VAX LISP/VMS Editor Programming Guide

Order Number: AA-Y923D-TE

This document contains information required by a LISP language programmer to write
programs that extend the VAX LISP Editor.

Revision/Update Information: This is a revised manual.
Operating System and Version: VMS 51

Software Version: VAX LISP 3.0

digital equipment corporation
maynard, massachusetts

First Printing, May 1986
Revised, August 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software, if any, described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license. No responsibility is assumed
for the use or reliability of software or equipment that is not supplied by Digital Equipment
Corporation or its affiliated companies.

© Digital Equipment Corporation 1986, 1989.

All rights reserved.
Printed in U.S.A.

The postpaid Reader's Comments form at the end of this document requests your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

Al VAXstation PDP VAX LISP/ULTRIX
DEC ULTRIX VAX LISP/VMS
DECnet ULTRIX-11 VAXstation
DECUS ULTRIX-32 VAXstation I
MicroVAX UNIBUS VMS

MicroVAX |l VAX

MicroVMS VAX LISP

ML-S836

This document was prepared using VAX DOCUMENT, Version 1.1

Preface.........

Contents

Part | Guide to Editor Programming

Chapter 1

11

12

13

Chapter 2
21

2.2

Editor Overview

Some Common Editor Extensions

111 Changing the Frequency of Checkpointing........ccccvevveiiieeniiiciiiee e,
11.2 Changing the Number of Windows Displayed.........ccccccciiiiiiiiinniinneen.
113 Changing the Default Major Sty lecccoiiiiiiiiiiiiie e
11.4 Binding a Command to a Key Sequence................

115 Defining a Command to Change Screen Width

Editor Components

121 Text Operations

1.2.2 Window and Display Operations.........cccouuieeieaiiiiiiiiee e
1.2.3 21T g To 1o Vo IO o 1 =0 (= RRPUTPR
1.2.4 Other Subsystems and ULIlItIieS.......c.eeeeieiiiiie e

Referencing Editor Objects

131 Functions, Macros, and LISP Variables......cccooovviiiiiiiiiiiiiiiieeeeeeeeae
13.2 =0 170 G @ ¢ J =Y o} £ PSPPSR
133 Named and Unnamed Editor ObJjectSccceeiiiiiiiiieiiiiiiiee e

1331 Referencing Unnamed Objects
1.3.3.2 Referencing Named Objects
1.3.33 A Note on EffiCIENCY.......ueiiiiiiiiiiie e
134 Context-Independent and Context-Dependent Editor Objects
1341 Referencing Context-IndependentObjects
1342 Referencing Context-Dependent Objects
135 The Editor PACKAge ooiiiiiiieie ettt
1351 The Package Prefix.........
1.35.2 Using USE-PACKAGE
1.35.3 Using IN-PACKAGE

Creating Editor Commands

Commands and Their Associated Functions

Using DEFINE-COMMAND

221 Specifying the NaMEeS. ...
222 Specifying the Argument LiSt... ..o
223 Supplying Documentation StringsS......oooeueeiiriiiiiiiee e

XiX

11
1-2
1-2
1-3
1-3
1-3

1-4
14
1-5
1-5
1-6

1-6
1-7
1-7
1-7
1-8
1-8
1-9
1-10
1-10
1-10
1-11
1-11
1-11
1-12

2-1

2-1
2-2
2-3
2-3

23

Chapter 3
31
3.2

3.3

3.4

35

Chapter 4

41

4.2

224 SPeCifyiNng the A CTIO N ..oii i
2.2.5 Modular Definition of CoOmMmMaNdS......cccceeiiiiiiiiiiiiiiieceee e
2.2.6 Commands and CONTEXT......coiiiieiiiccee e e ee e

Some Special Command Facilities
231 BT O S e

2311 Getting the User's Attention.........cccccvverieeeinieensiece e
2312 Signaling an Error... e
2313 Error HanAliNg.......ceeeiioiee e
232 P rOMPTING . e e e nneeas
2321 SIMPle Prompting......coo e
2322 General Prompting
233 (7] o0 F=Talo I OF- N {=To To] { [T TR ERR

Binding Commands to Keys and Pointer Actions

USING BIND-COMMANDioitiiiteitieait ettt ettt ettt ettt sbe e b e saneenee e
The Command t0 Be BOUNccooiiiiiiiie e e
The Key or Key Sequence to BEBOUN.........coooiiiiiiiiiiiiiiiii e
331 Choosing a Key O SEQUENCE eeiiiieiiiiiiee et
3.3.2 Specifying a Character Key Or SEQUENCE.......ccuueieeeiiiiiiee e
3.3.3 Specifying a Function Key, Keypad Key,or Sequence.......cccccceeveiieeennn.
The BiNAING CONTEXT......uiiiiiiiiiiii e et e e e eeneeas
341 Specifying the Binding CONteXT........ccooiiiiiiiiiaiiiiieee e

3411 GlOD AL e

3.4.1.2 Style
3.41.3 Buffer

3.4.2 Search Order and Shadowing

Using BIND-POINTER-COMMAND ..ottt

351 Specifying @ Pointer ACTIONocuueiiiiiiiiee e
3511 Pointer Cursor MOVEMENT........uuiiiiiiiiiei e
3.51.2 Pointer Button Transitions in U IScccoiiiiiiiiinieeeee
3.5.1.3 Pointer Button Transitions INDECWINAOWS............ccccuveeeeennnnes

3.5.2 Specifying @ BUttON STatecuuiiiiiiiiiiiee e

353 Getting the State of the P OINter......cccoieiiiiie e
3531 Testing Pointer State oooociieiiiiiiiee e
3.5.3.2 Accessing Pointer-State Information..........ccoocoeiiiiiiie.

Text Operations

Operations on a Character Position.................
41.1 Retrieving and Changing a Character
41.2 Inserting a Character..........ccccceee..
41.3 Inserting a String of Characters
41.4 Deleting Characters.......cccccceeeeueeenen.
Operations on a Group Of Characters ...
42.1 INSErING @R EQION ..eiiiiiiiiiiie e e
422 (070]9) Y/ (o =T 2 ¥ = o 10} o ISP
423 Deleting @ R @ QIO N ..eeiiiiee e e

42.4 Writing @ Region t0 @ File ...

2-4
2-5
2-6

4-2
4-2
4-2
4-3
4-3

4-4

45
4-5

43

4.4

Chapter 5

51

5.2

53

5.4

425

Moving and Searching Operations

431
43.2

4.3.3

Operating on Buffers
4251 Deleting the Text in a Buffer
4252 Inserting One Buffer into Another

4253 Writing a

4254 Inserting a File into a Buffer

Moving by Character

Searching by Pattern

4321 Making a

4.3.2.2 Locating a Search Pattern
43.2.3 Replacing a Pattern
Searching by Attribute
4331 Using LOCATE-ATTRIBUTE
4.3.3.2 Mark and Cursor Behavior
4.3.3.3 Using LOCATE-ATTRIBUTE Repeatedly

Buffer to a File

Positions

Search Pattern

Miscellaneous Text Operations

441

442

Creating M arks.......

4411 Mark Types and Their Behavior

44.1.2 Using CO

4413 Using WITH-MARK

Operating onLines...

4422 Retrieving

4423 Moving by Line
4424 Testing Relative Line Positions
4425 Retrieving and Testing Mark Positions

4426 Example

PY-MARK

4421 Retrieving and Altering the Text in a Line

and Altering a Single Character

of an Operation on Lines

Window and Display Operations

Accessing Windows

511
512
513
514

Window Content

521
522
523

524

Window Appearance

531
5.3.2
533

Display Management

The Current Window
The Windows onto a

All the Windows on the Screen

The "Next” Window

Window Position in a Buffer

The Window Point..

5231 Scrolling

5.2.3.2 Moving to a SpecifiedPosition
Wrapping the Lines in a Window

Altering Window Rendition
Making Highlight Regions
Operations on Window Labels and Borders
5.33.1 Borders, Labels, andLabelContent
5.3.3.2 Label Position

5.3.3.3 Label Re

STV L 1 L= RN

Moving a Window in the Buffer

ndition

4-6
4-6
4-6
4-6
4-6

4-7

4-8
4-8
4-8
4-9
4-9

4-10

4-11

4-13

4-13
414
4-14
4-15
4-15
416
4-16
4-17
417
4-17
4-17
4-18

5-2
5-2
5-2
5-3
5-3

5-4
5-5
5-6
5-6
5-6
5-7

5-8
5-8
5-9
5-10
5-11
5-12
5-13

5-13

55

5.6

Chapter 6

6.1

6.2

6.3

541 The DiISPIaY AT @ciiiiiiiiiiie et e e e e

5411 Display Area DIMENSIONS occuueieeieiiiiiieaeeeiiieee e e
54.1.2 Reserved DisSplay AT€ @coccveiiieeiiiieieee e
54.1.3 Available Display A€ accccceaiiiiiiiieiiieee e
54.2 Window Types and Their BEhavior.......cccoviiiiiiiiiiieee e
5421 Display Behavior by Window TYPe ...cccovviiiieeeiiiiiieieee e
5.4.2.2 Window Size and Display Behavior.........ccceeiiiiiiiieiienininene.

5423 Window Position and DisplayBehavior
5.4.2.4 Window Borders and DisplayBehavior

543 Displaying and Removing WindOWS...........cccceeeeeniiiienenninnes
5431 Using SHOW-WINDOW cccoiiiiieiieiieeiie st
5432 Using PUSH-WINDOW........ccceeiiiiitiiiienie et
5433 Using REMOVE-WINDOW........cccoiiiimiiiiiienee e
Making and Deleting WINOOWS..........ooiiiiiiiiiiia et
Example of Window and Display Operationscccccceiiieernieeenineee e

Operations on Styles

Activating and Deactivating StyleS. ...
6.1.1 Styles in @ NeW BUTfer....oe e
6.1.2 Editor's Default StYIeS.........ooi i
6.1.2.1 Default Major Style........ccccevviieeeen.
6.1.2.2 Default Minor Style(s)
6.1.2.3 Default Minor Style(s) by Type of Buffer.........cccccooeiinniies
6.1.2.4 Example of Activating Default Styles........cccccocveiiieeinciiennen.
6.1.3 Styles in an EXiSting B Uffer......ocoe i
6.1.3.1 A Buffer's Major Style ...
6.1.3.2 A Buffer's Minor Style(S)...ccueeeeeaiiiiieee e
Modifying a Style Provided by Digitalccccoiiiiiiiiiie e
6.2.1 Binding Keys and Pointer ACIONS........ccceiiiiieiiiie e
6.2.1.1 Finding Key BinNdiNgS....ccoouiiiiiiiaiiiiiee e
6.2.1.2 Review of BIND-COMMAND........c.cceeiiiiiiiiiieiieenee e
6.2.1.3 Choosing Commands to Bind.............
6.2.2 Binding Variables and Setting VariableValues
6.2.2.1 Finding Style Variables. ...
6.2.2.2 Altering Variable Valuesccccooiiiiiiiiii e
6.2.2.3 Binding a Variable in @ Styleccccooiiiii e
6.2.2.4 Defining New Variables..........cccccccooieeenn.
6.2.3 Binding Attributes and Setting AttributeValues
6.2.3.1 Finding Style Attributes.......occeeeii i
6.2.3.2 Altering Attribute Values. ...
6.2.3.3 Binding an Attribute in @ Style ...
6.2.3.4 Defining New AttribUteS.......eviiiiieiie e
Creating @ NEW STV 1 .o
6.3.1 Making @ Style ODJECE cooiiiiieiii e
6.3.2 Style Activation and Deactivation HOOKScccoooiiiiiiiiiiiiie e,
6.3.3 Adding Capabilities t0 the Style ...

6.3.4 Activating the Style

Part I Concepts in Editor Programming

AT T RIBU T E S ettt e e e e e e e e e e e b e et e e e e et e e e e aeaeaeesesaaannan Concepts-3
BUFFERS ettt e e e e e e e e e e e e e e e e e aaeas Concepts-4
CHAR A CT E R S ettt et e et e e e e e aaaeaeeaeaeaaaaaaanenennnes Concepts-5
CHECKPOINTING ...ttt e e e e e e e e e e e eaaaaaeeeeeans Concepts-5
COMMANDS . ettt e e e e e e e e e e e e e e e s e e rr e e e e eeaeeeas Concepts-6
(OO 3\ I G E PP P P PP PPU TR RTRTRTOTPPIN Concepts-7
DEBUGGING SUPPORT ...ttt ettt nnnee s Concepts-10
EDITOR VARIABLES. ...ttt e Concepts-10
ER R O R S e Concepts-11
H O O K S ettt e e et e e e e e e e e e e e e e e Concepts-12
INFORMATION AREA ittt ettt e e e e e Concepts-13
LN E S ettt et e e oo oo r e e et e et et e e e e e e e e e nrrnne Concepts-14
VLA R K S ettt e et e e e e e e e e e e e e e e s e r e e e e e e e e eaaeeaeas Concepts-14
NAMED EDITOR OBJECTS ..ooiiiiiiiiiiiirie ettt s e s Concepts-16
PROMPTING .ottt ettt ettt e e et et e e e e e aaaaaaaeaeaeaeaaaaaanenennnnnes Concepts-17
REGIONS ettt e et e e e e e e e e e e e e e e e e e s e r e e e e e e aeeaeeeas Concepts-19
RIN G S ettt e et e e e e e e e e e e e e e e e e s e s s nn e b rnrr e e e e e e e eaeaeaeas Concepts-20
ST REAM S ettt ettt e e e e e e e e e e e e e e e s s eeaeaaa s Concepts—21
STRING TABLES. e e e e Concepts-21
ST Y L S e Concepts—22
WIND OW S ettt ettt e e e e et e e e e s bbbt bbbt e et e et et et eeaeaaaeaeeeeaeaaannnnnrnennnes Concepts-25
Part Il Editor Object Descriptions

ACTIVATE MINOR STYLE COMMAND ..ottt Objects-31
ALTER-WINDOW-HEIGHT FUNCTION ...cciiiiiiiiiieieie et Objects-32
ANCHORED WINDOW SHOW LIMIT EDITOR VARIABLE.......cccooeiiieeireec e Objects-32
APROPOS COMMAND ..ottt e e e Objects-33
APROPOS-STRING-TABLE FUNCTION Objects-34
APROPOS WORD COMMANDiiiiiiiiiie et Objects-34
ATTENTION FUNCTION. ..ottt Objects-35
ATTRIBUTE-NAME FUNCTIONootiiiiiiiiiie e Objects-35

BACKWARD CHARACTER COMMAND ... Objects-36
BACKWARD KILL RING COMMAND ... Objects-36

BACKWARD PAGE COMMAND Objects-37
BACKWARD SEARCH COMMAND ... Objects-37
BACKWARD WORD COMMAND ...t Objects-38
BACKWARD-WORD-COMMAND FUNCTIONccoiiiii e Objects-39
BEGINNING OF BUFFER COMMAND ..ot Objects-39
BEGINNING OF LINE COMMAND ...t Objects-40
BEGINNING OF OUTERMOST FORM COMMANDcoiiiiieee e Objects-40
BEGINNING OF PARAGRAPH COMMAND Objects-41
BEGINNING OF WINDOW COMMAND Objects-42
BIND-ATTRIBUTE FUNCTIONociiiiiiiii e Objecte-"2
BIND COMMAND COMMAND................ Objects-"3
BIND-COMMAND FUNCTION................ Objects-44
BIND-POINTER-COMMAND FUNCTION.........c.eeeee. Objects-44
BIND-VARIABLE FUNCTION Objects-"5
BREAK-LINE FUNCTION ... Objects-46
BUFFER-CHECKPOINTED FUNCTION.....ooiiiiee e Objects-47
BUFFER-CHECKPOINTED-TIME FUNCTION.....cociiiiiiii e Objects-47

BUFFER CREATION HOOK EDITOR VARIABLEccooiiiiiieeeee e Objects-48

BUFFER-CREATION-TIME FUNCTION.....cooiiiiiiii e Objects-"8

Vii

BUFFER DELETION HOOK EDITOR VARIABLE ... Objects-49

BUFFER-END FUNCTION. ...ttt e e Objects-"9
BUFFER ENTRY HOOK EDITOR VARIABLE.......c.oo e Objects-50
BUFFER EXIT HOOK EDITOR VARIABLE........ooo e Objects-50
BUFFER-HIGHLIGHT-REGIONS FUNCTION ... Objects-50
BUFFER-MAJOR-STYLE FUNCTION.......ccccceiei. Objects-51

BUFFER-MINOR-STYLE-ACTIVE FUNCTION. ..ot Objects-51

BUFFER-MINOR-STYLE-LIST FUNCTION. ... Objects-52

BUFFER-MODIFIED-P FUNCTION Objects-52
BUFFER-NAME FUNCTION ... Objects-53
BUFFER NAME HOOK EDITOR VARIABLE Objects-53
BUFFER-OBJECT FUNCTION ... e Objects-54
BUFFER OBJECT HOOK EDITOR VARIABLE Objects-54

BUFFER-PERMANENT FUNCTION Objects-54
BUFFER-POINT FUNCTION ... Objects-55
BUFFER-REGION FUNCTION.o Objects-55
BUFFER RIGHT MARGIN EDITOR VARIABLE Objects-56
BUFFER SELECT MARK EDITOR VARIABLE Objects-56
BUFFER SELECT REGION EDITOR VARIABLE. ... Objects-57
BUFFER-START FUNCTION. ... Objects-57
BUFFER-TYPE FUNCTION.......cccoeeiiiii. Objects-57
BUFFER-VARIABLES FUNCTION Objects-58
BUFFER-WINDOWS FUNCTION ... Objects-58
BUFFER-WRITABLE FUNCTION ... Objects-59
BUFFER-WRITTEN-TIME FUNCTION.....cooi e Objects-59
BUFFERP FUNCTION ... Objects-60
CANCEL-CHARACTER FUNCTION ... Objects-60
CAPITALIZE REGION COMMAND ..o Objects-61

CAPITALIZE WORD COMMAND ..o Objects-61

CATEGORY-COMMANDS FUNCTION.....oiiiiiiie e Objects-62
CENTER-WINDOW FUNCTION.....oiiiiiiiii e Objects-62
CHARACTER-ATTRIBUTE FUNCTIONooiiiiiiiiiee e Objects-63
CHARACTER ATTRIBUTE HOOK EDITOR VARIABLE ..o Objects-63
CHARACTER-OFFSET FUNCTION ..o Objects-64
CHECKPOINT-BUFFER FUNCTIONooiiiiiiiiiie e Objects-64
CHECKPOINT-FREQUENCY FUNCTION.....coiiii e Objects-65
CLEAR-INFORMATION-AREA FUNCTION.....iiiiiiiiiiieee e Objects-65
CLOSE OUTERMOST FORM COMMAND.......oociiiiiiiiii Objects-66
COMMAND-CATEGORIES FUNCTION.....ccciiiiiiiiiiiiici i Objects-66
COMMAND-NAME FUNCTION ... Objects-67
COMPLETE-STRING FUNCTION ... Objects-67
COPY FROM POINTER COMMAND ... Objects-68
COPY-MARK FUNCTION ... e Objects-69
COPY-REGION FUNCTIONo Objects-69
COPY TO POINTER COMMANDo Objects-70
COUNT-REGION FUNCTION....ciii ittt e e Objects-70
CURRENT-BUFFER FUNCTION ..o Objects-71
CURRENT-BUFFER-POINT FUNCTION ... Objects-71
XURRENT-COMMAND-FUNCTION* VARIABLE........ccooiiiiiiiee e Objects-72
CURRENT-WINDOW FUNCTION. ...t Objects-72
DEACTIVATE MINOR STYLE COMMAND ... Objects-72
DEFAULT BUFFER VARIABLES EDITOR VARIABLE.......ccoiiieieeee e Objects-73
DEFAULT FILETYPE MINOR STYLES EDITOR VARIABLEoccoiiiiiieee e, Objects-73
DEFAULT LISP OBJECT MINOR STYLES EDITOR VARIABLE..........ccooiiiii Objects-74
DEFAULT MAJOR STYLE EDITOR VARIABLE........coo e Objects-74
DEFAULT MINOR STYLES EDITOR VARIABLE ... Objects-75

DEFAULT SEARCH CASE EDITOR VARIABLE ... Objects-75

DEFAULT WINDOW LABEL EDITOR VARIABLE........c.cooiie e, Objects-75
DEFAULT WINDOW LABEL EDGE EDITOR VARIABLE......... Objects-76
DEFAULT WINDOW LABEL OFFSET EDITOR VARIABLE Objects-76

DEFAULT WINDOW LABEL RENDITION EDITOR VARIABLE Objects-76
DEFAULT WINDOW LINES WRAP EDITOR VARIABLE Objects-77
DEFAULT WINDOW RENDITION EDITOR VARIABLE.......ccoci i Objects-77
DEFAULT WINDOW TRUNCATE CHAR EDITOR VARIABLE Objects-78
DEFAULT WINDOW TYPE EDITOR VARIABLE ... Objects-78
DEFAULT WINDOW WIDTH EDITOR VARIABLE ... Objects-78
DEFAULT WINDOW WRAP CHAR EDITOR VARIABLE........ccociiiiie Objects-79
DEFINE-ATTRIBUTE MACRO ... Objects-79
DEFINE-COMMAND MAGCRO ...ttt Objects-80
DEFINE-EDITOR-VARIABLE MACRO ..o Objects-81
DEFINE-KEYBOARD-MACRO FUNCTION. ...t Objects-82
DELETE-AND-SAVE-REGION FUNCTION. ...t Objects-82
DELETE-BUFFER FUNCTION.....ooiiiiiiiie et Objects-83
DELETE-CHARACTERS FUNCTION......ooiiiiie e Objects-83
DELETE CURRENT BUFFER COMMAND ... Objects-84
DELETE LINE COMMAND ..ottt Objects-84
DELETE-MARK FUNCTION.o e Objects-85
DELETE NAMED BUFFER COMMAND......cooiiiiiiee e Objects-86
DELETE NEXT CHARACTER COMMAND ... Objects-86
DELETE NEXT WORD COMMANDot Objects-87
DELETE PREVIOUS CHARACTER COMMANDcccciiiie e Objects-88
DELETE PREVIOUS WORD COMMAND.......ccoiiiiiii e Objects-88
DELETE-REGION FUNCTION.....ooiiiiiiie e Objects-89
DELETE WHITESPACE COMMANDooie e Objects-89
DELETE-WINDOW FUNCTIONot Objects-90
DELETE WORD COMMAND ... e Objects-90
DESCRIBE COMMAND ... e e Objects-91
DESCRIBE-OBJECT-COMMAND FUNCTION. ... Objects-92
DESCRIBE WORD COMMAND Objects-92
DESCRIBE WORD AT POINTER COMMAND ... Objects-92
DOWNCASE REGION COMMAND ... e Objects-93
DOWNCASE WORD COMMAND Objects-94
ED COMMAND.....ccoiiiiiiee e Objects-94
ED FUNCTION.....ccccceernns Objects-95
EDIT FILE COMMAND Objects-96
EDIT-LISP-OBJECT-COMMAND FUNCTION ... Objects-97
EDITOR-ATTRIBUTE-NAMES VARIABLE ... Objects-97
‘EDITOR-BUFFER-NAMES* VARIABLE.......cooiiiei e Objects-97
' EDITOR-COMMAND-NAMES* VARIABLE......coi i Objects-97
‘EDITOR-DEFAULT-BUFFER* VARIABLEooiiiie e Objects-97
EDITOR ENTRY HOOK EDITOR VARIABLE Objects-98
EDITOR-ERROR FUNCTION.....oiiiiiiiiiie et Objects-98
EDITOR-ERROR-WITH-HELP FUNCTIONcoiiiiiiiii e Objects-99
EDITOR EXIT HOOK EDITOR VARIABLE......ooiiieee e Objects-99
EDITOR-HELP-BUFFER BUFFER Objects-100
EDITOR INITIALIZATION HOOK EDITOR VARIABLEccoooiiiieeee e Objects-100
' EDITOR-KEYBOARD-MACRO-NAMES* VARIABLE ... Objects-100
EDITOR-LISTEN FUNCTION. .. .ottt Objects-101
EDITOR PAUSE HOOK EDITOR VARIABLE Objects-101
EDITOR-PROMPTING-BUFFER BUFFERccoiiiiiieee e Objects-101
EDITOR-READ-CHAR FUNCTION ... Objects-102
EDITOR-READ-CHAR-NO-HANG FUNCTION. ... Objects-102
EDITOR RECURSIVE ENTRY HOOK EDITOR VARIABLE Objects-102
‘EDITOR-RETAIN-SCREEN-STATE* VARIABLE ... Objects-103

EDITOR-STYLE-NAMES VARIABLE ... e Objects-103

EDITOR-UNREAD-CHAR FUNCTION ..o Objects-103
EDITOR-VARIABLE-NAMES VARIABLE ... Objects-104
"EDITOR-WORKSTATION-BANNER* VARIABLE ..o Objects-104
EDT APPEND COMMANDObjects-104
EDT BACK TO START OF LINE COMMANDooiii e Objects-105
EDT BEGINNING OF LINE COMMAND ... Objects-105
EDT CHANGE CASE COMMAND ..t Objects-106
EDT CUT COMMAND ...t e e e Objects-107
EDT DELETE CHARACTER COMMAND ... Objects-107
EDT DELETE LINE COMMANDciiiiiiee e Objects-108
EDT DELETE PREVIOUS CHARACTER COMMAND ... Objects-108
EDT DELETE PREVIOUS LINE COMMAND ... Objects-109
EDT DELETE PREVIOUS WORD COMMAND ... Objects-110
EDT DELETE TO END OF LINE COMMAND ... Objects-110
EDT DELETE WORD COMMAND ... Objects-111

EDT DELETED CHARACTER EDITOR VARIABLE......ccooi e Objects-111

EDT DELETED LINE EDITOR VARIABLE ... e Objects-112
EDT DELETED WORD EDITOR VARIABLE.......coo e Objects-112
EDT DESELECT COMMAND ... Objects-112
EDT DIRECTION MODE EDITOR VARIABLE.......oooe e Objects-113
EDT EMULATION STY LE . e Objects-113
EDT END OF LINE COMMAND Objects-113
EDT MOVE CHARACTER COMMAND ...t Objects-114
EDT MOVE PAGE COMMAND .. Objects-115
EDT MOVE WORD COMMANDcoiii e Objects-115
EDT PASTE COMMAND ... Objects-116
EDT PASTE AT POINTER COMMANDooiiiie e Objects-116
EDT PASTE BUFFER EDITOR VARIABLE.......coo e Objects-117
EDT QUERY SEARCH COMMAND ..o Objects-117
EDT REPLACE COMMAND ..o Objects-118
EDT SCROLL WINDOW COMMAND ... Objects-119
EDT SEARCH AGAIN COMMAND ... Objects-119
EDT SELECT COMMAND Objects-120
EDT SET DIRECTION BACKWARD COMMAND. ... Objects-120
EDT SET DIRECTION FORWARD COMMAND.......ooiiiieai e Objects-121
EDT SPECIAL INSERT COMMAND ..ot Objects-121
EDT SUBSTITUTE COMMAND ... Objects-122
EDT UNDELETE CHARACTER COMMAND......coiiiiiei e Objects-122
EDT UNDELETE LINE COMMAND ... Objects-123
EDT UNDELETE WORD COMMANDoiiiiiiie e Objects-124
EMACS ST Y LE e e Objects-124
EMACS BACKWARD SEARCH COMMAND.......ooii e Objects-125
EMACS FORWARD SEARCH COMMAND.......coiiiiiiii e Objects-125
EMPTY-BUFFER-P FUNCTIONooiiiiii e Objects-126
EMPTY-LINE-P FUNCTIONccoiiiiiii e Objects-127
EMPTY-REGION-P FUNCTION ..o Objects-127
END KEYBOARD MACRO COMMAND Objects-128
END-KEYBOARD-MACRO FUNCTION Objects-128
END OF BUFFER COMMAND Objects-129
END OF LINE COMMAND ..o Objects-129

END-OF-LINE-P FUNCTION ... Objects-130
END OF OUTERMOST FORM COMMAND Objects-130
END OF PARAGRAPH COMMAND Objects-131
END OF WINDOW COMMAND ..ottt Objects-131
ENQUEUE-EDITOR-COMMAND FUNCTION Objects-132
EVALUATE LISP REGION COMMANDooiiiiiieee e Objects-132

EXCHANGE POINT AND SELECT MARK COMMAND ... Objects-133

EXECUTE KEYBOARD MACRO COMMAND. ...t Objects-134
EXECUTE NAMED COMMAND COMMAND. ...t Objects-134
EXIT COMMAND ...t e e e e e e e e e e Objects-135
EXIT-EDITOR-COMMAND FUNCTION ...t Objects-135
EXIT RECURSIVE EDIT COMMAND ... Objects-135
FIND-AMBIGUOUS FUNCTIONot Objects-136
FIND-ATTRIBUTE FUNCTIONoiiiiiie e Objects-137
FIND-BUFFER FUNCTION ... e Objects-137
FIND-COMMAND FUNGCTION ... Objects-138
FIND-STYLE FUNCTION .ot Objects-138
FIND-VARIABLE FUNGCTION . ..ottt Objects-139
FIRST-LINE-P FUNCTION ...ttt Objects-139
FORWARD CHARACTER COMMAND ... Objects-140
FORWARD KILL RING COMMAND ... Objects-140
FORWARD PAGE COMMANDo Objects-141
FORWARD SEARCH COMMAND ... Objects-141
FORWARD WORD COMMAND ..ottt Objects-142
FORWARD-WORD-COMMAND FUNCTION. ... Objects-143
GENERAL PROMPTING BUFFER ... e Objects-143
GET-BOUND-COMMAND-FUNCTION FUNCTION......ccceiiiiiiiiiic i, Objects-144
GET-POINTER-STATE FUNCTIONooiiiiiiie e Objects-144
GET-STRING-TABLE-VALUE FUNCTION.....oiiiiiiiiieeee e Objects-145
GROW WINDOW COMMANDt Objects-146
HELP BUFFER .. oo e Objects-147
HELP COMMAND ...ttt e e e e e e e e Objects-147
HELP ON EDITOR ERROR COMMANDo Objects-148
HELP TEXT EDITOR VARIABLE ..o Objects-148
HIGHLIGHT-REGION-P FUNCTION ..ottt Objects-149
ILLEGAL OPERATION COMMAND Objects-149
INDENT LISP LINE COMMAND ..ottt Objects-150
INDENT LISP REGION COMMAND ...t Objects-150

INDENT OUTERMOST FORM COMMAND
INFORMATION-AREA-HEIGHT FUNCTION
' INFORMATION-AREA-OUTPUT-STREAM* VARIABLE

Objects-151
Objects-151
Objects-152

INITIALIZE-EDITOR FUNCTION Objects-152
INSERT BUFFER COMMANDot e e Objects-152
INSERT-CHARACTER FUNCTIONooiiiiiiiiiee et Objects-153
INSERT CLOSE PAREN AND MATCH COMMAND......ccoiiiiiieeeeee e Objects-154
INSERT FILE COMMANDoiiiiiie e e Objects-154
INSERT-FILE-AT-MARK FUNCTIONooiiiiiiiiiie e Objects-155
INSERT-REGION FUNCTION L Objects-156
INSERT-STRING FUNCTION....ciiiiiiiiiii e Objects-156
INVOKE-HOOK FUNCTION. .. .o Objects-157
KILL ENCLOSING LIST COMMAND Objects-157
KILL LIST COMMAND ...t e e e e e e Objects-158
KILL NEXT FORM COMMAND ...t Objects-159
KILL PARAGRAPH COMMAND ... Objects-159
KILL PREVIOUS FORM COMMANDottt Objects-160
KILL REGION COMMAND ..ottt e e Objects-161
KILL REST OF LIST COMMAND......ccccccoiiiiiiies Objects-162
‘LAST-CHARACTER-TYPED* VARIABLE Objects-162
LAST-LINE-P FUNCTION ... e Objects-162
LAST SEARCH DIRECTION EDITOR VARIABLE......ccooiiiiee e Objects-163
LAST SEARCH PATTERN EDITOR VARIABLE........c.oooiiie e Objects-163
LAST SEARCH STRING EDITOR VARIABLE Objects-164

LINE-BUFFER FUNCTION ..o Objects-164

Xi

LINE-CHARACTER FUNCTION ...oiiiiiiii e s Objects-164
LINE-END FUNCTION ... Objects-165
LINE-LENGTH FUNCTION ..ot Objects-165
LINE-NEXT FUNCTION .ot Objects-166
LINE-OFFSET FUNCTION .o Objects-166
LINE-PREVIOUS FUNCTION.... .. Objects-167
LINE-START FUNGCTION . ..ciiii ittt Objects-167
LINE-STRING FUNCTION .. .ottt e e e Objects-168
LINE-TO-REGION FUNGCTIONciiiiiiiiiiee et Objects-168
LINE TO TOP OF WINDOW COMMAND.....ooiiiiii e Objects-169
UNEP FUNCTION ... e Objects-169
LINES-RELATED-P FUNCTION ..o s Objects-170
LINE/= FUNCTION....coii ittt e e nnee s Objects-170
LINES FUNCTION L.t Objects-171
LINES= FUNGCTION ... Objects-171
LINE= FUNCTION ..ottt Objects-172
LINE> FUNCTION ..ottt e e Objects-172
LINE>= FUNGCTION ... Objects-173
LISP COMMENT COLUMN EDITOR VARIABLE.......co e Objects-173
LISP EVALUATION RESULT EDITOR VARIABLE ... Objects-174
LISP SYNTAX ATTRIBUTE ... Objects-174
LIST BUFFERS COMMAND ... e Objects-175
LIST KEY BINDINGS COMMAND ..ot Objects-176
LOCATE-ATTRIBUTE FUNCTION ..o Objects-177
LOCATE-PATTERN FUNCTION ... s Objects-178
MAJOR STYLE ACTIVATION HOOK EDITOR VARIABLE.........cccoiiie Objects-179
MAKE-BUFFER FUNCTION e Objects-179
MAKE-COMMAND FUNCTIONciiiiiiiiiee et Objects-180
MAKE-EDITOR-STREAM-FROM-REGION FUNCTION......ccccoiiiiiiie e Objects-181
MAKE-EDITOR-STREAM-TO-MARK FUNCTION.......ooiiiiiiiieeeee e Objects-181
MAKE-EMPTY-REGION FUNCTIONooiiiiiiiiiiee e Objects-182
MAKE-HIGHLIGHT-REGION FUNCTION ..ot Objects-182
MAKE-MARK FUNCTION ..ot Objects-183
MAKE-REGION FUNCTION....ciiiiiiiiiee it e e Objects-184
MAKE-RING FUNCTION . ..ciiiiiiiiiee e Objects-184
MAKE-SEARCH-PATTERN FUNCTION ..o Objects-185
MAKE-STRING-TABLE FUNCTION. ..ottt Objects-185
MAKE-STYLE MACRO ...t Objects-186
MAKE-WINDOW FUNGCTIONcoiiiiiiiieeeeeeie et Objects-186
MAP-BINDINGS FUNCTION ... Objects-188
MAP-BUFFERS FUNCTION .ot Objects-188
MAP-STRINGS FUNCTION....ciiiiiiiiie et e e e e Objects-189
MARK-CHARPOS FUNCTION ..ottt Objects-189
MARK-COLUMN FUNGCTION .. .ot Objects-190
MARK-LINE FUNCTION ... Objects-190
MARK-TYPE FUNCTION ..ot Objects-191
MARK-VISIBLE-P FUNCTIONciiiiiie et Objects-191
MARK-WINDOW-POSITION FUNCTION ...t Objects-192
MARKP FUNGCTION ...t Objects-192
MARK/Z FUNCTION. ...ciiiiiiiiiii ettt Objects-193
MARKS FUNCTION .. Objects-193
MARKS= FUNCTION ..ot e e Objects-194
MARK= FUNCTION ...t e e e e Objects-194
MARK> FUNCTION..........c........ ... Objects-195
MARK>= FUNGCTION ... e Objects-195
MAYBE RESET SELECT AT POINTER COMMAND ... Objects-196

MINOR STYLE ACTIVATION HOOK EDITOR VARIABLE........coooiieeee Objects-196

MOVE-MARK FUNCTION.ot Objects-197

MOVE-MARK-AFTER FUNCTION.ot Objects-197
MOVE-MARK-BEFORE FUNCTION ... Objects-198
MOVE-MARK-TO-POSITION FUNCTION.....coiiiiiie e Objects-198
MOVE POINT AND SELECT REGION COMMAND Objects-199
MOVE POINT TO POINTER COMMAND Objects-199
MOVE TO LISP COMMENT COMMAND Objects-200
MOVE-WINDOW FUNCTION. ... Objects-201
NEW LINE COMMANDot Objects-201
NEW LISP LINE COMMANDo s Objects-202
NEXT-CHARACTER FUNCTION Objects-202
NEXT FORM COMMAND Objects-203
NEXT LINE COMMAND ... Objects-204
NEXT-LISP-FORM FUNCTION........... Objects-204
NEXT PARAGRAPH COMMAND Objects-205
NEXT SCREEN COMMAND Object&-206
NEXT WINDOW COMMAND Objects-206
NEXT-WINDOW FUNCTION ...t Objects-207
OPEN LINE COMMANDoiiii e Objects-208
PAGE DELIMITER ATTRIBUTE ... Objects-208
PAGE NEXT WINDOW COMMAND ... Objects-209
PAGE-OFFSET FUNCTION. ...t Objects-209
PAGE PREVIOUS WINDOW COMMAND ...t Objects-210
PAUSE EDITOR COMMANDt Objects-210
POINTER-STATE-ACTION FUNCTION ..coiiiiiiiee e Objects-211
POINTER-STATE-BUTTONS FUNCTION. ... Objects-212
POINTER-STATE-P FUNCTIONo Objects-212
POINTER-STATE-TEXT-POSITION FUNCTION ... Objects-213
POINTER-STATE-WINDOW-POSITION FUNCTION. ..o Objects-213
POSITION-WINDOW-TO-MARK FUNCTION......coiiii e Objects-214
PREFIX-ARGUMENT FUNCTION ... Objects-215
PREVIOUS-CHARACTER FUNCTION. ...t Objects-215
‘PREVIOUS-COMMAND-FUNCTION* VARIABLE ..o, Objects-216
PREVIOUS FORM COMMAND ... Objects-216
PREVIOUS LINE COMMAND ... e Objects-217
PREVIOUS-LISP-FORM FUNCTION ...t Objects-218
PREVIOUS PARAGRAPH COMMAND ... Objects-218
PREVIOUS SCREEN COMMAND ... Objects-219
PREVIOUS WINDOW COMMANDot Objects-220
PRINT REPRESENTATION ATTRIBUTEooiiiie e Objects-220
PROMPT ALTERNATIVES EDITOR VARIABLE.......coo e Objects-221
PROMPT ALTERNATIVES ARGUMENTS EDITOR VARIABLE ..o Objects-221
PROMPT COMPLETE STRING COMMAND ... Objects-221
PROMPT COMPLETION EDITOR VARIABLE........oo e Objects-222
PROMPT COMPLETION ARGUMENTS EDITOR VARIABLE ... Objects-222
PROMPT DEFAULT EDITOR VARIABLE.......o e Objects-223
PROMPT ERROR MESSAGE EDITOR VARIABLE ... Objects-223
PROMPT ERROR MESSAGE ARGUMENTS EDITOR VARIABLE........cccccoeie. Objects-223
PROMPT-FOR-INPUT FUNCTIONot e Objects-224
PROMPT HELP COMMANDo Objects-226
PROMPT HELP EDITOR VARIABLE.......oo e Objects-227
PROMPT HELP ARGUMENTS EDITOR VARIABLE ... Objects-227
PROMPT HELP CALLED EDITOR VARIABLE ... Objects-227
PROMPT READ AND VALIDATE COMMAND. ... Objects-228
PROMPT RENDITION COMPLEMENT EDITOR VARIABLE Objects-228
PROMPT RENDITION SET EDITOR VARIABLE.......ccooii e Objects-229
PROMPT REQUIRED EDITOR VARIABLE........c.ooiii e Objects-229

Xii

PROMPT SCROLL HELP WINDOW COMMAND ... Objects-229

PROMPT SHOW ALTERNATIVES COMMAND Objects-230
PROMPT START EDITOR VARIABLE ... Objects-231
PROMPT VALIDATION EDITOR VARIABLE Objects-231
PUSH-WINDOW FUNCTION.....ccoiiiiiiieeeeeieeee e Objects-231
QUERY SEARCH REPLACE COMMAND ..o Objects-232
QUOTED INSERT COMMAND ... e Objects-234
READ FILE COMMAND ... Objects-234
REDISPLAY SCREEN COMMAND Objects-235
REDISPLAY-SCREEN FUNCTION Objects-235
REGION-END FUNCTION ...ttt Objects-236
REGION-READ-POINT FUNCTION....iii ittt Objects-236
REGION-START FUNCTION ..ot Objects-237
REGION-TO-STRING FUNCTION.......cuiiiiiiiiiiiiee et Objects-237
REGIONP FUNGCTION ...ttt Objects-238
REMOVE CURRENT WINDOW COMMAND ... Objects-238
REMOVE-HIGHLIGHT-REGION FUNCTION ... Objects-239
REMOVE OTHER WINDOWS COMMAND ... Objects-239
REMOVE-STRING-TABLE-ENTRY FUNCTION......ooiiiiiiiii e Objects-240
REMOVE-WINDOW FUNCTION....coiiiiiie e Objects-240
REPLACE-PATTERN FUNCTION ... Objects-241
RETURN-FROM-EDITOR MACRO ...t Objects-242
REVERSE-INVOKE-HOOK FUNCTIONoiiiiiiiiiee e Objects-242
RING-LENGTH FUNCTION ... ettt Objects-243
RING-POP FUNGCTION Objects-243
RING-PUSH FUNGCTION ...t e e Objects-244
RING-REF FUNGCTION ...ttt e Objects-244
RING-ROTATE FUNCTION ... Objects-245
RINGP FUNCTION e ee e e Objects-245
SAME-LINE-P FUNCTIONo Objects-246
SCREEN-HEIGHT FUNCTION.o s Objects-246
SCREEN MODIFICATION HOOK EDITOR VARIABLE........cooiee s Objects-247
SCREEN-WIDTH FUNCTION.ot Objects-247
SCROLL-WINDOW FUNCTIONo Objects-248
SCROLL WINDOW DOWN COMMAND.....coiiiie e Objects-248
SCROLL WINDOW UP COMMAND ... Objects-249
SECONDARY SELECT REGION COMMAND ... Objects-250
SELECT BUFFER COMMANDo Objects-250
SELECT ENCLOSING FORM AT POINTER COMMAND ..ot Objects-251
SELECT OUTERMOST FORM COMMANDociiiiiie e Objects-252
SELECT REGION RENDITION COMPLEMENT EDITOR VARIABLE.......cccccccvunnen. Objects-252
SELECT REGION RENDITION SET EDITOR VARIABLE.........oooiiee Objects-253
SELF INSERT COMMAND ...t Objects-253
SET DECWINDOWS POINTER SYNTAX COMMANDccooiiiiiieeeee e Objects-254
SET SCREEN HEIGHT COMMAND ... Objects-254
SET SCREEN WIDTH COMMAND ...t Objects-255
SET SELECT MARK COMMANDcii et Objects-256
SET UIS POINTER SYNTAX COMMANDoiiiiiiiiii et Objects-257
SHOW-MARK FUNCTION Objects-258
SHOW TIME COMMAND ... e Objects-258

SHOW-WINDOW FUNCTION Objects-259

SHRINK WINDOW COMMAND Objects-260
SIMPLE-PROMPT-FOR-INPUT FUNCTIONooiiiiiie e Objects-260
SPLIT WINDOW COMMAND ...ttt Objects-261
START KEYBOARD MACRO COMMAND Objects-262
START NAMED KEYBOARD MACRO COMMAND ..o Objects-262

START-OF-LINE-P FUNCTION Objects-263

STRING-TABLE-P FUNCTION ..o Objects-263

STRING-TO-REGION FUNCTION.o Objects-264
STYLE-NAME FUNCTION ...t Objects-264
STYLE-VARIABLES FUNCTIONoii e Objects-265
STYLEP FUNCTION oottt e e e e e Objects-265
SUPPLY EMACS PREFIX COMMAND ..o Objects-266
SUPPLY PREFIX ARGUMENT COMMANDoiiiiie e Objects-266
SWITCH WINDOW HOOK EDITOR VARIABLE ... Objects-267
TARGET COLUMN EDITOR VARIABLE ... Objects-267
TEXT OVERSTRIKE MODE EDITOR VARIABLE ... Objects-268
TRANSPOSE PREVIOUS CHARACTERS COMMAND.......ccoiiiiiieee e Objects-268

TRANSPOSE PREVIOUS WORDS COMMAND
UNBIND-ATTRIBUTE FUNCTION
UNBIND-COMMAND FUNCTION
UNBIND-POINTER-COMMAND FUNCTION

Objects-269
Objects-269
Objects-270
Objects-270

UNBIND-VARIABLE FUNCTION Objects-271
UNDO PREVIOUS YANK COMMANDo Objects-271
UNSET SELECT MARK COMMAND ... e Objects-272
UPCASE REGION COMMAND .. Objects-273

UPCASE WORD COMMAND ... Objects-273

UPDATE-DISPLAY FUNCTION .o Objects-274
UPDATE-WINDOW-LABEL FUNCTION.....oiiiiiiie e Objects-274
VARIABLE-BOUNDP FUNCTION ...coiiiii e Objects-275
VARIABLE-FBOUNDP FUNCTIONo Objects-275
VARIABLE-FUNCTION FUNCTION....ooiiiiiiee e Objects-276
VARIABLE-NAME FUNGCTION ...t Objects-276
VARIABLE-VALUE FUNCTION. ... Objects-277
VAX LISP ST Y LE e Objects-277
VIEW FILE COMMAND .ottt e e e e e e Objects-278
VISIBLE-WINDOWS FUNCTION ..o Objects-279
WHAT CURSOR POSITION COMMAND ..ot Objects-279
WHITESPACE ATTRIBUTE ...t ee e e Objects-280
WHITESPACE-AFTER-P FUNCTION ... Objects-280
WHITESPACE-BEFORE-P FUNCTION ..ottt Objects-281
WHITESPACE-BETWEEN-P FUNCTION.. ... Objects-281
WHITESPACE-LINE-P FUNCTIONo Objects-282
WINDOW-BUFFER FUNGCTION ... Objects-282
WINDOW BUFFER HOOK EDITOR VARIABLE ... Objects-283
WINDOW CREATION HOOK EDITOR VARIABLE........cco e Objects-283
WINDOW-CREATION-TIME FUNCTION ... Objects-283
WINDOW DELETION HOOK EDITOR VARIABLE. ... Objects-284
WINDOW-DISPLAY-COLUMN FUNCTIONoiiiiiiiie e Objects-284
WINDOW-DISPLAY-END FUNCTION ..ot Objects-285
WINDOW-DISPLAY-ROW FUNCTION ... Objects-285
WINDOW-DISPLAY-START FUNCTION. ... Objects-286
WINDOW-HEIGHT FUNCTION ... Objects-286
WINDOW-LABEL FUNCTION ... Objects-287
WINDOW-LABEL-EDGE FUNCTION. ..o Objects-287
WINDOW-LABEL-OFFSET FUNCTION ... Objects-288
WINDOW-LABEL-RENDITION FUNCTION. ..o Objects-288
WINDOW-LINES-WRAP-P FUNCTION ... Objects-289
WINDOW MODIFICATION HOOK EDITOR VARIABLE........ciiiie e Objects-289
WINDOW-POINT FUNCTION. ... e Objects-289
WINDOW-RENDITION FUNCTIONo Objects-290
WINDOW-TRUNCATE-CHAR FUNCTION .o Objects-290
WINDOW-TYPE FUNCTION ..ot Objects-291
WINDOW-WIDTH FUNCTION ... Objects-291

XV

Appendixes

Appendix A

Al

A.2

A3

A4

A5

A.6

A7

A8

A9

A.10

All

A.12

A.13

A.1l4

A.15

A.16

A.l7

WINDOW-WRAP-CHAR FUNCTION ... Objects-292

WINDOWP FUNCTION. ... Objects-292
WITH-INPUT-FROM-REGION MACRO ...ciiiiiiiece e Objects-293
WITH-MARK MACRO ... Objects-293
WITH-OUTPUT-TO-MARK MACRO ... Objects-294
WITH-SCREEN-UPDATE MACRO ... Objects-294
WORD DELIMITER ATTRIBUTE ..o Objects-295
WORD-OFFSET FUNCTION ... Objects-295
WRITE CURRENT BUFFER COMMAND ..o Objects-296
WRITE-FILE-FROM-REGION FUNCTION Objects-296
WRITE MODIFIED BUFFERS COMMAND Objects-297
WRITE NAMED FILE COMMAND ... Objects-298
YANK COMMANDObjects-298
YANK AT POINTER COMMAND ..o Objects-299
YANK PREVIOUS COMMANDo Objects-300
YANK REPLACE PREVIOUS COMMANDooiiiiii e Objects-300

Editor Objects by Category

ATTIDULES e A-2
Attributes Provided with VAX LISP ... A-2
B U T TS i A-2
Buffers Provided With VAX LIS P ..o A-3
COMMANAS ittt ettt e s e e e e e e s e e e nnr e e e nsreenenre e e naneas A-3
Commands Provided With VAX LISP ..o A-4
(D =Y o - N PP PRRT A~
EditOr VariableS ..o s A-7
Editor Variables Provided with VAX LIS P ..o A-7
Error Signaling and D ebuggiNg ... A-9
B Tl S et A-9
[= 1 o T TP PRPTT A-9
H O O K S ittt nan A-9
Hook Variables Provided with VAX LISPooociiiiiiiiie e A-10
Invoking and EXiting the B ditOr. ... A-10
L1 T PR A-10
[T = PRSP PP A-11

A.18 LISP SYNTAX . e A-11

A.19
A.20 MISCEITBNEOUS ...eiiiieece et e e s A-13
A2l POINTING D BVICE ittt e e e e s A-13
A.22 Prompting and Terminal INP U A-14
A.23 (R =T TT0 o =P ROTRPPRR A-14
A.24
A.25 SEAICNING 1ot A-15
A.26 SHHNG TADIES e A-15
A.27 String Tables Provided wWith VAX LIS P ... A-16
A.28
A.29 Styles Provided With VAX LIS P ...t A-16
A.30 Style Bindings, "EDT Emulation” Style ... A-16
A3l Style Bindings, "EMACS" STY 1€ . et A-17
A.32 Style Bindings, "VAX LISP" ST ... A-19
A.33 TEXE O P EIATIONS ittt e e e et sn e r e e e n e A-19
A.34 W NAOW S ittt e et e st e s n e e s ne e e sne e e nnneeeenreenan A-20

Appendix B Editor Commands and Bindings

Appendix C Bound Keys and Key Sequences

Appendix D Function Keys and Keypad Keys

Index

Figures
4-1 Before Moving the M arK ... e 4-11
4-2 MoVING @ Mark FOIWAIccoiiiiiieiiee et 412
4-3 Moving @ Mark BaCKW ATcooiiuiiiiieeiiei et e e 4-12
5-1 Display Area COOTINATIES.......uiiiiiiiiiiie et 5-14
5-2 Altered Display Area DIMENSIONS.ccoiiiiiiieiirie e 5-15
5-3 A WiIiNdow Display P OSITION ...ccviiiiiiiiiiieeee et 5-20
Concepts-1 Hierarchy of Named ODjJeCtS ..o Concepts-9

XVii

Concepts-2 Before Deleting Region Concepts-15

Concepts-3 After Deleting Region . Concepts-16
Tables

Objects-1 LISP Syntax Atribute ValUEScooiiiiiiiiiiiiiiiiee e Objects-174

B-1 Editor Commands and Key BiNAiNGgS.....cocuuuiiiiiiiiiiiiiae it e e B-1

c4 [=To 1 (o A A= VA = T o 1T Lo - ORI C-1

D-1 Characters Generated DY KEYS ..o D-1

Preface

The VAXLISP /VMS Editor Programming Guide provides the information needed
to program the VAX LISP Editor in order to extend and customize its capabilities.

Intended Audience

Structure

Readers of this manual are assumed to have a working knowledge of LISP
programming and to be able to use the VAX LISP Editor as provided.

= The VAX LISP language elements are described in Common LISP: The
Language}

= [nstructions for using the VAX LISP Editor appear in the VAXLISP/VMS
Program Development Guide.

Readers who are not familiar with LISP programming can use the VAX LISP
Editor as provided but should not attempt to customize it.

An outline of the organization and chapter content of this manual follows.
Part I: Guide to Editor Programming

This part introduces the techniques of Editor programming in a task-oriented

fashion. It contains six chapters, each covering a major area of Editor program-
ming.

= Chapter 1provides an overview of the subsystems of the Editor and of the
data types that each subsystem contains. It also describes the methods of
accessing Editor objects.

= Chapter 2 describes the techniques of creating Editor commands.

= Chapter 3 describes the techniques of binding Editor commands to keyboard
keys and pointer actions.

= Chapter 4 introduces the Editor § text operations subsystem and the tech-
niques of extending it.

= Chapter 5introduces the Editor §window and display operations subsystem
and the techniques of extending it.

= Chapter 6 describes the techniques of modifying the Editor § styles and of
creating new styles.

1 Guy L. Steele, Jr., Common LISP: The Language, Digital Press (1984), Burlington, Massachusetts.

XiX

Part 1l: Concepts in Editor Programming

This part contains programming information arranged for quick reference.
Separate, alphabetically arranged articles on each of the major concepts and
data types used in Editor programming are included.

Part Hi: Editor Object Descriptions

Part 11l describes the individual functions, variables, and other objects provided
with the Editor. The descriptions are arranged alphabetically by object name.

Appendixes

This manual also contains four appendixes.

Appendix A contains lists of the functions, variables, and other objects pro-
vided with the Editor, categorized by the major concepts and data types used
in Editor programming.

Appendixes B, C, and D list all the commands provided with the Editor, all
bound keys, and other information useful in binding Editor commands to keys
and key sequences. These appendixes also appear in the VAXLISP/VMS
Program Development Guide.

Associated Documents

The following documents are relevant to programming the VAX LISP Editor:

Conventions

VAX LISP/VMS Program Development Guide presents information on using
the VAX LISP Editor as provided. This manual also provides general infor-
mation about using VAX LISP, and serves as a guide to generally helpful VMS
documentation.

Common LISP: The Language provides a definition of the Common LISP
language.

VAXLISP Interface to VWS Graphics explains the use of the VAX LISP
programming interface to VAXstation graphics.

Convention Meaning
UPPERCASE Defined LISP functions, macros, variables, constants, and other
TYPEWRITER symbol names are printed in uppercase TYPEWRITER charac-

ters; however, you can enter them in uppercase, lowercase, or a
combination of uppercase and lowercase characters. For example:

The caLL-ouT macro calls a defined external routine

lowercase LISP forms are printed in the text in lowercase typewriter
typewriter characters; however, you can enter them in uppercase, lowercase, or

a combination of uppercase and lowercase characters. For example:

(setf example-1 (make-space))

SANS SERIF Format specifications of LISP functions and macros are printed in a

sans serif typeface. For example:

CALL-OUT external-routine &REST routine-arguments

Convention

italics

O

0

O~

&OPTIONAL

&REST

&KEY

Meaning

Lowercase italics in format specifications and in text indicate argu-
ments that you supply; however, you can enter them in lowercase,
uppercase, or a combination of lowercase and uppercase characters.
For example:

The routine-arguments must be compatible with the arguments
defined in the call to the DEFINE-EXTERNAL-ROUTINE macro.

Parentheses used in examples of LISP code and in format spec-
ifications indicate the beginning and end of a LISP form. For
example:

(setq name lisp)

Square brackets in format specifications enclose optional elements.
For example:

[doc-string]

In function and macro format specifications, braces enclose elements
that are considered one unit of code. For example:

{keyword value}

In function and macro format specifications, braces followed by
an asterisk enclose elements that are considered one unit of code,
which can be repeated zero or more times. For example:

{keyword value}'

In function and macro format specifications, the word &OPTIONAL
indicates that the arguments that follow it are optional. For exam-
ple:

PPRINT object &OPTIONAL package

Do not specify &OPTIONAL when you invoke a function or macro
whose definition includes &OPTIONAL.

In function and macro format specifications, the word &REST

indicates that an indefinite number of arguments may appear. For
example:

CALL-OUT external-routine &REST routine-arguments

Do not specify &REST when you invoke a function or macro whose
definition includes &REST.

In function and macro format specifications, the word &KEY indi-
cates that keyword arguments are accepted. For example:

COMPILE-FILE input-pathname
&KEY LISTING :MACHINE-CODE OPTIMIZE
:OUTPUT-FILE :VERBOSE WARNINGS

Do not specify &KEY when you invoke a function or macro whose
definition includes &KEY.

A horizontal ellipsis in a format specification means that the ele-
ment preceding the ellipsis can be repeated. For example:

function-name . ..

XXi

XX

Convention

| Return |

|onac

EE31Z]

mouse

MB1, VB2, MB3

Red print

Meaning

A vertical ellipsis in a code example indicates that all the informa-
tion that the system would display in response to the function call
is not shown; or, that all the information a user is to enter is not
shown.

A word inside a box indicates that you press a key on the keyboard.
For example:

I:leturn |or |Tab]

In code examples, carriage returns are implied at the end of each

line. However, Irewn |is used in some examples to emphasize car-
riage returns.

Two key names enclosed in a box indicate a control key sequence in
which you hold down Ctrl while you press another key. For example:
|cwic |or |cus|

The system echoes control key sequences as x; therefore, in exam-
ples of output, |/ may be shown as *"x. For example:

aC ot as

A sequence such as |pfi| B¢ indicates that you must first press and
release the key labeled PF1, then press and release another key.

The term mouse refers to any pointing device, such as a mouse, a
puck, or a stylus.

By default, MBL indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse button.
You can rebind the mouse buttons.

In interactive examples, user input is shown in red. For example:

Lisp> (cdr "(@b c))

® o
Lisp>

Parti
Guide to Editor Programming

Chapter 1

Editor Overview

The VAX LISP Editor is an interactive LISP program that enables the user to
insert, display, and manipulate text. Editor behavior and capabilities as they

appear to the interactive user are described in the VAXLISP /VMS Program
Development Guide.

The Editor is designed to be modified and extended easily. Since the Editor is

written entirely in LISP, you can alter it by writing new LISP code that performs
several tasks:

= Modifies the behavior of Editor commands
= Binds commands to key sequences or actions of a pointing device

= Modifies the Editor § initial features, such as the labeling of its windows, the
frequency of checkpointing, the size of the information area, and so on

Adds new capabilities, such as justification of text, parsing of LISP code,
recognition of the syntax of another programming language, and so on

Tb write Editor-related code, you use the same functions and data types that
were used to develop the Editor originally. These include some specially defined
“Editor objects’you can also use any object defined in VAX LISP.

This chapter provides an overview of the Editor as a LISP program and of its data
types. The intent is to orient you to the process of extending the Editor and to
the range of possible extensions. This chapter also gives some basic programming
information that is needed to follow the discussion in later chapters.

This chapter contains the following features:
= [|llustrations of simple Editor extensions

= Overview of the Editor § subsystems and utilities

= [ntroduction to Editor data types and the means of referencing them

1.1 Some Common Editor Extensions

This section includes the LISP code that implements several different kinds of

Editor extensions. These simple examples illustrate the process of programming
the Editor.

The following Editor extensions are shown:
= Changing the frequency of checkpointing

= Changing the number of windows that the Editor normally displays at one
time

Editor Overview 1-1

= Changing the default major style
= Binding a command supplied by Digital to a key sequence

= Defining a new command to change the width of the terminal screen

If you wish to make any of these changes in your own Editor, you simply execute
the forms as shown. You can execute them either by typing them at top-level
LISP or by loading them from a file.

In these examples the symbols for objects supplied by Digital that relate to the
Editor are referenced with the package prefix editor:. For a full discussion of
the package location of Editor objects, see Section 1.3.5.

1.1.1 Changing the Frequency of Checkpointing

The Editor checkpoints buffers associated with files after every 350 commands
that alter text (see VAXLISP/VMS Program Development Guide). If you would
like checkpointing to occur either more or less frequently, you can change this by
using setf with the function checkpoint-frequency.

(setf (editor:checkpoint-frequency) 1000)

After you have executed this form, the Editor will checkpoint after every 1000
commands that alter text.

To disable checkpointing completely, set the value to ni1:

(setf (editor:checkpoint-frequency) nil)

1.1.2 Changing the Number of Windows Displayed

The Editor normally displays up to two anchored windows at a time. If you call
for a third anchored window (by selecting another buffer or editing another file or
LISP object), the Editor removes a window from the screen to make room for the
new window. (See VAXLISP/VMS Program Development Guide.)

If you would like the Editor to show up to three windows at a time, you change
the value of an Editor variable called ""anchored window show Limit" from 2 to 3.
If you want only one window shown at a time, you set the value to | .

An Editor variable differs slightly from a LISP variable (see Section 1.3.4).
You reference an Editor variable by means of a specifier (symbol or a string
called a display name), and you access the variable § value with the function
variable-value.Using setf,you can then change the value of the Editor
variable.

The code that changes the number of anchored windows that the Editor can show
is:

(setf (editor:variable-value "Anchored Window Show Limit'™) 3)

After you have executed this form, the Editor will show up to three anchored
windows at a time. If you call for a fourth anchored window, the Editor will
remove a window from the screen to accommodate the new window.

1-2 Editor Overview

1.1.3 Changing the Default Major Style

The Editor activates EDT Emulation as the major style in all the buffers that

it creates for editing files and LISP objects. If you prefer the behavior and key
bindings of an editor based on EMACS, you can make EMACS style the default
major style instead. (See VAXLISP/VMS Program Development Guide.)

The default is stored as the value of the Editor variable ""Default Major style".
The possible values are Editor objects called styles, which, like Editor variables,
can be referenced by either their symbols or their display names.

The following form changes the Editor § default major style to EMACS:
(setf (editor:variable-value "Default Major Style'™) '"EMACS™)

Any new buffers the Editor creates after you have executed this form will have
"EMACS" as their major style. Already-existing buffers are not affected.

1.1.4 Binding a Command to a Key Sequence

Many commands provided by Digital are not bound to keys or key sequences and
must therefore be invoked by name (see VAXLISP/VMS Program Development
Guide). You might wish to bind keys to the commands you use frequently, such
as "Write Current Buffer.

To establish a key binding, you can use the function bind-command and the
display name of an Editor command. To specify the key or keys, you can use the
normal LISP syntax for a character or a vector containing characters, (ind-
command is one of the few Editor-related symbols accessible in the user package;
you need not prefix it with the editor : package qualifier.)

(bind-command "Write Current Buffer™ “#(#\AX #\AN))

The sequence ctri/x ctriiw will now execute "Write Current Buffer" in the Editor.
To ensure that the key sequence you choose is not already bound to an Editor
command, you can consult Appendix C, which lists the keys bound in the Editor
as provided.

1.1.5 Defining a Command to Change Screen Width

In editing LISP code, you might occasionally want your terminal screen to display
more than 80 columns so that lines do not truncate. One way to do this is to
execute the command "'Set Screen width" after specifying a prefix argument
(such as 132). If you adjust screen width frequently, you might prefer to have a
command that you can execute in one step.1

To implement a new command, use the macro define-command . A possible
implementation for a command that widens the screen to 132 columns is:

(editor:define-command (widen-screen-command :display-name "Widen Screen')

(prefix)

(setf (editor:variable-value "Default Window Truncate Char'™) nil)
(setf (editor:screen-width) (or prefix 132)))

1 On Digital terminals without the Advanced Video Option, widening the screen reduces available screen height to 12

rows.

Editor Overview 1-3

The function screen-width returns the current width of the screen. Using setf,
you change the value to 132 or to a prefix value that you can supply interactively.
(If no prefix value is supplied interactively, the Editor automatically passes ani
value for this parameter, and the or form will then return the value 132.)

This example also sets the value of the Editor variable ""Default window Truncate
char" to ni1 .This action dispenses with the character that normally appears on
the screen to indicate line truncation, define-command creates a command named
"Widen Screen that executes these two setf forms.

To have another command that sets the screen back to 80 columns and reestab-
lishes > as the truncation character, you could write:

(editor:define-command (shrink-screen-command :display-name "'Shrink Screen')
(prefix)

(setf (editor:variable-value "Default Window Truncate Char'™) #\>)
(setf (editor:screen-width) (or prefix 80)))

The new commands created by these define-command forms can be invoked by
name within the Editor. To make the commands accessible from the keyboard,
you could bind them to key sequences:

(bind-command "'Widen Screen" “#(#\escape #\w))
(bind-command "'Shrink Screen" “#(#\escape #\s))

The new commands can now be invoked from the keyboard by means of Escape w
and Escape s.

1.2 Editor Components

This section introduces the various subsystems and utilities of the Editor. The
purpose is to indicate the range of Editor behavior that can be programmed and
to introduce the data types that each subsystem contains.

Section 1.3 discusses the nature of the Editor data types and the means of
referencing them.

1.2.1 Text Operations

Text in the Editor is made up of the 256 characters in the ASCII 8-bit extended
character set (DEC Multinational Character Set). The Editor § text operations

are the operations that insert, copy, and delete text and indicate any given text
position (for positioning the cursor, for instance).

The text operations subsystem contains the following specially defined data types,
along with functions and macros that operate on them:

= Objects that contain text: buffers, regions, lines
= Objects that indicate text positions: marks

= Objects that distinguish among characters for the purpose of searching
through text: Editor attributes

The text operations subsystem also contains Editor variables and several LISP
global variables.

Information on programming text operations appears in Chapter 4 and in the
descriptions of the preceding data types in Part Il.

1-4 Editor Overview

1.2.2 Window and Display Operations

The Editor §window operations create, delete, and manipulate windows that open
onto the contents of buffers. The display operations make windows (and thus
buffer contents) visible on the screen or remove windows from the screen. Display

operations also manage the allocation of the total screen area and the use of the
information area at the bottom of the screen.

The window and display operations subsystem contains the following data types,
along with the functions and macros that operate on them:

= Text-containing objects that can be displayed: buffers

= Objects that translate text into displayable form: windows

The subsystem also contains Editor variables and LISP global variables, as well
as functions that operate on the information area.

Information on programming window and display operations appears in
Chapter 5and in the descriptions of the preceding data types in Part IlI.

1.2.3 Binding Contexts

Contexts are separate programming environments within the Editor where
bindings can take place. Certain types of objects may have different bindings
simultaneously in different contexts:

= Editor variables
= Editor attributes
An Editor variable or an Editor attribute can reference more than one value

if the variable or attribute is bound in more than one Editor context. The

bindings of keyboard keys and pointer actions to Editor commands are also
context-dependent.

Two Editor data types can serve as binding contexts:
= Any buffer
= Any style

In addition, the Editor supports a global binding context.

To determine which of several bindings to use in a given situation, the Editor

searches through the contexts in a predetermined order and uses the first binding
it encounters. The search order is:

1 The current buffer

2. The styles active in the current buffer, beginning with the most recently
activated minor style, if any, and ending with the major style, if any (see VAX
LISP/VMS Program Development Guide)

3. The global Editor context

When you reference a context-dependent object in LISP code, you can specify the
appropriate context.

Editor contexts implement a form of scoping unlike either the dynamic or lexical
scoping of Common LISP (see Common LISP: The Language). The binding
context determines the scope of Editor variables, Editor attributes, keys, and
pointer actions.

Editor Overview 1-5

The extent of these context-dependent objects is indefinite (see Common LISP:
The Language). That is, the objects have extent that begins when they are bound
in a context and ends when they are unbound from that context. To “§ind”an
Editor variable or an Editor attribute is to establish it as usable in a certain

context. You cannot assign values unless the variable or attribute is bound
(“éstablished”yin one or more contexts—buffer, style, or global.

You use binding contexts extensively in Editor programming. Find further detail
and examples, especially in Chapters 3 and 6. See also the discussion of the
context subsystem in Part Il.

1.2.4 Other Subsystems and Utilities

The smaller subsystems of the Editor consist mainly of functions that allow you
to control certain types of Editor behavior:

= Prompting the user for a value necessary for the execution of a command—
discussed in Section 2.3.2 and Part Il

= Signaling errors in command execution and handling LISP errors—discussed
in Section 2.3.1 and Part Il

= Checkpointing buffers to save their contents in the event of system failure—
discussed in Part Il

In addition, the Editor has several low-level tools and utilities. The following
items are all discussed in Part II:

= Input and output streams: LISP streams that permit normal Common LISP
input and output operations to be performed within the Editor.

= String tables: specialized hash tables that store information indexed by a
string (such as the display name of a command or other Editor object).

= Hooks: functions that are invoked automatically by certain Editor operations,
such as activating a style or making a buffer or window.

= Rings: circular caches of values that are used, for instance, to store deleted
text. Rings are used to implement the kill ring—a facility like those in certain
EMACS editors that store deleted text.

1.3 Referencing Editor Objects

The objects provided with the Editor include several new data types. The Editor
also contains definitions of LISP functions, macros, and global variables. All
these objects are LISP objects that can be referenced in any LISP code.

This section provides information on how to access these various kinds of objects.
It introduces:

= Functions, macros, and variables
= Editor-specific data types
— Named and unnamed objects
— Context-independent and context-dependent objects

= The package location of Editor symbols

1-6 Editor Overview

1.3.1 Functions, Macros, and LISP Variables

The Editor contains definitions of LISP functions, macros, and global variables.
All the normal Common LISP rules concerning scope and extent apply to the
identifiers of these objects.

1.3.2 Editor Objects

The specially defined Editor data types are:
= Editor attributes

= Buffers

= Commands

= Lines

= Marks

= Regions

= Rings

= String tables

= Styles

= Editor variables

= Windows

The methods of accessing Editor objects differ according to whether the object in
question is:

= Named or unnamed

= Context-independent or context-dependent

These methods are outlined in the two sections that follow.

1.3.3 Named and Unnamed Editor Objects

Named objects are Editor objects that can have two special specifiers: a string
called a display name and a symbol. The specifiers are associated with a named
object at the time it is defined, and they serve to access the object under certain
circumstances.

It is important to recognize that the symbol specifier of a named Editor object
cannot be treated as an ordinary LISP symbol. That is, the Editor object is not
the symbol-value of the symbol. Editor object specifiers behave somewhat like the
symbol and string specifiers of LISP packages. The function find-package can
take, for instance, the symbol user: or the string "user' and return the package
object; the symbol user : itself does not evaluate to the package object.

The reference list in Part 111 of this manual identifies both the display name and
the symbol of all named objects provided with the Editor. Section 1.3.3.2 outlines
the use of these specifiers in accessing named Editor objects.

The “flamed”bbject types are:
= Editor attribute
= Buffer

Editor Overview 1-7

= Command
= Style
= Editor variable

The other Editor object types are “Gdnnamed.””Unnamed Editor objects have no
distinct specifiers.

= Line

= Mark

= Region

= Ring

= String table

= \Window

1.3.3.1 Referencing Unnamed Objects

Any Editor object—named or unnamed—can be accessed in the usual LISP way:
that is, by means of a form that evaluates to the object. Unnamed objects can be
accessed only in this way.

For instance, the function current-window takes no arguments and returns the
window that is current in the Editor. You can access the current window (an
unnamed object) by writing:

(editor:current-window)

Similarly, you can access a string table by referencing the LISP global variable to
which it is bound. For instance, evaluating

editor:*editor-command-names*

returns the string table that contains the names of the commands currently
defined in the Editor.

1.3.3.2 Referencing Named Objects

Named Editor objects can be accessed in the same way as unnamed objects: by
means of an expression that returns the object. For instance, the form

(editor:current-buffer)
returns the buffer (a named object) current in the Editor.

You can also reference named Editor objects by means of their specifiers (symbols
or display names) in certain circumstances:

= Interactively, when the Editor prompts for the name of a command, buffer, or
style, you supply the appropriate display name.

= In LISP code, when calling a function that takes a named Editor object
specifier as an argument, you can supply any of three specifiers of the named
object:

- The display name
- The symbol
- Any form that evaluates to the object

1-8 Editor Overview

In contrast, some functions take a named Editor object but not a specifier. When
calling these functions, you must supply a form that evaluates to the object. The
function descriptions in Part 111 distinguish between functions that can take
specifiers (including objects) and functions that can only take objects.

For instance, the following functions can take specifier arguments:

COMMAND-CATEGORIES
VARIABLE-VALUE
BUFFER-MAJOR-STYLE
FIND-STYLE
BIND-ATTRIBUTE

The following examples show how you can call each of these functions from LISP
code with the specifier of a named Editor object as the argument. In each case,
you could use either the symbol or the display name of the named object; you
could also, of course, use any form that evaluates to the object in question.

= Using a command specifier:

(editor:command-categories “editor:end-of-1ine-command)
(editor:command-categories "End of Line")

= Using an Editor variable specifier:

(editor:variable-value T“editor:target-column)
(editorvariable-value "Target Column™)

= Using a buffer specifier:

(editor:buffer-major-style “editor:editor-help-buffer)
(editor:buffer-major-style "Help™)

= Using a style specifier:

(editor:find-style "editor:edt-emulation)
(editor:find-style "EDT Emulation™)

= Using an Editor attribute specifier:

(editor:bind-attribute “editor:word-delimiter)
(editor:bind-attribute "Word Delimiter'™)

Because these functions evaluate their arguments, the argument can also be a
form that evaluates to a specifier of a named Editor object. For instance, the
following pair of forms has the same effect as the calls to BUFFER-MAJOR-STYLE
shown above:

(setf b "Help™)
(editor:buffer-major-style b)

1.3.3.3 A Note on Efficiency

The display names of named Editor objects are included for the convenience of the
programmer and the Editor user. If you wish to maximize the efficiency of your
program, however, you should realize that accessing an object by using its display
name is less efficient than using its symbol. Further, using either specifier is less
efficient than using an expression that evaluates to the object.

For example, the following three forms are equivalent when the buffer named
"Mybuffer.txt" is the current buffer. The forms are listed in order from the least
to the most efficient:

Editor Overview 1-9

(editor:buffer-major-style "Mybuffer._txt')
(editor:buffer-major-style “mybuffer._txt)
(editor:buffer-major-style (editor:current-buffer))

The code examples in this manual frequently use display names for convenience
and readability. When you reference named objects in your own code, however,

you should consider the tradeoff between convenience and efficiency in each
instance.

1.3.4 Context-Independent and Context-Dependent Editor Objects

Editor objects are either context-independent or context-dependent. “Context-
dependent”bbjects are actually specifiers that may be associated with different
objects in different Editor contexts (the contexts are individual buffers, individual
styles, and global).

“Context-independent” bbjects exist independently of Editor context. These

objects are accessed according to the scoping rules defined in Common LISP: The
Language.

1.3.4.1 Referencing Context-Independent Objects

All the unnamed Editor objects and most of the named objects (buffers, com-
mands, and styles) are context-independent. Once it is created, a context-
independent object exists within the Editor as a unique object, and the accessing
functions appropriate to the data type locate and return that unique object.

