
VAX LISP/VMS System Access Guide
Order Number: AA-GH75B-TE

July 1989

This guide describes VAX LISP facilities for interacting with the programming interface to the
VMS operating system. Formal definitions of functions and macros introduced in this guide
are contained in the VAX LISP/VMS Object Reference Manual.

Revision/Update Information: This manual supersedes the VAX LISP/VMS System
Access Programming Guide, AA-GH75A-TE, for VAX
LISP/VMS Version 2.0.

Operating System and Version: VMS Version 5.1

Software Version: VAX LISP Version 3.0

digital equipment corporation
maynard, massachusetts

First Printing, May 1986
Updated, July 1987
Revised, July 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1986, 1987, 1989.

All rights reserved
Printed in USA

The Reader's Comments form at the end of this document requests your critical evaluation to
assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

AI VAXstation
DEC
DECnet
DECUS
MicroVAX
Micro VAX II
MicroVMS

PDP
ULTRIX
ULTRIX-11
ULTRIX-32
UNIBUS
VAX
VAX LISP

VAX LISP/ULTRIX
VAX LISP/VMS
VAXstation
VAXstation II
VMS

S833

This document was prepared using VAX DOCUMENT, Version 1.1.

Contents

Preface.. vii

Chapter 1 Overview of System Access Facilities

1.1 File System Interface... 1-1

1.2 Operating System Information... 1-1

1.3 Callout and Callback Facilities ... 1-2

1.4 Alien Structures... 1-2

1.5 Interrupt Functions.. 1-2

1.6 Controlling Interruptions and Synchronizing Execution...................................... 1-3

Chapter 2 File System Interface

2.1 Pathnames and Namestrings.. 2-1
2.1.1 Relationship Between Logical Names and Pathnames........................... 2-1
2.1.2 When to Use Pathnames .. 2-2
2.1.3 Fields of a Common LISP Pathname ... 2-2
2.1.4 Values of VAX LISP Pathname Fie lds... 2-2
2.1.5 Creating Pathnames... 2-3
2.1.6 Comparing Similar Pathnames... 2-5
2.1.7 Purpose of Namestrings.. 2-5
2.1.8 Converting Pathnames into Namestrings.. 2-5
2.1.9 Using the ‘ DEFAULT-PATHNAME-DEFAULTS* Variable........................ 2-7

2.2 Directories .. 2-8

Chapter 3 Getting Operating-System Information

3.1 Accessing the Command Line ... 3-1

3.2 Finding the Version Number.. 3-2

3.3 Getting Device Information .. 3-2

3.4 Getting File Information ... 3-4

3.5 Getting Process Information .. 3-5

iii

3.6 Controlling Terminal Characteristics ... 3 9
3.6.1 Using the GET-TERMINAL-MODES Function... 3-9
3.6.2 Using the SET-TERMINAL-MODES Function... 3-10
3.6.3 Flandling Nonstandard Terminal States .. 3-11

3.7 Getting System Messages.. 3-11

3.8 Using Logical Nam es .. 3-12

Chapter 4 Interacting with External Routines

4.1 VAX Procedure Calling Conventions ... 4-4

4.2 Argument and Return Value Definitions.. 4-4
4.2.1 Access Capability.. 4-5
4.2.2 Passing Mechanism... 4-6
4.2.3 Data Type Conversions.. 4-7

4.3 Writing and Linking an External Routine .. 4-10

4.4 Defining an External Routine.. 4-11
4.4.1 External Routine Names and O ptions... 4-12
4.4.2 Documentation S tring... 4-14
4.4.3 Argument Descriptions.. 4-14

4.5 Calling an External Routine.. 4-15

4.6 Calling System Services... 4-15
4.6.1 Defining System Services.. 4-16
4.6.2 Calling System Services.. 4-16

4.7 Creating a Callback Function ... 4-17
4.7.1 Callback Function Nam es.. 4-18
4.7.2 Callback Arguments... 4-18
4.7.3 Callback Return Values.. 4-18
4.7.4 Writing a Callback Routine ... 4 -19

4.7.4.1 Passing Arguments to a Callback Routine............................ 4-20
4.7.4.2 Passing an Argument List to a Callback Routine.................. 4-21

4.7.5 Restrictions on Callback.. 4-22

4.8 Errors During External Routine Execution .. 4-23

4.9 Debugging an External Routine... 4-24

4.10 Suspending a LISP System Containing External Routine Definitions 4-26

Chapter 5 Defining and Creating Alien Structures

5.1 Defining an Alien Structure.. 5-2

5.2 Alien Structure Name and Options.. 5-3
5.2.1 Naming the Constructor Function.. 5-4
5.2.2 Naming Accessor Functions... 5-5
5.2.3 Naming the Copier Function ... 5-5
5.2.4 Naming the Predicate Function .. 5-5

5.3 Alien Structure Documentation S trin g ... 5-7

5.4 Alien Structure Field Descriptions.. 5-7
5.4.1 Field Name... 5-7
5.4.2 Field Type .. 5-7
5.4.3 Field Positions... 5-10

5.4.3.1 Start and End Positions .. 5-10
5.4.3.2 Gaps Between Field Positions... 5-10
5.4.3.3 Overlapping Fields.. 5-12

5.4.4 Field Options... 5-13
5.4.4.1 Initial Value.. 5-13
5.4.4.2 Read-Only Value.. 5-14
5.4.4.3 Repeated F ie ld ... 5-14
5.4.4.4 Similar-Field Distances... 5-15

5.5 Creating an Alien Structure.. 5-15
5.5.1 Initializing and Changing Data Fields... 5-15
5.5.2 Setting Allocation S iz e ... 5-16
5.5.3 Allocating Static or Dynamic Space... 5-16
5.5.4 Setting the Pointer to the Data Vector... 5-17

5.2.5 Specifying a Print Function... 5-6

Chapter 6 Interrupt Functions

6.1 Overview of Interrupt Functions ... 6-1

6.2 Asynchronous Events in VM S ... 6-2
6.2.1 Asynchronous System Traps (ASTs)... 6-2
6.2.2 Routines That Cause ASTs... 6-3

6.2.2.1 System Routines.. 6-3
6.2.2.2 VAX LISP Routines ... 6-3
6.2.2.3 Keyboard Functions... 6-3

6.3 Establishing LISP Interrupt Functions... 6-4
6.3.1 Defining an Interrupt Function ... 6-4

6.3.1.1 Passing Arguments to Interrupt Functions 6-4
6.3.1.2 Specifying the Interrupt Level... 6-5
6.3.1.3 Automatic Removal of Interrupt Functions 6—5

6.3.2 Associating an Interrupt Function with an Asynchronous E ve n t............ 6-5
6.3.2.1 Calling Out to System Routines That Cause Asynchronous

Events.. 6-5
6.3.2.2 Using VAX LISP Functions ... 6-6

6.3.3 Removing an Interrupt Function from LISP... 6-7
6.3.4 Suspending Systems Containing Interrupt Functions 6-8

Chapter 7 Interrupt Levels, Critical Sections, and Synchronization

7.1 Using Interrupt Levels ... 7-1

7.2 Executing Critical Sections.. 7-2

7.3 Synchronizing Program Execution.. 7-2

v

Index

Examples
4-1
4-2
4-3
4-4
4-5
4-6
4-7

Calling an External Routine from C .. 4-19
Accessing Callback Arguments.. 4-20
Defining Arguments to a Callback Routine.. 4-20
Calling Out and Back, Passing Arguments .. 4-21
Dereferencing an Argument L is t... 4-21
Accessing an Argument List .. 4-22
Calling a Callback Routine with an Argument L is t ... 4-22

Figures
4-1
4 - 2
5 - 1

Calling External Routines ... 4-2
Calling Back to LISP .. 4-3
Internal Storage of FAMILY-REC... 5-12

Tables
2-1
3-1
3-2
3-3
3-4
3 - 5
4 - 1
4-2
4 - 3
5 - 1

VAX LISP Pathname Fields.. 2-3
GET-DEVICE-INFORMATION Keywords ... 3-3
GET-FILE-INFORMATION Keywords .. 3-4
GET-PROCESS-INFORMATION Keywords .. 3-6
GET-TERMINAL-MODES Keywords.. 3-9
Logical Name Table Keywords.. 3-12
Values of the :MECHANISM Keyword.. 4-6
Data Type Conversion ... 4-7
Conversion of Callout Return Values.. 4-10
Alien Structure Field T ypes.. 5-8

VI

Preface

The VAX LISP/VMS System Access Guide provides information that lets you, as a
LISP programmer, make use of the programming interface of the VMS operating
system. The routines included with the operating system give you access to
capabilities not normally accessible from the LISP environment.

Intended Audience
This guide is intended for programmers with a good knowledge of both LISP and
the programming interface to the VMS operating system.

Structure
An outline of the organization and chapter content of this guide follows:
• Chapter 1 provides an overview of the VAX LISP system access facilities.
• Chapter 2 explains how to use file specifications in LISP.
• Chapter 3 describes how to get information about the current state of the

operating system and the process running LISP.
• Chapter 4 shows how to define an external (system) routine, how to call it

from LISP, and how to call back to LISP from the routine.
• Chapter 5 explains alien structures, which allow you to exchange data be­

tween LISP and routines written in other languages.
• Chapter 6 describes interrupt functions, which you can use to handle asyn­

chronous events in the operating system.
• Chapter 7 shows how you can control the execution of keyboard functions and

interrupt functions by assigning them interrupt levels. You can also protect
sections of code against interruption and cause your program to wait until an
event occurs or some needed information becomes available.

Associated Documents
The following documents are relevant to VAX LISP/VMS programming:
• VAX LISP/VMS Program Development Guide
• Common LISP: The Language
• VMS Linker Utility Reference Manual
• Introduction to VMS System Routines

vii

• VMS Utility Routines Manual
• VMS System Services Reference Manual
• VMS RTL Library (LIB$) Manual
• VMS Record Management Services Manual
• VAX Architecture Handbook
For a complete list o f VAX/VMS software documents, see the Overview of VMS
Documentation.

Conventions
The following conventions are used in this guide:

Convention
UPPERCASE

UPPERCASE
TYPEWRITER

lowercase
typewriter

SANS SERIF

italics

()

Meaning
DCL commands and qualifiers and VMS file names are printed in
uppercase characters; however, you can enter them in uppercase,
lowercase, or a combination of uppercase and lowercase characters.
For example:
The examples directory (SYS$SYSROOT:[VAXLISP.EXAMPLES] by
default) contains sample LISP source files.
Defined LISP functions, macros, variables, constants, and other
symbol names are printed in uppercase TYPEWRITER charac­
ters; however, you can enter them in uppercase, lowercase, or a
combination of uppercase and lowercase characters. For example:
The CALL-OUT macro calls a defined external routine
LISP forms are printed in the text in lowercase typewriter
characters; however, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters. For example:
(setf example-1 (make-space))
Format specifications of LISP functions and macros are printed in a
sans serif typeface. For example:
CALL-OUT external-routine &REST routine-arguments

Lowercase italics in format specifications and in text indicate argu­
ments that you supply; however, you can enter them in lowercase,
uppercase, or a combination of lowercase and uppercase characters.
For example:
The routine-arguments must be compatible with the arguments
defined in the call to the DEFINE-EXTERNAL-ROUTINE macro.
Parentheses used in examples of LISP code and in format spec­
ifications indicate the beginning and end of a LISP form. For
example:
(setq name lisp)

Convention Meaning

U

U *

&OPTIONAL

&REST

&KEY

Square brackets in format specifications enclose optional elements.
For example:
[doc-string]

Square brackets do not indicate optional elements when they are
used in the syntax of a directory name in a VMS file specification.
Here, the square bracket characters must be included in the syntax.
For example:

(pathname "MIAMI::DBA1:[SMITH]LOGIN.COM;4")
In function and macro format specifications, braces enclose elements
that are considered one unit of code. For example:
{keyword value}

In function and macro format specifications, braces followed by
an asterisk enclose elements that are considered one unit of code,
which can be repeated zero or more times. For example:
{keyword value)*

In function and macro format specifications, the word &OPTIONAL
indicates that the arguments that follow it are optional. For exam­
ple:
PPRINT object &OPTIONAL stream

Do not specify &OPTIONAL when you invoke a function or macro
whose definition includes &OPTIONAL.
In function and macro format specifications, the word &REST
indicates that an indefinite number of arguments may appear. For
example:
CALL-OUT external-routine &REST routine-arguments

Do not specify &REST when you invoke a function or macro whose
definition includes &REST.
In function and macro format specifications, the word &KEY indi­
cates that keyword arguments are accepted. For example:
COMPILE-FILE input-pathname

&KEY LISTING :MACHINE-CODE OPTIMIZE
:OUTPUT-FILE :VERBOSE WARNINGS

Do not specify &KEY when you invoke a function or macro whose
definition includes &KEY.
A horizontal ellipsis in a format specification means that the ele­
ment preceding the ellipsis can be repeated. For example:
function-name . . .

A vertical ellipsis in a code example indicates that all the informa­
tion that the system would display in response to the function call
is not shown; or, that all the information a user is to enter is not
shown.

Convention Meaning
| Return | A word inside a box indicates that you press a key on the keyboard.

For example:
| Return | or |Tab|
In code examples, carriage returns are implied at the end of each
line. However, I Return! is used in some examples to emphasize car-
riage returns.

IC tr l/ x l Two key names enclosed in a box indicate a control key sequence in
which you hold down Ctrl while you press another key. For example:
(c t r l / c l or |Ctrl/S|

Filial A sequence such as [pfT] [JL] indicates that you must first press and
release the key labeled PF1, then press and release another key.

mouse The term mouse refers to any pointing device, such as a mouse, a
puck, or a stylus.

MB1, MB2, MB3 By default, MB1 indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse button.
You can rebind the mouse buttons.

Ked print In interactive examples, user input is shown in red. For example:
Lisp> (cdr ' (a b c))
(B C)
Lisp>

X

Chapter 1

Overview of System Access Facilities

VAX LISP is layered on the VMS operating system. VAX LISP provides various
means of access to the facilities of the operating system. This chapter provides a
broad overview of those means of access. The remainder of this guide describes
them in detail.
The VMS operating system offers the following general facilities to any
programmer, including the LISP programmer:
• System services and other system routines. The routines are shipped with

the operating system. Some routines provide an interface to operating system
capabilities, such as I/O, scheduling, and notification of external events.
Other routines set or retrieve parameters about a process or the entire
system. There is a large family of math routines and a group of routines that
can manage the screen of a video terminal.

• A multilanguage programming environment. Routines written in a language
that conforms to the VAX Procedure Calling Standard can be called by and
return values to routines written in other languages. For example, a LISP
program can call a numeric analysis routine written in FORTRAN. The
external routine can also call back to VAX LISP.

The remainder of this chapter briefly describes each of the facilities that let you
work with operating system facilities. The chapters that follow describe each
facility in greater detail.

1.1 File System Interface
Common LISP includes several functions and variables for dealing with the
file system of “typical” operating system environments. Chapter 2 provides
information on interfacing with the VMS file system, using functions and
variables defined in both Common LISP (such as directory and *default-
PATHNAME-DEFAÜLTS*) and VAX LISP (that is, DEFAULT-DIRECTORY and *MODULE-
DIRECTORY*).

1.2 Operating System Information
Chapter 3 describes VAX LISP facilities for getting information from the
operating system about the environment in which your program is running. For
example, the command-line-entity-p and command-line-entity-value functions
return information about the way VAX LISP was invoked.

Overview of System Access Facilities 1-1

1.3 Callout and Callback Facilities
As a VAX LISP programmer, the callout and callback facilities are your primary
means of access to routines that are external to VAX LISP.
To use the callout facility, you must first identify a system routine that you want
to use, or write and debug a routine in another language. Information about
system routines is in VMS System Services Reference Manual and VMS Utility
Routines Manual. This documentation has information about the arguments that
each routine expects, its effects, and the value, if any, that it returns.
If you write a routine in another language, you must be aware of the VAX data
types and passing mechanisms of the routine’s arguments.
Once you have identified or written an external routine, you must define it,
using the define-external-routine macro. This macro informs LISP of the
location and arguments of an external routine and sets up a mechanism whereby
arguments expressed in LISP data types can be converted to the proper VAX data
types for the external routine.
The call-out macro calls a defined external routine, passing it the arguments
you specify and returning a value if the external routine returns a value.
The callback facility allows routines written in another VAX language (that
follows the VAX Procedure Calling Standard) to invoke LISP functions. The LISP
image must be started first, and the external routine must be called from LISP
with the call-out macro.

1.4 Alien Structures
The define-external-routine macro can specify arguments for most common
VAX data types. However, to pass more complex data you must define an alien
structure that corresponds to the structure of the data in an external routine. An
alien structure definition has two general purposes:
• To define a precise layout for a portion of memory
• To instruct LISP how to interpret fields in that memory, allowing you to

access those fields by using LISP data types
An alien structure definition provides a template for instances of that structure,
similar to a Common LISP structure definition created by the defstruct macro.
The define-alien-structure macro defines an alien structure and may also
provide a constructor function, field accessor functions, a type-checking predicate,
and so on, depending on the options with which it is called.
For example, you can pass an instance of an alien structure to an external
routine, using call-out. The external routine can access or modify fields in the
structure. When call-out returns, the modified structure is again available for
LISP to interpret as LISP data.

1.5 Interrupt Functions
Normally, LISP is a synchronous environment; that is, events in LISP programs
occur at times that can be predicted from the code and the data. Events such as
garbage collections that interrupt the normal flow of program execution do so in a
way that is transparent to user programs.

1-2 Overview of System Access Facilities

However, all events do not happen in a synchronous fashion. Some events
are asynchronous; that is, they occur at unpredictable points in the program,
although you can predict that they will eventually occur. For example:
• An I/O request is issued. Later, at an unpredictable point in the execution of

the program, the I/O operation completes.
• A timer is set. The time of its expiration can be predicted but not the program

state at that time.
A number of routines initiate activities that complete asynchronously. These
routines start the activity and then return; they do not wait for the activity to
complete. All these routines allow you to request notification of completion. In
VAX LISP, this notification takes the form of an interrupt function.
An interrupt function is a function that you write and that is designed to execute
as the result of an asynchronous event. Once you have written the interrupt
function, you make it known to VAX LISP by using the instate-interrupt-
function function, which returns an identifier for the interrupt function. You
then use call-out to pass this identifier, along with a VAX LISP constant, to
a system routine that initiates an asynchronous activity. When the activity
completes, your interrupt function will execute.

1.6 Controlling Interruptions and Synchronizing Execution
VAX LISP lets you control the way functions can interrupt each other. You can
also synchronize program execution by causing the program to wait until an
event occurs or information becomes available.
A function that is specified with bind-keyboard-function or instate-interrupt-
function can also have an interrupt level specified. The interrupt level is an
integer. When the function is called on to execute, it can do so only if its interrupt
level is higher than the level at which VAX LISP is operating. By using interrupt
levels, you can ensure that functions that must interrupt other functions can do
so.
Some functions, such as those that modify shared data structures, must never be
interrupted. You can use the critical-section macro to protect such code from
any interruption.
If your program has to wait for the execution of a keyboard function or an
interrupt function, VAX LISP provides the wait function. The wait function halts
normal LISP execution until a testing function that you specify returns non-NiL.

Overview of System Access Facilities 1-3

Chapter 2

File System Interface

This chapter describes the system-dependent aspects of the VAX LISP/VMS
file system interface. It explains how to use VAX LISP pathnames as VMS
file specifications. It also describes the functions and variables associated with
directories in VAX LISP.

2.1 Pathnames and Namestrings
In VAX LISP, file names can be represented by pathnames, namestrings, symbols,
or streams. This section covers pathnames and namestrings.
In Common LISP, a pathname is a LISP data object that represents a file
specification. A namestring also represents a file specification. However, it
provides the necessary translation between pathnames, which are implementation
independent, and file specifications, which are implementation dependent.
The section is divided as follows:
• Section 2.1.1 describes the relationship between logical names and path­

names.
• Section 2.1.2 tells you when to use pathnames.
• Section 2.1.3 describes the fields of a Common LISP pathname.
• Section 2.1.4 lists the values of VAX LISP pathname fields.
• Section 2.1.5 shows you three ways to create pathnames.
• Section 2.1.6 tells you what LISP functions to use to compare pathnames.
• Section 2.1.7 describes the purpose of namestrings.
• Section 2.1.8 shows you how to convert pathnames into namestrings.
• Section 2.1.9 describes the *default-pathname-defaults* variable and how

to change it.

2.1.1 Relationship Between Logical Names and Pathnames

In VAX LISP/VMS, logical names are translated into file specifications at the time
a pathname is created to allow pathnames to be merged properly. Translation
of logical names is not normally a problem unless the logical name has multiple
translations. In general, strings (rather than pathnames) for file specifications
improve the use of logical names with multiple translations. Some functions that
accept pathnames or strings as arguments (such as open and probe-file) can be
passed a string including a reference to such a logical name, and the appropriate

File System Interface 2-1

translation will be used. Other functions, however (such as load and compile-
file), convert string arguments to pathnames to apply the default file type and
directory, if they are not specified. In that case, the first translation for which the
device and directory exist is used. Providing a complete file specification in the
string argument to load or compile-file allows all the translations of included
logical names to be used.
If a file specification includes a reference to a remote node, logical names are not
translated in the resulting pathname.

2.1.2 When to Use Pathnames

Pathnames do not replace the traditional ways of representing a file in LISP.
Instead, the pathnames add a new way of representing a file to make LISP
programs portable between systems with different file-naming conventions.
Pathnames, however, do not have to refer to an existing file or give complete file
specifications; pathnames can exist as data objects and can be used as arguments
to pathname functions (see Section 2.2 and Common LISP: The Language).
Several pathname functions and most functions that deal with the file system
can take either pathnames, namestrings, symbols, or streams as their arguments.
However, the values of the following variable and argument must be pathnames:
• The *DEFAULT-PATHNAME-DEFAULTS* variable
• The defaults argument in a call to the parse-namestring function
See Section 2.1.9 and Common LISP: The Language for a description of the
preceding variable and function.

2.1.3 Fields of a Common LISP Pathname

A Common LISP pathname is a LISP data object composed of six fields. Each
field represents one of the following aspects of a file specification:
Host file system
Device file structure or physical or logical device on which files are stored
Directory group of related files
Name file name
Type file extension
Version number incremented every time the file is modified

2.1.4 Values of VAX LISP Pathname Fields

For a description of VAX LISP file specifications, see Chapter 1 of the VAX
LISP /VMS Program Development Guide. The following examples show how the
components of a VAX LISP file specification are mapped into the fields of a VAX
LISP pathname. The first example shows a VAX LISP file specification:
MIAMI::DBA1:[SMITH]LOGIN.COM;4
The second example shows the pathname that represents that file specification:
#S(PATHNAME :HOST "MIAMI" ;DEVICE "DBA1" :DIRECTORY "SMITH"

■•NAME "LOGIN" : TYPE "COM" : VERSION 4)

2-2 File System Interface

Table 2-1 names the fields of a VAX LISP pathname, the VMS file components
that correspond to those fields, and the VAX LISP data type each field accepts.

Table 2-1: VAX LISP Pathname Fields

Field Name
VMS
Component Field Value

: HOST node String, integer, or NIL. If you specify a string, the
field value can include an access control string, and
you must omit the final double colon (::). Examples of
host field values are 0, "0", "HOST", "A: :B: :C", and
"A\ "NAME password\ "".

:DEVICE device String or NIL. If you specify a string, you must omit
the final colon (:). An example of a device field value is
"DBA1".

