ULTRIX

Reference Pages
Section 3: Library Routines

Order Number: AA-LY16B-TE

ULTRIX

Reference Pages Section 3: Library Routines

Order Number: AA-LY16B-TE
June 1990

Product Version: ULTRIX Version 4.0 or higher

This manual describes the routines available in the ULTRIX libraries for programmers on
both RISC and VAX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1988, 1990
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

mn@nan DECUS ULTRIX Worksystem Software
DECwindows UNIBUS

CDA DTIF VAX

DDIF MASSBUS VAXstation

DDIS MicroVAX VMS

DEC Q-bus VMS/ULTRIX Connection

DECnet ULTRIX VT

DECstation ULTRIX Mail Connection XUI

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers.
System V is a registered trademark of AT&T.

UNIX is a registered trademark of AT&T in the USA and other countries.

About Reference Pages

The ULTRIX Reference Pages describe commands, system calls, routines, file
formats, and special files for RISC and VAX platforms.

Sections

The reference pages are divided into eight sections according to topic. Within each
section, the reference pages are organized alphabetically by title, except Section 3,
which is divided into subsections. Each section and most subsections have an
introductory reference page called intro that describes the organization and
anything unique to that section.

Some reference pages carry a one- to three-letter suffix after the section number, for
example, scan(lmh). The suffix indicates that there is a ‘‘family’’ of reference
pages for that utility or feature. The Section 3 subsections all use suffixes and other
sections may also have suffixes.

Following are the sections that make up the ULTRIX Reference Pages.

Section 1: Commands

This section describes commands that are available to all ULTRIX users. Section 1 is
split between two binders. The first binder contains reference pages for titles that fall
between A and L. The second binder contains reference pages for titles that fall
between M and Z.

Section 2: System Calls

This section defines system calls (entries into the ULTRIX kernel) that are used by
all programmers. The introduction to Section 2, intro(2), lists error numbers with
brief descriptions of their meanings. The introduction also defines many of the terms
used in this section.

Section 3: Routines

This section describes the routines available in ULTRIX libraries. Routines are
sometimes referred to as subroutines or functions.

Section 4: Special Files

This section describes special files, related device driver functions, databases, and
network support.

Section 5: File Formats

This section describes the format of system files and how the files are used. The files
described include assembler and link editor output, system accounting, and file
system formats.

Section 6: Games

The reference pages in this section describe the games that are available in the
unsupported software subset. The reference pages for games are in the document
Reference Pages for Unsupported Software.

Section 7: Macro Packages and Conventions

This section contains miscellaneous information, including ASCII character codes,
mail addressing formats, text formatting macros, and a description of the root file
system.

Section 8: Maintenance

This section describes commands for system operation and maintenance.

Platform Labels

The ULTRIX Reference Pages contain entries for both RISC and VAX platforms.
Pages that have no platform label beside the title apply to both platforms. Reference
pages that apply only to RISC platforms have a ‘‘RISC’’ label beside the title and the
VAX-only reference pages that apply only to VAX platforms are likewise labeled
with ““VAX.”” If each platform has the same command, system call, routine, file
format, or special file, but functions differently on the different platforms, both
reference pages are included, with the RISC page first.

Reference Page Format

Each reference page follows the same general format. Common to all reference pages
is a title consisting of the name of a command or a descriptive title, followed by a
section number; for example, date(1l). This title is used throughout the
documentation set.

The headings in each reference page provide specific information. The standard

headings are:

Name Provides the name of the entry and gives a short description.
Syntax Describes the command syntax or the routine definition. Section 5
reference pages do not use the Syntax heading.

Description Provides a detailed description of the entry’s features, usage, and
syntax variations.

Options Describes the command-line options.

Restrictions Describes limitations or restrictions on the use of a command or
routine.

Examples Provides examples of how a command or routine is used.

iv About Reference Pages

Return Values Describes the values returned by a system call or routine. Used in
Sections 2 and 3 only.

Diagnostics Describes diagnostic and error messages that can appear.

Files Lists related files that are either a part of the command or used
during execution.

Environment Describes the operation of the system call or routine when
compiled in the POSIX and SYSTEM V environments. If the
environment has no effect on the operation, this heading is not
used. Used in Sections 2 and 3 only.

See Also Lists related reference pages and documents in the ULTRIX
documentation set.

Conventions

The following documentation conventions are used in the reference pages.

% The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

user input This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in text to indicate the exact name of a
command, routine, partition, pathname, directory, or file. This
typeface is also used in interactive examples to indicate system
output and in code examples and other screen displays.

UPPERCASE The ULTRIX system differentiates between lowercase and

lowercase uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

rlogin This typeface is used for command names in the Syntax portion
of the reference page to indicate that the command is entered
exactly as shown. Options for commands are shown in bold
wherever they appear.

filename In examples, syntax descriptions, and routine definitions, italics
are used to indicate variable values. In text, italics are used to
give references to other documents.

[1] In syntax descriptions and routine definitions, brackets indicate
items that are optional.

{1} In syntax descriptions and routine definitions, braces enclose lists

from which one item must be chosen. Vertical bars are used to
separate items.

About Reference Pages v

.o In syntax descriptions and routine definitions, a horizontal ellipsis
indicates that the preceding item can be repeated one or more
times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

cat(l) Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(1) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

Online Reference Pages

The ULTRIX reference pages are available online if installed by your system
administrator. The man command is used to display the reference pages as follows:

To display the 1s(1) reference page:

% man 1ls

To display the passwd(1l) reference page:

% man passwd

To display the passwd(5) reference page:

% man 5 passwd

To display the Name lines of all reference pages that contain the word ‘‘passwd’’:
% man -k passwd

To display the introductory reference page for the family of 3xti reference pages:
% man 3xti intro

Users on ULTRIX workstations can display the reference pages using the
unsupported xman utility if installed. See the xman(1X) reference page for details.

Reference Pages for Unsupported Software

The reference pages for the optionally installed, unsupported ULTRIX software are in
the document Reference Pages for Unsupported Software.

vi About Reference Pages

Standard C Routines (3)

Insert tabbed divider here.
Then discard this sheet.

intro(3)

Name

intro — introduction to library functions

Description

This section describes functions that may be found in various libraries. The library
functions are those other than the functions that directly invoke ULTRIX system
primitives, described in section 2. Section 3 has the libraries physically grouped
together. The functions described in this section are grouped into various libraries:

Sections 3 and 3s

The (3) functions are the standard C library functions. The C library also includes all
the functions described in Section 2. These routines are included for compatibility
with other systems. In particular, a number of system call interfaces provided in
4.2BSD have been included for source code compatibility. The (3s) functions
comprise the standard I/O library. Together with the (3n), (3xti), (3yp) and (3)
routines, these functions constitute library /ibc, which is automatically loaded by the
C compiler (cc), the Pascal compiler (pc), and the FORTRAN compiler (f77).
(FORTRAN and Pascal are optional and may not be installed on your system.)
Declarations for these functions may be obtained from the include file, <stdio.h>.
The link editor 1d(1) searches this library under the —Ic option. Declarations for
some of these functions may be obtained from include files indicated on the
appropriate pages.

VAX Only

On VAX machines, the GFLOAT version of libc is used when you use
the cc(1) command with the -Mg option, or you use the 1d(1)
command with the -lcg option. The GFLOAT version of /ibc must be
used with modules compiled with cc(1) using the -Mg option.

Note that neither the compiler nor the linker 1d(1) can detect when
mixed double floating point types are used, and your program may
produce erroneous results if this occurs on a VAX machine.

Section 3cur

The (3cur) library routines make up the X/Open curses library. These routines are
different from the 4.2BSD curses routines contained in Section 3x.

Section 3f

The (3f) functions are all functions callable from FORTRAN. These functions
perform the same jobs as do the (3) functions. An unsupported FORTRAN compiler,
£77, is included in the VAX distribution. FORTRAN is available as a layered product
on both VAX and RISC machines.

Section 3int

The (3int) functions assist programs in supporting native language interfaces. They
are found in the internationalization library /ibi.

Subroutines 3-1

intro(3)
Section 3krb

The library of routines for the Kerberos authentication service. These routines support
the authentication of commonly networked applications across machine boundaries in
a distributed network.

Section 3m

The (3m) functions constitute the math library, /ibm. They are automatically loaded
as needed by the Pascal compiler (pc) and the FORTRAN compiler (f77). The link
editor searches this library under the -lm option. Declarations for these functions
may be obtained from the include file, < math.h >.

VAX Only

On VAX machines, the GFLOAT version of libm is used when you use
the 1d(1) command with the —lcg option. Note that you must use the
GFLOAT version of /ibm with modules compiled using the cc(1)
command with the -Mg option.

Note that neither the compiler nor the linker 1d(1) can detect when
mixed double floating point types are used, and the program may
produce erroneous results if this occurs on a VAX machine.

Section 3ncs

This section describes the NCS (Network Computing System) library routines. The
Title, Name, and See Also sections of the NCS reference pages do not contain the
dollar ($) sign in the command names and library routines. The actual NCS
commands and library routines do contain the dollar ($) sign.

Section 3n

These functions constitute the internet network library,

Section 3x
Various specialized libraries have not been given distinctive captions. Files in which
such libraries are found are named on appropriate pages.

Section 3xti

The X/Open Transport Interface defines a transport service interface that is
independent of any specific transport provider. The interface is provided by way of a
set of library functions for the C programming language.

Section 3yp

These functions are specific to the Yellow Pages (YP) service.

Environmental Compatibility

The libraries in Sections 3, 3m, and 3s contain System V and POSIX compatibility
features that are available to general ULTRIX programs. This compatibility
sometimes conflicts with features already present in ULTRIX. That is, the function
performed may be slightly different in the System V or POSIX environment. These
features are provided for applications that are being ported from System V or written

3-2 Subroutines

Files

intro(3)

for a POSIX environment.

The descriptions in these sections include an ENVIRONMENT section to describe
any differences in function between System V or POSIX and the standard C runtime
library.

The System V compatibility features are not contained in the standard C runtime
library. To get System V-specific behavior, you must specify that the System V
environment is to be used in compiling and linking programs. You can do this in
one of two ways:

1. Using the ~YSYSTEM_FIVE option for the cc command.

2. Globally setting the environment variable PROG_ENYV to SYSTEM_FIVE. If
you are using the C shell, you would execute the following line, or include it in
your .login file:

setenv PROG_ENV SYSTEM FIVE

If you are using the Bourne shell, you would execute the following line, or
include it in your .profile file:

PROG_ENV=SYSTEM_FIVE ; export PROG_ENV

In both cases, the cc(1) command defines the preprocessor symbol SYSTEM_FIVE,
so that the C preprocessor, /1ib/cpp, will select the System V version of various
data structures and symbol definitions.

In addition, if cc(1l) invokes 1d(1), the library libcV.a (the System V version of the
Standard C library) is searched before libc.a to resolve references to the System-V-
specific routines. Also, if -Im is specified on either the cc(1) or the 1d(1) command
line, then the System V version of the math library will be used instead of the regular
ULTRIX math library.

The POSIX compatibility features are included in the library libcP.a, so the only
special action needed is to specify -YPOSIX on the cc(1) command line or set the
environment variable PROG_ENYV to POSIX. Either action will cause the cc(1)
command to define the preprocessor symbol POSIX and search the POSIX library.

/usr/lib/libc.a

fusr/lib/lib_cg.a (VAX only)
fusr/lib/libm.a

fusr/lib/libc_p.a (VAX only)
fusr/lib/m_g.a (VAX only)
fusr/lib/libm_p.a (VAX only)

Subroutines 3-3

intro(3)

Diagnostics

Functions in the math library (3m) may return conventional values when the function
is undefined for the given arguments or when the value is not representable. In these
cases the external variable errno is set to the value EDOM (domain error) or
ERANGE (range error). For further information, see intro(2). The values of
EDOM and ERANGE are defined in the include file <math.h>.

See Also
cc(1), 1d(1), nm(1), intro(2) intro(3), intro(3s), intro(3f), intro(3m), intro(3n)

3-4 Subroutines

a64l (3)

Name
a64l, 164a — convert long integer and base-64 ASCII string

Syntax

long a64l (s)
char *s;

char *164a (1)
long I;

Description

These functions are used to maintain numbers stored in base-64 ASCII characters.
This is a notation by which long integers can be represented by up to six characters;
each character represents a ‘‘digit’’ in a radix-64 notation.

The characters used to represent *‘digits’’ are . for 0, / for 1, 0 through 9 for 2-11, A
through Z for 12-37, and a through z for 38-63.

The a641 subroutine takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. If the string pointed to by s contains more than
six characters, a641 will use the first six.

The 164a subroutine takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, 1 64a returns a pointer to
a null string.

Restrictions

The value returned by 164a is a pointer into a static buffer, the contents of which are
overwritten by each call.

Subroutines 3-5

abort(3)

Name

abort — generate an illegal instruction fault

Syntax
#include <stdlib.h>
void abort()

Description

The abort subroutine executes an instruction which is illegal in user mode. This
causes a signal that normally terminates the process with a core dump, which may be
used for debugging.

Diagnostics

Illegal instruction — core dumped
— Bourne shell.

Illegal instruction (core dumped)
— C shell.

Environment

When your program is compiled using the System V or POSIX environment, abort
closes open files before aborting the process with an IOT fault.

Restrictions

The abort function does not flush standard I/O buffers. Use ££1ush(3s). For
further information, see fclose(3s).

See Also
adb(1), exit(2), sigvec(2), fclose(3s)

3-6 Subroutines

abs(3)

Name

abs, labs — integer absolute value

Syntax

#include <stdlib.h>
#include <stdlib.h>

long labs(i)
long i;

int abs(i)
int i;

long labs(i)
long i;

Description

The abs and labs functions return the absolute value of their integer operand. The
labs function does the same for a long int.

Restrictions

Applying the abs or labs function to the most negative integer generates a result
which is the most negative integer. That is,

abs (0x80000000)
returns 0x80000000 as a result.

See Also
floor(3m)

Subroutines 3-7

alarm(3)

Name
alarm — schedule signal after specified time
Syntax
#include <unistd.h>
unsigned alarm(seconds)
unsigned seconds;
Description
The alarm subroutine causes signal SIGALRM, see signal(3), to be sent to the
invoking process in a number of seconds given by the argument. Unless caught or
ignored, the signal terminates the process.
The alarm requests are not stacked. Successive calls reset the alarm clock. If the
argument is 0, any alarm request is canceled. Because of scheduling delays,
resumption of execution of when the signal is caught may be delayed an arbitrary
amount. The longest specifiable delay time is 100000000 seconds. Values larger than
100000000 will be silently rounded down to 100000000.
The return value is the amount of time previously remaining in the alarm clock.
Environment
When your program is compiled using the System V environment, alarm rounds up
any positive fraction of a second to the next second.
When your program is compiled using the POSIX environment, alarm takes a
parameter of type unsigned, and returns a value of type unsigned.
See Also

getitimer(2), sigpause(2), sigvec(2), signal(3), sleep(3)

3-8 Subroutines

assert(3)

Name

assert — program verification

Syntax
#include <assert.h>

assert(expression)

Description

The assert macro indicates expression is expected to be true at this point in the
program. It causes an abort(3) with a diagnostic comment on the standard error
when expression is false (0). Compiling with the cc(1) option -DNDEBUG
effectively deletes assert from the program.

Diagnostics

‘Assertion failed: a, file f n’. The a is the assertion that failed; f is the source file and
n the source line number of the assert statement.

Subroutines 3-9

atof(3)

Name

atof, atoi, atol, strtol, strtoul, strtod — convert ASCII to numbers

Syntax
#include <math.h>

double atof(rnptr)
char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *nptr;

long strtol(nptr, eptr, base)
char *nptr, **eptr;
int base;

unsigned long strtoul(nptr, eptr, base)
char *nptr, **eptr;
int base;

double strtod (nptr, eptr)
char *nptr, **eptr;

unsigned long strtoul(nptr, eptr, base)
char *nptr, ¥*eptr;
int base;

Description

These functions convert a string pointed to by nptr to floating, integer, and long
integer representation respectively. The first unrecognized character ends the string.

The atof function recognizes (in order), an optional string of spaces, an optional
sign, a string of digits optionally containing a radix character, an optional ‘e’ or ‘E’,
and then an optionally signed integer.

The atoi and atol functions recognize (in order), an optional string of spaces, an
optional sign, then a string of digits.

The strtol function returns as a long integer, the value represented by the
character string nstr. The string is scanned up to the first character inconsistent with
the base. Leading white-space characters are ignored.

If the value of eptr is not (char **) NULL, a pointer to the character terminating the
scan is returned in **eptr. If no integer can be formed, **eptr is set to nstr , and zero
is returned.

If base is positive and not greater than 36, it is used as the base for conversion. After
an optional leading sign, leading zeros are ignored, and Ox or 0X is ignored if base is
16.

If base is zero, the string itself determines the base thus: After an optional leading
sign, a leading zero indicates octal conversion, and a leading 0x or 0X hexadecimal
conversion. Otherwise, decimal conversion is used.

3-10 Subroutines

atof(3)

Truncation from /ong to int can take place upon assignment, or by an explicit cast.

The strtoul function is the same as strtol except that strtoul returns, as an
unsigned long integer, the value represented by the character string nstr.

The st rtod function returns as a double-precision floating point number, the value
represented by the character string pointed to by nptr. The string is scanned up to the
first unrecognized character.

The strtod function recognizes an optional string of white-space characters, as
defined by isspace in ctype, then an optional sign, then a string of digits optionally
containing a radix character, then an optional e or E followed by an optional sign or
space, followed by an integer.

If the value of eptr is not (char **)NULL, a pointer to the character terminating the
scan is returned in the location pointed to by eptr. If no number can be formed, *eptr
is set to nptr, and zero is returned.

The radix character for atof and strtod is that defined by the last successful call
to setlocale category LC_NUMERIC. If setlocale category LC_NUMERIC
has not been called successfully, or if the radix character is not defined for a
supported language, the radix character is defined as a period (.).

International Environment

LC_CTYPE If this environment variable is set and valid, st rtod uses the
international language database named in the definition to
determine character classification rules.

LC_NUMERIC If this environment is set and valid, atof and strtod use the
international language database named in the definition to
determine radix character rules.

LANG If this environment variable is set and valid atof and strtod
use the international language database named in the definition to
determine collation and character classification rules. If
LC_CTYPE or LC_NUMERIC is defined, their definition
supercedes the definition of LANG.

Diagnostics

The atof function returns HUGE if an overflow occurs, and a O value if an
underflow occurs, and sets errno to ERANGE. HUGE is defined in <math.h>.

The atoi function returns INT_MAX or INT_MIN (according to the sign of the
value) and sets errno to ERANGE, if the correct value is outside the range of values
that can be represented.

The atol function returns LONG_MAX or LONG_MIN (according to the sign of
the value) and sets errno to ERANGE, if the correct value is outside the range of
values that can be represented.

The strtol function returns LONG_MAX or LONG_MIN (according to the sign of
the value) and sets errno to ERANGE, if the correct value is outside the range of
values that can be represented.

Subroutines 3-11

atof(3)

The strtoul function returns ULONG_MAX and sets errno to ERANGE, if the
correct value is outside the range of values that can be represented.

The strtod function returns HUGE (according to the sign of the value), and sets
errno to ERANGE if the correct value would cause overflow. A O is returned and
errno is set to ERANGE if the correct value would cause underflow.

See Also
ctype(3), setlocale(3), scanf(3s), environ(Sint)

3-12 Subroutines

bsearch (3)

Name
bsearch — binary search a sorted table
Syntax
#include <stdlib.h>
void *bsearch (key, base, nel, sizeof (*key), compar)
void *key, *base;
size_t nel;
int (*compar)();
Description
The bsearch subroutine is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where a datum may be
found. The table must be previously sorted in increasing order according to a
provided comparison function. The key points to the datum to be sought in the table.
The base points to the element at the base of the table. The nel is the number of
elements in the table. The compar is the name of the comparison function, which is
called with two arguments that point to the elements being compared. The function
must return an integer less than, equal to, or greater than zero according to whether
the first argument is to be considered less than, equal to, or greater than the second.
Diagnostics
A NULL pointer is returned if the key cannot be found in the table.
Notes
The pointers to the key and the element at the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into
type pointer-to-element.
See Also

hsearch(3), Isearch(3), gsort(3), tsearch(3)

Subroutines 3-13

bstring (3)

Name

Syntax

bcopy, becmp, bzero, ffs — bit and byte string operations

bcopy(bl, b2, length)
char *bl, *b2;

int length;

bcmp(bl, b2, length)
char *bl, *b2;

int length;

bzero(bl, length)
char *bl;

int length;

ffs(i)

int i;

Description

The functions bcopy, bcmp, and bzero operate on variable length strings of bytes.
They do not check for null bytes as the routines in st ring(3) do.

The bcopy function copies length bytes from string b1 to the string b2.

The bemp function compares byte string b/ against byte string b2, returning zero if
they are identical, non-zero otherwise. Both strings are assumed to be length bytes
long.

The bzero function places length 0 bytes in the string bI.

The ffs finds the first bit set in the argument passed it and returns the index of that
bit. Bits are numbered starting at 1. A return value of O indicates the value passed is
zero.

Restrictions

The bcmp and beopy routines take parameters backwards from st rcmp and
strcpy.

3-14 Subroutines

clock(3)

Name
clock — report CPU time used

Syntax
#include <time.h>
clock_t clock ()
CLOCKS_PER_SEC

Description
The clock routine returns the amount of CPU time (in microseconds) used since the
first call to clock. The time reported is the sum of the user and system times of
the calling process and its terminated child processes for which it has executed
wait(2) or system(3). To determine the time in seconds, the value returned by
clock should be divided by the value of the macro CLOCKS_PER_SEC.
The resolution of the clock is 16.667 milliseconds.

Restrictions
The value returned by clock is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this, the
value returned will wrap around after accumulating only 2147 seconds of CPU time
(about 36 minutes).

See Also

wait(2), times(3), system(3)

Subroutines 3-15

conv(3)

Name

toupper, tolower, _toupper, _tolower, toascii — translate characters

Syntax
#include <ctype.h>

int toupper(c)
int c;

int tolower(c)
int c;

int _toupper(c)
int c;

int _tolower(c)
int c;

int toascii(c)
int c;

Description

The functions toupper and tolower have as their domain the range of the getc
function. If the argument to t oupper represents a lowercase letter, the output from
the fuction is the corresponding uppercase letter. If the argument to tolower
represents an uppercase letter, the result is the corresponding lowercase letter.

The case of ¢ depends on the definition of the character in the language database.
Because the case of a character can vary between language databases, the case of ¢
depends on what language database is in use. Specifically, the case of arguments
depends on what property tables are associated the LC_CTYPE category. Property
tables are associated with the LC_CTYPE category by a successful call to the
setlocale function that includes the LC_CTYPE category. If no successful call to
define LC_CTYPE has occurred or if the character case information is unavailable for
the language in use, the rules of the ASCII coded character set determine the case of
arguments.

If the argument to the toupper function does not have the uppercase attribute,
toupper returns the argument unchanged. Likewise, if the argument to the
tolower function does not have the lowercase attribute, tolower returns it
unchanged.

The macros _toupper and _tolower have the same affect as toupper and
tolower. The difference is that the argument to the macros must be an ASCII
character (that is, a character in the domain —1 to 127) and the argument must have
the appropriate case. Arguments to _toupper must have the uppercase attribute
and arguments to _tolower must the lowercase attribute. The result of supplying
arguments to these macros that are outside the domain or do not have the appropriate
case is undefined. These macros operate faster than the toupper and tolower
functions.

The macro toascii converts its argument to the ASCII character set. The macro
converts its argument by truncating the numerical representation of the argument so
that it is between —1 and 127. You can use this macro when you move an application

3-16 Subroutines

conv (3)

to a system other than an ULTRIX system.

International Environment

LC_CTYPE If this environment variable is set and valid, conv uses the
international language database named in the definition to

determine character classification rules.

See Also
ctype(3int), setlocale(3), getc(3)

Subroutines 3-17

crypt(3)

Name
crypt, cryptl6, setkey, encrypt — DES encryption

Syntax

char *crypt(key, salt)
char *key, *salt;

char *cryptl6(key, salt)
char *key, *salt;

setkey(key)
char *key;

Description

The crypt subroutine is the password encryption routine. It is based on the NBS
Data Encryption Standard, with variations intended to frustrate use of hardware
implementations of the DES for key search.

The first argument to crypt is normally a user’s typed password. The second is a
2-character string chosen from the set [a-zA-Z0-9./]. The salt string is used to
perturb the DES algorithm in one of 4096 different ways, after which the password is
used as the key to encrypt repeatedly a constant string. The returned value points to
the encrypted password, in the same alphabet as the salt. The first two characters are
the salt itself.

The crypt16 subroutine is identical to the crypt function except that it will
accept a password up to sixteen characters in length. It generates a longer encrypted
password for use with enhanced security features.

The other entries provide primitive access to the actual DES algorithm. The
argument of setkey is a character array of length 64 containing only the characters
with numerical value 0 and 1. If this string is divided into groups of 8, the low-order
bit in each group is ignored, leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64
containing Os and 1s. The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected to the DES
algorithm using the key set by setkey. If edflag is 0, the argument is encrypted; if
non-zero, it is decrypted.

Restrictions

The return values from crypt and crypt16 point to static data areas whose
content is overwritten by each call.

Environment

Default Environment

In the default environment on systems that do not have the optional encryption
software installed the encrypt function expects exactly one argument, the data to
be encrypted. The edflag argument is not supplied and there is no way to decrypt
data. If the optional encryption software is installed the encrypt function behaves

3-18 Subroutines

TN

crypt(3)

as it does in the POSIX environment. The syntax for the default environment
follows:

encrypt(block)

char *block;

POSIX Environment

In the POSIX environment the encrypt function always expects two arguments. The
encrypt function will set errno to ENOSYS and return if edflag is non-zero and
the optional encryption software is not present. The syntax for the POSIX
environment follows:

encrypt(block, edflag)

char *block;

int edflag;

In all cases the setkey function will set errno to ENOSYS and return if the
optional encryption software is not present.

See Also

login(1), passwd(1), yppasswd(1yp), getpass(3), auth(5), passwd(5), passwd(Syp)
ULTRIX Security Guide for Users and Programmers

Subroutines 3-19

ctime(3)

Name
ctime, localtime, gmtime, asctime, difftime, mktime, timezone, tzset — date and time
functions

Syntax
As shown, the ctime, localtime, gmtime, asctime, difftime,
mktime, and tzset calls are common to both the non-System V environment and
the System V environment.
Common to Both Environments
#include <time.h>
void tzset()

char *ctime(clock)
time_t *clock;

char *asctime(tm)
struct 1m *tm;

struct tm *localtime(clock)
time_t *clock;

struct tm *gmtime(clock)
time_t *clock;

double difftime(timel, time0)
time_t timel, time0;

time_t mktime(timeptr)
struct tm *timeptr;

extern char *tzname[2];

BSD Environment Only

char *timezone(zone, dst)

System V and POSIX Environments Only
extern long timezone;

extern int daylight;
Description

The tzset call uses the value of the environment variable TZ to set up the time
conversion information used by localtime.

If TZ does not appear in the environment, the file /etc/zoneinfo/localtime
is used by localtime. If this file fails for any reason, the Greenwich Mean Time
(GMT) offset as provided by the kernel is used. In this case, Daylight Savings Time
(DST) is ignored, resulting in the time being incorrect by some amount if DST is
currently in effect. If this fails for any reason, GMT is used.

3-20 Subroutines

ctime (3)

If TZ appears in the environment but its value is a null string, GMT is used; if TZ
appears and its value is not a null string, its value is interpreted using rules specific to
the System V and non-System V environments.

Programs that always wish to use local wall clock time should explicitly remove the
environmental variable TZ with unsetenv (3) .

The ctime call converts a long integer, pointed to by clock, representing the time in
seconds since 00:00:00 GMT, January 1, 1970, and returns a pointer to a 26-character
string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1985\n\0

The localtime and gmtime calls return pointers to #m structures, described
below. The localtime call corrects for the time zone and possible DST; gmt ime
converts directly to GMT, which is the time the ULTRIX system uses.

The asctime call converts a tm structure to a 26-character string, as shown in the
previous example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are in the
<time.h> header file. The structure declaration is:

struct tm {

int tm_sec; /* seconds (0 - 59) */

int tm_min; /* minutes (0 - 59) */

int tm_hour; /* hours (0 - 23) */

int tm_mday; /* day of month (1 - 31) */

int tm_mon; /* month of year (0 - 11) */

int tm_year; /* year - 1900 */

int tm_wday; /* day of week (Sunday = 0) */

int tm_yday; /* day of year (0 - 365) */

int tm_isdst; /* flag: daylight savings time in
effect */

long tm_gmtoff; /* offset from GMT in seconds */

char *tm_zone; /* abbreviation of timezone name */

Y
tm_isdst is nonzero if DST is in effect.

tm_gmtoff is the offset (in seconds) of the time represented from GMT, with positive
values indicating East of Greenwich.

The difftime call computes the difference between two calendar times: timel -
time0 and returns the difference expressed in seconds.

