VAX PL/1 Reference Manual

Order Number: A-H952C-TE

An

April 1987

This manual defines the VAX PL/l programming language, including the
keywords and the semantic and syntax rules of PL/I statements, attributes,
built-in functions, and other language elements.

Revision/Update Information: This revised manual supersedes the
VAX-11 PL/I Encyclopedic Reference,
Order Number AA-H952B-TE.

Operating System and Version: VMS Version 4.4 and higher
Software Version: VAX PL/I Version 3.0

digital equipment corporation
maynard, massachusetts

First Printing, August 1980
Revised, November 1983
Revised, April 1987

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1980, 1983, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc-
ument requests the user’s critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS

DECwriter RSX Eﬂmﬂuau

ZK3202

This document was prepared using an in-house documentation production
system. All page composition and make-up was performed by TgX, the
typesetting system developed by Donald E. Knuth at Stanford University. TgX
is a trademark of the American Mathematical Society.

Contents

PREFACE

1 PROGRAM STRUCTURE AND CONTENT

11 Blocks
1.1.1 Begin Blocks
11.2 Procedures

1.2 Statements
1.2.1 Statement Labels
1.2.2 Keywords
1.2.3 Punctuation

1.24 Identifiers

1.3 Data and Variables

14 Program Text

1.4.1 Program Format
1.4.2 Comments

N NNOODAEPAPWWNN==

2 DATA TYPES
2.1 Summary of Data Types

2.2 Arithmetic Data Types

2.2.1 Fixed-Point Binary Data

2.2.2 Fixed-Point Decimal Data

2.2.21 Fixed-Point Decimal Constants ® 12

2.2.2.2 Fixed-Point Decimal Variables ® 12

2.2.2.3 Using Fixed-Point Data in Expressions ® 12
223 Floating-Point Data

2.2.3.1 Floating-Point Constants ® 13

2.2.3.2 Floating-Point Variables ® 14

2.2.3.3 Using Floating-Point Data in Expressions ® 14
2.2.3.4 Floating-Point Data Formats ® 14

224 Pictured Data 15
2.2.4.1 Pictured Variables ® 15
2.2.4.2 Assigning Values to Pictured Variables ® 16
2.2.4.3 Extracting Values from Pictured Data ® 17
2.2.4.4 Picture Characters ® 18
2.25 Precision and Scale of Arithmetic Data Types 23
23 Character-String Data 24
2.3.1 Character-String Constants 25
2.3.2 Character-String Variables 25
2.3.2.1 Fixed-Length Character-String Variables ® 26
2.3.2.2 Varying-Length Character-String Variables ® 27
24 Bit-String Data 27
241 Bit-String Constants 28
24.2 Bit-String Variables 29
243 Alignment of Bit-String Data 30
244 Bit Strings and Integers 31
245 Replication Factor for String Constants 32
3 AGGREGATES 35
3.1 Arrays 35
3.1.1 Array Declarations 36
3.1.2 References to Individual Elements 37
3.1.3 Initializing Arrays 38
3.14 Assigning Values to Array Variables 39
3.1.5 Order of Assignment and Output for Multidimensional
Arrays 40
3.2 Structures 41
3.21 Structure Declarations 42
3.2.2 Member Attributes 44
3.2.2.1 Using the LIKE Attribute ® 44
3.2.2.2 Using the REFER Option ® 45
3.2.2.3 Using the UNION Attribute ® 49
3.23 Structure-Qualified References 50

3.24 Arrays of Structures 52
3.2.4.1 Arrays of Structures That Contain Arrays ® 53
3.242 Connected and Unconnected Arrays ® 54
4 DECLARATIONS 55
4.1 Declarations Outside of Procedures 55
4.2 Scope of Declarations 57
5 EXPRESSIONS AND ASSIGNMENTS 59
5.1 Assignment Statement 59
5.2 Operators and Operands 60
5.2.1 Operators 60
5.2.2 Operands 61
5.3 Expression Evaluation 61
5.4 Conversion of Operands and Expressions 62
5.4.1 Derived Data Types for Arithmetic Operations 63
5.4.2 Built-In Conversion Functions 63
543 Implicit Conversion During Assignment 65
6 PROCEDURES 67
6.1 Using Procedures 67
6.1.1 Statements for Procedures 68
6.1.1.1 Specifying Entry Points ® 71
6.1.1.2 Passing Arguments to Subroutines and Functions ® 71
6.1.2 Functions and Function References 72
6.1.3 RETURNS Attribute and Option 73
6.1.4 Parameters and Arguments 75
6.1.4.1 Rules for Specifying Parameters ® 76
6.1.4.2 Argument Passing ® 78
6.2 Calling External Procedures 80

6.2.1 Entry Data 82
6.2.1.1 Entry Constants ® 82
6.2.1.2 Entry Variables ® 83
6.2.2 Passing Arguments to Non-PL/l Procedures 84
6.2.2.1 Passing Arguments by immediate Value ® 84
6.2.2.2 Passing Arguments by Reference ® 85
6.2.2.3 Passing Arguments by Descriptor ® 86
7 PROGRAM CONTROL 89
71 DO Statement 89
7.1.1 Simple DO 90
7.1.2 DO WHILE 20
7.1.3 DO UNTIL 91
7.1.4 Controlled DO 92
7.1.5 DO REPEAT 94
7.2 BEGIN Statement 95
7.3 END Statement 96
7.4 IF Statement 97
7.5 SELECT Statement 98
7.6 GOTO Statement 99
7.6.1 Label Array Constants 100
7.6.2 Label Variables 101
7.7 LEAVE Statement 102
7.8 STOP Statement 103
7.9 Null Statement 103

ENCYCLOPEDIC REFERENCE

vi

A Format Item

Abbreviation

ABS Built-In Function

ABS Preprocessor Built-In Function
ACOS Built-In Function

%ACTIVATE Statement

ACTUALCOUNT Built-In Function
ADD Built-in Function

Addition

ADDR Built-In Function

ALIGNED Attribute

ALLOCATE Statement

ALLOCATION Built-In Function

AND Operator

AND THEN Operator
ANY Attribute

ANYCONDITION Condition Name
Area

AREA Attribute

AREA Condition Name

Argument

Arithmetic Data Types

Arithmetic Operators

Array

Arrays of Structures

ASCIl Character Set

ASIN Built-In Function

%Assignment Statement

Assignment Statement

ATAN Built-In Function

ATAND Built-In Function

ATANH Built-In Function

Attribute

107
107
109
110
110
111
111
113
113
114
115
116
116
118
119
120
121
122
122
123
124
124
125
125
126
137
141
141
141
142
145
145
146
146

vii

AUTOMATIC Attribute

151

B 153
B Format Items 153
BASED Attribute 156
Based Variable 157
Begin Block 168
BEGIN Statement 169
BINARY Attribute 170
BINARY Built-In Function 171
BIT Attribute 171
BIT Built-In Function 172
Bit-String Data 173
Block 178
BOOL Built-In Function 182
BUILTIN Attribute 183
Built-In Function 185
Built-In Subroutine 193
BY Option 194
BYTE Built-In Function 195
BYTE Preprocessor Built-In Function 195

C 196
CALL Statement 196
CEIL Built-In Function 197
CHARACTER Attribute 198
CHARACTER Built-In Function 199
Character-String Data 200
CLOSE Statement 205
COLLATE Built-In Function 206
COLUMN Format Item 206
Comment 208

viii

Common Data Dictionary 209
Comparison Operator 210
Concatenation Operator 210
CONDITION Attribute 211
CONDITION Condition Name 211
Condition Handling 211
Constant 212
CONTROLLED Attribute 213
Controlled Variable 214
CONVERSION Condition Name 216
Conversion of Data 218
COPY Built-In Function 233
COPY Preprocessor Built-In Function 233
COS Built-In Function 234
COSD Built-In Function 234
COSH Built-In Function 235

236
Data and Data Types 236
DATE Built-In Function 242
DATE Preprocessor Built-In Function 242
DATETIME Built-In Function 243
DATETIME Preprocessor Built-In Function 243
DEC Multinational Character Set 244
%DEACTIVATE Statement 244
DECIMAL Attribute 245
DECIMAL Built-In Function 246
Declarations 247
%DECLARE Statement 248
DECLARE Statement 249
DECODE Built-In Function 255
DECODE Preprocessor Built-In Function 255

DEFINED Attribute

256

ix

Defined Variable

257

DELETE Statement 259
DESCRIPTOR Attribute 261
DESCRIPTOR Built-In Function 261
Diagnostic Messages 262
%DICTIONARY Statement 262
DIMENSION Attribute 265
DIMENSION Built-In Function 266
DIRECT Attribute 267
DISPLAY Built-In Subroutine 267
DIVIDE Built-In Function 268
Division 268
%DO Statement 269
DO-Group 270
DO Statement 271
282
E Format Item 282
EDIT Option 285
%ELSE Keyword 285
ELSE Keyword 286
Embedded Preprocessor 286
EMPTY Built-In Function 286
ENCODE Built-Iin Function 287
ENCODE Preprocessor Built-In Function 287
%END Statement 288
END Statement _ 288
ENDFILE Condition Name 289
ENDPAGE Condition Name 290
ENTRY Attribute 292
Entry Data 294
ENTRY Statement 297
ENVIRONMENT Attribute 298

%ERROR Statement

300

ERROR Preprocessor Built-In Function 301
Error and Condition Handling 301
ERROR Condition Name 302
EVERY Built-In Function 303
EXCLUSIVE OR Operator 303
EXP Built-In Function 304
Exponentiation 304
Expression 304
EXTEND Built-In Subroutine 309
Extent 310
EXTERNAL Attribute 310
External Procedure 311
External Variable 311

313
F Format Item 313
%FATAL Statement 316
File 317
FILE Attribute 319
File Data 319
File Description Attributes and Options 320
FILE Option 324
File Organization 324
FINISH Condition Name 328
FIXED Attribute 329
FIXED Built-In Function 330
Fixed-Point Binary Data 331
Fixed-Point Decimal Data 333
FIXEDOVERFLOW Condition Name 335
FLOAT Attribute 336
FLOAT Built-In Function 337
Floating-Point Data 338

xi

FLOOR Built-In Function

343

FLUSH Built-In Subroutine 343
Format item 344
Format-Specification List 348
FORMAT Statement 354
FREE Built-In Subroutine 355
FREE Statement 355
FROM Option 356
Function 357
G 359
GET Statement 359
GLOBALDEF Attribute 368
GLOBALREF Attribute 369
%GOTO Statement 369
GOTO Statement 370
H 373
HBOUND Built-In Function 373
HIGH Built-In Function 373
1 374
IDENT Option 374
Identifier 374
%IF Statement 375
IF Statement 376
%INCLUDE Statement 377
INDEX Built-In Function 379
INDEX Preprocessor Built-In Function 379
%INFORM Statement 380
INFORM Preprocessor Built-In Function 380
INITIAL Attribute 381

xii

INPUT Attribute 384
Input/Output Processing 384
INT Built-In Function 385
INT Pseudovariable 387
Integer Data 389
INTERNAL Attribute 390
Internal Procedure 390
Internal Representation of PL/l Data 391
Internal Variable 399
INTO Option 399
Iteration Factor 400

401
Key 401
KEY Condition Name 401
KEY Option 402
KEYED Attribute 403
KEYFROM Option 403
KEYTO Option 404
Keyword 404

406
Label 406
LABEL Attribute 411
LBOUND Built-In Function 411
LEAVE Statement 411
Length Attribute 414
LENGTH Built-In Function 414
LENGTH Preprocessor Built-In Function 414
LIKE Attribute 414
LINE Format Item 415
LINE Option 416

Xiii

LINE Preprocessor Built-In Function

417

LINENO Built-In Function 417
LINESIZE Option 417
LIST Attribute 418
LIST Option 419
%LIST Statement 419
List Processing 420
Locator Qualifier 422
LOG Built-In Function 424
LOG10 Built-In Function 424
LOG2 Built-In Function 424
Logical Operator 425
LOW Built-In Function 427
M 428
MAIN Option 428
Main Procedure 428
MAX Built-In Function 429
MAX Preprocessor Built-In Function 429
MAXLENGTH Built-In Function 429
MEMBER Attribute 430
MIN Built-In Function 430
MIN Preprocessor Built-In Function 430
MOD Built-In Function 431
MOD Preprocessor Built-In Function 431
Multiplication 433
MULTIPLY Built-In Function 434

Xiv

436

NEXT_VOLUME Built-In Subroutine 436
%NOLIST Statement 436
NONRECURSIVE Option 437
NONVARYING Attribute 437
NORESCAN Option 438
NOT Operator 438
Nonlocal GOTO 439
%Null Statement 439
NULL Built-In Function 439
Null Statement 440

441
Offset 441
OFFSET Attribute 442
OFFSET Built-In Function 443
ON Conditions and ON-Units 443
ON Statement 451
ONARGSLIST Built-In Function 452
ONCHAR Built-In Function 453
ONCHAR Pseudovariable 453
ONCODE Built-In Function 453
ONFILE Built-In Function 454
ONKEY Built-In Function 454
ONSOURCE Built-In Function 455
ONSOURCE Pseudovariable 455
OPEN Statement 456
Opening a File 457
Operator 461
OPTIONAL Attribute 464
OPTIONS Option 464
OR Operator 465
OR ELSE Operator 466

Xv

OTHERWISE Keyword 466
OUTPUT Attribute 467
OVERFLOW Condition Name 467
P 469
P Format Item 469
%PAGE Statement 471
PAGE Format item 472
PAGE Option 472
PAGENO Built-In Function 472
PAGENO Pseudovariable 472
PAGESIZE Option 473
PARAMETER Attribute 474
Parameter Descriptor 474
Parameters and Arguments 474
Picture 481
PICTURE Attribute 491
Pointer 495
POINTER Attribute 497
POINTER Built-In Function 497
POSINT Built-In Function 498
POSINT Pseudovariable 500
POSITION Attribute 501
Precedence 501
PRECISION Attribute 502
Preprocessor 503
PRESENT Built-In Function 508
PRINT Attribute 509
Print File 509
Procedure 510
Procedure Block 517
%PROCEDURE Statement 517
PROCEDURE Statement 524

xvi

PROD Built-In Function 526
Program Structure 526
Pseudovariable 528
Punctuation Marks 529
PUT Statement 532

542
R Format Item 542
RANK Built-In Function 543
RANK Preprocessor Built-In Function 543
READ Statement 544
READONLY Attribute 549
RECORD Attribute 549
Record Input/Output 550
RECURSIVE Option 552
REFER Attribute 553
REFER Option 553
Reference 558
REFERENCE Attribute 563
REFERENCE Built-In Function 563
Relational Operator 564
RELEASE Built-In Subroutine 566
REPEAT Option 566
%REPLACE Statement 567
Replication Factor 567
RESCAN Option 569
RESIGNAL Built-In Subroutine 569
Restricted Expression 570
%RETURN Statement 570
RETURN Statement 570
RETURNS Attribute 571
RETURNS Option 571

REVERSE Built-In Function

573

xvii

REVERSE Preprocessor Built-In Function

573

REVERT Statement 574
REWIND Built-In Subroutine 574
REWRITE Statement 575
ROUND Built-In Function 578
S 580
%SBTTL Statement 580
Scale Attribute 580
Scope of Names 582
SEARCH Built-In Function 583
SEARCH Preprocessor Built-In Function 583
SELECT Statement 585
SEQUENTIAL Attribute 589
SET Option 590
SIGN Built-In Function 590
SIGN Preprocessor Built-In Function 590
SIGNAL Statement 590
SIN Built-In Function 591
SIND Built-In Function 591
SINH Built-In Function 592
SIZE Built-In Function 592
SKIP Format Item 595
SKIP Option 595
SOME Built-In Function 596
Space 596
SPACE_BLOCK Built-In Subroutine 596
SQRT Built-In Function 597
Statement - 597
STATIC Attribute 605
STOP Statement 605
Storage Class 605
STORAGE Condition Name 609

xviii

Storage Sharing 609
STREAM Attribute 610
Stream Input/Output 611
STRING Built-In Function 621
String Handling 622
STRING Option 624
STRING Pseudovariable 625
STRINGRANGE Condition Name 626
Structure 627
STRUCTURE Attribute 633
Subroutine 633
SUBSCRIPTRANGE Condition Name 633
SUBSTR Built-In Function 634
SUBSTR Preprocessor Built-In Function 634
SUBSTR Pseudovariable 635
SUBTRACT Built-In Function 636
Subtraction 637
SUM Built-In Function 638
SYSIN Default File 638
SYSPRINT Default File 639

640
TAB Format Item 640
TAN Built-In Function 641
TAND Built-In Function 642
TANH Built-In Function 642
Terminal Input/Output 642
THEN Keyword 646
TIME Built-In Function 646
TIME Preprocessor Built-In Function 646
%TITLE Statement 647
TITLE Option 647
TO Option 648

Xix

TRANSLATE Built-In Function

648

TRANSLATE Preprocessor Built-In Function 648
TRIM Built-In Function 650
TRIM Preprocessor Built-In Function 650
TRUNC Built-In Function 652
TRUNCATE Attribute 653
V) 654
UNALIGNED Attribute 654
UNDEFINEDFILE Condition Name 654
UNDERFLOW Condition Name 656
UNDERFLOW Option 657
UNION Attribute 657
Union 658
UNSPEC Built-In Function 660
UNSPEC Pseudovariable 661
UNTIL Option 662
UPDATE Attribute 663
User-Generated Diagnostic Messages 664
\") 666
VALID Built-In Function 666
VALUE Attribute 667
VALUE Built-In Function 668
Variable 669
VARIABLE Attribute 670
VARIABLE Option 670
VARIANT Preprocessor Built-in Function 671
VARYING Attribute 672
VAXCONDITION Condition Name 673
VERIFY Built-In Function 673
VERIFY Preprocessor Built-In Function 673

XX

w 675
%WARN Statement 675

WARN Preprocessor Built-in Function 675

WHEN Keyword 676

WHILE Option 676

WRITE Statement 677

X 681
X Format Item 681

z 683
ZERODIVIDE Condition Name 683

APPENDIX A ALPHABETIC SUMMARY OF KEYWORDS A-1
APPENDIX B DEC MULTINATIONAL CHARACTER SET B-1
APPENDIX C COMPATIBILITY WITH PL/1 STANDARDS C-1
C.1 Relation to the 1981 PL/I General-Purpose Subset Cc-2

C.11 Program Structure Cc-2

C.1.2 Program Control C-3

Cc13 Storage Control C-3

C.1.4 Input/Output C-3

C.1.5 Attributes and Pictures C-4

C.1.6 Built-In Functions and Pseudovariables c-4

C.1.7 Expressions c-4

C.2 198x PL/I General-Purpose Subset Features Supported C-5

Cc.21 Lexical Constructs C-5

c.2.2 Program Control C-5

c.23 Storage Control C-5

xXi

C.24 Input/Output C-6

C.25 Attributes and Pictures C-6

C.2.6 Program Control C-7

Cc.2.7 Built-In Functions and Pseudovariables C-7

c.2.8 Expressions Cc-7

c3 Full PL/I Features Supported C-7

C.3.1 Program Structure C-8

Cc.3.2 Program Control C-8

Cc.33 Storage Control Cc-8

C.34 Attributes and Pictures Cc-8

C.35 Built-In Functions and Pseudovariables C-8

C.3.6 Expressions Cc-9

ca Nonstandard Features from Other Implementations Cc-9

C4.1 Preprocessor Cc-9

c4.2 LIKE Extension Cc-9

Cc43 Declarations Cc-10

C5 VAX PL/I1-Specific Extensions Cc-10
C.5.1 Procedure-Calling and Condition-Handling

Extensions Cc-10

C.5.2 Support of VAX Record Management Services C-11

C.5.3 Miscellaneous Extensions C-12

C.6 Implementation-Defined Values and Features C-12

APPENDIX D MIGRATION NOTES D-1

D.1 Keywords Not Supported D-2

D.2 Miscellaneous Differences D-5

D.3 Implicit Conversions D-6

D.4 Printing a Hexadecimal Memory Dump D-7

XXii

APPENDIX E VAX PL/l LANGUAGE SUMMARY E-1
E.1 Statements E-1
E.2 Attributes E-8
E.3 Expressions and Data Conversions E-10
E.4 Built-In Functions E-13
E.5 Pseudovariables E-20
E.6 Built-In Subroutines E-21

INDEX

FIGURES
A-1 Specifying Array Dimensions 128
A-2 Specifying Elements of an Array 131
A-3 Connected and Unconnected Arrays 140
B-1 Using the ALLOCATE Statement 163
B-2 Using the READ Statement with a Based Variable 165
B-3 Using the ADDR Built-In Function 168
B-4 Relationship of Block Activations 180
B-5 Example of the BOOL Built-In Function 184
D-1 An Overlay Defined Variable 258
D-2 Forms of the DO Statement 272
E-1 External Variables 312
F-1 Internal Representation of Fixed-Point Binary Data 333
G-1 Forms of the GET Statement 360
L-1 Creating a Linked List 421
L-2 Processing a Linked List 422
0-1 Search Path for ON-Units 450
P-1 Parameters and Arguments 475
P-2 Invoking an Internal Procedure 512
P-3 Invoking an External Procedure 513
P-4 Structure of a PL/I Program 527
P-5 Forms of the PUT Statement 533
S-1 Scope of Internal Names 583

xxiii

TABLES
5-1 Built-In Functions for Conversions Between Arithmetic and

Nonarithmetic Types 64
A-1 VAX PL/I Keyword Abbreviations 109
A-2 Alphabetic Summary of PL/I Attributes 148
B-1 Summary of PL/I Built-In Functions 187
B-2 Summary of PL/I Built-In Subroutines 194
C-1 Contexts in Which PL/I Converts Data 220
D-1 Implied Attributes for Computational Data 238
E-1 Derived Types 307
E-2 Converted Precision as a Function of Target and Source

Attributes 307
F-1 Summary of File Description Attributes 320
F-2 File Access Attributes 321
F-3 VAX Floating-Point Types 340
F-4 Floating-Point Types Used by PL/I 341
F-5 Summary of PL/l Format Items 344
0-1 Summary of ON Conditions 445
0O-2 File Description Attributes Implied when a File is Opened _____ 458
0-3 Operators 462
0-4 Precedence of Operators 464
P-1 ASCII Representation of Encoded-Sign Digits 487
P-2 Picture Characters 491
P-3 Summary of PL/I Preprocessor Built-In Functions ___ 507
P-4 Punctuation Marks Recognized by PL/I 530
R-1 Attributes and Access Modes for Record Files 550
S-1 Summary of PL/I Preprocessor Statements 599

S-2 Summary of PL/I Statements 603

XXiv

Preface

B Acknowledgment

The VAX PL/I programming language is an implementation of the PL/I
General-Purpose Subset, ANSI X3.74-1981.

H How to Use This Manual

This manual provides VAX PL/I language reference information. The first
part of the manual consists of chapters on VAX PL/I language concepts.
The second part is an encyclopedia of VAX PL/I; it is arranged by topical
entry in alphabetic order. (You can use the running feet on the bottoms
of the pages to find an entry, as with a dictionary, without resorting

to the Table of Contents, when you are familiar with the entries.) You
can find the entry for each specific language element by looking up the
keyword (in all-capital letters) for that element (for example, VALUE Built-
In Function, SELECT Statement, REFER Option, and ENTRY Attribute).
In addition, there are entries for general topics. The general topics fall into
the following approximate categories:

® Arithmetic, relational, and logical operations (for example, Addition,
Exponentiation, and Precedence)

® I/0O and other tasks (for example, Terminal Input and Output, List
Processing, and String Handling)

* Data and data types (for example, Bit-String Data, Conversion of Data,
and Entry Data)

* Language elements (for example, Argument, Controlled Variable,
Keyword, Logical Operator, and Subroutine)

* Miscellaneous topics (for example, File Organization, Program
Structure, and User-Generated Diagnostic Messages)

Each entry has cross-references to any related entries.

B Who Can Use This Manual

This manual is intended for use by all programmers who are designing
or implementing applications using VAX PL/I. They should already
understand the concepts of programming in PL/I and be familiar with the
keywords and topics that will be searched for information. This manual is
not, therefore, suitable for use as a strictly tutorial document.

XXV

XXVi

B Where to Find More Information

The companion document to this manual is the VAX PL/I User Manual.
The first part of the user manual contains an overview of the PL/I lan-
guage and its implementation for the VAX computer, and is recommended
for all programmers who are not familiar with PL/I or who need infor-
mation on the extensions made to PL/I for the VAX computer. The VAX
PL/I User Manual gives information on program development with the
VMS command language, the extensive I/O capabilities provided in VAX
PL/I, and programming techniques available to PL/I programs executing
under the exclusive control of the VMS operating system.

H Conventions Used in This Document

RET A symbol with a 1- to 3-character abbrevi-
ation indicates that you press a key on the
terminal, for example, or [ESC].

The symbol indicates that you press
the key “x” while holding down the key
labeled CTRL, for example, CTRL/C.

Enter string> Abcd In computer dialogues, the user’s response
to a prompt is printed in red ink.

DECLARE X FIXED; Vertical ellipses indicate that not all of the
. text of a program or program output is
illustrated. Only relevant material is shown
. in the example.

X=5;

option, . . . Horizontal ellipses indicate that additional
parameters, options, or values can optionally
be entered. When a comma precedes an
ellipsis, it indicates that successive items
must be separated by commas.

quotation mark The term quotation mark is used only to

apostrophe refer to the double quotation mark character

("). The term apostrophe is used to refer to
the single quotation mark character (').

[OPTIONS (option, . ..)] Except in VMS file specifications, square
brackets indicate that a syntactic element is
optional and you need not specify it.

[LIST]
EDIT

{ EXTERNAL }
INTERNAL

FILE (file-reference)

B Technical Assumptions

Brackets surrounding two or more stacked
items indicate conflicting options, one of
which can optionally be chosen.

Braces surrounding two or more stacked
items indicate conflicting options, one of
which must be chosen.

An uppercase word or phrase indicates a
keyword that must be entered as shown; a
lowercase word or phrase indicates an item
for which a variable value must be supplied.
This convention applies to format (syntax)
lines, not to code examples.

A delta symbol is used in some contexts to
indicate a single ASCII space character.

All descriptions of the effects of executing statements and evaluating
expressions assume that the initial procedure activation of the program is
through an entry point with OPTIONS(MAIN).

It is further assumed that any non-PL/I procedures called by the program
follow all conventions of the PL/I run-time environment. Except as
explicitly noted, descriptions of I/O statements do not cover the effects
of VAX-specific options. For details on mixed-language programming and
VAX-specific options, see the VAX PL/I User Manual.

B Technical Changes

Technical changes made since VAX PL/I Version 2.0 are summarized
below. Specific information on each new feature is found in the individual

entries in this manual.

e New attributes:

— CONDITION defines an identifier as a condition name.

— DESCRIPTOR (VAX PL/I specific) requests that an argument be
passed to an external non-PL/I procedure by descriptor.

— DIMENSION indicates that a variable is an array and defines the
number and extent of its dimensions.

— LIST (VAX PL/I specific) specifies that a parameter can accept a
list of actual parameters, of arbitrary length.

— MEMBER specifies that an item is a member of a structure.

Xxvii

Xxviii

NONVARYING specifies that the length of a string is nonvarying.

OPTIONAL (VAX PL/I specific) specifies in the declaration of a
formal parameter that the actual parameter need not be specified
in a call.

PARAMETER indicates that a variable will be assigned a value
when it is used as an argument to a procedure.

PRECISION specifies the number of digits in an arithmetic vari-
able and, with fixed-point data, the number of fractional digits.

REFERENCE (VAX PL/I specific) requests that an argument be
passed to an external non-PL/I procedure by reference.

STRUCTURE specifies that a variable is a structure variable.

TRUNCATE (VAX PL/I specific) specifies, in the declaration of a
formal parameter, that the actual parameter list can be truncated
at the point where this argument should occur.

UNALIGNED specifies nonalignment for a bit-string variable in
storage.

New built-in functions:

ACTUALCOUNT returns the number of parameters a procedure
was called with.

DATETIME returns the system date and time in the form
CCYYMMDDHHMMSSXX.

DECODE converts a character string to an integer in a specified
radix.

EMPTY returns an empty area value for use in initializing areas.

ENCODE converts an integer to a character string that represents
the integer’s value in a specified radix.

EVERY returns the result of a logical AND operation on the bits in
a bit string ('1'B if all bits are "1'B).

MAXLENGTH returns the maximum possible length of a varying
character string.

ONCHAR returns the character that caused a CONVERSION
condition to be raised. (ONCHAR is also a pseudovariable.)

ONSOURCE returns the file containing the ONCHAR char-
acter that caused a CONVERSION condition to be raised.
(ONSOURCE, like ONCHAR, is also a pseudovariable.)

PRESENT returns ‘1'B if the parameter in question was specified
in a call.

PROD returns the arithmetic product of all the elements in an
array.

REFERENCE forces its argument to be passed by reference to a
non-PL/I procedure.

REVERSE reverses the characters or bits in a string.

SOME returns the result of a logical OR operation on the bits in a

bit string (‘1B if one or more of the bits are '1’B).

SUBTRACT returns the value of x — y, with the specified precision

and scale factor.
SUM returns the arithmetic sum of all the elements in an array.
VALUE forces a parameter to be passed by value.

Enhanced built-in functions:

DESCRIPTOR now overrides a parameter declaration.
INDEX, SEARCH, and VERIFY have a new optional parameter
specifying the starting position in a string.

HBOUND, LBOUND, and DIMENSION can now be specified
with only the array parameter; and if they are so specified, the
dimension parameter defaults to 1.

New built-in subroutines:

FREE unlocks all the locked records in a file.

'RELEASE unlocks a specified record in a file.

New conditions:

AREA responds to an error detected during an operation on an
area.

CONDITION responds to programmer-defined conditions.

CONVERSION responds to a data conversion error from
CHARACTER to an arithmetic data type or bit string.

STORAGE responds to an error raised by LIBBGET_VM (most
commonly occurring when virtual memory is exhausted).

STRINGRANGE responds to a substring reference beyond the
length of the string.

SUBSCRIPTRANGE responds to array references with out-of-
bound subscripts.

XXix

XXX

New operators:

AND THEN (&:) performs a Boolean truth operation similar to
AND (&) except that the second operand is evaluated if and
only if the first operand, which is always evaluated first, is true
('1'B); also unlike AND, the AND THEN operator does not do a
bit-by-bit operation when the two operands are bit strings.

EXCLUSIVE OR (dyadic or infix ") performs a bit-by-bit
EXCLUSIVE OR operation on two bit strings, or a Boolean
EXCLUSIVE OR truth operation on expressions in an IF statement.

OR ELSE (I:) performs a Boolean truth operation similar to OR
(1) except that the second operand is evaluated if and only if
the first operand, which is always evaluated first, is false ('0'B);
also unlike OR, the OR ELSE operator does not do a bit-by-bit
operation when the two operands are bit strings.

Enhanced statement:

SELECT now has a second form that extends its usefulness: the
SELECT (expression) form.

Miscellaneous:

A comma list is now allowed on the left-hand side of an assign-
ment statement, with the ALLOCATE and FREE statements, with
the OPEN and CLOSE statements, and with the ON and REVERT
statements.

The ANY CHARACTER(*) attribute (VAX PL/I specific) indi-
cates that a parameter can take either a character descriptor or a
character varying descriptor.

The /G_FLOAT qualifier is no longer required for using H-
floating numbers.

The %GOTO preprocessor statement now allows movement either
forward or backward in a program’s text.

The ALLOCATE and FREE statments have a new IN option that
takes a reference to an area, and language-supported storage
allocation in areas is available.

The ENTRY and PROCEDURE statements have a new
NONRECURSIVE option to indicate (for program documentation
purposes) that the procedure will not invoke itself.

The ON statement has two new options, SNAP and SYSTEM,
which invoke the debugger and invoke system handling of a
condition, respectively.

The UNION attribute is now propagated across LIKE declarations.

— There is now debugger support for %REPLACE constants.

— %REPLACE constants can now be used in preprocessor expres-

sions.

— The maximum line size after preprocessor text expansion has been

increased from 255 to 32500 characters.

— Optimization has been improved.
— The LIKE attribute can reference a structure containing LIKE.
— An array can have an asterisk (*) as an intialization iteration

factor; for example, DECLARE A(n) ((*)10) initializes all elements
of the array A with the value 10.

— The %INCLUDE statement syntax has been extended to allow a

library name in addition to the module name.
— Descending keys are now allowed in indexed files.

~ The MATCH_NEXT keyword is now a synonym for MATCH_

GREATER, and MATCH_NEXT_EQUAL is a synonym for
MATCH_GREATER_EQUAL.

The following technical changes are documented in the VAX PL/I User
Manual.

Record-locking options
USER_OPEN ENVIRONMENT option

Miscellaneous ENVIRONMENT options (REVISION_DATE,
BACKUP_DATE, and OWNER_ID)

Additional fields returned by the DISPLAY built-in subroutine
Support for the VAX Source Code Analyzer (SCA)

Additional definitions for the VMS Run-Time Library and utility
routines in the system interface library PLISSTARLET (not explicitly
described in the VAX PL/I documentation)

XXXi

Chapter 1
Program Structure and Content

This chapter introduces the following elements of a PL/I program:
* The blocks that make up a program and their effect during program
execution

* The statements that make up a block and the general format and
elements of a PL/I statement

¢ The PL/I data types
¢ The text of a PL/I program

Subsequent chapters discuss these topics in more detail. Complete ref-
erence information on these topics is given in alphabetic entries in the
encyclopedia section of this manual.

1.1 Blocks

PL/T is a block-structured language: statements are grouped into blocks.
When control passes to a block, a block activation is created. A block
activation consists of the allocation of storage for some of the variables
declared within that block and information that connects that block to the
previous block.

There are two types of blocks: procedure blocks (usually called procedures)
and begin blocks. A procedure executes only as the result of a specific
request from another procedure or, in the case of the main procedure, as
the result of a RUN command. A begin block is always contained within
a procedure, and executes when control flows into it.

Program Structure and Content 1

1.1.1 Begin Blocks

A begin block is a sequence of statements headed by a BEGIN statement
and terminated by an END statement. In general, you can use a begin
block wherever a single PL/I statement would be valid. In some contexts,
such as an ON-unit, a begin block is the only way to perform several
statements instead of one. A primary use of begin blocks is to localize
variables. Because execution of a begin block causes a block activation,
automatic variables declared within the begin block are local to it, and
their storage disappears when the block completes execution.

Another way to allow your program to perform several statements in
place of one is to use a DO-group (see Chapter 7 and the alphabetic entry
“DO-Group”). You should choose it when possible because it does not
incur the overhead associated with block activation. Use a begin block
when there are declarations present or you require multiple statements in
an ON-unit.

1.1.2 Procedures

A procedure is a sequence of statements (perhaps including begin blocks
and other procedures) headed by a PROCEDURE statement and ter-
minated by an END statement. Unlike a begin block, which executes
when control reaches it, a procedure executes only when it is specifically
invoked. Invocation occurs in two ways:

¢ The DCL command RUN invokes the main procedure of a PL/I
program. This is either the procedure that has OPTIONS (MAIN) on
its PROCEDURE statement or the first procedure encountered by the
linker.

® Statements within a procedure can invoke other procedures. The
CALL statement invokes a procedure as a subroutine. A function
reference invokes a function, which is a procedure that returns a value
for use in the evaluation of an expression.

A PL/I program must have at least one procedure, the main procedure.
Any procedure, including the main procedure, can contain others; these
are called internal procedures. A procedure that is not contained within
any other is called an external procedure. The main procedure is therefore
always an external procedure.

Except for the main procedure, no procedure executes unless it is invoked
by a CALL statement or a function reference.

2 Program Structure and Content

1.2 Statements

A statement is the basic element of a PL/I procedure. Statements are used
to do the following;:

¢ Define and identify the structure of the program and the data that it
acts upon (possibly including text from other files (see “%INCLUDE
Statement”)

* Request specific actions to be performed on data
* Control the flow of execution in a program

The general format of a PL/I statement consists of an optional statement
label, the body of the statement, and a required terminator, the semicolon

)

In the encyclopedic section of this manual, each PL/I statement is de-
scribed in the alphabetic entry under the statement’s name (such as
“DECLARE Statement”). For an alphabetic summary of all the VAX PL/I
statements, see Table S-2, under the entry “Statement.”

1.2.1 Statement Labels

A statement label is optional. Its purpose is to identify a statement so that
the statement can be referred to elsewhere in the program, for example,
as the target of a GOTO statement. A label precedes its statement; it
consists of any valid identifier (see Section 1.2.3) terminated by a colon.
For example:

TARGET: A=A+B;
READ_LOOP: READ FILE (TEXT) INTO (TEMP);

No statement can have more than one label.

Program Structure and Content 3

1.2.2 Keywords

A keyword is a name that has a special meaning to PL/I when used in
a specific context. In context, keywords identify statements, attributes,
options, and other program elements. PL/I keywords are not reserved
words, so it is possible to use them in a program in other than their
keyword context.

PL/I has numerous keywords. A complete table of the VAX PL/I key-
words is in Appendix A, including brief identifications of their uses and
valid abbreviations for the keywords that can be abbreviated.

You can find many of the alphabetic entries in this manual under their
keywords (for example, “DECLARE Statement” and “AUTOMATIC
Attribute”).

1.2.3 Punctuation

PL/I recognizes punctuation marks in statements. The punctuation marks
serve the following two functions:

® They specify arithmetic or other operations to be performed on
expressions.
* They delimit and separate identifiers, keywords, and constants.

For example:
A=B+C;

In this statement, the equal sign (=), the addition operator (+), and the
semicolon (;) delimit the identifiers A, B, and C, as well as define the
operation to be performed. (Chapter 5 describes the effect of the various
operators in expressions.)

Whenever you use a punctuation mark in a PL/I statement, you can
precede or follow the character with any number of spaces (except in the
case of an operator consisting of two characters, like > = or **, which must
be entered without a space between the two characters). For example, the
following two statements are equivalent:

DECLARE (A, B) FIXED DECIMAL (7, 0) ;
DECLARE(A ,B)FIXED DECIMAL(7,0);

4 Program Structure and Content

In the second statement, all nonessential spaces are omitted; the paren-
theses and commas are sufficient to distinguish elements in the statement.
The only space required in this statement is the space that separates the
two keywords FIXED and DECIMAL.

For a table of all the punctuation marks recognized by VAX PL/I, see
Table P-3, under the entry “Punctuation.”

In addition to punctuation marks and spaces, PL/I accepts tabs and
line-end characters between identifiers, constants, and keywords.

The line-end character is a valid punctuation mark between items in a
PL/I statement except when it is embedded in a string constant, where it
is ignored. For example:

A = 'THIS IS A VERY LONG STRING THAT MUST BE CONTI
NUED ON MORE THAN ONE LINE IN THE SOURCE FILE' ;

This assignment statement gives the variable A the value of the specified
character-string constant, ignoring the line-end character. Note, however,
that any tabs or spaces preceding “NUED” in the example above would be
included in the string.

1.2.4 |dentifiers

An identifier is a user-supplied name for a procedure, a statement label, or
a variable that represents a data item. The rules for forming identifiers are
as follows:

¢ An identifier can have from 1 to 31 characters.

* An identifier can consist of any of the following characters:

— The alphabetic letters A through Z and a through z. PL/I converts
all lowercase letters to uppercase when it compiles a source
program. Thus, the identifiers abc, ABC, Abc, and so on, all refer
to the same object.

— The numeric digits 0 through 9.
— The underscore character (—).
— The dollar sign character ($).
* An identifier cannot contain any blanks.

* An identifier must begin with an alphabetic letter, a dollar sign ($), or
an underscore (—). It cannot begin with a numeral.

Program Structure and Content 5

Some examples of valid identifiers are as follows:

STATE

total
FICA_PAID_YEAR_TO_DATE
ROUND1

SS$_UNWIND

1.3 Data and Variables

The statements in a PL/I program process data, generally in the form of
variables that take on different values as the result of program execution.
In VAX PL/I, you usually must declare variables in a DECLARE statement
before you can use them in other statements. Declaring a variable asso-
ciates an identifier with a set of attributes and with a region of storage.
Thus, when you declare a variable you must usually specify one or more
data type attributes to be associated with it. (The concept of attribute is
more basic to PL/I than the concept of data type.) Furthermore, you can
specify how the variable is to be allocated by supplying a storage class
attribute in the declaration.

A few examples of PL/I attributes are BIT, CHARACTER, BINARY,
DECIMAL, FILE, FLOAT, PRINT, UPDATE, and VALUE. For a complete
alphabetic list of the VAX PL/I attributes with their uses, see Table A-1
under the entry “Attribute.”

An identifier can refer to a single variable (called a scalar variable) or to
a collection of related variables. Such a collection is called an aggregate.
There are two kinds of aggregate: the array, in which all members have
the same data type and are referenced by relative position; and the
structure, in which the members can have different data types and are
referenced in a hierarchical fashion.

The following chapters provide information on these topics:

* Chapter 2 describes the data types that you can specify for variables.
* Chapter 3 describes aggregates.

* Chapter 4 describes the DECLARE statement and the scope of a
declaration.

6 Program Structure and Content

1.4 Program Text

The text of a PL/I program consists of PL/I statements and comments.
This section discusses the format of program text and gives rules for
comments.

1.4.1 Program Format

The source text of a PL/I program is freeform. As long as you terminate
every statement with a semicolon (;), individual statements can begin
in any column, be on additional lines, or be written with more than one
statement to a line.

Individual keywords or identifiers of a statement, however, must be
confined to one line. Only a character-string constant (which must be
enclosed in apostrophes) can be on more than one line.

PL/1 programs are easier to read and to comprehend if you follow a
standard pattern in formatting. For example:

* Write source statements with no more than one statement per line.
¢ Use indention to show the nesting level of blocks and DO-groups.

1.4.2 Comments

A comment is an informational tool for documenting a PL/I program. To
insert a comment in a program, enclose it within the character pairs /*
and */. For example:

/* This is a comment.... */

Wherever the starting characters (/*) appear in a program, the compiler
ignores all text until it encounters the ending characters (*/). Thus, a
comment can span several lines.

The rules for entering comments are as follows:

* A comment can appear anywhere that a space can appear:
— Between any identifiers, keywords, or constants

— Preceding or following punctuation marks that normally serve as
delimiters, for example, spaces, tabs, or commas

Program Structure and Content 7

* A comment can contain any character except the pair */; comments
cannot be nested.

Following are some examples of comments:

A=B+C; /* Add B and C */

/* *xxxxk*k*% START OF SECOND PHASE *¥*¥xkxxx x/

DECLARE/*CQOUNTER+/A FIXED BINARY (7);

/* This module performs the following steps:
1. Initializes all arrays and data structures.
2. Establishes default condition handlers.

*/

Although complete comments cannot be nested, you can “comment out” a
statement such as the following:

DECLARE EOF BIT(1); /* end-of-file */
To do this, precede the DECLARE with another /* pair, as follows:
/* DECLARE EOF BIT(1); /# end-of-file */

The compiler will then ignore all text, including the DECLARE statement
and the second /*, until it reaches the */.

8 Program Structure and Content

Chapter 2

Data Types

This chapter includes the following topics:

* A brief summary of the data types

® Arithmetic data types, which are used to represent numeric values

® Character-string data, which consists of sequences of ASCII characters
* Bit-string data, which consists of sequences of binary digits (bits)

2.1 Summary of Data Types

VAX PL/I supports the following computational data types:

® The arithmetic data types define values that can be used in arithmetic
computation. They are as follows:

— Fixed-point (binary and decimal integers and fractions)

— Floating-point (binary and decimal)

— Pictured (fixed-point data stored in character form)
* Character-string data consists of a sequence of ASCII characters.
* Bit-string data consists of sequences of binary digits.

The data types listed below represent noncomputational program values
that are used within a PL/I program for control. They are described in

subsequent chapters and defined completely in alphabetic entries in the
encyclopedic section of this manual.

¢ Entry constants and variables are used to invoke procedures through
specified entry points.

Data Types 9

® Label variables and constants provide you with a flexible means of
control within a program.

* File variables and constants provide access to files.

* Pointers represent the location in memory of data, and are used to
access based variables in areas and data in system-allocated buffers.

® Areas are regions of storage in which based variables can be allocated
and freed. Offsets represent the location of a based variable in an
area.

