
VAX LISP/VMS Program Development Guide
Order Number: AA-MK69A-TE

July 1989

This guide contains information for a LISP language programmer to interpret, compile,
and debug VAX LISP programs on VMS operating systems on DECwindows and terminal
interfaces.

Revision/Update Information: This is a new manual.
Operating System and Version: VMS Version 5.1
Software Version: VAX LISP Version 3.0

digital equipment corporation
maynard, massachusetts

First Printing, July 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.
The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.
No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1989.
All rights reserved.
Printed in U.S.A.
The Reader’s Comments form at the end of this document requests your critical evaluation to
assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

AI VAXstation
DEC
DECnet
DECUS
Micro VAX
Micro VAX II
MicroVMS

PDP
ULTRIX
ULTRIX-11
ULTRIX—32
UNIBUS
VAX
VAX LISP

VAX LISP/ULTRIX
VAX LISP/VMS
VAXstation
VAXstation II
VMS

X Window System is a trademark of the Massachusetts Institute of Technology.

S828

This document was prepared using VAX DOCUMENT, Version 1.1.

Contents

P reface ... xv

Part I VAX LISP System Concepts and Facilities for VMS Systems

Chapter 1 Introduction to VAX LISP

1.1 Overview of VAX LISP .. 1-1
1.1.1 DCL LISP C om m and .. 1-2

1.1.1.1 Interpreter... 1-3
1.1.1.2 Compiler... 1-3

1.1.2 Editor.. 1-3
1.1.3 Error Handler ... 1-3
1.1.4 Inspector .. 1-3
1.1.5 Debugging Facilities.. 1-4
1.1.6 Pretty Printer... 1-4
1.1.7 Call-Out Facility... 1—4
1.1.8 Call-Back Facility.. 1-4
1.1.9 Alien Structure Facility... 1-4
1.1.10 Interrupt Function Facility ... 1-5
1.1.11 VWS Graphics Interface... 1-5
1.1.12 DECwindows In terface.. 1-5
1.1.13 CLX Interface... 1—5
1.1.14 System-Building Utility .. 1-5
1.1.15 VAX LISP Function, Macro, and Variable Descriptions for V M S 1—6

1.2 Help F ac ilities .. 1-6
1.2.1 DCL H e lp .. 1-6
1.2.2 DECwindows H e lp .. 1-7
1.2.3 LISP Help.. 1-7

1.3 VMS File Specifications ... 1-7

1.4 Logical Nam es... 1-9

1.5 Entering DCL Com m ands... 1-9

Chapter 2 Using VAX LISP

2.1 Invoking LISP ... 2-1

2.2 Exiting L ISP.. 2-2

2.3 Entering In p u t ... 2-2

2.4 Deleting and Editing Input .. 2-2

2.5 Entering the D ebugger... 2-3

2.6 Using Control Key Characters.. 2-3

2.7 Creating Program s... 2-4

2.8 Loading F iles .. 2-4

2.9 Compiling Programs.. 2-5
2.9.1 Compiling Individual Functions and Macros 2-5
2.9.2 Compiling F i le s ... 2-6
2.9.3 Advantages of Compiling LISP Expression s................................. 2-7
2.9.4 Advantage of Not Compiling LISP Expressions............................ 2-7

2.10 DCL LISP Command Q ualifiers .. 2-7
2.10.1 Three Ways to Use the DCL LISP Command.............................. 2-9
2.10.2 /COMPILE... 2-10
2.10.3 /CSTACK.. 2-11
2.10.4 /ERROR_ACTION.. 2-11
2.10.5 /[NOJINITIALIZE... 2-12
2.10.6 /INTERACTIVE... 2-13
2.10.7 /[NOJLIST.. 2-13
2.10.8 /[NO]MACHINE_CODE... 2-14
2.10.9 /MEMORY ... 2-14
2.10.10 /[NOjOPTIMIZE... 2-15
2.10.11 /[NO]OUTPUT_FILE.. 2-15
2.10.12 /RESUME.. 2-16
2.10.13 /[NOJVERBOSE... 2-16
2.10.14 /[NOJWARNINGS.. 2-17

2.11 Using Suspended System s.. 2-18
2.11.1 Creating a Suspended Sy stem .. 2-18
2.11.2 Resuming a Suspended System .. 2-19

2.12 Using Subprocesses... 2—19
2.12.1 Creating a S u bp ro ce ss... 2-19
2.12.2 Connecting to a S u b p r o c e s s ... 2-20
2.12.3 Exiting from a Subprocess... 2-20

Chapter 3 Using the VAX LISP Editor

3.1 Introduction to the E d ito r.. 3-2
3.1.1 Editing C y c le ... 3-2
3.1.2 Invoking the Editor... 3—3

iv

3.1.3 Interacting with the Ed itor... 3-5
3.1.3.1 Getting H e lp ... 3-6
3.1.3.2 Input Completion and Alternatives............................... 3—7
3.1.3.3 Errors and Other P rob lem s...................................... 3—7

3.1.4 Moving Work Back to L IS P ... 3—8
3.1.5 Returning to the LISP Interpreter.. 3-8
3.1.6 Summary of C om m ands.. 3-9

3.2 Editing O p era tion s.. 3-10
3.2.1 Keypad ... 3—10
3.2.2 Inserting and Formatting Text... 3-11

3.2.2.1 Inserting Text ... 3-11
3.2.2.2 Typing and Formatting LISP Code 3—12
3.2.2.3 Inserting Nongraphic Characters............................... 3-13

3.2.3 Moving the C u rsor.. 3-14
3.2.3.1 Moving with the Keypad and Arrow K ey s...................... 3—14
3.2.3.2 Moving in LISP C o d e .. 3—15
3.2.3.3 Moving with the Pointer (VWS VAXstation Only)............ 3—15

3.2.4 Modifying T ext... 3-15
3.2.4.1 Deleting Text... 3—16
3.2.4.2 Undeleting T ex t... 3-16
3.2.4.3 Cutting and Pasting T ext.. 3—17
3.2.4.4 Changing C a s e ... 3—17
3.2.4.5 Substituting Text ... 3-18
3.2.4.6 Inserting a File or Buffer.. 3—18

3.2.5 Repeating an Operation .. 3—19
3.2.6 Summary of C om m ands... 3—19

3.3 Using Multiple Buffers and W in d ow s... 3-23
3.3.1 Introduction to Buffers and W indow s... 3—23
3.3.2 Creating New Buffers from Within the Editor................................ 3-26
3.3.3 Working with Buffers.. 3-26

3.3.3.1 Saving Buffer Contents... 3-26
3.3.3.2 Deleting Buffers.. 3—27
3.3.3.3 Buffer Name Conflicts... 3-27

3.3.4 Manipulating Windows .. 3—27
3.3.5 Moving Text Between Buffers... 3-28
3.3.6 Summary of C om m ands... 3-28

3.4 Recovering from P ro b lem s... 3-29

3.5 Custom izing the E d ito r... 3—29
3.5.1 Binding Keys to Commands... 3-30

3.5.1.1 Binding Within the Editor... 3—30
3.5.1.2 Binding from the LISP Interpreter............................... 3-31
3.5.1.3 Selecting a Key or Key Sequence 3-33
3.5.1.4 Key Binding Context and Shadowing........................... 3-34

3.5.2 Keyboard Macros... 3—35
3.5.3 Summary of C om m ands... 3-36

3.6 Using the Editor on a VWS VAXstation ... 3-36
3.6.1 Before You S ta r t... 3-36

3.6.1.1 Activating Lines in LISPSTART.COM........................... 3—36
3.6.1.2 Setting the Terminal Emulator to NOFALLBACK Mode 3-37

3.6.2 Screen Appearance and Behavior.. 3-37

v

3.6.3 Editing with the Pointer.. 3—37
3.6.3.1 Selecting and Removing Windows 3-38
3.6.3.2 Moving the Text Insertion Cursor and Marking T ex t.......... 3—38
3.6.3.3 Cutting and P a stin g... 3—38
3.6.3.4 Invoking the DESCRIBE Function and Matching

Paren theses... 3—39
3.6.3.5 Information About Pointer E ffe cts 3—39

3.6.4 Binding Pointer Buttons to Commands....................................... 3—39

Chapter 4 D ebu gg in g Facilities

4.1 Control V ariab les.. 4-2

4.2 Control S ta ck ... 4—2

4.3 Break L o o p ... 4—3
4.3.1 Invoking the Break L o o p .. 4—3
4.3.2 Exiting the Break L o o p .. 4—4
4.3.3 Using the Break L oop.. 4—4
4.3.4 Break Loop Variables.. 4—5

4.4 Debugger ... 4-5
4.4.1 Invoking the D ebu gger .. 4-5
4.4.2 Exiting the D ebu gge r .. 4—6
4.4.3 Using Debugger C om m and s... 4—7

4.4.3.1 A rgum ents... 4—7
4.4.3.2 Debugger Commands... 4—9

4.4.4 Using the DEBUG-CALL Function.. 4—12
4.4.5 Sample Debugging S e s s io n s ... 4—13

4.5 Stepper ... 4—14
4.5.1 Invoking the Stepper .. 4-14
4.5.2 Exiting the Stepper.. 4—15
4.5.3 Stepper O u tpu t... 4—15
4.5.4 Using Stepper Commands... 4—17

4.5.4.1 A rgum ents... 4-18
4.5.4.2 Stepper C om m ands.. 4—19

4.5.5 Using Stepper Variables.. 4—20
4.5.5.1 ‘STEP-FORM* .. 4-20
4.5.5.2 ‘STEP-ENVIRONMENT*... 4-21
4.5.5.3 Example Use of Stepper Variables............................ 4-21

4.5.6 Sample Stepper S e s s io n s ... 4-23

4.6 T ra ce r .. 4-24
4.6.1 Enabling the T ra ce r .. 4—24
4.6.2 Disabling the T racer.. 4—25
4.6.3 Tracer O u tpu t... 4—25
4.6.4 Tracer Options ... 4-26

4.6.4.1 Invoking the D ebu gger ... 4-27
4.6.4.2 Adding Information to Tracer Output.......................... 4-27
4.6.4.3 Invoking the Stepper .. 4-27
4.6.4.4 Removing Information from Tracer O u tpu t.................... 4—27
4.6.4.5 Defining When a Function or Macro Is Traced 4—27

4.6.5 Tracer Variables... 4—27
4.6.5.1 *T RACE-CALL*.. 4-28
4.6.5.2 TRACE-VALUES*... 4-28

4.7 The E d ito r ... 4-29

Part II Using VAX LISP Facilities on the DECwindows Interface

Chapter 5 The DECwindows Interface to VAX LISP

5.1 Invoking VAX L IS P ... 5-2

5.2 Using the L is ten er.. 5-4

5.3 Using the Inspector.. 5-6

5.4 Running a Sample F u n ctio n ... 5-10

5.5 Using the Editor... 5-10

5.6 Using the Debugger.. 5-17

5.7 Exiting from VAX L IS P .. 5-20

Chapter 6 Starting LISP from DECwindows

6.1 Defining the Display S ystem ... 6-1
6.1.1 Displaying LISP on DECwindows.. 6-1
6.1.2 Displaying LISP on a Terminal.. 6—1

6.2 Invoking LISP from DECwindows F ileV iew .. 6-1
6.2.1 Invoking LISP with the LISP.EXE F i l e 6-2
6.2.2 Invoking LISP with the DCL Command Item 6-3

6.3 Resuming LISP from DECwindows ... 6-3

6.4 Compiling a LISP File from DECwindows... 6-4

Chapter 7 The Listener

7.1 Entering LISP Forms ... 7-2

7.2 Exiting LISP from the Listener... 7-3

7.3 Editing Text and Objects... 7-3
7.3.1 Selecting Text and O b je c t s ... 7-3
7.3.2 Moving Text and Objects to Another Location.............................. 7—4
7.3.3 VAX LISP Default Key B indings.. 7—4

7.4 Working with F ile s .. 7-5
7.4.1 Loading a LISP F ile .. 7-6
7.4.2 Compiling a LISP F ile.. 7-7
7.4.3 Invoking the Editor on a LISP File .. 7-8
7.4.4 Saving the Text of the Transcript R e g io n 7-8
7.4.5 Creating a LISP Suspended Image F ile..................................... 7-9
7.4.6 Recording Your Interactive LISP S e s s io n 7-10

7.5 Compiling a Function... 7-10

7.6 Disassembling a Function... 7-11

7.7 Using the EVAL Fu n ctio n ... 7-11

7.8 Invoking Other LISP U tilities.. 7-11

7.9 Interrupting a Program .. 7-12

7.10 Getting Help .. 7-12
7.10.1 Invoking Help on VAX L ISP .. 7-12
7.10.2 Invoking Help on Screen O b je c t s .. 7-13
7.10.3 Using the APROPOS and DESCRIBE Functions...................................... 7—13

Chapter 8 Using the VAX LISP Editor in DECwindows

8.1 Introduction to the E d ito r ... 8-2
8.1.1 Invoking the Editor.. 8-2

8.1.1.1 Invoking the Editor from the Menus............................. 8-2
8.1.1.2 Invoking the Editor Using a Command L in e 8-3

8.1.2 Entering Text in the Editor... 8-4
8.1.3 Using Editor C om m ands... 8—4
8.1.4 Evaluating Work in the Editor... 8-5
8.1.5 Saving Work in the Editor... 8-5
8.1.6 Returning to LISP .. 8-6
8.1.7 Returning to the Editor.. 8-6
8.1.8 Exiting the Editor.. 8-7

8.2 Getting Help ... 8-8
8.2.1 Using the Help K e y .. 8-8
8.2.2 Using the Help M enu .. 8-8

8.2.2.1 Help on Editor O b je c t s ... 8-8
8.2.2.2 Help on Responses to P rom pts................................ 8-9
8.2.2.3 Help on Errors and Other P rob lem s........................... 8-10

8.3 Editing LISP C o d e .. 8-10
8.3.1 Using the Pointer... 8-11
8.3.2 Cutting and Pasting T ext... 8-11
8.3.3 Finding and Replacing T ex t... 8-12
8.3.4 Moving in LISP C o d e .. 8-12
8.3.5 Inserting Nongraphic Characters.. 8-13
8.3.6 Changing C a s e ... 8-13
8.3.7 Inserting a File or Buffer... 8-13

8.4 Using Multiple Buffers and W in d ow s... 8-14
8.4.1 Introduction to Buffers and W indow s... 8—14
8.4.2 Creating New Buffers from Within the Editor................................ 8-16
8.4.3 Working with Buffers.. 8-16

8.4.3.1 Saving Buffer Contents... 8-17
8.4.3.2 Deleting Buffers.. 8—17
8.4.3.3 Buffer Name Conflicts... 8-17

8.4.4 Manipulating Editor W indow s... 8-17
8.4.5 Moving Text Between Buffers... 8-18

8.5 Recovering from P ro b lem s ... 8-18

8.6 Customizing the E d ito r... 8-19

8.6.1 Binding Keys to Commands... 6-19
8.6.1.1 Binding Within the Editor... 8-20
8.6.1.2 Binding from the LISP Interpreter.............................. 8-20
8.6.1.3 Selecting a Key or Key Sequence 8—23
8.6.1.4 Key Binding Context and Shadowing........................... 8-23

8.6.2 Keyboard Macros.. 8-24

Chapter 9 Using the VAX LISP Inspector

9.1 Invoking the Inspector.. 9-2
9.1.1 Asynchronous Mode .. 9-4
9.1.2 Synchronous Mode .. 9-5

9.2 Exiting the Inspector .. 9-5

9.3 inspecting O bjects .. 9-5
9.3.1 Specifying Objects to Inspect .. 9-6
9.3.2 Managing Inspect Windows ... 9-8

9.3.2.1 Locking Inspect Windows .. 9-8
9.3.2.2 Unlocking Inspect Windows 9-8
9.3.2.3 Closing Inspect Windows 9-8
9.3.2.4 Removing Inspected Objects 9-8

9.3.3 Using the History Window ... 9-9

9.4 Modifying Objects .. 9-10
9.4.1 Using the Modify Menu Item ... 9-10
9.4.2 Using the Clipboard .. 9-11

9.5 Updating the Inspector Display .. 9-12

9.6 Returning V a lu e s .. 9-13

Chapter 10 Using the Debugging Utilities from the DECwindows Interface

10.1 Control Variables.. 10-5

10.2 Control S tack.. 10-5

10.3 Break L o o p .. 10-5
10.3.1 Invoking the Break L o o p ... 10-5
10.3.2 Exiting the Break L o o p ... 10-6
10.3.3 Using the Break L oop.. 10—7

10.4 Debugger ... 10-9
10.4.1 Invoking the Debugger from DECw indows.................................. 10—9

10.4.1.1 The Debug I/O Window .. 10—10
10.4.1.2 The Calling Stack Window.. 10-10
10.4.1.3 The Variable Bindings W indow.................................. 10-11
10.4.1.4 The Debugger Commands Window............................ 10-11

10.4.2 Exiting the D ebu gge r .. 10—11
10.4.3 Using Debugger C om m and s.. 10-12

10.4.3.1 A rgum ents... 10-13

10.5 S tepper.. 10-14
10.5.1 Invoking the Stepper .. 10—15
10.5.2 Stepping Through a F orm ... 10—16

ix

10.5.3 Exiting the Stepper.. 10-16
10.5.4 Stepper Output ... 10—17
10.5.5 Using Stepper Commands... 10-17

10.6 T ra ce r... 10-18
10.6.1 Enabling the T ra ce r .. 10-18

10.6.1.1 Enabling the Tracer from the Operations M enu............... 10-18
10.6.1.2 Enabling the Tracer from a Prompt............................ 10—19
10.6.1.3 Clearing the Tracer .. 10-19
10.6.1.4 Disabling the T racer.. 10—20
10.6.1.5 Disabling the Tracer from the Operations Menu 10-20
10.6.1.6 Disabling the Tracer from a Prompt............................ 10-20

10.6.2 Tracer Output... 10-20
10.6.3 Modifying Tracer Options from the Dialog Box 10-21

10.6.3.1 Invoking the Debugger from the Trace Options Dialog
B o x ... 10-21

10.6.3.2 Invoking the Stepper from the Trace Options Dialog Box . . 10—22
10.6.3.3 Removing Information from Tracer Output from the Trace

Options Dialog Box .. 10—23
10.6.3.4 Adding Information to Tracer Output from the Trace Options

Dialog B o x .. 10—23
10.6.3.5 Defining When a Function or Macro Is Traced from the

Trace Options Dialog B o x 10—23
10.6.4 Modifying Tracer Options in the Call to the TRACE M a cro 10—23

Appendix A Using DECwindows

A.1 Using the M o u s e ... A-1

A.2 What Are Windows?.. A-2

A.3 Starting a S ess io n .. A-3

A.4 Selecting Windows.. A-4

A.5 Changing the Size of W in do w s... A-4

A.6 Shrinking Windows .. A-5

A.7 Expanding Icons to W in d o w s .. A-6

A.8 Moving W indow s... A-6

A.9 Stacking Overlapping W indow s... A-7
A.9.1 Making Overlapping Windows Stick in Place... A-7
A.9.2 Releasing Windows Locked in the Stacking Order..................................... A-8

A.10 Choosing Items from Pull-Down M en u s ... A-8

A.11 Choosing Items from Subm enus... A-9

A.12 Choosing Items from Pop-Up M en u s .. A-9

A.13 Choosing Items from Option Menus.. A-10

A.14 Supplying Information in Dialog Boxes ... A-11
A.14.1 Moving and Changing Settings in a Dialog Box.. A-12
A.14.2 Making Selections from List B oxes.. A-12

x

A-13A.15 Scrolling

A.16 Editing T e x t... A-14
A.16.1 Selecting T ex t.. A-15
A. 16.2 Copying Text... A-15
A.16.3 Moving Text Between Windows .. A-16
A.16.4 Deleting Text with Pending Delete... A-16
A.16.5 Editing Text in Dialog Boxes .. A-17

A.17 Composing Special Characters... A-17

A.18 Getting Help ... A-18
A.18.1 Invoking H e lp .. A-18
A.18.2 Navigating in H e lp .. A-19
A.18.3 Searching Help for Titles and Keywords...................................... A-20
A.18.4 Exiting from H elp .. A-20

A.19 Putting a Session on Hold ... A-20

A.20 Ending a Session... A-21

Appendix B Performance Hints

B.1 Data S tructures...
B.1.1 In tegers.....................................
B.1.2 Floating-Point Numbers....................
B.1.3 R a t io s
B.1.4 Complex Numbers.........................
B.1.5 Characters..................................
B.1.6 Sym bols.....................................
B.1.7 Lists and Vectors...........................
B.1.8 Strings, General Vectors, and Bit Vectors
B.1.9 Hash T ab le s
B.1.10 Functions....................................

B-1
B—1
B—2
B—2
B—2
B—2
B—3
B—3
B-4
B -4

B—5

B.2 Declarations B-5

B.3 Program S tructure ... B-7

B.4 Compiler Requirements .. B-9

Appendix C Customizing DECwindows from VAX LISP

C.1 Customizable A ttributes... C—1
C.1.1 Common Attributes.. C—1
C.1.2 Specific Attributes and Restrictions... C—2

C.1.2.1 Inspector Attributes ... C—2
C.1.2.2 Listener Attributes.. C-3
C.1.2.3 Debugger Attributes... C—3
C.1.2.4 Trace Attributes................................... C-3
C.1.2.5 Editor Restrictions... C—3

C.2 Getting Information on Fonts ... C-4
LIST-FONTS FUNCTION... C-A

C.3 Getting and Modifying Attributes... C-6
CUSTOMIZATION FUNCTION.. C-6

C.4 Saving Customizations... C-12
SAVE-CUSTOMIZATIONS FUNCTION... C-12

C.5 Recalling Customizations.. C-13
LOAD-CUSTOM IZATIONS FUNCTION ... C-13

Appendix D Using the "EMACS" Editor Style

D.1 Introduction to the E d ito r.. D-1

D.2 Activating the "EMACS" S ty le ... D-2
D.2.1 Activating "EMACS" as a Minor Style D-3
D.2.2 Making "EMACS" the Major S ty le ... D-3

D.3 "EMACS" Style Key B in d in g s .. D-3

Appendix E Editor Commands and Key Bindings

E.1 Editor Command Descriptions... E-1

E.2 Editor Key B indings... E-14

Index

Examples
5-1 Defining a LISP Function 5-14

Figures
3—1 Invoking the Editor... 3—3
3—2 The Editor Screen with Help M essage... 3—4
3-3 Entering Commands at the Editor Prompt .. 3-5
3—4 Using APROPOS in the Editor.. 3-6
3—5 Numeric K eypad .. 3—12
3-6 The Editor with Two Buffers Open ... 3-24
3—7 Listing Buffers in the Editor.. 3—25
5—1 Copying a Sample Source File... 5-2
5-2 Invoking L IS P .. 5-3
5—3 Listener W indow .. 5—4
5—4 Evaluating a LISP Form .. 5-5
5-5 Loading a LISP Source F ile.. 5-6
5-6 Inspecting a Structure... 5—7
5-7 Choosing the Inspect Menu Item ... 5-8
5—8 Inspecting a L is t ... 5-8
5-9 Inspector History W indow .. 5-9

5-10 Running a LISP Function .. 5-10
5-11 Choosing the ED Function.. 5-11
5-12 Editing a File.. 5—12
5-13 Basic Editing Commands .. 5-13
5-14 Running the PRINT-RECIPE Function.. 5-15
5—15 Debugging Dialog B o x .. 5—16
5-16 Debugging Windows... 5-17
5—17 Using the DOWN C om m and ... 5—18
5-18 Stepping Through a Function... 5-19
5- 19 Exiting from VAX L IS P .. 5-20
6- 1 DECwindows FileView-Run Dialog B o x .. 6-2
6— 2 DECwindows FileView-Work in Progress Dialog B o x 6-3
7— 1 Listener M enu s.. 7-1
7—2 Listener W indow ... 7—2
7-3 File Selection B o x ... 7-6
7—4 Compile-File File Select B o x .. 7—7
7-5 Save As Dialog B o x ... 7-9
7-6 Apropos Dialog B o x ... 7-14
7— 7 Describe Dialog B ox ... 7-15
8— 1 Editor Menus.. 8—1
8-2 Editor Window with Two Buffers... 8-3
8—3 Editor Window with Two Buffers... 8-7
8—4 Apropos Display ... 8-9
8- 5 List Buffers Display ... 8—15
9- 1 Inspector M en u s ... 9-1
9-2 Invoking the Inspector .. 9-2
9-3 Inspect and History W indows... 9-4
9-4 Inspecting a Component of an Inspected O b je c t.. 9-7
9-5 Inspecting a Structure.. 9-7
9-6 Inspector History W indow .. 9-9
9-7 Modify Dialog B o x ... 9—11
9-8 Inspect Windows Before Updating .. 9-12
9-9 Inspect Windows After Updating .. 9-13
9— 10 Returning a Value from the Inspector .. 9—14
10- 1 Fatal Error Caution Box .. 10-1
10-2 Continuable Error Caution B ox ... 10-2
10—3 Debugging Utilities Pull-Down Menus ... 10—4
10-4 Defining a Variable.. 10-7
10-5 Invoking the Break L o o p ... 10-8
10-6 Debug I/O, Calling Stack, Variable Bindings, and Debugger Commands

Windows .. 10—10
10—7 The Quit Command Confirmation B o x .. 10—12
10-8 Invoking the Stepper .. 10—15
10—9 Stepper Window D isplay... 10—16
10—10 Trace W indow... 10—19
10-11 Trace Options Dialog B o x ... 10-22

Tables
1- 1 File Specification Defaults.. 1—8
2- 1 Keys Used in Line Editing.. 2-3
2-2 Control Characters... 2-4
2-3 DCL LISP Command Qualifiers... 2-8
2— 4 DCL LISP Command Qualifier M od e s .. 2-9
3- 1 General-Purpose Commands and Key Bindings ... 3—9
3—2 Editing Commands and Key B ind ings.. 3—19
3-3 Commands for Manipulating Buffers and Windows 3-28
3-4 Characters Generated by Keys ... 3-31
3- 5 Commands for Customizing the Editor.. 3-36
4- 1 Debugging Functions and M acros... 4—1
4—2 Debugger Commands... 4—7
4-3 Debugger Command Modifiers... 4-8
4—4 Stepper C om m ands... 4—18
7- 1 VAX LISP Default Key B indings... 7-4
8- 1 Editor Default Pointer Bindings... 8-11
8- 2 Characters Generated by Keys ... 8-21
9- 1 Components of Inspectable Data T ypes.. 9-6
9- 2 Inspector History Status F la g s ... 9-9
10— 1 Debugging Functions and Macros... 10-3
10—2 Debugger Commands... 10—13
10-3 Debugger Command Modifiers... 10—14
10-4 Stepper Com m ands... 10-17
C-1 Object Keywords for DECW-UTILS:CUSTOMIZATION Function........................ C-6
C-2 Attribute Keywords for Customization Functions ... C—8
D-1 Commands for Manipulating Buffers and Windows D-2
D-2 "EMACS" Style Key Bindings.. D-4
E-1 Editor Commands and Key Bindings.. E-1
E-2 Editor Key B indings... E-14

Preface

The VAX LISP /VMS Program Development Guide is for developing and debug­
ging LISP programs and for compiling and executing LISP programs on the VMS
operating system. It is intended for use on DECwindows and terminal inter­
faces. The VAX LISP language elements are described in Common LISP: The
Language.*

Intended Audience
This manual is designed for programmers who have a working knowledge of LISP.
Detailed knowledge of the VMS operating system is helpful but not essential;
familiarity with the Introduction to VMS is recommended.
However, some sections of this manual require more extensive understanding
of the operating system. In such sections, you are directed to the appropriate
manual(s) for additional information.

Structure
An outline of the organization and chapter content of this manual follows:
Part I: VAX LISP System Concepts and Facilities for VMS Systems
Part I consists of four chapters, which explain VAX LISP concepts and describe
the VAX LISP facilities for the terminal interface. Most of the concepts described
in Part I a lso app ly to Part II.
• Chapter 1, Introduction to VAX LISP, provides an overview of VAX LISP,

explains how to use the help facilities, describes VMS file specifications and
the logical name mechanism, and provides hints on entering DCL commands.
Chapter 1 also describes where in the VAX LISP documentation you can find
information on each of the VAX LISP features.

• Chapter 2, Using VAX LISP, explains how to invoke and exit from VAX
LISP, use control key sequences, enter and delete input, create and compile
programs, load files, and use suspended systems. In addition, Chapter 2
describes the DCL LISP command and its qualifiers.

• Chapter 3, Using the VAX LISP Editor, describes how to use the Editor
provided with VAX LISP to create and edit LISP code.

• Chapter 4, Debugging Facilities, explains how to use the VAX LISP debugging
facilities.

xv

Guy L. Steele, Jr., Common LISP: The Language, Digital Press (1984), Burlington, Massachusetts.

Part II: Using VAX LISP Facilities with the DECwindows Interface
Part II consists of six chapters, which explain how to use the VAX LISP facilities
from the DECwindows interface.
• Chapter 5, The DECwindows Interface to VAX LISP, describes the LISP

utilities that run on the DECwindows interface and how to use them. A
sample LISP programming session is included in the chapter.

• Chapter 6, Starting LISP from DECwindows, describes the different ways
you can invoke LISP to enter an interactive LISP session, compile a file, or
resume a suspended session.

• Chapter 7, The Listener, describes how to use the Listener to enter LISP
forms, select or edit text and objects, work with files, and get help.

• Chapter 8, Using the VAX LISP Editor in DECwindows, describes the dif­
ferent editing modes available from the DECwindows interface and how to
access them.

• Chapter 9, Using the VAX LISP Inspector, describes how to invoke the
Inspector and exit from it, inspect and modify objects, update the Inspector
display, and return a value from the Inspector.

• Chapter 10, Using the Debugging Utilities from the DECwindows Interface,
describes how to use the Break loop, the Debugger, the Stepper, and the
Tracer from the DECwindows interface.

Associated Documents
The following documents are relevant to VAX LISP programming on VMS sys­
tems:
• VAX LISP/VMS Installation Guide
• Common LISP: The Language
• VAX LISP /VMS Editor Programming Guide
• VAX LISP/VMS System Access Guide
• VAX LISP /VMS Interface to VWS Graphics
• VAX LISP/VMS System-Building Guide
• VMS DCL Dictionary
• VAX Architecture Handbook
• VMS V 5.0 Documentation, Programming Subkit
For a complete fist of VMS software documents, see the Overview of VMS
Documentation.

XVI

Conventions
The following conventions are used in this manual:

Conven tion M ean ing
UPPERCASE DCL commands and qualifiers and VMS file names are printed in

uppercase characters; however, you can enter them in uppercase,
lowercase, or a combination of uppercase and lowercase characters.
For example:
The examples d ire cto r (SYS$SYSROOT:[VAXLISP.EXAMPLES] by
default) contains sample LISP source files.

UPPERCASE
TYPEWRITER

Defined LISP functions, macros, variables, constants, and other
symbol names are printed in uppercase TYPEWRITER charac­
ters; however, you can enter them in uppercase, lowercase, or a
combination of uppercase and lowercase characters. For example:
The CALL-OUT macro calls a defined external routine....

low e r ca se
ty p ew r it e r

LISP forms are printed in the text in lowercase ty p ew r it e r
characters; however, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters. For example:

SANS SERIF
(s e t f example-1 (make-space))
Format specifications of LISP functions and macros are printed in a
sans serif typeface. For example:
CALL-OUT external-routine &REST routine-arguments

italics Lowercase italics in format specifications and in text indicate argu­
ments that you supply; however, you can enter them in lowercase,
uppercase, or a combination of lowercase and uppercase characters.
For example:
The routine-arguments must be compatible with the arguments
defined in the call to the DEFINE-EXTERNAL-ROUTINE macro.

() Parentheses UBed in examples of LISP code and in format spec­
ifications indicate the beginning and end of a LISP form. For
example:

□
(se tq name l i s p)
Square brackets in format specifications enclose optional elements.
For example:
[doc-string]
Square brackets do not indicate optional elements when they are
used in the syntax of a directory name in a VMS file specification.
Here, the square bracket characters must be included in the syntax.
For example:

U
(pathname "MIAMI: : DBA1:[SMITH]LOGIN.COM;4")
In function and macro format specifications, braces enclose elements
that are considered one unit o f code. For example:
{keyword value}

xvii

C on ven tion M ean ing

U* In function and macro format specifications, braces followed by
an asterisk enclose elements that are considered one unit o f code,
which can be repeated zero or more times. For example:

{keyword value}*

&OPTIONAL In function and macro format specifications, the word &OPTIONAL
indicates that the arguments that follow it are optional. For exam­
ple:
PPRINT object &OPTIONAL stream
Do not specify &OPTIONAL when you invoke a function or macro
whose definition includes &OPTIONAL.

&REST In function and macro format specifications, the word &REST
indicates that an indefinite number of arguments may appear. For
example:
CALL-OUT external-routine &REST routine-arguments
Do not specify &REST when you invoke a function or macro whose
definition includes &REST.

&KEY In function and macro format specifications, the word &KEY indi­
cates that keyword arguments are accepted. For example:
COMPILE-FILE input-pathname

&KEY LISTING :MACHINE-CODE OPTIMIZE
:OUTPUT-FILE :VERBOSE WARNINGS

Do not specify &KEY when you invoke a function or macro whose
definition includes &KEY.
A horizontal ellipsis in a format specification means that the ele­
ment preceding the ellipsis can be repeated. For example:
function-name . . .

| R e tu rn |

A vertical ellipsis in a code example indicates that all the informa­
tion that the system would display in response to the function call
is not shown; or that all the information a user is to enter is not
shown.
A word inside a box indicates that you press a key on the keyboard.
For example:
| R e t u r n | or |Tab|

In code examples, carriage returns are implied at the end of each
line. However, I R e t u r n I is used in some examples to emphasize car-
riage returns.

[c t r i« l Two key names enclosed in a box indicate a control key sequence in
which you hold down Ctrl while you press another key. For example:
I C tr l/C | or | C tr l/ S |

EE3H A sequence such as |p f i | I x \ indicates that you must first press and
release the key labeled PF1, then press and release another key.

C onven tion M ean ing
mouse The term mouse refers to any pointing device, such as a mouse, a

puck, or a stylus.
MB1, MB2, MB3 By default, MB1 indicates the left mouse button, MB2 indicates the

middle mouse button, and MB3 indicates the right mouse button.
You can rebind the mouse buttons.

Red print In interactive examples, user input is shown in red. For example:

Lisp> (cdr ' (a b c))
(B C)
Lisp>

XIX

Parti
VAX LISP System Concepts and Facilities

for VMS Systems

Chapter 1

Introduction to VAX LISP

LISP is a general-purpose programming language. The language is used
extensively in the field of artificial intelligence for research and development of
robotics, expert systems, natural-language processing, game playing, and theorem
proving. The LISP language is characterized by:
• Computation with symbolic expressions and numbers
• Simple syntax
• Representation of data by symbolic expressions or multilevel lists
• Representation of LISP programs as LISP data, which enables data

structures to execute as programs and programs to be analyzed as data
• A function named eval, which explicitly invokes the LISP interpreter
• Automatic storage allocation and garbage collection
This manual describes VAX LISP on the VMS operating system, but refers to it
as VAX LISP, where practicable.
This chapter provides an overview of the VAX LISP language. The overview
parallels the structure of this manual and the remaining VAX LISP documenta­
tion. The chapter also explains how to get on-line help at the DCL and the LISP
language levels of operation and describes:
• VMS file specifications
• Logical names
• H in ts for en ter in g D CL comm ands

1.1 Overview of VAX LISP
The VAX LISP language is an extended implementation of the Common LISP
language defined in Common LISP: The. Language. In addition to the features
supported by Common LISP, VAX LISP provides the following extensions:
• DCL (Digital Command Language) LISP command
• Extensible editor
• Error handler
• Inspector
• Debugging facilities
• Extensible pretty printer
• Facility for calling out to external routines

Introduction to VAX LISP 1-1

• Facility for calling back to LISP functions from external routines
• Facility for defining non-LISP data structures (alien structures)
• Facility for defining interrupt functions (that is, functions that execute

asynchronously due to VMS AST’s)
• Access to the VWS capabilities of the VAXstation workstation
• DECwindows Tbolkit interface
• CLX interface to the X Window System
• Utility for creating custom LISP systems
These extensions are described in Section 1.1.1 through Section 1.1.14.
Some of the functions, macros, and facilities defined by Common LISP are
modified for the VAX LISP implementation. VAX LISP Implementation and
Extensions to Common LISP provides implementation-dependent information
about the following topics:
• Data representation
• Pathnames
• Garbage collector
• Input and output
• Asynchronous functions
• Compiler
• Functions and macros
The implementation-dependent functions and macros mentioned in Common
LISP: The Language are defined in VAX LISP/VMS Object Reference Manual.
VAX LISP also supplies a number of functions that are extensions of the
I/O system defined in Common LISP: The Language, as well as a means of
defining new types of streams. These extensions are described in VAX LISP
Implementation and Extensions to Common LISP.

1.1.1 DCL LISP Command
The DCL LISP command invokes VAX LISP from the VMS command level on the
terminal interface. Depending on the qualifier you use with the LISP command,
you can start the LISP interpreter or the LISP compiler. Chapter 2 describes the
LISP command and the qualifiers you can use with it. Chapter 2 also explains
how to:
• Invoke LISP
• Exit LISP
• Create programs
• Load files
• Compile programs
• Use suspended systems
Chapter 6 describes how to invoke LISP from the DECwindows interface.

1-2 Introduction to VAX LISP

1.1.1.1 Interpreter
The VAX LISP interpreter reads an expression, evaluates the expression, and
prints the results. You interact with the interpreter in command line fashion.
While in the interpreter, you can create LISP programs. You can also use pro­
grams that are stored in files if you load the files into the interpreter. Chapter 7
explains how to create LISP programs and how to load files into the VAX LISP
interpreter.

1.1.1.2 Compiler
The VAX LISP compiler is a LISP program that translates LISP code from text
to machine code. Because of the translation, compiled programs run faster than
interpreted programs.
You can use the compiler to compile a single function or macro or to compile a
LISP source file. If you are in the LISP interpreter, you can compile a single
function or macro with the compile function (see Chapter 2).
You can compile a source file either at the VMS command level or the LISP level
of operation. If you are at the VMS command level, you must specify the LISP
DCL command with the /COMPILE qualifier; if you are in the LISP interpreter,
you must invoke the compile-f ile function. Chapter 2 explains how to compile
LISP programs that are stored in files.

1.1.2 Editor
VAX LISP includes a screen-oriented editor. You can use it to edit text files and
functions and macros that are defined in the LISP system. The Editor provides
specialized commands to help you edit LISP code; they balance parentheses,
indent, and evaluate LISP code. Chapter 3 describes how to use the Editor to
write and edit LISP code. Chapter 8 describes how to access the Editor from the
DECwindows interface.
The Editor is written in LISP, so you can extend and customize it for your needs.
The Editor provides predefined commands and several functions, macros, and
data structures, which you can use to create Editor commands. After you create
an Editor command, you can bind it to a key on your keyboard. In this way, you
can build up alternative editing systems or complete applications based on the
Editor. See the VAX LISP/VMS Editor Programming Guide for more information
on programming the Editor.

1.1.3 Error Handler
VAX LISP contains an error handler, which is invoked when errors occur during
the evaluation of a LISP program. VAX LISP Implementation and Extensions to
Common LISP describes the error handler and explains how to create your own
error handler.

1.1.4 Inspector
VAX LISP provides an Inspector, which is an implementation of the Common
LISP in spect function. The Inspector is only available on the DECwindows
interface. You can use the Inspector to examine and modify data structures.
Chapter 9 explains how to use the Inspector.

Introduction to VAX LISP 1-3

VAX LISP provides several functions and macros that return or display informa­
tion you can use when you are debugging a program. VAX LISP also provides
four debugging facilities: the break loop, Debugger, stepper, and tracer.
The functions that return debugging information and the break loop, stepper, and
tracer facilities are defined in Common LISP and are extended in VAX LISP. The
break loop lets you interrupt the evaluation of a program, the stepper lets you
use commands to step through the evaluation of each form in a program, and the
tracer lets you examine the evaluation of a program.
The Debugger is a VAX LISP facility. The facility provides commands that let you
examine and modify the information in the LISP system’s control stack frames.
Chapter 4 explains how to use the debugging facilities. Chapter 10 explains how
to use the debugging facilities from the DECwindows interface.

1.1.5 Debugging Facilities

1.1.6 Pretty Printer
VAX LISP provides a pretty-printer facility. You can use the facility to control
the format in which LISP objects are printed. The pretty printer can be helpful
in making objects easier to read by means of indentation and spacing. You can
use the pretty printer with the existing defaults, control it with control variables,
or extend it by using special directives with the format function. VAX LISP
Implementation and Extensions to Common LISP explains how to use the pretty
printer in each way.

1.1.7 Call-Out Facility
VAX LISP includes a call-out facility, which lets you call routines written in other
VAX/VMS programming languages as well as run-time library (RTL) routines and
VMS and RMS system services. Chapter 4 of the VAX LISP /VMS System Access
Guide describes the call-out process and explains how to use the call-out facility.

1.1.8 Call-Back Facility
VAX LISP includes a call-back facility, which lets you invoke a LISP function
from an external routine that has been called out to by a LISP call-out. Chapter
4 of the VAX LISP/VMS System Access Guide describes how to use the call-back
facility.

1.1.9 Alien Structure Facility
VAX LISP supplies an alien structure facility. It lets you define, create, and
access VAX data structures that are used to communicate between the VAX LISP
language and other VAX/VMS languages or system services. Chapter 6 of the
VAX LISP/ VMS System Access Guide describes the alien structure facility and
explains how to use it.

1—4 Introduction to VAX LISP

VAX LISP allows you to define functions that can execute at arbitrary and
unpredictable points in your program, usually as the result of an event in the
operating system. Such functions are called interrupt functions, because they
interrupt the normal flow of program execution. Chapter 7 of the VAX LISP/VMS
System Access Guide describes how to define and use interrupt functions.

1.1.10 Interrupt Function Facility

1.1.11 VWS Graphics Interface
VAX LISP provides access to the VWS graphics capabilities of the VAXstation
family of workstations. You can create windows on the screen, draw lines and
write text in the windows, track the workstation’s pointing device and react to
pointer buttons, and create LISP streams to windows. The VAX LISP /VMS
Interface to VWS Graphics describes this interface.

1.1.12 DECwindows Interface
VAX LISP provides access to the DECwindows Toolkit, which is a set of ap­
plication development tools and run-time routines that help you implement
DECwindows applications. VAX LISP/VMS DECwindows Programming Guide
describes how to use VAX LISP to access the Toolkit.

1.1.13 CLX Interface
VAX LISP provides an implementation of the CLX (Common LISP X) interface
to the X Window System protocol. CLX is a package of LISP routines that give
you access to the lower level capabilities of the X Window System without having
to explicitly call out to external routines or define non-LISP data structures.
VAX LISP/VMS DECwindows Programming Guide describes the VAX LISP
implementation of the CLX interface to the X Window System.

1.1.14 System-Building Utility
The VAX LISP System-Building Utility lets you create custom VAX LISP systems.
A custom VAX LISP system has the following potential advantages:
• It can exclude various components of VAX LISP, thereby reducing the size of

LISP.
• It can include VAX LISP code that you write.
• It can start execution by calling a function that you specify.
• It can be used as a delivery vehicle for a VAX LISP-based application.
The VAX LISP/VMS System-Building Guide describes the System-Building
Utility.

Introduction to VAX LISP 1-5

1.1.15 VAX LISP Function, Macro, and Variable Descriptions for VMS
VAX LISP contains many functions, macros, and variables that are either not
mentioned or are mentioned but not fully defined in the Common LISP language.
These functions, macros, and variables are divided into the following categories:
• Implementation-dependent objects mentioned but not fully defined in

Common LISP: The Language
• VAX LISP objects that implement the parts of VAX LISP that are described

in this manual
• VAX LISP extensions to the Common LISP I/O system
• Editor-specific objects
• System access-specific objects (pertaining to the call-out, alien structure,

interrupt function, and program synchronization facilities)
• Graphics-specific objects
• Objects that implement the VAX LISP System-Building Utility
These LISP objects let you use the VAX LISP facilities and some VMS facilities
without exiting or calling out from the LISP system.
The LISP objects in the first two categories listed above are described in VAX
LISP/VMS Object Reference Manual. VAX LISP extensions to Common LISP
I/O are described in VAX LISP Implementation and Extensions to Common
LISP and VAX LISP/VMS System Access Guide. Editor-specific objects are
described in Part III of the VAX LISP/VMS Editor Programming Guide. System
access-specific objects are described in the VAX LISP/VMS System Access
Guide. Graphics-specific objects are described in the VAX LISP/VMS Interface
to VWS Graphics and the VAX LISP/VMS DECwindows Programming Guide.
The VAX LISP System-Building Utility is described in the VAX LISP/VMS
System-Building Guide.

1.2 Help Facilities
When using VAX LISP, you can get help at the DCL, DECwindows, and the LISP
levels of operation.

1.2.1 DCL Help
The VMS help facility lets you obtain on-line information about a DCL command,
its parameters, and its qualifiers. Invoke the help facility by entering the HELP
command. When the HELP command is executed, the facility displays the
available information.
To obtain information about VAX LISP, enter the following command:
$ HELP LISP

1-6 Introduction to VAX LISP

1.2.2 DECwindows Help
The Help menu lets you obtain on-line information about any DECwindows
application. Help provides brief information about screen objects, concepts, or
tasks you can perform in applications.
• To get help on tasks in DECwindows applications, choose the Overview menu

item from the application’s Help menu.
• To get help on objects, such as menus, scroll bars, and dialog boxes, point

to the screen object and press and hold the Help key on your keyboard while
you click MB1. Note that help is not available on all objects in the VAX LISP
development environment.

• To get help on a menu item, press the Help key while you press and hold MBi
on the menu item, then release MBI.

For more detailed information on DECwindows help, see Appendix A.

1.2.3 LISP Help
VAX LISP provides two functions to obtain help during a LISP session: descr ibe
and apropos. The descr ibe function displays information about a specified
LISP object. The type of information the function displays depends on the
object you specify as its argument. You can use the apropos function to search
through a package for symbols whose print names contain a specified string. See
Common LISP: The Language for information about packages. Descriptions of
the descr ibe and apropos functions are provided in the VAX LISP/VMS Object
Reference Manual.

1.3 VMS File Specifications
A VMS file specification indicates the input file to be processed or the output file
to be produced. File specifications have the following format:
node::device\[directory\filename.filetype;version
A file specification has the following components:
node The name of a network node. The name can be either an integer or

a string and can include an access control string. The following node
name includes an access control string:

MIAMI"SMITH MYPASSWORD"::
This component applies only to systems that support DECneWVAX.

device The name of the device on which the file is stored or is to be written.
directory The name of the directory under which the file is cataloged. The name

must be a string. You can delimit the directory name with either
square brackets ([]) or angle brackets (< >).
You can specify a sequence of directory names where each name
represents a directory level. For example:

[SMITH.EXAMPLES]
In the preceding directory specification, EXAMPLES represents a
subdirectory.

Introduction to VAX LISP 1-7

filename The name of the file.
filetype An abbreviation that usually describes the type of data in the file.
version An integer that specifies which version of the file is desired. The

version number is incremented by one each time you create a new
version of the file. You can use either a semicolon (;) or a period (.) to
separate the file type and version.

The colons, brackets, period, and semicolon in the file specification format are
required. The marks separate the components of the file specification.
You do not have to supply all the components of a file specification each time
you compile a file, load an initialization file, or resume a suspended system. The
only component you must specify is the file name; the operating system supplies
default values for the components that you do not specify. Table 1—1 summarizes
the default values. The special variable »default-pathname-defaults* contains
the default values for the node, device, and directory elements.
The way the system fills in default values depends on the operation being
performed. For example, if you specify only a file name, the compiler processes
the source program if it finds a file with the specified file name that is stored on
the default device, is cataloged under the default directory name, and has an LSP
file type. If more than one file meets these conditions, the compiler processes
the file with the highest version number. Suppose you pass the following file
specification to the compiler:
$ LISP/COMPILE DBA1:[SMITH]CIRCLE.LSP

The compiler searches directory SMITH on device DBA1, seeking the highest
version of CIRCLE.LSP. If you do not specify an output file, the compiler
generates the file CIRCLE.FAS, stores it in directory SMITH on device DBA1, and
assigns it a version number that is one higher than any version of CIRCLE.FAS
cataloged in directory SMITH on device DBA1.

Table 1-1: File Specification Defaults
Optiona l
E lem en t D efau lt Value
node Local network node
device U ser’s current default device
directory U ser’s current default directory
filename Input—None

Output—Same as input file; if no input file is specified, there is no
default

filetype Depends on usage:
FAS—Fast-loading file (output from compiler)
LIS—Error listing (output from compiler)
*LSC—Editor checkpointing file
LSP—Source file (input to LISP reader or compiler)
SUS—Suspended system

version Input—Highest existing version number
Output—If no existing version, 1; if existing version, highest version
number plus 1

1-8 Introduction to VAX LISP

1.4 Logical Names
The VAX/VMS operating system provides a logical name mechanism that allows
programs to be device and file independent. Programs do not have to specify
the device on which a file resides or the name of the file that contains data if
you use logical names. Logical names provide great flexibility, because you can
associate them not only with a device or a complete file specification but also with
a directory or another logical name.
For more information on logical names, see the VMS DCL Concepts Manual.

1.5 Entering DCL Commands
This section lists hints for entering DCL commands.
• You can abbreviate command and qualifier names to four characters. You can

use fewer than four characters if the abbreviation is unambiguous.
• Precede each qualifier name with a slash (/).
• If you omit a required parameter (for example, a file specification), the DCL

command interpreter prompts you for the parameter.
• You can enter a command on more than one line if you end each continued

line with a hyphen (-).
• Press the Return key after you enter a command; pressing the Return key passes

the command to the system for processing.
• You can delete the current command line by pressing Ctrt/U.

• You can interrupt command execution by pressing Ctrl A'. If you do not enter
a command that executes another image, you can resume the interrupted
command by entering the DCL CONTINUE command. To stop processing
completely after pressing Ctrl/Y, enter the DCL STOP command.

Introduction to VAX LISP 1-9

Chapter 2

Using VAX LISP

This chapter describes the DCL LISP command and its qualifiers and explains
the following procedures for the terminal interface and VWS workstation:
• Invoking LISP
• Exiting LISP
• Entering input
• Deleting and editing input
• Entering the Debugger
• Using control key characters
• Creating programs
• Loading files
• Compiling programs
• Using suspended systems
• Using subprocesses
See Chapter 5 for additional information and restrictions on how to perform these
procedures from the DECwindows interface.

2.1 Invoking LISP
You invoke an interactive VAX LISP session by typing the DCL command LISP.
When it is executed, a message identifying the VAX LISP system appears, and
then the LISP prompt (Lisp>) is displayed. For example:
$ LISP
VAX LISP[TM], V3.0
Copyright © D ig i t a l Equipment Corporation . 1989.
A ll R igh ts Reserved
L isp>
See Section 2.10 for descriptions of the qualifiers you can use with the LISP
command.

Using VAX LISP 2-1

2.2 Exiting LISP
You can exit from LISP by using the LISP e x it function. For example:
L isp > (exit)
$

When you exit the LISP system, you are returned to the DCL level of operation.
If you have used the Editor, modified buffers are not saved on exiting LISP. See
Chapter 3 for information on how to save modified buffers before exiting LISP.
You cannot exit the LISP system by pressing Ctrl/Z, as you can with many other
interactive programs that run on VMS.

2.3 Entering Input
You enter input into the VAX LISP system a line at a time. Once you move to a
new line, you cannot go back to the previous line. However, you can recover an
input expression or an output value by using the following 10 unique variables:
/ * +
// ** ++
/// *** +++
These variables are described in Common LISP: The Language. The following
example illustrates the use of the plus sign (+) variable that is bound to the
expression most recently evaluated:
L isp > (cdr ' (a b c))
(B C)
L isp > +
(cdr (quote (a b c)))
L isp >

2.4 Deleting and Editing Input
The Delete key deletes characters to the left of the cursor on the current fine of
input. Ctrl/U deletes characters from the cursor position back to the beginning of
the line.
If you are using a video terminal, you can use control characters, function keys,
and arrow keys on the terminal to edit the current line of input.
Table 2-1 lists the keys you can use to delete and edit input.

NOTE
You can use the b ind-keyboard-function function to bind most of the
control characters listed in Table 2—1 to a LISP function. Binding a
control character in this way cancels the effect listed for that control
character in Table 2-1.

2-2 Using VAX LISP

Table 2-1: Keys Used in Line Editing

Key E ffect

j Ctrl/A| or [F14| t Switches between overstrike and insert modes in the current
line.

[Ctrl/Bj or [[j Recalls the last line entered.
[Ctri/D| or FF Moves the cursor one character to the left.
| Ctrl/E I Moves the cursor to the end of the line.
[ctri/F] or FF Moves the cursor one character to the right.
[C ii/H] O r [F12] t Moves the cursor to the beginning of the line.
< 3
ICtrl/Jf or 1 L in e fe ed | or |F13| t

Deletes the character to the left o f the cursor.
Deletes the word to the left of the cursor.

j Ctrl/U | Deletes characters from the cursor position back to the begin­
ning o f the line.

t This key is available only on the LK201 or later keyboards.

2.5 Entering the Debugger
If you make an error during an interactive VAX LISP session, the error auto­
matically invokes the Debugger, which replaces the LISP prompt (Lisp>) with
the Debugger prompt (Debug l>). For information on how to use the VAX LISP
Debugger, see Chapter 4. For information on how to use the VAX LISP Debugger
from the DECwindows interface, see Chapter 10.
Pressing Ctrl/C is a quick way to exit from the VAX LISP Debugger. If you want
to recover from an error by discarding the expression you typed and start over,
press Ctrl/C. Ctrl/C returns you to the read-eval-print loop, which displays the LISP
prompt (Lisp>).

2.6 Using Control Key Characters
Table 2-2 lists the control characters you can use in VAX LISP. Ctrl/C is the only
one whose listed function is specific to LISP. The other control characters perform
standard VMS functions.

NOTE
You can use the b ind-keyboard-function function to bind most of the
control characters listed in Table 2—2 to a LISP function. Binding a
control character in this way cancels the effect listed for that control
character in Table 2-2.
These control characters do not work in the VAX LISP Editor.

Using VAX LISP 2-3

Table 2-2: Control Characters

Control
Character Function
[Ctri/Cl Returns you to the top-level loop from any other command level. In

LISP, Ctrl/C invokes the CLEAR-INPUT function on the *TERMINAL-IO*
stream, then calls the ABORT function. If you want to recover from
an error by discarding the expression you typed and start over, press
Ctrl/C. (See ABORT in VAX LISP 1 VMS Object Reference Manual for an
example of changing the behavior of Ctrl/C.)

|Ctrl/0| Discards output being sent to the terminal until you press another
Ctrl/O.

|C1r!/Q| Resumes terminal output that was halted with Ctrl/S.
| Ctrl/R | Redisplays what is on a line.
| Ctrl/S | Stops output to the terminal until a Ctrt/Q is pressed.
[cifi7f| Displays process information. This is useful during a computation to

watch the resources used.
I Ctrl/U J Deletes characters from the cursor position back to the beginning of the

current input line. The prompt is not echoed in LISP.
ICtrl/XI Deletes all input not yet read from the type-ahead buffer.
fCtfi/Yl Returns you to the DCL level of control and purges the type-ahead

buffer.

2.7 Creating Programs
The most common way to create a LISP program is by using a text editor. In
this way, the program exists in a source file that can be loaded into the LISP
environment by the LISP load function.
Although you can compose source programs with any text editor, the VAX LISP
Editor provides facilities to enter and edit LISP source code. For example,
the Editor helps you balance parentheses and maintain proper indentation.
Furthermore, this editor, being integrated into the LISP environment, can be
extended with features that fit your own style of editing. See Chapter 3 for a
description of how to use the Editor.
Another way to create LISP programs is to define them, using the interpreter
in an interactive LISP session. If you define functions with the defun macro or
macros with the defmacro macro, the definitions become a part of the interpreted
LISP environment. You can then invoke your defined functions and macros.
However, since these definitions are not in a permanent text file, your work
is stored only temporarily and disappears when you exit VAX LISP. Entering
programs by typing to the interpreter is only useful for experimenting with small
functions and macros.

2.8 Loading Files
Before you can use the definitions stored in a file in interactive LISP, you must
load the file into the LISP system. The file can be compiled or interpreted;
compiled files tend to load more quickly. You can load a file into the LISP system
in three ways from a terminal interface:
• Load the file by specifying the DCL LISP /INITIALIZE qualifier. For example:

2-4 Using VAX LISP

$ LISP/INITIALIZE=MYINIT.LSP
VAX L ISP[TM], V ers ion V3.0
C op y r igh t © D ig i t a l Equipment C o rp o ra tion . 1989.
A l l R igh ts R eserved.
L isp >

The LISP prompt indicates the file has been successfully loaded. If the file is
not successfully loaded, an error message indicating the reason appears on
your terminal screen. Include the /VERBOSE qualifier to cause the names of
objects loaded in an initialization file to be fisted at the terminal. For more
information on the /VERBOSE qualifier, see Section 2.10.13.

• Load the file by using the LISP LOAD function when in an interactive LISP
session. For example:
L isp > (load " t e s t p r o g . l s p ")
; L oad ing c o n te n t s o f f i l e DBA1: [JONES]TESTPROG.LSP;1
; FACTORIAL
; FACTORS-OF
; F in ish ed lo a d in g DBA1: [JONES]TESTPROG.LSP;1
T
L isp >
The file name (testprog .l sp) in the example can be a string, symbol, stream,
or pathname, factorial and factors-of are the functions contained in the
file TESTPROG.LSP. The final T indicates that the file has been successfully
loaded. For more information on the load function, see VAX LISP /VMS
Object Reference Manual.

• Evaluate the contents of a buffer in the Editor when that buffer contains a
file. See Chapter 3 for more information on this topic.

With the /INITIALIZE qualifier, you can load more than one file at a time. With
the load function, however, you can specify only one file at a time.

2.9 Compiling Programs
You compile LISP programs by compiling the LISP expressions that make up the
programs. You can compile LISP expressions in two ways: individually, by using
the LISP compile function; or in a file, by using either the LISP compile-f il e
function within LISP or the LISP verb with the /COMPILE qualifier from DCL.

2.9.1 Compiling Individual Functions and Macros
In LISP, the unit of compilation is normally either a function or a macro. You can
compile a function or a macro in a currently running LISP session by using the
compile function. This function is described in Common LISP: The Language.
You normally call a LISP function first in interpreted form to see if the function
works. Once it works as interpreted, you can test it in compiled form without
having to write the function to a file. Use the compile function for this purpose.
When you compile a function or a macro that is not in a file, the consequent
compiled definition exists only in the current LISP; the definition is not in
a file. However, you can use the VAX LISP dncompile function to retrieve
the interpreted definition. This function, described in VAX LISP/VMS Object
Reference Manual, is useful when debugging programs. Because the interpreted
code shows you more of your function’s evaluation than the compiled code, you
can find the error more easily. You can modify the function definition in the
Editor to correct the error and also save your corrected version of the function

Using VAX LISP 2-5

in a file. See Chapter 3 for further information on using the Editor to write
interpreted functions to files.

2.9.2 Compiling Files
Any collection of LISP expressions can make up a program and can be stored in a
file. The compiler processes such a file by compiling the LISP expressions in the
file and writing each compiled result to an output file.
At a terminal interface, you can compile VAX LISP files either at DCL level with
the LISP command and the /COMPILE qualifier or in interactive VAX LISP with
the LISP compile-file function. For additional information on compilation from
the DECwindows interface, see Chapter 6.
The /COMPILE qualifier is described in Section 2.10.2. The compile-file
function is described in VAX LISP/VMS Object Reference Manual. The fol­
lowing example shows how the /COMPILE qualifier is used to compile the file
MYPROG.LSP at the DCL level:
$ LISP/COMPILE MYPROG.LSP
$
This example produces an output file named MYPROG.FAS.
The next example shows how the compile-file function can be used to compile
the file MYPROG.LSP from within the LISP system:
L isp > (c om p ile - f i l e "m yprog. lsp ")
S ta r t in g c om p ila t io n o f f i l e DBA1: [JONES]MYPROG.LSP;1
FACTORIAL com p iled .
F in ish e d c om p ila t io n o f f i l e DBA1: [JONES]MYPROG.LSP;1
0 E rro rs, 0 Warnings
"DBA1:[JONES]MYPROG.FAS;1"
L isp >
Both methods of compiling LISP files are equivalent except in their defaults. The
compile-file function automatically lists the name of each function it compiles
at the terminal, but the /COMPILE qualifier does not. Both methods produce
fast-loading files (type FAS) that contain code that runs more quickly than code
in uncompiled files. Fast-loading files are automatically placed in the directory
containing the source files from which they are compiled.
The first method of compiling files, using the LISP /COMPILE qualifier, has the
advantage that you can compile several files in one step. For example:
$ LISP/COMPILE FILE1.LSP, FILE2.LSP, FILE3.LSP

When you use the LISP compile-file function, it takes several steps to compile
several files, since you can compile only one file in each call to compile-file.
The second method of compiling files, using the LISP compile-file function,
has the advantage of enabling you to stay in LISP both during compilation
and afterwards. This method is convenient if you are using the LISP Editor to
create a file and you do not want to leave the LISP environment. The method
is necessary if the compilation depends on changes you have made to the LISP
environment; that is, you have defined some macros or changed a package.
The COMPILE-FILE function returns a namestring corresponding to the output file
it generates. Therefore, immediately after using the compile-file function, you
can load the resulting output file as follows:
L isp > (load *)

2-6 Using VAX LISP

2.9.3 Advantages of Compiling LISP Expressions
You can use both compiled and uncompiled (interpreted) files and functions
during a LISP session. Both compiled and uncompiled LISP expressions have
their advantages. The advantages of compiling a file, a macro, or a function
follow:
• Compiling a function or a macro is a good initial debugging tool, since the

compilation does static error checking, such as checking the number of
arguments to a function or a macro. For example, consider the following
function definition:
(defun t e s t (x)

(if (> x 0)
(+ 1 x)
(te st (try x) x)))

In the definition of the function te st , the alternate consequent (the false
part) of the IF condition invokes test with two arguments, (try x) and x,
while the function definition of TEST calls for only one argument. Despite this
error, TEST may work correctly as an interpreted (uncompiled) function if the
argument given is a positive number, since it uses only the first consequent
(the true part); so you may not detect the error. But if you compiled the
function, the compiler would detect the error in the second consequent and
issue a warning.

• A compiled file not only loads faster, but the compiled code executes much
faster than the corresponding interpreted code.

2.9.4 Advantage of Not Compiling LISP Expressions
You can debug run-time errors in an interpreted function more easily than you
can debug them in a compiled file or function. For example, if the debugger is
invoked because an error occurred in an interpreted function, you can use the
debugger to find out what code caused the error. If the debugger is invoked
because an error occurred in a compiled function, the code surrounding the form
that caused the error to be signaled may not be accessible. The stepper facility
is also more informative with interpreted than with compiled functions. See
Chapter 4 for information on the debugger and the stepper.

2.10 DCL LISP Command Qualifiers
The LISP command can be specified with several qualifiers according to the
standard VMS conventions. The format of the LISP command with qualifiers
follows:
LISP[/qualifier...]
Some qualifiers have a corresponding negative form, /NOqualifier, which negates
the specified action. Other qualifiers accept values. To specify a qualifier value,
type the qualifier name followed by an equal sign (=) and the value. For example:
/ INITIALIZE=MYPROG.LSP
Qualifier values are surrounded by braces ({ }) when you can choose only one
value from a list. For example:
/ERROR ACTION={EXIT OR DEBUG}

Using VAX LISP 2-7

lb specify a list of qualifier values, enclose the values in parentheses. For
example:
/ INITIALIZE=(MYPROG1.LSP,MYPROG2.LSP)
You can define DCL symbols to represent LISP command lines that you use
frequently. For example:
$ BIGLISP :== LISP/INITIALIZE=SYS$LOGIN:LISPINIT/MEMORY=20000
Following this command, the DCL symbol BIGLISP, when typed at the DCL
prompt, results in execution of the LISP command line shown.
Section 2.10.2 through Section 2.10.14 describe each qualifier in detail.

Table 2-3: DCL LISP Command Qualifiers

Qualifier Function
/COMPILE Invokes the VAX LISP compiler to compile one or more

source files (input arguments that default to the file type
LSP). /COMPILE is not the default qualifier for the LISP
command; /INTERACTIVE is the default qualifier.

/CSTACI^num ber Specifies the size of the control stack in the LISP session in
512-byte pages. The default is 185 pages.

/ERROREACTION={EXIT or DEBUG} EXIT causes your program to exit LISP when an error
occurs. EXIT is the default in batch mode jobs and in
compile mode (with the /COMPILE qualifier). DEBUG
invokes the VAX LISP debugger when an error occurs.
DEBUG is the default in an interactive LISP session.

/[N 0]INITIALIZE=(/iZe-s/>ec,...) Causes the LISP system to load an initialization file(s).
The default file type for an initialization file is LSP or FAS.
NOINITIALIZE suppresses the loading of initialization
files.

/INTERACTIVE Starts an interactive LISP session. /INTERACTIVE is the
default qualifier for the LISP command.

/[NO]LIST=[/iZe-spec] Specifies that a listing file be created during compilation.
A listing consists of the file name, date of compilation,
names of the LISP expressions compiled (if the /VERBOSE
qualifier is specified), and warning and error messages. The
default file type for a listing file is LIS. /NOLIST suppresses
a listing file and is the default except in batch mode. In
such jobs, /LIST is the default.

/[N OJMACHINE_CODE Includes VAX LISP machine code in the listing file.
/NOMACHINE_CODE suppresses a listing of the machine
code and is the default.

/MEMORY=numfoer Specifies the initial amount of dynamic virtual memory
LISP allocates in 512-byte pages. The default is 5000 pages.

(continued on next page)

2-8 Using VAX LISP

Table 2-3 (Cont.): DCL LISP Command Qualifiers
Qualifier Function

/[NO]OPTIMIZE=(SPEED:n,SPACE:7i,
SAFETY:n,COMPILATION_SPEED:rc)

Tells the compiler that each quality has the correspond­
ing value. SPEED is the speed at which the object code
runs, SPACE is the space occupied or used by the code,
SAFETY is the run-time error checking of the code, and
COMPILATION_SPEED is the speed of the compilation
process, n is an integer in the range 0 to 3. The value 0 is
the lowest priority value; the value 3 is the highest. The
default value for n is 1. See VAX LISP Implementation and
Extensions to Common LISP for a description of optimiza­
tion declarations.

/[NO]OUTPUT_FILE=[/ZZe-s/>ec] Causes the name of the compiled file to be the specified
name. The default output file name is the name of the
file being compiled. The default output file type is FAS.
/NOOUTPUT_FILE prevents compiled code from being
written to a file. /OUTPUT_FILE is the default.

/RESUME=file Resumes a suspended LISP system. The default file type for
a suspended LISP system is SUS. See Section 2.11 on Using
Suspended Systems.

/[NOIVERBOSE Lists on the output device and the listing file, if any,
the names of functions and macros defined in a file.
/NOVERBOSE suppresses a listing of function and macro
names defined in a file. /NOVERBOSE is the default.

/[NOJWARNINGS Specifies that the compiler is to produce warning mes­
sages. /NOWARNINGS suppresses warning messages.
/WARNINGS is the default.

2.10.1 Three Ways to Use the DCL LISP Command
Depending on the qualifier modifying it, you can use the DCL LISP command in
one of the following three ways called modes:
• INTERACTIVE—to invoke an interactive LISP session (the default)
• COMPILE—to compile LISP files
• RESUME—to resume a suspended LISP system
Table 2—4 fists the LISP command qualifiers that apply to each mode. Without
a qualifier, the DCL LISP command puts you in an interactive session (the
default).

Table 2-4: DCL LISP Command Qualifier Modes

Qualifier Mode
/COMPILE COMPILE
/CSTACK INTERACTIVE or COMPILE
/ERROR_ACTION INTERACTIVE or COMPILE or RESUME
/[NOIINITIALIZE INTERACTIVE or COMPILE

(continued on next page)

Using VAX LISP 2-9

Table 2-4 (Cont.): DCL LISP Command Qualifier Modes
Qualifier Mode

/INTERACTIVE INTERACTIVE
/[NOJLIST COMPILE
/[NO]MACHINE_CODE COMPILE
/MEMORY INTERACTIVE or COMPILE or RESUME
/[NOJOPTIMIZE COMPILE
/[NO]OUTPUT_FILE COMPILE
/RESUME RESUME
/[NOJVERBOSE INTERACTIVE or COMPILE
/[NOJWARNINGS COMPILE

2.10.2 /COMPILE
The /COMPILE qualifier invokes the VAX LISP compiler to compile one or more
source files. The compiler creates a fast-loading (FAS) file from each source file.
Unlike other compilers, such as those for BASIC and COBOL, the LISP compiler
does not generate VMS object modules. Consequently, files processed by the LISP
compiler do not have the OBJ file type. FAS is the default file type for a LISP
compiled file. If the /COMPILE qualifier is used with the /NOOUTPUT_FILE
qualifier, the compiler compiles the source file but does not put the compilation
in a file. That method is helpful if your purpose in compiling the file is to check
for errors. See Section 2.10.11 for more information on the /[NO]OUTPUT_FILE
qualifier.
By default, the compiler gives your newly compiled file the same name as your
source file with a FAS file type, puts the new file in your source file’s directory,
and returns you to DCL command level when the compiler is finished. If you
want functions to be listed on your output device as they are compiled, you
must specify the /VERBOSE qualifier (see Section 2.10.13). If you want to
compile files with the aid of initialization files, use the /INITIALIZE qualifier (see
Section 2.10.5). For information on how to load files, see Section 2.8.
If you do not specify a file name with the /COMPILE qualifier, DCL prompts you
for a file name. If you use the qualifiers /[NOJLIST, /[NO]MACHINE_CODE,
/OPTIMIZE, /[NO]OUTPUT, /[NOJVERBOSE, and /[NO]WARNINGS with the
/COMPILE qualifier and you specify them before the files to be compiled, the
qualifiers apply to all the files to be compiled. If you use the preceding qualifiers
with the /COMPILE qualifier, but you specify them after a file name, the
qualifiers apply only to the immediately preceding file. If you specify qualifiers
for all the files and a conflicting qualifier for a particular file, the LISP system
uses the qualifier specified for the particular file.
Format
LISP/COMPILE file-speci,...]