The mkt ime call converts the broken-down local time in the tm structure pointed to
by timeptr into a calendar time value with the same encoding as that of the values
returned by time. The values of tm_wday and tm_yday in the structure are
ignored, and the other values are not restricted to the ranges indicated above for the
tm structure. A positive or zero value for tm_isdst causes mkt ime to presume that
DST, respectively, is or is not in effect for the specified time. A negative value
causes mkt ime to attempt to determine whether DST is in effect for the specified
time. On successful completion, the values of tm_wday and tm_yday are set
appropriately, and the other components are set to represent the specified calendar
time, but with their values forced to the ranges indicated above. If the calendar time
cannot be represented, the function returns the value (time_t)-1.

Subroutines 3-21

ctime (3)

The external variable tzname, contains the current time zone names. The function
tzset sets this variable.

BSD and POSIX Environment Only

If TZ appears in the environment and its value is not a null string, its value has one
of three formats:

or
pathname
or
stdoffset[dst[offset][,start[[time] ,end[[time]]]
If TZ is the single colon format (first format), GMT is used.

If TZ is the colon followed by a pathname format (second), the characters following
the colon specify a pathname of a t z£1i1e(5) format file from which to read the
time conversion information. If the pathname begins with a slash, it represents an
absolute pathname; otherwise the pathname is relative to the system time conversion
information directory /etc/zoneinfo. If this file fails for any reason, the GMT
offset as provided by the kernel is used.

If the first character in TZ is not a colon (third format), the components of the string
have the following meaning:

std and dst Three or more characters that are the designation for the standard
(std) or summer (dst) time zone. Only std is required; if dst is
missing, then summer time does not apply in this locale. Upper-
and lowercase letters are explicitly allowed. Any characters except
a leading colon (:), digits, comma (,), minus (-), plus (+), and
ASCII NUL are allowed.

offset Indicates the value to be added to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (4h) is
required and may be a single digit. The offset following std is
required. If no offset follows dst, summer time is assumed to be
one hour ahead of standard time. One or more digits may be used;
the value is always interpreted as a decimal number. The hour
must be between zero and 24, and the minutes (and seconds) — if
present — between zero and 59. If preceded by a "-", the time zone
is east of the Prime Meridian; otherwise it is west (which may be

indicated by an optional preceding "+").

start and end Indicates when to change to and back from summer time. Start
describes the date when the change from standard to summer time
occurs and end describes the date when the change back happens.
The format of start and end must be one of the following:

In The Julian day 7 (1 < n < 365). Leap days are not
counted. That is, in all years, including leap years,

3-22 Subroutines

ctime(3)

February 28 is day 59 and March 1 is day 60. It is
impossible to explicitly refer to the occasional February
29.

n The zero-based Julian day (0 < n < 365). Leap days are
counted, and it is possible to refer to February 29.

Mm.n.d The nth d day of monthm (1<n<5,0<d<6,1<m<
12). When n is S it refers to the last d day of month m.
Day 0 is Sunday.

time The time field describes the time when, in current time, the change
to or from summer time occurs. Time has the same format as offset
except that no leading sign (a minus sign () or a plus sign (4)) is
allowed. The default, if time is not given, is 02:00:00.

As an example of the previous format, if the TZ environment variable had the value
ESTSEDT4,M4.1.0,M10.5.0 it would describe the rule, which went into effect in
1987, for the Eastern time zone in the USA. Specifically, EST would be the
designation for standard time, which is 5 hours behind GMT. EDT would be the
designation for DST, which is 4 hours behind GMT. DST starts on the first Sunday
in April and ends on the last Sunday in October. In both cases, since the time was
not specified, the change to and from DST would occur at the default time of 2:00
AM.

The timezone call remains for compatibility reasons only; it is impossible to
reliably map timezone’s arguments (zone, a ‘minutes west of GMT’ value and dst, a
‘daylight saving time in effect’ flag) to a time zone abbreviation.

If the environmental string TZNAME exists, t imezone returns its value, unless it
consists of two comma separated strings, in which case the second string is returned
if dst is non-zero, else the first string. If TZNAME does not exist, zone is checked
for equality with a built-in table of values, in which case t imezone returns the time
zone or daylight time zone abbreviation associated with that value. If the requested
zone does not appear in the table, the difference from GMT is returned; that is, in
Afghanistan, timezone (- (60*4+30) , 0) is appropriate because it is 4:30 ahead
of GMT, and the string ‘GMT+4:30’ is returned. Programs that in the past used the
timezone function should return the zone name as set by localtime to assure
correctness.

System V Environment Only

If TZ appears in the environment its value specifies a pathname of a t z£ile(5)
format file from which to read the time conversion information. If the pathname
begins with a slash, it represents an absolute pathname; otherwise the pathname is
relative to the system time conversion information directory /etc/zoneinfo.

If TZ appears in the environment and using the value as a pathname of a tz£ile(5)
format file fails for any reason, the value is assumed to be a three-letter time zone
name followed by a number representing the difference between local time and GMT
in hours, followed by an optional three-letter name for a time zone on DST. For
example, the setting for New Jersey would be ESTSEDT.

Subroutines 3-23

ctime (3)

System V and POSIX Environment Only

The external long variable t imezone contains the difference, in seconds, between
GMT and local standard time (in EST, t imezone is 5%60*60), The external
variable daylight is nonzero if and only if the standard USA DST conversion should
be applied. These variables are set whenever t zset, ctime, localtime,
mktime, or strftime are called.

Restrictions

The return values point to static data whose content is overwritten by each call. The
tm_zone field of a returned struct tm points to a static array of characters, which
will also be overwritten at the next call (and by calls to tzset) .

Files
/etc/zoneinfo time zone information directory
fetc/zoneinfo/localtime local time zone file

See Also

gettimeofday(2), getenv(3), strftime(3), time(3), tzfile(5), environ(7)

3-24 Subroutines

ctype(3)

Name
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph,
iscntrl, isascii — character classification macros
Syntax
#include <ctype.h>
int isalpha (c)
int c;
Description

These macros classify character-coded integer values according to the rules of the
coded character set (codeset) identified by the last successful call to setlocale
category LC_CTYPE. All macros return non-zero for true and zero for false.

If setlocale category LC_CTYPE has not been called successfully, or if character
classification information is not available for a supported language, then characters
are classified according to the rules of the ASCII 7-bit coded character set, returning
0 for values above octal 0177.

The macro isascii provides a result for all integer values. The rest provide a
result for EOF and values in the character range of the codeset identified by the last
successful call to setlocale category LC_CTYPE.

isalpha c is a letter

isupper c is an uppercase letter

islower c is a lowercase letter

isdigit c is a digit

isxdigit ¢ is a hexadecimal digit, by default [0-9], [A-F], or [a-f]

isalnum ¢ is an alphanumeric character

isspace ¢ is a space, tab, carriage return, new line, or form feed

ispunct ¢ is a punctuation character (neither. control, alphanumeric, nor
space)

isprint ¢ is a printing character, by default code 040(8) (space) through
0176 (tilde)

isgraph c is a printing character, like isprint except false for space

iscntrl ¢ is a delete character (0177) or ordinary control character (less

than 040) except for space characters

isascii ¢ is an ASCII character, code less than 0200
International Environment
LC_CTYPE If this environment variable is set and valid, ctype uses the

international language database named in the definition to
determine character classification rules.

Subroutines 3-25

ctype(3)

LANG If this environment variable is set and valid, ctype uses the
international language database named in the definition to
determine the character classification rules. If LC_CTYPE is
defined, that definition supercedes the definition of LANG.

See Also

conv(3), setlocale(3), stdio(3s), environ(5int), ascii(7)
Guide to Developing International Software

3-26 Subroutines

Name

Syntax

directory (3)

opendir, readdir, telldir, seekdir, rewinddir, closedir — directory operations

#include <sys/types.h>
#include <sys/dir.h>

DIR *opendir(dirname)
char *dirname;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)

DIR *dirp;

seekdir(dirp, loc)
DIR *dirp;
long loc;

rewinddir(dirp)
DIR *dirp;

int closedir(dirp)
DIR *dirp;

Description

The opendir library routine opens the directory named by filename and associates a
directory stream with it. A pointer is returned to identify the directory stream in
subsequent operations. The pointer NULL is returned if the specified filename can
not be accessed, or if insufficient memory is available to open the directory file.

The readdir routine returns a pointer to the next directory entry. It returns NULL
upon reaching the end of the directory or on detecting an invalid seekdir
operation. The readdir routine uses the getdirentries system call to read
directories. Since the readdir routine returns NULL upon reaching the end of the
directory or on detecting an error, an application which wishes to detect the
difference must set errno to O prior to calling readdir.

The telldir routine returns the current location associated with the named
directory stream. Values returned by telldir are good only for the lifetime of the
DIR pointer from which they are derived. If the directory is closed and then
reopened, the telldir value may be invalidated due to undetected directory
compaction.

The seekdir routine sets the position of the next readdir operation on the
directory stream. Only values returned by telldir should be used with
seekdir.

The rewinddir routine resets the position of the named directory stream to the
beginning of the directory.

The closedir routine closes the named directory stream and returns a value of 0 if
successful. Otherwise, a value of —1 is returned and errno is set to indicate the error.
All resources associated with this directory stream are released.

Subroutines 3-27

directory (3)

Examples

The following sample code searches a directory for the entry name.

len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))
if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
closedir (dirp):;
return FOUND;

}
closedir (dirp):

return NOT_FOUND;

Environment

In the POSIX environment, the file descriptor returned in the DIR structure after an
opendir () call will have the FD_CLOEXEC flag set. See <fcntl.h> for more
detail.

Return Value

Upon successful completion, opendir () returns a pointer to an object of type DIR.
Otherwise, a value of NULL is returned and errno is set to indicate the error.

The readdir () routine returns a pointer to an object of type struct dirent upon
successful completion. Otherwise, a value of NULL is returned and errno is set to
indicate the error. When the end of the directory is encountered, a value of NULL is
returned and errno is not changed.

The telldir () routine returns the current location. No errors are defined for
telldir (), seekdir (), and rewinddir ().

The closedir () routine returns zero upon successful completion. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

Diagnostics
The closedir () routine will fail if:
[EBADF] The dirp argument does not refer to an open directory stream.
[EINTR] The routine was interrupted by a signal.
The opendir () routine will fail if:
[EACCES] Search permission is denied for any component of dirname or read
permission is denied for dirname.
[ENAMETOOLONG]

The length of the dirname string exceeds {PATH_MAX]}, or a
pathname component is longer than {(NAME_MAX}.

3-28 Subroutines

directory (3)

[ENOENT] The dirname argument points to the name of a file which does not
exist, or to an empty string and the environment defined is POSIX
or SYSTEM_FIVE.

[ENOTDIR] A component of dirname is not a directory.

[EMFILE] Too many file descriptors are currently open for the process.

[ENFILE] Too many files are currently open in the system.

The readdir () routine will fail if:

[EBADF] The dirp argument does not refer to an open directory stream.
See Also

close(2), getdirentries(2), Iseek(2), open(2), read(2), dir(5)

Subroutines 3-29

div(3)

Name
div, 1div - integer division
Syntax
#include <stdlib.h>
div_t div(numer, denom)
int numer;
int denoms;
Idiv_t 1div(numer, denom)
long numer;
long denoms;
Description
The div and 1div functions return the quotient and remainder of the division of the
numerator numer by the denominator denom.
The return types div_t and 1div_t are defined, in stdlib.h, as follows:
typedef struct {
int quot; /* quotient */
int rem; /* remainder */
} div_t; /* result of div() */
typedef struct {
long quot; /* quotient */
long rem; /* remainder */
} ldiv_t; /* result of 1ldiv() */
Restrictions

If division by zero is attempted, the behavior of div and 1div is undefined.

3-30 Subroutines

Name

Syntax

drand48(3)

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 —
generate uniformly distributed pseudo-random numbers

double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void lcong48 (param)
unsigned short param[7];

Description

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating-
point values uniformly distributed over the interval [0.0, 1.0).

Functions 1rand48 and nrand48 return non-negative long integers uniformly
distributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly distributed
over the interval [-23!, 231).

Functions srand48, seed48 and 1cong48 are initialization entry points, one of
which should be invoked before either drand48, lrand48 or mrand48 is called.
Although it is not recommended practice, constant default initializer values will be
supplied automatically if drand48, lrand48 or mrand48 is called without a
prior call to an initialization entry point. Functions erand48, nrand48 and
jrand48 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, X;, according
to the linear congruential formula

Xns1 = (@X, + Cumod m n=0.

The parameter m = 2*%; hence 48-bit integer arithmetic is performed. Unless
lcong48 has been invoked, the multiplier value a and the addend value c are given
by

Subroutines 3-31

drand48(3)

Notes

a = SDEECE66D ;¢ = 2736731631555
c=B 16 = 138'

The value returned by any of the functions drand48, erand48, lrand48,
nrand48, mrand48 or jrand48 is computed by first generating the next 48-bit
X; in the sequence. Then the appropriate number of bits, according to the type of
data item to be returned, are copied from the high-order (leftmost) bits of X; and
transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit X; generated
in an internal buffer; that is why they must be initialized prior to being invoked. The
functions erand48, nrand48 and jrand48 require the calling program to
provide storage for the successive X; values in the array specified as an argument
when the functions are invoked. That is why these routines do not have to be
initialized. The calling program merely has to place the desired initial value of X;

into the array and pass it as an argument. By using different arguments, functions
erand48, nrand48 and jrand48 allow separate modules of a large program to
generate several independent streams of pseudo-random numbers. That is, the
sequence of numbers in each stream will not depend upon how many times the

-routines have been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32 bits

contained in its argument. The low-order 16 bits of X; are set to the arbitrary value
330E .

The initializer function seed48 sets the value of X; to the 48-bit value specified in
the argument array. In addition, the previous value of X; is copied into a 48-bit
internal buffer, used only by seed48, and a pointer to this buffer is the value
returned by seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point at some future
time — use the pointer to get at and store the last X; value, and then use this value to
reinitialize via seed48 when the program is restarted.

The initialization function 1cong48 allows the user to specify the initial X;, the
multiplier value a, and the addend value c. Argument array elements param(0-2]
specify X;, param[3-5] specify the multiplier a, and param[6] specifies the 16-bit
addend c. After 1cong48 has been called, a subsequent call to either srand48 or
seed48 will restore the ‘‘standard’’ multiplier and addend values, a and c, specified
on the previous page.

The source code for the portable version can even be used on computers which do
not have floating-point arithmetic. In such a situation, functions drand48 and
erand48 do not exist. Instead, they are replaced by the two new functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

Functions irand48 and krand48 return non-negative long integers uniformly
distributed over the interval [0, m—1].

3-32 Subroutines

AN

drand48(3)

See Also

rand(3)
ULTRIX Programmer’s Manual, Unsupported

Subroutines 3-33

ecvi(3)

Name

ecvt, fcvt, gcvt — output conversion

Syntax

char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, buf)
double value;
char *buf;

Description

The ecvt routine converts the value to a null-terminated string of ndigit ASCII
digits and returns a pointer thereto. The position of the radix character relative to the
beginning of the string is stored indirectly through decpt (negative means to the left
of the returned digits). If the sign of the result is negative, the word pointed to by
sign is non-zero, otherwise it is zero. The low-order digit is rounded.

The fcvt routine is identical to ecvt, except that the correct digit has been
rounded for FORTRAN F-format output of the number of digits specified by ndigits.

The gcvt routine converts the value to a null-terminated ASCII string in buf and
returns a pointer to buf. It attempts to produce ndigit significant digits in FORTRAN
F format if possible, otherwise E format is used, ready for printing. Trailing zeros
may be suppressed.

The symbol used to represent a radix character is obtained from the last successful
call to setlocale category LC_NUMERIC. The symbol can be determined by
calling:

nl_langinfo (RADIXCHAR);

If setlocale category LC_NUMERIC has not been called successfully, or if the
radix character is not defined for a supported language, the radix character defaults to
a period (.).

International Environment

LC_NUMERIC If this environment is set and valid, ecvt uses the international
language database named in the definition to determine radix
character rules.

LANG If this environment is set and valid, ecvt uses the international
language database named in the definition to determine radix
character rules. If LC_NUMERIC is defined, its definition
supercedes the definition of LANG.

3-34 Subroutines

ecvt(3)
Restrictions

The return values point to static data whose content is overwritten by each call.

See Also

setlocale(3), nl_langinfo(3int), printf(3int), printf(3s)
Guide to Developing International Software

Subroutines 3-35

SC

emulate_branch (3)

Name
emulate_branch, execute_branch — branch emulation

Syntax
#include <signal.h>
emulate_branch(scp, branch_instruction)
struct sigcontext *scp;
unsigned long branch_instruction;
execute_branch(branch_instruction)
unsigned long branch_instruction;

Description
The emulate_branch function is passed a signal context structure and a branch
instruction. It emulates the branch based on the register values in the signal context
structure. It modifies the value of the program counter in the signal context structure
(sc_pc) to the target of the branch_instruction. The program counter must initially be
pointing at the branch and the register values must be those at the time of the branch.
If the branch is not taken the program counter is advanced to point to the instruction
after the delay slot (sc_pc += 8).
If the branch instruction is a ‘branch on coprocessor 2’ or ‘branch on coprocessor 3’
instruction, emulate_branch calls execute_branch to execute the branch in
data space to determine if it is taken or not.

Return Value
The emulate branch function returns a 0 if the branch was emulated
successfully. A non-zero value indicates the value passed as a branch instruction was
not a branch instruction.
The execute_branch function returns non-zero on taken branches and zero on
non-taken branches.

Restrictions
Since execute_branch is only intended to be used by emulate branch it
does not check its parameter to see if in fact it is a branch instruction. It is really a
stop gap in case a coprocessor is added without the kernel fully supporting it (which
is unlikely).

See Also

cacheflush(2), sigvec(2), signal(3)

3-36 Subroutines

end(3)

Name

end, etext, edata — last locations in program

Syntax

extern end;

extern etext;
extern edata;
extern eprol;

Description

These names refer neither to routines nor to locations with interesting contents. The
address of etext is the first address above the program text, edata above the
initialized data region, and eprol is the first instruction of the user’s program that
follows the runtime startup routine.

When execution begins, the program break coincides with end, but it is reset by the
routines brk(2), malloc(3), standard input/output stdio(3s), the profile (-p)
option of cc(1), and so forth. The current value of the program break is reliably
returned by sbrk(0). For further information, see brk(2).

See Also

cc(1), brk(2), malloc(3), stdio(3s)

Subroutines 3-37

AX

end(3)

Name

end, etext, edata — last locations in program

Syntax

extern end;
extern etext;
extern edata;

Description

These names refer neither to routines nor to locations with interesting contents. The
address of etext is the first address above the program text, edata above the
initialized data region, and end above the uninitialized data region.

When execution begins, the program break coincides with end, but it is reset by the
routines brk(2), malloc(3), standard input/output stdio(3s), the profile (-p)
option of cc(1), and so forth. The current value of the program break is reliably
returned by ‘sbrk(0)’. For further information, see brk(2).

See Also
brk(2), malloc(3), stdio(3s)

3-38 Subroutines

Name

Syntax

execl (3)

execl, execv, execle, execlp, execvp, exect, environ — execute a file

execl(name, arg0, argl, ..., argn, (char *)0)
char *name, *arg0, *argl, ..., *argn;

execv(name, argv)
char *name, *argv[];

execle(name, arg0, argl, ..., argn, (char *)0, envp)
char *name, *arg0, *argl, ..., *argn, *envp[];

execlp(file, arg0, argl, ..., argn, (char *)0)
char *file, *arg0, *argl, ..., *argn;

execvp(file,argv)
char *file, *argv[];

exect(name, argv, envp)
char *name, *argv[], *envpl[];

extern char **environ;

Description

These routines provide various interfaces to the execve system call. Refer to
execve(2) for a description of their properties; only brief descriptions are provided
here.

In all their forms, these calls overlay the calling process with the named file, then
transfer to the entry point of the core image of the file. There can be no return from
a successful exec. The calling core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers
arg[0], arg[l] ... address null-terminated strings. Conventionally arg[0] is the
name of the file.

Two interfaces are available. execl is useful when a known file with known
arguments is being called; the arguments to execl are the character strings
constituting the file and the arguments; the first argument is conventionally the same
as the file name (or its last component). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance.
The arguments to execv are the name of the file to be executed and a vector of
strings containing the arguments. The last argument string must be followed by a 0
pointer.

The exect version is used when the executed file is to be manipulated with
ptrace(2). The program is forced to single step a single instruction giving the
parent an opportunity to manipulate its state.

VAX-11

On VAX-11 machines, this is done by setting the trace bit in the process
status longword.

Subroutines 3-39

R

-~

>

C

execl (3)

When a C program is executed, it is called as follows:
main(argc, argv, envp)

int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. As indicated, argc is conventionally at least one and the first
member of the array points to a string containing the name of the file.

The argyv is directly usable in another execv because argv[argc] is 0.

The envp is a pointer to an array of strings that constitute the environment of the
process. Each string consists of a name, an ‘‘="’, and a null-terminated value. The
array of pointers is terminated by a null pointer. The shell sh(1) passes an
environment entry for each global shell variable defined when the program is called.
See environ(7) for some conventionally used names. The C run-time start-off
routine places a copy of envp in the global cell environ, which is used by execv
and execl to pass the environment to any subprograms executed by the current
program.

The execlp and execvp routines are called with the same arguments as execl
and execv, but duplicate the shell’s actions in searching for an executable file in a
list of directories. The directory list is obtained from the environment.

Restrictions

If execvp is called to execute a file that turns out to be a shell command file, and if
it is impossible to execute the shell, the values of argv[0] and argv[-1] will be
modified before return.

Diagnostics

Files

If the file cannot be found, if it is not executable, if it does not start with a valid
magic number if maximum memory is exceeded, or if the arguments require too
much space, a return constitutes the diagnostic; the return value is —1. For further
information, see a .out(5). Even for the super-user, at least one of the execute-
permission bits must be set for a file to be executed.

/bin/sh Shell, invoked if command file found by execlp or execvp

See Also

csh(1), execve(2), fork(2), environ(7)

3-40 Subroutines

execl(3)

Name
execl, execv, execle, execlp, execvp, exect, environ — execute a file
Syntax
execl(name, arg0, argl, ..., argn, (char *)0)
char *name, *arg0, *argl, ..., *argn;
execv(name, argv)
char *name, *argv(];
execle(name, arg0, argl, ..., argn, (char *)0, envp)
char *name, *arg0, *argl, ..., *argn, *envp[];
execlp(file, arg0, argl, ..., argn, (char *)0)
char *file, *arg0, *argl, ..., *argn;
execvp(file,argv)
char *file, *argv[];
exect(name, argv, envp)
char *name, *argv([], *envp[];
extern char **environ;
Description

These routines provide various interfaces to the execve system call. Refer to
execve(2) for a description of their properties; only brief descriptions are provided
here.

In all their forms, these calls overlay the calling process with the named file, then
transfer to the entry point of the core image of the file. There can be no return from
a successful exec. The calling core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers
argl0], arg[1] ... address null-terminated strings. Conventionally arg[0] is the
name of the file.

Two interfaces are available. execl is useful when a known file with known
arguments is being called; the arguments to execl are the character strings
constituting the file and the arguments; the first argument is conventionally the same
as the file name (or its last component). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance.
The arguments to execv are the name of the file to be executed and a vector of
strings containing the arguments. The last argument string must be followed by a 0
pointer.

The exect version is used when the executed file is to be manipulated with
ptrace(2). The program is forced to single step a single instruction giving the
parent an opportunity to manipulate its state. On the VAX-11 this is done by setting
the trace bit in the process status longword.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

Subroutines 3-41

V/

AX

execl (3)

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. As indicated, argc is conventionally at least one and the first
member of the array points to a string containing the name of the file.

The argv is directly usable in another execv because argv[argc] is 0.

The envp is a pointer to an array of strings that constitute the environment of the
process. Each string consists of a name, an ‘‘="’, and a null-terminated value. The
array of pointers is terminated by a null pointer. The shell sh(1) passes an
environment entry for each global shell variable defined when the program is called.
See environ(7) for some conventionally used names. The C run-time start-off
routine places a copy of envp in the global cell environ, which is used by execv
and execl to pass the environment to any subprograms executed by the current
program.

The execlp and execvp routines are called with the same arguments as execl
and execv, but duplicate the shell’s actions in searching for an executable file in a
list of directories. The directory list is obtained from the environment.

Restrictions

If execvp is called to execute a file that turns out to be a shell command file, and if
it is impossible to execute the shell, the values of argv[0] and argv[-1] will be
modified before return.

Diagnostics

Files

If the file cannot be found, if it is not executable, if it does not start with a valid
magic number, if maximum memory is exceeded, or if the arguments require too
much space, a return constitutes the diagnostic; the return value is —1. For further
information, see a.out(5). Even for the super-user, at least one of the execute-
permission bits must be set for a file to be executed.

/bin/sh Shell, invoked if command file found by execlp or execvp

See Also

csh(1), execve(2), fork(2), environ(7)

3-42 Subroutines

exit(3)

exit — terminate a process after flushing any pending output

exit(status)

int status;

int atexit(func)
void (*func)();

Description

The exit function terminates a process after calling the Standard I/O library
function, _cleanup, to flush any buffered output. The exit function never returns.

The atexit function registers a function to be called (without arguments) at normal
program termination; functions are called in the reverse order of their registration
(that is, most recent first). If a function is registered more than once, it will be called
more than once.

Return Value

The atexit function returns zero if the registration succeeds, or -1 if the function
pointer is null or if too many functions are registered.

See Also

exit(2), intro(3s)

Subroutines 3—-43

SC fpe(3)

Name
fpc, get_fpc_csr, set_fpc_csr, swapRM, swapINX — floating-point control registers

Syntax
#include <mips/fpu.h>
int get_fpc_csr()

int set_fpc_csr(csr)
int csr;

int get_fpc_irr()

int swapRM(x)
int x;

int swapINX(x)
int x;

Description

These functions are to get and set the floating-point control registers of RISC
floating-point units. All of these functions take and return their values as 32 bit
integers.

The file <mips/fpu.h> contains unions for each of the control registers. Each union
contains a structure that breaks out the bit fields into the logical parts for each control
register. This file also contains constants for fields of the control registers.

RISC floating-point implementations have a control and status register and an
implementation revision register. The control and status register is returned by
get_fpc_csr. Theroutine set_fpc_csr sets the control and status register
and returns the old value. The implementation revision register is read-only and is
returned by the routine get_fpc_irr.

The function swapRM sets only the rounding mode and returns the old rounding
mode. The function swapINX sets only the sticky inexact bit and returns the old
one. The bits in the arguments and return values to swapRM and swapINX are right
justified.

3-44 Subroutines

fp_class(3)

Name

fp_class — classes of IEEE floating-point values

Syntax
#include <fp_class.h>
int fp_class_d(double x);
int fp_class_f(float x);

Description

These routines are used to determine the class of IEEE floating-point values. They
return one of the constants in the file <fp_class.h> and never cause an exception,
even for signaling NaNs. These routines are to implement the recommended function
class(x) in the appendix of the IEEE 754-1985 standard for binary floating-point
arithmetic. The constants in <fp_class.h> refer to the following classes of

values:

Constant Class

FP_SNAN Signaling NaN (Not-a-Number)
FP_QNAN Quiet NaN (Not-a-Number)
FP_POS_INF +oo (positive infinity)
FP_NEG_INF -oo (negative infinity)

FP_POS_NORM positive normalized nonzero
FP_NEG_NORM negative normalized nonzero
FP_POS_DENORM positive denormalized
FP_NEG_DENORM negative denormalized
FP_POS_ZERO +0.0 (positive zero)
FP_NEG_ZERO -0.0 (negative zero)

Also See
ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

Subroutines 3—-45

frexp (3)

Name

frexp, ldexp, modf — split into mantissa and exponent

Syntax
#include <math.h>

double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;
Description

The frexp subroutine returns the mantissa of a double value as a double quantity, x,
of magnitude less than 1.0 and greater than or equal to 0.5 (0.5 <= Ix| < 1) and stores
an integer n such that value = x¥2**n indirectly through eptr.

The 1dexp returns the quantity value*2**exp.
The modf£ returns the positive fractional part of value and stores the integer part
indirectly through iptr.

Return Value

If 1dexp would cause overflow, tHUGE_VAL is returned (according to the sign of
value) and errno is set to ERANGE. If 1dexp would cause underflow, O is returned
and errno is set to ERANGE.

3-46 Subroutines

ftoi(3)

Name

ftoi, itof, dtoi, itod, gtoi, itog — convert floating values between VAX and IEEE
format

Syntax

int ftoi(value)
float *value;

int itof(value)
float *value;

int dtoi(value)
double *value;

int itod(value)
double *value;

int gtoi(value)
double *value;

int itog(value)
double *value;

Description

The following C library functions convert floating values between VAX and IEEE
formats.

The ftoi function converts the specified VAX ffloat number to IEEE single-
precision format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow).

The itof function converts the specified IEEE single-precision number to VAX
ffloat format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, overflow).

The dtoi function converts the specified VAX dfloat number to IEEE double-
precision format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow).

The itod function converts the specified IEEE double-precision number to VAX
dfloat format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow or overflow).

The gtoi function converts the specified VAX gfloat number to IEEE double-
precision format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow).

The itog function converts the specified IEEE double-precision number to VAX
gfloat format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow).