:DIRECTORY directory String, NIL, or the :WILD keyword. The :WILD key­
word is translated to the VMS wildcard symbol,
the asterisk (*). If you specify a string, you must
omit the square brackets ([]) or angle brackets (<>).
Examples of directory field values are "SMITH",
"SMITH.COMMAND",and "SMITH . . .

: NAME filename String, NIL, or the :WILD keyword. The :WILD key­
word is translated to the VMS wildcard symbol, the
asterisk (*). If you specify a string, you must omit the
period (.) that follows the name. Examples of name
field values are "LISP" and "L*SP".

: TYPE filetype String, NIL, or the :WILD keyword. The :WILD key­
word is translated to the VMS wildcard symbol, the
asterisk (*). If you specify a string, you must omit the
period (.) that precedes the type. Examples of type
field values are "LSP" and "FAS".

:VERSION version String, integer, NIL, or keyword. An integer can be
positive, negative, or zero. Zero represents the newest
version of a file, and minus one (-1) represents the
previous version of a file. The following keywords can
be specified:
: NEWEST equivalent to 0
: PREVIOUS equivalent to -1
: WILD equivalent to
If you specify a string, you must omit the initial
semicolon (;). Examples of version field values are 0,
-14, "2%", and "4*".

2.1.5 Creating Pathnames

You can create a pathname in one of three ways, using the following functions:
• The MAKE-PATHNAME function

Lisp> (make-pathname :host "miami"
:device "dbal"
:directory "smith"
:name "test"
:type "lsp"
:version 1)

#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1" :DIRECTORY "SMITH"
:NAME "TEST" :TYPE "LSP" :VERSION 1)

File System Interface 2-3

• The PATHNAME function
Lisp> (pathname "miami::dbal:[smith]login.com;4")
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1" :DIRECTORY "SMITH"

:NAME "LOGIN" :TYPE "COM" :VERSION 4)
The PARSE-NAMESTRING function
Lisp> (parse-namestring "miami::dbal:[smith]login.com")
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBAI" :DIRECTORY "SMITH"

:NAME "LOGIN" :TYPE "COM" :VERSION 4)

The make-pathname function creates a pathname directly from the user-input
keywords :HOST, directory, and so on. On the other hand, the pathname
function and the parse-namestring function create a pathname by:
• Using a pathname, namestring, symbol, or stream as an argument
• Parsing the argument
• Returning a pathname if the parse operation is successful

NOTE

The LISP system does not check whether you have entered an existing
or complete file specification when you create a pathname. Therefore,
you can create a pathname that is not usable and, when you perform
a file operation, it will not succeed. To correct the problem, you must
change the pathname to conform to a valid file specification. See
Chapter 1 of the VAX LISP /VMS Program Development Guide for a
description of VMS file specifications and Section 2.1.4 for a description
of the field values in a VAX LISP pathname.

You can specify any valid DECnet-VAX node specification in the host field of
a pathname when you are calling a parsing function. Each host name in the
specification must be followed by two colons (::) as shown in the following
example:
Lisp> (pathname "first::second::third::dbal:[smith]pathname")
#S(PATHNAME :HOST "FIRST::SECOND::THIRD" :DEVICE "DBAI"

:DIRECTORY "SMITH" :NAME "PATHNAME" :TYPE NIL
:VERSION NIL)

The pathname function concatenates the nodes, first, second, and third, into a
single string in the pathname’s host field.
If the namestring argument in a call to the pathname or the parse-namestring
function is a logical name, the logical name is translated.
The pathname and parse-namestring functions both return a pathname if the
parse operation succeeds. They return different values in the case of error.
pathname signals an error if the operation fails, parse-namestring either returns
nil or signals an error, depending on the value of the : junk-allowed keyword.
Descriptions of the make-pathname, pathname, and parse-namestring functions
are provided in Common LISP: The Language.

2-4 File System Interface

2.1.6 Comparing Similar Pathnames

You should use the equal function to compare pathnames with the same field
entries. This function is sensitive to keywords and their equivalent symbols
(that is, :wild is equivalent to "*"), but ignores case. For example, if the make-
pathname and parse-namestring functions each create a pathname for TEST.*;,
you can use the equal function to compare the pathnames (see Common LISP;
The Language). The following calls to the setf macro set the pathnames created
by the make-pathname and parse-namestring functions to the variables x and y:
Lisp> (setf x (make-pathname :name "Test"

:type :wild
:version 0))

#S(PATHNAME :HOST "MIAMI" :DEVICE NIL :DIRECTORY NIL
:NAME "Test" :TYPE :WILD :VERSION 0)

Lisp> (setf y (parse-namestring "tEST.*;"))
#S(PATHNAME :HOST "MIAMI" :DEVICE NIL :DIRECTORY NIL

:NAME "TEST" :TYPE "*" :VERSION :NEWEST)
Lisp> (equal x y)
T
The equal function returns t to indicate that the pathname values of x and y are
equal.

2.1.7 Purpose of Namestrings

Because operating systems such as VMS and ULTRIX have different ways of
formatting file names, Common LISP uses namestrings to translate between
pathnames (implementation-independent names) and file names (implementation-
dependent names).
A namestring is a string naming a file in an implementation-dependent form
customary for the file system. A VAX LISP namestring is a string containing a
valid VMS file specification. For example, if a file in the VMS file system is called
SYS$LOGIN:LOGIN.COM;4, the equivalent namestring would be displayed as
"SYS$LOGIN:LOGIN.COM;4".
File system functions, such as load, accept pathnames but internally convert
them to namestrings. For more information on namestrings, see Section 2.1.8.

2.1.8 Converting Pathnames into Namestrings

You can convert a pathname into a namestring by specifying the pathname in a
call to the namestring function.
If the argument you specify contains the name of a host, the function invokes
DECnet-VAX to perform network operations whether or not the specified host is
the current host. To avoid using DECnet-VAX, the VAX LISP implementation of
the namestring function removes the host value if the value is the same as the
translation value of SYS$NODE. The following call to the translate-logical-
name function shows that the current node is MIAMI:
Lisp> (translate-logical-name "sysSnode")
("_MIAMI::")

File System Interface 2-5

If you use the pathname function to create a pathname whose host field is the
current node, namestring does not include the host in the namestring it returns.
For example, suppose the host is still MIAMI. If you use the setf macro to set a
variable called this-pathname to the pathname created by the pathname function,
a subsequent call to namestring does not include the host:
Lisp> (setf this-pathname

(pathname "miami::dbal:[smith]login.com;4"))
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1" :DIRECTORY "SMITH"

:NAME "LOGIN" ;TYPE "COM" :VERSION 4)
Lisp> (namestring this-pathname)
"DBA1:[SMITH]LOGIN.COM;4"
Now, suppose you use the pathname function to create a pathname called that-
pathname whose host field is BOSTON. In this case, a call to the setf macro sets
that-pathname to the pathname that is created with the pathname function, and
a subsequent call to namestring does include the host. This is because the host
BOSTON is not the current node.
Lisp> (setf that-pathname

(pathname "boston::dbal:[smith]login.com;4"))
#S(PATHNAME :HOST "BOSTON" :DEVICE "DBA1" :DIRECTORY "SMITH"

:NAME "LOGIN" :TYPE "COM" :VERSION 4)
Lisp> (namestring that-pathname)
"boston::dbal:[smith]login.com;4"
If you want to invoke DECnet-VAX and specify the current host, specify the host
with an access control string or zero. For example:
Lisp> (setf that-pathname

(pathname "0::thatdevice:[smith]login.com"))
#S(PATHNAME :HOST "0" :DEVICE "THATDEVICE" :DIRECTORY "SMITH"

:NAME "LOGIN" :TYPE "COM" :VERSION NIL)
Lisp> (namestring that-pathname)
"0::thatdevice:[smith]login.com"
Table 2-1 notes that in VAX LISP the host field of a pathname can include an
access control string. If the namestring function is called with a pathname
argument whose host field includes an access control string, the namestring that
is returned includes the host, even if the value in the pathname’s host field is the
same as the current node.
Assume that the current host is MIAMI. The following setf expression sets
this-pathname to the pathname that is created with the pathname function:
Lisp> (setf this-pathname

(pathname
"miamiX"smith mypasswordX"::thisdevice:[smith]file"))

#S(PATHNAME :HOST "MIAMI:X SMITH mypasswordX"" :DEVICE "THISDEVICE"
:DIRECTORY "SMITH" :NAME "FILE" :TYPE NIL VERSION: NIL)

The host field of the pathname that is created contains the host MIAMI and the
access control string SMITH MYPASSWORD. The namestring function, when
called with this-pathname as its argument, returns a namestring that includes
all the pathname field values:
Lisp> (namestring this-pathname)
"miamiX"smith mypasswordX":rthisdevice:[smith]file"

2-6 File System Interface

2.1.9 Using the *DEFAULT-PATHNAME-DEFAULTS* Variable

The value of the *default-pathname-defaults* variable is used by some
pathname functions to fill pathname fields not specified in their arguments. The
default value of this variable is a pathname whose host, device, and directory
fields indicate the current directory and whose name, type, and version fields
contain nil.
In VAX LISP, you can change the value of the *default-pathname-defaults*
variable as follows:
• The SETF macro

The following example illustrates using the setf macro to change a path­
name’s directory from [SMITH] to [SMITH.TEST]:
Lisp> (setf *default-pathname-defaults*

(make-pathname :directory "[smith.test]"))
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1"

:DIRECTORY "[SMITH.TEST]" :NAME NIL
:TYPE NIL :VERSION NIL)

• The DEFAULT-DIRECTORY function
The value of the *default-pathname-defaults* variable is set to the value of
your default directory when LISP starts and when you change your directory
with the form (setf (default-directory) . . .). To check the value of your
default directory, call the default-directory function. For example:
Lisp> (default-directory)
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1"

:DIRECTORY "SMITH" :NAME NIL
:TYPE NIL :VERSION NIL)

The pathname returned in this example indicates that the default directory
is SMITH on host MIAMI. In this case, each time a pathname function fills a
pathname field with a default value, the corresponding value in the directory
SMITH is used.
To change the value of your default directory, set it with the setf macro. The
following example illustrates how to change a default directory from SMITH
to SMITH.TEST:
Lisp> (setf (default-directory) "[.test]")
" [. T E S T] "

The next example illustrates that when the directory is changed, the default-
directory function returns a new pathname referring to the new default
directory:
Lisp> (default-directory)
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1"

:DIRECTORY "SMITH.TEST" :NAME NIL
:TYPE NIL :VERSION NIL)

NOTE

The value of the *default-pathname-defaults* variable must be a
pathname. Do not set this variable to a namestring, symbol, or stream.

File System Interface 2-7

2.2 Directories
VAX LISP provides one function and one variable for accessing directories, in
addition to the directory function described in Common LISP: The Language.
• The DEFAULT-DIRECTORY function

The default-directory function returns a pathname that refers to the
current directory. You can use this function with the setf macro to change
your default directory.

• The DIRECTORY function
The directory function converts its argument to a pathname and merges
that pathname with the following elements of a file specification:
host: '.device .[directory]" .*•*

The values for the host, device, and directory fields are supplied by the
default-pathname-defaults variable (see Section 2.1.9).

• The ^MODULE-DIRECTORY* variable
The value of the *module-directory* variable refers to the directory con­
taining the module that is currently being loaded into the LISP environment
due to a call to the require function. The value is bound during calls to the
require function, and is a pathname.
After the module is loaded, the *module-directory* variable is rebound to
NIL.

See VAX LISP/VMS Function, Macro and Variable Descriptions for descriptions
of these functions and variable.

2-8 File System Interface

Chapter 3

Getting Operating-System Information

This chapter describes how to get information about the current state of the
operating system and the process running VAX LISP. The following topics are
covered in this chapter:
• Section 3.1 describes how to access the command line used to invoke VAX

LISP.
• Section 3.2 tells how to find the version number.
• Section 3.3 shows how to get device information.
• Section 3.4 describes how to get file information.
• Section 3.5 describes how to get process information.
• Section 3.6 tells how to control terminal characteristics.
• Section 3.7 shows how to get system messages.
• Section 3.8 describes how to translate logical names.

3.1 Accessing the Command Line
VAX LISP includes two functions for accessing information about the command
line that invoked VAX LISP: the command-line-entity-p function indicates the
presence or absence of a given entity on the command line, and the command-
line-entity-value function returns the value of a given entity on the command
line. These two functions provide an interface to the VMS utility routines
CLI$PRESENT and CLI$GET_VALUE, respectively (see the VMS Utility
Routines Manual for more information on these routines).
The command line functions have the following format:
COMMAND-LINE-ENTITY-P entity-desc
COMMAND-LINE-ENTITY-VALUE entity-desc

The entity-desc argument may be a character string or a symbol. If you supply
a symbol, the print name of the symbol is used. (See the description of the
entity-desc argument to CLI$PRESENT and CLI$GET_VALUE in the VMS
Utility Routines Manual.)

Getting Operating-System Information 3-1

Each of these functions returns two values. The values returned by command-
line-entity-p have the following meanings:

First
Value

Second
Value Meaning

T T Entity was explicitly specified as present
T NIL Entity was present by default
NIL T Entity was explicitly negated with NO
NIL NIL Entity was absent by default

The values returned by command-line-entity-value are:
1. A string containing the first or next value of the specified entity, depending

on whether this is the first request for this entity or a subsequent request.
If the entity is not present, has no value, or if all values for this entity have
been obtained, nil is returned.

2. A character that is the character delimiter that preceded the returned entity.
This is normally a comma (#\ ,) but may be a plus sign (# \ +) to indicate
concatenation.

The COMMAND-LINE-ENTITY-P and COMMAND-LINE-ENTITY-VALUE functions are
useful in a user-defined LISP system that is invoked by a defined DCL command.
See VAX LISP /VMS System-Building Guide for more information on building a
LISP system.

3.2 Finding the Version Number
The software-version-number function finds the version number of a given
software product or component. The major and minor parts of the version
number are returned as multiple values. That is, for a version number in the
form m.n, software-version-number returns a fixnum for m and a fixnum for n.
A call to the software-version-number function has the format:
SOFTWARE-VERSION-NUMBER component

The component is a string containing the name of a software product or compo­
nent. The possible values are:
"VAX LISP”
"VMS"
"UIS"
"CLX"

3.3 Getting Device Information
The get-device-information function returns information about a device. The
keywords you specify with the function determine the type of information the
function returns. The format of the get-device-information function is:
GET-DEVICE-INFORMATION device &REST {keyword}*

The device argument is a string that names the device; keyword arguments
specify the type of information you want. Do not specify values for the keywords.
Table 3—1 lists the keywords and the values they return.

3-2 Getting Operating-System Information

Table 3-1: GET-DEVICE-INFORMATION Keywords

Keyword Return Value
:ACP-PID An integer that specifies the ACP process ID.
:ACP-TYPE Am integer that specifies the ACP type code.
:BUFFER-SIZE An integer that specifies the buffer size.
:CLUSTER-SIZE An integer that specifies the volume cluster size.
: CYLINDERS An integer that specifies the number of cylinders on the

device.
:DEVICE-CHARACTERISTICS A vector of 32 bits that specifies the device characteristics.

See the VMS I/O User’s Reference Manual: Part I for
information about device characteristics.

:DEVICE-CLASS An integer that specifies the device class.
:DEVICE-DEPENDENT-0 A bit vector that specifies device-dependent information.
:DEVICE-DEPENDENT-1 A bit vector that specifies device-dependent information.
:DEVICE-NAME A string that specifies the device name.
:DEVICE-TYPE An integer that specifies the device type.
:ERROR-COUNT An integer that specifies the number of errors that have

occurred on the device.
:FREE-BLOCKS An integer that specifies the number of free blocks on the

device; otherwise, NIL.
:LOGICAL-VOLUME-NAME A string that specifies the logical name associated with

the volume on the device. This keyword is valid only for
disks.

:MAX-BLOCKS An integer that specifies the maximum number of logical
blocks that can exist on the device.

:MAX-FILES An integer that specifies the maximum number of files
that can exist on the device.

:MOUNT-COUNT An integer that specifies the number of times the device
has been mounted.

:NEXT-DEVICE-NAME A string that specifies the name of the next volume in the
volume set.

:OPERATION-COUNT An integer that specifies the number of operations that
have been performed on the device.

:OWNER-UIC An integer that specifies the UIC of the owner.
: PID An integer that specifies the process ID of the owner.
:RECORD-SIZE An integer that specifies the blocked record size.
:REFERENCE-COUNT An integer that specifies the number of channels assigned

to the device.
:ROOT-DEVICE-NAME A string that specifies the name of the root volume in the

volume set.
:SECTORS An integer that specifies the number of sectors per track.
:SERIAL-NUMBER An integer that specifies the serial number.
:TRACKS An integer that specifies the number of tracks per cylin­

der.
:TRANSACTION-COUNT An integer that specifies the number of files open on the

device.

(continued on next page)

Getting Operating-System Information 3-3

Table 3-1 (Cont.): GET-DEVICE-INFORMATION Keywords

Keyword Return Value

: UNIT An integer that specifies the unit number.
:VOLUME-COUNT An integer that specifies the number of volumes in the

volume set.
:VOLUME-NAME A string that specifies the name of the volume on the

device.
:VOLUME-NUMBER An integer that specifies the number of the volume on the

device.
:VOLUME-PROTECTION A vector of 32 bits that specifies the volume protection

mask.

The keywords and their values are returned as a property list in the following
format:
({■.keyword value}*)

The function preserves the order of the keyword-value pairs in the argument
list. If you do not specify any keywords, the function returns a list of all the
keyword—value pairs. If the device does not exist, the function returns NIL.
This function is similar to the VMS system service $GETDVI. For more infor­
mation on the $GETDVI system service, see the VMS System Services Reference
Manual and the VMS I/O User’s Reference Manual: Part I.

3.4 Getting File Information
The get-file-information function returns information about a file. The syntax
is:
GET-FILE-INFORMATION pathname &REST {keyword}*

The pathname argument may be a pathname, namestring, symbol, or stream that
represents the name of the file.
The optional keywords let you specify particular types of information about the
file. Do not specify values with the keywords. Table 3-2 lists the keywords and
the values they return.

Table 3-2: GET-FILE-INFORMATION Keywords

Keyword Return Value
:ALLOCATION-QUANTITY An integer that specifies the number of blocks allocated

for the file.
:BACKUP-DATE The last universal date and time the file was backed up.

If the file has not been backed up, the function returns
NIL.

:BLOCK-SIZE An integer that specifies the block size.
:CREATION-DATE The universal date and time the file was created.

(continued on next page)

3-4 Getting Operating-System Information

Table 3-2 (Cont.): GET-FILE-INFORMATION Keywords

Keyword R eturn Value

:DEFAULT-EXTENSION

:END-OF-FILE-BLOCK
:EXPIRATION-DATE

:FIRST-FREE-BYTE

:FIXED-CONTROL-SIZE
:GROUP
: LONGEST-RECORD-LENGTH

:MAX-RECORD-SIZE

:MEMBER
:ORGANIZATION
:PROTECTION
:RECORD-ATTRIBUTES
:RECORD-FORMAT
:REVISION
:REVISION-DATE
: UIC
:VERSION-LIMIT

An integer that specifies the number of blocks added to
the file’s size when the file was extended.
An integer that specifies the block in which the file ends.
The universal date and time the file expires. If an
expiration date is not recorded, the function returns NIL.
An integer that specifies the offset of the first byte in the
file’s end-of-file block.
An integer that specifies the fixed control area size.
An integer that specifies the owner group number.
An integer that specifies the length of the longest record
in the file.
An integer that specifies the maximum size allowed for a
record.
An integer that specifies the owner member number.
An integer that specifies the organization.
A vector of 16 bits that specifies the protection code.
An integer that specifies the record attributes.
An integer that specifies the record format.
An integer that specifies the revision number.
The last universal date and time the file was revised.
An integer that specifies the owner UIC.
An integer that specifies the maximum version number
the file can have.

These keywords correspond to the fields of the RMS file access block (FAB)
and extended attribute block (XAB). See the VMS Record Management Services
Manual for information on FAB and XAB fields.
The keywords and their values are returned as a property list in the following
format:
{{■.keyword value}*)

The function preserves the order of the keyword-value pairs in the argument
list. If you do not specify any keywords, the function returns a list of all the
keyword-value pairs. If the file does not exist, the function returns nil.

3.5 Getting Process Information
The get-process-information function returns information about a process. If
the process is nonexistent, this function returns nil. Its format is:
GET-PROCESS-INFORMATION process &REST {keyword}*

The process argument is the name or process identification (PID) of a process.
You can specify a string, an integer, or nil. If you specify a string, the argument
is the process name. It must be case sensitive. If you specify an integer, the
argument is the PID. If you specify nil, the function returns information on the
current process.

Getting Operating-System Information 3-5

The optional keywords determine the type of information the function returns.
Do not specify values with the keywords. Table 3-3 lists the keywords and the
values they return.

Table 3-3: GET-PROCESS-INFORMATION Keywords

Keyword Return Value
:ACCOUNT A string that specifies the account.
:ACTIVE-PAGE-TABLE-COUNT An integer that specifies the active page table count.
:AST-ACTIVE A vector of four bits that specifies the number of

access modes that have active asynchronous system
traps (ASTs) for the process.

:AST—COUNT An integer that specifies the remaining AST quota.
:AST-ENABLED A vector of four bits that specifies the number of

access modes that have enabled ASTs for the process.
:AST-QUOTA An integer that specifies the AST quota.
:AUTHORIZED-PRIVILEGES A vector of 64 bits that specifies the privileges the

process is authorized to enable.
:BASE-PRIORITY An integer that specifies the base priority.
:BATCH Either T or NIL. The function returns T if the process

is a batch job; otherwise, returns NIL.
:BIO-BYTE-COUNT An integer that specifies the remaining buffered I/O

byte count quota.
:BIO-BYTE-QUOTA An integer that specifies the buffered I/O byte count

quota.
:BIO-COUNT An integer that specifies the remaining buffered I/O

operation quota.
:BIO-OPERATIONS An integer that specifies the number of buffered I/O

operations the process has performed.
:BIO-QUOTA An integer that specifies the buffered I/O operation

quota.
:CLI-TABLENAME A string that specifies the file name of the current

command language interpreter table.
:CPU-LIMIT An integer that specifies the CPU time limit of the

process in 10-millisecond units.
:CPU-TIME An integer that specifies the accumulated CPU time

of the process in 10-millisecond units.
:CURRENT-PRIORITY An integer that specifies the current priority.
:CURRENT-PRIVILEGES A vector of 64 bits that specifies the current privi­

leges.
:DEFAULT-PAGE-FAULT-CLUSTER An integer that specifies the default page fault

cluster size.
:DEFAULT-PRIVILEGES A vector of 64 bits that specifies the default privi­

leges.
:DIO-COUNT An integer that specifies the remaining direct I/O

operation quota.
:DIO-OPERATIONS An integer that specifies the number of direct I/O

operations the process has performed.

(continued on next page)

3-6 Getting Operating-System Information

Table 3-3 (Cont.): GET-PROCESS-INFORMATION Keywords

Keyword Return Value

:DIO-QUOTA An integer that specifies the direct I/O operation
quota.

:ENQUEUE-COUNT An integer that specifies the number of lock manager
enqueues.

:ENQUEUE-QUOTA An integer that specifies the lock manager enqueue
quota.

:EVENT-FLAG-WAIT-MASK A vector of 32 bits that specifies the event flag wait
mask.

:FIRST-FREE-PO-PAGE An integer that specifies the first free page at the
end of the program region.

:FIRST-FREE-P1-PAGE An integer that specifies the first free page at the
end of the control region.

:GLOBAL-PAGES An integer that specifies the number of global pages
in the working set.

