
VAX LISP/VMS
User's Guide
Order No. AA-Y921B-TE

May 1986

This document contains Information required by a LISP language programmer to
Interpret, compile, and debug VAX LISP programs.

Revision/Update Information: This manual contains Update Notice 1, AD-Y921 B-Tl.

Operating System and Version: VAX/VMS Version 4.4

Software Version: VAX LISP/VMS Version 2.2

Digital Equipment Corporation Maynard, Massachusetts

I

First Printing, June 1984
Revised, May 1986
Updated, July 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1984, 1986, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

AI VAXstation
DEC
DECnet
DECUS
MicroVAX
MicroVAX II

MicroVMS
PDP
ULTRIX
ULTRIX-11
ULTRIX-32
UNIBUS

VAX
VAXstation
VAXstation II
VMS

~1I~IIDalD

PREFACE

CHAPTER 1

1.1
1.1.1
1.1.1.1
1.1.1.2
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9
1.1.10
1.1.11

1.2
1.2.1
1.2.2
1.3
1.4
1.5

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.10
2.10.1
2.10.2
2.10.3

CONTENTS

Part I
VAX LISP/VMS SYSTEM CONCEPTS AND FACILITIES

INTRODUCTION TO VAX LISP

OVERVIEW OF VAX LISP
DCL LISP Command

Interpreter
Compiler

Editor
Error Handler
Debugging Facilities
Pretty Printer
Call-Out Facility
Alien Structure Facility
Interrupt Function Facility
VAXstation Graphics Interface
System-Building Utility
VAX LISP/VMS Function, Macro, and Variable
Descriptions

HELP FACILITIES
DCL HELP
LISP HELP

VAX/VMS FILE SPECIFICATIONS
LOGICAL NAMES
ENTERING DCL COMMANDS

USING VAX LISP

INVOKING LISP
EXITING LISP
ENTERING INPUT
DELETING AND EDITING INPUT
ENTERING THE DEBUGGER
USING CONTROL KEY CHARACTERS
CREATING PROGRAMS
LOADING FILES
COMPILING PROGRAMS

Compiling Individual Functions and Macros
Compiling Files
Advantages of Compiling LISP Expressions
Advantage of Not Compiling LISP Expressions

DCL LISP COMMAND QUALIFIERS
Three Ways to Use the DCL LISP Command
/COMPILE
/ERROR_ACTION

Version 2.2, July 1987 iii

1-2
1-3
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-6

1-6
1-7
1-7
1-8
1-8

1-10
1-10

2-1
2-2
2-2
2-2
2-3
2-4
2-5
2-5
2-6
2-7
2-7
2-9
2-9
2-9

2-12
2-13
2-14

I

I

•

•

2.10.4
2.10.5
2.10.6
2.10.7
2.10.8
2.10.9
2.10.10
2.10.11
2.10.12
2.10.13
2.11
2.11.1
2.11.2

CHAPTER 3

3.1
3.1.1
3.1.2
3.1 .3
3.1.3.1
3.1.3.2
3.1.3.3
3.1.4
3.1 .5
3.1.6
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2 .3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.4
3.2.4.1
3.2.4.2
3.2.4.3
3.2.4.4
3.2.4.5
3.2.4.6
3.2.5
3.2.6
3.3
3.3.1
3.3.2
3. 3 .3
3.3.3.1
3.3.3.2

/[NO] INITIALIZE
/INTERACTIVE
/[NO]LIST
/[NO]MACHINE_CODE
/MEMORY
/[NO]OPTIMIZE
/[NO]OUTPUT_FILE
/RESUME
/[NO]VERBOSE
/[NO]WARNINGS

USING SUSPENDED SYSTEMS
Creating a Suspended System
Resuming a Suspended System

USING THE VAX LISP EDITOR

INTRODUCTION TO THE EDITOR
Editing Cycle
Invoking the Editor
Interacting with the Editor

Getting Help
Input Completion and Alternatives
Errors and Other Problems

Moving Work Back to LISP
Returning to the LISP Interpreter
Summary of Commands

EDITING OPERATIONS
Keypad
Inserting and Formatting Text

Inserting Ordinary Text
Typing and Formatting LISP Code
Inserting Nongraphic Characters

Moving the Cursor
Moving with the Keypad and Arrow Keys
Moving in LISP Code
Moving with the Pointer (VAXstation Only)

Modifying Text
Deleting Text
Undeleting Text
Cutting and pasting Text
Changing Case
Substituting Text
Inserting a File or Buffer

Repeating an Operation
Summary of Commands

USING MULTIPLE BUFFERS AND WINDOWS
Introduction to Buffers and Windows
Creating ~ew Buffers from Within the Editor
Working with Buffers

Saving Buffer Contents
Deleting Buffers

Version 2.2, July 1987 iv

2-15
2-16
2-17
2-17
2-18
2-19
2-20
2-21
2-21
2-22
2-23
2-24
2-24

3-2
3-3
3-3
3-6
3-7
3-8
3-9

3-10
3-10
3-11
3-13
3-14
3-14
3-14
3-15
3-16
3-17
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-22
3-23
3-23
3-24
3-30
3-30
3-33
3-33
3-34
3-34

3.3.3.3
3.3.4
3.3.5
3.3.6
3.4
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
3.5.1.4
3.5.2
3.5.3
3.6
3.6.1
3.6.2
3.6.2.1
3.6.2.2
3.6.2.3

3.6.2.4
3.6.2.5

3.6.2.6
3.6.3

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.2

CHAPTER 5

5.1
5.2
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4

Buffer Name Conflicts
Manipulating Windows
Moving Text Between Buffers
Summary of Commands

RECOVERING FROM PROBLEMS
CUSTOMIZING THE EDITOR

Binding Keys to Commands
Binding Within the Editor
Binding from the LISP Interpreter
Selecting a Key or Key Sequence
Key Binding Context and Shadowing

Keyboard Macros
Summary of Commands

USING THE EDITOR ON A VAXSTATION
Screen Appearance and Behavior
Editing with the Pointer

The Pointer Cursor
Selecting and Removing Windows
Moving the Text Insertion Cursor and Marking
Text
Cutting and Pasting
Invoking the DESCRIBE Function And Matching
parentheses
Information About Pointer Effects

Binding Pointer Buttons to Commands

ERROR HANDLING

ERROR HANDLER
VAX LISP ERROR TYPES

Fatal Errors
Continuable Errors
Warnings

CREATING AN ERROR HANDLER
Defining an Error Handler

Function Name
Error-Signaling Function
Arguments

Binding the *UNIVERSAL-ERROR-HANDLER* Variable

DEBUGGING FACILITIES

CONTROL VARIABLES
CONTROL STACK
ACTIVE STACK FRAME
BREAK LOOP

Invoking the Break Loop
Exiting the Break Loop
Using the Break Loop
Break Loop Variables

Version 2.2, July 1987 v

3-34
3-35
3-36
3-36
3-37
3-38
3-38
3-39
3-40
3-43
3-44
3-45
3-46
3-46
3-47
3-47
3-47
3-48

3-48
3-48

3-49
3-49
3-49

4-1
4-1
4-2
4-3
4-4
4-5
4-5
4-6
4-6
4-7
4-7

5-3
5-3
5-4
5-4
5-5
5-5
5-6
5-7

5.5
5.5.1
5.5.2
5.5.3
5.5.3.1
5.5.3.2
5.5.4
5.5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.4.1
5.6.4.2
5.6.5
5.6.5.1
5~6.5.2

5.6.5.3
5.6.6
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.4.1
5.7.4.2
5.7.4.3
5.7.4.4
5.7.4.5
5.7.5
5.7.5.1
5.7.5.2
5.8

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6 . 3 . 3
6.3.4
6.3.5
6.3.6
6.3.7

DEBUGGER
Invoking the Debugger
Exiting the Debugger
Using Debugger Commands

Arguments
Debugger Commands

Using the DEBUG-CALL Function
Sample Debugging Sessions

STEPPER
Invoking the Stepper
Exiting the Stepper
Stepper Output
Using Stepper Commands

Arguments
Stepper Commands

Using Stepper Variables
STEP-FORM
STEP-ENVIRONMENT
Example Use of Stepper Variables

Sample Stepper Sessions
TRACER

Enabling the Tracer
Disabling the Tracer
Tracer Output
Tracer Options

Invoking the Debugger
Adding Information to Tracer Output
Invoking the Stepper
Removing Information from Tracer Output
Defining When a Function or Macro Is Traced

Tracer Variables
TRACE-CALL
TRACE-VALUES

THE EDITOR

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

PRETTY PRINTING WITH DEFAULTS
HOW TO PRETTY-PRINT USING CONTROL VARIABLES

Explicitly Enabling Pretty Printing
Limiting Output by Lines
Controlling Margins
Conserving Space with Miser Mode

EXTENSIONS TO THE FORMAT FUNCTION
Using the WRITE FORMAT Directive
Controlling the Arrangement of Output
Controlling Where New Lines Begin
Controlling Indentation
Producing Prefixes and Suffixes
Using Tabs
Directives for Handling Lists

Version 2.2, July 1987 vi

5-7
5-8
5-9
5-9

5-11
5-13
5-18
5-18
5-20

5-20.1
5-21
5-21
5-24
5-25
5-26
5-28
5-28
5-28
5-29
5-31
5-32
5-33
5-33
5-34
5-35
5-36
5-36
5-36
5-37
5-37
5-37
5-37
5-38
5-40

6-2
6-3
6-3
6-4
6-4
6-5
6-5
6-7
6-8

6-11
6-13
6-14
6-15
6-16

6.4
6.5
6.6
6.7
6.7.1
6.7.2
6.7.3
6.8
6.9

CHAPTER 7

7.1
7.1.1
7.1.1.1
7.1.1.2
7.1.2
7.1.3
7.1.4
7.2
7.2.1
7.2.2
7 • 2 . 3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9

,7.2.10
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.4
7.4.1
7.4.2
7 • 4 • 3
7 • 4 • 4
7.4.5
7.4.6
7.4.6.1
7.4.6.2
7.4.6.3
7.4.6.4
7.5
7.6
7.6.1

DEFINING YOUR OWN FORMAT DIRECTIVES
DEFINING PRINT FUNCTIONS FOR LISTS
DEFINING GENERALIZED PRINT FUNCTIONS
ABBREVIATING PRINTED OUTPUT

Abbreviating Output Length
Abbreviating Output Depth
Abbreviating Output by Lines

USING MISER MODE
HANDLING IMPROPERLY FORMED ARGUMENT LISTS

VAX LISPjVMS IMPLEMENTATION NOTES

DATA REPRESENTATION
Numbers

Integers
Floating-point Numbers

Characters
Arrays
Strings

PATHNAMES
Namestrings
Logical Names and Pathnames
When to Use Pathnames
Fields of a COMMON LISP Pathname
Field Values of a VAX LISP Pathname
Three Ways to Create Pathnames
Comparing Similar Pathnames
Converting Pathnames into Namestrings
Functions That Use Pathnames
Using the *DEFAULT-PATHNAME-DEFAULTS* Variable

GARBAGE COLLECTOR
Frequency of Garbage Collection
Static Space
LISP Processing
Messages
Available Spac,e
Garbage Collection Failure

INPUT AND OUTPUT
Newline Character
Terminal Input
End-of-File Operations
Record Length
File Organization
Functions

FILE-LENGTH Function
FILE-POSITION Function
OPEN Function
WRITE-CHAR Function

INTERRUPT FUNCTIONS AND KEYBOARD FUNCTIONS
COMPILER

Compiler Restrictions

Version 2.2, July 1987 vii

6-18
6-19
6-21
6-23
6-24
6-24
6-25
6-26
6-28

7-2
7-2
7-2
7-3
7-5
7-7
7-7
7-7
7-8
7-8
7-9
7-9

7-10
7-11
7-13
7-14
7-15
7-16
7-17
7-18
7-18
7-18
7-19
7-19
7-19
7-20
7-20
7-21
7-22
7-22
7-23
7-23
7-23
7-24
7-24
7-25
7-25
7-26
7-26

I

7.6.1.1
7.6.1.2
7.6.2
7.7

CHAPTER 8

8.1
8.1.1
8.1.2
8.1.3
8.2
8.3

COMPILE Function
COMPILE-FILE Function

Compiler Optimizations
FUNCTIONS AND MACROS

VAX LISP I/O EXTENSIONS

DEFINING NEW TYPES OF STREAMS
Overview of VAX LISP I/O
Defining Stream Structures
stream Dispatch Functions

GETTING INFORMATION ABOUT STREAMS
NEW I/O FUNCTIONS

IMMEDIATE-OUTPUT-P Function
LINE-POSITION Function
LISTEN2 Function
NREAD-LINE Function
OPEN-STREAM-P Function
RIGHT-MARGIN Function

Part II
VAX LISPjVMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

APROPOS Function
APROPOS-LIST Function
ATTACH Function
BIND-KEYBOARD-FUNCTION Function
BREAK Function
CANCEL-CHARACTER-TAG Tag
CHAR-NAME-TABLE Function
COMPILEDP Function
COMPILE-FILE Function
COMPILE-VERBOSE Variable
COMPILE-WARNINGS Variable
CONTINUE Function
DEBUG Function
DEBUG-CALL Function
DEBUG-PRINT-LENGTH Variable
DEBUG-PRINT-LEVEL Variable
DEFAULT-DIRECTORY Function
DEFINE-FORMAT-DIRECTIVE Macro
DEFINE-GENERALIZED-PRINT-FUNCTION Macro
DEFINE-LIST-PRINT-FUNCTION Macro
DELETE-PACKAGE Function
DESCRIBE Function
DIRECTORY Function
DRIBBLE Function
ED Function
ENLARGE-BINDING-STACK Function
ENLARGE-CONTROL-STACK Function

Version 2.2, July 1987 viii

7-26
7-27
7-27
7-30

8-1
8-2
8-2
8-3
8-5
8-7
8-7
8-7
8-8
8-8
8-9

8-10

1
3
4
6
9

·10
11
13
14
17
18
20
21

. 22
23
24
25
27
30
32
34
35
37
40
41

42.1
42.2

ERROR-ACTION Variable
EXIT Function
Format Directives Provided with VAX LISP
GC Function
GC-VERBOSE Variable
GENERALIZED-PRINT-FUNCTION-ENABLED-P Function
GET-DEVICE-INFORMATION Function
GET-FILE-INFORMATION Function
GET-GC-REAL-TIME Function
GET-GC-RUN-TIME Function
GET-INTERNAL-RUN-TIME Function
GET-KEYBOARD-FUNCTION Function
GET-PROCESS-INFORMATION Function
GET-TERMINAL-MODES Function
GET-VMS-MESSAGE Function
HASH-TABLE-REHASH-SIZE Function
HASH-TABLE-REHASH-THRESHOLD Function
HASH-TABLE-SIZE Function
HASH-TABLE-TEST Function
LOAD Function
LONG-SITE-NAME Function
MACHINE-INSTANCE Function
MACHINE-VERSION Function
MAKE-ARRAY Function
MODULE-DIRECTORY Variable
POST-GC-MESSAGE Variable
PPRINT-DEFINITION Function
PPRINT-PLIST Function
PRE-GC-MESSAGE Variable
PRINT-LINES Variable
PRINT-MISER-WIDTH Variable
PRINT-RIGHT-MARGIN Variable
PRINT-SIGNALED-ERROR Function
PRINT-SLOT-NAMES-AS-KEYWORDS Variable
REQUIRE Function
ROOM Function
ROOM-ALLOCATION Function
SET-TERMINAL-MODES Function
SHORT-SITE-NAME Function
SOFTWARE-VERSION-NUMBER Function
SOURCE-CODE Function
SPAWN Function
STEP Macro
STEP-ENVIRONMENT Variable
STEP-FORM Variable
SUSPEND Function
THROW-TO-COMMAND-LEVEL Function
TIME Macro
TOP-LEVEL-PROMPT Variable
TRACE Macro
TRACE-CALL Variable
TRACE-VALUES Variable

Version 2.2, July 1987 ix

43
44
45
48
49
50
51
55
59
61
63"
64
65
73
76
77
78
79
80
81
83
84
85
86
88
89
90
92
95
96
97
98

100
102
103
105
108

108.1
111
112

112.1
112.2

115
116
117
118
121
122
123
124
135
136

I

I

APPENDIX A

A.l
A.l.l
A.l.2
A.l.3
A.l.4
A.l.5
A.1.6
A.l.7
A.l.8
A.l.9
A.2
A.3
A.4

APPENDIX B

B.l
B.2
B.2.1
B.2.2
B.3

APPENDIX C

INDEX

FIGURES

C.l
C.2

3-1
6-1

TRANSLATE-LOGICAL-NAME Function
UNBIND-KEYBOARD-FUNCTION Function
UNCOMPILE Function
UNDEFINE-LIST-PRINT-FUNCTION Macro
UNIVERSAL-ERROR-HANDLER Function
UNIVERSAL-ERROR-HANDLER Variable
WARN Function
WITH-GENERALIZED-PRINT-FUNCTION Macro

PERFORMANCE HINTS

DATA STRUCTURES
Integers
Floating-Point Numbers
Ratios
Characters
Symbols
Lists and vectors
Strings, General Vectors, and Bit Vectors
Hash Tables
Functions

DECLARATIONS
PROGRAM STRUCTURE
COMPILER REQUIREMENTS

USING THE "EMACS" EDITOR STYLE

INTRODUCTION TO THE EDITOR
ACTIVATING THE "EMACS" STYLE

Activating "EMACS" as a Minor Style
Making "EMACS" the Major Style

"EMACS" STYLE KEY BINDINGS

EDITOR COMMANDS AND KEY BINDINGS

EDITOR COMMAND DESCRIPTIONS
EDITOR KEY BINDINGS

Numeric Keypad
Variables Governing Miser Mode

Version 2.2, July 1987 x

137
139
140
141
142
143
144
145

A-1
A-2
A-2
A-2
A-3
A-3
A-4
A-5
A-6
A-6
A-6

A-10
A-12

B-1
B-3
B-3
B-4
B-4

C-1
C-14

3-15
6-26

TABLES

1-1
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
4-1
5-1
5-2
5-3
5-4
6-1
7-1
7-2
7-3
7-4

8-1
8-2
8-3
1
2
3
4
5
6
7
B-1

B-2
C-l
C-2

File Specification Defaults
Keys Used In Line Editing
Control Characters
DCL LISP Command Qualifiers
DCL LISP Command Qualifier Modes
General-Purpose Commands and Key Bindings
Editing Commands And Key Bindings
Commands For Manipulating Buffers And Windows
Characters Generated by Keys
Commands For Customizing The Editor
Error-Signaling Functions
Debugging Functions and Macros
Debugger Commands
Debugger Command Modifiers
Stepper Commands
Format Directives Provided by VAX LISP
VAX LISP Floating-Point Numbers
Floating-Point Constants
VAX LISP Pathname Fields
Summary of Implementation-Dependent Functions and
Macros
I/O Request Specifiers
Stream Data Types and Predicates
Stream Informational Functions
Format Directives Provided with VAX LISP
GET-DEVICE-INFORMATION Keywords
GET-FILE-INFORMATION Keywords
GET-PROCESS-INFORMATION Keywords
GET-TERMINAL-MODES Keywords
Data Type Headings
TRACE Options
Differences Between "EMACS" Key Bindings and
Default Bindings
"EMACS" Style Key Bindings
Editor Commands And Key Bindings
Editor Key Bindings

Version 2.2, July 1987 xi

1-10
2-3
2-4

2-10
2-13
3-11
3-24
3-36
3-41
3-46

4-7
5-1

5-10
5-12
5-24

6-6
7-4
7-5

7-10

7-30
8-4
8-6
8-6

45
51
55
65
73

106
125

B-2
B-4
C-2

C-14

I

PREFACE

Manual Objectives

The VAX LISP/VMS User's Guide is intended for use in developing and
debugging LISP programs and for use in compiling and executing LISP
programs on VAX/VMS systems. The VAX LISP language elements are
described in COMMON LISP: The Language.*

Intended Audience

This manual is designed for programmers who have a working knowledge
of LISP. Detailed knowledge of VAX/VMS is helpful but not essential;
familiarity with the Introduction to VAX/VMS is recommended. However,
some sections of this manual require more extensive understanding of
the operating system. In such sections, you are directed to the
appropriate manual(s) for additional information.

Structure of This Document

An outline of the organization and chapter content of this manual
follows:

PART I: VAX LISP/VMS SYSTEM CONCEPTS AND FACILITIES

Part I consists of eight chapters, which explain VAX LISP concepts and I
describe the VAX LISP facilities.

• Chapter 1, Introduction to VAX LISP, provides an overview of
VAX LISP, explains how to use the help facilities, describes
VAX/VMS file specifications and the logical name mechanism,
and provides hints on entering DCL commands. Chapter 1 also
describes where in the VAX LISP documentation you can find
information on each of the VAX LISP features.

* Guy L. Steele Jr., COMMON LISP: The Language, Digital Press (1984),
Burlington, Mass~chusetts.

Version 2.2, July 1987 xiii

I

I

PREFACE

• Chapter 2, Using VAX LISP, explains how to invoke and exit
from VAX LISP; use control key sequences; enter and delete
input; create and compile programs; load files; and use
suspended systems. In addition, Chapter 2 describes the DCL
LISP command and its qualifiers.

• Chapter 3, Using the VAX LISP Editor, describes how to use the
Editor provided with VAX LISP to create and edit LISP code.

• Chapter 4, Error Handling,
error-handling facility.

describes the VAX LISP

• Chapter 5, Debugging Facilities, explains how to use the VAX
LISP debugging facilities.

• Chapter 6, The Pretty Printer, explains how to use the VAX
LISP pretty printer.

• Chapter 7, VAX LISP Implementation Notes, describes the
features of LISP that are defined by or are dependent on the
VAX implementation of COMMON LISP.

• Chapter 8, VAX LISP I/O Extensions, describes VAX LISP
extensions to the COMMON LISP I/O system.

PART II: VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

Part II describes functions, macros, and variables specific to VAX
LISP and any COMMON LISP objects that have specific implementation
characteristics in VAX LISP. Each function or macro description
explains the function's or macro's use and shows its format,
applicable arguments, return value, and examples of use. Each
variable description explains the variable's use and provides examples
of its use.

Associated Documents

The following documents are relevant to VAX LISP/VMS programming:

• VAX LISP/VMS Installation Guide

• COMMON LISP: The Language

• VAX LISP/VMS Editor Programming Guide

• VAX LISP/VMS System Access Programming Guide

• VAX LISP/VMS Graphics programming Guide

• VAX LISP/VMS System-Building Guide

Version 2.2, July 1987 xiv

PREFACE

• Introduction to VAX/VMS

• VAX/VMS DeL Dictionary

• VAX/VMS System Services Reference Manual

• VAX/VMS I/O User's Reference Manual: Part I

• VAX/VMS Run-Time Library Routines Reference Manual

• VAX Architecture Handbook

For a complete list of VAX/VMS software documents, see the VAX/VMS
Information Directory and Index.

Conventions Used in This Document

The following conventions are used in this manual:

convention

()

[)

UPPERCASE

lowercase
italics

Meaning

Parentheses used in examples of LISP code indicate the
beginning and end of a LISP form. For example:

(SETQ NAME LISP)

Square brackets enclose elements that are optional.
For example:

[doc-string)

Square brackets do not indicate optional elements when
they are used in the syntax of a directory name in a
VAX/VMS file specification. Here, the square bracket
characters must be included in the syntax.

DeL commands and qualifiers and defined LISP
functions, macros, variables, and constants are printed
in uppercase characters; however, you can enter them in
uppercase, lowercase, or a combination of uppercase and
lowercase characters.

Lowercase italics in function and macro descriptions
and in text indicate arguments that you supply;
however, you can enter them in lowercase, uppercase, or
a combination of lowercase and uppercase characters.

Version 2.2, July 1987 xv

convention

{ }

{ }*

&OPTIONAL

&REST

PREFACE

Heaning

In a DCL command description, a horizontal ellipsis
indicates that the element preceding the ellipsis can
be repeated .. For example:

function-name ...

In LISP examples, a horizontal ellipsis indicates code
not pertinent to the example and not shown.

A vertical ellipsis indicates that all the information
that the system would display in response to the
particular function call is not shown; or, that all the
information a user is to enter is not shown.

In function and macro format specifications, braces
enclose elements that are considered to be one unit of
code. For example:

{keyword value}

In function and macro format specifications, braces
followed by an asterisk enclose elements that are
considered to be one unit of code, which can be
repeated zero or more times. For example:

{keyword value}*

In function and macro for~at specifications, the word
&OPTIONAL indicates that the arguments after it are
defined to be optional. For example:

PPRINT object &OPTIONAL package

Do not specify &OPTIONAL when you invoke a function or
macro whose definition includes &OPTIONAL.

In function and macro format specifications, the word
&REST indicates that an indefinite number of arguments
may appear. For example:

BREAK &OPTIONAL format-string &REST args

Do not specify &REST when you invoke the function or
macro whose definition includes &REST.

Version 2.2, July 1987 xvi

convention

&KEY

<RET>

CTRL/x

Black print

Red print

PREFACE

Meaning

In function and macro format specifications, the word
&KEY indicates that keyword arguments are accepted.
For example:

COMPILE-FILE input-pathname &KEY {keyword value}*

Do not specify &KEY when you invoke the function or
macro whose definition includes &KEY.

A symbol
indicates
example:

with
that

a
you

1- to 3-character abbreviation
press a key on the terminal. For

<RET> or <ESC>

In examples, carriage returns are implied at the end of
each line. However, the <RET> symbol is used in some
examples to emphasize carriage returns.

CTRL/x indicates a control key sequence where you hold
down the CTRL key while you press another key. For
example:

CTRL/C or CTRL/Y

In examples, output lines and prompting characters that
the system displays are in black print. For example:

$ LISP/COMPILE
$_File(s): MYPROG.LSP

In examples, user input is shown in red print.
example:

$ LISP/COMPILE
$_File(s): MYPROG.LSP

For

Version 2.2, July 1987 xvii

PREFACE

SUMMARY OF NEW AND CHANGED INFORMATION

This manual contains the following new and changed information:

• You can now define new stream types. VAX LISP now provides
functions that return information about streams and also new
I/O functions. Chapter 8 describes these facilities.

• The /INSTALL and /REMOVE qualifiers to the
are no longer needed and no longer exist.
this.

DeL LISP command
Chapter 2 reflects

• The VAX LISP debugger, stepper, and tracer have different or
enhanced information displays. Examples in Chapter 5 and in
Part II have been updated to show these new displays.

• The following new functions have been added to VAX LISP and
are described in Part II:

ENLARGE-BINDING-STACK
ENLARGE-CONTROL-STACK
ROOM-ALLOCATION
SOFTWARE-VERSION-NUMBER
SOURCE-CODE

Version 2.2, July 1987 xix

I

LISP is a general
used extensively
and development
processing, game
characterized by:

CHAPTER 1

INTRODUCTION TO VAX LISP

purpose programming language. The language has been
in the field of artificial intelligence for research
of robotics, expert systems, natural-language
playing, and theorem proving. The LISP language is

• Computation with symbolic expressions and numbers

• Simple syntax

• Representation of data by symbolic expressions or multilevel
lists

• Representation of LISP programs as LISP data, which enables
data structures to execute as programs and programs to be
analyzed as data

• A function named EVAL, which is the language's definition and
interpreter

• Automatic storage allocation and garbage collection

VAX LISP is implemented on both the VMS and the ULTRIX-32 operating
systems. VAX LISP as implemented on the VMS operating system is
formally named VAX LISPjVMS. VAX LISP as implemented on the ULTRIX
operating system is formally named VAX LISP/ULTRIX. Both VAX
LISP/ULTRIX and VAX LISPjVMS are the same language but with some
differences. For the differences, see the VAX LISP/VMS Release Notes.
These are on-line in the file SYS$HELP:LISPnnn.RELEASE_NOTES, where
nnn is the VAX LISP version number. For example,
LISP020.RELEASE_NOTES is the file containing the release notes for
Version 2.0.

This manual describes VAX LISPjVMS, but refers to VAX LISP/VMS as VAX
LISP, where practicable.

This chapter provides an"; overview of the VAX LISP language. The
overview is arranged so that it parallels the structure of this manual

Version 2.2, July 1987 1-1

I

INTRODUCTION TO VAX LISP

and the remaining VAX LISP documentation. In addition to the
overview, the chapter explains how to get on-line help at the DCL and
the LISP language levels of operation and describes:

• VAX/VMS file specifications

• Logical names

• Hints for entering DCL commands

1.1 OVERVIEW OF VAX LISP

The VAX LISP language is an extended implementation of the COMMON LISP
language defined in COMMON LISP: The Language. In addition to the
features supported by COMMON LISP, VAX LISP provides the following
extensions:

• DCL (DIGITAL Command Language) LISP command

• Extensible editor

• Error handler

• Debugging facilities

• Extensible pretty print~r

• Facility for calling out to external routines

• Facility for defining non-LISP
structures)

data structures (alien

• Facility for defining interrupt functions (that is, functions
that execute asynchronously)

• Window and graphics support for the VAXstation II workstation

• utility for creating custom LISP systems

These extensions are described in Sections 1.1.1 through 1.1.10.

VAX LISP
manipulate
facilities.

does not
complex

support complex numbers. However, you can
numbers by using the alien structure and call-out

Some of the functions, macros, and facilities defined by COMMON LISP
are modified for the VAX LISP implementation. Chapter 7 provides
implementation-dependent information about the following topics:

• Data representation

Version 2.2, July 1987 1-2

INTRODUCTION TO VAX liSP

• Pathnames

• Garbage collector

• Input and output

• Asynchronous functions

• Compiler

• Functions and macros

The implementation-dependent functions 'and macros mentioned in COMMON
LISP: The Language are defined in Part II.

VAX LISP also supplies a number of functions that are extensions of I
the I/O system defined in COMMON LISP: The Language, as well as a
means of defining new types of streams. These extensions are
described in Chapter 8.

1.1.1 DCl liSP Command

The DCL LISP command 'invokes VAX LISP from the VMS command level.
Depending on the qualifier you use with the LISP command, you can
start the LISP interpreter or the LISP compiler. Chapter 2 describes
the LISP command and the qualifiers you can use with it. Chapter 2
also explains how to.:

• Invoke LISP

• Exit LISP

• Create programs

• Load files

• Compile programs

• Use suspended systems

1.1.1.1 Interpreter - The VAX LISP interpreter reads an expression,
evaluates the expression, and prints the results. You interact with
the interpreter in line-by-line input.

While in the interpreter, you can create LISP programs. You can also
use programs that are stored in files if you load the files into the
interpreter. Chapter 2 explains how to create LISP programs and how
to load files into the VAX LISP interpreter.

Version 2.2, July 1987 1-3

INTRODUCTION TO VAX LISP

1.1.1.2 Compiler - The VAX LISP compiler is a LISP program that
translates LISP code from text to machine code. Because of the
translation, compiled programs run faster than interpreted programs.

You can use the compiler to compile a single function or macro or to
compile a LISP source file. If you are in the LISP interpreter, you
can compile a single function or macro with the COMPILE function (see
Chapter 2).

You can compile a source file either at the VMS command level or the
LISP level of operation. If you are at the VMS command level, you
must specify the LISP DCL command with the /COMPILE qualifier; if you
are in the· LISP interpreter, you must invoke the COMPILE-FILE
function. Chapter 2 explains how to compile LISP programs that are
stored in files.

1.1.2 Editor

VAX LISP includes a screen-oriented editor. You can use it to edit
text files, and functions and macros that are defined in the LISP
system. The Editor provides specialized commands to help you edit
LISP code; they balance parentheses, properly indent text, and
evaluate LISP text. Chapter 3 describes how to use the Editor to
write and edit LISP code.

The Editor is written in LISP, so you can extend and customize it for
your needs. The Editor provides predefined commands and several
functions, macros, and data structures, which you can use to create
Editor commands. After you create an Editor command, you can bind it
to a key on your terminal keyboard. In this way, you can build up
alternative editing systems or complete applications based on the
Editor. See the VAX LISP Editor programming Guide for more
information on programming the Editor.

1.1.3 Error Handler

VAX LISP contains an error handler, which is invoked when errors occur
during the evaluation of a LISP program. Chapter 4 describes the
error handler and explains how you can create your own error handler.

1.1.4 Debugging Facilities

VAX LISP provides several functions and macros that return or
information you can use when you are debugging a program.
also provides four debugging facilities: the break loop,
stepper, and tracer.

Version 2.2, July 1987 1-4

display
VAX LISP

debugger,

INTRODUCTION TO VAX LISP

The functions that return debugging information and the break loop,
stepper, and tracer facilities are defined in COMMON LISP and are
extended in VAX LISP. The break loop lets you interrupt the
evaluation of a program, the stepper lets you use commands to step
through the evaluation of each form in a program, and the tracer lets
you examine the evaluation of a program.

The debugger is a VAX LISP facility. The facility provides commands
that let you examine and modify the information in the LISP system's
control stack frames.

Chapter 5 explains how to use the debugging facilities.

1.1.5 Pretty Printer

VAX LISP provides a pretty printer facility. You can use the facility
to control the format in which LISP objects are printed. The pretty
printer can be helpful in making objects easier to understand by means
of indentation and spacing. You can use the pretty printer with the
existing defaults, control it with control variables, or extend it by
using special directives with the FORMAT function. Chapter 6 explains
how to use the pretty printer in each of these ways.

1.1.6 Call-Out Facility

VAX LISP includes a call-out facility, which lets you call programs
written in other VAXjVMS programming languages and programs that
include run-time library (RTL) routines and VMS and RMS system
services. Chapter 2 of the VAX LISP/VMS System Access programming
Guide describes the call-out process and explains how to use the
call-out facility.

1 .1.7 Alien Structure Facility

VAX LISP supplies an alien structure facility. It lets you define,
create, and access VAX data structures that are used to communicate
between the VAX LISP language and other VAXjVMS languages or system
services. Chapter 3 of the VAX LISP/VMS System Access programming
Guide describes the alien structure facility and explains how to use
it.

Version 2.2, July 1987 1-5

INTRODUCTION TO VAX LISP

1.1.8 Interrupt Function Facility

VAX LISP allows you to define functions that can execute at arbitrary
and unpredictable points in your program, usually as the result of an
event in the operating system. Such functions are called interrupt
functions, because they interrupt the normal flow of program
execution. Chapter 4 of the VAX LISP/VMS System Access Programming
Guide describes how to define and use interrupt functions.

1.1.9 VAXstation Graphics Interface

VAX LISP/VMS provides access to the graphics capabilities of the
VAXstation II family of workstations. You can create windows on the
screen, draw lines and write text in the windows, track the
workstation's pointing device and react to pointer buttons, and create
LISP streams to windows. The VAX LISP/VMS Graphics programming Guide
describes this interface.

1.1.10 System-Building Utility

The VAX LISP System-Building utility lets you create custom VAX LISP
systems. A custom VAX LISP system has the following potential
advantages:

• It can exclude various components of VAX LISP, thereby
reducing the size of LISP.

• It can include code that you write.

• It can start execution by calling a function that you specify.

• It can be used as a delivery vehicle for a VAX LISP-based
application.

The VAX LISP/VMS System-Building Guide describes the System-Building
utility.

I 1.1.11 VAX LISP/VMS Function, Macro, and Variable Descriptions

VAX LISP/VMS contains many functions, macros, and variables that are
either not mentioned or are mentioned but not fully defined in the
COMMON LISP language. These functions, macros, and variables are
divided into the following categories:

• Implementation-dependent
defined in COMMON LISP:

Version 2.2, July 1987

objects mentioned
The Language

1-6

but not fully

INTRODUCTION TO VAX liSP

• VAX LISP objects that implement the parts of VAX LISP that are
described in this manual

• VAX LISP extensions to the COMMON LISP I/O system

• Editor-specific objects

• System access-specific objects (pertaining to
alien structure, interrupt function,
synchronization facilities)

• Graphics-specific objects

the call-out,
and program

I

• Objects that implement the VAX LISP System-Building utility I

These LISP objects let you use the VAX LISP facilities and some VMS
facilities without exiting or calling out from the LISP system.

The LISP objects in the first two categories listed above are
described in Part II. VAX LISP extensions to COMMON LISP I/O are
described in Chapter 8. Editor-specific objects are described in Part
III of the VAX LISP/VMS Editor Programming Guide. System
access-specific objects are. described in Part II of the VAX LISP/VMS
System Access programming Guide. Graphics-specific objects are
described in Part II of the VAX LISP/VMS Graphics programming Guide.
The VAX LISP System-Building utility is described in the VAX LISP/VMS
System-Building Guide.

1.2 HELP FACiliTIES

When using VAX LISP, you can get help at both the DCL and the LISP
levels of operation.

1.2.1 Del HELP

The VAX/VMS help facility lets you obtain on-line information about a
DCL command, its parameters, and its qualifiers. Invoke the help
facility by entering the HELP command. When the HELP command is
executed, the facility displays the information available.

To obtain information about VAX LISP, enter the following command:

$ HELP LISP

Version 2.2, July 1987 1-7

I

I

INTRODUCTION TO VAX LISP

1.2.2 LISP HELP

VAX LISP provides two functions you can use to obtain help during a
LISP session: DESCRIBE and APROPOS. The DESCRIBE function displays
information about a specified LISP object. The type of information
the function displays depends on the object you specify as its
argument. You can use the APROPOS function to search through a
package for symbols whose print names contain a specified string. See
COMMON LISP: The Language for information about packages.
Descriptions of the DESCRIBE and APROPOS functions are provided in
Part II.

1.3 VAX/VMS FILE SPECIFICATIONS

A VAX/VMS file specification indicates the input file to be processed
or the output file to be produced. File specifications have the
following format:

node::device:[directory]filename.filetypeiversion

A file specification has the following components:

node

The name of a network node. The name can be either an integer or
a string and can include an access control string. The following
node name includes an access control string:

MIAMI"SMITH MYPASSWORD"::

This component applies only to systems that support DECnet-VAX.

device

The name of the device on which the file is stored or is to be
written.

directory

The name of the directory under which the file is cataloged. The
name must be a string. You can delimit the directory name with
either square brackets ([]) or angle brackets « ».

You can specify a sequence of directory names where each name
represents a directory level. For example:

[SMITH.EXAMPLES]

In the preceding directory specification, EXAMPLES represents a
subdirectory.

Version 2.2, July 1987 1-8

INTRODUCTION TO VAX LISP

filename

The name of the file.

filetype

An abbreviation that usually describes the type of data in the
file.

version

An integer that specifies which version of the file is desired.
The version number is incremented by one each time you create a
new version of the file. You can use either a semicolon (i) or a
period (.) to separate the file type and version.

The punctuation marks (colons, brackets, period, and semicolon) in the
file specification format are required. The marks separate the
components of the file specification.

You do not have to supply all the components of a file specification
each time you compile a file, load an initialization file, or resume a
suspended system. The only component you must specify is the file
namei the operating system supplies default values for the components
that you do not specify. Table 1-1 summarizes the default values.
The special variable *DEFAULT-PATHNAME-DEFAULTS* contains the default
values for the node, device, and directory elements.

The way the system fills in default values depends on the operation
being performed. For example, if you specify only a file name, the
compiler processes the source program if it finds a file with the
specified file name that is stored on the default device, is cataloged
under the default directory name, and has an LSP file type. If more
than one file meets these conditions, the compiler processes the file
with the highest version number. Suppose you pass the following file
specification to the compiler:

$ LISP/COMPILE DBA1:[SMITH]CIRCLE.LSP

The compiler searches directory SMITH on device DBA1, seeking the
highest version of CIRCLE.LSP. If you do not specify an output file,
the compiler generates the file CIRCLE.FAS, stores it in directory
SMITH on device DBA1, and assigns it a version number that is one
higher than any version of CIRCLE.FAS cataloged in directory SMITH on
device DBA1.

Version 2.2, July 1987 1-9

INTRODUCTION TO VAX liSP

Table 1-1: File Specification Defaults

Optional Element

node

device

directory

filename

file type

version

1.4 lOGICAL NAMES

Default Value

Local network node

User's current default device

User's current default directory

Input -- None
Output -- Same as input file; if no input file

is specified, there is no default

Depends
FAS
LIS
*LSC
LSP

SUS

on usage:
Fast-loading file (output from compiler)
Error listing (output from compiler)
Editor checkpointing file
Source file (input to LISP reader or
compiler)
Suspended system

Input -- Highest existing version number
Output -- If no exis~ing version, 1

If existing version, highest version
number plus 1

The VAXjVMS operating system provides a logical name mechanism that
allows programs to be device and file independent. Programs do not
have to specify the device on which a file resides or the name of the
file that contains data if you use logical names. Logical names
provide great flexibility, because you can associate them not only
with a device or a complete file specification but also with a
directory or another logical name.

For more information on logical names, see the Guide to Using DeL and
Command Procedures on VAX/VMS.

1.5 ENTERING DCl COMMANDS

This section lists hints for entering DCL commands.

• You can abbreviate command and qualifier names to four
characters. You can use fewer than four characters if the
abbreviation is unambiguous.

Version 2.2, July 1987 1-10

INTRODUCTION TO VAX LISP

• You must precede each qualifier name with a slash (/).

• If you omit a
specification),
the parameter.

required
the DCL

parameter (for example, a file
command interpreter prompts you for

• You can enter a command on more than one line if you end each
continued line with a hyphen (-).

• You must press the RETURN key after you enter a command;
pressing the RETURN key passes the command to the system for
processing.

• You can delete the current command line by typing CTRL/U.

• You can interrupt command execution by typing CTRL/Y. If you
do not enter a command that executes another image, you can
resume the interrupted command by entering the DCL CONTINUE
command. To stop processing completely after typing CTRL/Y,
enter the DCL STOP command.

Version 2.2, July 1987 1-11

CHAPTER 2

USING VAX LISP

This chapter describes the DCL LISP command and its qualifiers and
explains the following:

• Invoking LISP

• Exiting LISP

• Using command levels

• Controlling input

• Creating programs

• Loading files

• Compiling programs

• Using suspended systems

2.1 INVOKING LISP

You invoke an interactive VAX LISP session by typing the DCL command
LISP. When it is executed, a message identifying the VAX LISP system
appears, and then the LISP prompt (Lisp>) is displayed. For example:

$ LISP

Welcome to VAX LISP, Version 1.0

Lisp>

2.2 EXITING LISP

You can exit from LISP by using the LISP EXIT function. For example:

Lisp> (EXIT)
$

When you exit the LISP system, you are returned to the DCL level of
operation. If you have used the Editor, modified buffers are not
saved on exiting LISP. See the VAX LISP Editor Manual for information
on how to save modified buffers before exiting-LISP.

2-1

USING VAX LISP

2.3 USING COMMAND LEVELS

VAX LISP provides various facilities with which you can interact. The
most apparent facility is the top-level read-eval-print loop, which
provides the basic means by which you write programs and execute them.
The break-loop facility enables you to temporarily suspend the
top-level loop and establish another read-eval-print loop. The
debugger and stepper facilities provide support for testing and
debugging programs. Chapter 4 describes these facilities.

When the break loop, the debugger, or the stepper is invoked by means
of a function call, an error, or some other event, the facility
establishes a "command level." A command level represents a point of
interaction with the user, and each such level is assigned a number.
The highest-numbered level represents the current level of
interaction, while lower-numbered levels represent interactions that
have been temporarily suspended. When a facility prompts you for
input, the prompt includes the facility's name and the command level
number. The exception to this rule is the top-level read-eval-print
loop, which is always at level zero and therefore does not include the
number in its prompt.

Nothing prevents the same facility from being invoked more than once,
so that there can be multiple command levels representing the same
facility. For example:

Lisp> (BREAK)
Break 1> (+ *CQUNTER* 1)

Fatal error in function SYSTEM::%EVAL (signaled with ERROR).
Symbol has no value: *COUNTER*

Control Stack Debugger
Frame #7: (EVAL (+ *CQUNTER* 1»
Debug 2> (BREAK)
Break 3> (DESCRIBE *CQUNTER*)

Fatal error in function SYSTEM::%EVAL (signaled with ERROR).
Symbol has no value: *CQUNTER*

Control Stack Debugger
Frame #19: (EVAL (DESCRIBE *CQUNTER*»
Debug 4> •••

In this example, the user invokes a break loop and makes an attempt to
use the special variable *COUNTER*, which has no value, causing the
debugger to be invoked. Then the user invokes another break loop and
accidentally makes the same mistake again, causing another debugger
level to be invoked. This example is not particularly realistic, but
is only meant as an illustration of command levels and their
numbering.

The THROW-TO-CQMMAND-LEVEL function can be used to cancel one or more
command levels and return control to a previous one. Typing CTRL/C
always cancels all command levels and returns control to the top-level
loop. The THROW-TO-COMMAND-LEVEL function is described in Part II.

2-2

USING VAX LISP

2.4 CONTROLLING INPUT

You enter input into the VAX LISP system a line at a time. Once you
move to a new line, you cannot go back to the previous line. However,
you can recover an input expression or an output value by using the
following l~ unique variables: I, II, III, *, **, ***, +, ++, +++, -.
The variables are described in COMMON LISP: The Language. The
following example illustrates the use of the plUS-sign (+) variable
that is bound to the expression most recently evaluated:

Lisp> (CDR I (A B C))
(B C)

Lisp> +
(CDR (QUOTE (A B C)))
Lisp>

You can use the DELETE key and several control characters on your
terminal keyboard to control input. The DELETE key enables you to
delete characters that are to the left of the cursor on the" current
line of input. Table 2-1 lists the control characters you can use and
their functions. The first control character in the list, CTRL/C, is
the only one whose listed function is specific to LISP. The other
control characters perform standard VMS functions.

Control
Character

CTRL/C

CTRL/o

CTRL/Q

CTRL/R

CTRL/s

CTRL/T

CTRL/u

CTRL/x

CTRL/Y

Table 2-1
Control Characters

Function

Returns you to the top-level loop from any other
command level. In LISP, CTRL/C is bound to the
form (THROW-TO-COMMAND-LEVEL :TOP). pressing
CTRL/c is also a quick way to recover from an
error without using the VAX LISP debugger. If you
want to recover from an error by discarding the
expression you typed in and starting over, type
CTRL/c.

Discards output being sent to the terminal until
you type another CTRL/o.

Resumes terminal output that had been halted with
CTRL/S.

Redisplays what is on a line.

Stops output to the terminal until a CTRL/Q is
typed.

Displays process information. This is useful
during a computation to watch the resources used.

Deletes the current input line. The prompt is not
echoed in LISP.

Deletes all input that has not yet been read from
the type-ahead buffer.

Returns you to DCL level of control and purges the
type-ahead buffer.

2-3

USING VAX LISP

NOTE

The preceding control characters do not
work in the VAX LISP Editor. For
additional information on control
characters, see the VAX/VMS I/O User's
Guide (Volume .!l..

2.5 CREATING PROGRAMS

The most common way of creating a LISP program is to compose it with a
text editor. In this way, the program exists in a source file that
can be loaded into the LISP environment by means of the LISP LOAD
function.

Although you can compose source programs with any text editor, the VAX
LISP Editor provides facilities that help you enter and edit LISP
source code. For example, the Editor helps you balance parentheses
and maintain proper indentation. Furthermore, this editor, being
integrated into the LISP environment, can be extended with various
features that fit your own style of editing. See the VAX LISP Editor
Manual for a complete description of the Editor.

Another way to create LISP programs is to define them using the
interpreter in an interactive LISP session. If you define functions
with the DEFUN macro or macros with the DEFMACRO macro, the
definitions become a part of the interpreted LISP environment. You
can then invoke your defined functions and macros. However, since
these definitions are not in a ~ermanent text file, your work is
stored only temporarily and disappears when you exit VAX LISP.
Entering programs by means of the interpreter is really only useful
for experimenting with small functions and macros. .

The following LISP definition of the FACTORIAL function is an example
of a LISP program. It can be written in the following format in a
file or in an interactive LISP session:

(DEFUN FACTORIAL (N)
(IF «= N 1) 1 (* N (FACTORIAL (- N 1»»)

DEFUN indicates that this is a function definition. FACTORIAL is the
name of the function. (N) is the argument list; that is, FACTORIAL
has one argument, N. When FACTORIAL is called, the code following the
argument list is evaluated and the last result computed is returned as
the value of the function.

2.6 LOADING FILES

Before you can use a file in interactive LISP, you must load the file
into the LISP system. You can load a file into the LISP system in
several ways:

• Load the file by specifying the DCL
qualifier.

2-4

LISP /INITIALIZE

Table 2-2 (cont.)

control Character

CTRL/S

CTRL/T

CTRL/U

CTRL/X

CTRL/Y

USING VAX LISP

Function

stops output to the terminal until a CTRL/Q is
typed.

Displays process information. This is useful
during a computation to watch the resources used.

Deletes the current input line. The prompt is not
echoed in LISP.

Deletes all input that has not yet been read from
the type-ahead buffer.

Returns you to the DCL level of control and purges
the type-ahead buffer.

2.7 CREATING PROGRAMS

The most common way to create a LISP program is by using a text
editor. In this way, the program exists in a source file that can be
loaded into the LISP environment by the LISP LOAD function.

Although you can compose source programs with any text editor, the VAX
LISP Editor provides facilities that help you enter and edit LISP
source code. For example, the Editor helps you balance parentheses
and maintain proper indentation. Furthermore, this editor, being
integrated into the LISP environment, can be extended with features
that fit your own style of editing. See Chapter 3 for a description
of how to use the Editor.

Another way to create LISP· programs is to define them using the
interpreter in an interactive LISP session. If you define functions
with the DEFUN macro or macros with the DEFMACRO macro, the
definitions become a part of the interpreted LISP environment. You
can then invoke your defined functions and macros. However, since
these definitions are not in a permanent text file, your work is
stored only temporarily and disappears when you exit VAX LISP.
Entering programs by typing to the interpreter is really useful only
for experimenting with small functions and macros.

2.8 LOADING FILES

Before you can use a file in interactive LISP, you must load the file
into the LISP system. The file can be compiled or interpreted;

Version 2.2, July 1987 2-5

USING VAX LISP

compiled files load more quickly. You can load a file into the LISP
system in three ways:

• Load the file by specifying the DCL LISP INITIALIZE qualifier.
For example:

$ LISP/INITIALIZE=MYINIT. LSP

Welcome to VAX LISP, Version V2.0

Lisp>

The LISP prompt indicates the file has been successfully
loaded. If the file is not successfully loaded, an error
message indicating the reason appears on your terminal screen.
Include the /VERBOSE qualifier to cause the names of functions
loaded in an initialization file to be listed at the terminal.
For more information on the /VERBOSE qualifier, see Section
2.10.12.

• Load the file by using the LISP LOAD function when in an
interactive LISP session. For example:

Lisp> (LOAD "TESTPROG. LSP")
; Loading contents of file DBA1:[JONES]TESTPROG.LSP;1

FACTORIAL
; FACTORS-OF

Finished loading DBA1:[JONES]TESTPROG.LSP;1
T
Lisp>

The file name ("TESTPROG.LSP" in the example) can be a string,
symbol, stream, or pathname. FACTORIAL and FACTORS-OF are the
functions contained in the file TESTPROG.LSP. The final T
indicates that the file has been successfully loaded. For
more information on the LOAD function, see Part II.

• Evaluate the contents of a buffer in the Editor when that
buffer contains a file. See Chapter 3 for more information on
this topic.

With the /INITIALIZE qualifier, you can load more than one file at a
time. With the LOAD function, however, you can specify only one file
at a time.

2.9 COMPILING PROGRAMS

You compile LISP programs by compiling the LISP expressions that make
up the programs. You can compile LISP expressions in two ways:
individually, by using the LISP COMPILE function; or in a file, by

Version 2.2, July 1987 2-6

USING VAX LISP

2.7.3 The Advantages of Compiling LISP Expressions

You can use both compiled and uncompiled (interpreted) files and
functions during a LISP session. Both compiled and uncompiled LISP
expressions have their advantages. The advantages of compiling a
file, a macro, or a function follow:

• Compiling a function or a macro is a good initial debugging
tool, Slnce ~he compilation does static error checking, such
as checking the number of arguments to a function or a macro.
For example, consider the following function definition:

(DEFUN TEST (X)
(IF (> X 0)

(+ 1 X)
(TEST (TRY X) X»)

In the definition of the function TEST, the alternate
consequent (the false part) of the IF condition has two
arguments, while the function definition of TEST calls for
only one argument. Despite this error, this function might
work correctly as an interpreted (uncompiled) function if the
argument given is a positive number, since it uses only the
first consequent (the true part); so you may not detect the
error. But if you compiled the function, the compiler would
detect the error in the second consequent and issue ~ warning.

• A compiled file not only loads much faster, but the compiled
code executes significantly faster than the corresponding
interpreted code.

2.7.4 The Advantage of Not Compiling LISP Expressions

You can debug run-time errors in an interpreted function more easily
than you can debug them in a compiled file or function. For example,
if the debugger is invoked because an error occurred in an uncompiled
function, you can use the debugger to find out what code caused the
error. If the debugger is invoked because an error occurred in a
compiled function, the code surrounding the form that caused an error
to be signaled may not be accessible. The stepper facility is also
more informative with interpreted than with compiled functions. See
Sections 4.4 and 4.5, respectively, for information on the debugger
and the stepper.

2.8 DCL LISP COMMAND QUALIFIERS

The LISP command can be specified with several qualifiers according to
the standard VMS conventions. The format of the LISP command with
qualifiers follows:

LISP[/qualifier •••]

Some qualifiers have a corresponding negative form, !NOqualifier,
which negates the specified action. Other qualifiers accept values.
To specify a qualifier value, type the qualifier name followed by an
equal sign (=) and the value. For example:

/INITIALIZE=MYPROG.LSP

2-7

USING VAX LISP

Qualifier values are surrounded by braces ({ }) when you can choose
only one value from a list. For example:

/ERROR_ACTION={EXIT or DEBUG}

To specify
parentheses.

a list of qualifier
For example:

values, enclose the values in

/INITIALIZE=(MYPROG1.LSP,MYPROG2.LSP)

Table 2-2 summarizes the qualifiers you can use with the LISP command.
Sections 2.8.2 through 2.8.15 describe each qualifier in detail.

Table 2-2
DCL LISP Command Qualifiers

Qualifier

/COMPILE

/ERROR_ACTION={EXIT or DEBUG}

/INITIALIZE=(file-spec, •••)

/INTERACTIVE

/INSTALL=suspended-system-spec

/[NO]LIST=[file-spec]

/[NO] MACHINE_CODE

Function

Invokes the VAX LISP compiler to
compile one or more source files.

EXIT causes your program to exit
LISP when an error occurs. EXIT is
the default in batch mode jobs and
in compile mode. DEBUG invokes the
VAX LISP debugger when an error
occurs. DEBUG is the default in
interactive mode.

Causes the LISP system to load an
initialization file(s) • The
defaulb file type for an
initialization file is LSP or FAS.

Starts an interactive LISP session.
This is the default.

Causes the read-only code in the
LISP suspended system to be
shareable. The default file type
for a suspended system file is SUS.

Specifies that a listing file be
made. A listing consists of the
file name, date of compilation,
names of the LISP expressions
compiled, and warning and error
messages. The default file type
for a listing file is LIS. /NOLIST
suppresses a listing file and is
the default except in batch mode.
/LIST is the default for batch mode
operations.

Includes VAX LISP machine code in
the listing file. /NOMACHINE CODE
suppresses a listing of the machine
code and is th~ default. If
/MACHINE CODE and /NOLIST are both
specified, /NOLIST is ignored.

(Continued on next page)

2-8

USING VAX LISP

2.9.3 Advantages of Compiling LISP Expressions

You can use both compiled and uncompiled (interpreted) files and
functions during a LISP session. Both compiled and uncompiled LISP
expressions have their advantages. The advantages of compiling a
file, a macro, or a function follow:

• Compiling a function or a macro is a good initial debugging
tool, since the compilation does static error checking, such
as checking the number of arguments to a function or a macro.
For example, consider the following function definition:

(DEFUN TEST (X)
(IF (> X 0)

(+ 1 X)
(TEST (TRY X) X»)

In the definition of the function TEST, the alternate
consequent (the false part) of the IF condition invokes TEST
with two arguments, (TRY X) and X, while the function
definition of TEST calls for only one argument. Despite this
error, TEST might work correctly as an interpreted
(uncompiled) function if the argument given is a positive
number, since it uses only the first consequent (the true
part); so you may not detect the error. But if you compiled
the function, the compiler would detect the error in the
second consequent and issue a warning.

• A compiled file not only loads much faster, but the compiled
code executes significantly faster than the corresponding
interpreted code.

2.9.4 Advantage of Not Compiling LISP Expressions

You can debug run-time errors in an interpreted function more easily
than you can debug them in a compiled file or function. For example,
if the debugger is invoked because an error occurred in an uncompiled
function, you can use the debugger to find out what code caused the
error. If the debugger is invoked because an error occurred in a
compiled function, the code surrounding the form that caused an error
to be signaled may not be accessible. The stepper facility is also
more informative with interpreted than with compiled functions. See
Chapter 5 for information on the debugger and the stepper.

2.10 DCl liSP COMMAND QUALIFIERS

The LISP command can be specified with several qualifiers according to
the standard VMS conventions. The format of the LISP command- with

Version 2.2, July 1987 2-9

USING VAX liSP

qualifiers follows:

LISP[/qualifier ...]

Some qualifiers have a corresponding negative form, /NOqualifier,
which negates the specified action. Other qualifiers accept values.
To specify a qualifier value, type the qualifier name followed by an
equal sign (=) and the value. For example:

/INITIALIZE=MYPROG.LSP

Qualifier values are surrounded by braces ({ }) when you can choose
only one value from a list. For example:

/ERROR_ACTION={EXIT or DEBUG}

To specify
parentheses.

a list of qualifier
For example:

values, enclose the values in

/INITIALIZE=(MYPROG1.LSP,MYPROG2.LSP)

You can define DCL symbols to represent LISP command lines that you
use frequently. For example:

$BIGLISP :== LISP/INITIALIZE=SYS$LOGIN:LISPINIT/MEMORY=10000

Following this command, the DCL symbol BIGLISP, when typed at the DeL
prompt, results in execution of the LISP command line shown.

Table 2-3 summarizes the qualifiers you can use with the LISP command.
I Sections 2.10.2 through 2.10.13 describe each qualifier in detail.

Table 2-3: DCl liSP Command Qualifiers

Qualifier Function

/COMPILE Invokes the VAX LISP compiler to
compile one or more source files
(input arguments that default to
the file type LSP).

/ERROR_ACTION={EXIT or DEBUG}

Version 2.2, July 1987

EXIT causes your program to exit
LISP when an error occurs. EXIT is
the default in batch mode jobs and
in compile mode (with the /COMPILE
qualifier). DEBUG invokes the VAX
LISP debugger when an error occurs.
DEBUG is. the default in an
interactive LISP session.

2-10

USING VAX LISP

Table 2-3 (cont.)

Qualifier

/[NO]INITIALIZE=(file-spec, ...)

/INTERACTIVE

/[NO]LIST=[file-spec]

/[NO] MACHINE_CODE

/MEMORY=number

/[NO]OPTIMIZE=(SPEED:n,SPACE:n,
SAFET~:n,COMPILATION_SPEED:n)

Version 2.2, July 1987

Function

Causes the LISP system to load an
initialization file(s). The
default file type for an
initialization file is LSP or FAS.
NOINITIALIZE suppresses the loading
of initialization files.

Starts an interactive LISP session.
/INTERACTIVE is the default
qualifier for the LISP command.

Specifies that a listing file be
created during compilation. A
listing consists of the file name,
date of compilation, names of the
LISP expressions compiled (if the
/VERBOSE qualifier is specified),
and warning and error messages.
The default file type for a listing
file is LIS. /NOLIST suppresses a
listing file and is the default
except in batch mode. In such
jobs, /LIST is the default.

Includes VAX LISP machine code in
the listing file. /NOMACHINE_CODE
suppresses a listing of the machine
code and is the default.

Specifies the
virtual memory
512-byte pages.

amount
LISP

of dynamic
allocates in

Tells the compiler that each
quality has the corresponding
value. SPEED is the speed at which
the object code runs, SPACE is the
space occupied or used by the code,
SAFETY is the run-time error
checking of the code, and
COMPILATION_SPEED is the speed of
the compilation process. n is, an
integer in the range 0 to 3. The
value 0 is the lowest priority
value; the value 3 is the highest.
The default value for n is 1. See
Chapter 7 for a description of
optimization declarations.

2-11

•

Table 2-3 (cont.)

Qualifier

/[NO]OUTPUT_FILE=[file-spec]

•
/RESUME=file

/[NO]VERBOSE

/[NO]WARNINGS

USING VAX LISP

Function

Causes the name of the compiled
file to be the specified name. The
default output file type is FAS.
/NOOUTPUT prevents compiled code
from being written to a file.
/OUTPUT_FILE is the default .

Resumes a suspended LISP system.
The default file type for a
suspended LISP system is SUS. See
Section 2.11 on Using Suspended
Systems.

Lists on the output device and the
listing file, if any, the names of
functions and macros defined in a
file. /NOVERBOSE suppresses a
listing of function and macro names
defined in a file. /NOVERBOSE is
the default.

Specifies that the compiler is to
produce warning messages.
/NOWARNINGS suppresses warning
messages. /WARNINGS is the
default.

I 2.10.1 Three Ways to Use the Del LISP Command

I

•

Depending on the qualifier modifying it, you can use the DCL LISP
command in one of the following three ways called modes:

• INTERACTIVE -- to invoke an interactive LISP session (the
default)

• COMPILE to compile LISP files

• RESUME to resume a suspended LISP system

Table 2-4 lists the LISP command qualifiers that apply to each mode.
Without a qualifier, the DCL LISP command puts you in an interactive
session (the default).

Version 2.2, July 1987 2-12

USING VAX liSP

Table 2-4: DCl liSP Command Qualifier Modes

Qualifier Mode

/COMPILE COMPILE

/ERROR_ACTION INTERACTIVE or COMPILE or RESUME

/[NO]INITIALIZE INTERACTIVE or COMPILE

/INTERACTIVE INTERACTIVE

/[NO]LIST COMPILE

/[NO]MACHINE_CODE COMPILE

/MEMORY INTERACTIVE or COMPILE or RESUME

/[NO]OPTIMIZE COMPILE

/[NO]OUTPUT_FILE COMPILE

/RESUME RESUME

/[NO]VERBOSE INTERACTIVE or COMPILE

/[NO]WARNINGS COMPILE

2.10.2 ICOMPILE

The /COMPILE qualifier invokes the VAX LISP compiler to compile one or
more source files. The compiler creates a fast-loading (FAS) file
from each source file. Unlike other compilers, such as those for
BASIC and COBOL, the LISP compiler does not generate VMS object
modules. Consequently, the LISP compiler does not have an object file
type. FAS is the default file type for a LISP compiled file. If the
/COMPILE qualifier is used with the /NOOUTPUT_FILE qualifier, the
compiler compiles the source file but does not put the compilation in
a file. That method is helpful if your purpose in compiling the file

•

•

is to check for errors. See Section 2.10.10 for more information on I
the /[NO]OUTPUT_FILE qualifier.

By default, the compiler gives your newly compiled file the same name
as your source file with a FAS file type, puts the new file in your
source file's directory, and returns you to DCL command level when the
compiler is finished. If you want functions to be listed on your
output device as they are compiled, you must specify the /VERBOSE
qualifier (see Section 2.10.12). If you want to compile files with I
the aid of initialization files, use the /INITIALIZE qualifier (see

Version 2.2, July 1987 2-13

USING VAX LISP

Section 2.10.4).
2.8.

For information on how to load files, see Section

If you do not specify a file name with the /COMPILE qualifier, DCL
prompts you for a file name. If you use the qualifiers /[NO]LIST,
/[NO]MACHINE_CODE, /OPTIMIZE, /[NO] OUTPUT , /[NO]VERBOSE, and
/[NO]WARNINGS with the /COMPILE qualifier and you specify them before
the files to be compiled, the qualifiers apply to all the files to be
compiled. If you use the preceding qualifiers with the /COMPILE
qualifier, but you specify them after a file name, the qualifiers
apply only to the immediately preceding file. If you specify
qualifiers for all the files and a conflicting qualifier for a
particular file, the LISP $ystem uses the qualifier specified for the
particular file.

Format

LISP/COMPILE file-spee[, ...]

Example

Mode

$ LISP/COMPILE FACTORIAL.LSP
$

Compile

2.10.3 tERROR ACTION

The /ERROR_ACTION qualifier has two values: EXIT and DEBUG.

• EXIT causes the evaluation of your program to stop and exits
LISP if a fatal or a continuable error occurs (for a complete
description of errors and warnings, see Chapter 4). EXIT is
the default in batch mode and in compile mode, that is, with
the /COMPILE qualifier.

• DEBUG calls the VAX LISP debugger if an error occurs. Once
you are in the VAX LISP debugger, you can look at your error,
inspect the control stack, and continue your program from the
point at which it stopped. DEBUG is the default in an
interactive session. See Chapter 5 for more information on
the debugger.

You can use the /ERROR_ACTION qualifier when invoking an interactive
LISP session or when compiling files with the /COMPILE qualifier. The
/ERROR_ACTION qualifier is mainly useful for batch jobs. It is
equivalent to the VAX LISP *ERROR-ACTION* variable (see Part II).

Version 2.2, July 1987 2-14

USING VAX LISP

Format

LISP/ERROR_ACTION=value

Example

$ LISP/COMPILE/ERROR_ACTION=DEBUG MYPROG.LSP

Mode

Interactive, Compile, or Resume

2.10.4 /[NO]INITIALIZE

The /INITIALIZE qualifier causes the LISP system to load one or more
initialization files containing LISP source code or compiled code. An
initialization file's purpose is to predefine functions you might want
to use in a LISP session. The default is to have no initialization
file.

If the initialization files contain calls to exiting functions or if
these files contain errors and the /ERROR_ACTION qualifier is set to
EXIT (/ERROR_ACTION=EXIT), the LISP system returns to the DCL level
without prompting for interactive input. If the initialization files
contain errors and the /ERROR_ACTION qualifier is set to DEBUG
(/ERROR_ACTION=DEBUG), the LISP system puts you into the debugger.
See Section 2.10.3 for more information on the /ERROR_ACTION
qualifier.

The /INITIALIZE qualifier uses the LISP LOAD function to default the
proper type, directory, and other parts of a file specification. For
example, you do not have to specify the file type if your
initialization file has a FAS or a LSP file type. If your directory
contains a file name with both a FAS and a LSP file type, the LISP
system selects the most recently created file as the initialization
file. If only a LSP type file or only a FAS type file of a given name
and directory exists, the LISP system selects the type file that
exists.

Use the /VERBOSE qualifier (see Section 2.10.12) to display on the I
terminal screen the names of any functions or 'macros in the
initialization file.

You can use the /INITIALIZE qualifier when invoking an interactive
LISP session or when compiling files with the /COMPILE qualifier. You
cannot use the /INITIALIZE qualifier with the /RESUME qualifier; if
you do so, the /INITIALIZE qualifier is disregarded.

Version 2.2, July 1987 2-15

•

USING VAX LISP

Format

LISP/INITIALIZE=(file-spec, ...)

or

LISP/COMPILE/INITIALIZE~(file-spec, ...) file-spec

Example

Mode

$ LISP/INITIALIZE=MYINIT/VERBOSE

Welcome to VAX LISP, Version V2.0

*

Loading contents of file DBA1:[JONES]MYINIT.LSPi1
FACTORIAL
FACTORS-OF

Finished loading DBA1:[JONES]MYINIT.LSPi1

In the preceding example, the file type defaults to LSP.
FACTORIAL and FACTORS-OF are functions that are loaded into the
LISP system from Jones's initialization file. The form (SETF
TOP-LEVEL-PROMPT "*") in the initialization file changes the
Lisp> prompt to an asterisk (*). The *TOP-LEVEL-PROMPT* variable
is described in Part II.

The SETF form and the prompt variable are not listed on an output
device when the file is loaded, because the /VERBOSE qualifier
lists only functions and macros defined in the file.

Interactive or Compile

2.10.5 IINTERACTIVE

The /INTERACTIVE qualifier, the default, starts an interactive LISP
session.

Mode

Interactive

Version 2.2, July 1987 2-16

USING VAX LISP

2.10.6 I[NO]LIST

The /LIST qualifier is meaningful only if it is specified with the
/COMPILE qualifier. The /LIST qualifier specifies that the compiler
generate a listing file during compilation. You must specify this
qualifier if you want a listing file. A listing includes the name of
the file compiled, the date it was compiled, warning or error messages
produced during compilation, and a summary of warning and error
messages. If you specify the /VERBOSE qualifier with the /LIST
qualifier, the listing also includes the names of the functions
compiled.

Specify the /LIST qualifier with a file name value only when you want
the listing file name to be different from the name of the source
file. If you specify the /LIST qualifier without a file name, the
LISP system produces a listing file with a LIS file type and the same
name as the source file.

The /NOLIST qualifier suppresses a listing and is the default except
in batch mode. The /LIST qualifier is the default for batch mode
operations.

Format

LISP/COMPILE/LIST[=file-spec1 file-spec

Example

$ LISP/COMPILE/LIST=FACTORIAL.LISjVERBOSE MYPROG.LSP

Sample Listing File

Mode

Listing output for file DBA1:[JONES.LIS1MYPROG.LSPi1
Compiled at 10:33:30 on Friday, 20 December 1985 by JONES
Lisp Version V2.0

Starting compilation of file "DBA1:[JONES.LIS]MYPROG.LSP;1".
FACTORIAL compiled.

Finished compilation of file "DBA1:[JONES.LIS]MYPROG.LSP;1".
o Errors, ·0 warnings

Compile

2.10.7 I[N01MACHINE_CODE

The /MACHINE_CODE qualifier is meaningful only if it is specified with
the /COMPILE qualifier. The /MACHINE_CODE qualifier requests the

Version 2.2, July 1987 2-17

I

I

•

USING VAX LISP

compiler to put a listing of the VAX LISP machine
separate from the FAS ~ile the compiler generates.
puts anything usually included in a listing file in
Section 2.10.6 for a description of a listing file) .

code in a file
The compiler also
this file (see

VAX LISP machine code is similar to a standard assembly language code.
However, compiling LISP source code does not generate object modules
that must be linked.

The /MACHINE_CODE qualifier has no effect on the production of machine
code;; the qualifier produces only a machine-code listing file. The
machine-code listing file generated when you use the /MACHINE_CODE
qualifier has the same name as your source file and has a LIS file
type (unless you also used the /LIST qualifier to specify a different
name) .

The /NOMACHINE_CODE qualifier, the default, suppresses a listing of
LISP machine code.

Format

LISP/COMPILE/MACHINE_~ODE file-spec

Example

$ LISP/COMPILE/MACHINE_CODE MYPROG.LSP

Mode

Compile

I 2.10.8 IMEMORY

The /MEMORY qualifier lets you specify the amount of dynamic virtual
memory the LISP system allocates in 512-byte pages. This system

I requires a minimum of 4000 pages of dynamic virtual memory to
function. This memory is in addition to the read-only and static
memory. Consequently, the default page size for the dynamic virtual

I memory is 4000 pages. If you specify fewer than 4000 pages with the
/MEMORY qualifier, the system disregards the requested page size and
uses the default page size. You do not need the /MEMORY qualifier if

I you intend to use no more than 4000 pages of dynamic memory.

To see how many pages of memory are available at any point while you
are in LISP, use the LISP ROOM function. If you discover that you
need more memory, save your work by creating a suspended system, and
exit LISP. Then reenter LISP with the /RESUME and the /MEMORY
qualifiers. Use the /MEMORY qualifier to specify a larger number of
pages than you had previously specified. For information on creating
a suspended system, see Section 2.11.1; for descriptions of the

Version 2.2, July 1987 2-18

USING VAX LISP

/RESUME qualifier and the ROOM function, see Section 2.10.11 and Part I
II, respectively.

Format

LISP/MEMORY=number-of-pages

or

LISP/COMPILE/MEMORY=number-of-pages file-spec

Example

$ LISP/MEMORY=15000

Welcome to VAX LISP, Version V2.0

Lisp>

Mode

Interactive or Compile or Resume

2.10.9 I[NO]OPTIMIZE

The /OPTIMIZE qualifier lets you optimize the results of compilation
of your program according to the following qualities:

• SPEED (execution speed of the code)

• SPACE (space occupied by.the code)

• SAFETY (run-time error checking of the code)

• COMPILATION_SPEED (speed of the compilation process)

You can optimize your program by setting a priority value for each
quality. That value must be an integer in the range of 0 to 3. The
value 0 means the quality has the lowest priority in relationship to
the other qualities; the value 3 means the quality has the highest
priority in relationship to the other qualities. When you do not
specify the /OPTIMIZE qualifier, the qualities each take the default
value of 1. To suppress optimization, use the /NOOPTIMIZE form of
this qualifier.

The /OPTIMIZE qualifier is meaningful only if it is specified with the
/COMPILE qualifier. The /OP~IMIZE qualifier affects only the
compiler, and does nothing to the interpreter, the debugger, or any
other VAX LISP facility. See Chapter 7, Appendix A, and COMMON

·Version 2.2, July 1987 2-19

I

USING VAX LISP

LISP: The Language for information
declarations.

Format

on specifying

LISP/COMPILE/OPTIMIZE=(quality:value[, •..]) file-spec

Example

optimization

$ LISP/COMPILE/OPTIMIZE=(SPEED:3,SAFETY:2) MYPROG.LSP

or

$ LISP/COMPILE/OPTIMIZE=SPEED:3 MYPROG.LSP

Mode

Compile

I 2.10.10 /[NO]OUTPUT_FILE

I

The /OUTPUT_FILE qualifier is meaningful only when it is specified
with the /COMPILE qualifier. The /OUTPUT_FILE qualifier tells the
compiler to write the compiled code to a specific file. If you
specify the /OUTPUT_FILE qualifier with a file name, the LISP system
puts the compiled code in a file with that specified name. Use the
/OUTPUT_FILE qualifier only when you want to change the name of the
compiled file so that the source file and the compiled file have
different names.