Subroutines 3-47

ftok(3)

Name

Syntax

ftok — standard interprocess communication package

#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(path, id)
char *path;
char id;

Description

Return

All interprocess communication facilities require the user to supply a key to be used
by the msgget(2), semget(2), and shmget(2) system calls to obtain interprocess
communication identifiers. One suggested method for forming a key is to use the
ftok, file to key, subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining portion as
a sequence number. There are many other ways to form keys, but it is necessary for
each system to define standards for forming them. If some standard is not adhered
to, it will be possible for unrelated processes to unintentionally interfere with each
other’s operation. Therefore, it is strongly suggested that the most significant byte of
a key in some sense refer to a project so that keys do not conflict across a given
system.

The ftok subroutine returns a key based on path and id that is usable in subsequent
msgget, semget, and shmget system calls. The path must be the path name of
an existing file that is accessible to the process. The id is a character which uniquely
identifies a project. Note that ftok will return the same key for linked files when
called with the same id and that it will return different keys when called with the
same file name but different ids.

Value

The ftok subroutine returns (key_t) -1 if path does not exist or if it is not
accessible to the process.

Warning

If the file whose path is passed to £tok is removed when keys still refer to the file,
future calls to £t ok with the same path and id will return an error. If the same file
is recreated, then ftok is likely to return a different key than it did the original time
it was called.

See Also

intro(2), msgget(2), semget(2), shmget(2)

3-48 Subroutines

ftw (3)

Name
ftw — walk a file tree

Syntax
#include <ftw.h>

int ftw (path, fn, depth)
char *path;

int (*/n) ();

int depth;

Description

The ftw subroutine recursively descends the directory hierarchy rooted in path. For
each object in the hierarchy, ftw calls fn, passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat structure
containing information about the object, and an integer. For further information, see
stat(2). Possible values of the integer, defined in the <ftw.h> header file, are
FTW_F for a file, FTW_D for a directory, FTW_DNR for a directory that cannot be
read, and FTW_NS for an object for which stat could not successfully be executed.
If the integer is FTW_DNR, descendants of that directory will not be processed. If
the integer is FTW_NS, the the contents of the stat structure will be undefined. An
example of an object that would cause FTW_NS to be passed to fn would be a file in
a directory with read but without execute (search) permission.

The £tw subroutine visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a
nonzero value, or some error is detected within £tw (such as an I/O error). If the
tree is exhausted, ftw returns zero. If fn returns a nonzero value, ftw stops its tree
traversal and returns whatever value was returned by fn. If £tw detects an error, it
returns —1, and sets the error type in errno.

The £tw subroutine uses one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is zero or negative,
the effect is the same as if it were 1. The depth must not be greater than the number
of file descriptors currently available for use. The ftw subroutine will run more
quickly if depth is at least as large as the number of levels in the tree.

Restrictions

Because ftw is recursive, it is possible for it to terminate with a memory fault when
applied to very deep file structures.

It could be made to run faster and use less storage on deep structures at the cost of
considerable complexity.

The £tw subroutine uses malloc(3) to allocate dynamic storage during its
operation. If ftw is forcibly terminated, such as by longjmp being executed by fn or
an interrupt routine, £tw will not have a chance to free that storage, so it will remain
permanently allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have fn return a nonzero value at its next
invocation.

Subroutines 3—-49

ftw (3)

Diagnostics
[EACCES] Search permission is denied on a component of path or read
permission is denied for path.
[ENAMETOOLONG]
The length of the path string exceeds {PATH_MAX]}, or a
pathname component is longer than {NAME_MAX}.
[ENOENT] The path argument points to the name of a file which does not

exist, or to an empty string and the environment defined is POSIX
or SYSTEM_FIVE.

[ENOTDIR] A component of path is not a directory.
[ENOMEM] Not enough memory was available to complete the file tree walk.

See Also
stat(2), malloc(3)

3-50 Subroutines

Name

Syntax

getauthuid(3)

getauthuid, storeauthent, setauthfile, endauthent — get/set auth entry

#include <sys/types.h>
#include <auth.h>

AUTHORIZATION *getauthuid(uid)
uid_t uid;

int storeauthent(auth)
AUTHORIZATION *auth;

void setauthfile(pathname)
char *pathname;

int endauthent()

Description

The getauthuid function looks up the auth entry for the specified user ID and
returns a pointer to a static area containing it.

The storeauthent function will store the specified auth entry into the local auth
database, overwriting any existing entry with the same a_uid field.

The setauthfile function will set the pathname of the file to be used for the
local auth database in all subsequent operations.

The endauthent functions closes the auth database. Subsequent calls to
getauthuid and storeauthent will reopen it.

The auth database may be distributed via the BIND/Hesiod naming service.

Restrictions

Return

Only the super-user and members of the group authread may read information from
the auth database.

Only the super-user may modify the auth database.

The auth databse may not be distributed via the Yellow Pages service.

Value

Functions which return a pointer value will return the null pointer (0) on EOF or
error. Other functions will return zero (0) on success and a negative value on failure.

Subroutines 3-51

getauthuid (3)

Files
/etc/auth. [pag,dir]

See Also

getpwent(3), auth(5), edauth(8)

Security Guide for Users and Programmers
Security Guide for Administrators

Guide to the BIND/Hesiod Service

3-52 Subroutines

getcwd (3)

Name
getcwd — get pathname of working directory

Syntax
char *getcwd (buf, size)
char *buf;
int size;

Description
The getcwd subroutine returns a pointer to the current directory pathname. The
value of size must be at least two greater than the length of the pathname to be
returned.
If buf is a NULL pointer, get cwd will obtain size bytes of space using malloc(3)
In this case, the pointer returned by get cwd may be used as the argument in a
subsequent call to free.
The function is implemented by using popen(3) to pipe the output of the pwd(1)
command into the specified string space.

Examples

char *cwd, *getcwd();

if ((cwd = getcwd((char *)NULL, 64)) == NULL) {

perror ("pwd") ;
exit (1)

}

printf ("%$s\n", cwd):;

Return Value

Returns NULL with errno set if size is not large enough, or if an error occurs in a
lower-level function.

Diagnostics
[EINVAL] The size argument is zero or negative.
[ERANGE] The size argument is greater than zero, but is smaller than the
length of the pathname+1;
[EACCES] Read or search permission is denied for a component of the

pathname.
[ENOMEM] Insufficient storage space is available.

Subroutines 3-53

getcwd (3)

See Also
pwd(1), malloc(3), popen(3)

3-54 Subroutines

Name

Syntax

getenv(3)

getenv, setenv, unsetenv — manipulate environment variables

char *getenv(name)
char *name;

setenv(name, value, overwrite)
char *name, value;
int overwrite;

void unsetenv(name)
char *name;

Description

The getenv subroutine searches the environment list for a string of the form name
= value and returns a pointer to the string value if such a string is present, otherwise
getenv returns the value O (NULL). For further information, see environ(7).

The setenv subroutine searches the environment list in the same manner as
getenv. If the string name is not found, a string of the form name=value is added
to the environment. If it is found, and overwrite is non-zero, its value is changed to
value. The setenv subroutine returns 0 on success and -1 on failure, where failure
is caused by an inability to allocate space for the environment.

The unsetenv subroutine removes all occurrences of the string name from the
environment. There is no library provision for completely removing the current
environment. It is suggested that the following code be used to do so.

static char *envinit [1];

extern char **environ;
environ = envinit;

All of these routines permit, but do not require, a trailing equals sign (=) on name or
a leading equals sign on value.

See Also

csh(1), sh(1), execve(2), putenv(3), environ(7)

Subroutines 3-55

getgrent(3)

Name
getgrent, getgrgid, getgrnam, setgrent, endgrent — get group entry

Syntax
#include <grp.h>
struct group *getgrent()

struct group *getgrgid(gid)
gid_t gid;

struct group *getgrnam(name)
char *name;

setgrent()
endgrent()

Description

The getgrent, getgrgid and getgrnam subroutines each return pointers to an
object with the following structure containing the broken-out fields of a line in the
group database:

struct group { /* see getgrent (3) */

char *gr_name;
char *gr_passwd;
int gr_gid;
char **gr_mem;
}i
struct group *getgrent (), *getgrgid(), *getgrnam();

The members of this structure are:

gr_name The name of the group.

gr_passwd The encrypted password of the group.

gr_gid The numerical group-ID.

gr_mem Null-terminated vector of pointers to the individual member names.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. The endgrent may be called to close the group database when
processing is complete.

The getgrent subroutine simply reads the next line while getgrgid and
getgrnam search until a matching gid or name is found (or until EOF is
encountered). The getgrent subroutine keeps a pointer in the database, allowing
successive calls to be used to search the entire file.

A call to setgrent must be made before a while loop using getgrent in order
to perform initialization and an endgrent must be used after the loop. Both
getgrgid and getgrnam make calls to setgrent and endgrent.

3-56 Subroutines

getgrent(3)

Restrictions
All information is contained in a static area so it must be copied if it is to be saved.

If YP is running, getgrent does not return the entries in any particular order. See
the Guide to the Yellow Pages Service for setup information.

The group database may also be distributed via the BIND/Hesiod naming service.
See the Guide to the BIND/Hesiod Service for more information.

Return Value

A null pointer (0) is returned on EOF or error.

Files
/etc/group

See Also

group(5), svc.conf(5)
Guide to the BIND/Hesiod Service
Guide to the Yellow Pages Service

Subroutines 3-57

gethostsex(3)

Name
gethostsex — get the byte sex of the host machine
Syntax
#include <sex.h>
int gethostsex()
Description
The gethostsex routine returns one of two constants, BIGENDIAN or
LITTLEENDIAN, for the sex of the host machine. These constants are in sex.h.
See Also

swapsex(3)

3-58 Subroutines

getlogin(3)

Name
getlogin — get login name

Syntax
char *getlogin()

Description
The getlogin subroutine returns a pointer to the login name as found in
/etc/utmp. It may be used in conjunction with getpwnam to locate the correct
password file entry when the same userid is shared by several login names.
If getlogin is called within a process that is not attached to a typewriter, it returns
NULL. The correct procedure for determining the login name is to first call
getlogin and if it fails, to call getpw (getuid).

Restrictions

The return values point to static data whose content is overwritten by each call.

Return Value
Returns NULL (0) if name not found.

Files
fetc/utmp

See Also
getgrent(3), getpw(3), getpwent(3), utmp(5)

Subroutines 3—-59

getmountent(3)

Name

getmountent — get information about mounted file systems without blocking

Syntax

#include <sys/types.h>
#include <sys/param.h>
#include <sys/mount.h>

getmountent(start, buffer, nentries)
int *start;

struct fs_data *buffer;

int nentries;

Description

The getmountent library routine retrieves mounted file system information from
memory without blocking. The file system information retrieved (the number of free
inodes and blocks) might not be up to date. If the accuracy of the file system
information retrieved is critical, you should use statfs or getmnt instead of
getmountent.

The start argument is the current logical location within the internal system mount

table and must be initially set to 0. The buffer argument is the holding area for the
returned information; that is, the £s_data structures. The size of buffer should be
at least the number of entries times the size of the £s_data structure, in bytes.

The nentries argument defines the number of mount table entries that are to be
retrieved.

The number of file systems described by the information placed in buffer is returned.
The start argument is updated so that successive calls can be used to retrieve the
entire mount table.

Return Value

Upon successful completion, a value indicating the number of struct fs_data
structures stored in buffer is returned. If there are no more file systems in the mount
table, O is returned. Otherwise, —1 is returned and the global variable errno is set to
indicate the error.

Diagnostics
EINVAL Invalid argument.
EFAULT Either buffer or start causes an illegal address to be referenced.
EIO An I/O error occurred while reading from the file system.
See Also

getmnt(2), statfs(3)

3-60 Subroutines

P

getopt(3)

Name
getopt — get option letter from argument vector

Syntax
#include <stdio.h>
int getopt (argc, argv, optstring)
int argc;
char **argv;
char *optstring;
extern char *optarg;
extern int optind, opterr;

Description
The getopt subroutine returns the next option letter in argv that matches a letter in
optstring. The optstring is a string of recognized option letters; if a letter is followed
by a colon, the option is expected to have an argument that may or may not be
separated from it by white space. The optarg is set to point to the start of the option
argument on return from getopt.
The function getopt places in optind the argv index of the next argument to be
processed. The external variable optind is automatically initialized to 1 before the
first call to getopt.
When all options have been processed (that is, up to the first non-option argument),
getopt returns EOF. The special option — may be used to delimit the end of the
options; EOF will be returned, and — will be skipped.

Diagnostics
The function getopt prints an error message on stderr and returns a question mark
(?) when it encounters an option letter that is not included in optstring. Setting
opterr to O disables this error message.

Examples

The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the options f and
0, both of which require arguments:

#include <stdio.h>

main (argc, argv)

int argc;

char **argv;

{
int c;
extern int optind, opterr;
extern char *optarg;

while ((c = getopt (argc, argv, "abf:o:")) != EOF)

switch (c) {
case ’'a’:

Subroutines 3—-61

getopt(3)

if (bflg)
errflg++;
else
aflg++;
break;
case ’'b’:
if (aflg)
errflg++;
else
bproc();
break;
case 'f’:
ifile = optarg:;
break;
case 'o’:

ofile = optarg;
bufsiza = 512;
break;
case '?’':
errflg++;
}
if (errflg) {
fprintf (stderr, "usage: . . . ");
exit (2);
}
for (; optind < argc; optind++) {
if (access (argv[optind]l, 4)) {

See Also
getopt(1)

3-62 Subroutines

getpass(3)

Name
getpass — read a password
Syntax
char *getpass(prompt)
char *prompt;
Description
The getpass subroutine reads a password from the file /dev/tty, or if that
cannot be opened, from the standard input, after prompting with the null-terminated
string prompt and disabling echoing. The getpass subroutine can return up to
PASS_MAX characters. PASS MAX is defined in
/usr/include/sys/limits.h. A pointer is returned to a null-terminated
string of at most 16 characters.
Environment
When your program is compiled using the System V environment, if the file
/dev/tty cannot be opened, a NULL pointer is returned. An interrupt will
terminate input and send an interrupt signal to the calling process before returning.
Restrictions
The return value points to static data whose content is overwritten by each call.
Files
/dev/tty
See Also
crypt(3)

Subroutines 3-63

getpw (3)

Name
getpw — get name from uid
Syntax
getpw(uid, buf)
char *buf;
Description
The getpw routine has been superseded by getpwuid, see getpwent(3).
The getpw routine searches the password file for the (numerical) uid, and fills in buf
with the corresponding line; it returns nonzero if uid could not be found. The line is
null terminated.
Diagnostics
Nonzero return on error.
Files
fetc/passwd
See Also

getpwent(3), passwd(Syp)

3-64 Subroutines

Name

Syntax

getpwent(3)

getpwent, getpwuid, getpwnam, setpwent, endpwent, setpwfile — get password entry

#include <pwd.h>
struct passwd *getpwent()

struct passwd *getpwuid(uid)
uid_t uid;

struct passwd *getpwnam(name)
char *name;

void setpwent()
void endpwent()

void setpwfile(pathname)
char *pathname

Description

The routines, getpwent, getpwuid and getpwnam, each return a pointer to an
object with the following structure containing the broken-out fields of a line in the
password database:

struct passwd { /* see getpwent (3) */

char *pw_name;
char *pw_passwd;
uid_t pw_uid;
gid_t pw_gid;

int pw_quota;
char *pw_comment;
char *pw_gecos;
char *pw_dir;

char *pw_shell;

}:

struct passwd *getpwent (), *getpwuid(), *getpwnam():;

The fields pw_quota and pw_comment are unused; the others have meanings
described in passwd(5).

A call to setpwent has the effect of rewinding the password file to allow repeated
searches. Endpwent may be called to close the password database when processing
is complete.

The getpwent subroutine simply retieves the next entry while getpwuid and
getpwnam search until a matching uid or name is found (or until all entries are

exhausted). The getpwent subroutine keeps a pointer in the database, allowing
successive calls to be used to search the entire database.

A call to setpwent must be made before a while loop using getpwent in order
to perform initialization and an endpwent must be used after the loop. Both
getpwuid and getpwnam make calls to setpwent and endpwent .

Subroutines 3-65

getpwent(3)

The setpwfile subroutine sets the pathname of the ASCII passwd file and

optional hashed database to be used for local passwd lookups. If a passwd file has

been left open by a call to setpwent or getpwent, setpwfile will close it

first. Setpwfile does not directly affect the use of distributed passwd databases.
Restrictions

All information is contained in a static area so it must be copied if it is to be saved.

If YP is running, getpwent does not return the entries in any particular order. See
the Guide to the Yellow Pages Service for setup information.

The password database may also be distributed via the BIND/Hesiod naming service.
See the Guide to the BIND/Hesiod Service for more information.

Return Value

Null pointer (0) returned on EOF or error.

Files
/etc/passwd

See Also

getlogin(3), passwd(5), svc.conf(5)
Guide to the BIND/Hesiod Service
Guide to the Yellow Pages Service

3-66 Subroutines

getrpcent(3n)

Name
getrpcent, getrpcbynumber, getrpcbyname, setrpcent, endrpcent — get rpc entry
Syntax
#include <netdb.h>
struct rpcent *getrpcent()
struct rpcent *getrpcbynumber(number)
int number;
struct rpcent *getrpcbyname(name)
char *name;
setrpcent(stayopen)
int stayopen;
endrpcent()
Description
The getrpcent, getrpcbynumber and getrpcbyname subroutines each
return pointers to an object with the following structure containing the broken-out
fields of a line in the rpc database:
struct rpcent { /* see getrpcent (3) */
char *r_name;
char **r aliases; /* alias list */
char r_number; /* rpc program number */
}i
struct group *getrpcent (), *getrpcbynumber (), *getrpcbyname();
The members of this structure are:
r_name The name of the rpc.
r_aliases A zero-terminated list of alternate names for the rpc.
r_number The rpc program number for the rpc.
If the stayopen flag on the set rpcent subroutine is NULL, the rpc database is
opened. Otherwise the setrpcent has the effect of rewinding the rpc database.
The endrpcent may be called to close the rpc file when processing is complete.
The get rpcent subroutine simply reads the next line while get rpcbynumber
and getrpcbyname search until a matching gid or name is found (or until EOF is
encountered). The getrpcent subroutine keeps a pointer in the database, allowing
successive calls to be used to search the entire file.
A call to setrpcent must be made before a while loop using getrpcent in
order to perform initialization and an endrpcent must be used after the loop. Both
getrpcbynumber and get rpcbyname make calls to setrpcent and
endrpcent.
Restrictions

All information is contained in a static area so it must be copied if it is to be saved.

Subroutines 3-67

getrpcent(3n)

If YP is running, get rpcent does not return the entries in any particular order.
See the Guide to the Yellow Pages Service for setup information.

The rpc database may also be distributed by the BIND/Hesiod naming service. See
the Guide to the BIND/Hesiod Service for more information.

Return Value
A null pointer (0) is returned on EOF or error.

Files
/etc/rpc

See Also

rpc(5), sve.conf(S)
Guide to the BIND/Hesiod Service
Guide to the Yellow Pages Service

3-68 Subroutines

getsvc(3)

Name

getsvc - get a pointer to the svcinfo structure

Syntax
#include <sys/svcinfo.h>

struct svcinfo *getsve()
Description

The getsvc call retrieves information from the system about the svcinfo
structure by returning a pointer to the structure. This structure is initialized the first
time a getsvc call is made. The contents of the /etc/svc.conf file are parsed
and stored in the svcinfo structure. If the /etc/svec.conf file is modified, the
contents of this structure will be updated upon the next getsvc call.

The /etc/svc.conf file contains the names of the databases that can be served by
YP, BIND, or local files and the name service selection for each database. It also has
settings for four security parameters. The database service selection and security
parameters are stored in the svcinfo structure.

The following structure exists in the svcinfo.h file:

#define SVC_DATABASES 20
#define SVC_PATHSIZE 8
struct svcinfo {
int svcdate; /* Last mod date of /etc/svc.conf */

int svcpath[SVC_DATABASES] [SVC_PATHSIZE]; /* indexed by
databases and choice 0=first choice
l=second choice, etc value stored is
source */

struct {
int passlenmin;
int passlenmax;
int softexp;
int seclevel;

} svcauth;

}i

The svcdate field contains the date that the /etc/svc.conf file was last
modified. The svcpath array contains the name service choices for each database.
The svcauth structure contains the values for the four security parameters:
password length minimum (passlenmin), password length maximum (passlenmax),
soft expiration date of a password (softexp), and security mode of a system (seclevel).

Subroutines 3—-69

getsvc (3)

Examples

The following programming example shows how to use the get svc call to use the
information in the svcinfo structure to process specific host information.

#include <sys/svcinfo.h>
struct svcinfo *svcinfo;

if ((svcinfo = getsvc()) != NULL)
for (i=0; (Jj = svcinfo->svcpath[SVC_HOSTS] [i]) != SVC_LAST; i++)
switch(j) {

case SVC_BIND:
/* process BIND hosts */
case SVC_YP:
/* process YP hosts */
case SVC_LOCAL:
/* process LOCAL hosts */

Files
/etc/svc.conf
/usr/include/sys/svcinfo.h
See Also

svc.conf(5), svcsetup(8)

3-70 Subroutines

getttyent(3)

Name
getttyent, getttynam, setttyent, endttyent — get ttys file entry

Syntax

#include <ttyent.h>

struct ttyent *getttyent()

struct ttyent *getttynam (name) char *name;
int setttyent ()

int endttyent ()

Description

These functions allow a program to access data in the file /etc/ttys. The
getttyent function reads the /etc/ttys file line by line, opening the file if
necessary. setttyent rewinds the file, and endttyent closes it. getttynam
searches from the beginning of the file until a matching name is found, or until end-
of-file is encountered.

The functions getttyent and getttynam each return a pointer to an object that
has the following structure. Each element of the structure contains one field of a line
in the /etc/ttys file.

struct ttyent { /* see getttyent (3) */
char *ty name; /* terminal device name */
char *ty getty; /* command to execute, usually getty */
char *ty_type; /* terminal type for termcap (3X) */

int ty_status; /* status flags (see below for defines) */
char *ty_window; /* command to start up window manager */
char *ty_ comment;/* usually the location of the terminal */
}i

#define TTY_ON 0x1 /* enable logins (startup getty) */

#define TTY_SECURE 0x2 /* allow root to login */

#define TTY_ LOCAL 0x4 /* line is local direct connect and
should ignore modem signals */

#define TTY_SHARED 0x8 /* line is shared - i.e. can be use
for both incoming and outgoing
connections. */

#define TTY_TRACK 0x10 /* track modem status changes */

#define TTY_TERMIO 0x20 /* open line with termio defaults */

extern struct ttyent *getttyent();
extern struct ttyent *getttynam():;

A description of the fields follows:
ty_name is the name of the terminal’s special file in the directory /dev.

ty_getty is the command invoked by init to initialize terminal line characteristics.
This command is usually getty(8), but any arbitrary command can be
used. A typical use is to initiate a terminal emulator in a window system.

ty_type is the name of the default terminal type connected to this tty line. This is
typically a name from the termcap(5) data base. The environment
variable ‘TERM” is initialized with this name by lLogin(1).

Subroutines 3-71

getttyent(3)

ty_status is a mask of bit flags that indicate various actions allowed on this
terminal line. The following is a description of each flag.

TTY_ON
Enables logins. For instance, init(8) will start the specified
getty command on this entry.

TTY_SECURE
Allows root to login on this terminal. TTY_ON must also be
included for this to work.

TTY_LOCAL
Indicates that the line is to ignore modem signals.

TTY_SHARED
Indicates that the line can be used for both incoming and outgoing
connections.

TTY_TERMIO
Indicates that a line is to be opened with default terminal attributes
which are compliant with System Five termio defaults. The line
discipline will be set to be TERMIODISC.

ty_window
is the quoted string of a command to execute for a window system
associated with the line. If none is specified, this will be a null string.

ty_comment
Currently unused.

Restrictions

The information returned is in a static area, so you must copy it to save it. (Static
areas are described in "The C Programming Language," ULTRIX Supplementary
Documents, Vol. II:Programmers.)

Return Value
A null pointer (0) is returned on an end-of-file or error.

Files
/etc/ttys The file examined by these routines.

See Also
ttyname(3), ttys(5), init(8)

3-72 Subroutines

getwd (3)

Name

getwd — get current working directory pathname

Syntax

char *getwd(pathname)
char *pathname;

Description

The getwd subroutine copies the absolute pathname of the current working directory
to pathname and returns a pointer to the result.

Restrictions
The getwd subroutine may fail to return to the current directory if an error occurs.
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Return Value

The getwd subroutine returns zero and places a message in pathname if an error
occurs.

Subroutines 3-73

hesiod(3)

Name

hes_init, hes_to_bind, hes_error, hes_resolve - routines for using Hesiod

Syntax
#include <hesiod.h>
hes_init()
char *hes_to_bind(HesiodName, HesiodNameType)
char *HesiodName, *HesiodNameType;
hes_error()

har **hes_resolve(HesiodName, HesiodNameType)
char *HesiodName, *HesiodNameType;

Description

The hes_init () routine opens and reads the Hesiod configuration file,
/etc/hesiod.conf to extract the left hand side and right hand side of the Hesiod
name.

The hes_to_bind () routine takes as arguments a HesiodName and
HesiodNameType and returns a fully qualified name to be handed to BIND.

The two most useful routines to the applications programmer are hes_error ()
and hes_resolve () . The hes_error () routine has no arguments and returns
an integer which corresponds to a set of errors which can be found in hesiod.h

file.

#define HES_ER_UNINIT -1
#define HES_ER OK 0
#define HES_ER NOTFOUND 1
#define HES_ER CONFIG 2
#define HES_ER NET 3

The hes_resolve () routine resolves given names via the Hesiod name server. It
takes as arguments a name to be resolved, the HesiodName, and a type
corresponding to the name, the HesiodNameType, and returns a pointer to an array
of strings which contains all data that matched the query, one match per array slot.
The array is null terminated.

If applications require the data to be maintained throughout multiple calls to
hes_resolve(), the data should be copied since another call to

hes_resolve () will overwrite any previously-returned data. A null is returned if
the data cannot be found.

3-74 Subroutines

hesiod (3)

Examples

The following example shows the use of the Hesiod routines to obtain a Hesiod name
from a Hesiod database:

#include <hesiod.h>

char *HesiodName, *HesiodNameType;
char **hp;

hp = hes_resolve (HesiodName, HesiodNameType):;
if (hp == NULL) ({

error = hes_error();

switch(error) {

}
else

process (hp) ;

Files
/etc/hesiod.conf
/usr/include/hesiod.h
See Also

hesiod.conf(5), bindsetup(8)
Guide to the BIND/Hesiod Service

Subroutines 3-75

hsearch (3)

Name

hsearch, hcreate, hdestroy — manage hash search tables

Syntax
#include <search.h>

ENTRY x*hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()
Description

The hsearch subroutine is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the location at which an
entry can be found. The item is a structure of type ENTRY (defined in the
<search.h> header file) containing two pointers: item.key points to the comparison
key, and item.data points to any other data to be associated with that key. (Pointers
to types other than character should be cast to pointer-to-character.) The action is a
member of an enumeration type ACTION indicating the disposition of the entry if it
cannot be found in the table. ENTER indicates that the item should be inserted in
the table at an appropriate point. FIND indicates that no entry should be made.
Unsuccessful resolution is indicated by the return of a NULL pointer.

The hcreate subroutine allocates sufficient space for the table, and must be called

before hsearch is used. The nel is an estimate of the maximum number of entries
that the table will contain. This number may be adjusted upward by the algorithm in
order to obtain certain mathematically favorable circumstances.

The hdestroy subroutine destroys the search table, and may be followed by
another call to hcreate.

Restrictions

Only one hash search table may be active at any given time.

Diagnostics

The hsearch subroutine returns a NULL pointer if either the action is FIND and
the item could not be found or the action is ENTER and the table is full.

The hcreate subroutine returns zero if it cannot allocate sufficient space for the
table.

See Also
bsearch(3), Isearch(3), string(3), tsearch(3)

3-76 Subroutines

Name

Syntax

insque (3)

insque, remque — insert/remove element from a queue

struct gelem {

struct qelem *q_forw;
struct qelem *q_back;
char q_data[];

’

insque(elem, pred)
struct gelem *elem, *pred,

remque(elem)
struct gelem *elem;

Description

The insque and remque subroutines manipulate queues built from doubly linked
lists. Each element in the queue must in the form of ‘‘struct gelem.”” The insque
subroutine inserts elem in a queue immediately after pred. The remque subroutine
removes an entry elem from a queue.

Subroutines 3-77

isnan(3)

Name

isnan — test for NaN

Syntax
#include <math.h>

int isnan (x)
double x;

Description

The isnan function returns 1 if x is NaN (the IEEE floating point reserved not-a-
number value) and zero otherwise. On VAX, the return value is always zero.

3-78 Subroutines

I3tol (3)

Name

13tol, 1tol3 — convert between 3-byte integers and long integers

Syntax

void 13tol (Ip, cp, n)
long *lp;

char *cp;

int n;

void Itol3 (cp, Ip, n)

char *cp;

long *Ip;

int n;
Description

The 13tol subroutine converts a list of n three-byte integers packed into a character
string pointed to by cp into a list of long integers pointed to by Ip.

The 1tol3 performs the reverse conversion from long integers (Ip) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block numbers are
three bytes long.

Restrictions

Because of possible differences in byte ordering, the numerical values of the long
integers are machine-dependent.

