
· ULTRIX

Guide to X/Open curses
Screen Handling

Order Number: AA-L Y27B-TE

Guide to X/Open curses
Screen Handling

Order Number: AA-L Y27B-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual describes the X/Open curses library routines. It describes the basic concepts
of the library and shows how to write screen-management programs using the library routines.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1987, 1989, 1990
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

lamBDmD
CDA
DDIF
DDIS
DEC
DECnet
DEC station

DECDs
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

System V is a registered trademark of AT&T.

XlOpen is a trademark of XlOPEN Company Ltd.

ULTRIX Worksystem Software
VAX
VAXstation
VMS
VMS/ULTRIX Connection
VT
XUI

Contents

About This Manual

Audience v

Organization v

Related Documents ... vi

Conventions

1 The X/Open Curses Library

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Definition of Terms

Introduction to the Curses Library

Basic Concepts

Naming Conventions

Moving the Cursor

Environment Variables

Routines in the Curses Library

1.7.1
1.7.2
1.7.3
1.7.4
1.7.5
1.7.6
1.7.7
1.7.8
1.7.9
1.7.10
1.7.11

Setting Screen Characteristics
Window Manipulation
Adding Characters to Windows (Output to Windows)
Clearing Windows and Deleting Characters
Refreshing the Terminal Screen .. .
Input to Windows
Input Options
Output Options
Environment Queries and Terminal Characteristics

Miscellaneous Routines
Starting and Ending Curses Programs .. .

2 Programming with the Curses Routines

vi

1-1

1-1

1-2

1-4

1-4

1-4

1-5

1-5
1-6
1-6
1-7
1-8
1-8
1-8
1-9

1-10
1-10
1-11

2.1 The <cursesX.h> Header File ... 2-1

2.1.1 Data Types 2-1

2.2

2.1.2
2.1.3
2.1.4
2.1.5

General Constants
Video Attribute Constants .. .
Input Constants .. .
The Virtual Keypad

Return Values

2-2
2-2
2-3
2-3

2-3

2.3 Terminfo and the Curses Package ... 2-5

2.3.1 What Is Terminfo? ... 2-5
2.3.2 How Curses and Terminfo Work Together .. 2-5

2.4

2.5

2.6

2.7

Basic Program Elements

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7

The <cursesX.h> Header File
The Routine initscr(3cur)
Routines Providing Output for Writing to stdscr
Routines for Clearing Windows .. .
Routines for Reading from the Current Terminal
Updating the Physical Terminal Screen
Ending a Curses Program

Controlling Input

Compiling Programs

Restrictions on Terminals

2.7.1
2.7.2

Output
Input

A Annotated Example Programs

A.l

A.2

Example Program 1

Example Program 2

e Comparison with eso 4.2 Curses Routines

2-6

2-6
2-6
2-7
2-7
2-7
2-8
2-8

2-8

2-9

2-9

2-9
2-10

A-I

A-2

B.l Differences Between the X/Open Routines and the BSD 4.2 Routines B-1

B.2 Converting BSD 4.2 Programs to Use X/Open Routines B-1

B.3 List of BSD 4.2 Routines and X/Open Routines

Tables

2-1: Keypad Return Constants

B-1: BSD 4.2 Routines and X/Open Routines

;vContents

B-2

2-4

B-2

About This Manual

This manual describes the X/Open curses library. It describes the basic concepts
behind the library and explains how to write screen-management programs using the
library routines.

The X/Open curses library routines coexist with the BSD 4.2 curses library
routines. The X/Open routines are described in the (3 cur) reference pages and are
contained in the libcursesX. a library. The BSD 4.2 routines are described in the
(3x) reference pages and are contained in the libcurses. a and
1 ibt e rml ib . a libraries. Both libraries deal only with character-cell displays such
as character cell terminals or windows on a bit-map display that emulate character
cell terminals.

Audience
This manual is intended for ULTRIX C programmers who want to find out about the
X/Open curses library and how it can be used for writing screen-management
programs for character cell displays. The documentation assumes that the reader
understands the UL TRIX environment and knows how to program, compile, and link
C code.

Organization
This manual contains two chapters, two appendixes, and an index. Read the chapters
serially; refer to Appendix A and Appendix B as necessary.

Chapter I The X/Open curses Library

Chapter 2

Appendix A

Appendix B

Introduces the X/Open curses library, the basic concepts behind
the library, and the individual library routines.

Programming with the Curses Routines
Describes the components needed to write a screen-management
program and gives all the necessary background information.

Annotated Example Programs
This appendix contains two screen-management programs
written using curses routines. The programs are annotated to
show how the curses routines function.

Comparison with BSD 4.2 Curses Routines
This appendix outlines the differences between the two libraries
of routines, and explains how to convert programs written using
BSD 4.2 routines so they can use the X/Open routines.

Related Documents
Refer to the ULTRIX Reference Pages, Section 3 (Library Routines) for detailed
descriptions of all the routines in the XlOpen curses library. Start with the
intro(3cur) reference page, which introduces the library and points you to other,
related reference pages.

Conventions
The following text conventions are used in this document:

%

user input

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in interactive examples to indicate system
output and also in code examples and other screen displays. In
text, this typeface is used to indicate the exact name of a
command, option, partition, pathname, directory, or file.

UPPERCASE
lowercase

macro

filename

cat(1)

IRETURNI

ICTRUxl

vi About This Manual

The ULTRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

In text, bold type is used to introduce new terms.

In examples, syntax descriptions, and function definitions, italics
are used to indicate variable values; and in text, to give references
to other documents.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat (1) indicates that you can find the material on the
ca t command in Section 1 of the reference pages.

This symbol is used in examples to indicate that you must press
the named key on the keyboard.

This symbol is used in examples to indicate that you must hold
down the CTRL key while pressing the key x that follows the
slash. When you use this key combination, the system sometimes
echoes the resulting character, using a circumflex (") to represent
the CTRL key (for example, "C for CTRL/C). Sometimes the
sequence is not echoed.

The X/Open Curses Library 1

This chapter contains the following topics:

• Definition of tenns

• Introduction to the X/Open curses library

• Basic concepts

• Naming conventions

• Moving the cursor

• Environment variables

• Routines in the curses library

1.1 Definition of Terms
The following definitions are used in this manual:

Term

Window

Screen

Tenninal

Subwindow

Definition

This is an internal representation containing an image of what a
section of the tenninal screen may look like at some point in
time. A window can be as big as the tenninal screen or any
smaller size, down to a single character.

This is a special case of window which represents the whole of
the screen. The curses library provides a default screen,
s t d s c r, to represent the screen.

This is sometimes called the tenninal screen and it is the
physical screen. It is what the user actually sees on the screen at
a particular time.

