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Several competitors and new start-ups are introducing simplified 
architecture machines claiming superior price/performance over VAX. 
There are currently about a dozen such companies offering machines 
with vector processing (e.g., Convex, Scientific Computer Systems), 
symmetric multiprocessing (e.g., Flexible Computer, Sequent), and 
fine-grained parallel processing (e.g., Alliant) capabilities. 

These competitors are mostly targeting the high end of the VAX market, 
which is our most profitable product space. However, we are also 
receiving increasing pressure at the low end of our product family 
where simplified architectures offer cheaper and faster custom 
implementations than VAX. 

Several advanced development and research projects within DIGITAL, and 
projects elsewhere in the computer industry, have produced results 
substantiating our competitor's claims and questioning the viability 
of the VAX architecture to sustain DIGITAL through the 1990's. 

In response to this challenge, a strategic effort has been initiated 
within the company to define a new architecture that will complement 
our current VAX/VMS and VAX/ULTRIX offerings and provide DIGITAL with 
a competitive architecture through the 1990'.s and beyond. 

The following summarizes the assumptions, constraints, goals, and 
non-goals that have been set for the architecture. 

Assumptions: 

1. Simplif~ed architectures show promise for reducing complexity 
while improving cost/performance and making higher absolute 
performance possible when compared with VAX. 

2. Vector processing, multiprocessing, and parallel processing 
are well enough understood to make them a science (rather 
than a black art), and therefore, are essential to attaining 
a competitive architecture. 

3. Neither DIGITAL nor its customers can afford the resources 
necessary to support an open architecture philosophy, but 
rather must be able to leverage software investments across 
an entire family of compatible products. This implies that 
any new architecture must be rigid and not allow the 
instruction set or privileged architecture to be changed from 
implementation to implementation. 

4. The design work that must be performed is similar to the VAX 
architectural effort. An architectural document, at the same 
level of detail as produced for VAX, must be produced to 
guide implementations of the new architecture. It is 
required that this document receive wide review within the 
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technical community and the company in general. When 
completed and accepted, the architecture will be placed under 
ECO control and managed by a central architecture group. 

5. The architecture will be compatibly extended over time, and 
will allow subsets. Each extension will be subsettable and 
become a permanent part of the architecture which all 
implementations must adhere to. Features of the architecture 
that are subsetted in a particular implementation must be 
emulated transparently in software. 

6. VAX compatibility is very important, especially with 
to the way memory is addressed and data is stored. 
be achieved with a combination of software and 
rather than with just a hardware structure itself. 

respect 
This can 
hardware 

7. A VMS-like operating system environment will be constructed 
that has a compatible file system, network, and user 
interface, and a functionally compatible set of system 
services. A continuing effort will be made to ensure that a 
compatible applications interface is maintained between VMS 
and the new operating system. 

8. ULTRIX will be ported to the new architecture and remain 
compatible with both the VAX and PDP-11 implementations. An 
ongoing effort will be made to ensure that all 
implementations of ULTRIX remain:compatible. 

9. 

10. 

Any new architecture must fit into 
environment and allow connection 
systems, and clusters. 

the DIGITAL computing 
to local area networks, 

Architectural trade-offs will 
performance rather than lowest 
and cost effective chip-based 
possible without having to 
technologies. 

be made toward higher 
cost. However, competitive 
implementations must be 
resort to risky advanced 

Architectural Constraints: 

1. The architecture must make it possible to efficiently support 
VAX data types. This support can be achieved with a 
combination of software and hardware. 

2. The architecture must 
addressing. 

support VAX-compatible memory 

3. The architecture must provide a VAX-compatible interlock 
capability so that it is possible to connect VAX processors 
and I/O peripherals to common memory systems. 

4. The architecture must support the execution of identical 
program images on all implementations. 
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5. The scalar architecture must provide greater than a factor of 
two improvement in cost/performance over a VAX implementation 
using the same technology. 

Architectural Goals: 

1. To make it possible to build machines that are as good or 
better than the competition and which have higher absolute 
performance limits than VAX. 

2. To define an architecture that is inherently easier to 
implement than VAX and thus allows shorter development 
cycles, or alternatively, allows more effort to be expended 
on performance while holding the development cycle constant. 

3. To make it attractive to implement the architecture without 
microcode. 

4. To allow for easy pipelining and parallel instruction 
execution directly in the architecture, as opposed to 
esoteric implementation complexity to gain performance. 

5. To provide integral vector processing capabilities. 

6. To allow for symmetric multiprocessing as well as other forms 
of parallel processing. · 

7. To provide an extensible architecture with 
subsettability. 

rules for 

8. To provide a corporate architecture for the 1990's that is 
more competitive than VAX and which provides more inherent 
growth capability. 

9. To remedy anticipated deficiencies and limitations in the VAX 
architecture (e.g., number of general registers, page size, 
physical address space, vector processing etc.). 

10. To provide an I/0 architecture that will support current and 
future corporate I/O strategies (e.g., BI). 

11. To provide the functional capabilities of the VAX privileged 
architecture in a more simplified and easier to implement 
form. 

12. To make it easy for customers to move applications to the new 
architecture from VAX. 

13. To allow unprivileged VMS and ULTRIX layered products that 
are written in a higher-level language to be moved to the new 
architecture via recompilation, without loss of language 
semantics or file and data type compatibility. 
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special purpose 

15. To allow for the implementation of a security kernel. 

Specific Non-Goals: 

1. To include a VAX compatibility mode. 

2. To support UNIBUS/QBUS/MASSBUS peripherals. 

3. To translate VAX macrocode transparently and efficiently. 

4. To address non-architectural issues 
implementation of fault tolerant systems. 

such as the 

5. To support D floating, H_floating, or decimal data types 
directly in hardware. 

6. To support efficient handling of unaligned operands. 
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Revision History: 

Revision 1.0, 22 December 1985 

1. General rewrite and rephrasing of the 
assumptions, architectural constraints, and 
goals. 

2. Dropped all references 
architectures. 

and comparisons 

introduction, 
architectural 

with RISC 

3. Added assumption that vector processing, multiprocessing, and 
parallelism are essential for a competitive new architecture. 

4. Added the assumption that the architecture must allow for 
competitive and cost effective chip implementations. 

5. Added a goal to 
capabilities. 

provide integral vector processsing 

6. Added a goal to define an I/O architecture that will support 
current, as well as future, corporate I/0 strategies. 

Revision 0.0, July 5, 1985 

1. First review distribution~ 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

The difficulty in building cost-effective, high-performance VAX 
processors, and the competitive pressure due to recent architectural 
developments has motivated the design of the PRISM (Parallel Reduced 
Instruction Set Machine) architecture. 

The following sections of this introduction describe: 

1. Why building a high-end VAX is difficult. 

2. An overview of the PRiSM architecture. 

3. The PRISM advantages and disadvantages. 

4. The constraints and limitations of VAX compatibility on 
PRISM. 

5. Terminology and conventions used in this document. 

1.2 DIFFICULTIES IN BUILDING A HIGH-END VAX 

It is currently very difficult to build a high-performance 
implementation (20 to 40 times 11/780) of the VAX architecture even 
though the circuit technology exists. VAX is an extremely complex 
architecture with a large number of intra-instruction and 
inter-instruction conflicts. 

Intra-instruction conflicts, in both 
pipelining techniques difficult to use. 

decode and execution, 
Some examples are: 

make 

o The variable instruction lengths and complex operand 
specifiers require a large amount of instruction decode and 
conflict-detection logic. VAX instructions can range from 1 
byte to over 50 bytes in length, depending on the operand 
specifiers used. 
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o The side effects of autoincrement and autodecrement 
specifiers make pipelining, and the coordinated update of 
multiple register file copies, difficult. 

o Specifying memory operand requests in the same instruction 
that operates on the data either degrades performance 
(because the execution unit must wait for the operand) or 
increases the cost to buff er the instruction and operands in 
order to pipeline the operation. Fetching a memory operand 
requires address calculation, address translation, and cache 
lookup. This will always be slower than reading a general 
register. VAX has insufficient registers in which to load 
memory operands prior to operating on the data: 16 are just 
not enough, especially when four are dedicated to fixed 
functions. 

o The indirect specifiers require two memory references to 
fetch the operand, making the execution unit wait until the 
operand arrives. Alternatively, other architectures allow 
these two references to be separated and scheduled. 

o Complex branch instructions, such as Branch on Bit (BBx) and 
Add Compare and Branch (ACBx), may require several memory 
references and execution cycles before the branch decision is 
known. These instructions also have the branch displacement 
at "the end of the instruction requiring several cycles of 
specifier decode before the branch destination is known. 

o Instructions like POPR and RSB have implied operands and 
implied register modification. 

o The bit field instructions require special checks to 
determine whether the operand is in a register or memory and 
then additional checks to determine reserved operands. 

o Compound instructions, such as CALL and POLY, encounter 
internal conflicts during execution where the hardware must 
stall because it has no other work to do. In addition, these 
instructions must read data operands to determine the 
semantics of the instruction. 

Inter-instruction conflicts make parallel execution and out-of-order 
completion of VAX instructions very difficult. Some examples are: 

o Virtually every instruction alters the condition codes, so 
the test or compare instruction can never be separated from 
the conditional branch instruction with intervening 
instructions. This means that in a pipelined implementation 
the conditional branch is stalled waiting for the condition 
codes from the immediately preceding instruction. Branch 
prediction could be implemented, but this further complicates 
the design and increases branch latency when the prediction 
is wrong. 
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o The register interlock and bypass logic is complicated by 
implied register operands, quadword and octaword register 
writes starting at an arbitrary register, and byte and word 
write merges into the general registers. 

Most of the general functionality in the VAX architecture is 
infrequently used. Studies of operand specifier usage have shown that 
register, short literal, register deferred, and displacement mode 
operand specifiers constitute 85% to 95% of all operand specifiers 
used. The bit field instructions can take arbitrary specifiers for 
the size and position operands, but in one study over 90% of the size 
and position specifiers were short literals. 

1.3 PRISM ARCHITECTURE OVERVIEW 

The design of the PRISM architecture was guided by: 

o The cost/performance and higher absolute performance 
advantages of simplified instruction set architectures. 

o Advances in compiler technology. In particular, the ability 
to ,1compile procedures in line, better register allocation 
algorithms, and instruction scheduling. 

o A processor 
instruction 
completion. 

organization 
execution 

model that allows parallel 
and out-of-order instruction 

o The ability to implement both chip-level and 
machines. 

high-end 

o The declining cost of memory: memory costs in FYBB are 
expected to be around $150 per megabyte. 

PRISM has some. of the characteristics of the so-called RISC 
architectures but a better comparison would be the CRAY machines. 
Below is a brief overview of the PRISM instruction set characteristics 
followed by a description of how a pipelined processor might be 
implemented. 

1.3.1 Instruction Set Characteristics 

o All instructions are 32 bits long and have a regular format. 

o There are 64 scalar registers (RO through R63), each 32 bits 
wide. RO reads as zero and writes to RO are ignored. Rl is 
the current stack pointer and is referred to as SP. 
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o There are 16 vector registers (VO through VlS), each 
containing 64 elements, 64 bits wide. There is a 6-bit 
Vector Length register (VL), a 7-bit Vector Count register 
(VC), and a 64-bit Vector Mask register (VM). 

o All scalar data manipulation is between scalar registers, 
with up to two register source operands (one may be an 8-bit 
literal) and one register destination operand. 

o All vector data manipulation instructions get their source 
operands from one or two vector registers and write their 
results to a destination vector register. 

o All memory reference instructions are of the load/store type 
that move data between scalar or vector registers and memory. 

o There are no branch condition codes. Branch instructions 
test a scalar register value which may be the result of a 
previous compare. 

o Integer and logical instructions operate on longwords. 

o Floating-point instructions operate 
F_floating operands. 

1.3.2 Pipelined Processor Model 

on G_floating and 

The processor model that guided the architecture definition consists 
of multiple pipelined function units, each of which executes a class 
of instructions. There is one function unit for the load/store 
instructions, one for shifts, one for floating add/subtract, one for 
integer and floating multiply, and one for integer and floating 
divide. The multiply and divide units may or may not be pipelined. 

The following is a brief outline of one way to organize a pipelined 
design of the PRISM architecture. It should be emphasized that this 
is only one model; other implementation models are also possible. 

l. Instruction fetch - The instruction to execute is fetched 
from the instruction cache. 

2. Instruction decode and issue - The instruction is broken down 
into its constituent parts and data-independent control and 
address signals are generated. Before an instruction can 
begin execution ("issue"} several constraints must be 
satisfied: 

o All source and destination registers for the instruction 
must be free, i.e., there must be no outstanding writes 
to a needed register from prior instructions. 
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o The register write path must be available at the future 
cycle in which this instruction will store its result. 
Only one result can be stored into the registers per 
cycle. All instructions have a fixed, 
non-data-independent execution time, except loads, which 
are predicted on the basis of cache hits. 

o The function unit used by the instruction during 
execution must be free. All units are pipelined (except 
for divide) and so can accept a new scalar instruction 
each machine cycle. A vector instruction reserves the 
function unit. 

When a memory load/store instruction experiences a cache 
miss, at some point the load/store unit busy flag will 
cause subsequent load/store instructions to hold-issue 
until the miss completes. 

When an instruction does issue, the destination register 
and write path cycle for the result are reserved. 

3. Operand setup All instruction-independent register 
addresses are generated, operands are read and latched, and 
data-dependent control signals are generated. 

4. Instruction: execution - The instruction operands and control 
signals are passed to a function unit for execution. 

5. Result store - The result from the function unit is stored in 
the register files or the cache as necessary. 

Although this list is sequential, the five activities can be 
pipelined. For instance, making control signals data-independent and 
instruction formats regular means that more instruction decode and 
operand access can be done in parallel, with less logic and greatly 
simplified control. 

Once an instruction issues, it may take multiple cycles before the 
result of the calculation is available. Meanwhile, !n the next cycle 
the next instruction can be decoded and, if all its issue conditions 
are satisfied, it can be issued. Therefore, instructions are decoded 
and issued in I-Stream order but because of the varying execution 
times of different operations the results can be stored into the 
registers out of I-Stream order. This complicates exception handling 
and hardware retry of failing instructions: however, these are rare 
events and the substantial performance gain and hardware savings from 
out-of-order completion of compiler-scheduled code favors this 
trade-off. 

The regular nature of the instruction set and implementation result in 
a simple set of rules compilers can use to schedule instructions and 
thereby increase performance through parallel instruction execution. 
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1.4 ADVANTAGES AND DISADVANTAGES OF PRISM 

The characteristics of the PRISM architecture will allow developers to 
build processors with substantially more performance than a VAX for 
the same hardware cost in the same technology. The reasons for this 
are: 

l. Fixed-length, quickly decoded instructions. 

2. 64 scalar registers to reduce memory references and provide 
more temporary registers for compiler instruction scheduling 
and procedure use. 

3. Parallel instruction execution and out-of-order instruction 
completion. 

4. 

5. 

No branch condition codes. 

No complex compound instructions with internal data 
dependencies, e.g., CALL/RET, CASE, ACBx, INSV/EXTV, Decimal. 
Inline code for complex functions will be better than VAX 
microcode because: 

A compiler can pick the best code based on the knowledge 
it has and can eliminate special checks, e.g., string 

"'overlap, procedure entry mask,· sign of ACBx loop 
increment, whether a bit field is in a register or 
memory. 

VAX microcode must maintain additional state so that in 
the event of an exception or interrupt it can either 
backup the instruction or save enough state to continue 
via first part done. 

VAX microcode must make many reserved operand checks that 
add overhead, e.g., size and position operands in bit 
field instructions with different checks depending on 
whether the bit field is in registers or memory. 

6. No microcode is required for instruction decode or execution. 

7. A small instruction set emphasizing high frequency 
operations. Far less logic is spent on functionality that 
does not contribute to performance. 

8. A larger branch displacement (22 bits versus 8 bits on VAX) 
eliminates double branches for conditional branches. 

9. A larger page size (8 Kbytes) improves Translation Buffer 
(TB) effectiveness and allows the cache and TB lookup to 
occur in parallel. 
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l. PRISM programs may require 2 to 3 times the code size (in 
bytes) over VAX with a corresponding increase in instruction 
stream bandwidth. However, this trade-off is preferred 
because instruction cache miss rates are low and it is easier 
to build more instruction stream bandwidth than massive 
parallel instruction stream decode. 

2. The 8-Kbyte page size will result in more memory 
fragmentation. Declining memory costs will help offset this. 

3. Unaligned references will be slower because they may be 
implemented by macrocode. 

4. Context switch time will increase because of the additional 
scalar registers (and possibly vector registers) that must be 
saved and restored. 

1.5 VAX COMPATIBILITY 

The PRISM architecture was constrained in a number of ways to support 
our existing VAX customer base. The goal is to make it both possible 
and easier for :a VAX customer to integrate PRISM with VAX and to move 
an application to PRISM rather than to a competitor's machine. This 
goal impacts both the architecture and the system software. 

1. The architecture uses VAX data types and allows 
addressing of memory. 

byte 

2. It is envisioned that the PRISM and VAX operating systems 
will support clustering of PRISM and VAX processors. It is 
also envisioned that the PRISM/VMS operating system will 
provide a VAX/VMS-compatible file system, DECNET, DCL, and 
functionally compatible system services, thus preserving the 
customer's VAX computing environment. 

3. The PRISM language compilers will retain their VAX-specific 
language semantics, e.g., data types and parameter passing, 
thus allowing customers to recompile most VAX programs 
without alteration. 

1.5.1 Compatibility Limitations 

There are, however, some compatibility limitations between PRISM and 
the VAX architecture that may require changes to some high-level 
language programs in order to run them on PRISM. 
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l. Floating-point arithmetic - There are no PRISM instructions 
to compute D floating and H floating results. These 
operations can be performed by software emulation. 

PRISM has neither VAX POLY nor EMOD instructions. 
instructions keep extra guard bits. 

These 

2. Memory protection granularity - PRISM has a page size larger 
than VAX. Therefore, VAX programs which rely on 512-byte 
protection granularity will not work. 

3. Exceptions - Instructions may have been executed after an 
instruction that signals an arithmetic exception. Exception 
handlers that assume no further instructions have been 
executed will not work without changes to make the exception 
precise. 

4. Dynamic instruction creation Programs which dynamically 
construct and execute VAX instruction sequences and/or 
calculate addresses or offsets based on the sizes of VAX 
instructions will not work. 

5. Instruction atomicity - Programs that rely on the atomicity 
of VAX instructions may not work, e.g., a multi-threaded 
application (such as an AST routine) in which shared memory 
dat~ is guaranteed to be in a consistent state only between 
VAX instructions with no other means of synchronization being 
used. Any uninterruptable VAX instruction which makes more 
than one memory reference, e.g., INCL mem or ADDL3 
meml,mem2,mern3, could be used in this way. On PRISM the 
operation would require multiple instructions and, depending 
on where a thread was interrupted, stale data could be used. 

6. Data structures - Code that depends upon VAX architected data 
structures such as the VAX PSL or call frames will not work. 

1.5.2 Why No VAX Compatibility Mode Is Provided 

No VAX compatibility mode is provided in the PRISM architecture (in 
the same way that PDP-11 compatibility mode is provided on VAX) for 
the following reasons: 

1. The complexity of the VAX architecture would make it very 
expensive and difficult·to provide a VAX compatibility mode 
with reasonable performance. VAX requires complex 
instruction decode logic, special data path support, e.g., 
condition codes, different memory management, and a microcode 
control store. This would defeat the purpose of a simplified 
architecture. 
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2. The majority of applications are written in high-level 
languages and can be recompiled. If programs are not 
recompiled the performance gain from the additional PRISM 
scalar registers, vector registers and instruction scheduling 
is lost. 

3. The desirable software goal is to cluster PRISM and VAX 
processors so customer applications on VAXs can share data 
with applications on PRISM. Customers will already own VAXs 
on which to run those applications that they don't wish to 
port to PRISM. 

4. VAX memory management would be difficult to emulate without 
giving up the advantage of a larger page size. 

1.6 TERMINOLOGY AND CONVENTIONS 

1. 6. l Numbering 

All numbers are decimal unless otherwise indicated. Where there is 
ambiguity, numbers other than decimal are indicated with the name of 
the base foHowing the number in parentheses, e.g., FF (hex). 

l.6.2 UNPREDICTABLE And UNDEFINED 

RESULTS specified as UNPREDICTABLE may vary from moment 
implementation to implementation, and instruction to 
within implementations. Software can never depend 
specified as UNPREDICTABLE. 

to moment, 
instruction 

on results 

OPERATIONS specified as UNDEFINED may vary from moment to moment, 
implementation to implementation, and instruction to instruction 
within implementations. The operation may vary in effect from 
nothing, to stopping system operation. UNDEFINED operations must not 
cause the processor to hang, i.e., reach an unhalted state from which 
there is no transition to a normal state in which the machine executes 
instructions. 

Note the distinction between result and operation. 
software cannot invoke UNDEFINED operations. 

l.6.3 Ranges And Extents 

Non-privileged 

Ranges are specified by a pair of numbers separated by a w •• • and are 
inclusive, e.g., a range of integers 0 •• 4 includes the integers 0, 1, 
2, 3, and 4. 
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Extents are specified by a pair of numbers in angle brackets separated 
by a colon and are inclusive; e.g., bits <7:3> specify an extent of 
bits including bits 7, 6, 5, 4, and 3. 

1.6.4 Must Be Zero (MBZ) 

Fields specified as Must Be Zero (MBZ) must never be filled by 
software with a non-zero value. If the processor encounters a 
non-zero value in a field specified as MBZ, an Illegal Operand 
exception occurs. See Chapter 6, Exceptions and Interrupts, Section 
6.4.4. 

1.6.5 Read As Zero (RAZ) 

Fields specified as Read As Zero (RAZ) return a zero when read. 

1.6.6 Should Be Zero (SBZ) 

Fields specified as Should Be Zero (SBZ) should be filled by software 
with a zero value. These fields may be used at some future time. 
Non-zer~ values in SBZ fields produce UNPREDICTABLE results. 

1.6.7 Ignore (IGN) 

Fields specified as Ignore (IGN) are ignored when written. 

1.6.B Figure Drawing Conventions 

Figures which depict registers or memory follow the convention that 
increasing addresses run right to left and top to bottom. 

NOTE 

\A note on the manual format: At certain points in 
the manual, comments on why certain decisions were 
made, unresolved issues, etc., are between a pair of 
backslashes. These comments are provide additional 
clarification and will be removed from externally 
distributed editions.\ 
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CHAPTER 2 

BASIC ARCHITECTURE 

2.1 ADDRESSING 

The basic addressable unit in PRISM is the B-bit byte. Virtual 
addresses are 32 bits long: hence, the virtual address space is 2**32 
(approximately 4.3 billion) bytes. Virtual addresses as seen by the 
program are translated into physical memory addresses by the memory 
management mechanism described in Chapter 5, Memory Management. 

2.2 DATA TYPES 

2.2.l Byte 

A byte is eight contiguous bits starting on an addressable byte 
boundary. The bits are numbered from right to left 0 through 7: 

7 0 
+---------------+ 
I I :A 
+---------------+ 

Figure 2-1: Byte Format 

A byte is specified by its address A. 
byte is only supported in PRISM 
instructions. 

A byte is an 8-bit value. The 
by zero extended load and store 
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A word is two contiguous bytes starting on an arbitrary byte boundary. 
The bits are numbered from right t_o left 0 through 15: 

1 
5 0 

+-------------------------------+ I I :A 

+-------------------------------+ 
Figure 2-2: Word Format 

A word is specified by its address A. 
word is only supported in PRISM 
instructions. 

NOTE 

A word is a 16-bit value. The 
by zero extended load and store 

PRISM implementations are likely to impose a 
significant performance penalty on access to word 
operands that are not naturally aligned. (A naturally 
aligned word has zero as the low order bit of its 
address.) 

NOTE 

\On many of the VAX implementations unaligned operands 
incurred approximately a 2x performance penalty, i.e., 
two memory references in place of one. It is expected 

. that most PRISM implementations will implement 
unaligned accesses via software exceptions with the 
operating system providing emulation of the load or 
store of the unaligned data. The performance penalty 
may be expected to be up to a lOOx depending on the 
particular implementation.\ 
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2.2.3 Longword 

A longword is four contiguous bytes starting on an arbitrary byte 
boundary. The bits are numbered from right to left 0 through 31: 

3 
1 0 

+---------------------------------------------------------------+ 
I :A 
+---------------------------------------------------------------+ 

Figure 2-3: Longword Format 

A longword is specified by its address A, the address of the byte 
containing bit 0. When interpreted arithmetically, a longword is a 
twos complement integer with bits of increasing significance going O 
through 30. Bit 31 is the sign bit. The value of the integer is in 
the range -2,147,483,648 •• 2,147,483,647. For the purposes of 
addition, subtraction, and comparison, PRISM instructions also provide 
direct support for the interpretation of a longword as an unsigned 
integer with bits of increasing significance going 0 through 31. The 
value of the unsigned integer is in the range o •• 4,294,967,295. 

NOTE 

PRISM implementations are likely to impose a 
significant performance penalty on access to longword 
operands that are not naturally aligned. (A naturally 
aligned longword has zero as the low order two bits of 
its address.) 
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2.2.4 Quadword 

A quadword is eight contiguous bytes starting on an arbitrary byte 
boundary. The bits are numbered from right to left 0 through 63: 

3 
1 0 

+---------------------------------------------------------------+ 
I :A 
+---------------------------------------------------------------+ 
I I :A+4 
+---------------------------------------------------------------+ 

6 3 
3 2 

Figure 2-4: Quadword Format 

A quadword is specified by its address A, the address of the byte 
containing bit O. A quadword is a 64-bit value. The quadword is only 
supported in PRISM by load and store instructions. 

NOTE 

PRISM implementations are likely to impose a 
significant performance penalty on access to quadword 
operands that are not naturally aligned. (A naturally 
aligned quadword has zero as the low order three bits 
of its address.) 
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An F floating datum is four contiguous bytes starting on an arbitrary 
byte-boundary. The bits are labeled from right to left 0 through 31. 

