
VAX LISP/VMS System-Building Guide
Order Number: AA-KM37B-TE

This revised manual provides the information needed to create executable LISP images with
the VAX LISP System-Building Utility on VMS systems.

Revision/Update Information: This manual supersedes VAX LISP/VMS System-Building
Guide, AA-KM37A-TE.

Operating System and Version: VMS Version 5.1
Software Version: VAX LISP Version 3.0

digital equipment corporation
maynard, m assachusetts

First Printing, July 1987
Revised, July 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.
The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.
No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1987, 1989.

All rights reserved.
Printed in U.S.A.
The postpaid Reader's Comments form at the end of this document requests your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:
AI VAXstation
DEC
DECnet
DECUS
MicroVAX
MicroVAX II
MicroVMS

PDP
ULTRIX
ULTRIX-11
ULTRIX—32
UNIBUS
VAX
VAX LISP

VAX LISP/ULTRIX
VAX LISP/VMS
VAXstation
VAXstation II
VMS

X Window System™ is a trademark of the Massachusetts Institute of Technology.
ML-S830

This document was prepared using VAX DOCUMENT, Version 1.1.

Contents

P re fa c e .. v

Chapter 1 Overview of the System-Building Utility

1.1 Features of a User-Built S y s t e m ... 1-1

1.2 Differences from a Suspended S y stem ... 1-2

1.3 Generic System-Building P rocedure... 1-3

1.4 Preparing to Use the System-Building U tility ... 1-4
1.4.1 Digital-Supplied F i l e s .. 1—4
1.4.2 Disk Space and Memory... 1-4

Chapter 2 DEFINE-LISP-SYSTEM Function

2.1 Format and Behavior of DEFINE-LISP-SYSTEM....................................... 2-1
DEFINE-LISP-SYSTEM.. 2-2

2.2 Naming the Output F ile s ... 2-4
2.2.1 Using the Argument image-name.. 2—4
2.2.2 Using the :BUILD-FILE-NAMES Keyword 2-5

2.3 Custom izing the Im a g e ... 2-6
2.3.1 Using the Keyword :INPUT-FILES.. 2-6
2.3.2 Using the :MAIN, :INIT-FUNCTION, and :HERALD K eyw ords........... 2-7

2.4 Excluding Digital-Supplied C o d e ... 2-9

2.5 Making an Execute-Only S y s t em ... 2-12
2.5.1 Development Systems ... 2-12
2.5.2 Execute-Only S y s t em s ... 2-13

2.6 Specifying Memory R equ irem en ts... 2-14

Chapter 3 Working with User-Built Systems

3.1 Installing the Im a g e ... 3-1

3.2 Invoking the Im a ge.. 3-2
3.2.1 Using RUN or a Foreign Command 3-2

iii

3.2.2 Defining a DCL Command... 3-3
3.2.2.1 Defining a Command Without Qualifiers........................ 3-4
3.2.2.2 Defining the Qualifiers /MEMORY, /RESUME, and

/CSTACK.. 3-4
3.2.2.3 Defining Other Digital-Defined Qualifiers 3-5
3.2.2.4 Defining Other Command-Line Entities 3—5
3.2.2.5 Summary of Restrictions on Command Definition 3-6

3.2.3 Using the Digital-Defined Command LISP 3-6

Index

Tables
2-1 Values for the Keyword :EXCLUDE 2-9

Preface

The VAX LISP/VMS System Building Guide provides the information needed to
create executable LISP images with the VAX LISP System-Building Utility on
VMS systems.
Intended Audience

Readers of this manual should have a working knowledge of LISP programming
and be familiar with the general information about VAX LISP and VMS that
appears in the VAX LISP /VMS Program Development Guide.
Document Structure

This manual consists of three chapters:
• Chapter 1 provides an overview of the System-Building Utility, the features

of the user-built system that the utility creates, and the generic procedure for
using the utility.

• Chapter 2 describes the define-l is p -system function, which is the center of
the System-Building Utility, and the arguments to define-l is p -system.

• Chapter 3 explains how to make the read-only portions of a user-built system
shareable and how to define a DCL command to invoke a user-built system.

Associated Documents

The following documents are relevant to using the VAX LISP/VMS System
Building Guide-.
• The VAX LISP/VMS Program Development Guide provides general informa­

tion about using VAX LISP and serves as a guide to helpful VAX LISP and
VMS documentation.

• The Guide to Setting Up a VMS System gives an overview of some VMS
utilities that you can use with a user-built LISP executable image.

• The VAX LISP/VMS Installation Guide explains the VMS Install Utility,
which you can use to make an executable image shareable.

• The VMS Command Definition Utility Manual explains the Command
Definition Utility, which you can use to create a new DCL command for
invoking an executable image.

v

Conventions

The following conventions are used in this manual:

C on ven tion M ean in g
UPPERCASE DCL commands and qualifiers and VMS file names are printed in

uppercase characters; however, you can enter them in uppercase,
lowercase, or a combination of uppercase and lowercase characters.
For example:
The examples directory (SYS$SYSROOT:[VAXLISP.EXAMPLES] by
default) contains sample LISP source files.

UPPERCASE
TYPEWRITER

Defined LISP functions, macros, variables, constants, and other
symbol names are printed in uppercase TYPEWRITER charac­
ters; however, you can enter them in uppercase, lowercase, or a
combination of uppercase and lowercase characters. For example:
The CALL-OUT macro calls a defined external routine

low erca se
ty p ew rite r

LISP forms are printed in the text in lowercase typ ew rite r
characters; however, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters. For example:

SANS SERIF
(se t f example-1 (make-space))
Format specifications of LISP functions and macros are printed in a
sans serif typeface. For example:
CALL-OUT external-routine &REST routine-arguments

italics Lowercase italics in format specifications and in text indicate argu­
ments that you supply; however, you can enter them in lowercase,
uppercase, or a combination of lowercase and uppercase characters.
For example:
The routine-arguments must be compatible with the arguments
defined in the call to the DEFINE-EXTERNAL-ROUTINE macro.

() Parentheses used in examples of LISP code and in format spec­
ifications indicate the beginning and end of a LISP form. For
example:

N
(setq name lisp)
Square brackets in format specifications enclose optional elements.
For example:
[doc-string]
Square brackets do not indicate optional elements when they are
used in the syntax of a directory name in a VMS file specification.
Here, the square bracket characters must be included in the syntax.
For example:

{}
(pathname "M IAM I: : DBA1: [SM ITH]LOG IN . COM;4")

In function and macro format specifications, braces enclose elements
that are considered one unit of code. For example:
{keyword value}

U* In function and macro format specifications, braces followed by
an asterisk enclose elements that are considered one unit of code,
which can be repeated zero or more times. For example:
{keyword value}'

Convention Meaning

&OPTIONAL In function and macro format specifications, the word &OPTIONAL
indicates that the arguments that follow it are optional. For exam­
ple:
PPRINT object &OPTIONAL stream

&REST

Do not specify &OPTIONAL when you invoke a function or macro
whose definition includes &OPTIONAL.
In function and macro format specifications, the word &REST
indicates that an indefinite number of arguments may appear. For
example:
CALL-OUT external-routine &REST routine-arguments
Do not specify &REST when you invoke a function or macro whose
definition includes &REST.

&KEY In function and macro format specifications, the word &KEY indi­
cates that keyword arguments are accepted. For example:
COMPILE-FILE input-pathname

&KEY LISTING :MACHINE-CODE :OPTIMIZE
:OUTPUT-FILE :VERBOSE WARNINGS

Do not specify &KEY when you invoke a function or macro whose
definition includes &KEY.
A horizontal ellipsis in a format specification means that the ele­
ment preceding the ellipsis can be repeated. For example:
function-name .. .

| Return |

A vertical ellipsis in a code example indicates that all the informa­
tion that the system would display in response to the function call
is not shown; or that all the information a user is to enter is not
shown.
A word inside a box indicates that you press a key on the keyboard.
For example:
| Return | or |tab|
In code examples, carriage returns are implied at the end of each
line. However, I Return | is used in some examples to emphasize car-
riage returns.

[C triäc l Two key names enclosed in a box indicate a control key sequence in
which you hold down Ctrl while you press another key. For example:
I C trl/C | or I CM /S |

iPFTir^i A sequence such as | p f i | |_x j indicates that you must first press and
release the key labeled PF1, then press and release another key.

mouse The term mouse refers to any pointing device, such as a mouse, a
puck, or a stylus.

MB1, MB2, MB3 By default, MB1 indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse button.
You can rebind the mouse buttons.

Red print In interactive examples, user input is shown in red. For example:

L isp> (cdr ' (a b c))
(B C)
L isp>

Chapter 1

Overview of the System-Building Utility

The VAX LISP System-Building Utility enables you to create a LISP system that
is a single executable image. This user-built system can serve as:
• A customized VAX LISP development environment that can be shared

efficiently by multiple users at the same time
• A delivery vehicle for VAX LISP-based applications
This chapter gives an overview of the System-Building Utility and of the
user-built system that it creates. The chapter introduces:
• The purpose of the System-Building Utility, described in terms of the features

of the LISP system that it creates.
• The capabilities that the System-Building Utility provides. These capabilities

are described in terms of the differences between a LISP system created with
the System-Building Utility and a LISP system created with the VAX LISP
suspend function.