2.2 Arithmetic Data Types

10 Data Types

Arithmetic data types are used for variables on which arithmetic calcula-
tions are to be performed. The arithmetic data types supported by VAX
PL/I are as follows:

® Fixed-point—for binary and decimal data with a fixed number of
fractional digits

* Floating-point—for calculations on very large or very small numbers,
with the decimal point (number of fractional digits) allowed to “float”

® Pictured—for fixed-point decimal data that is stored internally in
character form, with special formatting characters

When you declare an arithmetic variable, you do not always have to define
all its characteristics, or attributes; the PL/I compiler makes assumptions
about attributes that are not explicitly defined. For example:

DECLARE NUMBER FIXED;

The FIXED attribute implies the attributes BINARY(31,0). Thus, the
variable NUMBER has the attributes FIXED BINARY(31,0).

For a table giving the implied attributes for computational data, see Table
D-1 under the entry “Data and Data Types.”

2.2.1 Fixed-Point Binary Data

The attributes FIXED and BINARY are used to declare integer variables
and fractional variables in which the number of fractional digits is fixed
(that is, non-floating-point numbers). The BINARY attribute is implied by
FIXED.

For example, a fixed-point binary variable could be declared as follows:

DECLARE X FIXED BINARY(31,0);

The variable X is given the attributes FIXED, BINARY, and (31,0) in this
declaration. The precision is 31. The scale factor is 0, so the number is an
integer.

There is no representation in VAX PL/I for a fixed-point binary constant.
Instead, integer constants are represented as fixed decimal. However, fixed
decimal integer constants (and variables) are converted to fixed binary
when combined with fixed binary variables in expressions. For example:

I = I+3;

In this example, if I is a fixed binary variable, the integer 3 is represented
as fixed decimal, but PL/I converts it to fixed binary when evaluating the
expression.

Fixed binary variables have a maximum precision of 31, and therefore
fixed binary integers can have values only in the range -2,147,483,648
through 2,147,483,647. An attempt to calculate a binary integer out-
side this range, in a context that requires an integer value, signals the
FIXEDOVERFLOW condition.

2.2.2 Fixed-Point Decimal Data

Fixed-point decimal data is used in calculations where exact decimal
values must be maintained, for example, in financial applications. Fixed-
point decimal data with a scale factor of zero can also be used whenever
integer data is required.

The following sections describe fixed-point constants and variables and
their use in expressions.

Data Types 11

2.2.2.1 Fixed-Point Decimal Constants

A fixed-point decimal constant can have between 1 and 31 of the decimal
digits 0 through 9 with an optional decimal point or sign, or both. If there
is no decimal point, PL/I assumes it to be immediately to the right of the
rightmost digit. Some examples of fixed-point decimal constants are as
follows:

12

4.56
12345.54
-2

.0004
01.

The precision of a fixed-point decimal value is the total number of digits
in the value. The scale factor is the number of digits to the right of the
decimal point, if any. The scale factor cannot be greater than the precision.

2.2.2.2 Fixed-Point Decimal Variables

The attributes FIXED and DECIMAL are used to declare fixed-point
decimal variables. The FIXED attribute is implied by DECIMAL.

If you do not specify the precision and the scale factor, the default values
are 10 and 0, respectively.

Following are two examples of fixed-point decimal declarations:

DECLARE PERCENTAGE FIXED DECIMAL (5,2);
DECLARE TONNAGE FIXED DECIMAL (9);

2.2.2.3 Using Fixed-Point Data in Expressions

12 Data Types

You cannot use fixed-point decimal data with a nonzero scale factor in
calculations with binary integer variables. If you must combine the two
types of data, use the DECIMAL built-in function (described in the entry
“DECIMAL Built-In Function”) to convert the binary value to a scaled
decimal value before attempting an arithmetic operation. For example:

DECLARE I FIXED BINARY,
SUM FIXED DECIMAL (10,2);

SUM = SUM + DECIMAL (I);

2.2.3 Floating-Point Data

The floating-point data types provide a way to express very large and very
small numbers, for example, in scientific calculations. All floating-point
calculations are performed on values in one of the VAX binary floating-
point formats. In general, the precision of the result is determined by

the maximum precision of any operands in the operation. The numerical
result of an operation is rounded to the result precision; therefore, the
results of most operations are approximate.

The following sections describe floating-point constants and variables and
their use in expressions.

2.2.3.1 Floating-Point Constants

A floating-point constant can have one or more of the decimal digits 0
through 9 (with an optional decimal point), followed by the letter E and
from one to five decimal digits representing a power of 10. The floating-
point value and the integer exponent can both be signed. The first portion
of the value, to the left of the letter E, is called the mantissa. The value to
the right of the letter E is called the exponent.

Some examples of floating-point constants are as follows:

2E10

-3E8
32E-8
.45632E16

The decimal precision of each of these values is the number of digits in
the mantissa.

If you write a constant without the E and the exponent, it is considered to
be fixed-point decimal. However, you can use such constants anywhere in
expressions involving floating-point data.

Data Types 13

2.2.3.2 Floating-Point Variables

The keyword FLOAT identifies a floating-point variable in a declaration.

A floating-point value can be either binary or decimal. Because the inter-
nal representation of floating-point variables is binary, it is recommended
that you use FLOAT BINARY (which is the default) to declare variables,
unless you need the properties of FLOAT DECIMAL. (Note that the dif-
ference between FLOAT BINARY and FLOAT DECIMAL appears only
when a conversion to another type, such as character for doing I/0O, is
necessary.) In any event, you should declare all floating-point variables
using the same base.

You can optionally specify the precision for a floating-point variable in the
declaration. For example:

DECLARE X FLOAT BINARY(53);

2.2.3.3 Using Floating-Point Data in Expressions

You can use both integer and scaled decimal constants in floating-point
expressions. An arithmetic constant is always converted to the appropriate
internal representation for use in a floating-point operation. The target
type for the conversion depends on the context. For example:

\
DECLARE X FLOAT BINARY (53);
X=X+1.3;

Here, the constant 1.3 is converted to floating point when the expression
is evaluated.

2.2.3.4 Floating-Point Data Formats

14 Data Types

VAX PL/I supports four types of floating-point values: F, D, G, and H.
The approximate ranges of the VAX floating-point formats are as follows:

Format Range
F 0.29 * 10~°% to0 1.7 » 10”8

D Same as F but with more precise mantissa
G 0.56 * 1073% t0 0.9 * 10%8
H 0.84 * 107*32 t0 0.59 » 10*°%2

For a table summarizing the range of precision for each floating-point
type, see Table F-3, under the entry “Floating-Point Data.” For a table

showing how the PL/I compiler selects a floating-point type, see Table
F-4, under the same entry.

2.2.4 Pictured Data

Use pictured data when you want to manipulate a quantity arithmetically
and accept or display its value using a special format. Pictured variables

are especially useful in applications that require values to be shown with
special symbols, such as commas, dollar signs, or debit indicators (DB).

This section discusses the following topics:

e Pictured variables—variables declared with the PICTURE data at-
tribute

* Assigning values to pictured data—the process by which a value is
assigned to a pictured variable or written out with the P format item

* Extracting values from pictured data—the process by which a pictured
value is assigned to other variables or acquired with the P format item

* Picture characters—the special characters that make up a specification
in the PICTURE attribute and in the P format item

Although the formatting possible with pictured data is useful in many
applications, pictured data is much less efficient than fixed-point decimal
data in computations. Therefore, do not use pictured data unless you need
the formatting.

2.2.4.1 Pictured Variables

A pictured variable has the attributes of a fixed-point decimal variable,
but values assigned to it are stored internally as character strings. Such a
character string contains digits representing the variable’s numeric value
as well as such special symbols as the dollar sign. When the value of a
pictured variable is written out by, for example, the PUT LIST statement,
the internally stored character string is placed in the output stream. The
value that appears on a line printer or terminal thus contains a fixed-point
decimal number that has been “edited” with the requested special symbols.

A picture specification (or picture) describes both the numeric attributes of
a pictured variable and its output format. A simple picture might look like
this in a DECLARE statement:

DECLARE CREDIT PICTURE '$99999V.99DB';

Data Types 15

This statement declares the variable CREDIT as a pictured variable. The
characters within the apostrophes describe its format: Each 9 stands for
any decimal digit; the dollar sign ($) indicates a leading dollar sign; the
V specifies the location of the decimal point; and the DB specifies how a
debit (a negative value) will be shown.

The two assignments

CREDIT = 12443.00;

and

CREDIT = -12443.00;

would look like this on output:

$12443.00 /* a positive value (credit) */
$12443.00DB /* a negative value (debit) */

2.2.4.2 Assigning Values to Pictured Variables

16 Data Types

Assignment of a computational value to a pictured variable is performed
in the following two steps:

1. The value is converted to fixed decimal, with precision and scale as
specified by the picture.
2. The resulting fixed decimal value is edited into the pictured variable.

If PL/I cannot perform one of these steps in a meaningful fashion, an
error occurs. The following examples show two programming errors that
are common in assignments to pictured variables.

CREDIT = '$12443.00';

This example signals the ERROR condition, because the character string
contains a dollar sign and is therefore not convertible to fixed-point
decimal. The value assigned to CREDIT should be either '12443.00" or
simply 12443.00, both of which result in the same value assigned to
CREDIT.

If a negative value is assigned to a pictured variable, the picture must
include one of the sign picture characters (such as DB). For example:

CREDIT = -12443.00;

If the picture of CREDIT did not contain the DB characters, this assign-
ment would signal the FIXEDOVERFLOW condition, because the sign
would be lost.

In some circumstances (for example, with the READ statement), it is
possible to assign a value to a pictured variable that is not valid with
respect to the variable’s picture specification. In such cases, the VALID
built-in function (see the entry “VALID Built-In Function”) can be used to
validate the contents of the variable.

2.2.4.3 Extracting Values from Pictured Data

When you use a pictured value in an arithmetic context (such as as-
signment to an arithmetic variable), the picture is used to extract the
fixed-point decimal number from the character string that internally repre-
sents the pictured value. Extraction also occurs when you input a pictured
value with the GET EDIT statement and the P format item. If the contents
of the pictured variable or input item do not conform to the picture, an
error occurs.

For example:
DECLARE CREDIT PICTURE '$99999V.99DB';

In the picture for CREDIT, the 9 character specifies the position of a
decimal digit; because the picture contains seven of these, the fixed-point
decimal precision of CREDIT is 7. The V character separates the integral
and fractional digits; because there are two 9 characters to the right of
the V, the scale factor of CREDIT is 2. The V character is unique among
picture characters in that it specifies only a numeric property; it does not
cause a decimal point (or any other character) to appear in the internal
representation of CREDIT. Therefore, a period picture character (.) is
included after the V to ensure that the output value has a decimal point in
the correct place.

The period and dollar sign are always inserted in the internal representa-
tion and the output value regardless of CREDIT’s numeric value.

The picture character DB appears only when the value of CREDIT is
less than zero; otherwise, two spaces appear in the indicated positions.
The DB character also indicates that a value of CREDIT is numerically
negative, so that if CREDIT is later assigned to an arithmetic variable, the
variable will be given a negative value.

Data Types 17

2.2.4.4 Picture Characters

18 Data Types

An individual picture character, and its position in the picture, indicate the
interpretation of an associated position in the pictured value.

Any picture character that can appear more than once in a picture can be
preceded by an iteration factor, which must be a positive integer constant
enclosed in parentheses. For example:

'(4)9'
This picture is the same as the following one:
'9999'

The following paragraphs describe the picture characters.

Decimal Place Character (V)

The V character shows the position of the “assumed” decimal point, or, in
other words, the scale factor for the fixed-point decimal value. It does not
cause a decimal point to appear. (Use the period insertion character for
this purpose.) The following rules apply to the V character:

® Only one V character can appear in a picture.

* If a picture does not contain the V character, the V is assumed to be at
the right end of the picture.

* If a fixed-point value assigned to a pictured variable has fewer integral
digits than are indicated by the picture characters to the left of the
V, then the integral value of the pictured variable is extended on the
left with zeros. If the assigned value has too many integral digits, the
value of the pictured variable is undefined and the FIXEDOVERFLOW
condition is signaled.

¢ If a fixed-point value assigned to a pictured variable has fewer frac-
tional digits than are indicated in the picture, then the fractional value
of the pictured variable is extended on the right with zeros. If the as-
signed value has too many fractional digits, then the excess fractional
digits are truncated on the right; no condition is signaled. Thus, if the
V character is the last character in the picture or is omitted, assigned
fixed-point values are truncated to integers.

The following example illustrates the effect of the V character:

DECLARE PRICE PICTURE '$$9V.99',
BAD_PRICE PICTURE '$$9.99°';

PRICE = .98; /* Output as $0.98 =*/
BAD_PRICE = .98; /* Output as $0.00 */
PRICE = 98; /* Output as $98.00 */

BAD_PRICE = 98; /% Output as $0.98 */

In this example, note that the variable PRICE, which contains the V
character, represents the value properly. The variable BAD_PRICE, which
contains only the period insertion character, has an assumed V character
at the end of the picture, which causes the variable to misrepresent the
value.

Digit Characters (9, Z, «, Y)

The characters 9, Z, and Y, and the asterisk character (*) mark the
positions occupied by decimal digits. The number of these characters
present in a picture specifies the number of digits, or precision, of the
fixed-point decimal value of the pictured variable.

* The position occupied by 9 always contains a decimal digit, whether
or not the digit is significant in the numeric interpretation of the
pictured value. Thus, leading zeros at positions occupied by a 9 are
output.

* The position occupied by Z contains a decimal digit only if the digit is
significant in the integral portion of the numeric interpretation; if the
digit is a leading zero, it is replaced by a space.

— The Z character must not appear in the same picture with the
asterisk character (*). It must not appear to the right of the
characters 9, T, I, or R nor to the right of a drifting string.

— If the Z character appears to the right of the V character, then
all digits to the right of the V must be indicated by Z characters.
Fractional zeros are then suppressed only if all fractional digits are
zero and all of the integral digits are suppressed; in that case, the
internal representation contains only spaces in the digit positions.

* The position occupied by the asterisk character (*) functions identi-
cally with the Z character, except that leading zeros are replaced by
asterisks instead of spaces.

¢ The position occupied by the Y character contains a decimal digit only
if the digit is not zero. All zeros in the indicated positions, whether
significant or not, are replaced by spaces.

Data Types 19

20 Data Types

Encoded-Sign Characters (T, I, R)

The characters T, I, and R are encoded-sign characters that can be used
wherever 9 is valid. Each represents a digit that has the sign of the
pictured value encoded in the same position. Only one encoded-sign
character can be used in a picture.

An encoded-sign character cannot be used in a picture that contains one
of the following characters: S, +, —, CR, or DB (described below).

The meanings of the characters are as follows:

¢ The T character indicates that the position contains an encoded minus
sign if the numeric value is less than zero and an encoded plus sign if
the numeric value is greater than or equal to zero.

® The I character indicates an encoded plus sign if the numeric value
is greater than or equal to zero. Otherwise, the position contains an
ordinary digit.

* The R character indicates an encoded minus sign if the numeric value
is less than zero. Otherwise, the position contains an ordinary digit.

For a table showing the ASCII representation of encoded-sign digits, see
Table P-1, under the entry “Picture.”

Drifting Characters ($, +, —, S)

The S character and the dollar sign ($), plus sign (+), and minus sign (-)
characters are drifting characters. The drifting characters can be used to
indicate digits, and they also indicate a symbol to be inserted when, for
example, a pictured value is written out by PUT LIST.

¢ The dollar sign ($) causes a dollar sign to be inserted.

® The plus sign (+) causes a plus sign to be inserted if the numeric
value is greater than or equal to zero.

® The minus sign (-) causes a minus sign to be inserted if the numeric
value is less than zero.

* The S character causes a plus sign to be inserted if the numeric value
is greater than or equal to zero, and a minus sign if the value is less
than zero.

If one of these characters is used alone in the picture, it marks the position
at which a special symbol or space is always inserted, and it has no effect
on the value’s numeric interpretation. In this case, the character must
appear either before or after all characters that specify digit positions.

However, if a series of n of these characters appears, then the rightmost
n-1 of the characters in the series also specify digit positions. If the digit is
a leading zero, the leading zero is suppressed, and the leftmost character
“drifts” to the right; the character appears either in the position of the
last drifting character in the series or immediately to the left of the first
significant digit, whichever comes first.

Used this way, the n-1 drifting characters also define part of the numeric
precision of the pictured variable, because they describe at least some of
the positions occupied by decimal digits. For an example of this behavior
by a drifting character (the dollar sign), see the V decimal place character
above.

The following additional rules apply to drifting characters:

* A drifting string is a series of more than one of the same drifting
character. Only one drifting string can appear in the picture; any other
drifting characters can be used only singly and therefore designate
insertion characters, not digits.

* The Z and asterisk (*) cannot appear to the right of a drifting string.

* A digit position cannot be specified (for instance, with a 9) to the left
of a drifting string.

® A drifting string can contain the V character and one of the insertion
characters (defined below).

— If the drifting string contains an insertion character, it is inserted
in the internal representation only if a significant digit appears to
its left. In the position of the insertion character, a space appears
if the leftmost significant digit is more than one position to the
right; the drifting symbol appears if the next position to the right
contains the leftmost significant digit.

— If the drifting string contains a V character, all digit positions
to the right of the V (the fractional digits) must also be part of
the drifting string. In this case, insignificant fractional digits are
suppressed only when all integral and fractional digits are zeros:
they are replaced by spaces in the internal representation. If any
digit is not zero, all fractional digits appear as actual digits.

— Any insertion characters immediately to the right of a drifting
string are considered part of it.

Data Types 21

22 Data Types

Insertion Characters

The insertion characters indicate that characters are inserted between digits
in the pictured value. The insertion characters are the comma (,), period
(.), slash (/), and the space (B). The B character indicates that a space is
always inserted at the indicated position.

The drifting characters also function as insertion characters when used
singly (that is, not as part of a drifting string).

Note that the period (.) does not imply a V decimal place character. See
the example in the description of the decimal place character, above.

The following rules describe insertion by the comma, period, and slash
insertion characters.

If zero suppression occurs, the insertion character is inserted only in
these cases:

— If a significant digit appears immediately to its left

— If the V character appears immediately to its left, and the fractional
part of the numeric value contains significant digits

To guarantee that the decimal point is in the same position in both
the numeric and character interpretations, the V and period characters
must be adjacent. Note, however, that if the period precedes the V,
then it is suppressed if there are no significant integral digits, even
though all the fractional digits are significant. This property can make
fractions appear to be integers when the internal (character) value is
displayed. Consequently, the period should immediately follow the
V character; it will then be in the correct location and will appear
whenever any fractional digit is significant. The following example
illustrates correct and incorrect placement of the period:

DECLARE NUM PICTURE 'ZZZV.ZZ',
BAD_NUM PICTURE 'Z2Z.VZZ';
NUM=0.02; /* Output as .02 */
BAD_NUM=0.02; /* Output as 02 */

Other insertion characters, such as the comma, can be used to separate
the integral and fractional portions of a number. However, the comma
should not be used with GET LIST input, because in that context it
separates different data items in the input stream.

Credit (CR) and Debit (DB) Characters

These picture characters are always specified as the character pairs CR
and DB. If either pair is included, it appears if the numeric value is less
than zero. In each case, the associated positions contain two spaces if the
numeric value is greater than or equal to zero.

The characters are inserted with the same case as used in the picture. If
the lowercase form cr is used in the picture, lowercase letters are inserted
in the pictured value; if the combination Cr is used, then Cr is inserted.

The credit and debit characters cannot be combined in one picture, nor
can they be used in the same picture as any other character that specifies
the sign of the value (S, plus sign (+), and minus sign (-) characters). In
addition, they must appear to the right of all picture characters specifying
digits.

2.2.5 Precision and Scale of Arithmetic Data Types

The PRECISION attribute applies to binary and decimal data; the precision
of a fixed-point data item is the total number of decimal or binary digits
used to represent a value. The precision of a floating-point data item is the
number of decimal or binary digits in the mantissa of the floating-point
representation. You can specify the precision in a declaration. You can
also specify the scale, which is the number of digits to the right of the
binary or decimal point, but only when the variable is fixed-point. There
is no scale factor for floating-point variables.

For example:
DECLARE x FIXED DECIMAL(10,3);

This indicates that the value of x has 10 decimal digits, and that 3 of those
are fractional.

The ranges of values you can specify for the precision for each arithmetic
data type, and the defaults applied if you do not specify a precision, are
summarized as follows:

Data Types 23

Data Type Scale Default

Attributes Precision Factor Precision
BINARY FIXED 1 <=p <=31 <=p 31
BINARY FLOAT 1 <=p <=113 24
DECIMAL FIXED 1 <=p <=31 <=p 10
DECIMAL FLOAT 1 <=p <=34 7

If no scale factor is specified for fixed-point data, the default is zero.

Positive scale factors for fixed binary numbers function the same as scale
factors for fixed decimal numbers. A negative scale factor indicates the
number of fractional bits that are shifted from the left to the right. For a
fixed-point binary number, the scale factor has the effect of multiplying or
dividing the number by a factor of 2.

Even though arithmetic operands can be of different arithmetic types,
all operations must actually be performed on objects of the same type.
Consequently, the compiler may convert operands to a derived type.
Therefore, when you declare a fixed binary number with a scale factor
and assign it a decimal value, the results may not be what you expect.
The reason is that the binary scale factor left-shifts the specified number
of bits to the right of the decimal point. During conversion to a decimal
representation, the difference between the resulting binary number and
its decimal representation is not the equivalent of dividing or multiplying
the decimal number by 10. Instead, the binary number is divided or
multiplied by 2 and then converted to its decimal representation.

In addition, excess fractional digits may be truncated, and no condition is
signaled. Any resulting loss of precision may be difficult to detect because
truncated fractional digits do not signal a condition.

2.3 Character-String Data

24 Data Types

A character string is a sequence of zero or more characters. The value

of a character-string variable can consist of any ASCII characters, to a
maximum length of 32767 characters. (The ASCII characters are the first
128 characters of the DEC Multinational Character Set, given in Appendix
B.)

This section discusses character-string constants and character-string
variables.

2.3.1 Character-String Constants

A character-string constant can consist of any characters in the DEC
Multinational Character Set (see Appendix B). When you use character-
string constants in a program, you must enclose the strings in apostrophes,
as shown in the following examples:

'Total is:'

'Enter your name and age'

'Exror -- value is out of range'

To specify a string containing a literal apostrophe, use two apostrophes
within the string. For example:

'Life isn''t fair'

When a character string that has embedded apostrophes is specified as
shown above, the final result contains only a single apostrophe.

Note that the quotation mark (") is not a legal delimiter for PL/I character
constants.

2.3.2 Character-String Variables

The CHARACTER keyword identifies a character-string variable in a
declaration. The addition of the VARYING keyword indicates a varying-
length character-string variable. An optional number in parentheses
specifies the length of the variable, that is, the number of bytes needed to
contain its value. The maximum is 32767. The length attribute specifies
either the length of all values of the variable (fixed-length strings) or the
maximum length of a value of the variable (varying-length strings). If the
length is not specified, PL/I uses the default length of one character, or
byte. The rules for specifying the length are as follows:

* For a static variable declaration, the length must be an integer con-
stant.

® In the declaration of a parameter or in a parameter or returns de-
scriptor, the length can be specified as an integer constant or as an
asterisk (*). The resulting string is fixed length unless VARYING is
also specified.

Data Types 25

For an automatic, based, or defined variable, the length can be
specified as an integer constant or as an expression. In the case of
automatic or defined variables, the expression must not contain any
variables or functions that are declared in the same block, except for
parameters.

If specified, n must immediately follow the keyword CHARACTER and
must be enclosed in parentheses.

2.3.2.1 Fixed-Length Character-String Variables

For a particular allocation of a fixed-length character-string variable, all
its values have the same length. When a program assigns a value to a
fixed-length character-string variable, however, the value is not always
exactly the same as the length defined for the variable. Depending on the
size of the value, PL/I does the following:

26 Data Types

If the value is smaller than the length of the character string, PL/I
pads the value with spaces on the right. For example:

DECLARE STRING CHARACTER (10);
STRING = 'ABCDEF';

The final value of the variable STRING is 'ABCDEF ', that is, the
characters ABCDEF followed by four space characters.

If the value is larger than the length of the variable, PL/I truncates
the value on the right. For example:

DECLARE STRING CHARACTER (4);
STRING = 'ABCDEF';

Here, the final value of STRING is 'ABCD’, that is, the first four
characters of the value ‘ABCDEF'.

2.3.2.2 Varying-Length Character-String Variables

In a varying character-string variable, the length is not fixed. The length
specified in the declaration of the variable defines the maximum length
of any value that can be assigned to the variable. Each time a value is
assigned, the current length changes. For example:

DECLARE NAME CHARACTER (20) VARYING;
NAME = 'COOPER';
NAME = 'RANDOM FACTOR';

The declaration of the variable NAME indicates that the maximum length
of any character-string value it can have is 20. The current length becomes
6 when NAME is assigned the value ‘'COOPER’; the length becomes 13
when NAME is assigned the value 'RANDOM FACTOR’; and so on.

When a varying character string is assigned a value with a length greater
than the maximum defined, the value is truncated on the right.

The initial length of an automatic varying-length character-string variable
is undefined unless the variable is initialized.

You can use the LENGTH built-in function to determine the current
length of any string, and the MAXLENGTH built-in function to determine
the maximum length (see the entries “LENGTH Built-In Function” and
“MAXLENGTH Built-In Function”).

2.4 Bit-String Data

A bit string consists of a sequence of binary digits, or bits. It can be used
as a Boolean value, which has one of two states: true (if any bit is 1) or
false (if all bits are 0).

Like a fixed-length character string, a bit string has a fixed length de-
fined in the declaration or specified by the number of bits in a bit-string
constant. The maximum length of any bit string is 32767 bits. Bit-string
variables cannot be declared with the VARYING attribute.

Sophisticated applications that depend on the internal representation of
bit strings and other types of data may not be directly transportable from
other PL/I implementations to VAX PL/I. In VAX, bit strings are stored
in memory with the leftmost bit (as represented by PUT LIST) in the
lowest memory location and bits following the leftmost in successively
higher memory locations. This representation of a bit string by PUT LIST
is reversed with respect to a conventional picture of memory locations, in
which higher locations appear on the left, not on the right. For example:

Data Types 27

DECLARE ABIT BIT (10);
ABIT = '1011'B;

A memory diagram of the storage resulting from this assignment would
look like this:

..0000001T101..
HIGH MEMORY LOW MEMORY
<- LOCATIONS LOCATIONS ->

This is of no concern until you try to interpret non-bit-string data as a
bit string. For example, a fixed binary value is stored with the sign bit in
the highest memory location, the most significant bit in the next highest
location, and so on to the least significant bit in the lowest memory
location. Thus, a FIXED BINARY (7) variable with a value of 2 would
appear in memory as follows:

..00000010 ..
HIGH MEMORY LOW MEMORY
<- LOCATIONS LOCATIONS ->

Should you treat this storage as a bit string (for example, by using it as the
argument of the UNSPEC built-in function in a PUT LIST statement), the
result would be as follows:

101000000 'B

If you are accustomed to using PL/I on computers other than VAX, this
result may not be what you expect.

The rest of this section discusses bit-string constants and variables, align-
ment of bit-string data, and the use of bit strings to represent integers.

2.4.1 Bit-String Constants

28 Data Types

To specify a bit-string constant, enclose the string in apostrophes and
follow the closing apostrophe with the letter B. For example:

'0101'B
'10101010'B
'1'B

The length of a bit-string constant is always the number of binary digits
specified; the B does not count in the length of the string. You can specify

a bit-string constant with a maximum of 1000 characters between the
apostrophes.

You can also specify a bit-string constant using the following syntax:

character-string’'Bn

n
Is the number of bits in the range 1 through 4 to be represented by each
character in the string.

This format allows you to specify bit-string constants with bases other
than 2. For example:

'EF8'B4
'117'B3
'223'B2

These constants specify the hexadecimal value EF8, the octal value 117,
and the base 4 value 223. All such constants are stored internally as bit
strings, not as integer representations of the value.

The valid characters for each type of bit-string constant are listed below:

* For B or Bl, only the characters 0 and 1 are valid.
e For B2, only the characters 0, 1, 2, and 3 are valid.
* For B3, only the characters 0, 1, 2, 3, 4, 5, 6, and 7 are valid.

¢ For B4, the characters 0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E, and F
are valid. (The letters A through F can be either upper- or lowercase.)

Using the B format items, you can also acquire or output (with the GET
EDIT and PUT EDIT statements) bit-string data in binary, base 4, octal, or
hexadecimal format. See “B Format Item.”

2.4.2 Bit-String Variables

Use the BIT attribute to declare a bit-string variable. You can optionally
specify the length of the variable in parentheses. The length can be from 0
to 32767; the default length is one bit. The rules for specifying the length
are as follows:

e If BIT is specified for a static variable declaration or in a returns
descriptor, the length must be an integer constant.

* If BIT is specified in the declaration of a parameter or in a parameter
descriptor, the length can be specified as an integer constant or as an
asterisk (*).

Data Types 29

e If BIT is specified for an automatic, based, or defined variable, the
length can be specified as an integer constant or as an expression. In
the case of automatic or defined variables, the expression must not
contain any variables or functions that are declared in the same block,
except for parameters.

If specified, the length must immediately follow the keyword BIT.

A program can assign to a bit-string variable a value larger or smaller than
the variable’s defined length. In such cases, PL/I does the following:

e If the assigned string is shorter than the defined length, PL/I pads the
bit-string value with zeros in the direction of least significance. The
less significant bits are on the right, as the string is represented by
PUT LIST.

e If the assigned string is longer, PL/I truncates the least significant bits
from the bit-string value.

You can convert bit-string variables to other data types; however, there are
some precautions you must observe if you do so. Section 2.4.4 describes
how to convert bit-string variables.

2.4.3 Alignment of Bit-String Data

30 Data Types

PL/1 distinguishes between aligned and unaligned bit-string variables.
(Bit-string constants are always unaligned.) A bit-string variable is
aligned only if it is declared with the ALIGNED attribute, as shown in
the following example:

DECLARE FLAGS BIT (8) ALIGNED;

PL/1 allocates storage for an aligned bit-string variable on a byte bound-
ary and reserves an integral number of bytes to contain the variable.
Unaligned bit-string variables always occupy only as many bits as

are needed to contain them. They need not be on byte boundaries.
You can optionally specify the UNALIGNED attribute in a declaration;
UNALIGNED is the default for bit strings.

In general, operations involving unaligned bit-string variables are less
efficient than those involving aligned bit-string variables. Unaligned bit-
string variables are also invalid as the targets of the FROM and INTO
options of record I/O statements, and as the argument of the ADDR built-
in function. Moreover, most non-PL/I programs that accept bit-string
arguments require the strings to be aligned.

It is recommended, therefore, that you declare bit-string variables with the
ALIGNED attribute in most cases. Use unaligned bit-string variables when
bit strings must be packed as tightly as possible, for example, in arrays
and in structures.

See the entries “Bit-String Data” and “ALIGNED Attribute.”

2.4.4 Bit Strings and Integers

PL/I defines conversions between bit-string data and other data types,
and the VAX PL/I compiler carries out these conversions. However, the
conversions defined by PL/I are not always straightforward or intuitive;
the padding and truncation that take place during assignment of bit strings
of different lengths result in implicit multiplication or division of the bit
string’s integer value. For example:

DECLARE BITSTR BIT (10);
BITSTR = 1;
PUT LIST (BITSTR);

The output is as follows:
'0001000000'B

Although the result may seem incorrect, it conforms to PL/I’s rules for
conversion to bit strings. In this case, the fixed-decimal constant 1 is
converted to a FIXED BINARY(4) value, which is in turn converted to an
intermediate bit string of length 4:

'0001'B

Next, this intermediate bit string is assigned to the variable BITSTR.
Because BITSTR is of length 10, the intermediate bit string is padded on
the right with zeros, producing the result as output by PUT LIST. If you
now attempt to interpret the value of BITSTR as an integer (for example,
by using BITSTR as the argument of the BINARY built-in function), the
result would be 64, not 1.

Note also that extra execution time is required to reverse the order of
bits when the integer’s value is computed. Using arithmetic variables to
represent integers is more efficient.

Because of the unexpected results and longer execution time, you should
avoid using bit strings to represent integers or other data types.

Data Types 31

2.4.5 Replication Factor for String Constants

32 Data Types

A replication factor is an unsigned integer constant that specifies the
number of times a simple string constant is replicated. A replication
factor permits repetition of character strings and bit strings in any context
where a simple string constant is permissible, including format items and
assignment, string, and arithmetic operations. The format of a replication
factor is as follows:

(r)'string’

r
An unsigned integer that represents the number of times that the string is
to be replicated.

string
A simple string constant to be replicated. The string is enclosed in apos-
trophes.

For example:
(4) 'season '

This example replicates the string four times. The resulting character
constant looks like this:

season season season season
Another example of replication is as follows:
DECLARE (A) BIT (800);
A = (400) '2'B2;
PUT SKIP LIST ((A));
END;

In this example, A will be replicated to its maximum specified length of
800 characters.

The resulting character constant looks like this:

'10101010101010101010101010101010

10101010101010101010101010'B

A replication factor can be used in combination with the iteration factor in
INITIAL. For example, the following two statements are equivalent:

INITIAL ((10)('ABCABC'))

INITIAL ((10)((2)'ABC'))

The first statement uses an iteration factor exclusively; the second state-
ment combines an iteration factor of 10 with a replication factor of 2. Note

that an extra set of parentheses is required to separate the iteration factor
from the replication factor and the character string.

Data Types 33

Chapter 3

Aggregates

Aggregates are groupings of variables. There are two types of aggregate:

* An array is an aggregate in which all items, called elements, have the
same data type. An individual element of an array is referred to by
an integer subscript that designates the element’s position, or order, in
the array. Elements can be scalar data items or structures.

® A structure is an aggregate in which individual items, called members,
can have different data types. Individual members are referred to by
qualified references that give the names of the structure itself and of
the individual member.

Aggregates can also be formed from arrays whose elements are structures,
or from structures whose individual members are arrays.

3.1 Arrays

Arrays provide an orderly way to manipulate related variables of the same
data type. An array variable is defined in terms of the number of elements
that the array contains and the organization of those elements. These
attributes of an array are called its dimensions.

Aggregates 35

3.1.1 Array Declarations

36 Aggregates

The declaration of an array specifies its dimensions, the bounds of each
dimension, and the attributes of the elements.

One bound pair is specified for each dimension of the array, to define
the number of elements in that dimension. The extent of an array is the
product of the numbers of elements in its dimensions. If omitted, the
lower bound is 1 by default.

You can use an asterisk (*) as the bound pair when you declare arrays as
parameters of a procedure; the asterisk indicates that the parameter can
accept array arguments with any number of elements. (If one dimension
is specified with an asterisk, all must be specified with asterisks.)

For example:
DECLARE SALARIES (100) FIXED DECIMAL (7,2);

This statement declares a 100-element array with the identifier SALARIES.
Each element is a fixed-point decimal number with a total of seven
digits, two of which are fractional. The following statement declares a
two-dimensional array of 64 integers:

DECLARE GAME_BOARD (8,8) FIXED BINARY (7);

The following statement declares a one-dimensional array of 12 character
strings:

DECLARE PM_HOURS(13:24) CHARACTER(2);

The elements of the array are numbered 13 through 24 instead of 1
through 12.

You can replace the identifier in a statement with a list of declarations,
thereby declaring several arrays with the same attributes. For example:

DECLARE (SALARIES,PAYMENTS) (100) FIXED DECIMAL(7,2);

This statement declares SALARIES and another array, PAYMENTS, with
the same dimensions and other attributes.

The following rules apply to specifying the dimensions of an array and the
bounds of a dimension:

* An array can have up to eight dimensions.

* The values you can specify for bounds are restricted as follows:

— If the array has the STATIC attribute, you must specify all bounds
as restricted integer expressions. (See the entry “Restricted
Expression” for a definition.)

— If the array has the AUTOMATIC, BASED, CONTROLLED, or
DEFINED attribute, you can specify the bounds as optionally
signed integer constants or as expressions that yield integer values
at run time. If the array has AUTOMATIC or DEFINED, the
expressions must not contain any variables or functions that are
declared in the same block, except for parameters.

— If an array is a parameter, you can specify the bounds with
optionally signed integer constants or asterisks (*). If you specify
any bound as an asterisk, you must specify all bounds with
asterisks. An array parameter declared this way inherits the
dimensions of the corresponding argument.

¢ The value of the lower bound you specify must be less than the value
of the upper bound.

3.1.2 References to Individual Elements

You refer to an individual element in the array with subscripts. Because
an array’s attributes are common to all of its elements, a subscripted
reference has the same properties as a reference to a scalar variable with
those attributes.

You must enclose subscripts in parentheses in a reference to an array
element. For example, in a one-dimensional array named ARRAY declared
with the bounds (1:10), the elements are numbered 1 through 10 and are
referred to as ARRAY(1), ARRAY(2), ARRAY(3), and so on. The lower and
upper bounds that you declare for a dimension determine the range of
subscripts you can specify for that dimension.

For multidimensional arrays, the subscript values represent an element’s
position with respect to each dimension in the array. In subscripted
references for multidimensional arrays, the number of subscripts must
match the number of dimensions of the array and must be separated by
commas.

You can specify the subscript of an array element using any variables or
expressions having integer values, that is, values that can be expressed as
fixed binary or fixed decimal with a zero scale factor. For example:

Aggregates 37

DECLARE DAYS_IN_MONTH(12) FIXED BINARY;

DECLARE (COUNT, TOTAL) FIXED BINARY;

TOTAL = O;

DO COUNT = 1 TO 12;
TOTAL = TOTAL + DAYS_IN_MONTH(COUNT);
END;

Here, the variable COUNT is used as a control variable in a DO loop.
As the value of COUNT is incremented from 1 to 12, the value of the
corresponding element of the array DAYS_IN_MONTH is added to the
value of the variable TOTAL.

3.1.3 Initializing Arrays

38 Aggregates

Specify the INITIAL attribute for an array to initialize its values in the
declaration. For example:

DECLARE MONTHS (12) CHARACTER (9) VARYING
INITIAL ('January’', 'February', 'March', ‘'April',
'‘May', 'June', 'July', 'August',
'September', 'October', 'November', 'December');

Each element of the array MONTHS is assigned a value according to the
order of the character-string constants in the initial listt MONTH(1) is
assigned the value ‘January’; MONTH(2) is assigned the value ‘February’;
and so on.

If the array being initialized is multidimensional, the initial values are
assigned in row-major order (see Section 3.1.5).

To assign identical initial values to some or all elements of an array, you
can use an iteration factor with the INITIAL attribute. For example:

DECLARE TEST_AVGS (30,4) FIXED DECIMAL (5,2)
STATIC INITIAL ((120) 50);

This statement declares the array TEST_AVGS with 120 elements, each of
which is given an initial value of 50.

You can use the asterisk (*) iteration factor to initialize all the elements of
an array to the same value.

Although VAX PL/I supports the initialization of automatic arrays with
the INITIAL attribute, it is not always the most efficient way (in terms of
program compilation and execution) to initialize array elements, for the
following reasons:

* When you initialize elements in an array that has the AUTOMATIC,
BASED, or CONTROLLED attribute, the compiler does not check that
all elements are initialized until run time. Thus, you do not receive
any compile-time checking of initialization, even if you used constants
to specify the array bounds and iteration factors.

* Your programs will run more efficiently if you initialize automatic
arrays with assignment statements rather than the INITIAL attribute.

However, if the array is not modified by your program, you can in-
crease program efficiency by declaring the array with the STATIC and
READONLY attributes and using the INITIAL attribute to initialize its
elements. In this case, the compiler checks that you have initialized all the
elements and that they are valid.

See “INITIAL Attribute” for more information.

3.1.4 Assigning Values to Array Variables

You can specify an array variable as the target of an assignment statement
in the following cases:

array-variable = expression;

This is valid where the expression yields a scalar value. Every element
of the array is assigned the resulting value. The array variable must be a
connected array whose elements are scalar.

Note that the arithmetic operators, such as the plus sign (+) and the
minus sign (-), cannot have arrays as operands. An assignment of the
following form is invalid:

ARRAYC = ARRAYA + ARRAYB;
array-variable-1 = array-variable-2;

This is valid where the specified array variables have identical data type
attributes and dimensions. Each element in array-variable-1 is assigned
the value of the corresponding element in array-variable-2. In this type
of assignment, both arrays must be connected. The actual storage they

occupy must not overlap, unless the arrays are identical.

All other specifications of an array variable as the target of an assignment
statement are invalid.

Aggregates 39

When you specify an array variable name in the input-target list of a GET
LIST or GET EDIT statement, elements of the array are assigned values
from the data items in the input stream. For example:

DECLARE VERBS (68) CHARACTER (15) VARYING;
GET LIST (VERBS);

When this GET LIST statement executes, it accepts data from the default
input stream. Each input field delimited by blanks, tabs, or commas is
considered a separate string. The values of these strings are assigned

to elements of the array VERBS in the order VERBS(1), VERBS(2), . . .
VERBS(6). If a multidimensional array appears in an input-target list,
input data items are assigned to the array elements in row-major order
(see Section 3.1.5).

An array can also appear, with similar effects, in the output-source list of
a PUT statement.

3.1.5 Order of Assignment and Output for Multidimensional Arrays

40 Aggregates

When a multidimensional array is initialized, or when it is assigned values
without references to specific elements, PL/I assigns the values in row-
major order. In row-major order, the rightmost subscript varies the most
rapidly. For example, an array can be declared as follows:

DECLARE TESTS (2,2,3);

If TESTS is specified in a GET statement or in a declaration with the
INITIAL attribute, values are assigned to the elements in the following
order:

TESTS (1,1,1)
TESTS (1,1,2)
TESTS (1,1,3)
TESTS (1,2,1)
TESTS (1,2,2)
TESTS (1,2,3)
TESTS (2,1,1)
TESTS (2,1,2)
TESTS (2,1,3)
TESTS (2,2,1)
TESTS (2,2,2)
TESTS (2,2,3)

When an array is output with a PUT statement, PL/I uses the same order
to output the array elements. For example:

PUT LIST (TESTS);

This PUT statement outputs the contents of TESTS in the order shown
above.

3.2 Structures

A structure is a data aggregate consisting of one or more members. The
members can be scalar data items, arrays of scalar data items, structures,
or arrays of structures, and different members can have different data
types. Structures are useful when you want to group related data items
having different data types.

A structure declaration defines a structure variable by means of level
numbers. For example:

DECLARE 1 TRANSACTION,
2 PART_NUMBER,
3 FACTORY CHARACTER (3),
3 ITEM CHARACTER (6),
2 IN_STOCK BIT (1);

The level number 1 indicates that TRANSACTION is a structure variable.
TRANSACTION is the name of the entire, or “major,” structure. The
relationship of the higher numbers (2 and 3) indicates that the associated
identifiers are the names of members of the structure TRANSACTION or
its “minor” structure, PART_NUMBER. The following example can help to
clarify the terminology:

DCL 1 S,
2 X,
3 Y FIXED;

S

Is a “major structure”, not a “member”.

X

Is a “minor structure” and a “major member” because it comes under S
and also contains Y.

Y

Is a “minor member” and not a “structure”.

Aggregates 41

3.2.1 Structure Declarations

42 Aggregates

The declaration of a structure defines its organization and the names

of members at each level in the structure. The major structure name is
declared as structure level 1; minor members must be declared with level
numbers greater than 1. For example:

DECLARE 1 PAYROLL,
2 NAME,
3 LAST CHARACTER(80) VARYING,
3 FIRST CHARACTER(80) VARYING,
2 SALARY FIXED DECIMAL(7,2);

This statement declares a structure named PAYROLL. You can access the -
last name with a qualified reference:

PAYROLL .NAME .LAST = 'ROOSEVELT';

Alternatively, because the last and first names have the same attributes,
you can declare the same structure as follows:

DECLARE 1 PAYROLL,
2 NAME,
3 (LAST,FIRST) CHARACTER(80) VARYING,
2 SALARY FIXED DECIMAL(7,2);

The following additional rules apply to the specification of level numbers:

® Level numbers must be specified with decimal integer constants.

® A level number must be separated from its associated variable name
by at least one space or tab character.

® Level numbers after level 1 can have any integer value, as long as
" each level number is equal to or greater than the level number of the
preceding level. (There can be only one level 1.)

e Each identifier in the structure must be separated from the declaration
of the previous identifier by a comma.

® Substructures at the same logical level of nesting do not have to have
the same level number.

* The deepest possible logical level is 15.
¢ The largest possible level number constant is 32767.