1 1 
5 4 7 6 0 

+-+---------------+-------------+ 
ISi exp fraction :A 
+-+---------------+-------------+ 
I fraction I :A+2 
+-------------------------------+ 

Figure 2-5: F_floating Format 

An F floating datum is specified by its address A, the address of the 
byte- containing bit O. The form of an F floating datum is sign 
magnitude with bit 15 the sign bit, bits <14:7>-an excess 128 binary 
exponent, and bits <6:0> and <31:16> a normalized 24-bit fraction with 
the redundant most significant fraction bit not represented. Within 
the fraction, bits of increasing significance go from 16 through 31 
and 0 through 6. The 8-bit exponent field encodes the values 0 
through 255. An exponent value of 0 together with a sign bit of O, is 
taken to indicate that the F floating datum has a value of o. 
Exponent values of 1 •• 255 indicate true binary exponents of -127 •• 127. 
An exponent value of 0, together with a sign bit of 1, is taken as 
reserved. Floating-point instructions processing a reserved operand 
take an Arithmetic exception (see Chapter 6, Exceptions and 
Interrupts, Section 6.4.l). The value of an F floating datum is in 
the approximate range 0.29*10**-38 •• 1.7*10**38. The precision of an 
F floating datum is approximately one part in 2**23, i.e., typically 7 
decimal digits. 

NOTE 

PRISM implementations are likely to impose a 
significant performance penalty on access to 
F floating operands that are not naturally aligned. 
(A naturally aligned F floating datum has zero as the 
low-order two bits of its address). 
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2.2.6 G_floating 

A G floating datum is eight contiguous bytes starting on an arbitrary 
byte boundary. The bits are labeled from right to left 0 through 63: 

l 1 
5 4 4 3 0 

+-+---------------------+-------+ 
ISi exp I fract I :A 
+-+---------------------+-------+ 
I fraction I :A+2 
+-------------------------------+ 
I fraction I :A+4 
+-------------------------------+ 
I fraction I :A+6 
+-------------------------------+ 

Figure 2-6: G_floating Format 

A G floating datum is specified by its address A, the address of the 
byte containing bit o. The form of a G floating datum is sign 
magnitude with bit 15 the sign bit, bits <14:4>-an excess 1024 binary 
exponent, and bits <3:0> and <63:16> a normalized 53-bit fraction with 
the redundant most significant fraction bit not represented. Within 
the fraction, bits of increasing significance go from 48 through 63, 
32 through 47, 16 through 31, and 0 through 3. The 11-bit exponent 
field encodes the values 0 through 2047. An exponent value of O 
together with a sign bit of 0, is taken to indicate that the 
G floating datum has a value of o. Exponent values of 1 •• 2047 
indicate true binary exponents of -1023 •• 1023. An exponent value of 
0, together with a sign bit of 1, is taken as reserved. 
Floating-point instructions processing a reserved operand take an 
Arithmetic exception (see Chapter 6, Exceptions and Interrupts, 
Section 6.4.1). The value of a G floating datum is in the approximate 
range 0.56*10**-308 •• 0.9*10**308.- The precision of a G floating datum 
is approximately one part in 2**52, i.e., typically 15 aecimal digits. 

NOTE 

PRISM implementations are likely to impose a 
significant performance penalty on access to 
G floating operands that are not naturally aligned. 
(A naturally aligned G floating datum has zero as the 
low-order three bits of-its address.) 

• 
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The following VAX data types are not directly supported in PRISM 
hardware, (see the VAX Architecture Standard for detailed information 
on these data types)-.--

0 Octaword 

0 D_floating 

0 H_floating 

0 Variable Length Bit Field 

0 Character String 

0 Trailing Numeric String 

0 Leading Separate Numeric String 

0 Packed Decimal String 

0 Queues 
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1. Removed signed and unsigned descriptions for Byte, Word, and 
Quadword. 

2. Changed formatting as per Rev 1.0 format. 

Revision 0.0, July 5, 1985 

1. First Review Distribution 
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CHAPTER 3 

INSTRUCTION FORMATS 

3.1 PRISM REGISTERS 

3.1.1 Scalar Registers 

There are 64 scalar registers (RO through R63), each 32 bits wide. Rl 
is the stack pointer (SP). 

When RO is specified as a register source operand, a zero valued 
operand is supplied. When RO is specified as a register destination, 
the result of the operation is discarded. If an exception is detected 
during the execution of an instruction that specifies RO as the 
destination, it is UNPREDICTABLE whether or not the exception is 
actually signaled. 

Some instructions read and write quadword register operands. Quadword 
register operands must be specified in even-odd register pairs. Bits 
<31:0> of the quadword are in the even register and bits <63:32> are 
in the odd register. If bit <O> of an instruction register field 
specifying a quadword operand is not 0, the result of the operation is 
UNPREDICTABLE. ' 

When RO is specified as a quadword source operand, bits <31:0> are 
zero and bits <63:32> are UNPREDICTABLE. When RO is specified as a 
quadword destination, bits <31:0> are ignored (IGN) and bits <63:32> 
(the contents of Rl) are UNPREDICTABLE. 

3.1.2 Vector Registers 

There are 16 vector registers, each containing 64 elements numbered 0 
through 63. Each element is 64 bits wide. A vector instruction that 
reads or writes longword or F_floating data reads bits <31:0> of each 
source element and writes bits <31:0> of each destination element. 
Bits <63:32> of the destination element are UNPREDICTABLE. 

If the same vector register is used as both a source and a destination 
in a Vector Gather (VGATH) instruction, the result of the operation is 
UNPREDICTABLE. 
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The 6-bit Vector Length regis~er (VL) controls how many vector 
elements are processed. VL is loaded prior to executing a vector 
instruction. Once loaded, VL specifies the length of all subsequent 
vector instructions until VL is loaded with a new value. When VL is 
zero, 64 elements are processed; otherwise VL elements are processed. 

The Vector Mask register (VM) has 64 bits, each corresponding to an 
element in a vector register. Bit 0 corresponds to vector element o. 
The vector mask is used by the vector compare, merge, and IOTA 
instructions. 

The 7-bit Vector Count register (VC) receives the length of the offset 
vector generated by the IOTA instruction. 

3.1.3 Program Counter 

The Program Counter (PC) is a special register that addresses the 
instruction stream. As each instruction is decoded the PC is advanced 
to the beginning of the next sequential instruction. This is referred 
to as the •updated Pc.• Any instruction that uses the value of the PC 
will use the updated PC. The PC includes only bits <31:2> with bits 
<l:O> treated as RAZ/IGN. This quantity is a longword aligned byte 
address. The PC is not mapped to a scalar register, rather it is an 
implied operand on conditional branch and subroutine jump 
instructions. 

3.2 NOTATION 

The notation used to describe the operation of each instruction is 
given as a sequence of control and assignment statements in an 
ALGOL-like syntax. 

3.2.1 Scalar Operand Values 

The notations Rav and Rbv are used to denote the values of the two 
scalar source operands, Ra and Rb. 

Rav refers to the value of the Ra operand. This could be the contents 
of scalar register Ra or a zero extended 8-bit literal in the case of 
an Operate format instruction. If the instruction calls for a 
quadword operand then the contents of the even-odd register pair 
designated by Ra is used or again, a zero extended 8-bit literal may 
be specified. 

Rbv refers to the 
scalar register 
then the contents 
used. 

value of the Rb operand. This is the contents of 
Rb. If the instruction calls for a quadword operand 
of the even-odd register pair designated by Rb is 
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Other Expression Operands: 

IPR x 

PC 

PS 

QRn 

Rn 

Vn 

X[m] 

3.2.2 Operators 

Contents of Internal Processor Register x 

Updated PC value 

Processor Status 

Quadword contents of even-odd scalar register n 

Contents of scalar register n 

Vector register n 

Element m of array X 

The following operators are used: 

+ 

* 
*U 

I 

<-

11 

{} 

(x) 

x<m:n> 

ACCESS(x,y) 

AND 

BIT_ROTATE(x,y) 

Comment delimiter 

Addition 

Subtraction 

Signed multiplication 

Unsigned multiplication 

Division 

Replacement 

Bit concatenation 

Indicates explicit operator precedence 

Contents of memory location whose address is x 

Contents of bit field of x defined by bits 
n thru m 

Accessibility of the location whose address is x 
using the access mode y. 

Logical product 

Left circular shift of the first operand by the 
second operand 
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LEFT_SHIFT(x,y) Logical left shift of first operand by the second 
operand 

NOT 

OR 

RELATIONSHIP 

LT 

LTU 

LE 

LEU 

EQ 

NE 

GE 

GEU 

GT 

GTU 

Logical (ones) complement 

Logical sum 

Less than signed 

Less than unsigned 

Less or equal signed 

Less or equal unsigned 

Equal signed and unsigned 

Not equal signed and unsigned 

Greater or equal signed 

Greater or equal unsigned 

Greater signed 

Greater unsigned 

REM(x,y) Remainder of x and y, such that x REM y has the 
same sign as the dividend x 

ARITH_SHIFT(x,y) Arithmetic shift right of first operand by the 
second operand 

RIGHT_SHIFT(x,y) Logical right shift of first operand by the 
second operand 

SEXT(x) 

TEST(x) 

XOR 

ZEXT(x) 

X is sign extended to the required size 

Contents of register x tested for branch 
condition true 

Logical difference 

X is zero extended to the required size 

The following conventions are used: 

l. Only operands appearing on the left-hand 
replacement operator are modified. 

side of a 
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2. No operator precedence is assumed other than that replacement 
(<-) has the lowest precedence. Explicit precedence is 
indicated by the use of "{}." 

3. All arithmetic, logical, and relational operators 
in the context of their operands. For example, 
to G floating operands means a G floating add 
applTed to longword operands is an integer add. 
"LS" is a G floating comparison when applied to 
operands and an integer comparison when applied 
operands. 

3.3 INSTRUCTION FORMATS 

There are five PRISM instruction formats. They are: 

l. Memory 

2. Branch 

3. Operate 

4. Epicode 

s. Coprocessor 

are defined 
"+" applied 
while "+" 
Similarly, 
G_floating 

to longword 

All instruction formats are 32 bits long with a 6-bit major opcode 
field in bits <31:26> of the instruction. There are up to three 6-bit 
register fields, Ra, Rb, and Re, in an instruction. 

Each format is described below. 

3.3.l Memory Instruction Format 

The Memory format is used to transfer data between scalar registers 
and memory, loading an effective address, and for subroutine jumps. 
It has the following format: 
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0 
+-----------+-----------+-----------+---------------------------+ 
I opcode I Ra I Rb I Memory_disp I 
+-----------+-----------+-----------+---------------------------+ 

Figure 3-1: Memory Instruction Format 

There is a 6-bit opcode field, two 6-bit register address fields, Ra 
and Rb, and a 14-bit signed displacement field. 

The displacement field is a signed byte offset and is added to the 
contents of register Rb to form a virtual address. 

The virtual address is used as a memory load/store address or a result 
value depending on the specific instruction. The virtual address (va) 
is computed as follows: 

va <- Rbv + SEXT(Memory_disp) 

3.3.2 Branch Instruction Format 

The Branch format is used for the conditional branch instructions and­
PC relative subroutine jumps. It has the following format: 

3 
l 

2 2 
6 5 

2 1 
0 9 0 

+-----------+-----------+---------------------------------------+ 
I opcode I Ra I Branch_disp I 
+-----------+-----------+---------------------------------------+ 

Figure 3-2: Branch Instruction Format 

There is a 6-bit opcode field, one 6-bit register address field (Ra), 
and a 20-bit signed displacement field. 

The displacement is treated as a signed longword offset. This means 
it is shifted left two bits {to address a longword boundary), sign 
extended to 32 bits and added to the updated PC to form the target 
virtual address. The target virtual address {va) is computed as 
follows: 

va <- PC+ {4*SEXT(Branch_disp)} 
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The Operate format is used for instructions that perform 
register-to-register operations. The Operate format allows the 
specification of one destination operand and two source operands. One 
of the source operands can be a literal constant. The Operate format 
is shown below for the two cases when bit <8> of the instruction, the 
Literal field (L), is 0 and l. 

3 
l 

2 2 
6 5 

2 l 
0 9 

l l 
4 3 9 8 7 6 5 0 

+-----------+-----------+-----------+---------+-+---+-----------+ 
I opcode I Ra I Rb I func IOISBZI Re 
+-----------+-----------+-----------+---------+-+---+-----------+ 
+-----------+-----------+-----------+---------+-+---+-----------+ 
I opcode I lit I Rb I func llllitl Re 
+-----------+-----------+-----------+---------+-+---+-----------+ 

Figure 3-3: Operate Instruction Format 

There is a 6-bit opcode field and a 5-bit function field (func). 
Unused function encodings produce UNPREDICTABLE but not UNDEFINED 

~ results: i.e., they are not security holes. 

There are three operand fields, Ra, Rb, and Re. 
specifies either a scalar or vector operand 
instruction. If a vector operand field contains 
number greater than 15, the result of the 
UNPREDICTABLE. Note that vector register VO can 
scalar register RO. 

Each operand field 
as defined by the 
a vector register 

vector operation is 
contain data, unlike 

The Ra field specifies a source operand. Scalar operands can specify 
a literal or a scalar register using the literal control bit (L) in 
the instruction. Vector operands can specify a vector register only. 
The result of the vector operation is UNPREDICTABLE if a literal is 
specified for a vector operand. 

If L is O, the Ra field specifies a source register operand. Bits 
<7:6> of the instruction Should Be Zero. 

If L is 1, an 8-bit zero extended literal constant is formed by 
combining the Ra field with bits <7:6> of the instruction. The 
literal is interpreted as a positive integer between 0 and 255 and is 
zero extended to 32 bits (64 bits for quadword operands). 
Symbolically the scalar Rav operand is formed as follows, 
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IF L EQ 1 THEN 
Rav <- ZEXT(inst<25:20> 

ELSE 
BEGIN 
Rav <- Ra 
QRav <- QRa 
END 

I I inst<7: 6>) 

!longword 
!quadword 

The Rb field specifies a source operand. Symbolically the scalar Rbv 
operand is formed as follows, 

Rbv <- Rb 
QRbv <- QRb 

!longword 
!quadword 

The Re field specifies a destination operand. 

3.3.3.1 Convert Instructions 

Convert instructions use a subset of the Operate format and perform 
register-to-register conversion operations. The Ra operand specifies 
the source and the Rb field Should Be Zero. 

3.3.4 Epicode Instruction Format 

The Extended Processor Instruction (Epicode) format is used to specify 
extended processor functions. It has the following format: 

3 
1 

2 2 
6 5 

1 1 
4 3 6 5 0 

+-----------+-----------------------+---------------+-----------+ 
I opcode I//////// SBZ //////////1 Epicode func I/// SBZ ///I 
+-----------+-----------------------+---------------+-----------+ 

Figure 3-4: Epicode Instruction Format 

The 8-bit Epicode function field specifies the operation. 

The source and destination operands for Epicode 
supplied in fixed scalar registers that are 
individual instruction descriptions. 

instructions 
specified in 

are 
the 

An opcode of zero and an Epicode function of zero specify the HALT 
instruction. 

\The Epicode function field can be used to form a hardware dispatch 
address. The processor transfers control to a function specific 
Epicode routine. Many of the complex instructions that implement the 
privileged architecture, e.g., MxPR, REI, etc., are implemented as 
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Epicode routines. In addition, memory management (TB fill) and 
hardware exception handling (Translation Not Valid fault, arithmetic 
trap) may be performed in Epicode. However, some Epicode functions 
may be implemented in hardware. 

Epicode instructions must drain the pipeline so that user exceptions 
resulting from prior instructions will not be reported after entering 
the Epicode routine. The signaling of user exceptions has priority 
over the execution of the Epicode instruction. See Chapter 10 on 
Epicode for more details.\ 

3.3.5 Coprocessor Instruction Format 

The Coprocessor format is used for reading and writing Coprocessor 
registers. It has the following format: 

3 
1 

2 2 
6 5 

2 1 
0 9 

1 
0 9 8 0 

+-----------+-----------+-------------------+-+-----------------+ I opcode I Ra I Co-Pree Control ITI Co-Proc Address I 
+-----------+-----------+-------------------+-+-----------------+ 

Figure 3-5: Coprocessor Instruction Format 

There is a 6-bit opcode field, a 6-bit Ra field, a 10-bit Coprocessor 
control field, a 1-bit trap enable field (T), and a 9-bit Coprocessor 
address field. 

The Ra field on a Coprocessor Read or Write specifies a PRISM 
destination or source scalar register, respectively. 

The Coprocessor control field is transmitted to the coprocessor to 
control the operation performed. 

The Coprocessor address field selects a specific coprocessor in a 
system with multiple coprocessors. 

The trap enable field (T) is used to enable exceptions on transactions 
with a coprocessor. See Chapter 4, Instruction Descriptions, Page 
4-99. 

The Coprocessor instruction format may be omitted in a subset 
implementation that does not provide a Coprocessor interface. 
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l. Change register width from 64 bits to 32 bits. 

2. Remove PC from scalar registers. 

3. Specify RO reads zero, writes are ignored. 

4. Specify SP mapped to register Rl. 

5. Defined quadwords in even-odd register pairs. 

6. Renamed Move format to Memory format. 
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7. Changed Operate format to write Re and use Ra field for 
literal. 

8. Eliminated Operate format address calculation. 

9. Eliminated JSR and Convert format descriptions. 

10. Added vector registers, VM, VL, vc. 
ll. Added Coprocessor instruction format. 

Revision 0.0, 5 July 1985 

1. First review distribution. 
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CHAPTER 4 

INSTRUCTION DESCRIPTIONS 

4.1 INSTRUCTION SET OVERVIEW AND NOTATION 

This Chapter describes the instructions 
architecture. The instruction set is 
sections: 

1. Memory Load and Store 

2. Integer arithmetic 

3. Logical and Shift 

4. Floating-point arithmetic 

5. Control 

6. Miscellaneous 

7. Privileged 

8. Coprocessor 

implemented by the PRISM 
divided into the following 

Within each major section, closely related instructions are combined 
into groups and described together. The instruction group description 
is composed of the following: 

o The group name. 

o The format of each instruction in the group. This gives the 
name, access type, and data type of each instruction operand. 

o The operation of the instruction. 

o Exceptions specific to the instruction. 

o The mnemonic and name of each instruction in the group. 
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o Programming examples and optional notes on the instruction. 

4.1.1 Subsetting Rules 

An instruction that is omitted in a subset implementation of the PRISM 
architecture means that the instruction is not performed in either 
hardware or Epicode. System software may provide emulation routines 
for subsetted instructions. The following groups of instructions may 
be omitted as a group in a subset implementation. If one instruction 
in a group is provided then all other instructions in that group must 
be provided. 

1. Integer Multiplication (MULV, MULL, MULH, UMULH) 

2. Integer Division and Remainder (DIV, DIVV, REM) 

3. Add F floating (ADDF, ADDFZ, ADDFU, ADDFUZ) 
Subtrict F floating (SUBF, SUBFZ, SUBFU, SUBFUZ) 
Compare F Iloating (CMPFEQ, CMPFNE, CMPFLT, CMPFLE, CMPFGT, 
CMPFGE) -

4. Convert Longword Integer to F floating (CVTLF; CVTLFZ) 
Convert F_floating to Longwora Integer (CVTFL, CVTFLZ) 

5. Convert F floating to G floating (CVTFG) 
Convert G-floating to -F_floating (CVTGF, CVTGFZ, CVTGFU, 
CVTGFUZ) -

6. Multiply F_floating (MULF, MULFZ, MULFU, MULFUZ) 

7. Divide F_floating (DIVF, DIVFZ, DIVFU, DIVFUZ) 

8. Add G floating (ADDG, ADDGZ, ADDGU, ADDGUZ) 
Subtrict G floating (SUBG, SUBGZ, SUBGU, SUBGUZ) 
Compare G Iloating (CMPGEQ, CMPGNE, CMPGLT, CMPGLE, CMPGGT, 
CMPGGE) -

9. Convert Longword Integer to G floating (CVTLG) 
Convert G_f loating to Longword Integer (CVTGL, CVTGLZ) 

10. Multiply G_floating (MULG, MULGZ, MULGU, MULGUZ) 

11. Divide G_floating (DIVG, DIVGZ, DIVGU, DIVGUZ) 

12. The vector instructions (including the instructions that read 
and write vector count (VC), vector length (VL), and vector 
mask (VM)) 
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13. Coprocessor instructions (COPRD, COPWR) 

The individual instruction 
instruction can be subsetted. 

4.1.2 Vector Instructions 

descriptions indicate whether an 

The PRISM architecture provides vector instructions for most 
arithmetic and data movement operations. There are 16 vector 
registers, each 64 elements long. All vector instructions use the 
Operate instruction format. Most vector instructions get their source 
operands from one or two vector registers and write their results to 
another vector register. There are also vector load and store 
instructions to move data between memory and the vector registers. 

Generally two variations of each vector instruction is provided. 
operates on data from two vector registers and writes the result 
a destination vector register. The other variant operates on 
from a scalar register and a vector register, writing the result 
a destination vector register. 

One 
into 
data 
into 

The instruction descriptions distinguish the two variations by 
specifying in the first instruction operand position a vector operand 
(Va) or a scalar operand (Ra or a literal). This corresponds to the 
register field "Ra" in the Operate format instruction. The actual 
opcode assignment for each variation is different. 

Vector instructions are only executed when Vector Enable (VEN) is set 
in the Processor Status (PS). If PS<VEN> is clear, a Vector Enable 
exception is generated when a vector instruction is executed. See 
Chapter 6, Exceptions and Interrupts, Sections 6.2 and 6.4.4.3. 

4.1.3 Instruction Operand Notation 

The notation·used to describe instruction operands follows from the 
operand specifier notation used in the VAX Architecture Standard. 
Instruction operands are described as followS:-

where: 

1. 

<narne>.<access type><data type> 

Name specifies the instruction field (Ra, Rb, Re, or 
and register type of the operand (scalar or vector). 
be one of the following: 

o disp - The displacement field of the instruction. 

disp) 
It can 

o Ra - A scalar register operand in the Ra field of the 
instruction. 
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0 #a - A scalar literal operand in the Ra field of the 
instruction. 

0 Rb - A scalar register operand in the Rb field of the 
instruction. 

0 Re - A scalar register operand in the Re field of the 
instruction. 

0 Va - A vector register operand in the Ra field of the 
instruction. 

0 Vb - A vector register operand in the Rb field of the 
instruction. 

0 Ve - A vector register operand in the Re field of the 
instruction. 

2. Access type is a letter denoting the operand access type: 

3. 

o a - The operand is used in an address calculation to 
form an effective address. The data type code which 
follows indicates the units of addressability (or scale 
factor) applied to this operand when the instruction is 
decoded, e.g., •.al" means scale by~ (longwords) to get 
byte units (used in branch displacements), •.ab" means 
the operand is already in byte units (used in load/store 
instructions). 

o i - The operand is an 8-bit immediate literal in the 
instruction. 

o r - The operand is read only. 

o w - The operand is write only. 

Data type is a letter denoting the data type of the operand: 

0 b - Byte 

0 f - F_floating 

0 g - G_f loating 

0 1 - Longword 

0 q - Quadword 

0 w - Word 

0 x - The data type is specified by the instruction 
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Quadword and G floating data that are in scalar registers 
must be in even-odd register pairs. The even register number 
should be specified in the instruction register fields. 
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4.2 MEMORY LOAD/STORE INSTRUCTIONS 
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The instructions in this section move data between the scalar 
registers and memory, move data between the vector registers and 
memory, and perform interlocked operations on shared memory data. 

They use the Memory and Epicode instruction formats. The instructions 
are summarized below: 

Mnemonic Operation -------- ---------
LOA Load Address 

LDB Load Zero Extended Byte 
LDW Load Zero Extended Word 
LDL Load Longword 
LDQ Load Quadword 

RMAQI Read, Mask, Add Quadword, Interlocked 

STB Store Byte 
STW Store Word 
STL Store Longword 
STQ Store Quadword 

VLDL Vector Load Longword: 
VLDQ Vector Load Quadword 
VGATHL Vector Gather Longword 
VGATHQ Vector Gather Quadword 

VSTL Vector Store Longword 
VSTQ Vector Store Quadword 
VSCATQ Vector Scatter Quadword 
VSCATL Vector Scatter Longword 
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Load Address 

Format: 

LDA disp.ab(Rb.ab),Ra.wl 

Operation: 

Ra <- Rbv + SEXT(disp) 

Exceptions: 

None 

Opcodes: 

LDA Load Address 

Description: 
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!Memory format 

The virtual address is computed by adding register Rb to the sign 
extended 14-bit displacement. The 32-bit result is written to 
register Ra. 

When Rb is RO the signed 14-bit displacement is written to register 
Ra. 
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Load Memory Data into Scalar Register 

Format: 

LD disp.ab(Rb.ab),Ra.wx 

Operation: 

va <- Rbv + SEXT(disp) 

Ra <- ZEXT((va)<7:0>) 
Ra <- ZEXT((va)<l5:0>) 
Ra <- (va)<31:0> 
QRa <- (va)<63:0> 

Exceptions: 

Opcodes: 

Access Violation 
Fault On Read 
Scalar Alignment 
Translation Not Valid 

!LDB 
!LDW 
!LDL 
!LDQ 

Page 4-8 
22 December 1985 

!Memory format 

LDB Load Zero Extended Byte from Memory to Register 
LDW Load Zero Extended Wor~ from Memory to Register 
LDL Load Longword from Memory to Register 
LDQ Load Quadword from Memory to Register Pair 

Description: 

The virtual address is computed by adding register Rb to the sign 
extended 14-bit displacement. The source operand is fetched from 
memory, zero extended to a longword for LDB and LDW, and written to 
register Ra. 

LDQ fetches a quadword from memory and writes it to the even-odd 
register pair specified by Ra. 

Software Note: 

In some implementations these instructions may be emulated if the 
memory operand is not naturally aligned. This could be on the order 
of 100 times slower. Consequently, when compilers can detect this, 
e.g., a field in a packed record, they should emit the 
multi-instruction sequence inline to fetch the operand in pieces 
rather than incur the emulation overhead. 
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Read, Mask, Add Quadword Interlocked 

Format: 
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RMAQI !Epicode format 

Operation: 

R4 contains the quadword aligned virtual address 
QR6 contains the quadword mask data 
QR8 contains the quadword addend data 
QR4 receives the quadword read data 

addr <- R4 
IF addr<2:0> NE 0 THEN 

{Illegal Operand exception} 

{check for ACV, FOR, FOW, TNV and take Memory Management exception} 

QR4 <- (addr){interlocked} !acquire hardware interlock. 

(addr){interlocked} <- {QR4 AND QR6} + QR8 
!release hardware interlock 

Exceptions: 

Opcodes: 

Access Violation 
Fault On Read 
Fault On Write 
Illegal Operand 
Translation Not Valid 

RMAQI Read, Mask, Add Quadword, Interlocked 

Description: 

The quadword aligned memory operand, whose virtual address is in R4, 
is fetched and written to QR4. The memory operand is ANDed with the 
mask in QR6 and then added to the addend data in QR8. The result is 
then written to the original memory location. 