See Also
fs(5)

Subroutines 3-79

lockf (3)

Name
lockf — record locking on files
Syntax
#include <unistd.h>
lockf(fildes, function, size)
long size;
int fildes, function;
Description

The lockf subroutine allows sections of a file to be locked. These are advisory
mode locks. Locking calls from other processes which attempt to lock the locked file
section return either an error value or are put to sleep until the resource becomes
uniocked. All the locks for a process are removed when the process terminates. For
more information about record locking, see fcnt1(2).

The fildes is an open file descriptor. The file descriptor must have O_WRONLY or
O_RDWR permission in order to establish lock with this function call.

The function is a control value which specifies the action to be taken. The
permissible values for function are defined in <unistd.h> as follows:

#define F_ULOCK 0 /* Unlock a previously locked section */
#define F_LOCK 1 /* Lock a section for exclusive use */

#define F_TLOCK 2 /# Test and lock a section for exclusive use */
#define F_TEST 3 /* Test section for other processes locks */

All other values of function are reserved for future extensions and result in an error
return if not implemented.

F_TEST is used to detect if a lock by another process is present on the specified
section. F_LOCK and F_TLOCK both lock a section of a file if the section is available.
F_UNLOCK removes locks from a section of the file.

The size is the number of contiguous bytes to be locked or unlocked. The resource to
be locked or unlocked starts at the current offset in the file and extends forward for a
positive size and backward for a negative size. If size is zero, the section from the
current offset through the largest file offset is locked (that is, from the current offset
through the present or any future end-of-file). An area need not be allocated to the
file in order to be locked, as such locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be
contained by a previously locked section for the same process. When this occurs, or
if adjacent sections occur, the sections are combined into a single section. If the
request requires that a new element be added to the table of active locks and this
table is already full, an error is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not
available. F_LOCK causes the calling process to sleep until the resource is available.
F_TLOCK causes the function to return a —1 and set errno to [EACCES] error if the
section is already locked by another process.

3-80 Subroutines

lockf (3)

F_ULOCK requests may, in whole or in part, release one or more locked sections
controlled by the process. When sections are not fully released, the remaining
sections are still locked by the process. Releasing the center section of a locked
section requires an additional element in the table of active locks. If this table is full,
an [EDEADLK] error is returned and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by accessing another process’s locked resource. Thus calls to lock or fcntl
scan for a deadlock prior to sleeping on a locked resource. An error return is made if
sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. You can use the alarm(3)
command to provide a timeout facility in applications which require this facility.

File region locking is supported over NFS, if the NFS locking service has been
enabled.
Restrictions
Unexpected results may occur in processes that do buffering in the user address
space. The process may later read or write data which is or was locked. The
standard I/O package is the most common source of unexpected buffering.
Return Value
Upon successful completion, 0 is returned. Otherwise, a —1 is returned and the
global variable errno is set to indicate the error.
Diagnostics

The lockf subroutine fails if:

[EBADF] The fildes is not a valid open descriptor.

[EACCESS] The c¢md is F_TLOCK or F_TEST and the section is already locked by
another process. Or, the file is remotely mounted, and the NFS
locking service has not been enabled.

[EDEADLK] The cmd is F_LOCK or F_TLOCK and a deadlock would occur. Also
the cmd is either of the above or F_ULOCK and the number of
entries in the lock table would exceed the number allocated on the
system.

[EINVAL] The value given for the request argument is invalid.

See Also
close(2), creat(2), fentl(2), intro(2), open(2), read(2), write(2), lockd(8c)

Subroutines 3-81

Isearch (3)

Name
Isearch, 1find — linear search and update

Syntax
#include <search.h>
#include <sys/types.h>
void *Isearch (key, base, nelp, width, compar)
void *key;
void *base;
size_t *nelp;
size_t width;
int (*compar)();
void *Ifind (key, base, nelp, width, compar)
void *key;
void *base;
size_t *nelp;
size_t width;
int (*compar)();

Description
The 1search subroutine is a linear search routine generalized from Knuth (6.1)
Algorithm S. It returns a pointer into a table indicating where a datum may be
found. If the datum does not occur, it is added at the end of the table. The key
points to the datum to be sought in the table. The base points to the first element in
the table. The nelp points to an integer containing the current number of elements in
the table. The width is the size of an element in bytes. The integer is incremented if
the datum is added to the table. The compar is the name of the comparison function
which the user must supply (strcmp, for example). It is called with two arguments
that point to the elements being compared. The function must return zero if the
elements are equal and non-zero otherwise.
The 1£ind subroutine is the same as Isearch except that if the datum is not found, it
is not added to the table. Instead, a NULL pointer is returned.

NOTE
The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into
type pointer-to-element.

Restrictions
Undefined results can occur if there is not enough room in the table to add a new
item.

3-82 Subroutines

Isearch (3)

Return Value

If the searched for datum is found, both 1search and 1find return a pointer to it.
Otherwise, 1f£ind returns NULL and 1search returns a pointer to the newly added
element.

See Also
bsearch(3), hsearch(3), tsearch(3)

Subroutines 3—83

SC

malloc (3)

Name

Syntax

malloc, free, realloc, calloc, alloca — memory allocator

char *malloc(size)
unsigned size;

free(ptr)

void *ptr;

char *realloc(ptr, size)
void *ptr;

unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

char *alloca(size)
int size;

Description

The malloc and free subroutines provide a simple general-purpose memory
allocation package. The malloc subroutine returns a pointer to a block of at least
size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc.
This space is made available for further allocation, but its contents are left
undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is
overrun or if some random number is handed to free.

The malloc subroutine maintains multiple lists of free blocks according to size,
allocating space from the appropriate list. It calls sbrk to get more memory from
the system when there is no suitable space already free. For further information, see
brk(2).

The realloc subroutine changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

In order to be compatible with older versions, realloc also works if ptr points to a
block freed since the last call of malloc, realloc, or calloc. Sequences of
free, malloc, and realloc were previously used to attempt storage
compaction. This procedure is no longer recommended.

The calloc subroutine allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

The alloca subroutine allocates size bytes of space associated with the stack frame
of the caller. This temporary space is available for reuse when the caller returns. On
MIPS machines, calling alloca(0) reclaims all available storage. On VAX
machines, the space is automatically freed on return.

3-84 Subroutines

malloc (3) RIS

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

Restrictions
When realloc returns 0, the block pointed to by ptr may be destroyed.

Currently, the allocator is unsuitable for direct use in a large virtual environment
where many small blocks are kept, since it keeps all allocated and freed blocks on a
circular list. Just before more memory is allocated, all allocated and freed blocks are
referenced.

Because the alloca subroutine is machine dependent, its use should be avoided.

Diagnostics

The malloc, realloc, and calloc subroutines return a null pointer (0) if there
is no available memory or if the arena has been detectably corrupted by storing
outside the bounds of a block.

Subroutines 3—-85

AX malloc (3)

Name

malloc, free, realloc, calloc, alloca — memory allocator

Syntax
#include <stdlib.h>

void *malloc(size)
size_t size;

free(ptr)
void *ptr;

void *realloc(ptr, size)
void *ptr;
size_t size;

void *calloc(nelem, elsize)
size_t nelem, elsize;

void *alloca(size)
size_t size;

Description

The malloc and free subroutines provide a simple general-purpose memory
allocation package. The malloc subroutine returns a pointer to a block of at least
size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc.
This space is made available for further allocation, but its contents are left
undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is
overrun or if some random number is handed to free.

The malloc subroutine maintains multiple lists of free blocks according to size,
allocating space from the appropriate list. It calls sbrk to get more memory from
the system when there is no suitable space already free. For further information, see
brk(2).

The realloc subroutine changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

If ptr is a null pointer, then realloc behaves like malloc for the specified size.
If size is zero, then realloc frees the space pointed to by ptr.

In order to be compatible with older versions, realloc also works if ptr points to a
block freed since the last call of malloc, realloc, orcalloc. Sequences of
free, malloc, and realloc were previously used to attempt storage
compaction. This procedure is no longer recommended.

The calloc subroutine allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

3-86 Subroutines

malloc (3) VA

The alloca subroutine allocates size bytes of space in the stack frame of the caller.
This temporary space is automatically freed on return.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

Restrictions
When realloc returns 0, the block pointed to by ptr may be destroyed.

Currently, the allocator is unsuitable for direct use in a large virtual environment
where many small blocks are kept, since it keeps all allocated and freed blocks on a
circular list. Just before more memory is allocated, all allocated and freed blocks are
referenced.

The alloca subroutine is machine dependent.

Diagnostics

The malloc, realloc, and calloc subroutines return a null pointer (0) if there
is no available memory or if the arena has been detectably corrupted by storing
outside the bounds of a block.

The malloc, realloc, calloc, and alloca subroutines will fail and no
additional memory will be allocated if one of the following is true:

[ENOMEM] The limit, as set by setrlimit(2), is exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the
system) is exceeded.

[ENOMEM] Insufficient space exists in the swap area to support the expansion.

Subroutines 3—-87

memory (3)

Name

memccpy, memchr, memcmp, memcpy, memmove, memset — memory operations

Syntax
#include <string.h>

void *memccpy (s/, s2, c, n)
void *s1, *s2;

int c;

size_t n;

void *memchr (s, ¢, n)

void *s;

int c;

size_t n;

int memcmp (s/, 52, n)
void *s1, *5s2;
size_t n;

void *memcpy (sl, s2, n)
void *s1, *s2;
size_t n;

void *memset (s, ¢, n)
void *s;

int c;

size_t n;

void *memmove (s/, s2, n)
void *s1, *s2;
size_t n;

Description

These functions operate efficiently on memory areas (arrays of characters bounded by
a count, not terminated by a null character). They do not check for the overflow of
any receiving memory area.

The memccpy subroutine copies characters from memory area s2 into s/, stopping
after the first occurrence of character ¢ has been copied, or after n characters have
been copied, whichever comes first. It returns a pointer to the character after the
copy of ¢ in s/, or a NULL pointer if ¢ was not found in the first n characters of s2.

The memchr subroutine returns a pointer to the first occurrence of character ¢ in the
first n characters of memory area s, or a NULL pointer if ¢ does not occur.

The memcmp subroutine compares its arguments, looking at the first # characters
only, and returns an integer less than, equal to, or greater than 0, according as s/ is
lexicographically less than, equal to, or greater than s2.

The memcpy subroutine copies n characters from memory area s2 to s/. It returns
sl.

3-88 Subroutines

memory (3)
The memmove subroutine is like memcpy , except that if s1 and s2 specify
overlapping areas, memmove works as if an intermediate buffer is used.

The memset subroutine sets the first n characters in memory area s to the value of
character ¢. It returns s.

Restrictions

The memcmp subroutine uses native character comparison, which is signed on
PDP-11s, unsigned on other machines.

Character movement is performed differently in different implementations of
memccpy and memcpy. Thus overlapping moves, using these subroutines, may
yield unpredictable results.

Subroutines 3-89

mkfifo (3)

Name
mkfifo — make a FIFO special file

Syntax

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(path, mode)
char *path;

mode_t mode;

Description

The mk£ifo function creates a new FIFO special file whose name is path. The file
permission bits of the new FIFO are initialized from mode, where the value of mode,
is one (or more) of the file permission bits defined in <sys/stat.h>. The mode
argument is modified by the process’s file creation mask (see umask(1)).

The FIFO’s owner ID is set to the process’s effective user ID. The FIFO’s group ID
is set to the process’s effective group ID.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

Diagnostics
The mkfifo function will fail and the FIFO will not be created if:
[EACCES] A component of the path prefix denies search permission.
[EEXIST] The named file exists.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

[ENOTDIR] A component of the path prefix is hot a directory.

[ENOENT] A component of the path prefix does not exist or the path
argument points to an empty string.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the
pathname.

[EIO] An 1/O error occurred while making the directory entry.

[ENOSPC] The directory in which the entry for the new FIFO is being placed
cannot be extended because there is no space left on the file
system.

[ENOSPC] There are no free inodes on the file system on which the node is

being created.

3-90 Subroutines

mkfifo (3)

[EDQUOT] The directory in which the entry for the new FIFO is being placed
cannot be extended because the user’s quota of disk blocks on the
file system containing the directory has been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the FIFO is
being created has been exhausted.

[ESTALE] The file handle given in the argument is invalid. The file referred
to by that file handle no longer exists or has been revoked.

[ETIMEDOUT] A connect request or remote file operation failed because the
connected party did not properly respond after a period of time
which is dependent on the communications protocol.

See Also
mknod(1), umask(1)

Subroutines 3-91

mktemp (3)

Name
mktemp — make a unique file name

Syntax
char *mktemp(template)
char *template;
Description

The mktemp subroutine replaces template by a unique file name, and returns the
address of the template. The template should look like a file name with six trailing
X’s, which will be replaced with the current process ID and a unique letter.

Note: The use of mktemp is not recommended for new applications. See
tmpnam(3) for less error-prone alternatives.

See Also
getpid(2), tmpfile(3), tmpnam(3)

3-92 Subroutines

monitor(3)

Name

monitor, monstartup, moncontrol — prepare execution profile

Synopsis

monitor(lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
short buffer[];

monstartup(lowpc, highpc)
int (*lowpc)(), (*highpc)();

moncontrol(mode)

Description

These functions use the system call profi1(2) to control program-counter sampling.
Using the option —p when compiling or linking a program automatically generates
calls to these functions. You do need not to call these functions explicitly unless you
want more control.

Typically, you would call either monitor or monstartup to initialize pc-
sampling and enable it; call moncontrol to disable or reenable it; and call
monitor at the end of execution to disable sampling and record the samples in a
file.

Your initial call to monitor enables pc-sampling. The parameters lowpc and
highpc specify the range of addresses to be sampled. The lowest address is that of
lowpc and the highest is just below highpc. The buffer parameter is the address of a
(user allocated) array of bufsize short integers, which holds a record of the samples;
for best results, the buffer should not be less than a few times smaller than the range
of addresses sampled. The nfunc parameter is ignored.

The environment variable PROFDIR determines the name of the output file and
whether pc-sampling takes place: if it is not set, the file is named mon.out; if set to
the empty string, no pc-sampling occurs; if set to a non-empty string, the file is
named string/pid.progname, where pid is the process id of the executing program and
progname is the program’s name as it appears in argv[0]. The subdirectory string
must already exist.

To profile the entire program, use the following:

extern eprol (), etext():

monitor (eprol, etext, buf, bufsize, 0);

The routine eprol lies just below the user program text, and etext lies just above
it, as described in end(3). (Because the user program does not necessarily start at a
low memory address, using a small number in place of eprol is dangerous).

The monstartup routine is an alternate form of monitor that calls sbrk (see
brk(2)) for you to allocate the buffer.

The function moncontrol selectively disables and re-enables pc-sampling within a
program, allowing you to measure the cost of particular operations. The function
moncontrol (0) disables pc-sampling, and moncontrol (1) reenables it.

Subroutines 3-93

SC monitor(3)

To stop execution monitoring and write the results in the output file, use the
following:

monitor (0);

Files
mon.out default name for output file
libprofl.a routines for pc-sampling
See Also

cc(1), 1d(1), profil(2), brk(2)

3-94 Subroutines

Name

Syntax

monitor(3)

monitor, monstartup, moncontrol — prepare execution profile

monitor(lowpc, highpc, buffer, bufsize, nfunc)

int (*lowpc)(), (*highpc)();
short buffer[];

monstartup(lowpc, highpc)
int (*lowpc)(), (*highpc)();

moncontrol(mode)

Description

There are two different forms of monitoring available: An executable program
created by:

cc -p .

automatically includes calls for the prof(1) monitor and includes an initial call to its
start-up routine monstartup with default parameters; monitor need not be called
explicitly except to gain fine control over profil buffer allocation. An executable
program created by:

cc -pg . . .

automatically includes calls for the gpro£(1) monitor.

The monstartup is a high level interface to prof£i1(2). The lowpc and highpc
specify the address range that is to be sampled; the lowest address sampled is that of
lowpc and the highest is just below highpc. The monstartup subroutine allocates
space using sbrk(2) and passes it to monitor (see below) to record a histogram of
periodically sampled values of the program counter, and of counts of calls of certain
functions, in the buffer. Only calls of functions compiled with the profiling option
—p of cc(1) are recorded.

To profile the entire program, it is sufficient to use

extern etext ();
monstartup ((int) 2, etext);

The etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use
monitor (0);

then prof(1) can be used to examine the results.

The moncontrol subroutine is used to selectively control profiling within a
program. This works with either prof(1) or gprof(1) type profiling. When the
program starts, profiling begins. To stop the collection of histogram ticks and call
counts use moncontrol(0); to resume the collection of histogram ticks and call counts
use moncontrol(1). This allows the cost of particular operations to be measured.
Note that an output file will be produced upon program exit regardless of the state of
moncontrol.

Subroutines 3-95

VA

'AX

monitor(3)

Files

The monitor subroutine is a low level interface to profi1(2). The lowpc and
highpc are the addresses of two functions; buffer is the address of a (user supplied)
array of bufsize short integers. At most nfunc call counts can be kept. For the results
to be significant, especially where there are small, heavily used routines, it is
suggested that the buffer be no more than a few times smaller than the range of
locations sampled. The monitor subroutine divides the buffer into space to record
the histogram of program counter samples over the range lowpc to highpc, and space
to record call counts of functions compiled with the —p option to cc(1).

To profile the entire program, it is sufficient to use

extern etext ()
monitor ((int) 2, etext, buf, bufsize, nfunc);

mon.out

See Also

cc(1), gprof(1), prof(1), profil(2), sbrk(2)

3-96 Subroutines

Name

Syntax

ndbm (3)

dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,

dbm_nextkey, dbm_error, dbm_clearerr — data base subroutines

#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;
} datum;
DBM *dbm_open(file, flags, mode)
char *file;
int flags, mode;
void dbm_close(db)
DBM *db;
datum dbm_fetch(db, key)
DBM *db;
datum key;

int dbm_store(db, key, content, flags)
DBM *db;
datum key, content;
int flags;
int dbm_delete(db, key)
DBM *db;
datum key;

datum dbm_firstkey(db)
DBM *db;

datum dbm_nextkey(db)
DBM *db;

int dbm_error(db)
DBM *db;

int dbm_clearerr(db)
DBM *db;

Description

These functions maintain key/content pairs in a data base. The functions will handle
very large (a billion blocks) databases and will access a keyed item in one or two file
system accesses. This package replaces the earlier dbom(3x) library, which managed

only a single database.

The keys and contents are described by the datum typedef. A datum specifies a
string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal
ASCII strings, are allowed. The data base is stored in two files. One file is a
directory containing a bit map and has .dir as its suffix. The second file contains all

data and has .pag as its suffix.

Subroutines 3-97

ndbm (3)

Before a database can be accessed, it must be opened by dbm_open. This will open
and/or create the files file.dir and file.pag depending on the flags parameter (see

open(2)).

Once open, the data stored under a key is accessed by dbm_fetch and data is placed
under a key by dbm_store. The flags field can be either DBM_INSERT or
DBM_REPLACE. DBM_INSERT will only insert new entries into the database and
will not change an existing entry with the same key. DBM_REPLACE will replace
an existing entry if it has the same key. A key (and its associated contents) is deleted
by dbm_delete. A linear pass through all keys in a database may be made, in an
(apparently) random order, by use of dbm_firstkey and dbm_nextkey.

dbm_firstkey will return the first key in the database. dbm_nextkey will return the
next key in the database. This code will traverse the data base:

for (key = dbm_firstkey(db); key.dptr != NULL; key =
dbm_nextkey(db))

dbm_error returns non-zero when an error has occurred reading or writing the
database. dbm_clearerr resets the error condition on the named database.

Diagnostics

All functions that return an int indicate errors with negative values. A zero return
indicates ok. Routines that return a datum indicate errors with a null (0) dptr. If
dbm_store called with a flags value of DBM_INSERT finds an existing entry with
the same key it returns 1.

Restrictions

The ‘.pag’ file will contain holes so that its apparent size is about four times its
actual content. Older systems may create real file blocks for these holes when
touched. These files cannot be copied by normal means (cp, cat, tp, tar, ar)
without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 4096 bytes). Moreover all key/content pairs that hash together must fit on
a single block. dbm_store will return an error in the event that a disk block fills
with inseparable data.

dbm_delete does not physically reclaim file space, although it does make it available
for reuse.

The order of keys presented by dbm_firstkey and dbm_nextkey depends on a
hashing function, not on anything interesting.

See Also
dbm(3X)

3-98 Subroutines

nice (3)

Name
nice — set program priority

Syntax
nice(incr)

Description
The scheduling priority of the process is augmented by incr. Positive priorities get
less service than normal. Priority 10 is recommended to users who wish to execute
long-running programs without flack from the administration.
Negative increments are ignored except on behalf of the super-user. The priority is
limited to the range —20 (most urgent) to 20 (least).
The priority of a process is passed to a child process by fork(2). For a privileged
process to return to normal priority from an unknown state, nice should be called
successively with arguments —40 (goes to priority ~20 because of truncation), 20 (to
get to 0), then 0 (to maintain compatibility with previous versions of this call).

Environment
When your program is compiled using the System V environment, upon success,
nice returns —20.

See Also

nice(1), fork(2), setpriority(2), renice(8)

Subroutines 3—-99

SC

nlist(3)

Name

nlist — get entries from name list

Syntax
#include <nlist.h>

nlist(filename, nl)

char *filename;

struct nlist nl[];
Description

The nlist subroutine examines the name list in the given executable output file and
selectively extracts a list of values. The name list consists of an array of structures
containing names, types and values. The list is terminated with a null name. Each
name is looked up in the name list of the file. If the name is found, the type and
value of the name are inserted in the next two fields. If the name is not found, both
entries are set to 0. See a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file
/vmunix. In this way programs can obtain system addresses that are up to date.

Diagnostics

If the file cannot be found or if it is not a valid namelist —1 is returned; otherwise, the
number of unfound namelist entries is returned.

The type entry is set to O if the symbol is not found.

See Also
a.out(5)

3-100 Subroutines

nlist(3)

Name

nlist — get entries from name list

Syntax
#include <nlist.h>

nlist(filename, nl)

char *filename;

struct nlist nl[];
Description

The nlist subroutine examines the name list in the given executable output file and
selectively extracts a list of values. The name list consists of an array of structures
containing names, types and values. The list is terminated with a null name. Each
name is looked up in the name list of the file. If the name is found, the type and
value of the name are inserted in the next two fields. If the name is not found, both
entries are set to 0. See a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file
/vmunix. In this way programs can obtain system addresses that are up to date.

Diagnostics

All type entries are set to 0 if the file cannot be found or if it is not a valid name list.

See Also
a.out(5)

Subroutines 3-101

Vi

pathconf(3)

Name
pathconf, fpathconf — get configurable pathname variables (POSIX)

Syntax
#include <unistd.h>

long pathconf(path, name)
char *path;
int name;

long fpathconf(fildes, name)
int fildes, name;

Description

The pathconf(3) and fpathconf(3) functions provide a method for the
application to determine the current value of a configurable limit or option that is
associated with a file or directory.

For pathcon£(3), the path argument points to the pathname of a file or directory.
For fpathconf(3), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or
directory. The following table lists the variables which may be queried and the
corresponding value for the name argument. The values for the name argument are
defined in the <unistd.h> header file.

Variable name Value

LINK_MAX _PC_LINK_MAX
MAX_CANON _PC_MAX_CANON
MAX_INPUT _PC_MAX_ INPUT
NAME_MAX _PC_NAME_MAX
PATH_MAX _PC_PATH_MAX
PIPE_BUF _PC_PIPE_BUF
_POSIX_CHOWN RESTRICTED _PC_CHOWN_RESTRICTED
_POSIX NO_TRUNC _PC_NO_TRUNC
_POSIX_VDISABLE PC_VDISABLE

Return Value

Upon successful completion, the pathcon£(3) and fpathcon£(3) functions return
the current variable value for the file or directory.

If name is an invalid value, pathconf(3) and £pathcon£(3) return —1 and errno
is set to indicate the reason. If the variable corresponding to name is not defined on
the system, pathconf(3) and fpathconf(3) return —1 without changing the value
of errno.

3-102 Subroutines

pathconf(3)

Diagnostics
The pathconf(3) and fpathconf(3) functions fail if the following occurs:
[EINVAL] The value of the name argument is invalid.

See Also
<unistd.h>

Subroutines 3-103

pause(3)

Name
pause — stop until signal
Syntax
pause()
Description
The pause subroutine never returns normally. It is used to give up control while
waiting for a signal from ki11(2) or an interval timer, see setitimer(2). Upon
termination of a signal handler started during a pause, the pause call will return.
Diagnostics
The pause subroutine always returns:
[EINTR] The call was interrupted, that is, always returns —1.
See Also

kill(2), select(2), sigpause(2)

3-104 Subroutines

perror(3)

Name
perror, strerror, sys_errlist, sys_nerr — system error messages

Syntax
perror(s)
char *s;
int sys_nerr;
char *sys_errlist[];
#include <string.h>
char *strerror(err)
int err;

Description
The perror subroutine produces a short error message on the standard error file
describing the last error encountered during a call to the system from a C program.
First the argument string s , if it is not a null pointer, is printed followed by a colon
and a space; then the message and a new line are printed. Most usefully, the
argument string is the name of the program which incurred the error. The error
number is taken from the external variable errno which is set when errors occur but
not cleared when nonerroneous calls are made. For further information, see
intro(2).
To simplify variant formatting of messages, the vector of message strings sys_errlist
is provided; errno can be used as an index in this table to get the message string
without the new line. The sys_nerr is the number of messages provided for in the
table; it should be checked because new error codes may be added to the system
before they are added to the table. The strerror function will also return a
pointer to the message text for a given error number.

See Also

intro(2), errno(2), psignal(3)

Subroutines 3-105

pfopen(3)

Name
pfopen — open a packet filter file

Syntax
pfopen(ifname, flags)
char *ifname;
int flags;

Description
The packet filter (see packet filter(4)) provides raw access to Ethernets and
similar network data link layers. The routine pfopen is used to open a packet filter
file descriptor. The routine hides various details about the way packet filter files are
opened and named.
The ifname argument is a pointer to a null-terminated string containing the name of
the interface for which the application is opening the packet filter. This name may be
the name of an actual interface on the system (for example, ‘‘de0’’, ‘‘qe2’’) or it may
be a pseudo-interface name of the form ‘‘pfn’’, used to specify the nth interface
attached to the system. For example, ‘‘pf0’’ specifies the first such interface. If
ifname is NULL, the default interface (‘‘pf0’’) is used.
The flags argument has the same meaning as the corresponding argument to the
open(2) system call.
The file descriptor returned by pfopen is otherwise identical to one returned by
open(2).

Diagnostics
The pfopen routine returns a negative integer if the file could not be opened. This
may be because of resource limitations, or because the specified interface does not
exist.
If there are a lot of packet filter applications in use, the pfopen routine might take a
while.

See Also

open(2), packetfilter(4)
The Packet Filter: An Efficient Mechanism for User Level Network Code

3-106 Subroutines

popen(3)

Name
popen, pclose — initiate I/O to/from a process

Syntax
#include <stdio.h>
FILE *popen(command, type)
char *command, *type;
pclose(stream)
FILE *stream;

Description
The arguments to popen are pointers to null-terminated strings containing
respectively a shell command line and an I/O mode, either "r" for reading or "w" for
writing. It creates a pipe between the calling process and the command to be
executed. The value returned is a stream pointer that can be used (as appropriate) to
write to the standard input of the command or read from its standard output.
A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the command.
Because open files are shared, a type "r" command may be used as an input filter, and
a type "w" as an output filter.

Environment
Differs from the System V definition in that ENFILE is not a possible error
condition.

Diagnostics
The popen routine returns a null pointer if files or processes cannot be created, or
the shell cannot be accessed.
The pclose routine returns —1 if stream is not associated with a ‘popened’
command.

Restrictions
Buffered reading before opening an input filter may leave the standard input of that
filter mispositioned. Similar problems with an output filter may be forestalled by
careful buffer flushing, for instance, with ££f1ush. For further information, see
fclose(3).
The popen routine always calls sh, and never calls csh.

See Also

sh(1), pipe(2), wait(2), system(3), fclose(3s), fopen(3s)

Subroutines 3—-107

psignal (3)

Name
psignal, sys_siglist — system signal messages

Syntax
psignal(sig, s)
unsigned sig;
char *s;
char *sys_siglist([];

Description
The psignal subroutine produces a short message on the standard error file
describing the indicated signal. First the argument string s is printed, then a colon,
then the name of the signal and a new-line. Most usefully, the argument string is the
name of the program which incurred the signal. The signal number should be from
among those found in <signal.h>.
To simplify variant formatting of signal names, the vector of message strings
sys_siglist is provided. The signal number can be used as an index in this table
to get the signal name without the newline. The define NSIG defined in <signal.h>
is the number of messages.

See Also

sigvec(2), perror(3)

3-108 Subroutines

putenv(3)

Name
putenv — change or add value to environment

Syntax
int putenv (string)
char *string;

Description
The string points to a string of the form ‘‘name=value.”” The putenv subroutine
makes the value of the environment variable name equal to value by altering an
existing variable or creating a new one. In either case, the string pointed to by string
becomes part of the environment, so altering the string will change the environment.
The space used by string is no longer used once a new string-defining name is
passed to putenv.

Diagnostics
The putenv subroutine returns nonzero if it was unable to obtain enough space via
malloc for an expanded environment, otherwise zero.