Example
$ LISP/COMPILE FACTORIAL.LSP
$

Mode
Compile

2-10 Using VAX LISP

2.10.3 /CSTACK
The /CSTACK qualifier lets you specify the size of the default control stack in
a LISP session in 512-byte pages. The system requires a minimum of 32 pages
to function. If you specify fewer than 32 pages with the /CSTACK qualifier, the
system disregards the requested number of pages and uses 32 pages. The default
number of pages is 185.
You can determine the total space allocated to all stacks from within LISP
with the room or room-allocation function. However, since you cannot use the
/CSTACK qualifier with the /RESUME qualifier, if you want to specify the size
of the control stack, you must do it when you first invoke LISP. For information
on the room and room-allocation functions, see the VAX LISP/VMS Object
Reference Manual.
Format
LISP/CSTACK=number-of-pages

or

LISP/COMPILE/CSTACK=numi>e/--of-pagres file-spec

Example
$ LISP/CSTACK=200
VAX L ISP[TM], V3.0
C op y r igh t © D ig i t a l Equipment C o rp o ra t ion . 1989
A l l R igh t s R eserved.
L isp >

Mode
Interactive or Compile

2.10.4 /ERROR_ACTION
The /ERROR_ACTION qualifier has two values: EXIT and DEBUG.
• EXIT causes the evaluation of your program to stop and exits LISP if a

fatal or a continuable error occurs (for a complete description of errors and
warnings, see VAX LISP Implementation and Extensions to Common LISP).
EXIT is the default in batch mode and in compile mode, that is, with the
/COMPILE qualifier.

• DEBUG calls the VAX LISP debugger if an error occurs. Once you are in the
VAX LISP debugger, you can look at your error, inspect the control stack, and
continue your program from the point at which it stopped. DEBUG is the
default in an interactive session. See Chapter 4 for more information on the
debugger.

You can use the /ERROR_ACTION qualifier when invoking an interactive LISP
session or when compiling files with the /COMPILE qualifier. The /ERROR_
ACTION qualifier is mainly useful for batch jobs. It is equivalent to the VAX
LISP *error-action * variable (see VAX LISP/VMS Object Reference Manual).
Format
LISP/ERROR ACTION=va/ue

Using VAX LISP 2-11

Example
$ LISP/COMPILE/ERROR_ACTION=DEBUG MYPROG.LSP

Mode
Interactive, Compile, or Resume

2.10.5 /[NOJINITIALIZE
The /INITIALIZE qualifier causes the LISP system to load one or more initial­
ization files containing LISP source code or compiled code. An initialization file’s
purpose is to predefine functions you may want to use in a LISP session. The
default is to have no initialization file.
If the initialization files contain calls to exiting functions or if these files
contain errors and the /ERROR_ACTION qualifier is set to EXIT (/ERROR_
ACTION=EXIT), the LISP system returns to the DCL level without prompting
for interactive input. If the initialization files contain errors and the /ERROR_
ACTION qualifier is set to DEBUG (/ERROR_ACTION=DEBUG), the LISP sys­
tem puts you into the debugger. See Section 2.10.4 for more information on the
/ERROR_ACTION qualifier.
The /INITIALIZE qualifier uses the LISP load function to default the proper
type, directory, and other parts of a file specification. For example, you do not
have to specify the file type if your initialization file has a FAS or a LSP file type.
If your directory contains a file name with both a FAS and a LSP file type, the
LISP system selects the most recently created or modified file as the initialization
file. If only a LSP type file or only a FAS type file of a given name and directory
exists, the LISP system selects the type file that exists.
Use the /VERBOSE qualifier (see Section 2.10.13) to display on the terminal
screen the names of any functions or macros in the initialization file.
You can use the /INITIALIZE qualifier when invoking an interactive LISP
session or when compiling files with the /COMPILE qualifier. You cannot use the
/INITIALIZE qualifier with the /RESUME qualifier; if you do so, the /INITIALIZE
qualifier is disregarded.
Format
LISP/INITIALIZE=(fi/e-spec,...)
or
LISP/COMPILE/INITIALIZE=(f//e-spec,...) file-spec

Example
$ LISP/INITIALIZE=MYINIT/VERBOSE
VAX LISP[TM], V ersion V3.0
Copyright © D ig i t a l Equipment C orporation . 1989
A ll R igh ts Reserved.
; Loading con ten ts o f f i l e DBA1: [JONES]MYINIT.LSP;1
; FACTORIAL
; FACTORS-OF
; F in ish ed load in g DBA1: [JONES]MYINIT.LSP;1 ★

In the preceding example, the file type defaults to LSP. factorial and factors-
OF are functions that are loaded into the LISP system from Jones’s initialization
file. The form (se tf *top-ievei-prom pt* "*") in the initialization file changes
the L isp> prompt to an asterisk (*). The *top-level-prompt* variable is de­
scribed in VAX LISP /VMS Object Reference Manual.

2-12 Using VAX LISP

The setf form and the prompt variable are not listed on an output device when
the file is loaded, because the /VERBOSE qualifier lists only functions and macros
defined in the file.
Mode
Interactive or Compile

2.10.6 /INTERACTIVE
The /INTERACTIVE qualifier, the default, starts an interactive LISP session.
Mode
Interactive

2.10.7 /[NOJLIST
The /LIST qualifier is meaningful only if it is specified with the /COMPILE
qualifier. The /LIST qualifier specifies that the compiler generate a listing file
during compilation. You must specify this qualifier if you want a fisting file. A
fisting includes the name of the file compiled, the date it was compiled, warning
or error messages produced during compilation, and a summary of warning and
error messages. If you specify the /VERBOSE qualifier with the /LIST qualifier,
the fisting also includes the names of the functions compiled.
Specify the /LIST qualifier with a file name value only when you want the fisting
file name to be different from the name of the source file. If you specify the /LIST
qualifier without a file name, the LISP system produces a fisting file with a LIS
file type and the same name as the source file.
The /NOLIST qualifier suppresses a fisting and is the default except in batch
mode. The /LIST qualifier is the default for batch mode operations.
Format
LISP/COMPILE/LIST[=fite-spec] file-spec

Example
$ LISP/COMPILE/LIST=FACTORIAL.LIS/VERBOSE MYPROG.LSP

Sample Listing File
L is t in g ou tpu t f o r f i l e
C om piled a t 10:33:30 on
L isp V er s ion V3.0

DBA1:[JONES.LIS]MYPROG.LSP;1
Monday, 23 January 1989 by JONES

S ta r t in g c om p ila t io n o f f i l e
FACTORIAL com p iled .
F in ish e d c om p ila t io n o f f i l e
0 E rro rs , 0 Warnings

DBA1:[JONES.LIS]MYPROG.LSP; 1

DBA1: [JONES.L I S] MYPROG.LSP;!

Mode
Compile

Using VAX LISP 2-13

2.10.8 /[NO]MACHINE_CODE
The /MACHINE_CODE qualifier is meaningful only if it is specified with the
/COMPILE qualifier. The /MACHINE_CODE qualifier requests the compiler to
put a listing of the VAX LISP machine code in a file separate from the FAS file
the compiler generates. The compiler also puts anything usually included in a
listing file in this file (see Section 2.10.7 for a description of a listing file).
VAX LISP machine code is similar to a standard assembly language code.
However, compiling LISP source code does not generate object modules that must
be linked.
The /MACHINE_CODE qualifier has no effect on the production of machine
code; the qualifier produces only a machine-code listing file. The machine-code
listing file generated when you use the /MACHINE_CODE qualifier has the same
name as your source file and has a LIS file type (unless you also used the /LIST
qualifier to specify a different name).
The /NOMACHINE_CODE qualifier, the default, suppresses a listing of LISP
machine code.
Format
LISP/COMPILE/MACHINE_CODE file-spec

Example
S LISP/COMPILE/MACHINE_CODE MYPROG.LSP

Mode
Compile

2.10.9 /MEMORY
The /MEMORY qualifier lets you specify the amount of dynamic virtual memory
the LISP system allocates in 512-byte pages. This system requires a minimum of
5000 pages of dynamic virtual memory to function. This memory is in addition
to the read-only and static memory. Consequently, the default page size for the
dynamic virtual memory is 5000 pages. If you specify fewer than 5000 pages with
the /MEMORY qualifier, the system disregards the requested page size and uses
the default page size. You do not need the /MEMORY qualifier if you intend to
use no more than 5000 pages of dynamic memory.
lb see how many pages of memory are available at any point while you are in
LISP, use the LISP room function. If you need more memory, LISP allocates it for
you automatically.
Format
L\SPMEMORY=number-of-pages
or
USP/COMPILE/MEMORY=number-o/-papes file-spec

2-14 Using VAX LISP

Example
$ LISP/MEMORY=15000
VAX L ISP[TM], V3.0
C opy r igh t © D ig i t a l Eguipment C o rp o ra tion . 1989.
A l l R igh ts R eserved
L isp >

Mode
Interactive, Compile, or Resume

2.10.10 /[NOJOPTIMIZE
The /OPTIMIZE qualifier lets you optimize the results of compilation of your
program according to the following qualities:
• SPEED (execution speed of the code)
• SPACE (space occupied by the code)
• SAFETY (run-time error checking of the code)
• COMPILATIONJ5PEED (speed of the compilation process)
You can optimize your program by setting a priority value for each quality. That
value must be an integer in the range of 0 to 3. The value 0 means the quality
has the lowest priority in relationship to the other qualities; the value 3 means
the quality has the highest priority in relationship to the other qualities. When
you do not specify the /OPTIMIZE qualifier, the qualities each take the default
value of 1. To suppress optimization, use the /NOOPTIMIZE form of this qualifier.
The /OPTIMIZE qualifier is meaningful only if it is specified with the /COMPILE
qualifier. The /OPTIMIZE qualifier affects only the compiler and does nothing
to the interpreter, the debugger, or any other VAX LISP facility. See VAX LISP
Implementation and Extensions to Common LISP, Appendix B of this manual,
and Common LISP: The Language for information on specifying optimization
declarations.
Format
LISP/COMPILE/OPTIMIZE=(qua//ty:i<'a/ue[,...]) file-spec

Example
$ LISP/COMPILE/OPTIMIZE=(SPEED:3,SAFETY:2) MYPROG.LSP
or
$ LISP/COMPILE/OPTIMIZE=SPEED:3 MYPROG.LSP

Mode
Compile

2.10.11 /[NO]OUTPUT_FILE
The /OUTPUT_FILE qualifier is meaningful only when it is specified with the
/COMPILE qualifier. The /OUTPUT_FILE qualifier tells the compiler to write the
compiled code to a specific file. If you specify the /OUTPUT_FILE qualifier with
a file name, the LISP system puts the compiled code in a file with that specified
name. Use the /OUTPUT_FILE qualifier only when you want to change the name

Using VAX LISP 2-15

of the compiled file so that the source file and the compiled file have different
names.
The /OUTPUT_FILE qualifier does not specify a listing file, only a compiled file.
See the /LIST qualifier (Section 2.10.7) for an explanation of a listing file.
If this qualifier is not specified, the compiler produces a file with the same name
as the source file and a type of FAS.
The /NOOUTPUT_FILE qualifier prevents compiled code from being written
to a file. If you want only to check a file for errors, use this qualifier with the
/COMPILE qualifier.
Format
LISP/COMPILE/OUTPUT_FILE[=ft/e-spec] file-spec

Example
$ LISP/COMPILE/OUTPUT_FILE=TEST.FAS FACTORIAL.LSP

Format
LISP/COMPILE/NOOUTPUT_FILE file-spec

Example
$ LISP/COMPILE/NOOUTPUT_FILE MYPROG.LSP

Mode
Compile

2.10.12 /RESUME
The /RESUME qualifier resumes a suspended LISP system where the suspension
occurred. See Section 2.11 for an explanation of suspended systems. The
/RESUME qualifier cannot be used with the /CSTACK or /INITIALIZE qualifier.
Format
LiSP/RESUME=file-spec

Example
$ LISP/RESUME=MYPROG.SOS
T
L isp>

Mode
Resume

2.10.13 /[NO]VERBOSE
The /VERBOSE qualifier lists on the output device and in the listing file the
names of the functions defined or loaded in an initialization file, and the names of
functions in a file as they are compiled. The /VERBOSE qualifier applies only to
files loaded with /INITIALIZE qualifier or compiled with the /COMPILE qualifier.
The /NOVERBOSE qualifier (the default) prevents the names of functions
compiled with the /COMPILE qualifier or loaded with the /INITIALIZE qualifier
from being listed in a file or at the terminal.

2-16 Using VAX LISP

Format
LISP/VERBOSE/INITIALIZE=ffle-spec
or
LISP/COMPILEA/ERBOSE file-spec

Examples

1. $ LISP/VERBOSE/INIT IALIZE=MYINIT.LSP
VAX L ISP [TM] , V3.0
C op y r igh t © D ig i t a l Equipment C o rp o ra tion . 1989.
A ll R igh ts R eserved.
; L oad ing c o n te n t s o f f i l e DBA1: [JONES]MYINIT.LSP;1
; FACTORIAL
; FACTORS-OF
; F in ish ed lo a d in g DBA1: [JONES]MYINIT.LSP; 1
L isp >
factorial and factors-of are functions that are loaded into the LISP system
from Jones’s initialization file.

2. $ LISP/VERBOSE/COMPILE MYPROG.LSP
S ta r t in g c om p ila t io n o f f i l e DBA1: [JONES]MYPROG.LSP;1
MULT com p iled .
SUB com p iled .
DIV com p iled .
F in ish ed c om p ila t io n o f f i l e DBA1: [JONES]MYPROG.LSP; 1
0 E rro r s , 0 Warnings
$
mult, sub, and d iv are functions compiled in the file, MYPROG.LSP. The
compiled definitions of these functions are written to the file, MYPROG.FAS.

Mode
Interactive or Compile

2.10.14 /[NO]WARNINGS
The /WARNINGS qualifier specifies that the LISP system is to produce warning
messages. Warning messages are the default when you use the /COMPILE
qualifier.
A warning message indicates that the LISP system has detected something that
is likely to be wrong. If warnings are signaled while a file is being compiled
and the value of the *break-on-warnings* variable is n il (the default), the
compilation continues. But, if errors are signaled, compilation of the expression
causing the error is not continued though the rest of the file is compiled. See VAX
LISP Implementation and Extensions to Common LISP for more information on
the differences between warnings and errors.
The /NOWARNINGS qualifier suppresses warning messages.
The following example of a warning message is the message the compiler displays
for the test function defined in Section 2.9.3.
$ LISP/COMPILE TEST.LSP
Warning in TEST

TEST e a r l i e r c a l l e d w ith 2 a rg s, wants a t m ost 1.
$

Using VAX LISP 2-17

Format
LISP/COMPILE/NOWARNINGS file-spec

Example
$ LISP/COMPILE/NOWARNINGS MYPROG.LSP

Mode
Compile

2.11 Using Suspended Systems
A suspended system is a binary file that is a copy of the LISP memory in use
during an interactive LISP session up to the point at which you create the
suspended system. The purpose of a suspended system is to save the state of an
interactive LISP session. You may want to do this if your work is incomplete. By
resuming LISP from a suspended system, you can continue your work from the
point at which you stopped.

NOTE
A suspended system can be resumed only by the VAX LISP system
from which it was suspended. The VAX LISP system that resumes a
suspended system must meet these criteria:
1. The VAX LISP system must be the same version of VAX LISP as

the suspending system.
2. A custom VAX LISP system created with the VAX LISP System-

Building Utility must be the same system as the suspending system
or a copy of the suspending system. (See the VAX LISP /VMS
System-Building Guide for a description of the System-Building
Utility.)

2.11.1 Creating a Suspended System
The VAX LISP suspend function puts in a file the LISP memory in use during
an interactive LISP session, enabling you to resume the same LISP session
at a later time. The suspend function does not stop the current LISP session;
you can continue to use the LISP session after the suspend function has put a
copy of memory into a file. The suspend function also automatically invokes a
garbage collection of dynamic memory space. See VAX LISP Implementation and
Extensions to Common LISP for information on garbage collections.
In the following example, the file FILEX.SUS is created and a copy of the memory
in a LISP session is put into that file. The file name can be a string, symbol, or
pathname. See VAX LISP/VMS System Access Guide and Common LISP: The
Language for a description of pathnames.
L isp> (suspend " f i le x . su s ")
; S ta r t in g f u l l GC . . .
; . . . F u ll GC f in ish ed
NIL
L isp>
After your file is created, the system returns to your interactive LISP session.
You can exit LISP when you see the LISP prompt. Your suspended system file is
placed either in your default directory or in the directory you specified in the file
specification. The file is usable only in an interactive LISP session.

2-18 Using VAX LISP

If you use the Editor before using the suspend function, Editor buffers that
are associated with files are deleted in the resumed system. Consequently, if
you want to save any material in a buffer, put that material in a file. For a
description of the VAX LISP Editor, see Chapter 3. For a description of the
suspend function, see VAX LISP/VMS Object Reference Manual.

2.11.2 Resuming a Suspended System
To resume a suspended system, use the LISP command with the /RESUME
qualifier and the name of the file containing the suspended system. Program
execution continues from the point at which you called the suspend function. See
Section 2.10.12 for an explanation of the /RESUME qualifier.
After it creates a suspended system, the suspend function returns n il and
execution continues with the LISP environment exactly as it was before the call
to suspend. However, when execution resumes as a result of using the /RESUME
qualifier, the suspend function returns T. Therefore, a program can use the
return value of suspend to determine if execution is resuming as the result of
the /RESUME qualifier, and take action if necessary. See the suspend function
in VAX LISP/VMS Object Reference Manual for a description of the effects of
suspending a system.
When resuming a suspended system, VAX LISP checks to make sure that the
resuming system matches the suspending system. The resuming system must be
the same system that suspended or a copy of the file containing the system that
suspended.

2.12 Using Subprocesses
A subprocess is a process that you create or go to from the LISP system for
executing Command Language Interpreter (CLI) commands. The purpose of
a subprocess is to permit you to interrupt execution of a LISP process and to
optionally execute the specified CLI command. You may want to do this to read
a mail message or manipulate files while saving the state of an interactive LISP
session.

2.12.1 Creating a Subprocess
The VAX LISP spawn function creates a process for executing CLI commands. If
you specify the : parallel keyword with a value of T, the LISP process continues
to execute while the subprocess is executing. If you do not specify this keyword
or if you specify it with n il , the LISP process is put into a VMS hibernation state
until the subprocess completes its execution. A hibernation state is one in which
a process is inactive, but can become active at a later time. For a description of
the spawn function, see VAX LISP/VMS Object Reference Manual.
In the following example, the user creates a subprocess to read a mail message,
exits from MAIL, and resumes LISP.
L isp > (spawn : comm and-string "m ail")
MAIL> read
#1 5-OCT-1988 14:38:10.02
From: VLSP: : JONES
To: Smith
CC:
S u b j: Tomorrow's com m ittee m eetin g
We w i l l h o ld tom orrow 's m eetin g as sch edu led .

Using VAX LISP 2-19

P . Jones
MAIL> e x i t
L isp >
The value of : command-string must be a DCL command. By default, the spawn
function does not process a command. In this example, because the user did not
specify the : parallel keyword, the LISP process was put into a hibernation state
until the subprocess completed its execution.

NOTE
The VAX LISP spawn function can be used with the DECwindows
interface only if you specify the : parallel keyword with a value of T.

2.12.2 Connecting to a Subprocess
The attach function connects your terminal to a process and puts the current
LISP process into a VMS hibernation state. You can use this function to switch
terminal control from one process to another. The attach function is described in
VAX LISP/VMS Object Reference Manual.
In the following example, the call to the spawn creates a subprocess, the DCL
ATTACH command attaches the terminal back to the process SMITH, and the
call to the VAX LISP attach function returns control to the process SMITH_1.
L isp > (spawn)
$ ATTACH SMITH
L isp > (attach "sm ith _ l")
%DCL-S-RETDRNED, c o n t r o l re tu rn ed t o p r o c e s s SMITH_1
$

NOTE
The ATTACK function can be used only if LISP is invoked from DCL on
a terminal interface; it cannot be used if LISP is invoked from another
command language interpreter or from DECwindows.

2.12.3 Exiting from a Subprocess
If you entered a subprocess with a value assigned to : command-string, exiting
that process returns you to LISP. If you spawned a subprocess without assigning
a value to : command-string, logging out returns you to LISP.

2-20 Using VAX LISP

Chapter 3

Using the VAX LISP Editor

This chapter describes how to use the VAX LISP Editor to edit LISP objects and
files containing LISP code. This chapter provides all the information you need to
edit LISP and general text. If you want to learn more about the Editor or wish
to customize it in ways not covered in this chapter, refer to the VAX LISP /VMS
Editor Programming Guide.

NOTE
This chapter assumes you are using the Editor in its default form to
edit LISP objects or LISP files. That is, the Editor’s major style is "EDT
Em ula tion " and its minor style is "VAX l i s p ". If you are using or wish
to use the "emacs" style provided with the Editor, see Appendix D.

This chapter is divided as follows:
• Section 3.1 introduces the Editor and explains how to start it, how to get

work into and out of it, and how to return to the LISP interpreter.
• Section 3.2 explains how to edit text, including special features for editing

LISP objects and code.
• Section 3.3 shows how you can have more than one LISP object or file

available for editing at one time and explains how to switch among the
objects or files you are editing.

• Section 3.4 explains how to recover from problems while you are using the
Editor.

• Section 3.5 shows how you can customize the Editor to suit your needs.
Each major section ends with a table of the commands and key bindings that are
covered in that section.

NOTE TO DECWINDOWS USERS
Chapter 8 describes how to use the Editor in the DECwindows
environment.

NOTE TO VWS VAXSTATION USERS
When you use the Editor on a VWS VAXstation, screen behavior
is different, and you can use the pointer to perform some editing
operations. Throughout this chapter, these differences are noted at
appropriate locations. Section 3.6 summarizes Editor behavior and use
on a VWS VAXstation.

Using the VAX LISP Editor 3-1

3.1 Introduction to the Editor
The VAX LISP Editor is a general-purpose text editor. It includes some capabili­
ties that make it useful for editing LISP code. For example, the Editor matches
parentheses and indents lines for you. It can also evaluate a LISP function
definition or symbol value that you are editing.
You use the Editor from the LISP environment. The Editor is a part of LISP
and cannot be used outside LISP. You can move freely between the Editor and
the LISP interpreter. When you go from the Editor to the interpreter, the Editor
preserves the state of your work until you return to it.
The Editor works only on a video terminal or a VAXstation. It maintains the
screen at all times to reflect the contents of the LISP object or file. When you
insert text in the middle of fines or between fines, the Editor immediately adjusts
the screen to show your modification.
You communicate with the Editor by using commands. Many commands are
available. Keys or key sequences invoke the most useful commands, so you do
not have to type the command names. Keys on the numeric keypad invoke a set
of commands that emulate the EDT keypad editor, making the VAX LISP Editor
similar to EDT.
The Editor lets you have more than one LISP object or file available for editing at
one time. Each object or file resides in its own buffer. Commands let you switch
from one buffer to another, and you can view more than one buffer at a time or
more than one place in the same buffer.
The rest of this section describes the basics of using the Editor. Section 3.1.6
contains a table of the commands presented in this section.

3.1.1 Editing Cycle
An editing cycle starts when you are using the VAX LISP interpreter and you
want to create or modify a LISP object or a file containing LISP code. The cycle
is as follows:
• You start the Editor by calling the ed function, supplying as an argument

the name of the object or the file specification of the file you wish to create or
modify.

• You use Editor commands to edit the object or file. Most frequently used
Editor commands are invoked by control characters or keys on the numeric
keypad.

• If you are editing a LISP object, you use a command to make your edited
version replace the function definition or value. If you are editing a file, you
use a command to write the new or modified file out to the disk.

• You use a command to pause the Editor, returning you to the LISP inter­
preter.

• In the LISP interpreter, you can now use the new function definition or value
of the object or you can load the new or modified file.

• If further modifications are required, you can use the ED function without
arguments to return you to the Editor. Resuming the Editor in this way
brings you back to the Editor state that existed when you paused the Editor.

This cycle can occur as many times and on as many objects or files as needed.

3-2 Using the VAX LISP Editor

3.1.2 Invoking the Editor
The ED function invokes the VAX LISP editor. The first time you invoke the
Editor during a LISP session, be sure to supply an argument to the ED function.
The argument identifies the object or file you want to edit.
To edit a LISP object, give the object’s symbol as the argument. For example, the
following form edits the function definition of the symbol sh ip-accessor:
L isp > (ed ' sh ip - a c c e s so r)
You can also edit the value of a LISP symbol, rather than its function definition,
by using the iTYPE keyword with the ED function, as shown in this example:
L isp > (ed ' s h i p - l i s t :ty p e rvalue)

l b edit a file, give the file specification as the argument to the ed function. For
example:
L isp > (ed " c lo c k . l s p ")
The first time you use the ed function, the screen clears. Then, after some
initialization messages appear, the screen appears as shown in Figure 3—1.

Figure 3-1: Invoking the Editor

Information Area MLO-002784

NOTE TO VWS VAXSTATION USERS
A new window appears; the window contains the Editor display. The
window is taller than a standard 24-line screen, but otherwise the
display is identical to that seen on a video terminal.

Using the VAX LISP Editor 3-3

Note the following points about this screen display:
• The label strip near the bottom of the screen tells you that you are editing

the function definition of sh ip -accessor , you are using the major style called
"EDT Em ula tion " and the minor style called "VAX LISP", and your current
movement direction is forward. The movement direction is useful to you
while you are editing. You need not concern yourself with styles at this point.

• The information area at the bottom of the screen tells you that you are
editing a new function definition. In general, the information area contains
short informational messages about Editor operations and errors.

• The cursor is positioned at the upper left comer of the screen. The cursor
shows where new text will be inserted.

After you have used the Editor, you can pause it (see Section 3.1.5) and return to
the LISP interpreter. Later, you may want to resume your editing. If you want to
return to the Editor state you left, call the ed function without arguments:
L isp > (ed)
You can also supply an argument—another LISP symbol or file—when you
resume the Editor. The LISP symbol or file you specify does not replace the
symbol or file you were editing when you paused the Editor. The old symbol or
file is made inactive, although it is still available for editing. See Section 3.3 for
details.
If you use the ed function without arguments to start the Editor, you see the
screen display shown in Figure 3-2.

Figure 3-2: The Editor Screen with Help Message

This means that the Editor is running but has nothing to edit. You can return to
the LISP interpreter by pressing Ctrl/X Ctrl/Z. Or, you can press Ctrl/Z and enter an
Editor command by name, as described in Section 3.1.3.

3-4 Using the VAX LISP Editor

NOTE
In the interpreter, you can use the b in d-keyboard-function function to
bind a control character (such as Ctrl/E) to the ed function, allowing you
to invoke or resume the Editor asynchronously by pressing the control
character. If you do this, do not specify a value greater than l with the
b in d-keyboard-function :LEVEL keyword. Using a value greater than
l may disrupt the Editor’s operation.

3.1.3 Interacting with the Editor
You interact with the Editor through commands. Commands do the following:
• Control the operation of the Editor: pause it, change from one buffer to

another, set operating characteristics, and so on.
• Modify the LISP object or file that you are editing.
To enter a command to the Editor, you can type its name or press a key or
sequence of keys that causes the command to be executed. The two ways are
equivalent.
• To type a command by name, first press Ctrl/Z. This causes a prompt to appear

just below the label strip as shown in Figure 3-3.

Figure 3-3: Entering Commands at the Editor Prompt

Function SHIP-ACCESSOR Forward EDT Emulation ("VAX LISP")

Enter command name!
MLO-002786 * •

Type the name of the command, then press Return. While you are typing, you
can use any of the editing keys described in Section 3.2 to edit your input.
You must supply the full name of the command. (However, once you have
typed part of the command, the Editor can complete the name for you or
display a fist of command names that start that way; see Section 3.1.3.2.)

• If a key or key sequence is bound to the command, you can enter the com­
mand by pressing that key or key sequence. Most frequently used commands
have keys or key sequences bound to them. You cam use the " L is t Key
B in d in g s" command to see which keys are currently bound to commands.

For example, to enter the "Pause E d it o r " command, you can press Ctrl/Z, type
"Pause E d it o r " in response to the command prompt, and press Return. Or, you can
press Ctrl/X Ctrl/Z, which is bound to the "Pause E d it o r " command. Both methods
cause the Editor to pause and return you to the LISP interpreter.
If you press Ctrl/Z but then decide that you do not want to type a command, or
if you decide to cancel a command in the middle of its execution, press Ctrl/C.
Ctrl/C stops the current command and makes the Editor ready to accept other
commands.

Using the VAX LISP Editor 3-5

Commands are introduced throughout this chapter. Appendix E contains short
descriptions of the available commands and their key bindings (if any).

3.1.3.1 Getting Help
The Editor provides different kinds of help. You can press the Help key (either
PF2 on the numeric keypad or the Help key on the LK201 or later keyboards) at any
time to get help. A window called <rVAX LISP Editor General Help” appears. It
contains instructions on how to move around in a window and between windows
and how to remove a window from the screen. Tb remove the window containing
this help text from the screen, press Ctrl/X Ctrl/R.

If you press the Help key while the Editor is displaying a prompt—for example,
after you have pressed Ctrl/Z—the Editor displays help on the prompt. Typically,
the help explains the prompt and describes the options you have. Press Ctrl/V to
scroll through this help text. The text will disappear from the screen when you
have entered a response to the prompt and pressed Return.

The Editor also provides the "D e s c r ib e " and "A propos" commands to obtain
information on Editor objects. These commands are similar to the LISP functions
of the same names. The "D e s c r ib e " command displays a description of an Editor
command (by default) or other Editor object. The "A propos" command lists all
Editor commands or other specified Editor objects whose names contain a certain
string. For example, using the "A propos" command for the string “file” produces
the display shown in Figure 3—4.

Figure 3—4: Using APROPOS in the Editor

You can also obtain descriptions of LISP symbols through the Editor when you
are editing LISP code. The Ctrl/? key invokes the LISP descr ibe function on the
word at the current cursor position.

3-6 Using the VAX LISP Editor

NOTE TO VWS VAXSTATION USERS
You can also invoke the LISP descr ibe function by moving the pointer
cursor to the symbol to be described and pressing the right pointer
button.

You can use the cursor movement techniques described in Section 3.2.3 to move
around in the window containing help text. When you are done, use the key
sequence Ctrl/X Ctrl/R to remove this window and return to editing.

3.1.3.2 Input Completion and Alternatives
The Editor can help you enter responses to prompts in two ways. The first way
is input completion. If you press Ctrl/Space at any time while you are typing a
response to a prompt, the Editor will attempt to complete your input for you. The
Editor will complete as much of the input as it can and display the status of the
completion.
For example, if to the “Enter command name” prompt you type the string “pau”
followed by Ctrl/Space, the Editor will complete the command name "Pause E d i t o r”
and inform you that the input is complete. You can now press Return to execute the
command. If, on the other hand, you type the string “new” followed by Ctrl/Space,
the Editor will be able to complete the input only as far as “New Li” and will then
report that the input is ambiguous, because more than one command starts with
the string “New Li”.
The second way is by listing available alternatives. At any point when entering
information to a prompt, you can obtain a list of the available alternatives by
pressing PF1 PF2 on the numeric keypad. The Editor examines what you have
typed so far and displays a list of all the commands starting that way. For
example, when you have used input completion to get as far as “New Li”, you
can press PF1 PF2. The Editor will display a list of the commands beginning with
“New Li”. You can choose the command you want, enter enough of it to make
the input unambiguous, and then use input completion Ctrl/Space to complete the
command name.
Input completion and alternatives are not restricted to command names. You
can also use them to fill out file specifications and to obtain a list of all the
files matching a particular template. For example, assume you wish to edit an
existing LISP file but are unsure of the name. You type Ctrl/Z and enter the "E d it
F i l e " command, which then prompts you for a file name. You can type “.LSP” at
this point, followed by PF1 PF2, to see a list of all files in your current directory
having the file type “.LSP’. You can then edit your input by moving the cursor
back to the beginning of the file specification and typing enough of the file name
to distinguish it from other file names. Typing Ctrl/Space at this point fills in the
rest of the file specification.

3.1.3.3 Errors and Other Problems
If you make a minor error, the Editor displays a short error message in the
information area. These error messages are usually enough to let you correct the
problem. If the short message is not enough, the Ctrl/X ? key sequence can display
more information on the error.
If you make a major error or if the Editor encounters an internal error from which
it cannot recover, the Editor reports the error and asks if you wish to attempt to
save your work. Depending on the nature and severity of the error, the Editor
may not be able to save all your work. Section 3.4 contains more information on
how to recover from th ese problems.

Using the VAX LISP Editor 3-7

If the screen should become disrupted for some reason—for example, MAIL
messages arriving—use the Ctrl/W key to refresh the screen.

3.1.4 Moving Work Back to LISP
There are several ways to move your work back to the LISP environment. Use
one of the methods described in this section if you want your work to be available
in LISP.
Two commands, "W rite Curren t B u ffe r " and "W rite M od if ied B u ffe r s " , place
your work back in a symbol or file.
• If you were editing the function definition or the value of a symbol, the

commands cause the new function definition or value to replace the existing
function definition or value.

• If you were editing a file, the commands write a new version of the file.
The difference between the two commands is that "W rite Curren t B u ffe r " affects
only the current buffer; that is, the buffer whose window contained the cursor
when you entered the command. "W rite M od ified B u f f e r s” affects any buffer
you have worked on since the last time the buffer was written.
Neither of these commands pauses the Editor or alters the contents of your
buffers. After using either command, you can immediately return to editing or
you can use the "Pause E d it o r " command to return to the LISP interpreter. If
you were editing the function definition or value of a symbol, the new function
definition or value is immediately available to you in LISP. If you were editing a
file, you will have to load the file before you can use the modifications you made.
You can also move a function definition to the LISP environment by positioning
the cursor in the function definition, then type Ctrl/X Ctrl/Space Ctrl/X Ctrl/A. This
procedure causes the function definition containing the cursor to be evaluated.
You can now return to the LISP interpreter and use the modified function
definition. However, you must eventually include the definition in a file, or the
modification will be lost when you exit LISP. This procedure is useful when you
are editing a file containing a number of definitions and you want to modify only
one of them.
If you are editing a function definition and you want to save it in a file, use the
"W rite Named F i l e ” command. This command prompts for the name of a file and
then writes the current buffer to the file.

3.1.5 Returning to the LISP Interpreter
When you have finished creating or modifying objects or files, you generally want
to return to the LISP interpreter to test whatever you have written. The "Pause
E d it o r " command returns control to the LISP interpreter; the key sequence Ctrl/X
Ctrl/Z invokes "Pause E d ito r " . The "Pause E d it o r " command saves the state
of your editing session. If you return to the session by calling the ed function
without arguments, the Editor will be as you left it.
The "Pause E d it o r " command does not cause any of your buffers to be writ­
ten. Before pausing the Editor, you must use one of the methods described in
Section 3.1.4 to make your work available in the LISP environment. Also, if you
pause the Editor without first writing y o u r modified files and then exit LISP,
the work you did on your files will be lost. (See Section 3.4 for information on
partially recovering from this situation.)

3-8 Using the VAX LISP Editor

NOTE TO VWS VAXSTATION USERS
When you pause the Editor, the cursor returns to the LISP window.

In contrast to the "Pause E d it o r " command, the "E x it " command shuts down
the Editor. If you use the "E x it " command, the Editor warns that changes will
be lost and asks if you want to continue. If you type Y, the Editor lets you save
modified buffers on a buffer-by-buffer basis.

3.1.6 Summary of Commands
Table 3—1 provides a summary of the commands presented in this section and
the keys (if any) that invoke those commands. These commands are useful for
controlling the operation of the Editor. Subsequent sections in this chapter
contain tables of commands that are useful in specific situations. Appendix E
provides an alphabetic table of all the commands.

Table 3-1: General-Purpose Commands and Key Bindings
Name Binding t Description
Execute Named Command |ctrl/z| or keypad |pfi| PH

or I Do I *
Prompts for the name of a command to execute;
type the name of the command, followed by
| Return | .

List Key Bindings None Displays a list of keys and key sequences cur­
rently bound to commands.

Pause Editor 1 Ctrl/X 1 | Ctrl/Z | Pauses the Editor, saving its state, and returns
to the LISP interpreter.

Write Current Buffer None Replaces a LISP symbol’s function definition or
value with the contents of the current buffer or
writes a new version of the file.

Write Modified Buffers None Writes the contents of all modified buffers to the
corresponding LISP object or new file version.

Select Outermost Form ICVI/XI | Ctrl/Space | Highlights the outermost LISP form containing
the cursor.

Evaluate LISP Region I Ctrl/X | I Ctrl/A I Evaluates LISP code highlighted by " S e l e c t
Outerm ost Form" or by other means, making
the result available in the LISP interpreter.

Write Named File None Prompts for a file name, then writes the current
buffer to that file.

Next Window [Ctri/Xl | Ctrl/N | Makes the next window the current window;
useful for moving into or out of help window.

Remove Current Window 1 Ctrl/X I [Ctri/R] Removes the current window from the screen;
useful for getting rid of help window.

Remove Other Windows None Removes windows other than the current window
from the screen.

Help keypad |PF2| or |Heip| * Displays a window with help on your current
situation.

Prompt Scroll Help Window |ctriA/| (only while
responding to prompt)

When used while responding to a prompt, causes
the window containing help text to scroll.

t Keys marked with an asterisk (*) are available only on LK201 or later keyboards.

(continued on next page)

Using the VAX LISP Editor 3-9

Table 3-1 (Cont.): General-Purpose Commands and Key Bindings

Name Binding t Description
Prompt Show Alternatives Keypad 1 p f i | [p f 2 | (only

while responding to
prompt)

Prompt Complete String i c t r i / S p a c e | (onlv while
responding to prompt)

Describe None

Apropos None

Describe Word (C t r l/ ? [

Help on Editor Error icw x im

Redisplay Screen j C t r l/ W |

When used while responding to a prompt,
displays a list of input alternatives based on the
context and what you have typed so far.
When used while responding to a prompt,
attempts to complete the input based on the
available alternatives and what you have typed
so far.
Displays a description of a command or other
Editor object.
Displays a list o f Editor commands or other
Editor objects containing the string you supply.
Invokes the LISP DESCRIBE function for the
word at the cursor location.
Displays help on the last Editor error that
occurred.
Refreshes the screen.

t Keys marked with an asterisk (*) are available only on LK201 or later keyboards.

3.2 Editing Operations
This section describes editing operations and how to perform them. The
operations are those that you can perform in a single buffer; that is, while editing
one LISP object or file. Section 3.3 explains how to deal with multiple buffers.
This section is divided as follows:
• Section 3.2.1 describes the numeric keypad you use to perform many editing

operations.
• Section 3.2.2 describes how to insert text.
• Section 3.2.3 explains ways to move the cursor.
• Section 3.2.4 shows how you can modify text by deleting it and moving it.
• Section 3.2.5 explains how to cause an operation to occur more than once.
• Section 3.2.6 summarizes the commands described in this section.

3.2.1 Keypad
The Editor incorporates a set of commands and key bindings that cause it to
behave like the EDT text editor. The keys on the numeric keypad are bound to
the EDT-like commands. For the most part, you can use keypad keys as if you
were using EDT, although there are some differences.
Figure 3—5 illustrates the numeric keypad. Each key has three items on it.
Whatever appears on the actual key is shown in the lower right comer of each
key in Figure 3-5. The meaning of the two names is as follows:
• The top name specifies the action that occurs if you press the key by itself.

3-10 Using the VAX LISP Editor

• The bottom name specifies the action that occurs if you press and release the
PFl key (sometimes called the Gold key) before pressing the key.

For example, if you press the 0 key by itself, the Editor moves the cursor to the
beginning of a line. If you first press PFl and then the 0 key, the Editor opens a
new fine at the cursor location.
For the rest of this section, keys will be referred to by the names of the actions
the keys invoke. For example, the o key by itself is called the Beginning of Line
key, while the sequence PFl 0 is called the Open Line key.

3.2.2 Inserting and Formatting Text
This section describes ways you can create new text. Section 3.2.2.1 describes
routine text insertion, Section 3.2.2.2 describes how to type and format LISP code,
and Section 3.2.2.3 describes how to insert nongraphic characters in the text.

3.2.2.1 Inserting Text
lb insert text, simply type. All the keys corresponding to printing characters
cause that character to appear preceding the character at the cursor location. If
the cursor is in the middle of a line, the cursor and the characters to its right will
be displaced further to the right to make room.

Using the VAX LISP Editor 3-11

Figure 3-5: Numeric Keypad

'N
Gold

Prefix

Help

Alternatives

Find Next

Find

Del Line

Undel Line

53/L PF4
A

Forward

Bottom

Backward

Top

Word

Chng Case

Cut

Paste

Del Word

Undel Word

Del Char

Undel Char

Char

Spec Insert

Beginning of Line

Open Line

Note: The letters, numbers, and characters in the lower right corners
of the keys are what actually appear on the keys of a VT100
keypad.7r MLO-002788

You can start a new line by pressing the Return key. If you press Return while
the cursor is at the end of a line, you get a blank line with the cursor at the
beginning. If the cursor is in the middle of a line, the line is broken in the
middle.
The Open Line key also starts a new line, but leaves the cursor at the end of the
old line instead of the beginning of the new line.

3.2.2.2 Typing and Formatting LISP Code
The Editor includes several commands that help you enter LISP code. Whenever
you are editing a LISP object (either its function definition or value) or a file
containing LISP code, the following key bindings are in effect:
• If you type a right parenthesis, the Editor highlights the corresponding left

parenthesis for a moment. If the corresponding left parenthesis is not on the
screen, the fine that contains it is displayed in the information area with the
parenthesis highlighted.

3-12 Using the VAX LISP Editor

• The key sequence Escape.] or the command "C lose Outermost Form" closes the
outermost form by inserting the correct number of parentheses at the cursor
position. (Typing Ctrl/] produces an Escape.)

• The "New l isp Line" command is similar to Return, but it indents the new line
properly with respect to the preceding line. Ctrl/J is bound to the "New l isp
Lin e" command. (On a VT100 terminal, pressing the Linefeed key results in
Ctrl/J.)

• The Tab key, " indent l isp Line", indents the line that currently contains the
cursor, relative to the preceding LISP code.

• The Ctrl/X Tab key sequence or the "Indent Outermost Form” command indents
all the lines in the LISP outermost form that contains the cursor.

• Use Ctrl/X ; to start a LISP comment at the end of a line of code. When
you type Ctrl/X ;, the Editor inserts enough spaces to move the cursor to the
comment column, then inserts a semicolon and another space. If there is
already a comment on the line, Ctrl/X ; moves the cursor to the beginning of the
comment.

The commands "Indent LISP Region", "Indent Outermost Form", and "Indent
l isp Line" (used in "VAX l i s p " style), normally indent calls to user-defined
macros as data. These commands will indent such calls properly if:
• You include &BODY in the argument list of the macro’s definition. (Note that

if the macro’s argument list contains both &BODY and &WHOLE, the Editor
does not properly indent a call to the macro.)

• You load the macro definition into VAX LISP before you indent the macro call
in the Editor.

NOTE TO VWS VAXSTATION USERS
Pressing the right pointer button when the pointer cursor is po­
sitioned at a close-parenthesis character highlights the matching
open-parenthesis character.

3.2.2.3 Inserting Nongraphic Characters
You cannot insert some characters directly into your text. For example, you
cannot insert a #\ character by typing Ctrl/X because the Editor interprets that
character as the start of a command. The Editor provides two ways around this
problem. In most cases, you can use the Ctrl/X \ key sequence. After typing this
sequence, the Editor will take the next character you type and insert it without
interpretation. This procedure will handle the case of #\ Ax; for example, type:
[Ctri/Xl m [Ctrittl

The Editor echo for this is
< AX>

In general, the Editor display for a nongraphic character is the LISP representa­
tion for the character, surrounded by angle brackets, but minus the leading #\.
For example, Ctrl/X character in LISP prints as # \ AX. The Editor displays this as
< AX>.

Some characters cannot be generated directly from the keyboard. You can use
the Spec(ial) Insert key to insert such characters. Tb use Spec Insert, you must
first supply the decimal ASCII value of the character as a prefix argument (see
Section 3.2.5). The Spec Insert key then inserts the character at the cursor
location.

Using the VAX LISP Editor 3-13

To insert text where you want it to go, you have to move the cursor to that loca­
tion first. A number of keys produce movements of various types. Section 3.2.3.1
describes how the keypad and arrow keys move the cursor. Section 3.2.3.2
describes how you can move the cursor within LISP code.

3.2.3 Moving the Cursor

3.2.3.1 Moving with the Keypad and Arrow Keys
The keypad and arrow keys move the cursor nearly identical to EDT. If you
are familiar with EDT, you can skip this section; otherwise, the brief summary'
contained here should get you started.
The action produced by some keys depends on the current direction of movement.
The current direction can be either forward or backward. The Forward key sets
the current direction to forward, and the Backward key sets it to backward. The
label strip at the bottom of the window displays the current direction.
For other keys, the direction is always the same, regardless of the current direc­
tion.
The simplest way to move the cursor is with the arrow keys. Each arrow key
moves the cursor one unit in the indicated direction. The left and right arrow
keys move the cursor one character to the left or right, while the up and down
arrow keys move the cursor up or down by one line in the current column. The
arrow keys do not depend on the current direction.
Other keys let you move by line:
• The Beginning of Line key moves the cursor to the beginning of the next

line (if the current direction is forward) or to the beginning of the current or
previous line (if the direction is backward).

• The EOL (End-of-Line) key moves to the end of the current or following line
(if the current direction is forward) or to the end of the previous line (if the
current direction is backward).

• Ctrl/H moves the cursor to the beginning of the current or previous line,
regardless of the current direction. (On a VT100, pressing the Backspace key
results in Ctrl/H. On the LK201 keyboard, the F12 key produces the same action
as Ctrl/H.)

The Word key moves to the beginning of the next word, if the current direction
is forward, or to the beginning of the current or previous word, if the current
direction is backward. In finding the beginning of the word, the Word key passes
over most LISP syntax characters, such as parentheses, delimiters, single quote
characters, and semicolons. #\newline characters are also passed over. In EDT,
only spaces are passed over in finding the beginning of the next word.
The Screen key scrolls the text in the window. The text moves up if the current
direction is forward and down if the current direction is backward. The amount
of text that scrolls is equal to about two-thirds of the height of the window. The
cursor moves only as much as is necesary to stay in the window. This behavior
also differs from EDT.
The Bottom and Top keys move the cursor to the end or the beginning of whatever
you are editing.

3-14 Using the VAX LISP Editor

You can also move the cursor to a specified text string. The Find key prompts
for a search string. You enter the string and terminate it with Return; the Editor
then finds the first occurrence of that string in the current direction. (EDT lets
you terminate the search string with Forward or Backward; the VAX LISP editor
requires that you first set the current direction, then terminate the search string
with Return or Enter.) The Find Next key finds the next occurrence of whatever
string was last searched for.

3.2.3.2 Moving in LISP Code
Four bound commands let you move by LISP forms. The key sequence Ctrl/X . is
bound to the command "Next l isp Form", and the key sequence Ctrl/X , is bound
to "Previous l isp Form". These commands move the cursor from form to form
within the current parentheses nesting level. The key sequence Ctrl/X > (bound
to the command "End o f Outermost Form") moves the cursor to the end of the
current or next outermost LISP form. The key sequence Ctrl/X < (bound to the
command "Beginning o f Outermost Form") moves the cursor to the beginning of
the current or previous outermost LISP form.
Four other commands let you move in lists. By default, no key sequences are
bound to them. They are:

Backward Up List
Forward Up List
Beginning of List
End of List

See Appendix E for a brief description of these commands. Section 3.5 explains
how you can bind keys to these (and other) commands.

3.2.3.3 Moving with the Pointer (VWS VAXstation Only)
You can move the cursor by moving the pointer cursor to the desired spot in the
text and pressing the left mouse button.

3.2.4 Modifying Text
In addition to inserting text, you can modify existing text by deleting it, moving
it, and substituting in it. This section describes ways to modify text:
• Section 3.2.4.1 describes ways to delete portions of text.
• Section 3.2.4.2 shows how to undelete text you have just deleted.
• Section 3.2.4.3 explains how to move text from place to place by cutting and

pasting it.
• Section 3.2.4.4 describes commands that modify text by changing its case.
• Section 3.2.4.5 shows two ways to substitute one text string for another.
• Section 3.2.4.6 explains how to insert text from a file or a buffer into your

work.

Using the VAX LISP Editor 3-15

This section describes how to delete parts of your text by using keypad keys and
keys on the main keyboard. Text that you delete disappears from the screen, but
is not immediately discarded. The Editor maintains three areas for deleted text,
one each for the last character, word, and line that you have deleted. The next
section shows how to recover the contents of these areas and how to use them to
move text from one place to another.
Two keys delete characters. The Delete key (with the symbol <2 on the LK201
and later keyboards) deletes the character just before the cursor. The Del Char
key deletes the character at the cursor.
One or two keys delete words, depending on the terminal you are using. The
Del Word key deletes from the current cursor position to the beginning of the
next word. Tb find the beginning of the next word, the Editor passes over LISP
syntax characters, such as parentheses, delimiters, single quote characters, and
semicolons. Thus, Del Word deletes these syntax characters. Del Word also
passes over and deletes a #\newline character at the end of a line.
If you are editing LISP code using a VT100, there is no key that deletes from
the cursor position to the beginning of the current word. (In EDT, Linefeed and
Ctrl/J do this; when editing LISP, however, Ctrl/J is bound to "New l isp Line".) If
you are using a terminal with the LK201 or later keyboard, the F13 key deletes
to the beginning of the current word. It passes over LISP syntax characters and
#\newline characters the same way the Del Word key does.
Three keys delete fines or portions of fines:
• The Del Line key deletes from the current cursor position to the end of the

current fine, including the #\ newline character at the end of the line. If
the cursor is positioned at the end of the line, Del Line simply deletes the
#\newline character.

• The Del EOL (End of Line) key deletes from the current cursor position to the
end of the current fine, not including the \ #newline character at the end of
the fine. If the cursor is positioned at the end of the fine, Delete Line deletes
the next fine, including the #\newline.

• The Ctrl/U key deletes from the current cursor position to the beginning of
the current line. If the cursor is positioned at the beginning of the line, Ctrl/U
deletes the previous fine.

3.2.4.1 Deleting Text

3.2.4.2 Undeleting Text
Whenever you delete text, the Editor does not immediately discard it. Instead,
the Editor temporarily saves the text, allowing you to put it back if you did not
mean to delete it or to move it somewhere else.
• The Undel(ete) Char key places the last character that was deleted at the

cursor location.
• The Undel(ete) Word key places the last word or word portion that was

deleted at the cursor location.
• The Undel(ete) Line key places the last fine or fine portion that was deleted

at the cursor location.
Thus, if you want to move text from one place to another, you can first use the
appropriate key to delete the text in its original location. Then move the cursor to
the text’s new location and use the appropriate Undel key to place the text there.

3-16 Using the VAX LISP Editor

Copying text—putting it in a new location while leaving it in its original
location—is similar to moving text, except that you undelete it in its original
location before moving to the new location. You can undelete text as many times
as you want.

3.2.4.3 Cutting and Pasting Text
Cutting and pasting consists of marking a block of text, removing (cutting) it
from its original location, then moving the cursor to a new location and inserting
(pasting) the text in the new location.
Before you cut text, you must mark the text to be cut. You use the Select key and
the cursor movement keys to mark text. Move the cursor to one end of the text
to be cut, then press Select. Move the cursor to the other end of the text to be
cut. The Editor highlights the text between the character at which you pressed
Select and the cursor. The highlighted text is called a select region. If you make
a mistake while you are marking a select region, use the Reset key to cancel the
select region.
You can mark a select region from the outermost LISP form containing the cursor
by pressing Ctrl/X Ctrl/Space.

NOTE TO VWS VAXSTATION USERS
You can mark a select region by moving the pointer cursor to one end
of the region, pressing and holding the left pointer button, moving the
pointer cursor to the other end of the region, and releasing the button.

The Cut key removes all the text in the select region from the screen and places
it in an Editor buffer called the paste buffer, replacing what was there. At this
point, if you wish to replace the text, use Paste. Paste restores the text to its
orginal location but does not remove the text from the paste buffer.
Now move the cursor to the desired location. Use the Paste key to put the text
there. You can paste text as often as needed, until you cut more text.

NOTE TO VWS VAXSTATION USERS
When a select region has been marked, you can cut it by pressing
the middle pointer button. Then move the pointer cursor to the new
location for the text and paste it by pressing and holding the left
pointer button, then pressing the middle button.

The Append key is similar to the Cut key, except instead of replacing the contents
of the paste buffer with the select region, the Append key appends the select
region to the paste buffer contents. Append is convenient when you want to build
a block of text by taking text from different locations.
The Replace key is similar to the Paste Key, except the Replace key requires that
you have defined a select region before you use Replace. The Replace key deletes
the select region and replaces it with the contents of the paste buffer. * •

3.2.4.4 Changing Case
One key and five commands provide ways to change the case of alphabetic
characters in your text. Nonalphabetic characters are not affected.
The Chng Case key changes uppercase letters to lowercase and vice versa. It
works as follows:
• If a select region is defined, Chng Case changes the case of all letters in the

select region.

Using the VAX LISP Editor 3-17

• If no select region is defined, Chng Case changes the case of the character at
the cursor position and advances the cursor one character.

Four commands that let you make all the alphabetic characters in a select region
or word be of one case are "Upcase Region", "Upcase Word", "Downcase Region",
and "Downcase Word". To use the commands that affect a region, first define the
select region, then press Ctrl/Z and enter the command. To use the commands that
affect a word, position the cursor anywhere in the word, then type Ctrl/Z and enter
the command.
Finally, the "C a p i t a l i z e Word" command makes the first character of a word
uppercase. Position the cursor anywhere in the word, then type Ctrl/Z and enter
the command.

3.2.4.5 Substituting Text
Two mechanisms are available for substituting one string for another throughout
text. The first is simpler; the second is more powerful.
The Subs(titute) Key substitutes the contents of the paste buffer for a search
string. To use the Substitute key, first load the paste buffer with the new string
by typing Select, typing the new string, and then typing Cut. Next, search for
the string to be replaced. If the first occurrence is in fact a string that you want
to replace, type Subs. The Editor deletes the search string and replaces it with
the contents of the paste buffer, then automatically moves to the next occurrence
of the search string. If you want to pass over an occurrence of the search string,
type Find Next to move to the next occurrence.
The "Query Search Replace" command is similar to Subs but more versatile.
The command prompts for a search string and a replacement string. At each
occurrence of the search string, the Editor queries you. You can answer as
follows:
| S p a c e |

□
\n

m
| C lr l/ C |

E

[3

Ü 3

Replace th is occurrence and move to the next one.

Replace th is occurrence and stay here. This option lets you see the
results o f the change before m oving on. U se N to move to the next
occurrence.

Replace th is occurrence and term inate the command.
Replace th is occurrence and all rem aining occurrences w ithout further
querying.

Do not replace th is occurrence and find the next occurrence.

Do not replace th is occurrence and term inate the command.

Do not replace th is occurrence and term inate the operation, returning
the cursor to the point at which the search began.

Enter a recursive edit, which you term inate w ith the "Exit
Recursive Ed it" command. The recursive edit lets you clean up
a replacem ent site without losing your place in the search cycle.

Display help on the possible responses to the query.

3.2.4.6 Inserting a File or Buffer
You can insert the contents of a file or a buffer at the cursor location, using the
" in s e r t F i l e " or " in s e r t Buffer" command. Each of these commands prompts
for the name of a file or buffer and then inserts the contents of the file or buffer at
the cursor location. You can use the Alternatives key or request input completion
with Ctrl/Space while responding to either prompt. (Section 3.3 contains more
information about buffers.)

3-18 Using the VAX LISP Editor

You can cause the Editor to perform an action more than once by supplying a
numeric prefix argument. The prefix argument causes the next command to be
executed the number of times specified by the argument’s value. For example, if
the prefix argument is 3 and you press the Beginning of Line key, the cursor will
move three lines instead of one.
You enter a prefix argument by using the Prefix key and then typing the number
in response to the prompt, followed by Return. The prefix affects only the next
command you issue. You can issue the command either by typing Ctrl/Z and the
command name or by typing the key or key sequence bound to the command.
The prefix argument also causes printing characters to be inserted more than
once. For example, to type 32 zeros, you could enter a prefix argument of 32, then
type “0” once.
For some commands, you can supply a negative prefix argument. In general,
the commands that are sensitive to the current direction will accept a negative
prefix argument. They interpret a negative argument as an instruction to act in
a direction opposite to the current direction. For example, if the current direction
is forward, a prefix argument of -3 followed by the Word key causes the cursor
to move three words backward. If the current direction is backward, a prefix
argument of —3 causes the cursor to move three words forward.

3.2.5 Repeating an Operation

3.2.6 Summary of Commands
Table 3—2 summarizes the commands presented in this section and their key
bindings.

Table 3-2: Editing Commands and Key Bindings
Name Binding t Description

Text Insertion Commands
Open Line Open Line

(keypad [pfT] [T])
Breaks a line at the cursor location.

Insert Close Paren and Match m Inserts a close parenthesis at the cursor and
highlights the m atching open parenthesis.

Close Outermost Form 1 E s c a p e | | 1 | Closes the outermost LISP form by inserting
sufficient parentheses at the cursor position.

Indent LISP Line [Tab] or icirl/l| Indents the current line to the appropriate position
in relationship to preceding LISP code.

New LISP Line | L in e feed | or
[ciriZTI

Starts a new line, indenting it in the proper LISP
fashion.

Indent Outermost Form [Ctri/Xl [Tab] Indents all the lines in the outermost form con­
taining the cursor.

Move to LISP Comment [CV W C jL lJ Starts or moves to a comment on the current line.

Quoted Insert |Ctrl/X| | \ | Causes the next character typed to be inserted in
the text w ithout interpretation by the Editor.

t Keys marked with an asterisk (*) are available only on LK201 and later keyboards.

(continued on next page)

Using the VAX LISP Editor 3-19

Table 3-2 (Cont.): Editing Commands and Key Bindings

Name Binding t Description
Text Insertion Commands

EDT Special Insert Spec Insert
(keypad [pfT] [T])

Inserts the character whose ASCII value is speci­
fied by the prefix argument.

Insert File None Prompts for a file name, then inserts the contents
of the file a t the cursor location.

Insert Buffer None Prompts for a buffer name, then inserts the
contents o f the buffer at the cursor location.

Cursor Movement Commands
EDT Set Direction Forward Forward

(keypad [T])
Sets the current direction to forward.

EDT Set Direction Backward Backward
(keypad [T])

Sets the current direction to backward.

Forward Character B Moves the cursor to the next character.

Backward Character B Moves the cursor to the previous character.

N ext Line CD Moves the cursor to current column in next line.

Previous Line f f l Moves the cursor to current column in previous
line.

EDT Move Character Char
(keypad \T])

MoveB the cursor to the next or previous character,
depending on current direction.

EDT Move Word Word
(keypad [T])

Moves the cursor to the beginning of the next,
current, or previous word, depending on current
direction and starting cursor location.

EDT Beginning of Line Beginning of Line
(keypad [T])

Moves the cursor to the beginning of the next,
current, or previous line, depending on current
direction and starting cursor location.

EDT End of Line EOL
(keypad [T])

Moves the cursor to the end of the next, current,
or previous line, depending on current direction
and starting cursor location.

EDT Back to Start of Line | B a c k sp a c e | or
| Ctrl/H | or |£Ü] *

Moves the cursor to the start of the current line
or previous line, depending on starting cursor
location.

EDT Scroll Window Screen
(keypad [T])

Scrolls text up or down in the window, depending
on current direction.

Previous Screen | P rev S c r e e n | * Moves the cursor up in the buffer by one screenful.

N ext Screen | N ext S c r e e n | * Moves the cursor down in the buffer by one
screenful.

End of Buffer Bottom
(keypad [pr] [7])

Moves the cursor to the end of the current buffer.

Beginning of Buffer Top
(keypad [pfT] [T])

Moves the cursor to the beginning of the current
buffer.

EDT Move Page Page
(keypad [7])

Moves the cursor to the top of the next, current, or
previous page, depending on current direction and
starting cursor location.

t Keys marked with an asterisk (*) are available only on LK201 and later keyboards.

(continued on next page)

3-20 Using the VAX LISP Editor

Table 3-2 (Cont.): Editing Commands and Key Bindings

Name Binding t Description
Cursor Movement Commands

EDT Query Search Find
(keypad |p f i | |PF3 |)

or [Find] *

Prompts for a string and m oves the cursor to
the first occurrence of that string in the current
direction.

EDT Search Again Find N ext
(keypad [p f 5])

Moves the cursor to the first occurrence in the
current direction of the la st string searched for.

Moving by LISP Entities
Previous Form r a n Moves the cursor to beginning of current or

previous LISP form in the current nesting level.

N ext Form S E D Moves the cursor to beginning of next LISP form
in the current nesting level.

Beginning of Outermost Form [Ctri/Xl m Moves the cursor to beginning of enclosing outer­
m ost form, or to beginning of preceding outermost
form if the cursor starts between outermost forms.

End of Outermost Form I Ctrl/X I m Moves the cursor to end of enclosing outermost
form, or to end of following outerm ost form i f the
cursor starts between outerm ost forms.

Text Modification Commands
Deleting
EDT Delete Character Del Char

(keypad □)

D eletes the character at the cursor location.

EDT Delete Previous Character | D e le t e |

< 3

D eletes the character before the cursor location.

EDT Delete Word Del Word
(keypad 0)

D eletes from cursor location to beginning of next
word.

EDT Delete Previous Word |F13] * D eletes from cursor location to beginning of
current word.

EDT D elete Line Del Line
(keypad |PF4|)

D eletes from cursor location to beginning of next
line.

EDT Delete to End of Line Del EOL
(keypad [p f T) [7])

D eletes from cursor location to end of line, or all of
next line if cursor is at end of line.

EDT D elete Previous Line | Ctrl/U | D eletes from cursor location to beginning of
current line, or all of previous line if cursor is at
beginning of line.

Undeleting
EDT U ndelete Character Undel Char

(keypad [p f T] □)

Inserts the la st character deleted at the cursor
location.

EDT U ndelete Word Undel Word
(keypad [p f T) 0)

Inserts the last word deleted at the cursor location.

EDT U ndelete Line U ndel Line
(keypad |p f i | |PF4|)

Inserts th e la st line deleted at th e cursor location.

t Keys marked with an asterisk (*) are available only on LK201 and later keyboards.

(continued on next page)

Using the VAX LISP Editor 3-21

Table 3-2 (Cont.): Editing Commands and Key Bindings

Name Binding t Description
Text Modification Commands

Cutting, Pasting, and Substituting
Set Select Mark Select

(keypad [~~|) or
S e l e c t [*

U nset Select Mark Reset
(keypad [pfT] □)

Select Outermost Form | Ctrl/X | | C tr l/S p a ce |

EDT Cut Cut (keypad [T])
Or | R em o v e | *

EDT Append Append
(keypad [T])

EDT Paste Paste
(keypad [pfT) [T])
Or I In sert | *

EDT Replace Replace
(keypad [pfT) [7])

EDT Substitute Subs
(keypad |PF1| |Enter|)

Query Search Replace None

Exit Recursive Edit None

Changing Case
EDT Change Case Chng Case

(keypad [pfT] [T])
Upcase Region None

Downcase Region None

Upcase Word None

Downcase Word None

Capitalize Word None

Defines one end of a select region.

Cancels a select region.

Makes a select region from the outermost LISP
form containing the cursor.

Removes the select region from the text and
replaces th e contents of the paste buffer w ith the
select region.

Removes the select region from the text and
appends the select region to the contents of the
paste buffer.

Inserts the contents of the paste buffer at the
cursor location.

D eletes the select region and replaces it w ith the
contents o f the paste buffer.

Substitutes the contents of the paste buffer for the
search string and m oves to the next occurrence of
the search string.

Prompts for old and new strings, and at each
occurrence of the old string prompts for an action;
more versatile than "EDT Subst itu te".
Terminates a recursive edit and returns to the
editing level from which the recursive edit was
initiated.

Changes the case of all characters in a select
region or of an individual character.

Makes all characters in a select region uppercase.

M akes all characters in a select region lowercase.

Makes all characters in the word at the cursor
location uppercase.

Makes all characters in the word at the cursor
location lowercase.

M akes the first character of the word at the cursor
location uppercase.

General
Supply Prefix Argument Prefix Prompts for a numeric prefix argum ent, which

(keypad [p f i] |p f i |) m ay cause the next command to repeat its action.

t Keys marked with an asterisk (*) are available only on LK201 and later keyboards.

3-22 Using the VAX LISP Editor

3.3 Using Multiple Buffers and Windows
The Editor can keep track of more than one LISP object or file at a time.
The Editor holds each object or file that you are currently editing in a buffer.
Commands let you move between buffers, create new buffers, and gain access to
buffers through windows on the screen.

3.3.1 Introduction to Buffers and Windows
Buffers are Editor objects that contain the text of the symbol or file that you are
editing and some information about the text—for example, the position of the
cursor when the text is displayed. The Editor displays the contents of buffers
through windows on the screen. The Editor can keep track of many buffers
at once, but normally displays the contents of no more than two buffers it has
created for you at a time.

NOTE TO VWS VAXSTATION USERS
It is important to distinguish between the VAXstation window that
contains the Editor and the Editor windows that display the contents of
buffers. The VAXstation window is equivalent to the screen of a video
terminal. Editor windows appear in the VAXstation window.

The first time you use the ed function, you supply an argument specifying the
symbol or file you want to edit. The Editor creates a buffer having the same
name as this symbol or file and a window on the buffer. You can then enter and
modify the text in the buffer.
If, after you return to the LISP interpreter, you use the ed function with a
different symbol or file, the Editor creates another buffer and window. Both
windows appear on the screen, but the window for the buffer most recently
created is the current window. If you type characters or enter Editor commands,
the buffer viewed through the current window will be affected.
For example, if you first typed
Lisp> (ed 'sh ip-acces sor)
and then, after pausing the Editor, typed
Lisp> (ed "clock;, l s p ")
the screen might appear as shown in Figure 3-6.

Using the VAX LISP Editor 3-23

Figure 3-6: The Editor with Two Buffers Open

--Function SHIP-ACCESSOR Forward EDT Emulation ("VAX LISP")---
Euse-package "EDITOR")
(define-command (clock-command :display-name"Clock")
(prefix)n ?»
(let ((buffer (find-buffer"Clock")))
(unless buffer
(setf buffer (make-buffer'' (clock-buffer :display-name"Clock")

:major-style nil:minor-styles nil
:variables nil))

File CLOCK.LSP Forward EDT Emulation ("VAX LISP")

MLO-002789

Now, two label strips appear, one at the bottom of each window. The reverse-video
label strip and the presence of the cursor in a window show you which window is
current.
To change the current window, use the Ctrl/X Ctrl/N key sequence, making each
window on the screen current in turn. When you change from one window to
another, the cursor moves to the position it occupied when you last edited in that
window.
Windows that display text you are editing are called anchored windows, because
they are fixed at a particular spot on the screen. Unless you use the " S p l i t
window" command, the Editor can by default display no more than two anchored
windows at once. However, you can have more than two LISP objects or files
available for editing at once, each occupying its own buffer. The "L is t Bu ffers"
command displays a list of all the buffers in the Editor. For example, if you had
used the ed function three times, the result of the command "L is t Buffers"
might appear as shown in Figure 3—7.

3-24 Using the VAX LISP Editor

Figure 3-7: Listing Buffers in the Editor

puffer Name Lines/Chars Status Ckpting Permanent
Kill Ring Empty Writable No YesSHIP-ACCESSOR Empty Writable NO No

Function of symbol SHIP-ACCESSOR
Help 6/262 Modified No Yes
CLOCK.LSP 44/1660 Modified Yes No

LISP$: [BODGE] CLOCK. LSP;2
General, Prompting Errpty Modified No Yes
SHIP-TONNAGE Empty Writable No No

Function of symbol SHIP-TONNAGE
Listing of available editor buffers

(prefix)
(let ((buffer (find-buffer"Clock")))
(unless buffer
(setf buffer (make-buffer'(clock-buffer:display-name"Clock")

:major-style nil:minor-styles nil
:variables nil))

---- File CLOCK.LSP Forward EDT Emulation ("VAX LISP")-----

MLO-002790

The buffers holding the objects and files that you are editing are identified by
an additional line detailing the contents of the buffer. For example, the buffer
named sh ip-accessor contains the “Function of symbol SHIP-ACCESSOR’’. The
other buffers listed contain Editor information.
You can select a buffer for editing that is not currently on the screen with the
" S e l e c t Buffer" command. This command prompts for the name of a buffer to
edit. You can type part of the name, then use Ctrl/Space to request that the Editor
fill in the rest of the name. If you do not know which buffers are available, use
Alternatives to see a list of their names.
When you select a buffer from among those not currently displayed, the Editor
displays it in a new anchored window. If two anchored windows are already there,
the Editor removes the least current one and replaces it with one displaying the
contents of the buffer just selected.
Removing a window does not delete or modify the contents of the buffer.
Removing a window simply causes the corresponding buffer to be no longer
displayed, until the next time you select it. You can use the Ctrl/X Ctrl/R key se­
quence to remove the current window from the screen and the "Remove other
windows" command to remove all windows other than the current window from
the screen.
In addition to anchored windows, the Editor also has floating windows. Floating
windows may be displayed anywhere on the screen, overlaying and obscuring
the anchored windows that lie under the floating windows. The window in which
help appears is a floating window. For the purpose of commands, these windows
are just like anchored windows; Ctrl/X Ctrl/N moves the cursor to them in turn, Ctrl/X
Ctrl/R removes them when they are current, and "Remove o th er windows" removes
them when they are not current.

Using the VAX LISP Editor 3-25

3.3.2 Creating New Buffers from Within the Editor
You do not need to return to the LISP interpreter to create a new buffer. Two
commands let you start editing new LISP objects or files without leaving the
Editor.
The "Ed" command works the same as the ED function. The "Ed" command
prompts for each of the arguments that you would enter to the ED function. If you
supply a symbol name, the Editor asks you to specify whether you want to edit
the function definition or the value of the symbol. If you supply a character string
containing a file specification, the Editor starts editing that file.
The "Ed it F i l e " command prompts you for a file to edit. The "Ed it F i l e "
command differs from the "Ed" command in that the "Edit F i l e " command lets
you request completion of the file name with Ctrl/Space and a listing of possible file
names with Alternatives. (See Section 3.1.3.2.)

3.3.3 Working with Buffers
Buffers generally take care of themselves. The only three common situations in
which you need to deal directly with buffers are:
• When you need to save the contents of a buffer
• When you need to delete a buffer
• When two buffers have conflicting names
Buffers maintain some information about the state of your editing session with
regard to the LISP object or file contained in the buffer. Specifically, a buffer
keeps track of:
• The position of the cursor in the text
• The select region, if one is active
• Key bindings, if any keys are bound in the context of the buffer (see

Section 3.5.1)
• The major and minor styles that are active in that buffer (see Section 3.5.1)
This information ensures that, when you select a buffer you worked on previously,
it will be in the same state as it was when you left it.

3.3.3.1 Saving Buffer Contents
Three commands save buffer contents. The "Write Current Buffer" and "Write
M odified Bu ffer s " commands (discussed in Section 3.1) save the contents of the
single current buffer and of all buffers that have been modified, respectively. The
third way to save buffer contents is to use the "Exit" command and request that
modified buffers be saved.
When you pause the Editor, your buffers are not written, but they are available
to you when you resume the Editor. If, however, you should pause the Editor and
then exit LISP, the contents of your buffers will be lost. (Section 3.4 explains how
you can partially recover from this situation.)