Within a structure, only members at the lowest level of each substructure
can be declared with data type attributes. Additional rules for specifying
attributes for the various components of a structure are as follows:

* Only the following attributes are valid for the major structure:

AUTOMATIC GLOBALREF
BASED INTERNAL
CONTROLLED READONLY
DEFINED STATIC
EXTERNAL STRUCTURE
GLOBALDEF UNION

® The major structure, a minor structure, or any member of the structure
can be dimensioned: that is, there can be arrays of structures and
structures whose members are arrays.

®* Member names cannot have any of the attributes a major structure can
have, except for INTERNAL.

* If a structure has the STATIC attribute, the extents of all members
(lengths for character- and bit-string variables, dimensions for array
variables, and area extents) must be specified with optionally signed
decimal integer constants.

You can initialize a structure by giving the INITIAL attribute to its mem-
bers. Not all members need to be initialized. For example:
DECLARE 1 COUNTS,
2 FIRST FIXED BIN(15) INITIAL(O),
2 SECOND FIXED BIN(15),
2 THIRD (6) FIXED BIN(15) INITIAL (5(1));
The first and third members of the structure COUNTS are initialized.

You cannot specify the INITIAL attribute, however, for a major or a minor
structure.

Aggregates 43

3.2.2

Member Attributes

VAX PL/I supports three “member attributes,” so named because they
apply specifically to the declaration of structure members rather than to
the structure as a whole. The member attributes are as follows:

e The LIKE attribute
* The REFER option
e The UNION attribute

Each is discussed in detail in the following sections.

3.2.2.1

44 Aggregates

Using the LIKE Attribute

The LIKE attribute copies the member declarations in a major or minor
structure declaration into another structure variable. It copies the logical
structuring and member declarations from the major or minor structure
to the target variable, but does not copy any storage class attributes or
dimensioning (except for dimensioning that is applied to members).

An identifier names the variable to which the declarations in the reference
are copied. The reference is the name of a major or minor structure
known to the current block. The identifier must be preceded by a level
number. Any attributes that can be used with a structure variable at that
level can be used with the identifier; for example, a major structure can
specify a storage class and dimensions, and a minor structure can specify
dimensions.

The following example illustrates the LIKE attribute:

DECLARE 1 RES_DATA BASED (RPTR),
2 DATE CHARACTER(8),
2 HOTEL_CODE CHARACTER(3),
2 PARTY_NAME,
3 LAST CHARACTER(20),
3 FIRST CHARACTER(10)
2 STAY FIXED BIN(7),
1 NEW_RESER LIKE RES_DATA,

GET LIST (NEW_RESER.DATE,NEW_RESER.HOTEL_CODE);

RES_DATA = NEW_RESER;

In this example, the declaration of NEW_RESER uses the LIKE attribute
to create a set of member declarations that duplicate those in RES_DATA.
The declaration of NEW_RESER is equivalent to the following:

DECLARE 1 NEW_RESER,
2 DATE CHARACTER(8),
2 HOTEL_CODE CHARACTER(3),
2 PARTY_NAME,
3 LAST CHARACTER(20),
3 FIRST CHARACTER(10),
2 STAY FIXED BINARY(7);

After the members of NEW_RESER are assigned data and that data is
validated, the entire contents of NEW_RESER are assigned to RES_DATA.
This assignment is possible because the two structures are identical, which
results from the use of the LIKE attribute.

3.2.2.2 Using the REFER Option

Use the REFER option to create self-defining based structures. In a based
structure, the value of one member is used to determine the size of the
storage space allocated for another member of the same structure. The
REFER option can be used in a DECLARE statement to specify array
bounds, the length of a string, or the size of an area. For details, see
“REFER Option.”

An example of a structure declaration containing the REFER option is as
follows:

DECLARE 1 STRUCTURE S BASED(P),
2 I FIXED BINARY(31),
2 A CHARACTER(20 REFER(I));

For the compiler to allocate storage for a based structure, the structure
must have a known size. In the example, the initial length for A is taken
from the refer element, 20. However, the REFER option permits the size
of the structure to change at run time as the value of the refer object (I)
changes. After allocation, the length of A is determined by I.

You can have multiple REFER options within a structure.

The following example and diagrams illustrate storage mapping with the
REFER option.

Aggregates 45

46 Aggregates

DECLARE 1 S BASED (POINTER),
2 I FIXED BINARY(15),
2 J FIXED BINARY(15),
2 A CHARACTER ((X*2+2) REFER(I)),
2 B(2) CHARACTER (Y REFER(J));

ALLOCATE S;

X =65;

Y = 10;

S.A = 'ABCDEFGHIJKL';

S.B(1) = '0123456789';
§.B(2) = *NOW IS THE';

END;

When this structure is allocated, the refer elements (X*2+2) and Y are
evaluated and used to determine the length of the associated string. The
evaluated refer element value (X*2+2) is assigned to the refer object I and
Y is assigned to J. Thereafter, the sizes of strings A and B are determined
by the value of the refer objects I and J.

Storage for the above structure would look like this:

S.
S.J

S.A

S.B(1)

S.B(2)

12
10
B A
D C
F E
H G
J |
L K
1 0
3 2
5 4
7 6
9 8
0] N
w
S |
T
E H
ZK-1303-83

Aggregates 47

48 Aggregates

If the refer object I were assigned the value 6 and the refer object] were
assigned the value 4, the resulting storage would be remapped as this:

S.| 6
S.J
S.A B A
D c
F E
S.B(1)| H G
J [
sB@)| L K
1 0
ZK-1304-83

Note that VAX PL/I does not restrict the use of the REFER option within
structure declarations: therefore, exercise caution in its use. If you change
a value that causes the size of one or more structure members to de-
crease, then some storage at the end of the allocated storage will become
inaccessible for future reference.

If the scalar variable (the refer object) does not satisfy the following
criteria, the results are undefined:

* It must not be assigned a value that is less than zero or greater than
the refer element value used for structure allocation.
¢ It must have the value used for allocation, if the structure is freed.

The following rules apply to structures containing the REFER option:
* A structure containing the REFER option cannot be the target of a
LIKE reference.

e When a based structure is allocated, the order in which the refer
elements are selected for evaluation is undefined.

* When a based structure is allocated, the order in which the refer
objects are selected for initialization is undefined.

3.2.2.3 Using the UNION Attribute

A union is a variation of a structure in which all immediate members
occupy the same storage. The UNION attribute (which must be associ-
ated with a level number in a structure declaration) declares a union. All
immediate members of the union—that is, all members having a level
number one higher—occupy the same storage. A reference to one mem-
ber of a union refers to storage occupied by all members of the union.
Therefore, a union provides a convenient way to look at a large entity
(such as a character string or a bit mask) as a series of smaller entities
(such as component character strings or individual flag bits).

A variable declared with the UNION attribute must be a major or minor
structure. All members of a union must have a constant size. For format
and details, see “UNION Attribute.”

The UNION attribute is not part of the PL/I General-Purpose Subset; it is
provided in VAX PL/I to give users convenient access to data as it is inter-
nally represented. Potential applications of unions might depend on the
internal representation of data, and would therefore not be transportable
to other implementations of PL/I.

The following example illustrates unions:

DECLARE 1 CUSTOMER_INFO,

2 PHONE_DATA UNION,
3 PHONE_NUMBER CHARACTER (13),
3 COMPONENTS,
4 LEFT_PAREN CHARACTER (1),
4 AREA_CODE CHARACTER (3),
4 RIGHT_PAREN CHARACTER (1),
4 EXCHANGE CHARACTER (3),
4 HYPHEN CHARACTER (1),
4 SPECIFIC_NUMBER CHARACTER (4),
2 ADDRESS_DATA,

The UNION attribute associated with the declaration of PHONE_

DATA signifies that PHONE_DATA’s immediate members (PHONE _
NUMBER and COMPONENTS) occupy the same storage. Any modi-
fication of PHONE_NUMBER also modifies one or more members of
COMPONENTS; conversely, modification of a member of COMPONENTS
also modifies PHONE_NUMBER. Note, however, that the UNION
attribute does not apply to the members of COMPONENTS because

Aggregates 49

they are not immediate members of PHONE_DATA. The members
of COMPONENTS occupy separate storage in the normal fashion for
structure members.

Unions provide capabilities similar to those provided by defined variables.
However, the rules governing defined variables are more restrictive than
those governing unions. The following example demonstrates a use of a
union that would not be possible with a defined variable:

DECLARE 1 X UNION,
2 FLOAT_NUM FLOAT BINARY (24),
2 BREAKDOWN,
3 FRAC_1 BIT (7),
3 EXPONENT BIT (8),
3 SIGN BIT (1),
3 FRAC_2 BIT (18);

The union X has two immediate members, FLOAT_NUM (a floating-point
variable) and BREAKDOWN. The members of BREAKDOWN are bit-
string variables that overlay the storage occupied by FLOAT_NUM and
provide access to the individual components of its internal representation.
Assignment to FLOAT_NUM modifies the members of BREAKDOWN,
and vice versa. For example:

EXPONENT = '0'B;
SIGN = '1'B;

FLOAT_NUM = FLOAT_NUM + 1;
The first two assignment statements set the exponent and sign fields

of FLOAT_NUM to the reserved operand combination; the expression
FLOAT_NUM + 1 causes a reserved operand exception to occur.

Note that, unlike the character-string example that precedes it, this exam-
ple depends on the VAX internal representation of data.

3.2.3 Structure-Qualified References

50 Aggregates

To refer to a structure in a program, you use the major structure name,
minor structure names, and individual member names. Member names
need not be unique even within the same structure. To refer to the name
of a member or minor structure, you must ensure only that the reference
uniquely identifies it. You can qualify the variable name by preceding it
with the name or names of higher-level (lower-numbered) variables in
the structure; names in this format, called a qualified reference, must be
separated by periods (.).

The following sample structure definition illustrates the rules for identify-
ing names of variables within structures:

DECLARE 1 STATE,
2 NAME CHARACTER (20),
2 POPULATION FIXED (10),
2 CAPITAL,
3 NAME CHARACTER (30),
3 POPULATION FIXED (10,0),
2 SYMBOLS,
3 FLOWER CHARACTER (20),
3 BIRD CHARACTER (20);

The rules for selecting and specifying variable names for structures are as
follows:

* The name of the major structure is subject to the rules for the scope of
variables in a program.

* The name of any minor structure or member in a structure can be
qualified by the names of higher-level members in the structure.
The variable names must be specified from left to right in order of
increasing level numbers, separated by periods. The members of the
previous sample, completely qualified, are as follows:

STATE.NAME
STATE.POPULATION
STATE.CAPITAL.POPULATION
STATE.CAPITAL.NAME
STATE.SYMBOLS.FLOWER
STATE.SYMBOLS.BIRD

* Names of minor structures or members within structures do not have
to be qualified if they are unique within the scope of the name. The
following names in the sample structure can be referred to without
qualification (so long as there are no other variables with these
names):

CAPITAL
SYMBOLS
FLOWER
BIRD

* Intermediate qualification names can be omitted if the reference
remains unambiguous. The following references to members in the
sample structure are valid:

STATE.FLOWER
STATE.BIRD

Aggregates 51

If a name is ambiguous, the compiler cannot resolve the reference and
issues a message. In the example, the names POPULATION and NAME
are ambiguous.

You can specify the name of a major or minor structure in an assignment
statement only if the source expression and the target variable are identical
in size and structure, and all corresponding members have the same data

types.

3.2.4 Arrays of Structures

52 Aggregates

An array of structures is an array whose elements are structures. Each
structure has identical logical levels, minor structure names, and member
names and attributes.

For example, a structure STATE can be declared an array:

DECLARE 1 STATE (50),

2 NAME CHARACTER (20) VARYING,

2 POPULATION FIXED (31),

2 CAPITAL,
3 NAME CHARACTER (30) VARYING,
3 POPULATION FIXED (31),

2 SYMBOLS,
3 FLOWER CHARACTER (20),
3 BIRD CHARACTER (20);

A member of a structure that is an array inherits the dimensions of the
structure. For example, the member CAPITAL.NAME of the structure
STATE inherits the dimension 50. You must use a subscript whenever you
refer to the variable CAPITAL.NAME, as in the following example:

PUT LIST (CAPITAL.NAME(I)) ;

A subscript for a member of a structure that is an array element can
appear following any name within a qualified reference. For example, all
of these references are equivalent:

STATE(10) . CAPITAL . NAME
STATE.CAPITAL(10) .NAME
STATE.CAPITAL.NAME(10)

3.2.4.1 Arrays of Structures That Contain Arrays

A structure that is defined with a dimension can have members that are
arrays. For example:

DECLARE 1 STATE (50),
2 AVERAGE_TEMPS(12) FIXED DECIMAL (5,2),

In this example, the elements of the array STATE are structures. At the
second level of the hierarchy of each structure, AVERAGE_TEMPS is an
array of 12 elements. Because AVERAGE_TEMPS inherits the dimension
of STATE, any of AVERAGE_TEMPS’s elements must be referred to by
two subscripts:

1. The first subscript references an element in STATE.
2. The second subscript references an element in AVERAGE_TEMPS.

These subscripts can appear following any name in the qualified reference.
For example:

STATE(3) . AVERAGE_TEMPS (4)
STATE.AVERAGE_TEMPS(3,4)

These references are equivalent.

Note the following rules for specifying subscripts for members of struc-
tures containing arrays:

¢ The number of subscripts specified for any member must include any
dimensions inherited from a major or minor structure declaration, as
well as those specified for the member itself.

® The subscripts that refer to a member of a structure in an array do not
have to follow immediately the name to which they apply. However,
the order of subscripts must be preserved.

* The total number of dimensions, including the inherited dimensions,
must not exceed eight.

Aggregates 53

3.2.4.2 Connected and Unconnected Arrays

54 Aggregates

A connected array is one whose elements occupy consecutive locations in
storage. For example:

DECLARE NEWSPAPERS (10) CHARACTER (30);

In storage, the 10 elements of the array NEWSPAPERS occupy 10 consec-
utive 30-byte units. Thus, NEWSPAPERS is a connected array.

A connected array is valid as the target of an assignment statement, as
long as the source expression is a similarly dimensioned array or a single
scalar value.

In an unconnected array, the elements do not occupy consecutive storage
locations. An unconnected array is not valid in an assignment statement
or as the source or target of a record 1/O statement. A structure with
the dimension attribute always results in unconnected arrays. When

a structure is dimensioned, each member of the structure inherits the
dimensions of the structure and becomes, in effect, an array. For example:

DECLARE 1 STATE (50),
2 NAME CHARACTER (20) VARYING,
2 POPULATION FIXED (31);

The members NAME and POPULATION of the major structure STATE
inherit the dimension 50 from the major structure. When PL/I allocates
storage for a structure or a dimensioned structure, each member is allo-
cated consecutive storage locations; thus the elements of the arrays NAME
and POPULATION are not connected.

See Figure A-3 for an illustration of the storage of connected and uncon-
nected arrays.

Chapter 4
Declarations

Before you can use a variable in a PL/I program, you must declare it with
the DECLARE statement. When you declare a variable, you give it one of
the fundamental data types by specifying its attributes; you can assign it
to a storage class; and you can make it an array or structure variable.

Simple declarations define a single variable name. Multiple declarations
define two or more variable names. Factored declarations define two or
more variable names with the same attributes. For the formats of the
various kinds of declarations, see “DECLARE Statement.”

This chapter discusses declarations outside of procedures, initializing the
values of variables in declarations, and the scope of declarations.

4.1 Declarations Outside of Procedures

In PL/1, a variable can be declared outside of any procedure. Any variable
so declared will be visible within all procedures contained by the module;
that is, the scope of the variable will be all procedures in the module.
The format for declarations outside of procedures is the same as for
other declarations except that variables can have any storage class except
AUTOMATIC. If a storage class is not specified, STATIC is supplied.

The following example illustrates the use of this type of declaration.

Declarations 55

56 Declarations

DECLARE A STATIC FIXED BINARY(31);

FIRST: PROCEDURE;
DECLARE B FIXED BINARY(31);

END FIRST;

SECOND: PROCEDURE;
DECLARE C FIXED BINARY(31);

END SECOND;

In this example, variable A is visible in both the FIRST and SECOND
procedures, but variables B and C are visible only in their containing
procedures.

You can use the INITIAL attribute to provide an initial value for a declared
variable. The value can be a string or arithmetic constant, or a scalar
reference or expression, and can be specified with an iteration factor or a
replication factor, or both.

Following are some examples:

DECLARE RATE FIXED DECIMAL (2,2) STATIC INITIAL (.04);
DECLARE EOF BIT STATIC INITIAL ('1'B);
DECLARE BELL_CHAR BINARY STATIC INITIAL ('07'B4);
DECLARE OUTPUT_MESSAGE CHARACTER(20) STATIC
INITIAL ('GOOD MORNING');
DECLARE (A INITIAL ('A'), B INITIAL ('B'),
C INITIAL ('C')) STATIC CHARACTER;

DECLARE QUEUE_END POINTER STATIC INITIAL(NULL());
DECLARE 1 LIST BASED,

2 VALUE FIXED BINARY,

2 NEXT POINTER INIT(NULLQ));
DECLARE TABLE (30,3) BINARY STATIC INITIAL ((90) 10);

The last example uses an iteration factor to initialize all elements of the
array TABLE with the value 10.

For more information, see “INITIAL Attribute.”

4.2 Scope of Declarations

The scope of a declaration is the region of the program in which the
declared name is known. A declaration of a name is known in the
following regions:

e The block in which it is declared

¢ Any blocks contained within the declaring block, so long as the name
is not redeclared in the contained block

* Any procedures contained in the program, if the name is declared
outside of all procedures

Two or more declarations of the same name are not allowed in a single
block (unless one or more of the declarations are of structure members).
Two declarations of the same name in different blocks denote distinct
objects unless both specify the EXTERNAL attribute. All EXTERNAL
declarations of a particular name denote the same variable or constant,
and all must agree as to its properties. Note that EXTERNAL is supplied
by default for declarations of ENTRY and FILE constants. It must be
specified explicitly for variables.

See Figure S-1 for an illustration of the scope of internal names.

Declarations can appear outside of procedures and, if contained within
the same block, have meaning throughout all procedures contained in the
block. However, if there are multiple blocks, declarations outside of pro-
cedures must have the EXTERNAL attribute if they are to be recognized
by all blocks and procedures in the program.

For example:
File A.PLI

DECLARE X FIXED EXTERNAL STATIC;
A: PROCEDURE OPTIONS(MAIN);
DECLARE B ENTRY;

END A;

Declarations 57

File B.PLI
B: PROCEDURE;

END B;

In this example, the variable X has meaning in both procedures. Because
the two procedures are in two different files, X must be declared with the
EXTERNAL attribute. If X is declared with the INTERNAL attribute, X is
recognized only in the first procedure.

58 Declarations

Chapter 5
Expressions and Assignments

An expression is a representation of a value or of the computation of a
value, and an assignment gives the value contained in an expression to a
variable. Together, expressions and assignments form the mechanism for
performing computation.

This chapter describes the following topics:

® The assignment statement
® Operators and operands, the elements of an expression
® The manner in which expression evaluation takes place

® Conversion of the data types of operands during expression evaluation
and assignment

5.1 Assignment Statement

The assignment statement gives a value to a specified variable. The
assignment operator in PL/I is the equal sign (=). The target of the
assignment is on the left of the equal sign; the target receives the value of
the expression on the right. For the format and detailed information, see
“Assignment Statement” in the encyclopedic section of the manual.

Following are examples of assignment statements:

A=1
A=B+
SUM = A + 3;
STRING = 'word';

A;
+

Expressions and Assignments 59

5.2 Operators and Operands

An operator is a symbol that requests a unique operation. Operands are
the expressions on which operations are performed.

5.2.1 Operators

A prefix operator precedes a single operand. The prefix operators are the
unary plus (+), the unary minus (-), and the logical NOT (").

® The plus sign can prefix an arithmetic value or variable. However, it
does not change the sign of the operand.
* A minus sign reverses the sign of an arithmetic operand.

® The logical NOT (") prefix operator performs a logical NOT operation
on a bit-string operand; the bit value is complemented.

Following are some examples of expressions containing prefix operators:

A = +55;
B = -88;
BITC = “BITB;

An infix operator appears between two operands, and indicates the oper-
ation to be performed on them. PL/I has infix operators for arithmetic,
logical, and relational (comparison) operations, and for string concate-
nations. Following are some examples of expressions containing infix
operators:

RESULT = A / B;
IF NAME = FIRST_NAME || LAST_NAME THEN GOTO NAMEOK;

An expression can contain both prefix and infix operators. For example:
A = -55 * +88;

You can apply prefix and infix operators to expressions by using parenthe-
ses for grouping.

For a table giving the categories of operators and the operator symbols,
see Table O-3, under the entry “Operator.”

60 Expressions and Assignments

5.2.2 Operands

Because all operators must yield scalar values, operands cannot be arrays
or structures. The data type that you can use for an operand in a specific
operation depends on the operator:

* Arithmetic operators must have arithmetic operands; if the operands
are of different arithmetic types, they are converted before the op-
eration to a single type, called the derived data type. Section 5.4.1
describes this process.

* Logical operators must have bit-string operands.

* Relational operators must have two operands of the same type. (Note,
however, that comparisons are allowed between offsets and pointers.)

* The operators greater than (>), less than (<), not greater than
(">), not less than (" <), greater than or equal to (> =), and less
than or equal to (<=) are valid only with computational operands.

* The concatenation operator must have two bit-string operands or two
character-string operands.

5.3 Expression Evaluation

In a PL/I program, you can use expressions in the following ways:

* To indicate constant values or scalar variables. For example:

A = b5;
NAME = 'HECTOR';
B = A;

* To perform algebraic or logical calculations on variables or constants.
For example:

B = A+ 10;
C=A+B * 40;
B = "A;

-

COMMON = A & B;

* To compare the values of two or more expressions and obtain a
Boolean result. For example:

IF A < B THEN C = 10;
IF NAME = SAVED_NAME THEN GOTO REPEAT;

Expressions and Assignments 61

* To concatenate character- or bit-string values. For example:

NAME = FIRST_NAME| |LAST_NAME;

All expressions except simple constants and references consist of an
operator and one or more operands. Each operator requires operands
of specific types (either arithmetic, character-string, or bit-string) and
produces a result of a specific type. The operands can be constants,
variable references, function references, or other expressions, as long as
they are objects of the type required by the operator.

Built-in functions can also be considered operators in this sense, and their
arguments, operands.

All VAX PL/I expressions and functions have scalar results.

Expressions are evaluated according to the precedence of operators. For a
table giving the precedence of PL/I operators, see Table O-4, under the
entry “Operator.”

5.4 Conversion of Operands and Expressions

Data conversion in PL/I takes place in many contexts, not all of them
obvious ones. Program results that seem improper may in fact be caused
by data conversion at some point in the program’s execution. This section
discusses the following topics:

¢ How arithmetic operands of different types are converted to a single
derived type during expression evaluation.

* How you can control conversions precisely by using conversion
built-in functions designed for that purpose.

® Contexts in which VAX PL/I automatically converts data from one
type to another—for example, in input and output by the GET and
PUT statements.

62 Expressions and Assignments

5.4.1 Derived Data Types for Arithmetic Operations

Even though arithmetic operands can be of different arithmetic types,
all operations will be performed on objects of the same type. Any set of
operands of different arithmetic types has an associated derived type, as
follows:

* If any operand has the attribute BINARY, the derived base is BINARY.
Otherwise, the derived base is DECIMAL.

* If any operand has the attribute FLOAT, the derived scale is FLOAT.
Otherwise, the derived scale is FIXED.

All arithmetic operations except exponentiation are performed in the
derived type of the two operands. Exponential operations are performed
in a data type that is based on the derived type of the operands. All
operations, including exponentiation, have results of the same type as that
in which they are performed.

The result of an arithmetic operation can be assigned to a target variable
of any computational type. The result is converted to the target type,
following the rules in Section 5.4.3. Such conversion may, however, result
in a warning message from the compiler.

5.4.2 Built-In Conversion Functions

The built-in conversion functions can take arguments that are either arith-
metic or string expressions. They are often used to convert an operand to
the type required in a certain context—for instance, to convert a bit string
to an arithmetic value for use as an arithmetic operand.

For the purpose of these functions, and in a few other contexts, de-
rived arithmetic attributes are also defined for bit- and character-string
expressions:

* The derived type of a bit string is fixed-point binary; its converted
precision is 31, with a scale factor of 0.

* The derived type of a character string is fixed-point decimal; its
converted precision is 31, with a scale factor of 0.

Expressions and Assignments 63

PL/I uses these derived attributes to determine the precision of values
returned by the conversion functions if no precision is specified in the
functions’ argument lists. Note that the value of a string argument must
also be convertible to the result type; for instance, '1.333' is convertible to
arithmetic, but 'XYZ' is not.

Table 5-1 indicates which built-in functions you should use for each con-
version between an arithmetic and a nonarithmetic type. In addition, you
can use the BINARY, DECIMAL, FIXED, and FLOAT built-in conversion
functions to control conversions between two arithmetic types.

Table 5-1: Built-In Functions for Conversions Between
Arithmetic and Nonarithmetic Types

Conversion Function
Arithmetic to bit BIT
Arithmetic to character CHARACTER
Bit to arithmetic BINARY

Bit to character CHARACTER
Character to bit BIT
Character to decimal DECIMAL
Character to float FLOAT
Character to binary BINARY
Character to binary DECODE
Decimal to character ENCODE

For more information, see the individual entries on the built-in functions
in the encyclopedic section of this manual.

64 Expressions and Assignments

5.4.3 Implicit Conversion During Assignment

During assignment, VAX PL/I automatically converts the derived data
type of an expression to the data type of a target, if necessary. In as-
signments, conversions are defined between the noncomputational types
POINTER and OFFSET, and between any two computational types. The
rules for assignments apply to the following;:

* Assignment statements.
® Arguments passed to a procedure.
® Values specified in a RETURN statement.

* An argument converted by the built-in function FIXED, FLOAT,
BINARY, DECIMAL, BIT, or CHARACTER.

e Conversions to and from character strings performed by the PUT and
GET statements, respectively.

However, a conversion during assignment results in an error if PL/I
cannot perform it in a meaningful way. For example, you can assign the
string '123.4' to a fixed decimal variable; you cannot, however, assign
the string 'ABCD’ to the same variable. Similarly, an assignment of

an arithmetic type to a fixed variable results in the FIXEDOVERFLOW
condition if integral digits are lost.

Although VAX PL/I performs conversions in assignment statements, such
conversions may represent programming errors and are in violation of
the PL/I G subset standard. Therefore, the compiler issues a warning
message that an implicit conversion is taking place. These messages do
not terminate the compilation and may not indicate errors; they simply
alert you to the fact that your program converts one data type to another
in a way that may cause a problem when the program is run. You can
prevent such warning messages in two ways:

® Use the built-in conversion functions to convert data types explicitly.
This method is recommended. Section 5.4.2 summarizes the functions.

® Use the /NOWARNINGS qualifier to the PLI command to suppress
diagnostic warning messages. (The compiler will continue to print
messages of greater severity.) However, you run the risk of missing
important diagnostic information.

Expressions and Assignments 65

For example:

DECLARE (A,B) FIXED DECIMAL (5,2);
A = '123.45'; /+ Warning message */
B = FIXED('123.456',5,2); /* No warning */

Both assignment statements assign the same value to their targets; how-
ever, the first statement causes a warning message from the compiler,
while the second statement does not.

66 Expressions and Assignments

Chapter 6
Procedures

A procedure is the basic executable program unit in PL/I. It consists

of a sequence of statements, headed by a PROCEDURE statement and
terminated by an END statement, that define an executable set of program
instructions.

This chapter discusses the following topics:

The general concepts of procedures and the statements for defining
and invoking procedures and obtaining return values from them

External procedures (procedures that are not contained within another
block)

6.1 Using Procedures

Two types of procedures can be invoked by another procedure during its
execution:

Subroutines, which must be invoked with a CALL statement.
Subroutines return values to the invoking procedure only by means
of their parameter lists; they must not include an expression in their
RETURN statements and must not include a RETURNS option on
their PROCEDURE or ENTRY statements.

Functions, which must be invoked by a function reference. A function
reference can appear anywhere a scalar value can appear in a PL/I
statement. A function returns to the invoking procedure a single
value that becomes the value of the function reference in the invoking
procedure. Functions can also return values through their parameter
lists. Functions must include a RETURNS option to describe the

Procedures 67

attributes of the returned value and must specify an expression in
their RETURN statements.

Each type of procedure can be passed data from the invoking procedure
by means of an argument list.

6.1.1 Statements for Procedures

68 Procedures

The PROCEDURE statement defines the beginning of a procedure block
and specifies the parameters, if any, of the procedure. If the procedure
is invoked as a function, the PROCEDURE statement also specifies the
data type attributes of the value that the function returns to its point of
invocation. The PROCEDURE statement can denote the beginning of
either an internal or an external subroutine or function.

For example:
PAYROLL: PROCEDURE OPTIONS(MAIN);

This PROCEDURE statement specifies that the entry name PAYROLL is
the name of a program’s main procedure.

The ENTRY statement defines an alternative entry point to a procedure.

An ENTRY statement is not allowed in a begin block, ON-unit, SELECT-
group, or DO group except for a simple DO.

Additional rules governing the declaration of multiple entry points are as
follows:

® A particular parameter need not be specified in all of a procedure’s
entry points (including the point defined by the PROCEDURE state-
ment). However, a reference to the parameter is valid only if the
procedure was invoked through one of the entries specifying the
parameter.

* In a procedure with multiple entry points, a RETURN statement
must be compatible with the entry point by which the procedure
was invoked. If the entry point does not have a RETURNS option,
the RETURN statement must not specify a return value (and, in
addition, the entry point must be invoked as a subroutine—that is,
with the CALL statement). If the entry point does have a RETURNS
option, the RETURN statement must specify a value that is valid for
conversion to the data type specified in the RETURNS option.

* An ENTRY statement is not executable. If control reaches it sequen-
tially, control passes on to the next statement.

The following example shows a procedure with two alternate entry points:

QUEUES: PROCEDURE(ELEMENT, QUEUE_HEAD) ;
ADD_ELEMENT: ENTRY(ELEMENT) ;

REMOVE_ELEMENT: ENTRY(ELEMENT);

This procedure can be entered by CALL statements that reference
QUEUES, ADD_ELEMENT, or REMOVE_ELEMENT. If it is invoked
at QUEUES, it must be passed two parameters. At either of the entries
ADD_ELEMENT or REMOVE_ELEMENT, it must be passed only one
parameter. When it is entered at either alternate entry point, the entire
block beginning at QUEUES is activated, but execution begins with the
first executable statement following the entry point.

You should avoid unnecessary use of ENTRY statements, because their
effect is detrimental to the overall optimization of the program.

The CALL statement invokes a subroutine. It transfers control to an entry
point of a procedure and optionally passes arguments to the procedure.

Unless OPTIONS(VARIABLE) is specified in the declaration of an ex-
ternal entry name, the number of arguments must match the num-
ber of parameters in the parameter list of the invoked entry name.
OPTIONS(VARIABLE) is valid only for use with non-PL/I procedures.
Arguments must be enclosed in parentheses, and multiple arguments
separated by commas.

The following example illustrates a main procedure, CALLER, and a
call to an internal subroutine, PUT_OUTPUT. PUT_OUTPUT has two
parameters, INSTRING and OUTFILE, that correspond to the arguments
LINE and DEVICE specified in the CALL statement.

Procedures 69

70 Procedures

CALLER: PROCEDURE OPTIONS(MAIN);

CALL PUT_OUTPUT(LINE,DEVICE);

PUT_OUTPUT: PROCEDURE(INSTRING,OUTFILE);

END PUT_OUTPUT;
END CALLER;

You can terminate subroutines and functions with the following state-
ments:

A RETURN statement—A RETURN statement provides a normal
termination for a subroutine or function. For a function, a RETURN
statement must specify a return value.

A STOP statement—A STOP statement normally ends the entire
program execution. It does not pass a return value. (The STOP
statement signals the FINISH condition, thereby allowing a FINISH
ON-unit to execute before the program terminates.)

An END statement—If an END statement closes the procedure block
of a subroutine before a RETURN or STOP statement is executed,

it has the same effect as RETURN. A function cannot be terminated
without a RETURN statement.

A nonlocal GOTO statement—A GOTO statement that transfers
control to a label outside the current block terminates a subroutine
or a function. The label specified on the GOTO statement must be
known within the block that contains the GOTO statement, and the
block containing the specified label must be active when the GOTO
statement is executed.

6.1.1.1 Specifying Entry Points

The entry points of a procedure are the points at which it can be invoked.
The PROCEDURE statement specifies one entry point. You can specify
additional entry points with ENTRY statements within the procedure
block. ENTRY statements are allowed anywhere except within a begin
block, an ON-unit, or a DO group (except a simple, noniterative DO

group).

The labels used on PROCEDURE and ENTRY statements declare those
names as entry constants. The scope of the declarations is internal if the
PROCEDURE and ENTRY statements appear in internal procedures, and
external if they appear in external procedures.

You declare an entry name in the block containing the procedure to which
the entry point belongs. For example:

P: PROCEDURE;

Q: PROCEDURE;
DECLARE E FIXED BINARY;
E: ENTRY;

END Q;

The entry names E and Q are declared in procedure P. Within procedure
Q, E is declared as a fixed-point binary variable. This does not conflict
with the declaration of E as an entry in procedure P.

You can invoke an entry point by using the appropriate entry constant
as the reference in a CALL statement or function reference. Invoking an
entry point enters a procedure at the specified point and activates the
procedure block that contains the entry point.

6.1.1.2 Passing Arguments to Subroutines and Functions

You specify arguments for a subroutine or function by enclosing the argu-
ments in parentheses after the procedure or entry point name. Arguments
correspond to parameters specified on the PROCEDURE or ENTRY state-
ment of the invoked procedure. For example, you can write a procedure
call as follows:

CALL COMPUTER (A,B,C);

The variables A, B, and C are arguments to be passed to the procedure
COMPUTER, which might have a parameter list like this:

COMPUTER: PROCEDURE (X, Y, Z);
DECLARE (X,Y,Z) FLOAT;

Procedures 71

The parameters X, Y, and Z, specified in the PROCEDURE statement
for the subroutine COMPUTER, are the parameters of the subroutine.
PL/I establishes the equivalence of the arguments A, B, and C with the
parameters X, Y, and Z.

6.1.2 Functions and Function References

72 Procedures

A function is a procedure that returns a scalar value and that receives
control when its name is referenced in an expression. There are two types
of functions:

e PL/I built-in functions
e User-written functions

The built-in functions, which are available in all programs and generally
need not be declared, are described in individual entries under their
names, and are summarized in Table B-1, under the entry “Built-In
Function”.

A user-written function must have the following elements:

e The RETURNS option on the PROCEDURE statement

® A value on the RETURN statement; the value must be of a data type
that is valid for conversion to the one specified on the RETURNS
option

For example:

ADDER: PROCEDURE (X,Y) RETURNS (FLOAT);
DECLARE (X,Y) FLOAT;

RETURN (X+Y);

END;

The function ADDER has two parameters, X and Y. They are floating-
point binary variables declared within the function. When the function
is invoked by a function reference, it must be passed two arguments to
correspond to these parameters. It returns a floating-point binary value
representing the sum of the arguments. The function ADDER can be
referenced as follows:

TOTAL = ADDER(5,6);

The arguments in the reference to ADDER are converted to FLOAT.

If a function has no parameters, you must specify a null argument list;
otherwise, the compiler treats the reference as a reference to an entry
constant. Specify a null argument list as follows:

GETDATE = TIME_STAMP();

This assignment statement contains a reference to the function TIME__
STAMP, which has no parameters.

This rule applies to PL/I built-in functions as well; however, if you declare
a PL/I built-in function explicitly with the BUILTIN attribute, you need
not specify the empty argument list. For example:

DECLARE P POINTER,
NULL BUILTIN;

P = NULL;

This example assigns a null pointer value to P. Without the declaration of
NULL as a built-in function, the assignment statement would have been
as follows:

P = NULL();

6.1.3 RETURNS Attribute and Option

The RETURNS option must be specified on the PROCEDURE or ENTRY
statement if the corresponding entry point is invoked as a function. The
RETURNS attribute is specified with the ENTRY attribute, to give the data
type of a value returned by an external function.

The data types you can specify for a returns descriptor are restricted to
scalar elements of either computational or noncomputational types. Areas
are not allowed.

The extent of a character-string value can be specified as an asterisk (*), to
indicate that the string can have any length. Otherwise, you must specify
extents using unsigned decimal integer constants.

The RETURNS option and RETURNS attribute must not be used for
procedures that are invoked by the CALL statement.

Procedures 73

74 Procedures

The attributes specified in a returns descriptor of a RETURNS attribute
must correspond to those specified in the RETURNS option of the
PROCEDURE statement or ENTRY statements in the corresponding
procedure. For example:

CALLER: PROCEDURE OPTIONS (MAIN);
DECLARE COMPUTER ENTRY (FIXED BINARY)
RETURNS (FIXED BINARY); /* RETURNS attribute */
DECLARE TOTAL FIXED BINARY;

TOTAL = COMPUTER (A+B);

The first DECLARE statement declares an entry constant named
COMPUTER, which will be used in a function reference to invoke an
external procedure. The function reference must supply a fixed-point
binary argument. The invoked function returns a fixed-point binary value,
which then becomes the value of the function reference.

The function COMPUTER contains the following lines:

COMPUTER : PROCEDURE (X)
RETURNS (FIXED BINARY); /* RETURNS option */
DECLARE (X, VALUE) FIXED BINARY;

am}an (VALUE) ;

In the PROCEDURE statement, COMPUTER is declared as an external
entry constant, and the RETURNS option specifies that the procedure
returns a fixed-point binary value to the point of invocation. The RETURN
statement specifies that the value of the variable VALUE is returned by
COMPUTER. If the data type of the returned value does not match the
one specified in the RETURNS option, PL/I converts the value to the
correct data type.

6.1.4 Parameters and Arguments

A parameter is a variable that occurs in the parameter list of a
PROCEDURE or ENTRY statement. When the entry point is invoked,
each parameter in the list is associated with an argument variable. Within
the procedure invocation, any reference to the parameter is equivalent to a
reference to the associated argument variable.

If the invoked entry point is external to the invoking procedure, the
attributes of the parameters must be described in parameter descriptors,
which are part of the declaration of the external entry point.

Each entry point in a procedure must have a parameter list if that entry
point is to be invoked with an argument list. Multiple entry points in a
procedure do not need to have identical parameters, but a reference to a
parameter is valid only if the procedure was invoked through an entry
point that specified that parameter.

An argument is an expression or variable reference denoting a value to be
passed to the invoked procedure. A procedure must be invoked with the
same number of arguments as it has parameters; the maximum number
is 253. The argument variable associated with a parameter, or “actual
argument,” can be a variable written in the argument list or a dummy
argument. The compiler creates a dummy argument when the specified
argument is a constant or expression existing only for the duration of the
procedure invocation. Therefore, references in the invoked procedure to
the parameter associated with a dummy argument do not modify any
storage in the invoking procedure.

An argument list consists of zero or more arguments specified in the
invocation of a procedure, built-in function, or built-in subroutine. In the
case of built-in functions, arguments are expressions that supply values
to the built-in function, and the argument types must be those required
by it. In the case of user-defined procedures, arguments correspond to
parameters defined on the PROCEDURE or ENTRY statement of the
invoked procedure.

Procedures 75

6.1.4.1 Rules for Specifying Parameters

76 Procedures

The general rules listed below for specifying parameters are followed by
specific rules that pertain only to certain data types.

* You must declare a parameter explicitly in a DECLARE statement (to
give it a data type) within the invoked procedure. This declaration
must not be part of a structure.

* You cannot declare a parameter with any of these attributes:

AUTOMATIC EXTERNAL READONLY
BASED GLOBALDEF STATIC
CONTROLLED GLOBALREF

DEFINED INITIAL

* A maximum of 253 parameters can be specified for an entry point.

* The parameters of an external entry must be explicitly specified by
parameter descriptors in the declaration of the entry constant. The
parameters of a procedure that is invoked through an entry variable
must be specified by parameter descriptors in the ENTRY attribute of
the variable’s declaration. You cannot declare an internal entry (and
its parameters) in the containing procedure.

* Each parameter must have a corresponding argument at the time
of the procedure’s invocation. PL/I matches the data type of the
parameter with the data type of the corresponding argument and
creates a dummy argument if they do not match.

Array Parameters

If the name of an array variable is passed as an argument, the corre-
sponding parameter descriptor or parameter declaration must specify the
same number of dimensions as the argument variable. You can declare
the bounds of a dimension for an array parameter using asterisks (*) or
optionally signed integer constants. If the bounds are specified with inte-
ger constants, they must match exactly the bounds of the corresponding
argument. An asterisk indicates that the bounds of a dimension are not
known. (If one dimension contains an asterisk, all the dimensions must
contain asterisks.) For example:

DECLARE SUMUP ENTRY ((*) FIXED BINARY);

This declaration indicates that SUMUP’s argument is a one-dimensional
array of fixed-point binary integers that can have any number of elements.
Any one-dimensional array of fixed-point binary integers can be passed to
this procedure.

All the data type attributes of the array argument and parameter must
match.

Arrays are always passed by reference. They cannot be passed by dummy
argument.

Structure Parameters

If the name of a structure variable is passed as an argument, the corre-
sponding parameter descriptor or declaration must be identical, in terms
of structure levels, members’ sizes, and members’ data types. The level
numbers do not have to be identical, but the levels must be logically
equivalent. You can specify array bounds and string lengths with asterisks
or with optionally signed integer constants. The following example shows
the parameter descriptor for a structure variable:

DECLARE SEND_REC ENTRY (1,
2 FIXED BINARY(31),
2 CHARACTER(40) VARYING,
2 PICTURE '999V99');

The written argument in the invocation of the external procedure SEND_
REC must have the same structure, and its members must have the same
data types.

Structures are always passed by reference. They cannot be passed by
dummy argument.

Character-String Parameters

If a character-string variable is passed as an argument, the corresponding
parameter descriptor or parameter declaration can specify the length using
an asterisk (*) or an optionally signed nonnegative integer constant. For
example:

COPYSTRING: PROCEDURE (INSTRING,COUNT);
DECLARE INSTRING (CHARACTER(*));

The asterisk in the declaration of this parameter indicates that the string
can have any length. The string is fixed length unless VARYING is also
included in the declaration.

Procedures 77

Entry, File, and Label Constant Parameters

Entry, file, and label constants can be passed as arguments. The actual
parameter is a variable.

6.1.4.2 Argument Passing

78 Procedures

This section describes how PL/I passes an argument to procedures written
in PL/L

Number of Arguments

The number of arguments in the argument list must equal the number of
parameters of the invoked entry point. The compiler checks that the count
matches as follows:

¢ For an internal procedure, the compiler checks the number of argu-
ments in the argument list against the number of parameters on the
PROCEDURE or ENTRY statement for the internal procedure.

* For an external procedure, the compiler checks that the number of
parameter descriptors in the ENTRY declaration list matches the
number of arguments in the procedure invocation.

Actual Arguments

When a PL/I procedure is invoked, each of its parameters is associated
with a variable determined by the corresponding written argument of the
procedure call. This variable is the actual argument for this procedure
invocation. It can be one of the following;:

* A reference to the written argument
¢ A dummy argument

The data type of the actual argument is the same as that of the corre-
sponding parameter. When a written argument is a variable reference,
PL/I matches the variable against the corresponding parameter’s data type
according to the rules given under the heading “Argument Matching,”
below. If they match, the actual argument is the variable denoted by the
written argument. That is, the parameter denotes the same storage as the
written variable reference. If they do not match, the compiler creates a
dummy argument and assigns to it the value of the written argument.

Dummy Arguments

A dummy argument is a unique variable allocated by the compiler, which
exists only for the duration of the procedure invocation.

When the written argument is a constant or an expression, the actual ar-
gument is always a dummy argument. The value of the written argument
is assigned to the dummy argument before the call. The data type of the
written argument must be valid for assignment to the data type of the
dummy argument.

Aggregate Arguments

An array, structure, or area argument must be a variable reference that
matches the corresponding parameter. It cannot be a reference to an
unconnected array. A dummy argument is never created for an array,
structure, or area.

Argument Matching

A written argument that is a variable reference is passed by reference
only if the argument and the corresponding parameter have identical data

types:

e For an internal procedure, the attributes of the argument must match
those specified in the declaration of the parameter.

* For an external procedure or a procedure invoked through an ENTRY
variable, the attributes specified in the ENTRY attribute parameter
descriptor must match those of the arguments.