The /OUTPUT_FILE qualifier does not specify a
compiled file. See the /LIST qualifier
explanation of a listing file.

listing
(Section

file, only a
2.10.6) for an

If this qualifier is not specified, the compiler produces a file with
the same name as the source file and a type of FAS.

The /NOOUTPUT_FILE qualifier prevents compiled code from being written
to a file. If you want only to check a file for errors, use this
qualifier with the/COMPILE qualifier.

Format

LISP/COMPILE/OUTPUT_FILE[=file-spec] file-spec

Example

$ LISP/COMPILE/OUTPUT_FILE=TEST.FAS FACTORIAL.LSP

Version 2.2, July 1987 2-20

USING VAX LISP

Format

LISP/COMPILE/NOOUTPUT_FILE file-spec

Example

$ LISP/COMPILE/NOOUTPUT_FILE MYPROG.LSP

Mode

Compile

2.10.11 IRESUME

The /RESUME qualifier resumes a suspended LISP system where the
suspension occurred. See Section 2.11 for an explanation of suspended
systems. The /RESUME and the /INITIALIZE qualifiers cannot be used
together.

Format

LISP/RESUME=file-spec

Example

Mode

$ LISP/RESUME=MYPROG. SUS
T
Lisp>

Resume

2.10.12 I[NO]VERBOSE

The /VERBOSE qualifier lists on the output device and in the listing
file the names of the functions defined or loaded in an initialization
file, and the names of functions in a file as they are compiled. The
/VERBOSE qualifier applies only to files loaded with /INITIALIZE
qualifier or compiled with the /COMPILE qualifier.

The /NOVERBOSE qualifie~ (the default) prevents the names of functions
compiled with the /COMPILE qualifier or loaded with the /INITIALIZE
qualifier from being listed in a file'or at the terminal.

Version 2.2, July 1987 2-21

•
I

I

USING VAX LISP

Format

LISP/VERBOSE/INITIALIZE=file-spec

or

LISP/COMPILE/VERBOSE file-spec

Examples

Mode

1. $ LISP/VERBOSE/INITIALIZE=MYINIT.LSP

Welcome to VAX LISP, Version V2.0

Loading contents of file DBA1:[JONES]MYINIT.LSPi1
i FACTORIAL

FACTORS-OF
i Finished loading DBA1:[JONES]MYINIT.LSPi1
Lisp>

FACTORIAL and FACTORS-OF are functions that are loaded into
the LISP system from Jones's initialization file.

2. $ LISP/VERBOSE/COMPILE MYPROG.LSP

Starting compilation of .file DBA1:[JONES]MYPROG.LSPi1

MULT compiled.
SUB compiled.
DIV compiled.

Finished compilation of file DBA1:[JONES]MYPROG.LSPi1
o Errors, 0 warnings
$

MULT, SUB, and DIV are functions compiled in the file,
MYPROG.LSP. The compiled definitions of these functions are
written to the file, MYPROG.FAS.

Interactive or Compile

I 2.10.13 I[NO]WARNINGS

The /WARNINGS qualifier specifies that the LISP system is to produce
warning messages. warning messages are the default when you use the
/COMPILE qualifier.

A warning message indicates that the LISP system has detected

Version 2.2, July 1987 2-22 .

USING VAX LISP

something that is likely to be wrong. If warnings are signaled while
a file is being compiled and the value of the *BREAK-ON-WARNINGS*
variable is NIL (the default), the compilation continues. But, if
errors are signaled, compilation of the expression causing the error
is not continued though the rest of the file is compiled. See Chapter
4 for more information on the'differences between warnings and errors.

The /NOWARNINGS qualifier suppresses warning messages.

The following example of a warning message is the message the compiler
displays for the TEST function defined in Section 2.9.3.

$ LISP/COMPILE TEST.LSP
Warning in TEST

TEST earlier called with 2 args, wants at most 1.
$

Format

LISP/COMPILE/NOWARNINGS file-spec

Example

$ LISP/COMPILE/NOWARNINGS MYPROG.LSP

Mode

Compile

2.11 USING SUSPENDED SYSTEMS

A suspended system is a binary file that is a copy of the LISP memory
in use during an interactive LISP session up to the point at which you
create the suspended system. The purpose of a suspended system is to
save the state of an interactive LISP session. You might want to do
this if your work is incomplete. By resuming LISP from a suspended
system, you can continue your work from the point at which you
stopped.

NOTE

A suspended system can be 'resumed only by the VAX LISP
system from which it was suspended. The VAX LISP
system that resumes a suspended system must meet these
criteria:

1. The VAX LISP system must be the same version of
VAX LISP as the suspending system.

Version 2.2, July 1987 2-23

USING VAX LISP

2. A custom VAX LISP system created with the VAX LISP
System-Building utility must be the same system as
the suspending system or a copy of the suspending
system. (See the VAX LISP/VMS System-Building
Guide for a description of the System-Building
utility.)

2.11.1 Creating a Suspended System

The VAX LISP SUSPEND function puts in a file the LISP memory in use
during an interactive LISP session, enabling you to resume the same
LISP session at a later time. The SUSPEND function does not stop the
current LISP session; you can continue to use the LISP session after
the SUSPEND function has put a copy of memory into a file. The
SUSPEND function also automatically invokes a garbage collection of
dynamic memory space. See Chapter 7 for information on garbage
collections.

In the following example, the file FILEX.SUS is created and a copy of
the memory in a LISP session is put into that file. The file name can
be a string, symbol, or pathname. See Chapter 7 and COMMON LISP: The
Language for a description of pathnames.

Lisp> (SUSPEND "FILEX.SUS")
Starting garbage collection due to GC function.
Finished garbage collection due to GC function.
Starting garbage collection due to SUSPEND function.
Finished garbage collection due to SUSPEND function.

NIL
Lisp>

After your file is created, the system returns to your interactive
LISP session. You can ~xit LISP when you see the LISP prompt. Your
suspended system file is placed either in your default directory or in
the directory you specified in the file specification. The file is
usable only in an interactive LISP session.

If you use the Editor before using the SUSPEND function, Editor
buffers that are associated with files are deleted in the resumed
system. Consequently, if you want to save any material in a buffer,
put that material in a file. For a description of the VAX LISP
Editor, see Chapter 3. For a description of the SUSPEND function, see
Part II.

2.11.2 Resuming a Suspended System

To resume a suspended system, use the LISP command with the /RESUME
qualifier and the name of the file containing the suspended system.

Version 2.2, July 1987 2-24

USING VAX LISP

Program execution continues from the point at which you called the
SUSPEND function. See Section 2.10.11 for an explanation of the
/RESUME qualifier.

After it creates a suspended system, the SUSPEND function returns NIL
and execution continues with the LISP environment exactly as it was
before the call to SUSPEND. However, when execution resumes as a
result of using the /RESUME qualifier, the SUSPEND function returns T.
Therefore, a program can use the return value of SUSPEND to determine
if execution is resuming as the result of the /RESUME qualifier, and
take action if necessary. See the SUSPEND function in Part II for a
description of the effects of suspending a system.

I

When resuming a suspended system, VAX LISP checks to make sure that I
the resuming system matches the suspending system. The resuming
system must be the same system that suspended or a copy of the file
containing the system that suspended.

Version 2.2, July 1987 2-25

CHAPTER 3

ERROR HANDLING

The LISP system invokes the VAX LISP error handler when errors are
signaled during program evaluation •. This chapter explains what the
error handler does when an error is signaled. Because the system's
error handler might not meet your programming needs, VAX LISP allows
you to create your own error handler. The procedure for creating an
error handler is also explained in this chapter.

3.1 THE ERROR HANDLER

The VAX LISP error handler is a function named
UNIVERSAL-ERROR-HANDLER, which performs four sequential steps.

1. Checks the number of nested errors that have occurred. If
three nested errors have occurred, the error handler aborts
your program, displays a message, and returns you to the
top-level read-eval-print loop; otherwise, the handler
continues to the next step.

2. Checks the type of the error.

3. Displays an error message that provides you with information
about the error.

4. Performs the appropriate operation for the type of error that
was signaled.

3.2 VAX LISP ERROR TYPES

Three types of errors can occur during the evaluation of a LISP
program:

• Fatal error

• Continuable error

• Wa rning

When an error is signaled, the VAX LISP system displays an error
message that provides you with the following information:

• The type of error that was signaled
continuable error, or warning

3-1

fatal error,

ERROR HANDLING

• The name of the function that caused the error
CERROR, or WARN

ERROR,

• The name of the function that was used to signal the error

• A description of the error

• If a continuable error, an explanation of what will happen if
you continue the program's evaluation from the point where the
error occurred

The format of an error message and the information a message provides
depend on the type of the error. The next three sections describe the
types of errors; each description includes the error type's message
format and the operation the error handler performs.

3.2.1 Fatal Errors

When a fatal error is signaled, the error handler displays a message
in the following format:

Fatal error in function function-name (signaled with ERROR).
Error description.

In the preceding format description, function-name is the name of the
function that caused the error, and ERROR is the name of the function
that was used to signal the error (see Table 3-1). The error
description is a message that describes the error. The message is
generated from the format string and the arguments in the call to the
ERROR function; the message can be displayed on more than one line.

A~ example of a fatal error message follows:

- Fatal error in function MAKE-ARRAY (signaled with ERROR).
Only vectors can have fill pointers.

After the message is displayed, the error handler checks the value of
the VAX LISP *ERROR-ACTION* variable. Its value can be either the
:EXIT or the :DEBUG keyword. The /ERROR ACTION DCL command qualifier
sets the value of the *ERROR-ACTION* variable when the LISP system is
invoked (see Section 2.8.3). When the value is :EXIT, the error
handler causes the LISP system to exit; when the value is :DEBUG, the
handler invokes the VAX LISP debugger.

If the debugger is invoked, you can use it to locate the error in your
program. After you locate the error, you can correct it and restart
your program's evaluation.

NOTE

'You cannot continue your program's
evaluation from the point where a fatal
error occurred.

The *ERROR-ACTION* variable is described in Part II and the debugger
is described in Section 4.4.

3-2

ERROR HANDLING

3.2.2 Continuable Errors

When a continuable error is signaled, the error handler displays a
message in the following format:

Continuable error in function function-name (signaled with CERROR).
Error description.
If continued: Continue explanation.

In the preceding format description, function-name is the name of the
·function that caused the error, and CERROR is the name of the function
that was used to signal the error (see Table 3-1). The error
description is a message that describes the error. The message is
generated from the format string and the arguments in the call to the
CERROR function; the message can be displayed on more than one line.
A line of text that explains what will happen if you continue your
program's evaluation follows the error description.

An example of a continuable error message follows:

Continuable error in function ENTER-NAME (signaled with CERROR).
The value you specified is not a string.
If continued: You will be prompted for a new value.

After the message is displayed, the error handler checks the value of
the VAX LISP *ERROR-ACTION* variable. Its value can be either the
:EXIT or the :DEBUG keyword. The /ERROR ACTION DCL command qualifier
sets the value of the *ERROR-ACTION* variable when the LISP system is
invoked (see Section 2.8.3). When the value is :EXIT, the error
handler causes the LISP system to exit; when the value is :DEBUG, the
handler invokes the VAX LISP debugger.

If the debugger is invoked, you can do one of the following:

• Continue from the error; the CERROR function performs the
corrective action that is specified in the error message.

• Locate the error in your program. After you locate the error,
you can correct it and restart your program's evaluation.

The *ERROR-ACTION* variable is described in Part II and the debugger
is described in Section 4.4.

3.2.3 Warnings

A warning is an error condition that exists in your program, which
does not affect your program's evaluation. When this type of error
occurs, the system displays a message for the following reasons:

• You might want to correct the error later.

• Your program might correct the error, but you should know that
the error occurred.

When a warning is signaled, the error handler displays a message in
the following format:

Warning in function function-name (signaled with WARN) •
Error description.

3-3

ERROR HANDLING

In the preceding format description, function-name is the name of the
function that caused the error, and WARN is the name of the function
that was used to signal the error (see Table 3-1). The error
description is a message that describes the error. The message is
generated from the format string and the arguments in the call to the
WARN function; the message can be displayed on more than one line.

An example of a warning error message follows:

Warning in function ADD-TWO-NUMBERS (signaled with WARN) •
The function produced a value greater than 10.

After the message is displayed, the error handler checks the value of
the *BREAK-ON-WARNINGS* variable. When the value of this variable is
NIL, the error handler returns NIL; when the value is not NIL, the
error handler checks the value of the VAX LISP *ERROR-ACTION*
variable. The value of the *ERROR-ACTION* variable can be either the
:EXIT or the :DEBUG keyword. The /ERROR ACTION DCL command qualifier
sets the value of the *ERROR-ACTION* variable when the LISP system is
invoked (see Section 2.8.3). When the value is :EXIT, the error
handler causes the LISP system to exit; when the value is :DEBUG, the
handler invokes the VAX LISP debugger.

If the debugger is invoked, you can use it to locate the error in your
program. After you locate the error, you can correct it, exit the
debugger, and then continue your program's evaluation from the point
where the error occurred.

The *BREAK-ON-WARNINGS* variable is described in COMMON LISP: The
Language, the *ERROR-ACTION* variable is described in Part II, and the
debugger is described in Section 4.4.

3.3 CREATING AN ERROR HANDLER

The VAX LISP *UNIVERSAL-ERROR-HANDLER* variable is bound to the
system's error handler. This binding provides you with a way to
create your own error handler if the system's handler does not meet
your programming needs. To create an error handler you must perform
the following:

1. Define the error handler.

2. Bind the *UNIVERSAL-ERROR-HANDLER* variable to the defined
handler.

The *UNIVERSAL-ERROR-HANDLER* variable is described in Part II.

3.3.1 Defining an Error Handler

The LISP system passes at least two arguments to the error handler
each time an error occurs in a program. Therefore, when you define an
error handler, the handler must be able to accept two 'or more
arguments. Specify the arguments in an error-handler definition in
the following format: .

function-name error-signaling-function &REST args

3-4

ERROR HANDLING

The arguments provide the error
information:

handler with the following

• The name of the function that called the error-signaling
function

• The name of the error-signaling function

• The arguments that were passed to the error-signaling function

An example of an error handler definition follows:

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)

(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION 'ERROR)
(EQ ERROR-SIGNALING-FUNCTION 'CERROR))

(FLASH-ALARM-LIGHT))
(APPLY #'UNIVERSAL-ERROR-HANDLER

FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS))

CRITICAL-ERROR-HANDLER

The preceding error handler checks whether a fatal or continuable
error is signaled. If either type of error is signaled, the handler
calls the function FLASH-ALARM-LIGHT and then passes the error signal
information to the VAX LISP error handler.

When you define an error handler, the definition can include a call to
the UNIVERSAL-ERROR-HANDLER function. If the definition does not
include a call to this function and you want the handler to check the
value of the *ERROR-ACTION* or *BREAK-ON-WARNINGS* variable, you must
include a check on the variable in the handler's definition.

If you want an error handler to display error messages in the form~ts
described in Sections 3.2.1 to 3.2.3, include a call to either the
UNIVERSAL-ERROR-HANDLER or PRINT-SIGNALED-ERROR function.
Descriptions of these functions are provided in Part II.

The next three sections describe the arguments an error handler must
be able to accept.

3.3.1.1 Function Name - The function-name argument is the name of the
function that calls an error-~ignaling function. This argument
enables the error handler to include' the function's name in the error
message it displays.

3.3.1.2 Error-Signaling Function - The error-signaling-function
argument is the name of the error-signaling function that is called to
generate the error signal. Depending on which function is called, a
fatal error, continuable error, or warning is signaled.

The error handler uses the error-signaling-function argument to
determine the contents of the args argument.

3-5

ERROR HANDLING

Table 3-1 lists the functions that can be passed as the
error-signaling-function argument and provides a brief description of
each function.

Table 3-1
Error-Signaling Functions

Function Description

CERROR Function Signals ,a continuable error

ERROR Function Signals a fatal error

WARN Function Signals a warning

See COMMON LISP: The Language for detailed descriptions of the CERROR
and ERROR functions. See Section 8.7 for a description of t~~ WARN
function.

3.3.1.3 Arguments - The args argument is the list of arguments that
are passed to the error-signaling function when the error-signaling
function is invoked. The contents of the list depends on which
function is invoked. The list can include one or two format strings
and their corresponding arguments. The format strings and arguments
are passed to the FORMAT function, which produces the correct error
message.

3.3.2 Binding the *UNIVERSAL-ERROR-HANDLER* Variable

Once you define an error-handling function, you must bind the
UNIVERSAL-ERROR-HANDLER variable to it. The following example shows
how to bind the variable to a function:

Lisp> (LET ((*UNIVERSAL-ERROR-HANDLER*
#'CRITICAL-ERROR-HANDLER»

(PERFORM-CRITICAL-OPERATION»

The LET special form binds the *UNIVERSAL-ERROR-HANDLER* variable to
the CRITICAL-ERROR-HANDLER function that was defined in Section 3.3.1,
and calls a function named PERFORM-CRITICAL-OPERATION. When the form
is exited because the evaluation finished or the THROW function is
called, the *UNIVERSAL-ERROR-HANDLER* variable is restored to its
previous value.

3-6

CHAPTER 4

DEBUGGING FACILITIES

Debugging is the process of locating and correcting programming
errors. When an error is signaled, the VAX LISP error handler
displays a message, which provides you with your initial debugging
information: the error type, the name of the function that caused the
error, the name of the function the LISP system used to signal the
error, and a description of the error.

Once you know the name of the function that caused an error, you can
use the VAX LISP debugging functions and macros to locate and to
correct the programming error. Table 4-1 lists the debugging
functions and macros with a brief description of each.

Name

APROPOS

APROPOS-LIST

BREAK

DEBUG

DESCRIBE

DRIBBLE

ED

ROOM

STEP

Table 4-1
Debugging Functions and Macros

Function
or Macro

Function

Function

Function

Function

Function

Function

Function

Function

Macro

Description

Locates symbols whose print names
contain a specified string argument as a
substring and displays information about
each symbol it locates.

Locates symbols whose print names
contain a specifi~d string argument as a
substring and returns a list of the
symbols it locates.

Invokes the break loop.

Invokes the VAX LISP debugger.

Displays detailed information about a
specified object.

Sends the input and the output of an
interactive LISP session to a specified
file.

Invokes the VAX LISP Editor.

Displays information about the state of
internal storage and its management.

Invokes the stepper.

(Continued on next page)

4-1

DEBUGGING FACILITIES

Table 4-1 (Cont.)
Debugging Functions and Macros

Name
Function
or Macro Description

TIME Macro

TRACE Macro

Displays timing information about the
evaluation of a specified form.

Enables the tracer for functions and
macros.

UNTRACE Macro Disables the tracer for functions and
macros.

This chapter provides the following:

• A list of the functions and the macro that provide you with
debugging information

• Descriptions of two variables that control the output of the
debugger, the stepper, and the tracer facilities

• A description of the VAX LISP control stack

• Explanations of how to use the following debugging facilities:

• Break loop A read-eval-print loop you can invoke while

•
the LISP system is evaluating a program.

Debugger A control stack debugger you can use
interactively to inspect and, modify the LISP system's
control stack frames.

• Stepper A facility you can use to interactively step
through a forms evaluation.

• Tracer A facility you can use to inspect a program's
evaluation.

• Editor An extensible editor that enables you to edit
programs and data structures.

The following functions and macro display information that you can use
to debug programs:

• APROPOS function

• APROPOS-LIST function

• DESCRIBE function

• DRIBBLE function

• ROOM function

• TIME macro

Descriptions of the preceding functions and macro are provided in
Section 8.7.

4-2

DEBUGGING FACILITIES

4.1 CONTROL VARIABLES

VAX LISP provides two variables that control
debugger, the stepper, and the
DEBUG-PRINT-LENGTH and *DEBUG-PRINT-LEVEL*.

the output of the
tracer facilities:

DEBUG-PRINT-LENGTH

DEBUG-PRINT-LEVEL

4.2 CONTROL STACK

Controls the number of displayed elements at
each level of a nested data object. The
variable's value must be either an integer or
NIL. Th e de f a u 1 t val u e i s NIL (n 0 1 i mit) •

Controls the number of displayed levels of a
nested data object. The variable's value
must be either an integer or NIL. The
default value is NIL (no limit).

The control stack is the part of LISP memory that stores calls to
functions, macros, and special forms. The stack consists of stack
frames. Each time you call a function, macro, or special form, the
VAX LISP system does the following:

1. Opens a stack frame

2. Pushes the name of the function associated with the function,
macro, or special form that was called onto the stack frame

3. Pushes the function's arguments onto the stack frame

4. Closes the stack frame when all the function's arguments are
on the stack frame

5. Evaluates the function

The LISP system can open several stack frames at a time because the
arguments used by LISP functions are frequently LISP expressions.

Each control stack frame has a frame number, which is displayed as
part of the stack frame's output. Stack frame numbers are displayed
in the output of the debugger, the stepper, and the tracer.

The control stack consists of two types of stack frames: open and
active. Open and active stack frames can be either significant or
insignificant. Significant stack frames are those that invoke
documented and user-created functions. Debugger commands show only
significant stack frames unless you specify the ALL modifier (see
Section 4.4.3.1). Significant stack frames store one of the following
calls:

• A call to a function named by a symbol that is in the current
package

• A call to a function that is accessible in the current package
and is explicitly or implicitly called by another function
that is in the current package .

See COMMON LISP: The Language for information on pac~ages.

4-3

DEBUGGING FACILITIES

Many stack frames in the control stack store internal, undocumented
functions. These stack frames are insignificant to most users;
therefore, by default, the debugger does not display their
representation. However, if you are using the debugger and you want
to examine these stack frames, you can specify the ALL modifier with
debugger commands.

4.2.1 Open Stack Frame

An open stack frame is a stack frame that is under construction. Open
stack frames store functions the LISP system cannot invoke because the
system has not evaluated all their arguments. The stack frames that
are above an open stack frame store calls to other functions. The
values those functions return are the arguments of the function in the
open stack frame.

4.2.2 Active Stack Frame

The active stack frame is a stack frame that stores a call to a
function the LISP system is evaluating. The system can evaluate a
function call in the active stack frame because the frame contains all
the function's argument values. Only one stack frame is active at a
time and an active stack frame can exist anywhere on the control
stack.

The active stack frame can have a previous active stack frame and/or
it can have a next active stack frame. The previous active stack
frame represents the caller of the function in the current active
stack frame.

4.3 BREAK LOOP

The break loop is a read-eval-print loop that you can invoke to debug
a program. You can invoke the break loop while a program is being
evaluated. If you do, the evaluation is interrupted and you are
placed in the loop.

NOTE

If the value of the *BREAK-ON-WARNINGS*
variable is T, the debugger is invoked
rather than the break loop when a
warning is signaled.

4.3.1 Invoking the Break Loop

You can invoke the break loop by calling the BREAK function. The two
ways of using the BREAK function to debug a program are th~ following:

• Use the VAX LISP BIND-KEYBOARD-FUNCTION function to bind an
ASCII keyboard control character to the BREAK function. Then
use the control character to invoke the BREAK function
directly while your program is being evaluated (see Part II
for a description of the BIND-KEYBOARD-FUNCTION function)

4-4

DEBUGGING FACILITIES

• Put the BREAK function in specific places in your program

In either case, the BREAK function displays a
specified one) and enters a read-eval-print loop.
message, the BREAK function displays the message
format:

message (if you
If you specified a
in the following

Break in function function-name (signaled with BREAK).
Description.

In the preceding format description, function-name represents the name
of the function the LISP system was evaluating when you entered the
break loop. BREAK is the name of the function that caused the LISP
system to invoke the break loop. The description is optional and can
be printed on more than one line. A description usually provides the
reason the break loop was invoked.

An example of a break loop message follows:

Break in function INTERRUPT-INPUT (signaled with BREAK).
Values are too high.

After the message is displayed, a prompt is displayed at the left
margin of your terminal. The prompt looks like the following:

Break n>

The n in the prompt represents an integer, which indicates the number
of the nested command level you are in. The value of n increases by
one each time the level of the break loop increases. For example, the
following prompt is displayed if you are in the third nested loop:

Break 3>

4.3.2 Exiting the Break Loop

When you are ready to exit the break loop and continue your program's
evaluation, invoke the VAX LISP CONTINUE function.

Break 1> (CONTINUE)

The CONTINUE function causes the evaluation of your program to
continue from the point where the LISP system encountered the BREAK
function.

A description of the CONTINUE function is provided in Part II.

4-5

DEBUGGING FACILITIES

4.3.3 Using the Break Loop

Once you are in the break loop, you can check what your progr~m is
doing by interacting with the LISP system as though you were ln the
top-level loop. For example, suppose you define a variable named
FIRST and a function named COUNTER, which uses the variable.

Lisp> (DEFVAR *FIRST* 0)
FIRST
Lisp> (DEFUN COUNTER NIL

(IF « *FIRST* 100)

COUNTER

(PROGN (INCF *FIRST*) (COUNTER))
* FIRST*))

If you bind the
interrupt the
For example:

BREAK function to a control character, you can
function's evaluation by typing the control character.

Lisp> (BIND-KEYBOARD-FUNCTION #\AB #'BREAK)
T
Lisp> (COUNTER) ®ill
(CTRL/B)

Break 1>

Once you are in the break
variable *FIRST*.

Break 1> *FIRST*
16
Break 1>

If you call the CONTINUE
COUNTER continues.

Lisp> (CONTINUE)

loop, you can check

function, the evaluation

the value of the

of the function

After you call the CONTINUE function, you can see that the evaluation
was continued by invoking the break loop again and rechecking the
value of the variable *FIRST*.

(CTRL/B)

Break 1> *FIRST*
93
Break 1>

Use the CONTINUE function again to complete the function's evaluation.

Break 1> (CONTINUE)
100

Changes that you make to global variables and global definitions while
you are in the break loop remain in effect after you exit the loop and
your program continues. For example, if you are in the break loop and
you find that the value of the variable named *FIRST* has an incorrect
value, you can change the variable's value. The' change remains in
effect after you exit the break loop and continue your program's
evaluation.

4-6

DEBUGGING FACILITIES

NOTE

The forms you type while you are in the
break loop are evaluated in a null
lexical environment, as though they are
evaluated at top level. Therefore, you
cannot examine the lexical variables of
a program that you interrupt with the
break loop. To examime such lexical
variables, invoke the debugger (see
Section 4.4). For information on
lexical environments, see COMMON LISP:
The Language.

4.3.4 Break Loop Variables

The break loop uses a copy of the top-Ievel-Ioop variables (plus (+),
hyphen (-), asterisk (*), slash (/), and so on) the ,same way the
top-level loop uses them (see COMMON LISP: The Language). These
variables preserve the input expressions you specify and the output
values the VAX LISP system returns while you are in the break loop.

4.4 DEBUGGER

The VAX LISP debugger is a control stack debugger. You can use it
interactively to inspect and modify the LISP system's control stack
frames. The debugger has a pointer that points to the current stack
frame. The current stack frame is the last frame for which the
debugger displayed information. The debugger provides several
commands that perform the following:

• Display help

• Evaluate a form or reevaluate a function call a stack frame
stores

• Handle errors

• Move the pointer from one stack frame to another

• Inspect or modify the function call in a stack frame

• Display a summary of the control stack

The debugger reads its input and prints its output to the stream bound
to the *DEBUG-IO* variable.

NOTE

The stack frames the debugger displays
are no longer active.

Before you use the debugger, you should be familiar with the VAX LISP
control stack. The control stack is described in Section 4.2.

4-7

DEBUGGING FACILITIES

4.4.1 Invoking the Debugger

The VAX LISP system invokes the debugger when errors occur. You can
invoke the debugger by calling the VAX LISP DEBUG function. For
example:

Lisp> (DEBUG)

When the debugger is invoked, a message that identifies the debugger,
a message that identifies the current stack frame, and the command
prompt are displayed at the left margin of your terminal in the
following format:

Control Stack Debugger
Frame *5: (DEBUG)
Debug n>

The letter n in the prompt represents an integer, which indicates the
number of the nested command level you are in. The v"alue of n
increases by one each time the level of the debugger increases. For
example, the following prompt might be displayed if a serious error
was found in an expression you used:

Debug 3>

After the debugger is invoked, you can use the debugger commands to
inspect and modify the contents of the system's control stack.

A description of the DEBUG function is provided in part II.

4.4.2 Exiting the Debugger

To exit the debugger, use the QUIT debugger command. It causes the
debugger to return control to the previous command level.

Debug 2> QUIT
Debug 1>

If you specify the QUIT command when the debugger command level is one
(indicated by the prompt Debug 1», the command causes the debugger to
exit and returns you to the system's top level. For example:

Debug 1> QUIT
Lisp>

By default, the QUIT command displays a confirmation message before it
exits if a continuable error causes the debugger to be invoked. For
example:

Debug 1> QUIT
Do you really want to return to the previous command level?

If you respond to the message by typing YES, the debugger returns
control to the previous command level.

Do you really want to return to the previous command level? YES
Lisp>

4-8

DEBUGGING FACILITIES

If you respond by typing NO, the debugger prompts you for another
command.

Do you really want to return to the previous command level? NO
Debug 1>

You can prevent the debugger from displaying the confirmation message
by specifying the QUIT command with a value other than NIL. For
example:

Debug 1> QUIT T
Lisp>

A description of the QUIT command is provided in Section 4.4.3.2.

4.4.3 Using Debugger Commands

The debugger commands are words th~t describe the operation you want
the debugger to perform. The debugger commands enable you to inspect
and to modify the current control stack frame and to move to other
stack frames. You must specify many of the debugger commands with one
or more arguments. The command arguments modify command operations.

You can abbreviate debugger commands to as few characters as you like,
as long as there is no ambiguity in the abbreviation.

Enter a debugger command by typing the command name or abbreviation
and then pressing the RETURN key. For example:

Debug 1> BACKTRACE@]

If you press only the RETURN key, the debugger prompts you for another
command.

Table 4-2 provides a summary of the debugger commands. Detailed
descriptions of the commands are provided in Section 4.4.3.2.

Command

?

BACKTRACE

BOTTOM

CONTINUE

DOWN

ERROR

Table 4-2
Debugger Commands

Description

Displays help text about the debugger commands.

Displays a backtrace of the control stack.

Moves the pointer to the first stack frame on the
control stack.

Enables you to correct a continuable error.

Moves the pointer down the control stack.

Redisplays the error message that was displayed
when the debugger was invoked.

(Continued on next page)

4-9

Command

EVALUATE

GOTO

HELP

QUIT

REDO

RETURN

SEARCH

SET

SHOW

STEP

TOP

UP

WHERE

DEBUGGING FACILITIES

Table 4-2 (Cont.)
Debugger Commands

Description

Evaluates a specified form.

Moves the pointer to a specified stack frame.

Displays ~elp text about the debugger commands.

Exits to the previous command level.

Invokes the function in the current stack frame.

Evaluates its arguments and causes
stack frame to return the same
evaluation returns.

Searches the control stack for
function.

a

the current
values the

specified

Sets the values of the components in the current
stack frame.

Displays information stored in the current stack
frame.

Invokes the stepper for the function that is in
the current stack frame.

Moves the pointer to the last stack frame in the
control stack.

Moves the pointer up the control stack.

Redisplays the argument list and the function name
in the current stack frame.

4.4.3.1 Arguments - Debugger command arguments modify the operations
the debugger commands perform. You must specify some of the debugger
commands with an argument. Some commands accept optional arguments.
The arguments you can specify with the debugger commands are the
following:

• Debugger command

• Symbol

• Form

• Integer

• Function name

• Modifier

NOTE

Only form arguments are evaluated.

4-10

DEBUGGING FACILITIES

The preceding arguments are self-explanatory with the exception of the
integer and modifier arguments. Integer arguments represent control
stack frame numbers. Each stack frame on the control stack has a
frame number, which the debugger displays as part of the stack frame's
output. The-debugger reassigns these numbers each time it is invoked.
You can specify a frame number in a debugger command to refer to a
specific stack frame. If you refer to a frame number that is outside
the current debugging session, an error is signaled. If you refer to
the stack frame number of a frame that was established in another
debugging session in a current nested session, the command in which
you specify the frame number results in an erroneous or unpredictable
result.

An argument that is a modifier is a word that changes the way a
command operates. Table 4-3 provides a summary of the modifiers you
can specify with debugger commands.

Modifier

ALL

ARGUMENTS

CALL

DOWN

FUNCTION

HERE

NORMAL

QUICK

TOP

UP

VERBOSE

Table 4-3
Debugger Command Modifiers

Command Modification

Operate on both significant and insignificant
stack frames.

Operate on the arguments specified with
function that is in the current stack frame.

Operate on the call to the current stack frame.

Move the pointer down the control stack.

the

Operate on the function object that is in the
current stack frame~

Operate on the current stack frame.

Display the function name and the argument list
that are in the control stack frames.

Display the function name that is in the control
stack frames.

Start a backtrace at the top of the control stack.

Move the pointer up the control stack.

Display the function name, argument list, local
variable bindings, and special variable bindings
that are in the control stack frames.

Enter an argument after the command it modifies and then press the
RETURN key. For example:

Debug I) DOWN ALL@]

4-11

DEBUGGING FACILITIES

Depending on which command you specify, an argument can be either
required or optional. An argument whose value is an integer is
usually optional; an argument whose value is a symbol or form is
required. If you do not specify an argument that is required, the
debugger prompts you for the argument. For example:

Debug 1) RETURN®]
First Value:

The debugger does not prompt for arguments if you specify them in the
command line.

4.4.3.2 Debugger Commands - The VAX LISP debugger provides commands
that you can use to move through and modify the system's control
stack.

HELP
?

EVALUATE

CONTINUE

Help Commands

The HELP command displays help text about the debugger
commands. You can specify this command with one
argument. The argument must be the name of the
debugger command about which you want help text. If
you specify the HELP command without an argument, the
debugger displays a list of the debugger commands.

You can abbreviate this command by using a question
mark (?).

Evaluation Command

You can evaluate LISP expressions while you are in the
debugger. If you want the LISP system to evalute a
form, you can specify the form and then press the
RETURN key. If you want the system to evaluate a
symbol, you must use the EVALUATE command. You can
also evaluate expressions by entering the break" loop.
For information on the break loop, see Section 4.3.

The EVALUATE command explicitly evaluates a specified
form. You must specify the command with an argument.
The argument must be the form you want the LISP system
to evaluate. The system evaluates the form in the
lexical environment of the current stack frame.

Error-Handling Commands

The debugger handles errors that invoke the debugger.
Each of the following debugger commands handles errors
in a different way.

The CONTINUE command causes the debugger to return NIL.
This enables you to return from a continuable error or
from a warning if the value of the *BREAK-ON-WARNINGS*
variable is T. This command is not the same as the
CONTINUE function.

4-12

QUIT

REDO

RETURN

STEP

BOTTOM

DOWN

DEBUGGING FACILITIES

The QUIT command enables you to exit to the previous
command level~ If the current level of the debugger is
one, the command causes the debugger to exit. You can
specify this command with an optional argument. If a
continuable error invokes the debugger and the argument
is NIL, the debugger displays a confirmation message.
If you respond to the message by typing YES, the
command returns control to the previous command level.
If the argument is not NIL, the debugger does not
display a message. The default value for the optional
argument is NIL.

The REDO command invokes the function in the current
stack frame, causing the LISP system to reevaluate the
function in that frame. This command is useful for
correcting errors that are not continuable, such as
unbound variables and undefined functions.

The RETURN command evaluates its arguments and causes
the debugger to force the current stack frame to return
the same values the evaluation returns. You must
specify the command with an argument. The argument
must be a form. When the command is executed, the form
is evaluated. When the evaluation is complete, the
current stack frame returns the same values that the
evaluated form returns.

The STEP command invok~s the stepper for the function
that is in the current stack frame. When the stepper
is invoked, the LISP system reevalua~es the function.
This command is useful if you want to repeat an error
to get information about the cause of the error.

Movement Commands

The movement commands move the debugger's pointer to
another stack frame. The debugger displays the new
stack frame's information.

The BOTTOM command moves the pointer to the ~irst
significant stack frame on the control stack. You can
specify this command with an optional argument. The
argument must be the ALL modifier. If you specify it,
the command moves the pointer to the first stack frame
on the control stack whether it is significant or
insignificant.

The DOWN command moves the pointer down the significant
stack frames on the control stack. You can specify
this command with optional arguments. One of the
optional arguments is the ALL modifier. If you specify
it, the command moves the pointer down the significant
and insignificant stack frames on the control stack.

You can also specify an optional integer argument.
This argument indicates the number of stack frames down
which the command is to move the pointer.

4-13

GOTO

SEARCH

TOP

UP

WHERE

ERROR

DEBUGGING FACILITIES

The GOTO command moves t~e pointer to a specified stack
frame. You must specify this command with an integer
argument. The integer specifies the number of the
stack frame to where you want the command to move the
pointer.

The SEARCH command searches the control stack for a
specified function name. You must specify this command
with two arguments. One of the arguments must be
either the UP or the DOWN modifier. The modifier
specifies the direction of the command's search. The
second argument must be the name of the function for
which the command is to search.

You can also specify an optional integer argument.
This argument must follow the function name argument in
the command specification. The integer you specify
indicates the number of occurrences of the specified
function name that you want the command to skip.

The TOP command moves the pointer to the last
significant stack frame on the control stack. You can
specify this command 'with an optional argument. The
argument must be the ALL modifier. If you specify it,
the command moves the pointer to the last stack frame
on the control stack whether it is significant or
insignificant.

The UP command moves the pointer up the significant
stack frames on the c·ontrol stack. You can specify
this command with optional arguments. One of the
optional arguments is the ALL modifier. If you specify
it, the command moves the pointer up the significant
and insignificant stack frames on the control stack.

You can also specify an optional integer argument. It
indicates the number of stack frames up which the
command is to move the pointer.

The WHERE command redisplays the function name and
argument list in the current stack frame.

Inspection and Modification Commands

You can inspect and change the information in a
function call before the LISP system evaluates the
call. To do this, use the inspection and modification
commands.

The ERROR command redisplays the error message that was
displayed for the error that invoked the debugger.

4-14

SET

SHOW

BACKTRACE

DEBUGGING FACILITIES

The SET command sets the values of the components in
the current stack frame. You must specify this command
with three arguments. One of the arguments must be a
modifier. The modifier can be either ARGUMENTS or
FUNCTION. The modifier determines what the command
sets. The following list describes what is set when
you specify each modifier:

• ARGUMENTS -- The value of an argument in the current
stack frame.

• FUNCTION -- The function object in the current stack
frame.

If you specify the ARGUMENTS modifier, the second
argument must be the symbol that names the argument to
be set, and the third argument must be a form that
evaluates to the new value. If you specify the
FUNCTION modifier, the second argument must be a form
that evaluates to a function or the name of a function.
The new function must take the same number of arguments
the old function takes.

The SHOW command displays information stored in the
current stack frame. You must specify this command
with an argument. The argument can be the ARGUMENTS,
CALL, FUNCTION, or HERE modifier. The modifier
determines what the command is to display. The
following list describes what the command displays when
you specify each modifier:

• ARGUMENTS -- A list of the arguments in the current
stack frame.

• CALL -- The function call that created the current
stack frame. The command displays the function call
such that its output is easy to read. The arguments
in the call are represented by their values.

• FUNCTION -- The function in the current stack frame.
The function can be either interpreted, or compiled
with the COMPILE function. The function cannot be
displayed if it is a system function or is compiled
with the COMPILE-FILE function or the DCL
LISP/COMPILE command.

• HERE -- A description of the current stack frame.

Backtrace Command

The BACKTRACE command displays the argument list of
each stack frame in the control stack starting from the
top of the stack. You can specify the command with
optional arguments. The arguments must be modifiers,
which specify the style and extent of the backtrace.

4-15

DEBUGGING FACILITIES

The modifiers you can specify are ALL, NORMAL, QUICK,
HERE, TOP, or VERBOSE. By default, the command uses
the NORMAL and the TOP modifiers. The following list
describes the style or extent the BACKTRACE command
uses when you specify each modifier:

• ALL -- Displays significant and insignificant stack
frames.

• NORMAL -- Displays the function name and argument
list that are in each stack frame.

• QUICK -- Displays the function name in each stack
frame.

• HERE -- Starts the backtrace at the current stack
frame.

• TOP -- Starts the backtrace at the top of the
control stack.

• VERBOSE-­
list, and
frame.

Displays the function name, argument
local variable bindings in each stack

4.4.4 Sample Debugging Sessions

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X»
FIRST-ELEMENT
Lisp> (FIRST-ELEMENT 3)

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: 3

Control Stack Debugger
F ram e # 11 : (CAR 3)
Debug 1> DOWN
Frame #8: (BLOCK FIRST-ELEMENT (CAR X»
Debug 1> DOWN
Frame #5: (FIRST-ELEMENT 3)
Debug 1> SHOW HERE
It is a cons
Format: FIRST-ELEMENT x
-- Arg uments --
X : 3
Debug 1> SET
Type of SET operation: ARGUMENT
Argument Name: X
New Value: 1(1 2 3)
Debug 1> WHERE
Frame #5: (FIRST-ELEMENT (1 2 3»
Debug 1> REDO
1
Lisp>

The argument in a stack frame is changed from an integer to a
list and the function is reevaluated with the correct
argument.

4-16

DEBUGGING FACILITIES

2. Lisp> (DEFUN PLUS-Y (X) (+ X Y))
PLUS-Y
Lisp> (PLUS-Y 4)

Fatal error in function SYSTEM::%EVAL (signaled with ERROR).
Symbol has no value: Y

Control Stack Debugger
Frame #8: (BLOCK PLUS-Y (+ X Y))
Debug 1> DOWN
Frame #5: (PLUS-Y 4)
Debug 1> UP
Frame #8: (BLOCK PLUS-Y (+ X Y))
Debug 1> (SETF Y 1)
1
Debug 1> WHERE
Frame #8: (BLOCK PLUS-Y (+ X Y))
Debug 1> EVALUATE
Evaluate: Y
1
Debug 1> DOWN
Frame #5: (PLUS-Y 4)
Debug 1> REDO
5
Lisp>

The value of the variable Y is set with the SETF macro and
the body of the function PLUS-Y is reevaluated.

3. Lisp> (DEFUN ONE-PLUS (X) (1+ X))
ONE-PLUS
Lisp> (ONE-PLUS '(1 2 3 4))

Fatal error in function 1+ (signaled with ERROR).
Argument must be a number: (1 2 3 4)

Control Stack Debugger
Frame #11: (1+ (1 2 3 4»)
Debug 1> SET FUNCTION
Function: 'CAR
Debug 1> WHERE
Frame #11: (CAR (1 2 3 4})
Debug 1> DOWN
Frame #8: (BLOCK ONE-PLUS (1+ X))
Debug 1> UP
Frame #11: (CAR (1 2 3 4)
Debug 1> REDO
1
Lisp> (PPRINT-DEFINITION 'ONE-PLUS)
(DEFUN ONE-PLUS (X) (1+ X))
Lisp>

Shows that changing the contents of a stack frame does not
change the contents of other stack frames or the function
that was evaluated originally.

4-17

DEBUGGING FACILITIES

4.5 STEPPER

The stepper is a facility you can use to step interactively through
the evaluation of a form. You can control the stepper with stepper
commands as it displays and evaluates each subform of a specified
form.

The stepper has a pointer that points to the current stack frame on
the system's control stack. The current stack frame is the last frame
for which the stepper displayed information.

The stepper prints its command interaction to the stream bound to the
DEBUG-IO variable; it prints its output to the stream bound to the
TRACE-OUTPUT variable.

4.5.1 Invoking the Stepper

You can invoke the stepper by calling the STEP macro with a form as an
argument. The following example invokes the stepper with a call to a
function named FACTORIAL:

Lisp> (STEP (FACTORIAL 3))

When the stepper is invoked, it displays a line of text that includes
the first subform of the specified form and the stepper prompt. The
output is displayed at the left margin of your terminal in the
following format:

: #9: (FACTORIAL 3)
Step n>

The letter n in the prompt represents an integer, which indicates the
number of the nested command level you are in. The value of n
increases by one each time the level of the stepper increases. For
example, the stepper displays the following prompt when you are in the
third level of the stepper:

Step 3>

After the stepper is invoked, you can use the stepper commands to
control the operations the stepper performs and the way the stepper
displays output.

A description of the STEP macro is provided in COMMON LISP: The
Language.

4.5.2 Exiting the Stepper

Usually, when you use the stepper, you press the RETURN key until the
stepper steps through the entire specified form. If you want to exit
from the stepper before it steps through a form, specify the QUIT
stepper command. This command causes the stepper to return control to
the previous command level that was active when the stepper was
invoked.

Step 2> QUIT
Lisp>

4-18

DEBUGGING FACILITIES

By default, the QUIT command displays a confirmation message before it
causes the stepper to exit. For example:

Step 2> QUIT
Do you really want to exit the stepper?

If you respond to the message by typing YES, the stepper exits and
returns control to the command level that was active when it was
invoked.

Do you really want to exit the stepper? YES
Lisp>

If you respond by typing NO, the stepper prompts you for another
command.

Do you really want to exit the stepper? NO
Step 2>

You can prevent the stepper from displaying the confirmation message
by specifying the QUIT command with a value other than NIL. For
example:

Step 2> QUIT T
Lisp>

A description of the QUIT command is provided in Section 4.5.4.2.

4.5.3 Stepper Output

Once you invoke the stepper with a specified form, the stepper
displays two types of information as the LISP system evaluates the
form. The two types of information are the following:

• A description of each subform of the specified form

• A description of the return value from each subform

If the subform being evaluated is a symbol, the stepper
descriptions in a line of text that includes
information:

displays the
the following

• The nested level of the symbol

• The control stack frame number that indicates where the symbol
and its return value are stored

• The symbol

• The return value

4-19

DEBUGGING FACILITIES

The stepper indicates the nested level of a sym~ol with an
indentation. When the number of nested levels lncreases, the
indentation increases. After making the appropriate indentation, the
stepper displays the control stack frame number, the symbol, and the
return value in the following format:

#n: symbol => return-value

If the subform being evaluated is not a symbol, the stepper displays a
line of text for each description. The description of a subform
consists of the following information:

• The nested level of the subform

• The control stack frame number that indicates where the
subform is stored

• The subform

The stepper indicates the nested level of a subform with an
indentation. When the number of nested levels increases, the
indentation increases. After making the appropriate indentation, the
stepper displays the control stack frame number and the subform in the
following format:

#n: (subform)

The description of a return value includes the following information:

• The nested level of the return value

• The control stack frame number that indicates where the return
val ue iss to red

• The return value

The stepper also indicates the nested level of each return value with
an indentation. The indentation matches the indentation of the
corresponding call. After making the appropriate indentation, the
stepper displays the control stack frame number and the return value
in the following format:

#n => return-value

Suppose you define a function named FACTORIAL.

Lisp> (DEFUN FACTORIAL (N)
(IF «= N 1) 1 (*N (FACTORIAL (- N 1»»)

FACTORIAL

4-20

DEBUGGING FACILITIES

The following example illustrates the format of the output the stepper
displays when you invoke it with the form (FACTORIAL 3):

Lisp> (STEP (FACTORIAL 3»
: *9: (FACTORIAL 3)
Step 1> STEP
: : #15: (BLOCK FACTORIAL (IF «= N 1) 1 (* N (FACTORIAL (- N 1»»)
Step 2> STEP
: : : #22: (IF «= N 1) 1 (* N (FACTORIAL (- N 1»»
Step 3> STEP
: : : : #28: «= N 1)
Step 4> STEP
: : : : : 133: N => 3
: : : : *28 => NIL
: : : : #27: (* N (FACTORIAL (- N 1»)
Step 4> STEP
: : : : : *32: N => 3
: : : : : #31: (FACTORIAL (- N 1»
Step 5> STEP
: : : : : : #36: (- N 1)
Step 6> STEP
: : : : : : : #41: N => 3
: : : : : : #36 =) 2
: : : : : : #37: (BLOCK FACTORIAL (IF «= N 1) 1 (* N (FACTORIAL (- N 1»»)
Step 6> OVER

6

: : #37 =) 2
•• : #31 => 2
• • #27 => 6
: #22 => 6
#15 => 6

#9 => 6

Note that the FACTORIAL function is a recursive function, and in the
preceding example, there are three levels of recursion. The stepper
indicates the nested level of each subform with an indentation,
indicated with a colon followed by a space (:). The stepper
indicates the number of the stack frame in which a call is stored with
an integer. The integer is preceded with a number sign and followed
by a colon (#n:).

The nested level of each return value matches the indentation of the
corresponding subform. The stepper indicates the number of the
control stack frame the LISP system pushes the value onto with an
integer that matches the stack frame number of the corresponding
subform. The integer is preceded by a number sign and followed by an
arrow (#n =» that points to the return value.

4.5.4 Using Stepper Commands

The stepper commands are words that describe the operation you want
the stepper to perform. You must specify some commands with
arguments. Arguments modify a command; they provide the stepper with
additional information on how to execute the command.

You can abbreviate stepper commands to as few characters as you like,
as long as there is no ambiguity in the abbreviation.

4-21

DEBUGGING FACILITIES

Each time a command is executed, the stepper displays a return value
if the subform returns a value, displays the next subform, and prompts
you for another command. Enter a stepper command by typing the
command name or abbreviation and then pressing the RETURN key. For
example:

Step 2> STEP ru
: : : #22: (IF «= N 1) 1 (* N (FACTORIAL (- N 1»»
Step 3>

If you press only the RETURN key, the LISP system evaluates the
subform the stepper displays. If the evaluation returns a value, the
stepper displays the value and the next subform and then prompts you
for another command.

Step 2) ru
: : : #22: (IF «= N 1) 1 (* N (FACTORIAL (- N 1»»
Step 3>

Table 4-4 provides a summary of the stepper commands. Descriptions of
the stepper commands are provided in Section 4.5.4.2.

Command

?

BACKTRACE

DEBUG

EVALUATE

FINISH

HELP

OVER

SHOW

QUIT

RETURN

STEP

UP

Table 4-4
Stepper Commands

Description

Displays help text about the stepper commands.

Displays a backtrace of a form's evaluation.

Invokes the debugger.

Evaluates a specified form with the
disabled.

stepper

Finishes the evaluation of the form that was
specified in the call to the STEP macro with the
stepper disabled.

Displays help text about the stepper commands.

Evaluates the subform in the current stack frame
with the stepper disabled.

Displays the subform in the current stack frame.

Exits the stepper.

Forces the current stack frame to return a value.

Evaluates the subform in the current stack frame
with the stepper enabled.

Evaluates subforms with the stepper disabled until
the stepper gets back to a subform that contains
the subform in the current stack frame.

4-22

DEBUGGING FACILITIES

4.5.4.1 Arguments - Stepper command arguments modify the operations
the stepper commands perform. You must specify some stepper commands
with an argument. Some commands accept optional arguments. The
arguments you can specify with the stepper commands are the following:

• Integer

• Form

• Stepper command

NOTE

Only form arguments are evaluated.

Enter an argument after the command it modifies and press the RETURN
key. For example:

Step 3) EVALUATE «= N I)@]

Depending on the command, an argument is either required or optional.
If an argument is required and you omit it, the stepper prompts you
for the argument. For example:

Step 3) EVALUATE @]
Evaluate: «= N 1)

The stepper does not prompt for arguments if you specify them in the
command line.

4.5.4.2 Stepper Commands - The stepper provides several commands that
enable you to control how it steps through a forms .evaluation.

HELP
?

Help Commands

The HELP command displays help text about the stepper
commands. You can specify this command with one
argument. The argument must be the name of the stepper
command about which you want help text. If you specify
the HELP command without an argument, the stepper
displays a list of the stepper commands.

You can abbreviate this command by using a question
mark (?).

Evaluation Command

You can evaluate expressions while you are in the
stepper. If you want the LISP system to evaluate a
form, you can specify the form and then press the
RETURN key. If you want the system to evaluate a
symbol, you must use the EVALUATE command.

4-23

EVALUATE

DEBUG

SHOW

QUIT

BACKTRACE

DEBUGGING FACILITIES

The EVALUATE command causes the LISP system to
explicitly evaluate a specified form. You must specify
the command with an argument. The argument must be the
form you want the system to evaluate. The system
evaluates the form in the lexical environment of the
form currently being stepped.

Debugger Command

The DEBUG command invokes the debugger at the control
stack frame that stores the call to the current form.
When the debugger returns. control to the stepper, the
stepper prompts you for a command.

Display Command

The SHOW command displays the subform that is' in the
current stack frame such that its representati0n is
easy to read.

Exiting Command

The QUIT command causes the stepper to exit and return
control to the command level that was active when the
stepper was invoked. You can specify this command with
an optional argument. If you specify NIL, the stepper
displays a confirmation message before it causes the
stepper to exit. If you respond to the message by
typing YES, the stepper exits. If you specify a value
other than NIL, the stepper does not display a message.
The default value for the optional argument is NIL.

Backtrace Command

The BACKTRACE command lists the subforms of the form
being stepped through. You can specify the commmand
with an optional integer argument. If you specify the
argument, its value determines the number of subforms
that are to be listed. The stepper works its way back
the specified number of subforms and then lists the
subforms in the order in which they were invoked. If
you do not specify the argument, the stepper lists all
the subforms the LISP system is evaluating.

Commands that Continue Evaluation of the Form Being Stepped

Several stepper commands continue the evaluation of the
form that is being stepped, each command continuing the
evaluation in a different way.

4-24

DEBUGGING FACILITIES

FINISH The FINISH command evaluates the form that you
specified in the call to the STEP macro. You can
specify the command with an optional argument. The
argument must be a form. When the stepper executes the
command, the LISP system evaluates the form. If the
evaluation returns a value other than NIL, the stepper
steps through the evaluation of the form until it
reaches the end of the evaluation. If the evaluation
returns NIL, the LISP system disables the stepper and
then evaluates the form you specified in the call to
the STEP macro. The default value for the optional
argument is NIL.

OVER The OVER command causes the LISP system to evaluate the
subform in the current stack frame with the stepper
disabled.

RETURN The RETURN command causes the LISP system to evaluate
its argument and causes the stepper to force the
current stack frame to return the values returned by
the evaluation. This command must be specified with an
argument that must be a form. When you execute the
command, the LISP system evaluates the form. When the
evaluation is complete, the current stack frame returns
the values returned by the evaluated form.

STEP The STEP command causes the LISP system to evaluate the
subform in the current stack frame with the stepper
enabled. This command is equivalent to pressing the
RETURN key.

UP The UP command causes the LISP system to evaluate
subforms with the stepper disabled until control
returns to the subform that contains the subform in the
current stack frame. You can specify the command with
an optional integer argument (n). If you specify the
argument, the system evalutates subforms with the
stepper disabled until control returns to the subform
that contains the subform in the current stack frame n
levels deep. The default value of the argument is one.

4.5.5 Sample Stepper Sessions

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X»
FIRST-ELEMENT
Lisp> (SETF MY-LIST' (FIRST SECOND THIRD»
(FIRST SECOND THIRD)
Lisp> (STEP (FIRST-ELEMENT MY-LIST»
: #9: (FIRST-ELEMENT MY-LIST)
Step 1> STEP
: : #14: MY-LIST => (FIRST SECOND THIRD)
: : #15: (BLOCK FIRST-ELEMENT (CAR X»
Step 2> STEP
: : : #22: (CAR X)
Step 3> EVALUATE (CAR X)
FIRST
Step 3> FINISH
FIRST
Lisp>

4-25

DEBUGGING FACILITIES

2. Lisp> (DEFUN PLUS-Y (X) (+ X Y»
PLUS-Y
Lisp> (SETF Y 5)
5
Lisp> (STEP (PLUS-Y 10»
: #9: (PLUS-Y 10)
Step 1> STEP
: : #15: (BLOCK PLUS-Y (+ X Y»
Step 2> EVALUATE
Evaluate: (+ X Y)
15
Step 2> STEP
: : : #22: (+ X Y)
Step 3> BACKTRACE
(PLUS-Y 10)
: (BLOCK PLUS-Y (+ X Y»
: : (+ X Y)
Step 3> SHOW
(+ X Y)
Step 3> OVER
: : : #22 => 15
: : #15 => 15
: #9 => 15
15
Lisp

3. Lisp> (DEFUN ADDITION (X) (+ X Y»
ADDITION
Lisp> (SETF Y 5)
5
Lisp> (STEP (ADDITION 4»
: #9: (ADDITION 4)
Step 1> STEP
: : #15: (BLOCK ADDITION (+ X Y»
Step 2> STEP
: : : #22: (+ X Y)
Step 3> BACKTRACE
(ADDITION 4)
: (BLOCK ADDITION (+ X Y»
: : (+ X Y)
Step 3> EVALUATE
Evaluate: (+ X Y)
9
Step 3> STEP

9

: : #27: X => 4
: : : #26: Y => 5
: : #22 => 9
: #15 => 9
#9 => 9

Lisp>

4.6 TRACER

The VAX LISP tracer is a macro you can use to inspect a program's
evaluation. The tracer informs you when a function or macro is called
during a program's evaluation by printing information about each call
and return value to the stream bound to the *TRACE-OUTPUT* variable.
To use the tracer, you must enable it for each function and macro you
want traced.

4-26

DEBUGGING FACILITIES

NOTE

You cannot trace special forms.

4.6.1 Enabling the Tracer

You can enable the tracer for one or more functions and/or macros by
specifying the function and macro names as arguments in a call to the
TRACE macro. For example:

Lisp> (TRACE FACTORIAL ADDITION COUNTER)
(FACTORIAL ADDITION COUNTER)

The TRACE macro returns a list of the functions and macros that are to
be traced.

If you ~ry to trace a function or macro that is already being traced,
a warning message is displayed. To avoid this error, call the TRACE
macro without an argument to produce a list of the functions and
macros for which tracing is enabled. For example:

Lisp> (TRACE)
(FACTORIAL ADDITION COUNTER)

A description of the TRACE macro is provided in Section 8.7.

4.6.2 Disabling the Tracer

To disable the tracer for a function or macro, specify the name of the
function or macro in a call to the UNTRACE macro. It returns a list
of the functions and macros for which tracing has just been "disabled.
For example:

Lisp> (UNTRACE FACTORIAL ADDITION COUNTER)
(FACTORIAL ADDITION COUNTER)

You can disable tracing for all the functions for which tracing is
enabled by calling the UN TRACE macro without an argument. If you try
to disable tracing for a function that is not being traced, a warning
message is displayed.

The UNTRACE macro is described in COMMON LISP: The Language.

4.6.3 Tracer Output

Once you enable the tracer for a function or macro, the tracer
displays two types of information each time that function or macro is
called during a program's evaluation. The two types of information
are the following:

• A description of each call to the specified function or macro

• A description of each return value from the specified function
or macro

4-27

DEBUGGING FACILITIES

The description of a call to a function or macro consists of a line of
text that includes the following information:

• The nested level of the call

• The control stack frame number that indicates where the call
is stored

• The name and arguments of the function associated with the
function or macro that is called

The tracer indicates the nested level of a call with an indentation.
When the number of nested levels increases, the indentation increases.
After making the appropriate indentation, the tracer displays the
control stack~ frame number, the function name, and the arguments in
the following format:

in: (function-name arguments)

The tracer also displays a line of text for the return value of each
evaluation. The line of text the tracer displays for each value
includes the following information:

• The nested level of the return value

• The control stack frame number that indicates where the return
value is stored

• The return value

The tracer indicates the nested level of each return value with an
indentation. The indentation matches the indentation of the
corresponding call. After making the indentation, the tracer displays
the control stack frame number and the return value in the following
,format:

#n => return-value

Suppose you define a function named FACTORIAL.

Lisp> (DEFUN FACTORIAL (N)
(IF «= N 1) 1 (* N (FACTORIAL (- N 1»»)

FACTORIAL

The following example illustrates the format of the output the tracer
displays when the function FACTORIAL is called with the argument 3:

Lisp> (FACTORIAL 3)
#11: (FACTORIAL 3)
• #27: (FACTORIAL 2)
• • #43: (FACTORIAL 1)
• • #43 => 1
• #27 => 2
#11 => 6
6

Note that the FACTORIAL function is a recursive function, and in the
case of the preceding example, there are three levels of recursion.
The tracer indicates t·he nested level of each call wi th an
indentation. Each level of indentation is indicated with a period
followed by a space (.). The tracer indicates the number of the
stack frame in which a call is stored with an integer. The integer is
preceded with a number sign and followed by a colon (#n:).

4-28

DEBUGGING FACILITIES

The nested level of each return value matches the indentation of the
corresponding call. The tracer indicates the number of the control
stack frame the LISP system pushes the value onto with an integer.
This integer matches the stack frame number of the corresponding call.
It is preceded with a number sign and followed by an arrow (#n =»
that points to the return value.

4.6.4 Tracer options

You can modify the output of the tracer by specifying options in the
call to the TRACE macro. Each option consists of a keyword-value
pair. The following call to the TRACE macro shows th~ format in which
to specify keyword-value pairs:

(TRACE (name keyword-l value-l
keyword-2 value-2 ...))

You can also specify options for a list of functions and/or macros.
The following call to the TRACE macro shows the format in which to
specify the same options for a list of functions and macros:

(TRACE ((name-l name-2 •••) keyword-l value-l
keyword-2 value-2 ...))

NOTE

Forms the system evaluates just before
or just after a call to a function or
macro for which tracing is enabled are
evaluated in a null lexical environment.
For information on lexical environments,
see COMMON LISP: The Language.

A list of the keywords you can use to specify options follows:

• :DEBUG-IF
:PRE-DEBUG-IF \-- Invoke the debugger
:POST-DEBUG-IF

• :PRINT
:PRE-PRINT \-- Add information to tracer output
:POST-PRINT

• :STEP-IF -- Invokes the stepper

• :SUPPRESS-IF -- Removes information from tracer output

• :DURING -- Determines when a function or macro is traced

4-29

DEBUGGING FACILITIES

4.6.4.1 Invoking the Debugger - You can cause the tracer to invoke
the debugger by specifying the :DEBUG-IF, :PRE-DEBUG-IF, or
:POST-DEBUG-IF keyword. These keywords must be specified with a form.
The LISP system evaluates the form before, after, or before and after
each call to the function or macro for which the keyword modifies the
tracer. If the form returns a value other than NIL, the tracer
invokes the debugger after each evaluation.

4.6.4.2 Adding Information to Tracer Output - You can add information
to tracer output by specifying the :PRINT, :PRE-PRINT, or :POST-PRINT
keyword. You must specify these keywords with a list of forms. The
LISP system evaluates the list of forms and the tracer displays the
return values before, after, or before and after each call to the
function or macro the keyword modifies the tracer for. The tracer
displays the values one per line and indents them to match other
tracer output. If the forms to be evaluated cause an error, the
debugger is invoked.

4.6.4.3 Invoking the Stepper - You can cause the tracer to invoke the
stepper by specifying the :STEP-IF keyword. You must specify this
keyword with a form. The LISP system evaluates the form before each
call to the function or macro for which the keyword modifies the
tracer. If the form returns a value other than NIL, the tracer
invokes the stepper.

4.6.4.4 Removing Information from Tracer Output - You can remove
information from tracer output by specifying the :SUPPRESS-IF keyword.
You must specify this keyword with a form. The LISP system evaluates
the form before each call to the function or macro for which the
keyword modifies the tracer. If the form returns a value other than
NIL, the tracer does not display the arguments and the return value of
the function or macro being traced.

4.6.4.5 Defining When a Function or Macro Is Traced - You can define
when a function or macro, for which tracing is enabled, is to be
traced by specifying the :DURING keyword. You must specify this
keyword with a function or macro name or a list of function and/or
macro names. The functions and macros for which the tracer is enabled
are traced only when they are called (directly or indirectly) from
within one of the functions or macros whose names are specified with
the keyword.

4.7 THE EDITOR

The VAX LISP Editor is a powerful, extensible editor that enables you
to create and edit LISP programs. Once you have located an error and
you know which function in your program is causing the error, you can
use the Editor to correct the error. Use the ED function to invoke
the Editor. For a complete description of the ED function, the VAX
LISP Editor, and instructions on how to use the Editor, see the VAX
LISP Editor Manual.

4-30

CHAPTER 5

THE PRETTY PRINTER

A pretty printer is a facility that formats the printed representation
of LISP objects. The pretty printer inserts indentations, spaces, and
line breaks into its output to increase readability and help clarify
the meaning of the object that is printed. A pretty printer is
particularly useful for printing large and complex lists, arrays, and
structures.

The VAX LISP pretty printer* consists of two routines: a dispatch
routine and an output routine. The dispatch routine performs a series
of checks on several control and formatting variables whose values
influence the format of an object's printed representation. The
pretty printer's output routine prints the output.

You can use the VAX LISP pretty printer in three ways.

• You can use it with the default values of the control and
formatting variables. By default, the pretty printer produces
output that can be read back into the LISP system.

• You can control its output by changing the values of the
control variables.

• You can extend it by defining formatting functions.

This chapter explains the three ways of using the pretty printer.

5.1 USING THE PRETTY PRINTER

To use the pretty printer, do one of the following:

• Call a function that invokes the
FORMAT-USING-PPRINT-TEMPLATE, PPRINT,
PPRINT-PLIST.

pretty printer
PPRINT-DEFINITION, or

• Set the *PRINT-PRETTY* variable to T and
PRINI-TO-STRING, PRINC, PRINC-TO-STRING,
WRITE-TO-STRING function.

call
PRINT,

the PRINl,
WRITE, or

• Specify the :PRETTY keyword in a call to the WRITE or the
WRITE-TO-STRING function.

* The VAX LISP pretty printer is based on the pretty-printer program
that is described in the paper User Format Control in a Lisp
Prettyprinter, ACM TOPLAS V5 #4, pp. 513-531, october 1983. ~he-paper
and the pretty-printer program were written by Richard C. Waters,
Ph.D., of the MIT Artificial Intelligence Laboratory.

5-1

THE PRETTY PRINTER

• Specify the -N or -:N directive in the control string argument
of a call to the FORMAT function.

5.1.1 Pretty-printing Functions

You can invoke the pretty printer by calling one of the functions
listed in Table 5-1.

Table 5-1
Pretty-printing Functions

Function

FORMAT-USING-PPRINT-TEMPLATE

PPRINT

PPRINT-DEFINITION

PPRINT-PLIST

Description

Processes its arguments and uses
the results to pretty-print output
to a specified stream. If the
value of the stream argument is
NIL, the function creates a string
that contains the output. If the
value of the stream argument is T,
the function pretty-prints output
to the stream that is the value of
the *STANDARD-OUTPUT* variable.

pretty-prints its object argument
to a stream. The default stream is
the value of the *STANDARD-OUTPUT*
variable.

Pretty-prints the function
definition of its symbol argument
to a stream. The default stream is
the value of the *STANDARD-OUTPUT*­
variable.

pretty-prints the property list of
its symbol argument to a stream.
The default stream is the value of
the *STANDARD-OUTPUT* variable.

Detailed descriptions of the FORMAT-USING-PPRINT-TEMPLATE,
PPRINT-DEFINITION, and PPRINT-PLIST functions are provided in Part II.
A description of the PPRINT function is provided in COMMON LISP: The
Language.

5.1.2 *PRINT-PRETTY* Variable

If you set the *PRINT-PRETTY* variable to T, the pretty printer is
enabled. The following example shows the output that is printed when
the variable is set to NIL:

Lisp> (WRITE-TO-STRING # 'COUNT-EVERYTHING)
"(LAMBDA (LIST) (BLOCK COUNT-EVERYTHING (COND «NULL LIST) 0) «A
TOM LIST) 1) (T (+ (COUNT-EVERYTHING (CAR LIST» (COUNT-EVERYTHIN
G (CDR LIST»»»)"

5-2

DEBUGGING FACILITIES

Editor An extensible editor that enables you to edit
programs and data structures.

5.1 CONTROL VARIABLES

VAX LISP provides two variables that control the output of the
tracer facilities: debugger, the stepper, and the

DEBUG-PRINT-LENGTH and *DEBUG-PRINT-LEVEL*.
analogous to the COMMON LISP variables
PRINT-LEVEL but are used only in the debugger.

These variables are
PRINT-LENGTH and

DEBUG-PRINT-LENGTH

DEBUG-PRINT-LEVEL

5.2 CONTROL STACK

Controls the number of displayed elements at
each level of a nested data object. The
variable's value must either be an integer or
NIL. The default value is NIL (no limit).

Controls the number of displayed levels of a
nested data object. The variable's value
must either be an integer or NIL. The
default value is NIL (no limit).

The control stack is the part of LISP memory that stores calls to
functions, macros, and special forms. The stack consists of stack
frames. Each time you call a function, macro, or special form, the
VAX LISP system does the following:

1. Opens a stack frame.

2. Pushes the name of the function associated with the function,
macro, or special form that was called onto the stack frame.

3. Pushes the function's arguments onto the stack frame.

4. Closes the stack frame when all the function's arguments are
on the stack frame.

5. Evaluates the function.

Each control stack frame has a frame number, which is displayed as
part of the stack frame's output. Stack frame numbers are displayed
in the output of the debugger, the stepper, and the tracer.

•

There is always one active stack frame, and it can either be
significant or insignificant. Significant stack frames are those that
invoked documented and user-created functions. Insignificant stack I
frames are those that invoked undocumented functions. .

Version 2.2, July 1987 5-3

DEBUGGING FACILITIES

Debugger commands show only significant stack frames unless you
specify the ALL modifier with a debugger command (see Section
5.5.3.1). Significant stack frames store one of the following calls:

• A call to a function named by a symbol that is in the current
package

• A call to a function that is accessible in the current package
and is explicitly or implicitly called by another function
that is in the current package

See COMMON LISP: The Language for information on packages.

Many stack frames in the control stack store internal, undocumented
functions. These stack frames are insignificant to most users;
therefore, by default, the debugger does not display their
representation. However, if you are using the debugger and you want
to examine these stack frames, you can specify the ALL modifier with
debugger commands.

5.3 ACTIVE STACK FRAME

The active stack frame is a stack frame that stores a call to a
function the LISP system is evaluating. The system can evaluate a
function call in the active stack frame because the frame contains all
the function's argument values. Only one stack frame is active at a
time and an active stack frame can exist anywhere on the control
stack.

The active stack frame can have a previous active stack frame and/or
it can have a next active stack frame. The previous active stack
frame represents the caller of the function in the current active
stack frame.

5.4 BREAK LOOP

The break loop is a read-eval-print loop that you can invoke to debug
a program. You can invoke the break loop while a program is being
evaluated. If you do, the evaluation is interrupted and you are
placed in the loop.

Version 2.2, July 1987 5-4

THE PRETTY PRINTER

Table 5-2 (Cont.)
pretty-printer Control Variables

Variable Default Value

PPRINT-LEFT-MARGIN NIL

PPRINT-MAJOR-WIDTH 20

PPRINT-MISER-WIDTH

PPRINT-RIGHT-MARGIN NIL

PPRINT-START-LINE NIL

PRINT-ARRAY T

PRINT-CIRCLE NIL

PRINT-LENGTH NIL

PRINT-LEVEL NIL

Note the following:

Operation

sets the left margin for the
pretty printer. NIL means
zero.

Shifts logical units of an
object to the left when the
remaining width available for
printing is less than its
value (see Section 5.2.3.1).

Prints in miser mode when the
remaining width available for
printing is less than its
value (see Section 5.2.3.2).

Sets the right margin for the
pretty printer. NIL means 72.

Sets the line number of an
object at which the pretty
printer is to start printing.
NIL means zero.

whether the Determines
contents of
printed.

arrays are to be

Determines whether an object
is to be checked for
circularity (see Section
5.2.1.3) •

Controls the number of
elements that can be printed
for each level of a nested
object. NIL means no 1 imi t.

Controls the number of levels
that can be printed for a
nested object. NIL means no
1 imi t.

• Line and column numbers are zero based.

• Printing starts in the column indicated by the
PPRINT-LEFT-MARGIN variable and on the line indicated by the
PPRINT-START-LINE variable.

• printing ends in the column before the column indicated by the
PPRINT-RIGHT-MARGIN and on the line before the line
indicated by the *PPRINT-END-LINE* variable.

• The number of columns the pretty printer prints is the
difference between the values of the *PPRINT-RIGHT-MARGIN* and
PPRINT-LEFT-MARGIN variables.

5-5

THE PRETTY PRINTER

• The number of lines the pretty printer prints is the
difference between the values of the *PPRINT-END-LINE* and
*PPRINT-START-LINE~ variables.

The *PRINT-ARRAY*, *PRINT-CIRCLE*, *PRINT-LENGTH*, and *PRINT-LEVEL*
variables are described in COMMON LISP: The Language. The rest of
the variables listed in the preceding table are described in Part II.

5.2.1 Controlling How Much Is Printed

By default, the pretty printer prints the entire object that is
specified in a call to a pretty-printing function. You can control
how much of an object the pretty printer prints by setting the values
of the *PPRINT-END-LINE*, *PPRINT-START-LINE*, *PRINT-ARRAY*,
PRINT-CIRCLE, *PRINT-LENGTH*, and *PRINT-LEVEL* variables.

5.2.1.1 pretty-printing Sections of an Object - The values of the
PPRINT-START-LINE and the *PPRINT-END-LINE* variables determine at
which lines the pretty printer is to start and stop printing. By
default, the values of these variables are NIL. The pretty printer
interprets NIL to be zero for the *PPRINT-START-LINE* variable and the
end of the object for the *PPRINT-END-LINE* variable.

You can instruct the pretty printer to print a section of an object by
setting the values of the *PPRINT-START-LINE* and *PPRINT-END-LINE*
variables to integers. The integers you specify determine at which
lines the pretty printer is to start and stop printing. If you set
the values to integers, the pretty printer skips the number of lines
indicated by the value of the *PPRINT-START-LINE* variable and then
starts printing. The pretty printer prints up to the line indicated
by the value of the *PPRINT-END-LINE* variable, prints an ellipsis
(•••) at the end of the last line, and stops printing. The ellipsis
indicates that the output is truncated. For example, suppose you
define the following function:

Lisp> (DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS
MARRIED?)

(UNLESS (SYMBOLP NAME)
(ERROR "-S must be a symbol." NAME»

(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED?)

