pixels. For DirectColor, each mask will lie within the 

Subroutines 3-375 



XAliocColor (3X11 ) 

corresponding pixel subfield. 
By ~Ring together subsets of masks with each pixel value, ncolors * 
2(nreds+ngreens+nblues) distinct pixel values can be produced. All of these are 
allocated by the request. However, in the colormap, there are only ncolors * 
2 nreds independent red entries, ncolors * 2ngreens independent green entries, 
and ncolors * 2nblues independent blue entries. This is true even for 
PseudoColor. When the colormap entry of a pixel value is changed 
(using XStoreColors, XStoreColor, or XStoreNamedColor), the 
pixel is decomposed according to the masks, and the corresponding 
independent entries are updated. XAllocColorPlanes returns nonzero if 
it succeeded or zero if it failed. 

XAllocColorPlanes can generate BadColor and BadValue errors. 

The XFreeColors function frees the cells represented by pixel,s whose 
values are in the pixels array. The planes argument should not have any bits 
set to 1 in common with any of the pixels. The set of all pixels is produced 
by ~Ring together subsets of the planes argument with the pixels. The 
request frees all of these pixels that were allocated by the client (using 
XAllocColor,XAllocNamedColor, XAllocColorCells, and 
XAllocColorPlanes). Note that freeing an individual pixel obtained 
from XAllocColorPlanes may not actually allow it to be reused until all 
of its related pixels are also freed. 

All specified pixels that are allocated by the client in the colormap are freed, 
even if one or more pixels produce an error. If a specified pixel is not a valid 
index into the colormap, a BadValue error results. If a specified pixel is 
not allocated by the client (that is, is unallocated or is only allocated by 
another client), a BadAccess error results. If more than one pixel is in 
error, the one that gets reported is arbitrary. 

XFreeColors can generate BadAccess, BadColor, and BadValue 
errors. 

Diagnostics 

BadAccess A client attempted to free a color map entry that it did not 
already allocate. 

BadAccess A client attempted to store into a read-only color map entry. 

BadColor A value for a Colormap argument does not name a defined 
Colormap. 

BadVal ue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 

3-376 Subroutines 



See Also 

XAliocColor (3X11 ) 

for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XCreateColormap(3Xll), XQueryColor(3Xll), XStoreColors(3Xll) 
Guide to the Xlib Library 

Subroutines 3-377 



XAliowEvents (3X11 ) 

Name 
XAllowEvents - release queued events 

Syntax 
XAllowEvents (display, event_mode, time) 

Display *display; 
int event mode; 
Time time; 

Arguments 

display 

event mode 

time 

Description 

Specifies the connection to the X server. 

Specifies the event mode. You can pass AsyncPointer, 
SyncPointer,AsyncKeyboard,SyncKeyboard, 
ReplayPointer,ReplayKeyboard,AsyncBoth,or 
SyncBoth. 

Specifies the time. You can pass either a timestamp or 
Current Time. 

The XAllowEvents function releases some queued events if the client has 
caused a device to freeze. It has no effect if the specified time is earlier than 
the last-grab time of the most recent active grab for the client or if the 
specified time is later than the current X server time. 

XAllowEvents can generate a BadValue error. 

Diagnostics 

BadValue 

See Also 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

Guide to the Xlib Library 

3-378 Subroutines 



Name 

XChangeKeyboardControl (3X11 ) 

XChangeKeyboardControl, XGetKeyboardControl, XAutoRepeatOn, 
XAutoRepeatOff, XBell, XQueryKeymap - manipulate keyboard settings 

Syntax 
XChangeKeyboardControl( display, value mask, values) 

Display *display; -
unsigned long value _mask; 
XKeyboardControl *values; 

XGetKeyboardControl( display, values_return) 
Display *display; 
XKeyboardState *values _return; 

XAutoRepeatOn( display) 
Display *display; 

XAutoRepeatOff( display) 
Display *display; 

XBell(display, percent) 
Display *display; 
int percent; 

XQueryKeymap( display, keys_return) 
Display *display; 
char keys _return[32] ; 

Arguments 

display Specifies the connection to the X server. 

keys _return Returns an array of bytes that identifies which keys are 
pressed down. Each bit represents one key of the keyboard. 

percent Specifies the volume for the bell, which can range from -100 
to 100 inclusive. 

value mask Specifies one value for each bit set to 1 in the mask. 

values Specifies which controls to change. This mask is the bitwise 
inclusive OR of the valid control mask bits. 

values return Returns the current keyboard controls in the specified 
XKeyboardState structure. 

Subroutines 3-379 



XChangeKeyboardControl (3X11 ) 

Description 
The XChangeKeyboardControl function controls the keyboard 
characteristics defined by the XKeyboardControl structure. The 
value_mask argument specifies which values are to be changed. 

XChangeKeyboardControl can generate BadMatch and BadValue 
errors. 

The XGetKeyboardControl function returns the current control values 
for the keyboard to the XKeyboardState structure. 

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the 
specified display. 

The XAutoRepeatOff function turns off auto-repeat for the keyboard on 
the specified display. 

The XBell function rings the bell on the keyboard on the specified display, 
if possible. The specified volume is relative to the base volume for the 
keyboard. If the value for the percent argument is not in the range -100 to 
100 inclusive, a BadValue error results. The volume at which the bell 
rings when the percent argument is nonnegative is: 

base - [(base * percent) / 100] + percent 

The volume at which the bell rings when the percent argument is negative is: 

base + [(base * percent) / 100] 

To change the base volume of the bell, use XChangeKeyboardControl. 

XBell can generate a BadValue error. 

The XQueryKeymap function returns a bit vector for the logical state of the 
keyboard, where each bit set to 1 indicates that the corresponding key is 
currently pressed down. The vector is represented as 32 bytes. Byte N (from 
0) contains the bits for keys 8N to 8N + 7 with the least-significant bit in the 
byte representing key 8N. 

Note that the logical state of a device (as seen by client applications) may lag 
the physical state if device event processing is frozen. 

Diagnostics 

BadMatch 

BadValue 

3-380 Subroutines 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 



See Also 

XChangeKeyboardControl (3X11 ) 

for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XChangeKeyboardMapping(3Xll), XSetPointerMapping(3Xll) 
Guide to the Xlib Library 

Subroutines 3-381 



XChangeKeyboardMapping (3X11 ) 

Name 
XChangeKeyboardMapping, XGetKeyboardMapping, XDisplayKeycodes, 
XSetModifierMapping, XGetModifierMapping, XNewModifiermap, 
XInsertModifiermapEntry, XDeleteModifiermapEntry, XFreeModifierMap -
manipulate keyboard encoding 

Syntax 
XChangeKeyboardMapping(display, first _ keycode, keysyms yer _ keycode, 
keysyms, num codes) 

Display *display; 
int first keycode; 
int keysyms yer _ keycode; 
KeySym *keysyms; 
int num _codes; 

KeySym *XGetKeyboardMapping(display, first _ keycode, keycode _count, 
keysyms yer _ keycode _return) 

Display *display; 
KeyCode first _ keycode; 
int keycode count; 
int * keysyms yer _ keycode _return; 

XDisplayKeycodes( display, min _ keycodes _return, max _ keycodes _return) 
Display * display; 
int * min _ keycodes _return, max _ keycodes _return; 

int XSetModifierMapping( display, modmap) 
Display *display; 
XModifierKeymap *modmap; 

XModifierKeymap *XGetModifierMapping( display) 
Display *display; 

XModifierKeymap *XNewModifiermap(max _keys yer _mod) 
int max_keysyer_mod; 

XModifierKeymap *XInsertModifiermapEntry( modmap, keycode _entry, 
modifier) 

XModifierKeymap *modmap; 
KeyCode keycode _entry; 
int modifier; 

3-382 Subroutines 



XChangeKeyboardMapping (3X11 ) 

XModifierKeymap *XDeleteModifiermapEntry(modmap, keycode _entry, 
modifier) 

XModifierKeymap *modmap; 
KeyCode keycode _entry; 
int modifier; 

XFreeModifiermap(modmap) 
XModifierKeymap *modmap; 

Arguments 

display Specifies the connection to the X server. 

first _ keycode Specifies the first KeyCode that is to be changed or returned. 

keycode _count Specifies the number of KeyCodes that are to be returned. 

keycode _entry Specifies the KeyCode. 

keysyms Specifies a pointer to an array of KeySyms. 

keysyms yer _ keycode 
Specifies the number of KeySyms per KeyCode. 

keysyms yer _ keycode _return 
Returns the number of KeySyms per KeyCode. 

max_keysyer_mod 
Specifies the number of KeyCode entries preallocated to the 
modifiers in the map. 

max keycodes return 
- - Returns the maximum number of KeyCodes. 

min keycodes return 
- - Returns the minimum number of KeyCodes. 

modifier Specifies the modifier. 

modmap 

num codes 

Specifies a pointer to the XModifierKeymap structure. 

Specifies the number of KeyCodes that are to be changed. 

Description 
The XChangeKeyboardMapping function defines the symbols for the 
specified number of KeyCodes starting with first_keycode. The symbols for 
KeyCodes outside this range remain unchanged. The number of elements in 
keysyms must be: 

Subroutines 3-383 



XChangeKeyboardMapping (3X11 ) 

num_codes * keysyms_per_keycode 

The specified first_keycode must be greater than or equal to min_keycode 
returned by XDisplayKeycodes, or a BadValue error results. In 
addition, the following expression must be less than or equal to max_keycode 
as returned by XDisplayKeycodes, or a BadValue error results: 

first_keycode + num_codes - 1 

KeySym number N, counting from zero, for KeyCode K has the following 
index in keysyms, counting from zero: 

(K - first_keycode) * keysyms_per_keycode + N 

The specified keysyms_per_keycode can be chosen arbitrarily by the client to 
be large enough to hold all desired symbols. A special KeySym value of 
NoSymbol should be used to fill in unused elements for individual 
KeyCodes. It is legal for NoSymbol to appear in nontrailing positions of the 
effective list for a KeyCode. XChangeKeyboarciMapping generates a 
MappingNotifyevent. 

There is no requirement that the X server interpret this mapping. It is merely 
stored for reading and writing by clients. 

XChangeKeyboarciMapping can generate BadAlloc and BadVal ue 
errors. 

The XGetKeyboarciMapping function returns the symbols for the 
specified number of KeyCodes starting with first_keycode. The value 
specified in first_keycode must be greater than or equal to min_keycode as 
returned by XDisplayKeycodes, or a BadValue error results. In 
addition, the following expression must be less than or equal to max_keycode 
as returned by XDisplayKeycodes: 

first_keycode + keycode_count - 1 

If this is not the case, a BadVal ue error results. The number of elements in 
the KeySyms list is: 

keycode_count * keysyms_per_keycode_return 

KeySym number N, counting from zero, for KeyCode K has the following 
index in the list, counting from zero: 
(K - first_code) * keysyms_per_code_return + N 

The X server arbitrarily chooses the keysyms_per_keycode_return value to be 
large enough to report all requested symbols. A special KeySym value of 
NoSymbol is used to fill in unused elements for individual KeyCodes. To 
free the storage returned by XGetKeyboarciMapping, use XFree. 

3-384 Subroutines 



XChangeKeyboardMapping (3X11 ) 

XGetKeyboarciMapping can generate a BadVal ue error. 

The XDisplayKeycodes function returns the min-keycodes and max­
keycodes supported by the specified display. The minimum number of 
KeyCodes returned is never less than 8, and the maximum number of 
KeyCodes returned is never greater than 255. Not all KeyCodes in this range 
are required to have corresponding keys. 

The XSetModi fie rMapping function specifies the KeyCodes of the keys 
(if any) that are to be used as modifiers. If it succeeds, the X server 
generates a MappingNotify event, and XSetModifierMapping 
returns MappingSuccess. X permits at most eight modifier keys. If more 
than eight are specified in the XModifierKeymap structure, a 
BadLength error results. 

The modifiermap member of the XModifierKeymap structure contains 
eight sets of max_keypermod KeyCodes, one for each modifier in the order 
Shift, Lock, Control, ModI, Mod2, Mod3, Mod4, and ModS. Only 
nonzero KeyCodes have meaning in each set, and zero KeyCodes are 
ignored. In addition, all of the nonzero KeyCodes must be in the range 
specified by min_keycode and max_keycode in the Display structure, or a 
BadValue error results. No KeyCode may appear twice in the entire map, 
or a BadVal ue error results. 

An X server can impose restrictions on how modifiers can be changed, for 
example, if certain keys do not generate up transitions in hardware, if auto­
repeat cannot be disabled on certain keys, or if multiple modifier keys are not 
supported. If some such restriction is violated, the status reply is 
MappingFailed, and none of the modifiers are changed. If the new 
KeyCodes specified for a modifier differ from those currently defined and any 
(current or new) keys for that modifier are in the logically down state, 
XSetModifierMapping returns MappingBusy, and none of the 
modifiers is changed. 

XSetModifierMapping can generate BadAlloc and BadValue errors. 

The XGetModifierMapping function returns a pointer to a newly created 
XModifierKeymap structure that contains the keys being used as 
modifiers. The structure should be freed after use by calling 
XFreeModifiermap. If only zero values appear in the set for any 
modifier, that modifier is disabled. 

The XNewModifiermap function returns a pointer to 
XModifierKeymap structure for later use. 

Subroutines 3-385 



XChangeKeyboardMapping (3X11 ) 

The XlnsertModifiermapEntry function adds the specified KeyCode 
to the set that controls the specified modifier and returns the resulting 
XModifierKeymap structure (expanded as needed). 

The XDeleteModifiermapEntry function deletes the specified 
KeyCode from the set that controls the specified modifier and returns a 
pointer to the resulting XModifierKeymap structure. 

The XFreeModifiermap function frees the specified 
XModifierKeymap structure. 

Diagnostics 

BadAlloc 

BadValue 

The server failed to allocate the requested resource or server 
memory. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

See Also 
XSetPointerMapping(3Xll) 
Guide to the Xlib Library 

3-386 Subroutines 



XChangePointerControl (3X11 ) 

Name 
XChangePointerControl, XGetPointerControl - control pointer 

Syntax 
XChangePointerControl( display, do _ aeeel, do_threshold, aeeel_ numerator, 
aeeel denominator, threshold) 

Display *display; 
Bool do aeeel, do threshold; 
int aeeer numerator, aeeel denominator; 
int threshold; -

XGetPointerControl(display, aeeel numerator return, 
aeeel denominator return, threshold return) -

Display *display; -
int *aeeel numerator return, *aeeel denominator return; 
int *threshold_return; - -

Arguments 

aeeel denominator 
Specifies the denominator for the acceleration multiplier. 

aeeel denominator return 
- Reiiims the denominator for the acceleration multiplier. 

aeeel numerator 
- Specifies the numerator for the acceleration multiplier. 

aeeel numerator return 
- Returns the numerator for the acceleration multiplier. 

display Specifies the connection to the X server. 

do aeeel Specifies a Boolean value that controls whether the values for 
the accel_numerator or accel_denominator are used. 

do threshold Specifies a Boolean value that controls whether the value for 
the threshold is used. 

threshold Specifies the acceleration threshold. 

threshold return 
Returns the acceleration threshold. 

Subroutines 3-387 



XChangePointerControl (3X11 ) 

Description 
The XChangePointerControl function defines how the pointing device 
moves. The acceleration, expressed as a fraction, is a multiplier for 
movement. For example, specifying 3/1 means the pointer moves three times 
as fast as normal. The fraction may be rounded arbitrarily by the X server. 
Acceleration only takes effect if the pointer moves more than threshold pixels 
at once and only applies to the amount beyond the value in the threshold 
argument. Setting a value to -1 restores the default. The values of the 
do_acce1 and do_threshold arguments must be True for the pointer values to 
be set, or the parameters are unchanged. Negative values (other than -1) 
generate a BadVal ue error, as does a zero value for the accel_denominator 
argument. 

XChangePointerControl can generate a BadValue error. 

The XGetPointerControl function returns the pointer's current 
acceleration multiplier and acceleration threshold. 

Diagnostics 

BadValue 

See Also 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

Guide to the Xlib Library 

3-388 Subroutines 



Name 

XChangeSaveSet (3X11 ) 

XChangeSaveSet, XAddToSaveSet, XRemoveFromSaveSet - change a 
client's save set 

Syntax 
XChangeSaveSet(display, w, change_mode) 

Display *display; 
Windoww; 
int change_mode; 

XAddToSaveSet(display, w) 
Display *display; 
Windoww; 

XRemoveFromSaveSet( display, w) 
Display *display; 
Window w; 

Arguments 

change_mode Specifies the mode. You can pass SetModelnsert or 
SetModeDelete. 

display 

w 

Description 

Specifies the connection to the X server. 

Specifies the window that you want to add or delete from the 
client's save-set. 

Depending on the specified mode, XChangeSaveSet either inserts or 
deletes the specified window from the client's save-set. The specified window 
must have been created by some other client, or a BadMa t ch error results. 

XChangeSaveSet can generate BadMatch, BadValue, and 
BadWindow errors. 

The XAddToSaveSet function adds the specified window to the client's 
save-set. The specified window must have been created by some other client, 
or a BadMatch error results. 

XAddToSaveSet can generate BadMatch and BadWindow errors. 

The XRemoveFromSaveSet function removes the specified window from 
the client's save-set. The specified window must have been created by some 
other client, or a BadMa t ch error results. 

Subroutines 3-389 



XChangeSaveSet (3X11 ) 

XRemoveFromSaveSet can generate BadMatch and BadWindow errors. 

Diagnostics 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadVal ue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XReparentWindow(3Xll ) 
Guide to the Xlib Library 

3-390 Subroutines 



XChangeWindowAttributes (3X11 ) 

Name 
XChange Window Attributes, XSetWindow Background, 
XSetWindowBackgroundPixmap, XSetWindowBorder, 
XSetWindowBorderPixmap - change window attributes 

Syntax 
XChangeWindowAttributes(display, w, valuemask, attributes) 

Display *display; 
Window w; 
unsigned long valuemask; 
XSetWindow Attributes *attributes; 

XSetWindowBackground(display, w, backgroundyixel) 
Display *display; 
Window w; 
unsigned long backgroundyixel; 

XSetWindowBackgroundPixmap( display, w, background yixmap) 
Display *display; 
Window w; 
Pixmap background yixmap; 

XSetWindowBorder(display, w, border yixel) 
Display *display; 
Window w; 
unsigned long border yixel; 

XSetWindowBorderPixmap(display, w, border yixmap) 
Display *display; 
Windoww; 
Pixmap border yixmap; 

Arguments 

attributes Specifies the structure from which the values (as specified by 
the value mask) are to be taken. The value mask should have 
the appropriate bits set to indicate which attributes have been 
set in the structure. 

background yixel 
Specifies the pixel that is to be used for the background. 

backgroundyixmap 
Specifies the background pixmap, ParentRelati ve, or 

Subroutines 3-391 



XChangeWindowAttributes (3X11 ) 

None. 

border yixel Specifies the entry in the colorrnap. 

border yixmap Specifies the border pixmap or CopyFrornParent. 

display Specifies the connection to the X server. 

valuemask Specifies which window attributes are defined in the 
attributes argument. This mask is the bitwise inclusive OR 
of the valid attribute mask bits. If valuemask is zero, the 
attributes are ignored and are not referenced. 

w Specifies the window. 

Description 
Depending on the valuemask, the XChangeWindowAttributes function 
uses the window attributes in the XSetWindowAttributes structure to 
change the specified window attributes. Changing the background does not 
cause the window contents to be changed. To repaint the window and its 
background, use XCIearWindow. Setting the border or changing the 
background such that the border tile origin changes causes the border to be 
repainted. Changing the background of a root window to None or 
ParentReIative restores the default background pixmap. Changing the 
border of a root window to CopyFrornParent restores the default border 
pixmap. Changing the win-gravity does not affect the current position of the 
window. Changing the backing-store of an obscured window to 
WhenMapped or Al ways, or changing the backing-planes, backing-pixel, or 
save-under of a mapped window may have no immediate effect. Changing 
the colorrnap of a window (that is, defining a new map, not changing the 
contents of the existing map) generates a ColormapNotify event. 
Changing the colorrnap of a visible window may have no immediate effect on 
the screen because the map may not be installed (see 
XlnstaIIColormap). Changing the cursor of a root window to None 
restores the default cursor. Whenever possible, you are encouraged to share 
colorrnaps. 

Multiple clients can select input on the same window. Their event masks are 
maintained separately. When an event is generated, it is reported to all 
interested clients. However, only one client at a time can select for 
SubstructureRedirectMask, ResizeRedirectMask,and 
ButtonPressMask. If a client attempts to select any of these event masks 
and some other client has already selected one, a BadAccess error results. 
There is only one do-not-propagate-mask for a window, not one per client. 

3-392 Subroutines 



XChangeWindowAttributes (3X11 ) 

XChangeWindowAttributes can generate BadAccess, BadColor, 
BadCursor, BadMatch, BadPixmap, BadValue, and BadWindow 
errors. 

The XSetWindowBackground function sets the background of the 
window to the specified pixel value. Changing the background does not 
cause the window contents to be changed. XSetWindowBackground 
uses a pixmap of undefined size filled with the pixel value you passed. If 
you try to change the background of an InputOnly window, a BadMatch 
error results. 

XSetWindowBackground can generate BadMatch and BadWindow 
errors. 

The XSetWindowBackgroundP ixmap function sets the background 
pixmap of the window to the specified pixmap. The background pixmap can 
immediately be freed if no further explicit references to it are to be made. If 
ParentRelati ve is specified, the background pixmap of the window's 
parent is used, or on the root window, the default background is restored. If 
you try to change the background of an InputOnly window, a BadMatch 
error results. If the background is set to None, the window has no defined 
background. 

XSetWindowBackgroundP ixmap can generate BadMatch, 
BadP ixmap, and BadWindow errors. 

The XSetWindowBorder function sets the border of the window to the 
pixel value you specify. If you attempt to perform this on an InputOnly 
window, a BadMatch error results. 

XSetWindowBorder can generate BadMatch and BadWindow errors. 

The XSetWindowBorderP ixmap function sets the border pixmap of the 
window to the pixmap you specify. The border pixmap can be freed 
immediately if no further explicit references to it are to be made. If you 
specify CopyFromParent, a copy of the parent window's border pixmap is 
used. If you attempt to perform this on an InputOnly window, a 
BadMa t ch error results. 

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and 
BadWindow errors. 

Diagnostics 

BadAccess A client attempted to free a color map entry that it did not 
already allocate. 

BadAccess A client attempted to store into a read-only color map entry. 

Subroutines 3-393 



XChangeWindowAHributes (3X11 ) 

BadColor A value for a Colormap argument does not name a defined 
Colormap. 

BadCursor A value for a Cursor argument does not name a defined 
Cursor. 

BadMa t ch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadMatch An InputOnly window locks this attribute. 

BadPixmap A value for a Pixmap argument does not name a defined 
Pixmap. 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XConfigureWindow(3Xll), XCreateWindow(3Xll), 
XDestroyWindow(3Xl1), XMapWindow(3Xll), XRaiseWindow(3Xll), 
XUnmap Window(3Xl1) 
Guide to the Xlib Library 

3-394 Subroutines 



XClearArea (3X11) 

Name 
XClearArea, XClearWindow - clear area or window 

Syntax 
XClearArea(display, w, x, y, width, height, exposures) 

Display *display; 
Windoww; 
int x, y; 
unsigned int width, height; 
Bool exposures; 

XClearWindow(display, w) 
Display *display; 
Window w; 

Arguments 

Specifies· the connection to the X server. display 

exposures Specifies a Boolean value that indicates if Expose events 
are to be generated. 

w 

width 
height 

x 
y 

Description 

Specifies the window. 

Specify the width and height, which are the dimensions of 
the rectangle. 

Specify the x and y coordinates, which are relative to the 
origin of the window and specify the upper-left corner of the 
rectangle. 

The XClearArea function paints a rectangular area in the specified window 
according to the specified dimensions with the window's background pixel or 
pixmap. The subwindow-mode effectively is ClipByChildren. If width 
is zero, it is replaced with the current width of the window minus x. If 
height is zero, it is replaced with the current height of the window minus y. 
If the window has a defined background tile, the rectangle clipped by any 
children is filled with this tile. If the window has background None, the 
contents of the window are not changed. In either case, if exposures is True, 
one or more Expo s e events are generated for regions of the rectangle that 

Subroutines 3-395 



XClearArea (3X11) 

are either visible or are being retained in a backing store. If you specify a 
window whose class is InputOnly, a BadMatch error results. 

XClearArea can generate BadMatch, BadValue, and BadWindow 
errors. 

The XClearWindow function clears the entire area in the specified window 
and is equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the 
window has a defined background tile, the rectangle is tiled with a plane­
mask of all ones and GXcopy function. If the window has background 
None, the contents of the window are not changed. If you specify a window 
whose class is InputOnly, a BadMatch error results. 

XClearWindow can generate BadMatch and BadWindow errors. 

Diagnostics 

BadMatch An InputOnly window is used as a Drawable. 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XCopyArea(3Xll) 
Guide to the Xlib Library 

3-396 Subroutines 



XConfigureWindow (3X11 ) 

Name 
XConfigure Window, XMove Window, XResize Window, 
XMoveResizeWindow, XSetWindowBorderWidth - configure windows 

Syntax 
XConfigureWindow(display, w, value mask, values) 

Display *display; -
Windoww; 
unsigned int value_mask; 
XWindowChanges *values; 

XMoveWindow(display, w, x, y) 
Display *display; 
Windoww; 
int x, y; 

XResizeWindow(display, w, width, height) 
Display *display; 
Windoww; 
unsigned int width, height; 

XMoveResizeWindow(display, w, x, y, width, height) 
Display *display; 
Windoww; 
int x, y; 
unsigned int width, height; 

XSetWindowBorderWidth(display, w, width) 
Display *display; 
Windoww; 
unsigned int width; 

Arguments 

Specifies the connection to the X server. display 

value mask Specifies which values are to be set using information in the 
values structure. This mask is the bitwise inclusive OR of 
the valid configure window values bits. 

values 

w 

width 

Specifies a pointer to the XWindowChanges structure. 

Specifies the window to be reconfigured, moved, or resized .. 

Specifies the width of the window border. 

Subroutines 3-397 



XConfigureWindow(3X11 ) 

width 
height 

x 
y 

Description 

Specify the width and height, which are the interior 
dimensions of the window. 

Specify the x and y coordinates, which define the new 
location of the top-left pixel of the window's border or the 
window itself if it has no border or define the new position 
of the window relative to its parent. 

The XConfigureWindow function uses the values specified in the 
XWindowChanges structure to reconfigure a window's size, position, 
border, and stacking order. Values not specified are taken from the existing 
geometry of the window. 

If a sibling is specified without a stack_mode or if the window is not actually 
a sibling, a BadMatch error results. Note that the computations for 
BottomIf, TopIf, and Opposite are performed with respect to the 
window's final geometry (as controlled by the other arguments passed to 
XConfigureWindow), not its initial geometry. Any backing store contents 
of the window, its inferiors, and other newly visible windows are either 
discarded or changed to reflect the current screen contents (depending on the 
implementation). 

XConfigureWindow can generate BadMatch, BadValue, and 
BadWindowerrors. 

The XMoveWindow function moves the specified window to the specified x 
and y coordinates, but it does not change the window's size, raise the 
window, or change the mapping state of the window. Moving a mapped 
window mayor may not lose the window's contents depending on if the 
window is obscured by nonchildren and if no backing store exists. If the 
contents of the window are lost, the X server generates Expo s e events. 
Moving a mapped window generates Expose events on any formerly 
obscured windows. 

If the override-redirect flag of the window is False and some other client 
has selected SubstructureRedirectMask on the parent, the X server 
generates a ConfigureRequest event, and no further processing is 
performed. Otherwise, the window is moved. 

XMoveWindow can generate a BadWindow error. 

3-398 Subroutines 



XConfigureWindow{3X11 ) 

The XResizeWindow function changes the inside dimensions of the 
specified window, not including its borders. This function does not change 
the window's upper-left coordinate or the origin and does not restack the 
window. Changing the size of a mapped window may lose its contents and 
generate Expose events. If a mapped window is made smaller, changing its 
size generates Expose events on windows that the mapped window formerly 
obscured. 

If the override-redirect flag of the window is False and some other client 
has selected SubstructureRedirectMask on the parent, the X server 
generates a ConfigureRequest event, and no further processing is 
performed. If either width or height is zero, a BadValue error results. 

XResizeWindow can generate BadValue and BadWindow errors. 

The XMoveResizeWindow function changes the size and location of the 
specified window without raising it. Moving and resizing a mapped window 
may generate an Expose event on the window. Depending on the new size 
and location parameters, moving and resizing a window may generate 
Expo s e events on windows that the window formerly obscured. 

If the override-redirect flag of the window is False and some other client 
has selected SubstructureRedirectMask on the parent, the X server 
generates a ConfigureRequest event, and no further processing is 
performed. Otherwise, the window size and location are changed. 

XMoveResizeWindow can generate BadValue and BadWindow errors. 

The XSetWindowBorderWidth function sets the specified window's 
border width to the specified width. 

XSetWindowBorderWidth can generate a BadWindow error. 

Diagnostics 

BadMatch An InputOnly window is used as a Drawable. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 

Subroutines 3-399 



XConfigureWindow(3X11 ) 

Window. 

See Also 
XChange Window Attributes(3Xll), XCreate Window(3X 11), 
XDestroyWindow(3Xll), XMapWindow(3Xl1), XRaiseWindow(3Xll), 
XUnmapWindow(3Xl1) 
Guide to the Xlib Library 

3-400 Subroutines 



XCopyArea (3X11) 

Name 
XCopyArea, XCopyPlane - copy areas 

Syntax 
XCopyArea(display, src, dest, gc, src_x, srcy, width, height, dest_x, 
desty) 

Display *display; 
Drawable src, dest; 
GCgc; 
int srcy, srcy; 
unsigned int width, height; 
int dest_x, desty; 

XCopyPlane(display, src, dest, gc, src~, srcy, width, height, dest_x, 
dest y, plane) 

Display *display; 
Drawable src, dest; 
GC gc; 
int srcy, srcy; 
unsigned int width, height; 
int dest_x, desty; 
unsigned long plane; 

Arguments 

dest x 
desty 

display 

gc 

plane 

src 
dest 

src x 
srcy 

width 

Specify the x and y coordinates, which are relative to the 
origin of the destination rectangle and specify its upper-left 
comer. 

Specifies the connection to the X server. 

Specifies the GC. 

Specifies the bit plane. You must set exactly one bit to 1. 

Specify the source and destination rectangles to be combined. 

Specify the x and y coordinates, which are relative to the 
origin of the source rectangle and specify its upper-left 
comer. 

Subroutines 3-401 



XCopyArea{3X11 ) 

height 

Description 

Specify the width and height, which are the dimensions of 
both the source and destination rectangles. 

The XCopyArea function combines the specified rectangle of src with the 
specified rectangle of dest. The drawables must have the same root and 
depth, or a BadMatch error results. 

If regions of the source rectangle are obscured and have not been retained in 
backing store or if regions outside the boundaries of the source drawable are 
specified, those regions are not copied. Instead, the following occurs on all 
corresponding destination regions that are either visible or are retained in 
backing store. 

If the destination is a window with a background other than None, 
corresponding regions of the destination are tiled with that background (with 
plane-mask of all ones and GXcopy function). 

Regardless of tiling or whether the destination is a window or a pixmap, if 
graphics-exposures is True, then GraphicsExpose events for all 
corresponding destination regions are generated. If graphics-exposures is 
True but no GraphicsExpose events are generated, a NoExpose event 
is generated. Note that by default graphics-exposures is True in new GCs. 

This function uses these GC components: function, plane-mask, subwindow­
mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask. 

XCopyArea can generate BadDrawable, BadGC, and BadMatch errors. 

The XCopyP lane function uses a single bit plane of the specified source 
rectangle combined with the specified GC to modify the specified rectangle 
of dest. The drawables must have the same root but need not have the same 
depth. If the drawables do not have the same root, a BadMa t ch error 
results. If plane does not have exactly one bit set to 1 and the values of 
planes must be less than 2n , where n is the depth of scr, a BadValue error 
results. 

Effectively, XCopyP lane forms a pixmap of the same depth as the 
rectangle of dest and with a size specified by the source region. It uses the 
foreground/background pixels in the GC (foreground everywhere the bit 
plane in src contains a bit set to 1, background everywhere the bit plane in 
src contains a bit set to 0) and the equivalent of a CopyArea potocol 
request is performed with all the same exposure semantics. This can also be 
thought of as using the specified region of the source bit plane as a stipple 
with a fill-style of FillOpaqueStippled for filling a rectangular area of 
the destination. 

3-402 Subroutines 



XCopyArea (3X11) 

This function uses these GC components: function, plane-mask, foreground, 
background, subwindow-mode, graphics-exposures, clip-x-origin, clip-y­
origin, and clip-mask. 

XCopyP lane can generate BadDrawable, BadGC, BadMatch, and 
BadValue errors. 

Diagnostics 

BadDrawable 

BadGC 

BadMatch 

BadMatch 

BadValue 

See Also 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

A value for a GContext argument does not name a defined 
GContext. 

An InputOnly window is used as a Drawable. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XClearArea(3Xll) 
Guide to the Xlib Library 

Subroutines 3-403 



XCreateColormap (3X11 ) 

Name 
XCreateColormap, XCopyColormapAndFree, XFreeColormap, 
XSetWindowColormap - create, copy, or destroy colormaps 

Syntax 
Colormap XCreateColormap(display, w, visual, aUoe) 

Display *display; 
Window w; 
Visual *visual; 
int aUoe; 

Colormap XCopyColormapAndFree( display, eolormap) 
Display *display; 
Colormap eolormap; 

XFreeColormap( display, eolormap) 
Display *display; 
Colormap eolormap; 

XSetWindowColormap(display, w, eolormap) 
Display *display; 
Windoww; 
Colormap eolormap; 

Arguments 

aUoe 

eolormap 

display 

visual 

W 

3-404 Subroutines 

Specifies the colormap entries to be allocated. You can pass 
AllocNone or AllocAll. 

Specifies the colormap that you want to create, copy, set, or 
destroy. 

Specifies the connection to the X server. 

Specifies a pointer to a visual type supported on the screen. 
If the visual type is not one supported by the screen, a 
BadMatch error results. 

Specifies the window for which you want to create or set a 
colormap. 



XCreateColormap (3X11 ) 

Description 
The XCreateColormap function creates a colonnap of the specified visual 
type for the screen on which the specified window resides and returns the 
colonnap ID associated with it. Note that the specified window is only used 
to detennine the screen. 

The initial values of the colonnap entries are undefined for the visual classes 
GrayScale, PseudoColor, and DirectColor. For StaticGray, 
StaticColor, and TrueColor, the entries have defined values, but those 
values are specific to the visual and are not defined by X. For 
StaticGray, StaticColor, and TrueColor, alloc must be 
AllocNone, or a BadMatch error results. For the other visual classes, if 
alloc is AllocNone, the colonnap initially has no allocated entries, and 
clients can allocate them. For infonnation about the visual types, see Section 
3.1. 

If alloc is AllocAII, the entire colonnap is allocated writable. The initial 
values of all allocated entries are undefined. For GrayScale and 
PseudoColor, the effect is as if an XAllocColorCells call returned 
all pixel values from zero to N - 1, where N is the colormap entries value in 
the specified visual. For DirectColor, the effect is as if an 
XAllocColorP lanes call returned a pixel value of zero and red_mask, 
green_mask, and blue_mask values containing the same bits as the 
corresponding masks in the specified visual. However, in all cases, none of 
these entries can be freed by using XFreeColors. 

XCreateColormap can generate BadAlloc, BadMatch, BadValue, 
and BadWindow errors. 

The XCopyColormapAndFree function creates a colonnap of the same 
visual type and for the same screen as the specified colormap and returns the 
new colormap ID. It also moves all of the client's existing allocation from 
the specified colonnap to the new colorinap with their color values intact and 
their read-only or writable characteristics intact and frees those entries in the 
specified colormap. Color values in other entries in the new colonnap are 
undefined. 

If the specified colonnap was created by the client with alloc set to 
AllocAII, the new colormap is also created with AllocAII, all color 
values for all entries are copied from the specified colonnap, and then all 
entries in the specified colonnap are freed. If the specified colonnap was not 
created by the client with All 0 cAll, the allocations to be moved are all 
those pixels and planes that have been allocated by the client using 
XAllocColor,XAllocNamedColor, XAllocColorCells, or 
XAllocColorP lanes and that have not been freed since they were 

Subroutines 3-405 



XCreateColormap (3X11 ) 

allocated. 

XCopyColormapAndFree can generate BadAlloc and BadColor 
errors. 

The XFreeColormap function deletes the association between the 
colormap resource ID and the colormap and frees the colormap storage. 
However, this function has no effect on the default colormap for a screen. If 
the specified colormap is an installed map for a screen, it is uninstalled (see 
XUninstallColormap). If the specified colormap is defined as the 
colormap for a window (by XCreateWindow, XSetWindowColormap, 
or XChangeWindowAttributes), XFreeColormap changes the 
colormap associated with the window to None and generates a 
ColormapNotifyevent. X does not define the colors displayed for a 
window with a colormap of None. 

XFreeColormap can generate a BadColor error. 

The XSetWindowColormap function sets the specified colormap of the 
specified window. The colormap must have the same visual type as the 
window, or a BadMatch error results. 

XSetWindowColormap can generate BadColor, BadMatch, and 
BadWindow errors. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadColor A value for a Colormap argument does not name a defined 
Colormap. 

BadMatch An InputOnly window is used as a Drawable. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

3-406 Subroutines 



XCreateColormap (3X11 ) 

See Also 
XAllocColor(3Xll), XQueryColor(3Xll), XStoreColors(3Xll) 
Guide to the Xlib Library 

Subroutines 3-407 



XCreateFontCursor (3X11 ) 

Name 
XCreateFontCursor, XCreatePixmapCursor, XCreateGlyphCursor - create 
cursors 

Syntax 
#include <Xll/cursorfont.h> 

Cursor XCreateFontCursor(display, shape) 
Display *display; 
unsigned int shape; 

Cursor XCreatePixmapCursor( display, source, mask, foreground_color, 
background_color,x,y) 

Display *display; 
Pixmap source; 
Pixmap mask; 
XColor *foreground _color; 
XColor *background color; 
unsigned int x, y; -

Cursor XCreateGlyphCursor(display, sourceJont, maskJont, source_char, 
mask char, foreground color, background color) 

Display *display; - -
Font source Jont, maskJont; 
unsigned int source_char, mask_char; 
XColor *foreground _color; 
XColor *background _color; 

Arguments 

background_color 
Specifies the RGB values for the background of the source. 

display Specifies the connection to the X server. 

foreground_color 

mask 

mask char 

maskJont 

shape 

3-408 Subroutines 

Specifies the RGB values for the foreground of the source. 

Specifies the cursor's source bits to be displayed or None. 

Specifies the glyph character for the mask. 

Specifies the font for the mask glyph or None. 

Specifies· the shape of the cursor. 



XCreateFontCursor (3X11 ) 

source Specifies the shape of the source cursor. 

source char Specifies the character glyph for the source. 

source Jont Specifies the font for the source glyph. 

x 
y Specify the x and y coordinates, which indicate the hotspot 

relative to the source's origin. 

Description 
x provides a set of standard cursor shapes in a special font named cursor. 
Applications are encouraged to use this interface for their cursors because the 
font can be customized for the individual display type. The shape argument 
specifies which glyph of the standard fonts to use. 

The hotspot comes from the information stored in the cursor font. The initial 
colors of a cursor are a black foreground and a white background (see 
XRecolorCursor). 

XCreateFontCursor can generate BadAlloc and BadValue errors. 

The XCreateP ixmapCursor function creates a cursor and returns the 
cursor ID associated with it. The foreground and background RGB values 
must be specified using foreground_color and background_color, even if the 
X server only has a StaticGray or GrayScale screen. The foreground 
color is used for the pixels set to 1 in the source, and the background color is 
used for the pixels set to O. 

Both source and mask, if specified, must have depth one (or a BadMa t ch 
error results) but can have any root. The Mask argument defines the shape of 
the cursor. The pixels set to 1 in the mask define which source pixels are 
displayed, and the pixels set to 0 define which pixels are ignored. If no mask 
is given, all pixels of the source are displayed. The mask, if present, must be 
the same size as the pixmap defined by the source argument, or a BadMa t ch 
error results. The hotspot must be a point within the source, or a BadMa t ch 
error results. 

The components of the cursor can be transformed arbitrarily to meet display 
limitations. The pixmaps can be freed immediately if no further explicit 
references to them are to be made. Subsequent drawing in the source or 
mask pixmap has an undefined effect on the cursor. The X server might or 
might not make a copy of the pixmap. 

XCreatePixmapCursor can generate BadAlloc and BadPixmap 
errors. 

Subroutines 3-409 



XCreateFontCursor{3X11 ) 

The XCreateGlyphCursor function is similar to 
XCreateP ixmapCursor except that the source and mask bitmaps are 
obtained from the specified font glyphs. The source_char must be a defined 
glyph in source_font, or a BadValue error results. If mask_font is given, 
mask_char must be a defined glyph in mask_font, or a BadVal ue error 
results. The mask_font and character are optional. 

The origins of the source_char and mask_char (if defined) glyphs are 
positioned coincidently and define the hotspot. The source_char and 
mask_char need not have the same bounding box metrics, and there is no 
restriction on the placement of the hotspot relative to the bounding boxes. If 
no mask_char is given, all pixels of the source are displayed. You can free 
the fonts immediately by calling XFreeFont if no further explicit 
references to them are to be made. 

For 2-byte matrix fonts, the 16-bit value should be fonned with the byte1 
member in the most-significant byte and the byte2 member in the least­
significant byte. 

XCreateGlyphCursor can generate BadAlloc, BadFont, and 
BadVal ue errors. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadFont A value for a Font or GContext argument does not name a 
defined Font. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadPixmap A value for a Pixmap argument does not name a defined 
Pixmap. 

BadVal ue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

3-410 Subroutines 



XCreateFontCursor (3X11 ) 

See Also 
XDefineCursor(3Xll), XRecolorCursor(3Xll) 
Guide to the Xlib Library 

Subroutines 3-411 



XCreateGC (3X11 ) 

Name 
XCreateGC, XCopyGC, XChangeGC, XFreeGC, XGContextFromGC­
create or free graphics contexts 

Syntax 
GC XCreateGC(display, d, valuemask, values) 

Display *display; 
Drawable d; 
unsigned long valuemask; 
XGCValues * values; 

XCopyGC(display, src, valuemask, dest) 
Display *display; 
GC src, dest; 
unsigned long valuemask; 

XChangeGC(display, gc, valuemask, values) 
Display *display; 
GCgc; 
unsigned long valuemask; 
XGCValues * values; 

XFreeGC(display, gc) 
Display *display; 
GC gc; 

GContext XGContextFromGC(gc) 
GCgc; 

Arguments 

d 

dest 

display 

gc 

src 

valuemask 

values 

3-412 Subroutines 

Specifies the drawable. 

Specifies the destination GC. 

Specifies the connection to the X server. 

Specifies the GC. 

Specifies the components of the source GC. 

Specifies which components in the GC are to be set, copied, 
or changed. This argument is the bitwise inclusive OR of 
one or more of the valid GC component mask bits. 

Specifies any values as specified by the valuemask. 



XCreateGC (3X11 ) 

Description 
The XCreateGC function creates a graphics context and returns a GC. The 
GC can be used with any destination drawable having the same root and 
depth as the specified drawable. Use with other drawables results in a 
BadMatch error. 

XCreateGC can generate BadAlloc, BadDrawable, BadFont, 
BadMatch, BadPixmap, and BadValue errors. 

The XCopyGC function copies the specified components from the source GC 
to the destination GC. The source and destination GCs must have the same 
root and depth, or a BadMatch error results. The valuemask specifies 
which component to copy, as for XCreateGC. 

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors. 

The XChangeGC function changes the components specified by valuemask 
for the specified GC. The values argument contains the values to be set. The 
values and restrictions are the same as for XCreateGC. Changing the clip­
mask overrides any previous XSetClipRectangles request on the 
context. Changing the dash-offset or dash-list overrides any previous 
XSetDashes request on the context. The order in which components are 
verified and altered is server-dependent. If an error is generated, a subset of 
the components may have been altered. 

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, 
BadP ixmap, and BadVal ue errors. 

The XFreeGC function destroys the specified GC as well as all the 
associated storage. 

XFreeGC can generate a BadGC error. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadDrawable 

BadFont 

BadGC 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

A value for a Font or GContext argument does not name a 
defined Font. 

A value for a GContext argument does not name a defined 
GContext. 

Subroutines 3-413 



XCreateGC (3X11 ) 

BadMatch An InputOnly window is used as a Drawable. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadPixmap A value for a Pixmap argument does not name a defined 
Pixmap. 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

See Also 
XQueryBestSize(3Xll), XSetArcMode(3Xll), XSetClipOrigin(3Xll), 
XSetFillStyle(3Xll), XSetFont(3Xll), XSetLineAttributes(3Xl1), 
XSetState(3Xl1), XSetTile(3Xl1) 
Guide to the Xlib Library 

3-414 Subroutines 



Name 

XCreatelmage (3X11 ) 

XCreateImage, XGetPixel, XPutPixel, XSubImage, XAddPixel, 
XDestroy Image - image utilities 

Syntax 
XImage *XCreateImage(display, visual, depth,format, offset, data, width, 
height, bitmap yad, bytes yer _line) 

Display *display; 
Visual *visual; 
unsigned int depth; 
intformat; 
int offset; 
char *data; 
unsigned int width; 
unsigned int height; 
int bitmap yad; 
int bytes yer _line; 

unsigned long XGetPixel(ximage, x, y) 
XImage *ximage; 
int x; 
int y; 

int XPutPixel (ximage, x, y, pixel) 
XImage *ximage; 
int x; 
int y; 
unsigned long pixel; 

XImage *XSubImage(ximage, x, y, subimage _width, sub image _height) 
XImage *ximage; 
int x; 
int y; 
unsigned int subimage width; 
unsigned int subimage -height; 

XAddPixel(ximage, value) 
XImage *ximage; 
long value; 

int XDestroylmage(ximage) 
XImage *ximage; 

Subroutines 3-415 



XCreatelmage (3X11 ) 

Arguments 

bitmapyad Specifies the quantum of a scanline (8, 16, or 32). In other 
words, the start of one scanline is separated in client memory 
from the start of the next scanline by an integer multiple of 
this many bits. 

bytes yer _line Specifies the number of bytes in the client image between the 
start of one scanline and the start of the next. 

data 

depth 

display 

format 

height 

offset 

pixel 

Specifies a pointer to the image data. 