For instance:

(editor:find-buffer "factorial) /Finds and returns the buffer
/object named factorial

(editor:find-style "VAX LISP'™) /Finds and returns the style
/object named "'VAX LISP"
(editor:next-window) /Finds and returns a unique

/window object (unnamed)

1.3.4.2 Referencing Context-Dependent Objects

The context-dependent Editor objects are Editor attributes and Editor variables.
Attributes and variables are not unique objects. That is, a specifier can be
associated with different values (or, in the case of variables, also with different
functions) in different Editor contexts.

It is important to recognize that these multiple associations can exist simultane-

ously; leaving an Editor context makes an association temporarily inaccessible,
but it does not destroy it.

The following functions are used to access a value or function associated with a
context-dependent object:

variable-value takes a variable specifier and an optional context and returns
the value (ifany) of that variable in that context.

variable-function takes a variable specifier and an optional context and
returns the function definition (ifany) of that variable in that context.

= character-attribute takes an attribute specifier, a character, and an op-

tional context and returns that character § value (if any) for that attribute in
that context.

1-10 Editor Overview

The functions find-attribute and finda-varianie are different from the fina-
object-type functions for the context-independent data types. The fina- Object-
type functions for context-dependent objects take a specifier (symbol or display
name) and return the symbol of an attribute or variable. They do not return a
value or function object associated with the specifier.

Chapters 3 and 6 contain code examples that illustrate the nature and use of
context-dependent objects. Further explanation also appears in Part Il.

1.3.5 The Editor Package

The symbols for the objects defined in the Editor are located in the editor package
and are external in that package.

Most of these symbols are not exported to the user package. (Only the functions
ed and bind-command are accessible in the user package.) Any other symbols
supplied by Digital for Editor objects must be referenced in the editor package
when you use them in writing extensions.

There are three ways to reference symbols located in the editor package;
= By using the package prefix
- By executing a use-package form

= By executing an in -package form

This section describes these three methods and their appropriate uses.

1.3.5.1 The Package Prefix

1.3.5.2 Using

When working in the user package, you can reference any symbol in the editor
package by prefixing it with the package qualifier EDITOR:. For instance, if you

want to call variable-value with the symbol of an Editor variable, you would
prefix both symbols with editor:.

(editor:variable-value “editor:default-major-style)

This expression references two symbols in the editor package, but it can be
evaluated in the user package.

Note that using the display name of a named Editor object instead of its symbol
avoids the problem of package location, although efficiency suffers;

(editorvariable-value "Default Major Style')

USE-PACKAGE

To avoid the inconvenience of using qualified names, you can reference all the
external symbols in the editor package by executing either of the forms:

(use-package "EDITOR') | (use-package “editor)
Note that the string argument (eaitor*) must be uppercase.

Executing either of these forms makes all symbols related to Editor accessible in
the user package for the remainder of your current LISP session.

However, before executing a use-package form, you should consider whether
you will also be using symbols from other packages in the same LISP session.
Because of possible name conflicts among packages, you should use qualified
names in sessions in which you will be referencing symbols in more than one

Editor Overview 1-11

package. In particular, there are several name conflicts in VAX LISP between the
editor package and the UIS package (see VAXLISP Interface to VWS Graphics).

If you begin the file containing your completed Editor extensions with a use-
package form, you should end the file with a call t0 unuse-package .A call to use-
package In your initialization file makes all symbols in that package accessible
throughout every LISP session; these symbols may then interfere with symbols
you want to use from other packages.

1.3.,5.3 Using IN-PACKAGE

It is generally good programming practice to place your newly defined symbols
in an appropriate package. You can place your completed Editor extensions in a
specified package by heading the file that contains the extensions with a call to
in-package .An in-package form makes the specified package current while your
file is being loaded into LISP; it then returns you to the user : package for the
remainder of your session.

You can place your completed Editor extensions in the editor: package by
heading your file with either of the forms:

(in-package '"EDITOR™) | (in-package “editor)

However, this use of the editor : package allows for possible hame conflicts
(overwriting) between user-defined extensions and present or future objects
supplied by Digital.

You can avoid overwriting by placing your extensions in a new, user-defined
package. To do so, and to have the editor : package symbols accessible in the
new package, you begin the file with the following forms:

(in-package "EDITOR-EXTENSIONS')
(use-package "EDITOR'™)

These forms place your extensions in the editor-extensions: package and make
the symbols from the editor - package accessible in that package. They do not
make the symbols from either of these packages accessible in the user - package.

1-12 Editor Overview

Chapter 2

Creating Editor Commands

You control the VAX LISP Editor in an interactive session through commands. By
executing commands, you insert and revise text, display text or other information,

activate a style, or bring about any other Editor operation. (See VAXLISP/VMS
Program Development Guide.)

The primary way to customize the Editor is to alter its commands: that is,
replace existing commands or create entirely new ones. This chapter introduces
the techniques of implementing Editor commands. The topics it covers are:

= Commands and their associated LISP functions
= Creating commands with define-command

= Including some special features in a new command

The techniques of binding commands to keyboard keys and pointer actions are
covered in Chapter 3.

2.1 Commands and Their Associated Functions

A command is a named Editor object associated with a particular LISP function.
For instance, the command ""Forward Word" is associated with the function
FORWARD-WORD-COMMAND, and the command ""Execute Named Command' is associated

with the function execute-named-command-command - (The nature of named Editor
objects is discussed in Section 1.3.3))

Whenever you execute a command during an interactive Editor session, the
Editor calls the associated function. Evaluating this function brings about the
specified chatige in the Editor. For instance, when you execute the command
"Forward Word" in the Editor, either by name or by means of the key sequence
bound to it, the Editor invokes the function forward-word-command.The result
you see is that the cursor moves to the next word in the text.

To implement an Editor command, you create both a new LISP function and a
named Editor command associated with it. Both these operations are performed
by the macro define-command.

2.2 Using DEFINE-COMMAND

The DEFINE-COMMAND macro is similar to defun in that it creates a new LISP
function from the specified argument list and forms. In addition, it creates a new
Editor command with the specifiers (display name and symbol) that you supply.
The new command definition is a side effect of a call to define-command ;the
return value is the associated function definition.

Creating Editor Commands 2-1

The format of define-command is also similar to that of defun:

DEFINE-COMMAND name arglist

&OPTIONAL command-documentation
&BODY forms

An example follows of a define-command expression that implements a new
Editor command named "My Next Screen". (This command differs slightly from
the "Next screen" command supplied by Digital; the difference is clarified in
Section 2.2.4.) The remainder of this section discusses the purpose and use of
each of the parameters of define-command,using this expression as an example.

Recall that the symbols for Editor objects provided by Digital must be referenced
in the editor: package (see Section 1.3).

(define-command

(my-next-screen-command :display-name "My Next Screen') ;hame
(prefix Soptional (window (current-window))) ;arglist
Scrolls the current window down one screen. If a ;com-doc

positive integer prefix is supplied, it scrolls down
by that many screens (up if prefix is negative)

MY-NEXT-SCREEN-COMMAND prefix &OPTIONAL window ; func-doc

This function has an optional argument window which

defaults to the current Editor window. It scrolls the

window down one screen if the prefix argument is NIL.

If a positive integer prefix is supplied, it scrolls

down by that many screens (up if prefix is negative).

The modified window point is returned."

(scroll-window window * (or prefix 1D /forms
(1- (window-height window)))))

2.2.1 Specifying the Names

A command can have two distinct specifiers: a display name, which is a string,

and a symbol, which is identical to the symbol of the function defined in the same
form.

The display name of a command is provided as a convenience for the interactive
user. For instance, it invokes a command within the Editor. In LISP code, you
can use either the display name or the symbol of a command, as well as the
associated function itself, as an argument to a function that takes a command
specifier argument. (See Section 1.3.3 for referencing named Editor objects,
including commands.)

You specify the names of a new command and function in the name parameter to
define-command . The name argument can be a symbol or a list of the form:
(symbol :DISPLAY-NAME string)

The symbol argument serves the same purpose as the name argument for defun—
it names the function being defined. In a call to define-command,Symbol also

becomes the symbol specifier of the new command. The string argument becomes
the display name of the new command.

For example:

(define-command
(my-next-screen-command :display-name "My Next Screen') /name

2-2 Creating Editor Commands

This form creates a LISP function named my -next-screen-command . It also

creates an Editor command with the display name "My Next Screen" and the
symbol my-next-screen—-command .

The display name can be any string you want to specify. For commands supplied
by Digital, the convention is that display names are identical to the associated
symbols except for case and the omission of the hyphens and the final element
-command , If you do not specify a display name, the default is the print name

of the symbol. In this example, the default display name would be "my-next-
screen-command', a less convenient specifier than "My Next Screen'.

2.2.2 Specifying the Argument List

When you execute a command within the Editor, the Editor always calls the
associated function with exactly one argument. This is the prefix argument,
which can be an integer or ni1.You can supply a prefix value by previously
executing the command "'Supply Prefix Argument". If you execute a command
without supplying a prefix value, the Editor passes ni .

Because the Editor always passes one argument, the argument-list of every
define-command expression must have at least one parameter. By convention,
the first parameter is designated as prefix . If you supply other parameters,
they must be optional. (You can supply values for optional arguments only when
calling the new function from LISP code, not when executing the new command
in the Editor.)

The argument-list for my -next-screen-command specifies that this function can
take two arguments: a prefix and a window.

(define-command
(my-next-screen-command :display-name "My Next Screen') ;hame
(prefix fioptional (window (current-window))) /arglist

The prefix argument usually means the number of times the action is to be
repeated, although other meanings are possible. (In fact, the difference between
"My Next Screen' and the "Next Screen' command supplied by Digital is in the
use they make of the prefix.) As with any function parameter, the meaning of

the prefix argument to any particular command is specified in the body of that
command § definition.

If you call the function my -next-screen-command from LISP code, you can also
specify the window that is to be operated upon. If you do not specify a window,
the function current-window Will be evaluated and will return the current
window. Since you cannot specify a window argument when you execute "My Next
Screen" in the Editor, the Editor always applies the command § action to the
current window.

2.2.3 Supplying Documentation Strings
The define-command macro takes two optional documentation strings. The first is
associated with the new command; the second, which is actually part of the body,

is associated with the new function. If you supply only one documentation string,
it becomes the command-documentation.

Creating Editor Commands 2-3

Normally, the command-documentation is used to describe the behavior of the
Editor when you execute the new command. You can retrieve this documentation
within the Editor by means of the "Describe" command, using the display name
of the command in question. To retrieve documentation at top-level LISP, you
can call either the describe function or the documentation function and pass

it to the symbol of the command. (If you use documentation, the doc-type is
EDITOR-COMMAND..)

The function documentation is like the documentation string for defun:it
normally gives the function § format and return value and describes its behavior
when called from LISP code. You can retrieve this documentation at top-level
LISP by means of describe Or documentation,with the symbol of the function.
(The doc-type is function.)

The two kinds of documentation string—one addressed to the user executing the
command and the other to the user calling the function—are illustrated below:

(define-command

(my-next-screen-command :display-name "My Next Screen') ;hame
(prefix Soptional (window (current-window))) ;arglist
Scrolls the current window down one screen. If a ;com-doc

positive integer prefix is supplied, it scrolls down
by that many screens (up if prefix iIs negative)

MY-NEXT-SCREEN-COMMAND prefix &OPTIONAL window ;func-doc

This function has an optional argument window which
defaults to the current Editor window. It scrolls the
window down one screen if the prefix argument is NIL.
If a positive integer prefix is supplied, it scrolls
down by that many screens (up if prefix is negative).
The modified window point is returned."

Note the placement of whitespace and newline characters in both the docu-
mentation strings in this example. As with defun,you use these characters to
affect the appearance of a string when it is displayed in response to "Describe",
DESCRIBE, Or DOCUMENTATION.

2.2.4 Specifying the Action

The forms that you supply to define-command are identical in purpose to the
forms for defun:they constitute the body of the LISP function that will be
invoked when you execute the new command. The forms include the function
documentation, if any, and they may include declarations.

Including the forms completes the definition of "My Next Screen':

(define-command

(my-next-screen-command :display-name "My Next Screen') ;hame
(prefix Soptional (window (current-window))) ;arglist
Scrolls the current window down one screen. If a ;com-doc

positive integer prefix is supplied, it scrolls down
by that many screens (up if prefix is negative).”

MY -NEXT-SCREEN-COMMAND prefix &OPTIONAL window ;func-doc

This function has an optional argument window which
defaults to the current Editor window. It scrolls the
window down one screen if the prefix argument is NIL.
ITf a positive integer prefix is supplied, it scrolls
down by that many screens (up if prefix is negative).
The modified window point is returned."

2-4 Creating Editor Commands

(scroll-window window (* (or prefix 1) ; forms

(1- (window-height window)))))

This example uses the Common LISP functions *, o+, and i1- and the Editor
functions scro11-window and window-height:

- scroll-window takes a window and a count. It scrolls the specified window
by the number of rows indicated by the count and returns the window point.
(The window point is an object that indicates the position of the screen cursor
in the current window; see Section 5.2.2.)

= window-height takes a window and returns the height (in rows) of that
window .

The action of the function my-next-screen-command is to scroll the specified
window (or default window) by a number of rows that equals one less than the
height of the window. That is, the last row of the current text display becomes
the first row of the new text display. If you supply a prefix argument, the action
is repeated that many times. Because scroll-window moves the window point,

the cursor will appear within the new text display when you execute "My Next
Screen™.

To see the difference between "My Next Screen™ and the "Next Screen" command
supplied by Digital, compare the last form in the above example with the last
form in the definition of "Next Screen'':

(scroll-window window
(or prefix (- (window-height window))))

The prefix value in "My Next Screen' serves as a repetition count. In "Next
Screen" the prefix value is an alternative to the window height in determining
how many rows to scroll the window.

2.2.5 Modular Definition of Commands

You can define Editor commands of any degree of complexity. When defining a
complex command, it is good programming practice to write the code in modules.

You can, for instance, use defun to create a new function and then use that
function in @ define-commanda eXpression.

For example:
(defun print-time (stream)
PRINT-TIME stream

Formats a record of the current date and time and
writes that record to the specified stream.”

(multiple-value-bind
(second minute hour date month year day-of-week)
(@et-decoded-time)
(format stream

"~D :~2,"0D:~2, "0OD on ~[Monday-;Tuesday-;Wednesday-
~;Thursday~;Friday~;~Saturday~;Sunday-], ~
~D ~[~;January-;February-;March-;April-;May-;June-
~;July-;August-;September-;0October~;November-
-.=December-], ~D"
hour minute second day-of-week date month year)))

This form creates the function print-time, which writes the current date and
time to a specified stream. To include this action in an Editor command, you
might write:

Creating Editor Commands 2-5

(define-command (show-time-command :display-name ''Show Time')
(prefix)
Displays the current time and date in the information area."
SHOW-TIME-COMMAND prefix
Displays the current time and date in the information area.
The prefix argument is ignored."

(declare (ignore prefix))

(clear-information-area)
(print-time *information-area-output-stream*))

This form creates an Editor command named show Time". When you execute
"Show Time", the Editor clears the information area of any previous text and then
directs the record formatted by print-tim e to the information area. Note the
declaration that the prefix is ignored, since the prefix parameter is not used in
the body of the expression.

2.2.6 Commands and Context

Many commands are normally used within a single Editor context (buffer, style,
or global), but commands are not context-dependent objects. That is, commands
are not bound in Editor contexts, as keyboard keys and pointer actions are: any
command can be invoked by name no matter which contexts are visible in the
Editor. For instance, the command "edt change Case' usually is used in "edt
Emulation” style, but it could also be used in "emacs' Or "vax lisp" styles.

However, the definition of a command may reference another object that is
context-dependent: an Editor variable or an Editor attribute. (See Section 1.34
for a discussion of context-dependent objects.) If so, the command behaves
differently when you execute it in contexts in which the context-dependent object
is bound differently or not bound.

An example is the command "edt Move Word", which moves the cursor by
one or more words. The body of this command begins with a test of whether
the Editor variable "EDT Direction Mode" is set to :forward.If S0, it invokes
forward-word-command :

(if (eq (variable-value "EDT Direction Mode™) :forward)
(Fforward-word—command prefix)

If you execute this command outside of "edt Emulation" style, it will not invoke
forward-word-command because “edt Direction Mode™ is unbound.

The behavior of forward-word-command also varies in different contexts. This
function references the Editor attribute "Word Delimiter™, whose values are
context-dependent. 'Forward Word" behaves differently in "edt Emulation",
"emacs", and 'vax 1isp' styles because different characters are recognized as
word delimiters in these styles.

NOTE

Unlike commands themselves, the key and pointer bindings of Editor
commands are context-dependent (see Section 3.4). "edt change Case"
can be invoked by name anywhere within the Editor, but, as provided,
it is only in "edt Emulation” style that this command can be invoked
by means of keypad PF1L 1

2-6 Creating Editor Commands

2.3 Some Special Command Facilities

Most of the new commands that you implement are likely to pertain to text
operations or to window and display management. Regardless of the command§
primary purpose, however, you may also want to include in it such features as
a prompt or a particular error response. You can also include the command in a

command category, which facilitates certain kinds of testing that may take place
during command processing.

This section introduces the following command subsystems/facilities:
= Errors

= Prompting

= Command categories

2.3.1 Errors

By using functions from the Editor § error subsystem, you can implement
commands that take some action in response to errors in command processing. In
addItIOI’l, yOU can use the LISP Val’iab|e *universal-error-handler* t0 mOdIfy
the way the Editor handles LISP errors.

This section introduces the following error-related objects:
= The attention function

« The cditor-error function

= The *universal-error-handier* Variable

2.3.1.1 Getting the User’s Attention

The attention function, the simplest of the error-related functions, can be
included in the body of a command to gain the user § attention if the command$
action is not performed. On Digital VT100- and VT200-series terminals and the
Al VAXstation, the action of attention is to ring the bell.

AN example of the use of attention is:

(define-command (forward-word-command :display-name "'Forward Word™)
(prefix)

Moves the buffer point forward one word. If a prefix argument
is supplied, the point is moved forward that many words (backward
if the prefix iIs negative)."”

(unless
(word-offset (current-buffer-point) (or prefix 1))
(attention))

(current-buffer-point))

The command "Forward Word" invokes the function word-offset, which
moves the current buffer point by one or more words. If this action cannot
be performed—if too few words remain in the buffer, for instance—then the
attention function is called to alert the user.

Acommand continues processing after evaluating attention. IN this case, the

next form, a call to current-buffer-point, is evaluated to return the buffer

point.

Creating Editor Commands 2-7

2.3.1.2 Signaling an Error

The most generally useful error-signaling function is editor-error.This function
typically is used to indicate an invalid command operation, invalid or incomplete
user input, or some other error that allows the Editor to continue operation after
ceasing to process the currently executing command.

The editor-error function invokes attention to signal a problem in command
processing. In addition, it can display an optional line of text in the information
area to explain the nature of the problem. The arguments to editor-error are
analogous to those for the LISP error function. However, editor-error allows
the user to remain in the Editor after it is called, rather than being placed in the
Debugger.

Unlike attention,which allows the Editor to continue processing the command,
editor-error terminates the processing of the current command. The Editor
then awaits the next command.

The use of editor-error is illustrated in the command "edt Special insert"
supplied by Digital. This command must be invoked with a prefix; it inserts as
text the character whose ASCII (extended) code is the prefix value supplied.

(define-command (edt-special-insert-command
display-name "EDT Special Insert™)
(prefix)

Takes the prefix value and inserts the character whose
ASCIIl code is that value at the current buffer point.”

(unless prefix
(editor-error "Character code not supplied™))

(unless (and (integerp prefix)
(<= 0 prefix 255))
(editor-error "Invalid character code ~A" prefix))

(insert-character (current-buffer-point)
(code-char prefix)))

Two errors that can occur when you invoke this command are: (1) no prefix
value supplied, and (2) prefix value supplied that is not a valid ASCII (extended)
character code. Before attempting to evaluate the insert-character form, the
command tests for each of these possible errors. If an error has occurred, the
appropriate explanation string is displayed in the information area and the
processing of this command stops.

A somewhat more complex error-signaling function is editor-error-with-help.
This function resembles editor-error except that it takes an additional optional
string argument. The additional string supplies further information about the
error; it is displayed if the user executes the command '"Help on Editor Error"
(see Part Il1).

2.3.1.3 Error Handling

When implementing a command, you can also modify the way the Editor handles
LISP errors that occur during command processing.

As provided, the Editor responds to a LISP error by clearing the screen, display-
ing the error message, and asking if you want to save modified buffers. It then
gives you the choice of entering the Debugger or returning to top-level LISP.

You can alter this behavior by defining a new error-handling function and binding
it to the variable *universal-error-handiler* (see VAXLISP/VMS Program
Development Guide). You can then reference this variable in a command defini-
tion to invoke the new error-handling function.

2-8 Creating Editor Commands

For instance, suppose that you want to alter the command "Insert File" to
respond in a particular way when your response to the prompt is not a valid file
name. To achieve this, you define a new error-handling function, and then write
a file-insertion command that invokes this function if it receives an invalid file
name.

The following example shows a skeletal version of a function to be invoked when
the Editor cannot insert a file:

(defun insert-file-error-handler (&rest args)

(With-output-to-mark
(Cerror-output* (buffer-point (Find-buffer "Error Record™)))
(apply #"print-signaled-error args))

(editor-error "Error reading file...™))

This function creates an output stream by means of the macro with-output-
to-mark and binds it to the variable *error-output®. This stream is directed

to a user-defined buffer named "Error Record”. The VAX LISP function print-
signaled-error formats an error message from the supplied arguments and
writes that message to *error-output®. The message text is thus inserted at the
buffer point of the "Error Record" buffer. Once the formatting is done, insert-
file-error-handler calls editor-error to print a brief explanation and return
to the Editor command loop.

To write a new command that invokes insert-file-error-handler instead of
the Editor § default error handler when a LISP error occurs, you bind this new
function to *universal-error-handler* in the definition of the command. For
instance, the relevant portion of a file-inserting command might look like this:

(define-command (my-insert-file-command ...) (prefix)

(let ((Cuniversal-error-handler* #"insert-file-error-handler))
(insert-file-at-mark (pathname...)

(current-buffer-point)))

This command invokes the Editor function insert-file-at-mark to insert a
specified file at the current buffer point. This action occurs within the scope of a

let form that binds *universal-error-handler* to insert-file-error-handler.
If any LISP error occurs during the file-insertion operation, the error system calls
insert-file-error-handler instead of the default error handler.

2.3.2 Prompting

The Editor § prompting subsystem enables you to write commands that prompt
for any additional user input needed for their execution. For example, when you
invoke the command "'Select Buffer”, the Editor prompts for the name of the
buffer that is to become current.

Commands prompt by invoking one of the following functions:
= SIMPLE-PROMPT-FOR-INPUT

= PROMPT-FOR-INPUT

Creating Editor Commands 2-9

Both functions display a prompt in the prompting window, which is a window
onto the buffer "General Prompting" supplied by Digital. User interaction,

including editing the response to the prompt, occurs in this buffer. The more
versatile of the two functions, prompt-for-input,also enables you to include

some additional prompt-related behavior, such as input completion, alternatives,
and help.

2.3.21 Simple Prompting

The siMPLE-PROMPT-FOR-input function is less versatile than prompt-for-input,
but it is generally more straightforward, simple-prompt-for-input prompts for
input and returns the user §input as a string. Its format is:

SIMPLE-PROMPT-FOR-INPUT &OPTIONAL prompt default

The prompt argument is a string to be displayed as the prompt; the default
argument is a string to be returned by simple-prompt-for-input if the user
presses Return without typing any input. The default value for both arguments is
a null string.

An example of a new command that invokes simple-prompt-for-input IS "Visit
File'. This command is similar to the "view File" command supplied by Digital,
except that it allows the user to edit the specified file.

(define-command (visit-file-command :display-name "Visit File)
(prefix fioptional (File-name nil))
Prompts for a file name and then edits the specified file.

IT the specified file is associated with a buffer, it simply
switches to that buffer; otherwise a new buffer is created."

(declare (ignore prefix))

(unless file-name
(setf File-name
(simple-prompt-for-input "Enter file name: ')))

(edit-file-command nil file-name))

The function visit-file-command ,when called from LISP code, takes an optional
file-name argument that can be a pathname or a string. When you invoke "visit
File" in the Editor, however, you cannot supply this argument. To obtain the
value, the command displays the specified prompt, “Enter file name:”] simple-
prompt-for-input returns your response to the prompt as a simple string.

The string is bound to the variable fi1e-name and then passed to the function
edit-file-command.

Even though simple-prompt-for-input always returns a simple string, you can
use this function when the argument needed is some other data type. In such a
case, the command must coerce the user §input into the appropriate data type.

For example, in commands_signaling_error Shown above, the command 'edt
Special insert" takes an integer argument. If you fail to execute "Supply
Prefix Argument’ beforehand, "edt Special Insert" displays an error message
and stops processing. You could rewrite this command to prompt for the needed
value instead of signaling an error. The code for such a command might be:

(define-command (my-special-insert-command
display-name "My Special Insert’™)
(prefix)

Takes the prefix value and inserts the character whose
ASCII code is that value at the current buffer point. If
no prefix value is supplied, it prompts for a value."

2-10 Creating Editor Commands

(unless prefix
(setf prefix
(read-from-string
(simple-prompt-for-input " Enter ASCII code: '))))

(f (and (integerp prefix) (<= 0 prefix 255))

(insert-character (current-buffer-point)

(code-char prefix))
(editor-error "lInvalid character code: -A" prefix)))

The Common LISP function read-from-string iS Used here to coerce the user§
input string to an integer. This integer is then bound to prefix and passed

10 code-char. Only if the input supplied does not convert into a valid ASCII
extended character code will this command display an error message.

2.3.2.2 General Prompting

General prompting differs from simple prompting in that: (1) the prompting

function can return any data type (not only a string), and (2) you can include
a greater range of prompt-related behavior by specifying a number of keyword
arguments. The function you use for general prompting iS prompt-for-input.

What follows is a brief introduction to the use of prompt-for-inpuc. Part Il
contains a fuller description of this function and its keyword arguments.

The basic format of prompt-for-input is:

PROMPT-FOR-INPUT validation

The one required argument to prompt-for-input IS @ validation function. This
function takes the user §input string and returns a value that will be returned
by prompt-for-input. If the validation function returns » i ,prompt-for-input
signals an error and awaits further input.

For instance:
(prompt-for-input #"find-buffer)

This form prompts the user with a default prompting message and passes the
user §input string to the function fina-burrer. If the input string is not a valid
buffer name, find-buffer retUrNS ni1.prompt-for-input then displays a default

error message and waits for a valid buffer name before command processing
continues.

prompt-for-input Can also make available the facilities for input completion and
alternatives to assist the user. By providing string tables as arguments to the
keywords compietion and :arternatives, you specify that those string tables
are to be searched if the user requests assistance from either of these facilities.
In the above example, the appropriate string table is bound to the variable
editor-buffer-names?, and the form would look like this:

(prompt-for-input #"find-buffer
:completion *editor-buffer-names*
salternatives *editor-buffer-names*)

(These two keyword arguments can also be values other than string tables; see
the description of prompt-for-input in Part 111.)

Other keywords allow you to specify, for instance:

= The prompt to be displayed

= ANerror message to be displayed if the validation function returns nil
= Help text to be displayed if the user requests it

= \Whether user input is required

Creating Editor Commands 2-11

= A default value to be returned if you specify that user input is not required

These and other arguments to prompt-for-input are described in full in Part Ill.

What follows is a comparatively simple example of this function, using only a few
of its possible keyword arguments. The new command "My insert Buffer' calls
prompt-for-input to prompt for a buffer name. The command then inserts the
text of that buffer into the current buffer. Its code is:

(define-command (my-insert-buffer-command :display-name "My Insert Buffer')
(prefix)

(declare (ignore prefix)
(insert-region (current-buffer-point)
(buffer-region
(prompt-for-input #"find-buffer
rprompt "Enter Buffer Name:
required t
:completion *editor-buffer-names*
salternatives *editor-buffer-names¥*))))

This command displays the string argument to :prompt in the prompting window.
Because the value of :required is T, the user must enter a string for the action
to continue (no default value can be returned by prompt-for-input). As in the
example above, the string table arguments to :completion and alternatives
make available to the user the names of all existing buffers.

The user §input string is passed to the validation function, find-buffer ,which
returns a buffer object if the input is a valid buffer name. The buffer object
returned by find-buffer is passed to buffer-region,Which returns the text-
containing region of that buffer. The region is passed t0 insert-region,which
inserts it at the buffer point of the current buffer. (The region-manipulating
functions and other text operations objects are described in Chapter 4 of this
manual.)

2.3.3 Command Categories

A command category indicates some property of a command that another
command may heed to examine. The test is performed by checking whether the
command is a member of a specified category.

For example, the command "emacs Forward Search" checks to see if the last
command executed was in the category :emacs-search.If so, it means that
the command was also a search command and the user has already entered a
search string, "emacs Forward Search" will therefore use the previous string
rather than prompt again for one. If the last command executed was not in the

zemacs-search category, then "emacs Forward Search" prompts for a search
string.

The categories provided with the Editor are:

“GENERAL-PROMPTING
LINE-MOTION
MOVE-TO-POINTER
:EMACS-SEARCH
“EMACS-PREFIX
KILL-RING

Categories can also be user-defined.

2-12 Creating Editor Commands

You can place a command in one or more categories by including the keyword
:category and a symbol or list of symbols as part of the name argument of a
define-command form. You can use existing categories, or you can define new
categories simply by specifying their symbols. For example:

(define-command (emacs-backward-search-command
display-name "EMACS Backward Search"

:category :emacs-search)

or

(define-command (my-new-command-command
display-name "My New Command'
:category (Cline-motion “my-new-category)

Ib check whether a given command is included in a specified category, you call
the function command-categories.This function takes a command specifier and
returns a list of the categories that include that command (or ni1 if none is
found). The variable *previous-command-function* is bound to the function
associated with the last command executed; this variable is a command specifier
acceptable t0 command-categories.

For instance, the following form tests whether the previous command executed
was in the category :emacs-search.

(if (member :emacs-search
(command-categories *previous-command-function*)
stest #%eq)

What follows is a full command definition that illustrates both (2) placing a
command in a category, and (2) testing the previously executed command for
membership in that category. The example, "My EMACS Forward Search", is a
simplified version of the command "EMACS Forward Search" supplied by Digital.

(define-command (my-emacs-forward-search-command
display-name "My EMACS Forward Search"
:category :emacs-search)
(prefix)

Searches forward once or the number of times specified
by the prefix argument. Prompts for a search string only
if the previous command was not a searching command."'

(f (member :emacs-search
(command-categories *previous-command-function¥*)
stest #%eq)

(forward-search-command
prefix
(variable-value 'Last Search String™))

(forward-search-command prefix)))
The Editor sets the user § response to a search-command prompt to the value
of the Editor variable "Last Search String". "My EMACS Forward Search" calls

forward-search-command,but only after determining whether the previous
command executed in the Editor was also in the category :emacs-search.

Creating Editor Commands 2-13

= |f 0, "My EMACS Forward Search' calls FORWARD-SEARCH-COMMAND with two
arguments: the prefix and a string that is the current value of ""Last Search
String'.

< |fnot, "My EMACS Forward Search” calls FORWARD-SEARCH-COMMAND with only a
prefix argument, thus requiring forward-search-command to prompt for the

needed string.

2-14 Creating Editor Commands

Chapter 3

Binding Commands to Keys and Pointer Actions

The most common way to extend the VAX LISP Editor is to bind Editor
commands to keys and key sequences. You can then use the bound keys or
sequences to invoke the commands within the Editor.

Many of the commands provided with the Editor are bound. The bindings may be
to graphic or control characters, keyboard escape sequences, function or keypad
keys, or some combination of these keys. Commands can also be bound to actions
of a pointing device provided with the Al VAXstation. All bindings supplied by
Digital are listed in Appendixes B and C, arranged both by command name and
by key or key sequence.

A key binding or pointer-action binding exists within an Editor context (that is,
within a particular style or buffer or in the global Editor context). The key or
pointer action will invoke the command only when the appropriate context is
active in the Editor. If more than one context is active at a time and if a key or
pointer action is bound to different commands in these contexts, only one binding
will be visible. (See VAXLISP/VMS Program Development Guide for a discussion
of context and shadowing as they appear to the interactive user.)

You can change the bindings supplied by Digital and bind commands that are not
currently bound.

= To bind a key or key sequence to an Editor command, you call the function
bind-command from LISP code. To delete a key binding, call unbind-command.

= To bind a pointer action to an Editor command, you call the function

bind-pointer-command from LISP code. To delete a pointer-action binding,
call unbind-pointer-command .

This chapter introduces the techniques of binding commands with these two
functions. The topics covered are:

= Using bind-command
— The command to be bound
— The key or key sequence to be bound
— The binding context
= Using bind-pointer-command
— Specifying a pointer action
— Specifying a button state
— Getting the state of the pointer

Binding Commands to Keys and Pointer Actions 3-1

NOTE

The Editor § cancel character—initially cirl/C—is not established with
bind-command and is not context-dependent. This global association
cannot be shadowed by Editor command bindings to the same
character. Tb change the Editor § cancel character, you use setf with

the function cancel-character (see Part Ill for a description of this
function).

3.1 Using BIND-COMMAND

bind-command takes a command specifier, a key or key sequence, and an optional
context specifier. Its format is:

BIND-COMMAND command key-sequence &OPTIONAL context

bind-command binds the key-sequence to the command in the specified (or default)
context. For example:

(bind-command "View File™ #\AV)

This form binds the key corda/ to the command "View File" supplied by Digital,
which has no binding in the Editor as provided. Since no context argument is
specified, the binding is global by default.

Note that bind-command is one of the few symbols related to the Editor accessible
in the user package. If you include any other symbols related to the Editor

in @ bind-command form, you must reference them in the editor package (see
Section 1.35).

The sections that follow discuss each of the parameters of bind-command in turn:
= The command to be bound

= The key or sequence to be bound

= The binding context

3.2 The Command to Be Bound

3-2

You can specify any Editor command as an argument to bind-command ,including:
= New user-defined commands

= Commands defined by Digital that are not bound

= Any command currently bound to another key or sequence.

You reference the command to be bound by means of any of the three kinds of
command specifier (see Section 1.3.3.2):

= The command § display name
= The command § symbol

= A form that evaluates to the function associated with the command

Binding Commands to Keys and Pointer Actions

For instance, the following three forms are equivalent. All three bind the
command "View File" to ctriv in the global context. (The first and third of these
forms are equal in efficiency; the middle form, which uses the symbol specifier, is
very slightly faster.)

(bind-command "'View File"™ #\AY)
(bind-command “view-file-command #\AV)

(bind-command (Ffind-command "View File'™) #\AY)

You change an existing binding to a command in the same way that you establish
a new binding. You may prefer to delete the old binding (using the function
unbind-command) before rebinding a command, but this is not required. For
instance, if you were to bind the command "pause Editor" to ctr/A, then both
ctriia and the original binding, ctrx ctriiz, would invoke "Pause Editor.

However, if you overwrite a command supplied by Digital, any key bindings

to the original command continue to invoke the function associated with the
original command rather than the function associated with the new command.
For instance, if you were to implement your own version of a ""Next window"
command, the sequence ctri/x ctryN would continue to invoke the function NEXT-
WINDOW-command supplied by Digital. To have the sequence ctri/x ctriN invoke the
function associated with your new "Next window" command, you would need to
rebind that key sequence to the new command by means of a subsequent call to
BIND-COMMAND .

3.3 The Key or Key Sequence to Be Bound

Commands are actually bound not to keys but to the characters generated by
those keys. Most keyboard keys generate single characters; function keys and
keypad keys generate sequences of characters.

You can bind a command to any character in the 8-bit extended ASCII character
set (the DEC Multinational Character Set), with the few exceptions noted below.
You can also bind a command to any valid LISP sequence of these characters.
LISP sequences include lists and vectors containing characters, as well as strings.

The remainder of this section discusses the key-sequence argument to bind-
command :

¢ How to choose a key or sequence to bind

= How to specify character keys, function and keypad keys, and combinations of
these keys

3.3.1 Choosing a Key or Sequence

In choosing a character key or key sequence to bind to a command, keep in mind
several considerations:

= You cannot bind the characters as and AQ, which lock and unlock your
terminal. This is a limitation of the operating system.

= You should not bind the current cancel character, which is initially Ac.

= |t is generally not good practice to bind graphic characters or sequences that
begin with graphic characters. Every graphic character key is bound to the
command "'Self insert", which inserts that character as text. Rebinding a
character will supersede the "Self insert” binding and leave you unable to
insert that character as text except by quoting it.

Binding Commands to Keys and Pointer Actions 3-3

As the last item suggests, the operation of bind-command destructively modifies
any previous binding of a key or sequence to a command (in the same context).
For instance, if you were to rebind the sequence co/Xcal/Zto a new command

(assuming the global context), then that sequence will no longer invoke "Pause

Editor. In choosing keys to bind, take care not to modify any previous bindings
that you wish to keep.

Similarly, you will lose bindings if you bind a key or sequence that begins another
bound sequence. For instance, if you were to bind cr/Xxto a command, then the
bindings supplied by Digital (in the same context) that begin with coi/X (such as
arl/x crl/z for “'Pause Editor'™) will be inaccessible.

3.3.2 Specifying a Character Key or Sequence

A character key can be specified with the usual LISP character syntax. For
control characters and other nongraphic characters, you use the printed represen-
tation. For example, to bind the graphic character A, you write:

(bind-command "'Self Insert” #\A)
Ib bind the nongraphic character aa, you write:
(bind-command "'Transpose Previous Characters' #\AA)

To bind a sequence of characters, you use the LISP syntax for the LISP sequence
you intend to use: vector, string, or list. A character sequence can include a
graphic character without interfering with the "Self insert" binding as long as
the graphic character does not begin the sequence. The following two examples
show vectors that combine graphic and nongraphic characters:

(bind-command "Name of Command" =#(#H\AX #\w))
(bind-command "'Name of Command™ *# (#\escape #\a))

The first form binds the specified command to the sequence Cirl’X w; the second
binds it to the sequence Escape a

Note that case does not matter in specifying the printed representations of
nongraphic characters (such as ax and escare). Case does matter, however, in
specifying graphic characters (such as wand a).

3.3.3 Specifying a Function Key, Keypad Key, or Sequence

There is no essential difference between binding a command to a character
sequence and binding it to a function key or keypad key (or sequence), since these
keys generate sequences of characters.

Appendix D identifies the character sequences generated by the function keys
and keypad keys on Digital VT100 and LK-201 keyboards. You can specify these

sequences as vectors (or other LISP sequences) in bind-command forms, as shown
in the previous section.

For instance, the Gold key (keypad PFI) generates the character sequence escape
op and keypad lgenerates escape oq.The form that binds the sequence keypad
PF1 1 to the command "EDT Change Case" is:

(bind-command "EDT Change Case' “#(#\escape #\0 #\P #\escape #\0 #\Qq))

Note that this binding takes place in the Editor § global context, rather than
in "edt Emulation” style. See Section 3.4 for the means of specifying a context
argument t0 bind-command -

3-4 Binding Commands to Keys and Pointer Actions

You can also combine character keys and function or keypad keys in a LISP
sequence and pass that sequence to bind-command . For instance, the following
form binds a vector that contains the characters generated by keypad PF1 and
keyboard h

(bind-command *'Name of Command™ “#(#\escape #\0 #\P #\h))

The command will now be invoked by pressing the key sequence PFl h

3.4 The Binding Context

bind-command binds a key or sequence to a command within a particular Editor
context. The key or sequence will invoke the specified command only when that
context is active in the Editor. For instance, if you try to use "edt Emulation"

keypad bindings when only "emacs style is active, the Editor will consider the
keys unbound.

The binding context can be any one of the following:

= Global, the default context, which means that the key binding exists
universally within the Editor

= A style, which means that the key will invoke the specified command only
when that style is active in the current buffer

= A buffer, which means that the key will invoke the specified command only
when that buffer is current in the Editor

Since more than one context is often active in the Editor at any given time—
global, a major style, one or more minor styles, and a buffer, for instance—some
command bindings can be shadowed by other bindings to the same keys

in different contexts. The Editor searches through the active contexts in a
predetermined order to identify the correct command for a key sequence.

This section describes the means of specifying a context in LISP code, as well as
the Editor § search hierarchy for locating the correct binding when you use a key
sequence to invoke a command.

3.4.1 Specifying the Binding Context

The context argument to bind-command is specified in one of these ways:

= The keyword :global

= A list beginning with the keyword :sty1e followed by a style specifier
= A list beginning with the keyword :burrer followed by a buffer specifier

bind-command Can take only one context argument at a time. To bind a command
in more than one style or other context, you need to write @ bind-commanda form
for each context.

3.4.1.1 Global

The global context is used for very basic Editor commands that enable you to
function in the Editor even with no style active. Examples are the commands
bound to the arrow keys, the Retun key, and the Delete key, as well as "'Self
Insert"”, "Pause Editor", and "Execute Named Command".

Binding Commands to Keys and Pointer Actions 3-5

Since :global is the default context argument for bind-command, the following
two examples are equivalent:

(bind-command 'Pause Editor™ “#(F\AX #\AZ2) :global)

(bind-command "Pause Editor™ ~#(#\AX #\AZ))

The two forms are also equal in efficiency.

3.4.1.2 Style
Styles are the most commonly used binding contexts. Your major style usually
would include bindings to all the commands you commonly invoke for general
editing. Minor styles can be seen as smaller sets of special-purpose bindings,
such as those you use only for editing the syntax of a particular language.
A style argument to bind-command is specified as a list beginning with the
keyword :styl1e followed by a style specifier. For example:
"(:style "EDT Emulation')
' (:style edt-emulation)
(list _-style (variable-value '"Default Major Style'))
"(:style , (variable-value "Default Major Style'™))
The Editor variable "Default Major style" is set to a particular style object
(initially, ""EDT Emulation').

3.4.1.3 Buffer

Some commands may be used only in the context of a certain buffer, and it may
be convenient to have their key bindings local to that buffer. For instance, the
buffer ""General Prompting", supplied by Digital, contains buffer-local bindings
of commands that pertain to interactive user input, such as ""Prompt Complete
String” and "Prompt Help".

A buffer argument to BIND-command is specified as a list beginning with the
keyword :butfer followed by a buffer specifier. For example:

- (sbuffer "General Prompting")
* (:buffer editor-prompting-buffer)
(list tbuffer (current-buffer))

The function current-buffer returns the buffer current in the Editor.

3.4.2 Search Order and Shadowing

To locate the correct command binding for a key sequence, the Editor searches
through all the active contexts in the following order:

1 Current buffer

2. Minor styles active in that buffer beginning with the most recently activated
3. Major style of that buffer

4. Global context

The Editor will use the first command binding that it encounters in this search;
any other bindings will be shadowed.

3-6 Binding Commands to Keys and Pointer Actions

For instance, if you have "EMACS'" style active in the current buffer, as either
major or minor style, you cannot use the global binding of ctriiz to invoke "Execute
Named Command'. Because style precedes global in the search order, the "emacs"
binding of ctriz to "'Scroll window Down™ shadows the global binding.

For keys that lack multiple bindings in the active contexts, no shadowing occurs.
For instance, the sequence ctriix ctriN invokes its global binding, "Next Window",
even when you have "edt Emulation" active as major style and both "EMACS™ and
"VAX Lisp" as minor styles. None of these styles has a conflicting binding for that
sequence.

Because of the small number of conflicting bindings involved, it is feasible to
use all three styles provided by Digital—"edt Emulation", "emacs", and "VAX
lisp'— at once. Ifonly "edt Emulation" and "vax lisp" are active, then most
global bindings are visible as well, "emacs", however, shadows a greater number
of global bindings.

3.5 Using BIND-POINTER-COMMAND

By calling bind-pointer-command,you can bind various actions of a mouse or
other pointing device to Editor commands. When the pointer cursor is in the
current Editor window, the Editor will respond to pointer actions by invoking the
bound commands. You cannot program the Editor to respond to pointer actions
that occur when the pointer cursor is outside the current Editor window.

bind-pointer-command Must be referenced in the editor package. Its format is:
BIND-POINTER-COMMAND com mand pointer-action &KEY CONTEXT :BUTTON-STATE

The command argument is a specifier of the command to be bound. Any valid
command argument for bind-command can also be used with bind-pointer-
command (See Section 3.2).

The possible values for the :context keyword are identical to those for the
context parameter to bind-command (See Section 34). The default binding context
is :GLOBAL.

For instance, to invoke a command by means of a specified pointer action in “vax
1isp" style, you would write:

(BIND-POINTER-COMMAND "Describe Word at Pointer" pointer-action
:CONTEXT "(:STYLE "VAX LISP"))

The remainder of this section discusses the pointer-action parameter and the
sbutton-state Keyword. This section also explains the procedure for storing and
retrieving the state of the pointing device at a given time.

3.5.1 Specifying a Pointer Action

The pointer actions you can use to invoke Editor commands are:
= A movement of the pointer cursor
= A transition (depressing or releasing) of a pointer button

Binding Commands to Keys and Pointer Actions 3-7

3.5.1.1 Pointer Cursor Movement

A pointer movement in the Editor is defined as a movement across at least one
character in any direction. Small movements of the pointer cursor (within a
character) are not significant.

You specify movement of the pointer cursor by supplying the keyword :movement
as the pointer-action argument. For instance:

(bind-pointer-command *‘Name of Command™ :movement)

If you want to have the command invoked by a movement only when one or more
buttons are depressed, you supply a value for button-state.See Section 3.5.2.

3.5.1.2 Pointer Button Transitions in UIS

The buttons on a supported pointing device are indicated by the symbols for
button constants. The symbols are in the package uis, and they take the form
POINTER-BUTTON-n, beginning with pointer-button-i for the leftmost button.
(See VAXLISP Interface to VWS Graphics for further information on button
constants.)

NOTE

The description of pointer buttons assumes the pointing device is set
for right-handed operation (the default). If you have set the pointing
device for left-handed operation (in VAXstation setup mode), reverse
the indications of “fight”’and Feft”buttons for this discussion and in
the Appendix B icon representations.

To specify a downward transition of a particular button, you simply supply the
appropriate button constant as the pointer-action argument. For instance, to

bind a command to a downward transition of the middle button on a three-button
mouse, you would write:

(editor:bind-pointer-command "Name of Command' uis:pointer-button-2)

Note that this form uses symbols from both the eaitor package and the uis
package.

To specify an upward transition, you supply a list of one element that is the
appropriate button constant. For instance, to bind a command to an upward
transition of the middle button on a three-button mouse, you would write:

(editor:bind-pointer-command *"Name of Command"” (list uis:pointer-button-2))
or
(editor:bind-pointer-command *“Name of Command *(,uis:pointer-button-2))

These are the most common methods of specifying button transitions. For other
methods, see the description 0f bind-pointer-commana in Part Ill.

3.5.1.3 Pointer Button Transitions in DECwindows

The description of pointer button transitions under UIS works under DECwindows
if UIS is present in your LISP. If not, you should use the keywords :button-1,
‘button-2 ... :BUTTON-5 instead of the uis:poiNTER-BUTTON-n symbols. Use of
these keywords will not work under UIS.

3-8 Binding Commands to Keys and Pointer Actions

3.5.2 Specifying a Button State

In the examples above, the assumption is that all pointer buttons except one
specified in the pointer-action argument are in the up state. The :button-state
keyword permits chording of pointer buttons to invoke commands. That is, you
can specify that the pointer-action argument is to invoke the command only if one
or more pointer buttons are depressed when the pointer action occurs.

For instance, in the Editor as provided under UIS, the following actions occur:

= Depressing the middle button invokes the command "edt Cut" (in "edt
Emulation Style)

= Depressing the middle button while the left button is depressed invokes the
command "EDT Paste at Pointer" (in "EDT Emulation' style)

For UIS, the value for the :button-state keyword is a button constant or the
logand of two or more button constants. For DECwindows, it is a button keyword
or a list of button keywords. These keywords indicate the button(s) that must be
in a down state when the specified pointer-action occurs.

For instance:

= Tb specify that the left button is depressed under UIS:
button-state uis:pointer-button-1
under DECwindows:

button-state :button-I

= To specify that the left and right buttons are depressed under UIS:

button-state (logand uis:pointer-button-1
uis:pointer-button-3)

under DECwindows:

sbutton-state " (:button-1 :button-3)

If the pointer-action argument is a button transition, then any value supplied for
that button in the :button-state argument is ignored.

The binding of "EDT Paste at Pointer under UlIS—depressing the middle button
while the left button is depressed- is established by:

(editor:bind-pointer-command "EDT Paste at Pointer"
uis:pointer-button-2
button-state uis:ppointer-button-1
context "(:style "EDT Emulation™))

The global binding of ""Move Point and Select Region" \inder UIS—move pointer
while the left button is depressed—is established by:

(editor:bind-pointer-command 'Move Point and Select Region"
‘movement
button-state uis:pointer-button-1)

The button state in a chorded pointer binding is a static state of the button

or buttons indicated. You should, however, consider the transitions (prior
pressing and subsequent releasing) that establish and end that state. Either of
these transitions might be bound to a command supplied by Digital (see VAX
LISP/VMS Program Development Guide for initial pointer bindings). Or, you
might wish to bind one or both transitions to commands.

Binding Commands to Keys and Pointer Actions 3-9

3.5.3 Getting the State of the Pointer

You can retrieve the state of the pointing device—which includes the position of
the pointer cursor, the up-or-down state of each button, and other information—
for a given point in time by calling get-pointer-state.This function is described
in full in Part Ill.

get-pointer-state returns a pointer-state object that contains information about
the state of the pointer at the time the function is called. If get-pointer-state
is called from within an Editor command and if that command was invoked by a
pointer action, the function returns the state of the pointer that existed when the
pointer action occurred. If the pointer action that invoked the command was a
button transition, the pointer-state object contains the state of the buttons at the
end of the transition.

3.5.3.1 Testing Pointer State

get-pointer-state IS useful in commands that take different actions depend-
ing on some feature of the pointer state. For instance, the command 'Yank
at Pointer", supplied by Digital, tests to find whether the pointer cursor is
indicating a text position (line and character position).

= |fso, "Yank at Pointer" moves the current buffer point to that text position
and inserts the current region in the kill ring at the modified buffer point.

= |f the pointer cursor is indicating an empty position in a line, "Yank at
Pointer™ moves the current buffer point to the last character position in that
line and inserts the Kill region.

= |f the pointer cursor is not indicating a line, "Yank at Pointer™ moves the
current buffer point to the last character position in the current buffer and
inserts the kill region.

"Yank at Pointer” calls get-pointer-state to store the pointer-state informa-
tion, and calls pointer-state-text-position to retrieve the text position (line
and character position) stored in the pointer-state object. A possible way to
implement "Yank at Pointer" is:

(define-command (yank-at-pointer-command :display-name "Yank at Pointer'™)

(prefix)

(declare (ignore prefix))

(let ((state (get-pointer-state)))

3-10

;; Get the text position of the pointer cursor and bind the two values
;; to LINE and CHARPOS.
(multiple-value-bind (line charpos)

(pointer-state-text-position state)
;; IF there is a line, move buffer point to the CHARPOS or to the end
;; of that line.
@Gf line
(move-mark-to-position (current-buffer-point)
(or charpos (line-length line))
line)

;; IF there is no line, move buffer point to end of the buffer.
(buffer-end (current-buffer-point)))
;; After the buffer point is modified, call YANK-COMMAND.
(yank-command nil))))

Binding Commands to Keys and Pointer Actions

If "Yank at Pointer' has been invoked by means of its pointer binding in “emacs"
style (depress middle button while left button is depressed), the command uses
the pointer state that existed when this pointer action occurred. If "Yank at
Pointer" has been invoked by name, it uses the pointer state in existence when
the command executes.

3.5.3.2 Accessing Pointer-State information

The command *Yank at Pointer'™ calls pointer-state-text-position t0 retrieve
the line and character position of the pointer cursor. Other information contained
in the pointer-state object and the corresponding accessing functions are:

= The window position (display row and display column in a given window)—
POINTER-STATE-WINDOW-POSITION

= The pointer action, if any, that invoked the currently executing command—
POINTER-STATE-ACTION

= The state of the pointer buttons at the time get-pointer-state was called—
POINTER-STATE-BUTTONS

Further information on get-pointer-state and on each of these accessing

functions appears in Part Ill.

Note that the function pointer-state-buttons can be used to implement chord-
ing in pointer bindings. When called from within an Editor command, the form

(pointer-state-buttons (get-pointer-state))

returns the state (up or down) of each pointer button at the time the command
was invoked (see Part Ill). You can use this information to have the command
take different actions, depending on whether a specified button was depressed
when a pointer action invoked the command.

Binding Commands to Keys and Pointer Actions 3-11

Chapter 4

Text Operations

Text consists of the characters you normally see when you enter the Editor and
display a buffer. The essential operations any editor must allow you to perform
on text are:

= [ndicating the position occupied by any given character

= [nserting, deleting, and changing characters

= Moving from one character position to another

This chapter introduces the data types and functions you use to program these
kinds of operations in the VAX LISP Editor.

You can envision text in the VAX LISP Editor as a group or region of contiguous
characters. The characters can be any of those in the ASCII 8-bit extended

set (the DEC Multinational Character Set); they can include whitespace and
nongraphic characters as well as alphanumeric characters.

Each character in the Editor occupies a specifiable position. You can access
characters either individually (that is, at one position) or in groups (that is,
between two positions). You can also manipulate characters—insert them, delete
them, copy them—either individually or in groups. Finally, you can move around
within text either by accessing specified character positions or by searching for
particular characters or sequences of characters.

These sets of text-related capabilities in the VAX LISP Editor are introduced in
the following order:

1. Operations on a particular character position
2. Operations on a group of contiguous characters
3 Moving and searching operations

4. Miscellaneous operations

This chapter introduces the following Editor data types:
= Marks

= Regions

= Attributes

= |ines

Part Il describes these objects in more detail. Reference information concerning
the functions and macros that operate on these objects appears in Part IlI.

Text Operations 4-1

4.1

Buffers are another relevant Editor data type: most text is contained in buffers.
However, most text operations are not operations on a buffer object, but rather
on marks, regions, lines, or characters that may be contained in a buffer object.
Operations on buffers are covered in Section 4.2.5 and in Part Il.

Recall that the symbols for Editor objects provided by Digital must be referenced
in the editor - package.

Operations on a Character Position

Editor objects called “tharks”’are used to reference the position of any character
in text. An example of a mark is the buffer point, which is the point of attention
in each buffer at which most text operations occur. In the current buffer, this
mark—the current buffer point—is tracked by the screen cursor.

Every buffer you enter or create in the Editor contains at least three marks.
Besides the buffer point, each buffer contains two marks that point to the
beginning and end of text in that buffer. Tb reference positions in text, you can
use the existing marks, or you can create new marks. Creating marks is covered
in Section 4.4.1.

By using a mark, you can perform several operations:
= Retrieve and change a character

= |nsert a character

= |nsert a string of characters

= Delete one or more characters

In the examples in this section, the variable mark is assumed to be bound to an
Editor mark.

4.1.1 Retrieving and Changing a Character

4.1.2

For the purpose of text operations, you should think of a mark as pointing
between two adjacent characters. A mark can also point before the first character
in a buffer or after the last character.

You can retrieve the characters on either side of a mark by means of the functions
next-character and previous-character.Using setf,you can also change the
specified character.

(setf (next-character mark) #\W)

This form changes the character to the right of the mark to w If your text consists
of abcd and the mark is pointing between b and c, this form changes the ¢ to a w
The text then reads abwd .

Inserting a Character

You can add a new character to text by means of the function insert-character,
insert-character takes a mark and a character. It inserts the specified charac-
ter at the mark—that is, between existing characters.

For instance:

(insert-character mark #\W)

4-2 Text Operations

If the mark is pointing between b and C in the text abcd, executing this form
changes the text to abwecd.

To perform the same operation at the current buffer point, you could reference

that mark by calling the function current-buffer-point with no arguments:

(insert-character (current-buffer-point) #\W)

4.1.3 Inserting a String of Characters

insert-character allows you to insert only one character at a time. By using
insert-string, YOU Can insert any number of characters at the specified mark.

(insert-string mark "ABCD EFGH 1JKL')

If your text consists of xx and the mark is pointing between the two characters,
this form changes the text t0 xabcd efgh ijk1x.

If the string argument to insert-string contains newline characters, multiple
lines of text are inserted.

(insert-string mark "ABCD
EFGH™)

This form inserts anca at the mark, breaks the line, and inserts ergn at the
beginning of the next line. Any text following the mark in the original line will
appear after ergn.

An example of a string that might be inserted in text is the string you enter in
response to a prompt. For instance:

(insert-string (current-buffer-point)
(simple-prompt-for-input "Enter input; '9))

This form takes the user § response to the prompt and inserts it as text at the
current buffer point.

4.1.4 Deleting Characters

The function derete-characters takes a mark and an optional integer that
defaults to I. It deletes the specified number of characters after the mark, or
before the mark if the integer is negative. If there are not enough characters
after (or before) the mark, derete-characters does not modify the text.

For example, to delete the next five characters after a specified mark, you would
write:

(delete-characters mark 5)
To delete the character preceding the current buffer point, you would write:
(delete-characters (current-buffer-point) -1)

When deleting a character, you may want to save the character so that you can
reinsert it later. The following forms show a “delete and save”bperation and a
subsequent reinsertion operation:

;:; Define a variable to which to bind a deleted character.

(defvar *saved-character¥™)

;;; Bind the character following the current buffer point to the
;3 variable.

(setf *saved-character* (hext-character (current-buffer-point)))

Text Operations 4-3

;;; Delete the character following the current buffer point,

(delete-characters (current-buffer-point))

;5; Later, 1insert the character bound to the variable at the
;55 then-current buffer point.

(insert-character (current-buffer-point) *saved-character®*)

4.2 Operations on a Group of Characters
Editor objects called regions indicate groups of contiguous characters. The text in
a region can be accessed and manipulated as a unit.

A region is defined by two marks that indicate the character positions where the
region begins and ends. To create a region, you write:

(make-region markl mark2)

Every buffer contains at least one region, which is defined by the marks that
indicate the positions where text begins and ends in that buffer. This region is
called the buffer region.

Any number of regions can be created within a buffer region. They may overlap
in arbitrary ways, and one may be completely contained within another. Since
regions may share text, any alterations you do to the text in one region will affect
other regions that share that text.

Using regions, you can do these operations:
= Insert a block of text

= Copy a block of text

= Delete a block of text

= Delete and save a block of text

= Write a block of text to a file

You can perform these operations on any region, Ib perform these operations on
a buffer, you perform them on the buffer region of that buffer.

4.2.1 Inserting a Region

The function insert-region enables you to insert a specified block of text as a
unit, insert-region takes a region and a mark at which to insert that region in
text. The text inserted is a copy of the specified region; the original region is not
altered.

For example:
(insert-region (current-buffer-point) (make-region markl mark2))

This form defines a region from the two specified marks, which allows you to
treat the text between those marks as a single unit. The text in this region is
copied, and the copy is inserted at the current buffer point.

4-4 Text Operations

4.2.2 Copying a Region

The function copy-region takes a region and returns a new region that contains
a copy of the text in the specified region. The new region is disembodied, in that
it is not contained in a buffer. Operations performed on the copy do not affect the
original region, and vice versa.

The following forms illustrate the process of copying and saving a specified region
for later insertion elsewhere. The original region is not deleted or otherwise
altered.

;55 Define a variable to which to bind a region.

(defvar *saved-region*)

;;; Copy a region and bind it to the variable.

(setf *saved-region* (copy-region (make-region markl mark2)))

;;; Later, insert the copied region at the current buffer point.

insert-region (current-buffer-point) *saved-region*
g p g

4.2.3 Deleting a Region

Regions are used commonly to indicate blocks of text to be deleted. You can delete
the text in a region by calling either delete-region Or delete-and-save-region
with a region argument.

The function delete-region takes a region and deletes the text in it, leaving an
empty region. It returnsniu.

(delete-region (make-region markl mark2))

If you wish to retain a copy of the text in a deleted region so that you can reinsert
it elsewhere, you call delete-and-save-region.This function deletes the text in

a region and returns a disembodied region that contains a copy of the deleted
text.

(insert-region (current-buffer-point)
(delete-and-save-region (make-region markl mark2)))

In this example, delete-and-save-region deletes the text in the region between
marki and MARK2 and returns a copy of the deleted text. The disembodied region
containing the copied text is passed to insert-region,Which inserts it at the
current buffer point.

4.2.4 Writing a Region to a File

The function write-file-from-region takes a file name (pathname or

namestring) and a region. It writes the specified region to the specified file.
For instance:

(write-file-from-region "Myfile._lsp” (make-region markl mark2))

This form writes the text between the specified marks to a file named
MYFILE.LSP.

Text Operations 4-5

4.2.5 Operating on Buffers

Text operations that appear to be performed on buffers actually are performed on
the buffer regions of those buffers. Some operations you can perform on buffer
regions include:

= Deleting the text in a buffer

= |nserting the contents of one buffer into another

= Writing the contents of a buffer to a file

= |nserting the contents of a file into a buffer

These operations use the same region-manipulating functions that apply to
smaller regions within a buffer. The difference here is that the region argument

you supply is the buffer region. The function buffer-region takes a buffer and
returns the buffer region of that buffer.

4.25.1 Deleting the Text in a Buffer

To delete all the text in a buffer, you simply delete the text in the associated
buffer region.

(delete-region (buffer-region (current-buffer)))

This form deletes the text in the current buffer. The buffer itself and the empty
buffer region remain.

4.2.5.2 Inserting One Buffer into Another

To insert the text from one buffer into another buffer, you call the function

insert-region.AS arguments, you supply a mark in one buffer and the buffer
region of another buffer.

(insert-region (current-buffer-point) (buffer-region buffer2))

This form inserts a copy of the buffer region of surrer2 into the current buffer at
the current buffer point. The content of sBurrer2 is not affected by this operation,
and subsequent changes to the text in surrer2 and in the inserted region do not
affect one another.

4.2.5.3 Writing a Buffer to a File

TOowrite a buffer to a file, you call write-file-from-region and pass it a file
name (pathname or namestring) and the buffer region of a specified buffer.

(write-file-from-region "Myfile._lsp” (buffer-region (current-buffer)))
This form writes the contents of the current buffer to a file named MYFILE.LSP.

4.2.5.4 Inserting a File into a Buffer

The function insert-fite-at-mark is sSiMilar t0 insert-string, in that it inserts
text at a specified mark. The mark can indicate any text position in a buffer or
disembodied region; the text inserted is the content of a specified file, insert-
file-at-mark IS USed commonly to insert a file into a buffer.

For example:

(insert-file-at-mark "Myfile_lIsp” (current-buffer-point))

4-6 Text Operations

This form inserts the contents of the file MYFILE.LSP into the current buffer at
the current buffer point.

4.3 Moving and Searching Operations

A number of functions exist that “thove”arks. That is, these functions modify a
mark so that it specifies a different text position.

There are three basic ways to move marks:

= By specifying a new character position

= By searching for a specified string of characters

= By searching for a character with a particular property

4.3.1 Moving by Character Positions

Several functions take a mark and alter it to point to a specified character
position. The character position can be specified either by “Counting”¥from the
mark § initial position or by referencing another mark.

To move a mark one or more character positions away from its current position,
you call:

move-mark-after moves a mark to the position that follows its initial position

move-mark-before moves a mark to the position that precedes its initial
position

character-offset takes a count and moves the mark forward that many
positions (backward if the count is negative)

You can also move a mark to point to the position specified by another mark.
Some functions you can use are:

- buffer-end moves a mark to the end of the text in a specified buffer

buffer-start moves a mark to the beginning of the text in a specified buffer

move-mark moves a mark to the position occupied by any other specified mark

Moving by character position is illustrated in a new function that transposes the
pair of characters before a specified mark. This function also illustrates accessing
and manipulating individual characters.

(defun transpose-characters (mark)

Transposes the pair of characters before the specified mark."

;5 Access the character before the mark and bind it to CHAR2.
(let ((char2 (previous-character mark)))

;; 1T there iIs a character before the mark, delete that character.
(when char2

(delete-characters mark -1)

IT there is a character in the position now preceding the mark,
move to the position preceding that character and reinsert the
deleted character.

(cond ((previous-character mark)

(insert-character (move-mark-before mark) char2)

;5 Move the mark back to its initial position.
(move-mark-after mark))

Text Operations 4-7

;; If there is no character in the position preceding the mark,
;; reinsert the deleted character at its initial position.
(t (insert-character mark char2))))))

The action of this function differs slightly from that of the command "Transpose
Previous Characters' supplied by Digital. One difference is that the command
supplied by Digital suppresses screen display of the separate text operations,
showing only the completed action. Display-related operations are discussed in
Section 54. Also, the command supplied by Digital creates a new mark for the
operation and disposes of the mark after the operation is completed. Creating
marks is discussed in Section 4.4.1.

4.3.2 Searching by Pattern

Searching by pattern enables you to move a mark to a specified string of char-
acters within a region of text. The search can be forward or backward from the
mark § initial position, and it can either consider or ignore case in determining
whether a text string matches the search string.

Ib perform a search by pattern, you call two functions:

= make-search-pattern computes a pattern, including the string to be matched,

the direction of the search, and whether the search is case-sensitive
= locate-pattern initiates a search operation beginning at a specified mark

and searching according to the parameters of the specified pattern

This section illustrates the use of these functions to implement search operations.

4.3.2.1 Making a Search Pattern

Before beginning a search operation, you call make-search-pattern, Which
computes and returns a search pattern. Its format is:

MAKE-SEARCH-PATTERN kind direction string
&OPTIONAL reuse-pattern

The kind argument can be either :case-sensitive OF icase-insensitive. Ihe

direction argument can be either :forward Or :backward. The string argument is
the string to be searched for. (The optional reuse-pattern argument is described in
Part IlIl.)

For instance, to search forward for the string avcae, disregarding case, you could
begin with the following pattern:

(make-search-pattern :case-insensitive :forward 'abcde')

4.3.2.2 Locating a Search Pattern

Thb initiate the search, you call 1ocate-pattern. This function takes a search

pattern, such as that specified above, as well as a mark at which to begin the
search:

LOCATE-PATTERN mark search-pattern

locate-pattern Searches for a text string that matches the specified search
pattern. If one is found, it changes the mark to point to the beginning of the
matched string.

4-8 Text Operations

A very simple search operation is illustrated by the following command:

(define-command (my-simple-search-command
display-name "My Simple Search'™)
(prefix)
(declare (ignore prefix))

(locate-pattern (current-buffer-point)
(make-search-pattern
:case-insensitive
-forward
(simple-prompt-for-input
"Search for: '))))

"My simple Search' prompts for a search string, which it uses in making a search

pattern. It then searches forward for that string, beginning at the current buffer
point and disregarding case.

Note that this command searches only once. Tb locate more than one occurrence

of the string, you would need to invoke the command repeatedly. To search in the
opposite direction, you would need to write another command with :backward as

the direction argument t0 make-search-pattern.

4.3.2.3 Replacing a Pattern

You can also program the Editor to replace strings it locates through a search
operation. The function replace-pattern is similar to 1ocate-pattern except
that it takes a replacement argument—a new string with which to replace the
string it locates in the text:

REPLACE-PATTERN mark search-pattern replacement
&OPTIONAL n

For example:

(replace-pattern (current-buffer-point)
(make-search-pattern
:case-sensitive
“backward
"This is a")
"This is not a")
This form searches backward through text from the current buffer point for
every case-matched instance of the search string. It deletes each matching string
and replaces it with the specified replacement string. (Unlike 1ocate-pattern,
replace-pattern does not move the mark.)

The optional n argument to replace-pattern allows you to specify how many
occurrences of the string should be replaced (see the full description of reprace-
pattern in Part IlIl). The default action is to replace every instance in the
direction specified in the search pattern.

4.3.3 Searching by Attribute

Searching by attribute enables you to locate text entities such as words, white-
space, LISP forms, and so on. The Editor recognizes these entities by the
characters that define or delimit them. For instance, the Editor locates a word by
searching for a character that it recognizes as a word delimiter.

Characters acquire these added properties by means of Editor objects called
attributes. Some attributes provided with the Editor are "Word Delimiter",
"whitespace", and "1isp Syntax'. (Attributes can also be user-defined.) Once

Text Operations 4-9

an attribute is established in the Editor, all 256 characters have a value for that
attribute.

NOTE

Editor attributes should not be confused with character attributes
in Common LISP. The Editor ignores all Common LISP bit and
font information about characters. Editor attributes capture other
information specific to the Editor about the meaning of individual
characters.

You can think of Editor attributes on the analogy of a social attribute, such as
“Political Party Member.””In contexts where you apply this attribute to people,
every person has a value for it. The values might be specified as republican,
democrat,whig, Tory ,and so on. Another pOSSib'G value iS not-a-member.

Similarly, every character in the Editor has a value for the attribute
"Whitespace". The possible values in this case are I and o, which you can
think of as is-whitespace and is-not-whitespace, respectively.

To carry out a search by attribute, the Editor tests each character in turn until it
locates one that has a particular value for the specified attribute. For example:

= To skip over whitespace to the next non-whitespace character, the
Editor searches for the next character with the value o for the attribute
"Whitespace".

= To find word breaks, the Editor searches for characters with the value | for
the attribute ""Word Delimiter'.

= To find the next list in LISP code, the Editor searches for the next character
with the value :LIST-initiator for the attribute "1isp syntax'.

To search by attribute in the Editor, you call the function 1ocate-attribute.This
section introduces the following topics:

« Using LOCATE-ATTRIBUTE
= Mark and cursor behavior in an attribute search

= Using 1ocate-attribute repeatedly

This discussion focuses on using attributes and attribute values supplied by
Digital. Information on creating new attributes and on changing attribute values
appears in Section 6.2.3 and in Part Il.

4.3.3.1 Using LOCATE-ATTRIBUTE

The function 1ocate-attribute is used to locate a character with a particular
attribute value. This function is described in full in Part 111 of this manual. Its
format, with only a few of its parameters, is:

LOCATE-ATTRIBUTE mark attribute
&KEY :TEST DIRECTION

locate-attribute Scans the text in the specified direction to find a character
with a particular value for the specified attribute. The value of interest is one for
which the specified test function returns a non-NiL value. If such a character is
found, 1ocate-attribute Moves the mark to point to that character. The default
value for the keyword argument :DIRECTION is :FORWARD; the default function
used as the :TEST iS plusp.

4-10 Text Operations

4.3.3.2

For example, to find the next word delimiter in a region of text, you could write:

(locate-attribute (current-buffer-point)
"Word Delimiter"
stest #"plusp
direction :forward)

This form moves the current buffer point forward to the next character whose
"Word Delimiter" value is 1 The values are tested by passing them to the
predicate function pi1usp.The piusp function returns ni1 if its argument is o and
T if its argument is greater than O. The first character whose "Word Delimiter"
value is | satisfies the test, and the search stops.

locate-attribute behaves the same way when called with the argument
‘backward ,but the search direction is reversed.

(locate-attribute (current-buffer-point)
"Word Delimiter”
direction :backward)

In this case, 1ocate-attribute moves the current buffer point backward to the
first character whose ""Word Delimiter' value satisfies the default test prusp.

To find the next character that is not a word delimiter, you change the test
function:

(locate-attribute (current-buffer-point)
"Word Delimiter"
stest #%zerop)

This form moves the current buffer point to the next character that has the ""Word
Delimiter” value o. The function zerop returns non-NiL only when its argument
is o.

Mark and Cursor Behavior

When using 1ocate-attribute t0o move a mark, it is important to remember that
marks point between characters rather than to characters. Depending on the
direction of the search, the modified (or “thoved”ymark points either just before
or just after the character that has satisfied the test. The screen cursor, on the
other hand, always appears on the character just after the mark it is tracking
(the current buffer point).

A mark’s behavior in an attribute search is symmetrical—“mirror-image”™—
forward and backward. The cursor § behavior is not symmetrical.

For instance, imagine that the text string contains the current buffer point in
the position between j and K and that the cursor appears on K, as shown in
Figure 4.

Figure 4-1: Before Moving the Mark

ABCD EFGH 1 3L MNOP

MLO-002991

Text Operations 4-11

Then call 10cate-attribute (with its default arguments) to search ahead for the
first character with the value 1 for the attribute "Word Delimiter".

(locate-attribute (current-buffer-point) "Word Delimiter™)

The test succeeds at the space after L, and the search stops. The mark is left
pointing just before the space,and the cursor is on it, as shown in Figure 4-2.

Figure 4-2: Moving a Mark Forward

ABCD EFGH NOP

MLO-002992

If you evaluate the form again, 1ocate-attribute does not move the mark. It
may appear, since the cursor is on the space, that the next word delimiter is the
space after p. However, the mark actually is positioned just before the space
indicated by the cursor. This character satisfies the test. (The following section
discusses how to call 1ocate-attribute repeatedly.)

The backward-searching behavior of 1ocate-attribute is a mirror image of its
forward-searching behavior. The symmetry is apparent when you consider mark
positions, but less apparent when you consider only cursor positions.

For instance:

(locate-attribute (current-buffer-point)
"Word Delimiter"
sdirection :backward)

If the mark points, as before, between J and k, the first character to satisfy the
test is the space between h and i. Because the search direction is backward,
locate-attribute moves the mark to the position between the space and the 1.
The mark indicates the space character to its left, but the cursor, which is always
to the right of the mark, stops on the | (see Figure 4-3). Compare this cursor
behavior with the cursor behavior when locate-attribute searches forward.
Again, locate-attribute does not move the mark if called a second time. The
character that the mark is indicating is the space, which satisfies the test.

Figure 4-3: Moving a Mark Backward

ABCD M NOP

MLO-002993

4-12 Text Operations

4.3.3.3 Using LOCATE-ATTRIBUTE Repeatedly

Some higher-level functions and commands may invoke 1ocate-attribute MOre
than once. For instance, word-offset takes an optional count that indicates the
number of word breaks to be located. It invokes 1ocate-attribute the number of
times specified.

When you invoke 1ocate-attribute repeatedly, you need to consider the cases
in which the mark already is indicating a character with the attribute value in
guestion. As shown above, 1ocate-attribute does not move the mark when the
first character in the specified direction satisfies the test.

It is necessary, therefore, to include a test of the mark § position before invoking
locate-attribute. AN example of such a test follows:

(defmacro next-char-in-word-p (mark)
"(let ((next (next-character ,mark)))
(and next

(zerop (the Fixnum (character-attribute "Word Delimiter' next))))))

The macro next-char-in-word-p tests whether the character after the mark
is part of a word, and thus not a word delimiter. That is, it tests whether that
character has the value o for the attribute ""Word Delimiter".

Using this test, you can now write a command that invokes 1ocate-attribute:

(define-command (capitalize-word-and-travel-command
sdisplay-name "Capitalize Word and Travel)

(prefix)
;; Repeat the action if a prefix argument is supplied.
(dotimes (index (or prefix 1))
;; If the next character is a word delimiter, Tfind the next
;; one after i1t that is not a word delimiter.

(unless (next-char-in-word-p (current-buffer-point))
(locate-attribute (current-buffer-point)
"Word Delimiter"
itest #"zerop))

;5 If the next character is not a word delimiter, capitalize
;; the word that contains it and move to the next word.

(when (next-char-in-word-p (current-buffer-point))
(capitalize-word-command 1)
(forward-word-command 1))))

4.4 Miscellaneous Text Operations

The preceding sections have assumed that you are working with existing marks.
You can, however, create new marks when you are programming text operations.