NAME)
RECORD-MY-STATISTICS

If the value of the *PPRINT-START-LINE* variable is four and the value
of the *PPRINT-END-LINE* variable is six, a call to the
PPRINT-DEFINITION function produces the following output:

Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS)
(SETF (GET NAME 'AGE) AGE

(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS

5-6

DEBUGGING FACILITIES

Use the CONTINUE function again to complete the function's evaluation.

Break> (CONTINUE)
100

Changes that you make to global variables and global definitions while
you are in the break loop remain in effect after you exit the loop and
your program continues. For example, if you are in the break loop and
you find that the value of the variable named *FIRST* has an incorrect
value, you can change the variable's value. The change remains in
effect after you exit the break loop and continue your program's
evaluation.

NOTE

The forms you type while you are in the break loop are
evaluated in a null lexical environment, as though
they are evaluated at top level. Therefore, you
cannot examine the lexical variables of a program that
you interrupt with the break loop. To examine those
lexical variables, invoke the debugger (see Section
5.5). For information on lexical environments, see
COMMON LISP: The Language.

5.4.4 Break Loop Variables

The break loop uses a copy of the top-Ievel-loop variables (plus (+),
hyphen (-), asterisk (*), slash (I), and so on) the same way the
top-level loop uses them (see COMMON LISP: The Language). These
variables preserve the input expressions you specify and the output
values the VAX LISP system returns while you are in the break loop.

5.5 DEBUGGER

The VAX LISP debugger is a control stack debugger. You can use it
interactively to inspect and modify the LISP system's control stack
frames. The debugger has a pointer that points to the current stack
frame. The current stack frame is the last frame for which the
debugger displayed information. The debugger provides several
commands that:

• Display help

• Evaluate a form or reevaluate the function call a stack frame I
stores

Version 2.2, July 1987 5-7

DEBUGGING FACILITIES

• Handle errors

I • Change which stack frame is considered current

• Inspect or modify the function call in a stack frame

• Display a summary of the control stack

I The debugger reads its input from and prints its output to the streams
bound to the *DEBUG-IO* and the *TRACE-OUTPUT* variables.

I

I

NOTE

The stack frames the debugger displays are no longer
active.

Before you use the debugger, you should be familiar with the VAX LISP
control stack. The control stack is described in Section 5.2.

5.5.1 Invoking the Debugger

The VAX LISP system invokes the debugger when errors occur. You can
invoke the debugger by calling the VAX LISP, DEBUG function. For
example:

Lisp> (DEBUG)

When the debugger is invoked, a message that identifies the debugger,
a message that identifies the current stack frame preceded by "Apply"
or "Eval", and the command prompt are displayed at the left margin of
your terminal in the following format:

Control Stack Debugger
Apply #5: (DEBUG)
Debug n>

The letter n in the prompt represents an integer, which indicates the
number of the nested command level you are in. The value of n
increases by one each time the command level increases. For example,
the top-level read-eval-print loop is level O. If an error is invoked
from the top-level loop, the debugger displays the prompt Debug 1>.
If you make a mistake again causing an error while within the
debugger, that error causes the debugger to display the prompt
Debug 2>.

After the debugger is invoked, you can use the debugger commands to
inspect and modify the contents of the system's control stack.

Version 2.2, July 1987 5-8

DEBUGGING FACILITIES

A description of the DEBUG function is provided in Part II.

5.5.2 Exiting the Debugger

To exit the debugger, use the QUIT debugger command. It causes the
debugger to return control to the previous command level.

Debug 2> QUIT
Debug 1>

If you specify the QUIT command when the debugger command level is 1
(indicated by the prompt Debug 1», the command causes the debugger to
exit and returns you to the system's top level. For example:

Debug 1> QUIT
Lisp>

By default, the QUIT command displays a confirmation message before
the debugger exits if a continuable error causes the debugger to be
invoked. For example:

Debug 1> QUIT
Do you really want to return to the previous command level?

If you type YES, the debugger returns control to the previous command
level.

Do you really want to return to the previous command level? YES
Lisp>

If you type NO, the debugger prompts you for another command.

Do you really want to returri to the previous command level? NO
Debug 1>

You can prevent the debugger from displaying the confirmation message
by specifying the QUIT command with a value other than NIL. For
example:

Debug 1> QUIT T
Lisp>

A description of the QUIT command is provided in Section 5.5.3.2.

5.5.3 Using Debugger Commands

The debugger commands let you inspect and modify the current control
stack frame and move to other stack frames. You must specify many of

Version 2.2, July 1987 5-9

I

DEBUGGING FACILITIES

the debugger commands with one or more arguments that qualify command
operations. These arguments are listed in Section 5.5.3.1.

You can abbreviate debugger commands to as few characters as you like,
as long as no ambiguity is in the abbreviation.

Enter a debugger command by typing the command name or abbreviation
and then pressing the RETURN key. For example:

Debug 1> BACKTRACE<RET>

If you press only the RETURN key, the debugger prompts you for another
command.

Table 5-2 provides a summary of the debugger commands. Detailed
descriptions of the commands are provided in Section 5.5.3.2.

Table 5-2: Debugger Commands

Command Description

BACKTRACE Displays a backtrace of the control stack.

'BOTTOM Moves the current frame pointer to the first stack
frame on the control stack.

CONTINUE

DOWN

ERROR

EVALUATE

GOTO

HELP (or) ?

QUIT

REDO

RETURN

SEARCH

Continues execution by returning from the
continuable error that invoked the debugger.

Moves the current frame pointer down the control
stack.

Redisplays the error message that was displayed
when the debugger was invoked.

Evaluates a specified form.

Moves the pointer to a specified stack frame.

Displays help text about the debugger commands.

Exits to the previous command level.

Reinvokes the function in the current stack frame.

Evaluates its arguments and causes
stack frame to return the same
evaluation returns.

Searches the control stack for
function.

a

the current
values the

specified

Version 2.2, July 1987 5-10

THE PRETTY PRINTER

PPRINT-MISER-WIDTH, and *PPRINT-MAJOR-WIDTH* variables are 72, 60,
and 20 respectively:

Lisp> (PPRINT-DEFINITION 'FACTORS-OF)
(DEFUN FACTORS-OF (INTEGER)

(IF (OR (ZEROP INTEGER) (= 1 (ABS INTEGER»)
(LIST INTEGER)
(DO

«RESULT-LIST NIL)
(TRY-THIS-INTEGER 2)
(REST-TO-BE-FACTORED (ABS INTEGER»)

«= REST-TO-BE-FACTORED 1)
(IF

(MINUSP INTEGER)
(CONS -1 (NREVERSE RESULT-LIST»
(NREVERSE RESULT-LIST»)

(LET «NEW-REMAINDER
(/ REST-TO-BE-FACTORED TRY-THIS-INTEGER»)

(COND
«INTEGERP NEW-REMAINDER)

(SETF REST-TO-BE-FACTORED NEW-REMAINDER)
(PUSH TRY-THIS-INTEGER RESULT-LIST»

(T (INCF TRY-THIS-INTEGER»»»)

In the second call to the IF special form, the pretty printer uses
less indentation than in the first call to the form.

When the pretty printer shifts a major logical unit to the left, it
also shifts the level of indentation to the left. Whether the pretty
printer uses miser mode when it shifts a major logical unit to the
left depends on the actual level of indentation, not on the level of
indentation it would have used if it did not shift the unit.

Suppose the values of the *PPRINT-MISER-WIDTH*
PPRINT-MAJOR-WIDTH variables are 60. When the pretty
produces the output for the FACTORS-OF function, it shifts
logical unit to the left and it uses miser mode.

Lisp> (PPRINT-DEFINITION 'FACTORS-OF)
(DEFUN FACTORS-OF (INTEGER)

(IF (OR (ZEROP INTEGER) (= 1 (ABS INTEGER»)
(LIST INTEGER)

i--- I
(DO

«RESULT-LIST NIL)
(TRY-THIS-INTEGER 2)
(REST-TO-BE-FACTORED (ABS INTEGER»)

«= REST-TO-BE-FACTORED 1)

i--- I

(IF
(MINUSP INTEGER)
(CONS -1 (NREVERSE RESULT-LIST»
(NREVERSE RESULT-LIST»)

(LET ((N EW-REMAINDER
(/ REST-TO-BE-FACTORED TRY-THIS-INTEGER»)

(COND

i--- I
)

i--- I

«INTEGERP NEW-REMAINDER)
(SETF REST-TO-BE-FACTORED NEW-REMAINDER)
(PUSH TRY-THIS-INTEGER RESULT-LIST»

(T (INCF TRY-THIS-INTEGER»»

))

5-11

and
printer

a major

THE PRETTY PRINTER

5.3 EXTENDING THE PRETTY PRINTER

The pretty printer consists of two routines that run concurrently: a
dispatch routine and an output routine. The dispatch routine is the
part of the pretty printer that determines which formatting function
the pretty printer is to use to format an object's printed
representation. Because the two routines run concurrently, formatting
functions do not print output. They put formatting information on a
queue for the output routine, which prints the object's
representation.

When the pretty printer
data type of the object
formatting function the
output. The routine
order:

is invoked, the dispatch routine checks the
to be printed. The data type determines which
pretty printer calls to format the object's
checks the object's data type in the following

• Number, bit vector, character, string, or symbol

• List

• Structure

• Array

• Other types

Numbers, bit vectors, characters, strings, and symbols are objects
that can usually be printed on one line. Therefore, the pretty
printer prints these objects the same way the printer prints them.
Lists, structures, and arrays are more complicated objects. When the
printer prints these objects, the output is difficult to read. The
pretty printer formats the printed output of these objects such that
output can be read more easily.

The pretty printer calls default formatting functions to format
objects that are standard LISP data types. You can extend the pretty
printer by defining your own formatting functions and adding the
functions to the dispatch-routine algorithm. You can add formatting
functions to the algorithm in three ways.

• Use the PPRINT-FORMATTER function to associate
function with a symbol that names a function.
the association, the pretty printer uses
function to format the representation of calls
the symbol names.

a formatting
After you make

the formatting
to the function

• Replace the default formatting functions for lists. The
system uses three default formatting functions for lists. To
change one of these functions, you must bind a formatting
function that you define to one of the following variables:

• *PPRINT-LAMBDA-APPLICATION*

• *PPRINT-DATA-LIST*

• *PPRINT-FUNCTION-CALL*

When the value of these variables is NIL, the pretty printer
uses the system's default formatting functions.

5-12

THE PRETTY PRINTER

• Push formatting functions that format arrays and other objects
onto the list that is bound to one of the following formatting
variables:

• *PPRINT-ARRAY-FORMATTERS*

• *PPRINT-SPECIAL-FORMATTERS*

By default, the value of these variables is NIL. When the
value is NIL, the dispatch routine disregards the variables
and continues to search for the correct formatting function.

Before you define a formatting function and extend the pretty printer,
you must understand the dispatch-routine algorithm. You must know
where in the algorithm you want the routine to check whether your
formatting function applies to the object being printed.

5.3.1 Dispatch-Routine Algorithm

This section describes the algorithm the pretty printer's dispatch
routine uses to decide which formatting function to call to format an
object. Figure 5-1 illustrates the steps taken by the algorithm.

The dispatch routine calls all formatting functions with one argument,
the object being pretty-printed.

I. The dispatch routine calls the formatting functions in the
list bound to the *PPRINT-SPECIAL-FORMATTERS* variable,
starting with the first function. Calls to the
EXPAND-PPRINT-TEMPLATE macro produce output regardless of the
value the function returns.

A. If a function returns a value other than NIL, the
dispatch routine stops.

B. If a function returns NIL, the routine does one of the
following:

1. If the function is not the last function in the list,
the routine evaluates the next function in the list.

2. If the function is the last function, the routine
goes to Step II.

II. The routine checks whether the object is a number, bit
vector, character, string, or symbol.

A. If it is not one of these data types, the routine goes to
Step III.

B. If it is one of these data types, the dispatch routine
stops and the pretty printer prints the object in a
format that is similar to the output produced by the
PRINI or the PRINC function.

III. The routine checks whether the object is a list.

A. If the object is not a list, the routine goes to Step IV.

B. If the object is a list, the routine checks whether the
first element of the list is a symbol that is associated
with a formatting function.

5-13

1.

THE PRETTY PRINTER

If the first element is such a symbol,
calls the formatting function the
associated with and stops.

the routine
symbol is

2. If the first element is not such a symbol, the
routine calls one of the three default formatting
functions for lists. These formatting functions are
bound to variables. The routine checks whether the
list represents a list of data, a call to a function,
or an application of a lambda expression and uses the
appropriate function. The variables the default
formatting functions are bound to are the following:

• *PPRINT-DATA-LIST*

• *PPRINT-FUNCTION-CALL*

• *PPRINT-LAMBDA-APPLICATION*

IV. The routine checks whether the object is a structure.

A. If the object is not a structure, the routine goes to
Step V.

B. If the object is a structure, the routine checks whether
a print function was specified in the structure's
definition.

1. If a print function was specified in the definition,
the dispatch routine calls that function to format
the structure and stops.

2. If a print function is
definition, the routine
formatting function for
structure and stops.

not specified in the
calls the system's default

structures to format the

V. The routine checks whether the object is an array.

A. If the object is not an array, the routine goes to Step
VI.

B. If the object is an array~ the routine does the
following:

1. Checks the value of the *PRINT-ARRAY* variable.

a. If the value is not NIL, the routine goes to Step
2.

b. If the value is NIL, the dispatch routine stops
and the pretty printer prints the array in a
format that is similar to the output produced by
the PRINI or the PRINC function.

2. The dispatch routine evaluates the formatting
functions in the list bound to the
PPRINT-ARRAY-FORMATTERS variable, starting with the
first function. Calls to the EXPAND-PPRINT-TEMPLATE
macro produce output regardless of the value the
function returns.

5-14

THE PRETTY PRINTER

a. If a function returns a value other than NIL, the
dispatch routine stops and the pretty printer
uses the value to format the object.

b. If a function returns NIL, the routine does one
of the following:

i • If the function is not the last function in
the list, the routine eva1 ua tes the next
function in the list.

i i • If the function is the last function, the
routine goes to Step VI.

VI. The pretty printer prints the object in a format that is
similar to the output produced by the PRINl or the PRINe
function and the formatting routine stops.

Figure 5-1 illustrates the dispatch routine's algorithm.

5-15

THE PRETTY PRINTER

Use a default
formatting function

Done

Object

YES

Figure 5-1 Dispatch-Routine Algorithm

5-16

Format so output
is similar to output
the PRIN1 and PRINC
functions produce

BACK TRACE

DEBUGGING FACILITIES

The following list desc~ibes what the command displays
when you specify each modifie~:

• ARGUMENTS -- A list of the a~guments in the cu~~ent
stack frame.

• CALL -- The function call that created the current
stack frame. The command displays the function call
so that its output is easy to read. The arguments
in the call a~e ~ep~esented by thei~ values.

• FUNCTION -- The function in the cu~~ent stack f~ame.
The function can be either inte~p~eted O~ compiled
with the COMPILE function. The function cannot be
displayed if it is a system function o~ if it is
loaded f~om a compiled file. I

• HERE -- A desc~iption of the cu~~ent stack f~ame.

Backt~ace Command

The BACKTRACE command displays the a~gument list of
each stack frame in the cont~ol stack, sta~ting f~om
the top of the stack. You can specify the command with
modifie~s to specify the style and extent of the
backtrace.

The modifie~s you can specify are ALL, NORMAL, QUICK,
HERE, TOP, or VERBOSE. By default, the command uses
the NORMAL and the TOP modifiers. The following list
describes the style o~ extent the BACKTRACE command
uses when you specify each modifie~:

• ALL -- Displays significant and insignificant stack
f~ames.

• NORMAL -- Displays the function name and argument
list in each stack f~ame.

• QUICK -- Displays the function name in each stack
frame.

• HERE -- Starts the backtrace at the cur~ent stack
frame.

• TOP -- starts the back trace at the top of the
control stack.

• VERBOSE
list,
frame.

and
Displays the function name, argument
local variable bindings in each stack

Ve~sion 2.2, July 1987 5-17

I

I

DEBUGGING FACILITIES

5.5.4 Using the DEBUG-CALL Function

The DEBUG-CALL function returns a list representing the call at the
current debug stack frame. This function is a debu9ging tool and
takes no arguments. The list returned by DEBUG-CALL can be used to
access the values passed to the function in the current stack frame.
If used outside the debugger, DEBUG-CALL returns NIL. The following
example shows how to use the function:

Lisp> (DEFVAR ADJUSTABLE-STRING
(MAKE-ARRAY 10 :ELEMENT-TYPE 'STRING-CHAR

:INITIAL-ELEMENT #\SPACE
:ADJUSTABLE T))

ADJUSTABLE-STRING
Lisp> (SCHAR ADJUSTABLE-STRING 3)

Fatal error in function SCHAR (signaled with ERROR).
Argument must be a simple-string: " "

Control Stack Debugger
App I Y # 4: (S CHAR " " 3)
Debug 1> (TYPE-OF (SECOND (DEBUG-CALL)))

(STRING 10)
Debug 1> RET #\SPACE
#\SPACE

In this case, the function in the current stack frame is SCHAR. The
call to (DEBUG-CALL) returns ·the list (SCHAR " " 3). The form (SECOND
(DEBUG-CALL» returns the first argument to SCHAR in the current stack
frame. Calling TYPE-OF with this LISP object determines that the
first argument to SCHAR is of type (STRING 10) and not a simple
string.

5.5.5 Sample Debugging Sessions

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X»

FIRST-ELEMENT
Lisp> (FIRST-ELEMENT 3)

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: 3

Control Stack Debugger
Apply #8: (CAR 3)
Debug 1> DOWN
Eval #7: (CAR X)
Debug 1> DOWN
Eval #6: (BLOCK FIRST-ELEMENT (CAR X»
Debug 1> DOWN

Version 2.2, July 1987 5-18

DEBUGGING FACILITIES

Apply i4: (FIRST-ELEMENT 3)
Debug 1> SHOW HERE
It is a cons
Format: FIRST-ELEMENT x
-- Arguments --
X : 3
Debug 1> SET
Type of SET operation: ARGUMENT
Argument Name: X
New Value: '(1 2 3)
Debug 1> WHERE
Apply i4: (FIRST-ELEMENT (1 2 3))
Debug 1> REDO
1
Lisp>

The argument in a stack frame is changed from an integer to a
list, and the function is reevaluated with the correct
argument.

Lisp> (DEFUN PLUS-Y (X) (+ X Y))
PLUS-Y
Lisp> (PLUS-Y 4)

Fatal error in function SYSTEM::INTERPRET (signaled with
ERROR) .
Symbol has no value: Y

Control Stack Debugger
Eval i8: Y
Debug 1> DOWN
Eval i7: (+ X Y)
Debug 1> DOWN
Eval i6: (BLOCK PLUS-¥ (+ X Y))
Debug 1> (SETF Y 1)
1
Debug 1> WHERE
Eval *6: (BLOCK PLUS-Y (+ X Y))
Debug 1> EVALUATE
Evaluate: ¥
1
Debug 1> DOWN
Apply i4: (PLUS-Y 4)
Debug 1> REDO
5
Lisp>

The value of the variable Y is set with the SETF macro, and
the body of the function PLUS-Y is reevaluated.

Version 2.2, July 1987 5-19

I

I

I

I

I

I

I

I

I

DEBUGGING FACILITIES

3. Lisp> (DEFUN ONE-PLUS (X) (1+ X))
ONE-PLUS
Lisp> (ONE-PLUS '(1 2 3 4))

Fatal error in function 1+ (signaled with ERROR);
Argument must be a number: (1 2 3 4)

Control Stack Debugger
Apply #8: (1+ (1 2 3 4))
Debug l>SET FUNCTION
Function: ' CAR
Debug 1> WHERE
Apply #8: (CAR (1 2 3 4))
Debug 1> DOWN
Eva 1 it: 7: (1 + X)
Debug 1> UP
Apply #8: (CAR (1 2 3 4))
Debug 1> REDO
1
Lisp> (PPRINT-DEFINITION 'ONE-PLUS)
(DEFUN ONE-PLUS (X) (1+ X))
Lisp>

This example shows that changing the contents of a stack
frame does not change the contents of other stack frames or
the function that was originally evaluated.

5.6 STEPPER

The stepper is a facility you can use to step interactively through
the evaluation of a form. You can control the stepper with stepper
commands as it displays and evaluates each subform of a specified
form.

The stepper has a pointer that points to the current stack frame on
the system's control stack. The current stack frame is the last frame
for which the stepper displayed information.

The stepper prints its command interaction to the stream bound to the
DEBUG-IO variable; it prints its output to the stream bound to the
TRACE-OUTPUT variable.

Version 2.2, July 1987 5-20

DEBUGGING FACILITIES

5.6.1 Invoking the Stepper

You can invoke the stepper by calling the STEP macro with a form as an
argument. The following example invokes the stepper with a call to a
function named FACTORIAL:

Lisp> (STEP (FACTORIAL 3))

When the stepper is invoked, it displays a line of text that includes
the first subform of the specified form and the stepper prompt. The
output is displayed at the left margin of your terminal in the
following format:

#9: (FACTORIAL 3)
Step>

Version 2.2, July 1987 5-20.1

I

THE PRETTY PRINTER

5.3.4 Templates

The EXPAND-PPRINT-TEMPLATE macro and the FORMAT-USING-PPRINT-TEMPLATE
function must be called with a template argument whose value is a
string. A template is a string of directives that are used to produce
pretty-printer formatting code. Directives are single-character
commands the macro and the function convert to pretty-printer
formatting code. You can use directives to instruct the pretty
printer to do the following:

• Use the specified text as literal text.

• Call the dispatch routine to format template
according to their data types.

• Produce spacing and line breaks.

arguments

• Call the dispatch routine to format nested structures.

• Call a formatting function.

Some of the directives must be followed by a parameter while other
directives can be followed by a parameter. The four types of
parameters are the following:

• Integer parameter (n). An integer parameter can be positive
or negative. If you omit this parameter, a default value is
used. An example of a directive specified with an integer
parameter is "-8", which means add eight spaces.

• Function-name parameter (f). A function-name parameter must
be a symbol that has a formatting function definition. You
must terminate the symbol with a whitespace character, such as
i\SPACE. or the end of the template. If a directive requires
thi$ parameter, you ca~not omit it. This parameter does not
have a default value. An example of a directive specified
with a function-name parameter is "&My-Formatting-Function",
which means call the function MY-FORMATTING-FUNCTION with no
arguments.

• Subtemplate parameter. Directives you can specify with a
subtemplate parameter delimit the subtemplate directly or
indirectly with quotes. An example of a directive specified
with a subtemplate parameter is " [*.*]", which means the
square bracket directive delimits the subtemplate *.*
directly. Another example is "$\"*-*\"", which means the
dollar sign directive ($) delimits the subtemplate *-*
indirectly.

• Number-sign parameter (i). You can specify the number-sign
parameter in place of integer and function-name parameters.
This parameter indicates .that the next argument 1n the
template's argument list is to be used as a parameter instead
of a literal value. For example, (EXPAND-PPRINT-TEMPLATE "-in
8) has the same result as (EXPAND-PPRINT-TEMPLATE "-8").
Another example is (EXPAND-PPRINT-TEMPLATE "$EXAMPLE" X),
which has the same result as (EXPAND-PPRINT-TEMPLATE "$i" X
'EXAMPLE) •

5-21

THE PRETTY PRINTER

The EXPAND-PPRINT-TEMPLATE macro and the FORMAT-USING-PPRINT-TEMPLATE
function can also be specified with a list of arguments that are used
by the specified template. The arguments in the argument list can be
any LISP expression, but the simplest case is when an argument is a
subobject of the object being pretty-printed. Some directives simply
modify pretty-printer output without referring to an argument while
other directives refer to the arguments in the template's argument
list. Directives that refer to arguments base their output on the
argument.

NOTE

Even though the
template's argument
of LISP expression,
chapter refers to
subobjects.

arguments in the
list can be any type

the rest of this
the arguments as

Table 5-3 lists the pretty-printer directives with brief descriptions.
Detailed descriptions are provided in Part II in the descriptions of
the EXPAND-PPRINT-TEMPLATE macro and the FORMAT-USING-PPRINT-TEMPLATE
function. Sections 5.3.4.1 through 5.3.4.5 explain how to use the
directives.

Directive

, ,

*

P

C

S

I

T

Table 5-3
pretty-printer Directives

Description

Apostrophes enclose literal text.

An asterisk calls the dispatch routine to format the
corresponding subobject by data type.

P calls the dispatch routine to format the
corresponding subobject such that its output is similar
to the output the PRINI function produces.

C calls the dispatch routine to format the
corresponding subobject such that its output is similar
to the output the PRINC function produces.

S calls the dispatch routine to format the
corresponding subobject such that its output is similar
to the output the PRINC function produces. The
subobject is not counted when the pretty printer
computes the current level and length of indentation.

I instructs the pretty
corresponding subobject.

printer to ignore the

Tilde inserts spaces. You can specify this directive
with an optional integer parameter.

T inserts spaces; it is similar to
specify this directive with an
parameter.

a tab.
optiQnal

You can
integer

(Continued on next page)

5-22

Di rective

+

N

B

M

{ }

[]

()

< >

&

THE PRETTY PRINTER

Table 5-3 (Cont.)
Pretty-printer Directives

Description

Plus sign changes the pretty printer's current
indentation level. You can specify this directive with
an optional integer parameter.

Exclamation point inserts a line break.

N inserts a line break if not specified within the
brace or parentheses directive. If specified within
one of these directives, N inserts a line break if the
pretty printer cannot print the subobject the brace or
parentheses directive refers to on one line.

B inserts a line break if the pretty printer cannot
print the next subobject on the current line.

M inserts a line break if the pretty printer cannot
print the entire object on one line or if the remaining
width available for printing is less than the value of
the *PPRINT-MISER-WIDTH* variable.

Hyphen, when specified with an integer parameter, is
equivalent to -nN.

Comma, when specified wi th an integer parameter, is
equivalent to -nB.

Semicolon, when specified with an integer parameter, is
equivalent to -ITnB.

Underscore, when specified with an integer parameter,
is equivalent to -nM.

Braces enclose a subtemplate that formats a logical
unit of a subobject.

Square brackets enclose a subtemplate that formats the
elements of a list. It refers to one subobject in the
template's argument list.

Parentheses, when specified with
subtemplate parameters, are an
{n '(' [sub tempI ate] ') , } •

an integer
abbreviation

and
for

Period is used within the square bracket or parenthesis
directive. It causes the next directive that refers to
a subobject to use a list that contains the remaining
elements of the subobject.

Angle brackets are used within the square bracket or
parenthesis directive. They cause the pretty printer
to repeat the enclosed subtemplate until all the
elements of the subobject are used.

Ampersand causes the dispatch routine to call the
specified formatting function with no arguments.

(Continued on next page)

5-23

THE PRETTY PRINTER

Table 5-3 (Cont.)
Pretty-Printer Directives

Di rective Description

%

$

Percent sign causes the dispatch routine to call the
specified formatting function to format the
corresponding subobject in the template's argument
list.

Dollar sign checks the data type of the corresponding
subobject in the template's argument list. If the
subobject is a list, the dispatch routine uses the
,specified formatting function or subtemplate with the
list as the argument. If it is not a list, the
dispatch routine formats the subobject according to its
data type.

If you use a pretty-printer template that contains an error, an error
message is printed and the pretty printer stops. The pretty printer
does not enter the debugger; it returns control to the current
command level.

The case of the directives is not significant.

You can specify arbitrary amounts of whitespace in templates to
improve readability. The whitespace characters, such as the *\NEWLINE
and the *\SPACE characters~ have no effect on pretty-printed output
unless they are enclosed by the apostrophe directive.

You must call the EXPAND-PPRINT-TEMPLATE macro one or more times in a
formatting function's definition. You can call the macro successively
rather than call it once to produce the same output. Consider the
following:

Lisp> {DEFUN MY-FORMATTER (OBJECT)
{PROGN

(EXPAND-PPRINT-TEMPLATE "'I like'")
(EXPAND-PPRINT-TEMPLATE "-'VAX LISP.'"»)

MY-FORMATTER

The preceding formatting function definition includes two calls to the
EXPAND-PPRINT-TEMPLATE macro. A call to the function produces the
same output as the call to the EXPAND-PPRINT-TEMPLATE macro in the
following example:

Lisp> (DEFUN MY-FORMATTER (OBJECT)
(EXPAND-PPRINT-TEMPLATE "'I like VAX LISP.'"»

MY-FORMATTER

The FORMAT-USING-PPRINT-TEMPLATE function is useful for
pretty-printing an object directly or for seeing the output a template
produces. A description of this function is provided in Part II.

5-24

THE PRETTY PRINTER

5.3.4.1 Literal Text - If you want to specify literal text in a
template you must enclose the text with the apostrophe directive (').
When you use this directive, the case of the characters is preserved.
For example:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL "'I like VAX LISP.''')
"I like VAX LISP."

To include an apostrophe in literal text, quote the apostrophe with an
apostrophe. For example:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL '" "(CAR 3) ''')
" '(CAR 3)"

5.3.4.2 Formatting Template Arguments - Several pretty-printer
directives refer to subobjects in the template's argument list. Five
of these directives are an asterisk (*), P, c, S, and I. The asterisk
directive (*) signals a recursive call to the dispatch routine to
format the subobject it refers to. The dispatch routine uses the
subobject's data type to determine the format the pretty printer is to
use to print the subobject's output. The following example includes
the asterisk directive:

Lisp> (SETF ORDER' (FIRST SECOND THIRD»
(FIRST SECOND THIRD)
Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL

"(FIRST SECOND THIRD)"

" , (' * , , * , , * ')'"
(NTH 0 ORDER)
(NTH 1 ORDER)
(NTH 2 ORDER»

The asterisk directive causes the pretty printer's dispatch routine to
be called recursively for each element of the list (FIRST SECOND
THIRD) •

You can also format a subobject in the template's argument list with
the P, C, or S directive. If you specify the P directive, the
subobject the directive refers to is formatted such that its output is
similar to the output the PRINl function produces. If you specify the
C or the S directive, the subobject the directive refers to is
formatted such that its output is similar to the output the PRINC
function produces. The difference between the C and the S directives
is that a subobject that the C directive refers to is counted as part
of the value of the *PRINT-LENGTH* variable and a subobject that the S
directive refers to is not counted.

The following example shows the output the pretty printer produces
when you use these three directives:

Lisp> (SETF ORDER' ("FIRST" "SECOND" "TH\"I\"RD"»
("FIRST" "SECOND" "TH\"I\"RD")
Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL

"(\"FIRST\" SECOND TH\"I\"RD)"

5-25

"'('P' 'C l 'S')'II
(NTH 0 ORDER)
(NTH I ORDER)
(NTH 2 ORDER»

THE PRETTY PRINTER

The pretty printer prints the first element of the template's argument
list with escape characters because the P directive caused the
PRINT-ESCAPE variable to be bound to T. The pretty printer prints
the second and third arguments without escape characters because the C
and S directives caused the *PRINT-ESCAPE* variable to be bound to
NIL. The third argument is pretty-printed with embedded double quotes
because they are part of the argument's literal text.

The I directive also refers to arguments in the template's argument
list. This directive instructs the pretty printer to ignore the
argument it refers to. The argument is evaluated, but the pretty
printer produces no output.

5.3.4.3 Spaces and Line Breaks - You can use several directives to
control the spacing the pretty printer uses to format output. These
directives can be categorized as follows:

• Directives that add or subtract spaces

• Directives that add line breaks

• Directives that add or subtract spaces or add line breaks,
depending on specific conditions

The most direct way to add spaces to pretty-printer output is to
specify the tilde directive (-). Yo~can specify it_wi~h~an integer
parameter, which defaults to one. The -integer can ~be ~6sitive or
negative. If you specify a positive integer, the Fretty printer adds
the number of spaces equal to the integer. If you specify a negative
integer, the pretty printer deletes the number of spaces indicated by
the integer. The pretty printer can delete only spaces that it has a
record of. The following example includes the tilde directive.

Lisp> (SETF ORDER' (FIRST SECOND THIRD»
(FIRST SECOND THIRD)
Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL

"(FIRST SECOND THIRD)"

'" (' * - * - * ') '"
(NTH 0 ORDER)
(NTH 2 ORDER»

The plus sign directive (+) alters the current default level of
indentation. You can specify this directive with an integer
parameter, which defaults to one. The integer can be positive or
negative. If you specify a positive integer, the pretty printer
increases the indentation by the number of spaces indicated by the
integer. If you specify a negative integer, the pretty printer
decreases the indentation by the number of spaces indicated by the
integer. If you specify one, the indentation the pretty printer
prints after line breaks is increased by one space.

If you want the pretty printer to produce output that has a tabular
format, specify the T directive. You can specify this directive with
an integer parameter. The pretty printer uses the parameter to
determine the width of the columns. It inserts spaces in the output.
The spaces make the difference between the current level of
indentation and the cursor position (after the pretty printer inserts
the spaces) divisible by the parameter value. If you do not specify
an integer parameter, the pretty printer chooses a reasonable default
value. However, the default value might not be large enough,
especially if you are pretty-printing a large data structure.

5-26

THE PRETTY PRINTER

Consider the template "'FIRST' T4 'SECOND'". This template instructs
the pretty printer to print the first character of SECOND Ix4 spaces
after the first character of FIRST, where I is the smallest positive
integer such that the two words do not overlap. In this case, I is
two and there are three spaces between the words FIRST and SECOND in
output.

You might want to explicitly insert a space in the output to prevent
the output from running together. Suppose you specify the template
"'FIRST' T5 'SECOND'". The output this template produces looks like
the following:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL
"'FIRST' T5 'SECOND'"

"FIRSTSECOND"

Note how the words run together because FIRST is five characters long.
To insert spaces between the words you can specify the tilde directive
in the template. The template "'FIRST'- T5 'SECOND'", produces the
following output:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL
"'FIRST' - T5 'SECOND'")

"FIRST SECOND"

When the pretty printer inserts a line break into its output, it calls
the FRESH-LINE function and indents the correct number of spaces. The
FRESH-LINE function outputs a #\NEWLINE character if the stream the
pretty printer is printing to is not at the beginning of a line. If
you specify consecutive directives that cause a line break, the pretty
printer outputs only one #\NEWLINE character.

You can cause the pretty printer to insert a line break by specifying
the exclamation point (!) directive. The following example
illustrates the use of the exclamation point directive:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL

"(FIRST
SECOND
THIRD)"

"'(I * ! * ! * I)'"
(NTH 0 ORDER)
(NTH 1 ORDER)
(NTH 2 ORDER))

In the preceding example, the pretty printer did not add indentation
after it inserted line breaks. The three lines of text are printed at
the left margin.

The following example shows how you can use the exclamation point and
the tilde directives to format output with line breaks and spacing:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL

" (FIRST
SECOND

THIRD)"

5-27

'" (' * ! -2 * * ') '"
(NTH 0 ORDER)
(NTH 1 ORDER)
(NTH 2 ORDER)

THE PRETTY PRINTER

In this example, the tilde directive caused the pretty printer to
insert two spaces before it printed the second subobject. The spaces
are inserted only before the second subobject and they are not
inserted before the third subobject.

The next example illustrates the use of the exclamation point and the
plus sign directives to control the indentation of pretty-printer
output:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL

"(FIRST
SECOND

THIRD)"

'" (' * ! +2 * *') , "
(NTH ~ ORDER)
(NTH 1 ORDER)
(NTH 2 ORDER»

The change in the level of indentation caused by the plus sign
directive did not appear until the next line break was signaled •. To
change the level of indentation before the pretty printer prints the
second subobject, you must specify the plus sign directive before the
first exclamation point directive in the template. For example:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL

"(FIRST
SECOND
THIRD) "

" , (' * +2 ! * *') , "
(NTH ~ ORDER)
(NTH 1 ORDER)
(NTH 2 ORDER»

You can instruct the pretty printer to insert a line break if a
specific condition exists by including the N, B, or M directive in a
template.

The N directive instructs the pretty printer to insert a line break if
one of the following conditions exists:

• The directive is not specified within the brace or parentheses
directive (see Section 5.3.4.4).

• If the directive is specified within the brace or parentheses
directive and the subobject the brace or parentheses directive
refers to does not fit on one line.

• If the directive is specified within the brace or parentheses
directive and another directive in the subtemplate has already
instructed the pretty printer to insert a line break.

Consider the following example:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL "'A' N 'B' N 'C''')
"A
B
CIt

The pretty printer insercs a line break each time it encounters the N
directive. In the following example, the N directive is specified
within the brace directive:

Lisp> (FORMAT-USING-PPRINT-TEMPLATE NIL "('A' N 'B' N 'C'}")
"ABC"

5-28

DEBUGGING FACILITIES

the EVALUATE command. See COMMON LISP: The Language for a description
of dynamic and lexical environment variables.

Some COMMON LISP ~unctions (for example, EVALHOOK, APPLYHOOK, and
MACROEXPAND) take an optional environment argument. The value bound
to the *STEP-ENVIRONMENT* variable can be passed as an environment to
these functions to allow evaluaton of for:ms in the context of the
stepped form.

5.6.5.3 Example Use of stepper Variables - The following example
illustrates the use of the *STEP-FORM* and *STEP-ENVIRONMENT* special
variables.

Lisp> (SETF X "Top level value of X")
"Top level value of X"
Lisp> (DEFUN FIBONACCI (X)

(IF « X 3) 1
(+ (FIBONACCI (- X 1)) (FIBONACCI (- X 2)))))

FIBONACCI
Lisp> (STEP (FIBONACCI 5))
#4: (FIBONACCI 5)
Step> STEP
: #10: (BLOCK FIBONACCI (IF « X 3) 1

step> STEP

(+ (FIBONACCI (- Xl))
(FIBONACCI (- X 2»))))

: : #14: (IF « X 3) 1 (+ (FIBONACCI (- X 1))
(FIBONACCI (- X 2))))

step> STEP
: : : #18: « X 3)
step> STEP
: : : : #22: X => 5
: : : #18 => NIL
: : : #17: (+ (FIBONACCI (- X 1)) (FIBONACCI (- X2)))
step> STEP
: : : : #21: (FIBONACCI (- Xl))
Step> STEP
: : : : : #25: (- X 1)
Step> STEP

: #29: X => 5
*25 => 4

: : : : : *27: (BLOCK FIBONACCI (IF « X 3) 1

step> STEP
: : : : : : #31: (IF

Step> STEP
: : : : : : : *35: (<

Version 2.2, July 1987

(< X 3) 1
(+ (FIBONACCI

(FIBONACCI

X 3)

5-29

(+ (FIBONACCI (- Xl))
(FIBONACCI (- X 2)))))

(- X 1))
(- X 2))))

DEBUGGING FACILITIES

step> STEP
: : : *39: X => 4

: : : : :: *35 => NIL
: : : ': :.: *34: (+ (FIBONACCI (- X 1)) (FIBONACCI (- X 2)))
step> STEP
: : : : :: : *38: (FIBONACCI (- Xl))
Step> EVAL *STEP-FORM*
(FIBONACCI (- Xl))
Step> STEP · · #42: (- X 1)
Step> STEP

: *46: X => 4
#42 => 3
#44: (BLOCK FIBONACCI

Step> EVAL *STEP-FORM*
(BLOCK FIBONACCI

(IF « X 3) 1
(+ (FIBONACCI (- Xl))

(FIBONACCI (- X 2)))))

(IF « X 3) 1 (+ (FIBONACCI (- X 1)) (FIBONACCI (- X 2)))))
Step> STEP
• •• : : : : : : : #48: (IF « X 3) 1

Step> STEP · . . ·
Step> STEP

Step> STEP

Step> EVAL X
3

. ,.

Step> (EVAL 'X)
"Top level value of X"
Step> EVAL *STEP-FORM*
(FIBONACCI (- X i)')

(+ (FIBONACCI (- Xl))
(FIBONACCI (- X 2))))

*52: « X 3)

: #56: X => 3
*52 => NIL
*51: (+ (FIBONACCI (- Xl))

(FIBONACCI (- X 2)))

#55: (FIBONACCI (- Xl))

Step> (EVALHOOK 'X NIL NIL NIL)
"Top level value of X"
Step> (EVALHOOK ;X NIL NIL *STEP-ENVIRONMENT*)
3
Step> (EVALHOOK (CADR
2
Step> STEP
: : : : : :
Step> STEP

.

Version 2.2, July 1987

STEP-FORM) NIL NIL *STEP-ENVIRONMENT*)

*59: (- X 1)

: #63: X => 3
~59 => 2
*61: (FIBONACCI

(IF « X 3) 1

5-30

DEBUGGING FACILITIES

(+ (FIBONACCI (- Xl))
(FIBONACCI (- X 2)))))

step> FINISH
5

This example shows that the *STEP-FORM* special variable is bound to
the form being evaluated while stepping. The example also shows that
the *STEP-ENVIRONMENT* special variable is bound to the lexical
environment in which the currently stepped form is being evaluated.

The call to EVALHOOK evaluates the form (- X 1) in the lexical
environment of the stepper, that is, with the local binding of X. A
call to EVALHOOK with a null environment specified shows that X's
value in the null lexical environment differs from that in the
stepper. The EVAL command uses the *STEP-ENVIRONMENT* environment;
the EVAL function uses the null lexical environment.

5.6.6 Sample Stepper Sessions

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X))
FIRST-ELEMENT

2.

Lisp> (SETF MY-LIST '(FIRST SECOND THIRD))
(FIRST SECOND THIRD)
Lisp> (STEP (FIRST-ELEMENT MY-LIST))
#10: (FIRST-ELEMENT MY-LIST)
Step> STEP
: #15: MY-LIST => (FIRST SECOND THIRD)
: #17: (BLOCK FIRST-ELEMENT (CAR X))
Step> STEP
: : # 2 2 : (CAR X)
Step> EVALUATE (CAR X)
FIRST
step> FINISH
FIRST
Lisp>

.Lisp> (DEFUN PLUS-Y
PLUS-Y
Lisp> (SETF Y 5)
5
Lisp> (STEP (PLUS-Y
#10: (PLUS-Y 10)
step> STEP

(X)

10))

(+ X Y))

: #17: (BLOCK PLUS-Y (+ X Y))
step> EVALUATE
Evaluate: (+ X Y)
15
step> STEP
: : #22: (+ X Y)

Version 2.2, July 1987 5-31

I

I

I
I

I

I

I

I

I

I

I

I

I

I

DEBUGGING -FACILITIES

Step>BACKTRACE
(+ x Y)
(BLOCK PLUS-Y (+ X Y»
CPLUS-Y 10)
Step> SHOW
(+ X Y)
Step> OVER
: : *22 => 15
: #17 => 15
#10 => 15
15
Lisp>

3. Lisp> (DEFUN ADDITION (X) (+ X Y»
ADDITION
Lisp> (SETF Y 5)
5
Lisp> (STEP (ADDITION 4»
#10: (ADDITION 4)
step> STEP
: #17: (BLOCK ADDITION (+ X Y»
step>
: : #22: (+ X Y)
step> BACKTRACE
(+ X Y)
(BLOCK ADDITION (+ X Y»
(ADDITION 4)
step> EVALUATE
Evaluate: (+ X Y)
9
step> STEP

: #27: X => 4
: : #27: Y => 5 . : #22 => 9 .

: #17 => 9
#10 => 9
9
Lisp>

5.7 TRACER

The VAX LISP tracer is a macro you can use to inspect a program's
evaluation. The tracer informs you when a function or macro is called
during a program's evaluation by printing information about each call
and return value to the stream bound to the *TRACE-OUTPUT* variable.
To use the tracer, you must enable it for each function and macro you
want traced.

Version 2.2, July 1987 5-32

DEBUGGING FACILITIES

Suppose you define a function named FACTORIAL.

Lisp> (DEFUN FACTORIAL (N)
(IF «= N 1) 1 (* N (FACTORIAL (- N 1»»)

FACTORIAL

The following example illustrates the format of the output the tracer
displays when the function FACTORIAL is called with the argument 3:

Lisp> (FACTORIAL 3)
#11: (FACTORIAL 3)
· *27: (FACTORIAL 2)
· . *43: (FACTORIAL 1)
· . *43 => 1
· *27 => 2
#11 => 6
6

The FACTORIAL function is a recursive one and, in the case of the
preceding example, has three levels of recursion. The tracer
indicates the nested level of each call with indentation. Each level
of indentation is indicated with a period followed by a space (.).
The tracer indicates the number of the stack frame in which a call is
stored with an integer. The integer is preceded with a number sign
and followed by a colon (*n:).

The nested level of each return value matches the indentation of the
corresponding call. The tracer indicates the number of the control
stack frame onto which the LISP system pushes the value with an
integer. This integer matches the stack frame number of the
corresponding call and is preceded with a number sign and followed by
an arrow (in =» that points to the return value.

5.7.4 Tracer Options

You can modify the output of the tracer by specifying options in the
call to the TRACE macro. Each option consists of a keyword-value
pair. The format in which to specify keyword-value pairs for the
TRACE macro is:

(TRACE (function-name keyword-l value-l
keyword-2 value-2
...))

You can also· specify options for a list of functions and/or macros.
The TRACE macro format in which to specify the same options for a list
of functions and macros is:

(TRACE ((name-l name-2 ...) keyword-l value-l
keyword-2 value-2
...))

Version 2.2, July 1987 5-35

I

DEBUGGING FACILITIES

NOTE

Forms the system evaluates just before or just after a
call to a function or macro for which tracing is
enabled are evaluated in a null lexical environment.
For information on lexical environments, see COMMON
LISP: The Language.

The keywords you can use to specify options are:

• :DEBUG-IF
:PRE-DEBUG-IF 1-- Invoke the debugger
:POST-DEBUG-IF

• : PRINT
: PRE-PRINT 1-- Add information to tracer output
: POST-PRINT

• :STEP-IF -- Invokes the stepper

• :SUPPRESS-IF -- Removes information from tracer output

• :DURING -- Determines when a function or macro is traced

5 • .7.4.1 Invoking the Debugger - You can cause the tracer to invoke
the debugger by specifying the :DEBUG-IF, :PRE-DEBUG-IF, or
:POST~DEBUG-IF keyword. These keywords must be specified with a form.
The LISP system evaluates the form before, after, or before and after
each call to the function or macro being traced. If the form returns
a value other than NIL, the tracer invokes the debugger after each
evaluation.

5.7.4.2 Adding Information to Tracer Output - You can add information
to tracer output by specifying the :PRINT, :PRE-PRINT, or :POST-PRINT
keyword. You must specify these keywords with a list of forms. The
LISP system evaluates each form in the list and the tracer displays
their return values before, after, or before and after each call to
the function or macro being traced. The tracer displays the values
one per line and indents them to match other tracer output. If the
forms to be evaluated cause an error, the debugger is invoked.

5.7.4.3 Invoking the stepper - You can cause the tracer to invoke the
stepper by specifying the :STEP-IF keyword. You must specify this
keyword with a form. The LISP system evaluates the form before each
call to the function or macro being traced. If the form returns a
value other than NIL, the tracer invokes the stepper.

Version 2.2, July 1987 5-36

DeBUGGING FACILITIES

5.7.4.4 Removing Information from Tracer Output - You can remove
information from tracer output by specifying the :SUPPRESS-IF keyword.
You must specify this keyword with a form. The LISP system evaluates
th~ form before each call to the function or macro being traced. If
the form returns a value other than NIL, the tracer does not display
the arguments and the return value of the function or macro being
traced.

5.7.4.5 Defining When a Function or Macro Is Traced - You can define
when a function or macro, for which tracing is enabled, is to be
traced by specifying the :DURING keyword. You must specify this
keyword with a function .or macro name or a list of function and/or
macro names. The functions and macros for which the tracer is enabled
are traced only when they are called (directly or indirectly) from
within one of the functions or macros whose names are specified with
the keyword.

5.7.5 Tracer Variables

You can use two special variables with the TRACE macro. These are
helpful debugging tools: *TRACE-CALL* and *TRACE-VALUES*. with these
variables and the preceding tracer options, you can control when to
debug or step depending on the arguments to a function or the return
values from a function.

5.7.5.1 *TRACE-CALL* - The *TRACE-CALL* variable is bound to the
function or macro call being traced. The following example shows how
to use the variable:

Lisp> (DEFUN FIBONACCI (X)
(IF « X 3) 1

(+ (FIBONACCI (- X 1)) (FIBONACCI (- X 2)))))
FIBONACCI

Lisp> (TRACE (FIBONACCI
:PRE-DEBUG-IF « (SECOND *TRACE-CALL*) 2)
:SUPPRESS-IF T))

(FIBONACCI).
Lisp> (FIBONACCI 5)
Control Stack Debugger
Apply #30: (DEBUG)
Debug 1> DOWN,
Eval #27: (FIBONACCI (-X 2))
Debug 1> DOWN
Eval #26: (+ (FIBONACCI(- Xl))

(FIBONACCI (- X 2)))

Version 2.2, July 1987 5-37

I

I
I
I

I

I

I

i

I

. DeBUGGING FACILITIES

Debug 1> DOWN
Eval #25: (IF « X 3) 1

Debug 1> DOWN

(+ (FIBONACCI (- Xl))
(FIBONACCI (- X 2))))

Eval #24: (BLOCK FIBONACCI
(IF « X 3) 1

(+ (FIBONACCI (- Xl))
(FIBONACCI (- X 2)))))

Debug 1> DOWN
Apply #22: (FIBONACCI 3)
Debug 1> (CADR (DEBUG-CALL)
3
Debug 1> CONTINUE
Control Stack Debugger
Apply #22: (DEBUG)
Debug 1> CONTINUE
5

• In this example, FIBONACCI is first defined.

• Then the TRACE macro is called for FIBONACCI. TRACE is
specified to invoke the debugger if the first argument to
FIBONACCI (the function call being traced) is less than 2.
Since the PRE-DEBUG-IF option is .specified, the debugger is
invoked before the call to FIBONACCI. As the :SUPPRESS-IF
option has a value of T, calls to FIBONACCI do not cause any
trace output.

• The DOWN command moves the pointer down the control stack.

• The DEBUG-CALL function returns
current debug frame function call.
the list is 3. This accesses the
function in the current stack frame.

a list representing the
In this case, the CADR of
first argument to the

• Finally the CONTINUE command continues the evaluation of
FIBONACCI.

5.7.5.2 *TRACE-VALUES* - The *TRACE-VALUES* variable is bound to the
list of values returned by a traced function. Consequently, the
variable can be used only with the :POST- options to the TRACE macro.
Before being bound to the return values, the variable returns NIL.
The following example shows how to use the variable:

Lisp> (TRACE (FIBONACCI
:POST-DEBUG-IF (> (FIRST *TRACE-VALUES*) 2))

(FIBONACCI)
Lisp> (FIBONACCI 5)
#5: (FIBONACCI 5)

Version 2.2, July 1987 5-38

DEBUGGING FACILITIES

· i13: (FIBONACCI 4)
· . i21: (FIBONACCI 3)

. #29: (FIBONACCI 2)

. #29=> 1
· .. #29: (FIBONACCI 1)
· . . #29=> 1
· . #21=> 2

#21: (FIBONACCI 2)
· . #21=> 1
Control Stack Debugger
Apply #14: (DEBUG)
Debug l>BACKTRACE
-- Backtrace start
Apply #14: (DEBUG)
Eval #11: (FIBONACCI (- X 1)
Eval #10: (+ (FIBONACCI (- Xl»

(FIBONACCI (- X 2»)
Eval # 9: (I F « X 3) 1

(+ (FIBONACCI (- Xl»
(FIBONACCI (- X 2»»

Eval #8: (BLOCK FIBONACCI
(IF « X 3) 1

(+ (FIBONACCI (- Xl»
(FIBONACCI (- X 2»»)

Apply #6: (FIBONACCI 5)
Eval #3: (FIBONACCI 5)
Apply #1: (EVAL (FIBONACCI 5»
-- Backtrace end --
Apply #14: (DEBUG)
Debug 1> CONTINUE
· #13=> 3
· #13: (FIBONACCI 3)
· . #21: (FIBONACCI 2)

#21=> 1
· . #21: (FIBONACCI 1)
· . #21=> 1
· #13=> 2
Control Stack Debugger
Apply #6: (DEBUG)
Debug 1> CONTINUE
#5=> 5
5

TRACE is called for FIBONACCI (the same function as in the
previous example)' to start the debugger if the value returned
exceeds 2. The value returned exceeds 2 twice once when it
returns 3 and at the end when it returns 5.

Version 2.2, July 1987 5-39

I

I

I

DEBUGGING FACILITIES

5.8 THE EDITOR

The VAX LISP Editor is a powerful, extensible editor that enables you
to create and edit LISP programs. Once you have located an error and
you know which function in your program is causing the error, you can
use the Editor to correct the error. Use the ED function to invoke
the Editor. For a complete description of the ED function, the VAX
LISP Editor, and instructions on how to use the Editor, see the VAX
LISP Editor Manual.

Version 2.2, July 1987 5-40

THE PRETTY PRINTER

Show the pretty-printed output of two 2-dimensional arrays
after the formatting function TWO-BY-TWO-ARRAYS is added to
the dispatch-routine algorithm.

Lisp> (POP PPRINT-ARRAY-FORMATTERS)
TWO-BY-TWO-ARRAYS

Pops the formatting function TWO-BY-TWO-ARRAYS off the list
that is bound to 'the *PPRINT-ARRAY-FORMATTERS* variable.

11. Lisp> (DEFUN PPRINT-FURTHER-INDENTED (OBJECT LEFT-MARGIN
&OPTIONAL
(STREAM
STANDARD-OUTPUT))

(UNLESS (AND (INTEGERP LEFT-MARGIN)
(>= LEFT-MARGIN 0))

(ERROR
"The left-margin -S must be a positive integer."

LEFT-MARGIN))
(LET «*PPRINT-LEFT-MARGIN* LEFT-MARGIN))

(PPRINT OBJECT)))
PPRINT-FURTHER-INDENTED

Defines a formatting function that causes the pretty printer
to print an object with the left margin specified.

5-41

CHAPTER 6

CALLING EXTERNAL ROUTINES

VAX LISP provides a facility that enables
routines from within a VAX LISP program.
LISP programs can call the following:

you to call external
Using this facility, VAX

• Routines written in languages that adhere to the VAX Calling
Standard

• Run-time library (RTL) routines

• VMS and RMS system services

To call an external routine, the routine must follow the VAX Procedure
Calling Standard. If you call a routine written in another language,
the routine also must be linked into a position-independent shareable
imag e.

The call-out facility cannot call external routines that require an
extensive, non-VMS-oriented software environment. Routines written in
APL and interpreted BASIC are examples of such routines. You can use
VMS subprocess and mailbox facilities to communicate with such
routines. VAX LISP provides functions for subprocess operations (see
Part II).

Programs written in other VAX languages cannot call VAX LISP routines.

The VAX Architecture Handbook and the VAX/VMS Run-Time Library
Reference Manual contain detailed information about calilng external
routines and passing parameters. You should be familiar with these
subjects before you use the VAX LISP call-out facility.

A routine that can be called is termed a "procedure" in the manuals
mentioned above. This chapter, however, uses the expression "external
routine" to maintain consistency with the VAX LISP language
terminology.

Before a LISP program can call external routines, you must create,
compile, and debug the routines, and then you must perform the
following steps:

1. Link the external routines into a VMS shareable image.

2. Define the external routines in LISP.

3. Call the external routines.

6-1

CALLING EXTERNAL ROUTINES

Figure 6-1 illustrates the steps you must perform to callout to an
external routine.

Create, compile, and debug
external routine

VMS Environment
+

Link external routine into
a VMS shareable image

~
Invoke VAX LISP

+
Define external routine to
LISP

LISP Environment
+

Call out to external routine

Figure 6-1 Calling External Routines

This chapter describes the standard VAX calling conventions, explains
the three steps in the preceding list, provides a list of examples
that show you how to use the call-out facility, and supplies
information about the following topics:

• Data type conversions

• Calling VMS and RMS system services

• Errors during external-routine execution

• Suspending a LISP system that contains calls to external
routines

6-2

CALLING EXTERNAL ROUTINES

6.1 STANDARD VAX CALLING CONVENTIONS

The VAX Procedure Calling Standard defines a uniform method for
language routines to call one another -- see the VAX Architecture
Handbook and the VAX/VMS Run-Time Library Reference Manual. This
standard prescribes how external routines receive and return control,
how parameters are passed, and how function values are returned. By
means of the standard call conventions, most languages used with the
VAX/VMS operating system can call library routines and routines
written in other VAX native-mode languages. Interpreted and compiled
VAX LISP programs cannot conform to the standard because of the nature
of the LISP language. For this reason, VAX LISP provides a facility
that enables you to call routines written in other VAX languages,
which do conform to the standard. The next four sections provide a
brief summary of the VAX Procedure Calling Standard.

6.1.1 Transfer of Control

VAX LISP calls external routines with
routines return control to programs
instruction.

6.1.2 Parameter Lists

a CALLG instruction. These
that call them with a RET VAX

Arguments are passed to an external routine in a parameter list. The
LISP system constructs a parameter list each time a LISP program calls
an external routine. The VAX Procedure Calling Standard defines a
parameter list as a sequence of longword (4-byte) entries. The first
byte of the first entry in the list is a parameter count, which
indicates the number of parameters that follow in the list.

The succeeding longwords contain a data value, a pointer to a data
value, or a pointer to a descriptor of the data value, depending on
the specified passing mechanism.

6.1.3 parameter-Passing Mechanisms

The VAX Procedure Calling Standard defines three mechanisms by which
parameters are passed to external routines:

• By immediate value -- the parameter is the value

• By reference -- the parameter is the address of the value

• By descriptor -- the parameter is the address of a descriptor
of the value

By default, the VAX LISP system uses the reference and the descriptor
mechanisms to pass parameters. The system uses the descriptor
mechanism to pass parameters of the string type; it uses the
reference mechanism to pass all other LISP object types. Section
6.3.2.2 provides information on how to specify a parameter's passing
mechanism.

6-3

CALLING EXTERNAL ROUTINES

6.1.4 Function Return Values

An external routine can be a subroutine or a function. A subroutine
is invoked only to produce side effects on the parameters passed to
it, and it returns no value as a result of its execution. A function,
on the other hand, returns a value after execution and might perform
side effects. The function value is returned in one of three ways.

• If the data type is scalar and requires 32 bits or less of
storage, the value is returned in register R0.

• If the data type is scalar and requires from 33 to 64 bits of
storage, the low-order bits of the value are returned in
register R0, and the high-order bits of the value are returned
in register Rl.

• If the data type requires more than 64 bits of storage or if
it is not a scalar type, the call-out facility allocates the
required storage and passes the address of that storage as a
new parameter added to the beginning of the argument list.

In VAX LISP, you can specify up to 254 parameters for subroutines or
functions. Functions can return values that are bits, integers, or
floating-point numbers. The return methods the LISP system uses for
values of each data type are summarized in Table 6-1.

Table 6-1
Function Return Methods

Data Type

:BIT
:BYTE
: UNSIGNED-BYTE
:WORD
: UNSIGNED-WORD
: LONGWORD
:UNSIGNED-LONGWORD
:F-FLOATING

:D-FLOATING
:G-FLOATING

:H-FLOATING

6.2 LINKING A SHAREABLE IMAGE

Return Method

General register R0

R0: Low-order result
RI: High-order result

New parameter

Before a LISP program can call external routines, you must link the
required ~bject modules into one or more position-independent VMS
shareable lmages. The following example links the object modules
TEST.OBJ and FUN.OBJ into a shareable image called MYIMAGE.EXE. The
UNIVERSAL linker option is used to list the entry points that are
available to the call-out facility.

$ LINK/SHAREABLE=MYIMAGE TEST,FUN,SYS$INPUT:/OPTIONS
UNIVERSAL=ENTRY_l,ENTRY_2,ENTRY_3

The number of individual shareable images that can be mapped into VAX
LISP depends on VMS shareable image restrictions and the available
address space.

6-4

CALLING EXTERNAL ROUTINES

If you specify a base address as an option in a command that invokes
the VMS linker or if the linker issues a warning message that informs
you that the shareable image is based, you cannot call external
routines in that image.

You can call external routines in shareable images that contain
writeable sections. Routines that are written in VAX-II FORTRAN,
which use COMMON blocks, are examples of routines that produce such
code. A shareable image contains a writeable section if the external
routine contains a program section (PSECT) that has the write (WRT)
and the share (SHR) attributes. To determine whether a program
section in a shareable image has these attributes, examine the image's
map file.

Before you can call an external routine in a shareable image that
contains writeable sections, install the shareable image with the VMS
INSTALL utility.

The procedure for linking shareable images is explained in the VAX/VMS
Linker Reference Manual.

6.3 DEFINING AN EXTERNAL ROUTINE

Programs written in VAX LISP cannot call external routines the same
way as programs written in other VMS languages that adhere to the VAX
Procedure Calling Standard. When a program calls an external routine
the program must identify information about the routine. Other VMS
languages identify the information by compiling code into object
modules that are linked by the VMS linker. Since VAX LISP does not
create object modules that can be linked, it must identify information
about an external routine another way.

After you link an external routine into a shareable image, enter the
VAX LISP environment and define the routine using the VAX LISP
DEFINE-EXTERNAL-ROUTINE macro. It provides the VAX LISP system with
the information it needs to create a parameter list and to locate and
call the external routine. A description of the
DEFINE-EXTERNAL-ROUTINE macro is provided in Part II.

The formal definition of an external routine consists of two
components:

• External-routine name and options

• Formal-parameter descriptions

Sections 6.3.1 ,and 6.3.2 describe these components.

6.3.1 External-Routine Name and Options

When you define an external routine, you must specify a name for it.
In addition, you can specify options that provide the LISP system with
information about how to handle the external routine.

6-5

CALLING EXTERNAL ROUTINES

6.3.1.1 External-Routine Name - An external-routine name is a symbol
that the call-out facility uses to access information about a routine.

You can specify an external-routine name with options. If you specify
options, specify the name and options as a list whose first element is
the name; if you do not specify options, specify the name as a
symbol.

The symbol that names the external routine can be different than the
actual name of the external routine. If the symbol is different,
specify the external-routine name with the entry-point option (see
Section 6.3.1.2).

6.3.1.2 External-Routine Options - You can assign specific
characteristics to an external routine by specifying options in the
routine's definition. Each option consists of a keyword-value pair.
Specify a keyword-value pair as follows:

keyword value

Specify external-routine options in a list whose first element is the
name of the routine the options characterize. The format in which to
specify the name and options follows:

(name keyword-l value-l keyword-2 value-2 •••)

A list of the keywords that you can use to specify options for
external routines and the characteristics the options define follows:

• :CHECK-STATUS-RETURN -- Status return checking

• :ENTRY-POINT -- Entry point

e :IMAGE-NAME -- Image name

• :RESULT -- Result data type

• :TYPE-CHECK -- Type checking

The option values are not evaluated.

NOTE

You must specify the image name option
unless you are calling a system service.

Status Return Checking: The VAX Procedure Calling Standard specifies
a method for returning the completion status of a function (see
Section 6.1.4). The :CHECK-STATUS-RETURN keyword specifies whether
the call-out facility is to examine the contents of register R0 upon
return from the external routine. You can specify the keyword with
either T or NIL. If you specify T, the content of the register is
examined, and the routine's return value is interpreted as a VMS
status code or a user status code. If the severity of the return
value is warning, error, or severe-error, a LISP continuable error is
signaled (see Section 6.8). If you specify NIL (the default value),
all status codes are ignored.

6-6

CALLING EXTERNAL ROUTINES

Entry Point: The entry point of an external routine is specified with
the : ENTRY-POINT keyword. You must specify this keyword with the
string that represents the name of the entry point that is to be
called if the name is different than the name you specify for the
external routine. The default string is the print name of the
external-routine name you specify in the call to the
DEFINE-EXTERNAL-ROUTINE macro.

Image Name: An external routine's image name is specified with the
: IMAGE-NAME keyword. You must include this keyword in a routine's
definition unless you are calling a system service. Specify the
: IMAGE-NAME keyword with the string that represents the VMS file name
of the external routine's shareable image. The file specification is
merged with SYS$SHARE:.EXE.

Result Data Types: The :RESULT keyword specifies the LISP data type
the external routine is to return to the LISP system. You can specify
this keyword with the LISP data type or with a list that contains both
the LISP and the VAX data types. Valid VAX LISP data type ~alues are
INTEGER, FIXNUM, BIGNUM, SHORT-FLOAT, FLOAT, DOUBLE-FLOAT, LONG-FLOAT,
BIT, BIT-VECTOR, NIL and NULL. The VAX data types you can specify
are: :BIT, :BYTE, :UNSIGNED-BYTE, :WORD, : UNSIGNED-WORD, : LONGWORD,
:UNSIGNED-LONGWORD, :F-FLOATING, : D-FLOATING , :G-FLOATING, and
:H-FLOATING. The default value is the NIL LISP data type.

If the specified external routine is a subroutine invoked for side
effects, using the LISP type NIL forces the call-out facility to
return no value when the external routine returns control to the LISP
program. If you specify the NULL LISP type, NIL is returned when the
external routine returns control to the program.

Type Checking: The actual parameter data types that are passed to an
external routine and the defined formal parameter data types can be
checked for compatibility. The :TYPE-CHECK keyword controls whether
the LISP system generates type-checking code. You can specify the
keyword with either T or NIL. If you specify T, the LISP system
generates code that checks the type of actual LISP objects when you
call the CALL-OUT macro. If the types of the routine's formal and the
actual parameters are incompatible, an error is signaled. If you
specify NIL (the default value), the system does not generate
type-checking code.

6.3.2 Formal-Parameter Descriptions

External-routine definitions can include a formal-parameter list. A
formal-parameter list consists of formal-parameter descriptions; each
description includes the parameter name and the options that define
the parameter's characteristics. The order of the formal parameters
in the formal-parameter list specifies the order of the actual
parameters the external routine requires.

6.3.2.1 Formal-Parameter Name - A formal-parameter name is a symbol
that names a formal parameter. The symbol must be either unique
within the routine's definition or NIL.

You can specify a formal-parameter name with options. If you specify
options, specify the name and options as a list whose first element is
the name; if you do not specify options, specify the name as a
symbol.

6-7

CALLING EXTERNAL ROUTINES

6.3.2.2 Formal-Parameter Options - You can define characteristics for
a formal parameter by specifying options in the parameter's
description. Each option consists of a keyword-value pair. A
keyword-value pair must be specified as follows:

keyword value

You must specify options in a list whose first element is the name of
the parameter they characterize. The format in which to specify the
name and options follows:

(name keyword-l value-l keyword-2 value-2 •••)

A list of the keywords that you can
formal-parameter descriptions and the
define follows:

• :ACCESS Access method

• : LISP-TYPE LISP data type

• :MECHANISM Passing mechanism

• :VAX-TYPE -- VAX data type

The option values are not evaluated.

use to specify
characteristics

options in
the options

Access Method: The access method of a parameter is defined with the
:ACCESS keyword. Valid option values are :IN and :IN-OUT. The values
inform the LISP system of the type of access an external routine
requires for a parameter. The default value is :IN.

If you specify the :IN value in a formal parameter description,
actual parameter passed to the external routine has input access.
parameter that has input access is assumed to be read-only.
external routine cannot modify its value. The actual parameter is
evaluated at run time to produce an actual parameter value.

the
A

An

The actual parameter has input-output access if you specify the
:IN-OUT value in a formal parameter description. A parameter that has
input-output access has to be a valid SETF form. The form you specify
is evaluated to produce a value. The value is passed to the external
routine, where it is modified. The effect of modifying the value in
the external routine is similar to applying the SETF macro to the
argument form and specifying the new value.

NOTE

If the call-out facility passes an
actual parameter value, which is not an
integer, to an external routine with
input-output access, the external
routine modifies the actual LISP object.
The macro does not create a new object.
For example, if the value of LISP
variables A and B are the same
floating-point number, passing A as an
input-output parameter might modify the
value of B also.

6-8

CALLING EXTERNAL ROUTINES

LISP Data Type: The :LISP-TYPE keyword specifies the LISP type of an
actual parameter. You can specify this keyword with the types:
numbers, simple strings, simple bit vectors, simple floating-point
arrays, or alien structures. The INTEGER type is the default. See
COMMON LISP: The Language for a list of valid LISP types.

If the values you specify for the LISP data type and the VAX data type
are not compatible, an error is signaled.

Passing Mechanism: The mechanism by which an actual parameter is to
be passed to an external routine is specified with the :MECHANISM
key~ord. The values you can specify with the :MECHANISM keyword are
:IMMED, :REF, and :DESCR. These values correspond to the three
defined mechanisms that are described in Section 6.1.3: immediate
value, reference, and descriptor.

• The immediate value mechanism passes a copy of the actual
parameter in the argument list. You can use this mechanism
only for parameters that have input access and that are
numeric data types that require no more than 32 bits of
sto rag e space.

• The reference mechanism passes the address of the actual
parameter to the external routine. This mechanism is the
default for parameters that are of any LISP data type except
string.

• The descriptor mechanism passes the address of a descriptor
for the actual parameter to the external routine. The
descriptor is a data structure that contains the address of
the parameter, as well as its data type and size. Parameters
that are of the LISP string type default to this mechanism.

You cannot specify specific VMS descriptor classes in external routine
definitions. The DEFINE-EXTERNAL-ROUTINE macro assigns an appropriate
descriptor class to a routine when the LISP system evaluates it. The
values the macro assigns are DSC$K CLASS S or DSC$K CLASS A. To pass
an actual parameter using a user-specified descriptor, -define the
descriptor and the parameter to be alien structures and pass the
alien-structure descripto(with the reference mechanism. For
information on defining alien structures, see Chapter 7.

VAX Data Type: Specify the VAX data type of an actual parameter,
which is to be passed to an external routine, with the :VAX-TYPE
keyword. Data types you can specify as values are :BIT, :BYTE,
: UNSIGNED-BYTE, :WORD, : UNSIGNED-WORD, : LONGWORD, :UNSIGNED-LONGWORD,
:F-FLOATING, :D-FLOATING, :G-FLOATING, :H-FLOATING, and :TEXT. The
default VAX type is the type that most nearly corresponds to a LISP
object type. For example, :LONGWORD corresponds to FIXNUM and BIGNUM,
:F-FLOATING corresponds to SINGLE-FLOAT, and :TEXT corresponds to
SIMPLE-STRING.

NOTE

If the values you specify for the LISP
data type and the VAX data type are not
compatible, an error is signaled.
Therefore, if the default VAX data type
does not match the required type, you
must specify the :VAX-TYPE keyword.

6-9

CALLING EXTERNAL ROUTINES

6.4 CALLING AN EXTERNAL ROUTINE

After you define an external routine, you can call it by specifying
the routine's name in a call to the VAX LISP CALL-OUT macro. The
CALL-OUT macro produces code that performs the following operations:

1. Activates the external routine's shareable image if the image
is not already activated

2. Creates an actual parameter list using the actual parameter
arguments; it creates the list according to the VAX
Procedure Calling Standard

3. Transfers control to the external routine

NOTE

You cannot use the VAX-II Symbolic
Debugger when you are in the LISP
environment and you cannot use the VAX
LISP debugger inside your external
routine. Therefore, you must debug
external routines before you call them
from LISP.

When you call the CALL-OUT macro, the value you specify for the first
argument must be the name of a predefined external routine. In
addition to specifying the name, you can specify actual parameters.

6.4.1 Predefined Name

The name that you specify in a call to the CALL-OUT macro must be a
symbol that names an external routine, which was previously defined
with the DEFINE-EXTERNAL-ROUTINE macro.

6.4.2 Actual parameters

You can specify actual parameters in a call to the CALL-OUT macro.
They correspond, by position, to the formal parameters that are
defined for the external routine being called. The parameters are
evaluated before control is transferred to the external routine.

You can omit a parameter by putting an explicit NIL in the position of
the corresponding formal parameter. You cannot use expressions that
evaluate to NIL. For example:

Lisp> (CALL-OUT SYS$RENAME OLD NIL NIL NEW)
1

The positions in the actual parameter list that correspond to NIL
contain zeros to coincide with the VAX Procedure Calling Standard for
omitted arguments. If you supply fewer actual parameters than are
specified in the external routine's formal definition, the argument
count in the parameter list contains only the number of actual
parameters. If you supply more arguments than are specified in the
routine's formal definition, the LISP system signals an error.

6-10

CALLING EXTERNAL ROUTINES

6.4.3 Internal Data Structures

When you interpret or compile an external routine definition, the LISP
system creates internal data structures. When the VAX LISP compiler
or interpreter expands the CALL-OUT macro, the macro uses these
internal data structures to define its correct expansion. In
addition, the code that results from the CALL-OUT macro expansion uses
some of the internal data structures.

If you use the CALL-OUT macro to call an external routine whose
definition is in the same source file, the internal data structures
are present when the LISP system interprets or compiles the fil~.
However, if you use the CALL-OUT macro to call an external routine
that is defined in a separate file, the data structures are not
present. Because the CALL-OUT macro expansion code uses these
internal data structures, you must load the file that contains the
external routine's definition (compiled or source) into the LISP
system before you perform the following operations:

• Compile code that contains a use of the CALL-OUT macro

• Execute code that contains a call to an external routine

• Execute compiled code that contains a call to an external
routine

One way that you can load a file, which contains an external routine's
definition, into the compiler is to load the file as an initialization
file using the /INITIALIZE DCL command qualifier (see Section 2.8.4).
For more information on loading files, see Section 2.6.

6.5 EXAMPLES OF USING THE CALL-OUT FACILITY

This section provides examples of using the VAX LISP call-out
facility.

1. Lisp> (DEFINE-EXTERNAL-ROUTINE

MTH$DACOSD

(MTH$DACOSD :IMAGE-NAME "VMSRTL"
:RESULT DOUBLE-FLOAT)

(X :LISP-TYPE DOUBLE-FLOAT
:VAX-TYPE :D-FLOATING»

Defines an RTL routine, called MTH$DACOSD, which returns the
double precision arc cosine of a number in degrees. The
routine takes one read-only argument, which is a D format
floating-point number and returns the result as a D format
floating-point number.

Lisp> (CALL-OUT MTH$DACOSD 0.33333d0)
2.41799946633l081d16

Calls the RTL routine MTH$DACOSD, and returns the routine's
value.