Specifies· the depth of the image. 

Specifies the connection to the X server. 

Specifies the format for the image. You can pass 
XYBitmap,XYPixmap,orZPixmap. 

Specifies the height of the image, in pixels. 

Specifies the number of pixels to ignore at the beginning of 
the scanline. 

Specifies the new pixel value. 

subimage _height 
Specifies the height of the new subimage, in pixels. 

sub image width 
- Specifies the width of the new subimage, in pixels. 

value 

visual 

width 

ximage 

x 
y 

Description 

Specifies the constant value that is to be added. 

Specifies a pointer to the visual. 

Specifies the width of the image, in pixels. 

Specifies a pointer to the image. 

Specify the x and y coordinates. 

The XCreateImage function allocates the memory needed for an XImage 
structure for the specified display but does not allocate space for the image 
itself. Rather, it initializes the structure byte-order, bit-order, and bitmap-unit 
values from the display and returns a pointer to the XImage structure. The 
red, green, and blue mask values are defined for Z format images only and 
are derived from the Visual structure passed in. Other values also are 
passed in. The offset permits the rapid displaying of the image without 

3-416 Subroutines 



XCreatelmage (3X11 ) 

requiring each scanline to be shifted into position. If you pass a zero value 
in bytes_per_Iine, Xlib assumes that the scanlines are contiguous in memory 
and calculates the value of bytes_per_Iine itself. 

Note that when the image is created using XCreatelmage, XGetlmage, 
or XSublmage, the destroy procedure that the XDestroylmage function 
calls frees both the image structure and the data pointed to by the image 
structure. 

The basic functions used to get a pixel, set a pixel, create a subimage, and 
add a constant offset to a Z format image are defined in the image object. 
The functions in this section are really macro invocations of the functions in 
the image object and are defined in <Xll/Xutil. h>. 

The XGetPixel function returns the specified pixel from the named image. 
The pixel value is returned in normalized format (that is, the least-significant 
byte of the long is the least-significant byte of the pixel). The image must 
contain the x and y coordinates. 

The XPutPixel function overwrites the pixel in the named image with the 
specified pixel value. The input pixel value must be in normalized format 
(that is, the least-significant byte of the long is the least-significant byte of 
the pixel). The image must contain the x and y coordinates. 

The XSublmage function creates a new image that is a subsection of an 
existing one. It allocates the memory necessary for the new Xlmage 
structure and returns a pointer to the new image. The data is copied from the 
source image, and the image must contain the rectangle defined by x, y, 
subimage_ width, and subimage_height. 

The XAddP ixel function adds a constant value to every pixel in an image. 
It is useful when you have a base pixel value from allocating color resources 
and need to manipulate the image to that form. 

The XDestroylmage function deallocates the memory associated with the 
Xlmage structure. 

See Also 
XPutlmage(3Xll) 
Guide to the Xlib Library 

Subroutines 3-417 



XCreatePixmap (3X11 ) 

Name 
XCreatePixmap, XFreePixmap - create or destroy pixmaps 

Syntax 
Pixmap XCreatePixmap(display, d, width, height, depth) 

Display *display; 
Drawabled; 
unsigned int width, height; 
unsigned int depth; 

XFreePixmap(display, pixmap) 
Display *display; 
Pixmap pixmap; 

Arguments 

d 

depth 

display 

pixmap 

width 
height 

Description 

Specifies which screen the pixmap is created on. 

Specifies the depth of the pixmap. 

Specifies the connection to the X server. 

Specifies the pixmap. 

Specify the width and height, which define the dimensions of 
the pixmap. 

The XCreatePixmap function creates a pixmap of the width, height, and 
depth you specified and returns a pixmap ID that identifies it. It is valid to 
pass an InputOnly window to the drawable argument. The width and 
height arguments must be nonzero, or a BadValue error results. The depth 
argument must be one of the depths supported by the screen of the specified 
drawable, or a BadVal ue error results. 

The server uses the specified drawable to determine on which screen to create 
the pixmap. The pixmap can be used only on this screen and only with other 
drawables of the same depth (see XCopyP lane for an exception to this 
rule). The initial contents of the pixmap are undefined. 

XCreateP ixmap can generate BadAlloc, BadDrawable, and 
BadVal ue errors. 

3-418 Subroutines 



XCreatePixmap (3X11 ) 

The XFreePixmap function first deletes the association between the 
pixmap ID and the pixmap. Then, the X server frees the pixmap storage 
when there are no references to it. The pixmap should never be referenced 
again. 

XFreePixmap can generate a BadPixmap error. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadDrawable 
A value for a Drawable argument does not name a defined 
Window or Pixmap. 

BadPixmap A value for a Pixmap argument does not name a defined 
Pixmap. 

BadVal ue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

See Also 
Guide to the Xlib Library 

Subroutines 3-419 



XCreateRegion (3X11 ) 

Name 
XCreateRegion, XSetRegion, XDestroyRegion - create or destroy regions 

Syntax 
Region XCreateRegionO 

XSetRegion(display, gc, r) 
Display *display; 
GCgc; 
Region r; 

XDestroyRegion (r) 
Region r; 

Arguments 

display 

gc 

r 

Description 

Specifies the connection to the X server. 

Specifies the GC. 

Specifies the region. 

The XCreateRegion function creates a new empty region. 

The XSetRegion function sets the clip-mask in the GC to the specified 
region. Once it is set in the GC, the region can be destroyed. 

The XDestroyRegion function deallocates the storage associated with a 
specified region. 

See Also 
XEmptyRegion(3Xll), XIntersectRegion(3Xll) 
Guide to the Xlib Library 

3-420 Subroutines 



XCreateWindow {3X11 } 

Name 
XCreate Window, XCreateSimple Window - create windows 

Syntax 
Window XCreateWindow(display, parent, x, y, width, height, border width, 
depth, class, visual, valuemask, attributes) -

Display *display; 
Window parent; 
int x, y; 
unsigned int width, height; 
unsigned int border width; 
int depth; -
unsigned int class; 
Visual *visual 
unsigned long valuemask; 
XSetWindow Attributes *attributes; 

Window XCreateSimpleWindow(display, parent, x, y, width, height, 
border _width, border, background) 

Display *display; 
Window parent; 
int x, y; 
unsigned int width, height; 
unsigned int border width; 
unsigned long border; 
unsigned long background; 

Arguments 

attributes Specifies the structure from which the values (as specified by 
the value mask) are to be taken. The value mask should have 
the appropriate bits set to indicate which attributes have been 
set in the structure. 

background Specifies the background pixel value of the window. 

border Specifies the border pixel value of the window. 

border width Specifies the width of the created window's border in pixels. 

class Specifies the created window's class. You can pass 
InputOutput,InputOnly,orCopyFromParent. A 

Subroutines 3-421 



XCreateWindow (3X11 ) 

depth 

display 

parent 

valuemask 

visual 

width 
height 

x 
y 

Description 

class of CopyFromParent means the class is taken from 
the parent. 

Specifies the window's depth. A depth of 
CopyFromParent means the depth is taken from the 
parent. 

Specifies the connection to the X server. 

Specifies the parent window. 

Specifies which window attributes are defined in the 
attributes argument. This mask is the bitwise inclusive OR 
of the valid attribute mask bits. If valuemask is zero, the 
attributes are ignored and are not referenced. 

Specifies the visual type. A visual of CopyFromParent 
means the visual type is taken from the parent. 

Specify the width and height, which are the created window's 
inside dimensions and do not include the created window's 
borders. 

Specify the x and y coordinates, which are the top-left 
outside corner of the window's borders and are relative to the 
inside of the parent window's borders. 

The XCreateWindow function creates an unmapped subwindow for a 
specified parent window, returns the window ID of the created window, and 
causes the X server to generate a CreateNotify event. The created 
window is placed on top in the stacking order with respect to siblings. 

The border_width for an InputOnly window must be zero, or a 
BadMatch error results. For class InputOutput, the visual type and 
depth must be a combination supported for the screen, or a BadMa t ch error 
results. The depth need not be the same as the parent, but the parent must 
not be a window of class InputOnly, or a BadMatch error results. For 
an InputOnly window, the depth must be zero, and the visual must be one 
supported by the screen. If either condition is not met, a BadMatch error 
results. The parent window, however, may have any depth and class. If you 
specify any invalid window attribute for a window, a BadMa t ch error 
results. 

3-422 Subroutines 



XCreateWindow (3X11 ) 

The created window is not yet displayed (mapped) on the user's display. To 
display the window, call XMapWindow. The new window initially uses the 
same cursor as its parent. A new cursor can be defined for the new window 
by calling XDefineCursor. The window will not be visible on the screen 
unless it and all of its ancestors are mapped and it is not obscured by any of 
its ancestors. 

XCreateWindow can generate BadAlloc BadColor, BadCursor, 
BadMatch, BadP ixmap, BadVal ue, and BadWindow errors. 

The XCreateSimpleWindow function creates an unmapped 
InputOutput subwindow for a specified parent window, returns the 
window ID of the created window, and causes the X server to generate a 
CreateNotifyevent. The created window is placed on top in the 
stacking order with respect to siblings. Any part of the window that extends 
outside its parent window is clipped. The border_width for an InputOnly 
window must be zero, or a BadMatch error results. 
XCreateSimpleWindow inherits its depth, class, and visual from its 
parent. All other window attributes, except background and border, have 
their default values. 

XCreateSimpleWindow can generate BadAlloc, BadMatch, 
BadVal ue, and BadWindow errors. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadColor A value for a Colormap argument does not name a defined 
Colormap. 

BadCursor A value for a Cursor argument does not name a defined 
Cursor. 

BadMatch The values do not exist for an InputOnly window. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadPixmap A value for a Pixmap argument does not name a defined 
Pixmap. 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 

Subroutines 3-423 



XCreateWindow (3X11 ) 

alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XChange Window Attributes(3Xll), XConfigure Window(3Xll), 
XDestroyWindow(3Xll), XMapWindow(3Xll), XRaiseWindow(3Xll), 
XUnmap Window(3Xll) 
Guide to the Xlib Library 

3-424 Subroutines 



XDefineCursor (3X11 ) 

Name 
XDefineCursor, XUndefineCursor - define cursors 

Syntax 
XDefineCursor( display, w, cursor) 

Display *display; 
Window w; 
Cursor cursor; 

XUndefineCursor( display, w) 
Display *display; 
Window w; 

Arguments 

cursor 

display 

Specifies the cursor that is to be displayed or None. 

Specifies the connection to the X server. 

w Specifies the window. 

Description 
If a cursor is set, it will be used when the pointer is in the window. If the 
cursor is None, it is equivalent to XUndefineCursor. 

XDefineCursor can generate BadCursor and BadWindow errors. 

The XUndefineCursor undoes the effect of a previous 
XDefineCursor for this window. When the pointer is in the window, the 
parent's cursor will now be used. On the root window, the default cursor is 
restored. 

XUndefineCursor can generate a BadWindow error. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadCursor A value for a Cursor argument does not name a defined 
Cursor. 

BadWindow A value for a Window argument does not name a defined 
Window. 

Subroutines 3-425 



XDefineCursor (3X11 ) 

See Also 
XCreateFontCursor(3X 11), XRecolorCursor(3Xll) 
Guide to the Xlib Library 

3-426 Subroutines 



XDestroyWindow (3X11 ) 

Name 
XDestroyWindow, XDestroySubwindows - destroy windows 

Syntax 
XDestroyWindow(display, w) 

Display *display; 
Window w; 

XDestroySubwindows (display, w) 
Display *display; 
Window w; 

Arguments 

display 

w 

Description 

Specifies the connection to the X server. 

Specifies the window. 

The XDestroyWindow function destroys the specified window as well as 
all of its subwindows and causes the X server to generate a 
DestroyNotify event for each window. The window should never be 
referenced again. If the window specified by the w argument is mapped, it is 
unmapped automatically. The ordering of the DestroyNotify events is 
such that for any given window being destroyed, DestroyNotify is 
generated on any inferiors of the window before being generated on the 
window itself. The ordering among siblings and across subhierarchies is not 
otherwise constrained. If the window you specified is a root window, no 
windows are destroyed. Destroying a mapped window will generate 
Expo s e events on other windows that were obscured by the window being 
destroyed. 

XDestroyWindow can generate a BadWindow error. 

The XDestroySubwindows function destroys all inferior windows of the 
specified window, in bottom-to-top stacking order. It causes the X server to 
generate a DestroyNotify event for each window. If any mapped 
subwindows were actually destroyed, XDestroySubwindows causes the X 
server to generate Expose events on the specified window. This is much 
more efficient than deletmg many windows one at a time because much of 
the work need be performed only once for all of the windows, rather than for 
each window. The subwindows should never be referenced again. 

Subroutines 3-427 



XDestroyWindow{3X11 ) 

XDestroySubwindows can generate a BadWindow error. 

Diagnostics 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XChangeWindowAttributes(3Xll), XConfigureWindow(3Xll), 
XCreateWindow(3Xll), XMapWindow(3Xll), XRaiseWindow(3Xll), 
XUnmapWindow(3Xll) 
Guide to the Xlib Library 

3-428 Subroutines 



XDrawArc (3X11 ) 

Name 
XDraw Arc, XDraw Arcs - draw arcs 

Syntax 
XDrawArc(display, d, gc, x, y, width, height, angle], angle2) 

Display *display; 
Drawable d; 
GCgc; 
int x, y; 
unsigned int width, height; 
int angle] , angle2; 

XDrawArcs(display, d, gc, arcs, narcs) 
Display *display; 
Drawable d; 
GCgc; 
XArc *arcs; 
int narcs; 

Arguments 

angle] 

angle2 

arcs 

d 

display 

gc 

narcs 

width 
height 

x 
y 

Specifies the start of the arc relative to the three-o'clock 
position from the center, in units of degrees * 64. 

Specifies the path and extent of the arc relative to the start of 
the arc, in units of degrees * 64. 

Specifies a pointer to an array of arcs. 

Specifies the drawable. 

Specifies the connection to the X server. 

Specifies the GC. 

Specifies the number of arcs in the array. 

Specify the width and height, which are the major and minor 
axes of the arc. 

Specify the x and y coordinates, which are relative to the 
origin of the drawable and specify the upper-left corner of the 
bounding rectangle. 

Subroutines 3-429 



XDrawArc (3X11) 

Description 
XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws 
multiple circular or elliptical arcs. Each arc is specified by a rectangle and 
two angles. The center of the circle or ellipse is the center of the rectangle, 
and the major and minor axes are specified by the width and height. Positive 
angles indicate counterclockwise motion, and negative angles indicate 
clockwise motion. If the magnitude of angle2 is greater than 360 degrees, 
XDrawArc or XDrawArcs truncates it to 360 degrees. 

For an arc specified as [x, y, width, height, angle 1, angle 2], the origin of 

th . d' . [widtli height] d h . fi . I h' e major an mmor axes IS at x+ -2-' y+ 2 ,an t e m rute y t m 

path describing the entire circle or ellipse intersects the horizontal axis at 

[ height] d [ 'd h height] d ' th' al ' x, y+ 2 an x+ WI t , y+ 2 an mtersects e vertIc axIS at 
width width, , 

[x+-
2
-, y] and [x+-

2
-, y+helght], These coordmates can be 

fractional and so are not truncated to discrete coordinates. The path should 
be defined by the ideal mathematical path. For a wide line with line-width 
lw, the bounding outlines for filling are given by the two infinitely thin paths 
consisting of all points whose perpendicular distance from the path of the 
circle/ellipse is equal to Iw/2 (which may be a fractional value). The cap­
style and join-style are applied the same as for a line corresponding to the 
tangent of the circle/ellipse at the endpoint. 

For an arc specified as [x, y, width, height, angle 1, angle 2], the angles 
must be specified in the effectively skewed coordinate system of the ellipse 
(for a circle, the angles and coordinate systems are identical). The 
relationship between these angles and angles expressed in the normal 
coordinate system of the screen (as measured with a protractor) is as follows: 

skewed-angle = atan [tan(nOrmal-angle)* wi~th 1 + adjust 
height 

The skewed-angle and normal-angle are expressed in radians (rather than in 
degrees scaled by 64) in the range [0, 21t] and where atan returns a value in 

~e range [- ~, ~] and adjust is: 

o for normal-angle in the range [0, ~] 

1t for nonnal-angle in the range [ i, 3; 1 

21t for normal-angle in the range [ ; , 21t] 

3-430 Subroutines 



XDrawArc (3X11 ) 

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more 
than once. If two arcs join correctly and if the line-width is greater than zero 
and the arcs intersect, XDrawArc and XDrawArcs do not draw a pixel 
more than once. Otherwise, the intersecting pixels of intersecting arcs are 
drawn multiple times. Specifying an arc with one endpoint and a clockwise 
extent draws the same pixels as specifying the other endpoint and an 
equivalent counterclockwise extent, except as it affects joins. 

If the last point in one arc coincides with the first point in the following arc, 
the two arcs will join correctly. If the first point in the first arc coincides with 
the last point in the last arc, the two arcs will join correctly. By specifying 
one axis to be zero, a horizontal or vertical line can be drawn. Angles are 
computed based solely on the coordinate system and ignore the aspect ratio. 

Both functions use these GC components: function, plane-mask, line-width, 
line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, 
clip-y-origin, and clip-mask. They also use these GC mode-dependent 
components: foreground, background, tile, stipple, tile-stipple-x-origin, tile­
stipple-y-origin, dash-offset, and dash-list. 

XDrawArc XDrawArcs and can generate BadDrawable, BadGC, and 
BadMatch errors. 

Diagnostics 

BadDrawable 

BadGC 

BadMatch 

BadMatch 

See Also 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

A value for a GContext argument does not name a defined 
GContext. 

An InputOnly window is used as a Drawable. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

XDrawLine(3Xll), XDrawPoint(3Xll), XDrawRectangle(3Xll) 
Guide to the Xlib Library 

Subroutines 3-431 



XDrawlmageString (3X11 ) 

Name 
XDrawImageString, XDrawImageString16 - draw image text 

Syntax 
XDraw ImageString( display, d, gc, x, y, string, length) 

Display *display; 
Drawable d; 
GC gc; 
int x, y; 
char * string; 
int length; 

XDraw ImageString 16( display, d, gc, x, y, string, length) 
Display *display; 
Drawable d; 
GCgc; 
int x, y; 
XChar2b * string; 
int length; 

Arguments 

d 

display 

gc 

length 

string 

x 
y 

Description 

Specifies the drawable. 

Specifies the connection to the X server. 

Specifies the GC. 

Specifies the number of characters in the string argument. 

Specifies the character string. 

Specify the x and y coordinates, which are relative to the 
origin of the specified drawable and define the origin of the 
first character. 

The XDrawlmageString16 function is similar to XDrawlmageString 
except that it uses 2-byte or 16-bit characters. Both functions also use both 
the foreground and background pixels of the GC in the destination. 

3-432 Subroutines 



XDrawlmageString (3X11 ) 

The effect is first to fill a destination rectangle with the background pixel 
defined in the GC and then to paint the text with the foreground pixel. The 
upper-left corner of the filled rectangle is at: 

[x, y - font-ascent] 

The width is: 

overall-width 

The height is: 

font-ascent + font-descent 

The overall-width, font-ascent, and font-descent are as would be returned by 
XQueryTextExtents using gc and string. The function and fill-style 
defined in the GC are ignored for these functions. The effective function is 
GXcopy, and the effective fill-style is FillSolid. 

For fonts defined with 2-byte matrix indexing and used with 
XDrawlmageString, each byte is used as a byte2 with a by tel of zero. 

Both functions use these GC components: plane-mask, foreground, 
background, font, subwindow-mode, clip-x-origin, clip-y-origin, and clip­
mask. 

XDrawlmageString XDrawlmageString16 and can generate 
BadDrawable, BadGC, and BadMatch errors. 

Diagnostics 

BadDrawable 
A value for a Drawable argument does not name a defined 
Window or Pixmap. 

BadGC A value for a GContext argument does not name a defined 
GContext. 

BadMatch An InputOnly window is used as a Drawable. 

BadMa t ch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

See Also 
XDrawString(3Xll), XDrawText(3Xll) 
Guide to the Xlib Library 

Subroutines 3-433 



XDrawLine (3X11 ) 

Name 
XDrawLine, XDrawLines, XDrawSegments - draw lines and polygons 

Syntax 
XDrawLine(display, d, ge, xl, yl, x2, y2) 

Display *display; 
Drawable d; 
GC ge; 
int xl, yl, x2, y2; 

XDrawLines(display, d, ge,points, npoints, mode) 
Display *display; 
Drawable d; 
GCge; 
XPoint *points; 
int npoints; 
int mode; 

XDrawSegments(display, d, ge, segments, nsegments) 
Display *display; 
Drawable d; 
GCge; 
XSegment * segments; 
int nsegments; 

Arguments 

d 

display 

ge 

mode 

npoints 

nsegments 

points 

segments 

xl 
yl 

3-434 Subroutines 

Specifies the drawable. 

Specifies the connection to the X server. 

Specifies the GC. 

Specifies the coordinate mode. You can pass 
CoordModeOrigin or CoordModePrevious. 

Specifies the number of points in the array. 

Specifies the number of segments in the array. 

Specifies a pointer to an array of points. 

Specifies a pointer to an array of segments. 



x2 
y2 

Description 

XDrawLine (3X11 ) 

Specify the points (xl, yl) and (x2, y2) to be connected. 

The XDrawLine function uses the components of the specified GC to draw 
a line between the specified set of points (xl, yl) and (x2, y2). It does not 
perform joining at coincident endpoints. For any given line, XDrawLine 
does not draw a pixel more than once. If lines intersect, the intersecting 
pixels are drawn multiple times. 

The XDrawLines function uses the components of the specified GC to 
draw npoints-Ilines between each pair of points (point[i], point[i+l]) in the 
array of XPoint structures. It draws the lines in the order listed in the 
array. The lines join correctly at all intermediate points, and if the first and 
last points coincide, the first and last lines also join correctly. For any given 
line, XDrawLines does not draw a pixel more than once. If thin (zero 
line-width) lines intersect, the intersecting pixels are drawn multiple times. If 
wide lines intersect, the intersecting pixels are drawn only once, as though 
the entire PolyLine protocol request were a single, filled shape. 
CoordModeOrigin treats all coordinates as relative to the origin, and 
CoordModePrevious treats all coordinates after the first as relative to the 
previous point. 

The XDrawSegrnents function draws multiple, unconnected lines. For each 
segment, XDrawSegrnents draws a line between (xl, yl) and (x2, y2). It 
draws the lines in the order listed in the array of XSegrnent structures and 
does not perform joining at coincident endpoints. For any given line, 
XDrawSegrnents does not draw a pixel more than once. If lines intersect, 
the intersecting pixels are drawn multiple times. 

All three functions use these GC components: function, plane-mask, line­
width, line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y­
origin, and clip-mask. The XDrawLines function also uses the join-style 
GC component. All three functions also use these GC mode-dependent 
components: foreground, background, tile, stipple, tile-stipple-x-origin, tile­
stipple-y-origin, dash-offset, and dash-list. 

XDrawLine XDrawLines XDrawSegrnents and can generate 
BadDrawable, BadGC, and BadMatch errors. XDrawLines can also 
generate a BadVal ue error. 

Subroutines 3-435 



XDrawLine (3X11 ) 

Diagnostics 

BadDrawable 
A value for a Drawable argument does not name a defined 
Window or Pixmap. 

BadGe A value for a GContext argument does not name a defined 
GContext. 

BadMatch An InputOnly window is used as a Drawable. 

BadMa t ch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadVal ue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

See Also 
XDrawArc(3Xll), XDrawPoint(3Xll), XDrawRectangle(3Xll) 
Guide to the Xlib Library 

3-436 Subroutines 



XDrawPoint (3X11 ) 

Name 
XDrawPoint, XDrawPoints - draw points 

Syntax 
XDrawPoint(display, d, ge, x, y) 

Display *display; 
Drawable d; 
GCge; 
int x, y; 

XDrawPoints(display, d, ge,points, npoints, mode) 
Display *display; 
Drawable d; 
GCge; 
XPoint *points; 
int npoints; 
int mode; 

Specifies the drawable. 

Specifies the connection to the X server. 

Specifies the GC. 

Arguments 

d 

display 

ge 

mode Specifies the coordinate mode. You can pass 
CoordModeOrigin or CoordModePrevious. 

npoints 

points 

x 
y 

Description 

Specifies the number of points in the array. 

Specifies a pointer to an array of points. 

Specify the x and y coordinates where you want the point 
drawn. 

The XDrawPoint function uses the foreground pixel and function 
components of the GC to draw a single point into the specified drawable; 
XDrawPoints draws multiple points this way. CoordModeOrigin 
treats all coordinates as relative to the origin, and CoordModePrevious 
treats all coordinates after the first as relative to the previous point. 
XDrawPoints draws the points in the order listed in the array. 

Subroutines 3-437 



XDrawPoint (3X11 ) 

Both functions use these GC components: function, plane-mask, foreground, 
subwindow-mode, clip-x~origin, clip-y-origin, and clip-mask. 

XDrawPoint can generate BadDrawable, BadGe, and BadMatch 
errors. XDrawPoints can generate BadDrawable, BadGC, BadMatch, 
and BadValue errors. 

Diagnostics 

BadDrawable 

BadGC 

BadMatch 

BadMatch 

BadValue 

See Also 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

A value for a GContext argument does not name a defined 
GContext. 

An InputOnly window is used as a Drawable. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XDrawArc(3Xll), XDrawLine(3Xll), XDrawRectangle(3Xll) 
Guide to the Xlib Library 

3-438 Subroutines 



XDrawRectangle (3X11 ) 

Name 
XDrawRectangle, XDrawRectangles - draw rectangles 

Syntax 
XDrawRectangle(display, d, gc, x, y, width, height) 

Display *display; 
Drawable d; 
GC gc; 
int x, y; 
unsigned int width, height; 

XDrawRectangles(display, d, gc, rectangles, nrectangles) 
Display *display; 
Drawable d; 
GCgc; 
XRectangle rectangles[]; 
int nrectangles; 

Arguments 

d 

display 

Specifies the drawable. 

Specifies the connection to the X server. 

Specifies the GC. gc 

nrectangles 

rectangles 

width 
height 

Specifies the number of rectangles in the array. 

Specifies a pointer to an array of rectangles. 

x 
y 

Description 

Specify the width and height, which specify the dimensions 
of the rectangle. 

Specify the x and y coordinates, which specify the upper-left 
comer of the rectangle. 

The XDrawRectangle and XDrawRectangles functions draw the 
outlines of the specified rectangle or rectangles as if a five-point PolyLine 
protocol request were specified for each rectangle: 

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y] 

Subroutines 3-439 



XDrawRectangle (3X11 ) 

For the specified rectangle or rectangles, these functions do not draw a pixel 
more than once. XDrawRectangles draws the rectangles in the order 
listed in the array. If rectangles intersect, the intersecting pixels are drawn 
multiple times. 

Both functions use these GC components: function, plane-mask, line-width, 
line-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, 
and clip-mask. They also use these GC mode-dependent components: 
foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y­
origin, dash-offset, and dash-list. 

XDrawRectangle XDrawRectangles and can generate 
BadDrawable, BadGC, and BadMatch errors. 

Diagnostics 

BadDrawable 
A value for a Drawable argument does not name a defined 
Window or Pixmap. 

BadGC A value for a GContext argument does not name a defined 
GContext. 

BadMatch An InputOnly window is used as a Drawable. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

See Also 
XDrawArc(3Xl1), XDrawLine(3Xl1), XDrawPoint(3Xll) 
Guide to the Xlib Library 

3-440 Subroutines 



XDrawString (3X11 ) 

Name 
XDrawString, XDrawString 16 - draw text characters 

Syntax 
XDrawString(display, d, gc, x, y, string, length) 

Display *display; 
Drawable d; 
GC gc; 
int x, y; 
char * string; 
int length; 

XDrawString16(display, d, gc, x, y, string, length) 
Display *display; 
Drawable d; 
GC gc; 
int x, y; 
XChar2b * string; 
int length; 

Specifies the drawable. 

Specifies the connection to the X server. 

Specifies the GC. 

Arguments 

d 

display 

gc 

length 

string 

x 

Specifies the number of characters in the string argument. 

Specifies the character string. 

y 

Description 

Specify the x and y coordinates, which are relative to the 
origin of the specified drawable and define the origin of the 
first character. 

Each character image, as defined by the font in the GC, is treated as an 
additional mask for a fill operation on the drawable. The drawable is 
modified only where the font character has a bit set to 1. For fonts defined 
with 2-byte matrix indexing and used with XDrawString16, each byte is 
used as a byte2 with a byte 1 of zero. 

Subroutines 3-441 



XDrawString (3X11 ) 

Both functions use these GC components: function, plane-mask, fill-style, 
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also 
use these GC mode-dependent components: foreground, background, tile, 
stipple, tile-stipple-x-origin, and tile-stipple-y-origin. 

XDrawString XDrawString16 and can generate BadDrawable, 
BadGC, and BadMa t ch errors. 

Diagnostics 

BadDrawable 
A value for a Drawable argument does not name a defined 
Window or Pixmap. 

BadGC A value for a GContext argument does not name a defined 
GContext. 

BadMatch An InputOnly window is used as a Drawable. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

See Also 
XDrawImageString(3Xll), XDrawText(3Xll) 
Guide to the Xlib Library 

3-442 Subroutines 



XDrawText (3X11 ) 

Name 
XDrawText, XDrawText16 - draw polytext text 

Syntax 
XDrawText(display, d, ge, x, y, items, nitems) 

Display *display; 
Drawable d; 
GCge; 
int x, y; 
XTextItem *items; 
int nitems; 

XDrawText16(display, d, ge, x, y, items, nitems) 
Display *display; 
Drawable d; 
GC ge; 
int x, y; 
XTextItem16 *items; 
int nitems; 

Specifies the drawable. 

Specifies the connection to the X server. 

Specifies the GC. 

Arguments 

d 

display 

ge 

items 

nitems 

x 

Specifies a pointer to an array of text items. 

Specifies the number of text items in the array. 

y 

Description 

Specify the x and y coordinates, which are relative to the 
origin of the specified drawable and define the origin of the 
first character. 

The XDrawText16 function is similar to XDrawText except that it uses 
2-byte or 16-bit characters. Both functions allow complex spacing and font 
shifts between counted strings. 

Subroutines 3-443 



XDrawText (3X11 ) 

Each text item is processed in turn. A font member other than None in an 
item causes the font to be stored in the GC and used for subsequent text. A 
text element delta specifies an additional change in the position along the x 
axis before the string is drawn. The delta is always added to the character 
origin and is not dependent on any characteristics of the font. Each character 
image, as defined by the font in the GC, is treated as an additional mask for a 
fill operation on the drawable. The drawable is modified only where the font 
character has a bit set to 1. If a text item generates a BadFont error, the 
previous text items may have been drawn. 

For fonts defined with linear indexing rather than 2-byte matrix indexing, 
each XChar2b structure is interpreted as a 16-bit number with byte1 as the 
most-significant byte. 

Both functions use these GC components: function, plane-mask, fill-style, 
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also 
use these GC mode-dependent components: foreground, background, tile, 
stipple, tile-stipple-x-origin, and tile-stipple-y-origin. 

XDrawText XDrawText16 and can generate BadDrawable, BadFont, 
BadGC, and BadMa t ch errors. 

Diagnostics 

BadDrawable 

BadFont 

BadGC 

BadMatch 

See Also 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

A value for a Font or GContext argument does not name a 
defined Font. 

A value for a GContext argument does not name a defined 
GContext. 

An InputOnly window is used as a Drawable. 

XDrawImageString(3X11), XDrawString(3X11) 
Guide to the Xlib Library 

3-444 Subroutines 



XEmptyRegion {3X11 } 

Name 
XEmptyRegion, XEqualRegion, XPointInRegion, XRectInRegion -
detennine if regions are empty or equal 

Syntax 
Bool XEmptyRegion(r) 

Region r; 

Bool XEqualRegion (r 1 , r2) 
Region rl, r2; 

Bool XPointInRegion (r , x, y) 
Region r; 
int x, y; 

int XRectInRegion(r, x, y, width, height) 
Region r; 
int x, y; 
unsigned int width, height; 

Arguments 

r Specifies the region. 

rl 
r2 Specify the two regions. 

width 
height Specify the width and height, which define the rectangle. 

x 
y 

Description 

Specify the x and y coordinates, which define the point or the 
coordinates of the upper-left corner of the rectangle. 

The XEmptyRegion function returns True if the region is empty. 

The XEqualRegion function returns True if the two regions have the 
same offset, size, and shape. 

The XPointInRegion function returns True if the point (x, y) is 
contained in the region r. 

Subroutines 3-445 



XEmptyRegion (3X11 ) 

The XRectInRegion function returns RectangleIn if the rectangle is 
entirely in the specified region, RectangleOut if the rectangle is entirely 
out of the specified region, and RectanglePart if the rectangle is 
partially in the specified region. 

See Also 
XCreateRegion(3Xll), XIntersectRegion(3Xll) 
Guide to the Xlib Library 

3-446 Subroutines 



Name 

XFillRectangle (3X11) 

XFillRectangle, XFillRectangles, XFillPolygon, XFillArc, XFillArcs - fill 
rectangles, polygons, or arcs 

Syntax 
XFillRectangle(display, d, gc, x, y, width, height) 

Display *display; 
Drawable d; 
GCgc; 
int x, y; 
unsigned int width, height; 

XFillRectangles(display, d, gc, rectangles, nrectangles) 
Display *display; 
Drawable d; 
GCgc; 
XRectangle *rectangles; 
int nrectangles; 

XFillPolygon (display, d, gc, points, npoints, shape, mode) 
Display *display; 
Drawabled; 
GCgc; 
XPoint *points; 
int npoints; 
int shape; 
int mode; 

XFillArc(display, d, gc, x, y, width, height, angle1, angle2) 
Display *display; 
Drawable d; 
GCgc; 
int x, y; 
unsigned int width, height; 
int angle1, angle2; 

XFillArcs(display, d, gc, arcs, narcs) 
Display *display; 
Drawable d; 
GCgc; 
XArc *arcs; 
int narcs; 

Subroutines 3-447 



XFiliRectangle (3X11 ) 

Arguments 

angle] 

angle2 

arcs 

d 

display 

gc 

mode 

narcs 

npoints 

nrectangles 

points 

rectangles 

shape 

width 
height 

x 
y 

Description 

Specifies the start of the arc relative to the tbree-o' clock 
position from the center, in units of degrees * 64. 

Specifies the path and extent of the arc relative to the start of 
the arc, in units of degrees * 64. 

Specifies a pointer to an array of arcs. 

Specifies the drawable. 

Specifies. the connection to the X server. 

Specifies the GC. 

Specifies the coordinate mode. You can pass 
CoordModeOrigin or CoordModePrevious. 

Specifies the number of arcs in the array. 

Specifies the number of points in the array. 

Specifies the number of rectangles in the array. 

Specifies a pointer to an array of points. 

Specifies a pointer to an array of rectangles. 

Specifies a shape that helps the server to improve 
performance. You can pass Complex, Convex, or 
Nonconvex. 

Specify the width and height, which are the dimensions of 
the rectangle to be filled or the major and minor axes of the 
arc. 

Specify the x and y coordinates, which are relative to the 
origin of the drawable and specify the upper-left comer of the 
rectangle. 

The XFillRectangle and XFillRectangles functions fill the 
specified rectangle or rectangles as if a four-point FillPolygon protocol 
request were specified for each rectangle: 

[x,y] [x+width,y] [x+width,y+height] [x,y+height] 

3-448 Subroutines 



XFiliRectangle (3X11 ) 

Each function uses the x and y coordinates, width and height dimensions, and 
GC you specify. 

XFillRectangles fills the rectangles in the order listed in the array. For 
any given rectangle, XFillRectangle and XFillRectangles do not 
draw a pixel more than once. If rectangles intersect, the intersecting pixels 
are drawn multiple times. 

Both functions use these GC components: function, plane-mask, fill-style, 
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use 
these GC mode-dependent components: foreground, background, tile, stipple, 
tile-stipple-x-origin, and tile-stipple-y-origin. 

XFillRectangle XFillRectangles and can generate 
BadDrawable, BadGC, and BadMatch errors. 

XFillPolygon fills the region closed by the specified path. The path is 
closed automatically if the last point in the list does not coincide with the 
first point. XFillPolygon does not draw a pixel of the region more than 
once. CoordModeOrigin treats all coordinates as relative to the origin, 
and CoordModePrevious treats all coordinates after the first as relative to 
the previous point. 

Depending on the specified shape, the following occurs: 

• If shape is Complex, the path may self-intersect. 

• If shape is Convex, the path is wholly convex. If known by the client, 
specifying Convex can improve performance. If you specify Convex 
for a path that is not convex, the graphics results are undefined. 

• If shape is Nonconvex, the path does not self-intersect, but the shape 
is not wholly convex. If known by the client, specifying Nonconvex 
instead of Complex may improve performance. If you specify 
Nonconvex for a self-intersecting path, the graphics results are 
undefined. 

The fill-rule of the GC controls the filling behavior of self-intersecting 
polygons. 

This function uses these GC components: function, plane-mask, fill-style, 
fill-rule, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also 
uses these GC mode-dependent components: foreground, background, tile, 
stipple, tile-stipple-x-origin, and tile-stipple-y-origin. 

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and 
BadValue errors. 

Subroutines 3-449 



XFiliRectangle (3X11 ) 

For each arc, XFillArc or XFillArcs fills the region closed by the 
infinitely thin path described by the specified arc and, depending on the arc­
mode specified in the GC, one or two line segments. For ArcChord, the 
single line segment joining the endpoints of the arc is used. For 
ArcP ieSlice, the two line segments joining the endpoints of the arc with 
the center point are used. XF i lIAr c s fills the arcs in the order listed in the 
array. For any given arc, XFillArc and XFillArcs do not draw a pixel 
more than once. IT regions intersect, the intersecting pixels are drawn 
multiple times. 

Both functions use these GC components: function, plane-mask, fill-style, 
arc-mode, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. 
They also use these GC mode-dependent components: foreground, 
background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin. 

XFillArc XFillArcs and can generate BadDrawable, BadGC, and 
BadMatch errors. 

Diagnostics 

BadDrawable 

BadGC 

BadMatch 

BadMatch 

BadValue 

See Also 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

A value for a GContext argument does not name a defined 
GContext. 

An InputOnly window is used as a Drawable. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XDraw Arc(3Xll), XDrawRectangle(3Xll) 
Guide to the Xlib Library 

3-450 Subroutines 



Name 

XFlush (3X11 ) 

XFlush, XSync, XEventsQueued, XPending - handle the output buffer or 
event queue 

Syntax 
XFlush (display) 

Display *display; 

XSync (display, discard) 
Display *display; 
Bool discard; 

int XEventsQueued(display, mode) 
Display *display; 
int mode; 

int XPending( display) 
Display *display; 

Arguments 

discard Specifies a Boolean value that indicates whether XSync 
discards all events on the event queue. 

display 

mode 

Description 

Specifies the connection to the X server. 

Specifies the mode. You can pass QueuedAlready, 
QueuedAfterFlush, or QueuedAfterReading. 

The XFlush function flushes the output buffer. Most client applications 
need not use this function because the output buffer is automatically flushed 
as needed by calls to XPending, XNextEvent, and XWindowEvent. 
Events generated by the server may be enqueued into the library's event 
queue. 

The XSync function flushes the output buffer and then waits until all 
requests have been received and processed by the X server. Any errors 
generated must be handled by the error handler. For each error event 
received by Xlib, XSync calls the client application's error handling routine 
(see section 8.12.2). Any events generated by the server are enqueued into 
the library's event queue. 

Subroutines 3-451 



XFlush (3X11) 

Finally, if you passed False, XSync does not discard the events in the 
queue. If you passed True, XSync discards all events in the queue, 
including those events that were on the queue before XSync was called. 
Client applications seldom need to call XSync. 

If mode is QueuedAlready, XEventsQueued returns the number of 
events already in the event queue (and never performs a system call). If 
mode is QueuedAfterFlush, XEventsQueued returns the number of 
events already in the queue if the number is nonzero. If there are no events 
in the queue, XEventsQueued flushes the output buffer, attempts to read 
more events out of the application's connection, and returns the number read. 
If mode is QueuedAfterReading, XEventsQueued returns the number 
of events already in the queue if the number is nonzero. If there are no events 
in the queue, XEventsQueued attempts to read more events out of the 
application's connection without flushing the output buffer and returns the 
number read. 

XEvent sQueued always returns immediately without I/O if there are 
events already in the queue. XEventsQueued with mode 
QueuedAfterFlush is identical in behavior to XPending. 
XEventsQueued with mode QueuedAlready is identical to the 
XQLength function. 

The XPending function returns the number of events that have been 
received from the X server but have not been removed from the event queue. 
XPending is identical to XEventsQueued with the mode 
QueuedAfterF 1 ush specified. 

See Also 
XIfEvent(3Xll), XNextEvent(3Xll), XPutBackEvent(3Xll) 
Guide to the Xlib Library 

3-452 Subroutines 



XFree (3X11) 

Name 
XFree, XNoOp - free client data 

Syntax 
XFree( data) 

char *data; 

XNoOp(display) 
Display *display; 

Arguments 

display 

data 

Specifies the connection to the X server. 

Specifies a pointer to the data that is to be freed. 

Description 
The XFree function is a general-purpose Xlib routine that frees the specified 
data. You must use it to free any objects that were allocated by Xlib. 

The XNoOp function sends a NoOperation protocol request to the X 
server, thereby exercising the connection. 

See Also 
Guide to the Xlib Library 

Subroutines 3-453 



XGetDefault (3X11 ) 

Name 
XGetDefault, XResourceManagerString - get X program defaults 

Syntax 
char *XGetDefault(display, program, option) 

Display *display; 
char *program; 
char *option; 

char *XResourceManagerString( display) 
Display *display; 

Arguments 

display 

option 

program 

Description 

Specifies the connection to the X server. 

Specifies the option name. 

Specifies the program name for the Xlib defaults (usually 
argv[O] of the main program). 

The XGetDefaul t function returns the value NULL if the option name 
specified in this argument does not exist for the program. The strings 
returned by XGetDefault are owned by Xlib and should not be modified 
or freed by the client. 

The XResourceManagerString returns the RESOURCE_MANAGER 
property from the server's root window of screen zero, which was returned 
when the connection was opened using XOpenDisplay. 

See Also 
XrmGetSearchList(3Xll) 
Guide to the Xlib Library 

3-454 Subroutines 



Name 

XGetVisualinfo (3X11 ) 

XGetVisualInfo, XMatch VisualInfo, XVisualIDFrom Visual- obtain visual 
information 

Syntax 
XVisualInfo *XGetVisuallnfo( display, vinfo _mask, vinfo _template, 
nitems return) 

DlSplay *display; 
long vinfo mask; 
XVisualInfo *vinfo template; 
int *nitems_return;-

Status XMatchVisualInfo(display, screen, depth, class, vinfo return) 
Display *display; -
int screen; 
int depth; 
int class; 
XVisuallnfo *vinfo _return; 

VisualID XVisualIDFrom Visual ( visual) 
Visual *visual; 

Arguments 

class 

depth 

display 

Specifies the class of the screen. 

Specifies the depth of the screen. 

Specifies the connection to the X server. 

nitems return Returns the number of matching visual structures. 

screen 

visual 

vinfo mask 

Specifies the screen. 

Specifies the visual type. 

Specifies the visual mask value. 

vinfo return Returns the matched visual information. 

vinfo _template Specifies the visual attributes that are to be used in matching 
the visual structures. 

Subroutines 3-455 



XGetVisualinfo (3X11 ) 

Description 
The XGetVisuallnfo function returns a list of visual structures that 
match the attributes specified by vinfo_template. If no visual structures 
match the template using the specified vinfo_mask, XGetVisuallnfo 
returns a NULL. To free the data returned by this function, use XFree. 

The XMatchVisuallnfo function returns the visual information for a 
visual that matches the specified depth and class for a screen. Because 
multiple visuals that match the specified depth and class can exist, the exact 
visual chosen is undefined. If a visual is found, XMatchVisuallnfo 
returns nonzero and the information on the visual to vinfo_return. Otherwise, 
when a visual is not found, XMatchVisuallnfo returns zero. 

The XVisualIDFrornVisual function returns the visual ID for the 
specified visual type. 

See Also 
Guide to the Xlib Library 

3-456 Subroutines 



XGetWindowAttributes (3X11 ) 

Name 
XGetWindowAttributes, XGetGeometry - get current window attribute or 
geometry 

Syntax 
Status XGetWindowAttributes(display, w, window attributes return) 

Display *display; --
Window w; 
XWindow Attributes *window _attributes_return; 

Status XGetGeometry( display, d, root_return, x_return, y _return, 
width_return, height_return, border _width_return, depth_return) 

Display *display; 
Drawable d; 
Window *root return; 
int *x return, *y return; 
unsigtled int *width_return, *height_return; 
unsigned int * border _width_return; 
unsigned int *depth_return; 

Arguments 

border width return 
- - Returns the border width in pixels. 

d Specifies the drawable, which can be a window or a pixmap. 

depth _return Returns the depth of the drawable (bits per pixel for the 
object). 

display Specifies the connection to the X server. 

root return Returns the root window. 

w Specifies the window whose current attributes you want to 
obtain. 

width return 
height return Return the drawable's dimensions (width and height). 

window attributes return 
- Returns the specified window's attributes in the 

XWindowAttributes structure. 

x return 
y return Return the x and y coordinates that define the location of the 

Subroutines 3-457 



XGetWindowAttributes (3X11 ) 

Description 

drawable. For a window, these coordinates specify the 
upper-left outer comer relative to its parent's origin. For 
pixmaps, these coordinates are always zero. 

The XGetWindowAttributes function returns the current attributes for 
the specified window to an XWindowAttributes structure. 

XGetWindowAttributes can generate BadDrawable and 
BadWindow errors. 

The XGetGeometry function returns the root window and the current 
geometry of the drawable. The geometry of the drawable includes the x and 
y coordinates, width and height, border width, and depth. These are 
described in the argument list. It is legal to pass to this function a window 
whose class is InputOnly. 