:GROUP An integer that specifies the group field of the UIC.
:IMAGE-NAME A string that specifies the current image file name.
:IMAGE-PRIVILEGES A vector of 64 bits that specifies the privileges with

which the current image of the process was installed.
:JOB-SUBPROCESS-COUNT An integer that specifies the number of subprocesses.
:LOCAL-EVENT-FLAGS A vector of 32 bits that specifies the local event flags

the process has in effect.
:LOGIN-TIME An integer in internal time that specifies the time

the process was created.
:MEMBER An integer that specifies the member field of the

UIC.
:MOUNTED-VOLUMES An integer that specifies the number of mounted

volumes.
:OPEN-FILE-COUNT An integer that specifies the remaining open file

quota.
:OPEN-FILE-QUOTA An integer that specifies the open file quota.
:OWNER-PID An integer that specifies the process ID of the owner.
:PAGE-FAULTS An integer that specifies the number of page faults.
:PAGE—FILE—COUNT An integer that specifies the number of paging file

pages remaining to the process.
:PAGE-FILE-QUOTA An integer that specifies the paging file quota.
:PAGES-AVAILABLE An integer that specifies the number of virtual pages

available for expansion.
: PID An integer that specifies the process ID.
: PID-OF-PARENT An integer that specifies the PID of the parent

process. This integer differs from :OWNER-PID in
that : PID-OF-PARENT refers to the top-level process,
while : OWNER-PID refers to the process immediately
above the current process or subprocess.

(continued on next page)

Getting Operating-System Information 3-7

Table 3-3 (Cont.): GET-PROCESS-INFORMATION Keywords

Keyword Return Value

:PROCESS-CREATION-FLAGS A 32-bit bit-vector that specifies the flags used to
create the process.

:PROCESS-INDEX An integer that specifies the index number of the
process at a given instant. (Process index numbers
are reassigned to different processes over time.)

:PROCESS-NAME A string that specifies the name of the process.
:SITE-SPECIFIC A longword that specifies the contents of the site-

specific longword.
:STATE An integer that specifies the state of the process.
:STATUS A vector of 32 bits that specifies the status flags.
:SUBPROCESS-COUNT An integer that specifies the number of subprocesses

owned by the process.
:SUBPROCESS-QUOTA An integer that specifies the subprocess quota.
:TERMINAL A string that specifies the name of the terminal with

which the process is interacting.
:TERMINATION-MAILBOX An integer that specifies the termination mailbox

unit number.
:TIMER-QUEUE-COUNT An integer that specifies the remaining timer queue

entry quota.
:TIMER-QUEUE-QUOTA An integer that specifies the timer queue entry

quota.
:UAF-FLAGS A 12-bit bit-vector that specifies the UAF flags of the

user who owns the process.
: UIC An integer that specifies the UIC.
:USERNAME A string that specifies the user name.
: VIRTUAL-ADDRE S S-PEAK An integer that specifies the peak virtual address

space size.
:WORKING-SET-AUTHORIZED-
EXTENT

An integer that specifies the maximum authorized
working set extent.

:WORKING-SET-AUTHORIZED-
QUOTA

An integer that specifies the authorized working set
quota.

:WORKING-SET-COUNT An integer that specifies the number of process pages
in the working set.

:WORKING-SET-DEFAULT An integer that specifies the default working set size.
:WORKING-SET-EXTENT An integer that specifies the current working set size

extent.
:WORKING-SET-PEAK An integer that specifies the peak working set size.
:WORKING-SET-QUOTA An integer that specifies the current working set

quota.
:WORKING-SET-SIZE An integer that specifies the current working set

size.

The keywords and their values are returned as a property list in the following
format:
({-.keyword value}*)

3-8 Getting Operating-System Information

The function preserves the order of the keyword-value pairs in the argument
list. If you do not specify any keywords, the function returns a list of all the
keyword—value pairs. If the process does not exist, the function returns nil.
This function is similar to the VMS system service $GETJPI. For more infor­
mation on the $GETJPI system service, see the VMS System Services Reference
Manual.

3.6 Controlling Terminal Characteristics
VAX LISP provides functions for getting information about, and for changing, the
terminal characteristics of the device associated with the *terminal-io* variable.
The get-terminal-modes and set-terminal-modes functions are similar to the
DCL commands SHOW TERMINAL and SET TERMINAL, respectively. (See the
VMS DCL Dictionary for more information on the DCL commands.)

3.6.1 Using the GET-TERMINAL-MODES Function

The get-terminal-modes function returns information about the terminal
characteristics of the device associated with the *terminal-io* variable when
you invoke the LISP system. If the stream bound to this variable is not connected
to a terminal, the LISP system signals an error.
The format of the get-terminal-modes function is:
GET-TERMINAL-MODES &REST {keyword}*

The keywords you specify determine the terminal characteristics about which the
function returns information. Table 3-4 lists the keywords and the information
they return. Do not specify values with the keywords when you call get-
terminal-modes.

Table 3-4: GET-TERMINAL-MODES Keywords

Keyword Return Value
:BROADCAST Either T or NIL. The function returns T if your terminal can

receive broadcast messages, such as MAIL notifications and REPLY
messages; otherwise, returns NIL.

: ECHO Either T or NIL. The function returns T if the terminal displays
the input character that it receives; otherwise, returns NIL. If the
function returns NIL, the terminal displays only data output from
the system or a user application program.

:ESCAPE Either T or NIL. The function returns T if ANSI standard escape
sequences transmitted from the terminal are handled as a single
multicharacter terminator; otherwise, returns NIL. The terminal
driver checks the escape sequences for syntax before passing them
to the program. For more information on escape sequences, see the
VMS I/O User’s Reference Manual: Part I.

:HALF-DUPLEX Either T or nil. The function returns T if the terminal’s operating
mode is half-duplex, and the function returns NIL if the operating
mode is full-duplex. For a description of terminal operating modes,
see the VMS I/O User’s Reference Manual: Part I.

(continued on next page)

Getting Operating-System Information 3-9

Table 3-4 (Cont.): GET-TERMINAL-MODES Keywords

Keyword Return Value

:PASS-ALL Either T or NIL. The function returns T if the system does not
expand tab characters to blanks, fill carriage return or linefeed
characters, recognize control characters, and receive broadcast
messages. The function returns NIL if the system passes all data to
an application program as binary data.

:PASS-THROUGH Either T or NIL. This mode is the same as the : PASS-ALL mode,
except that “TTSYNC” protocol (Ctrl/S and Ctrl/Q) is still used.

:TYPE-AHEAD Either T or NIL. The function returns T if the terminal accepts
input that is typed when there is no outstanding read, and the
function returns NIL if the terminal driver is dedicated and accepts
input only when a program or the system issues a read.

: WRAP Either T or NIL. The function returns T if the terminal gener­
ates a carriage return and a line feed when the end of a line is
reached. Otherwise, the function returns NIL. The end of the line is
determined by the terminal-width setting.

The keywords and their values are returned as a list in the following format:
(:keyword-1 value-1 :keyword-2 value-2 . . .)
This is the same format as an argument to the set-terminal-modes function.
The function preserves the order of the keyword-value pairs in your argument
list. If you do not specify keywords, the function returns a list of all eight
keyword-value pairs. For example:
Lisp> (get-terminal-modes)
(:BROADCAST T :ECHO T :ESCAPE NIL :HALF-DUPLEX NIL :PASS-ALL NIL
:PASS-THROUGH NIL :TYPE-AHEAD T :WRAP T)

3.6.2 Using the SET-TERMINAL-MODES Function

The set-terminal-modes function changes certain terminal characteristics of the
stream bound to the *terminal-io* variable when you invoke the LISP system.

NOTE

Changing terminal modes affects all the streams that are open to the
terminal. If you put one stream into pass-through mode, for example,
every stream open to the terminal is put into pass-through mode.

The set-terminal-modes function has the following syntax:
SET-TERMINAL-MODES &KEY BROADCAST :ECHO :ESCAPE :HALF-DUPLEX

PASS-ALL PASS-THROUGH TYPE-AHEAD :WRAP

See Table 3-4 for a description of the keywords you can use with set-terminal-
MODES.

3-10 Getting Operating-System Information

3.6.3 Handling Nonstandard Terminal States

You can create an error handler to prevent your terminal from being placed in a
nonstandard state. For example:
Lisp> (defvar *old-terminal-state*)
OLD-TERMINAL-STATE
Lisp> (defun pass-through-handler (function error &rest args)

(let ((current-settings (get-terminal-modes)))
(apply #'set-terminal-modes *old-terminal-state*)
(apply #'universal-error-handler function error args)
(apply #'set-terminal-modes current-settings)))

PASS-THROUGH-HANDLER
Lisp> (defun unusual-input nil

(let ((*old-terminal-state* (get-terminal-modes))
(*universal-error-handler* #'pass-through-handler))

(unwind-protect (progn
(set-terminal-modes :pass-through t

:echo nil)

UNUSUAL-INPUT

(get-input))
(apply #'set-terminal-modes

old-terminal-state))))

This example illustrates the following points:
• The call to the defvar macro informs the LISP system that *old-terminal-

state* is a special variable.
• The first call to the defun macro defines an error handler named pass­

through-handler, which is used when the terminal is placed in an unusual
state. The handler assumes that the normal terminal modes are stored as the
value of the *old-terminal-state* variable.

• The second call to the defun macro defines a function named unusual-input,
which causes the function pass-through-handler to be the error handler
while the function get-input is being executed. The get-input function is
inside a call to the unwind-protect function so an error or throw puts the
terminal back in its original state.

See Chapter 6 of the VAX LISP Implementation and Extensions to Common LISP
for more information on creating error handlers.

3.7 Getting System Messages
The get-vms-message function returns the system message associated with the
VMS status given as its required argument. An optional argument lets you
specify which parts of the message are returned. The format of get-vms-message
is:
GET-VMS-MESSAGE status &OPTIONAL flags

The status argument is a fixnum that specifies the VMS status code of the
message that will be returned. See the VMS System Messages and Recovery
Procedures Reference Manual for information on VMS message status codes. The
function returns nil if you specify a status code that does not exist.

Getting Operating-System Information 3-11

The flags argument is a bit vector of length four that specifies the content of the
VMS message. The information that is included in the message when each of the
four bits is set is:

Bit Information
0 Text
1 Message ID
2 Severity
3 Facility

The default value is #*0000, which indicates that the process default message
flags are used. For example,
Lisp> (get-vms-message 25)
"%SYSTEM-S-EXQUOTA, exceeded quota"
Lisp> (get-vms-message 25 #*1010)
"%S, exceeded quota"

3.8 Using Logical Names
A logical name is a symbolic name for any or all portions of a file specification.
Logical names can provide a shorthand method for referring to commonly used
files. Logical names can be defined for individual processes or for all members
of a group or system. Each logical name is placed in a process, group, or system
logical name table.
The translate-logical-name function searches a logical name table for a logical
name, translates it, and returns the translation(s) as a list of strings. If the
logical name has no translation, the function returns nil. The format of the
TRANSLATE-LOGICAL-NAME function is:
TRANSLATE-LOGICAL-NAME string &KEY TABLE :CASE-SENSITIVE

The string argument specifies the logical name for which the function will search.
The : table argument specifies which logical name table the function will search.
The values you can specify with the : table keyword are listed in Table 3-5.

Table 3-5: Logical Name Table Keywords

Keyword Description
: PROCESS Process name table (LNM$PROCESS_TABLE)
: GROUP Group name table (LNM$GROUP)
: SYSTEM System name table (LNM$SYSTEM_TABLE)
: DECW DECwindows name table (DECW$LOGICAL_NAMES)
: ALL All tables (LNM$DCL_LOGICAL)

This is the default.

If you do not specify a table name, the process, group, system, and DECwindows
tables are searched in that order.
The value of the : case-sensitive keyword may be t (for a case-sensitive search)
or nil (for a case-insensitive search). The default is nil. Use a value of t if you
have multiple logical names that differ only in case.

3-12 Getting Operating-System Information

The Trans late-logical-name function is similar to the DCL command SHOW
LOGICAL. However, while the command performs iterative translations, the
function performs only one level of logical-name translation. For example:
Lisp> (translate-logical-name "sys$disk")
("DBA1:")
Lisp> (translate-logical-name "dbal:")
("1DUA1:")
If you use the SHOW LOGICAL DCL command to determine the translation of a
logical name, it would show the translation found in all logical name tables. For
example, SYS$DISK may be defined in both the process and system tables, as
follows:
$ show logical sys$disk

"SYS$DISK" = "LISPW$:" (LNM$ P ROCE S S_TABLE)
"SYS$DISK" = "$1$DUS0:" (LNM$ SYS TEM_TABLE)

For additional information about the SHOW LOGICAL command, logical name
tables, or logical names, see the VMS DCL Dictionary.

Getting Operating-System Information 3-13

Chapter 4

Interacting with External Routines

The VAX LISP callout facility lets you call routines written in other languages
from a LISP program. Using the callout facility, LISP programs can call (but are
not linked to) routines written in languages that adhere to the VAX Procedure
Calling Standard, such as:
• C and FORTRAN
• VMS and RMS system services
• Run-time library (RTL) routines
The VAX LISP callback facility makes it possible for a LISP function to be called
from an external routine. To call back to LISP, the external routine must first
be called from LISP. In addition, if you call out to a routine that is not a system
service or in the RTL, the routine must be linked into a position-independent
shareable image.
Execution of functions written in LISP depends on an entire LISP environment
being present at run time. For example, garbage collection depends on this
environment. If a LISP function were called from another language and ran out
of dynamic memory before the LISP environment was established, it would not be
able to perform the garbage collection.
Furthermore, the callout facility cannot call external routines that require an
extensive, nonstandard software environment of their own. Routines written in
APL and interpreted BASIC are examples of such routines. You can use VMS
subprocess and mailbox facilities to communicate with such routines. VAX LISP
provides functions for subprocess operations (see VAX LISP/VMS Function,
Macro and Variable Descriptions).
VAX LISP does not call external routines the same way other VAX languages call
each other. Other VAX languages specify information about external routines by
compiling code into object modules that are linked by the VMS linker. Because
VAX LISP does not create linkable object modules, it must specify information
about an external routine in another way. It does this by evaluating and saving
the information specified by the user when defining the external routine.
To call an external routine from LISP, you must:
1. Write, compile, and debug the external routine.
2. Link it into a VMS shareable image.
3. Define its arguments and calling conventions for LISP.
4. Call it from LISP.

Interacting with External Routines 4-1

Figure 4-1 illustrates these steps.

Figure 4-1: Calling External Routines

r

VMS Environment

V.

r

LISP Environment-^

V.
MLO-003365

To call back from an external routine to LISP, you must perform these additional
steps:
• Define the callback routine in LISP.
• Define and call out to an external routine.
• Call the callback routine from the external routine.

4-2 Interacting with External Routines

Figure 4—2 highlights these additional steps with thick-ruled boxes.

Figure 4-2: Calling Back to LISP

r

VMS Environment -s

V-

r

LISP Environment

v_

Foreign E n v iro n m e n t-^

MLO-003366

The Introduction to VMS System Routines contains detailed information about the
VAX standard for calling and passing arguments to external routines. You should
be familiar with these subjects before you use the VAX LISP callout or callback
facilities. The Introduction to VMS System Routines uses the term procedure
when referring to a routine that can be called. This chapter uses the expression
external routine in place of procedure to maintain consistency with VAX LISP
terminology.

Interacting with External Routines 4-3

4.1 VAX Procedure Calling Conventions
The VAX Procedure Calling Standard defines a uniform method for routines
to call one another. This standard prescribes how routines receive and return
control, how arguments are passed, and how function values are returned. By
means of the standard calling conventions, most languages used with the VMS
operating system can call routines written in other VAX native-mode languages.
You need to know how VAX LISP implements these standards so that the routines
you write in other languages can work properly with LISP.
• Transfer of control

VAX LISP calls external routines with a callg instruction. External routines
return control to the programs that call them with a ret instruction.

• Argument passing
Arguments are passed to an external routine in an argument list. The LISP
system constructs this argument list each time a LISP program calls an
external routine. The list is a sequence of longword (4-byte) entries. The
first byte of the first entry is an argument count, indicating the number of
longwords that follow in the list. The succeeding longwords contain either
a data value, a pointer to a data value, or a pointer to a descriptor of a
data value, depending on the specified passing mechanism. The limit is 254
arguments.

• Values returned by functions
An external routine can be a subroutine or a function. A subroutine is
invoked only to produce side effects; it returns no value as a result of
execution. A function, on the other hand, returns a value after executing and
may produce side effects. The function value is returned in one of two ways:
— If the data type is scalar and requires 32 bits or less of storage, the value

is returned in register RO.
— If the data type is scalar and requires from 33 to 64 bits of storage, the

low-order bits of the value are returned in register RO and the high-order
bits of the value are returned in register R1.

External routines cannot return nonscalar values.

4.2 Argument and Return Value Definitions
VAX LISP objects have an internal representation that is unique to the language.
When passing arguments between LISP and other languages, you must specify
how you want the LISP object to be represented to the external routine, and vice
versa.
The three characteristics of an argument that you must define before you call out
to an external routine or call back to LISP are:
• The access capability

An argument may have input or input/output access. Input access means that
the external routine can access but not modify the argument. Input/output
access means the external routine can access the argument value and may
also modify it. Section 4.2.1 describes these types of access in detail.

4-4 Interacting with External Routines

• The passing mechanism
The VAX Procedure Calling Standard defines three mechanisms by which
arguments are passed to external routines:
- By immediate value
- By reference
- By descriptor
These passing mechanisms are described in Section 4.2.2.

• The data type conversions required
You must specify how the LISP representation of the argument should be
converted into its corresponding VAX type, and vice versa. See Section 4.2.3
for more information on data type conversions.

When defining result values, you specify only the data type conversions required
for the value. The access capability and passing mechanism do not apply to
results.
LISP defines default characteristics for arguments if you do not supply them.
Therefore, if the default characteristics are adequate, an argument description is
nothing more than the name of the argument, as in:
(argument-name)

An argument name is a symbol. It must either be unique within the routine’s
definition or nil if no name is desired. Unique names make some error messages
easier to understand.
When the argument has nondefault characteristics, the argument description is
written as a list of options, each of which is a keyword-value pair:
(argument-name keyword value

...)

Option values are not evaluated when the argument is defined. Rather, they are
evaluated when the routine is called.
For example, the multiplicand argument below is an input-only integer
argument to be passed by reference. It can be written like this:
(multiplicand :access :in

:mechanism :reference
: lisp-type integer)

However, you need not include the :access, imechanism, and :lisp-type
keywords in this definition because each characteristic uses the default value.
Therefore, you can define the multiplicand argument as follows:
(multiplicand)

4.2.1 Access Capability

The : access keyword specifies the access capability for an argument. The
possible values are : in for input access (the default) and : in-out for both input
and output access. Because external routines cannot allocate LISP objects, : out
is not a possible value.

Interacting with External Routines 4-5

If an argument has input access, it is assumed to be read only and the external
routine may not modify it. If it is modified, the results are unpredictable. If an
argument has : in-out access, the external routine can obtain the argument’s
value and optionally modify it.
The argument must be specified in a form acceptable to setf. The call-out
macro passes the argument to the external routine and uses setf to reassign the
new value after the routine returns.
Arguments defined with : in-out access must be initialized before they are
used in a call to an external routine that modifies them. This is true even if
the external routine never uses the value of the argument. The value used is
unimportant; it is the act of initializing the argument that prepares the argument
to be modified by the external routine. Failure to initialize an : in-out argument
results in an access violation when the external routine attempts to modify the
argument. Once initialized, arguments can be used many times; they need not be
initialized before each use with call-out.
For example, you could define an argument called *flagnumber* as follows:
(*flagnumber* :access :in-out)
Because it is an input-output variable, you must initialize it before you call out to
the external routine. You can initialize the variable in any of the following ways:
(defvar *flag-number* -1)
(setf *flag-number* -1)
(let ((*flagnumber* -1) ...))
If an input-output argument is a character or a number, the modified value is
made into a new LISP object that is distinct from the original argument. This
ensures that when you pass constants or shared data objects, they will not
be modified. If the argument is not a character or a number, the argument is
directly modified by the external routine; no copy is made and no conversion is
performed. This means that all array arguments are modified in place.

4.2.2 Passing Mechanism

The :mechanism keyword defines the way an argument is passed to or from an
external routine. With the : mechanism keyword, you can specify one of the three
values in Table 4—1.

Table 4-1: Values of the :MECHANISM Keyword

Name VAX Mechanism Description
:VALUE Immediate Value Passes a copy of the argument in the argument list.

You can use this mechanism only for arguments
that have input access and that have data types
requiring no more than a longword of storage.

:REFERENCE Reference Passes the address of the argument in the argu­
ment list.

:DESCRIPTOR Descriptor Passes the address of an argument descriptor in the
argument list.

You cannot specify VMS descriptor classes for arguments to external routines.
The define-external-routine macro assigns an appropriate class when the LISP
system evaluates the argument. The values the macro assigns are dsc$k_class_s
(scalar) or dsc$k_class_a (array).

4-6 Interacting with External Routines

To pass an argument using a user-specified descriptor, you must define the
descriptor and the argument as alien structures and pass the alien struc­
ture descriptor by reference. For information on defining alien structures, see
Chapter 5.

4.2.3 Data Type Conversions

When calling out to an external routine, VAX LISP converts LISP data types to
VAX types. Results must be converted from VAX types to LISP types when the
routine returns a value to the LISP function. Similar conversions are required for
callback routines.
You define the LISP data type of an argument or return value with the :LISP-
type keyword. You define the VAX data type of an argument or return value with
the : vax-type keyword.
Table 4-2 shows the types of conversions that are available for callout and
callback arguments and for callback return values. For all arguments and return
values, the LISP type defaults to integer.
The table shows one or more of the compatible VAX data types for each LISP
type. When no VAX type is specified in the argument definition, LISP converts
the LISP data type to the default VAX type. If the values you specify for the LISP
data type and the VAX data type are incompatible, an error is signaled.
Table 4-2 also shows the valid passing mechanisms (V = Value, R = Reference,
and D = Descriptor) for each data type. The default mechanism for all types
except : vax-type : text is by reference. The default for text is by descriptor.
Table 4r-2 also specifies the descriptor class and data type that are included in
the argument descriptor when passing by descriptor. The descriptor formats,
descriptor class, and data type codes are described in the Introduction to VMS
System Routines.