Warnings
The putenv subroutine manipulates the environment pointed to by environ, and
can be used in conjunction with getenv. However, envp (the third argument to
main) is not changed.
This routine uses malloc(3) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument, then
exit the calling function while string is still part of the environment.

See Also

execve(2), getenv(3), malloc(3), environ(7)

Subroutines 3-109

putpwent(3)

Name

putpwent — write password file entry

Syntax
#include <pwd.h>

int putpwent (p, f)
struct passwd *p;
FILE *f;

Description

The putpwent subroutine is the inverse of getpwent(3). Given a pointer to a
passwd structure created by getpwent (or getpwuid or getpwnam) ,
putpwent writes a line on the stream f which matches the format of
/etc/passwd.

Diagnostics

The putpwent subroutine returns non-zero if an error was detected during its
operation, otherwise zero.

Caution

The putpwent routine uses <stdio.h>, which causes it to increase the
size of programs, not otherwise using standard I/O, more than might be
expected.

3-110 Subroutines

qsort(3)

gsort — quicker sort

#include <stdlib.h>

void qsort(base, nel, width, compar)
void *base;

size_t nel, width;

int (*compar)();

Description

The gsort subroutine is an implementation of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the number of elements;
the third is the width of an element in bytes; the last is the name of the comparison
routine to be called with two arguments which are pointers to the elements being
compared. The routine must return an integer less than, equal to, or greater than 0
according as the first argument is to be considered less than, equal to, or greater than
the second.

See Also

sort(1)

Subroutines 3-111

rand (3)

Name

rand, srand — random number generator

Syntax
#include <stdlib.h>

srand(seed)
unsigned seed;

rand()

Description

The newer random(3) should be used in new applications. The rand subroutine
remains for compatibility.

The rand su?zroutine uses a multiplicative congruential random number generator
wsilth period 2° to return successive pseudo-random numbers in the range from 0 to
27-1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to
a random starting point by calling srand with whatever you like as argument.

Environment

For the System V environment, the rand subroutine returns numbers in the range
from 0 to 2"°-1.

See Also
random(3)

3-112 Subroutines

Name

Syntax

random(3)

random, srandom, initstate, setstate — better random number generator; routines for
changing generators

long random()

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;

char *state;

int n;

char *setstate(state)

char *state;

Description

The random subroutine uses a non-linear additive feedback random number
generator employing a default table of size 31 long integers to return successive
pseudo-random numbers in the range from O to (2**31)-1. The period of this random
number generator is very large, approximately 16*((2**31)-1).

The random/srandom subroutines have (almost) the same calling sequence and
initialization properties as rand/srand. The difference is that rand(3) produces a
much less random sequence — in fact, the low dozen bits generated by rand go
through a cyclic pattern. All the bits generated by random are usable. For example,
“‘random()&01°’ will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the
amount of state information used is much more than a single word. (Two other
routines are provided to deal with restarting/changing random number generators.)
Like rand(3), however, random will by default produce a sequence of numbers that
can be duplicated by calling srandom with I as the seed.

The initstate routine allows a state array, passed in as an argument, to be
initialized for future use. The size of the state array (in bytes) is used by
initstate to decide how sophisticated a random number generator it should use —
the more state, the better the random numbers will be. (Current "optimal" values for
the amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will
be rounded down to the nearest known amount. Using less than 8 bytes will cause
an error). The seed for the initialization (which specifies a starting point for the
random number sequence, and provides for restarting at the same point) is also an
argument. Initstate returns a pointer to the previous state information array.

Once a state has been initialized, the set state routine provides for rapid switching
between states. The setstate subroutine returns a pointer to the previous state
array; its argument state array is used for further random number generation until the
next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either
by calling initstate (with the desired seed, the state array, and its size) or by
calling both setstate (with the state array) and srandom (with the desired seed).

Subroutines 3-113

random (3)
The advantage of calling both setstate and srandom is that the size of the state

array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is
greater than 2%, which should be sufficient for most purposes.

Diagnostics

If initstate is called with less than 8 bytes of state information, or if setstate
detects that the state information has been garbled, error messages are printed on the
standard error output.

See Also
rand(3)

3-114 Subroutines

regex(3)

Name
re_comp, re_exec — regular expression handler
Syntax
char *re_comp(s)
char *s;
re_exec(s)
char *s;
Description
The re_comp subroutine compiles a string into an internal form suitable for pattern
matching. The re_exec subroutine checks the argument string against the last
string passed to re_comp.
The re_comp subroutine returns 0 if the string s was compiled successfully;
otherwise a string containing an error message is returned. If re_comp is passed 0
or a null string, it returns without changing the currently compiled regular expression.
The re_exec subroutine returns 1 if the string s matches the last compiled regular
expression, 0 if the string s failed to match the last compiled regular expression, and
-1 if the compiled regular expression was invalid (indicating an internal error).
The strings passed to both re_comp and re_exec may have trailing or embedded
newline characters; they are terminated by nulls. The regular expressions recognized
are described in the manual entry for ed(1), given the above difference.
Diagnostics
The re_exec subroutine returns —1 for an internal error.
The re_comp subroutine returns one of the following strings if an error occurs:
No previous regular expression
Regular expression too long
unmatched \(
missing]
too many \(\) pairs
unmatched \)
See Also

ed(1), ex(1), egrep(1), fgrep(1), grep(1)

Subroutines 3-115

remove (3)

Name
remove — removes files
Syntax
remove (path)
char *path;
Arguments
path Provides the specification for a file or directory.
Description

The remove library function removes a file. If the path does not name a directory
then remove(path) is equivalent to unlink(path). If the path does name a directory
then remove(path) is equivalent to rmdir(path).

Return Value

A 0 is returned if the remove succeeds; otherwise a —1 is returned and an error code
is stored in the global location errno.

See Also
errno(2), rmdir(2), unlink(2)

3-116 Subroutines

resolver (3)

Name
res_mkquery, res_send, res_init, dn_comp, dn_expand — resolver routines
Syntax
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>
res_mkquery(op, dname, class, type, data, datalen, newrr, buf, buflen)
int op;
char *dname;
int class, type;
char *data;
int datalen;
struct rrec *newrr;
char *buf;
int buflen;
res_send(msg, msglen, answer, anslen)
char *msg;
int msglen;
char *answer;
int anslen;
res_init()
dn_comp(exp_dn, comp_dn, length, dnptrs, lastdnptr)
char *exp_dn, *comp_dn;
int length;
char **dnptrs, **lastdnptr;
dn_expand(msg, eomorig, comp_dn, exp_dn, length)
char *msg, *eomorig, *comp_dn, exp_dn;
int length;
Description

The resolver routines are used for making, sending, and interpreting packets to BIND
servers. Global information that is used by the resolver routines is kept in the
variable _res. Most of the values have reasonable defaults and you need not be
concerned with them. The options are a simple bit mask and are or’ed in to enable.
The options stored in _res.options are defined in /usr/include/resolv.h

and are as follows:

name are initialized, for example if res_init has been

RES_INIT True if the initial name server address and default domain
called.
RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only.

RES_USEVC Use TCP connections for queries instead of UDP.
RES_STAYOPEN This is used with RES_USEVC to keep the TCP connection

Subroutines 3-117

resolver(3)

RES_RECURSE

open between queries. This is useful only in programs that
regularly do many queries. You should normally use UDP.

Set the recursion desired bit in queries. This is the default.
The res_send routine does not do iterative queries and
expects the BIND server to handle recursion.

RES_DEFNAMES Append the default domain name to single label queries. This

is the default.

The following lists the routines found in /usr/1ib/libc.a

res_init

res_mkquery

res_send

dn_comp

3-118 Subroutines

This routine reads the initialization file to get the default domain
name and the Internet address of the initial hosts running the
name server. If this line does not exist, the host running the
resolver is tried.

This routine makes a standard query message and places it in buf.
The res_mkquery routine returns the size of the query or -1 if the
query is larger than buflen.

op The opcode is usually QUERY, but can be any of the query
types defined in nameser.h.

Dname
This variable is the domain name. If dname consists of a
smgle label and the RES_DEFNAMES flag is enabled, which
is the default, dname is appended with the current domain
name. The current domain name is defined in a system file,
but you can override it by using the environment variable
LOCALDOMAIN.

This routine sends a query to the BIND servers and returns an
answer. It calls the res_init routine. If RES_INIT is not
set, res_send sends the query to the local name server, and
handle timeouts and retries. The length of the message is
returned or —1 if there were errors.

This routine compresses the domain name exp_dn and stores it in
comp_dn. The size of the compressed name is returned or -1 if
there were errors. The length is the size of the array pointed to
by comp_dn.

dnptrs
This variable is a list of pointers to previously compressed
names in the current message. The first pointer points to the
beginning of the message and the list ends with NULL.

lastdnptr
This is a pointer to the end of the array pointed to by
dnptrs. A side effect is to update the list of pointers for
labels inserted into the message by dn_comp as the name is
compressed. If dnptr is NULL, the names are not
compressed. If lastdnptr is NULL, the list is not updated.

resolver (3)

dn_expand This routine expands the compressed domain name comp_dn to
a full BIND domain name. Expanded names are converted to
upper case.

msg This variable is a pointer to the beginning of the message.

exp_dn
This variable is a pointer to a buffer of size length for the
result. The size of the compressed name is returned or -1 if
there was an error.

Files
/etc/resolv.conf
/usr/include/resolv.h
/usr/include/arpa/nameser.h
See Also

named(8), resolv.conf(5)
Guide to the BIND/Hesiod Service

Subroutines 3-119

scandir(3)

Name
scandir — scan a directory
Syntax
#include <sys/types.h>
#include <sys/dir.h>
scandir(dirname, namelist, select, compar)
char *dirname;
struct direct *(*namelist[]);
int (*select)();
int (*compar)();
alphasort(d1, d2)
struct direct **d1, **d2;
Description
The scandir subroutine reads the directory dirname and builds an array of pointers
to directory entries using malloc(3). It returns the number of entries in the array
and a pointer to the array through namelist.
The select parameter is a pointer to a user supplied subroutine which is called by
scandir to select which entries are to be included in the array. The select routine
is passed a pointer to a directory entry and should return a non-zero value if the
directory entry is to be included in the array. If select is null, then all the directory
entries will be included.
The compar parameter is a pointer to a user supplied subroutine which is passed to
gsort(3) to sort the completed array. If this pointer is null, the array is not sorted.
The alphasort is a routine which can be used for the compar parameter to sort the
array alphabetically.
The memory allocated for the array can be deallocated with free by freeing each
pointer in the array and the array itself. For further information, see malloc(3)."
Diagnostics
Returns -1 if the directory cannot be opened for reading or if malloc(3) cannot
allocate enough memory to hold all the data structures. '
See Also

directory(3), malloc(3), gsort(3), dir(5)

3-120 Subroutines

setjmp (3) RI

Name
setjmp, longjmp — non-local goto

Syntax
#include <setjmp.h>
int setjmp (env)
jmp_buf env;
void longjmp (env, val)
Jmp_buf env;
int val;

Description
The set jmp and longjmp functions help deal with errors and interrupts
encountered in a low-level subroutine of a program.
The set jmp function saves its stack environment in env (whose type, jmp_buf, is
defined in the <setjmp.h> header file) for later use by longjmp. It returns the
value 0.
The 1ongjmp function restores the environment saved by the last call of set jmp
with the corresponding env argument. After 1ong jmp finishes, program execution
continues as if the corresponding call of set jmp (which must not itself have
returned in the interim) had just returned the value val. The 1ongjmp function
cannot cause set jmp to return the value 0. If longjmp is invoked with a second
argument of 0, set jmp returns 1. At the time of the second return from set jmp,
all accessible data have values as of the time longjmp is called. However, global
variables have the expected values. For example, those as of the time of the
longjmp(see

Examples

#include <setjmp.h>

jmp_buf env;
int 1 = 0;
main ()

{

void exit ();

if (setjmp(env) != 0) {
(void) printf("value of i on 2nd return from setjmp: %d0, i);
exit (0);

}

(void) printf("value of i on 1lst return from setjmp: %40, i);

i=1;
g():
/*NOTREACHED*/

Subroutines 3-121

longjmp (env, 1);
/*NOTREACHED* /
}

If the a.out resulting from this C language code is run, the output is as follows:

value of i on lst return from setjmp:0

value of i on 2nd return from setjmp:1l

NOTE

Unexpected behavior occurs if 1ongjmp is called without a previous
call to set jmp, or when the last such call was in a function which has

since returned.

Restrictions
The values of the registers on the second return from set jmp are register values at
the time of the first call to set jmp, not those of the longjmp. Thus, variables in
a given function can produce unexpected results in the presence of set jmp,
depending on whether they are register or stack variables.

See Also

signal(2).

3-122 Subroutines

setjmp (3)

Name
setjmp, longjmp — nonlocal goto

Syntax
#include <setjmp.h>
setjmp(env)
jmp_buf env;
longjmp(env, val)
Jmp_buf env;
_setjmp(env)
Jjmp_buf env;
_longjmp(env, val)
jmp_buf env;

Description
These routines are useful for dealing with errors and interrupts encountered in a low-
level subroutine of a program.
The set jmp subroutine saves its stack environment in env for later use by
longjmp. It returns value 0.
The 1ongjmp subroutine restores the environment saved by the last call of set jmp.
It then returns in such a way that execution continues as if the call of set jmp had
just returned the value val to the function that invoked set jmp, which must not
itself have returned in the interim. However, 1ong jmp cannot cause set jmp to
return the value 0. If longjmp is invoked with a val of 0, set jmp will return 1.
All accessible data have values as of the time longjmp was called.
The set jmp and longjmp subroutines save and restore the signal mask
sigsetmask(2), while _set jmp and _longjmp manipulate only the C stack and
registers.

Restrictions
The set jmp subroutine does not save current notion of whether the process is
executing on the signal stack. The result is that a longjmp to some place on the
signal stack leaves the signal stack state incorrect.

See Also

sigstack(2), sigvec(2), signal(3)

Subroutines 3-123

setlocale (3)

Name

setlocale — set localization for internationalized program
Syntax

#include <locale.h>

char *setlocale (category, locale)

int category;

char *locale;
Description

The setlocale function changes or queries the run-time environment of the
program. The function can affect the settings of language, territory, and codeset in
the program’s environment.

In the category argument, you specify what part of the run-time environment you
want to affect. Possible values for category are shown in the following table:

Effect of Specifying Environment Variable

category the Value Affected

LC_ALL Sets or queries entire LANG
environment

LC_COLLATE Changes or queries LC_COLLATE
collation sequences

LC_CTYPE Changes or queries LC_CTYPE
character classification

LC_NUMERIC Changes or queries LC_NUMERIC
number format
information

LC_TIME Changes or queries time ~ LC_TIME
conversion parameters

LC_MONETARY Changes or queries LC_MONETARY

monetary information

You change only one part of the program’s locale in a single call to setlocale,
unless you use the category LC_ALL.

The locale argument is a pointer to a character string containing the required setting
of category in the following format:

language[_territory[.codeset]] [@modifier]

You use language to specify the native language you want in the program
environment. You can specify what dialect of the native language you want in
_territory, and the codeset to be used in codeset. For example, the following string
specifies the French native language, as spoken in France (as opposed to
Switzerland), and the Digital Multinational Character Set:

LANG = FRE_FR.MCS
You use @modifier to select a specific instance of an environment setting within a
single category. For example, you could use @modifier to select dictionary sorting

of data, as opposed to telephone directory sorting. You can use @modifier for all
categories, except LC_ALL.

3-124 Subroutines

setlocale (3)

The following preset values of locale are defined for all the settings of category:

"C" Specifies setting the locale to the minimum C language environment, as
specified by the ANSI standard for the C language. (Draft ANSI X3.159)

Specifies using the environment variable corresponding to category to set
the locale. If the appropriate environment variable is not set, the LANG
environment variable is used. If LANG is not set, set Locale returns an
error.

mne

NULL Queries the current international environment and returns current locale
setting. You can use the string setlocale returns only as input to a
subsequent setlocale call; in particular, the string cannot be printed
for category LC_ALL. The string setlocale returns is a pointer to
static data area that might be written over.

International Environment
INTLINFO The INTLINFO environment variable specifies the directory to

search for language databases. The default is to search the
/usr/lib/int1ln directory.

Examples

Return

The following calls to the setlocale function set the environment to the French
language and then modify the collating sequence to German dictionary collation:

setlocale (LC_ALL, "FRE_FR.MCS");
setlocale (LC_COLLATE, "GER_DE.MCS@diCt");

You can use the set locale function to bind the specific language requirements of
a user to the program as follows:

status = setlocale (LC_ALL, "");

For this example to work properly, the user of the international program sets the
LANG variable before running the program. Once LANG is set and the program
runs, this call causes setlocale to use the definition of LANG to set the current
locale. You should test the value of status after the call completes to be sure no
errors occur.

Values

If you pass valid setting for category and locale, other than NULL, setlocale
changes the current locale and returns the string associated with that locale.

If locale is NULL, setlocale returns the string associated with category for the
current locale. The current locale is unchanged. The string set locale returns may
not be in a printable format.

If either the category or locale argument is invalid, set locale returns NULL. The
setlocale function does not modify the locale if any part of the call is invalid.

The setlocale function stores its return values in a data area that may be written
over. You should move the return value to another location if you want to use it in
your program.

Subroutines 3-125

setlocale (3)

See Also

ic(1int), nl_langinfo(3int), printf(3int), environ(5int), lang(5int)
Guide to Developing International Software

3-126 Subroutines

setpgid(3)

Name

setpgid — set process group (POSIX)
Syntax

#include <sys/types.h>

int

setpgid(pid, pgrp)

pid_t pid, pgrp;
Description

The setpgid function is used to either join an existing process group or create a
new process group within the session of the calling process (see setsid(2)). Upon
successful completion, the process group ID of the process that has a process ID
which matches pid is set to pgrp. If pid is zero, then the call applies to the current
process. In addition, if pgrp is zero, the process ID of the indicated process is used.

This function is available only in the POSIX environment.

Return Value

The setpgid function returns 0 when the operation is successful. If the request
fails, —1 is returned and the global variable errno indicates the reason.

Diagnostics

The setpgid function fails and the process group is not altered if one of the

following occurs:
[EACCES]

[EINVAL]

[EPERM]

[ESRCH]

The value of the pid argument matches the process ID of a child
process of the calling process and the child process has
successfully executed an exec function.

The value of the pgrp argument is less than zero or is not a
supported value.

The process indicated by the pid argument is a session leader.

The value of the pid argument matches the process ID of a child
process of the calling process and the child process is not in the
same session as the calling process.

The value of the pgrp argument does not match the process ID of
the process indicated by the pid argument and there is no process
with a process group ID that matches the value of the pgrp
argument in the same session as the calling process.

The value of the pid argument does not match the process 1D of
the calling process of a child process of the calling process.

Subroutines 3-127

setpgid(3)

See Also
getpgrp(2), setsid(2)

3-128 Subroutines

Name

Syntax

setuid (3)

setuid, seteuid, setruid, setgid, setegid, setrgid — set user and group ID

#include <sys/types.h>
#include <unistd.h>

setuid(uid)
uid_t uid;
seteuid(euid)
uid_t euid,;
setruid(ruid)
uid_t ruid;

setgid(gid)
gid_t gid;
setegid(egid)
gid_t egid,
setrgid(rgid)
gid_t rgid;

Description

The setuid subroutine sets both the real and effective user ID of the current
process to the ID specified. Likewise, the setgid subroutine sets the real and
effective group ID of the current process to the ID specified.

The seteuid subroutine sets the effective user ID of the current process, while the
setegid subroutine sets the effective group ID of the current process.

The setruid subroutine sets the real user ID of the current process, while the
setrgid subroutine sets the real group ID of the current process.

These calls are only permitted to the super-user or if the argument is the real or
effective ID.

Environment

POSIX

SYSTEM_FIVE

When your program is compiled in POSIX or System V mode the following
semantics apply when using the setuid or setgid functions:

If the process is the super-user the real, effective, and saved set (as described in
execve(2)) user/group ID are set to uid.

If the process is not the super-user, but uid is equal to the real or the saved set
user/group ID, the effective user/group ID is set to uid. The real and saved set
user/group ID remain unchanged.

POSIX
In POSIX mode, the setuid function returns a value of type uid_t. The setgid
function returns a value of type gid_t.

Subroutines 3-129

setuid (3)

Return Values

Zero is returned if the user ID or group ID is set; —1 is returned otherwise.

See Also
setreuid(2), setregid(2), getuid(2), getgid(2)

3-130 Subroutines

sigaction (3)

Name
sigaction — software signal facilities (POSIX)

Syntax
#include <signal.h>

struct sigaction {
void (*sa_handler)();
sigset_t sa_mask;
int sa_flags;

bH

int sigaction(sig, vec, ovec)

int sig;

struct sigaction *vec, *ovec;

Description

The s1:{0gétlon call is the POSIX equivalent to the sigvec(2)isystem call. This call
behaves as described on the sigvec(2) reference page with the following
modifications:

° The signal mask is manipulated using the sigsetops(3) functions.

. A process can suppress the generation of the SIGCHLD when a child stops by
setting the SA_NOCLDSTOP bit in sa_flags.

° The SV_INTERRUPT flag is always set by the system when using
sigaction(3) in POSIX mode. The flag is set so that interrupted system
calls will fail with the EINTR error instead of getting restarted.

Return Value

A 0 return value indicated that the call succeeded. A —1 return value indicates an
error occurred and errno is set to indicated the reason.

Diagnostics

The sigaction system call fails and a new signal handler is not installed if one of
the following occurs:

[EFAULT] Either vec or ovec points to memory which is not a valid part of
the process address space.

[EINVAL] Sig is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

See Also
sigvec(2), sigsetops(3), sigprocmask(3), sigsuspend(3), sigpending(2), setjmp(3),
siginterrupt(3), tty(4)

Subroutines 3-131

siginterrupt(3)

Name

siginterrupt — allow signals to interrupt system calls

Syntax

siginterrupt(sig, flag)
int sig, flag;

Description

The siginterrupt system call is used to change the system call restart behavior
when a system call is interrupted by the specified signal. If the flag is false (0), then
system calls will be restarted if they are interrupted by the specified signal and no
data has been transferred yet. System call restart is the default behavior on 4.2 BSD.

If the flag is true (1), then restarting of system calls is disabled. If a system call is
interrupted by the specified signal and no data has been transferred, the system call
will return -1 with errno set to EINTR. Interrupted system calls that have started
transferring data will return the amount of data actually transferred. System call
interrupt is the signal behavior found on 4.1 BSD and AT&T System V systems.

Note that the new signal handling semantics are not altered in any other way. Most
notably, signal handlers always remain installed until explicitly changed by a
subsequent sigvec(2) call, and the signal mask operates as documented in
sigvec(2.) Programs may switch between restartable and interruptible system call
operation as often as desired in the execution of a program.

Issuing a siginterrupt call during the execution of a signal handler will cause
the new action to take place on the next signal to be caught.

Environment

This library routine uses an extension of the sigvec(2) system call that is not
available in ULTRIX 2.0 or earlier versions. Hence it should not be used if
backward compatibility is needed.

Return Value

A 0 value indicates that the call succeeded. A -1 value indicates that an invalid
signal number has been supplied.

See Also
sigvec(2), sigblock(2), sigpause(2), sigsetmask(2)

3-132 Subroutines

signal (3)

Name

signal — simplified software signal facilities

Syntax
#include <signal.h>

(*signal(sig, func))()
void (*func)();

Description

The signal subroutine is a simplified interface to the more general sigvec(2)
facility.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit,
interrupt, stop), by a program error (bus error, etc.), by request of another program
(kill), or when a process is stopped because it wishes to access its control terminal
while in the background. For further information, see tty(4). Signals are optionally
generated when a process resumes after being stopped, when the status of child
process changes, or when input is ready at the control terminal. Most signals cause
termination of the receiving process if no action is taken; some signals instead cause
the process receiving them to be stopped, or are simply discarded if the process has
not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the
signal call allows signals either to be ignored or to cause an interrupt to a specified
location. The following is a list of all signals with names as in the include file

< signal.h >:

SIGHUP 1 Hangup

SIGINT 2 Interrupt

SIGQUIT 3* Quit

SIGILL 4* Illegal instruction
SIGTRAP 5* Trace trap

SIGIOT 6* IOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* Floating point exception

SIGKILL 9 Kill (cannot be caught or ignored)

SIGBUS 10* Bus error

SIGSEGV 11* Segmentation violation

SIGSYS 12* Bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 Alarm clock

SIGTERM 15 Software termination signal

SIGURG 16e Urgent condition present on socket

SIGSTOP 17+ Stop (cannot be caught or ignored)

SIGTSTP 18+ Stop signal generated from keyboard
SIGCONT 19e Continue after stop

SIGCHLD 20e Child status has changed

SIGTTIN 21+ Background read attempted from control terminal
SIGTTOU 22+ Background write attempted to control terminal
SIGIO 23e T/O is possible on a descriptor (see fcntl(2))
SIGXCPU 24 Cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 File size limit exceeded (see setrlimit(2))

Subroutines 3-133

N

)

C

signal (3)

SIGVTALRM 26 Virtual time alarm (see setitimer(2))
SIGPROF 27 Profiling timer alarm (see setitimer(2))
SIGWINCH 28e Window size change

SIGUSR1 30 User defined signal

SIGUSR2 31 User defined signal

SIGCLD System V name for SIGCHLD
SIGABRT X/OPEN name for SIGIOT

The starred signals in the list above cause a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is
termination (with a core image for starred signals) except for signals marked with e
or +. Signals marked with e are discarded if the action is SIG_DFL; signals marked
with + cause the process to stop. If func is SIG_IGN the signal is subsequently
ignored and pending instances of the signal are discarded. Otherwise, when the
signal occurs further occurrences of the signal are automatically blocked and func is
called.

A return from the function unblocks the handled signal and continues the process at
the point it was interrupted. Unlike previous signal facilities, the handler func
remains installed after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate
prematurely, the call is automatically restarted. In particular this can occur during a
read or write(2) on a slow device (such as a terminal; but not a file) and during a
wait(2).

The value of signal is the previous (or initial) value of func for the particular
signal.

After a fork(2) or vfork(2) the child inherits all signals. The execve(2) system
call resets all caught signals to the default action; ignored signals remain ignored.

Environment

Notes

When your program is compiled using the System V environment the handler
function does NOT remain installed after the signal has been delivered.

Also, when a signal which is to be caught occurs during a read, write, or ioctl to a
slow device (like a terminal, but not a file); or during a pause; or wait that does not
return immediately, the signal handler function is executed, and then the
interrupted system call may return a -1 to the calling process with errno set to
EINTR.

The handler routine can be declared as follows:

handler (sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number. The MIPS hardware exceptions are mapped to specific
signals as defined by the table below. The parameter code is either a constant as
given below or zero. The parameter scp is a pointer to the sigcontext structure
(defined in <signal.h>), that is the context at the time of the signal and is used to
restore the context if the signal handler returns.

3-134 Subroutines

signal (3)

The following defines the mapping of MIPS hardware exceptions to signals and
codes. All of these symbols are defined in either <signal.h> or <mips/cpu.h>:

Hardware exception Signal Code

Integer overflow SIGFPE EXC_OV
Segmentation violation SIGSEGV SEXC_SEGV
Ilegal Instruction SIGILL EXC II
Coprocessor Unusable SIGILL SEXC_CPU

Data Bus Error SIGBUS EXC_DBE
Instruction Bus Error SIGBUS EXC_IBE

Read Address Error SIGBUS EXC_RADE

Write Address Error SIGBUS EXC_WADE

User Breakpoint (used by debuggers) SIGTRAP BRK_USERBP
Kernel Breakpoint (used by prom) SIGTRAP BRK_KERNELBP
Taken Branch Delay Emulation SIGTRAP BRK_BD_TAKEN
Not Taken Branch Delay Emulation SIGTRAP BRK_BD_NOTTAKEN
User Single Step (used by debuggers) SIGTRAP BRK_SSTEPBP
Overflow Check SIGTRAP BRK_OVERFLOW
Divide by Zero Check SIGTRAP BRK_DIVZERO
Range Error Check SIGTRAP BRK_RANGE

When a signal handler is reached, the program counter in the signal context structure
(sc_pc) points at the instruction that caused the exception as modified by the branch
delay bit in the cause register. The cause register at the time of the exception is also
saved in the sigcontext structure (sc_cause). If the instruction that caused the
exception is at a valid user address it can be retrieved with the following code
sequence:

if (scp->sc_cause & CAUSE_BD) {
branch_instruction = *(unsigned long *) (scp-
>sc_pc);
exception_instruction
>sc_pc + 4);
}
else
exception_instruction
>sc_pc);

Where CAUSE_BD is defined in <mips/cpu.h>.

The signal handler may fix the cause of the exception and re-execute the instruction,
emulate the instruction and then step over it or perform some non-local goto such as
a longjump() or an exit().

* (unsigned long *) (scp-

I

* (unsigned long *) (scp-

If corrective action is performed in the signal handler and the instruction that caused
the exception would then execute without a further exception, the signal handler
simply returns and re-executes the instruction (even when the branch delay bit is set).

If execution is to continue after stepping over the instruction that caused the
exception the program counter must be advanced. If the branch delay bit is set the
program counter is set to the target of the branch else it is incremented by 4.

Subroutines 3-135

R

-

>

C

signal (3)

Return

This can be done with the following code sequence:

if (scp->sc_cause & CAUSE_BD)
emulate_branch(scp, branch_instruction);
else
scp->sc_pc += 4;
Emulate_branch() modifies the program counter value in the sigcontext structure to
the target of the branch instruction. See emulate_branch(3) for more details.