When the compiler detects that a scalar variable argument does not
match the data type of the corresponding parameter, it issues a warning
message, creates a dummy argument, and associates the address of the
dummy argument with the corresponding parameter. You can suppress
the warning message and force the creation of a dummy argument if you
enclose the argument in parentheses. For example, if a parameter requires
a character varying string and an argument is a character nonvarying
variable, you would enclose the variable in parentheses.

For string lengths and array bounds, an asterisk (*) in the parameter
matches any expression. An integer constant matches only an integer
constant with the same value.

Procedures 79

Conversion of Arguments

When the data type of a written argument is suitable for conversion to
the data type of the corresponding parameter descriptor, PL/I performs
the conversion of the argument to a dummy argument using the rules
described in Section 5.4.3.

6.2 Calling External Procedures

An external procedure is one whose text is not contained in any other
block. The source text of an external procedure can be compiled sepa-
rately from that of a calling procedure. The differences between internal
and external procedures are as follows:

Before an external procedure can be invoked (except through an entry
variable), its name must be declared within the procedure that invokes
it. The DECLARE statement for the external entry name must also
provide a list of parameter descriptors that give the data types of the
parameters that the procedure requires, if any, as well as a RETURNS
attribute for a function procedure.

You cannot explicitly declare internal procedures. The procedure
name is implicitly declared by its occurrence in the PROCEDURE or
ENTRY statement.

External procedures can reference the same variable only if it is
declared with the EXTERNAL attribute in all of them.

An internal procedure, on the other hand, can reference internal
variables declared in any procedure in which it is contained.

Any procedure can call an external procedure.

An internal procedure can be called only by the procedure that
contains it or by other procedures at the same level of nesting within
the containing procedure. The only exception is invocation through an
entry variable.

The following example illustrates the use of an external procedure:

80 Procedures

WINDUP: PROCEDURE;

DECLARE PITCH EXTERNAL ENTRY (CHARACTER(15) VARYING,
FIXED BINARY(7));

CALL PITCH (PLAYER_NAME,NUMBER_OF_OUTS) ;

The procedure WINDUP declares the procedure PITCH with the
EXTERNAL and ENTRY attributes. The text of PITCH is in another
source program that is separately compiled. When the object module that
contains WINDUP is linked, the linker must be able to locate the object
module that contains PITCH. You can accomplish this by including both
object modules in the LINK command line, or by placing PITCH in an
object module library and including the library in the LINK command
line.

When a CALL statement or function reference invokes an entry point
in an external procedure, the entry constant must be declared with the
ENTRY attribute, as in the example above. Such a declaration must also
describe the parameters for that entry point, if any. For example:

DECLARE PITCH ENTRY (CHARACTER(*), FIXED BINARY(15));

The identifier PITCH is declared as an entry constant. When the pro-

cedure containing this declaration is linked to other procedures, one of
them must define an entry point named PITCH as the label either of a
PROCEDURE statement or an ENTRY statement. If the linker cannot

locate an external entry point, it issues a warning message.

The parameter descriptors define the data types of the parameters for the
entry point PITCH. Arguments of these types must be supplied when
PITCH is invoked.

If PITCH is to invoke a function, the DECLARE statement must also
include a RETURNS attribute describing the attributes of the returned
value, as follows:

DECLARE PITCH ENTRY (CHARACTER(*), FIXED BINARY(15))
RETURNS (FIXED) ;

Within the scope of this DECLARE statement, the entry constant PITCH
must be used in a function reference. The function reference will invoke
the external entry point, and a returned fixed-point binary value will
become the value of the function reference.

Procedures 81

A PL/I program can invoke an external procedure that is not written

in PL/I. A common instance is the use of a VMS system service by

a PL/I program to obtain some system function not available directly
through PL/I. Or, a PL/I program can invoke an external procedure
written in another language that provides an application-specific function.
Such instances are possible because of the VAX Procedure Calling and
Condition Handling Standard, which includes a set of conventions for
passing arguments among procedures.

6.2.1 Entry Data

Entry constants and variables invoke procedures through specified entry
points. An entry value specifies an entry point and a block activation of a
procedure.

No conversions are defined between entry data and other data types. An
entry variable can be assigned only the value of an entry constant or the
value of another entry variable. The only valid operations for entry data
are comparisons for equality (=) and inequality ("=); two entry values are
equal if they refer to the same entry point in the same block activation.

6.2.1.1 Entry Constants

82 Procedures

You declare entry constants implicitly when you write labels on
PROCEDURE or ENTRY statements.

Internal entry constants are declared by writing labels on PROCEDURE or
ENTRY statements whose procedure blocks are nested in another block.
An internal entry constant can be used anywhere within the containing
block to invoke its procedure block. You cannot explicitly declare an
internal entry constant in the containing block.

You declare external entry constants by writing labels on PROCEDURE or
ENTRY statements that belong to external procedures, and by explicitly
declaring the name with the ENTRY attribute in the calling procedure.
You can use an external entry constant to invoke its procedure block
from any program location within its scope, which is either the scope

of its declaration (as a label in the external procedure) or the scope of a
DECLARE statement for the constant (in the calling procedure).

The declaration of an external entry constant gives the compiler the
information it needs to invoke a separately compiled procedure. The dec-
laration must agree with the actual entry point: it must contain parameter
descriptors for any parameters specified at the entry point; and, if the
entry constant is to be used in a function reference, the declaration must
have a returns descriptor describing the returned value.

The following example declares the external entry constant COPYSTRING:

DECLARE COPYSTRING ENTRY (CHARACTER (40) VARYING,
FIXED BINARY(7))
RETURNS (CHARACTER(%));

This entry has two parameters: a varying-length character string with a
maximum length of 40 and a fixed-point binary value. The RETURNS
attribute indicates that COPYSTRING is invoked as a function and that it
returns a character string with any length. COPYSTRING might look like
this:
COPYSTRING: PROCEDURE (INSTRING, ITERATIONS)

RETURNS (CHARACTER (+));
DECLARE INSTRING CHARACTER (40) VARYING,

ITERATIONS FIXED BINARY (7),
OUTSTRING CHARACTER (40);

RETURN (OUTSTRING);
END;

6.2.1.2 Entry Variables

Entry variables are variables (including parameters) that take entry values.
If you specify the VARIABLE attribute with the ENTRY attribute in a
DECLARE statement, or if the declared identifier occurs in a parameter
list, the declared identifier is an entry variable. You can assign an entry
constant to an entry variable, or you can assign to it the value of another
entry variable.

When you use an entry variable to invoke a procedure, its declaration
must agree with the definition of the entry point: the parameter descrip-
tor for the entry variable must match the parameter descriptor on the
declaration of the entry constant.

The scope of an entry variable name can be either INTERNAL or
EXTERNAL. If you specify neither, the default is INTERNAL.

Procedures 83

You can use an entry variable to represent different entry points during
the execution of the PL/I program. For example:

DECLARE E ENTRY (FIXED BINARY (7)) VARIABLE,
(A,B) ENTRY (FIXED BINARY (7));
E = A;
CALL E (10);

The entry constant A is assigned to the entry variable E. The CALL
statement results in the invocation of the external entry point A.

6.2.2 Passing Arguments to Non-PL/] Procedures

There are three ways that a PL/I procedure can pass an argument to a
non-PL/I procedure:

* By immediate value. The actual value of the argument is passed.
® By reference. The address in storage of the argument is passed.

® By descriptor. The address in storage of a data structure describing the
argument is passed.

The following sections describe the requirements for each of these
argument-passing mechanisms.

6.2.2.1 Passing Arguments by Immediate Value

84 Procedures

To pass an argument by immediate value, use the VALUE attribute in
a parameter description. The following declaration of the external entry
VHF illustrates a declaration for an external routine that receives its
parameter by immediate value.

DECLARE VHF ENTRY (FIXED BINARY(31) VALUE);

You can also define PL/I procedures that receive arguments by immediate
value. To do this, you must specify the VALUE attribute in the declara-
tion of the parameter. For example, the corresponding definition of the
procedure VHF would be as follows:

VHF: PROCEDURE (LENGTH) ;

DECLARE LENGTH FIXED BINARY(31) VALUE;

Arguments that can be passed by immediate value are limited to the
following data types, which can be expressed in 32 bits:

e FIXED BINARY(m), where m <= 31
e FLOAT BINARY(n), where n <=24
¢ BIT(o) ALIGNED, where o <= 32

e ENTRY
* OFFSET
¢ POINTER

VAX PL/I supports the passing of external procedures, but not internal
procedures, as entry value parameters. To pass an internal procedure, use
an entry parameter.

When you specify the VALUE attribute in a parameter descriptor, you can
specify the ANY attribute instead of declaring any data type attributes.
For example, the declaration of SYS$SETEF can appear as follows:

DECLARE SYS$SETEF ENTRY (ANY VALUE);

At the time of the procedure’s invocation, PL/I converts the written
argument as needed to create a longword dummy argument.

You can use the VALUE built-in function to force an argument to be
passed by immediate value to a non-PL/I procedure, regardless of the
declaration of the formal parameter. (See the entry “VALUE Built-In
Function”.)

6.2.2.2 Passing Arguments by Reference

By default, PL/I passes all arguments by reference except character strings
and arrays with nonconstant extents. The parameter descriptor for an
argument to be passed by reference need specify only the data type of the
parameter.

For example, the Read Event Flags (SYS$READEF) system service requires
that its first argument be passed by immediate value and its second by
reference. You could declare this procedure as follows:

DECLARE SYS$READEF ENTRY (FIXED BINARY(31) VALUE,
BIT (32) ALIGNED);

When the procedure is invoked, the second argument must be a variable
declared as BIT(32) ALIGNED. PL/I passes the argument by reference.

Procedures 85

An argument of any data type can be passed by reference. Bit-string
variables, however, must have the ALIGNED attribute.

The data types in the parameter descriptors of all output arguments must
match the data types of the written arguments. For convenience, you
can specify ANY in the parameter descriptor. To describe an argument
to be passed by reference, you can specify the ANY attribute without the
VALUE attribute. When you specify ANY for an argument to be passed
by reference, you cannot specify data type attributes. Note that if you
specify the VALUE attribute in conjunction with the ANY attribute, PL/I
passes the argument by immediate value.

The ANY attribute is especially useful when you must specify a data
structure as an argument. You need not declare the structure within the
parameter descriptor, only the ANY attribute.

When an argument is passed by reference, PL/I passes the address of the
actual argument. This address can be interpreted as a pointer value; you
can explicitly specify a pointer value as an argument for data to be passed
by reference. For example:

DECLARE SYS$READEF (ANY VALUE, POINTER VALUE),
FLAGS BIT(32) ALIGNED;

CALL SYS$READEF (4, ADDR(FLAGS));

At this procedure invocation, PL/I places the pointer value returned by
the ADDR built-in function directly in the argument list.

6.2.2.3 Passing Arguments by Descriptor

86 Procedures

A descriptor is a structure that describes the data type, extents, and
address of a data item. When passing an argument by descriptor, PL/I
creates the descriptor and places its address in the argument list for the
called procedure.

PL/I passes arguments by descriptor when a parameter descriptor specifies
the following:

® A character string with an asterisk length or an array with asterisk
extents

* An unaligned bit string or an array or structure consisting entirely of
unaligned bit strings

® A structure containing any strings or arrays with asterisk extents

* ANY without VALUE, and the corresponding written argument is
specified with the DESCRIPTOR built-in function

For example, PL/I passes by descriptor the arguments associated with the
following parameter descriptors:

DECLARE UNSTRING ENTRY (CHARACTER(*)),
TESTBITS ENTRY (BIT(3)),
MODEST ENTRY (1,
2 CHARACTER(*),
2,
3 BIT(3),
3 BIT(3));

When you declare a non-PL/I procedure that requires a character-
string descriptor for an argument, specify the parameter descriptor as
CHARACTER(*). For example, the Set Process Name (SYS$SETPRN)
system service requires the address of a character-string descriptor as an
argument. You can declare this service as follows:

DECLARE SYS$SETPRN ENTRY (CHARACTER(*));

When a parameter is declared as CHARACTER(*), its written argument
can be one of the following:

® A character-string constant or expression.
¢ A fixed-length character-string variable.

* A varying character-string variable or a variable declared as
CHARACTER(*)VARYING.

For any of those arguments, PL/I constructs a character-string descriptor
and passes its address.

To force an argument to be passed by descriptor, use the DESCRIPTOR
built-in function. For example:

DECLARE P ENTRY (ANY);

DECLARE (X,Y) FIXED DECIMAL (7,2);
CALL P(DESCRIPTOR (X));

CALL P(Y);

Here, X is passed by descriptor as specified by the DESCRIPTOR built-in
function. Y is passed by reference. (See the entry “DESCRIPTOR Built-In
Function.”)

Procedures 87

Chapter 7
Program Control

The statements described in this chapter allow your program to repeat
sequences of operations, to transfer control or select operations based on
the result of a test, and to terminate. They are the DO, BEGIN, END, IF,
SELECT, GOTO, LEAVE, STOP, and null statements.

7.1 DO Statement

The DO statement defines the beginning of a sequence of statements to
be executed in a group. The group ends with the nonexecutable statement
END. DO-groups have several formats, which are described individually
in this section:

® Simple DO
» DO WHILE
e DO UNTIL

e Controlled DO
e DO REPEAT

Program Control 89

7.1.1 Simple DO

A simple DO statement is noniterative. The statements that appear
between the DO statement and its corresponding END statement are
executed once, after which control passes to the next executable statement
in the program.

For example:

IF A < B THEN DO;
PUT LIST ('More data needed');
GET LIST (VALUE);
A = A + VALUE;
END;

The most common use of the simple DO statement is as the action of the
THEN clause of an IF statement, as shown above, or of an ELSE option.

7.1.2 DO WHILE

90 Program Control

A DO WHILE statement executes a group of statements as long as a
particular condition is satisfied. When the condition is not true, the group
is not executed and control passes to the next executable statement in
the program, after the END statement that terminates the group. A test
expression is evaluated before each execution of the DO-group. It must
have a true value in order for the DO-group to be executed even once.

The following examples illustrate the use of the DO WHILE statement.

DO WHILE (A < B);

END;

This DO-group executes as long as the value of the variable A is less than
the value of the variable B.

DO WHILE (LIST->NEXT “= NULL());

This DO-group executes while a forward pointer in a linked list has a
value.

DECLARE EOF BIT(1) INITIAL('O'B);

ON ENDFILE(INFILE) EOF = '1'B;

DO WHILE (“EOF);
READ FILE(INFILE) INTO(INREC);

END;

This DO-group reads records from the file INFILE until the end of the
file is reached. At the beginning of each iteration of the DO-group, the
expression "EOF is evaluated; the expression is true until the ENDFILE
ON-unit sets the value of EOF to '1'B.

7.1.3 DO UNTIL

A DO UNTIL statement executes a group of statements until a particular
condition is satisfied. That is, while the condition is false, the group is
repeated.

The DO WHILE and the DO UNTIL statements differ in that the WHILE
option tests the value of the test expression at the beginning of the DO-
group, whereas the UNTIL option tests the value of the test expression at
the end of the DO-group. Therefore, a DO-group with the UNTIL option
will always be executed at least once, but a DO-group with the WHILE
option may never be executed.

The following examples illustrate the use of the DO UNTIL statement.

DO UNTIL (K<ALPHA);

END;

This DO-group is executed at least once and then repeats as long as the
value of the variable K is greater than or equal to the value of the variable
ALPHA.

Program Control 91

DO UNTIL (LIST ->NEXT = NULL())

END;

This DO-group is executed until a forward pointer in a linked list has a
null value.

DECLARE STR BIT (8) CONTROLLED;
ALLOCATE STR; /* ist allocation */
ALLOCATE STR; /* nth allocation */

DO UNTIL (ALLOCATION(STR)=0);
PUT SKIP LIST (STR):
FREE STR;
END;

END;

This DO-group frees bit strings from storage until all generations have
been released. Because the UNTIL option is always executed at least once,
at least one generation must be allocated; otherwise, the ERROR condition
is raised. At the end of each repetition of the DO-group, the status of the
generations is checked with the ALLOCATION built-in function. A null
string terminates the execution of the group and passes control to the next
executable statement after the first END statement.

7.1.4 Controlled DO

92 Program Control

A controlled DO statement identifies a variable whose value controls

the execution of the DO-group, and defines the conditions under which
the control variable is to be modified and tested. When the value of the
control variable exceeds the specified end value, control passes out of
the DO-group. A WHILE or UNTIL clause can also be included. The
WHILE expression is evaluated before each iteration, including the first,
but after assignment to the control variable. The UNTIL expression is
evaluated after each iteration, including the first, but before assignment to
the control variable.

A controlled DO statement that does not specify a TO or BY option results
in a single iteration of the following DO-group. Because there is no TO or
BY expression to change the value of the variable, the DO-group will not
be executed again.

The following examples illustrate the controlled DO statement.

DO I = 2 TO 100 BY 2;

END;.
This DO-group executes 50 times, with values for I of 2, 4, 6, and so on.

DO I = LBOUND(ARRAY,1) TO HBOUND(ARRAY,1);

END;

This DO-group executes as many times as there are elements in the array
variable ARRAY, using the subscript values of the array’s elements.

DO I =1 BY 1 WHILE (X < 'Y);

END;

This DO-group continues executing with successively higher values for I
until the value of the variable X equals or is greater than the value of the
variable Y.

DO I =1BY -1 UNTIL (X< Y);

END;

This DO-group continues executing with successively lower values for I
while the value of the variable X is equal to or greater than the value of
the variable Y.

Program Control 93

1.1.5 DO REPEAT

94 Program Control

The DO REPEAT statement executes a DO-group repetitively for different
values of a variable. The variable is assigned a start value that is used on
the first iteration of the group. The REPEAT expression is evaluated before
each subsequent iteration, and its result is assigned to the variable. A
WHILE clause can be included; if it is, the WHILE expression is evaluated
before each iteration, including the first, but after assignment to the
variable. An UNTIL clause can also be included; the UNTIL expression is
evaluated after each iteration.

If the WHILE and UNTIL options are omitted, the DO REPEAT statement
specifies no means for terminating the group; the execution of the group
then must be terminated by a statement or condition occurring within the
group, such as a GOTO statement, a LEAVE statement, or an ENDFILE
condition.

The following examples illustrate the use of the DO REPEAT statement.
DO LETTER='A' REPEAT (BYTE(I));

Here, the group will be repeated with an initial LETTER value of ‘A’ and
with subsequent values assigned by the built-in function BYTE(I). The
variable I can be assigned new values within the group. The group will
iterate endlessly unless terminated by a statement or condition within the

group.
DO I = 1 REPEAT (I + 2) WHILE (I <= 100);
DO I =1 TO 100 BY 2;

The first of these two examples is a DO REPEAT statement, and the
second is a controlled DO statement. The two statements would have the
same effect.

DO P = LIST_HEAD REPEAT (P->LIST.NEXT)
WHILE (P “= NULL());

This example illustrates the manipulation of lists, which is the most
common use of DO REPEAT. The pointer P is initialized with the value
of the pointer variable LIST_HEAD. The DO-group is executed with this
value of P. The REPEAT option specifies that, each time control reaches
the DO statement after the first execution of the DO-group, P is to be set
to the value of LIST.NEXT in the structure currently pointed to by P.

WHILE and UNTIL can be used in combination to check the status of a
DO-group both before and after execution.

7.2 BEGIN Statement

The BEGIN statement denotes the start of a begin block. A begin block is
a sequence of statements headed by a BEGIN statement and terminated
by an END statement. A begin block can be used wherever a single
executable statement is valid, for instance, in an ON-unit. The statements
in a begin block can be any PL/I statements, and begin blocks can contain
DO-groups, DECLARE statements, procedures, and other (nested) begin
blocks.

A begin block provides a convenient way to localize variables. Variables
declared as internal within a begin block are not allocated storage until
the block is activated. When the block terminates, storage for internal
automatic variables is released. A begin block terminates in the following
situations:

* When its corresponding END statement is encountered. Control
continues with the next executable statement in the program.

* When it executes a nonlocal GOTO to transfer control to a previous
block.

* When it executes a RETURN statement.

A begin block differs from a DO-group chiefly in its ability to localize
variables. Variables declared within DO-groups are not localized to the
group (unless the group contains a begin block or procedure that declares
internal variables). Begin blocks are preferable when you want to restrict
the scope of variables. Furthermore, there are some cases (such as ON-
units) in which DO-groups cannot be used. Otherwise, DO-groups are
often more efficient, because they do not have the overhead associated
with block activation. In general, you should use a DO-group instead of a
begin block unless there are declarations present or you require multiple
statements in an ON-unit.

A begin block can designate a series of statements to be executed depend-
ing on the success or failure of a test in an IF statement. For example:

IF A = B THEN BEGIN ;

END;

Program Control 95

A begin block also provides the only way to denote a series of statements
to be executed when an ON condition is signaled. For example:

ON ERROR BEGIN;
[statement ...]
END;

7.3 END Statement

96 Program Control

The END statement marks the end of the block or group headed by the
most recent BEGIN, DO, SELECT, or PROCEDURE statement.

Note that a procedure invoked as a function must execute a RETURN
statement before it encounters the END statement marking the end of the
procedure.

When the END statement is encountered, one of the following actions is
performed, depending on the type of block or group that it terminates:

e When an END statement denotes the end of a procedure, the proce-
dure is terminated. The storage allocated for the block is released, and
all automatic variables are made inaccessible. If the current procedure
is the main or only procedure, the program terminates. Otherwise,
control returns to the statement following the CALL statement that
invoked the procedure.

* When an END statement denotes the end of a begin block, the block
is terminated. Storage allocated for the block is released, and all
automatic variables are made inaccessible. Control passes to the next
executable statement.

* When an END statement denotes the end of a DO-group, control
returns either to the DO statement that heads the group or to the next
executable statement following the END statement. If the DO-group
is headed by a simple DO, that is, one that causes the DO-group to be
executed only once, control passes to the next executable statement.
Otherwise, control returns to the head of the DO-group, where the
control variable or expression is tested.

7.4 IF Statement

The IF statement tests an expression and performs the action specified
after the keyword THEN if the result of the test is true. If it is not true,
the action following THEN is not executed, and control goes to the ELSE
clause, if it exists, or to the next executable statement.

The following examples illustrate the use of the IF statement.
IF A < B THEN BEGIN;

The begin block after this statement is executed if the value of the variable
A is less than the value of the variable B.

IF “SUCCESS THEN
CALL PRINT_ERROR;
ELSE
CALL PRINT_SUCCESS;

The IF statement defines action to be taken if the variable SUCCESS has
a false value (the THEN clause) and an action to be taken otherwise (the
ELSE clause).

IF ABC
THEN IF XYZ
THEN GOTO GBH;
ELSE GOTO THESTORE;
ELSE GOTO HOME;

You can nest IF statements; that is, the action specified in a THEN or an
ELSE clause can be another IF statement. An ELSE clause is matched with
the nearest preceding IF/THEN that is not itself matched with a preceding
ELSE. Here, the first ELSE clause is executed if ABC is true and XYZ is
false. The second ELSE clause is executed if ABC is false.

IF ABC
THEN IF XYZ THEN GOTO HOME;
ELSE;
ELSE GOTO THESTORE;

In some cases, proper matching of IF and ELSE may require a null
statement as the target of an ELSE. Here, the ELSE GOTO THESTORE
statement is executed if ABC is false.

Program Control 97

7.5 SELECT Statement

98 Program Control

The SELECT statement tests a series of expressions and performs a
specified action depending on the result of the test. The statement has
two forms: in the first form, the expressions are tested for truth or falsity;
in the second form, the expressions are tested to see whether any or all
have the same value as another, specified expression (here called the
“select-expression”). Any of the expressions can be, but need not be,
constants. An optional OTHERWISE clause is available to name an action
to be performed if none of the preceding expressions have satisfied the
condition specified.

The two forms of the SELECT statement and the OTHERWISE clause are
described in detail in the entry “SELECT Statement”.

The following examples illustrate the use of the SELECT statement.

SELECT;
WHEN ANY (A=10,A=20,A=30) B=B+{;
WHEN (A=50) B=B+2;
WHEN (A=60) B=B+3;
WHEN (A=T0) B=B+4;
WHEN (A=80) B=B+5;
WHEN (A=90) B=B+6;
WHEN ALL (A>90,A<500) B=B+10;
OTHERWISE B=B+C;
END;

The SELECT statement defines the action to be taken (B=B+1) if the
variable A has any of the values specified in the WHEN ANY clause;
failing that, the succeeding WHEN clauses are evaluated until one of them
is found to be true, causing the specified action to be taken; failing that,
the WHEN ALL clause is tested, causing its action to be taken if A is
both greater than 90 and less than 500. If none of the WHEN clauses’
conditions is true, the action specified in the OTHERWISE clause (B=B+C)
is executed.

SELECT(A) ;
WHEN (50) C=C+1;
WHEN ANY (80,61,82,B+C) C=C+2;
WHEN ALL (70,D) C=C+3;
OTHERWISE C=C+D;

END;

This example is a SELECT statement with a select-expression specified
after the keyword SELECT.

The SELECT statement defines the action to be taken if the select-
expression (A in the example) evaluates to any (or all) of the values of
the expressions following a WHEN clause. The first action (the assign-
ment statement C=C+1) will be executed if A has a current value of 50.
In that case, none of the subsequent WHEN clauses will be evaluated.
The second WHEN clause includes the ANY keyword, and so the second
action will be executed if A evaluates to or equals 60 or 61 or 62 or the
sum of B and C. If neither the first nor the second action is executed,
the third WHEN clause’s expressions are tested. The third WHEN clause
includes the ALL keyword, so the third action will be executed only if A
equals both 70 and D. If none of the WHEN clauses causes an action to
be executed, then the action in the OTHERWISE clause (the assignment
statement C=C+D) will be executed.

7.6 GOTO Statement

The GOTO statement causes control to be transferred to a labeled state-
ment in the current or any outer procedure. A label denotes a statement
in the program and a block activation. The specified label cannot be the
label of an ENTRY, FORMAT, or PROCEDURE statement.

If the specified label value is not in the current block, the GOTO statement
is considered nonlocal. The following can occur:

* The current block, and any blocks intervening between it and the
block containing the label value, are released. This rule applies to
procedure blocks and begin blocks.

e If a GOTO statement transfers control out of a procedure that is
invoked in a function reference, the statement containing the function
reference is not evaluated further.

A label consists of any valid identifier terminated by a colon. A name
occurring as a statement label is implicitly declared as a label constant,
with the attributes LABEL and constant. Label constants cannot be
explicitly declared.

The following restrictions apply to the use of labels and label data:

* No statement can have more than one label. However, an executable
statement can be preceded by any number of labeled null statements,
which have the same effect as would multiple labels.

® Operations on label values are restricted to the operators = and "=, for
testing equality or inequality. Two values are equal if they refer to the
same statement in the same block activation.

Program Control 99

* Any statement in a PL/I program can be labeled except the following:
— A DECLARE statement

— A statement beginning an ON-unit, THEN clause, ELSE clause,
WHEN clause, or OTHERWISE clause

e Labels on PROCEDURE, ENTRY, and FORMAT statements are not
considered statement labels and cannot be used as the targets of
GOTO statements.

® An identifier occurring as a label in a block cannot be declared in that
block (except as a structure member) or occur in the block’s parameter
list.

* Any reference to a label value after its block activation terminates is
an error with unpredictable results.
The following example demonstrates the use of the GOTO statement:

ON ERROR GOTO ERROR_MESSAGE;

The GOTO statement provides a transfer address for the current procedure
when the ERROR condition is signaled.

The following subsections describe label array constants, which allow you
to write labels with constant subscripts, and label variables, which can be
assigned values and then used in GOTO statements to provide flexibility.

7.6.1 Label Array Constants

Any label constant except the label of a PROCEDURE or FORMAT
statement can have a single subscript. You must specify subscripts with
integer constants or constant identifiers, which must appear in parentheses
following the label name. For example:

PART(1):

PART(2) :

100 Program Control

When labels are written this way, the unsubscripted label name represents
the implicit declaration of a label array constant. In this example, the
array is named PART and is treated as if it were declared within the block
containing the subscripted labels. Elements of this array can be referenced
in GOTO statements that specify a subscript. For example:

GOTO PART(I);

I is a variable whose value represents the subscript of the element of
PART that is the label to be given control.

7.6.2 Label Variables

When an identifier is explicitly declared with the LABEL attribute, it
acquires the VARIABLE attribute by default. Such a variable can be used
to denote different label values during the execution of the program. The
following examples demonstrate the use of label variables.

DECLARE PROCESS LABEL;

IF CODE THEN

PROCESS = BILLING;
ELSE

PROCESS = CHARGE;

GOTO PROCESS;

When the GOTO statement evaluates the reference to the label PROCESS,
the result is the current value of the variable. The GOTO statement
transfers control to either of the labels BILLING or CHARGE, depending
on the current value of the Boolean variable CODE.

%REPLACE REMOVE_TEXT BY 2;
DECLARE PROCESS(5) LABEL VARIABLE;

GOTO PROCESS(REMOVE_TEXT) ;

The GOTO statement evaluates the label reference and transfers control
to the label constant corresponding to the second element of the array
PROCESS. PROCESS consists of label variables.

Program Control 101

7.7 LEAVE Statement

The LEAVE statement causes control to be transferred out of the immedi-
ately containing DO-group or out of the containing DO-group whose label
is specified with the statement. The label reference can be a label constant
or a subscripted label constant for which the subscript is specified with an
integer constant. The label reference cannot be a label variable, nor can it
be a subscripted label constant for which the subscript is specified with a
variable.

When it is executed, a LEAVE statement with no label reference causes
control to be transferred to the first statement following the END state-
ment that terminates the immediately containing DO-group. If the LEAVE
statement has a label, control is passed to the first executable statement
following the end statement for the corresponding label indicated in

the LEAVE statement. Thus, the LEAVE statement provides an alter-
native means of terminating execution of a DO-group. In the case of a
LEAVE statement with a label reference, several nested DO-groups can be
terminated as control is transferred outside the referenced DO-group.

The following restrictions apply to the use of the LEAVE statement:

® A LEAVE statement must be contained within a DO-group.
e A LEAVE statement must be in the same block as the DO statement to
which it refers.

e A LEAVE statement label reference must refer to a label on a DO
statement that heads a DO-group containing the LEAVE statement.
The LEAVE statement must be in the same block as the labeled DO
statement.

® The label reference specified with a LEAVE statement must be a label
constant or a subscripted label constant with an integer constant
subscript.

The following example shows a LEAVE statement with a label reference:

102 Program Control

LOOP1: DO WHILE (MORE);
LOOP2: DO I =1 TO 12;

IF QUAN(I) > 150 THEN LEAVE LOOP1;
END; /* loop 2 */

END; /* loop 1 */

In this example, the LEAVE statement transfers control to the first state-
ment beyond the last END statement.

7.8 STOP Statement

The STOP statement terminates execution of a program, regardless of the

current block activation, signals the FINISH condition, and closes all open
files. If the main procedure has the RETURNS attribute, no return value is
obtainable.

7.9 Null Statement

The null statement performs no action. Its format is as follows:

The null statement usually serves as the target statement of a THEN or
ELSE clause in an IF statement, as the target of a WHEN or OTHERWISE
clause in a SELECT statement, or as an action in an ON-unit. The follow-
ing examples illustrate these uses.

IF A < B THEN GOTO COMPUTE;
ELSE ;

In this example, no action takes place if A is greater than or equal to B;
execution continues at the statement following ELSE ;. A construction of

this type may be necessary when IF statements are nested (see Section
7.4).

Program Control 103

SELECT;
WHEN (condition A,B,C) GOTO FILE_READ;
WHEN (condition D,E) GOTO UPDATE;
OTHERWISE;

END;

In this example, control is passed to the next executable statement after
END if conditions A, B, C, D, and E are not true.

ON ENDPAGE(SYSPRINT);

In this example, no action takes place upon execution of the ON-unit; the
I/0O operation that caused the ENDPAGE condition continues.

The null statement can also be used to declare two labels for the same
executable statement, as in the following example:

LABEL1: ;
LABEL2: statement ...

104 Program Control

Encyclopedic Reference

A Format Item

The A format item describes the representation of a character string in the
input or output stream. The form of the A format item is as follows:

A [(w)]

w

A nonnegative integer or an integer expression that specifies the width in
characters of the field in the stream. If it is not included (PUT EDIT only),
the field width equals the length of the converted output source.

For a general discussion of format items, see “Format Item.”

B Input with GET EDIT

The value w must be included when the A format item is used with GET
EDIT. If w has a positive value, a character-string value comprising the
next w characters in the input stream is acquired and assigned to the input
variable. If w is zero, no operation is performed on the input stream, and
a null character string is assigned to the input variable.

The acquired character string is converted, if necessary, to the data

type of the input target, following the PL/I data conversion rules (see
“Conversion of Data”). Apostrophes should enclose the stream data only
if the apostrophes are intended to be acquired as part of the data.

B Output with PUT EDIT

The output source associated with an A format item is converted, if
necessary, to a string of characters. The result is assigned to a string of
w characters, which are placed in the output stream. If w is omitted,
the length of the output string equals the length of the converted output
source. If w is zero, the A format item and the associated output source
are skipped.

A Format ltem 107

108

Output strings are not surrounded automatically by apostrophes. The
converted output source is truncated or appended with trailing spaces,
according to the value of w. The conversion of a computational data item
to a character string is performed following the PL/I data conversion rules
(see “Conversion of Data”).

B Examples

The tables below show the relationship between the internal and external
representations of characters that are read or written with the A format
item.

Iinput Examples

The input stream shown in the following table is a field of characters
beginning at the current position in the stream and continuing to the right.
The target type is the type of the variable to which the input value is
assigned.

Format Item Input Stream Target Type Target Value
A(10) AASHRUBBERYA. . . CHAR(10) AASHRUBBER
A(8) AASHRUBBERYA. . . CHAR(10) AASHRUAAAA
A(e) AASHRUBBERYA. . . CHAR(10) VAR AASHRU

A(10) BA1.2345AAAA. . . DECIMAL(4,1) 001.2

A(5) AA1.23458044. . . DECIMAL(4,2) 01.20

A(8) AA1.23458A4A. . . DECIMAL(4,2) 01.23

Output Examples

The output source value shown in the table that follows is either a
constant or the value of a variable that is written with the associated
format item.

A Format Item

Output Source Value

Format Item

Output Value

'STRING' A(10) STRINGAAAA
'STRING' A STRING
1.2345 A(2) AA

1.2345 A AA1.2345
-1.2345 A(4) A-1.
-1.2345 A A-1.23456
" A(10) AAAAAAAAAA
v A [no output]
0 A(3) AAA

0 A AAAO
-123456 A(8) AA-123
-123456 A AA-12345

Abbreviation

A number of the VAX PL/I keywords can be abbreviated. These abbrevi-
ations are in Table A-1.

Table A-1: VAX PL/I Keyword Abbreviations

Keyword Abbreviation Keyword Abbreviation
ALLOCATE ALLOC INTERNAL INT
ALLOCATION ALLOCN NONVARYING NONVAR
AUTOMATIC AUTO OTHERWISE OTHER
BINARY BIN OVERFLOW OFL
CHARACTER CHAR PARAMETER PARM
COLUMN COL PICTURE PIC
CONDITION COND POINTER PTR
CONTROLLED CTL POSITION POS
CONVERSION CONV PRECISION PREC
DECIMAL DEC PROCEDURE PROC

Abbreviation 109

Table A-1 (Cont.): VAX PL/l1 Keyword Abbreviations

Keyword Abbreviation Keyword Abbreviation
DECLARE DCL SEQUENTIAL SEQL
DEFINED DEF STRINGRANGE STRG
DESCRIPTOR DESC SUBSCRIPTRANGE SUBRG
DIMENSION DIM UNALIGNED UNAL
ENVIRONMENT ENV UNDEFINEDFILE UNDF
EXTERNAL EXT UNDERFLOW UFL
FIXEDOVERFLOW FOFL VALUE VAL

GOTO GO TO VARYING VAR

INITIAL INIT ZERODIVIDE ZDIV

For a summary of all the VAX PL/I keywords, see Appendix A. This sum-
mary briefly identifies each keyword’s use (for example, as an attribute,
statement, or built-in function) and also gives abbreviations.

ABS Built-In Function
ABS Preprocessor Built-In Function

The ABS built-in function returns the absolute value of an arithmetic
expression x. Its format is as follows:

ABS(x)
B Examples
A = 3.567;
Y = ABS(A); /* Y = +3.687 */
A = -3.567,;

Y = ABS(A); /+* Y = +3.567 */
ROOT = SQRT (ABS(TEMP));

The last example shows a common use for the ABS built-in function:
to ensure that an expression has a positive value before it is used as an
argument to the square root (SQRT) built-in function.

110 ABS Preprocessor Built-In Function

ACOS Built-In Function

The ACOS built-in function returns a floating-point value that is the arc
(inverse) cosine of an arithmetic expression x. The arc cosine is computed
in floating point. The returned value is an angle w such that

O<=w<=n7

The absolute value of x, after its conversion to floating point, must be less
than or equal to 1. The format of the function is as follows:

ACOS(x)

%ACTIVATE Statement

The %ACTIVATE statement makes preprocessor variable and procedure
identifiers eligible for replacement. If the compiler encounters the named
identifier after executing a % ACTIVATE statement, it initiates variable
replacement. The format of the % ACTIVATE statement is as follows:

ACTIVATE RESCAN
|
% { ACT } element [NORESCAN]

element

The name of a previously declared preprocessor identifier and/or a list of
identifiers, where the identifiers are separated by commas and the list is
enclosed in parentheses.

RESCAN or NORESCAN

Specifies that the preprocessor is to continue or discontinue checking the
text for secondary value replacement.

The RESCAN option specifies that preprocessor scanning continue until
all possible identifier replacements are completed. RESCAN is the default
option.

The NORESCAN option specifies that replacement be done only once; the
resulting text is not rescanned for possible further replacement.

%ACTIVATE Statement 11

112

An identifier is activated by either a % ACTIVATE statement or a
%DECLARE statement. When an activated identifier is encountered
by the compiler, in unquoted nonpreprocessor statements, the variable
name or procedure reference is replaced by its value. Replacement con-
tinues throughout the rest of the source program unless replacement is
stopped with the %DEACTIVATE statement.

You can activate several variables with a single statement. For example:

%DECLARE (A,B,C) FIXED;
%ACTIVATE (A,B), C NORESCAN;

Because RESCAN is the default action, this statement activates A and B
with the RESCAN option. C is activated, but is not rescanned.

If an identifier that is not a preprocessor variable or procedure is the
target of a % ACTIVATE statement, a warning message is issued and the
identifier is implicitly declared as a preprocessor variable with the FIXED
attribute. Thereafter, the identifier variable is eligible for replacement
when activated.

For example:

DECLARE (A,B,C) FIXED;

%DECLARE (A,B) FIXED;

%ACTIVATE (A,B);

% =1;

B = (A +4);

C=A+B;

PUT SKIP LIST (C); /* C =3 %/

In this example, the activated preprocessor variables A and B are assigned
values by the preprocessor. Notice that variables A and B are also declared
as nonpreprocessor variables; this establishes them as variables within the
nonpreprocessor program.

In the following example, the variable B is deactivated by the
%DEACTIVATE statement (see “%DEACTIVATE Statement”).

%DEACTIVATE B;

B = 900;

C=A+B;

PUT SKIP LIST (C); /* C = 901 */
END;

%ACTIVATE Statement

Because the preprocessor variable B is deactivated, the preprocessor
assignment statement %B = (A + A) is not in effect and the value of B is
taken from the run-time assignment of B = 900. However, the value of A
remains 1.

For additional preprocessor information, see “Preprocessor.”

ACTUALCOUNT Built-In Function

The ACTUALCOUNT built-in function allows you to determine how
many parameters the current procedure was called with. The function
returns a FIXED BINARY(31) result.

The format of an assignment statement using the function is as follows:

variable = ACTUALCOUNT();

ADD Built-In Function

The ADD built-in function returns the sum of two arithmetic expressions x
and y, with a specified precision p and an optionally specified scale factor
q. The format of the function is as follows:

ADD(x,y,p[.q])

P

An unsigned integer constant greater than zero and less than or equal to
the maximum precision of the result type (31 for fixed-point data, 34 for
floating-point decimal data, and 113 for floating-point binary data).

q

An integer constant less than or equal to the specified precision. The scale
factor can be optionally signed when used in fixed-point binary addition.
The scale factor for fixed-point binary must be in the range -31 to p. The
scale factor for fixed-point decimal data must be in the range 0 to p. If
you omit g, the default value is zero. You should not use a scale factor for
floating-point arithmetic.

ADD Built-In Function 113

Addition

114

Addition

Expressions x and y are converted to their derived type before the addition
is performed; see “Expression.”

For example:

ADDBIF: PROCEDURE OPTIONS (MAIN);

DECLARE X FIXED DECIMAL (8,3),
Y FIXED DECIMAL (8,3),
Z FIXED DECIMAL (9,3);

X=9500.374;
Y=2278.897;
Z = ADD (X,Y,9,3);

PUT SKIP LIST ('TOTAL =',Z);
END;

This program returns the following:

TOTAL = 11779.271

The plus sign character (+), when used as an infix operator, indicates an
addition operation between two operands in an expression; the result is
the sum of the operands. Both operands must be arithmetic or picture
data.

The plus sign can also be used as a prefix operator. See “Operator.”

B Conversion of Operands

If both operands have the same base, precision, and scale, so has the
result. The PL/I compiler converts operands of different data types as
follows:

* If one operand has the FLOAT attribute and the other has the FIXED
attribute, the fixed-point operand is converted to floating point before
the operation is performed.

¢ If one operand has the DECIMAL attribute and the other has BINARY,
the decimal operand is converted to binary before the operation is
performed.

For an explanation of the precision of the value resulting from the conver-
sion of an operand, see “Expression.”

B Precision of the Result

The precision of the resulting sum is based on the precision (or converted
precision) of the two operands. For example, the heading “Floating-Point
Operands” below means that the operands were of floating-point types
originally or that one was converted to floating point.

Floating-Point Operands
The result takes the greater precision of the two operands.

Fixed-Point Operands

If (p.q) and (r,s) represent the converted precisions and scale factors of the
two operands, the resulting precision is

min(31, maz(p — ¢, — s) + maz(q,s) + 1)

The resulting scale factor is
maz(q, s)

ADDR Built-in Function

The ADDR built-in function returns a pointer to storage denoted by a
specified variable. The variable reference must be addressable. The format
of the function is as follows:

ADDR(reference)

If the reference is to a parameter (or any element or member of a param-
eter), the pointer value obtained must not be used after return from the
parameter’s procedure invocation. (This could occur, for example, if the
pointer were saved in a static variable or returned as a function value.)

See “Based Variable” for a general discussion of pointer values.

ADDR Built-In Function 115

ALIGNED Attribute

The ALIGNED attribute controls the storage boundary of bit-string data in
storage.

You can specify the ALIGNED attribute in conjunction with the BIT
attribute in a DECLARE statement to request alignment of a bit-string
variable on a byte boundary. (See “Bit-String Data.”) If you specify
ALIGNED for an array of bit-string variables, each element of the array is
aligned.

You can specify ALIGNED in the declaration of a nonvarying character-
string variable. However, all character strings are byte-aligned on VAX

machines; thus, the specification of ALIGNED is superfluous and is not
recommended. (See “Character-String Data.”)

B Restrictions

The ALIGNED attribute conflicts with the VARYING attribute and is
invalid with all data type attributes other than BIT and CHARACTER. You
must specify either BIT or CHARACTER with the ALIGNED attribute.

ALLOCATE Statement

116

The ALLOCATE statement obtains storage for a based or controlled
variable and sets (with based variables) a locator variable equal to the
address of the allocated storage. The format of the ALLOCATE statement
is as follows:

{ ALLOCATE

ALLOG } allocate-item,...;

allocate-item

variable-reference [SET (locator-reference)] [IN(area-reference)]

variable-reference
A based or controlled variable for which storage is to be allocated. The

variable can be any scalar value, array, area, or major structure variable; it
must be declared with the BASED or CONTROLLED attribute.

ALLOCATE Statement

SET(locator-reference)

The specification of a pointer or offset variable (for based variables)

that is assigned the value of the location of the allocated storage. If the
SET option is omitted, the based variable must have been declared with
BASED(locator-reference); the variable designated by that locator reference
is assigned the location of the allocated storage.

You cannot use the SET option to allocate controlled variables.

IN(area-reference)

The specification of an area reference (for based variables) in which the

storage is to be allocated. If the IN option is omitted, the SET option (or
implied SET option if the locator variable is an offset) must be an offset

declared with OFFSET(area-reference).

You cannot use the IN option to allocate controlled variables.