• The generic procedure for building a LISP system with the System-Building
Utility.

• Prerequisites for using the System-Building Utility.

1.1 Features of a User-Built System

The LISP system created by the System-Building Utility consists o f a single VMS
executable (.EXE) file. When you build a LISP system, you have the following
options:
• You can exclude certain portions of Digital-provided VAX LISP code from the

image, thus making the image smaller. Reducing the image size reduces the
frequency of paging and the requirements for disk space and memory.

• You can incorporate LISP code that you write into the image. When possible,
your code is built into read-only sections of the image. The read-only sections
can be shareable.

• You can specify the image’s entry point; that is, the main function to be
executed when the image is invoked.

• You can specify the size of the image’s dynamic memory and of its control
stack and binding stack.

Overview of the System-Building Utility 1-1

In addition to these optional features, the user-built system shares the normal
features of a VMS executable file:
• You can use the VMS Install Utility to make the read-only portion of the

image (including the read-only portion of the code you supply) shareable.
Making the image shareable reduces the physical memory requirements when
more than one user at a time runs the image.

• You can invoke the image with the DCL command RUN, which does not
take LISP-specific qualifiers. (A LISP-specific qualifier is any command line
qualifier processed by the LISP image.) Alternatively, you can use the VMS
Command Definition Utility to create a new DCL command for invoking the
image. The new command can take LISP-specific qualifiers.

Finally, an important feature of user-built systems is that some systems may be
distributed to CPUs that have no VAX LISP software license. See Section 2.5 for
further information on Digital licensing requirements for user-built systems.

1.2 Differences from a Suspended System

An executable image created by the System-Building Utility differs from a system
created by the LISP function suspend in several important respects. A call to
suspend creates a suspended system with a default file type of .SUS instead of an
executable image with a default file type of .EXE. (For information on suspend
and on using suspended systems, see the VAX LISP /VMS Program Development
Guide.)
Before Version 2.2 of VAX LISP, only a suspended system enabled you to capture
a modified LISP environment. Since VAX LISP Version 2.2, your system-building
options have included two choices:
• An executable image created with the System-Building Utility
• A suspended system created from within a user-built system
This section outlines the differences between the two kinds of systems—
executable and suspended—that you can create from within VAX LISP. (The
discussion does not apply to a suspended system created from within a user-built
executable system.)
The differences are:
• A user-built executable image is a stand-alone system; that is, it can run on

a system on which VAX LISP has not been installed. (However, a user-built
executable image may require a VAX LISP license to run; see Section 2.5.)
In contrast, a suspended system can be resumed only in the presence of the
executable file from which it was suspended—in this case, the VAX LISP
executable file. Although you can create a suspended system from a user built
system, it is not possible to suspend the build of a .EXE file and then resume
it.

• A user-built executable image can exclude unneeded Digital-provided code. In
contrast, all Digital-provided code is included in the system that results when
a suspended system is resumed from VAX LISP.

• In a user-built executable image, multiple users can share read-only portions
of both the Digital-provided and user-supplied code; in contrast, they cannot
share a suspended system,

A suspended system is useful as a personal, single-user development environment
and as a way to save some of the state of your work when you need to interrupt

1-2 Overview of the System-Building Utility

an interactive LISP session. A suspended system created from within VAX LISP
is less useful as:
• A multiuser customized development environment, because user-written code

cannot be placed in read-only space and made shareable.
• A delivery vehicle for user-written applications, because the suspended

system requires the original executable file in order to resume.

A user-built executable file is more useful for both these purposes, because it is a
stand-alone system, because read-only portions of user-written code can be made
shareable, and because unneeded Digital-provided code can be excluded.
On the other hand, creating an executable image involves considerably more
overhead than creating a suspended system. Also, a suspended system saves
the present LISP environment, while a user-built executable file must build the
environment from compiled files.

1.3 Generic System-Building Procedure

The system-building procedure has two steps:
1. From within VAX LISP, call the define-l is p -system function. Use keyword

arguments to specify features of the system. The function define-l is p -
system creates a VMS command procedure and other files required to build
your system.

2. From DCL, execute the command procedure. Commands in the procedure
build the executable image file.

You can treat the user-built system like any other VMS executable image. For
instance, you can install it to make its read-only portions shareable, and you can
define a special DCL command to invoke it.
An example of the generic system-building procedure is:
1. From LISP, call the define-l is p -system function with the desired argu­

ments:
Lisp> (define-lisp-system "my-program" ...)
This step produces a command file named LISP$BUILD-MY-PROGRAM.COM
and a compiled file named LISP$BUILD-MY-PROGRAM.FAS.

2. From DCL, execute the command procedure:
$ @LISP$BUILD-MY-PROGRAM

This step uses the compiled file (and a number of other special-purpose files)
to produce an executable file named MY-PROGRAM.EXE. (This step may
produce a number of linker warning messages, which may be ignored.)

3. Optionally, use VMS utilities to make the executable file shareable and/or to
define a new DCL command to invoke the executable file. (See Chapter 3 for
a description and examples of these steps.)

4. From DCL, invoke the executable image:
$ RUN MY-PROGRAM

The executable image can also be transferred to and used on another CPU
on which Digital-supplied VAX LISP is not installed. Such a transfer may
require a Digital software license. (See Section 2.5.)

Overview of the System-Building Utility 1-3

1.4 Preparing to Use the System-Building Utility

Before using the System-Building Utility, you should make sure that you have
access to the necessary components of the Digital-supplied VAX LISP kit and that
your account has an adequate quota of disk space, as described in the following
sections.

1.4.1 Digital-Supplied Files
The command procedure in the System-Building Utility uses the following four
files, which are supplied with the VAX LISP system:
• LISP$LIBRARY:LISP$FASLIB.TLB
• LISP$LIBRARY:LISP$OB JLIB. OLB
• LISP$LIBRARY:LISP$BUILD-VAXLISP.EXE
• LISP$LIBRARY:LISP$BUILD-VAXLISP.CLD
These files must be available to your process. Because only the VAX LISP
System-Building Utility uses these files, you can save space by removing them
from your system (leaving them on the Digital distribution medium) when you
are not using the System-Building Utility.

1.4.2 Disk Space and Memory
When you execute the System-Building Utility’s command procedure, it starts a
new LISP process from DCL. It also generates a large number of intermediate
files that are later deleted and the executable file.
For you to use the System-Building Utility, your account needs a quota of disk
space large enough for the command file, the compiled file, and the executable
file that the utility creates, plus additional blocks for the intermediate files that
the command procedure generates. The number of blocks that these files require
depends on options specified with define-l is p -system. Building a full VAX LISP
system requires approximately 34,000 blocks.
The virtual memory required to execute the System-Building Utility’s command
procedure includes the virtual memory required by the new LISP process that
it generates. If you use the VAX LISP spawn function to execute the command
procedure in a subprocess, your account will require process quotas large enough
to run two LISP processes simultaneously.

1-4 Overview of the System-Building Utility

Chapter 2

DEFINE-LISP-SYSTEM Function

This chapter describes the define-l is p -system function, the center of the
System-Building Utility. The following sections describe the function and its
effects:
• Section 2.1 describes the format of the define-l is p -system function.
• Section 2.2 shows how to specify the names of the executable image file and

the files used to build the executable image.
• Section 2.3 shows how to customize the image by specifying files of user-

written code to be included in the image, by changing the image’s entry point
(that is, the function that executes when the image starts), and by either
preventing the standard VAX LISP welcome message from being displayed or
changing the contents of that message. Section 2.3 also lists restrictions on
actions that user-written code can perform as it is loaded.

• Section 2.4 shows how to exclude components of Digital-provided code from
the image.

• Section 2.5 shows how to specify whether the image will require a VAX LISP
software license for distribution.

• Section 2.6 shows how to specify the default size of the image’s dynamic
memory and the sizes of the control stack and binding stack.

2.1 Format and Behavior of DEFINE-LISP-SYSTEM

The define-l is p -system function creates a VMS command procedure and
returns a string that is the VMS file specification of that procedure. When you
execute the command (.COM) file from DCL, an executable image containing a
LISP custom system is produced.
The define-l is p -system function also creates a compiled (.FAS) file that the
command procedure uses. The command file and the compiled file remain on your
system—along with the new executable file—after the system-building procedure
ends. The format of the define-l is p -system function is shown below.