Table 4-2: Data Type Conversion

LISP Type
Compatible VAX
Types

Mechanisms
Allowed

Descriptor
Class/Data Type

CHARACTER :UNSIGNED-BYTEt V,R,D DSC$K_CLASS_S
DSC$K_DTYPE_BU

INTEGER : BIT V, R, D DSC$K_CLASS_S
DSC$K_DTYPE_LU

: BYTE V,R,D DSC$K_CLASS_S
DSC$K_DTYPE_B

:UNSIGNED-BYTE V,R,D DSC$K_CLASS_S
DSC$K_DTYPE_BU

: WORD V, R, D DSC$K_CLASS_S
DSC$K_DTYPE_W

:UNSIGNED-WORD V,R,D DSC$K CLASS S
DSC$K_DTYPE_WU

:LONGWORDt V,R,D DSC$K_CLASS_S
DSC$K_DTYPE_L

t Default VAX type

(continued on next page)

Interacting with External Routines 4-7

Table 4-2 (Cont.): Data Type Conversion

LISP Type
Compatible VAX
Types

Mechanisms
Allowed

Descriptor
Class/Data Type

:UNSIGNED-
LONGWORD*

V, R, D D SC$K CLASS S
DSC$K_DTYPE_LU

:QUADWORD R, D DSC$K _CLASS_S
DSC$K _DTYPE_Q

:UNSIGNED-
QUADWORD

R, D DSC$K _CLASS_S
D SC$K _DTYPE_QU

SHORT-FLOAT :F-FLOATING V, R, D DSC$K _CLASS_S
DSC$K_DTYPE_F

SINGLE-FLOAT :F-FLOATINGt V, R, D D SC$K CLASS S
DSC$K_DTYPE_F

DOUBLE-FLOAT :G-FLOATINGt R, D D SC$K _CLASS_S
DSC$K _DTYPE_G

:D-FLOATING R, D D SC$K _CLASS_S
DSC$K_DTYPE_D

LONG-FLOAT :H-FLOATINGt R, D D SC$K _CLASS_S
DSC$K _DTYPE_H

STRING :TEXTt R, D D SC$K _CLASS_S
DSC$K _DTYPE_T

:ASCIZ R
SIMPLE-BIT-VECTOR : BIT R, D D SC$K _CLASS_S

DSC$K_DTYPE_V
:UNSIGNED-
LONGWORD

V, R, D D SC$K _CLASS_S
DSC$K_DTYPE_LU

ALIEN-STRUCTURE :UNSPECIFIEDt R, D DSC$K _CLASS_S
DSC$K _DTYPE_Z

(COMPLEX SINGLE-FLOAT) :F-FLOATING-
COMPLEXt

V, R, D D SC$K _CLASS_S
DSC$K JDTYPE_FC

(COMPLEX SHORT-FLOAT) :F-FLOATING-
COMPLEXt

V, R, D D SC$K CLASS_S
D SC$K _DTYPE_FC

(COMPLEX DOUBLE-FLOAT) :G-FLOATING-
COMPLEXt

V, R, D D SC$K _CLASS_S
D SC$K _DTYPE_GC

:D-FLOATING-
COMPLEX

V, R, D D SC$K CLASS S
D SC$K _DTYPE_DC

(COMPLEX LONG-FLOAT) :H-FLOATING-
COMPLEXt

R, D D SC$K _CLASS_S
DSC$K _DTYPE_HC

(ARRAY CHARACTER) :UNSIGNED-BYTE+ R, D D SC$K _CLASS_A
DSC$K _DTYPE_BU

(SIMPLE-ARRAY BIT) : BITt R, D DSC$K _CLASS_A
DSC$K_DTYPE_V

(ARRAY
(UNSIGNED-BYTE 2))

:UNSIGNED-BYTE R, D DSC$K_CLASS-A
DSC$K_DTYPE_BU

(ARRAY
(UNSIGNED-BYTE 4))

:UNSIGNED-BYTE R, D DSC$K _CLASS_A
DSC$KJDTYPE_BU

t Default VAX type
$ Default VAX type for callback return values

(continued on next page)

4-8 Interacting with External Routines

Table 4-2 (Cont.): Data Type Conversion

LISP Type
Compatible VAX
Types

Mechanisms
Allowed

Descriptor
Class/Data Type

(ARRAY
(SIGNED-BYTE 8))

: SIGNED-BYTE R, D DSC$K_CLASS_A
DSC$K_DTYPE_B

(ARRAY
(UNSIGNED-BYTE 8))

:UNSIGNED-BYTEt R, D DSC$K_CLASS_A
DSC$K_DTYPE_BU

(ARRAY
(UNSIGNED-BYTE 12))

:UNSIGNED-BYTE R, D DSC$K_CLASS_A
DSC$K_DTYPE_BU

(ARRAY
(SIGNED-BYTE 16))

:SIGNED-WORD R, D DSC$K_CLASS_A
DSC$K_DTYPE_W

(ARRAY
(UNSIGNED-BYTE 16))

:UNSIGNED-WORDt R, D DSC$K_CLASS A
DSC$K_DTYPE_WU

(ARRAY
(SIGNED-BYTE 32))

: LONGWORDt R, D DSC$K_CLASS_A
DSC$K_DTYPE_L

(ARRAY
(UNSIGNED-BYTE 32))

:UNSIGNED-
LONGWORD

R, D DSC$K_CLASS_A
DSC$K_DTYPE_LU

(ARRAY
(SIGNED-BYTE 64))

:QUADWORD R, D DSC$K CLASS A
DSC$K_DTYPE_Q

(ARRAY
(UNSIGNED-BYTE 64))

:UNSIGNED-
QUADWORD

R, D DSC$K_CLASS_A
DSC$K_DTYPE_QU

(ARRAY SHORT-FLOAT) :F-FLOATINGt R, D DSC$K_CLASS_A
DSC$K_DTYPE_F

(ARRAY SINGLE-FLOAT) :F-FLOATING! R, D DSC$K_CLASS_A
DSC$K_DTYPE_F

(ARRAY DOUBLE-FLOAT) :G-FLOATINGt R, D DSC$K_CLASS_A
DSC$K_DTYPE_G

(ARRAY LONG-FLOAT) :H-FLOATINGt R, D DSC$K_CLASS_A
DSC$K_DTYPE_H

t Default VAX type

Every simple string is guaranteed to have a zero byte at the end, following the
last actual character. Thus, you do not have to be concerned about adding the
zero byte when passing simple strings as a s c i z arguments.
If an asciz argument has : in-out access and is modified by placing a zero byte
somewhere in the middle of the string, VAX LISP truncates the string at the first
zero byte. You must take care of this situation yourself.
The callout facility restricts the types of values that an external routine can
return. These types are shown in Table 4-3. It also lists the location of the result
on return from the external routine. The default cases require that you specify
only the LISP type with the : result keyword. All other cases require that you
specify both the LISP and the VAX types.

Interacting with External Routines 4-9

Table 4-3: Conversion of Callout Return Values

LISP Type VAX Type Location of Result
CHARACTER :UNSIGNED-BYTEt Low-order byte of RO
INTEGER : BIT RO, unsigned

: BYTE RO, signed
:UNSIGNED-BYTE RO, unsigned
: WORD RO, signed
:UNSIGNED-WORD RO, unsigned
:LONGWORDt RO, signed
: UN SIGNED - LON GWORD RO, unsigned
:QUADWORD R0/R1, signed
:UNSIGNED-QUADWORD R0/R1, unsigned

SHORT-FLOAT :F-FLOATINGt RO
SINGLE-FLOAT : F—FLOATING! RO
DOUBLE-FLOAT :G-FLOATINGt R0/R1

:D-FLOATING R0/R1
SIMPLE-BIT-VECTOR :UNSIGNED-LONGWORDt RO, unsigned

t Default VAX type

4.3 Writing and Linking an External Routine
You can call out to any function written in another language. For example, the
following function written in FORTRAN, called NUMBERS, manipulates two
integers and returns an integer.
FUNCTION NUMBERS(X, Y)
IMPLICIT INTEGER*4 (A-Z)
NUMBERS=Y * (X + Y ** X) / X
RETURN
END
Before you can call a function from LISP, you must compile and link it, as follows:
1. The function is compiled in the usual way:

$ fortran numbers
2. You must link the object modules into one or more position-independent

VMS shareable images, using an options file. An options file contains special
instructions to the linker. When making a shareable image to be called
from LISP, you must include a UNIVERSAL declaration in the options file.
This declaration makes it possible to call the routine from outside the object
module in which the routine is defined. The number of individual shareable
images that can be mapped into VAX LISP depends on VMS shareable image
restrictions and the available address space.
To link the NUMBERS function into a shareable image, you specify the name
NUMBERS as an entry point that is UNIVERSAL:
$ link/shareable=dba2:[smith]example numbers,sys$input:/options
universal-numbers
IClrLVZl

4-10 Interacting with External Routines

In this example, SYS$INPUT is given as the name of the options file. The
linker waits to read the linker options from the terminal. Ctrl/Z marks the end
of the options file.

NOTE

You cannot call external routines in a based image. A based image
is one that has been assigned a base address with the BASE option.
Do not use the BASE option in your linker options file.

3. If the resulting shareable image is not in SYS$SHARE, you must define a
logical name that points to it. For example, the FORTRAN example is not in
SYS$SHARE; it must be defined as a logical name:
$ define example dba2:[smith]example

You can call external routines in shareable images that contain writable sections.
For example, routines that are written in VAX FORTRAN, which use COMMON
blocks, produce such code. A shareable image contains a writable section if the
external routine contains a program section (PSECT) that has the write (WRT)
and the share (SHR) attributes. To determine whether a program section in a
shareable image has these attributes, examine the image’s map file.
Before you can call an external routine in a shareable image that contains
writable sections, you must either install the shareable image with the VMS
INSTALL utility or do the following:
1. Link all routines that refer to the writable, shareable PSECT into the same

shareable image in a single invocation of the VMS linker.
2. Supply an additional option to the linker that changes the attributes of the

PSECT in question from writable and shareable (WRT, SHR) to writable, not
shareable (WRT, NOSHR).

For example, suppose you have two routines that access a COMMON block
named SHARED_SPACE. These routines exist in different source files, named
FORI.FOR and FOR2.FOR. After compiling both source files, you would use the
following VMS linker command to create a shareable image:
$ link/share=myexe fori,for2,sys$input:/options
universal=routinei,routine2
psect_attr=shared_space,wrt,noshr
|Ctrl/Z|

The resulting shareable image may be called from VAX LISP without having to
install it. However, this procedure will not work if routines that access the same
writable, shareable PSECT exist in different shareable images.
The procedure for linking shareable images is explained in detail in the VMS
Linker Utility Reference Manual.

4.4 Defining an External Routine
Because VAX LISP does not create linkable object modules, it must specify
information about an external routine in another way. The define-external-
routine macro does this by storing information about the routine in the LISP
environment. The definition gives the VAX LISP system the information needed
to create an argument list and locate the external routine when it is called.

Interacting with External Routines 4-11

When you define an external routine, LISP creates an internal data structure
and associates the structure with the symbolic name of the routine. The data
structure is used in the resulting LISP code and when the routine is called.
Therefore, you must ensure that an external routine is defined before it is called.
The format for defining an external routine is:
DEFINE-EXTERNAL-ROUTINE name-and-options

[doc-string]
{argument-specifier}*

The arguments to define-external-routine describe the routine name and
options, an optional documentation string, and the arguments to the function.
For example, to define the external FORTRAN routine called NUMBERS, you
must specify these three things:
• Where the shareable image is located. The name of the shareable image

file is defined with the :FILE option. In Section 4.3, the shareable image’s
location is given the logical name EXAMPLE.

• The data type of the function’s return value (an integer in the example). This
is defined with the : result option.

• The arguments to the routine. In the example, the arguments to NUMBERS
are longword integers passed by reference. Because they have the default
data type, they can be defined simply by giving their names.

Thus, the NUMBERS function is defined as follows:
Lisp> (define-external-routine

(numbers .-file "EXAMPLE"
:result integer)

x y)
NUMBERS
Run-Time Library routines are provided by VMS in a library called LIBRTL.
You can call these routines in LISP if you first define them. For example, the
LIB$CREATE_DIR Run-Time Library routine creates a directory. It is defined as
follows:
Lisp> (define-external-routine (lib$create_dir

:file "librtl"
:check-status-return t)

"Call out to the lib$create_dir RTL routine"
(dsv-dir-spec :lisp-type string))

LIB $ CREATE_DIR
The definition gives the name of the routine, the library in which it can be found,
and states that LISP should check the status value returned by the routine. It
also supplies a documentation string and defines the data type of the argument
to the routine.
Note that if you call an external routine and then redefine it, you must exit and
reenter LISP before you can use the new definition. This is because a loaded
shareable image cannot be reloaded in the same process.

4.4.1 External Routine Names and Options

When you define an external routine, you must specify a name for it. In addition,
you can specify options that provide the LISP system with information about how
to call the external routine.

4-12 Interacting with External Routines

The external routine name is a symbol that uniquely identifies the routine. The
name should not also be the name of a LISP function. The name serves as the
entry-point name unless a different name is specified with the : entry-point
option.
You can assign specific characteristics to an external routine by specifying options
in the routine’s definition. Each option consists of a keyword-value pair. The
option keywords are as follows:
• The :CHECK-STATUS-RETURN Keyword

The : check-status-return keyword states whether the callout facility should
examine the contents of register RO on return from the external routine. You
can specify this option in the following ways:
:check-status-return nil
:check-status-return t
:check-status-return n

The default is nil, which means that no checking is done. If you specify t,
the RO register is assumed to contain a status code. When the severity of the
status is warning, error, or severe-error, a continuable error is signaled. If
you specify an integer (n), an error is signaled when the return value is equal
to n.
The presence of this option implies that the external routine returns an
integer; thus, you should not specify the : result option when you specify this
option.

• The :ENTRY-POINT Keyword
The routine-name gives the name of the external routine as it is called from
LISP. By default, LISP assumes that this is also the name of the entry point.
When the names are different, use : entry-point to supply the entry-point
name of the external routine.
For example, if you want to call the routine CREATE-DIR from LISP, you can
define LIB$CREATE_DIR as follows:
Lisp> (define-external-routine (create-dir

:file "iibrtl"
: c h e c k - s
i @n t l y “ p

"Call out to the lcb$create_dir R
(dev—dir-spec :lisp-type string.)

CREATE-DIR
• The :FILE Keyword

The : file keyword gives the file specification of the external routine’s
shareable image. By default, LISP assumes that the routine is a system
service, and no :File specification is required. If the routine is not a system
service, the :FiLE specification must be either a logical name that refers to
the shareable image or the name of a shareable image in the SYS$SHARE
directory. The specification cannot be an arbitrary file specification.
For example, because the NUMBERS routine is not a system service and is
not located in SYS$SHARE, you must define its location as a logical name,
such as:
$ DEFINE EXAMPLE DBA2:[SMITH]EXAMPLE

Interacting with External Routines 4-13

• The :RESULT Keyword
The : result keyword specifies the type of value returned by the external
routine. The default is nil, which means that the routine is a subroutine and
returns no value. Do not specify both : check-status-return t and : result.
If the routine does return a value, then the : result keyword can specify the
LISP data type that the external routine will return. If the VAX type of the
returned value does not correspond to the LISP data type, specify both the
LISP and the VAX type as a list of the form:
(:LISP-TYPE lisp-type :VAX-TYPE vax-type)

See Table 4-3 for valid result data types.
• The rTYPE-CHECK Keyword

The : type-check keyword directs LISP to check that the data types of the
arguments passed to an external routine are compatible with the argument
descriptions. You can specify the keyword in either of the following ways:
:type-check nil
:type-check t
If you specify t, the code generated by the call-out macro checks the type
of actual LISP objects at the time of the callout. If the types of the routine’s
defined and actual arguments are incompatible, an error is signaled. If you
specify nil (the default value), the system does not generate type-checking
code.
Note that type checking adds considerable overhead to the callout process.

Option values are not evaluated by define-external-routine. They are evalu­
ated when the external routine is called.

4.4.2 Documentation String

You can include a documentation string for an external routine. The string
is optional and is attached to the symbol as a documentation string of type
external-routine. Place the string after the routine name and options list.
For example, the definition of LIB$CREATE_DIR contains a documentation
string. When this external routine has been defined, you can access the documen­
tation string with either of the following LISP forms:
Lisp> (describe 'lib$create_dir)
Lisp> (documentation 'lib$create_dir 'external-routine)

4.4.3 Argument Descriptions

External routines usually accept one or more arguments. The argument de­
scriptions determine the number, order, and characteristics of the arguments
that you can pass to the routine. See Section 4.2 for information on defining the
arguments to an external routine.

4-14 Interacting with External Routines

4.5 Calling an External Routine
You call an external routine with the VAX LISP call-out macro, supplying the
name of the external routine and its arguments. These must be compatible with
the arguments defined in the call to the define-external-routine macro. Make
sure the definition is evaluated before calling out to that external routine.
The format for calling an external routine is:
CALL-OUT routine-name argl arg2 . . .

The call-out macro produces code that performs the following operations:
1. Checks all arguments, if the : type-check option is specified.
2. On the first call to an external routine, reads the routine into memory.
3. Creates an argument list, using the arguments provided.

If you specify fewer arguments to the call-out macro than are defined for the
callout routine, the remaining arguments are not included in the argument
list. The count in the first longword of the list reflects this situation. If you
specify more arguments than are defined, an error is signaled.
If an argument evaluates to nil, a zero is placed in the corresponding
argument list. Zero normally means that an optional argument is not desired.

4. Transfers control to the external routine with the callg instruction.
5. Returns any specified result from the external routine, or no values if there is

no result.
For example, you can call out to the NUMBERS external routine with the
call-out macro, as follows:
Lisp> (call-out numbers 5 7)
23536
The following LISP form calls out to the external routine LIB$CREATE_DIR
defined in Section 4.4. This call creates the new directory LISPW$:[MYNAME.
WORK]:
Lisp> (call-out lib$create_dir "lispw$:[myname.work]")
561

4.6 Calling System Services
The callout facility provides a mechanism for LISP programs to call standard
VMS and RMS system services. For information about VMS system services, see
the VMS System Services Reference Manual. For information about RMS services,
see the VMS Record Management Services Manual.

Interacting with External Routines 4-15

4.6.1 Defining System Services

Defining VMS and RMS system services is similar to defining other external
routines, with a few restrictions:
• You must omit the :FILE option from the define-external-routine specifica­

tion. When you omit this option, LISP assumes that the external routine is a
system service. Otherwise, LISP assumes you are referring to an entry point
in an ordinary shareable image of that name.
The exception to this rule is any system service that resides in a shareable
image, such as SYS$MOUNT, which resides in MOUNTSHR. In this case, the
system service is defined as any other external routine in a shareable image.

• The :entry-point name in the define-external-routine specification must
be a valid system service entry point.

• The order and number of arguments in the define-external-routine
specification must correspond to the order and number specified by the
system service’s definition.

For example, the SYS$DALLOC system service deallocates a device. It returns
a longword condition value. It takes two arguments. The devnam argument is
the address of a string; acmode is a longword passed by value. You would define
SYS$DALLOC as follows:
Lisp> (define-external-routine (sys$dalloc :result integer)

(devnam :lisp-type string)
(acmode :lisp-type integer :mechanism lvalue))

SYS$DALLOC
The following example defines the SYS$RENAME RMS system service, which
changes the name, type, or version of a file, or moves the file to another directory.
Assume the LISP variables old and new are bound to statically allocated alien
structures that are the file attribute blocks to be used in a rename operation. The
SYS$RENAME system service is defined as follows:
Lisp> (define-external-routine (sys$rename :result integer)

(old-fab :lisp-type alien-structure)
nil /error and success routines
nil /will not be used
(new-fab :lisp-type alien-structure))

SYS$RENAME

4.6.2 Calling System Services

Calling VMS and RMS system services is similar to calling other external
routines with a few restrictions:
• You must always call a system service with a complete argument list. Put nil

in place of the omitted arguments—including omitted trailing arguments.
• Many system services require data structures that are filled in or modified

at a later time. For example, the I/O status block argument (iosb) to the
SYS$QIO system service is filled in by the system service with the completion
status of the QIO request. Data structures such as this must be created as
alien structures and statically allocated so that they will not be moved by
VAX LISP (see Chapter 5).

4-16 Interacting with External Routines

• You cannot refer to VMS symbolic constants (such as return status values
or field offsets) by their symbolic names. LISP has no knowledge of these
constants. Definitions for many of these constants can be obtained from the
definition files in the LISP$EXAMPLES directory. You probably want to
include only those definitions that you require. The VMS System Services
Reference Manual describes the necessary definitions for each System Service
call.

For example, to deallocate the device named _tth7, you can call SYS$DALLOC as
shown below, nil is specified to account for the omitted argument.
Lisp> (call-out sys$dalloc "_tth7:" nil)
2312
To rename a file with SYS$RENAME, you can call the RMS system service as
shown below, nil is specified to account for the omitted arguments. This ensures
that the correct number of arguments are specified, nil is specified for the error
and status routines because astadr arguments must be omitted. The call returns
1, indicating success.
Lisp> (call-out svs$rename old nil r.il new)
1

Definitions for most system services and many other library routines can be found
in LISP$EXAMPLES.

4.7 Creating a Callback Function
A callback function is a LISP function that can be called from an external routine.
A callback function must be compiled. It executes in the full LISP environment.
All the usual LISP facilities are available while the routine is executing, including
the error handling system and the VAX LISP Debugger.
The LISP functions throw and catch are available for transferring control
between callback and non-callback LISP code. For example, a mainline LISP
function can establish a catch, then call out to an external routine. This external
routine can then invoke a callback routine, which issues a throw to the catch tag
established in the mainline code. Note that this implies cooperation on the part
of the external code. Because a throw must transfer control to the catch code,
the external code must be prepared to signal and unwind when it encounters any
signal that it does not define and handle itself.
You define a callback routine with make-call-back-routine. You pass the alien
structure returned by this call as an argument to an external routine, which can
then invoke the callback function, using VAX standard calling conventions. The
callback routine is valid across garbage collections, but you must ensure that any
arguments you pass in the callout or callback are either in LISP static space or in
foreign data space.
The make-call-back-routine function has the following syntax:
MAKE-CALL-BACK-ROUTINE function

&KEY ARGUMENTS argument-specifier
RESULT result-specifier

The arguments to make-call-back-routine describe the function name, the
arguments to be passed to the function, and the data type of the result passed
back by the function.

Interacting with External Routines 4-17

4.7.1 Callback Function Names

The name of a callback function is defined with the function argument to make-
call-back-routine. It must be a symbol or a function object. Symbols are useful
if the specified function is later redefined or if you have not defined the function
before the call to make-call-back-routine.

4.7.2 Callback Arguments

The : arguments keyword defines the argument passing mechanism, access
capability, and data type conversions for each argument to the callback function.
The value of the : arguments keyword can be one of the following:
• nil indicates that the callback routine takes no arguments.
• : ap indicates that the actual VAX argument list is passed to the callback

routine as the only parameter. All arguments in the list must be accessed by
the callback routine, using alien-structures. This is the default method for
passing arguments.

• A list of argument definitions that follows a syntax similar to that for
define-external-routine. See Section 4.2 for information on defining
arguments.

You cannot specify both the :AP keyword and a list of argument descriptions.
When a callback argument has : in-out access, the callback function returns
multiple values. The LISP code for the callback routine should implement
multiple return values, using the values function. The first value in the list must
be the result. Each successive return value is mapped to the : in-out arguments
in the order in which they are defined. On return from the callback function, if
there are more values returned than : in-out arguments, the extra values are
discarded. If there are fewer values than arguments, no values are assigned to
the extra arguments. Note that : in-out arguments must be initialized before
calling out to an external routine. Therefore, extra arguments retain their initial
values.
When you use the :ap mechanism, the argument can be modified in place, using
alien structures; any return values beyond the first are ignored.

4.7.3 Callback Return Values

The : result keyword to the make-call-back-routine function specifies the data
type of the return value and data type conversion mechanism from LISP to VAX
data types. If the LISP function returns multiple values, the result must be the
first value in the values list.
The result-specifier defines only the : vax-type and : lisp-type of the result, as
described in Section 4.2. : access and :mechanism keywords do not apply to result
specifiers. The default value is nil, meaning that the callback routine returns no
value.

4-18 Interacting with External Routines

4.7.4 Writing a Callback Routine

Any external routine called from LISP can call back to LISP. This section
describes a C routine that calls back to a LISP routine. The C routine accepts
two arguments: a call-back-routine alien structure and an argument to pass
to the callback routine. The C function calls the callback routine, passing the
argument from LISP and some C data. The callback routine modifies the LISP
argument. The modified value is passed back to the C routine, which in turn
passes it back to the mainline LISP code. The returned value is two times the
input value because it is multiplied by two in the callback routine.
The C code must be compiled and linked into a shareable image, as follows:
1. Assuming the C source code is contained in the file called CTEST.C, compile

the C source code with the command:
$ cc ctest

2. Link the C source code as a shareable image called TEST.EXE:
$ link/share=test ctest,sys$input:/option
universal=int_test
sys$library:vaxcrtl.exe/share
|C tr l/ z j

3. Define the shareable image file as a logical name:
$ define test usr:[your.directory]test

The C routine is shown in Example 4r-1.