6-11

CALLING EXTERNAL ROUTINES

2. Lisp> (DEFINE-EXTERNAL-ROUTINE

ERASE-PAGE

(ERASE-PAGE :IMAGE-NAME "SCRS~R"
:ENTRY-POINT "LIB$ERASE PAGE"
:CHECK~STATUS-RETURN T)­

(LINE :LISP-TYPE INTEGER
:VAX-TYPE :WORD)

(COL :LISP-TYPE INTEGER
:VAX-TYPE :WORD))

Defines an RTL screen management routine, called ERASE-PAGE,
which erases the terminal screen. Note that the image name
for the screen package is SCRSHR and not VMSRTL. The routine
does not return the RTL status, but the call-out facility
checks the status internally. A VAX data type is specified
for each argument because the default type -- : LONGWORD -- is
not the type required by the RTL routine.

Lisp> (CALL-OUT ERASE-PAGE 1 1)

Calls the RTL routine LIB$ERASE PAGE to erase the terminal
screen starting at the upper left corner.

3. Lisp> (DEFINE-EXTERNAL-ROUTINE

PUT-SCREEN

(PUT-SCREEN :IMAGE-NAME "SCRSHR"
:ENTRY-POINT "LIB$PUT SCREEN"
:RESULT INTEGER) -

(CHARS :LISP-TYPE STRING)
(LINE :LISP-TYPE INTEGER

:VAX-TYPE :WORD)
(COL :LISP-TYPE INTEGER

:VAX-TYPE :WORD)
(FLAG :LISP-TYPE INTEGER

:VAX-TYPE :WORD»

Defines an RTL screen management routine, called PUT-SCREEN,
which writes to the terminal screen.

Lisp> (CALL-OUT PUT-SCREEN "This is a test.")
Ihis is a ~esc.

Calls the RTL routine PUT-SCREEN, which writes the string
"This is a test" to the current screen position and then
returns the status code (1).

Lisp> (CALL-OUT PUT-SCREEN "Another test." 5 10)
1 Another test.

Calls the RTL routine PUT-SCREEN, which writes the string
"Another test" starting on line five and in column ten and
then returns the status code (1).

Lisp> (CALL-OUT PUT-SCREEN "A third test." NIL NIL 2)
1 third test.

Calls the RTL routine PUT-SCREEN, which writes the string "A
third test" to the current screen position with the reverse
video attribute and then returns the status code (1).

6-12

CALLING EXTERNAL ROUTINES

4. Lisp> (DEFINE-EXTERNAL-ROUTINE

GET-SCREEN

(GET-SCREEN :IMAGE-NAME "SCRSHR"
:ENTRY-POINT "LIB$GET SCREEN"
:RESULT INTEGER) -

(INPUT :LISP-TYPE STRING
:ACCESS :IN-OUT)

(PROMPT :LISP-TYPE STRING)
(OUT-LEN :LISP-TYPE INTEGER

:VAX-TYPE :UNSIGNED-WORD
:ACCESS :IN-OUT»

Defines an RTL screen management routine, called GET-SCREEN,
which gets input from the terminal screen. The definition
includes two input-output access parameters. You must use
the SETF macro to assign values to these parameters before
you call the RTL routine.

Lisp> (SETF TEXT-LENGTH 0)
o
Lisp> (SETF IN-TEXT (MAKE-STRING 80 :INITIAL-ELEMENT

#\SPACE»
"

"
Lisp> (CALL-OUT GET-SCREEN IN-TEXT "Enter your data: "

TEXT-LENGTH)
Enter your data: This is input from the terminal.@]
I

Calls the RTL routine GET-SCREEN, which modifies the values
of the variables IN-TEXT and TEXT-LENGTH for the text that is
input. The routine modifies only the number of characters
specified by the new value of the TEXT-LENGTH variable. If
the number of characters in the specified text is greater
than the value of the variable, the routine does not modify
the remaining characters. The following call to the SUBSEQ
function returns the actual input from the terminal.

Lisp> (SUBSEQ IN-TEXT 0 TEXT-LENGTH)
"This is input frpm the terminal."

5. This example shows you how to callout to an external routine
that is written in another language. The following program
is written in FORTRAN:

FUNCTION NUMBERS(X,Y)
IMPLICIT INTEGER*4(A-Z)

NUMBERS=Y*(X + Y ** X)/X
RETURN
END

A routine written in FORTRAN, called NUMBERS,
manipulates two integers and returns an integer.

$ FORTRAN NUMBERS

Compiles the FORTRAN program NUMBERS.

which

$ LINK/SHAREABLE=DBA2: [SMITH] EXAMPLE NUMBERS,SYS$INPUT:/OPTION
UNIVERSAL=NUMBERS~TRLlz)

$

6-13

CALLING EXTERNAL ROUTINES

Links the FORTRAN routine NUMBERS
The name NUMBERS is specified
globally available.

into a shareable image.
as an entry point that is

Lisp> (DEFINE-EXTERNAL-ROUTINE
(NUMBERS :IMAGE-NAME "DBA2: [SMITH] EXAMPLE"

:RESULT INTEGER)
X Y)

NUMBERS

Defines an external routine, called NUMBERS, which
manipulates two integers and returns an integer. The image
name specification includes a directory specification because
the routine does not reside in SYS$SHARE. The arguments do
not have options because, by default, they are assumed to be
longword integers that are passed by reference.

Lisp> (CALL-OUT NUMBERS 5 7)
23536

Calls the external routine NUMBERS, which returns the
function value.

6. This example illustrates a more complex use of the call-out
facility. Assume that an external routine named COMPLEX
exists outside of the LISP system.

Lisp> (DEFINE-ALlEN-STRUCTURE COMPLEX-NUMBER
(REAL :G-FLOATING 0 8)
(COMPLEX :G-FLOATING 8 16»

COMPLEX-NUMBER

Defines a complex number (double-precision) • The
alien-structure facility is used to define complex numbers
because the data type cannot be represented directly in VAX
LISP. See Chapter 7 for a description of the alien-structure
facility.

Lisp> (DEFINE-EXTERNAL-ROUTINE
(CMPLX EXP :IMAGE-NAME "DBA2: [SMITH]COMPLEX"
(OUTPUT :LISP-TYPE ALIEN-STRUCTURE

:ACCESS :IN-OUT)
(INPUT :LISP-TYPE ALIEN-STRUCTURE»

CMPLX EXP

Defines the external routine, called CMPLX_EXP, which uses
complex numbers.

Lisp> (SETQ Cl (MAKE-COMPLEX-NUMBER :REAL 5.0dl
:COMPLEX 6.123456d-4»

#<Alien Structure COMPLEX-NUMBER #x50l0324>
Lisp> (SETQ C2 (MAKE-COMPLEX-NUMBER :REAL 0.0d0

:COMPLEX 0.~d0»
#<Alien Structure COMPLEX-NUMBER #x50l0348>

These expressions create two complex numbers, Cl and C2.

Lisp> (CALL-OUT CMPLX_EXP C2 Cl)

Calls the external routine CMPLX EXP.
the values in the alien structure
returned from the function call because
type (NIL) was used.

6-14

The
C2.

the

routine changes
A value is not
default result

CALLING EXTERNAL ROUTINES

6.6 DATA TYPE CONVERSIONS

The internal representation of some LISP objects differs from the
standard VAX format for the corresponding data types. If the data
types do not have the same internal format, the call-out facility
converts the LISP type to a VAX data type before it passes the
para~eter to the external routine. Likewise, after the LISP system
evaluates the external routine, the call-out facility might have to
convert the resulting VAX data to a LISP object before it can return
the data to the LISP system.

6.6.1 Converting LISP Objects to VAX Data Types

The :LISP-TYPE and :VAX-TYPE keyword specifications in an external
routine definition determine whether an actual parameter must be
converted. If conversion is necessary, the conversion operation is
independent of the mechanism that passes the parameters.

The call-out facility does not convert VAX LISP floating-point
numbers, strings, and floating-point arrays before it passes them to
an external routine. Therefore, the actual parameter type must
correspond exactly to the specified VAX formal type. For example, if
the VAX type is :H-FLOATING, the LISP object must be of type
LONG-FLOAT.

The call-out facility does not convert array indices before it passes
them to an external routine; the right-most index must vary faster
than the left-most index. In FORTRAN, the left-most array index
varies faster. Therefore, if you call a FORTRAN external routine, you
must ensure correct index order.

The only string type the call-out facility can pass to an external
routine is the LISP simple string. The facility does not support
strings that contain such things as fill pointers and displacements.

NOTE

Occurrences of the #\NEWLINE character
might not be interpreted correctly by an
external routine.

LISP integer, bit, and bit vector types are converted to VAX integers.
Table 6-2 lists the conversion operations.

LISP Object Type

FIXNUM
BIGNUM

BIT

Table 6-2
LISP Object to VAX Integer Conversions

Conversion Operation

The call-out facility converts fixnums and
bignums to the appropriate VAX integer type.

The call-out facility converts a bit to a VAX
byte, word, or longword by placing the bit in
the low order bit of the VAX data object and
padding the object on the left with zeros.

(Continued on next page)

6-15

LISP Object Type

BIT-VECTOR

CALLING EXTERNAL ROUTINES

Table 6-2 (Cont.)
LISP Object to VAX Integer Conversions

Conversion Operation

The call-out facility converts a bit vector
of length 32 or less to a VAX byte, word, or
longword by placing the bits right-justified
in the VAX object and padding the object on
the left with zeros.

6.6.2 Converting VAX Data Types to LISP Objects

The call-out facility might have to convert the VAX data resulting
from the execution of an external routine to a LISP object before it
can return the data to the LISP system. VAX floating-point numbers,
strings, and arrays require no conversion; the facility returns them
as the corresponding LISP object types.

VAX integer types do require conversion. The call-out facility
converts them to fixnum, bignum, bit, or bit vector LISP object types.
Table 6-3 lists the valid conversion operations.

LISP Object Type

FIXNUM
BIGNUM

BIT

BIT-VECTOR

Table 6-3
VAX Integer to LISP Object Conversions

Conversion Operation

The call-out facility converts a VAX byte,
word, or longword to a fixnum if the value
fits in a fixnum field; otherwise, it
converts a VAX byte to a bignum.

The call-out facility converts the least
significant bit of a VAX integer to a LISP
bit object.

The call-out facility converts a VAX integer
to a LISP bit vector of length n (where
n<=32). The facility uses the low order n
bits of the VAX integer for the conversion.
If the bit vector is larger than the VAX
integer, the facility fills the high-order
bits of the LISP bit vector with zeros.

6.7 CALLING SYSTEM SERVICES

The call-out facility provides a mechanism for LISP programs to call
standard VMS and RMS system services. Sections 6.7.1 and 6.7.2
provide the information you need to define and call system services.
Section 6.7.3 lists the system services that are supported by the VAX
LISP call-out facility. Section 6.7.4 provides examples of calling
system services.

6-16

CALLING EXTERNAL ROUTINES

6.7.1 Defining System Services

Defining VMS and RMS system services is similar to defining other
external routines with a few restrictions. You must be familiar with
the explanation of defining an external routine, which is provided in
Section 6.3, to understand the following list of restrictions:

• You must omit the image name parameter from the
DEFINE-EXTERNAL-ROUTINE macro specification. Omission of this
parameter causes the macro to assume that the function being
defined is a system service. If you use the name of a system
service but supply an image name (not NIL), the LISP system
assumes that you want an entry point in an ordinary shareable
image of that name rather than the VMS system service given as
the external routine name.

• The external-routine name or the entry-point name in the
DEFINE-EXTERNAL-ROUTINE macro specification must be one of the
system service names listed in Table 6-4 or Table 6-5.

• The data types of the arguments in the argument list in the
DEFINE-EXTERNAL-ROUTINE macro specification must correspond to
the system service's data types. The definitions for VMS
system service arguments are provided in the VAX/VMS System
Services Reference Manual, and the definitions for RMS system
service areguments are provided in the VAX/VMS RMS Reference
Manual.

• The order and the correct number of
in the DEFINE-EXTERNAL-ROUTINE
correspond exactly to the order and
service's definition (see the
Reference Manual or the VAX/VMS RMS

6.7.2 Calling out to System Services

system service arguments
macro specification must
number specified by the

VAX/VMS System Services
Reference Manual) •

Calling VMS and RMS system services is similar to calling other
external routines with a few restrictions. You must be familiar with
the explanation of calling out to an external routine, which is
provided in Section 6.4, to understand the following list of
restrictions:

• You must always call system services with a complete argument
list, even if you omit the last several arguments. Put NIL in
place of the omitted arguments -- including omitted trailing
arguments.

• You must omit parameters that correspond to an ASTADR
parameter in the system service, although you might have to
define the field to account for the correct number of
arguments. If you put a value other than NIL into the field,
unpredictable or erroneous behavior results.

• If you call an asynchronous routine, such as SYS$QIO, you must
place input-output access data in statically allocated alien
structures (see Chapter 7). You must do this even if the next
calIon the CALL-OUT macro has the SYS$WAITFR system service
or one of its variants as its argument. An example of such
input-output access data is the I/O status block (IOSB)
parameter of the SYS$QIO system service.

6-17

CALLING EXTERNAL ROUTINES

6.7.3 System Services

Tables 6-4 and 6-5 contain alphabetized lists of the VMS and RMS
services supported by the call-out facility. For more information on
VMS services, see the VAX/VMS system Services Reference Manual. For
more information on RMS services, see the VAX/VMS RMS Reference
Manual.

Table 6-4
VMS Services Supported by the Call-Out Facility

System Service

SYS$ADJWSL

SYS$ALLOC

SYS$ASCTIM

SYS$ASSIGN

SYS$BINTIM

SYS$BRDCST

SYS$CANCEL

SYS$CANWAK

SYS$CREMBX

SYS$CREPRC

SYS$DALLOC

SYS$DASSGN

SYS$DELLOG

SYS$DELMBX

SYS$DELPRC

Function

Adjusts the current limit of a process's working
set size by a specified number of pages.

Allocates a device for exclusive use by a process
and its subprocesses.

Converts an absolute or a delta time from 64-bit
system time format to an ASCII string.

Assigns a process an I/O channel so that
input/output operations can be performed on a
device, or establishes a logical link with a
remote node on a network.

Converts an ASCII string to an absolute or a delta
time value in the 64-bit system time format.

Broadcasts a message to one or more terminals.

Cancels all pending I/O requests on a specific
channel.

Cancels all scheduled wake-up requests for a
process from the timer queue, including those made
by the caller or by other processes.

Creates a virtual mailbox device named MBAn:
assigns an I/O channel to it.

Enables a process to create another process.

Deallocates a previously allocated device.

and

Deassigns an I/O channel acquired for input/output
operations with the SYS$ASSIGN system service.

Deletes a logical name and its equivalence name
from the process, group, or system logical name
table.

Marks a permanent mailbox for deletion.

Enables a process to delete itself or another
process.

(Continued on next page)

6-18

CALLING EXTERNAL ROUTINES

Table 6-4 (Cont.)
VMS Services Supported by the Call-Out Facility

System Service

SYS$DEQ

SYS$ENQ

SYS$ENQW

SYS$FAO

SYS$FAOL

SYS$FORCEX

SYS$GETCHN

SYS$GETDVI

SYS$GETJPI

SYS$GETSYI

SYS$GETTIM

SYS$HIBER

SYS$NUMTIM

SYS$QIO

SYS$QIOW

SYS$RESUME

Unlocks resources
previously locked
service.

Function

that the calling
using the SYS$ENQ

process
system

Enables you to queue requests to access a resource
or to convert the current lock request mode to
another lock request mode.

Combines the SYS$ENQ
services.

and SYS$WAITFR system

Converts binary values into ASCII characters and
returns the converted characters in ftn output
string.

Converts binary values into ASCII characters and
returns the converted characters in an output
string.

Causes the SYS$EXIT system service call to be
issued for a specified process.

Returns information about a device to which an I/O
channel has been assigned.

Returns information about an I/O device.

Returns accounting, status, and identification
information about a specified process.

Returns status and identification
about the system.

information

Returns the current system time in 64-bit format.

Enables a process to make itself inactive but to
remain known to the system so it can be
interrupted, for example, to receive ASTS.

Converts an absolute or a delta time from a 64-bit
system time format to binary integer date and time
values.

Initiates an input or output operation by queuing
a request to a channel associated with a specific
device.

Combines the SYS$QIO
services.

and SYS$WAITFR system

Causes a process previously suspended by the
SYS$SUSPEND system service to resume execution, or
cancels the effect of a subsequent suspend
request.

(Continued on next page)

6-19

CALLING EXTERNAL ROUTINES

Table 6-4 (Cont.)
VMS Services Supported by the Call-Out Facility

System Service

SYS$SCHDWK

SYS$SETIME

SYS$SETIMR

SYS$SETPRI

SYS$SETPRN

SYS$SETPRV

SYS$SETRWM

SYS$SNDACC

SYS$SNDERR

SYS$SNDOPR

SYS$SNDSMB

SYS$SUSPND

SYS$WAITFR

SYS$WAKE

SYS$WFLAND

SYS$WFLOR

Function

Schedules the wakeup of a process that has placed
itself in a state of hibernation with the
SYS$HIBER system service.

Changes or recalibrates the current system time.

Enables a process to schedule the setting of an
event flag and/or the queuing of an AST at some
future time.

Changes a process's base priority.

Enables a process to establish or to change its
own process name.

Enables a process to enable or disable specified
user privileges.

Enables a process to indicate what action a system
service should take when it lacks a system
resource required for its execution.

Controls accounting log activity and enables a
process to write an arbitrary data message into
the accounting log file.

Writes an arbitrary message to the system error
log file.

Enables a process to send a message to one or more
terminals designated as operator's terminals and
to optionally receive a reply.

Used by the operating system to queue user's print
files to a system printer or to queue command
procedure files for detached job execution.

Enables a process to suspend itself or another
process.

Tests a specific event flag
immediately if the flag is set.

and returns

Activates a process that has placed itself in a
state of hibernation with the SYS$HIBER system
service.

Enables a process to specify a mask of event flags
for which it wishes to wait.

Tests the event flags specified by a mask within a
specified cluster and returns immediately if any
of them is set.

6-2~

CALLING EXTERNAL ROUTINES

Table 6-5
RMS Services Supported by the Call-Out Facility

System Service

SYS$CLOSE

SYS$CONNECT

SYS$CREATE

SYS$DELETE

SYS$DISCONNECT

SYS$DISPLAY

SYS$ENTER

SYS$ERASE

SYS$EXIT

SYS$EXTEND

SYS$FIND

SYS$FLUSH

SYS$FREE

SYS$GET

SYS$NXTVOL

SYS$OPEN

SYS$PARSE

Function

Terminates file processing and closes the file.

Establishes a record stream by associating and
connecting a record access block (RAB) with a file
access block (FAB).

Constructs a new file according to the attributes
you specify in the file access block (FAB).

Removes an existing record from a relative or an
indexed file.

Terminates a record stream by breaking the
connection between a record access block (RAB) and
a file access block (FAB).

Retrieves file attribute information about a file
and places the information in fields in the file
access block (FAB) and in the extended attributes
blocks (XAB) chained to the FAB.

Inserts a file name into a directory.

Deletes a VAX RMS disk file and removes the file's
directory entry as specified in the path to the
file.

Exits VAX LISP.

Increases the amount of space allocated to a VAX
RMS disk file.

Locates a specified record in a file and returns
its record's file address in the record's file
address (RFA) field of the record access block
(RAB) •

writes out all modified I/O buffers and file
attributes associated with the file.

Unlocks all records that were previously locked
for the record stream.

Enables a record to be retrieved from a file.

Enables you to proceed to the next volume in the
set before the end of the current volume is
reached on input, or before the end of the tape is
reached on output.

Makes an existing file available for processing by
your program.

Analyzes the file specification string and fills
in various name block (NAM) fields.

(Continued on next page)

6-21

CALLING EXTERNAL ROUTINES

Table 6-5 (Cont.)
RMS Services Supported by the Call-Out Facility

System Service

SYS$PUT

SYS$READ

SYS$RELEASE

SYS$REMOVE

SYS$RENAME

SYS$REWIND

SYS$RMSRUNDWN

SYS$SEARCH

SYS$SETDDIR

SYS$SETDFPROT

SYS$SPACE

SYS$TRUNCATE

SYS$UPDATE

SYS$WAIT

SYS$WRITE

Function

Inserts a record into a file.

Retrieves a specified number of bytes from a file
and transfers them to memory.

Unlocks the record pointed to by the contents of
the record's file address (RFA) field of the
record access block (RAB).

Deletes a file name from a directory.

Renames a file.

sets the context of a stream to the first record
in the file.

Closes all files opened by VAX RMS for the image
or process and halts I/O activity.

Scans a directory file and fills in various name
block (NAM) fields.

Enables you to read and/or change the default
directory string for the process.

Enables you to read and/or write the default file
protection for the process.

Enables you to position a file forward or backward
a specified number of blocks.

Removes records from the end of a sequential file.

Enables you to modify the contents of an existing
record in a file residing on a disk device.

Suspends execution until an asynchronous record
operation completes.

Transfers a user-specified number of bytes to a
VAX RMS file of any file organization.

6.7.4 Examples of Calling System Services

This section provides examples of how to call system services.

1. Lisp> (DEFINE-EXTERNAL-ROUTINE (SYS$DALLOC :RESULT INTEGER)
(DEVNAM :LISP-TYPE STRING)
(ACMODE :LISP-TYPE INTEGER

:MECHANISM :IMMED»
SYS$DALLOC

Defines the VMS system service SYS$DALLOC.

Lisp> (CALL-OUT SYS$DALLOC "TTH7:" NIL)
2312

6-22

CALLING EXTERNAL ROUTINES

Calls the VMS system service SYS$DALLOC. NIL is specified to
account for the omitted parameter; this ensures that the
correct number of arguments are specified.

2. Suppose that the LISP variables OLD and NEW are bound to
statically allocated alien structures (see Chapter 7), which
are the file attribute blocks to be used in a rename
operation.

Lisp> (DEFINE-EXTERNAL-ROUTINE (SYS$RENAME :RESULT INTEGER)
(OLD-FAB :LISP-TYPE ALIEN-STRUCTURE)
NIL ;Error and success routines
NIL ;must be omitted from the call

(NEW-FAB :LISP-TYPE ALIEN-STRUCTURE»
SYS$RENAME

Defines the RMS system service SYS$RENAME.

Lisp> (CALL-OUT SYS$RENAME OLD NIL NIL NEW)
I

Calls the RMS system service SYS$RENAME. NIL is specified to
account for the omitted parameters. This ensures that the
correct number of arguments are specified. NIL is specified
for the error and status routines because ASTADR parameters
must be omitted.

6.8 ERRORS DURING EXTERNAL-ROUTINE EXECUTION

Errors that occur during the activation or the execution of an
external routine are trapped by the VAX LISP error handler. The types
of errors that might occur during these operations include VMS errors
that occur while you are accessing a shareable image and error
conditions that the external routine signals (by way of the VMS
error-signaling mechanism). You cannot correct these errors.

NOTE

The VAX LISP error
signaled conditions
(including conditions
success status).

handler regards
as fatal errors

that have a

Status codes returned by an external routine, however, do not always
represent uncorrectable errors. The operation that the call-out
facility performs when a routine returns a status code is determined
by the value that is specified with the :CHECK-STATUS-RETURN keyword
in the routine's definition. If the value is T, the facility examines
the contents of register R0 and interprets the routine's return value
as a VMS status code or a user status code. If the severity of the
return value is warning, error, or severe-error, the LISP system
signals a continuable error. If the :CHECK-STATUS-RETURN keyword is
specified with NIL, all status codes are ignored.

You can include your own error handler in an external routine to
intercept signaled error conditions. Because the VAX LISP error
handler was defined prior to your defining your own handler, the
call-out facility passes to the VAX LISP error handler only the error
conditions that your error handler does not accept.

6-23

CALLING EXTERNAL ROUTINES

6.9 SUSPENDING A LISP SYSTEM THAT CONTAINS CALLS TO EXTERNAL ROUTINES

You can suspend an executing LISP system that contains external
routine definitions or calls to external routines. When you suspend
such a system, you must be aware of certain restrictions to ensure
correct operation of the resumed system. They exist because mapped
images or memory acquired from outside the LISP environment (with
LIB$GET VM) are unmapped when the LISP system exits, and they cannot
be automatically remapped during a resume operation that follows a
suspend operation. Defined external routines are automatically
remapped the next time the external routine is called. If you are not
aware of the restrictions, other side effects might create undesirable
results. Undesirable results can occur from the following:

• Acquiring memory with LIB$GET_VM

• Data initialization

• Open files

6.9.1 Acquiring Memory with LIB$GET_VM

Memory acquired with the VMS. LIB$GET VM function within an external
routine is deleted when you exit the LISP system and is not remapped
by a resume operation. This prevents you from storing data in
acquired memory between calls across a suspend/resume cycle on the
routine. Many RTL routines, for example, use this function, and you
cannot resume the routines.

6.9.2 Data Initialization

When an external routine contains code that sets flags for an
initialization and takes branches based on those flags, the flags are
reset when the routine's image is remapped. As a result, the first
time you call the routine after a resume operation, the routine
executes as if it were executing for the first time, causing a problem
if you want to retain the saved data during a suspend/resume cycle.

If you want to retain data across
produce code that depends on a
following methods:

• Retain data as
parameters the
routines.

individual
call-out

a suspend/resume
first-time flag.

cycle, do not
Use one of the

LISP objects, which
facility can pass to

can be
external

• Store data in alien structures.

Undesired side effects do not occur if external routines you need to
use are defined in a series with the DEFINE-EXTERNAL-ROUTINE macro and
the resulting system is suspended prior to a call to an external
routine. The VAX LISP system retains the information the external
routine definition provides.

6.9.3 Open Files

When you exit the LISP system, open files are closed. A resume
operation does not reopen files that were opened by external routines
in the suspended system.

6-24

CHAPTER 7

DEFINING ALIEN STRUCTURES

Alien structures are structured records that are used to exchange data
between LISP programs and external routines that refer to VAX data
structures, which cannot be accessed with LISP code. Typical alien
structures are byte-aligned collections of integers, floating-point
numbers, strings, and bit vectors.

VAX LISP provides a facility that enables you to define, create, and
acc~ss alien structures. This facility is used primarily with the VAX
LISP call-out facility; it is used to create parameters for external
routines that have arguments or control blocks that are too
complicated for the call-out facility to convert (see Section 6.6).

Before you can use an alien structure, you must define the structure
with the VAX LISP DEFINE-ALlEN-STRUCTURE macro. This macro is similar
to the DEFSTRUCT macro described in COMMON LISP: The Language.

An alien-structure definition consists of the following components:

• Alien-structure name and options

• Field descriptions

An example of a definition follows:

(DEFINE-ALlEN-STRUCTURE SPACE
(AREA-l :SIGNED-INTEGER 0 4)
(AREA-2 :SIGNED-INTEGER 4 8»

The preceding definition defines an alien structure named SPACE. The
structure is defined to be an object that consists of two fields,
AREA-l and AREA-2, which are stored internally as VAX 32-bit integers.
The numbers in the definition specify the structure's field lengths in
bytes. When the LISP system evaluates the definition, the
DEFINE-ALlEN-STRUCTURE macro does the following:

• Defines an access function for each field and names the
functions SPACE-AREA-l and SPACE-AREA-2. They are I-argument
functions, which return the LISP integers that correspond to
the VAX integers stored in fields AREA-l and AREA-2. The
access functions are acceptable place indicators in a call to
the SETF macro.

• Defines the symbol SPACE to be the name of a data type.

• Defines a predicate function
function is a I-argument
argument is of type SPACE.

7-1

named SPACE-P. The predicate
function, which returns T if its

DEFINING ALIEN STRUCTURES

• Defines a constructor function named MAKE-SPACE. The
constructor function creates structures of type SPACE.

• Defines a copier function named COPY-SPACE. The copier
function is a I-argument function, which returns a copy of its
argument if the argument is of type SPACE.

This chapter describes the alien-structure definition components,
provides examples of how to define alien structures, and lists the
functions and macros you can use with the alien-structure facility.

See Part II for a description of the DEFINE-ALlEN-STRUCTURE macro.

7.1 ALIEN-STRUCTURE NAME AND OPTIONS

When you define an alien structure, you must specify a name for the
structure. In addition, you can specify options that provide the
DEFINE-ALlEN-STRUCTURE macro with information about how to name the
functions it creates.

7.1.1 Alien-Structure Name

An alien-structure name is a symbol that names a new data type. You
can specify an alien structure name with options. If you specify
options, specify the name and options as a list whose first element is
the name; if you do not specify options, specify the name as a
symbol.

7.1.2 Alien-Structure Options

You can assign specific characteristics to an alien
specifying options in the structure's definition.
consists of a keyword-value pair. A keyword-value
specified as a list as follows:

(keyword value)

structure by
Each option

pair must be

You must specify options in a list whose first element is the name of
the alien structure they characterize. The format in which to specify
the name and options follows:

(name (keyword-l value-I) (keyword-2 value-2) •••)

A list of the keywords that you can use to specify options for alien
structures and the characteristics the options define follows:

• :CONC-NAME -- Access function names

• :CONSTRUCTOR -- Constructor function name

• :COPIER -- Copier function name

• :PREDICATE -- Predicate function name

• :PRINT-FUNCTION -- Print function

7-2

DEFINING ALIEN STRUCTURES

7.1.2.1 Access Function - Access functions are 1- or 2-argument
functions you can use to access fields that are defined for an alien
structure. Each field is assigned an access function. By default,
the DEFINE-ALlEN-STRUCTURE macro produces names for the access
functions by prefixing each field name with the name of the alien
structure and a hyphen (-). For example, the macro produces access
functions named SPACE-AREA-l and SPACE-AREA-2 when the LISP system
evaluates the following definition:

Lisp> (DEFINE-ALlEN-STRUCTURE SPACE
(AREA-l :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8»

SPACE

If you specify the :CONC-NAME keyword in a structure's definition, the
function names are the field names prefixed with the name you specify
with the keyword. When the LISP system evaluates the following
definition, the DEFINE-ALlEN-STRUCTURE macro produces access functions
named GALAXY-AREA-l and GALAXY-AREA-2:

Lisp> {DEFINE-ALlEN-STRUCTURE (SPACE (:CONC-NAME GALAXY-»
(AREA-l :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8»

SPACE

If you specify NIL with the :CONC-NAME keyword, the function names are
the same as the field names, AREA-l and AREA-2.

7.1.2.2 Constructor Function - You can create new structures from an
alien-structure definition by using a constructor function. By
default, the DEFINE-ALlEN-STRUCTURE macro names a constructor function
by prefixing the alien-structure's name with the string MAKE and a
hyphen. For example, the macro names the constructor function
MAKE-SPACE when the LISP system evaluates the following definition:

Lisp> {DEFINE-ALlEN-STRUCTURE SPACE
(AREA-l :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8»

SPACE

If you specify a symbol as the value of the :CONSTRUCTOR keyword, the
_DEFINE-ALlEN-STRUCTURE macro uses the symbol to name the constructor
function. When the LISP system evaluates the following definition,
the macro names the constructor function CREATE:

Lisp> {DEFINE-ALlEN-STRUCTURE (SPACE (:CONSTRUCTOR CREATE»
(AREA-l :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8»

SPACE

If you specify NIL with the : CONSTRUCTOR keyword, the
DEFINE-ALlEN-STRUCTURE macro does not define a constructor function
and you cannot create alien structures of that type.

Constructor functions accept optional data initialization keywords.
The DEFINE-ALlEN-STRUCTURE macro creates a data initialization keyword
for each field you specify in an alien structure definition. The
value of an initialization keyword is the value you assign to the
field. When the LISP system evaluates the following definition, the

7-3

DEFINING ALIEN STRUCTURES

DEFINE-ALlEN-STRUCTURE macro produces two data initialization keywords
named :AREA-I and :AREA-2:

Lisp> (DEFINE-ALlEN-STRUCTURE SPACE.
(AREA-1 :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8»

SPACE

The :AREA-1 keyword assigns a value to the field
:AREA-2 keyword assigns a value to the field AREA-2.

AREA-1 and the
For example:

Lisp> (MAKE-SPACE :AREA-l 5 :AREA-2 10)
#<Alien Structure SPACE #x5036E8>

Constructor functions produced by the DEFINE-ALlEN-STRUCTURE macro
accept two keywords in addition to the data initialization keywords
that are constructed from the alien structure's field names. Table
7-1 describes the two keywords and their corresponding values.

Keyword

Table 7-1
Constructor Function Keywords

Value

:ALIEN-DATA-LENGTH integer The number of bytes of memory to
be allocated for the alien
structure's data vector. This
keyword allows efficient use of
storage when you are using alien
structures as data buffers for
variable size records. The
default is large enough to store
the defined alien structure.

:ALLOCATION value The type of allocation to be
used for the alien structure.
Valid values are : DYNAMIC and
:STATIC. : DYNAMIC is the
default. If :STATIC is
specified, the alien structure
is allocated in static space and
its virtual address is not
changed during a garbage
collection (see Section 8.3.2).

7.1.2.3 Copier Function - A copier function is a I-argument function
you can use to create a copy of an existing alien structure. By
default, the DEFINE-ALlEN-STRUCTURE macro names the copier function by
prefixing the alien-structure's name with the string COpy and a
hyphen. For example, the macro produces a copier function named
COPY-SPACE when the LISP system evaluates the following definition:

Lisp> (DEFINE-ALlEN-STRUCTURE SPACE
(AREA-I :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8»

SPACE

7-4

DEFINING ALIEN STRUCTURES

You can specify the :COPY keyword with a symbol value to modify the
default name for the copier function. The DEFINE-ALlEN-STRUCTURE
macro uses the symbol you specify to name the function. When the LISP
system evaluates the following definition, the macro produces a copier
function named REPRODUCE:

Lisp> (DEFINE-ALlEN-STRUCTURE (SPACE (:COPIER REPRODUCE»
(AREA-l :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8»

SPACE

If you specify NIL with the :COPIER keyword, the
DEFINE-ALlEN-STRUCTURE macro does not define a copier function.

7.1.2.4 Predicate Function - A predicate function is a I-argument
function that determines whether its argument is an occurrence of the
defined alien structure. The DEFINE-ALlEN-STRUCTURE macro creates the
predicate function name by attaching the alien-structure's name to the
characters -P. The macro names the predicate function SPACE-P when
the LISP system evaluates the following .definition:

Lisp> (DEFINE-ALlEN-STRUCTURE SPACE
(AREA-l :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8»

SPACE

You can specify the :PREDICATE keyword with a symbol value in an alien
structure's definition. When you specify this option, the predicate
function name is the symbol value. For example, the following
definition produces the predicate function CHECK:

Lisp> (DEFINE-ALlEN-STRUCTURE (SPACE (:PREDICATE CHECK»
(AREA-l :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8»

SPACE

If you specify NIL with the :PREDICATE keyword, the
DEFINE-ALlEN-STRUCTURE macro does not define a predicate function.

7.1.2.5 Print Function - You can use the :PRINT-FUNCTION keyword to
specify the function that is to print an alien structure. A print
function has three arguments:

• Name -- the name of the alien structure to be printed

• Stream -- the stream to print to

• Integer -- the print depth

7.2 ALIEN-STRUCTURE FIELD DESCRIPTIONS

Alien structures are composed of fields, each of which has a
description that specifies the following:

• Field name

7-5

DEFINING ALIEN STRUCTURES

• Field type

• Start and end positions in the structure's data area

• Options that define the field's characteristics

When you specify a field description, you must specify the description
as a list whose first element is the name of the field. Specify the
field arguments in the following format:

(name type start-position end-position options)

The following list is an example of a field desctiption:

(FIELD-l :STRING 0 9 :OCCURS 10 :OFFSET 15)

7.2.1 Field Name

An alien-structure field name is a symbol that names a field.
Functions that access and set the values of alien-structure fields
refer to field names to retrieve field description data.

7.2.2 Field Type

An alien-structure field type specifies how a field is to be
interpreted by the LISP system. The data in a field is stored as VAX
data and is converted to a LISP object when the data is accessed.

Each field associates a VAX data type with the LISP
system creates when a function accesses
alien-structure's field type defines the conversion
system is to use to transform a field's LISP object
and its VAX data type to a LISP object.

data object the
the field. An
methods the LISP
to a VAX data type

Although the alien-structure facility provides predefined data
you can define alien-field types with the VAX
DEFINE-ALIEN-FIELD-TYPE macro.

types,
LISP

7.2.2.1 Predefined Types - The VAX LISP alien-structure facility
defines a number of types for alien-structure fields. Table 7-2 lists
the predefined types and their internal storage representations.

Table 7-2
Predefined Alien-Structure Field Types

Type

: STRING

: VARYING-STRING

Internal Storage Representation

VAX character string

VAX character string; the first
word of the data vector contains
of the number of characters
string (this is the body of
varying string type)

l6-bit
a count
in the
the VMS

(Continued on next page)

7-6

DEFINING ALIEN STRUCTURES

Table 7-2 (Cont.)
Predefined Alien-Structure Field Types

Type Internal Storage Representation

: SIGNED-INTEGER signed two's complement integer

:UNSIGNED-INTEGER Unsigned integer

: BIT-VECTOR unsigned integer

:F-FLOATING F floating data

:G-FLOATING G_floating data

:D-FLOATING D_floating data

:H-FLOATING H floating data

:POINTER See below

:SELECTION See below

Descriptions of the :POINTER and the :SELECTION alien-field types
follow:

:POINTER Specification -- (:POINTER [name] [:DISPLACED value]): If
you specify the :POINTER alien-field type, the field will contain a
VAX pointer, which points to the start of the data area of a
statically allocated alien structure. If you specify the name
argument, the update function checks that the new value of the field
points to the name of the specified alien structure. The :DISPLACED
keyword causes the stored VAX pointer to point to the start of the
alien-structure data area plus the number of bytes specified for the
value. You can omit the parentheses if you do not specify the field
name and the :DISPLACED keyword. The following field description
includes the type :POINTER:

(:AREA-I (:POINTER SPACE) 0 4)

:SELECTION Specification -- (:SELECTION s0 sl s2 •••): If you specify
the :SELECTION alien-field type, the DEFINE-ALlEN-STRUCTURE macro
evaluates each element in the list (sn). When the field is accessed,
it is interpreted as an unsigned integer, and the corresponding sn
value is returned. The SETF form receives one of the values and
stores the corresponding integer in the field. The following field
description includes the type :SELECTION:

(:AREA-I (:SELECTION 'JUPITER 'MARS 'VENUS) 0 4)

7.2.2.2 Defining Types - In addition to the predefined alien-field
types, you can define your own field types with the
DEFINE-ALIEN-FIELD-TYPE macro. It is described in Part II.

7-7

DEFINING ALIEN STRUCTURES

7.2.3 Field position

You establish the position of a field in an alien structure's data
area by specifying the start and end arguments in a field description
specification. These arguments are rational numbers that determine
the start and end positions of the field.

7.2.3.1 Start position - The first field in an alien structure's data
area starts in position zero. Each field is measured in units of
8-bit bytes. The value can be a ratio; you can, therefore, specify
fields within arbitrary bit boundaries. For example, a field with a
start value of one-half starts on the fourth bit of the data area.
Because the units are 8-bit bytes, a start value of one-third causes
an error when you call the DEFINE-ALlEN-STRUCTURE macro.

The LISP system evaluates the start position when it expands the
DEFINE-ALlEN-STRUCTURE macro.

7.2.3.2 End position - The last position a field occupies is the
position that precedes the field's end position value. For example,
if a field's start position is zero and its end position is four, the
field occupies positions 0 to 3.

The end position is measured in 8-bit bytes and the value can be a
ratio. The LISP system evaluates the end position when it expands the
DEFINE-ALlEN-STRUCTURE macro.

7.2.3.3 Gaps - A gap is memory space that you can allocate as part of
an alien structure. Defined functions cannot access gaps. Even
though gaps can exist between fields, the LISP system does not
generate forms that access and set fields that include gaps; that is,
LISP-level code does not process gaps.

7.2.3.4 Overlapping Fields - Alien-structure fields can overlap.
This enables you to access data from more than one field at a time.
If you change the data in a field that overlaps other fields, the
other overlapping fields are also changed.

Overlapping fields are useful when you want data to be interpreted in
more than one way. The following definition defines an alien
structure that contains fields that overlap.

Lisp> (DEFINE-ALlEN-STRUCTURE MASK

MASK

(NUMBER :UNSIGNED-INTEGER 0 4)
(BIT-0 :UNSIGNED-INTEGER 0 1/8)
(BIT-l :UNSIGNED-INTEGER 1/8 2/8)
(BIT-2 :UNSIGNED-INTEGER 2/8 3/8)
(BIT-3 :UNSIGNED-INTEGER 3/8 4/8)
(BIT-4 :UNSIGNED-INTEGER 4/8 5/8))

7-8

DEFINING ALIEN STRUCTURES

After you define the alien structure, you must create a structure by
calling the alien structure's constructor function. The following
example shows how to use the SETF macro to set the value of the symbol
NEWMASK to a new alien-structure of type MASK.

Lisp> (SETF NEWMASK (MAKE-MASK»
#<Alien Structure MASK #x50C600>

Two ways to set the two and the four bits in NEWMASK and to clear all
other bits follow:

Lisp> (SETF (MASK-NUMBER NEWMASK) (+ 4 16»
20

Lisp> (SETF (MASK-NUMBER NEWMASK) 0
(MASK-BIT-2 NEWMASK) 1
(MASK-BIT-4 NEWMASK) 1)

I

7.2.4 Field Options

You can define characteristics for the fields specified for an alien
structure by specifying field options in the structure's definition.
Each option consists of a keyword-value pair. You must specify a
keyword-value pair as follows:

keyword value

Specify options in a list whose first element is the name of the field
the options characterize. The format of such a list follows:

(name keyword-l value-1 keyword-2 value-2 •••)

A list of the keywords you can use to specify field options and the
characteristics the options define follows:

• :DEFAULT -- Initial value

• :READ-ONLY -- Whether a field can be set

• :OCCURS Number of times a field repeats

• :OFFSET offset

7.2.4.1 Initial Value - You can specify the initial value of a field
in a call to the alien-structure's constructor function. Each field
description you specify in a call to the DEFINE-ALlEN-STRUCTURE macro
causes the constructor function to accept a keyword-value pair that
consists of the field name prefixed with a colon (:) and the field's
initial value. If you specify different values for overlapping
fields, the field values that result are undefined.

To specify an initial value for a field, specify the value with the
:DEFAULT keyword in the alien-structure's definition. The LISP system
evaluates the initial value when you use the alien structure's
constructor function. If you do not specify a value for the field in
the call to the constructor function, the system uses the initial
value you specified in the alien structure's definition.

7-9

DEFINING ALIEN STRUCTURES

7.2.4.2 Accessing and Setting a Field - The : READ-ONLY keyword
enables you to specify whether a field can be accessed or set. The
value you specify with the keyword defines the direction
characteristic of the field; the value can be either T or NIL. If
you specify T, the DEFINE-ALlEN-STRUCTURE macro generates access
functions that are not acceptable place indicators in a call to the
SETF macro. If you specify NIL, the macro generates access functions
that are acceptable place indicators in a call to the SETF macro.

7.2.4.3 Repeating Fields - A field can be repeated
structure. The integer you specify with the
determines the number of times the field is repeated.

within
:OCCURS

an alien
keyword

The argument a field's access function takes depends on whether you
specify the :OCCURS keyword in the field's description. If you do not
specify the :OCCURS keyword, the access function takes the field name
as its argument. If you specify this keyword, the access function
takes the field name and an index for arguments. The index is an
integer that indicates the occurrence of the field. The first
occurrence of the field has an index of zero. Consider the following
definition:

Lisp> (DEFINE-ALlEN-STRUCTURE SPACE
(AREA-I :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8 :OCCURS 4))

SPACE

When the LISP system evaluates this definition, the access functions
AREA-I and AREA-2 have the following formats:

(SPACE-AREA-I field)
(SPACE-AREA-2 field index)

The LISP system evaluates the value you specify with the :OCCURS
keyword when it expands the DEFINE-ALlEN-STRUCTURE macro.

You can change the values of the alien structure's fields with the
SETF macro. For example, you can change the value of the field AREA-1
to five by applying the SETF macro to the access function
SPACE-AREA-1.

Lisp> (SETF PLACE (MAKE-SPACE))
#<A1ien Structure SPACE x50C618>
Lisp> (SETF (SPACE-AREA-1 PLACE) 5)
5

7.2.4.4 Offset - A field offset is the distance in 8-bit bytes from
the start of one occurrence of a field to the start of the next
occurrence of the field. Specifying an offset enables you to access
data files that consist of repeated substructures. You define an
offset by specifying a rational number with the :OFFSET keyword. If
you specify a value that is greater than the field length, the
DEFINE-ALlEN-STRUCTURE macro produces gaps in the alien structure.
You can fill them by defining one or more other fields with the
:OCCURS and the :OFFSET keywords.

The LISP system evaluates the value you specify with the :OFFSET
keyword when it expands the DEFINE-ALlEN-STRUCTURE macro.

7-10

DEFINING ALIEN STRUCTURES

7.3 EXAMPLES OF DEFINING ALIEN STRUCTURES

This section provides examples of how to define an alien structure.

1. Lisp> (DEFINE-ALlEN-STRUCTURE MY-ALIEN (FIELD-l :STRING 0 9»
MY-ALIEN

Defines an alien structure, named MY-ALIEN, which contains
one field, named FIELD-I. The structure is a string that
begins on the first byte and is ten characters long.

2. Below is an example of a Pascal record structure definition.

TYPE
FAMILY REC = RECORD
{A record structure definition.}

SURNAME: PACKED ARRAY[1 •• 20] OF CHAR;
FATHER : RECORD

NAME: PACKED ARRAY[1 •• 20] OF CHAR;
AGE : INTEGER;
END;

MOTHER : RECORD
NAME: PACKED ARRAY[1 •• 20] OF CHAR;
AGE : INTEGER;
END;

NUM CHILDREN : INTEGER;
FOR-I = 0 TO NUM CHILDREN DO

BEGIN
CHILDREN: RECORD
NAME: PACKED ARRAY[l •• 20] OF CHAR;
AGE : INTEGER;
SEX: (FEMALE MALE);
END;

END;
END;

An equivalent LISP record structure definition looks like the
following:

Lisp> (DEFINE-ALlEN-STRUCTURE FAMILY-REC
"A record structure definition."

(SURNAME :STRING 0 20)
(FATHER-NAME :STRING 20 40)
(FATHER-AGE :UNSIGNED-INTEGER 40 44)
(MOTHER-NAME :STRING 44 64)
(MOTHER-AGE :UNSIGNED-INTEGER 64 68)
(NUM-CHILDREN :UNSIGNED-INTEGER 68 72 :DEFAULT 2)
(CHILD-NAME :STRING 72 92 :OCCURS 20 :OFFSET 25)
(CHILD-AGE :UNSIGNED-INTEGER 92 96 :OCCURS 20

:OFFSET 25)
(CHILD-SEX (:SELECTION 'FEMALE 'MALE) 96 97

:OCCURS 20
:OFFSET 25»

FAMILY-REC

Defines the record FAMILY-REC. The definition contains the
: DEFAULT, :OCCURS, and :OFFSET keywords.

7-11

DEFINING ALIEN STRUCTURES

7.4 ALIEN-STRUCTURE FUNCTIONS AND MACROS

In addition to the DEFINE-ALlEN-STRUCTURE macro, VAX LISP provides the
following alien-structure functions and macros:

• ALIEN-STRUCTURE-LENGTH function -- Returns the length of an
alien structure

• ALIEN-FIELD function
from an alien structure

Accesses a field of a specified type

• DEFINE-ALIEN-FIELD-TYPE macro -- Defines alien-structure field
types

Descriptions of the functions and macro are provided in Part II.

7-12

CHAPTER 8

VAX LISP 1/0 EXTENSIONS

VAX LISP provides a number of extensions to the COMMON LISP I/O
system. These extensions fall into the following three categories:

• A facility for defining new stream types. VAX LISP lets you
define new types of character streams. Section 8.1 describes
this facility.

• Information about streams. VAX LISP data types and functions
provide more informatfon about streams than is possible using
only COMMON LISP facilities. Section 8.2 describes these data
types and functions.

• New I/O functions. VAX LISP provides
functions in addition to those defined
Section 8.3 describes these functions.

8.1 DEFINING NEW TYPES OF STREAMS

a number of
in COMMON

I/O
LISP.

COMMON LISP provides several types of streams; for example, synonym
streams, broadcast streams, and echo streams. VAX LISP lets you
define new types of streams that have characteristics different from
those defined in COMMON LISP. You might want to define a new type of
stream when you need input or output operations to have side effects
unavailable with COMMON LISP streams.

To define a new type of stream, do the following:

• Design the stream. You need to decide how instances of the
stream should respond to each valid I/O function.

• Define a means of creating instances of the stream. See
Section 8.1.2.

• Define the action of each I/O function when acting on streams
of that type. See Section e.l.3.

Version 2.2, July 1987 8-1

I

VAX LISP 1/0 EXTENSIONS

8.1.1 Overview of VAX LISP 1/0

. In the VAX LISP I/O system, every instance of a stream includes a
function called the stream dispatch function. Whenever an I/O
function is called with a stream as its argument, the stream dispatch
function for that stream executes. The st~eam dispatch function is
passed, as its first argument, an I/O request specifier whose value
indicates the I/O function that was called. The stream dispatch
function must, for every valid I/O request specifier, take the
appropriate action for that I/O function operating on that type of
stream.

In VAX LISP, streams are implemented as structures. Every stream type
structure definition includes the STREAM structure definition provided
in VAX LISP. In addition, stream type definitions may contain slots
specific to that type of stream. For example, the structure that
implements a synonym stream contains a slot for the symbol to whose
value the synonym stream is equated.

8.1.2 Defining Stream Structures

To define a new stream type, use the DEFSTRUCT macro to create a
structure definition that includes the STREAM structure definition.
Define additional. slots as needed to satisfy the requirements of the
stream type you have designed.

Your structure definition must set the following slots in the STREAM.
structure:

• The DOES-INPUT-P and DOES-OUTPUT-P slots, whose values
indicate whether input operations and output operations,
respectively, are valid on the new stream type.

• The DISPATCH-FUNCTION slot, whose value is
write that performs each of the input and/or
that can result from function calls on the
8.1.3 describes stream dispatch functions.
DISPATCH-FUNCTION slot may also be a symbol
definition.

Version 2.2, July 1987 8-2

a function you
output operations
stream. Section

The value of the
with a function

VAX LISP 1/0 EXTENSIONS

The following example defines a new stream type called SAMPLE-STREAM:

(DEFSTRUCT (SAMPLE-STREAM
(:CONSTRUCTOR MAKE-SAMPLE-STREAM

(INPUT-STREAM OUTPUT-STREAM»
(:COPIER NIL)
(:INCLUDE STREAM (DOES-INPUT-P T)

(DOES-OUTPUT-P T)
(DISPATCH-FUNCTION

#'SAMPLE-STREAM-DISPATCH»)
(INPUT-STREAM NIL :TYPE STREAM :READ-ONLY T)
(OUTPUT-STREAM NIL :TYPE STREAM :READ-ONLY T»

This definition results in the following:

• A definition for the structure type SAMPLE-STREAM, instances
of which contain the slots INPUT-STREAM and OUTPUT-STREAM in
addition to those slots inherited from the STREAM structure
definition

• A new type, SAMPLE-STREAM

• A new predicate, SAMPLE-STREAM-P

• A by-position constructor function whose format is:

MAKE-SAMPLE-STREAM input-stream output-stream

• Accessor functions SAMPLE-STREAM-INPUT-STREAM and
STREAM-OUTPUT-STREAM

8.1.3 Stream Dispatch Functions

SAMPLE-

When an I/O function is called on a stream, the dispatch function for
that stream type executes. Each stream type's dispatch function must
perform the operations for each I/O function that can be called on
streams of that type.

When it executes, the stream dispatch function receives at least two
arguments:

1. An I/O request specifier (a keyword that corresponds to the
I/O function that was called on the stream).

2. The stream on which the function was called.

The stream dispatch function receives additional arguments that
correspond to the additional arguments with which the I/O function was
called. A stream dispatch function must be able to receive any number
of arguments without error, although it need not process all arguments
it receives.

Version 2.2, July 1987 8-3

VAX LISP 1/0 EXTENSIONS

For example, if MY-SAMPLE-STREAM is an instance of SAMPLE-STREAM, the
following call:

(READ-CHAR MY-SAMPLE-STREAM NIL 'EOF-ENCOUNTERED NIL)

results in a call to SAMPLE-STREAM-DISPATCH with five arguments. The
first argument is the I/O request specifier, :READ-CHAR in this case.
The second through fifth arguments are MY-SAMPLE-STREAM, NIL,
, EOF-ENCOUNTERED, and NIL.

Table 8-1 lists the I/O request specifiers that stream dispatch
functions must handle. Not all I/O functions have a corresponding
specifier, because some I/O functions (such as WRITE-LINE and TERPRI)
are defined and implemented in terms of lower-level functions.

Table 8-1: 1/0 Request Specifiers

Must Be Handled by All streams

:CLOSE : ELEMENT-TYPE

Must Be Handled by All Input streams

: CLEAR-INPUT
:NREAD-LINE
:READ-LINE

:LISTEN2
: READ-CHAR
: UNREAD-CHAR

Must Be Handled by All Output streams

: CLEAR-OUTPUT : FINISH-OUTPUT
: FORCE-OUTPUT :FRESH-LINE
:IMMEDIATE-OUTPUT-P :LINE-POSITION
: RIGHT-MARGIN :WRITE-CHAR
:WRITE-STRING

Note: See Section 8.3 for a description of the
functions IMMEDIATE-OUTPUT-P, LISTEN2,
LINE-POSITION, NREAD-LINE, and RIGHT-MARGIN. All
other functions are described in COMMON LISP: The
Language.

The :ABORT flag argument to CLOSE is passed as the
first argument with the :CLOSE request.

The stream dispatch function SAMPLE-STREAM-DISPATCH might be written
as follows. Note the use of &REST to ensure that
SAMPLE-STREAM-DISPATCH can be called with an indefinite number of
arguments without error.

Version 2.2, July 1987 8-4

VAX LISP I/O EXTENSIONS

(DEFUN SAMPLE-STREAM-DISPATCH
(REQUEST STREAM &OPTIONAL ARG1 ARG2 ARG3 &REST ARG4)

(DECLARE (IGNORE ARG4))
(CASE (THE KEYWORD REQUEST)

(: READ - CHAR
(LET ((CHAR (READ-CHAR

(SAMPLE-STREAM-INPUT-STREAM STREAM)
ARG1 ARG2 ARG3)))

(UNLESS (EQ CHAR ARG2)
(WRITE-CHAR CHAR

(SAMPLE-STREAM-OUTPUT-STREAM STREAM)))
CHAR))

(:WRITE-CHAR (WRITE-CHAR ARGl
(SAMPLE-STREAM-OUTPUT-STREAM STREAM)))

(:UNREAD-CHAR (UNREAD-CHAR ARG1
(SAMPLE-STREAM-INPUT-STREAM STREAM)))

(T (ERROR ""'A does not recognize the "'A request"
STREAM REQUEST))))

SAMPLE-STREAM-DISPATCH provides special handling when READ-CHAR is
called on a stream of type SAMPLE-STREAM. For other I/O functions,
SAMPLE-STREAM-DISPATCH simply calls the same function on either the
input stream or the output stream. SAMPLE-STREAM-DISPATCH signals an
error if it is called with an unrecognized I/O request specifier.

8.2 GETTING INFORMATION ABOUT STREAMS

VAX LISP provides access to more detailed information about streams
than is called for in COMMON LISP: The Language. VAX LISP provides a
separate data type for each stream type, a predicate for each stream
type, and functions to retrieve elements that were used to construct
streams.

Table 8-2 lists the stream data types and predicates. The STREAMP
predicate is satisfied by objects of any of the stream data types.

Version 2.2, July 1987 8-5

VAX LISP 1/0 EXTENSIONS

Table 8-2: Stream Data Types and Predicates

Data Type Predicate Function

BROADCAST-STREAM BROADCAST-STREAM-P object

CONCATENATED-STREAM CONCATENATED-STREAM-P object

DRIBBLE-STREAM DRIBBLE-STREAM-P object

ECHO-STREAM ECHO-STREAM-P object

FILE-STREAM FILE-STREAM-P object

STRING-STREAM STRING-STREAM-P object

SYNONYM-STREAM SYNONYM-STREAM-P object

TERMINAL-STREAM TERMINAL-STREAM-P object

TWO-WAY-STREAM TWO-WAY-STREAM-P object

Table 8-3 lists functions that retrieve information from streams. You
cannot use SETF with these functions.

~ Table 8-3: Stream Informational Functions

Function Return Value

BROADCAST-STREAM-STREAMS broadcast-stream List of streams

CONCATENATED-STREAM-STREAMS concatenated-stream List of streams

ECHO-STREAM-INPUT-STREAM echo-stream Stream

ECHO-STREAM-OUTPUT-STREAM echo-stream stream

SYNONYM-STREAM-SYMBOL synonym-stream Symbol

TWO-WAY-STREAM-INPUT-STREAM two-way-stream Stream

TWO-WAY-STREAM-OUTPUT-STREAM two-way-stream stream

Version 2.2, July 1987 8-6

VAX LISP 1/0 EXTENSIONS

8.3 NEW 1/0 FUNCTIONS

VAX LISP provides several I/O functions in addition to those defined
in COMMON LISP: The Language. Most of these functions are variations
on existing COMMON LISP functions. This section describes the
functions in alphabetical order. The optional arguments input-stream
and output-stream have the defaults specified in COMMON LISP: The
Language:

• input-stream defaults to *STANDARD-INPUT*. If a value of T is
supplied, the value of *TERMINAL-IO* is used.

• output-stream defaults to *STANDARD-OUTPUT*. If a value of T
is supplied, the value of *TERMINAL-IO* is used.

IMMEDIATE-OUTPUT-P Function

Returns T if an output stream does not buffer its
otherwise. The I/O system uses this function
performance by buffering output when the stream
perform buffering.

Format

IMMEDIATE-QUTPUT-P &OPTIONAL output-stream

Argument

output-stream

An output stream.

Return Value

output and NIL
to improve output
itself does not

T if output-stream does not buffer output and NIL otherwise.

LINE-POSITION Function

Returns the number of characters that have been output on the current
line if that number can be determined and NIL otherwise.

Format

LINE-POSITION &OPTIONAL output-stream

Version 2.2, July 1987 8-7

VAX LISP 1/0 EXTENSIONS

Argument

output-stream

An output stream.

Return Value

A fixnum or NIL.

LISTEN2 Function

Returns two values. The first is identical to the value returned by
the COMMON LISP LISTEN function; the second is T if end-of-file was

. encountered on the input stream, and NIL otherwise. You can use this
function wherever you would normally use LISTEN.

Format

LISTEN2 &OPTIONAL input-stream

Argument

input-stream

An input stream."

Return Value

Two values:

1. T if a character is immediately available from input-stream
and NIL otherwise.

2. T if end-of-file was encountered on input-stream and NIL
otherwise.

NREAD-LINE Function

NREAD-LINE, a destructive version of the COMMON
function, places the characters that were read
supplied as its fir&t argument. NREAD-LINE returns
characters read, a flag indicating whether
encountered, and a string containing the line if the
fit into the string supplied.

Version 2.2, July 1987 8-8

LISP READ-LINE
into the string
the number of

end-of-file was
line could not

VAX LISP 1/0 EXTENSIONS

Format

NREAD-LINE string
&OPTIONAL input-stream eof-error-p eof-value-p recursive-p

Arguments

string

A character string. NREAD-LINE updates string with the line that
was read. If string has a fill pointer, the fill pointer is
adjusted so that string appears to contain exactly what was read
from the stream. If string is adjustable and the size of the
line exceeds the size of string, then string is extended.

Since NREAD-LINE does not return string, you must maintain a
pointer to string.

input-stream eof-error-p eof-value-p recursive-p

These arguments correspond to the arguments
documented in COMMON LISP: The Language.

Return Value

Three values:

to READ-LINE

1. A fixnum indicating the number of characters that were in the
line.

2. T if the line was terminated by end-of-file and NIL
otherwise.

3. NIL if the line fit into string:
containing the line.

OPEN-STREAM-P Function

Returns T if a stream is open, and NIL otherwise.

Format

OPEN-STREAM-P stream

Argument

stream

A stream.

Version 2.2, July 1987 8-9

otherwise a string

VAX LISP I/O EXTENSIONS

Return Value

T or NIL.

RIGHT-MARGIN Function

Returns the default right margin used by the pretty printer when
printing to the stream. The current margin used by the pretty printer
is controlled by the variable *PRINT-RIGHT-MARGIN*.

Format

RIGHT-MARGIN &OPTIONAL output-stream

Argument

output-stream

An output stream.

Return Value

A non-negative fixnum indicating the default right margin for
output-stream.

Version 2.2, July 1987 8-10

VAX LISP IMPLEMENTATION NOTES

If you use the PATHNAME function to create a pathname called
THIS-PATHNAME, whose host field value is the current node, the
NAMESTRING function does not include the host in the namestring it
returns. The following call to the SETF macro sets THIS-PATHNAME to
the pathname that is created with the PATHNAME function:

Lisp> (SETF THIS-PATHNAME
(PATHNAME "MIAMI: :DBAl: [SMITH]LOGIN.COM;4"))

#S(PATHNAME :HOST "MIAMI" :DEVICE "DABl" :DIRECTORY "SMITH" :NAME
"LOGIN" :TYPE "COM" :VERSION 4)

When the NAMESTRING function is
argument, the namestring that
pathname's host.

called with THIS-PATHNAME as its
is returned does not include the

Lisp> (NAMESTRING THIS-PATHNAME)
"DBAl: [SMITH]LOGIN.COM;4"

Suppose you use the PATHNAME function to create a pathnam~ called
THAT-PATHNAME whose host field value is BOSTON. The following call to
the SETF macro sets THAT-PATHNAME to the pathname that is created wi~h
the PATHNAME function:

Lisp> (SETF THAT-PATHNAME
(PATHNAME "BOSTON: :DBAl: [SMITH]LOGIN.COM;4"))

#S(PATHNAME :HOST "BOSTON" :DEVICE "DBAl" :DIRECTORY "SMITH"
:NAME "LOGIN" :TYPE "COM" :VERSION 4)

Because the current node is MIAMI and the host field value of
THAT-PATHNAME is BOSTON, the NAMESTRING function returns a namestring
that includes all the pathname field values.

Lisp> (NAMESTRING THAT-PATHNAME)
"BOSTON::DBAl: [SMITH]LOGIN.COM;4"

If you want to invoke DECnet-VAX and you want to specify the current
host, specify the host with an access control string or specify zero
as the host. For example:

Lisp> (SETF THAT-PATHNAME
(PATHNAME "0::THATDEVICE:[SMITH]LOGIN.COM"))

#S(PATHNAME :HOST "0" :DEVICE "THATDEVICE" :DIRECTORY "SMITH" :NA
ME "LOGIN" :TYPE "COM" :VERSION NIL)
Lisp> (NAMESTRING THAT-PATHNAME)
"0: :THATDEVICE:[SMITH]LOGIN.COM"

It was noted in Table 8-3 that in VAX LISP the host field of a
pathname can include an access control string. If the NAMESTRING
function is called with a pathname argument whose host field includes
an access control string, the namestring that is returned includes the
host, even if the value in the pathname's host field is the same as
the current node.

Assume that the current host is MIAMI. The following SETF expression
sets THIS-PATHNAME to the pathname that is created with the PATHNAME
function:

Lisp> (SETF THIS-PATHNAME
(PATHNAME

"MIAMI\"SMITH MYPASSWORD\"::THISDEVICE:[SMITH]FILE"))
#S(PATHNAME :HOST "MIAMI:\SMITH password\"" :DEVICE "THISDEVICE"
:DIRECTORY "SMITH" :NAME "FILE" :TYPE NIL VERSION: NIL)

8-11

VAX LISP IMPLEMENTATION NOTES

The host field of the pathname that is created contains the host MIAMI
and the access control string SMITH MYPASSWORD. The NAME STRING
function, when called with THIS-PATHNAME as its argument, returns a
namestring that includes all the pathname field values.

Lisp> (NAMESTRING THIS-PATHNAME)
"MIAMI\"SMITH password\": :THISDEVICE: [SMITH]FILE"

8.3 THE GARBAGE COLLECTOR

When VAX LISP is executing, LISP objects are created dynamically.
Some of the objects that are created are always used and referred to,
while others are referred to for only a short time. When a LISP
object can no longer be referred to, the space that the object
occuples can be reclaimed by the VAX LISP system. This process of
reclaiming space is called garbage collection.

The VAX LISP garbage collector is a stop-and-copy garbage collector.
The LISP system includes a dynamic memory pool, which is divided into
two equal-sized spaces: dynamic-0 space and dynamic-l space. At a
given time, LISP objects are allocated in either dynamic-0 or
dynamic-l space. When the memory in the current space is exhausted,
LISP processing is temporarily suspended, and the LISP data objects
that can still be referenced are copied to the other space. The
objects that cannot be referenced are not copied.

You can ignore garbage collections of dynamic memory space when you
are writing LISP programs. Garbage collections occur automatically
when the current dynamic space is exhausted, and LISP processing
continues when a garbage collection is complete.

Sections 8.3.1 through 8.3.6 provide information about the VAX LISP
garbage collector.

8.3.1 Frequency of Garbage Collection

The frequency of garbage collection is proportional to the amount of
dynamic memory space that is available in the VAX LISP system. You
can set the amount of dynamic memory space that is to be available by
specifying the DCL /MEMORY command qualifier (see Section 2.8.9) when
you invoke the LISP system. Garbage collection occurs less often if
you use this qualifier to increase the size of the dynamic memory
space.

The degree to which the frequency of garbage collection and the size
of dynamic memory affects run-time efficiency depends on the program
that is being executed. If a program creates more permanent objects
than objects that can be referred to for a shott period of time, the
garbage collector has to perform more copy opera'tions. As a result,
the program slows down. The fewer the copy operations the garbage
collector has to perform, the faster the garbage collection is
finished.

8-12

VAX LISP IMPLEMENTATION NOTES

8.3.2 static Space

LISP objects that are created in static space are not collected by the
garbage collector. These objects do not move and they are not
deleted, even if they can no longer be referred to. You can create
objects in static space by using the MAKE-ARRAY function with the
:ALLOCATION keyword (see Section 8.7) or by using the constructor
functions that are defined by the DEFINE-ALlEN-STRUCTURE macro for
alien structures (see Section 7.1.2.2).

8.3.3 LISP processing

LISP processing is suspended during a garbage collection. The VMS
operating system queues asynchronous functions, such as those defined
by the VAX LISP BIND-KEYBOARD-FUNCTION function, for delivery after
garbage collection is finished. Asynchronous functions are discussed
in Section 8.5.

8.3.4 Messages

When a garbage collection occurs, a message is displayed when the
operation begins and when it is finished. You can suppress these
messages by changing the value of the VAX LISP *GC-VERBOSE* variable
to NIL. When the value is NIL, messages are not displayed.

You can also specify the contents of the messages
values of the VAX LISP *PRE-GC-MESSAGE* and
variables. The *GC-VERBOSE*, *PRE-GC-MESSAGE*, and
variables are described in Part II.

NOTE

by changing the
POST-GC-MESSAGE
POST-GC-MESSAGE

If you suppress or change the garbage
collection messages and a garbage
collection is initiated due to a control
stack overflow, it is difficult to
determine whether your program is in a
recursive loop. Therefore, you should
not suppress or change the messages
before you debug your program.

8.3.5 Available Space

Garbage collection generally occurs when a LISP object is being
created. If a garbage collection occurs and not enough dynamic memory
space is available to allocate the object, an error is signaled. When
this situation exists, you can suspend the LISP image and resume it
later with more dyn~mic-memory space. For information about how to
suspend and resume a LISP image, see Section 2.9.

8-13

VAX LISP IMPLEMENTATION NOTES

8.3.6 Garbage Collection Failure

The garbage collection process may fail to complete. If, for example,
a garbage collection is initiated because of control stack overflow,
the size of the control stack must increase and the amount of dynamic
memory space must decrease. If the reduced dynamic memory space
cannot contain all the LISP objects that can be referred to, the LISP
image is terminated and control returns to the DCL level. This
condition is usually caused by a user programming error, such as a
function that is recursive and nonterminating.

8.4 INPUT AND OUTPUT

VAX LISP I/O is implemented with two sets of low-level functions. One
set of functions handles terminal I/O by way of direct QIOs to the
terminal driver. The other set of functions handles all other I/O
(particularly to disk files) by way of calls to VAX Record Management
Services·(RMS). See the· VAX/VMS RMS Reference, Manual for information
abou-t VAX RMS.

The VAX LISP implementation dependencies for I/O have to do with the
following topics:

• Newline character

• Terminal input

• End-of-file operations

• Record length

• File organization

• Functions

The implementation-dependent information about these
provided in Sections 8.4.1 through 8.4.6.

8.4.1 Newline Character

topics is

COMMON LISP defines the #\NEWLINE character as a character that is
returned from the READ-CHAR function as an end-of-line indicator. In
VAX LISP, the character code for the #\NEWLINE character has an
integer value of 255.

In VAX LISP, the WRITE-CHAR and WRITE-STRING functions interpret the
#\NEWLINE character as follows:

• When the WRITE-CHAR function is called with the #\NEWLINE
character as its argument value, the function starts writing a
new line. This call is equivalent to a call to the TERPRI
function (see COMMON LISP: The Language) •

8-14

•

VAX LISP IMPLEMENTATION NOTES

When the WRITE-STRING function is called with an
string that contains the #\NEWLINE character, the
divides the string into two lines. The following
shows the output that is dispayed by the WRITE-STRING
when the #\NEWLINE character is not used:

Lisp> (WRITE-STRING (CONCATENATE 'STRING
"NEW"
"LINE") }

NEWLINE
"NEWLINE"

argument
function

example
function

Both of the strings NEW and LINE are displayed on the same
line. A call to the WRITE-STRING function, which includes a
string argument that contains the #\NEWLINE character, looks
like the following:

Lisp> (WRITE-STRING (CONCATENATE 'STRING
"NEW"

NEW
LINE
"NEW
LINE"

(STRING #\NEWLINE)
"LINE"} }

This call to the WRITE-STRING function displays the strings
NEW and LINE on separate lines.

The #\NEWLINE character is the only character that causes a new line
to be written. VAX LISP writes carriage returns and linefeeds without
special interpretation.

8.4.2 Terminal Input

In VAX LISP, terminals perform input operations in line mode. Input
is returned by the READ-CHAR function only after you press the RETURN
or ESCAPE key or type CTRLjZ.

The READ-CHAR function returns ASCII characters as data unless one of
the following conditions exists:

• A character is used by the VMS terminal driver for terminal
control.

• A character is defined to invoke an asynchronous function.

See the VAX/VMS I/O User's Guide (Volume I) for information on
terminal control characters, and see Section 8:5 for information about
asynchronous functions.

You can change the mode in which your terminal performs input
operations by invoking the VAX LISP SET-TERMINAL-MODES function with
the :PASSALL keyword (see Part II). For example:

Lisp> (SET-TERMINAL-MODES :PASS-ALL T)
T

8-15

VAX LISP IMPLEMENTATION NOTES

If the value of the :PASS-ALL keyword is T, the SET-TERMINAL-MODES
function puts your terminal in passall mode. When a terminal is in
passall mode, control characters processed by the VMS system and
characters defined to invoke asynchronous functions are not recognized
by the LISP system. In addition, the READ-CHAR function performs
input operations differently than it does when the terminal is in line
mode. In line mode, the READ-CHAR function does not return a
character until you press the RETURN key; in passall mode, it returns
a character as soon as the character is typed. See COMMON LISP: The
Language for a description of the READ-CHAR function.

To put your terminal back into line mode, invoke the
SET-TERMINAL-MODES function with the :PASS-ALL keyword set to NIL.

Lisp> (SET-TERMINAL-MODES :PASS-ALL NIL)
T

8.4.3 End-of-File Operations

In VAX LISP, read operations from a file do not indicate the end of
the file until the operation after the last character in the file is
performed.

Read operations from a terminal do not indicate the end of a file in
VAX LISP.

In VAX LISP, you can close a stream that is connected to your terminal
if the stream is not related to the stream bound to the *TERMINAL-IO*
variable. If you attempt to close. the stream bound to the
TERMINAL-IO variable, no action is performed.

8.4.4 Record Length

VAX LISP uses RMS to process file I/O. Therefore, the maximum record
length in VAX LISP must conform to the maximum record length in RMS.
A maximum of 32,767 characters can be written to a disk file, and a
maximum of 9,995 characters can be written to a magnetic tape. If you
exceed these record-length limits, an error is signaled and nothing is
written to the file.

The WRITE-CHAR function causes an immediate operation when it is
called with a terminal stream. As a result, there is no limit on the
number of calls you can make to the WRITE-CHAR function before you
invoke the TERPRI function if you are writing to a terminal.

Your user-buffered I/O byte limit quota determines the maximum string
length you can write to your terminal. You can find out what the
quota is by invoking the VAX LISP GET-PROCESS-INFORMATION function
with the :BIO-BYTE-QUOTA keyword (see Part II). For example:

Lisp> (GET-PROCESS-INFORMATION "SMITH" :BIO-BYTE-QUOTA)
(:BIO-BYTE-QUOTA 30000)

8-16

VAX LISP IMPLEMENTATION NOTES

NOTE

You can prevent your buffered I/O byte
limit quota from overflowing by
including calls to the TERPRI function
or by specifying the #\NEWLINE character
in your output.

8.4.5 File Organization

VAX LISP reads RMS files sequentially. Character files created by VAX
LISP have sequential organization, variable-length records, and the
implied carriage-return attribute. Files created for binary output
(for example, the WRITE-BYTE function) have sequential organization,
variable-length records, and no carriage-control attributes.