DEFINE-LISP-SYSTEM Function 2-1

DEFINE-LISP-SYSTEM

DEFINE-LISP-SYSTEM

Format
DEFINE-LISP-SYSTEM image-name

&KEY :BUILD-FILE-NAMES :INPUT-FILES
:INIT-FUNCTION :MAIN :HERALD
:EXCLUDE :REQUIRES-LICENSE :MEMORY
:BUILD-MEMORY :CONTROL-STACK-SIZE
:BINDING-STACK-SIZE

Arguments
image-name
A string, symbol, or pathname used to create the name of the executable file and
(by default) command file and the compiled file. (See Section 2.2.1.)
:BUILD-FILE-NAMES
A string, symbol, or pathname used to name the command file and the compiled
file. (See Section 2.2.2.)
:INPUT-FILES
A file specification or a list of file specifications (symbols, strings, or pathnames).
The file type defaults to .FAS or .LSP, with the more recently created file
being used in case of a conflict. Code in the files is built into the system. (See
Section 2.3.1.)
:INIT-FUNCTION
A symbol or string that names the function that executes after the welcome
message (if one is printed) and before the function named by :MAIN or the
read-eval-print loop. (See Section 2.3.2.)
:MAIN
A symbol or string that names the function that executes after the function
named by :in it -function and whose return terminates the image. The default
value is the VAX LISP read-eval-print loop. A value of n il specifies this default.
(See Section 2.3.2.)
:HERALD
The value t (the default), n il , or a string specifying whether the standard
VAX LISP welcome message, no message, or a user-supplied message should be
displayed when the system starts. (See Section 2.3.2.)
:EXCLUDE
A keyword or list of keywords specifying VAX LISP components to be excluded
from the system. (See Section 2.4.)
:REQUIRES-LICENSE
The value T (the default) or n il , specifying whether the system may run only on
CPUs with VAX LISP software licenses. (See Section 2.5.)

2-2 DEFINE-LISP-SYSTEM Function

DEFINE-LISP-SYSTEM

:MEMORY
An integer specifying, in 512-byte pages, the default total size of the system’s
dynamic memory when the executable file is invoked. (See Section 2.6.)
:BUILD-MEMORY
An integer specifying, in 512-byte pages, the total size of dynamic memory used
during the build of the executable file. (See Section 2.6.)
:CONTROL-STACK-SIZE
An integer specifying, in 512-byte pages, the size of the system’s control stack.
(See Section 2.6.)
:BINDING-STACK-SIZE
An integer specifying, in 512-byte pages, the size of the system’s binding stack.
(See Section 2.6.)

DEFINE-LISP-SYSTEM Function 2-3

2.2 Naming the Output Files

The System-Building Utility creates three files that remain on your system after
the entire procedure is completed. These three files are:
• A command procedure (.COM file) that is created by the define-l is p -system

function, then executed to create the customized system
• A compiled file (.FAS file) that is created by the define-l is p -system function,

then used by the command procedure to create the custom ized system
• An executable file (.EXE file) that is the customized system created by the

command procedure
In addition to these three files, the System-Building Utility creates (and later
deletes) a number of intermediate files that it uses to create the executable file.
The define-l is p -system function’s image-name argument and :BUILD-f il e -
names keyword specify the names of the three permanent output files. Both
values can be specified as symbols, strings, or pathnames.
As with all such file specifications in VAX LISP, you can supply a full VMS file
specification or just a file name. The system supplies default values for any
other components of a full file specification that you do not supply. (See the VAX
LISP/VMS Program Development Guide or the VAX/VMS documentation set for
more information on VMS file specifications.)

2.2.1 Using the Argument image-name

The required image-name argument names the executable file that the System-
Building Utility creates. The file type is .EXE, and the device and directory
components, if not specified, are the default device and directory when the
define-l is p -system function is called.
For instance, the following two examples have equivalent effects:
(define-lisp-system "diskl:[smith.build]expert.exe")
and
(setf (default-directory) "diskl:[smith.build]")
(define-lisp-system "expert")
Both examples direct the System-Building Utility to produce an executable file
with the name:

DISKI: [SMITH.BUILDJEXPERT.EXE
By default, the image-name argument also names the command procedure
and the compiled file that the define-l is p -system function produces. The
file name specified by image-name is prefixed with LISP$BUILD-, and the file
types are .COM and .FAS, respectively. You can supply a value for the keyword
: build-f il e -names to override this default.

2-4 DEFINE-LISP-SYSTEM Function

For example, the preceding calls to the define-l is p -system function produce
“build” files named:

DISKI: [SMITH.B UILD]LISP$B UILD-EXPERT. COM

and

DISK1:[SMITH.BUILD]LISP$BUILD-EXPERT.FAS
NOTE

If the value you supply for image-name corresponds to a logical name
that is currently defined, that logical name is translated and the result
is used to form the names of the output files.

2.2.2 Using the :BUILD-FILE-NAMES Keyword
If you want some or all components of the build file specifications to differ from
the default, supply a : build-f il e -names argument. For example:
(define-lisp-system "diskl:[smith.build]expert.exe"

:build-file-names
"diskl:[smith.test]expert-testi")

or
(setf (default-directory) "diskl:[smith.build]")
(define-lisp-system "expert"

:build-file-names "[smith.test]expert-testi")
Both calls to the define-l is p -system function ultimately produce an executable
file named:

DISK1:[SMITH.BUILD]EXPERT.EXE

The build files, however, are named:

DISK1:[SMITH.TEST]EXPERT-TEST1.C0M

DISK1:[SMITH.TEST]EXPERT-TEST1.FAS
I f you supply a value for the :build-f il e -names keyword but do not specify a
device and/or directory, the build files are placed in the same directory as the
executable image file.
You can supply just a device and/or a directory with the : build-f il e -names key­
word, allowing the file names to be constructed from the image-name argument.
For example:
(define-lisp-system "expert"

:build-file-names "disk2:[smith.test]")
The two resulting build files are named:

DISK2:[SMITH.TEST]LISP$BUILD-EXPERT.COM

DISK2:[SMITH.TEST]LISP$BUILD-EXPERT.FAS

DEFINE-LISP-SYSTEM Function 2-5

The disk on which the build files are placed must also have room for a number
of other files that are needed to build the system. The total size of these files is
about 34,000 blocks for a full VAX LISP system.
The examples in this section illustrate only the name-related arguments to
the DEPINE-LISP-SYSTEM function. Since they do not change image contents
or behavior in any way, these examples produce an executable image that is
functionally identical to the Digital-supplied VAX LISP.

2.3 Customizing the Image

lb customize the content and the behavior of the user-built system, use the
: input-f il e s , : in it -function, :main, and :herald keywords. The values of
these keywords specify the following items:
• : input-f ile s—File(s) of user-written code to be built into the image
• : in it -function—The function that executes after the welcome message and

before the function named by :MAIN or the read-eval-print loop
• : main—The function that executes after the function named by : in it -

function and whose return terminates the image
• : herald—The presence of the standard message “Welcome to VAX LISP,

Vx.x,” a user-supplied message, or no message when the image starts

2.3.1 Using the Keyword :INPUT-FILES
The : input-f ile s keyword specifies one or more files of LISP code to be built
into the image. The value of : input-f ile s is a file specification or a list of file
specifications. A file specification can be a symbol, a string, or a pathname. The
files you specify are loaded into the image in the order you list them.
Using the : input-f ile s keyword to include user-written code in an image is like
using the load function to load code into a running VAX LISP system, with two
important differences:
• Code included in a user-built system with the : input-files keyword becomes

part of the image file; code loaded into a running system with the load
function must be in a separate file.

• Portions of the code that you supply with the : input-f ile s keyword are
placed in read-only sections of the image; for example, parts of compiled
function definitions are placed in read-only sections. In contrast, code loaded
into a running system with the load function can never be placed in read-only
sections.

You can include some user-written development tools in the image to create a
customized VAX LISP development environment. For example:
(setf (default-directory) "diskl:[smith]")
(define-lisp-system

"graphics-lisp"
:input-files ' ("editor-extensions"

"disk2:[jones]graphics-editor"
"menu-package"))

The image ultimately produced by this call to define-l is p -system contains three
files of user-written code.

2-6 DEFINE-LISP-SYSTEM Function

You can also use : input-f il e s to create a customized execute-only system for
distribution to other VAX CPUs. (See Section 2.5 for information on execute-only
systems.)
The define-l is p -system function provides defaults for any file specification
components that are not supplied in the argument. The file type defaults to .FAS
or to .LSP. If two files differ only in their file types, : input-f il e s uses the most
recently created file. In this respect, : input-f il e s behaves just like the load
function.
Files specified with the : input-f ile s function can contain calls to the load
function. Thus, one file specified with : input-f il e s can actually bring many files
into the image; this is a convenient alternative to entering a long list of files with
: input-f il e s . If you use load in this way, the code included in the system is still
placed in read-only space whenever possible.
In general, files specified with : input-f il e s can contain any VAX LISP code.
However, you should observe the following restrictions and guidelines:
• While they load, the files must not create a static alien structure that

contains pointer fields. (However, the files can contain code that creates such
structures after the image starts.)