Diagnostics 

BadDrawable 
A value for a Drawable argument does not name a defined 
Window or Pixmap. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XQueryPointer(3Xll), XQueryTree(3Xll) 
Guide to the Xlib Library 

3-458 Subroutines 



Name 

XGetWindowProperty (3X11 ) 

XGetWindowProperty, XListProperties, XChangeProperty, 
XRotate WindowProperties, XDeleteProperty - obtain and change window 
properties 

Syntax 
int XGetWindowProperty(display, w, property, long_offset, long_length, 
delete, req_ type, actual_type _return, actual Jormat _return, nitems _return, 
bytes_after _return, prop_return) 

Display *display; 
Window w; 
Atom property; 
long long_offset, long_length; 
Bool delete; 
Atom req type; 
Atom *actual_ type_return; 
int *actual Jormat _return; 
unsigned long *nitems return; 
unsigned long * bytes_after _return; 
unsigned char **prop _return; 

Atom *XListProperties (display, w, num yrop _return) 
Display *display; 
Window w; 
int *num yrop _return; 

XChangeProperty(display, w, property, type ,format, mode, data, 
nelements) 

Display *display; 
Window w; 
Atom property, type; 
intformat; 
int mode; 
unsigned char *data; 
int nelements; 

XRotateWindowProperties(display, w, properties, numyrop, npositions) 
Display *display; 
Window w; 
Atom properties [] ; 
int num yrop; 
int npositions; 

Subroutines 3-459 



XGetWindowProperty (3X11 ) 

XDeleteProperty( display, w, property) 
Display *display; 
Windoww; 
Atom property; 

Arguments 

actual Jormat _return 
Returns the actual fonnat of the property. 

actual type return 
- - Returns the atom identifier that defines the actual type of the 

property. 

bytes after return 
- - Returns the number of bytes remaining to be read in the 

property if a partial read was perfonned. 

data Specifies the property data. 

delete Specifies a Boolean value that detennines whether the 
property is deleted. 

display Specifies the connection to the X server. 

format Specifies whether the data should be viewed as a list of 8-bit, 
16-bit, or 32-bit quantities. Possible values are 8, 16, and 
32. This infonnation allows the X server to correctly 
perfonn byte-swap operations as necessary. If the fonnat is 
16-bit or 32-bit, you must explicitly cast your data pointer to 
a (char *) in the call to XChangeProperty. 

long_length Specifies the length in 32-bit multiples of the data to be 
retrieved. 

long_offset Specifies the offset in the specified property (in 32-bit 
quantities) where the data is to be retrieved. 

mode Specifies the mode of the operation. You can pass 
PropModeReplace,PropModePrepend,or 
P ropModeAppend. 

nelements Specifies the number of elements of the specified data 
fonnat. 

nitems return Returns the actual number of 8-bit, 16-bit, or 32-bit items 
stored in the prop_return data. 

num yrop Specifies the length of the properties array. 

3-460 Subroutines 



XGetWindowProperty (3X11 ) 

num yrop _return 

npositions 

prop _return 

property 

properties 

req_type 

type 

w 

Description 

Returns the length of the properties array. 

Specifies the rotation amount. 

Returns a pointer to the data in the specified format. 

Specifies the property name. 

Specifies the array of properties that are to be rotated. 

Specifies the atom identifier associated with the property type 
or AnyPropertyType. 

Specifies the type of the property. The X server does not 
interpret the type but simply passes it back to an application 
that later calls XGetWindowProperty. 

Specifies the window whose property you want to obtain, 
change, rotate or delete. 

The XGetWindowProperty function returns the actual type of the 
property; the actual format of the property; the number of 8-bit, 16-bit, or 
32-bit items transferred; the number of bytes remaining to be read in the 
property; and a pointer to the data actually returned. 
XGetWindowProperty sets the return arguments as follows: 

• If the specified property does not exist for the specified window, 
XGetWindowProperty returns None to actual_type_return and the 
value zero to actual_form at_return and bytes_after_return. The 
nitems_return argument is empty. In this case, the delete argument is 
ignored. 

• If the specified property exists but its type does not match the specified 
type, XGetWindowProperty returns the actual property type to 
actual_type_return, the actual property format (never zero) to 
actual_format_return, and the property length in bytes (even if the 
actual_format_return is 16 or 32) to bytes_after_return. It also ignores 
the delete-argument. The nitems_return argument is empty. 

• If the specified property exists and either you assign 
AnyPropertyType to the req_type argument or the specified type 
matches the actual property type, XGetWindowProperty returns the 
actual property type to actual_type_return and the actual property 
format (never zero) to actual_form at_return. It also returns a value to 
bytes_after_return and nitems_return, by defining the following values: 

Subroutines 3-461 



XGetWindowProperty (3X11) 

N = actual length of the stored property in bytes 
(even if the format is 16 or 32) 

1=4 * long_offset 
T=N -I 
L = MINIMUM(T, 4 * long_length) 
A = N - (I + L) 

The returned value starts at byte index I in the property (indexing from 
zero), and its length in bytes is L. If the value for long_offset causes L 
to be negative, a BadValue error results. The value of 
bytes_after_return is A, giving the number of trailing unread bytes in 
the stored property. 

XGetWindowProperty always allocates one extra byte in prop_return 
(even if the property is zero length) and sets it to ASCII null so that simple 
properties consisting of characters do not have to be copied into yet another 
string before use. If delete is True and bytes_after_return is zero, 
XGetWindowProperty deletes the property from the window and 
generates a PropertyNotify event on the window. 

The function returns Success if it executes successfully. To free the 
resulting data, use XFree. 

XGetWindowProperty can generate BadAtom, BadValue, and 
BadWindow errors. 

The XListProperties function returns a pointer to an array of atom 
properties that are defined for the specified window or returns NULL if no 
properties were found. To free the memory allocated by this function, use 
XFree. 

XListProperties can generate a BadWindow error. 

The XChangeProperty function alters the property for the specified 
window and causes the X server to generate a PropertyNotify event on 
that window. XChangeProperty performs the following: 

• If mode is PropModeReplace, XChangeProperty discards the 
previous property value and stores the new data. 

• If mode is P ropModeP repend or P ropModeAppend, 
XChangeProperty inserts the specified data before the beginning of 
the existing data or onto the end of the existing data, tespectively. The 
type and format must match the existing property value, or a 
BadMatch error results. If the property is undefined, it is treated as 
defined with the correct type and format with zero-length data. 

3-462 Subroutines 



XGetWindowProperty (3X11 ) 

The lifetime of a property is not tied to the storing client. Properties remain 
until explicitly deleted, until the window is destroyed, or until the server 
resets. For a discussion of what happens when the connection to the X server 
is closed, see section 2.5. The maximum size of a property is server 
dependent and can vary dynamically depending on the amount of memory 
the server has available. (If there is insufficient space, a BadAlloc error 
results.) 

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, 
BadVal ue, and BadWindow errors. 

The XRotateWindowProperties function allows you to rotate 
properties on a window and causes the X server to generate 
P rope rt yN ot i fy events. If the property names in the properties array are 
viewed as being numbered starting from zero and if there are num_prop 
property names in the list, then the value associated with property name 1 
becomes the value associated with property name (I + npositions) mod N for 
all 1 from zero to N - 1. The effect is to rotate the states by npositions places 
around the virtual ring of property names (right for positive npositions, left 
for negative npositions). If npositions mod N is nonzero, the X server 
generates a PropertyNotify event for each property in the order that 
they are listed in the array. If an atom occurs more than once in the list or 
no property with that name is defined for the window, a BadMatch error 
results. If a BadAtorn or BadMatch error results, no properties are 
changed. 

XRotateWindowProperties can generate BadAtorn, BadMatch, and 
BadWindow errors. 

The XDeleteProperty function deletes the specified property only if the 
property was defined on the specified window and causes the X server to 
generate a PropertyNotify event on the window unless the property 
does not exist. 

XDeleteProperty can generate BadAtorn and BadWindow errors. 

Diagnostics 

BadAlloc 

BadAtorn 

BadValue 

The server failed to allocate the requested resource or server 
memory. 

A value for an Atom argument does not name a defined 
Atom. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 

Subroutines 3-463 



XGetWindowProperty (3X11 ) 

for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XInternAtom(3Xll) 
Guide to the Xlib Library 

3-464 Subroutines 



XGrabButton (3X11 ) 

Name 
XGrabButton, XUngrabButton - grab pointer buttons 

Syntax 
XGrabButton (display, button, modifiers, grab_window, owner _events, 
event_mask, pointer _mode, keyboard_mode, confine _to, cursor) 

Display *display; 
unsigned int button; 
unsigned int modifiers; 
Window grab_window; 
Boolowner events; 
unsigned int event_mask; 
int pointer _mode, keyboard_mode; 
Window confine to; 
Cursor cursor; -

XUngrabButton( display, button, modifiers, grab _window) 
Display *display; 
unsigned int button; 
unsigned int modifiers; 
Window grab_window; 

Arguments 

button Specifies the pointer button that is to be grabbed or released 
or AnyButton. 

confine to 

cursor 

display 

Specifies the window to confine the pointer in or None. 

Specifies the cursor that is to be displayed or None. 

Specifies the connection to the X server. 

event mask Specifies which pointer events are reported to the client. The 
mask is the bitwise inclusive OR of the valid pointer event 
mask bits. 

grab_window Specifies the grab window. 

keyboard mode 
- Specifies further processing of keyboard events. You can 

pass GrabModeSync or GrabModeAsync. 

modifiers Specifies the set of keymasks or AnyModifier. The mask 
is the bitwise inclusive OR of the valid keymask bits. 

Subroutines 3-465 



XGrabButton (3X11 ) 

owner events Specifies a Boolean value that indicates whether the pointer 
events are to be reported as usual or reported with respect to 
the grab window if selected by the event mask. 

pointer mode Specifies further processing of pointer events. You can pass 
GrabModeSync or GrabModeAsync. 

Description 
The XGrabButton function establishes a passive grab. In the future, the 
pointer is actively grabbed (as for XGrabPointer), the last-pointer-grab 
time is set to the time at which the button was pressed (as transmitted in the 
ButtonPress event), and the ButtonPress event is reported if all of 
the following conditions are true: 

• The pointer is not grabbed, and the specified button is logically pressed 
when the specified modifier keys are logically down, and no other 
buttons or modifier keys are logically down. 

• The grab_window contains the pointer. 

• The confine_to window (if any) is viewable. 

• A passive grab on the same button/key combination does not exist on 
any ancestor of grab_window. 

The interpretation of the remaining arguments is as for XGrabPointer. 
The active grab is terminated automatically when the logical state of the 
pointer has all buttons released (independent of the state of the logical 
modifier keys). 

Note that the logical state of a device (as seen by client applications) may lag 
the physical state if device event processing is frozen. 

This request overrides all previous grabs by the same client on the same 
buttonlkey combinations on the same window. A modifiers of 
AnyModifier is equivalent to issuing the grab request for all possible 
modifier combinations (including the combination of no modifiers). It is not 
required that all modifiers specified have currently assigned KeyCodes. A 
button of AnyButton is equivalent to issuing the request for all possible 
buttons. Otherwise, it is not required that the specified button currently be 
assigned to a physical button. 

If some other client has already issued a XGrabButton with the same 
button/key combination on the same window, a BadAccess error results. 
When using AnyModifier or AnyButton, the request fails completely, 
and a BadAccess error results (no grabs are established) if there is a 
conflicting grab for any combination. XGrabButton has no effect on an 

3-466 Subroutines 



XGrabButton (3X11 ) 

active grab. 

XGrabButton can generate BadCursor, BadValue, and BadWindow 
errors. 

The XUngrabButton function releases the passive button!key combination 
on the specified window if it was grabbed by this client. A modifiers of 
AnyModifier is equivalent to issuing the ungrab request for all possible 
modifier combinations, including the combination of no modifiers. A button 
of AnyButton is equivalent to issuing the request for all possible buttons. 
XUngrabButton has no effect on an active grab. 

XUngrabButton can generate BadValue and BadWindow errors. 

Diagnostics 

BadCursor A value for a Cursor argument does not name a defined 
Cursor. 

BadVal ue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XAllowEvents(3XIl), XGrabPointer(3Xll), XGrabKey(3Xll), 
XGrabKeyboard(3Xll), 
Guide to the Xlib Library 

Subroutines 3-467 



XGrabKey (3X11 ) 

Name 
XGrabKey, XUngrabKey - grab keyboard keys 

Syntax 
XGrabKey(display, keycode, modifiers, grab window, owner events, 
pointer _mode, keyboard_mode) - -

Display *display; 
int keycode; 
unsigned int modifiers; 
Window grab_window; 
Bool owner events; 
int pointer _mode, keyboard_mode; 

XUngrabKey(display, keycode, modifiers, grab window) 
Display *display; -
int keycode; 
unsigned int modifiers; 
Window grab_window; 

Arguments 

display Specifies the connection to the X server. 

grab _window Specifies the grab window. 

keyboard mode 
- Specifies further processing of keyboard events. You can 

pass GrabModeSync or GrabModeAsync. 

keycode Specifies the KeyCode or AnyKey. 

modifiers Specifies the set of keymasks or AnyModifier. The mask 
is the bitwise inclusive OR of the valid keymask bits. 

owner events Specifies a Boolean value that indicates whether the pointer 
events are to be reported as usual or reported with respect to 
the grab window if selected by the event mask. 

pointer _mode Specifies further processing of pointer events. You can pass 
GrabModeSync or GrabModeAsync. 

3-468 Subroutines 



XGrabKey (3X11 ) 

Description 
The XGrabKey function establishes a passive grab on the keyboard. In the 
future, the keyboard is actively grabbed (as for XGrabKeyboard), the last­
keyboard-grab time is set to the time at which the key was pressed (as 
transmitted in the KeyPress event), and the KeyPress event is reported if 
all of the following conditions are true: 

• The keyboard is not grabbed and the specified key (which can itself be 
a modifier key) is logically pressed when the specified modifier keys 
are logically down, and no other modifier keys are logically down. 

• Either the grab_window is an ancestor of (or is) the focus window, or 
the grab_window is a descendant of the focus window and contains the 
pointer. 

• A passive grab on the same key combination does not exist on any 
ancestor of grab_window. 

The interpretation of the remaining arguments is as for XGrabKeyboard. 
The active grab is terminated automatically when the logical state of the 
keyboard has the specified key released (independent of the logical state of 
the modifier keys). 

Note that the logical state of a device (as seen by client applications) may lag 
the physical state if device event processing is frozen. 

A modifiers argument of AnyModifier is equivalent to issuing the request 
for all possible modifier combinations (including the combination of no 
modifiers). It is not required that all modifiers specified have currently 
assigned KeyCodes. A keycode argument of AnyKey is equivalent to 
issuing the request for all possible KeyCodes. Otherwise, the specified 
keycode must be in the range specified by minJceycode and max_keycode in 
the connection setup, or a BadVal ue error results. 

If some other client has issued a XGrabKey with the same key combination 
on the same window, a BadAccess error results. When using 
AnyModifier or AnyKey, the request fails completely, and a 
BadAccess error results (no grabs are established) if there is a conflicting 
grab for any combination. 

XGrabKey can generate BadAccess, BadValue, and BadWindow 
errors. 

The XUngrabKey function releases the key combination on the specified 
window if it was grabbed by this client. It has no effect on an active grab. 
A modifiers of AnyModifier is equivalent to issuing the request for all 
possible modifier combinations (including the combination of no modifiers). 

Subroutines 3-469 



XGrabKey (3X11 ) 

A keycode argument of AnyKey is equivalent to issuing the request for all 
possible key codes. 

XUngrabKey can generate BadValue and BadWindow error. 

Diagnostics 

BadAccess A client attempted to grab a key/button combination already 
grabbed by another client. 

BadVal ue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XAllowAccess(3Xll), XGrabButton(3Xll), XGrabKeyboard(3Xll), 
XGrabPointer(3Xll ) 
Guide to the Xlib Library 

3-470 Subroutines 



XGrabKeyboard (3X11 ) 

Name 
XGrabKeyboard, XUngrabKeyboard - grab the keyboard 

Syntax 
int XGrabKeyboard( display, grab _window, owner _events, pointer _mode, 
keyboard_mode, time) 

Display *display; 
Window grab window; 
Bool owner events; 
int pointer mode, keyboard mode; 
Time time; -

XUngrabKeyboard( display, time) 
Display *display; 
Time time; 

Arguments 

display Specifies the connection to the X server. 

grab window Specifies the grab window. 

keyboard mode 
- Specifies further processing of keyboard events. You can 

pass GrabModeSync or GrabModeAsync. 

owner events Specifies a Boolean value that indicates whether the pointer 
events are to be reported as usual or reported with respect to 
the grab window if selected by the event mask. 

pointer mode Specifies further processing of pointer events. You can pass 
GrabModeSync or GrabModeAsync. 

time Specifies the time. You can pass either a timestamp or 
Current Time. 

Description 
The XGrabKeyboard function actively grabs control of the keyboard and 
generates Focusln and FocusOut events. Further key events are reported 
only to the grabbing client. XGrabKeyboard overrides any active 
keyboard grab by this client. If owner_events is False, all generated key 
events are reported with respect to grab_window. If owner_events is True 
and if a generated key event would normally be reported to this client, it is 
reported normally; otherwise, the event is reported with respect to the 

Subroutines 3-471 



XGrabKeyboard (3X11 ) 

grab_window. Both KeyPress and KeyRelease events are always 
reported, independent of any event selection made by the client. 

If the keyboard_mode argument is GrabModeAsync, keyboard event 
processing continues as usual. If the keyboard is currently frozen by this 
client, then processing of keyboard events is resumed. If the keyboard_mode 
argument is GrabModeSync, the state of the keyboard (as seen by client 
applications) appears to freeze, and the X server generates no further 
keyboard events until the grabbing client issues a releasing XAllowEvents 
call or until the keyboard grab is released. Actual keyboard changes are not 
lost while the keyboard is frozen; they are simply queued in the server for 
later processing. 

If pointer_mode is Gr abModeAsync, pointer event processing is unaffected 
by activation of the grab. If pointer_mode is GrabModeSync, the state of 
the pointer (as seen by client applications) appears to freeze, and the X server 
generates no further pointer events until the grabbing client issues a releasing 
XAllowEvents call or until the keyboard grab is released. Actual pointer 
changes are not lost while the pointer is frozen; they are simply queued in the 
server for later processing. 

If the keyboard is actively grabbed by some other client, XGrabKeyboard 
fails and returns AlreadyGrabbed. If grab_window is not viewable, it 
fails and returns GrabNotViewable. If the keyboard is frozen by an 
active grab of another client, it fails and returns GrabFrozen. If the 
specified time is earlier than the last-keyboard-grab time or later than the 
current X server time, it fails and returns GrabInvalidTime. Otherwise, 
the last-keyboard-grab time is set to the specified time (Current Time is 
replaced by the current X server time). 

XGrabKeyboard can generate BadVal ue and BadWindow errors. 

The XUngrabKeyboard function releases the keyboard and any queued 
events if this client has it actively grabbed from either XGrabKeyboard or 
XGrabKey. XUngrabKeyboard does not release the keyboard and any 
queued events if the specified time is earlier than the last-keyboard-grab time 
or is later than the current X server time. It also generates FocusIn and 
FocusOut events. The X server automatically performs an 
UngrabKeyboard request if the event window for an active keyboard grab 
becomes not viewable. 

3-472 Subroutines 



XGrabKeyboard (3X11 ) 

Diagnostics 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XAllowEvents(3Xll), XGrabButton(3Xll), XGrabKey(3Xll), 
XGrabPointer(3Xll) 
Guide to the Xlib Library 

Subroutines 3-473 



XGrabPointer (3X11 ) 

Name 
XGrabPointer, XUngrabPointer, XChangeActivePointerGrab - grab the 
pointer 

Syntax 
int XGrabPointer( display, grab_window, owner _events, event_mask, 
pointer mode, keyboard mode, confine to, cursor, time) 

Display *display; - -
Window grab window; 
Bool owner events; 
unsigned int event_mask; 
int pointer _mode, keyboard_mode; 
Window confine to; 
Cursor cursor; -
Time time; 

XUngrabPointer( display, time) 
Display *display; 
Time time; 

XChangeActivePointerGrab(display, event_mask, cursor, time) 
Display *display; 
unsigned int event_mask; 
Cursor cursor; 
Time time; 

Arguments 

confine_to 

cursor 

display 

Specifies the window to confine the pointer in or None. 

Specifies the cursor that is to be displayed during the grab or 
None. 

Specifies the connection to the X server. 

event mask Specifies which pointer events are reported to the client. The 
mask is the bitwise inclusive OR of the valid pointer event 
mask bits. 

grab window Specifies the grab window. 

keyboard mode 
- Specifies further processing of keyboard events. You can 

pass GrabModeSync or GrabModeAsync. 

3-474 Subroutines 



XGrabPointer (3X11 ) 

owner events Specifies a Boolean value that indicates whether the pointer 
events are to be reported as usual or reported with respect to 
the grab window if selected by the event mask. 

pointer mode Specifies further processing of pointer events. You can pass 
GrabModeSync or GrabModeAsync. 

time Specifies the time. You can pass either a timestamp or 
CurrentTime. 

Description 
The XGrabPointer function actively grabs control of the pointer and 
returns GrabSuccess if the grab was successful. Further pointer events 
are reported only to the grabbing client. XGrabPointer overrides any 
active pointer grab by this client. If owner_events is False, all generated 
pointer events are reported with respect to grab _window and are reported 
only if selected by event_mask. If owner_events is True and if a generated 
pointer event would normally be reported to this client, it is reported as 
usual. Otherwise, the event is reported with respect to the grab_window and 
is reported only if selected by event_mask. For either value of owner_events, 
unreported events are discarded. 

If the pointer_mode is GrabModeAsync, pointer event processing continues 
as usual. If the pointer is currently frozen by this client, the processing of 
events for the pointer is resumed. If the pointer_mode is GrabModeSync, 
the state of the pointer, as seen by client applications, appears to freeze, and 
the X server generates no further pointer events until the grabbing client calls 
XAllowEvents or until the pointer grab is released. Actual pointer 
changes are not lost while the pointer is frozen; they are simply queued in the 
server for later processing. 

If the keyboard_mode is GrabModeAsync, keyboard event processing is 
unaffected by activation of the grab. If the keyboard_mode is 
GrabModeSync, the state of the keyboard, as seen by client applications, 
appears to freeze, and the X server generates no further keyboard events until 
the grabbing client calls XAllowEvents or until the pointer grab is 
released. Actual keyboard changes are not lost while the pointer is frozen; 
they are simply queued in the server for later processing. 

If a cursor is specified, it is displayed regardless of what window the pointer 
is in. If None is specified, the normal cursor for that window is displayed 
when the pointer is in grab_window or one of its subwindows; otherwise, the 
cursor for grab_window is displayed. 

Subroutines 3-475 



XGrabPointer (3X11 ) 

If a confine_to window is specified, the pointer is restricted to stay contained 
in that window. The confine_to window need have no relationship to the 
grab_window. If the pointer is not initially in the confine_to window, it is 
warped automatically to the closest edge just before the grab activates and 
enter lIe ave events are generated as usual. If the confine_to window is 
subsequently reconfigured, the pointer is warped automatically, as necessary, 
to keep it contained in the window. 

The time argument allows you to avoid certain circumstances that come up if 
applications take a long time to respond or if there are long network delays. 
Consider a situation where you have two applications, both of which 
normally grab the pointer when clicked on. If both applications specify the 
timestamp from the event, the second application may wake up faster and 
successfully grab the pointer before the first application. The first application 
then will get an indication that the other application grabbed the pointer 
before its request was processed. 

XGrabPointer generates EnterNotify and LeaveNotify events. 

Either if grab_window or confine_to window is not viewable or if the 
confine_to window lies completely outside the boundaries of the root 
window, XGrabPointer fails and returns GrabNotViewable. If the 
pointer is actively grabbed by some other client, it fails and returns 
AlreadyGrabbed. If the pointer is frozen by an active grab of another 
client, it fails and returns GrabFrozen. If the specified time is earlier than 
the last-pointer-grab time or later than the current X server time, it fails and 
returns GrabInvalidTime. Otherwise, the last-pointer-grab time is set to 
the specified time (CurrentTime is replaced by the current X server time). 

XGrabPointer can generate BadCursor, BadValue, and BadWindow 
errors. 

The XUngrabPointer function releases the pointer and any queued events 
if this client has actively grabbed the pointer from XGrabPointer, 
XGrabButton, or from a normal button press. XUngrabPointer does 
not release the pointer if the specified time is earlier than the last-pointer-grab 
time or is later than the current X server time. It also generates 
EnterNotify and LeaveNotify events. The X server performs an 
UngrabPointer request automatically if the event window or confine_to 
window for an active pointer grab becomes not viewable or if window 
reconfiguration causes the confine_to window to lie completely outside the 
boundaries of the root window. 

The XChangeActi vePointerGrab function changes the specified 
dynamic parameters if the pointer is actively grabbed by the client and if the 
specified time is no earlier than the last-pointer-grab time and no later than 

3-476 Subroutines 



XGrabPointer (3X11 ) 

the current X server time. This function has no effect on the passive 
parameters of a X Grab Button. The interpretation of event_mask and 
cursor is the same as described in XGrabPointer. 

XChangeActivePointerGrab can generate a BadCursor and 
BadVal ue error. 

Diagnostics 

BadCursor A value for a Cursor argument does not name a defined 
Cursor. 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XAllowEvents(3Xll), XGrabButton(3Xll), XGrabKey(3Xll), 
XGrabKeyboard(3Xll) 
Guide to the Xlib Library 

Subroutines 3-477 



XGrabServer (3X11) 

Name 
XGrabServer, XUngrabServer - grab the server 

Syntax 
XGrabServer( display) 

Display *display; 

XUngrabServer( display) 
Display *display; 

Arguments 

display Specifies the connection to the X server. 

Description 
The XGrabServer function disables processing of requests and close 
downs on all other connections than the one this request arrived on. You 
should not grab the X server any more than is absolutely necessary. 

The XUngrabServer function restarts processing of requests and close 
downs on other connections. You should avoid grabbing the X server as 
much as possible. 

See Also 
XGrabButton(3Xll), XGrabKey(3Xll), XGrabKeyboard(3Xll), 
XGrabPointer(3Xl1) 
Guide to the Xlib Library 

3-478 Subroutines 



Name 

XlfEvent (3X11 ) 

XIfEvent, XCheckIfEvent, XPeekIfEvent - check the event queue with a 
predicate procedure 

Syntax 
XIfEvent(display, event return, predicate, arg) 

Display *display; -
XEvent *event return; 
Bool (*predicate) 0; 
char *arg; 

Bool XCheckIfEvent(display, event return, predicate, arg) 
Display *display; -
XEvent *event return; 
Bool (*predicate)O; 
char *arg; 

XPeekIfEvent(display, event return, predicate, arg) 
Display *display; -
XEvent *event return; 
Bool (*predicate)(); 
char *arg; 

Arguments 

arg Specifies the user-supplied argument that will be passed to 
the predicate procedure. 

display Specifies the connection to the X server. 

event return Returns either a copy of or the matched event's associated 
structure. 

predicate Specifies the procedure that is to be called to determine if the 
next event in the queue matches what you want. 

Description 
The XI fEvent function completes only when the specified predicate 
procedure returns True for an event, which indicates an event in the queue 
matches. XI fEvent flushes the output buffer if it blocks waiting for 
additional events. XI fEvent removes the matching event from the queue 
and copies the structure into the client-supplied XEvent structure. 

Subroutines 3-479 



XlfEvent (3X11 ) 

When the predicate procedure finds a match, XChecklfEvent copies the 
matched event into the client-supplied XEvent structure and returns True. 
(This event is removed from the queue.) If the predicate procedure finds no 
match, XChecklfEvent returns False, and the output buffer will have 
been flushed. All earlier events stored in the queue are not discarded. 

The XPeeklfEvent function returns only when the specified predicate 
procedure returns True for an event. After the predicate procedure finds a 
match, XPeeklfEvent copies the matched event into the client-supplied 
XEven t structure without removing the event from the queue. 
XPeeklfEvent flushes the output buffer if it blocks waiting for additional 
events. 

See Also 
XPutBackEvent(3Xll) XNextEvent(3Xll), XSendEvent(3Xll) 
Guide to the Xlib Library 

3-480 Subroutines 



XlnstaliColormap (3X11 ) 

Name 
XInstallColonnap, XUninstallColonnap, XListInstalledColonnaps - control 
colonnaps 

Syntax 
XInstallColonnap (display, colormap) 

Display *display; 
Colonnap colormap; 

XUninstallColonnap (display, colormap) 
Display *display; 
Colonnap colormap; 

Colormap *XListInstalledColonnaps (display, w, num _return) 
Display *display; 
Window w; 
int * num _return; 

Arguments 

colormap 

display 

num return 

W 

Description 

Specifies the colormap. 

Specifies the connection to the X server. 

Returns the number of currently installed colormaps. 

Specifies the window that detennines the screen. 

The XlnstallColormap function installs the specified colormap for its 
associated screen. All windows associated with this colonnap immediately 
display with true colors. You associated the windows with this colonnap 
when you created them by calling XCreateWindow, 
XCreateSimpleWindow,XChangeWindowAttributes,or 
XSetWindowColormap. 

If the specified colormap is not already an installed colormap, the X server 
generates a ColormapNotify event on each window that has that 
colonnap. In addition, for every other colonnap that is installed as a result of 
a call to XlnstallColormap, the X server generates a 
ColormapNotify event on each window that has that colonnap. 

Subroutines 3-481 



XlnstaliColormap (3X11 ) 

XlnstallColormap can generate a BadColor error. 

The XUninstallColormap function removes the specified colormap from 
the required list for its screen. As a result, the specified colormap might be 
uninstalled, and the X server might implicitly install or uninstall additional 
colormaps. Which colormaps get installed or uninstalled is server·dependent 
except that the required list must remain installed. 

If the specified colormap becomes uninstalled, the X server generates a 
ColormapNoti fy event on each window that has that colormap. In 
addition, for every other colormap that is installed or uninstalled as a result 
of a call to XUninstallColormap, the X server generates a 
ColormapNotify event on each window that has that colormap. 

XUninstallColormap can generate a BadColor error. 

The XListlnstalledColormaps function returns a list of the currently 
installed colormaps for the screen of the specified window. The order of the 
colormaps in the list is not significant and is no explicit indication of the 
required list. When the allocated list is no longer needed, free it by using 
XFree. 

XListlnstalledColormaps can generate a BadWindow error. 

Diagnostics 

BadColor A value for a Colormap argument does not name a defined 
Colormap. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
Guide to the Xlib Library 

3-482 Subroutines 



XlnternAtom (3X11 ) 

Name 
XInternAtom, XGetAtomName - create or return atom names 

Syntax 
Atom XInternAtom(display, atom_name, only_if_exists) 

Display *display; 
char *atom name; 
Bool only _if_exists; 

char *XGetAtomName(display, atom) 
Display *display; 
Atom atom; 

Arguments 

atom 

atom name 

Specifies the atom for the property name you want returned. 

Specifies the name associated with the atom you want 
returned. 

display Specifies the connection to the X server. 

only if exists Specifies a Boolean value that indicates whether 
XlnternAtom creates the atom. 

Description 
The XI nt e rnA t om function returns the atom identifier associated with the 
specified atom_name string. If only_if_exists is False, the atom is created 
if it does not exist. Therefore, XlnternAtom can return None. You 
should use a null-terminated ISO Latin-l string for atom_name. Case 
matters; the strings thing, Thing, and thinG all designate different atoms. The 
atom will remain defined even after the client's connection closes. It will 
become undefined only when the last connection to the X server closes. 

XlnternAtom can generate BadAlloc and BadValue errors. 

The XGetAtomName function returns the name associated with the specified 
atom. To free the resulting string, call XFree. 

XGetAtomName can generate a BadAtom error. 

Subroutines 3-483 



XlnternAtom (3X11 ) 

Diagnostics 

BadAlloc 

BadAtom 

BadValue 

The server failed to allocate the requested resource or server 
memory. 

A value for an Atom argument does not name a defined 
Atom. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

See Also 
XGetWindowProperty(3Xll) 
Guide to the Xlib Library 

3-484 Subroutines 



XlntersectRegion (3X11 ) 

Name 
XIntersectRegion, XUnionRegion, XUnionRectWithRegion, 
XSubtractRegion, XXorRegion, XOffsetRegion, XShrinkRegion - region 
arithmetic utilities 

Syntax 
XIntersectRegion(sra, srb, dr_return) 

Region sra, srb, dr_return; 

XUnionRegion(sra, srb, dr return) 
Region sra, srb, dr _return; 

XUnionRectWithRegion(rectangle, src _region, dest _region_return) 
XRectangle *rectangle; 
Region src region; 
Region dest_region_return; 

XSubtractRegion(sra, srb, dr _return) 
Region sra, srb, dr _return; 

XXorRegion(sra, srb, dr_return) 
Region sra, srb, dr _return; 

XOffsetRegion (r, dx, dy) 
Region r; 
int dx, dy; 

XShrinkRegion (r, dx, dy) 
Region r; 
int dx, dy; 

Arguments 

dest region return 
- - Returns the destination region. 

dr return Returns the result of the computation. ds Dy move or shrink 

dx 
dy 

r 

rectangle 

sra 

Specify the x and y coordinates, which define the amount 
you want to the specified region. 

Specifies the region. 

Specifies the rectangle. 

Subroutines 3-485 



XlntersectRegion (3X11 ) 

srb 

Description 

Specify the two regions with which you want to petform the 
computation. 

Specifies the source region to be used. 

The XIntersectRegion function computes the intersection of two 
regions. 

The XUnionRegion function computes the union of two regions. 

The XUnionRectWithRegion function updates the destination region 
from a union of the specified rectangle and the specified source region. 

The XSubtractRegion function subtracts srb from sra and stores the 
results in dr_return. 

The XXorRegion function calculates the difference between the union and 
intersection of two regions. 

The XOffsetRegion function moves the specified region by a specified 
amount. 

The XShrinkRegion function reduces the specified region by a specified 
amount. Positive values shrink the size of the region, and negative values 
expand the region. 

See Also 
XCreateRegion(3Xll), XEmptyRegion(3Xll), 
Guide to the Xlib Library 

3-486 Subroutines 



Name 

XListFonts (3X11 ) 

XListFonts, XFreeFontNames, XListFontsWithInfo, XFreeFontInfo - obtain 
or free font names and information 

Syntax 
char **XListFonts(display, pattern, maxnames, actual_count_return) 

Display * display; 
char * pattern; 
int maxnames; 
int * actual_count _return; 

XFreeFontNames( list) 
char * list [] ; 

char **XListFontsWithInfo(display, pattern, maxnames, count return, 
~~rn) -

Display *display; 
char *pattern; 
int maxnames; 
int *count return; 
XFontStruct **info return; 

XFreeFontInfo(names, free info, actual count) 
char **names; - -
XFontStruct *free info; 
int actual_count; -

Arguments 

actual count Specifies the actual number of matched font names returned 
by XListFontsWithlnfo. 

actual count return 
- - Returns the actual number of font names. 

count return 

display 

info return 

free info 

list 

Returns the actual number of matched font names. 

Specifies the connection to the X server. 

Returns a pointer to the font information. 

Specifies the pointer to the font information returned by 
XListFontsWithlnfo. 

Specifies the array of strings you want to free. 

Subroutines 3-487 



XListFonts (3X11 ) 

maxnames 

names 

pattern 

Description 

Specifies the maximum number of names to be returned. 

Specifies the list of font names returned by 
XListFontsWi thInfo. 

Specifies the null-terminated pattern string that can contain 
wildcard characters. 

The XListFonts function returns an array of available font names (as 
controlled by the font search path; see XSetFontPath) that match the 
string you passed to the pattern argument. The string should be ISO Latin-I; 
uppercase and lowercase do not matter. Each string is terminated by an 
ASCII null. The pattern string can contain any characters, but each asterisk 
(*) is a wildcard for any number of characters, and each question mark (?) is 
a wildcard for a single character. The client should call XFreeFontNames 
when finished with the result to free the memory. 

The XFreeFontNames function frees the array and strings returned by 
XListFonts or XListFontsWi thInfo. 

The XLi stF on t sWi thInf 0 function returns a list of font names that 
match the specified pattern and their associated font information. The list of 
names is limited to size specified by maxnames. The information returned 
for each font is identical to what XLoadQueryFont would return except 
that the per-character metrics are not returned. The pattern string can contain 
any characters, but each asterisk (*) is a wildcard for any number of 
characters, and each question mark (?) is a wildcard for a single character. 
To free the allocated name array, the client should call XFreeFontNames. 
To free the the font information array, the client should call 
XFreeFont Info. 

The XFreeFontInfo function frees the the font information array. 

See Also 
XLoadFont(3Xll), XSetFontPath(3Xll) 
Guide to the Xlib Library 

3-488 Subroutines 



Name 

XLoadFont (3X11 ) 

XLoadFont, XQueryFont, XLoadQueryFont, XFreeFont, XGetFontProperty, 
XUnloadFont - load or unload fonts 

Syntax 
Font XLoadFont(display, name) 

Display *display; 
char *name; 

XFontStruct *XQueryFont(display,font ID) 
Display *display; -
XIDfont ID; 

XFontStruct *XLoadQueryFont(display, name) 
Display *display; 
char *name; 

XFreeFont( display, font struct) 
Display *display; -
XFontStruct *font struct; 

Bool XGetFontProperty (font _ struct, atom, value_return) 
XFontStruct *font struct; 
Atom atom; -
unsigned long *value _return; 

XUnloadFont( display, font) 
Display *display; 
Font font; 

Arguments 

atom 

display 

font 

Specifies the atom for the property name you want returned. 

Specifies the connection to the X server. 

font ID 

font struct 

gc 

name 

value return 

Specifies the font. 

Specifies the font ID or the GContext ID. 

Specifies the storage associated with the font. 

Specifies the Ge. 

Specifies the name of the font, which is a null-terminated 
string. 

Returns the value of the font property. 

Subroutines 3-489 



XLoadFont{3X11 ) 

Description 
The XLoadFont function loads the specified font and returns its associated 
font ID. The name should be ISO Latin-l encoding; uppercase and 
lowercase do not matter. If XLoadFont was unsuccessful at loading the 
specified font, a BadName error results. Fonts are not associated with a 
particular screen and can be stored as a component of any GC. When the 
font is no longer needed, call XUnloadFont. 

XLoadFont can generate BadAlloc and BadName errors. 

The XQueryFont function returns a pointer to the XFontStruct 
structure, which contains information associated with the font. You can 
query a font or the font stored in a GC. The font ID stored in the 
XFontStruct structure will be the GContext ID, and you need to be 
careful when using this ID in other functions (see XGContextFromGC). 
To free this data, use XFreeFontlnfo. 

XLoadQueryFont can generate a BadAlloc error. 

The XLoadQueryFont function provides the most common way for 
accessing a font. XLoadQueryFont both opens (loads) the specified font 
and returns a pointer to the appropriate XFontStruct structure. If the font 
does not exist, XLoadQueryFont returns NULL. 

The XFreeFont function deletes the association between the font resource 
ID and the specified font and frees the XFontStruct structure. The font 
itself will be freed when no other resource references it. The data and the 
font should not be referenced again. 

XFreeFont can generate a BadFont error. 

Given the atom for that property, the XGetFontProperty function returns 
the value of the specified font property. XGetFontProperty also returns 
F al s e if the property was not defined or True if it was defined. A set of 
predefined atoms exists for font properties, which can be found in 
<Xll /Xatom. h>. This set contains the standard properties associated with 
a font. Although it is not guaranteed, it is likely that the predefined font 
properties will be present. 

The XUnloadFont function deletes the association between the font 
resource ID and the specified font. The font itself will be freed when no 
other resource references it. The font should not be referenced again. 

XUnloadFont can generate a BadFont error. 

3-490 Subroutines 



XLoadFont (3X11 ) 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadFont A value for a Font or GContext argument does not name a 
defined Font. 

BadName A font or color of the specified name does not exist. 

See Also 
XListFonts(3Xll), XSetFontPath(3Xll) 
Guide to the Xlib Library 

Subroutines 3-491 



XLookupKeysym (3X11 ) 

Name 
XLookupKeysym, XRefreshKeyboardMapping, XLookupString, 
XRebindKeySym - handle keyboard input events 

Syntax 
KeySym XLookupKeysym( key_event, index) 

XK.eyEvent * key_event; 
int index; 

XRefreshKeyboardMapping( event_map) 
~appingEvent*event_Inap; 

int XLookupString( event _struct, buffer _return, bytes_buffer, keysYIn _return, 
status in out) 

XKeyEvent *event _struct; 
char * buffer return; 
int bytes buffer; 
KeySym-*keysym return; 
XComposeStatus "* status_in _out; 

XRebindKeysym(display, keysym, list, mod_count, string, bytes_string) 
Display *display; 
KeySym keysYIn; 
KeySym list [] ; 
int Inod count; 
unsigned char * string; 
int bytes_string; 

Arguments 

buffer _return 

bytes_buffer 

bytes_string 

display 

event_map 

event struct 

index 

3-492 Subroutines 

Returns the translated characters. 

Specifies the length of the buffer. No more than bytes_buffer 
of translation are returned. 

Specifies the length of the string. 

Specifies the connection to the X server. 

Specifies the mapping event that is to be used. 

Specifies the key event structure to be used. You can pass 
XKeyPressedEvent or XKeyReleasedEvent. 

Specifies the index into the KeySyms list for the event's 
KeyCode. 



key_event 

keysym 

XLookupKeysym (3X11 ) 

Specifies the KeyPress or KeyRelease event. 

Specifies the KeySym that is to be tested. 

keysym _return Returns the KeySym computed from the event if this 
argument is not NULL. 

list Specifies the KeySyms to be used as modifiers. 

mod count Specifies the number of modifiers in the modifier list. 

status in out Specifies or returns the XComposeStatus structure or 
NULL. 

string Specifies a pointer to the string that is copied and will be 
returned by XLookupString. 

Description 
The XLookupKeysym function uses a given keyboard event and the index 
you specified to return the KeySym from the list that corresponds to the 
KeyCode member in the XKeyPressedEvent or XKeyReleasedEvent 
structure. If no KeySym is defined for the KeyCode of the event, 
XLookupKeysym returns NoSymbol. 

The XRefreshKeyboardMapping function refreshes the stored modifier 
and keymap information. You usually call this function when a 
MappingNot i fy event with a request member of MappingKeyboard or 
MappingModifier occurs. The result is to update Xlib's knowledge of 
the keyboard. 

The XLookupString function is a convenience routine that maps a key 
event to an ISO Latin-l string, using the modifier bits in the key event to 
deal with shift, lock, and control. It returns the translated string into the 
user's buffer. It also detects any rebound KeySyms (see XRebindKeysym) 
and returns the specified bytes. XLookupString returns the length of the 
string stored in the tag buffer. If the lock modifier has the caps lock KeySym 
associated with it, XLookupString interprets the lock modifier to perform 
caps lock processing. 

If present (non-NULL), the XComposeStatus structure records the state, 
which is private to Xlib, that needs preservation across calls to 
XLookupSt ring to implement compose processing. 

The XRebindKeysym function can be used to rebind the meaning of a 
KeySym for the client. It does not redefine any key in the X server but 
merely provides an easy way for long strings to be attached to keys. 
XLookupString returns this string when the appropriate set of modifier 
keys are pressed and when the KeySym would have been used for the 

Subroutines 3-493 



XLookupKeysym (3X11 ) 

translation. Note that you can rebind a KeySym that may not exist. 

See Also 
XStringToKeysym(3Xll) 
Guide to the Xlib Library 

3-494 Subroutines 



XMapWindow (3X11 ) 

Name 
XMap Window, XMapRaised, XMapSubwindows - map windows 

Syntax 
XMap Window ( display, w) 

Display *display; 
Window w; 

XMapRaised(display, w) 
Display *display; 
Windoww; 

XMapSubwindows (display, w) 
Display *display; 
Window w; 

Arguments 

display 

w 

Description 

Specifies the connection to the X server. 

Specifies the window. 

The XMapWindow function maps the window and all of its subwindows that 
have had map requests. Mapping a window that has an unmapped ancestor 
does not display the window but marks it as eligible for display when the 
ancestor becomes mapped. Such a window is called unviewable. When all 
its ancestors are mapped, the window becomes viewable and will be visible 
on the screen if it is not obscured by another window. This function has no 
effect if the window is already mapped. 

If the override-redirect of the window is False and if some other client has 
selected SubstructureRedirectMask on the parent window, then the 
X server generates a MapRequest event, and the XMapWindow function 
does not map the window. Otherwise, the window is mapped, and the X 
server generates a MapNotify event. 

If the window becomes viewable and no earlier contents for it are 
remembered, the X server tiles the window with its background. If the 
window's background is undefined, the existing screen contents are not 
altered, and the X server generates zero or more Expose events. If 
backing-store was maintained while the window was unmapped, no Expose 
events are generated. If backing-store will now be maintained, a full-window 

Subroutines 3-495 



XMapWindow{3X11 } 

exposure is always generated. Otherwise, only visible regions may be 
reported. Similar tiling and exposure take place for any newly viewable 
inferiors. 

If the window is an InputOutput window, XMapWindow generates 
Expose events on each InputOutput window that it causes to be 
displayed. If the client maps and paints the window and if the client begins 
processing events, the window is painted twice. To avoid this, first ask for 
Expose events and then map the window, so the client processes input 
events as usual. The event list will include Expose for each window that 
has appeared on the screen. The client's normal response to an Expose 
event should be to repaint the window. This method usually leads to simpler 
programs and to proper interaction with window managers. 

XMapWindow can generate a BadWindow error. 

The XMapRaised function essentially is similar to XMapWindow in that it 
maps the window and all of its subwindows that have had map requests. 
However, it also raises the specified window to the top of the stack. 

XMapRai sed can generate a BadWindow error. 

The XMapSubwindows function maps all subwindows for a specified 
window in top-to-bottom stacking order. The X server generates Expose 
events on each newly displayed window. This may be much more efficient 
than mapping many windows one at a time because the server needs to 
perform much of the work only once, for all of the windows, rather than for 
each window. 

XMapSubwindows can generate a BadWindow error. 