8.4.6 Functions

Four COMMON LISP functions used for I/O have VAX LISP dependencies and
need further explanation. The implementation information for the
following functions is provided in the next four sections:

• FILE-LENGTH

• FILE-POSITION

• OPEN

• WRITE-CHAR

8.4.6.1 FILE-LENGTH Function - The length of a file is measured in
units of the OPEN function's :ELEMENT-T¥PE keyword. In VAX LISP,
files cannot be measured in these units for all the supported element
types. Therefore, the FILE-LENGTH function returns NIL.

You can determine the total number of 8-bit bytes that can
file by invoking the GET-FILE-INFORMATION function
:END-OF-FILE-BLOCK and :FIRST-FREE-BYTE keywords, and then
the following steps:

occupy a
with the

performing

1. Multiply the value returned for the
keyword minus one by 512

:END-OF-FILE-BLOCK

2. Add the value you get in Step 1 to the value returned for the
:FIRST-FREE-BYTE keyword

For more information on the GET-FILE-INFORMATION function, see Part
II.

8.4.6.2 FILE-POSITION Function - The FILE-POSITION function returns
or sets the current position within a random-access file. VAX LISP
does not support random-access files; therefore, the function returns
NIL.

8-17

VAX LISP IMPLEMENTATION NOTES

8.4.6.3 OPEN Function - Before you can access a file, you must open
it with the OPEN function or the WITH-OPEN-FILE macro. The OPEN
function can be specified with keywords that determine the type of
stream that is to be created and how errors are to be handled. The
keywords you can specify are the following:

• :DIRECTION

• : ELEMENT-TYPE

• :IF-EXISTS

• :IF-DOES-NOT-EXIST

VAX LISP has restrictions on
preceding keywords. The
restrictions.

the values you
rest of this

can specify for
section explains

the
the

You can specify the :IO value for the :DIRECTION keyword only if the
specified stream is connected to a terminal or mailbox. When you
specify the :IO value, the target device must exist before the OPEN
function is called. Therefore, if you specify this value for the
:DIRECTION keyword, you cannot specify the :IF-EXISTS keyword, and you
can specify the :IF-DOES-NOT-EXIST keyword only with the :ERROR value.

The :IF-EXISTS keyword accepts : RENAME and :RENAME-AND-DELETE as
values, but the operation they perform is the same as the operation
performed by the :NEW-VERSION value. The :RENAME, :RENAME-AND-DELETE,
and :NEW-VERSION values create a new file with the same file name but
increase the version number by one.

VAX LISP supports all the values for the :ELEMENT-TYPE keyword except
CHARACTER. VAX LISP allows you to open binary streams, but the
maximum byte size for a stream is 512 8-bit bytes.

8.4.6.4 WRITE-CHAR Function - The WRITE-CHAR function disregards the
bit and font attributes of characters.

8.5 ASYNCHRONOUS FUNCTIONS

An asynchronous function is a function that is invoked when a specific
event occurs. If an asynchronous function is defined for an event,
the VAX LISP system interrupts the current LISP process and invokes
the asynchronous function when the event occurs. When the
asynchronous function exits, the VAX LISP system resumes the process
at the point where it was interrupted.

VAX LISP provides a function you can use to define asynchronous
functions: BIND-KEYBOARD-FUNCTION. It binds an ASCII control
character to a function. Once a control character is bound to a
function, you can cause the VAX LISP system to interrupt the current
evaluation and call the function asynchronously by typing the control
character.

8-18

VAX LISP IMPLEMENTATION NOTES

Asynchronous functions are not always called as soon as the defined
event occurs (typing of a control key). If a low-level LISP function,
such as CDR or CONS, is being evaluated or a garbage collection is
being performed, asynchronous functions are placed in a queue until
they can be evaluated. Delays in asynchronous function evaluation are
generally not perceptible. An example of when you might perceive a
delay is when the system performs a garbage collection.

If you suspend the LISP system when asynchronous functions are
defined, the functions that are defined by the BIND-KEYBOARD-FUNCTION
function are still defined when the system is resumed. The
key/function bindings are not lost.

In addition to the BIND-KEYBOARD-FUNCTION function are the VAX LISP
functions GET-KEYBOARD-FUNCTION and UNBIND-KEYBOARD-FUNCTION. The
GET-KEYBOARD-FUNCTION function returns information about a function
that is bound to a control character, and the UNBIND-KEYBOARD-FUNCTION
function removes the binding of a function from a control character.

Descriptions of the BIND-KEYBOARD-FUNCTION, GET-KEYBOARD-FUNCTION, and
UNBIND-KEYBOARD-FUNCTION functions are provided in Part II.

8.6 THE COMPILER

8.6.1 Compiler Restrictions

The VAX LISP compiler translates interpreted function definitions into
function objects that contain VAX instructions. The COMPILE function
causes these objects to be bound as the definitions of the symbols
that name them. The COMPILE-FILE function puts the objects into an
output file. Because of the way these two functions handle such
objects, a restriction exists for the use of each of the functions.

8.6.1.1 COMPILE Function - The compiler cannot compile pieces of code
unless they are function "definitions. Therefore, you cannot use the
COMPILE function to compile a function unless you create the function
in a null lexical environment (not top level). An example of a LISP
expression that cannot be evaluated follows:

Li~p> (LET ((COUNTER 0»
(COMPILE NIL #' (LAMBDA () (INCF COUNTER»»

The COMPILE function cannot compile the function object in the
preceding example because it depends on the lexical environment in
which it was created. In the following example, the COMPILE function
is called with a lambda expression rather than a function object:

Lisp> (LET ((COUNTER 0»
(COMPILE NIL' (LAMBDA () (INCF COUNTER»»

The call to the COMPILE function in the preceding example compiles the
lambda expression. The value that is returned is a compiled object
that increments the dynamic value of COUNTER. The compiled object
does not increment the local value of COUNTER, which encloses the call
to the COMPILE function.

8-19

VAX LISP IMPLEMENTATION NOTES

8.6.1.2 COMPILE-FILE Function - The COMPILE-FILE function encloses
each top-level form of the file it is compiling with an anonymous
function definition. Therefore, the function cannot put a compiled
function object that is recognized as data into an output file.
Consider the following form:

Lisp> (SETQ F 'It.(COMPILE NIL '(LAMBDA (C) (PRINT C»»
#<Compiled Function #:GI149 #x504C4C>

When the COMPILE-FILE function reads the preceding form from a file
that is being compiled, an anonymous function is created. This
function becomes part of the third element of the list whose first
element is the SETQ special form. The preceding call to the SETQ
special form can be compiled but it cannot be put into the output
file.

8.6.2 Compiler Optimizations

VAX LISP allows you to control two qualities of compiled code: the
speed of the generated code and whether run-time safety checking is to
be performed. The default values for these qualities is one. You can
set the values globally and locally. To set the values globally in
VAX LISP, you can either use the DCL LISP command with the /COMPILE
and /OPTIMIZE qualifiers (see Sections 2.8.2 and 2.8.10) or specify
the OPTIMIZE declaration in a call to the PROCLAIM function (see
COMMON LISP: The Language). Both of these methods of setting the
quality values produce the same results. For example, if you are at
the DCL level of operation and you want to set the global values of
the speed quality to three and the safety quality to two, use the
following DCL command specification:

$ LISP/COMPILE/OPTIMIZE=(SPEED:3,SAFETY:2) MYPROG.LSP

If you are in LISP and you want to set the global values of the speed
and safety qualities, specify the PROCLAIM function as the first form
in the file. For example, to set the values of the qualities to the
same values that were set in the preceding example, specify the
following call to the PROCLAIM function as the first form in the file
MYPROG.LSP:

(PROCLAIM' (OPTIMIZE (SPEED 3) (SAFETY 2»)

You can also set the quality values locally. To do this, you must use
the OPTIMIZE declaration within the form for which you want the values
to be set. Local optimization quality values override global quality
values.

If you are more concerned about the safety of your code than the speed
at which it is evaluated, the value of the safety quality must be
greater than one, or the value of the speed quality must be less than
two. When this relationship exists between the two quality values,
the compiler generates safe code. Safe code is code that checks
arguments to ensure that the arguments are of the proper data type.
Examples of safe code are the following:

• Code that uses generic arithmetic

• Code that checks if the arguments of calls to functions that
require list arguments are lists

8-20

VAX LISP IMPLEMENTATION NOTES

• Code that checks whether indices used to access arrays are
bound

If you are more interested in producing code that is evaluated fast
than in producing safe code, the value of the speed quality must be
greater than or equal to two, and the value of the safety quality must
be less than or equal to one. When this relationship exists between
the two quality values, the compiler considers type declarations and
generates type-specific code. Type-specific code executes faster than
safe code. If you want the compiler to generate type-specific code,
you must specify declarations in your code in addition to setting the
values of the speed and the safety qualities to the correct values.

Consider the following code, and suppose the value of the safety
quality is one and the speed quality is two:

(DEFUN LOOP-OVER-A-SUBLIST (INPUT-LIST)
(DO «I ,(GET-INITIAL-VALUE) (1+ I))

(L INPUT-LIST (CDR L)))
«OR (>= I (THE FIXNUM *FINAL-VALUE*))

(ENDP L))
L)

(DECLARE (FIXNUM I)
(LIST L))

(DO-SOME-WORK L I)))

Since the value of the safety quality is less than two and the value
of the speed quality is greater than one, the compiler regards the
type declarations. In this example, the types FIXNUM and LIST are
declared with the the following form:

(DECLARE (FIXNUM I)
(LIST L))

When the example code is compiled, the compiler uses the type
declarations and translates the 1+, CDR, ENDP, and >= functions in the
code as follows:

• The 1+ function becomes one VAX instruction.

• The CDR function becomes one VAX instruction.

• The ENDP function is transformed into the NULL function.

• The >= function becomes two VAX instructions:
comparison and a branch.

a longwo rd

It is critical that the value of the *FINAL-VALUE* variable
return value of the GET-INITIAL-VALUE function are fixnums.
INPUT-LIST argument specified for the LOOP-OVER-A-SUBLIST
must be a true list (not an atom or a dotted list) •

and the
Also, the

function

If a declaration is violated, the error that results is not signaled.
For example, if you call the LOOP-OVER-A-SUBLIST function with the
symbol LOOP, an error results because the argument is not a list, but
the error is not signaled. Errors such as this can cause damage to
the LISP environment, which cannot be repaired. By default, the
values of the speed and safety qualities are set such that error
checking and signaling code are generated for all operations; such
values prevent you from damaging the LISP environment.

8-21

VAX LISP IMPLEMENTATION NOTES

If the INPUT-LIST argument in the preceding example is not guaranteed
to always be a list, you can add an explicit type check before the DO
loop. The following form is an example of an explicit type check:

(UNLESS (LISTP INPUT-LIST)
;but doesn't check for a dotted-list

(ERROR "Cannot loop through this object: -S." INPUT-LIST»

The check performed by the LISTP function is evaluated at run time
even though the compiler might heed the FIXNUM and LIST declarations.

8.7 FUNCTIONS AND MACROS

Several functions and macros described in COMMON LISP: The Language
have implementation dependencies. This sectlon provides-Tnformatlon
for such functions and macros. Table 8-4 lists the names of the
functions and macros and provides a brief explanation of the type of
information, that is, implementation dependent. The rest of the section

-provides detailed descriptions presented alphabetically by name. Each
description consists of the function's or macro's use,
implementation-dependent information, format, applicable arguments,
return value, and examples of use.

See COMMON LISP: The Language for complete descriptions of the
functions and macros described in this section.

Table 8-4
Summary of Implementation-Dependent Functions and Macros

Name

APROPOS

APROPOS-LIST

BREAK

COMPILE-FILE

DESCRIBE

DIRECTORY

DRIBBLE

ED

GET-INTERNAL-RUN-TIME

LOAD

LONG-SITE-NAME

MACHINE-INSTANCE

Function
or Macro

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

8-22

Implementation-Dependent
Info rmation

Optional argument and DO-SYMBOLS
macro

Optional argument and DO-SYMBOLS
macro

Facility invoked

Keywords and return value

Displayed output

Merge the argument

Terminal I/O while in the Editor
is not saved; cannot nest calls

Arguments

Meaning of return value

Finds latest file

Logical name and return value

Logical name and return value

(Continued on next page)

VAX LISP IMPLEMENTATION NOTES

Table 8-4 (Cont.)
Summary of Implementation-Dependent Functions and Macros

Name

MACHINE-VERSION

MAKE-ARRAY

REQUIRE

ROOM

SHORT-SITE-NAME

TIME

TRACE

WARN

Function
or Macro

Function

Function

Function

Function

Function

Macro

Macro

Function

8-23

Implementation-Dependent
Information

Return value

:ALLOCATION keyword

Modules

Displayed output

Logical name and return value

Displayed output

Keywords

Facility invoked

APROPOS

VAX LISP IMPLEMENTATION NOTES
APROPOS Function

Searches through packages for symbols whose print names contain a
specified string. The function is not sensitive to the case of
characters. The string can be either the print name or a substring of
the symbol's print name.

The APROPOS function displays a message that shows the string that is
being searched for and the name of the package that is being searched.
When the function finds a symbol whose print name contains the string,
the function displays the symbol's name. If the symbol has a value,
the function displays the phrase "has a value" after the symbol as
follows:

MY-SYMBOL, has a value

If the symbol has a function definition, the function displays the
phrase "has a definition" after the symbol as follows:

MY-FUNCTION, has a definition

In VAX LISP, the APROPOS function uses the DO-SYMBOLS macro rather
than the DO-ALL-SYMBOLS macro. As a result, the function displays
only symbols that are accessible from the current package. For
information on packages, see COMMON LISP: The Language.

Format

APROPOS string &OPTIONAL package

Arguments

string

The string to be searched for in the symbols' print names. If
you specify a symbol for this argument, the symbol's print name
is used.

package

An optional argument. If you specify the argument, the symbols
in the specified package are searched. If you specify T, all
packages are searched. If you do not specify the argument, the
symbols that are accessible in the current package are searched.

Return Value

No value.

8-24

VAX LISP IMPLEMENTATION NOTES

Example

Lisp> (APROPOS "*PRINT")

Symbols in package USER containing the string "*PRINT":
PRINT-LEVEL, has a value
PRINT-GENSYM, has a value
PRINT-RADIX, has a value
PRINT-PRETTY, has a value
PRINT-CASE, has a value
PRINT-CIRCLE, has a value
PRINT-BASE, has a value
PRINT-ESCAPE, has a value
PRINT-LENGTH, has a value
PRINT-ARRAY, has a value
PRINT-SLOT-NAMES-AS-KEYWORDS, has a value

Searches the package USER for the string *PRINT and displays a
list of the symbols that contain the specified string.

8-25

APROPOS-LIST

VAX LISP IMPLEMENTATION NOTES
APROPOS-LIST Function

Searches through packages for symbols whose print names contain a
specified string. The function is not sensitive to the case of
characters. The string can be either the print name or a substring of
the symbol's print name.

When the function completes its search, it returns a list of the
symbols whose print names contain the string.

In VAX LISP, the APROPOS-LIST function uses the DO-SYMBOLS macro
rather than the DO-ALL-SYMBOLS macro. As a result, the function
includes only symbols that are accessible from the current package 1n
the list it returns. For information on packages, see COMMON LISP:
The Language.

Format

APROPOS-LIST string &OPTIONAL package

Arguments

string

The string to be searched for in the symbols' print names. If
you specify a symbol for this argument, the symbol's print name
is used.

package

An optional argument. If you specify the argument, the symbols
in the specified package are searched. If you specify T, all
packages are searched. If you do not specify the argument, the
symbols that are accessible in the current package are searched.

Return Value

A list of the symbols whose print names contain the specified
string.

Example

Lisp> (APROPOS-LIST "ARRAY")
(ARRAY-TOTAL-SIZE ARRAY-DIMENSION ARRAY-DIMENSIONS *PPRINT-ARRAY­
FORMATTERS* SIMPLE-ARRAY ARRAY-DIMENSION-LIMIT ARRAY-ELEMENT-TYPE

ARRAYP *PRINT-ARRAY* ARRAY-RANK ARRAY-RANK-LIMIT MAKE-ARRAY ARRA
Y-TOTAL-SIZE-LIMIT ARRAY-ROW-MAJOR-INDEX ADJUST-ARRAY ARRAY ARRAY
-IN-BOUNDS-P ADJUSTABLE-ARRAY-P ARRAY-HAS-FILL-POINTER-P)

Searches the symbols that are accessible in the current package
for the string ARRAY and returns a list of the symbols that
contain the specified string.

8-26

VAX LISP IMPLEMENTATION NOTES
BREAK Function

BREAK
Invokes a break loop. A break loop is a nested read-eval-print loop.
For more information about break loops, see Section 4.3.

Format

BREAK &OPTIONAL format-string &REST args

Arguments

format-string

args

An optional argument. The string of characters that is passed to
the FORMAT function to create the break-loop message.

An optional argument. The arguments that are passed to the
FORMAT function as arguments for the format string.

Return Value

When the CONTINUE function is called to exit the break loop, the
BREAK function returns NIL.

Example

(WHEN (EMERGENCY-SITUATION-P STATUS)
(BREAK "Emergency situation -n encountered." STATUS))

Calls the BREAK function
EMERGENCY-SITUATION-P function
contains the status code.

8-27

if the
is not NIL.

value of the
The break message

COMPILE-FILE

VAX LISP IMPLEMENTATION NOTES
COMPILE-FILE Function

Compiles a specified LISP source file and writes the compiled code as
a binary fast-loading file (type FAS).

Format

COMPILE-FILE input-pathname &KEY {keyword value}*

Arguments

input-pa thname

A pathname, namestring, symbol, or stream. The compiler uses the
value of the *DEFAULT-PATHNAME-DEFAULTS* variable to fill in file
specification components that are not specified.

keyword value

Optional keyword-value pairs, which specify the options for the
compilation. All the keywords are VAX LISP extensions except
:OUTPUT-FILE. Table 8-5 lists the keywords and the values that
can be specified with them.

Keyword-Value Pair

:LISTING value

Table 8-5
COMPILE-FILE Options

8-28

Description

Specifies whether the compiler
is to produce a listing file.
The value can be T, NIL, or a
pathname, namestring, symbol,
or stream. If you specify T,
the compiler produces a
listing file. The listing
file is assigned the same name
as the source file with the
file type LIS, and is placed
in the directory in which the
source file is.

If you specify NIL, no listing
is produced. The default
value is NIL.

If you specify a pathname,
namestring, symbol, or stream,
the compiler uses the value as
the specification of the
listing file. The compiler
uses the LIS file type and the
value of the
DEFAULT-PATHNAME-DEFAULTS
variable to fill the
components of the file
specification that are not
specified.

(Continued on next page)

VAX LISP IMPLEMENTATION NOTES

Keyword-Value Pair

:MACHINE-CODE value

:OPTIMIZE value

:OUTPUT-FILE value

Table 8-5 (Cont.)
COMPILE-FILE Options

8-29

Description

Specifies whether the compiler
is to include the machine code
it produces for each function
and macro it compiles in the
listing file. The value can
be either T or NIL. If you
specify T, the listing file
contains the machine code. If
you specify NIL, the listing
file does not contain machine
code. The default value is
NIL.

Specifies the optimization
qualities the compiler is to
use during compilation. The
value must be a list of
sublists. Each sublist must
contain a symbol and a value,
which specify the optimization
qualities and corresponding
values that the compiler is to
use during compilation. For
example:

((SPACE 2) (SAFETY 1»

The default value for each
quality is one. For a
detailed discussion about
compiler optimizations, see
Section 8.6.2.

Specifies whether the compiler
is to produce a fast-loading
file. The value can be T,
NIL, or a pathname,
namestring, symbol, or stream.
If you specify T, the compiler
produces a fast-loading file.
The output file is assigned
the same name as the source
file with the file type FAS
and is placed in the directory
the source file is in. The
default value is T.

If you specify NIL, no
fast-loading file is produced.

(Continued on next page)

VAX LISP IMPLEMENTATION NOTES

Keyword-Value Pair

:VERBOSE value

:WARNINGS value

Return Value

Table 8-5 (Cont.)
COMPILE-FILE Options

Description

If you specify a pathname,
namestring, symbol, or stream,
the compiler uses the value as
the specification of the
output file. The compiler
uses the FAS file type and the
value of the
DEFAULT-PATHNAME-DEFAULTS
variable to fill the
components of the file
specification that are not
specified.

Specifies whether the compiler
is' to display the name of
functions and macros it
compiles. The value can be
either T or NIL. If you
specify T, the compiler
displays the name of each
function and macro. If a
listing file exists, the
compiler also includes the
names in the listing file. If
you specify NIL, the names are
not displayed or included in
the listing file. The default
value is the value of the
COMPILE-VERBOSE variable
(see Part II).

Specifies whether the compiler
is to display warning
messages. The value can be
either T or NIL. If you
specify T, the compiler
displays warning messages. If
a listing file exists, the
compiler also includes the
messages in the listing file.
If you specify NIL, warning
messages are not displayed or
included in the listing file.
The default value is the value
of the *COMPILE-WARNINGS*
variable (see Part II).

If the compiler generated an output file, a namestring is
returned. Otherwise, NIL is returned.

8-30

VAX LISP IMPLEMENTATION NOTES

Examples

1. Lisp> (COMPILE-FILE "FACTORIAL" :VERBOSE T)

Starting compilation of file DBAl: [SMITH]FACTORIAL.LSP;l

FACTORIAL compiled.

Finished compilation of file DBAl: [SMITH]FACTORIAL.LSP;l
o Errors, 0 Warnings
"DBAl: [SMITH] FACTORIAL. FAS;l"

Compiles the file FACTORIAL.LSP, which is in the current
directory. A fast-loading file named FACTORIAL.FAS is
produced. The compilation is logged to the terminal because
the :VERBOSE keyword is specified with the value T.

2. Lisp> (COMPILE-FILE "FACTORIAL" :OUTPUT-FILE NIL
:LISTING T
:WARNINGS NIL
:VERBOSE NIL)

NIL

Compiles the file FACTORIAL.LSP, which is in the current
directory. A fast-loading file is not produced, because the
:OUTPUT-FILE keyword is specified with the value NIL. A
listing file named FACTORIAL. LIS is produced. Warning
messages are suppressed because the :WARNINGS keyword is
specified with the value NIL.

8-31

VAX LISP IMPLEMENTATION NOTES
DESCRIBE Function

DESCRIBE
Displays the information about a specified object. If the specified
object has a documentation string, this function displays it in
addition to the other information it displays. The type of
information the function displays depends on the type of the object.
For example, if a symbol is specified, the function displays the
symbol's value, definition, properties, and other types of
information. If a floating-point number is specified, the number's
internal representation is displayed in a way that is useful for
tracking such things as roundoff errors.

Format

DESCRIBE object

Argument

object

The object about which information is to be displayed.

Return Value

No value.

Examples

1. Lisp> (DESCRIBE 'C)

It is the symbol C
Package: USER
Value: unbound
Function: undefined

Displays information about the symbol C.

2. Lisp> (DESCRIBE 'FACTORIAL)

It is the symbol FACTORIAL
Packag e: US ER
Value: unbound
Function: a compiled-function

FACTORIAL n

Displays information about the symbol FACTORIAL.

3. Lisp> (DESCRIBE PI)

It is the long-float 3.1415926535897932384626433832795L0
S ig n: +
Exponent: 2 (radix 2)
Significand: 0.785398l633974483096l56608458l988L0

Displays information about the object PI.

4. Lisp> (DESCRIBE '#(1 2345))
It is a simple-vector
Dimensions: (5)
Element type: t
Adjustable: no
Fill Pointer: no
Displaced: no

Displays information about the simple-vector *(1 234 5).

8-32

VAX LISP IMPLEMENT~TION NOTES
DIRECTORY Function

Converts its argument to a pathname and returns a
pathnames for the files matching the specification.
function is similar to the DeL DIRECTORY command.

Format

DIRECTORY pathname

Argument

pathname

DIRECTORY
list of the
The DIRECTORY

The pathname, namestring, stream, or symbol for which the list of
file system pathnames is to be returned. In VAX LISP, this
argument is merged with the following default file specification:

host::device:[directory] *.*;*

The host, device, and directory values are supplied by the
DEFAULT-PATHNAME-DEFAULTS variable.

Specifying just a directory is
directory with wild cards (*)
fields of the argument. For
expressions are equivalent:

equivalent to specifying a
in the name, type, and version

example, the following two

(DIRECTORY " [MYDIRECTORY] ") (=)

(DIRECTORY "[MYDIRECTORY]*.*;*")

Both of these expressions return a list of pathnames that
represent the files in the directory MYDIRECTORY.

Specifying just a directory with a specified version field is
equivalent to specifying a directory and version with wild cards
(*) in the name and type fields of the argument. For example,
the following two expressions are equivalent:

(DIRECTORY "[MYDIRECTORY];0") (=)

(DIRECTORY "[MYDIRECTORY]*.*;")

Both of these expressions return a list of the pathnames that
represent the newest versions of the files in the directory
MYDIRECTORY.

The following equivalent expressions return the list of pathnames
for files in your default directory:

(DIRECTORY"") (=)

(DIRECTORY (DEFAULT-DIRECTORY»

Return Value

A list of pathnames if the specified pathname is matched and NIL
if the pathname is not matched.

8-33

VAX LISP IMPLEMENTATION NOTES

Example

Lisp> (DEFUN MY-DIRECTORY (&OPTIONAL (FILENAME 1111»
(LET «PATHNAME (PATHNAME FILENAME»

(DIRECTORY (DIRECTORY FILENAME»)
(COND «NULL DIRECTORY)

(FORMAT T
II-%No files match -A.-%"
(NAMESTRING FILENAME»)

(T (FORMAT T
II-%The following -: [files are-;file is -]
in the directory -A:[-A]:"

(EQUAL (LENGTH DIRECTORY) 1)
(PATHNAME-DEVICE

(NTH 0 DIRECTORY»
(PATHNAME-DIRECTORY

(NTH 0 DIRECTORY»)
(DOLIST (DIRECTORY)

(FORMAT T "-&-T-A" (FILE-NAMESTRING X»)
(TERPR I)))

(VALUES)))
MY-DIRECTORY
Lisp> (MY-DIRECTORY)
The following files are in the directory DBA1: [SMITH.TESTS]:

TEST5.DRBil
TEST1.LSP;7
TEST1.LSPi6
TEST1.LSPi5
EXAMPLE. TXTi2
TEST3.LSPi15
TEST6.LSP;1

Lisp> (MY-DIRECTORY ".LSP;")
The following files are in the directory DBA1: [SMITH.TESTS]:

TEST1.LSPi7
TEST3.LSPi15
TEST6.LSPil

• The call to the DEFUN macro defines a function that formats
the output of the DIRECTORY function, making the output more
readable. The function is defined such that it accepts an
optional argument and does not return a value.

• The first call to the function MY-DIRECTORY shows how the
function formats the directory output when an argument is not
specified.

• The second call to the
-argumenti the output
file names of type LSP.

function MY-DIRECTORY includes an
includes only the latest versions of

8-34

VAX LISP IMPLEMENTATION NOTES
DRIBBLE Function

DRIBBLE
Sends the input and output of an interactive LISP session to a
specified pathname, enabling you to save a record of what you do
during the session in the form of a file.

When you want to stop the DRIBBLE function from sending input and
output to the pathname, close the file by calling the function without
an arg ument.

In VAX LISP, there are two restrictions on the use of the DRIBBLE
function.

• When you are in the Editor, terminal I/O is not recorded in a
dribble file.

• You cannot nest calls to the DRIBBLE function.

Format

DRIBBLE &OPTIONAL pathname

Argument

pathname

The pathname to which the input and output of the LISP session is
to be sent.

Return Value

If a pathname was specified with the function, no value is
returned. If the function was sending input and output to a
pathname and the function was called again, without a pathname,
to stop it, T is returned. If the function was called without a
pathname and it had not been called previously with a pathname,
NIL is returned.

Examples

1. Lisp> (DRIBBLE 'NEWFNCTN.LSP)
Dribbling to DBAl: [SMITH]NEWFNCTN.LSPil
NIL
Lisp>

Creates a dribble file named NEWFNCTN.LSP. The LISP system
sends input and output to the file until you call the DRIBBLE
function again (without an argument) or exit LISP.

2. Lisp> (DRIBBLE)
T

Closes the dribble file that was previously opened.

8-35

ED

VAX LISP IMPLEMENTATION NOTES
ED Function

Invokes the VAX LISP Editor. This function can be specified with an
optional argument whose value can be a namestring, pathname, or
symbol. In VAX LISP, the argument's value can also be a list. In
addition, you can specify a :TYPE argument whose value can be the
:FUNCTION or :VALUE keyword.

Format

ED &OPTIONAL x &KEY :TYPE keyword

Arguments

x

The namestring, pathname, symbol, or list that is to be edited.
If you specify a list, the list must be a generalized variable
that can be specified in a call to the SETF macro. The list is
evaluated and it returns a value you can edit. When you write
the buffer containing the value, the Editor replaces the value of
the generalized variable with the new value.

If you specify a symbol, you can also specify the keyword
argument. The value of the keyword informs the Editor whether
you want to edit the symbol's function or macro definition or its
value.

keyword

You can specify this argument if the x argument is a symbol. The
value is a keyword that affects the interpretation of the x
argument's value. You can specify one of the following keywords:

: FUNCTION

:VALUE

The Editor is invoked to edit the
or macro definition associated
specified symbol.

The Editor is invoked to edit the
symbol's value.

function
with the

specified

The default value for the :TYPE keyword is the :FUNCTION keyword.

Return Value

No value.

Examples

1. Lisp> (ED "[SMITH.LISP]NEWPROG.LSP")

Invokes the Editor to edit the file NEWPROG.LSP in the
directory SMITH. LISP.

2. Lisp> (ED 'FACTORIAL)

Invokes the Editor to edit a function named FACTORIAL.

3. Lisp> (ED '*PPRINT-SPECIAL-FORMATTERS* :TYPE :VALUE)

Invokes the Editor to edit the value of
PPRINT-SPECIAL-FORMATTERS.

8-36

the symbol

VAX LISP IMPLEMENTATION NOTES

4. Lisp> (DEFSTRUCT ROOM
DOORS

HOUSE

WINDOWS
OUTLETS
COLOR)

Lisp> (SETQ ROOM2 (MAKE-ROOM :DOORS 1
:WINDOWS 3
:OUTLETS 4
: COLOR I BLUE))

is(ROOM :DOORS 1 :WINDOWS 3 :OUTLETS 4 :COLOR BLUE)
Lisp> (ED' (ROOM-COLOR ROOM2))

• The call to the DEFSTRUCT macro defines a structure named
ROOM.

• The call to the SETQ special form creates an instance of
the structure ROOM.

• The call to the ED function invokes the Editor to edit the
COLOR slot of the structure bound to ROOM2.

8-37

VAX LISP IMPLEMENTATION NOTES
GET-INTERNAL-RUN-TIME Function

GET-INTERNAL-RUN-TIME
Returns an integer that represents the elapsed CPU time used for the
current process. The function value is measured in terms of the
INTERNAL-TIME-UNITS-PER-SECOND constant. A description of the
INTERNAL-TIME-UNITS-PER-SECOND constant is provided in COMMON LISP:
The Language.

Format

GET-INTERNAL-RUN-TIME

Return Value

The elapsed CPU time used for the current process.

Example

Lisp> (DEFMACRO MY-TIME (FORM)

MY-TIME

'(LET* «START-REAL-TIME (GET-INTERNAL-REAL-TIME»
(START-RUN-TIME (GET-INTERNAL-RUN-TIME»
(VALUE ,FORM)
(END-RUN-TIME (GET-INTERNAL-RUN-TIME»
(END-REAL-TIME (GET-INTERNAL-REAL-TIME»)

(FORMAT *TRACE-OUTPUT*

VALUE))

"-&Run Time: -,2F sec., -
Real Time: -,2F sec.-%"

(/ (- END-RUN-TIME START-RUN-TIME)
INTERNAL-TIME-UNITS-PER-SECOND)

(/ (- END-REAL-TIME START-REAL-TIME)
INTERNAL-TIME-UNITS-PER-SECOND»

Defines a macro that displays timing information about the
evaluation of a specified form.

8-38

VAX LISP IMPLEMENTATION NOTES
LOAD Function

LOAD
Reads and evaluates the contents of a file into the LISP environment.

In VAX LISP, if the specified file name does not specify an explicit
file type, the LOAD function locates the source file (type LSP) or
fast-loading file (type FAS) with the latest file write date and loads
it. This ensures that the latest version of the file is loaded,
whether or not the file is compiled.

Format

LOAD filename &KEY {keyword value}*

Arguments

filename

The name of the file to be loaded.

keyword value

Optional keyword-value pairs, which specify the options
load operation. Table 8-6 lists the keywords
corresponding values you can specify.

for
and

the
the

Keyword-Value Pair

:IF-DOES-NOT-EXIST value

:PRINT value

Table 8-6
LOAD Options

8-39

Description

Specifies whether the LOAD
function signals an error if
the file does not exist. The
value can be either T or NIL.
If you specify T, the function
signals an error if the file
does not exist. If you
specify NIL, the function
returns NIL if the file does
not exist. The default value
is T.

Specifies whether the value of
each file that is loaded is
printed to the stream bound to
the *STANDARD-OUTPUT*
variable. The value can be
either T or NIL. If you
specify T, the value of each
file is printed to the stream.
If you specify NIL, no action
is taken. The default value
is NIL.

(Continued on next page)

VAX LISP IMPLEMENTATION NOTES

Table 8-6 (Cont.)
LOAD Options

Keyword-Value Pair

:VERBOSE value

Return Value

Description

specifies whether the LOAD
function is to print a message
in the form of a comment to
the stream bound to the
STANDARD-OUTPUT variable.
The value can be either T or
NIL. If you specify T, the
function prints a message.
The message includes
information, such as the name
of the file that is being
loaded. If you specify NIL,
the function uses the value of
LOAD-VERBOSE variable. The
default is NIL.

A value other than NIL if the load operation is successful.

Example

Lisp> (COMPILE-FILE "FACTORIAL")

Starting compilation of file DBAI: [SMITH]FACTORIAL.LSPil

FACTORIAL compiled.

Finished compilation of file DBAI: [SMITH]FACTORIAL.LSPil
o Errors, ~ Warnings
"DBAI: [SMITH] FACTORIAL.FASi 1"
Lisp> (LOAD "FACTORIAL")

T

Loading contents of file DBAI: [SMITH]FACTORIAL.FASil
FACTORIAL

Finished loading DBAI: [SMITH]FACTORIAL.FASil

• The call to the COMPILE-FILE function produces a fast-loading
file named FACTORIAL.FAS.

• The call to the LOAD function locates the fast-loading file
FACTORIAL.FAS and loads the file into the LISP environment.

8-4~

VAX LISP IMPLEMENTATION NOTES
LONG-SITE-NAME Function

LONG-SITE-NAME

Translates the logical name LISP$LONG SITE NAME. If the first
character of the resulting string is an at sign (@), the remainder of
the string is assumed to be a file specification. The file is read
and its content is returned as a string that represents the physical
location of the computer hardware on which the VAX LISP system is
running. If the first character of the translation is not an at sign,
the translation itself is returned as the long-site name.

Format

LONG-SITE-NAME

Return Value

The contents of a file or the translation of
LISP$LONG SITE NAME is returned as a string
physical location of the computer hardware on
system is running. If a long-site name is
returned.

Example

Lisp> (LONG-SITE-NAME)
"Smith's Computer Company
Artificial Intelligence Group
22 Plum Road
Canterbury, Ohio 47190"

the logical name
that represents the
which the VAX LISP
not defined, NIL is

Returns a detailed description of the physical location of the
computer hardware on which a VAX LISP system is running.

8-41

VAX LISP IMPLEMENTATION NOTES
MACHINE-INSTANCE Function

MACHINE-INSTANCE
Translates the logical name LISP$MACHINE_INSTANCE.

Format

MACHINE-INSTANCE

Return Value

The translation of the logical name LISP$MACHINE INSTANCE is
returned as a string. If the logical name is not defined and
DECnet-VAX is running, the node name is returned. If the logical
name is not defined and DECnet-VAX is not running, NIL is
returned.

Example

Lisp> (MACHINE-INSTANCE)
"MIAMI"

The name of the computer hardware being used.

8-42

VAX LISP IMPLEMENTATION NOTES
MACHINE-VERSION Function

MACHINE-VERSION
Returns the content of the system identification (SID) register as a
string that represents the version of computer hardware on which the
VAX LISP system is running. The contents of the SID are determined by
the type of CPU for example, 780, 750, or 730. For more
information about CPU types, see the VAX Architecture Handbook.

Format

MACHINE-VERSION

Return Value

The contents of the SID register are returned as a string.

Example

Lisp> (MACHINE-VERSION)
"SID Register: #x01383550"

The version of the VAX computer hardware being used.

8-43

MAKE-ARRAY

VAX LISP IMPLEMENTATION NOTES
MAKE-ARRAY Function

Creates arrays. When this function is
:ALLOCATION keyword and :STATIC value,
allocated array.

used with the VAX LISP
it creates a statically

During system usage, the garbage collector changes the memory
addresses of most LISP objects. You can prevent the garbage collector
from changing addresses by allocating objects in static space.
Arrays, vectors, and strings can be statically allocated if you use
the :ALLOCATION keyword and :STATIC value in a calIon the MAKE-ARRAY
function. Once an object is statically allocated, its virtual address
does not change.

NOTE

A statically allocated object maintains
its memory address even if a
SUSPEND/RESUME operation is performed.

: ALLOCATION :STATIC Calling the MAKE-ARRAY function with the
keyword-value pair is useful if you are
preventing the garbage collector from moving
garbage collector to go faster.

creating a large array.
the array, causes the

The MAKE-ARRAY function has a number of keywords that can be used in
conjunction with the :ALLOCATION keyword. Use the appropriate
keywords to construct static vectors and strings. See COMMON LISP:
The Language for information on the MAKE-ARRAY keywords.

Format

MAKE-ARRAY dimensions :ALLOCATION keyword

Arguments

dimensions

A list of positive integers that are to be the dimensions of the
array.

keyword

Whether the LISP object is to be statically allocated.
specify one of the following keywords:

You can

: DYNAMIC The LISP object is not to be statically
allocated. This is the default.

: STATIC

Return Value

The LISP object
allocated.

The statically allocated object.

8-44

is to be statically

VAX LISP IMPLEMENTATION NOTES

Example

Lisp> (DEFPARAMETER BIT-BUFFER
(MAKE-ARRAY' (1000 100~) :ELEMENT-TYPE 'BIT

:ALLOCATION :STATIC))
BIT-BUFFER

Creates a large array of bits named BIT-BUFFER, which is not
intended to be removed from the system.

8-45

REQUIRE

VAX LISP IMPLEMENTATION NOTES
REQUIRE Function

Searches LISP memory for a specified module. If the module is not
loaded, the .function loads the files that you specify for the module.
If the module is loaded, its files are not reloaded.

When you call the REQUIRE function in VAX LISP, the function checks
whether you explicitly specified pathnames that name the files it is
to load. If you specify pathnames, the function loads the files the
pathnames represent. If you do not specify pathnames, the function
searches for the module's files in the following order:

1. The function searches the current directory for a source file
or a fast-loading file with the specified module name. If
the function finds such a file, it loads the file into LISP
memory. This search forces the function to locate a module
you have created before it locates a module of the same name
that is present in one of the public places (see following
steps) •

2. If the logical name LISP$MODULES is defined, the function
searches the directory this logical name refers to for a
source file or a fast-loading file with the specified module
name. This search enables the VAX LISP sites to maintain a
central directory of modules.

3. The function searches the directory that the logical name
LISP$SYSTEM refers to for a source file or a fast-loading
file with the specified module name. This search enables you
to locate modules that are provided with the VAX LISP system.

4. If the function does not find a file with the specified
module name, an error is signaled.

When you load a module, the pathname that refers to the directory that
contains the module is bound to the *MODULE-DIRECTORY* variable. A
description of the *MODULE-DIRECTORY* variable is provided in Part II.

Format

REQUIRE module-name &OPTIONAL pathname

Arguments

module-name

A string or a symbol that names the module whose files are to be
loaded.

pathname

A pathname or a list of pathnames that represent the files to be
loaded into LISP memory. The files are loaded in the same order
the pathnames are listed, from left to right.

Return Value

Undefined

8-46

VAX LISP IMPLEMENTATION NOTES

Example

Lisp> *MODULES*
("CALCULUS" "NEWTONIAN-MECHANICS")
Lisp> (REQUIRE 'RELATIVE)
T
Lisp> *MODULES*
("RELATIVE" "CALCULUS" "NEWTONIAN-MECHANICS")

• The first call to the *MODULES* variable shows that the
modules CALCULUS and NEWTONIAN-MECHANICS are loaded.

• The call to the REQUIRE function checks whether the module
RELATIVE is loaded. The previous call to the *MODULES*
variable indicated that the module was not loaded, therefore,
the function loaded the module RELATIVE.

• The second call to the *MODULES* variable shows that the
module RELATIVE was loaded.

8-47

VAX LISP IMPLEMENTATION NOTES
ROOM Function

ROOM
Displays information about LISP memory. Information is displayed for
the following memory spaces:

• Read-only space

• Static space

• Dynamic space

• Con trol stack

• Binding stack

The following information is provided for each type of space:

• Total number of memory pages that can be used

• Current number of memory pages being used

• Percentage of free memory pages available for use

The information for each storage type is displayed on one line in the
following format:

Read-only Storage Total Size: 4864, Current Allocation: 4209, Free: 13%

All counts are in pages.

Format

ROOM &OPTIONAL value

Argument

value

Optional argument whose value can be either T or NIL. If you
specify NIL, the function displays the same information that it
displays when the argument is not specified. If you specify T,
the function displays additional information for the read-only,
static, and dynamic storage spaces. The additional information
consists of a breakdown of the storage space being used by each
VAX LISP data type. The information is displayed in the
following tabular format:

Read-Only Storage Total Size: 4864, Current Allocation: 42~9, Free: 13%
(reserved) 0 Functions: 189 Arrays:

'"
B-Vectors: 42

Strings: 480 U-Vectors: 3174 Bignums: 1 (reserved) 0
(reserved) 11 Sngl Flos: 1 Dbl Flos: 1 Long Flos: 1
Ratios: ~ Complexes: 0 Symbols: ~ Cc;mses: 320
(reserved)

'"
S Flo Vecs: ~ D Flo Vecs: f' L Flo Vecs: 0

Table 8-7 lists the headings and VAX LISP data types the ROOM
function displays for each type of storage space.

Return Value

No value.

8-48

Heading

Functions

Arrays

B-Vectors

Str ings

U-vectors

Bignums

Sngl Flos

Dbl Flos

Long Flos

Ratios

Complexes

Symbols

Conses

S Flo Vecs

D Flo Vecs

L Flo Vecs

Examples

VAX LISP IMPLEMENTATION NOTES

Table 8-7
Data Type Headings

Data Type

Compiled function descriptors

Nonsimple array descriptors

Boxed vectors -- simple vectors of LISP objects

Character strings

Unboxed vectors -- simple vectors that contain
compiled code, alien structures, or integers of
type (mod n)

Bignums

Single-format floating-point numbers

Double-format floating-point numbers

Long-format floating-point numbers

Ratios

Compl ex numbers

Symbols

Conses

Simple single-format floating-point vectors

Simple double-format floating-point vectors

Simple long-format floating-point vectors

1. Li sp> (ROOM)

Read-Only Storage
Static Storage
Dynamic-~ Storage
Control Stack
Binding Stack

Total Size: 4864, Current Allocation: 42~9, Free: 13%
Total Size: 256~, Current Allocation: 1971, Free: 23%
Total Size: 4962, Current Allocation: 1748, Free: 65%
Total Size: 254, Current Allocation: 1, Free: 1~0%
Total Size: 94, Current Allocation: 1, Free: l0~%

Displays a list of the current memory storage information.

2. Lisp> (ROOM T)

Read-Only Storage
(reserved)
Strings:
(reserved)
Ratios:
(reserved)

Static Storage
(reserved)
Strings:
(reserved)
Ratios:
(reserved)

Total Size: 4864, Current Allocation:
o Functions: 189 Arrays: ~

480 U-vectors: 3174 Bignums: 1
o Sngl Flos: 1 Dbl Flos: 1
o Complexes: rIl Symbols: "
o S Flo Vecs: 0 D Flo Vecs: 0

Total Size: 2560, Current Allocation:
o Functions: 253 Arrays: 1

452 U-Vectors: 5~1 Bignums: 0
o Sngl Flos: 2 Dbl Flos: 2
III Compl exes: 0 Symbols: 31k'
~ S Flo Vecs: 0 D Flo Vecs: 0

8-49

4209, Free:
B-Vectors:
(reserved)
Long Flos:
Conses:
L Flo Vecs:

1971, Free:
B-Vectors:
(reserved)
Long Flos:
Conses:
L Flo Vecs:

13%
42

rIl
1

320
o

23%
2
o
rIl

448
PI

VAX LISP IMPLEMENTATION NOTES

Oynamic-~ Storage
(reserved)
Strings:
(reserved)
Ratios:
(reserved)

Control Stack
Binding Stack

Total Size: 4962, Current Allocation:
~ Functions: 1 Arrays: 1

239 U-Vectors: 6 Bignums: 4
~ Sngl Flos: lObI Flos: 1
1 Compl exes: ~ Symbols: 20
~ S Flo Vecs: ~ D Flo Vecs: ~

1549, Free:
B-Vectors:
(reserved)
Long Flos:
Conses:
L Flo Vecs:

Total Size: 254, Current Allocation: 1, Free: l"~%
Total Size: 94, Current Allocation: 1, Free: 1~~%

69%
296

'"' 1
978

"

Displays a detailed list of the current memory storage
i n form at ion.

8-50

VAX LISP IMPLEMENTATION NOTES
SHORT-SITE-NAME Function

Translates the logical name LISP$SHORT_SITE_NAME.

Format

SHORT-SITE-NAME

Return Value

SHORT -SITE-NAME

The translation of the logical name LISP$SHORT SITE NAME is
returned as a string. If the logical name is not defined, NIL is
returned.

Example

Lisp> (SHORT-SITE-NAME)
"Artificial Intelligence Group"

Returns a short description of the physical location of the
computer hardware on which a VAX LISP system is running.

8-51

TIME

VAX LISP IMPLEMENTATION NOTES
TIME Macro

Evaluates a form, displays the form's CPU time and real time, and
returns the values the form returns.

The time information is displayed in the following format:

CPU Time: 0.03 sec., Real Time: 0.23 sec.

If garbage collections occur during the evaluation of a call to the
TIME macro, the macro displays another line of time information. This
line includes information about the CPU time and real time used by the
garbage collector.

Format

TIME form

Argument

form

The form that is to be evaluated.

Return Value

The form's return values are returned.

Example

Lisp> (TIME (TEST»
CPU Time: 0.03 sec., Real Time: 0.23 sec.
6

Displays the amount of time used in compiling the form (TEST) and
then returns the value the form returned (6).

8-52

VAX LISP IMPLEMENTATION NOTES
TRACE Macro

Enables tracing for one or more functions and macros.

TRACE

VAX LISP allows you to specify a number of options that suppress the
TRACE macro's displayed output or that cause additional information to
be displayed. The options are specified as keyword-value pairs. The
keyword-word value pairs you can specify are listed in Table 8-8.

Format

NOTE

The arguments specified in a call to the
TRACE macro are not evaluated.

TRACE &REST trace-description

Argument

trace-description

One or more optional arguments. If an argument is not specified,
the TRACE macro returns a list of the functions and macros that
are currently being traced. Trace-description arguments can be
specified in three formats:

• One or more function and/or macro names can be specified.

name-l name-2 •••

• The name of each function or macro can be specified with
keyword-value pairs. The keyword-value pairs specify the
operations the TRACE macro is to perform when it traces the
specified function or macro. The name and the keyword-value
pairs must be specified as a list whose first element is the
name.

(name keyword-l value-l
keyword-2 value-2 •••)

• A list of function and/or macro names can be specified with
keyword-value pairs. -The keyword-value pairs specify the
operations the TRACE macro is to perform when it traces each
function and/or macro in the list. The list of names and the
keyword-value pairs must be specified as a list whose first
element is the list of names.

«name-l name-2 •••) keyword-l value-l
keyword-2 value-2 •••)

Table 8-8 lists the keywords and values that can be specified.
The forms that are referred to in the value descriptions are
evaluated in the null lexical environment (not at top level) •

8-53

VAX LISP IMPLEMENTATION NOTES

Table 8-8
TRACE options

Keyword-value Pair

:DEBUG-IF form

:PRE-DEBUG-IF form

:POST-DEBUG-IF form

:PRINT form-list

:PRE-PRINT form-list

Description

Specifies a form that is to be
evaluated before and after each
call to the specified function or
macro. If the form returns a value
other than NIL, the VAX LISP
debugger is invoked before and
after the function or macro is
called.

Specifies a form that is to be
evaluated before each call to the
specified function or macro. If
the form returns a value other than
NIL, the VAX LISP debugger is
invoked before the specified
function or macro is called.

Specifies a form that is to be
evaluated after each call to the
specified function or macro. If
the form returns a value other than
NIL, the VAX LISP debugger is
invoked after the specified
function or macro is called.

Specifies a list of forms that are
to be evaluated and whose values
are to be displayed before and
after each call to the specified
function or macro. The values are
displayed one per line and ate
indented to match other output
displayed by the TRACE macro. If
the TRACE macro cannot evaluate the
argument, the debugger is invoked
(see Section 4.4).

Specifies a list of forms that are
to be evaluated and whose values
are to be displayed before each
call to the specified function or
macro. The values are displayed
one per line and are indented to
match other output displayed by the
TRACE macro. If the TRACE macro
cannot evaluate the argument, the
debugger is invoked (see Section
4.4) •

(Continued on next page)

8-54

VAX LISP IMPLEMENTATION NOTES

Table 8-8 (Cont.)
TRACE Options

Keyword-Value Pair Description

:POST-PRINT form-list

:STEP-IF form

:SUPPRESS-IF form

:DURING name

Return Value

Specifies a list of forms that are
to be evaluated and whose values
are to be displayed after each call
to the specified function or macro.
The values are displayed one per
line and are indented to match
other output displayed by the TRACE
macro. If the TRACE macro cannot
evaluate the argument, the debugger
is invoked (see Section 4.4).

Specifies a form that is to be
evaluated before each call to the
specified function or macro. If
the form returns a value other than
NIL, the stepper is invoked and the
function or macro is stepped
through. See Section 4.5 for
information on the stepper.

Specifies a form that is to be
evaluated before each call to the
specified function or macro. If
the form returns a value other than
NIL, the TRACE macro does not
display the arguments and the
return value of the specified
function or macro.

Specifies a function or macro name
or a list of function and macro
names. The specified function or
macro is traced only when it is
called (directly or ind i rectly)
from within one of the specified
functions or macros.

A list of the functions currently being traced.

Examples

1. Lisp> (TRACE FACTORIAL COUNTI COUNT2)
(FACTORIAL COUNTI COUNT2)

Enables the tracer for the functions FACTORIAL, COUNTl, and
COUNT2.

2. Lisp> (TRACE)
(FACTORIAL COUNTI COUNT2)

Returns a list of the functions for which the tracer is
enabled.

8-55

VAX LISP IMPLEMENTATION NOTES
WARN Function

WARN
Invokes the VAX LISP error handler. The error handler displays an
error message and checks the value of the *BREAK-ON-WARNINGS*
variable. If the value is NIL, the error handler causes the WARN
function to return NIL; if the value is not NIL, the error handler
checks the value of the *ERROR-ACTION* variable. The value of the
ERROR-ACTION variable can be either the :EXIT or the :DEBUG keyword.
If the value is :EXIT, the error handler causes the LISP system to
exit; if the value is :DEBUG, the handler invokes the VAX LISP
debugger.

For more information on warnings, see Section 3.2.3.

Format

WARN format-string &REST args

Arguments

format-string

args

The string of characters that is passed to the FORMAT function to
create a warning message.

The arguments that are passed to the FORMAT function as arguments
for the format string.

Return Value

NIL

Examples

Lisp> (DEFUN LOG-ERROR-STATUS (VMS-STATUS)
(DECLARE (SPECIAL *ERROR-LOG*»
(LET «MESSAGE (GET-VMS-MESSAGE VMS-STATUS **1111»)
(IF MESSAGE

(WRITE-LINE MESSAGE *ERROR-LOG*)
(WARN
"There is no message for VMS status *X-S,'0X."

VMS-STATUS»)
LOG-ERROR-STATUS

Defines a function that is an error logging facility. The
function logs the VMS status that is retur~ed from a call-out to
a system service or an RTL routine. If the call-out facility
returns an error status that has no corresponding message text, a
warning message is displayed, and no log entry is produced.

8-56

ALIEN-FIELD Function

ALIEN-FIELD

Accesses the value of a field of a
structure. The function ignores
fields.

specified type from an alien
the alien structure's predefined

You can modify alien structures if you use the ALIEN-FIELD function
with the SETF macro. This function is most useful if you use it when
you are debugging a program that uses alien structures.

For more information about alien structures, see Chapter 7.

Format

ALIEN-FIELD alien-structure type start end

Arguments

al ien-structure

type

start

end

The name of the alien structure from which a field value is to be
accessed.

The type of the field from which a value is to be accessed. This
argument can be either a symbol that names an alien-structure
field type or a list of which the first element defines the field
type.

A rational number that specifies the start position (in bytes) of
a field in the alien-structure's data area. There is no default.

A rational number that specifies the end position (in bytes) of a
field in the alien-structure's data area. There is no default.

Return Value

The value of a field of the specified alien structure.

Example

Lisp> (DEFINE-ALIEN-STRUCTURE SPACE
(AREA-l :UNSIGNED-INTEGER 0 4)
(AREA-2 :UNSIGNED-INTEGER 4 8))

SPACE
Lisp> (ALIEN-FIELD (MAKE-SPACE) :UNSIGNED-INTEGER 0 1)
o

• The call to the DEFINE-ALIEN-STRUCTURE macro defines an alien
structure named SPACE.

• The call to the ALIEN-FIELD function returns the value of a
byte-sized field in a structure of type SPACE.

I

ALlEN-STRUCTURE-LENGTH Function

ALIEN-STRUCTURE-LENGTH

Returns the length of an alien structure in bytes.

Format

ALIEN-STRUCTURE-LENGTH alien-structure

Argument

al ien- struc ture

The name of the alien structure whose length is to be returned.

Return Value

The length of the alien structure.

Example

Lisp> (DEFINE-ALlEN-STRUCTURE MY-STRUCTURE (A :STRING 0 9))
MY-STRUCTURE
Lisp> (ALIEN-STRUCTURE-LENGTH (MAKE-MY-STRUCTURE))
9

• The call to the DEFINE-ALlEN-STRUCTURE macro defines an alien
structure named MY-STRUCTURE.

• The call to the ALIEN-STRUCTURE-LENGTH function returns the
length of the alien structure.

2

ATTACH Function

ATTACH
Connects your terminal to a process and puts the current LISP process
into a VMS hibernation state, a state in which a process is inactive
but can become active at a later time. You can use this function to
switch terminal control from one process to another.

The ATTACH function is similar to the DCL ATTACH command. For
information about the ATTACH command, see the VAX/VMS Command Language
User's Guide.

Format

ATTACH process

Argument

process

The name or identification of the process (PID) to which your
terminal is to be connected. To specify the process name, use a
string or a symbol; to specify the PID, use an integer.

Return Value

Undefined

Examples

1. Lisp> (SPAWN)
$ ATTACH SMITH
Lisp> (ATTACH II SMITH_l ")
%DCL-S-RETURNED, control returned to process SMITH_l
$

• The call to the SPAWN function creates a subprocess named
SMITH 1.

• The DCL ATTACH command attaches your terminal back to the
process SMITH.

• The call to the VAX LISP ATTACH function returns control
to the process SMITH_I.

2. Lisp> (DEFUN ATTACH-MAIN NIL
(ATTACH (SECOND (GET-PROCESS-INFORMATION

NIL
: OWNER-PID))))

ATTACH-MAIN

Defines a function that attaches back tq the main process if
the LISP system is running as a subprocess.

3

BIND-KEYBOARD-FUNCTION Function

BIND-KEYBOARD-FUNCTION

Binds an ASCII keyboard control character (characters of codes 0 to
32) to a function. When a control character is bound to a function,
you can execute the function by typing the control character on your
terminal keyboard. When you type the control character, the LISP
system is interrupted at its current point, and the function the
control character is bound to is called asynchronously. The LISP
system then evaluates the function and returns control to where the
interruption occurred.

You can delete the binding of a function and a control character by
using the UNBIND-KEYBOARD-FUNCTION function. You can use the
GET-KEYBOARD-FUNCTION function to get information about a function
that is bound to a control character.

NOTE

When you bind a control character to a
function, the stream bound to the
TERMINAL-IO variable must be connected
to your terminal.

See section 8.5 for an
asynchronously.

explanation about calling functions

Format

BIND-KEYBOARD-FUNCTION control-character function
&KEY :ARGUMENTS list

Arguments

control-character

The ASCII control character to be bound to the function. You can
bind a function to any control character except CTRL/Q or CTRL/S.

function

list

The function to which the control char~cter is to be bound.

The list of arguments to be passed to the specified function when
it is called. The arguments in the list are evaluated when the
BIND-KEYBOARD-FUNCTION function is called.

Return Value

T

Examples

1. Lisp> (BIND-KEYBOARD-FUNCTION #\~B #'BREAK)
T
Lis p> (eTRL/S)

Break 1>

Binds CTRL/B to the BREAK function. You can then invoke a
break loop by typing CTRL/B.

4

BIND-KEYBOARD-FUNCTION Function

2. Lisp> (BIND-KEYBOARD-FUNCTION ~\~E #'ED)
T
Lis p> (CTRLlE)

(now in the Editor)

Binds CTRL/E to the ED function. You can then invoke the
Editor by typing CTRL/E.

3. Lisp> (BIND-KEYBOARD-FUNCTION #\~G
~'THROW-TO-COMMAND-LEVEL
: ARGUMENTS

T
Lisp> (SPAWN ~TRLlG)

Lisp>

, (: CURRENT))

Binds CTRL/G to the THROW-TO-COMMAND-LEVEL function with the
argument :CURRENT. By typing CTRL/G, you can abort a
function call or a command in the debugger.

5

CALL-OUT Macro

CALL-OUT
Calls a defined external routine. If you specify an external routine
that has not been defined with the DEFINE-EXTERNAL-ROUTINE macro, the
LISP system signals an error.

For information about how to use the VAX LISP call-out facility, see
Chapter 6.

Format

CALL-OUT external-routine &OPTIONAL {actual-parameter}*

Arguments

external-routine

The name of a defined external routine.

actual-parameter

An actual parameter to be passed to the external routine. The
parameter corresponds by position to a formal parameter defined
for the routine. The LISP system evaluates the parameter
expression before the external routine is called. You can omit a
parameter by putting an explicit NIL in the parameter's position
(you cannot use an expression that evaluates to NIL). The
corresponding position in the parameter list will contain a zero
to coincide with the VAX Procedure Calling Standard. If you
specify fewer actual parameters than were specified in the formal
definition, the argument count in the parameter list will contain
only the number of actual arguments. The LISP system signals an
error if you supply more arguments than were specified in the
formal definition.

Return Value

The value returned by the external routine, NIL, or no value.
The value is dependent upon the value you specify with the
DEFINE-EXTERNAL-ROUTINE macro's :RESULT keyword.

Example

Lisp> (DEFINE-EXTERNAL-ROUTINE
(ERASE-PAGE :IMAGE-NAME "SCRSHR"

:ENTRY-POINT "LIB$ERASE PAGE"
:CHECK-STATUS-RETURN T)-

(LINE :LISP-TYPE INTEGER
:VAX-TYPE :WORD)

(COLUMN :LISP-TYPE INTEGER
:VAX-TYPE :WORD»

ERASE-PAGE
Lisp> (CALL-OUT ERASE-PAGE 1 1)

• The call to the DEFINE-EXTERNAL-ROUTINE macro defines an RTL
screen management routine, named ERASE-PAGE, which erases the
terminal screen (see the description of the DEFINE­
EXTERNAL-ROUTINE macro) •

• The call to the CALL-OUT macro calls the RTL routine
ERASE-PAGE, which causes the line and the column arguments to
be treated as omitted arguments in the parameter list. Since
the arguments are omitted, the RTL routine uses the default
arguments and erases the terminal screen.

6

CHAR-NAME-TABLE Function

CHAR-NAME-TABLE

Displays a formatted list of the VAX LISP character names.

Format

CHAR-NAME-TABLE

Return Value

No value.

Example

Lisp> (CHAR-NAME-TABLE)

Hex Code Preferred Name Other Names

11I~ NULL NUL
~1 AA SOH
~2 AB STX
~3 AC ETX
1114 AD EOT
~5 AE ENQ
06 AF ACK
1<17 BELL AG BEL
1118 BACKSPACE AH BS
~9 TAB AI HT
lilA LINE FEED AJ LF
0B AK VT
~C PAGE AL FORMFEED FF
~D RETURN AM CR
0E AN SO
I1IF AO SI
10 Ap OLE
11 AQ XON DCI
12 AR DC2
13 AS XOFF DC3
14 AT DC4
15 AU NAK
16 AV SYN
17 AW ETB
18 AX CAN
19 Ay EM
lA AZ SUB
IB ESCAPE ESC ALTMODE
lC FS
10 GS
IE RS
IF US
2111 SPACE SP
7F RUB OUT DELETE DEL
84 IND
85 NEL
86 SSA
87 ESA
88 HTS
89 HTJ
8A VTS
8B PLD
8C PLU
80 RI
8E' SS2
8F SS3
9111 DCS
91 PUI
92 PU2
93 STS
94 CCH
95 MW
96 SPA
97 EPA
9B CSI
9C ST
90 OSC
9E PM
9F APC
FF NEWLINE

7

COMPILEDP Function

COMPILEDP

A predicate that checks whether an object is a symbol that has a
compiled function definition.

Format

COMPILEDP name

Argument

name

The symbol whose function call is to be checked.

Return Value

The interpreted function definition if the symbol
interpreted function definition that was compiled
COMPILE function. Returns T if the symbol has a
definition that was not compiled with the COMPILE
Returns NIL if the symbol does not have a compiled
definition.

Example

Li sp> (DEFUN ADD2 (X) (+ X 2))
ADD2
Lisp> (COMPILEDP 'ADD2)
NIL
Lisp> (COMPILE 'ADD2)
ADD2 compiled.
ADD2
Lisp> (COMPILEDP 'ADD2)
(LAMBDA (X) (BLOCK ADD2 (+ X 2)))

has an
with the

compiled
function.

function

• The call to the DEFUN macro defines a function named ADD2.

• The first call to the COMPILEDP function returns NIL because
the function ADD2 has not be~n compiled.

• The call to the COMPILE function compiles the function ADD2.

• The second call to the COMPILEDP function returns the
interpreted function definition because the function ADD2 was
compiled previously.

8

COMPILE-VERBOSE Variable

COMPILE-VERBOSE

Controls the amount of information that the compiler displays.

The COMPILE-FILE function binds the value of the :VERBOSE keyword to
the *COMPILE-VERBOSE* variable. If the :VERBOSE keyword is not
specified, the function rebinds *COMPILE-VERBOSE* variable to its
value. If the value is not NIL, the compiler displays the name of
each function as it is compiled; if the value is NIL, the compiler
does not display the function names. The default value is T.

Example

Lisp> (COMPILE-FILE 'MATH)
Starting compilation of file DBAI: [SMITH]MATH.LSPil

FACTORIAL compiled.
FIBONACCI compiled.

Finished compilation of file DBAl: [SMITH]MATH.LSPil
o Errors, 0 Warnings
"DBAI: [SMITH]MATH.LSP;I"
Lisp> (SETF *COMPILE-VERBOSE* NIL)
NIL
Lisp> (COMPILE-FILE 'MATH)
"DBAI: [SMITH]MATH.LSPil"

• The first call to the COMPILE-FILE function shows the output
the compiler displays during the compilation of a file when
the *COMPILE-VERBOSE* variable is set to T.

• The call to the SETF macro sets the value of the variable to
NIL.

• The second call to the COMPILE-FILE function compiles the file
without displaying output because the variable's value is N~L.

9

COMPILE-WARNINGS Variable

COMPILE-WARNINGS

Controls whether the compiler displays warning messages during a
compilation.

The COMPILE-FILE function binds the value of the :WARNINGS keyword to
the *COMPILE-WARNINGS* variable. If the :WARNINGS keyword is not
specified, the function rebinds the *COMPILE-WARNINGS* variable to its
value. If the value is not NIL, the compiler displays warning
messages; if the value is NIL, the compiler does not display warning
messages. The default value is T.

NOTE

The compiler always displays fatal and
continuable error messages.

Example

Lisp> (COMPILE-FILE 'MATH)
Starting compilation of file DBAl: [SMITH]MATH.LSP;2

Warning in FACTORIAL
N bound but not referenced.

FACTORIAL compiled.
Warning in FIBONACCI

N bound but not referenced.
FIBONACCI compiled.

Finished compilation of file DBAl: [SMITH]MATH.LSP;2
o Errors, 2 Warnings
"DBAI: [SMITH]MATH.LSP;2"
Lisp> (SETF *COMPILE-WARNINGS* NIL)
NIL
Lisp> (COMPILE-FILE 'MATH)
Starting compilation of file DBAI: [SMITH]MATH.LSP;2

FACTORIAL compiled.
FIBONACCI compiled.

Finished compilation of file DBAl: [SMITH]MATH.LSP;2
o Errors, 2 Warnings
"DBAI: [SMITH]MATH.LSP;2"

• The first call to the COMPILE-FILE function shows the output
the compiler displays during the compilation of a file when
the *COMPILE-WARNINGS* variable is set to T.

• The call to the SETF macro sets the value of the variable to
NIL.

• The second call to the COMPILE-FILE function compiles the file
without displaying warning messages in the output because the
variable's value is NIL.

10

CONTINUE Function

CONTINUE

Enables you to exit the break loop. When you call this function, it
causes the BREAK function to return NIL and the evaluation of your
program to continue from the point where the break loop was entered.

Format

CONTINUE

Return Value

NIL

Example

Li sp> (BREAK)

Break 1> (CONTINUE)
NIL

• The call to the BREAK function invokes the break loop.

• The call to the CONTINUE function exits the break loop and
returns you to the top-level loop.

11

DEBUG Function

DEBUG

Invokes the VAX LISP debugger.

For information about how to use the VAX LISP debugger, see SectioQ,
4.4.

Format

DEBUG

Return Value

Returns NIL. You can cause the debugger to return other values
(see Section 4.4.3).

Example

Lisp> (DEBUG)
Control Stack Debugger
Frame i5: (DEBUG)
Debug 1>

Invokes the VAX LISP debugger. When you invoke the debugger, it
displays an identifying message, stack frame information, and the
debugger prompt.

12

DEBUG-PRINT-LENGTH Variable

DEBUG-PRINT -LENGTH

Controls the output that the debugger, stepper, and tracer facilities
display. This variable controls the number of objects these
facilities can display at each level of a nested data object. The
variable's value can be either a positive integer or NIL. If the
value is a positive integer, the integer indicates the number of
objects at each level of a nested object to be displayed. If the
value is NIL, there is no limit on the number of objects that can be
displayed. The default value is NIL.

The value of this variable might cause the printer to truncate output.
An ellipsis (•••) indicates truncation.

This variable is similar to the *PRINT-LENGTH* variable described in
COMMON LISP: The Language.

Example

Lisp> (SETF ALPHABET' (A BCD E F G H I J K))
(A BCD E F G H I J K)
Lisp> (SETF *DEBUG-PRINT-LENGTH* 5)
5
Lisp> (+ 2 ALPHABET)

Fatal error in function + (signaled with ERROR).
Argument must be a number: (A BCD E F G H I J K)

Control Stack Debugger
Fr arne it 5: (+ 2 (A BCD E •••))
Debug 1> (SETF *DEBUG-PRINT-LENGTH* 3)
3
Debug 1> WHERE
Frameit5: (+2 (ABC •••))

• The call to the SETF macro sets the symbol ALPHABET to a list
of single-letter symbols.

• The evaluation of the *DEBUG-PRINT-LENGTH* variable shows the
value of the variable is five.

• The call to the plus sign (+) function causes the LISP system
to invoke the debugger. Note that the debugger only displays
five elements of the list that is bound to the symbol ALPHABET
the first time it displays stack frame numbered five.

• The call to the SETF macro within the debugger sets the value
of the *DEBUG-PRINT-LENGTH* variable to three.

• The debugger displays three elements of the list after you
change the value of the variable.

13

DEBUG-PRINT-LEVEL Variable

*DEBUG-PRINT -LEVEL *

Controls the output that the debugger, stepper, and tracer facilities
display. This variable controls the number of levels of a nested
object these facilities can display. The variable's value can be
either a positive integer or NIL. If the value is a positive integer,
the integer indicates the number of levels of a nested object to be
displayed. If the value is NIL, there is no limit on the number of
levels that can be displayed. The default value is NIL.

The value of this variable might cause the printer to truncate output.
A number sign (#) indicates truncation.

This variable is similar to the *PRINT-LEVEL* variable described in
COMMON LISP: The Language.

Example

Lisp> (SETF ALPHABET '(A (B (C (D (E»»»
(A (B (C (D (E»»)
Lisp> (SETF *DEBUG-PRINT-LEVEL* 3)
3
Lisp> (+ 2 ALPHABET)

Fatal error in function + (signaled with ERROR).
A r g urn e n t m u s t be a n urn b e r : (A (B (C (D (E)))))

Control Stack Debugger
F r am e # 5 : (+ 2 (A (B #»)
Debug 1> (SETF *DEBUG-PRINT-LEVEL* NIL)
NIL
Debug 1> WHERE
F ram e # 5 : (+ 2 (A (B (C (D (E»»»

• The call to the SETF macro sets the symbol ALPHABET to a
nested list.

• The evaluation of the *DEBUG-PRINT-LEVEL* variable shows the
value of the variable is three.

• The call to the plus sign (+) function causes the LISP system
to invoke the debugger. Note that the debugger only displays
three levels of the nested list that is bound to the symbol
ALPHABET the first time it displays stack frame numbered five.

• The call to the SETF macro within the debugger sets the value
of the *DEBUG-PRINT-LEVEL* variable to the empty list.

• The debugger displays all the levels of the nested list after
you change the value of the variable.

14

DEFAULT-DIRECTORY Function

DEFAULT-DIRECTORY

Returns a pathname with the host, device, and directory fields filled
with the values of the current default directory.

The DEFAULT-DIRECTORY function is similar to the DCL SHOW DEFAULT
command. For information about the SHOW DEFAULT command, see the
VAX/VMS Command Language User's Guide.

You can change the default directory by using the SETF macro. Setting
your default directory with this macro also resets the value of the
DEFAULT-PATHNAME-DEFAULTS variable. Performing this operation is
similar to using the DCL SET DEFAULT command. See Section 8.2 and
COMMON LISP: The Language for information about pathnames and the
DEFAULT-PATHNAME-DEFAULTS variable.

Format

DEFAULT-DIRECTORY

Return Value

The pathname that refers to the default directory.

Examples

1. Lisp> (DEFAULT-DIRECTORY)
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBAl" :DIRECTORY "SMITH"
NAME NIL :TYPE NIL :VERSION NIL)
Lisp> (SETF (DEFAULT-DIRECTORY) "[.TESTS]")
"[.TESTS]"
Lisp> (DEFAULT-DIRECTORY)
IS(PATHNAME :HOST "MIAMI" :DEVICE ~DBAl" :DIRECTORY "SMITH.TE
STS" :NAME NIL :TYPE NIL :VERSION NIL)

• The first call to the DEFAULT-DIRECTORY function returns
the pathname that points to the default directory.

• The call to the SETF macro changes the value of the
default directory to SMITH. TESTS •

• ~ The second call to the DEFAULT-DIRECTORY function verifies
the directory change.

2. Lisp> (DEFAULT-DIRECTORY)
IS(PATHNAME :HOST "MIAMI" :DEVICE "DBAl" :DIRECTORY "SMITH.TE
STS" :NAME NIL :TYPE NIL :VERSION NIL)
Lisp> *DEFAULT-PATHNAME-DEFAULTS*
IS(PATHNAME :HOST "MIAMI" :DEVICE "DBAl" :DIRECTORY "SMITH.TE
STS" :NAME NIL :TYPE NIL :VERSION NIL)
Lisp> (NAMESTRING (DEFAULT-DIRECTORY))
"DBAl: [SMITH.TESTS] "
Lisp> (SETF (DEFAULT-DIRECTORY) "[-]")
" [-] "
Lisp> (NAMESTRING (DEFAULT-DIRECTORY))
"DBAl: [SMITH] "
Lisp> (NAMESTRING *DEFAULT-PATHNAME-DEFAULTS*)
"DBAl: [SMITH]"

• The first call to the DEFAULT-DIRECTORY function returns
the pathname that points to the default directory.

15

DEFAULT-DIRECTORY Function

• The call to the *DEFAULT-PATHNAME-DEFAULTS* variable shows
that its value is the same as the value returned by the
DEFAULT-DIRECTORY function.

• The call to the NAMESTRING function returns the pathname
as a namestring.

• The call to the SETF macro changes the value of the
default directory to DBAl: [SMITH].

• The last two calls to the NAMESTRING function show that
the return values of the DEFAULT-DIRECTORY function and
the *DEFAULT-PATHNAME-DEFAULTS* variable are still the
same.

16

DEFINE-ALIEN-FIELD-TYPE Macro

DEFINE-ALIEN-FIELD-TYPE

Defines alien-structure field types.

For information about alien structures, see Chapter 7.

Format

DEFINE-ALIEN-FIELD-TYPE name internal-type primitive-type
access-function setf-function

Arguments

name

The name of the alien-field type being defined.

internal-type

A LISP data type indicating the type of internal LISP object to
which the field is to be mapped.

primitive-type

Either one of the predefined alien-field types or a type that was
previously defined with the DEFINE-ALIEN-FIELD-TYPE macro. A
LISP object defined by this argument is extracted from the alien
structure's data when the field is accessed. The object is then
passed to the specified access function. Predefined alien-field
types are listed in Table 7-2.

access-function

The access function to which the LISP object defined by the
primitive-type argument is passed. The function returns an
object that is of the type defined by the internal-type argument.

setf- function

The set function with which the LISP object is to be passed. The
function returns an object whose type is the type of the default
SETF form as defined by the primitive-type argument. When the
object is returned, it is packed into the alien structure's field
data.