• Any data structures with pointers to them, for example, an array that is
the value of a symbol, become part of the image, even if they are not useful.
Therefore, be sure that only useful data structures are still accessible when
all your code has been executed. Data structures with no pointers to them
will be garbage-collected before the image is built.

• When the image starts, certain aspects of its state are lost, in the same
way that a suspended system’s state is lost when it resumes. In particular,
streams that were left open when the system was built are closed, and callout
state may be lost. (See the description of the suspend function in the VAX
LISP /VMS Object Reference Manual for more information.)

• Callout initialization occurs each time the image is run, even if the input files
caused callout initialization to occur before the system was built. As a result,
the first use of CALL-OUT in the image causes a short delay while callout
initialization takes place.

2.3.2 Using the :MAIN, :INIT-FUNCTION, and :HERALD Keywords
In a system that is intended to be a delivery vehicle for a user-built application,
you may want either to change the entry point and the welcome message
or to perform some computation after the welcome message but before the
read-eval-print loop starts.
The value of the : in it -function keyword specifies the function that executes
after the welcome message and before either the read-eval-print loop or the
function specified by the value of the :MAiN keyword. If you omit the : in it -
function keyword or the value of : in it -function is n il , the value of the :MAIN
keyword specifies the function that executes when the image starts.
When the function specified by : in it -function returns, either the read-eval-
print loop or the function specified by the value of the :MAIN keyword executes.
When the function specified by the value of the : main keyword returns, the image
terminates. Therefore, the functions you specify with the : in it -function and
:main keywords control the operation of the system.

DEFINE-LISP-SYSTEM Function 2-7

: init-function or :MAIN must perform system initialization when they start, and
:MAIN must perform any necessary cleanup before it exits. The function specified
by the value of the : init-function keyword will not run if the /COMPILE
command line qualifier is present and the compiler has not been excluded. (See
Section 3.2.2.3 for further information.) If you omit the :MAIN keyword, or if you
specify a value of nil with the :MAIN keyword, the VAX LISP read-eval-print loop
executes and controls the operation of the system.
The values of the :Main and : init-function keywords can be symbols or
strings. A string is interpreted as the name of a symbol that names the function.
Specify only a single symbol. The symbol must exist in the system that is
being built, but it need not be defined in the system in which you are using the
DEFINE-LISP-SYSTEM function.
To specify a function in a package that does not exist in the VAX LISP system
from which you are calling define-lisp-system, use a string argument to : init-
function or :MAiN. However, the package must exist in the system that results
from the define-li sp-system call. For example:
(define-lisp-system

"expert"
:input-files '("expert-system" "[jones]expert-rules")
:main "expert-tools:expert-command-loop")

The package expert-tools need not exist when this call to define-lisp-system
is made, but the files specified with the : input-files keyword must create the
package expert-tools and define the expert-command-loop function in that
package, so that expert-t o o l s:expert-command-loop exists in the new system.
The default package for a function name you specify with the : init-function
or : main keyword depends on whether you use the symbol or string form of the
argument. If you use the symbol form, the default package is the current package
when the symbol is read. If you use the string form, the default package is
always the user package.
If you use the :Main keyword to specify a function, that function processes all
the command line qualifiers. If you define a DCL command to invoke the system
after having specified a function with the :Main keyword, you have to write LISP
code to process them. (See Section 3.2.2.3 for more information.)
The value of the : herald keyword controls whether the standard VAX LISP
welcome message, a user-supplied message, or no message is printed when the
image starts. The default value of the symbol t requests the standard message:

Welcome to VAX LISP, Vx.x
When the value of : herald is a string, that string prints as the welcome message.
A value of nil suppresses this message.

The following example demonstrates the use of the : main and : herald keywords:
(define-lisp-system

"expert"
:input-files '("expert-system" " [jones]expert-rules")
iherald nil
:main 'expert-command-loop)

The image eventually produced by this call includes code from two files. When
this image starts, it does not print the standard VAX LISP welcome message,
and the function it calls is expert-command-lo op. When the value of the expert-
command-loop function returns, the image terminates.

2-8 DEFINE-LISP-SYSTEM Function

2.4 Excluding Digital-Supplied Code

You can use the : exclude keyword to prevent certain parts of standard VAX
LISP from becoming part of your image. When you exclude code from the
image, the image takes less space on disk and has smaller memory and run-time
requirements.
The value of the : exclude keyword is a keyword or list of keywords. Each
keyword specifies a part of VAX LISP to exclude from your image. Table 2-1
fists the values for the keyword : exclude. With each value, the table lists the
component(s) of Digital-supplied code that are excluded from the image when that
value is specified and the approximate amount of disk space saved.
Some components of VAX LISP are automatically excluded from systems defined
with :requires-license n il . These components are noted in Table 2-1. (See
Section 2.5 for more information.)

Table 2-1: Values for the Keyword :EXCLUDE

Value

Approx.
Savings
in
B locks Component Excluded from the Image

:ALIEN 128 The resulting image loses the ability to define
new alien data structures.

:BITBLT 128 The BITBLT function, which allows you to alter
bitmaps.

:CALLOUT 6912 The Call-Out facility, which lets you call routines
written in other languages. Excluding the
Call-Out facility precludes the built system
from using the DECwindows interface and also
excludes:

: CLX
:DWT
:DECW-DEVELOPMENT-ENVIRONMENT

: CLX 4224 A package of LISP routines that give you access
to the capabilities of the X Window System
without having to call out to external routines
or to define non-LISP data structures. The
resulting image can still have a programming
environment including the Editor and the
DECtoolkit (DWT).

:COMPILE-FILE varies The VAX LISP COMPILE-FILE function, which is
automatically excluded by : REQUIRES-LICENSE
NIL. (See Section 2.5.2.)

:COMPILER 2430 The VAX LISP Compiler. This precludes using
the VAX LISP functions COMPILE and COMPILE-
FILE.

(continued on next page)

DEFINE-LISP-SYSTEM Function 2-9

Table 2-1 (Cont.): Values for the Keyword :EXCLUDE

Value

Approx.
Savings
in
B locks Component Excluded from the Image

: DEBUGGER 1920 The VAX LISP Debugger, and the STEP,
TRACE, and INSPECT functions. The VAX
LISP Debugger is automatically excluded by
: REQUIRES-LICENSE NIL (see Section 2.5.2) and
by any of the following values to the keyword
:EXCLUDE:

: EVAL
:MACROS
:REPLOOP

You cannot use the VAX LISP Debugger as
a DECwindows-based utility if you spec­
ify :DECWINDOWS, DECW-DEVELOPMENT-
ENVIRONMENT, or : CALLOUT as a value for
the : EXCLUDE keyword. (See Section 2.5.2.)

:DECW-DEVELOPMENT-ENVIRONMENT 2304 The DECwindows-based functionality including
the Inspector, Listener, and DECwindows Help,
and the DECwindows interface to the Debugger
and Editor. : DECW-DEVELOPMENT-ENVIRONMENT
is automatically excluded by : DECWINDOWS.

:DECWINDOWS 4224 The DECwindows interface and DECwindows-
based utilities—the Listener and the Inspector.
Including : DECWINDOWS as a value for the
keyword : EXCLUDE also excludes:

: CLX
: DWT
:DECWINDOWS-DEVELOPMENT-ENVIRONMENT

: DEFINE-LISP'-SYSTEM 128 The DEFINE-LISP-SYSTEM function. The
resulting image cannot build another LISP
system. The DEFINE-LISP-SYSTEM function is
automatically excluded by : REQUIRES-LICENSE
NIL. (See Section 2.5.2.)

:DEFMACRO 128 The DEFMACRO macro.
: DWT 2560 The DECtoolkit. The resulting image cannot

build any DECwindows applications.
:EDITOR 2302 The VAX LISP Editor. This precludes using the

ED function or any functionality in the EDITOR
package. The VAX LISP Editor is automatically
excluded by : REQUIRES-LICENSE NIL (See
Section 2.5.2.)

(continued on next page)

2-10 DEFINE-LISP-SYSTEM Function

Table 2-1 (Cont.): Values for the Keyword :EXCLUDE

Value

Approx.
Savings
in
B locks Component Excluded from the Image

: EVAL 6784 T h e eva lu a to r. In c lu d in g :EVAL a s a v a lu e to
th e k e y w o r d : EXCLUDE p r e c lu d e s th e r e s u lt in g
im a g e f r om u s in g th e fo l lo w in g item s:

D E C w in d ow s in t e r fa c e
R ead -eva l-p r in t lo o p
C om p ile r
E d it o r
D e b u g g in g u t il it ie s
— D e b u g g e r
— S te p p e r
— T ra c e r
— In s p e c t o r

: MACROS 4224
& M ore

M a c r o e x p a n d e r fu n c t ion s. T h e s e fu n c t ion s
a r e c r e a t e d b y DEFMACRO a n d u s e d w h en a
m a c r o i s in v ok e d f r om in t e r p r e t e d c o d e an d
w h en th e m a c r o i s c om p ile d . S in c e m a cr o
in v o c a t io n s in c om p ile d c o d e a r e fu lly ex p an d ed ,
a s y s t em c o n ta in in g o n ly c om p ile d c o d e n e e d s no
m a c r o e x p a n d e r s .