Diagnostics 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XChange Window Attributes(3Xll), XConfigure Window(3Xll), 
XCreateWindow(3Xll), XDestroyWindow(3Xll), XRaiseWindow(3Xll), 
XUnmapWindow(3Xll) 
Guide to the Xlib Library 

3-496 Subroutines 



Name 

XNextEvent (3X11 ) 

NextEvent, XPeekEvent, XWindowEvent, XCheckWindowEvent, 
XMaskEvent, XCheckMaskEvent, XCheckTypedEvent, 
XCheckTypedWindowEvent - select events by type 

Syntax 
XNextEvent(display, event_return) 

Display *display; 
XEvent *event _return; 

XPeekEvent(display, event_return) 
Display *display; 
XEvent *event_return; 

XWindowEvent(display, w, event_mask, event_return) 
Display *display; 
Window w; 
long event_mask; 
XEvent *event_return; 

Bool XCheckWindowEvent(display, w, event_mask, event_return) 
Display *display; 
Window w; 
long event mask; 
XEvent *event_return; 

XMaskEvent(display, event_mask, event_return) 
Display *display; 
long event mask; 
XEvent *event_return; 

Bool XCheckMaskEvent( display, event_mask, event_return) 
Display *display; 
long event mask; 
XEvent *event_return; 

Bool XCheckTypedEvent( display, event_type, event_return) 
Display *display; 
int event_type; 
XEvent *event_return; 

Bool XCheckTypedWindowEvent(display, w, event_type, event_return) 
Display *display; 
Windoww; 

Subroutines 3-497 



XNextEvent (3X11 ) 

int event type; 
XEvent *event _return; 

Arguments 

display Specifies the connection to the X server. 

event mask Specifies the event mask. 

event return Returns the matched event's associated structure. 

event return Returns the next event in the queue. 

event return Returns a copy of the matched event's associated structure. 

event_type Specifies the event type to be compared. 

w Specifies the window whose event uou are interested in. 

Description 
The XNextEvent function copies the first event from the event queue into 
the specified XEvent structure and then removes it from the queue. If the 
event queue is empty, XNextEvent flushes the output buffer and blocks 
until an event is received. 

The XPeekEvent function returns the first event from the event queue, but 
it does not remove the event from the queue. If the queue is empty, 
XPeekEvent flushes the output buffer and blocks until an event is received. 
It then copies the event into the client-supplied XEvent structure without 
removing it from the event queue. 

The XWindowEvent function searches the event queue for an event that 
matches both the specified window and event mask. When it finds a match, 
XWindowEvent removes that event from the queue and copies it into the 
specified XEvent structure. The other events stored in the queue are not 
discarded. If a matching event is not in the queue, XWindowEvent flushes 
the output buffer and blocks until one is received. 

The XCheckWindowEvent function searches the event queue and then the 
events available on the server connection for the first event that matches the 
specified window and event mask. If it finds a match, 
XCheckWindowEvent removes that event, copies it into the specified 
XEvent structure, and returns True. The other events stored in the queue 
are not discarded. If the event you requested is not available, 
XCheckWindowEvent returns False, and the output buffer will have 
been flushed. 

3~498 Subroutines 



XNextEvent (3X11 ) 

The XMaskEvent function searches the event queue for the events 
associated with the specified mask. When it finds a match, XMaskEvent 
removes that event and copies it into the specified XEvent structure. The 
other events stored in the queue are not discarded. If the event you requested 
is not in the queue, XMaskEvent flushes the output buffer and blocks until 
one is. received. 

The XCheckMaskEvent function searches the event queue and then any 
events available on the server connection for the first event that matches the 
specified mask. If it finds a match, XCheckMaskEvent removes that 
event, copies it into the specified XEvent structure, and returns True. The 
other events stored in the queue are not discarded. If the event you requested 
is not available, XCheckMaskEvent returns False, and the output buffer 
will have been flushed. 

The XCheckTypedEvent function searches the event queue and then any 
events available on the server connection for the first event that matches the 
specified type. If it finds a match, XCheckTypedEvent removes that 
event, copies it into the specified XEvent structure, and returns True. The 
other events in the queue are not discarded. If the event is not available, 
XCheckTypedEvent returns False, and the output buffer will have been 
flushed. 

The XCheckTypedWindowEvent function searches the event queue and 
then any events available on the server connection for the first event that 
matches the specified type and window. If it finds a match, 
XCheckTypedWindowEvent removes the event from the queue, copies it 
into the specified XEvent structure, and returns True. The other events in 
the queue are not discarded. If the event is not available, 
XCheckTypedWindowEvent returns False, and the output buffer will 
have been flushed. 

See Also 
XIfEvent(3Xll), XPutBackEvent(3Xll), XSendEvent(3Xll) 
Guide to the Xlib Library 

Subroutines 3-499 



XOpenDisplay (3X11 ) 

Name 
XOpenDisplay, XCloseDisplay - connect or disconnect to X server 

Syntax 
Display *XOpenDisplay(display_name) 

char *display_name; 

XCloseDisplay(display) 
Display *display; 

Arguments 

display Specifies the connection to the X server. 

display_name Specifies the hardware display name, which detennines the 
display and communications domain to be used. On a 
UNIX-based system, if the display_name is NULL, it 
defaults to the value of the DISPLAY environment variable. 

Description 
The XOpenDisplay function returns a Display structure that serves as 
the connection to the X server and that contains all the infonnation about that 
X server. XOpenDisplay connects your application to the X server 
through TCP, UNIX domain, or DECnet communications protocols. If the 
hostname is a host machine name and a single ·colon (:) separates the 
hostname and display number, XOpenDisplay connects using TCP 
streams. If the hostname is unix and a single colon (:) separates it from the 
display number, XOpenDisplay connects using UNIX domain IPC 
streams. If the hostname is not specified, Xlib uses whatever it believes is 
the fastest transport. If the hostname is a host machine name and a double 
colon (::) separates the hostname and display number, XOpenDisplay 
connects using DECnet. A single X server can support any or all of these 
transport mechanisms simultaneously. A particular Xlib implementation can 
support many more of these transport mechanisms. 

If successful, XOpenDisplay returns a pointer to a Display structure, 
which is defined in <Xl1/Xlib. h>. If XOpenDisplay does not succeed, 
it returns NULL. After a successful call to XOpenDisplay, all of the 
screens in the display can be used by the client. The screen number specified 
in the display_name argument is returned by the DefaultScreen macro 
(or the XDefaultScreen function). You can access elements of the 
Display and Screen structures only by using the infonnation macros or 

3-500 Subroutines 



XOpenDisplay (3X11 ) 

functions. For information about using macros and functions to obtain 
information from the Display structure, see section 2.2.1. 

The XCloseDisplay function closes the connection to the X server for the 
display specified in the Display structure and destroys all windows, 
resource IDs (Window, Font, Pixmap, Colormap, Cursor, and 
GContext), or other resources that the client has created on this display, 
unless the close-down mode of the resource has been changed (see 
XSetCloseDownMode). Therefore, these windows, resource IDs, and 
other resources should never be referenced again or an error will be 
generated. Before exiting, you should call XCloseDisplay explicitly so 
that any pending errors are reported as XCloseDisplay performs a final 
XSync operation. 

XCloseDisplay can generate a BadGC error. 

See Also 
Guide to the Xlib Library 

Subroutines 3-501 



XParseGeometry (3X11 ) 

Name 
XParseGeometry, XGeometry, XParseColor - parse window geometry and 
color 

Syntax 
int XParseGeometry (parse string , x_return, y _return, width_return, 
height return) 

char *parsestring; 
int *x return, *y return; 
int *width _return-' * height_return; 

int XGeometry( display, screen, position, default yosition, bwidth, fwidth, 
fheight, xadder, yadder, x_return, y_return, width_return, height_return) 

Display *display; 
int screen; 
char *position, *defaultyosition; 
unsigned int bwidth; 
unsigned int fwidth ,fheight; 
int xadder, yadder; 
int * x return, *y return; 
int *width_return-' *height_return; 

Status XParseColor( display, colormap, spec, exact _ def_return) 
Display *display; 
Colormap colormap; 
char *spec; 
XColor *exact _ def_return; 

Arguments 

bwidth 

colormap 

position 
default yosition 

display 

Specifies the border width. 

Specifies the colormap. 

Specify the geometry specifications. 

Specifies the connection to the X server. 

exact de! return 
- - Returns the exact color value for later use and sets the 

DoRed, DoGreen, and DoBl ue flags. 

fheight 

3-502 Subroutines 



[width 

parse string 

screen 

spec 

width return 

XParseGeometry (3X11 ) 

Specify the font height and width in pixels (increment size). 

Specifies the string you want to parse. 

Specifies the screen. 

Specifies the color name string; case is ignored. 

height-.return Return the width and height determined. 

xadder 
yadder Specify additional interior padding needed in the window. 

x return 
y return 

Description 

Return the x and y offsets. 

By convention, X applications use a standard string to indicate window size 
and placement. XParseGeometry makes it easier to conform to this 
standard because it allows you to parse the standard window geometry. 
Specifically, this function lets you parse strings of the form: 

[=][<width>x<height>][{ +-}<xoffset>{ +-} <yoffset>] 

The items in this form map into the arguments associated with this function. 
(Items enclosed in <> are integers, items in [] are optional, and items 
enclosed in { } indicate "choose one of". Note that the brackets should not 
appear in the actual string.) 

The XParseGeometry function returns a bitmask that indicates which of 
the four values (width, height, xoffset, and yoffset) were actually found in the 
string and whether the x and y values are negative. By convention, -0 is not 
equal to +0, because the user needs to be able to say "position the window 
relative to the right or bottom edge." For each value found, the . 
corresponding argument is updated. For each value not found, the argument 
is left unchanged. The bits are represented by XValue, YValue, 
WidthValue, HeightValue, XNegative, or YNegative and are 
defined in <Xll/Xutil. h>. They will be set whenever one of the values 
is defined or one of the signs is set. 

If the function returns either the XVal ue or YVal ue flag, you should place 
the window at the requested position. 

You pass in the border width (bwidth), size of the increments fwidth and 
fueight (typically font width and height), and any additional interior space 
(xadder and yadder) to make it easy to compute the resulting size. The 
XGeometry function returns the position the window should be placed 

Subroutines 3-503 



XParseGeometry (3X11 ) 

given a position and a default position. XGeometry determines the 
placement of a window using a geometry specification as specified by 
XParseGeometry and the additional information about the window. 
Given a fully qualified default geometry specification and an incomplete 
geometry specification, XParseGeometry returns a bitmask value as 
defined above in the XParseGeometry call, by using the position 
argument. 

The returned width and height will be the width and height specified by 
default_position as overridden by any user-specified position. They are not 
affected by fwidth, theight, xadder, or yadder. The x and y coordinates are 
computed by using the border width, the screen width and height, padding as 
specified by xadder and yadder, and the theight and fwidth times the width 
and height from the geometry specifications. 

The XParseColor function provides a simple way to create a standard user 
interface to color. It takes a string specification of a color, typically from a 
command line or XGetDefault option, and returns the corresponding red, 
green, and blue values that are suitable for a subsequent call to 
XAllocColor or XStoreColor. The color can be specified either as a 
color name (as in XAllocNamedColor) or as an initial sharp sign 
character followed by a numeric specification, in one of the following 
formats: 

#RGB 
#RRGGBB 
#RRRGGGBBB 
#RRRRGGGGBBBB 

(4 bits each) 
(8 bits each) 
(12 bits each) 
(16 bits each) 

The R, G, and B represent single hexadecimal digits (both uppercase and 
lowercase). When fewer than 16 bits each are specified, they represent the 
most-significant bits of the value. For example, #3a7 is the same as 
#3000a0007000. The colormap is used only to determine which screen to 
look up the color on. For example, you can use the screen's default 
colormap. 

If the initial character is a sharp sign but the string otherwise fails to fit the 
above formats or if the initial character is not a sharp sign and the named 
color does not exist in the server's database, XParseColor fails and 
returns zero. 

XParseColor can generate a BadColor error. 

3-504 Subroutines 



XParseGeometry (3X11 ) 

Diagnostics 

BadColor A value for a Colormap argument does not name a defined 
Colormap. 

See Also 
Guide to the Xlib Library 

Subroutines 3-505 



XPolygonRegion (3X11 ) 

Name 
XPolygonRegion, XClipBox - generate regions 

Syntax 
Region XPolygonRegion (points, n, fill rule) 

XPoint points!]; -
int n; 
int fill_rule; 

XClipBox (r, reet return) 
Region r; -
XRectangle *reet _return; 

Arguments 

fill_rule 

n 

points 

r 

reet return 

Description 

Specifies the fill-rule you want to set for the specified GC. 
You can pass EvenOddRule or WindingRule. 

Specifies the number of points in the polygon. 

Specifies an array of points. 

Specifies the region. 

Returns· the smallest enclosing rectangle. 

The XPolygonRegion function returns a region for the polygon defined by 
the points array. For an explanation of fill_rule, see XCreateGC. 

The XClipBox function returns the smallest rectangle enclosing the 
specified region. 

See Also 
Guide to the Xlib Library 

3-506 Subroutines 



XPutBackEvent (3X11 ) 

Name 
XPutBackEvent - put events back on the queue 

Syntax 
XPutBackEvent(display, event) 

Display *display; 
XEvent *event; 

Arguments 

display 

event 

Description 

Specifies the connection to the X server. 

Specifies a pointer to the event. 

The XPutBackEvent function pushes an event back onto the head of the 
display's event queue by copying the event into the queue. This can be 
useful if you read an event and then decide that you would rather deal with it 
later. There is no limit to the number of times in succession that you can call 
XPutBackEvent. 

See Also 
XIfEvent(3Xll), XNextEvent(3Xll), XSendEvent(3Xll) 
Guide to the Xlib Library 

Subroutines 3--507 



XPutlmage (3X11 ) 

Name 
XPutImage, XGetImage, XGetSublmage - transfer images 

Syntax 
XPutlmage(display, d, gc, image, src_x, srcy, dest~, desty, width, 
height) 

Display *display; 
Drawable d; 
GCgc; 
XImage *image; 
int src_x, srcy; 
int dest_x, desty; 
unsigned int width, height; 

XImage *XGetImage(display, d, x, y, width, height, plane_mask,format) 
Display *display; 
Drawable d; 
int x, y; 
unsigned int width, height; 
long plane mask; 
intformat;-

XImage *XGetSublmage(display, d, x, y, width, height, plane mask, 
format, dest_image, dest_x, desty) -

Display *display; 
Drawable d; 
int x, y; 
unsigned int width, height; 
unsigned long plane mask; 
intformat; -
XImage *dest _image; 
int dest_x, desty; 

Arguments 

d 

dest_image 

dest x 
desiy 

3-508 Subroutines 

Specifies the drawable. 

Specify the destination image. 

Specify the x and y coordinates, which are relative to the 
origin of the drawable and are the coordinates of the 
subimage or which are relative to the origin of the 



display 

format 

gc 

image 

plane_mask 

src x 

srcy 

width 
height 

x 
y 

Description 

XPutlmage (3X11 ) 

destination rectangle, specify its upper-left comer, and 
determine where the subimage is placed in the destination 
image. 

Specifies the connection to the X server. 

Specifies the format for the image. You can pass 
XYBitmap,XYPixmap,orZPixmap. 

Specifies the GC. 

Specifies the image you want combined with the rectangle. 

Specifies the plane mask. 

Specifies the offset in X from the left edge of the image 
defined by the Xlmage data structure. 

Specifies the offset in Y from the top edge of the image 
defined by the Xlmage data structure. 

Specify the width and height of the subimage, which define 
the dimensions of the rectangle. 

Specify the x and y coordinates, which are relative to the 
origin of the drawable and define the upper-left comer of the 
rectangle. 

The XPutlmage function combines an image in memory with a rectangle of 
the specified drawable. If XYBi tmap format is used, the depth must be one, 
or a BadMatch error results. The foreground pixel in the GC defines the 
source for the one bits in the image, and the background pixel defines the 
source for the zero bits. For XYPixmap and ZPixmap, the depth must 
match the depth of the drawable, or a BadMatch error results. The section 
of the image defined by the src_x, src-y, width, and height arguments is 
drawn on the specified part of the drawable. 

This function uses these GC components: function, plane-mask, subwindow­
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC 
mode-dependent components: foreground and background. 

XPutlmage can generate BadDrawable, BadGe, BadMatch, and 
BadVal ue errors. 

Subroutines 3-509 



XPutlmage (3X11 ) 

The XGet Image function returns a pointer to an XImage structure. This 
structure provides you with the contents of the specified rectangle of the 
drawable in the fonnat you specify. If the fonnat argument is XYP ixmap, 
the image contains only the bit planes you passed to the plane_mask 
argument. If the plane_mask argument only requests a subset of the planes 
of the display, the depth of the returned image will be the number of planes 
requested. If the fonnat argument is ZP ixmap, XGet Image returns as zero 
the bits in all planes not specified in the plane_mask argument. The function 
performs no range checking on the values in plane_mask and ignores 
extraneous bits. 

XGetImage returns the depth of the image to the depth member of the 
XImage structure. The depth of the image is as specified when the drawable 
was created, except when getting a subset of the planes in XYP ixmap 
format, when the depth is given by the number of bits set to 1 in plane_mask. 

If the drawable is a pixmap, the given rectangle must be wholly contained 
within the pixmap, or a BadMa t ch error results. If the drawable is a 
window, the window must be viewable, and it must be the case that if there 
were no inferiors or overlapping windows, the specified rectangle of the 
window would be fully visible on the screen and wholly contained within the 
outside edges of the window, ora BadMatch error results. Note that the 
borders of the window can be included and read with this request. If the 
window has backing-store, the backing-store contents are returned for regions 
of the window that are obscured by noninferior windows. If the window does 
not have backing-store, the returned contents of such obscured regions are 
undefined. The returned contents of visible regions of inferiors of a different 
depth than the specified window's depth are also undefined. The pointer 
cursor image is not included in the returned contents. 

XGetImage can generate BadDrawable, BadMatch, and BadValue 
errors. 

The XGetSubImage function updates dest_image with the specified 
subimage in the same manner as XGet Image. If the format argument is 
XYPixmap, the image contains only the bit planes you passed to the 
plane_mask argument. If the format argument is ZP ixmap, 
XGetSubImage returns as zero the bits in all planes not specified in the 
plane_mask argument. The function performs no range checking on the 
values in plane_mask and ignores extraneOJS bits. As a convenience, 
XGetSubImage returns a pointer to the same XImage structure specified 
by dest_image. 

3-510 Subroutines 



XPutlmage (3X11 ) 

The depth of the destination Xlmage structure must be the same as that of 
the drawable. If the specified subimage does not fit at the specified location 
on the destination image, the right and bottom edges are clipped. If the 
drawable is a pixmap, the given rectangle must be wholly contained within 
the pixmap, or a BadMa t ch error results. If the drawable is a window, the 
window must be viewable, and it must be the case that if there were no 
inferiors or overlapping windows, the specified rectangle of the window 
would be fully visible on the screen and wholly contained within the outside 
edges of the window, or a BadMatch error results. If the window has 
backing-store, then the backing-store contents are returned for regions of the 
window that are obscured by noninferior windows. If the window does not 
have backing-store, the returned contents of such obscured regions are 
undefined. The returned contents of visible regions of inferiors of a different 
depth than the specified window's depth are also undefined. 

XGetSublmage can generate BadDrawable, BadGC, BadMatch, and 
BadValue errors. 

Diagnostics 

BadDrawable 

BadGC 

BadMatch 

BadMatch 

BadValue 

See Also 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

A value for a GContext argument does not name a defined 
GContext. 

An InputOnly window is used as a Drawable. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

Guide to the Xlib Library 

Subroutines 3-511 



XQueryBestSize (3X11 ) 

Name 
XQueryBestSize, XQueryBestTile, XQueryBestStipple - determine efficient 
sizes 

Syntax 
Status XQueryBestSize(display, class, which screen, width, height, 
width return, height return) -

Display *display; 
int class; 
Drawable which screen; 
unsigned int width, height; 
unsigned int *width_return, *height_return; 

Status XQueryBestTile(display, which_screen, width, height, width_return, 
height return) 

Display *display; 
Drawable which screen; 
unsigned int width, height; 
unsigned int *width_return, *height_return; 

Status XQueryBestStipple(display, which_screen, width, height, 
width return, height return) 

Display *display; 
Drawable which screen; 
unsigned int width, height; 
unsigned int *width_return, *height_return; 

Arguments 

class 

display 

width 
height 

Specifies· the class that you are interested in. You can pass 
TileShape,CursorShape,orStippleShape. 

Specifies the connection to the X server. 

Specify the width and height. 

which screen Specifies any drawable on the screen. 

width return 
height_return Return the width and height of the object best supported by 

the display hardware. 

3-512 Subroutines 



XQueryBestSize (3X11 ) 

Description 
The XQueryBestSize function returns the best or closest size to the 
specified size. For CursorShape, this is the largest size that can be fully 
displayed on the screen specified by which_screen. For TileShape, this is 
the size that can be tiled fastest. For StippleShape, this is the size that 
can be stippled fastest. For CursorShape, the drawable indicates the 
desired screen. For TileShape and StippleShape, the drawable 
indicates the screen and possibly the window class and depth. An 
InputOnly window cannot be used as the drawable for TileShape or 
StippleShape, or a BadMatch error results. 

XQueryBestSize can generate BadDrawable, BaciMatch, and 
BadVal ue errors. 

The XQueryBestTile function returns the best or closest size, that is, the 
size that can be tiled fastest on the screen specified by which_screen. The 
drawable indicates the screen and possibly the window class and depth. If an 
InputOn).y window is used as the drawable, a BadMatch error results. 

XQueryBest Tile can generate BadDrawable and BadMatch errors. 

XQueryBestTile can generate BadDrawable and BadMatch errors. 

The XQueryBestStipple function returns the best or closest size, that is, 
the size that can be stippled fastest on the screen specified by which_screen. 
The drawable indicates the screen and possibly the window class and depth. 
If an InputOnly window is used as the drawable, a BadMatch error 
results. 

XQueryBestStipple can generate BadDrawable and BadMatch 
errors. 

Diagnostics 

BadMatch An InputOnly window is used as a Drawable. 

BadDrawable 

BadMatch 

BadValue 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

The values do not exist for an InputOnly window. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

Subroutines 3-513 



XQueryBestSize (3X11 ) 

See Also 
XCreateGC(3Xll), XSetArcMode(3Xl1), XSetClipOrigin(3Xll), 
XSetFillStyle(3Xll), XSetFont(3Xll), XSetLineAttributes(3Xll), 
XSetState(3Xll), XSetTile(3Xll) 
Guide to the Xlib Library 

3-514 Subroutines 



XQueryColor (3X11 ) 

Name 
XQueryColor, XQueryColors, XLookupColor - obtain color values 

Syntax 
XQueryColor(display, colormap, def_in_out) 

Display *display; 
Colormap colormap; 
XColor *de! in out; 

XQueryColors (display, colormap, defs _in_out, ncolors) 
Display *display; 
Colormap colormap; 
XColor defs in out[]; 
int ncolors; - -

Status XLookupColor(display, colormap, color_name, exact_def_return, 
screen de! return) 

DiSplay *display; 
Colormap colormap; 
char *color name; 
XColor *exact_def_return, *screen_def_return; 

Arguments 

colormap 

color name 

display 

Specifies the colormap. 

Specifies the color name string (for example, red) whose 
color definition structure you want returned. 

Specifies and returns the ROB values for the pixel specified 
in the structure. 

Specifies and returns an array of color definition structures 
for the pixel specified in the structure. 

Specifies the connection to the X server. 

exact de! return 
- - Returns the exact ROB values. 

ncolors Specifies the number of XColor structures in the color 
definition array. 

screen de! return 
- - Returns the closest ROB values provided by the hardware. 

Subroutines 3-515 



XQueryColor (3X11 ) 

Description 
The XQueryColor function returns the ROB values for each pixel in the 
XColor structures and sets the DoRed, DoGreen, and DoBlue flags. The 
XQueryColors function returns the ROB values for each pixel in the 
XColor structures and sets the DoRed, DoGreen, and DoBlue flags. 

XQueryColor XQueryColors and can generate BadColor and 
BadVal ue errors. 

The XLookupColor function looks up the string name of a color with 
respect to the screen associated with the specified colormap. It returns both 
the exact color values and the closest values provided by the screen with 
respect to the visual type of the specified colormap. You should use the ISO 
Latin-l encoding; uppercase and lowercase do not matter. XLookupColor 
returns nonzero if the name existed in the color database or zero if it did not 
exist. 

Diagnostics 

BadColor 

BadValue 

See Also 

A value for a Colormap argument does not name a defined 
Colormap. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XAllocColor(3Xll), XCreateColormap(3Xll), XStoreColors(3Xll) 
Guide to the Xlib Library 

3-516 Subroutines 



XQueryPointer (3X11 ) 

Name 
XQueryPointer - get pointer coordinates 

Syntax 
Bool XQueryPointer(display, w, root_return, child_return, root_x_return, 
rooty_return, win_x_return, winy_return, mask_return) 

Display *display; 
Window w; 
Window *root return, *child return; 
int *root _x_return, *root y _return; 
int *win ~ _return, *win y _return; 
unsigned int *mask_return; 

Arguments 

child return Returns the child window that the pointer is located in, if 
any. 

display Specifies the connection to the X server. 

mask return Returns the current state of the modifier keys and pointer 
buttons. 

root return Returns the root window that the pointer is in. 

root x return 
root y _return Return the pointer coordinates relative to the root window's 

origin. 

w Specifies the window. 

win x return 
winy_return 

Description 

Return the pointer coordinates relative to the specified 
window. . 

The XQueryPointer function returns the root window the pointer is 
logically on and the pointer coordinates relative to the root window's origin. 
If XQueryPointer returns False, the pointer is not on the same screen 
as the specified window, and XQueryPointer returns None to 
child_return and zero to win_x_retum and win-y _return. If 
XQueryPointer returns True, the pointer coordinates returned to 
win_x_return and win-y _return are relative to the origin of the specified 
window. In this case, XQueryPointer returns the child that contains the 

Subroutines 3-517 



XQueryPointer (3X11 ) 

pointer, if any, or else None to child_return. 

XQueryPointer returns the current logical state of the keyboard buttons 
and the modifier keys in mask_return. It sets mask_return to the bitwise 
inclusive OR of one or more of the button or modifier key bitmasks to match 
the current state of the mouse buttons and the modifier keys. 

XQueryPointer can generate a BadWindow error. 

Diagnostics 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XGetWindowAttributes(3Xll), XQueryTree(3Xll) 
Guide to the Xlib Library 

3-518 Subroutines 



XQueryTree (3X11 ) 

Name 
XQueryTree - query window tree infonnation 

Syntax 
Status XQueryTree( display, W, root_return, parent_return, children_return, 
nchildren return) 

Dispiiy *display; 
Window w; 
Window *root return; 
Window *parent _return; 
Window **children return; 
unsigned int *nchildren_return; 

Arguments 

children return 
- Returns a pointer to the list of children. 

display Specifies the connection to the X server. 

nchildren return 
- Returns the number of children. 

parent return Returns the parent window. 

root return 

w 

Returns the root window. 

Specifies the window whose list of children, root, parent, and 
number of children you want to obtain. 

Description 

Bugs 

The XQueryTree function returns the root ID, the parent window ID, a 
pointer to the list of children windows, and the number of children in the list 
for the specified window. The children are listed in current stacking order, 
from bottommost (first) to topmost (last). XQueryTree returns zero if it 
fails and nonzero if it succeeds. To free this list when it is no longer needed, 
use XFree. 

This really should return a screen *, not a root window ID. 

Subroutines 3-519 



XQueryTree (3X11 ) 

See Also 
XGetWindow Attributes(3Xll), XQueryPointer(3Xll) 
Guide to the Xlib Library 

3-520 Subroutines 



Name 

XRaiseWindow (3X11 ) 

XRaise Window, XLowerWindow, XCirculateSubwindows, 
XCirculateSubwindows Up, XCirculateSubwindowsDown, XRestackWindows 
- change window stacking order 

Syntax 
XRaise Window (display, w) 

Display *display; 
Window w; 

XLowerWindow( display, w) 
Display *display; 
Window w; 

XCirculateSubwindows(display, w, direction) 
Display *display; 
Windoww; 
int direction; 

XCirculateSubwindowsUp( display, w) 
Display *display; 
Windoww; 

XCirculateSubwindowsDown( display, w) 
Display *display; 
Window w; 

XRestackWindows(display, windows, nwindows); 
Display *display; 
Window windows []; 
int nwindows; 

Arguments 

direction Specifies the direction (up or down) that you want to 
circulate the window. You can pass RaiseLowest or 
LowerHighest. 

display 

nwindows 

w 

windows 

Specifies the connection to the X server. 

Specifies the number of windows to be restacked. 

Specifies the window. 

Specifies an array containing the windows to be restacked. 

Subroutines 3-521 



XRaiseWindow (3X11 ) 

Description 
The XRaiseWindow function raises the specified window to the top of the 
stack so that no sibling window obscures it. If the windows are regarded as 
overlapping sheets of paper stacked on a desk, then raising a window is 
analogous to moving the sheet to the top of the stack but leaving its x and y 
location on the desk constant. Raising a mapped window may generate 
Expose events for the window and any mapped subwindows that were 
formerly obscured. 

If the override-redirect attribute of the window is False and some other 
client has selected SubstructureRedirectMask on the parent, the X 
server generates a ConfigureRequest event, and no processing is 
performed. Otherwise, the window is raised. 

XRaiseWindow can generate a BadWindow error. 

The XLowerWindow function lowers the specified window to the bottom of 
the stack so that it does not obscure any sibling windows. If the windows are 
regarded as overlapping sheets of paper stacked on a desk, then lowering a 
window is analogous to moving the sheet to the bottom of the stack but 
leaving its x and y location on the desk constant. Lowering a mapped 
window will generate Expose events on any windows it formerly obscured. 

If the override-redirect attribute of the window is False and some other 
client has selected SubstructureRedirectMask on the parent, the X 
server generates a ConfigureRequest event, and no processing is 
performed. Otherwise, the window is lowered to the bottom of the stack. 

XLowerWindow can generate a BadWindow error. 

The XCirculateSubwindows function circulates children of the specified 
window in the specified direction. If you specify RaiseLowest, 
XCirculateSubwindows raises the lowest mapped child (if any) that is 
occluded by another child to the top of the stack. If you specify 
LowerHighest, XCirculateSubwindows lowers the highest mapped 
child (if any) that occludes another child to the bottom of the stack. 
Exposure processing is then performed on formerly obscured windows. If 
some other client has selected SubstructureRedirectMask on the 
window, the X server generates a CirculateRequest event, and no 
further processing is performed. If a child is actually restacked, the X server 
generates a CirculateNotify event. 

XCirculateSubwindows can generate BadValue and BadWindow 
errors. 

3-522 Subroutines 



XRaiseWindow (3X11 ) 

The XCirculateSubwindowsUp function raises the lowest mapped child 
of the specified window that is partially or completely occluded by another 
child. Completely unobscured children are not affected. This is a 
convenience function equivalent to XCirculateSubwindows with 
RaiseLowest specified. 

XCirculateSubwindowsUp can generate a BadWindow error. 

The XCirculateSubwindowsDown function lowers the highest mapped 
child of the specified window that partially or completely occludes another 
child. Completely unobscured children are not affected. This is a 
convenience function equivalent to XCirculateSubwindows with 
LowerHighest specified. 

XCirculateSubwindowsDown can generate a BadWindow error. 

The XRestackWindows function restacks the windows in the order 
specified, from top to bottom. The stacking order of the first window in the 
windows array is unaffected, but the other windows in the array are stacked 
underneath the first window, in the order of the array. The stacking order of 
the other windows is not affected. For each window in the window array that 
is not a child of the specified window, a BadMa t ch error results. 

If the override-redirect attribute of a window is False and some other client 
has selected SubstructureRedirectMask on the parent, the X server 
generates ConfigureRequest events for each window whose override­
redirect flag is not set, and no further processing is performed. Otherwise, 
the windows will be restacked in top to bottom order. 

XRestackWindows can generate BadWindow error. 

Diagnostics 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

Subroutines 3-523 



XRaiseWindow (3X11 ) 

See Also 
XChangeWindowAttributes(3Xll), XConfigureWindow(3Xll), 
XCreateWindow(3Xll), XDestroyWindow(3Xl1), XMapWindow(3Xll), 
XUnmap Window(3Xl1) 
Guide to the Xlib Library 

3-524 Subroutines 



XReadBitmapFile (3X11 ) 

Name 
XReadBitmapFile, XWriteBitmapFile, XCreatePixmapFromBitmapData, 
XCreateBitmapFromData - manipulate bitmaps 

Syntax 
int XReadBitmapFile(display, d,fiiename, width_return, height_return, 
bitmap _return, x_hot _return, y _hot_return) 

Display *display; 
Drawable d; 
char *filename; 
unsigned int *width_return, *height_return; 
Pixmap *bitmap _return; 
int *x_hot_return, *y_hot_return; 

int XWriteBitmapFile(display,filename, bitmap, width, height, x_hot, y_hot) 
Display *display; 
char *filename; 
Pixmap bitmap; 
unsigned int width, height; 
int x_hot, Y _hot; 

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height,/g, 
bg, depth) 

Display *display; 
Drawable d; 
char *data; 
unsigned int width, height; 
unsigned long/g, bg; 
unsigned int depth; 

Pixmap XCreateBitmapFromData(display, d, data, width, height) 
Display *display; 
Drawable d; 
char *data; 
unsigned int width, height; 

Arguments 

bitmap Specifies the bitmap. 

bitmap Jeturn Returns the bitmap that is created. 

d Specifies the drawable that indicates the screen. 

Subroutines 3-525 



XReadBitmapFile (3X11 ) 

data 

data 

depth 

display 

fg 
bg 

filename 

width 
height 

width return 

Specifies the data in bitmap format. 

Specifies the location of the bitmap data. 

Specifies the depth of the pixmap. 

Specifies the connection to the X server. 

Specify the foreground and background pixel values to use. 

Specifies the file name to use. The format of the file name is 
operating-system dependent. 

Specify the width and height. 

height return Return the width and height values of the read in bitmap file. 

x hot 
y_hot 

x hot return 
y -hot-return 

Description 

Specify where to place the hotspot coordinates (or -1,-1 if 
none are present) in the file. 

Return the hotspot coordinates. 

The XReadBitmapFile function reads in a file containing a bitmap. The 
file can be either in the standard X version 10 format (that is, the format used 
by X version 10 bitmap program) or in the X version 11 bitmap format. If 
the file cannot be opened, XReadBitmapFile returns 
BitmapOpenFailed. If the file can be opened but does not contain valid 
bitmap data, it returns BitmapFilelnvalid. If insufficient working 
storage is allocated, it returns Bi tmapNoMemory. If the file is readable and 
valid, it returns BitmapSuccess. 

XReadBi tmapFile returns the bitmap's height and width, as read from the 
file, to width_return and height_return. It then creates a pixmap of the 
appropriate size, reads the bitmap data from the file into the pixmap, and 
assigns the pixmap to the caller's variable bitmap. The caller must free the 
bitmap using XFreePixmap when finished. If name_x_hot and 
name_y_hot exist, XReadBitmapFile returns them to x_hot_return and 
y _hot_return; otherwise, it returns -1,-1. 

XReadBitmapFile can generate BadAlloc and BadDrawable errors. 

3-526 Subroutines 



XReadBitmapFile (3X11 ) 

The XWri teBi tmapFile function writes a bitmap out to a file. While 
XReadBitmapFile can read in either X version 10 format or X version 11 
format, XWriteBitmapFile always writes out X version 11 format. If 
the file cannot be opened for writing, it returns BitmapOpenFailed. If 
insufficient memory is allocated, XWri teBi tmapF ile returns 
BitmapNoMemory; otherwise, on no error, it returns BitmapSuccess. 
If x_hot and y_hot are not -1, -1, XWriteBitmapFile writes them out as 
the hotspot coordinates for the bitmap. 

XWriteBitmapFile can generate BadDrawable and BadMatch errors. 

The XCreateP ixmapFromBi tmapData function creates a pixmap of the 
given depth and then does a bitmap-format XPut Image of the data into it. 
The depth must be supported by the screen of the specified drawable, or a 
BadMatch error results. 

XCreatePixmapFromBitmapData can generate BadAlloc and 
BadMatch errors. 

The XCreateBi tmapFromData function allows you to include in your C 
program (using #include) a bitmap file that was written out by 
XWriteBitmapFile (X version 11 format only) without reading in the 
bitmap file. The following example creates a gray bitmap: 

#include "gray.bitmap" 

Pixmap bitmap; 
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width, gray_height 

If insufficient working storage was allocated, XCreateBitmapFromData 
returns None. It is your responsibility to free the bitmap using 
XFreeP ixmap when finished. 

XCreateBitmapFromData can generate a BadAlloc error. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadDrawable 

BadMatch 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

An InputOnly window is used as a Drawable. 

Subroutines 3-527 



XReadBitmapFile (3X11 ) 

See Also 
Guide to the Xlib Library 

3-528 Subroutines 



XRecolorCursor (3X11 ) 

Name 
XRecolorCursor, XFreeCursor, XQueryBestCursor - manipulate cursors 

Syntax 
XRecolorCursor( display, cursor, foreground_color, background_color) 

Display *display; 
Cursor cursor; 
XColor *foreground _color, * background_color; 

XFreeCursor( display, cursor) 
Display *display; 
Cursor cursor; 

Status XQueryBestCursor(display, d, width, height, width_return, 
height_return) 

Display *display; 
Drawable d; 
unsigned int width, height; 
unsigned int *width_return, *height_return; 

Arguments 

background color 
- Specifies the ROB values for the background of the source. 

cursor 

d 

display 

Specifies the cursor. 

Specifies the drawable, which indicates the screen. 

Specifies the connection to the X server. 

foreground color 
- Specifies the ROB values for the foreground of the source. 

width 
height 

width return 

Specify the width and heightof the cursor that you want the 
size information for. 

height _return Return the best width and height that is closest to the 
specified width and height. 

Subroutines 3-529 



XRecolorCursor (3X11 ) 

Description 
The XRecolorCursor function changes the color of the specified cursor, 
and if the cursor is being displayed on a screen, the change is visible 
immediately. 

XRecolorCursor can generate a BadCursor error. 

The XFreeCursor function deletes the association between the cursor 
resource ID and the specified cursor. The cursor storage is freed when no 
other resource references it. The specified cursor ID should not be referred to 
again. 

XFreeCursor can generate a ~adCursor error. 

Some displays allow larger cursors than other displays. The 
XQueryBestCursor function provides a way to find out what size cursors 
are actually possible on the display. It returns the largest size that can be 
displayed. Applications should be prepared to use smaller cursors on 
displays that cannot support large ones. 

XQueryBestCursor can generate a BadDrawable error. 

Diagnostics 

BadCursor A value for a Cursor argument does not name a defined 
Cursor. 

BadDrawable 

See Also 

A value for a Drawable argument does not name a defined 
Window or Pixmap. 

XCreateFontCursor(3XII), XDefineCusor(3Xll) 
Guide to the Xlib Library 

3-530 Subroutines 



XReparentWindow (3X11 ) 

Name 
XReparentWindow - reparent windows 

Syntax 
XReparentWindow(display, w, parent, x, y) 

Display *display; 
Window w; 
Window parent; 
int x, y; 

Arguments 

display 

parent 

w 

Specifies the connection to the X server. 

Specifies ·the parent window. 

Specifies the window. 

x 
y Specify the x and y coordinatesof the position in the new 

parent window. 

Description 
If the specified window is mapped, XReparentWindow automatically 
performs an UnmapWindow request on it, removes it from its current 
position in the hierarchy, and inserts it as the child of the specified parent. 
The window is placed in the stacking order on top with respect to sibling 
windows. 

After reparenting the specified window, XReparentWindow causes the X 
server to generate a ReparentNotify event. The override_redirect 
member returned in this event is set to the window's corresponding attribute. 
Window manager clients usually should ignore this window if this member is 
set to True. Finally, if the specified window was originally mapped, the X 
server automatically performs a MapWindow request on it. 

The X server performs normal exposure processing on formerly obscured 
windows. The X server might not generate Expo s e events for regions from 
the initial UnmapWindow request that are immediately obscured by the final 
MapWindow request. A BadMatch error results if: 

• The new parent window is not on the same screen as the old parent 
window. 

Subroutines 3-531 



XReparentWindow(3X11 ) 

• The new parent window is the specified window or an inferior of the 
specified window. 

• The specified window has a ParentRelative background, and the 
new parent window is not the same depth as the specified window. 

XReparentWindow can generate BadMatch and BadWindow errors. 

Diagnostics 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XChangeSaveSet(3Xll) 
Guide to the Xlib Library 

3-532 Subroutines 



Name 

XrmGetResource (3X11 ) 

XrmGetResource, XrmQGetResource, XrmQGetSearchList, 
XrmQGetSearchResource - retrieve database resources and search lists 

Syntax 
Bool XrmGetResource(database, str_name, str_class, str_type_return, 
value return) 

xilnDatabase database; 
char * str name; 
char * str - class; 
char **str type return; 
Xrm V alue-*value _return; 

Bool XrmQGetResource(database, quark_name, quark_class, 
quark_type _return, value_return) 

XrmDatabase database; 
XnnNameList quark_name; 
XrmClassList quark_class; 
XnnRepresentation *quark _type_return; 
XrmValue *value_return; 

typedef XrmHashTable *XrmSearchList; 

Bool XrmQGetSearchList(database, names, classes, list return, list length) 
XrmDatabase database; --
XnnNameList names; 
XrmClassList classes; 
XrmSearchList list return; 
int list_length; -

Bool XrmQGetSearchResource(list, name, class, type return, value return) 
XrmSearchList list; --
XnnName name; 
XrmClass class; 
XnnRepresentation *type _return; 
Xrm Value *value _return; 

Arguments 

class 

classes 

Specifies the resource class. 

Specifies a list of resource classes. 

Subroutines 3-533 



XrmGetResource (3X11 ) 

database Specifies the database that is to be used. 

list Specifies the search list returned by 
XrmQGetSearchList. 

list _length Specifies the number of entries (not the byte size) allocated 
for list_return. 

list return Returns a search list for further use. 

name Specifies the resource name. 

names Specifies a list of resource names. 

quark_class Specifies the fully qualified class of the value being retrieved 
(as a quark). 

quark_name Specifies the fully qualified name of the value being retrieved 
(as a quark). 

quark type return 
- - Returns a pointer to the representation type of the destination 

(as a quark). 

str class 

str name 

Specifies the fully qualified class of the value being retrieved 
(as a string). 

Specifies the fully qualified name of the value being retrieved 
(as a string). 

str _type _return Returns a pointer to the representation type of the destination 
(as a string). 

type _return Returns data representation type. 

value return Returns the value in the database. 

Description 
The XrmGetResource and XrmQGetResource functions retrieve a 
resource from the specified database. Both take a fully qualified name/class 
pair, a destination resource representation, and the address of a value 
(size/address pair). The value and returned type point into database memory; 
therefore, you must not modify the data. 

The database only frees or overwrites entries on XrmPutResource, 
XrmQPutResource, or XrmMergeDatabases. A client that is not 
storing new values into the database or is not merging the database should be 
safe using the address passed back at any time until it exits. If a resource 
was found, both XrmGetResource and XrmQGetResource return 
True; otherwise, they return False. 

3-534 Subroutines 



XrmGetResource (3X11 ) 

The XrmQGetSearchList function takes a list of names and classes and 
returns a list of database levels where a match might occur. The returned list 
is in best-to-worst order and uses the same algorithm as XrmGetResource 
for determining precedence. If list_return was large enough for the search 
list, XrmQGetSearchList returns True; otherwise, it returns False. 

The size of the search list that the caller must allocate is dependent upon the 
number of levels and wildcards in the resource specifiers that are stored in 
the database. The worst case length is 3n, where n is the number of name or 
class components in names or classes. 

When using XrmQGetSearchList followed by multiple probes for 
resources with a common name and class prefix, only the common prefix 
should be specified in the name and class list to XrmQGetSearchList. 

The XrmQGetSearchResource function searches the specified database 
levels for the resource that is fully identified by the specified name and class. 
The search stops with the first match. XrmQGetSearchResource returns 
True if the resource was found; otherwise, it returns False. 

A call to XrmQGetSearchList with a name and class list containing all 
but the last component of a resource name followed by a call to 
XrmQGetSearchResource with the last component name and class 
returns the same database entry as XrmGetResource and 
XrmQGetResource with the fully qualified name and class. 

See Also 
XrmInitialize(3Xll), XrmMergeDatabases(3Xll), XrmPutResource(3Xll), 
XrmUniqueQuark(3Xll) 
Guide to the Xlib Library 

Subroutines 3-535 



Xrmlnitialize (3X11 ) 

Name 
XnnInitialize, XnnParseCommand - initialize the Resource Manager and 
parse the command line 

Syntax 
void XrmInitialize(); 

void XnnParseCommand( database, table, table_count, name, argc _in_out, 
argv in out ,) 

XnilDatabase *database; 
XrmOptionDescList table; 
int table count; 
char *name; 
int *argc in out; 
char **argv]n _out; 

Arguments 

argc _in_out Specifies the number of arguments and returns the number of 
remaining arguments. 

argv _in_out Specifies a pointer to the command line arguments and 
returns the remaining arguments. 

database Specifies a pointer to the resource database. 

name Specifies the application name. 

table Specifies the table of command line arguments to be parsed. 

table count Specifies the number of entries in the table. 

Description 
The Xrmlnitialize function initialize the resource manager. 

The XrmParseCommand function parses an (argc, argv) pair according to 
the specified option table, loads recognized options into the specified 
database with type "String," and modifies the (argc, argv) pair to remove all 
recognized options. 

The specified table is used to parse the command line. Recognized entries in 
the table are removed from argv, and entries are made in the specified 
resource database. The table entries contain information on the option string, 
the option name, the style of option, and a value to provide if the option kind 
is XrmoptionNoArg. The argc argument specifies the number of 

3-536 Subroutines 



Xrmlnitialize (3X11 ) 

arguments in argv and is set to the remaining number of arguments that were 
not parsed. The name argument should be the name of your application for 
use in building the database entry. The name argument is prefixed to the 
resourceN ame in the option table before storing the specification. No 
separating (binding) character is inserted. The table must contain either a 
period (.) or an asterisk (*) as the first character in each resourceName entry. 
To specify a more completely qualified resource name, the resourceName 
entry can contain multiple components. 