For some operations, you can also work with lines as text-containing objects.
Lines are sometimes less convenient to use than marks and regions, but line
operations may be more efficient to execute.

This section introduces these techniques:
= Creating marks

= Operating on lines

Text Operations 4-13

44.1 Creating Marks

Marks are used primarily to indicate positions for insertions and deletions in text.
A single mark can indicate the position for an insertion operation; a pair of marks
can indicate a region of text to be deleted or inserted.

The Editor supplies a number of marks automatically—buffer points and the
marks that indicate the limits of buffer regions. If none of these marks is suitable
for the operation you want to perform, you can create one or more new marks.

New marks are most often created by “Copying”&xisting marks. Both the function
copy-mark and the macro with-mark create a new mark that indicates the same
text position as a specified mark. You can also specify the type of mark you want
to create; a mark§ type determines its behavior in a text operation.

This section introduces these topics:
= Mark types and their behavior
= Using COPY-MARK

= Using WITH-MARK

44.1.1 Mark Types and Their Behavior

Whenever you create a new mark, you must consider what becomes of that mark
after a text operation is performed on it. Marks are of two basic types:

= “Temporary”arks, which become invalid after any operation upon them

= “Permanent”tarks, which remain valid after any operation upon them

Temporary marks are useful for one-time operations; after any operation that
affects the mark or the text to which it points, the mark becomes invalid and
should not be reused. Temporary marks are more efficient than permanent marks
for some applications because they require less overhead to make and use.

Permanent marks remain valid after any operation on them, including deletion
of the text to which they point. For instance, the current buffer point and the
two marks that indicate the beginning and end of text in a buffer are permanent
marks. If you delete all the text in a buffer, these three marks (and any other
permanent marks in that buffer) continue to point into that (empty) buffer.
Permanent marks can be removed only with the function detete-mark.

When you insert text at a permanent mark, the mark § behavior depends on
whether it is left-inserting or right-inserting:

= A “left-inserting”mark appears at the end of a new insertion. That is, new
text is inserted to the left of the mark. The current buffer point and the
buffer-end mark are permanent left-inserting marks.

= A “fight-inserting”ark appears at the beginning of a new insertion. That
is, new text is inserted to the right of the mark. The buffer-start mark is a
permanent right-inserting mark.

You can specify the type of mark you want to create when you call copy-mark

or with-mark . Each takes an optional mark-type argument, which may be
iTEMPORARY, :LEFT-INSERTING, Or :RIGHT-INSERTING.

4-14 Text Operations

4.41.2 Using COPY-MARK

The function copy-mark Creates and returns a new mark that points to the same
position as a specified mark.

COPY-MARK mark &OPTIONAL mark-type
For instance:
(copy-mark (current-buffer-point) :temporary)

This form creates a new temporary mark that specifies the same text position as
the current buffer point.

If no mark-type argument is specified, the new mark is of the same type as
the specified mark. In the following example, the new mark is a permanent
left-inserting mark (like the current buffer point).

(copy-mark (current-buffer-point))

copy-mark IS USed often in defining a region between the current buffer point and
some other character position in the buffer. The procedure follows:

1 Indicate the position of the buffer point by placing a new mark there.
2. Move the buffer point with any of the mark-moving functions.

3. Define a region from the new mark and the modified buffer point.

For instance, to make a region from the current buffer point to the end of a buffer,
you could write:

(make-region (copy-mark (current-buffer-point))
(buffer-end (current-buffer-point)))

This form copies the current buffer point and then moves the buffer point to the

end of the buffer. It uses the copied mark and the altered buffer point to define a
region.

If you perform an operation on this region, both marks will remain valid because
both are permanent marks. For instance:

(delete-region
(make-region (copy-mark (current-buffer-point))
(buffer-end (current-buffer-point))))

This form deletes all the text between the initial position of the current buffer
point and the end of the buffer. Both the buffer point and the new mark are left
pointing to the end of the buffer. However, because detete-region returns Nic,
you have no access to either the new mark or the new region.

4.4.1.3 Using WITH-MARK

When you are programming text operations, you may want to dispose of a new
mark after it has served its purpose. In this situation, you can create the mark
with the macro with-mark.

with-mark COpies a mark and binds the new mark to a specified variable. The
new mark can be of any mark type; the default is :temporary. The variable can
be referenced within the body of the macro. Upon exit from the form, the mark is
deleted and the variable becomes unbound.

with-mark IS @analogous to the Common LISP macro with-open-rite. ItsS use
guarantees that the overhead of creating a mark ends on exit from the macro.

Text Operations 4-15

An example of the use of with-mark follows. This form copies the current buffer
point for a file-insertion operation. Inserting a file moves the current buffer point
to the right and leaves it at the end of the new insertion. If you want the current
buffer point to end up at the beginning of the new insertion, you could write:

;5 Place a new right-inserting mark at the same position as the current
;5 buffer point.

(with-mark ((new-mark (current-buffer-point) :right-inserting))

;5 Insert the file at the current buffer point.
(insert-file-at-mark file (current-buffer-point))

;5 Move the current buffer point back to the position of the new mark.
(move-mark (current-buffer-point) new-mark))

This form creates a new mark, bound to the variable new-mark . Because new-mark
is right-inserting, it remains in its initial position when you insert a file. The
current buffer point, which is left-inserting, moves to the end of the new text.
After the insertion, the buffer point moves back to the position indicated by the
new mark. When the action is completed, new-mark becomes unbound and the
new mark is deleted.

4.4.2 Operating on Lines

A “line”1s an Editor object that points to a string of characters. The text string
in a line normally corresponds to the line of text displayed on the screen. A line
also contains pointers to the lines that precede and follow it.

All text operations result, directly or indirectly, in the alteration of fines or of
their relative positions. For instance, marks point into fines, and operations on
marks alter the fines into which they point. Also, the two marks that define a
region point into the same or different fines, and operations on the region alter
the fine, or fines, that the region contains.

You may find it efficient to perform some text operations directly on fines. These
operations include:

= Retrieving and altering the string of text in a fine
« Retrieving and altering a particular character
= Moving from one fine to another

= Testing the relative positions of fines

Lines are created as a result (side effect) of Editor operations such as reading
files, breaking fines, and so on. In the following examples, the variables line,
linei, and line2 are assumed to be bound to Editor fines.

4.4.2.1 Retrieving and Altering the Text in a Line

The function 1ine-string takes a fine and returns the string that is the text
contained in that fine.

(line-string line)

This form returns the text in the specified fine as a string.

You can use setf With 1ine-string to modify the text in a fine.
(setf (line-string line) "abode'™)

This form accesses the text in 1ine and replaces it with abode.

4-16 Text Operations

To change the text from abode t0 abode ,you could write:
(setf (line-string line) (nstring-upcase (line-string line)))

Note that you must use set+ to have the destructive operation performed by
nstring-upcase appropriately reflected inrine.

4.4.2.2 Retrieving and Altering a Single Character

The function 1ine-character takes aline and an integer that indicates a char-
acter position in that line. The character positions are numbered from the left
beginning with o (zero), 1ine-character returns the character in the specified
position (or i1 if no character is found). You can use set+ with this function to
alter the specified character.

For example:
(setf (line-character line 4) #\W)

In this form, 1ine-character returns the character in position 4 in Line. Setting
that value to wchanges the text string in rine from abcde t0 abcdw.

You can break a line, and thus create a new line, by replacing a character with a
newtine Character:

(setf (line-character line 2) #\newline)

This form replaces the ¢ in 1ine with anewline character. The result of this

operation is two lines, one containing the text ab and the next containing the text
DW.

4.4.2.3 Moving by Line

A line contains pointers to the lines that precede and follow it. You can move
from line to line by following these links, 1ine-next and 1ine-previous take a
line and return the next line or the previous line (or ni1 if no line is found).

For example, assume that 1inei is followed by Line2. Then,

(line-next linel) /returnsLINE2

(line-previous line2) /returnsLINEI

4424 Testing Relative Line Positions

To check the relative positions of two lines, or to see if the two are the same line,

you use the functions 1ine=, 1ine<, 1ine>=, and so on. These functions are listed
in Appendix A and described in full in Part Ill.

For instance, the following form returns T only if 1inei follows LinE2:
(line> linei line2)

Because Line2 is the second of the two lines in the example, this form returns
NIL.

4425 Retrieving and Testing Mark Positions

Marks have been introduced as objects that indicate positions in text. A mark
indicates a text position by pointing to a line and to an integer that is a character
position in that line. (Recall that character positions are numbered from the left
beginning with O (zero).)

Text Operations 4-17

You can determine a mark § position with the functions mark-1ine and mark-

charpos:

= mark-line takes a mark and returns the line into which that mark points.

- mark-charpos takes a mark and returns its character position—that is, the
number of characters to the left of the mark in the same line.

To check the relative positions of two marks, you call a function such as mark=,

mark>, and so on. These functions are listed in Appendix A and described in full
in Part I11.

4A2.6 Example of an Operation on Lines

The following example implements a function that performs a text operation
directly on lines. The new function, prefix-1ines, takes a string and a region;
it adds the specified string to the front of each line in the specified region. This
function could be used, for instance, to indent text (by inserting a specified
number of spaces at the beginning of each line) or to indicate comments in any
code (by inserting the appropriate comment delimiters and spaces).

(defun prefix-lines (string region)
" Adds the specified string to the beginning of each line
in the specified region.”

;; Access each line iIn turn, beginning with the line that
;; contains the mark that starts the region.
(do* ((line (mark-line (region-start region))

(line-next line)))

;; When LINE contains the mark that ends the region,
;; end the loop.
((or (null line)

(line> line (mark-line (region-end region)))))

;; Prefix each line with the specified string.
(setf (line-string line)
(concatenate “string string (line-string line)))))

4-18 Text Operations

Chapter 5

Window and Display Operations

Whenever you enter the VAX LISP Editor and select a buffer, the Editor makes a
window onto that buffer and displays it on the screen. A “Window”1s an Editor
object that translates some portion of the text in a buffer into a displayable form.
Displaying the window makes that text visible.

NOTE

Editor windows are similar to virtual displays in the VMS screen
management facility, SMG. (See VAX/VMS Run-Time Library Routines
Reference Manual.) Creating a window is a separate operation from
displaying it, and windows can exist without being displayed. As
these features suggest, Editor windows are different from windows in
traditional EMACS editors, where a window is a section of the screen.

During an interactive session, the Editor makes and displays windows as a result
of executing certain commands. For instance, a window appears whenever you
edit a file or function, select a buffer, or execute ""Help" or "Describe'. Each of
these windows is an Editor object that includes certain information, such as its
size, screen position, display type (anchored versus floating), and the content
and position of its label. In LISP code, you can alter the features of a particular
window, and you can program the Editor to make windows with the features you

specify.

When multiple windows are displayed, a display manager within the Editor
determines how they are arranged on the screen. Depending on the number of
windows and their display types, some windows may overlap others, and some
may be resized or repositioned on the screen. In all situations, space at the
bottom of the screen is reserved for the information area, which the Editor uses
to report on its activities and to signal errors, and for the prompting window.

A few Editor commands provided by Digital allow you to operate directly on
windows or to override the automatic display management. For instance, you can
resize, scroll, and split the window you are working in; you can resize the display
area or remove windows from it; and you can move the cursor from one window
to another. If you want to exert finer control over window and display operations,
you can use the functions and other objects in the Editor § display subsystem to
implement new commands.

This chapter introduces the techniques of programming the Editor to perform
window and display operations. It also covers operations on the display area
(screen) and on the information area (a section of the screen).

The topics covered in this chapter follow:
= Accessing windows

= \Window content

Window and Display Operations 5-1

= \Window appearance

= Window management

= Making and deleting windows

Part 11l contains more detailed information concerning the individual objects

in the display subsystem. An extended example at the end of this chapter
(Section 5.6) illustrates the use of many of these objects.

51 Accessing Windows

Windows are not named Editor objects; that is, you can access an Editor window
only with an expression that evaluates to that window object. This section
introduces the functions that you use to access some particular windows in LISP
code:

= The current window

= The windows onto a buffer

= All the windows on the screen

= The “ext”window on the screen

Many of the examples in this chapter use these functions to access windows.

Otherwise, the variables window ,windowi ,window2, and so on, are assumed to be
bound to Editor windows.

Recall that the symbols for Editor objects provided by Digital must be referenced
in the EDITOR package.

5.1.1 The Current Window

Windows are always associated with buffers, and more than one window can open
onto a single buffer. One window onto the current buffer is the current window.
This is the window that contains the cursor; it is the “4ctive” Wwindow where text
operations commands are executed.

The current window is returned by the function current-window,which takes no
arguments. You can use setf With current-window to make another window the
current window:

(setf (current-window) window2)

This form makes WINDOW2 the current window. If window?2 is not displayed already,
the display manager makes it visible on the screen. The buffer associated with
WINDOW2 becomes the current buffer, and the cursor moves to window?2.

5.1.2 The Windows onto a Buffer

The function buffer-windows returns a list of the windows that open onto a
specified buffer. The list contains all windows onto that buffer, including any that
are not displayed currently.

For instance, another way to access the current window is:
(first (buffer-windows (current-buffer)))

The current window is always the first element in the list of windows onto the
current buffer.

5-2 Window and Display Operations

5.1.3 All the Windows on the Screen

The function visible-windows returns a list of all windows that are displayed
currently, regardless of what buffers they open onto. Visible windows are those
that have been displayed but not removed. Even if a window is completely
overlapped by other windows, it is still considered “Visible”’and is in the list
returned by visible-windows .

An example using visible-windows IS the command "Remove other windows"
supplied by Digital. This command checks each element of the list returned by
visible-windows to determine if that window is the current one. (The current
window may be anywhere on the list.) Each window that is not the current
window is removed from the screen by means of the function remove-window.

(define-command (remove-other-windows-command
display-name "Remove Other Windows')
(prefix)
Removes all windows from the screen except the current window."
(declare (ignore prefix))

;; Display only the result of the operation, not intermediate states.
(with-screen-update

(let ((current (current-window)))
(dolist (window (visible-windows))
(unless (eq window current)
(remove-window window)))))

3]

5.1.4 The “Next” Window

The function next-window returns a visible window other than the current
window (or ni1,if no other window is found). The format of next-window is:

NEXT-WINDOW &OPTIONAL window-type count

The sequence in which windows are accessed is undefined, except that you can
limit the search to windows of a given window-type. The window-type argument
zanchored OF :floating CAUSES next-window to return a window of that type (or
nil,if none is found). The default argument T causes next-window to return a
window of the same type as the current window; if no such window is visible, then

next-window returns one of the opposite type. If only one window is displayed,
then next-window With argument T returns NIL (the prompting window is not
considered as a possible return value).

The optional count argument is an integer specifying the number of windows to
advance in the sequence to find the window to return. The default count is 1
An argument of o returns the current window; a negative argument advances
through the sequence of windows in reverse order.

If called repeatedly with the same arguments, next-window returns the same
window—it does not advance through the sequence of windows. However, you can
circulate through all the displayed windows, or through all those of a specified
type, by repeatedly setting the current window to the “fiext”window. This is

the action of the command "Next window' provided by Digital, which moves the
cursor to another window on the screen. A possible implementation is:

Window and Display Operations 5-3

(define-command (next-window-command :display-name "Next Window'")

(prefix)
Switches the current window to be the next visible window
on the screen. If a prefix argument n is supplied, it goes

to the nth visible window."
(setf (current-window)
(next-window t (or prefix 1))))

Since the window-type argument to next-window is T, this command circulates
through all the visible windows when you execute it repeatedly.

The command "'Previous Window" circulates in reverse order. Its implementation

is identical to that for "Next window" except that the count argument t0 next-
window IS Nnegative:

(next-window t (- (or prefix 1)))

5.2 Window Content

You can think of a window as a rectangular opening onto a portion of text in

a buffer: the window opens onto a group of contiguous lines and a maximum
number of characters per line. That portion of text is the “Content” bf the window.
To view other text in the buffer—either other lines or more characters per
line—you perform certain operations on the window, not on the text.

The operations you can perform on window content are:

= Retrieving window position in the buffer—that is, determining where in the
buffer the window begins and ends

= Repositioning a window within a buffer—that is, “rhoving”’a window so it
contains different text lines

= Wrapping text within a window—that is, altering a window so it contains all
the characters in text lines that extend beyond the window

Another way you can view text that overflows a window, either in length or in
width, is to alter the dimensions of the window—making it higher or wider.
However, depending on screen size, window type, and the number of windows

to be displayed at once, the Editor § display manager may limit or override a
window § specified dimensions. The techniques of resizing windows are covered in
Section 54, along with a discussion of display management.

5.2.1 Window Position in a Buffer

The portion of text included in a window is delimited by two marks. These marks
are returned by the functions window-display-start and window-display-end;
both take a window argument.

Like all marks (see Section 4.4.1.1), each of these marks indicates a character
position in a buffer:

= The display-start mark points to the beginning (character position O) of the
first line in the window.

= The display-end mark points just after the last character in the window.

The text between these two marks is the portion of the buffer§ text that the
window translates into displayable form.

5-4 Window and Display Operations

You can use the display-start and display-end marks to indicate text positions

to which to move another mark. For instance, the commands *'Beginning of
Window" and "End of window" supplied by Digital move the current buffer point
to coincide with the display-start mark and the display-end mark, respectively, of
the current window. A possible implementation of "Beginning of window" is:

(define-command (beginning-of-window-command
display-name ''Beginning of Window')
(prefix Soptional (mark (current-buffer-point))
(window (current-window)))
"Moves the cursor to the beginning of the current window."
(declare (ignore prefix))

(move-mark mark (window-display-start window)))

The code for "End of window" can be the same except that it calls window-
display-end.

You cannot move a window to a different position in the buffer by moving the
display-start and display-end marks. For the techniques of moving windows, see
Section 5.2.3.

5.2.2 The Window Point

In addition to the display-start and display-end marks, each window also contains
a third mark called the “Window point.””This mark is created when the window
is created, and you can access it by means of the function window-point.The
window point of a window always indicates a character position within the text
contained in the window.

When the window is current, its window point is the same mark as the current
buffer point. That is, the following form always evaluates to T:

(eq (window-point (current-window))
(urrent-buffer-point))

The screen cursor, which is always visible in the current window, tracks the
position of this mark.

When the window is not current, its window point is not the same mark as the
buffer point of the associated buffer. Instead, the window point indicates the last
position occupied by the current buffer point when the window was current. If
the window becomes current again, the buffer point (and therefore the cursor)
moves to the position indicated by the window point.

You can move the window point by means of any of the mark-moving functions
described in Section 4.4.1. If you move the window point to a text position not
within the window, the Editor moves the window so that it always contains the
window point. For instance:

(buffer-start (current-buffer-point))
or
(buffer-start (window-point (nhext-window t)))

Both these forms move the window point to the first text position in the window §
associated buffer. If this position is not within the window, the window moves
automatically so that it does contain this text position:

= |n the first form, the cursor remains visible in the current window because
the window content changes.

Window and Display Operations 5-5

= |In the second form, window content changes on the screen; if you immediately
make this window current, the cursor appears at the new window-point
position at the beginning of the buffer.

5.2.3 Moving a Window in the Buffer

When the text in a buffer is longer (that is, has more lines) than a window
opening onto it, the window can be moved forward or backward through the
buffer. It appears that the text is moving past the window, but in the VAX LISP
Editor, actually the window is moving.

As shown in the preceding section, you can cause a window to move within
the buffer by operating on its window point. You can also operate directly on a
window to alter the portion of a buffer § text that it opens onto. There are two
ways to move a window:

= Scrolling, or moving line-by-line in the buffer

= Moving to a specified position in the buffer

5.2.3.1 Scrolling

The function scro11-window Moves a specified window within its buffer by a
specified number of rows. This action changes the text line that appears in the
first row of the window. A positive count argument to scro11-window indicates
the number of rows to move forward in the buffer; a negative count indicates
backward movement.

For instance:
(scroll-window (current-window) -20)

This form scrolls the current window backward through the text (text moves down
on the screen) for 20 rows. If this action moves the window beyond the position
indicated by the current buffer point, the Editor automatically moves that mark
to a position within the new content of the window. The position of the updated
mark is near the center of the window.

The «=window to be scrolled need not be the current window, of course. For exam-
ple:

(scroll-window (next-window) 10)

This form scrolls the “fiext”Wwindow on the screen forward by 10 rows. If this
action moves the window beyond the position indicated by its window point,
the Editor automatically moves that mark to indicate a position within the new
window content (again, near the center of the window).

5.2.3.2 Moving to a Specified Position

You can also move a window to a specified position within its associated buffer.
The function position -window-to-mark Moves a specified window to the line that
contains a specified mark. That is, the line containing the mark is placed in the
first row of the window.

For instance:

(position-window-to-mark (current-window)
(region-start (buffer-region (current-buffer))))

5-6 Window and Display Operations

This form moves the current window to the beginning of the current buffer. If

necessary, the Editor automatically updates the window point to keep it within
the window.

5.2.4 Wrapping the Lines in a Window

A window can be narrower (fewer characters per line) than the text it opens onto.
Windows always include the beginnings of lines; that is, the display-start mark
is always at character position O (zero) of the line it indicates. Any lines that are
longer than the width of the window are, by default, truncated on the right.

To view text in positions beyond the width of the window, you cannot move the
window to the right. Instead, you set the window to “Wrap”text lines onto one or
more additional window rows.

The function window-1ines-wrap-p takes a window and returns ni1 if that
window truncates lines or t if it wraps lines. Using setf,you can change the
behavior of a specified window:

(setf (window-lines-wrap-p (current-window)))

(setf (window-lines-wrap-p (current-window)) nil)

The first form causes the current window to wrap lines that are wider than the
window. The second form resets the current window to truncate lines.

The above examples alter a particular existing window. If you want to specify the
line-handling behavior of newly created windows, you can reset the value of the
Editor variable ""Default window Lines Wrap'. Its possible values are T and NIL,
which indicate wrapping and truncating, respectively:

(setf (variable-value '"Default Window Lines Wrap™) t)

This form causes all newly created windows to wrap lines unless otherwise
specified.

Truncation and wrapping in a window are indicated by certain characters that
appear at the end of an affected line. The default characters are an underlined >
for truncation and an underlined < for wrapping. You can change these characters
for a specified window using the functions window-truncate-char and window-

wrap-char. Both these functions take a window and return a character, and both
can be used with set¥f:

(setf (window-truncate-char windowl) #\+)
(setf (window-wrap-char window2) #\/)
Assuming that windowi is set to truncate, the first form establishes an underlined

+ as the character that signals that a line has been truncated. Assuming that

WINDOW2 is set to wrap, the second form establishes an underlined / to signal
wrapping.

To change the truncation or wrapping characters in newly created windows, you
can reset the Editor variables ""Default Window Truncate Char" and "Default
Window Wrap char". For example:

(setf (variable-value "Default Window Truncate Char'") #\+)

(setf (variable-value "Default Window Wrap Char') #\/)

The underlining is a special video rendition of the selected characters; you cannot
change this feature. On terminals without advanced video capabilities, the
characters appear in reverse video instead of underlined.

Window and Display Operations 5-7

5.3 Window Appearance

Window appearance refers to the “fbok”f a window when it is displayed: its
video rendition and whether it is bordered and labeled. All these features are
included in the window object itself. You can change a window § appearance by
using the functions and variables introduced in this section.

Most windows the Editor creates are shown with no special video rendition—they
share the video setting (dark-on-light or light-on-dark) of the terminal or other
display device. The window onto the "Help' buffer, however, is shown in bold.
Depending on the video capabilities of your display device, you can specify that

a window be shown in reverse video (the reverse of terminal setting) or that the
text in the window appear bold, underlined, or blinking.

You can see all these video options on a VT200-series terminal, an Al VVAXstation,
and on VTIOO-series terminals with the Advanced Video Option. For the video
rendition capabilities of foreign terminals that are supported by the VAX LISP
Editor, consult your terminal manual.

You can also specify the video rendition of a region of text. The special rendition
of a region can be either:

= Relative to the window that contains the region—for instance, bold if the
window is not bold and vice versa

= Absolute—for instance, always bold or always not bold, regardless of the
window rendition

Finally, you can specify whether a window is to have borders and a label when it
is displayed. You can also determine the content of a window § label, the label§
position on the window, and the label§ video rendition.

This section introduces the following techniques:
= Altering window rendition

= Making highlight regions

= Operating on window labels and borders

5.3.1 Altering Window Rendition

The function window-rendition takes a window and returns a keyword or a
list of keywords that define the video characteristics of that window when it is
displayed. The keywords are :normal, zBLINK, :BOLD, reverse,and wmnderline.

You can use setf to change the rendition of a specified window to one or more of
the possible values. For instance:

(setf (window-rendition (current-window)) :underline)
or
(setf (window-rendition (next-window :Ffloating)) -~ (sreverse :blink))

The first form changes the rendition of the current window to underlined. The
second form alters the “fiext” floating window on the screen to reverse video (the
reverse of the terminal setting) with blinking.

5-8 Window and Display Operations

You can also specify the default window rendition features of newly created
windows, including those that the Editor creates automatically. Tb do so, you
set the value of the Editor variable "Default window Rendition" to the desired
keyword or list of keywords:

(setf (variable-value "Default Window Rendition"

* (tbuffer "Help™)) ; context argument
reverse)

This buffer-local binding causes all newly created windows onto the "Help' buffer
to have the rendition value :reverse unless otherwise specified. (The global
binding of this variable in the Editor as provided is :normal.)

Recall that removing a window from the screen does not delete the window object.
If a window onto the ""Help" buffer already exists, changing the value of "Default
window Rendition" does not affect the rendition of that window.

5.3.2 Making Highlight Regions

Sometimes you might want to alter the rendition of a particular block of text in a
window, rather than the entire window. For example, the select regions that the

Editor makes in "edt Emulation™ and "emacs' styles are shown in reverse video

(the reverse of the window).

Tb alter the rendition of a block of contiguous text, you use the function make-
highlight-region. This function is similar t0 make-region (described in

Section 4.2) except that it allows you to specify the video rendition that the
region will have when a window containing it is displayed. Highlight regions can
be used and treated like any other Editor region, and all the region-manipulating
functions operate on them.

The format of make-n ighlight-region is:
MAKE-HIGHLIGHT-REGION start end set complement

Like make-region, make-highlight-region takes two marks that indicate the
text positions where the region begins and ends. If you do not supply optional
arguments, the function makes a region with no special video features.

The optional set and complement arguments specify the rendition feature, or
features, that you want the region to have. They can be any of the keywords
‘bold, :blink, :reverse, OF lundertine, OF a list of these keywords. (The default
for both is »i1.) In deciding whether to provide a set argument, a complement
argument, or both, you need to consider the desired rendition of the region in
relation to the rendition of the window where the region will be displayed.

You can think of a set argument with no complement argument as turning “n””
the specified feature in a highlight region. The region will have that video feature
regardless of the rendition of the window that contains the region.

For instance:
(make-highlight-region markl mark2 :reverse)

This form makes a reverse-video region of the text between the two specified
marks. If this region is displayed in a reverse-video window, then no difference
will be apparent between the region and the other text in the window—all text in
the window will appear in reverse video. If this region is displayed in a blinking
window, then all the text in the window will blink, including that in the highlight
region. (In the latter case, the region will be distinguished from the other text by
its reverse video.)

Window and Display Operations 5-9

You can achieve finer control over the video rendition of highlight regions by
providing a complement argument, either alone or in conjunction with a set
argument.

You use the complement parameter alone if you want the region to contrast
with the window rendition on the specified feature or features but to share the
window § value for any other rendition features. For instance:

(make-highlight-region (copy-mark (current-buffer-point) :right-inserting)
(current-buffer-point)
nil :reverse)

This form is essentially the definition of the select regions that the Editor makes.
The form makes a new right-inserting mark at the same position as the current
buffer point and then makes a highlight region from that mark and the buffer
point. If you then move the buffer point, the text in the region between the two
marks is always shown in reverse video with respect to the window that contains
the region. That is, if the window is dark-on-light, the region is light-on-dark,
and vice versa. The region shares any other special video characteristics of the
window—-bold, blink, or underline. (Note that moving one of the region-defining
marks causes the display of the region to track the mark § position.)

If, on the other hand, you want the highlight region not to share specified
rendition features that a window might happen to have—in this example, the
bold, blink, and underline—you use the set and complement parameters in
conjunction. You can think of the complement argument as turning off a video
feature that is turned on elsewhere—either in the set argument or in the window
that contains the region.

For instance:

(make-highlight-region markl mark2
"(:bold :blink :underline)
"(:bold :blink runderline :reverse))

In this form, the :reverse value of the region “omplements”the value of the
window for this feature, as in the form above. The other three features are turned
“6n” by the set argument, but then turned off by the complement argument. They
remain off regardless of window rendition; that is, if this region is displayed in a
blinking window, the text in the highlight region does not blink.

Like any regions, highlight regions can overlap or one can be contained within
another. The effect of overlapping on the video rendition of the text shared
between the regions is, however, unpredictable.

Ib remove the highlighting of a region, you use the function remove-hightight-
region. This function takes a highlight region and deletes the region object. The
text in the region is not affected by this operation, but its special video rendition
is removed.

|fyou use the normal region-deleting functions, delete-region and delete-and-
save-region with a highlight region, the text is removed from the region but
the highlight region remains. |fyou insert new text into the region, it will be

displayed with the specified rendition features of the region.

5.3.3 Operations on Window Labels and Borders

Editor windows can have borders on all four sides and a label on one of these
borders. A border is a solid line that surrounds the text-displaying area of the
window. The border occupies the screen rows above and below the window § text
area and the screen columns to the right and left of the text area. A window label
is a string of text that overlays part or all of one of the window borders.

5-10 Window and Display Operations

Most windows that the Editor makes have borders and labels. However, depend-
ing on window size, window type, and the number of windows on the screen at
once, one or more of the borders—including the one with the label—may “$pill
off the display area or be obscured by another window. Nonvisible borders and
labels still exist as part of the window object, however, and they might be made
visible under other display circumstances. In contrast, the prompting window,
which appears near the bottom of the screen, has no borders and no label.

This section introduces the functions and Editor variables that enable you to
perform operations on window borders and labels. Section 5.4.2.4 below identifies
the circumstances under which a border or label may be obscured when a window
is displayed.

Some operations you can perform on window borders and labels follow:
= Adding and removing borders and labels

= Specifying label content

= Specifying label position

= Specifying label rendition

5.3.3.1 Borders, Labels, and Label Content

The function window-1abe1 takes a window and returns either a string, a func-
tion, or i1 . The value returned indicates whether the specified window has

borders, whether it has a label, and, if it has a label, what text that label con-
tains.

You can use sett With window-1abe1 t0 alter any of these features for a specified
window. That is, you can add or remove borders, add or remove a label, and
specify label content for an existing window. The meaning of each possible return
value of window-1aber is shown in the following examples.

- |fyou supply the value nit, the specified window has no borders and no label:

(setf (window-label windowl)
nil) ; Windowl has no borders and no label.

= |If you supply a null string, the window has borders but no label:

(setf (window-label window2)
; Window2 has borders but no label.

= |f you specify label content, the window has borders and a label with the
content specified. One way to specify label content is to specify the actual
string you want the label to contain:

(setf (window-label window3)
"'String™) ; Window3 has borders and a label
; that contains the specified string.

It is usually more useful, however, to have window label contents vary according

to the buffer the window opens onto. The label can state, for instance, the name

of the file or function being edited in the buffer, and it can list the styles active in
the buffer. To achieve this, you specify a function that returns a string; the string
becomes the window label.

For instance, the following derun form defines a simple function named r1aveier,
which returns a string, r1averer then is used with setr and window-1aber in a
form corresponding to those shown above:

Window and Display Operations 5-11

5.3.3.2

Label

(defun labeler (window)
(let ((buffer (window-buffer window)))
(format nil "LISP EDITOR ~A"
(buffer-name buffer))))

(setf (window-label window4) #"labeler)

labeler iNVOKes window-buffer to access the buffer object associated with the
specified window and buffer-name to find the name of that buffer, 1abeler
returns a string that looks like “CISP EDITOR Name-of-Buffer’” The setf form
labels wiINDOW4 with the string returned by 1abeter for that window.

The above examples all deal with alterations to a single existing window. By
resetting the value of the Editor variable "Default window Label", you can make
corresponding specifications for newly created windows. For example:

(setf (variable-value '"Default Window Label' :global) ~labeler)

The possible values of ""Default window Label"— ni1,a null string, a string, or a
function—have the same meanings they have as return values of window-label .
(Note that the function 1abeter in this example is set to the value slot of the
variable.) In the Editor as provided, the value of this variable is set to different
functions in "EDT Emulation™ style and "emacs' style.

Position

For a given window that has a label, you can specify which border the label
is on and where on the border the label is placed. The relevant functions are
WINDOW-LABEL-EDGE and WINDOW-LABEL-OFFSET.

In deciding where to place window labels, you need to consider whether the
border you choose will be visible when the window is displayed and, if so, whether
the entire label will be visible on the border. For instance, the top borders of
anchored windows are never visible; a label placed on that border can never be
seen. Or, a floating window that spills off the screen on the right may “lose””
the end of a label placed on its top or bottom border. These considerations are
outlined in Section 5.4 on display management.

window-label-edge takes a window and returns the border on which that win-
dow § label appears. The possible values are :TOP, :bottom, :LEFT, and :right.
You can use setf with this function to alter the placement of the label:

(setf (window-label-edge windowl) :top)

Assuming that windowi has a label, this form places the label on the top border of
WINDOWI .

The function window-label-offset,used with setf,allows you to specify where
on a border the label is to appear. The value ni1 causes the label to be cen-
tered on the border; a nonnegative integer value indicates how many character
positions the label is offset from the beginning of the border.

For instance, to center the label of windowi (which the previous example placed
on that window § top border), you would write:

(setf (window-label-offset windowl) nil)

Ib place a label flush left (if it is on a top or bottom border) or to make the label
begin at the top of a side border, you would write:

(setf (window-label-offset window) O0)

5-12 Window and Display Operations

5.3.3.3 Label

The above examples all deal with label placement in a single existing window.
To change the default label placement in windows created in the future, you
use the Editor variables "Default Window Label Edge" and '‘Default Window
Label offset”. The global bindings of these variables in the Editor as provided
are :bottom and nir, respectively. Thus, window labels appear centered on the
bottom border of a window unless otherwise specified.

Rendition

For a given window that has a label, you can retrieve and alter the video ren-
dition of that label. The function window-1abei-rendition takes a window and
returns one of the keywords iNORMAL, :Reverse, iBLINK, :BOLD, OF iundertine, OF
a list of those keywords.

The rendition of a window label is an absolute value that is not relative to the
rendition of the window itself. For instance, the rendition of a reverse-video label
is always the reverse of the terminal setting (light-on-dark or dark-on-light),
regardless of whether the window rendition is normal or reverse. A window label
set to blink will always blink, regardless of whether the window also blinks.

window-label-rendition is acceptable to setf:
(setf (window-label-rendition window) underline)
This form underlines the label of window.

To change the default rendition of the labels of newly created windows, you reset
the value of the Editor variable ""Default window Label Rendition". The possible
values are any of the keywords listed above, or a list of those keywords. The
global binding in the Editor as provided is :reverse.

5.4 Display Management

Once a window exists as an Editor object, you can make it visible on the screen.
You can also remove a window from the screen without destroying the window
object, and you can redisplay that window at any time. Each window object
contains information concerning its size and the screen position it occupies when
it is displayed.

However, the Editor § display manager retains control over many display-related
decisions. The Editor guarantees, for instance, that the display area is always

filled, and that anchored windows do not obscure each other § text content. The
display manager will reposition, resize, and even remove some windows from the
screen to meet these requirements.

Within the constraints set by the display manager, you have considerable freedom
to determine the total appearance of the screen: the size of the display area,

the number of windows displayed, and the size and screen positions of some
individual windows.

This section introduces the following sets of techniques, each in conjunction with
the constraints set by the Editor § automatic display management:

= Operations on the display area—including the information area and the
prompting window

= Window types and their behavior—visibility, size, and screen position as they
relate to a window § display type

= Displaying windows and removing windows from the display

Window and Display Operations 5-13

5.4.1 The Display Area

The Editor § display area is the total space available on your display device for
showing Editor windows and the information area. On VT100- and VT200-series
terminals, the display area is, by default, the full terminal screen. Both these

terminal screens are 24 rows in height, and both permit screen widths of 80 or
132 columns.2

The Al VAXstation permits an Editor display area of up to 66 rows by 167

columns. The Editor display area provided by default on the Al VAXstation is 50
rows by 80 columns.

You can think of the display area as an X-Y coordinate system. You use these
coordinates to specify the screen positions at which windows are displayed. Both
the columns (X coordinate) and the rows (Y coordinate) are numbered from the
upper-left corner beginning with 1 (see Figure 5-1).

Figure 5-1: Display Area Coordinates

You have some latitude to alter the dimensions of the Editor § display area, and
thus the total screen area available for displays related to the Editor. Within this
total area, the Editor always reserves some space for the information area and
for the prompting window. The space that remains in the display area after the
prompting window and the information area are accounted for is the total space
available for displaying other windows.

This section introduces the following concepts and techniques:

= Display area dimensions—retrieving and altering the height and width of the
display area

2 For screen sizes of foreign (non-Digital) terminals supported by the VAX LISP Editor, consult your terminal manual.

5-14 Window and Display Operations

= The reserved display area—operating on the information area and the
prompting window

= The available display area—displaying and removing other Editor windows

5.4.1.1 Display Area Dimensions

The functions screen-height and screen-width return integers that are the
number of rows and columns, respectively, in the display area. The dimensions
returned are not necessarily those of the screen. By default, the display area
occupies the full screen on Digital terminals, but you can use setf with screen-
height and screen-width to alter either dimension:

(setf (screen-height) 20)
(setf (screen-width) 60)

If you execute these two forms, the display area is reduced to the dimensions
shown in Figure 5-2:

Figure 5-2: Altered Display Area Dimensions

MLO-002995

The coordinate numbering does not change when you change the dimensions
of the display area. The rows and columns that become unavailable are those
at the bottom and on the right. The upper-left comer of the display area still

corresponds to the upper-left comer of the screen, and the upper-left position is
still designated as 1,1.

You cannot make the display area larger than the screen. If you supply a value
in either of the above setf forms larger than the maximum screen dimension, the
display area dimension is altered to the maximum screen dimension.

Window and Display Operations 5-15

You can, however, use setf With screen-width to alter the width setting of the
screen on Digital terminals; the width setting can be either 80 columns (“fiormal’y
or 132 columns (“Wide”). Widening the screen makes more columns available for
the Editor § display area. Note that if your terminal does not have the Advanced
Video Option, widening the screen limits screen height to 12 rows.

Suppose that your terminal is set to the “fiormal”width of 80 columns. Then
execute:

(setf (screen-width) 120)

This form resets VT100- and VT200-series terminals to “Wide” width— 132
columns; at the same time, it makes 120 of those columns available as the
display area. The 12 rightmost columns of the screen will be blank.

On the Al VAXstation, this form simply sets the display area width to 120
columns out of the 167 columns available on the screen.

With the Al VAXstation, you can adjust display area dimensions before the Editor
is started (using setf With screen-height Or screen-width). When you start the
Editor, its display area will be the size you specified. Performing such operations
on a VT100- or VT200-series terminal before the Editor is started produces no
effect.

5.4.1.2 Reserved Display Area

The Editor always reserves some part of the total display area for the information
area and the prompting window. The information area is always at the bottom of
the display area, and the prompting window is always just above the information
area. By default, both these areas are the full width of the display area, and each
is 1row in height.

The information area is managed directly by the Editor § display manager, which
uses it to display error messages and to report on Editor activity. The information
area is not an Editor window, and none of the window-related functions operate
on it. You cannot delete the information area, and no Editor windows can overlap
it. Itis, therefore, an area of guaranteed visibility within the display area.

You can, however, increase the space allotted for the information area, and you
can direct output to it.

The function information-area-height returns the height (in screen rows) of the
information area. Using setf,you can increase the height to more than 1 row,
but you cannot decrease it to O rows.

Ib direct output to the information area, you can use the LISP global variable
information-area-output-stream. This variable is bound to an output stream
directed to the information area. You can use the variable as the stream argu-
ment to any of the LISP functions that take a stream, such as write-string,
format,Or princ.For example:

(write-string "Operation completed.
information-area-output-stream)

Some other functions that operate on the information area are clear-
information-area,Which removes any current text, and editor-error,which
directs error messages to the information area, editor-error is discussed in
Section 2.3.1.2.

The prompting window is displayed permanently also. The full prompting area
consists of a small section of the screen where prompts are displayed, followed on
the same row by an Editor window where user input is displayed. By default, the
full prompting area is 1row in height and the full width of the display area.

5-16 Window and Display Operations

Although the prompting window is an Editor window, some of the window-related
functions do not operate on it. The display manager ignores any attempt to
remove this window from the screen, to reposition it on the screen, or to overlap
it with another window. Thus, the prompting area is also an area of guaranteed
visibility.

You can, however, alter the appearance of the prompting window by using the
functions described in the previous section. (The screen area where prompts are
displayed is not affected by operations on the prompting window.)

To alter the video rendition of the prompting window, you might write:

(setf (window-rendition

(first (buffer-windows (Find-buffer "General Prompting'))))
sreverse)

This form alters the rendition of the prompting window to reverse video. The
rendition of the area where prompts are displayed can be altered by resetting the

Editor variables ""Prompt Rendition Set" and "'Prompt Rendition Complement"
(see Part IlI).

You can also alter the dimensions of the prompting window, in the same way
that you resize other windows. See Section 5.4.2.2 for the techniques of resizing
windows.

The screen space—number of rows—that you have allotted to the prompting
window and the information area always is reserved for them, and thus not
available for displaying other windows.

5.4.1.3 Auvailable Display Area

Whatever space is not reserved for the information area and the prompting
window is the “4vailable display area.””This is the area you use to display Editor
windows, and its dimensions constrain your decisions on sizing and positioning
windows if you do not want them to overlap one another or overflow the screen.

In the following sections on displaying, sizing, and positioning windows, the term
“display area”Tefers to the available display area.

5.4.2 Window Types and Their Behavior

There are two types of Editor windows: anchored and floating. The Editor
normally provides anchored windows for ordinary text editing. Floating windows
are used for displaying information or for other special purposes. For instance,

the windows onto the ""Help' and "General Prompting" buffers are floating
windows.

The content and appearance of a window are not affected by the display type of
that window. The distinction between the two types lies in how they are treated
in display management. This section outlines the effect of window type on three
aspects of display management behavior:

= Display behavior by window type
= Window size and display behavior

= Window position and display behavior

Window and Display Operations 5-17

You can access or change the type of a specified window. The function window-
type takes a window and returns a keyword, which can be either :anchored or
floating-Using setf,you can change the window § type:

(setf (window-type window) :floating)

The Editor variable "Default window Type', which specifies the default type of
newly created windows, can be set to either of these keywords. In the Editor as
provided, the default window type is :anchored.

In the examples that follow, the variable anchored-window is assumed to be
bound to an anchored window, and floating-window IS assumed to be bound to a
floating window.

5.4.2.1 Display Behavior by Window Type

The major difference between anchored and floating windows lies in whether they
can overlap, or be overlapped, by other windows:

= A floating window can overlap or completely obscure any other window in the
available display area, either anchored or floating.

= An anchored window never obscures the text area of another window, either
anchored or floating.

When a floating window is displayed, it appears in the size and at the screen
position contained in the window object. Any other windows that occupy any part
of that space are overlapped.

If more than one anchored window is displayed at once, the display manager
moves and resizes them as necessary so that no text is obscured. The size and
screen position contained in the window object are ignored.

The Editor § display rules concerning window size and screen position follow from
this basic rule concerning window overlaps. Thus, automatic display manage-
ment relates to anchored windows only; floating windows, which need not avoid
overlaps, are under the user § control and not subject to automatic resizing and
repositioning.

5.4.2.2 Window Size and Display Behavior

Each window object has height (number of rows) and width (number of columns)
features. You can retrieve and alter these features in any window, but it is only
in floating windows that the features have significance.

You can access window dimensions with the functions window-height and
window-width,and you can use setf to alter these dimensions:

(setf (window-height floating-window) 12)
(setf (window-width Ffloating-window) 40)

These forms alter the specified floating window to be 12 rows in height and
40 columns wide. The dimensions of a window refer to the text area only; if
the window has borders, the borders occupy 2 additional rows and 2 additional
columns outside the text area.

The minimum size for a floating window is 1 row by 2 columns. If you attempt
to alter either dimension to less than the minimum, an error is signaled. If you
make either dimension larger than the available display area, the window will

overflow the display area to the right or to the bottom.

5-18 Window and Display Operations

For anchored windows, the dimensions contained in a window object are ignored
by the Editor § display manager. An anchored window always occupies the full
width of the display area. The window § height depends on how many anchored
windows are visible at once.

If an anchored window is the only anchored window displayed, its text area oc-
cupies the full height of the available display area, minus 1row for the window §
bottom border, if any. (The top and side borders of anchored windows are always
obscured.) You cannot adjust the height of an anchored window when it is the
only anchored window on the screen.

If two or more anchored windows are displayed at once, the Editor automatically
adjusts their heights to be nearly equal. You can override this adjustment for a
specified window by means of the function atter-window-height.This function
takes a window and a positive or negative integer that is the number of rows

by which to adjust the window § height. (The argument window need not be
visible at the time the form is evaluated, and it can be either an anchored or a
floating window.) The integer argument specifies a change in size, rather than an
absolute size as does the return value of window-height-

(alter-window-height anchored-window -2)

This form makes the specified anchored window (when displayed with at least
one other anchored window) two rows shorter than the height determined by the
display manager. The display manager adjusts the height of any other visible
anchored windows to accommodate the altered height of the argument window
and still fill the display area.

The minimum height to which you can adjust an anchored window is 1row of text
area. (If the window is bordered, a second screen row is reserved for the bottom
border.) The maximum height is determined by the rule that no anchored window
can obscure another § text. The argument window cannot be made so high that
another visible anchored window would be reduced to less than 1 text row (or

2 screen rows if bordered). If the integer argument to alter-window-height
violates these rules, the Editor adjusts the argument window only as much as
possible.

5A2.3 Window Position and Display Behavior

Editor windows contain information on the screen position at which they are to
be displayed. Display position is specified as the X-Y coordinates of the screen
position occupied by the top-left character in the window. (Recall that the X-Y
coordinate numbering of the screen and the display area begin at the same point
in the upper-left corner.)

You can retrieve the screen position of a specified window by means of the
functions window-display-colunn and window-display-row. (The argument
window need not be currently visible.)

(window-display-column window)
(window-display-row window)

If these forms return 10 and 5, respectively, then the upper-left corner of the
window § text area is displayed at column 10, row 5 of the display area (see
Figure 5-3). If the window is bordered, the borders lie outside this position.

Window and Display Operations 5-19

Figure 5-3: A Window Display Position

X=9
X=1 / Y=4 Border
Y=1
\
X=10
Y =5
Window
Border

MLO-002996

As with window size, the values that indicate window display position are sig-
nificant only for floating windows. Anchored windows are always displayed
beginning in column 1 The display row position of an anchored window is
determined by the display manager.

You can alter the display position of a floating window by means of the function
move-window,move-window takes a window and a row and column to which to
move the upper-left comer of that window § text area:

(move-window Floating-window 8 25)

This form alters the floating window § values for display row and display column
to those specified. If the window is displayed, it moves to that position; if the
window is not displayed, it appears at that position when it is next displayed.

An example using move-window is a function my -move-window-vertically.This
function moves a window § display row by the number of rows specified, or by
fewer rows if the specified offset value would result in spilling the window (or its
border) off the display area. Its code is:

(defun my-move-window-vertically (window offset)
;; Compute the new display row.

(let ((new-row (+ (window-display-row window) offset)))

;; Move the window to the display row, or as far as possible
;5 without overflowing. Retain the window"s display column.

(move-window window
(min (max new-row 1)
(- (screen-height) (window-height window)
(f (window-label window)
1

i 2 0)) i
(window-display-column window))))

5-20 Window and Display Operations

To use this function in an Editor command, you could write:

(define-command (my-move-window-up-command
display-name "My Move Window Up')
(prefix)
Moves the current window up one or more rows, without
spilling it off the screen. Cannot be used with
anchored windows.""

(f (eqg (window-type (current-window) ifloating))
(my-move-window-vertically (current-window)

(- (or prefix 1)))
(attention)))
You could write a similar function to move a window horizontally, and similar
commands to move a window down, right, and left.

5.4.2.4 Window Borders and Display Behavior

The Editor § display rules concerning the overlapping of window text areas do
not apply to window borders. A bordered window can sometimes be sized or
positioned in a way that obscures one or more of its borders.

The top and side borders of anchored windows are never visible. 1f an anchored
window with a border is the only anchored window displayed, its text area fills
the available display area, leaving 1 row for its bottom border. Its top and side
borders overflow the display area. For this reason, you should always place the
labels of anchored windows on their bottom borders.

If 2 or more anchored windows with borders are displayed at once, the bottom
border of one window obscures the top border of the window displayed below it.
The bottom border of an anchored window never overflows the display area, and

it cannot be obscured by another anchored window. It can, however, be obscured
by a floating window.

The borders of floating windows are visible more often since floating windows
can be sized and positioned well within the display area. However, if a floating
window equals or exceeds the size of the display area, then any or all of its
borders can spill off. The "Help" window, for instance, is the full width of the
display area but shorter in height. Therefore, its top and bottom borders are
visible, but its side borders are not visible. If a floating window, regardless of its

size, is positioned on the screen in such a way that it overflows the display area,
then the border of the affected edge cannot be seen.

5.4.3 Displaying and Removing Windows

The following functions enable you to display and remove windows from the
screen:

= SHOW-WINDOW

= PUSH-WINDOW

= REMOVE-WINDOW

The behavior of these functions varies with the display type of the argument

window and of other visible windows. This section introduces these behavior

variations: you can find further information in the description of each function in
Part IlI.

Window and Display Operations 5-21

5431

5.4.3.2

Using SHOW-WINDOW

show-window takes a window and displays it on the screen. Its format is:
SHOW-WINDOW window &OPTIONAL row column

If the window is a floating window, you can supply an optional row and column
at which its upper-left character will appear. If you do not specify a position, the
window is placed at the position contained in the window object.

A newly displayed floating window obscures any other window that is currently
displayed in the same position. If the argument (floating) window is already
displayed but is obscured by one or more windows, show-window redisplays it on
top of the obscuring window(s).

If the argument window is an anchored window, its position is determined by the
display manager. If you supply row and column arguments, they are ignored.

You can continue to add anchored windows to the screen with show-window

up to the number that is the value of the Editor variable "Anchored window
show Limit". For instance, if the value is 2 (the global default), you can show
2 anchored windows on the screen at a given time. Adding a third anchored
window with show-window causes the least recently used anchored window to be
removed.

A newly displayed anchored window appears at the bottom of the screen, and any
other anchored windows that remain on the screen are moved up. All the visible
anchored windows are resized so that they are about equal in height. If a window
is removed to accommodate the newly displayed window, the new window is made
the same size as the one that was removed.

Using PUSH-WINDOW

push-window IS like show-window,except that it does not automatically remove
anchored windows when their number exceeds the value of "Anchored window
show Limit". Also, push-window takes two optional arguments that enable you to
override some features of the Editor § automatic treatment of anchored windows.

The format of push-window is:
PUSH-WINDOW window &OPTIONAL companion insert-above

If the argument window is floating, push-window has the same effect as snow-
window, except that you cannot specify a display position. The window appears
at the position contained in the window object. If you supply optional arguments,
they are ignored.

If the argument window is anchored, push-window adds it to the display without
removing any previously displayed anchored windows. The Editor resizes all the
visible anchored windows to make them about equal in height.

The optional arguments enable you to specify the position of a newly displayed
anchored window in relation to a visible anchored window. If you specify a
companion argument—a visible anchored window—the newly displayed window
appears just below the companion. If you supply both a companion argument and
an insert-above argument of 1, the new window appears just above the companion
window.

5-22 Window and Display Operations

5.4.3.3 Using REMOVE-WINDOW
remove-window Femoves a window from the display. Its format is:

REMOVE-WINDOW window &OPTIONAL new-current

If the argument window is floating, remove-window has no effect on the remaining
visible windows. If the argument window is anchored, the Editor automatically
resizes and repositions the remaining anchored windows so that they fill the
available display area.

If the window being removed is the current window, you can supply a new-current
argument to specify the window that is to become current. If you do not supply a
new-current argument, then the Editor invokes next-window (with argument t)to
identify the window that becomes current.

By using remove-window repeatedly, you can remove from the available display
area all but one of the visible windows. You cannot empty the available display
area completely, however; the one window that will remain opens onto the buffer
bound to the variable *editor-default-buffer*. If you have not bound a buffer
to this variable, the Editor displays a window onto the ""Basic introduction"
buffer when it has nothing else to show.

5.5 Making and Deleting Windows

Most of the windows that the Editor displays are made by the Editor as a result
of executing certain commands. You can, however, make a window directly in
LISP code, and you can specify all the features you want that window to have. If
the new window is an anchored window, its specified size and screen position are
ignored by the Editor § display manager.

To create a new window, you call the function make-window . Its format is:

MAKE-WINDOW buffer-or-mark &KEY :HEIGHT :WIDTH
:DISPLAY-ROW :DISPLAY-COLUMN
‘TYPE
‘LINES-WRAP
:LABEL

The one required argument to make-window is buffer-or-mark. This argument
indicates the text content of the window; that is, it indicates the buffer onto
which the window opens, as well as the text position within that buffer where the
window begins.

= |f the argument is a buffer, the window opens onto that buffer, beginning with
the line that contains the buffer point.

= |f the argument is a mark, the window opens onto the buffer that contains
that mark, beginning with the line that the mark indicates.

For instance:

(make-window (find-buffer "Help'™))

or

(make-window (window-point (First (buffer-windows "Buffer'))))

The first form makes a window onto the ""Help' buffer, starting with the line that
contains the buffer point of that buffer. The second form makes a window onto
the buffer associated with another window, beginning with the line indicated by
the window point of the other window.

Window and Display Operations 5-23

Some of the keyword arguments to make-window— STYPE, :LINES-wrap, and
:label— have defaults that are the values of the corresponding Editor variables.
For instance, the default window type is :anchored—the global value of the
Editor variable ""Default Window Type".

The keyword arguments that pertain to window size and screen position all
take integer values. These values are significant only for floating windows. For
anchored windows, any values you supply are ignored by the display manager.

- :height is the number of rows of text in the window, excluding borders.
The default is the height of the available display area (minus one row if the
window is bordered).

- widen IS the number of columns of text in the window, excluding borders.
The default is the value of the Editor variable ""Default window width.

- display-row and :dispray-cotumn indicate the screen position of the upper-
left corner of the window § text area (excluding borders) when the window
is displayed. The defaults are | and 1 You can override these values by
supplying row and column arguments t0 show-window.

To delete a window object, you call the function derete-window and pass it a
window argument. The window can be visible or not visible; if it is visible,
detete-window first removes it from the display and then deletes it. When an
Editor window is deleted, it is destroyed and cannot be used again.

5.6 Example of Window and Display Operations

The following example illustrates the Editor objects that you can use to create,
display, and remove a window. The define-command form implements a new
command named '‘Clock', which displays a window that contains the current
date and time. The command obtains the current date and time by calling the
function form at-clock, whose code is shown afterward.

(define-command (clock-command :display-name '"‘Clock'™)
(prefix)
Displays the current date and time in a window."
(declare (ignore prefix))

;; Find or make a buffer named ''Clock™.

(let ((buffer (find-buffer "Clock™)))
(unless buffer
(setf buffer
(make-buffer * (clock-buffer :display-name *''Clock™)
:major-style nil
:minor-styles nil
svariables nil)))

;; Find or make a window onto the 'Clock'™ buffer.

(let ((window (First (buffer-windows buffer))))
(unless window
(setf window
(make-window buffer
stype :floating
height 2 -width 30
zlabel "Clock™
display-row 2 :display-column 48))
(setf (window-label-edge window) stop)
(setf (window-label-rendition window) sblink)
(setf (window-rendition window) sbold))

;; Delete any previous text in the "Clock™ buffer,

(delete-region (buffer-region buffer))

5-24 Window and Display Operations

;; Insert the string returned by FORMAT-CLOCK onto
;; '""Clock™ at the buffer point.

(insert-string (buffer-point buffer) (format-clock))
;; Display the window.

(show-window window 2 48)
;; Force the window to reflect the current contents of
;; the buffer.

(update-display)
;; Leave the window on the screen for 3 seconds and
;; then remove it.

(sleep 3.0)
(remove-window window))))

Note the redundancy in this form: the window § display position is specified both
in the make-window form and in the show-window form. You can choose either
place to make this specification.

The function make-burrer, Which creates and returns a new buffer, is described
in Section 6.1.1 and in Part Ill.

format-clock, which returns a string containing the current day, date, and time,
could be implemented as follows:

(defun format-clock
" Returns the current time of day and the current date.”
(multiple-value-bind (second minute hour day month year week-day)
(get-decoded-time)
(declare (fixnum second minute hour day month year week-day))
(let ((months "#("Jan' "Feb" "Mar' "Apr' "May' "Jun”
“"Jul™ "Aug" "'Sep™ "Oct" "Nov' 'Dec'))
(week-days “#("Monday" "Tuesday' "Wednesday''
“"Thursday” "Friday" ‘'Saturday"
"'Sunday'))
(display-hour (f (= hour 12)
hour
(mod hour 12))))
(declare (simple-vector months week-days)
(Fixnum display-hour))
(format nil

"~A ~2D-~A— 4D~%~2D:~2,"0D:~2,"0D"
(svref week-days week-day)
day
(svref months (1- month))
year hour minute second))))

Window and Display Operations 5-25

Chapter 6

Operations on Styles

Styles in the VAX LISP Editor act as sets of Editor capabilities that you can turn
on and off in the buffers where you are editing. For instance, in "edt Emulation"
style, you use the same key sequences as with Digital§ EDT editor to execute
similar Editor commands. If you prefer the behavior and key bindings of an
editor based on EMACS, you can use the Editor§ "emacs" style instead in any
or all buffers. When "VAX 1isp" style is also active, the Editor recognizes LISP
syntax, knows how to indent LISP code, can evaluate selected regions of code,
and so on. (See VAXLISP/VMS Program Development Guide.)

In programming terms, a style is a named Editor object that serves as a binding
context. A style object can contain bindings for:

= Editor variables
= Editor attributes

= Keyboard keys and pointer actions

The particular bindings of variables, attributes, keys, and pointer actions within
a style are responsible for the Editor § distinctive behavior when that style is
active.

The difference in key bindings from one style to another is obvious: the Linefed

key, for instance, invokes "edt Delete Previous Word" in "EDT Emulation style,
butin "VAX 1isp' style, it invokes ""New 1isp Line". The differences in variable
and attribute bindings are less obvious when you are using the Editor, but they
are equally important in determining the Editor § behavior. For instance:

= \When "edt Emulation" style is active, the Editor Rnows”1n what direction
it is to execute movement and search commands by the current value of the
Editor variable "edt Direction Mode" (forward Or :backward). Outside of
"edt Emulation" style, this variable is unbound and you must provide needed
directional information in some other way.

= When "VAX 1isp" style is active, the Editor “Rnows”that a semicolon is
the beginning of a LISP comment because this character has the value
:comment-delimiter for the Editor attribute "LISP Syntax''. Outside of *'VAX
1isp" style, this attribute is unbound and the Editor does not recognize any
characters as significant in LISP syntax.

The Editor § distinctive behavior in a style also arises from the particular
commands that you normally invoke in that style. For instance, the command
"EDT Delete Previous Word" differs slightly from the "Delete Previous Word"
command bound in "emacs", just as the text-deleting commands in Digital§ EDT
differ slightly from the delete commands in EMACS editors. While commands
themselves are not context-dependent, many commands are normally used only
within a particular style:

Operations on Styles 6-1

= Commands frequently are invoked by means of key sequences or pointer
actions, and these bindings are context-dependent (see Section 34).

= Many commands reference Editor variables and Editor attributes, which are
also context-dependent. Such a command will behave differently where the
context-dependent object is unbound or bound differently (see Section 2.2.6).

This chapter introduces several kinds of operations that you can perform on
styles when you are customizing the VAX LISP Editor. You can:

= Choose the styles that are active in any or all buffers
= Modify or extend a style provided by Digital
= Create a new Editor style

More information about styles can be found in Part II.

Recall that the symbols for Editor objects Digital provides must be referenced in
the editor package. For the methods of specifying named Editor objects, including
styles, see Section 1.3.3.2.

6.1 Activating and Deactivating Styles

For the bindings in a style to be visible in an interactive session, that style must
be active in the current buffer. Styles are activated in each buffer when the buffer
is created; you can later access and change the active styles in a buffer at any
time.

A buffer can have zero or one major style and zero or more minor styles. There
is no inherent difference in style objects that makes them major or minor. The
difference arises from the way a style is activated in a buffer. The difference
between major and minor activation becomes significant when the Editor
searches for the proper binding of a key sequence, a pointer action, a variable, or
an attribute.

In searching for the proper binding for a context-dependent object, the Editor
searches the currently active contexts in the following order:

1 The current buffer

2. The minor styles of the current buffer, if any, beginning with the most
recently activated

3. The major style, if any, of the current buffer
4. The global Editor context

The Editor uses the first binding it encounters in this search for the object in
question. If the object is bound in more than one of these contexts, then all but
one of the bindings are inaccessible, or shadowed. For instance, if you have "edt
Emulation active as the major style and ""VAX 1isp" active as a minor style,
the Lirefeed key will invoke "New 1isp Line". The binding of that key in "EDT
Emulation’ style ("EDT Delete Previous Word™) is shadowed.

Further information on context search and shadowing can be found in Part Il of
this manual and in the VAXLISP/VMS Program Development Guide.

This search order suggests that, in general, your major style should be a general-
purpose style that determines a wide range of Editor capabilities—how the Editor
manipulates text, moves the cursor, manages the display, reads in and writes to
files, and so on. The two styles Digital provides that are suitable for use as major
styles are "edt Emulation™ and "emacs".

6-2 Operations on Styles

A minor style is typically a more limited set of bindings that you use to alter
some details of the major style in particular circumstances. "VAX 1isp" style,
for instance, enhances either "edt Emulation' or "emacs" to enable you to edit
LISP code. The general-purpose style is activated as the major style so that it is
the last style searched for bindings. The special-purpose style (added as a minor
style) can add variations to the major style because it shadows the major style.

This section outlines the methods of activating styles in buffers:
= Activating styles in a newly created buffer
= Setting the Editor § default styles

= Accessing and altering the styles in an existing buffer

6.1.1 Styles in a New Buffer

Most buffers are created automatically by the Editor whenever you begin to edit a
file or function. You can also make buffers yourselfin LISP code. In either case,
the new buffer can be created with specified style(s) active.

The function make-buffer takes a buffer-name and returns a new buffer and t (or
ni1 if a buffer of that name already exists). The optional keywords :major-style

and :minor-styles let you specify the styles that are to be active in the new
buffer.

= The name argument can be a symbol or a list containing a symbol and a
string argument to the keyword :display-name . (This naming convention is
the same for all named Editor objects; for further detail, see the discussion of
naming Editor commands in Section 2.2.1.)

= The :major-style argument can be a style specifier or ni 1.

= The :minor-styles argument can be a list of style specifiers or ni1 .
For example:

(make-buffer = (mybuffer :display-name "Mybuffer_lsp')
:major-style "EDT Emulation
minor-styles ~('VAX LISP™))

This form creates a buffer named mybuffer, with the alternative specifier

"Mybuffer.Isp”. Its major style is "eat Emulation" and its one minor style is
"VAX LISP".

If you do not specify style arguments, the Editor supplies default values. If
you want the buffer to have no minor styles (or no major style), you supply the
argument ni1 to the appropriate keyword. The defaults, and the techniques of
changing them, are presented in the next section.

6.1.2 Editor’s Default Styles

The Editor supplies default values for the major and minor styles of a newly
created buffer unless otherwise specified in the make-buffer form. You can access
and change these default values.

Note that changing a default value does not affect buffers that already exist.
Only buffers created after the default has changed will have the new default
styles active.

Operations on Styles 6-3

6.1.2.1 Default Major Style

The Editor § default major style is stored as the value of the Editor variable
"Default Major Style". In the Editor as provided, this value is "EDT Emulation'.

You can use setf to change the default major style:
(setf (variable-value 'Default Major Style'") "EMACS'™)

Note that only the global value of this variable is used.

6.1.2.2 Default Minor Style(s)

The Editor § default minor styles are stored as the value of the Editor variable
"Default Minor styles". The possible values are a list of style specifiers or ni.
In the Editor as provided, this variable is used only globally, and its value is ni1.

You can establish a default minor style by resetting the value of "'Default Minor
styles". If, for instance, you want to retain "edt Emulation' as the Editor§
default major style but add "emacs' as the default minor style, you could write:

(setf (variable-value "Default Minor Styles'™) ~("EMACS™))

Note, however, that if you had established a default minor style previously,
the form as written would remove that style as the default and replace it with
"emacs". To add "emacs"' without removing the previous default, you could use
PUSH.

(push "EMACS"™ (variable-value 'Default Minor Styles'))

This form adds "emacs" to the front of the list of default minor styles. The minor
styles are activated in a buffer in reverse order to their position in the list. That
is, the first style in the list is the last activated and thus the first searched when
the Editor conducts a context search. In this example, "emacs" will shadow other
minor styles (as well as the major style) active in the same buffer.

You can access and change the entire minor style list if you want to change the
order of the elements or add another style somewhere other than to the front of
the list. For instance, suppose you have established "VAX 1isp" as the default
minor style and you now want to add "emacs'. Ifyou added "emacs" with push,it
would shadow "vax 1isp". To have "VAX 1isp" shadow "emacs", you would write:

(setf (variable-value "Default Minor Styles™)
" ('VAX LISP™ ™"EMACS™))

This form makes "vax 1isp' the last-activated (and therefore the first-searched)
of the minor styles in any buffer that has the default minor styles.

6.1.2.3 Default Minor Style(s) by Type of Buffer

If a minor style is a special-purpose style, you may want to have it active only in
the buffers where the special capabilities are needed. For instance, 'vax lisp"
style is activated automatically in buffers that are associated with LISP objects
or with files of the file type .LSP.

If you want to activate a minor style in buffers associated with a LISP object, you
reset the value of the Editor variable "Default 1isp Object Minor styles". The
value is a list of style specifiers, such as:

(setf (variable-value "Default LISP Object Minor Styles'™)
"('My New Style"™ "VAX LISP™))

6-4 Operations on Styles

This form specifies that two minor styles, "My New style" and "VAX 1isp", are
to be activated in any buffer associated with a LISP object. These styles will
be searched in the order shown; they will be searched before any styles in the
"Default Minor Styles" list.

If you want to activate a minor style in buffers associated with a specified type of
file, you reset the value of the Editor variable "Default Filetype Minor styles'".
The value is an association list of the form:

((Filetype-string . minor-style-list) ...)
For instance, the initial value of this variable is:
(C'LSP™ . "WAX LISP™)

Again, minor styles specified by this variable are activated after any styles
specified by "Default Minor styles", and are therefore searched first.

6.1.2.4 Example of Activating Default Styles

This section illustrates the activation of multiple default styles in several buffers.
The search order, which is the reverse of the order of activation, is then shown for
each buffer.

Suppose you have five styles to work with: “edt Emulation', "emacs", "vax
lisp, and two user-defined styles, “1isp Variation™ and “fortran*. One way to
set your default activation values is as follows:

(setf (variable-value '"Default Major Style'™) "EDT Emulation™)
(setf (variable-value "Default Minor Styles') "("EMACS™))
(setf (variable-value "Default LISP Object Minor Styles'™) ~“('VAX LISP™))

(setf (variable-value "Default Filetype Minor Styles')
"(C'Isp” . ('LISP Variation"™ "VAX LISP™))
C'for" . "FORTRAN')))

In buffers that have the default styles, the search order is as follows:
In a buffer named "MyFile._txt":

1. "“EMACS"

2. "EDT Emulation”

IN a buffer named 1isp-function:
1 "VAXLISP"

2. "EMACS"

3. "EDT Emulation™

In a buffer named ""Myfile .Isp':
1. "LISP Variation"

2. "VAX LISP"

3. "EMACS"

4. "EDT Emulation"

In a buffer named ""Myfile.for":
1. "FORTRAN"

2. "EMACS"

3. "EDT Emulation”

Operations on Styles 6-5

6.1.3 Styles in an Existing Buffer

You can access and change the styles in a specified buffer at any time.

Note that changing the active style(s) in one buffer has no effect on any other
buffer.

6.1.3.1 A Buffer’s Major Style

The function bufrer-major-sty1e takes a buffer specifier and returns the major
style of that buffer (or » i1 if the buffer has no major style). You can use setr
with this function to change the major style active in a buffer:

(setf (buffer-major-style "Mybuffer.txt'™) "EMACS™)

This form deactivates the major style, if any, of "Mybuffer.txt" and activates
"emacs” instead.

6.1.3.2 A Buffer’s Minor Style(s)
You can also access and alter the minor style or styles active in a specified buffer.

To determine whether a specified buffer has minor styles active, you can use
the function buffer-minor-sty1e-1ist. This function takes a buffer object and
returns a list of the minor styles active in that buffer:

(buffer-minor-style-list (Ffind-buffer "Mybuffer._txt'))

buffer-minor-style-1ist IS an accessing function only. Because it is not a place

form acceptable to setf, you cannot use it to alter the list of minor styles active
in a buffer.

To alter the list, you use the function buffer-minor-style-active. This function
takes a buffer specifier and a style specifier. It returns T if the specified style is
active as a minor style in the specified buffer; otherwise nii. This function can be
used with setf to add or remove a style from the minor style list of the buffer.

For instance, to activate "vax 1isp " as a minor style in the current buffer, you
could write:

(setf (buffer-minor-style-active (current-buffer) '"VAX LISP') ©)

This form adds “vax Lisp~ to the front of the minor style list for the current
buffer, "vax 1isp* will then shadow all other active styles. This form is the
essential action of the command "Activate Minor style", provided by Digital,
which prompts for a style name and activates that style as a minor style in the
current buffer.

To deactivate "VAX 1 isp" you would end the above setf form with nil:
(setf (buffer-minor-style-active (current-buffer) "VAX LISP™) nil)

This form is the essential action of the command "Deactivate Minor style"
Digital provides.

If you activate a minor style that is already active in the specified buffer, the
style moves to the front of the minor style list. The action actually deactivates
and then reactivates the style, making it the most recently activated (and thus
the first-searched).

6-6 Operations on Styles

6.2 Modifying a Style Provided by Digital

The three styles provided with the Editor can be extended and customized in any
way you like. The operations that you can perform to modify a style are:

= Binding keys and pointer actions in the style

= Binding Editor variables in the style and assigning values or function
definitions to them

= Binding Editor attributes in the style and assigning values for each attribute
to all characters

You can also define new variables and attributes and bind them in any style.
Only when an Editor variable or an Editor attribute is bound in a style can you
assign values (see Sections 6.2.2.3 and 6.2.3.3).

6.2.1 Binding Keys and Pointer Actions

A common way to extend a style is to bind keys or pointer actions to commands
in that style. The command to be invoked can be:

= A new user-defined command
= A command provided by Digital not currently bound in the style

= Any command that is currently bound to another key or pointer action in the
style

6.2.1.1 Finding Key Bindings

A complete list of the key bindings in the Editor as provided appears in Appendix
C. This list is organized by key or sequence, and it includes all bindings for each
key (buffer, style(s), and global).

To find the current key bindings in the Editor, including any you have added or
changed, you can execute the command "List Key Bindings'. The Editor displays
all visible bindings unless you specify a style (or other context) in response to the
prompt.

If you want to find the current key bindings from the LISP interpreter, you can
call the function map-bindings. (This function is described in full in Part Ill.)
Basically, map-bindings finds all key bindings and applies to them a function
that you supply as its argument. To get a list of the bindings, you would supply a
printing function.

For instance, if you wanted to print a list of the bindings in "vax 1isp" style, you
could start by defining a new function such as:

(defun lisp-bindings (key command context)
(when (equal context (list :style (find-style "VAX LISP™)))
(format t "~% ~{ ~:C~) ~30,10T ~A"
(coerce key "list) (command-name command))))
You then call map-bindings with the new function as its argument:
(map-bindings #"lisp-bindings)

The result is a screen display of all the keys and key sequences bound in "vax
1isp" style, along with the name of the command bound to each.

Operations on Styles 6-7

6.2.1.2 Review of BIND-COMMAND

You bind keys in a style according to the procedures outlined in Section 3.4.1. You
call the function bind-command with the command, key, and context arguments
that you want. Recall that to specify a style as a context argument, you supply a
list that begins with the keyword :style,followed by a style specifier (symbol or
display name). For instance:

"(:style "EMACS™)

or,

(list :style “VAX-LISP)

To bind the key cordA/to "'view File" in "edt Emulation” style, you would write:
(bind-command "View File" #\AV " (:style "EDT Emulation'))

The binding procedure is the same regardless of whether the key sequence or the
command is bound in the style already. Rebinding a key sequence destroys any
previous binding of the key sequence; binding another key sequence to a command
leaves the previous key binding to that command intact (see Section 3.4.2).

The procedure for binding pointer actions is similar. See the discussion of bind-
pointer-command in Section 3.5.

6.2.1.3 Choosing Commands to Bind

When binding a key or pointer action to a command in a style, you should
first invoke the command by name in that style to make sure that it behaves
as expected. Any command can be bound in any style, but a command that
references a context-dependent object (an Editor variable or an Editor attribute)
may behave differently in different contexts.

For instance, if you invoke "edt Move Word" in "emacs" style, the command does
not behave as it does in "edt Emulation' style, "edt Move Word" references
both the Editor variable ""EDT Direction Mode™ and the Editor attribute ""Word
Delimiter'; both are unbound in "EMACS" style. It would not be worthwhile,
therefore, to bind a key to "edt Move Word" in "emacs' style.

You can also define new commands with a particular style in mind and then bind
keys to them in that style. These procedures are explained in detail in Chapters
2and 3

6.2.2 Binding Variables and Setting Variable Values

Both the value slot and the function slot of an Editor variable can be set in the
context of a style, but only if the variable is first bound in that style. Binding an
Editor variable in a context establishes the variable as usable in that context.
Only then can its value or function definition be set.

The function slot is commonly used for hook functions, which are discussed in
Part II.

This section discusses several topics:

= Finding which variables are bound in a style
= Altering variable values in a style

= Binding a variable in a style

You can also define a new Editor variable and bind it in a style.

6-8 Operations on Styles

6.2.2.1

Finding Style Variables

The function style-variables takes a style object and returns a list of the
variables that are bound in that style. For instance, the form

(style-variables (find-style "EDT Emulation'))
returns the list

(edt-deleted-line edt-deleted-word edt-deleted-character
select-region-rendition-set select-region-rendition-complement
edt-direction-mode default-window-label edt-paste-buffer)

To check whether a specified variable is bound in a specified style, you can use
variable-boundp . This function takes a variable specifier and an optional context
that defaults to the current context. It returns T if the variable is bound in the
context; otherwise, nil.