: ORPHAN-SYMBOLS V arie s VAX L IS P - cre a te d s y m b o ls th a t a r e n ev e r
r e fe r en ced . (T h ese s ym b o ls e x is t a s a r e s u lt
o f b u i ld in g th e s y s t em o r e x c lu d in g p a r t s o f
VAX L ISP, b u t th ey h a v e n o fu r th e r use.) U ser-
c r e a t e d sym b o ls a r e n o t a ffe cted . T h e r e su lt in g
im a g e i s id e n t ic a l in fu n c t io n a l it y to on e th a t
d o e s n o t e x c lu d e : ORPHAN-SYMBOLS, b u t ta k e s
u p l e s s spa ce. H ow ever, i t t a k e s lo n g e r to bu ild.

: RANDOM 128 R a n d om n u m b e r g en e ra to r s .

: REPLOOP 1024 T h e VAX L IS P rea d - ev a l-p r in t loop . I f y o u
e x c lu d e th e rea d - ev a l-p r in t loop , y o u m u s t u s e
th e :MAIN k e yw o rd to s p e c i fy a fu n c t ion to
e x e cu te w h en th e im a g e sta rts. T h e read-eva l-
p r in t lo o p i s e x c lu d e d b y :REQU IRES-L ICENSE
NIL. (S ee S e c t io n 2.5.2.)

: SORT 128 T h e SORT a n d STABLE-SORT fu n c tion s.

: SUSPEND 128 T h e SUSPEND fu n ction . T h e SUSPEND fu n c t ion
i s e x c lu d e d b y :REQU IRES-L ICEN SE NIL. (See
S e c t io n 2.5.2.)

(continued on next page)

DEFINE-LISP-SYSTEM Function 2-11

Table 2-1 (Cont.): Values for the Keyword :EXCLUDE

Value

Approx.
Savings
in
B locks Com ponent Excluded from the Image

:TRANSCENDENTAL 128 The transcendental math functions:
EXP LOG SQRT CIS
SIN ASIN SINH ASINH
COS ACOS COSH ACOSH
TAN ATAN TANH ATANH
(Space savings may be greater in future re­
leases.)

: UIS 1152 The VAX LISP UIS graphics functionality. This
precludes using any functionality in the UIS
package, but not in the CLX graphics interface.

:VMS-DEBUG 270 The VMS-DEBUG function. (See the VAX
L ISP /VMS System Access Guide for a description
of the VMS-DEBUG function.) The VMS-DEBUG
function is excluded by :REQUIRES-LICENSE
NIL. (See Section 2.5.2.)

:WSSTREAM 640 The VAX LISP window stream facility. (See
Chapter 4 of VAX L ISP Implementation and
Extensions to Common LISP.)

2.5 Making an Execute-Only System

Since the System-Building Utility can create a complete VAX LISP programming
environment, the distribution of some user-built systems is restricted. The basic
principle is:
• If a user-built system can be used for creating new VAX LISP programs, its

use on another CPU requires a valid VAX LISP software license. Such a
system is called a development system in this manual.

• If a user-built system is not useful as a VAX LISP programming environment,
it may be transferred to another CPU without a VAX LISP software license.
Such a system is called an execute-only system in this manual.

The value of the keyword requires-license determines whether a user-built
system is a development system and whether the user-built system can be
transferred to a CPU without a VAX LISP software license.

2.5.1 Development Systems
If the value of the keyword :requires-license is T (the default), you may not use
a user-built system without a valid VAX LISP software license. This requirement
holds no matter which components of VAX LISP you have excluded with the
keyword :exclude.

2-12 DEFINE-LISP-SYSTEM Function

An example of a development system is the user-built expert system created by
the following call:
(define-lisp-system

"expert"
:input-files '("expert-system" "[jones]expert-rules")
iherald nil
:main 'expert-command-loop
:exclude ' (:editor :uis))

The file EXPERT.EXE that ultimately results from this form is created with the
value t for :requires-l icense . EXPERT.EXE may not legally be used on a CPU
that does not have a valid VAX LISP software license.

2.5.2 Execute-Only Systems
To make the above user-built system execute-only, you would write the following:
(define-lisp-system

"expert"
:input-files '("expert-system" "[jones]expert-rules")
rherald nil
:main 'expert—command-loop
:exclude '(:editor :uis)
:requires-license nil)

Because the value of the keyword :requires-license is n il , this system may be
freely distributed.
If the value of : requires -license is n il , the user-built system will not contain
the following components of Digital-provided code. The components correspond to
the : exclude keyword in parentheses, when such a keyword exists:
• The VAX LISP debugging facilities (: debugger and :VMS-debug)
• The VAX LISP Editor (: ed I tor)
• The VAX LISP System-Building Utility (:define-l is p -system)
• The VAX LISP function compile-f ile (:compile-f il e)
• The VAX LISP read-eval-print loop : rep loop

• The VAX LISP function suspend (: suspend)
• The VAX LISP functions time, describe, inspect, disassemble, dribble,

TRACE, STEP, ROOM, APROPOS, and APROPOS-LIST

If you have not already excluded these components with the keyword : exclude,
define-l is p -system with :requires-license n il will exclude them. While
define-l is p -system is executing, it displays warnings that identify the VAX
LISP components being excluded because :requires-license is n il .

NOTE

Tb create a user-built execute-only system, you must specify r eq u ir es-
license NIL no matter which system components you have excluded
with :EXCLUDE.

DEFINE-LISP-SYSTEM Function 2-13

2.6 Specifying Memory Requirements

The : memory keyword specifies the default size of a user-built system’s dynamic
memory; it is equivalent to the LISP command’s /MEMORY qualifier. The value
of the : memory keyword is the total size of LISP’s dynamic memory, in 512-byte
pages. The default size is 5000 pages; the minimum size is 2000 pages.
You can use the room function to find out how much dynamic memory your system
is using at any time. VAX LISP’s dynamic memory space is divided into sections
known as areas. Use the room function to print information about dynamic space.
By default, a garbage collection occurs whenever 50% or more of the dynamic
memory has been consumed. You can change this ratio by using setf with the
DYNAMIC-SPACE-RATIO function.
To determine a value for the : memory keyword, build a trial system with the
default size; then, start the system and use the room function to see how much
dynamic memory the system consumes. As you use the system, use room from
time to time to see how quickly dynamic memory is consumed. Also note the
frequency of garbage collection. Frequent or nearly continuous garbage collection
activity indicates insufficient memory and a larger value for the : memory keyword
is in order.
When you set a default value for dynamic memory, remember the following
points:
• A smaller dynamic memory size leads to faster but more frequent garbage

collections.
• A larger dynamic memory size leads to slower but less frequent garbage

collections. A large dynamic memory also requires more virtual memory and
may cause more paging.

The default dynamic memory size you specify can be overridden when your image
is invoked, if you define a DCL command with the /MEMORY qualifier to start
the image. (See Section 3.2.2 for more information.)
The : build-memory keyword specifies the size, in 512-byte pages, of the amount
of memory used during the build. A normal build requires 50,000 pages. If you
specify fewer pages, the build will take longer.
The :control-stack-s iz e and :binding-stack-s iz e keywords specify the size,
in 512-byte pages, of the image’s control and binding stacks. The default for
:control-stack-s iz e is 185 pages; the minimum size is 32 pages. The default
for : bind ING-stack-s i ze is 62 pages; the minimum size is 16 pages.
The sizes required for the control and binding stacks are a rough function of
the complexity of your system. Highly recursive systems require larger control
stacks.
One way to determine whether you should increase stack sizes is to build a test
system with the default stack sizes. If the stacks overflow in normal operation,
increase the sizes. (Control stack overflows are treated as errors; binding stack
overflows are handled automatically, and program execution continues.)

2-14 DEFINE-LISP-SYSTEM Function

Chapter 3

Working with User-Built Systems

A user-built system can be treated like any other VMS executable image. This
chapter describes:
• Installing the image to allow sharing of read-only code
• Invoking the image

3.1 Installing the Image
If you intend the user-built system to be run concurrently by several processes,
it is worthwhile to install the image as shareable. Installing an image improves
performance and reduces the requirements for physical memory in the following
ways:
• An installed image is permanently “open,” which means that directory

information on the image file remains permanently resident in memory. An
open image does not require the usual directory search to locate the file.

• When an image is installed as shareable, only one copy of its read-only
sections need be in physical memory. These global sections can be accessed by
more than one user at a time.