See Also 
XrmGetResource(3Xll), XrmMergeDatabases(3Xll), 
XnnPutResource(3Xll), XrmUniqueQuark(3Xll) 
Guide to the Xlib Library 

Subroutines 3-537 



XrmMergeDatabases (3X11 ) 

Name 
XrmMergeDatabases, XrmGetFileDatabase, XnnPutFileDatabase, 
XrmGetStringDatabase - manipulate resource databases 

Syntax 
void XrmMergeDatabases(source _db, target_db) 

XrmDatabase source_db, *target_db; 

XrmDatabase XrmGetFileDatabase(filename) 
char *filename; 

void XnnPutFileDatabase(database, stored db) 
XrmDatabase database; -
char * stored_db; 

XrmDatabase XnnGetStringDatabase( data) 
char *data; 

Arguments 

data 

database 

filename 

source db 

stored db 

target_db 

Description 

Specifies the database contents using a string. 

Specifies the database that is to be used. 

Specifies the resource database file name. 

Specifies the resource database that is to be merged into the 
target database. 

Specifies the file name for the stored database. 

Specifies a pointer to the resource database into which the 
source database is to be merged. 

The XrmMergeDatabases function merges the contents of one database 
into another. It may overwrite entries in the destination database. This 
function is used to combine databases (for example, an application specific 
database of defaults and a database of user preferences). The merge is 
destructive; that is, the source database is destroyed. 

The XrmGetFileDatabase function opens the specified file, creates a 
new resource database, and loads it with the specifications read in from the 
specified file. The specified file must contain lines in the format accepted by 
XrmPutLineResQurce. If it cannot open the specified file, 

3-538 Subroutines 



XrmMergeDatabases (3X11 ) 

XrmGetFileDatabase returns NULL. 

The XrmPutFileDatabase function stores a copy of the specified 
database in the specified file. The file is an ASCII text file that contains lines 
in the fonnat that is accepted by XrmPutLineResQurce. 

The XrmGetStringDatabase function creates a new database and stores 
the resources specified in the specified null-tenninated string. 
XrmGetStringDatabase is similar to XrmGetFileDatabase except 
that it reads the infonnation out of a string instead of out of a file. Each line 
is separated by a new-line character in the fonnat accepted by 
XrmPutLineResQurce. 

See Also 
XnnGetResource(3Xll), XrmInitialize(3Xll), XrmPutResource(3Xll), 
XnnUniqueQuark(3Xll) 
Guide to the Xlib Library 

Subroutines 3-539 



XrmPutResource {3X11 } 

Name 
XnnPutResource, XnnQPutResource, XnnPutStringResource, 
XnnQPutStringResource, XnnPutLineResource - store database resources 

Syntax 
void XnnPutResource(database, specifier, type, value) 

XnnDatabase *database; 
char * specifier; 
char *type; 
XnnValue *value; 

void XnnQPutResource(database, bindings, quarks, type, value) 
XnnDatabase *database; 
XnnBindingList bindings; 
XnnQuarkList quarks; 
XnnRepresentation type; 
Xnn Value *value; 

void XnnPutStringResource(database, specifier, value) 
XnnDatabase *database; 
char * specifier; 
char *value; 

void XnnQPutStringResource(database, bindings, quarks, value) 
XnnDatabase *database; 
XnnBindingList bindings; 
XnnQuarkList quarks; 
char *value; 

void XnnPutLineResource(database, line) 
XnnDatabase *database; 
char *line; 

Arguments 

bindings 

database 

line 

quarks 

3-540 Subroutines 

Specifies a list of bindings. 

Specifies a pointer to the resource database. 

Specifies the resource value pair as a single string. A single 
colon (:) separates the name from the value. 

Specifies the complete or partial name or the class list of the 
resource. 



specifier 

type 

value 

Description 

XrmPutResource (3X11 ) 

Specifies a complete or partial specification of the resource. 

Specifies the type of the resource. 

Specifies the value of the resource, which is specified as a 
string. 

If database contains NULL, XrmPutResource creates a new database and 
returns a pointer to it. XtmPutResource is a convenience function that 
calls XrmStringToBindingQuarkList followed by: 

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value) 

If database contains NULL, XrmQPutResource creates a new database 
and returns a pointer to it. 

If database contains NULL, XrmPutStringResource creates a new 
database and returns a pointer to it. XrmPutStringResource adds a 
resource with the specified value to the specified database. 
XrmPutStringResource is a convenience routine that takes both the 
resource and value as null-terminated strings, converts them to quarks, and 
then calls XrmQPutResource, using a "String" representation type. 

If database contains NULL, XrmQPutStringResource creates a new 
database and returns a pointer to it. XrmQPutStringResource is a 
convenience routine that constructs an XrmValue for the value string (by 
calling strlen to compute the size) and then calls XrmQPutResource, 
using a "String" representation type. 

If database contains NULL, XrmPutLineResource creates a new 
database and returns a pointer to it. XrmPutLineResource adds a single 
resource entry to the specified database. Any white space before or after the 
name or colon in the line argument is ignored. The value is terminated by a 
new-line or a NULL character. To allow values to contain embedded new­
line characters, a "\n" is recognized and replaced by a new-line character. 
For example, line might have the value "xterm*background:green\n". Null­
terminated strings without a new line are also permitted. 

See Also 
XrmGetResource(3Xll), XnnInitialize(3Xll), XrmMergeDatabases(3Xll), 
XrmUniqueQuark(3Xll) 
Guide to the Xlib Library 

Subroutines 3-541 



XrmUniqueQuark (3X11 ) 

Name 
XnnUniqueQuark, XnnStringToQuark, XnnQuarkToString, 
XnnStringToQuarkList, XnnStringToBindingQuarkList - manipulate 
resource quarks 

Syntax 
XnnQuark XnnUniqueQuark() 

#define XnnStringToName(string) XnnStringToQuark(string) #define 
XnnStringToClass(string) XnnStringToQuark(string) #define 
XnnStringToRepresentation(string) XnnStringToQuark(string) 

XnnQuark XnnStringToQuark(string) 
char * string; 

#define XnnNameToString(name) XnnQuarkToString(name) #define 
XnnClassToString( class) XnnQuarkToString( class) #define 
XnnRepresentationToString(type) XnnQuarkToString(type) 

char *XnnQuarkToString( quark) 
XnnQuark quark; 

#define XnnStringToNameList(str, name) XnnStringToQuarkList«str), 
(name)) #define XnnStringToClassList( str,class) XnnStringToQuarkList«str), 
(class)) 

void XnnStringToQuarkList(string, quarks return) 
char * string; -
XnnQuarkList quarks return; 

XnnStringToBindingQuarkList(string, bindings _return, quarks_return) 
char *string; 
XnnBindingList bindings return; 
XnnQuarkList quarks return; 

Arguments 

bindings return 
- Returns the binding list. 

quark Specifies the quark for which the equivalent string is desired. 

quarks return Returns the list of quarks. 

string Specifies the string for which a quark is to be allocated. 

3-542 Subroutines 



XrmUniqueQuark (3X11 ) 

Description 
The XrmUniqueQuark function allocates a quark that is guaranteed not to 
represent any string that is known to the resource manager. 

These functions can be used to convert to and from quark representations. 
The string pointed to by the return value must not be modified or freed. If 
no string exists for that quark, XrmQuarkToString returns NULL. 

The XrmQuarkToString function converts the specified resource quark 
representation back to a string. 

The XrmStringToQuarkList function converts the null-terminated 
string (generally a fully qualified name) to a list of quarks. The components 
of the string are separated by a period or asterisk character. 

A binding list is a list of type XrmBindingList and indicates if 
components of name or class lists are bound tightly or loosely (that is, if 
wildcarding of intermediate components is specified). 

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindingList 

XrmBindTightly indicates that a period separates the components, and 
XrmBindLoosely indicates that an asterisk separates the components. 

The XrmStringToBindingQuarkList function converts the specified 
string to a binding list and a quark list. Component names in the list are 
separated by a period or an asterisk character. If the string does not start 
with period or asterisk, a period is assumed. For example, "*a.b*c" 
becomes: 

quarks a 
bindings loose 

See Also 

b 
tight 

c 
loose 

XrmGetResource(3Xll), XrmInitialize(3Xll), XrmMergeDatabases(3Xll), 
~tResource(3Xll) 

Guide to the Xlib Library 

Subroutines 3-543 



XSaveContext (3X11 ) 

Name 
XSaveContext, XFindContext, XDeleteContext, XUniqueContext -
associative lookup routines 

Syntax 
int XSaveContext(display, w, context, data) 

Display *display; 
Windoww; 
XContext context; 
caddr_t data; 

int XFindContext(display, w, context, data return) 
Display *display; -
Window w; 
XContext context; 
caddr_t *data_return; 

int XDeleteContext( display, w, context) 
Display *display; 
Window w; 
XContext context; 

XContext XUniqueContext() 

Arguments 

context 

data 

data return 

display 

W 

Description 

Specifies the context type to which the data belongs. 

Specifies the data to be associated with the window and type. 

Returns a pointer to the data. 

Specifies the connection to the X server. 

Specifies the window with which the data is associated. 

If an entry with the specified window and type already exists, 
XSaveContext overrides it with the specified context. The 
XSaveContext function returns a nonzero error code if an error has 
occurred and zero otherwise. Possible errors are XCNOMEM (out of memory). 

Because it is a return value, the data is a pointer. The XFindContext 
function returns a nonzero error code if an error has occurred and zero 
otherwise. Possible errors are XCNOENT (context-not-found). 

3-544 Subroutines 



XSaveContext (3X11 ) 

The XDeleteContext function deletes the entry for the given window and 
type from the data structure. This function returns the same error codes that 
XF indContext returns if called with the same arguments. 
XDeleteContext does not free the data whose address was saved. 

The XUniqueContext function creates a unique context type that may be 
used in subsequent calls to XSaveContext. 

See Also 
Guide to the Xlib Library 

Subroutines 3-545 



XSelectinput{3X11 ) 

Name 
XSelectInput, XSelectAsyncInput - select input events 

Syntax 
XSelectInput(display, w, event mask) 

Display *display; -
Window w; 
long event_mask; 

XSelectAsyncInput(display, w, event_mask, procedure, argument) 
Display *display; 
Window w; 
unsigned long event_mask; 
int (*procedure)o 
unsigned long argument; 

Arguments 

argument 

display 

event mask 

procedure 

w 

Description 

Specifies the argument that is to be passed to the specified 
procedure. 

Specifies the connection to the X server. 

Specifies the event mask. 

Specifies the procedure that is to be called. 

Specifies the window whose events you are interested in. 

The XSelectlnput function requests that the X server report the events 
associated with the specified event mask. Initially, X will not report any of 
these events. Events are reported relative to a window. If a window is not 
interested in a device event, it usually propagates to the closest ancestor that 
is interested, unless the do_not_propagate mask prohibits it. 

Setting the event-mask attribute of a window overrides any previous call for 
the same window but not for other clients. Multiple clients can select for the 
same events on the same window with the following restrictions: 

• Multiple clients can select events on the same window because their 
event masks are disjoint. When the X server generates an event, it 
reports it to all interested clients. 

3-546 Subroutines 



XSelectlnput {3X11 } 

• Only one client at a time can select CirculateRequest, 
ConfigureRequest, or MapRequest events, which are associated 
with the event mask SubstructureRedirectMask. 

• Only one client at a time can select a ResizeRequest event, which 
is associated with the event mask ResizeRedirectMask. 

• Only one client at a time can select a ButtonPress event, which is 
associated with the event mask ButtonPressMask. 

The server reports the event to all interested clients. 

XSelectlnput can generate a BadWindow error. 

The XSelectAsynclnput function establishes asynchrous notification 
mode and calls the specified procedure, passing it the specified argument 
when you receive the event selected with the event_mask. Anyone who 
asynchrous notification cannot also use the SIGIO signal. 

Diagnostics 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
Guide to the Xlib Library 

Subroutines 3-547 



XSendEvent (3X11 ) 

Name 
XSendEvent, XDisplayMotionBufferSize, XGetMotionEvents - send events 

Syntax 
Status XSendEvent(display, w, propagate, event_mask, event_send) 

Display *display; 
Window w; 
Bool propagate; 
long event_mask; 
XEvent *event _send; 

unsigned long XDisplayMotionBufferSize(display) 
Display *display; 

XTimeCoord *XGetMotionEvents (display, w, start, stop, nevents _return) 
Display *display; 
Window w; 
Time start, stop; 
int *nevents_return; 

Arguments 

display 

event mask 

Specifies the connection to the X server. 

Specifies the event mask. 

event send Specifies a pointer to the event that is to be sent. 

nevents return Returns the number of events from the motion history buffer. 

propagate 

start 
stop 

W 

Description 

Specifies a Boolean value. 

Specify the time interval in which the events are returned 
from the motion history buffer. You can pass a timestamp or 
CurrentTime. PointerWindow, 

Specifies the window the window the event is to be sent to,. 

The XSendEvent function identifies the destination window, determines 
which clients should receive the specified events, and ignores any active 
grabs. This function requires you to pass an event mask. For a discussion of 
the valid event mask names, see section 8.3. This function uses the w 
argument to identify the destination window as follows: 

3-548 Subroutines 



XSendEvent (3X11 ) 

• H w is PointerWindow, the destination window is the window that 
contains the pointer. 

• H w is InputFocus and if the focus window contains the pointer, the 
destination window is the window that contains the pointer; otherwise, 
the destination window is the focus window. 

To detennine which clients should receive the specified events, 
XSendEvent uses the propagate argument as follows: 

• H event_mask is the empty set, the event is sent to the client that 
created the destination window. H that client no longer exists, no 
event is sent. 

• H propagate is False, the event is sent to every client selecting on 
destination any of the event types in the event_mask argument. 

• H propagate is True and no clients have selected on destination any of 
the event types in event-mask, the destination is replaced with the 
closest ancestor of destination for which some client has selected a 
type in event-mask and for which no intervening window has that type 
in its do-not-propagate-mask. H no such window exists or if the 
window is an ancestor of the focus window and InputFocus was 
originally specified as the destination, the event is not sent to any 
clients. Otherwise, the event is reported to every client selecting on the 
final destination any of the types specified in event_mask. 

The event in the XEvent structure must be one of the core events or one of 
the events defined by an extension (or a BadValue error results) so that the 
X server can correctly byte-swap the contents as necessary. The contents of 
the event are otherwise unaltered and unchecked by the X server except to 
force send_event to True in the forwarded event and to set the serial number 
in the event correctly. 

XSendEvent returns zero if the conversion to wire protocol fonnat failed 
and returns nonzero otherwise. XSendEvent can generate BadVal ue and 
BadWindowerrors. 

The server may retain the recent history of the pointer motion and do so to a 
finer granularity than is reported by MotionNotify events. The 
XGetMotionEvents function makes this history available. 

The XGetMotionEvents function returns all events in the motion history 
buffer that fall between the specified start and stop times, inclusive, and that 
have coordinates that lie within the specified window (including its borders) 
at its present placement. H the start time is later than the stop time or if the 
start time is in the future, no events are returned. H the stop time is in the 

Subroutines 3-549 



XSendEvent (3X11 ) 

future, it is equivalent to specifying CurrentTime. 
XGetMotionEvents can generate a BadWindowe error. 

Diagnostics 

BadVal ue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XIfEvent(3Xll), XNextEvent(3Xll), XPutBackEvent(3Xll) 
Guide to the Xlib Library 

3-550 Subroutines 



XSetArcMode (3X11 ) 

Name 
XSetArcMode, XSetSubwindowMode, XSetGraphicsExposure - GC 
convenience routines 

Syntax 
XSetArcMode(display, gc, arc_mode) 

Display *display; 
GC gc; 
int arc_mode; 

XSetSubwindow Mode (display, gc, subwindow _mode) 
Display *display; 
GC gc; 
int subwindow _mode; 

XSetGraphicsExposures(display, gc, graphics_exposures) 
Display *display; 
GCgc; 
Bool graphics_exposures; 

Arguments 

arc mode Specifies the arc mode. You can pass ArcChord or 
ArcP ieSlice. 

display 

gc 

Specifies the connection to the X server. 

Specifies the GC. 

graphics_exposures 
Specifies a Boolean value that indicates whether you want 
GraphicsExpose and NoExpose events to be reported 
when calling XCopyArea and XCopyP lane with this GC. 

subwindow mode 

Description 

- Specifies the subwindow mode. You can pass 
ClipByChildren or Includelnferiors. 

The XSetArcMode function sets the arc mode in the specified GC. 

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors. 

Subroutines 3-551 



XSetArcMode(3X11 ) 

The XSetSubwindowMode function sets the subwindow mode in the 
specified GC. 

XSetSubwindowMode can generate BadAlloc, B~dGC, and BadValue 
errors. 

The XSetGraphicsExposures function sets the graphics-exposures flag 
in the specified GC. 

XSetGraphicsExposures can generate BadAlloc, BadGC, and 
BadVal ue errors. 

Diagnostics 

BadAlloc 

BadGC 

BadValue 

See Also 

The server failed to allocate the requested resource or server 
memory. 

A value for a GContext argument does not name a defined 
GContext. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XCreateGC(3Xll), XQueryBestSize(3Xll), XSetClipOrigin(3Xll), 
XSetFillStyle(3Xll), XSetFont(3Xll), XSetLineAttributes(3Xll), 
XSetState(3Xll), XSetTile(3Xl1) 
Guide to the Xlib Library 

3-552 Subroutines 



XSetClassHint {3X11 } 

Name 
XSetClassHint, XGetClassHint - set or get class hint 

Syntax 
XSetClassHint(display, w, class hints) 

Display *display; -
Window w; 
XClassHint *class _hints; 

Status XGetClassHint (display, w, class_hints _return) 
Display *display; 
Windoww; 
XClassHint *class _hints_return; 

Arguments 

class hints Specifies a pointer to a XClassHint structure that is to be 
used. 

class hints return 
- - Returns the XClas sHint structure. 

display 

w 

Description 

Specifies the connection to the X server. 

Specifies the window. 

The XSetClassHint function sets the class hint for the specified window. 

XSetClassHint can generate BadAlloc and BadWindow errors. 

The XGetClassHint function returns the class of the specified window. 
To free res_name and res_class when finished with the strings, use XFree. 

XGetClassHint can generate a BadWindow error. 

Property 
WM_CLASS 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 

Subroutines 3-553 



XSetClassHint (3X11 ) 

Window. 

See Also 
XSetCommand(3Xll), XSetIconName(3Xll), XSetIconSizeHints(3Xll), 
XSetNormalHints(3Xl1), XSetSizeHints(3Xll), 
XSetStandardProperties(3Xll), XSetTransientForHint(3Xll), 
XSetWMHints(3Xll), XSetZoomHints(3Xll), XStoreName(3Xll) 
Guide to the Xlib Library 

3-554 Subroutines 



Name 

XSetClipOrigin {3X11 } 

XSetClipOrigin, XSetClipMask, XSetClipRectangles - GC convenience 
routines 

Syntax 
XSetClipOrigin(display, gc, clip _x_origin, clip y_origin) 

Display *display; 
GC gc; 
int clip ~ _origin, clip y _origin; 

XSetClipMask (display, gc, pixmap) 
Display *display; 
GCgc; 
Pixmap pixmap; 

XSetClipRectangles(display, gc, clip_x_origin, clipy_origin, rectangles, n, 
ordering) 

Display *display; 
GCgc; 
int clip _x_origin, clip y _ orig in; 
XRectangle rectangles[]; 
int n; 
int ordering; 

Arguments 

display Specifies the connection to the X server. 

clip _x_origin 
clip y _origin Specify the x and y coordinates of the clip-mask origin. 

gc Specifies the GC. 

n Specifies the number of rectangles. 

ordering Specifies the ordering relations on the rectangles. You can 
pass Unsorted, YSorted, YXSorted, or YXBanded. 

pixmap Specifies the pixmap or None. 

rectangles Specifies an array of rectangles that define the clip-mask. 

Subroutines 3-555 



XSetClipOrigin (3X11) 

Description 
The XSetClipOrigin function sets the clip origin in the specified GC. 
The clip-mask origin is interpreted relative to the origin of whatever 
destination drawable is specified in the graphics request. 

XSetClipOrigin can generate BadAlloc and BadGC errors. 

The XSetClipMask function sets the clip-mask in the specified GC to the 
specified pixmap. If the clip-mask is set to None, the pixels are are always 
drawn (regardless of the clip-origiti). 

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and 
BadVal ue errors. 

The XSetClipRectangles function changes the clip-mask in the 
specified GC to the specified list of rectangles and sets the clip origin. The 
output is clipped to remain contained within the rectangles. The clip-origin 
is interpreted relative to the origin of whatever destination drawable is 
specified in a graphics request. The rectangle coordinates are interpreted 
relative to the clip-origin. The rectangles should be nonintersecting, or the 
graphics results will be undefined. Note that the list of rectangles can be 
empty, which effectively disables output. This is the opposite of passing 
None as the clip-mask in XCreateGC, XChangeGC, and 
XSetClipMask. 

If known by the client, ordering relations on the rectangles can be specified 
with the ordering argument. This may provide faster operation by the server. 
If an incorrect ordering is specified, the X server may generate a BadMatch 
error, but it is not required to do so. If no error is generated, the graphics 
results are undefined. Unsorted means the rectangles are in arbitrary order. 
Y Sort e d means that the rectangles are nondecreasing in their Y origin. 
YXSorted additionally constrains YSorted order in that all rectangles 
with an equal Y origin are nondecreasing in their X origin. YXBanded 
additionally constrains YXSorted by requiring that, for every possible Y 
scanline, all rectangles that include that scanline have an identical Y origins 
and Y extents. 

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, 
and BadValue errors. 

Diagnostics 

BadAlloc 

BadGC 

3-556 Subroutines 

The server failed to allocate the requested resource or server 
memory. 

A value for a GContext argument does not name a defined 



XSetClipOrigin (3X11 ) 

GContext. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadValue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

See Also 
XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xll), 
XSetFillStyle(3Xll), XSetFont(3Xll), XSetLineAttributes(3Xll), 
XSetState(3Xll), XSetTile(3Xll) 
Guide to the Xlib Library 

Subroutines 3-557 



XSetCloseDownMode (3X11 ) 

Name 
XSetCloseDownMode, XKillClient - control clients 

Syntax 
XSetCloseDownMode( display, close_mode) 

Display *display; 
int close_mode; 

XKillClient(display, resource) 
Display *display; 
XID resource; 

Arguments 

close mode 

display 

resource 

Description 

Specifies the client close-down mode. You can pass 
DestroyAII,RetainPermanent,or 
RetainTemporary. 

Specifies the connection to the X server. 

Specifies any resource associated with the client that you 
want to destroy or AIITemporary. 

The XSetCloseDownMode defines what will happen to the client's 
resources at connection close. A connection starts in DestroyAl1 mode. 
For information on what happens to the client's resources when the 
close_mode argument is RetainPermanent or RetainTemporary, see 
section 2.6. 

XSetCloseDownMode can generate a BadValue error. 

The XKillClient function forces a close-down of the client that created 
the resource if a valid resource is specified. If the client has already 
terminated in either RetainPermanent or RetainTemporary mode, 
all of the client's resources are destroyed. If All Temporary is specified, 
the resources of all clients that have terminated in RetainTemporary are 
destroyed (see section 2.6). This permits implementation of window 
manager facilities that aid debugging. A client can set its close-down mode 
to RetainTemporary. If the client then crashes, its windows would not 
be destroyed. The programmer can then inspect the application's window tree 
and use the window manager to destroy the zombie windows. 

3-558 Subroutines 



XSetCloseDownMode (3X11 ) 

XKillClient can generate a BadValue error. 

Diagnostics 

BadValue 

See Also 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

Guide to the Xlib Library 

Subroutines 3-559 



XSetCommand (3X11 ) 

Name 
XSetCommand - set command atom 

Syntax 
XSetCommand(display, w, argv, argc) 

Display *display; 
Window w; 
char **argv; 
int argc; 

Arguments 

argc 

argv 

display 

W 

Description 

Specifies the number of arguments. 

Specifies the application's argument list. 

Specifies the connection to the X server. 

Specifies the window. 

The XSetCommand function sets the command and arguments used to 
invoke the application. (Typically, argv is the argv array of your main 
program.) 

XSetCommand can generate BadAlloc and BadWindow errors. 

Property 
WM_COMMAND 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetClassHint(3Xll), XSetIconName(3Xll), XSetIconSizeHints(3Xll), 
XSetNonnalHints(3Xll), XSetSizeHints(3Xll), 
XSetStandardProperties(3Xll), XSetTransientForHint(3Xll), 

3-560 Subroutines 



XSetCommand (3X11 ) 

XSetWMHints(3Xll), XSetZoomHints(3Xll), XStoreName(3Xll) 
Guide to the Xlib Library 

Subroutines 3-561 



XSetErrorHandler (3X11 ) 

Name 
XSetErrorHandler, XGetErrorText, XDisplayName, XSetIOErrorHandler, 
XGetErrorDatabaseText - default error handlers 

Syntax 
XSetErrorHandler( handler) 

int (* handler) (Display *, XErrorEvent *) 

XGetErrorText(display, code, buffer return, length) 
Display *display; -
int code; 
char *buffer return; 
int length; -

char *XDisplayName(string) 
char * string; 

XSetIOErrorHandler( handler) 
int (* handler) (Display *); 

XGetErrorDatabaseText(display, name, message, default_string, 
buffer return, length) 

Dlsplay *display; 
char *name, *message; 
char *default _string; 
char * buffer return; 
int length; -

Arguments 

buffer _return Returns the error description. 

code Specifies the error code for which you want to obtain a 
description. 

default string Specifies the default error message if none is found in the 
database. 

display 

handler 

length 

message 

name 

3-562 Subroutines 

Specifies the connection to the X server. 

Specifies the program's supplied error handler. 

Specifies the size of the buffer. 

Specifies the type of the error message. 

Specifies the name of the application. 



XSetErrorHandler (3X11 ) 

string Specifies the character string. 

Description 
Xlib generally calls the program's supplied error handler whenever an error is 
received. It is not called on BadName errors from OpenFont, 
LookupColor, or AllocNamedColor protocol requests or on BadFont 
errors from a QueryFont protocol request. These errors generally are 
reflected back to the program through the procedural interface. Because this 
condition is not assumed to be fatal, it is acceptable for your error handler to 
return. However, the error handler should not call any functions (directly or 
indirectly) on the display that will generate protocol requests or that will look 
for input events. 

The XGetErrorText function copies a null-tenninated string describing 
the specified error code into the specified buffer. It is recommended that you 
use this function to obtain an error description because extensions to Xlib 
may define their own error codes and error strings. 

The XDisplayName function returns the name of the display that 
XOpenDisplay would attempt to use. If a NULL string is specified, 
XDisplayName looks in the environment for the display and returns the 
display name that XOpenDisplay would attempt to use. This makes it 
easier to report to the user precisely which display the program attempted to 
open when the initial connection attempt failed. 

The XSetIOErrorHandler sets the fatal I/O error handler. Xlib calls the 
program's supplied error handler if any sort of system call error occurs (for 
example, the connection to the server was lost). This is assumed to be a fatal 
condition, and the called routine should not return. If the I/O error handler 
does return, the client process exits. 

The XGetErrorDatabaseText function returns a message (or the default 
message) from the error message database. Xlib uses this function internally 
to look up its error messages. On a UNIX-based system, the error message 
database is /usr/lib/Xll/XErrorDB. 

The name argument should generally be the name of your application. The 
message argument should indicate which type of error message you want. 
Xlib uses three predefined message types to report errors (uppercase and 
lowercase matter): 

XProtoError The protocol error number is used as a string for the message 
argument. 

XlibMessage These are the message strings that are used internally by the 
library. 

Subroutines 3-563 



XSetErrorHandler (3X11 ) 

XRequest The major request protocol number is used for the message 
argument. If no string is found in the error database, the 
default_string is returned to the buffer argument. 

See Also 
XSynchronize(3Xll) 
Guide to the Xlib Library 

3-564 Subroutines 



XSetFillStyle (3X11 ) 

Name 
XSetFillStyle, XSetFillRule - GC convenience routines 

Syntax 
XSetFillStyle(display, gc, fill_style) 

Display *display; 
GCgc; 
int fill style; 

XSetFillRule (display, gc, fill rule) 
Display *display; -
GCgc; 
int fill_rule; 

Arguments 

Specifies the connection to the X server. display 

fill_rule Specifies the fill-rule you want to set for the specified GC. 
You can pass EvenOddRule or WindingRule. 

fill style 

gc 

Description 

Specifies the fill-style you want to set for the specified GC. 
You can pass FillSolid, FillTiled, FillStippled, 
or FillOpaqueStippled. 

Specifies the GC. 

The XSetFillStyle function sets the fill-style in the specified GC. 

XSetFillStyle can generate BadAlloc, BadGe, and BadValue 
errors. 

The XSetFillRule function sets the fill-rule in the specified GC. 

XSetFillRule can generate BadAlloc, BadGe, and BadValue errors. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadGe A value for a GContext argument does not name a defined 
GContext. 

BadVal ue Some numeric value falls outside the range of values 

Subroutines 3-565 



XSetFiliStyle (3X11 ) 

See Also 

accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xll), 
XSetClipOrigin(3Xll), XSetFont(3Xll), XSetLineAttributes(3Xll), 
XSetState(3Xll), XSetTile(3Xl1) 
Guide to the Xlib Library 

3-566 Subroutines 



XSetFont (3X11 ) 

Name 
XSetFont - GC convenience routines 

Syntax 
XSetFont (display, gc, font) 

Display *display; 
GCgc; 
Font font; 

Arguments 

display 

font 

gc 

Description 

Specifies the connection to the X server. 

Specifies the font. 

Specifies the GC. 

The XSetFont function sets the current font in the specified GC. 

XSetFont can generate BadAlloc, BadFont, and BadGC errors. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadFont A value for a Font or GContext argument does not name a 
defined Font. 

BadGC A value for a GContext argument does not name a defined 
GContext. 

See Also 
XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xll), 
XSetClipOrigin(3Xll), XSetFillStyle(3Xll), XSetLineAttributes(3Xl1), 
XSetState(3Xll), XSetTile(3Xl1) 
Guide to the Xlib Library 

Subroutines 3-567 



XSetFontPath (3X11 ) 

Name 
XSetFontPath, XGetFontPath, XFreeFontPath - set, get, or free the font 
search path 

Syntax 
XSetFontPath (display, directories, ndirs) 

Display *display; 
char **directories; 
int ndirs; 

char **XGetFontPath (display, npaths _return) 
Display *display; 
int * npaths _return; 

XFreeFontPath (list) 
char **list; 

Arguments 

directories 

display 

list 

ndirs 

Specifies the directory path used to look for a font. Setting 
the path to the empty list restores the default path defined for 
the X server. 

Specifies the connection to the X server. 

Specifies the array of strings you want to free. 

Specifies the number of directories in the path. 

npaths _return Returns the number of strings in the font path array. 

Description 
The XSetFontPath function defines the directory search path for font 
lookup. There is only one search path per X server, not one per client. The 
interpretation of the strings is operating system dependent, but they are 
intended to specify directories to be searched in the order listed. Also, the 
contents of these strings are operating system dependent and are not intended 
to be used by client applications. Usually, the X server is free to cache font 
information internally rather than having to read fonts from files. In addition, 
the X server is guaranteed to flush all cached information about fonts for 
which there currently are no explicit resource IDs allocated. The meaning of 
an error from this request is operating system dependent. 

3-568 Subroutines 



XSetFontPath (3X11 ) 

XSetFontPath can generate a BadValue error. 

The XGetFontPath function allocates and returns an array of strings 
containing the search path. When it is no longer needed, the data in the font 
path should be freed by using XFreeFontPath. 

The XFreeFontPath function frees the data allocated by 
XGetFontPath. 

Diagnostics 

BadValue 

See Also 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XListFont(3Xll), XLoadFonts(3Xll) 
Guide to the Xlib Library 

Subroutines 3-569 



XSetlconName (3X11 ) 

Name 
XSetIconName, XGetIconName - set or get icon names 

Syntax 
XSetIconName(display, w, icon name) 

Display *display; -
Window w; 
char *icon_name; 

Status XGetIconName(display, w,icon name return) 
Display *display; --
Window w; 
char **icon_name_return; 

Arguments 

display 

icon name 

Specifies the connection to the X server. 

Specifies the icon name, which should be a null-terminated 
string. 

icon name return 

W 

- - Returns a pointer to the window's icon name, which is a 
null-terminated string. 

Specifies the window. 

3-570 Subroutines 



XSetlconName (3X11 ) 

Description 
The XSetIconName function sets the name to be displayed in a window's 
icon. 

XSetIconName can generate BadAlloc and BadWindow errors. 

The XGetIconName function returns the name to be displayed in the 
specified window's icon. If it succeeds, it returns nonzero; otherwise, if no 
icon name has been set for the window, it returns zero. If you never assigned 
a name to the window, XGetIconName sets icon_name_retum to NULL. 
When finished with it, a client must free the icon name string using XFree. 

XGet I conName can generate a BadWindow error. 

Property 
WM_ICON_NAME 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 
Window. 

Subroutines 3-571 



XSetlconName (3X11 ) 

See Also 
XSetClassHint(3Xll), XSetCommand(3Xll), XSetIconSizeHints(3Xll), 
XSetNormalHints(3Xll), XSetSizeHints(3Xll), 
XSetStandardProperties(3Xll), XSetTransientForHint(3Xll), 
XSetWMHints(3Xll), XSetZoomHints(3Xll), XStoreName(3Xll) 
Guide to the Xlib Library 

3-572 Subroutines 



XSetlconSizeHints (3X11 ) 

Name 
XSetIconSizes, XGetIconSizes - set or get icon size hints 

Syntax 
XSetIconSizes(display, w, size_list, count) 

Display *display; 
Window w; 
XIconSize *size _list; 
int count; 

Status XGetIconSizes(display, w, size list return, count return) 
Display *display; - - -
Windoww; 
XIconSize ** size list return; 
int *count _return -; -

Arguments 

display Specifies the connection to the X server. 

count Specifies the number of items in the size list. 

count return Returns the number of items in the size list. 

size list Specifies a pointer to the size list. 

size _list _return Returns a pointer to the size list. 

w Specifies the window. 

Description 
The XSetlconSizes function is used only by window managers to set the 
supported icon sizes. 

XSetlconSizes- c-an-generate BadAlloc and BadWindow errors. 

The XGetlconSizes function returns zero if a window manager has not 
set icon sizes or nonzero otherwise. XGetlconSizes should be called by 
an application that wants to find out what icon sizes would be most 
appreciated by the window manager under which the application is running. 
The application should then use XSetwMHints to supply the window 
manager with an icon pixmap or window in one of the supported sizes. To 
free the data allocated in size_list_return, use XFree. 

Subroutines 3-573 



XSetlconSizeHints (3X11) 

XGetlconSizes can generate a BadWindow error. 

Property 
WM_ICON_SIZE 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetClassHint(3Xll), XSetCommand(3Xll), XSetIconName(3Xll), 
XSetNonnalHints(3Xll), XSetSizeHints(3Xll), 
XSetStandardProperties(3Xll), XSetTransientForHint(3Xll), 
XSetWMHints(3Xll), XSetZoomHints(3Xll), XStoreName(3Xll) 
Guide to the Xlib Library 

3-574 Subroutines 



XSetlnputFocus (3X11 ) 

Name 
XSetInputFocus, XGetInputFocus - control input focus 

Syntax 
XSetInputFocus (display, focus, revert_to, time) 

Display *display; 
Window focus; 
int revert to; 
Time time; 

XGetInputFocus( display, focus_return, revert _to _return) 
Display *display; 
Window *focus return; 
int *revert_to _return; 

Arguments 

display Specifies the connection to the X server. 

focus Specifies the window, PointerRoot, or None. 

focus_return Returns the focus window, PointerRoot, or None. 

revert to Specifies where the input focus reverts to if the window 
becomes not viewable. You can pass RevertToParent, 
RevertToPointerRoot, or RevertToNone. 

revert to return 
Returns the current focus state (RevertToParent, 
RevertToPointerRoot, or RevertToNone). 

time Specifies the time. You can pass either a timestamp or 
Current Time. 

Description 
The XSetlnputFocus function changes the input focus and the last­
focus-change time. It has no effect if the specified time is earlier than the 
current last-focus-change time or is later than the current X server time. 
Otherwise, the last-focus-change time is set to the specified time 
(CurrentTime is replaced by the current X server time). 
XSetlnputFocus causes the X server to generate Focusln and 
FocusOut events. 

Subroutines 3-575 



XSetlnputFocus (3X11 ) 

Depending on the focus argument, the following occurs: 

• If focus is None, all keyboard events are discarded until a new focus 
window is set, and the revert_to argument is ignored. 

• If focus is a window, it becomes the keyboard's focus window. If a 
generated keyboard event would normally be reported to this window 
or one of ~ts inferiors, the event is reported as usual. Otherwise, the 
event is reported relative to the focus window. 

• If focus is PointerRoot, the focus window is dynamically taken to 
be the root window of whatever screen the pointer is on at each 
keyboard event. In this case, the revert_to argument is ignored. 

The specified focus window must be viewable at the time 
XSetlnputFocus is called, or a BadMatch error results. If the focus 
window later becomes not viewable, the X server evaluates the revert_to 
argument to determine the new focus window as follows: 

• If revert_to is Revert ToParent, the focus reverts to the parent (or 
the closest viewable ancestor), and the new revert_to value is taken to 
be Revert ToNone. 

• If revert_to is Revert ToPointerRoot or Revert ToNone, the 
focus reverts to PointerRoot or None, respectively. When the 
focus reverts, the X server generates Focusln and FocusOut 
events, but the last-focus-change time is not affected. 

XSetlnputFocus can generate BadMatch, BadValue, and 
BadWindowerrors. 

The XGetlnputFocus function returns the focus window and the current 
focus state. 

Diagnostics 

BadVal ue Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

BadWindow A value for a Window argument does not name a defined 
Window. 

3-576 Subroutines 



See Also 
XWarpPointer(3Xll) 
Guide to the Xlib Library 

XSetlnputFocus (3X11 ) 

Subroutines 3-5n 



XSetLineAttribute (3X11 ) 

Name 
XSetLineAttribute, XSetDashes - GC convenience routines 

Syntax 
XSetLineAttributes(display, gc, line_width, line_style, cap_style, join_style) 

Display *display; 
GCgc; 
unsigned int line width; 
int line_style; -
int cap style; 
int join __ style; 

XSetDashes(display, gc, dash_offset, dash_list, n) 
Display *display; 
GCgc; 
int dash offset; 
char dash _list[] ; 
int n; 

Arguments 

dash list 

dash offset 

display 

gc 

join_style 

line width 

n 

3-578 Subroutines 

Specifies the line-style and cap-style you want to set for the 
specified GC. You can pass CapNotLast, CapButt, 
CapRound, or CapProjecting. 

Specifies the dash-list for the dashed line-style you want to 
set for the specified GC. 

Specifies the phase of the pattern for the dashed line-style 
you want to set for the specified GC. 

Specifies the connection to the X server. 

Specifies the GC. 

Specifies the line join-style you want to set for the specified 
GC. You can pass JoinMiter·, JoinRound, or 
JoinBevel. 

Specifies the line-style you want to set for the specified GC. 
You can pass LineSolid, LineOnOffDash, or 
LineDoubleDash. 

Specifies the line-width you want to set for the specified GC. 

Specifies the number of elements in dash_list. 



XSetLineAttribute (3X11 ) 

Description 
The XSetLineAttributes function sets the line drawing components in 
the specified GC. 

XSetLineAttributes can generate BadAlloc, BadGe, and 
BadVal ue errors. 

The XSetDashes function sets the dash-offset and dash-list attributes for 
dashed line styles in the specified GC. There must be at least one element in 
the specified dash_list, or a BadVal ue error results. The initial and 
alternating elements (second, fourth, and so on) of the dash_list are the even 
dashes, and the others are the odd dashes. Each element specifies a dash 
length in pixels. All of the elements must be nonzero, or a BadValue error 
results. Specifying an odd-length list is equivalent to specifying the same list 
concatenated with itself to produce an even-length list. 

The dash-offset defines the phase of the pattern, specifying how many pixels 
into the dash-list the pattern should actually begin in any single graphics 
request. Dashing is continuous through path elements combined with a join­
style but is reset to the dash-offset each time a cap-style is applied at a line 
endpoint. 

The unit of measure for dashes is the same for the ordinary coordinate 
system. Ideally, a dash length is measured along the slope of the line, but 
implementations are only required to match this ideal for horizontal and 
vertical lines. Failing the ideal semantics, it is suggested that the length be 
measured along the major axis of the line. The major axis is defined as the x 
axis for lines drawn at an angle of between -45 and +45 degrees or between 
315 and 225 degrees from the x axis. For all other lines, the major axis is 
the y axis. 

XSetDashes can generate BadAlloc, BadGe, and BadValue errors. 

Diagnostics 

BadAlloc 

BadGe 

BadValue 

The server failed to allocate the requested resource or server 
memory. 

A value for a GContext argument does not name a defined 
GContext. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 

Subroutines 3-579 



XSetLineAttribute {3X11 } 

alternatives can generate this error. 

See Also 
XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xll), 
XSetClipOrigin(3Xll), XSetFillStyle(3Xll), XSetFont(3Xll), 
XSetState(3Xll), XSetTile(3Xll) 
Guide to the Xlib Library 

3-580 Subroutines 



XSetNormalHints (3X11 ) 

Name 
XSetNormalHints, XGetNormalHints - set or get normal state hints 

Syntax 
XSetN ormalHints (display, w, hints) 

Display *display; 
Window w; 
XSizeHints * hints; 

Status XGetNormalHints(display, w, hints return) 
Display *display; -
Window w; 
XSizeHints * hints_return; 

Arguments 

display Specifies the connection to the X server. 

hints Specifies a pointer to the size hints for the window in its 
normal state. 

hints return Returns the size hints for the window in its normal state. 

W Specifies the window. 

Description 
The XSetNormalHints function sets the size hints structure for the 
specified window. Applications use XSetNormalHints to inform the 
window manager of the size or position desirable for that window. In 
addition, an application that wants to move or resize itself should call 
XSetNormalHints and specify its new desired location and size as well 
as making direct Xlib calls to move or resize. This is because window 
managers may ignore redirected configure requests, but they pay attention to 
property changes. 

To set size hints, an application not only must assign values to the 
appropriate members in the hints structure but also must set the flags member 
of the structure to indicate which information is present and where it came 
from. A call to XSetNormalHints is meaningless, unless the flags 
member is set to indicate which members of the structure have been assigned 
values. 

Subroutines 3-581 



XSetNormalHints (3X11 ) 

XSetNormalHints can generate BadAlloc and BadWindow errors. 

The XGetNormalHints function returns the size hints for a window in its 
normal state. It returns a nonzero status if it succeeds or zero if the 
application specified no normal size hints for this window. 

XGetNormalHints can generate a BadWindow error. 

Property 
WM_NORMAL_HINTS 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetCommand(3Xll), XSetIconName(3Xll), XSetIconSizeHints(3Xl1), 
XSetSizeHints(3Xll), XSetStandardProperties(3Xll), XSetWMHints(3Xll), 
XSetZoomHints(3Xll), XStoreName(3Xll) 
Guide to the Xlib Library 

3-582 Subroutines 



XSetPointerMapping (3X11 ) 

Name 
XSetPointerMapping, XGetPointerMapping - manipulate pointer settings 

Syntax 
int XSetPointerMapping (display, map, nmap) 

Display *display; 
unsigned char map [] ; 
int nmap; 

int XGetPointerMapping(display, map_return, nmap) 
Display *display; 
unsigned char map _return [] ; 
int nmap; 

Arguments 

Specifies the connection to the X server. 

Specifies the mapping list. 

Returns the mapping list. 

display 

map 

map_return 

nmap Specifies the number of items in the mapping list. 

Description 
The XSetPointerMapping function sets the mapping of the pointer. If it 
succeeds, the X server generates a MappingNotify event, and 
XSetPointerMapping returns MappingSuccess. Elements of the list 
are indexed starting from one. The length of the list must be the same as 
XGetPointerMapping would return, or a BadValue error results. The 
index is a core button number, and the element of the list defines the 
effective number. A zero element disables a button, and elements are not 
restricted in value by the number of physical buttons. However, no two 
elements can have the same nonzero value, or a BadVal ue error results. If 
any of the buttons to be altered are logically in the down state, 
XSetPointerMapping returns MappingBusy, and the mapping is not 
changed. 

XSetPointerMapping can generate a BadVal ue error. 

The XGetPointerMapping function returns the current mapping of the 
pointer. Elements of the list are indexed starting from one. 
XGetPointerMapping returns the number of physical buttons actually on 
the pointer. The nominal mapping for a pointer is the identity mapping: 

Subroutines 3-583 



XSetPointerMapping (3X11 ) 

map[i]=i. The nmap argument specifies the length of the array where the 
pointer mapping is returned, and only the first nmap elements are returned in 
map_return. 

Diagnostics 

BadValue Some numeric value falls. outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

See Also 
XChangeKeyboardControl(3Xll), XChangeKeyboardMapping(3Xl1) 
Guide to the Xlib Library 

3-584 Subroutines 



Name 

XSetScreenSaver (3X11 ) 

XSetScreenSaver, XForceScreenSaver, XActivateScreenSaver, 
XResetScreenSaver, XGetScreenSaver - manipulate the screen saver 

Syntax 
XSetScreenSaver( display, timeout, interval, prefer _blanking, 
allow exposures) 

DIsplay *display; 
int timeout, interval; 
int prefer blanking; 
int allow j!xposures; 

XForceScreenSaver( display, mode) 
Display *display; 
int mode; 

XActivateScreenSaver( display) 
Display *display; 

XResetScreenSaver( display) 
Display *display; 

XGetScreenSaver( display, timeout_return, interval_return, 
prefer _blanking_return, allow _exposures_return) 

Display *display; 
int *timeout return, *interval return; 
int *prefer _blanking_return; -
int *allow _exposures_return; 

Arguments 

allow exposures 
- Specifies the screen save control values. You can pass 

DontAllowExposures,AllowExposures,or 
DefaultExposures. 

allow exposures return 
- Returns the current screen save control value 

(DontAllowExposures,AllowExposures,or 
Defaul tExposures). 

display 

interval 

Specifies the connection to the X server. 