A subwindow is a new window created within an existing
window. Any changes made to either the subwindow or to the
subwindow area in the original window, are made in both
windows.

1.2 Introduction to the Curses Library
The curses library is the X/Open set of library routines used for writing screen­
management programs. The X/Open set of library routines provides additional

features to the BSD 4.2 set of curses routines. See Appendix B for a comparison of
the two sets of routines.

The curses library enables C programmers to do the common types of terminal­
dependent functions without worrying about the detailed description of the current
terminal. The routines also save programming time by making it easy to describe
how a program should update screens.

Screen-management programs are concerned both with updating screens and moving
the cursor in an efficient way.

The name curses is derived from the term cursor optimization. Optimizing cursor
motion means minimizing the amount the cursor has to move to update the screen.

All the curses routines are located in the curses library,
/usr / lib/libcursesX. a. You do not need to use any other routines for
writing screen-management programs.

You can use the curses library to write interactive screen-management programs.
Some of the tasks performed by screen-management programs are:

• Writing output to, and reading input from, a terminal screen

• Dividing a terminal screen into windows

• Sending output to, and accepting input from, more than one terminal

• Moving the cursor in the most efficient way

• Drawing a display on the screen for data entry and retrieval

• Displaying modified screen layouts

The curses library is split into two parts:

• Screen updating, both output and with user input

• Cursor-motion optimization

The screen-updating functions are used when parts of a screen need to be changed but
the overall image remains the same. For example, consider a screen that shows data
input fields. When data is input to a particular field and the RETURN key is pressed,
the screen-management program updates only that particular field. The rest of the
screen layout is not updated. This process is also known as output optimization,
since the output to the screen is optimized.

The cursor motion part of the library can be used separately from the screen-updating
routines. Cursor-motion optimization is used on its own for tasks such as defining
how the cursor moves in response to tabs and newline characters.

1.3 Basic Concepts
To update a screen efficiently, the curses program must have information on what the
current display on the screen looks like and how the programmer wants that display
to appear next.

The <cursesX. h> header file defines a data type (structure) called WINDOW, which
is used by the curses routines as a representation of the screen. The definition
includes the starting position of the window on the screen and the window size. The
curses routines write to this internal representation of the terminal screen instead of
writing directly on to the physical screen.

1-2 The XlOpen Curses Library

A window can be thought of as a two-dimensional array of characters on which to
build and store a potential image of the terminal screen. The window can represent
all or part of a terminal screen. You can create smaller subwindows in existing
windows called pads, which are bigger than the actual terminal screen. Pads are
used for applications which do not need to show all of the window on the screen at
anyone time, for example, an application using a spreadsheet.

The curses library maintains a record of all the characters on the screen at all times.
Two default windows for this purpose are:

• stdscr - A representation of the terminal screen on which to make changes.

• curscr - The current image on the terminal screen. Not usually accessed
directly by the application.

Both of these default windows represent the whole of the user's terminal screen.

The application makes changes to the default window s t ds c r or to a named
window. The changes made to the window are not transferred to the physical screen
until the application calls the refresh(3cur) routine.

The screen-management program keeps track of what is on stdscr and what is on
the screen. When it gets a call to refresh(3cur), it compares these two images, and
sends a stream of characters to the terminal to make the physical screen look like
stdscr. To find the optimal way of doing this, the screen-management program
takes into account the following factors:

• The capabilities of the terminal

• The similarities between what is on the screen and what is on the window

At the most basic level, stdscr is manipulated by the routines move(3cur), which
moves the cursor around the screen, and addch(3cur), which adds characters to the
screen.

An application may use these routines to add data to the window in any convenient
order. Higher level routines combine the actions of move(3cur) and addch(3cur).
There are also routines to add strings and to convert formatting information in the
same way as printf(3s).

Multiple new windows can be created using newwin(3cur), which allows an
application to build several images of the screen and to quickly display the
appropriate one. For example, one window can control input/output and another can
display error messages.

There are also routines to do the following:

• Erase the entire window

• Specify the video attributes of individual characters in the window

• Open additional terminals by large applications that need to manipulate several
terminals at once

• Allow input character manipulation

• Disable and enable many input attributes

There is more detailed information about these routines in Section 1.7 of this chapter.

The XlOpen Curses Library 1-3

1.4 Naming Conventions
Many of the curses routines have two or more forms depending on whether they
apply to the default window stdscr, to a specific named window, or if cursor
movement is involved.

The routines without a prefix to their names normally manipulate s t ds cr. For
many of these routines there is a corresponding routine name prefixed with a w to
manipulate the contents of a specified window; for example, move(3cur) and
wmove(3cur), which are functionally equivalent. This naming convention is similar
to the stdio(3s) interface offered by printf and fprintf.

Routines prefixed with p require a pad argument.

Routines prefixed with w require a window or pad argument, except for
wnoutrefresh(3cur) and wrefresh(3cur), which only accept a window
argument. In these two cases, prefresh(3cur) or pnoutrefresh(3cur) must be
used if a pad is to be manipulated.

Routines prefixed with mv require y and x coordinates to move to, before performing
the appropriate action. The mv routines call move(3cur) before the call to the other
routine.

The routines prefixed with mvw require a window or pad argument and y and x
coordinates. The window argument (the pointer to the window) is always specified
before the coordinates.

1.5 Moving the Cursor
All the routines that move the cursor move it from the home position in the upper
left comer of the screen. The LINES, COLS coordinates at this point are (1,1). Note
that the vertical coordinate y is given first and the horizontal coordinate x is given
second. The upper left comer of the window is always (0,0), not (1,1).
Consequently the command move (y , x) , with y = 1 and x = 0, will move the
window cursor to the second line, first column of the screen. Note that specified
coordinates are always relative to the home position (1,1), which is the first position
on the screen that can be written to.

1.6 Environment Variables
You can employ the environment variables to define or modify definitions for
display-related values. See environ(7) for more information. The routines in the
library recognize the following environment variables:

• TERM sets the terminal type.

• TERMINFO overrides the default terminfo(5) database pathname,
/usr/lib/terminfo.

• LINES overrides the default set for the number of lines for the display by stty
or by the TERM environment variable.

• COLUMNS overrides the default set for the number of columns for the display
by stty or by the TERM envrionment variable.

You can override the environment variables supplied by environ(7) for LINES and
COLUMNS specifying the LINES and COLS general constants in your application.
See Section 2.1.2. for more information about the general constants.

1-4 The XlOpen Curses Library

Two UL TRIX facilities exist to help prepare and maintain the X/Open curses
terminals database. They are the terminfo(5) terminal capability database and the
tic(l) terminal database compiler.