The VMS Install Utility installs an executable image, allowing you to make
the image open as well as shareable. This utility is described in the VAX/VMS
documentation set: VMS Install Utility Manual and Guide to Setting Up a VMS
System.
To install the image:
1. Invoke the VMS Install Utility.
2. Execute the CREATE command with the /SHARED qualifier. (/SHARED also

installs the image as permanently open.)
3. Exit the VMS Install Utility.
For example, to make the user-built system MY-LISREXE shareable, you would
do the following:
1. Invoke the VMS Install Utility. If you are adding a new image to an

established VMS system, it is probably most convenient to invoke the utility
in interactive mode. To do so, type:
$ INSTALL := SYSSYSTEM:INSTALL
$ INSTALL/COMMANDMODE

Working with User-Built Systems 3-1

2. At the VMS Install Utility prompt, execute the CREATE command with the
/SHARED qualifier. The parameter is the name of the executable file. If you
omit the device and directory, they default to those indicated by the logical
name SYS$SYSTEM. The default file type is .EXE.
INSTALL> CREATE/SRARED DISKI: [SMITH.BUILD]MY-LISP
This step establishes global sections of the specified executable file’s read­
only contents and makes it permanently open. You need not specify the
/OPEN qualifier, since an image installed as shareable is also installed as
permanently open.

3. If you later want to delete the global sections associated with the image, use
the VMS Install Utility’s DELETE command.
INSTALL> DELETE DISKI:[SMITH.BUILD] MY-LISP
This command removes any global sections created for the image MY-
LISP. EXE. The image file itself is not affected by this operation.

4. Type either of the following commands to exit the VMS Install Utility:
INSTALL> EXIT
INSTALL> [ctrl/zj

See the VMS documentation set for further information on the VMS Install
Utility, especially for other qualifiers to the Install command CREATE.

3.2 Invoking the Image

There are four ways to invoke a user-built system:
• The DCL RUN command
• A user-defined foreign command
• A user-defined DCL command
• The Digital-defined DCL LISP command
If you use RUN or a foreign command, you cannot use LISP-specific command­
line entities; that is, you cannot use command qualifiers, parameters, or keywords
processed by the LISP image. With a specially defined DCL command—either
user-defined or Digital-defined—you can use LISP-specific command-line entities
with certain restrictions.
This section discusses these four methods of invoking a user-built system.
For each method, the section identifies the restrictions, if any, on the use of
LISP-specific command-line entities.

3.2.1 Using RUN or a Foreign Command
You can invoke a user-built LISP system like any VMS executable image with
either a RUN command or a user-defined foreign command. For example:
$ RUN MY-LISP
or

$ MYLISP := $DISK1:[SMITH.BUILD]MY-LISP
$ MYLISP

3-2 Working with User-Built Systems

See the VMS DCL Dictionary for more information on the RUN command and on
the facility for defining foreign commands.
When you use RUN or a foreign command to invoke a LISP image, the LISP
image cannot call back to DCL to check for the presence of qualifiers or other
command-line entities. For this reason, you cannot use any LISP-specific
qualifiers, such as /MEMORY, with RUN or a foreign command.

3.2.2 Defining a DCL Command
You can use the VMS Command Definition Utility (CDU) to create a new DCL
command that invokes a user-built system. This command can be used with
or without LISP-specific command-line entities. The CDU is described in the
VMS Command Definition Utility Manual. This section assumes that you are
generally familiar with DCL command definition and with writing code to retrieve
command string information.
The procedure for creating a DCL command is:
1. Write a command language definition (CLD) file that defines the command

and its qualifiers, parameters, and keywords, if any.
2. Be sure that the image to be invoked by the command contains code that calls

back to DCL to check for the presence of each such qualifier, parameter, or
keyword, then responds appropriately.

3. Use the DCL command SET COMMAND to add your CLD file to the system
command table or to an individual process command table.

4. Log out and log in again to make the command available. (This step is not
necessary if you used SET COMMAND to add the CLD file to your own
process command table.)

The Digital-provided VAX LISP image contains code that checks for and processes
the Digital-defined qualifiers to the LISP command. (The VAX LISP /VMS
Program Development Guide lists and describes these qualifiers.) A user-built
system contains all or part of the Digital-provided VAX LISP. Therefore, in
defining a DCL command to invoke a LISP image, you face some restrictions
when choosing qualifier names, and you may have to redefine some Digital-
defined qualifiers. In general terms, the restrictions are:
• If your user-built system contains the Digital-provided code that checks

for a given qualifier and you want to use that qualifier when invoking the
system, your CLD file must define the qualifier exactly as it is defined in
LISP$SYSTEM:LISP.CLD, the file that defines the DCL LISP command. If
you do not want to use the qualifier, your CLD file need not define it.

• If your user-built system does not contain the Digital-provided code that
checks for a given qualifier, you can define that qualifier in any way you like.
However, your image must include user-written code to check for the qualifier.
(See Sections 3.2.2.2 and 3.2.2.3 to determine whether your image contains
code that checks a given qualifier.)

• Qualifiers with names that are not defined by Digital as qualifiers to the LISP
command—and all other command-line entities—can be defined in your CLD
file in any way you like. You must, however, include user-written code in your
image to check for each such entity.

Working with User-Built Systems 3-3

To check for the presence of command-line entities, use the VAX LISP functions
COMMAND-LINE-ENTITY-P and COMMAND-LINE-ENTITY-VALUE. These functions
provide interfaces to the VMS utility routines CLI$PRESENT and CLI$GET_
VALUE, which retrieve information about the command string that invoked an
image. For further information:
• The VAX LISP /VMS System Access Guide describes the two VAX LISP

functions.
• The VMS Utility Routines Manual describes the two VMS routines.
The remainder of this section outlines the specific procedures for writing a DCL
command to invoke a LISP image. It also identifies the circumstances under
which you are limited in defining command qualifier names.

3.2.2.1 Defining a Command Without Qualifiers
As an example of defining a DCL command without qualifiers or other
command-line entities, you might write the following code in a file called MY-
COMMANDS.CLD. This code defines a DCL command named EXPERT, which in­
vokes the image EXPERT.EXE. The device and directory of this file are indicated
by the logical name EXPERT$SYSTEM.
DEFINE VERB EXPERT

IMAGE "EXPERT$SYSTEM:EXPERT"
Once the file MY-COMMANDS.CLD has been added to the appropriate command
table, you can invoke EXPERT.EXE by typing EXPERT at the DCL prompt.
Because the command EXPERT has no qualifiers, parameters, or keywords, the
image EXPERT.EXE need not contain code that processes DCL command-line
entities.

3.2.2.2 Defining the Qualifiers /MEMORY, /RESUME, and /CSTACK
A user-built LISP image always contains the Digital-provided code that checks
for and processes the /MEMORY, /RESUME, and /CSTACK qualifiers in the
command that invoked the image. You cannot alter the action of these qualifiers.
Therefore, if you want your DCL command to take qualifiers named /MEMORY,
/RESUME, or /CSTACK, you must define them in your CLD file exactly as follows:
QUALIFIER MEMORY, NONNEGATABLE, VALUE(TYPE=$NUMBER,REQUIRED)
QUALIFIER RESUME, VALUE(TYPE=$INFILE,REQUIRED)
QUALIFIER CSTACK, NONNEGATABLE, VALUE(TYPE=$NUMBER,REQUIRED)
For example, a CLD file that defines the command EXPERT with the qualifiers
/MEMORY, /RESUME, and /CSTACK would look like this:
DEFINE VERB EXPERT

IMAGE "EXPERT$SYSTEM:EXPERT"
QUALIFIER MEMORY, NONNEGATABLE, VALUE(TYPE=$NUMBER,REQUIRED)
QUALIFIER RESUME, VALUE(TYPE=$INFILE,REQUIRED)
QUALIFIER CSTACK, NONNEGATABLE, VALUE(TYPE=$NUMBER,REQUIRED)

Since these three qualifiers are processed by Digital-provided LISP code, they
behave in exactly the same way with the command EXPERT as they do with
the command LISP. That is, /MEMORY allows you to invoke EXPERT.EXE
with a specified amount of dynamic memory, /RESUME allows you to resume a
suspended system that was created from within EXPERT.EXE, and /CSTACK
allows you to invoke EXPERT.EXE with a specified size for the default control
stack.

3-4 Working with User-Built Systems

If you do not define these qualifiers in your CLD file, you cannot use them with
the command EXPERT. You can, of course, continue to use them with the LISP
command.

3.2.2.3 Defining Other Digital-Defined Qualifiers
In addition to /MEMORY, /RESUME, and /CSTACK, the LISP command takes 10
qualifiers; they are processed by the VAX LISP function that is the default value
of the define-l is p -system keyword sMAIN or the value of the define-l is p -
system keyword : in it -function. That is, the default entry point in a user-built
system processes the following compiler-related qualifiers:
/COMPILE /OPTIMIZE
/LISTING /OUTPUT_FILE
/MACHINE_CODE /WARNINGS
and the following general-purpose qualifiers:
/ERROR_ACTION /INTERACTIVE
/INITIALIZE /VERBOSE
If you have not specified a value for in it -function or :MAIN in your call to
define-l is p -system and you want to use any of these qualifiers when you invoke
the system, you must define the qualifiers and their parameters exactly as they
are defined in LISP$SYSTEM:LISP.CLD. In addition, the VAX LISP Compiler
must be present in your image for the entry point to process the compiler-related
qualifiers.