Specifies the interval between screen saver alterations. 

Subroutines 3-585 



XSetScreenSaver (3X11 ) 

interval return Returns the interval between screen saver invocations. 

mode Specifies the mode that is to be applied. You can pass 
ScreenSaverActi ve or ScreenSaverReset. 

prefer _blanking 
Specifies how to enable screen blanking. You can pass 
DontPreferBlanking,PreferBlanking,or 
Defaul tBlanking. 

prefer blanking return 
- Returns the current screen blanking preference 

(DontPreferBlanking,PreferBlanking,or 
Defaul tBlanking). 

timeout Specifies the timeout, in seconds, until the screen saver turns 
on. 

timeout return Returns the timeout, in minutes, until the screen saver turns 
on. 

Description 
Timeout and interval are specified in seconds. A timeout of 0 disables the 
screen saver, and a timeout of -1 restores the default. Other negative values 
generate a BadValue error. If the timeout value is nonzero, 
XSetScreenSaver enables the screen saver. An interval of 0 disables the 
random-pattern motion. If no input from devices (keyboard, mouse, and so 
on) is generated for the specified number of timeout seconds once the screen 
saver is enabled, the screen saver is activated. 

For each screen, if blanking is preferred and the hardware supports video 
blanking, the screen simply goes blank. Otherwise, if either exposures are 
allowed or the screen can be regenerated without sending Expose events to 
clients, the screen is tiled with the root window background tile randomly 
re-origined each interval minutes. Otherwise, the screens' state do not 
change, and the screen saver is not activated. The screen saver is 
deactivated, and all screen states are restored at the next keyboard or pointer 
input or at the next call to XForceScreenSaver with mode 
ScreenSaverReset. 

If the server-dependent screen saver method supports periodic change, the 
interval argument serves as a hint about how long the change period should 
be, and zero hints that no periodic change should be made. Examples of 
ways to change the screen include scrambling the colormap periodically, 
moving an icon image around the screen periodically, or tiling the screen 
with the root window background tile, randomly re-origined periodically. 

3-586 Subroutines 



XSetScreenSaver (3X11 ) 

XSetScreenSaver can generate a BadVal ue error. 

If the specified mode is ScreenSaverActi ve and the screen saver 
currently is deactivated, XForceScreenSaver activates the screen saver 
even if the screen saver had been disabled with a timeout of zero. If the 
specified mode is ScreenSaverReset and the screen saver currently is 
enabled, XForceScreenSaver deactivates the screen saver if it was 
activated, and the activation timer is reset to its initial state (as if device input 
had been received). 

XForceScreenSaver can generate a BadValue error. 

The XActi vateScreenSaver function activates the screen saver. 

The XResetScreenSaver function resets the screen saver. 

The XGetScreenSaver function gets the current screen saver values. 

Subroutines 3-587 



XSetScreenSaver (3X11 ) 

Diagnostics 

BadValue 

See Also 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

Guide to the Xlib Library 

3-588 Subroutines 



Name 

XSetSelectionOwner (3X11 ) 

XSetSelectionOwner, XGetSelectionOwner, XConvertSelection - manipulate 
window selection 

Syntax 
XSetSelectionOwner(display, selection, owner, time) 

Display *display; 
Atom selection; 
Window owner; 
Time time; 

Window XGetSelectionOwner(display, selection) 
Display *display; 
Atom selection; 

XConvertSelection(display, selection, target, property, requestor, time) 
Display *display; 
Atom selection, target; 
Atom property; 
Window requestor; 
Time time; 

Arguments 

display 

owner 

property 

requestor 

selection 

target 

time 

Description 

Specifies the connection to the X server. 

Specifies the owner of the specified selection atom. You can 
pass a window or None. 

Specifies the property name. You also can pass None. 

Specifies the requestor. 

Specifies the selection atom. 

Specifies the target atom. 

Specifies the time. You can pass either a timestamp or 
Current Time. 

The XSetSelectionOwner function changes the owner and last-change 
time for the specified selection and has no effect if the specified time is 
earlier than the current last-change time of the specified selection or is later 
than the current X server time. Otherwise, the last-change time is set to the 

Subroutines 3-589 



XSetSelectionOwner (3X11 ) 

specified time, with CurrentTime replaced by the current server time. If 
the owner window is specified as None, then the owner of the selection 
becomes None (that is, no owner). Otherwise, the owner of the selection 
becomes the client executing the request. 

If the new owner (whether a client or None) is not the same as the current 
owner of the selection and the current owner is not None, the current owner 
is sent a SelectionClear event. If the client that is the owner of a 
selection is later terminated (that is, its connection is closed) or if the owner 
window it has specified in the request is later destroyed, the owner of the 
selection automatically reverts to None, but the last-change time is not 
affected. The selection atom is uninterpreted by the X server. 
XGetSelectionOwner returns the owner window, which is reported in 
SelectionRequest and SelectionClear events. Selections are 
global to the X server. 

XSetSelectionOwner can generate BadAtom and BadWindow errors. 

The XGetSelectionOwner function returns the window ID associated 
with the window that currently owns the specified selection. If no selection 
was specified, the function returns the constant None. If None is returned, 
there is no owner for the selection. 

XGetSelectionOwner can generate a BadAtom error. 

XConvertSelection requests that the specified selection be converted to 
the specified target type: 

• If the specified selection has an owner, the X server sends a 
SelectionRequest event to that owner. 

• If no owner for the specified selection exists, the X server generates a 
SelectionNotify event to the requestor with property None. 

In either event, the arguments are passed on unchanged. There are two 
predefined selection atoms: PRIMARY and SECONDARY. 

XConvertSelection can generate BadAtom and BadWindow errors. 

Diagnostics 

BadAtom A value for an Atom argument does not name a defined 
Atom. 

BadWindow A value for a Window argument does not name a defined 
Window. 

3-590 Subroutines 



XSetSelectionOwner {3X11 } 

See Also 
Guide to the Xlib Library 

Subroutines 3-591 



XSetSizeHints (3X11 ) 

Name 
XSetSizeHints, XGetSizeHints - set or get window size hints 

Syntax 
XSetSizeHints (display, w, hints, property) 

Display *display; 
Window w; 
XSizeHints * hints; 
Atom property; 

Status XGetSizeHints(display, w, hints return, property) 
Display *display; -
Windoww; 
XSizeHints * hints return; 
Atom property; -

Arguments 

display Specifies the connection to the X server. 

hints Specifies a pointer to the size hints. 

hints return Returns the size hints. 

property Specifies the property name. 

w Specifies the window. 

Description 
The XSetSizeHints function sets the XSizeHints structure for the 
named property and the specified window. This is used by 
XSetNormalHints and XSetZoomHints, and can be used to set the 
value of any property of type WM_SIZE_HINTS. Thus, it may be useful if 
other properties of that type get defined. 

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow 
errors. 

XGetSizeHints returns the XSizeHints structure for the named 
property and the specified window. This is used by XGetNormalHints 
and XGetZoomHints. It also can be used to retrieve the value of any 
property of type WM_SIZE_HINTS. Thus, it may be useful if other 
properties of that type get defined. XGetSizeHints returns a nonzero 
status if a size hint was defined or zero otherwise. 

3-592 Subroutines 



XSetSizeHints (3X11 ) 

XGetSizeHints can generate BadAtom and BadWindow errors. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadAtom A value for an Atom argument does not name a defined 
Atom. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetClassHint(3Xll), XSetCommand(3Xll), XSetIconName(3Xl1), 
XSetIconSizeHints(3Xll), XSetNormalHints(3Xll), 
XSetStandardProperties(3X 11), XSetTransientForHint(3X 11), 
XSetWMHints(3Xll), XSetZoomHints(3Xll), XStoreName(3Xll) 
Guide to the Xlib Library 

Subroutines 3-593 



XSetStandardColormap (3X11 ) 

Name 
XSetStandardColormap, XGetStandardColormap - set or get standard 
colormaps 

Syntax 
XSetStandardColormap(display, w, c%rmap, property) 

Display *display; 
Window w; 
XStandardColormap *colormap; 
Atom property; /* RGB_BEST_MAP, etc. */ 

Status XGetStandardColormap( display, w, colormap _return, property) 
Display *display; 
Window w; 
XStandardColormap *colormap _return; 
Atom property; /* RGB_BEST_MAP, etc. */ 

Arguments 

c%rmap Specifies the colormap. 

colormap return 
- Returns the colormap associated with the specified atom. 

display 

property 

w 

Description 

Specifies the connection to the X server. 

Specifies the property name. 

Specifies the window. 

The XSetStandardColormap function usually is only used by window 
managers. To create a standard colormap, follow this procedure: 

1. Open a new connection to the same server. 

2. Grab the server. 

3. See if the property is on the property list of the root window for the 
screen. 

4. If the desired property is not present: 

• Create a colormap (not required for RGB_DEFAULT_MAP) 

• Determine the color capabilities of the display. 

3-594 Subroutines 



XSetStandardColormap (3X11 ) 

• Call XAllocColorPlanes or XAllocColorCells to 
allocate cells in the colormap. 

• Call XStoreColors to store appropriate color values in the 
colormap. 

• Fill in the descriptive members in the XStandardColormap 
structure. 

• Attach the property to the root window. 

• Use XSetCloseDownMode to make the resource permanent. 

S. Ungrab the server. 

XSetStandardColormap can generate BadAlloc, BadAtom, and 
BadWindowerrors. 

The XGetStandardColormap function returns the colormap definition 
associated with the atom supplied as the property argument. For example, to 
fetch the standard GrayScale colormap (or a display, you use 
XGetStandardColormap with the following syntax: 

XGetStandardColormap(dpy, DefaultRootWindow(dpy), &cmap, XA_RGB_GRA Y _MAP 

Once you have fetched a standard colormap, you can use it to convert RGB 
values into pixel values. For example, given an XStandardColormap 
structure and floating-point RGB coefficients in the range 0.0 to 1.0, you can 
compose pixel values with the following C expression: 

pixel = base_pixel 
+ «unsigned long) (0.5 + r * red_max» * red_mult 
+ «unsigned long) (0.5 + g * green_max» * green_mult 
+ «unsigned long) (0.5 + b * blue_max» * blue_mult; 

The use of addition rather than logical OR for composing pixel values 
permits allocations where the RGB value is not aligned to bit boundaries. 

XGetStandardColormap can generate BadAtom and BadWindow 
errors. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadAtom A value for an Atom argument does not name a defined 
Atom. 

BadWindow A value for a Window argument does not name a defined 
Window. 

Subroutines 3-595 



XSetStandardColormap (3X11 ) 

See Also 
Guide to the Xlib Library 

3-596 Subroutines 



XSetStandardProperties (3X11 ) 

Name 
XSetStandardProperties - set standard window manager properties 

Syntax 
XSetStandardProperties(display, w, window_name, icon_name, iconyixmap, 
argv, argc, hints) 

Display *display; 
Windoww; 
char *window _name; 
char *icon name; 
Pixmap iconyixmap; 
char **argv; 
int argc; 
XSizeHints * hints; 

Arguments 

argc 

argv 

display 

hints 

icon name 

iconyixmap 

w 

window name 

Description 

Specifies the number of arguments~ 

Specifies the application's argument list. 

Specifies the connection to the X server. 

Specifies a pointer to the size hints for the window in its 
normal state. 

Specifies the icon name, which should be a null-terminated 
string. 

Specifies the bitmap that is to be used for the icon or None. 

Specifies the window. 

Specifies the window name, which should be a null­
terminated string. 

The XSetStandardProperties function provides a means by which 
simple applications set the most essential properties with a single call. 
XSetStandardProperties should be used to give a window manager 
some information about your program's preferences. It should not be used by 
applications that need to communicate more information than is possible with 
XSetStandardProperties. (Typically, argv is the argv array of your 
main program.) 

Subroutines 3-597 



XSetStandardProperties (3X11 ) 

XSetStandardProperties can generate BadAlloc and BadWindow 
errors. 

Properties 
WM_NAME, WM_ICON_NAME, WM_HINTS, WM_COMMAND, and 
WM_NORMALHINTS 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetClassHint(3Xll), XSetCommand(3Xll), XSetIconName(3Xl1), 
XSetIconSizeHints(3Xll), XSetNormalHints(3Xll), XSetSizeHints(3Xll), 
XSetTransientForHint(3Xll), XSetWMHints(3Xl1), XSetZoomHints(3Xl1), 
XStoreName(3Xl1) 
Guide to the Xlib Library 

3-598 Subroutines 



XSetState (3X11) , 

Name 
XSetState, XSetFunction, XSetPlaneMask, XSetForeground, 
XSetBackground - GC convenience routines 

Syntax 
XSetState (display, gc, foreground, background, function, plane_mask) 

Display *display; 
GCgc; 
unsigned long foreground, background; 
int function; 
unsigned long plane_mask; 

XSetFunction (display, gc, function) 
Display *display; 
GCgc; 
int function; 

XSetPlaneMask(display, gc, plane mask) 
Display *display; -
GCgc; 
unsigned long plane _mask; 

XSetForeground(display, gc, foreground) 
Display *display; 
GCgc; 
unsigned long foreground; 

XSetBackground(display, gc, background) 
Display *display; 
GCgc; 
unsigned long background; 

Arguments 

background Specifies the background you want to set for the specified 
GC. 

display Specifies the connection to the X server. 

foreground Specifies the foreground you want to set for the specified 
GC. 

function Specifies the function you want to set for the specified GC. 

gc Specifies the GC. 

Subroutines 3-599 



XSetState(3X11 } 

Specifies the plane mask. 

Description 
The XSetState function sets the foreground, background, plane mask, and 
function components for the specified GC. 

XSetState can generate BadAlloc, BadGe, and BadValue errors. 

XSetFunction sets a specified value in the specified GC. 

XSetFunction can generate BadAlloc, BadGe, and BadValue errors. 

The XSetp laneMask function sets the plane mask in the specified GC. 

XSetPlaneMask can generate BadAlloc and BadGe errors. 

The XSetForeground function sets the foreground in the specified GC. 

XSetForeground can generate BadAlloc and BadGe errors. 

The XSetBackground function sets the background in the specified GC. 

XSetBackground can generate BadAlloc and BadGe errors. 

Diagnostics 

BadAlloc 

BadGe 

BadValue 

See Also 

The server failed to allocate the requested resource or server 
memory. 

A value for a GContext argument does not name a defined 
GContext. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xl1), 
XSetClipOrigin(3Xll), XSetFillStyle(3Xll), XSetFont(3Xll), 
XSetLineAttributes(3Xll), XSetTile(3Xll) 
Guide to the Xlib Library 

3-600 Subroutines 



XSetTile (3X11 ) 

Name 
XSetTile, XSetStipple, XSetTSOrigin - GC convenience routines 

Syntax 
XSetTile (display, gc, tile) 

Display *display; 
GCgc; 
Pixmap tile; 

XSetStipple(display, gc, stipple) 
Display *display; 
GCgc; 
Pixmap stipple; 

XSetTSOrigin(display, gc, ts_x_origin, tsy_origin) 
Display *display; 
GCgc; 
int ts_x_origin, tsy_origin; 

Arguments 

display 

gc 

Specifies·the connection to the X server. 

Specifies the GC. 

stipple 

tile 

ts_x_origin 
tsy_origin 

Specifies the stipple you want to set for the specified GC. 

Specifies the fill tile you want to set for the specified GC. 

Specify the x and y coordinates of the tile and stipple origin. 

Description 
The XSetTile function sets the fill tile in the specified GC. The tile and 
GC must have the same depth, or a BadMatch error results. 

XSetTile can generate BadAlloc, BadGC, BadMatch, and 
BadP ixmap errors. 

The XSetStipple function sets th~ stipple in the specified GC. The 
stipple and GC must have the same depth, or a BadMatch error results. 

XSetStipple can generate BadAlloc, BadGC, BadMatch, and 
BadP ixmap errors. 

Subroutines 3-601 



XSetTile (3X11) 

The XSetTSOrigin function sets the tile/stipple origin in the specified GC. 
When graphics requests call for tiling or stippling, the parent's origin will be 
interpreted relative to whatever destination drawable is specified in the 
graphics request. 

XSetTSOrigin can generate BadAlloc and BadGC errors. 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadGC A value for a GContext argument does not name a defined 
GContext. 

BadMatch Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

BadPixmap A value for a Pixmap argument does not name a defined 
Pixmap. 

See Also 
XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xll), 
XSetClipOrigin(3Xll), XSetFillStyle(3Xll), XSetFont(3Xll), 
XSetLineAttributes(3Xll), XSetState(3Xll) 
Guide to the Xlib Library 

3-602 Subroutines 



XSetTransientForHint (3X11 ) 

Name 
XSetTransientForHint, XGetTransientForHint - set or get transient for hint 

Syntax 
XSetTransientForHint(display, w, prop_window) 

Display *display; 
Window w; 
Window prop_window; 

Status XGetTransientForHint( display, w, prop window return) 
Display *display; --
Window w; 
Window *prop _window _return; 

Arguments 

display Specifies the connection to the X server. 

w Specifies the window. 

prop_window Specifies the window that the WM_TRANSIENT_FOR 
property is to be set to. 

prop window return 
- - Returns the WM_TRANSIENT _FOR property of the 

specified window. 

Description 
The XSet TransientForHint function sets the WM_TRANSIENT_FOR 
property of the specified window to the specified prop_window. 

XSetTransientForHint can generate BadAlloc and BadWindow 
errors. 

The XGet TransientForHint function returns the 
WM_TRANSIENT_FOR property for the specified window. 

XGetTransientForHint can generate a BadWindow error. 

Property 
WM_TRANSIENT_FOR 

Subroutines 3-603 



XSetTransientForHint (3X11 ) 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetClassHint(3Xll), XSetCommand(3Xll), XSetIconName(3Xll), 
XSetIconSizeHints(3Xll), XSetNormalHints(3Xll), XSetSizeHints(3Xll), 
XSetStandardProperties(3Xll), XSetWMHints(3Xl1), 
XSetZoomHints(3Xll), XStoreName(3Xll) 
Guide to the Xlib Library 

3-604 Subroutines 



XSetWMHints (3X11 ) 

Name 
XSetWMHints, XGetWMHints - set or get window manager hints 

Syntax 
XSetWMHints(display, w, wmhints) 

Display *display; 
Windoww; 
XWMHints *wmhints; 

XWMHints *XGetWMHints(display, w) 
Display *display; 
Windoww; 

Arguments 

display Specifies the connection to the X server. 

Specifies the window. w 

wmhints Specifies a pointer to the window manager hints. 

Description 
The XSetWMHints function sets the window manager hints that include 
icon information and location, the initial state of the window, and whether 
the application relies on the window manager to get keyboard input. 

XSetWMHints can generate BadAlloc and BadWindow errors. 

The XGetWMHints function reads the window manager hints and returns 
NULL if no WM_HINTS property was set on the window or a pointer to a 
XWMHints structure if it succeeds. When finished with the data, free the 
space used for it by calling XFree. 

XGetWMHints can generate a BadWindow error. 

Property 
WM_HINTS 

Subroutines 3-605 



XSetWMHints (3X11 ) 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetClassHint(3Xll), XSetCommand(3Xll), XSetIconName(3Xll), 
XSetIconSizeHints(3Xll), XSetNormalHints(3Xll), XSetSizeHints(3Xll), 
XSetStandardProperties(3Xll), XSetTransientForHint(3Xll), 
XSetZoomHints(3Xll), XStoreName(3Xll) 
Guide to the Xlib Library 

3-606 Subroutines 



XSetZoomHints (3X11 ) 

Name 
XSetZoomHints, XGetZoomHints - set or get zoom state hints 

Syntax 
XSetZoomHints (display, w, zhints) 

Display *display; 
Windoww; 
XSizeHints *zhints; 

Status XGetZoomHints (display, w, zhints _return) 
Display *display; 
Window w; 
XSizeHints *zhints _return; 

Arguments 

display Specifies the connection to the X server. 

w Specifies the window. 

zhints Specifies a pointer to the zoom hints. 

zhints return Returns the zoom hints. 

Description 
Many window managers think of windows in one of three states: iconic, 
normal, or zoomed. The XSetZoornHints function provides the window 
manager with information for the window in the zoomed state. 

XSetZoornHints can generate BadAlloc and BadWindow errors. 

The XGetZoornHints function returns the size hints for a window in its 
zoomed state. It returns a nonzero status if it succeeds or zero if the 
application specified no zoom size hints for this window. 

XGetZoornHints can generate a BadWindow error. 

Property 
WM_ZOOM_HINTS 

Subroutines 3-607 



XSetZoomHints (3X11 ) 

Diagnostics 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetClassHint(3Xll), XSetCommand(3Xll), XSetIconName(3Xl1), 
XSetIconSizeHints(3Xll), XSetNormalHints(3Xl1), XSetSizeHints(3Xll), 
XSetStandardProperties(3Xl1), XSetTransientForHint(3Xl1), 
XSetWMHints(3Xll), XStoreName(3Xll) 
Guide to the Xlib Library 

3-608 Subroutines 



XStartStat (3X11 ) 

Name 
XStartStat, XStopStat, XPrintStat - start, stop, or display process statistics 

Syntax 
XStartStat(display) 

Display *display; 

XStopStat (display) 
Display *display; 

XPrintStat(display, file) 
Display *display; 
FILE file; 

Arguments 

display 

file 

Description 

Specifies the connection to the X server. 

Specifies the file to which the statistics are to be written. 

The XStartStat function turns on client-side statistics gathering mode. 

The XStartStop function turns off client-side statistics gathering mode. 

The XPrintStat function write the client-side statistics to the specified 
file. If file is not stdout or stderr, you must open the file before 
XPrintStat can write the statistics to it. 

See Also 
Guide to the Xlib Library 

Subroutines 3-609 



XStoreBytes (3X11 ) 

Name 
XStoreBytes, XStoreBuffer, XFetchBytes, XFetchBuffer, XRotateBuffers­
manipulate cut and paste buffers 

Syntax 
XStoreBytes (display, bytes, nbytes) 

Display *display; 
char *bytes; 
int nbytes; 

XStoreBuffer( display, bytes, nbytes, buffer) 
Display *display; 
char *bytes; 
int nbytes; 
int buffer; 

char *XFetchBytes(display, nbytes_return) 
Display *display; 
int * nbytes _return; 

char *XFetchBuffer(display, nbytes return, buffer) 
Display *display; -
int * nbytes return; 
int buffer; -

XRotateBuffers (display, rotate) 
Display *display; 
int rotate; 

Arguments 

buffer 

bytes 

Specifies the buffer in which you want to store the bytes or 
from which you want the· stored data returned. 

Specifies the bytes, which are not necessarily ASCII or null­
terminated. 

display Specifies the connection to the X server. 

nbytes Specifies the number of bytes to be stored. 

nbytes _return Returns the number of bytes in the buffer. 

rotate Specifies how much to rotate the cut buffers. 

3-610 Subroutines 



XStoreBytes (3X11 ) 

Description 
Note that the cut buffer's contents need not be text, so zero bytes are not 
special. The cut buffer's contents can be retrieved later by any client calling 
XFetchBytes. 

XStoreBytes can generate a BadAlloc error. 

If the property for the buffer has never been created, a BadAtom error 
results. 

XStoreBuffer can generate BadAlloc and BadAtom errors. 

The XFetchBytes function returns the number of bytes in the 
nbytes_return argument, if the buffer contains data. Otherwise, the function 
returns NULL and sets nbytes to O. The appropriate amount of storage is 
allocated and the pointer returned. The client must free this storage when 
finished with it by calling XFree. Note that the cut buffer does not 
necessarily contain text, so it may contain embedded zero bytes and may not 
terminate with a null byte. 

The XFetchBuffer function returns zero to the nbytes_retum argument if 
there is no data in the buffer. 

XFetchBuffer can generate a BadValue error. 

The XRotateBuffers function rotates the cut buffers, such that buffer 0 
becomes buffer n, buffer 1 becomes n + 1 mod 8, and so on. This cut buffer 
numbering is global to the display. Note that XRotateBuffers generates 
BadMa t ch errors if any of the eight buffers have not been created. 

XRotateBuffers can generate a BadMatch error. 

Diagnostics 

BadAlloc 

BadAtom 

BadMatch 

BadValue 

The server failed to allocate the requested resource or server 
memory. 

A value for an Atom argument does not name a defined 
Atom. 

Some argument or pair of arguments has the correct type and 
range but fails to match in some other way required by the 
request. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 

Subroutines 3-611 



XStoreBytes (3X11 ) 

alternatives can generate this error. 

See Also 
Guide to the Xlib Library 

3-612 Subroutines 



XStoreColors (3X11 ) 

Name 
XStoreColors, XStoreColor, XStoreNamedColor - set colors 

Syntax 
XStoreColors(display, colormap, color, ncolors) 

Display *display; 
Colormap colormap; 
XColor color[]; 
int ncolors; 

XStoreColor( display, colormap, color) 
Display *display; 
Colormap colormap; 
XColor *color; 

XStoreN amedColor( display, colormap, color, pixe I, flags) 
Display *display; 
Colormap colormap; 
char *color; 
unsigned long pixel; 
intflags; 

Arguments 

color Specifies the pixel and RGB values or the color name string 
(for example, red). 

color 

colormap 

display 

flags 

ncolors 

pixel 

Description 

Specifies an array of color definition structures to be stored. 

Specifies the colormap. 

Specifies the connection to the X server. 

Specifies which red, green, and blue components are set. 

Specifies the number of XColor structures in the color 
definition array. 

Specifies the entry in the colonnap. 

The XStoreColors function changes the colormap entries of the pixel 
values specified in the pixel members of the XColor structures. You 
specify which color components are to be changed by setting DoRed, 
DoGreen, and/or DoBl ue in the flags member of the XColor structures. 

Subroutines 3-613 



XStoreColors (3X11 ) 

If the colonnap is an installed map for its screen, the changes are visible 
immediately. XStoreColors changes the specified pixels if they are 
allocated writable in the colonnap by any client, even if one or more pixels 
generates an error. If a specified pixel is not a valid index into the colonnap, 
a BadValue error results. If a specified pixel either is unallocated or is 
allocated read-only, a BadAccess error results. If more than one pixel is in 
error, the one that gets reported is arbitrary. 

XStoreColors can generate BadAccess, BadColor, and BadValue 
errors. 

The XStoreColor function changes the colonnap entry of the pixel value 
specified in the pixel member of the XColor structure. You specified this 
value in the pixel member of the XColor structure. This pixel value must 
be a read/write cell and a valid index into the colonnap. If a specified pixel 
is not a valid index into the colonnap, a BadVal ue error results. 
XStoreColor also changes the red, green, and/or blue color components. 
You specify which color components are to be changed by setting DoRed, 
DoGreen, and/or DoBl ue in the flags member of the XColor structure. If 
the colonnap is an installed map for its screen, the changes are visible 
immediately. 

XStoreColor can generate BadAccess, BadColor, and BadValue 
errors. 

The XStoreNamedColor function looks up the named color with respect 
to the screen associated with the colonnap and stores the result in the 
specified colonnap. The pixel argument determines the entry in the 
colonnap. The flags argument determines which of the red, green, and blue 
components are set. You can set this member to the bitwise inclusive OR of 
the bits DoRed, DoGreen, and DoBl ue. If the specified pixel is not a 
valid index into the colonnap, a BadValue error results. If the specified 
pixel either is unallocated or is allocated read-only, a BadAccess error 
results. You should use the ISO Latin-l encoding; uppercase and lowercase 
do not matter. 

XStoreNamedColor can generate BadAccess, BadColor, BadName, 
and BadVal ue errors. 

Diagnostics 

BadAccess A client attempted to free a color map entry that it did not 
already allocate. 

BadAccess A client attempted to store into a read-only color map entry. 

3-614 Subroutines 



BadColor 

BadName 

BadValue 

See Also 

XStoreColors (3X11 ) 

A value for a Colormap argument does not name a defined 
Colormap. 

A font or color of the specified name does not exist. 

Some numeric value falls outside the range of values 
accepted by the request. Unless a specific range is specified 
for an argument, the full range defined by the argument's 
type is accepted. Any argument defined as a set of 
alternatives can generate this error. 

XAllocColor(3Xll), XCreateColormap(3Xll), XQueryColor(3Xl1) 
Guide to the Xlib Library 

Subroutines 3-615 



XStoreName (3X11 ) 

Name 
XStoreName, XFetchName - set or get window names 

Syntax 
XStoreName( display, W,. window name) 

Display *display; -
Window w; 
char *window _name; 

Status XFetchName(display, w, window name return) 
Display *display; --
Window w; 
char **window _name _return; 

Arguments 

display 

w 

Specifies the connection to the X server. 

Specifies the window. 

window name Specifies the window name, which should be a null­
terminated string. 

window name return 
- - Returns a pointer to the window name, which is a null-

terminated string. 

Description 
The XStoreName function assigns the name passed to window_name to the 
specified window. A window manager can display the window name in 
some prominent place, such as the title bar, to allow users to identify 
windows easily. Some window managers may display a window's name in 
the window's icon, although they are encouraged to use the window's icon 
name if one is provided by the application. 

XStoreName can generate BadAlloc and BadWindow errors. 

The XFetchName function returns the name of the specified window. If it 
succeeds, it returns nonzero; otherwise, if no name has been set for the 
window, it returns zero. If the WM_NAME property has not been set for 
this window, XFetchName sets window_uame_return to NULL. When 
finished with it, a client must free the window name string using XFree. 

3-616 Subroutines 



XFetchName can generate a BadWindow error. 

Property 
WM_NAME 

Diagnostics 

XStoreName (3X11 ) 

BadAlloc The server failed to allocate the requested resource or server 
memory. 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetCommand(3Xll), XSetIconName(3Xll), XSetIconSizeHints(3Xll), 
XSetNormalHints(3Xll), XSetSizeHints(3Xll), 
XSetStandardProperties(3Xll), XSetWMHints(3Xl1), 
XSetZoomHints(3Xll ) 
Guide to the Xlib Library 

Subroutines 3-617 



XStringToKeysym (3X11 ) 

Name 
XStringToKeysym, XKeysymToString, XKeycodeToKeysym, 
XKeysymToKeycode - convert keysyms 

Syntax 
KeySym XStringToKeysym(string) 

char * string; 

char *XKeysymToString (keysym) 
KeySym keysym; 

KeySym XKeycodeToKeysym(display, keycode, index) 
Display *display; 
KeyCode keycode; 
int index; 

KeyCode XKeysymToKeycode( display, keysym) 
Display *display; 
KeySym keysym; 

Arguments 

display 

index 

keycode 

keysym 

string 

Description 

Specifies the connection to the X server. 

Specifies the element of KeyCode vector. 

Specifies the KeyCode. 

Specifies the KeySym that is to be searched for or converted. 

Specifies the name of the KeySym that is to be converted. 

Valid KeySym names are listed in <XII /keysymdef • h> by removing the 
XK_ prefix from each name. If the specified string does not match a valid 
KeySym, XStringToKeysym returns NoSymbol. 

The returned string is in a static area and must not be modified. If the 
specified KeySym is not defined, XKeysymToString returns a NULL. 

The XKeycodeToKeysym function uses internal Xlib tables and returns the 
KeySym defined for the specified KeyCode and the element of the KeyCode 
vector. If no symbol is defined, XKeycodeToKeysym returns NoSymbol. 

3-618 Subroutines 



XStringToKeysym (3X11 ) 

If the specified KeySym is not defined for any KeyCode, 
XKeysymToKeycode returns zero. 

See Also 
XLookupKeysym(3Xll) 
Guide to the Xlib Library 

Subroutines 3-619 



XSynchronize (3X11 ) 

Name 
XSynchronize, XSetAfterFunction - enable or disable synchronization 

Syntax 
int (*XSynchronize (display, onoff))O 

Display *display; 
Boolonoff; 

int (*XSetAfterFunction (display, procedure))O 
Display *display; 
int (* procedure) 0; 

Arguments 

display 

procedure 

onoff 

Description 

Specifies the connection to the X server. 

Specifies the function to be called after an Xlib function that 
generates a protocol request completes its work. 

Specifies a Boolean value that indicates whether to enable or 
disable synchronization. 

The XSynchronize function returns the previous after function. If onoff is 
True, XSynchronize turns on synchronous behavior. If onoff is False, 
XSynchronize turns off synchronous behavior. 

The specified procedure is called with only a display pointer. 
XSetAfterFunction returns the previous after function. 

See Also 
XSetErrorHandler(3Xll ) 
Guide to the Xlib Library 

3-620 Subroutines 



XTextExtents (3X11 ) 

Name 
XTextExtents, XTextExtents 16, XQueryTextExtents, XQueryTextExtents 16 -
compute or query text extents 

Syntax 
XTextExtents(font_struct, string, nchars, direction_return, 
font ascent return, font descent return, overall return) 

XFontStruct *font itruct; - -
char * string; -
int nchars; 
int *direction return; 
int *font ascent return, *font descent return; 
XCharStruct *overall_return;- -

XTextExtents 16 (font _struct, string, nchars, direction_return, 
font ascent return, font descent return, overall return) 

XFontStruct *font struct; - -
XChar2b *string;-
int nchars; 
int *direction return; 
int *font ascent return, *font descent return; 
XCharStruct *overall_return;- -

XQueryTextExtents( dispJay, font _ID, string, nc hars, direction_return, 
font _ascent _return, font_descent _return, overall_return) 

Display *dispJay; 
XIDfont ID; 
char * string; 
int nchars; 
int *direction return; 
int *font ascent return, *font descent return; 
XCharStruct *oVerall_return;- -

XQueryTextExtents 16( display, font _ID, string, nchars, direction_return, 
font ascent return, font descent return, overall return) 

-Display *dispJay; - - -
XIDfont ID; 
XChar2b-* string; 
int nchars; 
int *direction _return; 

Subroutines 3-621 



XTextExtents (3X11 ) 

int *font _ascent_return, *font _descent_return; 
XCharStruct * overall_return; 

Arguments 

direction return 
- Returns the value of the direction hint (FontLeftToRight 

or FontRight ToLeft). 

display 

fontJD 

Specifies the connection to the X server. 

Specifies either the font ID or the GContext ID that 
contains the font. 

font_ascent_return 
Returns the font ascent. 

font descent return 
- - Returns the font descent. 

font _struct 

nchars 

string 

Specifies a pointer to the XFontStruct structure. 

Specifies the number of characters in the character string. 

Specifies the character string. 

overall return Returns the overall size in the specified XCharStruct 
structure. 

Description 
The XTextExtents and XTextExtents16 functions perform the size 
computation locally and, thereby, avoid the round-trip overhead of 
XQueryTextExtents and XQueryTextExtents16. Both functions 
return an XCharStruct structure, whose members are set to the values as 
follows. 

The ascent member is set to the maximum of the ascent metrics of all 
characters in the string. The descent member is set to the maximum of the 
descent metrics. The width member is set to the sum of the character-width 
metrics of all characters in the string. For each character in the string, let W 
be the sum of the character-width metrics of all characters preceding it in the 
string. Let L be the left-side-bearing metric of the character plus W. Let R 
be the right-side-bearing metric of the character plus W. The lbearing 
member is set to the minimum L of all characters in the string. The rbearlng 
member is set to the maximum R. 

3-622 Subroutines 



XTextExtents (3X11 ) 

For fonts defined with linear indexing rather than 2-byte matrix indexing, 
each XChar2b structure is interpreted as a 16-bit number with byte1 as the 
most-significant byte. If the font has no defined default character, undefined 
characters in the string are taken to have all zero metrics. 

The XQueryTextExtents and XQueryTextExtents16 functions 
return the bounding box of the specified 8-bit and 16-bit character string in 
the specified font or the font contained in the specified GC. These functions 
query the X server and, therefore, suffer the round-trip overhead that is 
avoided by XTextExtents and XTextExtents16. Both functions 
return a XCharStruct structure, whose members are set to the values as 
follows. 

The ascent member is set to the maximum of the ascent metrics of all 
characters in the string. The descent member is set to the maximum of the 
descent metrics. The width member is set to the sum of the character-width 
metrics of all characters in the string. For each character in the string, let W 
be the sum of the character-width metrics of all characters preceding it in the 
string. Let L be the left-side-bearing metric of the character plus W. Let R 
be the right-side-bearing metric of the character plus W. The lbearing 
member is set to the minimum L of all characters in the string. The rbearing 
member is set to the maximum R. 

For fonts defined with . linear indexing rather than 2-byte matrix indexing, 
each XChar2b structure is interpreted as a 16-bit number with byte1 as the 
most-significant byte. If the font has no defined default character, undefined 
characters in the string are taken to have all zero metrics. 

XQueryTextExtents XQueryTextExtents16 and can generate 
BadFont and BadGC errors. 

Diagnostics 

BadFont 

BadGC 

See Also 

A value for a Font or GContext argument does not name a 
defined Font. 

A value for a GContext argument does not name a defined 
GContext. 

XTextWidth(3X11) 
Guide to the Xlib Library 

Subroutines 3-623 



XTextWidth (3X11 ) 

Name 
XTextWidth, XTextWidth16 - compute text width 

Syntax 
int XTextWidth(font_struct, string, count) 

XFontStruct *font struct; 
char * string; -
int count; 

int XTextWidth16(font_struct, string, count) 
XFontStruct *font _struct; 
XChar2b *string; 
int count; 

Arguments 

count 

font _struct 

string 

Description 

Specifies the character count in the specified string. 

Specifies the font used for the width computation. 

Specifies the character string. 

The XTextWidth and XTextWidth16 functions return the width of the 
specified 8-bit or 2-byte character strings. 

See Also 
XTextExtents(3Xll) 
Guide to the Xlib Library 

3-624 Subroutines 



XTranslateCoordinates (3X11 ) 

Name 
XTranslateCoordinates - translate window coordinates 

Syntax 
Bool XTranslateCoordinates(display, src_w, dest_w, src_x, srcy, 
dest -.x_return, dest y _return, child_return) 

Display *display; 
Window src_w, dest_w; 
int src_x, srcy; 
int *dest_x_return, *desty_return; 
Window *child _return; 

Arguments 

child return Returns the child if the coordinates are contained in a 
mapped child of the destination window. 

dest w Specifies the destination window. 

dest x return 
desty =return Return the x and y coordinates within the destination 

window. 

display Specifies the connection to the X server. 

src w 

src x 
srcy 

Description 

Specifies the source window. 

Specify the x and y coordinates within the source window. 

The XTranslateCoordinates function takes the src_x and src-y 
coordinates relative to the source window's origin and returns these 
coordinates to dest_x_return and dest-y _return relative to the destination 
window's origin. If XTranslateCoordinates returns zero, src_wand 
dest_ w are on different screens, and dest_x_return and dest-y _return are zero. 
If the coordinates are contained in a mapped child of dest_ w, that child is 
returned to child_return. Otherwise, child_return is set to None. 

XTranslateCoordinates can generate a BadWindow error. 

Subroutines 3-625 



XTranslateCoordinates (3X11 ) 

Diagnostics 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
Guide to the Xlib Library 

3-626 Subroutines 



XUnmapWindow (3X11 ) 

Name 
XUnmap Window, XUnmapSubwindows - unmap windows 

Syntax 
XUnmapWindow(display, w) 

Display *display; 
Windoww; 

XUnmapSubwindows (display, w) 
Display *display; 
Window w; 

Arguments 

display 

w 

Description 

Specifies the connection to the X server. 

Specifies the window. 

The XUnmapWindow function unmaps the specified window and causes the 
X server to generate an UnmapNotify event. If the specified window is 
already unmapped, XUnmapWindow has no effect. Normal exposure 
processing on formerly obscured windows is performed. Any child window 
will no longer be visible until another map call is made on the parent. In 
other words, the subwindows are still mapped but are not visible until the 
parent is mapped. Unmapping a window will generate Expose events on 
windows that were formerly obscured by it. 

XUnmapWindow can generate a BadWindow error. 

The XUnmapSubwindows function unmaps all subwindows for the 
specified window in bottom-to-top stacking order. It causes the X server to 
generate an UnmapNotify event on each subwindow and Expose events 
on formerly obscured windows. Using this function is much more efficient 
than unmapping multiple windows one at a time because the server needs to 
perform much of the work only once, for all of the windows, rather than for 
each window. . 

XUnmapSubwindows can generate a BadWindow error. 

Subroutines 3-627 



XUnmapWindow(3X11 ) 

Diagnostics 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XChangeWindowAttributes(3Xll), XConfigureWindow(3Xll), 
XCreateWindow(3Xll), XDestroyWindow(3Xll), XMapWindow(3Xll) 
XRaise Window(3Xl1) 
Guide to the Xlib Library 

3-628 Subroutines 



XWarpPointer (3X11 ) 

Name 
XW arpPointer - move pointer 

Syntax 
XWarpPointer(display, src_w, dest_w, srcy, srcy, src_width, src_height, 
dest_x, desty) 

Display *display; 
Window src_w, dest_w; 
int src_x, srcy; 
unsigned int src _width, src _height; 
int dest_x, desty; 

Arguments 

Specifies the destination window or None. dest w 
dest x 
desiy Specify the x and y coordinates within the destination 

window. 

display 

src x 
srcy 
src width 
src_height 

src w 

Description 

Specifies the connection to the X server. 

Specify a rectangle in the source window. 

Specifies the source window or None. 

If dest_w is None, XWarpPointer moves the pointer by the offsets 
(dest_x, dest_y) relative to the current position of the pointer. If dest_w is a 
window, XWarpPointer moves the pointer to the offsets (dest_x, dest-y) 
relative to the origin of dest_w. However, if src_w is a window, the move 
only takes place if the specified rectangle src_ w contains the pointer. 

The src_x and src-y coordinates are relative to the origin of src_w. If 
srcjleight is zero, it is replaced with the current height of src_ w minus 
src-y. If src_width is zero, it is replaced with the current width of src_w 
minus src_x. 

There is seldom any reason for calling this function. The pointer should 
normally be left to the user. If you do use this function, however, it 
generates events just as if the user had instantaneously moved the pointer 

Subroutines 3-629 



XWarpPointer {3X11 } 

from one position to another. Note that you cannot use XWarpPointer to 
move the pointer outside the confine_to window of an active pointer grab. 
An attempt to do so will only move the pointer as far as the closest edge of 
the confine_to window. 

XWarpPointer can generate a BadWindow error. 

Diagnostics 

BadWindow A value for a Window argument does not name a defined 
Window. 

See Also 
XSetInputFocus(3Xll) 
Guide to the Xlib Library 

3-630 Subroutines 



Xlib Functions 

Insert tabbed 
divider here. 
Then discard 
this sheet. 





Name 

XtAddCaliback (3Xt) 

XtAddCallback, XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks, 
XtRemoveAllCallbacks - add and remove callback procedures 

Syntax 
void XtAddCallback(w, callback name, callback, client data) 

Widget w; - -
String callback_name; 
XtCallbackProc callback; 
caddr_t client_data; 

void XtAddCallbacks(w, callback name, callbacks) 
Widget w; -
String callback name; 
XtCallbackList callbacks; 

void XtRemoveCallback(w, callback name, callback, client data) 
Widget w; - -
String callback_name; 
XtCallbackProc callback; 
caddr_t client_data; 

void XtRemoveCallbacks(w, callback name, callbacks) 
Widget w; -
String callback name; 
XtCallbackList callbacks; 

void XtRemoveAllCallbacks(w, callback name) 
Widget w; -
String callback_name; 

Arguments 

Specifies the callback procedure. callback 

callbacks Specifies the null-tenninated list of callback procedures and 
corresponding client data. 

Subroutines 3-631 



XtAddCallback (3Xt) 

callback_name Specifies the callback list to which the procedure is to be 
appended or deleted. 

client data 

w 

Description 

Specifies the argument that is to be passed to the specified 
procedure when it is invoked by XtCallbacks or NULL, or 
the client data to match on the registered callback procedures. 

Specifies the widget. 

The XtAddCallback function adds the specified callback procedure to the 
specified widget's callback list. 

The XtAddCallbacks add the specified list of callbacks to the specified 
widget's callback list. 

The XtRemoveCallback function removes a callback only if both the 
procedure and the client data match. 

The XtRemoveCallbacks function removes the specified callback 
procedures from the specified widget's callback list. 

The XtRemoveAllCallbacks function removes all the callback 
procedures from the specified widget's callback list. 

See Also 
XtCalICallbacks(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-632 Subroutines 



Name 

XtAdd EventHandler (3Xt) 

XtAddEventHandler, XtAddRawEventHandler, XtRemoveEventHandler, 
XtRemoveRawEventHandler - add and remove event handlers 

Syntax 
void XtAddEventHandler(w, event_mask, nonmaskable, proc, client_data) 

Widget w; 
EventMask event mask; 
Boolean nonmaskable; 
XtEventHandler proc; 
caddr_t client_data; 

void XtAddRawEventHandler(w, event mask, nonmaskable, proc, 
c~m~~ -

Widget w; 
EventMask event mask; 
Boolean nonmaskable; 
XtEventHandler proc; 
caddr_t client_data; 

void XtRemoveEventHandler(w, event mask, nonmaskable, proc, 
client data) -

Widget w; 
EventMask event mask; 
Boolean nonmaskable; 
XtEventHandler proc; 
caddr_t client_data; 

void XtRemoveRawEventHandler(w, event_mask, nonmaskable, proc, 
client data) 

Widget w; 
EventMask event mask; 
Boolean nonmaskable; 
XtEventHandler proc; 
caddr_t client_data; 

Arguments 

client data 

event mask 

Specifies additional data to be passed to the client's event 
handler. 

Specifies the event mask for which to call or unregister this 
procedure. 

Subroutines 3-633 



XtAdd EventHandler (3Xt) 

nonmaskable Specifies a Boolean value that indicates whether this 
procedure should be called or removed on the nonmaskable 
events (GraphicsExpose, NoExpose, 
SelectionClear,SelectionRequest, 
SelectionNotify,ClientMessage,and 
MappingNotify). 

proc Specifies the procedure that is to be added or removed. 

w Specifies the widget for which this event handler is being 
registered. 

Description 
The XtAddEventHandler function registers a procedure with the dispatch 
mechanism that is to be called when an event that matches the mask occurs 
on the specified widget. If the procedure is already registered with the" same 
client_data, the specified mask is ORed into the existing mask. If the widget 
is realized, XtAddEventHandler calls XSelectlnput, if necessary. 