1.7 Routines in the Curses Library
This section lists most of the curses routines organized according to function. The
routines prefixed with mv and mvw are not included in this list as they perform the
same functions as equivalent routines which are listed; the only difference is that they
require x and y coordinates to move to before performing the appropriate action. The
naming conventions for the routines are described in Section 1.4.

The curses routines are divided into the following functional groups:

• Setting screen characteristics

• Window manipulation

• Adding characters to windows (output to windows)

• Clearing windows and deleting characters

• Refreshing the terminal screen

• Input to windows

• Input options

• Output options

• Environment queries and terminal characteristics

• Miscellaneous routines

• Starting and ending curses programs

An alphabetical list of all the curses routines, with their required arguments, appears
in Appendix B.

The following sections describe the routines which manipulate strscr. Where
there is an equivalent routine which manipulates a named window, this routine name
is shown in parentheses.

1.7.1 Setting Screen Characteristics
These routines control the attributes of characters displayed on the screen. For more
information on attributes, see Section 2.1.3. Routines prefixed with a w for example,
wattroff, are used to manipulate the contents of a particular window.

The following routines are used to set screen attributes such as highlighting:

attroff
(wattroff)

attron
(wattron)

attrset
(wattrset)

Turns off the named attributes, attrs

Turns on the named attributes, attrs

Sets the current attributes to the named attributes

The)(JOpen Curses Library 1-5

setscrreg
(wsetscrreg)

standend
(wstandend)

standout
(wstandout)

vidattr

Sets the scrolling region for stdscr

Switches off the highlighting mode available
on the tenninal

Switches on the best highlighting mode available
on the tenninal

Outputs a string that sets the video attributes for the tenninal

1.7.2 Window Manipulation

The following routines are used to create, delete, and move windows:

delwin

movewin

newpad

newwin

overlay

overwrite

subwin

Deletes a named window.

Moves a window, with upper left comer at given
coordinates.

Creates a new pad.

Creates a new window.

Copies text from one window to another. Blanks are not
copied so this does not destroy all the contents of the original
window.

Copies all of one window on top of another window. Blanks are
copied as well so this destroys all the contents of the original
window.

Creates a subwindow.

1.7.3 Adding Characters to Windows (Output to Windows)

The following routines either move the cursor to a specified position and add
characters to a window, or they add characters at the current cursor position:

addch
(waddch)

mvaddch
(mvwaddch)

addstr
(waddstr)

1...;t; The)(JOpen Curses Library

Inserts a character into stdscr at current cursor
position.

Moves the cursor to a specified position and inserts
a character.

Writes the characters of a null-tenninated character
string on to stdscr at the current cursor position.

mvaddstr
(wmvaddstr)

printw
(wprintw)

mvprintw
(mvwprintw)

insch
(winsch)

insertln
(winsertln)

mvinsch
(wmvinsch)

move
(wmove)

Writes the characters of a string to a specified position
on the screen.

Adds a string to stdscr at the current cursor position.
The printw routines are analogous to prinft(3s).

Adds a string to stdscr starting at the specified cursor
position.

Inserts a character at the current cursor position in
stdscr.

Inserts a blank line above the current line on stdscr.

Moves the cursor to specified position in stdscr
and inserts a character.

Moves the cursor associated with stdscr to a specified
position.

1.7.4 Clearing Windows and Deleting Characters
The following routines are used to clear windows or parts of windows, and to delete
individual characters and lines:

clear
(wclear)

clrtobot
(wclrtobot)

clrtoeol
(wclrtoeol)

clearok

delch
(wdelch)

mvdelch
(wmvdelch)

deleteln
(wdeleteln)

erase
(werease)

Resets the whole of stdscr to blanks, and sets the
current (y,x) coordinates to (0,0). On the next call
to refresh(3cur), the terminal screen is cleared.

Begins at the current cursor position and clears the
rest of the screen to blanks.

Erases the current line from the cursor onwards.

If true is specified, screen clearing is enabled. If a window is
specified, the next call to wrefresh completely clears that
window.

Deletes the character under the cursor at the current
cursor position.

Moves the cursor to a specified position and deletes
the character there.

Deletes the whole of the line that the cursor is on.

Copies blanks to every position on stdscr.

The)(JOpen Curses Library 1-7

1.7.5 Refreshing the Terminal Screen
The characters on a window are transferred to the screen when one of the following
routines is called to refresh it:

prefresh

pnoutrefresh

refresh

wrefresh

wnoutrefresh

leaveok

Copies a named pad to the terminal screen

Copies a named pad to stdscr, compares it with the terminal
screen, and then optimally updates the terminal screen

Copies stdscr to the terminal screen

Calls wnoutrefresh

Copies a named window to stdscr, compares it with the
terminal screen, then calls doupdate to update the terminal
screen in an efficient way

Allows the cursor to be left wherever the update happens to
leave it

Note that there is no definition for the routine doupdate, as it is a routine which is
called by other routines, and is not called directly by the programmer.

1.7.6 Input to Windows
The following routines are used to read characters from the current terminal as input
for stdscr or a named window:

getch
(wgetch)

mvgetch
(mvwgetch)

getstr
(wgetstr)

mvgetstr
(mvwgetstr)

1.7.7 Input Options

Reads a character from the terminal associated with stdscr

Reads a character from the specified position on
stdscr

Reads characters from the terminal associated with stdscr,
until a newline or carriage return is received

As getstr, but moves the cursor to a specified
position in stdscr to read a string

The interpretation of characters typed by the user can be controlled by the following
curses routines:

1-8 The XlOpen Curses Library

cbreak

nocbreak

echo

noecho

flushinp

nl

nodelay

non I

raw

noraw

typeahead

1.7.8 Output Options

The erase/kill characters typed by the user are not interpreted

Disable cbreak mode

Enables echoing of characters typed by the user

Disables echoing

Discards any typeahead that has not been read by the program

Enables the newline character to be translated to a newline on
input

Enables getch to be a non-blocking call (it does not return an
error if there are no characters waiting)

Disables nl on input

In raw mode, the characters are passed to the program as they
are typed and there is no interpretation of control characters

Disables raw mode

If enabled, the program accepts typeahead input while updating
the screen

The output to the screen can be controlled by the following routines:

beep

flash

draino

intrflush

napms

nl

Sounds the audible alarm on the terminal, otherwise flashes the
screen

Flashes the screen if possible, otherwise it sounds the audible
alarm

Causes a short delay in output which can be specified
(in milliseconds)

Waits until there is a specified (milliseconds) amount of output
left in the output queue

If enabled, flushes all output in the tty driver queue when an
interrupt key is pressed

Causes a program to sleep for a specified number of
milliseconds

When enabled, causes a newline to be translated into a carriage
return and a line-feed on output