H Examples

DECLARE STATE CHARACTER(100) BASED (STATE_POINTER),
STATE_POINTER POINTER;

ALLOCATE STATE;

This ALLOCATE statement allocates storage for the variable STATE and
sets the pointer STATE_POINTER to the location of the allocated storage.

The ALLOCATE statement obtains the amount of storage needed to
accommodate the current extent of the specified variable. If, for example,
a character-string variable is declared with an expression for its length,
the ALLOCATE statement evaluates the current value of the expression to
determine the amount of storage to be allocated. For example:

DECLARE BUFFER CHARACTER (BUFLEN) BASED,
BUF_PTR POINTER;

BUFLEN = 80;
ALLOCATE BUFFER SET (BUF_PTR);

Here, the value of BUFLEN is evaluated when the ALLOCATE statement
is executed. The ALLOCATE statement allocates 80 bytes of storage for
the variable BUFFER and sets the pointer variable BUE_PTR to its location.

For an additional example of the ALLOCATE statement and a description
of based variables, see “Based Variable.”

ALLOCATE Statement 17

The ALLOCATE statement is also used to allocate storage for controlled
variables. A controlled variable is one whose actual storage is allocated

and freed dynamically in “generations,” only the most recent of which is
accessible to the program. Unlike based variables, a controlled variable

cannot be used in a pointer-qualified reference. For general information
and examples, see “Controlled Variable.”

If the variable being allocated has been declared with initial values, these
values are assigned to the variable after allocation.

For more information on allocation and deallocation of variables inside
areas, see the VAX PL/I User Manual.

ALLOCATION Built-In Function

The ALLOCATION built-in function returns a fixed-point binary integer
that is the number of extant generations of a specified controlled variable.
(See “Controlled Variable”). If no generations of the specified variable
exist, the function returns zero. The format of the function is as follows:

ALLOCATION

{ ALLOCN } (reference)
reference

The name of a controlled variable.

DECLARE INPUT CHARACTER(10) CONTROLLED,
A CHARACTER(3) VARYING;

DO UNTIL (INPUT = 'QUIT');
ALLOCATE INPUT;
GET LIST(INPUT);

END;
A = ALLOCATION(INPUT);
PUT SKIP LIST('Generations = 'A);

This example uses the ALLOCATION built-in function to return the
number of generations of the controlled variable INPUT. The example
illustrates how input in an interactive program can be stored on a stack for
future use.

118 ALLOCATION Built-In Function

ALLO: PROCEDURE OPTIONS (MAIN);
DECLARE STR CHARACTER (10) CONTROLLED;

ALLOCATE STR;

STR='FIRST';

ALLOCATE STR;

STR='SECOND' ;

ALLOCATE STR;

STR="'THIRD';

DO WHILE (ALLOCATION(STR)"=0);
PUT SKIP LIST (STR);
FREE STR;
END;
END;

This example shows how the ALLOCATION built-in function can be used
to count generations of controlled variables and therefore control the loop.
Strings are freed while generations still exist, but when all generations
have been freed, the value of ALLOCATION is zero and the process ends,
thus avoiding a fatal run-time error.

AND Operator

The ampersand (&) character is the logical AND*operator in PL/I. In a
logical AND operation, two bit-string operands are compared bit by bit.
If two corresponding bits are 1, the corresponding bit in the result is 1;
otherwise, the result is 0.

The result of a logical AND operation is a bit-string value. All relational
expressions result in bit strings of length 1; they can therefore be used
as operands in an AND operation. If the two operands have different
lengths, the shorter operand is converted to the length of the longer
operand, and the greater length is the length of the result.

B Examples
DECLARE (BITA, BITB, BITC) BIT (4);
BITA '0011'B;

BITB = '1111'B;
BITC = BITA & BITB;

The resulting value of BITC is ‘0011'B.

The AND operator can test whether two or more expressions are both true
in an IF statement. For example:

IF (LINENO(PRINT_FILE) < 60) &
(MORE_DATA = YES) THEN ...

AND Operator 119

See also “AND THEN Operator,” “Bit-String Data,” “Logical Operator,”
and “Operator.”

AND THEN Operator

120

The ampersand-colon token (&:) is the AND THEN operator in PL/I. The
AND THEN operator causes the first operand to be evaluated; if it is false,
the result returned is '0'B. The second operand will never be evaluated if
the first operand is false. If and only if the first operand is true, the second
operand is evaluated. If both are true, the result returned is true ('1'B);
otherwise, the result is false ('0'B).

The AND THEN operator performs a Boolean truth evaluation, not a
bit-by-bit operation, even when the two operands are bit strings. For
example, ‘00001'B &: '10000'B yields '1'B (not ‘00000'B, which would be
the result of an AND operation on these two bit strings). The reason is
that each operand is a non-zero bit value, and therefore each evalutes to
‘1'B.

The AND THEN operator yields the same result as the AND operator (&)
when expressions are tested in an IF statement (as in the last example in
the “AND Operator” entry). The difference is that the AND operator can
have its operands evaluated in either order.

The AND THEN operator is useful in compound test expressions in which
the second test should occur only if the first test was successful. For
example:

IF (P "= NULL()) &: (P->X “= 4) THEN ...

This statement causes P-> X to be evaluated only if P is not a null pointer.
If the AND operator were used instead of AND THEN, this expression
could cause an access violation (invalid pointer reference).

See also “AND Operator,” “Logical Operator,” and “Operator.”

AND THEN Operator

ANY Attribute

The ANY attribute specifies that a parameter’s corresponding argument
can be of any data type. This attribute is applicable only to the declaration
of entry names denoting non-PL/I procedures. The format of the ANY
attribute is as follows:

VALUE
CHARACTER(#)
NY
A REFERENCE
DESCRIPTOR
For complete details on using the ANY attribute, see the VAX PL/I User
Manual.

H Restrictions

If you specify ANY for a parameter, you cannot specify any data type
attributes for that parameter except CHARACTER(*). If ANY is used

by itself, the parameter is passed by reference. If ANY is used with
VALUE, the parameter is passed by immediate value. If ANY is used
with CHARACTER(*), the parameter is passed by character descriptor.
Note that either CHARACTER or CHARACTER VARYING strings can be
passed to ANY CHAR(*) parameters without the creation of a dummy
argument.

The ANY attribute is valid only in a parameter descriptor.

B Example
DECLARE SYS$SETEF ENTRY (ANY VALUE);

This statement identifies the system service procedure SYS$SETEF and
indicates that the procedure accepts a single argument, which can be of
any data type, to be passed by value. (Note that all system services, RTL
routines, and utility routines for the VMS system have declarations in
PLISSTARLET, so this feature is rarely needed except to declare entry
points for some layered products.)

ANY Attribute 121

ANYCONDITION Condition Name

Area

122

Area

The ANYCONDITION keyword can be specified in an ON, REVERT, or
SIGNAL statement. It designates an ON-unit established for all signaled
conditions that are not handled by specific ON-units.

The ANYCONDITION keyword is not defined in the PL/I language. It is
provided specifically for use in the VMS operating system environment.
For complete details on VMS condition handling, see the VAX PL/I User
Manual.

For information on defining ON-units for PL/I-specific conditions and
PL/I default condition handling, see “ON Conditions and ON-Units” and
“ON Statement.”

An area is a region of storage in which based variables can be allocated
and freed. You define an area by declaring a variable with the AREA
attribute. An area variable can belong to any storage class. Areas provide
the following programming capabilities:

* Based variables can be allocated within a specific area, and the entire
area can be assigned or transmitted in a single operation. The vari-
ables can be referred to by offset values within the area; the offset
values remain valid throughout assignment or transmission.

®* You can control the allocation of storage for related variables by
placing them in the same area, thus improving the locality of refer-
ence. Also, you can use one operation to recover the storage for all
allocations within an area by freeing or initializing the area itself.

®* You can use a structure containing an area to represent a disk file that
is mapped into a process’s virtual memory space.

B Area Assignment

You can specify an area variable as the target of an assignment statement
only in the following case:

area-variable-1 = area-variable-2;

If the extent of the target area is not large enough to contain the allocated
storage in the source area, the AREA condition is raised. Note that you
can also use the EMPTY built-in function as the source of an assignment
statement.

All other specifications of an area variable as the target of an assign-
ment statement (for example, as a member of a structure in a structure
assignment) are invalid. You cannot use an area variable in an expression
containing operators.

B Reading and Writing Areas

An area can be the source or target of data transmission in READ and
WRITE record I/O statements. If the area is written by itself (not as a
member of a structure) only the currently allocated portion is transmitted
unless the SCALARVARYING ENVIRONMENT option was specified
when the file was opened.

AREA Attribute

The AREA attribute defines an area variable (see “Area”). Its format is as
follows:

AREA [(extent)]

extent

The size of the area in bytes. The extent must be a nonnegative integer.
The maximum size is 500 million bytes. The rules for specifying the extent
are as follows:

* If AREA is specified for a static variable declaration, extent must be a
restricted integer expression (see “Restricted Expression”).

e If AREA is specified in the declaration of a parameter or in a parameter
descriptor, extent can be specified as an integer constant or as an
asterisk (*).

* If AREA is specified for an automatic or based variable, extent can
be specified as an integer constant or as an expression. For automatic
variables, the extent expression must not contain any variables or
functions declared in the same block, except for parameters.

* If no extent is specified for the area, a default of 1024 bytes is pro-
vided. DIGITAL recommends explicitly specifying a size, because the
default varies considerably between PL/I implementations.

B Restrictions

The AREA attribute is not allowed in a returns descriptor. The AREA
attribute conflicts with all other data type attributes.

AREA Attribute 123

AREA Condition Name

Argument

124

Argument

The AREA condition is raised when various operations fail in relation

to areas. For example, it is raised if the extent of an area is not large
enough to contain the variable or variables allocated to it, or if the area is
incorrectly formatted or is already active.

See the VAX PL/I User Manual for complete information on the AREA
condition.

An argument is an expression or variable reference denoting a value to be
used by a built-in function or a user-defined procedure or function. The
maximum number of arguments that can be passed to a procedure is 253.
For full details, see “Parameters and Arguments.”

B Argument List

An argument list consists of zero or more arguments specified in the
invocation of a procedure, built-in function, or built-in subroutine.

With built-in functions, arguments are expressions that supply values to
the built-in function, and the argument types must be those required by
the specific function. In general, built-in functions can be considered op-
erators and their arguments can be considered operands. If two arithmetic
arguments for a built-in function are of different arithmetic types, they
are evaluated and converted to a common type, as are the operands of
an arithmetic expression. For further details, see “Built-In Function” and
“Expression.”

With user-defined procedures, arguments correspond to parameters de-
fined in the PROCEDURE or ENTRY statement of the invoked procedure.

B Argument Passing

In PL/I, a parameter of a procedure is always associated with a variable
passed to it by the calling procedure. This variable can be the original
argument corresponding to the parameter or a dummy argument created
by the compiler and assigned the original argument’s value.

B Dummy Argument

A dummy argument is a variable that is allocated by the compiler to pass
an argument to an invoked procedure. The compiler creates a dummy
argument when an argument specified in a procedure reference is a
constant or an expression, when it is a variable with a data type different
from that required by the corresponding parameter, or when it is enclosed
in parentheses.

Arithmetic Data Types

Arithmetic data types are used for variables on which arithmetic cal-
culations are to be performed. The following arithmetic data types are
supported by VAX PL/I:

* Fixed-point binary or decimal—for binary or decimal data with a
fixed number of fractional digits. (See “Fixed-Point Binary Data” and
“Fixed-Point Decimal Data”.)

* Floating-point binary or decimal—for calculations on very large or
very small numbers, with the decimal point (number of fractional
digits) allowed to “float.” (See “Floating-Point Data”.)

* Picture—for fixed-point decimal data that is stored internally in
character form, with special formatting characters. (See “Picture”.)

Arithmetic Operators

The arithmetic operators perform calculations. Programs that accept
numeric input and produce numeric output use arithmetic operators to
construct expressions that perform the required calculations. The infix
arithmetic operators are as follows:

Operator Operation

+ Addition

- Subtraction

* : Multiplication
/ Division

*x Exponentiation

Arithmetic Operators 125

Array

126

Array

In addition, there are two prefix operators: unary plus (+) and unary
minus (-). The unary plus is valid on any arithmetic operand, but it
performs no actual operation. The unary minus reverses the sign of any
arithmetic operand.

For detailed descriptions of the other operands, see “Addition,” “Division,”
“Exponentiation,” “Multiplication,” and “Subtraction.”

For any arithmetic operator, operands must be arithmetic; that is, they
must be constants, variables, or other expressions with the data type at-
tribute BINARY, DECIMAL, or PICTURE. Operands of different arithmetic
types are converted to a common type before the operation is performed
(see “Expression”).

Arithmetic operators have a predefined precedence that governs the
order in which operations are performed. For further information, see
“Operator.” All expressions can be enclosed in parentheses to override the
rules of precedence.

Arrays provide an orderly way to manipulate related variables of the same
data type. An array variable is defined in terms of its dimensions: the
number of variables, or elements, that it contains and the organization of
those elements.

The following subsections describe arrays in terms of scalar elements.
For information on arrays whose elements are structures, see “Arrays of
Structures.”

B Format of an Array Declaration

To declare an array, specify its dimensions in a DECLARE statement as
follows:

DECLARE identifier [DIMENSION] (bound-pair,...) [attribute ...];

To declare two or more array variables that have the same dimensions and
bounds, use the following format:

DECLARE (declaration,...) [DIMENSION] (bound-pair,...)
[attribute ...];

declaration

A simple identifier, the declaration of another array, or the declaration
of a structure. (For further details on the syntax of declarations, see
“DECLARE Statement.” See also “Arrays of Structures.”)

identifier
A valid PL/I identifier to be used as the name of the array.

bound-pair
A specification of the number of elements in each dimension of the array.
A bound pair can consist of one of the following:

¢ Two expressions separated by a colon, giving the lower and upper
bounds for that dimension

* A single expression giving the upper bound only (the lower bound is
then 1 by default)

® An asterisk (*), used in the declaration of array parameters, and
indicating that the parameter can be matched to array arguments with
varying numbers of elements in that dimension

Bound pairs in series must be separated by commas, and the list of bound
pairs must be enclosed in parentheses. The list of bound pairs must
immediately follow the identifier or the optional keyword DIMENSION or
the list of declarations.

Figure A-1 shows several forms of bound pairs as used in declarations.
Note that all the examples in the figure would be identical in effect if the
optional keyword DIMENSION were added.

attribute
One or more data type attributes of the elements of the array. All at-
tributes you specify apply to each of the elements in the array.

Elements of an array can have any data type. If the array has the FILE or
ENTRY attribute, it must also have the VARIABLE attribute.

Array 127

Figure A-1:

Specifying Array Dimensions

ARRAY-NAME (Bound)

A single value specifies

* That the array has a single dimension.

¢ That the dimension has ‘bound’ number of
elements; this is the extent of the dimension.

* That the value specified is the high bound,
that is, the largest numbered element. By
default, the low bound is 1.

ARRAY-NAME (Low-Bound:High-Bound)

A single range of values specifies

* That the array has a single dimension.

* That the number of elements in the
dimension is (high-bound)-(low-bound)+1.

* The index value assigned to the lowest-
numbered element and the index value
assigned to the highest-numbered element.

ARRAY-NAME (Bound1,Bound2,...)

A list of values specifies

* That the array is muitidimensional.

Each bound value represents a
dimension in the array.

* The extent of each dimension. Each
bound defines the number of elements
in a dimension.

* The high-bound value of each dimension.
The low-bound value of each dimension
defaults to 1.

EXAMPLES
DECLARE YERBS (B} CHARACTER (12} 3

DECLARE TEMPERATURES (-G0:1Z0) 3

DECLARE TABLE (10,10} FIXED BINARY 3

DECLARE SETS (5+5:5:3) CHARACTER (B0 3

ARRAY-NAME (Low-Bound1:High-Bound1,Low-Bound2:High-Bound2,...)

A set of ranges specifies

* That the array is multidimensional.
Each range of values represents a
dimension in the array (ranges can
be intermixed with single-bound
specifications).

* The extent of each dimension.

* The low-bound and high-bound values of
each dimension.

ARRAY-NAME (*....)

Asterisk extents specify

* The number of dimensions in the array.
Each asterisk indicates a dimension.

e That the extent of each dimension will be
defined by the actual argument passed
to the procedure when it is invoked.

DECLARE WINDOWS (1:10,-2:32) FIXED 3
DECLARE HISTORIES (10 102,530 ...,

ADDIT: PROCEDURE (ARR):
DECLARE ARR(*,%*) FIXED 3

ZK-1273-83

128

Array

B Rules for Specifying Dimensions

The following rules apply to specifying the dimensions of an array and the
bounds of a dimension:

An array can have up to eight dimensions.

The values you can specify for bounds are restricted as follows:

If the array has the STATIC attribute, you must specify all bounds
as restricted integer expressions in the preprocessor declaration of
the array (see “Restricted Expression”).

If the array has the AUTOMATIC, BASED, CONTROLLED, or
DEFINED attribute, you can specify the bounds as optionally
signed integer constants or as expressions that yield integer val-
ues at run time. If the array has the AUTOMATIC, DEFINED,
or UNION attribute, the expressions must not contain any vari-
ables or functions that are declared in the same block, except for
parameters.

If an array is a parameter, you can specify the bounds using op-
tionally signed integer constants or asterisks (*). If you specify
any bound with an asterisk, you must specify all bounds with
asterisks. An array parameter declared this way inherits the di-
mensions of the corresponding argument. Passing array variables
as arguments to a procedure is described below under “Passing
Arrays as Arguments.”

The value of the lower bound you specify must be less than or equal
to the value of the upper bound.

B References to Individual Elements

You refer to an individual element in the array by means of subscripts.
Because an array’s attributes are common to all of its elements, a sub-
scripted reference has the same properties as a reference to a scalar
variable with those attributes.

Subscripts must be enclosed in parentheses in a reference to an array
element. For example, in a one-dimensional array named ARRAY declared
with the bounds (1:10), the elements are numbered 1 through 10 and are
referred to as ARRAY(1), ARRAY(2), ARRAY(3), and so on.

The lower and upper bounds that you declare for a dimension determine
the range of subscripts that you can specify for that dimension. If only an

Array 129

130

Array

upper bound is specified for a dimension, the lower bound (minimum sub-
script) for that dimension is 1. The number of elements in any dimension
of any array is

(upperbound) — (lowerbound) + 1

The total number of elements in the array, called its “extent,” is the
product of the numbers of elements in all the dimensions of the array.

For multidimensional arrays, the subscript values represent an element’s
position with respect to each dimension in the array. Figure A-2 illustrates
subscripts for elements of one-, two-, and three-dimensional arrays.

In subscripted references, the number of subscripts must match the
number of dimensions of the array, including any dimensions that are
inherited when an array results in the declaration of a dimensioned
structure (see “Arrays of Structures”).

B Variable Subscripts

You can specify the subscript of an array element using any variables or
expressions having integer values, that is, values that can be expressed as
fixed binary or fixed decimal with a zero scale factor. For example:

DECLARE DAYS_IN_MONTH(12) FIXED BINARY;
DECLARE (COUNT, TOTAL) FIXED BINARY;
TOTAL = O;
DO COUNT = 1 TO 12;
TOTAL = TOTAL + DAYS_IN_MONTH(COUNT);
END;

Here, the variable COUNT is used as a control variable in a DO-group.
As the value of COUNT is incremented from 1 to 12, the value of the
corresponding element of the array DAYS_IN_MONTH is added to the
value of the variable TOTAL.

B Initializing Arrays
The INITIAL attribute can be specified for arrays. For example:

DECLARE MONTHS (12) CHARACTER (9) VARYING
INITIAL ('January', 'February', 'March', 'April’,
'May', 'June', 'July’', 'August’',
'September', 'October', 'November', 'December');

In this example, each element of the array MONTHS is assigned a value
according to the order of the character-string constants in the initial list:

MONTH(1) is assigned the value ‘January’; MONTH(2) is assigned the
value 'February’; and so on.

Figure A-2: Specifying Elements of an Array

DECLARE ARRAY 1 (7);

-

- O ot A W N

DECLARE ARRAY 2 (5,5);

1 2

DECLARE ARRAY 3 (3.4,4);

3

ARRAY 1(2)

ARRAY 1(6)

ARRAY 2(24)

ARRAY 2(4.2)

ARRAY 3(3.1,2)

ARRAY 3(2.3,3)

ARRAY 3(1,3.4)

ZK-1274-83

Array

131

132

Array

If the array being initialized is multidimensional, the initial values are
assigned in row-major order.

For full details on the use of the INITIAL attribute, see “INITIAL
Attribute.”

Although the VAX PL/I compiler supports the initialization of automatic
arrays with the INITIAL attribute, use of this attribute is not always the
most efficient way (in terms of program compilation and execution) to
initialize array elements. Note the following considerations:

®* When you initialize elements in an array that has the AUTOMATIC
attribute, the compiler does not check that all elements are initialized
until run time (this is also true of the initialization of based and
controlled variables). Thus, you do not receive any compile-time
checking of initialization, even if you used constants to specify the
array bounds and iteration factors.

®* Your programs will run more efficiently if you initialize automatic
arrays using assignment statements rather than using the INITIAL
attribute.

¢ If the array is not modified in your program, you can increase program
efficiency even more by declaring the array with the STATIC and
READONLY attributes and by using the INITIAL attribute to initialize
its elements. In this case, the compiler will check at compile time that
you have initialized all the elements and will check their validity.

M Iteration Factors

When more than one successive element of an array is to be assigned the
same value with the INITIAL attribute, you can specify an iteration factor.
An iteration factor indicates the number of times that a specified value is
to be used in the assignment of values to elements of an array. You can
specify an iteration factor in one of the following formats:

(iteration-factor) arithmetic-constant
(iteration-factor) scalar-reference
(iteration-factor) (scalar-expression)
(iteration-factor) *

iteration-factor

An unsigned decimal constant indicating the number of times the specified
value is to be used in the assignment of an array element. The iteration
factor can be zero.

arithmetic-constant
Any arithmetic constant whose data type is valid for conversion to the
data type of the array.

scalar-reference
A reference to any scalar variable or to the NULL built-in function.

scalar-expression
Any arithmetic or string expression or string constant. The expression or
constant must be enclosed in parentheses.

*

Symbol used to indicate that the corresponding array element is not to be
assigned an initial value.

Any of these forms can be used for arrays that have the AUTOMATIC
attribute. For arrays with the STATIC attribute, only constants and the
NULL built-in function can be used.

For example, the following declaration of the array SCORES initializes all
elements of the array to 1:

DECLARE SCORES (100) FIXED STATIC INITIAL ((100)1);

The next declaration initializes the first 50 elements to 1 and the last 50
elements to -1:

DECLARE SCORES(100) FIXED STATIC INITIAL((50)1,(50)-1);

The declaration in the next example initializes all 10 elements of an array
of character strings to the 26-character value in apostrophes. Note that the
string constant is enclosed in parentheses; this is required syntax.

DECLARE ALPHABETS (10) CHARACTER(28) STATIC
INITIAL((10) (' ABCDEFGHIJKLMNOPQRSTUVWXYZ'));

Array 133

134

Array

B Array Variables in Assignment Statements

You can specify an array variable as the target of an assignment statement
in the following cases:

array-variable = expression;

where the expression yields a scalar value. Every element of the array
is assigned the resulting value. The array variable must be a connected
array whose elements are scalar. (See the subsection “Connected Arrays”
in “Arrays of Structures.”)

Note that the arithmetic operators, such as the addition (+) and the
subtraction () operators, cannot have arrays as operands. An assignment
of the following form is invalid:

ARRAYC = ARRAYA + ARRAYB;
array-variable-1 = array-variable-2;

where the specified array variables have identical data type attributes and
dimensions. Each element in array-variable-1 is assigned the value of the
corresponding element in array-variable-2.

In this type of assignment, both arrays must be connected. The actual
storage occupied by the arrays must not overlap, unless the arrays are
identical.

All other specifications of an array variable as the target of an assignment
statement are invalid.

B Using GET and PUT Statements with Array Variables

When you specify an array variable name in the input-target list of a GET
LIST or GET EDIT statement, elements of the array are assigned values
from the data items in the input stream. For example:

DECLARE VERBS (8) CHARACTER (15) VARYING; GET LIST (VERBS);

When this GET LIST statement is executed, it accepts data from the
default input stream. Each input field delimited by a blank, tab, or comma
is considered a separate string. The values of these strings are assigned
to elements of the array VERBS in the order VERBS(1), VERBS(2), . . .
VERBS(6). If a multidimensional array appears in an input-target list,
input data items are assigned to the array elements in row-major order.

An array can also appear, with similar effects, in the output-source list
of a PUT statement. See “GET Statement” and “PUT Statement” for
information on using these statements with arrays.

H Order of Assignment and Output for Multidimensional Arrays

When a multidimensional array is initialized without references to specific
elements, PL/I assigns the values in row-major order. In row-major order,
the rightmost subscript varies the most rapidly. For example, an array can
be declared as follows:

DECLARE TESTS (2,2,3);

If TESTS is specified in a GET statement or in a declaration with the
INITIAL attribute, values are assigned to the elements in the following
order:

TESTS (1,1,1)
TESTS (1,1,2)
TESTS (1,1,3)
TESTS (1,2,1)
TESTS (1,2,2)
TESTS (1,2,3)
TESTS (2,1,1)
TESTS (2,1,2)
TESTS (2,1,3)
TESTS (2,2,1)
TESTS (2,2,2)
TESTS (2,2,3)

When an array is output with a PUT statement, PL/I uses the same order
to output the array elements. For example:

PUT LIST (TESTS);

This PUT statement outputs the contents of TESTS in the order shown
above.

B Passing Arrays as Arguments

An array variable can be passed as an argument to another procedure.
Within the invoked procedure, the corresponding parameter must be
declared with the same number of dimensions. The rules for specifying
the bounds in a parameter descriptor for an array parameter are as follows:

* If you specify the bounds with integer constants, they must match
exactly the bounds of the corresponding argument.

Array 135

136

Array

®* You can specify all bounds as asterisks (*). Then, the bounds of the
array are determined from the bounds of the corresponding argument
when the procedure is actually invoked. If any bound is specified as
an asterisk, all bounds must be specified as asterisks.

For example:

DECLARE SCAN ENTRY ((5,5,5) FIXED, (*) FIXED),
MATRIX (5,5,5) FIXED,
OUTPUT (20) FIXED;

CALL SCAN (MATRIX,OUTPUT);
The procedure SCAN receives two arrays as arguments. The first is a
three-dimensional array whose bounds are known. The second is a one-

dimensional array whose bounds are not known. The procedure SCAN
can declare these parameters as follows:

SCAN: PROCEDURE (IN,OUT);
DECLARE IN (*,*,*) FIXED,
OUT (*) FIXED;

An array whose storage is unconnected cannot be passed as an argument,
nor can an array whose elements are label constants. Arrays are always
passed by reference and cannot be passed by a dummy argument.

For full information on arguments and argument passing, see “Parameters
and Arguments.”

B Array-Handling Functions

PL/1 provides the following built-in functions that return information
about the dimensions of an array:
e DIMENSION returns the number of elements in a given dimension.

¢ HBOUND returns the value of the upper bound of the array in a given
dimension.

¢ LBOUND returns the value of the lower bound of the array in a given
dimension.

For the first dimension of an array X, the relationship of these functions
can be expressed as follows:

DIMENSION(X,1) = HBOUND(X,1) — LBOUND(X, 1) + 1

The procedure that follows uses the HBOUND and LBOUND built-in
functions:

ADDIT: PROCEDURE (X);
DECLARE X (*) FIXED BINARY,
(COUNT,I) FIXED BINARY;

COUNT = O;

DO I = LBOUND (X,1) TO HBOUND(X,1);
COUNT = COUNT + {;
X(I) = COUNT;
END;

RETURN;

END;

This procedure receives a one-dimensioned array as a parameter and
initializes the elements of the array with integral values beginning with 1.

For more information, see the entries for these built-in functions, as well
as those for “Function” and “Procedure.”

Arrays of Structures

An array of structures is an array whose elements are structures. Each
structure has identical logical levels, minor structure names, and member
names and attributes.

For example, a structure STATE can be declared an array:

DECLARE 1 STATE (50),
2 NAME CHARACTER (20) VARYING,
2 POPULATION FIXED (31),
2 CAPITAL,
3 NAME CHARACTER (30) VARYING,
3 POPULATION FIXED (31)
2 SYMBOLS,
3 FLOWER CHARACTER (20),
3 BIRD CHARACTER (20);

A member of a structure that is an array inherits the dimensions of the
structure. Thus, in this example, the member CAPITAL.NAME of the
structure STATE inherits the dimension 50. You must use a subscript
whenever you refer to the variable CAPITAL.NAME, as in the following
example:

PUT LIST (CAPITAL.NAME(I));

Arrays of Structures 137

138

A subscript for a member of a structure that is an array element can
appear after any name within a qualified reference. For example, all of the
following references are equivalent:

STATE(10) . CAPITAL .NAME
STATE.CAPITAL(10) .NAME
STATE.CAPITAL.NAME(10)

B Arrays of Structures That Contain Arrays

A structure that is defined with a dimension can have members that are
arrays. For example:

DECLARE 1 STATE (50),
2 AVERAGE_TEMPS(12) FIXED DECIMAL (5,2),

In this example, the elements of the array STATE are structures. At the
second level of the hierarchy of each structure is an array of 12 elements.
Because this member of the structure inherits the dimension of the major
structure, any of these elements must be referred to by two subscripts: the
first subscript references an element in the array STATE, and the second
subscript references an element in the array AVERAGE_TEMPS.

These subscripts can appear after any name in the qualified reference. For
example, the following references are equivalent:

STATE(3) . AVERAGE_TEMPS (4)
STATE . AVERAGE_TEMPS(3,4)

Note the following rules for specifying subscripts for members of struc-
tures containing arrays:

¢ The number of subscripts specified for any member must include any
dimensions inherited from a major or minor structure declaration, as
well as those specified for the member itself.

* The subscripts that refer to a member of a structure in an array do not
have to immediately follow the name to which they apply. However,
the order of subscripts must be preserved.

* The total number of dimensions, including the inherited dimensions,
must not exceed eight.

For information on structure declarations, see “Structure.”

Arrays of Structures

B Connected Arrays

A connected array is an array whose elements occupy consecutive loca-
tions in storage. For example:

DECLARE NEWSPAPERS (10) CHARACTER (30);

In storage, the 10 elements of the array NEWSPAPERS occupy 10 con-
secutive 30-byte units. Thus, the array NEWSPAPERS is a connected
array.

A connected array is valid as the target of an assignment statement, as
long as the source expression is a similarly dimensioned array or is a
single scalar value.

An unconnected array is an array whose elements do not occupy con-
secutive storage locations. A structure with the DIMENSION attribute
always results in unconnected arrays. When a structure is dimensioned,
each member of the structure inherits the dimensions of the structure and
becomes, in effect, an array. For example:

DECLARE 1 STATE (50),
2 NAME CHARACTER (20) VARYING,
2 POPULATION FIXED (31);

In this example, the members NAME and POPULATION of the major
structure STATE inherit the dimension 50 from the major structure. When
PL/1 allocates storage for a structure or a dimensioned structure, each
member is allocated consecutive storage locations; thus, the elements of
the arrays NAME and POPULATION are not connected.

Figure A-3 illustrates the storage of connected and unconnected arrays.

Arrays of Structures 139

Figure A-3: Connected and Unconnected Arrays

CONNECTED:

DECLARE 1 STATE,
2 NAME (50) CHAR(20),
2 POP (50) FIXED(10);

The members NAME and POP of the
structure STATE are dimensioned. The
elements of each array occupy
consecutive storage locations.

UNCONNECTED:

DECLARE 1 STATE (50),
2 NAME CHAR(20),
2 POP FIXED(10);

The array STATE is dimensioned. Its
members NAME and POP inherit the
dimension: each of these variables
is an array of 50 elements, but the
elements do not occupy consecutive
storage locations.

name(1)

name(2)

name(3)

name(50)

2)
(s

pop(1)
pop(2)
pop(3)
M

A

pop(50)

W

name(1)

)
«

pop(1)

name(2)

pop(2)

name(3)

I
«

pop(49)

name(50)

)]
€

pop(50)

ZK-1275-83

140 Arrays of Structures

ASCII Character Set

The American Standard Code for Information Interchange (ASCII) is a set
of 8-bit numeric values that represent the alphabet, numerals, punctuation,
and symbols used in text and in communications protocol.

The ASCII character set constitutes the first 128 characters of the DEC
Multinational Character Set. See the table in Appendix B for the elements
of the set.

Note that in VAX PL/I, you can use the non-ASCII characters in the DEC
Multinational Character Set only in string constants and for data with
input or output statements.

ASIN Buiilt-In Function

The ASIN built-in function returns a floating-point value that is the arc
(inverse) sine of an arithmetic expression x. The arc sine is computed in
floating point. The returned value is an angle w such that

—m[2 <=w <=7/2

The absolute value of x, after its conversion to floating point, must be less
than or equal to 1. The format of the function is as follows:

ASIN(x)

%Assignment Statement

The preprocessor assignment statement gives a value to a specified pre-
processor variable. The format of the assignment statement is as follows:

%target = expression;

target
The name of the preprocessor variable to be assigned a value. It must be
an unsubscripted reference to a preprocessor variable.

expression
Any valid preprocessor expression.

%Assignment Statement 141

For arithmetic operations, only decimal integer arithmetic of precision
(10,0) is performed. Each operand and all results are converted, if nec-
essary, to a fixed decimal value of precision (10,0). Fractional digits are
truncated.

Assignment Statement

142

The assignment statement gives a value to a specified variable. The format
of the assignment statement is as follows:

target,... = expression;

target

A reference to a variable to be assigned the expression’s value. If there are
two or more targets, they are separated by commas. A target can be any
of the following:

* A reference to a scalar variable or scalar array element
* A reference to a pseudovariable (for example, SUBSTR)

* A reference to a major or minor structure name or any member of a
structure

* A reference to an array variable

expression
Any valid expression.

PL/1 evaluates the targets and the expression in any order. Thus, a
program should not depend on the evaluation of the targets before the
expression.

PL/1 performs the following steps for assignment. Note that the only
certain things about the order of steps performed are that step 1 precedes
step 3 and that step 4 is performed last.

1. The expression is evaluated, producing a value to be assigned to
the targets. An expression can consist of many subexpressions and
operations, each of which must be evaluated. See “Expression” for a
complete description.

2. Each target is evaluated. If a target contains a pseudovariable, any
expressions in the argument list are evaluated.

3. If the data type of the result does not match the data type of a target
variable, the resulting value is converted to the data type of the target,

Assignment Statement

if possible. The compiler issues a WARNING message to alert you to
the implicit conversion.

4. The value of the expression is assigned to the targets.

Some general rules regarding the types of data you can specify in as-
signment statements are given below. For the complete rules for data
conversion in assignments, see “Conversion of Data.”

B Area Data

Only the current extent of an area is moved from the source area to a
target. If the target area is not large enough to hold the extent, the AREA
condition is raised. Note that the assignment is performed in such a way
that all offsets in the source area are valid in the target area after the
assignment. Areas cannot be assigned as members of structures.

B Arithmetic Data

PL/I converts an arithmetic expression to the type of its target if their
types are different. If the target is a character- or bit-string variable, PL/I
converts the arithmetic expression to its character- or bit-string equivalent.

A character-string expression can be converted to the data type of an
arithmetic target only if the string consists solely of characters that have
numeric equivalents.

B Arrays

You can specify an array variable as the target of an assignment statement
in only the following ways:

* array-variable = expression;

where expression yields a scalar value. Every element of the array is
assigned the resulting value.

® array-variable-1 = array-variable-2;

where the specified array variables have identical data type attributes
and dimensions. Each element in array-variable-1 is assigned the
value of the corresponding element in array-variable-2.

The storage occupied by the two arrays must not overlap.
Any array variable specified in an assignment statement must occupy

connected storage. All other specifications of an array variable as a target
of an assignment statement are invalid.

Assignment Statement 143

144

H Bit Data

When a target of an assignment is a bit-string variable, the resulting
expression is truncated or padded with trailing zeros to match the length
of the target.

B Character Data

When a target of an assignment is a fixed-length character string, the
resulting expression is truncated on the right or padded with trailing
spaces to match the length of the target. If a target is a varying-length
character string, the resulting expression is truncated on the right if it
exceeds the maximum length of the target.

When one character-string variable is assigned to another, the storage
occupied by the two variables cannot overlap.

B Entry Data

If the specified expression is an entry constant, an entry variable, or a
function reference that returns an entry value, the target variable must be
an entry variable.

B Label Data

If the specified expression is a label constant, a label variable, or a function
reference that returns a label value, the target variable must be a label
variable.

B Pointer and Offset Data

If the specified expression is a pointer or offset, or a function reference
that returns a pointer or offset, the target variable must be a pointer or
offset variable.

H Structures

You can specify the name of a major or minor structure as a target of an
assignment statement only if the source expression is an identical structure
with members in the same hierarchy and with identical sizes and data
type attributes. The storage occupied by the two structures must not
overlap.

Any structure variable specified in an assignment statement must occupy
connected storage.

Assignment Statement

ATAN Built-In Function

The ATAN built-in function returns a floating-point value that is the arc
tangent of an arithmetic expression y or an arc tangent computed from two
arithmetic expressions y and x. The arc tangent is computed in floating
point. If two arguments are supplied, they must both have nonzero values
after they have been converted to floating point.

The format of the function is as follows:

ATAN(y[.x])

B Returned Values
The returned value represents an angle in radians.

If x is omitted, the returned value v equals arc tangent(s), such that
—m/2<v<m/2

where s is the value of expression y after its conversion to floating point.

If x is present, the returned value v equals arc tangent(s/r), such that if
s>=0,then0<=v <=, and if s <0, then —7m < v < 0, where s and r
are, respectively, the values of expressions y and x after their conversion
to floating point.

ATAND Built-In Function

The ATAND built-in function returns a floating-point value that is the arc
tangent of a single arithmetic expression y or an arc tangent computed
from two arithmetic expressions y and x. The arc tangent is computed

in floating point. If two arguments are supplied, they must both have
nonzero values after their conversion to floating point.

The format of the function is as follows:

ATAND(y[,x])
B Returned Value

The floating-point value returned, which represents an angle in degrees,
equals
ATAN (y,z) * 180/w

ATAND Built-In Function 145

ATANH Built-In Function

Attribute

146

Attribute

The ATANH built-in function returns a floating-point value that is the
inverse hyperbolic tangent of an arithmetic expression x. After its conver-
sion to floating point, the absolute value of the argument x must be less
than 1.

The format of the function is as follows:

ATANH(x)

Attributes define and describe the characteristics of data used in a PL/I
program. Each data item in a PL/I program has a set of attributes as-
sociated with it. Attributes can be specified in any of the following
contexts:

* In a DECLARE statement for an identifier. These attributes are
specified either by keyword or by syntax. For example:

DECLARE SIGNAL CHARACTER (20);

In this declaration, the keyword attribute CHARACTER is associated
with the identifier SIGNAL. The length attribute of the variable is
specified in parentheses following the CHARACTER keyword. In this
manual, keyword attributes are shown in format lines in uppercase
letters. Attributes given by syntax are shown in lowercase letters.

* In an OPEN statement to describe a particular file. During the opening

of a file, these -attributes are merged with file description attributes
specified in the declaration of the file.

* Within the ENTRY attribute to describe the parameters of an exter-
nal procedure. These attributes must match the attributes given to
corresponding parameters specified in the PROCEDURE or ENTRY
statements of the invoked subroutine or function.

* Within the RETURNS attribute of a PROCEDURE or ENTRY state-
ment to describe the value returned by a function.

Attributes can also be implied by the presence of other attributes. For
example, if the RETURNS attribute is specified for an identifier, the
compiler supplies the ENTRY attribute by default.

The entry for each attribute in this manual gives its syntax and ab-
breviation (if any) and describes related and conflicting attributes. See
Table A-2 at the end of this entry for a concise alphabetic summary of
PL/I attributes.

B Computational Data Type Attributes

The attributes that define arithmetic and string data are as follows:

VARYING
HARACTER | (I
CHARACTER [(length) | [NONVARYING]
ALIGNED
BIT [(length) | [UNALIGNED]

FIXED DECIMAL [.scale-factor))]
PICTURE 'picture’

{ FLOAT } { BINARY } [[PRECISION] (precision

These attributes can be specified for all elements of an array and for
individual members of a structure.

B Noncomputational Data Type Attributes

The following attributes apply to program data that is not used for com-
putation:

AREA
CONDITION
ENTRY [VARIABLE]
FILE [VARIABLE]
LABEL

OFFSET

POINTER

B Non-Data Type Attributes

The following attributes can be applied to data declarations:

ALIGNED
DIMENSION
UNALIGNED

Attribute 147

Table A-2: Alphabetic Summary of PL/I Attributes

Attribute Use
ALIGNED Requests alignment of bit-string variables in storage
ANY Indicates that a parameter (of an external procedure
not written in PL/I) can have any data type
AREA [(extent)] Defines an area of storage for the allocation of based
variables
:gigMAﬂc } Requests dynamic allocation of storage for a variable
BASED [(pointer-reference)] Indicates that a variable’s storage is located by a
pointer
{ gizARY } [(precision],scale-factor])] Defines a binary base for arithmetic data
BIT [(length)] Defines bit-string data
BUILTIN Defines a built-in function name
{ ggigACTER } [(length)] Defines character-string data
{ ggﬁg”lON } (condition-name) Defines an identifier as a condition name
{ CONTROLLED Defines a variable whose storage is allocated and
CTL freed in successive and fixed-sequence generations
gEgIMAL } [(precision],scale-factor])] Defines a decimal base for arithmetic data
DEFINED } (variable-reference) Indicates that a variable will share the storage
DEF allocated for another variable
DESCRIPTOR } Requests that an argument be passed to an external
DESC non-PL/I procedure by descriptor
DIMENSION } (bound-pair, . ..) Indicates that a variable is an array, and defines the
DIM number and extent of its dimensions
DIRECT Specifies that a file will be accessed only randomly
ENTRY (descriptor, ...) Describes an external procedure and its parameters
{ E:gIRONMENT } (option, . . .) Specifies system-dependent information about a file
EXTERNAL } Identifies the name of a variable whose storage is
EXT referenced or defined in other procedures
FILE Identifies a PL/I file constant or file variable

148 Attribute

Table A-2 (Cont.):

Alphabetic Summary of PL/I Attributes

Attribute

Use

FIXED [(precision|,scale-factor])]

FLOAT [(precision)]

GLOBALDEF [(psect-name)]

GLOBALREF

INITIAL
INIT

INPUT

{ INTERNAL
INT

KEYED

LABEL

LIKE structure-reference
LIST

MEMBER
{ NONVARYING
NONVAR

OFFSET [(area-reference)]
OPTIONAL

OPTIONS (option, ...)

OUTPUT
{ PARAMETER }
PARM

PICTURE } " :
{ PIC picture

{ POINTER }
PTR

} (value, . ..

Defines a fixed-point arithmetic variable
Defines a floating-point arithmetic variable

Defines an external variable and optionally specifies
the program section in which the variable will reside

Defines an external variable whose value is defined in
an external procedure

Provides initial values for variables

Specifies that a file will be used for input

Limits the scope of a variable to the block in which it
is defined

Specifies that a file can be accessed randomly by key
Defines a label variable

Copies the declaration of a structure to another
structure variable

Specifies that a parameter can accept a list of actual
parameters, of arbitrary length

Specifies that an item is a member of a structure
Specifies that the length of a string is nonvarying

Defines an offset variable

Specifies, in the declaration of a formal parameter,
that the actual parameter need not be specified in a
call

Specifies attribute options
Specifies that a file will be used for output

Indicates that a variable will be assigned a value
when it is used as an argument to a procedure

Specifies the format of numeric data stored in charac-
ter form

Defines a pointer variable

Attribute 149

Table A-2 (Cont.): Alphabetic Summary of PL/I Attributes

Attribute Use
POSITION expression Specifies the position within a variable at which a
P (exp) p p
0s defined variable begins
{ PRECISION } [(precision[,scale- Specifies the number of digits in an arithmetic
PREC factor]) variable and, with fixed-point data, the number of
actor])] fractional digits
PRINT Specifies that a file is to be formatted for printing
READONLY Specifies that a static variable’s value does not change
during program execution
RECORD Specifies that a file will be accessed by record 1/0

REFER refer-item

{ REFERENCE }
REF

RETURNS (returns-descriptor)

{ SEQUENTIAL }
SEQL

STATIC

STREAM

STRUCTURE
TRUNCATE

{ UNALIGNED }
UNAL

150 Attribute

statements
Defines dynamically self-defining structures

Requests that an argument be passed to an external
non-PL/I procedure by reference

Specifies that an external entry is a function and
describes the value returned by it

Specifies that a file can be accessed sequentially

Requests static allocation of storage

Specifies that a file will be accessed by stream 1/0
statements

Specifies that a variable is a structure variable

Specifies, in a declaration of a formal parameter, that
the actual parameter list can be truncated at the point
where this argument should occur

Specifies nonalignment for bit-string variables in
storage

Table A-2 (Cont.): Alphabetic Summary of PL/I Attributes

Attribute Use
UNION Indicates that a variable will share the storage
allocated for another variable
UPDATE Specifies that records in a file can be rewritten or
deleted
\\;ﬁtUE } Requests either that a global symbol be accessed by

value rather than by reference, or that an argument
be passed to a procedure by immediate value

VARIABLE Defines variable entry and file data
VARYING } Defines a varying-length character string
VAR

AUTOMATIC Attribute

The AUTOMATIC attribute specifies, for one or more variables, that
PL/1 is to allocate storage only for the duration of a block. An automatic
variable is not allocated storage until the block that declares it is activated.
The storage is released when the block is deactivated. The format of the
AUTOMATIC attribute is as follows:

{ AUTOMATIC }
AUTO

AUTOMATIC explicitly defines the storage class of a variable, array, or
major structure in a DECLARE statement. Because AUTOMATIC is the
default for internal variables, you need not specify it.