The XtAddRawEventHandlerfunction is similar to 
XtAddEventHandler except that it does not affect the widget'S mask and 
never causes an XSelectlnput for its events. Note that the widget might 
already have those mask bits set because of other nonraw event handlers 
registered on it. " 

The XtAddRawEventHandler function is similar to 
XtAddEventHandler except that it does not affect the widget's mask and 
never causes an XSelectlnput for its events. Note that the widget might 
already have those mask bits set because of other nonraw event handlers 
registered on it. 

The XtRemoveRawEventHandler function stops the specified procedure 
from receiving the specified events. Because the procedure is a raw event 
handler, this does not affect the widget's mask and never causes a calIon 
XSelectlnput. 

See Also 
XtAppNextEvent(3Xt), XtBuildEventMask(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-634 Subroutines 



XtAddExposureToRegion (3Xt) 

Name 
XtAddExposureToRegion - merge exposure events into a region 

Syntax 
void XtAddExposureToRegion(event, region) 

XEvent *event; 
Region region; 

Arguments 

event Specifies a pointer to the Expose or GraphicsExpose 
event. 

region Specifies the region object (as defined in <Xll/Xutil. h». 

Description 
The XtAddExposureToRegion function computes the union of the 
rectangle defined by the exposure event and the specified region. Then, it 
stores the results back in region. If the event argument is not an Expose or 
GraphicsExpose event, XtAddExposureToRegion returns without 
an error and without modifying region. 

This function is used by the exposure compression mechanism (see Section 
7.9.3). 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-635 



XtAddGrab (3Xt) 

Name 
XtAddGrab, XtRemoveGrab - redirect user input to a modal widget 

Syntax 
void XtAddGrab(w, exclusive, spring loaded) 

Widget w; -
Boolean exclusive; 
Boolean spring_loaded; 

void XtRemoveGrab(w) 
Widget w; 

Arguments 

exclusive Specifies whether user events should be dispatched 
exclusively to this widget or also to previous widgets in the 
cascade. 

spring_loaded Specifies whether this widget was popped up because the 
user pressed a pointer button. 

w Specifies the widget to add to or remove from the modal 
cascade. 

Description 
The XtAddGrab function appends the widget (and associated parameters) to 
the modal cascade and checks that exclusive is True if spring_loaded is 
True. If these are not True, XtAddGrab generates an error. 

The modal cascade is used by XtDispatchEvent when it tries to dispatch 
a user event. When at least one modal widget is in the widget cascade, 
XtDispatchEvent first determines if the event should be delivered. It 
starts at the most recent cascade entry and follows the cascade up to and 
including the most recent cascade entry added with the exclusive parameter 
True. 

This subset of the modal cascade along with all descendants of these widgets 
comprise the active subset. User events that occur outside the widgets in this 
subset are ignored or remapped. Modal menus with submenus generally add 
a submenu widget to the cascade with exclusive False. Modal dialog 
boxes that need to restrict user input to the most deeply nested dialog box 
add a subdialog widget to the cascade with exclusive True. User events that 
occur within the active subset are delivered to the appropriate widget, which 

3-636 Subroutines 



XtAddGrab (3Xt) 

is usually a child or further descendant of the modal widget. 

Regardless of where on the screen they occur, remap events are always 
delivered to the most recent widget in the active subset of the cascade that 
has spring_loaded True, if any such widget exists. 

The XtRemoveGrab function removes widgets from the modal cascade 
starting at the most recent widget up to and including the specified widget. It 
issues an error if the specified widget is not on the modal cascade. 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-637 



XtAppAddActions (3Xt) 

Name 
XtAppAddActions - register an action table 

Syntax 
void XtAppAddActions(app _context, actions, num_actions) 

XtAppContext app _context, 
XtActionList actions; 
Cardinal num _actions; 

Arguments 

app _context Specifies the application context. 

actions Specifies the action table to register. 

num _ args Specifies the number of entries in this action table. 

Description 
The XtAppAddActions function adds the specified action table and 
registers it with the translation manager. 

See Also 
XtParseTranslationTable(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-638 Subroutines 



XtAppAddConverter (3Xt) 

Name 
XtAppAddConverter - register a resource converter 

Syntax 
void XtAppAddConverter(app _context, from_type, to_type, converter, 
convert_args, num_args) 

XtAppContext app _context, 
String from type; 
String to type; 
XtConverter converter; 
XtConvertArgList convert _ args;· 
Cardinal num _ args; 

Arguments 

app _context Specifies the application context. 

converter Specifies the type converter procedure. 

convert _ args Specifies how to compute the additional arguments to the 
converter or NULL. 

from type Specifies the source type. 

num _ args Specifies the number of additional arguments to the converter 
or zero. 

Specifies the destination type. 

Description 
The XtAppAddConverter registers the specified resource converter. 

See Also 
XtConvert(3Xt), XtStringConversion W aming(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-639 



XtAppAddlnput(3Xt) 

Name 
XtAppAddInput, XtRemoveInput - register and remove an input source 

Syntax 
XtInputId XtAppAddInput(app _context, source, condition, proc, client_data) 

XtAppContext app _context, 
int source; 
caddr_t condition; 
XtInputCallbackProc proc; 
caddr_t client_data; 

void XtRemoveInput(id) 
XtInputId id; 

Arguments 

app _context Specifies the application context that identifies the 
application. 

client data Specifies the argument that is to be passed to the specified 
procedure when input is available. 

condition Specifies the mask that indicates a read, write, or exception 
condition or some operating system dependent condition. 

id Specifies the ID returned from the corresponding 
XtAppAddInput call. 

proc Specifies the procedure that is to be called when input is 
available. 

source Specifies the source file descriptor on a UNIX -based system 
or other operating system-dependent device specification. 

Description 
The XtAppAddlnput function registers with the Intrinsics read routine a 
new source of events, which is usually file input but can also be file output. 
Note that file should be loosely interpreted to mean any sink or source of 
data. XtAppAddInput also specifies the conditions under which the 
source can generate events. When input is pending on this source, the 
callback procedure is called. 

3-640 Subroutines 



XtAppAddlnput (3Xt) 

The legal values for the condition argument are operating-system dependent. 
On a UNIX-based system, the condition is some union of 
XtInputReadMask,XtInputWriteMask,and 
XtInputExceptMask. The XtRemoveInput function causes the 
Intrinsics read routine to stop watching for input from the input source. 

See Also 
XtAppAddTimeOut(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-641 



XtAppAddTimeOut (3Xt) 

Name 
XtAppAddTimeOut, XtRemoveTimeOut - register and remove timeouts 

Syntax 
XtIntervalId XtAppAddTimeOut(app _context, interval, proc, client_data) 

XtAppContext app context; 
unsigned long interval; 
XtTimerCallbackProc proc; 
caddr_t client_data; 

void XtRemoveTimeOut(timer) 
XtIntervalId timer; 

Arguments 

app _context Specifies the application context for which the timer is to be 
set. 

client data Specifies the argument that is to be passed to the specified 
procedure when input is available. 

interval Specifies the time interval in milliseconds. 

proc Specifies the procedure that is to be called when time 
expires. 

timer Specifies the ID for the timeout request to be destroyed. 

Description 
The XtAppAddTimeOut function creates a timeout and returns an identifier 
for it. The timeout value is set to interval. The callback procedure is called 
when the time interval elapses, and then the timeout is removed. 

The XtRemoveT imeOut function removes the timeout. Note that timeouts 
are automatically removed once they trigger. 

See Also 
XtAppAddInput(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-642 Subroutines 



Name 

XtAppAddWorkProc (3Xt) 

XtAppAddWorkProc, XtRemove WorkProc - add and remove background 
processll1gprocedures 

Syntax 
XtWorkProcId XtAppAddWorkProc(app _context, proc, client_data) 

XtAppContext app context, 
XtWorkProc proc;-
caddr_t client_data; 

void XtRemove WorkProc(id) 
XtWorkProcId id; 

Arguments 

app _context Specifies the application context that identifies the 
application. 

client data Specifies the argument that is to be passed to the specified 
procedure when it is called. 

proc Specifies the procedure that is to be called when time 
expires. 

id Specifies which work procedure to remove. 

Description 
The XtAppAddWorkProc function adds the specified work procedure for 
the application identified by app_context. 

The XtRemoveWorkProc function explicitly removes the specified 
background work procedure. 

See Also 
XtAppNextEvent(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-643 



XtAppCreateShel1 (3Xt) 

Name 
XtAppCreateShell - create top-level widget instance 

Syntax 
Widget XtAppCreateShell(application _name, application_class, 
widget_class, display, args, num_args) 

String application_name; 
String application_class; 
WidgetClass widget_class; 
Display *display; 
ArgList args; 
Cardinal num _ args; 

Arguments 

application _class 
Specifies the class name of this application. 

application_name 
Specifies the name of the application instance. 

args Specifies the argument list in which to set in the 
WM_COMMAND property. 

display 

num_args 

widget_class 

Description 

Specifies the display from which to get the resources. 

Specifies the number of arguments in the argument list. 

Specifies the widget class that the application top-level 
widget should be. 

The XtAppCreateShell function saves the specified application name 
and application class for qualifying all widget resource specifiers. The 
application name and application class are used as the left-most components 
in all widget resource names for this application. XtAppCreateShell 
should be used to create a new logical application within a program or to 
create a shell on another display. In the first case, it allows the specification 
of a new root in the resource hierarchy. In the second case, it uses the 
resource database associated with the other display. 

Note that the widget returned by XtAppCreateShell has the 
WM_COMMAND property set for session managers (see Chapter 4). 

3-644 Subroutines 



See Also 
XtCreate Widget(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

. XtAppCreateShel1 (3Xt) 

Subroutines 3-645 



XtAppError (3Xt) 

Name 
XtAppError, XtAppSetErrorHandler, XtAppSetWarningHandler, 
XtAppWaming -low-level error handlers 

Syntax 
void XtAppError(app context, message) 

XtAppContext app _context; 
String message; 

void XtAppSetErrorHandler(app _context, handler) 
XtAppContext app _context; 
XtErrorHandler handler; 

void XtAppSetW amingHandler(app _context, handler) 
XtAppContext app _context; 
XtErrorHandler handler; 

void XtApp Waming(app· context, message) 
XtAppContext app _context; 
String message; 

Arguments 

app _context 

message 

handler 

message 

Description 

Specifies the application context. 

Specifies the nonfatal error message that is to be reported. 

Specifies the new fatal error procedure, which should not 
return, or the nonfatal error procedure, which usually returns. 

Specifies the message that is to be reported. 

The XtAppError function calls the installed error procedure and passes the 
specified message. 

The XtAppSetErrorHandler function registers the specified procedure, 
which is called when a fatal error condition occurs. 

The XtAppSetWarningHandler registers the specified procedure, which 
is called when a nonfatal error condition occurs. 

The XtAppWarning function calls the installed nonfatal error procedure 
and passes the specified message. 

3-646 Subroutines 



See Also 
XtAppGetErrorDatabase(3Xt), XtAppErrorMsg(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

XtAppError (3Xt) 

Subroutines 3-647 



XtAppErrorMsg (3Xt) 

Name 
XtAppErrorMsg, XtAppSetErrorMsgHandler, XtAppSetWamingMsgHandler, 
XtAppWamingMsg - high-level error handlers 

Syntax 
void XtAppErrorMsg(app _context, name, type, class, default, params, 
numyarams) 

XtAppContext app _context; 
String name; 
String type; 
String class; 
String default; 
String *params; 
Cardinal *num yarams; 

void XtAppSetErrorMsgHandler(app _context, msg_ handler) 
XtAppContext app _context; 
XtErrorMsgHandler msg_ handler; 

void XtAppSetWamingMsgHandler(app _context, msg_ handler) 
XtAppContext app _context; 
XtErrorMsgHandler msg_ handler; 

void XtAppWamingMsg(app _context, name, type, class, default, params, 
numyarams) 

XtAppContext app _context; 
String name; 
String type; 
String class; 
String default; 
String *params; 
Cardinal *num yarams; 

Arguments 

app _context Specifies the application context. 

class Specifies the resource class. 

default Specifies the default message to use. 

name Specifies the general kind of error. 

type Specifies the detailed name of the error. 

3-648 Subroutines 



numyarams 

params 

Description 

XtAppErrorMsg (3Xt) 

Specifies the new fatal error procedure, which should not 
return, or the nonfatal error procedure, which usually returns. 

Specifies the number of values in the parameter list. 

Specifies a pointer to a list of values to be stored in the 
message. 

The XtAppErrorMsg function calls the high-level error handler and passes 
the specified information. 

The XtAppSetErrorMsgHandler function registers the specified 
procedure, which is called when a fatal error occurs. 

The XtAppSetWarningMsgHandler function registers the specified 
procedure, which is called when a nonfatal error condition occurs. 

The XtAppWarningMsg function calls the high-level error handler and 
passes· the specified information. 

See Also 
XtAppGetErrorDatabase(3Xt), XtAppError(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-649 



XtAppGetErrorDatabase (3Xt) 

Name 
XtAppGetErrorDatabase, XtAppGetErrorDatabaseText - obtain error 
database 

Syntax 
XrmDatabase *XtAppGetErrorDatabase(app _context) 

XtAppContext app _context, 

void XtAppGetErrorDatabaseText(app _context, name, type, class, default, 
buffer _return, nbytes, database) 

XtAppContext app _context, 
char *name, *type, *class; 
char * default; 
char * buffer return; 
int nbytes; -
XrmDatabase database; 

Arguments 

app_context 

buffer return 

class 

database 

default 

name 
type 

nbytes 

Description 

Specifies the application context. 

Specifies the buffer into which the error message is to be 
returned. 

Specifies the resource class of the error message. 

Specifies the name of the alternative database that is to be 
used or NULL if the application's database is to be used. 

Specifies the default message to use. 

Specifies the name and type that are concatenated to form the 
resource name of the error message. 

Specifies the size of the buffer in bytes. 

The XtAppGetErrorDatabase function returns the address of the error 
database. The Intrinsics do a lazy binding of the error database and do not 
merge in the database file until the first call to 
XtAppGetErrorDatbaseText. 

3-650 Subroutines 



XtAppGetErrorDatabase (3Xt) 

The XtAppGetErrorDatabaseText returns the appropriate message 
from the error database or returns the specified default message if one is not 
found in the error database. 

See Also 
XtAppError(3Xt), XtAppErrorMsg(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-651 



XtAppGetSelectionTimeout (3Xt) 

Name 
XtAppGetSelectionTimeout, XtAppSetSelectionTimeout - set and obtain 
selection timeout values 

Syntax 
unsigned long XtAppGetSelectionTimeout(app _context) 

XtAppContext app _context, 

void XtAppSetSelectionTimeout(app _context, timeout) 
XtAppContext app context, 
unsigned long timeout; 

Arguments 

app _context Specifies the application context. 

timeout Specifies the selection timeout in milliseconds. 

Description 
The XtAppGetSelectionTimeout function returns the current selection 
timeout value, in milliseconds. The selection timeout is the time within 
which the two communicating applications must respond to one another. The 
initial timeout value is set by the selectionTimeout application 
resource, or, if selectionTimeout is not specified, it defaults to five 
seconds. 

The XtAppSetSelectionTimeout function sets the Intrinsics's 
selection timeout mechanism. Note that most applications should not set the 
selection timeout. 

See Also 
XtOwnSelection(3Xt) 
Guide to the XU] Toolkit Intrinsics 
Guide to the Xlib Library 

3-652 Subroutines 



XtAppNextEvent (3Xt) 

Name 
XtAppNextEvent, XtAppPending, XtAppPeekEvent, XtAppProcessEvent, 
XtDispatchEvent, XtAppMainLoop - query and process events and input 

Syntax 
void XtAppNextEvent(app _context, event_return) 

XtAppContext app _context; 
XEvent *event _return; 

Boolean XtAppPeekEvent(app _context, event_return) 
XtAppContext app _context; 
XEvent *event _return; 

XtInputMask XtAppPending(app _context) 
XtAppContext app _context; 

void XtAppProcessEvent(app _context, mask) 
XtAppContext app context; 
XtJnputMask mask;-

Boolean XtDispatchEvent(event) 
XEvent *event; 

void XtAppMainLoop(app _context) 
XtAppContext app _context; 

Arguments 

app _context Specifies the application context that identifies the 
application. 

event Specifies a pointer to the event structure that is to be 
dispatched to the appropriate event handler. 

event return Returns the event infonnation to the specified event structure. 

mask Specifies. what types of events to process. The mask is the 
bitwise inclusive OR of any combination of XtIMXEvent, 
XtIMTimer, and XtlMAlternatelnput. As a 
convenience, the XUI Toolkit defines the symbolic name 
Xt lMAll to be the bitwise inclusive OR of all event types. 

Subroutines 3-653 



XtAppNextEvent (3Xt) 

Description 
If no input is on the X input queue, XtAppNextEvent flushes the X output 
buffer and waits for an event while looking at the other input sources and 
timeout values and calling any callback procedures triggered by them. This 
wait time can be used for background processing (see Section 7.8). 

If there is an event in the queue, XtAppPeekEvent fills in the event and 
returns a nonzero value. If no X input is on the queue, XtAppPeekEvent 
flushes the output buffer and blocks until input is available (possibly calling 
some timeout callbacks in the process). If the input is an event, 
XtAppPeekEvent fills in the event and returns a nonzero value. 
Otherwise, the input is for an alternate input source, and XtAppPeekEvent 
returns zero. 

The XtAppPending function returns a nonzero value if there are events 
pending from the X server, timer pending, or other input sources pending. 
The value returned is a bit mask that is the OR of Xt IMXEvent, 
XtIMTimer, and XtlMAlternatelnput (see XtAppProcessEvent). 
If there are no events pending, XtAppPending flushes the output buffer 
and returns zero. 

The XtAppProcessEvent function processes one timer, alternate input, 
or X event. If there is nothing of the appropriate type to process, 
XtAppProcessEvent blocks until there is. If there is more than one type 
of thing available to process, it is undefined which will get processed. 
Usually, this procedure is not called by client applications (see 
XtAppMainLoop). XtAppProcessEvent processes timer events by 
calling any appropriate timer callbacks, alternate input by calling any 
appropriate alternate input callbacks, and X events by calling 
XtDispatchEvent. 

When an X event is received, it is passed to XtDispatchEvent, which 
calls the appropriate event handlers and passes them the widget, the event, 
and client-specific data registered with each procedure. If there are no 
handlers for that event registered, the event is ignored and the dispatcher 
simply returns. The order in which the handlers are called is undefined. 

The XtDispatchEvent function sends those events to the event handler 
functions that have been previously registered with the dispatch routine. 
XtDispatchEvent returns True if it dispatched the event to some 
handler and False if it found no handler to dispatch the event to. The most 
common use of XtDispatchEvent is to dispatch events acquired with the 
XtAppNextEvent procedure. However, it also can be used to dispatch 
user-constructed events. XtDispatchEvent also is responsible for 
implementing the grab semantics for XtAddGrab. 

3-654 Subroutines 



XtAppNextEvent (3Xt) 

The XtAppMainLoop function first reads the next incoming X event by 
calling XtAppNextEvent and then it dispatches the event to the 
appropriate registered procedure by calling XtDispatchEvent. This 
constitutes the main loop of XUI Toolkit applications, and, as such, it does 
not return. Applications are expected to exit in response to some user action. 
There is nothing special about XtAppMainLoop; it is simply an infinite 
loop that calls XtAppNextEvent and then XtDispatchEvent. 

Applications can provide their own version of this loop, which tests some 
global termination flag or tests that the number of top-level widgets is larger 
than zero before circling back to the call to XtAppNextEvent. 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-655 



XtBuildEventMask (3Xt) 

Name 
XtBuildEventMask - retrieve a widget's event mask 

Syntax 
EventMask XtBuildEventMask(w) 

Widget w; 

Arguments 

w Specifies the widget. 

Description 
The XtBuildEventMask function returns the event mask representing the 
logical OR of all event masks for event handlers registered on the widget 
with XtAddEventHandler and all event translations, including 
accelerators, installed on the widget. This is the same event mask stored into 
the XSetWindowAttributes structure by XtRealizeWidget and sent 
to the server when event handlers and translations are installed or removed 
on the realized widget. 

See Also 
XtAddEventHandler(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-656 Subroutines 



XtCallAcceptFocus (3Xt) 

Name 
XtCallAcceptFocus - call a widget's accept_focus procedure 

Syntax 
Boolean XtCalIAcceptFocus(w, time) 

Widget w; 
Time *time; 

Arguments 

time Specifies the X time of the event that is causing the accept 
focus. 

w Specifies the widget. 

Description 
The XtCallAcceptFocus function calls the specified widget's 
accept_focus procedure, passing it the specified widget and time, and returns 
what the accept_focus procedure returns. If accept_focus is NULL, 
XtCallAcceptFocus returns False. 

See Also 
XtSetKeyboardFocus(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-657 



XtCaliCalibacks (3Xt) 

Name 
XtCallCallbacks, XtHasCallbacks - process callbacks 

Syntax 
void XtCalICallbacks(w, callback name, call data) 

Widget w; --
String callback name; 
caddr_t call_data; 

typedef enum {XtCallbackNoList, XtCallbackHasNone, 
XtCallbackHasSome} XtCallbackStatus; 

XtCallbackStatus XtHasCallbacks(w, callback name) 
Widget w; -
String callback_name; 

Arguments 

callback_name Specifies the callback list to be executed or checked. 

call data 

w 

Description 

Specifies a callback list-specific data value to pass to each of 
the callback procedure in the list. 

Specifies the widget. 

The XtCallCallbacks function calls each procedure that is registered in 
the specified widget's callback list. 

The XtHasCallbacks function first checks to see if the widget has a 
callback list identified by callback_name. If the callback list does not exist, 
XtHasCallbacks returns XtCallbackNoList. If the callback list 
exists but is empty, it returns XtCallbackHasNone. If the callback list 
exists and has at least one callback registered, it returns 
XtCallbackHasSome. 

See Also 
XtAddCallback(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-658 Subroutines 



XtClass (3Xt) 

Name 
XtClass, XtSuperClass, XtIsSubclass, XtCheckSubclass, XtIsComposite, 
XtIsManaged - obtain and verify a widget's class-

Syntax 
WidgetClass XtClass( w) 

Widget w; 

WidgetClass XtSuperclass(w) 
Widget w; 

Boolean XtIsSubclass(w, widget class) 
Widget w; -
WidgetClass widget_class; 

void XtCheckSubclass(w, widget class, message) 
Widget w; -
WidgetClass widget class; 
String message; -

Boolean XtIsComposite( w) 
Widget w; 

Boolean XtIsManaged(w) 
Widget w; 

Arguments 

w Specifies the widget. 

widget_class Specifies the widget class that the application top-level 
widget should be. 

message Specifies the message that is to be used. 

Description 
The XtClass function returns a pointer to the widget's class structure. 

The XtSuperclass function returns a pointer to the widget's superclass 
class structure. 

The XtIsSubclass function returns True if the class of the specified 
widget is equal to or is a subclass of the specified widget class. The 
specified widget can be any number of subclasses down the chain and need 
not be an immediate subclass of the specified widget class. Composite 

Subroutines 3-659 



XtClass (3Xt) 

widgets that need to restrict the class of the items they contain can use 
XtIsSubclass to find out if a widget belongs to the desired class of 
objects. 

The XtCheckSubclass macro determines if the class of the specified 
widget is equal to or is a subclass of the specified widget class. The widget 
can be any number of subclasses down the chain and need not be an 
immediate subclass of the specified widget class. If the specified widget is 
not a subclass, XtCheckSubclass constructs an error message from the 
supplied message, the widget's actual class, and the expected class and calls 
XtErrorMsg. XtCheckSubclass should be used at the entry point of 
exported routines to ensure that the client has passed in a valid widget class 
for the exported operation. 

XtCheckSubclass is only executed when the widget has been compiled 
with the compiler symbol DEBUG defined; otherwise, it is defined as the 
empty string and generates no code. 

The XtIsComposite function is a convenience function that is equivalent 
to XtIsSubclass with compositeWidgetClass specified. 

The Xt I sManaged macro (for widget programmers) or function (for 
application programmers) returns True if the specified child widget is 
managed or F al s e if it is not. 

See Also 
XtAppErrorMsg(3Xt), XtDisplay(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-660 Subroutines 



XtConfigureWidget (3Xt) 

Name 
XtConfigure Widget, XtMove Widget, XtResize Widget - move and resize 
widgets 

Syntax 
void XtConfigureWidget(w, x, y, width, height, border_width) 

Widget w; 
Position x; 
Position y; 
Dimension width; 
Dimension height; 
Dimension border _width; 

void XtMoveWidget(w, x, y) 
Widget w; 
Position x; 
Position y; 

void XtResizeWidget(w, width, height, border_width) 
Widget w; 
Dimension width; 
Dimension height; 
Dimension border _width; 

void XtResize Window(w) 
Widget w; 

Arguments 

width 
height 
border width Specify the new widget size. 

w Specifies the widget. 

x 
y Specify the new widget x and y coordinates. 

Description 
The XtConfigureWidget function returns immediately if the specified 
geometry fields are the same as the old values. Otherwise, 
XtConfigureWidget writes the new x, y, width, height, and 
border_width values into the widget and, if the widget is realized, makes an 

Subroutines 3-661 



XtConfigureWidget (3Xt) 

Xlib XConfigureWindow calIon the widget's window. 

If either the new width or height is different from its old value, 
XtConfigureWidget calls the widget's resize procedure to notify it of 
the size change; otherwise, it simply returns. 

The XtMoveWidget function returns immediately if the specified geometry 
fields are the same as the old values. Otherwise, XtMoveWidget writes the 
new x and y values into the widget and, if the widget is realized, issues an 
Xlib XMoveWindow calIon the widget's window. 

The XtResizeWidget function returns immediately if the specified 
geometry fields are the same as the old values. Otherwise, 
XtResizeWidget writes the new width, height, and border_width values 
into the widget and, if the widget is realized, issues an 
XConfigureWindow call on the widget's window. 

If the new width or height is different from the old values, 
XtResizeWidget calls the widget's resize procedure to notify it of the 
size change. 

The XtResizeWindow function calls the XConfigureWindow Xlib 
function to make the window of the specified widget match its width, height, 
and border width. This request is done unconditionally because there is no 
way to tell if these values match the current values. Note that the widget's 
resize procedure is not called. 

There are very few times to use XtResizeWindow; instead, you should use 
XtResizeWidget. 

See Also 
XtMakeGeometryRequest(3Xt), XtQueryGeometry(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-662 Subroutines 



XtConvert {3Xt} 

Name 
XtConvert, XtDirectConvert - invoke resource converters 

Syntax 
void XtConvert(w,from type,from, to type, to return) 

Widget w; - --
String from_type; 
Xrm ValuePtr from; 
String to _type; 
Xrm ValuePtr to _return; 

void XtDirectConvert(converter, args, num_args,from, to_return) 
XtConverter converter; 
Xrm ValuePtr args; 
Cardinal num args; 
Xrm V aluePtr from; 
Xrm ValuePtr to _return; 

Arguments 

args 

converter 

from 

from_type 

num_args 

to_type 

to return 

W 

Description 

Specifies the argument list that contains the additional 
arguments needed to perform the conversion (often NULL). 

Specifies the conversion procedure that is to be called. 

Specifies the value to be converted. 

Specifies the source type. 

Specifies the number of additional arguments (often zero). 

Specifies the destination type. 

Returns the converted value. 

Specifies the widget to use for additional arguments (if any 
are needed). 

The XtConvert function looks up the type converter registered to convert 
from_type to to_type, computes any additional arguments needed, and then 
calls XtDirectConvert. 

Subroutines 3-663 



XtConvert (3Xt) 

The XtDirectConvert function looks in the converter cache to see if this 
conversion procedure has been called with the specified arguments. If so, it 
returns a descriptor for information stored in the cache; otherwise, it calls the 
converter and enters the result in the cache. 

Before calling the specified converter, XtDirectConvert sets the return 
value size to zero and the return value address to NULL. To determine if the 
conversion was successful, the client should check to_retum.address for non­
NULL. 

See Also 
XtAppAddConverter(3Xt), XtStringConversion W aming(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-664 Subroutines 



Name 

XtCreateApplicationContext (3Xt) 

XtCreateApplicationContext, XtDestroy ApplicationContext, 
XtWidgetToApplicationContext, XtToolkitInitialize - create, destroy, and 
obtain an application context 

Syntax 
XtAppContext XtCreateApplicationContextO 

void XtDestroy ApplicationContext(app _context) 
XtAppContext app _context; 

XtAppContext XtWidgetToApplicationContext(w) 
Widget w; 

void XtToolkitInitializeO 

Arguments 

app _context Specifies the application context. 

w Specifies the widget to use for additional arguments (if any 
are needed). 

Description 
The XtCreateApplicationContext function returns an application 
context, which is an opaque type. Every application must have at least one 
application context. 

The XtDestroyApplicationContext function destroys the specified 
application context as soon as it is safe to do so. If called from with an event 
dispatch (for example, a callback procedure), 
XtDestroyApplicationContext does not destroy the application 
context until the dispatch is complete. 

The XtWidgetToApplicationContext function returns the application 
context for the specified widget. 

The semantics of calling Xt Too lk it I ni t i al i z e more than once are 
undefined. 

Subroutines 3-665 



XtCreateApplicationContext (3Xt) 

See Also 
XtDisplay Initialize(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-666 Subroutines 



XtCreatePopupShell (3Xt) 

Name 
XtCreatePopupShell - create a pop-up shell 

Syntax 
Widget XtCreatePopupShell(name, widget_class, parent, args, num_args) 

String name; 
WidgetClass widget_class; 
Widget parent; 
ArgList args; 
Cardinal num _ args; 

Arguments 

args 

name 

num_args 

parent 

widget_class 

Specifies the argument list to override the resource defaults. 

Specifies the text name for the created shell widget. 

Specifies the number of arguments in the argument list. 

Specifies the parent widget. 

Specifies the widget class pointer for the created shell 
widget. 

Description 
The XtCreatePopupShell function ensures that the specified class is a 
subclass of Shell and, rather than using insert_child to attach the widget to 
the parent's children list, attaches the shell to the parent's pop-ups list 
directly. 

A spring-loaded pop-up invoked from a translation table already must exist at 
the time that the translation is invoked, so the translation manager can find 
the shell by name. Pop-ups invoked in other ways can be created "on-the­
fly" when the pop-up actually is needed. This delayed creation of the shell 
is particularly useful when you pop up an unspecified number of pop-ups. 
You can look to see if an appropriate unused shell (that is, not currently 
popped up) exists and create a new shell if needed. 

See Also 
XtCreate Widget(3Xt), XtPopdown(3Xt), XtPopup(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-667 



XtCreateWidget (3Xt) 

Name 
XtCreate Widget, XtCreateManagedWidget, XtDestroyWidget - create and 
destroy widgets 

Syntax 
Widget XtCreateWidget(name, widget_class, parent, args, num_args) 

String name; 
WidgetClass widget_class; 
Widget parent; 
ArgList args; 
Cardinal num_args; 

Widget XtCreateManagedWidget(name, widget_class, parent, args, 
num args) 

String name; 
WidgetClass widget_class; 
Widget parent; 
ArgList args; 
Cardinal num _ args; 

void XtDestroyWidget(w) 
Widget w; 

Arguments 

args 

name 

num_args 

parent 

w 

widget_class 

3-668 Subroutines 

Specifies the argument list to override the resource defaults. 

Specifies the resource name for the created widget, which is 
used for retrieving resources and, for that reason, should not 
be the same as any other widget that is a child of same 
parent. 

Specifies the number of arguments in the argument list. 

Specifies the parent widget. 

Specifies the widget. 

Specifies the widget class pointer for the created widget. 



XtCreateWidget (3Xt) 

Description 
The XtCreateWidget function performs much of the boilerplate 
operations of widget creation: 

• Checks to see if the class_initialize procedure has been called for this 
class and for all superclasses and, if not, calls those necessary in a 
superclass-to-subclass order. 

• Allocates memory for the widget instance. 

• If the parent is a subclass of constraintWidgetClass, it 
allocates memory for the parent's constraints and stores the address of 
this memory into the constraints field. 

• Initializes the core nonresource data fields (for example, parent and 
visible). 

• Initializes the resource fields (for example, background_pixel) by using 
the resource lists specified for this class and all superclasses. 

• If the parent is a subclass of constraintWidgetClass, it 
initializes the resource fields of the constraints record by using the 
constraint resource list specified for the parent's class and all 
superclasses up to constraintWidgetClass. 

• Calls the initialize procedures for the widget by starting at the Core 
initialize procedure on down to the widget's initialize procedure. 

• If the parent is a subclass of composi teWidgetClass, it puts the 
widget into its parent's children list by calling its parent's insert_child 
procedure. For further information, see Section 3.5. 

• If the parent is a subclass of constraintWidgetClass, it calls the 
constraint initialize procedures, starting at 
constraintWidgetClass on down to the parent's constraint 
initialize procedure. 

Note that you can determine the number of arguments in an argument list by 
using the XtNurnber macro. For further information, see Section 11.1. 

The XtCreateManagedWidget function is a convenience routine that 
calls XtCreateWidget and XtManageChild. 

The XtDestroyWidget function provides the only method of destroying a 
widget, including widgets that need to destroy themselves. It can be called at 
any time, including from an application callback routine of the widget being 
destroyed. This requires a two-phase destroy process in order to avoid 
dangling references to destroyed widgets. 

Subroutines 3-669 



XtCreateWidget (3Xt) 

In phase one, XtDestroyWidget performs the following: 

• If the being_destroyed field of the widget is True, it returns 
immediately. 

• Recursively descends the widget tree and sets the being_destroyed field 
to True for the widget and all children. 

• Adds the widget to a list of widgets (the destroy list) that should be 
destroyed when it is safe to do so. 

Entries on the destroy list satisfy the invariant that if w2 occurs after wI on 
the destroy list then w2 is not a descendent of wI. (A descendant refers to 
both normal and pop-up children.) 

Phase two occurs when all procedures that should execute as a result of the 
current event have been called (includ~g all procedures registered with the 
event and translation managers), that is, when the current invocation of 
XtDispatchEvent is about to return or immediately if not in 
XtDispatchEvent. 

In phase two, XtDestroyWidget performs the following on each entry in 
the destroy list: 

• Calls the destroy callback procedures registered on the widget (and all 
descendants) in post-order (it calls children callbacks before parent 

. callbacks). 

• If the widget'S parent is a subclass of compositeWidgetClass 
and if the parent is not being destroyed, it calls XtUnmanageChild 
on the widget and then calls the widget's parent's delete_child 
procedure (see Section 3.4). 

• If the widget's parent is a subclass of constraintWidgetClass, 
it calls the constraint destroy procedure for the parent, then the parent's 
superclass, until finally it calls the constraint destroy procedure for 
constraintWidgetClass. 

• Calls the destroy methods for the widget (and all descendants) in post­
order. For each such widget, it calls the destroy procedure declared in 
the widget class, then the destroy procedure declared in its superc1ass, 
until finally it calls the destroy procedure declared in the Core class 
record. 

• Calls XDestroyWindow if the widget is realized (that is, has an X 
window). The server recursively destroys all descendant windows. 

• Recursively descends the tree and deallocates all pop-up widgets, 
constraint records, callback lists and, if the widget is a subclass of 

3-670 Subroutines 



XtCreateWidget (3Xt) 

composi teWidgetClass, children. 

See Also 
XtAppCreateShell(3Xt), XtCreatePopupShell(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-671 



XtCreateWindow (3Xt) 

Name 
XtCreate Window - window creation convenience function 

Syntax 
void XtCreateWindow(w, window class, visual, value mask, attributes) 

Widget w; - -
unsigned int window _class; 
Visual *visual; 
XtValueMask value mask; 
XSetWindowAttribUtes *attributes; 

Arguments 

attributes Specifies the window attributes to use in the 
XCreateWindow call. 

value mask Specifies which attribute fields to use. 

visual Specifies the visual type (usually CopyFrornParent). 

w Specifies the widget that is used to set the x,y coordinates 
and other geometry information. 

window class Specifies the Xlib window class (for example, 
InputOutput, InputOnly, or CopyFrornParent). 

Description 
The XtCreateWindow function calls the Xlib XCreateWindow function 
with values from the widget structure and the passed parameters. Then, it 
assigns the created window to the widget's window field. 

XtCreateWindow evaluates the following fields of the Core widget 
structure: 

• 
• 
• 
• 
• 

depth 

screen 

parent -> core. window 

x 

y 

3-672 Subroutines 



• width 

• height 

• border_width 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

XtCreateWindow (3Xt) 

Subroutines 3-673 



XtDisplay (3Xt) 

Name 
XtDisplay, XtParent, XtScreen, XtWindow - obtain window information 
about a widget 

Syntax 
Display *XtDisplay( w) 

Widget w; 

Widget XtParent(w) 
Widget w; 

Screen *XtScreen(w) 
Widget w; 

Window XtWindow(w) 
Widget w; 

Arguments 

w Specifies the widget. 

Description 
XtDisplay returns the display pointer for the specified widget. 

XtParent returns the parent widget for the specified widget. 

XtScreen returns the screen pointer for the specified widget. 

XtWindow returns the window of the specified widget. 

See Also 
XtClass(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-674 Subroutines 



Name 

XtDisplayl nitialize (3Xt) 

XtDisplayInitialize, XtOpenDisplay, XtDatabase, XtCloseDisplay - initialize, 
open, or close a display 

Syntax 
void XtToolkitInitializeO 

void XtDisplay Initialize(app _context, display, application_name, 
application_class, options, num_options, argc, argv) 

XtAppContext app _context, 
Display *display; 
String application name; 
String application - class; 
XnnOptionDescRec *options; 
Cardinal num _options; 
Cardinal *argc; 
String *argv; 

Display *XtOpenDisplay(app _context, display_string, application_name, 
application_class, options, num_options, argc, argv) 

XtAppContext app _context, 
String display string; 
String application name; 
String application -class; 
XnnOptionDescRec *options; 
Cardinal num options; 
Cardinal *argc; 
String *argv; 

void XtCloseDisplay( display) 
Display *display; 

XnnDatabase XtDatabase(display) 
Display *display; 

Arguments 

argc Specifies a pointer to the number of command line 
parameters. 

argv 

app _context 

Specifies the command line parameters. 

Specifies the application context. 

application_class 

Subroutines 3-675 



XtDisplaylnitialize (3Xt) 

Specifies the class name of this application, which usually is 
the generic name for all instances of this application. 

application_name 
Specifies the name of the application instance. 

display Specifies the display from which to get the resources. Note 
that a display can be in at most one application context. 

num _options Specifies the number of entries in the options list. 

options Specifies how to parse the command line for any 
application-specific resources. The options argument is 
passed as a parameter ,to XrrnParseCommand. For further 
information, see Guide to the Xlib Library. 

Description 
The XtDisplaylni tialize function builds the resource database, calls 
the Xlib XrrnParseCommand function to parse the command line, and 
performs other per-display initialization. After XrrnParseCommand has 
been called, argc and argv contain only those parameters that were not in the 
standard option table or in the table specified by the options argument. If the 
modified argc is not zero, most applications simply print out the modified 
argv along with a message listing the allowable options. On UNIX-based 
systems, the application name is usually the final component of argv[O]. If 
the synchronize resource is True for the specified application, 
XtDisplaylnitialize calls the Xlib XSynchronize function to put 
Xlib into synchronous mode for this display connection. If the reverse Video 
resource is True, the Intrinsics exchange XtDefaul tForeground and 
XtDefaul tBackground for widgets created on this display. (See Section 
9.6.1.) 

The XtOpenDisplay function calls XOpenDisplay the specified display 
name. If display_string is NULL, XtOpenDisplay uses the current value 
of the -display option specified in argv and if no display is specified in argv, 
uses the user's default display (on UNIX-based systems, this is the value of 
the DISPLAY environment variable). 

If this succeeds, it then calls XtDisplaylni tialize and pass it the 
opened display and the value of the -name option specified in argv as the 
application name. If no name option is specified, it uses the application 
name passed to XtOpenDisplay. If the application name is NULL, it uses 
the last component of argv[O]. XtOpenDisplay returns the newly opened 
display or NULL if it failed. 

3-676 Subroutines 



XtDisplaylnitialize (3Xt) 

XtOpenDisplay is provided as a convenience to the application 
programmer. 

The XtCloseDisplay function closes the specified display as soon as it is 
safe to do so. If called from within an event dispatch (for example, a 
callback procedure), XtCloseDisplay does not close the display until the 
dispatch is complete. Note that applications need only call 
XtCloseDisplay if they are to continue executing after closing the 
display; otherwise, they should call XtDestroyApplicationContext 
or just exit. 

The XtDatabase function returns the fully merged resource database that 
was built by XtDisplaylnitialize associated with the display that was 
passed in. If this display has not been initialized by 
XtDisplayIni tialize, the results are not defined. 

See Also 
XtAppCreateShell(3Xt), XtCreateApplicationContext(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-677 



XtGetGC (3Xt) 

Name 
XtGetGC, XtReleaseGC - obtain and destroy a shareable GC 

Syntax 
GC XtGetGC(w, value mask, values) 

Widget w; -
XtGCMask value mask; 
XGCValues *values; 

void XtReleaseGC(w, gc) 
Widget w; 
GCgc; 

Arguments 

gc 

values 

value mask 

w 

Description 

Specifies the GC to be deallocated. 

Specifies the actual values for this GC. 

Specifies which fields of the values are specified. 

Specifies the widget. 

The XtGetGC function returns a shareable, read-only GC. The parameters 
to this function are the same as those for XCreateGC except that a widget is 
passed instead of a display. XtGetGC shares only GCs in which all values 
in the GC returned by XCreateGC are the same. In particular, it does not 
use the value_mask provided to determine which fields of the GC a widget 
considers relevant. The value_mask is used only to tell the server which 
fields should be filled in with widget data and which it should fill in with 
default values. For further information about value_mask and values, see 
XCreateGC in the Guide to the Xlib Library. 

The XtReleaseGC function deallocates the specified shared GC. 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-678 Subroutines 



XtGetResourceList (3Xt) 

Name 
XtGetResourceList - obtain a resource list 

Syntax 
void XtGetResourceList(class, resources_return, num _resources_return); 

WidgetClass class; 
XtResourceList *resources return; 
Cardinal *num _resources_return; 

Arguments 

num resources return 
- -Specifies a pointer to where to store the number of entries in 

the resource list. 

resources return 
- Specifies a pointer to where to store the returned resource 

list. The caller must free this storage using XtFree when 
done with it. 

widget_class Specifies the widget class pointer for the created widget. 

Description 
If it is called before the widget class is initialized (that is, before the first 
widget of that class has been created), XtGetResQurceList returns the 
resource list as specified in the widget class record. If it is called after the 
widget class has been initialized, XtGetResQurceList returns a merged 
resource list that contains the resources for all superclasses. 

See Also 
XtGetSubresources(3Xt), XtOffset(3Xt) 
Guide to -the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-679 



XtGetSelectionValue (3Xt) 

Name 
XtGetSelection Value, XtGetSelection Values, 
XtGetSelection ValueIncremental, XtGetSelection ValuesIncremental- obtain 
selection values 

Syntax 
void XtGetSelectionValue(w, selection, target, callback, client_data, time) 

Widget w; 
Atom selection; 
Atom target; 
XtSelectionCallbackProc callback; 
caddr_t client_data; 
Time time; 

void XtGetSelectionValues(w, selection, targets, count, callback, client_data, 
time) 

Widget w; 
Atom selection; 
Atom *targets; 
int count; 
XtSelectionCallbackProc callback; 
caddr_t client data; 
Time time; -

void XtGetSelection ValueIncremental(w, selection, target, selection_callback, 
cancel callback, client data, time) 

Widget w; -
Atom selection; 
Atom target; 
XtSelectionIncrCallbackProc selection callback; 
XtCancelSelectionCallbackProc cance"C callback; 
caddr_t client data; 
Time time; -

void XtGetSelection V aluesIncrementa1(w, selection, targets, count, 
selection callback, cancel callback, client data, time) 

Widget w; - -
Atom selection; 
Atom *targets; 
int count; 
XtSelectionIncrCallbackProc selection callback; 
XtCancelConvertSelectionProc cancel ~.callback; 

3-680 Subroutines 



XtGetSelectionValue (3Xt) 

caddr_t client data; 
Time time; -

Arguments 

callback Specifies the callback procedure that is to be called when the 
selection value has been obtained. 

cancel callback 
- Specifies the callback procedure that is to be called if the 

connection is lost. 

client data 

client data 

count 

selection 

Specifies the argument that is to be passed to the specified 
procedure when it is called. 

Specifies the client data (one for each target type) that is 
passed to the callback procedure when it is called for that 
target. 

Specifies the length of the targets and client_data lists. 

Specifies the particular selection desired (that is, primary or 
secondary). 

selection callback 

target 

targets 

time 

w 

Description 

- Specifies the callback procedure that is to be called to obtain 
the next incremental chunk of data or for each selection value 
obtained. 

Specifies the type of the information that is needed about the 
selection. 

Specifies the types of information that is needed about the 
selection. 

Specifies the timestamp that. indicates when the selection 
value is desired. 

Specifies the widget that is making the request. 

The XtGetSelectionValue function requests the value of the selection 
that has been converted to the target type. The specified callback will be 
called some time after XtGetSelectionValue is called; in fact, it may 
be called before or after XtGetSelectionValue returns. 

Subroutines 3-681 



XtGetSelection Value (3Xt) 

The XtGetSelectionValues function is similar to 
XtGetSelectionVal ue except that it takes a list of target types and a 
list of client data and obtains the current value of the selection converted to 
each of the targets. The effect is as if each target were specified in a separate 
call to XtGetSelectionValue. The callback is called once with the 
corresponding client data for each target. XtGetSelectionValues does 
guarantee that all the conversions will use the same selection value becaues 
the ownership of the selection cannot change in the middle of the list, as 
would be when calling XtGetSelectionValue repeatedly. 

The XtGetSelectionValuelncremental function is similar to 
XtGetSelectionVal ue except that the callback procedure will be called 
repeatedly each time upon delivery of the next segment of the selection 
value. The end of the selection value is detected when callback is called with 
a value of length zero. If the transfer of the selection is aborted in the middle 
of a transfer, the cancel_callback procedure is called so that the requestor can 
dispose of the partial selection value it has collected up until that point. 