This instruction performs an interlocked memory access in that no 
other processor in a multiprocessor system can perform an interlocked 
operation on the same operand until the current interlocked operation 
has completed. 

If the operand address in R4 is not quadword aligned an Illegal 
Operand exception is signaled. The operation is UNPREDICTABLE if 
RMAQI accesses I/O space. If both Fault On Read and Fault On Write 
conditions exist, it is UNPREDICTABLE which is taken. 
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Store Scalar Register Data into Memory 

Format: 
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ST Ra.rx,disp.ab(Rb.ab) !Memory format 

Operation: 

va <- Rbv + SEXT(disp) 

(va) <- Rav<7:0> 
(va) <- Rav<l5:0> 
(va) <- Rav 
(va) <- QRav 

Exceptions: 

Opcodes: 

Access Violation 
Fault On Write 
Scalar Alignment 
Translation Not Valid 

!STB 
!STW 
!STL 
!STQ 

STB Store Byte from Register to Memory 
STW Store Word from R~gister to Memory 
STL Store Longword from Register to Memory 
STQ Store Quadword from Register Pair to Memory 

Description: 

The virtual address is computed by adding register Rb to the sign 
extended 14-bit displacement. The Ra operand is written to memory at 
this address. 

STQ stores to memory the contents of the even-odd register pair 
specified by Ra. 

Software Note: 

In some implementations these instructions may be emulated if the 
memory operand is not naturally aligned. This could be on the order 
of 100 times slower. Consequently, when compilers can detect this, 
e.g., a field in a packed record, they should emit the 
multi-instruction sequence inline to store the operand in pieces 
rather than incur the emulation overhead. 
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Load Memory Data into Vector Register 

Format: 

VLD 
VLD 

Operation: 

Ra.rl,Rb.rl,Vc.wx 
#a.ib,Rb.rl,Vc.wx 

va <- Rbv 
FOR i <- 0 TO VL-1 

BEGIN 
IF {va unaligned} THEN 

{Vector Alignment Exception} 

Vc[i] <- (va)<31:0> !VLDL 
Vc[i] <- (va)<63:0> !VLDQ 

Page 4-11 
22 December 1985 

! Operate format 

va <- va +Rav !Increment by stride 
END 

Exceptions: 

Opcodes: 

Access Violation 
Fault On Read 
Translation Not Valid 
Vector Alignment 

VLDL 
VLDQ 

Load Longword Vector from Memory to Vector Register 
Load Quadword Vector from Memory to Vector Register 

Description: 

The source operand vector is fetched from memory and written to vector 
register Ve. The length of the vector is specified by the VL 
register. The virtual address of the vector is computed using the 
base address in Rb and the stride in Ra. The address of element i 
(0 LE i LE VL-1) is computed as {Rbv + {i*Rav}}. The stride can be 
either positive or negative. 

In VLDL, bits <31:0> of each destination vector element receive the 
memory data and bits <63:32> are UNPREDICTABLE. 

If the vector operand is not naturally aligned in memory a Vector 
Alignment exception occurs. 

An implementation may allow multiple vector streams or scalar and 
vector streams to proceed concurrently on the same processor. It is 
the responsibility of software to determine when read/write memory 
data conflicts might produce incorrect results and insert DRAIN 
instructions to ensure correct operation. 

These instructions may be omitted in a subset implementation. 
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Gather Memory Data into Vector Register 

Format: 

VGATH 
VGATH 

Ra.rl,Vb.rl,Vc.wx 
#a.ib,Vb.rl,Vc.wx 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
va <-Rav+ Vb[i]<31:0> 
IF {va unaligned} THEN 

{Vector Alignment exception} 

Vc[i] <- (va)<31:0> 
Vc[i] <- (va)<63:0> 
END 

Exceptions: 

Opcodes: 

Access Violation 
Fault On Read 
Translation Not Valid 
Vector Alignment 

!VGATHL 
!VGATHQ 
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!Operate format 

VGATHL 
VGATHQ 

Gather Longword Vector from Memory to Vector Register 
Gather Quadword Vector from Memory to Vector Register 

Description: 

The source operand vector is fetched from memory and written to vector 
register Ve. The length of the vector is specified by the VL 
register. The virtual address of the vector is computed using the 
base address in Ra and the longword element offsets in vector register 
Vb. The address of element i (0 LE i LE VL-1) is computed as 
{Rav+ Vb[i]}. The longword element offset can be either positive or 
negative. 

In VGATHL, bits <31:0> of each destination vector element receive the 
memory data and bits <63:32> are UNPREDICTABLE. 

If any vector element is not naturally aligned in memory, a Vector 
Alignment exception occurs. 

An implementation may allow multiple vector streams or scalar and 
vector streams to proceed concurrently on the same processor. It is 
the responsibility of software to determine when read/write memory 
data conflicts might produce incorrect results and insert DRAIN 
instructions to ensure correct operation. 

These instructions may be omitted in a subset implementation. 
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Note: 
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If the same vector register is used as both a source (Vb) and a 
destination (Ve), the result of the operation is UNPREDICTABLE. 
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Store Vector Register Data into Memory 

Format: 

VST 
VST 

Ra.rl,Rb.rl,Vc.rx 
#a.ib,Rb.rl,Vc.rx 

Operation: 

va <- Rbv 

FOR i <- 0 TO VL-1 
BEGIN 
IF {va unaligned} THEN 

{Vector Alignment exception} 

(va) <- Vc[i]<31:0> 
(va) <- Vc[i] 
va <- va + Rav 
END 

Exceptions: 

Opcodes: 

Access Violation 
Fault On Write 
Translation Not Valid 
Vector Alignment 
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! Operate format 

!VSTL 
!VSTQ 
!Increment by stride 

VSTL 
VSTQ 

Store Longword Vector from Vector Register to Memory 
Store Quadword Vector from Vector Register to Memory 

Description: 

The source operand vector is read from vector register Ve and written 
to memory. The length of the vector is specified by the VL register. 
The virtual address of the vector is computed using the base address 
in Rb and the stride in Ra. The address of element i (0 LE i LE VL-1) 
is computed'as {Rbv + {i*Rav}}. The stride can be either positive or 
negative. 

If the vector operand is not naturally aligned in memory, a Vector 
Alignment exception occurs. 

An implementation may allow multiple vector streams or scalar and 
vector streams to proceed concurrently on the same processor. It is 
the responsibility of software to determine when read/write memory 
data conflicts might produce incorrect results and insert DRAIN 
instructions to ensure correct operation. 

The order in which the elements are stored is UNPREDICTABLE. 

These instructions may be omitted in a subset implementation. 
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Scatter Vector Register Data into Memory 

Format: 

VSCAT 
VSCAT 

Ra.rl,Vb.rl,Vc.rx 
#a.ib,Vb.rl,Vc.rx 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
va <- Rav+ Vb[i]<31:0> 
IF {va unaligned} THEN 

{Vector Alignment exception} 

(va) <- Vc[i]<31:0> 
(va) <- Vc[i] 
END 

Exceptions: 

Opcodes: 

Access Violation 
Fault On Write 
Translation Not Valid 
Vector Alignment 
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!Operate format 

!VSCATL 
!VSCATQ 

VSCATL 
VSCATQ 

Scatter Longword Vector from Vector Register to Memory 
Scatter Quadword Vector from Vector Register to Memory 

Description: 

The source operand vector is read from vector register Ve and written 
to memory. The length of the vector is specified by the VL register. 
The virtual ~ddress of the vector is computed using the base address 
in Ra and the longword element offsets in vector register Vb. The 
address of element i (0 LE i LE VL-1) is computed as {Rav+ Vb[i]}. 
The longword element offset can be either positive or negative. 

If any vector element is not naturally aligned in memory, a Vector 
Alignment exception occurs. 

An implementation may allow multiple vector streams or scalar and 
vector streams to proceed concurrently on the same processor. It is 
the responsibility of software to determine when read/write memory 
data conflicts might produce incorrect results and insert DRAIN 
instructions to ensure correct operation. 

An implementation may store the vector elements in 
therefore, the order in which the elements are 
UNPREDICTABLE. 

parallel: 
stored is 

These instructions may be omitted in a subset implementation. 
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4.3 INTEGER ARITHMETIC INSTRUCTIONS 

The integer arithmetic instructions perform add, subtract, multiply, 
divide, remainder, and signed and unsigned compare operations. 

The integer instructions are summarized below: 

Mnemonic 

ADD 
ADDV 

CMPEQ 
CMPNE 
CMPLT 
CMPLE 
CMPGT 
CMPGE 

CMPULT 
CMPULE 
CMPUGT 
CMPUGE 

DIV 
DIVV 

REM 

MULV 
MULL 
MULH 
UMULH 

SUB 
SUBV 

Operation 

Add Longword with no Overflow Detect 
Add Longword with Overflow Detect 

Compare Signed Longword Equal 
Compare Signed Longword Not Equal 
Compare Signed Longword Less Than 
Compare Signed Longword Less Than or Equal 
Compare Signed Longword Greater Than 
Compare Signed Longword Greater Than or Equal 

Compare Unsigned Longword Less Than 
Compare Unsigned Longword Less Than or Equal 
Compare Unsigned Longword Greater Than 
Compare Unsigned Longword Greater Than or Equal 

Divide Longword with no overflow Detect 
Divide Longword with overflow Detect 

Longword Remainder 

Multiply Longword with overflow Detect 
Multiply Longword and Return Low 32 Product Bits 
Multiply Longword and Return High 32 Product Bits 
Unsigned Multiply Longword and Return High 32 
Product Bits 

Subtract Longword with no overflow Detect 
Subtract Longword with Overflow Detect 
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Mnemonic 

VADD 
VADDV 

VCMPEQ 
VCMPNE 
VCMPLT 
VCMPLE 
VCMPGT 
VCMPGE 

VDIV 
VDIVV 

VREM 

VMULL 
VMULV 

VSUB 
VSUBV 

Operation 

Vector Add Longword with no Overflow Detect 
Vector Add Longword with Overflow Detect 

Vector Compare Signed Longword Equal 
Vector Compare Signed Longword Not Equal 
Vector Compare Signed Longword Less Than 
Vector Compare Signed Longword Less Than or Equal 
Vector Compare Signed Longword Greater Than 
Vector Compare Signed Longword Greater Than or Equal 

Vector Divide Longword with no Overflow Detect 
Vector Divide Longword with Overflow Detect 

Vector Longword Remainder 

Vector Multiply Longword and Return Low 32 Product 
Vector Multiply Longword with Overflow Detect 

Vector Subtract Longword with no Overflow Detect 
Vector Subtract Longword with Overflow Detect 

Bits 
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Integer Add 

Format: 

ADD 
ADD 

Operation: 

Ra.rl,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 

Re <- Rav + Rbv 

Exceptions: 

Integer Overflow 

Opcodes: 

Add Integer with no Overflow Detect 
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!Operate format 

ADD 
ADDV Add Integer with Longword Overflow Detect 

Description: 

Register Ra or a literal is added to register Rb and the 32-bit sum is 
written to register Re. If integer overflow is detected, an Integer 
Overflow exception occurs. 

The unsigned~compare instructions can be used to generate carry. 
After adding two values, if the sum is less unsigned than either one 
of the inputs, there was a carry out of the most significant bit. 



. ~. 

INSTRUCTION DESCRIPTIONS Company Confidential 
INTEGER ARITHMETIC INSTRUCTIONS 

Integer Signed Compare 

Format: 

Page 4-19 
22 December 1985 

CMP 
CMP 

Ra.rl,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 

!Operate format 

Operation: 

IF Rav SIGNED RELATION Rbv THEN 
Re <- 1 -

ELSE 
Re <- 0 

Exceptions: 

Opcodes: 

None 

CMPEQ 
CMPNE 
CMPLT 
CMPLE 
CMPGT 
CMPGE 

Description: 

Compare 
Compare 
Compare 
Compare 
Compare 
Compare 

Signed Longword Equal 
Signed Longword Not Equal 
Signed Longword Less Than 
Signed Longword Less Than or 
Signed Longword Greater Than 
Signed Longword Greater Than 

Register Ra or a literal is compared to Register Rb. 
relationship is true, the value one is written 
otherwise, zero is written to Re. 

Equal 

or Equal 

If the specified 
to register Re; 
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Integer Unsigned Compare 

Format: 
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CMP 
CMP 

Ra.rl,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 

! Operate format 

Operation: 

IF Rav UNSIGNED RELATION Rbv THEN 
Re <- 1 -

ELSE 
Re <- 0 

Exceptions: 

None 

Opcodes: 

Compare Unsigned Longword Less Than CMPULT 
Of PULE 
CMPUGT 
CMPUGE 

Compare Unsigned Longword Less Than or Equal 
Compare Unsigned Longword Greater Than 
Compare Unsigned Longword Greater Than or Equal 

Descrip_tion: 

Register Ra or a literal is compared to Register Rb. 
relationship is true, the value one is written 
otherwise, zero is written to Re. 

If the specified 
to register Re: 
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Integer Divide 

Format: 

DIV Ra.rl,Rb.rl,Rc.wl 
DIV #a.ib,Rb.rl,Rc.wl 

Operation: 

Re <- Rbv I Rav 

Exceptions: 

Opcodes: 

Integer Divide by Zero 
Integer Overflow 
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!Operate format 

DIV Divide Longword with no Overflow Detect 
DIVV Divide Longword with Overflow Detect 

Description: 

Register Rb is divided by register Ra or a literal and the quotient is 
written to register Re. 

DIV suppresses the detection of integer overflow. The quotient result 
with a zero divisor is UNPREDICTABLE. 

These instructions may be omitted in a subset implementation. 
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Integer Remainder 

Format: 

REM 
REM 

Operation: 

Ra.rl,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 

Re <- REM(Rbv, Rav) 

Exceptions: 

Integer Divide by Zero 

Opcodes: 

REM Longword Integer Remainder 

Description: 
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! Operate format 

Register Rb is divided by register Ra or a literal and the remainder 
is written to register Re. The remainder is calculated such that it 
has the same sign as the dividend operand. 

The REM result is UNPREDICTABLE when the divisor is zero. 

This instruction may be omitted in a subset implementation. 
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Integer Multiply 

Format: 

MUL 
MUL 

Operation: 

Ra.rl,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 
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!Operate format 

tmp <- Rav * Rbv 
tmp <- Rav *U Rbv 
Re <- tmp<31:0> 
Re <- tmp<63:32> 

!Signed multiply for MULV, MULL, MULH 
!Unsigned multiply for UMULH 
!MULV and MULL 
!MULH and UMULH 

Exceptions: 

Integer Overflow 

Opcodes: 

MULV Multiply Longword with Overflow Detect 

The following instructions do not detect overflow: 

MULL 
MULH 
UMULH 

Multiply Longword and Return Low 32 Product Bits 
Multiply Longword and Return High 32 Product Bits 
Unsigned Multiply Longword and Return High 32 
Product Bits 

Description: 

Register Ra or a literal is multiplied by register Rb and either the 
least or most significant 32 bits of the 64-bit product are written to 
the destination register. The multiplication is signed for MULV, 
MULL, and MULH, and unsigned for UMULH. 

MULV writes the least significant 
detection. If integer overflow 
exception occurs. 

32 product 
is detected, 

bits with overflow 
an Integer Overflow 

MULL writes the least significant 32 product bits with no overflow 
detection. 

MULH and UMULH write the most significant 32 product bits. 

These instructions may be omitted in a subset implementation. 
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Integer Subtract 

Format: 

SUB 
SUB 

Ra.rl,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 

Operation: 

Re <- Rbv - Rav 

Exceptions: 

Integer Overflow 

Opcodes: 
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!Operate format 

SUB Subtract Longword with no Overflow Detect 
SUBV Subtract Longword with Overflow Detect 

Description: 

Register Ra or a literal is subtracted from register Rb and the 32-bit 
difference is written to register Re. If integer overflow is 
detected, an Integer Overflow exception occurs. 

The unsigned compare instructions can be used to generate borrow. If 
the minuend (Rbv) is less unsigned than the subtrahend.(Rav), there 
will be a borrow. 
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Vector Integer Add 

Format: 

VADD 
VADD 
VADD 

Va.rl,Vb.rl,Vc.wl 
Ra.rl,Vb.rl,Vc.wl 
#a.ib,Vb.rl,Vc.wl 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- Va[i]<31:0> + Vb[i]<31:0> 
Vc[i] <-Rav+ Vb[i]<31:0> 
END 

Exceptions: 

Integer Overflow 

Opcodes: 
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!Operate format 

!Vector + Vector 
!Scalar + Vector 

VADD 
VADDV 

Vector Add Longword with no Overflow Detect 
Vector Add Longword with Overflow Detect 

Description: 

A vector operand (in register Va) or a scalar operand (in register Ra 
or a literal) is added, element-wise, to vector register Vb and the 
32-bit sum is written to vector register Ve. Only bits <31:0> of each 
vector element participate in the operation. Bits <63:32> of the 
destination vector elements are UNPREDICTABLE. The length of the 
vector is specified by the VL register. 

If integer overflow is detected, an Integer Overflow exception occurs 
when the vector operation completes. 

These instructions may be omitted in a subset implementation. 
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Vector Integer Compare 

Format: 

VCMP 
VCMP 
VCMP 

Va.rl,Vb.rl 
Ra.rl,Vb.rl 
#a.ib,Vb.rl 

!Operate format 

Operation: 

VM <- 0 
FOR i <- 0 TO VL-1 

BEGIN 
!Vector cmp Vector 

IF Va[i]<31:0> SIGNED RELATION Vb[i]<3l:O> THEN 
VM<i> <- 1 

IF Rav SIGNED RELATION Vb[i]<31:0> 
VM<i> <- 1-

END 

!Scalar cmp Vector 
THEN 

Exceptions: 

Opcodes: 

None 

VCMPEQ Vector Compare Signed Longword Equal 
VCMPNE Vector Compare Signed Longword Not Equal 
VCMPLT Vector Compare Signed Longword Less Than 
VCMPLE Vector Compare Signed Longword Less Than or Equal 
VCMPGT Vector Compare Signed Longword Greater Than 
VCMPGE Vector Compare Signed Longword Greater Than or Equal 

Description: 

A vector operand (in register Va) or a scalar operand (in register Ra 
or a literal) is compared, element-wise, with vector register Vb. The 
length of the vector is specified by the VL register. The Vector Mask 
register (VM) is cleared at the start of the operation. For each 
element comparison, if the specified relationship is true, the Vector 
Mask bit (VM<i>) corresponding to the vector element is set to l. 
Only bits <31:0> of each vector element participate in the operation. 

These instructions may be omitted in a subset implementation. 
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Vector Integer Divide 

Format: 

VDIV 
VDIV 
VDIV 

Va.rl,Vb.rl,Vc.wl 
Ra.rl,Vb.rl,Vc.wl 
#a.ib,Vb.rl,Vc.wl 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- Vb[i]<31:0> I Va(i]<31:0> 
Vc[i] <- Vb[i]<31:0> I Rav 
END 

Exceptions: 

Opcodes: 

Integer Divide by Zero 
Integer Overflow 
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!Operate format 

!Vector I Vector 
!Vector I Scalar 

VDIV 
VDIVV 

Vector Divide Longword with no Overflow Detect 
Vector Divide Longword with Overflow Detect 

Description: 

Vector register Vb is divided, element-wise, by a vector operand (in 
register Va) or a scalar operand (in register Ra or a literal) and the 
32-bit quotient is written to vector register Ve. Only bits <31:0> of 
each vector element participate in the operation. Bits <63:32> of the 
destination vector elements are UNPREDICTABLE. The length of the 
vector is specified by the VL register. 

If integer overflow or integer divide 
Overflow or Integer Divide By Zero 
when the vector operation completes. 
divisor is UNPREDICTABLE. 

by zero is detected, an Integer 
exception (possibly both) occurs 
The quotient result with a zero 

These instructions may be omitted in a subset implementation. 
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Vector Integer Remainder 

Format: 

VREM 
VREM 
VREM 

Va.rl,Vb.rl,Vc.wl 
Ra.rl,Vb.rl,Vc.wl 
#a.ib,Vb.rl,Vc.wl 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
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!Operate format 

Vc[i] <- REM(Vb[i]<31:0>, Va[i]<31:0>) !Vector REM Vector 
Vc[i] <- REM(Vb[i]<31:0>, Rav) !Vector REM Scalar 
END 

Exceptions: 

Integer Divide by Zero 

Opcodes: 

VREM Vector Longword Remainder 

Description: 

Vector register Vb is divided, element-wise, by a vector operand (in 
register Va) or a scalar operand (in register Ra or a literal) and the 
32-bit remainder is written to vector register Ve. The remainder is 
calculated such that it has the same sign as the dividend operand. 
Only bits <31:0> of each vector element participate in the operation. 
Bits <63:32> of the destination vector elements are UNPREDICTABLE. 
The length of the vector is specified by the VL register. 

If integer divide by zero is detected, an Integer Divide By Zero 
exception occurs when the vector operation completes. The remainder 
result with a zero divisor is UNPREDICTABLE. 

This instruction may be omitted in a subset implementation. 
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Vector Integer Multiply 

Format: 

VMUL 
VMUL 
VMUL 

Operation: 

va.rl,Vb.rl,Vc.wl 
Ra.rl,Vb.rl,Vc.wl 
#a.ib,Vb.rl,Vc.wl 

FOR i <- 0 TO VL-1 
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!Operate format 

BEGIN !Vector * Vector 
Vc[i] <- {Va[i]<31:0> * Vb[i]<31:0>}<3l:O> 

Vc[i] <- {Rav * Vb[i]<31:0>}<31:0> 
END 

!Scalar * Vector 

Exceptions: 

Opcodes: 

Integer Overflow 

VMULL Vector Multiply Longword with no Overflow Detect 
VMULV Vector Multiply Longword with Overflow Detect 

Description: 

A vector operand (in register Va) or a scalar operand (in register Ra 
or a literal) is multiplied, element-wise, by vector register Vb and 
the least significant 32 bits of the signed 64-bit product are written 
to vector register Ve. Only bits <31:0> of each vector element 
participate in the operation. Bits <63:32> of the destination vector 
elements are UNPREDICTABLE. The length of the vector is spec_ified by 
the VL register. 

If integer overflow ls detected, an Integer Overflow exception occurs 
when the vector operation completes. 

These instructions may be omitted in a subset implementation. 
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Vector Integer Subtract 

Format: 

VSUB 
VSUB 
VSUB 

Va.rl,Vb.rl,Vc.wl 
Ra.rl,Vb.rl,Vc.wl 
#a.ib,Vb.rl,Vc.wl 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
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!Operate format 

Vc[i] <- Vb[i]<3l:O> - Va[i]<31:0> !Vector - Vector 
Vc[i] <- Vb[i]<31:0> - Rav !Vector - Scalar 
END 

Exceptions: 

Integer Overflow 

Opcodes: 

VSUB 
VSUBV 

Description: 

Vector Subtract Longword with no Overflow Detect 
Vector Subtract Longword with Overflow Detect 

A vector operand (in register Va} or a scalar operand (in register Ra 
or a literal) is subtracted, element-wise, from a vector operand (in 
register Vb). The 32-bit difference is writte~ to vector register Ve. 
Only bits <31:0> of each vector element participate in the operation. 
Bits <63:32> of the destination vector elements are UNPREDICTABLE. 
The length of the vector is specified by the VL register. 

If integer overflow is detected, an Integer Overflow exception occurs 
when the vector operation completes. 

These instructions may be omitted in a subset implementation. 
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4.4 LOGICAL AND SHIFT INSTRUCTIONS 

The logical instructions perform longword Boolean operations. The 
shift instructions perform left and right logical shift, right 
arithmetic shift, and rotate operations. These are surrunarized below: 

Mnemonic 

AND 
BIC 
OR 
ORNOT 
XOR 
EQV 

Operation 

Logical Product 
Logical Product with Complement 
Logical Sum 
Logical Sum with Complement 
Logical Difference 
Logical Equivalence 

SLL Shift Left Logical 
SRL Shift Right Logical 
SRA Shift Right Arithmetic 
ROT Rotate 

VAND 
VBIC 
VOR 
VO RN OT 
VMERGE 
VXOR 
VEQV 

Vector Logical Product 
Vector Logical Product with Complement 
Vector Logical Sum 
Vector Logical Sum with Complement 
Vector Merge 
Vector Logical Difference 
Vector Logical Equivalence 

VSLL Vector Shift Left Logical 
VSRL Vector Shift Right Logical 

\There is no arithmetic left shift instruction because, typically, 
where an arithmetic left shift would be used, a logical shift will do. 
For multiplying by a small power of two in address computations, 
logical left shift is acceptable. Arithmetic left shift is more 
complicated because it requires overflow detection. Integer multiply 
should be used to perform an arithmetic left shift with overflow 
checking. 

Bit field 
extension 
shift. 

extracts can be done with two logical shifts. Sign 
can be done with left logical shift and a right arithmetic 

There are no quadword shifts because this requires three source 
register operands (two for data, one for count). Quadword shift 
returning a longword can be done with a three instruction sequence 
{SLL, SRL, OR).\ 
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Logical Functions 

Format: 

opcode 
opcode 

Operation: 

dst <-
dst <-
dst <-
dst <-
dst <-
dst <-

Exceptions: 

Opcodes: 

None 

AND 
OR 
XOR 
BIC 
ORN OT 
EQV 

Description: 

Ra.rl,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 

Rav AND Rbv 
Rav OR Rbv 
Rav XOR Rbv 
{NOT Rav} AND Rbv 
{NOT Rav} OR Rbv 
{NOT Rav} XOR Rbv 

Logical Product 
Logical Sum 
Logical Difference 
Bit Clear 

!AND 
!OR 
!XOR 
!BIC 
!ORNOT 
!EQV 

Logical Sum with Complement 
Logical Equivalence 
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!Operate format 

These instructions perform the designated Boolean function between 
register Ra or a literal and register Rb. The result is written to 
register Re. 

The •NOT" function can be performed by doing an ORNOT with zero (Rb = 
RO). 
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Shift Logical 

Format: 

opcode 
opcode 

Operation: 

Ra.rb,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 

Re <- LEFT SHIFT(Rbv, Rav<4:0>) 
Re <- RIGHT_SHIFT(Rbv, Rav<4:0>) 

Exceptions: 

None 

Opcodes: 

SLL Shift Left Logical 
SRL Shift Right Logical 

Description: 

Page 4-33 
22 December 1985 

!Operate format 

!SLL 
!SRL 

Register Rb is shifted logically left or right 0 to 31 bits by the 
count in register Ra or a literal. The result is written to register 
Re. Zero bits are propagated into the vacated bit positions. 