Return Value

The name of the alien-field type.

NOTE

Functions that access and set field
values can take more than one argument;
additional arguments are optional. When
the type argument in the
DEFINE-ALlEN-STRUCTURE macro's field
description is a list, the first element
of the list is the field type and the
remalnlng elements are expressions the
LISP system evaluates when it evaluates
the access function. The resulting
values are passed as additional
arguments to the functions that access
or set the field.

17

DEFINE-ALIEN-FIELD-TYPE Macro

Examples

1. Lisp> (DEFINE-ALIEN-FIELD-TYPE INTEGER-STRING-S
r INTEGER
:STRING
r (LAMBDA

(X)
(PARSE-IN~EGER X))

r (LAMBDA
(X)
(FORMAT NIL "-S" X)))

INTEGER-STRING-S
Lisp> (DEFINE-ALlEN-STRUCTURE TWO-ASCII-INTEGERS

(INT-l INTEGER-STRING-S 0 S)
(INT-2 INTEGER-STRING-S S 16))

TWO-ASCII-INTEGERS

• The call to the DEFINE-ALIEN-FIELD-TYPE macro
field type named INTEGER-STRING-S. The
INTEGER-STRING-S causes an alien structure
strings to integers.

defines a
fi"eld type
to con-vert

• The call to the DEFINE-ALlEN-STRUCTURE macro defines an
alien structure named TWO-ASCII-INTEGERS that has two
fields, each of type INTEGER-STRING-S.

2. Lisp> (DEFINE-ALIEN-FIELD-TYPE SELECTION
T

SELECTION

: UNSIGNED-INTEGER
r (LAMBDA

(N &REST S-LIST)
(NTH N S-L IST))

r (LAMBDA
(X &REST S-LIST)
(POSITION X S-LIST)))

Defines an alien-field type named SELECTION. This type
causes an alien structure to evaluate an unsigned integer
either when the LISP system evaluates a field of this type or
when the SETF macro is applied to a field to produce LISP
objects.

IS

DEFINE-ALlEN-STRUCTURE Macro

DEFINE-ALlEN-STRUCTURE

Defines alien structures.
memory structure.

An alien structure is a VAX-formatted

The syntax of the DEFINE-ALlEN-STRUCTURE
DEFSTRUCT macro described in COMMON LISP:

macro is similar
The Language.

to the

For an explanation of how to define an alien structure, see Chapter 7.

Format

DEFINE-ALlEN-STRUCTURE name-and-options [doc-string]
{field-description}*

Arguments

name-and-options

The name and the options of a new data type. The name argument
must be a symbol. The options define the characteristics 'of the
alien structure. Specify the options with keyword-value pairs.
Specify a keyword-value pair as a list in the following format:

(keyword value)

If you do not specify (options, you
name-and-options argument as a symbol.

can specify the

name

If you specify options, specify the name-and-options argument as
a list whose first element is the name.

(name {(keyword value) }*)

Table 1 lists the keyword-value pairs that you can specify.

Table 1
DEFINE-ALlEN-STRUCTURE Options

Keyword-Value Pair Description

:CONC-NAME name

19

Names the access functions. The
value can be either a symbol or
NIL. If you specify a symbol,
the symbol becomes a prefix in
the access function names. If
you include a hyphen (-) in the
symbol, specify it as part of
the prefix. If you specify NIL~
the access function names are
the same as the field names. By
default, the prefix is the
alien-structure name followed by
a hyphen.

(Continued on next page)

DEFINE-ALlEN-STRUCTURE Macro

Table 1 (Cont.)
DEFINE-ALlEN-STRUCTURE Options

Keyword-Value Pair

:CONSTRUCTOR name

:COPIER name

:PREDICATE name

:PRINT-FUNCTION function-name

20

Description

Names the constructor function.
The value can be either a symbol
or NIL. If you specify a
symbol, the symbol becomes the
name of the constructor
function. If you specify NIL,
the macro does not define a
constructor function. If you do
not specify this keyword, the
constructor function's name is
the prefix MAKE- attached to the
alien-structure name.

Names the copier function. The
value can be either a symbol or
NIL. If you specify a symbol,
the symbol becomes the name of
the copier function. If you
specify NIL, the macro does not
create a copier function. If
you do not specify this keyword,
the copier function's name is
the prefix COPY- attached to the
alien-structure name.

Names the predicate function.
The value can be either a symbol
or NIL. If you specify a
symbol, the symbol becomes the
name of the predicate function.
If you specify NIL, the macro
does not define a predicate
function. If you do not specify
this keyword, the macro names
the predicate function by
attaching the structure name to
the characters -P.

Specifies the print function,for
the alien structure. The v~lue
must be a function. If you do
not specify this keyword, the
LISP system displays the alien
structure in the following
format:

#<Alien Structure name number>

In the preceding format, name is
the name of the alien structure
and number is a unique
identification number, which
distinguishes alien structures
that have the same name.

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEBUG Function

Invokes the VAX LISP debugger.

For information about how to use the VAX LISP deb~gger, see Chapter 5.

Format

DEBUG

Return Value

Returns NIL. You can cause the debugger to return other values
(see Chapter 5).

Example

Lisp> (DEBUG)
Control Stack Debugger
Apply i5: (DEBUG)
Debug 1>

Invokes the VAX LISP debugger. When you invoke the debugger, it
displays an identifying message, stack frame information, and the
debugger prompt.

Version 2.2, July 1987 21

I

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEBUG-CALL Function

Returns a list representing the current debug frame function call.
This function is a debugging tool and takes no arguments. The list
returned by the DEBUG-CALL function can be used to access the values
passed to the function in the current stack frame.

Format

DEBUG-CALL

Return Value

A list representing the current debug frame function call. NIL
is returned if this function is called outside the debugger.

Example

Lisp> (DEFVAR ADJUSTABLE-STRING
(MAKE-ARRAY 10 :ELEMENT-TYPE 'STRING-CHAR

:INITIAL-ELEMENT #\SPACE
:ADJUSTABLE T))

ADJUSTABLE-STRING
Lisp> (SCHAR ADJUSTABLE-STRING 3)

Fatal error in function SCHAR (signaled with ERROR).
Argument must be a simple-string: " "

Control Stack Debugger
Apply #4: (SCHAR " " 3)
Debug 1> (TYPE-OF (SECOND (DEBUG-CALL»))

(STRING 10)
Debug 1> RET #\SPACE
#\SPACE

In this case, the function in the current stack frame is SCHAR.
The call to (DEBUG-CALL) returns the list (SCHAR" "3). The
form (SECOND (DEBUG-CALL») returns the first argument to SCHAR in
the current stack frame. Calling TYPE-OF with this LISP object
determines that the first argument to SCHAR is of type (STRING
10) and not a simple string. See the TRACE macro description for
another example of the use of the DEBUG-CALL function.

Version 2.2, July 1987 22

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

* DEBUG-PRINT-LENGTH * Variable

controls the output that the debugger, stepper, and tracer facilities
display. This variable controls the number of objects the~e

, facilities can display at each level of a nested data object. The
·variable's value can be either a positive integer or NIL. If the
value is a positive integer, the integer indicates the number of
objects at each level of a nested object to be displayed. If the
value is NIL, no limit is on the number of objects that can be
displayed. The default value is NIL.

The value of this variable might cause the printer to truncate output.
An ellipsis (...) indicates truncation.

This variable is similar to the *PRINT-LENGTH* variable described in
COMMON LISP: The Language.

Example

Lisp> (SETF ALPHABET '(A BCD E F G H I J K))
(A BCD E F G H I J K)
Lisp> (SETF *DEBUG-PRINT-LENGTH* 5)
5
Lisp> (+ 2 ALPHABET)

Fatal error in function + (signaled with ERROR).
Argument must be a number: (A BCD E F G H I J K)

Control Stack Debugger
Apply is: (+ 2 (A BCD E •..))
Debug 1> (SETF *DEBUG-PRINT-LENGTH* 3)
3
Debug 1> WHERE
Apply is: (+ 2 (A B C .•.))

• The call to the SETF macro sets the symbol ALPHABET to a list
of single-letter symbols.

• The value of the *DEBUG-PRINT-LENGTH* variable is set to 5.

• The illegal call to the plus sign (+) function causes the LISP
-system to invoke the debugger. The debugger displays only
five elements of the list that is the value of the symbol
ALPHABET the first time it displays the stack frame numbered
5.

• The call to the SETF macro within the debugger sets the value
of the *DEBUG-PRINT-LENGTH* variable to 3.

• The debugger displays three elements of the list, after you
change the value of the variable.

Version 2.2, July 1987 23

I

I

I

I

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

* DEBUG-PRINT-LEVEL * Variable

controls the output that the debugger, stepper, and tracer facilities
display. This variable controls the number of levels of a n~sted
object these facilities can display. The variable's value can be
either a positive integer or NIL. If the value is a positive integer,
the integer indicates the number of levels of a nested object to be
displayed. If the value is NIL, no limit is on the number of levels
that can be displayed. The default value is NIL.

The value of this variable might cause the printer to truncate output.
A number sign (#) indicates truncation.

This variable is similar to the *PRINT-LEVEL* variable described in
COMMON LISP: The Language.

Example

Lisp> (SETF ALPHABET '(A (B (C (D (E»»))
(A (B (C (D (E»»)
Lisp> (SETF *DEBUG-PRINT-LEVEL* 3)
3
Li sp> (+ 2 ALPHABET)

Fatal error in function + (signaled with ERROR).
Argument must be a number: (A (B (C (D (E»»)

control Stack Debugger
Apply #5: (+ 2 (A (B I»~)
Debug 1> (SETF *DEBUG-PRINT-LEVEL* NIL)
NIL
Debug 1> WHERE
Apply # 5: (+ 2 (A (B (C (D (E»»»

• The call to the SETF macro sets the symbol ALPHABET to a
nested list.

• The value of the *DEBUG-PRINT-LEVEL* variable is set to 3.

• The illegal call to the plus sign (+) function causes the LISP
system to' invoke the debugger. The debugger displays only
three levels of the nested list (that is the value of the
symbol ALPHABET) the first time it displays the stack frame
numbered 5.

• The call to the SETF macro within the debugger sets the value
of the *DEBUG-PRINT-LEVEL* variable to NIL.

• The debugger displays all the levels of the nested list, after
you change the value of the variable.

Version 2.2, July 1987 24

DEFINE-EXTERNAL-ROUTINE Macro

Table 3 (Cont.)
DEFINE-EXTERNAL-ROUTINE options

Keyword-Value Pair

:ENTRY-POINT string

:IMAGE-NAME pathname

:RESULT type

:TYPE-CHECK value

doc-str ing

Description

specify NIL, the call-out
facility does not check the
severity of the return value.
NIL is the default value.

Names the external routine's
entry point. The value must be
a string. The macro converts
the name to uppercase
characters. The default value
is the print name of the
external-routine name.

Specifies the shareable image
that was created for the
external routine. The file
specification is merged with the
file SYS$SHARE:.EXE.

Specifies the type of LISP
object the external routine
to return. The value can be
LISP type, a type- spec-l ist,
NIL. A type-spec-list has
following format:

:RESULT (:LISP-TYPE LISP-type
:VAX-TYPE VAX-type)

is
a

or
the

NIL specifies that
returns no value.
value is NIL.

the routine
The default

Specifies whether the call-out
facility is to check the types
of the actual parameters passed
to the external routine and the
LISP types specified in the
formal parameter specification
for compatibility. The value
can be either T or NIL. If you
specify T, the facility checks
the types for compatibility; if
you specify NIL, the facility
does not check the parameter
types. The default value is
NIL.

The documentation string that is to be attached to the symbol
that names the external routine. The documentation string is of
type EXTERNAL-ROUTINE. See COMMON LISP: The Language for
information on the DOCUMENTATION function.

25

DEFINE-EXTERNAL-ROUTINE Macro

formal-parameter-description

A parameter description that is to be passed to the external
routine. Specify the descriptions in the following format:

(name options)

The name argument must be a unique symbol within the definition
or NIL. This argument is the formal name of a parameter. The
symbol is used by functions that access and set external-routine
parameters.

The options define the characteristics of a formal parameter.
Specify the options with keyword-value pairs.

keyword value

If you do not specify options, you can specify the
formal-parameter-description argument as a symbol.

name

If you specify options, specify the argument as a list whose
first element is the name.

(name {keyword value}*)

The option values are not evaluated.

Table 4 lists the keyword-value pairs you can specify.

Table 4
DEFINE-EXTERNAL-ROUTINE Formal Parameter Options

Keyword-Value Pair

:ACCESS value

:LISP-TYPE type

26

Description

Specifies the type of access the
external routine needs for the
actual parameter. The value can
be either :IN or : IN-OUT. The
default value is :IN. If you
specify :IN, the parameter has
input access. If you specify
: IN-OUT, the parameter has
input-output access.

Specifies the LISP type of the
parameter value the call-out
facility is to pass to the
external routine. The values
you can specify are the types:
number, simple string, simple
bit vector, simple
floating-point array, or alien
structure. The default value is
INTEGER.

(Continued on next page)

DEFINE-EXTERNAL-ROUTINE Macro

Table 4 (Cont.)
DEFINE-EXTERNAL-ROUTINE Formal Parameter Options

Keyword-Value Pair

:MECHANISM value

Description

. Specifies the parameter-passing
mechanism the external routine
is to expect for the actual
parameter. The values you can
specify are :IMMED, :REF, and
:DESCR. The default value i~
:DESCR for LISP string-type
parameters and is :REF for other
LISP data types.

:VAX-TYPE type Specifies the VAX data type of
the parameter value the external
routine is to return. The
values you can specify are :BIT,
: BIT-STRING, :BYTE, :UNSIGNED­
BYTE, :WORD, : UNSIGNED-WORD,

Return Value

: LONGWORD, :UNSIGNED-LONGWORD,
:F-FLOATING, : D-FLOATING ,
:G-FLOATING, :H-FLOATING, :TEXT,
and :ALIEN-STRUCTURE. The
default value is : LONGWORD.

The symbol that names the external routine.

Example

Lisp> (DEFINE-EXTERNAL-ROUTINE
(ERASE-PAGE :IMAGE-NAME "SCRSHR"

:ENTRY-POINT "LIB$ERASE PAGE"
:CHECK-STATUS-RETURN T)­

(LINE :LISP-TYPE INTEGER
:VAX-TYPE :WORD)

(COLUMN :LISP-TYPE INTEGER
:VAX-TYPE :WORD))

ERASE-PAGE

nefines an RTL screen management routine, called ERASE-PAGE,
which erases the terminal screen. The image name for the screen
package is SCRSHR and not VMSRTL. The RTL status is not to be
returned from the function, but the status is to be checked
internally by the call-out facility. A VAX data type is
specified for each argument because the def~ult type -- :LONGWORD
-- is not the type required by the RTL routine.

More examples of how to define external routines are provided in
Section 6.5. The examples in Section 6.5 also show you how to
callout to defined external routines.

27

ERROR-ACTION Variable

ERROR-ACTION

Determines the action the VAX LISP error handler is to take when an
error occurs. The value of this variable can be the :EXIT or the
:DEBUG keyword. If the value is :EXIT, the error handler causes the
LISP system to exit; if the value is :DEBUG, the handler invokes the
VAX LISP debugger. The default value is :DEBUG for interactive LISP
sessions; the default value is :EXIT otherwise.

Example

Lis p> (CAR 'A)

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: A.

Control Stack Debugger
Frame i5: (CAR A)
Debug 1> QUIT
Lisp> (SETF *ERROR-ACTION* :EXIT)
:EXIT
Lisp> (CAR 'A)

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: A.

$

• When the first error occurs the LISP system invokes the VAX
LISP debugger because the value of the *ERROR-ACTION* variable
is :DEBUG (the default).

• The call to the SETF macro sets the value of the variable to
: EXIT.

• The second time the error occurs the LISP system exits and
control returns to the VMS command level.

28

EXIT Function

EXIT

Invokes the VMS Exit system service, causing the LISP system to exit
and to return control to the VMS command level.

You can pass the status of the LISP system to the VMS command level
when you exit the LISP system by specifying an optional argument.
When the LISP system exits, the argument's value is passed to the VMS
command level.

Format

EXIT &OPTIONAL status

Argument

status

A fixnum or a keyword that indicates the status of the LISP
system that is to be returned to the VMS command level when the
LISP system exits. The keywords you can specify and the types of
status they return are the following:

: ERROR
:SUCCESS
:WARNING

Error status
Success status
Warning status

Return Value

No value.

Examples

1. Lisp> (EXIT)
$

Exits the LISP system.

2. Lisp> (EXIT :ERROR)

$ SHOW SYMBOL $STATUS
$STATUS = "%Xl12D80l2"

Exits the LISP system. When control returns to the VMS
command level, the VAX LISP exit status contains an error
status.

29

EXPAND-PPRINT-TEMPLATE Macro

EXPAND-PPRINT-TEMPLATE
Translates a template and an object that is to be pretty-printed into
pretty-printer code. A call to this macro has the side effect of
creating queue entries that cause the pretty printer to produce
output.

NOTE

You cannot call this macro at top level.

You must include calls to this macro in user-defined extensions to the
pretty printer. For an explanation on to how extend the pretty
printer, see section 5.3.

Format

EXPAND-PPRINT-TEMPLATE template &REST {subobject}*

Arguments

template

A string of directives. You can specify an alphabetic directive
as either a lower- or uppercase character. Table 5 lists the
directives that you can use to define templates. In addition to
listing the directives, the table provides the following
information for each directive:

• The type of parameter that can follow the directive: literal
text, integer, function name, or subtemplate. When you
specify a parameter, do not include spaces between the
directive and the parameter. If you specify a function name
parameter, the name must be followed by a whitespace character
or the end of the string. You can use a number sign (#)
parameter instead of an integer or function name parameter to
refer to a subobject in the te~plate's argument list (the
second argument). .

• Whether the directive operates on a subobject
template's argument list.

• A brief description of the directive.

in the

This argument is the same as the template argument for the
FORMAT-USING-PPRINT-TEMPLATE' function.

NOTE

When the pretty printer inserts a line break, it prints
the #\NEWLINE character, if necessary, and then prints
the current indentation. Consecutive uses of a
line-break directive result in the pretty printer
printing one #\NEWLINE character.

3~

EXPAND-PPRINT-TEMPLATE Macro

sUbobject

A subobject that a directive in the template argument refers
The list of subobjects is the template's argument list.
argument is the same as the subobject argument for
FORMAT-USING-PPRINT-TEMPLATE function.

to.
This

the

Return Value

A value other than NIL. This macro is usually called for side
effects.

Directive

, ,

*

P

C

s

Table 5
pretty-printer Directives

Parameter SUbobject Description

Literal text No Apostrophes. The pretty
printer prints the literal

None

None

None

None

text that a pair of
apostrophes enclose. To
include an apostrophe in
literal text, quote the
apostrophe with an apostrophe.

Yes Asterisk. An asterisk signals
a recursive call to the
pretty-printer dispatch
routine. The routine passes
the corresponding subobject to
the pretty printer to be
formatted. The format the
pretty printer uses for the
subobject is dependent upon
the subobject's data type and
not upon succeeding
directives.

Yes PRIN1. The pretty printer
formats the corresponding
subobject such that its output
is similar to the output the
PRINl function produces.

Yes PRINC. The pretty printer
formats the corresponding
subobject such that its output
is similar to the output the
PRINC function produces.

Yes Special. The pretty printer
formats the corresponding
subobject such that its output
1S similar to the output the
PRINC function produces. The
value of the *PRINT-LEVEL*
variable is ignored when the
subobject is printed.

(Continued on next page)

31

Directive

I

T

+

EXPAND-PPRINT-TEMPLATE Macro

Table 5 (Cont.)
Pretty-printer Directives

Parameter Subobject Description

None Yes

Integer No

Integer No

Integer No

None No

32

Ignore.
evaluates
subobject
output.

The pretty printer
the corresponding

but produces no

Tilde. The pretty printer
inserts a space. The integer
parameter is optional and it
can have a positive or
neg ative val ue. I f yo u
specify a positive integer, it
indicates the number of spaces
to be inserted. If you
specify a negative integer, it
indicates the number of spaces
to be deleted. The pretty
printer deletes only spaces.
The default value is one.

Tab. The pretty printer
inserts spaces to make the
output have a tabular
appearance. The integer
parameter (n) is optional. If
you specify the parameter, the
pretty printer starts printing
at the current indentation
level plus x spaces, where n
evenly divides x. The default
value depends on the entries
in the template.

Plus sign. The pretty printer
changes the current
indentation level. The
integer parameter is optional
and can have a positive or
negative value. If you
specify the parameter, the
pretty printer changes the
indentation level the
specified number of spaces.
The default value is one.

Exclamation point. The pretty
printer inserts a line break.

(Continued on next page)

EXPAND-PPRINT-TEMPLATE Macro

Table 5 (Cont.)
Pretty-printer Directives

Directive Parameter Subobject Description

N None

B None

M None

Integer

Integer

In teger

No Conditional line break. The
pretty printer inserts a line
break if the directive is not
specified within the brace or
parentheses directive. If it
is specified within one of
these directives, the pretty
printer inserts a line break
if it cannot print the
subobject the brace or
parentheses directive refers
to on one line.

No Conditional line break. The
pretty printer inserts a line
break if the next subobject
cannot be printed on the
current line.

No Conditional line break. The
pretty printer inserts a line
break if the remainder of the
object cannot be printed on
one line or if the remalnlng
width available for printing
is less than the value of the
PPRINT-MISER-WIDTH variable.

No

No

No

33

Hyphen. The pretty printer
inserts spaces. If the entire
object cannot be printed on
one line, the pretty printer
inserts a line break. The
integer parameter is optional;
-n is an abbreviation for -nNe

Comma. The pretty printer
inserts spaces. If the next
subobject cannot be printed on
the current line, the pretty
printer inserts a line break.
The integer parameter is
optional; ,n is an
abbreviation for -nB.

Semicolon. The pretty printer
inserts one space and if
necessary, inserts additional
spaces to make the output have
a tabular appearance. If the
next subobject cannot be
printed on the current line,
the pretty printer inserts a
line break. The integer
parameter is optional; ;n is
an abbreviation for -lTnB.

(Continued on next page)

Di rective

{ }

[]

EXPAND-PPRINT-TEMPLATE Macro

Table 5 (Cont.)
pretty-printer Directives

Parameter

Integer

Integer
Subtemplate

Subtemplate

subobject

No

No

Yes

34

Description

Underscore. The pretty
printer inserts spaces. If
the remainder of the object
cannot be printed on one line
or if the remaining width
available for printing is less
than the value of the
PPRINT-MISER-WIDTH variable,
the pretty printer inserts a
line break. The integer
parameter is optional; n is
an abbreviation for -nM.

Braces. This directive
encloses a subtemplate that
formats a logical unit of the
object being pretty-printed.
The directive is useful for
causing the indentation level
to remain at an appropriate
level by default. The integer
parameter is optional. If you
specify the integer parameter
after the open brace, the
pretty printer increments the
indentation level by the
specified number of spaces.
The default value of the
integer parameter is the
position of the cursor after
printing the object's first
subobj ect.

Square brackets. This
directive encloses a
subtemplate. The subtemplate
refers to one subobject in the
template's argument list,
which must be a list. The
subtemplate formats the
elements of the list. The
pretty printer stops
formatting the list after the
last element of the list or
the last directive in the
subtemplate is used. It stops
even if the list has more
elements or the subtemplate
contains more directives.

(Continued on next page)

EXPAND-PPRINT-TEMPLATE Macro

Table 5 (Cont.)
Pretty-printer Directives

Directive Parameter subobject Description

() Integer
Subtemplate

None

< > Sub tempI ate

& Function name

% Function name

$ Function name
or \"Subtemplate\"

Yes Parentheses. This directive
formats one subobject in the
template's argument list. The
subobject must be a list. The
integer parameter is optional.
The default value of the
integer parameter is the
position of the cursor after
printing the first element of
the lis t • Th e d ire c t i v e (n

None

No

No

Yes

Yes

35

subtemplate) is an
abbreviation for the
following:

{n '('[subtemplate]')'}

Period. This directive can be
used only inside the square
brackets or parentheses
directive. The period
directive causes the next
directive that operates on a
subobject to use a list that
contains the remaining
elements of the subobject.

Angle brackets. This
directive can be used only
inside the square brackets or
parentheses directive. The
pretty printer uses the
suptemplate parameter
repeatedly until the last
element of the list is used.

Ampersand. The pretty printer
calls the specified formatting
function with no arguments.

Percent sign. The pretty
printer calls the specified
formatting function with one
argument, the subobject to be
formatted.

Dollar sign. If the subobject
is a list, the pretty printer
calls the specified function
or subtemplate with one
argument, the subobject to be
form~tted. If the subobject
is not a list, it is passed to
the formatting routine, which
formats it according to its
data type. If you specify a
subtemplate, the subtemplate
must be enclosed in double
quotes (\"subtemplate\").

EXPAND-PPRINT-TEMPLATE Macro

Example

Lisp> (DEFUN SETQ-FORMATTER (OBJECT)
(EXPAND-PPRINT-TEMPLATE "(* <* *!»" OBJECT»

SETQ-FORMATTER -

Defines a formatting function for lists whose first element is
the symbol SETQ. The parentheses directive causes the pretty
printer to print parentheses around the list. An indentation
increment is not specified, so the pretty printer will use the
default indentation to line up the subobjects one under the
other. The angle bracket directive specifies that the objects in
the list element it refers to are to be formatted in pairs. The
exclamation point directive will force a line break after the
pretty printer prints each pair so it prints each pair on a
separate line even when the entire SETQ expression fits on one
line.

More examples of defining formatting functions are provided in
Section 5.3.5.

36

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DIRECTORY Function

Converts its argument to a pathname and returns a
pathnames for the files matching the specification.
function is similar to the DCL DIRECTORY command.

Format

DIRECTORY pathname

Argument

pathname

list of the
The DI.RECTORY

The pathname, namestring, stream, or symbol for which the list of
file system pathnames is to be returned. In VAX LISP/VMS, this
argument is merged with the following default file specification:

host::device:[directorY]*·*i*

The host, device, and directory values are supplied by the
DEFAULT-PATHNAME-DEFAULTS variable.

Specifying just a director.y is
directory with wild cards (*)
fields of the argument. For
expressions are equivalent:

(DIRECTORY n[MYDIRECTORy]n)

equivalent to specifying a
in the name, type, and version

example, the following two

(DIRECTORY n[MYDIRECTORY]*.*;*")

Both expressions return a list of pathnames that represent the
files in the directory MYDIRECTORY.

Specifying just a directory with a specified version field is
equivalent to specifying a directory and version with wild cards
(*) in the name and type fields of the argument. For example,
the following two expressions are equivalent:

(DIRECTORY "[MYDIRECTORy];on)

(DIRECTORY n[MYDIRECTORY]*.*jn)

Both expressions return a list of the pathnarnes that represent
the newest versions of the files in the directory MYDIRECTORY.

The following equivalent expressions return the list of pathnarnes
for files in your default directory:

Version 2.2, July 1987 37

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DIRECTORY Function (cont.)

(DIRECTORY"")

(DIRECTORY (DEFAULT-DIRECTORY»

Return Value

A list of pathnames, if the specified pathname is matched, and
NIL, if the pathname is not matched.

Example

Lisp> (DEFUN MY-DIRECTORY (&OPTIONAL (FILENAME ""»
(LET ((PATHNAME (PATHNAME FILENAME)

(DIRECTORY (DIRECTORY FILENAME»)
(COND ((NULL DIRECTORY)

(FORMAT T
II"" % No f i Ie s rna t c h ,.., A. ,.., % II
(NAMESTRING FILENAME))

(T (FORMAT T
II"" %The following"': [fi les are"'; file is "']
in the directory "'A:["'A]:"

(EQUAL (LENGTH DIRECTORY) 1)
(PATHNAME-DEVICE

(NTH 0 DIRECTORY»)
(PATHNAME-DIRECTORY

(NTH 0 DIRECTORY»))
I (DOLIST (X DIRECTORY) ,

(FORMAT T ""'&"'2T"'A"· (FILE-NAMESTRING X»)
(TERPRI»)

(VALUES»)
MY-DIRECTORY
Lisp> (MY-DIRECTORY)
The following files are in the directory DBA1:[SMITH.TESTS):

TEST5.DRB;1
TEST1.LSPi7
TEST1.LSPi6
TEST1.LSPi5
EXAMPLE.TXTi2
TEST3.LSPi15
TEST6.LSPi1

Lisp> "(MY-DIRECTORY ".LSP;")
The following files are in the directory DBA1:[SMITH.TESTS):

TEST1.LSPi7
TEST3.LSPi 1 5
TEST6.LSPil

• The call to the DEFUN macro defines a function that formats
the output of the DIRECTORY function, making the output more
readable. The function is defined such that it accepts an
optional argument and does not return a value.

Version 2.2, July 1987 38

Di rective

T

+

N

FORMAT-USING-PPRINT-TEMPLATE Function

Table 6 (Cont.)
Pretty-printer Directives

Parameter Subobject Description

Integer No

Integer No

Integer No

None No

None No

39

Tilde. The pretty printer
inserts a space. The integer
parameter is optional and it
can have a positive or
negative value. If you
specify a positive integer, it
indicates the number of spaces
to be inserted. If you
specify a negative integer, it
indicates the number of spaces
to be deleted. The pretty
printer deletes only spaces.
The default value is one.

Tab. The pretty printer
inserts spaces to make the
output have a tabular
appearance. The integer
pa rameter (n) is optional. If
you specify the parameter, the
pretty printer starts printing
at the current indentation
level plus x spaces, where n
evenly divides x. The default
value depends on the entries
in the template.

plus sign. The pretty printer
changes the current
indentation level. The
integer parameter is optional
and can have a positive or
negative value. If you
specify the parameter, the
pretty printer changes the
indentation level the
specified number of spaces.
The default value is one.

Exclamation point. The pretty
printer inserts a line break.

Conditional line break. The
pretty printer inserts a line
break if the directive is not
specified within the brace or
parentheses directive. If it
is specified within one of
these directives, the pretty
printer inserts a line break
if it cannot print the
subobject the brace or
parentheses directive refers
to on one line.

(Continued on next page)

FORMAT-USING-PPRINT-TEMPLATE Function

Table 6 (Cont.)
Pretty-printer Directives

Directive Parameter Subobject Description

B None

M None

Integer

In teger

Integer

Integer

No Conditional line break. The
pretty printer inserts a line
break if the next subobject
cannot be printed on the
current line.

No Conditional line break. The
pretty printer inserts a line
break if the remainder of the
object cannot be printed on
one line or if the remaining
width available for printing
is less than the value of the
PPRINT-MISER-WIDTH variable.

No

No

No

No

40

Hyphen. The pretty printer
inserts spaces. If the object
cannot be printed on one line,
the pretty printer inserts a
line break. The integer
parameter is optional; -n is
an abbreviation for -nNe

Comma. The pretty printer
inserts spaces. If the next
subobject cannot be printed on
the current line, the pretty
printer inserts a line break.
The integer parameter is
optional; ,n is an
abbreviation for -nB.

Semicolon. The pretty printer
inserts one space and if
necessary, inserts additional
spaces to make the output have
a tabular appearance. If the
next subobject cannot be
printed on the current line,
the pretty printer inserts a
line break. The integer
parameter is optional; ;n is
an abbreviation for -lTnB.

Underscore. The pretty
printer inserts spaces. If
the remainder of the object
cannot be printed on one line
or if the remaining width
available for printing is less
than the value of the
PPRINT-MISER-WIDTH variable,
the pretty printer inserts a
line break. The integer
parameter is optional; n is
an abbreviation for -nM.

(Continued on next page)

FORMAT-USING-PPRINT-TEMPLATE Function

Table 6 (Cont.)
Pretty-printer Directives

Directive Parameter

{} Integer
Subtemplate

[] Subtemplate

() Integer
Sub tempI ate

Subobject Description

No Braces. This directive
encloses a subtemplate that
formats a logical unit of the
object being pretty-printed.
The directive is useful for
causing the indentation level
to remain at an appropriate
level by default. The integer
parameter is optional. If you
specify the integer parameter
after the open brace, the
pretty printer increments the
indentation level by the
specified number of spaces.
The default value of the
integer parameter is the
position of the cursor after
printing the object's first
subobj ect.

Yes Square brackets. This
directive encloses a
subtemplate. The subtemplate
refers to one subobject in the
template's argument list,
which must be a list. The
subtemplate formats the
elements of the list. The
pretty printer stops
formatting the list after the
last element of the list or
the last directive in the
subtemplate is used. It stops
even if the list has more
elements or the subtemplate
contains more directives.

Yes Parentheses. This directive
formats one subobject in the
template's argument list. The
subobject must be a list. The
integer parameter is optional.
The default value of the
integer parameter is the
position of the cursor after
printing the first element of
the list. The directive (n
subtemplate) is an
abbreviation for the
following:

{n '(' [subtemplate] ') '}

(Continued on next page)

41

FORMAT-USING-PPRINT-TEMPLATE Function

Table 6 (Cont.)
Pretty-Printer Directives

Directive Parameter Subobject Description

None None Period. This directive can be
used only inside the square
brackets or parentheses
directive. The period
directive causes the next
directive that operates on a
subobject to use a list that
contains the remalnlng
elements of the subobject.

< > Sub tempI ate No Angle brackets. This
directive can be used only
inside the square brackets or
parentheses directive. The
pretty printer uses -the
suptemplate parameter
repeatedly until the last
element of the list is used.

& Function name

% Function name

$ Function name
or \ "Subtempl ate\"

No

Yes

Yes

Ampersand. The pretty printer
calls the specified formatting
function with no arguments.

Percent sign. The pretty
printer calls the specified
formatting function with one
argument, the subobject to be
formatted.

Dollar sign. If the subobject
is a list, the pretty printer
calls the specified function
or subtemplate with one
argument, the subobject to be
formatted. If the subobject
is not a list, it is passed to
the formatting routine, which
formats it according to its
data type. If you ?pecify a
subtemplate, the subtemplate
must be enclosed in double
quotes (\"subtemplate\").

Example

Lisp> (SETF WEATHER' (SUN CLOUDS RAIN SNOW»
(SUN CLOUDS RAIN SNOW)
Lisp> (FORMAT-USING-PPRINT-TEMPLATE T "(1 * ! *
(SUN
CLOUDS
RAIN
SNOW)

NIL

* ! *)" WEATHER)

• The call to the SETF macro sets the value of the symbol
WEATHER to a list.

• The call to the FORMAT-USING-PPRINT-TEMPLATE function causes
the pretty printer to use the template "(1 * *! *! *)"
to format the list.

42

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ENLARGE-BINDING-STACK Function

Enlarges the VAX LISP binding stack by the specified number of pages.
Use this function if the default size of the binding stack is too
small to accommodate a large or complex program.

If the binding stack overflows in the course of program execution, a
continuable error is signaled~ Continuing from this error enlarges
the binding stack and allows program execution to continue.

Enlarging the binding stack -- either by use of ENLARGE-BINDING-STACK
or by continuing from a binding stack overflow -- causes a garbage
collection.

Format

ENLARGE-BINDING-STACK number-at-pages

Argument

number-at-pages

The number of S12-byte pages by which to enlarge the binding
stack.

Return Value

Undefined.

Version 2.2, July 1987 42.1

VAX liSP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ENlARGE-CONTROl-STACK Function

Enlarges the VAX LISP control stack by the specified number of pages.
Use this function if the default size of the contrql stack is too
small to accommodate a large or complex program.

If the control stack overflows in the course of program execution, a
continuable error is signaled. Continuing from this error enlarges
the control stack and allows program execution to continue.

Enlarging the control stack -- either by use of ENLARGE-CONTROL-STACK
or by continuing from a control stack overflow -- causes a garbage
collection.

Format

ENLARGE-CONTROL-STACK number-of-pages

Argument

number-of-pages

The number of 512-byte pages by which to enlarge the control
stack.

Return Value

Undefined.

Version 2.2, July 1987 42.2

GC Function

GC

Invokes the garbage collector. The LISP system initiates garbage
collection during normal system use whenever necessary. You cannot
disable this process. However, the GC function enables you to
initiate garbage collection during system interaction.

NOTE

The LISP system does not use the GC
function to initiate garbage
collections. Therefore, redefining the
GC function does not prevent garbage
collection.

You might want to use the GC function to invoke
just before a time-critical part of a LISP
function this way reduces the possibility
initiating a garbage collection when a critical
executing.

the garbage collector
program. Using the GC
of the LISP system
part of the program is

See Section 8.3 for a description of the garbage collector.

Format

GC

Return Value

T when garbage collection is completed.

Example

Lisp> (GC)

T

Starting garbage collection due to GC function.
Finished garbage collection due to GC function.

Invokes the garbage collector. Whether the messages are printed
when a garbage collection occurs depends on the value of the
GC-VERBOSE variable.

43

GC-VERBOSE Variable

GC-VERBOSE

A variable whose value is used as a flag to determine whether the LISP
system is to display messages when a garbage collection occurs. If
the flag is NIL, the system displays messages. If the flag is not
NIL, the system displays a message before and after a garbage
collection occurs. The default value is T.

The messages the LISP system displays are controlled by the VAX LISP
PRE-GC-MESSAGE and *POST-GC-MESSAGE* variables.

For more information on garbage collector messages, see Section 8.3.4.

Example

Lisp> *GC-VERBOSE*
T
Lisp> (GC)
i Stating garbage collection due to GC function.
i Finished garbage collection due to GC function.
T
Lisp> (SETF *GC-VERBOSE* NIL)
NIL
Lisp> (GC)
T

• The first evaluation of the *GC-VERBOSE* variable returns the
default value T, which indicates that the LISP system will
display a message before and after a garbage collection occurs
(depending on the values of the *PRE-GC-MESSAGE* and
POST-GC-MESSAGE variables).

• The call to the GC function shows
system displays when a garbage
variable's value is T.

the defaul t
collection

messages the
occurs and the

• The call to the SETF macro sets the value of the variable to
NIL.

• The second cail to the GC function shows that the system does
not display messages when the variable's value is NIL.

44

GET-DEVICE-INFORMATION Function

GET -DEVICE-INFORMATION

Returns information about a device. The keywords you specify with the
function determine the type of information the function returns.

This function is similar to the $GETDVI VMS system service. For more
information on the $GETDVI system service, see the VAX/VMS System
Services Reference Manual and the VAX/VMS I/O User's Guide (Volume ll.
Format

GET-DEVICE-INFORMATION device &REST {keyword}*

Arguments

device

The string that names the device about which information is to be
returned.

keyword

Optional keywords that specify types of information about the
specified device. Do not specify values with the keywords.

Table 7 lists the keywords that you can specify and the values
they return.

Table 7
GET-DEVICE-INFORMATION Keywords

Keyword

:ACP-PID

: ACP-TYPE

:BUFFER-SIZE

:CLUSTER-SIZE

:CYLINDERS

: DEVICE-CHARACTERISTICS

: DEVICE-CLASS

:DEVICE-DEPENDENT-0

45

Return Value

An integer that specifies the
ACP process ID.

An integer that specifies the
ACP type code.

An integer that specifies the
buffer size.

An integer that specifies the
volume cluster size.

An integer
number of
device.

that specifies
cylinders on

the
the

A vector of 32
specifies the
characteristics.
VAX/VMS I/O User's
information- about
characteristics.

bits that
device

See the
Guide for

device

An integer that specifies the
device class.

A bit vector that specifies
device-dependent information.

(Continued on next page)

GET-DEVICE-INFORMATION Function

Table 7 (Cont.)
GET-DEVICE-INFORMATION Keywords

Keyword

:DEVICE-DEPENDENT-l

: DEVI C E-N AME

: DEVICE-TYPE

: ERROR-COUNT

: FREE-BLOCKS

: LOGICAL-VOLUME-NAME

: MAX-BLOCKS

:MAX-FILES

: MOUNT-COUNT

:NEXT-DEVICE-NAME

: OPERATION-COUNT

:OWNER-UIC

:PID

:RECORD-SIZE

: REFERENCE-COUNT

46

Return Value

A bit vector that specifies
device-dependent information.

A string that specifies the
d ev ice name.

An integer that specifies the
device type.

An integer that specifies
number of errors that
occurred on the device.

the
have

An integer that specifies .the
number of free blocks on the
device; otherwise, NIL.

A string that specifies the
logical name associated with the
volume on the device. This
keyword is valid only for disks.

An integer that specifies the
maximum number of logical blocks
that can exist on the device.

An integer that specifies the
maximum number of files that can
exist on the device.

An integer that specifies the
number of times the device has
been mounted.

A string that specifies the name
of the next volume in the volume
set.

An integer that specifies the
number of operations that have
been performed on the device.

An integer that specifies the
UIC of the owner.

An integer that specifies the
process ID of the owner.

An integer that specifies the
blocked record size.

An integer
number of
the device.

that specifies the
channels assigned to

(Continued on next page)

GET-DEVICE-INFORMATION Function

Table 7 (Cont.)
GET-DEVICE-INFORMATION Keywords

Keyword

: ROOT-DEVICE-NAME

: SECTORS

: SERIAL-NUMBER

: TRACKS

: TRANSACTION-COUNT

:UNIT

:VOLUME-COUNT

:VOLUME-NAME

:VOLUME-NUMBER

:VOLUME-PROTECTION

Return Value

Return Value

A string that specifies the name
of the root volume in the volume
set.

An integer that specifies the
number of sectors per track.

An integer that specifies the
serial number.

An integer that specifies the
number of tracks per cylinder.

An integer
number of
device.

An integer
unit number.

that
files

that

specifies
open on

specifies

the
the

the

An integer that specifies the
number of volumes in the volume
set.

A string that specifies the name
of the volume on the device.

An integer
number of
device.

A vector
specifies
mask.

that
the

specifies
volume on

the
the

of 32 bits that
the volume protection

The keywords and their values are returned as a list in the
following format:

(:keyword-l value-l :keyword-2 value-2 •••)

The function preserves the order of the keyword-value pairs in
the argument list.

If you do not specify keywords, the function returns a list of
all the keyword-value pairs. If the device does not exist, the
function returns NIL.

Example

Lisp> (GET-DEVICE-INFORMATION "DBAl"
: DEVICE-NAME
: ERROR-COUNT
: MOUNT-COUNT)

(:DEVICE-NAME "_DBAl:" :ERROR-COUNT 0 :MOUNT-COUNT 1)

Returns the device name, the error count, and the mount count for
the device DBAI.

47

GET-FILE-INFORMATION Function

GET -FILE-INFORMATION

Returns information about a file. The keywords that you specify with
the function determine the type of information the function returns.
The keywords correspond to RMS file access block (FAB) and extended
attribute block (XAB) fields. See the VAX/VMS RMS Reference Manual
for information on FAB and XAB fields.

Format

GET-FILE-INFORMATION pathname &REST {keyword}*

Arguments

pathname

A pathname, namestring, symbol, or stream that represents the
name of the file about which information is to be returned.

keyword

Optional keywords that return specific types of information about
the specified file. Do not specify values with the keywords.

Table 8 lists the keywords that you can specify and the values
they return.

Table 8
GET-FILE-INFORMATION Keywords

Keyword

: ALLOCATION-QUANTITY

: BACKUP-DATE

:BLOCK-SIZE

: CREATION-DATE

: DEFAULT-EXTENSION

:END-OF-FILE-BLOCK

: EXPIRATION-DATE

48

Return Value

An integer that specifies the
number of blocks that are
allocated for the file.

The last universal date and time
the file was backed up. If the
file has not been backed up, the
function returns NIL.

An integer that specifies the
block size.

The universal date and time the
file was created.

An integer that specifies the
number of blocks that were added
to the file's size when the file
was extended.

An integer that specifies the
block in which the file ends.

The universal date and time the
file 7xpires. If an expiration
date is not recorded, the
function returns NIL.

(Continued on next page)

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GC-VERBOSE Variable

A variable whose value is used as a flag to determine whether the LISP
system is to display messages when a garbage coll~ction occurs. If
the flag is NIL, the system displays no messages. If the flag is not I
NIL, the system displays a message before and after a garbage
collection occurs. The default value is T.

The messages the LISP system displays are controlled by the VAX LISP
PRE-GC-MESSAGE and *POST-GC-MESSAGE* variables.

For more information on garbage collector messages, see Chapter 7.

Example

Lisp> *GC-VERBOSE*
T
Lisp> (GC)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T
Lisp> (SETF *GC-VERBOSE* NIL)
NIL
Lisp> (GC)
T

• The first evaluation of the *GC-VERBOSE* variable returns the
default value T, which indicates that the LISP system will
display a message before and after a garbage collection occurs
(depending on the values of the *PRE-GC-MESSAGE* and
POST-GC-MESSAGE variables).

• The call to the GC function shows the default
system displays when a garbage collection
variable's value is T.

messages the
occurs and the

• The call to the SETF macro sets the value of the variable to
NIL.

• The second call to the GC function shows that the system does
not display messages when the variable's value is NIL.

Version 2.2, July 1987 49

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GENERALIZED-PRINT-FUNCTION-ENABLED-P Function

Used to globally enable a generalized print function or test whether a
generalized print function is enabled. GENERAL.IZED-PRINT-FUNCTION­
ENABLED-P is a predicate, and it can be used as a place form with
SETF.

See Chapter 6 for more information about using generalized print
functions.

Format

GENERALIZED-PRINT-FUNCTION-ENABLED-P name

Argument

name

A symbol identifying the generalized print function to be enabled
or tested.

Return Value

T or NIL.

Example

Lisp> (GENERALIZED-PRINT-FUNCTION-ENABLED-P 'PRINT-NIL-AS-LIST)
NIL
Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST

(OBJECT STREAM)
(NULL OBJECT)

(PRINC "()" STREAM))
PRtNT-NIL-AS-LIST
Lisp> (SETF (GENERALIZED PRINT-FUNCTION-ENABLED-P

'PRINT-NIL-AS-LIST)
T)

T
Lisp>· (PPRINT NIL)
()

• The first use of the GENERALIZED-PRINT-FUNCTION-ENABLED-P
function returns NIL, because no generalized print function
named PRINT-NIL-AS-LIST has been defined.

• rhe call to DEFINE-GENERALIZED-PRINT-FUNCTION defines the
generalized print function PRINT-NIL-AS-LIST.

• The call to SETF globally enables the generalized print
function PRINT-NIL-AS-LIST.

• The PPRINT call prints (), because the generalized print
function is enabled globally and pretty printing is enabled.

Version 2.2, July 1987 50

GET-GC-REAL-TIME Function

GET -GC-REAL-TIME

Enables you to inspect the elapsed time used by the garbage collector
during program execution. This function is useful for tuning
prog rams.

The function measures its value in terms of the
INTERNAL-TIME-UNITS-PER-SECOND constant. This value is cumulative.
It includes the elapsed time used for all the garbage collections that
have occurred. A description of the INTERNAL-TIME-UNITS-PER-SECOND
constant is provided in COMMON LISP: The Language.

When a suspended system is resumed, the elapsed time is set to zero.

For more information on the garbage collector, see Section 8.3.

Format

GET-GC-REAL-TIME

Return Value

The real time that has been used by the garbage collector.

Examples

1. Lisp> (GET-GC-REAL-TIME)
3485700000
Lisp> (GC)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T
Lisp> (GET-GC-REAL-TIME)
4012HHH'0

• The first call to the GET-GC-REAL-TIME function returns
the real time used by the garbage collector.

• The call to the GC function invokes a garbage collection.

• The second call to the GET-GC-REAL-TIME function returns
the updated real time that has been used by the garbage
collector.

2. Lisp> (DEFMACRO GC-ELAPSED-TIME (FORM)
... (LET* «START-GC (GET-GC-REAL-TIME» (VALUE ,FORM)

(END-GC (GET-GC-REAL-TIME»)
(FORMAT *TRACE-OUTPUT*

"-%GC elapsed time: -D seconds-I"
(TRUNCATE

(- END-GC START-GC)
INTERNAL-TIME-UNITS-PER-SECOND»»

GC-ELAPSED-TIME
Lisp> (GC-ELAPSED-TIME (SUSPEND "MYFILE.TXT"»
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
; Starting garbage collection due to SUSPEND function.
; Starting garbage collection due to SUSPEND function.
GC elapsed time: 54 seconds
NIL

51

GET-GC-REAL-TIME Function

• The call to the DEFMACRO macro defines a macro named
GC-ELAPSED-TIME, which evaluates a form and displays the
amount of elapsed time that was used by the garbage
collector during a form's evaluation.

• The call to the GC-ELAPSED-TIME function displays the
amount of elapsed time the garbage collector used when the
LISP system evaluated the form (SUSPEND "MYFILE.TXT") •

52

GET-GC-RUN-TIME Function

GET -GC-RUN-TIME

Enables you to inspect the CPU time used by
during program execution. This function
programs.

the garbage collector
is useful for tuning

The function measures its value in terms of the
CPU-TIME-UNITS-PER-SECOND constant. This value is cumulative. It
includes the CPU time used for all the garbage collections that have
occurred. A description of the CPU-TIME-UNITS-PER-SECOND constant is
provided in COMMON LISP: The Language.

When a suspended system is resumed, the CPU time is set to zero.

For more information on the garbage collector, see Section 8.3.

Format

GET-GC-RUN-TIME

Return Value

The CPU time that has been used by the garbage collector.

Examples

1. Lisp> (GET-GC-RUN-TIME)
6933
Lisp> (GC)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T
Lisp> (GET-GC-RUN-TIME)
8423

• The first call to the GET-GC-RUN-TIME function returns the
CPU time used by the garbage collector.

• The call to the GC function invokes a garbage collection.

• The second call to the
the updated CPU time
collecto r.

GET-GC-RUN-TIME function returns
that has been used by the garbage

2. Lisp> (DEFMACRO GC-CPU-TIME (FORM)
'(LET* ((START-GC (GET-GC-RUN-TIME» (VALUE ,FORM)

(END-GC (GET-GC-RUN-TIME»)
(FORMAT *TRACE-OUTPUT*

"-%GC CPU time: -0 seconds-in
(TRUNCATE

(- END-GC START-GC)
INTERNAL-TIME-UNITS-PER-SECOND»)

GC-CPU-TIME
Lisp> (GC-CPU-TIME (SUSPEND "MYFILE.TXT"»
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
; Starting garbage collection due to SUSPEND function.
; Starting garbage collection due to SUSPEND function.
GC CPU time: 284 seconds
NIL

53

GET-GC-RUN-TIME Function

• The call to the DEFMACRO macro defines a macro named
GC-CPU-TIME, which evaluates a form and displays the
amount of CPU time that was used by the garbage collector
during a form's evaluation.

• The call to the GC-CPU-TIME function displays the amount
of CPU time the garbage collector used when the LISP
system evaluated the form (SUSPEND "MYFILE.TXT") •

54

GET-KEYBOARD-FUNCTION Function

GET -KEYBOARD-FUNCTION

Returns information about the function that is bound to a control
character.

Format

GET-KEYBOARD-FUNCTION control-character

Argument

control-character

The control character to which a function is bound.

Return Value

The function that is bound to the control character and the
function's argument list. If a function is not bound to the
specified control character, the function returns NIL twice.

Examples

1. Lisp> (BIND-KEYBOARD-FUNCTION #\AB #'BREAK)
T
Lisp> (GET-KEYBOARD-FUNCTION #\AB)
~<Compiled Function BREAK #x261510>
NIL

• The call to the BIND-KEYBOARD-FUNCTION function binds
CTRL/B to the BREAK function.

• The call to the GET-KEYBOARD-FUNCTION function returns the
function that is bound to CTRL/B and the function's
argument list, which is NIL.

2. Lisp> (GET-KEYBOARD-FUNCTION #\AS)
NIL ;
NIL

Returns NIL twice because a function is not bound to CTRL/S.

55

GET-PROCESS-INFORMATION Function

GET -PROCESS-INFORMATION

Returns information about a process. The keywords you specify with
the function determine the type of information the function returns.

This function is similar to the $GETJPI VMS system service. For more
information on the $GETJPI system service, see the VAX/VMS System
Services Reference Manual and the VAX/VMS I/O User's Guide {Volume!l.

Format

GET-PROCESS-INFORMATION process &REST {keyword}*

Arguments

process

The name or the identification of the process (PID) about which
information is to be returned. You can specify a string, an
integer, or NIL. If you specify a string, the argument is the
process name; if you specify an integer, the argument is the
PID. If you specify NIL, the information the function returns
corresponds to the current process.

keyword

optional keywords that return specific types of information about
the process. Do not specify values with the keywords.

Table 9 lists the keywords that you can specify and the values
they return.

Table 9
GET-PROCESS-INFORMATION Keywords

Keywo rd

: ACCOUNT

:ACTIVE-PAGE-TABLE-COUNT

: AST-ACTlVE

: AST-COUNT

:AST-ENABLED

: AST-QUOTA

56

Return Value

A str ing that specifies the
account.

An integer that specifies the
active page table count.

A vector of four bits
specifies the number of
modes that have
asynchronous system traps
for the process.

that
access
active
(ASTs)

An integer that specifies the
remaining AST quota.

A vector of four bits that
specifies the number of access
modes that have enabled ASTs for
the process.

An integer that specifies the
AST quota.

(Continued on next page)

GET-PROCESS-INFORMATION Function

Table 9 (Cont.)
GET-PROCESS-INFORMATION Keywords

)

Keyword

:AUTHORIZED-PRIVILEGES

:BASE-PRIORITY

:BATCH

:BIO-BYTE-COUNT

:BIO-BYTE-QUOTA

:BIO-COUNT

:BIO-OPERATIONS

:BIO-QUOTA

:CPU-LIMIT

:CPU-TIME

: CURRENT-PRIORITY

:CURRENT-PRIVILEGES

:DEFAULT-PAGE-FAULT-CLUSTER

: DEFAULT-PRIVILEGES

:DIO-COUNT

57

Return Value

A vector of 64 bits that
specifies the privileges the
process is authorized to enable.

An integer that specifies the
base priority.

Either T or NIL. The function
returns T if the process is a
batch job; otherwise, returns
NIL.

An integer that specif,ies
remaining buffered I/O
count quota.

the
byte

An integer that specifies the
buffered I/O byte count quota.

An integer that specifies the
remaining buffered I/O operation
quota.

An integer
number
operations
performed.

that specifies the
I/O
has

of buffered
the process

An integer that specifies the
buffered I/O operation quota.

An integer that specifies the
CPU time limit of the process in
l0-millisecond units.

An integer that specifies the
accumulated CPU time of the
process in 10-millisecond units.

An integer that specifies the
current priority.

A vector of
specifies
privileges.

64 bits that
the current

An integer that specifies the
default page fault cluster size.

A vector of
specifies

64 bits that
the defaul t

pr iv ileg es.

An integer that
remaining direct
quota.

specifies the
I/O operation

(Continued on next page)

GET-PROCESS-INFORMATION Function

Table 9 (Cont.)
GET-PROCESS-INFORMATION Keywords

Keywo rd

:DIO-OPERATIONS

:DIO-QUOTA

: ENQUEUE-COUNT

: ENQUEUE-QUOTA

: EVENT-FLAG-WAIT-MASK

:FIRST-FREE-P0-PAGE

:FIRST-FREE-Pl-PAGE

:GLO£AL-PAGES

:GROUP

: IMAGE-NAME

: IMAGE-PRIVILEGES

:JOB-SUBPROCESS-COUNT

: LOCAL-EVENT-FLAGS

: LOGIN-TIME

:MEMBER

: MOUNTED-VOLUMES

58

Return Value

An integer that specifies the
number of direct I/O operations
the process has performed.

An integer that specifies the
direct I/O operation quota.

An integer that specifies the
number of lock manager enqueues.

An integer that specifies the
lock manager enqueue quota.

A vector of 32 bits that
specifies the event flag wait
mask.

An integ er that specifies the
first free page at the end of
the program region.

An integer that specifies the
first free page at the end of
the control region.

An integer that specifies the
number of global pages in the
working set.

An integer that specifies
group field of the UIC.

A string that specifies
current image file name.

A vector of 64 bits
specifies the privileges
which the current image of
process was installed.

An integer that specifies
number of subprocesses.

the

the

that
with

the

the

A vector of 32 bits that
specifies the local event flags
the process has in effect.

An integer in internal time that
specifies the time the process
was created.

An integer that specifies the
member field of the UIC.

An integer that specifies the
number of mounted volumes.

(Continued on next page)

GET-PROCESS-INFORMATION Function

Table 9 (Cont.)
GET-PROCESS-INFORMATION Keywords

Keywo rd

:OPEN-FILE-COUNT

:OPEN-FILE-QUOTA

:OWNER-PID

: PAGE-FAULTS

:PAGE-FILE-COUNT

:PAGE-FILE-QUOTA

: PAGES-AVAILABLE

: PID

: PROCESS-NAME

:SITE-SPECIFIC

: STATE

: STATUS

: SUBPROCESS-COUNT

: SUBPROCESS-QUOTA

:TERMINAL

: TERMINATION-MAILBOX

:TIMER-QUEUE-COUNT

59

Return Value

An integer that specifies the
remaining open file quota.

An integer that specifies the
open file quota.

An integer that specifies the
process ID of the owner.

An integer that specifies the
number of page faults.

An integer that specifies the
number of paging file pages
being used by the process.

An integer that specifies the
paging file quota.

An integer that specifies the
number of virtual pages
available for expansion.

An integer that specifies the
process ID.

A string that specifies the name
of the process.

A longwo rd that
contents of the
longwo rd.

specifies the
site-specific

An integer that specifies the
state.

A vector of 32 bits 'that
specifies the status flags.

An integer that specifies the
number of subprocesses owned by
the process.

An integer that specifies the
subprocess quota.

A string that specifies the name
of the terminal with which the
process is interacting.

An integer that specifies the
termination mailbox unit number.

An integer
remaining
quota.

that
timer

specifies the
queue entry

(Continued on next page)

GET-PROCESS-INFORMATION Function

Table 9 (Cont.)
GET-PROCESS-INFORMATION Keywords

Keyword

:TIMER-QUEUE-QUOTA

:UIC

:USERNAME

:VIRTUAL-ADDRESS-PEAK

:WORKING-SET-AUTHORIZED-EXTENT

:WORKING-SET-AUTHORIZED-QUOTA

:WORKING-SET-COUNT

:WORKING-SET-DEFAULT

:WORKING-SET-EXTENT

:WORKING-SET-PEAK

:WORKING-SET-QUOTA

:WORKING-SET-SIZE

Return Value

Return Value

An integer that specifies the
timer queue entry quota.

An integer that specifies the
UIC.

A string that specifies the user
name.

An integer that specifies the
peak virtual address space size.

An integer that specifies the
maximum authorized working set
extent.

An integer that specifies the
authorized working set quota.

An integer that specifies the
number of process pages in the
working set.

An integer that specifies the
default working set size.

An integer that specifies the
current working set size extent.

An integer that specifies the
peak working set size.

An integer that specifies the
current working set quota.

An integer that specifies the
current working set size.

The keywords and their values are returned as a list in the
following format:

(:keyword-l value-l :keyword-2 value-2 •••)

The function preserves the order of the keyword-value pairs in
the argument list.

If you do not specify keywords, the function returns a list of
all the keyword-value pairs. If the specified process does not
exist, the function returns NIL.

GET-PROCESS-INFORMATION Function

Examples

1. Lisp> (GET-PROCESS-INFORMATION "SMITH"
: BATCH
:CPU-TIME
:BASE-PRIORITY
:GLOBAL-PAGES)

(:BATCH NIL :CPU-TIME 45884 :BASE-PRIORITY 4 :GLOBAL-PAGES 68
)

Returns the value of the batch setting, the CPU time, the
base priority, and the number of global pages used for the
process SMITH.

2. Lisp> (OEFUN HOME NIL
(LET ((PIO

(SECONO (GET-PROCESS-INFORMATION
NIL
: OWNER-PIO))))

(IF (ZEROP PIO) NIL (ATTACH PIO))))
HOME

Oefines a function that just returns NIL if the LISP system
is running in the main process and attaches you to the parent
process if the system is running in a subprocess.

61

GET-TERMINAL-MODES Function

GET-TERMINAL-MODES

Returns information about the terminal characteristics of the device
associated with the *TERMINAL-IO* variable when you invoke the LISP
system. If the specified stream is not connected to a terminal, the
LISP system signals an error. The keywords you specify with the
function determine the type of information the function returns.

This function is similar to the DCL SHOW TERMINAL command. For more
information on the SHOW TERMINAL command, see the VAX/VMS Command
Language User's Guide.

Format

GET-TERMINAL-MODES &REST {keyword}*

Argument

keywo rd

Optional keywords that return the terminal characteristics of the
stream that is bound to the *TERMINAL-IO* variable. Do not
specify values with the keywords.

Table 10 lists the keywords that you can specify and the values
they return.

Keyword

: BROADCAST

:ECHO

Table 10
GET-TERMINAL-MODES Keywords

62

Return Value

Either T or NIL. The function
returns T if your terminal can
receive broadcast messages such
as MAIL notifications and REPLY
messages; otherwise, returns
NIL.

Either T or NIL. The function
returns T if the terminal
displays the input character
that it receives; otherwise,
returns NIL. If the function
returns NIL, the terminal
displays only data output from
the system or a user application
prog ram.

(Continued on next page)

Keyword

:ESCAPE

: HALF-DUPLEX

:PASS-ALL

:TYPE-AHEAD

:WRAP

GET-TERMINAL-MODES Function

Table 10 (Cont.)
GET-TERMINAL-MODES Keywords

63

Return Value

Either T or NIL. The function
returns T if ANSI standard
escape sequences transmitted
from the terminal are handled as
a single multiple-character
terminator; otherwise, returns
NIL. The terminal driver checks
the escape sequences for syntax
before passing them to the
program. For more information
on escape sequences, see the
VAX/VMS I/O User's Guide {Volume
u· -
Either T or NIL. The function
returns T if the terminal's
operating mode is half-duplex
and it returns NIL if the the
operating mode is full-duplex.
For a description of terminal
operating modes, see the VAX/VMS
I/O User's Guide {Volume U.

Either T or NIL. The function
returns T if the system does not
expand tab characters to blanks,
fill carriage return or line
feed characters, recognize
control characters, and receive
broadcast messages. The
function returns NIL if the
system passes all data to an
application program as binary
data.

Either T or NIL. The function
returns T if the terminal
accepts input that is typed when
there is no outstanding read and
it returns NIL if the terminal
driver is dedicated and accepts
input only when a program or the
system issues a read.

Either T or NIL. The function
returns T if the terminal
generates a carriage return and
a line feed when the end of a
line is reached and it returns
NIL otherwise. The end of the
line is determined by the
terminal-width setting.

GET-TERMINAL-MODES Function

Return Value

The keywords and their values are returned as a list in the
following format:

(:keyword-l value-l :keyword-2 value-2 •••)

The function preserves the order of the keyword-value pairs in
the argument list.

If you do not specify keywords, the function returns a list of
the keyword-value pairs. The list is returned in a format such
that it can be specified as an argument in a call to the
SET-TERMINAL-MODES function.

Example

Lisp> (GET-TERMINAL-MODES)
(:BROADCAST T :ECHO T :ESCAPE NIL :HALF-DUPLEX NIL :PASS-ALL NIL
:TYPE-AHEAD T :WRAP T)

Returns a list of all the keyword-value pairs.

64

GET-VMS-MESSAGE Function

GET-VMS-MESSAGE
Returns the system message associated with a specified VMS status.

Format

GET-VMS-MESSAGE status &OPTIONAL flags

Arguments

status

flags

A fixnum that specifies the VMS status code of the message that
is to be returned. See the VAX/VMS System Messages and Recovery
Procedures Manual for information on VMS message status codes.

A bit vector of length four that specifies the content of the
message. The default value is #*0000, which indicates that the
process default message flags are to be used. The information
that is included in the message when each of the four bits is set
follows:

Bit Information

o Text
1 Message ID
2 Severity
3 Facility

Return Value

Returns the message that corresponds to the specified status code
as a string. The function returns NIL if you specify a status
code that does not exist.

Examples

1. Lisp> (GET-VMS-MESSAGE 32)
"%SYSTEM-W-NOPRIV, no privilege for attempted operation"

Returns the VMS message text for message 32 with all flags
set.

2. Lisp (GET-VMS-MESSAGE 32 #*1001)
"%SYSTEM, no privilege for attempted operation"

Returns the VMS message text for message 32 with only the
facility and text flags set.

65

HASH-TABLE-REHASH-SIZE Function

HASH-TABLE-REHASH-SIZE

Returns the rehash size of a hash table. The rehash size indicates
how much a hash table is to increase when it is full. The value is
specified when you create a hash table with the MAKE-HASH-TABLE
function. For information on hash tables, see COMMON LISP: The
Language.

Format

HASH-TABLE-REHASH-SIZE hash-table

Argument

hash-table

The name of the hash table whose rehash size is to be returned.

Return Value

An integer greater than zero or a floating-point number greater
than one. If an integer is returned, the value indicates the
number of entries that are to be added to the table. If a
floating-point number is returned, the value indicates the ratio
of the new size to the old size.

Example

Lisp> (SETF *PRINT-ARRAY* NIL)
NIL
Lisp> (SETF TABLE-I (MAKE-HASH-TABLE :TEST #'EQUAL

#<Hash Table #x503BA8>

:SIZE 200
:REHASH-SIZE 1.5
:REHASH-THRESHOLD .95»

Lisp> (HASH-TABLE-REHASH-SIZE TABLE-I)
1.5

• The first call to the SETF macro sets the value of the
PRINT-ARRAY variable to NIL.

• The second call to the SETF macro sets the hash table created
by the call to the MAKE-HASH-TABLE function to TABLE-I.

• The call to the HASH-TABLE-REHASH-SIZE function returns the
rehash size of the hash table TABLE-I.

66

HASH-TABLE-REHASH-THRESHOLD Function

HASH-TABLE-REHASH-THRESHOLD

Returns the rehash threshold for a hash table. The rehash threshold
indicates how full a hash table can get before its size has to be
increased. The value is specified when you create a hash table with
the MAKE-HASH-TABLE function. For information on hash tables, see
COMMON LISP: The Language.

Format

HASH-TABLE-REHASH-THRESHOLD hash-table

Argument

hash-table

The name of the hash table whose rehash threshold is to be
returned.

Return Value

An integer greater than zero and less than hash table's rehash
size or a floating-point number greater than zero and less than
one.

Example

Lisp> (SETF *PRINT-ARRAY* NIL)
NIL
Lisp> (SETF TABLE-l (MAKE-HASH-TABLE :TEST #'EQUAL

#<Hash Table #x503BA8>

:SIZE 200
:REHASH-SIZE 1.5
:REHASH-THRESHOLD .95»

Lisp> (HASH-TABLE-REHASH-THRESHOLD TABLE-I)
0.95

• The first call to the SETF macro sets the value of the
PRINT-ARRAY variable to NIL.

• The second call to the SETF macro sets the hash table created
by the call to the MAKE-HASH-TABLE function to TABLE-I.

• The call to the HASH-TABLE-REHASH-THRESHOLD function returns
the rehash threshold of the hash table TABLE-I.

67

HASH-TABLE-SIZE Function

HASH-TABLE-SIZE

Returns the initial size of a hash table. The value is specified when
you create a hash table with the MAKE-HASH-TABLE function. For
information on hash tables, see COMMON LISP: The Language.

Format

HASH-TABLE-SIZE hash-table

Argument

hash-table

The name of the hash table whose initial size is to be returned.

Return Value

An integer that indicates the initial size of the hash table.

Example

Lisp> (SETF *PRINT-ARRAY* NIL)
NIL
Lisp> (SETF TABLE-l (MAKE-HASH-TABLE :TEST #'EQUAL

#<Hash Table #x503BA8>
Lisp> (HASH-TABLE-SIZE TABLE-I)
1.5

:SIZE 200
:REHASH-SIZE 1.5
:REHASH-THRESHOLD .95))

• The first call to the SETF macro sets the value of the
PRINT-ARRAY variable to NIL.

• The second call to the SETF macro sets the hash table created
by the call to the MAKE-HASH-TABLE function to TABLE-I.

• The call to the HASH-TABLE-SIZE function returns the initial
size of the hash table TABLE-I.

68

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-PROCESS-INFORMATION Function (cont.)

Table 4 (cont.)

Keyword

:PAGE-FILE-COUNT

:PAGE-FILE-QUOTA

: PAGES-AVAILABLE

:PIO

:PIO-OF-PARENT

:PROCESS-CREATION-FLAGS

:PROCESS-INDEX

: PROCESS-NAME

:SITE-SPECIFIC

: STATE

: STATUS

Version 2.2, July 1987 69

Return Value

An integer that specifies the
number of paging file pages
remaining to the process.

An integer that specifies the
paging file quota.

An integer that specifies the
number of virtual pages
available for expansion.

An integer that specifies the
process IO.

An integer that specifies the
PlO of the parent process. This
integer differs from :OWNER-PID
in that :PID-OF-PARENT refers to
the top-level process, while
:OWNER-PIO refers to the process
immediately above the current
process or subprocess.

A 32-bit bit-vector that
specifies the flags used to
create the process.

An integer that specifies the
index number of the process at a
given instant. (Process index
numbers are reassigned to
different processes over time.)

A string that specifies the name
of the process.

A longword that
contents of the
longword.

specifies the
site-specific

An integer that specifies the
state.

A vector of 32 bits that
specifies the status flags.

I

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-PROceSS-INFORMATION Function (cant.)

Table 4 (cont.)

Keyword

: SUBPROCESS-COUNT

: SUBPROCESS-QUOTA

: TERMINAL

: TERMINATION-MAILBOX

:TIMER-QUEUE-COUNT

:TIMER-QUEUE-QUOTA

:UAF-FLAGS

:UIC

:USERNAME

:VIRTUAL-ADDRESS-PEAK

:WORKING-SET-AUTHORIZED-EXTENT

:WORKING-SET-AUTHORIZED-QUOTA

:WORKING-SET-COUNT

Version 2.2, July 1987 70

Return Value

An integer that specifies the
number of subprocesses owned by
the process.

An integer that specifies the
subprocess quota.

A string that specifies the name
of the terminal with which the
process is interacting.

An integer that specifies the
termination mailbox unit numbe r.

An integer that specifies the
remaining timer queue entry
quota.

An integer that specifies the
timer queue entry quota.

A 12-bit bit-vector that
specifies the UAF flags of the
user who owns the process.

An integer that specifies the
UIC.

A string that specifies the user
name.

An integer that specifies the
peak virtual address space size.

An integer that specifies the
maximum authorized working set
extent.

An integer that specifies the
authorized working set quota.

An integer that specifies the
number of process pages in the
working set.

POST-GC-MESSAGE Variable

POST -GC-MESSAGE

Controls the message the LISP system displays after a garbage
collection occurs. The value of this variable can be NIL, a string of
message text, or the null string (""). If the value is NIL, the
system displays a system message. If the value is a string, the
system displays the string. If the variable's value is the null
string (""), the system displays no output. The default value is NIL.

The system messages appear in the following form:

; Finished garbage collection due to GC function.

Example

Li sp> (GC)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T
Lisp> (SETF *POST-GC-MESSAGE* "H)
""
Lisp> (GC)
; Starting garbage collection due to GC function.
T
Lisp> (SETF *POST-GC-MESSAGE* "GC finished")
"GC -- finished"
Li sp> (GC)
; Starting garbage collection due to GC function.
GC -- finished
T

• The first call to the GC function shows the garbage collection
messages the LISP system displays by default.

• The first call to the SETF macro sets the value of the
POST-GC-MESSAGE variable to the null string ("").

• The second call to the GC function shows that the system does
not display a message when a garbage collection is finished
when the variable's value is the null string.

• The second call to the SETF macro sets the value of the
variable to the string "GC finished".

• The third call to the GC function shows that the system
displays the new message when a garbage collection is finished
if the variable's value is a string.

71

PPRINT-ARRAY-FORMATTERS Variable

PPRINT -ARRA V-FORMATTERS

A variable whose value is a list of pretty-printer formatting
functions that are tested for applicability to an array that is being
printed. The default value is NIL.

You can add formatting functions to this variable's value by using the
PUSH macro. The elements that you add to the list must be either
formatting functions or symbols that have formatting-function
definitions. The functions in the list must take one argument, the
object to be pretty-printed, and must produce pretty-printer
formatting code. You can assume that the object is an array.

A formatting function should return NIL if the pretty printer is to
attempt additional formatting. A formatting function should end with
either a call to the EXPAND-PPRINT-TEMPLATE macro or with a value
other than NIL if the pretty printer is not to attempt additional
formatting.

The functions that are stored as the value of the
PPRINT-ARRAY-FORMATTERS variable are used as follows:

• If the object to be pretty-printed is an array
string or bit vector, the LISP system
formatting function in the list starting
function in the list.

other than a
evaluates each

with the first

NOTE

The pretty-printer algorithm checks for strings and
bit vectors prlor to checking the value of the
PPRINT-ARRAY-FORMATTERS variable.

• If a function returns NIL, the system evaluates the next
function. A call to the EXPAND-PPRINT-TEMPLATE macro results
in translated pretty-printer code, which is used in the
output.

• If a function returns a value other than NIL, the dispatch
routine stops. Each call to the EXPAND-PPRINT-TEMPLATE macro
produces translated pretty-printer code, which the pretty
printer uses to format the object.

For more information about the use of the *PPRINT-ARRAY-FORMATTERS*
variable, see Section 5.3.2.3.