3-26 Using the VAX LISP Editor

Two commands delete a buffer. "D e le te Current Buffer" deletes the buffer you
are currently working on; "D e le te Named Buffer" prompts for a buffer name and
deletes that buffer. Both commands check to see if the buffer has been modified
and, if it has been, ask if you want to write the buffer before deleting it.
If you are editing an existing file and you delete the buffer associated with the
file, the Editor does not delete the file. However, the Editor also does not create
a new version of the file. For example, if you are editing the file CLOCKLSP;l
and you delete the buffer "clock.l sp ", the file CLOCKLSP;l is not deleted.
However, the file CLOCK LSP;2, which would have been created if you had saved
the buffer contents, is not created.

3.3.3.2 Deleting Buffers

3.3.3.3 Buffer Name Conflicts
The Editor requires that buffer names be unique. This requirement can cause a
problem in the following situations:
• You are trying to edit the function definition and the value of the same symbol
• You are trying to edit two files having the same name and type but differing

in some other respect (version number, directory, and so on)

When your attempt to edit something creates a buffer name conflict, the Editor
requests a new buffer name. You can type in any name you like. However, if
you should type in no name and just press Return, the Editor deletes the current
contents of the buffer, replacing them with whatever you are trying to edit.

3.3.4 Manipulating Windows
The commands most commonly used to manipulate windows have already been
presented in this chapter:
• Ctrl/X Ctrl/N (bound to "Next Window") to make the next -window the current

window
• Ctrl/X Ctrl/R (bound to "Remove Current Window") to remove the current window

from the screen
• "Remove other windows" to remove windows other than the current window

from the screen
Other commands let you manipulate windows in other ways.
The "Grow window" and "Shrink Window" commands make the current window
larger and smaller, respectively. If no prefix argument is set, they make the
window one line larger or smaller. If a prefix argument is set, they make the
window larger or smaller by the number of lines specified in the prefix argument.
The " S p l i t Window" command lets you open two or more windows on a single
buffer. The command causes the current window to be split in two, with identical
text appearing in the two windows. Once created, the two windows can be treated
as ordinary windows; the window-manipulation commands move between the two
windows and remove them in the normal fashion. Each window maintains its
own cursor position and scrolls separately from the other; but if you type or edit
in one window, the change will appear in the other as well.

Using the VAX LISP Editor 3-27

Split windows are useful if you want to examine two parts of the same buffer at
one time, or if you want to move text from one place to another in a buffer. To
move text, you would delete it or cut it in one window, move to the other window,
and undelete the text or paste it.
You can have more than two windows on a buffer; just use " S p l i t window"
repeatedly. The number of windows is limited only by the size of the screen; each
window must have at least one line.
Although the "Split window" command initially creates two windows on the
same buffer, you can cause one of those windows to switch to another buffer. Use
the " S e l e c t Buffer" command and specify a buffer not currently displayed in a
window. By repeatedly splitting windows and selecting new buffers, you can view
as many buffers as you can fit windows on the screen.

3.3.5 Moving Text Between Buffers
It is frequently useful to be able to move or copy text from one buffer to another.
For example, if you have worked on the definition of a function, you may want to
move it to a buffer in which you are editing a file. Two general ways of doing this
are:
• You can delete or cut the text from the source buffer, change to the destination

buffer, and undelete or paste the text in the destination buffer
• To insert an entire buffer in another, use the "Insert Buffer" command

3.3.6 Summary of Commands
Table 3-3 summarizes the commands presented in this section and their key
bindings. (Some of the general-purpose commands in Table 3—1 also pertain to
buffers and windows.)

Table 3-3: Commands for Manipulating Buffers and Windows
Name Binding Description
Select Buffer None Prompts for a buffer name, then m akes that buffer

the current buffer and displays it in a window.

List Buffers None Displays a lis t o f all Editor buffers.

D elete Current Buffer None D eletes the current buffer.

Delete Named Buffer None Prompts for the name of a buffer, then deletes
that buffer.

Ed None Prompts for a Bymbol nam e or file specification to
edit, then creates a new buffer for the symbol or
file.

Edit File None Prompts for the nam e of a file, then creates a
buffer for that file and a window into the buffer.

Grow Window None Enlarges the current window by one line or by the
number of lines specified by the prefix argument.

Shrink Window None Shrinks the current window by one line or by the
number of lines specified by the prefix argument.

(con tin u ed on n e x t p age)

3-28 Using the VAX LISP Editor

Table 3-3 (Cont.): Commands for Manipulating Buffers and Windows

Name Binding Description

Split Window None Splits the current windows into two windows on
the current buffer.

Insert Buffer None Prompts for the name of a buffer, then inserts the
contents of that buffer at the cursor location.

3.4 Recovering from Problems
The Editor provides facilities that let you recover from problems with all or
most of your work intact. Section 3.1.3.3 contains information on how the Editor
responds to minor errors. This section describes checkpointing, by means of
which the Editor protects work in progress.
Whenever you are editing a file, the Editor periodically makes a copy of the
current state of that file. The copy is a separate disk file, called the checkpoint
file. It has the same name as the file you are editing and a file type composed as
follows:
type_versionJ.SC
where type and version are the file type and version number, respectively, of the
file you are editing. For example, if you are editing the file CLOCK.LSP;2, the
associated checkpoint file will be named CLOCK.LSP_2_LSC.
While you are using the Editor or the LISP interpreter, an error may occur that
returns you to DCL, or you may inadvertently exit LISP without first saving
your Editor buffers, or the system may crash. In any of these cases, the current
state of your Editor work is lost. However, the checkpoint files for any files you
were editing still remain, reflecting the state of those buffers at the last time
that checkpointing took place. To use a checkpoint file after you have lost the
associated buffer, change its file type back to .LSP. Then use the Editor to edit
the file.
When checkpointing a file, the Editor displays the message “Checkpointing...”
in the information area. You can continue to type while checkpointing is taking
place but whatever you type will not be displayed until checkpointing is complete.
By default, the Editor checkpoints after every 350 commands that alter text in
buffers. (Each keystroke that inserts a text character counts as a command.)

3.5 Customizing the Editor
You can customize the Editor to make it more convenient or comfortable to use.
This section describes two ways to customize the Editor:
• Section 3.5.1 explains how to bind keys or key sequences to commands. You

can bind keys to commands that have no keys bound to them by default, or
you can change the default bindings.

• Section 3.5.2 describes keyboard macros. A keyboard macro is a sequence of
keystrokes that the Editor captures for you; you can then replay the sequence
at a later time.

The VAX L IS P /V M S E d ito r P ro g ra m m in g G uide explains how you can customize
th e E d itor ev e n fu r th er b y c r ea tin g n ew co m m a n d s or n e w e d it in g s ty le s .

Using the VAX LISP Editor a-29

3.5.1 Binding Keys to Commands
As previously stated, you interact with the Editor by using commands. Many
commands have keys or key sequences bound to them; others do not. One way
you can customize the Editor is to bind a key or key sequence to a command.
Once you have bound a key or key sequence to a command, typing that key or
key sequence invokes the command.
The two ways to bind a key or key sequence to a command are:
• While using the Editor, you can use the "Bind Command" command.
• While using the LISP interpreter, you can use the bind-command function.

Your LISP initialization file can contain calls to bind-command to set up the
Editor.

These two methods are discussed in Section 3.5.1.1 and Section 3.5.1.2, respec­
tively.
No matter how you bind keys or key sequences to commands, there are two pieces
of information you must supply and a third that you may supply:
• You must supply the name of the command to be invoked.
• You must supply the key or key sequence to bind to the command.

Section 3.5.1.1 and Section 3.5.1.2 describe how to specify the key or key
sequence. Section 3.5.1.3 contains suggestions on how to select a key or key
sequence to bind.

• You can optionally supply the context in which the binding is effective.
Section 3.5.1.4 explains the key binding context.

3.5.1.1 Binding Within the Editor
The "Bind Command" command lets you bind a key or key sequence to a command
while using the Editor. This command prompts you for each of the three items
you need to specify a complete binding.
The "Bind Command" command first prompts you for the name of the command
you w ish to h a v e b ound. You can u se in p u t com p letion an d a lte r n a t iv e s to g e t a
complete command name.
The second prompt is for the key sequence. Type the actual key or key sequence
that you want to bind to the command—not a LISP representation of the charac­
ters. However, you cannot type control characters or function keys unless you use
Ctrl/X \ to quote them. Since most bindings involve control characters or function
keys, you will tend to use Ctrl/X \ most of the time.
For example, assume that you want to bind the key sequence Ctrl/X Ctrl/O to a
command. Both Ctrl/X and Ctrl/O are control characters so they must both be
quoted. In response to the “Enter key sequence” prompt, you would type:
I Ctrl/X | 1 \ | | Ctrl« | | Ctrl« | [~ T~ | | Ctrl/O |

After you completed this sequence, the prompting area would echo:
<-'XXA0>
Function keys, arrow keys, and keys on the numeric keypad must also be quoted.
Each of these keys generates more than one character when it is struck, so more
than one character appears in the prompting area. For example, to bind the F12
key to a command, you would type:
fctri«] H~| |F12]

3-30 Using the VAX LISP Editor

This sequence is echoed in the prompting area as:
<ESCAPE>[24~

The third prompt is for the binding context. The context can be : global (the
default) or a particular style or buffer. Type : style or : buffer, followed by Return,
to specify one of these options. The Editor then prompts for the name of the style
or the buffer. (See Section 3.5.1.4 for more information on binding context.)

3.5.1.2 Binding from the LISP Interpreter
The b in d - command function lets you establish key bindings while you are using
the LISP interpreter. BIND-command is especially useful in your LISP initialization
file to set up the bindings you use all the time.
The b in d - command function takes three arguments. The first argument is the
name of the command you wish to have bound, in the form of a character string.
The second argument is the key or key sequence that is to invoke the command.
A single key may be given as a LISP character. A key sequence must be given as
a vector or fist of characters.
For all the keys on the main part of the keyboard—those keys that produce
letters, numbers, and other printing symbols—you may use any valid LISP
representation of the character. For example, “A” is #\A, “a” is #\a, and “Ctrl/A”
is #\ '■A. The character transmitted by the Backspace key on a VT100 can be
#\Backspace, #\bs, or #\AH. The LISP function char-name-table displays a table
of the LISP names for control characters.
The remaining keys on the keyboard—the numeric keypad, arrow keys, edit­
ing keys, and function keys—transmit more than one character when struck.
Table 3-4 lists each key and the character sequence it generates. The VT100
keyboard lacks function and editing keypad keys, but the numeric keypad keys
and arrow keys generate the same characters listed in Table 3-4.
Some of the function keys on the LK201 and later keyboards are commonly
associated with particular characters. For example, the F12 key is associated with
Backspace and the Fi 3 key with Linefeed. However, these function keys do not
actually transmit these characters, and the Editor does not treat them as having
transmitted these characters.

Table 3-4: Characters Generated by Keys
Key Characters Generated

Numeric Keypad Keys (LK201 and VT100)
k eypad QT] #\ ESCAPE #\0 # \p
k eypad [7] #\ESCAPE #\0 # \ q
k eypad [T] #\ESCAPE #\0 # \ r
k ey pad [T] #\ESCAPE #\0 # \ s
k ey pa d [T] #\ESCAPE #\0 # \ t
k ey pad [T] # \E SCA PE# \0 #\u
k eypad [T] #\ESCAPE #\0 # \v
k ey pa d [T] #\ESCAPE #\0 #\w

(continued on next page)

Using the VAX LISP Editor 3-31

Table 3-4 (Cont.): Characters Generated by Keys

Key Characters Generated
Numeric Keypad Keys (LK201 and VT100)

k e y p a d [T] #\ ESCAPE #\0 #\x
k e y p a d [T] #\ ESCAPE #\ 0 #\y
k e y p a d □ #\ESCAPE #\0 #\m
k e y p a d □ #\ESCAPE #\ 0 #\ 1
k e y p a d □ #\ESCAPE #\0 #\n
k e y p a d | Enter! #\ESCAPE #\0 #\M
k e y p a d |pfi | #\ESCAPE #\0 #\P
k e y p a d |PF2| #\ESCAPE #\0 #\Q
k e y p a d |PF3[#\ESCAPE #\0 #\R
k e y p a d |PF4| #\ESCAPE #\ 0 #\ S

Arrow Keys (LK201 and VT100)
E
ffi
B
B

#\ESCAPE #\ [#\A
#\ESCAPE #\ [#\B
#\ESCAPE #\ [#\C
#\ESCAPE #\ [#\D

Function, HELP, and DO Keys (LK201)
El #\ESCAPE #\ [#\1 #\7 #\~
0 #\ESCAPE #\ [#\1 #\8 #\~
El #\ESCAPE #\ [#\1 #\9 #\~
El #\ESCAPE #\ [#\ 2 #\ 0 #\~
F°1 #\ESCAPE #\ [#\2 #\1 #\~
ElD #\ESCAPE #\ [#\2 #\3 #\~
EH #\ESCAPE #\ [#\2 #\4 #\~
EH #\ESCAPE #\ [#\2 #\5 #\~
EH #\ESCAPE #\ [#\ 2 #\ 6 #\~
iHiipl (FTsI) #\ESCAPE #\ [#\2 #\ 8 #\~
m (Eg) #\ESCAPE #\ [#\2 #\9 #\~
EH #\ESCAPE #\ [#\3 #\1 #\~
EH #\ESCAPE #\ [#\ 3 #\ 2 #\~
EE #\ESCAPE #\ [#\ 3 #\ 3 #\~
EE #\ESCAPE #\ [#\ 3 #\4 #\~

(continued on next page)

3-32 Using the VAX LISP Editor

Table 3-4 (Cont.): Characters Generated by Keys

Key Characters Generated
Editing Keys (LK201)

[Find] (|3) #\ESCAPE #\ [# \1 # \~
| In sert H ere | ([e£]) #\ESCAPE #\ [# \2 # \~
| R em ov e | (|E3|) #\ESCAPE #\ [#\ 3 #\~
I s 5 £ t] (| 5 |) #\ ESCAPE #\ [# \4 # \~
| P rev S c r e e n | {(ES|) #\ ESCAPE #\ [#\5 #\~
| N ext S c r e e n | ([E6]) #\ESCAPE #\ [# \6 # \~

The third argument to bind-command, which is optional, specifies the binding
context. If you omit this argument, the context is global; that is, the key binding
is effective everywhere in the Editor. If you include this argument, supply it in
the form
'(:STYLE "style-name")
or
’(:BUFFER "buffer-name”)

Section 3.5.1.4 describes binding context in more detail.
The following example binds the key sequence Ctrl/X Ctrl/O to the "Remove other
Windows” command globally:
(bind-command "remove other windows" , #(#\'"X #\ '“O))
Alternatively, you can globally bind the key sequence PF1 Remove (the Remove key
is on the LK201’s editing keypad) to "Remove other Windows" as shown here:
(bind-command "remove other windows"

'#(#\escape #\o #\p #\escape #\ ([#\3 #\~)))
To bind the F12 key on an LK201 keyboard to the "edt Back t o s t a r t o f Line"
command in the "edt Emulation" style, use the following function:
(bind-command "edt back t o s t a r t o f l in e "

'#(#\escape # \ [#\2 #\4 #\~)
' (:style "edt emulation"))

Following execution of this function, the F12 key moves the cursor to the beginning
of the line, but only if the "EDT Emulation" style is active. (This binding is in
effect by default.)

NOTE TO VWS VAXSTATION USERS
You can also bind actions of the pointing device (movement and but­
tons) to commands. See the description of the bind-pointer-command
function in the VAX L IS P /V M S E d ito r P rogram m in g G uide.

3.5.1.3 Selecting a Key or Key Sequence
You can bind almost any key or key sequence to a command, but be careful that
your selection does not interfere with Editor operation. This section explains
restrictions and provides hints to help you make a selection.

Using the VAX LISP Editor 3-33

The three control characters you must not include anywhere in a key sequence
are:
• The cancel character, Ctrl/C by default, which terminates an Editor operation.

You cannot include Ctrl/C in a key sequence, because pressing Ctrl/C at any time
stops the collection of keystrokes and returns the Editor to the end of the last
completed command.

• Ctrl/S and Ctrl/Q, which are interpreted by the operating system (they stop
output to the terminal and resume it, respectively), and therefore never reach
the Editor for interpretation.

You should not use any graphic (printing) character to start a key sequence,
although you can use graphic characters elsewhere in the sequence. If you start
a key sequence with, say, the letter A, you will never be able to type the letter
A as part of a word. The Editor, as soon as it sees the A, will recognize it as the
beginning of a key sequence; unless the next character(s) completes the sequence,
the Editor will signal an error and discard the A.
When you include an alphabetic character in a key sequence, remember that
the Editor differentiates between uppercase and lowercase. For example, the
following two key sequences are different:
' # (#\ ''X #\A)
'#(#\AX #\a)
By convention, the three keys used to start a key sequence are Ctrl/X, Escape, and
keypad PF1. You can, of course, use others if you choose, as long as they are
nonprinting. (On keyboards that do not have an Escape key, Ctrl/[transmits the
#\ escape character.)
Finally, do not select a key or key sequence that is already bound to a useful
command. Appendix E contains a list of all the key bindings supplied with the
Editor. Section 3.5.1.4 explains how a single key or key sequence can be bound to
two different commands in different contexts.

3.5.1.4 Key Binding Context and Shadowing
When you bind a key or key sequence to a command, you can specify the context
in w h ich th a t b in d in g is e ffec tiv e . S p e c ify in g a co n tex t m ea n s th a t th e k e y or k ey
sequence invokes the command only in that particular context.
The three general types of context are:
• The buffer context. If the context is a particular buffer, the key or key

sequence invokes the command only if that buffer is current.
• The style context. If the context is a particular style, the key or key sequence

invokes the command only if that style is the major style or one of the minor
styles that is active in the current buffer.

• The global context. If the context is global, the key or key sequence always
invokes the command. The default context is global.

Styles
A style is a collection of key bindings and of other Editor characteristics that
cause the Editor to behave in a certain way. The two styles that you encounter
in the default Editor are named "edt Emulation" and "VAX l is p ". The "edt
Em ulation" style causes the numeric keypad to generate editing actions similar
to those of EDT. The "vax l is p " style provides access to the Editor’s ability to
edit LISP code easily.

3-34 Using the VAX LISP Editor

An Editor buffer can have one major style and one or more minor styles active at
any time. You can tell which styles are active by looking at the label strip for the
buffer. See Section 3.1.2.
The major style is generally established before the Editor is started. Minor styles
are activated automatically, depending on what is being edited. For example,
whenever you edit a LISP object or a file having the type .LSP, the "VAX LISP”
style is activated for that buffer as a minor style.
Shadowing
It is possible to bind the same key or key sequence to two different commands. If
the contexts of the two bindings are the same, then the second binding replaces
the first one. If, however, the two bindings have different contexts, then the key
or key sequence may invoke either command, depending on the situation at the
time. To locate a command to execute when a key is pressed, the Editor checks to
see that the key is:
1. Bound in the context of the current buffer.
2. Bound in the context of one of the current minor styles, examining the most

recently activated style first.
3. Bound in the context of the current major style.
4. Bound in the global context.
As soon as the Editor finds a command to execute, it does so. Therefore, if the
same key or key sequence is bound in, say, the current minor style and the
current major style, the binding in the minor style shadows or takes precedence
over the binding in the major style.
For example, the Ctrl/J key is bound tc " e d t Dele te Previous word" in the " e d t
Emulation" style and to "New l isp Line" in the "VAX l i s p " style. When you
are editing LISP code, " e d t Emulation" is the major style and "VAX l i s p " is
the minor style. Therefore, the binding of Ctrl/J to "New LISP Line" shadows the
binding to "EDT Delete Previous Word".

3.5.2 Keyboard Macros
A keyboard macro is a series of keystrokes that you ask the Editor to remember
for future use. The keystrokes can be keys that insert characters, keys or key
sequences that invoke editing commands, or even commands that you type in and
that issue additional prompts. A keyboard macro is useful whenever you have a
series of identical, complicated operations to perform.
To begin a keyboard macro, type Ctrl/X (. Everything you type from that point
is executed normally, but is also stored for future use. Typing Ctrl/X) stops
the storage of keystrokes. To execute a keyboard macro, type Ctrl/X Ctrl/E. This
sequence causes the current keyboard macro to be played back starting at the
current cursor location. A keyboard macro that you define in this way lasts until
you define another keyboard macro.
You can also use the " s t a r t Named Keyboard Macro" command to define a key­
board macro having a name. Use the " s t a r t Named Keyboard Macro" command as
you would the Ctrl/X (key sequence. The command prompts you for a name. After
you enter the name, the Editor starts remembering keystrokes. Terminate the
macro with Ctrl/X). The macro thus defined is the current keyboard macro (you can
invoke it with Ctrl/X Ctrl/E), but it is also a named entity that you can treat like a
command. You can execute it as a named command or bind a key to it. A named
keyboard macro remains accessible by name even after another keyboard macro
has been defined.

Using the VAX LISP Editor 3-35

A keyboard macro may not work properly if the context changes between the time
the macro is created and the time it is executed. For example, if you switch to
a buffer that has a different minor style active, the commands invoked by the
keyboard macro may fail.

3.5.3 Summary of Commands
Table 3—5 summarizes the commands presented in this section and their key
bindings.

Table 3-5: Commands for Customizing the Editor
Name Binding Description
Bind Command None Prompts for a command name and a key

sequence to bind to it.

Start Keyboard Macro [ciri/xim Starts collecting keystrokes for a key­
board macro.

Start Named Keyboard Macro None Prompts for a name, then starts col­
lecting keystrokes for a keyboard macro
having that name.

End Keyboard Macro icwxim Terminates the collection of keystrokes
for a keyboard macro.

Execute Keyboard Macro 1 Ctrl/X I I Ctrl/EI Executes the current keyboard macro.

3.6 Using the Editor on a VWS VAXstation
The behavior and capabilities of the Editor when operating on a VWS VAXstation
are similar to its operation on an ordinary video terminal. The same commands
are available and the same key bindings are in effect. However, the Editor
incorporates several features that make use of VAXstation capabilities. This
section summarizes those features.

3.6.1 Before You Start
Before using the Editor on a VWS VAXstation, you must do the following:
• Activate specific lines in the VAX LISP startup file, LISPSTART.COM.
• Set the terminal emulator to NOFALLBACK mode.
These topics are discussed in detail in the following sections.

3.6.1.1 Activating Lines in LISPSTART.COM
Two lines in the installation file LISPSTART.COM affect your use of the pointer
when you use the Editor on a VWS VAXstation. These lines must execute when
the system starts up, before any process that runs the Editor is created. The lines
are as follows:
$ DEFINE/SYSTEM/EXECUTIVE UIS$VT_ENABLE_OSC_STRINGS TRUE
$ DEFINE/SYSTEM/EXECUTIVE UIS$VT_ENABLE_LOCATOR TRUE

3-36 Using the VAX LISP Editor

The first line defines a logical name that lets the Editor switch the input focus
back to the terminal emulator when the Editor is paused. The second line allows
the VAX LISP Editor to use a locator (mouse) on a VWS VAXstation display.
Comment these lines out if LISP is not running on a VWS VAXstation.

3.6.1.2 Setting the Terminal Emulator to NOFALLBACK Mode
Before you start the Editor on a VWS VAXstation, check that the terminal emu­
lator is in NOFALLBACK mode. When the terminal emulator is in FALLBACK
mode, LISP hangs when switching input focus from the Editor to the window in
which the LISP process is running.
Use the DCL command SHOW TERMINAL to show which mode is active. To set
the terminal emulator to NOFALLBACK mode, enter the DCL command SET
TERMINAIVN OFALLBACK

3.6.2 Screen Appearance and Behavior
The most obvious difference in Editor behavior on a VAXstation is that the Editor
occupies a separate window from the LISP interpreter. This window has the
title "VAX l isp Editor". It is created the first time you start the Editor, and the
cursor is shifted to it from the window containing the LISP prompt. The Editor
window is taller than the 24 lines normally contained in a video terminal but is
otherwise identical to the Editor display described throughout this chapter.
When you pause the Editor, the cursor returns to the LISP prompt. When you
resume the Editor, the cursor moves to the spot it occupied in the Editor window
when you paused the Editor.
If you select the Delete option from the Window Options menu, the Editor exits,
giving you the opportunity to save buffers first.
While you are using the Editor, you cannot use the LISP interpreter, even though
the window containing the LISP prompt is still on the screen. You cannot use the
LISP interpreter until you pause or exit from the Editor.

NOTE
Do not attempt to delete or change the size of the Editor window.
Although these commands are enabled on the Window Options menu,
their use is unsupported and results are unpredictable.
You cannot adjust the width of the Editor window on a VWS
VAXstation, using the "Set Screen width" command.

3.6.3 Editing with the Pointer
The pointer cursor is the cursor that you move around the screen by moving
the mouse or other pointing device. By contrast, the text insertion cursor is the
blinking cursor that you move around the Editor windows by using conventional
Editor commands.
You can use the pointing device to perform some editing tasks. You can select a
new window to be the current window, move the text insertion cursor within the
current window, and cut and paste text. When you are editing LISP code, you can
also select LISP forms, describe LISP symbols, and match parentheses.

Using the VAX LISP Editor 3-37

The description of initial pointer bindings assumes that the pointing device is
set for right-handed operation (the default). If you have set the pointing device
for left-handed operation (in VAXstation setup mode), reverse the indications
of right and left buttons in the following sections and in the Appendix E icon
representations.

NOTE
Pointer movement is signaled at the character-cell level instead of at
the pixel level. As a result, the Editor does not know the pointer has
moved unless it crosses a character-cell boundary. If you are trying to
establish a select region with the pointer, and the select region fails
to reach the current pointer cursor location, simply move the pointer
cursor over a character-cell boundary. This will signal movement, and
the Editor will update the select region.

3.6.3.1 Selecting and Removing Windows
When the pointer cursor is in a window other than the current window, press the
left pointer button to make that window the current window. The text insertion
cursor is placed where it was the last time that window was current. Press the
middle pointer button in a window other than the current window to remove that
window from the screen.

3.6.3.2 Moving the Text Insertion Cursor and Marking Text
When the pointer cursor is in the current window, press the left pointer button to
move the text insertion cursor to the pointer cursor. If you release the left button
without moving the pointer cursor, the text insertion cursor stays in the same
place. However, you can also leave the left button down and move the pointer
cursor. If you do this, the text insertion cursor also moves. The text between
where you first pressed the left button and where you finally release it is marked
as a select region.
If you are editing LISP code, you can use the left pointer button to mark LISP
forms as select regions. The first time you press the button, the text insertion
cursor moves to the pointer cursor. Each time you press the button without mov­
ing the pointer cursor, a LISP form that encloses the pointer cursor is marked.
Enclosing forms are marked until the outermost form is reached.

3.6.3.3 Cutting and Pasting
In the current window, press the middle pointer button to cut text that has been
marked as a select region. Press the middle pointer button with the left pointer
button depressed to paste text from the paste buffer at the pointer cursor position.
Tb cut and paste text, follow these steps:
1. Mark the text to be cut, using any method.
2. Press the middle pointer button to cut the text.
3. Move the pointer cursor to the position at which you want to paste the text.
4. Press and hold the left pointer button, then press the middle button.

3-38 Using the VAX LISP Editor

When you are editing LISP code, you can use the right pointer button to invoke
the LISP describe function. Move the pointer cursor to a symbol, then press the
right button. The Editor’s help window appears and displays the results of using
the describe function on that symbol.
If you move the pointer cursor to a right parenthesis and press the right pointer
button, the matching left parenthesis is highlighted.

3.6.3.4 Invoking the DESCRIBE Function and Matching Parentheses

3.6.3.5 Information About Pointer Effects
You can find out what action a pointer button invokes by moving the pointer
cursor to the information area. When you press any pointer button, the name of
the command invoked by that button is displayed in the information area. Note
that the command displayed is the one invoked by that button when the pointer
cursor is in the current window. When you release the button, the command (if
any) invoked by releasing the button is displayed.
Moving the pointer cursor in the information area with the buttons held a certain
way displays the command that is invoked by pointer movement with the buttons
in that state.

3.6.4 Binding Pointer Buttons to Commands
Binding pointer buttons to commands is analogous to binding keys or key
sequences to commands. See the VAX L IS P /V M S E d ito r P ro g ra m m in g G uide for
information.

Using the VAX LISP Editor 3-39

Chapter 4

Debugging Facilities

Debugging is the process of locating and correcting programming errors. When
an error is signaled, the VAX LISP error handler displays a message, which
states the error type, the name of the function that caused the error, the name
of the function the LISP system used to signal the error, and a description of the
error.
Once you know the name of the function that caused an error, you can use the
VAX LISP debugging functions and macros to locate and correct the programming
error. Table 4—1 lists the debugging functions and macros with a brief description
of each. See the VAX L IS P /V M S O bject Reference M an u al for more detailed
descriptions.

Table 4-1: Debugging Functions and Macros

Name
Function
or Macro Description

APROPOS Function Locates symbols whose print names contain a
specified string argum ent as a substring and
displays information about each symbol it locates.

APROPOS-LIST Function Locates symbols whose print nam es contain a
specified string argum ent as a substring and
returns a lis t of the symbols it locates.

BREAK Function Invokes the break loop.

DEBUG Function Invokes the VAX LISP Debugger.

DEBUG-CALL Function Returns a lis t representing the call a t the current
debug stack frame.

DESCRIBE Function Displays detailed information about a specified
object.

DRIBBLE Function Sends the input and the output of an interactive
LISP session to a specified file.

ED Function Invokes the VAX LISP Editor.

INSPECT Function Invokes the VAX LISP Inspector.!

ROOM Function Displays information about the state of internal
storage and its m anagement.

STEP Macro Invokes the stepper.

t The Inspector is available only on the DECwindows interface.

(continued on next page)

Debugging Facilities 4-1

Table 4-1 (Cont.): Debugging Functions and Macros

Name
Function
or Macro Description

TIME Macro Displays tim ing information about the evaluation of
a specified form.

TRACE Macro Enables the tracer for functions and macros.

UNTRACE Macro Disables the tracer for functions and macros.

This chapter provides the following:
• A list of the functions and macros that provide you with debugging

information
• Descriptions of two variables that control the output of the Debugger, the

stepper, and the tracer facilities
• A description of the VAX LISP control stack
• Explanations of how to use the following debugging facilities:

— Break loop—read-eval-print loop you can invoke while the LISP system is
evaluating a program.

— Debugger—A control stack Debugger you can use interactively to inspect
and modify the LISP system’s control stack frames.

— Stepper—A facility you can use interactively to step through a form’s
evaluation.

— Tracer—A facility you can use to inspect a program’s evaluation.
— Editor—An extensible editor that lets you edit programs and data

structures.

4.1 Control Variables
VAX LISP provides two variables that control the output of the Debugger,
the stepper, and the tracer facilities: *debug-print-length* and *debug-
print-level*. These variables are analogous to the Common LISP variables
print-length and *print-level* but are used only in the Debugger.
* DEBUG-PRINT-LENGTH* Controls the number of displayed elem ents at each

level of a nested data object. The variable’s value m ust
either be an integer or NIL. The default value is NIL
(no limit).

* DEBUG-PRINT-LEVEL* Controls the number of displayed levels of a nested
data object. The variable’s value m ust either be an
integer or NIL. The default value is NIL (no limit).

4.2 Control Stack
The control stack is the part of LISP memory that stores calls to functions,
macros, and special forms. The stack consists of stack frames. Each time you call
a function, macro, or special form, the VAX LISP system does the following:
1. Pushes the name of the function associated with the function, macro, or

special form that is being called onto the stack frame.

4-2 Debugging Facilities

2. Pushes the function’s arguments onto the stack.
3. Creates a new stack frame.
4. Invokes the function.
Each control stack frame has a frame number, which is displayed as part of the
stack fram e’s output. Stack frame numbers are displayed in the output of the
Debugger, the stepper, and the tracer.
There is always one active stack frame, and it can be either significant or
insignificant. Significant stack frames are those that invoked documented
and user-created functions. Insignificant stack frames are those that invoked
undocumented functions.
Debugger commands show only significant stack frames unless you specify the
ALL modifier with a Debugger command (see Section 4.4.3.1). Significant stack
frames store one of the following calls:
• A call to a function named by a symbol that is in the current package
• A call to a function that is accessible in the current package and is explicitly

or implicitly called by another function that is in the current package
See Com m on L ISP : The L an guage for information on packages.

4.3 Break Loop
The break loop is a read-eval-print loop that you can invoke to debug a program.
You can invoke the break loop while a program is being evaluated. If you do, the
evaluation is interrupted and you are placed in the loop.

4.3.1 Invoking the Break Loop
You can invoke the break loop by calling the BREAK function. The two ways of
using the break function to debug a program are:
• Use the VAX LISP bind-keyboard-function function to bind an ASCII

keyboard control character to the break function. Then, use the control
character to directly invoke the break function while your program is being
evaluated (see the VAX L IS P /V M S O bject Reference M an u al for a description
Of the BIND-KEYBOARD-FUNCTION function).

• Put the break function in specific places in your program.
In either case, the break function displays a message (if you specified one in your
form calling the break function) and enters a read-eval-print loop. If you specified
a message, the break function displays the message in the following format:
Break:
your message.

After the message is displayed, a prompt is displayed at the left margin of your
terminal:
Break>

Debugging Facilities 4—3

4.3.2 Exiting the Break Loop
When you are ready to exit the break loop and continue your program’s evalua­
tion, invoke the VAX LISP continue function.
Break> (continue)
The continue function causes the evaluation of your program to continue from
the point where the LISP system encountered the break function.
If you are in a nested break loop and you invoke the continue function, you are
placed in the previous break-loop level. A description of the continue function is
provided in the VAX L IS P /V M S O bject Reference M an ual.

4.3.3 Using the Break Loop
Once you are in the break loop, you can check what your program is doing by
interacting with the LISP system as though you were in the top-level loop. For
example, suppose you define a variable named »f ir st* and a function named
counter, which uses the variable »f ir st*.
L isp> (defvar »first* 0)
»FIRST*
Lisp> (defun counter nil

(if (< »first* 100)
(progn (incf »first») (counter))
»first»))

COUNTER
If you bind the break function to a control character, you can interrupt the
function’s evaluation by typing the control character. For example:
Lisp> (bind-keyboard-function tV^b #'break)
T
Lisp> (counter) |Returnj
I Ctrl/B I
Break>
Once you are in the break loop, you can check the value of the variable »f ir s t *.
Break> »first*
16
Break>
If you call the continue function, the evaluation of the function counter contin­
ues.
Break> (continue)

After you call the continue function, you can see that the evaluation was
continued by invoking the break loop again and rechecking the value of the
variable »FIRST*.
[Ctrl/B 1
Break> »first*
93
Break>
Use the continue function again to complete the function’s evaluation.
Break> (continue)
Continuing from Break lo op . . .
100

4—4 Debugging Facilities

Changes th a t you m ake to global variables and global definitions while you
are in the break loop rem ain in effect after you exit the loop and your program
continues. For example, if you are in the break loop and you find th a t the value of
the variable named * f i r s t * has an incorrect value, you can change the variable’s
value. The change rem ains in effect after you exit the break loop and continue
your program ’s evaluation.

NOTE
The forms you type while you are in the break loop are evaluated in
a null lexical environment, as though they are evaluated a t top level.
Therefore, you cannot examine the lexical variables of a program th a t
you in terrup t w ith the break loop. To examine those lexical variables,
invoke the Debugger (see Section 4.4). For information on lexical
environments, see C om m on LISP : The Language.

4.3.4 Break Loop Variables
The break loop uses a copy of the top-level-loop variables (plus (+), hyphen (-),
asterisk (*), slash (/) , and so on) the same way the top-level loop uses them (see
C om m on LISP : The Language). These variables preserve the input expressions
you specify and the output values the VAX LISP system retu rns while you are in
the break loop.

4.4 Debugger
The VAX LISP Debugger is a control stack Debugger. You can use it interactively
to inspect and modify the LISP system’s control stack frames. The Debugger has
a pointer th a t points to the current stack frame. The current stack fram e is the
la s t fram e for which the Debugger displayed information. The Debugger provides
several commands th a t perform the following:

• Display help

• Evaluate a form or reevaluate the function call a stack fram e stores

• Handle errors

• C h an ge w h ich s ta ck fra m e is con sid ered cu rren t

• Inspect or modify the function call in a stack frame

• Display a sum m ary of the control stack

The Debugger reads its input from and prin ts its output to the stream bound to
the *d e b u g - i o * variable.

4.4.1 Invoking the Debugger
The VAX LISP system invokes the Debugger when errors occur. You can invoke
the Debugger by calling the VAX LISP d e b u g function. For example:

L i s p > (d e b u g)

Debugging Facilities 4-5

When the Debugger is invoked, a message th a t identifies the Debugger and the
curren t stack frame, preceded by “Apply” or “Eval”, and the command prompt are
displayed a t the left m argin of your term inal in the following format:

C o n t r o l S t a c k D e b u g g e r
Apply #5: (DEBUG)
D e b u g n >

The le tte r n in the prompt represents an integer, which indicates the num ber of
the nested command level you are in. The value of n increases by one each time
the command level increases. For example, the top-level read-eval-print loop is
level 0. If an error is invoked from the top-level loop, the Debugger displays the
prom pt Debug 1>. If you m ake another error while in the Debugger, th a t error
causes the Debugger to display the prompt Debug 2>.

After the Debugger is invoked, you can use the Debugger commands to inspect
and modify the contents of the system ’s control stack.

A description of the d e b u g function is provided in the VAX L IS P /V M S O bject
Reference M anual.

4.4.2 Exiting the Debugger
To exit the Debugger, use the QUIT Debugger command. I t causes the Debugger
to re tu rn control to the previous command level.

D e b u g 2 > q u i t
D e b u g 1>

If you specify the QUIT command when the Debugger command level is 1
(indicated by the prompt Debug 1>), the command causes the Debugger to exit
and re tu rns you to the system’s top level. For example:

D e b u g 1> q u i t
L i s p >

By default, the QUIT command displays a confirmation message before the
Debugger exits if a continuable error causes the Debugger to be invoked. For
example:

D e b u g 1 > q u i t
Do y o u r e a l l y w a n t t o l e a v e t h i s d e b u g e n v i r o n m e n t ?

If you type YES, the Debugger re tu rns control to the previous command level.

Do y o u r e a l l y w a n t t o l e a v e t h i s d e b u g e n v i r o n m e n t ? y e s
L i s p >

If you type NO, the Debugger prompts you for another command.

Do y o u r e a l l y w a n t t o l e a v e t h i s d e b u g e n v i r o n m e n t ? n o
D e b u g 1>

You can prevent the Debugger from displaying the confirmation message by
specifying the QUIT command with a value other than n i l . For example:

D e b u g 1 > q u i t t
L i s p >

A description of the QUIT command is provided in Section 4.4.3.2.

4—6 Debugging Facilities

4.4.3 Using Debugger Commands
The Debugger commands let you inspect and modify the curren t control stack
frame and move to other stack frames. You m ust specify m any of the Debugger
commands with one or more argum ents th a t qualify command operations. These
argum ents are listed in Section 4.4.3.1.

You can abbreviate Debugger commands to as few characters as you like, as long
as no ambiguity is in the abbreviation.

E nter a Debugger command by typing the command nam e or abbreviation and
then pressing Return. For example:

Debug 1> b a c k t r a c e |R e t u r n |

If you press only Return, the Debugger prompts you for another command.

Table 4—2 provides a sum m ary of the Debugger commands. Detailed descriptions
of the commands are in Section 4.4.3.2.

Table 4-2: Debugger Commands
Command
BACKTRACE

BOTTOM

CONTINUE

DOWN

ERROR

EVALUATE

GOTO

HELP (or) [T]

QUIT

REDO

RETURN

SEARCH

SET

SHOW

STEP

TOP

UP

WHERE

Description
Displays a backtrace of the control stack.

Moves the current frame pointer to the first stack frame on the control
stack.

Continues execution by returning from the continuable error that
invoked the Debugger.

Moves the current frame pointer down the control stack.

Redisplays the error m essage that was displayed when the Debugger
was invoked.

Evaluates a specified form.

Moves the pointer to a specified stack frame.

Displays help text about the Debugger commands.

Exits to the previous command level.

Reinvokes the function in th e current stack frame.

Evaluates its argum ents and causes the current stack frame to return
the same values the evaluation returns.

Searches the control stack for a specified function.

Sets the values of the components in the current stack frame.

Displays information stored in the current stack frame.

Invokes the stepper for the function in the current stack frame.

Moves the pointer to the la st stack frame in the control stack.

Moves the pointer up the control stack.

Redisplays the argum ent lis t and the function nam e in the current
stack frame.

4.4.3.1 Arguments
Some Debugger commands require an argum ent; other Debugger commands
accept optional argum ents. An argum ent whose value is an integer is usually
optional; an argum ent whose value is a symbol or form is required. If you do
not specify an argum ent th a t is required, the Debugger p rom p ts you for the
argum ent. For example:

Debugging Facilities 4-7

D e b u g 1 > r e t u r n | R e tu rn |

F i r s t V a l u e :

The Debugger does not prompt for argum ents if you specify them in the command
line.

E n ter an argum ent after the command it qualifies and then press Return. For
example:

D e b u g 1> d o w n a l l |Ramm|

The types of argum ents you can specify with Debugger commands are:

• Debugger command

• Symbol

• Form

• Function name

• Integer

• Modifier

NOTE
Only parenthesized expressions and argum ents to evaluate (that is,
argum ents specified w ith the EVALUATE command) are evaluated.

The preceding argum ents are self-explanatory with the exception of the integer
and modifier argum ents.

Integer argum ents represen t control stack fram e numbers. Each stack fram e on
the control stack has a fram e number, which the Debugger displays as part of
the stack fram e’s output. The Debugger reassigns these num bers each time i t is
invoked. You can specify a fram e num ber in a Debugger command to refer to a
specific stack fram e in the current debugging session.

Table 4—3 provides a sum m ary of the modifier argum ents you can specify with
Debugger commands.

Table 4-3: Debugger Command Modifiers
Modifier Command Modification
ALL

ARGUMENTS

CALL

DOWN

FUNCTION

HERE

NORMAL

Operates on both significant and insignificant stack frames.

Operates on the argum ents specified w ith the function in the current
stack frame.

Operates on the call to the current stack frame.

Moves the pointer down the control stack.

Operates on the function object in the current stack frame.

Operates on the current stack frame.

Displays the function name and the argum ent list in the control stack
frames.

(continued on next page)

4-8 Debugging hacilities

Table 4-3 (Cont.): Debugger Command Modifiers

Modifier Command Modification

QUICK

TOP

UP

VERBOSE

Displays the function nam e in the control stack frames.

Starts a backtrace at the top of the control stack.

Moves the pointer up the control stack.

Displays the function name, argument list, and some variable bindings
in the control stack frames.

4.4.3.2 Debugger Commands
The VAX LISP Debugger provides commands th a t you can use to move through
and modify the system’s control stack.

Help Command

HELP The HELP command displays help text about the Debugger commands.
i ? I You can specify this command w ith one argum ent, which is the name of

the Debugger command about which you w ant help text. If you specify
the HELP command without an argument, the Debugger displays a list
of the Debugger commands.
You can abbreviate this command by using a question mark (?).

Evaluation Command

You can evaluate LISP expressions w hile you are in the Debugger.
If you w ant the LISP system to evaluate a parenthesized form, you
can specify the form and then press Return. If you w ant the system to
evaluate a symbol, you m ust use the EVALUATE command. You can
also evaluate expressions by entering the break loop. For information
on the break loop, see Section 4.3.

EVALUATE The EVALUATE command explicitly evaluates a specified form. You
m ust specify the command w ith an argum ent that is the form you want
the LISP system to evaluate. The system evaluates the form in the
lexical environm ent of the current stack frame.

Error-Handling Commands

The Debugger deals w ith errors that invoke the Debugger. Each of the
following Debugger commands deals w ith errors in a different way.

CONTINUE The CONTINUE command causes the Debugger to return NIL, letting
you return from a continuable error or from a warning if the value of
the *BREAK-ON-WARNINGS* variable is T. This command is sim ilar to
the CONTINUE function. See VAX LISP Implementation and Extensions
to Common LISP for a description of error types.

QUIT The QUIT command lets you exit to the previous command level. I f the
current level o f the Debugger is 1, the command causes the Debugger
to exit to the LISP prompt (Lisp>). You can specify th is command with
an optional argument. If a continuable error invokes the Debugger and
the argument is NIL, the Debugger displays a confirmation message.
If you respond to the m essage by typing YES, the command returns
control to the previous command level. If the argum ent is not NIL,
the Debugger does not display a m essage. The default value for the
optional argum ent is NIL. This command is sim ilar to the ABORT
function.

Debugging Facilities 4—9

Error-Handling Commands

REDO The REDO command invokes the function in the current stack frame,
causing the LISP system to reevaluate the function in that frame. This
command is useful for correcting errors that are not continuable, such
as unbound variables and undefined functions. To do so, first bind the
variables or define the function, then use the REDO command.

RETURN The RETURN command evaluates its argum ents and causes the
Debugger to force the current stack frame to return the same val­
ues the evaluation returns. If you om it the argum ent, the Debugger
prompts you for it. The RETURN command can accept m ultiple argu­
m ents, each one an expression to be evaluated. Each evaluated form
produces only one value to be returned.

STEP The STEP command invokes the stepper for the function that is in the
current stack frame. W hen the stepper is invoked, the LISP system
reevaluates the function. This command is useful i f you w ant to repeat
an error to get information about the cause of the error.

Movement Commands

BOTTOM

The m ovem ent commands move the Debugger’s pointer to another
stack frame. The Debugger displays the new stack fram e’s information.
The BOTTOM command moveB the pointer to the first significant
stack frame on the control stack. If you specify the ALL modifier
w ith the BOTTOM command, the command m oves the pointer to the
first (oldest) stack frame on the control stack whether the frame is
significant or insignificant.

DOWN The DOWN command m oves the pointer toward the bottom of the
control stack, one frame at a time. You can specify thiB command
w ith optional argum ents. One of the optional argum ents is the ALL
modifier. If you specify ALL, the command moves the pointer down the
significant and insignificant stack frames on the control stack.
You can also specify an optional integer argument, which indicates
the number of stack fram es down which the command is to move the
pointer.

GOTO The GOTO command m oves the pointer to a specified stack frame. You
m ust specify th is command with an integer that specifies the number
of the stack frame.

SEARCH The SEARCH command searches the control stack for a specified
function name. You m ust specify th is command with two arguments.
The first argum ent m ust be either the UP or the DOWN modifier to
specify the direction of the command’s search. The second argum ent
m ust be the name of the function for which the command is to search.
You can also specify an optional integer argument. This argument
m ust follow the function name argum ent in the command specification.
The integer you specify indicates the number of occurrences of the
specified function name th a t you w ant the command to skip.

TOP The TOP command m oves the pointer to the last (newest) significant
stack frame on the control stack. If you specify the ALL modifier
with the TOP command, the command moves the pointer to the last
stack frame on the control stack whether the frame is significant or
insignificant.

4—10 Debugging Facilities

Movement Commands

UP The U P command moves the pointer toward the top of the control
stack. You can specify this command w ith optional arguments. One
of the optional arguments is the ALL modifier. If you specify it, the
command moves the pointer up the significant and insignificant stack
frames on the control stack.
You can also specify an optional integer argument. It indicates the
number of stack frames up which the command is to move the pointer.

WHERE The WHERE command redisplays the function name and argument list
in the current stack frame.

Inspection and Modification Commands

ERROR

You can inspect and change the information in a function call before
the LISP system evaluates the call. To do this, use the inspection and
modification commands.
The ERROR command redisplays the error m essage that was displayed
for the error that invoked the Debugger.

SET The SET command sets the values of the components in the cur­
rent stack frame. You m ust specify this command with three argu­
m ents. The first argument m ust be either the ARGUMENTS or the
FUNCTION modifier. The modifier determines w hat the command
sets. The following lis t describes what is set when you specify each
modifier:
ARGUMENTS The value of an argument in the current stack

frame.

FUNCTION The function object in the current stack frame.
If you specify the ARGUMENTS modifier, the second argum ent m ust
be the symbol that names the argum ent to be set, and the third
argum ent m ust be a form that evaluates to the new value. If you
specify the FUNCTION modifier, the second argument m ust be a
form that evaluates to a function or the name of a function. The new
function m ust take the same number of argum ents the old function
takes.

SHOW The SHOW command displays information stored in the current stack
frame. You m ust specify this command with the ARGUMENTS, CALL,
FUNCTION, or HERE modifier. The modifier determines w hat the
command is to display. The following lis t describes w hat the command
displays when you specify each modifier:
ARGUMENTS A lis t of the arguments in the current stack frame.

CALL The function call that created the current stack
frame. The command displays the function call so
that its output is easy to read. The argum ents in
the call are represented by their values.

FUNCTION The function in the current stack frame. The
function can be either interpreted or compiled with
the COMPILE function. The function cannot be
displayed if it is a system function or if it is loaded
from a compiled file.

HERE A description of the current stack frame.

Debugging Facilities 4-11

Backtrace Command

BACKTRACE The BACKTRACE command displays the argum ent lis t of each stack
frame in the control stack, starting from the top of the stack. You can
specify the command w ith modifiers to specify the style and extent
of the backtrace. The modifiers you can specify are ALL, NORMAL,
QUICK, HERE, TOP, or VERBOSE. By default, the command uses
the NORMAL and the TOP modifiers. The following list describes the
style or extent the BACKTRACE command uses when you specify each
modifier:
ALL Displays significant and insignificant stack frames.

NORMAL Displays the function name and argum ent list in each
stack frame.

QUICK

HERE

TOP

VERBOSE

D isplays the function name in each stack frame.

Starts the backtrace at the current stack frame.

Starts the backtrace at the top of the control stack.

Displays the function name, argument list, and local
variable bindings in each stack frame.

4.4.4 Using the DEBUG-CALL Function
The d e b u g - c a l l function re tu rns a list representing the call a t the current debug
stack frame. This function is a debugging tool and takes no argum ents. The list
returned by d e b u g - c a l l can be used to access the values passed to the function in
the current stack frame. If used outside the Debugger, d e b u g - c a l l re tu rns n i l .
The following example shows how to use the function:

L i s p > (d e f v a r a d j u s t a b l e - s t r i n g
(m a k e - a r r a y 10 : e l e m e n t - t y p e ' s t r i n g - c h a r

: i n i t i a l - e l e m e n t # \ s p a c e
: a d j u s t a b l e t))

AD JUSTA BLE-STRING
L i s p > (s c h a r a d j u s t a b l e - s t r i n g 3)

E r r o r i n SCHAR:
A r g u m e n t i s n o t o f t y p e (SIMPLE-ARRAY CHARACTER 1) : " "

C o n t r o l S t a c k D e b u g g e r
A p p l y # 6 : (SCHAR " " 3)
D e b u g 1 > (t y p e - o f (s e c o n d (d e b u g - c a l l)))

(VECTOR CHARACTER 1 0)
D e b u g 1 > r e t # \ s p a c e
\S P A C E
L i s p >

In this case, the function in the current stack frame is s c h a r . The call to
(DEBUG-CALL) re tu rns the list (s c h a r " " 3) . The form (s e c o n d

(d e b u g -C ALL)) re tu rn s the first argum ent to s c h a r in the current stack frame.
Calling t y p e - o f with this LISP object determ ines th a t the first argum ent to
s c h a r is of type (v e c t o r c h a r a c t e r i o) and not a simple string.

4-12 Debugging Facilities

4.4.5 Sample Debugging Sessions

1. L i s p > (d e f u n f i r s t - e l e m e n t (x) (c a r x))
FIRST-ELEM EN T
L i s p > (f i r s t - e l e m e n t 3)
E r r o r i n CAR: A r g u m e n t m u s t b e a l i s t : 3

C o n t r o l S t a c k D e b u g g e r
A p p l y # 8 : (CAR 3)
D e b u g 1> dow n
E v a l # 7 : (CAR X)
D e b u g 1> dow n
E v a l # 6 : (BLOCK FIR ST-E L EM EN T (CAR X))
D e b u g 1> d o w n
A p p l y # 4 : (FIR ST-ELEM EN T 3)
D e b u g 1> s h o w h e r e
I t i s a n i n t e r p r e t e d f u n c t i o n
L a m b d a - l i s t : F IR ST-E L EM EN T X
— A r g u m e n t s —
X : 3
D e b u g 1> s e t
T y p e o f SET o p e r a t i o n : a r g u m e n t
A r g u m e n t N a m e : x
New V a l u e : ' (1 2 3)
D e b u g 1 > w h e r e
A p p l y # 4 : (FIR ST-ELEM EN T (1 2 3))
D e b u g 1> r e d o
1
L i s p >

The argum ent in a stack fram e is changed from an integer to a list, and the
function is reevaluated with the correct argum ent.

2. L i s p > (d e f u n p l u s - y (x) (+ x y))
PL U S-Y
L i s p > (p l u s - y 4)
E r r o r i n P L U S -Y : S y m b o l h a s n o v a l u e : Y

C o n t r o l S t a c k D e b u g g e r
E v a l # 8 : Y
D e b u g 1> d o w n
E v a l # 7 : (+ X Y)
D e b u g 1> d o w n
E v a l # 6 : (BLOCK P L Ü S -Y (+ X Y))
D e b u g 1> (s e t f y 1)
1
D e b u g 1> w h e r e
E v a l # 6 : (BLOCK P L U S -Y (+ X Y))
D e b u g 1> e v a l u a t e
E v a l u a t e : y
1
D e b u g 1> d o w n
A p p l y # 4 : (PL U S -Y 4)
D e b u g 1 > r e d o
5
L i s p >

The value of the variable y is set w ith the s e t f macro, and the body of the
function PL U S -Y is reevaluated.

Debugg ing Facilities 4—13

(1 2 3 4)

3. L i s p > (d e f u n o n e - p l u s (x) (1 + x))
ONE-PLUS
L i s p > (o n e - p l u s ' (1 2 3 4))
E r r o r i n 1 + : A r g u m e n t m u s t b e a n u m b e r :

C o n t r o l S t a c k D e b u g g e r
A p p l y # 8 : (1 + (1 2 3 4))
D e b u g 1> s e t f u n c t i o n
F u n c t i o n : ' c a r
D e b u g 1> w h e r e
A p p l y # 8 : (C A R . (1 2 3 4))
D e b u g 1> d o w n
E v a l # 7 : (1 + X)
D e b u g 1> u p
A p p l y # 8 : (CAR (1 2 3 4))
D e b u g 1> r e d o
1
L i s p > (p p r i n t - d e f i n i t i o n ' o n e - p l u s)
(DEFUN ONE-PLUS (X) (1 + X))

L i s p >

This example shows th a t changing the contents of a stack frame does not
change the contents of other stack fram es or the function th a t was originally
evaluated.

4.5 Stepper
The stepper is a facility you can use to step interactively through the evaluation
of a form. You can control the stepper with stepper commands as it displays and
evaluates each subform of a specified form.

The stepper has a pointer th a t points to the current stack fram e on the system’s
control stack. The current stack frame is the las t fram e for which the stepper
displayed information.

The stepper prints its command interaction and output to the stream bound to
the *d e b u g - i o * variable.

4.5.1 Invoking the Stepper
You can invoke the stepper by calling the s t e p macro w ith a form as an argum ent.
The following example invokes the stepper with a call to a function named
f a c t o r i a l :

L i s p > (s t e p (f a c t o r i a l 3))

When the stepper is invoked, i t displays a line of tex t th a t includes the first
subform of the specified form and the stepper prompt. The output is displayed at
the left m argin of your term inal in the following format:

9 : (FACTORIAL 3)
S t e p >

After the stepper is invoked, you can use the stepper commands to control the
operations the stepper performs and the way the stepper displays output.

4—14 Debugging Facilities

4.5.2 Exiting the Stepper
Usually, when you use the stepper, you press Return until the stepper steps
through the entire specified form. If you w ant to exit from the stepper before it
steps through a form, use the QUIT stepper command. This command causes the
stepper to re tu rn control to the previous command level th a t was active when the
stepper was invoked.

S t e p > q u i t
L i s p >

By default, the QUIT command displays a confirmation message before it causes
the stepper to exit. For example:

S t e p > q u i t
Do y o u r e a l l y w a n t t o e x i t t h e s t e p p e r ?

If you type YES, the stepper exits and re tu rns control to the command level th a t
was active when the stepper was invoked.

Do y o u r e a l l y w a n t t o e x i t t h e s t e p p e r ? y e s
L i s p >

If you type NO, the stepper prompts you for another command.

Do y o u r e a l l y w a n t t o e x i t t h e s t e p p e r ? no
S t e p >

You can prevent the stepper from displaying the confirmation message by
specifying the QUIT command with a value other than n i l . For example:

S t e p > q u i t t
L i s p >

The QUIT command is described in Section 4.5.4.2.

4.5.3 Stepper Output
Once you invoke the stepper with a specified form, the stepper displays two types
of information as the LISP system evaluates the form:

• A description of each subform of the specified form

• A description of the re tu rn value from each subform

If the subform being evaluated is a symbol, the stepper displays the descriptions
in a line of text th a t includes the following information:

• The nested level of the symbol

• The control stack fram e num ber th a t indicates where the symbol and its
re tu rn value are stored

• The symbol

• The re tu rn value

The stepper indicates the nested level of a symbol w ith indentation. W hen the
num ber of nested levels increases, the indentation increases. After m aking the
appropriate indentation, the stepper displays the control stack fram e number, the
symbol, and the re tu rn value in the following format:

#n: symbol => return-value

Debugging Facilities 4—15

If the subform being evaluated is not a symbol, the stepper displays the descrip­
tions in a line of text th a t includes the following information:

• The nested level of the subform

• The control stack fram e num ber th a t indicates where the subform is stored

• The subform

The stepper indicates the nested level of a subform with indentation. When the
num ber of nested levels increases, the indentation increases. After m aking the
appropriate indentation, the stepper displays the control stack fram e num ber and
the subform in the following format:

#rr. (subform)
The description of a re tu rn value includes the following information:

• The nested level of the re tu rn value

• The control stack frame num ber th a t indicates where the re tu rn value is
stored

• The re tu rn value

The stepper also indicates the nested level of each re tu rn value with indentation.
The indentation m atches the indentation of the corresponding call. After m aking
the appropriate indentation, the stepper displays the control stack fram e num ber
and the re tu rn value in the following format:

#n => return-value
Suppose you define a function named FACTORIAL.

L i s p > (d e f u n f a c t o r i a l (n)
(i f « = n 1) 1 (* n (f a c t o r i a l (- n 1)))))

FACTORIAL

The following example illustrates the form at of the output the stepper displays
when you invoke it w ith the form (f a c t o r i a l 3) :

L i s p > (s t e p (f a c t o r i a l 3))
: # 9 : (FACTORIAL 3)
S t e p > s t e p
: : # 1 5 : (BLOCK FACTORIAL (I F (<= N 1) 1 (* N (FACTORIAL (- N 1)))))
S t e p > s t e p
: : : # 2 2 : (I F (<= N 1) 1 (* N (FACTORIAL
S t e p > s t e p
: : : : # 2 8 : (<= N 1)
S t e p > s t e p

: : # 3 3 : N # - > # 3
: : : : # 2 8 = > # N I L
: : : : # 2 7 : (* N (FACTORIAL (- N 1)))
S t e p > s t e p

: : # 3 2 : N # = > # 3
: : # 3 1 : (FACTORIAL (- N 1))

S t e p > s t e p
: : : # 3 6 : (- N 1)

4—16 Debugging Facilities

S t e p > s t e p
: : : : : : : #41: N#=>#3
: : : : : : #36=>#2
: : : : : : #37: (BLOCK FACTORIAL (I F (< = N 1) 1 (* N (FACTORIAL (- N 1)))))
S t e p > o v e r
: : : : : : #37=>#2
: : : : : #31=>#2
: : : : #27=>#6
: : : # 22=>#6
: : #15=>#6
: #9=>#6
6

Note th a t the factorial function is a recursive function and, in the preceding
example, has three levels of recursion. The stepper indicates the nested level of
each subform with an indentation, indicated w ith a colon followed by a space (:).
The stepper indicates the num ber of the stack fram e in which a call is stored with
an integer. The integer is preceded by a num ber sign and followed by a colon
(#n:).

The nested level of each re tu rn value m atches the indentation of the correspond­
ing subform. The stepper indicates the num ber of the control stack frame onto
which the LISP system pushes the value with an integer th a t m atches the stack
fram e num ber of the corresponding subform. The integer is preceded by a num ber
sign and followed by an arrow (#n =>) th a t points to the re tu rn value.

4.5.4 Using Stepper Commands
Stepper commands let you use the stepper to step through the evaluation
of a LISP expression, form by form. You m ust specify some commands with
argum ents. They provide the stepper w ith additional information on how to
execute the command.

You can abbreviate stepper commands to as few characters as you like, äs long as
no ambiguity is in the abbreviation.

Each time a command is executed, the stepper displays a re tu rn value if the
subform re tu rns a value, displays the next subform, and prompts you for an­
other command. E nter a stepper command by typing the command name or
abbreviation and then pressing Return. For example:

S t e p > s t e p [R e tu rn]

: : : # 2 2 : (I F (<= N 1) 1 (* N (FACTORIAL (- N 1))))
S t e p >

If you press only Return, the LISP system evaluates the subform the stepper
displays. If the evaluation re tu rns a value, the stepper displays the value and the
next subform and then prompts you for another command.

S t e p > I R e tu rn |

: : : #22: (I F (<= N 1) 1 (* N (FACTORIAL (- N 1))))
S t e p >

Table 4—4 provides a sum m ary of the stepper commands. The stepper commands
are described in Section 4.5.4.2.

Debugging Facilities 4-17

Table 4-4: Stepper Commands
Command Description
BACKTRACE Displays a backtrace of a form’s evaluation.

DEBUG Invokes the Debugger.

EVALUATE Evaluates a specified form with the stepper disabled.

FINISH Finishes the evaluation of the form that was specified in the call to the
STEP macro with the stepper disabled.

HELP (or) [T] Displays help text about the stepper commands.

OVER Evaluates the subform in the current stack frame with the stepper
disabled.

QUIT Exits the stepper.

RETURN Forces the current stack frame to return a value.

SHOW Displays the subform in the current stack frame.

STEP Evaluates the subform in the current stack frame with the stepper
enabled.

UP Evaluates subforms w ith the stepper disabled until the stepper gets
back to a subform that contains the subform in th e current stack frame.

4.5.4.1 Arguments
Stepper command argum ents modify the operations the stepper commands
perform. Some stepper commands require an argum ent, and some commands
accept optional argum ents. The argum ents you can specify with the stepper
commands are:

• Integer

• Form

• Stepper command

NOTE
O n ly p a r e n th e s iz e d ex p re ss io n s an d a rg u m en ts to e v a lu a te (th a t is,
a rg u m en ts sp ec ified w ith th e EVALUATE com m an d) are ev a lu a ted .

E nter an argum ent after the command it modifies and press Return. For example:

S t e p > e v a l u a t e (< = n 1) |Return|

If an argum ent is required and you omit it, the stepper prompts you for the
argum ent. For example:

S t e p > e v a l u a t e |Return]

E v a l u a t e : (< = N 1)

The stepper does not prompt for argum ents if you specify them in the command
fine.

4-18 Debugging Facilities

4.5.4.2 Stepper Commands
The stepper provides commands th a t let you control how it steps through a form’s
evaluation.

Help Command

HELP
m

The HELP command displays help text about the stepper commands.
You can specify this command w ith one argument, the name of the
stepper command about which you want help text. If you specify the
HELP command without an argument, the stepper displays a list of
the stepper commands. You can abbreviate th is command by using a
question mark (?).

Evaluation Command

EVALUATE

You can evaluate expressions while you are in the stepper. If you want
the LISP system to evaluate a parenthesized form, you can specify
the form and then press Return. If you w ant the system to evaluate a
symbol, you m ust use the EVALUATE command.

The EVALUATE command causes the LISP system to explicitly eval­
uate a specified form. If you do not specify the command with an
argument, you are prompted for one. The argum ent m ust be the form
you w ant the system to evaluate. The system evaluates the form in the
lexical environm ent of the form currently being stepped.

Debugger Command

DEBUG The DEBUG command invokes the Debugger at the control stack frame
that stores the call to the current form. When the Debugger returns
control to the stepper, the stepper prompts you for a command.

Display Command

SHOW The SHOW command displays the subform in the current stack frame.

Exiting Command

QUIT The QUIT command causes the stepper to exit and return control to
the command level th a t was active when the stepper was invoked. You
can specify this command w ith an optional argument. If you specify
NIL, the stepper displays a confirmation m essage before it causes the
stepper to exit. If you respond to the m essage by typing YES, the
stepper exits. If you specify a value other than NIL, the stepper does
not display a m essage. The default value for the optional argument is
NIL.

Backtrace Command

BACKTBACE The BACKTRACE command lists the subforms of the form being
stepped through. You can specify the command with an optional
integer, which determines the number of subforms that are to be listed.
The stepper works its way back the specified number of subforms and
then lists the subforms in the order in which they were invoked. If you
do not specify the argum ent, the stepper lists all the subforms the LISP
system is evaluating.

Debugging Facilities 4—19

Commands That Continue Evaluation of the Form Being Stepped Through

FINISH

OVER

RETURN

STEP

UP

Several stepper commands continue the evaluation of the form be­
ing stepped through, each command continuing the evaluation in a
different way.
The FINISH command evaluates the form you specified in the call
to the STEP macro. You can specify the command with an optional
argum ent that is a form. When the stepper executes the command,
the LISP system evaluates the form. I f the evaluation returns a value
other than N IL , the stepper steps through the evaluation of the form
until it reaches the end of the evaluation. I f the evaluation returns
N IL , the LISP system disables the stepper and then evaluates the form
you specified in the call to the STEP macro. The default value for the
optional argum ent is N IL .

The OVER command causes the LISP system to evaluate the subform
in the current stack frame with the stepper disabled.

The RETURN command causes the LISP system to evaluate the
RETURN command’s argum ent and causes the stepper to force the
current stack frame to return the values returned by the evaluation. If
you do not specify the command with an argument, you are prompted
for one. The argum ent m ust be a form. When you execute the com­
mand, the LISP system evaluates the form. When the evaluation is
complete, the current stack frame returns the values returned by the
evaluated form.

The STEP command causes the LISP system to evaluate the subform
in the current stack frame w ith the stepper enabled. This command is
equivalent to pressing Return.
The U P command causes the LISP system to evaluate subforms with
the stepper disabled until control returns to the subform that contains
the subform in the current stack frame one level deep. You cannot
specify the command with an optional argument.

4.5.5 Using Stepper Variables
The stepper facility has two special variables th a t are useful debugging tools
w hen in the stepper: *st e p- foem* and *step- environment*.

4.5.5.1 ‘STEP-FORM*
The * s t e p - f o r m * variable is bound to the form being evaluated while stepping.
For example, while executing the form

(step (function-z argl arg2))
the value of * s t e p - f o r m * is the list (f u n c t i o n - z a r g l a r g 2). W hen not stepping,
the value is undefined.

4—20 Debugging Facilities

4.5.5.2 ‘STEP-ENVIRONMENT’
The * s t e p - e n v i r o n m e n t * variable is bound to the lexical environm ent in which
* s t e p - f o r m * is being evaluated. By default in the stepper, the lexical environ­
m ent is used if you use the EVALUATE command. See C om m on L IS P : The
L an guage for a description of dynamic and lexical environm ent variables.

Some Common LISP functions (for example, e v a l h o o k , a p p l y h o o k , and
m a c r o e x p a n d) take an optional environm ent argum ent. The value bound to the
* s t e p - e n v i r o n m e n t * variable can be passed as an environm ent to these functions
to allow evaluation of forms in the context of the stepped form.

4.5.5.3 Example Use of Stepper Variables
The following example shows how to use the * s t e p - f o r m * and » s t e p -
e n v i r o n m e n t * special variables.

L i s p > (s e t f x " t o p l e v e l v a l u e o f x ")
" t o p l e v e l v a l u e o f x "
L i s p > (d e f u n f i b o n a c c i (x)

(i f « x 3) 1
(+ (f i b o n a c c i (- x 1)) (f i b o n a c c i (- x 2)))))

FIBONACCI
L i s p > (s t e p (f i b o n a c c i 5))
4 : (FIBONACCI 5)
S t e p > s t e p
: # 1 0 : (BLOCK FIBONACCI (I F (< X 3) 1

(+ (FIBO NACCI (- X 1))
(FIBONACCI (- X 2)))))

S t e p > s t e p
: : # 1 4 : (I F (< X 3) 1 (+ (FIBO NACCI (- X 1))

(FIBO NACCI (- X 2))))
S t e p > - s t e p
: : : # 1 8 : « X 3)
S t e p >

S t e p >

S t e p >

S t e p >

S t e p >

S t e p >

S t e p >

S t e p >

s t e p
: # 2 2 : X = > 5
1 8 => N IL
1 7 : (+ (FIBONACCI (- X 1)) (FIBONACCI (- X 2)))
s t e p
: # 2 1 : (FIBONACCI (- X 1))
s t e p
: : # 2 5 : (- X 1)
s t e p
: : : # 2 9 : X = > 5
: : # 2 5 => 4
: : # 2 7 : (BLOCK FIBONACCI (I F (< X 3) 1

(+ (FIBONACCI (- X 1))
(FIBONACCI (- X 2)))))

s t e p
: : : # 3 1 : (I F « X 3) 1

(+ (FIBONACCI (- X 1))
(FIBONACCI (- X 2))))

s t e p
: : : : # 3 5 : (< X 3)
s t e p
: : : : : # 3 9 : X => 4
: : : : # 3 5 => N IL
: : : : # 3 4 : (+ (FIBONACCI (- X 1)) (FIBO NACCI (- X 2)))
s t e p

: : : : : : : : # 3 8 : (FIBONACCI (- X 1))
S t e p > e v a l * s t e p - f o r m *
(FIBONACCI (- X 1))

Debugging Facilities 4-21

S t e p > s t e p
: : : : : : : : : # 4 2 : (- X 1)
S t e p > s t e p
: : : : : : : : : : # 4 6 : X = > 4
: : : : : : : : : # 4 2 = > 3
: : : : : : : : : # 4 4 : (BLOCK FIBONACCI

(I F (< X 3) 1
(+ (FIBO NACCI (- X 1))

(FIBONACCI (- X 2)))))
S t e p > e v a l * s t e p - £ o r m *
(BLOCK FIBONACCI

(I F « X 3) 1 (+ (FIBO NACCI (- X 1)) (FIBONACCI (- X 2)))))
S t e p > s t e p
: : : : : : : : : : # 4 8 : (I F (< X 3) 1

(+ (FIBONACCI (- X 1))
(FIBONACCI (- X 2))))

S t e p > s t e p
: : : : : : : : : : : # 5 2 : « X 3)
S t e p > s t e p
: : : : : : : : : : : : # 5 6 : X = > 3
: : : : : : : : : : : # 5 2 = > NI L
: : : : : : : : : : : # 5 1 : (+ (FIBONACCI (- X 1))

(FIBONACCI (- X 2)))
S t e p > s t e p
: : : : : : : : : : : : # 5 5 : (FIBONACCI (- X 1))
S t e p > e v a l x
3
S t e p > (e v a l ' x)
" t o p l e v e l v a l u e o f x "
S t e p > e v a l * s t e p - f o r m *
(FIBO NACCI (- X 1))
S t e p > (e v a l h o o k ' x n i l n i l n i l)
" t o p l e v e l v a l u e o f x "
S t e p > (e v a l h o o k ' x n i l n i l * s t e p - e n v i r o n m e n t *)
3
S t e p > (e v a l h o o k (c a d r * s t e p - f o r m *) n i l n i l * s t e p - e n v i r o n m e n t *)
2
S t e p > s t e p
: : : : : : : : : : : : : # 5 9 : (- X 1)
S t e p > s t e p
: : : : : : : : : : : : : : # 6 3 : X = > 3
: : : : : : : : : : : : : # 5 9 = > 2
: : : : : : : : : : : : : # 6 1 : (FIBONACCI

(I F (< X 3) 1
(+ (FIBONACCI (- X 1))

(FIBONACCI (- X 2)))))
S t e p > f i n i s h
5

This example shows th a t the * s t e p - f o r m * special variable is bound to the
form being evaluated while stepping. The example also shows th a t the * s t e p -
e n v i r o n m e n t * special variable is bound to the lexical environm ent in which the
currently stepped form is being evaluated.