Bits <31:5> of the count operand are ignored. 
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Shift Arithmetic 

Format: 

SRA 
SRA 

Operation: 

Ra.rb,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 

Re <- ARITH_SHIFT{Rbv, Rav<4:0>) 

Exceptions: 

None 

Opcodes: 

SRA Shift Right Arithmetic 

Description: 
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!Operate format 

Register Rb is right shifted arithmetically 0 to 31 bits by the count 
in register Ra or a literal. The result is written to register Re. 
The sign bit (Rbv<31>) is propagated into the vacated bit positions. 

Bits <31:5> of the count operand are ignored. 



INSTRUCTION DESCRIPTIONS Company Confidential 
LOGICAL AND SHIFT INSTRUCTIONS 

Rotate 

Format: 

ROT 
ROT 

Operation: 

Ra.rb,Rb.rl,Rc.wl 
#a.ib,Rb.rl,Rc.wl 

Re <- BIT_ROTATE(Rbv, Rav<4:0>) 

Exceptions: 

None 

Opcodes: 

ROT Rotate Bits 

Description: 
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!Operate format 

Register Rb is rotated left 0 to 31 bits by the count in register Ra 
or literal. The result is written to register Re. 

Bits <31:5>.of the count operand are ignored. 
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Vector Logical Functions 

Format: 
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opcode 
opcode 
opcode 

Va.rl,Vb.rl,Vc.wl 
Ra.rl,Vb.rl,Vc.wl 
#a.ib,Vb.rl,Vc.wl 

!Operate format 

Operation: 

FOR i <- 0 TO VL-l 
BEGIN 
! Vector op Vector 
Vc[i] <- Va[i]<3l:O> AND Vb[i]<31:0> 
Vc[i] <- Va[i]<31:0> OR Vb[i]<31:0> 
Vc[i] <- Va(i]<31:0> XOR Vb[i]<3l:O> 
Vc[i] <- {NOT Va[i]<31:0>} AND Vb[i]<31:0> 
Vc[i] <- {NOT Va[i]<31:0>} OR Vb(i]<31:0> 
Vc[i] <- {NOT Va[i]<31:0>} XOR Vb[i]<31:0> 

! Scalar op Vector 
Vc[i] <- Rav AND Vb[i]<3l:O> 
Vc[i] <-Rav OR Vb[i]<31:0> 
Vc[i] <- Rav XOR Vb[i]<3l:O> 
Vc[i] <- {NOT Rav} AND Vb[i]<31:0> 
Vc[i] <- {NOT Rav} OR Vb[i]<31:0> 
Vc[i] <- {NOT Rav} XOR Vb[i]<31:0> 
END 

Exceptions: 

Opcodes: 

None 

VAND 
VOR 
VXOR 
VBIC 
VORNOT 
VEQV 

Description: 

Vector Logical Product 
Vector Logical Sum 
Vector Logical Difference 
Vector Logical Product with Complement 
Vector Logical Sum with Complement 
Vector Logical Equivalence 

!VAND 
!VOR 
!VXOR 
!VBIC 
!VORNOT 
!VEQV 

!VAND 
!VOR 
!VXOR 
!VBIC 
!VORNOT 
!VEQV 

A vector operand (in register Va) or a scalar operand (in register Ra 
or a literal) are combined, element-wise, using the specified Boolean 
function, with vector register Vb and the 32-bit result is written to 
vector register Ve. Only bits <31:0> of each vector element 
participate in the operation. Bits <63:32> of the destination vector 
elements are UNPREDICTABLE. The length of the vector is specified by 
the VL register. 

These instructions may be omitted in a subset implementation. 
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Vector Merge 

Format: 

VMERGE 
VMERGE 
VMERGE 

va.rq,Vb.rq,Vc.wq 
Ra.rq,Vb.rq,Vc.wq 
#a.ib,Vb.rq,Vc.wq 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
IF VM<i> EQ 0 THEN 

Ve[ i] <- Va [ i] 
ELSE 

Ve[ i] <- Vb[ i] 

IF VM<i> EQ 0 THEN 
Ve[ i] <- QRav 

ELSE 
Vc[i] <- Vb[i] 

END 

Exceptions: 

None 

Opcodes: 

VMERGE Vector Merge 

Description: 
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!Operate format 

!Vector op Vector 

!Scalar op Vector 

A vector operand (in register Va) or a scalar operand (in register QRa 
or a literal) are merged, element-wise, with vector register Vb and 
the resulting vector is written to vector register Ve. The length of 
the vector operation is specified by the VL register. 

For each vector element, i, if the corresponding Vector Mask bit 
(VM<i>) is zero, Va[i] or Qrav is written to the destination vector 
element Vc[i]. If VM<i> is one, Vb[i] is written to the destination 
vector element. 

Software Note: 

VMERGE can be used to load a vector register with a constant or to 
copy a vector register. 

This instruction may be omitted in a subset implementation. 
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Vector Shift Logical 

Format: 

opcode 
opcode 
opcode 

Va.rl,Vb.rl,Vc.wl 
Ra.rl,Vb.rl,Vc.wl 
#a.ib,Vb.rl,Vc.wl 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
! shift vector by vector 
Vc[i] <- LEFT SHIFT(Vb[i]<31:0>, 
Vc[i] <- RIGHT_SHIFT(Vb[i]<31:0>, 

! shift vector by scalar 

!Operate format 

Va[i]<4:0>) !SLL 
Va[ i ]<4: O>) ! SRL 

Vc[i] <- LEFT SHIFT(Vb[i]<31:0>, Rav<4:0>) !SLL 
Vc[i] <- RIGHT SHIFT(Vb[i]<31:0>, Rav<4:0>) !SRL 
END -

Exceptions: 

None 

Opcodes: 

VSLL Vector Shift Left Logical 
VSRL Vector Shift Right Logical 

Description: 

Each element in vector register Vb is shifted logically left or right 
0 to 31 bits by the count specified by a vector operand (in register 
Va) or a scalar operand (in register Ra or a literal). The shifted 
results are written to vector register Ve. Zero bits are propagated 
into the vacated bit positions. Only bits <4:0> of the count operand 
and bits <31:0> of each Vb element participate in the operation. Bits 
<63:32> of the destination vector elements are UNPREDICTABLE. The 
length of the vector is specified by the VL register. 

These instructions may be omitted in a subset implementation. 
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4.5 FLOATING-POINT INSTRUCTIONS 

PRISM provides instructions for operating on VAX G_floating and 
F floating-point operand formats. The floating-point arithmetic 
instructions are add, subtract, compare, multiply, and divide. Two 
rounding modes are provided: VAX rounding and round toward zero 
(chopped). 

All G floating operands must be in even-odd register pairs or the 
result of the operation is UNPREDICTABLE. 

Data conversion instructions are provided to convert operands between 
G_floating and F_floating and longword integer. 

The instructions provided are summarized below: 

Mnemonic 

ADDF 
ADDFZ 
ADD FU 
ADDFUZ 

CMPFEQ 
CMPFNE 
CMPFLT 
CMPFLE 
CMPFGT 
CMPFGE 

CVTLF 
CVTLFZ 
CVTFL 
CVTFLZ 

CVTFG 

DIVF 
DIVFZ 
DIVFU 
DIVFUZ 

MULF 
MULFZ 
MULFU 
MULFUZ 

SUBF 
SUBFZ 
SUB FU 
SUBFUZ 

Operation 

Add F floating Underflow Disabled VAX Rounding 
Add F-f loating Underflow Disabled Round toward Zero 
Add F-f loating Underflow Enabled VAX Rounding 
Add F:f loating Underflow Enabled Round toward Zero 

Compare F floating Equal 
Compare F-f loating Not Equal 
Compare F-floating Less Than 
Compare F-floating Less Than or Equal 
Compare F-floating Greater Than 
Compare F:noating Greater Than or Equal 

Convert Longword Integer to F floating VAX Rounding 
Convert Longword Integer to F-floating Round toward Zero 
Convert F floating to Longwora Integer VAX Rounding 
Convert F:f loating to Longword Integer Round toward Zero 

Convert F_floating to G_floating 

Divide F floating Underflow Disabled VAX Rounding 
Divide F-floating Underflow Disabled Round toward Zero 
Divide F-floating Underflow Enabled VAX Rounding 
Divide F:floating Underflow Enabled Round toward Zero 

Multiply F floating Underflow Disabled VAX Rounding 
Multiply F-floating Underflow Disabled Round toward Zero 
Multiply F-floating Underflow Enabled VAX Rounding 
Multiply F:floating Underflow Enabled Round toward Zero 

Subtract F floating Underflow Disabled VAX Rounding 
Subtract F-f loating Underflow Disabled Round toward Zero 
Subtract F-floating Underflow Enabled VAX Rounding 
Subtract F:floating Underflow Enabled Round toward Zero 
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Mnemonic 

ADDG 
ADDGZ 
ADDGU 
ADDGUZ 

CMPGEQ 
CMPGNE 
CMPGLT 
CMPGLE 
CMPGGT 
CMPGGE 

CVTGF 
CVTGFZ 
CVTGFU 
CVTGFUZ 

CVTLG 
CVTGL 
CVTGLZ 

DIVG 
DIVGZ 
DIVGU 
DIVGUZ 

MULG 
MULGZ 
MULGU 
MULGUZ 

SUBG 
SUBGZ 
SUBGU 
SUBGUZ 

Operation 

Add G floating Underflow Disabled VAX Rounding 
Add G-floating Underflow Disabled Round toward Zero 
Add G-floating Underflow Enabled VAX Rounding 
Add G-f loating Underflow Enabled Round toward Zero 

Compare G floating Equal 
Compare G-f loating Not Equal 
Compare G-f loating Less Than 
Compare G-floating Less Than or Equal 
Compare G-f loating Greater Than 
Compare G-f loating Greater Than or Equal 

Convert G to F floating Nounderflow VAX Rounding 
Convert G- to F-f loating Nounderflow Round toward Zero 
Convert G- to F-f loating Underflow Enabled VAX Rounding 
Convert G- to F:f loating Underflow Enabled Round toward Zero 

Convert Longword Integer to G floating 
Convert G floating to Longword Integer VAX Rounding 
Convert G:f loating to Longword Integer Round toward Zero 

Divide G floating Underflow Disabled VAX Rounding 
Di~ide G-f loating Underflow Disabled Round toward Zero 
Divide G-floating Underflow Enabled VAX Rounding: 
Divide G:f loating Underflow Enabled Round toward Zero 

Multiply G floating Underflow Disabled VAX Rounding 
Multiply G-floating Underflow Disabled Round toward Zero 
Multiply G-f loating Underflow Enabled VAX Rounding 
Multiply G:floating Underflow Enabled Round toward Zero 

Subtract G floating Underflow Disabled VAX Rounding 
Subtract G-f loating Underflow Disabled Round toward Zero 
Subtract G-floating Underflow Enabled VAX Rounding 
Subtract G:floating Underflow Enabled Round toward Zero 
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Mnemonic 

VADDF 
VADDFZ 
VADDFU 
VADDFUZ 

VCMPFEQ 
VCMPFNE 
VCMPFLT 
VCMPFLE 
VCMPFGT 
VCMPFGE 

VCVTLF 
VCVTLFZ 
VCVTFL 
VCVTFLZ 

VCVTFG 

VD I VF 
VDIVFZ 
VDIVFU 
VDIVFUZ 

VMULF 
VMULFZ 
VMULFU 
VMULFUZ 

VSUBF 
VSUBFZ 
VSUBFU 
VSUBFUZ 

Operation 

Vector Add F floating Underflow Disabled VAX Rounding 
Vector Add F-floating Underflow Disabled Round toward Zero 
Vector Add F-floating Underflow Enabled VAX Rounding 
Vector Add F-floating Underflow Enabled Round toward Zero 

Vector Compare F floating Equal 
Vector Compare F-f loating Not Equal 
Vector Compare F-floating Less Than 
Vector Compare F-floating Less Than or Equal 
Vector Compare F-floating Greater Than 
Vector Compare F-floating Greater Than or Equal 

Vector Convert Longword Integer to F floating VAX Rounding 
Vector Convert Longword Integer to F-floating Round toward Zero 
Vector Convert F floating to Longwora Integer VAX Rounding 
Vector Convert F=f loating to Longword Integer Round toward Zero 

Vector Convert F_floating to G_floating 

Vector Divide F floating Underflow Disabled VAX Rounding 
Vector Divide F-f loating Underflow Disabled Round toward Zero 
Vector Divide F-f loating Underflow Enabled VAX Rounding 
Vector Divide F=floating Underflow Enabled Round toward zero 

Vector Multiply F floating Underflow Disabled VAX Rounding 
Vector Multiply F-floating Underflow Disabled Round toward Zero 
Vector Multiply F-floating Underflow Enabled VAX Rounding 
Vector Multiply ()loating Underflow Enabled Round toward Zero 

Vector Subtract F floating Underflow Disabled VAX Rounding 
Vector Subtract F-floating Underflow Disabled Round toward Zero 
Vector Subtract F-floating Underflow Enabled VAX Rounding 
Vector Subtract F=floating Underflow Enabled Round toward Zero 
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Mnemonic 

VADDG 
VADDGZ 
VADDGU 
VADDGUZ 

VCMPGEQ 
VCMPGNE 
VCMPGLT 
VCMPGLE 
VCMPGGT 
VCMPGGE 

VCVTGF 
VCVTGFZ 
VCVTGFU 
VCVTGFUZ 

VCVTLG 
VCVTGL 
VCVTGLZ 

VD IVG 
VDIVGZ 
VDIVGU 
VDIVGUZ 

VMULG 
VMULGZ 
VMULGU 
VMULGUZ 

VSUBG 
VSUBGZ 
VSUBGU 
VSUBGUZ 

Operation 

Vector Add G floating Underflow Disabled VAX Rounding 
Vector Add G-floating Underflow Disabled Round toward Zero 
Vector Add G-f loating Underflow Enabled VAX Rounding 
Vector Add G:floating Underflow Enabled Round toward Zero 

Vector Compare G floating Equal 
Vector Compare G-f loating Not Equal 
Vector Compare G-f loating Less Than 
Vector Compare G-floating Less Than or Equal 
Vector Compare G-f loating Greater Than 
Vector Compare G-floating Greater Than or Equal 

Vector 
Vector 
Vector 
Vector 
toward 

Convert 
Convert 
Convert 
Convert 
Zero 

to F floating 
to F-float ing 
to F-float ing 
to F:float ing 

No underflow VAX Rounding 
No underflow Round toward Zero 
Underflow Enabled VAX Rounding 
Underflow Enabled Round 

Vector Convert Longword Integer to G floating 
Vector Convert G floating to Longwora Integer VAX Rounding 
Vector Convert G:f loating to Longword Integer Round toward Zero 

Vector Divide G floating Underflow Disabled VAX Rounding 
Vector Divide G-floating Underflow Disabled· Round toward Zero 
Vector Divide G-floating Underflow Enabled VAX Rounding 
Vector Divide G:floating Underflow Enabled Round toward Zero 

Vector Multiply G floating Underflow Disabled VAX Rounding 
Vector Multiply G-floating Underflow Disabled Round toward Zero 
Vector Multiply G-floating Underflow Enabled VAX Rounding 
Vector Multiply G:floating Underflow Enabled Round toward Zero 

Vector Subtract G floating Underflow Disabled VAX Rounding 
Vector Subtract G-floating Underflow Disabled Round toward Zero 
Vector Subtract G-floating Underflow Enabled VAX Rounding 
Vector Subtract G:f loating Underflow Enabled Round toward Zero 
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Literals used as floating-point operands produce UNPREDICTABLE 
results. Literals are allowed for integer source operands in convert 
instructions. 

4.5.2 Accuracy 

PRISM generates floating-point results with an error bound of 1/2 
Least Significant Bit (LSB) for all floating-point instructions using 
VAX rounding. 

General comments on the accuracy of the 
instruction set are presented here. 

PRISM floating-point 

An instruction is defined to be exact if its result, extended on the 
right by an infinite sequence of zeros, is identical to that of an 
infinite-precision calculation involving the same operands. The a 
priori accuracy of the operands is thus ignored. For all arithmetic 
operations, except DIV, a zero operand implies that the instruction is 
exact. The same statement holds for DIV if the zero operand is the 
dividend. But if it is the divisor, division is undefined, the result 
is UNPREDICTABLE, and the operation causes an Arithmetic exception. 

For non-zero:floating-point operands, the fractio~al factor is binary 
normalized with 24 or 53 bits for single (F floating) or double 
precision (G_Floating), respectively. -

\For ADD, SUB, MUL, and DIV, an overflow bit, on the left, and two 
guard bits, on the right, are necessary and sufficient to guarantee 
return of a rounded result identical to the corresponding 
infinite-precision operation rounded to the specified word length. 
Thus with two guard bits, a rounded result has an error bound of 1/2 
LSB.\ 

Note that an arithmetic result is exact if no non-zero bits are lost 
in chopping the infinite-precision result to the data length to be 
stored. Chopping is defined to mean that the 24 (F floating) or 53 
(G floating) high order bits of the normalized result fraction are 
stored; the rest of the bits are discarded. The first bit lost in 
chopping is referred to as the •rounding• bit. The value of a rounded 
result is related to the chopped result as follows: 

1. If the rounding bit is 1, the rounded result is the chopped 
result incremented by an LSB. 

2. If the rounding bit is 0, the rounded and chopped results are 
identical. 

All PRISM processors implement rounding so as to produce results · 
identical to the results produced by the following algorithm. After 
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normalization, add a 1 to the rounding bit, and propagate the carry, 
if it occurs. Note that a re-normalization may be required after 
rounding takes place. The following statements summarize the 
relations among chopped, rounded, and true (infinite-precision) 
results: 

o If a stored result is exact 

rounded value = chopped value = true value. 

o If a stored result is not exact, its magnitude is always: 

1. Less than that of the true result for chopping. 

2. Less than that of the true result for rounding if the 
rounding bit is 0. 

3. Greater than that of the true result for rounding if the 
rounding bit is 1. 

One overflow bit and two guard bits are adequate to guarantee accuracy 
of rounded ADD, SUB, MUL, or DIV, provided that the algorithms are 
properly chosen. 

o ADD or SUB: Note, first, that ADD or SUB may result in 
propagation of a carry, and hence the overflow bit is 
necessary. Second, if in ADD or SUB there is a one-bit loss 
of significance with an alignment shift of two or more bits, 
the first guard bit is needed for the LSB of the normalized 
result, and the second is then the rounding bit. Therefore, 
the three bits are necessary. A number of constraints must 
be observed in selection of the algorithms for the basic 
operations, in order for these three bits to be sufficient to 
guarantee an error bound of 1/2 LSB for unbiased rounding: 

1. If the alignment shift does not exceed two, there are no 
constraints, because no bits can be lost. 

2. If the alignment shift exceeds two (or however many guard 
bits are used, say g GE 2), no negations may be made 
after the alignment shift takes place. 

3. If the above constraint is observed, the error bound for 
a rounded result is 1/2 LSB. If, however, a negation 
follows the alignment shift, the error bound will be: 

(l/2)*(1 + 2**(-g + 2))LSB 

This is because a "borrow" will be lost on an implicit 
subtraction, if non-zero bits were lost in the alignment 
shift. Note: The error bound is l LSB if the constraint 
is ignored and there are only two guard bits (g = 2). 
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4. The constraint on no negations after the alignment shift 
may be replaced by keeping track of non-zero bits lost 
during the alignment shift, and then negating by ones 
complement if any "ones" were lost, and by twos 
complement if none were lost. If this is done, the error 
bound will be 1/2 LSB. 

o MUL: 

1. The product of two normalized binary fractions can be as 
small as 1/4, and must be less than one. The overflow 
bit is not needed for MUL, but the first guard bit will 
be necessary for normalization if the product is less 
than 1/2, and, in this case, the second guard bit is the 
rounding bit. 

2. The first constraint on MUL is that the product be 
generated from the least to the most significant bit. 
Low order bits, in positions to the right of the second 
guard bit, may be discarded, but ONLY AFTER they have 
made their contribution to carries which could propagate 
into the guard bits or beyond. 

3. For the same reasons as for ADD or SUB, if low order bits 
- of the product have been discarded, no negations can be 

made after generating the product. 

o DIV: 

1. For standard algorithms it is necessary that the 
remainder be generated exactly at each step: the overflow 
and two guard bits are adequate for this purpose. The 
register receiving the quotient must have a guard bit for 
the rounding bit, and the quotient must be developed to 
include the rounding bit. 

2. The Newton-Raphson quadratic convergence algorithms, 
which might make good use of high-speed multiplication 
logic, require a number of guard bits equal to twice the 
number of bits desired in the result if the correctness 
of the rounding bit is to be guaranteed. 



INSTRUCTION DESCRIPTIONS Company Confidential 
FLOATING-POINT INSTRUCTIONS 

4.5.3 Floating-Point Exceptions 

Page 4-46 
22 December 1985 

All floating-point exceptions are traps on PRISM (see Chapter 6, 
Exceptions and Interrupts, Section 6.4.1). The floating-point 
operation completes by writing a reserved operand with the exception 
type encoded in it. The figure below illustrates this: 

l 1 
5 4 7 6 4 3 0 

+-+---------------+-----+-------+ 
Ill 0 lxxxxxl ETYPE I :A 
+-+---------------+-----+-------+ 
lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl :A+2 
+-------------------------------+ 

1 1 
5 4 4 3 0 

+-+---------------------+-------+ 
Ill 0 I ETYPE I :A 
+-+---------------------+-------+ 
lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl :A+2 
+-------------------------------+ 
lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl :A+4 
+-------------------------------+ 
lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl :A+6 
+-------------------------------+ 

Figure 4-l: F_ and G_floating Exception Code Format 

The sign, bit <15>, is l and the exponent (bits <14:7> for F floating 
and bits <14:4> for G floating) is zero. The exception type (ETYPE) 
is encoded in bits <3:0>, so as to correspond to bits <3:0> in the 
exception summary (see Chapter 6, Exceptions and Interrupts, Figure 
6-4, Page 6-14). If multiple exceptions occur, multiple bits may be 
set in the ETYPE field. 

The state of all other bits in the result (denoted with an "x") are 
UNPREDICTABLE. 

If the Floating Underflow exception is suppressed by the instruction, 
a zero result is written to the destination register and no Underflow 
exception is signaled. Floating Overflow is always enabled. 
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ADD Ra.rx,Rb.rx,Rc.wx ! Operate format 

Operation: 

Re <- Rav + Rbv 
QRc <- QRav + QRbv 

!F floating 
!()loating 

Exceptions: 

Opcodes: 

Floating Overflow 
Floating Reserved Operand 
Floating Underflow 

The following instructions disable the Floating Underflow exception: 

ADDF 
ADDFZ 
ADDG 
ADDGZ 

Add F Floating VAX Rounding 
Add F-Floating Round toward Zero 
Add G-Floating VAX Rounding 
Add G:Floating Round toward Zero 

The following instructions enable the Floating Underflow exception: 

ADD FU 
ADDFUZ 
ADDGU 
ADDGUZ 

Description: 

Add F floating VAX Rounding 
Add F-floating Round toward Zero 
Add G-f loating VAX Rounding 
Add G-f loating Round toward Zero 

Register Ra is added to register Rb and the sum is written to register 
Re. If Floating Underflow is disabled, zero is written to the 
destination register Re when an exponent underflow occurs. 

These instructions may be omitted in a subset implementation. 
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Floating Compare 

Format: 

CMP Ra.rx,Rb.rx,Rc.wl 

Operation: 

IF Rav SIGNED RELATION Rbv THEN 
Re <- l -

ELSE 
Re <- 0 

IF QRav SIGNED RELATION QRbv THEN 
Re <- 1 -

ELSE 
Re <- 0 

Exceptions: 

Floating Reserved Operand 

Opcodes: 

CMPFEQ Compare F floating Equal 
CMPFNE Compare F-floating N~t Equal 
CMPFLT Compare F-floating Less Than 
CMPFLE Compare F-floating Less Than or 
CMPFGT Compare F-floating Greater Than 
CMPFGE Compare F:floating Greater Than 

CMPGEQ Compare G floating Equal 
-CMPGNE Compare G-floating Not Equal 
CMPGLT Compare G-floating Less Than 
CMPGLE Compare G-floating Less Than or 
CMPGGT Compare G-floating Greater Than 
CMPGGE Compare G:floating Greater Than 

Description: 
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!Operate format 

!F_floating 

!G_f loating 

Equal 

or Equal 

Equal 

or Equal 

The two F or G floating operands are compared. If 
relationship ii true, the value one is written 
otherwise, zero is written to Re. 

the specified 
to register Re: 

These instructions may be omitted in a subset implementation. 
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Convert F_Floating to G_Floating 

Format: 

CVT Ra.rf ,Rc.wg 

Operation: 

QRc <- {conversion of Rav} 

Exceptions: 

Floating Reserved Operand 

Opcodes: 

CVTFG Convert F_f loating to G_floating 

Description: 
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!Operate format 

The F floating source operand in register Ra is converted to a 
G floating result and written to register Re. No rounding is required 
because there are more fraction bits in a G_floating operand than in 
an F_floating operand. 

This instruction may be omitted in a subset implementation. 
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Convert G_Floating to F_Floating 

Format: 

CVT Ra.rg,Rc.wf 

Operation: 

Re <- {conversion of QRav} 

Exceptions: 

Opcodes: 

Floating Overflow 
Floating Reserved Operand 
Floating Underflow 
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!Operate format 

The following instructions disable the Floating Underflow exception: 

CVTGF Convert G floating to F floating VAX Rounding 
CVTGFZ Convert G:floating to F:floating Round toward Zero 

The following instructions enable the Floating Underflow exception: 

CVTGFU Convert G floating to F floating VAX Rounding 
CVTGFUZ Convert G:floating to F:floating Round toward Zero 

Description: 

The G floating source operand 
F floating result and written 
is disabled, zero is written to 
exponent underflow occurs. 

in register Ra is rounded to an 
to register Re. If Floating Underflow 
the destination register Re when an 

These instructions may be omitted in a subset implementation. 
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Convert Floating to Integer 

Format: 

CVT Ra.rx,Rc.wl 

Operation: 

Re <- {conversion of Rav} 
Re <- {conversion of QRav} 

Exceptions: 

Integer Overflow 
Floating Reserved Operand 

Opcodes: 
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!Operate format 

! F floating 
! G=float ing 

CVTFL 
CVTFLZ 
CVTGL 
CVTGLZ 

Convert F floating to Longword VAX Rounding 
Convert F-f loating to Longword Round toward Zero 
Convert G-floating to Longword VAX Rounding 
Convert G=floating to Longword Round toward Zero 

Description: 

The F or G floating source operand in register Ra is converted to a 
longword integer and written· to register Re. 