For instance, the first form below returns ¢ ;the second returns ni1 :

(variable-boundp "EDT Paste Buffer'” = (:style "EDT Emulation'™))
(variable-boundp "EDT Paste Buffer'™ "(:style "EMACS™))

6.2.2.2 Altering Variable Values

To access the current value of an Editor variable bound in a specified style, you
call the function variable-value.Depending on the variable, the value might be
any object, including a function. (The function variable-function accesses the
function slot; see Part Ill.)

For instance, to determine the current value of the variable ""Select Region
Rendition Complement” in "EDT Emulation" style, you would write:

(variable-value "Select Region Rendition Complement"
" (cstyle "EDT Emulation™))

In the Editor as provided, this form returns :REVERSE.

Using setf,you can change the value of any variable in a specified style. In
the example above, you can change the video rendition of select regions in "edt
Emulation” style. (See Section 5.3.1 for the meaning of the various region rendi-
tion values.) To make select regions appear in bold if the window where they are
displayed is nonbold, and vice versa, you would write:

(setf (variable-value "Select Region Rendition Complement"
' (cstyle "EDT Emulation'™))
-bold)

If the value of a variable is a function, you proceed in the same way. You access
the value with variable-value:

(variable-value '"Default Window Label™ * (:style "EMACS'™))

This form returns the function emacs-window-1abel . This function could be
defined as follows:

(defun emacs-window-label (window)
(let ((buffer (window-buffer window)))
(format nil " ~A ~@Q[(~{~-S~-A ~-P) ~]1"
(f (eq (buffer-type buffer) :file)
(namestring (buffer-object buffer))
(buffer-name buffer))
(mapcar #"style-name (buffer-minor-style-list buffer)))))

Operations on Styles 6-9

This function specifies the default label content for any new windows created
in buffers where the style "emacs' is active (and not shadowed). It labels new
windows with the name of the buffer (namestring or object name) and with any
minor styles active in that buffer.

You can rewrite this function in any way you like or define an entirely new
labeling function, Ib set the value of "Default window Label™ in “emacs" style to
the new function, you would write:

(setf (variable-value "Default Window Label™ *"(:style "EMACS'™))
"‘my-emacs-labeler)

6.2.2.3 Binding a Variable in a Style

A variable cannot have a value (or function definition) in a style unless the
variable itself is first bound in that style.

If a given variable is not bound in a style initially, you can include it with the
function bind-variable.lts format, with only a few of its keywords, is as follows:

BIND-VARIABLE symbol &KEY :CONTEXT :INITIAL-VALUE

The symbol argument is an Editor variable specifier (symbol or display name).
The optional keyword arguments are a context specifier (the default is :gilobal)
and an initial value for the variable in the context (the default is ni1).

For instance, suppose you want the Editor to show only one anchored window
at a time in "vax 1isp" style, but up to two when you are not using "vax 1isp"
style. The maximum number of anchored windows the Editor shows at a time is
determined by the value of the Editor variable "Anchored window show Limit".
In the Editor as provided, this variable is bound globally and its value is 2; the
variable is not bound in any other context.

If you want ""Anchored Window Show Limit" to have the value 1in ""VAX LISP"
style, you must bind the variable in that style:

(bind-variable "Anchored Window Show Limit"

context " (:style "VAX LISP™)

initial-value 1
This form binds "Anchored Window Show Limit" in "VAX LISP" style with the
initial value 1. If you later want to change the value to 3, you need only use setf
because the variable is already bound in the style:

(setf (variable-value "Anchored Window Show Limit"
"(:style "VAX LISP™))
3

This form changes the value of the specified variable to 3 in "VAX 1isp" style.
The Editor will show up to three anchored windows at once when this style is
active. When 'vax 1isp" style is not active, the effective value of the variable
will be its global value, 2, unless you also bind it in other contexts.

6.2.2.4 Defining New Variables

If some action that you want the Editor to perform requires a new Editor variable,
you can create a variable with the macro define-editor-variable.You then
proceed as above to bind the variable in one or more contexts and to adjust its
value as you like.

6-10 Operations on Styles

DEFiNE-EDiTOR-variable is described in full in Part Ill. Basically, it creates
a variable with the specified name and an optional documentation string. For
instance:

(define-editor-variable (lisp-comment-column
display-name "LISP Comment Column'™)
When bound in \"VAX LISP\" style, this variable specifies an
integer value that indicates the position in a line where a LISP
comment should begin.')

This form is the one used to create the Editor variable "LISP Comment Column"
provided by Digital.

The naming convention for Editor variables is the same as that used for all
named Editor objects. For more detail on specifying names, see the discussion of
naming Editor commands in Section 2.2.1.

Before you can use a new variable, you must bind it in a context. For instance:

(bind-variable "LISP Comment Column'
context " (rstyle "VAX LISP™)
initial-value 49)

This form binds the variable in "VAX 1isp" style and gives it an initial value. The
variable now can be referenced by functions and commands in "VAX 1isp" style.

bind-variable also allows you to set the function slot of the variable. See
Part Ill.

6.2.3 Binding Attributes and Setting Attribute Values
Another way to modify a style is to alter the treatment of Editor attributes in the
context of that style.

Like Editor variables, any attribute can be bound in any context. (An exception
is "Print Representation", which can only be bound globally.)

Once an Editor attribute is bound in a style (or other context), every character
has a value for that attribute in that context. The values for an attribute serve
to distinguish characters from one another for the purpose of searching through
text.

For instance, to find whitespace the Editor passes over every character with
the value 0 for the attribute "Whitespace" and accepts the first character with
the value | for this attribute. (See the discussion of searching by attribute in
Section 4.3.3.)

You can access and change the value that a character has for a specified attribute
in a specified style—but, as with Editor variables, you can do this only if the
attribute is itself bound in the style. This section discusses several topics:

= Finding the attributes and attribute values in a style
= Altering attribute values in a style

= Binding an attribute in a style

You can also define a new Editor attribute and bind it in a style.

Operations on Styles 6-11

6.2.3.1 Finding Style Attributes

The function character-attribute takes an attribute specifier, a character, and
an optional context. It returns the value that the character has for the attribute
in the context. (Ifyou do not supply a context argument, the Editor performs a
normal context search to find the proper attribute value.)

The Editor provides no attribute-related functions similar to styi1e-variabies
Or map-bindings. That is, there is no way provided to determine which Editor
attributes are bound in a style or what values all the characters have for an
attribute in a style.

To obtain this information, you might define a new function such as the following:

(defun list-attribute-values (attribute context)
;5 Print a heading.
(format t "~%ATTRIBUTE VALUES OF ~S IN CONTEXT ~S ~2%"
attribute context)
;; Define a local error handler in case attribute in unbound.
(let (C*universal-error-handler*
#" (lambda (Srest args)
(declare (ignore args))
(format t
"~% The attribute ~S is not bound in ~
context ~S_~%"
attribute context)
(return-from list-attribute-values

(values)))))
;; Print the value of each character for the attribute in
;; the context.

(dotimes (index 255)
(format t "~C~15,5T<=> ~S -~
(code-char index)
(character-attribute attribute index context)))

(values)))

The new function 1ist-attribute-vatues takes an attribute specifier and a style
(or other context) specifier. If you execute it at top-level LISP, it displays on the
screen a list of the values of all 256 characters for that attribute in that context.
If no values are found, the result is a screen message that the attribute is not
bound in the specified context. For instance:

(list-attribute-values "LISP Syntax"™ = (:style "VAX LISP™))
(list-attribute-values "LISP Syntax" :global)

The first form results in a screen display of the values of all characters for
the attribute "1isp Syntax" in "vax lisp" style. The second form results in a
message that the attribute "1isp Syntax" is not bound globally.

Note the use of *universal-error-handiler* in this form. If no special error
handler were defined, the function would call the VAX LISP error handler when
it encountered an unbound attribute. The default error handler places you in the
Debugger; this error handler returns you to top-level LISP.

6.2.3.2 Altering Attribute Values

character-attribute is a place form acceptable to setf. You can use it to change
the value that a character has for a specified attribute in a specified style.

For instance, the Editor recognizes a hyphen as a word delimiter in the global
context but not in “edt Emulation" style. Ifyou want the hyphen to be a word
delimiter in “edt Emulation", you change the value of that character for that

attribute in that style from Oto | :

6-12 Operations on Styles

(setf (character-attribute "Word Delimiter™ #\-
"(:style "EDT Emulation™))
1)

After you execute this form, the Editor will recognize the hyphen as a word
delimiter in "edt Emulation" style.

The attribute "1isp Syntax'" differs slightly from "Word Delimiter" in that

its values are keywords. Most characters in "VAX 1isp" style have the value
cconstituent for the attribute "1isp Syntax'—they can be constituents of LISP
symbols, but they have no syntactical significance. The characters that are signif-
icant as LISP syntax have appropriate keyword values: the open parenthesis has
the value :1ist-initiator,the backquote has the value :read-macro,and so on.
(The values for "1isp Syntax" are listed in Part Ill.)

These keyword values can be altered in the same way as the zero-one values
illustrated above. For instance, if you want to use square brackets instead of
parentheses around LISP forms, you could write:

(setf (character-attribute "LISP Syntax" #\[" (:style "VAX LISP"))
clist-initiator)

and,

(setf (character-attribute "LISP Syntax" \< " (:style '"VAX LISP™))
:constituent)

These forms, along with comparable forms for the close bracket and close paren-
thesis, make the Editor recognize the brackets as the characters that initiate
and terminate a list in "VAX 1isp' style. The Editor will no longer recognize
parentheses as significant in LISP syntax.

6.2.3.3 Binding an Attribute in a Style

Characters cannot have values for an attribute in a style unless the attribute is
bound in that style.

If a given attribute is not bound in a style initially, you can include it with the
function bind-attribute . Its format is:

BIND-ATTRIBUTE attribute &KEY :TYPE CONTEXT :INITIAL-VALUE

In addition to the desired attribute and context specifiers, you can supply to
bind-attribute @ type argument and an :initial-value argument. The type
argument defines the data types of the possible values of the attribute in the
context. The argument can be any LISP type specification (see Common LISP:
The Language)-, the default is (mod 2).

The initial-value argument becomes the value of all 256 characters for the spec-
ified attribute in the specified context. You can then use setf with character-
attribute t0 change the value assigned to any of the characters.

For instance, suppose you have established "edt Emulation" as your default
major style and "emacs' as your default minor style. This action makes the
Editor behave like an EMACS editor that has an EDT keypad. Any conflicting
bindings will be resolved in favor of "emacs'.

However, the Editor attribute ""Word Delimiter' is not bound in "emacs" style.
When "emacs' is the only style active, the global values for this attribute are
visible. When "edt Emulation' is interposed in the search order between "emacs™
and the global context, then references to "Word Delimiter' produce the "edt
Emulation” values. As a result, the Editor recognizes words the way Digital§
EDT does, rather than the way that EMACS editors do.

Operations on Styles 6-13

You can alter this behavior by binding "Word Delimiter" in "EMACS" style and
assigning the characters the values you want them to have, Ib bind the attribute,
you write:

(bind-attribute "Word Delimiter” :type " (mod 2)
context "(:style "EMACS™)
initial-value 0)

When you execute this form, "Word Delimiter" becomes bound in "emacs™ style,
and all characters have the value o for this attribute in this context. You need not
include the :type argument in this form since (mod 2) is the default; it specifies
that the possible values for the attribute are o and | .

You then select the characters that you want the Editor to recognize as word
delimiters and change their values to 1 If you want the values to be set as they
are in the Editor § global context, you can get a list of those values by calling
list-attribute-values (See Section 6.2.3.1) with the context argument :global.

For instance, many punctuation marks are word delimiters in the global context
but not in "EDT Emulation. To have these characters be word delimiters in
"EMACS", you write the following form for each:

(setf (character-attribute "Word Delimiter™ #\; "(:style "EMACS™))
1)

You perform no operation on characters that you do not want recognized as word
delimiters in "emacs". These characters already have the value o (the initial
value) for this attribute in this style.

6.2.3.4 Defining New Attributes

If some action that you want the Editor to perform requires a new Editor at-
tribute, you can create an attribute with the macro define-attribute.This
macro is similar to define-editor-variable:it creates a new object with the
specified name and optional documentation string. You then proceed as above to
bind the attribute in one or more contexts and to adjust characters ¥alues for the
attribute as you like.

The following form is the one used to create the Editor attribute "'Page
Delimiter" provided by Digital:

(define-attribute (page-delimiter :display-name "Page Delimiter'™)

When bound, this attribute can have the value 1 for characters
that separate pages.'")

This form creates the attribute ""Page Delimiter". The attribute cannot be used,
however, until it is bound in some context. For instance:

(bind-attribute "Page Delimiter™ :initial-value 0)

This form binds "Page Delimiter" in the default context (global) with the default
type specification (mod 2). The initial value for all characters in the global
context for this attribute is Q

To distinguish the character(s) that you want the Editor to recognize as page
delimiters, you change their values from o to1:

(setf (character-attribute "Page Delimiter™ #\formfeed) 1

This form gives the formfeed character Cm) the value I for ""Page Delimiter" in
the global context. When the Editor performs an attribute search to find the next
page delimiter, the formfeed character will satisfy the test (see Section 4.3.3).

6-14 Operations on Styles

6.3 Creating a New Style

To create a new Editor style, you first make a new style object. You then bind in
the new style all the features that you want it to have.

Creating a new style brings together all the techniques discussed so far in this
manual:

= Defining new commands, variables, and attributes as necessary to perform
text operations, display operations, and other Editor operations

= Binding keys, pointer actions, variables, and attributes in the new style

= Activating the new style in any or all buffers

You can also include in a new style some specially defined functions that are
invoked whenever the style is activated or deactivated in a buffer. These “iook
functions”treate some useful feature in buffers where the style is active and
remove that feature whenever the style is deactivated.

All these procedures are illustrated in this section in relation to a new Editor
style.

6.3.1 Making a Style Object

To create a new style object, you use the macro make-style.This macro is
described in full in Part Ill. Its format is:

MAKE-STYLE name &OPTIONAL documentation
&KEY :ACTIVATION-HOOK :DEACTIVATION-HOOK

For example:
(make-style (text-mode :display-name "Text')
Used when editing narrative text. It emulates the

behavior of word-processing programs in formatting text.'")

If you evaluate this form, the Editor will have a new style named text-mode
or "Text". The style will contain no bindings until you add them with calls to
BIND-VARIABLE, BIND-ATTRIBUTE, BIND-COMMAND, Or BIND-POINTER-COMMAND.

Before you make the style, however, you should decide whether you want it to
have activation and deactivation hooks. These functions can be attached to a
style in the make-style form; they cannot be added later.

6.3.2 Style Activation and Deactivation Hooks

A style activation hook can be used to perform some operation that you want
done every time the style is activated.

For instance, in a text-related style you need to be able to set margins—the
character positions in each line where text is to begin and end. You can define
new Editor variables to store margin settings and then bind the variables in each
buffer that has "Text" style active. This action enables each buffer to store its
own margin settings.

Operations on Styles 6-15

The new variables might look like this:

(define-editor-variable (local-left-margin :display-name *Local Left Margin')

¥ Specifies the first character position where text can begin in each line.™)

and,

(define-editor-variable (local-right-margin :display-name '"Local Right Margin'™)

Specifies the last character position that text can occupy in each line."™)

It would be convenient to have these variables bound automatically in each buffer
that has "Text'" style active. To achieve this, you can define a function that binds
the variables in a buffer and then specify that function as the activation hook of
the style "Text".

The style activation hook is invoked whenever its style is activated in a buffer.
The hook function is called with two arguments—the style and the buffer. A
function that binds the above variables on a per-buffer basis might look like this:

(defun bind-margins (style buffer)
;; The function does not use the STYLE parameter.
(declare (ignore style))
;5 CONTEXT is the buffer where the style is being activated.
(let ((context (list sbuffer buffer)))
;; Make the left margin O in the buffer.
(bind-variable '"Local Left Margin'
:context context
cinitial-value 0)
;; Make the right margin 1 less than the screen width in
;; the buffer.
(bind-variable "Local Right Margin®
scontext context
tinitial-value (- (screen-width)))))

A style deactivation hook is similar: it is invoked whenever a style is made
inactive in a buffer. If you deactivate "Text" style in a given buffer, you would
have no further use for the margin settings. A deactivation hook that unbinds
the margin variables might look like this:

(defun unbind-margins (style buffer)
(declare (ignore style))
(let ((context (list ibuffer buffer)))
(unbind-variable "Local Left Margin' context)
(unbind-variable 'Local Right Margin'™ context)))

Once you have defined the hook functions and the variables they reference, you
are ready to create the new style "Text":
(make-style (text-mode :display-name "Text'™)
" Used when editing narrative text. It emulates the
behavior of word-processing programs in formatting text."
sactivation-hook #"bind-margins
:deactivation-hook #"unbind-margins)
This form creates the new "Text" style and establishes bind-margins and
unbind-margins as its activation and deactivation hooks.

6.3.3 Adding Capabilities to the Style

Once you have created a new style, you can add features to it at any time. You
can add capabilities to a style with the following procedures:

= Binding keys or pointer actions to commands in that style. This may involve
defining new functions and commands; you can also use existing commands.

6-16 Operations on Styles

= Binding Editor variables in the style. The variables to be bound can be new
or existing variables. Any variable referenced by a command used in the
new style must be bound in that style, unless a binding will be visible from
another context when the style is active.

= Binding Editor attributes in the style. The attributes to be bound can be new
or existing attributes. Any attribute referenced by a command used in the
new style must be bound in that style, unless a binding will be visible from
another context when the style is active.

For instance, the "Text" style might include a key binding for a command that
allows you to reset the margins in any buffer. The new Editor variables "Local
Left Margin" and "Local Right Margin" serve to store margin settings once
they are bound in a buffer. The activation hook function bind-margins binds
these variables in a buffer and sets their initial values whenever "Text" style is
activated in the buffer.

To implement a command called '"Set Margins', you can use the new margin
variables, along with various Editor objects and other LISP objects. Such a
command might look like this:

(define-command (set-margins-command :display-name *'Set Margins')
(prefix)
Prompts for new margin values and resets the left and right
margins to the new values.™
(declare (ignore prefix))
(let ((new-margin (or "Local Left Margin" 0)))
(setq new-margin
(simple-prompt-for-input
(format nil
"Current left margin at ~D. Enter new value:
new-margin)
new-margin))
(unless (integerp new-margin)
(setf (variable-value "Local Left Margin'™)
(parse-integer new-margin)))
(setq new-margin (or "Local Right Margin®
(1- (screen-width)))
new-margin
(simple-prompt-for-input
(format nil
"Current right margin at ~D. Enter new value:
new-margin)
new-margin))
(unless (integerp new-margin)
(setf (variable-value '"Local Right Margin')
(parse-integer new-margin)))
(clear-information-area)
(format *information-area-output-stream*
“Left margin ~D, right margin ~D"
"Local Left Margin™ "Local Right Margin'™)))

With the new text-formatting style in mind, you could also write commands that
wrap text, that move to the left margin to begin new lines, and that fill and
justify text to the right margin.

Operations on Styles 6-17

Once the new commands are defined, you can bind keys to them in "Text" style:

(let ((context (list :style "Text™)))
(bind-command "'Set Margins™ "#@#\X #\\M) context)
(bind-command ...)

(bind-command ...))

6.3.4 Activating the Style

Once your style has enough capabilities bound in it to be useful, you can then
decide how and where you want to activate the style.

As a special-purpose style, "Text'" is suitable for minor activation. You would not
want to assign it to "Default Minor styles”,since its behavior (wrapping, filling,
and so on) is inappropriate for most code editing. It would be best to activate
"Text" in buffers associated with the file types you normally use for narrative
text editing.

Recall that the value of ""Default Filetype Minor styles" is an association list.
You can add items to this list with push:

(push " ("txt™ . "Text') (variable-value "Default Filetype Minor Styles™))
(push * C'rno™ . "Text'™) (variable-value "Default Filetype Minor Styles™))

These forms establish "Text" as the last-activated (first-searched) of the minor
styles in buffers associated with file types .TXT and .RNO.

6-18 Operations on Styles

Part Il
Concepts in Editor Programming

Concepts in Editor Programming

This part is an “éncyclopedia”f the major concepts and data types used in
programming the VAX LISP Editor. It consists of separate, alphabetically
arranged articles on the following topics:

Attributes
Buffers
Characters
Checkpointing
Commands
Context
Debugging Support
Editor Variables
Errors

Hooks
Information Area
Lines

Marks

Named Editor Objects
Prompting
Regions

Rings

Streams

String Tables
Styles

Windows

See Appendix A for a list of the functions and other Editor objects that relate to
each of the object types described in this part.

Attributes

Attributes make up the primary character-related information stored by the
Editor. An attribute is a named Editor object having a LISP type specification

in some context. Each of the 256 characters can be assigned a value of the
specified type for an attribute. The function 1ocate-attribute is used to locate a
character that satisfies a test on the value it has for an attribute.

For example, the following form defines an Editor attribute called whitespace or
"Whitespace':

(define-attribute (whitespace :display-name "Whitespace')

Used to determine which characters can be considered
word delimiters.™)

You can then bind this attribute in a context. For instance:
(bind-attribute “whitespace

type " (mod 2)

:context :global

initial-value 0)

This form creates an instance of the ""Whitespace™ attribute that can take on the
values Oor I.

If we set
(setf (character-attribute “whitespace #\space) 1)

(setf (character-attribute “whitespace #\tab) 1)

Concepts-3

Concepts in Editor Programming

Buffers

Concepts—4

then executing
(locate-attribute text-position "Whitespace'" :test #"plusp)
locates the first space or tab character following the specified text-position.

Attributes are powerful tools in processing syntax-dependent text. An attribute
value can be of any LISP data type. However, the test function may assume that
attribute values are of a certain type. For instance, the values for the attribute
"1isp syntax" are keywords, whereas other attributes provided by Digital have
integer values. The test functions for the latter are normally one-argument
predicates.

Attributes, like Editor variables, can be bound in any Editor context. In the
example above, an Editor style might create a new binding of the "Whitespace"
attribute. This new binding would shadow the global binding of "Whitespace™.
When the style was later made inactive, the global definition would be in effect
again.

A buffer is the only Editor object that can be displayed and that can be associated
with a file or a LISP object.

The text contained in a buffer is defined by a region associated with the buffer—
the buffer region. Although there may be many regions that mark off sections of
the buffer § text, it is the buffer region that defines the beginning and end of the
text in a buffer. It is an error to alter the marks that define the buffer region.

Each buffer has a permanent mark associated with it called the buffer point.
The buffer point is a left-inserting mark that is a point of attention for the buffer
(where most text operations commands are executed). The underlying display
functions of the Editor cause the screen cursor to track the buffer point when that
buffer is the current one. Moving the cursor therefore is accomplished by moving
the buffer point mark. Most normal character insertion and deletion operations
are performed with respect to the buffer point. It is an error to change the type
of the buffer point or to change the point so that it points to text not contained in
the buffer.

The Editor can maintain a number of buffers simultaneously. The limit on the
number of buffers depends on the size of available LISP dynamic space. It is also
possible to display simultaneously portions of more than one buffer or different
portions of the same buffer.

The current buffer is the buffer you are currently working on. The screen cursor
is always displayed in one of the display windows for the current buffer. The
concept of the current buffer is important because dynamic context is determined
by the setting of that buffer.

Concepts in Editor Programming

Characters

Characters in the Editor are normal VAX LISP string characters; that is, string-
char-p returns T for all characters stored in Editor buffers. Characters are not,
however, independent atomic objects in the context of the Editor; they are always
constituents of Editor lines.

VAX LISP recognizes and accepts all characters from the 8-bit extended ASCII
character set. All Common LISP font and bit information is ignored by the Editor.

Not all characters can be displayed directly on a terminal, of course. Any char-
acter that cannot be displayed directly on a screen is converted to a string of
printing characters. Such a string is displayed on the terminal as a represen-
tation of the actual character. For example, the ASCII ESCAPE character is
displayed as <ESCAPE>. See the description of the "Print Representation"
attribute in Part 11l for more detail.

Checkpointing

The VAX LISP Editor provides a mechanism for protecting the results of an
editing session from catastrophic failure such as a system crash. Without such
protection you could lose the results of many hours of work if the system were
to fail. The protection mechanism adopted by the VAX LISP Editor is called
“¢heckpointing.””

Checkpointing involves writing to disk the full contents of any buffer that was
modified since the last checkpoint. The buffer is written to a file that has a
different (and distinctive) name from the file name associated with the buffer
source. By default, the checkpoint file name is:

SOURCE.FILETYPE_VERSION_LSC

where SOURCE, FILETYPE, and VERSION correspond to the file name of the
source file being edited. For example, the name of the checkpoint file created
when you are editing version 2 of a file named MYPROG.LSP is:

MYPROG.LSP_2_LSC

Buffers that are not associated with files do not, by default, have checkpoint files
associated with them.

You can set or change the checkpoint file name explicitly by using setf with the
buffer-checkpointed function. If you change the checkpoint file name toni1,
checkpointing is not performed for that buffer. The checkpoint file name is also
changed automatically whenever the pathname of the buffer § associated file is
changed.

The Editor determines when to checkpoint by maintaining a count of the number
of commands that caused modifications in the buffer text. The count is kept on
a global basis (otherwise many modified files might never be checkpointed). You
can determine the frequency (number of commands) of checkpointing by calling
the function checkpoint-frequency.This function is also a setf form that allows

you to change checkpoint frequency. The default value is 350. Ifitis set toni1,
all checkpointing is disabled.

Concepts-5

Concepts in Editor Programming

Should there be a catastrophic failure of the system during an editing session,
you can recover a file in its most current state by looking for its checkpoint file.
Checkpoint files are deleted when modified buffers are written. If a checkpoint
file exists, it is guaranteed to be the latest available copy of the buffer contents.
The user can rename a checkpoint file to the buffer file name. Editing this file
gets the most recent information that was in the Editor before the crash. Only
modifications made to text between the time of the last checkpoint and the system
failure are lost.

Commands

Concepts-6

Commands are similar to function objects in that they can be invoked to produce
changes in the state of the Editor. They are unlike ordinary LISP functions

in how they are invoked and in the context rules for their execution. Every
command is associated with a LISP function; invoking a command within the
Editor causes the Editor to invoke the command § associated function.

Binding an Editor command can be thought of as creating a bridge between a
character or sequence of characters and a command in a particular context. You
accomplish this by executing the bind-command function. If you then enter a key
or key sequence from the terminal, the Editor makes a normal context search
to find the correct command to execute. You can also bind actions of a pointing
device to Editor commands by using the function bind-pointer-command .

Invoking Editor Commands
There are three ways to invoke an Editor command:

= Entering a previously bound character or sequence of characters from the
keyboard, or performing a pointer action, when you are in the Editor

= Using the "Execute Named Command" command and specifying the name of a
command when you are in the Editor

= Calling the associated function directly from LISP
The first of these is the fastest method. These methods are discussed individually.

Using Bound Keys: The bind-command function is used to bind an Editor
command to a character or sequence of characters in a particular context. When
you enter this character or sequence of characters, the Editor initiates a normal
context search for a command object bound to that sequence. For example, by
default, all the individual graphic characters are bound to the command named
"Self insert” in the global context. If you type any of these characters, a
function that inserts the characters at the buffer point of the current buffer
executes.

The action of bind-pointer-command is similar except that the specified command
is invoked by an action of the pointing device, such as depressing a particular
button or moving the pointer cursor. As with bound characters, the Editor
performs a context search to determine which command to invoke in response to
a pointer action.

Concepts in Editor Programming

The binding of a command, like that of a variable or an attribute, can be shad-
owed by another binding to the same key (or key sequence) in a local context.
For example, when "VAX 1isp" style is active in the current buffer, the close
parenthesis character is bound to a function that finds and displays the matching
open parenthesis before inserting the right parenthesis. This binding shadows
the binding of the right parenthesis to ""Self Insert" in the global context.

NOTE

If you redefine a command that is bound in some context, you must
rebind the appropriate key sequence or pointer action to that command
in order to have the new command executed.

Using Execute Named Command: Some commands (such as "Delete current
Buffer') are either infrequently used or are potentially too dangerous to be
bound to keys (where they might be invoked by accident). The VAX LISP Editor
has a command, "Execute Named Command', that allows you to enter the name of
a command and have the corresponding function executed.

Calling Associated Functions: The third method used to invoke a command is
to call the associated LISP function directly from another LISP function. To make
use of existing commands when writing a new Editor command, you must use the
function associated with the command.

Command Categories

Commands can also have a list of categories associated with them. These cat-
egories are user-defined and can be retrieved, tested, and altered. Examples of
command categories are :general-prompting and -line-motion.A command
might examine the categories of itself or of a previously invoked command and
perform different actions depending on the categories found.

Prefix Argument

Every function that implements a command takes at least one argument. This
argument is called the prefix argument, and it usually tells the function how
many times the operation is to be done. For example, if the "Self insert”
command is called with a prefix argument of 5, it inserts the most recently typed
character five times. The prefix argument is reset automatically to ni1 each time
through the command loop. You use the "Supply Prefix Argument’” command to
set the prefix argument for the next command to be executed.

Context

The VAX LISP Editor maintains a hierarchical search space to locate all Editor
key bindings, pointer action binds, variables, and attributes. The Editor must
search this hierarchy in order to determine the correct command for a key

sequence or pointer action, the correct value or function of an Editor variable, or
the correct value of an attribute.

The binding of commands, variables, and attributes must take place in some
context. The context can be as follows:

= Global, which means that the object is always defined

Concepts-7

Concepts in Editor Programming

Concepts-8

= A style, which means that the object is defined in buffers that use the style as
either the major style or a minor style

= Specific to a particular buffer

Here is the search order of the hierarchy:
1 Current buffer

2. Minor styles active in that buffer in the order of most recently activated to
least recently activated

3. Major style of that buffer
4. Global Editor context

Only if the entire search fails is the command, variable, or attribute considered
unbound.

By default, the standard order is used to locate the value of an object. It is
possible to specify an explicit context for an accessing function (for example,
variable-value). In this case, the normal searching operation is bypassed, and
the object is accessed in the specified context only. Every function that binds an
Editor object has an optional argument to define the context in which the created
object is stored for later access. In such situations, a context argument is always
specified with one of the following:

= The keyword :global -The object is bound in the global context and is
universally accessible.

= A two-element list consisting of the keyword :sty1e followed by a style speci-
fier. The object is bound in the context of the specified style. For example:

"(:style "EDT Emulation')

= A two-element list consisting of the keyword :buffer followed by a buffer
specifier. The object is bound in the context of the specified buffer; that is, it
is local to that buffer.

" (:buffer "Filename.lsp™)
or
(list ibuffer (current-buffer))

where the function current-buffer returns an Editor buffer.

As a result of the context and searching rules, the named objects can be thought
of as forming a hierarchy shown in Figure Concepts-1!.

Concepts in Editor Programming

Figure Concepts-1: Hierarchy of Named Objects

Buffers

Commands Variables Attributes
MLO-002997

That is:

= Buffers can include active styles and bindings of commands, variables, and
attributes, but not other buffers.

= Styles can include bindings of commands, variables, and attributes, but not
buffers or other styles.

= Commands, variables, and attributes cannot contain bindings of one another.

Use of Context

A few conventions regarding the use of context by different users of the Editor
follow:

The Global Context: The global context is established by Digital when the
Editor is built. You can, of course, alter it, but you must be aware of any hook
functions or default variables that are supplied with the Editor. Styles sup-
plied with the Editor often assume the existence of certain variables and hook

functions. Such assumptions are listed with the descriptions of the appropriate
variables and commands.

If you want to alter the global context, you should check for any predefined
hooks or variables and ensure that they are either retained, or their use is not
necessary.

A Style Context: Styles are the province of writers of Editor extensions. A
writer of an extension should feel free to make whatever alterations, bindings,
variables, or attributes appropriate for implementing the desired style. A style
should not alter global context or local buffer context without care. In particular,
command bindings should be established only within the style.

A Buffer Context: Buffer-local bindings should be used for special-purpose
buffers such as ""General Prompting". These buffers exist to provide special
capabilities not needed during normal text editing. The commands related to
help, alternatives, and completion are bound locally in the ""General Prompting"
buffer because these commands have meaning only while the user is being
prompted.

Concepts-9

Concepts in Editor Programming

It can, however, be appropriate to bind Editor variables locally in a buffer. Such
bindings are proper when certain information necessary to the operation of a style
needs to be kept in each buffer.

"Buffer Select Mark" is an example of such an Editor variable. The "edt
Emulation" style must keep track of any selected regions in each buffer that has
the style active. A style-local variable cannot be used because it would lose its
value whenever a region was selected in some other buffer. Each buffer, therefore,
keeps its own binding of ""Buffer Select Mark'.

Debugging Support

The normal action taken by the Editor § display subsystem when you execute
the command ''Pause Editor" is to save the current state of the screen and clear
the screen. Conversely, when the Editor resumes after a pause, the current state
of the screen is lost and the display is reset to the appearance it had when the
pause went into effect.

This is reasonable behavior for a user who is doing normal editing operations.

It becomes a problem, however, for anyone implementing new Editor commands,
because it means that Editor functions cannot reasonably be called from the LISP
top level. The previous screen state is lost, and any windows created from top
level are lost when the Editor is reentered.

In order to have effective debugging support for Editor command implementers,
the Editor provides the variable *editor-retain-screen-state*. This LISP
special variable controls the action taken by the display subsystem when an
Editor pause is executed. If the value is ni1 (the default), the display subsystem
takes its normal action of saving the current state and clearing the screen; if the
value is non-NiL, it does not save the screen state and clear the screen.

The display subsystem clears the screen and restores the old state only if the dis-
play was saved at the last pause. This behavior allows a command implementer
to call Editor commands and functions from the LISP top level without losing
changes made when the Editor resumes (by means of a call to the ed function).

NOTE

In the DECwindows development environment, the "Pause Editor"
command does nothing because the Editor and the Listener each have
a separate window. The *editor-retain-screen-state™ variable is
ignored under DECwindows.

Editor Variables

Concepts-10

Editor variables are distinct from VAX LISP special variables. They are similar
to VAX LISP variables in that they can have both values and functions attached
to them. The scope and extent rules for Editor variables, however, are different
from LISP variables.

The scope of an Editor variable is defined by the Editor context-searching rules.
An Editor variable has extent that begins when it is bound in some context and
ends when it is unbound from that context.

Errors

Concepts in Editor Programming

Editor variables are named objects, and special functions exist for accessing and
setting the value and function slots of variable objects. You can use the functions
variable-value and variable-function for accessing the value or function
associated with an Editor variable. You can use them with setf to change the
value or function definition.

The LISP symbol corresponding to the Editor variable (the variable name) has its
value and function slots set according to the current context—that is, the symbol
can be used as a special variable. Its value changes according to the current
context. It becomes unbound in any context in which the Editor variable is not

bound. By using the LISP symbol, you can improve the access time to the value
or function of an Editor variable.

Similarly, the LISP symbol can be used as a LISP function inside an Editor
command. The function slot of the symbol is set to the function of the Editor
variable bound in the current context. If there is no function definition, the LISP
symbol has no function definition Fboundp iS ni1).

In your extensions to the Editor, the Editor § error subsystem lets you handle
errors during the execution of Editor commands and notify the user of such
errors. In addition, a facility is provided to handle errors at the LISP level
(signaled from error or cerror,for example) and place the user in a usable
debugging environment.

Errors Signaled from LISP

When you invoke the Editor (by means of the ed function), the variable
*universal-error-handler™ is bound to an Editor function that intercepts

any LISP errors that occur (those signaled by error,cerror,and assert, for
example). This function first asks you if modified buffers should be saved. If you
reply “¥”the Editor attempts to save any buffers that were modified, although
the nature of the error may prevent some or all buffers from being saved. The
Editor then asks if you want to enter the VAX LISP Debugger. If you reply “Y>;
the Debugger is invoked; you have access to all the normal Debugger features. If
you reply “N”’control returns to the LISP top level.

You treat this error just as you would a LISP error at top level. You can take
whatever actions are appropriate to the error signaled. Throwing to top level
(by pressing ctrl/c or quitting the Debugger) causes the Editor to quit the current
command and pause. Continuing a continuable error causes a return to the
interrupted Editor function. The Editor screen state is not updated automatically,
but the display device is placed back in the mode required for operation of the
Editor.

Errors Signaled from the Editor

The Editor provides two error functions that you can use when writing Editor
commands—editor-error and editor-error-with-hel p.editor-error is similar
to the LISP error function but is more appropriate to the Editor environment.
When called, the function displays an optional line of text in the information area
of the screen, calls the attention function to alert the user to a problem, and
executes a throw to the top-level command loop of the Editor.

Concept&-11

Concepts in Editor Programming

Hooks

Concepts—12

This function is used typically to indicate an illegal command operation, invalid
user input, or some other such error that allows the Editor to continue normal
operation after it has discarded some improper data.

The second error function used by the Editor is similar to the VAX LISP cerror
function. The editor-error-with-help function looks like editor-error but
takes an additional format string, which is used to provide additional information
to a user about the error that has occurred, You can retrieve this additional
formatted string by using the ""Help on Editor Error" command.

For example, when the Editor is writing a file, an error might occur such as the
quota being exceeded. The Editor signals an error and displays a message in the
information area notifying the user of that fact. The editor-error-with-help
function formats detailed information about the error (the RMS error message),
which the user can retrieve if the problem is unknown by using the ""Help on
Editor Error" command.

When you are writing extensions to the Editor, it is often desirable to have
operations performed automatically when some particular part of the Editor state
changes. Such automatically executed operations are called hooks; the functions
that implement them are called hook functions.

The VAX LISP Editor implements hooks by attaching these functions to the
function slots of Editor variables. Such variables are called hook variables, and
their names, by convention, end with -hook - Any binding of a hook variable in
an Editor context can have only one function associated with it (not a list of
functions).

Two functions allow you to treat an ordinary Editor variable as a hook variable:
invoke-hook and reverse-invoke-hook.The arguments for each of these func-
tions are an Editor variable optionally followed by additional arguments to be
passed to the hook functions.

Normally, reference to an Editor variable results in a context search to locate a
single instance of a variable. The invoking of a hook produces different behavior.
A context search is made to locate all the instances of the hook variable in the
context search list (buffer local, minor styles, major style, and global). Then ar1
the functions (if any) attached to the instances of these variables are called in the
invoke-hook OF reverse-invoke-hook Call. This is a major difference between
hook variables and other Editor variables.

It is important to note that in the normal case (a call to invoke-hook)the func-
tions are called in the reverse order of the context search—global, major style,
minor styles (from oldest to newest), and buffer local. The purpose of this order-
ing is to allow writers of styles and individual Editor users to modify effects of
more global hook changes rather than to supplant them completely.

The reverse-invoke-hook function behaves identically to invoke-hook except
that it calls the functions in normal context search order. All hooks built into the
VAX LISP Editor are called with the invoke-hook function.

Setting a hook variable to a function in an Editor context will result in the loss of
any previous setting of the function slot of that variable in that context.

Concepts in Editor Programming

To set hook variables to new functions without losing existing hooks, you can
set the variables in the context of a user-defined style. (See Section 6.3 for
information on creating styles.) When the new style is active, a reference to a
hook variable results in evaluating the new hook function as well as any other
hooks that are attached to that variable in other active contexts.

For instance, you can create a new style called "My 1isp Hooks" or "My Text
Hooks'. You then define the hook functions you want and set them to the function
slots of the appropriate hook variables in the new style.

;5; Create a style to serve as a binding context.
(make-style (my-lisp-hooks :display-name "My LISP Hooks'™)

This style contains hooks related to editing LISP code.')

;;:; Define hook functions.

(defun hook-1 ...)
(defun hook-2 ...)

;5; Bind the appropriate hook variables in the new style,
;5; specifying the initial function definitions.
(bind-variable '"Name of Hook Variable™

context " (:style "My LISP Hooks™)
sinitial-function #"hook-1)

;55 Once the hook variables are bound in the style, they
;5> can be changed at any time using setf.

(setf (variable-function "Name of Hook Variable"
"(:style "My LISP Hooks'™))

#"hook-2)
You can activate the new style in any given buffer by executing "Activate Minor
style" command. You can also have the style activated automatically by adding
it to the lists that are the values of the Editor variables ""Default Minor styles",
"Default LISP Object Minor Styles™, or "Default Filetype Minor Styles".

Information Area

The Editor supports a dynamic multiwindow display. Windows can be displayed
and moved to arbitrary locations. There is a reserved area at the bottom of the
screen, however, that is never deleted or overlapped by an Editor window. This
is the information area. This area is always at least one row in height and is the
full width of the screen; its size can be increased.

The purpose of the information area is to have a location with guaranteed vis-
ibility where data can be displayed. Error messages are displayed here, as are
other messages such as those telling you what file was just written. There is a

global variable, *information-area-output-strean*, bound to an output stream
for this area.

The information area is not an Editor window and cannot be treated as such.
This means that there are no key bindings or Editor buffers associated with
it. The Editor window functions do not operate on the information area. The

information area should be used primarily as an information display area for the
user.

Concepts-13

Concepts in Editor Programming

Lines

Marks

Concepts-14

The CLEAR-information-area function erases any text currently in the informa-
tion area.

The information-area-height function tells you the current height of the infor-
mation area (in number of rows). You can change this value by using setf with
this form.

The line is the basic unit of text in the Editor; it contains a character string that
normally corresponds to a single displayed line of text. The string is exactly what
would be returned if you executed a read-line function on a text file. A line also
contains information concerning its own relative position within a group of lines,

as well as within a buffer that might contain a group of lines.

Execution of most of the Editor functions results, directly or indirectly, in the
alteration of either lines or their relations to other lines. The display subsystem
of the Editor displays groups of specified lines.

Lines are created as by-products of certain Editor operations (such as making
empty regions, breaking lines, and reading files). They can be accessed either
through marks that point into them or through following the forward and back-
ward links between lines. You can alter lines by inserting or deleting characters
in the line, replacing individual characters in the line, deleting a region that is
a portion of a line, or replacing the entire text of a line. You can delete lines by
deleting regions that encompass them.

A line is never shared among buffers or disembodied regions. Altering or re-
moving a line in one buffer cannot affect lines in another buffer. But because

it is possible for regions to overlap or be contained completely in other regions,
altering or removing lines in one region can affect the contents of another region
in the same buffer or disembodied region.

The ability to indicate any given position in text is central to the operation of any
editor. The VAX LISP Editor has a special type of LISP object, known as a mark,
for this purpose.

A mark contains two items of information that allow Editor functions to access
specific characters in the text—a pointer to a line, and a number indicating the
character position on the line. If you think of a single line of text as beginning
at the leftmost position on the screen, then you can think of the representation
of a character position as the number of characters “to the left”f the character
position of interest.

For purposes of text manipulation, you should think of the mark as pointing
between two characters. Any character inserted at the position of a mark is
always placed between the characters. With respect to the number representing
the character position, the mark points between positions reand n+1l. The mark
can also point between the beginning of a line and the first character (e = 0), or
between the last character of a line and the end of the line.

Marks are of two types—permanent and temporary.

Concepts in Editor Programming

There are two kinds of permanent marks. They differ with respect to whether
text is inserted following the mark (right-inserting) or preceding the mark (left-
inserting). The two kinds of permanent marks are designated by the keywords
Zleft-inserting and :right-inserting.Regardless of text insertions or dele-
tions made before or after them, a right-inserting mark remains “attached”o the
character that was to its left just prior to the operation; and a left-inserting mark
remains “dttached” o the character that was to its right.

A temporary mark, on the other hand, becomes invalid after any operation
affecting the character it points to. You define a temporary mark by using the
keyword :temporary.Temporary marks are used primarily in operations that
require a mark to be used just once. They are used because these marks require
less overhead in their creation and use than do permanent marks, and so are
much more efficient in some applications.

If the line that a temporary mark points into is deleted, the mark becomes invalid
and should no longer be used. If the line that contains a temporary mark is
affected by insertion, being copied, deletion, or being relocated, the temporary
mark becomes invalid and should no longer be used.

Marks are used primarily to indicate positions for character insertions or dele-
tions. Unlike many LISP functions, the functions that manipulate marks are
usually destructive operations on the mark. Moving a mark, for example, al-
ters the mark so that it points to a new location. Only the accessing functions
mark-line and mark-charpos do not alter the mark. Marks can be shared among
regions. A given mark can be used to delimit any number of regions.

When a region of text is deleted, any permanent marks within that region
(including the beginning and ending marks of the deleted region) then point to
the location that is the junction of the text that preceded the deleted text and the
text that followed the deleted text.

Figure Concepts-2 shows marks 1, 2, and 3 pointing to the indicated positions.

Figure Concepts-2: Before Deleting Region

ABCD EFGH I JKLMN

1 2
MLO-002998

Concepts-15

Concepts in Editor Programming

If the region defined by marks 1 and 3is deleted, the resulting text and mark
positions appear as shown in Figure Concepts-3.

Figure Concepts-3: After Deleting Region

ABC K LMN

ARV

MLO-002999

Named Editor Objects

Concepts-16

Several types of Editor object are called named objects. A named object is a
special kind of LISP object. Once a named object is created, it can be referred to
in any of three ways:

= By means of an expression whose evaluation results in the actual object. For
example, (stylep variable) is true if, and only if, the value of the variable is
an Editor style.

= By means of a symbol defined at the time the object was created. For exam-
ple, (find-command “write-current-buffer-command) returns non-NIL only
if write-current-buffer-command was specified as the name of a command
when the command was created.

= By means of a string that is the display name defined at the time the object
was created. For example, (Find-buffer "Jones.lIsp') returns non-Nii only
if the string "Jones. Isp" was specified as a display name when the buffer
was created.

The specification of the name when you are creating a named object is the same
for each of the different types:

name | (name :DISPLAY-NAME string)
where the following conditions exist:
= The name argument is a symbol.

= The string argument is a character string that can be specified as an alternate
access string to the object. If a display name is not specified, the print name
of the symbol is used as a display name.

Each named object can have a documentation string associated with it. Such a
string appears when the symbol of the object is described, or the documentation
function is used. The following documentation type is used in getting the docu-
mentation string of a specified named Editor object:

(EDITOR)-(ype
where type is one of the types of named Editor objects (as listed below).

Concepts in Editor Programming

The display names of all created named objects are stored in string tables. The
string table associated with each type of named object is bound to a special
variable of the form, *EDITOR-Eype-NAMES*. Use the string tables to find the
symbol associated with a given display name.

The following object types are named Editor objects:
= Editor Attribute

= Buffer

= Command

= Style

= Editor Variable

Buffers, styles, and commands are context-independent LISP objects—that is,
their creation functions @ake-buffer ,make-style,and make-command)create and
return LISP objects of these types. The other two named object types (Editor
variables and Editor attributes) are context-dependent objects. That is, once
defined, they must be bound in a specific Editor context before they are used. In
addition, the current value of these objects depends on the current Editor context.

Prompting

Often, the user must be prompted for information necessary to the operation

of some function or command. The operation involves first telling the user what
information is needed and then soliciting the input data. For example, the “write
Named File" command needs to ask the user to specify a file for the contents of
the buffer to be written to.

The VAX LISP Editor makes two functions available to you for creating a prompt:
PROMPT-FOR-INPUT and SIMPLE-PROMPT-FOR-INPUT.

Both functions make full use of the Editor capabilities for text processing and
display. They assume the availability of a buffer with the display name 'General
Prompting". This is a normal Editor buffer created with the value of the Editor
variable ""Default Major style" as its major style. You can change this style as
you can for any other Editor buffer. This buffer also has a number of buffer-local
command bindings and Editor variables that alter its normal behavior to provide
additional prompting services to the user.

There is a window associated with the "General Prompting" buffer. This window
is always visible in the Editor (in the row or rows above the information area),
and most user interaction occurs in this window. Although the window is a
normal Editor window, only a few of the Editor window functions operate on it.
Specifically, the prompting window cannot be removed from the screen or moved
to a different screen position.

Concepts—7

Concepts in Editor Programming

Concepts-18

Simple Prompting

The function simpie-prompt-for-input IS the more basic of the prompting
mechanisms. It displays an optional string in the prompting window and solicits
a response from the user, which echoes in the prompting window. The prompt
function reads and returns the user§input as a simple string; there is no Editor
interpretation of the individual characters. If the user supplies a null input
string, an optional default argument is returned.

General Prompting

A much more general mechanism is provided with the prompt-for-input func-
tion. This function has special capabilities that you can use to develop elaborate
prompting schemes when you are creating commands.

Validating User Input: The one required argument t0 prompt-for-input is the
validation function. This must be a function that accepts a string argument and
produces some value that will be returned by the prompt-for-input function.

The validation function indicates that the input string is invalid by returning n i .
In such an instance, prompt-for-input Signals an error to the user and awaits
further input. If the string input is a null string, and the value of the Required
keyword is n i1, the value of the :derauie keyword parameter is returned. You
actually can allow the validation function to return »i1 as a valid value by
returning multiple values of ni1 and «.

An example of a function you can use for validation isS fin d-command. This func-
tion returns a command function if the string is the name of a command, and
returns » i1 if the string is not the name of a command.

Providing Input Completion: The prom pt-for-input function provides you with
facilities that can attempt to complete partial user input. For example, the user
might be generally familiar with a set of Editor commands, but not remember the
exact display name of the one needed. By using the completion facility, the user
can type a portion of the name of a command and ask the facility to complete the
name automatically. The user normally requests input completion by typing a
ctrl/space (the null character).

There are three ways you can supply such completion assistance to a user:

= [fthe argument to the :completion keyword is a string, it is just inserted

into the prompting buffer.

= |f the argument to the :compietion keyword is a string table, the completion
function uses the text entered by the user as the key to the string table and
attempts to return a completed string that will be inserted automatically into
the prompting buffer.

The string table routines complete as much of the text as they can—supplying
the rest of the text string or only as much of it as is uniquely identifiable.
The user is informed of whether the input is now complete or if other entries
can be found starting with the same string. If no entry can be found to match
the user input, the facility deletes characters from the end of the user input
until some entry (possibly ambiguous) can be found in the string table. This
mechanism is used in the ""Execute Named Command" command.

Concepts in Editor Programming

= |f the argument given to the :completion keyword is a function, that function
is called and passed any arguments specified in the :completion-arguments
keyword. You have complete control over the displayed contents of the
prompting buffer. This method is used by the "edit File" command, which
attempts to complete user input by performing a directory search for a
matching file name.

Providing Alternatives: The alternatives option to general prompting is designed
to help the user choose among a set of alternative possibilities. For example,
when asked for a command name, the user might not know the exact spelling

of the name. Upon entering some input and asking for completion help, if the
Editor cannot respond with an exact command name, the user needs to be able to
get a list of possible names based upon the typed input. In such an instance, the
calling of the alternatives option—pressing keypad pr1 pPr2—yields a displayed
list of commands whose names begin with the typed string.

The general prompting facility uses the :ALTERNATiIVES and :ALTERNATiVES-
arguments arguments to enable this form of help. The argument to :alternatives
can be a string table or a function. If the argument is a string table, that table is
searched to find all possible entries that start with the string the user has typed.
The list is automatically displayed in the "Help' buffer.

If the argument is a function, that function is called and passed any arguments
that were given in the mlternatives-arguments argument. This function can
perform any operations it needs and should provide a display of the user § options
appropriate to the command. For example, such a function might do a wild-card
directory search for possible file names.

Providing Help: If, at any point in prompt-for-input, the user invokes the
"Prompt Help" command—presses keypad pro—the function takes action based on
the value of the :nheilp keyword. If the value is a string, that string is displayed
in the information area or in the "Help" buffer if the text has more lines than
will fit in the information area.

If the value is a function, that function is called and passed any arguments
that were specified in the :help-arguments keyword. This method, like that
for completion, gives you, the command writer, all the flexibility necessary for
supplying assistance tailored to the needs of the user and the command.

Regions

A region contains a portion of text, which can be part or all of one or more lines
in a group of related lines. The region is defined by two marks, which indicate
the beginning and ending positions of the region. Regions are treated as blocks of
text that can be manipulated as units—deleted or inserted, for example.

The marks that delimit a region can be either temporary or permanent. You can
use temporary marks for one-time operations on regions. If you use permanent

marks, delimit the beginning of the region with a right-inserting mark and the

end of the region with a left-inserting mark. If you use a left-inserting mark at

the beginning of a region or a right-inserting mark at the end, and if you insert
text at the beginning or end, the results can be unpredictable.

Concepts-19

Concepts in Editor Programming

Rings

Concepts-20

Regions can be of two types. The most commonly used region is a portion of text
inside a buffer. The region is defined by beginning and ending marks. Regions
of this type can share text with other regions. Regions can overlap in arbitrary
ways or be contained entirely within other regions. Since the text of multiple
regions can be shared, any alterations done in one region affect the text of any
other region containing the same text.

The second type of region is a disembodied region—a region of text not associated
with any buffer. This type of region can be created only by means of the make -
empty-region OF delete-and-save-region function. It can be used with any of
the normal text manipulation functions; for instance, insert-character would
work if given a mark that points into a disembodied region. Such a region cannot,
however, be displayed. Disembodied regions are often used as storage areas for
deleted text such as traditional cut-and-paste regions.

Highlight Regions

A highlight region is a special type of region that can be defined only for text in
a buffer. A highlight region can be used just as any other region in the Editor
is, and all the region manipulation functions operate on them. In addition, when
any of the text defined by the highlight region is visible in a window, that text
is displayed with any special display attributes specified when the region was
created.

The possible highlight attributes are any combination of reverse video, bold,
blinking, or underline. Highlight regions can overlap, but the resulting display
attribute for the overlapped section is not predictable. If either the beginning or
ending mark of a highlight region is moved, the display of the region tracks the
motion of the mark.

Special functions are available to you for creating and removing highlight regions.
Once created, the highlighting remains in effect until the region is removed by
means of remove-highlight-region Or deleted by means of either delete-region
Or delete-and-save-region.Removing a highlight region does not alter the text
of the region, but only the display attributes of the text.

A ring is a specialized data structure that implements a circular cache of data
values. Items of data can be retrieved either from the start of the ring (Last
In/First Out) or from the end of the ring (First In/First Out). In addition, since
the ring is circular, it can be rotated so as to move its start/end position.

Rings have general utility in editors—for example, to store a record of deleted
text. A set of utility routines is included to let you create and manipulate
ring structures. Rings and ring functions can also be used outside the Editor
environment.

Concepts in Editor Programming

Streams

VAX LISP 1/0 can be directed into and out of Editor regions by the creation of
streams to these objects.

Establishing an Editor input stream allows text to be read from a region with
standard LISP read operations. All normal LISP input functions can be used.
The usual Common LISP end-of-file action is taken whenever an attempt to read
past the end of the region occurs.

An Editor output stream allows normal VAX LISP write operations to put text
into a region at a particular mark. All normal LISP output functions can be used.
You can create a new line in the region by using the terpri function or by writing
anewline Character. Writing a return— 1inefeed pair does not automatically
break a line. These characters are inserted as ordinary nonprinting characters.

There are two additional functions that direct file operations into and out of
Editor regions. The insert-file-at-mark function inserts the contents of a
file at the designated mark. The write-file-from-region function writes the
contents of an Editor region to a file.

String Tables

String tables are specialized hash tables used to store information indexed by a
string. String tables are of general utility (they can be used outside the Editor
environment) and are used for such actions as completing partial user input (of
a command name, for example). There are functions that access these tables to
retrieve data based on a specified string. The mapping of Editor names to LISP
objects is accomplished through use of these tables.

The following special variables are bound to tables holding information on named
Editor objects:

e *EDITOR-ATTRIBUTE-NAMES*

= *EDITOR-BUFFER-NAMES*

e *EDITOR-COMMAND-NAMES*

e *EDITOR-STYLE-NAMES*

= *EDITOR-VARIABLE-NAMES™*

In addition to accessing information by means of the entire string, you can use
functions to do a search based on a partial string (for example, the first four

letters of a buffer name). These functions help in writing commands that attempt
to complete a partial string that is specified.

For example, you might want to execute a named command. The Editor can
accept a partial command name and, by means of the string table *edi tor-
command -names™*, complete the partial name; or the function might complete the
string only to the point at which it becomes ambiguous.

Concepts-21

Concepts in Editor Programming

Styles

Concepts-22

Example

If you are prompted for a command and enter Del, you can type a Cri/ee. There
are two commands that begin with Del- "Delete Buffer' and "Delete Window'".
The Editor therefore completes the string as far as Delete. You then have to
enter at least B or w(indicating an unambiguous command) before typing Col/Sece
again.

You are not limited to this set of string tables. The facility is general and there
are functions for creating new string tables. Strings are case-sensitive when
stored or returned, but case-insensitive during string matching.

A style is a collection of bindings of Editor keys, pointer actions, variables, and
attributes, coupled with functions executed when a style is either activated or
deactivated.

When a style is active in a buffer, it alters the current behavior of the Editor.
An example of a style is one that causes the Editor to recognize the structure
and syntax rules of LISP code. This behavior is appropriate only when you are
editing LISP source code. Properly editing code written in FORTRAN or PL/I
would require different Editor styles to be active.

Any number of styles can be active at one time when you are editing in a particu-
lar buffer. The styles can interact with one another to some extent, but one style
can also shadow (hide) the behavior of another.

For example, you might be using the style called "VAX 1isp" for editing LISP
code, but you would like to specify your own command for indenting LISP text.
The new indent command can be bound in another style called "1isp indent" and
"lisp indent" can be made active in the current buffer. The binding of the indent
command in "tisp indent" shadows the binding of the indent command in "vax
1isp", but all other commands defined by "VAX 1isp" are visible. Deactivating
"lisp indent" would “Gnshadow?the original indent command binding and make
it visible again.

General Style Writing

The writer of an Editor style must take steps to ensure that any needed Editor
support is present. For example, if the new style needs Editor variables bound in
the style or in any buffers that use the style, the style must bind them directly
or through use of a buffer-creation-hook function defined in that style. Editor
variables defined with the VAX LISP Editor can be bound freely where needed.

A variable should be bound in a style whenever the style writer wants to retain
information that can be used in any buffer having that style active. For example,
the variable "EDT Paste Buffer" is bound in "EDT Emulation style". With this
binding, any text that is cut from one buffer using "edt Emulation" style can be
pasted into any other buffer that also has "edt Emulation" style.

Command bindings defined for a style should be considered recommendations.
The user may change the bindings local to that style. This means, for example,
that help functions associated with a style should not assume that a particular
key sequence is bound to a particular command.

Concepts in Editor Programming

Major/Minor Style Distinction

Any Editor Style can be bound as a major or minor style on a per-buffer basis.
The decision is made normally on the basis of the extent of behavior changes
introduced by the style. You make this decision when you bind the style to a
buffer. A buffer can have only one major style active at a time, but any number
of minor styles active at the same time.

The set of global bindings of commands is extremely limited in the VAX LISP
Editor. This fact implies that any generally useful editing session must have a
powerful major style bound for each buffer. As supplied in the VAX LISP Editor,
the default major style is "edt Emulation™, which supplies a set of commands and
bindings that make the Editor behave as EDT does. You may want to replace this
default style with "emacs' or with one of your own that would make the Editor
behave in a different manner.

Minor styles are intended to be variations of the major style (or other minor
styles) that tailor the Editor behavior to more specific needs. For example, the
Editor comes with a "vVAX 1isp" style, which modifies the Editor so that it has
more knowledge of the syntax of LISP. When this style is active, typing the close
parenthesis key not only inserts the character but also locates and displays the
corresponding open parenthesis character. Most of the editing capabilities are
still vested in the major style of the buffer.

Activation of Styles

There are two methods by which styles can be activated automatically when a
new buffer is created. One method works for all created buffers; the other method
can be tailored for specific attributes of buffers.

The first method involves the Editor variables "'Default Major style" and
"Default Minor styles". When a buffer is created, its major style is set to the
current value of "Default Major style". As supplied, the value of this variable
is "EDT Emulation. If you change this value, it changes the major style of the
"Help" and "General Prompting" buffers to the new style. The minor styles

of the new buffer are set from the list of styles contained in "Default Minor
styles”. The global value of this variable is initiallynil .

The second method allows you to activate minor styles in a new buffer either
according to the file type of the associated file or whenever a LISP object is being
edited in the buffer.

The Editor variable ""Default File Type Minor styles" contains an association
list (a-list). Each key in the a-list is a string that is compared with the file type
of the new buffer § associated file. Each element contains a list of minor styles to
activate in any buffer with a file type matching the key. As supplied, this variable
is bound in the global context and has a single element of the form:

C'LSP" . ('VAX LISP™))

This means that "VAX 1isp" style is activated in any buffer containing a file that
has a file type of .LSP.

A second Editor variable, ""Default 1isp object Minor styles", contains a list of
minor styles to be activated in any buffer having an object being edited directly
from LISP. As supplied, this variable is bound in the global context and contains
the list:

Concepts-23

Concepts in Editor Programming

Concepts-24

('VAX LISP™)

This means that "VAX 1isp" style is activated automatically in any buffer used to
edit a LISP function.

Order of Activation: When a buffer is created, first the major style is activated
from the current value of "Default Major style" (unless the major style is
otherwise specified). Note that only the global value of this variable is used. The
minor styles are then activated from the list found in "Default Minor styles'".
The order of activation is in reverse order of the list. When the operation is
complete, the order of search of the minor styles is the same as that of the list.

If the buffer contains a LISP object, the minor styles in the ""Default 1isp object
Minor styles" list are next activated in reverse order. Any styles present in this
list will be searched before any of the styles found in the "Default Minor styles"
list.

If the buffer has an associated file, the association list contained in "Default
File Type Minor styles" is searched for an entry whose key matches the file type
of the associated file. The styles contained in the entry are activated in reverse
order so that the expected search order is maintained. Any styles present in this
list will be searched before any of the styles found in the ""Default Minor styles"
list.

Activation and Deactivation Functions: Activation and deactivation functions
are associated with each style. WHhen a style is made active, its activation func-
tion is executed; when a style is made inactive, its deactivation function is exe-
cuted. You make a style active by using the SETF macro with buffer-major-style
O buffer-minor-style-active.

If the "edt Emulation' major style is defined, and it is activated as the major
style in a given buffer by means of

(setf (buffer-major-style "Typeset.lsp™) "EDT Emulation')

the deactivation function of the old major style and the activation function of the
new major style are executed. This process occurs unless the new and old styles

are the same. Setting the major style to ni1 causes the old major style to become
inactive.

If "VAX LISP" style is made active as a minor style in a given buffer by means of
(setf (buffer-minor-style-active "factorial '"VAX LISP'™) ©

its activation function is executed, and the new style is pushed onto the front of
the list of active minor styles.

If an active minor style is again activated, and it is not the most recently acti-
vated minor style, the following actions occur:

= The deactivation function associated with the style is executed.

= The original entry for the style is deleted from the list of active minor styles.
= The activation function associated with the style is executed.

= The style is pushed onto the front of the list of active minor styles.

If a style that is active in any Editor buffer is modified (for example, if a new

variable is bound in that style), the modifications take effect in those buffers
immediately.

Concepts in Editor Programming

Windows

A window is both an Editor object and the display mechanism of the Editor. Each
window is a rectangular “dpening”1nto a portion of an Editor buffer. This opening
can be displayed on the screen of your display device, thereby showing you the
current state of text within viewing range. As windows are Editor objects, they
can be manipulated by various Editor functions.

Windows need not be the full height or width of the screen. Multiple windows can
be on the screen at the same time. Moreover, windows can fully or partially over-
lap one another. The dimensions of a window are dynamic and can be changed
either automatically by the Editor or under program control by a function you
write.

Only text that lies within a buffer region can be displayed. A buffer can have
multiple independent windows pointing into it. Since the text contained within a
buffer can be both longer than a window (more lines) and wider (more characters
per line), some provisions have been made to handle both circumstances.

Windows that are shorter than a buffer can be “hoved”Torward and backward
through the buffer. This is known as scrolting.In the VAX LISP Editor, it

is the window that scrolls in the direction you specify and not the text. For
example, when you scroll the window down (or forward) through the buffer, the
text appears to move up to accommodate the new window display; actually, the
window is moving down in the buffer. Windows can also be positioned absolutely
in a buffer (at the beginning or end of a buffer, or at a particular line).

A window that is narrower than the text of the buffer is treated differently.
The displayed text lines are either truncated on the right wherever the window
ends (that is, only as many characters as will fit in the width of a window are
displayed); or the lines “¥rap around”¥that is, the entire line of text is displayed
even if it overflows onto one or more additional rows). Truncation and wrapping
are indicated by special characters at the end of an affected line. The default is
an underlined > for truncation, and an underlined < for wrapping, but you can
specify different characters for any window.

The physical location of a window on the screen can be moved without affecting
the portion of the buffer that the window is displaying; that is, you affect only
where the text is displayed, not what is being displayed. A window can also
exist as an Editor object but not be displayed currently. The Editor provides
mechanisms for placing windows in and removing windows from the display
automatically. You can also do this under the control of your program.

A window has an optional label—a line of text that accompanies the window and
is displayed with it. The line can be displayed at the top, bottom, or either side

of a window. By default, the label is placed at the bottom of the window and can
be of any length up to the length of whatever edge of the window the label is

displayed on. It can contain any text you want—for example, a buffer name or
file name.

The label can be highlighted to give a visual separation from the buffer text being
displayed. By default, this is done with reverse video on terminals that support
this feature (VTIOO-compatible). The highlighting can be changed under program
control. By default, the label is centered on whatever edge of the window is
used for this display. You can control the label§ position on a line, however, by
specifying a starting position for the label—an offset value that is the number of

Concepts—=25

Concepts in Editor Programming

characters from the start of the window side (from the top of the window, if the
label is on the right or left; or from the left-hand side, if the label is on the top or
bottom).

Editor windows are of two types—floating and anchored. Display of text in a
window is unaffected by the type of the window. The distinction between the two
lies in how they are treated by the display subsystem.

The simplest distinction is that floating windows are always displayed “6n top” bf
(overlaying) any anchored windows, possibly obscuring them.

NOTE

With such overlaying, it is possible that the cursor that appears to be
in the floating window is, in fact, indicating a position in the overlaid
anchored window.

An anchored window cannot obscure a floating window. Another difference
between anchored and floating windows is that anchored windows are subject to
automatic resizing and repositioning by the display subsystem. Floating windows
are treated independently of other windows.

The two types of windows are identified with the keywords :floating and
:anchored . By default, created windows are anchored if they are the full width
of the screen and are displayed starting in column 1 (the left-hand side of the
screen). Otherwise, they are floating. You can specify a type for any window you
create, and you can also change the type of an existing window.

The display subsystem allows you to gain full control over the treatment of
windows on the display—which are displayed, where they are, and what they
overlap. You can allow the display subsystem to exercise automatic control over
the display of anchored windows. Floating windows are always assumed to be
under program control.

The automatic treatment of anchored windows follows the rules given below:

= Text in one anchored window is never obscured by text in another anchored
window.

= The bottom border of an anchored window is never obscured by another
anchored window, but the top and side borders can be obscured.

= Anchored windows are adjusted automatically in height when other anchored
windows are added to, or removed from, the display. The adjustment ensures
that the text areas of anchored windows do not overlap one another, and the
total height of all the anchored windows on the screen is the full height of the
screen minus the height of the information area and the prompting window.

= Any of the functions that manipulate windows on the screen assume that,
unless explicit directions are given for the treatment of anchored windows
(such as specifying height or relative position), all the currently displayed
anchored windows are subject to automatic manipulation.

A record is also kept of the time a window is created. You can retrieve this

information with the window-creation-time function. It returns a value in
universal time.

Concepts-26

Partlll
Editor Object Descriptions

This part describes each of the objects provided with the VAX LISP Editor. The
objects are listed by name in alphabetical order.

The Editor objects listed include the following types:
= Functions
= Macros
= LISP global variables
= Named Editor objects
— Buffers
— Commands
— Editor attributes
— Editor variables
— Styles
The other objects provided with the Editor—lines, marks, regions, string tables,
streams, and windows—are unnamed objects. The instances of unnamed objects
are not described here, except for those that are bound to LISP variables. For

instance, the string table bound to *editor-command-names™ and the stream
bound to *information-area-output-stream™ are described here.

Conventions Used in This Part

Several conventions are used in the individual object descriptions in this part.
These conventions pertain to:

= Named Editor Objects
= Functions Associated with Commands
= Functions That Take Named Editor Objects

These conventions are described separately here.

Named Editor Objects

Named Editor objects can have both a symbol and a display name, which is a
string. For instance:

= edt-emulation and "edt Emulation" both refer to the same style object.

< EDITOR-PROMPTING-BUFFER and “General Prompting' both refer to the Same
buffer object.

The description of each named Editor object identifies both its symbol and its

display name. The descriptions are alphabetized according to the objects Wisplay
names.

Functions Associated with Commands

The functions associated with commands are listed according to the display
names of the commands. For instance, the function indent-lisp-region-command
is described along with the command "indent 1isp Region". The symbol of the
function and the symbol name of the command are identical.

Objects-29

The command descriptions give the full format of the associated functions, in-
cluding all optional arguments. Whether you can supply values for optional
arguments depends on whether you are executing a command in the Editor or
calling its associated function from LISP code:

= When executing a command within the Editor, you can supply a value only
for the prefix parameter (by previously executing a command such as "Supply
Prefix Argument' or "Supply emacs Prefix'). If the Editor needs additional
values to execute the command, it will either use default values or prompt for
a needed value.

= When calling a command-associated function from LISP code, you can supply
a value for any parameter.

Functions That Take Named Editor Objects

Functions that take named Editor objects as arguments are of two kinds: those
that can take an object specifier and those that can take only the object itself.

The function descriptions in this part distinguish between the two kinds of
function by identifying the argument as either object-type or object-type specifier.
For instance,

= The buffer argument to the function buffer-writable is identified as “An
Editor buffer.””

= The buffer argument to the function buffer-major-style is identified as “An
Editor buffer specifier.””

Object specifiers include the display names and the symbols of named Editor
objects. Functions that take objects (not object specifiers) cannot take a display
name or symbol specifier. Recall that the symbol of a named Editor object does
not evaluate to the object (see Section 1.3.3).

The difference in how you call functions that take only objects and functions that
take specifiers is illustrated by buffer-writable and buffer-major-style:

= puffer-writable takes an Editor buffer. The argument can be specified only
by a form that evaluates to a buffer object. For instance:

(buffer-writable (current-buffer))

or

(buffer-writable (find-buffer “editor-help-buffer))
or

(buffer-writable *editor-default-buffer®)

= buffer-major-style takes an Editor buffer specifier. The argument can be
specified by any of the following:

= A buffer display name
(buffer-major-style "Mybuffer_lsp'™)
= A buffer symbol
(buffer-major-style “editor-help-buffer)

Editor Object Descriptions

= A form that evaluates to a buffer object, such as
(buffer-major-style (current-buffer))
or
(buffer-major-style (find-buffer “editor-help-buffer))
or

(buffer-major-style *editor-default-buffer¥*)

ACTIVATE MINOR STYLE Command

Prompts the user for the name of a style and then activates that style as a minor
style in the current buffer. Alternatives and completion are available during the
prompt.

Category
:GENERAL-PROMPTING

Display Name Format

Activate Minor Style

Function Format

ACTIVATE-MINOR-STYLE-COMMAND prefix

Arguments

prefix
Ignored

Return Value

The new minor style

Objects-31

Editor Object Descriptions

ALTER-WINDOW-HEIGHT Function

Format

Increases (for a positive delta-value argument) or decreases (for a negative delta-
value argument) the height of the specified window by the specified number of
rows.

If the window is currently displayed and is of the anchored type, the heights
of other displayed anchored windows are adjusted accordingly. The new height
of the window cannot be less than 1 If the new height is too large to fit on
the screen with the other displayed anchored windows, the height is set to
the maximum height permissible. Calling this function causes the "Window
Modification Hook" to be invoked.

ALTER-WINDOW-HEIGHT window delta-value

Arguments

window
An Editor window. It need not be displayed currently.

delta-value
An integer

Return Value

The new height of the window

ANCHORED WINDOW SHOW LIMIT Editor Variable

Specifies the maximum number of Editor windows that can be displayed simulta-
neously by repeated calls to the function show-window . If the number of anchored
windows already displayed is greater than or equal to the value of this variable,
then show-window Will remove the least recently used window when it displays
another window. The default global value is 2

The action of push-window is not affected by this variable.

Display Name Format

Anchored Window Show Limit

Objects-32

Editor Object Descriptions

Symbol Format
ANCHORED-WINDOW-SHOW-LIMIT

APROPOS Command

Displays a list of objects of the specified type in the "Help™ buffer. Only objects
whose name contains the specified string are listed. If the object type or string
is nil, the user is prompted for it in the Editor prompting window. An object

type of t signifies that all Editor objects containing the specified string are to be
displayed.

Category

:GENERAL-PROMPTING

Display Name Format

Apropos

Function Format

APROPOS-COMMAND prefix &OPTIONAL type string

Arguments

prefix
Ignored

type
Three possibilities:

= A named Editor object type @ttribute,buffer,command,variable,OF style)
= symbol to search all LISP objects

- t to search all named Editor objects

string
The string to be matched in the object names

Return Value

None

Objects-33

Editor Object Descriptions

APROPOS-STRING-TABLE Function

Searches the specified string table for all entries whose key contains the specified
string as a substring. It returns a list of all such keys in alphabetical order. If
the string is of zero length, all the keys in the string table are returned.

Format

APROPOS-STRING-TABLE string string-table

Arguments

string
A string to be used as a search string

string-table
A string table to be searched

Return Value
An alphabetical list of keys

APROPOS WORD Command

Does an apropos of the word at the mark and displays the result in the "Help"
buffer. If the mark is not supplied, it defaults to the current buffer point.

Display Name Format

Apropos Word

Function Format

APROPOS-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Objects-34

Editor Object Descriptions

Return Value
Undefined

ATTENTION Function

Gains the attention of the user.

Format

ATTENTION

Arguments
None

Return Value
NIL

ATTRIBUTE-NAME Function

Takes an attribute specifier as an argument and returns the display name of the
attribute.

Format

ATTRIBUTE-NAME attribute

Arguments

attribute
An attribute specifier

Return Value
A string that is the display name of the attribute

Objects-35

Editor Object Descriptions

BACKWARD CHARACTER Command

Moves the point in the current window back one character if the prefix argument
is ni1.Ifyou specify an integer prefix argument, the point is moved backward (or
forward, if the prefix is negative) by the number of characters you indicated. An

error is signaled if the point is at the beginning of a buffer.

Display Name Format

Backward Character

Function Format

BACKWARD-CHARACTER-COMMAND prefix

Arguments

prefix
A fixnum specifying how many characters to move

Return Value
The updated buffer point mark

BACKWARD KILL RING Command

Rotates the kill ring backward by the number of elements specified by the prefix.

Category
‘KILL-RING

Display Name Format

Backward Kill Ring

Function Format

BACKWARD-KILL-RING-COMMAND prefix

Objects-36

Editor Object Descriptions

Arguments

prefix
An integer or nil

Return Value
Undefined

BACKWARD PAGE Command

Moves the point in the current buffer backward one page if prefix is ni1.If you
specify an integer prefix argument, the point is moved backward (or forward, if
prefix is negative) by the number of pages you indicated. A page delimiter is a
character that has a ""Page Delimiter' attribute value of L

Display Name Format

Backward Page

Function Format

BACKWARD-PAGE-COMMAND prefix

Arguments

prefix
A fixnum specifying how many pages to move

Return Value
The updated buffer point mark

BACKWARD SEARCH Command

Prompts for an argument string if the user does not supply one. The string is
used as the pattern for a backward search. If the search is successful, the buffer
point is moved to the beginning of the first matching string. If the user does
not specify a string when prompted, the command takes the value of the Editor
variable "Last Search string". If the user specifies a prefix argument, n, this
command looks for the nth occurrence of the pattern.