NOTE

Except for the definitions of /MEMORY and /RESUME, the qualifier
definitions in LISP$SYSTEM:LISP.CLD are not supported by Digital
and may not be upward-compatible between versions.

For example, the following CLD file defines the command EXPERT with the
qualifier /INITIALIZE:
DEFINE verb expert

IMAGE "EXPERT$SYSTEM:EXPERT"
QUALIFIER INITIALIZE, VALUE(TYPE=$INFILE,REQUIRED,LIST)

The qualifier /INITIALIZE is defined as it is in LISP$SYSTEM:LISP.CLD. If
EXPERT.EXE contains the default entry point, this qualifier behaves in the same
way with the command EXPERT as it does with the command LISP.
If you have specified a value for :Main in your call to define-l is p -system,
the Digital-provided code for processing the qualifiers other than /MEMORY,
/RESUME, and /CSTACK is inaccessible in your image. You can then define any
of these qualifier names in any way you like. You must, however, include user-
written code in your image to check for and process each such qualifier that you
define.

3.2.2.4 Defining Other Command-Line Entities
Apart from the Digital-defined qualifiers to LISP, you can define any command­
line entity—qualifier, parameter, or keyword—in any way you like. For defining
such entities, the values of : in it -function and iMAIN are irrelevant. However,
your image must always include user-written code for processing all such entities

Working with User-Built Systems 3-5

3.2.2.5 Summary of Restrictions on Command Definition
The restrictions on defining command-line entities for a user-defined DCL com­
mand to invoke a LISP image are:
• The qualifiers /MEMORY, /RESUME, and /CSTACK are always processed by

Digital-provided code. To use these qualifiers, you must define them as they
are defined in LISP$SYSTEM:LISP.CLD.

• The VAX LISP default entry-point function processes the remaining qualifiers
to the command LISP. If your image includes the default entry point and you
want to use these qualifiers, you must define them as they are defined in
LISP$SYSTEM:LISP.CLD. Note that several of these qualifiers require the
presence of the VAX LISP Compiler in the image.

For example, the following CLD file defines the command EXPERT for invok­
ing the image EXPERT$SYSTEM:EXPERT.EXE. (Assume that EXPERT.EXE
contains the default entry point.)
DEFINE VERB EXPERT

IMAGE "EXPERT$SYSTEM:EXPERT"
PARAMETER PI, PROMPT="FILE(S)", VALUE(TYPE=$INFILE,LIST)
QUALIFIER MEMORY, NONNEGATABLE, VALUE(TYPE=$NUMBER,REQUIRED)
QUALIFIER INITIALIZE, VALUE(TYPE=$INFILE,REQUIRED,LIST)
QUALIFIER QUICKJTRAVERSE, DEFAULT

The command EXPERT takes one parameter and three qualifiers.
• The parameter PI is to be processed by code you supply. You can define this

parameter in any way you like. In this example, the command EXPERT
prompts the user for one or more input file names.

• The qualifier /MEMORY is to be processed by Digital-provided code. You must
define the qualifier as shown.

• Because the entry point to EXPERT.EXE is the default, the qualifier
/INITIALIZE is to be processed by Digital-provided code. You must define
the qualifier as shown.
If the entry point is a function you supply, it must contain code to process
/INITIALIZE. In this case, the qualifier could be defined in any way you like.

• The qualifier /QUICK_TRAVERSE is to be processed by code you supply. You
can define this qualifier in any way you like.

3.2.3 Using the Digital-Defined Command LISP
With certain restrictions, you can use the Digital-defined LISP command—along
with any of its qualifiers—to invoke a user-built system. The major restriction on
using the LISP command is that your executable file must be named LISP.EXE
and must be in a directory pointed to by the logical name LISP$SYSTEM.
LISP.EXE is the name of the Digital-supplied VAX LISP executable image, and
the LISP command looks in LISP$SYSTEM for LISP.EXE.

NOTE

If you name your image file the same as the Digital-provided image file,
take care that you do not accidentally delete the Digital-provided image
file.

3-6 Working with User-Built Systems

For example, if you use VAX LISP on a terminal instead of a workstation, and you
want to dispense with the graphics functionality and the DECwindows interface
in your development environment, you could write:
(define-lisp-system "diskl:[smith.buildjlisp.exe"

:exclude ' (:uis idecwindows))
The executable image that eventually results from this form contains all the
functionality of the Digital-supplied VAX LISP except the graphics functionality
and the DECwindows interface. Since the image has the same name as the
Digital-supplied VAX LISP executable image, you can use the LISP command—
with any of its qualifiers—to invoke the image you create.
Before you can use the LISP command to invoke your image, you must redefine
LISP$SYSTEM to point to DISK1:[SMITH.BUILD] so that the LISP command
can locate the image. However, LISP$SYSTEM also contains other Digital-
provided files (such as the documentation string text library, LISPDOC.TLB)
that VAX LISP needs in order to run. To avoid copying these files into
DISK1:[SMITH.BUILD], you can define the logical name LISP$SYSTEM to
be a search list:
$ SHOW LOGICAL LISP$SYSTEM

"LISP$SYSTEM" = "SYS$SYSROOT: [VAXLISP]" (LNM$ SYS TEMTABLE)
$ DEFINE LISP$SYSTEM DISKI:[SMITH.BUILD],SYS$SYSROOT:[VAXLISP]
The LISP command now starts the image LISP.EXE in DISK1:[SMITH.BUILD],
LISP looks in SYS$SYSROOT: [VAXLISP] for files it needs but cannot find in
DISK1:[SMITH.BUILD],
Restrictions on using the LISP command qualifiers are listed below under the set
of LISP qualifiers to which they apply.
• The qualifiers /MEMORY, /RESUME, and /CSTACK and their respective

parameters:
No further restrictions. Note that you need not create your own CLD file to
use these two qualifiers with the Digital-defined LISP command.

• The qualifiers /INITIALIZE, /VERBOSE, /INTERACTIVE, and /ERROR.
ACTION and their respective parameters:
RESTRICTION: Your image must include either the default entry point or
user-written code that processes these qualifiers.

• The qualifiers /COMPILE, /OPTIMIZE, /LISTING, /MACHINE.CODE,
/OUTPUT.FILE, and /WARNINGS and their respective parameters:
RESTRICTIONS: Your image must include either the default entry point or
user-written code that processes these qualifiers. In either case, you must not
exclude the VAX LISP Compiler from your image by supplying the : comp iler
keyword with :exclude.

Working with User-Built Systems 3-7

Index

A
: ALIEN, value for keyword : EXCLUDE, 2-9
Alien structures, static

in user-built system, 2-7
Applications

license requirements, 2-12

B
Binding stack

specifying size, 2-14
: BINDING-STACK-SIZE keyword

DEFINE-LISP-SYSTEM function
default value, 2-14

:B ITBLT, value for keyword :EXCLUDE, 2-9

c ______________________________
Callout

initialization, 2-7
state lost in user-built system, 2-7

: CALLOUT, value for keyword : EXCLUDE, 2-9
CLD file

See Command language definition file
CLI$GET_VALUE routine, 3 ^ t
CLI$PRESENT routine, 3-4
: CLX

value for keyword : EXCLUDE, 2-9
Command Definition Utility, 3-3
Command language definition file, 3—3 to 3—6
Command line

retrieving qualifiers from, 3-4
Command procedure

created by DEFINE-LISP-SYSTEM, 1-3, 2-1
default name, 2-4
naming, 2-5

Command tables, 3-3
Compiled file

created by DEFINE-LISP-SYSTEM, 2-1
default name, 2-4
naming, 2-5

: COMPILE-FILE, value for keyword : EXCLUDE,
2-9

/COMPILE qualifier to DCL LISP command, 3-5
: COMPILER

value for keyword : EXCLUDE, 2-9
Control stack

specifying, when invoking user-built system, 3-4
specifying size, 2-14

: CONTROL-STACK-SIZE, keyword
definition, 2—3

: CONTROL-STACK-SIZE keyword
DEFINE-LISP-SYSTEM function

default value, 2-14
CREATE command

install utility, 3-2
/CSTACK qualifier

using, when invoking user-built system, 3-4

D________________________
DCL command

defining, to invoke user-built system, 3-3
without qualifiers, 3-4

Debugger
excluded by : REQUIRES-LICENSE N IL , 2-13

: DEBUGGER, value for keyword : EXCLUDE, 2-10
:DECW-DEVELOPMENT-ENVIRONMENT, value for

keyword : EXCLUDE, 2-10
:DECWINDOWS, value for keyword : EXCLUDE,

2-10
: DEFINE-LISP-SYSTEM, value for keyword

: EXCLUDE, 2-10
DEFINE-LISP-SYSTEM function, 2-1 to 2-14

arguments, 2-2 to 2-3
format, 2-2
in system-building process, 1-3
keywords, 2-2 to 2-3