These instructions may be omitted in a subset implementation. 
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Convert Integer to Floating 

Format: 

CVT 
CVT 

Operation: 

Ra.rl,Rc.wx 
#a.ib,Rc.wx 

Re <- {conversion of Rav} 
QRc <- {conversion of Rav} 

Exceptions: 

None 

Opcodes: 
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!Operate format 

!F floating 
!G:floating 

CVTLF 
CVTLFZ 
CVTLG 

Convert Longword to F floating VAX Rounding 
Convert Longword to F-floating Round toward Zero 
Convert Longword to G:f loating 

Description: 

The longword integer source operand in register Ra or a literal is 
converted to an F or G floating result and written to register Re. 
No rounding is required on-CVTLG because the result is exact. 

These instructions may be omitted in a subset implementation. 
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DIV Ra.rx,Rb.rx,Rc.wx !Operate format 

Operation: 

Re <- Rbv I Rav 
QRc <- QRbv I QRav 

Exceptions: 

Opcodes: 

Floating Divide by Zero 
Floating Overflow 
Floating Reserved Operand 
Floating Underflow 

!F floating 
!G:floating 

The following instructions disable the Floating Underflow exception: 

The 

DIVF 
DIVFZ 
DIVG: 
DIVGZ 

following 

DIVFU 
DIVFUZ 
DIVGU 
DIVGUZ 

Description: 

Divide F floating VAX Rounding 
Divide F-f loating Round toward Zero 
Divide G-f loating VAX Rounding 
Divide_G:floating Round toward Zero 

instructions enable the Floating Underflow 

Divide F floating VAX Rounding 
Divide F-floating Round toward Zero 
Divide G-floating VAX Rounding 
Divide G:floating Round toward Zero 

exception: 

The dividend in register Rb is divided by the divisor in register Ra, 
and the quotient is written to register Re. If Floating Underflow is 
disabled, zero is written to the destination register Re when an 
exponent underflow occurs. 

These instructions may be omitted in a subset implementation. 
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MUL Ra.rx,Rb.rx,Rc.wx !Operate format 

Operation: 

Re <- Rbv * Rav 
QRc <- QRbv * QRav 

!F floating 
!G:float ing 

Exceptions: 

Opcodes: 

Floating Overflow 
Floating Reserved Operand 
Floating Underflow 

The following instructions disable the Floating Underflow exception: 

MULF 
MULFZ 
MULG 
MULGZ 

Multiply F floating VAX Rounding 
Multiply F-f loating Round toward Zero 
Multiply G-floating VAX Rounding 
Multiply G-floating Round toward Zero 

The following instructions enable the Floating Underflow exception: 

MULFU 
MULFUZ 
MULGU 
MULGUZ 

Description: 

Multiply F floating VAX Rounding 
Multiply F-floating Round toward Zero 
Multiply G-floating VAX Rounding 
Multiply G:f loating Round toward Zero 

The multiplicand in register Rb is multiplied by the multiplier in 
register Ra, and the product is written to register Re. If Floating 
Underflow is disabled, zero is written to the destination register Re 
when an exponent underflow occurs. 

These instructions may be omitted in a subset implementation. 
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Floating Subtract 

Format: 

SUB Ra.rx,Rb.rx,Rc.wx ! Operate format 

Operation: 

Re <- Rbv - Rav 
QRc <- QRbv - QRav 

Exceptions: 

Opcodes: 

Floating Overflow 
Floating Reserved Operand 
Floating Underflow 

! F floating 
!G::floating 

The following instructions disable the Floating Underflow exception: 

SUBF 
SUBFZ 
SUBG 
SUBGZ 

Subtract F floating VAX Rounding 
Subtract F-f loating Round toward Zero 
Subtract G-f loating VAX Rounding 
Subtract G::f loating Round toward Zero 

The following instructions enable the Floating Underflow exception: 

SUB FU 
SUBFUZ 
SUB GU 
SUBGUZ 

Description: 

Subtract F floating VAX Rounding 
Subtract F-f loating Round toward Zero 
Subtract G-f loating VAX Rounding 
Subtract G::f loating Round toward Zero 

The subtrahend operand in register Ra is subtracted from 
operand in register Rb, and the difference is written to 
If Floating Underflow is disabled, zero is written to the 
register Re when an exponent underflow occurs. 

the minuend 
register Re. 
destination 

These instructions may be omitted in a subset implementation. 
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Vector Floating Add 

Format: 

VADD 
VADD 

Va.rx,Vb.rx,Vc.wx 
Ra.rx,Vb.rx,Vc.wx 

!Operate format 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 

Vc[i] <- Va[i]<31:0> + Vb[i]<3l:O> 
Vc[i] <- Rav + Vb[i]<31:0> 

Vc[i] <- Va[i] + Vb[i] 
Vc[i] <- QRav + Vb[i] 
END 

!VADDF 
!Vector + Vector 
!Scalar + Vector 

!VADDG 
!Vector + Vector 
!Scalar + Vector 

Exceptions: 

Opcodes: 

Floating Overflow 
Floating Reserved Operand 
Floating Underflow 

The following instructions disable the Floating Underflow exception: 

VADDF 
VADDFZ 
VADDG 
VADDGZ 

Vector Add F Floating VAX Rounding 
Vector Add F-Floating Round toward Zero 
Vector Add G-Floating VAX Rounding 
Vector Add G:Floating Round toward Zero 

The following instructions enable the Floating Underflow exception: 

VADDFU Vector Add F floating VAX Rounding 
VADDFUZ Vector Add F-floating Round toward Zero 
VADDGU Vector Add G-floating VAX Rounding 
VADDGUZ Vector Add G:f loating Round toward Zero 

Description: 

A vector operand {in register Va) or a scalar operand (in register Ra 
or QRa) is added, element-wise, to vector register Vb and the sum is 
written to vector register Ve. The length of the vector is specified 
by the VL register. 

In VADDFx, only bits <31:0> of each vector element participate in the 
operation. Bits <63:32> of the destination vector elements are 
UNPREDICTABLE. 

If an exception is detected, it occurs when the vector operation 
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completes. If Floating Underflow is disabled, zero is written to the 
destination element when an exponent underflow occurs. 

These instructions may be omitted in a subset implementation. 
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Vector Floating Compare 

Format: 

VCMP 
VCMP 

Va.rx,Vb.rx 
Ra.rx,Vb.rx 

!Operate format 

Operation: 

VM <- 0 
FOR i <- 0 TO VL-1 

BEGIN 
!VCMPF Vector cmp Vector 

IF Va[i]<31:0> SIGNED_RELATION Vb[i]<31:0> THEN 
VM<i> <- 1 

!VCMPF Scalar cmp Vector 
IF Rav SIGNED RELATION Vb[i]<31:0> THEN 

VM<i> <- 1-
!VCMPG Vector cmp Vector 

IF Va[i] SIGNED RELATION Vb[i] THEN 
VM<i> <- 1 -

!VCMPG Scalar cmp Vector 
IF QRav SIGNED RELATION Vb[i] THEN 

VM<i> <- 1 -
END 

Exceptions: 

Floating Reserved Operand 

Opcodes: 

VCMPFEQ Vector Compare F floating Equal 
VCMPFNE Vector Compare F-floating Not Equal 
VCMPFLT Vector Compare F-floating Less Than 
VCMPFLE Vector Compare F-floating Less Than or 
VCMPFGT Vector Compare F-floating Greater Than 
VCMPFGE Vector Compare F-floating Greater Than 

Equal 

or Equal 

VCMPGEQ Vector Compare G floating Equal 
VCMPGNE Vector Compare G-floating Not Equal 
VCMPGLT Vector Compare G-floating Less Than 
VCMPGLE Vector Compare G-floating Less Than or 
VCMPGGT Vector Compare G-floating Greater Than 
VCMPGGE Vector Compare (:floating Greater Than 

Equal 

or Equal 

De script ion: 

A vector operand (in register Va) or a scalar operand (in register Ra 
or QRa) is compared, element-wise, with vector register Vb. The 
length of the vector is specified by the VL register. The Vector Mask 
register (VM) is cleared at the start of the operation. For each 
element comparison, if the specified relationship is true, the Vector 
Mask bit (VM<i>) corresponding to the vector element is set to 1. In 
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VCMPFx, only bits <31:0> of each vector element participate in the 
operation. 

If an exception is detected, it occurs when the vector operation 
completes. 

These instructions may be omitted in a subset implementation. 
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Vector Convert F_Floating to G_Floating 

Format: 

VCVT Va.rf,Vc.wg 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- {conversion of Va[i]<31:0>} 
END 

Exceptions: 

Floating Reserved Operand 

Opcodes: 
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!Operate format 

VCVTFG Vector Convert F_floating to G_floating 

Description: 

The F floating vector elements in vector register Va are converted to 
G floating results and written to vector register Ve. No rounding is 
required because all F floating fraction bits fit within a G floating 
fraction. The length of the vector is specified by the VL register. 

If an exception is detected, it occurs when the vector operation 
completes. 

This instruction may be omitted in a subset implementation. 
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Vector Convert G_Floating to F_Floating 

Format: 

VCVT Va.rg,Vc.wf 

Operation: 

FOR i <- 0 TO VL-l 
BEGIN 
Vc[i) <- {conversion of Va[i]} 
END 

Exceptions: 

Opcodes: 

Floating Overflow 
Floating Reserved Operand 
Floating Underflow 
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!Operate format 

The following instructions disable the Floating Underflow exception: 

VCVTGF Vector Convert G floating to F floating VAX Rounding 
VCVTGFZ Vector Convert G:floating to F:floating Round toward Zero 

The following instructions enable the Floating Underflow exception: 

VCVTGFU Vector Convert G floating to F floating VAX Rounding 
VCVTGFUZ Vector Convert G:floating to F:f loating Round toward Zero 

Description: 

The G floating vector elements in vector register Va are converted to 
F floating results and written to bits <31:0> of vector register Ve. 
BTts <63:32> of the destination vector elements are UNPREDICTABLE. 
The length of the vector is specified by the VL register. If Floating 
Underflow is disabled, zero is written to the destination vector 
element when an exponent underflow occurs. 

If an exception is detected, it occurs when the vector operation 
completes. 

These instructions may be omitted in a subset implementation. 
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Vector Convert Floating to Integer 

Format: 

VCVT Va.rx,Vc.wl 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- {conversion of Va[i]} 
Vc[i] <- {conversion of Va[i]<31:0>} 
END 

Exceptions: 

Opcodes: 

Floating Reserved Operand 
Integer Overflow 
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!Operate format 

!VCVTGL 
!VCVTFL 

VCVTFL Vector Convert F floating to Longword VAX Rounding 
VCVTFLZ Vector Convert F-f loating to Longword Round toward Zero 
VCVTGL Vector Convert G-f loating to Longword VAX Rounding 
VCVTGLZ Vector Convert G:f loating to Longword Round toward Zero 

Description: 

The F or G floating vector 
converted to longwords and 
register Ve. Bits <63:32> of 
UNPREDICTABLE. The length 
register. 

elements in vector register Va are 
written to bits <31:0> of the vector 
the destination vector elements are 

of the vector is specified by the VL 

If an exception is detected, it occurs when the vector operation 
completes. 

These instructions may be omitted in a subset implementation. 
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Vector Convert Integer to Floating 

Format: 

VCVT Va.rl,Vc.wx 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 

Exceptions: 

None 

Opcodes: 

Vc[i] <- {conversion of Va[i]<31:0>} 
END 
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!Operate format 

VCVTLG Vector Convert Longword to G floating 
VCVTLF Vector Convert Longword to F-floating VAX Rounding 
VCVTLFZ Vector Convert Longword to F:floating Round toward Zero 

Description: 

The longword integer vector elements in register Va are converted to 
F : or G floating results and written to vector register Ve. In 
VCVTLF, only bits <31:0> of each vector element participate in the 
operation. Bits <63:32> of the destination vector elements are 
UNPREDICTABLE. No rounding is required on VCVTLG because the result 
is exact. The length of the vector is specified by the VL register. 

These instructions may be omitted in a subset implementation. 
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Vector Floating Divide 

Format: 

VDIV 
VDIV 

Va.rx,Vb.rx,Vc.wx 
Ra.rx,Vb.rx,Vc.wx 

! Operate format 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 

Vc[i] <- Vb[i]<31:0> I Va[i]<31:0> 
Vc[i] <- Vb[i]<31:0> I Rav 

Vc[i] <- Vb[i] I Va[i] 
Vc[i] <- Vb[i] I QRav 
END 

!VDIVF 
!Vector 
!Vector 

!VDIVG 
!Vector 
!Vector 

I Vector 
I Scalar 

I Vector 
I Scalar 

Exceptions: 

Opcodes: 

Floating Divide by Zero 
Floating Overflow 
Floating Reserved Operand 
Floating Underflow 

The following instructions disable the Floating Underflow exception: 

VD I VF 
VDIVFZ 
VD IVG 
VDIVGZ 

Vector Divide F floating VAX Rounding 
Vector Divide F-f loating Round toward Zero 
Vector Divide G-f loating VAX Rounding 
Vector Divide G-f loating Round toward Zero 

The following instructions enable the Floating Underflow exception: 

VDIVFU Vector Divide F floating VAX Rounding 
VDIVFUZ Vector Divide F-f loating Round toward Zero 
VDIVGU Vector Divide G-f loating VAX Rounding 
VDIVGUZ Vector Divide G:f loating Round toward Zero 

Description: 

The dividend in vector register Vb is divided, 
divisor vector operand (in register Va) or 
register Ra or QRa), and the quotient is written 
Ve. The length of the vector is specified by the 

element-wise, by a 
a scalar operand (in 
to vector register 
VL register. 

In VDIVF, only bits <31:0> of each vector element participate in the 
operation. Bits <63:32> of the destination vector elements are 
UNPREDICTABLE. 



INSTRUCTION DESCRIPTIONS Company Confidential 
FLOATING-POINT INSTRUCTIONS 

Page 4-65 
22 December 1985 

If an exception is detected, it occurs when the vector operation 
completes. If Floating Underflow is disabled, zero is written to the 
destination vector element when an exponent underflow occurs. 

These instructions may be omitted in a subset implementation. 
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Vector Floating Multiply 

Format: 

VMUL 
VMUL 

Va.rx,Vb.rx,Vc.wx 
Ra.rx,Vb.rx,Vc.wx 

!Operate format 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 

Vc[i] <- Va[i]<31:0> * Vb[i]<31:0> 
Vc[i] <- Rav * Vb[i]<31:0> 

Vc[i] <- Va[i] * Vb[i] 
Vc[i] <- QRav * Vb[i] 
END 

!VMULF 
!Vector * Vector 
!Scalar * Vector 

!VMULG 
!Vector * Vector 
!Scalar * Vector 

Exceptions: 

Opcodes: 

Floating overflow 
Floating Reserved Operand 
Floating Underflow 

The following instructions disable the Floating Underflow exception: 

VMULF 
VMULFZ 
VMULG 
VMULGZ 

Vector Multiply F floating VAX Rounding 
Vector Multiply F-f loating Round toward Zero 
Vector Multiply G-f loating VAX Rounding 
Vector Multiply G:f loating Round toward Zero 

The following instructions enable the Floating Underflow exception: 

VMULFU 
VMULFUZ 
VMULGU 
VMULGUZ 

Description: 

Vector 
Vector 
Vector 
Vector 

Multiply F floating 
Multiply F-floating 
Multiply G-floating 
Multiply G:floating 

VAX Rounding 
Round toward 
VAX Rounding 
Round toward 

Zero 

Zero 

The multiplicand in vector register Vb is multiplied, element-wise, by 
the multiplier vector operand (in register Va) or a scalar operand (in 
register Ra or QRa), and the product is written to vector register Ve. 
The length of the vector is specified by the VL register. 

In VMULF, only bits <31:0> of each vector element participate in the 
operation. Bits <63:32> of the destination vector elements are 
UNPREDICTABLE. 

If an exception is detected, it occurs when the vector operation 
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completes. If Floating Underflow is disabled, zero is written to the 
destination vector element when an exponent underflow occurs. 

These instructions may be omitted in a subset implementation. 
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Vector Floating Subtract 

Format: 

VSUB 
VSUB 

Va.rx,Vb.rx,Vc.wx 
Ra.rx,Vb.rx,Vc.wx 

!Operate format 

Operation: 

FOR i <- 0 TO VL-1 
BEGIN 

Vc[i] <- Vb[i]<31:0> - Va[i]<31:0> 
Vc[i] <- Vb[i]<31:0> - Rav 

Vc[i] <- Vb[i] - Va[i] 
Vc[i] <- Vb[i] - QRav 
END 

!VSUBF 
!Vector - Vector 
!Vector - Scalar 

!VSUBG 
!Vector - Vector 
!Vector - Scalar 

Exceptions: 

Opcodes: 

Floating Overflow 
Floating Reserved Operand 
Floating Underflow 

The following instructions disable the Floating Underflow exception: 

VSUBF 
VSUBFZ 
VSUBG 
VSUBGZ 

Vector Subtract F floating VAX Rounding 
Vector Subtract F-floating Round toward Zero 
Vector Subtract G-floating VAX Rounding 
Vector Subtract G:floating Round toward Zero 

The following instructions enable the Floating Underflow exception: 

VSUBFU Vector Subtract F floating VAX Rounding 
VSUBFUZ Vector Subtract F-f loating Round toward Zero 
VSUBGU Vector Subtract G-floating VAX Rounding 
VSUBGUZ Vector Subtract G:floating Round toward Zero 

Description: 

A vector operand (in register Va) or a scalar operand (in register Ra 
or QRa) is subtracted, element-wise, from vector register Vb and the 
difference is written to vector register Ve. The length of the vector 
is specified by the VL register. 

In VSUBFx, only bits <31:0> of each vector element participate in the 
operation. Bits <63:32> of the destination vector elements are 
UNPREDICTABLE. 

If an exception is detected, it occurs when the vector operation 
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completes. If Floating Underflow is disabled, zero is written to the 
destination element when an exponent underflow occurs. 

These instructions may be omitted in a subset implementation. 
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4.6 CONTROL INSTRUCTIONS 

PRISM provides eight conditional branch instructions, a Fault On Bit 
instruction, and a Jump To Subroutine instruction. 

Mnemonic 

BEQ 
BNE 
BLT 
BLE 
BGT 
BGE 
BLBS 
BLBC 

FOB 

JSR 

Operation 

Branch if Register Equal to Zero 
Branch if Register Not Equal to Zero 
Branch if Register Less Than Zero 
Branch if Register Less Than or Equal to Zero 
Branch if Register Greater Than Zero 
Branch if Register Greater Than or Equal to Zero 
Branch if Register Low Bit is Set 
Branch if Register Low Bit is Clear 

Fault On Low Bit Set 

Jump to Subroutine 
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Conditional Branch 

Format: 

Bxx Ra.rl,disp.al 

Operation: 

va <- PC + {4*SEXT(disp)} 
IF TEST(Rav) THEN 

PC <- va 

Exceptions: 

Opcodes: 

None 

BEQ 
BNE 
BLT 
BLE 
BGT 
BGE 
BLBS 
BLBC 

Description: 

Branch 
Branch 
Branch 
Branch 
Branch 
Branch 
Branch 
Branch 

if Register 
if Register 
if Register 
if Register 
if Register 
if Register 
if Register 
if Register 

!Branch format 

Equal to Zero 
Not Equal to Zero 
Less Than Zero 
Less Than or equal to Zero 
Greater Than Zero 
Greater Than or Equal to Zero 
Low Bit is Set 
Low Bit is Clear 

~egister Ra is tested. If the specified relationship is true, the PC 
is loaded with the target virtual address: otherwise, execution 
continues with the next sequential instruction. 

The displacement is treated as a signed longword offset. This means 
it is shifted left two bits (to address a longword boundary), sign 
extended to 32 bits, and added to the updated PC to form the target 
virtual address. 

The conditional branch instructions are PC-relative only. The 20-bit 
signed displacement gives a forward/backward branch distance of 
+/- 512K instructions. 

The test is on the longword integer interpretation of the register 
contents. To test floating data, first compare the data with zero 
using CMPF or CMPG, and then branch on the result of the compare. 

PC-relative unconditional 
"BEQ RO,target". 

branches can be performed by 
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Format: 

FOB Ra.rl,disp.al 

Operation: 

Company Confidential 

IF Rav<O> EQ 1 THEN 
{FOB exception} 

Exceptions: 

Fault On Bit 

Opcodes: 

FOB Fault On Low Bit Set 

Description: 
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!Branch format 

Bit <O> of Register Ra is tested. If it is set to 1, a Fault On Bit 
exception is generated (see Chapter 6, Exceptions and Interrupts, 
Section 6.4.3.3: otherwise, execution continues with the next 
sequential instruction. 

The displacement field of this instruction may be used:by software to 
code exception type information. 
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Jump to Subroutine 

Format: 

JSR Ra.wl,disp.al 
JSR Ra.wl,(Rb.ab) 

Operation: 

Company Confidential 

va <- PC + {4*SEXT(disp)} 
va <- Rbv AND {NOT 3} 

Ra <- PC 
PC <- va 

Exceptions: 

None 

Opcodes: 

JSR Jump to Subroutine 

Description: 

Page 4-73 
22 December 1985 

!Branch format 
!Memory format 

!Branch format 
!Memory format 

The PC of the instruction following the JSR instruction (the updated 
PC) is written to register Ra, followed by loading :the PC with the 
target virtual address. 

The JSR instruction has two formats: Branch and Memory. 

In the Branch format, the displacement is treated as a signed longword 
offset. This means it is shifted left two bits (to address a longword 
boundary), sign extended to 32 bits, and added to the updated PC to 
form the target virtual address. 

In the Memory format, the new PC is supplied from register Rb and the 
displacement field Should Be Zero. The low two bits of the target 
address are ignored. 

An unconditional jump can be performed by "JSR RO,target". 

Co-routine linkage can be performed by specifying the same register in 
both the Ra and Rb operands. 
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4.7 MISCELLANEOUS INSTRUCTIONS 

PRISM provides the following miscellaneous instructions: 

Mnemonic 

BPT 
BUGCHK 
DRAIN 
I FLUSH 
IOTA 
MOVPS 
PROBER 
PRO BEW 
RDVC 
RDVL 
RDVMH 
RDVML 
REI 
SWASTEN 
WRVC 
WRVL 
WRVMH 
WRVML 

Operation 

Breakpoint 
System Bug Check 
Drain the Pipeline 
Flush I-Stream Cache 
Generate Compressed Iota Vector 
Move Processor Status 
Probe Read Access 
Probe Write Access 
Read Vector Count Register 
Read Vector Length Register 
Read Vector Mask Register, High Part 
Read Vector Mask Register, Low Part 
Return from Exception or Interrupt 
Swap AST Enable 
Write Vector Count Register 
Write Vector Length Register 
Write Vector Mask Register, High Part 
Write Vector Mask Register, Low Part 
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Breakpoint 

Format: 

BPT 

Operation: 

{push current PC and PS on Kernel stack} 

{Change Mode to Kernel} 

{dispatch through Breakpoint SCB vector} 

Exceptions: 

Kernel Stack Not Valid 

Opcodes: 

BPT Breakpoint 

Description: 
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!Epicode format 

This instruction is provided for program debugging. It switches to 
Kernel mode and pushes the current PC and PS on the Kernel stack. It 
then dispatches to the address in the Breakpoint sea: vector. See 
Chapter 6, Exceptions and Interrupts, Section 6.4.3.1. 
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Bug Check 

Format: 

BUGCHK !Epicode format 

Operation: 

{push current PC and PS on Kernel stack} 

{Change Mode To Kernel} 

{dispatch through BUGCHK SCB vector} 

Exceptions: 

Kernel Stack Not Valid 

Opcodes: 

BUGCHK Bug Check 

Description:. 

This instruction is used to report software-detected errors in 
software. It switches to Kernel mode and pushes the current PC 
on the Kern~l stack.· It then dispatches to the address:in the 
SCB vector. See Chapter 6, Exceptions and Interrupts, 
6.4.3.2. 

system 
and PS 
BUGCHK 

Section 
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Format: 

DRAIN 

Operation: 
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!Epicode format 

{Stall instruction issuing until all prior instructions have 
completed.} 

Exceptions: 

None 

Opcodes: 

DRAIN Drain Instruction Pipeline 

Description: 

The DRAIN instruction allows software to guarantee that in a pipelined 
implementation all previous instructions have completed before any 
more instructions are issued. For example, it should be used before 
changing an exception handler to ensure that all exceptions on 
previous in.s.tructions are processed in the current exception-handling 
environment. 

The DRAIN instruction is not issued until all 
have completed without exceptions. If an 
continuation PC in the exception stack frame 
instruction. 

previous 
exception 
points to 

instructions 
occurs, the 

the DRAIN 
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Flush Instruction Cache 

Format: 

I FLUSH 

Operation: 
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! Epicode format 

{Invalidate instruction prefetch and instruction cache} 

Exceptions: 

None 

Opcodes: 

IFLUSH Flush Instruction Cache 

Description: 

An IFLUSH instruction must be executed when software or I/0 processors 
write into the instruction stream. An implementation may contain an 
instruction cache that does not track either processor or I/O writes 
into the instruction stream. The instruction cache and any prefetched 
instructions are invalidated by an IFLUSH instruction. 

The cache coherency and sharing rules are described in Chapter 9, 
System Architecture and Programming Implications. 
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Generate Compressed Iota Vector 

Format: 

IOTA 
IOTA 

Ra.rl,Vc.wl 
#a.ib,Vc.wl 

!Operate format 

Operation: 

j <- 0 
tmp <- 0 
FOR i <- 0 TO VL-1 

BEGIN 
IF VM<i> EQ 1 THEN 

BEGIN 
Vc[j] <- tmp 
j <- j + 1 
END 

tmp <- tmp + Rav 
END 

vc <- j !return vector count 

Exceptions: 

None 

Opcodes: 

IOTA Generate Compressed Iota Vector 

Description: 

IOTA constructs a vector of offsets for use 
gather/scatter instructions VGATH and VSCAT. 

by 

IOTA first generates an iota vector of length VL using 
operand in register Ra (or a literal). An iota vector 
whose first element is zero and whose subsequent elements 
by th4' ~tride increment. For example, 

O*Rav, l*Rav, 2*Rav, 3*Rav, ••• , {VL-l}*Rav 

the vector 

the stride 
is a vector 
are spaced 

The 
Mask 
non­
des t 
is r 
leng• 

.'l vector is then compressed using the contents of the Vector 
~gister (VM). Elements of the iota vector corresponding to the 
> bits of VM are written to contiguous elements of the 

This 

ion vector register, Ve. The number of elements written to Ve 
·ned in the Vector Count register (VC) for use as a vector 
.n subsequent operations. 