The XlOpen Curses Library 1-9

nonl

unctrl

Disables nl

Expands a character into a character string which is a printable
representation of the character, for example, control characters
are expressed as A X

1.7.9 Environment Queries and Terminal Characteristics

The following routines are used for getting information about the current terminal
characteristics:

baudrate

erasechar

getyx

idlok

inch
(winch)

mvinch
(mvwinch)

keypad

long name

meta

Returns the terminal baudrate

Returns the user's current erase character

Gets the cursor position

Determines if the terminal has insert/delete
line capabilities

Returns the value TRUE if the terminal has insert/delete
line capabilities

Enables the use of insert/delete line if the terminal has these
capabilities

Returns a character at the current cursor position
in stdscr

Returns a character at a specified position in stdscr

Enables the terminal keypad so that the function keys can return
a single value to the curses program

Returns the full name of the terminal type

On input, forces the user's terminal to return 7 significant bits if
FALSE or 8 significant bits if TRUE

1.7.10 Miscellaneous Routines
The following routines offer additional functions for curses programs:

1-10 The XlOpen Curses Library

def_prog_mode Saves current terminal modes as the program if the terminal is
running under curses. Used by the reset prog mode
routine when the user makes a temporary exit from the curses
program.

def_shell_mode Saves current terminal modes as the shell if the terminal is not
running under curses. Used by the reset_sheIl_mode
routine.

mvcur Performs low-level cursor movement.

newterm Opens a new terminal.

setupterm Performs low-level terminal set up.

1.7.11 Starting and Ending Curses Programs

The routine ini tscr must be called at the beginning of all curses programs to
initialize the terminal. The routine endwin must be called at the end of every curses
program to restore the terminal to the state it was in before running the curses
program.

initscr

endwin

Initializes all terminal data structures

Restores initial terminal environment after exiting from the
curses program

The X/Open Curses Library 1-11

Programming with the Curses Routines 2

This chapter covers the following topics:

• The <cursesX.h> header file

• Return values

• Terminfo and the curses package

• Basic program elements

• Controlling input

• Compiling programs

• Restrictions on terminals

2.1 The <cursesX.h> Header File
The curses library package supports a procedural interface to all of the defined data
types, so the actual structures of the data types are not described. All the curses data
is manipulated using the routines provided by the curses library package.

The data types are defined in the <cursesX. h> header file which must always be
included whenever X/Open curses routines are used in a program. The
<cursesX. h> header file also includes the header file <stdio. h> which uses the
standard Input/Output library.

The <cursesX. h> header file also defines various global constants and the
combinations of routines which make up the curses macros. General constants, video
attribute constants, and input constants are described later in this chapter.

2.1.1 Data Types
The following data types are declared:

Data Type

WINDOW*
SCREEN*
bool
chtype

Description

Pointer to the screen representation, stdscr
Pointer to terminal descriptor, curser
Boolean data type
Representation of a character in a window

The actual WINDOW and SCREEN objects used to store information are created by the
corresponding routines and a pointer to them is provided. All manipulation is
through that pointer. The data type chtype contains both data and attributes for an
individual character.

2.1.2 General Constants
The following general constants are defined:

Constant Description

COLS
ERR
FALSE
LINES
OK
NULL
TRUE

Number of columns on terminal screen
Value returned on error condition
Boolean false value
Number of lines on terminal screen
Value returned on successful completion
Zero pointer value
Boolean true value

The integer variables LINES and COLS are set up so that when a curses program is
run on a particular terminal, these variables are assigned the vertical and horizontal
dimensions of the current terminal screen. The routine ini tscr (3cur) is used
for assigning these dimensions.

2.1.3 Video Attribute Constants
The window stdscr has a set of current attributes which it associates with each
character as it is written. The current attributes can be changed by using
attrsett(3cur) and related routines such as attron(3cur) and attroff(3cur).
The attributes can also be ORed with the bitwise OR (I) to addch (3 cur). The
following constants (and the attributes they define) can be passed to the appropriate
curses routines:

Constant

A_BLINK
A_BOLD
A_DIM
A_REVERSE
A_STANDOUT
A_UNDERLINE
A_A TTRIBUTES
A_CHARTEXT

Description

Blinking
Extra bright or bold
Half bright
Reverse video
Terminal's best highlighting mode
Underlining
Bit-mask to extract attributes
Bit-mask to extract a character

Not all terminals are capable of displaying all attributes. If a terminal can not display
a requested attribute, a curses program attempts to find a substitute. If no substitute is
available, then the attribute is ignored. An attribute can be used on its own or in
combination with other attributes.

The characters passed to some of the curses routines are of the type chtype, as
defined in the <cursesX. h> header file. This data type contains both data and
attributes for an individual character.

2-2 Programming with the Curses Routines

2.1.4 Input Constants
When keypad(3cur) is enabled, and you press a function key such as the left arrow
key, the routine getch(3cur) returns a single value, representing the function key, to
the program. For example, when you press the left arrow key, the keypad(3cur)
routine returns a value of KEY_LEFT to the program. The <cursesX. h> header
file contains the definitions of possible function keys. All of the definitions begin
with KEY_.

If the curses program receives a character that could be the beginning of the sequence
for a function key, it sets a timer. If it does not receive the rest of the sequence for
the function key within the designated time, the character is passed to the program as
a single character. If the rest of the sequence does arrive, the value for the function
key is returned. This explains why on many terminals there is a delay in returning
escape to a program after the escape key has been pressed.

If keypad(3cur) is disabled, the curses program does not treat function keys as
special keys.

Table 2-1 shows the constants that can be returned by getch(3cur) if keypad(3cur)
is enabled. Note that some of the function keys in Table 2-1 are not supported on a
particular terminal if:

• The terminal does not transmit a unique code when the key is pressed

• The definition for the key is not present in the underlying table of terminal
capabilities

2.1.5 The Virtual Keypad

The virtual keypad is arranged in the following way:

Al up A3

left B2 right

Cl down C3

The layout of a keypad is terminal dependent, especially the part associated with the
cursor movement keys (the arrow keys). The curses package provides a set of generic
keys, for example KEY_AI, which is defined in this example as the upper left key of
the virtual keypad.

The code sequence transmitted when a particular function key is pressed, depends on
how the terminal has been set up. A key in a particular virtual position can transmit
different code sequences depending on which terminal is being used. The curses
program finds out about the function keys by using information provided by the
terminfo database and routines (see Section 2.3 for more information).

2.2 Return Values
Unless there is a note to the contrary in the reference page descriptions, the following
return values apply:

Programming with the Curses Routines 2-3

• All routines return the value OK upon successful completion

• All routines return the value ERR on failure

• Routines that return pointers always return the NULL pointer on error

The keypad return constants are shown in Table 2-1. All these constants are defined
in the <cursesX. h> header file (see Section 2.1).