Objects-37

Editor Object Descriptions

Display Name Format

Backward Search

Function Format

BACKWARD-SEARCH-COMMAND prefix &OPTIONAL String

Arguments

prefix
The fixnum repeat count

string

The string to search for. If you do not specify a string when prompted, string
defaults to the value of the Editor variable "Last Search string".

Return Value
The modified point

BACKWARD WORD Command

Moves the point back to the end of the preceding word. If you specify an integer
prefix argument, the point is moved back the number of words you indicate.
Words are delimited by characters having a "Word Delimiter' attribute value of
l.

Display Name Format

Backward Word

Function Format

BACKWARD-WORD-COMMAND prefix

Arguments

prefix
A positive integer or NIL

Objects-38

Editor Object Descriptions

Return Value
The modified point

BACKWARD-WORD-COMMAND Function

Moves the point backward to indicate the last character of the preceding word
(or the nth preceding word if a prefix n was supplied). This function takes an
optional mark argument that defaults to the current buffer point. It moves the
mark backward to indicate the word delimiter character that precedes the present
word (or the preceding word, if the mark is initially indicating a word delimiter).
If a prefix n is supplied, this function moves the mark backward to indicate the
word delimiter preceding the nth word.

Format

BACKWARD-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix
An integer or nil

mark
An Editor mark that defaults to the current buffer point

Return Value
The modified mark

BEGINNING OF BUFFER Command

Moves the point to the beginning of the current buffer.

Display Name Format

Beginning of Buffer

Function Format

BEGINNING-OF-BUFFER-COMMAND prefix

Objects-39

Editor Object Descriptions

Arguments

prefix
Ignored

Return Value
The modified point

BEGINNING OF LINE Command

Moves the point to the beginning of the current line. If you specify an integer
prefix argument, the point is moved down the number of lines you indicated (or
up, if the prefix is negative) and then to the beginning of the new line.

Display Name Format

Beginning of Line

Function Format

BEGINNING-OF-LINE-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value
The updated buffer point mark

BEGINNING OF OUTERMOST FORM Command

Moves the buffer point from inside a LISP form to the beginning of the outermost
form surrounding it. If the point is in between two outer forms, it is moved to
the beginning of the preceding one. If there is no preceding outer form, an Editor
error is signaled. An outermost form is one whose opening parenthesis is in the
leftmost column on the screen.

Display Name Format

Beginning of Outermost Form

Objects-40

Editor Object Descriptions

Function Format

BEGINNING-OF-OUTERMOST-FORM-COMMAND prefix

Arguments

prefix
Ignored

Return Value
The updated buffer point

BEGINNING OF PARAGRAPH Command

Moves the specified mark to the beginning of the paragraph. The mark defaults
to the current buffer point.

Display Name Format

Beginning of Paragraph

Function Format

BEGINNING-OF-PARAGRAPH-COMMAND prefix &OPTIONAL mark

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Return Value
The updated mark

Objects-41

Editor Object Descriptions

BEGINNING OF WINDOW Command

Moves the cursor to the beginning of the current window.

Display Name Format

Beginning of Window

Function Format

BEGINNING-OF-WINDOW-COMMAND prefix &OPTIONAL mark window

Arguments

prefix
Ignored

mark
The mark to be placed at the beginning of the window. It defaults to the current

buffer point.

window
The window in which the mark is to be moved. It defaults to the current window.

Return Value
The current buffer point

BIND-ATTRIBUTE Function

Takes a defined Editor attribute as an argument and creates a binding of that
attribute in the specified context with the specified type and value.

Format

BIND-ATTRIBUTE attributed KEY :TYPE :CONTEXT :INITIAL-VALUE

Arguments

attribute
An Editor attribute specifier

:TYPE
A LISP type specifier. The default is (mod 2).

Objects-42

Editor Object Descriptions

:CONTEXT
An Editor context specifier. The defaultis :gi1obar.

JINITIAL-VALUE
The attribute value that all characters will initially have for this attribute in this
context. It must be of the type specified by itvpe. The default is o.

Return Value
The attribute symbol

BIND COMMAND Command

Prompts the user for a command name, a key sequence, and a binding context.
This command is useful for binding commands to keys without leaving the context
of the Editor. Completion and alternatives are available for the command name
and for the style or buffer name depending on the desired binding context. The
key sequence must be entered literally as the sequence of characters to bind. This
frequently requires the quoting of control characters.

Category
:GENERAL-PROMPTING

Display Name Format

Bind Command

Function Format

BIND-COMMAND-COMMAND prefix

Arguments

prefix
Ignored

Return Value

The function associated with the command

Objects-43

Editor Object Descriptions

BIND-COMMAND Function

Binds the specified key-sequence to the specified command in the specified con-
text.

Format

BIND-COMMAND command key-sequence &OPTIONAL context

Arguments

command
An Editor command specifier command

key-sequence
A character or a sequence of characters. The key sequence cannot contain the
characters ctrl/s or crl/Q. It should not contain the current cancel character cwl/C

(by default).

context
The context in which to bind the command. The argument context defaults to

:GLOBAL.

Return Value
The function associated with the command

BIND-POINTER-COMMAND Function

Binds the specified action of the pointing device to the specified command in

the specified context. The possible actions of the pointing device are a button
transition (depressing or releasing) or a movement of the pointer cursor. The
Editor invokes the bound command in response to a pointer action only when the
pointer cursor is in the current window.

The button-state parameter is used to indicate that one or more pointer
buttons must be in a down state for the specified pointer-action to invoke the
command. [f the pointer-action argument is a button transition, then any value
in the button-state argument that corresponds to that button is ignored.

Format

BIND-POINTER-COMMAND command pointer-action
&KEY :CONTEXT :BUTTON-STATE

Objects-44

Editor Object Descriptions

Arguments

command
An Editor command specifier

pointer-action
A keyword, a button constant, or a list. The possible values are:

: MOVEMENT The command is invoked by any movement of the pointer cursor
within the current window. Cursor movement is defined as a
movement across at least one character in any direction.

:BUTTON-1, . . . Under DECwindows, the command is invoked by depressing the

, :BUTTON-5 pointer button that corresponds to the keyword. The keywords are
specified as :BUTTON-nN, starting with keyword :BuTTON-1for the
leftmost button.

A button constant Under UIS, the command is invoked by depressing the pointer but-
ton that corresponds to the constant. The constants are specified as
UIS :POINTER-BUTTON-n, starting with UIS :POINTER-BUTTON-1
for the left-most button. Note that the symbols for button constants
are located in the "u1s" package; see VAXLISP Interface to VWS
Graphics for more information.

A list whose CAR is If the CADR iS non-NIL, the command is invoked when the pointer

a button constant button corresponding to the CAR is depressed.

or button keyword Ifthe CADR is NIL, the command is invoked when the pointer button

corresponding to the CAR is released.

:CONTEXT value
A context specifier. The default is miobal.

:BUTTON-STATE value
Under UIS, a button constant, or the 1o0gana 0f two or more button constants.
Under DECwindows, a button keyword or list of button keywords. The button(s)

indicated must be in a down state for the specified pointer-action to invoke the
command.

If a button transition is specified as the pointer-action argument, any value that
corresponds to that button in the :button-state argument is ignored.

Return Value

The function associated with the command

BIND-VARIABLE Function

Binds the specified Editor variable in the specified context. You get a warning
if you attempt to bind a variable in a context in which it is already bound. The
function specified in the bind-nhook argument of define-editor-variabie IS
called and passed the symbol and the binding context.

Objects-45

Editor Object Descriptions

Format

BIND-VARIABLE symbol & KEY :CONTEXT :SET-VALUE-HOOK
:SET-FUNCTION-HOOK :INITIAL-VALUE
rINITIAL-FUNCTION

Arguments

symbol
An Editor variable specifier

:CONTEXT
An Editor context specifier that defaults to :gioba

:SET-VALUE-HOOK

A function invoked whenever the value of the variable is set in the specified
context. The function is called with three arguments—the variable, the context of
the variable, and the new value. It defaults to ni1 .

:SET-FUNCTION-HOOK

A function invoked whenever the function slot is changed in the specified context.
The function is called with three arguments—the variable, the context of the
variable, and the new function. It defaults to n i1 .

(INITIAL-VALUE

The value given to the binding of the variable created in the specified context. It
defaults to nir .

(INITIAL-FUNCTION
The function bound to the variable in the specified context. It defaults tonir.

Return Value

The symbol that names the variable

BREAK-LINE Function

Breaks a line at the position pointed to by the specified mark.

Format

BREAK-LINE mark

Objects—46

Editor Object Descriptions

Arguments

mark

A mark specifying the position at which a line is to be broken. If the mark is
left-inserting, the mark is moved to the beginning of the new line. If the mark is
right-inserting, the mark remains at the end of the original line.

Return Value

The updated mark

BUFFER-CHECKPOINTED Function

Returns the pathname of the file where checkpoints of the specified buffer will be
written, or i1 if the buffer is not being checkpointed. You can change either the
file to which the buffer is checkpointed or make the buffer not checkpointed by

using this form with se«r. When changing the value, you can set three possible
values:

nil makes the buffer not checkpointed.

= A pathname writes the buffer to that file.

- 1 writes the buffer checkpoints to a file name the Editor creates from the
name of the object being edited.

Format

BUFFER-CHECKPOINTED buffer

Arguments

buffer
An Editor buffer

Return Value

Apathname or nil

BUFFER-CHECKPOINTED-TIME Function

Returns the universal time that the buffer was last checkpointed; or i1, if it has
not been checkpointed.

Objects-47

Editor Object Descriptions

Format

BUFFER-CHECKPOINTED-TIME buffer

Arguments

buffer
An Editor buffer

Return Value

A value in universal time or nil

BUFFER CREATION HOOK Editor Variable

Specifies a hook function that is called whenever a new buffer is created. The
hook function is passed one argument—the new buffer. The function is called
after the complete buffer context is created, and in the context of the new buffer.

Display Name Format

Buffer Creation Hook

Symbol Format

BUFFER-CREATION-HOOK

BUFFER-CREATION-TIME Function

Returns the universal time at which the specified buffer was created. For infor-
mation on universal time, see Common LISP: The Language,

Format

BUFFER-CREATION-TIME buffer

Arguments

buffer
The buffer for which the time is desired

Objects—48

Editor Object Descriptions

Return Value
The universal time at which the buffer was created

BUFFER DELETION HOOK Editor Variable

Specifies a hook function called just before a buffer is deleted. It is called in the
context of the buffer to be deleted and before any alterations are made to the
buffer. It is passed one argument—the buffer to be deleted.

Display Name Format

Buffer Deletion Hook

Symbol Format
BUFFER-DELETION-HOOK

BUFFER-END Function

Changes the specified mark so that it points to the end of the buffer.

Format
BUFFER-END mark &OPTIONAL buffer

Arguments

mark
An Editor mark

buffer
An Editor buffer. This defaults to the buffer the mark is pointing into.

Return Value
The modified mark

Objects-49

Editor Object Descriptions

BUFFER ENTRY HOOK Editor Variable

Specifies a hook function invoked whenever a different buffer becomes current.
The function is called with one argument—the new buffer—and is evaluated in
the context of the new buffer.

Display Name Format

Buffer Entry Hook

Symbol Format

BUFFER-ENTRY-HOOK

BUFFER EXIT HOOK Editor Variable

Specifies a hook function invoked whenever a different buffer becomes current.
The function is called with one argument—the old buffer—and is evaluated in the
context of the old buffer.

Display Name Format

Buffer Exit Hook

Symbol Format

BUFFER-EXIT-HOOK

BUFFER-HIGHLIGHT-REGIONS Function

Returns a list of the highlight regions associated with the specified buffer, or ni1
if there are no such regions.

Format

BUFFER-HIGHLIGHT-REGIONS buffer

Objects-50

Editor Object Descriptions

Arguments

buffer
An Editor buffer

Return Value

Alist of highlight regions or nil

BUFFER-MAJOR-STYLE Function

Returns the major style associated with the specified buffer, or ni1 if there is
none. You can use setf With buffer-major-style to change the major style of a
buffer. This action causes the "Major style Activation Hook" to be invoked.

Format

BUFFER-MAJOR-STYLE buffer

Arguments

buffer
An Editor buffer specifier

Return Value

The major style of the buffer, or ni1

BUFFER-MINOR-STYLE-ACTIVE Function

Returns T if the specified style is active in the specified buffer. You can use setf
with buffer-minor-style-active t0o add minor styles to, or delete them from, a
buffer. This action causes the "Minor style Activation Hook" to be invoked.

Format

BUFFER-MINOR-STYLE-ACTIVE buffer style

Arguments

buffer
An Editor buffer specifier

Objects-51

Editor Object Descriptions

style
An Editor style specifier

Return Value

T or NIL

BUFFER-MINOR-STYLE-LIST Function

Returns a list of the minor styles active in the specified buffer. The order of the
styles is the same as the search order.

Format

BUFFER-MINOR-STYLE-LIST buffer

Arguments

buffer
An Editor buffer specifier

Return Value
A list of the minor styles

BUFFER-MODIFIED-P Function

Is a predicate that returns 7 if the buffer has been modified and » i1 if it has not.
You can use setr With burfer-modiriea-p t0 change the status of whether or not
the buffer is considered to be modified.

Format

BUFFER-MODIFIED-P buffer

Arguments

buffer
An Editor buffer

Objects-52

Editor Object Descriptions

Return Value
T or NIL

BUFFER-NAME Function

Returns the name of the buffer you specify. You can use sett With buffer-name
to change the name of the buffer. This action causes the "B uffer Name Hook" t0
be invoked.

Format

BUFFER-NAME buffer

Arguments

buffer
An Editor buffer

Return Value

The buffer name

BUFFER NAME HOOK Editor Variable

Is a hook function called with the buffer and the new name as arguments when
the name of a buffer is changed.

Display Name Format

Buffer Name Hook

Symbol Format

BUFFER-NAME-HOOK

Objects-53

Editor Object Descriptions

BUFFER-OBJECT Function

Returns the object being edited in the buffer you specify. This object is a path-
name in the case of a file, a symbol in the case of a LISP function or the value of
a symbol, or the form of a generalized variable. You can use setr With buffer-
object to change the object being edited in the buffer. This action causes the
"Buffer Object Hook" t0 be invoked.

Format

BUFFER-OBJECT buffer

Arguments

buffer
An Editor buffer

Return Value
The object being edited in the buffer

BUFFER OBJECT HOOK Editor Variable

Is a hook function called with the buffer and the new object as arguments when
the object associated with a buffer is changed.

Display Name Format

Buffer Object Hook

Symbol Format

BUFFER-OBJECT-HOOK

BUFFER-PERMANENT Function

Is a predicate that returns ¢ if the specified buffer is permanent (that is, if it
cannot be deleted by the delete-buffer function). It returns n it otherwise. You
can change the permanent status of a buffer by using the setf macro with this
form.

Objects-54

Format

BUFFER-PERMANENT buffer

Arguments

buffer
An Editor buffer

Return Value

T or NIL

BUFFER-POINT Function

Returns the point of the buffer you specify.

Format

BUFFER-POINT buffer

Arguments

buffer
An Editor buffer

Return Value
A mark that is the point for the buffer

BUFFER-REGION Function

Returns the region of the buffer you specify.

Format

BUFFER-REGION buffer

Arguments

buffer
An Editor buffer

Editor Object Descriptions

Objects-55

Editor Object Descriptions

Return Value
The buffer region

BUFFER RIGHT MARGIN Editor Variable

Can be set to an integer that specifies the last character position at which text
can be inserted in each line by means of the commands 'Self insert" and
"Quoted insert”. If more text is inserted than will fit on a line of this length,
then the line is automatically broken at the last word break within the right
margin. In the default Editor, this variable is bound globally and set to NIL.

Note that this variable does not affect the operation of other text-inserting
commands, such as "edt Paste'™ and "Yank".

Display Name Format

Buffer Right Margin

Symbol Format

BUFFER-RIGHT-MARGIN

BUFFER SELECT MARK Editor Variable

Is used by a number of commands that need to retain a special mark indicating a
position in a buffer. It is bound to a mark by commands that select regions of a

buffer. See also "Buffer Select Region'.

Display Name Format

Buffer Select Mark

Symbol Format

BUFFER-SELECT-MARK

Objects-56

Editor Object Descriptions

BUFFER SELECT REGION Editor Variable

Is bound by several commands to a “Selected”tegion in a buffer. This variable is
created as a local variable to each buffer. See also "'Buffer Select Mark'.

Display Name Format

Buffer Select Region

Symbol Format

BUFFER-SELECT-REGION

BUFFER-START Function

Changes mark so it points to the beginning of the buffer.

Format

BUFFER-START mark &OPTIONAL buffer

Arguments

mark

buffer
A buffer. If no buffer is specified, the default is the buffer the mark points into.

Return Value
The modified mark

BUFFER-TYPE Function

Returns a keyword indicating the type of object being edited in the specified
buffer. This function returns ni1 if there is no LISP object or file associated with
the buffer.

Format

BUFFER-TYPE buffer

Objects-57

Editor Object Descriptions

Arguments

buffer
An Editor buffer

Return Value
One of the following keywords or n i1 :

:FiLE. The object is a file.
function. The object is the function definition of a symbol.

:vatue. The object is the value of a symbol.
setf-form. The object is a generalized variable acceptable t0 setr.

BUFFER-VARIABLES Function

Returns a list of Editor variables bound in the specified buffer.

Format
BUFFER-VARIABLES buffer

Arguments

buffer
An Editor buffer

Return Value
A list of Editor variables (symbols)

BUFFER-WINDOWS Function

Returns a list of the windows that are associated with the specified buffer. This
list can include windows that are not visible.

Format
BUFFER-WINDOWS buffer

Arguments

buffer
An Editor buffer

Objects-58

Editor Object Descriptions

Return Value
A list of the windows that open into the buffer

BUFFER-WRITABLE Function

Returns ¢ if modifications to the specified buffer can be written back as a new
version of the file being edited or an update of the LISP object being edited, or
ni 1 if they cannot. You can use setf With buffer-writable to change the status
of whether or not buffer modifications can be written.

Format

BUFFER-WRITABLE buffer

Arguments

buffer
An Editor buffer

Return Value

Tor NIL

BUFFER-WRITTEN-TIME Function

Returns the universal time that the buffer you specify was last “Fritten” by the
"Write Current Buffer™ or "Write Modified Buffers"™ command, Or NIL if the
buffer has never been written. If the buffer is associated with a file, this function
returns the time when the buffer contents were last written to the file. If the
buffer is associated with a symbol or a setf form, the time is the last time that
the buffer contents were evaluated. (See Common LISP: The Language for a
description of universal time.)

Format

BUFFER-WRITTEN-TIME buffer

Arguments

buffer
The buffer for which you want the time

Objects-59

Editor Object Descriptions

Return Value
Universal time that the buffer was last written, or n i

BUFFERP Function

Is a predicate that returns T if its argument is a buffer.

Format

BUFFERP object

Arguments

object
Anything

Return Value

T or NIL

CANCEL-CHARACTER Function

Returns the character that, if typed while in the Editor, causes the current action
to be terminated. The initial value is #\ AC. You can change the cancel character
by using this form with se«r.

NOTE

The cancel character must be an ASCII control character whose
character code is in the range O to 31. Also, it cannot be #\Return,
#\Linefeed, #\Escape, #\AQ or #\AS.

Format

CANCEL-CHARACTER

Arguments
None

Objects-60

Editor Object Descriptions

Return Value

The current cancel character

CAPITALIZE REGION Command

Capitalizes all the words in the current select region.

Display Name Format

Capitalize Region

Function Format

CAPITALIZE-REGION-COMMAND prefix &OPTIONAL region

Arguments

prefix
Ignored

region
A region that defaults to the value of the "Buffer Select Region" Editor variable

Return Value

The modified region

CAPITALIZE WORD Command

Capitalizes the current word.

Display Name Format

Capitalize Word

Function Format

CAPITALIZE-WORD-COMMAND prefix &OPTIONAL mark

Objects-61

Editor Object Descriptions

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Return Value

A region containing the capitalized word

CATEGORY-COMMANDS Function

Returns a list of Editor commands cataloged under the specified category.

Format

CATEGORY-COMMANDS category

Arguments

category
A symbol used as a command category

Return Value

A list of Editor command symbols

CENTER-WINDOW Function

Causes the display in the specified window to be adjusted so the line pointed to
by the specified mark is centered in the display window.

Format

CENTER-WINDOW window mark

Arguments

window
An Editor window

Objects-62

Editor Object Descriptions

mark
An Editor mark that must point into the same buffer the window is associated
with

Return Value
The mark

CHARACTER-ATTRIBUTE Function

Looks up and returns the value the specified attribute has for the character. You
can use setf With character-attribute to modify the attributes of a character.
Changing the value of a character attribute causes the "character Attribute
Hook™ to be invoked.

Format

CHARACTER-ATTRIBUTE attribute character &OPTIONAL context

Arguments

attribute
An Editor attribute

character
The character whose attribute value you want

context
A context specifier. Defaults to the current context, unless the function is used
with setf in which case the context defaults to :g1obal.

Return Value
The attribute value for the specified character

CHARACTER ATTRIBUTE HOOK Editor Variable

Is a hook function called with the attribute, character, context, and new value as
arguments, just before the value of a character attribute is changed.

Display Name Format

Character Attribute Hook

Objects-63

Editor Object Descriptions

Symbol Format
CHARACTER-ATTRIBUTE-HOOK

CHARACTER-OFFSET Function

Changes the specified mark so that it points n characters after its former position
(or before its former position, if n is negative). If there are not n characters after
the mark position (or before, if n is negative), mark is not modified, and nin is

returned.

Format
CHARACTER-OFFSET mark n

Arguments

mark
An Editor mark

n
A fixnum

Return Value
The modified mark or NIL

CHECKPOINT-BUFFER Function

Checkpoints the specified buffer to the specified file, which defaults to the check-
point file previously specified for the buffer.

Format
CHECKPOINT-BUFFER buffer &OPTIONAL pathname

Arguments
buffer
An Editor buffer

pathname
An optional pathname specifier that defaults to the checkpoint pathname specified

earlier for the buffer

Objects-64

Editor Object Descriptions

Return Value
Two values:

1 The true name of the checkpoint file written to, or » i1 if no pathname
existed. (For an explanation of the true name of a file, see the explanation of
pathname in Common LISP: The Language.)

2. The number of records written to the file.

CHECKPOINT-FREQUENCY Function

Returns an integer that gives the frequency at which file checkpointing is being
performed. The frequency is measured in keystrokes, but only those that modify
a buffer. If checkpointing has been disabled, the function returns » i1 . The default
frequency is 350. You can use setf With checkpoint-frequency t0 change the
default value. Ib disable checkpointing, specify a value of nir .

Format

CHECKPOINT-FREQUENCY

Arguments
None

Return Value

The checkpointing frequency or n i1

CLEAR-INFORMATION-AREA Function

Clears the text in the Editor information area.

Format

CLEAR-INFORMATION-AREA

Arguments
None

Objects-65

Editor Object Descriptions

Return Value

None

CLOSE OUTERMOST FORM Command

Inserts at the mark the number of list-terminator characters needed to close

the outermost LISP form. The mark defaults to the current buffer point. If the
outermost form is already closed or if no outermost form is found, a message is
displayed and no action occurs. (See "1isp syntax" attribute, especially the value
‘LIST-TERMINATOR.)

Display Name Format

Close Outermost Form

Function Format

CLOSE-OUTERMOST-FORM-COMMAND prefix &OPTIONAL mark

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Return Value
Undefined

COMMAND-CATEGORIES Function

Returns a list of the categories for the specified Editor command or ni1 if there
are no categories for this command. See Section 2.3.3 on categories.

Format

COMMAND-CATEGORIES command

Objects-66

Editor Object Descriptions

Arguments

command
An Editor command specifier

Return Value

Alist of categories or nil

COMMAND-NAME Function

Takes an Editor command specifier and returns the display name of the com-
mand.

Format

COMMAND-NAME command

Arguments

command
An Editor command specifier (display name or symbol)

Return Value
The display name of the command

COMPLETE-STRING Function

Searches through all strings in the specified Editor string table for those having
the string argument as an initial substring. The searching is case insensitive.

Format

COMPLETE-STRING string table

Arguments

string
The character string to be searched for

table
An Editor string table

Objects-67

Editor Object Descriptions

Return Value
Four values:

1 A string that is the maximum beginning portion common to all the strings
found that match the string argument.

2. The value of a corresponding entry if a unique match was found; ni1 other-
wise.

3 7, if the second returned value is valid, or » i1, if the second returned value is
not valid. (This allows i1 to be a valid value for a string table entry.)

4. 7, if there are additional entries that start with the specified string. This is
helpful to distinguish the case where a string is the key for a specific entry,
and there are additional keys that begin with this string. For example, “ed*
and “edit File* are both valid commands.

COPY FROM POINTER Command

Establishes the end of a DECwindows secondary selection and copies the text
to the window that has input focus. You should make sure that input focus is
correctly set before initiating copy from pointer.

Display Name Format

Copy from Pointer

Function Format

COPY-FROM-POINTER prefix

Arguments

prefix
Ignored

Return Value
Undefined

Objects-68

Editor Object Descriptions

COPY-MARK Function

Returns a new mark pointing to the same position as the specified mark.

Format

COPY-MARK mark &OPTIONAL mark-type

Arguments

mark
An Editor mark

mark-type

Either :1eft-inserting, rright-inserting,Or itemporary.The default is the
type of the mark specified.

Return Value

A new Editor mark

COPY-REGION Function

Takes an Editor region as an argument and returns a new disembodied region
that contains a copy of the text of the region you specified. The new region does
not share any lines with the original region.

Format

COPY-REGION region

Arguments

region
An Editor region

Return Value
A new Editor region

Objects-69

Editor Object Descriptions

COPY TO POINTER Command

Moves the current buffer point to the position indicated by the pointer and then
inserts at that location the text from the DECwindows primary selection. If the
pointer is beyond the end of a line, the region is inserted at the end of that line.
If the pointer is beyond the end of the buffer region, the text is inserted at the

end of the buffer region.

Display Name Format

Copy to Pointer

Function Format

COPY-TO-POINTER prefix

Arguments

prefix
Ignored

Return Value

The current buffer point

COUNT-REGION Function

Returns both the number of characters that are in the specified region and the
number of lines that are in the region. A break between lines counts as a single
character. The line count is always at least 1

Format

COUNT-REGION region

Arguments

region
An Editor region

Objects-70

Editor Object Descriptions

Return Value
Two values:
1 The number of characters in the region
2. The number of lines in the region

CURRENT-BUFFER Function

Returns the currently active Editor buffer. You can use setf with current-
buffer to change the buffer that is considered current. Changing the value of
CURRENT-BUFFER causes the ""Buffer Exit Hook" and the "Buffer Entry Hook" to
be invoked.

Format

CURRENT-BUFFER

Arguments
None

Return Value
The current Editor buffer

CURRENT-BUFFER-POINT Function

Returns the mark that is the point for the current buffer. Calling this function is
substantially faster than using the form (buffer-point (current-buffer)).

Format

CURRENT-BUFFER-POINT

Arguments
None

Return Value
The buffer point of the current buffer

Objects-71

Editor Object Descriptions

CURRENT-COMMAND-FUNCTION Variable

Is bound to the Editor command function currently being executed. The binding
is established just before the function is called. Is bound to the function ed in
recursive calls to ed . The binding is established just before the function is called.

CURRENT-WINDOW Function

Returns the currently active Editor window. You can use setf with current-
window to change the window considered current. Changing the value of current-
window causes the "Switch window Hook™ to be invoked. This change also may
cause the value of (current-buffer) to be changed; if S, the ""Buffer Exit Hook"
and the ""Buffer Entry Hook" also are invoked.

Format

CURRENT-WINDOW

Arguments
None

Return Value

The current Editor window

DEACTIVATE MINOR STYLE Command

Prompts the user for the name of a minor style active in the current buffer. It
then deactivates that style in the current buffer. Alternatives and completion are
available during the prompt. An Editor error is signaled if the style is not active.

Category
:GENERAL-PROMPTING

Display Name Format

Deactivate Minor Style

Objects—#2

Editor Object Descriptions

Function Format

DEACTIVATE-MINOR-STYLE-COMMAND prefix

Arguments

prefix
Ignored

Return Value

The style that was deactivated

DEFAULT BUFFER VARIABLES Editor Variable

Is bound to a list of Editor variables that are to have local bindings in newly
created buffers. Each element of the list is of the form:

variable-name \ (variable-name initial-value initial-function)

Each of the Editor variables listed is bound in the context of the new buffer.
The initial value and function of this variable are ni1 unless specified in a list
element.

Display Name Format

Default Buffer Variables

Symbol Format

DEFAULT-BUFFER-VARIABLES

DEFAULT FILETYPE MINOR STYLES Editor Variable

Specifies an association list that maps file types to Editor styles. When a file is
associated with a buffer (for example, in the "Edit File" command), the file type
is looked up in this association list. If an entry is found, it must specify a style or
list of styles to be activated as minor styles in the buffer. The default is the list
(C1sp" . "VAX 1isp")). This means that a file type of .LSP activates the "VAX
Lisp' minor style.

Objects-73

Editor Object Descriptions

Display Name Format

Default Filetype Minor Styles

Symbol Format

DEFAULT-FILETYPE-MINOR-STYLES

DEFAULT LISP OBJECT MINOR STYLES Editor Variable

Specifies a list of minor styles to be activated in a buffer used to edit a LISP
object. The default list is Cvax 1isp'), which means the "vax 1isp" style is

activated.

Display Name Format
Default LISP Object Styles

Symbol Format

DEFAULT-LISP-OBJECT-MINOR-STYLES

DEFAULT MAJOR STYLE Editor Variable

Is bound to the Editor style that is the default major style for a newly created

buffer. The initial value is "edt Emulation" style. You can use setf with the
var fable-value function to change this default. Changing the value of this

variable changes the major style for the ""Help" and "General Prompting' buffers.
Any previously created buffers retain their original major styles.

Display Name Format

Default Major Style

Symbol Format

DEFAULT-MAJOR-STYLE

Objects-74

Editor Object Descriptions

DEFAULT MINOR STYLES Editor Variable

Is bound to a list of Editor styles that are the default minor styles for a newly
created buffer. The initial value of this variable is ni1.Any previously created

buffers retain their original minor styles.

Display Name Format

Default Minor Styles

Symbol Format
DEFAULT-MINOR-STYLES

DEFAULT SEARCH CASE Editor Variable

Is bound to a keyword that specifies whether differences in case are to be ignored
in searches. If the keyword is :case-sensitive,the search commands perform

case-sensitive searches; if the keyword is :case-insensitive,the search com-
mands perform case-insensitive searches. Initially, the value of this variable is

“CASE-INSENSITIVE.

Display Name Format

Default Search Case

Symbol Format

DEFAULT SEARCH CASE

DEFAULT WINDOW LABEL Editor Variable

Is bound to a string, a function, or ni1 that is used by make-window as the default
window label. Ifitis a function, it must have one argument (a window). If the
value is the null string (), the window is bordered but has no label. If the value

is ni1,the window is unbordered.

Display Name Format

Default Window Label

Objects-75

Editor Object Descriptions

Symbol Format

DEFAULT-WINDOW-LABEL

DEFAULT WINDOW LABEL EDGE Editor Variable

Is bound to keyword that specifies which edge of a window the label text will be
displayed on. The variable is globally bound to :bottom.

Display Name Format

Default Window Label Edge

Symbol Format

DEFAULT-WINDOW-LABEL-EDGE

DEFAULT WINDOW LABEL OFFSET Editor Variable

Is bound to a positive integer or NIL. The value specifies the default offset value
to be used for the label position of a newly created window. The global binding is
ni 1 ,which causes labels to be centered.

Display Name Format

Default Window Label Offset

Symbol Format

DEFAULT-WINDOW-LABEL-OFFSET

DEFAULT WINDOW LABEL RENDITION Editor Variable

Is bound to a keyword or a list of keywords that specify the default video rendi-
tion to be applied to the label of a newly created window. The keyword can be
any of :normal, :reverse, underline, :Bold, or :blink. The global binding is
:REVERSE.

Objects-76

Editor Object Descriptions

Display Name Format

Default Window Label Rendition

Symbol Format

DEFAULT-WINDOW-LABEL-RENDITION

DEFAULT WINDOW LINES WRAP Editor Variable

Is used to determine whether lines in a newly created window should wrap or
truncate. A value of ni1 indicates that lines should truncate; otherwise, lines
wrap. The global binding is ni1.

Display Name Format

Default Window Lines Wrap

Symbol Format

DEFAULT-WINDOW-LINES-WRAP

DEFAULT WINDOW RENDITION Editor Variable

Is bound to a keyword or a list of keywords that specify the default video rendi-
tion to be applied to a newly created window. The keyword can be any of inormar,
:REVERSE, :UNDERLINE, :BOLD, or :BLINK. The global binding is :normAL.

Display Name Format

Default Window Rendition

Symbol Format
DEFAULT-WINDOW-RENDITION

Objects-77

Editor Object Descriptions

DEFAULT WINDOW TRUNCATE CHAR Editor Variable

Is bound to a character used to indicate the truncation of a displayed line. This
variable is globally bound to the #\> character.

Display Name Format

Default Window Truncate Char

Symbol Format

DEFAULT-WINDOW-TRUNCATE-CHAR

DEFAULT WINDOW TYPE Editor Variable

Is bound to a keyword that specifies the default type of a created window.
Possible values are :anchored Or :floating.The global binding is :ANCHOred .

Display Name Format

Default Window Type

Symbol Format
DEFAULT-WINDOW-TYPE

DEFAULT WINDOW WIDTH Editor Variable

Is bound to a value that is the default width of a newly created window. The
global value of this variable is set to be the width of the screen. If the screen
width is altered, the value of this variable is changed by the global "Screen
ModiFfication Hook' function.

Display Name Format

Default Window Width

Objects-78

Editor Object Descriptions

Symbol Format

DEFAULT-WINDOW-WIDTH

DEFAULT WINDOW WRAP CHAR Editor Variable

Is bound to the default character used to indicate wrapping of text in a window.
The variable is globally bound to #\<.

Display Name Format

Default Window Wrap Char

Symbol Format
DEFAULT-WINDOW-WRAP-CHAR

DEFINE-ATTRIBUTE Macro

Creates a new attribute that has the specified name and documentation string.
Note that the type of the attribute is not defined until it is bound.

Format
DEFINE-ATTRIBUTE name &OPTIONAL documentation

Arguments

name
The name of the attribute. This can be specified as either a symbol or a list of the

form

(sym bol:DISPLAY-NAME string)
where “String”1s used as an alternate reference to this attribute.

documentation
A string that is the documentation text for this attribute

Return Value
The symbol of the attribute

Objects-79

Editor Object Descriptions

DEFINE-COMMAND Macro

Format

Creates a new Editor command by making a new LISP function from the specified
argument list and forms.

As a rule, commands have names of the form name-of-command-command and
display names of the form ""Name of Command. The command can be executed only
in the Editor, either through a key binding or as the argument of the command
"Execute Named Command' (bound to ctriiz globally or pPr1 7 in EDT Emulation
style). The created function can be called from any LISP code.

DEFINE-COMMAND name arglist

Arguments

Objects-80

&OPTIONAL command-documentation
&BODY forms

name

The symbol that will name the command. This can be specified as either a symbol
or a list of the form

Gymbol {keyword-value-pair))

The acceptable keywords are:

-DISPLAY-NAME The display name for the command, which will be entered in the
string *EDI TOR-COMMAND-NAMES™* string table.

:CATEGORY cate- The categories must be a symbol or a list of symbols that are user-
gories defined categories the command is cataloged under. The list can be

referenced using the COMMAND-CATEGORIES command. A list of all
commands belonging to a specific category can be obtained with the
CATEGORY-COMMANDS function.

arglist
The list of formal parameters of the command. This is identical to the argument
list in defun.There must be at least one argument, however.

command-documentation

An optional documentation string associated with the command. This string is
associated with the command name and has a documentation type of editor-
command .

forms

A list of forms that make up the body of the function executed when the command
is invoked. These forms are identical to the forms given to DEFUN and can include
a function documentation string and declarations.

Editor Object Descriptions

Return Value

The function associated with the command

DEFINE-EDITOR-VARIABLE Macro

Defines an Editor variable. The symbol is interned in the current package and
proclaimed to be a special variable. This definition must appear prior to any
bindings or other uses of the variable.

Format

DEFINE-EDITOR-VARIABLE name
&OPTIONAL documentation
&KEY :BIND-HOOK :UNBIND-HOOK

Arguments

name

The name may be specified as either a symbol or a list of the form

(symbol DISPLAY-name string), where string is a user-defined name for the
variable. The print name of the symbol and the display name (if supplied) are
entered as a key into the *editor-variable-names™ string table with the symbol
placed into the data slot of the table.

documentation

A string included in the documentation of the symbol with a documentation type
Of EDITOR-VARIABLE.

:BIND-HOOK
A function invoked whenever the variable is bound in a context. The function is
called with two arguments—the symbol and the context in which the variable is
being bound.

:UNBIND-HOOK
A function called when the binding of the variable is removed in the context. The

function is called with two arguments—the variable and the context. It defaults
to NIL.

Return Value
The symbol of the Editor variable

Objects-81

Editor Object Descriptions

DEFINE-KEYBOARD-MACRO Function

Causes the Editor to start remembering keystrokes as they are typed at the
terminal until a call is made to the end-keyboard-macro function. If an optional
string is supplied, a keyboard macro is created and returned as if that string were
a sequence of characters that had been entered and remembered previously. The
Editor does not remember entered keystrokes if a string argument is supplied.

Format

DEFINE-KEYBOARD-MACRO &OPTIONAL string

Arguments

string
An optional string used in place of a sequence of keystrokes

Return Value

A function, that when called, will execute the keyboard macro if a string argu-
ment is supplied, otherwise T

DELETE-AND-SAVE-REGION Function

Deletes the region and returns a copy of the region containing the deleted text.

Format

DELETE-AND-SAVE-REGION region

Arguments

region
An Editor region

Return Value
A copy of the region that was deleted

Objects-82

Editor Object Descriptions

DELETE-BUFFER Function

Deletes the specified buffer. The calling of this function causes the ""Buffer
Deletion Hook" to be invoked. Ifyou delete the current buffer and do not specify
a value for new-current, the current buffer is set by the same rules used in the
next-window function, provided other buffers are displayed.

If none is displayed, the Editor chooses arbitrarily. If there are no other user-
created buffers, the Editor returns to an initial state as if it had been invoked
originally by the typing of (ed) with no arguments.

Format

DELETE-BUFFER buffer & OPTIONAL new-current

Arguments

buffer
An Editor buffer or Editor buffer specifier

new-current
An Editor buffer that becomes the new current buffer

Return Value
The symbol naming the Editor buffer

DELETE-CHARACTERS Function

Deletes a specified number of characters after the specified mark (or before it, if
the number is negative). If there are not enough characters after (or before) the
mark, the buffer is not modified.

Format

DELETE-CHARACTERS mark &OPTIONAL n

Arguments

mark
An Editor mark

n
A fixnum, which defaults to 1, specifying the number of characters to delete.

Objects-83

Editor Object Descriptions

Return Value

The number of characters deleted, or ni1 if there were not n characters to delete.

DELETE CURRENT BUFFER Command

Deletes the current buffer. If the buffer is modified, the user is asked whether
to save the contents of the buffer. If another buffer is visible on the screen, that
buffer becomes the new current buffer. If not, the Editor makes an arbitrary
choice of another buffer to be the new current buffer.

Display Name Format

Delete Current Buffer

Function Format

DELETE-CURRENT-BUFFER-COMMAND prefix buffer new-current

Arguments
prefix
Ignored

buffer
The buffer to delete. Default is the current buffer.

new-current
The buffer that becomes the new current buffer. The default is as specified above.

Return Value
T

DELETE LINE Command

Deletes lines or parts of lines, depending on the prefix argument and the location
of the current buffer point:

= |f the prefix is ni1,the command deletes between the current buffer point and
the end of the line. If there are non-whitespace characters before the end of
the line, the command deletes those characters and does not delete the new-
line character. If there are no characters or only whitespace characters before
the end of the line, the command deletes to the end of the line, including the
newline character.

Objects-84

Editor Object Descriptions

= |If the prefix is an integer, the command deletes the characters between the
beginning of the line indicated by the prefix and the current buffer point. A
prefix of Oindicates the current line, | indicates the next line, -1 indicates
the previous line, and so on.

Display Name Format

Delete Line

Function Format

DELETE-LINE-COMMAND prefix

Arguments

prefix
An integer or n i1

Return Value

A disembodied region containing the deleted text

DELETE-MARK Function

Deletes the specified Editor mark. You use this function primarily to remove per-
manent marks when they are no longer needed. If the mark being deleted is the
buffer point of a buffer, the window point of a window, the display beginning or

end of a window, or a mark defining a buffer region, the results are unpredictable.

Format

DELETE-MARK mark

Arguments

mark
An Editor mark

Return Value

NIL

Objects-85

Editor Object Descriptions

DELETE NAMED BUFFER Command

Deletes the specified Editor buffer and any windows associated with it. The
appropriate hook functions are invoked. If the name is » i1, the user is prompted
for a name.

Category
:GENERAL-PROMPTING

Display Name Format

Delete Named Buffer

Function Format

DELETE-NAMED-BUFFER-COMMAND prefix &OPTIONAL name

Arguments

prefix
Ignored

name
The name of the buffer to delete. It defaults to nir.

Return Value

T

DELETE NEXT CHARACTER Command

Causes the character following the point in the current window to be deleted. If

you specify an integer prefix argument, characters following the point are deleted
in the amount indicated.

Display Name Format

Delete Next Character

Objects-86

Editor Object Descriptions

Function Format

DELETE-NEXT-CHARACTER-COMMAND prefix

Arguments

prefix
Apositive integer or nil

Return Value

The number of characters deleted

DELETE NEXT WORD Command

Deletes the next word. If you supply an integer prefix argument, the command
deletes as many words as you specify.

Display Name Format

Delete Next Word

Function Format

DELETE-NEXT-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix
A positive integer or NIL

mark
An Editor mark that defaults to the current buffer point

Return Value
The region containing the word(s) deleted

Objects-87

Editor Object Descriptions

DELETE PREVIOUS CHARACTER Command

Deletes the character preceding the point in the current window if the prefix
argument is ni 1 .I1f you specify an integer prefix argument, characters preceding
the point (or following it, if the prefix is negative) are deleted in the amount
indicated.

Display Name Format

Delete Previous Character

Function Format

DELETE-PREVIOUS-CHARACTER-COMMAND prefix

Arguments

prefix
An integer or NIL

Return Value
Undefined

DELETE PREVIOUS WORD Command

Deletes the previous word. If you supply an integer prefix, the command deletes
as many words as you specify.

Display Name Format

Delete Previous Word

Function Format

DELETE-PREVIOUS-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix
A positive integer or NIL

Objects-88

Editor Object Descriptions

mark
An Editor mark that defaults to the current buffer point

Return Value

The region containing the word(s) deleted

DELETE-REGION Function

Deletes the text in the specified region; the empty region remains.

Format

DELETE-REGION region

Arguments

region
An Editor region

Return Value
NIL

DELETE WHITESPACE Command

Deletes the whitespace characters following the current buffer point.

Display Name Format

Delete Whitespace

Function Format

DELETE-WHITESPACE-COMMAND prefix &OPTIONAL mark

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Objects-89

Editor Object Descriptions

Return Value
NIL

DELETE-WINDOW Function

Deletes a window from the Editor. If the window is displayed, it is removed from
the display and then deleted. If the window is the current window, a new current
window is selected from any other currently displayed windows. If there are
none, a new window is displayed from other available buffers. The functions in
"window Deletion Hook" are called prior to any alterations of the window.

Format

DELETE-WINDOW window

Arguments

window
An Editor window

Return Value
T

DELETE WORD Command

Deletes the characters from the current point to the beginning of the next word.
If you specify an integer prefix argument, n, characters from the current point to
the end of the nth word are deleted.

Display Name Format

Delete Word

Function Format

DELETE-WORD-COMMAND prefix

Arguments

prefix
A positive integer or nil

Objects-90

Editor Object Descriptions

Return Value
Undefined

DESCRIBE Command

Displays in the "Help'" buffer the documentation string of the specified object.
If the type or name is nil, the command prompts the user for it in the Editor
prompting window.

Category
:GENERAL-PROMPTING

Display Name Format

Describe

Function Format

DESCRIBE-OBJECT-COMMAND prefix &OPTIONAL type name

Arguments

prefix
Ignored

type
Anamed object type specifier that defaults to nil —attribute, command, buffer,
STYLE, VARIABLE, KEYBOARD-MACRO, OT SYMBOL

name
The symbol or display name of a named Editor object of the appropriate type

Return Value

None

Objects-91

Editor Object Descriptions

DESCRIBE-OBJECT-COMMAND Function

See "Describe' command.

DESCRIBE WORD Command

Does a LISP describe operation on the word at the argument mark and displays
the result in the ""Help' buffer. The mark defaults to the current buffer point.

Display Name Format

Describe Word

Function Format

DESCRIBE-WORD-COMMAND prefix & OPTIONAL mark

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Return Value
Undefined

DESCRIBE WORD AT POINTER Command

Does a LISP describe operation on the symbol indicated by the pointer. If the
pointer indicates a character that is a list terminator, this command momentarily
highlights the matching list-initiator character. If the list initiator is not visible
in the window, the line containing it is displayed in the information area, and the
matching list initiator is highlighted. (See "1isp Syntax" attribute, especially the
values :CONSTITUENT, :LIST-TERMINATOR, and :LIST-INITIATOR.)

Display Name Format

Describe Word at Pointer

Objects-92

Editor Object Descriptions

Function Format

DESCRIBE-WORD-AT-POINTER-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

DOWNCASE REGION Command

Makes all alphabetic characters in the current buffer select region lowercase.

Display Name Format

Downcase Region

Function Format

DOWNCASE-REGION-COMMAND prefix &OPTIONAL region

Arguments

prefix
Ignored

region
An Editor region that defaults to the buffer select region

Return Value

The region

Objects-93

Editor Object Descriptions

DOWNCASE WORD Command

Makes all alphabetic characters in the current word lowercase.

Display Name Format

Downcase Word

Function Format

DOWNCASE-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Return Value

The region containing the word that was made all lowercase, or n i1

ED Command

Performs the same actions as the ed function, but you can use it from within the
Editor. If you do not specify an object or a type, the command prompts you for it.

Category
:GENERAL-PROMPTING

Display Name Format

Ed

Function Format

EDIT-LISP-OBJECT-COMMAND prefix &OPTIONAL object type

Objects-94

Arguments

Editor Object Descriptions

prefix
Ignored

object
Any object valid for the ed function

type
Any keyword that is a valid value for the :type keyword to the ED function—that
is, :function Or :value.This is valid only if the object argument is a symbol.

Return Value

Undefined

ED Function

Format

Invokes the VAX LISP Editor. This function takes an optional x argument that
specifies what is to be edited. The value can be a namestring, pathname, or
symbol. In the VAX LISP implementation, the value can also be a list.

This function can be called recursively. This is helpful when implementing
commands such as "Query Search Replace™.

ED &OPTIONAL x&KEY :TYPE :READ-ONLY

Arguments

X
A namestring, pathname, symbol, or list that specifies what is to be edited.

A namestring or pathname specifies a file. A symbol specifies a LISP symbol.

If you supply a symbol argument, then you can also specify a :TYPE keyword
argument, :function Or :value,Which tells the Editor whether you want to edit
the symbol § function/macro definition or its value.

If you specify a list, the list must be a generalized variable that can be specified
in a call to the setf macro. The list is evaluated, and it returns a value to edit.

When you write the buffer containing the value, the Editor replaces the value of
the generalized variable with the new value.

:TYPE keyword
You can specify this argument only if the x argument is a symbol. The possible
values are:

Objects-95

Editor Object Descriptions

:FUNCTION (the The Editor is invoked to edit the function or macro definition
default) associated with the specified symbol.
:VALUE The Editor is invoked to edit the specified symbol & value.

:READ-ONLY value

You can specify this argument to indicate whether modifications to the buffer can
be written back as a new version of the file being edited or an update of the LISP
object being edited. (See description of butfer-writabie.) The possible values
are:

NIL (the default) Modifications can be written.

Non-NIL Modifications cannot be written.

Return Value

None (by default). See return-from-editor for returning values from a call to
ED.

EDIT FILE Command

Category

Prompts for a file name if the user does not supply one. If there is a buffer
containing that file, the command switches you to it. Otherwise, a new buffer is
created whose name is the name of the file, the named file is read into the buffer,
and the command switches you to that buffer. If there is a buffer with the same
name as the file, but that buffer § file is a different file (for example, same name
but in a different directory), the user is prompted for a new buffer name. If the
user does not supply a new buffer name, the old buffer is reused.

:GENERAL-PROMPTING

Display Name Format

Edit File

Function Format

EDIT-FILE-COMMAND prefix & OPTIONAL file

Arguments

Objects-96

prefix
Ignored

Editor Object Descriptions

file

Apathname, namestring, stream, or nil .

Return Value
The buffer

EDIT-LISP-OBJECT-COMMAND Function

See "Ed" command.

EDITOR-ATTRIBUTE-NAMES Variable

Specifies a string table that contains the names of all the defined Editor at-
tributes.

EDITOR-BUFFER-NAMES Variable

Specifies a string table that contains the names of all the existing Editor buffers.

EDITOR-COMMAND-NAMES Variable

Specifies a string table that contains the names of commands currently defined in
the Editor.

EDITOR-DEFAULT-BUFFER Variable

Can be set to a buffer specifier. When the Editor has no other windows to display,
it will display a window into the specified buffer. If the value of this variable

is n i1 (the default) or if the specified buffer does not exist, then the Editor will
display a window into the buffer ""Basic introduction" when it has nothing else
to show.

This variable is useful, for example, to set up a LISP “Scratch pad”buffer to be
used when you are not editing files.

Objects-97

Editor Object Descriptions

EDITOR ENTRY HOOK Editor Variable

Specifies a hook function that is called when entering the Editor; that is, when ED
is called from LISP top level.

Display Name Format

Editor Entry Hook

Symbol Format

EDITOR-ENTRY-HOOK

EDITOR-ERROR Function

Is the error-signaling mechanism for the Editor. This function creates an error
message by applying format to the format string and the remaining arguments.
It writes this message in the information area, calls the attention function, and
returns to the Editor command level.

Format

EDITOR-ERROR &OPTIONAL format-string &REST args

Arguments

format-string
The control string for the format function

args
Arguments to be passed to format

Return Value
None

Objects-98

Editor Object Descriptions

EDITOR-ERROR-WITH-HELP Function

Format

Is similar to the editor-error function but can provide the user with additional
information on the error that has occurred. This function applies format to the
error string and the remaining arguments to obtain an error message displayed
in the information area. It calls the attention function and returns to the Editor
command loop. In addition, it applies format to the information string and the
remaining arguments to obtain another string that is saved for later display to
the user.

The initial error message should be brief and give the experienced user enough in-
formation to understand the problem. The information message can be tailored to
the less experienced user or can be used to provide more extensive supplemental
information on the nature of the error.

EDITOR-ERROR-WITH-HELP information-string error-string &REST args

Arguments

information-string
A format control string to be applied to the args to produce additional information

error-string
A format control string to be applied to the args to produce a brief error message

args
Used as a source of parameters for format directives for both control strings.

Return Value

None

EDITOR EXIT HOOK Editor Variable

Specifies a hook function that is invoked when you exit from the Editor. The
function is called immediately after the execution of an "Exit" command. The
context searching order is what was in effect at the start of the "Exit" command.

Display Name Format

Editor Exit Hook

Objects-99

Editor Object Descriptions

Symbol Format

EDITOR-EXIT-HOOK

EDITOR-HELP-BUFFER Buffer

See "Help' buffer.

EDITOR INITIALIZATION HOOK Editor Variable

Can be set (using setf with variable-function)to a hook function of no argu-
ments that is called whenever the Editor is initialized. The Editor is initialized
the first time you call the ed function in a LISP session, and anytime you call ed
after having exited the Editor.

Note that when this hook function is called, the Editor state is not fully estab-
lished. In particular, current-buffer,current-buffer-point, and current-
window return no values.

Also, no Editor style is active when this function is called. Therefore, only the
global binding of the variable is meaningful.

This variable has no initial function definition.

Display Name Format

Editor Initialization Hook

Symbol Format

EDITOR-INITIALIZATION-HOOK

‘EDITOR-KEYBOARD-MACRO-NAMES* Variable

Is a string table that contains the names of all named keyboard macros.

Objects-100

Editor Object Descriptions

EDITOR-LISTEN Function

Returns T if there is another character available immediately from the terminal
while you are using the Editor. This function returns ni1 otherwise.

Format

EDITOR-LISTEN

Arguments

None

Return Value
T or NIL

EDITOR PAUSE HOOK Editor Variable

Specifies a hook function that is invoked when you pause the Editor. The function
is called immediately after the execution of a ""Pause" command. The context
searching order is what was in effect at the start of the ""Pause’ command.

Display Name Format

Editor Pause Hook

Symbol Format
EDITOR-PAUSE-HOOK

EDITOR-PROMPTING-BUFFER Buffer

See "General Prompting" buffer.

Objects-101

Editor Object Descriptions

EDITOR-READ-CHAR Function

Returns the next character read from the terminal. You can call this function
only when the Editor is active.

Format

EDITOR-READ-CHAR

Arguments
None

Return Value
A character

EDITOR-READ-CHAR-NO-HANG Function

Returns the next character typed at the terminal if a character is available
immediately. The function returns i1 otherwise.

Format

EDITOR-READ-CHAR-NO-HANG

Arguments

None

Return Value

Acharacter; or nil,if none is available

EDITOR RECURSIVE ENTRY HOOK Editor Variable

Specifies a function that is called during recursive calls to the ea function.

Display Name Format

Editor Recursive Entry Hook

Objects—02

Editor Object Descriptions

Symbol Format

EDITOR-RECURSIVE-ENTRY-HOOK

‘EDITOR-RETAIN-SCREEN-STATE* Variable

Specifies whether or not the state of the screen is to be retained when you cause
the Editor to pause. The default value is ni1,which means that the screen is
erased when the Editor pauses and is restored to its previous state when the
Editor is reentered.

When you are debugging new commands, however, it may be desirable for you to
alter this behavior. When the variable is set to T, the screen is not erased when
the Editor pauses.

EDITOR-STYLE-NAMES Variable

Specifies a string table that contains the names of all the defined Editor styles.

EDITOR-UNREAD-CHAR Function

Unreads the last character read from the terminal while in the Editor. See
Common LISP: The Language for more information about unreading.

Format

EDITOR-UNREAD-CHAR character

Arguments

character
The last character read from the terminal

Return Value
NIL

Objects-103

Editor Object Descriptions

EDITOR-VARIABLE-NAMES Variable

Specifies a string table that contains the names of all the defined Editor variables.

EDITOR-WORKSTATION-BANNER Variable

Is bound to a string that contains the text of the Editor window banner on the
VAXstation. The initial binding is “V/AX LISP Editor””

EDT APPEND Command

Deletes the current select region of text (the region defined from the current
buffer point and the mark in the ""Buffer Select Mark" variable) and stores the
deleted region in the Editor variable "edt Paste Buffer'. The region is inserted
at the end of the current contents, if any, of the paste buffer.

A select region is a region established by executing the command "edt Select"
(or "'Set select Region'), 'edt Append" can add to text that was previously
deleted and stored by execution of either "edt cut” or "edt Append".

Display Name Format

EDT Append

Function Format

EDT-APPEND-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

Objects-104

Editor Object Descriptions

EDT BACK TO START OF LINE Command

Moves the current buffer point to the beginning of the current line. If the point
is already at the beginning of a line, it is moved to the beginning of the previous
line. If a positive integer prefix is supplied, the point is moved backward the
number of lines indicated.

Display Name Format

EDT Back to Start of Line

Function Format

EDT-BACK-TO-START-OF-LINE-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value
The modified point

EDT BEGINNING OF LINE Command

Moves the point of the current buffer to the beginning of the next line if the prefix
argument is NiIL, and if "EDT Direction Mode" iS :FORWARD. If “EDT Direction
Mode' is :backward,the point is moved backward to the nearest beginning of a
line.

If you specify a positive integer prefix argument, n, the point is moved to the
nth beginning of a line in the direction indicated by "EDT Direction Mode". If
you specify a negative integer prefix argument, n, the point is moved to the nth
beginning of a line in the direction opposite that indicated by "EDT-Direction-
Mode'".

Display Name Format

EDT Beginning of Line

Objects-105

Editor Object Descriptions

Function Format

EDT-BEGINNING-OF-LINE-COMMAND prefix

Arguments

prefix
A fixnum or nil

Return Value
The modified point

EDT CHANGE CASE Command

Changes the case of any characters in the region specified by the ""Buffer Select
Region" Editor variable or the character at the current buffer point if no region is
specified.

Display Name Format

EDT Change Case

Function Format

EDT-CHANGE-CASE-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

Objects-106

Editor Object Descriptions

EDT CUT Command

Deletes the current select region of text (the region defined from the current
buffer point and the mark in the "Buffer Select Mark" variable) and stores the
deleted region in the Editor variable "edt Paste Buffer'. The previous contents
of the paste buffer are lost.

A select region is a region established by executing the command "edt Select"
(or "set Select Mark'™).

Display Name Format

Function Format

EDT-CUT-COMMAND prefix

Arguments

prefix
Ignored

Return Value

Undefined

EDT DELETE CHARACTER Command

Deletes the character at the position of the cursor (that is, at the position imme-
diately following the point in the current buffer) if the prefix argument is ni1 .If
you specify a positive integer prefix argument, characters following the point are
deleted in the amount indicated. The Editor variable "edt Deleted Character" is
set to the last character deleted.

Display Name Format

EDT Delete Character

Function Format

EDT-DELETE-CHARACTER-COMMAND prefix

Objects-107

Editor Object Descriptions

Arguments

prefix
ANinteger or NIL

Return Value
The last character deleted

EDT DELETE LINE Command

Deletes the line of text starting at the current buffer point and extending to the
beginning of the next line. If you specify an integer prefix argument, lines are
deleted in the amount indicated (in a forward direction if integer is positive, in
a backward direction if integer is negative). The Editor variable "edt Deleted
Line" is set to the last line deleted.

Display Name Format

EDT Delete Line

Function Format

EDT-DELETE-LINE-COMMAND prefix

Arguments

prefix
AN integer or nil

Return Value
A region containing the last line deleted

EDT DELETE PREVIOUS CHARACTER Command

Deletes the character preceding the current buffer point. If a prefix argument is
supplied, the command deletes the number of previous characters specified by the
argument. The value of the "edt Deleted Character' Editor variable is set to the
last character deleted.

Objects-108

Editor Object Descriptions

Display Name Format

EDT Delete Previous Character

Function Format

EDT-DELETE-PREVIOUS-CHARACTER-COMMAND prefix

Arguments

prefix
AN integer or nil

Return Value

The last character deleted

EDT DELETE PREVIOUS LINE Command

Deletes from the current buffer point back to the beginning of the current line.

If the point was already at the beginning of a line, the command deletes back to
the beginning of the previous line. If a prefix argument, n, is supplied, n lines are
deleted. The value of the "edt Deleted Line'" Editor variable is set to a region
containing the last line deleted.

Display Name Format

EDT Delete Previous Line

Function Format

EDT-DELETE-PREVIOUS-LINE-COMMAND prefix

Arguments

prefix
An integer or NIL

Return Value
A region containing the last deleted line

Objects-109

Editor Object Descriptions

EDT DELETE PREVIOUS WORD Command

Deletes from the current buffer point back to the beginning of the current word.
If the point was already at the beginning of a word, the command deletes back
to the beginning of the previous word. If a prefix argument, n, is supplied, n
words are deleted. The value of the "edt Deleted Word" Editor variable is set to
a region containing the last word deleted.

Display Name Format

EDT Delete Previous Word

Function Format

EDT-DELETE-PREVIOUS-WORD-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value

A region containing the last deleted word

EDT DELETE TO END OF LINE Command

Deletes all characters found between the point of the current buffer and the

end of the current line. If you specify a positive integer prefix argument, n, all
characters found between the buffer point and the nth end-of-line following the
point are deleted. If you specify a negative integer prefix argument, n, the sign is
ignored and the absolute value of the argument is used. The value of the Editor
variable "edt Deleted Line" is set to the last line deleted.

Display Name Format

EDT Delete to End of Line

Function Format

EDT-DELETE-TO-END-OF-LINE-COMMAND prefix

Objects-110

Editor Object Descriptions

Arguments

prefix
An integer or ni1

Return Value
The line that was deleted

EDT DELETE WORD Command

Deletes all characters between the point of the current buffer and the next end
of a word. If you specify a positive integer prefix argument, n, the characters
between the current buffer point and the end of the nth following word are
deleted. If you specify a negative integer prefix argument, the sign is ignored and
the absolute value is used. The Editor variable "edt Deleted Word" is set to the
last word deleted.

Display Name Format

EDT Delete Word

Function Format

EDT-DELETE-WORD-COMMAND prefix

Arguments

prefix
An integer or NIL

Return Value
The deleted word

EDT DELETED CHARACTER Editor Variable

Is bound to the last character deleted by the "edt Delete Character" command.

Display Name Format

EDT Deleted Character

Objects-111

Editor Object Descriptions

Symbol Format

EDT-DELETED-CHARACTER

EDT DELETED LINE Editor Variable

Is bound to the region containing the last line deleted by the “edt Delete Line"
command or by the "edt Delete to End of Line" command.

Display Name Format

EDT Deleted Line

Symbol Format

EDT-DELETED-LINE

EDT DELETED WORD Editor Variable

Is bound to the region containing the last word deleted by the "edt Delete Word"
command.

Display Name Format

EDT Deleted Word

Symbol Format

EDT-DELETED-WORD

EDT DESELECT Command

See "Unset Select Mark™ command.

Objects-112

Editor Object Descriptions

EDT DIRECTION MODE Editor Variable

Specifies the direction in which certain commands in "edt Emulation" style are
to operate. The possible values are :forward and :backward.

Display Name Format

EDT Direction Mode

Symbol Format
EDT-DIRECTION-MODE

EDT EMULATION Style

Is the default major style for the VAX LISP Editor. This style is designed to
imitate the basic keypad behavior of the VMS EDT Editor.

Display Name Format

EDT Emulation

Symbol Format

EDT-EMULATION

EDT END OF LINE Command

Moves the current buffer point to the next end-of-line if "edt Direction Mode" is

:FORWARD or to the previous end-of-line if "EDT Direction Mode" is :BACKWARD. If

you specify an integer prefix argument, n, the point is moved to the nth end of a

line in the direction indicated by "edt Direction Mode"; if the integer is negative,
the direction is opposite to that indicated by "edt Direction Mode'.

Display Name Format

EDT End of Line

Objects-113

Editor Object Descriptions

Function Format

EDT-END-OF-LINE-COMMAND prefix

Arguments

prefix
An integer or ni1

Return Value
The modified point

EDT MOVE CHARACTER Command

Moves the point of the current buffer by one character if prefix is nii. If the value
of "edt Direction Mode" is :forward,the point is moved forward; if :BACKWARD,
it is moved backward. If you specify an integer prefix argument, the point is
moved in the direction of "edt Direction Mode" by the number of characters
indicated. If you specify a positive integer prefix argument, n, the point is moved
n characters in the direction indicated by "edt Direction Mode". If you specify
a negative integer prefix argument, n, the point is moved n characters in the
direction opposite to that indicated by "EDT Direction Mode".

Display Name Format

EDT Move Character

Function Format

EDT-MOVE-CHARACTER-COMMAND prefix

Arguments

prefix
A fixnum or nin

Return Value
The modified point

Objects-114

Editor Object Descriptions

EDT MOVE PAGE Command

Moves the point one page in the direction of "EDT Direction Mode" if the prefix
argument is ni 1 . If you specify a positive integer prefix argument, the point is
moved in the direction of ""edt Direction Mode" by the number of pages indicated;
if the integer is negative, the direction is opposite to that of *edt Direction
Mode'" .

Display Name Format

EDT Move Page

Function Format

EDT-MOVE-PAGE-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value
The modified point

EDT MOVE WORD Command

Moves the current buffer point to the next or previous beginning of a word in
the direction indicated by "EDT Direction Mode" if the prefix argument is ni1 . If
you specify a positive integer prefix argument, the point is moved in the direction
of "edt Direction Mode" by the number of words indicated; if the integer is
negative, the direction is opposite to that of "edt Direction Mode".

Display Name Format

EDT Move Word

Function Format

EDT-MOVE-WORD-COMMAND prefix

Objects-115

Editor Object Descriptions

Arguments

prefix
An integer or nil

Return Value
The current buffer point

EDT PASTE Command

Inserts the contents of the region bound to the Editor variable "edt Paste
Buffer" at the current buffer point.

Display Name Format

EDT Paste

Function Format

EDT-PASTE-COMMAND prefix

Arguments

prefix
Ignored

Return Value

The inserted region

EDT PASTE AT POINTER Command

Moves the current buffer point to the position indicated by the pointer and then
inserts at that location the region contained in the paste buffer. If the pointer
is beyond the end of a line, the region is inserted at the end of that line. If the
pointer is beyond the end of the buffer region, the paste region is inserted at the
end of the buffer region.

Display Name Format

EDT Paste at Pointer

Objects-116

Editor Object Descriptions

Function Format

EDT-PASTE-AT-POINTER-COMMAND prefix

Arguments

prefix
Ignored

Return Value

The inserted region

EDT PASTE BUFFER Editor Variable

Is bound in the "edt Emulation” style. The value of this variable is the region
most recently deleted by the "edt cut" command.

Display Name Format

EDT Paste Buffer

Symbol Format

EDT-PASTE-BUFFER

EDT QUERY SEARCH Command

Prompts for a string to use as a pattern in a search. The search is forward if "edt
Direction Mode" is :FORWARD; backward, if "EDT Direction Mode" iS :BACKWARD.
The point is moved to the end of the first matching string if the search is forward,
or to the beginning of the first matching string if the search is backward. If the
prefix argument is an integer, n, the command searches for the nth occurrence of
the string. If n is negative, the command searches in the direction opposite to the
setting of "EDT Direction Mode".

Display Name Format

EDT Query Search

Objects-117

Editor Object Descriptions

Function Format

EDT-QUERY-SEARCH-COMMAND prefix &OPTIONAL string

Arguments

prefix
An integer or ni

string
The string to search for

Return Value
The modified point

EDT REPLACE Command

Deletes the current select region of text (the region defined from the current
buffer point and the mark in the "Buffer Select Mark' variable) and replaces it
with the region stored in the Editor variable "EDT Paste Buffer".

A select region is a region established by executing the command "edt Select"
(or "'set Select Region'™). The replacement text is text placed in the paste buffer
by means of either "edt Cut" or “edt Append".

Display Name Format

EDT Replace

Function Format

EDT-REPLACE-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

Objects—118

Editor Object Descriptions

EDT SCROLL WINDOW Command

Scrolls the current window in the direction indicated by "edt Direction Mode" by
a distance that is two-thirds the height of the window, if the prefix argument is
ni 1. If prefix is positive, the window is scrolled in the direction of "'edt Direction
Mode' by a distance of prefix times half the height of the window; if prefix is
negative, the window is scrolled in the direction opposite to the setting of "edt
Direction Mode" by a distance of prefix times half the height of the window.

Display Name Format

EDT Scroll Window

Function Format

EDT-SCROLL-WINDOW-COMMAND prefix

Arguments

prefix
Afixnum or NIL

Return Value
The new point

EDT SEARCH AGAIN Command

Searches for text that matches the search string saved in the "Last Search
string" Editor variable. If "edt Direction Mode" iS :forward,the direction of
the search is forward; if "edt Direction Mode™ iS :backward,the direction of the
search is backward.

Display Name Format

EDT Search Again

Function Format

EDT-SEARCH-AGAIN-COMMAND prefix

Object&-119

Editor Object Descriptions

Arguments

prefix
Ignored

Return Value
The modified point

EDT SELECT Command

See "Set Select Mark™ command.

EDT SET DIRECTION BACKWARD Command

Sets the value of the Editor variable "edt Direction Mode™ t0 :backward.The
prefix argument is ignored.

Display Name Format

EDT Set Direction Backward

Function Format

EDT-SET-DIRECTION-BACKWARD-COMMAND prefix

Arguments

prefix
Ignored

Return Value
-BACKWARD

Objects-120

Editor Object Descriptions

EDTSET DIRECTION FORWARD Command

Sets the value of the Editor variable "edt Direction Mode™ t0 iforward.The
prefix argument is ignored.

Display Name Format

EDT Set Direction Forward

Function Format

EDT-SET-DIRECTION-FORWARD-COMMAND prefix

Arguments

prefix
Ignored

Return Value
-FORWARD

EDT SPECIAL INSERT Command

Inserts the character at the current buffer point whose character code is specified
by the prefix argument. For example, to insert a delete Character, you specify a
prefix argument of 127. The character is inserted with no special interpretation
by the Editor.

Display Name Format

EDT Special Insert

Function Format

EDT-SPECIAL-INSERT-COMMAND prefix

Arguments

prefix
The prefix argument is interpreted as the character code of a character to be
inserted.

Objects-121

Editor Object Descriptions

Return Value
The character

EDT SUBSTITUTE Command

Causes the text in the "edt Paste Buffer" Editor variable to replace a string just
located in the text by the "EDT Query Search' or "EDT Search Again' command.
After the text is replaced, the command searches for the next occurrence of the
search string. If a prefix argument is supplied, the command is executed the
number of times indicated.

Display Name Format

EDT Substitute

Function Format

EDT-SUBSTITUTE-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value
Undefined

EDT UNDELETE CHARACTER Command

Restores the character last deleted by the “edt Delete Character" command
(that is, the value of the Editor variable "edt Deleted Character') to the posi-
tion of the current buffer point if prefix is ni1.If you specify an integer prefix
argument, the character is inserted the number of times indicated.

Display Name Format

EDT Undelete Character

Objects-122

Editor Object Descriptions

Function Format

EDT-UNDELETE-CHARACTER-COMMAND prefix

Arguments

prefix

A positive integer or nil

Return Value

The inserted character

EDT UNDELETE LINE Command

Restores the line last deleted by the "edt Delete Line" or "edt Delete to End of
Line" command (that is, the value of the Editor variable "edt Deleted Line') to
the position of the current buffer point if prefix is ni1. If you specify an integer
prefix argument, the line is inserted the number of times indicated.

Display Name Format

EDT Undelete Line

Function Format

EDT-UNDELETE-LINE-COMMAND prefix

Arguments

prefix
A positive integer or ni1

Return Value
The inserted region

Objects-123

Editor Object Descriptions

EDT UNDELETE WORD Command

Restores the word last deleted by the "edt Delete Word"™ command (that is, the
value of the Editor variable "edt Deleted Word") to the position of the current
buffer point if prefix is ni1 . 1f you specify an integer prefix argument, the word is
inserted the number of times indicated.

Display Name Format

EDT Undelete Word

Function Format

EDT-UNDELETE-WORD-COMMAND prefix

Arguments

prefix
A positive integer or nil

Return Value

The inserted region

EMACS Style

Is an Editor style designed to imitate the functions and key bindings of an editor
based on EMACS.

Display Name Format

EMACS

Symbol Format

EMACS

Objects-124

Editor Object Descriptions

EMACS BACKWARD SEARCH Command

Searches backward for the search string specified in the last command. If the last
command was not a searching command, the "emacs Backward Search" command
prompts for a search string. If no prefix is supplied, this command searches for
the first occurrence of the search string. For a prefix n, the command searches for
the nth occurrence of the string.

Category
:EMACS-SEARCH

Display Name Format

EMACS Backward Search

Function Format

EMACS-BACKWARD-SEARCH-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value
The updated current buffer point

EMACS FORWARD SEARCH Command

Searches forward for the search string specified in the last command. If the last
command was not a searching command, the "emacs Forward Search" command
prompts for a search string. If no prefix is supplied, this command searches for

the first occurrence of the search string. For a prefix n, the command searches for
the nth occurrence of the string.

Category
:EMACS-SEARCH

Objects-125

Editor Object Descriptions

Display Name Format

EMACS Forward Search

Function Format

EMACS-FORWARD-SEARCH-COMMAND prefix &OPTIONAL string

Arguments

prefix
An integer or ni

string
A string

Return Value
The updated current buffer point

EMPTY-BUFFER-P Function

Returns « if the argument buffer is empty; otherwise, returns nin .

Format

EMPTY-BUFFER-P buffer

Arguments

buffer
An Editor buffer

Return Value

T or NIL

Objects-126

Editor Object Descriptions

EMPTY-LINE-P Function

Returns « if the specified mark points into a line having no characters; otherwise,
the function returns nir.

Format

EMPTY-LINE-P mark

Arguments

mark
An Editor mark

Return Value

T or NIL

EMPTY-REGION-P Function

Returns « if the argument buffer is empty; otherwise, returns nir .

Format

EMPTY-REGION-P region

Arguments

region
An Editor region

Return Value

Tor NIL

Objects-127

Editor Object Descriptions

END KEYBOARD MACRO Command

Ends the keyboard macro started with the "start Keyboard Macro™ command.
After this command is executed, the keyboard macro can be executed by means of
the ""Execute Keyboard Macro' command.

Display Name Format

End Keyboard Macro

Function Format

END-KEYBOARD-MACRO-COMMAND prefix

Arguments

prefix
Ignored

Return Value
A function that, if called, executes the keyboard macro

END-KEYBOARD-MACRO Function

Terminates the keyboard macro started with the start-keyboard-macro function.
This function returns a function that, when called, executes the keyboard macro.

Format

END-KEYBOARD-MACRO

Arguments

None

Return Value
A function

Objects-128

Editor Object Descriptions

END OF BUFFER Command

Moves the buffer point to the end of the current buffer.

Display Name Format

End of Buffer

Function Format

END-OF-BUFFER-COMMAND prefix

Arguments

prefix
Ignored

Return Value
The updated buffer point

END OF LINE Command

Moves the point to the end of the current line if the prefix argument is » i1 . If you
specify an integer prefix argument, the point is moved down the number of lines
indicated (or up, if the prefix is negative) and then to the end of the line.

Display Name Format

End of Line

Function Format

END-OF-LINE-COMMAND prefix

Arguments

prefix
An integer or ni1

Objects-129

Editor Object Descriptions

Return Value
The modified point

END-OF-LINE-P Function

Returns T if the specified mark points to the position immediately following the
last character on a line; otherwise, the function returns NIL.

Format

END-OF-LINE-P mark

Arguments

mark
An Editor mark

Return Value
T or NIL

END OF OUTERMOST FORM Command

Moves the buffer point from inside a LISP form to the end of the outermost form
surrounding it. If the point is between two outer forms, it is moved to the end of
the following one. An outermost form is one whose opening parenthesis is in the
leftmost column on the screen.