:truction may be omitted in a subset implementation. 
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Move Processor Status 

Format: 

MOVPS 

Operation: 

R4 <- PS 

Exceptions: 

None 

Opcodes: 

MOVPS Move Processor Status 

Description: 
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!Epicode format 

MOVPS writes the Processor Status (PS) to register R4. The Processor 
Status is described in Chapter 6, Exceptions and Interrupts, Section 
6.2. 
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Format: 
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PROBE !Epicode format 

Operation: 

R4 contains the base address 
RS contains the signed offset 
R6 contains the access mode 
R7 receives the completion status 

Bit <O> <- 1 if success, 0 if failure 
Bit <31:1> <- 0 

first <- R4 
last <- R4+R5 
probe mode <- MAXU(R6<1:0>, PS<CM>) 
IF ACCESS(first, probe mode) AND ACCESS(last, probe_mode) THEN 

R7 <- 1 -
ELSE 

R7 <- 0 

Exceptions: 

Opcodes: 

Translation Not Valid 

PROBER Probe for Read Access 
PROBEW Probe for Write Access 

Description: 

PROBE checks the read or write accessibility of the first and last 
byte specified by the base address and the signed offset; the bytes in 
between are not checked. System software must check all pages between 
the two bytes if they are to be accessed. If both bytes are 
accessible, PROBE returns the value one in R7; otherwise, PROBE 
returns zero. The Fault On Read and Fault On Write PTE bits are not 
checked. A Translation Not Valid exception is signaled only if the 
first level PTE is invalid. 

The protection is checked against the less privileged of the modes 
specified by R6<l:O> and the Current Mode (PS<CM>). See Chapter 6, 
Exceptions and Interrupts, Section 6.2 for access mode encodings. 

PROBE is intended only to check a single datum for accessibility. It 
does not check all intervening pages because this could result in 
excessive interrupt latency. 
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Read/Write Vector Count Register 

Format: 

RDVC 
WRVC 
WRVC 

Operation: 

Rc.wl 
Ra.rl 
#a. ib 

Re <- ZEXT(VC) 

VC <- Rav<6:0> 

Exceptions: 

Opcodes: 

None 

RDVC 
WRVC 

Description: 

Read Vector Count Register 
Write Vector Count Register 
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!Operate format 

!RDVC 

!WRVC 

• RDVC reads the 7-bit Vector Count register and writes it zero extended 
to register Re. 

WRVC writes Rav<6:0> to the Vector Count register. 

The Vector Count register is also written as a result of executing the 
IOTA instruction. 

These instructione may be omitted in a subset implementation. 
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Read/Write Vector Length Register 

Format: 

RDVL 
WRVL 
WRVL 

Rc.wl 
Ra.rl 
#a. ib 

Operation: 

Re <- ZEXT(VL) 

VL <- Rav<S:O> 

Exceptions: 

None 

Opcodes: 

RDVL Read Vector Length Register 
WRVL Write Vector Length Register 

Description: 
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! Operate format 

!RDVL 

!WRVL 

RDVL reads the 6-bit Vector Length register and writes it zero 
extended to register Re. 

WRVL writes Rav<S:O> to the Vector Length register. Writing a zero to 
VL is equivalent to a vector length of 64. 

These instructione may be omitted in a subset implementation. 
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Read/Write Vector Mask Register 

Format: 

RDVM 
WRVM 
WRVM 

Rc.wl 
Ra.rl 
#a. ib 

Operation: 

Re <- VM<63:32> 
Re <- VM<31:0> 

VM<63:32> <- Rav 
VM<31:0> <- Rav 

Exceptions: 

None 

Opcodes: 
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! Operate format 

!RDVMH 
!RDVML 

!WRVMH 
!WRVML 

RDVMH 
RDVML 
WRVMH 
WRVML 

Read Vector Mask Register, High Part 
Read Vector Mask Register, Low Part 
Write Vector Mask Register, High Part 
Write Vector Mask Register, Low Part 

Description: 

RDVM reads the high or low 32 bits of the 64-bit Vector Mask register 
and writes it to register Re. 

WRVM writes the high or low 32 bits of the 64-bit Vector Mask register 
from register Ra or a literal. 

These instructions may be omitted in a subset implementation. 
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Return from Exception or Interrupt 

Format: 
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REI !Epicode format 

Operation: 

IF SP<2:0> NE 0 THEN 
{Stack Alignment exception} 

tmpl <- (SP) 
tmp2 <- (SP+4) 

IF PS<CM> NE 0 THEN 
BEGIN 

!pick up saved PS 
!pick up saved PC 

IF {tmpl<CM> LTU PS<CM>} OR 
{tmpl<MBZ> NE O} OR 
{tmpl<IPL> NE 0} THEN 
{Illegal Operand exception} 

tmpl<VEN> <- tmpl<VEN> AND PS<VEN> 
IF {NOT tmpl<VEN>} AND tmpl<VEF> THEN 

{Illegal Operand exception} 
END 

IF tmpl<VMM> EQ l THEN 
{perform TBD action} 

IF tmpl<VEF> EQ l THEN 
{perform Vector Exception Continuation} 

SP <- SP + 8 
IPR SP[PS<CM>] <- SP 
SP <- IPR_SP[tmpl<CM>] 

PC <- tmp2 AND {NOT 3} 
PS <- tmpl 

!switch stack 

{check for pending ASTs or interrupts} 

Exceptions: 

Opcodes: 

Access Violation 
Fault on Read 
Illegal Operand 
Kernel Stack Not Valid 
Stack Alignment 
Translation Not Valid 

REI Return from Exception or Interrupt 
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Description: 
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The PS and PC are popped from the current stack and held in temporary 
PS and PC registers. The new PS is checked for validity and 
consistency. If <VEF> is set in the new PS then REI will perform a 
vector exception continuation operation. See Chapter 6, Exceptions 
and Interrupts, Section 6.4.8.1 for details. The current stack 
pointer is saved and a new stack pointer is selected according to the 
new PS<CM> field. A check is made to determine if an AST or interrupt 
is pending (see Chapter 6, Exceptions and Interrupts, Section 6.7.6). 

If the enabling 
completion of 
instruction. 

Notes: 

conditions are present for an interrupt at the 
this instruction, the interrupt occurs before the next 

1. \This instruction differs from the VAX REI instruction in 
that instruction lookahead in the processor is NOT 
re-initialized. Also, there is no interrupt stack and in 
Kernel mode the checks are simplified.\ 

2. The low two bits of the new PC are ignored. 
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Swap AST Enable 

Format: 

SWASTEN 

Operation: 

tmp <- R4<0> 
R4 <- ZEXT(ASTEN<PS<CM>>) 
ASTEN<PS<CM>> <- tmp 

{check for pending ASTs} 

Exceptions: 

None 

Opcodes: 

SWASTEN Swap AST Enable for Current Mode 

Description: 
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!Epicode format 

SWASTEN swaps the AST enable bit for the current mode. The new state 
for the enable bit is supplied in register R4<0> and previous state of 
the enable bit is returned, zero extended, in R4. · 

A check is made to determine if an AST is pending (see Chapter 6, 
Exceptions and Interrupts, Section 6.7.6.4). 

If the enabling 
completion of 
instruction. 

conditions are present for an interrupt at the 
this instruction, the interrupt occurs before the next 
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4.8 PRIVILEGED INSTRUCTIONS 
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Privileged instructions are allowed in Kernel mode only; otherwise, a 
Privileged Instruction exception occurs. The following privileged 
instructions are provided: 

Mnemonic 

HALT 
MFPR 
MTPR 
RMAQIP 
SWPCTX 
SW IPL 
TB FLUSH 

Operation 

Halt Processor 
Move From Processor Register 
Move To Processor Register 
Read, Mask, Add Quadword, Interlocked, Physical 
Swap Privileged Context 
Swap IPL 
Flush Translation Buffer 
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Halt 

Format: 

HALT 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

IF {halt action} EQ HALT THEN 
{enter console mode} 

ELSE 
{enter restart sequence} 

Exceptions: 

Privileged Instruction 

Opcodes: 

HALT Halt Processor 

Description: 
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!Epicode format 

The HALT instruction stops normal instruction processing, and 
depending on the HALT action switch, the processor may either enter 
console mode or the restart sequence. See Chapter 11, System 
Bootstrapping and Console, Section 11.2.2. 
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Move.From Processor Register 

Format: 

MFPR IPR Name 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

{result <- IPR specific function} 
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!Epicode format 

! IPR specific results are returned in R4, RS, and R6. 

Exceptions: 

Privileged Instruction 

Opcodes: 

MFPR Move From Processor Register 

Description: 

The internal processor register specified by the Epicode function 
field is written to the IPR-specific scalar register(s).: Processor 
registers are implemented such that any side effects that may happen 
as the result of reading the register, e.g., interrupt request is 
cleared, are guaranteed to occur exactly once. 

See Chapter 8, Internal Processor Registers, for a description of each 
IPR. 
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Move To Processor Register 

Format: 

MTPR IPR Name 

Operation: 

Company Confidential 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 
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!Epicode format 

! R4 and RS contain IPR specific source operands 

{IPR <- result of IPR specific function} 

Exceptions: 

Privileged Instruction 

Opcodes: 

MTPR Move To Processor Register 

Description: 

The IPR-specific 
written to the 
function field. 
guaranteed to be 

source operands in scalar registers R4 and RS are 
internal processor register specified by the epicode 
The effect of loading a processor register is 

active on the next instruction. 

See Chapter 8, Internal Processor Registers, for a description of each 
IPR. 
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Read, Mask, Add Quadword, Interlocked, Physical 

Format: 
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RMAQIP !Epicode format 

Operation: 

QR4 contains the quadword aligned physical address 
QR6 contains the quadword mask data 
QRB contains the quadword addend data 
QR4 receives the quadword read data 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

addr <- QR4 AND {NOT 7} 

QR4 <- (addr){interlocked} !acquire hardware interlock 

(addr){interlocked} <- {QR4 AND QR6} + QRS 
!release hardware interlock 

Exceptions: 

Opcodes: 

Machine Check 
Privileged Instruction 

RMAQIP Read, Mask, Add Quadword, Interlocked, Physical 

Description: 

!he quadword aligned memory operand, whose physical address is in QR4, 
is fetched and written to QR4. The memory operand is ANDed with the 
mask in QR6 and then added to the addend data in QRS. The result is 
then written to the original memory location. The low three bits of 
the operand address in QR4 are ignored. 

This instruction performs an interlocked memory access in that no 
other processor in a multiprocessor system can perform an interlocked 
operation on the same operand until the current interlocked operation 
has completed. This is an Epicode instruction. 

The operation is UNDEFINED if RMAQIP accesses I/0 space. 

A reference to non-existent memory causes a Machine 
Unimplemented physical address bits are SBZ. 
UNDEFINED if any of these bits are set. 

Check exception. 
The operation is 
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Swap Privileged Context 

Format: 

SWPCTX !Epicode format 

Operation: 

! QR4 contains the physical address of the new HWPCB. 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

! Store old HWPCB contents 

(HWPCB KSP) <- SP 
IF {internal registers for stack pointers} THEN 

BEGIN 
(HWPCB ESP) <- IPR ESP 
(HWPCB-SSP) <- IPR-SSP 
(HWPCB-USP) <- IPR-USP 
END -

(HWPCB ASTSR) <- IPR ASTSR 
(HWPCB:ASTEN) <- IPR-ASTEN 

! Load new HWPCB contents 

IPR_PCBB <- QR4 

IF {ASNs not implemented} THEN 
{invalidate translation buffer entries with PTE<ASM> EQ O} 

ELSE 
IPR_ASN <- (HWPCB_ASN) 

IF {virtual instruction cache implemented} THEN 
{flush instruction cache} 

SP <- (HWPCB_KSP) 

IF {internal registers for stack pointers} THEN 
BEGIN 
IPR ESP <- (HWPCB ESP) 
IPR-SSP <- (HWPCB-SSP) 
IPR-USP <- (HWPCB:usP) 
END-

! PR PTBR <- (HWPCB PTBR) 
IPR-ASTSR <- (HWPCB-ASTSR) 
IPR-ASTEN <- (HWPCB:ASTEN) 
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The SWPCTX instruction returns ownership of the current Hardware 
Privileged Context Block (HWPCB) to the operating system and passes 
ownership of the new HWPCB to the processor. 

SWPCTX saves the privileged context from the internal processor 
registers into the HWPCB specified by the physical address in the PCBB 
internal processor register. It then loads the privileged context 
from the new HWPCB specified by the physical address in QR4. Note 
that the actual sequence of the save and restore operation is not 
specified so any overlap of the current and new HWPCB storage areas 
produces UNDEFINED results. 

The privileged context includes the four stack pointers, the Page 
Table Base Register (PTBR), the Address Space Number (ASN), and the 
AST enable and summary registers. However, PTBR is never saved in the 
HWPCB and it is UNPREDICTABLE whether or not ASN is saved. These 
values cannot be changed for a running process. The process scalar 
and vector registers are saved and restored by the operating system. 
See Chapter 7, Process Structure, Figure 7-1, for the HWPCB format. 

Any change to the current HWPCB while the processor has ownership may 
result in UNDEFINED operation. All the values in the current HWPCB 
can be read through IPRs. 

If the enabling 
completion of 
instruction. 

conditions are present for an interrupt at the 
this instruction, the interrupt occurs before the next 

Epicode sets up the PCBB at boot time to point to the HWPCB storage 
area in the Restart Parameter Block (RPB). See Chapter 11, System 
Bootstrapping and Console. 

The operation is UNDEFINED if SWPCTX accesses I/O space. 

A reference to non-existent memory causes a Machine 
Unimplemented physical address bits are SBZ. 
UNDEFINED if any of these bits are set. 

Note: 

Check exception. 
The operation is 

Processors may keep a copy of each of the per-process stack pointers 
in internal registers. In those processors, SWPCTX stores the 
internal registers into the HWPCB. Processors that do not keep a copy 
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of the stack pointers in internal registers, keep only the stack 
pointer for the current access mode in SP and switch this with the 
HWPCB contents whenever the current access mode changes. 
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Swap IPL 

Format: 

SWIPL 

Operation: 

IF PS<CM> NE 0 THEN 
{privileged instruction exception} 

tmp <- R4<2:0> 
R4 <- ZEXT(PS<IPL>) 
PS<IPL> <- tmp 

{check for pending ASTs or interrupts} 

Exceptions: 

'Privileged Instruction 

Opcodes: 

SW IPL Swap Processor IPL level 

Description: 
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!Epicode format 

SWIPL swaps the processor IPL level. The new IPL level is supplied in 
register R4<2:0> and- previous IPL level is returned in R4. 

A check is made to determine if an AST is pending (see Chapter 6, 
Exceptions and Interrupts, Section 6.7.6). 

If the enabling 
completion of 
instruction. 

conditions are present for an interrupt at the 
this instruction, the interrupt occurs before the next 
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IF PS<CM> NE 0 THEN 
{privileged instruction exception} 
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!Epicode format 

{Invalidate all translation buffer entries} 

Exceptions: 

Privileged Instruction 

Opcodes: 

TBFLUSH Flush Translation Buffer 

Description: 

The TBFLUSH instruction is used to invalidate all TB entries and 
flushes all virtual caches. To invalidate a single TB entry use the 
MTPR TBIS instruction. 
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The Coprocessor instructions provide the means to transfer data, 
control, and status information between a PRISM processor and one or 
more application-specific computing elements called coprocessors. 
They also provide the ability for a program on a PRISM processor to 
synchronize itself with the operation of a coprocessor. The actual 
operation performed by a coprocessor is implementation-specific. 

The following instructions are provided: 

Mnemonic 

COP RD 
COP WR 

Operation 

Coprocessor Read 
Coprocessor Write 
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Coprocessor Read/Write 

Format: 

COP RD 

COPWR 
COPWR 

Ra.wl,#ctrl.ix,#caddr.ix,#te.ix 

Ra.rl,#ctrl.ix,#caddr.ix,#te.ix 
#a.ib,#ctrl.ix,#caddr.ix,#te.ix 

!Coprocessor format 

Operation: 

Coprocessor[caddr] <-Rav II ctrl 

Coprocessor[caddr] <- ctrl 
Ra <- Coprocessor_data[caddr] 

IF {te EQ l} AND {Coprocessor Exception} THEN 
{take Arithmetic exception} 

Exceptions: 

Opcodes: 

Arithmetic 

COPRD Coprocessor Read 
COPWR Coprocessor Write 

Description: 

!COPWR 

!COPRD 
!COPRD 

COPRD reads data from a coprocessor and writes it to the PRISM scalar 
register Ra. COPWR writes the data in PRISM scalar register Ra to a 
coprocessor. 

The Coprocessor instruction format provides a 10-bit 
control field (ctrl operand), a 9-bit Coprocessor address 
operand) and a 1-bit trap enable field (te operand). See 
Instruction Formats, Section 3.3.5. 

Coprocessor 
field ( caddr 
Chapter 3, 

o The ctrl operand is passed to the coprocessor to control the 
operation performed. 

o The caddr operand is used to select a specific coprocessor in 
a system with more than one. 

o The te operand is used to enable exceptions on transactions 
with a coprocessor. A Coprocessor Read or Write can generate 
an exception if an exception condition is present in the 
coprocessor and te is set to 1. When the exception occurs on 
a COPRD, the value written to the PRISM destination register 
(Ra) is UNPREDICTABLE. The coprocessor may contain a status 
register that can be read with a COPRD to give additional 
information about the exception. If te is 0, the Arithmetic 
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exception is suppressed. This could be used to ignore 
exceptions (e.g., when context switching). 

These instructions may be omitted in a subset implementation that does 
not provide a Coprocessor interface. 
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1. Changed register width from 64 bits to 32 bits. 

2. Changed Epicode parameter registers to R4-R7. 

3. Changed instruction descriptions to use instruction fields. 

4. Changed MOVx mnemonics to LD/ST. 

5. Changed REI to match new privileged architecture. 

6. Changed Unbiased rounding to VAX rounding. 

1. Added RMAQI, Read, Mask, Add Quadword, Interlocked. 

8. Added RMAQIP, Read, Mask, Add Quadword, Interlocked, Physical. 

9. Added SWIPL, Swap IPL. 

10. Added SWASTEN, Swap AST enable. 

11. Added SWPCTX, Swap Privileged Context. 

12. Added FOB, Fault On Low Bit Set. 

13. Added UMULH, Unsigned 32-bit Multiply, Return High bits. 

14. Added F_Floating operations. 

15. Added floating-point exception error result. 

16. Added vector registers and vector instructions. 

17. Added Coprocessor instructions. 

18. Eliminated sign extended byte and word loads. 

19. Eliminated operate format loads and stores. 

20. Eliminated Compare address instructions. 

21. Eliminated ADDRC, Add and Return Carry. 

22. Eliminated SUBRB, Subtract and Return Borrow. 

23. Eliminated CMPUEQ, CMPUNE, Compare Unsigned Equality 

24. Eliminated Convert Quad to Long,Word,Byte instructions. 
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25. Eliminated Directed roundings to Plus and Minus Infinity. 

26. Eliminated Queue instructions. 

27. Eliminated Change Mode instructions. 

28. Eliminated USRCHK, User Check. 

29. Eliminated Quadword parameter from BUGCHK. 

30. Eliminated PROBEPx, Probe Previous Mode Read/Write. 

31. Eliminated INTON/INTOFF. 

32. Eliminated RDSP/WRTSP, Read and Write Stack Pointer. 

33. Eliminated SWIS, SWKS, Switch to Interrupt/Kernel stack. 

34. Eliminated PREFETCH. 

35. Eliminated MOVCNT, MOVCYT, Move Count/Cycle Time. 

Revision 0.0, 5 July 1985 

1. First Review Distribution 
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CHAPTER 5 

MEMORY MANAGEMENT 

5.1 INTRODUCTION 

Memory management consists of the hardware and software which control 
the allocation and use of physical memory. Typically, in a 
multiprogramming system, several processes may reside in physical 
memory at the same time: see Chapter 7, Process Structure. PRISM uses 
memory protection and multiple address spaces to ensure that one 
process will not affect other processes or the operating system. 

To further improve software reliability, four hierarchical access 
modes provide memory access control. They are, from most to least 
privileged: Kernel, Executive, Supervisor, and User. Protectlon is 
specified at the individual page level for data and instruction 
access. A page may be inaccessible or may have different data or 
instruction accessibility for each of the four access modes. Data 
accessibility can be read-only, read/write, or no access. Any 
location accessible as data to one mode is also accessible as data to 
all more privileged modes. Furthermore, for each access mode, any 
location that can be written can also be read. For instructions, 
execute access in one mode implies execute access in all more 
privileged modes. 

A program uses virtual addresses to access its data and instructions. 
However, before these virtual addresses can be used to access memory, 
they must be translated into physical addresses. Memory management 
software maintains tables of mapping information (page tables) that 
keep track of where each virtual page is located in physical memory. 
The processor utilizes this mapping information when it translates 
virtual addresses to physical addresses. 

Therefore, m~mory management provides both memory protection and 
memory mapping mechanisms. The PRISM memory management architecture 
is designed to meet several goals: 

o Provide a large address space for instructions and data. 

o Allow programs to run on hardware with physical memory 
smaller than the virtual memory used. 
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o Provide convenient and efficient sharing of instructions and 
data. 

o Allow sparse use of a large address space without excessive 
page table overhead. 

o Contribute to software reliability. 

o Provide independent 
protection. 

execute, read and write access 

o Provide an efficient mechanism for controlled entry to 
privileged operating system functions. 

5.2 VIRTUAL ADDRESS SPACE 

A virtual address is a 32-bit unsigned integer which specifies a byte 
location within the virtual address space. The programmer sees a 
linear array of 4,294,967,296 bytes. The virtual address space is 
broken into pages, which are the units of relocation, sharing, and 
protection. The page size is 8 Kbytes. Future implementations of 
PRISM may use page sizes ranging up to 64 Kbytes (see Appendix B). 
System software should, therefore, allocate regions with differing 
protection on 64-Kbyte virtual address boundaries to ensure image 
compatibility across all PRISM implementations. 

Memory management 
virtual address 
operating system 
tables, and saves 
space on external 

provides the mechanism to map the active part of the 
space to the available physical address space. The 
controls the virtual-to-physical address mapping 
the inactive (but used) parts of the virtual address 
storage media. 

The operating system must be mapped into the same part of the address 
space for every process. 

5.2.1 Virtual Address Format 

The PRISM processor genera~es a 32-bit virtual address for each 
instruction and operand in memory. The virtual address consists of 
two segment number fields, and a Byte Within Page field. 
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0 
+-----------------+-------------------+-------------------------+ 

Segl Number I Seg2 Number I Byte Within Page - -+-----------------+-------------------+-------------------------+ 
Figure 5-1: Virtual Address Format 

The segment number fields, bits <31:13> of a virtual address, specify 
the virtual page to be referenced. The Byte Within Page field, bits 
<12:0> of a virtual address, specifies the byte offset within the 
page. A page contains 8 Kbytes. 

5.3 PHYSICAL ADDRESS SPACE 

Physical addresses are, at most, 45 bits. A processor may choose to 
implement a smaller physical address space by not implementing some 
number of high order bits. The most significant implemented physical 
address bit selects memory space when it is 0, and I/0 space when it 
is l. For example, in a 30-bit physical address space, bit <29> 
selects memory or I/O space. 

5.4 MEMORY MANAGEMENT CONTROL 

Memory management is always enabled when the processor is not running 
Epicode. At processor initialization time, the processor executes 
Epicode with memory management disabled. 

5.5 PAGE TABLE ENTRIES 

The processor uses a quadword Page Table Entry (PTE) to translate 
virtual addresses to physical addresses. A PTE contains hardware and 
software control information and the physical Page Frame Number. 
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3 3 2 2 2 2 2 
l 0 9 8 7 6 5 

2 l l 
0 9 8 

l l 
6 5 0 

+-+-+-+-+-+-+-----------+-+-----+-------------------------------+ 
I 
I Page Frame Number :A 
I 
+-+-+-+-+-+-+-----------+-+-----+-------------------------------+ 
I IFIFIFIDIAI III I I 
IVIOIOIOICISI ProtectionlNI RSVDI Reserved for Software I :A+4 
I IRIWIEIVIMI IDI I I 
+-+-+-+-+-+-+-----------+-+-----+-------------------------------+ 

Figure 5-2: Page Table Entry 

Fields in the highest addressed longword are interpreted as follows: 

Bits 

31 

30 

29 

28 

Description 

Valid (V) - Indicates the validity of the DCV, ASM, FOE, FOW, 
FOR bits and the PFN field. When V is set, the DCV, ASM, FOE, 
FOW, FOR bits and the PFN fields are valid for use by 
hardware. When V is clear, the PFN field is reserved for use 
by software. 

Fault On Read (FOR) - When set, a Fault On Read exception 
occurs on an attempt to read any location in the page. 

Fault On Write (FOW) - When set, a Fault On Write exception 
occurs on an attempt to write any location in the page. 

Fault On Execute 
exception occurs 
the page. 

(FOE) When set, a Fault On Execute 
on an attempt to execute an instruction in 

27 Don't Cache Virtual (DCV) - When set, contents of locations in 
this page are not cached in a virtual cache. 

\This is intended for use in systems with virtual caches when 
shared writable pages exist at multiple virtual addresses and 
map to the same physical address.\ 

26 Address Space Match (ASM) - When set, this PTE matches all 
Address Space Numbers. 

25:20 Protection (PROT) - Indicates at what access modes a process 
can reference the page. This field is always valid in the 
final PTE and is used by the processor hardware even when V is 
clear. 

19 Indirect Page Table Pointer (IND) - If V is clear, and IND is 
set, then bits <44:0> contain the physical address of the 
indirect quadword aligned PTE, and all other bits are ignored. 
When v is set, IND is ignored. 
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18:16 

15:0 Reserved for software except when V is clear and IND is set. 

Fields in the lowest addressed longword are interpreted as follows: 

Bits Description 

31:0 Page Frame Number (PFN) - The PFN field always points to a 
page boundary. If V is set, the PFN is concatenated with the 
Byte Within Page bits of the virtual address to obtain the 
physical address. See Section 5.7. If V is clear and IND is 
clear, this field may be used by software. 

5.5.1 Changes To Page Table Entries 

The operating system changes PTEs as part of its memory management 
functions. For example, the operating system may set or clear the 
valid bit, change the PFN field as pages are moved to and from 
external storage media, or modify the software bits. The processor 
hardware never changes PTEs. 