For SIGFPE’s generated by floating-point instructions (code == 0) the floating-point
control and status register at the time of the exception is also saved in the sigcontext
structure (sc_fpc_csr). This register has the information on which exceptions have
occurred. When a signal handler is entered the register contains the value at the time
of the exception but with the exceptions bits cleared. On a return from the signal
handler the exception bits in the floating-point control and status register are also
cleared so that another SIGFPE does not occur (all other bits are restored from

sc_fpc_csr).
For SIGSEGV and SIGBUS errors the faulting virtual address is saved in
sc_badvaddr in the signal context structure.

The SIGTRAP’s caused by break instructions noted in the above table and all other
yet to be defined break instructions fill the code parameter with the first argument to
the break instruction (bits 25-16 of the instruction).

Value

The previous action is returned on a successful call. Otherwise, —1 is returned and
errno is set to indicate the error.

Diagnostics
The signal subroutine fails and action is not taken if one of the following occurs:
[EINVAL] The sig is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.
See Also

kill(1), kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
sigvec(2), setjmp(3), tty(4)

3-136 Subroutines

signal(3) V/

Name

signal — simplified software signal facilities

Syntax
#include <signal.h>

(*signal(sig, func))()
void (*func)();

Description

The signal subroutine is a simplified interface to the more general sigvec(2)
facility. :

A signal is generated by some abnormal event, initiated by a user at a terminal (quit,
interrupt, stop), by a program error (bus error, etc.), by request of another program
(kill), or when a process is stopped because it wishes to access its control terminal
while in the background. For further information, see tty(4). Signals are optionally
generated when a process resumes after being stopped, when the status of child
process changes, or when input is ready at the control terminal. Most signals cause
termination of the receiving process if no action is taken; some signals instead cause
the process receiving them to be stopped, or are simply discarded if the process has
not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the
signal call allows signals either to be ignored or to cause an interrupt to a specified
location. The following is a list of all signals with names as in the include file

< signal.h >:

SIGHUP 1 Hangup

SIGINT 2 Interrupt

SIGQUIT 3* Quit

SIGILL 4* Tllegal instruction

SIGTRAP 5* Trace trap

SIGIOT 6* 10T instruction

SIGEMT 7* EMT instruction

SIGFPE 8* Floating point exception

SIGKILL 9 Kill (cannot be caught or ignored)

SIGBUS 10* Bus error

SIGSEGV 11* Segmentation violation

SIGSYS 12* Bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 Alarm clock

SIGTERM 15 Software termination signal

SIGURG 16 Urgent condition present on socket
SIGSTOP 17+ Stop (cannot be caught or ignored)
SIGTSTP 18+ Stop signal generated from keyboard
SIGCONT 19e Continue after stop

SIGCHLD 20e Child status has changed

SIGTTIN 21+ Background read attempted from control terminal
SIGTTOU 22+ Background write attempted to control terminal
SIGIO 23 1/O is possible on a descriptor (see fcntl(2))
SIGXCPU 24 Cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 File size limit exceeded (see setrlimit(2))

Subroutines 3-137

AX

signal (3)

Return

SIGVTALRM 26 Virtual time alarm (see setitimer(2))
SIGPROF 27 Profiling timer alarm (see setitimer(2))
SIGWINCH 28e Window size change

SIGSHORT 29 System V record locking

SIGUSR1 30 User defined signal

SIGUSR2 31 User defined signal

SIGCLD System V name for SIGCHLD
SIGABRT X/OPEN name for SIGIOT

The starred signals in the list above cause a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is
termination (with a core image for starred signals) except for signals marked with e
or +. Signals marked with e are discarded if the action is SIG_DFL; signals marked
with + cause the process to stop. If func is SIG_IGN the signal is subsequently
ignored and pending instances of the signal are discarded. Otherwise, when the
signal occurs further occurrences of the signal are automatically blocked and func is
called.

A return from the function unblocks the handled signal and continues the process at
the point it was interrupted. Unlike previous signal facilities, the handler func
remains installed after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate
prematurely, the call is automatically restarted. In particular this can occur during a
read or write(2) on a slow device (such as a terminal; but not a file) and during a
wait(2).

The value of signal is the previous (or initial) value of func for the particular
signal.

After a fork(2) or vEork(2) the child inherits all signals. The execve(2) system
call resets all caught signals to the default action; ignored signals remain ignored.

Value

The previous action is returned on a successful call. Otherwise, —1 is returned and
errno is set to indicate the error.

Diagnostics

The signal subroutine will fail and no action will take place if one of the
following occur:

[EINVAL] The sig is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

Notes (VAX-11)

The handler routine can be declared:

handler (sig, code, scp)

Here sig is the signal number, into which the hardware faults and traps are mapped as
defined below. Code is a parameter which is either a constant as given below or, for
compatibility mode faults, the code provided by the hardware. The scp is a pointer
to the struct sigcontext used by the system to restore the process context from before

3-138 Subroutines

signal (3) VA
the signal. Compatibility mode faults are distinguished from the other SIGILL traps
by having PSL._CM set in the psl.

The following defines the mapping of hardware traps to signals and codes. All of
these symbols are defined in < signal.h >:

Hardware condition Signal Code

Arithmetic traps:

Integer overflow SIGFPE FPE_INTOVF_TRAP
Integer division by zero SIGFPE FPE_INTDIV_TRAP
Floating overflow trap SIGFPE FPE_FLTOVF_TRAP
Floating/decimal division by zero SIGFPE FPE_FLTDIV_TRAP
Floating underflow trap SIGFPE FPE_FLTUND_TRAP
Decimal overflow trap SIGFPE FPE_DECOVF_TRAP
Subscript-range SIGFPE FPE_SUBRNG_TRAP
Floating overflow fault SIGFPE FPE_FLTOVF_FAULT
Floating divide by zero fault SIGFPE FPE_FLTDIV_FAULT
Floating underflow fault SIGFPE FPE_FLTUND_FAULT

Length access control SIGSEGV faulting virtual addr

Protection violation SIGBUS faulting virtual addr

Reserved instruction SIGILL ILL_PRIVIN_FAULT

Customer-reserved instr. SIGEMT

Reserved operand SIGILL ILL_RESOP_FAULT

Reserved addressing SIGILL ILL_RESAD_FAULT

Trace pending SIGTRAP

Bpt instruction SIGTRAP

Compatibility-mode SIGILL hardware supplied code

Chme SIGSEGV

Chms SIGSEGV

Chmu SIGSEGV

Environment

When your program is compiled using the System V environment the handler
function does NOT remain installed after the signal has been delivered.

Also, when a signal which is to be caught occurs during a read(), write(), or ioctl()
to a slow device (like a terminal, but not a file); or during a pause(); or wait() that
does not return immediately, the signal handler function will be executed, and then

the interrupted system call may return a -1 to the calling process with errno set to
EINTR.

See Also

kill(1), kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
sigvec(2), setjmp(3), tty(4)

Subroutines 3-139

sigprocmask (3)

Name

sigprocmask — examine and change blocked signals (POSIX)
Syntax

#include <signal.h>

int sigprocmask(how, set, oset)

int how;

sigset_t *set, *oset;
Description

The sigprocmask system call is used to examine and/or change the calling
process’s signal mask. If the value of the argument ser is not NULL, it points to a set
of signals that will be used to change the currently blocked set.

The value of the argument how indicates the manner in which the set is changed as
defined by the following values, defined in <signal.h>:

SIG_BLOCK
The resulting signal set is the union of the current set and the signal set
pointed to by the argument set.

SIG_UNBLOCK
The resulting signal set is the intersection of the current set and the
complement of the signal set pointed to by the argument set.

SIG_SETMASK
The resulting signal set is the signal set pointed to by the argument set.

If the argument oset is not NULL, the previous mask is stored in the space pointed to
by oset. If the value of the argument set is NULL, the process’s signal mask is
unchanged; thus, the sigprocmask(3) function can be used to enquire about
currently blocked signals.

The signal masks used as arguments to this function are manipulated using the
sigsetops(3) functions.

As a system restriction, SIGKILL and SIGSTOP cannot be blocked.

Return Value

A 0 return value indicates a successful call. A —1 return value indicates an error and
errno is set to indicated the reason.

3-140 Subroutines

sigprocmask(3)

Diagnostics

The sigprocmask function fails and the signal mask remains unchanged if the
follow occurs:

[EINVAL] The value of the how argument is not equal to one of the defined
values.

See Also
kill(2), sigsetmask(2), sigvec(2), sigblock(2), sigsetops(3)

Subroutines 3-141

sigsetjmp (3)

Name

Syntax

sigsetjmp, siglongjmp — nonlocal goto

#include <setjmp.h>

sigsetjmp(env, savemask)
sigimp_buf env;

siglongjmp(env, val)
sigimp_buf env;

Description

These routines deal with errors and interrupts encountered in a low-level subroutine
of a program.

The sigset jmp subroutine saves its stack environment in env for later use by
siglongjmp. It returns a value of 0. If the value of the savemask argument is not
zero, the sigset jmp subroutine also saves the process” current signal mask as part
of the calling environment.

The siglongjmp subroutine restores the environment saved by the last call of
sigset jmp with the supplied env buffer. If the env argument was initialized by a
call to the sigset jmp subroutine with a nonzero savemask argument, the
siglongjmp subroutine restores the saved signal mask. It then returns in such a
way that execution continues as if the call of sigset jmp had just returned the
value val to the subroutine that invoked sigset jmp, which must not itself have
returned in the interim. However, siglongjmp cannot cause sigset jmp to
return the value 0. If siglongjmp is invoked with a val of 0, sigset jmp returns
a value of 1. All accessible data have values as of the time siglongjmp was
called.

Restrictions

The sigset jmp subroutine does not save the current notion of whether the process
is executing on the signal stack. When you invoke the siglongjmp subroutine, the
signal stack is left in an incorrect state.

See Also

sigstack(2), sigvec(2), signal(3), sigprocmask(3)

3-142 Subroutines

sigsetops (3)

Name

sigemptyset, sigfillset, sigaddset, sigdelset, sigismember — manipulate signal sets
(POSIX)

Syntax
#include <sig~‘rﬂnwja‘lu.‘b'>“_

r~ migemptyset(set) ,
sigset_t *set; . ——

int sigfillset (ser)
sigset_t *set;

int sigaddset(set,sig)
sigset_t *set;
int sig;
int sigdelset(set,sig)
sigset_t *set;
int sig; N
- int sigismember(set,sig)
[sigset_t *set; ,,)
int sig; B e

Descripti'on

The sigsetops(3) functions manipulate signal sets used by the other POSIX signal
functions sigaction(3,) sigprocmask(3,) sigsuspend(3).

—— The sigemptyset(3) function initializes the signal set pointed to by the argument
set so that all signals are excluded.

The sigfillset(3) function initializes the signal set pointed to by the argument
set so that all signals are included.

The sigaddset(3) and sigdelset(3) functions respectively add and delete the
individual signal specified by the value of the argument sig from the signal set
pointed to by the argument set.

_—— The sigismember(3) function tests whether the signal specified by the value of the
argument sig is a member of the set pointed to by the argument set.
Return Value

Upon successful completion, the sigismember(3) function returns a value of 1 if
the specified signal is a member of the set. If it is not a member of the set, a value
of 0 is returned.

If the sigaddset(3,) sigdelset(3,) or sigismember(3) functions fail a —1
value is returned and errno is set to indicate the reason.

Subroutines 3-143

sigsetops (3)

Diagnostics

The sigsetops(3) function will fail and the signal mask will remain unchanged if
one of the following occur:

[EINVAL] The value of the sig argument is not a valid signal number

See Also
sigprocmask(3), sigaction(3), sigsuspend(3), sigpending(2)

3-144 Subroutines

sigsuspend (3)

Name
sigsuspend — wait for signal (POSIX)

Syntax
sigsuspend(sigmask)
sigset_t *sigmask;

Description
The sigsuspend system call is the POSIX equivalent of the sigpause(2) system
call. The behavior of this call is as described on the sigpause(2) reference page
except, the signal mask is manipulated using the sigsetops(3) functions.

See Also

sigpause(2), sigaction(3), sigvec(2)

Subroutines 3-145

sleep (3)

Name
sleep — suspend execution for interval

Syntax
unsigned
sleep(seconds)
unsigned seconds;

Description
The current process is suspended from execution for the number of seconds specified
by the argument. The actual suspension time may be up to 1 second less than that
requested, because scheduled wakeups occur at fixed 1-second intervals, and an
arbitrary amount longer because of other activity in the system.
The routine is implemented by setting an interval timer and pausing until it occurs.
The previous state of this timer is saved and restored. If the sleep time exceeds the
time to the expiration of the previous timer, the process sleeps only until the signal
would have occurred, and the signal is sent 1 second later.

Return Value
The value returned by sleep is the unslept amount(the requested time minus the
time actually slept). This return value may be non-zero in cases where the caller had
an alarm set to go off earlier than the end of the requested time, or where sleep was
interrupted due to a caught signal(see ENVIRONMENT below).

Environment
POSIX
SYSTEM_FIVE
When your program is compiled in POSIX or System V mode, the sleep will be
terminated by any caught signal. The sleep function will return following execution
of the signal’s catching routine.

See Also

setitimer(2), sigpause(2)

3-146 Subroutines

statfs (3)

Name

statfs, — get file system statistics

Syntax

#include <sys/types.h>
#include <sys/param.h>
#include <sys/mount.h>

statfs(path, buffer)
char *path;
struct fs_data *buffer;

Description

The statfs library routine returns up-to-date information about a mounted file
system. The path is the path name of any file within the mounted file system. The
buffer is a pointer to an £s_data structure as defined in getmnt(2).

Return Value

Upon successful completion, a value of 1 is returned. If the file system is not
mounted, O is returned. Otherwise, ~1 is returned and the global variable errno is
set to indicate the error.

Diagnostics
The stat £s library routine fails if one or more of the following are true:
[ENOTDIR] A component of the path prefix of path is not a directory.
[EINVAL] path contains a character with the high-order bit set.

[ENAMETOOLONG]
The length of a component of path exceeds 255 characters, or the
length of path exceeds 1023 characters.

[ENOENT] The file referred to by path does not exist.
[EACCES] Search permission is denied for a component of the path prefix of
path.
[ELOOP] Too many symbolic links were encountered in translating path.
[EFAULT] buffer or path points to an invalid address.
[EIO] An J/O error occurred while reading from the file system.
See Also

getmnt(2), getmountent(3)

Subroutines 3-147

ISC

staux (3)

Name

staux — routines that provide scalar interfaces to auxiliaries

Syntax
#include <syms.h>

long st_auxbtadd(bt)
long bt;

long st_auxbtsize(iaux,width)
long iaux;
long width;

long st_auxisymadd (isym)
long isym;

long st_auxrndxadd (rfd,index)
long rfd;
long index;

long st_auxrndxadd (idn)
long idn;

void st_addtq (iaux,tq)
long iaux;
long tq;

long st_tqhigh_aux(iaux)
long iaux;

void st_shifttq (iaux, tq)

int iaux;

int tq;

long st_iaux_copyty (ifd, psym)
long ifd;

pSYMR psym;

void st_changeaux (iaux, aux)
long iaux;
AUXU aux;

void st_changeauxrndx (iaux, rfd, index)
long iaux;

long rfd;

long index;

Description

Auxiliary entries are unions with a fixed length of four bytes per entry. Much
information is packed within the auxiliaries. Rather than have the compiler front-ends
handle each type of auxiliary entry directly, the following set of routines provide a
high-level scalar interface to the auxiliaries:

st_auxbtadd Adds a type information record (TIR) to the auxiliaries. It
sets the basic type (bt) to the argument and all other fields to
zero. The index to this auxiliary entry is returned.

3-148 Subroutines

st_auxbtsize

st_auxisymadd

st_auxrndxadd

st_auxrndxadd _idn

st_iaux_copyty

st_shifttq

st_addtq
st_tqhigh_iaux
st_changeaux

st_changeauxrndx

See Also
stfd(3)

staux (3)

Sets the bit in the TIR, pointed to by the iaux argument.
This argument says the basic type is a bit field and adds an
auxiliary with its width in bits.

Adds an index into the symbol table (or any other scalar) to
the auxiliaries. It sets the value to the argument that will
occupy all four bytes. The index to this auxiliary entry is
returned.

Adds a relative index, RNDXR, to the auxiliaries. It sets the
rfd and index to their respective arguments. The index to
this auxiliary entry is returned.

Works the same as st_auxrndxadd except that RNDXR is
referenced by an index into the dense number table.

Copies the type from the specified file (ifd) for the specified
symbol into the auxiliary table for the current file. It returns
the index to the new aux.

Shifts in the specified type qualifier, tq (see sym.h), into the
auxiliary entry TIR, which is specified by the ‘iaux’ index
into the current file. The current type qualifiers shift up one
tq so that the first tq (tq0) is free for the new entry.

Adds a type qualifier in the highest or most significant non-
tgNil type qualifier.

Returns the most significant type qualifier given an index
into the files aux table.

Changes the iauxth aux in the current file’s auxiliary table to
aux.

Converts the relative index (RNDXR) auxiliary, which is
specified by iaux, to the specified arguments.

Subroutines 3-149

RIS

ISC

stcu(3)

Name

stcu — routines that provide a compilation unit symbol table interface

Syntax
#include <syms.h>
pCHDRR st_cuinit ()

void st_setchdr (pchdr)
pCHDRR pchdr;

pCHDRR st_currentpchdr()
void st_free()

long st_extadd (iss, value, st, sc, index)
long iss;

long value;

long st;

long sc;

long index;

pEXTR st_pext_iext (iext)
long iext;

pEXTR st_pext_rndx (rndx)
RNDXR rndx;

long st_iextmax()

long st_extstradd (str)
char *str;

char *st_str_extiss (iss)
long iss;

long st_idn_index_fext (index, fext)
long index;
long fext;

long st_idn_rndx (rndx)
RNDXR rndx;

pRNDXR st_pdn_idn (idn)
long idn;
RNDXR st_rndx_idn (idn)
long idn;

void st_setidn (idndest, idnsrc)
long idndest;
long idnsrc;

Description

The stcu routines provide an interface to objects that occur once per object, rather
than once per file descriptor (for example, external symbols, strings, and dense
numbers). The routines provide access to the current chdr (compile time hdr), which
represents the symbol table in running processes with pointers to symbol table

3-150 Subroutines

stcu(3) RIS

sections rather than indices and offsets used in the disk file representation.

A new symbol table can be created with s¢_cuinit. This routine creates and initializes
a CHDRR (see cmplrs/stsupport.h). The CHDRR is the current chdr and is used in
all later calls.

NOTE

A chdr can also be created with the read routines (see stio(3)). The
st_cuinit routine returns a pointer to the new CHDRR record.

st_currentchdr Returns a pointer the current chdr.

st_setchdr Sets the current chdr to the pchdr argument and sets the per file
structures to reflect a change in symbol tables.

st_free Frees all constituent structures associated with the current chdr.

st_extadd Lets you add to the externals table. It returns the index to the new

external for future reference and use. The ifd field for the external
is filled in by the current file (see st £d(3)). For more details on
the parameters, see sym.h.

st_pext_iext and st_pext_rndx
Returns pointers to the external, given a index referencing them.
The latter routine requires a relative index where the index field
should be the index in external symbols and the rfd field should be
the constant ST_EXTIFD. NOTE: The externals contain the same
structure as symbols (see the SYMR and EXTR definitions).

st_iextmax Returns the current number of entries in the external symbol table.

The iss field in external symbols (the index into string space) must point into external

string space.

st_extstradd Adds a null-terminated string to the external string space and
returns its index.

St_Str_extiss Converts that index into a pointer to the external string.

The dense number table provides a convenience to the code optimizer, generator, and
assembler. This table lets them reference symbols from different files and externals
with unique densely packed numbers.

st_idn_index_fext Returns a new dense number table index, given an index into the
symbol table of the current file (or if fext is set, the externals
table).

st_idn_rndx Returns a new dense number, but expects a RNDXR (see sym.h to
specify both the file index and the symbol index rather than
implying the file index from the current file. The RNDXR
contains two fields: an index into the externals table and a file
index rsyms can point into the symbol table, as well). The file
index is ST_EXTIFD (see stsupport.h) for externals.

st_rndx_idn Returns a RNDX, given an index into the dense number table.

st_pdn_idn Returns a pointer to the RNDXR index by the idn argument.

Subroutines 3-151

ISC stcu (3)

See Also
stfe(3), stfd(3)

3-152 Subroutines

stfd(3) RIS

Name

stfd — routines that provide access to per file descriptor section of the symbol table

Syntax
#include <syms.h>
long st_currentifd ()
long st_ifdmax ()
void st_setfd (ifd)
long ifd;

long st_fdadd (filename)
char *filename;

long st_symadd (iss, value, st, sc, freloc, index)
long iss;

long value;

long st;

long sc;

long freloc;

long index;

long st_auxadd (aux)

AUXU aux;

long st_stradd (cp)

char *cp;

long st_lineadd (line)

long line;

long st_pdadd (isym)

long isym;

long st_ifd_pcfd (pcfdl)

pCFDR pcfdl;

pCFDR st_pcfd_ifd (ifd)

long ifd;

PSYMR st_psym_ifd_isym (ifd, isym)
long ifd;

long isym;

pAUXU st_paux_ifd_iaux (ifd, iaux)
long ifd;

long iaux;

pAUXU st_paux_iaux (iaux)

long iaux;

char *st_str_iss (iss)

long iss;

Subroutines 3-153

SC

stfd (3)

char *st_str_ifd_iss (ifd, iss)
long ifd;
long iss;

pPDR st_ppd_ifd_isym (ifd, isym)
long ifd;
long isym;

char * st_malloc (ptr,psize,itemsize,baseitems)
char *ptr;

long *size;

long itemsize;

long baseitems;

Description

The stfd routines provide an interface to objects handled on a per file descriptor (or
fd) level. For example: local symbols, auxiliaries, local strings, line numbers,
optimization entries, procedure descriptor entries, and the file descriptors. These
routines constitute a group because they deal with objects corresponding to fields in
the FDR structure.

A fd can be activated by reading an existing one into memory or by creating a new
one. The compilation unit routines st_readbinary and st_readst read file descriptors
and their constituent parts into memory from a symbol table on disk.

The st_fdadd adds a file descriptor to the list of file descriptors. The lang field is
initialized from a user specified global st_lang that should be set to a constant
designated for the language in symconst.h. The fMerge field is initialized from the
user specified global st_merge that specifies whether the file is to start with the
attribute of being able to be merged with identical files at load time. The fBigendian
field is initialized by the gethost sex(3) routine, which determines the permanent
byte ordering for the auxiliary and line number entries for this file.

The st_fdadd adds the null string to the new files string table that is accessible by the
constant issNull (0. It also adds the filename to the string table and sets the rss field.

Finally, the current file is set to the newly added file so that later calls operate on that
file.

All routines for fd-level objects handle only the current file unless a file index is
specified. The current file can also be set with st_setfd.

Programs can find the current file by calling st_currentifd, which returns the current
index. Programs can find the number of files by calling s¢_ifdmax. The fd routines
only require working with indices to do most things. They allow more in-depth
manipulation by allowing users to get the compile time file descriptor (CFDR see
stsupport.h) that contains memory pointers to the per file tables (rather than indices
or offsets used in disk files). Users can retrieve a pointer to the CFDR by calling
st_pcfd_ifd with the index to the desired file. The inverse mapping st_ifd_pcfd exists,
as well.

Each of fd’s constituent parts has an add routine: st_symadd, st_stradd, st_lineadd,
st_pdadd, and st_auxadd. The parameters of the add routines correspond to the fields
of the added object (see sym.h). The pdadd routine lets users fill in the isym field
only. Further information can be added by directly accessing the procedure descriptor
entry.

3-154 Subroutines

stfd (3) RIS

The add routines return an index that can be used to retrieve a pointer to part of the
desired object with one of the following routines: st_psym_isym, st_str_iss, and
st_paux_iaux.

NOTE

These routines only return objects within the current file. The following
routines allow for file specification: st_psym_ifd_isym, st_aux_ifd_iaux,
and st_str_ifd_iss.

The st_ppd_ifd_isym allows access to procedures through the file index for the file
where they occur and the isym field of the entry that points at the local symbol for
that procedure.

The return index from st_symadd should be used to get a dense number (see stcu).
That number should be the ucode block number for the object the symbol describes.

See Also
stcu(3), stfe(3), sym.h(5), stsupport.h(5)

Subroutines 3-155

SC stfe (3)

Name

stfe — routines that provide a high-level interface to basic functions needed to access
and add to the symbol table

Syntax
#include <syms.h>

long st_filebegin (filename)
char *filename;

long st_endallfiles ()

long st_fileend (idn)
long idn;

long st_blockbegin(iss, value, sc)
long iss;

long value;

long sc;

long st_textblock()

long st_blockend(size)
long size;

long st_procend(idn)
long idn

long st_procbegin (idn)
long idn;

char *st_str_idn (idn)
long idn;

char *st_sym_idn (idn, value, sc, st, index)
long idn;

long *value;

long *sc;

long *st;

long *index;

long st_abs_ifd_index (ifd, index)

long ifd;

long index;

long st_fglobal_idn (idn)

long idn;

PSYMR st_psym_idn_offset (idn, offset)
long idn;

long offset;

long st_pdadd_idn (idn)

long idn;

3-156 Subroutines

stfe (3)

Description

The stfe routines provide a high-level interface to the symbol table based on common
needs of the compiler front-ends.

st_filebegin Takes a file name and calls st_fdadd (see st £d(3)). If it is
a new file, a symbol is added to the symbol table that for
that file or symbol, and the user supplied routine, st_feinit, is
called. This allows special file parameters to be initialized.
For example, the C front-end adds basic type auxiliaries to
each file’s aux table so that all variables of that type can
refer to a single instance instead of making individual copies
of them. The rountine st _filebegin returns a dense number
that references the symbol added for this file. It tracks files
as they appear in a CPP line directive with a stack. It
detects (from the order of the CPP directives) that a file ends
and calls s¢_filend. If a file is closed with a st_fileend, a new
instance of the filename is created. For example, multiply
included files.

st_fileend Requires the dense number from the corresponding
st_filebegin call for the file in question. It then generates an
end symbol and patches the references so that the index field
of the begin file points to that of one beyond the end file.
The end file points to the begin file.

st_endallfiles Is called at the end of execution to close off all files that
have not been ended by previous calls to st_filebegin. CPP
directives might not reflect the return to the original source
file; therefore, this routine can possibly close many files.

st_blockbegin Supports both language blocks (for example, C’s left curly
brace blocks), beginning of structures, and unions. If the
storage class is scText, it is the former; if it is scInfo, it is
one of the latter. The iss (index into string space) specifies
the name of the structure/etc, if any.

If the storage class is scText, we must check the result of st_blockbegin. It returns a
dense number for outer blocks and a zero for nested blocks. The non-zero block
number should be used in the BGNB ucode. Users of languages without nested
blocks that provide variable declarations can ignore the rest of this paragraph. Nested
blocks are two-staged: one stage occurs when the language block is detected and the
other stage occurs when the block has content. If the block has content (for example,
local variables), the front-end must call st_textblock to get a non-zero dense number
for the block’s BGNB ucode. If the block does not have content and s¢_textblock is
not called, the block’s st_blockbegin and st_blockend do not produce block and end
symbols.

If it is scInfo, st_blockbegin creates a begin block symbol in the symbol table and
returns a dense number referencing it. The dense number is necessary to build the
auxiliary required to reference the structure/etc. It goes in the aux after the TIR along
with a file index. This dense number is also noted in a stack of blocks used by
st_blockend.

Subroutines 3-157

RIS

SC stfe(3)

The st_blockbegin should not be called for language blocks when the front-end is not
producing debugging symbols.

The st_blockend requires that blocks occur in a nested fashion. It retrieves the dense
number for the most recently started block and creates a corresponding end symbol.
As in fileend, both the begin and end symbol index fields point at the other end’s
symbol. If the symbol ends a structure/etc., as determined by the storage class of the
begin symbol, the size parameter is assigned to the begin symbol’s value field. It is
usually the size of the structure or max value of a enum. We only know it at this
point. The dense number of the end symbol is returned so that the ucode ENDB can
use it. If it is an ignored text block, the dense number is zero and no ENDB should
be generated.

In general, defined external procedures or functions appear in the symbols table and
the externals table. The external table definition must occur first through the use of a
st_extadd. After that definition, st_procbegin can be called with a dense number
referring to the external symbol for that procedure. It checks to be sure we have a
defined procedure (by checking the storage class). It adds a procedure symbol to the
symbol table. The external’s index should point at its auxiliary data type information
(or if debugging is off, indexNil). This index is copied into the regular symbol’s
index field or a copy of its type is generated (if the external is in a different file than
the regular symbol). Next, we put the index to symbol in the external’s index field.
The external’s dense number is used as a block number in ucodes referencing it and
is used to add a procedure when in the st_pdadd_idn.

st_procend Creates an end symbol and fixes the indices as in blockend
and fileend, except that the end procedure reference is kept in
the begin procedure’s aux rather than in the index field
(because the begin procedure has a type as well as an end
reference). This must be called with the dense number of the
procedure’s external symbol as an argument and returns the
dense number of the end symbol to be used in the END
ucode.

st_str_idn Returns the string associated with symbol or external
referenced by the dense number argument. If the symbol was
anonymous (for example, there is not a symbol), a (char *),
-1 is returned.

st_sym_idn Returns the same result as s¢_str_idn, except that the rest of
by the idn are returned in the arguments.

st_fglobal _idn Returns a 1 if the symbol associated with the specified idn is
non-static; otherwise, a 0 is returned.

st_abs_ifd_index Returns the absolute offset for a dense number. If the symbol
is global, the global’s index is returned. If the symbol
occurred in a file, the sum of all symbols in files occurring
before that file and the symbol’s index within the file is
returned.

st_pdadd_idn Adds an entry to the procedure table for the s¢_proc entry
generated by procbegin. This should be called when the
front-end generates code for the procedure in question.