The call to e v a l h o o k evaluates the form (- x l) in the lexical environm ent of
the stepper; th a t is, w ith the local binding of x. A call to e v a l h o o k with a null
environm ent specified shows th a t d’s value in the null lexical environm ent differs
from th a t in the stepper. The EVAL command uses the * s t e p - e n v i r o n m e n t *
environm ent; the e v a l function uses the null lexical environment.

4-22 Debugging Facilities

4.5.6 Sample Stepper Sessions

1. L i s p > (d e f u n f i r s t - e l e m e n t (x) (c a r x))
FIR ST-ELEM EN T
L i s p > (s e t f m y - l i s t ' (f i r s t s e c o n d t h i r d))
(F I R S T SECOND THIRD)

L i s p > (s t e p (f i r s t - e l e m e n t m y - l i s t))
1 0 : (F IR ST-E L EM EN T M Y -L IS T)
S t e p > s t e p
: # 1 5 : M Y -L IS T = > (F IR S T SECOND THIRD)
: # 1 7 : (BLOCK FIR ST-ELEM EN T (CAR X))
S t e p > s t e p
: : # 2 2 : (CAR X)
S t e p > e v a l u a t e (c a r x)
F I R S T
S t e p > f i n i s h
F I R S T
L i s p >

2. L i s p > (d e f u n p l u s - y (x) (+ x y))
PL D S-Y
L i s p > (s e t f y 5)
5
L i s p > (s t e p (p l u s - y 1 0))
1 0 : (PL U S-Y 1 0)
S t e p > s t e p
: # 1 7 : (BLOCK P L U S -Y (+ X Y))
S t e p > e v a l u a t e
E v a l u a t e : (+ x y)
15
S t e p > s t e p
: : # 2 2 : (+ X Y)
S t e p > b a c k t r a c e
(+ X Y)
(BLOCK PL U S -Y (+ X Y))
(PL U S -Y 1 0)
S t e p > s h o w
< + X Y)
S tep > o v er
: : # 2 2 => 15
: # 1 7 => 15
1 0 => 15
15
L i s p >

Debugging Facilities 4—23

3. L i s p > (d e f u n a d d i t i o n (x) (+ x y))
ADDITION
L i s p > (s e t f y 5)
5
L i s p > (s t e p (a d d i t i o n 4))
1 0 : (ADDITION 4)
S t e p > s t e p
: # 1 7 : (BLOCK ADDITION (+ X Y))
S t e p > s t e p
: : # 2 2 : (+ X Y)
S t e p > b a c k t r a c e
(+ X Y)
(BLOCK ADDITION (+ X Y))
(ADDITION 4)
S t e p > e v a l u a t e
E v a l u a t e : (+ x y)
9
S t e p > STEP
: : : # 2 7 : X=>#4
: : : # 2 7 : Y =>#5
: : # 2 2 = > # 9
: # 1 7 = > # 9
1 0 = > # 9
9
L i s p >

4.6 Tracer
The VAX LISP tracer is a macro you can use to follow a program ’s evaluation.
The tracer informs you when a function or macro is called during a program ’s
evaluation by printing information about each call and re tu rn value to the stream
bound to the * t r a c e - o u t p u t * variable. To use the tracer, you m ust enable it for
each function and macro you w ant traced.

NOTE
You cannot trace special forms.

4.6.1 Enabling the Tracer
You can enable the tracer for one or more functions and/or macros by specifying
the function and macro names as argum ents in a call to the t r a c e macro. For
example:

L i s p > (t r a c e f a c t o r i a l a d d i t i o n c o u n t e r)
(FACTORIAL ADDITION COUNTER)

The trace macro re tu rns a list of the functions and macros th a t are to be traced.

If you call the t r a c e macro w ithout an argum ent, i t re tu rns a list of the functions
and macros for which tracing is enabled. For example:

L i s p > (t r a c e)
(FACTORIAL ADDITION COUNTER)

A description of the t r a c e macro is provided in the VAX' L IS P /V M S O bject
Reference M an u al.

4-24 Debugging Facilities

4.6.2 Disabling the Tracer
Tb disable the tracer for a function or macro, specify the name of the function
or macro in a call to the untrace macro. I t re tu rns a list of the functions and
macros for which tracing has ju st been disabled. For example:

L i s p > (untrace factorial addition counter)
(FACTORIAL ADDITION COUNTER)

You can disable tracing for all the functions for which tracing is enabled by calling
the untrace macro without an argum ent.

The untrace macro is described in C om m on LISP : The Language.

4.6.3 Tracer Output
Once you enable the tracer for a function or macro, the tracer displays two types
of information each tim e th a t function or macro is called during a program ’s
evaluation:

• A description of each call to the specified function or macro

• A description of each re tu rn value from the specified function or macro

The description of a call to a function or macro consists of a line of tex t th a t
includes the following information:

• The nested level of the call

• The control stack fram e num ber th a t indicates where the call is stored

• The nam e and argum ents of the function associated w ith the function or
macro th a t is called

The tracer indicates the nested level of a call w ith indentation. When the
num ber of nested levels increases, the indentation increases. After m aking the
appropriate indentation, the tracer displays the control stack frame number, the
function name, and the argum ents in the following format:

#n: (function-name arguments)
The tracer also displays a line of tex t for the re tu rn value of each evaluation. The
l in e o f t e x t th e tracer d isp la y s for ea ch v a lu e in c lu d es th e fo llo w in g in form ation :

• The nested level of the re tu rn value

• The control stack fram e num ber th a t indicates where the re tu rn value is
stored

• The re tu rn value

The tracer indicates the nested level of each re tu rn value w ith indentation. The
indentation m atches the indentation of the corresponding call. After m aking the
indentation, the tracer displays the control stack frame num ber and the re tu rn
value in the following format:

#n => return-value
Suppose you define a function nam ed factorial.

Lisp> (d e f u n f a c t o r i a l (n)
(i f (< = n 1) 1 (* n (f a c t o r i a l (- n 1)))))

FACTORIAL

Debugging Facilities 4-25

The following example illustrates the form at of the output the tracer displays
when the function f a c t o r i a l is called with the argum ent 3:

Lisp> (factorial 3)
#11: (FACTORIAL 3)
. #27: (FACTORIAL 2)
. . #43: (FACTORIAL 1)
. . #43 => 1
. #27 => 2
#11 = > 6
6

The f a c t o r i a l function is a recursive one and, in the case of the preceding
example, has three levels of recursion. The tracer indicates the nested level of
each call w ith indentation. Each level of indentation is indicated with a period
followed by a space (.). The tracer indicates the num ber of the stack fram e in
which a call is stored with an integer. The integer is preceded with a num ber
sign and followed by a colon (#«:).

The nested level of each re tu rn value m atches the indentation of the correspond­
ing call. The tracer indicates the num ber of the control stack fram e onto which
the LISP system pushes the value with an integer. This integer m atches the
stack fram e num ber of the corresponding call and is preceded w ith a num ber sign
and followed by an arrow (#n =>) th a t points to the re tu rn value.

4.6.4 Tracer Options
You can modify the output of the tracer by specifying options in the call to the
t r a c e macro. Each option consists of a keyword-value pair. The form at in which
to specify keyword-value pairs for the t r a c e macro is:

(TRACE (function-name keyword-1 value-1 keyword-2 value-2 ...))

You can also specify options for a list of functions and/or macros. The t r a c e
macro form at in which to specify the same options for a list of functions and
macros is:

(TRACE ((name-1 name-2 ...) keyword-1 value-1 keyword-2 value-2 ...))

NOTE
Forms the system evaluates ju s t before or ju s t after a call to a function
or macro for which tracing is enabled are evaluated in a null lexical
environment. For information on lexical environm ents, see C om m on
LISP : The L anguage.

The keywords you can use to specify options are:

DEBUG-IF
PRE-DEBUG-IF
POST-DEBUG-IF
PRINT
PRE-PRINT
POST-PRINT
STEP — IF
SUPPRESS-IF
DURING

Invoke the Debugger

Add information to tracer output

Invokes the stepper

Removes information from tracer output

Determ ines when a function or macro is traced

4-26 Debugging Facilities

You can cause the tracer to invoke the Debugger by specifying the :DEBUG-IF,
:p r e -d e b d g - i f , or : POST-DEBUG-if keyword. These keywords m ust be specified
w ith a form. The LISP system evaluates the form before, after, or before and
after each call to the function or macro being traced. If the form retu rns a value
other than n i l , the tracer invokes the Debugger after each evaluation.

4.6.4.1 Invoking the Debugger

4.6.4.2 Adding Information to Tracer Output
You can add information to tracer output by specifying the : p r i n t , :p r e -p r i n t , or
: p o s t -p r i n t keyword. You m ust specify these keywords with a list of forms. The
LISP system evaluates each form in the list and the tracer displays their re tu rn
values before, after, or before and after each call to the function or macro being
traced. The tracer displays the values one per line and indents them to match
other tracer output. If the forms to be evaluated cause an error, the Debugger is
invoked.

4.6.4.3 Invoking the Stepper
You can cause the tracer to invoke the stepper by specifying the : s t e p - if key­
word. You m ust specify this keyword with a form. The LISP system evaluates the
form before each call to the function or macro being traced. If the form retu rns a
value other th an n i l , the tracer invokes the stepper.

4.6.4.4 Removing Information from Tracer Output
You can remove information from tracer output by specifying the :SUPPRESS-if
keyword. You m ust specify this keyword w ith a form. The LISP system evaluates
the form before each call to the function or macro being traced. If the form
retu rns a value other than n i l , the tracer does not display the argum ents and
the re tu rn value of the function or macro being traced.

4.6.4.5 Defining When a Function or Macro is Traced
You can define when a function or macro, for which tracing is enabled, is to be
traced by specifying the : DURING keyword. You m ust specify this keyword with a
function or macro name or a list of function and/or macro names. The functions
an d m acros for w h ich the tracer is enabled are traced only when they are called
(directly or indirectly) from within one of the functions or macros whose names
are specified with the keyword.

4.6.5 Tracer Variables
You can use two special variables w ith the t r a c e macro: *t r a c e -c a l l * and
* t r a c e -v a l u e s *. These are helpful debugging tools. With these variables and the
preceding tracer options, you can control when to debug or step depending on the
argum ents to a function or the re tu rn values from a function.

Debugging Facilities 4—27

4.6.5.1 *TRACE-CALL*
The * trace - call * variable is bound to the function or macro call being traced.
The following example shows how to use the variable:

Lisp> (defun fibonacci (x)
(if (< x 3) 1

(+ (fibonacci (- x 1)) (fibonacci (- x 2)))))
FIBONACCI
Lisp> (trace (fibonacci

:pre-debug-if (< (second *trace-call*) 2)
:suppress-if t))

(FIBONACCI)
Lisp> (fibonacci 5)
Control Stack Debugger
Apply #30: (DEBUG)
Debug 1> down
Eval #27: (FIBONACCI (- X 2))
Debug 1> down
Eval #26: (+ (FIBONACCI (- X 1))

(FIBONACCI (- X 2)))
Debug 1> down
Eval #25: (IF (< X 3) 1

(+ (FIBONACCI (- X 1))
(FIBONACCI (- X 2))))

Debug 1> down
Eval #24: (BLOCK FIBONACCI

(IF (< X 3) 1
(+ (FIBONACCI (- X 1))

(FIBONACCI (- X 2)))))
Debug 1> down
Apply #22: (FIBONACCI 3)
Debug 1> (cadr (debug-call))
3
Debug 1> continue
Control Stack Debugger
Apply #22: (DEBUG)
Debug 1> continue
5
• In this example, Fibonacci is first defined.

• Then, the trace m acro is ca lled for Fibonacci, trace is specified to invoke the
Debugger if the first argum ent to Fibonacci (the function call being traced)
is less than 2. Since the pre-debug-if option is specified, the Debugger is
invoked before the call to Fibonacci. As the :Suppress-if option has a value
of T, calls to Fibonacci do not cause any trace output.

• The DOWN command moves the pointer down the control stack.

• The debug-call function re tu rns a list representing the current debug frame
function call. In th is case, the cadr of the list is 3. This accesses the first
argum ent to the function in the curren t stack frame.

• Finally, the CONTINUE command continues the evaluation of Fibonacci.

4.6.5.2 *TRACE-VALUES*
The * trace-values* variable is bound to the list of values returned by a traced
function. Consequently, the variable can be used only w ith the :POST- options to
the trace macro. Before being bound to the re tu rn values, the variable retu rns
n il . The following example shows how to use the variable:

4-28 Debugging Facilities

Lisp> (trace (fibonacci
:post-debug-if (> (first *trace-values*) 2)))

(FIBONACCI)
Lisp> (fibonacci 5)
#5: (FIBONACCI 5)
. #13: (FIBONACCI 4)
. • #21: (FIBONACCI 3)
. . . #29: (FIBONACCI 2)
. . . #29=> 1
. . . #29: (FIBONACCI 1)
. . . #29=> 1
. . # 2 1 = > 2
. . #21: (FIBONACCI 2)
. . #21=> 1
Control Stack Debugger
Apply #14 : (DEBUG)
Debug 1> backtrace
— Backtrace start —
Apply #14 : (DEBUG)
Eval #11 : (FIBONACCI (- X 1))
Eval #10 : (+ (FIBONACCI (- X 1))

(FIBONACCI (- X 2)))
Eval #9: (IF « X 3) 1

(+ (FIBONACCI (- X 1))
(FIBONACCI (- X 2))))

Eval #8: (BLOCK FIBONACCI
(IF (< X 3) 1

(+ (FIBONACCI (- X 1))
(FIBONACCI (- X 2)))))

Apply #6: (FIBONACCI 5)
Eval #3: (FIBONACCI 5)
Apply #1: (EVAL (FIBONACCI 5))
-- Backtrace end —
Apply #14 : (DEBUG)
Debug 1> continue
. #13=> 3
. #13: (FIBONACCI 3)
. . #21: (FIBONACCI 2)
. . # 2 1 = > 1
. . #21: (FIBONACCI 1)
. . #21=> 1
. #13=> 2
Control Stack Debugger
Apply #6: (DEBUG)
Debug 1> continue
#5=> 5
5

t r a c e is called for F i b o n a c c i (the same function as in the previous example) to
s ta r t the Debugger if the value returned exceeds 2. The value returned exceeds 2
twice—once when it re tu rns 3 and a t the end when it re tu rns 5.

4.7 The Editor
The VAX LISP Editor is a powerful, extensible editor th a t lets you create and edit
LISP programs. Once you have located an error and you know which function
in your program is causing the error, you can use the Editor to correct the error.
Use the ED function to invoke the Editor. For a complete description of the ED
function, the VAX LISP Editor, and instructions on how to use the Editor, see the
VAX L IS P /V M S E d ito r P rogram m in g G uide.

Debugging Facilities 4—29

Part II
Using VAX LISP Facilities on the

DECwindows Interface

Chapter 5

The DECwindows Interface to VAX LISP

You can run VAX LISP on a VAX workstation as a DECwindows application. With
the DECwindows interface to LISP, you choose commonly used LISP operations
and utilities from pull-down m enus. Most LISP utilities rim in separate windows,
so th a t utility commands and messages are separate from interactions with LISP.
All VAX LISP utilities th a t are provided with the term inal interface are also
provided with the DECwindows interface. These utilities are:

• The Listener, which runs the r e a d -e v a l -p r i n t loop, accepts LISP forms,
evaluates them, and prints messages as a resu lt of those forms

• The Editor, which lets you w rite LISP source code w ithin the LISP
environment, load th a t code into LISP, and run it

• The Debugger, which helps you determ ine where program ming errors occur

In addition to these utilities, the DECwindows interface provides an Inspector,
which lets you examine and modify static LISP objects. This u tility is not
available w ith the term inal interface to LISP.

This chapter takes you through a sample program ming session w ith VAX LISP. It
shows you how to do the following:

• Load source files and enter LISP forms with the Listener

• Examine LISP objects with the Inspector

• Define new functions with the Editor

• Locate programming errors w ith the Debugger

Subsequent chapters describe each of these utilities in detail.

Throughout the sample session, this chapter uses a simple program to show
each stage of program development. The sample program defines LISP objects to
represent ingredients used in recipes. A LISP function calculates the num ber of
calories per serving for each ingredient or recipe.

W hen VAX LISP is installed, a num ber of sample program s are placed in the
directory defined by the logical nam e LISP$EXAMPLES. Among these programs
is a file called RECIPE.LSP, which contains the sample program. To try the
examples in this chapter, copy the source file from the LISP$EXAMPLES
directory to your working directory. Figure 5—1 shows the FileView-Copy dialog
box as it would appear when using File View to copy the RECIPE.LSP file from
LISP$EXAMPLES to a working directory called DISK$:[USER],

The DECwindows Interface to VAX LISP 5-1

Figure 5-1: Copying a Sample Source File

FileView - Copy

From:
To:

LISP$EXAMPLES:RECIPE.LSP

DISK$: [USER]

□ Show Log
□ Request Confirmation

□ Concatenate Input Files
□ Replace Existing Files
□ Hide This Dialog

Cancel

MLO-002855

5.1 Invoking VAX LISP
There are a num ber of ways to invoke VAX LISP:

• From a term inal or DECterm window, use the same command line you would
use on a regular term inal.

* From a FileView window, select DCL Command in the Utilities menu.
You can then use the same command line you would use from an ordinary
term inal or DECterm window.

5-2 The DECwindows Interface to VAX LISP

Figure 5—2 shows a standard FileView window th a t you can use to invoke VAX
LISP. See your VM S D E C w in dow s U ser’s G uide for information on using FileView
windows. For more information on invoking the DECwindows interface to VAX
LISP, see Chapter 6.

Figure 5-2: Invoking LISP

FileView - Task Output

DCL Command

$ lisp

StopTaskJ □ Hold

-Ö-

Dismiss

MLO-002856

The DECwindows Interface to VAX LISP 5—3

5.2 Using the Listener
The Listener is the first utility th a t appears. It occupies its own window, shown
in Figure 5—3.

Figure 5-3: Listener Window

EÜ1 LISP Listener

File Edit Operations

VAX LISP [TM] V3.0
©Digital Equipment Corporation, 1989.
All Rights Reserved.
Lisp>

EE
Help

MLO-002857

5-4 The DECwindows Interface to VAX LISP

You can en ter any LISP form a t the Lisp> prompt. For example, LISP can
evaluate an arithm etic expression such as the one shown in Figure 5—4.

Figure 5-4: Evaluating a LISP Form

LISP Listener

File Edit Operations
m
Help

EL

VAX LISP[TM] V3.0
©Digital Equipment Corporation, 1989.
All Rights Reserved.
L is p >
2
L is p >

(+ 1 1)

< JC 3 0
MLO-002858

The DECw indow s Interlace to VAX LISP 5-5

Commonly used LISP operations are available through pull-down m enus a t the
top of the Listener window. For example, to load source files, pull down the
File menu, then choose Load. The Load m enu choice produces a list of LISP
source files displayed in a window called a “file selection dialog box,” shown in
Figure 5—5.

Figure 5-5: Loading a LISP Source File

3C>

Filter

MLO-002859

File Filter
*.LSP

Files in DISK$:[USER]
R]HELLOWORLD.LSP
R]RECIPELLSP

<0c

Selection
DISK$:[USER] R ECIPE. LSP

To select the source file for the sample program, scroll through the list of files
until the pointer points to RECIPE.LSP. Click MB1 to highlight the file name.
RECIPE.LSP appears as the selection at the bottom of the window. Next, you can
either click on the file name again or position the pointer over the OK button and
click MBl. The file selection dialog box disappears, LISP loads the source file, and
the Listener window reappears.

For more information on the Listener, see Chapter 7.

5.3 Using the Inspector
The sample program calculates the num ber of calories for certain foods. Foods
like milk, bread, butter, and eggs are “ingredients” th a t can be combined into
“recipes.” The sample program uses symbols to represen t ingredients and
structures to represent recipes. You can examine th is da ta w ith the Inspector.

5-6 The DECwindows Interface to VAX LISP

For example, you can invoke the Inspector from the L istener window with the
LISP i n s p e c t function and inspect the c o o k i e s structure defined in RECIPE.LSP:

L i s p > (i n s p e c t c o o k i e s)

W hen LISP evaluates th is form, it opens an Inspector window and an Inspector
History window. The Inspector window, in Figure 5-6, shows th a t the structure
has the slots i NAME, : i n g r e d i e n t s , : a m o u n t , and : s e r v i n g s and i t shows the
values assigned to those slots for the c o o k i e s recipe.

Figure 5-6: Inspecting a Structure

| Inspect P\ 71
Commands Edit He P
The Structure: #S(RECIPE :NAME "C O

NAME "cookies"
INGREDIENTS (SUGAR MILK BUTT
AMOUNT (2 0.25 1)
SERVINGS 36

<01” t = —JU>
MLO-002860

The DEGwindows Interlace to VAX LISP

You can also use the mouse to select objects th a t you w ant to inspect. For
example, if you click MBi anywhere w ithin the list (s u g a r m i l k b u t t e r) , the
Inspector highlights the list. You can inspect th a t list by choosing Inspect from
the Commands m enu a t the top of the window, as shown in Figure 5-7.

Figure 5-7: Choosing the Inspect Menu Item

inspect E E
| Commands EditZT---------------------- Heiip

ire: #S (RECIPE :NAME "co

"cookies"
(2 0.25 1)
36

<oc
MLO-002861

When you choose Inspect from the menu, the Inspector opens a second window
and displays information about the list, as shown in Figure 5—8.

Figure 5-8: inspecting a List

| Inspect |H |0
Commands Edit Help
The List: (SUGAR MILK BUTTER) &p.
LIST ELT #0 SUGAR
LIST ELT #1 MILK
LIST ELT #2 BUTTER
LIST CDR NIL

< ?
o i :...- t = _ — JU

MLO-002862

5-8 The DECwindows Interface to VAX LISP

By default, the Inspector can open up to five Inspect windows a t a time. When
you inspect more than five objects, the Inspector reuses those windows. If you
do not w ant to reuse a window, so th a t the object in it will rem ain visible, you
can lock it. The Inspector will create more unlocked windows until i t reaches its
maximum of five. You may change the maximum num ber of unlocked windows
th a t the Inspector can open. Appendix B describes how you can customize the
Inspector and the other DECwindows utilities.

In addition to the Inspect windows, the Inspector keeps a running history of the
objects th a t you have inspected. This information is displayed in the Inspector
History window. Figure 5-9 shows the History window th a t the Inspector
displays for the objects inspected so far. The asterisk before the object name
indicates th a t the window is currently displayed and unlocked.

Figure 5-9: Inspector History Window

W1 LISP Inspector History
Commands Edit Help

* #S(RECIPE :NAME "cookies"
* (SUGAR MILK BUTTER)

: INGRE

A.m.

< ?
<51 i------------ ---- IL>

MLO-002863

For more information on the Inspector, see Chapter 9.

The DECw indow s Interface to VAX LISP 5-9

5.4 Running a Sample Function
The sample program contains a function called c a l o r i e s , which calculates the
num ber of calories per un it of m easure for an ingredient or per serving for a
recipe. Figure 5-10 shows w hat the c a l o r i e s function re tu rns for the symbol
s u g a r and the recipe structure c o o k i e s .

Figure 5-10: Running a LISP Function

(H LISP Listener
File Edit Operations

L is p > (calories ' sugar)
375
L is p > (calories cookies)
27
L is p >

0 E l
Help

MLO—002864

The sample program is only the beginning of w hat could be a m enu-planning
application. I t contains a small am ount of information about ingredients and
recipes and the form ula for calculating calories. The sections th a t follow describe
how to add a pretty-printing function to this program.

5.5 Using the Editor
VAX LISP has a built-in editor for creating source files. Although you can
create LISP source files with any editor you like, the LISP Editor contains
language-specific features th a t other editors do not have.

5-10 The DECw indow s Interface to VAX LISP

The Tab key indents lines appropriately, according to the cursor’s position within a
LISP form, as follows:

• Nested LISP forms are indented below their containing form.

• Forms a t the same level of nesting are aligned.

• Function argum ents on separate lines are aligned below each other and
indented below their containing form.

The Editor is also sensitive to parentheses. W henever you type a closing
parenthesis, it highlights the corresponding opening parenthesis. If the opening
parenthesis has scrolled off the window, the Editor displays i t in the command
area a t the bottom of the screen.

You can invoke the Editor from the L i s p > prompt with the ED function, giving the
nam e of the file or function you w ant to edit. This is the only way to invoke the
Editor when using the term inal interface to VAX LISP.

The DECwindows interface also lets you invoke the Editor as a m enu choice
from either the File or the Operations menu. The File m enu item, shown in
Figure 5—11, is sim ilar to Load. I t brings up a file selection box th a t allows
you to specify a file to edit. To add a function definition to RECIPE.LSP, choose
RECIPE.LSP in the file selection dialog box.

Figure 5-11: Choosing the ED Function

Edit Operations
Load...
Compile File.,
Ed...

Suspend As.

' sugar)

cookies)

Dribble

Save As...
Exit

<0(

a a
Hel 3

T=r

»0
MLO-002865

The DECwindows Interface to VAX LISP 5-11

Choosing the ED item from the Operations m enu is sim ilar to running the ed
function. Both let you edit the currently selected object.

After you invoke the Editor, it places the file or function in an editing buffer, as
shown in Figure 5—12.

Figure 5-12: Editing a File

LISP Editor
File Edit Search Commands

r r r
;;; Define the ingredients and calories

Help

(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get
(setf (get

' sugar '’calories) 375)
' sugar 'units) "cup")
'milk 'calories) 150)
'milk 'units) "cup")
'butter 'calories) 200)
'butter 'units) "oz")
'bread 'units) "slice")
'egg 'calories) 75)
'egg 'units) "egg")
'syrup 'calories) 100)
'syrup 'units) "oz")

File recipe.lsp Forward EDT Emulation ("VAX LISP")

MLO-002866 * •

The Editor displays the file or function at the top of the screen in an editing
buffer. Below the editing buffer is a sta tus line th a t tells you the name of the
file (RECIPE.LSP) or function, the current direction of certain editing commands
(Forward), w hat “m ajor” editing style you are using (EDT Emulation), and w hat
“m inor” editing style you are using (VAX LISP).

Using the default editing styles, you can enter editing commands in two ways:

• While the Editor has the input focus, press Ctrl/Z and en ter a command a t the
prompt a t the bottom of the screen.

• Choose editing commands from the Editor’s pull-down menus.

M any commands are available as both commands and m enu choices; others are
available only through menus. Figure 5-13 lists some commonly used editing op­
erations, the m enu choices th a t execute them, and their corresponding command
fines, if available.

5-12 The DECw indow s Interface to VAX LISP

Figure 5-13: Basic Editing Commands

Menu Choice Command Description

Hie
Open...

Edit File

Hie
Save

Write Current
Buffer

No command
equivalent

No command
equivalent

Select enclosing form

Select Enclosing
Form

Opens a file for editing.

Writes the contents of the
buffer to the corresponding
LISP object or file.

Places the selected text
in the clipboard and removes
the selected text from its
current location.

Places the current contents
of the clipboard at the
cursor location within the
text.

Selects the text of the inner­
most LISP form containing
the cursor or selected
region.

Search
Find...

EDT Query Searches for a text string
Search that you specify, either forward

or backward in the file.

Search
Replace...

Query Search Replaces all or single occur-
Replace rences of a string with another

string.

Commands
Write modified buffers

Write Modified
Buffers

Commands
Evaluate LISP region

Evaluate LISP
Region

Writes the contents of all
modified buffers to the
corresponding LISP objects or
to new versions of their
corresponding files.

Evaluates the selected text
and makes the results available
to the Listener.

MLO-002867

For more information on the Editor, see Chapter 8 of this m anual.

The DECwindows Interface to VAX LISP 5-13

Press the Next Screen key until’ the cursor is a t the end of the file. Then, try
entering the P R I N T -R E C IP E function shown in Example 5—1. This function pretty-
prints the information retu rned by c a l o r i e s .

Example 5-1: Defining a LISP Function

(d e f u n p r i n t - r e c i p e (r e c i p e)
" p r e t t y - p r i n t a r e c i p e , n u m b e r o f s e r v i n g s , a n d c a l o r i e s / s e r v i n g

(u n l e s s (r e c i p e - p r e c i p e)
(e r r o r " N o t a r e c i p e : ~ S " r e c i p e))

(f o r m a t t "~A~2% " (r e c i p e - n a m e r e c i p e))
(m a p c # ' (l a m b d a (a u i) (f o r m a t t " ~ 4 T ~A ~A ~A

(r a t i o n a l i z e a) u i))
(r e c i p e - a m o u n t r e c i p e)

(m a p c a r
' (l a m b d a (i) (g e t i ' u n i t s))
(r e c i p e - i n g r e d i e n t s r e c i p e))

(r e c i p e - i n g r e d i e n t s r e c i p e))
(f o r m a t t " ~ % S e r v i n g s : ~A ~%" (r e c i p e - s e r v i n g s r e c i p e))
(f o r m a t t " C a l o r i e s / s e r v i n g : ~A ~2%" (c a l o r i e s r e c i p e)))

5-14 The DECwindows Interface to VAX LISP

Tb test this function, select the definition with the Select Outerm ost Form com­
m and, and evaluate it w ith the Evaluate LISP Region command. When you use
c o o k i e s as an argum ent to p r i n t - r e c i p e , the function prints the recipe as shown
in Figure 5—14.

Figure 5-14: Running the PRINT-RECIPE Function

LISP Listener
File Edit Operations

Lisp> (print-recipe cookies)
cookies

2 cup SUGAR
1/4 cup MILK
1 OZ BUTTER

Servings: 36
Calories / serving: 27
NIL
Lisp>

Of
MLO-002868

The DECwindows Interface to VAX LISP 5-15

W hen you use f r e n c h - t o a s t as an argum ent, the function generates the error
shown in Figure 5-15. W henever an error occurs, LISP gives you the opportunity
to use the Debugger. A message box pops up th a t contains a brief message
and two buttons. W hen the error is fatal, the buttons are labeled DEBUG and
ABORT. ABORT is the default; you can avoid entering the Debugger by pressing
Return. W hen it is a continuable error, the buttons are labeled DEBUG and
CONTINUE. Clicking on the CONTINUE button or pressing Return is the same as
entering the Debugger and immediately typing c o n t i n u e .

Figure 5-15: Debugging Dialog Box

n
Error in *: Argument must be a number: NIL

DEBUG ABORT |
MLO-0028G9

5-16 The DECwindows Interface to VAX LISP

5.6 Using the Debugger
When you click on the DEBUG button, VAX LISP opens a set of debugging
windows, as shown in Figure 5-16.

Figure 6-16: Debugging Windows

Calling Stack H
TOP

» *
MAPCAR
MAPCAR
REDOCEFLOCK
NUMERATOR
I F
I FCCMDBLOCK
CALORIES
CALORIESEVAL

BOTTOM

<c DC>

mVariable Bindings

Function name: * Frame number: 15
Syatam: :A : (MIL 1)

o c

<?

Goto^Framej ^CancejJ

LISP Debugger

File Commands Edit Operations
I M

Help

Debugger Commands

Error in *:
Apply #15:
Debug 1>

Argimexit muat
(*N IL 1)

a number: MIL

<ic

■Cr

O

0 0

1
Backtrace B acktrace...
Top Top All

Up Up...
Where Goto ...
Down Down...
Bottom Bottom All
Error S h o w ...
Search ... S e t ...
Step Return ...
Redo E valuate...

Quit I Cancel

MLO—002870

The m ain debugging window, LISP Debugger, contains messages from the
Debugger and lets you en ter debugging commands a t the prompt. Above the
Debugger window is a window th a t displays Variable Bindings. I t shows the
values of the variables in the current frame.

The Debugger Commands window, to the righ t of the LISP Debugger window,
contains a set of command buttons. You can enter debugging commands by
clicking on these buttons.

lb the left of the Debugger window is the Calling Stack window. This window
shows a backtrace of the fram es on the control stack. A double arrow (») points
to the current frame. Debugging commands can move the pointer up and down
the Calling Stack. You can change the current frame by selecting a symbol in this
window and clicking on Goto Fram e or by double-clicking on a symbol.

The DECwindows Interface to VAX LISP 5-17

For example, you can click the DOWN button twice in the Commands window to
move the pointer to the second invocation of m a p c a r in the Calling Stack window.
Figure 5-17 shows the messages th a t the Debugger displays when you do this.

Figure 5-17: Using the DOWN Command

Calling StackE
TOP

MAPCAR
»MAPCAR

jRETCCE
FLOCK.
NUMERATOR
IF
IF
COND
BLOCK
CALORIES
CALORIES
EVAL

BOTTOM

<c DO

| Variable Bindings

F u n c t i o n n am e: MAPCAR F ra m e n u m b e r: 13 -C>
I n t e r p r e t e r f r a m e — C a n 't s e e i n t e r n a l A rg u m e n ts .

5 ?
O l .. I D

LISP Debugger

File Commands Edit Operations
p a

Help

Debugger Commands

E r r o r i n * : A rg u m en t m u s t a n u m b e r: N IL O
A p p ly # 1 5 : (*N IL 1)
D ebug 1 > DOWN
A p p ly # 1 4 : (M A PCA R#<Ccopiled F u n c t i o n * #xF40C 0> (N I
D ebug 1 > DCWN
E v a l # 1 3 : (MAPCAR (FUNCTION * (MAPCAR (FUNCTION (LAN
D ebug 1>

<oc
o

Backtrace B acktrace...
Top Top All
Up up -
Where Goto ...
Down Down ...
Bottom Bottom All
Error S h o w ...
Search ... Set ...
Step Return ...
Redo E valuate ...

[o ü i j JL^ntlnueD Cancel!

Each tim e you issue the DOWN command, the Debugger displays the function
th a t LISP would evaluate a t th a t point in the Calling Stack. You can then issue
the STEP command to evaluate the function, one step a t a time. For example,
when the Calling Stack points to the outer occurrence of MAPCAR, you can click
on the STEP command to begin reevaluating the function. W hen you invoke the
Stepper, it presents a different set of commands in a Stepper Commands window,
the Calling Stack and Variable Bindings windows disappear, and the Debugging
window displays the Step prompt ra th e r than the Debugger prompt.

5-18 The DECwindows Interface to VAX LISP

Figure 5—18 shows w hat the Stepper displays when you step through the second
m a p c a r function invocation. Note how the Stepper re tu rns the resu lt of the form
(g e t i (q u o t e c a l o r i e s)) for each of the elements in the list (b r e a d e g g s y r u p) .
The value returned for b r e a d is n i l . This causes the program error—the CALORIES
function expects this value to be a number.

Figure 5-18: Stepping Through a Function

To exit from the Stepper, choose Quit from the Stepper menu. This closes all
Debugger and Stepper windows and retu rns you to the Listener. At the L i s p >
prompt, you can fix the program by entering the following form to define the
num ber of calories per slice of bread:

L i s p > (s e t f (g e t ' b r e a d ' c a l o r i e s) 1 0 0)
100

You can check th a t the program now works correctly by entering the form:

L i s p > (c a l o r i e s f r e n c h - t o a s t)
2 7 5

For more information on the Debugger, see Chapter 10.

The DECwindows Interface to VAX LISP 5-19

5.7 Exiting from VAX LISP
You have now seen how to perform some basic operations with the DECwindows
interface to VAX LISP. The chapters th a t follow describe each utility in detail.

You can exit from LISP by typing (e x i t) a t the L i s p > prompt or by choosing Exit
from the File menu, as shown in Figure 5-19. If you choose the m enu item, a
caution box appears to confirm th a t you w ant to exit. Click on the Yes button to
exit from LISP.

Figure 5-19: Exiting from VAX LISP

Edit Operations
Load...
Compile File.
Ed... 'sugar)

Suspend As...
cookies)
>e cookies)

Dribble
Save
Save As...
Exit |

............. -ir- ----—-------
Calories/serving: 27
Lisp>

<](

Help

MLO-002873

5-20 The DECwindows Interface to VAX LISP

Chapter 6

Starting LISP from DECwindows

This chapter describes how to:

• Define the display system (DECwindows or term inal) th a t LISP uses from the
DCL command line

• Invoke an interactive LISP session from DECwindows

• Resume a suspended LISP session from DECwindows

• Compile a LISP file from DECwindows

6.1 Defining the Display System
You can define the interface on which VAX LISP runs on a workstation with the
VMS SET DISPLAY command. You can have VAX LISP run with the term inal or
DECwindows interface on your workstation. You define the interface you w ant
from your workstation or from a term inal th a t is a node in the same network.

6.1.1 Displaying LISP on DECwindows
To display VAX LISP on a workstation, define th a t workstation with the SET
DISPLAY command. For further information about the SET DISPLAY command,
see V M S Version 5.1 N ew F eatures M an ual.

6.1.2 Displaying LISP on a Terminal
To display VAX LISP on a term inal, use the DCL LISP verb as described in
Chapter 2. If the logical LISP$DISPLAY has the value "TERMINAL", or if the
logical DECW$DISPLAY has no value, VAX LISP will ru n with its term inal
interface.

6.2 invoking LISP from DECwindows FileView
To invoke VAX LISP from DECwindows FileView:

• Use the LISP.EXE file.

• Use the DCL Command item in the Utilities menu.

Starting LISP from DECwindows 6-1

6.2.1 Invoking LISP with the LISP.EXE File
lb invoke an interactive session of VAX LISP from FileView with the LISP.EXE
file:

• Select LISP.EXE and choose the RUN item from the Files Menu.

• Press MB2 on LISP.EXE and choose the RUN item from the pop-up menu.

• Double-click on LISP.EXE.

If you invoke LISP w ith one of the m enu items, the DECwindows File View-Run
dialog box is displayed on your screen (see Figure 6—1). You can en ter standard
LISP param eters in the Param eters field of th is dialog box. Double-clicking
on LISP.EXE invokes LISP w ithout any qualifiers. The next tim e you select
LISP.EXE and choose the RUN item, the param eters th a t you previously used
appear, and you can edit them for th is invocation. Subsequently, double-clicking
on LISP.EXE invokes LISP with the m ost recently supplied param eters.

Figure 6-1: DECwindows FileView-Run Dialog Box

MLO-002985

6-2 Starting LISP from DECwindows

Tb continue the invocation, click on the OK button, and the FileView-Work in
Progress dialog box (see Figure 6-2) appears on your screen followed by the
LISP Listener with the L isp > prompt. Chapter 7 describes the L istener in more
detail.

Figure 6-2: DECwindows FileView-Work in Progress Dialog Box

FileView - Work In Progress

Work in Progress Files Status

n
Running LISP.EXE l/ l Active

Ll
<7

^howOutpuJ Stop Task I Dismiss I

MLO-002986

6.2.2 Invoking LISP with the DCL Command Item
You can invoke an interactive session of VAX LISP from the FileView by choosing
the DCL Command item from the Utilities menu. This brings up a FileView
Task O utput dialog box into which you can type the LISP DCL command
with qualifiers and argum ents. By default, th is causes LISP to display on
your workstation. Tb have LISP display on some other node, use the methods
described in Section 6.1. E nter the commands to define the node before entering
the LISP command.

6.3 Resuming LISP from DECwindows
A suspended system is a binary file th a t is a copy of the LISP memory in
use during an interactive LISP session up to the point a t which you create
the suspended system. The state of the windows th a t were displayed on your
workstation screen is not included in th is file. The purpose of a suspended system
is to save the state of an interactive LISP session. You m ight w ant to do this if
your work is incomplete. By resum ing LISP from a suspended system, you can
continue your work from the point a t which you stopped.

To resum e a suspended system from DECwindows, type the LISP command with
the /RESUME qualifier and the nam e of the file containing the suspended system
a t any of the previously described places where you could use the LISP command,
such as the $ prompt, in the DCL Command box. Section 6.2.2 describes how
to get to the DCL Command box. The LISP Listener is displayed on your
workstation screen; you m ust rebuild the other windows if you w ant to re-create
the display th a t was on your screen when you suspended the LISP session.

See Section 2.11.1 for detailed inform ation on the suspend function.

Starting LISP from DECwindows 6-3

NOTE
A suspended system can be resum ed only by the VAX LISP system
from which it was suspended. The VAX LISP system th a t resum es a
suspended system m ust m eet these criteria:

• The VAX LISP system m ust be the sam e version of VAX LISP as
the suspending system.

• A custom VAX LISP system created w ith the VAX LISP System-
Building U tility m ust be the same system or a copy of the system.
(See VAX L IS P /V M S S ystem -B u ild in g G u ide for a description of
the System-Building Utility.)

6.4 Compiling a LISP File from DECwindows
Any collection of LISP expressions can m ake up a program and can be stored in
a file. The compiler processes such a file by compiling the LISP expressions in
the file and w riting each compiled resu lt to an output file. See C hapter 2 for a
discussion of the advantages of compiling and not compiling LISP expressions.

Tb compile files from DECwindows:

1. Select any num ber of .LSP files.
2. Choose the COMPILE item on the FileView Program m ing m enu. The

Program ming m enu is not available by default in the FileView m enu bar. You
add it w ith the M ENU BAR... item on the FileView Control menu.

For each .LSP file you select, a FileView prom pting window is displayed on your
workstation screen. You type the options you w ant for the compilation of th a t file
in the prompting window. These options are the qualifiers th a t are allowable with
the /COMPILE qualifier. Chapter 2 provides a table and a detailed description of
each of these options. The options th a t you type in the prompting box are used
only for the compilation of th a t file. Each file is compiled in a separate invocation
of LISP.

6—4 Starting LISP from DECwindows

Chapter 7

The Listener

The L istener u tility appears on the screen when you invoke LISP in a
DECwindows environment. The Listener corresponds to the top level in a
term inal-based LISP system. W hen you type forms in the Listener, LISP reads
and evaluates them, and prin ts the results in the same window.

You can access other LISP utilities by using the m enus the L istener provides.
You can also use the m enus to load, compile, and save LISP files.

Figure 7-1 shows the Listener menus.

Figure 7-1: Listener Menus

File
Load ...
Compile F ile...
Ed...

Suspend
Suspend As...

Dribble...
Save
Save As...
Exit

Edit
Undo

Cut
Copy
Paste
Clear

Operations
INSPECT
ED
EVAL

COMPILE
UNCOMPILE
DISASSEMBLE

TRACE
TRACE...
UNTRACE
STEP...

ABORT
BREAK
CONTINUE
DEBUG

Help
Overview
About

Apropos
Describe

MLO-002874

This chapter describes how to:

• E n ter LISP forms

• Exit from the Listener

• Edit tex t and objects

• Work w ith files

Appendix C provides information on how to customize the Listener.

The Listener 7-1

7.1 Entering LISP Forms
W hen you invoke LISP with the DECwindows interface, a L istener window
appears on the screen. After displaying the copyright notice, the L i s p > prompt
and the text cursor appear a t the top left of the work area.

The work a rea is divided into two logical portions: the transcrip t region and the
input region. The transcript region consists of the text preceding the current
L i s p > prompt including the current L i s p > prompt. The input region is the area
following the current L i s p > prompt, where the text insertion point is located.

As you en ter text, it appears in the input region. W hen you complete a form and
press Return, the Listener reads and evaluates the form. The text of the input form
and the value returned by LISP become p art of the transcript. Figure 7—2 shows
the transcrip t region and the input region of a LISP window after you en ter the
form (+4 3) and press Return.

Figure 7-2: Listener Window

Transcript Region

The transcrip t region is read only. You can select and copy text and objects from
this region bu t you cannot modify it.

The text you enter in the input region rem ains text when it becomes part of the
transcrip t. I t is not converted to LISP objects. However, if you paste an object
into the inpu t region, you can still select i t as an object both when i t is in the
input region and when it becomes p a rt of the transcrip t region.

7-2 The Listener

7.2 Exiting LISP from the Listener
lb exit from the Listener, choose the Exit m enu item from the File menu. A
confirmation box appears on the screen, lb exit, click on the OK button. When
you exit from the Listener, the Listener window and any other LISP windows on
the screen disappear. The LISP image is now stopped.

7.3 Editing Text and Objects
W hen you use LISP in a DECwindows environment, you can move or copy text or
objects:

• From one location in a window to another.

• Between windows—for example, from an Inspect window to the Listener
window.

In addition, LISP defines specific keys to let you perform basic text editing
operations. These keys let you move the cursor and delete text.

7.3.1 Selecting Text and Objects
Before you can move text and objects, you m ust select them w ith the mouse. You
select text as you do in other DECwindows applications, by pressing MBi and
dragging over the region of text. Section A. 16.1 describes the basic ways to select
text.

LISP also lets you select larger blocks of text as follows:

User Action
2 MBI dicks

3 MBI clicks
4 MBI clicks

5 MBI clicks

Result
Selects the word indicated by the pointer.

Selects the line indicated by the pointer.

Selects the input or output text of the READ-EVAL-PRINT transac­
tion.

Selects all text in the transcript and input regions.

W hen you move the pointer over a portion of tex t th a t is also an object, the
object is underlined. W hen you move the pointer off the object, the underlining
disappears.

Tb select an object, move the pointer to the underlined object and click MBI. The
object is highlighted to show it is selected. Tb deselect the object, click MBI again
anywhere in the window.

Tb select the text instead of the underlined object, move the pointer to the first
character of the tex t you w ant to select and press and drag MBI. Tb deselect the
text, click MBi once anywhere in the text.

The Listener 7-3

7.3.2 Moving Text and Objects to Another Location
You can select text and objects and move them to other locations in the LISP
development environment, using the Edit menu.

You move the selected range by cutting it and then pasting it in a new location.
Tb cut and paste the selected range:

1. Select the text or objects you want, using mouse clicks.
2. Choose Cut from the Edit menu.
3. Place the cursor where you w ant the information and choose Paste from the

Edit m enu of the utility to which you are moving the text.

Ib copy the selected range instead of cutting it, choose the Copy item from the
Edit menu. Then place the cursor where you w ant the information and choose
Paste.

For fu rther information on copying text in the DECwindows environment, see
Sections A.16.2 and A.16.3.

7.3.3 VAX LISP Default Key Bindings
Table 7-1 lists the default key bindings for VAX LISP. You can use these key
bindings to move the cursor or delete text while in the Listener, Inspector, and
Debugger. For information on using key bindings in the Editor, see Section 8.1.3.

Table 7-1: VAX LISP Default Key Bindings
User Action Result
|R e tu rn] or |E n te r!

[S h ift/*— |

1 Ctrl/«— |

03

B
| S h if t/— » |

| C tr l/— > |

Em
| Sh tft/F 1 2 [

I D e l e t e |

| S h l f t / D e l e t e l

1 C W / P e le tT]

| C trl/A |

Inserts a new line. I f you have completed the input, it will be
processed.

Inserts leading whitespace to correctly indent current line.

Moves text cursor one character to the left.

Moves text cursor one word to the left.
Moves text cursor to beginning of current line.
Replaces input buffer w ith previous input buffer from th e transcript
region.

Moves text cursor one character to the right.

Moves text cursor one word to the right.

Moves text cursor to the end of current line.

Replaces input buffer with next input buffer from the transcript
region.

Moves text cursor to beginning of input buffer.

Moves text cursor to the end of input buffer.

D eletes character to the left o f text cursor.

D eletes character to the right o f text cursor.

D eletes input buffer. Contents of buffer cannot be retrieved.

Moves text cursor to beginning of input line.

(continued on next page)

7-4 The Listener

Table 7-1 (Cont.): VAX LISP Default Key Bindings

User Action
I c w b I

|CWD|
| C W E [

[CWPl

I C tr i/G |

[C tr i/H |

lowil
[c w Ä J l

|C tr l/K |

|ctn/N|

|CW /0|

| C W P |

[ÖMÄJI
| C tr lV W |

| O tr l/Y |

Result
Moves text cursor one character to the left.

D eletes the character to the right of text cursor.

Moves text cursor to the end of current line.

Moves text cursor one character to the right.

Clears input buffer. Contents o f buffer cannot be retrieved.

Moves text cursor to the beginning of input buffer.

Inserts leading whitespace to correctly indent current line.

Inserts linefeed and correct am ount of whitespace to indent next
line. Places text cursor at the end of new whitespace.

D eletes all input to the right of text cursor.

Moves text cursor to next line in input buffer.

Inserts leading whitespace to correctly indent next line. Cursor
rem ains at the end of current line.

Moves text cursor to previous line in input buffer.

D eletes all input to the left of text cursor.

Clears input buffer. Contents o f input buffer are stored for retrieval
by Ctrl/Y.

Replaces input buffer w ith input buffer stored by Ctrl/W.

7.4 Working with Files
You can perform operations on files by clicking on item s from the File menu.
From the Listener, you can:

• Load a LISP file

• Compile a LISP file

• Invoke the Editor on a LISP file

• Save the text of the transcrip t region to a file

• Create a LISP suspended image file

• Record your interactive LISP session to a file

The Listener 7-5

7.4.1 Loading a LISP File
Load a LISP file from the Listener as follows:

1. Choose the Load m enu item from the File menu.
The L istener displays a File Selection box with the nam es of any LISP source
files in the curren t directory. Figure 7—3 shows a File Selection box.

Figure 7-3: File Selection Box

File Filter
[USER]*.LSP

Files in DISK$:[USER]
DISK$:[USER]FILE1 .LSP;1
DISK$:[USER]FILE2.LSP;2

Selection
1 DISK$:[USER]FILE2.LSP;2

3 0

MLO-002876

2. Select the nam e of the file you w ant to load.
To see a listing of files in another directory, enter the directory name in the
File F ilter field and click on the F ilter button or press Return. The list box
displays the files in th a t directory. Tb display specific files in the list box,
enter a directory nam e and file specification in the File F ilter field.

3. Click on the OK button, press Return, or double-click on the file.
4. The L istener clears the input region of any partial forms and fills it w ith a

call to the l o a d function. As the file is loaded, LISP displays the names of
the functions contained in the file on the screen. W hen the command finishes
running, the L i s p > prompt re tu rn s and any partial form entered before
loading the file is restored.

7-6 The Listener

7.4.2 Compiling a LISP File
You can use the compile- f il e function to compile a LISP file w ithout leaving the
LISP environm ent. To compile a file:

1. Choose the Compile File item from the File menu.
The L istener displays a File Selection box with the nam es of all LISP source
files in the current directory. Figure 7-4 shows the Compile-File File Select
box.

Figure 7-4: Compile-File File Select Box

Compile File
File Filter
[USER]*.LSP

Files in DISK$:[USER]
DISK$:[USER]FILE1 .LSP;1
DISK$:[USER]FILE2.LSP;2

<11

Selection
1 DISK$:[USER]FILE2.LSP;2

3 0

MLO-002877

2. Select the nam e of the file you w ant to compile.
3. Click on the OK button, press Return, or double-click on the file.
4. The Listener clears the input region of any partial forms and fills it with

a call to the compile- f il e function. As the file compiles, the nam es of the
functions in the file appear in the L istener window. After the file is compiled,
LISP re tu rn s the Lisp> prompt and restores any partial form th a t was
entered before compiling the file.

The Listener 7 -7

lb invoke the Editor on a LISP file:

1. Choose the Ed item from the File menu. A File Selection box appears on the
screen.

2. Select a file nam e from the list box or en ter a new file nam e on the Selection
line.

3. Click on the OK button.
4. The Editor window appears. If you selected the name of an existing file,

the file is loaded into an Editor buffer and appears in the Editor window. If
you entered the nam e of a new file, the Editor window appears as shown in
Figure 8-2.

7.4.3 Invoking the Editor on a LISP File

7.4.4 Saving the Text of the Transcript Region
lb save the information in the transcrip t region to a text file:

1. Choose the Save As . . . item from the File menu.
The L istener displays the Save As dialog box. A dialog box is shown in
Figure 7-5.

7-8 The Listener

Figure 7-5: Save As Dialog Box

Save As
File Filter
[USER]*.LSP

Files in DISK$:[USER]
DISK$:[USER]FILE1 .LSP;1
DISK$:[USER]FILE2.LSP;2

O n 3C>
Selection

Filter

OK

Cancel

MLO-002878

2. lb save the tex t to a new file, en ter the file name in the Selection field and
click on OK or press Return.
Tb save the text to a new version of a file appearing in the list box, click on
the file name and then click on the OK button or press Return.
To see a fisting of files in another directory, type the directory name in the
File F ilter field and click on the F ilter button. The list box displays the files
in th a t directory. To display specific files in the fist box, enter a directory
nam e and file specification in the File F ilter field.

After you have saved a file with Save As, you can save a new version of the file
under the sam e file nam e by choosing the Save m enu item. A message indicates
th a t the file is being saved.

If you choose Save before using Save As in th is session, the Save dialog box
appears to prompt you for a file name.

7.4.5 Creating a LISP Suspended Image File
You can use the suspend function to save the state of the LISP system, m aking
it possible to resum e the LISP system a t a la ter time. After you create the
suspended file, the system re tu rn s you to the L isp> prompt. You can continue the
current LISP session or exit from the session. For further information on creating
and resum ing suspended systems, see Section 2.11.

The Listener 7-9

Tb create a suspended system:

1. Choose the Suspend As . . . item from the File menu.
2. The Listener displays a File Selection box and prompts you for a file name.
3. Choose a file from the list or type the file name you w ant in the Selection

field. The suspended system is placed in your default directory or in the
directory you specify in the dialog box.

4. Click on the OK button or press Return.

Use Suspend . . . the first tim e you save a file. Then you can choose the Suspend
m enu item to suspend a new version of the file under the same file name.

The Suspend item rem ains dimmed until you have assigned a file name with the
Suspend . . . item.

7.4.6 Recording Your Interactive LISP Session
You can use the d r ib b l e function to save a record of your interactive LISP
session, d r ib b l e sends the input and output of the L istener window and the
Debug I/O window to a specified file.

You s ta rt the d r ib b l e function as follows:

1. Choose the Dribble item from the File m enu. A Dribble dialog box is dis­
played.

2. E nter the name of the file in which you w ant to save the session. Click on the
OK button or press Return.

Once you s ta r t the d r ib b l e function, the m enu item changes to Stop Dribble, l b
stop the d r ib b l e function, choose th is item.

The system continues to copy all input and output to the dribble file until you
choose Stop Dribble or en ter the form (dribble) a t the Lisp> prompt.

7.5 Compiling a Function
You ca n u s e th e c o m p ILE fu n c t io n t o c o m p i le a fu n c t io n o r a m a c r o f r om w ith in a
currently running LISP session.

You normally call the LISP function first in in terpreted form to see if i t works.
Once it works as interpreted, you can test it in compiled form without writing it
to a file.

When you compile a function or macro th a t is not in a file, the compiled definition
exists only in the current LISP session, lb save the compiled definition once you
leave LISP, you m ust write the in terpreted function to a file and compile the file.

You can use the u nc om p il e function to restore the in terpreted function definition
of a symbol, if the symbol’s definition was compiled w ith the COMP ILE function.

lb compile a function or macro:

1. Select a symbol th a t nam es the function or macro you w ant to compile.
2. Choose the COMPILE item on the Operations menu.

The COMPILE item is dimmed unless there is a selection.

7-10 The Listener

3. The L istener clears the input region of any partial form appearing a t the
Lisp> prompt and fills it w ith a call to the c o m p i l e function. W hen the
compilation finishes, the Lisp> prompt re tu rns and any partial input entered
before the compiling operation is restored.

lb uncompile a function or macro that was compiled with the compile function:
1. Select the function or macro you w ant to uncompile.
2. Choose the UNCOMPILE item on the Operations menu. The UNCOMPILE

item is dimmed unless there is a selection.

7.6 Disassembling a Function
The d i s a s s e m b l e function takes compiled LISP code and “reverse-assem bles” it.
This lets you view the compiler output and check the efficiency of your code. Tb
disassemble a function or macro:

1. Select a symbol th a t names the function or macro you w ant to disassemble.
2. Choose the DISASSEMBLE item on the Operations menu. The

DISASSEMBLE item is dimmed unless there is a selection.
3. The L istener clears the region of any partial form appearing a t the Lisp>

prom pt and fills it w ith a call to the d i s a s s e m b l e function. After the compiled
code has been reverse assembled, the Lisp> prompt returns, and any partial
input entered before the disassembling operation is restored.

7.7 Using the EVAL Function
The e v a l function takes a form as input and evaluates it. You can evaluate a
form by selecting it and choosing the EVAL item as follows:

1. Select the form you w ant to evaluate. You can do this even if you have a
partially entered form a t the current Lisp> prompt.

2. Choose the EVAL item from the Operations menu. The EVAL item is dimmed
unless there is a selection.

3. The Listener suspends any partial form and fills the input region w ith the
appropriate calls to the e v a l function. The evaluation occurs and retu rn
value appears on the screen. The Listener displays a new Lisp> prompt and
restores any partial form to the input region.

7.8 Invoking Other LISP Utilities
You can invoke the Inspector, tracer and Editor utilities from the Listener by
choosing the appropriate m enu item from the Operations menu. To invoke these
utilities:

1. Select a string or symbol for the Editor or tracer or any object for the
Inspector.

2. Choose the appropriate m enu item on the Operations menu. The m enu items
representing the utilities are dimmed unless there is selection.
The u tility window appears on the screen and has input focus.

The Listener 7-11

7.9 Interrupting a Program
You can in terrup t your program by choosing the a b o r t , b r e a k , or d e b u g functions
from the Operations menu. These item s call asynchronous functions on the
control stack of your program.

The ABORT function halts the execution of your program, lb halt program
execution:

• Choose the ABORT item from the Operations m enu while your program is
executing. This calls the a b o r t function on your program ’s stack, as if your
program had called a b o r t directly. See the description of the a b o r t function
in the VAX L IS P /V M S O bject Reference M an ual.

• Press Ctrl/C in the L istener window while your program is executing.

You can tem porarily in te rrup t the execution of your program w ith the BREAK or
DEBUG item on the Operations menu. The BREAK item causes a break loop to
be run in the Listener (see Section 10.3). The DEBUG item invokes the Debugger
on your program, displaying the fram e where execution was in terrupted (see
Section 10.4). Ib in te rrup t your program with a break loop or the Debugger,
choose the appropriate item from the Operations menu.

7.10 Getting Help
You can get help in VAX LISP by using the Help m enu or the Help key with the
pointer. Help provides brief inform ation on the following:

• VAX LISP concepts

• VAX LISP product and version num ber

• Screen objects

You can also access the VAX LISP functions a p r o p o s and d e s c r i b e from the Help
menu.

7.10.1 Invoking Help on VAX LISP
lb get help on VAX LISP, choose the Overview item from the Help menu. A Help
window opens to display an overview of VAX LISP.

To get information about the product and version number, choose the About
item. You can access the overview information from this screen by clicking on the
Overview item under Additional Topics.

7-12 The Listener

7.10.2 Invoking Help on Screen Objects
lb get help on screen objects such as m enu nam es and m enu items:

1. Point to the screen object.
2. Press and hold the Help key while you click MB1.
3. Release the Help key.

A Help window opens w ith information on the screen object.

7.10.3 Using the APROPOS and DESCRIBE Functions
The apropos and describe functions provide information about VAX LISP objects.
The apropos function searches through a package for a symbol whose prin t name
contains a specified string. The describe function displays information about
a specified object. For more information about apropos and describe, see VAX
L IS P /V M S O bject Reference M an ual.

l b use the apropos or describe function from the Help menu:

1. Select a text string or an object. If you select an object for apropos, it m ust
be a string or a symbol.

The Listener 7-13

2. Choose the Apropos or Describe item. If there is no selection, these items are
dimmed.
If you click on Apropos, the Apropos dialog box appears on the screen. It
contains a list of all the symbols accessible from the current package th a t
contain the selected text string or object. You can use the scroll bar to scroll
through the information. Figure 7-6 shows an Apropos dialog box.

Figure 7-6: Apropos Dialog Box

Apropos of symbol 13

Symbols in package USER containing the string "symbol":
FIND—SYMBOL, has a definition DO-ALL-SYMBOLS, has a definition SYMBOL-PACKAGE, has a definition
DO—EXTERNAL-SYMBOLS, has a definition FIND-ALL-SYMBOLS, has a definition SYMBOLDO-SYMBOLS, has a definition SYMBOL—PLIST, has a definition COPY—SYMBOL, hw« a definition SYNCNYM-STREAM-SYMBOL, has a definition
SYMBOL-FUNCTION, has a definition

<7

30

Updat^J ^ p r o p o ^ J ^Describe^j Cancel

MLO-O02879

-14 The Listener

If you click on Describe, the Describe dialog box appears on the screen. I t con­
tains a description of the selected text string or object. You can use the scroll bar
to scroll through the information. A Describe dialog box is shown in Figure 7-7.

Figure 7-7: Describe Dialog Box

Description of DO-ALL-SYMBOLS a
It is the symbol DO-ALL-SYMBOLS
Package: COMMON-LISP
Value: unbound
Macro: compiled

DO-ALL-SYMBOLS (var [result-form]) {declaration } "
{tag|statement}"

This macro is similar to DO-SYMBOLS, but executes the body
once for every symbol contained in every package. It is not
in general the case that each symbol is processed only once,
because a symbol may appear in many packages.

&

U
< o c

Updatejj ^ p r o p o s j Describe Cancel

MLO-002880

You can click on the Cancel button to dismiss to the dialog box or leave the dialog
box on the screen. The next tim e you select a tex t string or object and click on
Apropos or Describe, another dialog box appears.

You can select objects or text in the Apropos or Describe dialog box and then
click on the Apropos or Describe buttons a t the bottom of the dialog boxes. The
appropriate dialog box appears w ith information on th a t object.

The Apropos and Describe dialog boxes provide snapshot information about the
selected tex t string or object. The information in the dialog box m ay become
obsolete if you continue to work in LISP while the dialog box is present on the
screen. To obtain the m ost curren t information about the topic, click on the
U pdate button on the dialog box.

The Listener 7-15

Chapter 8

Using the VAX LISP Editor in DECwindows

VAX LISP provides a built-in editor for creating and editing LISP symbols and
files. The Editor has special features th a t aid you in w riting LISP programs, such
as m atching parentheses and indenting lines of code.

When you use the Editor in a DECwindows environm ent, you can move back and
forth from the Editor to other LISP utilities w ithout having to enter commands.
You can also execute m any of the Editor commands by clicking on m enu item s
instead of typing command nam es or key bindings.

Figure 8 -1 shows the Editor menus.

Figure 8-1: Editor Menus

File Edit , ■*:
Open ... Copy
View... Cut

Paste
Include... Clear

Save Select Enclosing Form
Save A s... Select Outermost Form

Exit
Select All

Search
Find...
Find Next
Find Previous
Replace...

Help
Overview
About

Apropos Editor Object
Apropos Word
Describe Editor Object
Describe Word

Alternatives
Last Error

Commands
List Buffers
Select Buffer
Insert Buffer
Delete Current Buffer
Delete Named Buffer
Write Modified Buffers
Write Current Buffer
Split Window
Remove Current Window
Remove Other Windows
Next Window

Evaluate LISP Region
Indent USP Region

MLO-002970

Using the VAX LISP Editor in DECwindows 8-1

This chapter explains how to use the Editor in default mode. T hat is, the Editor’s
m ajor style is "edt Emulation" and its m inor style is "VAX l i s p ". If you are using
or wish to use the "EM&cs" style provided w ith the Editor, see Appendix D.

M any of the Editor’s capabilities can be modified or extended by writing new
LISP code. For more information on how to customize the Editor, see the VAX
L IS P /V M S E d ito r P ro g ra m m in g G uide.

8.1 Introduction to the Editor
This section describes the following basic steps in the editing cycle:

• Invoking the Editor

• Entering text

• Evaluating work in the Editor

• Saving work in the Editor

• Returning to LISP to evaluate code

• Returning to the Editor to m ake changes

• Exiting the Editor

8.1.1 Invoking the Editor
You normally invoke the Editor from the Listener utility. The following sections
describe how to invoke the Editor from the m enus and through a call to the ed
function.

8.1.1.1 Invoking the Editor from the Menus
To sta rt the Editor on a file, use the Ed m enu item on the File menu.
A File Selection box appears. Select a file name from the list box or en ter a new
file name on the Selection line and click on the OK button.

The Editor window appears. If you selected the name of an existing file, the file
is loaded into an Editor buffer and appears in the Editor window. If you entered
the name of a new file, the Editor window appears as shown in Figure 8—2.

S-2 Using the VAX LISP Editor in DECw indow s

Figure 8-2: Editor Window with Two Buffers

LISP Editor
File Edit Search

I

Commands
■FfÜ
Help

— Function CIRCUMFERENCE Forward EDT Emulation ("VAX LISP") —
I »
Hr Define the ingredients and calories per some—unit-of-measure
rrr

(setf (get 'sugar 'calories) 375)
(setf (get 'sugar 'units) "cup")
(setf (get 'milk 'calories) 150)

File newfile.lsp Forward EDT Emulation ("VAX LISP")

The cursor appears a t the top left of the Editor window. The label strip near the
bottom of the window displays the following information:

• The nam e of the file currently being edited.

• The direction of movement, either forward or backward, for EDT keypad
commands th a t require this information.

• The major and m inor style currently in use. Figure 8 -2 reflects the default
values for these items, EDT Em ulation and VAX LISP, respectively. For more
information on the major and m inor styles, see Section 8.6.1.4.

The information area a t the bottom of the screen provides messages about the
Editor operations and errors. For example, the m essage “New File” appears in
th is a rea when you begin to edit a new file.

Tb invoke the Editor on a symbol’s function definition instead of a file, use the ED
item on the Operations menu. Select the symbol whose function definition you
w ant to edit using the mouse and then click on the ED item . An Editor window
appears. See Figure 8-2.

8.1.1.2 Invoking the Editor Using a Command Line
You can use the ed function to invoke the Editor. The first tim e you invoke
the Editor during a LISP session, supply an argum ent to the ed function. The
argum ent identifies the object or file you w ant to edit.

Using the VAX LISP Editor in DECw indow s 8-3

Ib edit a function definition, give a symbol as the argum ent. For example,
you can enter the following form to edit the function definition of the symbol
calories:
L i s p > (e d ' c a l o r i e s)

You can also edit the value of a symbol, ra th e r than its function definition, by
using the : TYPE keyword with the ED function, as shown in this example:

L i s p > (e d ' c a l o r i e s : t y p e r v a l u e)

Tb edit a file, give the file specification as the argument to the ed function. For
example:
L i s p > (e d " n e w f i l e . I s p ")

When you finish entering the command line and press Return, an Editor window
appears. Figure 8—2 shows the Editor w ith two buffers open: one editing a
function definition and one editing a file.

8.1.2 Entering Text in the Editor
In default mode, the Editor uses EDT Emulation, which m eans the keypad
keys function the same as in the EDT editor. If you are not fam iliar w ith the
EDT editor, see Section 3.2, which contains basic instructions for using the EDT
keypad.

You insert ordinary text by typing it. You can use Tab to indent the fine of LISP
code currently containing the cursor, with respect to the preceding fines of code.

If you type a righ t parenthesis, the Editor highlights the left parenthesis momen­
tarily. If the left parenthesis has scrolled off the screen, the Editor displays the
line th a t contains it in the information area with the left parenthesis highlighted.

8.1.3 Using Editor Commands
You can use Editor commands to form at tex t or select text for fu rther editing
operations. You can execute commands in three ways:

• E n ter the command by name

• Click on the appropriate m enu item

• E n ter the appropriate key bindings

To enter a command by name, press Ctrl/Z. The prompt “E n ter command nam e”
appears in the information area. Type the command name and press Return. Ib
cancel a command and clear the information area, press Ctrl/C.

M any commonly used Editor commands appear on Editor menus. W hen you
execute an Editor command by choosing a m enu item, the resu lt is the same as if
you had entered the command by name.

M any commands are bound by default to keys or key sequences. If the command
is bound, you can execute it by entering the key binding.

8—4 Using the VAX LISP Editor in DECw indow s

For example, the "Select Outermost Form" command selects the text a t the
outerm ost LISP form containing the cursor. You can execute th is command by
clicking on the Select Outerm ost Form item on the Operations menu. You can
also run this command by entering Ctrl/Z and the command name and pressing
Return. A th ird way to execute the command is to press Ctrl/X Ctrl/Space to which the
command is bound. In each case, the resu lt is the same.

Appendix E contains a complete listing of the Editor commands and their key
bindings.

8.1.4 Evaluating Work in the Editor

Before trying out or examining your code in another utility, you m ust evaluate
it in the Editor. The "Evaluate l i s p Region" command evaluates a region of
LISP code and transports it to the LISP environment, lb execute this command,
select the region you w ant to evaluate and choose the Evaluate LISP Region item
on the Commands menu. As the Editor evaluates the code, i t displays messages
informing you of the sta tus of the evaluation process. After the code has been
evaluated, i t is available immediately in another LISP utility.

You can also use the "Write Current Buffer" and "Write Modified Buffers"
commands to replace an existing function definition or value w ith a new function
definition or value. "Write Current Buffer" affects only the current buffer; th a t
is, the buffer whose window contained the cursor when you en ter the command.
"Write Modified Buffers" affects any buffer you have worked on since the last
tim e the buffer was w ritten. Both these commands are available as m enu items
on the Editor’s Commands menu.

Evaluating code in the Editor provides a way to try out functions easily in other
utilities. However, when you exit the LISP environment, all function definitions
are lost. Therefore, before leaving LISP, be sure to save all function definitions to
LISP files.

8.1.5 Saving Work in the Editor

lb save your work in a file, choose the Save As item on the File menu. Type
the file nam e and press Return. Saving a file th is way is equivalent to typing the
"Write Named File" command.

If you have already saved your work in a file, the "Write Current Buffer" and
"Write Modified Buffers" commands provide another way to w rite a new version
of the file. "Write Current Buffer" affects only the current buffer; th a t is, the
buffer whose window contained the cursor when you en ter the command. "Write
Modified Buffers" affects any buffers you have worked on since the la s t tim e the
buffer was w ritten. Both these commands are available as m enu item s on the
Editor’s Commands menu.

Note th a t if you use these commands when you are editing a function definition
or value, they update the existing function definition or value but do not write
the LISP code to a file.

Using the VAX LISP Editor in DECwindows 8-5

8.1.6 Returning to LISP

You can leave the Editor to examine or run your source code in another utility
by clicking on the desired u tility window. If you evaluated code in the Editor, it
is immediately available. If you saved your work in a file, you m ust load the file
before you can use it.

W hen you go to another utility, the Editor window rem ains on the screen. If you
forgot to save your work, you can re tu rn to the Editor window and your file or
function will be still available. However, if you exit the Editor w ithout saving
your files and then exit LISP, the work you did will be lost.

lb end your editing session, use the Exit item on the Editor’s File menu. See
Section 8.1.8 for more information on exiting the Editor.