Software must guarantee that each PTE is always consistent within 
itself. Changing a PTE one field at a time may give incorrect ~ystem 
operation, e.g., setting PTE<V> with one instruction before 
establishing PTE<PFN> with another. Execution of an interrupt service 
routine between the two instructions could use an address that would 
map using the inconsistent PTE. Software can solve this problem by 
building a complete new PTE in an even-odd register pair and then 
moving the new PTE to the page table using a Store Quadword 
instruction (STQ). 

Multiprocessing makes the problem more complicated. Another processor 
could be reading (or even changing) the same PTE that the first 
processor is changing. Such concurrent access must produce consistent 
results. Software must either use the Read Mask and Add Quadword 
Interlocked (RMAQI or RMAQIP) instruction, or use some other form of 
software synchronization to modify PTEs that are already valid. Once 
a processor has modified a valid PTE, it is possible that other 
processors in a multiprocessor system may have old copies of that PTE 
in their Translation Buffer. Software must inform other processors of 
changes to PTEs via the interprocessor interrupt mechanism and an 
associated software protocol. PTEs may be read with non-interlocked 
quadword operations if they are not being modified. Software may 
write new values into invalid PTEs using non-interlocked quadword 
store instructions (i.e., STQ). Hardware must ensure that aligned 
quadword reads and writes are indivisible operations. 
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5.6 MEMORY PROTECTION 

Memory protection is the function of validating whether a particular 
type of access is allowed to a particular page from a particular 
access mode. Access to each page is controlled by a protection code 
that specifies, for each access mode, whether data read, data write, 
or execute references are allowed. 

The processor uses the following to determine whether an intended 
access is allowed: 

o The virtual address, which is used to index page tables. 

o The intended access type (read data, write 
instruction fetch}. 

o The current access mode from the Processor Status. 

data, or 

If the access is allowed and the address can be mapped (the Page Table 
Entry is valid), the result is the physical address corresponding to 
the specified virtual address. 

The intended access is READ if the operation to be performed is a data 
read. The intended access is WRITE if the operation to be performed 
is a data write. The intended access is EXECUTE if the operation to 
be performed is an instruction fetch. 

If an operand is an address operand, then no reference is made to 
memory. Hence, the page need not be accessible nor map to a physical 
page. 

5.6.1 Processor Access Modes 

In the order of most privileged to least privileged, the four 
processor modes are: 

o Kernel 

o Executive 

o Supervisor 

o User 

The access mode of a running process is stored in the Current Mode 
field of the Processor Status (PS): see Chapter 6, Exceptions and 
Interrupts, Section 6.2. 
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5.6.2 Protection Code 

Every page in the virtual address space is protected according to its 
use. A program may be prevented from executing, reading, or modifying 
portions of its address space. Associated with each page is a 
protection code that describes the accessibility of the page for each 
processor mode. The code allows a choice of protection for each 
processor mode, within the following limits: 

o Each mode's access can be read/write, read-only, or no-access 
for data references. 

o Except for Kernel mode, each mode's access can be execute or 
no-execute for instruction execution. 

o Data and execution accessibility are specified independently. 
Thus, execute access can be allowed to a page that cannot be 
read. Also, execution access can be prevented to a page that 
can be written as data. 

o If any level has execute access then all more privileged 
levels also have execute access. 

o If any level has read access then all more privileged levels 
also have read access. 

o If any level has write access then all more privileged ievels 
also have write access. 

The protection code is specified by a 6-bit field in the 
<l:O> specify execute accessibility and bits <5:2> 
accessibility. 

PTE. Bits 
specify data 
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Table 5-1: PTE Protection Codes 

--------------------------------------------------------------------Accessibility 
---------------------------Name Mnemonic PROT Kernel Exec Super User 

<5:0> 
--------------------------------------------------------------------no data access 
reserved 
Kernel write 
Kernel read 
User write 
Exec write 
Exec read, 

Kernel write 
Exec read 
Super write 
Super read, 

Exec write 
Super read, 

Kernel write 
Super read 
User read, 

Super write 
User read, 

Exec write 
User read, 

Kernel write 
User read 

Kernel execute 
Exec execute 
Super execute 
User execute 

NDA 
RSVD 
KW 
KR-
uw-
EW-

ERKW 
ER 
sw-

SREW 

SRKW 
SR 

URSW 

UREW 

URKW 
UR_ 

KX 
EX 
sx 
ux 

OOOOxx 
OOOlxx 
OOlOxx 
OOllxx 
OlOOxx 
OlOlxx 

OllOxx 
Olllxx 
lOOOxx 

lOOlxx 

1010xx 
lOllxx 

llOOxx 

llOlxx 

lllOxx 
llllxx 

xxxxOO 
xxxxOl 
xxxxlO 
xxxxll 

none none none none 
UNPREDICTABLE 

write 
read 
write 
write 

write 
read 
write 

write 

write 
read 

write 

write 

write 
read 

execute 
execute 
execute 
execute 

none none none 
none none none 
write write write 
write none none 

read none none 
read none none 
write write none 

write read none 

read read none 
read read none 

write write read 

write read read 

read read read 
read read read 

none 
execute 
execute 
execute 

none none 
none none 
execute none 
execute execute 

The full mnemonic is obtained by concatenating the data and 
instruction execution access mnemonics. For example, UR_KX denotes 
User read, Kernel execute (code=llllOO (bin)). 
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\This encoding was chosen to simplify hardware access checking for 
implementations not using a table decoder. An access is allowed if: 

{d stream access AND {CODE<5:2> NE O} AND 
{{CODE<5:2> EQ 4} OR {CM LTU WM} OR {read_access AND {CM LEU RM}}}} 

OR 
{i_stream_access AND {CM LEU XM}} 

Where: 

CM is current processor mode 
RM is protection code <5:4> 
WM is ones complement of protection code <3:2> 
XM is protection code <l:O> 

5.6.3 Access Control Violation Fault 

An Access Control Violation fault occurs if an illegal access is 
attempted, as determined by the current processor mode and the page's 
protection field, or if the second longword of a PTE is zero. 

5.7 ADDRESS TRANSLATION 

Address translation is performed by accessing entries in a two-level 
page table structure. The Page Table Base Register (PTBR) contains 
the physical Page Frame Number of the first-level page table. If part 
of any page table resides in I/O space, or in nonexistent memory, the 
operation of the processor is UNDEFINED. 

The Page Table Base Register contains the physical Page Frame Number 
of the highest-level (Segment l) page table. Bits <31:23> of the 
virtual address are used to index into the first-level page table to 
obtain the physical Page Frame Number of the base of the second-level 
(Segment 2) page table. Bits <22:13> of the virtual address are used 
to index into the second level page table to obtain the physical Page 
Frame Number (PFN) of the page being referenced. The PFN is 
concatenated with virtual address bits <12:0> to obtain the physical 
address of the location being accessed. 

If the first-level PTE is valid, the protection bits are ignored; the 
protection code in the second-level PTE is used to determine 
accessibility. If a first-level PTE is invalid, an Access Violation 
occurs if the second longword of that PTE equals zero. An Access 
Control Violation on a first-level PTE (zero PTE) implies that all 
lower-level page tables mapped by that PTE do not exist. 

\Note that this mapping scheme does not require multiple contiguous 
nhvsical naoes. There are no lenoth reoisters. Two naoP~ (1~ Khvtes) 
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The PRISM architecture supports indirect PTEs for facilitating shared 
pages. If an indirect PTE resides in I/0 space or in nonexistent 
memory, the operation of the processor is UNDEFINED. Only one level 
of indirection is allowed at each page table level. 

\The primary benefit of indirection is that it allows the software 
bits to be maintained in a single place for shared pages. It is also 
useful for sharing page tables that map read-only code or data, e.g., 
shared runtime libraries.\ 

The algorithm to generate a physical address from a virtual address is 
shown below: 
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segl pte <- ({PTBR * 8192} + {8 * VA<31:23>}) 

IF segl pte<V> EQ 0 THEN 

!Read Physical 

BEGIN 
IF segl pte<IND> EQ 0 THEN 

IF iegl pte<63:32> EQ 0 THEN 
{inTtiate Access Control Violation fault} 

ELSE 
{initiate Translation Not Valid fault} 

ELSE 
BEGIN 
segl pte <- (segl pte<44:0>) !Read Physical 
IF segl pte<V> EQ-0 THEN 

IF segl..,..Pte<63:32> EQ 0 THEN 
{initiate Access Control Violation fault} 

ELSE 
{initiate Translation Not Valid fault} 

END 
END 

seg2_pte <- ({segl_pte<PFN> * 8192} + {8 * VA<22:13>}) !Read Physical 

IF seg2 pte<V> EQ 0 THEN 
BEGIN 
IF seg2 pte<IND> EQ 0 THEN 

IF Tseg2 pte<PROT> check fails} OR 
{seg2:J>te<63:32> EQ 0} THEN 
{initiate Access Control Violation fault} 

ELSE 
{initiate Translation Not Valid fault} 

ELSE 
BEGIN 
seg2_pte <- (seg2_pte<44:0>) !Read Physical 
IF seg2_pte<V> EQ 0 THEN 

IF {seg2_pte<PROT> check fails} OR 
{seg2__pte<63:32> EQ O} THEN 

END 
END 

{initiate Access Control Violation fault} 
ELSE 

{initiate Translation Not Valid fault} 

IF {seg2 pte<PROT> check fails} THEN 
{initiate Access Control Violation fault} 

ELSE 
BEGIN 
IF {seg2 pte<FOW> EQ l} AND {write access} THEN 

{initiate Fault On Write fault} 
IF {seg2 pte<FOR> EQ l} AND {read access} THEN 

{initiate Fault On Read fault} 
IF {seg2 pte<FOE> EQ l} AND {execute access} THEN 

{initiate Fault On Execute fault} 
Physical_Address <- {seg2_pte<PFN> * 8192} OR VA<l2:0> 
END 
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In order to save actual memory references when repeatedly referencing 
the same pages, a hardware implementation may include a mechanism to 
remember successful virtual address translations and page states. 
Such a mechanism is termed a Translation Buffer. 

When the process context is changed, a new value is loaded into the 
Address Space Number (ASN) internal processor register with a swap 
Privileged Context instruction (SWPCTX): see Chapter 4, Instruction 
Descriptions, Page 4-93 and Chapter 7, Process Structure. This causes 
address translations for pages with PTE<ASM> clear to be invalidated 
on a processor that does not implement address space numbers. 
Additionally, when the software changes any part (except for the 
Software field) of a valid Page Table Entry, it must also move a 
virtual address within the corresponding page to the Translation 
Buffer Invalidate Single (TBIS) internal processor register with the 
MTPR instruction: see Chapter 8, Internal Processor Registers, Page 
8-26. 

\Some implementations may invalidate the entire Translation Buffer on 
an MTPR to TBIASN or TBIS. In general, implementations may invalidate 
more than the required translations in the TB.\ 

The entire Translation Buffer can be 
Translation ,,_ Buff er Flush instruction 
Instruction Descriptions, Page 4-97. 

invalidated 
(TBFLUSH): 

by executing a 
see Chapter_ 4, 

t The Translation Buffer must not store invalid PTEs. Therefore, the 
software is not required to invalidate Translation Buff er entries when 
making changes for PTEs that are already invalid. 

The TBCHK internal processor register is available for interrogating 
the presence of a valid translation in the Translation Buffer: see 
Chapter 8, Internal Processor Registers, Page 8-23. 

\Hardware implementors should be aware that a single, direct mapped TB 
has a potential problem when a load/store instruction and its data map 
to the same TB location. If TB misses are handled in Epicode, there 
could be an unending loop unless the instruction is held in an 
instruction buffer or a translated physical PC is maintained by the 
hardware.\ 

5.9 ADDRESS SPACE NUMBERS 

The PRISM architecture allows a processor to optionally implement 
address space numbers (process tags) to reduce the need for 
invalidation of cached address translations for process specific 
addresses when a context switch occurs. The number of bits in the 
address space number is implementation dependent. The address space 
number for the current process is loaded by software in the Address 
Space Number (ASN) internal processor register with a Swap Privileged 
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Context instruction. ASNs are processor specific and the hardware 
makes no attempt to maintain coherency across multiple processors. In 
a multiprocessor system, software is responsible for ensuring the 
consistency of TB entries for processes that might be rescheduled on 
different processors. 

When software reassigns an address space number 
process, it must invalidate address translations 
process by executing an MTPR to the TBIASN register; 
Internal Processor Registers, Page 8-25. 

to a different 
for the previous 
see Chapter 8, 

\There are several possible ways of using ASNs. There are several 
complications in a multiprocessor system. Consider the case where a 
process that executed on processor-1 is rescheduled on processor-2. 
If a page is deleted or its protection is changed, the TB in 
processor-1 has stale data. One solution would be to send an 
interprocessor interrupt to all the processors on which this process 
could have run and cause them to invalidate the changed PTE. This 
results in significant overhead in a system with several processors. 
Another solution would be to have software invalidate all TB entries 
for a process on a new processor before it can begin execution, if the 
process executed on another processor during its previous execution. 
This ensures the deletion of possibly stale TB entries on the new 
processor. 

Invalidatiorr·of TB entries for a specific ASN can take a long time if 
the hardware does not support a mechanism to associatively invalidate 
TB entries by ASN. A possible solution to this problem would be for 
software to assign a new ASN value to a process when it is rescheduled 
on a new processor. When the processor eventually runs out of unused 
ASN values, the entire TB can be flushed by software. 

Are ASNs really a big win in multiprocessor systems? 
rid of them? \ 

5.10 MEMORY MANAGEMENT FAULTS 

Should we get 

Five types of faults are associated with memory access and protection: 

o Access Control Violation 

o Fault On Read 

o Fault On Write 

o Fault On Execute 

o Translation Not Valid 

See Chapter 6, Exceptions and Interrupts, for a detailed description 
of these faults. 



MEMORY MANAGEMENT 
MEMORY MANAGEMENT FAULTS 

Company Confidential Page 5-14 
22 December 1985 

An Access Control Violation (ACV) fault is taken when the protection 
field of the second-level PTE that maps the data indicates that the 
intended page reference would be illegal in the specified access mode. 
An Access Control Violation fault is also taken if the second longword 
of a PTE is zero. 

A Fault On Read (FOR) fault occurs when a read is attempted with 
PTE<FOR> set. A Fault On Write (FOW) fault occurs when a write is 
attempted with PTE<FOW> set. A Fault On Execute (FOE) fault occurs 
when instruction execution is attempted with PTE<FOE> set. 

A Translation Not Valid (TNV) fault is taken when a read or write 
reference is attempted through an invalid PTE in a first- or 
second-level page table. A PTE is invalid if V is clear and IND is 
clear. TNV also occurs if an indirect PTE at any level has v clear. 

Note that these five faults have distinct vectors in the System 
Control Block. The Access Control Violation fault takes precedence 
over Translation Not Valid, and Fault On Read/Write/Execute. 
Translation Not Valid, and Fault On Read/Write/Execute are mutually 
exclusive. Fault On Read and Fault On Write can occur simultaneously 
in the Read, Mask, Add Quadword Interlocked instruction, in which case 
the order that the exceptions are taken is UNPREDICTABLE: see Chapter 
4, Instruction Descriptions, Page 4-9. 
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CHAPTER 6 

EXCEPTIONS AND INTERRUPTS 

At certain times during the operation of a system, events within the 
system require the execution of software outside the explicit flow of 
control. When such an event occurs, the processor forces a change in 
control flow from that indicated by the current instruction stream. 

Some of the events are relevant primarily to the currently executing 
process, and normally invoke software in the context of the current 
process. The notification of such events is termed an exception. 

Other events are primarily relevant to other processes, or · to the 
system as a whole, and are therefore serviced in a system-wide 
context. The notification for these events is termed an interrupt. 

Some interrupts are of such urgency that they require high-priority 
service, while others must be synchronized with independent events. 
To meet these needs, the processor has priority logic that grants 
interrupt service to the highest priority event at any point in time. 

6.1.l Processor Interrupt Priority Level (IPL) 

The processor has eight Interrupt Priority Levels (IPL's) divided into 
four software levels (numbered 0 to 3), and four hardware levels 
(numbered 4 to 7). User applications and most operating system 
software Lrun at IPL 0, which may be thought of as process level. 
Higher numbered interrupt levels have higher priority: i.e., any 
request at an interrupt level higher than the processor's current IPL 
will interrupt immediately, but requests at lower or equal levels are 
def erred. 

Interrupt levels 0 to 3 exist solely for use by software. No hardware 
event can request an interrupt on these levels. Conversely, interrupt 
levels 4 to 7 exist solely for use by hardware. Software cannot 
request an interrupt at any of these levels. 
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6.1.2 Interrupts 

The processor arbitrates interrupt requests according to priority. 
When the priority of an interrupt request is higher than the current 
processor IPL, the processor will raise the IPL and service the 
interrupt request. The interrupt service routine is entered at the 
IPL of the interrupting source and does not usually change the IPL set 
by the processor. 

Interrupt requests can come from I/O Port Controllers, 
controllers, other processors, or the processor itself. 

memory 

The priority level of one processor does not affect the priority level 
of other processors. Thus, in a multiprocessor system, interrupt 
levels alone cannot be used to synchronize access to shared resources. 
Even the various urgent interrupts, including those exceptions that 
run at IPL 7, do so on only one processor. 

Synchronization with other processors in a multiprocessor system 
involves a combination of raising the IPL and executing an 
interlocking instruction sequence. Raising IPL prevents the 
synchronization sequence itself from being interrupted on a single 
processor while the interlock sequence guarantees mutual exclusion 
with other processors. 

6.1.3 Exceptions 

Most exception service routines execute at the current processor IPL 
in response to exception conditions caused by s~ftware. Serious 
system failures, however, such as machine check, raise IPL to the 
highest level (7) to minimize processor interruption until the problem 
is corrected. Exception service routines are usually coded to avoid 
exceptions: however, nested exceptions can occur. 

There are three types of exceptions: 

o A fault is an exception condition that occurs during an 
instruction and leaves the registers and memory in a 
consistent state such that elimination of the fault condition 
and subsequent re-execution of the instruction will give 
correct results. Faults are not guaranteed to leave the 
machine in exactly the same state it was in immediately prior 
to the fault, but rather in a state such that the instruction 
can be correctly executed if the fault condition is removed. 

0 An abort is an exception condition 
instruction and potentially leaves 
in an indeterminate state such that 
necessarily be correctly restarted, 
undone. 

that occurs during an 
the registers and memory 
the instruction cannot 
completed, simulated, or 
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o A trap is an exception condition that occurs at the 
completion of the operation that caused the exception. Since 
several instructions may be in various stages of execution at 
any point in time, it is possible for multiple traps to occur 
simultaneously. The next instruction address that is 
reported on traps is that of the next instruction that would 
have issued if the trapping condition had not occurred. This 
is not necessarily the address of the instruction immediately 
following the one encountering the trap condition. 
Therefore, in general, it is difficult to fix up results and 
continue program execution at the point of the trap. 
Software can force a trap to be more easily continuable 
without the need for complicated fix-up code. This is 
accomplished by placing a Drain Pipeline (DRAIN) instruction 
immediately after the instruction whose possible trap is to 
be made continuable; see Chapter 4, Instruction Descriptions, 
Page 4-77. 

For example: 

MULG 
DRAIN 

R4,R6,R8 

In this example, no further instructions are allowed to issue until 
the MULG has completed and any possible trap has been initiated. 

6.1.4 Contrast Between Exceptions And Interrupts 

Generally, exceptions and interrupts are very similar. However, there 
are five important differences: 

1. An exception condition is caused by the execution of an 
instruction while an interrupt is caused by some activity in 
the system that may be independent of any instruction. 

2. The IPL of the processor is usually not changed when the 
processor initiates an exception, while the IPL is always 
raised when an interrupt is initiated. 

3. Exceptions are always initiated immediately, no matter what 
the processor IPL is, while interrupts are deferred until the 
processor IPL drops below the IPL of the requesting source. 

4. Some exceptions can be selectively disabled by selecting 
instructions that do not check for exception conditions. If 
an exception condition occurs when checking is disabled, the 
exception will not occur on a subsequent instruction that 
does check such conditions. If an interrupt request occurs 
while the processor IPL is equal to or greater than that of 
the interrupting source, the condition will eventually 
initiate an interrupt if the interrupt request is still 
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present and the processor IPL is lowered below that of the 
interrupting source. 

5. Interrupts always set the (new) current mode to Kernel while 
exceptions set the (new) current mode to either Kernel or 
leave it the same as it was immediately prior to the 
exception. 

6.2 PROCESSOR STATE 

Processor state consists of a longword of privileged information 
called the Processor Status (PS) and a longword containing the Program 
Counter (PC), which is the 32-bit virtual address of the next 
instruction. 

When either an exception or interrupt is initiated the current 
processor state must be preserved. This is accomplished by 
automatically pushing the PC, followed by the PS, on the target mode 
stack. Subsequently, instruction execution can be continued at the 
point of the exception or interrupt by executing a Return from 
Exception or Interrupt (REI) instruction: see Chapter 4, Instruction 
Descriptions, Page 4-85. 

\Initiation of an exception or interrupt causes the PC, followed :by 
the PS, to be pushed on the target mode stack. This is opposite to 
VAX which pushes PSL followed by PC. We want to allow for the 
possibility of future machines being 64-bits with a 32-bit 
compatibility mode. Pushing PS last allows Epicode to test a 32-bit 
mode bit in the PS and determine the format of the PS and PC that were 
pushed on the stack.\ 

Process context such as the mapping information is not saved or 
restored on each interrupt or exception. Instead, it is saved and 
restored when process context switching is performed. Other processor 
status is changed even less frequently: see Chapter 7, Process 
Structure. 

The PS can be explicitly stored with the Move Processor Status (MOVPS) 
instruction: see Chapter 4, Instruction Descriptions, Page 4-80. The 
PC can be explicitly stored with the Jump to Subroutine (JSR) 
instruction. All branching instructions also load a new value into 
the PC: see Chapter 4, Instruction Descriptions, Pages 4-73 and 4-71. 

The terms current PS and saved PS are used to distinguish between this 
status information when it is stored internal to the processor and 
when copies of it are materialized in memory. 
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3 
1 a 1 5 4 3 2 1 0 

+-----------------------------------------------+-----+-+-+-+---+ 
I I IVIVIVI I 
I MBZ I IPL IEIEIMI CMI 
I I INIFIMI I 
+-----------------------------------------------+-----+-+-+-+---+ 

Bits 

1:0 

Figure 6-1: Processor Status 

Description 

Current Mode (CM). The access mode of the currently executing 
process as follows: 

0 - Kernel 
l - Executive 
2 - Supervisor 
3 - User 

2 Virtual Machine Mode (VMM) - When set, the processor is in 
virtual machine mode. This bit is only meaningful when 
running with a virtual machine monitor. When clear, the 
processor is running in real machine mode. 

\The exact rules for using this bit have not been ful~y 
defined.\ 

3 Vector Exception Frame (VEF) This bit can only be set in a 
PS which has been saved during the initiation of an exception. 
When set, one or more vector exception information frames have 
been pushed on the stack prior to the saved PS and PC. 

4 Vector Enable (VEN) This bit controls whether vector 
instructions can be executed. When this bit is set, vector 
instructions execute normally. When this bit is clear, an 
attempt to issue a vector instruction causes a Vector Enable 
fault. 

7:5 Interrupt Priority Level (IPL) 
priority, in the range 0 to 7. 

31:8 Reserved to DIGITAL, MBZ. 

The current 

At bootstrap, the initial value of PS is set to EO (hex). 
VMM, and CM are clear and IPL is 7. 

processor 

VEF, VEN, 
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2 l 0 
+-----------------------------------------------------------+---+ 
I I I I 
I Instruction Virtual Address I G I 
I I N I 
+-----------------------------------------------------------+---+ 

Figure 6-2: Program Counter 

All instructions are aligned on longword boundaries and, therefore, 
hardware can assume zero for the two low order bits of PC. 

6.3 INTERRUPTS 

In some implementations, several instructions may be in various ~tages 
of execution simultaneously. Before the processor can service an 
interrupt request, all active instructions must be allowed to complete 
without exception (e.g., an exception could occur in a currently 
active instruction, in which case the exception would be initiated 
befor.e the interrupt). 

The following events cause an interrupt: 

o Asynchronous System Trap (AST) - IPL l. 

o Software interrupt - IPL 1 to 3. 

o Console interrupts - IPL 4. 

o I/O Port Controller interrupts - IPL 4 and 5. 

o 10 ms Interval Clock interrupt - IPL 5. 

o Interprocessor interrupt - IPL 6. 

o Power Recovery interrupt - IPL 7. 

o Machine Check exception/interrupt - IPL 7. 

Each interrupt source has a separate vector location (offset) within 
the System Control Block (SCB): see Section 6.6 below. The vector 
location for architecturally defined interrupts is fixed by the 
architecture. 

\It would be nice if there were no assignable vectors. Do we really 
need them?\ 

In order to reduce interrupt overhead, no memory mapping information 
is changed when an interrupt occurs. Therefore, the instructions, 
data, and the contents of the interrupt vector for the interrupt 
service routine must be present in every process at the same virtual 
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Interrupt service routines should follow the discipline of not 
lowering IPL below their initial level. Lowering IPL in this way 
could result in an interrupt at an intermediate level which would 
cause the stack nesting to be incorrect. 

Kernel mode software may need to raise and lower IPL during certain 
instruction sequences that must synchronize with possible interrupt 
conditions (e.g., Power Recovery). This can be accomplished by 
specifying the desired IPL and executing a Swap IPL instruction 
(SWIPL) or by executing an REI instruction that restores a PS that 
contains the desired IPL: see Chapter 4, Instruction Descriptions, 
Pages 4-96 and 4-85. 

6.3.1 Asynchronous System Trap (AST) - Level 1 

Asynchronous System Traps are a means of notifying a process of events 
that are not synchronized with its execution, but which must be dealt 
with in the context of the process. An Asynchronous System Trap is 
initiated when an REI instruction restores a PS with a current mode 
that is less. privileged than or equal to a mode for which an AST is 
pending and not disabled: see Chapter 7, Process Structure, Section 
7.3. 

6.3.2 Software Generated Interrupts - Levels 1 To 3 

6.3.2.1 Software Interrupt Summary Register 

The architecture provides three priority interrupt levels for use by 
software (level 0 is also available for use by software but interrupts 
can never occur at this level). The Software Interrupt Summary 
Register (SISR) stores a mask of pending software interrupts. Bit 
positions in this mask which contain a l, correspond to the levels on 
which software interrupts are pending. 

When the processor IPL drops below that of 
software interrupt, a software interrupt 
corresponding bit in the SISR is cleared. 

the highest requested 
is initiated and the 

The SISR is a read-only internal processor register which may be read 
by Kernel mode software by executing a Move From Processor Register 
instruction specifying SISR (MFPR SISR): see Chapter 8, Internal 
Processor Registers, Section 8.1. 