Example 4-1: Calling an External Routine from C

tinclude <stdio.h>
int_test (lisp_func, lisp_arg)
int (*lisp_func)(); /* An alien structure passed by reference */
int *lisp_arg; /* An integer passed by reference */

{
int call_back_result;
int foreign_arg;
printf ("\nint_test args: func= %x arg= %d\n",

lisp_func, *lisp_arg);
foreign_arg = 99;
call_back_result = (*lisp_func)(foreign_arg, lisp_arg);
printf ("\nint_test values after call_back: result=%d arg=%d\n",

call_back_result, *lisp_arg);
return (call_back_result) ;

}

Before you can call the C routine from LISP, you must define it with the define-
external-routine macro. Note that the second argument is given the : in-out
access because it is modified by the callback routine:

Interacting with External Routines 4-19

:result integer)(define-external-routine (int_test :file "TEST"
(func :aecess :in

:mechanism :reference
: lisp-type alien-structure)

(arg :access :in-out
:mechanism :reference
:lisp-type integer))

You can pass arguments to a callback routine as argument specifiers or as an
argument list. The following sections show both methods.

4.7.4.1 Passing Arguments to a Callback Routine
A callback function named integer-call-back is shown in Example 4-2. It
receives two integer arguments. The first is the integer passed from C. The
second is the : in-out argument passed to C from LISP. All callback routines with
: in-out arguments must return the modified arguments as multiple values in a
values form. The first value is interpreted as the result of the callback routine
invocation. The second is associated with the : in-out parameter. Any number of
return values may be passed, corresponding to in-out arguments in the external
routine. This callback routine multiplies the second argument by two and passes
the result back as the second parameter to values.
Note the eval-when form; all callback routines must be compiled.

Example 4-2: Accessing Callback Arguments

(defconstant return-value 17)
(defun integer-call-back (argl arg2)
(format t "~%~%call-back args: argl= ~d arg2= ~d~%" argl arg2)
(setf arg2 (* 2 arg2))
(values return-value arg2))

(eval-when (eval) (compile 'integer-call-back))

In Example 4-3, the make-call-back-routine macro defines the name of the
callback function (integer-call-back) and the order of the arguments, as well
as information about type and access characteristics. As mentioned above, the
second argument is defined to have : in-out access.

Example 4-3: Defining Arguments to a Callback Routine

(defvar my-call-back (make-call-back-routine
#'integer-call-back
:arguments

'((argl :lisp-type integer
:access :in
:mechanism rvalue
rvax-type runsigned-longword)

(arg2 :lisp-type integer
:access :in-out
rmechanism rreference))

:result
'(:lisp-type integer)))

4-20 Interacting with External Routines

The external routine must be invoked from LISP. In Example 4—4, a function
called try-call-back performs the callout.

Example 4-4: Calling Out and Back, Passing Arguments

(defun try-call-back (val)
(let ((result nil))
(setf result (call-out int_test my-call-back val))
(format t "~%~%callout result= ~d new value= ~d~%"

result val)
result))

try-call-back can be invoked with an integer argument. The argument is
passed through C code, into the callback routine, out again through C, and back
into the mainline LISP code. Given an input value of 7, try-call-back produces
the following output:
Lisp> (try-call-back 7)
int_test args: func= 851828 arg= 7
call-back args: argl= 99 arg2= 7
int_test values after call_back: result=17 arg=14
callout result= 17 new value= 14
17
Lisp>

4.7A2 Passing an Argument List to a Callback Routine
Example 4-5 uses the same C function to call back to LISP. The callback routine
described here takes a single argument: a VAX argument list. To access the indi­
vidual arguments, the program must use alien structures to access the argument
list (the ap alien structure) and dereference it (the deref alien structure).

Example 4-5: Dereferencing an Argument List

(define-alien-structure (ap (:copier nil) (:predicate nil))
(numargs :unsigned-integer 0 1)
(arg :unsigned-integer 4 8 :offset 4 :occurs 256))

(define-alien-structure (deref (:copier nil) (rpredicate nil))
(val :unsigned-integer 0 4))

The integer-by-ap function shown in Example 4-6 is the callback routine.
The call to the make-ap alien structure constructor function uses the :data
option. This indicates that the alien structure will directly access the argu­
ment list in non-LISP space. The constructor function make-deref also uses the
: data option to access the first argument in the list. If the second argument
were passed by value instead of reference, this extra indirection through the
deref alien structure would not be necessary. It could be accessed either by
(ALIEN-FIELD AP :UNSIGNED-LONGWORD 4 8) Or (AP-ARG AP 1).
integer-by-ap then sets the value of that argument, prints the results to the
terminal, and returns the value of the constant return-value to the external
routine.

Interacting with External Routines 4-21

Example 4-6: Accessing an Argument List

(defconstant return-value 17)
(defun integer-by-ap (arg-pointer)

(let* ((ap (make-ap :data arg-pointer))
(arg2 (make-deref :data (ap-arg ap 1))))

(setf (deref-val arg2) (* 2 (deref-val arg2)))
(format t "~% new arg2= ~d~%~%" (deref-val arg2)))

(values return-value))
(eval-when (eval) (compile 'integer-by-ap))

The test function shown in Example 4-7 defines the callback routine, calls out
to the C routine, and prints the return values from the C routine. This function
does the same thing as try-call-back, defined in Example 4-4.

Example 4-7: Calling a Callback Routine with an Argument List

(defun test (val)
(let* ((lisp-call-back-routine

(make-call-back-routine
'integer-by-ap
:arguments :ap
:result '(:lisp-type integer)))

(temp val)
(res nil))

(setf res (call-out int_test lisp-call-back-routine temp))
(format t "~%~%lisp: result= ~d~

~% modified value= ~d~
~% expected value= ~d~%"
res temp (* 2 val))))

You can invoke test as follows to see how LISP passes data between callout and
callback routines:
Lisp> (test 7)
int_test args: func: 827f90 arg = 7

new arg2 = 14
int_test values after call_back: result = 17 arg = 14
lisp: result = 17
modified value = 14
expected value = 14

NIL

4.7.5 Restrictions on Callback

The restrictions on using the callback facility are:
• Unsafe Routines

You should keep LISP data in static space if it is to be used by external
routines and callback routines. LISP considers all foreign data to be static.
When external routines keep pointers to LISP data in dynamic memory,
there is no adequate way to update these pointers in the event of a garbage
collection.

4-22 Interacting with External Routines

• LISP Return Value
If LISP returns the address of a descriptor that points to a string and if you
need that string through further invocations of LISP, then you should copy it
to your own non-LISP area (static space). Objects returned by reference or by
descriptor have a lifetime that expires at the next garbage collection. Once a
garbage collection occurs, both the descriptor and the string may disappear.
The exception to this rule is when an object is returned by reference and the
LISP object pointed to resides in LISP static space.

• AST Level
Do not invoke callback functions at AST level.

• Alien Structures
If you give an alien structure as the : lisp-type in an argument specifier, you
must already have defined the alien structure.

• Suspend and Resume
Do not use a suspend during a callback function. The machine state at
suspend time will not necessarily be present at resume time. For example,
logical names may no longer be present, shareable images may be loaded at
different addresses, externally allocated memory will no longer be present,
and opened files will be closed. (See Section 4.10 for details on suspending a
LISP system that contains external routine definitions.)

4.8 Errors During External Routine Execution
Errors that occur during the activation or the execution of an external routine
are trapped by the VAX LISP error handler. The types of errors that may
occur during these operations include VMS errors that occur while accessing a
shareable image, and error conditions that the external routine signals by way of
the VMS error-signaling mechanism. You cannot correct these errors.
Note that the VAX LISP error handler regards signaled operating system
conditions as fatal errors. This includes conditions that have a success status.
However, status codes returned by an external routine do not always represent
uncorrectable errors. Values specified with the :check-status-return keyword
determine which operation the callout facility performs when a routine returns a
status code. These values are as follows:
• If the value is t, the LISP system examines the contents of register R0 and

interprets the routine’s return value as a VMS status code or a user status
code.

• If the severity of the return value is warning, error, or severe-error, the LISP
system signals a continuable error.

• If the value is nil, all status codes are ignored.
• If the value is an integer, an error is signaled if the return value is equal to

that value.
The error message “Key not found in tree” may occur during execution of a call to
an external routine. This means that the call-out macro was unable to locate
the entry point specified with the define-external-routine macro. The macro
specification may be incorrect or the entry point may not have been specified in
the universal option to the VMS linker when the shared image was created.

Interacting with External Routines 4-23

4.9 Debugging an External Routine
You can use the VMS symbolic debugger to debug external routines that you
write. For example, reconsider the FORTRAN NUMBERS function definition:
FUNCTION NUMBERS(X,Y)
IMPLICIT INTEGER*4 (A-Z)
NUMBERS=Y * (X + Y ** X) / X
RETURN
END
To use the symbolic debugger with this program, you may follow these steps:
1. Compile and link the file containing the external routine with the /debug

qualifier. For example:
$ fortran/debug numbers
$ link/debug/shareable=e:-:ample numbers,sysSinput:/options
universal=numbers
| C tr l/ z j

2. If the resulting shareable image file is not in SYS$SHARE, define a logical
name that points to the shareable image file, as in:
$ define example dba2:[smith]example

3. Invoke LISP.
4. Define the external routine, using the logical name you defined in step 2 as

the value of the :FiLE option:
Lisp> (define-external-routine

(numbers :file "example"
: result integer)

x y)
NUMBERS

5. Use the vms-debug function to activate the shareable image, invoke the
symbolic debugger, and set the debugger to that image.
If you call vms-debug without arguments at this point, the symbolic debugger
starts, but you cannot access symbols in your shareable image because it has
not yet been activated. The image is activated either when a routine in the
image is first called with call-out or when a call to vms-debug specifies a
routine in the image as the value of the : external-routine keyword. Once
the routine is activated, a breakpoint can be set at routines in that image.
Therefore, use the vms-debug function to invoke the symbolic debugger
and set a breakpoint at the external routine. Use the : external-routine
argument to vms-debug to specify the external routine to be debugged.
Lisp> (vms-debug :external-routine 'numbers)

VAX DEBUG Version V4.4-4
%DEBUG-I-NOGLOBALS, some or all global symbols not accessible
%DEBUG-I-INITIAL, language is BLISS, module set to 'ENVIRVMS'

6. Use symbolic debugger commands to set the language in which the debugger
operates and to establish breakpoints and tracepoints in your external
routine:
DBG> set language fortran
DBG> set break numbers

4-24 Interacting with External Routines

7. Use the GO command to return control from the symbolic debugger to VAX
LISP.
DBG> go
NIL
Lisp>

8. Call out to your external routine. If you have established a breakpoint,
execution will stop at that point and you will be able to enter debugger
commands. Similarly, the symbolic debugger will report execution of
tracepoints and modification of watchpoints.
Instead of entering symbolic debugger commands interactively, you can
supply them with the : command-line argument to vms-debug:
Lisp> (vms-debug :external-routine 'numbers :command-line

"set language fortran; set break numbers; go")
VAX DEBUG Version V4.4-4

%DEBUG-I-NOGLOBALS, some or all global symbols not accessible
%DEBUG-I-INITIAL, language is BLISS, module set to 'ENVIRVMS'
Lisp>
Now, when you call out to the external routine NUMBERS, the symbolic
debugger will gain control at the breakpoint you have set. For example:
Lisp> (call-out numbers 2 3)
%DEBUG-I-DYNMODSET, setting module NUMBERS
break at routine NUMBERS

1: FUNCTION NUMBERS(X,Y)
DBG> examine x
NUMBERS\X: 2
DBG> step
stepped to NUMBERS\%LINE 5

5: RETURN
9. When you have finished entering symbolic debugger commands, terminate

the external routine by entering the symbolic debugger GO command. The
external routine returns control to VAX LISR
DBG> go
16
Lisp>

10. Correct errors in the external routine, then return to step 1. You must exit
from LISP; otherwise, the new shareable image you create cannot be activated
because the old one cannot be deactivated.

To correct errors in an external routine, exit from LISP, edit the routine, compile
it, and link it. If you do not exit from LISP, the old shareable image (the one with
bugs) cannot be deactivated.
When you end a LISP session in which you have used vms-debug, control passes
to the symbolic debugger instead of to DCL. Use the symbolic debugger EXIT
command to return to DCL:
Lisp> (exit)
%DEBUG-I-EXITSTATUS, is '%LISP-S-SUCCESS, Standard successful
completion.'
DBG> exit
$
See the VMS Debugger Manual for a complete description of the VAX/VMS
symbolic debugger.

Interacting with External Routines 4-25

4.10 Suspending a LISP System Containing External Routine
Definitions

You can suspend an executing LISP system that contains external routine
definitions or calls to external routines. When you suspend such a system,
you must obey certain restrictions to ensure that the resumed system operates
correctly. These restrictions exist because mapped images or memory acquired
from outside the LISP environment (with LIB$GET_VM) are unmapped when
the LISP system exits; they cannot be automatically remapped during a resume
operation. Defined external routines are automatically remapped the next time
the external routine is called. If you are not aware of the restrictions, other side
effects may create undesirable results caused by the following factors:
• Open files

When you exit the LISP system, open files are closed. A resume operation
does not reopen files that were opened by external routines.

• Undefined logical names
Logical names used in the call to the define-external-routine macro must
still be defined when you resume a suspended system.

• Memory acquired with LIB$GET_VM
Memory acquired with the VMS LIB$GET_VM function in an external
routine is deleted when you exit the LISP system. This memory is not
remapped by a resume operation. Therefore, you cannot store data in
acquired memory between calls across a suspend/resume cycle. Many RTL
routines, for example, use such memory, and you cannot resume the routines.

• Data initialization
When an external routine contains code that sets flags for initialization and
takes br.inches based on those flags, the flags are reset when the routine’s
image is remapped. As a result, the first time you call the routine after a
resume operation, the routine executes as if it were executing for the first
time.
If you want to retain data across a suspend/resume cycle, do not write code
that depends on a first-time flag. Use one of the following methods:
— Retain data as individual LISP objects that are passed to external

routines.
- Store data in alien structures.
Undesired side effects do not occur if external routines are defined in a
series with the define-external-routine macro and the resulting system is
suspended before a call to an external routine. The VAX LISP system retains
the information the external routine definition provides.

• Shareable Images
A shareable image cannot be guaranteed to be reloaded at the same address
when a system is resumed. All references to shareable images must be
position independent to allow proper use in a resumed LISP session.

4-26 Interacting with External Routines

Chapter 5

Defining and Creating Alien Structures

A structure in Common LISP is a collection of fields and field values. It is similar
to a record in Pascal or a structure in C and is a useful data-management tool.
See Common LISP: The Language for a full explanation of structures.
An alien structure is a VAX LISP data type used to exchange data between LISP
programs and external routines that use VAX data structures, which LISP code
cannot ordinarily access. Similar to a Common LISP structure, the definition of
an alien structure defines a number of functions to create alien structures, access
fields or slots, and so on.
The term “alien” in “alien structure” refers to the structure’s double purpose:
• To access data that is foreign to LISP
• To make LISP data available outside of LISP
Typical alien structures are represented internally as byte-aligned collections of
integers, floating-point numbers, strings, and bit vectors.
VAX LISP provides macros that let you define, create, and access alien structures.
These macros are used primarily with the VAX LISP callout facility (see
Chapter 4). They are used to create argument values for external routines whose
arguments or control blocks are too complicated for the callout facility to convert.
This chapter describes:
• How to define an alien structure, using the define-alien-structure macro
• Components of an alien structure definition
• Alien structure field descriptions
• How to create alien structures
In addition to the define-alien-structure macro, VAX LISP provides the
following alien structure macro and functions:

Macro/Function Description
define-alien-field-type Defines alien structure field types,
macro
ALIEN-STRUCTURE-LENGTH Returns the length in bytes of an alien structure,
function
ALIEN-FIELD Accesses arbitrary fields in an alien structure,
function
ALIEN-DATA Dereferences a pointer to an alien structure data vector,
function

Defining and Creating Alien Structures 5-1

See VAX LISP/VMS Function, Macro and Variable Descriptions for summaries of
all the alien structure functions and macros.

5.1 Defining an Alien Structure
Before you can create an alien structure, you must define it with the VAX LISP
define-alien-structure macro. This macro is similar to the defstruct macro
described in Common LISP: The Language. Both define-alien-structure
and defstruct create a new compound data type (the data type contains more
than one named component), constructor, accessor, copier, predicate, and print
functions. However, the defstruct macro defines a type containing only LISP
objects; the define-alien-structure macro defines a type containing both LISP
and non-LISP objects. The LISP system treats the alien structure definition as a
data type that you can then use to create individual structures (instances) of that
type.
The format of an alien structure definition is:
DEFINE-ALIEN-STRUCTURE name-and-options

[doc-string]
{field-description} *

For example:
(define-alien-structure space
"An example alien structure definition"
(area-1 :signed-integer 0 4)
(area-2 :signed-integer 4 8))

This example defines an alien structure named space. It is an object consisting of
two fields: area- 1 and area-2. These fields are stored internally as VAX 32-bit
integers (4 bytes). The numbers 0 4 in area-i and 4 8 in area-2 specify the
structure’s field positions and lengths in bytes.
The name you give to the alien structure becomes a LISP data type. When the
LISP system evaluates the definition of an alien structure, the define-alien-
structure macro automatically defines the type. Alien structure instances consist
of the length of the structure and a pointer to a data vector. A data vector is
an array of unsigned 8-bit bytes that is long enough to hold all the fields in the
structure. Formatting of the vector is done by the data type keywords in the field
descriptions.
In addition to creating the new data type, define-alien-structure also creates
the following functions specifically for that data type:
• Constructor function

A constructor function, whose default name is the new data-type name
with the prefix "make-", is created. A constructor function is used to create
instances of the alien structure. For example, the preceding definition
automatically creates a constructor function named make-space. You would
use this function to create structures of type space. See Section 5.5 for
information on keyword arguments the constructor function accepts.

• Accessor functions
Accessor functions can access the data in each field of the defined alien
structure. By default, the define-alien-structure macro names each
accessor function by prefixing each data field name with the name of the alien
structure and a hyphen.

5-2 Defining and Creating Alien Structures

In the preceding example, the accessor functions space-area-1 and space-
area-2 are created automatically. These 1-argument functions return the
LISP integers corresponding to the VAX integers stored in the fields area-1
and area-2. Although these functions have only one argument, an accessor
function can have one or two arguments, depending on the complexity of
the field. For example, it can take an index with which to access individual
elements of a repeating field.
These accessor functions are acceptable access forms in a call to the setf
macro (unless : read-only t was specified as a field option—see Section 5.4.4).

• Copier function
A copier function, whose default name is the new data-type name beginning
with the prefix "copy-", is created. A copier function is a 1-argument function
that can make a copy of an alien structure instance. This copy is not a copy
of a structure’s definition, but a copy of an instance of an alien structure.
For example, the preceding definition creates a copier function named copy-
space. This function is a 1-argument function that returns a copy of its
argument if the argument (the alien structure) is of type space.
It is sometimes useful to preserve a copy of an alien structure before passing
it to a routine that modifies it destructively.

• Predicate function
A predicate, whose default name is the new data-type name ending with the
suffix "-P", is created. A predicate is a 1-argument function that determines
whether its argument is an instance of the defined alien structure. For
example, the preceding definition automatically creates a 1-argument
predicate named space-p. This function returns t if its argument is of type
SPACE.

• Print function
A print function is created. However, this function prints only the memory
address of an individual structure. This print function does not print the
contents of an alien structure’s data fields. For example, the following line
would be displayed on your output device as the value of an individual alien
structure having the default print function:
#<Alien Structure SPACE #x5036E8>
The initial pound (#) character and the angle brackets (< >) are part of the
standard Common LISP syntax used to print nonreadable objects. The name
Alien Structure identifies the object as an alien structure. The word SPACE
identifies the structure’s user-defined data type.
If you want the print function to show the data in an alien structure, you
must specify your own print function. See Section 5.2.5 on specifying a print
function.

5.2 Alien Structure Name and Options
When you define an alien structure, you must specify a name for the structure.
In addition, you can specify options that apply to the structure as a whole and a
documentation string.

Defining and Creating Alien Structures 5-3

When specifying the alien structure’s name without options, specify it as a symbol
as in the preceding definition of type space. For example:
(define-alien-structure space

. . .)
NOTE

If you use the same symbol as the name of an alien structure
(define-alien-structure) and as the name of an ordinary structure
(defstruct), LISP signals a warning message stating that you have
redefined the type.

By specifying options in the name field of an alien structure’s definition, you can
perform the following operations:
• Change the default name of the constructor function
• Change the default names of the accessor functions
• Change the default name of the copier function
• Change the default name of the predicate function
• Specify your own print function
You can also request that the constructor, accessor, copier, and predicate functions
not be generated at all.
Specify an option as a list that contains a keyword and a symbol value. You can
specify more than one option at a time. The format is:
(nam e (keyw ord value) . . .)

The next sections explain each keyword in detail.

5.2.1 Naming the Constructor Function

By default, the define-alien-structure macro produces a name for an alien
structure’s constructor function by prefixing the string "make-" to the alien
structure’s name. For example, the default name of the constructor function
created by the preceding definition is make-space.
To change the default name of a constructor function, specify the : constructor
keyword with the symbol you want in your alien structure definition. For
example:
Lisp> (define-alien-structure (space (:constructor create-space))

(area-1 :unsigned-integer 0 4)
(area-2 :unsigned-integer 4 8))

SPACE
The LISP system does not prefix your new name with the name of the structure.
For example, when the LISP system evaluates the preceding definition, the macro
names the constructor function create-space.
If you specify nil with the constructor keyword, the define-alien-structure
macro does not define a constructor function and you cannot create alien struc­
tures of that type.

NOTE

Alien structure constructor functions do not take an argument list,
although defstruct constructor functions do take an argument list.

5-4 Defining and Creating Alien Structures

5.2.2 Naming Accessor Functions

The DEFINE-ALIEN-STRUCTURE macro produces default names for an alien struc­
ture’s accessor functions by prefixing each field name with the name of the alien
structure and a hyphen. For example, the default names of the accessor functions
created by the preceding definition are space-area-i and space-area-2 .
To change the default names of an alien structure’s accessor functions, specify the
: conc—name (concatenated name) keyword with a string or symbol for the prefix
you want in your alien structure definition. For example:
Lisp> (define-alien-structure (space (:conc-name "galaxy-"))

(area-1 :unsigned-integer 0 4)
(area-2 :unsigned-integer 4 8))

SPACE
When the LISP system evaluates the preceding definition, the define-alien-
structure macro generates accessor functions named galaxy-area-l and
galaxy-area-2. If you specify nil with the :CONC-name keyword, the function
names are the same as the field names, area-1 and area-2.
Use the accessor functions with setf to change the value of a field.

5.2.3 Naming the Copier Function

By default, the define-alien-structure macro produces a name for an alien
structure’s copier function by prefixing the string "copy-" to the alien structure’s
name. For example, the default copier function of the preceding definition is
COPY-SPACE.
To change the name of the copier function, specify the : copier keyword with the
symbol you want in your definition of an alien structure. For example:
Lisp> (define-alien-structure (space (:copier reproduce-space))

(area-1 :unsigned-integer 0 4)
(area-2 :unsigned-integer 4 8))

SPACE
When the LISP system evaluates the preceding definition, the define-alien-
structure macro generates a copier function named reproduce-space.
If you specify nil with the : copier keyword, the define-alien-structure macro
does not define a copier function.