Table 2-1: Keypad Return Constants

Constant
KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT

KEY_HOME
KEY_BACKSPACE
KEY_FO
KEY_F(n)
KEY_DL

KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR

KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE

KEY_LPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER

KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL
KEY_AI

KEY_A 3
KEY_B2
KEY_Cl
KEY_C3

Description

Break key
Down arrow key
Up arrow key
Left arrow key
Right arrow key

Home key (upward+left arrow)
Backspace
Function keys; space is reserved for 64 keys
(KEY _FO+(n»
Delete line

Insert line
Delete character
Insert character or enter insert mode
Exit insert character mode
Clear screen

Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page

Previous page
Set tab
Clear tab
Clear all tabs
Enter or send

Soft (partial) reset
Reset or hard reset
Print or copy
Home down or bottom (lower left)
Upper left of virtual keypad

Upper right of virtual keypad
Center of virtual keypad
Lower left of virtual keypad
Lower right of virtual keypad

2-4 Programming with the Curses Routines

2.3 Terminfo and the Curses Package
This section provides the following:

• What information is needed about the current terminal

• Where that information can be found

• How the curses routines use that information

The curses routines update the screen in a way appropriate for the terminal on which
the program is running. The programmer does not need to know the detailed
terminal characteristics of the different terminal types that can be updated.

The curses program searches the t e rmi n f 0 database to find the correct description
for a terminal.

2.3.1 What Is Terminfo?
The term terminfo applies to two things:

• A group of routines within the curses library that handle certain terminal
capabilities

• A database containing descriptions of many terminals that can be used with
curses programs

The terminfo routines can be used to program function keys, if the terminal has
programmable keys.

The terminfo database contains descriptions of many terminals that can be used with
curses programs. The database contains information such as the number of lines and
columns on a terminal screen and how control characters are interpreted. Each
terminal description in the database is a separate compiled file.

2.3.2 How Curses and Terminfo Work Together

A screen-management program written using curses routines needs certain
information about the terminal on which it is currently running. The program gets
the terminal type from the environment variable TERM. You can supply TERM when
you log in, or you can set it up and export it in your. profile file.

When the program finds the value of TERM it searches the terminfo database to find
the correct terminal description. For example, if the standard library for the database
is /usr/lib/terminfo and TERM is set to vt100, then the compiled file will be
normally be found in /usr / lib/terminfo/v /vt100. The directory name v is
copied from the first letter of vt100 to avoid creation of huge directories.

If the environment variable TERMINFO is defined, any program using curses routines
will check for a local terminal definition before checking in the standard libraries.

For example, if TERMINFO is set to /usr /mark/myterms, then the curses
program will first check /usr/mark/myterms/v/vt100, and if that fails will
check / u s r / 1 ib / t e rmi n f 0/ v / vt 1 0 O. This facility is useful for developing
experimental definitions or when write permission is not available in
/usr/lib/terminfo.

The terminfo routines are very low level and their use in programs is not encouraged.
There is more information in the intro(3cur) reference page if it is required.

Programming with the Curses Routines 2-5

2.4 Basic Program Elements
A screen-management program needs to include the following elements:

• The <cursesX. h> header file

• The routine ini tscr(3cur)

• The routine refresh(3cur) or other related routines

• The routine endwin(3cur)

These basic elements respectively do the following tasks:

• Start the screen-handling process

• Update the contents of the screen in the most efficient way

• Exit from the screen-handling routines

The program uses the environmental variable TERM to determine the type of terminal
being used.

2.4.1 The <cursesX.h> Header File
The <cursesX. h> header file defines various global constants and declares the data
types which are available to an application. The default window, stdscr, which is
the same size as the current terminal screen, is also provided by the header file.

Note that you can override the variables set up in the header file by defining in your
program your own environment variables such as LINES and COLS. This is useful
if you want to change the official size of a terminal screen.

Note

You can set default sizes for windows (the lines and columns) by setting
the runtime environment variables LINES and COLUMNS. See Section
1.6 for more information about these environ(7) environment
variables.

2.4.2 The Routine initscr(3cur)
The curses program calls the routine ini tscr(3cur) to allocate memory space for
the windows. However, it should call this routine only once as it can overflow
available memory if it is called repeatedly. The routine returns ERR if this happens.

Once the routine has allocated memory space, it initializes all the declared data
structures and other variables from the <cursesX. h> header file, writes any error
messages to s t de r r and exits if errors occur.

You should always call the routine to initialize the terminal before calling any of the
routines that operate on windows. If possible, you should call the routine after
checking for start-up errors. However, be sure to call any routines that change the
status of the terminal after you call ini t scr(3cur).

2-6 Programming with the Curses Routines

Note

The first call to ini tscr(3cur) after changing the official size of the
screen deletes the default windows stdscr and curser before
creating new ones. As a consequence, if these present default windows
are important, you should change the size of the screen by adjusting the
variables LINES and COLS before this first call to ini tscr(3cur).

2.4.3 Routines Providing Output for Writing to stdscr

The following routines add data to windows. The curses program does not transfer
any of the data onto the terminal screen until the routine re f re s h(3cur) is called.

addch(3cur) Writes one character to stdscr

addstr(3cur) Adds a character string to stdscr

move(3cur) Moves the cursor and prints characters

printw(3cur) Formats a string

Note that for each routine that acts on stdscr there is a related routine in the
library for writing to a named window or pad.

2.4.4 Routines for Clearing Windows

The following routines clear all or part of a window. The terminal screen is not
affected until the program calls refresh(3cur).

clear(3cur) Clears the default window to blanks and sets the current
(y,x) coordinates to (0,0)

erase(3cur) Copies blanks to every position in the default window

cltoeol(3cur) Clears to the end of the cursor line

clrtobot(3cur) Clears to end of screen

Note that for each routine that acts on s t ds c r there is a related routine in the
library for clearing a named window.

2.4.5 Routines for Reading from the Current Terminal

The following routines provide input to a window from the current terminal:

getch(3cur)

getstr(3cur)

Reads one character at a time from the terminal associated
with the default window stdscr

Reads a string terminated by a carriage return
from the terminal associated with stdscr

Programming with the Curses Routines 2-7

scanw(3cur) Parses input, converting and assigning selected data
to an argument list

Note that for each routine which reads from the terminal associated with stdscr
there is a related routine which reads characters from the terminal associated with a
specified window.

2.4.6 Updating the Physical Terminal Screen

The routine refresh(3cur) is called to update the physical terminal screen. This
routine takes into account what is already on the terminal screen in order to optimize
cursor movement to update the screen.