Display Name Format

End of Outermost Form

Function Format

END-OF-OUTERMOST-FORM-COMMAND prefix

Arguments

prefix
Ignored

Objects-130

Editor Object Descriptions

Return Value
The updated buffer point mark

END OF PARAGRAPH Command

Moves the mark to the end of the paragraph. If the mark is not supplied, it
defaults to the current buffer point.

Display Name Format

End of Paragraph

Function Format

END-OF-PARAGRAPH-COMMAND prefix &OPTIONAL mark

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Return Value
The updated mark

END OF WINDOW Command

Moves the cursor to the end of the current window.

Display Name Format

End of Window

Function Format

END-OF-WINDOW-COMMAND prefix

Objects-131

Editor Object Descriptions

Arguments

prefix
Ignored

Return Value
The updated current buffer point

ENQUEUE-EDITOR-COMMAND Function

Places the argument function onto the queue for later processing by the Editor.
The function can be any LISP function; it will be called in the correct time
relation to commands invoked from the keyboard and from the pointing device.
The value of the keyword :arguments can be a list of arguments to be passed to
the argument function.

Format

ENQUEUE-EDITOR-COMMAND function &KEY ARGUMENTS

Arguments

function
Any LISP function

:ARGUMENTS
A list of arguments to be passed to the argument function. The default is ni1 .

Return Value
The argument function

EVALUATE LISP REGION Command

Causes the text in the region bound to the ""Buffer Select Region' variable to be
evaluated as LISP code. The result of the evaluation is printed in the information
area. The result is also bound to the "1isp Evaluation Result" variable.

Display Name Format

Evaluate LISP Region

Objects-132

Editor Object Descriptions

Function Format

EVALUATE-LISP-REGION-COMMAND prefix

Arguments

prefix
Ignored

Return Value

A list of the values returned from the region evaluated

EXCHANGE POINT AND SELECT MARK Command

Moves the cursor to the location bound to the "Buffer Select Mark' variable in
the current buffer and sets the "Buffer Select Mark" variable to point to the old
cursor position. The command function returns the updated buffer select mark or
nit if no mark was selected.

Display Name Format

Exchange Point and Select Mark

Function Format

EXCHANGE-POINT-AND-SELECT-MARK-COMMAND prefix

Arguments

prefix
Ignored

Return Value
The updated buffer select mark or ni1

Objects-133

Editor Object Descriptions

EXECUTE KEYBOARD MACRO Command

Executes the most recently defined keyboard macro once if the prefix argument
is ni1.1f you specify an integer prefix argument, the command is executed the
number of times indicated.

Display Name Format

Execute Keyboard Macro

Function Format

EXECUTE-KEYBOARD-MACRO-COMMMAND prefix

Arguments

prefix
An integer or nil

Return Value

The value returned by the last function executed in the keyboard macro

EXECUTE NAMED COMMAND Command

Prompts the user for the name of an Editor command to execute if you do not
specify one. The prefix argument is passed to the command you want executed.

Display Name Format

Execute Named Command

Function Format

EXECUTE-NAMED-COMMAND-COMMAND prefix

Arguments

prefix
An integer or nil

Objects-134

Editor Object Descriptions

Return Value

The value returned by the named command

EXIT Command

Returns control to LISP, and the Editor state is lost. If there are modified buffers,
the Editor asks the user if the buffers should be saved. If the response is yes, the
Editor executes the "Write Modified Buffers" command.

Display Name Format

Exit

Function Format

EXIT-EDITOR-COMMAND prefix

Arguments

prefix
Ignored

Return Value

None

EXIT-EDITOR-COMMAND Function

See "Exit" command.

EXIT RECURSIVE EDIT Command

Causes the Editor to exit one level of calls to the ed function, returning no values
from ed .You must use this command to return from a recursive call to ed . If
invoked from the Editor § top level, the command has the same effect as ""Pause
Editor'.

This command is commonly used in conjunction with the command ''Query search
Replace™.

Objects-135

Editor Object Descriptions

Display Name Format

Exit Recursive Edit

Function Format

EXIT-RECURSIVE-EDIT-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

FIND-AMBIGUOUS Function

Returns a list of those strings in the string table that begin with the specified
string. The list is in alphabetical order. String comparisons are case-insensitive.

Format

FIND-AMBIGUOUS string string-table

Arguments

string
A string to be compared with the string-table entries

string-table
An Editor string table

Return Value

An alphabetically ordered list of those strings in the string table that begin with
the specified string, or ni1 if none

Objects-136

Editor Object Descriptions

FIND-ATTRIBUTE Function

Returns the symbol that names the specified attribute if the argument is a
defined attribute, or » i1 otherwise.

Format

FIND-ATTRIBUTE attribute

Arguments

attribute
An attribute specifier

Return Value

Asymbol or nil

FIND-BUFFER Function

Returns the buffer if the argument is a buffer specifier, or » i1 otherwise.

Format

FIND-BUFFER buffer

Arguments

buffer
An Editor buffer specifier

Return Value
An Editor buffer or nii

Objects-137

Editor Object Descriptions

FIND-COMMAND Function

Returns the associated function if the argument is a command specifier, or n i1
otherwise.

Format

FIND-COMMAND command

Arguments

command
An Editor command specifier

Return Value

The function associated with the command or n i

FIND-STYLE Function

Returns an Editor style if the argument is a style specifier, or n i1 otherwise.

Format

FIND-STYLE style

Arguments

style
An Editor style specifier

Return Value
An Editor style or n i1

Objects-138

Editor Object Descriptions

FIND-VARIABLE Function

Returns an Editor variable symbol if the argument is an Editor variable, the
symbol that names an Editor variable specifier, or n i1 otherwise.

Format

FIND-VARIABLE variable

Arguments

variable
An Editor variable specifier

Return Value

The symbol that names the Editor variable, or nii

FIRST-LINE-P Function

Is a predicate that returns 1 if the mark points into the first line in a buffer or a
disembodied region.

Format

FIRST-LINE-P mark

Arguments

mark
An Editor mark

Return Value

T or NIL

Objects-139

Editor Object Descriptions

FORWARD CHARACTER Command

Moves the point in the current window forward by one character if the prefix
argument is ni1 .If you specify an integer prefix argument, the point is moved
forward by the number of characters indicated (or backward, if the prefix is
negative).

Display Name Format

Forward Character

Function Format

FORWARD-CHARACTER-COMMAND prefix

Arguments

prefix
An integer specifying how many characters to move

Return Value
The updated buffer point mark

FORWARD KILL RING Command

Rotates the kill ring forward by the number of elements specified by the prefix
argument. The prefix defaults to I.

Category
:KILL-RING

Display Name Format

Forward Kill Ring

Function Format

FORWARD-KILL-RING-COMMAND prefix

Objects-140

Editor Object Descriptions

Arguments

prefix
An integer or nii

Return Value
Undefined

FORWARD PAGE Command

Moves the point forward one page. A page is delimited by any character having a
"Page Delimiter" attribute value of 1. If you specify an integer prefix argument,
the point is moved forward the number of pages indicated.

Display Name Format

Forward Page

Function Format

FORWARD-PAGE-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value
Updated buffer point

FORWARD SEARCH Command

Prompts the user for a string to use as a pattern for a forward search. The string
defaults to the value of the Editor variable "Last Search string". The buffer
point is moved to the end of the matching string. If the user specifies a prefix
argument, n, the search occurs n times.

Display Name Format

Forward Search

Objects-141

Editor Object Descriptions

Function Format

FORWARD-SEARCH-COMMAND prefix &OPTIONAL string

Arguments

prefix
An integer or ni1

string

A string that defaults to the value of the Editor variable "L ast search string"

Return Value
A modified buffer point

FORWARD WORD Command

Moves the point forward to the beginning of the next word. A word is delimited
by a character having a "Word Delimiter" attribute value of 1. If you specify
an integer prefix argument, the point is moved forward the number of words
indicated.

Display Name Format

Forward Word

Function Format

FORWARD-WORD-COMMAND prefix

Arguments

prefix
An integer or ni1

Return Value
A modified buffer point

Objects-142

Editor Object Descriptions

FORWARD-WORD-COMMAND Function

Format

Moves the point forward to the first character of the next word (or nth word

if the prefix n was supplied). This function takes an optional mark argument
that defaults to the current buffer point. It moves the mark forward to indicate
the word delimiter character that follows the present word (or the next word, if
the mark is initially indicating a word delimiter). If a prefix n is supplied, this
function moves the mark forward to indicate the word delimiter following the nth
word.

FORWARD-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix
An integer or nil

mark
An Editor mark that defaults to the current buffer point

Return Value

The modified mark

GENERAL PROMPTING Buffer

Is used by the general prompting facility to display prompts and obtain input
from the user. A floating window is associated with this buffer. The following

commands are bound locally in this buffer:
= "Prompt Help"

< "Prompt Read and Validate"

e "Prompt Show Alternatives"

e "Prompt Complete String"

Display Name Format

General Prompting

Objects-143

Editor Object Descriptions

Symbol Format

EDITOR-PROMPTING-BUFFER

GET-BOUND-COMMAND-FUNCTION Function

Format

Returns the function of the command currently bound to the specified key-
sequence; or, if you specify a context, bound to the specified key-sequence in that
context. If the specified sequence is ambiguous, the keyword :prefix is returned.

GET-BOUND-COMMAND-FUNCTION key-sequence &OPTIONAL context

Arguments

key-sequence
A character or vector of characters

context
An Editor context specifier that defaults to the current context

Return Value

A function, :PREFix, OF ni1

GET-POINTER-STATE Function

Objects—44

Returns an object that contains the state of the pointing device at some point in
time. The pointer-state information includes:

= The text position (line and character position) indicated by the pointer cursor.

= The window position (column and row coordinates in a particular Editor
window) indicated by the pointer cursor.

= The state (up or down) of each button on the pointing device. If a button was
in transition (being depressed or released) at the point in time for which the
pointer state is stored, the button state is the state of the buttons at the end
of the transition.

= |n some cases, a particular previous action of the pointing device (see below).
If called from within an Editor command and if that command was invoked by an

action of the pointing device, get-pointer-state returns an object containing the
pointer state at the time of the pointer action that invoked the command.

Editor Object Descriptions

In this case the action information in the pointer-state object is the action that
invoked the currently executing command (See bind-pointer-commanda for infor-
mation on pointer actions). If the command was not invoked by a pointer action,
GET-POINTER-STATE returns the current state of the pointing device.

If called from outside the active Editor environment, this function returns an
object that contains the current state of the pointing device: text position, window
position, and button state. In this case the action information in the pointer-
state object is ni1. If the pointer cursor is outside the Editor § display area,
GET-POINTER-STATE returns NiL.

get-pointer-state is useful in commands that perform different actions depend-
ing on some feature of the pointer state other than the particular pointer action
that invoked them.

The information contained in the pointer-state object can be accessed by means of
the fUnCtionS pointer-state-text-position, pointer-state-window-position,
POINTER-STATE-BUTTONS, and POINTER-STATE-ACTION.

GET-POINTER-STATE

Arguments

None

Return Value

Apointer—state object or nil

GET-STRING-TABLE-VALUE Function

Searches the specified string table for an entry whose key matches the string
argument. You can use this function with se+«r to modify the contents of the
string table.

GET-STRING-TABLE-VALUE string string-table

Arguments

string
A character string

string-table
An Editor string table

Objects-145

Editor Object Descriptions

Return Value
Two values:
1 The first value is the entry found, or nir.
2. The second value is Tif the first value is valid.

GROW WINDOW Command

Increases the height of the specified window (or current window, if none is
specified) by one line. If the window is anchored, at least one other window must
be displayed on the screen. Other displayed windows that are anchored decrease
in height proportionately, except any window having only one line. Floating
windows can always grow or shrink within the range of one line to the height of
the screen.

If the prefix is a positive integer, the window grows by the number of lines
indicated. If the prefix is a negative integer, the window shrinks by the number
of lines indicated.

Display Name Format

Grow Window

Function Format

GROW-WINDOW-COMMAND prefix &OPTIONAL window

Arguments

prefix
An integer or n i

window
An Editor window

Return Value
The new window height

Objects-146

Editor Object Descriptions

HELP Buffer

Is used to display Help information. A floating window is associated with this
buffer. The buffer is used by the Editor "Help" command and by the prompting
facility. It can also be used by user-defined commands.

Display Name Format

Help

Symbol Format

EDITOR-HELP-BUFFER

HELP Command

Is used to supply assistance to the user while the Editor is being used. This
command makes a window into the "Help' buffer visible. It inserts the text of
the help-string argument, if supplied, or the text of the current value of the "Help
Text" Editor variable. If both are ni1,the command signals an Editor error with
the message "No Help Available".

Display Name Format

Help

Function Format

HELP-COMMAND prefix &OPTIONAL help-string

Arguments

prefix
Ignored

help-string
An optional string for use as the current help text

Return Value
None

Objects-147

Editor Object Descriptions

HELP ON EDITOR ERROR Command

Displays the last message created by the editor-error-with-help function in a
window into the "Help" buffer.

Display Name Format

Help on Editor Error

Function Format

HELP-ON-EDITOR-ERROR-COMMAND prefix

Arguments

prefix
Ignored

Return Value
None

HELP TEXT Editor Variable

Specifies the help text to be displayed by the "Help" command. The value of
this variable must be a string, a function of no arguments that returns a string,
or ni1.The global binding of this variable contains the default help text for the
Editor.

Display Name Format

Help Text

Symbol Format

HELP-TEXT

Objects-148

Editor Object Descriptions

HIGHLIGHT-REGION-P Function

Returns 71 if the argument is a highlight region and ~niL otherwise.

Format

HIGHLIGHT-REGION-P object

Arguments

object
Any LISP object

Return Value

T or NIL

ILLEGAL OPERATION Command

Signals an Editor error with the message "illegal Operation'. This command
is used to disable a command locally within a style or buffer. For example, to
disable "'self Insert" for a particular character, bind the character to "illegal
Operation'.

Display Name Format

lllegal Operation

Function Format

ILLEGAL-OPERATION-COMMAND prefix

Arguments

prefix
Ignored

Return Value

None

Objects-149

Editor Object Descriptions

INDENT LISP LINE Command

Adjusts the indentation of the current LISP source line so it is indented appropri-
ately in the program context.

Display Name Format

Indent LISP Line

Function Format

INDENT-LISP-LINE-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

INDENT LISP REGION Command

Adjusts the indentation of the LISP text in the region in the Editor variable
"Buffer Select Region', so that the text lines up appropriately in the program
context.

Display Name Format

Indent LISP Region

Function Format

INDENT-LISP-REGION-COMMAND prefix

Arguments

prefix
Ignored

Objects-150

Editor Object Descriptions

Return Value

None

INDENT OUTERMOST FORM Command

Determines the outermost LISP form that surrounds the current buffer point
and indents each line in the form appropriately. An outermost form is one whose
opening parenthesis is in the leftmost column on the screen.

Display Name Format

Indent Outermost Form

Function Format

INDENT-OUTERMOST-FORM-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

INFORMATION-AREA-HEIGHT Function

Returns the number of lines occupied by the information area at the bottom of
the screen. You can use this function with se«f to modify the number of lines,
but you cannot set that number to less than 1 When you alter the height of the
information area, the heights of any anchored windows are adjusted accordingly.

Format

INFORMATION-AREA-HEIGHT

Arguments

None

Objects-151

Editor Object Descriptions

Return Value
The number of lines occupied by the information area

‘INFORMATION-AREA-OUTPUT-STREAM* Variable

Is bound to an output stream that can be used to write to the information area.
Lines written to the information area are truncated if they are longer than
the screen is wide. A terpri executed to this stream scrolls the lines in the

information area.

INITIALIZE-EDITOR Function

Initializes the Editor without actually entering it. The screen management
system and all standard Editor buffers are initialized. The function is called
automatically when the Editor is first invoked. This function must be called prior
to the use of any window creation or manipulation functions. If, for example, you
want to create Editor windows in an initialization file, you must include a call to

this function in the initialization file.

Format

INITIALIZE-EDITOR

Arguments
None

Return Value
T, if the Editor is actually initialized by this call; or n i1,
initialized.

if it had already been

INSERT BUFFER Command

Prompts the user for a buffer name if one is not supplied and inserts the text of
the buffer specified into the current buffer at the buffer point. The point is left at

the end of the inserted text.

Category
IGENERAL-PROMPTING

Objects-152

Editor Object Descriptions

Display Name Format

Insert Buffer

Function Format

INSERT-BUFFER-COMMAND prefix &OPTIONAL name

Arguments

prefix
Ignored

name

An Editor buffer

Return Value
The modified point

INSERT-CHARACTER Function

Inserts the specified character at the position of the specified mark. If the
character is a #\new1ine, the line is broken into two lines.

Format

INSERT-CHARACTER mark character

Arguments

mark
An Editor mark

character
A character

Return Value

The character

Objects-153

Editor Object Descriptions

INSERT CLOSE PAREN AND MATCH Command

Inserts the last character typed at the current buffer point. If the character is a
list terminator, this command finds and momentarily highlights the matching list
initiator. If the list initiator is not visible in the window, the line containing it is
displayed in the information area, and the matching list initiator is highlighted.
If there is no matching list initiator, an Editor error is signaled. (See "1isp

syntax - attribute, especially the values :1ist-terminator aNd 1ist-initiator.)

Display Name Format

Insert Close Paren and Match

Function Format

INSERT-CLOSE-PAREN-AND-MATCH-COMMAND prefix

Arguments

prefix
Ignored

Return Value

NIL

INSERT FILE Command

Prompts the user for the name of a file if none is specified and inserts the file at
the current buffer point. The point is left at the end of the inserted text.

Category
rGENERAL-PROMPTING

Display Name Format

insert File

Objects-154

Editor Object Descriptions

Function Format

INSERT-FILE-COMMAND prefix &OPTIONAL file-name

Arguments

prefix
Ignored

file-name
A pathname, namestring, or stream

Return Value
The updated buffer point

INSERT-FILE-AT-MARK Function

Inserts the specified file into a buffer at the position of the specified mark. This
function checks to see if there is enough dynamic memory available to load the
file and signals an Editor error if there is not. There is an implied #\newtine
character at the end of the file, but not at the beginning.

Format

INSERT-FILE-AT-MARK pathname mark

Arguments

pathname
A pathname, namestring, or stream

mark
An Editor mark

Return Value
The mark

Objects-155

Editor Object Descriptions

INSERT-REGION Function

Inserts the specified region at the position of the specified mark. The region text
is copied in the process.

Format

INSERT-REGION mark region

Arguments

mark
An Editor mark

region
An Editor region

Return Value
The region

INSERT-STRING Function

Inserts a string at the position of the specified mark. Embedded newline char-
acters cause additional Editor lines to be inserted. The string is copied. The
optional start and end arguments allow you to specify a substring to be inserted.

Format

INSERT-STRING mark string &OPTIONAL start end

Arguments

mark
An Editor mark

string
A string

start
An integer that iB an index into the string. The default is zero.

end
An integer that is an index into the string. The default is the length of the string.

Objects-156

Editor Object Descriptions

Return Value

The string

INVOKE-HOOK Function

Format

Searches the entire current context, in the reverse of the usual search order, for
occurrences of the variable (that is, the search occurs in the order—the global
definition, the major style of the current buffer, the minor styles in reverse
order, and the local variables of the current buffer). The function then applies

to the specified args arguments all the functions bound to each occurrence of the
specified Editor variable.

INVOKE-HOOK name &REST args

Arguments

name
An Editor variable specifier

args
The arguments to be passed to the hook function

Return Value

The value that the last hook function returns

KILL ENCLOSING LIST Command

Deletes the list that immediately encloses the argument mark and returns a dis-
embodied region that contains the deleted text. The mark defaults to the current
buffer point. If the mark is located within a symbol, the list that immediately
encloses the symbol is deleted. The mark is left at the location where the deleted
text appeared.

If a positive prefix argument n is specified, the next n enclosing lists are deleted
and returned as a disembodied region. If a zero or negative prefix argument is
specified, no action occurs and n i1 is returned. If the list to be deleted cannot be
determined because of missing text, no action occurs and » i1 is returned.

Display Name Format

Kill Enclosing List

Objects-157

Editor Object Descriptions

Function Format

KILL-ENCLOSING-LIST-COMMAND prefix &OPTIONAL mark

Arguments

prefix
An integer or nii

mark
An Editor mark that defaults to the current buffer point

Return Value

Adisembodied region or nil

KILL LIST Command

Category

Deletes the rest of the current line and adds it to the end of the current kill-ring
region if the previous command was in the category xir1-ring; O, Creates a new
kill-ring region. If you supply a positive integer prefix n, the command deletes the
rest of the current line and n— lines following the current line; the line following
the last line deleted is appended to the beginning portion of the current line. If
you supply a negative integer prefix -n, the command deletes the portion of the
current line preceding the point and n-1 lines preceding the current line; the rest
of the current line is appended to the line preceding the first line deleted.

‘KILL-RING

Display Name Format

Kill Line

Function Format

KILL-LINE-COMMAND prefix

Arguments

Objects-158

prefix
An integer or n i1

Editor Object Descriptions

Return Value
Undefined

KILL NEXT FORM Command

Deletes the LISP form immediately after the mark at the current parenthesis
nesting level and returns a disembodied region that contains the deleted text.
The mark defaults to the current buffer point. If a positive prefix argument n is
specified, then the next n LISP objects at the current parenthesis nesting level
are deleted and returned as a disembodied region. If no next form is found within
the innermost enclosing list or if a negative prefix argument is supplied, no action
occurs and nil is returned.

Display Name Format

Kill Next Form

Function Format

KILL-NEXT-FORM-COMMAND prefix & OPTIONAL mark

Arguments

prefix
A positive integer or ni

mark
An Editor mark that defaults to the current buffer point

Return Value

Adisembodied region or nil

KILL PARAGRAPH Command

Deletes the rest of the current paragraph and adds it to the end of the current
kill-ring region if the previous command was in the category :kill-ring; or,
creates a new Kill-ring region. If a prefix argument n is supplied, the command
deletes the rest of the current paragraph and the next n— paragraphs.

Objects-159

Editor Object Descriptions

Category
:KILL-RING

Display Name Format

Kill Paragraph

Function Format

KILL-PARAGRAPH-COMMAND prefix

Arguments

prefix
Positive integer or nii

Return Value
Undefined

KILL PREVIOUS FORM Command

Deletes the LISP form immediately before the mark at the current parenthesis
nesting level and returns a disembodied region that contains the deleted text.
The mark defaults to the current buffer point. If a positive prefix argument n
is specified, then the previous n LISP objects at the current parenthesis nesting
level are deleted and returned as a disembodied region. If no previous form is
found within the innermost enclosing list or if a negative prefix argument is
supplied, no action occurs and i1 is returned.

Display Name Format

Kill Previous Form

Function Format

KILL-PREVIOUS-FORM-COMMAND prefix & OPTIONAL mark

Objects-160

Editor Object Descriptions

Arguments

prefix
A positive integer or nil

mark
An Editor mark that defaults to the current buffer point

Return Value

A disembodied region or ni1

KILL REGION Command

Deletes a region and adds it to the end of the current kill-ring region if the
previous command was in the category :kill-ring;or, creates a new Kkill-ring
region. If the region is not supplied, it defaults to the region between the buffer
select mark and the current buffer point.

Category
:KILL-RING

Display Name Format

Kill Region

Function Format

KILL-REGION-COMMAND prefix &OPTIONAL region

Arguments

prefix
Ignored

region
An Editor region that defaults to the buffer-select-region

Return Value
Undefined

Objects-161

Editor Object Descriptions

KILL REST OF LIST Command

Deletes the part of the list that immediately follows the argument mark and
returns a disembodied region that contains the deleted text. The mark defaults
to the current buffer point. If the mark is not in a list or if the list terminator
cannot be found, no action occurs and niL is returned.

Display Name Format

Kill Rest of List

Function Format

KILL-REST-OF-LIST-COMMAND prefix &OPTIONAL mark

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Return Value

Adisembodied region or nil

LAST-CHARACTER-TYPED Variable

Is bound to the last character typed by the user.

LAST-LINE-P Function

Is a predicate that returns t if the specified mark points to the last line in a
buffer or a disembodied region.

Format

LAST-LINE-P mark

Objects-162

Editor Object Descriptions

Arguments

mark
An Editor mark

Return Value

T or NIL

LAST SEARCH DIRECTION Editor Variable

Indicates the direction of the most recent search by means of a keyword having
the value of either :forwarda OF backward.

Display Name Format

Last Search Direction

Symbol Format

LAST-SEARCH-DIRECTION

LAST SEARCH PATTERN Editor Variable

Specifies the search pattern last used with the search commands.

Display Name Format

Last Search Pattern

Symbol Format

LAST-SEARCH-PATTERN

Objects—63

Editor Object Descriptions

LAST SEARCH STRING Editor Variable

Specifies the string last used with the search commands.

Display Name Format

Last Search String

Symbol Format

LAST-SEARCH-STRING

LINE-BUFFER Function

Returns the buffer associated with the Editor line. This function returns ~iv if
the line is not associated with any buffer.

Format

LINE-BUFFER line

Arguments

line
An Editor line

Return Value
An Editor buffer or ni

LINE-CHARACTER Function

Returns the character in the text of the specified line at the position indicated by
the specified index (the first character is specified by o, the second by I, and so
on). The function returns n i1 if there is no character at that position. It returns
the #\newline character if the specified position is at the end of the line. You can
use this function with setf to change the character at that position.

Format

LINE-CHARACTER line index

Objects-164

Editor Object Descriptions

Arguments

line
An Editor line

Index
A fixnum

Return Value

Acharacter or nil

LINE-END Function

Changes the specified mark so it points to the end of the line.

Format
LINE-END mark &OPTIONAL line

Arguments

mark
An Editor mark

line
An Editor line that defaults to the line that the mark points into

Return Value
The modified mark

LINE-LENGTH Function

Returns an integer that is the number of characters contained in the Editor line.
The line break is not included.

Format

LINE-LENGTH line

Objects-165

Editor Object Descriptions

Arguments

line
An Editor line

Return Value
An integer

LINE-NEXT Function

Returns the line following the specified line.

Format

LINE-NEXT line

Arguments

line
An Editor line

Return Value

An Editor line, or nil if there is no following line

LINE-OFFSET Function

Changes the specified mark so that it points n lines after the line it currently
points into (or n lines before, if n is negative). The function attempts to have
the mark in the new line point to the same position it pointed to in the old line.
If you do not want the mark to point to that position, you can specify another
position in the new line by supplying a value for the index argument.

If there are not enough characters in the new fine for a specified or defaulted
position to exist, the mark is positioned at the end of the line. If there are not
enough lines after (or before) the mark to satisfy the n argument, the mark is not
modified, and NIL is returned.

Format

LINE-OFFSET mark n &OPTIONAL index

Objects—166

Editor Object Descriptions

Arguments

mark
An Editor mark

n
A fixnum

index
A fixnum that defaults to the character position of mark

Return Value
The modified mark, or ni1

LINE-PREVIOUS Function

Returns the line preceding the specified line.

Format

LINE-PREVIOUS line

Arguments

line
An Editor line

Return Value
A line, or nil if there is no preceding line

LINE-START Function

Changes the specified mark so that it points to the beginning of the line.

Format
LINE-START mark &OPTIONAL line

Arguments

mark
An Editor mark

Objects—167

Editor Object Descriptions

line
An Editor line that defaults to the line that the mark points into

Return Value
The modified mark

LINE-STRING Function

Returns a character string that is the text contained in the Editor line. You can
use r1ine-string With the setf macro to modify the text contained in an Editor
line. In particular, if you do any destructive operations on the string (for example,
using the 1isp nstring-upcase function to make a portion of the text uppercase),
you must use setf to have the change appropriately reflected.

Format

LINE-STRING line

Arguments

line
An Editor line

Return Value
A string

LINE-TO-REGION Function

Returns a region consisting of either the specified line if the argument is a line or
the line that the mark points into if the argument is a mark.

Format

LINE-TO-REGION line-or-mark

Arguments

line-or-mark
An Editor line or an Editor mark

Objecls-168

Editor Object Descriptions

Return Value

A region containing the specified line

LINE TO TOP OF WINDOW Command

Moves the line that the buffer point points into, so that it is the first displayed
line in the current window.

Display Name Format

Line to Top of Window

Function Format

LINE-TO-TOP-OF-WINDOW-COMMAND prefix &OPTIONAL mark window

Arguments

prefix
Ignored

mark

A mark pointing into the line to go to the top of the window. The default is the
current buffer point.

window

The window in which the specified line is to be the top line. The default is the
current window.

Return Value

None

LINEP Function

Is a predicate that returns T if object is an Editor line.

Format

LINEP object

Objects-169

Editor Object Descriptions

Arguments

object
Any LISP object

Return Value

T or NIL

LINES-RELATED-P Function

Returns ¢ if the two specified lines are in either the same buffer or the same

disembodied region.

Format
LINES-RELATED-P linel \ine2

Arguments

linel
An Editor line

line2
Another Editor line

Return Value
T or NIL

LINE/= Function

Returns 1 if linel and line2 are not the same. The two lines need not be in the

same buffer.

Format

LINE/= linel line2

Arguments

linel
An Editor line

Objects-170

Editor Object Descriptions

Une2
Another Editor line

Return Value

T or NIL

LINE< Function

Returns « if linel precedes line2. The two lines must be in the same buffer.

Format

LINE< linel line2

Arguments

linel
An Editor line

IIne2
Another Editor line

Return Value

T or NIL

LINE<= Function

Returns « if linel precedes line2 or is the same line as line2. The two lines must
be in the same buffer.

Format

LINE<= linel line2

Arguments

linel
An Editor line

IIne2
Another Editor line

Objects-171

Editor Object Descriptions

Return Value
T or NIL

LINE= Function
Returns 1 if linel and line2 are the same line. The two lines do not have to be in

the same buffer.

Format

LINE= linel \ine2

Arguments

linel
An Editor line

IIne2
Another Editor line

Return Value
T or NIL

LINE> Function

Returns 71 if linel follows line2. The two lines must be in the same buffer.

Format

LINE> linel \ine2

Arguments

linel
An Editor line

Une2
Another Editor line

Objects-172

Editor Object Descriptions

Return Value

Tor NIL

LINE>= Function

Returns T if linel follows line2 or if they are the same line. The two lines must
be in the same buffer.

Format

LINE>= linel line2

Arguments

linel
An Editor line

IIne2
Another Editor line

Return Value

Tor NIL

LISP COMMENT COLUMN Editor Variable

Is bound in "VAX 1isp' style to an integer that indicates the column in which a
LISP comment begins on a line. This Editor variable is used by the indentation
commands as well as by the ""Move to 1isp Comment” command. By default, LISP
comments begin at column 49. You can change the LISP comment column by
using the setf macro.

Display Name Format

LISP Comment Column

Symbol Format

LISP-COMMENT-COLUMN

Objects-173

Editor Object Descriptions

LISP EVALUATION RESULT Editor Variable

Is bound to a list of the values returned when a LISP region is evaluated in the
Editor.

Display Name Format

LISP Evaluation Result

Symbol Format
LISP-EVALUATION-RESULT

LISP SYNTAX Attribute

Used in "VAX 1isp" style to determine the structure of the LISP source being
edited. The value of this attribute for a given character defines the role (if any)
that character plays in the syntax of LISP. The table below lists the values this
attribute can take and shows a sample character for each attribute value. You
can modify the value of this attribute for a given character by using the SETF
Macro on a character-attribute form.

Display Name Format

LISP Syntax

Symbol Format

LISP-SYNTAX

Table Objects-1: LISP Syntax Attribute Values

Value Character(a) Description
LIST-INITIATOR #\< A character that signifies the beginning of a
list
LIST-TERMINATOR #\> A character that signifies the end of a list
:COMMENT-DELIMITER #\; A character that signifies the beginning of a
comment

(continued on next page)

Objects-174

Editor Object Descriptions

Table Objects-i (Cont.): LISP Syntax Attribute Values

Value Characterfs)

:STRING-DELIMITER #\"

-SINGLE-ESCAPE #\\
MULTIPLE-ESCAPE Al

“WORD-DELIMITER #\space and
others

:READ-MACRO #V

:CONSTITUENT #\A and others

Description

A character that delimits the beginning and
end of a string

A character used as a single escape character

A character used as a multiple escape
character

A character used to separate words

A macro character that the LISP READ
function accepts

A character used as a constituent character

You can use the 1ocate-attribute function in conjunction with the "risp
Syntax' attribute to find an instance of a particular LISP syntactic element.
For example, the following function call finds the first occurrence of a string
delimiter beyond the current buffer point:

(locate-attribute (current-buffer-point)

"LISP Syntax'")
“test # (lambda

) (eq x :string-delimiter))))

NOTE

Characters whose "1isp Syntax" attribute value is :List-initiator,
:LIST-TERMINATOR, :COMMENT-DELIMITER, :STRING-DELIMITER, and
cread-macro are also considered to delimit words, in addition to the
characters whose value is word-delimiter.

LIST BUFFERS Command

Causes a list of the current buffers to be displayed in the Help window.

Display Name Format

List Buffers

Function Format

LIST-BUFFERS-COMMAND prefix

Arguments

prefix
Ignored

Objects-175

Editor Object Descriptions

Return Value

NIL

LIST KEY BINDINGS Command

Prompts the user for a context in which to search for key bindings. If none is
specified, all the currently visible bindings are used. The command formats and
displays a list that includes the key sequence, the associated command name, and
the context of the binding. Key sequences that are bound to the "'Self insert"
command are not included in the list.

Category
:GENERAL-PROMPTING

Display Name Format

List Key Bindings

Function Format

LIST-KEY-BINDINGS-COMMAND prefix &OPTIONAL context

Arguments

prefix
Ignored

context

The context in which to search for bindings. If the value of the context argument
is ni1, the user is prompted for a context; if the value is 1, the entire visible set
of bindings is used.

Return Value

None

Objects-176

Editor Object Descriptions

LOCATE-ATTRIBUTE Function

Format

Locates a character in a region or string whose value for the specified attribute
satisfies the given test.

If the argument you specify is a mark, the function begins searching at the mark
and proceeds in the direction specified by the :direction keyword (:forward,
the default, or :backward). The search continues until: (1) a suitable character
is found; (2) there are no more characters; (3) the mark specified by the :rimit
keyword is reached. If a character is found, the mark is updated to point to that
character. If no character is found, the function returns ni1 .

If the argument you specify is a string, the string is searched starting at the
beginning of the string or at the position indicated by :start if the :start
keyword is specified. If a character is found that satisfies the test, the function
returns the position of the character in the string. If no suitable character is
found, the function returns ni1 .

LOCATE-ATTRIBUTE mark-or-string attribute & KEY :TEST :CONTEXT

Arguments

:DIRECTION :LIMIT :START
‘END

mark-or-string
Either a mark that specifies the starting position or a string to be searched

attribute
An attribute specifier

TEST

A predicate function of one argument used to test the attribute value of each
character. iTEST returns non-NiL if the argument that specifies the attribute
value of the character matches a character during the search. The default is
1"plosp,Which is often used with a 0 or I value for a character attribute. The
attribute value may be any LISP object. The test function must accept objects of
the appropriate type.

:CONTEXT
An Editor context specifier for the character attribute. The default is the current
context.

:DIRECTION
The direction to scan for a character satisfying the attribute test. Values can be
“forward OF :backward.The defaultis :forward.

Objects-177

Editor Object Descriptions

LIMIT

Used only when you specify a mark for the mark-or-string argument. :rimit
must be a mark that points into the same buffer or disembodied region as the
mark you specify for the mark-or-string argument. If no character is found

that satisfies the test before the :1imit mark is reached, the search fails. (The
character pointed to by :1imit is included in the search.) If the search direction
is forward, the limit mark must be located after the starting mark; otherwise, the
limit mark must be located before the starting mark.

:START

Used only when you specify a string for the mark-or-string argument. :start

is an integer that specifies the character position in the string where the search
begins. The default value for :start is o. The :start argument is ignored if you
specify a mark for the mark-or-string argument.

:END

Used only when you specify a string for the mark-or-string argument. :END is
an integer that specifies the character position in the string where the search
ends. The default value for end is the length of the string. The :end argument
is ignored if you specify a mark for the mark-or-string argument.

Return Value
Three values:

1 The modified mark, if the argument for mark-or-string is a mark and the
search is successful; or, if the mark-or-string argument specified is a string,
an integer that represents the character § position in the string; or ni1 if no
character is found (the search is unsuccessful).

2. The character at the position of the mark.
3. The value of the attribute for that character.

LOCATE-PATTERN Function

Searches for a text string that matches the specified search pattern. You create
search patterns by means of the make-search-pattern function. The mark is
changed so that it points to the beginning of the located text.

Format

LOCATE-PATTERN mark search-pattern

Arguments

mark
An Editor mark

Objects-178

Editor Object Descriptions

search-pattern
An Editor search pattern

Return Value

The number of characters matched, or ni1

MAJOR STYLE ACTIVATION HOOK Editor Variable

Specifies a hook function that is called whenever a major style is activated in a
buffer. The function is called with two arguments, the style and the buffer.

Display Name Format

Major Style Activation Hook

Symbol Format

MAJOR-STYLE-ACTIVATION-HOOK

MAKE-BUFFER Function

Takes a name specifier and creates a buffer of the specified name. The calling of
this function causes the "Buffer Creation Hook" to be invoked. If a buffer that
has the specified name already exists, it is returned.

Format

MAKE-BUFFER buffer-name &KEY :DOCUMENTATION :MAJOR-STYLE
:MINOR-STYLES :VARIABLES :OBJECT
:TYPE :PERMANENT

Arguments

buffer-name
The name for the new buffer. This can be specified as either a symbol or a list of
a symbol with the keyword :DISPLay-name and a string; that is,

name | (name :DISPLAY-NAME string)

:DOCUMENTATION
A string used as the documentation string for the buffer.

Objects-179

Editor Object Descriptions

m.MAJOR-STYLE
An Editor style that is to be the major style of the buffer. This defaults to the
global value of the ""Default Major style" Editor variable.

:MINOR-STYLES
A list of Editor styles that are to be the minor styles of the buffer. This defaults
to the global value of the "Default Minor styles' Editor buffer.

VARIABLES
A list of Editor variables that are to be bound in the buffer. This defaults to the
global value of the "'Default Buffer Variables" Editor variable.

:OBJECT
The object to be edited in the buffer. This can be a pathname, a symbol, or a list
that is a form acceptable to the setf macro.

‘TYPE
The type of the object being edited. This can be specified only if the object is a
symbol. The possible values are :function (the default) and :vaiue.

:PERMANENT

If non-NiL, the buffer is created as a permanent buffer. A permanent buffer
cannot be deleted with derete-burrer, it remains in the Editor across a sus-
pend/resume cycle, and it remains if you exit the Editor. The default is nir.

Return Value
Two values:
1 An Editor buffer

2. t,if this is a new buffer; nin, if the buffer already existed

MAKE-COMMAND Function

Is used to turn an existing LISP function into an Editor command. The name op-
tions to the make-commana function are the same as those for the define-commana
macro and can include a display name, and a category or list of categories.

The supplied function must be a function of at least one argument. The prefix
argument is passed when the command is executed as a function.

Format

MAKE-COMMAND name function &OPTIONAL documentation

Arguments

name
A command name specifier

Objects-180

Editor Object Descriptions

function
A LISP function that is to become an Editor command

documentation
The documentation string that will be used to describe the Editor command (not
the function documentation)

Return Value

The function

MAKE-EDITOR-STREAM-FROM-REGION Function

Takes an Editor region and returns an Editor input stream.

Format

MAKE-EDITOR-STREAM-FROM-REGION region

Arguments

region
An Editor region

Return Value

An input stream

MAKE-EDITOR-STREAM-TO-MARK Function

Returns an Editor output stream that causes all output to be inserted at the
specified mark.

Format

MAKE-EDITOR-STREAM-TO-MARK mark

Arguments

mark
An Editor mark

Objects-181

Editor Object Descriptions

Return Value

An output stream

MAKE-EMPTY-REGION Function

Returns a new disembodied Editor region with permanent marks pointing into
a line with no characters. The starting mark is right-inserting, and the ending
mark is left-inserting.

Format

MAKE-EMPTY-REGION

Arguments
None

Return Value
An Editor region

MAKE-HIGHLIGHT-REGION Function

Returns a new highlight region. Whenever any of the text in the region is visible
in a window, the display of the text is given the specified video rendition. The
rendition can be specified as a keyword or list of keywords. The possible values
are :BOLD, :blink, ireverse,and iunderline.

When specifying highlight regions, you must be aware of the background ren-
dition of the window where the region will be visible. For example, specifying
reverse video when the window is already in reverse video will have no apparent
effect.

The set and complement arguments let you adjust the rendition of the display
so that you can achieve the desired rendition. The attributes specified in the
set argument will always be turned on when visible. The attributes specified by
the complement argument will complement the existing display values, including
any that were turned on by the set argument. So to turn off reverse video in
the highlight region, you must specify :reverse in both the set and complement
arguments.

The highlight region can also be used as a normal region by any Editor function
that takes a region as an argument.

Objects-182

Format

Editor Object Descriptions

MAKE-HIGHLIGHT-REGION start end &OPTIONAL set complement

Arguments

start
An Editor mark that indicates the beginning of the region

end
An Editor mark that indicates the end of the region

set
A keyword or list of keywords specifying the video renditions to be turned on in
the display when visible. The defaultisniu.

complement
A keyword or list of keywords specifying the video renditions to be complemented
in the display when visible. The default is ni1.

MAKE-MARK Function

Format

Returns a new mark that points to the specified line at the position specified by
the index argument.

MAKE-MARK line index &OPTIONAL mark-type

Arguments

line
An Editor line

Index
An integer in the range of O to the length of the line

mark-type
The type of the mark to create—:1eft-inserting, right-inserting,Or
:temporary.The default is .temporary.

Return Value

A new Editor mark

Objects-183

Editor Object Descriptions

MAKE-REGION Function

Creates an Editor region that starts and ends at the specified marks.
must be in the same buffer or disembodied region.

Format

MAKE-REGION start-mark end-mark

Arguments

start-mark
A mark for defining the beginning of a region

end-mark

A mark for defining the end of a region

Return Value
A new region

MAKE-RING Function

Creates a ring buffer of the size specified by the integer argument.

Format

MAKE-RING integer &OPTIONAL delete-function

Arguments

Integer
A positive integer, the maximum size of the ring

delete-function

Both marks

A function called any time an item is deleted from the ring, either by ring-
push or by the application of setf to ring-ref.The function is called with two

arguments—the item being deleted and the ring. The default is ni1.

Return Value

The new ring

Objects-184

Editor Object Descriptions

MAKE-SEARCH-PATTERN Function

Creates a new search pattern you can use in subsequent searching operations.

Format

MAKE-SEARCH-PATTERN kind direction string &OPTIONAL reuse-pattern

Arguments

kind
A search pattern type, either :case-sensitive Or case-insensitive

direction
A direction to search in—either :FORWARD Or :backward

string
The string to be searched for

reuse-pattern
A previously computed search pattern that will be modified destructively to create
the new pattern

Return Value

A new search pattern

MAKE-STRING-TABLE Function

Returns a new string table that has no entries

Format

MAKE-STRING-TABLE

Arguments
None

Return Value
An empty string table

Objects-185

Editor Object Descriptions

MAKE-STYLE Macro

Format

Creates a new Editor style. The style will have no attribute, variable, or com-
mand bindings. If there is already a style of the specified name, the new style
(with no bindings) will replace the old one. Note that any bindings present in the
old style are lost.

MAKE-STYLE name &OPTIONAL documentation

Arguments

&KEY :ACTIVATION-HOOK :DEACTIVATION-HOOK

name
A symbol that names the style or a list of a symbol, the keyword :DISPLAY-name,

and a string that will become the style § display name

documentation
A documentation string for the style

:ACTIVATION-HOOK
A function that will be invoked whenever this style is activated in a buffer. The
function is called with two arguments—the style and the buffer that the style is

activated in.

:DEACTIVATION-HOOK
A function that will be invoked whenever the style is made inactive in a buffer.
The function is called with two arguments—the style and the buffer that the style

is activated in.

Return Value

The new style

MAKE-WINDOW Function

Objects-186

Takes a buffer or a mark and returns a new window. If the argument is a mark,
the window opens into the buffer that contains the mark, and the display starts
with the line that the mark points into. If the argument is a buffer, the window
opens into that buffer, and the display starts with the line pointed to by the buffer
point. The window is not displayed automatically.

The calling of this function invokes the "Window Creation Hook''.

Format

Editor Object Descriptions

MAKE-WINDOW buffer-or-mark &KEY :HEIGHT :WIDTH :DISPLAY-ROW

Arguments

:DISPLAY-COLUMN :TYPE :LINES-WRAP
:LABEL

buffer-or-mark
An Editor buffer or mark

‘HEIGHT

The number of rows to be contained in the window. The minimum value is one.
This value is significant only if the window type is :floating.

‘WIDTH
The number of characters that can be displayed horizontally in a window. The

minimum value is two. The maximum value (and default) is the width of the

available display area. This value has significance only if the window type is
*FLOATING.

:DISPLAY-ROW
The screen row (y position) at which to start displaying the text of the win-

dow. The top row is 1 This value has significance only if the window type is
-FLOATING.

:DISPLAY-COLUMN

The screen column (x position) at which to start displaying the text of the window.

The left-hand column is L This value has significance only if the window type is
FLOATING.

‘TYPE

The display type of the window. Can be either :anchored Or :floating.The
default is the value of the Editor variable *"Default window Type".

:LINES-WRAP

If T, specifies that displayed lines are continued on the next line of the display if
the length of the Editor line exceeds the width of the window. The default is the
value of the Editor variable "Default Window Lines Wrap'.

:LABEL

A string, a function that returns a string, or ni1.If the value is a string or a
function that returns a string, the string is used as the label for the window.
Only as much of the string as will fit on the specified side will be displayed. An
empty string (") means that the window is unlabeled. A value ofni1 means that
the window is not bordered. The default is the value of ""Default window Label".

Objects-187

Editor Object Descriptions

Return Value
The new window

MAP-BINDINGS Function

Calls, with the following three arguments, the specified function for each key
sequence that has a binding in the specified context:

1 The sequence of characters bound
2. The command function the sequence is bound to

3. The context specification in which the binding was found. If an optional
context is specified, only the key bindings in that context are mapped. If no
context is provided, the map is done over all the currently visible bindings.

Format

MAP-BINDINGS function &OPTIONAL context

Arguments

function
A function of three arguments

context
An optional context specification. The defaultis ni1.

Return Value
NIL

MAP-BUFFERS Function

Applies the specified function to each buffer in the Editor along with any addi-
tional arguments supplied. The specified function must be a function of at least
one argument. The first argument will always be an Editor buffer object.

Format

MAP-BUFFERS function &REST args

Objects-188

Editor Object Descriptions

Arguments

function

A function to be called for each buffer. The function must accept at least one
argument, a buffer.

args

Any additional arguments that must be passed to the specified function on each
call

Return Value

NIL

MAP-STRINGS Function

Calls the specified function for each entry in the specified string table. That
function is called with two arguments—the string that is the key of the entry and
the value of the entry.

Format

MAP-STRINGS function table

Arguments

function
A function of two arguments

table
A string table

Return Value
NIL

MARK-CHARPOS Function

Returns the number of characters in the line of text preceding the specified mark.

Format

MARK-CHARPOS mark

Objects-189

Editor Object Descriptions

Arguments

mark
An Editor mark

Return Value

A nonnegative fixnum

MARK-COLUMN Function

Returns the column (position n) at which the specified mark would be displayed,
based on the "Print Representation' attribute of each character, if the screen
were wide enough. This number is often different from the result of mark-charpos
because some characters take up more than one column when they are displayed.
For example, tab characters usually are not displayed as single blank characters.
The first character of a line is at display position 1

Format

MARK-COLUMN mark

Arguments

mark
An Editor mark

Return Value

A positive fixnum

MARK-LINE Function

Returns the line that the specified mark points into.

Format

MARK-LINE mark

Arguments

mark
An Editor mark

Objects-190

Editor Object Descriptions

Return Value
An Editor line

MARK-TYPE Function

Returns the type of the specified mark. You can use this function with setf to
change the type of a mark.

Format

MARK-TYPE mark

Arguments

mark
An Editor mark

Return Value

The type of the specified mark—:1eft-inserting, right-inserting,Or
- TEMPORARY .

MARK-VISIBLE-P Function

Returns T if the mark position lies within the text contained in the window;
returns nit ifitis not.

Format

MARK-VISIBLE-P mark window

Arguments

mark
An Editor mark

window
An Editor window

Objects—191

Editor Object Descriptions

Return Value
T or NIL

MARK-WINDOW-POSITION Function

Returns ni1 if the specified mark position does not lie within the text contained
in the window; returns multiple values of the column and row positions of the
specified mark if it is visible. The upper-left comer position of a window is
specified as 1,1.

Format

MARK-WINDOW-POSITION mark window

Arguments

mark
An Editor mark

window
An Editor window

Return Value
Either ni1 or the column and row position at which the mark is displayed

MARKP Function

Returns t if the argument is a mark; returns ni1 ifit is not.

Format

MARKP object

Arguments

object
Any LISP object

Objects-192

Editor Object Descriptions

Return Value
T or NIL

MARK/= Function

Returns T if markl and mark2 point to different positions; returns ni1 otherwise.
The marks can point into different buffers.

Format

MARK/= markl mark2

Arguments

markl
An Editor mark

mark?2
Another Editor mark

Return Value
T or NIL

MARK< Function

Returns T if markl points to a character preceding mark2\ returns ni1 otherwise.
An error occurs if the marks point to different buffers.

Format

MARK< markl mark2

Arguments

markl
An Editor mark

mark?2
Another Editor mark

Objects-193

Editor Object Descriptions

Return Value

T or NIL

MARK<= Function

Returns T if markl points to a character preceding mark2, or if they point to
the same position; returns »i1 otherwise. An error occurs if the marks point to

different buffers.

Format

MARK<= markl mark2

Arguments

markl
An Editor mark

mark?2
Another Editor mark

Return Value

Tor NIL

MARK= Function

Returns 7 if markl and mark2 point to the same position; returns » i1 otherwise.
The marks can point into different buffers.

Format

MARK= markl mark2

Arguments

markl
An Editor mark

mark?2
Another Editor mark

Objects-194

Editor Object Descriptions

Return Value
T or NIL

MARK> Function

Returns « if markl points to a character following mark2\ returns i1 otherwise.
An error occurs if the marks point to different buffers.

Format

MARK> markl mark2

Arguments

markl
An Editor mark

mark?2
Another Editor mark

Return Value

Tor NIL

MARK>= Function

Returns T if markl points to a character following mark2, or if they point to
the same position; returns ni1 otherwise. An error occurs if the marks point to

different buffers.

Format

MARK>= markl mark2

Arguments

markl
An Editor mark

mark?2
Another Editor mark

Objects-195

Editor Object Descriptions

Return Value
T or NIL

MAYBE RESET SELECT AT POINTER Command

Removes a previously set select mark, and thus a select region, if the current
buffer point, the buffer select mark, and the pointer all indicate the same text
position. If any of these conditions is not met, this command takes no action.

Display Name Format

Maybe Reset Select at Pointer

Function Format

MAYBE-RESET-SELECT-AT-POINTER-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

MINOR STYLE ACTIVATION HOOK Editor Variable

Specifies a hook function that is called whenever a minor style is activated in a
buffer. The function is called with two arguments, the style and the buffer.

Display Name Format

Minor Style Activation Hook

Symbol Format

MINOR-STYLE-ACTIVATION-HOOK

Objects-196

Editor Object Descriptions

MOVE-MARK Function

Changes markl so that it points to the same position as mark2. The marks do
not have to point into the same buffer or disembodied region.

Format

MOVE-MARK markl mark2

Arguments

markl
An Editor mark

mark?2
Another Editor mark

Return Value
The updated markl

MOVE-MARK-AFTER Function

Changes the specified mark so that it points to the character following its current
position. If mark points to the last character in the buffer, it is not modified, and

ni1 IS returned.

Format
MOVE-MARK-AFTER mark

Arguments

mark
An Editor mark

Return Value
The modified mark or ni

Objects-197

Editor Object Descriptions

MOVE-MARK-BEFORE Function

Changes the mark so that it points to the character preceding its current position.
If the mark points to the first character in the buffer, it is not modified, and n i1

is returned.

Format

MOVE-MARK-BEFORE mark

Arguments

mark
An Editor mark

Return Value
The modified mark, or ni1

MOVE-MARK-TO-POSITION Function

Changes the specified mark so that it points into the specified line at the charac-
ter position indicated by the specified integer index.

Format
MOVE-MARK-TO-POSITION mark index &OPTIONAL line

Arguments

mark
An Editor mark

Index
A nonnegative fixnum less than or equal to the length of the line

line
An Editor line that defaults to the line that the mark points into

Return Value
The modified mark

Objects-198

Editor Object Descriptions

MOVE POINT AND SELECT REGION Command

Moves the current buffer point to the position indicated by the pointer. In addi-
tion, if the previous command executed was in the category :MOVe -to-pointer
and there was no select region, this command sets a buffer select mark and
establishes a select region before moving the buffer point.

Display Name Format

Move Point and Select Region

Function Format

MOVE-POINT-AND-SELECT-REGION-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

MOVE POINT TO POINTER Command

Moves the current buffer point to the position indicated by the pointer. If the
pointer is beyond the end of a line, the buffer point is moved to the end of that
line. If the pointer is beyond the end of the buffer region, the buffer point is
moved to the end of the buffer region.

Category
:MOVE-TO-POINTER

Display Name Format

Move Point to Pointer

Objects-199

Editor Object Descriptions

Function Format

MOVE-POINT-TO-POINTER-COMMAND prefix

Arguments

prefix
Ignored

Return Value
The modified buffer point

MOVE TO LISP COMMENT Command

Moves the cursor to the comment part of the current line. If there is a comment
on the current line, the cursor is moved to the comment delimiter. If there is no
comment delimiter on the current line, blanks are inserted between the end of
any executable LISP code on the line and the LISP comment column, a comment
delimiter and a space are inserted at the LISP comment column, and the cursor is
moved to the end of the line. If the length of executable code in the line does not
allow for a clear separation of the executable code from the comment, a number
of spaces are inserted before the comment delimiter.

This command makes use of the "1isp Comment Column" Editor variable and
should only be used if that variable is bound in the current context.

Display Name Format

Move to LISP Comment

Function Format

MOVE-TO-LISP-COMMENT-COMMAND prefix

Arguments

prefix
Ignored

Return Value

The new buffer point

Objects-200

Editor Object Descriptions

MOVE-WINDOW Function

Format

Moves the displayed position of a window so that the upper left corner of the
text area is at the specified row and column. If the window is visible, the display
is altered immediately. If the window is not currently visible, it appears at the
specified position when it is next shown (unless it is an anchored window being
treated automatically).

MOVE-WINDOW window row column

Arguments

window
An Editor window

row
The row where the text display of the window should appear. The top row of the
screen is 1

column
The column where the text display of the window should appear. The left-hand
column of the screen is 1

Return Value

The window

NEW LINE Command

Breaks a line at the current buffer point. The resulting position of the buffer
point is the beginning of the new line. If you specify a prefix argument, n, the
command creates n lines.

Display Name Format

New Line

Function Format

NEW-LINE-COMMAND prefix

Objects-201

Editor Object Descriptions

Arguments

prefix
A positive fixnum or nil

Return Value
The updated buffer point mark

NEW LISP LINE Command

Creates a new line beginning at a column appropriate to the current indentation
for LISP code. The point is moved to the position following the new line and
indentation.

Display Name Format

New LISP Line

Function Format

NEW-LISP-LINE-COMMAND prefix

Arguments

prefix
Ignored

Return Value
The new buffer point

NEXT-CHARACTER Function

Returns the character immediately following the position of the mark. If there is
no following character, the function returns »i1.vou can use this function with
the setr macro to change the character following the mark.

Format

NEXT-CHARACTER mark

Objects-202

Editor Object Descriptions

Arguments

mark
An Editor mark

Return Value

A character, or nil ifthere is no following character

NEXT FORM Command

Moves the current buffer point forward by the number of forms specified with
the prefix argument, within the current parenthesis nesting level. The current
buffer point is moved to the location immediately following the specified number
of forms, and the new buffer point is returned. If a negative prefix argument is
specified, the current buffer point is moved backward past the specified number
of forms.

If the end of the current buffer or an outermost form is found before the end

of the specified number of forms is reached, the Editor displays a message and
returns » i1, and the point is not moved. If there are fewer forms at the current
nesting level than the number specified by the prefix argument, the point is
placed immediately before the list terminator character of the innermost list that
encloses the point, and n i1 is returned.

Display Name Format

Next Form

Function Format

NEXT-FORM-COMMAND prefix

Arguments

prefix
Integer or ni

Return Value

The new buffer point or ni

NOTE

Do not try to execute the "Next Form" command when the buffer point
is located within a string or a multiple escape sequence. The results of
a "Next Form" command in these circumstances can be incorrect.

Objects-203

Editor Object Descriptions

NEXT LINE Command

Moves the point down one line. The relative horizontal character position (not

the displayed position) of the point in the old line is maintained unless the end of
the new line is to the left of that position. In such a case, the point will be at the
end of the new line. If you specify an integer prefix argument, the point is moved

down the number of lines indicated (or up, if the prefix is negative).

Category
:LINE-MOTION

Display Name Format

Next Line

Function Format

NEXT-LINE-COMMAND prefix

Arguments

prefix
An integer or ni

Return Value

The new buffer point

NEXT-LISP-FORM Function

Objects-204

Moves the mark supplied as an argument to a point immediately following the
end of the next form at the parenthesis nesting level of the mark. The updated
mark is returned. If the mark is located within a symbol, it is moved to the end
of the symbol. If an outermost form is found before the end of the next form, the
function returns outermost-forn and does not move the mark. If no objects
are found at the parenthesis level of the mark, the function moves the mark to
a point immediately before the end of the innermost enclosing list and returns
:end-of-1ist. |f the end of the buffer is found before the end of the next form,
the function returns :enpb-of-burfer and does not move the mark.

Editor Object Descriptions

Format

NEXT-LISP-FORM mark

Arguments

mark
An Editor mark

Return Value

The updated mal‘k, O zend-of-list, coutermost-form, O :END-of-buffer

NEXT PARAGRAPH Command

Moves the mark to the beginning of the next paragraph. A paragraph is delimited
by a whitespace line (see whitespace-1ine-p function). The mark defaults to the
current buffer point. If a prefix argument is supplied, the command moves the
mark forward that many paragraphs.

Display Name Format

Next Paragraph

Function Format

NEXT-PARAGRAPH-COMMAND prefix & OPTIONAL mark

Arguments

prefix
An integer or ni

mark
An Editor mark that defaults to the current buffer point.

Return Value
The updated mark

Objects-205

Editor Object Descriptions

NEXT SCREEN Command

Scrolls the window down a distance equal to the height of the window if the prefix
argument is » i1 . If you specify an integer prefix argument, the window is scrolled
down the number of lines indicated (or up, if prefix is negative).

Display Name Format

Next Screen

Function Format

NEXT-SCREEN-COMMAND prefix &OPTIONAL window

Arguments

prefix
An integer or n1L

window
An Editor window that defaults to the current window

Return Value
The new buffer point

NEXT WINDOW Command

Moves the cursor from the current window to the window below it; that is, the
current window is redefined. The cursor is then located at the window point of
the new current window. If you specify an integer prefix argument, the command
is executed the number of times indicated. The command circulates through all
displayed windows regardless of window type.

Display Name Format

Next Window

Function Format

NEXT-WINDOW-COMMAND prefix

Objects-206

Arguments

Editor Object Descriptions

prefix
An integer or ni1

Return Value

The new current window

NEXT-WINDOW Function

Format

Returns a window that is the “fiext”displayed window in sequence from the
current window. If the window type argument is 1, this function selects the next
window that has the type of the current window. If the function is at the end

of the list of that type, it switches to the opposite type of window and continues
through that list. If the window type argument is either :ficating OF ianchored,
the selection of the next window is made from only that type of window. The
function returns i1 if there is not a window of the appropriate type currently

displayed.

The optional count argument tells the function how many times to look for a next
window. The argument can be positive or negative. A zero argument returns the
current window. Repeatedly setting the current window to the next window with
a window type of « results in circulation through all displayed windows.

NEXT-WINDOW &OPTIONAL window-type count

Arguments

window-type
The type of the next window desired. One of f1oating, z:anchored, Or T. The
default is .

count
An integer specifying the number of windows to advance. The default is 1

Return Value

The next window or »i 1, if there are no windows of the specified type

Objects-207

Editor Object Descriptions

OPEN LINE Command

Breaks a line at the current buffer point. The resulting point position is the end
of the old line.

Display Name Format

Open Line

Function Format

OPEN-LINE-COMMAND prefix

Arguments

prefix
Ignored

Return Value
The new buffer point

PAGE DELIMITER Attribute

Has a value of | for characters that separate pages, and o for all other characters.

Display Name Format

Page Delimiter

Symbol Format

PAGE-DELIMITER

Objects-208

Editor Object Descriptions

PAGE NEXT WINDOW Command

Scrolls the next window forward the number of lines indicated by the prefix
argument or (without a prefix argument) scrolls the window forward to the next

page.

Display Name Format

Page Next Window

Function Format

PAGE-NEXT-WINDOW-COMMAND prefix

Arguments

prefix
An integer or nit

Return Value
The window point of the next window

PAGE-OFFSET Function

Updates the specified mark so that it points to the position of the next page break
character (a character that has a "Page Delimiter” attribute value of 1). An
optional count argument lets you specify the number of page breaks to be located
forward in the buffer if count is positive, and backward in the buffer if count is
negative.

Format

PAGE-OFFSET mark &OPTIONAL count

Arguments

mark
The mark to be updated

count
The number of page breaks to be located

Objects-209

Editor Object Descriptions

Return Value
The updated mark

PAGE PREVIOUS WINDOW Command

Scrolls the previous window forward to the next page. If an integer prefix argu-
ment is supplied, it scrolls the window by that many rows.

Display Name Format

Page Previous Window

Function Format

PAGE-PREVIOUS-WINDOW-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value
Undefined

PAUSE EDITOR Command

Returns control from the Editor to LISP at the point at which the Editor was
called. The current Editor state is saved, and the Editor restarts in that state the
next time you call the ed function. Any changes to values or functions of symbols
while the control is with the Editor are not reflected in LISP unless buffers have
been evaluated explicitly.

NOTE

In the DECwindows development environment, the "Pause Editor"
command does nothing because the Editor and Listener each have a
separate window.

Display Name Format

Pause Editor

Objects-210

Editor Object Descriptions

Function Format

PAUSE-EDITOR-COMMAND prefix

Arguments

prefix
Ignored

Return Value

None

POINTER-STATE-ACTION Function

Takes a pointer-state object and returns the pointer-action information contained
in the object, or ni1v if there is none. The pointer-action information can be:

‘movement iIfthe action was tomove the pointer cursor

= A button constant if the action was to depress or release a button on the
pointing device. (See€bvind-pointer-conmana fOr information on button con-
stants.) In this case, pointer-state-action also returns a second value: 7 if
the action was to depress the button, or »i1 if the action was to release the

button. If UIS is not present, a keyword of the form :button-;*is returned as
the first value.

The pointer-action value(s) in a pointer-state object define the pointer action,
if any, that invoked a command which in turn called get-pointer-state.See
get-pointer-state fOr further information.

Format

POINTER-STATE-ACTION pointer-state

Arguments

pointer-state

A pointer-state object (as returned by get-pointer-state)

Return Value
Multiple values:

1 The keyword :movement, @ button constant, or button keyword
2. If a button constant is returned, pointer-state-action alsSo returns « ornin .

Objects-211

Editor Object Descriptions

POINTER-STATE-BUTTONS Function

Takes a pointer-state object and returns the button-state information con-
tained in the object. The button-state information indicates, for each button

on the supported pointing device, whether the button was up or down. See get-
pointer-state TOr information on the time at which the button state is captured
in a pointer-state object. If a button was in transition (being depressed or re-
leased) at the point in time for which the pointer state is stored, the button-state
information is the state of the buttons at the end of the transition.

Format

POINTER-STATE-BUTTONS pointer-state

Arguments

pointer-state

A pointer-state object (as returned by get-pointer-state)

Return Value

If UIS is present, a fixnum representing the state of the buttons. See the
description of uis:get-buttons iN the VAXLISP Interface to VWS Graphics for
more information. If UIS is not present, a list of button keywords denoting which
buttons are depressed.

POINTER-STATE-P Function

Takes a LISP object and returns 1 if that object is a pointer-state object, or ni1 if
itis not. See get-pointer-state for information on pointer-state objects.

Format

POINTER-STATE-P object

Arguments

object
Any LISP object

Objects-212

Editor Object Descriptions

Return Value

T or NIL

POINTER-STATE-TEXT-POSITION Function

Takes a pointer-state object and returns the line and the character position
contained in the object. These values define the text position indicated by the
pointer cursor when the pointer-state object was created. See get-pointer-
state fOr information on the time at which the pointer state is captured in a
pointer-state object.

Format

POINTER-STATE-TEXT-POSITION pointer-state

Arguments

pointer-state
A pointer-state object (as returned by get-pointer-state)

Return Value
Two values:

1 The line indicated by the pointer cursor, or ~i1 if the pointer cursor was not
indicating a line

2. The character position indicated by the pointer cursor, or »i1 if the pointer
cursor was not indicating a character position

POINTER-STATE-WINDOW-POSITION Function

Takes a pointer-state object and returns an Editor window, along with integers
that are the x and y coordinates of a display position in that window. These
values define the window position indicated by the pointer cursor at the time the
pointer-state object was created. See get-pointer-state fOr information on the
time at which the pointer state is captured in a pointer-state object.

Format

POINTER-STATE-WINDOW-POSITION pointer-state

Objects-213

Editor Object Descriptions

Arguments

pointer-state
A pointer-state object (as returned by get-pointer-state)

Return Value

Three values if the pointer cursor was indicating an Editor window at the time
the pointer-state object was created:

1 The Editor window indicated by the pointer cursor
2. An integer that is the window column position indicated by the pointer cursor
3. An integer that is the window row position indicated by the pointer cursor

If the pointer cursor was not indicating an Editor window at the time the
pointer-state object was created, pointer-state-window-position FetUrNS i1 .

POSITION-WINDOW-TO-MARK Function

Repositions the specified window within its associated buffer to the line that
contains the specified mark. This line becomes the first line displayed in the
window. The mark § character position is ignored.

The window § screen position is not affected. The window point of the window
remains at the same text position if possible; otherwise, it moves to a position
within the window (usually the center).

This function replaces the operation, in previous releases of the Editor, of reposi-
tioning a window by moving its window display start mark.

Format

POSITION-WINDOW-TO-MARK window mark

Arguments

window
An Editor window

mark
An Editor mark

Return Value
The window point of the window

Objects-214

Editor Object Descriptions

PREFIX-ARGUMENT Function

Returns the current value of the prefix argument. You can set a new value for the
prefix argument by using the set+ macro with this function. The new value can
be either ni1 or a fixnum. Setting the value causes that value to be passed as the
prefix argument to the next command executed.

Format

PREFIX-ARGUMENT

Arguments
None

Return Value

A fixnum ornit

PREVIOUS-CHARACTER Function

Returns the character immediately preceding the position of the mark. If there
is no previous character, the function returns »i1 . This function can be used with
the setr macro to change the character preceding the mark.

Format

PREVIOUS-CHARACTER mark

Arguments

mark
An Editor mark

Return Value

A character or nil

Objects-215

Editor Object Descriptions

PREVIOUS-COMMAND-FUNCTION Variable

Is bound to the last Editor command function invoked.

PREVIOUS FORM Command

Moves the current buffer point backward by the number of forms specified with
the prefix argument, within the current parenthesis nesting level. The current
buffer point is moved to the location immediately before the specified number
of forms, and the new buffer point is returned. If a negative prefix argument is
specified, the current buffer point is moved forward past the specified number of
forms.

If the beginning of the current buffer or an outermost form is found before the
beginning of the specified number of forms is reached, the Editor displays a
message and returns «i1,and the point is not moved. If there are fewer forms at
the current nesting level than the number specified by the prefix argument, the
point is placed immediately before the list initiator character of the innermost list
that encloses the point, and i1 is returned.

Display Name Format

Previous Form

Function Format

PREVIOUS-FORM-COMMAND prefix

Arguments

prefix
Integer or ni1

Return Value

Objects-216

The new buffer point or nil

NOTE

Do not try to execute the "Previous Form" command when the buffer
point is located within a string or a multiple escape sequence. The
results of a ""Previous Form™ command in these circumstances are
incorrect.

Editor Object Descriptions

Also, when using unmatched multiple escape characters or unmatched
string delimiter characters in a comment, you should include a back-
slash (\) before these characters. Otherwise, the "Previous Form"
command may fail, because the comment delimiter will be interpreted
as part of a string or multiple escape sequence.

PREVIOUS LINE Command

Moves the point of the current buffer to the previous line. The relative horizontal
character position (not the displayed position) of the point in the old line is
maintained unless the end of the new line is to the left of that position. In such a
case, the point will be at the end of the new line.

If you specify an integer prefix argument, the point is moved up the number of
times indicated (or down, if the prefix is negative). If there is no previous line,
the point is moved to the beginning of the first line.

Category
:LINE-MOTION

Display Name Format

Previous Line

Function Format

PREVIOUS-LINE-COMMAND prefix

Arguments

prefix
An integer or ni1

Return Value

The new buffer point

Objects-217

Editor Object Descriptions

PREVIOUS-LISP-FORM Function

Moves the mark supplied as an argument to a point immediately preceding the
beginning of the previous form at the parenthesis nesting level of the mark.
The updated mark is returned. If the mark is located within a symbol, it is
moved to the beginning of the symbol. If an outermost form is found before the
beginning of the previous form, the function returns ocuternost-forn and does
not move the mark. If no forms are found at the parenthesis level of the mark,
the function moves the mark to the beginning of the innermost enclosing list and
returns meginning-of-1ist.|f the beginning of the buffer is found before the
beginning of the previous form, the function returns :BEGINNING-of-buffer and
does not move the mark. If the function detects an error due to an unmatched
string delimiter or multiple escape character in a comment, the function returns
:fraiture and does not move the mark.

Format

PREVIOUS-LISP-FORM mark

Arguments

mark
An Editor mark

Return Value

The updated mark; O beginning-of-list, outermost-form, iFAILURE, O
:BEGINNING-OF-BUFFER

PREVIOUS PARAGRAPH Command

Moves the mark to the end of the previous paragraph. A paragraph is delimited
by a whitespace line (see whitespace-1ine-p function). The mark defaults to the
current buffer point. If a prefix argument is supplied, the command moves the
mark backward that many paragraphs.

Display Name Format

Previous Paragraph

Function Format

PREVIOUS-PARAGRAPH-COMMAND prefix &OPTIONAL mark

Objects-218

Arguments

Editor Object Descriptions

prefix
An integer or ni1

mark
An Editor mark that defaults to the current buffer point

Return Value

The updated mark

PREVIOUS SCREEN Command

Scrolls the specified window (or the current window, if none is specified) up

a distance equal to the height of the window. If you specify an integer prefix
argument, the window is scrolled up the number of lines indicated (or down, if
the prefix is negative).

Display Name Format

Previous Screen

Function Format

PREVIOUS-SCREEN-COMMAND prefix &OPTIONAL window

Arguments

prefix
An integer or nil

window
An Editor window that defaults to the current window

Return Value

The new buffer point

Objects-219

Editor Object Descriptions

PREVIOUS WINDOW Command

Moves the cursor from the current window to the window above it; that is, the
current window is redefined. The cursor is then located at the window point of
the new current window. If you specify an integer prefix argument, the command
is executed the number of times indicated. The command circulates through all
displayed windows regardless of window type.

Display Name Format

Previous Window

Function Format

PREVIOUS-WINDOW-COMMAND prefix

Arguments

prefix

An integer or ni

Return Value

The new current window

PRINT REPRESENTATION Attribute

Determines how a character is displayed on the screen. If the value of this
attribute is ni1, the character is given no special treatment. If the value is a
string, the string is displayed as the character representation. If it is a vector, the
current column is used as an index into the vector to obtain a string to display.
Using a vector is useful for displaying characters whose print representation is
column dependent (such as tabs).

If the value is a function, then that function is called with two arguments - the
current column and the character—to obtain a string.

The print representation attribute cannot be bound in any context other than
:GLOBAL.

Display Name Format

Print Representation

Objects-220

Editor Object Descriptions

Symbol Format

PRINT-REPRESENTATION

PROMPT ALTERNATIVES Editor Variable

Is bound to the alternatives argument for the general prompt currently in
progress.

Display Name Format

Prompt Alternatives

Symbol Format
PROMPT-ALTERNATIVES

PROMPT ALTERNATIVES ARGUMENTS Editor Variable

Is bound to the alternatives arguments for the general prompt currently in
progress.

Display Name Format

Prompt Alternatives Arguments

Symbol Format
PROMPT-ALTERNATIVES-ARGUMENTS

PROMPT COMPLETE STRING Command

Is used by the prompt-for-input function to complete user input to a
prompt. The command uses the information supplied by the :compietion and
completion-arguments al‘guments Ofthe prompt-for-input funCtion.

NOTE

This command is an integral part of the prompt-for-input function
and should not be used in any context other than that of the "General

Prompting" buffer. It can be rebound in that context to any desired key
sequence.

Objects-221

Editor Object Descriptions

Display Name Format

Prompt Complete String

Function Format

PROMPT-COMPLETE-STRING-COMMAND prefix

Arguments

prefix
Ignored

Return Value
None

PROMPT COMPLETION Editor Variable

Is bound to the completion argument for the general prompt currently in progress.

Display Name Format

Prompt Completion

Symbol Format

PROMPT-COMPLETION

PROMPT COMPLETION ARGUMENTS Editor Variable

Is bound to the list of completion function arguments for the general prompt that
is currently in progress.

Display Name Format

Prompt Completion Arguments

Objects-222

Editor Object Descriptions

Symbol Format

PROMPT-COMPLETION-ARGUMENTS

PROMPT DEFAULT Editor Variable

Is bound to the default value for the general prompt currently in progress.

Display Name Format

Prompt Default

Symbol Format

PROMPT-DEFAULT

PROMPT ERROR MESSAGE Editor Variable

Is bound to the error message argument of the general prompt currently in
progress.

Display Name Format

Prompt Error Message

Symbol Format

PROMPT-ERROR-MESSAGE

PROMPT ERROR MESSAGE ARGUMENTS Editor
Variable

Is bound to the error message arguments for the general prompt currently in
progress.

Display Name Format

Prompt Error Message Arguments

Objects-223

Editor Object Descriptions

Symbol Format

PROMPT-ERROR-MESSAGE-ARGUMENTS

PROMPT-FOR-INPUT Function

Format

Prompts for input, invokes the vai1idation function with the user §input string
as the argument, and returns the return value of the validation function. If the
user enters no input (@ null string), pronpt-for-input can either return a default
value or prompt again for input. If the user §input is invalid, prompt-for-input
signals an error and awaits further input.

You can specify a prompting message and a value to be returned if the user
enters no input. You can also provide alternatives, completion, and help to the
user during the prompt.