5.2.4 Naming the Predicate Function

By default, the define-alien-structure macro produces the name of the
predicate function by attaching the string " -p" to the end of the alien structure’s
name. For example, the default name of the predicate function created by the
preceding definition is space-p.
To change the name of the predicate function, specify the : predicate keyword
with a symbol in your definition of an alien structure. For example:
Lisp> (define-alien-structure (space (:predicate check-space))

(area-1 :unsigned-integer 0 4)
(area-2 :unsigned-integer 4 8))

SPACE
When the LISP system evaluates the preceding definition, the def in e-al ien -
structure m acro gen era tes the pred icate function check-space.

Defining and Creating Alien Structures 5-5

If you specify nil with the predicate keyword, the define-alien-structure
macro does not define a predicate function.

NOTE

Be aware that if you create a field with the name p, then there will be
a name conflict between the default predicate function and the default
accessor function of the p field. For example, with an alien struture of
type space, both the predicate function and the accessor function of the
p field would have the same name, space-p.

5.2.5 Specifying a Print Function

You can use the : print-function keyword option to specify the function to print
an alien structure. The default print function prints only the name of the alien
structure. You may want to print the contents of the structure’s fields. The
following example of an alien structure definition specifies a print function:
(define-alien-structure (space (:print-function space-print))

(area-1 :unsigned-integer 0 4)
(area-2 :unsigned-integer 4 8))

If you specify a print function in an alien structure definition, you also must have
previously defined that print function. This print function can be defined to have
an arbitrary action. However, the print function definition must take at least
three arguments:
• A name indicating the alien structure to be printed
• A stream indicating the stream to which to print
• An integer indicating the current print depth
These three arguments are requirements of a structure’s user-defined print
function, as specified by Common LISP. However, the last argument, indicating
the current print depth, is not as useful with alien structures as with other
structures. With complex structures, for example, you may not want to print all
the information in the structure. However, the fields of an alien structure are
immediate objects, so it is usually desirable to print all the fields. Consequently,
the depth argument is often ignored with alien structures, as in the following
example:
(defun space-print (alien stream depth)
(declare (ignore depth))
(format stream "#<space: area-1 = ~d, area-2 = ~d>~%"

(space-area-1 alien)
(space-area-2 alien)))

In space-print function, the alien argument refers to the specific alien structure
to be printed. The stream argument is the stream to which to print. The depth
argument is ignored by using the declare special form. If you want to use
the depth argument in your print function, see the *print-level* variable
description in Common LISP: The Language.
The following example shows how the print-space function prints a space object
called example-3:
Lisp> (setf example-3 (make-space :area-l 6 :area-2 5))
#<Space: area-1 = 6, area-2 = 5>
Lisp> example-3
#<Space: area-1 = 6, area-2 = 5>

5-6 Defining and Creating Alien Structures

For more information on creating print functions for structures and on formatting
them, see Common LISP: The Language.

5.3 Alien Structure Documentation String
You can include a documentation string for an alien structure. The string
is optional and is attached to the symbol as a documentation string of type
structure. Place the string in the definition after the name and options list as in
the example in Section 5.1.

5.4 Alien Structure Field Descriptions
Alien structures are composed of data fields, each of which consists of:
• Field name
• Field type
• Start and end positions
• Options
When you define an alien structure, specify a field description as a list of the
elements having the following format:
(fie ld-nam e type start-position end-position options)

For example:
(field-1 :text 0 9 :occurs 10 :offset 15)
This describes a field named field-1, a 9-byte text string. The field repeats 10
times, with a 15-byte offset from the beginning of one occurrence to the beginning
of the next. This leaves a 6-byte gap between each string in the alien structure.
The following sections describe the elements of a field description.

5.4.1 Field Name

An alien structure’s field name is a symbol naming that field, field- 1 is a field
name in the previous example. Accessor and constructor functions refer to field
names to access and set the values of their respective fields.

5.4.2 Field Type

Alien structure field types specify a relationship between the VAX data in a field
and a LISP data type. The LISP system converts alien structure data in both
directions:
♦ When storing the data in a field, the system converts LISP objects into VAX

data.
• When accessing the data in a field, the system converts VAX data into LISP

objects.
In the previous example, : text is a field type.

Defining and Creating Alien Structures 5-7

Table 5-1 lists the field types defined by VAX LISP. See Chapter 4 for more
information on these types.

Table 5-1: Alien Structure Field Types

Type Internal Representation Notes
:ASCIW VAX character string The first 16-bit word of the

data vector contains a count
of the number of characters in
the string. Allocate two bytes
in addition to the maximum
length of the string to hold this
count.

:VARYING—STRING Synonym for : ASCIW
:ASCIZ VAX character string

terminated with the NULL
character (Os in the last
byte(s)).

Allocate enough space for the
terminating 0. On accessing
this slot, the returned LISP
string terminates at the first
NULL character.

: TEXT VAX nonvarying character
string

Allocate one byte for every
character in the string.

:STRING Synonym for : TEXT
:SIGNED-INTEGER Signed tw o’s complement

integer
:UNSIGNED-INTEGER Unsigned integer
:BIT-VECTOR Unsigned integer
: F-FLOATING F_floating data
:G-FLOATING G_floating data
:D-FLOATING D_floating data When you access a VAX : D-

FLOATING type, the accessor
converts it into a LISP DOUBLE­
FLOAT, which is equivalent to a
VAX : G-FLOATING type.

:H-FLOATING H_floating data
:POINTER (See below)
:SELECTION (See below)

In addition to these types, you can define your own field types with the define-
alien-field-type macro. See VAX LISP/VMS Function, Macro and Variable
Descriptions for a description of this macro.
:POINTER Type

If you want your alien structure to contain the address of the data in another
alien structure, specify the : pointer field type in one of the data fields. This field
type indicates that the field contains a VAX pointer to the start of the data area
of another alien structure.

NOTE

The alien structure pointed to must not be dynamically allocated.
Otherwise, after a garbage collection, the pointer will no longer point
to the specified data field. For a description of how to allocate alien
structures statically, see Section 5.5.3.

5-8 Defining and Creating Alien Structures

The format for using a : pointer field type is:
(:POINTER [name] [:DISPLACED value])

The optional name argument is the type of alien structure pointed to. If you
specify this argument, the field’s update function checks that the new value of
this field (the name you give it when you create an instance of the structure)
points to a structure of the specified type.
The optional :displaced keyword causes the stored VAX pointer to point to the
beginning of the alien structure data area plus the number of bytes specified for
the value. You can omit the parentheses if you do not specify the field name and
the :displaced keyword. The following example shows a data field with the type
: pointer:
(area-1 (:pointer space) 0 4)
or
(area-1 :pointer 0 4)

SELECTION Type

The : selection field type lets you enumerate all the possible data values of a
field. The format for using a : selection field type is:
(SELECTION sO s i s2 . . .)

If you specify the : selection type, the define-alien-strdcture macro associates
each element in the list (sn) with an unsigned integer corresponding to the
element’s position in the list. For example, consider the following alien structure
definition with one : selection field:
Lisp> (define-alien-structure map

(state (:selection "massachusetts" "new york"
" C a l i f o r n i a " " n e w h a m p s h i r e ")

0 4))
MAP
This defines a map structure whose map-state field can have one of the following
values ("MASSACHUSETTS" "NEW YORK" "CALIFORNIA" "NEW HAMPSHIRE"). The field
is internally stored as an unsigned integer indicating the position of the value in
the selection list ("Massachusetts" "new york" "California" "new Hampshire") .
The define-alien-structure macro uses the equalp function to compare the
LISP object you specify when creating an alien structure with the item in the
definition’s selection list. Next, an instance of a map structure is created, with its
map-state field initialized to "Massachusetts":
Lisp> (setf geo (make-map :state "massachusetts"))
#<Alien Structure MAP #x47D95C>
Then, the alien-field function can access the field as an unsigned integer:
Lisp> (alien-field geo :unsigned-integer 0 4)
0
Note that the actual value stored in the field is 0, because "Massachusetts" is
the 0th element of the list. Next, the map-state accessor function accesses the
field as an unsigned integer and uses that integer as an index into the selection
list, returning the corresponding element:
Lisp> (map-state geo)
"MASSACHUSETTS"

Defining and Creating Alien Structures 5-9

Finally, the setf form places "California" in the field and the alien-field
function verifies that "California" is in position 2.
Lisp> (setf (map-state geo) "California")
"CALIFORNIA"
Lisp> (alien-field geo :unsigned-integer 0 4)
2

5.4.3 Field Positions

You position a field in an alien structure’s data area by specifying start and end
values in the field specification. These arguments are rational numbers. For
example, in the following field description, the 0 and the 4 are the start and end
positions of the field:
(area-1 :signed-integer 0 4)

5.4.3.1 Start and End Positions
The start position is inclusive and the end position is exclusive. For example, if a
field’s start position is 0 and its end position is 4, the field occupies positions 0, 1,
2, and 3.
Each field is measured in units of 8-bit bytes. The position value, therefore, can
be a ratio; that is, you can specify fields within arbitrary bit boundaries. For
example, a field with a start value of 1/2 starts on the fifth bit of the data area.
Because the units are 8-bit bytes, a start or end value must go evenly into 8. For
example, 1/3 would cause an error when you called the define-alien-structure
macro.
Exceptions to this rule are all string values or :F-floating, :g-floating, CD-
floating, or : h-floating values. These objects must begin and end on byte
boundaries; that is, their start and end positions must be fixnums, not ratios.
The LISP system does not evaluate the start and end positions when it expands
the define-alien-structure macro. It evaluates these positions when invoking
the accessor functions.

5A3.2 Gaps Between Field Positions
A gap is memory space that you can allocate as part of an alien structure. For
example, if you use the : offset keyword you can produce gaps in an alien
structure.

5-10 Defining and Creating Alien Structures

The following example shows a Pascal record structure definition that contains
gaps:
TYPE

FAMILY REC = RECORD
record structure definition.}
SURNAME PACKED ARRAY[1. .20] OF CHAR;
father RECORD

NAME PACKED ARRAY[1. .20] OF CHAR;
AGE INTEGER;

END; {of father record}
MOTHER RECORD

NAME PACKED ARRAY[1. .20] OF CHAR;
AGE INTEGER;

END; {of mother record}
NUM_CHILDREN INTEGER;
CHILDREN ARRAY [0..20] of RECORD

NAME PACKED ARRAY[1. .20] OF CHAR;
AGE INTEGER;
SEX (FEMALE, MALE);

END; {of children record}
END; {of family record}

To refer to this structure from LISP, you have to define it as an alien structure,
as follows:
Lisp> (define-alien-structure family-rec

"A record structure definition."
(surname :text 0 20)
(father-name :text 20 40)

:unsigned-integer 40 44)
:text 44 64)
:unsigned-integer
:unsigned-integer

(father-age
(mother-name
(mother-age
(num-children
(child-name
(child-age

64
68

(child-sex (

68)

72 :default 2)
•.text 72 92 :occurs 20 :offset 25)
:unsigned-integer 92 96 :occurs 20

:offset 25)
selection "female" "male") 96 97

:occurs 20
:offset 25))

FAMILY-REC
The alien structure named family-rec has 66 fields in which to store information
about the members of a family, including the ages and sex of the children. The
child-name, child-age, and the child-sex fields occur 20 times, allowing up to
20 children in a family record. The default number of children, however, is two.
The name fields are strings that can be up to 20 characters in length. The age
fields are integers that are one longword in length. The sex fields can be either of
the two indicated values that are internally represented by an unsigned integer,
one byte in length.
The gap comes between each occurrence of the child-name field. Note how the
field is 20 bytes long but is offset by 25 bytes, leaving 5 bytes between each
occurrence of the field. The gap is filled by the child-age and child-sex fields.
Figure 5-1 illustrates how storage is internally allocated for the preceding
family-rec alien structure. Only the first part of the alien structure is shown be­
cause the rest of the structure would be repeated in a similar way. The numbers
indicate bytes; for example, the surname field occupies bytes 0 through 19. The
names identify the fields.

Defining and Creating Alien Structures 5-11

Figure 5-1: Internal Storage of FAMILY-REC

SURNAME

FATHER-NAME

FATHER-AGE

MOTHER-NAME

MOTHER-AGE
NUM-CHILDREN

CHILD-NAM E-1

CHILD-AGE-1
CHILD-SEX-1

CHILD-NAM E-2

C HILD-AG E-2
C H ILD -SEX-2

MLO-003367

Even though a gap can exist between fields or at the beginning of a field, it
may not be accessible. The first field must begin at offset 0 to be processed by
LISP-level code. If the first field does not begin at offset 0, only the alien-field
function (see VAX LISP Function, Macro and Variable Descriptions) can access
the gap.

S.4.3.3 Overlapping Fields
Alien structure fields can overlap, letting you access data from more than one
field at a time or from one field in a number of ways. If you change the data in a
field that overlaps other fields, these overlapped fields are also changed.
Overlapping fields are useful when you want data to be interpreted in more than
one way. The following definition defines an alien structure that contains fields
that overlap. The individual bit fields overlap the number field, though they do
not overlap one another:

5-12 Defining and Creating Alien Structures

Lisp>

MASK

(define-al
(number
(bit-0
(bit-1
(bit-2
(bit-3
(bit-4

en-structure mask
:unsigned-integer
:unsigned-integer
:unsigned-integer
:unsigned-integer
:unsigned-integer
:unsigned-integer

0 4)
0 1/ 8)
1/8 2/8)
2/8 3/8)
3/8 4/8)
4/8 5/8))

If you specify different values for overlapping fields when you initialize them (see
Section 5.4.4.1 on initializing fields), the field values that result are undefined.
For example, consider an alien structure of the previously defined mask type
where the number field overlaps the bit fields. If you create an instance of mask
with the make-mask function, and you initialize the number and bit fields to
conflicting values (for example, (make-mask : number 0 :bit-2 1)), the result is
undefined.
The next example shows the creation of the alien structure newmask of the
previously defined type mask:
Lisp> (setf newmask (make-mask))
#<Alien Structure MASK #x50C600>
The following are two ways to set bits 2 and 4 in newmask and to clear all other
bits:
Lisp> (setf (mask-number newmask) (+ 4 16))
20
Lisp> (setf (mask-number newmask) 0

(mask-bit-2 newmask) 1
(mask-bit-4 newmask) 1)

1

5.4.4 Field Options

By specifying options in the alien structure’s data-field descriptions, you can
define the characteristics of the fields. You specify a data-field option as a
keyword-value pair. Include each option in a list whose first element is the name
of the field. You can specify more than one option at a time in the list. The
format for an options list is:
(fie ld-nam e keyw ord value . . .)

The next sections explain each keyword in detail.

5.4.4.1 Initial Value
To specify an initial value for a field, use the : default keyword in the alien
structure’s definition. Then, when you create an instance of a structure with
initialized fields, you do not have to specify values for those fields. Instead, the
LISP system automatically puts your initial values in the fields you create. For
example, in the following data field specification of an alien structure definition,
the value of the num-children field is initialized to 2.
(num-children :unsigned-integer 68 72 :default 2)
You can override the default field value for an alien structure’s field on creating
the structure. To do so, place new values in the initialized fields when you create
a specific instance of a defined structure. For example, in the following creation
of an alien structure of type family-rec, the : num-children field is initialized to
3.

Defining and Creating Alien Structures 5-13

(setf example-4 (make-family-rec :num-children 3))
The default field value can also be changed after creation of an alien structure by
using the setf macro with the accessor function of that field.

NOTE

By default, the uninitialized initial contents of a field are unpredictable.

S.4.4.2 Read-Only Value
The : read-only keyword lets you specify whether a field can be accessed or set.
The value you specify with this keyword can be either t or nil. nil is the default.
If you specify t, the define-alien-structure macro generates accessor functions
that are not acceptable in a call to the setf macro. That is, after you create an
individual structure containing the field, you can only access the field to read data
from it. You cannot use the setf macro on the accessor function for that field to
write data to it. If you specify nil (the default), the define-alien-structure
macro generates accessor functions that are acceptable in a call to setf.
For example, in the following definition, the default value of the area-2 field is
4. This value can be accessed but not changed after you create an individual
structure from this definition. However, the value of the area-1 field, which
defaults to 2, can be changed after you create an individual structure:
(define-alien-structure (space (:print-function #'space-print))

(area-1 :unsigned-integer 0 4 :default 2)
(area-2 :unsigned-integer 4 8 rdefault 4

:read-only t))

15.4.4.3 Repeated Field
A field can be repeated within an alien structure. By specifying a positive inte­
ger with the : occurs keyword, you determine the number of times the field is
repeated. For example, the following line indicates that the name field occurs 20
times with its first occurrence between bytes 20 and 30.
(name :text 20 30 roccurs 20)
If you do not specify the : occurs keyword, the accessor function takes the field
name as its argument, and the field occurs once. If you specify this keyword, the
accessor function takes the field name and an index for arguments. The index is
an integer that indicates the occurrence of the field. The first occurrence of the
field has an index of 0. Consider the following definition:
Lisp> (define-alien-structure space

(area-1 :unsigned-integer 0 4)
(area-2 :unsigned-integer 4 8 :occurs 4))

SPACE
When LISP evaluates this definition, the accessor functions area-i and area- 2

have the following formats:
(SPACE-AREA-1 field)
(SPACE-AREA-2 field index)

5-14 Defining and Creating Alien Structures

5.4.4.4 Similar-Field Distances
You can specify how far apart similar fields are by using the : offset keyword.
This option makes sense only if used with the : occurs keyword.
A field offset is the distance in 8-bit bytes from the start of one occurrence of a
field to the start of the next occurrence of that field. Specifying an offset lets you
access data files that consist of repeated substructures.
You define an offset value by specifying a rational number with the : offset
keyword. For example, the following line indicates that 25 8-bit bytes come
between each occurrence of the child-name field:
(child-name :text 72 92 roccurs 20 :offset 25)
If you specify a value that is greater than the field length (as in the previous
example), the define-alien-structure macro produces gaps in the alien struc­
ture. You can fill them by defining one or more other fields with the : occurs and
: offset keywords; that is, you can interleave different fields.
The LISP system does not evaluate the value you specify with the : offset
keyword when it expands the define-alien-structure macro. It does the
evaluation when you invoke the structure’s accessor functions. The offset defaults
to the length of the field.

5.5 Creating an Alien Structure
After you have defined an alien structure data type, you can create an instance
of that data type. To do so, specify a call to the constructor function of the data
type you want. For example, in the following expression, the setf macro gives
the symbol example-1 the value of the alien structure space:
(setf example-1 (make-space))
Constructor functions accept optional keywords that initialize data fields and
affect memory allocation of alien structures.

5.5.1 initializing and Changing Data Fields

The constructor function for an alien structure accepts keyword arguments to
initialize data fields. Each keyword is the name of a data field prefixed by a
colon. For example, when the LISP system evaluates the following definition,
the make-space constructor function accepts two data-initialization keywords,
:AREA-1 and :AREA-2.
Lisp> (define-alien-structure space

(area-1 :unsigned-integer 0 4)
(area-2 :unsigned-integer 4 8))

SPACE
When you create an individual alien structure, you can assign values to the
structure’s fields with the initialization keywords. For example:
Lisp> (setf example-1 (make-space :area-l 5 :area-2 10))
#<Alien Structure SPACE #x403B80>

Defining and Creating Alien Structures 5-15

You can also initialize the fields by specifying the : default keyword (see
Section 5.4.4.1) with a value when you define the structure. For example,
the following area fields have default initial values of 6 and 1 2:
Lisp> (define-alien-structure space

(area-1 :unsigned-integer 0 4 :default 6)
(area-2 :unsigned-integer 4 8 :default 12))SPACE

Initializing data with the constructor function overrides a default in the same
field in the alien structure definition.
If you want to change a field value after you have created it, you can change it
with the setf macro if the field definition allows the change. (See Section 5.4.4.2).
For example, the field area-i is set to 28 in the following setf form:
Lisp> (setf (space-area-1 example-1) 28)
28

5.5.2 Setting Allocation Size

You can override the amount of storage allocated by the constructor function
using the :alien-data-length keyword. This keyword lets you set the number
of bytes of memory to be allocated for the alien structure’s data vector. It has the
following syntax:
:ALIEN-DATA-LENGTH in teger

This keyword uses storage efficiently when you use alien structures as data
buffers for variable size records. The default is a number large enough to store
the defined alien structure. A length larger than the default allows a larger than
normal alien structure to be allocated; the “extra” data can be accessed with the
alien-field function. If an alien structure is constructed with a smaller size
than the default, it is an error to access or set the omitted fields.
See the alien-structure-length function description in VAX LISP Function,
Macro and Variable Descriptions for an example of default byte allocations.

5.5.3 Allocating Static or Dynamic Space

The : allocation keyword lets you set the type of allocation to be used for the
alien structure, as follows:
:ALLOCATION value

Valid values are : dynamic and : s ta t ic . : dynamic is the default.
If : static is specified, the alien structure is allocated in static space and its
virtual address is not changed during garbage collection (see the VAX LISP/VMS
Program Development Guide).

5-16 Defining and Creating Alien Structures

5.5.4 Setting the Pointer to the Data Vector

The : data keyword lets you override the data vector used by the alien structure.
With this keyword, you can make the pointer to the data vector point to any
object in either LISP or non-LISP space. Use this keyword when you want the
data of the alien structure to be something other than the default. For example,
you can set : data to a LISP simple string or other array of 8-bit bytes or to
non-LISP memory. Using : data to point to other than the default data vector
allows you to modify an object in place or use an existing object as the data of an
alien structure.
The : data keyword has the following syntax:
:DATA value
Its value can be the address of either a simple string or an array of 8-bit bytes.
After you create an instance of an alien structure with this keyword, you can
dereference the pointer by calling the alien-data function. This function returns
the data contained at the specified address.
Chapter 4 contains an example of a callback routine that accepts a VAX argu­
ment list as its only argument. The argument list is in non-LISP space. It is
represented as an alien structure. The callback routine uses the : data keyword
to make the alien structure point to the actual argument list rather than to a
data vector in LISP space.

NOTE

Because : data is a keyword to the alien structure constructor function,
do not use DATA for the name of any field in the alien structure.
Otherwise, unpredictable results will occur.

Defining and Creating Alien Structures 5-17

Chapter 6

Interrupt Functions

VAX LISP provides support for handling asynchronous events. An asynchronous
event is one that interrupts the normal flow of program execution, such as the
completion of I/O, expiration of a timer, or movement of a workstation pointing
device. This mechanism allows you to specify a function, called an interrupt
function, to be executed when a particular asynchronous event occurs.
This chapter provides a guide to using interrupt functions. The chapter is
organized as follows:
• Section 6.1 provides an overview of the use of interrupt functions.
• Section 6.2 defines an asynchronous event and shows how the VMS operating

system, through the AST mechanism, lets you request notification of
asynchronous events.

• Section 6.3 shows how to establish an interrupt function in LISP and specify
that it be executed as the result of a particular asynchronous event.

Chapter 7 contains information on topics related to interrupt functions, including
establishing priority levels at which interrupt functions operate, protecting
sections of code against interruption, and synchronizing the execution of interrupt
functions with the wait function.

6.1 Overview of Interrupt Functions
Interrupt functions allow your LISP program to respond to events that occur
independently of normal program execution. To use an interrupt function, follow
these steps:
1. Decide what asynchronous event should trigger the function, what the

function should do, and what information the function requires. Section 6.2
provides information about various sources of asynchronous events.

2. Define the function as you would any LISP function. Try to localize data
manipulation. A LISP closure may be useful for this. You can synchronize
access to global state information with the facilities described below.

3. Use the instate-interrupt-function function to make your function known
to LISP as an interrupt function, instate-interrupt-function returns
an identification number, the iif-id, that you must retain for future use.
Section 6.3 shows how to use instate-interrupt-function.