8.1.7 Returning to the Editor

When you leave the Editor without exiting, the Editor keeps open the buffer
containing your LISP object or file. You can resum e your editing session in the
state you left i t and m ake further modifications to the code, by simply going to
the Editor window.

lb s ta r t editing a new file in the Editor window, proceed as if you were invoking
the Editor for the first time. Choose the Ed item on the File m enu in the Listener
or the Open item on the File m enu in the Editor to edit a new file or the ED item
on the Operations m enu to edit a new LISP object.

8-6 Using the VAX LISP Editor in DECwindows

The Editor opens another buffer and places the cursor in th a t buffer. Both the
new buffer and the previously opened buffer appear in the Editor window in
Figure 8-3.

Figure 8-3: Editor Window with Two Buffers

LISP Editor
File Edit Search Commands

IPlEtl
Help

— Function CIRCUMFERENCE Forward EDT Emulation ("VAX LISP") —

E;;
;;; Define the ingredients and calories per some-unit-of-measure

(setf (get 'sugar 'calories) 375)
(setf (get 'sugar 'units) "cup")
(setf (get 'milk 'calories) 150)

File recipe.Isp Forward EDT Emulation ("VAX LISP”)

MLO-002972

Each buffer has its own window and label strip. The buffer containing the cursor
and the reverse-videoed label strip is currently active. For information on how to
move around in buffers and windows, see Section 8.4.

8.1.8 Exiting the Editor

When you exit the Editor, the Editor window disappears from the screen and you
are returned to the window th a t had input focus before the Editor.

l b exit the Editor, click on the Exit item on the File m enu or press Ctrl/Z and enter
the " E x i t” command. If you have modified buffers, the Editor informs you th a t
all buffers will be lost and asks if you w ant to continue. If you type Y, the Editor
displays the nam e of each modified buffer one a t a tim e and asks if you w ant to
save it.

If a buffer contains a file, the Editor saves a new version of the file. If a buffer
contains a function, the Editor updates the function definition. The function
definitions will eventually be lost when you exit LISP. Tb avoid th is happening,
w rite any function definitions you w ant to save to files before exiting the Editor
as described in Section 8.1.5.

Using the VAX LISP Editor in DECwindows 8-7

8.2 Getting Help
The Editor provides help through the Help key and the Help menu. By using the
Help key, you can obtain:

• General help on the Editor

• Help on your current situation

• Help on prompts

Through the Help menu, you can obtain:

• Help on VAX LISP

• Information on Editor objects

• Help completing responses to prompts

• Help on errors

8.2.1 Using the Help Key

You can press Help a t any tim e to get help on your current situation. A buffer
called "VAX l i s p Editor General Help" appears. I t contains instructions on how
to move around in a window and between windows and how to remove a window
from the screen. Ib remove the window containing th is help tex t from the screen,
click on the Remove C urrent Window item on the Commands m enu or press Ctrl/X
Ctrl/R.

If you press Help while the Editor is displaying a prompt—for example, after you
have pressed Ctrl/Z—the Editor displays help on the prompt. Typically, the help
tex t explains the prompt and describes the options you have. Press ctrl/v to scroll
through th is help text. The text will disappear from the screen when you have
entered a response to the prompt and pressed Return.

8.2.2 Using the Help Menu

You can use the Overview and About item s on the Editor’s Help m enu to obtain
general help and product information on VAX LISP, ju s t as you can from the
Listener. The Editor’s Help m enu also provides the specialized help on the Editor
as described in the following sections.

8.2.2.1 Help on Editor Objects
You can use the Describe Editor Object and Apropos Editor Object items to obtain
information on Editor objects. These item s are equivalent to the "Describe" and
"Apropos" commands and are sim ilar to the LISP functions of the same names.
The "Describe" command displays a description of an Editor command

8-8 Using the VAX LISP Editor in DECwindows

(by default) or other Editor object. The "Apropos" command lists all Editor
commands or other specified Editor objects whose names contain a certain string.
For example, using the "Apropos" command for the string “file” produces the
display shown in Figure 8-4.

Figure 8-4: Apropos Display

LISP Editor
File Edit Search Commands

E E
Help

Edit File
Insert File
Read File
View File
Write Named File|

Apropos of "file" for object type Command

— Function CIRCUMFERENCE Forward EDT Emulation ("VAX LISP") —

MLO-002973

You can also obtain descriptions of LISP symbols from the Editor when you are
editing LISP code. Use the Describe Word item to invoke the LISP d e s c r i b e
function on the word a t the current cursor position. Use the Apropos Word item
to invoke the a p r o p o s function on the word a t the curren t cursor position.

You can move the cursor around in the window containing help text. When you
are done, use the Remove C urrent Window item on the Commands m enu or Ctrl/X
Ctrl/R to remove this window and re tu rn to editing.

8.2.2.2 Help on Responses to Prompts
The Editor can help you enter responses to prom pts in two ways. The first way
is input completion. If you press Ctrl/Space while you are typing a response to a
prompt, the Editor will a ttem pt to complete your input for you. The Editor will
complete as much of the input as it can and display the sta tus of the completion,

For example, if, to the “E n ter command name” prompt, you type the string
“shr” followed by Ctrl/Space, the Editor will complete the command name "Shrink
Window" and inform you th a t the inpu t is complete. You can now press Return to
execute the command.

Using the VAX LISP Editor in DECwindows 8-9

If, on the other hand, you type the string “new” followed by Ctrl/Space, the Editor
will be able to complete the input only as far as “New Li” and will then inform
you th a t the input is ambiguous, because more than one command starts w ith the
string “New Li”.

The second way is by listing alternatives. At any point when entering information
to a prompt, you can obtain a lis t of the available alternatives by choosing the
A lternatives item on the Help menu. This is equivalent to pressing PFl PF2.
The Editor examines w hat you have typed so far and displays a list of all the
commands s tarting th a t way. For example, when you have used input completion
to get as far as “New Li”, you can click on the A lternatives item and the Editor
will display a list of the commands beginning w ith “New Li”. You can choose the
command you want, enter enough of it to m ake the input unambiguous, and then
use inpu t completion Ctrl/Space to complete the command name.

Input completion and alternatives provide an alternative way to to fill out file
specifications and obtain a list of all files m atching a particular tem plate. For
example, assum e you wish to edit an existing LISP file bu t are unsure of the
name. You press Ctrl/Z and en ter the " E d i t P i l e " command, which then prompts
you for a file name. You can type “.LSP” a t this point and click on Prom pt Show
A lternatives to see a list of all files in your current directory having the file type
“LSP”. You can then edit your input by moving the cursor back to the beginning
of the file specification and typing enough of the file nam e to distinguish it
from other file names. Pressing Ctrl/Space a t this point fills in the rest of the file
specification.

8.2.2.3 Help on Errors and Other Problems
If you m ake a m inor error, the Editor displays a short error message in the
information area. If th is error message is not enough to help you correct the
problem, use Help on the Last E rror item or Ctrl/X ? to display more information
on the error.

If you m ake a m ajor error or if the Editor encounters an in ternal error from which
it cannot recover, the Editor reports the error and asks if you wish to a ttem pt to
save your work. Depending on the natu re and severity of the error, the Editor
m ay not be able to save all your work. Section 8.5 contains more information on
how to recover from these problems.

8.3 Editing LISP Code
This section describes the Editor’s default pointer bindings under DECwindows
and some useful ways to edit LISP code, including:

• Cutting and pasting text

• Finding and replacing text

• Moving the cursor by LISP forms

• Inserting nongraphic characters

• Changing case

• Inserting a file or buffer

8-10 Using the VAX LISP Editor in DECwindows

8.3.1 Using the Pointer

U nder DECwindows, the Editor’s default pointer bindings have been changed
from previous versions of VAX LISP to be compatible w ith the DECwindows style.
Table 8-1 shows the Editor’s default pointer bindings under DECwindows.

Table 8-1: Editor Default Pointer Bindings

Action Binding
Click MB1 Positions the tex t cursor.

Press and drag MB1 Selects a region of text.

Click MB3 Copies th e curren t prim ary selection to the click point
and repositions the tex t cursor.

Press and drag MB3 Selects the secondary select region.
Release MB3 Copies the secondary select region to the active tex t

insertion point.

MB2 is not bound by default as it is reserved for pop-up menus. You are still
able to bind Editor commands to MB2. For fu rther information, see the VAX
L IS P /V M S E d ito r P ro g ra m m in g G uide. Pressing MB3, dragging the pointer, and
releasing causes the secondary selection region (denoted by underlining) to be
copied to the active text insertion point in any other DECwindows application
(including other LISP windows) th a t accept secondary selection input. Note th a t
th is does not include the Editor window. Formal descriptions of the Editor pointer
binding commands are in P art III of the VAX L IS P /V M S E d ito r P rogram m in g
G uide.

If you w ant to use the UIS pointer binding syntax, you can change to it w ith
the set u is Pointer Syntax command. To change from the UIS pointer binding
syntax to the DECwindows pointer binding syntax, use the Set DECwindows
Pointer Syntax command.

8.3.2 Cutting and Pasting Text

You can select text and move it to another location w ithin the Editor window
or another LISP u tility . You s e l e c t and move the text by using MB1 or MB3 (see
Section A. 16) or by selecting one of the following on the Edit menu:

Select All Selects all text in the buffer.
Select Enclosing Selects the text of the innermost LISP form containing the cursor.
Form Equivalent to using the "Select Enclosing Form" command.
Select Selects the text of the outermost LISP form containing the cursor.
Outermost Equivalent to using the "Select Outermost Form" command.
Form

Next, select the Cut or Copy item from the Edit menu. Position the cursor where
you w ant to insert the text. Click on Paste in the window, utility, or application
to which you are moving the text. For example, if you are moving text from the
Editor to the Listener, click on Paste on the L istener’s Edit menu.

Using the VAX LISP Editor in DECwindows 8-11

8.3.3 Finding and Replacing Text
You can use the Search m enu to search through a tex t region for an occurrence of
text or to replace a specified tex t string w ith another.

Tb search for text, choose the Find item from the Search m enu and type the text
string you w ant when the Editor prompts you.

The Editor searches in the direction specified. If the text is found, the cursor
appears a t the beginning of the text string and the text string is highlighted. If
the tex t is not found, you receive a message. Ib find the next occurrence of the
same string, choose Find Next or Find Previous from the Search Menu. If there
is no current search string, the Find Next and Find Previous items are dimmed.

Tb replace text, select the Replace . . . item. Type the nam e of the old string and
the new string when the Editor prompts you. At each occurrence of the search
string, the Editor prompts you for a search string and a replacem ent string. You
can answ er as follows:

I s p a c e | Replace this occurrence and move to the next one.

l~s~| Replace this occurrence and stay here. This option le ts you see the
results of the change before m oving on. U se N to move to the next
occurrence.

[—1 Replace this occurrence and term inate the command.

Replace this occurrence and all rem aining occurrences w ithout further
querying.

I n | Do not replace th is occurrence and find the next occurrence.

|cwc| Do not replace th is occurrence and term inate the command.

I o I Do not replace th is occurrence and term inate the operation, returning
the cursor to the point at which the search began.

1~R~I Enter a recursive edit, which you term inate w ith the "Exit
Recursive Edit" command. The recursive edit lets you clean up
a replacement site w ithout losing your place in the search cycle.

r?~l Display help on the possible responses to the queiy.

8.3.4 Moving in LISP Code
You can use Editor commands to move around by LISP forms. The command
"Next lisp Form" and the command "Previous lisp Form" move the cursor from
form to form within the current parentheses nesting level. The command "End
of Outermost Form" moves the cursor to the end of the current or next outerm ost
LISP form. The command "Beginning of Outermost Form" moves the cursor to
the beginning of the current or previous outerm ost LISP form.

Four other commands let you move in lists. By default, no key sequences are
bound to them . They are:

Backward Up List
Forward Up List
Beginning of List
End of List

For information on how to bind these key sequences to commands, see
Section 8.6.1.

8-12 Using the VAX LISP Editor in DECwindows

8.3.5 Inserting Nongraphic Characters
You cannot insert some characters directly into your text. For example, you
cannot insert a # \ Ax character by pressing Ctrl/X because the Editor in terprets
th a t character. The Editor provides two ways around th is problem. In m ost cases,
you can use Ctrl/X \. Then the Editor takes the next character you type and inserts
it without interpretation. This procedure handles the case of # \ Ax, for example;
you type:

|CM/X| |~\— 1 I Ctrl/X I

The Editor echo for this is:

<Ax>

In general, the Editor display for a nongraphic character is the LISP representa­
tion for the character, surrounded by angle brackets w ithout the leading # \. For
example, the Editor graphic display for #\ Ax is <Ax>.

8.3.6 Changing Case
You can use Editor commands to change the case of alphabetic characters in your
text. Nonalphabetic characters are not affected.

Four commands th a t let you m ake all the alphabetic characters in a select region
or word be of one case are "Upcase Region", "Upcase Word", "Downcase Region",
and "Downcase Word". To use the commands th a t affect a region, define the select
region, press Ctrl/Z, and enter the command. To use the commands th a t affect
a word, position the cursor anywhere in the word, press Ctrl/Z, and en ter the
command.

Finally, the "Capitalize word” command m akes the first character of a word
uppercase. Position the cursor anywhere in the word, press Ctrl/Z, and en ter the
command.

8.3.7 Inserting a File or Buffer
You can insert the contents of a file or a buffer a t the cursor location, using the
"Insert File" or "Insert Buffer" command.

lb insert the contents of a file, choose the Include item on the File menu. The
Editor prompts you for a file name. Type the name of the file and press Return.
The Editor inserts the contents of th is file a t the cursor location. You can use the
A lternatives item or request input completion w ith Ctrl/Space while responding to
th is prompt. Using the Include item is equivalent to typing the "insert File"
command.

Tb insert a buffer, click on the Insert Buffer item on the Commands menu. The
Editor prompts for the name of a buffer and then inserts the contents of the
buffer a t the cursor location. You can use the A lternatives item or request input
completion with Ctrl/Space while responding to th is prompt. Section 8.4 contains
more information about buffers.

Using the VAX LISP Editor in DECwindows 8-13

8.4 Using Multiple Buffers and Windows
The Editor can keep track of more th an one LISP object or file a t a time.
The Editor holds each object or file th a t you are currently editing in a buffer.
Commands let you move between buffers, create new buffers, and gain access to
buffers through windows on the Editor window.

8.4.1 Introduction to Buffers and Windows
Buffers are Editor objects th a t contain the text of the symbol or file th a t you are
editing and some information about the text—for example, the position of the
cursor when the text is displayed. The Editor displays the contents of buffers
through windows inside the Editor window. The Editor can keep track of m any
buffers a t once, bu t normally displays the contents of no more th an two buffers a t
a time.

Each time you invoke the Editor w ith an argum ent, the Editor creates a buffer
having the same name as the file or LISP object you specify.

The buffer m ost recently created is the current window. If you type characters
or enter Editor commands, the buffer viewed through the current window will be
affected.

To m ake another window current, click on it. The cursor moves to the position
occupied by the mouse. You can also change the current window by using the
Next Window item on the Commands m enu (or Ctrl/X Ctrl/N), which m akes each
window on the screen current in tu rn . W hen you change from one window to
another th is way, the cursor moves to the position it occupied when you last
edited in th a t window.

Windows th a t display tex t you are editing are called anchored windows, because
they are fixed a t a particular spot inside the Editor window. Unless you use the
Split Window item or the "split window" command, the Editor can by default
display no more th an two anchored windows a t once.

However, you can have more than two LISP objects or files available for editing
a t once, each occupying its own buffer. To obtain a listing of all the buffers in the
Editor, use the List Buffers item on the Commands m enu or the "List Buffers"
command. For example, if you had invoked the Editor on a function and la te r a
file, "List Buffers" m ight resu lt in the display shown in Figure 8—5.

8-14 Using the VAX LISP Editor in DECwindows

Figure &-£: List Buffers Display

LISP Editor R l m

File Edit Search Commands Help
[puffer Name Iiines/Chars Status Ckpting Permanent
General Prompting Empty Modified No Yes
Basic Introduction 2/58 Modified No Yes
Kill Ring Empty Writable No Yes
CiKLijrtE'jERENCE Empty Writable NO NoFunction of symbol CXRCUMFERENUE
Help 8/409 Modified No Yes
recipe.lsp 93/2717 Writable Yes NO

I<1SPW$; [JONES.LISP]RECIPE.LSP;2
Listing of available editor buffers

— Function CIRCUMFERENCE Forward EDT Emulation ("VAX LISP")—
rrr

;;; Define the ingredients and calories per some-unit-of-measure
r rr

(setf (get 'sugar 'calories) 375)
(set f (get 'sugar 'units) "cup")
(setf (get 'milk 'calories) 150)
(setf (get 'milk 'units) "cup")
(setf (get 'butter m'units) "oz")
----- File RECIPE.LSP Forward EDT Emulation ("VAX LISP")-----

M LO -002974

The buffers holding the objects and files th a t you are editing are identified by an
additional line detailing the contents of the bu ffer. For example, the buffer named
c i r c u m f e r e n c e contains the line “Function of symbol CIRCUMFERENCE”. The
other buffers listed contain Editor information.

You can select a buffer for editing th a t is not currently on the screen by using the
Select Buffer item on the Commands m enu or the "Select Buffer" command.
The Editor prom pts for the name of a buffer to edit. You can type p a rt of the
name, then use Ctrl/Space to request th a t the Editor fill in the re s t of the name. If
you do not know which buffers are available, choose A lternatives to see a list of
their names.

W hen you select a buffer from among those not currently displayed, the Editor
displays it in a new anchored window. If two anchored windows are already
there, the Editor removes the older one and replaces it w ith one displaying the
contents of the buffer ju s t selected.

Removing a window from the Editor window does not delete or modify the
contents of the buffer. Removing a window simply causes the corresponding
buffer to be no longer displayed, until the next tim e you select it. You can use the
Remove C urrent Window item or Ctrl/X Ctrl/R to remove the curren t window from

Using the VAX LISP Editor in DECwindows S-15

the screen and the Remove O ther Windows item or the " R e m o v e o t h e r w i n d o w s "
command to remove all windows other th an the current window from the screen.

In addition to anchored windows, the Editor also has floating windows. Floating
windows m ay be displayed anywhere in the Editor window, overlaying and
obscuring the anchored windows th a t he under the floating windows. The window
in which help appears is a floating window. For the purpose of commands, these
windows are ju s t like anchored windows. You can choose Next Window to move
the cursor to them in tu rn , Remove C urren t Window to remove them when they
are current, and Remove O ther Windows to remove them when they are not
current.

8.4.2 Creating New Buffers from Within the Editor
You do not need to re tu rn to LISP to create a new buffer. You can use one of
the following ways to s ta r t editing new LISP objects or files without leaving the
Editor.

Select the Open item from the File menu. The Editor prompts you for a file name.
You can use PF1 PF2 to see a list of files. Type in a file name. W hen you press
Return, the Editor opens a new buffer and window for th a t file. Using the Open
item is equivalent to entering the " E d i t F i l e " command.

To create a read-only buffer from w ithin the Editor, choose the View item and
answ er the prompts.

The " E d " command provides another m ethod of creating a new buffer w ithin the
Editor. The " E d " command works in the same way as the e d function. When you
type " E d " , the Editor prompts for each of the argum ents th a t you would enter
to the e d function. If you supply a symbol name, the Editor asks you to specify
w hether you w ant to edit the function definition or the value of the symbol. If you
supply a character string containing a file specification, the Editor s tarts editing
th a t file.

8.4.3 Working with Buffers
Buffers generally take care of themselves. The only three common situations in
which you need to deal directly w ith buffers are:

• W hen you need to save the contents of a buffer

• W hen you need to delete a buffer

• When two buffers have conflicting nam es

Buffers m aintain some information about the sta te of your editing session with
regard to the LISP object or file contained in the buffer. Specifically, a buffer
keeps track of:

• The position of the cursor in the tex t

• The select region, if one is active

• Key bindings, if any keys are bound in the context of the buffer (see
Section 8.6.1.4)

• The major and m inor styles th a t are active in th a t buffer (see Section 8.6.1.3)

This information ensures that, when you select a buffer you worked on previously,
it will be in the same sta te as it was when you left it.

8—16 Using the VAX LISP Editor in DECwindows

You can use three commands to save buffer contents. The " W r i t e c u r r e n t
B u f f e r " and " W r i t e M o d i f i e d B u f f e r s " commands (discussed in Section 8.1)
save the contents of the single current buffer and of all buffers th a t have been
modified, respectively. The th ird way to save buffer contents is to use the Exit
item or " E x i t " command and request th a t modified buffers be saved.

When you leave the Editor window to work in another utility, your buffers are not
w ritten, bu t they are available to you when you resum e the Editor. If, however,
you should leave the Editor and then exit LISP, the contents of your buffers will
be lost. Section 8.5 explains how you can partially recover from this situation.

8.4.3.1 Saving Buffer Contents

S.4.3.2 Deleting Buffers
You can use two commands to delete buffers. The " D e l e t e C u r r e n t B u f f e r "
deletes the buffer you are currently working on; " D e l e t e N a m ed B u f f e r " prompts
for a buffer name and deletes th a t buffer. Both commands check to see if the
buffer has been modified and, if it has been, ask if you w ant to w rite tne buffer
before deleting it.

If you are editing an existing file and you delete the buffer associated w ith the
file, the Editor does not delete the file. However, the Editor also does not create
a new version of the file. For example, if you are editing the file RECIPE.LSP;1
and you delete the buffer " r e c i p e . l s p " , the file RECIPE.LSPjl is not deleted.
However, the file RECIPE.LSP;2, which would have been created if you had saved
the buffer contents, is not created.

8.4.3.3 Buffer Name Conflicts
The Editor requires th a t buffer nam es be unique. This requirem ent can cause a
problem in the following situations:

• You are trying to edit the function definition and the value of the same
symbol.

• You are trying to edit two files having the same nam e and type bu t differing
in some other respect (version number, directory, and so on).

When your a ttem pt to edit something creates a buffer nam e conflict, the Editor
requests a new buffer name. You c a n ty p e in a n y n a m e you like. However, if
you should type in no nam e and ju s t press Return, the Editor deletes the current
contents of the buffer, replacing them w ith w hatever you are try ing to edit.

8.4.4 Manipulating Editor Windows
The commands m ost commonly used to m anipulate windows have already been
presented in th is chapter:

• " N e x t w i n d o w " to m ake the next window the curren t window

• " R e m o v e C u r r e n t W in d o w " to remove the current window from the screen

• " R e m o v e o t h e r w i n d o w s " to remove windows other th an the curren t window
from the screen

O ther commands le t you m anipulate windows in other ways.

Using the VAX LISP Editor in DECwindows 8-17

The " G ro w w i n d o w " and " S h r i n k w i n d o w ” commands m ake the current window
larger and smaller, respectively. If no prefix argum ent is set, they m ake the
window one line larger or smaller. If a prefix argum ent is set, they m ake the
window larger or sm aller by the num ber of lines specified in the prefix argum ent.

The " S p l i t w i n d o w " command or the Split Window item on the Commands m enu
let you open two or more windows on a single buffer. The command causes
the current window to be split in two, w ith identical text appearing in the two
windows. Once created, the two windows can be treated as ordinary windows;
the window-manipulation commands move between the two windows and remove
them in the normal fashion. Each window m aintains its own cursor position
and scrolls separately from the other; but, if you type or edit in one window, the
change will appear in the other as well.

Split windows are useful if you w ant to examine two parts of the same buffer a t
one time, or if you w ant to move text from one place to another in a buffer. To
move text, you would delete it or cut i t in one window, move to the other window,
and undelete the text or paste it.

You can have more th an two windows on a buffer; ju s t use " S p l i t w i n d o w ”
repeatedly. The num ber of windows is lim ited only by the size of the screen; each
window m ust have a t least one line.

Although the " S p l i t w i n d o w " command initially creates two windows on the
sam e buffer, you can cause one of those windows to switch to another buffer. Use
the " S e l e c t B u f f e r " command and specify a buffer not currently displayed in a
window. By repeatedly splitting windows and selecting new buffers, you can view
as m any buffers as you can fit windows in the Editor window.

8.4.5 Moving Text Between Buffers
You can move or copy text from one buffer to another. For example, if you have
worked on the definition of a function, you can move it to a buffer in which you
are editing a file. Two ways of doing this are:

• Delete or cut the text from the source buffer, change to the destination buffer,
and undelete or paste the text in the destination buffer

• Use the Insert Buffer item or the " in s e r t B uffer" command to insert an
entire buffer in another.

8.5 Recovering from Problems
The Editor provides facilities th a t let you recover from problems w ith all or
m ost of your work intact. Section 8.2.2.3 describes how the Editor responds to
m inor errors. This section describes checkpointing, by m eans of which the Editor
protects work in progress.

W henever you are editing a file, the Editor periodically m akes a copy of the
curren t sta te of th a t file. The copy is a separate disk file, called the checkpoint
file. I t has the same name as the file you are editing, and a file type composed as
follows:

type_version_L SC

where type and version are the file type and version number, respectively, of the
file you are editing. For example, if you are editing the file RECIPE.LSP;2, the
associated checkpoint file will be named RECIPE .LSP_2_LSC.

8-18 Using the VAX LISP Editor in DECwindows

While you are using the Editor or the LISP interpreter, an error may occur th a t
re tu rns you to DCL, or you m ay inadvertently exit LISP without first saving
your Editor buffers, or the system may crash. In any of these cases, the current
sta te of your Editor work is lost. However, the checkpoint files for any files you
were editing still rem ain, reflecting the sta te of those buffers a t the last time
th a t checkpointing took place. To use a checkpoint file after you have lost the
associated buffer, change its file type back to LSP. Then use the Editor to edit the
file.

When checkpointing a file, the Editor displays the message “Checkpointing...”
in the information area. You can continue to type while checkpointing is taking
place but w hatever you type will not be displayed until checkpointing is complete.
By default, the Editor checkpoints after every 350 commands th a t a lte r text in
buffers. (Each keystroke th a t inserts a text character counts as a command.)

8.6 Customizing the Editor
You can customize the Editor by binding keys or key sequences to commands.
You can bind keys to commands th a t have no default bindings or change default
bindings th a t exist. Section 8.6.1 describes how to bind keys to commands.

You can define keyboard macros to execute a series of keystrokes such as
inserting key bindings th a t invoke commands. Section 8.6.2 describes how to
define keyboard macros.

8.6.1 Binding Keys to Commands
As previously stated, you in teract w ith the Editor by using commands. M any
commands have keys or key sequences bound to them; others do not. One way
you can customize the Editor is to bind a key or key sequence to a command.
Once you have bound a key or key sequence to a command, typing th a t key or
key sequence invokes the command.

The two ways to bind a key or key sequence to a command are:

• While using the Editor, you can use the " B i n d C om m and" command.

• While using the LISP interpreter, you can use the b in d- com m and function.
Your LISP initialization f i le can contain calls to b in d- com m and to set up the
Editor.

These two m ethods are discussed in Section 8.6.1.1 and Section 8.6.1.2, respec­
tively.

No m atte r how you bind keys or key sequences to commands, there are two pieces
of information you m ust supply and a th ird th a t you m ay supply:

• You m ust supply the nam e of the command to be invoked.

• You m ust supply the key or key sequence to bind to the command.
Section 8.6.1.1 and Section 8.6.1.2 describe how to specify the key or key
sequence. Section 8.6.1 describes how to select a key or key sequence to bind.

• You can optionally supply the context in which the binding is effective.
Section 8.6.1.4 explains the key binding context.

Using the VAX LISP Editor in DECwindows 8-19

8.6.1.1 Binding Within the Editor
The " B i n d C om m and" command lets you bind a key or key sequence to a command
while using the Editor. This command prompts you for each of the three item s
you need to specify a complete binding.

The " B i n d C om m and" command first prompts you for the nam e of the command
you wish to have bound. You can use input completion and alternatives to get a
complete command name.

The second prompt is for the key sequence. Type the actual key or key sequence
th a t you w ant to bind to the command— not a LISP representation of the charac­
ters. However, you cannot type control characters or function keys unless you use
Ctrl/X \ to quote them . Since m ost bindings involve control characters or function
keys, you will tend to use Ctrl/X \ m ost of the time.

For example, assum e th a t you w ant to bind Ctrl/X Ctrl/O to a command. Both Ctrl/X
and Ctrl/O are control characters so they m ust both be quoted. In response to the
“E n ter key sequence” prompt, you would type:

| C tr l/X | m [ctri/xl fciri/xl C D | C tr l/O |

After you completed th is sequence, the prompting area would appear like this:

< AX X A0>

Function keys, arrow keys, and keys on the numeric keypad m ust also be quoted.
Each of these keys generates more than one character when it is struck, so more
than one character appears in the prompting area. For example, to bind the F12
key to a command, you would type:

[C tri/X l [F12l

This sequence is echoed in the prompting area as:

< E S C A P E > [2 4 -

The th ird prompt is for the binding context. The context can be : g l o b a l (the
default) or a particular style or buffer. Type : s t y l e or : b u f f e r , followed by Return,
to specify one of these options. The Editor then prompts for the nam e of the style
or the buffer. (See Section 8.6.1.4 for more information on binding context.)

8.6.1.2 Binding from the LISP Interpreter
The b in d- com m and function lets you establish key bindings while you are using
the LISP interpreter, b in d- com m and is especially useful in your LISP initialization
file to set up the bindings you use all the time.

The b in d- com m and function takes three argum ents. The first argum ent is the
nam e of the command you wish to have bound, in the form of a character string.

The second argum ent is the key or key sequence th a t is to invoke the command.
A single key may be given as a LISP character. A key sequence m ust be given as
a vector or list of characters.

For all the keys on the m ain p a rt of the keyboard—those keys th a t produce
letters, num bers, and other prin ting symbols—you m ay use any valid LISP
representation of the character. For example, “A” is #\A, “a” is #\a, and “Ctrl/A” is
#\ ■'A. The LISP function c h a r - n a m e - t a b le displays a table of the LISP nam es for
control characters.

8-20 Using the VAX LISP Editor in DECwindows

The rem aining keys on the keyboard—the numeric keypad, arrow keys, edit­
ing keys, and function keys—transm it more than one character when struck.
Table 8-2 lists each key and the character sequence it generates.

Some of the function keys on the LK201 keyboard are commonly associated w ith
particular characters. For example, the FI 2 key is associated with Backspace and
the FI 3 key w ith Linefeed. However, these function keys do not actually transm it
these characters, and the Editor does not trea t them as having transm itted these
characters.

Table 8-2: Characters Generated by Keys
Key Characters Generated

Numeric Keypad Keys (LK201 and VTlOO)
k e y p a d P H

k e y p a d H~l

k e y p a d IT]

k e y p a d [~3~|

k e y p a d |T1

k e y p a d l~ s]

k e y p a d fT|
k e y p a d [T]

k e y p a d FT]

k e y p a d IT)

k e y p a d Q

k e y p a d Q

k e y p a d [~~l

k e y p a d 1 Enter |

k e y p a d | p f i|

k e y p a d [p fz]

k e y p a d |PF3|

k e y p a d |pf4|

\E S C A P E # \ 0 # \ p

\E S C A P E # \ 0 # \ q

\ ESCAPE # \ 0 # \ r

\ ESCAPE # \ 0 # \ s

\ ESCAPE #\0 # \ t

\ ESCAPE #\0 #\u
\ ESCAPE #\0 # \ v

\ ESCAPE # \ 0 # \ w

\ ESCAPE #\0 # \ x

\ ESCAPE # \ 0 # \ y

\ ESCAPE #\0 #\m
\ ESCAPE # \ 0 # \ 1

\ ESCAPE #\0 # \ n

\ ESCAPE #\0 #\M
\ ESCAPE #\0 # \ P

\ E S C A P E # \ 0 # \ Q

\ ESCAPE #\0 #\R
\ ESCAPE #\0 # \ S

Arrow Keys (LK201 and VTlOO)
ED

E

Q

E l

\E S C A P E # \ [# \ A

\E S C A P E # \ [# \ B

\E S C A P E # \ [# \ C

\E S C A P E # \ [# \ D

(continued on next page)

Using the VAX LISP Editor in DECwindows S-21

Table 8-2 (Cont.): Characters Generated by Keys
Key Characters Generated

Function, HELP, and DO Keys (LK201)
E l # \E S C A P E # \ [# \ 1 # \ 7 # \ ~

m # \E S C A P E # \ [# \ 1 # \ 8 # \ ~

E l # \E S C A P E # \ [# \ 1 # \ 9 # \ ~

E l # \E S C A P E # \ [#\ 2 # \ 0 # \ ~

F51 # \E S C A P E # \ [#\ 2 # \ 1 # \ -

E Ü # \E S C A P E # \ [# \ 2 # \3 #\~

E m # \E S C A P E # \ [#\2 # \ 4 # \ ~

E m # \E S C A P E # \ [# \ 2 # \ 5 # \ ~

E m # \E S C A P E # \ [#\2 # \ 6 # \ ~

|H5p|(|Fi5|) # \E S C A P E # \ [# \ 2 # \ 8 # \ ~

|55| (F ie l) # \E S C A P E # \ [#\2 # \ 9 # \ ~

E m # \E S C A P E # \ [# \ 3 # \ 1 # \ ~

E m # \E S C A P E # \ [# \ 3 # \ 2 # \ ~

E E # \E S C A P E # \ [# \ 3 # \ 3 # \ ~

E H * \ ESCAPE # \ [# \ 3 # \ 4 # \ ~

Editing Keys (LK201)
S (1 H]) # \ ESCAPE # \ [# \ 1 # \ ~

| In sert H ere | (. |E2]) # \ ESCAPE # \ t # \ 2 # \ ~

| R em o v e | (|E3]) # \ ESCAPE # \ [# \ 3 # \ ~

| s 5 i 5 5 1 (P) # \ ESCAPE # \ [#\4 # \ ~

| P rev S c r e e n | ([E5]) # \ ESCAPE # \ [# \5 # \ ~

| N ext S c r e e n | (|E6|) # \ ESCAPE # \ [# \6 # \ ~

The th ird argum ent to BIND-COMMAND, which is optional, specifies the binding
context. I f you omit this argum ent, the context is global; th a t is, the key binding
is effective everywhere in the Editor. If you include th is argum ent, supply i t in
the form

’(:STYLE "style-name")
or

’(:BUFFER "buffer-name")

Section 8.6.1.4 describes binding context in more detail.

The following example binds Ctrl/X Ctrl/O to the "Remove other Windows" command
globally:

(bind-command "remove other windows" '#(#\^X #\A0))
Alternatively, you could globally bind the key sequence PF1 Remove (the Remove key
is on the LK201’s editing keypad) to "Remove other Windows" as shown here:

(bind-command "remove other windows"
'# (#\escape #\0 #\P #\escape # \ ([#\3 #\~))

8-22 Using the VAX LISP Editor in DECwindows

Tb bind the F12 key on an LK201 keyboard to the " e d t B a c k t o s t a r t o f L i n e "
command in the " e d t E m u l a t i o n " style, you use the following function:

(b i n d - c o m m a n d " e d t b a c k t o s t a r t o f l i n e "
' # (# \ e s c a p e # \ [# \ 2 # \ 4 # \ ~)
' (: s t y l e " e d t e m u l a t i o n "))

Following execution of th is function, the F12 key moves the cursor to the beginning
of the line, but only if the "EDT E m u l a t i o n " style is active. (This binding is in
effect by default.)

8.6.1.3 Selecting a Key or Key Sequence
You can bind almost any key or key sequence to a command, bu t you should be
careful th a t your selection does not interfere w ith Editor operation. This section
explains restrictions and provides h in ts to help you m ake a selection.

The three control characters you m ust not include anywhere in a key sequence
are:

• The cancel character, Ctrl/C by default, which term inates an Editor operation.
You cannot include Ctrl/C in a key sequence because typing Ctrl/C a t any time
stops the collection of keystrokes and re tu rn s the Editor to the end of the last
completed command.

• Ctrl/S and Ctrl/Q, which are in terpreted by the operating system (they stop
output to the term inal and resum e it, respectively) and therefore never reach
the Editor for interpretation.

You should not use any graphic (printing) character to s ta r t a key sequence,
although you can use graphic characters elsewhere in the sequence. If you s ta r t
a key sequence with, say, the le tte r A, you will never be able to type the letter
A as p a rt of a word. The Editor, as soon as i t sees the A, will recognize it as the
beginning of a key sequence; unless the next character(s) completes the sequence,
the Editor will signal an error and discard the A.

When you include an alphabetic character in a key sequence, rem em ber th a t
the Editor differentiates between uppercase and lowercase. For example, the
following two key sequences are different:

' # (# \ AX # \ A)
' # (# \ ~ X # \ a)

By convention, the three keys used to s ta r t a key sequence are Ctrl/X, ESCAPE,
and keypad PF1. You can, of course, use others if you choose, as long as they are
nonprinting. (On keyboards th a t do not have an ESCAPE key, Ctrl/[transm its the
\E S C A P E character.)

Finally, be careful not to select a key or key sequence th a t is already bound to
a useful command. Appendix E contains a list of all the key bindings supplied
w ith the Editor. Section 8.6.1.4 explains how a single key or key sequence can be
bound to two different commands in different contexts.

8.6.1.4 Key Binding Context and Shadowing
W hen you bind a key or key sequence to a command, you can specify the context
in which th a t binding is effective. Specifying a context m eans th a t the key or key
sequence invokes the command only in th a t particu lar context.

The three general types of context are:

• The buffer context. If the context is a particu lar buffer, the key or key
sequence invokes the command only if th a t buffer is current.

Using the VAX LISP Editor in DECwindows 8-23

• The style context. If the context is a particular style, the key or key sequence
invokes the command only if th a t style is the major style or one of the m inor
styles th a t is active in the current buffer.

• The global context. If the context is global, the key or key sequence always
invokes the command. The default context is global.

Styles
A style is a collection of key bindings and of other Editor characteristics th a t
causes the Editor to behave in a certain way. The two styles th a t you encounter
in the default Editor are named " e d t E m u l a t i o n " and "VAX l i s p " . The " e d t
Em u l a t i o n " style causes the numeric keypad to generate editing actions sim ilar
to those of EDT. The " v a x l i s p " style provides access to the Editor’s ability to
edit LISP code easily.

An Editor buffer can have one m ajor style and one or more m inor styles active a t
any time. You can tell which styles are active by looking a t the label strip for the
buffer. See Section 8.1.1.1.

The m ajor style is generally established before the Editor is started. M inor styles
are activated automatically, depending on w hat is being edited. For example,
whenever you edit a LISP object or a file having the type LSP, the " v a x l i s p "
style is activated for th a t buffer as a m inor style.

Shadowing
It is possible to bind the same key or key sequence to two different commands. If
the contexts of the two bindings are the same, then the second binding replaces
the first one. If, however, the two bindings have different contexts, then the key
or key sequence may invoke either command, depending on the situation a t the
tim e. Ib locate a command to execute when a key is pressed, the Editor first
checks to see if th a t key is:

1. Bound in the context of the current buffer.
2. Bound in the context of one of the current m inor styles, examining the most

recently activated style first.
3. Bound in the context of the current m ajor style.
4. B ou n d in th e g lobal con tex t.

As soon as the Editor finds a command to execute, it does so. Therefore, if the
sam e key or key sequence is bound in, say, the current m inor style and the
current m ajor style, the binding in the m inor style shadows, or takes precedence
over, the binding in the major style.

For example, the Ctrl/J key is bound to " e d t D e l e t e P r e v i o u s W o r d " in the "EDT
E m u l a t i o n " style and to "New l i s p L i n e " in the "VAX l i s p " style. When you
are editing LISP code, " e d t E m u l a t i o n " is the major style and " v a x l i s p " is
the m inor style. Therefore, the binding of Ctrl/J to "New l i s p L i n e ” shadows the
binding to "EDT D e l e t e P r e v i o u s W o r d " .

8.6.2 Keyboard M acros

A keyboard macro is a series of keystrokes th a t you ask the Editor to rem ember
for fu ture use. The keystrokes can be keys th a t insert characters, keys or key
sequences th a t invoke editing commands, or even commands th a t you type in and
th a t issue additional prompts. A keyboard macro is useful whenever you have a
series of identical, complicated operations to perform.

8-24 Using the VAX LISP Editor in DECwindows

lb begin a keyboard macro, type Ctrl/X (. Everything you type from th a t point
is executed normally, bu t is also stored for fu ture use. Typing Ctrl/X) stops
the storage of keystrokes, l b execute a keyboard macro, type Ctrl/X Ctrl/E. This
sequence causes the current keyboard macro to be played back starting a t the
current cursor location. A keyboard macro th a t you define in this way lasts until
you define another keyboard macro.

You can also use the " s t a r t N a m ed K e y b o a r d M a c r o " command to define a key­
board macro having a name. Use the " s t a r t N a m ed K e y b o a r d M a c r o " command as
you would the Ctrl/X (key sequence. The command prompts you for a name. After
you enter the name, the Editor s ta rts rem embering keystrokes. Tterminate the
macro with Ctrl/X). The macro thus defined is the current keyboard macro (you can
invoke it w ith Ctrl/X Ctrl/E) but it is also a named entity th a t you can trea t like a
command. You can execute i t as a named command or bind a key to it. A named
keyboard macro rem ains accessible by nam e even after another keyboard macro
has been defined.

A keyboard macro m ay not work properly if the context changes between the time
the macro is created and the time i t is executed. For example, if you switch to
a buffer th a t has a different m inor style active, the commands invoked by the
keyboard macro may fail.

Using the VAX LISP Editor in DECwindows 8-25

Chapter 9

Using the VAX LISP Inspector

The VAX LISP Inspector, a u tility running under DECwindows, is used to
examine and modify static data structures. The Inspector displays an object’s
type and components. You can then select additional objects from this display,
inspect them in turn , modify the modifiable components, and re tu rn the modified
values to the form in which you called the i n s p e c t function.

This chapter describes the following operations:

• Invoking the Inspector

• Exiting the Inspector

• Inspecting objects

• Modifying objects

• U pdating the Inspector display

• Returning a value from the Inspector

Figure 9 -1 shows the Inspector’s pull-down menus.

Figure 9-1: inspector Menus

r

History Window
_________a .________

■ \ r
Inspect Windows

Commands ® 1 Edit 'T - f Commands
Inspect 1 Copy Inspect
Return Update

Modify
Close ReturnRemove

Lock
Lock

CloseExit Inspector

Edit
Undo
Copy
Paste

MLO-002923

The following section explains the difference between History and Inspect win­
dows. The examples in th is chapter are based on the RECIPE program from
Chapter 5. Tb run the examples, load the LISP$EXAMPLES:RECIPE.LSP file as
described in Chapter 5.

Using the VAX LISP Inspector 9-1

9.1 Invoking the Inspector
You can invoke the Inspector from any VAX LISP utility: the Listener, Editor, or
Debugger. The two m ethods for invoking the Inspector are:

• Choose the INSPECT item on the Operations menu.

• Call the inspect function in a read-eval-print loop.

The INSPECT item is not available on the Editor’s Commands menu, bu t you
can evaluate a form containing the i n s p e c t function w ith the " E v a l u a t e l i s p
Re g i o n " Editor command (see Chapter 8).

To use the INSPECT m enu item, you m ust first select the LISP object to be
examined. Then, pull down the Operations m enu and choose INSPECT. When
you invoke the Inspector this way, it runs asynchronously. See Section 9.1.1 for
details on asynchronous mode. See Section 9.1.2 for details on synchronous mode.

Figure 9-2 illustrates using the L istener’s Operations m enu to invoke the
Inspector on the symbol cookies, as follows:

1. Return a list of valid recipe structures by typing menu a t the Listener
prompt.

2. Move the pointer to the cookies entry in the list and click MBi. This selects
the object th a t you w ant to inspect.

3. Pull down the Operations m enu and choose INSPECT.

Figure 9-2: Invoking the Inspector

9-2 Using the VAX LISP Inspector

Ib use the inspect function, type the object to be examined as its argument, as
in:
L i s p > (inspect 'cookies)
If you do not specify an object when you invoke the Inspector for the first time,
nothing is displayed in the History and Inspect windows. If the Inspector is
already running, its windows are brought to the front.

When you call the inspect function, you can specify w hether the Inspector rim s
in asynchronous or synchronous mode. The default is : parallel t, which runs
the Inspector in asynchronous mode. Set : parallel to nil to ru n the Inspector
synchronously. See Section 9.1.2 for details on synchronous mode.

Regardless of invocation method, the Inspector keeps a pointer to each object in
LISP memory. The Inspector does not m ake its own copy of objects you inspect.

Figure 9-3 shows the windows th a t appear after invoking the Inspector on the
symbol cookies. The Inspector uses two kinds of windows: LISP Inspect and
LISP Inspector History. Each Inspect window displays the components and value
bindings of an individual object. A t this point, cookies is the only object th a t
has been inspected, so there is only one Inspect window. (The Inspect window in
Figure 9 -3 has been resized and moved to show more of its contents and to fit on
the page.)

The History window shows you a sequential list of all the objects you have
examined (again, cookies is the only object a t this point). The sta tus flag a t
the left side of the History window indicates th a t cookies has an open Inspect
window. Section 9.3 explains in detail how to use these windows.

Using the VAX LISP Inspector 9-3

Figure 9-3: Inspect and History Windows

Status
Flag "■

LISP Inspector History
C om m ands Edit

r - M
Help

COOKIES &

In sp ec t

C om m ands Edit
H E

Help

The Symbol: COOKIES

SYMBOL-VALUE
SYMBOL-FUNCTION
SYMBOL-PLIST
SYMBOL-NAME
SYMBOL-PACKAGE

#S(RECIPE :NAME "cookies" :INGREDIENTS '
<«UNDEFINED»>
NIL
"COOKIES"
#<USER PACKAGE>

<01
< 0 * ---P O MLO-002925

You can run the Inspector in e ither asynchronous or synchronous mode. The
following two sections explain each mode.

9.1.1 A s y n c h ro n o u s M ode

By default, the Inspector runs asynchronously, or concurrently, w ith your other
VAX LISP utilities. The window from which you invoked the Inspector (in this
case, the Listener) reta ins input focus, and any program running in th a t window
continues to run. The Inspector imm ediately re tu rns the object to which it was
applied; the History and Inspect windows are a side effect.

CAUTION
In asynchronous mode, the VAX LISP Inspector lets you modify data
structures while you are running a program th a t m ay be using those
structures. Be aware of the effects of such changes on your program
and on the LISP image. (See Section 9.4 for information on modifying
objects.)

The information displayed by the Inspector is static. Inspect windows are not
autom atically refreshed if another program in your LISP image changes the data
structure being examined. You can m ake sure an Inspect window reflects the
curren t sta te of your LISP image by choosing the Update item on the Commands
m enu (see Section 9.5 for more information on updating windows).

9-4 Using the VAX LISP Inspector

9.1.2 S y n c h ro n o u s M ode

W hen you invoke the Inspector in synchronous mode, your program is suspended
until the Inspector retu rns. You ru n the Inspector in synchronous mode by calling
the inspect function w ith the : parallel keyword set to n il . The form at of the
INSPECT function is:

INSPECT &OPTIONAL ob ject &KEY PARALLEL

The object m ay be any LISP object. (The default value for : parallel is T.)
W hen the Inspector is running in synchronous mode, you can specify the value it
re tu rns by choosing the Return item on the Commands m enu (see Section 9.6).
If you do not specify a re tu rn value, the Inspector re tu rns the object on which it
was invoked when you exit the Inspector.

Synchronous mode lets you use the Inspector as a debugging tool. For example,
you could use the following form with the RECIPE program:

L isp> (calories (inspect 'toast :parallel nil))
The calories function would suspend, while you used the Inspector to examine
and perhaps modify toast and other data, and resum e when you retu rned a value
or exited the Inspector.

After you re tu rn a value, the Inspector continues to run, bu t in asynchronous
mode.

9.2 Exiting the Inspector
Exit the Inspector by choosing the Exit Inspector item on the Commands menu.
A caution box appears on your screen to confirm th a t you w ant to exit the
Inspector. Click on the Yes button to exit the Inspector.

Exiting destroys the Inspector’s pointers to objects examined during the session
you are exiting. Thus, objects th a t only the Inspector points a t a re freed for
garbage collection after you exit the Inspector.

If you are running the Inspector in synchronous mode (: parallel n il), the
Inspector re tu rns the object on which it was invoked when you exit the Inspector.

9.3 inspecting Objects
Once you have invoked the Inspector by one of the m ethods described in
Section 9.1, you can examine the components and values of any object in your
LISP image. Table 9-1 lists each component th a t the Inspector displays for each
LISP data type, and w hether th a t component can be modified. Any component
th a t is displayed can itself be inspected.

Using the VAX LISP Inspector 9-5

Table 9-1: Components of Inspectable Data Types

Data Type
Displayed
Components

Modifiable
Components

Integer Integers None

Floating-point number Floating-point numbers None

Ratio Numerator
Denominator

None

Complex number Real part
Imaginary part

None

Symbol Value Value
Function Function
Plist
Print name
Package

P list

Simple String All characters All characters

Array All elem ents All elem ents

Structure All slot values All slot values

A lien structure All slot values All slot values

H ash table Rehash-size Rehash-size
Rehash-threshold Rehash-threshold
Associated array
Size
Count

Associated array

List All elem ents All elem ents

Function Lambda-list None

W hen LISP prints a sequence, such as a list or array, it displays the first 75
elem ents of the sequence then prompts if you w ant to see more. You can change
the default num ber of elements w ith the customization function described in
Appendix C.

The following sections explain how to:

• Specify objects to be inspected

• M anage Inspect windows

• Use the History window

9.3.1 S p ec ify ing O b je c ts to In sp e c t

You can inspect objects in the History or Inspect windows in one of three ways:

• Select the object in either window and choose the Inspect item on any
Commands menu.

• Double click MB1 on the object.

• Press MB2 on the object and choose the Inspect item on the pop-up menu.

Inspectable objects are underlined when you move the pointer cursor over them.

Figure 9 -4 shows the Inspect window containing the COOKIES symbol. MB2 has
been pressed on the symbol-value component to produce a pop-up menu. The
availability of items on the pop-up m enu depends on the sta tus of the object

9-6 Using the VAX LISP Inspector

under the pointer cursor when you press MB2. M enu choices are dimmed when
they are disabled.

Figure 9-4: Inspecting a Component of an Inspected Object

inspect
Commands Edit
The symbol COOKIES

SYMBOL-VALUE
SYMBOL-FUNCTION
SYMBOL-PLIST
SYMBOEL-NAME
SYMBOL-PACKAGE

<1C

#S(RECIPE :NAME "cookie
<«UNDEFINED»>
NIL
"COOKIES"
#<USER PACKAGED

MLO-002926

Figure 9-5 shows the resu lt of inspecting th is structure.

Figure 9-5: Inspecting a Structure

In sp ec t , P P
C om m ands Edit Help

The Structure: #S(RECIPE :NAME "cookies" : INGR
NAME "cookies"
INGREDIENTS (SUGAR MILK BUTTER)
AMOUNT (2 0 .2 5 1)
SERVINGS 36

O f _ = □ 0
MLO-002927

If you specify text to be inspected, the Inspector a ttem pts to coerce the selection
into a symbol and inspects the result, on the assum ption th a t inspecting a string
is not as in teresting as inspecting the symbol whose p rin t name is the string.

Using the VAX LISP Inspector 9-7

9.3.2 M anag ing In sp e c t W indow s

Each Inspect window displays the information for one inspected object. As you
inspect additional objects, new Inspect windows are created. The default lim it on
the num ber of Inspect windows you can create in a single session is five. When
you exceed this limit, the windows are recycled, w ith the newest object replacing
the first object. That is, when you inspect a sixth object, it appears in the window
previously allocated to the first object, a seventh object appears in the second
object’s window, and so on. You can change the lim it on Inspect windows with the
customization function (see Appendix C).

The following sections explain how you can lock, unlock, close, and remove
Inspect windows.

9.3.2.1 Locking Inspect Windows
You can ensure th a t an Inspect window will not be recycled for another object by
locking the window. Tb lock an open window, click on the Lock toggle item on the
Commands m enu of th a t window, or select the object in the History window and
choose the Lock item on the History window’s Commands menu.

You can lock only open Inspect windows.

Locked windows do not count toward the maximum num ber of Inspect windows
allowed. For example, suppose you have five open Inspect windows and your
lim it is five (the default). If you lock one of them, you can inspect a sixth object
without recycling any of the four open but unlocked Inspect windows.

9.3.2.2 Unlocking Inspect Windows
You can unlock a window by turning off the Lock toggle item on its Commands
menu, or by selecting the object in the History window and choosing the Unlock
item on the History window’s Commands m enu. The Unlock item is also available
on the pop-up m enu if the pointer is in a locked window.

Unlocked windows are available for recycling until they are closed, even if they
exceed the lim it on Inspect windows.

9.3.2.3 Closing Inspect Windows
Tb close an Inspect window, choose the Close item on th a t window’s Commands
menu, or select the object in the History window and choose the Close item on
the History Commands menu. You can close a window th a t is locked, freeing a
window for the next object you inspect. Closing an object’s Inspect window does
not affect the Inspector’s pointer to the object. The object is listed with a blank
sta tus flag in the History window.

The Close m enu item is available on the Inspector’s pop-up m enu if the pointer
cursor is over an object th a t has an open Inspect window.

9.3.2.4 Removing Inspected Objects
Removing an object from the Inspector History frees the Inspector’s pointer to it
and closes its Inspect window (if any). You can remove any object in the History
window, regardless of the status of its Inspect window.

9-8 Using the VAX LISP Inspector

You can remove an object by selecting the object in the H istory window and
choosing the Remove item on the H istory window’s Commands m enu. The
Remove m enu item is also available on the H istory window’s pop-up m enu if the
pointer cursor is over an object th a t has been inspected.

NOTE
W hen you remove an object and its Inspect window, the object is
deleted from the History window. If the object was pointed to only by
the Inspector, it is now available for garbage collection.

9.3.3 U sing th e H isto ry W indow

The Inspector History window shows a sequential list of all the objects you
have examined in an Inspector session. I t also shows the sta tus of each object,
by m eans of a sta tus flag to the left of the object. The three possible flags are
described in Table 9-2.

Table 9-2: Inspector History Status Flags
Flag Meaning
space The object does not have an open Inspect window.

* The object has an open Inspect window.
L The object has a locked Inspect window.

There is a default lim it of five on the num ber of Inspect windows th a t can be open
a t one time. When you have exceeded th a t lim it, the windows are recycled to
accommodate the new objects. The sta tus flag of an object whose Inspect window
has been recycled changes from an asterisk to a blank space. Figure 9-6 shows
the History window after inspecting COOKIES, the value component of c o o k i e s,
and all four components of th a t value. Note th a t the s ta tu s flag for cookies is a
b lank but the flags for the five m ost recently inspected objects are asterisks.

Figure 9-6: Inspector History Window

ES LISP In sp e c to r H istory

Com m ands Edit Help

COOKIES
* #S(RECIPE :NAME "cookies"
* "cookies"
* (SUGAR MILK BUTTER)
* (2 0.25 1)
* 36

: INGREDIENTS ' (SUGAR MILK BUTTER)

01________
tiO

<M .. H t = i _ ---------------------------------- .— u i > _ l
MLO-002628

Using the VAX LISP Inspector 9-9

You can reinspect a previously inspected object by double-clicking MB1 on the
object in the History window. If you w ant to prevent an object’s Inspect window
from being recycled, you can lock it. (See Section 9.3.2.1 for details.)

The H istory window is the only Inspector window th a t has a shrink-to-icon
button. Clicking MBi on this button removes all Inspector windows from your
screen bu t does not affect the Inspector’s pointers to da ta structures. The three
ways to expand the existing Inspector windows from the icon are:

• Click MBi on the LISP Inspector icon in your Icon Box.

• Choose the Inspect m enu item without first selecting an object.

• Call the inspect function without passing it an argum ent.

You can also reinvoke the Inspector on a new object. This expands the previous
H istory and Inspect windows bu t also creates an Inspect window for the new
object. Reinvoking the Inspector does not create a new History window.

9.4 Modifying Objects
You can change the modifiable components of an object by using the Modify m enu
item, or by using selection and clipboard operations in its Inspect window. You
can modify only an entire component, not its subelements. See Table 9—1 for a
list of the modifiable components of each LISP data type.

9.4.1 U sing th e M odify M enu Item

lb change the modifiable components of an object, first select the component and
then choose the Modify item on the Commands menu. A dialog box prompts you
for the new value to be assigned to the component you have selected.

For example, suppose you have inspected the structure th a t is the value bound
to cookies (see Figure 9-5) and w ant to change the : ingredients slot from
' (SUGAR MILK BUTTER) to ' (SUGAR FLOUR BUTTER) . If you Select the : INGREDIENTS
component in the structure’s Inspect window, you m ust modify the entire list.
(You c a n n o t modify a subelem ent of a slot.) Therefore, inspect the list in the
: ingredients slot. Then, you can change ju s t one elem ent of the list by selecting
th a t elem ent in the list’s Inspect window and choosing the Modify m enu item.

9-10 Using the VAX LISP Inspector

Figure 9 -7 shows the Modify dialog box th a t appears when you change ju s t one
elem ent in the list’s Inspect window.

Figure 9-7: Modify Dialog Box

Modifying th e in sp ec ted ob ject:

(SUGAR MILK BUTTER)

C om ponen t to modify:
LIST ELT #1 MILK
New value:

Cancel

M LO-002929

W hen you click on the OK button, the Inspector first evaluates your new value
and then tries to set the value. If the evaluation or the modification results
in an error, a message box describes the error and no modification occurs.
Acknowledging the error re tu rns you to the Modify dialog box.

Figure 9 -8 shows the Inspect windows of the cookies structure and the
: ingredients list after a successful modification.

9.4.2 U sing th e C lip b o ard

You can use the Paste item of the Inspect window’s Edit m enu to change the
value of a component, w ith the following steps:

1. Transfer the object you w ant to be the new value to the clipboard (use the Cut
or Copy item on any Edit menu).

2. Select the object in the slot you w ant to change.
3. Choose the Paste item on the Edit menu.

The clipboard contents replace the old slot value.

Im m ediately after a Paste operation, the Undo item on the corresponding Inspect
window’s Edit m enu is active. Choosing the Undo item causes the slot to revert
to its state before the Paste operation.

Using the VAX LISP Inspector 9-11

9.5 Updating the Inspector Display
W hen the Inspector is running asynchronously, the information in your Inspect
windows m ay be obsolete. For example, a LISP program running in your Listener
window could modify a d a ta s tructu re you have inspected. Similarly, using the
Modify command in one Inspect window could m ake the p rin t representation of
an object in another window inaccurate. You can refresh the information in an
Inspect window by choosing the Update item on the Commands menu.

For example, using the RECIPE example, assum e th a t you have inspected
cookies and its : ingredients list, then modified the list (as explained in
Section 9.4). Figure 9-8 shows the Inspect windows after the Modify command
b u t before the Update command; Figure 9-9 shows the Inspect windows after the
Update command.

Figure 9-8: Inspect Windows Before Updating

In sp ec t

C om m ands Edit_____________________________

The Structure: #S(RECIPE :NAME "cookies
NAME
INGREDIENTS
AMOUNT
SERVINGS

O f

"cookies"
(SUGAR MILK BUTTER)

In sp ec t ■ P f ü
C om m ands Edit Help

I The List: (SUGAR FLOUR BUTTER)

LIST ELT #0 SUGAR
LIST ELT #1 FLOUR
LIST ELT #2 BUTTER
LAST CDR NIL 2_

o n - : bO
M LO-002930

9-12 Using the VAX LISP Inspector

Figure 9-9: Inspect Windows After Updating

In sp ec t

C om m ands Edit_____________________________

The Structure: #S(RECIPE :NAME "cookies
NAME
INGREDIENTS
AMOUNT
SERVINGS

0 (

"cookies"
(SUGAR FLOUR BUTTER)

In sp ec t

Com m ands Edit

The List: (SUGAR FLOUR BUTTER)

LIST
LIST
LIST
LAST

ELT
ELT
ELT
CDR

#0 SUGAR
#1 FLOUR
#2 BUTTER

NIL

<ut

Help

3C>

M LO-002931

The Update command is also available on the Inspector’s pop-up m enu. Press MB2
while in the Inspect window you w ant to refresh and choose the Update item.

9.6 Returning Values
W hen you invoke the Inspector in asynchronous mode, it im m ediately re tu rns
the object to which i t was applied. However, when you invoke the Inspector in
synchronous mode (: p ar al l el n i l), you can specify which object you w ant the
Inspector to retu rn . The object is returned to the form in which you invoked the
Inspector.

Tb re tu rn the value of an object, select the object and then choose the R eturn item
on the Commands m enu. If you choose the Return m enu item without having
selected an object, the Inspector re tu rns the object on which i t was invoked.

For example, suppose you w ant to perform some arithm etic on the num ber of
servings for the cookies recipe. You invoke the Inspector in synchronous mode as
follows:

Lisp> (+ 5 (i n s p e c t c o o k i e s r p a r a l l e l n i l))

This form invokes the Inspector and suspends the Listener until the Inspector
re tu rns a value. Ordinarily, the Inspector would re tu rn the object c o o k i e s. In
th is example, however, you w ant to re tu rn the value of the servings component.

Using the VAX LISP Inspector 9-13

Tb do this, select the value of the servings component, then pull down the
Commands m enu and choose Return, as shown in Figure 9—10. The inspect
function re tu rns the num ber 36 to the Listener, which performs the arithm etic
and re tu rns the num ber 41.

Figure 9-10: Returning a Value from the Inspector

In sp ec t
U pdate
Modifv
Return

Lock

Close
<71

3

:e: #S(RECIPE :NAME "cookies" :IN
"cookies"
(SUGAR MILK BUTTER)
(2 0.25 1)

E S

EL
Help

< ?

MLO-002932

After you re tu rn an object, the Inspector continues to run, bu t in asynchronous
mode. The History and Inspect windows rem ain visible, and all data structures
are intact, bu t you cannot re tu rn another value because nothing is waiting for the
Inspector.

9-14 Using the VAX LISP Inspector

Chapter 10

Using the Debugging Utilities from
the DECwindows Interface

Debugging is the process of locating and correcting program ming errors. When
you are in the L istener and an error is signaled, an error message is displayed
and a caution box appears on the screen. This error message provides you with
your in itial debugging information: the error type, the nam e of the function th a t
caused the error, and a description of the error.

The caution box shows you w hether the error is fatal or continuable and lets you
choose w hether to re tu rn to the top-level prompt in the Listener or en ter the
Debugger. I b en ter the Debugger, click on the Debug button. Tb re tu rn to top-level
from a fated error, press Return or click on Abort. To continue from a continuable
error, press Return or click on Continue. Figure 10-1 shows a caution box for a
fatal error. Figure 10-2 shows a caution box for a continuable error.

Figure 10-1: Fatal Error Caution Box

D
Error in *: A rgum ent m u st b e a num ber: NIL

DEBUG ABORT I

MLO-002869

W hen you enter the Debugger, the following four windows are displayed on
your w orkstation screen, unless you have closed one or more of them in a pre­
vious debugging session or with the VAX LISP customization function (see
Appendix C).

Using the Debugging Utilities from the DECwindows Interface 10-1

Figure 10-2: Continuable Error Caution Box

C ontinuab ie e rro r in SYSTEM::REMOVE-OLD-DEFINITIONS:
Redefining COMMON-LISP function CDR.

If co n tin u ed : it will b e redefined

DEBUG CONTINUE |

M LO-002975 * •

• Debug I/O

• Calling Stack

• Variable Bindings

• Debugger Commands

Figure 10-6 shows the four windows.

Inpu t focus transfers to the Debug I/O window where the error message is
displayed.

The Calling Stack window displays a quick backtrace of the control stack. A quick
backtrace is a display of the function name in each fram e of the control stack.

The Variable Bindings window displays the function name, argum ent list, and
local variable bindings for the curren t stack frame.

The Debugger Commands window displays buttons labeled w ith the commands
th a t you use w ith the VAX LISP Debugger.

10-2 Using the Debugging Utilities from the DECwindows Interface

Once you know the nam e of the function th a t caused the error, you can use the
VAX LISP debugging functions and macros to locate and correct the programming
error. Table 10-1 lists the debugging functions and macros w ith a brief descrip­
tion of each. See VAX L IS P /V M S O bject Reference M a n u a l for more detailed
descriptions. •

Table 10-1: Debugging Functions and Macros
N am e Type Menu D escription
APROPOS Function Help Locates symbols whose p rin t name

contains a specified string argum ent or
a substring and displays information
about each symbol i t locates.

APROPOS-LIST Function None Locates symbols whose p rin t names
contain a specified string argum ent as
a substring and re tu rns a lis t of the
symbols i t locates.

BREAK Function O perations Invokes the break loop.

DEBUG Function Operations Invokes the VAX LISP Debugger.

DEBUG-CALL Function None R eturns a lis t representing the call a t
the current debug stack frame.

DESCRIBE Function Help Displays detailed inform ation about a
specified object.

DISASSEMBLE Function Operations Compiled code is reverse assembled
and printed out in symbolic format.

DRIBBLE Function File Copies th e inpu t and the output of an
interactive LISP session to a specified
file.

ED Function Operations Invokes or resum es the VAX LISP
Editor, potentially on the selection (only
if the argum ent is a string will the ED
function edit a file—m ost often it will
edit a symbol’s function definition).

INSPECT Function Operations Invokes or resum es the VAX LISP
Inspector, potentially on the selection.

ROOM Function None Displays inform ation about the sta te of
in ternal storage and its m anagem ent.

STEP Macro O perations Invokes the stepper.
TIME Macro None Displays tim ing inform ation about the

evaluation of a specified form.
TRACE Macro O perations Enables tracing functions and macros.
UNTRACE Macro O perations Disables tracing for functions and

macros.

This chapter provides the following:

• A table of the functions and macros th a t give you debugging information.

• Illustrations of the debugging u tility menus.

• Descriptions of two variables th a t control the output of the Debugger and the
stepper and how to use them.

• Description of the control stack th a t stores calls to functions, macros, and
special forms.

Using the Debugging Utilities from the DECwindows Interface 10-3

• Explanations of how to use the following debugging facilities from the
DECwindows interface:

— Break loop—A read-eval-print loop you can invoke while the LISP system
is evaluating a program

— Debugger—A control stack debugger you can use interactively to inspect
and modify the LISP system’s control stack frames

— Stepper—A facility you can use interactively to step through a form’s
evaluation

— Tracer—A facility you can use to inspect a program ’s evaluation

The VAX LISP Editor and VAX LISP Inspector are two other tools th a t you can
use for debugging. For an explanation of how to use the Editor, see Chapter 8.
For an explanation of how to use the Inspector, see Chapter 9.

Figure 10-3 shows those debugging utilities pull-down m enus th a t differ from
Listener pull-down menus.

Figure 10-3: Debugging Utilities Pull-Down Menus

LISP D ebugger LISP S te p p e r

Commands Commands 1111111
Commands... Commands...
Calling Stack... Calling Stack...
Variable Bindings... Variable Bindings...

Continue Continue
Quit Debug Quit Debug

LISP T race

Commands
Clear

Trace
Trace...

Untrace
Close

Copy

M LO -002976

10-4 Using the Debugging Utilities from the DECwindows Interface

10.1 Control Variables
VAX LISP provides two variables th a t control the output of the Debugger,
the stepper, and the tracer facilities: *debug-print-length* and »debug-
print-level*. These variables are analogous to the Common LISP variables
»print-length* and »PRINT-LEVEL* but are used only in the Debugger.

»DEBUG-PRINT-LENGTH* Controls the number of displayed elem ents
at each level o f a nested data object. The
variable’s value m ust be either an integer or
NIL. The default value is NIL (no limit).

»DEBUG-PRINT-LEVEL* Controls the number of displayed levels of a
nested data object. The variable’s value m ust
be either an integer or NIL. The default value
is NIL (no lim it).

These variables can be changed w ith setf (see Section 4.1).

10.2 Control Stack
The control stack is the part of LISP memory th a t stores calls to functions,
macros, and special forms. The stack consists of stack frames. Each time you call
a function, macro, or special form, the VAX LISP system does the following:

1. Pushes the name of the function associated with the function, macro, or
special form th a t is being called onto the stack frame.

2. Pushes the function’s argum ents onto the stack.
3. Creates a new stack frame.
4. Invokes the function.

Each control stack fram e has a fram e number, which is displayed as part of the
stack fram e’s output. Stack fram e num bers are displayed in the output of the
Debugger, the stepper, and the tracer.

There is always one active stack frame, and it can be either significant or
insignificant. Significant stack fram es are those th a t invoked documented
and user-created functions. Insignificant stack fram es are those th a t invoked
undocumented functions.

Debugger commands show only significant stack frames, unless you specify the
ALL modifier with a Debugger command.

10.3 Break Loop
The break loop is a read-eval-print loop th a t you can invoke to debug a program.
You can invoke the break loop while a program is being evaluated. If you do, the
evaluation is in terrupted and you are placed in the loop.

10.3.1 Invoking th e B reak Loop

You can invoke the break loop by calling the break function. The three ways of
using the break function to debug a program are:

• Choose the BREAK item from the Operations m enu while your program is
being evaluated.

• P u t the BREAK function in specific places in your program.

Using the Debugging Utilities from the DECwindows Interface 10-5

• Use the VAX LISP bind-keyboard-function function to bind an ASCII
keyboard control character to the break function. Then, use the control
character to directly invoke the break function while your program is being
evaluated (see VAX L IS P /V M S O bject Reference M a n u a l for a description of
the bind-keyboard-function function).

When invoked, the break function displays a m essage (if you specified one in your
form calling the break function) and enters a read-eval-print loop. If you specified
a message, the break function displays the m essage in the following format:

B r e a k :
y o u r m e s s a g e

After the message is displayed, a prompt is displayed a t the left m argin of your
Listener window:

B r e a k >

10.3.2 Exiting th e B reak L oop

W hen you are ready to exit the break loop and continue your program ’s evalua­
tion, invoke the VAX LISP continue function.

• Choose the CONTINUE item from the Operations m enu. The CONTINUE
item on the Operations m enu is available only when you are in a break loop
and only has effect when the break loop is w aiting for input. The CONTINUE
item does not in te rrup t evaluation of your code. If you wish to stop evaluation
of code in the break loop, choose the ABORT item first.

• Type Continue a t the prompt.

B r e a k ; (c o n t i n u e)

The continue function causes the evaluation of your program to continue from
the point where the LISP system encountered the BREAK function.

10-6 Using the Debugging Utilities from the DECwindows Interface

10.3.3 U sing th e B reak L oop

Once you are in the break loop, you can check w hat your program is doing by
in teracting with the LISP system as though you were in the top-level loop. For
example, suppose you define a variable nam ed *f i r s t * and a function named
co u n ter , which uses the variable *f i r s t *.