PROMPT-FOR-INPUT validation &KEY :PROMPT :REQUIRED :DEFAULT

Arguments

Objects-224

:DEFAULT-MESSAGE :ALTERNATIVES
:ALTERNATIVES-ARGUMENTS
:COMPLETION
:COMPLETION-ARGUMENTS

‘HELP :HELP-ARGUMENTS
:ERROR-MESSAGE
m.ERROR-MESSAGE-ARGUMENTS
:SAVE-WIN DOW-STATE

validation

A function of one argument. This function operates on the user § input string and
returns the value that will be returned by prompt-for-input.An example of a
validation function might be find-burrer,which returns the buffer specified by
the string or ~i1 if there is no buffer with that display name.

If the validation function returns i1, the user §input is not valid. In this case,
PROMPT-FOR-input Signals an error and awaits further input, ~i1 can be a valid
value if the validation function returns multiple values of ni1 and «.

:PROMPT
A string or a function that returns a string. This argument specifies the prompt-
ing message. The default is “Enter input.””

‘REQUIRED

T Or» i1 . This argument specifies the action to be taken if the user enters no

input (@ null string) in response to the prompt. If 1, prompt-for-inputr prints
“mput required”1n the information area and awaits further input. 1f»i1 (the
default), proMPT-FOR-input returns the value of the :derau1+ argument.

Editor Object Descriptions

iDEFAULT
This argument specifies the value to be returned by prompt-for-input if the user
enters no input and if the value of :required is nit.The defaultis nit.

:DEFAULT-MESSAGE

nil,t,a string, or a function of one argument that returns a string. This
argument specifies a message to be displayed in the information area at the start
of the prompt. Its purpose is to inform the user of a default return value.

If the argument is ni1 (the default), no message is displayed. If T, the value of
:default is printed. If a string, the string is used as the control-string argument
in a call to format,and the result is printed. The value of :default is used as
the data argument to format.If a function, it is passed the value of :default and
the string that the function returns is printed.

:ALTERNATIVES

A string, a string table, or a function of at least one argument to be called if
the user requests input alternatives. If the argument is a function, it is passed
the string the user has typed so far and any additional arguments supplied

as :ALTERNATIVES-ARGUMENTS. The default is the string "No alternatives
available™.

:ALTERNATIVES-ARGUMENTS
A list of arguments for the arternatives function. The defaultis nin.

:COMPLETION

nil,a string, a string table, or a function of at least one argument to be called
if the user requests input completion. If the argument is a function, it is passed
the string the user has typed so far and any additional arguments supplied

as :completion-arguments.|fthe argument is ni1 (the default) and the user
requests input completion, an Editor error is signaled.

:COMPLETION-ARGUMENTS
A list of arguments for the :COMPLETIOn function. The defaultis ni1.

‘HELP

nil,a string, or a function to be called if the user requests help. The default is
"No help available". If the value is a string, it is displayed in the information
area; if the string contains more lines than will fit in the information area, it is
displayed in the "Help" buffer. If the argument is a function, it is called with any
arguments supplied as :help-arguments.

‘HELP-ARGUMENTS
A list of arguments for the iHELP function. The defaultis ni.

:ERROR-MESSAGE

A string or a function that returns a string. This argument specifies the error
message to be displayed if the user §input is invalid. If the argument is a
function, it is called with any arguments supplied as :error-message-arguments.

:ERROR-MESSAGE-ARGUMENTS
A list of arguments for the :error-message function. The defaultis ni1.

Objects-225

Editor Object Descriptions

:SAVE-WINDOW-STATE

nil or non-NiL. Non-NiL specifies that the "General Prompting" buffer remains

the current buffer when the prompt is completed. (This is helpful when writing

commands that prompt for more than one value.) nil (the default) specifies that
the buffer that was current when the prompt was initiated is to become current
again when the prompt is completed.

Return Value

The value returned by the validation function or the :default value

PROMPT HELP Command

Is used by the prompt-for-input function to display help when the user is being
prompted. The help information is taken from the :HELP and :help-arguments
arguments of prompt-for-input.

NOTE

This command is an integral part of the prompt-for-input function
and should not be used in any context other than that of the "General
Prompting" buffer. It can be rebound in that context to any desired key
sequence.

Display Name Format

Prompt Help

Function Format

PROMPT-HELP-COMMAND prefix

Arguments

prefix
Ignored

Return Value

None

Objects-226

Editor Object Descriptions

PROMPT HELP Editor Variable

Is bound to the help argument for the general prompt currently in progress.

Display Name Format

Prompt Help

Symbol Format

PROMPT-HELP

PROMPT HELP ARGUMENTS Editor Variable

Is bound to the help function arguments for the general prompt currently in
progress.

Display Name Format

Prompt Help Arguments

Symbol Format

PROMPT-HELP-ARGUMENTS

PROMPT HELP CALLED Editor Variable

Specifies whether or not a help function has been called during the general
prompt currently in progress. If the value of this variable is non-NIL at the
completion of a prompt, the displayed help window is removed from the display.

Display Name Format

Prompt Help Called

Symbol Format
PROMPT-HELP-CALLED

Objects-227

Editor Object Descriptions

PROMPT READ AND VALIDATE Command

Is used by the prompt-for-input function to obtain and validate the current
user response to a prompt. The validation function is taken from the validation
function argument of the prompt-for-input function. If the validation function
succeeds, the value is returned by the prompt-for-input function. Otherwise,
this command signals an Editor error and waits for the user to correct the
problem.

NOTE

This command is an integral part of the prompt-for-input function
and should not be used in any context other than that of the ""General

Prompting" buffer. It can be rebound in that context to any desired key
sequence.

Display Name Format

Prompt Read and Validate

Function Format

PROMPT-READ-AND-VALIDATE-COMMAND prefix

Arguments

prefix
Ignored

Return Value

The return value of the validation function

PROMPT RENDITION COMPLEMENT Editor Variable

Set to a keyword or a list of keywords that specifies the video rendition of prompt-
ing messages. The rendition specified is relative to the terminal rendition setting.
The keywords are :NOrmal, :REVerse, :BOId, :UNDERLINE, and :brink.The default
is :UNDERLINE.

Display Name Format

Prompt Rendition Complement

Objects-228

Editor Object Descriptions

Symbol Format

PROMPT-RENDITION-COMPLEMENT

PROMPT RENDITION SET Editor Variable

Set to a keyword or a list of keywords that specifies the video rendition of
prompting messages. The rendition specified is absolute, rather than relative
to the terminal rendition setting. The keywords are :normal, -reverse, :BOLD,
cunderline,and :blink.The default is :NORMAL.

Display Name Format

Prompt Rendition Set

Symbol Format

PROMPT-RENDITION-SET

PROMPT REQUIRED Editor Variable

Specifies whether an input value is required for the general prompt currently in
progress.

Display Name Format

Prompt Required

Symbol Name
PROMPT-REQUIRED

PROMPT SCROLL HELP WINDOW Command

Scrolls the Help window while in another window. When the scrolling reaches
the end of the "Help" buffer, the window is reset to the beginning of the "Help"
buffer. The command is bound in the "General Prompting' buffer so that prompt
help can be scrolled without leaving the prompting window.

Objects-229

Editor Object Descriptions

Display Name Format

Prompt Scroll Help Window

Function Format

PROMPT-SCROLL-HELP-WINDOW-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

PROMPT SHOW ALTERNATIVES Command

Is used by the prompt-for-inpot function to supply the user with a list of
alternatives based on current input. The information for this command is sup-

plied with the :alternatives and :alternatives-arguments arguments of the
PROMPT-FOR-input function.

NOTE

This command is an integral part of the prompt-for-input function
and should not be used in any context other than that of the "General
Prompting' buffer. It can be rebound in that context to any desired key
sequence.

Display Name Format

Prompt Show Alternatives

Function Format

PROMPT-SHOW-ALTERNATIVES-COMMAND prefix

Arguments

prefix
Ignored

Objects-230

Editor Object Descriptions

Return Value
None

PROMPT START Editor Variable

Is bound to a right-inserting mark that points to the starting position of the
user §input in the prompt buffer. This description applies to the general prompt
currently in progress. The user§input is defined as the region between this mark
and the buffer point of the "General Prompting" buffer.

Display Name Format

Prompt Start

Symbol Format

PROMPT-START

PROMPT VALIDATION Editor Variable

Is bound to the validation function for the general prompt currently in progress.

Display Name Format

Prompt Validation

Symbol Format

PROMPT-VALIDATION

PUSH-WINDOW Function

Makes the specified window visible on the screen without removing any other
windows. If the type of the window is :floating,the function has the same effect
as the show-window function. If the window is :anchored,the window is added
to the list of currently visible anchored windows, and its height and those of the
other anchored windows are adjusted so as to make them all about the same
height. See also show-window,which might remove another anchored window to
make room for the new one.

Objects-231

Editor Object Descriptions

Format

The optional arguments allow some control over the relative vertical positioning
of an anchored window. If the companion argument is supplied, it must be
another visible anchored window. The new window is placed on the screen just
below the companion window. If the optional insert-above argument is T, the
new window is inserted on the screen just above the position of the companion
window.

PUSH-WINDOW window &OPTIONAL companion insert-above

Arguments

window
An Editor window to display

companion
A currently visible anchored window or ni 1

Insert-above
If ni1, the new window will be below the companion; if not ni1,it will appear
above the companion.

Return Value

The window

QUERY SEARCH REPLACE Command

Objects-232

Prompts the user for a string to search for and a second string to replace oc-
currences of the first one. Completion is available during both prompts. The
completion command inserts the string last searched for or the last replacement
string, as appropriate. Once these strings are established, the command repeat-
edly searches for occurrences of the first string. At each one, the command stops
and asks the user to enter one of several options about how to proceed. The
options follow:

space Replace this occurrence and find the next one.

Sors Replace this occurrence and stay here. The purpose of this is to
let you examine the results of the change and perhaps decide to
continue, quit, or do a recursive edit.

Replace this occurrence and then quit.

! Replace all the remaining occurrences without asking. At the end
the Editor will put out a message telling how many occurrences
were replaced.

N or n Do not replace this occurrence but do find the next one.

Editor Object Descriptions

ctr/C (or the Do not replace this occurrence and do quit.

current cancel

character)

Qorgq Do not replace this occurrence and do quit, returning to the point at

which the search began.

Rorr Enter a recursive edit. Exit the recursion with Ctrl/C (or the current
cancel character). A recursive edit is designed to let you do any
editing you need to do and then return to your original place in the
search/replace cycle.

? Display an abbreviated version of this text.

Category
rGENERAL-PROMPTING

Display Name Format

Query Search Replace

Function Format

QUERY-SEARCH-REPLACE-COMMAND prefix &OPTIONAL search-string
replace-string

Arguments

prefix
Ignored

search-string
The string to be replaced. If this argument is not supplied, the user is prompted
for a string.

replace-string

The string to replace the search-string with. If this argument is not supplied, the
user is prompted for a string.

Return Value
None

Objects-233

Editor Object Descriptions

QUOTED INSERT Command

Causes the next character typed to be inserted in the current buffer without
interpretation by the Editor. If you specify an integer prefix argument, the
character is inserted the number of times indicated.

Display Name Format

Quoted insert

Function Format

QUOTED-INSERT-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value
The character or string inserted

READ FILE Command

Replaces the current buffer contents by reading in a file. 1f a file is not specified,
the command prompts for a file name.

Display Name Format

Read File

Function Format

READ-FILE-COMMAND prefix &OPTIONAL pathname

Arguments

prefix
Ignored

Objects-234

Editor Object Descriptions

pathname
The pathname specifier or ni1

Return Value

The current buffer point

REDISPLAY SCREEN Command

Erases and redisplays everything on the screen.

Display Name Format

Redisplay Screen

Function Format

REDISPLAY-SCREEN-COMMAND prefix

Arguments

prefix
Ignored

Return Value

None

REDISPLAY-SCREEN Function

Erases and redisplays the entire screen. This function is used when the terminal

display has been altered by broadcast or garbage-collection messages.

Format

REDISPLAY-SCREEN

Arguments

None

Objects-235

Editor Object Descriptions

Return Value
None

REGION-END Function

Returns a mark that points to the end of the region. Altering the position of the
end of a buffer region can lead to unpredictable results.

Format

REGION-END region

Arguments

region
An Editor region

Return Value
The ending mark of the region

REGION-READ-POINT Function

Returns a mark that specifies the next character to be read from an Editor region
input stream. (See description of make-editor-stream-from-region function.)
The mark is a new mark unless the optional mark argument is supplied; if

a mark is specified, that mark is destructively modified to point to the next
character to be read from the stream. Altering the returned mark does not affect
the operation of the stream in any way.

Format

REGION-READ-POINT stream &OPTIONAL mark

Arguments

stream
An Editor region input stream

mark
An Editor mark

Objects-236

Editor Object Descriptions

Return Value
An Editor mark

REGION-START Function

Returns a mark that points to the beginning of the specified region. Altering the
position of the beginning of a buffer region can lead to unpredictable results.

Format

REGION-START region

Arguments

region
An Editor region

Return Value

The starting mark of the region

REGION-TO-STRING Function

Returns a string that contains the characters in the region. Line breaks in the
region are interpreted as newline characters.

Format

REGION-TO-STRING region

Arguments

region
An Editor region

Return Value

A simple string

Objects-237

Editor Object Descriptions

REGIONP Function

Returns 71 if the argument is an Editor region, or ~i1 if it is not.

Format

REGIONP object

Arguments

object
Any LISP object

Return Value

T or NIL

REMOVE CURRENT WINDOW Command

Removes the current window from the screen. The window is not deleted, but
is no longer visible. The new current window will be one chosen according to
the rules for the next-winaow function. If there are no other windows visible,
the EdItOI’ I’eturns tO |tS |n|t|a| State. See remove-window and *editor-default-
BUFFER*.

Display Name Format

Remove Current Window

Function Format

REMOVE-CURRENT-WINDOW-COMMAND prefix

Arguments

prefix
Ignored

Return Value

T

Objects-238

Editor Object Descriptions

REMOVE-HIGHLIGHT-REGION Function

Alters destructively the specified highlight region object so that it no longer
affects the video display characteristics of the text contained in the region. The
text in the region is not affected by this operation. The highlight region object,
however, is destroyed and cannot be reused.

Format

REMOVE-HIGHLIGHT-REGION region

Arguments

region
An Editor highlight region

Return Value
T

REMOVE OTHER WINDOWS Command

Removes all windows but the current window. The appropriate hook functions
are invoked. The windows are not deleted.

Display Name Format

Remove Other Windows

Function Format

REMOVE-OTHER-WINDOWS prefix

Arguments

prefix
Ignored

Return Value

Objects-239

Editor Object Descriptions

REMOVE-STRING-TABLE-ENTRY Function

Format

Removes an entry that has the specified key from the specified string table. This

function is also a predicate that returns T if there was an entry for the specified

key, and ni1 if there was not.

REMOVE-STRING-TABLE-ENTRY key-string string-table

Arguments

key-string
The string that is the key of the entry to remove

string-table
The string table from which to remove the entry

Return Value

T or NIL

REMOVE-WINDOW Function

Format

Removes the specified window from the display area. This function does not
delete the window.

If the window being removed is the current window, the new-current argument
can be used to specify the window that is to become current. If no value is
specified, the next-window function is called to select a new current window. If
there are no other windows visible, the screen is restored to an initial state. (See
NOTE below.)

The resize-remainder parameter in earlier versions of the Editor is obsolete and
any value supplied is ignored. If the window being removed is an anchored
window, the sizes of other visible anchored windows are always adjusted to fill
the available display area.

REMOVE-WINDOW window &OPTIONAL resize-remainder new-current

Arguments

Objects-240

window
A visible Editor window

Editor Object Descriptions

resize-remainder
Obsolete. Any value supplied is ignored.

new-current
An Editor window. It need not be currently visible. The default is a visible
window selected by the next-windaow function.

Return Value

T ifthe window was displayed and has been removed from the display, or nil if

the window was not displayed.

NOTE

The remove-window function will not remove the window associated
with the buffer specified by *editor-default-buffer>. This is the
window that appears when you call the Editor without specifying a
string, pathname, symbol, or list, and it normally appears only when
the Editor has no other window to display. Displaying any other
window will cover this window. If the value of *editor-default-
BUFFER* is NIL, a window to the buffer ""Basic Introduction is shown
when the Editor has nothing else to display.

REPLACE-PATTERN Function

Format

Replaces n occurrences of the text matched by the search-pattern with the string
replacement. The search starts at the specified mark. Ifnis i1, all occurrences
of the search-pattern following the mark are replaced.

REPLACE-PATTERN mark search-pattern replacement &OPTIONAL n

Arguments

mark
An Editor mark

search-pattern
An Editor search pattern previously computed with nake-search-pattern

replacement
A string that will replace the old pattern in the text

n
A fixnum or nit

Objects-241

Editor Object Descriptions

Return Value
The number of occurrences replaced

RETURN-FROM-EDITOR Macro

Causes the <4 function to return the value or values returned by the result form.
If ea has been called recursively (for instance, by a command within the Editor),
RETURN-FROM-EDITOR returns a result from the innermost call to ep.

This macro is useful for returning results from a recursive call to the Editor, as is
done II"I the funCtlon prompt-for-input.

NOTE

In the DECwindows development environment, where the <« function
returns immediately, the return-from-eaitor macro is useful for
recursive editing only.

Format

RETURN-FROM-EDITOR &OPTIONAL result

Arguments

result
A form that defaults to nil

Return Value
Not applicable

REVERSE-INVOKE-HOOK Function

Calls all the hook functions in the specified hook variable and passes the specified
arguments. The order of invocation of the hook functions is the same as the
normal context searching order. See also invoke-hook.

Format

REVERSE-INVOKE-HOOK hook-variable &REST args

Objects-242

Editor Object Descriptions

Arguments

hook-variable
An Editor variable specifier

args
Any additional arguments that may need to be passed to the hook functions

Return Value
Undefined

RING-LENGTH Function

Returns two integers. The first is the number of slots used in the ring; the second
is the maximum number of slots in the ring.

Format
RING-LENGTH ring

Arguments

ring
An Editor ring

Return Value
Two values:
= The number of slots used in the ring

= The maximum number of slots in the ring

RING-POP Function

Deletes the object at the zero position of the ring and returns it. The ring delete-
function is not called. This decreases the current length of the ring by 1

Format

RING-POP ring

Objects-243

Editor Object Descriptions

Arguments

ring
An Editor ring

Return Value
The object at the current position of the ring

RING-PUSH Function

Pushes the object onto the ring, deleting the oldest element if the ring is full. The
ring delete-function is called if an object is deleted. This function is called with
two arguments—the object being deleted and the ring.

Format

RING-PUSH ring object

Arguments
ring
An Editor ring

object
Any LISP object

Return Value
The object that was pushed

RING-REF Function

Returns an element of the specified ring as specified by an integer index. You can
specify any integer. A negative number is the number of slots backward from the
end. If the absolute value of the integer is greater than the size of the ring, the
integer is taken modulo the size of the ring. This function can be used with the
sett macro to replace an element of a ring. When replacing an element, the ring
delete-function is called with two arguments—the entry being replaced and the

ring.

Format

RING-REF ring &OPTIONAL index

Objects-244

Editor Object Descriptions

Arguments

ring
An Editor ring

index
An integer specifying the element of the ring to be returned. The default is O.

Return Value
Two values:

1 The specified object in the ring
2. The positive index number of the referenced ring slot modulo the length of

the ring

RING-ROTATE Function

Rotates a ring forward if the offset is positive, or backward if the offset is neg-
ative. For example, with an offset of +1, the second element would become the

first; with an offset of -1, the last element would become the first.

Format
RING-ROTATE ring offset

Arguments
ring
An Editor ring

offset
An integer

Return Value
The object at the new zero position in the ring

RINGP Function

Returns « if the argument is an Editor ring; otherwise, returns nii .

Objects-245

Editor Object Descriptions

Format

RINGP object

Arguments

object
Any LISP object

Return Value

T or NIL

SAME-LINE-P Function

Returns ¢ if markl and mark2 point into the same line; returns ni1 otherwise.

Format

SAME-LINE-P markl mark2

Arguments

markl
An Editor mark

mark?2
Another Editor mark

Return Value

T or NIL

SCREEN-HEIGHT Function

Returns the current available height of the display device (screen). This number
can be less than the height of the physical device. It is the height used by the
Editor as the maximum displayable height. This value can be changed by using
the ser+ macro. The value returned by screen-neignht can be less than the
specified value if the physical device cannot accommodate the specified new
height. Any anchored windows will be adjusted to fit the new height.

Objects-246

Editor Object Descriptions

Format

SCREEN-HEIGHT

Arguments
None

Return Value

The current screen height

SCREEN MODIFICATION HOOK Editor Variable

Is a hook variable called whenever the screen height or width is changed, after
all screen and window modifications have been made.

Display Name Format

Screen Modification Hook

Symbol Format

SCREEN-MODIFICATION-HOOK

SCREEN-WIDTH Function

Returns the current available width of the display device (screen). This number
can be less than the width of the physical device. It is the width used by the
Editor as the maximum displayable width. This value can be changed by using
the setr macro. The value returned by screen-wiatn can be less than the
specified value if the physical device cannot accommodate the specified new
width. Any anchored windows will be adjusted to fit the new width.

This function can only be used on VT100 and VT2xx terminals. Do not use this
function on VAXstations.

Format

SCREEN-WIDTH

Objects-247

Editor Object Descriptions

Arguments
None

Return Value

The current screen width

SCROLL-WINDOW Function

Scrolls the specified window by a certain number of lines. If the count is positive,
the window scrolls down through the text, making the lines appear to be moving
upward on the screen. The window is scrolled up through the buffer if the count
is negative. The buffer point stays at the same position whenever possible;
otherwise, it is centered on the screen.

Format

SCROLL-WINDOW window count

Arguments

window
An Editor window

count
An integer

Return Value
The buffer point of the window

SCROLL WINDOW DOWN Command

Scrolls the indicated or current window down (moves the text up) the number of
lines indicated by the prefix.

Display Name Format

Scroll Window Down

Objects-248

Editor Object Descriptions

Function Format

SCROLL-WINDOW-DOWN-COMMAND prefix &OPTIONAL window

Arguments

prefix
An integer or nil

window
An Editor window that defaults to the current window

Return Value
The buffer point of the window

SCROLL WINDOW UP Command

Scrolls the indicated or current window up (moves the text down) the number of
lines indicated by the prefix argument.

Display Name Format

Scroll Window Up

Function Format

SCROLL-WINDOW-UP-COMMAND prefix &OPTIONAL window

Arguments

prefix
An integer or NIL

window
An Editor window that defaults to the current window

Return Value
The buffer point of the window

Objects-249

Editor Object Descriptions

SECONDARY SELECT REGION Command

Establishes the beginning of a DECwindows secondary selection (used in copy
FROM POINTER.)

Display Name Format

Secondary Select Region

Function Format

SECONDARY-SELECT-REGION prefix

Arguments

prefix
Ignored

Return Value
Undefined

SELECT BUFFER Command

Makes the specified buffer the current buffer. If the buffer is not specified, the
function prompts for a buffer name. If the buffer does not exist, a new buffer is
created with the name you enter in response to the prompt.

Category
:GENERAL-PROMPTING

Display Name Format

Select Buffer

Function Format

SELECT-BUFFER-COMMAND prefix &OPTIONAL buffer

Objects-250

Editor Object Descriptions

Arguments

prefix
Ignored

buffer
An Editor buffer

Return Value

The new current buffer

SELECT ENCLOSING FORM AT POINTER Command

Creates a select region that encompasses the LISP form indicated by the pointer.
If the pointer is indicating a symbol, the region contains the symbol; if the pointer
is indicating a list initiator or a list terminator, the region contains the list. If the
command is invoked repeatedly, the select region expands to include that number
of forms enclosing the one indicated by the pointer, stopping when it reaches an
outermost form.

Display Name Format

Select Enclosing Form at Pointer

Function Format

SELECT-ENCLOSING-FORM-AT-POINTER-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

Objects-251

Editor Object Descriptions

SELECT OUTERMOST FORM Command

Creates and returns a region containing the outermost list (a list with its opening
parenthesis in the leftmost screen column) that encloses the buffer point of

the current buffer. If there is no outermost list enclosing the buffer point, the
command selects the outermost list following the point if there is one, and
otherwise selects the preceding outermost list. The command moves the point

to the left parenthesis of the appropriate list and creates a mark at the right
parenthesis of the same list. The created mark is bound to the ""Buffer Select
Mark' Editor variable. The region is bound to the ""Buffer Select Region" Editor

variable.

Display Name Format

Select Outermost Form

Function Format

SELECT-OUTERMOST-FORM-COMMAND prefix

Arguments

prefix
Ignored

Return Value
An Editor region containing the form

SELECT REGION RENDITION COMPLEMENT Editor
Variable

Set to a keyword or a list of keywords that specifies the video rendition of an
Editor select region. The rendition specified is relative to the rendition of the
window where the region is displayed. The keywords are :normal, :BOId, :blink,
rreverse,and :undertine.The value is set to ni1 in the global context, and to
‘REVERSE in "EDT Emulation™ and "EMACS" styles.

The values correspond to the possible values of the complement argument to
MAKE-HIGHLIGHT-REGION. See also "Select Region Rendition Set'" and '"Buffer

Select Region™.

Objects-252

Editor Object Descriptions

Display Name Format

Select Region Rendition Complement

Symbol Format

SELECT-REGION-RENDITION-COMPLEMENT

SELECT REGION RENDITION SET Editor Variable

Set to a keyword or a list of keywords that specifies the video rendition of an
Editor select region. The rendition specified is absolute, rather than relative to
the rendition of the window where the region is displayed. The keywords are
:NORMAL, :BOLD, :BLINK, :REVERSE, and :UNDERLINE. The value is Set globally to
NIL.

The values correspond to the possible values of the set argument to make -

highlight-region.See also ""Select Region Rendition Complement” and "Buffer
Select Region.

Display Name Format

Select Region Rendition Set

Symbol Format

SELECT-REGION-RENDITION-SET

SELF INSERT Command

Causes the last character typed to be inserted in the current buffer as text. If
the prefix is an integer, the character is inserted the number of times indicated.
This command is useful only when bound to keyboard characters that are to be
inserted as ordinary text. All graphic characters are self-inserting.

Display Name Format

Self Insert

Objects-253

Editor Object Descriptions

Function Format

SELF-INSERT-COMMAND prefix

Arguments

prefix
An integer or NIL

Return Value

The character or string of repeated characters

SET DECWINDOWS POINTER SYNTAX Command

Unbinds the UIS pointer bindings and binds the DECwindows pointer bindings.

Display Name Format

Set DECwindows Pointer Syntax

Function Name

SET-DECWINDOWS-POINTER-SYNTAX prefix

Arguments

prefix
Ignored

Return Value

None

SET SCREEN HEIGHT Command

Prompts for a height if no prefix argument is supplied. The command sets the
height of the screen to the number of rows specified.

Objects-254

Editor Object Descriptions

Display Name Format

Set Screen Height

Function Format

SET-SCREEN-HEIGHT-COMMAND prefix

Arguments

prefix
An integer or ni

Return Value

The new screen height

SET SCREEN WIDTH Command

Prompts for a width if no prefix argument is supplied. The command sets the
width of the screen to the number of columns specified.

Display Name Format

Set Screen Width

Function Format

SET-SCREEN-WIDTH-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value

The new screen width

NOTE

If you set the screen width of a terminal that does not have the
Advanced Video Option to greater than 80, the screen height is limited
to 12lines. Therefore, you must also set the height of the screen to 12.

Objects-255

Editor Object Descriptions

SET SELECT MARK Command

Objects-256

Selects and highlights a region of text for other commands to operate upon. This
command sets the value of the Editor variable "Buffer select Mark™ to a mark
that indicates the same position as the current buffer point. It then makes a
highlight region between the select mark and the buffer point and sets the value
of the Editor variable "Buffer Select Region' to that region. The next command
you execute that requires a select region will use the current value of ""Buffer
Select Region.

You can control the video rendition of the select region with the Editor variables
"Select Region Rendition Set'" and "'Select Region Rendition Complement".

Editor Object Descriptions

Display Name Format
Set Select Mark
or

EDT Select

Function Format

SET-SELECT-MARK-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

SET UIS POINTER SYNTAX Command

Unbinds the DECwindows pointer bindings and binds the UIS pointer bindings.

Display Name Format

Set UIS Pointer Syntax

Format

SET-UIS-POINTER-SYNTAX prefix

Arguments

prefix
Ignored

Return Value

None

Objects-257

Editor Object Descriptions

SHOW-MARK Function

Format

Highlights the position of the specified mark within the specified window for

a certain length of time. Time is in units of seconds, and defaults to 0.5. The
function terminates before the number of seconds specified in the time argument
elapses if any input is typed on the terminal. If the mark § position is not visible
on the terminal, show-nark returns . i ;otherwise, it returns 7.

SHOW-MARK mark window &OPTIONAL time

Arguments

mark
An Editor mark

window
An Editor window

time
A positive number indicating the number of seconds the mark will be highlighted.
The default is 05.

Return Value

T or NIL

SHOW TIME Command

Displays the current time and date in the information area.

Display Name Format

Show Time

Function Format

SHOW-TIME-COMMAND prefix

Arguments

Objects-258

prefix
Ignored

Editor Object Descriptions

Return Value
Undefined

SHOW-WINDOW Function

Makes a window visible on the screen. The behavior of this function differs
according to whether its argument is an anchored window or a floating window.

1 If the window is a floating window, it is placed at the screen row and column
specified when the window was created unless this placement is overridden
by an explicit specification of a row or column argument. This window will
obscure any anchored or floating windows in its area. Its new row and column
are remembered so that the window will always return to that spot unless
moved or reshown with different row or column arguments.

2. If the window is a floating window that is displayed already but obscured by
another floating window, this function places the specified window “6n top of
the obscuring one(s).

3. If the window is an anchored window and it is already on the screen, no
action occurs.

4. If the window is an anchored window and it is not on the screen, then any
row or column argument is ignored and the following events occur:

a. |If there is no other anchored window on the screen, the height of the
window is set to the maximum allowable on the screen and it is made
visible.

b. If the number of anchored windows already on the screen is greater than
zero but less than the value of the Editor variable ""Anchored window show
Limit", then the heights of the new and existing windows are adjusted
so that all will have about equal space on the screen. The new window is
made visible below the old.

c. If the number of anchored windows already on the screen is greater
than or equal to the value of the Editor variable ""Anchored Window show
Limit", then the least recently used window is removed from the screen.
The height of the new window is adjusted to fit the height of the window
being removed, and the new window is made visible in the same position
as the one being removed.

Format

SHOW-WINDOW window &OPTIONAL row column

Arguments

window
An Editor window

Objects-259

Editor Object Descriptions

row
An integer that specifies the screen row where the topmost line of text of the
window is to appear. The top row of the screen is row 1L

column
An integer that specifies the screen column where the leftmost text of the window
is to appear. The left column of the screen is column 1

Return Value
The window

SHRINK WINDOW Command

Causes the current window to decrease in height by one line. If the window is
an anchored window, the heights of other anchored windows are increased. If the
prefix is a positive integer, the window shrinks by the number of lines indicated.
If the prefix is negative, the window grows by the number of lines indicated.

Display Name Format

Shrink Window

Function Format

SHRINK-WINDOW-COMMAND prefix

Arguments

prefix
AN integer or nil

Return Value
The new window height

SIMPLE-PROMPT-FOR-INPUT Function

Prompts for input in the prompting window and returns the user §input as a
string. The optional prompt argument specifies a prompting message. If the
user enters a null string, the function returns the value of the optional default
argument.

Objects-260

Editor Object Descriptions

Format

SIMPLE-PROMPT-FOR-INPUT &OPTIONAL prompt default

Arguments

prompt
A string. The default is a null string.

default

A value to be returned if the user enters a null string. The default is a null
string.

Return Value

A string as entered by the user or the value of the default argument

SPLIT WINDOW Command

Creates and returns a new Editor window by duplicating the current window and
displaying both. If the original window is anchored, the heights of all anchored
windows (including the new one) are adjusted.

Display Name Format

Split Window

Function Format

SPLIT-WINDOW-COMMAND prefix

Arguments

prefix
Ignored

Return Value

New window

Objects-261

Editor Object Descriptions

START KEYBOARD MACRO Command

Starts an Editor keyboard macro. Each keystroke entered following this command
is remembered, and all commands are executed. The keyboard macro can be
ended with end-keyboard-macro-command -

Display Name Format

Start Keyboard Macro

Function Format

START-KEYBOARD-MACRO-COMMAND prefix

Arguments

prefix
Ignored

Return Value
None

START NAMED KEYBOARD MACRO Command

Prompts the user for a name under which to catalog a new keyboard macro.
Each keystroke entered following this command is remembered, as in a normal
keyboard macro (see "'start Keyboard Macro' description). When the macro

is completed (by ""End Keyboard Macro'), it becomes the new current keyboard
macro. It is also cataloged as a new named command by the system and can
be treated just as any other named command. Its name is also entered in the
*EDITOR-KEYBOARD-MACRO-NAMES™ string table.

Category
:GENERAL-PROMPTING

Objects-262

Editor Object Descriptions

Display Name Format

Start Named Keyboard Macro

Function Format

START-NAMED-KEYBOARD-MACRO-COMMAND prefix

Arguments

prefix
Ignored

Return Value

NIL

START-OF-LINE-P Function

Is a predicate that returns T if the specified mark points to the beginning of a line

and nil otherwise.

Format

START-OF-LINE-P mark

Arguments

mark
An Editor mark

Return Value

T or NIL

STRING-TABLE-P Function

Returns 71 if the argument is an Editor string table; »i1 if it is not.

Objects-263

Editor Object Descriptions

Format

STRING-TABLE-P object

Arguments

object
Any LISP object

Return Value

T or NIL

STRING-TO-REGION Function

Returns a disembodied region containing the characters in the specified string.

Format

STRING-TO-REGION string

Arguments

string
A string

Return Value

A new region

STYLE-NAME Function

Takes an Editor style specifier and returns the display name of the style.

Format

STYLE-NAME style

Arguments

style
An Editor style specifier

Objects-264

Editor Object Descriptions

Return Value
The string that is the display name of the style

STYLE-VARIABLES Function

Returns a list of symbols representing the Editor variables bound in a specified
style.

Format

STYLE-VARIABLES style

Arguments

style
An Editor style

Return Value
A list of symbols that name the Editor variables bound in the style

STYLEP Function

Returns 71 if the argument is an Editor style, and ni1c ifit is not.

Format

STYLEP object

Arguments

object
Any LISP object

Return Value

T or NIL

Objects-265

Editor Object Descriptions

SUPPLY EMACS PREFIX Command

Sets the repetition count to four times its former value and returns the new
count. That is, if the current prefix value is I, this command sets the value to 4if
executed once, to 16 if executed twice, and so on.

Category
:EMACS-PREFIX

Display Name Format

Supply EMACS Prefix

Function Format

SUPPLY-EMACS-PREFIX-COMMAND prefix

Arguments

prefix
An integer or nil

Return Value

The repetition count

SUPPLY PREFIX ARGUMENT Command

Prompts the user for an integer and uses the response as a prefix argument for
the next command invoked. The user terminates the prompt by pressing the
return key. If a prefix argument is supplied for this command, it multiplies the
number entered as the response to the prompt.

Display Name Format

Supply Prefix Argument

Function Format

SUPPLY-PREFIX-ARGUMENT-COMMAND prefix

Objects-266

Arguments

Editor Object Descriptions

prefix

The prefix argument for this command is an integer or ni1 . It should not be
confused with the prefix integer that this command returns for the subsequent
command.

Return Value

The prefix integer for the next command invoked

SWITCH WINDOW HOOK Editor Variable

Is a hook function that is called with the new window as an argument before the
value of current-window changes. If the change of current-window causes the
value of CURRENT-BUFFER to change, the hooks "Buffer Entry Hook" and "'Buffer
Exit Hook™ are also invoked.

Display Name Format

Switch Window Hook

Symbol Format

SWITCH-WINDOW-HOOK

TARGET COLUMN Editor Variable

Maintains the screen column for commands that have the :1ine-movement
category (the "Previous Line" and "Next Line" commands, bound to the up
arrow and down arrow, respectively). When one of these commands is entered,
it checks the category of the previous command. If the previous command was
not in the :1ine-movement category, the current command sets the "Target
Column" variable to the current column before moving the cursor. If the previous
command was a :1ine-movement command, the current command uses the value
of the "Target Column' variable to position the cursor. This allows a series of
Zline-movement commands to return the cursor to the original column after
traversing one or more short lines.

Display Name Format

Target Column

Objects-267

Editor Object Descriptions

Symbol Format

TARGET-COLUMN

TEXT OVERSTRIKE MODE Editor Variable

When set to T, causes characters inserted by means of ""Sel¥ insert" and "Quoted
insert" to replace any characters (except newline characters) previously located
at the same positions. Text inserted at a newline character is inserted at the
end of the same line (that is, the newline character is moved to the right). When
this variable is set to ni1,newly inserted characters appear between previous
characters. In the default Editor, this variable is bound globally and set to ni 1.

Note that this variable does not affect the operation of other text-inserting
commands, such as "edt Paste' and 'Yank".

Display Name Format

Text Overstrike Mode

Symbol Format

TEXT-OVERSTRIKE-MODE

TRANSPOSE PREVIOUS CHARACTERS Command

Transposes the pair of characters before the cursor (the current buffer point).

Display Name Format

Transpose Previous Characters

Function Format

TRANSPOSE-PREVIOUS-CHARACTERS-COMMAND prefix

Arguments

prefix
Ignored

Objects-268

Editor Object Descriptions

Return Value
Undefined

TRANSPOSE PREVIOUS WORDS Command

Transposes the pair of words at and before the cursor (the current buffer point).

Display Name Format

Transpose Previous Words

Function Format
TRANSPOSE-PREVIOUS-WORDS-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

UNBIND-ATTRIBUTE Function

Unbinds the specified attribute from the specified context. The unbind hook
function defined for the attribute is called with two arguments—the attribute and

the context.

Format
UNBIND-ATTRIBUTE attribute &OPTIONAL context

Arguments

attribute
An attribute specifier

context
The context from which to unbind the attribute. The default is :gtobal .

Objects-269

Editor Object Descriptions

Return Value

NIL

UNBIND-COMMAND Function

Deletes the binding of a key sequence to a command in the specified context.

Format

UNBIND-COMMAND key-sequence &OPTIONAL context

Arguments

key-sequence
A sequence of characters

context
An Editor context specifier that defaults to g1oba1

Return Value
The function that was bound, or ni1 if no binding was found

UNBIND-POINTER-COMMAND Function

Deletes the binding of a pointer action to a command in the specified context.

Format
UNBIND-POINTER-COMMAND pointer-action &OPTIONAL context

Arguments

pointer-action
A keyword, a button constant, a button keyword, or a list that specifies an action

of a supported pointing device. See bind-pointer-comnana for the possible
values.

context
A context specifier. The defaultis :g1oba1.

Objects-270

Editor Object Descriptions

Return Value

The function associated with the command that was bound, or »i1 if no binding
was found

UNBIND-VARIABLE Function

Unbinds the specified Editor variable from the specified context. The unbind hook
function defined for the variable is called with two arguments—the variable and
the context.

Format

UNBIND-VARIABLE variable &OPTIONAL context

Arguments

variable
An Editor variable specifier

context

The context from which to unbind the variable. The default is :gt1obal .

Return Value
NIL

UNDO PREVIOUS YANK Command

Deletes the previously yanked region but does not push this region onto the kill
ring. More generally, this command deletes a region without pushing it onto the
kill ring. The region is either the currently selected region (the region associated
with the "Buffer Select Region" Editor variable) or, if no currently selected
region exists, a region defined by the buffer select mark and the current buffer
mark.

Display Name Format

Undo Previous Yank

Function Format

UNDO-PREVIOUS-YANK-COMMAND prefix

Objects-271

Editor Object Descriptions

Arguments

prefix
Ignored

Return Value
NIL

UNSET SELECT MARK Command

Deletes the select mark and removes the select region in the current buffer. That
is, it cancels the action of the command ''Set Select Mark' (or "EDT Select'")
by setting the value of the Editor variables "Buffer Select Mark' and "Buffer

Select Region™ to NIL.
Any text contained in the select region is not affected.

Display Name Format
Unset Select Mark

or

EDT Deselect

Function Format
UNSET-SELECT-MARK-COMMAND prefix

Arguments

prefix
Ignored

Return Value
Undefined

Objects-272

Editor Object Descriptions

UPCASE REGION Command

Makes the alphabetic characters in the region supplied as an argument all
uppercase. If no argument is supplied, the command uses the current select

region.
Display Name Format

Upcase Region

Function Format

UPCASE-REGION-COMMAND prefix &OPTIONAL region

Arguments

prefix
Ignored

region
An Editor region that defaults to the buffer select region

Return Value
Undefined

UPCASE WORD Command

Makes the alphabetic characters in the word around the specified mark all
uppercase. The mark defaults to the current buffer point.

Display Name Format

Upcase Word

Function Format

UPCASE-WORD-COMMAND prefix &OPTIONAL mark

Objects—273

Editor Object Descriptions

Arguments

prefix
Ignored

mark
An Editor mark that defaults to the current buffer point

Return Value
A region containing the word

UPDATE-DISPLAY Function

Updates any Editor windows that have changed and turns off batching of screen
updates. This function does not detect messages issued by VMS (such as operator
messages) and therefore might not erase them.

Format

UPDATE-DISPLAY

Arguments
None

Return Value
None

UPDATE-WINDOW-LABEL Function

Updates the label of a window and returns the new label as a string. This
function is useful when you must force the window to change at times other than
when the display manger needs to change it.

Format

UPDATE-WINDOW-LABEL window

Arguments

window
An Editor window

Objects-274

Editor Object Descriptions

Return Value
The new label for the window

VARIABLE-BOUNDP Function

Returns 71 if the specified Editor variable has a value, and i1 if it does not.

Format
VARIABLE-BOUNDP editor-variable &OPTIONAL context

Arguments

editor-variable
An Editor variable specifier

context
An optional context specifier. Defaults to the current context.

Return Value

T or NIL

VARIABLE-FBOUNDP Function

Returns 71 if the specified Editor variable has a function definition, and »i1 ifit
does not.

Format

VARIABLE-FBOUNDP editor-variable &OPTIONAL context

Arguments

editor-variable
An Editor variable specifier

context
An optional context specifier. Defaults to the current context.

Objects-275

Editor Object Descriptions

Return Value
T or NIL

VARIABLE-FUNCTION Function

Returns the function definition of the Editor variable in the specified context. An
error is signaled if the argument symbol is not a defined Editor variable in the
specified context.

You can use this function with the setf macro to change the function definition of
an Editor variable. If the function definition of an Editor variable is set, all the
set hook functions associated with that variable are called.

Format

VARIABLE-FUNCTION variable &OPTIONAL context

Arguments

variable
An Editor variable specifier

context
A context specifier that defaults to the current context

Return Value

The function definition of the Editor variable

VARIABLE-NAME Function

Returns the display name of the specified Editor variable.

Format

VARIABLE-NAME variable

Arguments

variable
An Editor variable specifier

Objects-276

Editor Object Descriptions

Return Value
The display name of the variable

VARIABLE-VALUE Function

Returns the value of the specified Editor variable in the specified context. An
error is signaled if the argument symbol is not a defined Editor variable in the
specified context. You can use this function with the setf macro to change the
value of a symbol. If the variable value of an Editor variable is set, all the set
hook functions associated with that variable are called.

Format

VARIABLE-VALUE variable &OPTIONAL context

Arguments

variable
An Editor variable specifier

context
A context specifier that defaults to the current context

Return Value
The value of the Editor variable

VAX LISP Style

Is the default minor style for editing any LISP objects or for editing files with an
extension of ,LSP.

Display Name Format

VAX LISP

Objects-277

Editor Object Descriptions

Symbol Format

VAX-LISP

VIEW FILE Command

Prompts the user for the name of a file, if one is not supplied, and reads that
file into a read-only buffer. A window into the buffer is created and becomes the
new current window. If a buffer exists with that file, that buffer becomes the
current one and is set to be read-only. An Editor error is signaled if any attempt
to modify the buffer occurs.

Category
:GENERAL-PROMPTING

Display Name Format

View File

Function Format

VIEW-FILE-COMMAND prefix &OPTIONAL file

Arguments

prefix
Ignored

file
A pathname, namestring, or stream

Return Value
The new buffer

Objects-278

Editor Object Descriptions

VISIBLE-WINDOWS Function

Returns a list of the windows currently visible on the screen. A window is
considered “isible”1f it has been displayed and not removed; thus, a window that
is completely hidden by another window is still considered visible.

Format

VISIBLE-WINDOWS

Arguments
None

Return Value

A list of the windows currently visible on the screen

WHAT CURSOR POSITION Command

Displays the following information about the current buffer point in the informa-

tion area;
X =column
Y =row

L =line number (% of total)

C =character number (% of total)

W = window start-line number; window end-line number
CH = char-code of current character

Display Name Format

What Cursor Position

Function Format

WHAT-CURSOR-POSITION-COMMAND prefix

Arguments

prefix
Ignored

Objects-279

Editor Object Descriptions

Return Value
NIL

WHITESPACE Attribute

Has a value of | for whitespace characters and Ofor all other characters.

Display Name Format

Whitespace

Symbol Format

WHITESPACE

WHITESPACE-AFTER-P Function

Is a predicate that returns T if all the characters following mark on the line have
a "Whitespace" attribute value of I; otherwise, it returns nii.

Format

WHITESPACE-AFTER-P mark

Arguments

mark
An Editor mark

Return Value
T or NIL

Objects-280

Editor Object Descriptions

WHITESPACE-BEFORE-P Function

Is a predicate that returns T if all the characters preceding mark on the line have
a "Whitespace" attribute of I or if the line is empty; otherwise, it returnsni.

Format

WHITESPACE-BEFORE-P mark

Arguments

mark
An Editor mark

Return Value

T or NIL

WHITESPACE-BETWEEN-P Function

Is a predicate that returns ¢ if all the characters between the two marks have

a "Whitespace" attribute value of I. A mark at the end of a line precedes the
\Newi ine character; a mark at the beginning of a line follows the \Newline char-
acter. It is an error for the marks to point into different buffers or disembodied
regions.

Format

WHITESPACE-BETWEEN-P start-mark end-mark

Arguments

start-mark
An Editor mark pointing to the character that should start the scan

end-mark
An Editor mark pointing to the character that should end the whitespace scan.
The character at the end is not included in the scan.

Return Value

T or NIL

Objects-281

Editor Object Descriptions

WHITESPACE-LINE-P Function

Is a predicate that returns T if every character in the line has a ""Whitespace"
attribute of 1 (or if the line is empty); otherwise, it returns niu.

Format

WHITESPACE-LINE-P line

Arguments

line
An Editor line

Return Value

T or NIL

WINDOW-BUFFER Function

Returns the buffer associated with a window. You can use this function as a place
indicator with the setf macro to change the buffer associated with a window.
Changing the value of window-buffer causes the "Window Buffer Hook" to be
invoked.

Format

WINDOW-BUFFER window

Arguments

window
An Editor window

Return Value
An Editor buffer

Objects-282

Editor Object Descriptions

WINDOW BUFFER HOOK Editor Variable

Is a hook function called with the window and new buffer as arguments whenever
a window is to be associated with a different buffer.

Display Name Format

Window Buffer Hook

Symbol Format

WINDOW-BUFFER-HOOK

WINDOW CREATION HOOK Editor Variable

Is a hook function called with a new window as an argument whenever a new
window is created.

Display Name Format

Window Creation Hook

Symbol Format

WINDOW-CREATION-HOOK

WINDOW-CREATION-TIME Function

Returns the universal time at which the specified window was created. For
information on universal time, see Common LISP: The Language.

Format

WINDOW-CREATION-TIME window

Arguments

window
An Editor window

Objects—283

Editor Object Descriptions

Return Value
The universal time at which the window was created

WINDOW DELETION HOOK Editor Variable

Is a hook function that is called with a window as an argument before it is
deleted.

Display Name Format

Window Deletion Hook

Symbol Format

WINDOW-DELETION-HOOK

WINDOW-DISPLAY-COLUMN Function

Returns the physical screen column that the first text character of the specified
window is displayed in. Columns are numbered beginning with 1 This function
is not a place form acceptable to the setf macro.

Format
WINDOW-DISPLAY-COLUMN window

Arguments

window
The window whose display column is to be returned

Return Value
An integer specifying the column

Objects-284

Editor Object Descriptions

WINDOW-DISPLAY-END Function

Returns a mark that points to the position just after the last position displayed in
the window. Altering the position of this mark can have unpredictable results.

Format

WINDOW-DISPLAY-END window

Arguments

window
An Editor window

Return Value
An Editor mark

WINDOW-DISPLAY-ROW Function

Returns the physical screen row that the first text character of the specified
window is displayed in. Rows are numbered beginning with 1 This function is
not a place form acceptable to the setf macro.

Format

WINDOW-DISPLAY-ROW window

Arguments

window
The window whose display row is to be returned

Return Value
An integer specifying the row

Objects-285

Editor Object Descriptions

WINDOW-DISPLAY-START Function

This function returns a mark that points to the first position displayed in the
window. This mark must always point to the beginning of a line (that is, its
character position must be 0).

Format

WINDOW-DISPLAY-START window

Arguments

window
An Editor window

Return Value
A mark

WINDOW-HEIGHT Function

Returns the height of the window as an integer. You can use this function as a
place indicator to the setf macro to change the height of a window. Changing the
value of WINDOW-HEIGHT causes the "Window Modification Hook" to be invoked.

Format

WINDOW-HEIGHT window

Arguments

window
An Editor window

Return Value

An integer

Objects-286

Editor Object Descriptions

WINDOW-LABEL Function

Returns either a string to be used as the window label or a function used to create
the label string for a window. You can use this function with the setf macro to
change the label of a window.

Format

WINDOW-LABEL window

Arguments

window
An Editor window

Return Value

A string, a function, or ni1

WINDOW-LABEL-EDGE Function

Returns the edge of the window that the label is on. The value can be :TOP,
bottom, left,Or :right.The default is :bottom.This corresponds to the
Zlabel-edge Option of make-window.You can use this function with the setf
macro to change the edge of the window that the label is on.

Format

WINDOW-LABEL-EDGE window

Arguments

window
An Editor window

Return Value
The keyword indicating the edge the label is on

Objects-287

Editor Object Descriptions

WINDOW-LABEL-OFFSET Function

Returns a nonnegative integer or »i1 . Ifni 1, the label is centered on the specified
side. If a number, the beginning of the label is offset by the number of characters
from the start of the specified side. You can use this function with the se«+ macro
to change the offset of the label.

Format

WINDOW-LABEL-OFFSET window

Arguments

window
An Editor window

Return Value

A positive integer or nil

WINDOW-LABEL-RENDITION Function

Returns a keyword or a list of keywords specifying the video rendition for

a window & label. The keywords are normat, :brink, :BOLD, :reverse,and
:undertine . This function is acceptable as a place form to se«r. The new value
can be a single keyword or a list of keywords.

Format

WINDOW-LABEL-RENDITION window

Arguments

window
The window whose label § video rendition is desired

Return Value
A list of keywords as described above

Objects-288

Editor Object Descriptions

WINDOW-LINES-WRAP-P Function

Returns 7 if lines that are longer than the window is wide are wrapped, or ni1 if
they are truncated. This function is acceptable as a place form to the se«r macro
to make lines truncated or wrapped in a window.

Format

WINDOW-LINES-WRAP-P window

Arguments

window
An Editor window

Return Value

T or NIL

WINDOW MODIFICATION HOOK Editor Variable

Is a hook function called with the modified window as an argument whenever the

height, type, or width of the window changes. It is called at the completion of the
modification.

Display Name Format

Window Modification Hook

Symbol Format

WINDOW-MODIFICATION-HOOK

WINDOW-POINT Function

Returns a mark that retains the buffer point for a specified window. You can use
this mark to alter the display for a window other than the current window.

Format

WINDOW-POINT window

Objects-289

Editor Object Descriptions

Arguments

window
An Editor window

Return Value
An Editor mark

WINDOW-RENDITION Function

Returns a list of keywords specifying the video rendition for an entire window.
The keywords are normal, blink, :BOId, rreverse,and :underline.This
function is acceptable as a place form to setf.The new value can be a single

keyword or a list of keywords.

Format

WINDOW-RENDITION window

Arguments

window
An Editor window

Return Value
A list of keywords

WINDOW-TRUNCATE-CHAR Function

Returns the character used to indicate that a line is truncated. The default
character is >. This function can be vised as a place indicator with the setf macro
to change the truncation indicator character. Changing this character causes the
window image to be recomputed if window-lines-wrap-p iSnil.

Format
WINDOW-TRUNCATE-CHAR window

Arguments

window
An Editor window

Objects-290

Editor Object Descriptions

Return Value

A character

WINDOW-TYPE Function

Returns a keyword indicating the type of the window. You can change the type of
a window by using this form with set¥f.

Format

WINDOW-TYPE window

Arguments

window
An Editor window

Return Value
-FLOATING Or :ANCHORED

WINDOW-WIDTH Function

Returns the width of the window as an integer. This function can be used with
the setf macro to change the width of a window. Changing the value of window-
width causes the "Window Modification Hook' to be invoked.

Format

WINDOW-WIDTH window

Arguments

window
An Editor window

Return Value
The width of the window

Objects-291

Editor Object Descriptions

WINDOW-WRAP-CHAR Function

Returns the character used to indicate that the lines wrapped. The default
character is <. This function can be used as a place indicator with the setr
macro to change the wrap indicator character. Changing this character causes
the window image to be recomputed ifwindow-1ines-wrap-p IS T.

Format

WINDOW-WRAP-CHAR window

Arguments

window
An Editor window

Return Value
A character

WINDOWP Function

Returns 71 if its argument is an Editor window, and i1 if it is not.

Format

WINDOWRP object

Arguments

object
Any LISP object

Return Value

T or NIL

Objects-292

Editor Object Descriptions

WITH-INPUT-FROM-REGION Macro

Makes an input stream from region and evaluates the forms as an implicit progn
with the stream bound to the argument var. On exit from the macro, the stream

is closed.

Format
WITH-INPUT-FROM-REGION (varregion) {declaration}* {form}*

Arguments

var
The variable var is bound to the input stream.

region

An Editor region

Return Value
The value of the last evaluated form

WITH-MARK Macro

Evaluates the forms of the body with the variables bound to copies of the specified
marks. The copied marks are deleted upon exit from the form.

Format

WITH-MARK ({(var mark [type])}*) form*

Arguments

(var mark [type])
Each variable is bound to a copy of the mark. The new mark will be of type

:temporary Unless otherwise specified by the type.

forms
A list of forms evaluated as an implicit progn

Return Value
The value of the last evaluated form

Objects-293

Editor Object Descriptions

WITH-OUTPUT-TO-MARK Macro

Creates an output stream to mark and evaluates the forms as an implicit progn
with the stream bound to the argument var. On exit from the macro, the stream

is closed.

Format

WITH-OUTPUT-TO-MARK (var mark) {declaration}*{form}*

Arguments

var
The variable that will be bound to the output stream

mark
An Editor mark where output from the stream will be inserted

Return Value
The value of the last evaluated form

WITH-SCREEN-UPDATE Macro

Used to batch any changes made to the screen until all the specified forms have
completed. This form is especially useful when an Editor command makes a
large number of changes to the screen, such as removing and showing several
windows as part of one command. No alterations will appear on the screen until
the specified forms complete, when the screen will change to reflect the final

configuration.

Prompts written to the screen (by using either of the prompting functions or
writing to the information area) will not appear on the screen while inside this

macro.
You may not change the screen height or width while inside this macro.

Format

WITH-SCREEN-UPDATE &REST {form}*

Arguments

form
One or more forms to be evaluated before the screen update occurs

Objects-294

Editor Object Descriptions

Return Value
The value of the last form executed

WORD DELIMITER Attribute

Has a value of | for characters that separate words, and Ofor all other characters.

Display Name Format

Word Delimiter

Symbol Format

WORD-DELIMITER

WORD-OFFSET Function

Updates a mark so that it points to the next word—that is, to the next non-
word-delimiting character beyond the next word-delimiting character. A word-
delimiting character is a character that has a "Word Delimiter" attribute value
of 1. The count value specifies the number of word breaks that are to be located,

going forward if positive and backward if negative.

Format

WORD-OFFSET mark count

Arguments

mark
The mark to be updated

count
The number of word breaks to be located

Return Value
The updated mark

Objects—295

Editor Object Descriptions

WRITE CURRENT BUFFER Command

Writes the current buffer or the buffer specified as the optional argument. If the
buffer is associated with a file, the resulting file is one with the same specification
and the highest version number. The associated checkpoint file, if there is one, is
deleted. If the buffer was created from a LISP object, the buffer contents are read
(and evaluated, if the contents are a LISP function) to produce a new object. For
example, if the buffer contained a function definition, the definition is changed.

Display Name Format

Write Current Buffer

Function Format

WRITE-CURRENT-BUFFER-COMMAND prefix &OPTIONAL buffer

Arguments

prefix
Ignored

buffer
An Editor buffer that defaults to the current buffer

Return Value

The pathname of the file that the buffer was written to; or the value read from
the buffer

WRITE-FILE-FROM-REGION Function

Writes the specified region to a specified file. The region can begin or end in the
middle of a line. Only the text in the region is written to the file. Each line in the
region corresponds to a record in the file.

Format

WRITE-FILE-FROM-REGION pathname region

Objects-296

Editor Object Descriptions

Arguments

pathname
A pathname or namestring

region

An Editor region

Return Value

Two values:
= The truename of the file written. (For an explanation of the truename of a
file, see Common LISP: The Language.)

= The count of the number of records written to the file.

WRITE MODIFIED BUFFERS Command

Performs the same operations as "Write Current Buffer" for each buffer contain-
ing an object (that is, a file or a LISP object) being edited.

Display Name Format

Write Modified Buffers

Function Format

WRITE-MODIFIED-BUFFERS-COMMAND prefix

Arguments

prefix
Ignored

Return Value
NIL

Objects-297

Editor Object Descriptions

WRITE NAMED FILE Command

Prompts for a file name if it is not supplied. The function writes the current
Editor buffer to the file.

Category
:GENERAL-PROMPTING

Display Name Format

Write Named File

Function Format

WRITE-NAMED-FILE-COMMAND prefix &OPTIONAL filename

Arguments

prefix
Ignored

filename
A pathname, namestring, string, or stream

Return Value
The pathname to which the buffer was written

YANK Command

Copies the current region of the kill ring into the indicated buffer at the argu-
ment mark. The mark defaults to the current buffer point. If an integer prefix
argument is supplied, that many copies of the kill-ring region are inserted.

Display Name Format

Yank

Objects-298

Editor Object Descriptions

Function Format

YANK-COMMAND prefix &OPTIONAL mark

Arguments

prefix
An integer or NIL

mark
An Editor mark that defaults to the current buffer point

Return Value
NIL

YANK AT POINTER Command

Moves the current buffer point to the position indicated by the pointer and then
inserts at that location the first region saved on the kill ring. If the pointer is
beyond the end of a line, the region is inserted at the end of that line. If the
pointer is beyond the end of the buffer region, the kill region is inserted at the
end of the buffer region.

Display Name Format

Yank at Pointer

Function Format

YANK-AT-POINTER-COMMAND prefix

Arguments

prefix
Ignored

Return Value
The current buffer point

Objects-299

Editor Object Descriptions

YANK PREVIOUS Command

Rotates the Kill ring forward, and copies the new current Kill-ring region into the
buffer at the argument mark. The mark defaults to the current buffer point. The
prefix defaults to | and specifies how many copies are to be inserted (not how
much to rotate the ring).

Display Name Format

Yank Previous

Function Format

YANK-PREVIOUS-COMMAND prefix &OPTIONAL mark

Arguments

prefix
An integer or nil

mark
An Editor mark that defaults to the current buffer point

Return Value
NIL

YANK REPLACE PREVIOUS Command

Deletes the previously yanked region, rotates the kill ring forward and copies
the new current Kill-ring region into the current buffer at the current point. The
prefix defaults to | and specifies how many copies are to be inserted.

Display Name Format

Yank Replace Previous

Function Format

YANK-REPLACE-PREVIOUS-COMMAND prefix

Objects-300

Arguments

prefix
An integer or nil

Return Value

None

Editor Object Descriptions

Objects-301

Appendixes

Appendix A

Editor Objects by Category

This appendix lists the Editor objects—functions, variables, commands, and so
on—that pertain to each of the categories listed below. The categories are the
major data types, subsystems, and utilities provided with the Editor.

Attributes

Attributes provided with VAX LISP
Buffers

Buffers provided with VAX LISP
Commands

Commands provided with VAX LISP
Display

Editor variables

Editor variables provided with VAX LISP
Error signaling and debugging

Files

Help

Hooks

Hook variables provided with VAX LISP
Invoking and exiting the Editor

Kill ring

Lines

LISP syntax

Marks

Miscellaneous

Pointing device

Prompting and terminal input
Regions

Rings

Searching

String tables

String tables provided with VAX LISP
Styles

Styles provided with VAX LISP

Style bindings, "edt Emulation" style
Style bindings, "EMACS'" style

Style bindings, "vax 1isp" style

Text operations

Windows

Editor Objects by Category A-1

Al Attributes

ATTRIBUTE-NAME function
BIND-ATTRIBUTE function
CHARACTER-ATTRIBUTE function
"Character Attribute Hook™ Editor variable
DEFINE-ATTRIBUTE macro
EDlItor-attribute —-name S variable
FIND-ATTRIBUTE function
LOCATE-ATTRIBUTE function
UNBIND-ATTRIBUTE function
WHITESPACE-AFTER-P function
WHITESPACE-BEFORE-P function
WHITESPACE-BETWEEN-P function

whitespace-line-p fFunction

A.2 Attributes Provided with VAX LISP

"LISP Syntax"

“"Page Delimiter"
"Print Representation"
"Whitespace"

"Word Delimiter™

A.3 Buffers

"Beginning of Buffer'" command
BUFFER-CHECKPOINTED function
buffer-checkpointed-time Ffunction
"Buffer Creation Hook™ Editor variable
BUFFER-CREATION-TIME function
"Buffer Deletion Hook™ Editor variable
"Buffer Entry Hook' Editor variable
"Buffer Exit Hook' Editor variable
BUFFER-HIGHLIGHT-REGIONS function
BUFFER-MAJOR-STYLE function
BUFFER-MINOR-STYLE-ACTIVE function
BUFFER-MINOR-STYLE-LIST function
BUFFER-MODIFIED-P function
BUFFER-NAME function

"Buffer Name Hook' Editor variable
buffer-object function

"Buffer Object Hook" Editor variable
BUFFER-PERMANENT function
buffer-point function

buffer-region function

BUFFER-TYPE function
BUFFER-VARIABLES function
buffer-windows function
BUFFER-WRITABLE function
BUFFER-WRITTEN-TIME function
BUFFERP function

A-2 Editor Objects by Category

CHECKPOINT-BUFFER function
CURRENT-BUFFER function
CURRENT-BUFFER-POINT function

"Default Buffer Variables" Editor variable
"Default Major style" Editor variable
"Default Minor styles" Editor variable
DELETE-BUFFER function

"Delete Current Buffer'" command
"Delete Named Buffer'" command
»EDITOR-BUFFER-NAMES™* variable
EDITOR-DEFAULT-BUFFER variable

"End of Buffer"” command

FIND-BUFFER function

"List Buffers' command

MAKE-BUFFER function

map-buffers Ffunction

“"Maybe Reset Select at Pointer” command
“"Move Point and Select Region” Command
""Move Point to Pointer" command
"Select Buffer'" command

""Set Select Mark'™ command

"Unset Select Mark"™ command

A.4 Buffers Provided with VAX LISP

"General Prompting" buffer
“"Help" buffer

A5 Commands

"Bind Command" command

BIND-COMMAND function
BIND-POINTER-COMMAND function
CATEGORY-COMMANDS function
COMMAND-CATEGORIES function
COMMAND-NAME function
CURRENT-COMMAND-FUNCTION variable
DEFINE-COMMAND macro
DEFINE-KEYBOARD-MACRO function
*edltor-command-names™ variable
*EDITOR-KEYBOARD-MACRO-NAMES™ variable
end-keyboard-macro function
ENQUEUE-EDITOR-COMMAND function
"Execute Keyboard Macro™ command
"Execute Named Command™ command
find-command function
GET-BOUND-COMMAND-FUNCTION function
"List Key Bindings'" command
MAP-BINDINGS function

MAKE-COMMAND function
»previous-command-function* variable
"'Start Keyboard Macro™ command
"'Start Named Keyboard Macro™ command

Editor Objects by Category A-3

"Supply EMACS Prefix" command
"Supply Prefix Argument' command
UNBIND-COMMAND function
UNBIND-POINTER-COMMAND function

A.6 Commands Provided with VAX LISP

"Activate Minor Style"
"Apropos"’

""Apropos Word"

""Backward Character"
“"Backward Kill Ring"
""Backward Page"

""Backward Search"
""Backward Word"

""Beginning of Buffer"
""Beginning of Line"
"Beginning of Outermost Form"
"Beginning of Paragraph"
"Beginning of Window""
"Bind Command"

"Capitalize Region”
"Capitalize Word"

"Close Outermost Form"
"Deactivate Minor Style"
"Delete Current Buffer"
"Delete Line"

"Delete Named Buffer"
"Delete Next Character"
"Delete Next Word"

"Delete Previous Character™
""Delete Previous Word"
"Delete Whitespace™
"Delete Word"

""Describe™

""Describe Word"

""Describe Word at Pointer"
"'Downcase Region"
""Downcase Word"

“Ed

"Edit File"

“"EDT Append™

"EDT Back to Start of Line"
"EDT Beginning of Line"
"EDT Capitalize"

"EDT Cut"

"EDT Delete Character"
"EDT Delete Line"

"EDT Delete Previous Character"
"EDT Delete Previous Line"
"EDT Delete Previous Word"
"EDT Delete to End of Line"
"EDT Delete Word"

"EDT Deselect"

"EDT End of Line"

A—4 Editor Objects by Category

"EDT Move Character"
"EDT Move Page"

""EDT Move Word"

"EDT Paste"

"EDT Paste at Pointer"
“"EDT Query Search"

"EDT Replace"

"EDT Scroll Window"

"EDT Search Again"

"EDT Select"

"EDT Set Direction Advance"
"EDT Set Direction Reverse"
“EDT Special Insert”
"EDT Substitute"

"EDT Undelete Character"
"EDT Undelete Line"

"EDT Undelete Word"
"EMACS Backward Search"
"EMACS Forward Search"
""End Keyboard Macro™
"End of Buffer"

"End of Line"

"End of Outermost Form"
“"End of Paragraph"

"End of Window"
"Evaluate LISP Region™
"Exchange Point and Select Mark"
"Execute Keyboard Macro"
""Execute Named Command"
VExit"

"Exit Recursive Edit"
"Forward Character"
"Forward Kill Ring"
"Forward Page™

"Forward Search"
"Forward Word"

""Grow Window"

“"Help"

""Help on Editor Error™
"11legal Operation
"Indent LISP Line"
"Indent LISP Region
"Indent Outermost Form"
"Insert Buffer"

"Insert Close Paren and Match"
"Insert File"

"Kill Enclosing List"”
"Kill Line"

"Kill Next Form"

"Kill Paragraph®’

"Kill Previous Form"
"Kill Region"

"Kill Rest of List"
“Line to Top of Window"
"List Buffers"

"List Key Bindings"
""Maybe Reset Select at Pointer™

Editor

Objects

by Category A-5

“"Move Point and Select Region™
“"Move Point to Pointer"
""Move to Lisp Comment"
"New Line"

"New LISP Line"

""Next Form"

“Next Line"

"Next Paragraph®’

""Next Screen™

“"Next Window""

"'Open Line"

“"Page Next Window""

“"Page Previous Window"
""Pause"

“"Previous Form®"

“"Previous Line"

“"Previous Paragraph"
“"Previous Screen”
“"Previous Window"

"Prompt Complete String"
"Prompt Help"

"Prompt Read and Val idate"
"Prompt Scroll Help Window"
"Prompt Show Alternatives"
"'Query Search Replace”
"Quoted Insert"

"Read File"

"Redisplay Screen”

""Remove Current Window"
“"Remove Other Windows"
"*Scroll Window Down™
"*Scroll Window Up"

"Select Buffer”

""Select Enclosing Form at Pointer
""Select Outermost Form"
"Self Insert”

"'Set Select Mark"

*'Show Time"

"Shrink Window"

"Split Window"

"'Start Keyboard Macro*
"'Start Named Keyboard Macro™
"Supply EMACS Prefix"
"Supply Prefix Argument"
"Transpose Previous Characters"
"Transpose Previous Words"
"'Undo Previous Yank™
“"Unset Select Mark™
""Upcase Region™

""Upcase Word"

"View File"

"What Cursor Position™
"Write Current Buffer”
"Write Modified Buffers"
"Write Named File"

"Yank'

"Yank at Pointer"

A-6 Editor Objects by Category

A.7 Display

Yank Previous"
Yank Replace Previous

CLEAR-INFORMAT ION-AREA function
EDITOR-RETAIN-SCREEN-STATE variable
INFORMAT ION-AREA-HEIGHT function
INFORMAT ION-AREA-OUTPUT-STREAM variable
"Redisplay Screen”™ command
REDISPLAY-SCREEN function

screen-height function

"Screen ModiFfication Hook™ Editor variable
screen-width function

"Set Screen Height" command

"Set Screen Width" command
update-display function

with-screen-update macro

A.8 Editor Variables

bind-variable function
define-editor-variable macro
¢editor-variable-names™ variable
find-variable Ffunction
unbind-variable function
VARIABLE-BOUNDP function
variable-FBOUNDP function
VARIABLE-FUNCTION function
VARIABLE-NAME function
VARIABLE-VALUE function

A.9 Editor Variables Provided with VAX LISP

""Anchored Window Show Limit"
"Buffer Creation Hook"

"Buffer Deletion Hook"

"Buffer Entry Hook™

"Buffer Exit Hook"

"Buffer Name Hook"

"Buffer Object Hook"

"Buffer Right Margin"

"Buffer Select Mark"

"Buffer Select Region"

"Character Attribute Hook"
"Current Window Pointer Pattern"
""Current Window Pointer Pattern X
""Current Window Pointer Pattern Y"
"Default Buffer Variables"
"Default Filetype Minor Styles™
"Default LISP Object Minor Styles"
"Default Major Style"

Editor Objects by Category A-7

“"Default Minor Styles"

""Default Search Case"

""Default Window Label™"

"Default Window Label Edge"
"Default Window Label Offset"
""Default Window Label Rendition™
"Default Window Lines Wrap"
""Default Window Rendition"

""Default Window Truncate Char"
""Default Window Type"'

""Default Window Width"

"Default Window Wrap Char™

"Editor Entry Hook"

"Editor Exit Hook"

"Editor Initialization Hook"
"Editor Pause Hook™

"EDT Deleted Character™

"EDT Deleted Line"

"EDT Deleted Word"

"EDT Direction Mode"

"EDT Paste Buffer"

"Help Text"

"Information Area Pointer Pattern"
"Information Area Pointer Pattern X"
"Information Area Pointer Pattern Y"
"Last Search Direction™

"Last Search Pattern™

“"Last Search String”

"LISP Comment Column

“LISP Evaluation Result"

“"Major Style Activation Hook"
“Minor Style Activation Hook"
"Noncurrent Window Pointer Pattern™
“Noncurrent Window Pointer Pattern X"
"Noncurrent Window Pointer Pattern Y"
"Prompt Alternatives"

"Prompt Alternatives Arguments'
"Prompt Completion”

"Prompt Completion Arguments"
"Prompt Default"

"Prompt Error Message"

"Prompt Error Message Arguments"
"Prompt Help"

"Prompt Help Arguments™

"Prompt Help Called”

"Prompt Rendition Complement™
"Prompt Rendition Set"

"Prompt Required"

"Prompt Start"

"Prompt Validation™

"'Screen Modification Hook™

""Select Region Rendition Complement™
""Select Region Rendition Set"
"'Switch Window Hook"

“"Target Column™

"Text Overstrike Mode"

"Window Buffer Hook™

A-8 Editor Objects by Category

"Window Creation Hook"'
"Window Deletion Hook"'
"Window Modification Hook"

A.10 Error Signaling and Debugging

A.11 Files
A.12 Help
A.13 Hooks

attention function

editor-error Ffunction
EDITOR-ERROR-WITH-HELP function
EDITOR-RETAIN-SCREEN-STATE™ variable
"11legal Operation” command

BUFFER-CHECKPOINTED function
CHECKPOINT-FREQUENCY function
"Edit File" command

"insert File" command
INSERT-FILE-AT-MARK function
"Read File" command

"view File" command

"Write Current Buffer” command
WRITE-FILE-FROM-REGION function
"Write Modified Buffers” command
"Write Named File" command

"Apropos" command
APROPOS-STRING-TABLE function
"Apropos Word™ command

""Describe" command

""Describe Word"” command

"Describe Word at Pointer™ command
"Editor Help” command
EDITOR-HELP-BUFFER buffer

"Help" buffer

"Help"” command

"Help on Editor Error” command
"Help Text'" Editor variable

"Prompt Complete String” command
"Prompt Help"” command

“"Prompt Scroll Help Window"” command
"Prompt Show Alternatives™ command

invoke-hook function
REVERSE-INVOKE-HOOK function

Editor Objects by Category A-9

A.14 Hook Variables Provided with VAX LISP

"Buffer Creation Hook™
"Buffer Deletion Hook"
"Buffer Entry Hook™

"Buffer Exit Hook"

"Buffer Name Hook"'

"Buffer Object Hook"
""Character Attribute Hook"
“"Editor Entry Hook"

"Editor Exit Hook"

"Editor Initialization Hook"
"Editor Pause Hook"

"Major Style Activation Hook"
“Minor Style Activation Hook™"
"'Screen Modification Hook"
""Switch Window Hook"

"Window Buffer Hook"

"Window Creation Hook™
"Window Deletion Hook™
"Window Modification Hook™

A.15 Invoking and Exiting the Editor

"Ed" command

ed function

"Editor Entry Hook' Editor variable
"Editor Exit Hook" Editor variable
"Editor Initialization Hook™ Editor variable
"Editor Pause Hook' Editor variable
"Exit Editor" command

"Exit Recursive Edit" command
INITIALIZE-ED I TOR function

"Pause Editor' command
RETURN-FROM-EDITOR macro

A.16 Kill Ring

"Backward Kill Ring"” cCommand
"Forward Kill Ring"” command
"Kill Line" command

"Kill Paragraph” command

"Kill Region” command

""Undo Previous Yank'™ command
"Yank" command

"Yank at Pointer” command

"Yank Previous™ command

"Yank Replace Previous™ Command

A-10 Editor Objects by Category

A.17 Lines

"Beginning of Line" command
BREAK-LINE function
"Delete Line" command
empty-line-p function
"End of Line" command
end-of-line-p function
line/= function

line< function

1ine<= function

line= function

1ine> function

line >= function
line-buffer function
LINE-CHARACTER function
LINE-END function
line-length function
line-next function
line-offset function
line-previous function
LINE-START function
LINE-STRING function
line-to-region function
"Line to Top of Window" command
tinep function
LINES-RELATED-P function
"New Line" command
"New lisp Line" command
"Next Line" command
""Open Line" command
"Previous Line"” command