Interrupt Functions 6-1

4. Define and call the routine that causes an AST, using one of the following
methods:
• Use the callout facility to define and call a system routine or other

external routine that causes an AST. Supply the iif-id of your interrupt
function as the astprm argument to the system routine.

• Call one of the VAX LISP functions that establishes a response to an
asynchronous event. Give the iif-id as the action argument.

Note that an external routine may post and even execute an AST while the
external code is executing. However, the associated LISP interrupt function
will not execute until the external code returns. In general, execution of LISP
interrupt functions is only allowed while other LISP code is, or could be,
executing; not during execution of foreign code.
Section 6.3 provides examples of using both system routines and VAX LISP
functions.

5. Your interrupt function executes every time the asynchronous event occurs.
6. To synchronize your program with the execution of an interrupt function, use

the wait function. Chapter 7 describes this function.
7. When your interrupt function is no longer needed—that is, after the

asynchronous event has occurred for the last time—use the uninstate-
interrupt-function function to remove the interrupt function from LISP’s
table of interrupt functions.

6.2 Asynchronous Events in VMS
An asynchronous event occurs at an unpredictable point during the execution of
a program. (By contrast, a synchronous event happens at the same point in the
program every time.) Some examples of asynchronous events are:
• A program queues a request for input, then continues execution. At some

later point, unpredictable in advance, the input is completed. The input
completion is an asynchronous event.

• A program sets a timer to go off in five seconds, then continues execution.
When the interval is up, an asynchronous event occurs. This event is
asynchronous because it is impossible to predict what code will be executing.

• The user of an application moves a workstation pointer and clicks one of the
pointer buttons. The pointer movement and the button click are asynchronous
events.

The rest of this section describes how the VMS operating system provides access
to asynchronous events. For more information, see the VMS System Services
Reference Manual.

6.2.1 Asynchronous System Traps (ASTs)

The VMS operating system provides an Asynchronous System Trap (AST)
mechanism that lets you request notification of an asynchronous event. The
AST mechanism lets you specify a routine to be executed when a specified
asynchronous event occurs; such routines are called AST service routines.

6-2 Interrupt Functions

Some system routines, by their nature, can cause only one AST for each call. For
example, a routine that sets a timer can cause only one AST because the timer
can expire only once. Other system routines can cause an unlimited number of
ASTs from a single call. For example, a system routine that establishes an AST
service routine for pointer button activation causes an AST each time a pointer
button is pressed or released. The pointer button ASTs continue until they are
halted by another call to the system routine.

6.2.2 Routines That Cause ASTs

All ASTs are caused by system routines, whether you call them directly through
the callout facility or indirectly through functions supplied by VAX LISP.

6.2.2.1 System Routines
There are two ways to determine whether a VMS system routine causes an
AST. First, the documentation notes that the routine completes asynchronously.
Second, the routine has the following two arguments in its argument list:
• astadr—the address of the AST service routine. You supply this address when

you call the routine that causes the AST.
• astprm (or some equivalent)—the AST parameter. This is an arbitrary value

that you supply. VMS passes the AST parameter to the AST service routine.
When multiple asynchronous events share a single AST service routine,
the AST service routine can use the AST parameter to determine which
asynchronous event caused it to be called.

To use system routines that declare ASTs, you must use the callout facility, just
as with any other external routine. Section 6.3 describes how to call these system
routines.

6.2.2.2 VAX LISP Routines
A number of VAX LISP functions establish actions to be taken when specific
asynchronous events occur. Currently, most of these functions are part of VAX
LISP’s support of the VAXstation. They set up a response to pointer movement,
pointer button activation, and viewport manipulation. These functions ultimately
call system routines. Using these functions saves you the trouble of defining the
system routine and using call-out. In other respects, the use of these functions
is similar to the use of system routines.

6.2.2.3 Keyboard Functions
You can use the bind-keyboard-function function to bind a control character
on the keyboard to the execution of a LISP function. (See the VAX LISP/VMS
Function, Macro and Variable Descriptions manual for a description of bind-
keyboard-function.) VAX LISP invokes all keyboard functions through a single
interrupt function. The function that you specify with bind-keyboard-function
can interrupt the execution of LISP code. However, you do not have to instate or
uninstate keyboard functions.

Interrupt Functions 6-3

6.3 Establishing LISP Interrupt Functions
This section details the steps you take to use an interrupt function. The section
is divided as follows:
• Any function that LISP is to execute asynchronously must be made known

to LISP as an interrupt function with the instate-interrupt-function
function. Section 6.3.1 shows how to use instate-interrupt-function.

• After a function has been made known as an interrupt function, you must
associate the interrupt function with one or more asynchronous events.
Section 6.3.2 describes two ways of doing so.

• When an interrupt function is no longer needed, remove it from LISP’s table
of interrupt functions to conserve system resources. See Section 6.3.3.

• If you suspend a LISP system, the interrupt functions you have instated
become uninstated in the suspended system and are not automatically
reinstated when the system is resumed. You must reinstate those functions
yourself. (See Section 6.3.4.)

6.3.1 Defining an Interrupt Function

To define an interrupt function, you first define the function, which may take
arguments. You then use instate-interrupt-function to make your function
known to LISP. The instate-interrupt-function function takes a function as an
argument and returns an identifying number, the iif-id. LISP adds your function
to an internal list that identifies interrupt functions. The iif-id allows LISP to
retrieve a particular interrupt function at a future time.
For example:
(let ((iif-id (instate-interrupt-function #'key-handler)))

. . .)
This example makes the function key-handler known as an interrupt function.
The value returned by instate-interrupt-function is bound to the symbol
iif-id, to be used later in the body of the let. Section 6.3.2 shows how the iif-id
associates an interrupt function with an asynchronous event.
You can use instate-interrupt-function on a single function as many times
as you like, thereby creating more than one interrupt function with the same
function definition. This technique is useful when you need an interrupt function
to perform essentially the same operation in response to slightly differing
asynchronous events.

6.3.1.1 Passing Arguments to Interrupt Functions
Ordinarily, an interrupt function receives no arguments when it is invoked. You
can, however, specify that one or more arguments be passed to an interrupt
function. This technique is useful in the following cases:
• You use instate-interrupt-function more than once on a single func­

tion, thereby making several interrupt functions with the same function
definition. You can cause each interrupt function to be passed a different ar­
gument, allowing the function to take appropriate action depending on what
asynchronous event invoked it.

6-4 Interrupt Functions

• Your interrupt function needs to manipulate a data structure. The only safe
way for an interrupt function to manipulate a data structure is to pass the
data structure to the interrupt function as an argument. You should not
store the data structure in a special variable, because the binding of special
variables cannot be certain at the time the interrupt function executes.

The instate-interrupt-function function takes a keyword argument,
: arguments, whose value is a list of the arguments to be passed to the interrupt
function. For example:
(let ((iif-id (instate-interrupt-function #'key-handler

:arguments (list interrupting-key))))
. . .)

This example makes the function key-handler known as an interrupt function
and requests that the data structure interrupting-key be passed to key-handler
when it is invoked, key-handler can manipulate the contents of interrupting-
key. Following execution of key-handler, other LISP functions can use the
modified contents of interrupting-key.

6.3.1.2 Specifying the Interrupt Level
Each interrupt function has an interrupt level. An interrupt function can only
interrupt code that is executing at a lower interrupt level than its own. Chapter 7
contains more information about interrupt levels.
Use the : level keyword with instate-interrupt-function to specify the inter­
rupt level. The value for this keyword is an integer in the range 0 through 7. The
default is 2.

6.3.1.3 Automatic Removal of Interrupt Functions
The instate-interrupt-function function takes a keyword argument, :ONCE-
only-p, that lets you request that the interrupt function be uninstated after a sin­
gle execution. If you include :once-only-p with a non-NiL argument, the inter­
rupt function can execute only once; then it is automatically removed from LISP’s
table of interrupt functions. Use this keyword only if you know that the interrupt
function will be needed only once. For interrupt functions that may execute more
than once, remove them explicitly with the uninstate-interrupt-function func­
tion after the last use. (Section 6.3.3 describes uninstate-interrupt-function.)

6.3.2 Associating an Interrupt Function with an Asynchronous Event

To request invocation of an interrupt function, you must associate it with one or
more asynchronous events. This section shows how to call out to system routines
that cause ASTs and how to pass interrupt functions as arguments to VAX LISP
functions that establish the response to an asynchronous event.

6.3.2.1 Calling Out to System Routines That Cause Asynchronous Events
System routines that can cause asynchronous events are characterized by the
presence of two arguments, the astadr (AST service routine address) and the
astprm (AST parameter). To call out to such a routine, you first define the
routine, using define-external-routine.
• Always use :mechanism : value to pass the astadr argument.

Interrupt Functions 6-5

• Use either :mechanism : value or :MECHANISM :reference to pass the astprm
argument. Consult the documentation of the system routine to determine how
the routine expects the astprm argument to be passed.

For example:
(clefine-external-routine (sys$setimr :check-status-return t)
(efn :mechanism :value)
(daytim :vax-type :quadword)
(astadr :mechanism rvalue)
(astprm rmechanism rvalue)) ; Called the REQIDT in VMS docs.

This example defines the external routine sys$setimr, a system service that sets
a timer and causes an asynchronous event to occur when the timer expires.
When you use call-out to call the system routine, you must pass appropriate
values for both the astadr and the astprm:
• For the astadr, always pass the parameter common-ast-address. This is the

address of a VAX LISP routine that initially handles all asynchronous events.
You can pass no other object as the astadr.

• For the astprm, pass the iif-id of the interrupt function that is to service the
asynchronous event.

For example:
(defun set-timer (delta-time)
(let ((iif-id (instate-interrupt-function

#'timer-interrupt-handler
:once-only-p t)))

(call-out sys$setimr nil delta-time
common-ast-address iif-id))

t)
This example defines the function set-timer, which in turn calls out to
sys$setimr. Each invocation of set-timer causes the function timer-interrupt-
handler to be instated as an interrupt function. The : once-only-p keyword
causes timer-interrupt-handler to be removed (uninstated) after its first
invocation.

6.3.2.2 Using VAX LISP Functions
Several VAX LISP functions establish an action that is to take place when a
specified asynchronous event occurs. (Most of these functions support the use of
the pointer on a VAXstation running UIS.) One of the actions you can request
with these functions is the execution of an interrupt function. After you have
defined and instated an interrupt function as described in Section 6.3.1, you can
supply its iif-id as the action argument.
For example, the set-pointer-action function establishes the response to
pointer movement in a workstation viewport. It takes four required arguments:
a virtual display, a window, and actions to perform when the pointer moves
within the window and when it exits the window. The actions can be either nil
(do nothing) or an interrupt function to execute whenever the pointer moves
within or out of the window. The following example shows the use of an interrupt
function with set-pointer-action:
(let ((iif-id (instate-interrupt-function #'draw-rubber-band)))
(set-pointer-action *art-display* *art-window* iif-id nil)

(set-pointer-action *art-display* *art-window* nil nil)
(uninstate-interrupt-function iif-id))

6-6 Interrupt Functions

In this example, a previously defined function, draw-rubber-band, is instated as
an interrupt function. Its iif-id is then supplied as the first action argument to
set-pointer-action. From that point on, any pointer movement in the window
* art-window* causes the interrupt function draw-rubber-band to execute. The
second call to set-pointer-action requests that pointer movement not cause an
asynchronous event, and the uninstate-interrupt-function function removes
the unneeded interrupt function from LISP’s table of interrupt functions.
Some LISP functions that specify a response to asynchronous events cause argu­
ments to be passed to the interrupt function that you specify. For example, the
set-button-action function specifies the response when a workstation pointer
button is pressed or released. If you specify an interrupt function with set-
button-action, the interrupt function is automatically passed two arguments
when it is invoked: the button involved and the direction of the transition (down
or up). You can still use the : arguments keyword with instate-interrupt-
function to specify arguments to be passed to the interrupt function. Arguments
that you request are passed following any arguments passed automatically.
For example, assume that you want to pass a virtual display to your button­
handling interrupt function, in addition to the two arguments that it receives
automatically. You might define the interrupt function as follows:
(defun button-handler (button transition display)

But when you use instate-interrupt-function, you specify that only one
argument be passed:
(let ((iif-id (instate-interrupt-function

#'button-handler
:arguments (list display))))

When button-handler executes as the result of a button being pressed or re­
leased, it will receive three arguments: the button and transition supplied by
VAX LISP and the display that you supply.

6.3.3 Removing an Interrupt Function from LISP

When you use instate-interrupt-function, VAX LISP adds the interrupt
function to an internal table listing all such functions. Thus, to avoid unnecessary
overhead, be sure to uninstate interrupt functions after their last use by using
uninstate-interrupt-function. uninstate-interrupt-function takes a single
argument, the iif-id of the interrupt function being uninstated.
You should uninstate an interrupt function only after you are sure that the
asynchronous event causing it can no longer occur. Some asynchronous events
occur only once for every use of the routine or function that causes them.
Other asynchronous events, such as those caused by set-button-action, can
occur repeatedly In either case, it is your responsibility to be sure that the
asynchronous event can no longer occur before uninstating the interrupt function
the asynchronous event invokes. If an asynchronous event occurs and its
associated interrupt function has been uninstated, LISP ignores the asynchronous
event.
You can use the :Once-only-p keyword with instate-interrupt-function to
cause an interrupt function to be uninstated automatically after one invocation.
See Section 6.3.1.3.

Interrupt Functions 6-7

6.3.4 Suspending Systems Containing Interrupt Functions

When you suspend a LISP system, the interrupt functions you have instated
are uninstated in the suspended system. When you resume that system, these
interrupt functions are not automatically reinstated. Therefore, if your system
can be suspended, you must know what functions to reinstate when the system
resumes. When you have reinstated an interrupt function, you must reassociate
it with the asynchronous event that invokes it.
If you bind a control character to a function with the bind-keyboard-function
function, you do not need to rebind the function in a resumed system. VAX LISP
automatically restores the bindings when the system is resumed.

6-8 Interrupt Functions

Chapter 7

Interrupt Levels, Critical Sections, and
Synchronization

This chapter discusses VAX LISP facilities that let you control the priorities of
interrupt functions and keyboard functions. You use these facilities to control
a system in which multiple interrupt functions and keyboard functions may
interfere with each other or with code that must execute as a unit.
This chapter discusses the following subjects:
• Section 7.1 describes the system of interrupt levels. You can specify an

interrupt level with the bind-keyboard-function and instate-interrupt-
function functions.

• Section 7.2 describes critical sections, which prevent a section of code from
being interrupted during execution.

• Section 7.3 describes the wait function, which suspends execution of a
program until a keyboard function or interrupt function executes.

7.1 Using Interrupt Levels
You can use the : level keyword to assign an interrupt level either to an
interrupt function or to a function you specify with bind-keyboard-function. The
interrupt level, which is an integer between 0 and 7, controls when a function
can execute. A function executes only if its interrupt level is greater than LISP’s
current interrupt level. For example, if you define two keyboard functions with
bind-keyboard-function, one at level 2 and one at level 3, the second function
can interrupt the first but not the other way around.
When it is not executing a keyboard function or an interrupt function, VAX LISP
can be interrupted by functions at any of the interrupt levels. Certain low-level
LISP functions run at very high interrupt levels because they cannot be safely
interrupted. Normally, however, a function at any interrupt level will interrupt
LISP execution.
VAX LISP keyboard input operates at interrupt level 6, meaning that any
function with an interrupt level less than 6 can perform input from the keyboard.
Functions that operate at level 6 or 7 cannot obtain keyboard input.
When you use bind-keyboard-function or instate-interrupt-function,
carefully consider which interrupt level to use. You must ensure that the function
is able to interrupt other functions that it needs to interrupt and that the function
can in turn be interrupted as necessary. Furthermore, if the function performs
input from the keyboard, its level must be less than 6. Some guidelines are:
• In general, do not use interrupt levels 6 or 7. Use of these interrupt levels

may interfere with VAX LISP’s normal operation.

Interrupt Levels, Critical Sections, and Synchronization 7-1

• If you bind a control character (such as Ctrl/E) to the ed function, use either
level 1 (the default for bind-keyboard-function) or 0. The Editor must be
interruptible by keyboard input and by interrupt functions the Editor uses to
handle pointer input.

• If you bind control characters to the debug and break functions, use an
interrupt level high enough to interrupt functions you debug, but less than 6.
For example, if your application includes an interrupt function that executes
at level 3, specify level 4 or 5 with bind-keyboard-function to invoke the
debugger or break loop using the control character while that interrupt
function is executing.

• In this framework, choose interrupt levels for your interrupt and keyboard
functions that allow them to interrupt and to be interrupted as appropriate.

Functions that execute at interrupt level 7 can interrupt any LISP code not
in a critical section, including low-level LISP code not normally interruptible.
Functions that execute at level 7 may leave your program in an inconsistent
state. Therefore, functions that execute at level 7 must terminate by executing
abort. Do not use interrupt level 7 except to effect an emergency exit back to
LISP’s top level. (Ctrl/C is bound to a function that executes at level 7; therefore,
you can always use Ctrl/C to get back to top level.)

7.2 Executing Critical Section s
A critical section consists of forms in the body of a critical-section macro.
The execution of forms in a critical section cannot be interrupted by any
interrupt function or keyboard function, at any level. Use a critical section
when the execution of code must not be interrupted. For example, a function
that manipulates a data structure may temporarily leave the data structure in
an inconsistent state during its execution. An interrupting function that tries
to use the data structure can find it invalid. The manipulating function can
use a critical section to make sure that it cannot be interrupted while the data
structure is invalid.
Interrupts that occur during the execution of a critical section are queued. When
the critical section ends, the interrupts are serviced.
Since a critical section cannot be interrupted, it cannot perform keyboard input.
A critical section also cannot be stopped with Ctrl/C. So, be careful to avoid infinite
loops in a critical section. Should an infinite loop occur, you have to terminate the
LISP image.
Test your code thoroughly before you make it into a critical section. Critical
sections should be short and error free. If an error does occur in a critical
section, VAX LISP invokes the debugger and temporarily removes the restrictions
on interrupts so that you can type to the debugger. If you continue from
the debugger, LISP restores the restrictions on interrupts before continuing.
However, LISP is open to interruptions while you are debugging the code.

7.3 Synchronizing Program Execution
Sometimes a program must stop execution until an event occurs or some piece
of information becomes available. VAX LISP provides the wait function to allow
such synchronization.

7-2 Interrupt Levels, Critical Sections, and Synchronization

The wait function takes two required arguments: a reason for the wait, typically
a string, and a testing function that LISP calls to determine if the wait condition
has been satisfied. The wait function accepts any number of arguments following
the second argument. These arguments are used as arguments to the testing
function.
When the wait function is called, it causes normal program execution to halt.
VAX LISP then repeatedly calls the testing function. When the testing function
returns a non-NiL value, the wait function returns and execution continues.
You can specify any function as a testing function in a call to the wait function.
However, remember the following points:
• The testing function should be short and error free. VAX LISP calls the

testing function once before establishing the wait state. An error that occurs
on this initial call can be debugged normally. However, if an error occurs
in the testing function after the wait state has been established, the LISP
system will be left in an inconsistent state and will have to be terminated.

• The testing function should not have side effects, since it is called at
indeterminate intervals.

• The dynamic state of LISP is not guaranteed during execution of the testing
function. Therefore, the testing function cannot rely on the values of special
variables. You should pass it arguments instead.

One way to use wait is with an interrupt function or keyboard function that
modifies a data structure accessed by the testing function. The data structure can
be a cons cell, a structure, or an array. For the testing function, use an accessor
function appropriate for that data structure. When the interrupt or keyboard
function modifies the data structure, the testing function returns non-NiL, and
execution continues.
For example, the following forms set up a variable called flag, which is then used
in a wait function:
(setf flag (list nil))
(bind-keyboard-function
#\Af
#'(lambda () (setf (car flag) t)))

(wait "Wait for CTRL/F" f'car flag)
In this example, the value of flag is a list whose only element is nil. bind-
keyboard-function binds Ctrl/F to a function that changes the element of flag to
T. The wait function specifies car as its testing function, with flag given as the
argument. As long as the testing function returns nil, the wait function blocks
further execution. When the user presses Ctrl/F, the first element of flag is set to
T, the testing function returns t, the wait function returns, and normal execution
continues.
To use the wait function to synchronize your program with an interrupt function,
pass a data structure to both the interrupt function and the testing function
named in the wait function. For example, consider the following interrupt
function that handles the expiration of a timer:
(defun timer-interrupt-handler (flag)
(setf (car flag) t))

Interrupt Levels, Critical Sections, and Synchronization 7-3

This function could be used as follows:
(let* ((flag (list nil))

(iif-id (instäte-interrupt-function
#'timer-interrupt-handler
:once-only-p t
:arguments (list flag))))

(call-out sys$setimr nil delta-time
common-ast-address iif-id)

(wait "Timer wait" #'car flag)
. . .)

In this example, the program calls out to sys$setimr, specifying that timer-
interrupt-handler is to execute when the timer expires, timer-interrupt-
handler is passed flag as an argument, a list whose only element is nil.
timer-interrupt-handler sets this element to t when the timer expires.
Meanwhile, after calling sys$setimr, the program continues with code that
can execute before the timer has expired. At some point, however, it calls wait
to wait for the timer. Since both timer-interrupt-handler and the testing
function car have been passed the same list, the wait will not return until
timer-interrupt-handler sets the first element of the list to t.
Sometimes it is useful to pass a structure to an interrupt function. Then, you
can include a slot in the structure for synchronization. Consider the following
example:
(defstruct menu
(choice-made nil))

(defun click-in-menu (button transition menu)

(setf (menu-choice-made menu) t))
(defun post-menu (menu)
(let ((iif-id (instate-interrupt-function

#'click-in-menu
rarguments (list menu))))

(wait "Menu choice" #'menu-choice-made menu)
. . .))

This example shows parts of a menu system. The menu is implemented as a
structure, one of whose slots is called choice-made. The initial value of choice-
made is nil. The interrupt function click-in-menu, which executes when a
pointer button is pressed over a menu choice, is passed the menu structure as
an argument, click-in-menu sets the value of choice-made to t. The function
post-menu takes a menu structure as its argument, displays the menu, then
waits for a choice to be made, post-menu uses the wait function and supplies
menu-choice-made as the testing function. When click-in-menu sets this slot to
t, the wait function returns and execution continues.