: DEFMACRO, value for keyword : EXCLUDE, 2-10
DELETE command, install utility, 3-2
Development systems

creating, 2-12
defined, 2-12

Disk space
on disk specified by : B U ILD -F ILE -NAMES,

2-6
required by system-building procedure, 1—4
saving, with : EXCLUDE, 2-9

: DWT, value for keyword : EXCLUDE, 2-10
Dynamic memory

default size, 2-14
determining need, 2-14
effect on garbage collection, 2-14
overriding default, 2-14
specifying, when invoking user-built system, 3—4
specifying size, 2-14

E_________________________________
: EDITOR, value for keyword : EXCLUDE, 2-10
Entry point

for user-built system, 2-7

lndex-1

Entry point (cont'd.)
processing Digital-defined qualifiers, 3-5

/ERROR_ACTION qualifier to DCL LISP command,
3-5

: EVAL, value for keyword :EXCLUDE, 2-11
; EXCLUDE keyword

value table, 2-9
Executable image

created by DEFINE-LISP-SYSTEM, see
User-built systems

Execute-only systems
creating, 2-13
defined, 2-12

F________________________
Files

executable image, see User-built systems
command language definition, 3-3
created by DEFINE-LISP-SYSTEM, 2-1

naming, 2-4
LISP code

incorporating into system, 2-6
used by System-Building Utility, 1-4

Foreign command
invoking user-built system, 3-2

Function, specifying initial, 2-7

G________________________
Garbage collection

and dynamic memory size, 2-14
Global sections, 3-1

H________________________
: HERALD keyword

DEFINE-LISP-SYSTEM function, 2-8

I_____________________________________
image file

installing, 3-1
image-name argument, 2-2, 2—4
: IN IT-FUNCTION keyword

DEFINE-LISP-SYSTEM function
and qualifier processing, 3-5
default package, 2-8
value of, 2-8

/INITIALIZE qualifier to DCL LISP command, 3-5
: IN PU T-FILES keyword

DEFINE-LISP-SYSTEM function, 2-6
file specification defaults, 2-7
guidelines, 2-7

Install utility
installing user-built system with, 3-1 to 3-2

/INTERACTIVE qualifier to DCL LISP command, 3-5

L________________ _
License

needed by user-built systems, 2-12
LISP$BUILD-VAXLISP.CLD, 1-̂ 1
LISP$BUILD-VAXLISP.EXE, 1-4
LISP$FASLIB.TLB, 1-4
LISP$OBJLIB.OLB, 1-4

LISP command
qualifiers to

when invoking user-built system, 3-3
using, to invoke user-built system, 3-6

/LISTING qualifier to DCL LISP command, 3-5
LOAD function

used with : IN PUT-FILES, 2-7

M________________________
/MACHINE_CODE qualifier to DCL LISP command,

3-5
: MACROS, value for keyword : EXCLUDE, 2-11
:MAIN keyword

DEFINE-LISP-SYSTEM function
and qualifier processing, 3-5
default package, 2-8
default value, 2-8
value of, 2-8

Memory
dynamic, see Dynamic memory
required by system-building procedure, 1-4
saving, with : EXCLUDE, 2-9

: MEMORY keyword, 2-3
DEFINE-LISP-SYSTEM function

default value, 2-14
/MEMORY qualifier

and : MEMORY, 2-14
using, when invoking user-built system, 3-4

Multiuser access, 3-1

o _______________________________
/OPTIMIZE qualifier to DCL LISP command, 3-5
ORPHAN-SYMBOLS

value for keyword : EXCLUDE, 2-11
/OUTPUT_FILE qualifier to DCL LISP command, 3-5
Overflow

control and binding stack, 2-14

P________________________
Packages, specifying, 2-8

Q ____________________________________
Qualifiers

LISP command
/MEMORY, /RESUME, and /CSTACK, 3-4
restrictions on using, 3-3
using, when invoking user-built system, 3-3

retrieving from command line, 3-4

R________________________
: RANDOM, the value for keyword : EXCLUDE, 2-11
Read-eval-print loop

default entry point, 2-8
excluded by : REQUIRES-LICENSE N IL , 2-13

Read-only sections
code placed into, 2-6
making shareable, 3-1

: REPLOOP
excluded by : REQUIRES-LICENSE N IL , 2-13
value for keyword : EXCLUDE, 2-11

: REQUIRES-LICENSE keyword, 2-2

lndex-2

: REQUIRES-LICENSE keyword
D EFIN E-LISP -SYSTEM function

default value, 2-12
: REQUIRES-LICENSE keyword D E F IN E -L IS P -

SYSTEM function
components excluded by, 2-13

/RESUME qualifier
using, when invoking user-built system, 3-4

RUN command
invoking user-built system, 3-2

s__________________
SET COMMAND command, 3-3
Software license

needed by user-built systems, 2-12
: SORT, value for keyword : EXCLUDE, 2-11
Stacks, specifying sizes, 2-14
Static alien structures

in user-built system, 2-7
Streams

closed in user-built system, 2-7
: SUSPEND, value for keyword : EXCLUDE, 2-11
Suspended system

compared with user-built system, 1-2
System-building utility

excluded by : REQUIRES-LICENSE N IL , 2-13
file produced by, 1-1
files used by, 1-4
incorporating user-written code, 2-6
overview, 1-1 to 1-4
procedure for using, 1-3
requirements for using, 1-4

Systems
user-built, see user-built systems

T________________________
: TRANSCENDENTAL, value for keyword : EXCLUDE,

2-12

u_______________________________
:U IS , value for keyword :EXCLUDE, 2-12
User-built systems

compared with suspended system, 1-2
customizing, 2-6
development systems

creating, 2-12
defined, 2-12

distributing, 2-12
entry point

default, 2-8
specifying, 2-7

excluding Digital code from, 2-9
execute-only systems

creating, 2-13
defined, 2-12

features of, 1-1
incorporating user-written code, 2-6
installing image file, 3-1
invoking, 3-2

defining DCL command, 3-3
foreign command, 3-2
LISP command, 3-6
RUN command, 3-2
using qualifiers, 3-3

User-built systems (cont’d.)
license requirements, 2-12
multiuser access to, 3-1
naming, 2-4
specifying memory, 2-14

User-written code, including, 2-6

V____________________________________
/VERBOSE qualifier to DCL LISP command, 3-5
:VMS-DEBUG, value for keyword :EXCLUDE, 2-12

w__________________
/WARNINGS qualifier to DCL LISP command, 3-5
Welcome message, suppressing, 2-8
:WSSTREAM, value for keyword rEXCLUDE, 2-12

lndex-3

HOW TO ORDER ADDITIONAL DOCUMENTATION

From Call Write
Alaska, Hawaii,
or New Hampshire

603-884-6660 Digital Equipment Corporation
P.O. Box CS2008
Nashua NH 03061

Rest of U.S.A.
and Puerto Rico1

800-DIGITAL

1Prepaid orders from Puerto Rico, call Digital’slocal subsidiary (809-754-7575)

Canada 800-267-6219
(for software
documentation)

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order Desk

613-592-5111
(for hardware
documentation)

Internal orders
(for software
documentation)

— Software Supply Business (SSB)
Digital Equipment Corporation
Westminster MA 01473

Internal orders
(for hardware
documentation)

DTN: 234-4323
508-351-4323

Publishing & Circulation Services (P&CS)
NR03-1AV3
Digital Equipment Corporation
Northboro MA 01532

Reader’s Comments VAX LISP/VMS System-Building Guide
AA-KM37B-TE

Your comments and suggestions will help us improve the quality of our future documentation. Please note
that this form is for comments on documentation only.
I rate this m anual’s: Excellent Good Fair Poor
Accuracy (product works as described) □ □ □ □
Completeness (enough information) □ □ □ □
Clarity (easy to understand) □ □ □ □
Organization (structure of subject matter) □ □ □ □
Figures (useful) □ □ □ □
Examples (useful) □ □ □ □
Index (ability to find topic) □ □ □ □
Page layout (easy to find information) □ □ □ □

What I like best about this manual:

What I like least about this manual:

I found the following errors in this manual:
Page Description

My additional comments or suggestions for improving this manual:

Please indicate the type of user/reader that you most nearly represent:

□ Administrative Support
□ Computer Operator
□ Educator/Trainer
□ Programmer/Analyst
□ Sales

□ Scientist/Engineer
□ Software Support
□ System Manager
□ Other (please specify)

Name/Title -- Dept. _____
Company --- Date*
Mailing Address ___
___ Phone _____
10/87

— — Do Not Tear — Fold Here and TapemmmT M

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 M A YNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
PKO3-1/30D
129 PARKER STREET
MAYNARD, MA 01754-2198

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

— — Do Not Tear — Fold Here

Cu
t A

lon
g D

ot
te

d
Li

ne