Example

Lisp> (DEFUN TWO-BY-TWO-ARRAYS (OBJECT)
(IF (AND (ARRAYP OBJECT)

(EQUAL '(2 2) (ARRAY-DIMENSIONS OBJECT»)
(EXPAND-PPRINT-TEMPLATE "'A 2-dimensional array:

, +4 ! * - T3 * ! * - T3

NIL) }
TWO-BY-TWO-ARRAYS

(AREF OBJECT 0 0)
(AREF OBJECT 0 1)
(AREF OBJECT 1 0)
(AREF OBJECT 1 1»

Lisp> (PUSH 'TWO-BY-TWO-ARRAYS *PPRINT-ARRAY-FORMATTERS*)
(TWO-BY-TWO-ARRAYS)

72

PPRINT-ARRAY-FORMATTERS Variable

Lisp> (PPRINT '#2A((1 2) (34)))
A 2-dimensional array:

•

•

1 2
3 4

The call to the DEFUN macro
named TWO-BY-TWO-ARRAYS,
2-dimensional arrays.

defines a formatting function
which formats the output of

The call to the PUSH macro pushes
TWO-BY-TWO-ARRAYS onto the list
PPRINT-ARRAY-FORMATTERS variable.

the formatting
that is bound

function
to the

• The call to the PPRINT function shows the pretty-printed
output of a 2-dimensional array after the formatting function
TWO-BY-TWO-ARRAYS is added to the list bound to the variable
PPRINT-ARRAY-FORMATTERS variable.

73

PPRINT-CHECK-INDENTATION Function

PPRINT-CHECK-INDENTATION

Checks the indentation of a list that is to be pretty-printed. You
can include calls to this function in pretty-printer formatting
function definitions. If the remaining width on the terminal screen
available for pretty-printing is less than the value of the
PPRINT-MAJOR-WIDTH variable, the pretty printer shifts the specified
list to the left.

NOTE

You cannot call the PPRINT-CHECK­
INDENTATION function at top level.

Format

PPRINT-CHECK-INDENTATION list formatting-function

Arguments

list

The list whose indentation is to be checked.

formatting-function

A I-argument formatting function that is to be used to format the
specified list's pretty-printed output. The argument is the
specified list.

Return Value

The LISP code the pretty printer is to evaluate.

Example

Lisp> (DEFUN FACTORIAL-FORMATTER (NUMBER-LIST)
(PPRINT-CHECK-INDENTATION NUMBER-LIST

#'FACTORIAL-FORMAT))
FACTORIAL-FORMATTER

Defines formatting function named FACTORIAL-FORMATTER, which
includes a call to the PPRINT-CHECK-INDENTATION function.

74

PPRINT-DATA-LIST Variable

PPRINT -DATA-LIST

Specifies the default pretty-printer formatting function the pretty
printer is to use to format a list of data. A list of data is a list
that does not represent a function call or an application of a lambda
expression. The value of this variable can be a function, a symbol
that has a function definition, or NIL. The function must take one
argument, the object to be pretty-printed, and must produce
pretty-printer formatting code. You can assume that the object is a
list.

If the value of the *PPRINT-DATA-LIST* variable is NIL, the pretty
printer uses the system's default formatting function to format the
list.

For more information about the use of the *PPRINT-DATA-LIST* variable,
see Section 5.3.2.2.

Example

Lisp> (DEFUN MY-DATA-LIST (OBJECT)
(EXPAND-PPRINT-TEMPLATE "(1 * <;6 *»" OBJECT»

MY-DATA-LIST
Lisp> (SETF *PPRINT-DATA-LIST* 'MY-DATA-FORMAT)
MY-DATA-FORMAT
Lisp> (PPRINT '(1
20 21 22 23 24 25

234
26 27

4

567
28 29

5

8 9 10
30»

11 12 13 14 15 In 17 18 19

(1 2 3
12 13 14
23 24 25

15
26

16
27

6
17
28

7
18
29

8
19
30)

9
20

10
21

11
22

• The call to the DEFUN macro defines a formatting function
named MY-DATA-LIST, which formats a list of data.

• The call to the SETF macro binds the formatting function
MY-DATA-LIST to the variable *PPRINT-DATA-LIST*.

• The call to the PPRINT function pretty-prints the output of a
data list in the format specified by the formatting function
MY-DATA-LIST.

75

PPRINT-DEFINITION Function

PPRINT-DEFINITION

Pretty-prints the function value of a symbol to a stream.

Format

PPRINT-DEFINITION symbol &OPTIONAL stream

Arguments

symbol

The symbol whose function value is to be pretty-printed.

stream

The stream to which the code is to be pretty-printed. The
default stream is the stream bound to the *STANDARD-OUTPUT*
variable.

Return Value

No value.

Examples

1. Lisp> (DEFUN FACTORIAL (N)
"Returns the factorial of an integer."
(COND «<= N I) I} (T (* N (FACTORIAL (- N I)}}}}}
FACTORIAL
Lisp> (PPRINT-DEFINITION 'FACTORIAL)
(DEFUN FACTORIAL (N)

"Returns the factorial of an integer."
(COND «<= N I) 1) (T (* N (FACTORIAL (- N 1»»»

• The call to the DEFUN macro defines a function called
FACTORIAL, which returns the factorial of an integer.

• The call to the PPRINT-DEFINITION functi6n pretty-prints
the function value of the symbol FACTORIAL.

2. Lisp> (DEFUN RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR "-S must be a symbol." NAME»
(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED?) NAME)
RECORD-MY-STATISTICS
Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS)
(DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?)

(UNLESS (SYMBOLP NAME)
(ERROR "-S must be a symbol." NAME»

(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED?)

NAME)

• The call to the DEFUN macro defines a function called
RECORD-MY-STATISTICS.

• The call to the PPRINT-DEFINITION function pretty-prints
the function value of the symbol RECORD-MY-STATISTICS.

76

PPRINT-END-LINE Variable

PPRINT -END-LINE

Specifies the line number of an object at which the pretty printer is
to stop printing. Line numbers start at zero, so if you set the
variable to n, the pretty printer stops printing after it prints n
lines of output. If the value of this variable truncates printing,
the pretty printer prints an ellipsis (•••) at the end of the last
line to indicate that the output was truncated, and immediately stops
printing. The default value is NIL, which the pretty printer
interprets to be the end of the object.

You can use the *PPRINT-END-LINE* variable with the
PPRINT-START-LINE variable to instruct the pretty printer to print a
specific section of a program. For example, if the value of the
PPRINT-START-LINE variable is four and the value of the
PPRINT-END-LINE variable is 10, the pretty printer prints lines 4 to
9 of an object.

For more information about the use of the *PPRINT-END-LINE* variable,
see Section 5.2.1.1.

Example

Lisp> (DEFUN RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR II-S must be a symbol. II NAME»
(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED?) NAME)
RECORD-MY-STATISTICS
Lisp> (SETF *PPRINT-END-LINE* 3)
3
Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS)
(DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?)

(UNLESS (SYMBOLP NAME)
(ERROR II-S must be a symbol." NAME» •••

• The call to the DEFUN macro defines a function
RECORD-MY-STATISTICS.

• The call to the SETF macro sets
PPRINT-END-LINE variable to three.

the value

named

of the

• The call to the PPRINT-DEFINITION function shows the effect
the variable's value has on the output the pretty printer
prints. The pretty printer prints three lines followed by an
ellipsis, which indicates the output was truncated.

77

PPRINT-FORMATTER Function

PPRINT -FORMATTER

Returns the pretty-printer formatting function that is associated with
a symbol. The pretty printer uses the formatting function the
PPRINT-FORMATTER function returns to pretty-print lists whose first
element is the specified symbol. By default, several symbols have
formatting functions associated with them. If a formatting function
is not associated with the specified symbol, the PPRINT-FORMATTER
function returns NIL.

You can specify the PPRINT-FORMATTER function in a call to the SETF
macro.

For a complete description of how to use the PPRINT-FORMATTER to
associate a formatting function with a symbol, see Section 5.3.2.1.

Format

PPRINT-FORMATTER symbol

Argument

symbol

The symbol whose formatting function is to returned.

Return Value

The formatting function associated with the specified symbol.

Examples

1. Lisp> (PPRINT-FORMATTER 'SETF)
SYSTEM-PPRINT::SETQ-FORMAT

Checks whether a formatting function is defined for lists
whose first element is the symbol SETF.

2. Lisp> (DEFUN LET-FORMATTER (OBJECT)
(EXPAND-PPRINT-TEMPLATE "(2 * (1 <* !» <- *»"

OBJECT))
LET-FORMATTER
Lisp> (SETF (PPRINT-FORMATTER 'LET) 'LET-FORMATTER)
LET-FORMATTER
Lisp> (PPRINT '(LET «Y 1) (Z 2» (CONS Y Z»)
(LET «Y 1)

(Z 2»
(CONS Y Z»

• The call to the DEFUN macro defines a formatting function
for lists whose first element is the symbol LET.

• The call to the SETF macro associates the formatting
function LET-FORMATTER with the symbol LET.

• The call to the PPRINT function shows the output the
pretty printer produces for lists whose first element is
the symbol LET after the symbol is associated with the
function LET-FORMATTER.

78

PPRINT-FUNCTION-CALL Variable

*PPRINT -FUNCTION-CALL *

Specifies the default pretty-printer formatting function the pretty
printer is to use to format lists that represent a function call. A
list represents a function call if its first element is a symbol that
has a function defintion. The value of this variable can be a
function, a symbol that has a function definition, or NIL. The
function must take one argument, the object to be pretty-printed, and
must produce pretty-printer formatting code. You can assume that the
argument is a list whose first element is a symbol that has a function
definition.

If the value of the *PPRINT-FUNCTION-CALL* variable is NIL, the pretty
printer uses the system's default formatting function.

For more information about the use of the *PPRINT-FUNCTION-CALL*
variable, see Section 5.3.2.2.

Example

Lisp> (DEFUN FUNCTION-FORMATTER (OBJECT)
(EXPAND-PPRINT-TEMPLATE "(I';A call to the function:'

! * !
';with the following arguments'

! <* ;4»"
OBJECT))

FUNCTION-FORMATTER
Lisp> (LET «*PPRINT-FUNCTION-CALL* 'FUNCTION-FORMATTER))

(PPRINT '(+ I 2 3 4 5)))
(;A call to the function:
+
iwith the following arguments
I 2 3 4 5)

• The call to the DEFUN macro defines a formatting function that
adds comments to the pretty-printed output of a function call.
The comments identify the function name and the arguments that
are passed to the function.

• The call to the LET special form binds the formatting function
FUNCTION-FORMATTER to the formatting variable
PPRINT-FUNCTION-CALL. The binding causes the dispatch
routine to use the FUNCTION-FORMATTER function as the default
function for lists whose first element is a symbol that names
a function. Since the symbol + represents the name of a
function, the pretty printer formats the list (+ I 2 3 4 5)
with the FUNCTION-FORMATTER function.

79

PPRINT-LAMBDA-APPLICATION Variable

PPRINT -LAMBDA-APPLICATION

Specifies the pretty printer's default formatting function
that represent applications of lambda expressions. A list
to represent the application of a lambda expression if
element of the list is a list whose first element is
LAMBDA. The following list represents an application of
expression:

«LAMBDA (X Y) (+ X Y» 3 4)

for lists
is assumed
the first
the symbol

a lambda

The value of this variable can be a function, a symbol that has a
function definition, or NIL. The function must take one argument, the
object to be pretty-printed, and must produce pr~tty-printer
formatting code. You can assume that"the argumen~ represents a call
to a lambda expression.

If the value of the *PPRINT-LAMBDA-APPLICATION* variable is NIL, the
pretty printer uses the system's default formatting function.

For more information about the use of the *PPRINT-LAMBDA-APPLICATION*
variable, see Section 5.3.2.2.

Example

Lisp> (PPRINT '((LAMBDA (X Y Z) (IF X Y Z» 8 9 10»
«LAMBDA (X Y Z) (IF X Y Z» 8 9 10)
Lisp> (DEFUN MY-LAMBDA-FORMAT (OBJECT)

(EXPAND-PPRINT-TEMPLATE
II {I I (; This is the lambda: I 1 * 1 '

; The lambda is being applied to these
values:' 1"

(CAR OBJECT»
(DO «REST (REST OBJECT) (REST REST»

(THIS (CAR REST) (CAR REST»)
«NULL REST) (EXPAND-PPRINT-TEMPLATE "')'} "))

(EXPAND-PPRINT-TEMPLATE II * II THIS)
(UNLESS (= 1 (LENGTH REST»

(EXPAND-PPRINT-TEMPLATE II , ") »)
MY-LAMBDA-FORMAT
Lisp> (LET {(*PPRINT-LAMBDA-APPLICATION* 'MY-LAMBDA-FORMAT»

(PPRINT '«LAMBDA (X Y Z) (IF XY Z» 8 9 10»)
(; This is the lambda:

(LAMBDA (X Y Z) (IF X Y Z»
; The lambda is being applied to these values:
8 9 10)

• The call to the PPRINT function shows
pretty-printer output for lambda expressions.

the default

• The call to the DEFUN macro defines a formatting function
named MY-LAMBDA-FORMAT, which adds comments to pretty-printed
output of lambda expressions. The comments in the definition
identify the lambda expression and the arguments with which
the lambda expression is called.

• The call to the LET special form binds the formatting function
MY-LAMBDA-FORMAT to the formatting variable *PPRINT-LAMBDA­
APPLICATION*. The binding causes the pretty-printer dispatch
routine to use the MY-LAMBDA-FORMAT function as the default
formatting function for lambda expressions. Since
«LAMBDA (X Y Z) (IF X Y Z» 8 9 10) represents an application
of a lambda expression, the dispatch routine calls the
function MY-LAMBDA-FORMAT to format the output.

80

PPRINT-LEFT-MARGIN Variable

PPRINT -LEFT -MARGIN

Specifies the left margin for the pretty printer. Columns are
numbered starting at zero so if you set this variable to n, the pretty
printer leaves n empty columns to the left of the left margin.

If the value of the *PPRINT-LEFT-MARGIN* variable is NIL, the pretty
printer uses the current stream position as the left margin. The
default value is NIL.

Example

Lisp> (DEFUN RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR "-S must be a symbol." NAME»
(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED) NAME)
RECORD-MY-STATISTICS
Lisp> (SETF *PPRINT-LEFT-MARGIN* 9)
9
Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS)

(DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)

(ERROR "-S must be a symbol." NAME»
(SETF (GET NAME 'AGE) AGK

(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED)

NAME)

• The call to the DEFUN macro defines a function
RECORD-MY-STATISTICS.

named

• The call to the PPRINT-DEFINITION function pretty-prints the
function definition with the left margin set to zero.

• The call to the SETF macro sets the
PPRINT-LEFT-MARGIN variable to nine.

value of the

• The call to the PPRINT-DEFINITION function shows the effect
the variable's value has on the output of the pretty printer.
The pretty printer starts printing each line in column nine.

81

PPRINT-MAJOR-WIDTH Variable

PPRINT -MAJOR-WIDTH

Controls when logical units of an object, such as DO, LET, and PROG
forms, are shifted to the left. If the available line width is less
than the variable's value, the pretty printer shifts units of an
object to the left. When the pretty printer shifts text to the left,
the amount of line width available for printing increases. The
default value is 20.

The pretty printer can shift a logical unit of an object to the left
only if you declare the logical unit to be a major logical unit. To
declare a major logical unit, you must include the
PPRINT-CHECK-INDENTATION function in a formatting-function definition.

When the pretty printer shifts a logical unit to the left, it
surrounds the unit with comment lines that end with a vertical bar
(I). The vertical bar indicates the indentation the pretty printer
would have used if the structure was not shifted.

You can prevent the pretty printer from shifting text by setting .the
PPRINT-MAJOR-WIDTH variable to zero.

For more information about shifting logical units of an object to the
left and the use of the *PPRINT-MAJOR-WIDTH* variable, see Section
5.2.3.2.

Example

Lisp> (DEFUN FACTORS-OF (INTEGER)
(IF (OR (ZEROP INTEGER) (= 1 (ABS INTEGER»)
(LIST INTEGER)
(DO «RESULT-LIST NIL)
(TRY-THIS-INTEGER 2)
(REST-TO-BE-FACTORED 1)
(IF (MINUSP INTEGER)
(CONS -1 (NREVERSE RESULT-LIST»
(NREVERSE RESULT-LIST»)
(LET «NEW-REMAINDER
(/ REST-TO-BE-FACTORED TRY-THIS-INTEGER»)
(COND «INTEGERP NEW-REMAINDER)
(SETF REST-TO-BE-FACTORED NEW-REMAINDER)
(PUSH TRY-THIS-INTEGER RESULT-LIST»
(T (INCF TRY-THIS-INTEGER»»»
FACTORS-OF
Lisp> (SETF *PPRINT-MAJOR-WIDTH* 55)
55
Lisp> (PPRINT-DEFINITION 'FACTORS-OF)
(DEFUN FACTORS-OF (INTEGER)

(IF (OR (ZEROP INTEGER) (= 1 (ABS INTEGER»)
(LIST INTEGER)

i--- 1

(DO «RESULT-L 1ST NI L)
(TRY-THIS-INTEGER 2)
(REST-TO-BE-FACTORED (ABS INTEGER»)

«= REST-TO-BE-FACTORED 1)
(IF (MINUSP INTEGER)

(CONS -1 (NREVERSE RESULT-LIST»
(NREVERSE RESULT-LIST»)

82

PPRINT-MAJOR-WIDTH Variable

i--- I
(LET ((NEW-REMAINDER

(/ REST-TO-BE-FACTORED TRY-THIS-INTEGER)))
(COND ((INTEGERP NEW-REMAINDER)

(SETF REST-TO-BE-FACTORED NEW-REMAINDER)
(PUSH TRY-THIS-INTEGER RESULT-LIST))

i--- I
)

i--- I
))

(T (INCF TRY-THIS-INTEGER))))

• The call to the DEFUN macro defines a function
FACTORS-OF.

• The call to the SETF macro sets
PPRINT-MAJOR-WIDTH variable to 55.

the value

named

of the

• The call to the PPRINT-DEFINITION function shows the
pretty-printed output of the FACTORS-OF function definition
with a major logical unit shifted to the left.

83

PPRINT-MISER-WIDTH Variable

PPRINT -MISER-WIDTH

Controls miser mode printing. If the available line width between the
current indentation and the end of the line is less than the value of
this variable, the pretty printer enables miser mode. When the pretty
printer is in miser mode, all indentations are one space and some
spaces are replaced with line breaks. The default value is 40.

You can prevent the pretty printer from printing in miser mode by
setting the *PPRINT-MISER-WIDTH* variable to zero.

For more information about miser mode and the
PPRINT-MISER-WIDTH variable, see Section 5.2.3.1.

use of

Example

Lisp> (DEFUN FACTORS-OF (INTEGER)
(IF (OR (ZEROP INTEGER) (= 1 (ABS INTEGER»)
(LIST INTEGER)
(DO ((RESULT-LIST NIL)
(TRY-THIS-INTEGER 2)
(REST-TO-BE-FACTORED 1)
(IF (MINUSP INTEGER)
(CONS -1 (NREVERSE RESULT-LIST»
(NREVERSE RESULT-LIST»)
(LET ((NEW-REMAINDER
(/ REST-TO-BE-FACTORED TRY-THIS-INTEGER»)
(COND ((INTEGERP NEW-REMAINDER)
(SETF REST-TO-BE-FACTORED NEW-REMAINDER)
(PUSH TRY-THIS-INTEGER RESULT-LIST»
(T (INCF TRY-THIS-INTEGER»»»
FACTORS-OF
Lisp> (SETF *PPRINT-MISER-WIDTH* 57)
57
Lisp> (PPRINT-DEFINITION 'FACTORS-OF)
(DEFUN FACTORS-OF (INTEGER)

(IF (OR (ZEROP INTEGER) (= 1 (ABS INTEGER»)
(LIST INTEGER)
(DO

((RESULT-LIST NIL)
(TRY-THIS-INTEGER 2)
(REST-TO-BE-FACTORED (ABS INTEGER»)

((= REST-TO-BE-FACTORED 1)
(IF

(MINUSP INTEGER)
(CONS -1 (NREVERSE RESULT-LIST»
(NREVERSE RESULT-LIST»)

(LET ((NEW-REMAINDER
(/ REST-TO-BE-FACTORED TRY-THIS-INTEGER»)

(COND
((INTEGERP NEW-REMAINDER)

(SETF REST-TO-BE-FACTORED NEW-REMAINDER)
(PUSH TRY-THIS-INTEGER RESULT-LIST»

(T (INCF TRY-THIS-INTEGER»»»)

• The call to the DEFUN macro defines a function
FACTORS-OF.

• The call to the SETF macro sets
PPRINT-MISER-WIDTH variable to 57.

the value of

the

named

the

• The call to the PPRINT-DEFINITION function shows the
pretty-printed output of the FACTORS-OF function definition
with miser mode enabled.

84

PPRINT-PLIST Function

PPRINT -PLIST

pretty-prints the property list of a symbol to a stream. A pfoperty
list is a list of symbol-value pairs; each symbol is associated with
a value or an expression. The PPRINT-PLIST function prints the
property list in a way that emphasizes the relationship between the
symbols and their values. The function prints only the symbol-value
pairs for which the symbol is accessible in the current package. For
information on packages, see COMMON LISP: The Language.

Format

NOTE

The form (PPRINT-PLIST 'ME) is not
equivalent to the form
(PPRINT (SYMBOL-PLIST 'ME».

PPRINT-PLIST symbol &OPTIONAL stream

Arguments

symbol

The symbol whose property list the pretty printer is to print.

stream

The stream to which the pretty printer is to print the code. The
default stream is the stream bound to the *STANDARD-OUTPUT*
variable.

Return Value

No value.

Examples

1. Lisp> (SETF (GET 'CHILDREN 'SONS) '(DANNY GEOFFREY»
(DANNY GEOFFREY)
Lisp> (SETF (GET 'CHILDREN 'DAUGHTERS) 'SAMANTHA)
SAMANTHA
Lisp> (PPRINT-PLIST 'CHILDREN)
(DAUGHTERS SAMANTHA
SONS (DANNY GEOFFREY»

• The calls to the SETF macro give the symbol CHILDREN the
properties SONS and DAUGHTERS. The property list of the
symbol CHILDREN has two properties: DAUGHTERS whose value
is SAMANTHA and SONS whose value is the list (DANNY
GEOFFREY) •

• The call to the PPRINT-PLIST function pretty-prints the
property list of the symbol CHILDREN. The pretty-printed
output emphasizes the relationship between each property
and its value.

85

PPRINT-PLIST Function

2. Lisp> (DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)

(ERROR II-S must be a symbol." NAME»
(SETF (GET NAME 'AGE) AGE

(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED)

NAME)
RECORD-MY-STATISTICS
Lisp> (DEFUN SHOW-MY-STATISTICS (NAME)

(UNLESS (SYMBOLP NAME)
(ERROR II-S must be a symbol." NAME»
(PPRINT-PLIST NAME»

SHOW-MY-STATISTICS
Lisp> (RECORD-MY-STATISTICS 'TOM 29 3 NIL)
TOM
Lisp> (SHOW-MY-STATISTICS 'TOM)
(IS-THIS-PERSON-MARRIED? NIL
NUMBER-OF-SIBLINGS 3
AGE 29)

• The first call to the DEFUN macro defines a function named
RECORD-MY-STATISTICS.

• The second call to the DEFUN macro defines a function
named SHOW-MY-STATISTICS. The definition includes a call
to the PPRINT-PLIST function.

• The call to the RECORD-MY-STATISTICS function inputs the
properties for the symbol TOM.

• The call to the SHOW-MY-STATISTICS function pretty-prints
the property list for the symbol TOM.

86

PPRINT-RIGHT-MARGIN Variable

PPRINT -RIGHT -MARGIN

Specifies the pretty printer's right margin. Columns are numbered
starting at zero, so if you set this variable to n, the pretty printer
inserts n spaces to the left of the right margin. If the variable's
value is NIL and the stream being used goes to a terminal, the pretty
printer uses the width of the terminal; if the value is NIL and the
stream does not go to a terminal, the pretty printer uses a right
margin of 72. The default value is NIL.

Example

Lisp> (DEFUN RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR "-S must be a symbol." NAME»
(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED)
NAME)
RECORD-MY-STATISTICS
Lisp> (SETF *PPRINT-RIGHT-MARGIN* 40)
40
Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS)
(DEFUN
RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS

(SYMBOLP NAME)
(ERROR
II-S must be a symbol."
NAME))

(SETF
(GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS)
SIBLINGS
(GET
NAME
'IS-THIS-PERSON-MARRIED?)

MARRIED)
NAME)

• The call to the DEFUN macro defines a function
RECORD-MY-STATISTICS.

• The call to the SETF macro sets
PPRINT-RIGHT-LINE variable to 40.

the value

named

of the

• The call to the PPRINT function shows the effect the
variable's value has on the output of the pretty printer. The
pretty printer stops printing each line at column 40.

87

PPRINT-SPECIAL-FORMATTERS Variable

PPRINT -SPECIAL-FORMATTERS

A variable whose value is a list of pretty-printer formatting
functions. This variable is the first variable that the
pretty-printer dispatch routine checks. Before the pretty printer
prints an object, the dispatch routine checks the applicability of
each function stored in the value of the variable to the object,
starting from the first function in the list.

You can add formatting functions to this variable's value by using the
PUSH macro. The elements that you add to the list must be either
formatting functions or symbols that have formatting-function
definitions. The functions in the list must take one argument, the
object to be pretty-printed, and must produce pretty-printer
formatting code. The function must be able to take an argument of any
type.

A formatting function should return NIL if the pretty printer is to
perform additional formatting. If the pretty printer is not to
perform additional formatting, the formatting function should end with
either a call to the EXPAND-PPRINT-TEMPLATE macro or a value other
than NIL.

The functions that are stored as the value
PPRINT-SPECIAL-FORMATTERS variable are used as follows:

of the

• If a function returns NIL, the system evaluates the next
function. A call to the EXPAND-PPRINT-TEMPLATE macro results
in translated pretty-printer code, which is used in the
output.

• If a function returns a value other than NIL, the dispatch
routine stops. Each call to the EXPAND-PPRINT-TEMPLATE macro
produces translated pretty-printer code, which the pretty
printer uses to format the object.

For more information about the use of the *PPRINT-SPECIAL-FORMATTERS*
variable, see Section 5.3.2.3.

Example

Lisp> (DEFUN MY-PATHNAME-FORMATTER (OBJECT)
(IF (PATHNAMEP OBJECT)

(PATHNAME-FORMATTER OBJECT)
NI L))

MY-PATHNAME-FORMATTER
Lisp> (DEFUN PATHNAME-FORMATTER (OBJECT)

(LET (TEMP)
(EXPAND-PPRINT-TEMPLATE "(3 '#S(PATHNAME'")
(WHEN (SETQ TEMP (PATHNAME-HOST OBJECT»

(EXPAND-PPRINT-TEMPLATE "1 ':HOST' T12 p"
TEMP))

(WHEN (SETQ TEMP (PATHNAME-DEVICE OBJECT»
(EXPAND-PPRINT-TEMPLATE "1 ':DEVICE' T12 p"

TEMP))
(WHEN (SETQ TEMP (PATHNAME-DIRECTORY OBJECT»

(EXPAND-PPRINT-TEMPLATE "I' : DIRECTORY , T12 p"
TEMP))

(WHEN (SETQ TEMP (PATHNAME-NAME OBJECT»
(EXPAND-PPRINT-TEMPLATE "1 ':NAME' T12 P"

TEMP))
(WHEN (SETQ TEMP (PATHNAME-TYPE OBJECT»

(EXPAND-PPRINT-TEMPLATE "1 ':TYPE' T12 p"
TEMP))

88

PPRINT-SPECIAL-FORMATTERS Variable

(WHEN (SETQ TEMP (PATHNAME-VERSION OBJECT))
(EXPAND-PPRINT-TEMPLATE "1 ':VERSION ' Tl2 p"

TEMP))
(EXPAND-PPRINT-TEMPLATE "I) I}")))

PATHNAME-FORMATTER
Lisp> (PUSH 'MY-PATHNAME-FORMATTER *PPRINT-SPECIAL-FORMATTERS*)
(MY-PATHNAME-FORMATTER)
Lisp> (PPRINT (PATHNAME "HOME:: [BASE] "))
#S(PATHNAME

:HOST "HOME"
: DIRECTORY "BASE")

• The two calls to the DEFUN macro define two formatting
functions named MY-PATHNAME-FORMATTER and PATHNAME-FORMATTER.
The functions are defined such that they are called if the
object being pretty-printed is a pathname. If the object is a
pathname, the fields for which values are specified are to be
pretty-printed. Fields that have a value of NIL are not to be
printed.

• The call to the PUSH macro pushes the formatting function
MY-PATHNAME-FORMATTER onto the list that is bound to the
PPRINT-SPECIAL-FORMATTERS variable.

• The call to the PPRINT function shows the pretty-printed
output of the pathname represented by the namestring
HOME:: [BASE] after the formatting function
MY-PATHNAME-FORMATTER is added to the list that is bound to
the *PPRINT-SPECIAL-FORMATTERS* variable. The pretty printer
prints the output in tabular format and prints only the fields
that are specified in the namestring.

89

PPRINT-START-LINE Variable

PPRINT -START -LINE

Specifies the line number at which the pretty printer is to start
printing. Line numbers start at zero, so if you set the variable to
n, the pretty printer starts printing after it skips n lines. The
default value is NIL; NIL has the same affect as the value zero.

You can use the *PPRINT-START-LINE* variable with the
PPRINT-END-LINE variable to pretty-print a specific section of a
program. For example, if the value of the *PPRINT-START-LINE*
variable is four and the value of the *PPRINT-END-LINE* variable is
10, the pretty printer prints lines 4 to 9 of an object.

For more information about the use of the
variable, see section 5.2.1.1.

PPRINT-START-LINE

Example

Lisp> (DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR "-S must be a symbol." NAME))
(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED) NAME)
RECORD-MY-STATISTICS
Lisp> (SETF *PPRINT-START-LINE* 3)
3
Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS)

(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBR-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED)

NAME)

• The call to the DEFUN macro defines a function
RECORD-MY-STATISTICS.

named

• The call to the SETF macro sets the
PPRINT-START-LINE variable to three.

value of the

• The call to the PPRINT function shows the effect the
variable's value has on the output the pretty printer prints.
The pretty printer skips three lines and then prints the rest
of the function definition.

90

PRE-GC-MESSAGE Variable

PRE-GC-MESSAGE

Controls the message the LISP system displays when a garbage
collection starts. The value of this variable can be NIL, a string of
message text, or the null string (""). If the value is NIL, the
system displays a system message. If the value is a string of message
text, the system displays the message text. If the variable's value
is the null string, the system displays no output. The default value
is NIL.

System messages appear in the following form:

Starting garbage collection due to GC function.

Example

Lisp> (GC)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T
Lisp> (SETF *PRE-GC-MESSAGE* "")
""
Li sp> (GC)
; Finished garbage collection due to GC function.
T
Lisp> (SETF *PRE-GC-MESSAGE* "GC -- started")
"GC -- started"
Lisp> (GC)
GC -- started

Finished garbage collection due to GC function.
T

• The first call to the GC function shows the garbage collection
messages that are printed by default.

• The first call to the SETF macro sets the value of the
PRE-GC-MESSAGE variable to the null string (" ") .

• The second call to the GC function causes the system not to
display a message when the garbage collection starts.

• The second call to the SETF macro sets the value of the
variable to the string "GC -- started".

• The third call to the GC function causes the system to display
the new message text when the garbage collection starts.

91

PRINT-SIGNALED-ERROR Function

PRINT -SIGNALED-ERROR

Used by the VAX LISP error handler to display a formatted error
message when an error is signaled. The function prints all output to
the stream bound to the *ERROR-OUTPUT* variable. The error message
formats are described in Sections 3.2.1 to 3.2.3.

You can include a call to this function in an error handler that you
create (see Section 3.3.1).

Format

PRINT-SIGNALED-ERROR function-name
error-signaling-function &REST args

Arguments

function-name

The name of the function that is to call the
error-signaling function.

specified

error-signaling-function

args

The name of an error-signaling function.
are ERROR, CERROR, and WARN.

Valid function names

The specified error-signaling function's arguments.

Return Value

Undefined.

Example

Lisp> (DEFUN CONTINUING-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)

(IF (EQ ERROR-SIGNALING-FUNCTION 'CERROR)
(PROGN

(APPLY #'PRINT-SIGNALED-ERROR
FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS)

(FORMAT *ERROR-OUTPUT*
"-&It will be continued automatically.-2%.")

NIL)
(APPLY #'UNIVERSAL-ERROR-HANDLER

FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS»)

CONTINUING-ERROR-HANDLER

Defines an error handler that automatically continues from a
continuable error after displaying an error message. All other
errors are passed to the system's error handler.

92

PRINT-SLOT-NAMES-AS-KEYWORDS Variable

PRINT -SLOT -NAMES-AS-KEYWORDS

Determines how the slot names of a structure are formatted when they
are displayed. The value can be either T or NIL. If the value is T,
slot names are preceded with a colon (:). For example:

#S(SPACE :AREA 4 :COUNT 10)

If the value is NIL, slot names are not preceded with a colon. For
example:

#S(SPACE AREA 4 COUNT 10)

The default value is T.

Example

Lisp> (DEFSTRUCT HOUSE
ROOMS
FLOORS)

HOUSE
Lisp> (MAKE-HOUSE :ROOMS 8 :FLOORS 2)
#S(HOUSE :ROOMS 8 :FLOORS 2)
Lisp> (SETF *PRINT-SLOT-NAMES-AS-KEYWORDS* NIL)
NIL
Lisp> (MAKE-HOUSE :ROOMS 8 :FLOORS 2)
#S(HOUSE ROOMS 8 FLOORS 2)

• The call to the DEFSTRUCT macro defines a structure named
HOUSE.

• The first call to the constructor function MAKE-HOUSE creates
a structure named HOUSE. Colons are included in the output
because the value of the *PRINT-SLOT-NAMES-AS-KEYWORDS*
variable is T.

• The call to the SETF macro changes the value of the
PRINT-SLOT-NAMES-AS-KEYWORDS variable to NIL.

• The second call to the constructor function MAKE-HOUSE creates
a structure named HOUSE. Colons are not included in the
output because the value of the *PRINT-SLOT-NAMES-AS-KEYWORDS*
variable is NIL.

93

SET-TERMINAL-MODES Function

SET -TERMINAL-MODES

Sets the terminal characteristics of the stream bound to the
TERMINAL-IO variable when you invoke the LISP system. Changes to
the stream affect all streams attached to the terminal.

You must be careful when you change the settings of terminal modes. A
change to terminal modes affects all the streams that are open to the
terminal. If you put a stream into pass-all mode, for example, all
the streams open to the terminal are put into pass-all mode.

Format

NOTE

Create an error handler to prevent your
terminal from being placed in a
nonstandard state. See Section 3.3 for
information about how to create an error
handler.

SET-TERMINAL-MODES &KEY {keyword value}*

Argument

keyword value

Optional keyword-value pairs, which specify options that set the
terminal characteristics of the stream bound to the *TERMINAL-IO*
variable.

Table 11 lists the options that yo~ can specify.

Table 11
SET-TERMINAL-MODES Options

Keyword-Value Pair Description

:BROADCAST value

:ECHO value

94

Specifies whether the terminal
can receive broadcast messages
such as MAIL notifications and
REPLY messages. The value can
be either T or NIL. If you
specify T, the terminal can
receive messages; if you
specify NIL, the terminal cannot
receive messages.

Specifies whether the terminal
displays the input characters it
receives. The value can be
either T or NIL. If you specify
T, the terminal displays input
characters; if you specify NIL,
the terminal displays only data
output from the system or from a
user application program.

(Continued on next page)

SET-TERMINAL-MODES Function

Table 11 (Cont.)
SET-TERMINAL-MODES options

Keyword-Value Pair

:ESCAPE value

:HALF-DUPLEX value

:PASS-ALL value

:TYPE-AHEAD value

95

Description

Specifies whether ANSI standard
escape sequences transmitted
from the terminal are handled as
a single multiple-character
terminator. The value can be
either T or NIL. If you specify
T, the escape sequences are
handled as a single
multiple-character terminator.
The terminal driver checks the
escape sequences for syntax
before passing them to the
program. Foi more information
on escape sequences, see the
VAX/VMS I/O User's Guide (Volume
lie -

Specifies the terminal's
operating mode. The value can
be either T or NIL. If you
specify T, the terminal's
operating mode is half-duplex.
If you spec~fy NIL, the
operating mode is full-duplex.
For a description of terminal
operating modes, see the VAX/VMS
I/O User's Guide (Volume lie

Specifies whether the terminal
is in pass-all mode. The value
can be either T or NIL. If you
specify T, the system does not
expand tab characters to blanks,
fill carriage return or line
feed characters, recognize
control characters, or receive
broadcast messages. If you
specify NIL, the system passes
all data to an application
program as binary data.

Specifies whether the terminal
accepts input that is typed when
there is no outstanding read.
The value can be either T or
NIL. If you specify T, the
terminal accepts input even if
there is not outstanding read.
If you specify NIL, the terminal
is dedicated and accepts input
only when a program or the
system issues a read.

(Continued on next page)

SET-TERMINAL-MODES Function

Table 11 (Cont.)
SET-TERMINAL-MODES options

Keyword-Value Pair Description

:WRAP value Specifies whether the terminal
driver generates a carriage
return and a line feed when the
end of a line is reached. The
value can be either T or NIL.
If you specify T, the terminal
driver generates a carriage
return and a line feed when the
end of a line is reached. The
end of the line is determined by
the terminal width setting.

Return Value

Undefined

Example

Lisp> (DEFVAR *OLD-TERMINAL-STATE*)
OLD-TERMINAL-STATE
Lisp> (DEFUN PASS-ALL-HANDLER (FUNCTION ERROR &REST ARGS)

(LET «CURRENT-SETTINGS (GET-TERMINAL-MODES)))
(APPLY i'SET-TERMINAL-MODES *OLD-TERMINAL-STATE*)
(APPLY i'UNIVERSAL-ERROR-HANDLER FUNCTION ERROR ARGS)
(APPLY i'SET-TERMINAL-MODES CURRENT-SETTINGS)))

PASS-ALL-HANDLER
Lisp> (DEFUN UNUSUAL-INPUT NIL

(LET «*OLD-TERMINAL-STATE* (GET-TERMINAL-MODES»)
(*UNIVERSAL-ERROR-HANDLER* i'PASS-ALL-HANDLER»)

(UNWIND-PROTECT (PROGN
(SET-TERMINAL-MODES
: PASS-ALL

UNUSUAL-INPUT

T
: ECHO
NIL)

(G ET-I NPUT).)
(APPLY i'SET-TERMINAL-MODES

OLD-TERMINAL-STATE))))

• The call to the DEFVAR macro informs the LISP system that
OLD-TERMINAL-STATE is a special variable.

• The first call to the DEFUN macro defines an error handler
named PASS-ALL-HANDLER, which is used when the terminal is
placed in an unusual state. The handler assumes that the
normal terminal modes are stored as the value of the
OLD-TERMINAL-STATE variable.

• The second call to the DEFUN macro defines a function named
UNUSUAL-INPUT, which causes the function PASS-ALL-HANDLER to
be the error handler while the function GET-INPUT is being
executed. The GET-INPUT function is inside a call to the
UNWIND-PROTECT function so an error or throw puts the terminal
back in its original state.

96

SPAWN Function

SPAWN

Creates a subprocess for executing Command Language Interpreter (CLI)
commands. This function causes the LISP system to interrupt execution
of a LISP process and to optionally execute the specified CLI command.
If you specify the : PARALLEL keyword with a value of T, the LISP
process continues to execute while the subprocess is executing. If
you do not specify this keyword or if you specify it with NIL, the
LISP process is put into a hibernation state until the subprocess
completes its execution.

This function is equivalent
information on the SPAWN
User's Guide.

Format

to the DCL SPAWN command. For more
command, see the VAX/VMS Command Language

SPAWN &KEY {keyword value}*

Arguments

keyword value

Optional keyword-value pairs that specify options that modify the
spawn operation.

Table 12 lists the options that you can specify.

Return Value

Undefined

Keyword-Value pair

:COMMAND-STRING string

:DCL-SYMBOLS value

Table 12
SPAWN Options

97

Description

Specifies a DCL command the
specified subprocess is to
process. The value must be a
DCL command. By default, the
SPAWN function does not process
a command.

Specifies whether the spawned
subprocess is to acquire the
currently defined CLI symbols
from the LISP process. The
value can be either T or NIL.
If you specify T, the subprocess
acquires the CLI symbols. If
you specify NIL, the subprocess
does not acquire the eLI
symbols. The default value is
T.

(Continued on next page)

Keyword-Value Pair

:INPUT-FILE pathname

:LOGICAL-NAMES value

:OUTPUT-FILE pathname

:PARALLEL value

:PROCESS-NAME string

SPAWN Function

Table 12 (Cont.)
SPAWN options

98

Description

Specifies a pathname,
namestring, symbol, or stream
that names an input file
containing one or more DCL
commands to be associated with
the logical name SYS$INPUT and
to be executed by the spawned
subprocess. If you specify both
a command string and an input
file, the command string is
processed before the commands in
the input file. The subprocess
is terminated when processing is
complete.

Specifies whether the spawned
subprocess is to acquire the
currently defined logical names.
The value can be either T or
NIL. If you specify T, the
subprocess acquires the logical
names; if you specify NIL, the
subprocess does not acquire the
logical names. The default
value is T.

Specifies a pathname,
namestring, symbol, or stream
that names the output file to be
associated with the logical name
SYS$OUTPUT and to which the
results of the spawned
subprocess are to be written.

Specifies whether the execution
of the LISP system and the
created subprocess are to be
parallel. The value can be
either T or NIL. If you specify
T, the execution of the system
and the subprocess are parallel.
If you specify NIL, the LISP
system remains in a hibernation
state until the created
subprocess completes its
execution and exits. The
default value is NIL.

Spedifies the name of the
subprocess to be created. If
you omit this keyword, the
system generates a unique name.

SPAWN Function

Examples

1. Lisp> (SPAWN)
$

creates a uniquely named subprocess and attaches the terminal
to it. The commands typed at the terminal are directed to
the subprocess until the subprocess exits.

2. Lisp> (SPAWN :INPUT-FILE "START.COM"
:OUTPUT-FILE "START. LOG"
:PARALLEL T)

Lisp>

Creates a subprocess that will execute the contents of
START. COM.

99

SUSPEND Function

SUSPEND

Writes information about a LISP system to a file, making it possible
to resume the LISP system at a later time. The function does not stop
the current system, but copies the state of the LISP system when the
function is invoked to the specified file. When you reinvoke the LISP
system wfth the !RESUME qualifier and the file name that was specified
with the SUSPEND function, program execution continues from the point
where the SUSPEND function was called.

Only the static and dynamic portions of LISP memory are written to the
specified file. When you resume a suspended system, the read-only
sections of LISP memory are taken from LISP$SYSTEM:LISPSUS.SUS. You
must make sure that your original LISP system is in
LISP$SYSTEM:LISPSUS.SUSi if it is not, you will not be able to resume
the system.

When a suspended system is resumed, the LISP environment is identical
to the environment that existed when the suspend operation occurred
with the following exceptions:

• All streams except the standard streams are closed.

• The *DEFAULT-PATHNAME-DEFAULTS* variable is set to the current
directory.

• Call-out state might be lost (see Section 6.9).

• Some Editor state is changed (see the VAX LISP Editor Manual) •

Format

SUSPEND pathname

Argument

pathname

A pathname, nameptring, or symbol that represents the file name
to which the function' is to write the LISP system state.

Return Value

T when the LISP system is resumed at a later time and NIL when
execution continues after a resume operation.

Example

Lisp> (DEFUN PROGRAM-MAIN-LOOP NIL
(LOOP (PRINC "Enter number> ")

(SETF X (READ *STANDARD-INPUT*»
(FORMAT *STANDARD-OUTPUT*

II-%The square root of -F is -F. -%"
X
(SQRT X»»

PROGRAM-MAIN-LOOP
Lisp> (DEFUN DUMP-PROGRAM NIL

(SUSPEND "MYPROG.SUS")
(FRESH-LINE)
(PRINC "Welcome to my program!")
(TERPRI)
(PROGRAM-MAIN-LOOP»

DUMP-PROGRAM
Lisp> (DUMP-PROGRAM)

100

SUSPEND Function

Starting garbage collection due to GC function.
Finished garbage collection due to GC function.
Starting garbage collection due to SUSPEND function.

; Finished garbage collection due to SUSPEND function.
Welcome to my program
Enter number> 25
The square root of 25.~ is 5.~.
Enter number> 5
The square root of 5.0 is 2.236038.
Enter number>

(CTRL/C)

Lisp> (EXIT)
$ LISP/RESlJME=MYPROG.SUS
Welcome to my program
En ter number>

• The first call to the DEFUN macro defines a function named
PROGRAM-MAIN-LOOP.

• The second call to the DEFUN macro defines a function named
DUMP-PROGRAM.

• The call to the DUMP-PROGRAM function copies the current state
of the LISP environment to the file MYPROG.SUS. The LISP
system continues to run, displaying the message "Welcome to my
program" and then executes the PROGRAM-MAIN-LOOP function.

• The call to the EXIT function exits the LISP system.

• The LISP/RESUME=MYPROG.SUS specification
system, displays the message,
PROGRAM-MAIN-LOOP function.

·101

reinvokes the
and executes

LISP
the

THROW-TO-COMMAND-LEVEL Function

THROW-TO-COMMAND-LEVEL

Throws you to a command level.

Interactive LISP can have several command levels or levels of control.
The top-level loop is the highest command level. The break loop and
the debugger are nested command levels within the top-level loop.

If you are in the break loop or debugger, the LISP system can place
you in other nested loops. For example, if you are in a break loop,
you can invoke another break loop. Or, if you are in a break loop and
the system signals an error, the debugger is invoked and you are
placed -in a debug loop. While you are in the debug loop, you can
invoke another break loop, or if the system signals another error, you
can be placed in another debug loop. Each loop is a nested command
level. The n in the break loop and debugger prompts (Break n>, Debug
n» indicates the command level.

See COMMON LISP: The Language or Section 2.3 for information on using
command levels. For more information on the break loop and ~he
debugger, see Sections 4.3 and 4.4.

Format

THROW-TO-COMMAND-LEVEL level

Argument

level

The command level to be thrown to. The value of this argument
can be either an integer or a keyword. The keywords you can
specify and the position each keyword throws to are the
following:

: CURRENT
: PREVIOUS
:TOP

Current command level
Previous command level
Top level

NOTE

CTRL/C is bound to the form (THROW-TO-COMMAND-LEVEL
: TOP) •

Return Value

No value.

Example

Lisp> (FACTORIAL M)

Fatal error in function SYSTEM::%EVAL (signaled with ERROR).
Symbol has no value: M

Control Stack Debugger
Frame #3: (EVAL (FACTORIAL M»
Debug 1> (THROW-TO-COMMAND-LEVEL :TOP)
Lisp>

1~2

THROW-TO-COMMAND-LEVEL Function

o The debugger is invoked because an error was signaled when the
FACTORIAL function was called. The number 1 in the debugger
prompt indicates the command level after the error.

• The call to the THROW-TO-COMMAND-LEVEL function
control to the top-level loop.

103

returns

TOP-LEVEL-PROMPT Variable

TOP-LEVEL-PROMPT

Enables you to change the top-level prompt.
variable can be one of the following:

• A string

The value of this

• A function of no arguments that returns a string

• NIL

If you specify NIL, the default prompt (Lisp» is used.

Example

Lisp> (SETF *TOP-LEVEL-PROMPT* "TOP>")
"TOP> "
TOP>

Sets the value of the variable *TOP-LEVEL-PROMPT* to TOP>.

104

TRANSLATE-LOGICAL-NAME Function

TRANSLATE-LOGICAL-NAME

Searches a logical name table for a logical name, translates it, and
returns it as a I-element list. If the function does not find the
logical name during its first pass through the logical name table, it
changes the logical name to all uppercase characters and searches the
table again. As a result, the function is faster if you specify
logical names in uppercase characters.

The TRANSLATE-LOGICAL-NAME function performs only one level of
logical-name translation.

This function is equivalent to the DCL SHOW TRANSLATION command. For
additional information about the SHOW TRANSLATION command or about
using logical names, see the VAX/VMS Command Language User's Guide.

Format

TRANSLATE-LOGICAL-NAME string &KEY :TABLE keyword

Arguments

string

The logical name for which the function is to search.

keyword

A keyword whose value indicates the logical name table that the
function is to search. If you do not specify a table name, the
process, group, and system name tables are searched respectively.
The values you can specify with the :TABLE keyword are the
following:

: SYSTEM
:GROUP
:PROCESS
:ALL

Return Value

System name table
Group name tabl-e-­
Process name table
All three tables (default)

Returns the logical name as a I-element list if a match is found.
Returns NIL if a match is not found.

Example

Lisp> (DEFUN SHOW-WHERE-I-AM (&OPTIONAL
(STREAM *STANDARD-OUTPUT*»

(FORMAT STREAM
"-&Current host is -A -

-%Current device is -A -
-%Current directory is -A -%"

(CAR (TRANSLATE-LOGICAL-NAME "SYS$NODE"»
(CAR (TRANSLATE-LOGICAL-NAME "SYS$DISK"»
(CONCATENATE 'STRING

(VALUES))
SHOW-WHERE-I-AM
Lisp> (SHOW-WHERE-I-AM)
Current host is MIAMI::
Current device is DBAl:

" ["
(PATHNAME-DIRECTORY

(DEFAULT-DIRECTORY»
"] "))

105

TRANSLATE-LOGICAL-NAME Function

Current directory is [VAXLISP]
Lisp> (SETF (DEFAULT-DIRECTORY) "SYS$LIBRARY")
"SYS$LIBRARY"
Lisp> (SHOW-WHERE-I-AM)
Current host is MIAMI::
Current device is SYS$SYSROOT:
Current directory is [SYSLIB]

• The call to the
SHOW-WHERE-I-AM,
directory.

DEFUN macro defines a function named
which displays the current host, device, and

• The first call to the' function SHOW-WHERE-I-AM displays the
current host, device, and directory.

• The call to the SETF macro changes the directory to SYSLIB.

• The second call to the function SHOW-WHERE-I-AM includes the
new directory in the output it displays.

106

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ROOM Function (cant.)

Examples

1. Lisp> (ROOM)

Read-Only Storage
Static Storage
Dynamic-O Storage

Total Size: 4362, Current Allocation: 4113, Free: 6%
Total Size: 2176, Current Allocation: 2146, Free: 1%
Total Size: 3066, Current Allocation: 1292, Free: 68%

Displays a list of the current memory storage information.

2. Lisp> (ROOM T)

Read-Only Storage Total Size: 4362, Current Allocation: 4113, Free: 6%
(reserved) 0 Functions: 191 Arrays: 0 B-Vectors: 6
Strings: 381 U-Vectors: 3403 S Flo Vecs: 0 D Flo Vecs: 0
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 1 (reserved) 0
Sngl Flos: 1 Dbl Flos: 1 Long Flos: 1 Ratios: 0
Complexes: 0 Symbols: 0 Conses: 128 (reserved) 0
Ctrl Stack: 0 Bind Stack: 0

Static Storage Total Size: 2176, Current Allocation: 2146. Free: 1%
(reserved) 0 Functions: 322 Arrays: 1 B-Vectors: 81
Strings: 676 U-Vectors: 257 S Flo Vecs: 0 D Flo Vecs: 0
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 1 (reserved) 0
Sngl Flos: 2 Dbl Flos: 2 Long Flos: 0 Ratios: 0
Complexes: 0 Symbols: 360 Conses: 644 (reserved) 0
Ctrl Stack: 0 Bind Stack: 0

Dynamic-O Storage Total Size: 3065, Current Allocation: 1280, Free: 68%
(reserved) 0 Functions: 3 Arrays: 1 B-Vectors: 214
Strings: 264 U-Vectors: 12 S Flo Vecs: 1 D Flo Vecs: 0
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 3 (reserved) 0
Sngl Flos: 1 Dbl Flos: 1 Long Flos: 1 Ratios: 0
Complexes: 0 Symbols: 4 Conses: 666 (reserved) 0
Ctrl Stack: 129 Bind Stack: 36

Read-Only Storage Total Size: 4352, Current Allocation: 4113, Free: 6%

Displays a detailed list of the current memory storage
information.

Version 2 .. 2, July 1987 107

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ROOM-ALLOCATION Function

Returns multiple values indicating the number of bytes allocated in a
specified space and the total number of byt~s available in that space.
You can obtain space information for dynamic, static, and read-only
space. Unlike the ROOM function, the ROOM-ALLOCATION function does
not create garbage when used.

Format

ROOM-ALLOCATION &OPTIONAL space

Argument

space

One of:DYNAMIC, :STATIC, or : READ-ONLY.
:DYNAMIC.

Return Value

Multiple values:

The default is

1. A fixnum indicating the number of bytes currently allocated
in the specified space.

2. A fixnum indicating the total number of bytes (allocated and
free) available in the specified space.

Example

Lisp> (ROOM-ALLOCATION)
28672 ;
2038784
Lisp> (ROOM-ALLOCATION :STATIC)
2009088
2042880

Version 2.2, July 1987 108

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SET-TERMINAL-MODES Function

Sets the terminal characteristics of the stream bound to the
TERMINAL-IO variable when you invoke the LISP system. Changes to
the stream affect all streams attached to the terminal.

Be careful when you change the settings of terminal modes. A change
to terminal modes affects all the streams that are open to the
terminal. If you put a stream into pass-through mode, for example,
all the streams open to the terminal are put into pass-through mode.

NOTE

Create an error handle to prevent your terminal from
being placed in a nonstandard state. See Section 3.3
for information about how to create an error handler.

Format

SET-TERMINAL-MODES
&KEY :BROADCAST :ECHO :ESCAPE :HALF-DUPLEX

:PASS-ALL :TYPE-AHEAD :WRAP :PASS-THROUGH

Arguments

: BROADCAST

:ECHO

Specifies whether the terminal can receive broadcast messages
such as MAIL notifications and REPLY messages. The value can be
either T or NIL. If you specify T, the terminal can receive
messages; if you specify NIL, the terminal cannot receive
messages.

Specifies whether the terminal displays the input characters it
receives. The value can be either T or NIL. If you specify T,
the terminal displays input characters; if you specify NIL, the
terminal displays only data output from the system or from a user
application program.

: ESCAPE

Specifies whether ANSI standard escape sequences transmitted from
the terminal are handled as a single multicharacter terminator.
The value can be either T or NIL. If you specify T, the escape
sequences are handled as a single multicharacter terminator. The
terminal driver checks the escape sequences for syntax before
passing them to the program. For more information on escape
sequences, see the VAX/VMS I/O User's Reference Manual: Part I.

Version 2.2, July 1987 108.1

UNIVERSAL-ERROR-HANDLER Function

UNIVERSAL-ERROR-HANDLER

The function to which the VAX LISP system sends all errors that are
signaled during program execution. By default, this function is bound
to the VAX LISP *UNIVERSAL-ERROR-HANDLER* variable.

The VAX LISP error handler is described in Chapter 3.

Format

UNIVERSAL-ERROR-HANDLER function-name
error-signaling-function &REST args

Arguments

function-name

The name of the function that produced or signaled the error.

error-signaling-function

args

The name of an error-signaling function.
are ERROR, CERROR, and WARN.

Valid function names

The specified error-signaling function's arguments.

Return Value

Invokes the VAX LISP debugger, exits the LISP system, or returns
NIL.

Example

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)

(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION 'ERROR)
(EQ ERROR-SIGNALING-FUNCTION 'CERROR))

(FLASH-ALARM-LIGHT))
(APPLY #'UNIVERSAL-ERROR-HANDLER

FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS))

CRITICAL-ERROR-HANDLER

Defines an error handler that checks whether a fatal or
continuable error is signaled. If either type of error is
signaled, the handler flashes an alarm light and then passes the
error signal information to the universal error handler. For
information on how to create an error handler, see Section 3.3.

109

UNIVERSAL-ERROR-HANDLER Variable

UNIVERSAL-ERROR-HANDLER

Determines the function to be called when an error is signaled. By
default, this variable is bound to the VAX LISP error handler, the
UNIVERSAL-ERROR-HANDLER function. If you create an error handler you
must bind the *UNIVERSAL-ERROR-HANDLER* to it.

Example

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)

(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION 'ERROR)
(EQ ERROR-SIGNALING-FUNCTION 'CERROR»

(FLASH-ALARM-LIGHT»
(APPLY #'UNIVERSAL-ERROR-HANDLER

FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS))

CRITICAL-ERROR-HANDLER
Lisp> (LET ((*UNlVERSAL-ERROR-HANDLER*

#'CRITICAL-ERROR-HANDLER»
(PERFORM-CRITICAL-OPERATION»

• The call to the DEFUN macro defines an error handler named
CRITICAL-ERROR-HANDLER.

• The call to the LET special form binds the
UNIVERSAL-ERROR-HANDLER variable to the error handler named
CRITICAL-ERROR-HANDLER, while the PERFORM-CRITICAL-OPERATION
function is evaluated.

110

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SHORT-SITE-NAME Function

Translates the logical name LISP$SHORT_SITE_NAME.

Format

SHORT-SITE-NAME

Return Value

The translation of the logical name LISP$SHORT_SITE_NAME is
returned as a string. If the logical name is not defined, NIL is
returned.

Example

Lisp> (SHORT-SITE-NAME)
"Smith's Computer Company"

Version 2.2, July 1987 111

VAX LISP/VMS FUNCTION, MACRO,. AND VARIABLE DESCRIPTIONS

SOFTWARE-VERSION-NUMBER Function

Returns as multiple values the version number of the specified
software component.

Format

SOFTWARE-VERSION-NUMBER component

Argument

component

A .string indicating the software component. Possible values are
"VAX LISP", "VMS", and "UIS".

Return Value

Multiple values. For a software version number in the form x.y:

1. A fixnum designating x.

2. A fixnum designating y.

Example

Lisp> (SOFTWARE-VERSION-NUMBER "VAX LISP")
2 ;
2
Lisp>

Version 2.2, July 1987 112

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SOURCE-CODE Function

Returns a lambda-expression that is the source code for an interpreted
function.

Format

SOURCE-CODE function

Argument

function

An interpreted function or a symbol designating an interpreted
function.

Return Value

A lambda-expression.

Example

Lisp> (DEFUN F (X Y)
(* (+ X Y) (* X Y))

F
Lisp>(PPRINT (SYMBOL-FUNCTION 'F))
#<Interpreted Fun~tion

(LAMBDA (X Y) (BLOCK F (* (+ X Y) (* X Y»»
4980172>

Lisp>(SOURCE-CODE (SYMBOL-FUNCTION 'F»
(LAMBDA (X Y) (BLOCK F (* (+ X Y) (* X Y»»
Lisp>

Version 2.2, July 1987 112.1

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SPAWN Function

Creates a subprocess for executing Command Language Interpreter (CLI)
commands. This function causes the LISP system to interrupt execution
of a LISP process and to optionally execute the specified CLI command.
If you specify the : PARALLEL keyword with a value of T, the LISP
process continues to execute while the subprocess is executing. If
you do not specify this keyword or if you specify it with NIL, the
LISP process is put into a hibernation state until the subprocess
completes its execution.

This function is equivalent to the DCL SPAWN command. For more
information on the SPAWN command, see the VAX/VMS DeL Dictionary.

Format

SPAWN
&KEY :COMMAND-STRING :DCL-SYMBOLS :INPUT-FILE

:LOGICAL-NAMES :OUTPUT-FILE :PARALLEL
: PROCESS-NAME

Arguments

: COMMAND-STRING

A string that specifies a DCL command the specified subprocess is
to process. The value must be a DCL command. By default, the
SPAWN function does not process a command.

:DCL-SYMBOLS

Specifies whether the spawned subprocess is to acquire the
currently defined CLI symbols from the LISP process. The value
can be either T or NIL. If you specify T, the subprocess
acquires the CLI symbols. If you specify NIL, the subprocess
does not acquire the CLI symbols. The default value is T.

:INPUT-FILE

A pathname, namestririg, symbol, or stream that specifies an input
file containing one or more DCL commands to be associated with
the logical name SYS$INPUT and to be executed by the spawned
subprocess. If you specify both a command string and an input
file, the command string is processed before the commands in the
input file. The subprocess is terminated when processing is
complete.

Version 2.2, July 1987 112.2

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

STEP Macro

Invokes the VAX LISP stepper.

The STEP macro evaluates the form that is its argument and returns
what the form returns. In the process, you can interactively step
through the evaluation of the form. Entering a question mark (?) in
response to the stepper prompt displays helpful information. The
stepper is command oriented rather than expression oriented - do not
surround commands with parentheses. For further information on using
the VAX LISP stepper, see Chapter 5.

Format

STEP form

Argument

form

A form to be evaluated.

Return Value

The value returned by form.

Example

Lisp> (STEP (FACTORIAL 3))
: #9: (FACTORIAL 3)
Step >

Invokes the VAX LISP stepper for the function call (FACTORIAL 3).

Version 2.2, July 1987 115

I

I

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

·STEP-ENVIRONMENT* Variable

The *STEP-ENVIRONMENT* variable, a debugging tool, is
lexical environment ~n which *STEP-FORM* is being
default in the stepper, the lexical environment is used
EVALUATE command. See COMMON LISP: The Language for a
dynamic and lexical environment variables.

bound to the
evaluated. By
if you use the
description of

Some COMMON LISP functions (for example, EVALHOOK, APPLYHOOK, and
MACROEXPAND) take an optional environment argument. The value bound
to the *STEP-ENVIRONMENT* variable can be passed as an environment to
these functions to allow evaluaton of forms in the context of the
stepped form.

Example

Step>EVAL *STEP-FORM*
(FIBONACCI (- X 1))
Step> (EVALHOOK 'X NIL NIL NIL)
"Top level value of X"
Step> (EVALHOOK 'X NIL NIL *STEP-ENVIRONMENT*)
3

The use of the *STEP-ENVIRONMENT* variable in this call to the
EVALHOOK function causes the local value of X to be used in the
evaluation of the form (- X 1). See Chapter 5 for the full
stepper sessions from which this excerpt is taken.

Version 2.2, July 1987 116

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

*STEP-FORM * Variable

The *STEP-FORM* variable, a debugging tool, is bound to the form being
evaluated while stepping. For example, while executing the form

(STEP (FUNCTION-Z ARGl ARG2))

the value of *STEP-FORM* is the list (FUNCTION-Z ARG1 ARG2). When not
stepping, the value is undefined.

Example

step> STEP

· ·
: #39: X => 4
*35: => NIL
*34: (+ FIBONACCI (- X 1)) (FIBONACCI (- X 2))) · ·

Step> STEP
: : : :: : #38: (FIBONACCI (- X 1))
Step>EVAL *STEP-FORM*
(FIBONACCI (- X 1))

See Chapter 5 for the full stepper session from which this
excerpt is taken. In this case, the *STEP-FORM* variable is
bound to (FIBONACCI (- Xl)).

Version 2.2, July 1987 117

I

I

I

I

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SUSPEND Function

writes information about a LISP system to a file, making it possible
to resume the LIS~ system at a later time. The function does not stop
the current system, but copies the state of the LISP system when the
function is, invoked to the specified file. When you reinvoke the "LISP
system with the /RESUME qualifier and the file name that was specified
with the SUSPEND function, program execution continues from the point
where the SUSPEND function was called.

Only the static and dynamic portions of the LISP environment are
written to the specified file. When you resume a suspended system,
the read-only sections of the LISP environment are taken from
LISP$SYSTEM:LISPSUS.SUS. You must make sure that your original LISP
system is in LISP$SYSTEM:LISPSUS.SUSi if it is not, you will not be
able to resume the system.

When a suspended system is resumed, the LISP environment is identical
to the environment that existed when the suspend operation occurred,
with the following exceptions:

• All streams except the standard streams are closed.

• The *DEFAULT-PATHNAME-DEFAULTS* variable is set to the current
directory.

• Call-out state might be lost (see Chapter 2 of the VAX
LISP/VMS System Acess programming Guide).

• Any interrupt functions are uninstated (see Chapter 4 of the
VAX LISP/VMS System Access Programming Guide). They are not
automatically reinstated upon resuming.

• For all workstation-related functions that take an action
argument, the action is ~eset to the system default state. An
action that you have established is not automatically
reestablished upon resuming.

• Some Editor state is changed (see the VAX LISP Editor
programming Guide).

• On·a workstation, windows, displays, and display lists are
lost.

Format

SUSPEND pathname

Version 2.2, July 1987 118

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

Table 7 (cont.)

Keyword-Value Pair Description

(directly or
within one of
macros specified
keyword.

indirectly) from
the functions or

by the : DURING

Return Value

A list of the functions currently being traced.

Examples

1. Lisp> (TRACE FACTORIAL COUNT1 COUNT2)
(FACTORIAL COUNT1 COUNT2)

Enables the tracer for the functions FACTORIAL, COUNT1, and
COUNT2.

2. Lisp> (TRACE)
(FACTORIAL COUNT1 COUNT2)

Returns a list of the functions for which the tracer
enabled.

3. Lisp> (DEFUN REVERSE-COUNT (N)
(DECLARE (SPECIAL *GO-INTO-DEBUGGER*))
(IF (> N 3)

(SETQ *GO-INTO-DEBUGGER* T)
(SETQ *GO-INTO~DEBUGGER* NIL))

(COND ((= N 0) 0)
(T (PRINT N) (+ 1 (REVERSE-COUNT (- N 1))))))

Lisp> (SETQ *GO-INTO-DEBUGGER* NIL)
NIL
Lisp> (REVERSE-COUNT 3)
3
2
1
3
Lisp> (TRACE (REVERSE-COUNT :DEBUG-IF *GO-INTO-DEBUGGER*))
(REVERSE-COUNT)
Lisp> (REVERSE-COUNT 3)
#4: (REVERSE-COUNT 3)
3
. #16: (REVERSE-COUNT 2)
2
.. #28: (REVERSE-COUNT 1)

Version 2.2, July 1987 127

is

I

VAX LISP/VMS FUNCTION, MACRO,AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

1
.. #40: (REVERSE-COUNT 0)

• • . #40=> 0
· • #28=> 1
· #16=> 2
#4=> 3
3
Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)
4
· 116: (REVERSE-COUNT 3)
control Stack Debugger
Apply #17: (DEBUG)
Debug 1> CONTINUE
3
· • #28: (REVERSE-COUNT 2)
2

. #40: (REVERSE-COUNT 1)
1

. 152: (REVERSE-COUNT 0)

. 152=> 0
. #40=> 1
#28=> 2

· 116=> 3
#4=> 4
4
Lisp>

The recursive function REVERSE-COUNT is defined to count down
from the number it is given and to return that number after
the function is evaluated. If, however, the number given is
greater than 3 (set low to simplify the example), the global
variable *GO-INTO-DEBUGGER* (preset to NIL) is set to T.

The first time the REVERSE-COUNT function is traced using the
DEBUG-IF keyword, the argument is 3. The second time the
function is traced, the argument is over 3. This sets the
global variable *GO-INTO-DEBUGGER* to T, which causes the
debugger to be invoked during a trace of the REVERSE-COUNT
function. The debugger is invoked after the function's
argument is evaluated.

To reset the global variable *GO-INTO-DEBUGGER* to NIL, the
REVERSE-COUNT function must be completed. So, the evaluation
of the function was continued with the Debug command
CONTINUE.

4. Lisp> (TRACE (REVERSE-COUNT
:PRE-DEBUG-IF *GO-INTO-DEBUGGER*))

(REVERSE-COUNT)

Version 2.2, July 1987 128

VAX LISP/VMS FUNCTION,_ MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

Lisp> (REVERSE-COUNT 4)
.4: (REVERSE-COUNT 4)
4
· #16: (REVERSE-COUNT 3)
control Stack Debugger
Apply #17:
Debug 1>

The 4 argument to the REVERSE-COUNT function causes the
GO-INTO-DEBUGGER variable to be set to T, which in turn
causes the debugger to be invoked before the first recursive
call to the REVERSE-COUNT function.

5. Lisp> (TRACE (REVERSE-COUNT
:POST-DEBUG-IF *GO-INTO-DEBUGGER*))

(REVERSE-COUNT)
Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)
4
· #16: (REVERSE-COUNT 3)
3
· . #28: (REVERSE-COUNT 2)
2
· .. #40: (REVERSE-COUNT 1)
1

· "#52: (REVERSE-COUNT 0)
· #52=> 0

· . . #40=> 1
· . #28=> 2
· #16=> 3
#4=> 4
4
Lisp> (TRACE (REVERSE-COUNT

:POST-DEBUG-IF (NOT *GO-INTO-DEBUGGER*)))
(REVERSE-COUNT)
Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)
4
· #1~: (REVERSE-COUNT 3)
3
· . #28: (REVERSE-COUNT 2)
2
· .. #40: (REVERSE-COUNT 1)
1
· ... #52: (REVERSE-COUNT 0)
Control Stack Debugger
Apply #53: (DEBUG)
Debug 1> CONTINUE

· #52=> 0

Version 2.2, July 1987 129

I

I

I

I

I

I

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

6.

Control Stack Debugger
Apply #41: (DEBUG)
Debug 1> CONTINUE

#40=> 1
Control Stack Debugger
Apply #29: (DEBUG)
Debug 1> CONTINUE

. . #28=> 2
Control Stack Debugger
Apply #17: (DEBUG)
Debug 1> CONTINUE

. #16=> 3
Control Stack Debugger
Apply #5: (DEBUG)
Debug 1> CONTINUE

#4=> 4
4
Lisp>

Here, the first time the REVERSE-COUNT function is evaluated,
the debugger is not invoked despite the :POST-DEBUG-IF
keyword, because the keyword invokes the debugger only if its
condition is met after the function is evaluated. However,
after the function is evaluated, the *GO-INTO-DEBUGGER*
variable is reset back to NIL. If the form (SETQ
GO-INTO-DEBUGGER NIL) were removed from the definition of
the REVERSE-COUNT function, the variable would not have been
reset to NIL, and the debugger would have been invoked.

The second time the REVERSE-COUNT function is invoked, the
form (NOT *GO-INTO-DEBUGGER*) evaluates to T, since the value
of its argument is NIL. This gives the :POST-DEBUG-IF
keyword a T value, which in turn fulfills the condition of
invoking the debugger after the function is evaluated.

In this situation, the Debug CONTINUE command causes only one
evaluation. Here, the CONTINUE command must be repeated to
evaluate all the recursive calls. This example differs from
example 1, where the CONTINUE command did not have to be
repeated.

Lisp> (SETF *L* 5 *M* 6 *N* 7)
7
Lisp> (TRACE (* :PRINT (*L* *M* *N*J))
(*)
Lisp> (+ 2 3 *L* *M* *N*)

Version 2.2, July 1987 130

TRACE

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

Macro (cont.)

23
Lisp> (* 2 3 *L* *M* *N*)
#4: (* 2 3 5 6 7)
#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
#4=> 1260
#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
1260

The + function is not traced, but the * function is traced.
The values of the global variables *L*, *M*, and *N* are
displayed before and after the call to the * function is
evaluated.

7. Lisp> (TRACE (* :PRE-PRINT (*L* *M* *N*)))
(*)

8.

Lisp> (* 2 3 *L* *M* *N*)
#4: (* 2 3 5 6 7)
#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
#4=> 1260
1260

The values of the global variables *L*, *M*, and *N* are
displayed before the call to the * function is evaluated.

Lisp> (TRACE (* :POST-PRINT (*L* *M* *N*)))
(*)
Lisp> (* 2 3 *L* *M* *N*)
#4: (* 2 3 5 6 7)
#4=> 1260
#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
1260

The values of the global variables *L*, *M*, and *N* are
displayed after the call to the * function is evaluated.

9. Lisp> (TRACE +)
(+)
Lisp> (+ 2 3 (SQUARE 4) (SQRT 25))
#4: (+ 2 3 16 5.0)
#4=> 26.0
26.0
Lisp> (SETQ *STOP-TRACING* T)

Version 2.2, July 1987 131

I
I

I

I

I
I

I

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

T
Lisp> (TRACE (+ :SUPPRESS-IF *STOP-TRACING*»
(+)
Lisp> (+ 2 3 (SQUARE 4) (SQRT 25»
26.0

In the first example, the call to the + function is traced.
In the second example, the call to the + function is not
traced because of the form (+ :SUPPRESS-IF *STOP-TRACING*).

10. Lisp> (TRACE (FACTORIAL :STEP-IF T»
(FACTORIAL)
Lisp> (+ (FACTORIAL 2) 3)
#6: (FACTORIAL 2)
#10: (BLOCK FACTORIAL (IF «= N 1) 1

(* N (FACTORIAL (- N 1»»)
Step>
: #15: (IF «= N 1) 1 (* N (FACTORIAL (- N 1»»
step>
: : #20: «= N 1)
Step>

The call to the FACTORIAL function invokes the stepper.

11. Lisp> (TRACE (LIST-LENGTH :DURING PRINT-LENGTH»
(LIST-LENGTH)
Lisp> (PRINT-LENGTH '(CAT DOG PONY»
#13: (LIST-LENGTH (CAT DOG PONY»
#13=> 3

The length of (CAT DOG PONY) is 3.
NIL

The PRINT-LENGTH function has been defined to find the length
of its argument with the function LIST-LENGTH. The
LIST-LENGTH function is traced during the call to the
PRINT-LENGTH function.

12. Lisp> (DEFUN FIBONACCI (X)
(IF « x 3) 1

(+ (FIBONACCI (- X 1» (FIBONACCI (- X 2»»)
FIBONACCI

Lisp> (TRACE (FIBONACCI

(FIBONACCI)

Version 2.2, July 1987

:PRE-DEBUG-IF « (SECOND *TRACE-CALL*) 2)
:SUPPRESS-IF T»

132

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cant.)

Lisp> (FIBONACCI 5)
Control Stack Debugger
Apply 330: -(DEBUG)
Debug 1> DOWN
Eval 327: (FIBONACCI (- X 2))
Debug 1> DOWN
Eval 326: (+ (FIBONACCI (- X 1))

(FIBONACCI (- X 2)))
Debug 1> DOWN
Eval 325: (IF « X 3) 1

Debug 1> DOWN

(+ (FIBONACCI (- Xl))
(FIBONACCI (- X 2))))

Eval 324: (BLOCK FIBONACCI
(IF « X 3) 1

Debug 1>-DOWN

(+ (FIBONACCI (- Xl))
(FIBONACCI (- X 2)))))

I

I

Apply 322: (FIBONACCI 3) I
Debug 1> (CADR (DEBUG-CALL))
3
Debug 1> CONTINUE
Control Stack Debugger
Apply 322: (DEBUG) I
Debug 1> CONTINUE
5

• In this example, FIBONACCI is first defined.