The routine moves the cursor back to the window's current (y,x) co-ordinates after it
has updated the window. Use leaveok(3cur) if you want to leave the cursor in its
last position when you update the window.

The routine uses the contents of stdscr to update the terminal screen. There are
other routines for using the contents of specific windows and pads to update the
terminal screen (see Section 1.7.5).

2.4.7 Ending a Curses Program

The routine endwin(3cur) restores all terminal settings to what they were prior to
running the curses program and positions the cursor at the lower left comer of the
screen.

Note
You should not use Input/Output routines or system calls from other
libraries in a curses program. The curses library provides its own set of
input and output functions which support procedural interfaces to all the
data types defined in the <cursesX. h> header file. If you try to use
other Input/Output routines or system calls such as read(2) and
wr i te(2) in a curses program, they may cause undesirable results when
you run the program.

2.5 Controlling Input
While a curses program is running, it takes over the standard UL TRIX character
mode processing in order to maintain total control over the screen.

Normal character mode processing of a character occurs before the character is passed
to an application. The processing includes the following features:

• Echoing characters to the terminal as they are typed

• Interpreting the erase line and line kill characters

• Interpreting a CTRL/D as the end of file

• Interpreting the interrupt and quit characters

• Stripping a character's parity bit

• Translating a carriage return to a newline

2-8 Programming with the Curses Routines

The curses program turns echoing off and takes over all the echoing itself, in order to
maintain total control over the screen. The routines noecho(3cur) and
cbreak(3cur) change the standard character processing. They are used to control
how input is interpreted. The routine noecho(3cur) turns off echoing at the current
cursor position and echoes characters at the bottom of the screen. The routine
cbreak(3cur) turns off the interpretation of erase and kill characters.

A curses program always starts up in echo mode, but the other modes must be
specifically set up if they are required.

Most interactive screen programs need character-at-a-time input without echoing. To
achieve this, the following routines should be called at the beginning of a curses
program:

nonl () ;
cbreak() ;
noecho();

The routine non 1 (3cur) disables the newline control translations so that a carriage
return is not translated into a newline on input.

2.6 Compiling Programs
You can compile a curses program using the c c(1) command. Use the -1 option to
direct the link editor to the curses library.

The syntax for compiling programs written using curses routines is:

cc [options] files -lcursesX [libraries]

A specific example of compiling the file, cursesyrog. c using the cursesX
library would be:

cc curses~rog.c -lcursesX

2.7 Restrictions on Terminals
Some restrictions may apply when writing applications used for driving synchronous,
networked asynchronous or non-standard directly connected asynchronous terminals.

These terminals often communicate with the host in block-mode, which means that
characters are not transmitted to the host one at a time as they are typed. In block
mode, the user types characters at the terminal then presses a special key to initiate
transmission of all the characters to the host.

However, it may not be possible or desirable to cause a character to be transmitted
with only a single keystroke. Single keystroke character transmission can cause
severe problems with an application using single character input (see Section 2.7.2).

2.7.1 Output
The curses package can be used in the normal way for all output operations to the
terminal, with the possible exception that on some terminals the refresh(3cur)
routine may have to redraw the entire screen contents in order to perform any update.

Programming with the Curses Routines 2-9

2.7.2 Input
Because of the nature of operation of synchronous (block-mode) and networked
asynchronous terminals, it may not be possible to support all or any of the curses
input functions. In particular, the following points should be noted:

• Single character input may not be possible. It may be necessary to press a
special key to cause all characters typed at the terminal to be transmitted to the
host.

• It may not be possible to disable echo. Character echo may be performed
directly by the terminal.

On terminals that perform character echo, programmers writing curses applications
which get input from the terminal should be aware that any characters typed will
appear on the screen at the physical cursor position. This may not necessarily
correspond to the position of the cursor in the window.

2-10 Programming with the Curses Routines

Annotated Example Programs A

This appendix contains two short example programs. The programs are annotated to
show the functions of the different routines as they are called.

A.1 Example Program 1
This short program displays the word MIDSCREEN in the center of the terminal
screen. To illustrate the various steps, the word is added in two stages.

/* Include the header file */
#include <cursesX.h>
main ()
{

/* Initialize terminal settings, data
**structures and variables */

initscr();

/* Move the cursor to given coordinates on
**stdscr */

move (LINES/2 -1, COLS/2 -4);

/* Add the string "MID" to stdscr */
addstr ("MID")

/* Send output from stdscr to update
**terminal screen */

refresh() ;

/* Add the string "SCREEN" to stdscr. stdscr now
** contains the whole string "MIDSCREEN",
**but the terminal screen only
**shows "MID" */

addstr (" SCREEN")

/* Send more output to the terminal screen
**from stdscr */

refresh();

/* Restore all terminal settings to what they
were before the curses program ran */
endwin();
}

A.2 Example Program 2
This program displays an asterisk at a random point on the screen, waits for a space
to be typed, and loops. Input is read one character at a time, with echo turned off.

1*
** stars.c
** curses demonstration program
*1

1* Include the header file *1
#include <cursesX.h>

#include <signal.h>

extern void srand();
extern void exit();
1*
** trap ()
** invoked on receipt of interrupt signal
** reset terminal modes and exit
*1
trap (sig)
int sig;
{

(void) endwin () ;
exit(sig);

main ()
{

int Xi

int y;

1* Trap interrupts *1
(void) signal (SIGINT, trap);

1* Initialize terminal *1
(void) initscr();

1* Set terminal for character at a time
** input without echoing *1

(void) noecho();
(void) cbreak () ;
(void) clear () ;

1* Seed the random number generator *1
srand((unsigned) getpid(»;

1* Loop *1
for (ii) {

1* Generate random
**coordinates *1

y = rand() % LINES;
x = rand() % COLS;

1* Move cursor to given
**coordinates *1

void)move(y, X)i

1* Add ,*, to stdscr *1
(void) addch('*');

A-2 Annotated Example Programs

1* Update terminal screen *1
(void) refresh()i

1* Wait for space to be typed *1
while (getch () != , ') i

1* not reached *1

Annotated Example Programs A-3

Comparison with BSD 4.2 Curses Routines B

This appendix contains the following:

• A list of the major differences between the X/Open and the BSD 4.2 routines

• Information on how to convert programs using BSD curses routines so that they
can use X/Open curses routines

• An alphabetical list of all the XlOpen routines side by side with the BSD
routines

B.1 Differences Between the X/Open Routines and the BSD 4.2
Routines

The XlOpen routines coexist with the BSD 4.2 routines which were written before
the requirement that routines conform to X/Open standards. The XlOpen routines
retain all the functionality of the BSD routines but with the following additional
features:

• The addition of the mv functions such as mvaddch(3cur)

• Eight-bit data transparency for internationalization

• Compatibility with AT&T System V, Release 2

B.2 Converting BSD 4.2 Programs to Use X/Open Routines
It is possible to convert programs which use BSD 4.2 routines so that they can use
the XlOpen routines. Programs written using XlOpen routines cannot use the BSD
routines.