A.18 LISP Syntax

"Beginning of Outermost Form™ command
"Close Outermost Form" command
"Delete Whitespace'™ Command
""Describe Word" command

"Describe Word at Pointer”™ Command
"End of Outermost Form™ command
"Evaluate LISP Region™ Command
"Indent LISP Line" Command

"Indent LISP Region command

"Indent Outermost Form™ command
"Insert Close Paren and Match™ command
"Kill Enclosing List"” command

"Kill Next Form"™ command

"Kill Previous Form" command

"Kill Rest of List” command

"lisp Comment Column' Editor variable
"lisp Evaluation Result” Editor variable
"lisp syntax' Editor attribute

"Move to LISP Comment™ command

Editor Objects by Category A-11

"“"New 1isp Line" command
"Next Form"” command

next-lisp-form function
"Previous Form"™ command
previous-lisp-form function

"Select Enclosing Form at Pointer” command
""Select Outermost Form” command

A.19 Marks

"Beginning of Paragraph” command
"Beginning of Window" command
BUFFER-END function
buffer-point function

"Buffer Select Mark' Editor variable
buffer-start function
character-offset function
copy-mark function
current-buffer-point function
delete-mark function
end-of-line-p function

"End of Paragraph'™ command
"End of window" command
"Exchange Point and Select Mark™ command
first-line-p function
LAST-LINE-P function
line-offset function
make-editor-stream-to-mark Ffunction
MAKE-mark function
MARK-VISIBLE-P function

mark /= function

mark< function

MARK<= function

mark= function

mark> function

mark>= function

mark-charpos function
mark-column Ffunction

mark-line function

mark-type Ffunction
mark-window-position function
markp Ffunction

move-mark Ffunction
MOVE-MARK-AFTER function
MOVE-MARK-BEFORE function
MOVE-MARK-TO-POSITION function
""Move to LISP Comment" command
NEXT-CHARACTER function

“Next FoOrm™ command

"Next Line" command

"Next Paragraph” command

"Next Screen'™ command

"Next window'" command

"Page Next Window" command
""Page Previous Window" command

A-12 Editor Objects by Category

page-offset function
PREVIOUS-CHARACTER function
"Previous Form" command
"Previous Line" command
"Previous Paragraph™ command
"Previous Screen” command
"Previous Window" command
region-end function
region-start function
SAME-LINE-P function

"Scroll Window Down" command
"Scroll window Up"™ command
SHOW-MARK function
START-OF-LINE-P function
"What Cursor Position” command
window-point function
WITH-MARK macro
with-output—-to-mark macro

word-offset function

A.20 Miscellaneous

CANCEL-CHARACTER function
"Show Time" command

A.21 Pointing Device

BIND-POINTER-COMMAND function

"Copy From Pointer' command

"Copy to Pointer' command

"Current Window Pointer Pattern™ Editor variable
"Current Window Pointer Pattern X' Editor variable
"Current Window Pointer Pattern Y Editor variable
"Describe Word at Pointer" command

"Edt Cut"” command

"eEDT Paste at Pointer™ command

GET-POINTER-STATE function

"Information Area Pointer Pattern™ Editor variable
"Information Area Pointer Pattern X" Editor variable
"Information Area Pointer Pattern Y Editor variable
"Kill Region" command

"Maybe Reset Select at Pointer" command

"Move Point and Select Region' command

"Move Point to Pointer™ command

"Noncurrent Window Pointer Pattern™ Editor variable
"Noncurrent Window Pointer Pattern X Editor variable
"Noncurrent Window Pointer Pattern Y" Editor Variable
POINTER-STATE-ACTION function
POINTER-STATE-BUTTONS function

pointer-state-p function
POINTER-STATE-TEXT-POSITION function
POINTER-STATE-WINDOW-POSITION function

"Secondary Select Region' command

Editor Objects by Category A-13

"Select Enclosing Form at Pointer' command
UNBIND-POINTER-COMMAND function
"Yank at Pointer" command

A.22 Prompting and Terminal Input

EDITOR-LISTEN function

EDITOR-PROMPT ING-BUFFER buffer
EDITOR-READ-CHAR function
EDITOR-READ-CHAR-NOHANG function
EDITOR-UNREAD-CHAR function

"General Prompting" buffer

INFORMAT ION-AREA-OUTPUT-STREAM variable
*last-character-typed™ variable

"Prompt Alternatives" Editor variable

"Prompt Alternatives Arguments' Editor variable
"Prompt Complete String" command

"Prompt Completion" Editor variable

"Prompt Completion Arguments" Editor variable
"Prompt Default" Editor variable

"Prompt Error Message" Editor variable
"Prompt Error Message Arguments' Editor variable
prompt-for-input function

"Prompt Help" command

"Prompt Help' Editor variable

"Prompt Help Arguments' Editor variable
"Prompt Help Called" Editor variable

"Prompt Read and Validate' command

"Prompt Rendition Complement' Editor variable
"Prompt Rendition Set'" Editor variable
"Prompt Required" Editor variable

"Prompt Scroll Help Window" command
"Prompt Show Alternatives" command

"Prompt start" Editor variable

"Prompt Validation Editor variable
SIMPLE-PROMPT-FOR-INPUT function

A.23 Regions

"Buffer Select Region' Editor variable
COPY-REGION function

count-region function
DELETE-AND-SAVE-REGION function
DELETE-REGION function
HIGHLIGHT-REGION-P function

MAKE-ED I TOR-STREAM-FROM-REG I10Nfunction
MAKE-EMPTY-REGION function
MAKE-HIGHLIGHT-REGION function
MAKE-REGION function

""Maybe Reset Select at Pointer" command
""Move Point and Select Region' command
region-end function

REGION-READ-POINT function

A-14 Editor Objects by Category

A.24 Rings

region-start function
REGION-TO-STRING function
regionp Ffunction
REMOVE-HIGHLIGHT-REGION function

"Select Region Rendition Complement” Editor variable

"Select Region Rendition Set" Editor variable

"Set select Mark' command
STRING-TO-REGION function
"Unset Select Mark' command
WITH-INPUT-FROM-REGION macro

MAKE-RING function
RING-LENGTH function
ring-pop Ffunction
ring-push function
RING-REF function
ringp Ffunction

rotate-ring function

A.25 Searching

"Backward Search™ command
"Default Search Case™ Editor variable
""EMACS Backward Search”™ Command
"EMACS Forward Search”™ Command
"Forward Search™ command

"Last Search Direction' Editor variable
"Last Search Pattern” Editor variable
"Last Search String" Editor variable
LOCATE-PATTERN function
MAKE-SEARCH-PATTERN function

"Query Search Replace" Command
REPLACE-PATTERN function

A.26 String Tables

APROPOS-STRING-TABLE function
COMPLETE-STRING function
find-ambiguous function
GET-STRING-TABLE-VALUE function
MAKE-STRING-TABLE function
map-strings Ffunction

REMOVE -STRING-TABLE-ENTRY function
STRING-TABLE-P function

Editor Objects by Category A-15

A.27 String Tables Provided with VAX LISP

A.28 Styles

A.29 Styles

*EDITOR-ATTRIBUTE-NAMES™
EDITOR-STYLE-NAMES™
*EDITOR-KEYBOARD-MACRO-NAMES *
ED1TOR-COMMAND-NAMES
EDITOR-BUFFER-NAMES
*EDITOR-VARIABLE-NAMES™

"Activate Minor Style"” command
BUFFER-MAJOR-STYLE function
BUFFER-MINOR-STYLE-ACTIVE function
BUFFER-MINOR-STYLE-LIST function

""Deactivate Minor Style” command

"Default Filetype Minor Styles" Editor variable
"Default LISP Object Minor Styles" Editor variable
"Default Major style" Editor variable

"Default Minor styles" Editor variable
editor-style-names variable

"eDT Emulation' style

find-style function

"Major Style Activation Hook' Editor variable
make-style Macro

"Minor Style Activation Hook™ Editor variable
STYLE-NAME function

stylep Ffunction

STYLE-VARIABLES function
"VAX 1isp" style

Provided with VAX LISP

"EDT Emulation' style
"emacs" style
"VAX lisp" style

A.30 Style Bindings, "EDT Emulation” Style

"Default window Label™ Editor variable
"eDT Append” command

"EDT Back to Start of Line"” command
"eDT Beginning of Line"” command

“EDT Change Case'" command

"edt Cut"” command

"EDT Delete Character'” command

"EDT Delete Line" Command

"EDT Delete Previous Character'" command
"EDT Delete Previous Line" cCommand
"eDT Delete Previous Word" command

A-16 Editor Objects by Category

"EDT Delete to End of Line" Command
"eDT Delete Word"™ command

"EDT Deleted Character" Editor variable
"edt Deleted Line" Editor variable

"edt Deleted Word" Editor variable

"edt Deselect"” command

"edt Direction Mode" Editor variable
"EDT End of Line" command

"EDT Move Character' Command

"EDT Move Page' command

"EDT Move Word" command

"edt Paste" command

"EDT Paste at Pointer'” command

"edt Paste Buffer” Editor variable

"EDT Query Search™ command

"edt Replace”™ command

"EDT Scroll Window" command

"EDT Search Again' command

"edt select” command

"EDT Set Direction Backward™ command
"EDT Set Direction Forward™ command
"epT Special Insert” command

"edt Substitute'" command

"EDT Undelete Character' Command
"EDT Undelete Line" Command

"epT Undelete Word" command

"Select Region Rendition Complement' Editor variable
"Select Region Rendition Set" Editor variable
"Word Delimiter' Editor attribute

A3l Style Bindings, "EMACS" Style

"Apropos Word"™ command

""Backward Character' command
""Backward Word" command
"Beginning of Buffer"” command
"*Beginning Of Line* command
"Beginning of Paragraph™ Command
""Beginning of Window" Command
"Capitalize Word" command
"Default Window Label" Editor variable
"Delete Current Buffer'” command
"Delete Next Character"™ command
"Delete Previous Character'" command
"Delete Previous Word" command
"Delete Next Word" Command
"Delete Whitespace™ Command
""Describe Word"™ Command
""Downcase Word" Command

"Ed" command

"Edit File" command

"EMACS Backward Search” command
"EMACS Forward Search'™ Command
"End of Buffer'” command

"End of Line" command

Editor Objects by Category A-17

"End of Paragraph' command

"End of window" command
""Exchange Point and Select Mark' command
"Execute Keyboard Macro Command
"Execute Named Command™ command
"Exit Recursive Edit" Command
"Forward Character” command
"Forward Word" command

"Grow window™ command

"insert File" command

"Kill Line" command

"Kill Paragraph" command

"Kill Region" command

"Line to Top of Window" command
"List Buffers" command

"New Line" command

"Next Line" command

"Next Paragraph’ command

"Next Screen' command

"Next window" command

"Open Line" command

"Page Next Window" command
"Pause Editor" command

"Previous Line" command
"Previous Paragraph' command
"Previous Screen" command
"Previous Window" command

"Query Search Replace' command
"Quoted insert" command

"Read File" command

"Redisplay Screen' command
"Remove Current Window" command
"Remove Other Windows™ command
"Scroll Window Down' command
"Scroll window Up" command
"Select Buffer" command

"Select Region Rendition Complement" Editor variable
"Select Region Rendition Set" Editor variable
"Set Select Mark' command

"Show Time" command

"Shrink Window" Command

"Split window" command

"Supply EMACS Prefix' command
"Supply Prefix Argument' command
"Transpose Previous Characters' command
"Transpose Previous Words'" command
"Undo Previous Yank™ command
"Unset Select Mark™ command
"Upcase Word' command

"view File" command

"What Cursor Position™ command
"Write Current Buffer” command
"Write Modified Buffers'" command
"Write Named File" command
"Yank' command

"Yank at Pointer" command

"Yank Previous" command

A-18 Editor Objects by Category

Yank Replace Previous" command

A.32 Style Bindings, "VAX LISP” Style

"Beginning of Outermost Form" command
"Close Outermost Form™ command
"Describe Word at Pointer”™ Command
"End of Outermost Form" command
"Evaluate LISP Region' command
"Indent LISP Line" command

"Indent Outermost Form™ command
"Insert Close Paren and Match' command
"lisp Comment Column' Editor variable
"LISP Evaluation Result" Editor variable
"LISP Syntax" Editor attribute

"Move to LISP Comment' command

"New Iisp Line" command

"Next Form" command

"Previous Form" command

"Select Enclosing Form at Pointer' command
"Select Outermost Form" command

"Word Delimiter' Editor attribute

A.33 Text Operations

"Backward Character' command
"Backward Page" command
"Backward Word" command
""Beginning of Paragraph' command
"Beginning of Window" command
"Buffer Right Margin' Editor variable
"Capitalize Region" command
"Capitalize Word" command
DELETE-AND-SAVE-REGION function
DELETE-CHARACTERS function
"Delete Next Character" Command
"Delete Next Word" command
"Delete Previous Character'" command
"Delete Previous Word"” Command
DELETE-REGION function

"Delete Word" command

"Downcase Region' command
"Downcase Word"™ command

"End of Paragraph' command
"Forward Character” command
"Forward Page' command

"Forward Word" command

"Insert Buffer” command
INSERT-CHARACTER function

"insert File" command
INSERT-FILE-AT-MARK function
insert-region function
insert-string function

Editor Objects by Category A-19

"Kill Line" command

"Kill Paragraph" command

"Kill Region' command
NEXT-CHARACTER function

"Next Paragraph’ command
PREVIOUS-CHARACTER function
"Previous Paragraph' command
"Quoted insert" command

"Self insert" command

"Text Overstrike Mode" Editor variable
"Transpose Previous Characters' command
"Transpose Previous Words" command
"Undo Previous Yank" command
"Upcase Region' command

"Upcase Word" command

"Yank' command

"Yank at Pointer' command

"Yank Previous'™ command

"Yank Replace Previous' command

A.34 Windows

ALTER-WINDOW-HEIGHT function
"Anchored Window Show Limit" Editor variable
""Beginning of Window" command
BUFFER-HIGHLIGHT-REGIONS function
buffer-windows function

center-window function

CURRENT-WINDOW function

"Default window Label™ Editor variable
"Default window Label Edge' Editor variable
"Default window Label Offset™ Editor variable
"Default Window Label Rendition' Editor variable
"Default Window Lines Wrap' Editor variable
"Default Window Rendition" Editor variable
"Default Window Truncate Char" Editor variable
"Default window Type" Editor variable
"Default window width" Editor variable
"Default Window Wrap Char' Editor Variable
DELETE-WINDOW function

“eDpT Scroll Window" command

"End of window" command

"Grow window' command

HIGHLIGHT-REGION-P function

“Line to Top of Window"™ command
MAKE-HIGHLIGHT-REGION function

make-window function

MARK-WINDOW-POSITION function

move-window function

"Next Screen”™ command

"Next Window" command

next-window function

"Page Next Window" command

"Page Previous Window" command

"Previous Screen" command

A-20 Editor Objects by Category

"Previous Window"” Command

"Prompt Scroll Help Window"” command
push-window Ffunction

""Remove Current Window"™ Command
REMOVE-HIGHLIGHT-REGION function
""Remove Other Windows'™ command
remove-window Ffunction

scroll-window function

"*Scroll Window Down™ command
"Scroll window Up"” command
show-window function

"Shrink Window" command

"Split window" command

"Switch Window Hook™ Editor variable
update-display function
UPDATE-WINDOW-LABEL function
visible-windows function
window-buffer function

"Window Buffer Hook" Editor variable
"Window Creation Hook" Editor variable
WINDOW-CREATION-TIME function
"Window Deletion Hook" Editor variable
window-display-column function
WINDOW-DISPLAY-END function
window-display-row function
WINDOW-DISPLAY-START function
window-height function

window-label function
WINDOW-LABEL-EDGE function
window-label-offset function
WINDOW-LABEL-RENDITION function
window-lines-wrap-p function
"Window Modification Hook" Editor variable
WINDOW-POINT function
window-rendition function
window-truncate-char function
WINDOW-TYPE function

window-width function
window-wrap-char function

windowp Ffunction

Appendix B

Editor Commands and Bindings

This appendix lists and briefly describes all the commands supplied with the VAX
LISP Editor. Key bindings, pointer bindings, and binding contexts are also listed
where applicable.

The following table also appears in the VAXLISP/VMS Program Development
Guide.

Table B-1: Editor Commands and Key Bindings

Name Binding(s) Description

Activate Minor None Prompts for the name of a minor style and

Style then activates that style as a minor style in the
current buffer.

Apropos None Prompts for a string, then displays the names of
objects of a specified type containing that string.

Apropos Word (STYLE "'VAX LISP™) [EBs¢|pH Displays the result of evaluating the APROPOS

function with the word at the cursor location as
the argument.

Backward :GLOBAL O Moves the cursor backward one character or by

Character (STYLE "EMACS™) vl the number of characters specified by the prefix
argument.

Backward Kill None Rotates the kill ring backward by one element or

Ring by the number of elements specified by the prefix
argument.

Backward Page None Moves the cursor to the previous page break

or to the preceding page break specified by the
prefix argument.

Backward Search None Prompts for a search string then moves the
cursor to the beginning of the first preceding
occurrence of that string or to the preceding
occurrence specified by the prefix argument.

Backward Word (:STYLE "EMACS') |Esgell Moves the cursor to the end of the previous word
or to the end of the preceding word specified by
the prefix argument.

Pointer button transition: o button up; =button held down; {button pressed; | button released.
o =0 —>pointer movement with buttons in specified state.
Pointer buttons invoke command only when pointer cursor is in the current window.

(continued on next page)

Editor Commands and Bindings B-1

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

Beginning of
Buffer

Beginning of Line

Beginning of
Outermost Form

Beginning of
Paragraph

Beginning of
Window

Bind Command

Capitalize Region

Capitalize Word

Close Outermost
Form

Copy from
Pointer2

Copy to Pointer2

Deactivate Minor
Style

Delete Current
Buffer

Binding(s)

(:STYLE "EDT Emullation'™)
IPPiimC: STYLE ""EMACS') Iescape|

GO
(:STYLE “EMACS'™) S5

(¢ STYLE "'VAX LISP)fCtri/Xim

(:STYLE "EMACS™) Escapeim
(:STYLE "EMACS") [escape] IT]

None

None
(:STYLE "EMACS'™) [escape|m

(:STYLE "VAX LISP") [escape|fTI

:GLOBAL

‘GLOBAL 1=0] 1

None

(:STYLE "EMACS") [oted [OID]

2Available only in DECwindows Pointer Syntax.

Description

Moves the cursor to the beginning of the buffer.

Moves the cursor to the beginning of the current
line or to the beginning of the following line
specified by the prefix argument.

Moves the cursor to the beginning of the out-
ermost form currently containing it or, if the

cursor is not currently contained in a form, to
the beginning of the preceding outermost form.

Moves the cursor to the beginning of the current
paragraph.

Moves the cursor to the top of the current
window.

Prompts for a command name, a key sequence
to bind to the command, and a context in which
to bind the key sequence, then binds the key
sequence to the command.

Capitalizes the first letter of each word in the
current select region.

Capitalizes the first letter of the word at the
cursor location.

Completes the outermost LISP form by insert-
ing close-parenthesis characters at the cursor
position.

Sets the end of secondary selection and copies
the text to the window that has input focus;
check that input focus is correctly set before
initiating this command.

Moves the current buffer point to the position
indicated by the pointer and inserts the text
from the primary selection at that location. If
pointer is beyond the end of a line, inserts the
text at the end of the line. If pointer is beyond
the end of the buffer region, inserts the text at
the end of the buffer region.

Prompts for the name of a minor style, then
deactivates that minor style in the current
buffer.

Deletes the current buffer; for modified buffers,
asks if the contents of the buffer should first be
saved.

0 j >IPointer button transition: o button up; =button held down; Jbutton pressed; j button released.

o >0 |— pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

B-2 Editor Commands and Bindings

(continued on next page)

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

Delete Line

Delete Named
Buffer

Delete Next
Character

Delete Next Word

Delete Previous
Character

Delete Previous
Word

Delete
Whitespace

Delete Word

Describe
Describe Word
Describe Word at
Pointer3
Downcase Region

Downcase Word

Ed

Edit File

EDT Append

Bmding(s)

None

None

(:STYLE "BVIACS") [ctip)

(: STYLE "BMACS)Escapal | d |

:GLOBAL |pelete|

(:STYLE "EMOCS") | Delete |

(:STYLE "EMGCS") |E8cape| |Delete |

(:STYLE "EI\MCS") | Escape 11Ctrl/D |

None

None

(:STYLE "VAX LISP") fen7]

(:STYLE "VAXLISP") 1001 |

None

(:STYLE "EMACS") [Escape |(T1

(:STYLE "BEMACS"™) [ctriixi [c7Tel

(:STYLE "BVIACS") fetfi/Ad foM

(: STYLE "EDT Emulation™)
keypad [T]

RAvailable only in UIS Pointer Syntax.

Description

Deletes everything between the cursor and the
end of the current line, or to the end of the
following line specified by the prefix argument.

Prompts for the name of a buffer, then deletes
that buffer; if the buffer is modified, asks if the
contents of the buffer should first be saved.

Deletes the character following the cursor or the
number of following characters specified by the
prefix argument.

Deletes everything from the cursor position to
the end of the current word or the number of
following words specified by the prefix argument.

Deletes the character preceding the cursor
position or the number of preceding characters
specified by the prefix argument.

Deletes everything from the cursor position
to the beginning of the current word or the
number of preceding words specified by the
prefix argument.

Deletes whitespace characters following the
cursor location up to the next nonwhitespace
character.

Deletes everything from the cursor position
to the beginning of the next word, including
whitespace, or deletes the number of following
words specified by the prefix argument.

Prompts for the name and type of an object, then
displays a description of that object.

Calls the DESCRIBE function with the word at
the cursor position as the argument.

Calls the DESCRIBE function with the word at
the pointer position as the argument.

Makes all alphabetic characters in the current
select region lowercase.

Makes all alphabetic characters in the word at
the cursor position lowercase.

Prompts for a LISP object to edit and, if the
object is a symbol, whether to edit its function
definition or its value.

Prompts for the specification of a file to edit;
completion and alternatives are available during
your response to the prompt.

Appends the current select region to the contents
of the paste buffer.

Pointer button transition: o button up; =button held down; Jbutton pressed; | button released,

pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

(continued on next page)

Editor Commands and Bindings B-3

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

EDT Back to
Start of Line

EDT Beginning of
Line

EDT Change
Case

EDT Cut

EDT Delete
Character

EDT Delete Line

EDT Delete
Previous
Character

EDT Delete
Previous Line

EDT Delete
Previous Word

Binding(s)

(STYLE “EDT Emulation'™)
|Ctri/H| and IBackspace |6 and m4

(CSTYLE "EDT Emulation')®H

(:STYLE "EDT Emulation')
EFlkeypad [T]

(:STYLE "'EDT Emulation'™)
keypad pH and emove |4 and
lolo 13

(:STYLE "EDT Emulation™™)

keypad Q

CSTYLE "EDT Emulation™) pm]

CSTYLE "EDT Emullation'™) pelete]

(:STYLE “'EDT Emulation™) foRU]

(:STYLE "EDT Emulation'™)
Ictriw] and |Linefeed |5 and [F13] 4

3Available only in UIS Pointer Syntax.
4Key available only on LK201 keyboard.
® Key available only on VVT100 terminal.

o li
0 >>0

Description

Moves the cursor to the beginning of the current
line or to the beginning of the previous line, if
the cursor is already at the beginning of a line;
or moves back the number of lines specified by
the prefix argument.

Moves the cursor to the beginning of the next
line, if the current direction is forward, or to the
beginning of the current or previous line, if the
current direction is backward; moves the number
of lines specified by the prefix argument.

Changes from lowercase to uppercase (or vice
versa), all characters in the select region or, if
no select region is defined, the character at the
cursor position.

Deletes the current select region and replaces
the contents of the paste buffer with it.

Deletes the character at the cursor position and
stores it in the deleted character area; deletes
the number of characters specified by the prefix
argument.

Deletes from the cursor position to the beginning
of the next line and stores the deleted line in
the deleted line area; deletes the number of lines
specified by the prefix argument.

Deletes the character preceding the cursor and
stores it in the deleted character area; deletes
the number of characters specified by the prefix
argument.

Deletes from the cursor position to the beginning
of the current line or, if the cursor is at the
beginning of a line, to the beginning of the
previous line; stores the result in the deleted line
area; deletes the number of lines specified by the
prefix argument.

Deletes from the cursor position to the beginning
of the current word or, if the cursor is between
words, to the beginning of the previous word;
stores the result in the deleted word area;
deletes the number of lines specified by the
prefix argument.

Pointer button transition: o button up; =button held down; 1 button pressed; t button released.
—*pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

B-4 Editor Commands and Bindings

(continued on next page)

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

EDT Delete to
End of Line

EDT Delete Word

EDT Deselect

EDT End of Line

EDT Move
Character

EDT Move Page

EDT Move Word

EDT Paste

EDT Paste at
Pointer3

EDT Query
Search

EDT Replace

EDT Scroll
Window

EDT Search
Again

Bmding(s)

(:STYLE "EDT Emulation'™)
1o £i] keypad [T]

(STYLE "EDT Emulation'™)
keypad Q]

(zSTYLE "EDT Emulation™™)
tHD keypad O

(:STYLE “'EDT Emulation'™)
keypad [T]

(-STYLE "'EDT Emulation'™)
keypad |T]

(:STYLE "EDT Emulation'™)
keypad [7]

(:STYLE “EDT Emulation')
keypad [7]

(:STYLE “'EDT Emulation'™)
[FHlkeypad m and |insert hots |
(:STYLE "EDT Emulation')
1*30 i

(-STYLE "'EDT Emulation')
(PFil iPFal @and [find] 4

(:STYLE "'EDT Emulation')
|RLkeypad A\

(STYLE "EDT Emulation'™)
keypad [T]
(G STYLE “'EDT Emulation')

RAvailable only in TJIS Pointer Syntax.
4Key available only on LK201 keyboard.

Description

Deletes from the cursor position to the end of the
current line or, if the cursor is at the end of a
line, to the end of the next line; stores the result
in the deleted line area; deletes the number of
lines specified by the prefix argument.

Deletes from the cursor position to the beginning
of the next word; stores the result in the deleted
word area; deletes the number of words specified
by the prefix argument.

Cancels the current select region; equivalent to
""Unset Select Mark™.

Moves the cursor to the end of the current, next,
or previous line, depending on starting cursor
position and current direction; moves the number
of lines specified by the prefix argument.

Moves the cursor forward or backward by one
character, according to the current direction;
moves the number of characters specified by the
prefix argument.

Moves the cursor to the preceding or following
page break, depending on the current direction;
moves the number of pages specified by the
prefix argument.

Moves the cursor to the beginning of the next,
current, or preceding word, depending on current
direction and cursor starting position; moves

the number of words specified by the prefix
argument.

Inserts the contents of the paste buffer at the
cursor location.

Inserts the contents of the paste buffer at the
pointer cursor location.

Prompts for a search string and moves the
cursor to the following or preceding occurrence
of the string, depending on the current direction;
moves to the occurrence specified by the prefix
argument.

Replaces the current select region with the
contents of the paste buffer.

Scrolls the window in the direction indicated by
the current direction.

Searches for the next or previous occurrence of
the search string that was last entered, according
to the current direction.

Pointer button transition: o button up; <=button held down; j button pressed; t button released.

o >0 —*pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

(continued on next page)

Editor Commands and Bindings B-5

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

EDT Select

EDT Set
Direction
Backward

EDT Set
Direction
Forward

EDT Special
Insert

EDT Substitute

EDT Undelete
Character

EDT Undelete
Line
EDT Undelete
W ord

EMACS
Backward Search

EMACS Forward
Search

End Keyboard
Macro

End of Buffer

End oflLine

Binding!<«<)

(:STYLE "EDT Emulation')
keypad n~1 and |s»i»ct|4

(:STYLE "EDT Emulation')
keypad [T]

(:STYLE "EDT Emulation')
keypad [7]

(C STYLE "EDT Emulation™)
[FFhikeypad [7]

(:STYLE "EDT Emulation™)
@il Et

(:STYLE "EDT Emulation')
(pfT| keypad [7]

(:STYLE "'EDT Emulation'™)
[PPiliPF4

(:STYLE "EDT Emulation'™)
Infil keypad Q]

(: STYLE "EMACS'™) JO\Rj

(: STYLE "EMACS™) ¥

:GLOBAL [Ox&X1 T

(:STYLE "EDT Emulation')
lpfilkeypad [3
(: STYLE "EMACS™") [Es==! |T]

(: STYLE "EMACS™") [O/E]

4Key available only on LK201 keyboard.

Description

Places a mark atthe cursor position to indicate
one end of a selectregion; equivalent to " Set
Select Mark™.

Sets the current direction to backward.

Sets the current direction to forward.

Inserts the character whose ASCII code is
specified by the prefix argument at the cursor
position.

If the cursor is located at the beginning ofthe
current search string, replaces the search string
w ith the contents ofthe paste buffer, then finds
the next occurrence ofthe search string.

Inserts the contents ofthe deleted character area
atthe cursor location.

Inserts the contents ofthe deleted line area at
the cursor location.

Inserts the contents ofthe deleted word area at
the cursor location.

Searches backward for the first occurrence ofthe
search string specified in the previous command;
prompts for a search string if the previous com-
mand was not a searching command; searches
for the occurrence ofthe search string specified
by the prefix argument.

Searches forward for the first occurrence of the
search string specified in the previous command,;
prompts for a search string if the previous com-
mand was not a searching command; searches
for the occurrence ofthe search string specified
by the prefix argument.

Ends the collection ofkeystrokes for a keyboard
macro.

Moves the cursor to the end ofthe buffer.

Moves the cursor to the end ofthe currentline
or forward the number oflines specified by the
prefix argument and then to the end ofthe line.

0"" Pointer button transition: o button up; * button held down; Jbutton pressed; | button released.

0 >0 |—> pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

B-6 Editor Commands and Bindings

(continued on next page)

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

End of Outermost
Form

End of Paragraph

End of Window

Evaluate LISP
Region

Exchange Point
and Select Mark

Execute Keyboard
Macro

Execute Named
Command

E xit

E xit Recursive
Edit

Forward
Character

Forward K ill Ring

Forward Page

Forward Search

Forward Word

Binding(s)

(:STYLE "VAX LISP") [CWX|(T

(:STYLE "EMACS ")|Escapo|[TI
(:STYLE "EMACS") |Escape[fT™

(:STYLE "VAX LISP")
|ctriiX] (cmll

(:STYLE "EMACS") [CWXI [CWXI

:GLOBAL ionj [irif]
(: STYLE "EMACS") jctixl [~ef

:GLOBAL [cgjiz] and @ 4
(STYLE "EDT Emulation'™)
bri [keypad fT|

(:STYLE "EMACS™) [IS3al (11

None

(: STYLE "EMACS") |Escape| [CWG]

:GLOBAL B

(: STYLE "EMACS'™) [ctrig
None

None

None

(: STYLE "EMACS'™) TBepd HI

4Key available only on LK201 keyboard.

Description

Moves the cursorto the outermostform currently
surrounding the cursor or, if the cursor is
between outermost forms, to the end of the
following outermost form.

Moves the cursor to the end ofthe current
paragraph.

Moves the cursor to the end ofthe text in the
current window.

Evaluates the select region as LISP code;
displays the result ofthe evaluation in the
inform ation area.

Moves the cursor to the other end ofthe current
selectregion, and the mark delimiting the select
region to the old cursor position; in other words,
preserves the selectregion but places the cursor
at the other end ofit.

Executes the current keyboard macro once or
the number of times specified by the prefix
argument.

Prompts for the name ofa command to execute;
input completion and alternatives are available
during your response to the prompt.

Returns control to the LISP interpreter, discard-
ing the current Editor state; asks if modified
buffers should first be saved.

Terminates a recursive edit or pauses the Editor
if notdoing a recursive edit.

Moves the cursor forward one character.

Rotates the kill ring forward by one element or
by the number ofelements specified by the prefix
argument.

Moves the cursor to the next page break or to
the following page break specified by the prefix
argument.

Prompts for a search string, then moves the
cursor forward to the end ofthe first occurrence
ofthe string; moves the cursor to the occurrence
ofthe string specified by the prefix argument.

Moves the cursor to the beginning ofthe next
word or the beginning ofthe word specified by
the prefix argument.

Pointer button transition: o button up; =button held down; Jbutton pressed; | button released.

0 >0 |— pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

(continued on next page)

Editor Commands and Bindings B-7

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

Grow Window

Help

Help on Editor
Error

llegal Operation
Indent LISP Line
Indent LISP

Region

Indent Outermost
Form

Insert Buffer

Insert Close
Paren and Match

Insert File

K ill Enclosing

List

Kill Line

K ill Next Form

Binding(s)
(:STYLE "EMACS") |cwx] |z |

:GLOBAL Fand kSifl4
:GLOBAL faibdm

None

(:STYLE "'VAX LISP™) [H]
None

(STYLE "VAX LISP'™) foMCIped

None

(:STYLE "VAX LISP'™) [T)

(:STYLE “EMACS ") i [l

None

(:STYLE "EMACS'™) [cwk]

None

4Key available only on LK201 keyboard.

Description

Increases the height ofthe current window by
one row or by the number of rows specified by
the prefix argument.

Displays help on your current situation.

Displays inform ation on the last Editor error
that occurred.

Signals an Editor error; use to disable a key
binding locally within a style or buffer.

Adjusts the current LISP line so that it is
indented properly in the context ofthe program.

Adjusts the indentation ofthe LISP code in the
current select region.

Indents each line in the outermost LISP form
containing the cursor.

Prompts for a buffer name, then inserts the
contents ofthe specified buffer at the cursor
location.

Inserts a close-parenthesis character at the
cursor location and highlights the corresponding
open-parenthesis character.

Prompts for a file specification, then inserts the
contents ofthe file atthe cursor location; input
completion and alternatives are available during
your response to the prompt.

Deletes the LISP list that encloses the cursor
and adds it to the current kill-ring region if the
previous command was a kill-ring command,

or creates a new Kill-ring region to hold the
deleted list; deletes the number of enclosing lists
specified by the prefix argument.

Deletes the rest ofthe currentline and adds it
to the currentkill-ring region if the previous
command was a kill-ring command, or creates
a new kill-ring region to hold the deleted line;
deletes the number oflines specified by the
prefix argument.

Deletes the LISP form immediately following
the cursor and adds it to the current kill-ring
region if the previous command was a kill-ring
command, or creates a new Kill-ring region to
hold the deleted form; deletes the number of
following forms specified by the prefix argument
w ithin the current parentheses nesting level.

Pointer button transition: o button up; =button held down; j button pressed; ¢ button released.

0>>0 — pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

B-8 Editor Commands and Bindings

(continued on next page)

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

Kill Paragraph

K ill Previous
Form

K ill Region

K ill RestofList

Line to Top of
Window

List Buffers

List Key Bindings

Maybe Reset
Select at Pointerl

Move Point and
Select Regionl

Move Point to
Pointerl

Move to LISP
Comment

New Line

*Available in both DECwindows and UIS Pointer Syntax.

Binding(s)
(:STYLE "EMACS') |Eseape| ITT]

None

(STYLE "EMACS™)
ictriiwi and 1 0] o |3

None

(:STYLE "EMACS') [Escape [Tl

(:STYLE "EMACS ') 4 futH

None

:GLOBAL1TooO |

GLOBAL|] too |-
:GLOBAL I=0o0 |

(STYLE "VAX LISP™) fcwxim

“GLOBAL Retun |

(:BUFFER "'General Prompting'™)

| Linefeed |

(G STYLE "EMACS™) Retun]

FAvailable only in UIS Pointer Syntax.

Description

Deletes the rest ofthe current paragraph and
adds it to the currentkill-ring region if the
previous command was a kill-ring command, or
creates a new Kkill-ring region to hold the deleted
paragraph; deletes the number of paragraphs
specified by the prefix argument.

Deletes the LISP form immediately preceding
the cursor and adds it to the current kill-ring
region if the previous command was a kill-ring
command, or creates a new kill-ring region to
hold the deleted form; deletes the number of
preceding forms specified by the prefix argument
w ithin the current parentheses nesting level.

Deletes the current select region and adds it

to the currentkill-ring region if the previous
command was a kill-ring command, or creates a
new Kkill-ring region to hold the deleted region.

Deletes the rest ofthe enclosing list and adds
it to the currentkill-ring region if the previous
command was a kill-ring command, or creates
a new kill-ring region to hold the deleted list

fragment.

Moves the line containing the cursor to the top of
the window.

Displays a list ofall buffers.

Displays a list of all visible key bindings or ofall
keys bound in a specified context.

If the pointer cursor has not moved, cancels the
select region that was started with 1 loo |;if
the pointer cursor has moved since 110 0O |, does
nothing.

Moves the text cursor with the pointer cursor,
m arking a selectregion.

Moves the text cursor to the pointer cursor.

If there is no comment on the currentline, moves
the cursor to the comment column and inserts

a semicolon and space; if there is a comment,
moves the cursor to the comment.

Breaks a line atthe cursor position, leaving the
cursor atthe start ofthe new line.

Pointer button transition: o button up; =button held down; Jbutton pressed; | button released.

o =0 —>Ppointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

(continued on next page)

Editor Commands and Bindings B-9

Table B-1 (Cont.): Editor Commands and Key Bindings

Name Bindmg(s)

New LISP Line (: STYLE "VAX LISP") |Unef«d]|

Next Form

Next Line :GLOBAL Q

(: STYLE "EMACS") [CrilN

Next Paragraph (: STYLE "EMACS") |Escape| (T

Next Screen :GLOBAL | Next Screen | 4

Next Window :GLOBAL & [ctri/NI

(:STYLE "EMACS") |CWX|| p |

Open Line (:STYLE "EDT Emulation')
Infi | keypad 5
(: STYLE "EMACS") (cSvo]
Page Next (: STYLE "EMACS ") IEscape| [QriM
Window

Pause Editor :GLOBAL [cfflixl [CM2)

(: STYLE "EMACS") [ctri/G]

Previous Form (: STYLE "VAX LISP") |Ctri7x|m

Previous Line :GLOBAL [fj

(: STYLE "EMACS") [ctri/p]

Previous
Paragraph

(: STYLE "EMACS") IEscape|H |

Previous Screen :GLOBAL | Prev Screen | 4

(: STYLE "EMACS™") |Escape| | v |

Previous Window (: STYLE "EMACS") [aniqfiT]

4Key available only on LK201 keyboard.

(: STYLE "VAX LISP™) [cTOdITI

Description

Breaks aline atthe cursor position and indents
the new line by the appropriate amountin the
context ofthe program.

Moves the cursor to the end ofthe next form
or to the end ofthe following form specified by
the prefix argument; does not move outside the
current parentheses nesting level.

Moves the cursor to the nextline or down
the number oflines specified by the prefix
argument, keeping the cursor in the same
column if possible.

Moves the cursor to the beginning ofthe next
paragraph or to the following paragraph specified
by the prefix argument.

Moves the window down in the buffer by one
screenful or by as many screenfuls as are
specified by the prefix argument.

Selects another window on the screen to be the
current window; eventually circulates through
all the windows on the screen.

Breaks aline at the cursor location, leaving the
cursor at the end ofthe old line.

Scrolls the next window on the screen down one
page; or, if a prefix argumentis supplied, scrolls
the next window that many rows.

Saves the Editor state and returns control to the
LISP interpreter.

Moves the cursor to the beginning ofthe previous
form or to the beginning ofthe preceding form
specified by the prefix argument; does not move
outside the current parentheses nesting level.

Moves the cursor to the previous line or up the
number oflines specified by the prefix argument;
keeps the cursor in the same column if possible.

Moves the cursor to the end ofthe previous para-
graph or to the end ofthe preceding paragraph
specified by the prefix argument.

Moves the cursor up in the buffer by one screen-
ful or as many screenfuls as are specified by the
prefix argument.

Makes another window on the screen into the
current window; eventually circulates through
all windows on the screen.

o | > Pointer button transition: o button up; =button held down; lbutton pressed;] button released.

o >0 |—*pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

B-10 Editor Commands and Bindings

(continued on next page)

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

Prompt Complete
String

PromptHelp

Prompt Read and
Validate

Prompt Scroll
Help Window

Prompt Show
Alternatives

Query Search
Replace

Quoted Insert

Read File

Redisplay Screen

Remove Current
Window

Remove Other
Windows

Scroll Window
Down

Scroll Window Up

Secondary Select
Region2

Select Buffer

Select Enclosing
Form at Pointerl

Binding(s)

(:BUFFER "'General Prompting')
ang=0|

(:BUFFER "'General Prompting')
[UD

(:BUFFER "'General Prompting')
RFtum and |Eier]

(:BUFFER "General Prompting')
Driki

(:BUFFER "'General Prompting')
a1 Lig|

(:STYLE "EMACS™) |Escape|m

:GLOBAL [IT]
(:STYLE "EMACS™) o] Iq |

(:STYLE "EMACS ") Priz{ (MR

(: STYLE "EDT Emulation")[cww [
(: STYLE "EMACS") [cwq

- GLOBAL [Ctri/] [Cri/R]
(: STYLE "EMACS") [CWX| | d |
(: STYLE "EMACS") [artX]|T]

(: STYLE "EMACS") [crUZI
(: STYLE "EMACS") |Escape| fz]

iGLOBAL | oot |

(: STYLE "EMACS") [Ctrt/x|n>]

(: STYLE "VAX LISP")i i 00 |

Available in both DECwindows and UIS Pointer Syntax.
2Available only in DECwindows Pointer Syntax.

Description

Attem pts to complete your response to a prompt,
based on what you have typed already and the
choices available in the situation.

Displays inform ation for whatever is being
prompted.

Used to terminate promptinput.

Scrolls the Help window down while another
buffer is current; supplied to let you scroll the
Help window while responding to a prompt.

Displays alist ofalternatives that can be entered
in response to the current prompt, based on what
you have typed already.

Prompts for a search string and a replacement;
offers a number of options at each replacement
opportunity.

Inserts the next character typed at the cursor
location without Editor interpretation.

Prompts for a file specification, then replaces
the contents ofthe current buffer with the file;
if the current buffer is modified, prompts for
confirm ation.

Erases and redisplays everything on the screen.

Removes the current window from the screen;
does not delete the associated buffer.

Removes all windows butthe current window
from the screen.

Scrolls the current window down in the buffer by
one row or the number ofrows specified by the
prefix argument.

Scrolls the current window up in the buffer by
one row or by number ofrows specified by the
prefix argument.

Sets the beginning of secondary selection (used
in Copy from Pointer command).

Prompts for a buffer name, then makes that
buffer the current buffer; creates a new buffer if
necessary.

Places the form enclosing the cursor in a select
region; if the cursor is already in a selectregion,
expands the region to the next outermost form.

Pointer button transition: o button up; =button held down; | button pressed;] button released,

pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

(continued on next page)

Editor Commands and Bindings B-11

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

Select Outermost
Form

Selfinsert

Set DECwindows
Pointer Syntax

Set UIS Pointer
Syntax

Set Screen Height

Set Screen W idth

Set Select M ark

Show Time

Shrink Window

Split Window

Start Keyboard
Macro

Start Named
Keyboard Macro

Supply EMACS
P refix

Supply Prefix
Argument

Transpose
Previous
Characters

Transpose
Previous Words

Binding(s)

(: STYLE "'VAX LISP™)

A angee |

:GLOBAL A Il graphic characters
None

None

None

None

(: STYLE "EDT Emulation'™)
keypad QJ
(: STYLE "EMACS™) Knri3=e|

(: STYLE "EMACS') [uwiA Brill

(: STYLE “EMACS"))i

(: STYLE "EMACS") Fmnifd TL

<GLOBAL [ar¥KL(|

None

(: STYLE "EMACS")]

(:STYLE "EDT Emulation')

EEHEUI
(STYLE "EMACS™) [Exape|[0NT]

(: STYLE “EMACS') [l

(: STYLE "EMACS') [Fscape(T1

Description

Makes the outermost LISP form containing the
cursor into a selectregion.

Inserts the last character typed at the cursor
location.

Unbinds the UIS pointer bindings and binds the
DECwindows pointer bindings.

Unbinds the DECwindows pointer bindings and
binds the UIS pointer bindings.

Sets the screen heightto the number ofrows
specified by the prefix argument; prompts for
heightif no prefix argumentis defined.

Sets the screen width to the number of columns
specified by the prefix argument; prompts for the
width if no prefix argumentis defined.

Places a mark atthe cursor position to indicate
one end ofa selectregion.

Displays the time and date in the inform ation
area.

Shrinks the current window by one row or the
number ofrows specified by the prefix argument.

Splits the current window into two identical
windows.

Starts collecting keystrokes for a keyboard
macro, replacing any unnamed keyboard macro
that already exists.

Prompts for a name, then starts collecting
keystrokes for a keyboard macro; the resulting
keyboard macro is cataloged under the name you
give and can be treated as a command.

Sets the prefix argument to four if no prefix
argument was defined, or to four times its former
value if a prefix argument was defined.

Prompts for a prefix argument; if a prefix
argument is already defined, multiplies it by the
number you enter.

Transposes the two characters preceding the
cursor.

Transposes the words at and preceding the
cursor.

<1 >>IPointer button transition: o button up; =button held down; 1button pressed; f button released.

0 >0 |— pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

B-12 Editor Commands and Bindings

(continued on next page)

Table B-1 (Cont.): Editor Commands and Key Bindings

Name

Undo Previous
Yank

Unset Select
M ark

Upcase Region
Upcase Word
View File

W hat Cursor
Position

W rite Current
Buffer

W rite Modified

Buffers

W rite Named File

Yank

Yank at Pointer3

Yank Previous

Yank Replace
Previous

BindLng(s)

(=STYLE "EMACS "")|Escape| [ctrl/\W|

(:STYLE

"EDT Emulation'™)

pfi keypad f~1

(:STYLE

“EMACS™)

| Escape 11 Ctrl/Space |

None

(:STYLE

(:STYLE

(:STYLE

(:STYLE

(:STYLE

(:STYLE

(:STYLE

(:STYLE

(:STYLE

(sTYLE

"EMACS™) IEscapelD

“"EMACS™) [cwx!|cwF|

“"EMACS *) [cfflixI =1

“"EMACS'™) [ctrixiiT

""EMACS ") [cwxi ictri/mi

“EMACS") [fizd[ridj

“"EMACS™) [ctrirvi

"EMACS™) | 1o |

"EMACS™) [Escael Ml

"SM ACS") |Escap>]| |ctrify[

FAvailable only in UIS Pointer Syntax.

Description

Deletes the previously yanked region without
pushing it onto the kill ring; more generally,
deletes the selectregion without pushing it onto
the kill ring.

Cancels the current select region.

Changes all alphabetic characters in the current
select region to uppercase.

Changes all alphabetic characters in the word at
the cursorlocation to uppercase.

Prompts for a file specification, then reads the
specified file into a read-only buffer.

Displays inform ation aboutthe cursor location.

W rites out the current buffer; creates a new
file version or updates the LISP symbol whose
function or value slotis being edited.

Performs the "Write Current Buffer' opera-
tion for each buffer that has been modified.

Prompts for a file specification, then creates a
file having that specification from the contents of
the current buffer.

Inserts the currentkill-ring region at the cursor
location; inserts as many copies as are specified
by the prefix argument.

Inserts the currentkill-ring region atthe pointer
cursor location.

Rotates the kill ring forward, then inserts

the new current kill-ring region at the cursor
location; inserts as many copies as are specified
by the prefix argument.

Deletes the previously yanked region, rotates the
kill ring forward, and inserts the new current
kill-ring region at the cursor location; inserts

as many copies as are specified by the prefix
argument.

Pointer button transition: o button up; <=button held down; | button pressed; r button released,

pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

Editor Commands and Bindings B-13

Table C-1:

Key(s)

| Ctri/Space |

[Ctri/A]

|Ctri/B|

[OWE]

|C?j/FI

|Ctrl/H| Or | Backspace |
] or |Ctrl/l|

|Ctrifj| OF |Linefeed |

[Ctri/K]

[CWLI

Appendix C

Bound Keys and Key Sequences

This appendix lists all the keys and key sequences bound to commands in the
VAX LISP Editor, along with the context in which each binding occurs.

If a key or key sequence is bound in more than one context, all but one of
the bindings are “shadowed”dr inaccessible. The Editor searches through the
contexts in the following order and accepts the first binding it encounters:

1
2

3
4.

Current buffer

Minor styles active in the current buffer, beginning with the most recently

activated

Major style active in the current buffer

Global Editor context

The following table also appears in the VAXLISP/VMS Program Development
Guide.

Editor Key Bindings

Context
Single Keys
(:BUFFER "General Prompting'™)
(:STYLE "EMACS'™)
(: STYLE "EMACS™)
(G STYLE "EMACS'™)
(:STYLE "EMACS'™)
(:STYLE "EMACS')
:STYLE "EMACS'™)
: STYLE "EMACS'™)
:STYLE "EDT Emulation')
: STYLE ""VAX LISP')

:BUFFER "‘General Prompting'™)
: STYLE ""VAX LISP™)
:STYLE "EDT Emulation'™)

:STYLE “EMACS™)
:STYLE "EMACS™)

~ o~ AN~~~ A~~~

Command

Prompt Complete String
Set Select M ark

Beginning ofLine
Backward Character
Delete Next Character
End ofLine

Forward Character
Pause Editor

EDT Back to Start ofLine
Indent LISP Line

New Line
New LISP Line
EDT Delete Previous Word

K ill Line

Redisplay Screen

(continued on next page)

Bound Keys and Key Sequences C-1

Table C-1 (Cont.):

Key(s)

|Return| OT [Ctri/M|

|Ctrl/N |
|Ctrl/o)|
|Ctri/P|
|Ctri/R]
[CtrFD

|Ctri/U |
[CwWVI
ICtri/wW |

ictriry|

[cWA

IciFiA)
Icw7|

|Delete| OT O

m
keypad [T]
keypad [T]
keypad [7]
keypad [7]
keypad [7]
keypad |T]
keypad [T]
keypad [7]
keypad [TQ
keypad [7]
keypadO
keypad [er
keypadO
keypad O
keypad [PH

keypad PR3

Editor Key Bindings

Context

Single Keys

(:BUFFER ""General Prompting')
(: STYLE "EMACS')
:GLOBAL

(:STYLE "EMACS™)

(:STYLE "EMACS')

(:STYLE "EMACS')

(:STYLE "EMACS')

(:STYLE "EMACS'™)

(:STYLE "EMACS™)

(:STYLE "EDT Emulation'™)
(:BUFFER "'General Prompting'™)
(: STYLE "EMACS'™)

(
(
(
(

: STYLE “EMACS')
:STYLE "EDT Emulation')

:STYLE "EMACS™)

:STYLE "EMACS'™)
:GLOBAL

(:STYLE "EMACS')
(: STYLE ""VAX LISP'™)

(: STYLE ""EMACS'™)
(:STYLE "EDT Emulation')
:GLOBAL

(: STYLE ""VAX LISP'™)
(:STYLE "EDT Emulation'™)
(: STYLE "EDT Emulation'™)
(:STYLE "EDT Emulation'™)
(:STYLE "EDT Emulation™)
(:STYLE "EDT Emulation')
(:STYLE "EDT Emulation'™)
(:STYLE "EDT Emulation'™)
(:STYLE "'EDT Emulation')
(zSTYLE "EDT Emulation'™)
(STYLE "EDT Emulation'™)
(:STYLE "EDT Emulation')
(:BUFFER "'General Prompting')
(:STYLE "EDT Emulation™)
(:STYLE “'EDT Emulation'™)

(:BUFFER "General Prompting™)
(:STYLE "EDT Emulation
:GLOBAL

(:STYLE "'EDT Emulation')

C-2 Bound Keys and Key Sequences

Command

Prompt Read and Validate
New Line
New Line

Next Line

Open Line

Previous Line

Backward Search

Transpose Previous Characters

Supply EMACS Prefix
EDT Delete Previous Line

Prompt Scroll Help Window
Next Screen

K ill Region
Redisplay Screen

Yank

Scroll Window Down
Execute Named Command

EMACS Forward Search
Describe Word

Delete Previous Character
Delete Previous Character
Delete Previous Character

Insert Close Paren and Match
EDT Beginning ofLine

EDT Move Word

EDT End oflLine

EDT Move Character

EDT SetDirection Forward
EDT SetDirection Backward
EDT Cut

EDT Move Page

EDT Scroll Window

EDT Append

Set Select M ark

Prompt Read and Validate
EDT Delete Character

EDT Delete Word

Prompt Help
Help
Help

EDT Search Again

(continued on next page)

Table C-1 (Cont.): Editor Key Bindings

Key(s) Context Command
Single Keys
keypad [PH] (:STYLE "EDT Emulation') EDT Delete Line
| -GLOBAL Previous Line
S :GLOBAL NextLine
B “GLOBAL Forward Character
El “GLOBAL Backward Character
A ll graphics “GLOBAL Selfinsert
characters
Single Keys (LK201 Keyboard Only)

EH (=STYLE "EDT Emulation™) EDT Back to StartofLine
EH CSTYLE "EDT Emulation'™) EDT Delete Previous Word
[Hiipl -GLOBAL Help

“GLOBAL Execute Named Command
g (:STYLE "EDT Emulation') EDT Query Search
| Insert Here | (G STYLE "EDT Emulation™) EDT Paste
| Remove | (:STYLE "EDT Emulation™) EDT Cut
|Select] (STYLE "EDT Emulation') EDT Select
|PrevSaen | :GLOBAL Previous Screen

| Next Screen |

-GLOBAL

N ext Screen

(continued on next page)

Bound Keys and Key Sequences C-3

Table C-1 (Cont.):

Key(s)

T [arlGeel
OrA Ay
[Ari{ [ariA
A g
4 "

@A (A
Jai] |tabl or
O/ A
rvXuRtum| or
OreX| Al
o Grll

[uiA Qi

[cHxim
A, |
Icot'ylj
1 |
A 2]
| ;|
offilam

[cwxim
ictritgm
[Ct<] (X
[ctMim
IS [T1
f&<m

[cwgH
iavkinn
[cBa<i[n
[cMIE]
ianxi m

foacim

Editor Key Bindings

Context Command

Two-Key Sequences Starting with Ctrl/X

(GSTYLE "'WAX LISP™) Select Outermost Form
(GSTYLE "'VAX LISP™) Evaluate LISP Region
(STYLE "EMACS™) List Buffers

(=STYLE "EMACS™) Delete Current Buffer
(=STYLE "EMACS™) Ed

“GLOBAL Execute Keyboard Macro
(ZSTYLE "EMACS™) View File

(ZSTYLE "EMACS™) Insert File

(GSTYLE "'WAX LISP™) Indent Outermost Form
(STYLE "EMACS™) W rite Modified Buffers
“GLOBAL Next Window

(G STYLE "EMACS™) Read File

“GLOBAL Remove Current Window
(=STYLE "EMACS™) Show Time

(zSTYLE "EMACS'™) Edit File

(=STYLE "EMACS™) W rite Named File
(=STYLE "EMACS™) Exchange Point and Select M ark
(=STYLE "EMACS™) Shrink Window

“GLOBAL Pause Editor

-GLOBAL Start Keyboard Macro
:GLOBAL End Keyboard Macro

(G STYLE "'VAX LISP™) Previous Form

(G STYLE ""VAX LISP™) Next Form

(CSTYLE "EMACS™) Remove Other Windows
(=mSTYLE "EMACS™) Split Window

CSTYLE "'VAX LISP™) Move to LISP Comment
(GSTYLE "'WAX LISP™) Beginning of Outermost Form
(GSTYLE ""VAX LISP™) End of Outermost Form
(:STYLE “EMACS™) W hat Cursor Position
-GLOBAL Help on Editor Error
-:GLOBAL Quoted Insert

(=STYLE "EMACS™) Select Buffer

(-STYLE "EMACS™) Remove Current Window
“GLOBAL Execute Keyboard Macro
(:STYLE "EMACS™) Previous Window
(ZSTYLE "EMACS™) Next Window

(:STYLE "EMACS™) Quoted Insert

(-STYLE "EMACS™) W rite Current Buffer
(:STYLE "EMACS™) Grow Window

(continued on next page)

C-4 Bound Keys and Key Sequences

Table C-1 (Cont.):

Key(s)

| Escape 11 Ctrl/Space |
Escape		Ctri/D
Escape]	Ctrl/G	
Escape		Ctrl/U
Escape		Ctrl/V
Escape) [Cfrl/W		
Escape	JCtrlA'l	
Escape)	1	

| Escape 11, |
|Escape 11 . |
|Escape|[< |
1Escape 11 > |
1Escape 11 ? |
|Escape11] |
|Escape 11 a |

| Escapell b |
1Escapell c |
|Escape 11d |
|Escapel1 e |
|Escape 11f |
|Escape1lk |
|Escape 11 1]
|Escapelln |
|Escapeim
|Escape | m
|Escape nt |
|Escape || U |
|Escape 11v |
|Escape11 X |
|Escape 11 Y \
|Escape]| z |

|Escape 1lDelete | O T

| Escape |

Editor Key Bindings

Context Command

Two-Key Sequences Starting with Escape

(: STYLE "EMACS") Unset Select M ark

(: STYLE "EMACS") Delete Whitespace
(:STYLE "EMACS") E xit Recursive Edit
(:STYLE "EMACS") Supply Prefix Argument
(: STYLE "EMACS") Page NextWindow

(: STYLE "EMACS") Undo Previous Yank

(: STYLE "EMACS") Yank Previous Replace
(: STYLE "EMACS") Line to Top of Window
(: STYLE "EMACS") Beginning of Window

(: STYLE "EMACS") End of Window

(: STYLE "EMACS") Beginning of Buffer

(: STYLE "EMACS") End of Buffer

(: STYLE "VAX LISP") Apropos Word

(: STYLE "VAX LISP") Close Outermost Form
(: STYLE "EMACS") Beginning of Paragraph
(: STYLE "EMACS") Backward Word
(:STYLE "EMACS") Capitalize Word

(: STYLE "EMACS") Delete Next Word

(: STYLE "EMACS") End of Paragraph

(: STYLE "EMACS") Forward Word

(: STYLE "EMACS") Kill Paragraph

(: STYLE "EMACS") Downcase Word

(: STYLE "EMACS") Next Paragraph

(: STYLE "EMACS") Previous Paragraph

(: STYLE "EMACS") Query Search Replace
(: STYLE "EMACS") Transpose Previous Words
(:STYLE "EMACS") Upcase Word

(:STYLE "EMACS") Previous Screen
(:STYLE "EMACS") Execute Named Command
(:STYLE "EMACS") Yank Previous

(:STYLE "EMACS") Scroll Window Up
(:STYLE "EMACS") Delete Previous Word

(continued on next page)

Bound Keys and Key Sequences

C-5

Table C-1 (Cont.):

Key(s)

keypad |PFj 51
keypad pfilH{
keypad pfil[T]
keypad pfT][T]
keypad pfi|FH
keypad pfi|F5
keypad pfi|F6]
keypad [FF1][7]
keypad [pfi|pi~l
keypad pfi|[7
keypad [pfT] Enter |
keypad [PA| [71
keypad |PA] [
keypad |PA| pfi]
keypad pfi|pf3
keypad pfil |3
keypad ptr] pf4

Editor Key Bindings

Context

Command

Two-Key Sequences Starting with Keypad PF1

CSTYLE "EDT Emulation™™)
(STYLE "EDT Emulation'™)
(STYLE "EDT Emulation'™)
(:STYLE “'EDT Emulation™)
(STYLE "EDT Emulation'™)
(:STYLE "'EDT Emulation')
(:STYLE “EDT Emulation')
(:STYLE "EDT Emulation')
(:STYLE "'EDT Emulation')
(:STYLE "'EDT Emulation™™)
(:STYLE "'EDT Emulation')
(:STYLE "'EDT Emulation')
(:STYLE "EDT Emulation')
(zSTYLE "EDT Emulation'™)

(:BUFFER "General Prompting')

(GSTYLE "EDT Emulation'™)
(STYLE "EDT Emulation'™)

C-6 Bound Keys and Key Sequences

Open Line

EDT Change Case

EDT Delete to End of Line
EDT Special Insert

End of Buffer

Beginning of Buffer

EDT Paste

Execute Named Command
EDT Replace

Unset Select Mark

EDT Substitute

EDT Undelete Character
EDT Undelete Word
Supply Prefix Argument
Prompt Show Alternatives
EDT Query Search

EDT Undelete Line

Appendix D

Function Keys and Keypad Keys

This appendix provides information needed to specify the function keys and
keypad keys on Digital keyboards in LISP code. The table below lists the actual
character sequence generated by each function key and keypad key.

You can include these character sequences in a LISP sequence (vector, list, or
string) and pass the LISP sequence as the key-sequence argument in a call to
BIND-COMMAND .

The following table also appears in the VAXLISP /VMS Program Development
Guide.
Table D-1: Characters Generated by Keys

Key Characters Generated

Numeric Keypad Keys (LK201 and VT100)

keypad [T] #\ESCAPE #\0 #\p
keypad [7] #\ESCAPE #\0 #\q
keypad [T] #\ESCAPE #\0 #\r
keypad |T] #\ESCAPE #\0 #\s
keypad [7] #\ESCAPE #\0 #\t
keypad [T] #\ESCAPE #\0 #\u
keypad [T] #\ESCAPE #\0 #\v
keypad [7] #\ESCAPE #\0 #\w
keypad[7] #\ESCAPE #\0 #\x
keypad [T] #\ESCAPE #\0 #\y
keypad 0 #\ESCAPE #\0 #\m
keypadO #\ESCAPE #\0 #\1
keypad (7 | #\ESCAPE #\0 #\n
keypad fter #\ESCAPE #\0 #\M
keypad pfi| #\ESCAPE #\0 #\p
keypad Fdl #\ESCAPE #\0 #\Q
keypad 3] #\ESCAPE #\0 #\R
keypad [FR] #\ESCAPE #\0 #\S

(continued on next page)

Function Kays and Keypad Keys D-1

Table D-1 (Cont.):

Key

7

EH

EH
[Hipl(Es))
EKEH)
EH

EH

EH

EH

EHKU1)

| Insert Hero 1 (.|E2])
|Remove | (1E3])
fSeiectl ([E4])

| Prev Screen | ([E5|)

| Next Screen | (|E6|)

D-2 Function Keys and Keypad Keys

Characters Generated by Keys

Characters Generated

Arrow Keys (LK201 and VT100)

#\ESCAPE #\ [#\A
#\ESCAPE #\ [#\B
#ESCAPE #\[#\C
#EscAPe #\[#\D

Function, HELP, and DO Keys (LK201)

#nescare #\[A\1 #\7 #\~
#nescapre #\[#\1 #\8 #~
#escare #\[#\1 #\9 #\~
#nescapre #\[#2 #\0 #\~
#escare #\[#2 #\1 #\~
#Eescapre #\[#\2 #\3 #\~
#Eescare #\[#\2 #\4 #\~
#escapre #\[#\2 #\5 #\~
#nescare #\[#\2 #\6 #\~
#nescare #\[#\2 #\8 #\~
#Eescapre #\[#\2 #\9 #\~
#nescape #\[#\3 A1 #A~
#ESCAPE #\ [#\3 #\2 #\~
#Escape #\[#\3 #\3 #~
#escapre #\[A3 #\4 #~

Editing Keys (LK201)

#escare #\[#A\1 #\~
#Eescapre #\[#\2 #\~
#nEscare #\[#\3 #\~

#ESCAPE #\[#\4 #\~
MESCAPE #\[#\5b #\~
MESCAPE #\[#\6 #\~

A

Anchored window display, 1-2

Attributes, 4-9,6-11 to 6-14, Concepts-3
See also Searching through text
binding, 6-11,6-13
creating, 6-14
provided with VAX ISP, A2
referencing, 1-10
related functions and variables, A2
setting values for, 6-11, 6-12

B

BACKWARD-WORD-COMMAND Furction, Objects-39
B IND-COMMAND furction

context argurent, 35
key-sequence argurrent, 3-3
Binding
attributes, 611
commands, 31
variables, 6-8
Binding cortexts
See Contexts
Bindings, 6-7 to 6-15
See also Commands, Attributes, and Editor
variables
finding attribute bindings and values, 6-12
finding Ediitor variable bindings and values, 69
finding key bindings, 6-7
in "EDT Emulation" style, A-16
in ""EMACS" style, A-17
in""VAX LISP" style, A-19
BIND-POINTER-COMMAND function
:BUTTON-STATE argument, 39
package location, 3-7
pointer-action argurrent, 3-7
Buiffer point
See Buffers
Buffers, Concepts-4
See also Regions and Styles
as abinding context, 1-5, 3-6
buffer point, 4-2, Concepts-4
creating, 6-3
current buffer, Concepts-4
mejor style, 66
meking windows onto, 5-23
minor style, 66
provided with VAX ISP, A3
related functions, commands, and variables, A2

Index

Button state
specifying, 39

C

Characters, Concepts-5
See also Attributes
accessing, 4-2
binding commands to, 3-3
DEC Multinetional Character Set, 3-3, 4-1
Celeting, 4-3
irserting, 4-2
window truncation, 5-7
window wrapping, 5-7
Checkpointing subsystem, Concepts-5 to
Concepts-6
Chorded bindings
See BIND-POINTER-COMMAND furction
Commands, 2-1 to 2-6, Concepts-6 to
Concepts-7
and context, 2-6
associated functiors, 2-1,24, 3-3, Objects-29
binding to keys, 3-2
binding to pointer actiors, 3-7
categories, 2-12, Concepts-7
docurrenting, 2-3
inokirg, Concepts-6
nmodular definition, 25
raning, 2-2
optional arguents, 2-3
prefix argurent, 2-3, Concepts-7
provided with VAX LISP, A4
related functions, commands, and variables, A-3
Context-dependent objects, Concepts-17
referencing, 1-10
scope and extent, 1-6
Context-independent objects, Concepts-17
referencing, 1-10
Contexts, 2-6, 35 to 3-7, Concepts-7 to
Concepts-10
See also Buffers and Styles
conventions for use, Concepts-9
effect on command behavior, 2-6
search orcer, 1-5, 36, 62, 64, 65, 66,
Concepts-8
search order for hook variables, Concepts-12
specifying, 3-5, Concepts-8
subsystem overview, 1-5
Current buffer poirt
See Buffers and Marks

P

Deta types
See Hditor data types
Debugging support, Concepts-10
related functions, commands, and variables, A-9
DESCRIBE-OBJECT-COMMAND furction
See ""Describe' command
Display, 51
See also Windows and Informration area
display area, 5-14
available, 5-17
coordinates, 5-14
dimensions, 545
reenved, 5-16
display managerrent, 5-1, 513,52, 524
by window display types, 5-17
pronypting window, 5-16
window screen position, 5-22
windowsize, 5-18
related functions, commands, and variables, A~
subsystem overview, 1-5
Display operations, 1-5

E

EDIT-LISP-OBJECT-COMMAND function
See "Ed" command
EDITOR: package

See Packages
Ediitor attributes
See Attributes
Ediitor data types
listed, 1-7
EDITOR-HELP-BUFFER huffer
See "Help" huffer
Editor objects, 1-6 to 1-11
context-dependent, 1-10
referercing, 1-10
context-independent, 1-10
referencing, 1-10
meximizing efficiency, 1-9
named, 1-7
referercing, 1-8
unamred, 1-7
referercing, 1-8
EDITOR-PROMPT ING-BUFFER hbuffer
See ""General Prompting" buffer
EDITOR RECURSIVE ENTRY HOOK Editor
Variable, Objects-102
Editor variables, Concepts-10 to Conoepts-11
binding, 6-8 610, 646
creating, 6-10
provided with VAX LISP, A-7
referencing, 1-10
related functions and variables, A-7
stting, 6-8 69,64
setting the value to a fuction, 69
EMPTY-BUFFER-P Furtion, Objects-126
EMPTY-REGION-P Furtion, Objects-127
Bros, 2-7 to 2-9, Concepts-11 to Concepts-12
implenmenting error responses, 2-7
related functions, commands, and variables, A9
signaled from LISP, 2-8, Concepts-11
signaled from the Editor, 2-7, Concepts-11

Index-2

EXIT-EDITOR-COMMAND function
See "Exit" command

F

Files

See also Checkpointing subsystem

inserting in buffers, 4-6

related functions and coormands, A9

witirg buffers o, 4-6
FORWARD-WWORD-COMVIAND Furction, Objects-143
Functions associated with commands

See Commands, associated functions

H

Help
related functions, commands, and variables, A9
Hooks, 1-6, Concepts-12 to Concepts-13
related functions, A9
stting, 68
style activetion, 6-15
Hook variables, Concepts-12
provided with VAX LISP, A-10
wsing, Concepts-13

Informetion area, 5-16, Concepts-13
Concepts-14
clearing, 5-16
directing output to, 5-16
size, 516
Invoking and exiting the Editor
related functions, commands, and variables, A-10

K

Kll rirg, 1-6
related commands, A-10

L

Lires, 4-16 to 4-18, Concepts-14
noving by, 4-17
operations on, 4-16
related functions and commands, Al
testing relative positions, 4-17
LISP syrtax
related functions, commands, and variables, A<11

M

Mats, 4-14 to 446, Concepts-14 to

Concepts-16

accessing merk positions, 4-17

behavior when searching, 4-11

creating, 4-14

current buffer point, 4-2

defining regiors, 44, 59

meking windows a, 5-23

operations on, 4-2

related functions, commands, and variables, A-12

testing relative positions, 4-17

typss, 4-14
window display, 54
window poirt, 5-5

Mouse
See Pointing device

N

Named Editor objects, Concepts-16 to Concepts-17
instring tables, Concepts-16
listed, 1-7
naming, Concepts-16
specifying, 1-7, Concepts-16, Objects-29,
Objects-30

P

Packages
EDITOR:, 111
for user-defined extensions, 1-12
uSing IN-PACKAGE, 1-12
using package prefixes, 1-11
using USE-PACKAGE, 1-11
Pointer actiors, 3-7
Pointer button trarsitions
DECwindows, 3-8
us, 38
Pointer cursor novement, 3-8
Pointer-state object
See GET-POINTER-STATE fuction
Fointing device
See also BIND-POINTER-COMMAND and
GET-POINTER-STATE functions
button state, 3-9
button trarsitiors, 3-8
moverrent of, 3-8
related functions and commands, A-13
state of, 3-10
"Print Representation' attribute, 6-11
Pronpting, 2-9 to 2-12, Concepts-17 to
Concepts—9
providing altermatives, 2-11, Concepts-19
providing help, Concepts-19
providing input completion, 2-11, Concepts-18,
Concepts-21
related functions, commands, and variables, A-14
validating user input, 2-11, Concepts-18

R

Regions, 44 to 4-5, Concepts-19 to Concepts-20
buffer regions, 4-4, 4-6, Concepts-4
copying, 45
creating, 44,59
deleting, 4-5
highlight regions, 5-9, Concepts-20
inerting, 44
operations on, 4-4
related functions, commands, and variables, A-14
writing to files, 4-5
Rings, 1-6, Concepts-20
related functions, A-15

S

Screen width

changing, 1-3
Scrolling

See Windows

Searching through text, 4-7
and replacing text, 4-9
by attnbute, 4-9
by character positions, 4-7
by pattem, 4-8 _
related functions, commands, and variables, A-15
Shadowing
See Contexts, search order
Streams, 1-6, Concepts-21
String tables, 1-6, Concepts-21 to Concepts-22
provided with VAX LISP, A-16
related functions, A-15
Style
default mgjor, 1-3
Styles, Concepts-22 to Concepts-24
accessing active styles, 6-6
activating, 6-2, 6-15, 6-18, Concepts-23
by default, 6-3
ina new buffer, 6-3
in an existing buffer, 6-6
mejor, 6-2, Concepts-23
miror, 6-2, Concepts-23
activation hooks, 6-15
as a binding context, 1-5, 36, 6-1, 6-15, 6-16
creating, 6-15, Concepts-13
nodifying, 6+
operations on, 6-2
provided with VAX LISP, A-16
related functions, commands, and variables, A-16

T

Text operations, 4-1 to 4-2
on a group of characters, 4-4
on characters, 4-2
on lires, 4-16
related data types, 44
related functions, commands, and variables, A9
subsystem owverview, 1-4

u

Unnamed Editor objects
listed, 1-8

\Y

Variables
See Hiitor variables
Mrtudl displays
compared to Editor windows, 5-1

w
Windows, 5-1, Concepts-25 to Concepts-26
See also Display
accessing, 52
anchored, 1-2
borders, 5-10,5-18,5-21
compared to virtel displays, 5-1
creating, 523
current window, 5-2, 523
deleting, 524
displaying, 5-21,5-22
display types, 5-3, 517, 518, 5-21,5-24
anchored, 5-17

Index-3

Windows prompting window, 2-9,5-16

d'SP'%Yogﬁ (‘;};i) related functions, commands, and variables, A-20
labels, 510 scrollingg ’ 55-)-623

moving ina buffer, 55, 56 size, 518, 524

moving on the screen, 5-20 trur’tatirg B in 57

overlapping, 5-18,5-21 i i

position ina buffer, 5-4 ﬁm&m 5%8

position on the screen, 5-19,5-24,5-25 wrapping text i, 5-7

Index-4

HOW TO ORDER ADDITIONAL DOCUMENTATION

From

Alaska, Hawaii,

or New Hampshire

Rest of U.S.A.
and Puerto Ricol

Call
603-884-6660

800-DIGITAL

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua NH 03061

JPrepaid orders from Puerto Rico, call Digital § local subsidiary (809-754-7575)

Canada

Internal orders
(for software
documentation)

Internal orders
(for hardware
documentation)

800-267-6219
(for software
documentation)

613-592-5111
(for hardware
documentation)

DTN: 234-4323
508-351-4323

Digital Equipment of Canada Ltd.
100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order Desk

Software Supply Business (SSB)
Digital Equipment Corporation
Westminster MA 01473

Publishing & Circulation Services (P&CS)
NRO3-1/W3

Digital Equipment Corporation

Northboro MA 01532

Reader’s Comments

VAX USP/VMS Editor Programming Guide

AA-Y923D-TE

Your comments and suggestions w ill help us improve the quality of our future documentation. Please note
that this form is for comments on documentation only.

I rate this manual §

Accuracy (product works as described)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)

Examples (useful)

Index (ability to find topic)

Page layout (easy to find information)

W hat | like best about this manual:

W hat | like least about this manual:

| found the following errors in this manual:

Page Description

My additional comments or suggestions for improving this manual:

Please indicate the type of user/reader that you most nearly represent:

Adm inistrative Support
Computer Operator
Educator/Trainer
Programmer/Analyst
Sales

Oooooao

Name/Title
Company

M ailing Address

10/87

O
O
O
O

Excellent Good Fair

O O O
O O O
O O O
O O O
O O OdJ
O O O
O O O
O O O

ScientisttEngineer

Software Support

System Manager

Other (please specify)

Dept.
Date

Phone

Poor
O

Oooooooao

— Do Not Tear — Fold Here and Tape

SDIDOSO

— Do Not Tear — Fold Here

NO POSTACGE
NECESSARY
IFNVAILED
UNTED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
PKO3-1/30D

129 PARKER STREET

MAYNARD, MA 01754-2198