The XtGetSelectionValueslncremental function is similar to 
XtGetSelectionValuelncremental except that it takes a list of 
targets and client_data. XtGetSelectionValuesIncremental is 
equivalent to calling XtGetSelectionValueIncremental 
successively for each target/client_data pair. 
XtGetSelectionValuesIncremental does guarantee that all the 
conversions will use the same selection value because the ownership of the 
selection cannot change in the middle .of the list, as would be possible when 
calling XtGetSelectionValuelncremental repeatedly. 

See Also 
XtAppGetSelectionTimeout(3Xt), XtOwnSelection(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-682 Subroutines 



Name 

XtGetSubresources (3Xt) 

XtGetSubresources, XtGetApplicationResources - obtain subresources or 
application resources 

Syntax 
void XtGetSubresources(w, base, name, class, resources, num_resources, 
args, num args) 

Widget w; 
caddr_t base; 
String name; 
String class; 
XtResourceList resources; 
Cardinal num resources; 
ArgList args;-
Cardinal num _ args; 

void XtGetApplicationResources(w, base, resources, num_resources, args, 
num args) 

Widget w; 
caddr_t base; 
XtResourceList resources; 
Cardinal num resources; 
ArgList args;-
Cardinal num _ args; 

Arguments 

args Specifies the argument list to override resources obtained 
from the resource database. 

base Specifies the base address of the subpart data structure where 
the resources should be written. 

class Specifies the class of the subpart. 

name Specifies the name of the subpart. 

num _ args Specifies the number of arguments in the argument list. 

num _resources Specifies the number of resources in the resource list. 

resources Specifies the resource list for the subpart. 

w Specifies the widget that wants resources for a subpart or that 
identifies the resource database to search. 

Subroutines 3-683 



XtGetSubresources (3Xt) 

Description 
The XtGetSubresources function constructs a name/class list from the 
application name/class, the name/classes of all its ancestors, and the widget 
itself. Then, it appends to this list the name/class pair passed in. The 
resources are fetched from the argument list, the resource database, or the 
default values in the resource list. Then, they are copied into the subpart 
record. If args is NULL, num_args must be zero. However, if num_args is 
zero, the argument list is not referenced. 

The XtGetApplicationResources function first uses the passed 
widget, which is usually an application shell, to construct a resource name 
and class list, Then, it retrieves the resources from the argument list, the 
resource database, or the resource list default values. After adding base to 
each address, XtGetApplicationResources copies the resources into 
the address given in the resource list. If args is NULL, num_args must be 
zero. However, if num_args is :z;ero, the argument list is not referenced. The 
portable way to specify application resources is to declare them as members 
of a structure and pass the address of the structure as the base argument. 

See Also 
XtGetResourceList(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-684 Subroutines 



Name 

XtMakeGeometryRequest (3Xt) 

XtMakeGeometryRequest, XtMakeResizeRequest - make geometry manager 
request 

Syntax 
XtGeometryResult XtMakeGeometryRequest(w, request, reply_return) 

Widget w; 
XtWidgetGeometry *request; 
XtWidgetGeometry *reply _return; 

XtGeometryResult XtMakeResizeRequest(w, width, height, width_return, 
height return) 

Widget w; 
Dimension width, height; 
Dimension *width _return, *height _return 

Arguments 

reply _return Returns the allowed widget size or may be NULL if the 
requesting widget is not interested in handling 
XtGeometryAlmost. 

request Specifies the desired widget geometry (size, position, border 
width, and stacking order). 

w Specifies the widget that is making the request. 

width return 
heigh~return Return the allowed widget width and height. 

Description 
Depending on the condition, XtMakeGeometryRequest performs the 
following: 

• If the widget is unmanaged or the widget's parent is not realized, it 
makes the changes and returns XtGeometryYes. 

• If the parent is not a subclass of composi teWidgetClass or the 
parent's geometry_manager is NULL, it issues an error. 

• If the widget's being_destroyed field is True, it returns 
XtGeometryNo. 

• If the widget x, y, width, height and border_width fields are all equal 
to the requested values, it returns XtGeometryYes; otherwise, it 

Subroutines 3-685 



XtMakeGeometryRequest (3Xt) 

calls the parent' s geometry_manager procedure with the given 
parameters. 

• If the parent's geometry manager returns XtGeometryYes and if 
XtCWQueryOnly is not set in the request_mode and if the widget is 
realized, XtMakeGeometryRequest calls the 
XConfigureWindow Xlib function to reconfigure the widget's 
window (set its size, location, and stacking order as appropriate). 

• If the geometry manager returns XtGeometryDone, the change has 
been approved and actually has been done. In this case, 
XtMakeGeometryRequest does no configuring and returns 

f~ XtGeometryYes. XtMakeGeometryRequest never returns 
XtGeometryDone. 

Otherwise, XtMakeGeometryRequest returns the resulting value from 
the parent's geometry manager. 

Children of primitive widgets are always unmanaged; thus, 
XtMakeGeometryRequest always returns XtGeometryYes when 
called by a child of a primitive widget. 

The XtMakeResizeRequest function, a simple interface to 
XtMakeGeometryRequest, creates a XtWidgetGeometry structure 
and specifies that width and height should change. The geometry manager is 
free to modify any of the other window attributes (position or stacking order) 
to satisfy the resize request. If the return value is XtGeometryAlmost, 
width_return and height_return contain a compromise width and height. If 
these are acceptable, the widget should immediately make an 
XtMakeResizeRequest and request that the compromise width and 
height be applied. If the widget is not interested in XtGeometryAlmost 
replies, it can pass NULL for width_return and height_return. 

See Also 
XtConfigure Widget(3Xt), XtQueryGeometery(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-686 Subroutines 



Name 

XtMalioc (3Xt) 

XtMalloc, XtCalloc, XtRealloc, XtFree, XtNew, XtNewString - memory 
management functions 

Syntax 
char *XtMalloc(size); 

Cardinal size; 

char *XtCalloc(num, size); 
Cardinal num; 
Cardinal size; 

char *XtRealloc(ptr, num); 
char *ptr; 
Cardinal num; 

void XtFree(ptr); 
char *ptr; 

type *XtNew(type); 
type; 

String XtNewString(string); 
String string; 

Arguments 

num 

ptr 

Specifies the number of bytes or array elements. 

Specifies a pointer to the old storage or to the block of 
storage that is to be freed. 

size 

string 

type 

Description 

Specifies the size of an array element (in bytes) or the 
number of bytes desired. 

Specifies a previously declared string. 

Specifies a previously declared data type. 

The XtMalloc functions returns a pointer to a block of storage of at least 
the specified size bytes. If there is insufficient memory to allocate the new 
block, XtMalloc calls XtErrorMsg. 

Subroutines 3-687 



XtMalioc (3Xt) 

The XtCalloc function allocates space for the specified number of array 
elements of the specified size and initializes the space to zero. If there is 
insufficient memory to allocate the new block, XtCalloc calls 
XtErrorMsg. 

The XtRealloc function changes the size of a block of storage (possibly 
moving it). Then, it copies the old contents (or as much as will fit) into the 
new block and frees the old block. If there is insufficient memory to allocate 
the new block, XtRealloc calls XtErrorMsg. If ptr is NULL, 
XtRealloc allocates the new storage without copying the old contents; that 
is, it simply calls XtMalloc. 

The XtFree function returns storage and allows it to be reused. If ptr is 
NULL, XtFree returns immediately. 

XtNew returns a pointer to the allocated storage. If there is insufficient 
memory to allocate the new block, XtNew calls XtErrorMsg. XtNew is a 
convenience macro that calls XtMalloc with the following arguments 
specified: 

«type *) XtMalloc«unsigned) sizeof(type)) 

XtNewString returns a pointer to the allocated storage. If there is 
insufficient memory to allocate the new block, XtNewString calls 
XtErrorMsg. XtNewString is a convenience macro that calls 
XtMalloc with the following arguments specified: 

(strcpy(XtMalloc«unsigned) strlen(str) + 1), str)) 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-688 Subroutines 



XtManageChiidren (3Xt) 

Name 
XtManageChildren, XtManageChild, XtUnmanageChildren, 
XtUnmanageChild - manage and unmanage children 

Syntax 
typedef Widget *WidgetList; 

void XtManageChildren(children, num children) 
WidgetList children; -
Cardinal num_children; 

void XtManageChild(child) 
Widget child; 

void XtUnmanageChildren(children, num children) 
WidgetList children; -
Cardinal num_children; 

void XtUnmanageChild(child) 
Widget child; 

Arguments 

child 

children 

Specifies the child. 

Specifies a list of child widgets. 

num children Specifies the number of children. 

Description 
The XtManageChildren function performs the following: 

• Issues an error if the children do not all have the same parent or if the 
parent is not a subclass of composi teWidgetClass. 

• Returns immediately if the common parent is being destroyed; 
otherwise, for each unique child on the list, XtManageChildren 
ignores the child if it already is managed or is being destroyed and 
marks it if not. 

• If the parent is realized and after all children have been marked, it 
makes some of the newly managed children viewable: 

Calls the change_managed routine of the widgets' parent. 

Calls XtRealizeWidget on each previously unmanaged child 

Subroutines 3-689 



XtManageChiidren (3Xt) 

that is unrealized. 

Maps each previously unmanaged child that has 
map_when_managed True. 

Managing children is independent of the ordering of children and 
independent of creating and deleting children. The layout routine of the 
parent should consider children whose. managed field is True and should 
ignore all other children. Note that some composite widgets, especially fixed 
boxes, call XtManageChild from their insert_child procedure. 

If the parent widget is realized, its change_managed procedure is called to 
notify it that its set of managed children has changed. The parent can 
reposition and resize any of its children. It moves each child as needed by 
calling XtMoveWidget, which first updates the x and y fields and then calls 
XMoveWindow if the widget is realized. 

The XtManageChild function constructs a WidgetList of length one 
and calls XtManageChildren. 

The XtUnmanageChildren function performs the following: 

• Issues an error if the children do not all have the same parent or if the 
parent is not a subclass of compositeWidgetClass. 

• Returns immediately if the common parent is being destroyed; 
otherwise, for each unique child on the list, XtUnmanageChildren 
performs the following: 

Ignores the child if it already is unmanaged or is being destroyed 
and marks it if not. 

If the child is realized, it makes it nonvisible by unmapping it. 

• Calls the change_managed routine of the widgets' parent after all 
children have been marked if the parent is realized. 

XtUnmanageChildren does not destroy the children widgets. Removing 
widgets from a parent's managed set is often a temporary banishment, and, 
some time later, you may manage the children again. 

The Xt UnmanageChi 1 d function constructs a widget list of length one and 
calls XtUnmanageChildren. 

See Also 
XtMap Widget(3Xt), XtRealize Widget(3Xt) 
Guide to the XU] Toolkit Intrinsics 
Guide to the Xlib Library 

3-690 Subroutines 



XtMapWidget (3Xt) 

Name 
XtMap Widget, XtSetMappedWhenManaged, XtUnmap Widget - map and 
unmap widgets 

Syntax 
XtMap Widget(w) 

Widget w; 

void XtSetMappedWhenManaged(w, map when managed) 
Widget w; - -
Boolean map_when _managed; 

XtUnmap Widget(w) 
Widget w; 

Arguments 

map when managed 
- - Specifies a Boolean value that indicates the new value of the 

map_ when_managed field. 

w Specifies the widget. 

Description 
If the widget is realized and managed and if the new value of 
map_when_managed is True, XtSetMappedWhenManaged maps the 
window. If the widget is realized and managed and if the new value of 
map_when_managed is False, it unmaps the window. 
XtSetMappedWhenManaged is a convenience function that is equivalent 
to (but slightly faster than) calling XtSetVal ues and setting the new value 
for the mappedWhenManaged resource. As an alternative to using 
XtSetMappedWhenManaged to control mapping, a client may set 
mapped_when_managed to False and use XtMapWidget and 
XtUnmapWidget explicitly. 

See Also 
XtManageChildren(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-691 



XtNameToWidget (3Xt) 

Name 
XtNameToWidget, XtWidgetToWindow - translate strings to widgets or 
widgets to windows 

Syntax 
Widget XtNameToWidget(reference, names); 

Widget reference; 
String names; 

Widget XtWindowTo Widget(display, window) 
Display *display; 
Window window; 

Arguments 

display 

names 

reference 

window 

Description 

Specifies the display on which the window is defined. 

Specifies the fully qualified name of the desired widget. 

Specifies the widget from which the search is to start. 

Specify the window for which you want the widget. 

The XtNameToWidget function looks for a widget whose name is the first 
component in the specified names and that is a pop-up child of reference (or 
a normal child if reference is a subclass of compositeWidgetClass). It 
then uses that widget as the new reference and repeats the search after 
deleting the first component from the specified names. If it cannot find the 
specified widget, XtNameToWidget returns NULL. 

Note that the names argument contains the name of a widget with respect to 
the specified reference widget and can contain more than one widget name 
(separated by periods) for widgets that are not direct children of the specified 
reference widget. 

If more than one child of the reference widget matches the name, 
XtNameToWidget can return any of the children. The Intrinsics do not 
require that all children of a widget have unique names. If the specified 
names contain more than one component and if more than one child matches 
the first component, XtNameToWidget can return NULL if the single 
branch that it follows does not contain the named widget. That is, 
XtNameToWidget does not back up and follow other matching branches of 
the widget tree. 

3-692 Subroutines 



XtNameToWidget (3Xt) 

The XtWindowToWidget function translates the specified window and 
display pointer into the appropriate widget instance. 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-693 



XtOffset (3Xt) 

Name 
XtOffset, XtNumber - determine the byte offset or number of array elements 

Syntax 
Cardinal XtOffset(pointer _type, field_name) 

Type pointer _type; 
Field Jield _name; 

I 

Cardinal XtNumber(array) 
Array Variable array; 

Arguments 

array 

field_name 

pointer _type 

Description 

Specifies a fixed-size array. 

Specifies the name of the field for which to calculate the byte 
offset. 

Specifies a type that is declared as a pointer to the structure. 

The XtOffset macro is usually used to determine the offset of various 
resource fields from the beginning of a widget and can be used at compile 
time in static initializations. 

The XtNumber macro returns the number of elements in the specified 
argument lists, resource lists, and other counted arrays. 

See Also 
XtGetResourceList(3Xt), XtSetArg(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-694 Subroutines 



Name 

XtOwnSelection (3Xt) 

XtOwnSelection, XtOwnSelectionlncremental, XtDisownSelection - set 
selection owner 

Syntax 
Boolean XtOwnSelection(w, selection, time, convertyroc, lose_selection, 
doneyroc) 

Widget w; 
Atom selection; 
Time time; 
XtConvertSelectionProc convert yroc; 
XtLoseSelectionProc lose' selection; 
XtSelectionDoneProc done yroc; 

Boolean XtOwnSelectionlncremental(w, selection, time, convert_callback, 
lose callback, done callback, cancel callback, client data) 

Widget w; - - -
Atom selection; 
Time time; 
XtConvertSelectionlncrProc convert callback; 
XtLoseSelectionlncrProc lose callback; 
XtSelectionDoneIncrProc done callback; 
XtCancelConvertSelectionProc cancel callback; 
caddr_t client_data; -

void XtDisownSelection(w, selection, time) 
Widget w; 
Atom selection; 
Time time; 

Arguments 

cancel callback 
- Specifies the callback procedure that is to be called to obtain 

the next incremental chunk of data or for each selection value 
obtained. 

client data Specifies the argument that is to be passed to the appropriate 
procedure when one of the condition occurs. 

convert yroc Specifies the procedure that is to be called whenever 
someone requests the current value of the selection. 

Subroutines 3-695 



XtOwnSelection {3Xt} 

doneyroc Specifies the procedure that is called after the requestor has 
received the selection or NULL if the owner is not interested 
in being called back. 

lose selection Specifies the procedure that is to be called whenever the 
widget has lost selection ownership or NULL if the owner is 
not interested in being called back. 

selection 

time 

w 

Description 

Specifies an atom that describes the type of the selection (for 
example, XA PRIMARY, XA SECONDARY, or 
XA_CLIPBOARD). -

Specifies the timestamp that indicates when the selection 
ownership should commence or is to be relinquished. 

Specifies the widget that wishes to become the owner or to 
relinquish ownership. 

The XtOwnSelection function informs the Intrinsics selection mechanism 
that a widget believes it owns a selection. It returns T ru e if the widget has 
successfully become the owner and False otherwise. The widget may fail 
to become the owner if some other widget has asserted ownership at a time 
later than this widget. Note that widgets can lose selection ownership either 
because someone else asserted later ownership of the selection or because the 
widget voluntarily gave up ownership of the selection. Also note that the 
lose_selection procedure is not called if the widget fails to obtain selection 
ownership in the first place. 

The XtOwnSelectionIncremental informs the Intrinsics incremental 
selection mechanism that the specified widget believes it owns the selection. 
It returns True if the specified widget successfully becomes the selection 
owner or False otherwise. 

Widgets that use the incremental transfer mechanism should use 
XtDisownSelection to relinquish selection ownership. 

The XtDisownSelection function informs the Intrinsics selection 
mechanism that the specified widget is to lose ownership of the selection. If 
the widget does not currently own the selection either because it lost the 
selection or because it never had the selection to begin with, 
XtDisownSelection does nothing. 

After a widget has called XtDisownSelection, its convert procedure is 
not called even if a request arrives lat~r with a timestamp during the period 
that this widget owned the selection. However, its done procedure will be 

3-696 Subroutines 



XtOwnSelection {3Xt} 

called if a conversion that started before the call to XtDisownSelection 
finishes after the call to XtDisownSelection. 

See Also 
XtAppGetSelectionTimeout(3Xt), XtGetSelection V alue(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-697 



XtParseAcceleratorTable (3Xt) 

Name 
XtParseAcceleratorTable, XtlnstallAccelerators, XtInstallAllAccelerators -
manage accelerator tables 

Syntax 
XtAccelerators XtParseAcceleratorTable(source) 

String source; 

void XtInstallAccelerators(destination, source) 
Widget destination; 
Widget source; 

void XtInstallAlIAccelerators(destination, source) 
Widget destination; 
Widget source; 

Arguments 

source 

destination 

source 

Description 

Specifies the accelerator table to compile. 

Specifies the widget on which the accelerators are to be 
installed. 

Specifies the widget or the root widget of the widget tree 
from which the accelerators are to come. 

The XtParseAcceleratorTable function compiles the accelerator table 
into the opaque internal representation. 

The XtlnstallAccelerators function installs the accelerators from 
source onto destination by augmenting the destination translations with the 
source accelerators. If the source display_accelerator method is non-NULL, 
XtlnstallAccelerators calls it with the source widget and a string 
representation of the accelerator table, which indicates that its accelerators 
have been installed and that it should display them appropriately. The string 
representation of the accelerator table is its canonical translation table 
representation. 

The XtlnstallAllAccelerators function recursively descends the 
widget tree rooted at source and installs the accelerators of each widget 
encountered onto destination. A common use is to call 
XtlnstallAllAccelerators and pass the application main window as 
the source. 

3-698 Subroutines 



See Also 
XtParseTranslationTable( 1) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

XtParseAcceleratorTable (3Xt) 

Subroutines 3-699 



XtParseTranslationTable (3Xt) 

Name 
XtParseTranslationTable, XtAugmentTranslations, XtOverrideTranslations, 
XtUninstallTranslations - manage translation tables 

Syntax 
XtTranslations XtParseTranslationTable(table) 

String table; 

void XtAugmentTranslations( w, translations) 
Widget w; 
XtTranslations translations; 

void XtOverrideTranslations(w, translations) 
Widget w; 
XtTranslations translations; 

void XtUninstallTranslations(w) 
Widget w; 

Arguments 

table 

translations 

w 

Description 

Specifies the translation table to compile. 

Specifies the compiled translation table to merge in (must not 
be NULL). 

Specifies the widget into which the new translations are to be 
merged or removed. 

The XtParseTranslationTable function compiles the translation table 
into the opaque internal representation of type Xt Translations. Note 
that if an empty translation table is required for any purpose, one can be 
obtained by calling XtParseTranslationTable and passing an empty 
string. 

The XtAugmentTranslations function nondestructively merges the 
new translations into the existing widget translations. If the new translations 
contain an event or event sequence that already exists in the widget's 
translations, the new translation is ignored. 

The XtOverrideTranslations function destructively merges the new 
translations into the existing widget translations. If the new translations 
contain an event or event sequence that already exists in the widget's 

3-700 Subroutines 



XtParseTranslationTable (3Xt) 

translations, the new translation is merged in and override the widget's 
translation. 

To replace a widget's translations completely, use XtSetValues on the 
XtNtranslations resource and specifiy a compiled translation table as the 
value. 

The XtUninstall Translations function causes the entire translation 
table for widget to be removed. 

See Also 
XtAppAddActions(3Xt), XtCreatePopupShell(3Xt), 
XtParseAcceleratorTable(3Xt), XtPopup(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-701 



XtPopdown (3Xt) 

Name 
XtPopdown, XtCallbackPopdown, MenuPopdown - unmap a pop-up 

Syntax 
void XtPopdown(popup _shell) 

Widget popup_shell; 

void XtCallbackPopdown( w, client_data, call_data) 
Widget w; 
caddr_t client data; 
caddr_t call_data; 

void MenuPopdown(shell_name) 
String shell_name; 

Arguments 

call data Specifies the callback data, which is not used by this 
procedure. 

client data Specifies a pointer to the XtPopdownID structure. 

popup _shell Specifies the widget shell to pop down. 

shell name Specifies the name of the widget shell to pop down. 

w Specifies the widget. 

Description 
The XtPopdown function performs the following: 

• Calls XtCheckSubclass to ensure popup_shell is a subclass of 
Shell. 

• Checks that popup_shell is currently popped_up; otherwise, it 
generates an error. 

• Unmaps popup_shell' s window. 

• If popup_sheIl's grabjcind is either XtGrabNonexcl usi ve or 
XtGrabExclusive, it calls XtRemoveGrab. 

• Sets pop-up shell's popped_up field to False. 

• Calls the callback procedures on the shell's popdown_callback list. 

3-702 Subroutines 



XtPopdown (3Xt) 

The XtCallbackPopdown function casts the client data parameter to an 
XtPopdownID pointer: 

typedef struct { 
Widget shell_widget; 
Widget enable_widget; 

} XtPopdownIDRec, *XtPopdownID; 

The shell_widget is the pop-up shell to pop down, and the enable_widget is 
the widget that was used to pop it up. 

XtCallbackPopdown calls XtPopdown with the specified shell_widget 
and then calls XtSetSensitive to resensitize the enable_widget. 

If a shell name is not given, MenuPopdown calls XtPopdown with the 
widget for which the translation is specified. If a shell_name is specified in 
the translation table, MenuPopdown tries to find the shell by looking up the 
widget tree starting at the parent of the widget in which it is invoked. If it 
finds a shell with the specified name in the pop-up children of that parent, it 
pops down the shell; otherwise, it moves up the parent chain as needed. If 
MenuPopdown gets to the application top-level shell widget and cannot find 
a matching shell, it generates an error. 

See Also 
XtCreatePopupShell(3Xt), XtPopup(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-703 



XtPopup (3Xt) 

Name 
XtPopup, XtCallbackNone, XtCallbackNonexc1usive, XtCallbackExc1usive, 
MenuPopup - map a pop-up 

Syntax 
void XtPopup(popup _shell, grab _kind) 

Widget popup _shell; 
XtGrabKind grab _kind; 

void XtCallbackNone(w, client data, call data) 
Widget w; --
caddr_t client data; 
caddr_t call_data; 

void XtCallbackNonexc1usive(w, client data, call data) 
Widget w; --
caddr_t client_data; 
caddr_t call_ data; 

void XtCallbackExclusive(w, client data, call data) 
Widget w; --
caddr_t client data; 
caddr_t call_data; 

void MenuPopup(shell name) 
String shell_name; 

Arguments 

call data 

client data 

grab kind 

popup _shell 

w 

Description 

Specifies the callback data, which is not used by this 
procedure. 

Specifies the pop-up shell. 

Specifies the way in which user events should be constrained. 

Specifies the widget shell to pop down. 

Specifies the widget. 

The XtPopup function performs the following: 

• Calls XtCheckSubclass to ensure popup_shell is a subclass of 
Shell. 

3-704 Subroutines 



XtPopup{3Xt) 

• Generates an error if the shell's popped_up field is already True. 

• Calls the callback procedures on the shell's popup_callback list. 

• Sets the shell popped_up field to True, the shell spring_loaded field to 
False, and the shell grab_kind field from grab_kind. 

• If the shell's create_popup_child field is non-NULL, XtPopup calls it 
with popup_shell as the parameter. 

• If grab_kind is either XtGrabNonexcl usi ve or 
XtGrabExclusive, it calls: 

XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), False) 

• Calls XtRealizeWidget with popup_shell specified. 

• Calls XMapWindow with popup_shell specified. 

TheXtCallbackNone,XtCallbackNonexclusive,and 
XtCallbackExclusive functions call XtPopup with the shell specified 
by the client data argument and grab_kind set as the name specifies. 
XtCallbackNone,XtCallbackNonexclusive,and 
XtCallbackExcl usi ve specify XtGrabNone, 
XtGrabNonexclusive, and XtGrabExclusive, respectively. Each 
function then sets the widget that executed the callback list to be insensitive 
by using XtSetSensi ti ve. Using these functions in callbacks is not 
required. In particular, an application must provide customized code for 
callbacks that create pop-up shells dynamically or that must do more than 
desensitizing the button. 

MenuPopup is known to the translation manager, which must perfonn 
special actions for spring-loaded pop-ups. Calls to MenuPopup in a 
translation specification are mapped into calls to a nonexported action 
procedure, and the translation manager fills in parameters based on the event 
specified on the left-hand side of a translation. 

If MenuPopup is invoked on ButtonPress (possibly with modifiers), the 
translation manager pops up the shell with grab_kind set to 
XtGrabExcl usi ve and spring_loaded set to True. If MenuPopup is 
invoked on EnterWindow (possibly with modifiers), the translation 
manager pops up the shell with grab_kind set to XtGrabNonexcl usi ve 
and spring_loaded set to F al s e. Otherwise, the translation manager 
generates an error. When the widget is popped up, the following actions 
occur: 

• Calls XtCheckSubclass to ensure popup_shell is a subclass of 
Shell. 

Subroutines 3-705 



XtPopup (3Xt) 

• Generates an error if the shell's popped_up field is already True. 

• Calls the callback procedures on the shell's popup_callback list. 

• Sets the shell popped_up field to True and the shell grab_kind and 
spring_loaded fields appropriately. 

• If the shell's create_popup_child field is non-NULL, it is called with 
popup_shell as the parameter. 

• Calls: 
XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), spring_loaded) 

• Calls XtRealizeWidgetwith popup_shell specified. 

• Calls XMapWindow with popup_shell specified. 

(Note that these actions are the same as those for XtPopup.) MenuPopup 
tries to find the shell by searching the widget tree starting at the parent of the 
widget in which it is invoked. If it finds a shell with the specified name in 
the pop-up children of that parent, it pops up the shell with the appropriate 
parameters. Otherwise, it moves up the parent chain as needed. If 
MenuPopup gets to the application widget and cannot find a matching shell, 
it generates an error. 

See Also 
XtCreatePopupShell(3Xt), XtPopdown(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-706 Subroutines 



XtQueryGeometry (3Xt) 

Name 
XtQueryGeometry - query the preferred geometry of a child widget 

Syntax 
XtGeometryResult XtQueryGeometry(w, intended, preferred_return) 

Widget w; 
XtWidgetGeometry *intended, *preferred _return; 

Arguments 

intended Specifies any changes the parent plans to make to the child's 
geometry or NULL. 

preferred return 
- Returns the child widget's preferred geometry. 

w Specifies the widget. 

Description 
To discover a child's preferred geometry, the child's parent sets any changes 
that it intends to make to the child's geometry in the corresponding fields of 
the intended structure, sets the corresponding bits in intended.request_mode, 
and calls XtQueryGeometry. 

XtQueryGeometry clears all bits in the preferred_return->request_mode 
and checks the query ~eometry field of the specified widget's class record. 
If query~eometry is not NULL, XtQueryGeometry calls the 
query ~eometry procedure and passes as arguments the specified widget, 
intended, and preferred_return structures. If the intended argument is NULL, 
XtQueryGeometry replaces it with a pointer to an XtWidgetGeometry 
structure with request_mode=O before calling query ~eometry. 

See Also 
XtConfigure Widget(3Xt), XtMakeGeometryRequest(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-707 



XtRealizeWidget (3Xt) 

Name 
XtRealize Widget, XtlsRealized, XtUnrealize Widget - realize and unrealize 
widgets 

Syntax 
void XtRealize Widget(w) 

Widget w; 

Boolean XtIsRealized(w) 
Widget w; 

void XtUnrealize Widget(w) 
Widget w; 

Arguments 

w Specifies the widget. 

Description 
If the widget is already realized, XtRealizeWidget simply returns. 
Otherwise, it performs the following: 

• Binds all action names in the widget's translation table to procedures 
(see Section 10.1.2). 

• Makes a post-order traversal of the widget tree rooted at the specified 
widget and calls the change_managed procedure of each composite 
widget that has one or more managed children. 

• Constructs an XSetWindowAttributes structure filled in with 
information derived from the Core widget fields and calls the realize 
procedure for the widget, which adds any widget-specific attributes and 
creates the X window. 

• If the widget is not a subclass of composi teWidgetClass, 
XtRealizeWidget returns; otherwise, it continues and performs the 
following: 

3-708 Subroutines 

Descends recursively to each of the widget's managed children 
and calls the realize procedures. Primitive widgets that 
instantiate children are responsible for realizing those children 
themselves. 

Maps all of the managed children windows that have 
mapped_when_managed True. (If a widget is managed but 



XtRealizeWidget (3Xt) 

mapped_when_managed is False, the widget is allocated visual 
space but is not displayed. Some people seem to like this to 
indicate certain states.} 

If the widget is a top-level shell widget (that is, it has no parent), and 
mapped_when_managed is True, XtRealizeWidget maps the widget 
window. 

The XtlsRealized function returns True if the widget has been realized, 
that is, if the widget has a nonzero X window ID. 

Some widget procedures (for example, set_values) might wish to operate 
differently after the widget has been realized. 

The XtUnrealizeWidget function destroys the windows of an existing 
widget and all of its children (recursively down the widget tree). To recreate 
the windows at a later time, call XtRealizeWidget again. If the widget 
was managed, it will be unmanaged automatically before its window is freed. 

See Also 
XtManageChildren(3Xt} 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-709 



XtSetArg (3Xt) 

Name 
XtSetArg, XtMergeArgLists - set and merge ArgLists 

Syntax 
XtSetArg(arg, name, value) 

Arg arg; 
String name; 
XtArgVal value; 

ArgList XtMergeArgLists(argsl, num_argsl, args2, num_args2) 
ArgList argsl; 
Cardinal num _ argsl; 
ArgList args2; 
Cardinal num _ args2; 

Arguments 

arg 

argsl 

args2 

num_argsl 

num_args2 

name 

value 

Description 

Specifies the name-value pair to set. 

Specifies the first ArgLi st. 

Specifies the second ArgList. 

Specifies the number of arguments in the first argument list. 

Specifies the number of arguments in the second argument 
list. 

Specifies the name of the resource. 

Specifies the value of the resource if it will fit in an 
XtArgVal or the address. 

The XtSetArg function is usually used in a highly stylized manner to 
minimize the probability of making a mistake; for example: 

Arg args[20]; 
int n; 

n = 0; 
XtSetArg(args[n], XtNheight, 100); 
XtSetArg(args[n], XtNwidth, 200); 
XtSetValues(widget, args, n); 

3-710 Subroutines 

n++; 
n++; 



XtSetArg (3Xt) 

Alternatively, an application can statically declare the argument list and use 
XtNumber: 

static Args args [] = { 

}; 

{XtNheight, (XtArgVal) lOO}, 
{XtNwidth, (XtArgVal) 200}, 

XtSetValues(Widget, args, XtNumber(args»; 

Note that you should not use auto-increment or auto-decrement within the 
first argument to XtSetArg. XtSetArg can be implemented as a macro 
that dereferences the first argument twice. 

The XtMergeArgLists function allocates enough storage to hold the 
combined ArgList structures and copies them into it. Note that it does not 
check for duplicate entries. When it is no longer needed, free the returned 
storage by using XtFree. 

See Also 
XtOffset(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-711 



XtSetKeyboard Focus (3Xt) 

Name 
XtSetKeyboardFocus - focus events on a child widget 

Syntax 
XtSetKeyboardFocus(subtree, descendant) 

Widget subtree, descendant; 

Arguments 

descendant 

w 

Description 

Specifies either the widget in the subtree structure which is to 
receive the keyboard event, or None. Note that it is not an 
error to specify None when no input focus was previously 
set. 

Specifies the widget for which the keyboard focus is to be 
set. 

If a future KeyPress or KeyRelease event occurs within the specified 
subtree, XtSetKeyboardFocus causes XtDispatchEvent to remap 
and send the event to the specified descendant widget. 

When there is no modal cascade, keyboard events can occur within a widget 
W in one of three ways: 

• W has the X input focus. 

• W has the keyboard focus of one of its ancestors, and the event occurs 
within the ancestor or one of the ancestor's descendants. 

• No ancestor of W has a descendant within the keyboard focus, and the 
pointer is within W. 

When there is a modal cascade, a widget W receives keyboard events if an 
ancestor of W is in the active subset of the modal cascade and one or more of 
the previous conditions is True. 

When subtree or one of its descendants acquires the X input focus or the 
pointer moves into the subtree such that keyboard events would now be 
delivered to subtree, a Focusln event is generated for the descendant if 
FocusNotify events have been selected by the descendant. Similarly, 
when W loses the X input focus or the keyboard focus for one of its 
ancestors, a FocusOut event is generated for descendant if FocusNotify 
events have been selected by the descendant. 

3-712 Subroutines 



See Also 
XtCallAcceptFocus(3Xt) 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

XtSetKeyboardFocus (3Xt) 

Subroutines 3-713 



XtSetKeyTranslator (3Xt) 

Name 
XtSetKeyTranslator, XtTranslateKeycode, XtRegisterCaseConverter, 
XtConvertCase - convert KeySym to KeyCodes 

Syntax 
void XtSetKeyTranslator(display, pro c) 

Display *display; 
XtKeyProc proc; 

void XtTranslateKeycode(display, keycode, modifiers, modifiers return, 
keysym return) -

Display *display; 
KeyCode keycode; 
Modifiers modifiers; 
Modifiers *modifiers return; 
KeySym *keysym return; 

void XtRegisterCaseConverter(display, proc, start, stop) 
Display *display; 
XtCaseProc proc; 
KeySym start; 
KeySym stop; 

void XtConvertCase(display, keysym, lower return, upper return) 
Display *display; --
KeySym keysym; 
KeySym * lower _return; 
KeySym *upper _return; 

Arguments 

display 

keycode 

keysym 

Specifies the display. 

Specifies the KeyCode to translate. 

Specifies the KeySym to convert. 

keysym _return Returns the resulting KeySym. 

lower return 

upper_return 

modifiers 

Returns the lowercase equivalent of the KeySym. 

Returns the uppercase equivalent of the KeySym. 

Specifies the modifiers to the KeyCode. 

modifiers_return 

3-714 Subroutines 



proc 

start 

stop 

Description 

XtSetKeyTranslator (3Xt) 

Returns a mask that indicates the modifiers actually used to 
generate the KeySym. 

Specifies the procedure that is to perform key translations or 
conversions. 

Specifies the first KeySym for which this converter is valid. 

Specifies the last KeySym for which this converter is valid. 

The XtSetKeyTranslator function sets the specified procedure as the 
current key translator. The default translator is XtTranslateKey, an 
XtKeyProc that uses Shift and Lock modifiers with the interpretations 
defined by the core protocol. It is provided so that new translators can call it 
to get default KeyCode-to-KeySym translations and so that the default 
translator can be reinstalled. 

The XtTranslateKeycode function passes the specified arguments 
directly to the currently registered KeyCode to KeySym translator. 

The XtRegisterCaseConverter registers the specified case converter. 
The start and stop arguments provide the inclusive range of KeySyms for 
which this converter is to be called. The new converter overrides any 
previous converters for KeySyms in that range. No interface exists to 
remove converters; you need to register an identity converter. When a new 
converter is registered, the Intrinsics refreshes the keyboard state if 
necessary. The default converter understands case conversion for all 
KeySyms defined in the core protocol. 

The XtConvertCase function calls the appropriate converter and returns 
the results. A user-supplied XtKeyP roc may need to use this function. 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

Subroutines 3-715 



XtSetSensitive (3Xt) 

Name 
XtSetSensitive, XtIsSensitive - set and check a widget's sensitivity state 

Syntax 
void XtSetSensitive(w, sensitive) 

Widget w; 
Boolean sensitive; 

Boolean XtIsSensitive( w) 
Widget w; 

Arguments 

sensitive 

w 

Description 

Specifies a Boolean value that indicates whether the widget 
should receive keyboard and pointer events. 

Specifies the widget. 

The XtSetSensitive function first calls XtSetValues on the current 
widget with an argument list specifying that the sensitive field should change 
to the new value. It then recursively propagates the new value down the 
managed children tree by calling XtSetValues on each child to set the 
ancestor_sensitive to the new value if the new values for sensitive and the 
child's ancestor_sensitive are not the same. 

XtSetSensitive calls XtSetValues to change sensitive and 
ancestor_sensitive. Therefore, when one of these changes, the widget's 
set_values procedure should take whatever display actions are needed (for 
example, greying out or stippling the widget). 

XtSetSensi ti ve maintains the invariant that if parent has either sensitive 
or ancestor_sensitive False, then all children have ancestor_sensitive 
False. 

The XtIsSensitive function returns True or False to indicate whether 
or not user input events are being dispatched. If both core.sensitive and 
core. ancestor_sensitive are True, Xt I sSensi ti ve returns True; 
otherwise, it returns Fa 1 s e. 

3-716 Subroutines 



See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

XtSetSensitive (3Xt) 

Subroutines 3-717 



XtSetValues (3Xt) 

Name 
XtSetValues, XtSetSubvalues, XtGetValues, XtGetSubvalues - obtain and set 
widget resources 

Syntax 
void XtSetValues(w, args, num args) 

Widget w; -
ArgList args; 
Cardinal num _ args; 

void XtSetSubvalues(base, resources, num resources, args, num args) 
caddr_t base; - -
XtResourceList resources; 
Cardinal num resources; 
ArgList args;-
Cardinal num_args; 

void XtGetValues(w, args, num_args) 
Widget w; 
ArgList args; 
Cardinal num _args; 

void XtGetSubvalues(base, resources, num resources, args, num args) 
caddr_t base; - -
XtResourceList resources; 
Cardinal num resources; 
ArgList args;-
Cardinal num _ args; 

Arguments 

args 

base 

num_args 

resources 

Specifies the argument list of name/address pairs that contain 
the resource name and either the address into which the 
resource value is to be stored or their new values. 

Specifies the base address of the subpart data structure where 
the resources should be retrieved or written. 

Specifies the number of arguments in the argument list. 

Specifies the non widget resource list or values. 

num _resources Specifies the number of resources in the resource list. 

w Specifies the widget. 

3-718 Subroutines 



XtSetValues (3Xt) 

Description 
The XtSetValues function starts with the resources specified for the 
Core widget fields and proceeds down the subclass chain to the widget. At 
each stage, it writes the new value (if specified by one of the arguments) or 
the existing value (if no new value is specified) to a new widget data record. 
XtSetValues then calls the set_values procedures for the widget in 
superclass-to-subclass order. If the widget has any non-NULL 
set_ values_hook fields, these are called immediately after the corresponding 
set_values procedure. This procedure permits subclasses to set nonwidget 
data for XtSetValues. 

If the widget's parent is a subclass of constraintWidgetClass, 
XtSetValues also updates the widget's constraints. It starts with the 
constraint resources specified for constraintWidgetClass and 
proceeds down the subclass chain to the parent's class. At each stage, it 
writes the new value or the existing value to a new constraint record. It then 
calls the constraint set_values procedures from 
constraintWidgetClass down to the parent's class. The constraint 
set_values procedures are called with widget arguments, as for all set_values 
procedures, not just the constraint record arguments, so that they can make 
adjustments to the desired values based on full information about the widget. 

XtSetValues determines if a geometry request is needed by comparing the 
current widget to the new widget. If any geometry changes are required, it 
makes the request, and the geometry manager returns XtGeometryYes, 
XtGeometryAlmost, or XtGeometryNo. If XtGeometryYes, 
XtSetValues calls the widget's resize procedure. If XtGeometryNo, 
XtSetValues resets the geometry fields to their original values. If 
XtGeometryAlmost, XtSetValues calls the set_values_almost 
procedure, which determines what should be done and writes new values for 
the geometry fields into the new widget. XtSetValues then repeats this 
process, deciding once more whether the geometry manager should be called. 

Finally, if any of the set_values procedures returned True, XtSetValues 
causes the widget's expose procedure to be invoked by calling the Xlib 
XClearArea function on the widget's window. 

The XtSetSubvalues function stores resources into the structure 
identified by base. 

The XtGetValues function starts with the resources specified for the core 
widget fields and proceeds down the subclass chain to the widget. The value 
field of a passed argument list should contain the address into which to store 
the corresponding resource value. It is the caller's -responsibility to allocate 

Subroutines 3-719 



XtSetValues (3Xt) 

and deallocate this storage according to the size of the resource representation 
type used within the widget. 

If the widget's parent is a subclass of constraintWidgetClass, 
XtGetValues then fetches the values for any constraint resources 
requested. It starts with the constraint resources specified for 
constraintWidgetClass and proceeds down to the subclass chain to 
the parent's constraint resources. If the argument list contains a resource 
name that is not found in any of the resource lists searched, the value at the 
corresponding address is not modified. Finally, if the get_values_hook 
procedures are non-NULL, they are called in superclass-to-subclass order 
after all the resource values have been fetched by XtGetValues. This 
permits a subclass to provide nonwidget resource data to XtGetValues. 

The XtGetSubvalues function obtains resource values from the structure 
identified by base. 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-720 Subroutines 



XtStringConversionWarning (3Xt) 

Name 
XtStringConversion Warning - issue a conversion warning message 

Syntax 
void XtStringConversion W arning(sre, dst _type) 

String sre, dst ~ type; 

Arguments 

sre 

Description 

Specifies the string that could not be converted. 

Specifies the name of the type to which the string could not 
be converted. 

The XtStringConversionWarning function issues a warning message 
with name "conversionError", type "string", class "XtToolkitError, and the 
default message string "Cannot convert "sre" to type dst _type' , . 

See Also 
XtAppAddConverter(3Xt), XtAppErrorMsg(3t), XtConvert(3Xt) 
Guide to the XUI Toolkit Intrinsies 
Guide to the Xlib Library 

Subroutines 3-721 



XtTranslateCoordinates (3Xt) 

Name 
XtTranslateCoordinates - translate widget coordinates 

Syntax 
void XtTranslateCoords(w, x, y, rootx return, rooty return) 

Widget w; --
Position x, y; 
Position *rootx _return, *rooty _return; 

Arguments 

rootx return 
rooty _return Returns the root-relative x and y coordinates. 

x 
y 

w 

Description 

Specify the widget-relative x and y coordinates. 

Specifies the widget. 

While XtTranslateCoords is similar to the Xlib 
XTranslateCoordinates function, it does not generate a server request 
because all the required information already is in the widget's data structures. 

See Also 
Guide to the XUI Toolkit Intrinsics 
Guide to the Xlib Library 

3-722 Subroutines 



How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 
1200- or 24oo-baud modem. If you need assistance using the Electronic Store, call 
8oo-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

Internal '" 

Call 

8oo-DIGITAL 

809-754-7575 

800-267-6215 

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local Digital Subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local Digital subsidiary or 
approved distributor 

SSB Order Processing - WMO/E15 
or 
Software Supply Business 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

* For internal orders, you must submit an Internal Software Order Form (EN-OI740-07). 





Reader's Comments UL TRIX Worksystem Software 
Reference Pages, 

Sections 3Dwt, 3X11, and 3Xt 
AA-MA99B-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

Please rate this manual: 
Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

Excellent 
o 
o 
o 
o 
o 
o 
o 
o 

Good 
o 
o 
o 
o 
o 
o 
o 
o 

Fair 
o 
o 
o 
o 
o 
o 
o 
o 

Poor 
o 
o 
o 
o 
o 
o 
o 
o 

What would you like to see more/less of! _________________ _ 

What do you like best about this manual? _________________ _ 

What do you like least about this manual? 

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

What version of the software described by this manual are you using? 

Namerritle ________________ Dept. 

Company Date ____ _ 

Mailing Address 
__________ Email _________ Phone ______ _ 



I 
___ Jto_~~_~e~=E~~_~~!~~!!2~ ______________________________________________ : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Digital Equipment Corporation 
Publications Manager 
Open Software Publications Group 
ZK03-2/Z04 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

III1111 dh 111111111111 II 111111 h I11I1 d 111111111111 

Do Not Tear - Fold Here and Tape 

No Postage 
Necessary 

if Mailed in the 
United States 

Cut 
Along 
Dotted 
Line 



Reader's Comments UL TRIX Worksystem Software 
Reference Pages, 

Sections 30wt, 3X11 , and 3Xt 
AA-MA99B-TE 

Please use this postage-paid fonn to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Perfonnance Report 
(SPR) service, submit your comments on an SPR fonn. 

Thank you for your assistance. 

Please rate this manual: 
Accuracy (software works as manual says) 
Completeness (enough infonnation) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find infonnation) 

Excellent 
o 
o 
o 
o 
o 
o 
o 
o 

Good 
o 
o 
o 
o 
o 
o 
o 
o 

Fair 
o 
o 
o 
o 
o 
o 
o 
o 

Poor 
o 
o 
o 
o 
o 
o 
o 
o 

What would you like to see more/less of? _________________ _ 

What do you like best about this manual? _________________ _ 

What do you like least about this manual? _________________ _ 

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

What version of the software described by this manual are you using? _____ _ 

Namerritle _________________ Dept. _______ _ 

Company ______________________ Date 

Mailing Address 
__________ Email _________ Phone ______ _ 



I __ p~_~~_~e~=E~~JI~!~~!!~ _______________________________ _______________ : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Digital Equipment Corporation 
Publications Manager 
Open Software Publications Group 
ZK03-2/Z04 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

11111 III lid 11111111111111111111 d 11111 II III d II I11I 

Do Not Tear - Fold Here and Tape 

No Postage 
Necessary 

if Mailed in the 
United States 

Cut 
Along 
Dotted 
Line 