3-158 Subroutines

stfe (3) RI

See Also
stcu(3), stfd(3), sym.h(5), stsupport.h(5)

Subroutines 3-159

stime (3)

Name

stime — set time

Syntax

int stime (tp)
long *tp;

Description

The stime system call sets the system’s time and date. The #p argument points to
the value of time as measured in seconds from 00:00:00 GMT January 1, 1970.

Return Value

Upon successful completion, a value of zero (0) is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

Diagnostics
[EPERM] The effective user ID of the calling process is not the superuser.

See Also
gettimeofday(2), time(3)

3-160 Subroutines

Name

Syntax

stio(3)

stio — routines that provide a binary read/write interface to the MIPS symbol table

#include <syms.h>

long st_readbinary (filename, how)
char *filename;
char how;

long st_readst (fn, how, filebase, pchdr,flags)
long fn;

char how;

long filebase;

pCHDRR pchdr;

long flags;

void st_writebinary (filename, flags)
char *filename;
long flags;

void st_writest (fn, flags)
long fn;
long flags;

Description

The CHDRR structure (see cmplrs/stsupport.h and the st cu(3)). represents a
symbol table in memory. A new CHDRR can be created by reading a symbol table
in from disk. The st_readbinary and st_readst routines read a symbol table in from
disk.

The routine st_readbinary takes the file name of the symbol table and assumes the
symbol table header (HDRR in sym.h occurs at the beginning of the file. The
st_readst assumes that its file number references a file positioned at the beginning of
the symbol table header and that the filebase parameter specifies where the object or
symbol table file is based (for example, non-zero for archives).

The second parameter to the read routines can be r for read only or a for appending
to the symbol table. Existing local symbol, line, procedure, auxiliary, optimization,
and local string tables cannot be appended. If they didn’t exist on disk, they can be
created. This restriction stems from the allocation algorithm for those symbol table
sections when read in from disk and follows the standard pattern for building the
symbol table.

The symbol table can be read incrementally. If pchdr is zero, st_readst assumes that
a symbol table has not been read yet; therefore, it reads in the symbol table header
and file descriptors. The flags argument is a bit mask that defines what other tables
should be read. The ¢ p* constants for each table, defined in stsupport.h, can be
ORed. If flags equals -1, all tables are read. If pchdr is set, the tables specified by
flags are added to the tables that have already been read. The pchdr’s value can be
taken from st_current_pchdr. See stcu(3.)

Subroutines 3-161

ISC stio(3)

Line number entries are encoded on disk; the read routines expand them to longs.

If the version stamp is out of date, a warning message is issued to stderr. If the
magic number in the HDRR is incorrect, s¢_error is called. All other errors cause the
read routines to read non-zero; otherwise, a zero is returned.

The routines st_writebinary and st_writest are symmetric to the read routines,
excluding the how and pchdr parameters. The flags parameter is a bit mask that
defines what table should be written. The s¢_p* constants for each table, defined in
stsupport.h, can be ORed. If flags equals -1, all tables are written.

The write routines write sections of the table in the approved order, as specified in
the link editor 1d(1) specification.

Line numbers are compressed on disk.
The write routines start all sections of the symbol table on four-byte boundaries.

If the write routines encounter an error, st_error is called. After writing the symbol
table, further access to the table by other routines is undefined.

See Also
stcu(3), stfs(3), stfw (3), sym.h(5), sterror(5) stsupport.h(5)

3-162 Subroutines

strcoll (3)

Name

strcoll — string collation comparison

Syntax

int strcoll (s/, s2)
char *si, *52;

Description

The strcoll function returns an integer less than, equal to, or greater than zero
depending on whether the string pointed to by s/ is lexicographically less than, equal
to, or greater than the string pointed to by s2.

The strcoll function performs the comparison by using the collating information
defined in the program’s locale, category LC_COLLATE.

In the C locale, characters collate as if they are unsigned. In all cases strcoll
works as if st rxfrm were called on s/ and s2, and st rcmp was called on the
resulting strings.

International Environment

LC_COLLATE Contains the user requirements for language, territory, and codeset
for the character collation format. LC_COLLATE affects the
behavior of regular expressions and the string collation functions in
strcoll. If LC_COLLATE is not defined in the current
environment, LANG provides the necessary default.

LANG If this environment is set and valid, strcoll uses the
international language database named in the definition to
determine the character collation formatting rules. If
LC_COLLATE is defined, its definition supercedes the definition of
LANG.

See Also
string(3), setlocale(3), strxfrm(3), environ(5int)

Subroutines 3—-163

stritime (3)

Name

strftime — convert time and date to string

Syntax
#include <time.h>

int strftime (s, maxsize, format, tm)
char *s;

size_t maxsize;

char *format;

struct tm *im;

Description

The st rftime function places characters in the array pointed to by s. No more
than maxsize characters are placed into the array. The format string controls this
process. This string consists of zero or more directives and ordinary characters. A
directive consists of a $ character followed by a character that determines the
behavior of the directive. All ordinary characters are copied unchanged into the
array, including the terminating null character.

Each directive is replaced by the appropriate characters as shown in the following
table. The characters are determined by the program’s locale category LC_TIME and
the values contained in the structure pointed to by tm.

Directive Replaced by

%a Locale’s abbreviated weekday name

JoA Locale’s full weekday name

%b Locale’s abbreviated month name

%B Locale’s full month name

Yoc Locale’s date and time representation

%d Day of month as a decimal number (01-31)
%D Date (%m/%d/%Yy)

9%h Locale’s abbreviated month name

%H Hour as a decimal number (00-23)

%1 Hour as a decimal number (01-12)

%j Day of year (001-366)

%om Number of month (01-12)

%M Minute number (00-59)

%on Newline character

%p Locale’s equivalent to AM or PM

Y%r Time in AM/PM notation

%S Second number (00-59)

ot Tab character

%T Time (%H/%M/%S)

%U Week number (00-53), Sunday as first day of week
%ow Weekday number (0[Sunday]-6)

%W Week number (00-53), Monday as first day of week
Yox Locale’s date representation

%X Locale’s time representation

3-164 Subroutines

strftime (3)

%y Year without century (00-99)

%Y Year with century

%L Timezone name, no characters if no timezone
% % %

If a directive is used that is not contained in the table, the results are undefined.
International Environment

LC_TIME Contains the user’s requirements for language, territory, and
codeset for the time format. LC_TIME affects the behavior of the
time functions in strftime. If LC_TIME is not defined in the
current environment, LANG provides the necessary default.

LANG If this environment is set and valid, st rftime uses the
international language database named in the definition to
determine the time formatting rules. If LC_TIME is defined, its
definition supercedes the definition of LANG.

Return Value

If the total number of resulting characters, including the terminal null character, is not
more than maxsize, the st rft ime function returns the total of resultant characters
placed into the array pointed to by s, not including the terminating null character. In
all other cases zero is returned and the contents of the array are indeterminate.

As the t imezone name is not contained in the #m structure the value returned by
%Z is determined by the t imezone function, see ct ime.

See Also
ctime(3), setlocale(3)

Subroutines 3-165

string (3)

Name
strcasecmp, strncasecmp, strcat, strncat, stremp, strncmp, strepy, strnepy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, index, rindex — string operations
Syntax
#include <strings.h>
or
#include <string.h>

strcasecmp(s/, s2)
char *si, *s2;

strncasecmp(s!, s2, n)
char *s/, *52;

char *strcat(s/, s2)
char *si, *s2;

char *strncat(sl, s2, n)
char *si, *s2;

int stremp(s/, s2)
char *s1, *s2;

int strncmp(s!, s2, n)
char *s1, *52;
int n

char *strcpy(s/, s2)
char *si, *s2;

char *strncpy(si, s2, n)
char *si, *s2;

int n

size_t strlen(s)

char *s;

char *strchr(s, c)
char *s;

int ¢;

char *strrchr(s, c)
char *s;

int c;

char *strpbrk(si, s2)
char *sl, *s2;

size_t strspn(s/, s2)
char *s], *s2;

size_t strespn(s/, s2)
char *sl, *s2;

3-166 Subroutines

string (3)

char *strtok(s/, s2)
char *si, *s2;

char *index(s, ¢)
char *s, ¢;

char *rindex(s, c)
char *s, c;

char *strstr(s/, s2)
char *s/, *s2;

Description

The arguments s/, s2, and s point to strings (arrays of characters terminated by a null
character). The functions strcat, strncat, strcpy, and strncpy
subroutines all alter s/. These functions do not check for overflow of the array
pointed to by s/.

The strcat subroutine appends a copy of string s2 to the end of string s/. The
strncat subroutine copies at most n characters. Both return a pointer to the null-
terminated result.

The strcmp subroutine compares its arguments and returns an integer greater than,
equal to, or less than 0, according as s/ is lexicographically greater than, equal to, or
less than s2. The strncmp subroutine makes the same comparison but looks at at

most n characters. The strcasecmp and strncasecmp subroutines are identical
in function, but are case insensitive. The returned lexicographic difference reflects a
conversion to lower-case.

The st rcpy subroutine copies string s2 to s/, stopping after the null character has
been copied. The strncpy subroutine copies exactly n characters, truncating s2 or
adding null characters to s/ if necessary. The result will not be null-terminated if the
length of s2 is n or more. Each function returns s/.

The strlen subroutine returns the number of characters in s, not including the
terminating null character. :

The strstr subroutine returns a pointer to the first occurrence of s2 (excluding the
terminating null character) in s1, or a NULL pointer if s2 does not occur in s1. If
strlen(s2) is zero, strstr returns sl.

The strchr (strrchr) function returns a pointer to the first (last) occurrence of
character c in string s, or a NULL pointer is ¢ does not occur in the string. The null
character terminating a string is considered to be part of the string.

The strpbrk subroutine returns a pointer to the first occurrence in string s/ of any
character from string s2, or a NULL pointer if no character from s2 exists in s/.

The strspn (strcspn) subroutine returns the length of the initial segment of
string s/ which consists entirely of characters from (not from) string s2.

The strtok subroutine considers the string s/ to consist of a sequence of zero or
more text tokens separated by spans of one or more characters from the separator
string s2. The first call (with pointer s/ specified) returns a pointer to the first
character of the first token, and will have written a null character into s/ immediately
following the returned token. The function keeps track of its position in the string
between separate calls, so that subsequent calls (which must be made with the first
argument a NULL pointer) will work through the string s/ immediately following

Subroutines 3-167

string (3)

that token. In this way, subsequent calls will work through the string s/ until no
tokens remain. The separator string s2 may be different from call to call. When no
token remains in s/, a NULL pointer is returned.

The index (rindex) subroutine returns a pointer to the first (last) occurrence of
character c in string s, or zero if ¢ does not occur in the string.

NOTE

The <string.h> header file is provided for compatibility with System V;
both <string.h> and <strings.h> refer to the same file.

The strcmp and st rncmp subroutines do unsigned character
comparisons.

3-168 Subroutines

strxfrm (3)

Name
strxfrm — string transformation

Syntax

size_t strxfrm (to, from, maxsize)
char *t0;

char *from;

size_t maxsize;

Description

The st rxfrm function transforms the string pointed to by from and places the
resulting string into the array pointed to by fo. The transformation is such that two
transformed strings can be ordered by the st rcmp function as appropriate to the
program’s locale category L.C_COLLATE.

The length of the resulting string may be much longer than the original. No more
than maxsize characters are placed into the resulting string including the
terminator. If the transformed string does not exceed maxsize characters, the
number of characters (less the terminator) is returned. Otherwise the number of
characters (less the terminator) in the transformed string is returned and the contents
of the array are undefined.

International Environment

LC_COLLATE Contains the user requirements for language, territory, and codeset
for the character collation format. LC_COLLATE affects the
behavior of regular expressions and the string collation functions in
strxfrm. If LC_COLLATE is not defined in the current
environment, LANG provides the necessary default.

LANG If this environment is set and valid, st rxfrm uses the
international language database named in the definition to
determine the character collation formatting rules. If
LC_COLLATE is defined, its definition supercedes the definition of
LANG.

See Also
string(3), setlocale(3), strcoll(3), environ(Sint)

Subroutines 3—-169

stty (3)

Name
stty, gtty — set and get terminal state

Syntax
#include <sgtty.h>
stty(fd, buf)

int fd;
struct sgttyb *buf;

gtty(fd, buf)
int fd;
struct sgttyb *buf;
Description
This interface has been superseded by 1oct1(2).

The stty subroutine sets the state of the terminal associated with fd. The gtty
subroutine retrieves the state of the terminal associated with fd. To set the state of a
terminal the call must have write permission.

The stty call is actually *‘ioctl(fd, TIOCSETP, buf)’’, while the gtty call is
“‘loctl(fd, TIOCGETP, buf)’’. See ioct1(2) and tty(4) for an explanation.

Return Value

If the call is successful 0 is returned, otherwise —1 is returned and the global variable
errno contains the reason for the failure.

See Also
ioctl(2), tty(4)

3-170 Subroutines

swab (3)

Name

swab — swap bytes

Syntax

swab(from, to, nbytes)
char *from, *to;

Description

The swab subroutine copies nbytes bytes pointed to by from to the position pointed
to by to, exchanging adjacent even and odd bytes. It is useful for carrying binary
data between machines. The nbytes should be even.

Subroutines 3-171

ISC swapsex (3)

Name

swap_word, swap_half, swap_filehdr, swap_aouthdr, swap_scnhdr, swap_hdr,
swap_fd, swap_fi, swap_sym, swap_ext, swap_pd, swap_dn, swap_opt, swap_aux,
swap_reloc, swap_ranlib — swap the sex of the specified structure

Syntax

#include <sex.h>

#include <filehdr.h>

#include <aouthdr.h>
#include <scnhdr.h>

#include <sym.h>

#include <symconst.h>
#include <cmplrs/stsupport.h>
#include <reloc.h>

#include <ar.h>

long swap_word(word)
long word;

short swap_half(half)
short half;

void swap_filehdr(pfilehdr, destsex)
FILHDR *pfilehdr;
long destsex;

void swap_aouthdr(paouthdr, destsex)
AOUTHDR *paouthdr;
long destsex;

void swap_scnhdr(pscnhdr, destsex)
SCNHDR *pscnhdr;
long destsex;

void swap_hdr(phdr, destsex)
pHDRR phdr;
long destsex;

void swap_fd(pfd, count, destsex)
pFDR pfd;

long count;

long destsex;

void swap_fi(pfi, count, destsex)
pFIT pfi;

long count;

long destsex;

void swap_sym(psym, count, destsex)
pSYMR psym;

long count;

long destsex;

3-172 Subroutines

swapsex (3) RI

void swap_ext(pext, count, destsex)
pEXTR pext;

long count;

long destsex;

void swap_pd(ppd, count, destsex)
pPDR ppd;

long count;

long destsex;

void swap_dn(pdn, count, destsex)
pRNDXR pdn;

long count;

long destsex;

void swap_opt(popt, count, destsex)
pOPTR popt;

long count;

long destsex;

void swap_aux(paux, type, destsex)
pAUXU paux;

long type;

long destsex;

void swap_reloc(preloc, count, destsex)
struct reloc *preloc;

long count;

long destsex;

void swap_ranlib(pranlib, count, destsex)
struct ranlib *pranlib;

long count;

long destsex;

Description

All swapsex routines that swap headers take a pointer to a header structure to
change the byte’s sex. The destsex argument lets the swapsex routines decide whether
to swap bitfields before or after swapping the words in which they occur. If destsex
equals the hostsex of the machine you are running on, the flip happens before the
swap; otherwise, the flip happens after the swap. Although not all routines swap
structures containing bitfields, the destsex is required.

The swap_aux routine takes a pointer to an qux entry and a fype, which is a
ST_AUX_* constant in cmplrs/stsupport.h. The constant specifies the type of the
aux entry to change the sex of. All other swapsex routines are passed a pointer to
an array of structures and a count of structures to have the byte sex changed. The
routines swap_word and swap_half are macros declared in sex.h. Only the
include files that describe the structures being swapped have to be included.

See Also
gethostsex(3)

Subroutines 3-173

sysconf(3)

Name
sysconf — get configurable system variables (POSIX)
Syntax
#include <unistd.h>
long sysconf(rname)
int name;
Description
The sysconf function provides a method for the application to determine the
current value of a configurable system limit or option.
The name argument represents the system variable to be queried. The following table
lists the system variables which may be queried and the corresponding value for the
name argument. The values for the name argument are defined in the <unistd.h>
header file.
Variable name Value
ARG_MAX _SC_ARG_MAX
CHILD_MAX _SC_CHILD_ MAX
CLK_TCK _SC_CLK_TCK
NGROUPS_MAX _SC_NGROUPS_MAX
OPEN_MAX _SC_OPEN_MAX
PASS_MAX ~SC_PASS_MAX
_POSIX_JOB_CONTROL _SC_JOB_CONTROL
_POSIX_SAVED_IDS _SC_SAVED_IDS
_POSTX_VERSION _SC_VERSION
_XOPEN_VERSION _SC_XOPEN_VERSION
Return Value
Upon successful completion, the sysconf£ function returns the current variable
value on the system.
If name is an invalid value, sysconf returns —1 and errno is set to indicate the
reason. If the variable corresponding to name is not defined on the system, sysconf
returns —1 without changing the value of errno.
Diagnostics

The sysconf function fails if the following occurs:

[EINVAL] The value of the name argument is invalid.

3-174 Subroutines

Name

Syntax

syslog(3)

syslog, openlog, closelog — control system log

#include <syslog.h>

openlog(ident, logstat)
char *ident;

syslog(priority, message, parameters ...)
char *message;

closelog()

Description

The syslog subroutine arranges to write the message onto the system log
maintained by syslog(8). The message is tagged with priority and it looks like a
print £(3s) string except that %m is replaced by the current error message
(collected from errno). A trailing new line is added if needed. This message is
read by syslog(8) and output to the system console or files as appropriate. The
maximum number of parameters is 5.

If special processing is needed, openlog can be called to initialize the log file.
Parameters are ident which is prepended to every message, and logstat which is a bit
field indicating special status; current values are:

LOG_PID
log the process id with each message; useful for identifying daemons.

The openlog returns zero on success. If it cannot open the file /dev/log, it
writes on /dev/console instead and returns —1.

The closelog can be used to close the log file.

Examples

syslog (LOG_SALERT, "who: internal error 23");

openlog ("serverftp", LOG_PID);
syslog (LOG_INFO, "Connection from host %d", CallingHost);

See Also

syslog(8)

Subroutines 3-175

system (3)

Name
system — issue a shell command

Syntax
system(string)
char *string;

Description
If the string argument is the NULL pointer (0) the system function tests the
accessibility of the command interpreter sh(1). The function will return zero for
failure to find the command interpretter, and positive if successful.
If the string argument is non-NULL the system routine causes the string to be
given to sh(l) as input as if the string had been typed as a command at a terminal.
The current process waits until the shell has completed, then returns the exit status in
the form that wait(2) returns.

Diagnostics
Exit status 127 indicates the shell couldn’t be executed.

See Also

execve(2), wait(2), popen(3)

3-176 Subroutines

time (3)

Name

time, ftime — get date and time

Syntax
#include <time.h>
time_t time((long *)0)
time_t time(t/oc)
time_t *tloc;
#include <sys/timeb.h>

ftime(tp)
struct timeb *1p;

Description

The t ime subroutine returns the time since 00:00:00 GMT, Jan. 1, 1970, measured
in seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc points.

The £t ime entry fills in a structure pointed to by its argument, as defined by
<sys/timeb.h>:

struct timeb

{
time_t time;
unsigned short millitm;
short timezone;
short dstflag;

}i

The structure contains the time since the epoch in seconds, up to 1000 milliseconds
of more-precise interval, the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time
applies locally during the appropriate part of the year.

See Also
date(1), gettimeofday(2), settimeofday(2), ctime(3)

Subroutines 3-177

times (3)

Name
times — get process times
Syntax
#include <sys/times.h>
clock_t
times(buffer)
struct tms *buffer;
Description
The times subroutine returns time-accounting information for the current process
and for the terminated child processes of the current process. All times are in 1/HZ
seconds, where HZ is equivalent to 60.
The following structure is returned by times:
struct tms
clock_t tms_utime; /* user time */
clock_t tms_stime; /* system time */
clock_t tms_cutime; /* user time, children */
clock_t tms_cstime; /* system time, children */
bi
The children times are the sum of the children’s process times and their children’s
times.
Return Value
If successful, the function t imes returns the elapsed time since 00:00:00 GMT,
January 1, 1970 in units of 1/60’s of a second. When the function times fails, it
returns —1
See Also

time(1), getrusage(2), wait3(2), time(3)

3-178 Subroutines

Name

Syntax

tsearch (3)

tsearch, tfind, tdelete, twalk — manage binary search trees

#include <search.h>

void *tsearch (key, rootp, compar)
void *key;

void **rootp;

int (*compar)();

void *tfind (key, rootp, compar)
void *key;

void **rootp;

int (*compar)();

void *tdelete (key, rootp, compar)
void *key;

void **rootp;

int (*compar)();

void twalk (root, action)

void * root;

void (*action)();

Description

The t search subroutine is a binary tree search routine generalized from Knuth
(6.2.2) Algorithm T. It returns a pointer into a tree indicating where a datum may be
found. If the datum does not occur, it is added at an appropriate point in the tree.
The key points to the datum to be sought in the tree. The rootp points to a variable
that points to the root of the tree. A NULL pointer value for the variable denotes an
empty tree; in this case, the variable will be set to point to the datum at the root of
the new tree. The compar is the name of the comparison function. It is called with
two arguments that point to the elements being compared. The function must return
an integer less than, equal to, or greater than zero according as the first argument is to
be considered less than, equal to, or greater than the second.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it
if found. However, if it is not found, t £ind will return a NULL pointer. The
arguments for t £ind are the same as for t search.

The tdelete subroutine deletes a node from a binary search tree. It is generalized
from Knuth (6.2.2) algorithm D. The arguments are the same as for tsearch.
The variable pointed to by rootp will be changed if the deleted node was the root of
the tree. The tdelete subroutine returns a pointer to the parent of the deleted
node, or a NULL pointer if the node is not found.

The twalk subroutine traverses a binary search tree. The root is the root of the tree
to be traversed. (Any node in a tree may be used as the root for a walk below that
node.) The action is the name of a routine to be invoked at each node. This routine
is, in turn, called with three arguments. The first argument is the address of the node
being visited. The second argument is a value from an enumeration data type typedef
enum { preorder, postorder, endorder, leaf } VISIT; (defined in the <search.h>

Subroutines 3—-179

tsearch(3)

header file), depending on whether this is the first, second or third time that the node
has been visited (during a depth-first, left-to-right traversal of the tree), or whether
the node is a leaf. The third argument is the level of the node in the tree, with the
root being level zero.

Notes
The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being
compared. '

Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to-element.

Note that the root argument to twalk is one level of indirection less
than the rootp arguments to t search and tdelete.

Return Value

A NULL pointer is returned by t search if there is not enough space available to

create a new node.

A NULL pointer is returned by t search, tfind, and tdelete if rootp is

NULL on entry.

If the datum is found, both tsearch and t £ind return a pointer to it. If not,

tfind returns NULL, and t search returns a pointer to the inserted item.
Restrictions

Results are unpredictable if the calling function alters the pointer to the root.

Diagnostics ,
A NULL pointer is returned by t search and tdelete if rootp is NULL on entry.

See Also
bsearch(3), hsearch(3), Isearch(3)

3-180 Subroutines

ttyname (3)

Name
ttyname, isatty, ttyslot — find terminal name
Syntax
char *ttyname(filedes)
isatty(filedes)
ttyslot()
Description
The ttyname subroutine returns a pointer to the null-terminated path name of the
terminal device associated with file descriptor filedes (this is a system file descriptor
and has nothing to do with the standard I/O FILE typedef).
The isatty subroutine returns 1 if filedes is associated with a terminal device, O
otherwise.
The ttyslot subroutine returns the number of the entry in the ttys(5) file for the
control terminal of the current process.
Restrictions
The return value points to static data whose content is overwritten by each call.
Diagnostics
The ttyname subroutine returns a null pointer (0) if filedes does not describe a
terminal device in directory /dev.
The ttyslot subroutine returns 0 if /etc/ttys is inaccessible or if it cannot
determine the control terminal.
Files
/dev/*
[fetc/ttys
See Also
ioctl(2), ttys(S)

Subroutines 3-181

ulimit(3)

Name

ulimit — get and set user limits

Syntax

long ulimit (cmd, newlimit)

int cmd;

long newlimit;

Description

This function provides control over process limits. An explanation of the cmd values

follow.
Value
1

3

Return Value

Explanation

Get the process’s file size limit. The limit is in units of 512-byte blocks
and is inherited by child processes. Files of any size can be read.

Set the process’s file size limit to the value of newlimit. Any process can
decrease this limit, but only a process with an effective user ID of superuser
can increase the limit. The ulimit system call fails and the limit remains
unchanged, if a process with an effective user ID other than superuser
attemnpts to increase its file size limit.

Get the maximum possible break value. For further information, see
brk(2).

Upon successful completion, a nonnegative value is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

Diagnostics

[EINVAL] Bad value for cmd.

[EPERM] The effective user ID of the calling process is not superuser.
See Also

brk(2), write(2)

3-182 Subroutines

TN

utime (3)

Name
utime - set file times
Syntax
#include <sys/types.h>
int utime (path, times)
char *path;
struct utimbuf *zimes;
Description
The path points to a pathname naming a file. The utime function sets the access
and modification times of the named file.
If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write permission to use
ut ime in this manner.
If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the
access and modification times are set to the values contained in the designated
structure. Only the owner of the file or the super-user can use ut ime this way.
The function ut ime causes the time of the last file status change(st_ctime) to be
updated with the current time.
The times in the following structure are measured in seconds since 00:00:00 GMT,
January 1, 1970.
struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */
}i
Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of —1
is returned, and errno is set to indicate the error.
Diagnostics
The ut ime function fails, if any of the following is true:
[EACCES] Search permission is denied by a component of the path prefix.
[EACCES] The effective user ID is not super-user, not the owner of the file,
times is NULL, and write access is denied.
[EFAULT] The times is not NULL and points outside the process’s allocated
address space.
[EFAULT] The path points outside the process’s allocated address space.
[ENOENT] The named file does not exist or path points to an empty string and

the environment defined is POSIX or SYSTEM_FIVE.
[ENOTDIR] A component of the path prefix is not a directory.

Subroutines 3—-183

utime(3)
[EPERM]

- [EROFS]
[ETIMEDOUT]

See Also
stat(2)

3-184 Subroutines

The effective user ID is not a super-user, not the owner of the file,
and times is not NULL.

The file system containing the file is mounted read-only.

A connect request or remote file operation failed, because the
connected party did not respond after a period of time determined
by the communications protocol.

valloc (3)

Name

valloc — aligned memory allocator

Syntax
#include <stdlib.h>
void *valloc(size)
size_t size;
Description

The valloc subroutine allocates size bytes aligned on a page boundary. It is

implemented by calling malloc(3) with a slightly larger request, saving the true

beginning of the block allocated, and returning a properly aligned pointer.
Diagnostics

The valloc subroutine returns a null pointer (0) if there is no available memory or
if the arena has been detectably corrupted by storing outside the bounds of a block.
The valloc subroutine will fail and no additional memory will be allocated if one
of the following is true:

[ENOMEM] The limit, as set by setrlimit(2), is exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the
system) is exceeded.

[ENOMEM] Insufficient space exists in the swap area to support the expansion.

Subroutines 3-185

varargs (3)

varargs — variable argument list

#include <varargs.h>

function(va_alist)
va_dcl

va_list pvar;
va_start(pvar);

f = va_arg(pvar, type);
va_end(pvar);

Description

This set of macros provides a means of writing portable procedures that accept
variable argument lists. Routines having variable argument lists, such as
print £(3s), that do not use varargs are inherently nonportable, since different
machines use different argument passing conventions.

va_alist is used in a function header to declare a variable argument list.
va_dcl is a declaration for va_alist. Note that there is no semicolon after va_dcl.

va_list is a type which can be used for the variable pvar, which is used to traverse
the list. One such variable must always be declared.

va_start(pvar) is called to initialize pvar to the beginning of the list.

va_arg(pvar, type) will return the next argument in the list pointed to by pvar. The
type is the type the argument is expected to be. Different types can be mixed, but it
is up to the routine to know what type of argument is expected, since it cannot be
determined at runtime.

va_end(pvar) is used to finish up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.