H Restrictions

The AUTOMATIC attribute conflicts with the following attributes (the
specification of which implies that storage allocation is not to be auto-
matic):

AUTOMATIC Attribute 151

BASED GLOBALREF

CONTROLLED PARAMETER
DEFINED READONLY
EXTERNAL STATIC
GLOBALDEF

The AUTOMATIC attribute cannot be applied to minor structures, mem-
bers of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

For a discussion of PL/I storage allocation, see “Storage Class.”

152 AUTOMATIC Attribute

B

B Format Items

The B format items B, B1, B2, B3, and B4—describe representations of
bit strings in an input or output stream. Note that the B can be typed
lowercase. The form of the B format items is as follows:

B[m] [(w)]

m

The integer 1, 2, 3, or 4, specifying the radix factor. B and B1 have the
same meaning. When the radix factor is omitted or is 1, the bit string is
represented by the characters 0 and 1 in the stream. When the radix factor
is 2, the bit string is represented by the characters 0, 1, 2, and 3. When
the radix factor is 3, the bit string is represented by the characters 0, 1, 2,
3,4,5,6,and 7. When the radix factor is 4, the bit string is represented
by the characters 0 through 9 and A through F.

w
A nonnegative integer or integer expression that specifies the width in
characters of the field in the stream.

The interpretation of the B format items on input and output is described
below. For a general discussion of format items, see “Format Item.”

B Input with GET EDIT

The value w must be included when the B format items are used with
GET EDIT. If w equals zero, no operation is performed on the input
stream, and a null string is assigned to the input variable. The number of
characters specified by w is acquired. The input characters are converted
to an intermediate bit string of length w*m. If the input target is not a
bit-string variable, then this intermediate bit string is converted to the type
of the input target, following the PL/I conversion rules (for details, see
“Conversion of Data”).

B Format Items 153

154

The string of characters in the stream can be preceded or followed by
spaces, which are ignored. All characters in the input field (except any
leading and trailing spaces) must be those implied by the radix factor;
otherwise, an ERROR condition is signaled. Consequently, input strings
should not be enclosed in apostrophes and should not include the suffix
Bm.

B Output with PUT EDIT

The output source is converted, if necessary, to a bit string, following the
PL/I rules for converting data to bit strings (see “Conversion of Data”). If
the length of the resulting bit string is not a multiple of the radix factor
(m), the bit string is padded with zeros on the right to make its length the
next higher multiple.

The bit string is then converted to a character representation appropriate
to the radix factor and placed in the output stream. The character rep-
resentation is left-justified in the field specified by w and is truncated or
padded with spaces on the right if necessary. If w is not included, the
output string has the same length as the converted output source. If w is
zero, the B format item and its associated output source are skipped.

BFORMAT_XM: PROCEDURE OPTIONS(MAIN) ;

/* This program prints incorrect values for an integer */
DECLARE I FIXED BINARY(31);

DECLARE BFORM STREAM OUTPUT PRINT FILE;

I1=25;

OPEN FILE(BFORM) TITLE('BFORMXM.OUT');

PUT SKIP FILE(BFORM) EDIT ('Decimal:',I) (A,X,F(2));
PUT SKIP FILE(BFORM) EDIT ('Binary:',I) (A,X,B);

PUT SKIP FILE(BFORM) EDIT ('Base 4:',I) (A,X,B2);

PUT SKIP FILE(BFORM) EDIT ('Octal:',I) (A,X,B3);

PUT SKIP FILE(BFORM) EDIT ('Hexadecimal:',I) (A,X,B4);
END BFORMAT_XM;

This program produces the following output:

Decimal: 5

Binary: 0000000000000000000000000000101
Base 4: 0000000000000022

Octal: 00000000024

Hexadecimal: OOOOOOOA

B Format items

The base 4, octal, and hexadecimal representations of I are incorrect
because the precision of I (31) is not a multiple of 2, 3, or 4. For the B2
and B4 format items, an extra zero bit was appended to the intermediate
bit string, in effect multiplying the value of the string by 2. For B3, two
extra bits were appended to make the string 33 bits long and thus divisible
into an exact number of 3-bit segments. To avoid this problem, the
precision of the output source must be a number that is evenly divisible
by any radix factor with which it is to be written out, as in the following
example:

BFORMAT_XM: PROCEDURE OPTIONS(MAIN);

/* This program prints correct values for an integer */
DECLARE I FIXED BINARY(24); /* 24 is a multiple of 2%3%4 %/
DECLARE BFORM STREAM OUTPUT PRINT FILE;

I=25;

OPEN FILE(BFORM) TITLE('BFORMXM5.0UT');

PUT SKIP FILE(BFORM) EDIT ('Decimal:',I) (A,X,F(2));
PUT SKIP FILE(BFORM) EDIT ('Binmary:',I) (A,X,B);

PUT SKIP FILE(BFORM) EDIT ('Base 4:',I) (A,X,B2);

PUT SKIP FILE(BFORM) EDIT ('Octal:',I) (A,X,B3);

PUT SKIP FILE(BFORM) EDIT ('Hexadecimal:',I) (A,X,B4);
END BFORMAT_XM;

This version of the program produces the following output:

Decimal: b5

Binary: 000000000000000000000101
Base 4: 000000000011

Octal: 00000005

Hexadecimal: 000005

The output values are correct representations of I because the precision
(24) is evenly divisible by 2, 3, or 4.

The tables below show the relationship between the internal and external
representations of characters that are read or written with the B format
item.

Iinput Examples

The “input stream” shown in the following table is a field of characters
beginning at the current position in the stream and continuing to the right.
The target type is the type of the variable to which the input value is
assigned.

DECLIT éd Wax H352 »

il
s

noe manyd

f"

ik
i)
i

U, PLST T
B Format Items 155

Format Target

Item Input Stream Type Target Value

B(12) 111000111110. .. BIT(12) '111000111110'B
B(12) AAAAAA110011. .. BIT(12) '110011000000'B
B2(6) 123123. .. BIT(12) '011011011011'B
B3(4) 1776. .. BIT(12) '001111111101'B
B4(3) iFA. .. BIT(12) '000111111010'B

Output Examples

The output source value shown in the following table is either a constant
or the value of a variable that is written out with the associated format
item.

Output Source Value Format Item Output Value
4095 B 111111111111
4095 B(11) 11111141111
4095 B2 333333
4095 B3 7777
4096 B4 FFF

BASED Attribute

156

The BASED attribute defines a based variable, that is, a variable whose
actual storage will be denoted by a pointer or offset reference. For general
information, see “Based Variable.” The format of the BASED attribute is as
follows:

BASED [(reference)]

reference

A reference to a pointer or offset variable or pointer-valued function. If
the reference is to an offset variable, that variable must be declared with
a base area. Each time a reference is made to a based variable without an
explicit pointer or offset qualifier, the reference is evaluated to obtain the
pointer or offset value.

BASED Attribute

B Restrictions
The following attributes conflict with the BASED attribute:

AUTOMATIC PARAMETER
CONTROLLED READONLY
DEFINED STATIC
EXTERNAL VALUE
GLOBALDEF

GLOBALREF

The BASED attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

Based Variable

A based variable is a variable that describes storage that will be accessed
through a pointer or offset value. PL/I does not automatically allocate any
storage for a based variable. Instead, you must explicitly allocate storage.

This entry gives the rules governing references to based variables and
the use of pointer values. It also presents examples of dynamic storage
allocation, of the use of READ SET, and of the use of the ADDR built-in
function.

B References to Based Variables

A reference to a based variable (except in an ALLOCATE statement)
must specify a pointer or offset reference designating the storage to be
accessed by the reference. You can specify this qualifying pointer or offset
reference implicitly, by giving it the BASED attribute, or explicitly, by
prefixing the based variable reference with a locator qualifier. A complete
based variable reference (with the locator qualifier) has the following form:

qualifying-reference -> base-reference

Whether explicit or implicit, the qualifying reference must be a reference to
a pointer variable, a pointer-valued function, or an offset variable declared
with a base area. The qualifying reference is evaluated each time the
complete reference is evaluated and must yield a valid pointer value (see
“Pointer Values” below). If the qualifying reference is to an offset variable,
the offset value is converted to a pointer using the base area specified in

Based Variable 157

158

the offset variable’s declaration. (For more details on offsets and areas,
see the VAX PL/I User Manual and the entries “Offset” and “Area” in this
manual.)

You can use both implicit and explicit qualification with the same based
variable; the explicit qualifier overrides the implicit one. For example:

DECLARE X FIXED BIN BASED(P);
P = ADDR(A);
X = ADDR(B)->X;

In the second assignment statement, the reference to X on the left side
of the assignment has the implicit qualifier P, which is the address of
the variable A. The reference to X on the right side is explicitly qualified
with the address of another variable, B. This assigns the value of B to the
variable A.

B Pointer Values

In VAX PL/I, you can obtain a valid pointer value in any of the following
ways:

® Through the SET option of the ALLOCATE statement
* From a user-provided storage allocation routine
® Through the SET option of the READ statement

® Through application of the ADDR built-in function to an addressable
variable (see “Variable”)

® Through conversion of an offset value to a pointer value

A pointer value is valid only as long as the storage to which it applies
remains allocated. Moreover, a pointer obtained by the application of
ADDR to a parameter is valid only as long as the parameter’s procedure
invocation exists, even though the storage to which the pointer points can
exist longer.

The NULL built-in function returns a null pointer value that can be
assigned to pointer and offset variables, but the null value is not valid as
the pointer value qualifying a based variable reference.

You can assign an arbitrary value to a pointer variable using the UNSPEC
built-in function or based variables. Such a value is invalid even if it
denotes allocated storage, and use of such values causes unpredictable
program behavior and errors that are difficult to diagnose. For example,
the following program attempts to use pointer arithmetic to “alias” two
variables X and Y:

Based Variable

ALIAS: PROCEDURE OPTIONS(MAIN);

DECLARE INDEX FIXED BINARY(31),
P POINTER BASED(ADDR(INDEX));

DECLARE (X,Y) FLOAT BINARY(24) STATIC, /* 4 bytes apart (?) */
(A,B) FLOAT BINARY(24) BASED;

X = 1EO; Y = 2EO;

P = ADDR(X); /* INDEX holds the address of X */
P>A=Y +1; /* Expect X = Y+1 */

INDEX = INDEX + 4; /* INDEX now holds address of Y (7) */
P->B =Y + 1; /* Expect Y =Y + 1 */

PUT SKIP LIST('P->A:',P->A,'P->B:',P->B);

END ALIAS;

The program can produce incorrect results in at least two ways:

* It can be assumed that the programmer knows, perhaps from a storage
map, that X and Y occupy adjacent storage and that Y can be accessed
by the incrementing of INDEX. However, this is not necessarily true
for any two variables, and the program does rely on the assumption.

¢ If common subexpressions are eliminated during the compiler’s opti-
mization of this program, incorrect results will occur. The optimization
results in the following:

T=Y+1;
P->A = T;
P->B = T;

The expected result of the program is to give B a value equal to the
original value of Y plus 2. However, the assignment to B yields an
incorrect result because the assignment to A modified Y, and the
compiler had no way to discover that Y was an aliased variable.

M Data Type Matching for Based Variables

In most applications, the data type of a based variable reference is identical
to the data type under which the accessed storage is allocated. (For a
discussion of identical data types, see “Data and Data Types.”) However,
it is not required that the data types be identical. In standard PL/], it is
sufficient that the data types match as for overlay defining or that they
are left-to-right equivalent. Moreover, in VAX PL/I the data types can

be quite different, although the program will then depend on the VAX
internal representation of data.

Based Variable 159

160

Matching by Overlay Defining

Matching by overlay assigning is in effect if the based variable reference
and the variable for which the storage was originally allocated are both
suitable for character-string or bit-string overlay defining. (See “Defined
Variable” and “Union” for a discussion of string overlay defining.) The
only further restriction is that the size n (in characters or bits) of the based
variable must be less than or equal to the size in characters or bits of

the original variable. The based variable reference accesses the first n
characters or bits of the storage.

Matching by Left-to-Right Equivalence

Matching by left-to-right equivalence applies to structured variables

that are identical only up to a certain point. To test for left-to-right
equivalence, examine the declaration of the based variable, and consider
only the portion on the left that includes the referenced member and all of
the level-2 substructures containing the referenced member (if the member
is not itself at level 2). If the original variable’s declaration has a similar
left part with an identical data type, then the based variable reference and
the original reference match. For example:

DECLARE 1 S1 BASED (P),
21X,
3 (A,B) FIXED BIN,
2Y,
3 C CHAR(10),
3 D(6) FLOAT;

DECLARE 1 S2 BASED(P);
2 X,
3 (A,B) FIXED BIN,
2

Y
3 C CHAR(10),
3 E BIT(32);

ALLOCATE S1;

S2.A = 3; /* valid left-to-right match */

§2.C = 'X'; /+ INVALID #/

In the first assignment, S2.A is a valid reference because S1 and S2 match
through the level-2 structure X. In the second assignment, S2.C is invalid

in standard PL/I because the level-2 structures S2.Y and S1.Y do not
match. However, the reference to S2.C does work in VAX PL/L

This sort of matching is useful in connection with data structures and files,
where the first part of a record contains a value indicating the precise
structure of the remainder of the record.

Based Variable

Nonmatching Based Variable References

In VAX PL/I, the base variable in a based variable reference need not
match the variable for which the storage was originally allocated. The
only requirement is that the size of the based variable in bits be less
than or equal to the size of the original variable in bits. However, use

of such nonmatching references requires knowledge of the VAX internal
representation of data, and you should not expect the resulting code to be
transportable to other PL/I implementations. For example:

DECLARE X FLOAT BINARY(24);
DECLARE 1 S BASED(ADDR(X)),
2 FRAC_1 BIT(7),
2 EXP BIT(8),
2 SIGN BIT(1),
2 FRAC_2 BIT(16);

EXP = '0'B; /* set exponent to O */

SIGN = '1'B; /* set sign negative */
X=X+1;

The declaration of S describes the internal representation of a VAX single-
precision floating-point number. The first two assignments set the sign
and exponent fields to the reserved operand combination. The assignment
to X causes a reserved operand exception.

B Based Variables and Dynamic Storage Allocation

These subsections discuss the dynamic allocation of storage by the
ALLOCATE statement and the READ SET statement.

Using the ALLOCATE Statement

Each time it is executed, the ALLOCATE statement allocates storage for
a based variable and, optionally, sets a pointer or offset variable to the
location of the storage in memory. The storage allocated can also be
assigned values if the variable is declared with the INITIAL attribute.

For example:

DECLARE LIST (10) FIXED BINARY BASED,
(LIST_PTR_A, LIST_PTR_B) POINTER;

ALLOCATE LIST SET (LIST_PTR_A);
ALLOCATE LIST SET (LIST_PTR_B);

In this example, the array LIST is declared with the BASED attribute; how-
ever, the declaration does not reserve storage for this variable. Instead,
the ALLOCATE statements allocate storage for the variable and set the
pointers LIST_PTR_A and LIST_PTR_B to the storage locations. LIST_
PTR_A and LIST_PTR_B must both be declared with the POINTER
attribute.

Based Variable 161

162

In references, the different allocations of LIST can then be distinguished
(unless the pointers are assigned new values) by locator qualifiers that
identify the specific allocation of LIST. For example:

LIST_PTR_A -> LIST(1) = 10;
LIST_PTR_B -> LIST(1) = 15;

The phrase LIST_PTR_A->> is a locator qualifier; it specifies the pointer
that locates an allocation of storage for the variable. In this example, the
first element of the storage pointed to by LIST_PTR_A is assigned the
value 10. The first element of the storage pointed to by LIST_PTR_B is
assigned the value 15.

Figure B-1 illustrates this example.

Based Variable

Figure B-1: Using the ALLOCATE Statement

DECLARE LIST (10) FIXED BINARY BASED; No storage is allocated for the array LIST.

LIST_PTR_A LIST_PTR_B

Automatic storage is
allocated for the pointer
variables.

DECLARE (LIST_PTR_A,LIST_PTR_B) POINTER ; LIST_PTR_A

ALLOCATE LIST SET (LIST_PTR_A) : \

10 The ALLOCATE statement
allocates storage for

the array LIST in

dynamic memory.

This generation of storage
is pointed to by
LIST_PTR_A.

ALLOCATE LIST SET (LIST_PTR_B) . LIST_PTR_B

15 The ALLOCATE statement obtains
another allocation of storage
for the array LIST.

This allocation of storage is
pointed to by the pointer
LIST_PTR_B.

LIST_PTR_A - LIST(1) 10:
LIST_PTR_B - LIST(1) 15

Locator-qualified references
to LIST indicate the specific
allocation that is to be
modified.

ZK-1276-83

Any extent expressions in the based variable declaration are evaluated
each time the variable is allocated or referenced. Therefore, based vari-
ables can be used for data aggregates whose size depends on input data.
Here is an example of dynamically allocating a matrix that will be accessed
by several external procedures:

Based Variable 163

164

DECLARE 1 MATRIX_CONTROL_BLOCK STATIC EXTERNAL,
2 MATRIX_POINTER POINTER,
2 (ROW_SIZE,COL_SIZE) FIXED BINARY;

DECLARE 1 MATRIX(ROW_SIZE,COL_SIZE)
BASED (MATRIX_POINTER) ;

GET LIST(ROW_SIZE,COL_SIZE);
ALLOCATE MATRIX;

The SET Option of the READ Statement

When you use the READ statement with a based variable, you do not
have to define storage areas within your program to buffer records for
I/O operations. If you specify the SET option on the READ statement,
the READ statement places an input record in a system buffer and sets a
pointer variable to the location of that buffer. For example:

DECLARE REC_PTR POINTER,
INFILE FILE RECORD INPUT SEQUENTIAL;
DECLARE 1 RECORD_LAYOUT BASED (REC_PTR),
2 NAME CHARACTER (15),
2 AMOUNT PICTURE '999V99’',
2 BALANCE FIXED DECIMAL (8,2);

READ FILE (INFILE) SET (REC_PTR);

REWRITE FILE (INFILE);

In this example, the structure defined to describe the records in a file

is declared with the BASED attribute; the declaration does not reserve
storage for this structure. When the READ statement is executed, the
record is actually read into a system buffer, and the pointer REC_PTR is
set to its location.

When the SET option is used with the READ statement, a subsequently
executed REWRITE statement need not specify the record to be rewritten.
PL/I rewrites the record indicated by the pointer variable specified in the
READ statement.

Figure B-2 illustrates this example.

Based Variable

Figure B—2: Using the READ Statement with a Based Variable

REC PTR
A longword of storage is
DECLARE REC PTR POINTER : allocated for the pointer.
DECLARE 1 RECORD LAYOUT BASED (REC PTR). No storage is allocated for the structure.

2 NAME CHARACTER (15).
2 AMOUNT PICTURE'99V99',
2 BALANCE FIXED DECIMAL (6.2):

.
.
.

READ FILE (INFILE) SET (REC PTR):

REWRITE FILE (INFILE) :

REC PTR

RECORD LAYOUT

REC PTR

The READ statement
locates the internal
buftfer into which the
record is read and
~ A assigns this value to

ZK-1277-83

B Examples

The program DEFINED uses based variables and the READ SET statement
to process a file of personnel data (PERSONNEL.DAT). The file has two

types of valid records: a pay record and a health record. The different
record types are identified by a 1-character code in the first position.
Both record types are declared as based structures (PAY_RECORD and

HEALTH_RECORD), one of which is selected based on the record type
character ('P’ for pay, 'E’ for health). Any record that does not begin with
one of these characters is invalid and is written out as a reference to the

based character variable INVALID_RECORD.

DEFINED: PROCEDURE OPTIONS(MAIN);
DECLARE P POINTER; /* pointer to structures */

DECLARE 1 PAY_RECORD BASED(P), .
2 RECORD_TYPE CHARACTER(1),
2 NAME CHARACTER(20),
/* the two structures differ in this member: */
2 GROSS_PAY PICTURE '999999V.99°';

DECLARE 1 HEALTH_RECORD BASED(P),
2 RECORD_TYPE CHARACTER(1),
2 NAME CHARACTER(20),
2 EXAM_DATE CHARACTER(9) ;

DECLARE INVALID_RECORD CHARACTER(30) BASED(P);

Based Variable

165

DECLARE PERSONNEL RECORD FILE;
DECLARE PERSOUT STREAM OUTPUT PRINT FILE;

/* used to control DO group: */
%REPLACE NOTENDFILE BY '1'B;

ON ENDFILE(PERSONNEL) BEGIN;
PUT FILE(PERSOUT) SKIP LIST
('All processing complete.');
STOP; /* program stops here */
END;

OPEN FILE(PERSONNEL) INPUT TITLE('PERSONNEL.DAT');

DO WHILE(NOTENDFILE);
/* terminated by ENDFILE ON-unit */

READ FILE(PERSONNEL) SET(P);
/* P is the location of the
record acquired by the READ statement */

IF P->PAY_RECORD.RECORD_TYPE = 'P' THEN
PUT FILE(PERSOUT) SKIP LIST
('Name=',P->PAY_RECORD.NAME,
'Gross pay=',P->GROSS_PAY) ;

ELSE /* either a health record or an invalid record */
DO;
IF P->HEALTH_RECORD.RECORD_TYPE = 'E' THEN
PUT FILE(PERSOUT) SKIP LIST
(*Name=',P->HEALTH_RECORD.NAME,
'Exam date:',P->EXAM_DATE) ;
ELSE /* invalid record type */
PUT FILE(PERSOUT) SKIP LIST
('Invalid record:',P->INVALID_RECORD);
END;

END; /* repeat DO group until ENDFILE is signaled */

END DEFINED;

For example, if the file PERSONNEL.DAT contains the following records:
PMary A. Ford 126000.55

EMary A. Ford 22July 80

£12345678901234567890ppppPPP - PP

then the output file (PERSOUT.DAT) will contain the following output:
Name= Mary A. Ford Gross pay= 125000.65

Name= Mary A. Ford Exam date: 22July 80

Invalid record: t12345678901234567890ppppPP - PP
All processing complete.

166 Based Variable

Notice the other features of the program:

* The references to based variables have a locator qualifier (P->) for
clarity. However, because all were declared with P as their pointer
reference, the locator qualifier could have been omitted.

* References to the structure members RECORD_TYPE and NAME
must be fully qualified with the name of their containing structures
(PAY_RECORD and HEALTH_RECORD) because both structures
have members with these names. In contrast, GROSS_PAY and
EXAM_DATE are unique to their structures and need not be fully
qualified.

Note that the UNION attribute can frequently be used for overlaid records
such as those in this program. For example:

1 RECORD BASED(P),
2 RECORD_TYPE CHARACTER(1),
2 NAME CHARACTER(20),
2 VARIANTS UNION,
3 GROSS_PAY PICTURE '999999V.99',
3 EXAM_DATE CHARACTER(9);

This can be used in place of PAY_RECORD and HEALTH_RECORD in
the program. However, note that the UNION attribute is not available in
many other PL/I implementations.

B Using the ADDR Built-In Function

The ADDR built-in function returns the storage location of a variable.
It can be used to associate the storage occupied by a variable with the
description of a based variable. For example:

DECLARE A FIXED BINARY BASED (X),
B FIXED BINARY,
X POINTER;

X = ADDR (B);
A = 15;

In this example, the variable A is declared as a based variable, with

the pointer X designated as its pointer. The variable B is an automatic
variable; PL/I allocates storage for B when the block is activated. When
the ADDR built-in function is referenced, it returns the storage location
of the variable B, and the assignment statement gives this value to the
pointer X. This assignment associates the variable A with the storage
occupied by B. Because A is based on X and X points to B, an assignment
statement that gives a value to A actually modifies the storage occupied
by the variable B.

Based Variable 167

Figure B-3 illustrates this example.

Figure B-3: Using the ADDR Built-In Function

DECLARE A CHARACTER (1000) BASED(X); No storage is allocated for A.

DECLARE B CHARACTER (1000) : B B is allocated a thousand bytes of storage.

DECLARE X POINTER ; X X is allocated a longword of storage.

:(\ . ASD;);'\(‘%) X The value of X is B’s memory location.
' B string A reference to A is resolved as a

reference to B.

ZK-1278-83

B Based Variables and List Processing

Data structures in which the elements have complex interactions or in
which the elements can be added or deleted are normally described
with based variables. The simplest such structure is a linked list. For an
example, see “List Processing.”

Begin Block

168

Begin Block

A begin block is a sequence of statements headed with a BEGIN statement
and terminated by an END statement. In general, a begin block can be
used wherever a single executable statement is valid, for instance, in an
ON-unit.

A begin block can contain any PL/I statements. It can contain DO-groups,
SELECT-groups, DECLARE statements, and procedures, as well as other
(nested) begin blocks.

A begin block provides a convenient way to localize variables. Internal
variables that are declared within a begin block are not allocated storage
until the begin block is activated; they have by default the AUTOMATIC
attribute. When the begin block terminates, storage for internal automatic
variables is released. A begin block is terminated under the following
conditions:

* Its corresponding END statement is executed. Control continues with
the next executable statement in the program.

* It executes a nonlocal GOTO to transfer control to a previous block.

A begin block differs from a DO-group chiefly in its ability to localize
variables. Variables declared within DO-groups are not localized to the
group (unless the group contains a begin block or procedure that declares
internal variables). Begin blocks are preferable when you want to restrict
the scope of variables, and there are some cases (such as ON-units)

in which DO-groups cannot be used. Otherwise, DO-groups are often
more efficient than begin blocks, because they do not have the overhead
associated with block activation.

For more information, see “Block.”

A begin block can designate a series of statements to be executed depend-
ing on the success or failure of a test in an IF statement. For example:

IF A = B THEN BEGIN;

END;

A begin block also provides the only way to denote a series of statements
to be executed when an ON condition is signaled. For example:

ON ERROR BEGIN; ([statement ...] END;

For further information, see “ON Conditions and ON-Units.”

BEGIN Statement

The BEGIN statement denotes the start of a begin block. The format of
the BEGIN statement is as follows:

BEGIN;

A begin block must be terminated with an END statement.

BEGIN Statement 169

BINARY Attribute

170

The BINARY attribute specifies that an arithmetic variable has a binary
base. The format of the BINARY attribute is as follows:

{ BINARY }
BIN

When you specify the BINARY attribute for an identifer, you can also
specify one of the following attributes to define the scale and precision of
the data:

FIXED [(precision[,scale])]
FLOAT [(precision)]

FIXED indicates a fixed-point binary value and FLOAT indicates a floating-
point binary value.

For a fixed-point binary value, the precision specifies the number of bits
representing an integer and must be in the range 1 through 31. For a
fixed-point binary value, the scale factor represents the number of bits to
the right of the binary point and must be in the range -31 through 31.
The scale factor must be less than or equal to the specified precision. See
“Scale Attribute” for more information.

For a floating-point value, the precision specifies the number of bits
representing the mantissa of a floating-point number and must be in the
range 1 through 113. The maximum floating-point binary precision is
always 113. The default values applied to the BINARY attribute are as
follows.

Attributes Specified Defaults Supplied

BINARY FIXED (31,0)
BINARY FIXED (31,0)
BINARY FLOAT (24)

B Restrictions

The BINARY attribute directly conflicts with the DECIMAL attribute and
with any other data type attribute.

BINARY Attribute

BINARY Built-In Function

The BINARY built-in function converts an arithmetic or string expression
x to its binary representation, with an optionally specified precision p and
scale factor q. The returned value is either fixed- or floating-point binary,
depending on whether x is a fixed- or floating-point expression.

The format of the function is as follows:

{ BINARY

BIN } (LpL.al)

The precision p, if specified, must be an integer constant greater than zero
and less than or equal to the maximum precision of the result type (31 if

fixed-point binary and 113 if floating-point binary). The precision p must
be specified if x is a fixed-point value with fractional digits.

The scale factor q, if specified, must be an integer constant less than or
equal to the specified precision and in the range -31 to 31.

B Returned Value

The result type is fixed- or floating-point binary, depending on whether
the argument x is a fixed- or floating-point expression. (If the argument is
a bit- or character-string expression, the result type is fixed-point binary.)

The argument x is converted to the result type, giving a value v, following
the PL/I rules for conversion (see “Conversion of Data”).

The returned value is the value v, with precision p, and scale factor q.
If p is omitted (integer and floating-point arguments only), the precision
of the returned value is the converted precision of x (see “Expression”).
FIXEDOVERFLOW, OVERFLOW, or UNDERFLOW is signaled if appro-
priate.

BIT Attribute

The BIT attribute identifies a variable as a bit-string variable. The format
of the BIT attribute is as follows:

BIT[(length)]

BIT Attribute m

length

The number of bits in the variable. If you do not specify a length, the
default length is one bit. The length must be in the range 0 through
32767.

The rules for specifying the length are as follows:

e If the attribute is specified for a static variable declaration or in a
returns descriptor, length must be a restricted integer expression (see
“Restricted Expression”).

e If the attribute is specified in the declaration of a parameter or in a
parameter descriptor, length can be specified as a restricted integer
expression or as an asterisk (*).

e If the attribute is specified for an automatic, based, controlled, or
defined variable, length can be specified as an expression. In the case
of automatic or defined variables, the expression must not contain any
variables or functions that are declared in the same block, except for
parameters.

If specified, the length in parentheses must follow the keyword BIT.

If you give a variable the BIT attribute, you can also specify the ALIGNED
attribute to request alignment of the variable on a byte boundary in
storage.

B Restrictions

The BIT attribute directly conflicts with the CHARACTER and VARYING
attributes and with any other data type attribute.

BIT Built-In Function

172

The BIT built-in function converts an arithmetic or string expression x to a
bit string of an optionally specified length. If x is a string expression,

it must consist of 0s and 1s. If the length is specified, it must be a
nonnegative integer. If the length is omitted, the returned value has a
length determined by the PL/I rules for conversion to bit strings (see
“Conversion of Data”).

The format of the function is as follows:

BIT(x[,length])

BIT Built-In Function

Bit-String Data

A bit string consists of a sequence of binary digits, or bits. A bit string can
be used as a Boolean value. That is, the string can have the value true, if
any bit is 1, or false, if all bits are 0.

Like a fixed-length character string, a bit string has a fixed length de-
fined in the declaration or specified by the number of bits in a bit-string
constant; bit-string variables cannot be declared with the VARYING
attribute.

This discussion of bit-string data is divided into the following parts:

® Constants

® Variables

* Alignment

* Internal representation

B Bit-String Constants

To specify a bit-string constant, enclose the string in apostrophes and
follow the closing apostrophe with the letter B. Some examples of bit-
string constants are as follows:

‘0101'B
'10101010'B
I1IB

The length of a bit-string constant is always the number of binary digits
specified; the B does not count in the length of the string. The maximum
length of any bit string is 32767 bits. A bit-string constant can be specified
with a maximum of 1000 characters between the apostrophes.

You can also specify a bit-string constant using the following syntax:
‘character-string’Bn

Here, n specifies the number of bits to be represented by each character in
the specified string. This format allows you to specify bit-string constants
that have bases other than base 2. For example:

Bit-String Data 173

174

'EF8'B4
'117'B3
'223'B2

These constants specify the hexadecimal value EF8, the octal value 117,
and the base 4 value 223.

All such constants are stored internally as bit strings. See “Internal
Representation of Bit Data,” below.

Following are the characters that are valid for each type of bit-string
constant:

* For B or Bl, only the characters 0 and 1 are valid.

* For B2, only the characters 0, 1, 2, and 3 are valid.

® For B3, only the characters 0, 1, 2, 3, 4, 5, 6, and 7 are valid.

* For B4, the characters 0, 1, 2, 3, 4,5,6,7,8,9,A,B,C,D,E, and F
are valid. (The letters A to F can be either upper- or lowercase.)

Using the B format items, you can also acquire or output bit-string data in
binary, base 4, octal, or hexadecimal format. See “B Format Items.”

B Bit-String Variables

Use the keyword BIT to declare a bit-string variable. The format is as
follows:

DECLARE variable-name BIT [(length)];

When a program assigns a value to a bit-string variable, the value can be
larger or smaller than the defined length of the variable. In such cases,
PL/I does the following:

e If the assigned string is shorter than the defined target length, PL/I
pads the bit-string value in the direction of least significance with
zeros. The “less significant” bits are those shown on the right, as the
string is represented by PUT LIST.

¢ If the assigned string is longer than the target, PL/I truncates the least
significant bits from the bit-string value.

Bit-String Data

If you do not specify a length for a bit-string variable, PL/I uses the
default length of one bit.

NOTE

Avoid using bit strings to represent integers. The truncation or
padding that occurs in assignments between strings of different
lengths results in an implicit division or multiplication of the
numeric interpretation of the string; these implicit operations
can introduce subtle errors in computations.

B Alignment of Bit-String Data

PL/I distinguishes between aligned and unaligned bit-string variables.
(Bit-string constants are always unaligned.) A bit-string variable is
aligned only if it is declared with the ALIGNED attribute, as shown in
the following example:

DECLARE FLAGS BIT (8) ALIGNED;

PL/I allocates storage for an aligned bit-string variable on a byte boundary
and reserves an integral number of bytes to contain the variable.

Unaligned bit-string variables always occupy only as many bits as are
needed to contain them. They need not be on byte boundaries.

In general, operations involving unaligned bit-string variables are less
efficient than operations involving aligned bit-string variables. Unaligned
bit-string variables are invalid as the targets of the FROM and INTO
options of record I/O statements and as the arguments of the ADDR built-
in function. Moreover, most non-PL/I programs that accept bit-string
arguments require that the strings be aligned.

Alignment affects argument passing. If a procedure declares a parameter
as an aligned bit string, and if the corresponding argument that is passed
to it is an unaligned bit-string variable, or vice versa, the actual argument
will be a dummy variable. For example:

DECLARE GETSTRING ENTRY (BIT (%) ALIGNED);
DECLARE STRING BIT (8);
CALL GETSTRING (STRING);

In this example, PL/I constructs a dummy variable to pass the argument
STRING to the called procedure GETSTRING, rather than passing the
actual argument by reference.

Bit-String Data 175

176

It is recommended that you declare bit-string variables using the
ALIGNED attribute in most cases. Use unaligned bit-string variables
when bit strings must be packed as tightly as possible, for example, in
arrays and in structures.

B Internal Representation of Bit Data

In this discussion, the term “most significant bit” means the leftmost bit
in an external representation of a string, as, for example, when the string
is output by the PUT LIST statement. The “least significant bit” is the
rightmost bit in the external representation.

The notion of significance has no meaning for bit strings unless they are
used to store integers. VAX PL/I permits the use of bit strings for this
purpose, and it has defined rules for conversions between bit strings and
other data types (see “Conversion of Data.”) Nevertheless, the use of PL/I
bit-string data to store integers is not recommended, for two reasons:

¢ In assignments involving two bit strings of different lengths, the
source string is padded or truncated as required to make a string of
the length of the target.

* As shown in the following discussions, the “significance” of bits results
in bit strings being stored in the reverse order from actual numeric
data. Consequently, conversion of bit strings to arithmetic data is
expensive in terms of execution speed, except in the special case of a
1-bit string.

It is recommended instead that you use the UNSPEC built-in function and
UNSPEC pseudovariable when you must store integers in a compact form.
Otherwise, use the data types FIXED BINARY and FIXED DECIMAL for
integer arithmetic.

The way that PL/I allocates storage for a bit-string variable depends on
whether the variable is declared with the ALIGNED attribute.

Unaligned Bit Strings

An unaligned bit string is stored beginning at an arbitrary bit location in
storage; this location is the location of the most significant bit. The subse-
quent, less significant, bits are stored in progressively higher locations in
memory, as shown here:

Bit-String Data

most significant bit

s~

A
e e e

L]
L]
L
8l

least significant bit

ZK-1280-83

The following programming sequence illustrates how a value for an
unaligned bit-string variable is stored:

DECLARE ABIT BIT (10);
ABIT = '1011'B;

After the assignment, the variable appears in storage like this:

most significant bit

least significant bit
ZK-1279-83

Aligned Bit Strings

PL/I allocates storage for an aligned bit-string variable on a byte boundary
and allocates an integral number of bytes. The number of bytes to be
allocated is calculated as follows:

ceil(n/8)

where n is the length specified for the bit string.

Beginning at bit 0 (the lowest memory location) of the lowest allocated
byte, the bit string is stored like unaligned bit-string data; that is, the
beginning bit is used to hold the most significant bit in the string. Less
significant bits are stored in progressively higher memory locations.
Unused bits are set to zero each time the bit-string variable is assigned a
value.

Bit-String Data 17

Block

178

Block

The representation is as follows:

most significant bit
Byte Byte

least significant bit
ZK-1281-83

The following programming sequence illustrates how values are stored for
aligned bit strings:

DECLARE ABIT BIT (10) ALIGNED;
ABIT = '10011'B;

In this example, the variable ABIT is aligned. When it is assigned the
value 10011, the value is stored as follows:

most significant bit
Byte 1 Byte 0

Unused
least significant bit

ZK-1282-83

A block is a sequence of PL/I statements. There are two types of blocks:

* Procedure blocks. A procedure block begins with a PROCEDURE
statement and terminates with an END statement. A procedure is the
basic program unit of PL/I; it also defines the scope of names declared
within it.

* Begin blocks. A begin block begins with a BEGIN statement and
terminates with an END statement. A begin block delimits a portion
of a program and defines the scope of names declared within it.

Blocks control the scope of names, the allocation of storage for automatic
variables, and the search for ON-units to respond to a particular condition.
(See also “ Scope of Names.”)

B Containment

A block A is said to be contained in another block B if all of A’s source
text, from label (if any) to END statement inclusive, is between B’s BEGIN
or PROCEDURE statement and B’s END statement. If there is no block
C contained in B and containing A, A is also said to be immediately
contained in B. For example:

B: PROCEDURE OPTIONS(MAIN);

A: PROCEDURE;
CALL Q;
END A;
Q: PROCEDURE;
END Q;
BEGIN;
CALL A;
END; /* of begin block */

END B;

The procedures A and Q and the begin block all are immediately con-
tained in B.

If block A is contained in block B, then A and B are also said to be nested.
The maximum nesting level is 64.

B Block Activation

A block is activated when program execution flows into it. Then, all
automatic variables declared in the block become active. When control
leaves the block, the variables become undefined and inaccessible.

A procedure block can be entered only by a CALL statement or a function
reference. If an internal procedure is declared within a source program,
control flows around the internal procedure during the normal sequence
of execution.

A begin block is entered when it is encountered during the normal flow of
execution.

Block 179

B Relationship of Block Activations

During the execution of a program, many blocks can be simultaneously
active. Two different relationships can be defined among block activations;
they are illustrated in Figure B—4.

Figure B—4: Relationship of Block Activations

A: PROCEDURE OPTIONS (MAIN) ;
P: PROCEDURE;
C:ﬁLL Q;
EI:ID P;
Q: PROCEDURE;

\ Begin

Block

END Q;

BEGIN;
CALL P;
END; /* of begin block */

END A;

N

Parent
Chains

Dynamic \ Q
Descendent

Chains

ZK-1283-83

180 Block

One relationship is “immediate dynamic descendence.” A block activation
is the immediate dynamic descendent of the block that invoked it. At

a given time, the chain of immediate dynamic descendents includes

all existing block activations, starting with the activation of the main
procedure and terminating in the current block activation. For example,
in Figure B—4, the begin block is the immediate dynamic descendent of
procedure A; the complete chain is A, begin block, P, Q. This chain is used
for finding the applicable ON-unit when a condition is signaled. (See also
“ON Conditions and ON-Units.”)

The other relationship applies to activations of nested blocks; an activation
of a block X that is a begin block or internal procedure has an “immediate
parent activation.” The immediate parent activation of X is an activation of
the block that immediately contains X. The chain of immediate parent acti-
vations extends back to an activation of the external procedure containing
X. In Figure B-4, the parent chain for each of the begin block, procedure
P, and procedure Q leads directly back to the activation of A, because
each of these blocks is immediately contained in A. This chain is used in
interpreting references. (See also “Reference.”)

When a block is activated, its immediate parent activation is determined
as follows:

e If the block is an external procedure, it has no parent activation.

* If the block is a begin block, its immediate parent activation is the
activation that invoked it. Therefore, the begin block is the immediate
dynamic descendent of its immediate parent.

* If the block is an internal procedure invoked in block activation A by a
reference to an entry constant declared in block B, then the immediate
parent of the new block activation is the activation of B in the parent
chain starting at A.

e If the block is an internal procedure invoked by an entry variable, the
parent activation is taken from the entry value. It was originally set
when the complete entry value was generated by the assignment of an
entry constant to an entry variable. (See “Entry Data.”)

B Block Termination

When a block terminates normally, that is, when an END statement or a
RETURN statement is executed, the current block is released and control
goes to the preceding block activation. If a nonlocal GOTO statement is
executed that transfers control out of the current block, the current block
and any blocks between it and the block containing the label that is the
target of the GOTO statement are released.

Block 181

For more information, see “Begin Block,” “Procedure,” “Procedure Block,”
and “Scope of Names.”

BOOL Built-In Function

182

The BOOL built-in function performs a Boolean operation on two bit-
string arguments and returns the result as a bit string with the length of
the longer argument. Its format is as follows:

BOOL(string-1,string-2,operation-string)

string-1
A bit-string expression of any length.

string-2
A bit-string expression of any length.

operation-string

A bit-string expression that is converted to length 4. Each bit in the
operation string specifies the result of comparing two corresponding bits
in string-1 and string-2. Specify bit positions in the operation string from
left to right to define the operation, as in the following truth table:

String-1 Bit String-2 Bit Result of Boolean Operation
0 0 Bit 1 of operation string
0 1 Bit 2 of operation string
1 0 Bit 3 of operation string
1 1 Bit 4 of operation string

Thus, an AND operation, for instance, would be specified by the
operation-string ‘0001'B.

If string-1 and string-2 are of different lengths, the shorter is extended on
the right with zeros to the length of the longer.

BOOL Built-In Function

X = '101010'B;
Y = '110011'B;
CHECK = BOOL (X,Y,'0110'B);

The operation string is ‘0110'B, which defines an EXCLUSIVE OR opera-
tion. The operation is performed as follows on the corresponding bits in
the strings X and Y: The leftmost bit in X is 1 and the leftmost bit in Y is
1. The truth table above specifies that when the two corresponding bits
in the two strings are both 1, then bit 4 of the operation string will be the
result; in this case, bit 4 of the operation string ‘0110'B is 0. Thus, 0 is the
first bit of the value to be returned. The second bit of X is 0 and of Y is
1. The truth table specifies that when the bit in the first string is 0 and in
the second string is 1, the result will be bit 2 of the operation string. Here,
bit 2 of the operation string ‘0110’B is 1, and so 1 is the second bit of the
value to be returned. The operation continues in this manner with each
two corresponding bits in the strings. The value returned is ‘011001'B.

Figure B-5 illustrates this example.

BUILTIN Attribute

The BUILTIN attribute indicates that the name declared is the name of a
PL/I built-in function. Within the block in which the name is declared,
all references to the name will be interpreted as references to the built-in
function or pseudovariable of that name.

You use the BUILTIN attribute when you want to refer to a built-in
function within a block in which the function’s name has been used to
declare a variable.