Figure 10-4: Defining a Variable

0 0

File Edit O p era tio n s Help

L is p > (defvar *first* 0)
★FIRST*
L isp > (defun counter nil

(if (< *first* 100)
(progn (incf *first*) (counter))
first))

COUNTER
L is p >

M LO-002977

Using the Debugging Utilities from the DECwindows Interface 10-7

You can in terrup t the function’s evaluation by invoking the break loop from the
Operations m enu during evaluation. For example:

Figure 10-5: Invoking the Break Loop

Lisp> (def
FIRST *
Lisp> (def

(if
(P*
*fi

COUNTER
Lisp>

INSPECT
ED
EVAL

COMPILE

OISASSEM

TRACI
TH,

ABORT
BREAK
CC
DEBUG

) (counter))

P P
Help

<0-

M LO-002978

You can check the value of the variable *f i r s t * by typing * f i r s t * a t the Break>
prompt. The read-eval-print loop evaluates the variable a t the point where the
BREAK function in terrup ted evaluation of c o u n t e r .

If you call the c o n t i n u e function by choosing the Continue item from the
Operations m enu or typing Continue a t the Break> prompt, the evaluation of
the function c o u n t e r continues.

After you call the c o n t i n u e function, you can see th a t the evaluation was con­
tinued by invoking the break loop again and rechecking the value of the variable
* F I R S T * .

Use the c o n t i n u e function again to complete the function’s evaluation.

Changes th a t you m ake to global variables and global definitions while you
are in the break loop rem ain in effect after you exit the loop and your program
continues. For example, if you are in the break loop and you find th a t the value of
the variable named * f i r s t * has an incorrect value, you can change the variable’s
value. The change rem ains in effect after you exit the break loop and continue
your program ’s evaluation.

10-8 Using the Debugging Utilities from the DECwindows Interface

NOTE
The forms you en ter w ith the mouse or by typing while you are in the
break loop are evaluated in a null lexical environment, as though they
are evaluated a t top level. Therefore, you cannot examine the lexical
variables of a program th a t you in terrup t with the break loop. Tb
examine those lexical variables, invoke the debugger (see Section 10.4).
For information on lexical environments, see C om m on L ISP : The
L anguage.

10.4 Debugger
The VAX LISP Debugger is a control stack debugger. You can use it interactively
to inspect and modify the LISP system’s control stack frames. The Debugger has
a pointer th a t points to the current stack frame. The current stack fram e is the
la s t fram e for which the Debugger displayed information. The Debugger provides
several commands th a t perform the following:

• Display help.

• Evaluate a form or reevaluate the function call a stack fram e stores.

• Handle errors.

• Change which stack fram e is considered current.

• Inspect or modify the function call in a stack frame.

• Display a sum m ary of the control stack.

The Debugger reads its input from and prin ts its output to the stream bound to
the *d e b u g - i o * variable.

Before you use the Debugger, you should be fam iliar w ith the VAX LISP control
stack. The control stack is described in detail in Section 4.2.

10.4.1 Invoking th e D eb u g g er from D E C w indow s

You can invoke the Debugger by:

• Clicking on the Debug button in one of the caution boxes

• Evaluating t h e d e b u g function

• Choosing the DEBUG item from the Operations m enu

The DEBUG item ignores any objects th a t you have selected before invoking the
debugger.

W hen you invoke the Debugger, four windows are displayed on your screen: the
Debug I/O window, the Calling Stack window, the Variable Bindings window, and
the Debugger Commands window. If you have closed the Calling Stack, Variable
Bindings, or Debugger Commands window in a previous debugging session or
w ith the VAX LISP c u s t o m i z a t i o n function, th a t window is not displayed on your
screen (see Appendix C). Figure 10—6 shows these four windows.

Using the Debugging Utilities from the DECwindows Interface 10-9

Figure 10-6: Debug I/O, Calling Stack, Variable Bindings, and Debugger Commands Windows

Calling Stack ! ■ Variable Bindings

TOP

» *
MAPCÄR
MAPCAR
REDUCE
FLOOR
NUMERATOR
I F
I F
COND
BLOCK
CALORIES
CALORIES
EVAL

BOTTOM

<c 3C>

F u n c t i o n n a u : * F ra m e n u m b ac :

S y s te m : :A : (N IL 1)

15

OC 30
LISP Debugger

Hie Commands Edit Operations
P E I

Help

Debugger Commands

E r r o r i n * :
J ^ p ly # 1 5 :
D ebug 1>

A rg u n a n t m u s t
<*NIL 1)

a n u m b e r: N IL

<1C 30

Backtrace B acktrace...
Top Top All
Up Up...
Where G o to ...
Down Down...
Bottom Bottom All
Error S how ...
S ea rch ... S e t ...
Step Return ...
Redo E valuate...

| Quit | s: Cancel

M L O -002870

10.4.1.1 The Debug I/O Window
The Debug I/O window (titled LISP Debugger in Figure 10-6) displays the same
information th a t appears on the term inal screen. When you invoke the Debugger,
a message th a t identifies the Debugger, a message th a t identifies the current
sta ck fram e p reced ed by A p p ly or Eval, and the command prom pt are displayed
in the Debug I/O window in the form at displayed in Figure 10—6.

The integer in the prom pt indicates the num ber of the nested command level
you are in. Its value increases by one each time the command level increases.
For example, the top-level read-eval-print loop is level 0. If an error is invoked
from the top-level loop, the Debugger displays the prompt Debug 1>. If you m ake
a m istake again causing an error while in the Debugger, th a t error causes the
Debugger to display the prompt Debug 2>.

10.4.1.2 The Calling Stack Window
The Calling Stack window displays the function name in each fram e of the control
stack. The curren t fram e is indicated by two angle brackets a t the left m argin
of the Calling Stack window. As you move the mouse pointer up or down in the
stack, the function nam e a t which you are pointing is underlined. To select a
particular frame, double-click on th a t fram e with MB1, or select th a t fram e and
then click on the Goto Fram e button.

10-10 Using the Debugging Utilities from the DECwindows Interface

You can dismiss this window from your screen with the Cancel button, lb re tu rn
the Calling Stack window to your screen, choose the Calling Stack item from the
pull-down Commands m enu of the Debug I/O window (see Figure 10-3). The
state of the Calling Stack window (displayed or not displayed) stays the same
across invocations of the Debugger. For example, if you remove the Calling Stack
window from the screen, you m ust explicitly bring it back, or it will not reappear.

10.4.1.3 The Variable Bindings Window
The Variable Bindings window displays the function name, argum ent bst, and
local variable bindings for the curren t stack frame. As you change the current
stack fram e in the Calling Stack window, the display changes in the Variable
Bindings window. A new window is not created. The Variable Bindings window is
shown in Figure 10-6.

You can dismiss this window from your screen w ith the Cancel button. Tb re tu rn
the Variable Bindings window to your screen, choose the Variable Bindings item
from the pull-down Commands m enu of the Debug I/O window. The sta te of the
Variable Bindings window (displayed or not displayed) stays the same across
invocations of the Debugger. For example, if you remove the Variable Bindings
window from the screen, you m ust explicitly bring it back, or i t will not reappear.

10.4.1.4 The Debugger Commands Window
The Debugger Commands window (see Figure 10-6) displays the commands
you can use with the VAX LISP Debugger. Some of the commands, for example,
Backtrace, take optional argum ents. W hen a command takes an optional argu­
m ent, it is followed by an ellipsis. Thus, if you w ant to invoke the Backtrace
command with an argum ent, choose the Backtrace... item. The Backtrace... item
brings up a dialog box for you to en ter the optional argum ent.

You can dismiss this window from your screen w ith the Cancel button. Tb re tu rn
the Debugger Commands window to your screen, choose the Commands item
from the pull-down Commands m enu of the Debug I/O window. The state of
the Debugger Commands window (displayed or not displayed) stays the same
across invocations of the Debugger. For example, if you remove the Debugger
Commands window from the screen, you m ust explicitly bring it back, or it will
not reappear.

10.4.2 Exiting th e D eb u g g er

Tb exit from the Debugger, do one of the following:

• Choose the Quit item from the

— Debugger Commands window

— Pull-down Commands m enu of the Debug I/O window

• Type Quit a t the Debug n> prom pt

These cause the Debugger to re tu rn control to the previous command level.

Using the Debugging Utilities from the DECwindows Interface 10-11

If you specify the Quit command when the Debugger command level is 1 (indi­
cated by the prompt Debug 1>), the command causes the Debugger to exit and
re tu rns you to the Listener. Specifying the Quit command a t a higher Debugger
command level re tu rns the Debugger to the next lower command level. If a con-
tinuable error caused the Debugger to be invoked, the Quit command, by default,
displays a confirmation box on the screen before the Debugger exits. Figure 10-7
shows the confirmation box.

Figure 10-7: The Quit Command Confirmation Box

Do you really w an t to leave th is d e b u g en v iro n m en t?

MLO-002980

If you click on Yes, the Debugger windows disappear from the screen, and control
re tu rns to the lis tener.

If you click on No, the Debugger prompts you for another command.

You can prevent the Debugger from displaying the confirmation box on the screen
with the VAX LISP customization function (see Appendix C). Tb prevent the
Debugger from requesting confirmation when you type the Quit command a t the
prompt, specify the Quit command w ith a value other than n il . For example:

D e b u g 1> q u it t
Lisp>

10.4.3 U sing D eb u g g er C o m m an d s

The Debugger commands let you inspect and modify the current control stack
fram e and move to other stack fram es. You invoke the Debugger commands from
the Debugger Commands window. Some Debugger commands take argum ents
th a t qualify command operations. Certain debugging u tility commands require
argum ents, others take optional argum ents, and some take no argum ents. An
argum ent whose value is an integer is usually optional; an argum ent whose
value is a symbol or form is required. In the Debugger Commands window,
commands taking no argum ents appear only as the command name with no
ellipsis. Commands th a t require an argum ent appear only as the command
nam e w ith an ellipsis. Commands taking optional argum ents appear both as
the command name with no ellipsis and as the command nam e with an ellipsis.
(For detailed information about the argum ents to Debugger commands, see
Section 10.4.3.1.)

10-12 Using the Debugging Utilities from the DECwindows interface

When you choose a command item with no ellipsis, the command is executed.
When you choose a command item with an ellipsis following the command name,
a dialog box appears on the screen for you to en ter argum ents to the command.
Table 10-2 provides a sum m ary of the commands in the Debugger Commands
window. Table 10-4 describes the stepper commands in sim ilar detail. Detailed
descriptions of the commands are provided in Section 4.4.3.2.

Table 10-2: Debugger Commands
Command
Button Label
BACKTRACE
BACKTRACE-

BOTTOM
BOTTOM...

CONTINUE

DOWN
D O W N -

ERROR

EVALUATE...

GOTO...

REDO

RETURN—

SEARCH...

SET...

SHOW...

STEP

TOP
T O P -

U P
UP...

WHERE

Description
D isplays a backtrace of the control stack.

Moves the current frame pointer to the first stack frame on the control stack.

Continues execution by returning from th e continuable error that invoked the
Debugger; causes the Debugger to return NIL; is only available i f the Debugger
was invoked by a continuable error.

Moves the current frame pointer down the control stack.

Redisplays the error m essage that was displayed w hen the Debugger was invoked.

Evaluates a specified form.

Moves the pointer to a specified control stack frame.

Reinvokes the function in the current stack frame.

Evaluates its argum ents and causes the current stack frame to return the sam e
values the evaluation returns; removes the Debugger windows from th e screen.

Searches th e control stack for a frame containing a specified function.

Sets the values of the components in the current stack frame.

D isplays information stored in the current stack frame.

Resum es execution, single-stepping at the current frame.

Moves the pointer to the last stack frame in the control stack.

Moves the pointer up the control stack.

Redisplays the argum ent list and the function name in the current stack frame.

10.4.3.1 Arguments
Some Debugger commands require an argum ent; other Debugger commands
accept optional argum ents. An argum ent whose value is an integer is usually
optional; an argum ent whose value is a symbol or form is required.

The types of argum ents you can specify w ith Debugger commands are:

• Debugger command

• Symbol

• Form

• Function name

• Integer

• Modifier

Using the Debugging Utilities from the DECwindows Interface 10-13

NOTE

Table 10-3:

Only parenthesized expressions and argum ents to evaluate (that is,
argum ents specified or selected with the Evaluate command) are
evaluated.

The preceding argum ents are self-explanatory with the exception of the integer
and modifier argum ents.

Integer argum ents represent control stack fram e numbers. Each stack fram e on
the control stack has a fram e number, which the Debugger displays in the Debug
I/O window as p a rt of the stack fram e’s output. The Debugger reassigns these
num bers each tim e it is invoked. You can specify a frame num ber in a Debugger
command to refer to a specific stack fram e in the current Debugger session.

Table 10-3 provides a sum m ary of the modifier argum ents you can specify with
Debugger commands.

Debugger Command Modifiers
Modifier Effect

ALL Operates on both significant and insignificant stack frames.
ARGUMENTS Operates on the argum ents specified w ith the function in the current stack frame.

CALL

DOWN

FUNCTION

HERE
NORMAL

QUICK

TOP

UP
VERBOSE

Operates on the call to the curren t stack frame.

Moves the pointer down the control stack.
Operates on the function object in the current Btack frame.

Operates on the curren t stack frame.
Displays the function name and the argum ent lis t in the control stack frames.

Displays the function name in th e control stack frames.

S tarts a backtrace a t the top of the control stack.

Moves the pointer up the control stack.
Displays the function name, argum ent list, local variable bindings, and special
variable bindings in the control stack frames.

10.5 Stepper
The stepper is a facility you can use to step interactively through the evaluation
of a form. You can control the stepper w ith commands from the Stepper
Commands dialog box as the stepper displays and evaluates each subform of a
specified form.

The stepper has a pointer th a t points to the current stack fram e on the system’s
control stack. The current stack fram e is the last stack fram e for which the
stepper displayed information.

The stepper prin ts its command interaction and output to the stream bound to
the * d e b ü g - i o * variable (the Debug I/O window).

10-14 Using the Debugging Utilities from the DECwindows Interface

10.5.1 Invoking th e S te p p e r

You can invoke the stepper macro w ith a form as an argum ent. The three ways
of invoking the stepper are as follows:

• Select a form and choose the Step item from the Operations menu. If you
do not select the form before choosing the Step item, the Step item is not
available on the Operations menu.

• Type Step a t a prom pt w ith a form as an argum ent. If you do not include the
form, the system displays an error message and invokes the Debugger.

• Choose the Step item from the Debugger Commands dialog box.

The example in Figures 10-8 and 10-9 invokes the stepper from the Operations
menu with a call to a function named factorial.

Figure 10-8: Invoking the Stepper

ÖH] LISP L istener B E I
File Edit O pera tions Hel 5

INSPECT
ED
EVAL

cTLisp> i t j

COMPILE
m C Q M P llE
DISASSEMBLE
TRACE
TRACE...
m x m .C E
STEP ^ 1
......................
ABORT
BREAK
c o n t in u e
DEBUG T=r

MLO-002981

When the stepper is invoked, the Debug I/O window and the Stepper Commands
window are displayed on your screen. The stepper displays a line of tex t in the
Debug I/O window th a t includes the first subform of the specified form and the
stepper prompt. The output is displayed in the following format:

Using the Debugging Utilities from the DECwindows Interface 10-15

Figure 10-9: Stepper Window Display

After the stepper is invoked, you can use the stepper commands (see Section 10.5.5)
to control the operations the stepper performs and the way the stepper displays
output.

10.5.2 S te p p in g T h ro u g h a Form

When you use the stepper, you can step through an entire specified form by doing
either of the following:

• Continually choosing the Step item from the Stepper Commands window.
The Stepper Commands window appears on the screen by default when the
stepper is invoked.

• Continually pressing the Return key.

10.5.3 Exiting th e S te p p e r

If you w ant to exit from the stepper before i t steps through a form, you can:

• Choose the Quit command from the Stepper Commands window.

• Type Quit a t the prompt.

The Quit command causes the stepper to re tu rn control to the previous command
level and window th a t was active when the stepper was invoked. By default, the
Quit command requires confirmation before the stepper exits. If you invoked the
stepper from the Listener window, the Debug I/O window disappears from the
screen.

You can prevent the stepper from displaying the confirmation box on the screen
w ith the VAX LISP c u s t o m i z a t i o n function (see Appendix C). lb prevent the

10-16 Using the Debugging Utilities from the DECwindows Interface

stepper from displaying the dialog box when you type the Quit command a t the
prompt, specify the Q uit command w ith a value other than n i l . For example:

S t e p > q u i t t
L i s p >

10.5 .4 S te p p e r O u tpu t

Stepper output in the Debug I/O window is the same as stepper output on a
term inal screen. For a description of stepper output and a sample session, see
Section 4.5.3.

10.5.5 U sing S te p p e r C o m m an d s

Table 10-4:

Stepper commands let you use the stepper to step through the evaluation
of a LISP expression, form by form. You m ust specify some commands with
argum ents. They provide the stepper w ith additional information on how to
execute the command.

Each time a command is executed, the stepper displays a re tu rn value if the
subform returns a value, displays the next subform, and prompts you for another
command. You enter stepper commands from the S tepper Commands window.
Figure 10-9 shows the Stepper Commands window.

Certain stepper commands require argum ents, others take optional argum ents,
and some take no argum ents. In the Stepper Commands window, the commands
th a t require argum ents have an ellipsis following the command name, and the
commands th a t take no argum ents appear only as the command nam e with no
ellipsis. Commands th a t take optional argum ents appear both as the command
name and as the command name w ith an ellipsis. Table 10—4 provides a sum m ary
of the stepper commands. Descriptions of the stepper commands are provided in
Chapter 4.

Stepper Commands
Command D escription

BACKTRACE Displays a backtrace of the current form’s evaluation.

BACKTRACE . . .
DEBUG Invokes the Debugger.

EVALUATE.

FINISH
FINISH T

OVER

QUIT

RETURN . . .

. . Evaluates a specified form w ith the stepper disabled.

Completes evaluation of the form that was specified or selected in the call to the
STEP macro with the stepper disabled.

Evaluates the subform in the current stack frame w ith the stepper disabled.

Exits the stepper.

Returns the specified values and rem oves the Debug I/O window and Stepper
Commands window from the screen.

SHOW

STEP

UP

Displays the subform in the current stack frame without abbreviation.

Evaluates the subform in the current stack frame w ith the stepper enabled.

Evaluates subforms w ith the stepper disabled until the stepper gets back to a
subform that contains the subform in the current stack frame.

Using the Debugging Utilities from the DECwindows Interface 10-17

10.6 Tracer
The VAX LISP tracer is a macro th a t you can use to follow a program ’s evaluation.
The tracer informs you when a function or macro is called during a program ’s
evaluation by prin ting information about each call and re tu rn value to the stream
bound to the * t r a c e - o u t p ü t * variable. By default, this output is displayed in the
Trace window. Tb use the tracer, you m ust enable it for each function and macro
you w ant traced.

NOTE
You cannot trace special forms.

10.6.1 E n ab lin g th e T racer

You can enable the tracer from a window for one or more functions and/or macros
as follows:

• Select one or more functions and/or macros and choose the TRACE or
TRACE... item s from the Operations menu.

• Type the t r a c e macro a t the prompt, specifying one or more function and/or
macro nam es as argum ents.

NOTE
If you redefine a function or macro after tracing i t (for example, by
loading it from a file or by evaluating i t from the Editor), you m ust
call t r a c e on it again. Otherwise, the tracer only traces the former
definition.

10.6.1.1 Enabling the Tracer from the Operations Menu
You can enable the tracer without setting or modifying options by choosing the
TRACE item. Figure 10-10 shows a Trace window. Choosing the TRACE item
after selecting a function or macro creates the Trace window if i t did not already
exist and adds the function or macro name to the Trace List if it did not already
appear there. The Trace List is a list of the symbols being traced; it is located
im m ediately below the m enu bar in the Trace window.

You can enable the tracer from the Operations m enu and set or modify tracer
options by choosing the TRACE... item. Choosing the TRACE... item w ith no
function or macro selected displays the Trace window a t the front of your screen.
Choosing the TRACE... item after selecting a function or macro displays the
Trace Options dialog box, which lets you set options and invoke the trace. The
Trace Options dialog box is shown in Figure 10—11. You invoke the trace from the
dialog box by clicking on the OK button after setting options.

Note th a t if you invoke the tracer on the same function or macro w ith the TRACE
item after you invoked it w ith the TRACE... item and set options for the tracer,
tracer output is no longer modified by those options.

A description of the t r a c e macro is provided in VAX L IS P /V M S O bject Reference
M an u al.

10-18 Using the Debugging Utilities from the DECwindows Interface

Figure 10-10: Trace Window

IS3 LISP T race H l S l
C om m ands Edit Help

No functions being traced.

<
M

...
...

...
...

...
..

< 11______ ___ ___ __ _ _______ ____ 1 0 J
MLO-002983

10.6.1.2 Enabling the Tracer from a Prompt
You can enable the tracer from the Listener or Debug I/O windows for one or more
functions or macros by specifying the function and macro names as argum ents
in a call to the t r a c e macro. The t r a c e macro re tu rns a list of traced functions
and macros. I t adds the function or macro names you specified to the Trace List
if they are not already there, and if the Trace window already exists.

If you type t r a c e a t the prompt w ithout specifying a function or macro, t r a c e
re tu rn s a list of traced functions. If there are no functions currently being traced,
TRACE re tu rn s an empty list.

Note th a t t r a c e typed a t a prom pt ignores any objects you selected with the
mouse; i t is only affected by the argum ents you type a t the prompt.

10.6.1.3 Clearing the Tracer
You should periodically clear the stored and visible information from the Trace
O utput area of the Trace window. The Trace O utput a rea is located im m ediately
below the Trace List. You clear the information from the Trace O utput area by
choosing the Clear item from the Commands menu. Clearing the stored and
visible information from Trace O utput allows the space used by Trace O utput to
be freed and allows the objects to which pointers have been kep t to be garbage
collected. If object recording is turned on and you do not perform the Clear
operation occasionally, the objects recorded will not be collected, and the LISP
process could ru n out of virtual memory.

Using the Debugging Utilities from the DECwindows Interface 10-19

10.6.1.4 Disabling the Tracer
You can disable the tracer from a window for one or more functions and/or macros
as follows:

• Select a function or macro and choose the UNTRACE item from the
Operations menu; if you choose the UNTRACE item w ith no selection, the
tracer is disabled for all functions and macros.

• Type the UNTRACE macro a t the prompt, specifying one or more function and/or
macro names as argum ents.

10.6.1.5 Disabling the Tracer from the Operations Menu
You can disable the tracer from the Operations m enu by choosing the UNTRACE
item.

To disable the tracer for a specific function or macro, select the function or macro
and choose the U ntrace command item. U ntrace removes the function or macro
nam e from the Trace List. Untrace displays the Trace window on your screen if
it is not already displayed but does not move the Trace window to the top of the
stack.

To disable the tracer for all functions and macros, choose the U ntrace command
item without selecting a function or macro. By default, a caution box is displayed
on your screen.

Note th a t the UNTRACE item is dimmed when no function or macro is being
traced.

10.6.1.6 Disabling the Tracer from a Prompt
lb disable the tracer from a prompt for specific functions or macros, specify the
nam es of the functions or macros in a call to the UNTRACE macro. Tracing stops
for these functions and macros, and their names are removed from the Trace List.

You can disable tracing for all the functions for which tracing is enabled by
calling the u n t r a c e macro w ithout any argum ents. Untrace removes all traced
item s from the Trace List.

Note th a t u n t r a c e typed a t a prompt ignores any objects you selected with the
mouse; it is only affected by the argum ents you type a t the prompt.

The u n t r a c e macro is described in C om m on L ISP: The Language.

10.6.2 T race r O u tp u t

Tracer output appears in the Trace window below the Trace List—the list of all
item s being traced.

Once you enable the tracer for a function or macro, the tracer displays in the
Trace window two types of information each tim e th a t function or macro is called
during a program’s evaluation:

• A description of each call to the specified function or macro

• A description of each re tu rn value from the specified function or macro

IP-20 Using the Debugging Utilities from the DECwindows Interface

The description of a call to a function or macro consists of a line of text th a t
includes the following information:

• The nested level of the call

• The control stack fram e num ber th a t indicates where the call is stored

• The nam e and argum ents of the function associated w ith the function or
macro th a t is called

The tracer indicates the nested level of a call with indentation. W hen the
num ber of nested levels increases, the indentation increases. After m aking the
appropriate indentation, the tracer displays the control stack fram e number, the
function name, and the argum ents in the following format:

#n: (function-name arguments)

The tracer also displays a line of text for the re tu rn value of each evaluation.
The line of text th a t the tracer displays for each value includes the following
information:

• The nested level of the re tu rn value

• The control stack frame num ber th a t indicates where the re tu rn value is
stored

• The re tu rn value

The tracer indicates the nested level of each re tu rn value w ith indentation. The
indentation m atches the indentation of the corresponding call. After m aking the
indentation, the tracer displays the control stack frame num ber and the re tu rn
value in the following format:

#n => return-value

C hapter 4 has examples illustrating the form at of tracer output.

10.6.3 M odifying T racer O p tio n s from th e Dialog Box

You can modify the output of the tracer when you call it w ith the TRACE... m enu
item by specifying options in the Trace Options dialog box. The Trace Options
dialog box is shown in Figure 10-11. When you use the Trace Options dialog box,
you can specify options for only o n e fu n c t io n o r macro a t a time.

NOTE
Forms the system evaluates ju s t before or ju s t after a call to a function
or macro for which tracing is enabled are evaluated in a null lexical
environment. For information on lexical environments, see C om m on
L ISP : The Language.

10.6.3.1 invoking the Debugger from the Trace Options Dialog Box
Typing a LISP form in one of the three text fields under Invoke the Debugger if
resu lt is non-NIL invokes the debugger if the form re tu rn s a value o ther than
n i l . The LISP system evaluates the form before, after, or before and after each
call to the function or macro being traced.

Using the Debugging Utilities from the DECwindows Interface 10-21

Figure 10-11: Trace Options Dialog Box

T race O ptions for FACTORIAL:

Invoke th e D ebugger if re su lt is non-N IL :

B efore Call

After Call [

Around Call

Invoke th e S tep

Before Call

»per if re su lt is non-N IL :

S u p p re s s tra ce

Before Call

o u tp u t if re su lt is non-N IL :

Print resu lt:

B efore Call

After Call L
Around Call

Only tra c e during ca lls in

Cancel

MLO-002984

10.6.3.2 Invoking the Stepper from the Trace Options Dialog Box
Typing a LISP form in the Before call tex t field under Invoke the Stepper if resu lt
is non-NIL invokes the stepper if the form retu rns a value other than n i l . The
LISP system evaluates the form before each call to the function or macro being
traced.

10-22 Using the Debugging Utilities from the DECwindows Interface

10.6.3.3 Removing Information from Tracer Output from the Trace Options Dialog Box
Taping a LISP form in the Before call text field under Suppress trace output if
resu lt is non-NIL suppresses trace output if the form re tu rns a value other than
resu lt N I L . The LISP system evaluates the form before each call to the function
or macro being traced. If the form retu rns a value other than n i l , the tracer does
not display the argum ents and the re tu rn value of the function or macro being
traced.

10.6.3.4 Adding information to Tracer Output from the Trace Options Dialog Box
Typing a list of LISP forms in one of the three tex t fields under P rin t resu lt adds
information to tracer output. The LISP system evaluates each form in the list
and the tracer displays the re tu rn value, before, after, or before and after each
call to the function or macro being traced. The tracer displays the values one per
fine and indents them to m atch other tracer output. If the forms to be evaluated
cause an error, the Debugger is invoked.

10.6.3.5 Defining When a Function or Macro Is Traced from the Trace Options Dialog Box
Typing a function or macro name or a list of function and/or macro names in the
tex t field next to Only trace during calls in defines when a function or macro, for
which tracing is enabled, is to be traced. The functions and macros for which the
tracer is enabled are traced only when they are called (directly or indirectly) from
w ithin one of the functions or macros whose nam e is specified in the text field.

10.6.4 M odifying T race r O p tio n s in th e Call to th e TRACE M acro

You can modify the output of the tracer by specifying options in the call to the
t r a c e macro. Each option consists of a keyword-value pair. The form at in which
to specify keyword-value pairs for the t r a c e macro is:

(T r a c e (f u n c t i o n - n a m e k e y w o r d - 1 v a l u e - 1
k e y w o r d - 2 v a l u e - 2
. . .))

In the call to the t r a c e macro, you can also specify options for a lis t of functions
and/or macros. The t r a c e macro form at in which to specify the same options for
a lis t of functions and macros is:

(T r a c e ((n a m e - 1 n a m e - 2 . . .) k e y w o r d - 1 v a l u e - 1
k e y w o r d - 2 v a l u e - 2
. . .))

Specifying options a t the prompt in a window is the same as specifying options a t
the prom pt on a term inal interface. For a detailed explanation of how to do this,
see Section 4.6.4.

Using the Debugging Utilities from the DECwindows Interface 10-23

Appendix A

Using DECwindows

You work with m ost DECwindows applications by using the same handful
of mouse and windowing techniques. This appendix summ arizes some basic
techniques you’ll use in DECwindows—from clicking and dragging to editing text.

A.1 Using the Mouse
The mouse—the hand-held pointing device attached to your workstation
monitor—makes using DECwindows as easy as pointing to an object on your
screen and clicking a button. You use the mouse to choose commands from a
menu, to expand and shrink windows, and to rearrange windows on your screen.

The mouse has three buttons. Unless you specify otherwise, MB1 (for “mouse
button 1”) is on the left, MB2 is in the middle, and MB3 is on the right. This button
arrangem ent naturally suits right-handed users. If you are left handed, you can
easily rearrange this configuration by changing the button arrangem ent setting
in the Session M anager’s Customize Pointer dialog box.

Using DECwindows A-1

You can do all your work with DECwindows by m astering the following mouse
techniques:

• Point: Using the mouse, move the cursor to where you w ant the next action
to occur.

• Click: Quickly press and release MB1. You should hear and feel a fain t click.

• Press: Point to the m enu name, stepping arrow, or wherever you w ant the
action to occur. W ithout moving the mouse, press and hold MB1 or MB2. If you
are pointing a t a m enu name, pressing MB1 pulls down a m enu and keeps it
down until you release MBI.

• Drag: Press and hold MB1, move the pointer, and release MB1. For example,
you move a window to another location on the screen by dragging its outline.
Tb cancel a drag in progress, click MB3 before releasing MB1. If you are
displaying a pull-down menu, cancel the drag by moving the pointer outside
the m enu and releasing MBI.

• Double click: Point to the object and click MBi twice in quick succession.

• Shift click: Point to the object. Press and hold the Shift key and click MBI.
Release the Shift key.

A.2 What Are Windows?
A window is an area on your workstation screen th a t represents all or part of an
application. For example, M ail’s Create window is ju st one of several windows
available in the Mail application. •

• The title b a r a t the top identifies the window.

• The m enu bar directly beneath the title bar lets you access the application’s
commands.

A-2 Using DECwindows

The work area in the space rem aining displays the application’s text and
graphics.

A.3 Starting a Session
If the system startup procedure has been successful, your screen looks like this:

S ta r t S e s s io n

U se rn a m e [I___________
P a ss w o rd []______________________

© Digital E q u ip m en t C orp o ra tio n . 1988.
All R ig h ts R e se rv ed

ZK-0245A-GE

OK Clear

The S ta rt Session dialog box prompts you for your user name and password.
DECwindows displays a dialog box whenever i t needs information from you.

You type your user name and password in the appropriate text entry fields. A
tex t insertion cursor is visible in each field. The text cursor in the Usernam e
field blinks to indicate this field has input focus. W hen a text field or window
has input focus, you see your keystrokes echoed there. The text cursor in the
Password field is dimmed, indicating th a t you cannot currently en ter text in it.

To s ta rt a session:

1. Type your user name.

If you m ake a typing m istake, press the Delete key (O) to erase the character
to the left of the text cursor, lb insert a character in the middle of tex t you
already typed, point where you w ant the text inserted and click MB1. Or, use
the righ t and left arrow keys to move the tex t cursor righ t or left. The new
characters you type push existing ones to the right.

2. Select the Password field by pointing to the Password field and clicking MB1.
You always select the object or information you w ant to work on next. You
can also move to the Password field by simply pressing Tab. The text cursor in
the Password field blinks to indicate this field now has input focus.

3. Type your password.

lb preserve the secrecy of your password, the letters you type are not
displayed on the screen.

If you m ake a typing m istake, click on the Clear button. This erases all text
in both the Usernam e and Password fields so you can retype your information
correctly. Clicking on buttons in dialog boxes lets you tell DECwindows w hat
to do w ith the information you supplied.

4. Click on the OK button or press Return.

Using DECwindows A-3

The double outline around the OK button in the S ta rt Session dialog box indicates
it is the default option. Default options are those you will choose most frequently.
DECwindows provides you with a shortcut to choose default options: Whenever
you see a button with a double outline, pressing the Return key achieves the same
results as clicking on th a t button.

If you provide wrong information or m ake a typing m istake and do not correct
it, DECwindows does not let you s ta r t a session. Instead, it displays a Problem
Report dialog box as a w arning th a t some information is incorrect.

Click on the Acknowledged button in the Problem Report dialog box or press the
Return key to try again.

If the information you supplied is correct, your session begins.

A.4 Selecting Windows
W hen you have more th an one window open, DECwindows needs to know which
one you are currently working on so th a t the commands you choose and the text
you type end up in the righ t place. You tell DECwindows which window you w ant
to work w ith by selecting it. W hen you select a window, it moves to the front of
the “stack” of overlapping windows. Its title bar is highlighted to indicate it has
input focus. Any keystrokes you type appear in this window. W hen you select
another window, the new window is given input focus. Only one window can have
inpu t focus a t a time.

Window with Input Focus
JÜ| RleVlew - W ORK: [JONES]___ S M
I I

Window Without Input Focus

p l l FllsVtoW - WORK : [JONES]

ZK -0581A -GE

lb select a window:

1. Point to a location in the window or title bar.

In the FileView window, point to the title bar.

2. Click MBi.

A.5 Changing the Size of Windows
Sometimes you w ant to m ake one window very large so you can see everything
in it. O ther times, you m ight w ant to work with small windows, such as when
several applications are running simultaneously. You can change the size of your
windows to suit your needs by using the resize button.

H Ma!l:Reed-1 [□] MAIL INBOX #2

ZK -0563A -GE

A -4 Using DECwindows

To change the size of a window:

1. Point to the window’s resize button.

2. Press an d h o ld MB1.

The pointer changes into a small resize cursor.

3. Drag the resize cursor to the size you want.

To m ake the window larger, drag the resize cursor beyond the window border.
To m ake the window smaller, drag the resize cursor beyond the window
border and then back in. The outline stops moving when the window is as
small as it can get.

4. Release MBi.

You can change the size of a window in one dimension (height or width) or in both
dimensions simultaneously. To change the size in one dimension, drag the resize
cursor across one border of the window. As long as you cross only one border,
the outline th a t follows the resize cursor changes in only one dimension. If after
crossing one border you cross an adjacent border, you see an outline th a t can
change in both dimensions.

If you drag the resize cursor through one border and then through the opposite
border, the first border you crossed reverts to its original location, and the other
border becomes an outline th a t follows the resize cursor.

To cancel a window-resizing operation in progress, click another mouse button
before releasing MBI. The outline disappears, and the window reta ins its original
size.

A.6 Shrinking Windows
When you s ta rt an application, its icon appears in the Icon Box. You shrink
a window to an icon if you w ant to free up space on your screen to ru n other
applications without exiting from the application. When you shrink a window to
an icon, the application it represents continues to run in memory and rem ains
easily accessible. Any processes continue to execute while the application is
stored as an icon.

Sh r in k - to-
Icon Button

B File View - WORK:[JONES]

ZK -0565A-GE

When the application is running in a window, its icon is dimmed. The icon
appears bold when the application is stored in the Icon Box. If the Icon Box
contains more icons th an can be displayed a t once, scroll bars appear. You use
scroll bars to view the tex t th a t does not fit in a single window.

To shrink a window to an icon:

1. Point to the window’s shrink-to-icon button.

2. Click MBi.

The window closes and its icon in the Icon Box appears bold.

You cannot shrink the Icon Box to an icon.

Using DECwindows A-5

As you stop applications, your Icon Box develops gaps where icons used to be.
You can rearrange the icons in the Icon Box in two ways:

• By moving the icons, lb move an icon, drag it to a new location.

• By clicking on the Icon Box’s shrink-to-icon button. Clicking on th is button in
an application window shrinks the window to an icon. Clicking on th is button
in the Icon Box, however, elim inates the gaps between icons th a t m ay develop
when you stop applications.

A.7 Expanding Icons to Windows
When you expand an application icon, you open a window for th a t application. If
you have more than one window open and expand an icon to a window, th a t new
window is placed a t the front of the stack of overlapping windows. If the window
accepts text entry, it is also given input focus.

To expand an icon to a window:

1. Point to the icon in the Icon Box.

2. Click MB 1.

A.8 Moving Windows
If one window partially obscures another, you m ight w ant to arrange them so
th a t each is completely visible. To move a window, drag i t by its title bar.

n tie Bar-

[Hi Mall:Read-1 [D] MAIL INBOX #2

Z K - 0 5 7 9 A - G E

To move a window:

1. Position the pointer anywhere in the window’s title bar (except in the
shrink-to-icon, push-to-back, or resize buttons).

2. P ress and hold MB1.

An outline of the window appears.

3. Drag the window to the new location.

4. Release MB1.

If the window was partially obscured by other windows, i t moves to the front
of the stack of windows and is given input focus.

Ib cancel a window-moving operation in progress, click another mouse button
before releasing MB1. The outline disappears and the window is not moved.

A-6 Using DECw indow s

A.9 Stacking Overlapping Windows
When you are working w ith stacked windows and select a window, it moves to
the front of the stack and is given input focus. B ut if a larger window completely
obscures a sm aller window, you cannot select th a t small window w ithout moving
the larger window out of the way. If you use the title b a r to move the larger
window, you disrupt your window arrangem ent.

By clicking on the visible window’s push-to-back button, you can push th a t
wipdow to the back of the stack and expose the window underneath. W ithout
moving the windows to another location on the screen, you can push one window
out of the way or retrieve another to work with.

|R£| Session Manager JO N ES on HUBBUB

P U 8 h - to -
y B a c k B u tton

m m .
i

Z K - 0 5 6 4 A - G E

To push the frontm ost window to the back of a stack of overlapping windows:

1. Point to the frontm ost window’s push-to-back button.

2. Click MBl.

If you try this repeatedly w ith three or more windows, you see th a t the windows
cycle through the stacking order, moving up one position in the stack each tim e a
window is moved to the back of the stack.

A.9.1 Making Overlapping W indows Stick in Place

W hen you are working w ith overlapping windows and select one window, it moves
to the front of the stack of windows and is given input focus. You can, however,
prevent a partially obscured window from moving to the front of the stack when
you select it by arranging the windows to display only w hat you need to see and
then securing them in place.

For example, if you are working w ith a DECterm, Notepad, Mail, and File View
windows, you m ight arrange them so th a t only the portions you need to work
w ith are visible. In the DECterm window, you probably need to see only the last
few lines so you can en ter commands. Once you secure the windows in place,
you can switch from one window to another without d isturbing their order in the
stack.

To lock overlapping windows in the stacking order:

1. Point to a window’s push-to-back button.

2. Shift click on the button.

T hat window is pushed to the back of the stack.

The lower right-hand corner of the push-to-back button is filled to indicate th a t
the window is fixed in the stacking order. Although the window is given input
focus when you select it, i t does not pop to the front of the stack.

Using DECw indow s A-7

You can still, however, push to the back or bring to the front any window that
you have fixed in the stacking order to see it unobscured. Clicking on a window’s
filled push-to-back button moves th a t window to the opposite position in the
stack, bu t does not give it inpu t focus. Clicking on a filled push-to-back button
pushes an unobscured window to the back of the stack. Clicking on a filled
push-to-back button moves a partially obscured window to the front of the stack.

A.9.2 Releasing W indows Locked in the Stacking Order

To release a window locked in the stacking order, shift click again on its push-to-
back button. If the window was a t the back of the stack, it moves to the front; if
the window was a t the front, it is pushed to the back. If you look a t the window’s
push-to-back button, you will notice th a t it is no longer filled.

A.10 Choosing Items from Pull-Down Menus
The names of m enus available in an application appear on the m enu bar. When
you press MB1 on a m enu name, the m enu’s contents are displayed or pulled down.

H FileView - W O RK :[JO N ES] BMI
| C ontrol C ustom ize V iew s Files U tilities n e ip 1

1 B o o k read er

C alcu la to r

C alendar

Cardfiler

Clock

DDIF V iew er

1

Mall

N otepad

Paint

ZK-0234A-GE

Some pull-down m enus list commands. O thers lis t the names of item s you can
work with. You tell DECwindows w hat you w ant to do or w hat you w ant to work
w ith by choosing commands or item s from pull-down m enus. Any m enu item
followed by three periods (...) is your cue th a t a dialog box will be displayed if you
choose th a t m enu item.

To choose an item from a pull-down menu:

1. On the m enu bar, point to the name of the m enu you w ant to display.

2. Press and hold MB1.

This highlights the m enu nam e and pulls down a menu.

3. While holding MB1, drag to the m enu item you want.

4. Release MB1.

If you change your m ind while looking a t a pull-down menu, drag outside the
m enu and release MBl. The m enu disappears and no action is taken.

A-8 Using DECw indow s

Some applications offer rectangular push buttons to duplicate frequently used
commands th a t are also available as m enu items. Push buttons are usually found
underneath an application’s work area. To execute these commands quickly, click
MBl on the push button.

A.11 Choosing Items from Submenus
A m enu item with a submenu icon—an arrow pointing to the right—indicates
th a t a corresponding submenu is available. If you choose th a t m enu item, you
need to refine your choice by displaying its subm enu and choosing a m enu item
from th a t submenu.

Font
Courier

Size E
Style E

Times
Helvetica

ZK-0529A-GE

lb display a subm enu and choose a m enu item from it:

1. On the m enu bar, point to the nam e of the m enu you w ant to display.

2. Press and hold MBl.

3. Drag to the m enu item you want.

4. Drag onto the submenu icon.

A subm enu is displayed to the righ t of the menu.

5. Drag to the m enu item you w ant to choose from the submenu.

6. Release MBl.

A.12 Choosing Items from Pop-Up Menus
DECwindows provides pop-up m enus to m ake i t easier for you to work with files
and applications. Pop-up m enus duplicate commands and functions available
on pull-down m enus. Unlike pull-down menus, which require you to move
the pointer to the m enu bar, you can display a pop-up m enu anywhere in an
application’s work area. By reducing your use of the mouse, pop-up m enus give
you quick, direct access to an application’s commands and functions.

Using DECw indow s A-9

I I FIteVJ*w - WORK:[JONE8]
Control C ustom ize V iews Flics U tilities Applications

File Filter: []__

D irectory : | WORK:[JONES]I

AI

[.MAIL]
[. SCHEDULES]
[.STAFF]

! N o n e | S e le c te d : 0
T o tal F lies: 60

1992_ISSUES.PS
BKUSSELS_CONTACTS.LIS
C U R R E N C ^ l^ ^ ^ J l ——EJ25329E33' °̂fni>arB I
EMBARGOES. TXT Copy
FORECAST 1 .DDIF
F0RECAST2.DDIF
F0RECAST3.DDIF
IMPORT_TARIFFS
LOGIN.COM
MUNICH_CONTACT
MY_CALENDAR.DW
PRODUCTION.DIS
PR0DUCTI0N_PR0<
RCME_C0NTACTS.LIS
SALES_PLAN.PS
TRADE BARRIERS. TXT

Pop-Up Menu

ZK-0574A-GE

To display a pop-up menu:

1. Press and hold MB2 on the application’s work area.

In the FileView window, press and hold MB2 on the file type whose pop-up
m enu you w ant to display.

2. Drag to the m enu item you want.

3. Release MB2.

If you change your m ind while looking a t a pop-up menu, drag outside the m enu
and release MB2. The m enu disappears and no action is taken.

A.13 Choosing Items from Option Menus
An option m enu is a pop-up m enu th a t appears in a dialog box. An option m enu
lets you choose one option from many. In the dialog box, only the current option
is displayed. To see the other options from which you can choose, you display the
option menu.

O rien ta tion D efau lt :> O rien ta tio n

P o rtra it

L an d scap e

Z K -0 5 6 2 A -G E

To display an option menu:

1. Press and hold MB1 on the current option.

The option m enu is displayed.

2. Drag to the m enu item you want.

3. Release MB1.

A-10 Using DECwindows

The option m enu disappears. The option you chose is now the current option.

If you decide not to change the original option, drag outside the m enu and release
MBi. The m enu disappears and no changes occur.

A.14 Supplying Information in Dialog Boxes
DECwindows displays a dialog box whenever it needs additional information from
you to carry out a task. Sometimes you need to type text; other times, you need
only click on a button to change a setting. Some dialog boxes display settings you
chose earlier.

Toggle
B u tto n -

P u sh
B utton -

Customize Session M anager

S ta r tu p S t a t e \ ^

, # Window m C rea te FNeVlew W indow
O Icon g] C onfirm Q uit S e ss io n

M essa g e R egion

10
im ~ J 1 M essages]:

0
EC

S cro lled L ines S a v e d H ead e r T ex t

| Apply | | C ancel]

Term inal W indow s

- S c a le
w ith S lid e r

T e x t E n try Field

ZK-0550A-GE

Dialog boxes offer various ways to supply information to an application:

• By typing text in a text entry field. The blinking tex t cursor shows you where
the text you type will appear. W hat you type appears to the left of the text
cursor.

• By clicking on option buttons or square toggle buttons. Option buttons 1st you
select one option from many. Toggle buttons let you tu rn a setting on or off.

• By dragging the slider in a scale. Dialog boxes often contain a scale and
slider when you need to supply a num eric value. The arrow in the slider
points to the current value.

• By selecting choices, for example, file names, from a list box. A lis t box
contains a list of item s from which you can choose. Scroll bars appear if the
choices do not fit in the list box.

• By clicking on push buttons. Push buttons, such as OK, Cancel, or Filter, let
you tell DECwindows w hat to do with the information you supplied in the
dialog box.

In a dialog box, the OK button is usually the default option. You can press
the Return key to achieve the same resu lt as clicking on OK.

A.14.1 M oving a n d C h an g in g S e tt in g s in a D ialog Box

How you move in a dialog box depends on the object, for example, a toggle button
or text field, you w ant to work with. The following table describes the ways in
which you can move and change settings in a dialog box.

Using DECwindows A-11

To Do this
Move forward between text fields

Move backward between text fields

Move the text cursor w ithin a text
field

Change the numeric value on a
scale

Change an option or toggle button
setting

Press the Tab key or point to the field to which you w ant to move
and click MB1.

Press the [ShjftTTgj] keys or point to th e field to which you w ant to
move and click MB1.

Point to where you w ant th e text inserted and click MB1 or use the
right and left arrow keys to move the text cursor right or left. New
characters push existing ones to the right.

Drag the slider on the scale right or left or point to another location
on the scale and click MB1.

Point to the option or toggle button and click MB1.

Once you change the settings you w ant, click on either the OK, Apply, or Cancel
buttons.

C lick on To
OK Record your choices and dism iss the dialog box.

Apply Record your choices w ithout d ism issing the dialog box.

Cancel D ism iss the dialog box w ithout changing any settings. If you
made any changes without applying them , clicking on the Cancel
button cancels those changes.

A.14.2 M aking S e le c tio n s from List B o x es

A list box is part of a dialog box th a t contains a list of items, often file names,
from which you can choose. M any applications display a list box when you open
or save a file.

Tb select an item from a list box, point to the item and click MB1. The item you
select is highlighted.

List
Box

File Filter

|* .tx t |

F iles in W ORK:[JONES]

S]CURRENCY.TXT ;3 ■Ct
B1DIRECTI0NS.TXT ;5

S]EMBARGOES.TXT;1

S]TRADE_BARRIERS.TXT;1

V
< 0 1 = 3 m o □

S e lec tio n

| W ORK:[JONES]PIRECTIONS.TXT;5l

Cancel

Z K -0 5 4 8 A -G E

A-12 Using DECwindows

If you selected a file name, you can click OK to open the file. DECwindows also
gives you a shortcut for opening files from list boxes: Double clicking on the file
name produces the same resu lts as selecting th a t file name and clicking on OK

If you w ant to work w ith a file th a t does not appear in the list box, type the name
of the file in the Selection tex t en try field and click on O K Or, use the File Filter
text entry field to list a subset of files th a t you can then select from. For example,
to list all the files in another directory with the file type TXT, enter the complete
directory specification—[JONES .LETTERS]* .TXT—in the File F ilter text entry
field and click on the F ilter button. The list of files th a t m eet the qualifications
are displayed. Double click on the name of the file you w ant to open.

A.15 Scrolling
Some windows display scroll bars, which let you view the tex t th a t does not fit in
a single window. Some windows have both horizontal and vertical scroll bars.

A scroll bar consists of stepping arrows a t e ither end of the scroll region. The
slider is the thicker box th a t overlays the scroll region. If the slider is a t the top
of the scroll region, the beginning of the file or list is visible. If the slider is a t
the bottom of the scroll region, the end of the file or list is visible.

Si] FlfaVlww - W ORK:[JONES]
Control C u r to m l» V iew» F lla t Utllltl»* Application« Help

FHo Filter |___________________________________

D irectory : | WORK:[JONESH______________________

I ** I □ □ JE l So
1992_ISSUES.PS
BRUS SELS_CONTACTS.LIS
CURRENCY.TXT
DIRECTIONS. TXT
EMBARGOES.TXT
FORECAST 1 .DDIF
FORECAST2 .DDIF
FORECAST3 .DDIF
3MPORTJTARIFFS. PS
LOGIN.COM
MUNI CH_CONTACTS. LIS
MY_CALENDAR. DWC
PRODUCTION. DIS
PRCDUCTION_PROCEDURES. IMP
ROME_OONTACTS.LIS

Scroll Bar

[.MAIL]
[.SCHEDULES]
[.STAFF]

Supping
Arrow

StaUr

Sorol
Region

SUpping
Arrow

ZK-0557A-GE

The size of the slider is relative to the total am ount of tex t in the document and
indicates how m uch more tex t rem ains to be displayed. For example, a small
slider indicates th a t m uch tex t rem ains to be displayed. A large slider th a t
completely fills the scroll b a r indicates th a t all the text is displayed.

The following table describes how to use scroll bars.

To scroll
One line at a tim e

Forward one windowful of text at a tim e

Back one windowful of text a t a tim e

Do this
Click MB1 on the stepping arrows.

Point to the scroll region below the slider and click MB1.

Point to the scroll region above th e slider and click MB1.

Using DECwindows A -13

To scro ll Do this

Continuously through the lis t or file one Press and hold MB1 on either stepping arrow.
line at a tim e

Continuously through the lis t or file one Press and hold MB1 in the scroll region.
windowful o f text at a tim e

To another location in the lis t or file Drag the slider to a position in the scroll region that corre­
sponds to the general location you want to see. If the slider is
at the top of the scroll region, you are viewing the beginning of
the list or file. I f the slider is in the middle of the scroll region,
you are viewing the middle of the list or file. Cancel the drag
by clicking another m ouse button before releasing MB1.

A.16 Editing Text
DECwindows provides m any ways to edit text, which saves you from retyping
long file names or large blocks of text. Most applications let you move and copy
text

• From one place in a window to another.

• From one window to another window. For example, you can copy text from
one Create-Send window in Mail to another.

• From one application to another application. For example, you can move a
picture from Pain t onto a Cardfiler card.

In addition, most applications provide an Edit m enu th a t lets you cut, copy, and
paste text and graphics. See the V M S D E C w in dow s D esktop A p p lica tion s G uide
for more information about using the Edit m enu in specific applications.

Finally, m ost applications define specific keys to let you perform basic text editing.
These keys let you move the cursor and delete small amounts of text efficiently.

A.16.1 S e lec tin g Text

Before you can copy or move text to other locations in a window or between
windows, you m ust select the text. You can copy text in any amount, including
a word, a line, or a paragraph a t a time. Successive clicks of MB1 increase the
am ount of text you are selecting. The following table describes how to select text.

To Do this
Position the cursor where you want the Point to the location and click MB1.
selection to start

Select a word Point to the word and double click MB1.

Select a line Point to th e line and triple click MB1.

Select continuous text, from the original Press and hold MB1 and drag the pointer through the text,
selection point to the point where the
button is released

Extend the current selection Sim ultaneously press and hold the Shift key and MB1 while
dragging the pointer through the additional text.

Extend the current selection to where the Press and hold the Shift key and click MB1.
pointer is positioned

A-14 Using DECwindows

In addition, some applications provide a way for you to select larger blocks of text
a t a time. For example, you can select a paragraph of text in EVE by pointing to
the paragraph and clicking MB1 four times. You can select an entire mail message
or the contents of a Notepad file by pointing to the text and clicking MB1 five
times.

You can select only one piece of text a t a time. By selecting text in one applica­
tion, you cancel any other text selection established in the same window or in
another application.

A.16.2 C opy ing Text

If you can type text in a window, you can select and copy th a t text from one place
to another in the same window, between windows of the same application or
between different applications.

You can also copy text from a FileView window—including FileView’s file list—to
an application th a t supports text entry.

To copy text in a window, between windows in the same application, or between
applications:

1. Select the text you w ant to copy, using the text selection techniques described
in Section A. 16.1.

2. Position the cursor where you w ant the tex t copied by pointing and clicking
MB1.

3. Click MB3.
The text is copied to the new location.

The window from which you selected text takes input focus. If you copied th a t
tex t back to your current window, you had to reestablish input focus for th a t
window. Sometimes, however, you ju s t w ant to grab a piece of text from another
window w ithout worrying about which window has input focus. T hat is where
QuickCopy comes in handy: You use QuickCopy to copy text from another window
to your curren t window w ithout losing input focus in your current window.

To use QuickCopy:

1. In the current window, position the cursor where you w ant the text copied by
pointing and clicking MB1.

2. In the other window, point to the text you w ant to copy.

3. Press and hold MB3.
4. Drag across the text you w ant to copy.

The text is underlined as you drag across it.

5. Release MB3.
The text is copied to the new location in your current window.

Using DECwindows A-15

A.16.3 M oving Text B e tw een W indow s

DECwindows also lets you work in one window, select text from another, and
move th a t text to the current window without losing input focus in your current
window. The text is deleted from its original location.

To move text from one window to another:

1. In the current window, position the cursor where you w ant the text pasted by
pointing and clicking MB1.
Make sure the window has input focus.

2. In the other window, point to the text you w ant to move.

3. Press and hold Ctrl/MB3.
4. Drag across the tex t you w ant to move.

The tex t is underlined as you drag across it.

5. Release CM/MB3.
The tex t is moved to the new location and deleted from the old.

A.16.4 D eleting Text w ith P e n d in g D elete

When you m ark text for pending delete, you can delete large blocks of text with
one keystroke instead of pressing the Delete key repeatedly. You m ark tex t for
pending delete by selecting it as described in Section A. 16.1. The selected text is
deleted when you press any key. You can then type new text.

To cancel a pending delete selection (once you select the tex t bu t before you press
a key), point to the selected text and click MBi.

A.16.5 E diting Text in D ialog B o x es

You can use the text editing techniques described in the following table to move
the cursor or delete text in dialog boxes in any DECwindows application. Use the
arrow keys to move the cursor one character a t a time.

To Press
Move the cursor to the next word

Move the cursor to the previous word

Move the cursor to the beginning of the
line

Move the cursor to the end of the line

Move the cursor forward between text
fields

Move the cursor backward between text
fields

Delete the character to the left o f the
cursor and move all text to the right of
the deleted character one space to the
left

1 Sh ift/—> |
| Shltt/<— |

[f TS! or | Clrl/H |

| Shltl/F I 2 | or [c w e !

| Shitt/Tab |

< 3

A -16 Using DECwindows

To Press

Delete the character after the cursor and
move all tex t to the righ t of the deleted
character one space to the left

Delete all characters to the s ta rt of the
line

| S h i t t / < £ l I In overstrike mode, I S h i t t / < 5 1 deletes th e character
under the block cursor. Not enabled in EVE.

I Ctrl/U 1

A.17 Composing Special Characters
In DECwindows, you can use compose sequences to create special characters. A
compose sequence is a series of keystrokes th a t creates characters th a t do not
exist as standard keys on your keyboard. See the list of ISO L atin-1 compose
sequences in the VM S D E C w in dow s D esktop A pp lica tio n s G uide.

Depending on the keyboard type, you compose characters in either of the
following ways:

• Using three-stroke sequences on a VT200- or VT300-series keyboard.

• Using two-stroke sequences on any VT200-series keyboard except North
American.

Tb compose a character, using the list of compose sequences in the VM S
D E C w in dow s D esktop A p p lica tio n s G u id e:

1. Find the character you w ant to create in column 1.

2. To compose a three-stroke sequence, press and hold the Compose key while you
press the space bar, and then type the two characters in column 2.

Tb compose a two-stroke sequence, type the two characters in column 3. The
desired character is displayed.

Tb cancel a compose sequence, press and hold the Compose key while you press the
space bar, or press the Delete key, Tab key, Return key, or Enter key.

See. the V M S D E C w in dow s D esktop A pp lica tio n s G uide for inform ation about
composing characters in DECterm.

A.18 Getting Help
You can get help in any DECwindows application by using the Help menu.
Help provides brief information about screen objects, concepts, or tasks you can
perform in applications. Some applications also le t you get help on specific screen
objects, for example, scroll bars and m enu items, by using the Help key and MB1.

Help is designed to let you request general information on an application and
quickly narrow the focus of your inquiry. In Help, you can

• Navigate quickly through help topics. Help keeps track of the pa th you used
to get to a particular topic, which m akes it easy for you to retrace your steps
and follow a different path.

• Search Help for a keyword or topic supplied by the application.

Using DECwindows A-17

A.18.1 Invoking Help

lb get help on tasks in DECwindows applications, choose Overview from the
application’s Help menu.

A help window opens with the Overview topic displayed, including a list of
additional topics th a t explain how to do common tasks.

Help >
Topics

Additional >
Topics "

‘v

[SS|| Help o n C alendar
File Edit View S earch Help

DECwindows Calendar
This is th e Overview to p ic fo r the DECwindows Calendar
Help lib r a r y . The Calendar provides a s irrp le f a c i l i t y
fo r record ing your meetings and o th er even ts . L ike a
paper calendar, severa l d iffe re n t views are a v a ila b le .
For example, i t can d isp lay the whole year in a window,
o r ju s t one day, w ith a l l it s appointm ents.

You can use th e Help lib ra ry as a source o f ta s k -
o rie n te d o r d e s c rip tiv e in fo rm atio n . T ask-o rien ted Help
describes how to use the featu res o f Calendar to carry
out s p e c ific tasks . For a l i s t o f th e tasks , s e lec t
Using Calendar from th e l i s t o f a d d itio n a l to p ic s . Each
Calendar fe a tu re is a lso described. Features are lis te d
below. Much o f th e in fo rm ation found here can be
accessed more q u ick ly using c o n te x t-s e n s itiv e H elp.

For in fo rm atio n about using Help, choose th e Overview
menu item from th e Help menu. O
Additional to p ic s :

Using Calendar
Menus
DECwindows Calendar D isplays
B r ie f H is to ry o f th e G regorian Calendar
J u lia n P eriod

G o B ack Exit

ZK-0498A-GE

• The help topic describes the task or object about which you requested help.
Scroll bars appear if the text does not fit in one frame.

• The Additional topics list contains related topics th a t you can select to display
more information. You select these topics by pointing to them and double
clicking MB1.

• The help buttons, Go Back and Exit, le t you display the previous help frame
or exit from Help.

lb get help on screen objects, such as m enu names, scroll bars, and dialog boxes,
point to the screen object and press and hold the Help key on your keyboard while
you click MBi. Note th a t help on objects is not available in all DECwindows
applications.

To get help on a menu item, press the Help key while you press and hold MBi on
the menu item, then release MBI.
A help window opens, displaying information on the object you specified.

You can display product information about your application, such as the software
version number, by choosing About from the application’s Help m enu. In some
applications, the Help m enu also contains a Glossary m enu item, which you can
use to look up term s specific to your application.

A-18 Using DECwindows

For more information about using Help, choose Help from the Help m enu in each
application’s help window.

A .18.2 N avigating in H elp

When you select a topic from the Additional topics list in the Overview window,
you s ta rt down a path th a t is lim ited only by your own curiosity. You can follow
a path of topics by continuing to select additional topics, retrace your steps and
branch off to a different topic, or re tu rn to the Overview fram e and s ta rt down
another path.

To display an additional topic:

1. Select the item from the list of additional topics.

2. Choose Go To from the View menu.

F aster still, ju s t double click on the topic you want. Double clicking on a topic is
a shortcut for selecting the topic and choosing Go Tb.

Help displays the selected topic. You can continue to select other topics from the
Additional topics list or redisplay the topic you last saw by clicking on the Go
Back button.

If you w ant to display the current topic and a new topic simultaneously:

1. Select another topic from the list of additional topics.

2. Choose Visit from the View menu.

Instead of replacing the current help topic with the new topic, another help
window opens displaying information about the new topic. You can then explore
other topics from the new help window and keep the current topic open for
reference.

Tb see the path you followed to get to your current topic:

1. Choose History... from Help’s Search menu.

Help displays a dialog box th a t lists the topics you have already seen.

2. Double click on a topic to replace the current topic or select a topic and
click on the Visit button to open another help window without replacing the
current topic.

When you finish looking a t a topic and w ant to close the help window, click on the
Exit button. Ib re tu rn to the Overview frame, choose Go lb Overview from the
View m enu in any help window.

A .18.3 S e a rc h in g H elp fo r T itles a n d K ey w o rd s

You can search Help for words or phrases to see w hether they appear in topic
titles or in help text. For example, you m ight w ant to see w hether there is a topic
title in Mail th a t contains the word “Sending”, or a topic in which the phrase
“message” appears.

lb search for a word or phrase contained in a topic title:

1. Choose Title... from Help’s Search menu.

Help displays a dialog box.

2. In the Title text field, type the word or phrase you w ant to search for.

Using DECwindows A-19

Leave this field empty if you w ant Help to display a list of every topic title.

3. Click on Apply.

Help displays the topics whose titles contain the word or phrase you specified.

To display the topic whose title contains the word or phrase you searched for,
double click on the topic or select i t and click on the Visit button. Help displays
the topic in another window. The Search Topic Titles dialog box rem ains open for
you to continue your topic search.

Help for each application has predefined words or phrases called keywords th a t
you can search for. To search for a keyword used in a topic:

1. Choose Keyword... from Help’s Search menu.

Help displays a dialog box th a t lists the keywords defined for th a t application.

2. Double click on the keyword you w ant to search for.

Help lists the topics in which the keyword is used.

To display the topic in which the keyword is used, double click on the topic or
select it and click on the Visit button. Help displays the topic in another window.
The Search Topic Keywords dialog box rem ains open for you to continue your
keyword search.

A .18.4 Exiting from Help

lb exit from Help, click on the Exit button. If you have m ultiple help windows
open, you m ust close each one.

A.19 Putting a Session on Hold
At any time, you can pu t your curren t session on hold indefinitely and lock your
w orkstation without ending your session. W hen you put your session on hold,
your screen is cleared, but your session is m aintained exactly as it was. Any
applications you sta rted continue to run.

lb put your current session on hold, choose Pause from the Session M anager’s
Session m enu. Your screen is cleared and the Continue Session dialog box is
displayed.

Tb continue your session, type your password and press Return. Once the system
verifies your password, your session resum es. If the Continue Session dialog box

A-20 Using DECwindows

rem ains on your screen^ you probably made a typing m istake. Click on the Clear
button and type your password again.

A.20 Ending a Session
You can end a session a t any time. When you end a session, DECwindows stops
all applications and clears the screen.

To end your session:

1. Choose Quit from the Session M anager’s Session m enu.

The Session M anager displays a dialog box asking you to confirm th a t you
w ant to end the session.

2. Click on OK or press Return.

Using DECwindows A-21

Appendix B

Performance Hints

LISP code normally does much type checking a t runtim e. You can reduce
execution tim e and am ount of memory required by using data structures more
efficiently and by using certain programming and debugging techniques.

This appendix lists w hat you can do to optimize the speed of execution of your
LISP code and the am ount of memory required. The sections also give the
following information:

• N um ber of instructions executed by certain functions

• Relative speed of certain functions compared w ith others th a t can be used to
achieve the same resu lt

• Explanations of why certain functions and operations require more tim e or
memory

• D ata structure representations

This information can help you choose the m ost efficient way to code a program.

Some VAX instructions are mentioned in this appendix. Refer to the VAX
A rch itecture H andbook for more information on the VAX instruction set.

B.1 Data Structures
This section describes how to optimize the use of data structures in your code.

B.1.1 In te g e rs

Fixnum arithm etic is m uch faster than bignum arithm etic. Therefore, if possible,
use num bers in the range -2**28 to 2**28-l. The m o s t-n e g a t i v e-f i x n u m is
-268435456; the m o s t-p o s i t i v e-f i x n u m is 268435455. (The range of integers
represented as fixnums in V3.0 was cut in ha lf from V2.2.) You m ust use fixnum
declarations for each argum ent to an arithm etic function and for the result
as well to generate fixnum-only in-line VAX instructions. The resu lt m ust be
declared to be type fixnum, and even though all inpu t values for an arithm etic
function m ay be fixnums, the resu lt m ay not be. (That is, fixnums are not closed
under arithm etic operations.)

W hen fixnum declarations are used, fixnum arithm etic takes one instruction for
each addition or subtraction operation and two instructions for each m ultiplica­
tion and division operation. Fixnum comparisons consist of a CMPL instruction
and the appropriate branch; the resu lt’s type need not be declared since it m ust
be e ither T or n i l.

Performance Hints B-1

Fixnum s are never allocated (they are immediate: they are always m anipulated
directly, ra th e r than through pointers). Therefore, fixnum arithm etic requires
less memory and less tim e for garbage collection than arithm etic with bignums.

Bignums require one longword for a header and enough space to represent
the num ber in two’s complement form at w ith a m inimum of two longwords.
Therefore, working with bignums consumes much more tim e and space than
working w ith fixnums. For example, to prin t 1000 factorial takes much longer
than to compute it. Much more garbage is produced while calculating the prin t
representation than in calculating the result.

B.1.2 F lo a tin g -P o in t N u m b ers

When using floating-point arithm etic, the system allocates new space for the
results. In-line code is generated only when both argum ents to an arithm etic
function are declared to be of the same floating-point type. In-line conversions
(CVTxx) are not done. The VMS m ath library routines are used for complicated
functions, such as trigonometric functions.

Floating-point num bers always have a 1-longword header.

B .1.3 R a tio s

W hen working with ratios, the system calls the GCD function after each ratio
is created and stores the ratio in canonical form. Use the TRUNCATE or REM
function when you do not need exact answers or when you w ant a rem ainder. The
truncate function executes faster if you can declare the resu lt to be a fixnum.
The truncate and rem functions are faster than the floor and mod functions.
These in tu rn are faster than the round function.

Ratios occupy two longwords; they have a 1-longword header.

B.1.4 C om plex N u m b ers

The real p a rt and the im aginary part of any complex num ber m ust be of the same
type: both m ust be integers, single-floats, double-floats, or long-floats. Complex
num bers occupy 2 longwords; they have a 1-longword header.

B.1.5 C h a ra c te rs

String characters use an 8-bit code th a t is compatible w ith the ASCII and Digital
m ultinational standards and w ith the VAX architecture.

The char= function used without type checking is the same as the eq function.
The char<, char<=, char>, and char>= functions generate the sam e code as the
fixnum comparisons when no type checking is required because declarations
were used. This code consists of a CMPL instruction followed by the appropriate
branch. Like fixnums, characters are never allocated (they are immediate),
thereby requiring less memory and less time for garbage collection.

B-2 Performance Hints

B.1.6 S y m b o ls

Symbols let you easily associate data with a name. Symbols are interned when
read by the r e a d function, and rem ain interned until they are unintem ed from all
packages using them. So, when you create anonymous variables and functions,
use uninterned symbols (created using the m a k e -s y m b o l or g e n s y m function).

For VAX LISP, accessing a dynamic variable m ay require several instructions,
depending on the declarations and optimizations used. Normally, accessing
a dynamic variable is slower than accessing local variables or closed-over
lexical variables. A local variable can be accessed quickly because it is stored
on the stack. A closed-over variable is stored in a vector and passed to other
functions th a t use them. Therefore, to access a closed-over variable m ay require
several instructions. To reduce the overhead of dynamic variable access to
one instruction, set the optimization declaration s p e e d to 3 and s a f e t y to 0,
elim inating unbound variable checking and thus reducing execution time.

When a special variable is bound to a new value, LISP saves the symbol and its
old value on the binding stack and stores the new value in the value cell of the
symbol. This procedure requires either four or five instructions. Unbinding a
special variable requires one instruction. Accessing the parts of a symbol, such as
its name, property list, package, and value, requires only one instruction each, if
you have used the appropriate declarations to declare the variable as a symbol.

Symbols occupy six longwords each.

B .1.7 L is ts a n d V ecto rs

Use lists when the num ber of elem ents changes often. Typically, you push
elem ents onto and pop elem ents off the front of the list to sim ulate a stack.
Conses are convenient for creating tree structures, especially when you need
values only a t the leaves. If you m ust access m any values a t each in ternal node
of a tree, use structures ra th e r th an lists. Conses require two longwords.

Use vectors when you m ust access elements often a t any position. Vectors use
ha lf as much space as lists and can cause less paging when accessed, because
vector elem ents are stored in adjacent memory locations. A simple-vector has a
single-longword header.

Use the noncopying (or destructive) versions of the sequence and list functions
whenever possible. For example, the n c o n c function is faster than the a p p e n d
function and the n s t r i n g -u p c a s e function is faster than the s t r i n g -u p c a s e
function. You can use the form (n r e v e r s e (t h e l i s t x)) ra th e r th an the copying
version (the r e v e r s e function) to get elem ents back to th e ir original order if
you are ju s t gathering the resu lts in a list. To copy input lists or strings once
and then do destructive operations is more efficient th an to always use copying
versions of functions.

Copying vectors by using the c o e r c e or s u b s e q function results in simple vectors
(of the type s i m p l e -v e c t o r , s i m p l e -s t r i n g , s i m p l e -b i t -v e c t o r , or s i m p l e -
a r r a y), which can be m anipulated by simpler, faster operations. Therefore, you
can copy a vector to m anipulate i t quickly thereafter. However, to avoid num erous
garbage collections, do not use copying versions of functions unless you m ust.

NOTE
Use destructive versions of functions with care, as shared data m ay be
modified.

Performance Hints B-3

c a r , c d r , and the other list-m anipulating functions by default always check their
argum ents to m ake sure they are lists and not atoms. Tb increase the speed of
list-intensive applications, properly declare all lists and use the optimization
declaration s p e e d = 2 or use s p e e d = 3 and s a f e t y = 0. The c a r , c d r , r p l a c a , and
RPLACD functions each require one instruction when used w ith these declarations.

If you frequently splice or concatenate lists, use a pointer to the middle or end
of the list. This procedure is faster than using the n t h c d r , m e m b e r , a p p e n d , and
n c o n c functions on the entire list, as they always process from the beginning of
the list. The fastest tests for the m e m b e r , a s s o c , and r a s s o c functions are e q and
EQL, not e q u a l or = . The default test is EQL.

Use property lists when you w ant values for keys to be global in scope. Do not
use property lists if the num ber of keys is fairly constant and known in advance.
Instead, use structures and include a slot in the structure for a list to be used
like a property list for keys th a t are unknown when the structure is defined.