Examples

#include <varargs.h>
execl (va_alist)
va_dcl
{
va_list ap;
char *file;
char *args[100];
int argno = 0;

va_start (ap);

file = va_arg(ap, char *);

while (args[argno++] = va_arg(ap, char *))
B;

va_end (ap);

return execv(file, args);

3-186 Subroutines

varargs (3)

Restrictions

It is up to the calling routine to determine how many arguments there are, since it is
not possible to determine this from the stack frame. For example, execl passes a 0
to signal the end of the list. The printf command can tell how many arguments
are supposed to be there by the format.

Subroutines 3-187

viimit(3)

Name

vlimit — control maximum system resource consumption

Syntax
#include <sys/vlimit.h>

vlimit(resource, value)

Description
This facility has been superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not
individually exceed value on the specified resource. If value is specified as —1, then
the current limit is returned and the limit is unchanged. The resources which are
currently controllable are:

LIM_NORAISE Pseudo-limit; if set nonzero then the limits may not be raised.
Only the super-user may remove the noraise restriction.

LIM_CPU The maximum number of cpu-seconds to be used by each process.
LIM_FSIZE The largest single file which can be created.

LIM_DATA The maximum growth of the data+stack region via sbrk(2)
beyond the end of the program text.

LIM_STACK The maximum size of the automatically-extended stack region.
LIM_CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft limit for the amount of physical memory (in bytes) to be
given to the program. If memory is tight, the system will prefer to
take memory from processes which are exceeding their declared
LIM_MAXRSS.

Because this information is stored in the per-process information this system call
must be executed directly by the shell if it is to affect all future processes created by
the shell; /imit is thus a built-in command to csh(1).

The system refuses to extend the data or stack space when the limits would be
exceeded in the normal way. A break call fails if the data space limit is reached, or
the process is killed when the stack limit is reached. Since the stack cannot be
extended, there is no way to send a signal.

A file I/O operation which would create a file which is too large will cause a signal
SIGXFSZ to be generated, this normally terminates the process, but may be caught.
When the cpu time limit is exceeded, a signal SIGXCPU is sent to the offending
process; to allow it time to process the signal it is given S seconds grace by raising
the cpu time limit.

3-188 Subroutines

vlimit(3)

Restrictions

If LIM_NORAISE is set, then no grace should be given when the CPU time limit is
exceeded.

See Also
csh(1)

Subroutines 3-189

vtimes (3)

Name

Syntax

vtimes — get information about resource utilization

vtimes(par_vm, ch_vm)
struct vtimes *par_vm, *ch_vm;

Description

This facility has been superseded by getrusage(2).

The vt imes routine returns accounting information for the current process and for
the terminated child processes of the current process. Either par_vm or ch_vm or
both may be 0, in which case only the information for the pointers which are non-
zero is returned.

After the call, each buffer contains information as defined by the contents of the
include file /usr/include/sys/vtimes.h:

struct vtimes {

int vm_utime; /* user time (*HZ) */
int vm_stime; /* system time (*HZ) */

/* divide next two by utime+stime to get averages */
unsigned vm_idsrss; /* integral of d+s rss */
unsigned vm_ixrss; /* integral of text rss */
int Vm_maxrss; /* maximum rss */

int vm_majflt; /* major page faults */
int vm_minflt; /* minor page faults */
int vm_nswap; /* number of swaps */

int vm_inblk; /* block reads */

int vm_oublk; /* block writes */

}s

The vm_utime and vm_stime fields give the user and system time respectively in
60ths of a second (or 50ths if that is the frequency of wall current in your locality.)
The vm_idrss and vm_ixrss measure memory usage. They are computed by
integrating the number of memory pages in use each over cpu time. They are
reported as though computed discretely, adding the current memory usage (in 512
byte pages) each time the clock ticks. If a process used 5 core pages over 1 cpu-
second for its data and stack, then vm_idsrss would have the value 5%60, where
vm_utime+vm_stime would be the 60. The vm_idsrss integrates data and stack
segment usage, while vm_ixrss integrates text segment usage. The vm_maxrss
reports the maximum instantaneous sum of the text+data+stack core-resident page
count.

3-190 Subroutines

viimes (3)

The vm_majfit field gives the number of page faults which resulted in disk activity;
the vm_minfit field gives the number of page faults incurred in simulation of
reference bits; vm_nswap is the number of swaps which occurred. The number of file
system input/output events are reported in vm_inblk and vm_oublk These numbers
account only for real I/O. Data supplied by the caching mechanism is charged only
to the first process to read or write the data.

See Also
wait3(2), time(3)

Subroutines 3-191

X/Open curses Routines (3cur)

Insert tabbed divider here.
Then discard this sheet.

intro (3cur)

Name

intro — introduction to the X/Open Curses Package, which optimizes terminal screen
handling and updating

Syntax

#include <cursesX.h>
cc [options] files —lcursesX [libraries]

Description

The curses (cursor optimization) package is the X/Open set of library routines used
for writing screen-management programs. Cursor optimization minimizes the amount
the cursor has to be moved around the screen in order to update it. Screen-
management programs are used for tasks such as moving the cursor, printing a menu,
dividing a terminal screen into windows or drawing a display on a screen for data
entry and retrieval.

The curses package is split into three parts: screen updating, screen updating with
user input, and cursor motion optimization. Screen-updating routines are used when
parts of the screen need to be changed but the overall image remains the same. The
cursor motion part of the package can be used separately for tasks such as defining
how the cursor moves in response to tabs and newline characters

The curses routines do not write directly to the terminal screen (the physical
screen): instead, they write to a window, a two-dimensional array of characters
which represents all or part of the terminal screen. A window can be as big as the
terminal screen or any smaller size down to a single character.

The <cursesX.h> header file supplies two default windows, stdscr (standard
screen) and curscr (current screen) for all programs using curses routines. The
stdscr window is the size of the current terminal screen. The curscr window is
not normally accessed directly by the screen-management program; changes are made
to the appropriate window and then the refresh routine is called. The screen
program keeps track of what is on the physical screen and what is on stdscr.
When refresh is called, it compares the two screen images and then sends a
stream of characters to the terminal to make the physical screen look like stdscr.

The header file <cursesX.h> defines stdscr to be of the type WINDOW*. This
is a pointer to a C structure which includes the starting position of the window on the
screen and the window size.

Some curses routines are designed to work with a pad. A pad is a type of
window whose size is not restricted by the size of the screen. Use a pad when you
only need part of a window on the screen at any one time, for example when running
a spreadsheet application.

Other windows can be created with newwin and used instead of stdscr for
maintaining several different screen images, for example, one window can control
input/output and another can display error messages. The routine subwin creates
subwindows within windows. When windows overlap, the contents of the current
screen show the most recently refreshed window.

Subroutines 3-193

intro(3cur)

Among the most basic routines are move and addch. These routines are used to
move the cursor around and to add characters to the default window, stdscr.

All curses data is manipulated using the routines provided by the curses library.
You should not use routines or system calls from other libraries in a curses
program as they may cause undesirable results when you run the program.

Using Curses

The curses library has three types of routines; Main routines, TERMINFO routines
and TERMCAP compatibility routines

The terminfo routines are a group of routines within the curses library which
provide a database containing descriptions of many terminals that can be used with
curses programs. The termcap compatibility routines are provided as a conversion
aid for programs using termcap.

Most screen handling can be achieved using the Main routines. The following hints
should help you make the most of the screen-handling routines.

The <cursesX.h> header file must always be included whenever curses
functions are used in a program. Note that the header file includes <sgtty.h> to
enable the terminal to use the features provided by ULTRIX. All the manual
definitions assume that <cursesX.h> has been included in the code.

The header file defines global variables and data structures, and defines several of the
routines as macros. The integer variables LINES and COLS are defined so that when
a curses program is run on a particular terminal, initscr assigns the vertical and
horizontal dimensions of the terminal screen to these variables.

A curses program must start by calling the routine initscr to allocate memory
space for the windows. It should only be called once in a program, as it can
overflow core memory if it is called repeatedly. The routine endwin is used to exit
from the screen-handling routines.

Most interactive screen-oriented programs need character-at-a-time input without
echoing. To achieve this, you should call:

nonl () ;
cbreak () ;
noecho () ;

immediately after calling initscr. All curses routines that move the cursor,
move it relative to the home position in the upper left corner of the screen. The
(LINES, COLS) coordinate at this position is (1,1). Note that the vertical coordinate
y is given first and the horizontal coordinate x is given second. The -1 in the
example program takes the home position into account to place the cursor on the
centre line of the terminal screen. The example program displays MIDSCREEN in
the centre of the screen. Use the refresh routine after changing a screen to make
the terminal screen look like stdscr.

Example Program

#include <cursesX.h>
main ()

{

initscr(); /*initialize terminal settings, data
** gtructures and variables*/
move (LINES/2 -1, COLS/2 -4);

3-194 Subroutines

intro(3cur)

addstr ("MID");

refresh(); /* send output to update terminal

** screen */

addstr ("SCREEN") ;

refresh(); /* send more output to terminal
**x gcreen */

endwin () ; /*restore all terminal settings */

}

Main Routines

Routines listed here can be called when using the curses library. Routines that are
preceded by a w affect a specified window, those preceded by a p affect a specified
pad. All other routines affect the default window stdscr. Windows are specified

by a numeric argument, for example: winch (win) where win is the specified

window.

addch(ch) Add a character to stdscr (like putchar wraps to next
line at end of line)

addstr(str) Call addch with each character in str

attroff(attrs) Turn off named attributes

attron(attrs) Turn on named attributes

attrset(attrs) Set current attributes to attrs

baudrate() Display current terminal speed

beep() Sound beep on terminal

box(win, vert, hor)

Draw a box around edges of win,
vert and hor are characters to use for vertical
and horizontal edges of box

clear() Clear stdscr

clearok(win, bf) Clear screen before next redraw of win
clrtobot() Clear to bottom of stdscr

clrtoeol() Clear to end of line on stdscr
cbreak() Set cbreak mode

delay_output(ms)
delch()

Insert ms millisecond pause in output
Delete a character

deleteln() Delete a line

delwin(win) Delete win

doupdate() Update screen from all wnoutrefresh
echo() Set echo mode

endwin() End window modes

erase() Erase stdscr

erasechar() Return user’s erase character
fixterm() Restore tty to in ‘‘curses’’ state
flash() Flash screen or beep

flushinp() Throw away any typeahead

getch() Get a character from tty

getstr(str) Get a string through stdscr
gettmode() Establish current tty modes
getyx(win, y, Xx) Get (y, x) coordinates

has_ic() True if terminal can do insert character
has_il() True if terminal can do insert line

idlok(win, bf)

Use terminal’s insert/delete line if bf 1= 0

Subroutines 3—-195

intro (3cur)

inch() Get character at current (y, x) coordinates
initscr() Initialize screens

insch(c) Insert a character

insertln() Insert a line

intrflush(win, bf) Interrupt flush output if bf is TRUE
keypad(win, bf) Enable keypad input

killchar()
leaveok(win, flag)

Return current user’s kill character
Leave cursor anywhere after refresh if

flag!=0 for win. Otherwise cursor must be left
at current position

longname()
meta(win, flag)
move(y, X)

Return verbose name of terminal
Allow meta characters on input if flag !=0
Move to (y, x) on stdscr

NOTE: The following routines prefixed with mv require y and x coordinates to
move to, before performing the same functions as the standard routines. As an
example, mvaddch performs the same function as addch, but y and x coordinates
must be supplied first. The routines prefixed with mvw also require a window or pad

argument.

mvaddch(y, x, ch)

mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow,
newcol)

mvdelch(y, x)

mvgetch(y, x)

mvgetstr(y, X)

mvinch(y, x)

mvinsch(y, X, ¢)

mvprintw(y, X, fmt, args)
mvscanw(y, X, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, X, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, X)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
myvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols)
newterm(type, fd)

newwin(lines, cols,
begin_y, begin_x)
nl()

nocbreak()
nodelay(win, bf)
noecho()

nonl()

noraw()

3-196 Subroutines

low level cursor motion

Create a new pad with given dimensions
Set up new terminal of given type to output
on fd

Create a new window

Set newline mapping

Unset cbreak mode

Enable nodelay input mode through getch
Unset echo mode

Unset newline mapping

Unset raw mode

overlay(winl, win2)
overwrite(winl, win2)
pnoutrefresh(pad, pminrow,
pmincol, sminrow, smincol,
smaxrow, smaxcol)
prefresh(pad, pminrow,
pmincol, sminrow, smincol,
smaxrow, smaxcol)
printw(fmt, argl, arg2, ...)
raw()

refresh()

resetterm()

resetty()

saveterm()

savetty()

scanw(fmt, argl, arg2, ...)
scroll(win)

scrollok(win, flag)
set_term(new)

setscrreg(t, b)

setupterm(term, filenum, errret)

standend()
standout()
subwin(win, lines, cols,
begin_y, begin_x)
touchwin(win)
traceoff()
traceon()
typeahead(fd)
unctrl(ch)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
weclrtobot(win)
weclrtoeol(win)
wdelch(win, c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, c)
winsertln(win)
wmove(win, y, X)
wnoutrefresh(win)
wprintw(win, fmt,
argl, arg2, ...)
wrefresh(win)
wscanw(win, fmt,

intro (3cur)

Overlay winl on win2

Overwrite winl on top of win2
Like prefresh but with no output
until doupdate called

Refresh from pad starting with given upper
left corner of pad with output to

given portion of screen

printf on stdscr

Set raw mode

Make current screen look like stdscr

Set tty modes to ‘‘out of curses’’ state
Reset tty flags to stored value

Save current modes as ‘‘in curses’’ state
Store current tty flags

scanf through stdscr

Scroll win one line

Allow terminal to scroll if flag |=0

Switch between different terminals

Set user scrolling region to lines t through b
Low level terminal setup

Clear standout mode attribute

Set standout mode attribute

Create a subwindow

“‘change’’ all of win

Turn off debugging trace output
Turn on debugging trace output

Use file descriptor fd to check typeahead
Produce printable version of ch

Add character to win

Add string to win

Turn off attrs in win

Turn on attrs in win

Set attrs in win to attrs

Clear win

Clear to bottom of win

Clear to end of line on win

Delete char from win

Delete line from win

Erase win

Get a character through win

Get a string through win

Get character at current (y, X) in win
Insert char into win

Insert line into win

Set current (y, x) coordinates on win
Refresh but no screen output

printf on win

Make screen look like win
scanf through win

Subroutines 3-197

intro(3cur)

argl, arg2, ...)

wsetscrreg(win, t, b) Set scrolling region of win
wstandend(win) Clear standout attribute in win
wstandout(win) Set standout attribute in win
Caution

The plotting library plot(3x) and the curses(3cur) library both use the names
erase () and move (). The curses versions are macros. If you need both
libraries, put the plot(3x) code in a different source file to the curses(3cur) code,
and/or #undef move () and erase () in the plot(3x) code.

TERMINFO Level Routines

If the environment variable TERMINFO is defined, any program using curses will
check for a local terminal definition before checking in the standard libraries. For
example, if the standard place is /usr/lib/terminfo, and set to vt100, the
compiled file will normally be found in /usr/lib/terminfo/v/vt100. The v
is copied from the first letter of vt100 to avoid creating huge directories. However, if
TERMINFO is set to /usr/mark/myterms, curses will first check
/usr/mark/myterms/v/vt100, and if that fails, will then check
/usr/lib/terminfo/v/vt100. This is useful for developing experimental
definitions or when there is no write permission for /usr/lib/terminfo.

These routines should be called by programs that need to deal directly with the
terminfo database, but as this is a low level interface, it is not recommended.

Initially, the routine setupterm should be called. This will define the set of
terminal-dependent variables defined in terminfo(5). The include files
<cursesX.h> and <term.h> should be included to get the definitions for these
strings, numbers, and flags. Parameterized strings should be passed through tparm
to instantiate them. All terminfo strings (including the output of tparm) should be
printed with tputs or putp. Before exiting, resetterm should be called to
restore the tty modes.

Programs which want shell escapes or <CTRL/Z> suspending can call resetterm
before the shell is called and fixterm after returning from the shell.

fixterm() Restore tty modes for terminfo use

(called by setupterm)
resetterm() Reset tty modes to state before program entry
setupterm(term, fd, rc) Read in database. Terminal type is the

character string term, all output is to ULTRIX
System file descriptor fd. A status value is
returned in the integer pointed to by rc: 1
is normal. The simplest call would be
setupterm(0, 1, 0) which uses all defaults
tparm(str, pl, p2, ..., p9) Instantiate string str with parms p;
tputs(str, affcnt, putc) Apply padding info to string str
affcnt is the number of lines affected,
or 1 if not applicable. Putc is a
putchar-like function to which the characters
are passed, one at a time

3-198 Subroutines

intro (3cur)

putp(str) A function that calls tputs
(str, 1, putchar)
vidputs(attrs, putc) Output the string to put terminal in video

attribute mode attrs, which is any
combination of the attributes listed below
Chars are passed to putchar-like
function putc

vidattr(attrs) Like vidputs but outputs through
putchar

Termcap Compatibility Routines

Errors

Return

The following routines were included as a conversion aid for programs that use
termcap. Their parameters are the same as for termcap. They are emulated using the
terminfo database.

DO NOT use these routines in new programs.

tgetent(bp, name) Look up termcap entry for name
tgetflag(id) Get boolean entry for id
tgetnum(id) Get numeric entry for id
tgetstr(id, area) Get string entry for id

tgoto(cap, col, row) Apply parms to given cap
tputs(cap, affcnt, fn) Apply padding to cap calling fn as putchar

As an aid to compatibility, the object module termcap . o has been provided in
/usr/lib/termcap.o. This module should be linked into an application before
resolving against the curses library. If your application contains references such as
UP then recompile using

cc [options] files /usr/lib/termcap.o -lcursesX[libs]

No errors are defined for the curses functions.

Values

For most curses routines, the OK value is returned if a routine is properly
completed and the ERR value is returned if some error occurs.

See Also

ioctl(2), getenv(3), printf(3s), putchar(3s), scanf(3s), plot(3x), terminfo(5), tic(1),
termcap(5)
Guide to X/Open Curses Screen-Handling

Subroutines 3-199

addch (3cur)

Name

Syntax

addch, waddch, mvaddch, mvwaddch — add character to window

#include <cursesX.h>

int addch(ch)
chtype ch;

int waddch(win, ch)
WINDOW #win;
chtype ch;

int mvaddch(y, x, ch)

int y, x;

chtype ch;

int mvwaddch(win, y, x, ch)
WINDOW *win;

int y, x;

chtype ch;

Description

The routine addch inserts the character ch into the default window at the current
cursor position and the window cursor is advanced. The character is of the type
chtype which is defined in the <cursesX.h> header file, as containing both data
and attributes.

The routine waddch inserts the character ch into the specified window at the current
cursor position. The cursor position is advanced.

The routine mvaddch moves the cursor to the specified (y, x) position and inserts
the character ch into the default window. The cursor position is advanced after the
character has been inserted.

The routine mvwaddch moves the cursor to the specified (y, x) position and inserts
the character ch into the specified window. The cursor position is advanced after the
character has been inserted.

All these routines are similar to putchar. The following information applies to all
the routines.

If the cursor moves on to the right margin, an automatic newline is performed. If
scrollok is enabled, and a character is added to the bottom right corner of the
screen, the scrolling region will be scrolled up one line. If scrolling is not allowed,
ERR will be returned.

If ch is a tab, newline, or backspace, the cursor will be moved appropriately within
the window. If ch is a newline, the clrtoeol routine is called before the cursor is
moved to the beginning of the next line. If newline mapping is off, the cursor will be
moved to the next line, but the x coordinate will be unchanged. If ch is a tab the
cursor is moved to the next tab position within the window. If ch is another control
character, it will be drawn in the AX notation. Calling the inch routine after adding
a control character returns the representation of the control character, not the control
character.

3-200 Subroutines

addch (3cur)

Video attributes can be combined with a character by or-ing them into the parameter.
This will result in these attributes being set. The intent here is that text, including
attributes, can be copied from one place to another using inch and addch. For
further information, see standout(3cur).

The addch, mvaddch, and mvwaddch routines are macros.

Return Value

The addch, waddch, mvaddch, and mvwaddch functions return OK on success
and ERR on error.

See Also
clrtoeol(3cur), inch(3cur), scrollok(3cur), standout(3cur), putchar(3s)

Subroutines 3-201

addstr (3cur)

Name

addstr, waddstr, mvaddstr, mvwaddstr — add string to window

Syntax
#include <cursesX.h>

int addstr(str)
char #*str;

int waddstr(win, str)
WINDOW #*win;
char *str;

int mvaddstr(y, x, str)
int y, x;
char *str;

int mvwaddstr(win, y, x, str)
WINDOW *win;
int y, x;
char *str;
Description

The addstr routine writes all the characters of the null-terminated character string
str on the default window at the current (y, x) coordinates.

The routine waddst r writes all the characters of the null terminated character string
str on the specified window at the current (y, x) coordinates.

The routine mvaddstr writes all the characters of the null terminated character
string str on the default window at the specified (y, x) coordinates.

The routine mvwaddstr writes all the characters of the null terminated character
string str on the specified window at the specified (y, x) coordinates.

The following information applies to all the routines. All the routines return ERR if
writing the string causes illegal scrolling. In this case the routine will write as much
as possible of the string on the window.

These routines are functionally equivalent to calling addch or waddch once for
each character in the string.

The routines addstr, mvaddstr, and mvwaddstr are macros.

Return Value

The addstr, waddstr, mvaddstr, and mvwaddstr functions return OK on
success and ERR on error.

See Also
addch(3cur), waddch(3cur)

3-202 Subroutines

Name

Syntax

attroff (3cur)

attroff, attron, attrset, standend, standout, wstandend, wstandout, wattroff, wattron,
wattrset — attribute manipulation

#include <cursesX.h>

int attroff(attrs)
int attrs;

int wattroff(win, attrs)
WINDOW #*win;
int attrs;

int attron(attrs)
int attrs;

int wattron(win, attrs)
WINDOW #win;
int attrs;

int attrset(attrs)
int attrs;

int wattrset(win, attrs)
WINDOW #win;
int attrs;

int standend()

wstandend(win)
WINDOW #win;

int standout()

int wstandout(win)
WINDOW #*win;

Description

These routines manipulate the current attributes of a window.

The routine attrof £ turns off the named attributes (attrs) of the default window
without turning any other attributes on or off.

The routine attron turns on the named attributes of the default window without
affecting any other attributes.

The routine attrset sets the current attributes of the default window to the named
attributes attrs, which is of the type chtype, and is defined in the
<cursesX.h> header file.

The routine standout switches on the best highlighting mode available on the
terminal for the default window and it is functionally the same as
attron (A_STANDOUTI1) .

Subroutines 3-203

attroff (3cur)

The routine standend switches off all highlighting associated with the default
window. It is functionally the same as attrset(0), in that it turns off all attributes.

The routine wattroff switches off the named attributes, attrs, for the specified
window. Other attributes are not changed.

The routine wattron turns on the named attributes of the specified window without
affecting any others.

The routine wattrset sets the current attributes of the specified window to
attrs.

The routine wstandout switches on the best highlighting mode available on the
terminal for the specified window. Functionally it is the same as
wattron (A_STANDOUTI1) .

The routine wstandend switches off all highlighting associated with the specified
window. Functionally it is the same as wattrset(0); that is, it turns off all
attributes.

Attributes

Return

Attributes can be any combination of A_STANDOUT, A_REVERSE, A_BOLD,
A_DIM, A_BLINK and A_UNDERLINE. These constants are defined in the
<cursesX.h> header file. They are also described in the Guide to X/Open Curses
Screen-Handling. Attributes can be combined with the C language | (ox) operator.

The current attributes of a window are applied to all characters that are written into
the window with addch or waddch. Attributes are properties of the character, and
move with the character through any scrolling and insert/delete line/character
operations. Within the restrictions set by the terminal hardware they will be
displayed as the graphic rendition of characters put on the screen.

The routines attroff, attron and attrset are macros.

Value

The attroff, wattroff, attron, wattron, attrset, wattrset,
standend, wstandend, standout, and wstandout functions return OK on
success and ERR on error.

See Also

addch(3cur)
Guide to X/Open Curses Screen-Handling

3-204 Subroutines

baudrate (3cur)

Name

baudrate — return terminal baudrate

Syntax

int baudrate()

Description

The baudrate routine returns the output speed of the terminal in bits per second,
for example 9600, as an integer.

Return Value

The baudrate function returns the baudrate in bits per second.

Subroutines 3—-205

beep (3cur)

Name

beep, flash — generate audiovisual alarm
Syntax

#include <cursesX.h>

int beep()

int flash()
Description

The beep routine sounds the audible alarm on the terminal, if possible, otherwise it
flashes the screen.

The routine £1lash flashes the screen, if possible, otherwise it sounds the audible
alarm.

If neither signal can be used on a particular terminal, nothing happens.

Return Value

The beep and £1lash functions return OK on success and ERR on error.

3-206 Subroutines

box (3cur)

Name

box — draw box

Syntax
#include <cursesX.h>
int box(win, vert, hor)
WINDOW *win;
chtype vert, hor;
Description

The box routine draws a box around the edge of the window. The arguments vert
and hor are the vertical and horizontal characters the box is to be drawn with.

If vert and hor are O or unspecified, then default characters are used.

If scrolling is disabled and the window encompasses the bottom right corner of the
screen, all corners are left blank to avoid an illegal scroll.

Return Value

The box function returns OK on success and ERR on error.

Subroutines 3-207

cbreak (3cur)

Name
cbreak, nocbreak — set/clear cbreak mode

Syntax
int cbreak()
int nocbreak()

Description
The routine cbreak puts the terminal into CBREAK mode. In this mode,
characters typed by the user are immediately available to the program and erase/kill
character processing is not performed. Interrupt and flow control characters are
unaffected by this mode.
The routine nocbreak disables CBREAK. In this case the terminal driver will
buffer input until a newline or carriage return is typed.
The initial settings that determine whether or not a terminal is in CBREAK mode are
dependent on the terminal driver implementation. As a result of this, it is not
possible to determine if a terminal is in CBREAK mode, as it is an inherited
characteristic. It is necessary to call cbreak to ensure that the terminal is set to the
correct mode for the application.

Return Value

The cbreak and nobreak functions return OK on success and ERR on error.

3-208 Subroutines

Name

Syntax

clear (3cur)

clear, wclear — clear window

#include <cursesX.h>
int clear()

int wclear(win)
WINDOW *win;

Description

Return

The clear routine resets the entire default window to blanks and sets the current
(y, x) coordinates to (0, 0).

The routine wclear resets the entire specified window to blanks and sets the current
(y, x) coordinates to (0, 0).

The clear routine assumes that the screen may have garbage on it that it doesn’t
know about. The routine first calls erase which copies blanks to every position in
the default window, and then clearok, which clears the physical screen completely
on the next call to refresh for stdscr.

The routine clear is a macro.

Value

The clear and wclear functions return OK on success and ERR on error.

See Also

clearok(3cur), erase(3cur), refresh(3cur)

Subroutines 3-209

clearok (3cur)

Name
clearok — enable screen clearing
Syntax
#include <cursesX.h>
int clearok(win, bf)
WINDOW #*win;
bool bf;
Description

If bf is TRUE, the next call to refresh(3cur) for the specified window will clear
the window completely and redraw the entire window without changing the original
screen’s contents. This is useful when the contents of the screen are uncertain. If the
window is stdscr the entire screen is redrawn.

Return Value

The clearok function returns OK on success and ERR on error.

See Also
refresh(3cur)

3-210 Subroutines

cirtobot (3cur)

Name

clrtobot, wclrtobot — clear to end of screen
Syntax

#include <cursesX.h>

int clrtobot()

int wclrtobot(win)

WINDOW #win;
Description

The clrtobot routine begins at the current cursor position in the default window
and changes the remainder of the screen to blanks. The current cursor position is also
changed to a blank.

The wclrtobot routine begins at the current cursor position in the specified
window and changes the rest of the screen to blanks, including the current cursor
position.

The routine clrtobot is a macro.

Return Value

The clrtobot and wclrtobot functions return OK on success and ERR on error.

Subroutines 3-211

cirtoeol (3cur)

Name

clrtoeol, wclrtoeol — clear to end of line
Syntax

#include <cursesX.h>

int clrtoeol()

int wclrtoeol(win)

WINDOW *win;
Description

The clrtoeol routine erases the current line to the right of the cursor, inclusive, on
the default window.

The routine wclrtoeol erases the current line to the right of the cursor, inclusive,
on the specified window.

The routine clrtoeol is a macro.

Return Value

The clrtoeol and weclrtoeol functions return OK on success and ERR on error.

3-212 Subroutines

def_prog_mode (3cur)

Name

def_prog_mode, def_shell_mode — save terminal modes

Syntax
int def_prog_mode()
int def_shell_mode()

Description

The def prog_mode routine saves the current terminal modes as the program if
the terminal is running under curses. The stored terminal modes are used by the
reset_prog_mode(3cur) routine. This function is used when the user makes a
temporary exit from curses.

The routine def _shell mode saves the current terminal modes as the shell if the
terminal is not running under curses. The stored terminal modes are used by the
reset_shell mode(3cur) routine.

Both routines are called automatically by initscr(3cur).

Return Value

The def_prog_mode and def_shell mode functions return OK on success and
ERR on error.

See Also

initscr(3cur), reset_prog_mode(3cur), reset_shell_mode(3cur)

Subroutines 3-213

delay_output(3cur)

Name

delay_output — cause short delay
Syntax

int delay_output(ms)

int ms;
Description

Insert 10 x ms millisecond pause in output. The largest number allowed for ms is
0.