You also use the BUILTIN attribute when you want to invoke a built-in
function that takes no arguments (such as the DATE function) and you do
not want to include a null argument list.

H Restriction

When you specify the BUILTIN attribute, you cannot specify any other
attributes.

BUILTIN Attribute 183

Figure B-5: Example of the BOOL Built-In Function

101010 (arg x) . L
110011 (arg y) operation defined: 0110

m

result defined by bit 2 = 1

result defined by bit 4 = 0

result defined by bit 1 =0
result defined by bit 3 =1
result defined by bit 2 = 1
result defined by bit4 =0
value returned by the
BOOL built-in function}

011001

ZK-1284-83

OUTER: PROCEDURE;
DECLARE MAX FIXED BINARY STATIC INITIAL (10);

INNER: PROCEDURE;
DECLARE MAX BUILTIN;
TEST = MAX(A,B);

END INNER;
END OUTER;

184 BUILTIN Attribute

The keyword MAX is used here as a variable name. In the internal
procedure INNER, the MAX built-in function is invoked. Because the
scope of the name MAX includes the internal procedure, the function must
be redeclared with BUILTIN.

You can also use the BUILTIN attribute to declare PL/I built-in functions
that have no arguments, if you want to invoke them without the empty
argument list. For example:

DECLARE DATE BUILTIN;
PUT LIST(DATE);

Without the declaration, the PUT LIST statement would have to include
an empty argument list for DATE:

PUT LIST(DATEQ));

Built-In Function

Built-in functions are procedures provided by the PL/I language. You can
use them wherever an expression is valid.

B Built-In Function Arguments

Built-in functions are similar to operators, and their arguments are similar
to operands. Built-in function arguments, if arithmetic, are converted to
their derived type before the function reference is evaluated. See also
“Expression.” All evaluations of built-in functions are performed in the
result type. The arguments are converted again from the derived type to
the result type if necessary. The precision of the result is the greater of the
precisions of the two arguments.

For instance, all the mathematical functions listed in Table B-1 return
floating-point values; their arguments are converted to floating point
(binary or decimal, depending on the base of the argument) before the
operation is performed.

Like all mathematical functions, ATAN returns a floating-point result and
is therefore computed in floating point. The base of the result is the same
as the base of the converted arguments. For example:

DCL J FIXED BINARY(8); FT = ATAN(J,2);

Built-In Function 185

186

Here the derived type of] and 2 is fixed-point binary. The converted
precision of 2 is min(cezl(1/3.32) + 1,31), or 2. The result type is FLOAT
BINARY(8). Both arguments are then converted to FLOAT BINARY(8),
and the ATAN operation is performed.

B Restrictions
Note the following restrictions on built-in function arguments:

® All arguments of all built-in functions except the array-handling, stor-
age, file-control, and STRING functions must be scalars of arithmetic,
string, or pictured data types, as specified for the individual function.

® A reference to a built-in function that takes no arguments must still
contain the pair of enclosing parentheses [example: NULL()] unless
the function’s name has been declared with the BUILTIN attribute.

B Conditions Signaled

Built-in functions, like other operations, can signal conditions. The
mathematical functions, which are computed in floating point, can sig-
nal OVERFLOW and UNDERFLOW under the appropriate conditions.
Functions that are computed in fixed point can signal FIXEDOVERFLOW.
In general, string and other functions signal ERROR if a result cannot be
computed. See also the descriptions of individual conditions and built-in
functions.

B Summary

The built-in functions are summarized in Table B-1, according to the
following categories:

® Arithmetic built-in functions provide information about the properties
of arithmetic values, or perform common arithmetic calculations.

* Mathematical built-in functions perform standard mathematical calcu-
lations in floating point.

® String-handling built-in functions process character-string and bit-
string values.

* Conversion built-in functions convert data from one data type to
another.

* Condition-handling built-in functions provide information about
interrupts caused by signaled conditions.

® Array-handling built-in functions provide information about arrays.

* Storage control built-in functions return values concerning based
variables.

Built-In Function

Table B-1:

* Timekeeping built-in functions return the system date and time of day.

¢ File-control built-in functions return the current line number and page
number of a file.

® Preprocessor built-in functions are used only at compile time by the
embedded preprocessor.

* Miscellaneous built-in functions check the validity of data, aid in
argument passing, and perform other convenient operations

Summary of PL/I Built-In Functions

Category Function Reference Value Returned
Arithmetic ABS(x) Absolute value of x
ADD(x,y,pl.q]) Value of x+y, with precision p and scale
factor q
CEIL(x) Smallest integer greater than or equal to
X
DIVIDE(x,y,p[.q]) Value of x divided by y, with precision
p and scale factor q
FLOOR(x) Largest integer that is less than or equal
to x
MAX(x,y) Larger of the values x and y
MIN(x,y) Smaller of the values x and y
MOD(x,y) Value of x modulo y
MULTIPLY(x,y,p[.q]) Value of x*y, with precision p and scale
factor q
PRECISION(x,p[.q]) Value of expression x, with precision p
and scale factor q
ROUND(x,k) Value of x rounded to k digits
SIGN(x) -1, 0, or 1 to indicate the sign of x
SUBTRACT(x,y.p[.q]) Value of x-y, with precision p and scale
factor q
TRUNC(x) Integer portion of x
Mathematical ACOS(x) Arc cosine of x (angle, in radians, whose
cosine is x)
ASIN(x) Arc sine of x (angle, in radians, whose

sine is x)

Built-In Function 187

Table B—-1 (Cont.):

Summary of PL/1 Built-In Functions

Category

Function Reference

Value Returned

String-Handling

188

Built-In Function

ATAN(x)
ATAN(x,y)
ATAND(x)
ATAND(x,y)

ATANH(x)
COS(x)
COSD(x)
COSH(x)
EXP(x)

LOG(x)
LOG10(x)
LOG2(x)
SIN(x)
SIND(x)
SINH(x)
SQRT(x)
TAN(x)
TAND(x)
TANH(x)
BOOL(x,y,z)

COLLATE()
COPY(s,c)

- EVERY(s)

Arc tangent of x (the angle, in radians,
whose tangent is x)

Arc tangent of x (the angle, in radians,
whose sine is x and whose cosine is y)

Arc tangent of x (the angle, in degrees,
whose tangent is x)

Arc tangent of x (the angle, in degrees,
whose sine is x and whose cosine is y)

Hyperbolic arc tangent of x
Cosine of radian angle x
Cosine of degree angle x
Hyperbolic cosine of x

Base of the natural logarithm, e, to the
power x

Logarithm of x to the base e
Logarithm of x to the base 10
Logarithm of x to the base 2
Sine of the radian angle x
Sine of the degree angle x
Hyperbolic sine of x

Square root of x

Tangent of the radian angle x
Tangent of the degree angle x
Hyperbolic tangent of x

Result of Boolean operation z performed
on x and y

ASCII character set
¢ copies of specified string, s

Boolean value indicating whether every
bit in bit string s is ‘1'B

Table B—-1 (Cont.):

Summary of PL/1 Built-In Functions

Category Function Reference Value Returned

HIGH(c) String of length ¢ of repeated occur-
rences of the highest character in the
collating sequence

INDEX(s,c[,p]) Position of the character string ¢ within
the string s, starting at position p

LENGTH(s) Number of characters or bits in the
string s

LOW(c) String of length ¢ of repeated occur-
rences of the lowest character in the
collating sequence

MAXLENGTH(s) Maximum length of varying string s

REVERSE(s) Reverse of the source character string or
bit string

SEARCH(s,c[,p]) Position of the first character in s,
starting at position p, that is found in ¢

SOME(s) Boolean value indicating whether at
least one bit in bit string s is '1'B

STRING(s) Concatenation of values in array or
structure s

SUBSTR(s,i[,j]) Part of string s beginning at i for j
characters

TRANSLATE(s,c[,d]) String s with substitutions defined in ¢
and d '

TRIM(s[,e,f]) String s with all characters in e removed
from the left, and all characters in f
removed from the right

VERIFY(s,c[,p]) Position of the first character in s,
starting at position p, which is not
found in ¢

Conversion BINARY(x[,p[.ql) Binary value of x with precision p and

scale factor q

BIT(s[.1]) Value of s converted to a bit string of

length 1

Built-In Function 189

Table B—-1 (Cont.):

Summary of PL/I Built-In Functions

Category

Function Reference

Value Returned

Condition-Handling

190 Built-In Function

BYTE(x)
CHARACTER(s[,1])

DECIMAL(X[,p[.q]])
DECODE(c,r)

ENCODE(,r)
FIXED(x,p[.q])

FLOAT(x,p)
INT((,p[1))

POSINT(x[,p[.1]})
RANK(c)
UNSPEC(x{,p[1])
ONARGSLIST()
ONCHAR()
ONCODE()

ONFILE()

ONKEY()

ASCII character represented by the
integer x

Value of s converted to a character
string of length 1
Decimal value of x

Fixed binary value of the character string
¢ converted to a base r number

Character string representing the base r
number that is equivalent to the fixed
binary expression i

Fixed arithmetic value of x
Floating arithmetic value of x

Signed integer value of variable x,
located at position p with length 1

Unsigned integer value of variable x,
located at position p with length 1

Integer representation of the ASCII
character ¢

Internal coded form of x, located at
position p with length |

Pointer to argument lists of exception
condition

Character that caused the CONVERSION
condition to be raised

Error code of the most recent run-time
error

Name of file constant for which the
most recent ENDFILE, ENDPAGE, KEY,
or UNDEFINEDFILE condition was
signaled

Value of key that caused KEY condition

Table B-1 (Cont.):

Summary of PL/I Built-In Functions

Category

Function Reference

Value Returned

Array-Handling

Storage

Timekeeping

File Control

Preprocessor

ONSOURCE()

DIMENSION(x[,n])
HBOUND(x[,n])
LBOUND(x{,n])
PROD(x)

SUM(x)
ADDR(x)

ALLOCATION(x)

EMPTY()
NULL()
OFFSET(p,a)

POINTER(0,a)

SIZE(x)
DATE()
DATETIME()

TIME()
LINENO(x)
PAGENO(x)

ABS(x)
BYTE(x)
COPY(s,c)

Field containing the ONCHAR character
when the CONVERSION condition was
raised

Extent of the nth dimension of x
Higher bound of the nth dimension of x
Lower bound of the nth dimension of x

Arithmetic product of all the elements in
X

Arithmetic sum of all the elements in x

Pointer identifying the storage refer-
enced by x

Number of existing generations for
controlled variable x

An empty area value
A null pointer value

An offset into the location in area a
pointed to by pointer p

A pointer to the location at offset o
within area a

Number of bytes allocated to variable x
System date in the form YYMMDD

System date and time in the form
CCYYMMDDHHMMSSXX

System time of day in the form
HHMMSSXX

Line number of the print file identified
by x

Page number of the print file identified
by x

Absolute value of x

ASCII character represented by integer x

c copies of specified string s

Built-In Function 191

Table B-1 (Cont.):

Summary of PL/I Built-In Functions

Category

Function Reference

Value Returned

192

Built-In Function

DATE()
DATETIME()

DECODE(c,r)

ENCODE(i,r)

ERROR()
INDEX(s,c[,p])
INFORM()
LENGTH(s)
LINE()
MAX(x,y)
MIN(x,y)

MOD(x,y)
RANK(c)

REVERSE(s)
SEARCH(s,c[,p])

SIGN(x)
SUBSTR(s,i[,j])

TIME()

Compilation date in the form YYMMDD

System date and time in the form
CCYYMMDDHHMMSSXX

Fixed binary value of the character string
¢ converted to a base r number

Character string representing the base r
number that is equivalent to the fixed
binary expression i

Count of user-generated diagnostic error
messages

Position of the character string ¢ within
the string s, starting at position p

Count of user-generated diagnostic
informational messages

Number of characters or bits in the
string s

Line number in source program that
contains the end of the specified prepro-
cessor statement

Larger of the values x and y
Smaller of the values x and y
Value of x modulo y

Integer representation of the ASCII
character ¢

Reverse of the source character string or
bit string

Position of the first character in s,
starting at position p, that is found in ¢

-1,0, or 1 to indicate the sign of x
Part of string s beginning at i for j
characters

Compilation time of the day in the form
HHMMSSXX

Table B-1 (Cont.):

Summary of PL/I Built-In Functions

Category

Function Reference

Value Returned

Miscellaneous

TRANSLATE(s,c[,d])

TRIM(se.f])
VARIANT()
VERIFY(s,c[.p])

WARN()
ACTUALCOUNT()
DESCRIPTOR(x)
PREéENT(p)
REFERENCE(x)

VALID(p)

VALUE(x)

String s with substitutions defined in ¢

and d

String s with all characters in e removed

from the left and all characters in f
removed from the right

String result representing the value
of /VARIANT of the PLI command
qualifier

Position of the first character in s,
starting at position p, which is not
found in ¢

Count of user-generated diagnostic
warning messages

Number of parameters the current
procedure was called with

Forces its argument to be passed by
descriptor to a non-PL/I procedure

Boolean value indicating whether
parameter p was specified in a call

Forces its argument to be passed by
reference to a non-PL/I procedure

Boolean value, indicating whether
the pictured variable p has a value

consistent with its picture specification

Forces its argument to be passed by
value to a non-PL/I procedure

Built-In Subroutine

Built-in subroutines are VAX PL/I-specific routines that provide various
added capabilities. These routines can be used in a CALL statement. All
arguments are evaluated as for normal subroutines.

Built-In Subroutine

193

BY Option

194

BY Option

The built-in subroutines are summarized in Table B-2, according to the

following functional categories:

¢ Condition-handling built-in subroutines assist in performing condition-

related operations.

¢ File-control built-in subroutines perform file operations not supported

by the standard PL/I language.

® Record-locking built-in subroutines allow extended record-locking
control in conjunction with the OPTIONS clause of the READ state-

ment.

The built-in subroutines are described in detail in the VAX PL/I User

Manual.

Table B-2: Summary of PL/I Built-In Subroutines

Category Routine Reference Action
Condition-handling RESIGNAL() Allows more processing of a
signal
File-control DISPLAY(f,i) Returns information on file f
into i
EXTEND(f,b) Extends file f by b blocks
FLUSH(f) Forces all buffers for file f to be

NEXT_VOLUME(f)

REWIND(f)
SPACE_BLOCK(f,b)

Record-locking FREE(f)
RELEASE(f,r)

flushed

Performs magnetic tape volume
processing on file f

Resets file f to the beginning

Positions file f forward or
backward b blocks

Frees all locks for file f

Releases locked record r in file
f

The BY option defines a value by which a control variable in a DO
statement specification is modified. For example:

DO I = 10 BY 10 WHILE (X < Y) UNTIL (X = 90);

The DO-group following this statement is executed with values for I of 10,
20, and so on, until the specification in the WHILE option is no longer true
or the UNTIL option is true. If no BY option is specified in a controlled
DO statement, the default value of 1 is used. See “DO Statement.”

BYTE Built-In Function
BYTE Preprocessor Built-In Function

The BYTE built-in function returns the ASCII character whose ASCII code
is the integer x; x must not be negative. The returned value is a character
equivalent to BYTE(y), where y equais x modulo 256. The format of the
function is as follows:

BYTE(x)
B Example
DECLARE CHAR CHARACTER(1);
CHAR = BYTE(65) ; /* CHAR = 'A' x/
CHAR = BYTE(32); /* CHAR = ' ' (space) */

BYTE Preprocessor Built-In Function 195

C

CALL Statement

196

The CALL statement transfers control to an entry point of a procedure and
optionally passes arguments to the procedure. The format of the CALL
statement is as follows:

CALL entry-name [(argument,...)];

entry-name

The name of an external or internal procedure that does not have the
RETURNS attribute, or the name of an alternate entry point to a proce-
dure. The entry name can also be an entry variable or a reference to a
function that returns an entry value.

argument, . . .

The argument list to be passed to the called procedure. If specified, the ar-
guments must correspond to the parameters specified in the PROCEDURE
or ENTRY statement that identifies the entry name of the called procedure.

Unless you specify OPTIONS(VARIABLE) in the declaration of an ex-
ternal entry name, the number of arguments must match the num-
ber of parameters in the parameter list of the invoked entry name.
OPTIONS(VARIABLE) is valid only for use with non-PL/I procedures.

You must enclose arguments in parentheses. Multiple arguments must be
separated by commas.

You can use the CALL statement to call an internal or external procedure.
The following example illustrates a main procedure, CALLER, and a

call to an internal procedure, PUT_OUTPUT. PUT_OUTPUT has two
parameters, INSTRING and OUTFILE, that correspond to the arguments
LINE and DEVICE specified in the CALL statement.

CALL Statement

CALLER: PROCEDURE OPTIONS(MAIN);
CALL PUT_OUTPUT(LINE,DEVICE);
PUT_OUTPUT : PROCEDURE (INSTRING, OUTFILE) ;

END PUT_OUTPUT;
END CALLER;

For more information, see “Entry Data,” “Parameters and Arguments,”
“Procedure,” “Procedure Block,” and “PROCEDURE Statement”; and the
VAX PL/I User Manual.

CEIL Built-In Function

The CEIL function returns the smallest integer that is greater than or equal
to an arithmetic expression x. Its format is as follows:

CEIL(x)
B Returned Value

If x is a floating-point expression, a floating-point value is returned with
the same precision as x. If x is a fixed-point expression, the returned value
is a fixed-point value of the same base as x and with

prectsion = min(3l,p—q+1)
scalefactor =0

where p and q are the precision and scale factor of x.

H Examples

A =4.3;

Y = CEIL(A); /*Y =5 %/
A=-4.3;

Y = CEIL(A); /* Y = -4 %/

CEIL Built-In Function 197

CHARACTER Attribute

198

The CHARACTER attribute identifies a variable as a character-string
variable. The format of the CHARACTER attribute is as follows:

CHARACTER
{ CHAR } [(length)]

length

The number of characters in a fixed-length string or the maximum length
of a varying-length string. If not specified, a length of 1 is assumed. The
length must be in the range 0 through 32767 characters.

The rules for specifying the length are as follows:

e If the attribute is specified for a static variable declaration or in a
returns descriptor, length must be a restricted integer expression
(defined in the entry “Restricted Expression”).

e If the attribute is specified in the declaration of a parameter or in a
parameter descriptor, length can be specified as a restricted integer
expression or as an asterisk (*).

e If the attribute is specified for an automatic, based, or defined variable,
length can be specified as an expression. In the case of automatic or
defined variables, the expression must not contain any variables or
functions that are declared in the same block, except for parameters.

If specified, the length must immediately follow the keyword
CHARACTER, and it must be enclosed in parentheses.

If you give a variable the CHARACTER attribute, you can also specify the
attribute VARYING or NONVARYING.

B Restriction

The CHARACTER attribute directly conflicts with the BIT attribute and
with any other data type attribute.

CHARACTER Attribute

CHARACTER Built-In Function

The CHARACTER built-in function converts an arithmetic or string
expression x to a character string of an optionally specified length. If

the length is specified, it must be a nonnegative integer. If the length is
omitted, the length of the returned value is determined by the PL/I rules
for conversion to character strings (see “Conversion of Data”). The format
of the function is as follows:

{ CHARACTER

CHAR } (x[,length])

B Example

CHAR: PROCEDURE OPTIONS(MAIN);

DECLARE EXPRES FIXED DECIMAL(7,5);
DECLARE OUTPUT PRINT FILE;

EXPRES = 12.34567;
OPEN FILE(OUTPUT) TITLE('CHAR2.0UT');

PUT SKIP FILE(OUTPUT)
LIST('No length argument: ',CHARACTER(EXPRES));

PUT SKIP FILE(OUTPUT)
LIST('Length = 4: ', CHARACTER(EXPRES,4));

END CHAR;
The program CHAR produces the following output:

No length argument: 12.34567
Length = 4: 12

In the first PUT LIST statement, CHARACTER has only one argument, so
the entire string is written out. The string '12.34567' is actually preceded
by two spaces; this is the case with any nonnegative number converted
to a character string (see “Conversion of Data”). In the second PUT LIST
statement, CHARACTER has a length argument of 4, so the first four
characters of the converted string are written out as ‘aa12’.

CHARACTER Built-In Function 199

Character-String Data

200

A character string is a sequence of characters. The value of a character-
string variable is a sequence of ASCII characters. A character-string
constant is a sequence of DEC Multinational Character Set characters, and
can include non-ASCII characters. The first 128 characters of the DEC
Multinational Character Set are the ASCII characters. (See Appendix B for
the entire character set.)

The maximum length of a character-string value is 32767 bytes.

Every character-string variable has a length attribute that specifies ei-
ther the length of all values of the variable (fixed-length strings) or the
maximum length of a value of the variable (varying-length strings).

This discussion of character-string data is divided into the following parts:
* Constants

® Replication of string constants

e Variables

® Varying character strings

* Alignment of character strings

* Internal representation

B Character-String Constants

When you use character-string constants in a program, you must enclose
the character strings in apostrophes, as shown in the following examples:
'Total is:'

'Enter your name and age'

'Error - value is out of range'

To specify a string containing a literal apostrophe, use two apostrophes
within the string. For example:

'Life isn''t fair'

The final result contains only a single apostrophe.

Character-String Data

B Replication of String Constants

You can use a replication factor to replicate character-string and bit-
string constants in any context of the program. A replication factor is
an unsigned integer constant that specifies the number of times a simple
string constant is replicated to produce a resulting string constant.

For example:
(4)'season ';

In this example, the string is repeated four times. The character constant
resulting from this specification looks like this:

season season season season

You can use a replication factor in combination with the iteration factor in
INITIAL. For example, the following two statements are equivalent:

INITIAL ((10) ('ABCABC'))
INITIAL ((10)((2)'ABC'))

The first example uses an iteration factor exclusively, but the second
example combines an iteration factor of 10 with a replication factor of 2.
Note that an extra set of parentheses is required to separate the iteration
factor from the replication factor and the character string.

B Character-String Variables

The CHARACTER keyword identifies a variable as a character-string
variable in a declaration, The format for specifying a fixed-length
character-string variable is as follows:

DECLARE variable-name CHARACTER [(n)];

where n is the length of the variable, that is, the number of bytes needed
to contain the value of the variable. If not specified, PL/I uses the default
length of one character (one byte).

Fixed-Length Character-String Variables

When a program assigns a value to a fixed-length character-string variable,
the value is not always exactly the same as the length defined for the
variable. Depending on the size of the value, PL/I does the following:

e If the value is smaller than the length of the character string, PL/I
pads the string with spaces on the right. For example:

Character-String Data 201

202

DECLARE STRING CHARACTER (10);
STRING = 'ABCDEF';

The final value of the variable STRING in this example is
'ABCDEFaaan’, that is, the characters ABCDEF followed by four
space characters.

e If the value is larger than the length of the variable, PL/I truncates
the string on the right. For example:

DECLARE STRING CHARACTER (4);
STRING = 'ABCDEF';

The final value of the variable STRING in this example is ‘ABCD’, that
is, the first four characters of the value ‘"ABCDEF'.

Initializing Character-String Variables
You can use the INITIAL attribute to supply an initial value for the
variable. For example:

DECLARE MESSAGE CHARACTER (20)
INITIAL('Begin entering text');

If the initial value for a variable is longer than the length, the value is
truncated. If the initial value is shorter than the specified length, the string
is padded with spaces on the right.

B Varying Character Strings

When you define a character-string variable, you can also specify the
VARYING attribute. A varying character-string variable is a variable
whose length is not fixed. The length specified in the declaration of the
variable defines the maximum length of any value that can be assigned
to the variable. Each time a value is assigned to the variable, the current
length can change. For example:

DECLARE NAME CHARACTER (20) VARYING;
NAME = 'COOPER';
NAME = 'RANDOM FACTOR';

The declaration of the variable NAME indicates that the maximum length
of any character-string value it can have is 20. Although the maximum
length of NAME is 20, the current length becomes 6 when NAME is
assigned the value COOPER; the length becomes 13 when NAME is
assigned the value RANDOM FACTOR; and so on.

When a varying character string is assigned a value with a length greater
than the maximum defined, the value is truncated on the right.

Character-String Data

The initial length of a based, controlled, or automatic varying-length
character-string variable is undefined. A static variable is initially a null
string with a length of zero.

You can use the LENGTH built-in function to determine the current length
of any string. See “LENGTH Built-In Function.”

You can use the MAXLENGTH built-in function to determine the max-
imum length of a varying character string. See “MAXLENGTH Built-In
Function.”

B Alignment of Character Strings

The PL/I language makes a distinction between aligned and unaligned
(fixed-length) character-string variables. (No such distinction is made for
varying character strings or for character-string constants.) A character-
string variable is aligned if it is declared with the ALIGNED attribute.

In VAX PL/I, this distinction affects only argument passing. If a procedure
declares a parameter as ALIGNED CHARACTER, and if the corresponding
* argument is an unaligned character-string variable or vice versa, the actual
argument will be a dummy variable. For example:

DECLARE GETSTRING ENTRY (CHARACTER (%) ALIGNED);
DECLARE STRING CHARACTER (8);
CALL GETSTRING (STRING);

PL/I constructs a dummy variable here to pass the unaligned string
variable STRING to the called procedure GETSTRING, rather than passing
the actual argument by reference. (See “Argument Passing.”)

Note that all character strings on the VAX hardware are aligned on byte
boundaries. Thus, it is recommended that you do not use the ALIGNED
attribute to declare character-string variables.

B Internal Representation of Character Data

PL/I stores fixed-length character-string data from right to left, giving each
character a byte of storage, as follows:

Character-String Data 203

Byte Byte Byte Byte

Pt e e N

c4 c3 c2 cl
c8 c7 c6 c5
ZK-1285-83

For example, a character string whose value is ‘CHARLIE ALPHA' is
stored as follows:

Byte Byte Byte Byte

e e e e e T

R A H C

A E I L

H P L A

. . . A
ZK-1286-83

204 Character-String Data

Varying-length strings are stored in a number of bytes equal to n+2, where
n is the declared maximum length. The two additional bytes contain the
current length of the value in bytes in the first two byte addresses.

CLOSE Statement

The CLOSE statement dissociates PL/I files from the physical files with
which they were associated when opened. The format of the CLOSE
statement is as follows:

CLOSE FILE(file-reference) [ENVIRONMENT (option,...)]
[.FILE(file-reference) [ENVIRONMENT (option,...}]]...;

file-reference
A file to be closed. If the file is already closed, the CLOSE statement has
no effect.

ENVIRONMENT (option, . ..)
One or more of the following ENVIRONMENT options, separated by
commas:

BATCH

DELETE

REVISION _DATE
REWIND_ON_CLOSE
SPOOL

TRUNCATE

No other ENVIRONMENT options are valid. All ENVIRONMENT options
are described in detail in the VAX PL/I User Manual.
B Examples

CLOSE FILE(INFILE) ENVIRONMENT(SPOOL) ;

This CLOSE statement closes the file constant INFILE and submits it for
printing on the default spooler queue.

CLOSE FILE(A) ENV(DELETE), FILE(B) ENV(REVISION_DATE(X));

CLOSE Statement 205

This CLOSE statement closes two files specified in a comma list, each with
a different ENVIRONMENT option.

DECLARE STATE_FILE FILE KEYED;

OPEN FILE(STATE_FILE) DIRECT UPDATE;

CLOSE FILE(STATE_FILE);
OPEN FILE(STATE_FILE) INPUT SEQUENTIAL;

The file STATE_FILE is declared with the KEYED attribute. The first
OPEN statement that specifies this file is given the DIRECT and UPDATE
attributes and opened for updating; the file can be accessed only by key.

The CLOSE statement closes the file. The second OPEN statement
specifies the INPUT and SEQUENTIAL attributes; the file can now be
accessed sequentially.

COLLATE Built-In Function

The COLLATE built-in function returns a 256-character string consisting
of the ASCII character set in ascending order. Its format is as follows:

COLLATE()

COLUMN Format Item

206

The COLUMN format item sets a stream file to a specific character position
within a line. In other words, COLUMN determines the position at which
the next data will be output or from which the next data will be input.
The COLUMN format item refers to an absolute character position in a
line; for information on how to refer to a relative position, see “X Format
Item.”

The form of the COLUMN format item is as follows:

COLUMN
{ coL } (w)

COLUMN Format ltem

w

A nonnegative integer or expression that identifies the wth position from
the beginning of the current line. The value of the converted expression

must be zero or positive. If the value of the converted expression is zero,
a value of 1 is assumed.

If the file is already at the specified position, no operation is performed. If
the file is already beyond the specified position, the format item is applied
to the next line.

The interpretation of the COLUMN format item on input and output is
given below. For a general discussion of format items, see “Format Item.”

B Input with GET EDIT

The file is positioned at the column specified by w. Characters between
the beginning of the line and this column are ignored. If the file is already
positioned beyond the specified column, the remainder of the line is
skipped and the format item is applied to the next line.

B Output with PUT EDIT

The file is positioned at the column specified by w. Within the current
line, positions between the wth column and the position of the last output
data are filled with spaces.

If the file is already positioned beyond the specified column, the format
item is applied to the next line. If w exceeds the line size, a value of 1 is
assumed. See also “LINESIZE Option.”

B Examples
COL: PROCEDURE OPTIONS(MAIN);

DECLARE IN STREAM INPUT FILE;
DECLARE QUT STREAM OUTPUT FILE;
DECLARE LETTER CHARACTER(1);

PUT FILE(OUT) SKIP
EDIT('123456789012345678901234567890') (A);
PUT FILE(OUT) SKIP
EDIT('COL1', 'COL28') (A,COL(28),4);

GET FILE(IN) EDIT (LETTER) (A(1));
PUT FILE(OUT) SKIP(2)
LIST('Letter in column 1:',LETTER);

COLUMN Format Item 207

Comment

208

Comment

GET FILE(IN)
EDIT (LETTER) (COL(25),A(1));
PUT FILE(OUT) SKIP
LIST ('Letter in column 25:',LETTER);

END COL;
If the stream input file IN.DAT contains the following text:
ABCDEFGHI JKLMNOPQRSTUVWXYZ

then the program COL writes the following output to the stream output
file OUT.DAT:

123456789012345678901234567890
COL1 CcoL28

'Letter in column 1:' 'A'
'Letter in column 26:' 'Y'

A comment is an informational tool for documenting a PL/I program. To
insert a comment in a program, enclose the comment within the character
pairs slash-asterisk (/*) and asterisk-slash (*/). For example:

/* This is a comment.... */

Wherever the characters /* appear in a program, the compiler ignores
all text until it encounters the characters */. Thus, a comment can span
several lines.

The rules for entering comments are as follows:

* A comment can appear anywhere a space can appear:

— Between any identifiers, keywords, and constants. In this context,
a comment separates tokens, or discrete text items, in a statement.

— Preceding or following any other punctuation marks that normally
delimit tokens, for example, spaces, tabs, or commas.

* A comment can contain any character except the pair */; comments
cannot be nested.

Some examples of comments are as follows:

A=B+C; /* Add B and C */

/% *%kxxkxxx START OF SECOND PHASE s¥k%¥skk* */

DECLARE/+COUNTER+/A FIXED BINARY (7);

/* This module performs the following steps:

* 1. Initializes all arrays and data structures.
* 2. Establishes default condition handlers.

*

*/

Although complete comments cannot be nested, you can “comment out” a
statement such as the following;:

DECLARE EOF BIT(1); /* end-of-file %/

You can make this statement a comment by preceding the DECLARE
keyword with another /*. The compiler will then ignore all text, including
the DECLARE statement, until it reaches the */. For example:

/* DECLARE EOF BIT(1); /* end-of-file */

Common Data Dictionary

The VAX Common Data Dictionary (CDD) is a set of shareable data def-
initions (language-independent structure declarations) that are defined
by a system manager or data administrator. The CDD provides a central
storage repository that can be shared and that is protected from unautho-
rized access. The definitions stored in the CDD help the system manager
coordinate an effective data management system.

The advantages to using the CDD are as follows:

® Record declarations are language independent.

* A single, centrally defined and stored declaration helps guarantee the
accuracy and reliability of data.

NOTE

The CDD is a layered product, and not all systems that use
PL/I use the CDD. If you are not certain if CDD is installed on
your system, see your system manager.

CDD data definitions are organized in a hierarchical dictionary in much
the same way that files are organized in directories and subdirectories.
For example, a dictionary for defining personnel data might have separate
directories for each classification of employee. Subdirectories pertaining to
employees who are salespeople might include data definitions for records
such as salary and commission history or personnel record.

Common Data Dictionary 209

CDD entries are stored in an internal form that is independent of any
higher level language; descriptions of data definitions are entered into the
dictionary in a unique, general-purpose language called Common Data
Dictionary Language (CDDL). Then the CDDL compiler converts the data
descriptions to an internal form. When a PL/I program that uses the CDD
is compiled, CDD data definitions are drawn into the program (provided
the data attributes are consistent). Program listings include CDD data
definitions in the same language as the application program (in this case,
PL/I).

You can include CDD records in PL/I programs with the %DICTIONARY
statement. See “%DICTIONARY Statement.” See the VAX PL/I User
Manual for an explanation of CDD usage in a PL/I program.

Comparison Operator

See “Relational Operator.”

Concatenation Operator

210

The concatenation operator produces a single string from two strings
specified as operands. The concatenation operator is two vertical bars

(). ‘

The operands must both be character strings or both be bit strings. (If not,
the appropriate conversion is performed, and you get a warning message
about the conversion. See “Expression” for information on the various
conversions.) The result of the operation is a string of the same type as
the operands.

CONCAT: PROCEDURE OPTIONS(MAIN);
DECLARE QUTFILE STREAM OUTPUT PRINT FILE;

PUT FILE(OUTFILE) SKIP LIST('ABC'||'DEF');
PUT FILE(OUTFILE) SKIP LIST('001'B|i'110'B);
PUT FILE(OUTFILE) SKIP LIST((3)'001'Bl||'07'B3);

END CONCAT;

The program CONCAT writes the following output to the file
OUTFILE.DAT:

Concatenation Operator

ABCDEF
'001110'B
'001001001000111'B

Note that the exclamation point can be used in place of the vertical bar,
for compatibility with other PL/I implementations.

CONDITION Attribute

The CONDITION attribute can optionally be used in a declaration to
specify that the variable name is a condition name. You can abbreviate
CONDITION to COND. You can specify INTERNAL or EXTERNAL scope
attributes with the CONDITION attribute. The default scope is external.

See “Condition Handling,” “Error and Condition Handling,” and “ON
Conditions and ON-Units.”

CONDITION Condition Name

The CONDITION condition name is used for ON-units to handle
programmer-defined conditions. The value returned by the ONCODE
built-in function is PLI$_CONDITION. The format of the CONDITION
condition name is as follows:

CONDITION (cond-name)

cond_name
A name declared with the CONDITION attribute.

Condition Handling

A PL/I condition is any occurrence that causes the interruption of a
program and a signal. When a condition is signaled, PL/I initiates a
search for a user-written program unit called an ON-unit to handle the
condition. See “ON Conditions and ON-Units” and “Error and Condition
Handling.”

Condition Handling 211

Constant

212

Constant

A constant is a data item whose value cannot change during the execution
of a PL/I program. The converse of a constant is a variable, that is, a data
item to which various values can be assigned during the execution of a

program.
VAX PL/I allows the following kinds of constants:

® Literal constants, which are actual numbers and strings written in
the source program. Literal constant types are restricted to character
strings (see “Character-String Data”), bit strings, and fixed- or floating-
point decimal numbers. Unscaled fixed decimal numbers can be
written with or without a decimal point. Arithmetic constants can be
signed. String constants can be replicated. (See “Replication Factor.”)

* Label constants, which are established when you use a label in the
source program. Label constants cannot be declared in a DECLARE
statement.

* Declared constants (file and entry constants), which generally are
established with DECLARE statements. The default file constants
SYSIN and SYSPRINT need not be declared.

* Constant identifiers, which are identifiers assigned literal constant
values with the %REPLACE statement. Constant identifiers are
restricted to the same types as literal constants. See “%REPLACE
Statement.”

PL/I also has the computational types FIXED BINARY, FLOAT BINARY,
and PICTURE, but there are no literal constants or constant identifiers
associated with these types. Binary variables usually receive values when
decimal constants or other binary variables are assigned to them; then
PL/1 converts the assigned value to binary. Pictured variables usually
receive values when fixed-point decimal constants are assigned to them.
For further details, see “Conversion of Data.”

B Examples

445 /* a fixed-point decimal constant */
-445. /* a fixed-point decimal constant */
16.2 /% a tixed-point decimal constant */
129E-3 /* floating-point decimal constant */
'00101111'B /* a bit-string constant */

'This is a string' /* a character-string constant */
DECLARE E ENTRY; /* an entry constant */

DECLARE F FILE; /* a tile constant */

STARTUP: /* a label constant */

%REPLACE PI BY 3.14159
/* a fixed-point decimal
constant identifier */

STATUS = 25; /* assignment of a fixed
decimal constant to a
variable */

C = 3E10; /* assignment of a floating
decimal constant to a
variable */

CONTROLLED Attribute

The CONTROLLED attribute causes a variable’s actual storage to be
allocated and freed dynamically in “generations,” only the most recent of
which is accessible to the program. For general information and examples,
see “Controlled Variable.” The format of the CONTROLLED attribute is as
follows:

{ CONTROLLED }
CTL

B Restrictions
The following attributes conflict with the CONTROLLED attribute:

AUTOMATIC
BASED
DEFINED
GLOBALDEF
GLOBALREF
READONLY
STATIC
VALUE
PARAMETER

The CONTROLLED attribute cannot be applied to minor structures,

members of structures, parameters, or descriptions in an ENTRY or
RETURNS attribute.

CONTROLLED Attribute 213

Controlled Variable

214

The declaration of a controlled variable describes storage that will be
allocated dynamically during program execution. A controlled variable has
no storage assigned to it until an ALLOCATE statement allocates storage
for it. This is called a generation of the variable. Further ALLOCATE
statements allocate more generations. At any time in the program'’s
execution, a reference to a controlled variable is a reference to the most
recent generation of that variable, that is, the generation created by the
most recent ALLOCATE statement.

The FREE statement frees the most recent generation of 3 controlled
variable. If an attempt is made to free a controlled variable for which no
generation exists (or to refer to such a variable), PL/I signals the ERROR
condition.

The following example illustrates the use of controlled variables:

CONT: PROCEDURE OPTIONS (MAIN);
DECLARE STR CHARACTER (10) CONTROLLED;

ALLOCATE STR;

STR = 'First';
ALLOCATE STR;

STR = 'Second’;
ALLOCATE STR;

STR = 'Third‘';

PUT SKIP LIST (STR);
FREE STR;

PUT SKIP LIST (STR);
FREE STR;

PUT SKIP LIST (STR);
FREE STR;

END;
The output of this program is

Third
Second
First

Because only the most recent generation of a controlled variable is avail-
able to a program, controlled variables provide an easy way to implement
a stack. The ALLOCATE statement is equivalent to a push operation, and
the FREE statement is equivalent to a pop operation. To test for an empty
stack, use the ALLOCATION built-in function, which returns the number
of generations of a variable. For example:

Controlled Variable

DECLARE NEXT_MOVE CHARACTER(5) CONTROLLED,
DIRECTIONS(4) CHARACTER(5) INITIAL(
'North', 'East', 'South’, 'West'),

D FIXED BINARY (7);

ALLOCATE NEXT_MOVE; /* Part of a loop that stores */
NEXT_MOVE = DIRECTIONS(D); /* moves in reverse order */

DO WHILE /* Print moves in correct order */
(ALLOCATION(NEXT_MOVE) “= 0);
PUT SKIP LIST ('Go ', NEXT_MOVE);
FREE NEXT_MOVE;

END;

A controlled variable can be used as the argument of the ADDR built-in
function. If no generation of the variable exists, ADDR returns the null
pointer. If a generation does exist, ADDR returns a pointer to it. Thus,
ADDR can be used to preserve a pointer to a generation of a controlled
variable that later becomes “hidden” under more generations, as in the
following example:

DECLARE STOPS CHARACTER (20) VARYING CONTROLLED,
MIDPOINT CHARACTER (20) VARYING BASED (P),
P POINTER;

ALLOCATE STOPS;
STOPS = CURRENT_LOC;
IF I = 5 THEN P = ADDR(STOPS);

PUT SKIP LIST (
'End reached! Halfway point was', MIDPOINT);

At a certain point during the execution of this program, the ADDR built-
in function captures the address of the current generation of STOPS
and assigns it to P. Later, after more generations of STOPS have been
allocated, MIDPOINT (which is based on P) has the value of that same
intermediate generation of STOPS.

Note, however, that the value of P and therefore of MIDPOINT is valid
only if the intermediate generation of STOPS to which P points is al-
located. As soon as that generation is freed, the value of P becomes
invalid and it must not be used in a pointer-qualified reference until it is
reassigned.

Controlled Variable 215

A controlled variable cannot be used in a pointer-qualified reference. In
the previous example, this reference would be illegal.

P->STOPS

CONVERSION Condition Name

216

The CONVERSION condition name can be specified in an ON, SIGNAL,
or REVERT statement to designate a CONVERSION condition or ON-unit.

PL/1 signals the CONVERSION condition when the source character data
in a conversion to bit-string or arithmetic data contains characters that
are not valid in the specified context. In particular, the CONVERSION
condition is raised when a character string is being converted and one of
the following conditions is true:

* The target of the conversion is an arithmetic type, and the source
string does not contain a valid, optionally signed arithmetic constant.

* The target of the conversion is a picture, and the source string does
not conform to the picture specification.

* The target of the conversion is a bit string, and a character other than
0 or 1 appears in the source string.

The CONVERSION condition can be raised either by a non-1/O con-
version, such as an explicit conversion using a built-in function or an
implicit conversion generated by the compiler, or by an I/O conver-
sion in a GET statement. For example, A = BIT('1014’) would cause the
CONVERSION condition to be raised, because 4 is not a valid binary
digit. Likewise, a GET statement with an arithmetic target would also
cause the CONVERSION condition to be raised if the characters '12K45’
appeared in the input field, because 'K’ is not a valid numeric character.

You can use the ONSOURCE and ONCHAR built-in functions and
pseudovariables inside an ON CONVERSION ON-unit. The ONSOURCE
built-in function returns the source string that caused the CONVERSION
condition to be raised. The ONCHAR built-in function returns the specific
character that caused the conversion to fail. You can use the ONSOURCE
pseudovariable to change the value of the conversion. Likewise, you can
use the ONCHAR pseudovariable to modify only the single character in
error.

CONVERSION Condition Name

If the CONVERSION condition was raised during a conversion required
by the GET statement, the ONFILE built-in function returns the name of
the file constant inside the CONVERSION ON-unit. If the CONVERSION
condition was not raised during a conversion required by the GET state-
ment, the ONFILE built-in function returns a null string.

A normal return from a CONVERSION condition will cause the conver-
sion to be reattempted if the ONSOURCE or ONCHAR pseudovariables
have had values assigned to them. If the ONSOURCE value has not been
modified, the ERROR condition is raised instead.

For example:

/*

*# Sample program that displays a 'quick-fix' CONVERSION

* ON-unit. At the end of this program, TARGET1 contains

* the value 14015, and TARGET2 contains the value '11100'B.
* Note that SOURCE1 and SOURCE2 are not modified.

*/

MAIN: PROCEDURE OPTIONS(MAIN);

DCL SOURCE1 CHARACTER(5) VARYING INITIAL('14$15');
DCL SOURCE2 CHARACTER(5) VARYING INITIAL('11100');

DCL TARGET1 FIXED BINARY(31);
DCL TARGET2 BIT(5) ALIGNED;

/%

* Sample 'quick-fix' CONVERSION ON-unit that replaces
* erroneous lowercase L's with 1's, and all other

* erroneous characters with O's.

*/

ON CONVERSION BEGIN;

PUT SKIP EDIT('"',ONSOURCE(),'" "',ONCHAR(),'"')((5)A);

IF ONCHAR() = '1'

THEN
ONCHAR()

ELSE
ONCHAR ()

END; /* ON */

/*
* Note that the CONVERSION condition is raised for all
* 3 of the following statements.

"
-

"
S

*/

TARGET1 = SOURCE1;
TARGET1 = SOURCE1;
TARGET2 = SOURCE2;

PUT SKIP(2) EDIT(SOURCE1,SOURCE2)(A,X,A);
PUT SKIP EDIT(TARGET1,TARGET2)(F(8),X,B(5));

END MAIN;

CONVERSION Condition Name 217

The output from this program is as follows:

n14315n n‘n
ll14s15" u‘n
"{11100" "1"

14$15 11100
14015 11100

The first occurrence of the ONCHAR built-in function value in the
ONSOURCE built-in function value is not necessarily the character in
error. For example, if the statement A = FIXED('++12310') were executed,
the CONVERSION condition would be raised with the ONCHAR value
being the second plus sign in the string.