• Then the TRACE macro is called for FIBONACCI. TRACE is
specified to invoke the debugger if the first argument to
FIBONACCI (the function call being traced) is less than 2.
Since the PRE-DEBUG-IF option is specified, the debugger
is invoked before the call to FIBONACCI. As the
:SUPPRESS-IF option has a value of T, calls to FIBONACCI
do not cause any trace output.

• The DOWN command moves the pointer down the control stack.

• The DEBUG-CALL function returns a list representing the
current debug frame function call. In this case, the CADR
of the list is 3. This accesses the first argument to the
function in the current stack frame.

• Finally the CONTINUE command continues the evaluation of

I

FIBONACCI. I

13. Lisp> (TRACE (FIBONACCI I
:POST-DEBUG-IF (> (FIRST *TRACE-VALUES*) 2)))

Version 2.2, July 1987 133

I

I

I
I

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

(FIBONACCI)
Lisp> (FIBONACCI 5)
#5: (FIBONACCI 5)
· #13: (FIBONACCI 4)

#21: (FIBONACCI 3)
· #29: (FIBONACCI 2)
· #29=> 1
· #29: (FIBONACCI 1)
· #29=> 1
#21=> 2

· . #21: (FIBONACCI 2)
#21=> 1

Control Stack Debugger
Apply #14: (DEBUG)
Debug 1> BACKTRACE
-- Backtrace start -­
Apply #14: (DEBUG)
Eval #11: (FIBONACCI (- Xl»
Eval #10: (+ (FIBONACCI (- Xl»

(FIBONACCI (- X 2»)
Eval #9: (IF « X 3) 1

(+ (FIBONACCI (- Xl»
(FIBONACCI (- X 2»»

Eval #8: (BLOCK FIBONACCI
(IF « X 3) 1

(+ (FIBONACCI (- Xl»
(FIBONACCI (- X 2»»)

Apply #6: (FIBONACCI 5)
Eval #3: (FIBONACCI 5)
Apply #1: (EVAL (FIBONACCI 5»
-- Backtrace end --
Apply #14: (DEBUG)
Debug 1> CONTINUE
· #13=> 3
· #13: (FIBONACCI 3)
· . #21: (FIBONACCI 2)
· . #21=> 1
· . #21: (FIBONACCI 1)
· . #21=> 1
· #13=> 2
Control Stack Debugger
Apply #6: (DEBUG}
Debug 1> CONTINUE
#5=> 5
5

TRACE is called for FIBONACCI (the same function as in the
previous example) to start the debugger if the value returned
exceeds 2. The value returned exceeds 2 twice once when
it returns 3 and at the end when it returns 5.

Version 2.2, July 1987 134

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

*TRACE-CALL * Variable

The *TRACE-CALL* variable, a debugging tool, is bound to the function
or macro call being traced.

Examples

1. Li sp> (TRACE (FIBONACCI I
:SUPPRESS-IF (> (SECOND *TRACE-CALL*) 1)))

This causes FIBONACCI to be traced only if its first argument I
is 1 or less.

2. Lisp> (TRACE (FIBONACCI I
:SUPPRESS-IF «= (LENGTH *TRACE-CALL*) 2)))

This causes FIBONACCI to be traced if it is called with more I
than 1 argument.

3. Lisp> (TRACE (FIBONACCI I

FIBONACCI

:PREDEBUG-IF « (SECOND *TRACE-CALL*) 2)
:SUPPRESS-IF « (SECOND *TRACE-CALL*) 2)))

In this case, the TRACE macro is enabled for FIBONACCI. The
debugger will be invoked and tracing suppressed if the first
argument,to FIBONACCI (the SECOND of the value of the
TRACE-CALL variable) is less than 2. So, for example, if
FIBONACCI is called with the arguments 3 and 5, *TRACE-CALL*
is bound to the form (FIBONACCI 3 5); as 3 is greater than 2,
the call is traced and the debugger not entered. See the
description of the TRACE macro for further examples of the
use of *TRACE-CALL*.

Version 2.2, July 1987 135

I

I

I

I

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE-VALUES Variable

The *TRACE-VALUES* variable, a debugging tool, is bound to the list of
values returned by the traced function. You can use the value bound
to this variable in the forms used with the trace option key~ords such
as :DEBUG-IF.

Example

Lisp> (FACTORIAL 4)
~4: (FACTORIAL 4)
· #11: (FACTORIAL 3)
· . #18: (FACTORIAL 2)

· #25: (FACTORIAL 1)
· #25=> 1
· #25=> *TRACE-VALUES* is (1)

· . #18=> 2
#18=> *TRACE-VALUES* is (2)

· #11=> 6
· #11=> *TRACE-VALUES* is (6)
~4=> 24
#4=> *TRACE-VALUES* is (24)
24

In this case, the values returned by the FACTORIAL function and
bound to the'*TRACE-VALUES* variable are displayed as (1), (2),
(6), and (24). Since the *TRACE-VALUES* variable is bound to the
list of values returned by a function, it can be used only in the
:POST- options to the TRACE macro. Before being bound to the
return values, it returns NIL. See the description of the TRACE
macro for further examples of the use of the *TRACE-VALUES*
variable.

Version 2.2, July 1987 136

INDEX

Page numbers in the Index in the form c-n (for example, 2-13) refer to
a page in Part I. Page numbers in the form n(for example, 25) refer
to a page in Part II.

?
debugger command

description, 5-13
(table), 5-10

stepper command
description, 5-26
(table), 5-25

-A-

Abbreviating output by lines,
6-25

Abbreviating output depth, 6-24
Abbreviating output length, 6-24
Abbreviating printed output, 6-23
Access control string, 7-10, 7-15
:ACCOUNT keyword

GET-PROCESS-INFORMATION
function, 65

:ACP-PID keyword
GET-DEVICE-INFORMATION function,

51
:ACP-TYPE keyword

GET-DEVICE-INFORMATION function,
51

"Activate Minor Style" Editor
command

using, 8-3
Active stack frame, 5-4
:ACTIVE-PAGE-TABLE-COUNT keyword

GET-PROCESS-INFORMATION
function, 65

Alien structure facility, 1-5
ALL debugger command modifier,

5-12
with BACKTRACE command, 5-17
with BOT~OM command, 5-15
with DOWN command, 5-15
with TOP command, 5-15
with UP command, 5-16

:ALL keyword
TRANSLATE-LOGICAL-NAME function,

137

:ALLOCATION keyword
MAKE-ARRAY function, 7-18, 86

:ALLOCATION-QUANTITY keyword
GET-FILE-INFORMATION function,

55
Alternatives

Editor prompt input, 3-9
files, 3-9

Anchored windows, 3-31
APROPOS function

debugging information, 5-1
description, 1
help, 1-8
(table), 7-30

"Apropos" Editor command, 3-13
using, 3-7

APROPOS-LIST function
debugging information, 5-1
description, 3
(table), 7-30

ARGUMENTS debugger command
modifier, 5-12

with SET command, 5-16
with SHOW command, 5-17

ARRAY-DIMENSION-LIMIT constant,
7-7

ARRAY-RANK-LIMIT constant, 7-7
ARRAY-TOTAL-SIZE-LIMIT constant,

7-7
Arrays, 7-7

constants, 7-7
creating, 86
specialized, 7-7, 86

Arrow keys
Editor usage, 3-17
specifying in BIND-COMMAND

function, 3-40
:AST-ACTIVEkeyword

GET-PROCESS-INFORMATION
function, 65

:AST-COUNT keyword
GET-PROCESS-INFORMATION

function, 65

Version 2.2, July 1987 Index-l

:AST-ENABLED keyword
GET-PROCESS-INFORMATION

function, 66
:AST-QUOTA keyword

GET-PROCESS-INFORMATION
function, 66

ATTACH function
description, 4

: AUTHORI Z ED'- PRIVI LEGES keywo rd
GET-PROCESS-INFORMATION

function, 66

-B-

BACKTRACE
debugger command

description, 5-17
(table), 5-10

stepper command
description, 5-27

- (table), 5-24
:BACKUP-DATE keyword

GET-FILE-INFORMATION function,
55

"Backward Character" Editor
command, 3-25

"EMACS" style binding, B-4
"Backward Word" Editor command

"EMACS" style binding, B-4
:BASE-PRIORITY keyword

GET-PROCESS-INFORMATION
function, 66

:BATCH keyword
GET-PROCESS-INFORMATION

function, 66
"Beginning of Buffer" Editor

command, 3-26
"EMACS" style binding, B-5

"Beginning of Line" Editor
command

"EMACS" style binding, B-4
"Beginning of Outermost Form"

Editor command, 3-27
"Beginning of Paragraph" Editor

command
"EMACS" style binding, B-4

"Beginning of Window" Editor
command

"EMACS" style binding, B-5
"Bind Command" Editor command,

3-46
specifying context, 3-40

INDEX

"Bind Command" Editor command
(Cont.)

specifying keys, 3-39
using, 3-39

BIND-COMMAND function
specifying context, 3-42
specifying keys, 3-40
using, 3-40

BIND-KEYBOARD-FUNCTION
and ED, 3-6

BIND-KEYBOARD-FUNCTION function
description, 6
garbage collector, 7-19
interrupt functions, 7-25
invoking the break loop, 5-5

Binding stack, 105
:BIO-BYTE-COUNT keyword

GET-PROCESS-INFORMATION
function, 66

:BIO-BYTE-QUOTA keyword
GET-PROCESS-INFORMATION

function, 7-23, 66
:BIO-COUNT keyword

GET-PROCESS-INFORMATION
function, 66

:BIO-OPERATIONS keyword
GET-PROCESS-INFORMATION

function, 66
:BIO-QUOTA keyword

GET-PROCESS-INFORMATION
function, 66

Bits attribute, 7-5
:BLOCK-SIZE keyword

GET-FILE-INFORMATION function,
55

BOTTOM debugger command
description, 5-15
(table), 5-10

BREAK function, 20
binding control character to, 6
debugging information, 5-1
description, 9
invoking the break loop, 5-5
(table),7-30

Break loop, 1-5, 5-4 to 5-7
exiting, 5-5, 9, 20
invoking, 5-5, 9
message, 5-5
prompt, 5-5
using, 5-6
variables, 5-7

Version 2.2, July 1987 Index-2

INDEX

BREAK-ON-WARNINGS variable,
5-14

defining an error handler, 4-6
WARN function, 144

:BROADCAST keyword
GET-TERMINAL-MODES function, 73
SET-TERMINAL-MODES function,

108.1
BROADCAST-STREAM data type, 8-6
BROADCAST-STREAM-P function, 8-6
:BUFFER-SIZE keyword

GET-DEVICE-INFORMATION function,
51

Buffers
Editor

see Editor buffers

-c-

CALL debugger command modifier,
5-12'

with SHOW command, 5-17
Call-out facility, 1-5
Cancel character, 10
CANCEL-CHARACTER-TAG tag

description, 10
"Capitalize Word" Editor command,

3-29
"EMACS" style binding, B-5

CERROR function, 142
defining an error handler, 4-7
error messages, 4-3

CHAR-BITS-LIMIT constant, 7-6
CHAR-CODE-LIMIT constant, 7-6
CHAR-FONT-LIMIT constant, 7-6.
CHAR-NAME-TABLE function, 7-6

description, 11
Characters, 7-5

attributes, 7-5
changing case with editor, 3-21
comparisons, 7-6
constants, 7-6
names, 11
nongraphic

Editor representation, 3-16
inserting with Editor, 3-16
specifying in "Bind Command",

3-39
Checkpoint file, 3-37
: CLEAR-INPUT,

I/O request specifier, 8-4

: CLEAR-OUTPUT
I/O request specifier, 8-4

:CLOSE
I/O request specifier, 8-4

"Close Outermost Form" Editor
command, 3-24

:CLUSTER-SIZE keyword
GET-DEVICE-INFORMATION function,

51
Code attribute, 7-5
Command Language Interpreter

(CLL) commands, 112.2
Command levels, 121

debugger, 5-8
stepper, 5-27
tracer, 5-34

Command modifiers
See Debugger

:COMMAND-STRING keyword
SPAWN function, 112.2

Commands
Editor

see Editor commands
Comments

LISP
Inserting with Editor, 3-16

COMMON LISP, 1-2
VAX LISP I/O extensions to, 8-1

COMPILE function, 1-4, 13, 140
compiler restrictions, 7-26
compiling functions and macros,

2-7
/COMPILE qualifier, 1-3

compiling files, 2-7
description, 2-13
modes, 2-13
optimizing compiler, 7-27
(table), 2-10
with /ERROR_ACTION qualifier,

2-14
with /INITIALIZE qualifier,

2-15
with /LIST qualifier, 2-17
with /MACHINE_CODE qualifier,

2-18
with /NOOUTPUT_FILE qualifier,

2-20
with /OPTIMIZE qualifier, 2-20
with /OUTPUT_FILE qualifier,

2-20
with /VERBOSE qualifier, 2-21
with /WARNINGS qualifier, 2-23

Version 2.2, July 1987 Index-3

COMPILE-FILE function, 1-4, 17,
18

compiler restrictions, 7-27
compiling files, 2-7
description, 14 to 16
(table), 7-30

COMPILE-VERBOSE variable
default for :VERBOSE keyword,

15
description, 17

COMPILE-WARNINGS variable
default for :WARNINGS keyword,

15
description, 18

COMPILEDP function
description, 13

Compiler, 1-4, 7-26 to 7-29
optimizations, 2-19, 7-27 to

7-29, 14
fast code, 7-28
safe code, 7-28

restrictions, 7-26
COMPILE function, 7-26
COMPILE-FILE function, 7-27

Completion
Editor prompt input, 3-8

files, 3-9
CONCATENATED-STREAM data type,

8-6
CONCATENATED-STREAM-P function,

8-6
Conditional new line directives,

6-8
Constructor function

allocating static space, 7-18
CONTINUE

DCL command, 1-11
debugger command

description, 5-14
(table), 5-10

function
description, 20
exiting the break loop, 5-5,

9
Control characters

binding to functions, 7-25, 6
Editor representation, 3-16
inserting with Editor, 3-16
returning information about

bindings, 7-26, 64
specifying in "Bind Command",

3-39

INDEX

Control characters (Cont.)
specifying in BIND-COMMAND

function, 3-40
(table), 2-4
unbinding from functions,

139
Control stack, 5-3

debugger, 5-7
overflow, 7-19
stack frame

See Stack frame

7-26
I '

storage allocation, 105
Controlling indentation, 6-13
Controlling margins, 6-4
Controlling where new lines begin,

6-11
CPU time

displaying, 122
garbage collector, 61
getting, 63

:CPU-LIMIT keyword
GET-PROCESS-INFORMATION

function, 66
:CPU-TIME keyword

GET-PROCESS-INFORMATION
function, 67

:CREATION-DATE keyword
GET-FILE-INFORMATION function,

55
CTRL/C

and CANCEL-CHARACTER-TAG, 10
prohibition in Editor key

binding, 3-43
recovering from an error, 2-4
to cancel Editor command, 3-7

CTRL/O, 2-4
CTRL/Q, 2-4

prohibition in Editor key
binding, 3-43

CTRL/R, 2-4
CTRL/S, 2-4

prohibition in Editor key
binding, 3-43

CTRL/T, 2-4
CTRL/U, 1-11, 2-4
CTRL/X, 2-4
CTRL/Y, 1-11, 2-4
Current direction

Editor, 3-17
:CURRENT keyword

THROW-TO-COMMAND-LEVEL function,
121

Version 2.2, July 1987 Index-4

INDEX

Current package, 92
Current stack frame, 5-7
:CURRENT~PRIORITY keyword

GET-PROCESS-INFORMATION
function, 67

: CURRENT-PRIVILEGES keyword
GET-PROCESS-INFORMATION

function, 67
:CYLINDERS keyword

GET-DEVICE-INFORMATION function,
51

-D-

Data
representation, 7-2 to 7-7
structure, 1-1

Data types
arrays, 7-7, 86

constants, 7-7
specialized, 7-7

characters, 7-5
attributes, 7-5
comparisons, 7-6
constants, 7-6
names, 11

floating-point numbers, 7-3
constants, 7-5

integers, 7-3
constants, 7-3

numbers, 7-2
package~ 3
packages, 1
pathnames, 37

See Pathnames
strings, 7-7, 86
vectors, 86

DCL commands
CONTINUE, 1-11
entering, 1-10
LISP, 1-3, 2-1
STOP, 1-11

:DCL-SYMBOLS keyword
SPAWN function, 112.2

DEBUG
function

debugging information, 5-1
description, 21
invoking the debugger, 5-8

stepper command
description, 5-26
(table), 5-24

DEBUG function
binding control character to, 6

:DEBUG keyword
See *ERROR-ACTION* variable

DEBUG-CALL
function, 5-18

description, 22
:DEBUG-IF keyword

TRACE macro, 5-36, 125
DEBUG-IO variable

debugger, 5-8
stepper, 5-20

DEBUG-PRINT-LENGTH variable
controlling output, 5-3
description, 23

DEBUG-PRINT-LEVEL variable
controlling output, 5-3
description, 24

Debugger, 1-5, 5-7 to 5-20
commands

arguments, 5-11
entering, 5-11

descriptions, 5-13 to 5-17
modifiers (table), 5-12
(table), 5-10

controlling output, 23, 24
error handler, 4-2 to 4-4
exiting, 5-9, 5-14
invoking, 5-8, 5-26, 5-36, 21,

125
prompt, 5-8
sample sessions, 5-18
using, 5-10

Debugging facilities, 1-5
See also Break loop, Debugger,

Stepper, Tracer, Editor
Debugging functions and macros

(table), 5-1
Declarations, 7-28
DECnet-VAX

network operations, 7-14
Default directory

changing, 25
DEFAULT-DIRECTORY function, 25

See also
DEFAULT-PATHNAME-DEFAULTS
variable

description, 25·
:DEFAULT-EXTENSION keyword

GET-FILE-INFORMATION function,
55

Version 2.2, July 1987 Index-5

INDEX

:DEFAULT-PAGE-FAULT-CLUSTER
keyword

GET-PROCESS-INFORMATION
function, 67

DEFAULT-PATHNAME-DEFAULTS
variable

default directory, 25
DIRECTORY function, 7-16, 37
filling file specification

components, 14
resuming a suspended system,

118
using, 7-16, 7-17

:DEFAULT-PRIVILEGES keyword
GET-PROCESS-INFORMATION

function, 67
DEFINE-ALlEN-STRUCTURE macro

allocating static space, 7-18
DEFINE-FORMAT-DIRECTIVE macro

description, 27
DEFINE-GENERALIZED-PRINT

-FUNCTION
macro, 6-21

DEFINE-GENERALIZED-PRINT­
FUNCTION macro

description, 30
DEFINE-LIST-PRINT- FUNCTION

macro, 6-19
DEFINE-LIST-PRINT-FUNCTION macro

description, 32
Defining list-print functions,

6-19
DEFMACRO macro

creating programs, 2-5
DEFUN macro

creating programs, 2-5
"Delete Current Buffer" Editor

command, 3-36
"EMACS" style binding, B-6
using, 3-34

DELETE key, 2-4
"Delete Named Buffer" Editor

command, 3-36
using, 3-34

"Delete Next Character" Editor
command

"EMACS" style binding, B-5
"Delete Next Word" Editor command

"EMACS" style binding, B-5
"Delete Previous Character"

Editor command
"EMACS" style binding, B-5

"Delete Previous Word" Editor
command

"EMACS" style binding, B-5
"Delete Whitespace" Editor

command
"EMACS" style binding, B-5

DELETE-PACKAGE
function

description, 34
DESCRIBE function

debugging information, 5-1
description, 35
help, 1-8
invoking from Editor, 3-8

using pointer, 3-49
(table), 7-30

"Describe Word" Editor command,
3-13

"Describe" Editor command, 3-13
using, 3-7

Device, 1-8
getting information, 51

:DEVICE keyword
pathname field, 7-10

:DEVICE-CHARACTERISTICS keyword
GET-DEVICE-INFORMATION function,

52
:DEVICE-CLASS keyword

GET-DEVICE-INFORMATION function,
52

:DEVICE-DEPENDENT-O keyword
GET-DEVICE-INFORMATION function,

52
:DEVICE-DEPENDENT-l keyword

GET-DEVICE-INFORMATION function,
52

:DEVICE-NAME keyword
GET-DEVICE-INFORMATION function,

52
:DEVICE-TYPE keyword

GET-DEVICE-INFORMATION function,
52

:DIO-COUNT keyword
GET-PROCESS-INFORMATION

function, 67
:DIO-OPERATIONS keyword

GET-PROCESS-INFORMATION
function, 67

:DIO-QUOTA keyword
GET-PROCESS-INFORMATION

function, 67

Version 2.2, July 1987 Index-6

INDEX

:DIRECTION keyword
OPEN function, 7-24

-1 directive, 6-6
-% directive, 6-11
-& directive, 6-11

• directive, 6-6
-:_ directive, 6-11
-@_ directive, 6-11
-A directive, 6-28
-_ directive, 6-6, 6-11
Directives for handling lists,

6-16
Directory, 1-8
DIRECTORY function

description, 37
pathnames, 7-16
(table), 7-30

:DIRECTORY keyword
pathname field, 7-10

DISPATCH-FUNCTION slot
STREAM structure, 8-2

DO-ALL-SYMBOLS macro, 1, 3
DO-SYMBOLS macro, 1, 3
Documentation string, 35
DOES-INPUT-P slot

STREAM structure, 8-2
DOES-OUTPUT-P slot

STREAM structure, 8-2
Double floating-point numbers,

7-3
DOUBLE-FLOAT-EPSILON constant,

7-5
DOUBLE-FLOAT-NEGATIVE-EPSILON

constant, 7 -5 '
DOWN

debugger command
description, 5-15
(table), 5-10

debugger command modifier, 5-12
with SEARCH command, 5-15

"Downcase Region" Editor command,
3-29

"Downcase Word" Editor command,
3-29

"EMACS" style binding, B-5
DRIBBLE function

debugging information, 5-2
description, 40
(table), 7-30

DRIBBLE-STREAM data type, 8-6
DRIBBLE-STREAM-P function, 8-6

:DURING keyword
TRACE macro, 5-37, 126

Dynamic memory, 2-18, 105, 118
garbage collector, 7-18, 7-19

-E-

:ECHO keyword
GET-TERMINAL-MODES function, 73
SET-TERMINAL-MODES function,

108.1
ECHO-STREAM data type, 8-6
ECHO-STREAM-INPUT-STREAM function,

8-6
ECHO-STREAM-OUTPUT-STREAM

function, 8-6
ECHO-STREAM-P function, 8-6
ED function

and BIND-KEYBOARD-FUNCTION, 3-6
binding control character to, 6
debugging information, 5-2
description, 41
resuming Editor with, 3-5
starting Editor with, 3-3
(table), 7-30

"Ed" Editor command, 3-36
"EMACS" style binding, B-6
using, 3-33

"Edit File" Editor command, 3-37
"EMACS" style binding, B-6
using, 3-33

Editing keys
specifying in BIND-COMMAND

function, 3-40
Editor, 1-4

checkpointing, 3-37
checkpointing file

file type, 1-10
copying text, 3-20, 3-21
creating programs, 2-5
cursor movement, 3-17

by LISP entities, 3-18
current direction, 3-17
moving by lines, 3-17
moving by words, 3-17
searching, 3-18
using pointer, 3-48

customizing, 3-38
debugging facility, 5-40
errors while using, 3-9
exiting, 3-11

Version 2.2, July 1987 Index-7

INDEX

Editor
exiting (Cont.)

by deleting VAXstation window,
3-47

getting help, 3-7
help window, 3-7

removing, 3-7
scrolling, 3-7

information area, 3-5
invoking, 3-3, 41
invoking with control character,

6
keyboard macros, 3-45
label strip, 3-4
loading files, 2-6
modifying function and macro

definitions, 2-7
moving text, 3-20

using pointer, 3-48
overview of operation, 3-3
pausing, 3-10

on VAXstation, 3-47
protection against work loss,

3-37
refreshing the screen, 3-9
repeating operations, 3-23
restoring deleted text, 3-20
resuming, 3-5
saving work, 3-10
searching, 3-18
substituting in text, 3-22
table of commands, C-2
text deletion, 3-19

by characters, 3-19
by lines, 3-20
by words, 3-19

text insertion, 3-14
typing LISP code, 3-15
undeleting text, 3-20
using on VAXstation, 3-46

editing with pointer, 3-47·
Editor buffers, 3-30

as context, 3-44
creating, 3-30

from within Editor, 3-33
current buffer, 3-30

changing, 3-31
deleting, 3-34
displaying more than two, 3-35
"General Prompting", C-14
information maintained by, 3-33

Editor buffers (Cont.)
inserting into other buffers,

3-23
listing, 3-31
moving text between, 3-36
moving to endpoints, 3-18
name conflicts, 3-34
saving contents, 3-34
selecting, 3-32

Editor commands, 3-6
binding keys to, 3-38

conflicts in "EMACS" style,
B-2

from LISP interpreter, 3-40
key binding shadowing, 3-44
multiple bindings, C-14
table of bindings, C-2
table of bindings by key,

C-14
within Editor, 3-39

buffer and window
summary, 3-36

cancelling, 3-7
capturing sequences of, 3-45
creating

with "Start Named Keyboard
Macro", 3-45

customizing
summary, 3-46

descriptions, C-2
editing

summary, 3-24
general-purpose

summary, 3-11
invoking with keys, 3-6
issuing, 3-6
repeating, 3-23
typing, 3-6

Editor context
buffer, 3-44
effect on key bindings, 3-44
effect on keyboard macro

execution, 3-46
global, 3-44
order of search, 3-45
specifying

in "Bind Command", 3-40
styles, 3-44

Editor styles, 3-44
as context, 3-44
major style, 3-44
minor style, 3-44

Version 2.2, July 1987 Index-8

INDEX

Editor styles (Cont.)
order of search, 3-45

Editor windows, 3-30
anchored windows, 3-31
changing size, 3-35,
creating, 3-30
current window, 3-30

changing, 3-31
changing with pointer, 3-48
indicated by pointer cursor,

3-47
floating windows, 3-33
noncurrent window

indicated by pointer cursor,
3-47

removing, 3-32
with pointer, 3-48

scrolling text in, 3-18
splitting, 3-35

"EDT Append" Editor command, 3-28
"EDT Back to start of Line"

Editor command, 3-26
"EDT Beginning of Line" Editor

command, 3-26
"EDT Change Case" Editor command,

3-29
"EDT Cut" Editor command, 3-28
"EDT Delete Char'acter" Edi tor

command, 3-27
"EDT Delete Line" Editor command,

3-27
"EDT Delete Previous Character"

Editor command, 3-27
"EDT Delete Previous Line" Editor

command, 3-28
"EDT Delete Previous Word" Editor

command, 3-27
"EDT Delete to End of Line"

Editor command, 3-28
"EDT Delete Word" Editor command,

3-27
"EDT Emulation" Editor style,

3-44
"EDT End of Line" Editor command,

3-26
"EDT Move Character" Editor

command, 3-25
"EDT Move Page" Editor command,

3-26
"EDT Move Word" Editor command,

3-25
"EDT Paste" Editor command, 3-28

"EDT Query Search" Editor command,
3-26

"EDT Replace" Editor command,
3-29

"EDT Scroll Window" Editor
command, 3-26

"EDT Search Again" Editor command,
3-27

"EDT Set Direction Backward"
Editor command, 3-25

"EDT Set Direction Forward"
Editor command, 3-25

"EDT Special Insert" Editor
command, 3-25

"EDT Substitute" Editor command,
3-29

"EDT undelete Character" Editor
command, 3-28

"EDT Undelete Line" Editor
command, 3-28

"EDT Undelete Word" Editor
command, 3-28

: ELEMENT-TYPE
I/O request specifier, 8-4

:ELEMENT-TYPE keyword
OPEN function, 7-23, 7-24

"EMACS Backward Search" Editor
command

"EMACS" style binding, B-5
"EMACS Forward Search" Editor

command
"EMACS" style binding, B-5

"EMACS" Editor style, B-1
activating, B-3

as major style, B-4
as minor style, B-3

key binding conflicts, B-2
key bindings, B-4

Enabling pretty printing, 6-3
"End Keyboard Macro" Editor

command, 3-46
"End of Buffer" Editor command,

3-26
"EMACS" style binding, B-5

"End of Line" Editor command
"EMACS" style binding, B-4

"End of Outermost Form" Editor
command, 3-27

"End of Paragraph" Editor command
"EMA~S" style binding, B-4

"End of Window" Editor command
"EMACS" style binding, B-5

Version 2.2, July 1987 Index-9

INDEX

End-of-file operations, 7-22
:END-OF-FILE-BLOCK keyword

GET-FILE-INFORMATION function,
56

END-OF-FILE-BLOCK keyword
GET-FILE-INFORMATION function,

7-23
ENLARGE-BI~DING-STACK function

description, 42.1
ENLARGE-CONTROL-STACK function

description, 42.2
:ENQUEUE-COUNT keyword

GET-PROCESS-INFORMATION
function, 67

:ENQUEUE-QUOTA keyword
GET-~ROCESS-INFORMATION

function, 67
EQ function, 7-3
EQUAL function, 7-13
ERROR

debugger command
description, 5-16
(table), 5-10

function, 142
defining an error handler,

4-7
error messages, 4-2

Error
listing

file type, 1-10
messages

compiler, 18
debugger, 5-16
error handler, 100
error-handler definition, 4-6
format, 4-2
warnings, 2-23, 18

types, 4-2 to 4-5
continuable, 4-3
fatal, 4-2
warning, 4-4, 144

Error handler, 1-4, 43
binding *UNIVERSAL-ERROR-

HANDLER* variable, 4-7
creating, 143
debugging information, 5-1
defining, 4-5
description, 4-1
error message, 100
invoking, 144
UNIVERSAL-ERROR-HANDLER

function, 142

:ERROR keyword
EXIT function, 44

Error messages
Editor, 3-9

ERROR-ACTION variable, 43
See also /ERROR_ACTION

qualifier
continuable error, 4-3
defining an error handler, 4-6
description, 43
fatal error, 4-3
WARN function, 144
warning, 4-4

:ERROR-COUNT keyword
GET-DEVICE-INFORMATION function,

52
ERROR-OUTPUT variable

PRINT-SIGNALED-ERROR function,
100

Error-signaling functions, 142
(table), 4-7

/ERROR_ACTION qualifier, 2-14
See also *ERROR-ACTION*

variable
description, 2-14
fatal error, 4-3
modes, 2-13
(table), 2-10
with /INITIALIZE qualifier,

2-15
Errors

Editor protection against file
loss, 3-37

while using Editor, 3-9
ESCAPE character

transmitting, 3-43
:ESCAPE keyword

GET-TERMINAL-MODES function, 73
SET-TERMINAL-MODES function,

108.1
EVAL function, 1-1
EVALUATE

debugger command
description, 5-13
(table), 5-10

stepper command
description, 5-26
(table), 5-24

"Evaluate LISP Region" Editor
command, 3-12

Version 2.2, July 1987 Index-l0

INDEX

:EVENT-FLAG-WAIT-MASK keyword
GET-PROCESS-INFORMATION

function, 67
"Exchange Point and Select Mark"

Editor command
"EMACS" style binding, B-5

"Execute Keyboard Macro" Editor
command, 3-46

"EMACS" style binding, B-6
"Execute Named Command" Editor

command, 3-11
"EMACS" style binding, B-6

EXIT function
description, 44
exiting LISP, 2-2

:EXIT-keyword
See *ERROR-ACTION* variable

"Exit Recursive Edit" Editor
command, 3-29

"EMACS" style 'binding, B-6
"Exit" Editor command

using, 3-11, 3-34
:EXPIRATION-DATE keyword

GET-FILE-INFORMATION function,
56

Extended attribute block (XAB) ,
55

Extensions to the FORMAT function,
6-5 to 6-17

-F-

Fast-loading file, 2-8, 2-13
file type, 1-10
loading, 81
locating, 81
producing, 14, 15

File
comp;i.1ing, 2-7
getting information, 55
loading, 2-6
name, 1-9

representation, 7-9
organization, 7-23
specification

See also Pathnames,
Namestrings

components, 1-8 to 1-9
defaults (table), 1-10
format, 1-8

type, 1-9
version number 1-9

File access block (FAB), 55
File name representation

See File
FILE-LENGTH function, 7-23
FILE-POSITION function, 7-24
FILE-STREAM data type, 8-6
FILE-STREAM-P function, 8-6
Files

creating
from Editor, 3-10

editing with Editor, 3-4
saving edited version, 3-10

Editor checkpoint file, 3-37
Editor input completion, 3-9
Editor protection against loss,

3-37
inserting in Editor buffer,

3-23
-IFILL directive, 6-6
FINISH stepper command

description, 5-27
(table), 5-25

:FINISH-OUTPUT
I/O request specifier, 8-4

:FIRST-FREE-BYTE keyword
GET-FILE-INFORMATION function,

7 - 23, - 56
:FIRST-FREE-PO-PAGE keyword

GET-PROCESS-INFORMATION
function, 67

:FIRST-FREE-Pl-PAGE keyword
GET-PROCESS-INFORMATION

function, 67
:FIXED-CONTROL-SIZE keyword

GET-FILE-INFORMATION function,
56

Floating windows, 3-33
Floating-point ,numbers, 7-3

constants (table), 7-5
(table), 7-4

Font attribute, 7-5
: FORCE-OUTPUT

I/O request specifier, 8-4
FORMAT

function, 6-5 to 6-17
FORMAT directives

user defined, 6-18
FORMAT directives in VAX LISP,

6-6
Format Directives Provided with

VAX LISP, 45

Version 2.2, July 1987 Index-ll

INDEX

FORMAT function
break-loop messages, 9
error messages, 4-7
warning messages, 144

"Forward Character" Editor
command, 3-25

"EMACS" style binding, B-4
"Forward Word" Editor command

"EMACS" style binding, B-4
:FREE-BLOCKS keyword

GET-DEVICE-INFORMATION function,
52

Fresh line directive, 6-11
: FRESH-LINE.

I/O request specifier, 8-4
Function

compiled, 13
compiling, 2-7
defining, 2-5
definition

editing, 140
pretty printing, 90

implementation-dependent
(table), 7-30

interpreted, 13
interrupt, 7-19, 7-25

garbage collector, 7-25
suspended systems, 7-26

keyboard
creating, 6

modifying, 2-7
FUNCTION debugger command

modifier, 5-12
with SET command, 5-16
with SHOW command, 5-17

Function keys
specifying

in "Bind Command", 3-39
specifying in BIND-COMMAND

function, 3-40
:FUNCTION keyword

ED function, 42
Functions

editing definition, 3-3
moving back to LISP, 3-10

evaluating
in Editor, 3-10

-G-

Garbage collector, 7-17 to 7-19
available space, 7-19

Garbage collector (Cont.)
changing messages, 7-19
control stack overflow, 7-19
CPU time, 61
displaying time, 122
dynamic memory, 7-18, 7-19
elapsed time, 59
failure, 7-19
frequency of use, 7-18
interrupt functions, 7-19, 7-25
invoking, 48
message, 95

See also *POST-GC-MESSAGE*
variable

messages, 49, 89
See also *PRE-GC-MESSAGE*

variable, *POST-GC
-MESSAGE* variable

run-time efficiency, 7-18
static memory, 7-18, 86
suspended systems, 2-24

GC function
description, 48

GC-VERBOSE variable
changing garbage collector

messages, 7-19
description, 49

"General Prompting" Editor buffer,
C-14

Generalized print functions, 6-21
GENERALIZED-PRINT-FUNCTION­

ENABLED-P
function, 6-21

GENERALIZED-PRINT-FUNCTION­
ENABLED-P function

description, 50
GET-DEVICE-INFORMATION function

description, 51 to 54
keywords (table), 51 to 54

GET-FILE-INFORMATION function
description, 55 to 58
keywords (table), 55
number of bytes in a file, 7-23

GET-GC-REAL-TIME function
description, 59

GET-GC-RUN-TIME function
description, 61

GET-INTERNAL-RUN-TIME function
description, 63
(table), 7-30

GET-KEYBOARD-FUNCTION function, 6
description, 64

Version 2.2, July 1987 Index-12

INDEX

GET-KEYBOARD-FUNCTION function
(Cont.)

returning information about key
bindings, 7.-26

GET-PROCESS-INFORMATION function
description, 65 to 72
keywords (table), 65 to 71
record length, 7-23

GET-TERMINAL-MODES function
description, 73 to 75
keywords (table), 73

GET-VMS-MESSAGE function
description, 76

Global
definitions, 5-7
variables, 5-7

:GLOBAL-PAGES keyword
GET-PROCESS-INFORMATION

function, 68
GOTO debugger command

description, 5-15
(table), 5-10

Graphics interface, 1-6
:GROUP keyword

GET-FILE-INFORMATION function,
56

GET-PROCESS-INFORMATION
function, 68

TRANSLATE-LOGICAL-NAME function,
137

"Grow Window" Editor command,
3-37

"EMACS" style binding, B-6
using, 3-35

-H-

:HALF-DUPLEX keyword
GET-TERMINAL-MODES function, 74
SET-TERMINAL-MODES function,

109
Handling lists, 6-16
Hash table

comparing keys, 80
initial size, 79
rehash size, 77
rehash threshold, 78

HASH-TABLE-REHASH-SIZE function
description, 77

HASH-TABLE-REHASH-THRESHOLD
function

description, 78

HASH-TABLE-SIZE function
description, 79

HASH-TABLE-TEST function
description, 80

HELP
debugger command

description, 5-13
(table), 5-10

stepper command
description, 5-26
(table), 5-25'

Help
Editor, 3-7

Help facilities
DCL, 1-7
debugger, 5-13
LISP, 1-8
stepper, 5-26

"Help on Editor Error" Editor
command, 3-13

"Help" Editor command, 3-12
HERE debugger command modifier,

5-12
with BACKTRACE command, 5-17
with SHOW command, 5-17

Hibernation state, 112.2
:HOST keyword

pathname field, 7-10

-I-

-I directive, 6-6
I/O request specifiers, 8-3

table, 8-4
:IF-DOES-NOT-EXIST keyword

LOAD function, 81
OPEN function, 7-24

:IF-EXISTS keyword
OPEN function, 7-24

If-needed new line directive,
6-11

:IMAGE-NAME keyword
GET-PROCESS-INFORMATION

function, 68
:IMAGE-PRIVILEGES keyword

GET-PROCESS-INFORMATION
function, 68

:IMMEDIATE-OUTPUT-P
I/O request specifier, 8-4

IMMEDIATE-OUTPUT-P function
description, 8-7

Implementation notes, 7-1 to 7-31

Version 2.2, July 1987 Index-13

INDEX

Improperly formed argument lists,
6-28

"Indent LISP Line" Editor command,
3-24

"Indent Outermost Form" Editor
command, 3-24

Indentation, 6-13
preserving, 6-9

Information area, 3-5
pointer cursor in, 3-48

/INITIALIZE qualifier
description, 2-15
modes, 2-13
(table), 2-11
with /COMPILE qualifier, 2-14
with /RESUME qualifier, 2-21
with /VERBOSE qualifier, 2-21

:INPUT-FILE keyword
SPAWN function, 112.2

Input/Output, 7-20 to 7-25
end-of-file operations, 7-22
file organization, 7-23
FILE-LENGTH function, 7-23
FILE-POSITION function, 7-24
functions, 7-23, 7-24
#\NEWLINE character, 7-20
record length, 7-22
terminal input, 7-21
WRITE-CHAR function, 7-25

"Insert Buffer" Editor command,
3-25, 3-37

using, 3-23, 3-36
"Insert Close Paren and Match"

Editor command, 3-24
"Insert File" Editor command,

3-25
"EMACS" style binding, 8-5
using, 3-23

Insignificant stack frame, 5-4
Integers, 7-3

constants, 7-3
/INTERACTIVE qualifier, 1-3

description, 2-16
modes, 2-13
(table), 2-11

INTERNAL-TIME-UNITS-PER-SECOND
constant, 59, 61, 63

Interpreted function definition
restoring, 140

Interpreter, 1-3
creating programs, 2-5

Interrupt function facility, 1-6

Interrupt functions, 7-19, 7-25
garbage collector, 7-25
suspended systems, 7-26
terminal input, 7-21

Interrupt levels
keyboard functions, 6

-J-

:JOB-SUBPROCESS-COUNT keyword
GET-PROCESS-INFORMATION

function, 68

-K-

Keyboard functions
creating, 6
interrupt level, 6

specifying, 7
passing arguments to, 7

Keyboard macros, 3-45
named, 3-45

Keypad
numeric

see Numeric keypad
Keys

binding to commands, 3-38
binding to Editor commands

conflicts in "EMACS" style,
B-2

from LISP interpreter, 3-40
key binding shadowing, 3-44
multiple bindings, C-14
selecting key or sequence,

3-43
specifying in "Bind Command",

3-39
specifying in BIND-COMMAND

function, 3-40
table of bindings, C-14
table of bindings by command,

C-2
within Editor, 3-39

function
see Function keys

"Kill Line" Editor command
"EMACS" style binding, B-5

"Kill Paragraph" Editor command
"EMACS" style binding, B-5

"Kill Region" Editor command
"EMACS" style binding, B-5

Version 2.2, July 1987 Index-14

INDEX

-L-

Label strip, 3-4
LEAST-NEGATIVE-DOUBLE-FLOAT

constant, 7-5
LEAST-NEGATIVE-LONG-FLOAT

constant, 7-5
LEAST-NEGATIVE-SHORT-FLOAT

constant, 7-5
LEAST-NEGATIVE-SINGLE-FLOAT

constant, 7-5
LEAST-POSITIVE-DOUBLE-FLOAT

constant, 7-5
LEAST-POSITIVE-LONG-FLOAT

constant, 7-5
LEAST-POSITIVE-SHORT-FLOAT

constant, 7-5
LEAST-POSITIVE-SINGLE-FLOAT

constant, 7-5
:LEVEL keyword

BIND-KEYBOARD-FUNCTION function,
6

Lexical environment
compiler restrictions, 7-26

Limiting output by lines, 6-4,
6-25

"Line to TOp of Window" Editor
command

"EMACS" style binding, B-5
:LINE-POSITION

I/O request specifier, 8-4
LINE-POSITION function

description, 8-7
-/LINEAR/ directive, 6-6
:LINES keyword

WRITE and WRITE-TO-STRING, 6-3
LISP

command, 1-3, 2-1
qualifier descriptions, 2-10

to 2-23
qualifier modes (table), 2-12
qualifiers (table), 2-10

exiting, 2-2, 44
implementation notes, 7-1 to

7-31
input/output

See Input/Output
invoking, 2-1
processing during garbage

collection, 7-19
program, 1-1

compiling, 2--:/

LISP
program (Cont.)

creating, 2-5
loading

See File
programming language, 1-1
prompt, 2-1
storage allocation, 1-1

See also Memory
LISP code

indenting with Editor, 3-15
typing and formatting with

Editor, 3-15
"List Buffers" Editor command,

3-36
"EMACS" style binding, B-6
using, 3-31

"List Key Bindings" Editor
command, 3-11

using, 3-7
/LIST qualifier

description, 2-17
modes, 2-13
(table), 2-11
with /COMPILE qualifier, 2-14

List-print functions, 6-19
:LISTEN2

I/O request specifier, 8-4
LISTEN2 function

description, 8-8
Listing file, 2-17

producing, 14
:LISTING keyword

COMPILE-FILE function, 14
LOAD function, 2-6, 2-15

description, 81
(table), 7 - 3 0

LOAD-VERBOSE variable
load message, 81

:LOCAL-EVENT-FLAGS keyword
GET-PROCESS-INFORMATION

function, 68
Logical block, 6-5
Logical name table, 137
Logical names, 1-10, 137

translating, 83, 84
:LOGICAL-NAMES keyword

SPAWN function, 113
:LOGICAL-VOLUME-NAME keyword

GET-DEVICE-INFORMATION function,
52

Version 2.2, July 1987 Index-15

INDEX

:LOGIN-TIME keyword
GET-PROCESS-INFORMATION

function, 68
Long floating-point numbers, 7-3
LONG-FLOAT-EPSILON constant, 7-5
LONG-FLOAT-NEGATIVE-EPSILON

constant, 7-5
LONG-SITE-NAME function

description, 83
(table), 7-30

:LONGEST-RECORD-LENGTH keyword
GET-FILE-INFORMATION function,

56

-M-

:MACHINE-CODE keyword
COMPILE-FILE function, 14

Machine-code listing, 2-18
MACHINE-INSTANCE function

description, 84
(table), 7-30

MACHINE-VERSION function
description, 85
(table), 7-30

/MACHINE_CODE qualifier, 2-18
modes, 2-13
(table), 2-11
with /COMPILE qualifier, 2-14

Macro
compiling, 2-7
defining, 2-5
implementation-dependent

(table), 7-30
modifying, 2-7

Major style, 3-44
default, B-4
establishing default, B-4

MAKE;...ARRAY function
allocating static space, 7-18
description, 86
(table), 7-30

MAKE-HASH-TABLE function, 77 to
80

MAKE-PATHNAME function
constructing pathnames, 7-12
creating pathnames, 7-11
setting pathnames, 7-13

:MAX-BLOCKS keyword
GET-DEVICE-INFORMATION function,

52

:MAX-FILES keyword
GET-DEVICE-INFORMATION function,

52
:MAX-RECORD-SIZE keyword

GET-FILE-INFORMATION function,
56

:MEMBER keyword
GET-FILE-INFORMATION function,

56
GET-PROCESS-INFORMATION

function, 68
Memory, 105

control stack, 5-3
dynamic, 2-18, 105, 118

garbage collector, 7-18, 7-19
read-only, 2-18, 105, 118
static, 2-18, 86, 105, 118

garbage collector, 7-18
/MEMORY qualifier

description, 2-18
garbage collector~ 7-18
modes, 2-13
(table), 2-11

Minor style, 3-44
activating

from Editor, B-3
from LISP interpreter, B-3

activation, 3-44
default, B-3
determining most recently

activated, C-14
Miser mode, 6-5, 6-26, 97
Miser-mode new line directive,

6-11
:MISER-WIDTH keyword

WRITE and WRITE-TO-STRING, 6-3
Modifiers

See Debugger
Module, 103
MODULE-DIRECTORY variable, 103

description, 88
Modules, 88
MOST-NEGATIVE-DOUBLE-FLOAT

constant, 7-5
MOST-NEGATIVE-FIXNUM constant,

7-3
MOST-NEGATIVE-LONG-FLOAT constant,

7-5
MOST-NEGATIVE-SHORT-FLOAT

constant, 7-5
MOST-NEGATIVE-SINGLE-FLOAT

constant, 7-5

Version 2.2, July 1987 Index-16

INDEX

MOST-POSITIVE-DOUBLE-FLOAT
constant, 7-5

MOST-POSITIVE-FIXNUM constant,
7-3

MOST-POSITIVE-LONG-FLOAT constant,
7-5

MOST-POSITIVE-SHORT-FLOAT
constant, 7-5

MOST-POSITIVE-SINGLE-FLOAT
constant, 7-5

:MOUNT-COUNT keyword
GET-DEVICE-INFORMATION function,

52
:MOUNTED-VOLUMES keyword

GET-PROCESS-INFORMATION
function, 68

"Move to LISP Comment" Editor
command, 3-24

Multiline mode, 6-8
Multiline mode new line directive,

6-11

-N-

-n,m/TABULAR/ directive, 6-6
-n/FILL/ directive, 6-6, 6-16
-n/LINEAR/ directive, 6-6, 6-16
-n/TABULAR/ directive, 6-17
:NAME keyword

pathname field, 7-11
NAMESTRING function

creating namestrings, 7-14
Namestrings, 7-8, 7-10, 7-14

See also File
creating, 7-14

New lines, 6-11
"New LISP Line" Editor command,

3-24
using, 3-15

:NEWEST keyword
See :VERSION keyword

#\NEWLINE character
description, 7-20

"Next Form" Editor command, 3-27
"Next Line" Editor command, 3-25

"EMACS" style binding, B-4
"Next Paragraph" Editor command

"EMACS" style binding, 8-4
"Next Screen" Editor command,

3-26
"EMACS" style binding, B-4

"Next Window" Editor command,
3-12

"EMACS" style binding, B-6
:NEXT-DEVICE-NAME keyword

GET-DEVICE-INFORMATION function,
53

-nI directive, 6-6
Node, 1-8

pathnames, 7-13
/NOINITIALIZE qualifier

modes, 2-13
/NOLIST qualifier

description, 2-17
modes, 2-13
(table), 2-11
with /COMPILE qualifier, 2-14
with /MACHINE_CODE qualifier,

2-18
/NOMACHINE_CODE qualifier

description, 2-18
modes, 2-13
(table), 2-11
with /COMPILE qualifier, 2-14

/NOOPTIMIZE qualifier
modes, 2-13

/NOOUTPUT_FILE qualifier
description, 2-20
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-13

NORMAL debugger command modifier,
5-12

with BACKTRACE command, 5-17
/NOVERBOSE qualifier

description, 2-21
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14

/NOWARNINGS qualifier,
description, 2-23
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14

:NREAD-LINE
I/O request specifier, 8-4

NREAD-LINE function
description, 8-8

Null lexical environment
break loop, 5-7
compiler restrictions, 7-26
tracer, 5-36, 125

Numbers, 7-2

Version 2.2, July 1987 Index-17

INDEX

Numeric keypad
Editor use of, 3-14
illustration, 3-15

Numeric keypad keys
specifying in BIND-COMMAND

function, 3-40

-0-

OPEN function, 7-23, 7-24
"Open Line" Editor command, 3-24

"EMACS" style binding, B-5
:OPEN-FILE-COUNT keyword

GET-PROCESS-INFORMATION
function, 68

:OPEN-FILE-QUOTA keyword
GET-PROCESS-INFORMATION

function, 68
OPEN-STREAM-P function

description, 8-9
:OPERATION-COUNT keyword

GET-DEVICE-INFORMATION function,
53

Optimization qualities
See Compiler

OPTIMIZE declaration, 7-27
:OPTIMIZE keyword

COMPILE-FILE function, 14
/OPTIMIZE qualifier

description, 2-19
modes, 2-13
optimizing compiler, 7-27
(table), 2-11
with /COMPILE qualifier, 2-14

:ORGANIZATIbN keyword
GET-FILE-INFORMATION function,

56
Outermost form

making select region from, 3-21
:OUTPUT-FILE keyword

COMPILE-FILE function, 15
SPAWN function, 113

/OUTPUT_FILE qualifier
description, 2-20
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14

OVER stepper command
description, 5-28
(table), 5-25

:OWNER-PID keyword
GET-PROCESS-INFORMATION

function, 68
:OWNER-UIC keywo.rd

GET-DEVICE-INFORMATION func~ion,
53

-p-

Packages, 1, 3
current, 1, 3, 92

"page Next Window" Editor command
"EMACS" style binding, B-6

:PAGE-FAULTS keyword
GET-PROCESS-INFORMATION

function, 68
:PAGE-FILE-COUNT keyword

GET-PROCESS-INFORMATION
'function, 69

:PAGE-FILE-QUOTA keyword
GET-PROCESS-INFORMATION

function, 69
:PAGES-AVAILABLE keyword

GET-PROCESS-INFORMATION
function, 69

:PARALLEL keyword
SPAWN function, 113

Parentheses
matching with Editor, 3-15

using pointer, 3-49
PARSE-NAMESTRING function

constructing pathnames, 7-12
creating pathnames, 7-11
setting pathnames, 7-13

:PASS-ALL keyword
GET-TERMINAL-MODES function, 74
SET-TERMINAL-MODES function,

109
Pass-all mode, 7-22, 109
:PASS-THROUGH keyword

GET-TERMINAL-MODES function, 74
SET-TERMINAL-MODES function,

7-21, 109
Pass-through mode, 108.1
Paste buffer, 3-21

appending text to, 3-21
PATHNAME function

constructing pathnames, 7-12
creating pathnames, 7-11

Pathnames, 7-7 to 7-15
See also File
constructing, 7-12

Version 2.2, July 1987 Index-18

INDEX

pathnames (Cont.)
creating, 7-11
default directory, 25
description, 7-10
DIRECTORY function, 37
fields, 7-10, 7-11

(table), 7-10
functions, 7-15

"Pause Editor" Editor command,
3-11

effect on buffers, 3-34
"EMACS" style binding, 8-6
using, 3-10

Per-line prefix, 6-15
Per-line prefixes

preserving, 6-9
:PID keyword

GET-DEVICE-INFORMATION function,
53

GET-PROCESS-INFORMATION
function, 69

Pointer
determining Editor commands

bound to, 3-49
Pointer cursor

VAXstation
appearance in Editor, 3-47

Pointing device
VAXstation

using in Editor, 3-47
:POST-DE8UG-IF keyword

TRACE macro, 5-36, 125
POST-GC-MESSAGE variable, 49

changing garbage collector
messages, 7-19

description, 89
:POST-PRINT keyword

TRACE macro, 5-36, 126
PPRINT

function, 6-2
PPRINT-DEFINITION

function, 6-2
PPRINT-DEFINITION function

description, 90
PPRINT-PLIST

function, 6-2
PPRINT-PLIST function

description, 92
:PRE-DE8UG-IF keyword

TRACE macro, 5~36, 125

PRE-GC-MESSAGE variable, 49
changing garbage collector

messages, 7-19
description, 95

:PRE-PRINT keyword
TRACE macro, 5-36, 126

Prefix, 6-14
per-line, 6-15

Prefix argument, 3-23
entering, 3-23
negative, 3-23

Preserving indentation, 6-9
Preserving per-line prefixes, 6-9
Pretty printer, 1-5

controlling margins, 98
miser mode, 97

Pretty printing, 6-1 to 6-28
"Previous Form" Editor command,

3-27
:PREVIOUS keyword

See :VERSION keyword
THROW-TO-COMMAND-LEVEL function,

121
"Previous Line" Editor command,

3-25
"EMACS" style binding, 8-4

"Previous Paragraph" Editor
command

"EMACS" style binding, 8-4
"Previous Screen" Editor command,

3-26
"EMACS" style binding, 8-4

"Previous Window" Editor command
"EMACS" style binding, 8-6

Print control variables, 6-3
:PRINT keyword

LOAD function, 81
TRACE macro, 5-36, 125

PRINT-LENGTH, 6-24
PRINT-LEVEL, 6-24
PRINT-LINES, 6-4, 6-25
PRINT-LINES variable

description, 96
PRINT-MISER-WIDTH, 6-26

variable, 6-5
PRINT-MISER-WIDTH variable

description, 97
PRINT-RIGHT-MARGIN, 6-26

variable, 6-4
*PRINT-RIGHT-MARGIN*variable

description, 98

Version 2.2, July 1987 Index-19

INDEX'

PRINT-SIGNALED-ERROR function
defining an error handler, 4-6
description, 100

PRINT-SLOT-NAMES-AS-KEYWORDS
variable

description, 102
Process

connecting to, 4
getting information, 65
identification, 4

:PROCESS keyword
TRANSLATE-LOGICAL-NAME function,

137
:PROCESS-NAME keyword

GET-PROCESS-INFORMATION
function, 69

SPAWN function, 113
PROCLAIM function, 7-27
Prompt

break loop, 5-5
debugger, 5-8
Editor

completing input, 3-8
displaying alternative

choices, 3-9
help on, 3-7

LISP, 2-1
stepper, 5-20.1
top-level, 2-1

changing, 123
"Prompt Complete String" Editor

command, 3-13
"Prompt Scroll Help Window"

Editor command, 3-12
"Prompt Show Alternatives" Editor

cOijlmand, 3-13
Property list

pretty-print, 92
:PROTECTION keyword·

GET-FILE-INFORMATION function,
56

-Q-

"Query Search Replace" Editor
command, 3-29

"EMACS" style binding, B-5
using, 3-22

QUICK debugger command modifier,
5-12

QUIT
debugger command, 5-9

description, 5-14
(table), 5-10

stepper command
description, 5-27
exiting stepper, 5-21
(table), 5-25

"Quoted Insert" Editor command,
3-25

"EMACS" style binding, B-5

-R-

"Read File" Editor command
"EMACS" style binding, B-6

: READ-CHAR
I/O request specifier, 8-4

READ-CHAR function
#\NEWLINE character, 7-20
terminal input, 7-21

:READ-LINE
I/O request specifier, 8-4

Read-only memory, 2-18, 105, 118
Real time

displaying, 122
garbage collector, 59

Record length, 7-22
Record Management Services (RMS)

input/output~ 7-20
record length, 7-22

:RECORD-ATTRIBUTES keyword
GET-FILE-INFORMATION function,

56
:RECORD-FORMAT keyword

GET-FILE-INFORMATION function,
56

:RECORD-SIZE keyword
GET-DEVICE-INFORMATION function,

53
"Redisplay Screen" Editor command,

3-13
"EMACS" style binding, B-6

REDO debugger command
description, 5-14
(table), 5-10

:REFERENCE-COUNT keyword
GET-DEVICE-INFORMATION function,

53
with BACKTRACE command, 5-17 Relative tabbing, 6-16

Version 2.2, July 1987 Index-20

INDEX

"Remove Current Window" Editor
command, 3-12

"EMACS" style binding, B-6
"Remove Other Windows" Editor

command, 3-12
"EMACS" style binding, B-6
using, 3-32

REQUIRE function, 88
description, 103
(table), 7-30

/RESUME qualifier, 2-25, 118
description, 2-21
modes, 2-13
(table), 2-12
with /INITIALIZE qualifier,

2-15
with /MEMORY qualifier, 2-19

RETURN
debugger command

description, 5-14
(table), 5-10

key
as a stepper command, 5-28
entering

debugger command arguments,
5-11

debugger commands, 5-10
stepper commands, 5-24

terminal input, 7~21
stepper command

description, 5-28
(table), 5-25

:REVISION keyword
GET-FILE-INFORMATION function,

56
:REVISIQN-DATE keyword

GET-FILE-INFORMATION function,
56

: RIGHT-MARGIN
I/O request specifier, 8-4

RIGHT-MARGIN function
description, 8-10

:RIGHT-MARGIN keyword
WRITE and WRITE-TO-STRING, 6-3

ROOM function
debugging information, 5-2
description, 105
specifying memory, 2-19
(table), 7-30

ROOM-ALLOCATION function
description, 108

:ROOT-DEVICE-NAME keyword
GET-DEVICE-INFORMATION function,

53
Run-time efficiency, 7-18

-s-

Screen
refreshing, in Editor, 3-9

"Scroll Window Down" Editor
command

"EMACS" style binding, B-5
"Scroll Window Up"Editor command

"EMACS" style binding, B-5
SEARCH debugger command

description, 5-15
(table), 5-10

:SECTORS keyword
GET-DEVICE-INFORMATION function,

53
"Select Buffer" Editor command,

3-36
"EMACS" style binding, B-6
using, 3-32

"Select Outermost Form" Editor
command, 3-12, 3-28

Select region
cancelling, 3-21
changing case of, 3-22
defining, in Editor, 3-21
from outermost form, 3-21
marking with pointer, 3-48
replacing with paste buffer,

3-21
:SERIAL-NUMBER keyword

GET-DEVICE-INFORMATION function,
53

SET debugger command
description, 5-16
(table), 5-11

"Set Select Mark" Editor command,
3-28

"EMACS" style binding, B-5
SET-TERMINAL-MODES function

changing terminal input mode,
7-21

description, 108.1
SETF macro

changing the default directory,
25

setting pathnames, 7-13
Short floating-point numbers, 7-3

Version 2.2, July 1987 Index-21

INDEX

SHORT-FLOAT-EPSILON constant, 7-5
SHORT-FLOAT-NEGATIVE-EPSILON

constant, 7-5
SHORT-SITE-NAME function

description, 111
(table), 7-31

SHOW
debugger command

description, 5~17

(table), 5-11
stepper command

description, 5-27
(table), 5-25

"Show Time" Editor command
"EMACS" style binding, B-6

"Shrink Window" Editor command,
3-37

"EMACS" style binding, B-6
using, 3-35

Significant stack frame, 5-4
Single floating-point numbers,

7-3
SINGLE-FLOAT-EPSILON constant,

7-5
SINGLE-FLOAT-NEGATIVE-EPSILON

constant, 7-5
:SITE-SPECIFIC keyword

GET-PROCESS-INFORMATION
function, 69

SOFTWARE-VERSION-NUMBER function
description, 112

Source file
compiling, 14
file type, 1-10
loading, 81
locating, 81

SOURCE-CODE function
description, 112.1

SPAWN function
description, 112.2

Specialized arrays, 7-7
"Split Window" Editor command,

3-37
"EMACS" style binding, B-6
using, 3-35

Stack frame, 5-3
active, 5-4
current, 5-7
insignificant, 5-4
number

debugger command argument,
5-12

Stack frame
number (Cont.)

stepper output, 5-22
t~acer output, 5-34

significant, 5-4
STANDARD-QUTPUT variable

LOAD function, 81
PPRINT-DEFINITION function, 90
PPRINT-PLIST function,' 93

"Start Keyboard Macro" Editor
command, 3-46

"Start Named Keyboard Macro"
Editor command, 3-46

using, 3-45
:STATE keyword

GET-PROCESS-INFORMATION
function, 69

:STATIC keyword
See :ALLOCATION keyword

Static memory, 2-18, 86, 105, 118
garbage collector, 7-18

Status code, 76
:STATUS keyword

GET-PROCESS-INFORMATION
functi.on, 69

Status return, 44
STEP

debugger command
description, 5-14
(table), 5-11

macro
debugging information, 5-2
invoking stepper, 5-20.1

stepper command
description, 5-28
(table), 5-25

Step
macro

description, 115
STEP-ENVIRONMENT

variable, 5-28
description, 116

STEP-FORM
variable, 5-28

description, 117
:STEP-IF keyword

TRACE macro, 5-36, 126
Stepper, 1-5, 5-20 to 5-32

commands
arguments, 5-25
descriptions, 5-26 to 5-28
(table), 5-24

Version 2.2, July 1987 Index-22

stepper (Cont.)
exiting, 5-21, 5-27
invoking, 5-14, 5-20.1, 5-36,

115, 126
output, 5-21

controlling, 23, 24
prompt, 5-20.1
sample sessions, 5-31
using, 5-24

STOP command, 1-11
Storage allocation, 1-1

See also Memory
Stream dispatch function, 8-3

arguments, 8-3
STREAM structure, 8-2
Streams, 118

defining new types, 8-1
information about, 8-5

String
searching for

with Editor, 3-18
STRING-STREAM data type, 8-6
STRING-STREAM-P function, 8-6
Strings, 7-7

creating, 86
Subprocess, 112.2
:SUBPROCESS-COUN.T keyword

GET-PROCESS-INFORMATION
function, 70

:SUBPROCESS-QUOTA keyword
GET-?ROCESS-INFORMATION

function, 70
:SUCCESS keyword

EXIT function, 44
Suffix, 6-14
"Supply EMACS Prefix" Editor

command
"EMACS" style binding, B-6

"Supply Prefix Argument" Editor
command, 3-29

"EMACS" style binding, B-6
:SUPPRESS-IF keyword

TRACE macro, 5-37, 126
SUSPEND function

creating suspended systems,
2-24

description, 118
Suspended systems, 118

creating, 2-24
file type, 1-10
garbage collector, 2-24
Internal time, 61

Version 2.2, July 1987

INDEX

Suspended systems (Cont.)
interrupt functions, 7-26
real time, 59
r~suming, 2-21, 2-25

Symbolic expressions, 1-1
Symbols

editing function definition,
3-3

moving back to LISP, 3-10
editing value, 3-3

moving back to LISP, 3-10
SYNONYM-STREAM data type, 8-6
SYNONYM-STREAM-P function, 8-6
SYNONYM-STREAM-SYMBOL function,

8-6
System identification (SID)

register, 85
:SYSTEM keyword

TRANSLATE-LOGICAL-NAME function,
137

-T-

~T directive, 6-15
Tab directive, 6-15
Tabs, 6-15
~/TABULAR/ directive, 6-6
Terminal

getting information, 73
input, 7-21

changing modes, 7-21
pass-all mode, 7-22

:TERMINAL keyword
GET-PROCESS-INFORMATION

function, 70
TERMINAL-IO variable

BIND-KEYBOARD-FUNCTION function,
7

end-of-file operations, 7-22
GET-TERMINAL-MODES function, 73
SET-TERMINAL-MODES function,

108.1
TERMINAL-STREAM data type, 8-6
TERMINAL-STREAM-P function, 8-6
:TERMINATION-MAILBOX keyword

GET-PROCESS-INFORMATION
function, 70

TERPRI function
i\NEWLINE character, 7-20
record length, 7-22

Index-23

INDEX

Text
changing case of characters,

3-21
copying with Editor, 3-20, 3-21
cutting and pasting, 3-20
deleting with Editor, 3-19

restoring deleted, 3-20
inserting with Editor, 3-14

starting new line, 3-15
moving between Editor buffers,

3-36
moving with Editor, 3-20
substituting in, 3-22

THROW-TO-COMMAND-LEVEL function
description, 121

TIME macro
debugging information, 5-2
description, 122
(table), 7-31

:TIMER-QUEUE-COUNT keyword
GET-PROCESS-INFORMATION

function, 70
:TIMER-QUEUE-QUOTA keyword

GET-PROCESS-INFORMATION
function, 70

TOP
debugger command

description, '5-15
(table), 5-11

debugger command modifier, 5-13
with BACKTRACE command, 5-17

:TOP keyword
THROW-TO-COMMAND-LEVEL function,

121
Top-level loop

prompt, 2-1
variables, 2-2

TOP-LEVEL-PROMPT variable
description, 123

TRACE macro
debugging information, 5-2
description, 124
enabling the tracer, 5-33
options, 5-35
(table), 7-31

TRACE-CALL
variable

description, 135
variable, 5-37

TRACE-OUTPUT variable
stepper, 5-20
tracer, 5-32

TRACE-VALUES
variable, 5-38

description, 136
Tracer, 1-5, 5-32 to 5-39

disabling, 5-33
enabling, 5-33, 124
options

adding to output, 5-36
defining when to trace a

function, 5-37
invoking the debugger, 5-36
invoking the stepper, 5-36
removing information from

output, 5-37
options (table), 125
output, 5-34

controlling, 23, 24
:TRACKS keyword

GET-DEVICE-INFORMATION function,
53

:TRANSACTION-COUNT keyword
GET-DEVICE-INFORMATION function,

53
TRANSLATE-LOGICAL-NAME function

description, 137
using, 7-14

"Transpose Previous Characters"
Editor command

"EMACS" style binding, B-S
"Transpose Previous Words" Editor

command
"EMACS" style binding, B-S

TWO-WAY-STREAM data type, 8-6
TWO-WAY-STREAM-INPUT-STREAM

function, 8-6
TWO-WAY-STREAM-OUTPUT~STREAM

function, 8-6
TWO-WAY-STREAM-P function, 8-6
:TYPE keyword

pathname field, 7-11
:TYPE-AHEAD keyword

GET-TERMINAL-MODES function, 75
SET-TERMINAL-MODES function,

109

-u-

:UIC keyword
GET-FILE-INFORMATION function,

57
GET-PROCESS-INFORMATION

function, 70

Version 2.2, July 1987 Index-24

INDEX

UNBIND-KEYBOARD-FUNCTION function,
6

description, 139
unbinding control characters,

7-26
UNCOMPILE function

description, 140
retrieving interpreted

definitions, 2-7
Unconditional new line directive,

6-11
UNDEFINE-LIST-PRINT-FUNCTION

macro, 6-20
UNDEFINE-LIST-PRINT-FUNCTION

macro
description, 141

"Undo Previous Yank" Editor
command

"EMACS" style binding, 8-5
:UNIT keyword

GET-DEVICE-INFORMATION function,
53

UNIVERSAL-ERROR-HANDLER function,
4-1

defining an error handler, 4-6
description, 142

UNIVERSAL-ERROR-HANDLER
variable, 4-5, 142

description, 143
: UNREAD-CHAR

I/O request specifier, 8-4
"Unset Select Mark" Editor

command, 3-28
"EMACS" style binding, B-5

UNTRACE macro
debugging information, 5-2
disabling the tracer, 5-33

UP
debugger command

description, 5-16
(table), 5-11

debugger command modifier, 5-13
SEARCH debugger command, 5-15

stepper command
description, 5-28
(table), 5-25

"Upcase Region" Editor command,
3-29

"upcase Word" Editor command,
3-29

"EMACS" style binding, B-5

User defined FORMAT directives,
6-18

:USERNAME keyword
GET-PROCESS-INFORMATION

function, 70

-v-

:VALUE keyword
ED function, 42

Variable
print control, 6-3

"VAX LISP" Editor style, 3-44
automatic activation, 3-44

VAX/VMS file specification
See File

VAXstation
pointing device

using in Editor, 3-47
using Editor on, 3-46

Vectors
creating, 86

VERBOSE debugger command modifier,
5-13

with BACKTRACE command, 5-17
:VERBOSE keyword

COMPILE-FILE function, 15, 17
LOAD function, 81

/VERBOSE Qqualifier
loading files, 2-6

/VERBOSE qualifier
description, 2-21
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14
with /INITIALIZE qualifier,

2-15
with /LIST qualifier, 2-17

:VERSION keyword
pathname field, 7-11

Version number, 1-9
:VERSION-LIMIT keyword

GET-FILE-INFORMATION function,
57

"View File" Editor command
"EMACS" style binding, B-6

:VIRTUAL-ADDRESS-PEAK keyword
GET-PROCESS-INFORMATION

function, 70
VMS

hibernation state, 4

Version 2.2, July 1987 Index-25

INDEX

:VOLUME-COUNT keyword
GET-DEVICE-INFORMATION 'function,

53
:VOLUME-NAME keyword

GET-DEVICE-INFORMATION function,
,54

:VOLUME-NUMBER keyword
GET-DEVICE-INFORMATION function,

54
:VOLUME-PROTECTION keyword

GET-DEVICE-INFORMATION function,
54

-w-

-W directive, 6-6
WARN function, 142

description, 144
error messages, 4-4
(table), 7-31

WARNING function
defining an error handler, 4-7

:WARNING keyword
EXIT function, 44

:WARNINGS keyword
COMPILE-FILE function, 15, 18

/WARNINGS qualifier
description, 2-23
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14

"What Cursor Position" Editor
command

"EMACS" style binding, B-6
WHERE debugger command

description, 5-16
(table), 5-11

:WILD keyword
See :VERSION keyword

Windows
Editor

see Editor windows
WITH-GENERALIZED-PRINT-FUNCTION

macro, 6-22
WITH-GENERALIZED-PRINT-FUNCTION

macro
description, 145

:WORKING-SET-AUTHORIZED-EXTENT
keyword

GET-PROCESS-INFORMATION
function, 70

:WORKING-SET-AUTHORIZED-QUOTA
keyword

GET-PROCESS-INFORMATION
function, 70

:WORKING-SET-COUNT keyword
GET-PROCESS-INFORMATION

function, 70
:WORKING-SET-DEFAULT keyword

GET-PROCESS-INFORMATION
function, 71

:WORKING-SET-EXTENT keyword
GET-PROCESS-INFORMATION

function, 71
:WORKING-SET-PEAK keyword

GET-PROCESS-INFORMATION
function, 71

:WORKING-SET-QUOTA keyword
GET-PROCESS-INFORMATION

function, 71
:WORKING-SET-SIZE keyword

GET-PROCESS-INFORMATION
function, 71

:WRAP keyword
GET-TERMINAL-MODES function, 75
SET-TERMINAL-MODES function,

109
WRITE

FORMAT directive, 6-7
"Write Current Buffer" Editor

command, 3-12
"EMACS" style binding, B-6
using, 3-10, 3-34

WRITE function
pretty-printing control

keywords, 6-3
"Write Modified Buffers" Editor

command, 3-12
"EMACS" style binding, B-6
using, 3-10, 3-34

"Write Named File" Editor command,
3-12

"EMACS" style binding, B-6
using, 3-10

:WRITE-CHAR
I/O request specifier, 8-4

WRITE-CHAR function, 7-25
#\NEWLINE character, 7-20
record length, 7-22

:WRITE-STRING
I/O request specifier, 8-4

WRITE-STRING function, 7-20

Version 2.2, July 1987 Index-26

WRITE-TO-STRING function
pretty-printing control

keywords, 6-3

-Version 2.2, July 1987'

INDEX

-y-

"Yank Previous" Editor command
"EMACS" style binding, B-5

"Yank Replace Previous" Editor
command

"EMACS" style binding, B-5
"Yank" Editor command

"EMACS" style binding, B-5

Index-27

V AX LISP/VMS
User's Guide

AD-Y921B-T1

READER'S
COMMENTS

Note: This form is for document comments only . DIGITAL will use comments
submitted on this form at the company's discretion. If you require a written
reply and are eligible to receive one under Software Performance Report (SPR)
service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make. suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify)

Name ____________________ Date _______________ _

Organization __________________________________ _

Street _____________________________________ _

City _____________________ State _______ Zip Code ____ _

or Country

Do Not Tear - Fold Here and Tape

I I II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
ML05-5/E45
146 MAIN STREET
MAYNARD, MA 01754-2571

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Do Not Tear - Fold Here -

I

I

c

.! . .,
I

~
I ,

~

READER'S COMMENTS

VAX LISP
User's Guide

AA-Y921A-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer
Other(pleasespecify) __ __

Name-- Date ________________________________ ___

Organization --- Telephone _________________________ _

Street __ _

City ------------------------------------ State ---------- Zip Code ___________ _
or Country

- Do Not Tear - Fold Here and Tape

IIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, ML05-5/E45
DIGITAL EQUIPMENT CORPORATION \
146 MAIN STREET
MAYNARD, MA 01754-2571

No Postage
Necessary

if Mai led in the

United States

Do Not Tear - Fold Here -