Programs written using the BSD 4.2 routines use the /usr / lib/ libtermcap. a
library. Some routines are included in the XlOpen library as a conversion aid for
programs that have used the BSD 4.2 termcap library. These routines have the same
parameters as those in the termcap library, and are emulated using the terminfo
database. The routines provided for conversion purposes are:

Routine

tgetent(bp,name)
tgetflag(id)
tgetnum (id)
tgetstr(id,area)
tgoto(cap,col,row)
tputs(cap,affcnt,fn)

Function

Look up termcap entry for name
Get boolean entry for id
Get numeric entry for id
Get string entry for id
Apply parms to given cap
Apply padding to cap calling fn as putchar

Note

These routines are not defined in X/Open and should not be used in new
programs using the X/Open curses routines.

To convert a BSD 4.2 curses program, compile it using the <cursesX. h> header
file.

To aid compatibility between the two sets of curses routines, the object module
termcap.o has been provided in /usr / lib/termcap. o. This module should
be linked into an application before resolving against the X/Open curses library. If
your application references variables, such as UP, then you should also recompile
using:

cc [flags] files /usr/lib/termcap.o -lcursesX [libs]

B.3 List of BSO 4.2 Routines and X/Open Routines
Table B-1 lists the BSD 4.2 routines alpabetically with the corresponding X/Open
routines. For more information on the naming conventions used for the curses
routines, see Section 1.4.

To save repetition in the table, the functions prefixed with mv or mvw are not defined.
These routines move the cursor and then perform the same functions as the routines
which are described for stdscr or a named window. For example, the routine
mvaddch moves the cursor and adds a character to stdscr in the same way as
addch. The routine mvwaddch, moves the cursor to the specified coordinates in a
named window and adds a character in the same way as addch.

Table 8-1: 8S0 4.2 Routines and X/Open Routines

BSD Curses X/Open Curses Function

addch(ch) addch(ch) Adds a character to
stdscr

addstr(str) addstr(str) Adds a string to stdscr

attroff(attrs) Turns off named attributes

attron(attrs) Turns on named attributes

attrset(attrs) Sets current attributes to attrs

baudrateO Displays current terminal speed

beepO Sounds beep on terminal

box box Draws a box around a window
(win, vert,hor) (win,vert,hor)

cbreakO Sets cbreak mode

clearO clearO Clears stdscr

8-2 Comparison with BSD 4.2 Curses Routines

Table 8-1: (continued)

BSD Curses XlOpen Curses Function

clearok clearok Sets clear flag for
(scr,boolf) (win,bf) stdscr

clrtobotO clrtobotO Clears to bottom of stdscr

clrtoeolO clrtoeolO Clears to end of line on
stdscr

crmodeO see cbreak Sets cbreak mode

delay_output(ms) Inserts millisecond pause
(ms) in output

delchO delchO Deletes a character

deletelnO deletelnO Deletes a line

delwin(win) delwin(win) Deletes win

echoO echoO Sets echo mode

endwinO end win Ends window modes

eraseO erase Erases stdscr

erase char Returns user's erase
character

fixtermO Restores terminal to
its "in curses" state

flashO Flashes screen or beep

flushinp Throws away any typeahead

getchO getchO Gets a char through tty

getcap(name) Gets the terminal capability

getstr(str) getstrO Gets a string from
stdscr

gettmodeO gettmode Establishes current tty modes

getyx getyx Gets (y,x) co-ordinates
(win,y,x) (win,y,x)

has_icO True if terminal can do
insert character

has_ilO True if terminal can insert line

Comparison with BSO 4.2 Curses Routines B-3

Table B·1: (continued)

BSD Curses X/Open Curses

idlok(win, bf)

inchO inchO

initscrO initscrO

insch(c) insch(c)

insertlnO insertlnO

intrflush
(win,bf)

keypad(win, bf)

killcharO

lea veok(win,boolf) lea veok(win,flag)

longname
(termbuf,name)

move(y,x)

longnameO

meta(win,flag)

move(y,x)

mvaddch
(y,x,ch)

mvaddstr
(y,x,str)

mvcur(oldrow,
oldcol,newrow,
newcol)
newx)

mvdelch(y,x)

mvgetch(y,x)

mvgetstr(y,X)

B-4 Comparison with BSD 4.2 Curses Routines

Function

Uses terminal's insert/delete
line if bf !=O

Gets char at current (y,x)
co-ordinates

Initializes screens

Inserts a character

Inserts a line

Interrupt flushes output
ifbfis TRUE

Enables keypad input

Returns user's current
kill character

Leaves cursor anywhere after
refresh, if flag !=o for win.
Otherwise, cursor must be left
at current cursor position

Returns verbose name of
terminal

Allows meta characters on
input if flag ! =0

Moves the cursor to (y,x) on stdscr

Low level cursor motion

Table 8-1: (continued)

BSD Curses X/Open Curses Function

mvinch(y,x)

mvinsch(y,x,ch)

mvprintw
(y ,x,fmt,args)

mvscanw
(y ,x,fmt,args)

mvwaddch
(win,y,x,ch)

mvaddstr
(win,y,x,str)

mvwdelch
(win,y,x)

mvwgetch
(win,y,x)

mvgetstr
(win,y,x)

mvwin
(win,by,box)

mvwinsch
(win,y,x,ch)

mvwprint
(win,y ,x,fmt,args)

mvwscanw
(win,y ,x,fmt,args)

newpad Creates a new pad with
(nlines,ncols) given dimensions

newterm Sets up a new terminal of given type
(type,fd) to output on fd

newwin newwin Creates a new window
(lines,coIs, (lines,cois
begin_y,begin_x) begin_y,begin_x)

niO niO Sets newline mapping

nocbreakO Unsets cbreak mode

Comparison with BSD 4.2 Curses Routines ~

Table 8-1: (continued)

BSD Curses x/Open Curses

nocrmodeO see nocbreak

noechoO noechoO

nonlO nonlO

norawO norawO

overlay overlay
(winl, win2)

overwrite overwrite
(winl,win2) (winl,win2)

pnoutefresh
(pad,pminrow,
pmincol,sminrow,
smincol,smaxrow,
smaxcol)

prefresh
(pad,pminrow,
pmincol,sminrow,
smincol,smaxrow,
smaxcol)

printw printw
(fmt,argl. ..) (fmt,argl. ..)