7-4 Interrupt Levels, Critical Sections, and Synchronization

Index

A___________________________
Access capability, 4-4, 4-5
Access control string, 2-3
: A C C E S S keyword

D E F IN E - E X T E R N A L - R O U T IN E macro, 4-5
M A K E - C A L L - B A C K - R O U T IN E function, 4-18

Accessor functions, 5-2
naming, 5-5

A L I E N - D A T A function, 5-1
: A L IE N - D A T A - L E N G T H keyword

constructor function, 5-16
A L I E N - F I E L D function, 5-1
A L IE N - S T R U C T U R E - L E N G T H function, 5-1
Alien structures, 1-2, 5-1 to 5-17

accessing arbitrary fields, 5-1
accessor functions, 5-2

naming, 5-5
components, 5-3
constructor function, 5-2

naming, 5-4
copier function, 5-3

naming, 5-5
creating instances of, 5-15

allocating memory, 5-16
initializing fields, 5-15

data type, 5-2
defining, 5-2
defining field types, 5-1
dereferencing pointers to data, 5-1
determining length of, 5-1
F A M IL Y - R E C example, 5-11
field descriptions, 5-7

See also Fields
default values, 5-13
field offsets, 5-15
predefined data types, 5-8
read-only values, 5-14
repeated fields, 5-14

naming, 5-3
options, 5-4
predicate function, 5-3

naming, 5-5
print function, 5-3

specifying, 5-6
restriction during callback function, 4-23
See also

Callback facility
Callout facility

: A L L keyword
T R A N S L A T E - L O G IC A L - N A M E fu n c t io n , 3 -1 2

: A L L O C A T IO N k e y w o r d
c o n s t r u c t o r fu n c t io n , 5 -16

A r g u m en t
access capability, 4-4, 4 -5
data type conversion, 4-5, 4 -7
name, 4 -5
p a s s i n g m e c h a n i s m s , 4-5 , 4 -6
p a s s i n g t o in te r ru p t fu n c t io n s , 6 -4

A r g u m e n t list, 4 - 4
: A R G U M E N T - P O IN T E R k e y w o r d

M A K E - C A L L - B A C K - R O U T IN E fu n c t io n , 4 -1 8
: A R G U M E N T S k e y w o r d

IN S T A T E - IN T E R R U P T - F U N C T I O N , 6 -5
M A K E - C A L L - B A C K - R O U T IN E fu n c t io n , 4 -1 8

: A S C IW k e y w o r d
a l ie n s t r u c tu r e f ie ld ty p e , 5 -8

: A S C I Z - S T R I N G k e y w o r d
a l ie n s t r u c tu r e f ie ld ty p e , 5 -8

AST
See Asynchronous events

Asynchronous events, 6-2
associating with interrupt functions, 6-5
ASTs, 6-2

a d d r e s s a r g u m en t , 6 -6
p a r a m e t e r a r g u m en t , 6 -3

p a s s i n g m e c h a n ism , 6 -5
r e s t r ic t io n d u r in g c a l l b a c k fu n c t io n , 4 -2 3
r o u t in e s th a t d e c l a r e , 6 -3

c a u s e s , 6 -3
keyboard functions, 6-3
system routines, 6-3
VAX LISP routines, 6-3

responding to in LISP, 6-1 to 6-8
waiting for, 7-2

B____________________________
B IN D - K E Y B O A R D - F U N C T IO N fu n c t io n , 6 -3

s p e c i f y in g in te r ru p t le v e l, 7-1
: B I T k e y w o r d

VAX d a t a ty p e , 4 -7
: B I T - V E C T O R k e y w o r d

a lie n s t r u c tu r e f ie ld ty p e , 5 -8
B R E A K fu n c t io n

in te rru p t le v e l for, 7 -2
: B Y T E k e y w o r d

VAX data type, 4-7

c __________________________
Callback facility, 1-2, 4-1 to 4-10

lndex-1

Callback facility (cont’d.)
See also Alien structures
arguments and return values, 4 -4 to 4 -10

access capability, 4 -5
data type conversion, 4 -7
passing mechanism, 4 -6

callback routine, 4 -1 7 to 4 -2 3
arguments, 4 -18
example, 4 -1 9
function name, 4 -18
return values, 4-18

procedure calling conventions, 4 -4
restrictions, 4 -2 2

Calling conventions
See VAX procedure calling standard

Callout facility, 1-2, 4-1 to 4 - 1 7 ,4 - 2 3 to 4 -2 6
See also Alien structures
arguments and return values, 4 -4 to 4 -1 0

access capability, 4-5
data type conversion, 4 -7
passing mechanism, 4 -6

causing asynchronous events, 6-5
external routine, 4-11 to 4 -1 4

argument descriptions, 4 -14
calling, 4 -1 5
debugging, 4 -2 4 to 4 -2 5
documentation string, 4 -1 4
errors, 4 -2 3
name and options, 4 -1 2
system services, 4 -1 5 to 4 -17

calling, 4 -16
defining, 4 -1 6

writing, 4 -1 0 to 4-11
procedure calling conventions, 4 -4
using S U S P E N D and R E SU M E functions, 4 -2 6

C A L L - O U T macro
u s e d w ith a s y n c h r o n o u s r o u t in e s , 6 -6

: C A S E - S E N S I T I V E k ey w o r d , 3 -12
C A T C H fu n c t io n

u s e d w ith c a l l b a c k rou tin e , 4 -17
: C H E C K - S T A T U S - R E T U R N k e y w o r d

D E F IN E - E X T E R N A L - R O U T IN E m a c r o , 4 -13 ,
4 -2 3

C O M M A N D - L IN E - E N T IT Y - P fu n c t io n , 3-1 t o 3 -2
C O M M A N D - L IN E - E N T IT Y - V A L U E fu n c t io n , 3-1

t o 3 -2
Command line information, 3-1
: C O N C -N A M E k e y w o r d

D E F IN E - A L I E N - S T R U C T U R E macro, 5-5
Constructor function, 5-2,5-15

allocating memory
:A L IE N - D A T A - L E N G T H k e y w o r d , 5 -16
: A L L O C A T IO N k e y w o r d , 5 -1 6
: D A T A k e y w o r d , 5 -1 7

in it ia liz in g f ie ld s , 5 -15
n am in g , 5 -4
s p e c i f y in g a d e fa u l t v a lu e , 5 -14

: C O N S T R U C T O R k e y w o r d
D E F IN E - A L I E N - S T R U C T U R E m a c r o , 5 -4

C o p i e r fu n c t io n , 5 -3
n am in g , 5 -5

: C O P I E R k e y w o r d
D E F IN E - A L I E N - S T R U C T U R E macro, 5-5

C R I T I C A L - S E C T I O N macro, 7-2
Critical sections, 1-3, 7-2

debugging, 7-2

Critical sections (cont'd.)
errors in, 7-2

D__________________________________
: D A T A k e y w o r d

constructor function, 5-17
Data types

checking, 4-14
conversion, 4-5, 4-7 to 4-10
internal storage representation, 5-8
pathname field

device, 2-3
directory, 2-3
file name, 2-3
file type, 2-3
host, 2-3
version, 2-3

relationship between VAX and LISP types, 5-7
See also

Alien structures
Fields

D E B U G function
interrupt level for, 7-2

Debugger, VMS symbolic
using with callout routine, 4-24

DECwindows logical name table, 3-12
: D ECW keyword

T R A N S L A T E - L O G I C A L -N A M E fu n c t io n , 3 -1 2
D E F A U L T - D IR E C T O R Y fu n c t io n , 2 -8
: D E F A U L T k e y w o r d

D E F IN E - A L I E N - S T R U C T U R E m a c r o , 5 -1 3
* D E F A U L T - P A T H N A M E - D E F A U L T S * v a r ia b le ,

2-7
D E F I N E - A L I E N - F I E L D - T Y P E m a c r o , 5-1
D E F I N E - A L I E N —S T R U C T U R E m a c r o

sy n ta x , 5 -2
D E F IN E - E X T E R N A L - R O U T IN E m a c r o , 4-11 to

4 -1 4
and asynchronous system routines, 6-5
argument descriptions, 4-14
data type conversion, 4-7
defining system services, 4-16
docum enta tion string, 4—14
name and options, 4-12

Descriptor
a r g u m e n t - p a s s in g m e c h a n ism , 4 -5

: D E S C R I P T O R k e y w o r d
argument-passing mechanism, 4-6

Device
getting information about, 3-2 to 3-4
keyword and data type, 2-3
pathname field, 2-2

: D E V I C E keyword, 2-3
: D - F L O A T IN G keyword

alien structure field type, 5-8
VAX data type, 4-7

Directory, 2-8
converting to a pathname, 2-8
finding the default, 2-8
keyword and data type, 2-3
* M O D U L E - D IR E C T O R Y * variable, 2-8
pathname field, 2-2

D IR E C T O R Y function, 2-8
: D I R E C T O R Y keyword, 2-3
Dynamic memory, 5-16

Index-2

E__________________________________
ED function

in te r ru p t le v e l for, 7-1
: E N T R Y - P O IN T k e y w o r d

D E F IN E - E X T E R N A L - R O U T IN E m a c r o , 4 -1 3
E Q U A L fu n c t io n

to compare pathnames, 2-5
Error handler

calling external routines, 4-23
to protect terminal characteristics, 3-11

Error messages
See System messages

Events, asynchronous
See Asynchronous events

Extended attribute block (XAB), 3-5
External routine

See Callout facility
: E X T E R N A L - R O U T IN E keyword

V M S -D E B U G function, 4-24

F____________________________
F A M IL Y - R E C a l ie n s t r u c tu r e e x a m p le , 5-11
: F - F L O A T IN G k e y w o r d

alien structure field type, 5-8
VAX data type, 4-7

Fields
accessing by byte offset, 5-1
data type keyword

: A S C IW , 5-8
: A S C I Z , 5-8
: B I T - V E C T O R , 5-8
: D —F L O A T IN G , 5-8
: F - F L O A T IN G , 5-8
: G - F L O A T IN G , 5-8
: H - F L O A T IN G , 5-8
: P O IN T E R , 5-8
: S E L E C T IO N , 5-9
: S I G N E D - IN T E G E R , 5-8
: S T R IN G , 5-8
: T E X T , 5-8
: U N S IG N E D - IN T E G E R , 5-8
:V A R Y IN G - S T R IN G , 5-8

data types, 5-7
defining, 5-1

initializing, 5-15
names of, 5-7
option keyword

: O C C U R S , 5-14
: O F F S E T , 5-15
: R E A D -O N L Y , 5-14

options, 5-13
default values, 5-13
field offsets, 5-15
read-only values, 5-14
repeated fields, 5-14

position of, 5-10
gaps between, 5-10
overlapping, 5-12
start and end, 5-10

File access block (FAB), 3-5
: F ILE keyword

D E F IN E - E X T E R N A L - R O U T IN E m a c r o , 4 -13
Files

getting information about, 3-4 to 3-5

F ile s p e c i f i c a t io n

c o m p a r in g , 2 -5
d e fa u l t v a lu e , 2 -7
f ile n a m e fie ld , 2 -3

u s in g w i ld c a r d c h a r a c t e r , 2 -3
f ile t y p e fie ld , 2 -3
l o g i c a l n am e , 3 -12
r e p r e s e n t a t i o n of, 2-1
s p e c i f y in g a n o d e n am e , 2 -4
tr a n s la t io n of, 2-1
v e r s io n fie ld , 2 -3

F ile s y s t e m in te r fa c e , 1-1, 2-1 t o 2 -8
d ir e c t o r ie s , 2 -8
n a m e s t r in g s , 2-1
p a t h n a m e s , 2-1

F u n c t io n s , in te rru p t

S e e In terrup t f u n c t io n s

G_________________________
G a p s b e tw e e n f ie ld s , 5 -10
G a r b a g e c o l l e c t i o n

im p a c t o n c a l l b a c k re tu rn v a lu e s , 4 -23
G E T - D E V I C E - I N F O R M A T I O N fu n c t io n , 3 -2 t o

3—4
G E T - F I L E - I N F O R M A T I O N fu n c t io n , 3 -4 t o 3 -5
G E T - P R O C E S S - I N F O R M A T I O N fu n c t io n , 3 -5 to

3 -9
G E T - T E R M IN A L - M O D E S fu n c t io n , 3 -9 t o 3 -1 0
G E T - V M S - M E S S A G E fu n c t io n , 3-11 t o 3 -12
: G - F L O A T IN G k e y w o r d

a l ie n s t r u c tu r e f ie ld ty p e , 5 -8
VAX d a t a ty p e , 4 -7

: G R O U P k e y w o r d
T R A N S L A T E - L O G IC A L - N A M E fu n c t io n , 3 -1 2

G r o u p l o g i c a l n a m e t a b le , 3 -1 2

H____________________________
: H - F L O A T IN G k e y w o r d

a lie n s t r u c tu r e f ie ld ty p e , 5 -8
VAX d a t a ty p e , 4 -7

H o s t
k e y w o r d a n d d a t a ty p e , 2 -3
p a t h n a m e fie ld , 2 -2

: H O S T k e y w o r d , 2 -3

I____________________________________
Im a g e n am e , 4 -16
Im m e d ia t e v a lu e

a r g u m e n t p a s s i n g m e c h a n ism , 4 -5
: I N k e y w o r d

a r g u m e n t a c c e s s c a p a b il ity , 4 -5
: I N - O U T k e y w o r d

a r g u m e n t a c c e s s c a p a b il ity , 4 -5
In pu t/ ou tpu t a c c e s s c a p a b il ity , 4 -4
Inpu t a c c e s s c a p a b il ity , 4 -4
IN STA LL utility

u s e d w ith c a l l o u t facility , 4-11
I N S T A T E - IN T E R R U P T - F U N C T I O N fu n c t io n

u s e d t o a u t om a t ic a l ly r e m o v e a n in te r ru p t fu n c t io n ,
6 -5

u s e d t o d e f in e a n in te r ru p t fu n c t io n , 6 -4
In terrup t fu n c t io n s , 1-2, 6-1 t o 6 -8

a n d s u s p e n d e d s y s t e m s , 6 -8
a s s i g n in g in te r ru p t le v e l, 7-1

lndex-3

Interrupt functions (cont’d.)
associating with external routines, 6-5
associating with VAX LISP functions, 6-6
defining, 6-4
establishing, 6-4
overview, 6-1 to 6-2
passing arguments to, 6-4

automatically, 6-7
protecting against interruption by, 7-2
specifying interrupt level, 6-5
synchronizing execution, 7-2
uninstating, 6-7

automatically, 6-5
by SUSPEND function, 6-8

Interrupt levels, 1-3, 7-1 to 7-2
guidelines for assigning, 7-1
specifying in interrupt function, 6-5

K________________________
Keyboard functions

and suspended systems, 6-8
interrupt levels, 7-1
protecting against interruption by, 7-2
relationship to interrupt functions, 6-3
waiting for, 7-2

Keyboard input
interrupt level of, 7-1

L____________________________
: LEVEL keyword
BIND-KEYBOARD-FUNCTION, 7-1
INSTATE-INTERRUPT-FUNCTION, 6-5

: LISP-TYPE keyword, 4-7
D E F IN E - E X T E R N A L - R O U T IN E m a c r o , 4 -7
M A K E - C A L L - B A C K - R O U T IN E fu n c t io n , 4 -18

L o g ic a l n a m e s
relationship to pathnames, 2-1
translating, 2-5
using, 3-12 to 3-13

Logical name tables, 3-12
: LONGWORD keyword

VAX data type, 4-7

M___________________________
M A K E - C A L L - B A C K - R O U T IN E fu n c t io n , 4 -1 7 to

4 -1 8
M A K E -P A T H N A M E fu n c t io n , 2 -3
: M E C H A N IS M k ey w o r d , 4 -6

argument-passing mechanism, 4 -6
M A K E—C A L L - B A C K - R O U T IN E function, 4 -1 8

Memory
allocating for alien structures, 5-16

Messages
See System messages

* M O D U L E - D IR E C T O R Y * variable, 2-8

N____________________________
Name

pathname field, 2-2
: NAME keyword, 2-3
NAMESTRING function, 2-5
Namestrings, 2-5 to 2-6

converting from pathnames, 2-5

: NEWEST keyword, 2-3
Node

p a t h n a m e fie ld , 2 -4

o_________________
: O C C U R S k e y w o r d

D E F IN E - A L I E N - S T R U C T U R E m a c r o , 5 -1 4
: O F F S E T k e y w o r d

D E F IN E - A L I E N - S T R U C T U R E m a c r o , 5 -15
: O N C E - O N L Y - P k e y w o r d

I N S T A T E - IN T E R R U P T - F U N C T IO N , 6 -5
Operating system interface, 1-1, 3-1 to 3 -13

command line, 3-1 to 3 -2
device information, 3 -2 to 3 -4
file information, 3 -4 to 3-5
logical names, 3 -1 2 to 3 -13
process information, 3 -5 to 3-9
system messages, 3-11 to 3 -12
terminal characteristics, 3 -9 to 3-11
version number information, 3 -2

P___________________________
P A R S E - N A M E S T R IN G function, 2-4
Passing mechanisms, 4-5, 4-6
PA TH N A M E function, 2-4
Pathnames, 2-1 to 2-8

comparing, 2-5
constructing, 2-4
converting into namestrings, 2-5
creating, 2-3
default values, 2-7
field keyword

: D E V IC E , 2 -3
: D IR E C T O R Y , 2 -3
: H O S T , 2 -3
: NAME, 2 -3
: T Y P E , 2 -3
: V E R S IO N , 2 -3

f ie ld s , 2 -2
f ie ld v a lu e s , 2 -2
r e la t io n sh ip t o l o g i c a l n a m e s , 2-1
s p e c i f y in g a n o d e n a m e , 2—4
u s e o f, 2 -2

: P O IN T E R k e y w o r d
alien structure field type, 5-8

Predicate function, 5-3
naming, 5-5

: P R E D I C A T E keyword
D E F I N E - A L I E N —S T R U C T U R E m a c r o , 5 -5

: P R E V IO U S k e y w o r d , 2 -3
P rin t fu n c t io n , 5 -3

s p e c i f y in g , 5 -6
: P R IN T - F U N C T I O N k e y w o r d

D E F IN E - A L I E N - S T R U C T U R E macro, 5-6
Procedure calling conventions

See VAX procedure calling standard
Processes

getting information about, 3-5 to 3-9
Process id (PID), 3-5
: P R O C E S S keyword
TRANSLATE-LOGICAL-NAME function, 3-12

Process logical name table, 3-12
Program section (PSEC T), 4—11

lndex-4

R
: R E A D -O N L Y k e y w o r dDEFINE-ALIEN-STRUCTURE macro, 5-14
Reference

a r g u m e n t p a s s i n g m e c h a n ism , 4 -5
: R E F E R E N C E k e y w o r d

a r g u m e n t - p a s s in g m e c h a n ism , 4 -6
: R E S U L T k e y w o r d

D E F IN E - E X T E R N A L - R O U T IN E macro, 4-14
M A K E - C A L L - B A C K - R O U T IN E function, 4-18

Return status value, 4-13
Return value

data type conversion, 4-7
RMS system services

See System services
Run-time library (RTL) routines, 4-1

s__________________
: S E L E C T I O N k e y w o r d

a l ie n s t r u c tu r e f ie ld ty p e , 5 -9
S E T - B U T T O N - A C T IO N fu n c t io n , 6 -7
S E T F m a c r o

to create alien structures, 5-3, 5-13
to initialize external routine arguments, 4-6
to initialize pathnames, 2-5
using with accessor functions, 5-14 SET-POINTER-ACTION function, 6-6 SET-TERMINAL-MODES function, 3-10

Shareable image
installing, 4-11
linking, 4-10

Share attribute (SHR), 4-11 : SIGNED-INTEGER keyword
alien structure field type, 5-8 SOFTWARE-VERSION-NUMBER function, 3-2

Static memory, 5-16
Status code, 4-23
Storage allocation

a l ie n s t r u c tu r e s , 5 -16
: S T R IN G k e y w o r d

alien structure field type, 5-8
Suspended systems

and interrupt functions, 6-8
and keyboard functions, 6-8
during external routine execution, 4-26
restriction during callback function, 4-23

Synchronizing program execution, 1-3, 7-2 to 7-4
System access facilities, 1-1 to 1-3

See also
Alien structures
Callback facility
Callout facility
Critical sections
File system interface
Interrupt functions
Interrupt levels
Operating system interface
Synchronizing program execution : SYSTEM keywordTRANSLATE-LOGICAL-NAME function, 3-12

System logical name table, 3-12
System messages, 3-11 to 3-12
System services

asynchronous completion of, 6-3

System services (cont'd.)
calling, 4-1,4-16
defining, 4-15

T___________________________
Terminal characteristics, 3 -9 to 3-11

getting information about, 3 -9
handling nonstandard states, 3-11
setting, 3 -10

* T E R M IN A L - 1 0 * variable
u s e d t o g e t t e rm in a l c h a r a c t e r i s t i c s , 3 -9
u s e d t o s e t t e rm in a l c h a r a c t e r i s t i c s , 3 -10

: T E X T k e y w o r d
alien structure field type, 5-8
VAX data type, 4-7

throw function
u s e d w ith c a l l b a c k rou tin e , 4 -1 7

T R A N S L A T E - L O G IC A L - N A M E fu n c t io n , 2 -5 , 3 -1 2
t o 3 -13

Type
p a t h n a m e f ie ld , 2 -2

: T Y P E - C H E C K k e y w o r d
D E F IN E - E X T E R N A L - R O U T IN E m a c r o , 4 -1 4

: T Y P E k e y w o r d , 2 -3

u________________
: U N S IG N E D - B Y T E keyword

VAX data type, 4-7
: U N S IG N E D - IN T E G E R keyword

alien structure field type, 5-8
: U N S IG N E D - L O N G W O R D keyword

VAX data type, 4-7
: U N S IG N E D -W O R D keyword

VAX data type, 4-7

V_____________________________
: VALUE keyword

argument-passing mechanism, 4-6
: V A R Y IN G - S T R IN G keyword

alien structure field type, 5-8
VAX data type

See Alien structures
VAX procedure calling standard, 4-4
: V A X - T Y P E keyword, 4-7

D E F IN E - E X T E R N A L - R O U T IN E m a c r o , 4 -7
M A K E - C A L L - B A C K - R O U T IN E fu n c t io n , 4 -1 8

V e r s io n
pathname field, 2-2

: VERSION keyword, 2-3
Version number

finding current version, 3-2 VMS-DEBUG function, 4-24
VMS linker, 4-11
VMS symbolic debugger

using with callout routine, 4-24
VMS system services

See System services

Index-5

w
WAIT function, 7-2

example, 7-3
guidelines, 7-3 : WILD keyword, 2-3 : WORD keyword
VAX data type, 4-7

Writable section, 4-11
Write attribute (WRT), 4-11

index-6

HOW TO ORDER ADDITIONAL DOCUMENTATION

F rom Can W rite

Alaska, Hawaii,
or New Hampshire

603-884-6660 Digital Equipment Corporation
P.O. Box CS2008
Nashua NH 03061

Rest of U.S A.
and Puerto Rico1

800-DIGITAL

'Prepaid orders from Puerto Rico, cedi Digital’s local subsidiary (809-754—7575)

Canada 800-267-6219
(for software
documentation)

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order Desk

613-592-5111
(for hardware
documentation)

Internal orders
(for software
documentation)

— Software Supply Business (SSB)
Digital Equipment Corporation
Westminster MA 01473

Internal orders
(for hardware
documentation)

DTN: 234-4323
508-351-4323

Publishing & Circulation Services (P&CS)
NR03-1/W3
Digital Equipment Corporation
Northboro MA 01532

Reader’s Comments VAX LISP/VMS System Access Guide
AA-GH75B-TE

Your comments and suggestions will help us improve the quality of our future documentation. Please note
that this form is for comments on documentation only.
I rate this manual’s: Excellent Good Fair Poor
Accuracy (product works as described) □ □ □ □
Completeness (enough information) □ □ □ □
Clarity (easy to understand) □ □ □ □
Organization (structure of subject matter) □ □ □ □
Figures (useful) □ □ □ □
Examples (useful) □ □ □ □
Index (ability to find topic) □ □ □ □
Page layout (easy to find information) □ □ □ □

What I like best about this manual:

What I like least about this manual:

I found the following errors in this manual:
Page Description

My additional comments or suggestions for improving this manual:

Please indicate the type of user/reader that you most nearly represent:

□ Administrative Support
□ Computer Operator
□ Educator/Trainer
□ Programmer/Analyst
□ Sales

□ Scientist/Engineer
□ Software Support
□ System Manager
□ Other (please specify)

Name/Title ___
Company ____
Mailing Address

Dept. ______
_______ Date

Phone
10/87

— — Do Not Tear — Fold Here and Tape

TM

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE W ILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
PKO3-1/30D
129 PARKER STREET
MAYNARD, MA 01754-2198

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Do Not Tear — Fold Here

Cu
t A

lon
g D

ot
te

d
Li

ne