Use association lists when you w ant values for keys to be dynamic in scope, since
pushing entries onto the front of an association list shadows la te r entries. You
can use dynamic variables as pointers into association lists to help you recall
additions to the lists, and autom atically restore the values.

B.1.8 S tr in g s , G en era l V ecto rs, an d Bit V ecto rs

Simple arrays of one dimension, [(s i m p l e - a r r a y * 1)], are processed faster
th an nonsimple vectors (vectors w ith fill pointers, adjustable vectors, or displaced
vectors). Vectors th a t are simple take less space since they do not have separate
a rray headers and they are created faster.

Avoid using lists of characters when m anipulating symbol names (that is, never
im plem ent the EXPLODE or i m p l o d e functions of earlier dialects of LISP). Strings
are fully supported in this language, unlike these earlier dialects. Some common
operations on simple strings use the VAX character instructions.

M any data structures th a t used to be implemented with lists can be more
efficiently im plem ented w ith simple-vectors or w ith structures. If the domain of
a set is fixed and set operations are frequent, using simple bit vectors is much
faster than using lists. Accessing or updating slots of a declared structure takes
only one instruction given the appropriate declarations. Accessing or updating
characters in a simple string or bits in a simple bit vector is slightly slower
th an accessing or updating elem ents of a simple-vector. W hen accessing or
updating characters in a simple string or bits in a simple b it vector, data m ust
be converted between the in ternal representation and the LISP representation.
For both characters and fixnums, th is involves a t least an ASHL instruction.
However, there are specialized routines for handling simple strings and simple bit
vectors (for example, the s t r i n g - u p c a s e and b i t - a n d functions w ith the proper
declarations).

These representations take less space than simple general vectors th a t hold
characters or bits.

B.1.9 H ash T ab les

H ash tables provide a good way of storing and accessing arb itrary objects.
Although some overhead is required for each access or store, the total time
required is usually reasonable even for large num bers of objects. VAX LISP hash
tables use chains to resolve collisions.

B—4 Performance Hints

You can access hash tables th a t use the e q and e q l functions faster than hash
tables th a t use the e q u a l function, because the comparisons are faster. However,
hash tables th a t use the e q and EQL functions m ust be completely rehashed upon
first use after any garbage collection. H ash tables are preferable to lists and
b it vectors for representing sets, when the num ber of objects m ay be large and
extremely variable.

B.1.10 F u n c tio n s

Compiled code is faster th an in terpreted code; when in terpreted code is evaluated,
much consing occurs.

Calling a compiled function th a t is a closure takes several instructions more than
calling a compiled function th a t is not a closure. A function is a closure when it
has free lexical variable references.

You can compile single functions a t any tim e without using files. For example, to
compile a function you have ju s t defined, you can use (c o m p i l e ' f u n c t i o n - n a m e)
or (c o m p i l e n i l ' (lam b d a () , . . .) if you w ant to create anonymous code to be
stored and executed later. You can use the f t y p e type specifier in a declaration
or proclamation to inform the compiler about the types of the argum ents and the
re tu rn type of a function.

B.2 Declarations
This section describes how to use declarations to optimize LISP code.

By default, m ost standard VAX LISP functions check their argum ents for type
and other attribu tes. The compiler can generate much faster code for m any
simple operations by assum ing the argum ents are of the correct type. Therefore,
use declarations to supply th is information.

W hether the compiler takes advantage of declarations and to w hat extent it
does, is controlled by the o p t i m i z e declaration. Depending on the values of the
optimization qualities, different code m ay be generated, given the presence of
type declarations or the assum ption of such type declarations.

The form at for using the o p t i m i z e declaration and its qualities w ith the p r o c l a i m
and d e c l a r e forms i s as follows:

(PROCLAIM ’(OPTIMIZE (SPEED x) (SAFETY y) (SPACE z)))
or

(DECLARE (OPTIMIZE (SPEED x) (SAFETY y) (SPACE z)))
The possible switch values are:

x= l,y= l, z= l
(the default)

x= 2 y< 2

*>1 , y= 0

No particu lar optimizations done. Generally, type checking will be done
on all argum ents to LISP functions.

Observes user-Bupplied declarations. Useful when some variables are
guaranteed to be of the declared type and speed is desired, bu t when
not all variables (such as function argum ents) can be guaranteed to be
correct. Some macros (such as DOTIMES and DO LIST) expand into code
w ith these declarations already supplied.

Skips bounds checking for vector and array references.

Performance Hints B-5

x=3,y=0 Assumes correct argument types to many functions, such as CAR,
SYMBOL-NAME, and SCHAR. Useful for guaranteed correct and debugged
functions. Special variable references do not check for unbound values.
Explicit type checking is ignored.

x>y Does tail recursion removal, if it can.
y= 3 The THE function generates tests for objects being the specified type.

Useful for fixnum declarations to detect overflows into bignums.
x>z Tries to open-cods some sequence functions. Observes in-line declara­

tions.

Use fixnum and floating-point declarations for fast arithm etic. The compiler
needs to know the types of all the argum ents (and for fixnums, the result
type, too) before it can generate the fast, type-specific code available on a VAX.
Floating-point operations with operands (and therefore results) of the same type
can also generate fast code.

Use simple-vector and sim ilar a rray declarations for fast sequence and array
operations. For example,

(l e t ((v . . .))
(d e c l a r e (t y p e (s i m p l e - a r r a y (u n s i g n e d - b y t e - 8) 1)

v))
(t h e f i x n u m (+ (a r e f v 0)

(a r e f v 1))))

only takes a few instructions when compiled with the (o p t i m i z e (s p e e d 3) (s a f e t y
0)) declarations. Declaring structures is equally helpful.

The p r o c l a i m and DECLARE forms m ay be used to declare a function’s argum ents
and results whenever the function is called. For example, when the proclamation
(p r o c l a i m ' (f t y p e (f u n c t i o n (f i x n u m) s i n g l e - f l o a t) m y f u n c t i o n)) is used,
each tim e m y f u n c t i o n is called the argum ents are autom atically declared to
be fixnums and its resu lt is autom atically declared to be a single-float. An
f t y p e declaration does not autom atically provide declaration of the l a m b d a - l i s t
variable in the function definition.

It is im portant to provide type declarations, especially for the s i m p l e - v e c t o r ,
s i m p l e - s t r i n g , and s i m p l e - b i t - v e c t o r types, for the argum ents to sequence
functions. The compiler can generate fast code for m ost common cases. Even
if the elem ent type is not known a t compile time, adding (s i m p l e - a r r a y * l)
declarations helps.

M ultidim ensional a rray operations benefit from declarations. Unlike the vector
operations, m ultidim ensional arrays need the actual (fixnum) bounds for each
dimension a t compile-time to generate efficient array-indexing code. In these
cases, it is helpful to use the d e f t y p e macro.

The functions defined in the following examples will be compiled w ith either (1)
type-checking code if s p e e d is less th an 2 or (2) non-type-checking code if s p e e d
equals 3 and s a f e t y equals 0. However, the second example produces code th a t
does not check the type o f* bu t does check the type of (c d r x) , when s p e e d
equals 2 and s a f e t y is less th an 2. This is because there is a declaration allowing
the optimization of the CDR operation but no declaration for the c a r operation.

(d e f u n e x a m p l e l (x)
(c a d r x))

(d e f u n e x a m p l e 2 (x)
(d e c l a r e (l i s t x))
(c a d r x))

B-6 Performance Hints

In the following examples, a call to EXAMPLE3 always produces generic code, since
it is not known th a t the resu lt of the addition will necessarily be a fixnum. The
declaration in e x a m p l e 4 provides th a t information, and the arithm etic operation
is fixnum specific.

(d e f u n e x a m p l e 3 (x y)
(d e c l a r e (f i x n u m x y))
(+ x y))

(d e f u n e x a m p l e 4 (x y)
(d e c l a r e (f i x n u m x y))
(t h e f i x n u m (+ x y)))

The next example re tu rns a list of the first, indexed, and las t characters. With
s p e e d greater than or equal to 2 and s a f e t y equal to 0, all the character fetching
from the s t r i n g argum ent will be very fast. The l e n g t h operation will also be
very fast, since it need not check for the type of the argum ent as the generic
sequence function normally would. (This also m eans executing the form (l e n g t h
(t h e l i s t x)) is faster than executing the form (l e n g t h x) .) If s a f e t y is
greater th an 0, bounds checking is still done, bu t type checking (of the string, for
example) m ay not be, depending on w hat optimizations are used.

(d e f u n e x a m p l e 5 (s t r i n g i n d e x)
(d e c l a r e

(s i m p l e - s t r i n g s t r i n g)
(f i x n u m i n d e x))

(l i s t (a r e f s t r i n g 0)
(c h a r s t r i n g i n d e x)
(s c h a r s t r i n g (1 - (l e n g t h s t r i n g)))))

A rray access is fast in the following code:

(e v a l - w h e n (c o m p i l e l o a d e v a l)
(d e f c o n s t a n t i - s i z e 3)
(d e f c o n s t a n t j - s i z e 4)
(d e f c o n s t a n t k - s i z e 5)
(d e f t y p e f o o a r r a y (& o p t i o n a l e l e m e n t - t y p e)

' (s i m p l e - a r r a y , e l e m e n t - t y p e (, i - s i z e , j - s i z e , k - s i z e))))

(d e f u n f o o ()
(d e c l a r e (t y p e (f o o a r r a y t) x)

(t y p e (f o o a r r a y s t r i n g - c h a r) y))

(d o t i m e s (i i - s i z e)
(d o t i m e s (j j - s i z e)

(d o t i m e s (k k - s i z e)
(s e t f (a r e f x i j k)

(c h a r - u p c a s e (a r e f y i j k)))))))

B.3 Program Structure
In tigh t inner loops, use macros or in-line functions ra th e r th an called functions.
Always compile macro definitions, functions proclaimed in-line, and calls to the
DEFSTRUCT macro before compiling code th a t uses them . Normally, you proclaim
a function in-line ju s t before defining it. Any calls to th a t function will then
have the body expanded in-line a t the calling site, unless you use the n o t i n l i n e
declaration. If you declare or proclaim a function, using the i n l i n e declaration
after providing a definition, a compiler w arning will resu lt because the compiler
will not have remembered the definition for the in-line function.

Perform ance Hints B-7

The Funcall and apply functions are slower than calls to functions whose names
are known a t compile time, because the LISP system m ust check the following:

• W hether the object is a function

• W hat kind of function (by symbol or function object, in terpreted or compiled)

• The num ber of argum ents the function takes

Using apply to call a function is usually two to three tim es slower than a
compiled call to a named function w ith a fixed num ber of argum ents.

The catch special form and operations th a t use the catch-throw mechanism are
slower th an a function call.

Using the &OPTIONAL keyword in a lam bda-list costs a few instructions. However,
an &rest variable causes a list to be created for those argum ents passed after
the required and &optional argum ents. &key argum ents are the slowest; there
is run-tim e code to parse the argum ent list and assign the proper values for the
given keywords, and evaluate the defaults for the unsupplied keywords.

Using m ultiple values requires less tim e and space than consing a list or vector
of results. Both methods are slower than ju s t return ing single values. (Consing
requires garbage collections later.)

The read function is slower th an the read-line or read-char function, since
read has to parse the input according to the current LISP reader syntax, create
num bers, and in tern symbols. The read-char function is slower than the
read-line function, due to the general overhead of doing any I/O.

Similarly for output, calls to write, print, prin i, and princ are slower th an calls
to write-char, write-line, and write-string due to the need to determ ine w hat
is being printed.

The format and pprint functions are slower th an calls to the write, print, princ,
and PRINI functions when pretty prin ting and *print-circle* are disabled.

Using the xxx-to-string functions for getting a string representation of a
LISP object is faster than using the with-output-to-string function. The
with-output-to-string function m ust create a stream and use the usual stream
functions. The read-from-string and parse-integer functions are faster than
the with-input-from-string function for the same reason.

The compiler compiles each top-level form in a file when it compiles a file by
surrounding arb itrary forms in the following m anner:

(PROGN (DEFUN #:TOP-LEVEL-FUNCTION () arbitrary-top-level-form)
(#:TOP-LEVEL-FUNCTION))

An arbitrary-top-level-form is any LISP form other th an a call to the eval-when
or progn special form, the defun or defmacro macro, the proclaim function, or
a package function. Creating, compiling, dumping, and loading these tem porary
functions takes time, so it is wise to gather m any arb itrary forms into functions of
reasonable size. Typically, such forms can be calls to data initialization functions
(such as (s e t f (g e t . . .) . . .)) . Tb have these function calls inside a function
definition anyway is desirable so th a t you can do selective initialization from the
program without having to reload the file.

B-8 Performance Hints

B.4 Compiler Requirements
The PROCLAIM, PROVIDE, require, and package functions like use-package and
in-package m ust be used a t top level for the compiler to recognize them. A
top-level form is defined as a form without surrounding parentheses, or a form
a t top level w ithin a call to either the eval-when or progn special form. Uses of
the d e f u n macro and anonymous lam bdas th a t would get evaluated in code get
compiled as separate functions (closures if they use closed-over lexical variables).
This is true in the following call to the defun macro and to the anonymous
lam bda th a t follows.

(l e t ((c o u n t e r 0))

(t r y # ' (l a m b d a (x)

(d e f u n n e x t

(p r i n t x)))

() (i n c f c o u n t e r)))

If you w ant functions as data objects (tha t is, in data structures where they would
not be processed during normal evaluation), you m ust compile them explicitly.
This is exemplified by the difference between the following:

(l i s t # ' (l a m b d a () (f o o))
' (l a m b d a () (b a r)))

and

' (# ' (l a m b d a () (f o o))
' (l a m b d a () (b a r)))

In the first case, the compiler recognizes the functions and creates compiled-
function objects for them. In the second case, the compiler does not notice the
functions since the entire form is quoted.

If you leave the code in the list a t ru n time, the explicit calls to the f u n c a l l
function on each elem ent of the list would run the code interpretively. So, to have
compiled code in the list, you m ust fill it with compiled functions. You can do this
a t run tim e by using the c o m p i l e function w ith n i l as the first argum ent, or you
can fill the lis t w ith compiled functions once, when loading. Or, you can compile
a file, using macros th a t expand into definitions of functions w ith nam es created
using the g e n s y m function. Then, have an initialization function fill up the list
w ith those compiled functions a t load time.

Performance Hints B-9

Appendix C

Customizing DECwindows from VAX LISP

This appendix describes how to customize the DECwindows-based development
environm ent in VAX LISP V3.0.

C.1 Customizable Attributes
Your DECwindows-based development environm ent has a particular look. This
look is m ade up of certain attributes, such as color, font, and the position of
the windows. You can change the look of the DECwindows-based development
environm ent by customizing the common attribu tes for all utilities and some
specific a ttribu tes for a given utility. The attribu tes are independent of the
syntax used for changing them . (See Section C.3 for information on syntax.) This
section describes all the attribu tes.

C.1.1 C om m on A ttrib u te s

W ith the exceptions noted, you can set the following attribu tes for each utility,
potentially for each window in a utility.

Geometry
The position, width, and height in pixels of the m ain window in a utility. For
the Inspector, you can set only the geometry for the Inspector History window;
the Inspect windows have more specific a ttribu tes (see Section C.l.2.1). For the
Editor, you cannot set the geometry arb itrarily—there are more specific attribu tes
for it (see Section C. 1.2.5).

Color
The color of the foreground and background of each of the windows. On color sys­
tem s, you can set these to arb itra ry values, w ithin the constraints of the num ber
of colors available on your system. This setting is ignored on monochrome
systems. The defaults are the values th a t you set w ith the DECwindows
Session M anager. For information on named colors available to you, see V M S
D E C w in dow s G uide to XLib P rogram m in g .

Monochrome reverse
Reverses the foreground and background colors on monochrome systems, black
foreground on a light background or vice versa. This setting is ignored on color
systems. The default is n i l —no change.

Font
The font used for all inpu t and output in a utility. Individual windows in a utility
can have different fonts. If you have specified a font description th a t does not
exist on the server where LISP is displayed, the specified font is ignored and the

Custom izing DECw indow s from VAX LISP C-1

server’s default font is used. If you change to a variable-width font, text m ay
not appear to be column aligned as it is by default. The default for all utilities
except the Editor is Courier Bold 14. The default for the Editor is Terminal 14,
which is the same as the small DECterm font. The Editor disallows the use of a
variable-width font. For information on how to find the font nam es th a t exist on
your curren t system, see Section C.2.

Object recording
W ith object recording turned on, the position of an object is stored when it is
w ritten to the screen and pointer feedback is displayed. Turning off this a ttribu te
decreases the am ount of system overhead for writing to the window. Turning off
object recording in the Inspector, Trace List, Debugger Calling Stack, or Debugger
Variable Bindings windows is not useful, because their syntax and function
fundam entally rely on object information. This a ttribu te is useful only for the
Listener, Debug I/O window, and the Trace O utput region of the Trace window.
This a ttribu te does not apply to the Editor because i t does not do object recording.
The default is t— object recording is tu rned on.

C.1.2 S p ec ific A ttrib u te s a n d R e s tr ic tio n s

Some utilities have additional attribu tes th a t you can customize. The Editor
has restrictions on customizing common attribu tes. These specific customizable
a ttribu tes and restrictions are described below.

C.1.2.1 Inspector Attributes
Inspect windows count
An integer representing the num ber of Inspect windows th a t the Inspector ro tates
through as you perform subsequent inspections. The default is 5.

Inspect windows geometry
The size of the Inspect windows when they are first created and the position of
the first Inspect window. The positions of subsequent windows are calculated
ffom this position and the Inspect window geometry offset attribu te.

If you resize, close, and reopen a window (tha t is, remove the window w ith the
Close item and bring i t back through a la te r call to i n s p e c t), it comes up the size
to which you resized it. If you change the position portions of this value, only
windows created after the change will be affected.

Inspect windows position offsets
The value in pixels indicating where subsequent windows are draw n relative to
the in itial Inspect window. For example, if the in itial position is 800,100 and the
offset is -50,100, the first window appears toward the upper righ t corner of your
workstation screen (assum ing it is 1024 pixels wide). The next window appears
lower and to the left, a t position 750,200. The next window is draw n along the
same line, a t 700,300.

Sequence length threshold
An integer indicating how m any elem ents of a sequence to inspect before prompt­
ing you to continue. Only elem ents up to the threshold are computed and printed,
a t which tim e you are prompted for w hether you would like to see more. The
default is 75.

C-2 Customizing DECwindows from VAX LISP

C.1.2.2 Listener Attributes
Evaluation history limit
An integer value denoting how m any evaluations to store for command-line recall.
If you raise the limit, your transcrip t and command recall ring grow. If you lower
the limit, the oldest (OLD-VALUE—NEW-VALUE) evaluations are immediately
removed from the transcrip t and the recall ring. The default is 40.

Prompt on Exit
W hen th is a ttribu te is turned on, you are prompted when you t iy to exit the
L istener through the File m enu Exit item. The default is for you to be prompted.

C.1.2.3 Debugger Attributes
Evaluation history limit
An integer value denoting how m any evaluations to store for command-line recall.
The default is 40.

Auxiliary windows initial states
Open or closed for the three Debugger auxiliary windows: Control Stack, Variable
Bindings, and Debugger Commands, these values apply only to the first tim e you
en ter the Debugger. If you open or close any of them during a debugging session,
their sta te as you leave the Debugger is how they will appear when you reenter
it. The default is to have each window open.

Prompt on entry
True or false denoting w hether you are prompted about entering the Debugger
when an error or continuable error is signaled. The default is true, you are
prompted about entering the Debugger.

Prompt on exit
True or false denoting w hether you are prompted when you try to quit the
Debugger through a m enu item, command button, or w ithout specifying the T
argum ent to the Debugger quit command. The default is true, you are prompted
about quitting the Debugger.

C. 1.2.4 Trace Attri butes
Prompt on untrace all
True or false denoting w hether you are prompted when you choose the Untrace
m enu item w ith no selection. The default is true, you are prompted about un trac­
ing all item s in the Trace List.

C.1.2.5 Editor Restrictions
The Editor does not have additional customizable attributes; rather, there are
some restrictions on Editor customization.

Restrictions on Common Customizations
Editor w idth and height are specified in character-cell rows and columns, not in
pixels. The Editor cannot handle a window th a t is not aligned on character cell
boundaries. The font m ust be fixed width. The Editor does not correctly display
tex t or draw the cursor, using a variable-width font.

Custom izing DECw indow s from VAX LISP C-3

LIST-FONTS function

Conflict with Older Editor Customizations Through LISP
For backward compatibility, any customizations m ade to the Editor through the
DECwindows interface are overridden by any LISP initializations as supported in
earlier versions of VAX LISP. For example, suppose th a t you change the default
Editor screen w idth through customization. If, however, you still have a form like

(s e t f (e d i t o r : s c r e e n - w i d t h) 1 3 2)

in a LISP file th a t you load, then 132 is your Editor screen width, regardless of
customization settings. I f you w ant your stored customization settings to take
precedence, you m ust remove all the LISP forms th a t set editor variables or setf
forms th a t modify the Editor’s appearance.

C.2 Getting Information on Fonts
VAX LISP provides the l ist-fonts function to get information on fonts.

LIST-FONTS function
You can use the l ist-fonts function to find out which font names exist on the
current system. Elem ents in th is list are legal new values for the setf forms with
DECW-UTILS: CUSTOMIZE and the :FONT attribu te argum ent. This function should
be used only for customizing the development environment. For w riting CLX
programs you should use CLX:l ist-font-names with the appropriate argum ents,
since the CLX:display used by your program m ay not be the same one used by
the development environment.

F o rm at

DECW-UTILS:LIST-FONTS &OPTIONAL fontname

fontname
A string th a t names a font. The string m ay contain m ultiple occurrences of the
wildcard character (*) to avoid supplying all components of the font name. Case
is ignored.

C-4 Custom izing DECw indow s from VAX LISP

LIST-FONTS function

R etu rn Value
A list of strings th a t name the fonts available on the curren t X server whose
nam es m atch the specified fon tnam e, if supplied. Otherwise, all fonts known to
the server are listed.

E x am p les

1. L i s p > (d e c w - u t i l s : l i s t - f o n t s " * h e l v e t i c a * - 1 2 - * ")
(" - A d o b e - H e l v e t i c a - M e d i u m - R - N o r m a l — 1 2 - 1 2 0 - 7 5 - 7 5 - P - 6 7 - I S O 8 8 5 9 - 1 "

" - A d o b e - H e l v e t i c a - B o l d - R - N o r m a l — 1 2 - 1 2 0 - 7 5 - 7 5 - P - 7 0 - I S 0 8 8 5 9 - 1 "
" - A d o b e - H e l v e t i c a - B o l d - 0 - N o r m a l — 1 2 - 1 2 0 - 7 5 - 7 5 - P - 6 9 - I S 0 8 8 5 9 - 1 "
" - A d o b e - H e l v e t i c a - M e d i u m - O - N o r m a l — 1 2 - 1 2 0 - 7 5 - 7 5 - P - 6 7 - I S O 8 8 5 9 - 1 ")

This example asks for all the 12-point fonts in the Helvetica family. The order
in which they are retu rned is dependent on the X server, so you should not
count on it to always be the same. (The R m eans Roman and the 0 m eans
Oblique.)

2. L i s p > (d e c w - u t i l s : l i s t - f o n t s " * - b o l d - i - * - 8 - * ")
(" - A d o b e - N e w C e n t u r y S c h o o l b o o k - B o l d - I - N o r m a l — 8 - 8 0 - 7 5 - 7 5 - P - 5 6 - 1 S 0 8 8 5 9 - 1 "

" - A d o b e - T i m e s - B o l d - I - N o r m a l — 8 - 8 0 - 7 5 - 7 5 - P - 4 7 - I S 0 8 8 5 9 - 1 ")

This example asks for all the bold and italic 8-point fonts.

Custom izing DECw indow s from VAX LISP C -5

CUSTOMIZATION function

C.3 Getting and Modifying Attributes
VAX LISP provides the customization function to modify the screen display.

CUSTOMIZATION function
This function re tu rns the value of the a ttribu te specified by its argum ents. You
can use it w ith setf to change the value. With the exceptions noted below, when
you use this routine w ith setf, the appearance of the associated window changes
im m ediately (if it is visible—if not, the change is apparent the next tim e the
window is brought up). Changing the geometry with the pointer and the window
m anager is the same as doing it by calling the setf form. Subsquent calls to the
function will show this new value.

F o rm at

DECW-UTILS:CUSTOMIZATION object-keyword attribute-keyword

object-keyword
This argum ent m ust be a keyword th a t specifies some object in the user interface
(either a utility, a group of windows, a window, or a region of a window). The
value of th is argum ent restricts which attribu te-keyw ord, is applicable, as follows:

Table C—1: Object Keywords for DECW-UTILS:CUSTOMIZATION Function
Object Keyword Attribute Keyword
:DEBUGGER :FONT

: FOREGROUND-COLOR
: BACKGROUND-COLOR
:MONOCHROME-REVERSE
:GEOMETRY
:OBJECT-RECORDING
:EVALUATION-HISTORY-LIMIT
:PROMPT-ON-ENTRY
:PROMPT-ON-EXIT

:CALLING-STACK-WINDOW :FONT
:FOREGROUND-COLOR
:BACKGROUND-COLOR
:MONOCHROME-REVERSE
:GEOMETRY
sINITIAL-STATE

:VARIABLE-BINDINGS-WINDOW :FONT
:FOREGROUND-COLOR
:BACKGROUND-COLOR
:MONOCHROME-REVERSE
:GEOMETRY
: INITIAL-STATE

(continued on next page)

C-6 Customizing DECwindows from VAX LISP

CUSTOMIZATION function

Table C-1 (Cont.): Object Keywords for DECW-UTILS:CUSTOMIZATION
Function

Object Keyword Attribute Keyword

:DEBUGGER-COMMANDS-BOX FOREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE
POSITION
INITIAL-STATE

:STEPPER-COMMANDS-BOX FOREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE
POSITION
INITIAL-STATE

: ED I TOR FONT
BOLD-FONT
FOREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE
POSITION

: INSPECTOR FONT
F OREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE
GEOMETRY
SEQUENCE-LENGTH-THRESHOLD

: INSPECT-WINDOWS FONT
FOREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE
GEOMETRY
POSITION-OFFSETS
COUNT

:LISTENER FONT
FOREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE
GEOMETRY
OBJECT-RECORDING
EVALUATION-HISTORY-LIMIT
PROMPT-ON-EXIT

:APROPOS-WINDOWS FONT
FOREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE
GEOMETRY
POSITION-OFFSETS

(continued on next page)

Custom izing DECw indow s from VAX LISP C-7

CUSTOMIZATION function

Table C-1 (Cont.): Object Keywords for DECW-UTILS:CUSTOMIZATION
Function

Object Keyword Attribute Keyword

:DESCRIBE-WINDOWS FONT
FOREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE
GEOMETRY
POSITION-OFFSETS

:TRACE FONT
FOREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE
GEOMETRY
OBJECT-RECORDING
P ROMP T-ON-UNTRACE-ALL

:TRACE-LIST FONT
FOREGROUND-COLOR
BACKGROUND-COLOR
MONOCHROME-REVERSE

attribute-keyword
This argument must be a keyword that specifies an attribute. The value of this
argument restricts the type of new value allowed when this function is used with
setf. The following table shows both the object-keyw ord with which each possible
a ttr ib u te -k eyw o rd can be used, as well as the types allowable for new values.

Table C-2: Attribute Keywords for Customization Functions
Attribute Keyword Object Keywordt New Value Type
:FONT All objects except:

:DEBUGGER-COMMANDS-BOX
:STEPPER-COMMANDS-BOX

A CLX: FONT or string
naming a font (wildcard
characters allowed).

:BOLD-FONT :EDITOR A CLX: FONT or string
naming a font (wildcard
characters allowed).

:FOREGROUND-COLOR All objects. Either a CLX:COLOR,
CLX:PIXEL, or string
naming a color.

:BACKGROUND-COLOR All objects. Either a CLX: COLOR,
CLX:PIXEL, or string
naming a color.

:MONOCHROME-REVERSE All objects. T or NIL.

t "All objects" indicates all allowable values for the object-keyword.

(continued on next page)

C -8 Customizing DECwindows from VAX LISP

CUSTOMIZATION function

Table C—2 (Cont.): Attribute Keywords for Customization Functions

Attribute Keyword Object Keywordt New Value Type
: GEOMETRY A ll ob jects except:

: EDITOR
: DEBUGGER-COMMANDS-BOX
: STEPPER-COMMANDS-BOX
: TRACE-LIST

(x y w id th h e ig h t) w h e re
e a c h sym bol’s v a lu e is a
fixnum .

rPO SITIO N : EDITOR
: DEBUGGER-COMMANDS-BOX
: STEPPER-COMMANDS-BOX

(x y) w h e re each sym bol’s
v a lu e is a fixnum .

r POSITION-OFFSETS:): : INSPECT-WINDOWS
: APROPOS-WINDOWS
: DESCRIBE-WINDOWS

(d e lta -x d e lta -y) w h e re
each sym bo l’s v a lu e is a
fixnum .

: OBJECT-RECORDING : DEBUGGER
: LISTENER
: TRACE

T o r N IL.

: EVALUATI ON-H IS TORY-LIMIT : DEBUGGER
: LISTENER

A fixnum .

: PROMPT-ON-ENTRY : DEBUGGER T or N IL.

: PROMPT-ON-EXIT : DEBUGGER
rLISTENER

T or N IL.

: PROMPT-ON-UNTRACE-ALL : TRACE T o r N IL .

: IN IT IA L -S T A T E t : CALLING-STACK-WINDOW
: VARIABLE-BINDINGS-WINDOW
: DEBUGGER-COMMANDS-BOX
: STEPPER-COMMANDS-BOX

O n e o f th e keyw ords
rOPEN or : CLOSED.

: SEQUENCE-LENGTH-THRESHOLDt : INSPECTOR A fixnum .

: COUNTj : INSPECT-WINDOWS A fixnum .

t "AH objects" indicates all allowable values for the object-keyword.
t This a ttribu te does not im mediately affect the appearance of any window.

R etu rn Value
The re tu rn value of the function depends on the a ttr ib u te -k eyw o rd (see
Table C-2).

E x am p les

1. L isp> (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r : f o n t)
#
L isp> (s e t f (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r r f o n t)

" * c o u r i e r - b o l d - * 14 * ")
"*courier-bold-*14 *"
L isp> (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r r f o n t)
#
The first evaluation re tu rn s the font currently being used by the Listener, the
next evaluation sets th is to a new font, and the la s t evaluation re tu rns the
new font.

Custom izing DECw indow s from VAX LISP C-9

CUSTOMIZATION function

2. L i s p > (d e c w - u t i l s :c u s t o m i z a t i o n : l i s t e n e r :g e o m e t r y)
(2 0 0 2 0 0 7 5 0 5 0 0)

This shows where your listener is located. If you move it by hand, you m ight
see:

3. L i s p > (d e c w - u t i l s :c u s t o m i z a t i o n : l i s t e n e r : g e o m e t r y)
(2 0 3 2 4 5 7 5 0 5 0 0)

This gives you the exact window position. I t is hard to move the windows
exactly and in this case you actually moved to the righ t by 3 pixels. I f you
wanted to move a window down by exactly 50 pixels, it is more accurate to do
it through the form, as follows:

4. L i s p > (s e t f (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r : g e o m e t r y)
(l e t ((g e o m e t r y - l i s t

(d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r : g e o m e t r y)))
(i n c f (s e c o n d g e o m e t r y - l i s t) 5 0)

g e o m e t r y - l i s t))
(2 0 0 2 5 0 7 5 0 5 0 0)

Here you get the re tu rn value; modify and use i t to set the new value. The
window will move immediately to the new position.

5. L i s p > (s e t f (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r : g e o m e t r y)
' (n i l 0 n i l n i l))

(2 0 0 0 7 5 0 5 0 0)

This example uses n i l to indicate th a t this field of the geometry list should
be unchanged. In this example, the window is moved to the left edge of the
screen.

6. L i s p > (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r : f o r e g r o u n d - c o l o r)
< C o l o r r e d : 0 . 0 0 : g r e e n 0 . 0 0 : b l u e 0 . 0 0 >

This example shows th a t the Listener is writing text in black.

7. L i s p > (s e t f (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r : f o r e g r o u n d - c o l o r)
" b l u e ")

" b l u e "
L i s p > (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r : f o r e g r o u n d - c o l o r)
< C o l o r r e d : 0 . 0 0 : g r e e n 0 . 0 0 : b l u e 0 . 9 8 >

This m ight be the resu lt if you tried to set the Listener foreground to blue.
The exact color set depends on the server im plem entation and how m any
colors rem ain unallocated in the default colormap.

8. L i s p > (s e t f (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r : b a c k g r o u n d - c o l o r)
(c l x : m a k e - c o l o r : r e d . 9 : g r e e n . 9))

< C o l o r r e d : 0 . 9 0 : g r e e n 0 . 9 0 : b l u e 0 . 0 0 >

This example sets a color to an arb itrary mix of RGB values. Again, the exact
color depends on the server.

C-10 Custom izing DECw indow s from VAX LISP

CUSTOMIZATION function

9. L i s p > (s e t f (d e c w - u t i l s : c u s t o m i z a t i o n : l i s t e n e r : b a c k g r o u n d - c o l o r) 239)
239

In this case, if you got the c l x : p i x e l value 239 from some other window
or widget th a t used the default colormap, i t would change the Listener
background to this color.

10. L i s p > (s e t f (d e c w - u t i l s : c u s t o m i z a t i o n r l i s t e n e r :m o n o c h r om e - r e v e r s e) t)

On a monochrome system, this example reverses the curren t light-on-dark or
dark-on-light appearance of the window.

11. L i s p > (d e c w - u t i l s : c u s t o m i z a t i o n : i n s p e c t - w i n d o w : c o u n t)
5
L i s p > (s e t f (d e c w - u t i l s : c u s t o m i z a t i o n : i n s p e c t - w i n d o w : c o u n t) 3)
3

This example shows how to determ ine and change the num ber of Inspect
windows used in the Inspector.

12. L i s p > (s e t f (d e c w - u t i l s : c u s t o m i z a t i o n

(d e c w - u t i l s : c u s t o m i z a t i o n

: CLOSED

: c a l l i n g - s t a c k - w i n d o w
: i n i t i a l - s t a t e)
:v a r i a b l e - b i n d i n g s - w i n d o w
: i n i t i a l - s t a t e))

This example sets the Debugger Calling Stack window’s initial state to the
same value as the initial state of the Debugger Variable Bindings window.

Customizing DECwindows from VAX LISP C-11

SAVE-CUSTOMIZATIONS function

C.4 Saving Customizations
VAX LISP provides the save-customizations function to save current customiza­
tions.

SAVE-CUSTOMIZATIONS function
This function saves all the current customizations into the file specified by
m erging file against its default. You can load files w ritten out by the function by
using DECW -UTILS:LOAD-CUSTOM IZATIONS.

Format

DECW-UTILS:SAVE-CUSTOMIZATIONS &KEY f i le

file
A string or pathnam e th a t names a file or directory into which your customiza­
tions should be w ritten. The default value is
"DECW$USER_DEFAULTS:LISP$DEFAULTS.DAT".

Return Value
The nam estring of the file actually written.

Exam ples

1. L i s p > (d e c w - u t i l s : s a v e - c u s t o m i z a t i o n s)
"LISPZ$: [JONES] LISP$DEFAULTS. DAT;3"

This example overwrites previously saved customizations in the default file.

2. L i s p > (d e c w - u t i l s : s a v e - c u s t o m i z a t i o n s : f i l e " d e f d i r : ")
" L I S P Z $: [JO N E S .D E F A U L T S]L IS P $ D E F A U L T S .D A T ;1 "

This example specifies a directory to keep defaults.

3. L i s p > (d e c w - u t i l s : s a v e - c u s t o m i z a t i o n s : f i l e " l i s p - b i g f o n t s ")
" L I S P Z $: [J O N E S] L I S P - B I G F O N T S .D A T ; 4 2 ”

This example writes out a specialized defaults file.

4 . L i s p > (d e c w - u t i l s : s a v e - c u s t o m i z a t i o n s
: f i l e " d e f d i r : l i s p - w i d e w i n d o w s . i n i t ")

” L I S P Z $: [JO N E S-D E FA U L TS]LISP-W ID EW IN D O W S. I N I T ; 3 "

This example w rites out a specialized defaults file for a certain geometry
setup and puts i t in a preferred directory.

C-12 Customizing DECwindows from VAX LISP

LOAD-CUSTOMIZATIONS function

C.5 Recalling Customizations
Every time LISP s ta rts up it reads the previously saved information. If no
user customizations have been stored, the system defaults are read from
DECW$SYSTEM_DEFAULTS:LISP$DEFAULTS.DAT. If you m ake modifi­
cations and would like to rese t to your previously saved settings, use the
LOAD-CUSTOMIZATIONS function.

LOAD-CUSTOMIZATIONS function
This function loads customizations previously saved w ith decw -u t i l s : sa v e -
c u s t o m i z a t io n s. By default, th is function searches, in order, the default di­
rectory, DECW$USER_DEFAULTS: and DECW$SYSTEM_DEFAULTS: for
the file LISP$DEFAULTS.DAT. (By default, th is function should always find
DECW$SYSTEM_DEFAULTS:LISP$DEFAULTS.DAT, which is supplied by the
VAX LISP system.) If file is supplied, it is m erged against "DECW$USER_
DEFAULTS:LISP$DEFAULTS.DAT". If the resu lt specifies a directory, only th a t
directory is searched; otherwise, the search path described above is used. If
the file is not found, an error is signaled. This function is called automatically,
w ithout argum ents, every tim e the development environm ent is started. If you
have previously saved your customizations into LISP$DEFAULTS.DAT in either
your default directory or DECW$USER_DEFAULTS: with DECW-UTILS: SAVE-
c u s t o m i z a t i o n s , your saved customizations are in effect from the start.

Format

DECW-UTILS:LOAD-CUSTOMIZATIONS &KEY f ile

file
A string or pathnam e th a t nam es a file into which your customizations have
been w ritten. If you do not nam e a file, the function loads customizations from
either DECW$USER_DEFAULTS:LISP$DEFAULTS.DAT or DECW$SYSTEM_
DEFAULTS:LISP$DEFAULTS.DAT, which is supplied by VAX LISP.

Return Value
The nam estring of the file actually read.

Exam ples
(These examples refer to inform ation in the examples in the decw -
u t i l s :SAVe - c u s t o m i z a t i o n s routine description.)

1. L i s p > (l o a d - c u s t o m i z a t i o n s)
"DECW$SYSTEMJ5EFAULTS: L I SP $DEFAULTS.DAT;1"

This is the resu lt if you never previously saved customizations.

Customizing DECwindows from VAX LISP C-13

LOAD-CUSTOMIZATIONS function

2. L i s p > (l o a d - c u s t o m i z a t i o n s)
" L I S P Z $: [JONES]LISP$DEFAULTS.DAT;1"

This is the resu lt if you saved customizations into the default file.

3. L i s p > (l o a d - c u s t o m i z a t i o n s : f i l e " l i s p - b i g f o n t s ")
"L I S P Z $: [JONES]LISP-BIGFONTS.DAT;42"

This example loads the specialized defaults file.

4. L i s p > (l o a d - c u s t o m i z a t i o n s : f i l e " d e f d i r : l i s p - w i d e w i n d o w s . i n i t ")
"L IS P Z $: [JONES.DEFAULTS]LISP-WIDEWINDOWS.INIT;3"

This example loads the specialized geometry.

C-14 Customizing DECwindows from VAX LISP

Appendix D

Using the "EMACS" Editor Style

This appendix provides information on the "EMACS" Editor style. The " em a c s "
style consists of a collection of key bindings th a t causes the Editor to behave
like the EMACS editor. This appendix lists these bindings and explains how
to activate the "emacs " style in the Editor bu t does not provide any tutorial
information on using EMACS. Additional EMACS related examples are in
LISP$EXAMPLES:EDINIT.

This appendix is organized as follows:

• Section D .l explains to a new user how to learn about the Editor.

• Section D.2 describes how to activate the " e m a c s " style as a m inor or major
style, thus m aking the "em a c s " key bindings available to you.

• Section D.3 lists the key bindings in the " e m a c s " style.

D.l Introduction to the Editor
To learn about using the Editor from a term inal interface, read Chapter 3. To
learn about using the Editor in the DECwindows environm ent, read Chapter 8.
M ost of the information in these chapters is also true when you are using the
"EMACS" style. The chief difference when you are using the " em a c s " style lies
in the key bindings. In m any instances, keys or key sequences th a t invoke one
command when you are not using the " em a c s " style invoke a different command
when the " em a c s " style is active. Table D—1 compares default Editor key bindings
with EMACS key bindings, showing where differences exist. W hen reading in
Chapter 3, keep these key binding differences in mind. Table D—1 is arranged
in the approximate order th a t the key bindings and commands are presented in
Chapter 3. (Table D—1 lists only those commands listed in C hapter 3. The full set
of "EMACS" style key bindings is presented in Section D.3.)

Section 3.2.1 contains information on editing using the numeric keypad. Keys
and key sequences on the numeric keypad are set up to em ulate the EDT editor.
If you are using the "emacs " style, you still can use the keypad keys to do
editing (as long as the " ed t E m u l a t i o n " style is active). However, the operations
performed by these keys, while sim ilar to EMACS editing operations, m ay be
different enough to produce confusion in a seasoned EMACS user.

Using the "EMACS" Editor Style D-1

Table D-1: ' Commands for Manipulating Buffers and Windows

Default B inding ’EM ACS" B inding Command
General-Purpose Commands

|Ctrl/Z| | Escape | | x | E x ecu te N am ed C o m m an d

ICtrl/XI |Ctrl/Z| |Ctrl/G| P a u s e E d ito r

N one |Ctrl/X| [~s~] W rite C u r r e n t B u ffe r

N one ICtrl/XI ICtrl/M | W rite M odified B uffe rs

N one ICtri/X| |Ctri/W| W rite N a m e d F ile

fCtrÜXl fCWNl S E N e x t W indow

|Ctrl/X| |Ctrl/R| i ctri/x i r s n R em ove C u r re n t W indow

N one [C tr i/X im R em ove O th e r W indow s

(Ctrl/W | f c w q R ed isp lay S creen

Editing Commands
N one ICtrl/XI Ictrffil I n s e r t F ile

N one I Escape 11 q | Q u e ry S e a rc h R ep lace

N one | Escape | |Ctrl/G| E x it R ecu rs iv e E d it

N one | Escape| | u | U p case W ord

N one | Escape| \ 1 | D ow ncase W ord

N one I Escape 11 c | C a p ita liz e W ord

Buffer and Window Commands
N one ICtrt/X | | b | S e lec t B u ffe r

N one Ictrl/X! ICWBl L is t B u ffe rs

N one |Ctrl/X| |Ctrl/D| D e le te C u r r e n t B u ffe r

N one Ictrl/XI I Ctrl/E I E d

N one ICtrl/X| |ctri771 E d it F ile

N one 1 Ctrl/X I m G row W indow

N one Ictrl/XI [ctri/Zl S h r in k W indow

N one I Ctrl/X 11 2 I S p li t W indow

Custom izing Commands
|ctri/x| IcvTTel I Ctrl/X | |T 1 E x ecu te K ey b o ard M acro

D.2 Activating the "EMACS" Style
By default, the Editor has " ed t E m u l a t i o n ” as its m ajor style and "VAX l i s p ” as
its only m inor style. (If you are not editing LISP code, the ”vax l i s p " style will
not be active.) Section 3.5.1.4 contains information about styles. Tb summarize:
W henever you press a key, the Editor looks in various places to see if th a t key is
bound to a command. The Editor first checks the current buffer; then checks the
m inor styles, looking a t the m ost recently activated m inor style first; then checks
the m ajor style; and finally checks to see if the key is bound globally. This m eans
th a t key bindings in m inor styles take precedence over or “shadow” key bindings
in the m ajor style or global key bindings.

D-2 Using the "EMACS" Editor Style

You can activate the " e m a c s " style as e ither a m inor or the m ajor style:

• If you leave " e d t E m u l a t i o n " as the m ajor style and activate " em a c s " as
a m inor style, key binding conflicts between " ed t E m u l a t i o n " and " em a c s "
(such as ctrl/u and Ctrl/W) will be settled in favor of " e m a c s ".

• If you m ake " e m a c s " the m ajor style and activate " ed t E m u l a t i o n " as a minor
style, key binding conflicts will be settled in favor of "EDT E m u la t i o n " .

• If you m ake " e m a c s " the m ajor style and do not activate "EDT E m u l a t i o n " as
a m inor style, you will not have access to the keypad editing capabilities of
"EDT E m u la t i o n " . However, you can bind the keypad keys to any commands
you like in the " em a c s " style; see Section 3.5.1.

D.2.1 Activating "EMACS” a s a Minor Style

You can activate "EMACS" as a m inor style from within the Editor by using the
" A c t i v a t e M in o r s t y l e " command. This command activates a m inor style for the
current buffer only. However, use of th is command m ay cause problems if you are
editing LISP code, because " e m a c s " will become the m ost recently activated style;
thus, " em a c s " key bindings will take precedence over conflicting "VAX l i s p " key
bindings.

A better approach is to m ake " e m a c s " a default m inor style, which will cause
" em a c s " to be activated before the "VAX l i s p " style when you s ta r t editing LISP
code, lb m ake " e m a c s " a default m inor style, call the following function from the
LISP in terp reter or in your LISP initialization file:

(push " em a c s " (e d i t o r :v a r i a b l e - v a l u e " d e f a u l t m in o r s t y l e s "))

D.2.2 Making "EMACS" the Major Style

To m ake " e m a c s " the Editor’s major style, call the following function from the
LISP in terpreter or in your LISP initialization file:

(s e t f (e d i t o r :v a r i a b l e - v a l u e " d e f a u l t m a j o r s t y l e ") " em a c s ")

This call causes " e m a c s " to replace " ed t E m u l a t i o n " as the Editor’s m ajor style.
If you wish to reinsta te "EDT E m u l a t i o n " as one of the m inor styles, call the
following:

(push " e d t e m u l a t i o n "
(e d i t o r : v a r i a b l e - v a l u e " d e f a u l t m in o r s t y l e s "))

D.3 "EMACS" Style Key Bindings
Table D -2 lists the key bindings supplied in the " e m a c s " style. Appendix E
contains short descriptions of the available commands and a list of the key
bindings supplied w ith the Editor. The table of key bindings in Appendix E is
especially useful for finding key binding conflicts; th a t is, where the same key or
key sequence is bound to two or more different commands in different contexts.

Key sequences containing alphabetic characters are case sensitive; you m ust
en ter the alphabetic character in the case shown.

Use Ctrl/[to generate an # \ e s c a p e character from keyboards not possessing an
Escape key.

Using the "EMACS" Editor Style D-3

Table D-2: "EMACS" Style Key Bindings

Key(s) Command
Cursor Movement

|Ctrl/F| F o rw a rd C h a ra c te r

[cwbI B ack w ard C h a ra c te r

! Escape[| f | F o rw a rd W ord

| Escape|| b | B ack w ard W ord

| Ctrl/A | B e g in n in g of L in e

[owe] E n d o f L ine

[cwpI P rev io u s L ine

1 Ctri/N] N e x t L ine

| Escape 11 a | B e g in n in g o f P a ra g r a p h

| Escape| | e | E n d o f P a ra g r a p h

I Escape11 p | P rev io u s P a ra g ra p h

| Escape | | n | N e x t P a ra g ra p h

| Escape11 v | P rev io u s S creen

I CtriAT | N e x t S c reen

| Escape11 < | B e g in n in g o f B u ffe r

| Escape|j > | E n d o f B u ffe r

1 Escape|| , | B e g in n in g of W indow

| Escape| | . | E n d o f W indow

[CWZ| Scroll W indow D ow n

| Escape| j z | Scroll W indow U p

|Escapc[[J] L in e to Top o f W indow

Search ing
[CMÄ1 E M A C S F o rw a rd S e a rc h

|Ctrl/R| E M A C S B a c k w a rd S e a rc h

Deleting
| Delete | D e le te P rev io u s C h a ra c te r

Ictrl/D | D e le te N e x t C h a ra c te r

| Escape | | Delete | D e le te P rev io u s W ord

| Escape11 d | D ele te N e x t W ord

| E scap e | | Ctrl/D | D ele te W h ite sp ace

(continued on next page)

D—4 Using the "EMACS" Editor Style

Table D-2 (Cont.): "EMACS" Style Key Bindings

Key(s) Command
Killing, Yanking, and R egions

| Ctrl/Kj Kill Line

| E s c a p e11 k |

| Ctrl/W |

[cwy|

Kill Paragraph

Kill Region

Yank

| E scape 11 y | Yank Previous

| E scape] |Ctr1/Y|

| E scape | | Ctrl/W |

Yank Replace Previous

Undo Previous Yank
| Ctrl/Space | Set Select Mark
| E scape 11 C trl/Space | U nset Select Mark
!Ctrl/X | |ctri/X | Exchange Point and Select Mark

Text Insertion and Modification
|C trl/0|

a s
I Ctrl/X | FcwTfl

Open Line

Quoted Insert

Insert Pile
| E s c a p e 11 c |

| E s c a p e | | 1 |

Capitalize Word

Downcase Word
| E s c a p e 11 u |

IC tr l/ r j

I E scap e 11 t I

1 E scap e \ \ J]

Upcase Word

Transpose Previous Characters

Transpose Previous Words

Query Search Replace

Multiple W indows and Buffers
I Ctrl/X | | n | Previous Window

[c w x i m N ext Window

i c w x] m Remove Current Window

[CW Xl m Remove Other Windows

f c w « i m Grow Window
fctrw cl [ctri/Zl Shrink Window
| E scap e | j Ctrl A/ j

ICtrWCI IT!

i c tr i/x i r n

Page N ext Window

Split Window

Select Buffer
[CtrtÖcl fcSTBl List Buffers

[C trix l Fc STd I D elete Current Buffer

(continued on next page)

Using the "EMACS” Editor Style D-5

Table D-2 (Cont.): "EMACS" Style Key Bindings

Key(s) Command
Starting and Saving Work

1 Ctrl/X I ICtrl/Ef Ed

[cSw cl fctriTT] Edit File

[Ctri/X] |Ctrl/R| Read File

1 C trl« I | Ctrl/F | View File

1 Ctrl/X | m Write Current Buffer

1 Ctrl/X I ICtrl/M I Write Modified Buffers

| Ctrl/X | | Ctrl/W | Write Named File

Editor Control
| E scape 11 x | Execute Nam ed Command

[Ctri'/al Pause Editor

| E scape | j Ctri/G | Exit Recursive Edit

[ctrilLl

| E scape | | Ctri/U |

| Ctrl/U |

! Ctrl/X I m

IC tr tx l [CtriTfl

Redisplay Screen

Supply Prefix Argument

Supply EMACS Prefix

Execute Keyboard Macro

Show Time

isHsin W hat Cursor Position

D-6 Using the "EMACS" Editor Style

Appendix E

Editor Commands and Key Bindings

This appendix briefly describes the Editor commands and lists the key bindings
th a t are supplied w ith the Editor. The appendix is organized as follows:

• Section E .l lists the Editor commands, along with each command’s key
bindings and a brief description of the command.

• Section E.2 lists the keys and key sequences th a t are bound to commands and
explains how to determ ine to which command a key or key sequence is bound
in a given context.

E.l Editor Command Descriptions
Table E - l alphabetically lists the Editor commands. The second column of the
table lists the keys or key sequences th a t are bound to th a t command (if any)
and the context in which they are bound. The th ird column contains a brief
description of th e command. For a full description of each command, see the VAX
L IS P /V M S E d ito r P ro g ra m m in g G uide.

Table E-1: Editor Commands and Key Bindings
Name Bmding(s) Description
Activate Minor
Style

None

Apropos None

Apropos Word (: STYLE "VAX L I S P ") !E s c a p e | p H

Backward : GLOBAL [3
Character (: STYLE "EMACS") [CW BI

Backward Kill
Ring

None

Prompts for the name of a minor style and then
activates that style as a minor style in the current
buffer.

Prompts for a string, then displays the names of
objects of a specified type containing that string.

Displays the resu lt of evaluating the APROPOS
function w ith the word a t the cursor location as
the argument.

Moves the cursor backward one character or by
the number of characters specified by the prefix
argument.

Rotates the kill ring backward by one elem ent or
by the number of elem ents specified by the prefix
argument.

_ o « _ j Pointer button transition: o button up; • button held down; ! button pressed; T bu tton released.
° • o —* pointer movement w ith buttons in specified state.

Pointer buttons invoke command only w hen pointer cursor is in the current window.

(continued on next page)

Editor Commands and Key Bindings E-1

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Binding(s) Description
Backward Page None Moves the cursor to the previous page break or to

the preceding page break specified by the prefix
argument.

Backward Search None Prompts for a search string, then moves the cursor
to the beginning of the first preceding occurrence
of that string or to the preceding occurrence
specified by the prefix argument.

Backward Word (;STYLE "EMACS") 1 E s c a p e| [V I Moves the cursor to the end of the previous word
or to the end of the preceding word specified by
the prefix argument.

Beginning of (: STYLE "EDT E m u l a t i o n ") Moves the cursor to the beginning of the buffer.
Buffer I E E 3 G D (:

C D
STYLE "EMACS") [E scap e]

Beginning of Line (:STYLE "EMACS") |Ctrl/A| Moves the cursor to the beginning of the current
line or to the beginning of the following line
specified by the prefix argument.

Beginning of
Outerm ost Form

(:STYLE "VAX L I S P ") [c 5 w n m Moves the cursor to the beginning of the outermost
form currently containing it or, i f the cursor is not
currently contained in a form, to the beginning of
the preceding outermost form.

Beginning of
Paragraph

(:STYLE "EMACS") I E scap e | [X| Moves the cursor to the beginning of the current
paragraph.

Beginning of
Window

(:STYLE "EMACS") I E scap e l l T I Moves the cursor to the top of the current window.

Bind Command None Prompts for a command name, a key sequence
to bind to the command, and a context in which
to bind the key sequence, then binds the key
sequence to the command.

Capitalize Region None Capitalizes the first letter of each word in the
current select region.

Capitalize Word (:STYLE "EMACS") |E s c a p e | [T| Capitalizes the first letter of the word at the
cursor location.

Close Outermost
Form

(:.STYLE "VAX L I S P ") lEscapeim Completes the outerm ost LISP form by inserting
close-parenthesis characters at the cursor position.

Copy from
Pointer2

:GLOBAL | 0 0 T 1 Sets the end of secondaiy selection and copies the
text to the window that has input focus; check that
input focus is correctly set before in itiating this
command.

2 Available only in DECwindows Pointer Syntax.

o J. » | Pointer bu tton transition: o bu tton up; • bu tton held down; J. bu tton pressed; j bu tton released.
o » o | —* pointer movement w ith bu ttons in specified state.

Pointer buttons invoke command only w hen pointer cursor is in th e current window.

(continued on next page)

E-2 Editor Commands and Key Bindings

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Bmding(s)
Copy to Pointer2 : GLOBAL I o o J. |

Deactivate Minor
Style

None

Delete Current
Buffer

(: STYLE " E M A C S ") [ctri/x] [ctriTo]

Delete Line None

Delete Named
Buffer

None

Delete N ext
Character

(: S T Y L E " E M A C S ") [CtFi/D]

Delete Next Word (: S T Y L E " EM A C S ") | Escape | [""51

Delete Previous : GLOBAL | Delete |

Character (: S T Y L E " E M A C S " ! | Delete |

Delete Previous
Word

(: S T Y L E " E M A C S ") I Escape 11 Delete |

Delete
W hitespace

(: S T Y L E " E M A C S ") 1 Escape | [cffl/Dl

Delete Word None

Describe None

Describe Word (: S T Y L E " V A X L I S P ") fctri/7|

Describe Word at
Pointer3

(: S T Y L E " V A X L I S P ") I o o l |

Description
Moves the current buffer point to the position
indicated by the pointer and inserts the text from
the primary selection at that location. If pointer
is beyond the end of a line, inserts the text at the
end of the line. I f pointer is beyond the end of the
buffer region, inserts the text a t the end of the
buffer region.

Prompts for the nam e of a minor style, then
deactivates that minor style in the current buffer.

D eletes the current buffer; for modified buffers,
asks if the contents of the buffer should first be
saved.

D eletes everything between the cursor and the end
of the current line or to the end of the following
line specified by the prefix argument.

Prompts for the name of a buffer, then deletes
that buffer, i f th e buffer is modified, asks if the
contents of the buffer should first be saved.

D eletes the character following the cursor or the
number of following characters specified by the
prefix argument.

D eletes everything from the cursor position to the
end of the current word or the number of following
words specified by the prefix argument.

D eletes the character preceding the cursor position
or the number of preceding characters specified by
the prefix argument.

D eletes everything from the cursor position to the
beginning of the current word or the number of
preceding words specified by the prefix argument.

D eletes whitespace characters following the cursor
location up to the next nonwhitespace character.

D eletes everything from the cursor position to the
beginning of the next word, including whitespace,
or deletes th e number of following words specified
by the prefix argum ent.

Prompts for th e name and type of an object, then
displays a description of that object.

Calls the D ESCRIBE function with the word at the
cursor position as the argument.

Calls t h e D ESCRIBE f u n c t i o n w i t h t h e w o r d a t t h e
p o i n t e r p o s i t i o n a s t h e a r g u m e n t .

2 Available only in DECwindows Pointer Syntax.
3 Available only in UIS Pointer Syntax.

c ; » I Pointer bu tton transition: o button up; • button held down; J. bu tto n pressed; T button released.
o « o | —* pointer movem ent w ith bu ttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the cu rren t window.

(continued on next page)

Editor Commands and Key Bindings E-3

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Binding! s) Description
Downcase Region None Makes all alphabetic characters in the current

select region lowercase.

Makes all alphabetic characters in the word at the
cursor position lowercase.

Prompts for a LISP object to edit and', i f the object
is a symbol, whether to edit its function definition
or its value.

Prompts for the specification of a file to edit;
completion and alternatives are available during
your response to the prompt.

Downcase Word (: STYLE "EMACS ") I E scap e | [T|

Ed (: STYLE "EMACS ") [CtrW(l [ciri/E]

Edit File (: STYLE "EMACS ") ICtrwH icwvl

EDT Append (:STYLE "EDT E m u l a t i o n ")
keypad [T]

Appends the current select region to the contents
of the paste buffer.

EDT Back to (:STYLE "EDT E m u l a t i o n ”) Moves the cursor to the beginning of the current
line or to the beginning of the previous line, if
the cursor is already at the beginning of a line; or
moves back the number of lines specified by the
prefix argument.

Start o f Line |Ctrl/H| a n d I B ackspace | “ a n d |F12| 4

EDT Beginning of
Line

(:STYLE "EDT E m ulation")[Ö] Moves the cursor to the beginning of the next
line, i f the current direction is forward, or to the
beginning of the current or previous line, if the
current direction is backward; m oves the number
of lines specified by the prefix argument.

EDT Change
Case

(:STYLE "EDT E m u l a t i o n ")
!pfT1 k e y p a d [7]

Changes from lowercase to uppercase (or vice
versa) all characters in the select region or, i f no
select region is defined, the character at the cursor
position.

EDT Cut (:STYLE "EDT E m u l a t i o n ”)
keypad HT] and 1 R em ove | 4 and
1 0 -I 0 13

Deletes the current select region and replaces the
contents of the paste buffer with it.

EDT Delete
Character

(:STYLE "EDT E m u l a t i o n ")
k e y p a d □

D eletes the character at the cursor position and
stores it in the deleted character area; deletes
the number of characters specified by the prefix
argument.

EDT D elete Line (: STYLE "EDT E m u l a t i o n ") [pm] Deletes from the cursor position to the beginning
of the next line and stores the deleted line in
the deleted line area; deletes the number of lines
specified by the prefix argument.

EDT Delete
Previous
Character

(: STYLE "EDT E m u l a t i o n ")
| Delete |

D eletes the character preceding the cursor and
stores it in the deleted character area; deletes
the number of characters specified by the prefix
argument.

8 Available only in UIS Pointer Syntax.
4 Key available only on LK201 keyboard.
6 Key available only on VT100 term inal.

| Pointer button transition: o bu tton up; • bu tton held down; j. button pressed;] bu tton released.
> pointer movement w ith buttons in specified state.

Pointer buttons invoke command only w hen pointer cursor is in the current window.

(continued on next page)

E—4 Editor Commands and Key Bindings

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Bmding(s) Description
EDT Delete (: STYLE "EDT E m u l a t i o n ")
Previous Line |Ctrl/U|

EDT Delete (: STYLE "EDT E m u l a t i o n ")
Previous Word |Ctrl/J| a n d I Linefeed | “a n d |F13| 4

EDT D elete to (: STYLE "EDT E m u l a t i o n ")
End of Line |p f i | k e y p a d [T]

EDT D elete Word (: STYLE "EDT E m u l a t i o n ")
k e y p a d Q

EDT Deselect (: STYLE "EDT E m u l a t i o n ")
|p f i | k e y p a d j~]

EDT End of Line (: STYLE "EDT E m u l a t i o n ")
k e y p a d [T]

EDT Move (: STYLE "EDT E m u l a t i o n ")
C h a r a c t e r k e y p a d [T]

EDT Move Page (: STYLE "EDT E m u l a t i o n ")
k e y p a d [T]

EDT Move Word (: STYLE "EDT E m u l a t i o n ")
k e y p a d [7]

EDT Paste (: STYLE "EDT E m u l a t i o n ")
|P F 1 | k e y p a d P H a n d | Insert Here 1

EDT P aste at (: STYLE "EDT E m u l a t i o n ")
Pointer3 1 * -I 0 1

D eletes from the cursor position to the beginning
of the current line or, i f the cursor is at the be­
ginning of a line, to the beginning of the previous
line; stores the result in the deleted line area;
deletes the number of lines specified by the prefix
argument.

D eletes from the cursor position to the begin­
ning of the current word or, if the cursor is
between words, to the beginning of the previous
word; stores the result in the deleted word area;
deletes the number of lines specified by the prefix
argument.

D eletes from the cursor position to the end of the
current line or, i f the cursor is at the end of a line,
to the end of the next line; stores the result in
the deleted line area; deletes the number of lines
specified by the prefix argument.

D eletes from the cursor position to the beginning
of the next word; stores the result in the deleted
word area; deletes the number of words specified
by the prefix argument.

Cancels the current select region; equivalent to
" U n s e t S e l e c t M a r k " .

Moves th e cursor to the end of the current, next,
or previous line, depending on starting cursor
position and current direction; m oves the number
of fines specified by the prefix argument.

Moves the cursor forward or backward by one
character, according to the current direction;
moves th e number of characters specified by the
prefix argument.

Moves the cursor to the preceding or following
page break, depending on the current direction;
m oves the number of pages specified by the prefix
argument.
Moves the cursor to the beginning of the next,
current, or preceding word, depending on current
direction and cursor starting position; moves the
number of words specified by the prefix argument.

Inserts the contents of the paste buffer at the
cursor location.

Inserts the contents of the paste buffer at the
pointer cursor location.

3 Available only in UIS Pointer Syntax.
4 Key available only on LK201 keyboard.
5 Key available only on VT100 term inal.

o 1 » | Pointer bu tton transition: o button up; • button held down; 1 bu tton pressed; f button released.
o m o —> pointer movement w ith buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

(continued on next page)

Editor Commands and Key Bindings E -5

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Binding(s)
E D T Q u ery (: STYLE "EDT E m u l a t i o n ")
S ea rch [p f TI fPFäl a n d [f in d]4

E D T R ep lace (: STYLE "EDT E m u l a t i o n ")
|p f i | k e y p a d [T]

E D T Scroll (: STYLE "EDT E m u l a t i o n ")
W indow k e y p a d [3

E D T S earch
A gain

(: STYLE "EDT E m u l a t i o n ") [PF3]

E D T S elec t (: STYLE "EDT E m u l a t i o n ")
k e v o a d m a n d |S e ie c t | 4

E D T S e t (: STYLE "EDT E m u l a t i o n ")
D irec tio n
B ack w ard

k e y p a d [T]

E D T S e t (: STYLE "EDT E m u l a t i o n ")
D irec tion
F o rw a rd

k e y p a d [7]

E D T S pecia l (: STYLE "EDT E m u l a t i o n ")
In s e r t |p f i | k e y p a d [7]

E D T S u b s t i tu te (: STYLE "EDT E m u l a t i o n ")
IpfH [Enter]

E D T U n d e le te (: STYLE "EDT E m u l a t i o n ")
C h a ra c te r [pfi | k e y p a d [7]

E D T U n d e le te (: STYLE "EDT E m u l a t i o n ")
L ine [pfT) [PF4|

E D T U n d e le te (: STYLE "EDT E m u l a t i o n ")
W ord EE3 k e y p a d 0

EM A C S
B ack w ard S ea rch

(: STYLE "EMACS") [Ctri/R[

EM A C S F o rw a rd
S e a rc h

(: STYLE "EMACS") [CWÄ]

Description
Prompts for a search string and moves the cursor
to the following or preceding occurrence of the
string, depending on the curren t direction; moves
to the occurrence specified by the prefix argument.

Replaces the current select region w ith the con­
ten ts of the paste buffer.
Scrolls the window in the direction indicated by
the current direction.
Searches for the next or previous occurrence of the
search string th a t was last entered, according to
the current direction.

Places a m ark a t the cursor position to indicate
one end of a select region; equivalent to " S e t
S e l e c t M ark " .

Sets the curren t direction to backward.

Sets the curren t direction to forward.

Inserts the character whose ASCII code is specified
by the prefix argum ent a t the cursor position.

If the cursor is located a t th e beginning of the
current search string, replaces the search string
w ith the contents of the paste buffer, then finds
the next occurrence of the search string.
Inserts the contents of the deleted character area
a t the cursor location.
Inserts the contents of the deleted line area a t the
cursor location.

Inserts the contents of the deleted word area a t
the cursor location.
S ea rch es b a c k w a rd fo r th e f i r s t occu rrence o f th e
se a rc h s t r in g specified in th e p rev io u s com m and;
p ro m p ts fo r a se a rc h s t r in g i f th e p rev io u s com ­
m a n d w as n o t a s e a rc h in g com m and ; se a rc h e s fo r
th e occu rrence o f th e se a rc h B tring specified by th e
p re fix a rg u m e n t.

Searches forward for the first occurrence of the
search string specified in the previous command;
prompts for a search string if the previous com­
m and was not a searching command; searches for
the occurrence of the search string specified by the
prefix argum ent.

4 Key available only on LK201 keyboard.

1 « j Pointer bu tton transition: o button up; • button held down; . bu tton pressed; ' bu tton released,
pointer movement w ith buttons in specified state.

Pointer buttons invoke command only w hen pointer cursor is in the current window.

(continued on next page)

E-6 Editor Commands and Key Bindings

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Binding(s) Description
End Keyboard
Macro

: GLOBAL [CM/x| |T1 Ends the collection of keystrokes for a keyboard
macro.

End of Buffer (: STYLE "EDT E m u l a t i o n ”)
| p f i | keypad [7]
(: STYLE "EMACS") | EscapeIfT]

Moves the cursor to the end of the buffer.

End of Line (: STYLE "EMACS”) [owe] Moves the cursor to the end of the current line or
forward the num ber of lines specified by the prefix
argum ent and th en to the end of the line.

End of Outerm ost
Form

End of Paragraph

End of Window

(: STYLE "VAX L I S P ") [ctri/xlfTl

(: STYLE "EMACS") | Escape| | T |

(: STYLE "EMACS") | Escape11“ 1

Moves the cursor to the outerm ost form currently
surrounding the cursor or, if the cursor is between
outerm ost forms, to the end of the following
outerm ost form.

Moves the cursor to th e end of the current para­
graph.

Moves the cursor to the end of the tex t in the
current window.

E valuate LISP (: STYLE "VAX L I S P ”) Evaluates the select region as LISP code; displays
Region 1 Ctrl/XI Ictrl/AI the resu lt of th e evaluation in the information

area.

Exchange Point
and Select M ark

(: STYLE "EMACS ") [ctri/xl [cvi/xl Moves the cursor to the other end of the current
select region, and the m ark delim iting the select
region to the old cursor position; in other words,
preserves the select region bu t places the cursor a t
the other end of it.

Execute Keyboard : GLOBAL [Ctri7x] [Ctri/E| Executes the curren t keyboard macro once of the
Macro (: STYLE "EMACS") |Ctrl/x| | e | num ber of tim es specified by the prefix argum ent.
Execute Named : GLOBAL [ctFi/z] and [55] 4 Prom pts for the nam e of a command to execute;
Command (: STYLE "EDT E m u l a t i o n ")

| p f i I keypad [7]
(STYLE "EMACS") [Escapeim

inpu t completion and alternatives are available
during your response to the prompt.

Exit

Exit Recursive
E d it

None

(: STYLE "EMACS") | Escape| [CtFiTol

R eturns control to the LISP interpreter, discarding
the current Editor state; asks if modified buffers
should first be saved.
Terminates a recursive edit or pauses the Editor if
not doing a recursive edit.

Forw ard
C haracter

: GLOBAL R]
(: STYLE "EMACS") [Ctti/F]

Moves the cursor forward one character.

Forw ard Kill Ring None Rotates the kill ring forward by one elem ent or
by the num ber of elem ents specified by the prefix
argum ent.

Forw ard Page None Moves the cursor to the next page break or to
the following page break specified by the prefix
argum ent.

4 Key available only on LK201 keyboard.

o 1 » I Pointer button transition: o button up; • bu tton held down; 1 bu tton pressed; f bu tton released.
o « o I —» pointer movement w ith buttons in specified state.

Pointer buttons invoke command only w hen pointer cursor is in th e current window.

(continued on next page)

Editor Commands and Key Bindings E-7

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Bmding(s)
Forward Search None

Forward Word (: S T Y L E " E M A C S ") I Escape | [Tl

Grow Window (: S T Y L E " e m a c s ") i c w x i r r i

Help : G L O B A L |PF2| and |Help[4

Help on Editor
Error

: G L O B A L [Cvi/x| [T l

Illegal Operation None

Indent LISP Line (: S T Y L E "V A X L I S P ") [Tab]

Indent LISP
Region

None

Indent Outermost
Form

(: S T Y L E "V A X L I S P ") [ctrtöclfrab]

Insert Buffer None

Insert Close
Paren and Match

(: S T Y L E "V A X L I S P ") Q]

Insert File (: S T Y L E "E M A C S ") fctrt/xl [cwil

Kill Enclosing
List

None

Kill Line (: S T Y L E " E M A C S ") [Ciri/Kl

Description
Prompts for a search string, then m oves the cursor
forward to the end of the first occurrence of the
string; m oves the cursor to the occurrence of the
string specified by the prefix argument.

Moves the cursor to the beginning of the next word
or the beginning of the word specified by the prefix
argument.

Increases the height of the current window by
one row or by the number of rows specified by the
prefix argument.

Displays help on your current situation.

Displays information on the la st Editor error that
occurred.

Signals an Editor error; use to disable a key
binding locally w ithin a style or buffer.

Adjusts the current LISP line so that it is indented
properly in the context of the program.

Adjusts the indentation of the LISP code in the
current select region.

Indents each line in the outerm ost LISP form
containing the cursor.

Prompts for a buffer name, then inserts the
contents of the specified buffer at the cursor
location.