rawO rawO

refreshO refreshO

resettermO

resettyO resettyO

savetermO

savettyO savettyO

scanw scanw
(fmt,argl. ..) (fmt(argl. ..)

scroll(win) scroll(win)

scrollok scrollok

8-6 Comparison with aso 4.2 Curses Routines

Function

Unsets cbreak mode

Unsets echo mode

Unsets newline mapping

Unsets raw mode

Overlays window I on window2
(winl,win2)

Overwrites window I on top of
window2

Like prefresh but with no
output until doupdate called

Refreshes from pad, starting with
given upper left comer of
pad with output to given
portion of screen

The same as printf(3s) on stdscr

Sets raw mode

Makes current screen look
like stdscr

Sets tty modes to
its out of curses state

Resets tty flags to stored
value

Saves current modes as
the in curses state

Stores current tty flags

The same as scanf(3s) through stdscr

Scrolls win one line

Allows terminal to scroll if flag !=O

Table 8-1: (continued)

BSD Curses XlOpen Curses Function

(win,boolf) (win,fiag)

setterm(name) see set_term Sets term variables for name

set_term(new) Switches between different
variables

setsccreg(t,b) Sets user scrolling regions
to lines t through b

setupterm Low level terminal setup
(term,filenum,
erret)

standendO standendO Ends standout mode

standoutO standoutO Starts standout mode

subwin(win, subwin(win, Creates a subwindow
lines,cols, lines,cols,
begin_y,begin_x) begin_y, begin_x)

touchwin(win) touchwin(win) Changes all of the specified
window

traceoffO Turns off debugging trace
output

traceonO Turns on debugging trace
output

typeahead(fd) Uses file descriptor fd
to check typeahead

unctrl(ch) unctrl(ch) Produces printable version
of ch

waddch(win,ch) waddch(win,ch) Adds a character to win

waddstr(win,str) waddstr(win,str) Adds a string to win

wattroff(win,attrs) Turns off attributes in win

wattron(win,attrs) Turns on attributes in win

wattrset(win,attrs) Sets attributes in win

wclear(win) wclear(win) Clears win

wclrtobot(win) wclrtobot(win) Clears to bottom of win

Comparison with BSO 4.2 Curses Routines B-7

Table 8-1: (continued)

BSD Curses X/Open Curses Function

wclrtoeol(win) wclrtoeol(win) Clears to end of line on win

wdelch(win,c) wdelch(win) Deletes a character from win

wdeleteln(win) wdeleteln(win) Deletes a line from win

werase(win) werase(win) Erases win

wgetch(win) wgetch(win) Gets a char from win

wgetstr wgetstr Gets a string from win
(win,str) (win,str)

winch(win) winch(win) Gets a character at current (y,x)
in named window

winsch winsch Inserts a character into window
(win,c) (win,ch)

winsertln winsertln Inserts line into window
(win) (win)

wmove wmove Gets current (y,x) co-ordinates
(win,y,x) (win,y,x) on window

wnoutrefresh Refreshes but no screen output
(win)

wprintw wprintw The same as printf(3s) on win
(win,fmt, (win,fmt,
arg 1 ,arg2 ..) argl,arg2 ...)

wrefresh(win) wrefresh(win) Makes screen look like stdscr

wscanw wscanw The same as scanf(3s) through win
(win,fmt, (win,fmt,
argl,arg2, ...) arg 1 ,arg2 ...)

wsetscrreg Sets scrolling region of win
(win,t,b)

wstandend wstandend Ends standout mode on win
(win) (win)

wstandout wstandout Starts standout mode on win
(win) (win)

B-8 Comparison with BSD 4.2 Curses Routines

A

addch(3cur)

macro, 1-3

attributes, 2-2

attroff(3cur)

macro, 2-2

attron(3cur)

macro, 2-2

attrsett(3cur)

macro, 2-2

8

bool

data type, 2-1

c
character

echo, 2-8, 2-10

transmission, 2-9

chtype

data type, 2-1, 2-2

COLS, 2-2

compiling, 2-9

curses

BSD 4.2 routines list, B-1

example programs, A-I

naming conventions, 1-3

XlOpen routines list, B-1

cursesX.h header file, 2-6

cursor

coordinates, 1-4

home position, 1-4

movement, 1-4

cursor (cont.)

optimization, 1-1

E

endwin(3cur)

subroutine, 2-8

ERR,2-2

example programs

curses, A-I

F

FALSE,2-2

function key

G

return value, 2-3

virtual keypad, 2-3

getch(3cur)

macro, 2-2

initscr(3cur)

subroutine, 2-2, 2-6

input

single character, 2-10

input values, 2-2

Index

K

keypad

virtual, 2-3

keypad(3cur)

subroutine, 2-2

L

leaveok(3cur)

subroutine, 2-8

LINES, 2-2

M

move(3cur)

macro, 1-3

N

newwin(3cur)

subroutine, 1-3

nonl(3cur)

subroutine, 2-8

NULL,2-2

o
OK,2-2

R

refresh(3cur)

macro, 1-3, 2-8

s
SCREEN

data type, 2-1

screen

updating, 1-2 to 1-3

with user input, 1-2

Index-2

T

TERM

variable, 2-5

terminals

restrictions, 2-9

synchronous networked asynchronous, 2-9

TERMINFO

variable, 2-5

TRUE,2-2

v
video attributes, 2-2

virtual keypad, 2-3

w
window

adding data to, 1-3

creating; 1-3

WINDOW

data type, 2-1

window

x

default

curser, 1-3

stdscr, 1-3

X/Open curses library, 1-1

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMOjE15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Guide to XlOpen curses

Screen Handling
AA-L Y27B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _____ _

Namerritle _____________________ _ Dept. ______ _
Company ___________________________________ _ Date _____ _

Mailing Address __________________________________ _

____________ Email ____________ Phone

-- - - - -. Do Not Tear - Fold Here and Tape

IJOmDOlD1M
-----------------------------[[l-[ll----------::::::A~E----

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111111.1111 hll.11I IIlIlIhlllhlli II II .llId .111.1

-------. Do Not Tear - Fold Here .---{

Cut
Along
Dotted
Line

Reader's Comments ULTRIX
Guide to XlOpen curses

Screen Handling
AA-L Y27B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual? _____________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Nameffitle ______________________ Dept.

Company _________________________ Date

Mailing Address
____________ Email ___________ Phone

- - - - - - . Do Not Tear - Fold Here and Tape

lamaamDTM -----------------------------111-111----------:::::::::---

NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIh Ih 11111111111111111 h 1IIIIIh 11111 dlill

- - - - - - _. Do Not Tear - F.old Here . --

Cut
Along
Dotted
Line