The target of the conversion is undefined when the CONVERSION
condition is raised.

The retry attempted on a normal return is for the single field that was in
error. Attempts to assign a string containing, for example, a comma list of
values will not be used for successive data items in a GET statement.

The actual value modified by the ONSOURCE and ONCHAR pseu-
dovariables is a temporary value that is discarded once the conversion

is complete, or the control flow cannot return to the point of the error.
This means that invalid data stored in a character string variable will
cause the CONVERSION condition to be raised each time the value is
converted, not just the first time the conversion is attempted, regardless of
modifications to the ONSOURCE and ONCHAR pseudovariables inside
the CONVERSION ON-unit.

Conversion of Data

218

Conversion is the changing of a data item from one data type to an-
other. This entry describes the conversions performed in assignments.
Conversions are also performed on operands in arithmetic expressions; see
“Expression” for details of operand conversions.

In assignments, conversions are defined between the noncomputational
types POINTER and OFFSET, and between any two computatlonal types.
The rules for assignments apply to the following:

® Assignment statements

® Arguments passed to a procedure

® Values specified in a RETURN statement

Conversion of Data

®* An argument converted by the built-in function BINARY, BIT,
CHARACTER, DECIMAL, DECODE, ENCODE, FIXED, or FLOAT

* Conversions to and from character strings performed by the PUT and
GET statements, respectively

If an attempt is made to assign a value to a target for which there is no
defined conversion, the compiler generates a diagnostic message. For
example:

F = '133.45"';

If F is a variable with the attributes FIXED DECIMAL (5,2), then the state-
ment assigns the numeric value 133.45 to F, as expected, although the
compiler issues a WARNING message about the implicit conversion, stat-
ing that the constant '133.45' has been converted to a FIXED DECIMAL
target. The warning does not prevent you from linking and running the
program. However, note the following example:

F = 'ABCD';

This statement results not only in a compiler WARNING message, but
if you go on to link and run the program, you receive a CONVERSION
condition, which will normally be fatal unless it is handled with an ON
CONVERSION ON-unit.

Table C-1 illustrates the contexts in which PL/I performs conversions.
The table also lists the built-in conversion functions, such as BINARY and
CHARACTER, which you can use when you want to explicitly indicate

a conversion and to specify such characteristics as the precision or string
length of the converted result.

The rest of this section defines the rules and results of the following types
of conversion:

* Assignments to arithmetic variables
— From any arithmetic data type to any other arithmetic data type
— From pictured to any arithmetic type
— From bit-string to any arithmetic data type
= From character-string to any arithmetic data type
* Assignments to bit-string variables
— From any arithmetic data type to bit-string
— From pictured to bit-string
— From character-string to bit-string

Conversion of Data 219

220

* Assignments to character-string variables

— From any arithmetic data type to character-string
— From pictured to character-string
— From bit-string to character-string

e Assignments to pictured variables

— From any computational type to pictured

e Conversions between offsets and pointers

Table C-1: Contexts in Which PL/I Converts Data

Context

Conversion Performed

target = expression;

entry-name
RETURNS (attribute . ..);

RETURN (value);
X+ Yy

xX-y

X*y

x/y

X¥*y

x|y

x&y

xly

Conversion of Data

In an assignment statement, the given
expression is converted to the data type
of the target.

In a RETURN statement, the specified
value is converted to the data type
specified by the RETURNS option on the
PROCEDURE or ENTRY statement.

In any expression, if operands do not
have the required data type, they are
converted to a common data type before
the operation. For most operators, the
data types of all operands must be
identical. A warning message is issued in
the case of a concatenation conversion.
(See “Expression.”)

Table C-1 (Cont.): Contexts in Wﬁich PL/1 Converts Data

Context

Conversion Performed

BINARY (expression)

BIT (expression)
CHARACTER (expression)
DECIMAL (expression)
FIXED (expression)
FLOAT (expression)
OFFSET (variable)
POINTER (variable)

PUT LIST (item, ...);
GET LIST (item, ...);

PAGESIZE (expression)
LINESIZE (expression)

SKIP (expression)

LINE (expression)

COLUMN (expression)

format items A, B, E, F, and X
TAB (expression)

DO control-variable . . .

parameter

INITIAL attribute

PL/I provides built-in functions that
perform specific conversions.

Items in a PUT LIST statement are
converted to character-string data.

Character-string input data is converted
to the data type of the target item.

Values specified for various options to
PL/I statements must be converted to
integer values.

Values are converted to the attributes of
the control variable.

Actual parameters are converted to the
type of the formal parameter, if necessary
(see “Parameters and Arguments” for
more information).

Inijtial values are converted to the type of
the variable being initialized.

B Assignments to Arithmetic Variables

Expressions of any computational type can be assigned to arithmetic
variables. The conversion rules for each source type are described in the

following sections.

Conversion of Data 221

222

Arithmetic to Arithmetic Conversions

A source expression of any arithmetic type can be assigned to a target
variable of any arithmetic type. Note the following qualifications:

e If the target is a variable of type FIXED BINARY or FIXED DECIMAL,
then the FIXEDOVERFLOW condition is signaled when the source
value has a larger number of integral digits than are specified in the
precision of the target. If the target is a fixed-point binary variable,
FIXEDOVERFLOW is signaled if the source value exceeds the storage
allocated for the target, which can be larger than the target’s declared
precision (see “Fixed-Point Binary Data”).

¢ If the target is a variable of type FIXED DECIMAL(p,q) or FIXED
BINARY(p,q) and the source value has more than q fractional digits,
then the excess fractional digits of the source are truncated, and no
condition is signaled. If the source has fewer than q fractional digits,
the source value is padded on the right with zeros.

* If the target value is floating point and the absolute source value is too
large to be represented by a VAX floating-point type (see “Floating-
Point Data”), then the OVERFLOW condition is signaled, and the
value of the target is undefined. If the absolute source value is too
small to be represented, the value zero is assigned to the target, and,
if enabled, the UNDERFLOW condition is signaled.

Conversions to Fixed Point: In the following examples, the speci-
fied source values are converted to FIXED DECIMAL(4,1):

Source Value Converted Value

25.506 25.5

-2.562 -2.5

101 101.0 _

5365 FIXEDOVERFLOW - value undefined

Conversions to Floating Point: Let p be the precision of the
floating-point target. If the source value is an integer that can be
represented exactly in p digits, then the source value is converted to
floating-point binary with no loss of accuracy.

Conversion of Data

Otherwise, the source value is converted to floating-point binary with
rounding to precision p. For example, the constant 479 will be converted
to FLOAT BINARY/(24) without loss of accuracy, while the constant
16777217, which cannot be represented exactly in 24 bits, will be rounded
during conversion.

Conversions from FIXED BINARY to Other Data Types:
Conversions from FIXED BINARY to other data types follow the rules
outlined below. Notice that these rules assume both precision and scale.

Precisions of the source and target are (p,q) and (p1,ql), respectively. The
precision of the result is (p2,q2).

Target Result
FIXED DECIMAL(p1,q1) p2=1+CEIL(p1/3.32) and q2=CEIL(q1/3.32).
FIXED BINARY(pl,q1) Precision and scale of the source are main-

tained during conversion; therefore, padding
or truncation can occur. If nonzero bits are
lost on the left, the result is undefined.

FLOAT DECIMAL(p1) p2=CEIL(p1/3.32). The exponent indicates
any fractional value.

FLOAT BINARY(p1) p2=pl. The exponent indicates any fractional
value.

PICTURE The target must imply FIXED DECIMAL.

CHARACTER The binary precision (p,q) is converted

to the decimal precision (p1,q1), where
p1=1+CEIL(p/3.32) and q1=CEIL(q/3.32).
Then the rules for conversion from FIXED
DECIMAL to CHARACTER are in effect.

BIT The binary precision (p,q) is converted to
a bit string where MIN(31,p—-q). Then the
intermediate bit string is converted to BIT(n).
If (p-q) is negative or zero, the result is a null
bit string.

If the scale factor is negative, substitute the FLOOR value for CEIL in the
above calculations.

Conversion of Data 223

224

Pictured to Arithmetic Conversions: In VAX PL/I all pictured

values have the associated attributes FIXED DECIMAL(p,q), where p is the
total number of characters in the picture specification that specify decimal
digits, and q is the total number of these digits that occur to the right of
the V character. If the picture specification does not include a V character,
then q is zero. This associated fixed-point decimal value is assigned to the
target, following the PL/I rules for arithmetic to arithmetic conversion.

Bit-String to Arithmetic Conversions: When a bit-string value is
assigned to an arithmetic variable, PL/I treats the bit string as a fixed-point
binary value. A string of type BIT(n) is converted to FIXED BINARY(m,0),
where m = min(n, 31).

If the converted value is greater than or equal to 23!, then
FIXEDOVERFLOW is signaled. The leftmost bit in the bit string (as output
by PUT LIST) is the most significant bit in the fixed-point binary value,
not its sign. If the bit string is null, the fixed-point binary value is zero.

The intermediate fixed-point binary value is then converted to the target
arithmetic type.

Note that bit strings are stored internally with the leftmost bit in the
lowest address. The conversion to an arithmetic type must reverse the
bits from this representation; therefore, you should avoid this conversion
when performance is a consideration.

Examples
CONVTB: PROCEDURE OPTIONS(MAIN);

DECLARE STATUS FIXED BINARY(8);
DECLARE STATUS_D FIXED DECIMAL(10);
DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE('CONVTB.OUT');
ON FIXEDOVERFLOW PUT SKIP FILE(OUT)
LIST('Fixedoverflow:');

STATUS = '1001101'B;
PUT SKIP FILE(OUT) LIST(STATUS);

STATUS_D = '001101'B;
PUT SKIP FILE(OUT) LIST(STATUS_D);

STATUS = '1232'B2;
PUT SKIP FILE(OUT) LIST(STATUS);

STATUS = 'FF'B4;
PUT SKIP FILE(OUT) LIST(STATUS);

Conversion of Data

STATUS_D = '10111111111111111111111111111111'B;
PUT SKIP FILE(QOUT) LIST(STATUS_D);

END CONVTB;

Note that because the program CONVTB performs implicit conversions,
the compiler issues WARNING messages. (Linking and running are
accomplished successfully because the conversions are valid.)

The program CONVTB produces the following output:

77
13
110
255
Fixedoverflow:
13

The leftmost bit of all the bit-string constants is treated as the most
significant numeric bit, not as a sign. For instance, the hexadecimal
constant 'FF'B4 is converted to 255 instead of —127. The last assignment
to STATUS_D signals the FIXEDOVERFLOW condition because the bit-
string constant, when represented as a binary integer, is greater than 23!,
The resulting value of STATUS_D is undefined.

Character-String to Arithmetic Conversions: When a character
string is assigned to an arithmetic value, PL/I creates an intermediate
numeric value based on the characters in the string. The type of this
intermediate value is the same as that of an ordinary arithmetic constant
comprising the same characters; for example, 342.122E-12 and ‘342.122E-
12’ are both floating-point decimal.

The character string can contain any series of characters that describes a
valid arithmetic constant. That is, the character string can contain any of
the numeric digits 0 through 9, a plus (+) or minus () sign, a decimal
point (.), and the letter E. If the character string contains any invalid
characters, the ERROR condition is signaled. See the following examples.

If the implied data type of the character string does not match the data
type of the arithmetic target, PL/I converts the intermediate value to

the data type of the target, following the PL/I rules for arithmetic to
arithmetic conversions. In conversions to fixed point, IXEDOVERFLOW
is signaled if the character string specifies too many integral digits. Excess
fractional digits are truncated without signaling a condition.

If the source character string is null or contains all spaces, the resulting
arithmetic value is zero.

Conversion of Data 225

226

Examples
DECLARE SPEED FIXED DECIMAL (9,4);

SPEED = '23344.3882';
/* string converted to 23344.3882 */

SPEED = '32423.23SD';
/* ERROR condition */

SPEED = '4324324.3933';
/* FIXEDOVERFLOW condition */

SPEED = '1.33336';
/* string converted to 1.3333 */

B Assignments to Bit-String Variables

In the conversion of any data type to a bit string, PL/I first converts the
source data item to an intermediate bit-string value. Then, based on the
length of the target string, it does the following:

e If the length of the target bit-string value is greater than the length of
the intermediate string, the target bit string (as represented by PUT
LIST) is padded with zeros on the right.

o If the length of the target bit-string value is less than the length of the
intermediate string, the intermediate bit string (as represented by PUT
LIST) is truncated on the right.

The next sections describe how PL/I arrives at the intermediate bit-string
value for each data type.

Arithmetic to Bit-String Assignments: In converting an arith-
metic value sv to a bit-string value, PL/I performs the following steps:

1. Let v = abs(sv).
2. Determine a precision p as follows:

Source Precision p

FIXED BINARY(r,s) min(31,r-s)

FLOAT BINARY(r) min(31,r)

FIXED DECIMAL(r,s) min(31,ceil((r-s)*3.32))
FLOAT DECIMAL(r) min(31,ceil(r+3.32))

3. If p=0 (for example, when r=s), the intermediate string is a null bit
string. Otherwise, the value v is converted to an integer n of type
FIXED BINARY(p,0). If n >= 2p, the FIXEDOVERFLOW condition is

Conversion of Data

signaled; otherwise, the intermediate bit string is of length p, and each
of its bits represents a binary digit of n.

Bit strings are stored internally with the leftmost bit in the lowest address.
The conversion must reverse the bits from this representation and should
therefore be avoided when performance is a consideration. Note also that
during the conversion, the sign of the arithmetic value and any fractional
digits are lost.

Examples
CONVB: PROCEDURE OPTIONS(MAIN);

DECLARE NEW_STRING BIT(10);
DECLARE LONGSTRING BIT(16);
DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE('CONVB1.0UT');

NEW_STRING = 35;
PUT FILE(OUT) SKIP
LIST('35 converted to BIT(10):' ,NEW_STRING);

NEW_STRING = -35;
PUT FILE(OUT) SKIP
LIST('-35 converted to BIT(10):',NEW_STRING);

NEW_STRING = 23.12;
PUT FILE(OUT) SKIP
LIST('23.12 converted to BIT(10):', NEW_STRING);

NEW_STRING = .2312;
PUT FILE(OUT) SKIP
LIST('.2312 converted to BIT(10):',NEW_STRING);

NEW_STRING = 8001;
PUT FILE(OUT) SKIP
LIST('8001 converted to BIT(10):' ,NEW_STRING);

LONGSTRING = 8001;
PUT FILE(OUT) SKIP
LIST('8001 converted to BIT(16):',LONGSTRING);

END CONVB;

Note that because the program CONVB performs implicit conversions,
the compiler issues WARNING messages. (Linking and running are
accomplished successfully because the conversions are valid.)

Conversion of Data 227

228

The program CONVB produces the following output:

35 converted to BIT(10): '0100011000'B
-35 converted to BIT(10): '0100011000'B
23.12 converted to BIT(10): '0010111000'B
*.2312 converted to BIT(10): '0000000000'B
8001 converted to BIT(10): '0111110100'B
8001 converted to BIT(16): '0111110100000100'B

The values 35 and -35 produce the same bit string because the sign

is lost in the conversion. In the first assignment, 35, which is FIXED
DECIMAL(2,0), is converted to FIXED BINARY(7,0) and then to a 7-bit
string (‘0100011'B). Three additional bits are appended to this intermediate
bit string when it is assigned to NEW_STRING. Notice that the low-order

- bit of 8001 is lost when the constant is assigned to a BIT(10) variable.

Pictured to Bit-String Conversions: If the source value is pic-
tured, its associated fixed-point decimal value is extracted. The fixed-point
decimal value is then converted to a bit string, following the previous
rules for arithmetic to bit-string conversion.

Character-String to Bit-String Conversions: PL/I can convert a
character string of Os and 1s to a bit string. Any character in the character
string other than 0 or 1, including spaces, will signal the ERROR condition.

PL/I converts each 0 or 1 character in the character string to a 0 or a 1
bit in the corresponding position (as represented by PUT LIST) in the
intermediate bit string.

If the source is a null character string, the intermediate string is a null bit
string.

Examples

DECLARE NEW_STRING BIT(4);

NEW_STRING = '0010';
/* NEW_STRING = '0010'B */

NEW_STRING = '11°';
/* NEW_STRING = '1100'B */

NEW_STRING = 'AS110°';
/* ERROR condition */

B Assignments to Character-String Variables

In the conversion of any data type to a character string, PL/1 first converts
the source value to an intermediate character-string value. Then it does
one of the following:

Conversion of Data

e If the length of the intermediate string is zero, a null string is assigned
to the target.

e If the target is a parameter or return value with an asterisk extent
(as in RETURNS CHAR(*)), the intermediate string is assigned to the
target.

e If the target is of type CHARACTER, and the intermediate string is
shorter than the maximum length of the target, the target is assigned
the value of the intermediate string without trailing spaces if the target
has the VARYING attribute. If the target does not have the VARYING
attribute, the string is padded with trailing spaces.

e If the maximum length of the target character string is less than the
length of the intermediate string, the intermediate string is truncated.

The rules for how PL/I arrives at the intermediate string for conversion of
each data type are described below. Examples 1llustrate the intermediate
value as well as the resulting value.

Arithmetic to Character-String Conversions: The manner in
which PL/I converts an arithmetic data item depends on the data type of
the item, as described below.

Conversion from Fixed-Point Binary or Decimal: If the data item source
value is of type FIXED BINARY(p1,q1), PL/I first converts it to type FIXED
DECIMAL(p2,q2), where

p2 = min(ceil(p1/3.32) + 1,31)
q2 = maz(0, min(ceil(q1/3.32), 31))

PL/I converts a value with attributes FIXED DECIMAL(p,q) to an in-
termediate string of length p+3. The numeric value is right-justified in
the string. If the value is negative, a minus sign immediately precedes
the value. If q is greater than zero, the value contains a decimal point
followed by q digits. When p equals q, a 0 character precedes the deci-
mal point. When q equals zero, a value of zero is represented by the 0
character.

Alternatively, the format of the intermediate string can be described by
picture specifications, as follows:

1. If g=0, the intermediate string is the string created by the following
picture specification:

'BB(p)-9'

Conversion of Data 229

230

That is, the first two characters of the string are spaces. The last p
characters in the string are the digit characters representing the integer;
leading zeros are replaced by spaces except in the last position. If the
integer is negative, a minus sign immediately precedes the first digit;
if the number is not negative, this position contains a space. At least
one digit always appears in the last position in the string.

If p=q, the intermediate string is the string created by the following
picture specification:

-9V.(q)9'

That is, the first three characters are (in order) an optional minus
sign if the fraction is negative, the digit 0, and a decimal point. If
the number is not negative, the first character is a space. The last q
characters in the string are the fractional digits of the number.

If p > q, the intermediate string is the string created by the following
picture specification:

'B(p-q)-9V.(q)9"

That is, the first character is always a space; the last q characters are
the fractional digits of the number and are preceded by a decimal
point; the decimal point is always preceded by at least one digit,
which can be zero; all integral digits appear before the decimal point,
and leading zeros are replaced by spaces; a minus sign precedes the
first integral digit if the number is negative; if the number is not
negative, then the minus sign is replaced by a space.

Examples
DECLARE STRING_1 CHARACTER (8),

STRING_2 CHARACTER (4);

STRING_1 = 283472.;

/* intermediate string = 'AAA283472',
STRING_1 = 'AAA28347' */

STRING_2 = 283472.;

/* intermediate string = 'AAA283472',
STRING_2 = 'AAA2' */

STRING_2 = -283472.;

/* intermediate string = 'AA-283472',
STRING_2 = 'AA-2' */

STRING_2 = -.003344;

/* intermediate string = '-0.003344',
STRING_2 = '-0.0' */

Conversion of Data

STRING_2 = -283.472;
/* intermediate string = 'A-283.472',
STRING_2 = 'A-28' */

STRING_2 = 283.472;
/* intermediate string = 'AA283.472',
STRING_2 = 'AA28' */

Conversion from Floating-Point Binary or Decimal: If the data item
source value is of type FLOAT BINARY(p1), it is converted to FLOAT
DECIMAL(p2), where

p2 = man(ceil(p1/3.32),34)

For a value of type FLOAT DECIMAL(p), where p is less than or equal
to 34, the intermediate string is of length p+6; this allows extra characters
for the sign of the number, the decimal point, the letter E, the sign of the
exponent, and the 2-digit exponent.

NOTE

If the value is a G-floating-point number, three characters are
allocated to the exponent, and the length of the string is p+7.
If the value is an H-floating-point number, four characters are
allocated to the exponent, and the length of the string is p+8.
(See “Floating-Point Data.”)

If the number is negative, the first character is a minus sign; otherwise,
the first character is a space. The subsequent characters are a single
digit (which can be 0), a decimal point, p-1 fractional digits, the letter E,
the sign of the exponent (always + or -), and the exponent digits. The
exponent field is of fixed length, and the zero exponent is shown as all
zeros in the exponent field.

Examples
CONCH: PROCEDURE OPTIONS(MAIN);

DECLARE OUT PRINT FILE;
OPEN FILE(OUT) TITLE('CONCH.OUT');

PUT SKIP FILE(OUT) EDIT('''',25E26,'''') (A);

PUT SKIP FILE(OUT) EDIT('''',-25E25,'''') (A);

PUT SKIP FILE(OUT) EDIT('''',1.233325E-5,'''') (A);
PUT SKIP FILE(OUT) EDIT('''',-1.233325E-5,'''') (A);
END CONCH;

The program CONCH produces the following output:

Conversion of Data 231

232

' 2.5E+26'
'-2.5E+26'
' 1.233325E-05'
'-1.233326E-05'

The PUT statement converts its output sources to character strings, follow-
ing the rules described in this section. (The output strings are surrounded
with apostrophes to make the spaces distinguishable.) In each case, the
width of the quoted output field (that is, the length of the converted
character string) is the precision of the floating-point constant plus 6.

Pictured to Character-String Conversion: If the source value
is pictured, its internal, character-string representation is used without
conversion as the intermediate character string.

Bit-String to Character-String Conversion: When PL/I converts
a bit string to a character string, it converts each bit in the bit string (as
represented by PUT LIST) to a 0 or 1 character in the corresponding
position of the intermediate character string.

If the bit string is a null string, the intermediate character string is also a
null string.

Examples

DECLARE STRING_1 CHARACTER (4),
STRING_2 CHARACTER (8);

STRING_1 = '1010'B;
/* STRING_1 = '1010' */

STRING_2 = '1010'B;
/* STRING_2 = '1010AAAA' */

STRING_1 = '010011'B;
/* STRING_1 = '0100' */

B Assignments to Pictured Variables

A source expression of any computational type can be assigned to a
pictured variable. The target pictured variable has a precision (p), which
is defined as the number of characters in the picture specification that
specify decimal digits. The target also has a scale factor (q), which is
defined as the number of picture characters that specify digits and occur
to the right of the V character in the picture specification. If the picture
specification contains no V character, or if all digit-specification characters
are to the left of V, then q is zero.

Conversion of Data

The source expression is converted to a fixed-point decimal value v of
precision (p,q), following the PL/I rules for the source data type. This
value is then edited to a character string s, as specified by the picture
specification (see also “Picture”), and the value s is assigned to the pictured
target.

When the value v is being edited to the string s, the ERROR condition

is signaled if the value of v is less than zero and the picture specification
does not contain one of the characters S, +, -, T, I, R, CR, or DB. The value
of s is then undefined. FIXEDOVERFLOW is also signaled if the value v
has more integral digits than are specified by the picture specification of
the target.

B Conversions Between Offsets and Pointers

Offset variables are given values by assignment from existing offset values
or from conversion of pointer values. Pointer variables are given values
by assignment from existing pointer values or from conversion of offset
values.

The OFFSET built-in function converts a pointer value to an offset value.
The POINTER built-in function converts an offset value to a pointer.

PL/I also automatically converts a pointer value to an offset value, and
vice versa, in an assignment statement. The following assignments are
valid:

pointer-variable = pointer-value;
offset-variable = offset-value;
pointer-variable = offset-variable;
offset-variable = pointer-value;

In the third and fourth assignments above, the offset variable must have
been declared with an area reference. See also “Offset,” “OFFSET Built-In
Function,” “Pointer,” and “POINTER Built-In Function.” ‘

COPY Built-In Function
COPY Preprocessor Built-In Function

The COPY built-in function copies a given string a specified number of
times and concatenates the result into a single string. Its format is as
follows:

COPY (string,count)

COPY Preprocessor Built-In Function 233

string
Any bit- or character-string expression. If the expression is a bit string, the
result is a bit string. Otherwise, the result is a character string.

count
Any expression that yields a nonnegative integer. The specified count
controls the number of copies of the string that are concatenated, as

follows:

Value of

Count String Returned

0 A null string

1 The string argument

n Concatenated copies of the string argument
B Example

COPY('12',3)

This function reference returns the character-string value ‘121212’

COS Built-In Function

The COS function returns a floating-point value that is the cosine of an
arithmetic expression x, where x represents an angle in radians. The
cosine is computed in floating point. The format of the function is as
follows:

COS(x)

COSD Built-In Function

The COSD built-in function returns a floating-point value that is the
cosine of an arithmetic expression x, where x is an angle in degrees. The
cosine is computed in floating point. The format of the function is as
follows:

COSD(x)

234 COSD Built-In Function

COSH Built-In Function

The COSH built-in function returns a floating-point value that is the
hyperbolic cosine of an arithmetic expression x. The hyperbolic cosine is
computed in floating point. The format of the function is as follows:

COSH(x)

COSH Built-In Function 235

Data and Data Types

All programs process information, or data. The way you choose to
represent different items of data in a program depends on how the
program will use or manipulate the data.

The data type of a variable or a constant reflects the kind of information
that is being processed. For example, names and addresses within a
personnel record are character-string data; weekly salaries and taxes and
cumulative totals of salaries and taxes are arithmetic data.

Variables that represent single elements or items of data are called scalar
variables. Variables can also be grouped into aggregates. There are two
types of aggregates:

* An array is an aggregate in which all items, called elements, have the
same data type. Individual elements of an array are referred to by
subscripts that represent the position, or order, of the elements in the
array. Elements can be scalar data items or structures. (See “Array.”)

® A structure is an aggregate in which individual items, called members,
can have different data types. Individual members are referred to with
qualified references that give, in general, the names of the structure
itself and of the individual member. (See “Structure.”)

Aggregates can also be formed from arrays whose elements are structures,
or from structures whose individual members are arrays.

B Summary of Data Types

Data types are either computational (with values used in computations) or
noncomputational. VAX PL/I supports the following computational data

types:

® The arithmetic data types define values that can be used in arithmetic
computation. There are two arithmetic data types:

— Fixed-point (for binary and decimal integers and fractions)

236 Data and Data Types

— Floating-point (binary and decimal)
See “Fixed-Point Binary Data,” “Fixed-Point Decimal Data,” and
“Floating-Point Data.”

Picture data represents fixed-point decimal values that are stored as
character strings; the strings contain the characters representing the
numeric value, formatted with special symbols. In computations and
other expressions, a data item of this type (that is, a “pictured value”)
can be used wherever an arithmetic value is valid.

See “Picture.”

Character-string data consists of a sequence of ASCII characters. VAX
PL/I supports two character-string data types:

— Fixed-length character strings
— Variable-length character strings

See “Character-String Data.”

Bit-string data consists of sequences of binary digits. VAX PL/I
supports two bit-string data types:

— Aligned bit strings
— Unaligned bit strings
See “Bit-String Data.”

The following data types represent noncomputational program values that
are used within a PL/I program for control:

Areas
Entry data
File data
Label data
Offsets
Pointers

The following sections discuss declarations and default attributes, includ-
ing the default attributes of constants, for computational data types. For
similar information on the noncomputational types, see “Area,” “Entry
Data,” “File,” “Label,” “Offset,” and “Pointer.”

Data and Data Types 2317

B Declarations

All variables in a PL/I program must be declared. With the exception of
entry-point names, statement labels, built-in functions, and the default file
constants SYSIN and SYSPRINT, all names referenced must be declared
explicitly. You declare a name and its data type attributes in a DECLARE
statement. For example:

DECLARE AVERAGE FIXED DECIMAL;
DECLARE NAME CHARACTER (20);

The keywords DECIMAL, FIXED, and CHARACTER describe characteris-
tics, or attributes, of the variables AVERAGE and NAME. (See “DECLARE
Statement.”)

B Default Attributes

It is not always necessary to define all the characteristics, or attributes, of
a variable; the PL/I compiler makes assumptions about attributes that are
not explicitly defined. For example:

DECLARE NUMBER FIXED;

The FIXED attribute implies the attributes BINARY(31,0). Thus, the
variable NUMBER has the attributes FIXED BINARY(31,0).

Table D-1 shows the default attributes implied by each computational
data attribute.

Table D-1: Implied Attributes for Computational Data

Specified Implied
FIXED BINARY(31,0)
FLOAT BINARY/(24)
BINARY FIXED(31,0)
DECIMAL FIXED(10,0)
FIXED BINARY (31,0

FLOAT BINARY (24)

FIXED DECIMAL (10,0)

FIXED DECIMAL(p) (p.0)

FLOAT DECIMAL

BIT [ALIGNED]
CHARACTER [VARYING]

PICTURE 'picture’

)

1
M

See “Picture”

238 Data and Data Types

Attributes of Constants
Constants have attributes implied by the characters used to specify them.

A series of characters enclosed in apostrophes is assumed to be a
string constant:

— If the letter B is appended after the closing apostrophe, the
constant is a bit-string constant, for example, ‘00010101'B. If
the integer 2, 3, or 4 is appended to the letter B, the constant
is a bit-string constant with the base 4, 8, or 16, respectively.
For example, '17777'B3 is an octal constant that is represented
internally as a string of 13 bits. (B can be typed lowercase.)

— If the constant does not have the letter B appended, it is a
character-string constant even when it contains only the char-
acters 0 and 1. (However, a character string of Os and 1s can be
converted by a simple assignment to a bit string.)

If the constant is an integer, it has the attributes FIXED DECIMAL(n,0),
where n is the number of digits in the integer. For example, the
constant 1777 is a constant of type FIXED DECIMAL(4,0).

Constants with an appended or embedded decimal point, but with no
following exponent, are of type FIXED DECIMAL(p,q), where p is the
total number of digits and q is the number of digits to the right of the
decimal point.

If a fixed-point decimal constant has the following appended charac-
ters:

E [*] digit...
then it is of type FLOAT DECIMAL(p), where p is the total number of

digits in the fixed-point constant (that is, the total number to the left
of the letter E).

Note that PL/I has no constants with the attributes FIXED BINARY,
FLOAT BINARY, or PICTURE. However, this presents no problems in pro-
gramming because constants of any computational type can be assigned
to variables of any computational type and are converted automatically to
the target type (see “Conversion of Data” for details).

You usually give values to binary variables by assigning decimal constants
to them. For example:

I=1;

This converts the decimal integer 1 and assigns the converted value to a
fixed-point binary variable I.

Data and Data Types 239

240

F = 1.333E-12;

This converts the floating-point decimal constant 1.333E-12 and assigns
the converted value to a floating-point binary variable F.

Picture variables are usually given values by assigning fixed-point decimal
constants. For example:

PAY_PIC = 123.44;

This assigns the fixed-point decimal value 123.44 to a picture variable
PAY_PIC. The value of PAY_PIC is a “pictured value,” stored internally
as a character string containing the characters 1, 2, 3, 4, and 4, along with
any special formatting symbols defined for PAY_PIC (see “Picture”).

Arithmetic Operands

The implied data types of constants are important primarily because of
PL/I’s rules for converting operands in an arithmetic operation. (Bit-
string and character-string operations must have bit- and character-string
operands, respectively.) All operations, including arithmetic operations,
must be performed in a single data type, and automatic conversions are
performed on arithmetic operands to make this possible. For example:

DECLARE X FLOAT DECIMAL (49);
X=X+1.3;

In this example, the fixed-point decimal constant 1.3 is converted to
floating-point decimal before the addition is performed. For the detailed
definition of operand conversion, see “Expression.” The rules for operand
conversion are as follows:

* If either operand is binary, the operation is performed in binary.

¢ If either operand is floating point, the operation is performed in
floating point.

These rules apply both to the declared attributes of variable operands and
to the implied attributes of constant operands. Operands are converted
as required to follow these rules; each converted operand then has the
type (for instance, floating-point decimal) in which the operation will

be performed, but it also has an individual precision based on its own
attributes. These “converted precisions” (which include scale factors in
fixed-point operations) are used to determine the precision of the result of
the operation.

Data and Data Types

B Identical Data Types

In PL/I, the notion of identical data types is used in the rules for passing
arguments by reference and for based, controlled, defined, or external
variables. For two nonstructure variables to have identical data types, the
following attributes must agree. That is, if one variable has the attribute,
the other must also have it after the application of default rules:

ALIGNED DIMENSION OFFSET
AREA ENTRY picture
array bounds FILE PICTURE
BINARY FIXED POINTER
BIT FLOAT precision
CHARACTER LABEL PRECISION
DECIMAL length VARYING

Two pictured variables must have identical pictures after the expansion of
iteration factors.

In addition, the following values must be equal:

® Precisions and scale factors for arithmetic data
® String lengths and area sizes
* Number of dimensions for arrays and bounds in each dimension

Two structure variables have identical data types if they have the same
number of immediate members and if corresponding members have
identical data types.

In general, you can specify string lengths, area sizes, and array bounds
with expressions or with asterisks for parameters. The values used to
determine whether two variables have identical data types are obtained as
follows:

e For static variables, the values must be constants.

® For automatic and defined variables, the expressions are evaluated
when the block that contains such a variable’s declaration is activated.
The resulting values are used for all references to the variable within
that block activation.

Data and Data Types 241

* For parameters, the declaration specifies any extents either with
constants or with asterisks. In the case of asterisks, the extent in
a particular procedure invocation is determined by the argument
passed to the parameter. The extent remains the same throughout the
procedure invocation.

* For based or controlled variables, extent expressions are evaluated
each time the variable is referenced.

B Example
/* Example of extent determination */
DATAT: PROCEDURE (PTR1);

DECLARE N FIXED, § CHARACTER(N) BASED(PTR1);
DECLARE PTR1 POINTER;

N = 10;
CALL P(S);
P: PROCEDURE(A);

DECLARE A CHARACTER(*), B CHARACTER(N);
N = 20;

PUT LIST(LENGTH(A),LENGTH(B),LENGTH(S));
END P;

END DATAT;
The PUT statement writes out
10 10 20

The assignment to N inside the procedure P affects the extent of S, but
not the extents of A or B, which were “frozen” when P was invoked.

DATE Built-In Function
DATE Preprocessor Built-In Function

242

The DATE built-in function returns a 6-character string in the form
yymmdd, where

yy Is the current year (00-99)
mm Is the current month (01-12)
dd Is the current day of the month (01-31)

DATE Preprocessor Built-In Function

Its format is as follows:

DATE()

The date returned is the run-time date. However, if DATE is used as a
preprocessor built-in function, the date returned is the compile-time date.

DATETIME Built-In Function
DATETIME Preprocessor Built-In Function

The DATETIME built-in function returns a 16-character string in the form
ccyymmddhhmmssxx, where

cc Is the current century (00-99)

yy Is the current year (00-99)

mm Is the current month (01-12)

dd Is the current day of the month (01-31)
hh Is the current hour (00-23)

mm Is the minutes (00-59)

ss Is the seconds (00-59)

XX Is the hundredths of seconds (00-99)

The format of the function is as follows:

DATETIME()

The date and time returned is the run-time date and time. However, if
DATETIME is used as a preprocessor built-in function, the date and time
returned is the compile-time date and time.

Note that the DATETIME function is identical to the century concatenated
with DATE() and TIME().

DATETIME Preprocessor Built-In Function 243

DEC Multinational Character Set

The DEC Multinational Character Set is a set of 8-bit numeric values

~ representing the alphabet, numerals, punctuation, and other symbols.

The first 128 characters of the set (with decimal values from 0 through
127) are the American Standard Code for Information Interchange (ASCII)
characters. The remaining characters (with values from 128 through 255)
are non-ASCII characters and can be used in VAX PL/I only in string
constants and data with I/O statements.

See Appendix B for a table showing the characters in the set.

%DEACTIVATE Statement

244

The %DEACTIVATE statement makes preprocessor variable and pro-
cedure identifiers ineligible for replacement. After a variable or proce-
dure has been deactivated, it will not be replaced during preprocessing.
Replacement of a deactivated variable or procedure occurs again only after
it is reactivated with the %ACTIVATE statement.

The format for the %9DEACTIVATE statement is as follows:

% { DEACTIVATE

element,...;

DEACT }

element

The name of a preprocessor identifier, or a list of identifiers that is en-
closed in parentheses. Deactivated elements must have been previously
declared preprocessor variables.

For example:

TESTF : PROCEDURE OPTIONS (MAIN);
DECLARE Y FIXED DECIMAL;

Y = 10; /* initial value: Y = 10 */
%DECLARE Y FIXED;

A = 3; /* replacement value: Y = 3 */
PUT SKIP LIST(Y); /* output: Y = 3 %/
ADEACTIVATE Y;

PUT SKIP LIST(Y); /* output: Y = 10 */

END;

In this example, %Y, when activated, replaces all the occurrences of the
variable Y by the value assigned to %Y, until %Y is deactivated by the
%DEACTIVATE statement. The identifier %Y is implicitly activated when
it is declared as a preprocessor identifier.

%DEACTIVATE Statement

It is possible to deactivate several variables with a single statement. For
example:

%DEACTIVATE (A,B,C,D,E,F);

For an example of %ACTIVATE and %DEACTIVATE, see “%ACTIVATE
Statement.” For additional information on the preprocessor, see
“Preprocessor.”

DECIMAL Attribute

The DECIMAL attribute specifies that an arithmetic variable has a decimal
base. The format of the DECIMAL attribute is as follows:

{ DECIMAL }
DEC

When you specify the DECIMAL attribute for a variable, you can also
specify the following attributes to define the scale factor and precision of
the data:

FIXED (precision[,scale-factor])
FLOAT (precision)

where FIXED indicates a fixed-point value, and FLOAT indicates a
floating-point decimal value. The precision specifies the number of
decimal digits that represent values of the variable. The precision of a
fixed-point decimal value is the total number of integral and fractional dig-
its. The precision of a floating-point decimal value is the total number of
digits in the mantissa. The precision for a fixed-point decimal value must
be in the range 1 through 31; the scale factor, if specified, must be greater
than or equal to zero and less than or equal to the specified precision. The
precision for a floating-point decimal value must be in the range 1 through
34.

The default values applied to the DECIMAL attribute are as follows:

DECIMAL Attribute 245

Attributes Specified Defaults Supplied

DECIMAL FIXED (10,0)
DECIMAL FIXED (10,0)
DECIMAL FIXED (n) (n,0)
DECIMAL FLOAT (7)

See “Fixed-Point Decimal Data” and “Floating-Point Data.”

M Restrictions

The DECIMAL attribute conflicts with the BINARY attribute and with any
other data type attribute.

DECIMAL Built-In Function

246

The DECIMAL built-in function converts an arithmetic or string expression
x to a decimal value of an optionally specified precision p and scale factor

q.

P and q, if specified, must be integer constants. P must be greater than
zero and less than or equal to the maximum precision for the result type
(31 for fixed-point, 34 for floating-point). If q is specified, x must be a
fixed-point expression and p must also be specified; if q is omitted or has
a negative value, the scale factor of the result is zero.

The format of the function is as follows:

{ gEgIMAL } (x[.p[.all)

B Returned Value

The result type is fixed-point or floating-point decimal, depending on
whether x is a fixed- or floating-point expression. (If x is a bit- or
character-string expression, the result type is fixed-point decimal.)

The expression x is converted to a value v of the result type, following the
PL/I rules (see “Conversion of Data”). The returned value is v with pre-
cision p and scale factor q. If p and q are omitted, they are the converted
precision and scale factor of x (see “Expression”). FIXEDOVERFLOW,
UNDERFLOW, or OVERFLOW is signaled if appropriate.

DECIMAL Built-In Function

Declarations

The declaration of a name in a PL/I program consists of a user-specified
identifier and the attributes of the name. The attributes describe the
following:

® The data type of the name, that is, whether it is a computational data
item such as a number or a string, or noncomputational program data

® The storage class to which the name belongs, that is, whether the
compiler allocates storage for it, and how the storage is allocated

* The scope of the name, that is, whether the name is known only
within the block in which it is declared and its contained blocks, or
whether it is known in external blocks

A name is declared either explicitly in a DECLARE statement or implicitly
by its appearance in a particular context. Only two types of names can
be declared implicitly: entry constants and label constants. You must
explicitly declare all other names. For example:

CALC: PROCEDURE;

This statement is an implicit declaration of the name CALC as an entry
constant.

In a PL/I source program, the DECLARE statements that provide the
declarations of names to be used in a given block can appear anywhere in
that block. However, it is good practice to place all the declarations for a
block at the beginning of the block, and follow the declarations with the
executable statements of the program. For example:

CALC: PROCEDURE (X,Y);

DECLARE (X,Y) FLOAT,

COPYSTRING ENTRY (CHARACTER(*)),
MESSAGE_TEXT CHARACTER(40);

See “Attribute,” “Data and Data Types,” and “DECLARE Statement.”

Declarations 247

%DECLARE Statement

248

The %DECLARE statement establishes an identifier as a preprocessor
variable, specifies the data type of the variable, and activates the identifier
for replacement. %DECLARE can occur anywhere in a PL/I source
program.

The format of the %DECLARE statement is as follows:

FIXED
% { DECLARE }element CHARACTER |;
DCL
BIT
element

The name of a preprocessor identifier or a list of identifiers, which are
separated by commas and enclosed in parentheses. You can give elements
the attribute BIT, FIXED, or CHARACTER, but you cannot specify pre-
cision or length. The compiler supplies the variables with the following
implied attributes:

Specified Attribute Implied Attributes

BIT (31) INITIAL ((31)'0'B)

FIXED DECIMAL (10,0) INITIAL (0)
CHARACTER VARYING (32767) INITIAL (' /)

If no data type is specified, FIXED is assumed.

When a variable is declared in a preprocessor statement, it is activated for
replacement and rescanning. The scope of a preprocessor variable is all
of the text following the declaration of the variable, unless the variable is
declared inside a preprocessor procedure. Using %DECLARE inside of a
preprocessor procedure has the effect of declaring a iocal variable.

For example:

%DECLARE HOUR FIXED;

%DECLARE Statement

In this example, HOUR is declared as a preprocessor variable identifier
with the FIXED attribute. The compiler supplies the default values that
make this declaration the equivalent of the following:

DECLARE HOUR FIXED DECIMAL (10,0) INITIAL (0);

NOTE

In preprocessor declarations, the attribute FIXED implies FIXED
DECIMAL. In nonpreprocessor declarations, FIXED implies
FIXED BINARY.

Factored declarations are permitted and follow the same usage rules as
nonpreprocessor declarations. For example:

%DECLARE (A,B) CHARACTER, C BIT;

Both A and B are declared with the CHARACTER attribute. The compiler
supplies default values that make this declaration the equivalent of the
following;:

#DECLARE (A,B) CHARACTER VARYING(32767) INITIAL(''),
C BIT(31)INITIAL((31)'0'B);

For more information on the preprocessor, see “Preprocessor.”

DECLARE Statement

The DECLARE statement specifies the attributes associated with names.
The format of the DECLARE statement is as follows:

{ DECLARE

DCL } [level] declaration [,[level] declaration,...];

declaration
One or more declarations consisting of identifiers and attributes. A
declaration has the following format:

[level] declaration-item
A declaration-item has the following format:

{ identifier

(declaration-item,...) } [(bound-pair,...)] [attribute ...]

DECLARE Statement 249

250

The format of the DECLARE statement varies according to the number
and nature of the items being declared. The DECLARE statement can list
a single identifier, optionally specifying a level, bound-pair list, and other
attributes for that identifier. Alternatively, the statement can include, in
parentheses, a list of declarations to which the level and all subsequent
attributes apply. The declarations in the second case can be simple
identifiers or can include attributes that are specific to individual identifiers
(see “Factored Declarations” below).

Bound pairs are used to specify the dimensions of arrays. If bound pairs
are present, they must be in parentheses and must immediately follow the
identifier or the list of declarations.

Levels are used to specify the relationship of members of structures; if a
level is present in the declaration, it must be written first.

The various formats are described individually, below. See also “Array”
and “Structure.”

B Simple Declarations

A simple declaration defines a single name and describes its attributes.
The format of a simple dec