Inserts a close-parenthesis character at the
cursor location and highlights the corresponding
open-parenthesis character.

Prompts for a file specification, then inserts the
contents o f the file at the cursor location; input
completion and alternatives are available during
your response to the prompt.

D eletes the LISP lis t that encloses the cursor
and adds it to the current kill-ring region if the
previous command was a kill-ring command, or
creates a new kill-ring region to hold the deleted
list; deletes the number of enclosing listB specified
by the prefix argument.

D eletes the rest o f the current line and adds it
to the current kill-ring region i f the previous
command was a kill-ring command, or creates
a new kill-ring region to hold the deleted line;
deletes the number of lines specified by the prefix
argument.

4 Key available only on LK201 keyboard.

I ° « 1 Pointer bu tton transition: o button up; • bu tton held down; \ bu tton pressed; f bu tton released.
1 o » o I —> pointer movement w ith buttons in specified state.
Pointer buttons invoke command only when pointer cursor is in th e current window.

(c o n t in u e d o n n e x t p a g e)

E-8 Editor Commands and Key Bindings

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Binding! s) Description
Kill N ext Form None D eletes the LISP form im m ediately following

the cursor and adds it to the current kill-ring
region if the previous command was a kill-ring
command, or creates a new kill-ring region to hold
the deleted form; deletes the number of following
forms specified by th e prefix argument within the
current parentheses nesting level.

Kill Paragraph (:STYLE "EMACS "1 | E s c a p e | HTl D eletes the rest of the current paragraph and adds
it to the current kill-ring region i f the previous
command was a kill-ring command, or creates a
new kill-ring region to hold the deleted paragraph;
deletes the number of paragraphs specified by the
prefix argument.

Kill Previous
Form

None D eletes the L IS P form im m ediately preceding
the cursor and adds it to the current kill-ring
region i f the previous command was a kill-ring
command, or creates a new kill-ring region to hold
the deleted form; deletes the number of preceding
forms specified by the prefix argument within the
current parentheses nesting level.

Kill Region (: STYLE "EMACS ") D eletes the current select region and adds it to the
I ctri/w | and 1 o 1 o 3 current kill-ring region i f th e previous command

was a kill-ring command, or creates a new kill-ring
region to hold the deleted region.

Kill Rest of List None D eletes the rest of the enclosing list and adds
i t to the current kill-ring region i f the previous
command was a kill-ring command, or creates
a new kill-ring region to hold the deleted list
fragment.

Line to Top of
Window

(:STYLE "EMACS ") | E s c a p e | | 1 | Moves the line containing the cursor to the top of
the window.

List Buffers (:STYLE "EMACS ") |Ctrl/X| |Ctrl/B| Displays a lis t of all buffers.

L ist Key Bindings None Displays a lis t of all visible key bindings or of all
keys bound in a specified context.

Maybe Reset
Select a t Pointer1

:GLOBAL i T ° ° If the pointer cursor has not moved, cancels the
select region that was started w ith 1 l o o |; if
the pointer cursor has moved since 1 i o o | , does
nothing.

Move Point and
Select Region1

:GLOBAL I • o o -*■ Moves the text cursor w ith the pointer cursor,
marking a select region.

Move Point to
Pointer1

: GLOBAL 1 t o o Moves the text cursor to the pointer cursor.

1 Available in both DECwindows and UIS Pointer Syntax.
3 Available only in UIS Pointer Syntax.

Pointer button transition: o button up; • button held down; j bu tton pressed; I button released,
o » o I —* pointer movement w ith buttons in specified state.

-Pointer buttons invoke command only when pointer cursor is in the current window.

(continued on next page)

Editor Commands and Key Bindings E-9

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Binding(s)
Move to LISP
Comment

(: S T Y L E "V A X L I S P ") |C trl/x| [; |

New Line : G L O B A L I Return |

(: BUFFER " G e n e r a l P r o m p t i n g
) L in e f e e d |

(: S T Y L E "E M A C S ") | R e t u r n |

New LISP Line (: S T Y L E "V A X L I S P ") I L in e f s e d |

N ext Form (: S T Y L E "V A X L I S P ") fctüöcl f l

N ext Line : G L O B A L j j

(: S T Y L E "E M A C S ") [cwTn]

N ext Paragraph (: S T Y L E " E M A C S ") | E s c a p e | [T l

N ext Screen : G L O B A L | N e x t S c r e e n | 4

N ext Window : G L O B A L | Ctrl/X 1 ICtrl/N 1

(: S T Y L E "E M A C S ") |Ctrl/X|| P 1

Open Line (: STYLE "EDT E m u l a t i o n ")
|p f i | k e y p a d [T]
(: S T Y L E "E M A C S ”) [CM/Ö]

Page Next
Window

(: S T Y L E " E M A C S ") | E s c a p e | Ictri/v)

Pause Editor : G L O B A L 1 Ctrl/X I [CtH/zl

(: S T Y L E "E M A C S ") [c t r i/ G l

Previous Form (: S T Y L E "V A X L I S P ") Ictri/xHTI

Previous Line : G L O B A L Q]

(: S T Y L E " E M A C S ") [c w p !

Description
If there is no comment on the current line, moves
the cursor to the comment column and inserts a
semicolon and space; if there is a comment, moves
the cursor to the comment.

Breaks a line at the cursor position, leaving the
cursor at the start of the new line.

Breaks a line at the cursor position and indents
the new line by the appropriate amount in the
context of the program.

Moves the cursor to the end of the next form
or to the end of the following form specified by
the prefix argument; does not move outside the
current parentheses nesting level.

Moves the cursor to the next line or down the
number of lines specified by the prefix argument,
keeping the cursor in the same column if possible.

Moves the cursor to the beginning of the next
paragraph or to the following paragraph specified
by the prefix argument.

Moves the window down in the buffer by one
screenful or by as many screenfuls as are specified
by the prefix argument.

Selects another window on the screen to be the
current window; eventually circulates through all
the windows on the screen.

Breaks a line at the cursor location, leaving the
cursor at the end of the old line.

Scrolls the next window on the screen down one
page; or, i f a prefix argum ent is supplied, scrolls
the next window that many rows.

Saves the Editor state and returns control to the
LISP interpreter.

Moves the cursor to the beginning of the previous
form or to the beginning of the preceding form
specified by the prefix argument; does not move
outside th e current parentheses nesting level.

Moves the cursor to the previous line or up the
number of lines specified by the prefix argument;
keeps the cursor in the sam e column if possible.

4 Key available only on LK201 keyboard.

1 o I » | Pointer bu tton transition: o button up; • button held down; 1 bu tton pressed; f bu tton released.
I o » o [—» pointer movement w ith buttons in specified state.
Pointer buttons invoke command only w hen pointer cursor is in the current window.

(continued on next page)

E-10 Editor Commands and Key Bindings

Table E-1 (Coni.): Editor Commands and Key Bindings

Name Binding! s) Description
Previous
Paragraph

Previous Screen

Previous Window

Prompt Complete
String

Prompt Help

Prompt Read and
Validate

Prompt Scroll
Help Window

Prompt Show
Alternatives

Query Search
Replace

Quoted Insert

Read File

Redisplay Screen

Remove Current
Window

Remove Other
Windows

Scroll Window
Down

Scroll Window Up

(: STYLE "EMACS") I E scap e | [~p~l Moves the cursor to the end of the previous para­
graph or to the end of the preceding paragraph
specified by the prefix argument.

: GLOBAL | Prev S c r e e n] 4 Moves the cursor up in the buffer by one screenful
(: STYLE "EMACS ") I E scap e | py] o r a s m any screen fu ls a s are spec ified by th e prefix

argument.

(:STYLE "EMACS") |ctri/x[[~n~| Makes another window on the screen into the
current window; eventually circulates through all
windows on the screen.

(: BUFFER " G e n e r a l P r o m p t i n g ") Attem pts to complete your response to a prompt,
| Ctri/Space | based on what you have typed already and the

choices available in the situation.

(:B U FF E R " G e n e r a l P r o m p t i n g ") Displays information for whatever is being
|P F 2 | prompted.

(: BUFFER " G e n e r a l P r o m p t i n g ") U sed to term inate prompt input.
[R e tu r n | and I E n te r |

(: BUFFER " G e n e r a l P r o m p t i n g ") Scrolls the Help window down while another
I C tr l At | buffer is current; supplied to le t you Bcroll the

Help window while responding to a prompt.

(: BUFFER " G e n e r a l P r o m p t i n g ") Displays a lis t of alternatives that can be entered
[pfTI [pf2| in response to the current prompt, based on what

you have typed already.

(: STYLE "EMACS") [Escape| |~g~| Prompts for a search string and a replacement;
offers a number of options at each replacement
opportunity.

: GLOBAL [cwx] [T]
(: STYLE "EMACS") [c w x H ü

(: STYLE "EMACS") retrial fcWRl

(: STYLE "EDT E m u l a t i o n ")
I Ctrl AV |

(: STYLE "EMACS") [cwl!

: GLOBAL |ctri/x1 | Ctrl/R |
(: STYLE "EMACS ") fetri«] f~d~|

(: STYLE "EMACS") [ctri/x] p H

Inserts the next character typed at the cursor
location without Editor interpretation.

Prompts for a file specification, then replaces
the contents of the current buffer w ith the file;
i f the current buffer is modified, prompts for
confirmation.

Erases and redisplays everything on the Bcreen.

Removes the current window from the screen; does
not delete the associated buffer.

Removes all windows but the current window from
the screen.

(: STYLE "EMACS") tcwzl Scrolls the current window down in the buffer by
one row or the number of rows specified by the
prefix argument.

(: STYLE "EM ACS") [E s c a p e][7] Scrolls the current window up in the buffer by one
row or by number of rows specified by the prefix
argument.

4 Key available only on LK201 keyboard.

o 1 » I Pointer bu tton transition: o button up; • button held down; | button pressed; t button released.
o • o —* pointer movement w ith buttons in specified state.

Pointer buttons invoke command only w hen pointer cursor is in th e current window.

(continued on next page)

Editor Commands and Key Bindings E-11

Table E—1 (Cont.): Editor Commands and Key Bindings

Name Bindmg(s) Description
Secondary Select
Region2

: GLOBAL I o o • | Sets the beginning of secondary selection (used in
Copy from Pointer command).

Select Buffer (: STYLE "EMACS") [Ctri/xllTl Prompts for a buffer name, then m akes that
buffer the current buffer; creates a new buffer if
necessary.

Select Enclosing
Form at Pointer1

(: STYLE "VAX L IS P ") 1 1 o o | Places the form enclosing the cursor in a select
region; if the cursor is already in a select region,
expands the region to the next outerm ost form.

Select Outerm ost (: STYLE "VAX L I S P ") Makes the outerm ost LISP form containing the
Form ICtrl/XI | CtrlSpace | cursor into a select region.

S elf Insert : GLOBAL All graphic characters Inserts the la st character typed at the cursor
location.

Set DECwindows
Pointer Syntax

None Unbinds the UIS pointer bindings and binds the
DECwindows pointer bindings.

Set UIS Pointer
Syntax

None Unbinds the DECwindows pointer bindings and
binds the UIS pointer bindings.

Set Screen H eight None Sets the screen height to the number of rows
specified by the prefix argument; prompts for
height i f no prefix argum ent is defined.

Set Screen Width None Sets the screen width to the number of columns
specified by the prefix argument; prompts for the
width i f no prefix argum ent is defined.

Set Select Mark (: STYLE "EOT E m u l a t i o n ")
keypad □
(: STYLE "EM ACS") I C t r l / S p a c e |

Places a mark at the cursor position to indicate
one end of a select region.

Show Time (: STYLE "EMACS ") ictri/xl [Ctri/f] Displays the tim e and date in the information
area.

Shrink Window (: STYLE "EMACS") [ctrf*l [ctri/z] Shrinks the current window by one row or the
number of rows specified by the prefix argument.

Split Window (: STYLE "EMACS") 1555x1 IT] Splits the current window into two identical
windows.

Start Keyboard
Macro

: GLOBAL [Ciri/Xl [71 Starts collecting keystrokes for a keyboard macro,
replacing any unnamed keyboard macro that
already exists.

Start Named
Keyboard Macro

None Prompts for a name, then starts collecting
keystrokes for a keyboard macro; the resulting
keyboard macro is cataloged under the name you
give and can be treated as a command.

Supply EMACS
Prefix

(: STYLE "EMACS") |Ctfi70] Sets the prefix argum ent to four if no prefix
argum ent was defined, or to four tim es its former
value i f a prefix argum ent was defined.

1 Available in both DECwindows and UIS Pointer Syntax.
2 Available only in DECwindows Pointer Syntax.

Pointer buttons invoke command only when pointer cursor is in the current window.

(c o n tin u e d o n n e x t p a g e)

I Pointer bu tton transition: o button up; • button held down; [bu tton pressed; T button released.
* pointer movement w ith buttons in specified state.

E-12 Editor Commands and Key Bindings

Table E-1 (Cont.): Editor Commands and Key Bindings

Name Bmding(s)
Supply Prefix (: S T Y L E "EDT E m u l a t i o n ")
Argument F i l f P F i l

(: S T Y L E " E M A C S ") | Escape | [CtFiÄJl

Transpose
Previous
Characters

(: S T Y L E " E M A C S ") fctriTf]

Transpose
Previous Words

(: S T Y L E " E M A C S ") | Escapei m

Undo Previous
Yank

(: S T Y L E " E M A C S ") |Escape| [Ctri/W]

U nset Select (: S T Y L E "EDT E m u l a t i o n ")
Mark |pfi| keypad [7]

(: S T Y L E " E M A C S ")
| Escape | [Ctrl/Space |

Upcase Region None

Upcase Word (: S T Y L E " E M A C S ") fEscape| ["VI

View Pile (: S T Y L E "E M A C S ") |CtriÖ<] [Ctri/F]

W hat Cursor
Position

(: S T Y L E " e m a c s ") r s w x i r r i

Write Current
Buffer

(: S T Y L E " E M A C S ") [CW X lfTl

Write Modified
Buffers

(: S T Y L E "E M A C S ") fCWXl [CtriTMl

Write Named Pile (: S T Y L E " EMAC S ") [ciFi/Xl [Ctri/Wl

Yank (: S T Y L E " E M A C S ") ICtrWl

Yank at Pointer3 (: S T Y L E " E M A C S ") | • X o |

Yank Previous (: S T Y L E " E M A C S ") [Escape! f y l

Description
Prompts for a prefix argument; if a prefix ar­
gum ent is already defined, m ultiplies it by the
number you enter.

Transposes the two characters preceding the
cursor.

Transposes the words at and preceding the cursor.

D eletes the previously yanked region without
pushing it onto the kill ring; more generally,
deletes the select region w ithout pushing it onto
the kill ring.

Cancels the current select region.

Changes all alphabetic characters in the current
select region to uppercase.

Changes all alphabetic characters in the word at
the cursor location to uppercase.

Prompts for a file specification, then reads the
specified file into a read-only buffer.

Displays information about the cursor location.

Writes out the current buffer; creates a new
file version or updates the LISP symbol whose
function or value slot is being edited.

Performs the " W r i t e C u r r e n t B u f f e r " operation
for each buffer that has been modified.

Prompts for a file specification, then creates a file
having that specification from the contents of the
current buffer.

Inserts the current kill-ring region at the cursor
location; inserts as m any copies as are specified by
the prefix argument.

Inserts the current kill-ring region at the pointer
cursor location.

Rotates the kill ring forward, then inserts the
new current kill-ring region at the cursor location;
inserts as m any copies as are specified by the
prefix argument.

8 Available only in UIS Pointer Syntax.

o i » I Pointer button transition: o button up; • button held down; j button pressed; | button released.
o » o I —» pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

(continued on next page)

Editor Commands and Key Bindings E -1 3

Table E-1 (Cent.): Editor Commands and Key Bindings

Name Binding! s) Description
Yank Replace
Previous

(: S T Y L E "E M A C S ") I Escape! IctFiTvl D eletes the previously yanked region, rotates the
kill ring forward, and inserts the new current k ill­
ring region at the cursor location; inserts as many
copies as are specified by the prefix argument.

o J » | Pointer button transition: o button up; • button held down; J. button pressed;] button released.
o » o | —» pointer movement with buttons in specified state.

Pointer buttons invoke command only when pointer cursor is in the current window.

E.2 Editor Key Bindings
Table E -2 lists the keys and key sequences th a t are bound to Editor commands
and the context in which they are bound. Some keys or key sequences are bound
to more th an one command. To find out which command a key or key sequence
will invoke, use the following procedure:

1. If your current buffer is " G e n e r a l P r o m p t i n g " (that is, you are typing in
response to a prompt) and the key or key sequence is bound to a command in
the context (: b u f f e r " G e n e r a l P r o m p t i n g ") , then the key or key sequence
invokes th a t command. If you have bound a key or key sequence to a
command in the context of a particu lar buffer, and th a t buffer is the current
buffer, then the key or key sequence invokes th a t command.

2. Otherwise, if the key or key sequence is bound to a command in one or more
minor styles, then the key or key sequence invokes the command to which it
is bound in the m ost recently activated m inor style. You can tell which m inor
style was activated m ost recently by examining the window’s label strip. The
label strip contains a list of the active m inor styles, with the m ost recently
activated style a t the front of the list.

3. Otherwise, if the key or key sequence is bound to a command in the current
major style, then the key or key sequence invokes th a t command. You can
identify the m ajor style by looking a t the label strip; it precedes the list
of m inor styles. (If the lis t of m inor styles is too long, the m ajor style is
omitted.)

4. Otherwise, if the key or key sequence is bound to a command in the : g l o b a l
context, then the key or key sequence invokes th a t command.

5. Otherwise, the key or key sequence is unbound; typing i t resu lts in an error.

Table E-2: Editor Key Bindings
Key(s) Context Command

Single Keys
| C trl/Space | (: BUFFER " G e n e r a l P r o m p t i n g ")

(: STYLE "EMACS")
Prompt Complete String
Set Select Mark

! Ctrl/A 1 (: STYLE "EMACS") Beginning of Line

(continued on next page)

E-14 Editor Commands and Key Bindings

Table E-2 (Cont.): Editor Key Bindings

Key(s) Context Command
Single Keys

[Ciri/Bj (: STYLE "EMACS") Backward Character

| Otrl/D | (: STYLE "EMACS") D elete N ext Character

[Ctri/E] (: STYLE "EMACS") End of Line
[Ctrl/F | (: STYLE "EMACS") Forward Character

I Ctrl/G | (: STYLE "EM ACS") Pause Editor
| Ctrl/H | or | Backspace | (: STYLE "EDT E m u l a t i o n ") EDT Back to Start of Line

[Tab) or |Ctrl/l| (: STYLE "VAX L I S P ") Indent LISP Line
|Ctrl/J| or | Linefeed | (: BUFFER " G e n e r a l P r o m p t i n g ")

(: STYLE "VAX L I S P ")
(: STYLE "EDT E m u l a t i o n ")

New Line
New LISP Line
EDT D elete Previous Word

| Ctrl/K 1 (: STYLE "EMACS") Kill Line

|Clrl/L| (: STYLE "EMACS") Redisplay Screen
| Return | or | Ctrl/M | (: BUFFER " G e n e r a l P r o m p t i n g ")

(: STYLE "EMACS")
: GLOBAL

Prompt Read and Validate
New Line
New Line

I Ctrl/N | (: STYLE "EMACS") N ext Line

| Ctrl/O | (: STYLE "EMACS") Open Line
|CW/P| (: STYLE "EMACS") Previous Line

I Ctrl/Rl '(: STYLE "EMACS") Backward Search

[ctri/f] (: STYLE "EMACS") Transpose Previous Characters
| ctn/u | (: STYLE "EMACS")

(: STYLE "EDT E m u l a t i o n ")
Supply EMACS Prefix
EDT D elete Previous Line

| Ctrl/V | (: BUFFER " G e n e r a l P r o m p t i n g ")
(: STYLE "EMACS")

Prompt Scroll Help Window
N ext Screen

|Ctrl/W| (: STYLE "EMACS")
(: STYLE "EDT E m u l a t i o n ")

Kill Region
Redisplay Screen

1 Ctrl/V I (: STYLE "EMACS") Yank

jctrl/Z | (: STYLE "EMACS")
: GLOBAL

Scroll Window Down
Execute Nam ed Command

fctriÄ] (■•STYLE "EM ACS") EMACS Forward Search

[Ctrl/?] (: STYLE "VAX L I S P ") Describe Word

1 Delete I or < 3 (: STYLE "EM ACS")
(: STYLE "EDT E m u l a t i o n ”)
: GLOBAL

D elete Previous Character
D elete Previous Character
D elete Previous Character

m (••STYLE "VAX L I S P ") Insert Close Paren and Match

keypad[T] (: STYLE "EDT E m u l a t i o n ") EDT Beginning of Line

keypad QH (: STYLE "EDT E m u l a t i o n ") EDT Move Word

keypad [T] (: STYLE "EDT E m u l a t i o n ") EDT End o f Line

keypad [T] (: STYLE ” EDT E m u l a t i o n ") EDT Move Character
keypad [T] (: STYLE "EDT E m u l a t i o n ") EDT Set Direction Forward

keypad [T] (: STYLE "EDT E m u l a t i o n ") EDT Set Direction Backward

(continued on next page)

Editor Commands and Key Bindings E-15

Table E-2 (Cont.): Editor Key Bindings

Key(s) Context Command
Single Keys

keypad [T] (:STYLE "EDT E m u l a t i o n ") EDT Cut

keypad [T] (.•STYLE "EDT E m u l a t i o n ") EDT Move Page

keypad [T] (:STYLE "EDT E m u l a t i o n ") EDT Scroll Window

keypad [T] (:STYLE "EDT E m u l a t i o n ") EDT Append

keypad [7] (:STYLE "EDT E m u l a t i o n ") Set Select Mark

keypad I Enter | (:BUFFER " G e n e r a l P r o m p t i n g ") Prompt Read and Validate

k e y p a d [7] (: STYLE "EDT E m u l a t i o n ") EDT Delete Character

keypad Q (:STYLE "EDT E m u l a t i o n ") EDT Delete Word

keypad [pf2] (:BUFFER " G e n e r a l P r o m p t i n g ") Prompt Help
(: STYLE "EDT E m u l a t i o n ") Help
:GLOBAL Help

keypad |PF3| (:STYLE "EDT E m u l a t i o n ") EDT Search Again

keypad]pf*| (:STYLE "EDT E m u l a t i o n ") EDT Delete Line

:GLOBAL Previous Line

ED :GLOBAL N ext Line

0 :GLOBAL Forward Character

E) :GLOBAL Backward Character

All graphics :GLOBAL Self Insert
characters

Single Keys (LK201 Keyboard Only)
EÜ (:STYLE "EDT E m u l a t i o n ") EDT Back to Start o f Line

[ÜH (:S T Y L E "EDT E m u l a t i o n ") EDT D elete Previous Word

:GLOBAL Help

@ :GLOBAL Execute Nam ed Command

EEH (:STYLE "EDT E m u l a t i o n ") EDT Query Search
| Insert Here | (:STYLE "EDT E m u l a t i o n ") EDT Paste

| R em ove | (:STYLE "EDT E m u l a t i o n ") EDT Cut
| S e lec t | (:STYLE "EDT E m u l a t i o n ") EDT Select
| Prev S c reen | :GLOBAL Previous Screen

| Next S c reen | : GLOBAL N ext Screen

(continued on next page)

E-16 Editor Commands and Key Bindings

Table E-2 (Cont.): Editor Key Bindings

Key(s) Context Command
Two-Key Sequences Starting with Ctrl/X

| C trl/X 11 C t r l / S p a c e | (: STYLE "VAX LISP") Select O uterm ost Form
1 C tr l/X I I Ctrl/AI (: STYLE "VAX LISP") Evaluate LISP Region
I C trl/X | | C trl/B I (:STYLE "EMACS") List Buffers
I C trl/X | | C trl/D | (: STYLE "EMACS") Delete C urrent Buffer
IC tr l/X I IC tr l/E I (: STYLE "EMACS") Ed

:GLOBAL Execute Keyboard Macro
IC tr l/X I IC tr l/F l (:STYLE "EMACS") View File
| C trl/X | |Tab| or (:STYLE "EMACS") In sert File
IC tr l/X I ICtrl/ll (: STYLE "VAX LISP") Inden t Outerm ost Form
| C trl/X | | R e tu r n | or (: STYLE "EMACS") Write Modified Buffers
I C trl/X | |Ctrl/M|

I C trl/X | [Ctrl/N I :GLOBAL N ext Window
I C trl/X | | C tr l/R | (:STYLE "EMACS") Read File

:GLOBAL Remove C urrent Window
IC tr l/X I IC trl/T I (:STYLE "EMACS") Show Time
I C trl/X | | Ctrl/V | (:STYLE "EMACS”) E dit File
I C trl/X | |C lrl/W | (:STYLE "EMACS") W rite Named File
1 C trl/X | | C trl/X I (:STYLE "EMACS") Exchange Point and Select M ark
| C trl/X | |Ctrl/Z| (:STYLE "EMACS") Shrink Window

:GLOBAL Pause Editor

12HE1LU :GLOBAL S ta rt Keyboard Macro
1 C tr l/X 11) | :GLOBAL End Keyboard Macro
1 Ctrl/X 11 , | (: STYLE "VAX LISP") Previous Form
I Ctrl/X | | . | (: STYLE "VAX LISP") Next Form
|C trl/X| | 1 | (: STYLE "EMACS") Remove O ther Windows
I Ctrl/X | | 2 | (: STYLE "EMACS") Split Window
ICtrl/XI I ; I (: STYLE "VAX LISP") Move to LISP Comment
|C trl/X| | < | (: STYLE "VAX LISP") Beginning of O uterm ost Form
|C trl/X| | > | (: STYLE "VAX LISP") End of O uterm ost Form
I Ctrl/X] | . | (: STYLE "EMACS") W hat Cursor Position
| Ctrl/X | | ? | :GLOBAL Help on Editor Error
1 Ctrl/X | | \ | :GLOBAL Quoted In sert
| Ctrl/X | | b | (:STYLE "EMACS") Select Buffer
I Ctrl/X 11 d | (:STYLE "EMACS") Remove C urren t Window
ICtrl/XI I e I :GLOBAL Execute Keyboard Macro
I Ctrl/X I I n I (:STYLE "EMACS") Previous Window
|C trl/X| | p | (:STYLE "EMACS") Next Window
ICtrl/XI I q I (:STYLE "EMACS") Quoted Insert
ICtrl/XI I s I (:STYLE "EMACS") W rite C urrent Buffer
I Ctrl/X | | z I (:STYLE "EMACS") Grow Window

(continued on next page)

Editor C ommand s and Key Bindings E-17

Table E-2 (Cont.): Editor Key Bindings

Key(s) Context Command
Two-Key Sequences Starting with Escape

I Escape | Ctrl/Space | (:STYLE "EMACS") U nset Select M ark

| Escape I Ctrl/D | (:STYLE "EMACS") Delete W hitespace

| Escape | Ctrl/G | (:STYLE "EMACS") Exit Recursive Edit

| Escape I Ctrl/U | (:STYLE "EMACS") Supply Prefix A rgum ent

| Escape |Ctrl/Vj (:STYLE "EMACS") Page Next Window

| Escape ICtrl/WI (:STYLE "EMACS") Undo Previous Yank
| Escape jctrl/YI (:STYLE "EMACS") Yank Previous Replace

| Escape m (:STYLE "EMACS") Line to Top of Window

| Escape □ (:STYLE "EMACS") Beginning of Window

| Escape □ (:STYLE "EMACS") End of Window

[E scape ED (:STYLE "EMACS") Beginning of Buffer

| E scape ED (:STYLE "EMACS") End of Buffer

| Escape cn (:STYLE "VAX LISP") Apropos Word

j E scape m (:STYLE "VAX LISP") Close O uterm ost Form
| E scape s (:STYLE "EMACS") Beginning of Paragraph

| E scape 1 b | (:STYLE "EMACS") Backward Word
t E scape 1 c 1 (:STYLE "EMACS") Capitalize Word

) Escape l d l (:STYLE "EMACS") Delete Next Word

| Escape 1 6 1 (:STYLE "EMACS") End of P aragraph

| Escape CD (:STYLE "EMACS") Forward Word

| Escape cm (:STYLE "EMACS") Kill P aragraph

1 Escape □ (:STYLE "EMACS") Downcase Word

| Escape CD (:STYLE "EMACS") Next P aragraph

| Escape CD (:STYLE "EMACS") Previous P aragraph
| Escape CD (:STYLE "EMACS") Query Search Replace
| Escape CD (:STYLE "EMACS") Transpose Previous Words

| E scape m (:STYLE "EMACS”) Upcase Word

| Escape CD (: STYLE "EMACS") Previous Screen
j Escape H (: STYLE "EMACS") Execute Nam ed Command

| Escape m (:STYLE "EMACS") Yank Previous

|Escape H (:STYLE "EMACS") Scroll Window Up

| Escape | Delete | or (:STYLE "EMACS") Delete Previous Word
| Escape <3

(continued on next page)

E-18 Editor C omm and s and Key Bindings

Table E-2 (Cont.): Editor Key Bindings

Key(s) Context Command
Two-Key Sequences Starting with Keypad PFl

k e y p a d [pfT] |T] (:STYLE "EDT Emulation") O p en L ine

k e y p a d [pfT] [7] (:STYLE "EDT Emulation") E D T C h an g e C ase

k e y p a d |pfi| IT] (:STYLE "EDT Emulation") E D T D ele te to E n d o f L ine

k e y p a d [pfT] [7] (:STYLE "EDT Emulation") E D T S pecia l I n s e r t

k e y p a d [pfT] [7] (:STYLE "EDT Emulation") E n d o f B u ffe r

k e y p a d [pfi| |~sl (:STYLE "EDT Emulation") B eg in n in g o f B u ffe r

k e y p a d |pfi| |~6~| (:STYLE "EDT Emulation") E D T P a s te

k e y p a d [pfT] [7] (:STYLE "EDT Emulation") E x ecu te N a m e d C o m m an d

k e y p a d |pfi| IT] (:STYLE "EDT Emulation") E D T R ep lace

k e y p a d]pfi| |~| (:STYLE "EDT Emulation") U n s e t S elec t M ark

k e y p a d [pfT| | E n t e r| (:STYLE "EDT Emulation") E D T S u b s t i tu te

k e y p a d |pfi| [~T1 (:STYLE "EDT Emulation") E D T U n d e le te C h a ra c te r

k e y p a d |pfi| p*l (:STYLE "EDT Emulation") E D T U n d e le te W ord

k e y p a d |pfi | |pfi| (:STYLE "EDT Emulation") S u p p ly P re fix A rg u m e n t

k e y p a d [pfT] [pfS] (:BUFFER "General Prompting") P ro m p t Show A lte rn a tiv e s

k e y p a d [pfT] [pf|] (:STYLE "EDT Emulation") E D T Q uery S e a rc h

k e y p a d [pfT] [pfä] (:STYLE "EDT Emulation") E D T U n d e le te L in e

Editor C ommands and Key Bindings E-19

Index

?
Debugger command

description, 4-9
Stepper command

description, 4-19

A____________________
"A ctiva te Minor S ty le " Editor command

using, D-3
Alien structure facility, 1-4
ALL

Debugger command modifier, 4-8
with BACKTRACE command, 4-12
with BOTTOM command, 4-10
with DECwindows, 10-5
with DOWN command, 4-10
with TOP command, 4-10
with UP command, 4-11

Alternatives
Editor prompt input, 3-7, 8-10

files, 3-7, 8-10
Anchored windows, 3-24, 8-14
Applications

moving between, A-4
running

as icons, A-5
APROPOS function

debugging information, 4—1
help, 1-7
invoking from DECwindows, 7-13

"Apropos" Editor command, 3-6, 8-8
APROPOS-LIST function

debugging information, 4-1
ARGUMENTS

Debugger command modifier, 4-8
with SET command, 4-11
with SHOW command, 4—11

Arrow keys
Editor usage, 3-14
specifying in BIND-COMMAND function, 3-31,

8-21

B
BACKTRACE

Debugger command
description, 4—12
(table), 4-7

stepper command
description, 4-19

BACKTRACE
stepper command (cont’d.)

(table), 4-18
"Backward Character" Editor command

"EMACS" style binding, D—4
"Backward Word" Editor command

"EMACS" style binding, D-4
"Beginning o f B u ffer" Editor command

"EMACS" style binding, D-4
"Beginning o f Line" Editor command

"EMACS" style binding, D—4
"Beginning o f Paragraph" Editor command

"EMACS " style binding, D—4
"Beginning o f Window" Editor command

"EMACS " style binding, D-4
"Bind Command" Editor command, 3—30, 8-20

specifying context, 3-31,8-20
specifying keys, 3-30, 8-20

BIND-COMMAND function, 3-31, 8-20
specifying context, 3-33, 8-22
specifying keys, 3-31,8-20

BIND-KEYBOARD-FUNCTION function
and ED function, 3-5
invoking the break loop, 4-3

BOTTOM
Debugger command

description, 4-10
(table), 4-7

BREAK function
debugging information, 4-1
invoking th e b reak loop, 4-3

Break loop, 1-4, 4-3 to 4—5
exiting, 4—4

from DECwindows, 10-6
invoking, 4-3

from DECwindows, 10-5
message, 4-3
prompt, 4-3
using, 4-4

from DECwindows, 10-7
variables, 4-5

BREAK-ON-WARNINGS variable, 4-9
Buffers

Editor
See Editor buffers

Button
defined, A-3

lndex-1

c_______________
CALL

Debugger command modifier, 4-8
with SHOW command, 4-11

Call-back facility, 1-4
Call-out facility, 1—4
Calling stack window

description, 10-10
making it disappear, 10-11
making it reappear, 10-11

" C a p i t a l i z e W o rd " Editor command
"EMACS" style binding, D-5

Characters
changing case with editor, 3—17,8-13
creating special keyboard, A-17
nongraphic

Editor representation, 3-13, 8-13
inserting with Editor, 3-13, 8-13
specifying in " B i n d C om m and", 3-30,

8-20
Checkpoint file, 3-29,8-18
Clear

menu item
clearing trace output, 10-19

Clicking
defined, A-2

Close menu item
Inspector, 9-8

CLX windows interface, 1-5
Command levels

Debugger, 4-6
stepper, 4-19
tracer, 4-25

Command modifiers
S ee Debugger

Commands
Editor

See Editor commands
Comments

LISP
inserting with Editor, 3-13

COMMON LISP, 1-1
COMPILE function, 1—3

compiling functions and macros, 2-5
invoking from DECwindows, 7-10

/COMPILE qualifier, 1-2
compiling files, 2-6
description, 2-10
modes, 2-10
(table), 2-8
with/ERROR_ACTION qualifier, 2-11
with /INITIALIZE qualifier, 2-12
with /LIST qualifier, 2-13
with /MACHINE_CODE qualifier, 2-14
with/NOOUTPUT_FILE qualifier, 2-16
with/OPTIMIZE qualifier, 2-15
with /OUTPUT_FILE qualifier, 2-16
with/VERBOSE qualifier, 2-16
with/WARNINGS qualifier, 2-17

C O M P IL E -F IL E function, 1-3
compiling files, 2-6
compiling files in DECwindows, 7-7

Compiler, 1-3
optim izations, 2—15

Compiling
LISP files from DECwindows, 6-4

Completion
Editor prompt input, 3-7, 8-9

files, 3-7, 8-10
Compose sequence

defined, A-17
CONTINUE

DCL command, 1-9
Debugger command

description, 4-9
(table), 4-7

CONTINUE function
exiting the break loop, 4-4

Control characters
Editor representation, 3-13, 8-13
inserting with Editor, 3-13, 8-13
specifying in " B i n d C om m and", 3—30, 8-20
specifying in BIND-COMMAND function, 3-31
(table), 2-4

Control stack, 4-2
Debugger, 4-5
stack frame

See Stack frame
/CSTACK qualifier

default size, 2-11
description, 2-11
minimum size, 2-11
(table), 2-8

Ctrl/C
prohibition in Editor key binding, 3-34, 8-23
recovering from an error, 2-4
to cancel Editor command, 3-5

Ctrl/O, 2-4
Ctrl/Q, 2-4

prohibition in Editor key bindinq, 3-34, 8-23
Ctrl/R, 2-4
Ctrl/S, 2-4

prohibition in Editor key binding, 3-34, 8-23
Ctrl/T, 2-4
Ctrl/U, 1-9, 2-4
Ctrl/X, 2-4
Ctrl/Y, 1-9, 2-4
Current direction

Editor, 3-14
Current stack frame, 4-5
Cursor

moving, A-17

D________________ _____
Data

structure, 1-1
DCL commands

CONTINUE, 1-9
entering, 1-9
LISP, 1-2, 2-1
STOP, 1-9

DEBUG
stepper command

description, 4-19
(table), 4-18

DEBUG function
debugging information, 4-1
invoking the Debugger, 4-5

Debug I/O Window
description, 10-10

DEBUG-CALL function, 4-12

lndex-2

DEBUG-CALL function (cont'd.)
debugging information, 4-1

: DEBUG-IF keyword
TRACE macro, 4-27

DEBUG-IO variable
Debugger, 4-5
stepper, 4-14

DEBUG-PRINT-LENGTH
control variable

and DECwindows, 10-5
DEBUG-PRINT-LENGTH variable

controlling output, 4-2
DEBUG-PRINT-LEVEL

control variable
and DECwindows, 10-5

DEBUG-PRINT-LEVEL variable
controlling output, 4-2

Debugger, 1-4, 4—5 to 4-14
caution box

entering Debugger from, 10-1
returning to top-level from, 10-1

commands
arguments, 4-8

entering, 4-8
descriptions, 4-9 to 4-12
modifiers (table), 4-8
(table), 4-7

exiting, 4-6, 4-9
from the DECwindows interface, 10-11

invoking, 4-5,4-19,4-27
from DECwindows, 10-9
from the Trace Options Dialog Box, 10-21

prompt, 4-6
sample sessions, 4-13
using, 4-7

Debugger commands
invoking with optional arguments

from the DECwindows interface, 10-11
modifiers, 10-14
taking arguments

invoking from DECwindows, 10-13
taking no arguments

invoking from DECwindows, 10-13
types of arguments, 10-13
using

from the DECwindows interface, 10-12
Debugger commands window

description of, 10-11
making it disappear, 10-11
making it reappear, 10-11

Debugging facilities, 1-4
S ee also Break loop, Debugger, Stepper, Tracer,

Editor
Debugging functions and macros (table), 4-1
Debugging utilities

using
from DECwindows, 10-1 to 10—23

DECwindows
and Debugger commands, 10-12

DECwindows interface
SET DISPLAY command, 6-1

DECwindows utilities
invoking, 7-11

DECwindows XUI Toolkit, 1-5
Default option

choosing, A-4, A-11

DEFMACRO macro
creating programs, 2-4

DEFUN macro
creating programs, 2-4

" D e l e t e C u r r e n t B u f f e r " Editor command,
3-27, 8-17

"EMACS" style binding, D-5
Delete key, 2-3
" D e l e t e N am ed B u f f e r " Editor command,

3-27, 8-17
" D e l e t e N e x t C h a r a c t e r " Editor command

"EMACS” style binding, D-4
" D e l e t e N e x t W o rd " Editor command

"EMACS" style binding, D-4
" D e l e t e P r e v i o u s C h a r a c t e r " Editor

command
"EMACS" style binding, D-4

" D e l e t e P r e v i o u s W o rd " Editor command
"EMACS" style binding, D—4

" D e l e t e W h i t e s p a c e " Editor command
"EMACS" style binding, D—4

DESCRIBE function
debugging information, 4-1
help, 1—7
invoking from DECwindows, 7-13
invoking from Editor, 3-6, 8-9

using pointer, 3-39
" D e s c r i b e " Editor command, 3-6, 8-8
Device, 1-7
Dialog box

components of, A-11
moving within, A-12

Directory, 1-7
Display

defining, 6-1
with SET DISPLAY, 6-1

Double clicking
defined, A-2

DOWN
Debugger command

description, 4-10
(table), 4-7

Debugger command modifier, 4-8
with SEARCH command, 4-10

" D o w n c a s e W o rd " Editor command
"EMACS" style binding, D -5

Dragging
defined, A-2

DRIBBLE function
debugging information, 4—1
invoking from DECwindows, 7-10

: DURING keyword
TRACE macro, 4-27

Dynamic memory, 2-14

E________________________
ED function

and BIND-KEYBOARD-FUNCTION, 3-5
debugging information, 4-1
resuming Editor with, 3-4
starting Editor with, 3-3, 8-3

" E d " Editor command, 3-26,8-16
"EMACS" style binding, D-6

" E d i t F i l e " Editor command, 3-26
"EMACS" style binding, D-6

Index-

Editing keys
specifying in BIND-COMMAND function, 3-31,

8-21
Editor, 1-3

checkpointing, 3-29,8-18
checkpointing file

file type, 1-9
copying text, 3-17
creating programs, 2-4
cursor movement, 3-14

by LISP entities, 3-15
current direction, 3-14
moving by lines, 3-14
moving by words, 3-14
searching, 3-15
using pointer, 3-38

customizing, 3-29
debugging facility, 4-29
DECwindows default pointer bindings, 8-11
errors while using, 3-7,8-10
evaluating code

in the DECwindows environment, 8-5
exiting, 3-9

by deleting VWS VAXstation window, 3-37
from the DECwindows environment, 8-7

getting help, 3-6, 8-8
in the DECwindows environment, 8-8

help menu
in the DECwindows environment, 8-8

help on Editor objects
in the DECwindows environment, 8-8

help window, 3-6, 8-8
removing, 3-6, 8-8
scrolling, 3-6, 8-8

information area, 3-4
invoking, 3-3
invoking from DECwindows menus, 8-2
invoking in DECwindows, 8-3
keyboard macros, 3-35, 8-24
label strip, 3-4
loading files, 2-5
menus, 8-1
modifying function and macro definitions, 2-6
moving text, 3-16, 3—17

using pointer, 3-38
overview of operation, 3-2
pausing, 3-8

on VWS VAXstation, 3-37
protection against work loss, 3-29, 8-18
refreshing the screen, 3-8
repeating operations, 3-19
restoring deleted text, 3-16
resuming, 3—4

in the DECwindows environment, 8-6
returning to LISP

in the DECwindows environment, 8-6
saving work, 3-8

in the DECwindows environment, 8-5
searching, 3-15
substituting in text, 3-18
table of commands, E-1
text deletion, 3-16

by characters, 3-16
bylines, 3-16
bywords, 3-16

text insertion, 3-11
in the DECwindows environment, 8-4

Editor (cont'd.)
typing LISP code, 3-12
undeleting text, 3-16
using on VWS VAXstation, 3-36

editing with pointer, 3-37
Editor buffers, 3-23, 8-14

as context, 3-34, 8-23
creating, 3-23, 8-14

from within Editor, 3-26, 8-16
current buffer, 3-23, 8-14

changing, 3-24, 8-14
deleting, 3-27, 8-17
displaying more than two, 3-28, 8-18
" G e n e r a l P r o m p t i n g " , E-14
information maintained by, 3-26, 8-16
inserting into other buffers, 3-18, 8-13
listing, 3-24,8-14
moving text between, 3-28, 8-18
moving to endpoints, 3-14
name conflicts, 3-27,8-17
saving contents, 3-26,8-17
selecting, 3-25, 8-15

Editor commands, 3-5
binding keys to, 3-30, 8-19

conflicts in "EMACS" style, D-1
from LISP interpreter, 3-31,8-20
key binding shadowing, 3-35, 8-24
multiple bindings, E-14
table of bindings, E-1
table of bindings by key, E-14
within Editor, 3-30, 8-20

buffer and window
summary, 3-28

canceling, 3-5
capturing sequences of, 3-35, 8-24
creating

with " S t a r t N am ed K e y b o a r d M a c r o "
3-35, 8-25

customizing
summary, 3-36

descriptions, E-1
editing

summary, 3-19
general-purpose

summary, 3-9
invoking with keys, 3-5
issuing, 3-5
repeating, 3-19
typing, 3-5
using

in the DECwindows environment, 8-4
Editor context

buffer, 3-34, 8-23
effect on key bindings, 3-34, 8-23
effect on keyboard macro execution, 3-36, 8-25
global, 3-34, 8-24
order of search, 3-35, 8-24
specifying

in "B in d Command", 3-31, 8-20
styles, 3-34,8-24

Editor styles, 3-34, 8-24
as context, 3-34, 8-24
major style, 3-35, 8-24
minor style, 3-35, 8-24
order of search, 3-35, 8-24

Index-4

Editor window
with two buffers

in the DECwindows environment, 8-7
Editor windows, 3-23,8-14

anchored windows, 3-24,8-14
changing size, 3-27,8-18
creating, 3-23, 8-14
current window, 3-23,8-14

changing, 3-24, 8-14
changing with pointer, 3-38

floating windows, 3-25, 8-16
removing, 3-25, 8-15

with pointer, 3-38
scrolling text in, 3-14
splitting, 3-27, 8-18

"EDT E m u l a t i o n " Editor style, 3-34, 8-24
"EMACS B a c k w a r d S e a r c h " Editor command

"EMACS" style binding, D-4
"EMACS F o r w a r d S e a r c h " Editor command

"EMACS" style binding, D-4
"EMACS" Editor style, D-1

activating, D-2
as major style, D-3
as minor style, D-3

key binding conflicts, D-1
key bindings, D-3

" E n d o f B u f f e r " Editor command
"EMACS" style binding, D-4

" E n d o f L i n e " Editor command
"EMACS" style binding, D-4

" E n d o f P a r a g r a p h ” Editor command
"EMACS" style binding, D-4

" E n d o f W in d o w ” Editor command
"EMACS" style binding, D-4

Error
listing

file type, 1-9
messages

Debugger, 4-11
warnings, 2-17

ERROR
Debugger command

description, 4-11
(table), 4-7

Error handler, 1-3
debugging information, 4-1

Error m essages
Editor, 3-7,8-10

Errors
Editor protection against file loss, 3-29, 8-18
while using Editor, 3-7, 8-10

/ERROR_ACTION qualifier, 2-11
S ee also *ERROR-ACTION * variable
description, 2-11
modes, 2-10
(table), 2-8
with/INITIALIZE qualifier, 2-12

ESCAPE character
transmitting, 3-34, 8-23

EVAL function, 1-1
invoking from DECwindows, 7-11

EVALUATE
Debugger command

description, 4—9
(table), 4-7

stepper command
description, 4—19

EVALUATE
stepper command (cont’d.)

(table), 4-18
" E x c h a n g e P o i n t a n d S e l e c t M a rk " Editor

command
"EMACS" style binding, D-5

" E x e c u t e K e y b o a r d M a c r o " Editor command
"EMACS " style binding, D-6

" E x e c u t e N am ed C om m and" Editor command
"EMACS" style binding, D-6

E X IT function
exiting LISP, 2-2
exiting LISP in DECwindows, 7-3

" E x i t R e c u r s i v e E d i t " Editor command
"EMACS" style binding, D-6

" E x i t " Editor command, 3-9, 3-26, 8-17

F_________________________
Fast-loading file, 2-6, 2-10

file type, 1-9
File

compiling, 2-6
loading, 2-4
name, 1-8
specification

S ee also Pathnames, Namestrings
components, 1-7 to 1-8
defaults (table), 1-9
format, 1-7

type, 1-8
version number, 1-8

Files
creating

from Editor, 3-8
editing with Editor, 3-3, 8-4

saving edited version, 3-8
Editor checkpoint file, 3-29, 8-18
Editor input completion, 3-7,8-10
Editor protection against loss, 3-29, 8-18
inserting in Editor buffer, 3-18, 8-13

FINISH stepper command
description, 4-20
(table), 4-18

Floating windows, 3-25, 8-16
" F o r w a r d C h a r a c t e r " Editor command

"EMACS" style binding, D—4
" F o r w a r d W o rd " Editor command

"EMACS" style binding, D-4
Function

compiling, 2-5
defining, 2-4
modifying, 2-6

FUNCTION
Debugger command modifier, 4-8

with SET command, 4—11
with SHOW command, 4-11

Function keys
specifying

in " B i n d C om m and" Editor command,
3-30, 8-20

in BIND-COMMAND function, 3-31,8-21
Functions

editing definition, 3-3, 8-4
moving back to LISP, 3-8

evaluating
in Editor, 3 - 8

lndex-5

G________________________
Garbage collection

Inspector, 9-5
Garbage collector

suspended systems, 2-18
" G e n e r a l P r o m p t i n g " Editor buffer, E—14
Global

definitions, 4-5
variables, 4-5

GOTO
Debugger command

description, 4—10
(table), 4-7

Graphics interface, 1-5
"G ro w W in d o w " Editor command, 3—27,8—18

"EMACS" style binding, D-5

H________________________
Help

choosing topics, A-19
DECwindows, 1-7
Editor, 3-6

in the DECwindows environment, 8-8
invoking, A-18

with Help key and MB1, A-19
navigating, A-19
requesting on objects, A-18
screen objects, 7-13
searching, A-20

HELP
Debugger command

description, 4-9
(table), 4-7

stepper command
description, 4-19
(table), 4-18

Help command, A-18
Help facilities

DCL, 1-6
Debugger, 4-9
in DECwindows, 7-12
LISP, 1-7
stepper, 4-19

Help key
using, A-19

HELP or ?
Debugger command

(table), 4-7
HELP stepper command

(table), 4-18
Help window

illustrated, A-18
HERE

Debugger command modifier, 4-8
with BACKTRACE command, 4-12
with SHOW command, 4-11

History window, 9-9 to 9-10

I___________________________________
Icon

expanding to a window, A-6
Icon Box

storing icon in, A-5
Information area, 3-4

/INITIALIZE qualifier
description, 2-12
modes, 2-10
(table), 2-8
with/COMPILE qualifier, 2-10
with/RESUME qualifier, 2-16
with /VERBOSE qualifier, 2-16

Input focus
defined, A-3
giving to a window, A-4, A-7

" I n s e r t B u f f e r " Editor command, 3-18, 3-28,
8-13, 8-18

" I n s e r t F i l e " Editor command, 3-18,8-13
"EMACS" style binding, D-5

Insignificant stack frame, 4-3
IN SPE C T function, 9-3, 9-5

See also Inspector
debugging information, 4—1

Inspector
asynchronous mode, 9-4
closing windows, 9-8
default mode of operation, 9-4
description, 1-3, 9-1
Exit command, 9-5
exiting, 9-5
garbage collection, 9-5
History window, 9-9 to 9-10
inspect windows, 9-8 to 9-9
inspectable data types (table), 9-6
inspecting objects, 9-5 to 9-9
invoking, 9-2
locking windows, 9-8
modes of operation, 9-4 to 9-5
modifying objects, 9-10 to 9-11
pointers, 9-3, 9—4
removing objects, 9-8 to 9-9
returning values, 9-13 to 9-14
status flag, 9-3, 9-9
synchronous mode, 9-5
unlocking windows, 9—8
updating, 9-12 to 9-13

/INTERACTIVE qualifier, 1-2
description, 2-13
modes, 2-10
(table), 2-8

Interpreter, 1-3
creating programs, 2-4

Interrupt function facility, 1-5

K__________________________
Keyboard macros, 3-35, 8-24

named, 3-35, 8-25
Keypad

numeric
See Numeric keypad

Keys
binding to commands, 3-30, 8-19
binding to Editor commands

conflicts in "EMACS" style, D-1
from LISP interpreter, 3-31,8-20
key binding shadowing, 3-35, 8-24
multiple bindings, E-14
selecting key or sequence, 3-33, 8-23
specifying in " B i n d C om m and", 3-30,

8-20

Index-6

Keys
binding to Editor commands (cont'd.)

specifying in BIND-COMMAND function,
3-31,8-20

table of bindings, E-14
table of bindings by command, E-1
within Editor, 3-30, 8-20

function
S ee Function keys ,

text editing, A-17
" K i l l L i n e " Editor command

"EMACS" style binding, D-5
" K i l l P a r a g r a p h " Editor command

"EMACS" style binding, D-5
" K i l l R e g i o n " Editor command

"EMACS" style binding, D-5

L_________________________
Label strip, 3-4
Limit

on Inspect windows, 9-8
" L i n e t o T o p o f W in d o w " Editor command

"EMACS” style binding, D-4
LISP

command, 1-2, 2-1
qualifier descriptions, 2-7 to 2-18
qualifier modes (table), 2-9
qualifiers (table), 2-8

exiting, 2-2
invocation from DECwindows, 6-1
invoking, 2—1
invoking with LISP.EXE, 6-2
program, 1-1

compiling, 2-5
creating, 2-4
loading

See File
programming language, 1-1
prompt, 2-1
storage allocation, 1-1

See also Memory
suspended systems, 2-18

LISP code
indenting with Editor, 3-13
typing an d form atting with Editor, 3—12

LISP.EXE
for LISP invocation, 6-2

List box
selecting from, A-12

" L i s t B u f f e r s " Editor command, 3-24,8-14
"EMACS" style binding, D-5

" L i s t K e y B i n d i n g s " Editor command, 3—5
/LIST qualifier

description, 2-13
modes, 2-10
(table), 2-8
with/COMPILE qualifier, 2-10

Listener
compiling files, 7-7
editing objects, 7-2
editing text, 7-2
entering LISP forms, 7-2
evaluating expressions, 7-1
file selection box, 7-6
help menu, 7-12

Listener (cont'd.)
input region, 7-2
invoking the Editor, 7-8
loading files, 7-6
program interruption, 7-12
saving text, 7-8
selecting objects, 7-2, 7-3
selecting text, 7-2, 7-3
transcript region, 7-2

Listing file, 2-13
LOAD function, 2-5,2-12
Lock menu item

Inspector, 9-8
Logical names, 1-9

M_____________________ ____
Machine-code listing, 2-14
/MACHINE_CODE qualifier, 2-14

modes, 2-10
(table), 2-8
with/COMPILE qualifier, 2-10

Macro
compiling, 2-5
defining, 2-4
modifying, 2-6

Major style, 3-35, 8-24
default, D-3
establishing default, D-3

MB1, MB2, MB3
defined, A-1

Memory
control stack, 4-2
dynamic, 2-14
read-only, 2-14
static, 2-14

/MEMORY qualifier
description, 2-14
modes, 2-10
(table), 2-8

Menu
S ee Option menu; Pop-up menu; Pull-down menu;

Submenu
Minor style, 3-35, 8-24

activating
from Editor, D-3
from LISP interpreter, D-3

activation, 3-35, 8-24
default, D-3
determining most recently activated, E-14

Modifiers
S ee Debugger

Modify menu item
Inspector, 9-10

Mouse
illustrated, A-1
using, A-1

N__________________________
"N ew L IS P L i n e " Editor command, 3-13
" N e x t L in e " Editor command

"EMACS" style binding, D-4
" N e x t P a r a g r a p h " Editor command

"EMACS" style binding, D-4
" N e x t S c r e e n " Editor command

"EMACS" style binding, D-4

lndex-7

" N e x t W in d o w " Editor command
"EMACS" style binding, D-5

Node, 1-7
/NOINITIALI2E qualifier

modes, 2-10
/NOLIST qualifier

description, 2-13
modes, 2-10
(table), 2-8
with /COMPILE qualifier, 2-10
with /MACHINE_CODE qualifier, 2-14

/NOMACH!NE_CODE qualifier
description, 2-14
modes, 2-10
(table), 2-8
with/COMPILE qualifier, 2-10

/NOOPTIMIZE qualifier
modes, 2-10

/NOOUTPUT_FILE qualifier
description, 2-16
modes, 2-10
(table), 2-9
with/COMPILE qualifier, 2-10

NORMAL
Debugger command modifier, 4-8

with BACKTRACE command, 4-12
/NOVERBOSE qualifier

description, 2-16
modes, 2-10
(table), 2-9
with/COMPILE qualifier, 2-10

/NOWARNINGS qualifier
description, 2-17
modes, 2-10
(table), 2-9
with/COMPILE qualifier, 2-10

Null lexical environment
break loop, 4-5
tracer, 4-26

Numeric keypad
Editor use of, 3-10
illustration, 3-12

Numeric keypad keys
specifying in BIND-COMMAND function, 3—31,

8-21

o ___________________________
" O p e n L i n e " Editor command

"EMACS" style binding, D-5
/OPTIMIZE qualifier

description, 2-15
modes, 2-10
(table), 2-8
with /COMPILE qualifier, 2-10

Option button
defined, A-11
using, A-12

Option menu
displaying, A-10

Outermost form
making select region from, 3-17

/OUTPUT_FILE qualifier
description, 2-16
modes, 2—10
(table), 2-9

/OUTPUT_FILE qualifier (cont’d.)
with/COMPILE qualifier, 2-10

OVER stepper command
description, 4—20
(table), 4-18

P________________________
" P a g e N e x t W in d o w " Editor command

"EMACS " style binding, D -5
: PARALLEL keyword

INSPECT function, 9-3, 9-5
Parentheses

matching with Editor, 3-12
using pointer, 3-39

Password, A-3
Paste buffer, 3—17

appending text to, 3 -1 7
Paste menu item

Inspector, 9-11
" P a u s e E d i t o r " Editor command, 3 -8

effect on buffers, 3 -2 6
"EMACS" style binding, D-6

Pending delete
defined, A-16

Pointer
determining Editor commands bound to, 3-39

Pointers
Inspector, 9-4

Pointing
defined, A-2

Pointing device
VWS VAXstation

using in Editor, 3-37
Pop-up menu

displaying, A-9
: PO S T -D E B U G -IF keyword

TRACE macro, 4—27
: P O S T -P R IN T keyword

TRACE macro, 4—27
:P R E -D E B U G -IF keyword

TRACE macro, 4-27
: P R E -P R IN T keyword

TRACE macro, 4—27
Prefix argument, 3-19

entering, 3-19
negative, 3-19

Pressing
defined, A-2

Pretty printer, 1-4
" P r e v i o u s L i n e " Editor command

"EMACS " style binding, D-4
" P r e v i o u s P a r a g r a p h " Editor command

"EMACS" style binding, D-4
" P r e v i o u s S c r e e n " Editor command

"EMACS" style binding, D—4
" P r e v i o u s W in d o w " Editor command

"EMACS" style binding, D-5
: PR IN T keyword

TRACE macro, 4-27
Problem Report dialog box

illustrated, A—4
Prompt

break loop, 4-3
Debugger, 4—6
Editor

completing input, 3-7, 8-9

lndex-8

Prompt
Editor (cont’d.)

displaying alternative choices, 3—7, 8-10
help on, 3-6, 8-8

LISP, 2-1
stepper, 4-14
top-level, 2-1

Pull-down menu
displaying, A-8

Push button
defined, A-11

Push-to-back button, A-7 to A-8
using, A-7

Q________________________
"Query Search Replace" Editor command,

3-18
"EMACS" style binding, D-5

QUICK
Debugger command modifier, 4-9

with BACKTRACE command, 4—12
QuickCopy

copying text with, A-16
QUIT

Debugger command, 4-6
description, 4-9
(table), 4-7

stepper command
description, 4-19
exiting stepper, 4-15
(table), 4-18

"Quoted Insert" Editor command
"EMACS" style binding, D-5

R________________________
"Read File" Editor command

"EMACS" style binding, D-6
Read-only memory, 2-14
"Redisplay Screen" Editor command

"EMACS" style binding, D-6
REDO

Debugger command
description, 4—10
(table), 4—7

"Remove Current Window" Editor command
"EMACS" style binding, D-5

Remove menu item
Inspector, 9-8 to 9-9

"Remove Other Windows" Editor command,
3-25, 8-15

"EMACS” style binding, D-5
Resize button

using, A-4
Resize cursor, A-4
/RESUME qualifier, 2-19

description, 2-16
modes, 2-10
(table), 2-9
with/INITIALIZE qualifier, 2-12
with /MEMORY qualifier, 2-14

RETURN
Debugger command

description, 4-10
(table), 4-7

RETURN (cont'd.)
key

as a stepper command, 4-20
stepper command

description, 4-20
(table), 4-18

Return key
entering

Debugger command arguments, 4-7
Debugger commands, 4-7
stepper commands, 4-17

Returning values
from the Inspector, 9-13 to 9-14

ROOM function
debugging information, 4-1
specifying memory, 2-14

s____________________
Scale

defined, A-11
using, A-12

Screen
refreshing, in Editor, 3-8

Screen object
defined, A-19

Scroll bar
using, A-13

Scroll region, A-13
"Scroll Window Down" Editor command

"EMACS" style binding, D—4
"Scroll Window Up" Editor command

"EMACS" style binding, D-4
Scrolling, A-13
SEARCH

Debugger command
description, 4-10
(table), 4—7

"Select Buffer" Editor command, 3-25,8-15
"EMACS" style binding, D-5

Select region
canceling, 3-17
changing case of, 3-17
defining, in Editor, 3-17
from outermost form, 3-17
marking with pointer, 3-38
replacing with paste buffer, 3-17

Selecting
text fields, A-3

Session
ending, A-21
putting on hold, A-20
starting, A-3

Session Manager, A-21
SET

Debugger command
description, 4-11
(table), 4-7

SET DISPLAY
command

for defining display, 6-1
"Set Select Mark" Editor command

"EMACS" style binding, D-5
Shift clicking

defined, A-2

lndex-9

SHOW
Debugger command

description, 4-11
(table), 4-7

stepper command
description, 4—19
(table), 4-18

" Show T im e " Editor command
"EMACS" style binding, D-6

"Shrink Window" Editor command, 3-27, &-18
"EMACS" style binding, D-5

Shrink-to-icon button, A-5
Significant stack frame, 4-3
Slider

using in scroll bar, A-13
Source file

file type, 1-9
" Split Window" Editor command, 3-27, 8-18

"EMACS" style binding, D-5
Stack frame, 4-3

current, 4-5
insignificant, 4-3
number

Debugger command argument, 4-8
stepper output, 4-15
tracer output, 4-25

significant, 4-3
Stack frames

insignificant
showing from DECwindows, 10-5

"Start Named Keyboard Macro" Editor
command, 3-35, 8-25

Static memory, 2-14
Status flag

Inspector, 9-3, 9-9
STEP

Debugger command
description, 4-10
(table), 4-7

stepper command
description, 4-20
(table), 4-18

STEP macro
debugging information, 4-1
invoking stepper, 4-14

* STEP-ENVIRONMENT* variable, 4-21
* STEP-FORM* variable, 4-20
: STEP-IF keyword

TRACE macro, 4-27
Stepper, 1-4, 4-14 to 4-24

commands
arguments, 4-18
descriptions, 4-19 to 4-20
(table), 4-18

exiting, 4-15,4-19
from DECwindows, 10-16

invoking, 4-10,4-14,4-27
from the DECwindows interface, 10-15
from the Trace Options Dialog Box, 10-22

output, 4-15
prompt, 4-14
sample sessions, 4-23
stepping through a form, 10-16
using, 4—17

from the DECwindows interface, 10-14

Stepper commands
requiring arguments

D ECwindows display, 10-17
taking no arguments

DECwindows display, 10-17
taking optional arguments

DECwindows display, 10-17
using

from the DECwindows interface, 10-17
Stepping arrow, A-13
STOP command, 1-9
Storage allocation, 1-1

S ee also Memory
String

searching for
with Editor, 3-15

Submenu
displaying, A-9

Subprocess
exiting from, 2-20

Subprocesses
connecting to, 2-20
creating, 2-19
using, 2-19

"Supply EMACS Prefix" Editor command
"EMACS " style binding, D-6

"Supply Prefix Argument" Editor command
"EMACS" style binding, D-6

: SUPPRESS-IF keyword
TRACE macro, 4-27

SUSPEND function
creating suspended systems, 2-18
invoking from DECwindows, 7-9

Suspended system
creating, 2-18
creating in DECwindows, 7-9
file type, 1-9
garbage collector, 2-18
resuming, 2-16,2-19

Symbolic expressions, 1-1
Symbols

editing function definition, 3-3, 8—4
moving back to LISP, 3-8

editing value, 3-3, 8-4
moving back to LISP, 3-8

System
suspended

See Suspended system

T_____________________
"ox:

changing case of characters, 3-17, 8-13
copying, A-15 to A-16

between windows, A-15 to A-16
copying with Editor, 3-17
cutting and pasting, 3-17
deleting, A-17
deleting with Editor, 3-16

restoring deleted, 3-16
editing, A-14, A-17
inserting with Editor, 3-11

starting new line, 3-12
moving between Editor buffers, 3-28, 8-18
moving between windows, A-16
moving with Editor, 3-16, 3-17

lndex-10

Text (cont’d.)
selecting, A-15, A-16
substituting in, 3-18

Text entry fields
defined, A-3
moving between, A-12
selecting, A-3
typing in, A-11

TIME macro
debugging information, 4-2

Title bar
moving a window with, A-6

Toggle button
defined, A-11
using, A-12

TOP
Debugger command

description, 4-10
(table), 4-7

Debugger command modifier, 4—9
with BACKTRACE command, 4—12

Top-level loop
prompt, 2-1
variables, 2-2

Trace
Operations menu item, 10-18

TRACE macro
debugging information, 4-2
enabling the tracer, 4-24
options, 4-26

Trace Options Dialog Box, 10-21
* TRACE - CALL * variable, 4-28
* TRACE-OUTPUT* variable

tracer, 4-24
* TRACE-VALUES* variable, 4-28
Trace...

Operations menu item, 10-18
Tracer, 1-4, 4-24 to 4-29

clearing trace output, 10-19
disabling, 4-25

from a command line in DECwindows, 10-20
from the DECwindows interface, 10-20

enabling, 4-24
from the DECwindows interface, 10-18
with the Operations menu, 10-18

options
add ing to ou tpu t, 4—2 7
defining when to trace a function, 4-27
invoking the Debugger, 4-27
invoking the stepper, 4-27
removing information from output, 4-27

output, 4-25
using

with the DECwindows interface, 10-18 to
10-23

Tracer options
specifying

from the DECwindows interface, 10-21
Tracer output

adding information to
with the DECwindows interface, 10-23

modifying
from the DECwindows interface, 10-21

removing information from
with the DECwindows interface, 10-23

"Transpose Previous Characters" Editor
command

"EMACS" style binding, D-5
"Transpose Previous Words" Editor command

"EMACS" style binding, D-5

u _____________________________
UNCOMPILE function

retrieving interpreted definitions, 2-6
Undo menu item

Inspector, 9-11
"Undo Previous Yank" Editor command

"EMACS" style binding, D-5
Unlock menu item

Inspector, 9-8
"Unset Select Mark" Editor command

"EMACS" style binding, D-5
UNTRACE macro

debugging information, 4-2
disabling the tracer, 4-25
invoking from a menu, 10-20

UP
Debugger command

description, 4-11
(table), 4-7

Debugger command modifier, 4-9
SEARCH Debugger command, 4-10

stepper command
description, 4-20
(table), 4-18

"Upcase Word" Editor command
"EMACS" style binding, D-5

Update command
Inspector, 9-12 to 9-13

User name, A-3

V _____________________________________
Variable bindings window

description of, 10-11
making it disappear, 10-11
making it reappear, 10-11

"VAX L I S P " Editor style, 3 -34 , 8 -24
automatic activation, 3-35 , 8 -24

VAXstation
VWS

using Editor, 3-36
using pointing device in Editor, 3-37

VERBOSE
Debugger command modifier, 4-9

with BACKTRACE command, 4-12
/VERBOSE qualifier

description, 2-16
loading files, 2-5
modes, 2-10
(table), 2-9
with /COMPILE qualifier, 2-10
with/INITIALIZE qualifier, 2-12
with /LIST qualifier, 2-13

Version number, 1-8
"V iew F i l e " Editor command

"EMACS" style binding, D-6
VMS file specification

S ee File

lndex-11

w__________________
/WARNINGS qualifier

description, 2-17
modes, 2-10
(table), 2-9
with /COMPILE qualifier, 2-10

"W h a t C u r s o r P o s i t i o n " Editor command
"EMACS" style binding, D-6

WHERE
Debugger command

description, 4-11
(table), 4-7

Window
See also Windows
defined, A-2
directing typing to, A-4
locking in the stacking order, A-7
moving, A-6
moving to front of stack, A-7
releasing from a fixed stacking order, A-8
resizing, A-4
selecting, A-4, A-7
shrinking, A-5

Windows
copying text between, A-15 to A-16

Editor
See Editor windows

moving text between, A-16
overlapping, A-7
stacking, A-7

Workstation
locking, A-20

" W r i t e C u r r e n t B u f f e r " Editor command,
3-8, 3-26, 8-17

"EMACS" style binding, D-6
" W r i t e M o d i f i e d B u f f e r s " E d i t o r

command, 3-8, 3-26, 8-17
"EMACS" style binding, D-6

" W r i t e N am ed F i l e " Editor command, 3-8
"EMACS" style binding, D-6

Y________________________
" Y a n k P r e v i o u s " Editor command

"EMACS" style binding, D-5
" Y a n k R e p l a c e P r e v i o u s " Editor command

"EMACS" style binding, D-5
" Y a n k " Editor command

"EMACS" style binding, D-5

Index-12

HOW TO ORDER ADDITIONAL DOCUMENTATION

From Call W rite

Alaska, Hawaii,
or New Ham pshire

603-884-6660 Digital Equipm ent Corporation
P.O. Box CS2008
N ashua NH 03061

Rest of U .SA.
and Puerto Rico1

800-DIGITAL

1Prepaid orders from Puerto Rico, call D igital’s local subsidiary (809—754—7575)

Canada 800-267-6219
(for software
documentation)

Digital Equipm ent of Canada Ltd.
100 Herzberg Road
K anata, Ontario, Canada K2K 2A6
Attn: Direct Order Desk

613-592-5111
(for hardw are
documentation)

In ternal orders
(for software
documentation)

— Software Supply Business (SSB)
Digital Equipm ent Corporation
W estm inster MA 01473

In ternal orders
(for hardw are
documentation)

DTN: 234-^323
508-351-4323

Publishing & Circulation Services (P&CS)
N R03-1/W 3
Digital Equipm ent Corporation
Northboro MA 01532

Reader’s Comments VAX LISP/VMS Program Development Guide
AA-MK69A-TE

Your comments and suggestions will help us improve the quality of our future documentation. Please note
that this form is for comments on documentation only.
I r a te th is m a n u a l’s: Excellent Good Fair Poor
Accuracy (product works as described) □ □ □ □
Completeness (enough information) □ □ □ □
Clarity (easy to understand) □ □ □ □
Organization (structure of subject matter) □ □ □ □
Figures (useful) □ □ □ □
Exam ples (useful) □ □ □ □
Index (ability to find topic) □ □ □ □
Page layout (easy to find information) □ □ □ □

What I like best about this manual:

What I like least about this manual:

I found the following errors in this manual:
Page Description

My additional comments or suggestions for improving this manual:

Please indicate the type of user/reader that you most nearly represent:

□ Administrative Support
□ Computer Operator
□ Educator/Trainer
□ Programmer/Analyst
□ Sales

□ Scientist/Engineer
□ Software Support
□ System Manager
□ Other (please specify)

Name/Title ___
Company ____
Mailing Address

Dept. _____
______ Date

Phone

10/87

— Do Not Tear — Fold Here and Tapemm
BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CO RPO RA TE USER PUBLICATIONS
PK O 3-1/30D
129 PARK ER STR EET
MAYNARD, MA 01754-2198

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

— — Do Not Tear — Fold Here

i

C
ut

 A
lo

ng
 D

ot
te

d
Li

ne