6.3.2.2 Software Interrupt Request Register 

The Software Interrupt Request Register (SIRR) is a write-only 
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internal processor register used for making software interrupt 
requests. 

Kernel mode software may request a software interrupt at a particular 
level by executing a Move To Processor Register instruction specifying 
SIRR (MTPR SIRR): see Chapter 8, Internal Processor Registers, Section 
8.l. 

If the requested interrupt level is greater than the current IPL, the 
interrupt will occur before the execution of the next instruction. 
If, however, the requested level is equal to or less than the current 
processor IPL, the interrupt request will be recorded in the Software 
Interrupt Summary Register (SISR) and deferred until the processor IPL 
drops to the appropriate level. 

Note that no indication is given if there is already a request at the 
specified level. Therefore, the respective interrupt service routine 
must not assume that there is a one-to-one correspondence between 
interrupts requested and interrupts generated. A valid protocol for 
generating this correspondence is: 

1. The requester places information in a control block and then 
inserts the control block in a queue associated with the 
respective software interrupt level. 

2. The requester uses MTPR SIRR to request an interrupt at the 
appropriate level. 

3. The interrupt service routine attempts to remove a control 
block from the request queue. If there are no control blocks 
in the queue, the interrupt is dismissed with an REI. 

4. If a valid control block is removed from the queue, the 
requested service is performed and Step 3 is repeated. 

6.3.3 Console Interrupts - Level 4 

Console interrupts are requested, if enabled, as characters are 
received from and transmitted to the console termi1nal. 

6.3.3.l Console Receive Control Status 

The Console Receive Control Status register (CRCS) is a read/write 
internal processor register used to enable and disable console receive 
interrupts. Console receive interrupts are used to synchronize the 
input of characters from the console terminal. 

CRCS may be read by Kernel mode software by executing a Move From 
Processor Register instruction specifying CRCS (MFPR CRCS). Kernel 
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mode software may write CRCS by executing a Move To Processor Register 
instruction specifying CRCS (MTPR CRCS). See Chapter 8, Internal 
Processor Registers, Section 8.1. 

6.3.3.2 Console Transmit Control Status 

The Console Transmit Control Status register (CTCS) is a read/write 
internal processor register used to enable and disable console 
transmit interrupts. Console transmit interrupts are used to 
synchronize the output of characters to the console terminal. 

CTCS may be read by Kernel mode software by executing a Move From 
Processor Register instruction specifying CTCS (MFPR CTCS). Kernel 
mode software may write CTCS by executing a Move To Processor Register 
instruction specifying CTCS (MTPR CTCS). See Chapter 8, Internal 
Processor Registers, Section 8.1. 

6.3.4 I/0 Port Controllers - Levels 4 And 5 

The architecture provides two priority levels for use by I/0 Port 
Controllers. 

I/0 Port Controller interrupts are requested when a 
attention packet is inserted into an empty I/O 
response queue by an I/O processor. 

6.3.5 Interval Clock Interrupt - Level 5 

completion or 
Port Controller 

The lOms Interval Clock requests an interrupt every lOrns if clock 
interrupts are enabled. 

6.3.5.l Interval Clock Interrupt Enable 

The Interval Clock Interrupt Enable register (ICIE) is a read/write 
internal processor register used to enable and disable Interval Clock 
interrupts. 

ICIE may be read by Kernel mode software by executing a Move From 
Processor Register instruction specifying ICIE (MFPR ICIE). Kernel 
mode software may write ICIE by executing a Move To Processor Register 
instruction specifying ICIE (MTPR ICIE). See Chapter 8, Internal 
Processor Registers, Section 8.1. 
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The architecture provides two priority levels for use by urgent 
conditions including serious errors (e.g., Machine Check), 
interprocessor interrupts, and Power Recovery. Interrupts on these 
levels are initiated by the processor upon detection of certain 
conditions. Some of these conditions are not interrupts. For 
example, Machine Check is usually an exception but it runs at a high 
priority level. 

Interrupt Level 7 is reserved for those conditions that must lock out 
all processing until handled. This includes the hardware "disaster" 
Machine Check and Power Recovery. Machine Check is documented below 
under Exceptions, Section 6.4.6.2. 

The Power Recovery interrupt is generated when power is restored after 
a power failure. The power-down sequence is handled totally in 
Epicode. After having saved volatile machine state in memory (e.g., 
scalar registers, vector registers, Epicode registers, writeback cache 
data, etc.), Epicode gracefully stops system operation in an 
implementation-dependent manner. When power is restored the system 
enters a restart sequence. At the end of the sequence, if successful, 
a Power Recovery interrupt is initiated: see Chapter 11, System 
Bootstrapping and Console, Section 11.1.3. 

Even though the power-down sequence is handled totally in Epicode, it 
will not be initiated until the processor IPL drops below 7. Thus 
critical code sequences can block the power-down sequence by ra1s1ng 
the IPL to 7. Software, however, must take extra care not to lock out 
the power-down sequence for an extended period of time. 

Interrupt level 6 is reserved for interprocessor interrupt requests. 

6.3.6.1 Interprocessor Interrupt Enable Register 

The Interprocessor Interrupt Enable register (IPIE) is a read/write 
internal processor register used to enable and disable interprocessor 
interrupts. Interprocessor interrupts are used in multiprocessing 
systems to notify other processors of state changes. When 
interprocessor interrupts are enabled, a processor can receive 
interrupts from other processors. 

The IPIE may be read by Kernel mode software by executing a Move From 
Processor Register instruction specifying IPIE (MFPR IPIE). Kernel 
mode software may write IPIE by executing a Move To Processor Register 
instruction specifying IPIE (MTPR IPIE); see Chapter 8, Internal 
Processor Registers, Section 8.1. 

Explicit state is not provided by the architecture for software to 
directly determine whether there was an outstanding interprocessor 
interrupt when powerfail occurred. It is the responsibility of 
software to leave sufficient information in memory so that it may 
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determine the proper action on power-up. One such method would be for 
software to maintain an action or request queue for each processor. 
On power-up software would examine the action/request queue for each 
processor and if the queue is not empty, request an interprocessor 
interrupt with the respective processor as the target. 

6.3.6.2 Interprocessor Interrupt Request Register 

The Interprocessor Interrupt Request Register (IPIR) is a write-only 
internal processor register used for making a request to interrupt a 
specific processor. 

Kernel mode software may request to interrupt a particular processor 
by executing a Move To Processor Register instruction specifying IPIR 
(MTPR IPIR); see Chapter 8, Internal Processor Registers, Section 8.1. 

If the specified processor is the same as the current processor, the 
current IPL is less than 6, and interprocessor interrupts are enabled, 
the interrupt will be taken on the initiating processor before the 
execution of the next instruction. 

Note that, like software interrupts, no indication is given as to 
whether there is already an interprocessor interrupt pending when one 
is requested. Therefore, the interprocessor interrupt service routine 
must not ··assume there is a one-to-one correspondence between 
interrupts requested and interrupts generated. A valid protocol 
similar to the one for software interrupts for generating this 
correspondence is: 

1. The requester places information in a control block and then 
inserts the control block in a queue associated with the 
target processor. 

2. The requester uses MTPR IPIR to request an interprocessor 
interrupt on the target processor. 

3. The interprocessor jnterrupt service routine 
processor· attempts to remove a control block 
queue. If there are no control blocks 
interrupt is dismissed with an REI. 

on the target 
from its request 
remaining, the 

4. If a valid control block is removed from the queue, the 
specified action is performed and Step 3 is repeated. 

6.4 EXCEPTIONS 

Exceptions can be grouped into seven categories: 
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1. Arithmetic traps 

2. Data Alignment exceptions 

3. Faults occurring as a consequence of an instruction 

4. Memory management faults 

5. Serious system failures 

6. Stack Alignment aborts 

7. Vector exceptions 

Each exception has a separate vector location (offset) within the 
System Control Block (SCB); see Section 6.6 below. 

When initiating an exception, various parameters are pushed on the 
target stack. These parameters represent information that is 
necessary to process the respective exception. An even number of 
longwords is always pushed. Minimally this consists of the processor 
state (PC and PS), but can also include such things as virtual 
addresses and instruction values. If the number of parameters is not 
an even number of longwords, then a zero longword is pushed to ensure 
that the stack remains quadword aligned; see Section 6.4.7 below. 

6.4.l Arithmetic Traps 

An arithmetic trap is an exception that occurs as the result of 
performing an arithmetic or conversion operation. In general, it is 
difficult to fix up results and continue from this type of exception. 
Software can, however, force an arithmetic trap to be more easily 
continuable by placing a DRAIN instruction immediately following an 
instruction that can cause an arithmetic trap. 

If scalar register RO is specified as the 
that can cause an arithmetic trap, it 
trap will actually occur, even if the 
produce an exceptional result. 

destination of an operation 
is UNPREDICTABLE whether the 
operation would definitely 

Furthermore, the order of discovery of F and G floating arithmetic 
traps is UNPREDICTABLE. For example~ if both-a zero divisor and a 
reserved dividend are specified, it is UNPREDICTABLE which will 
actually be reported. 

It is permissible for an implementation to use a forwarded or bypassed 
result in a subsequent instruction, even if the result is exceptional, 
provided that error information is propagated to the destination 
register and the appropriate bits are set in the respective register 
write mask (see below). 

Arithmetic traps are initiated in Kernel mode and push the following 
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information on the Kernel stack: 

3 
l 

1 1 
6 5 0 

+-------------------------------+-------------------------------+ 
I I 
I Exception Summary I :SP 
I I 
+-------------------------------+-------------------------------+ I I Vector Register 
I Zero I Write Mask for 
I I Registers VO - Vl5 
+-------------------------------+-------------------------------+ I Scalar Register 
I Write Mask for 
I Registers RO - R31 
+---------------------------------------------------------------+ I Scalar Register I 
I Write Mask for I 
I Registers R32 - R64 I 
+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I 
I I 
+---------------------------------------------------------------+ I Virtual I 
I Address of Next I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-3: Arithmetic Trap Exception Frame 

When an arithmetic exce~tion condition is detected, several 
instructions may be in various stages of execution. These 
instructions are allowed to complete before the arithmetic exception 
can be initiated. Some of these instructions may themselves cause 
further arithmetic exceptions. Thus it is possible for several 
arithmetic exceptions to occur simultaneously. 

The Exception Summary parameter records the various 
arithmetic exceptions that can occur together. 

types of 
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3 
1 7 6 5 4 3 2 1 0 

+-------------------------------------------------+-+-+-+-+-+-+-+ 
I ICIIIIIFIFIFIFI 
I Zero IOIOIDIOIRIDIUI 
I IEIVIZIVISIZINI 
+-------------------------------------------------+-+-+-+-+-+-+-+ 

Figure 6-4: Exception Summary 

Bit Description 

0 Floating Underflow (FUN) - An F or G floating arithmetic or 
conversion operation underflowed the destination exponent. 

1 Floating Divide by Zero (FDZ) - An attempt was made to perform 
an F or G_floating divide operation with a divisor of zero. 

2 Floating Reserved Operand (FRS) 
perform an F or G floating 
comparison operation, and one or 
were reserved. 

An attempt was made to 
arithmetic, conversion, or 

more of the operand values 

3 Floating Overflow {FOV) - An F or G floating arithmetic or 
conversion operation overflowed the destination exponent. 

4 Integer Divide by Zero (IDZ) - An attempt was made to perform 
an integer divide operation with a divisor of zero. 

5 Integer Overflow {IOV) - An integer arithmetic operation or a 
conversion from F or G_f loating to integer overflowed the 
destination precision. 

6 Coprocessor Exception {COE) - A Coprocessor read or write 
instruction with trap enable set was executed when a 
Coprocessor exception was present. 

The Vector Register Write Mask parameter records which vector 
registers were written with one or more elements containing 
exceptional results. There is a one-to-one correspondence between 
bits in the Vector Register Write Mask longword and the vector 
register numbers. The mask records, starting at bit 0 and proceeding 
right to left to bit 15, which of the vector registers VO through Vl5 
were written with one or more elements containing an exceptional 
result. 

The Scalar Register Write Mask parameters record which scalar 
registers were written with exceptional results. There is a 
one-to-one correspondence between bits in the Scalar Register Write 
Mask longwords and the scalar register numbers. Thus the first 
longword records, starting at bit 0 and proceeding right to left, 
which of the scalar registers RO through R31 received an exceptional 
result. The second longword records the same information, again 
starting at bit 0 and proceeding right to left, for scalar registers 
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R32 through R63. When the exceptional value is a quadword, the bits 
corresponding to the register numbers of the low and high parts of the 
result are both set in the appropriate longword mask. 

The actual exceptional value written to the destination register 
depends on the operation being performed and the type of exception: 

o For Integer Overflow the low order 32-bits of the true result 
are written to the destination register. 

o The exceptional result written to the destination register 
for' an Integer Divide by Zero is UNPREDICTABLE. 

o The result of a floating comparison or conversion from 
floating to integer is UNPREDICTABLE if any of the floating 
operands are reserved. 

0 All floating exceptional values 
operands with an exception type 
the word containing the exponent: 

are encoded as reserved 
inserted in the low bits of 
see Chapter 4, Instruction 

Descriptions, Page 4-46. 

6.4.2 Data Alignment Exceptions 

All data must be naturally aligned or an alignment exception may be 
generated. Natural alignment means that data bytes are on byte 
boundaries, data words are on word boundaries, data longwords are on 
longword boundaries, and data quadwords are on quadword boundaries. 

6.4.2.1 Scalar Alignment Fault 

A Scalar Alignment fault may be generated when an attempt is 
load or store a word, longword, or quadword to/from a scalar 
using an address that does not have the natural alignment 
particular data reference. 

made to 
register 
of the 

Scalar Alignment faults are initiated in the current mode and push the 
following information on the Current Mode stack: 
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3 
l 0 

+---------------------------------------------------------------+ I Virtual I 
I Address of I :SP 
I Reference I 
+---------------------------------------------------------------+ 
I I 
I Faulting Instruction I 
I I 
+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I 
I I 
+---------------------------------------------------------------+ I Virtual 
I Address of Faulting 
I Instruction 
+---------------------------------------------------------------+ 

Figure 6-5: Scalar Alignment Fault Exception Frame 

The faulting instruction is pushed on the stack so that emulation 
software can determine the register operands and opcode value. This 
would not be possible if the instruction was contained in a page that 
was executable, but not readable, in the current mode. 

An implementation may elect to implement scalar data alignment in 
hardware or Epicode, or force the operating system, or possibly the 
user (for non-DIGITAL operating system software) to emulate the 
specified operation by generating this exception. 

Emulation software, whether Epicode, 
code, or hardware may write partial 
to make sure all writes will succeed 
operations. 

an operating system, or user 
results to memory without probing 
when dealing with unaligned store 

If a memory management exception condition occurs while reading or 
writing part of the unaligned data, the appropriate memory management 
fault is generated. 

Software should avoid data misalignment whenever possible since the 
emulation performance penalty may be as large as 100 to 1. 

6.4.2.2 Vector Alignment Abort 

A Vector Alignment abort is generated when an attempt is 
load/store a longword or quadword element to/from a vector 
using an address that does not have the natural alignment 
particular data reference. 

made to 
register 
of the 

Vector Alignment aborts are initiated in Kernel mode and push the 
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following information on the Kernel stack: 

3 
1 0 

+---------------------------------------------------------------+ 
I Virtual I 
I Address of I :SP 
I Reference I 
+---------------------------------------------------------------+ 
I 
I Zero 
I I 
+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I 
I I 
+---------------------------------------------------------------+ 
I Virtual I 
I Address of Next I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-6: Vector Alignment Abort Exception Frame 

6.4.3 Faults Occurring As The Result Of An Instruction 

6.4.3.1 Breakpoint Fault 

A Breakpoint fault is an exception that occurs when a Breakpoint (BPT) 
instruction is executed: see Chapter 4, Instruction Descriptions, Page 
4-75. Breakpoint faults are intended for use by debuggers and can be 
used to place breakpoints in a program. 

A Breakpoint fault is initiated in Kernel mode and pushes the 
following information on the Kernel stack: 

3 
1 0 

+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I :SP 
I I 
+---------------------------------------------------------------+ 
I Virtual I 
I Address of BPT I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-7: Breakpoint Fault Exception Frame 

Breakpoint faults are initiated in Kernel mode so that system 
debuggers can capture breakpoint faults that occur while the user is 
executing system code. 
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6.4.3.2 Bug Check Fault 

A Bug Check fault is an exception that occurs when a Bug Check 
(BUGCHK) instruction is executed: see Chapter 4, Instruction 
Descriptions, Page 4-76. This opcode is provided for use by operating 
system error reporting software. 

Bug Check faults are initiated in Kernel mode and push the following 
information on the Kernel stack: 

3 
l 0 

+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I :SP 
I I 
+---------------------------------------------------------------+ I Virtual I 
I Address of BUGCHK I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-8: Bug Check Fault Exception Frame 

6.4.3.3 Fault On Bit 

A Fault On Bit fault is an exception that occurs when a Fault On Bit 
(FOB) instruction is executed and the low order bit of the specified 
scalar register is set; see Chapter 4, Instruction Descriptions, Page 
4-72. 

Fault On Bit faults are initiated in the current mode and push the 
following information on the Current Mode stack: 
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0 
+---------------------------------------------------------------+ 
I I 
I Zero I :SP 
I I 
+---------------------------------------------------------------+ 
I I 
I Faulting Instruction I 
I I 
+---------------------------------------------------------------+ 
I 
I Processor Status (PS) 
I 
+---------------------------------------------------------------+ 
I Virtual I 
I Address of FOB I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-9: Fault On Bit Fault Exception Frame 

The faulting instruction is pushed on the stack so that software can 
determine the exact cause of the fault. This would not be possible if 
the instruction was contained in a page that was executable, but not 
readable, in the current mode. 

6.4.4 Illegal Operand Fault 

An Illegal Operand fault occurs when an attempt is made to execute an 
Epicode instruction with operand values that are illegal or reserved 
~or future use by DIGITAL. 

Illegal Operand faults are initiated in the current mode and push the 
following information on the Current Mode stack: 
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0 
+---------------------------------------------------------------+ 
I I 
I Zero I :SP 
I I 
+---------------------------------------------------------------+ 
I 
I Faulting Instruction 
I 
+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I 
I I 
+---------------------------------------------------------------+ 
I Virtual I 
I Address of Faulting I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-10: Illegal Operand Fault Exception Frame 

Illegal operands include: 

o An interlock address that is not quadword aligned (RMAQI) 

o An invalid combination of bits in the PS restored by REI 

The faulting instruction is pushed on the stack so that software can 
determine the exact cause of the fault. This would not be possible if 
the instruction was contained in a page that was executable, but not 
readable, in the current mode. 

6.4.4.1 Privileged Instruction 

A Privileged Instruction fault is an exception that occurs when an 
attempt is made to execute a privileged instruction while the current 
mode is User, Supervisor, or Executive. Privileged operations can 
only be executed in Kernel mode. 

Privileged Instruction faults are initiated in the current mode and 
push the following information on the Current Mode stack: 
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3 
l 0 

+---------------------------------------------------------------+ 
I 
I Processor Status (PS) :SP 
I 
+---------------------------------------------------------------+ 
I Virtual I 
I Address of Privileged I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-ll: Privileged Instruction Fault Exception Frame 

Note that the faulting instruction 
instruction was contained in a 
readable in the current mode, then 
would provide information normally 

6.4.4.2 Reserved Opcode Fault 

is not pushed on the stack. If the 
page that was executable, but not 

pushing the faulting instruction 
not available to the current mode. 

A Reserved Opcode fault is an exception that occurs when an attempt is 
made to execute an opcode that is reserved to DIGITAL or a subsetted 
opcode that requires emulation on the host implementation. 

Reserved Opcode faults are initiated in the current mode and push the 
following information on the Current Mode stack: 
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0 
+---------------------------------------------------------------+ 
I I 
I Zero I :SP 
I I 
+---------------------------------------------------------------+ 
I I 
I Faulting Instruction I 
I I 
+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I 
I I 
+---------------------------------------------------------------+ 
I Virtual I 
I Address of Reserved I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-12: Reserved Opcode Fault Exception Frame 

The faulting instruction is pushed on the stack so that software can 
determine the exact cause of the fault. This would not be possible if 
the instruction was contained in a page that was executable, but not 
readable, in~the current mode. 

6.4.4.3 Vector Enable 

A Vector Enable fault is generated if an attempt is made to execute a 
vector instruction when vector instructions are disabled (PS<VEN> is 
clear). 

Vector Enable faults are initiated in Kernel mode and push the 
following information on the Kernel stack: 
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3 
l 0 

+---------------------------------------------------------------+ 
I 
I Processor Status (PS) :SP 
I I 
+---------------------------------------------------------------+ 
I Virtual I 
I Address of Vector I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-13: Vector Enable Fault Exception Frame 

Vector Enable faults can be used 
restoring of vector registers 
introducing security holes. 

to avoid unnecessary saving and 
during context switches without 

6.4.5 Memory Management Faults 

Memory management faults occur when a virtual address translation 
encounters an exception condition. This can occur as the result of 
instruction fetch or during a load or store operation. 

Memory management faults are generated in Kernel mode and push the 
following information on the Kernel stack: 

3 
l l 0 

+-------------------------------------------------------------+-+ I Related I 
I Virtual Address in I :SP 
I Page I 
+-------------------------------------------------------------+-+ 
I IRI 
I Zero I/I 
I IWI 
+-------------------------------------------------------------+-+ 
I I 
I Processor Status (PS) I 
I I 
+---------------------------------------------------------------+ 

Virtual I 
Address of Next I 

Instruction I 
+---------------------------------------------------------------+ 

Figure 6-14: Memory Management Fault Exception Frame 

The first parameter is a virtual address in the page encountering the 
fault condition, but not necessarily the exact virtual address. 
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The second parameter indicates whether the reference was a read (0) or 
a write (1). 

If the memory management fault was caused by a scalar load or store 
instruction, the virtual address of the next instruction is that of 
the scalar load or store instruction itself. However, if the memory 
managrnent fault was caused by a vector load or store instruction, then 
the virtual address of the next instruction is that of the next 
instruction that would have been executed had the faulting condition 
not been present. 

Chapter 5, Memory Management, describes the 
architecture of PRISM in more detail. 

6.4.5.1 Access Violation 

memory management 

An Access Violation fault is an exception indicating that an attempted 
access to a virtual address was not allowed in the current mode. 

Access violations usually indicate program errors, but in some cases, 
such as automatic stack expansion, can mean implicit operating system 
functions. 

Access Violation faults take precedence over Translation Not Valid, 
Fault On Read, Fault On Write, and Fault On Execute faults. 

Access violations take precedence over Translation Not Valid faults 
for two important reasons: 

1. A malicious user could degrade system performance by causing 
spurious page faults to pages for which no access is allowed. 

2. The page fault rate on inaccessible pages could be used as a 
low bandwidth timing channel to pass critical information and 
compromise system integrity. 

6.4.5.2 Translation Not Valid 

A Translation Not Valid fault is an exception that indicates that an 
attempted access was made to a virtual address whose Page Table Entry 
(PTE) was not valid. 

Software may use Translation Not Valid faults to implement virtual 
memory capabilities. 
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A Fault On Execute fault is an exception that indicates that an 
attempted instruction stream access was made to a virtual address 
whose Page Table Entry (PTE) had the Fault On Execute bit set. 

Software may use Fault On Execute faults to implement access mode 
changes and protected entry to inner modes, and for collecting page 
usage statistics. 

6.4.5.4 Fault On Read 

A Fault On Read fault is an exception that indicates that an attempted 
read access was made to a virtual address whose Page Table Entry (PTE) 
had the Fault On Read bit set. 

Software may use Fault On Read faults to implement watchpoints and for 
collecting page usage statistics. 

6.4.5.5 Fault On Write 

A Fault On Write fault is an exception that indicates that an 
attempted write access was made to a virtual address whose Page Table 
Entry (PTE) had the Fault On Write bit set. 

Software may use Fault On Write faults to maintain modified page 
information, to implement copy on write capabilities and watchpoints, 
and for collecting page usage statistics. 

6.4.6 Serious System Failures 

6.4.6.l Kernel Stack Not Valid Halt 

A Kernel Stack Not Valid halt is an exception that indicates that the 
Kernel stack was not valid, was unaligned, or a memory error occurred 
when Epicode attempted to push parameter information during the 
initiation of an interrupt or exception. Immediately upon detecting 
this condition the processor enters the restart sequence: see Chapter 
11, System Bootstrapping and Console, Section ll.2.2. 

6.4.6.2 Machine Check Abort 

A Machine Check abort indicates that the processor detected an 
internal machine error. Common machine check conditions are cache 
parity errors and internal bus errors. 
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Machine Check aborts raise IPL to 7 and are initiated in Kernel mode. 
The following information is pushed on the Kernel stack: 

3 
l 0 

+---------------------------------------------------------------+ 
I Number 
I of : SP 
I Bytes Pushed 
+---------------------------------------------------------------+ 
I 
I Zero 
I 
+---------------------------------------------------------------+ 

. 
An even number of 

implementation 
specific 

longwords 

+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I 
I I 
+---------------------------------------------------------------+ 
I Virtual I 
I Address of Next I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-15: Machine Check Abort Exception Frame 

Implementation-specific information is pushed on the stack as 
longwords. An even number of informational longwords are pushed in 
order to keep the stack quadword aligned. A zero longword followed by 
the number of parameter bytes are then pushed. The number of 
parameter bytes does not include the processor state (PS and PC), but 
does include the count and zero longwords. 

Software must decide, on an implementation-specific basis, depending 
on the parameters provided, if operations should be aborted. If retry 
is possible, Epicode is responsible for executing the appropriate 
action. 

If a second Machine Check is detected while Epicode is initiating a 
machine check exception, a Double Error halt is generated and the 
processor enters the restart sequence; see Chapter 11, System 
Bootstrapping and Console. 
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6.4.7 Stack Alignment Abort 

All stacks are required to be quadword aligned. It is the 
responsibility of software to ensure that the initial values for stack 
pointers are quadword aligned and that subsequent adjustments to the 
stack pointers are made in increments of quadwords. 

Epicode pushes and pops information to/from the target/source stack on 
the initiation of exceptions and interrupts and during an REI 
instruction. Epicode always pushes and pops an even number of 
longwords from the subject stack, thus preserving quadword alignment. 

\Quadword alignment is maintained to ensure that a 64-bit architecture 
can compatibly handle exceptions, interrupts, and the REI 
instruction.\ 

A Stack Alignment abort occurs during the initiation of an exception 
when Epicode attempts to push information on the User, Supervisor, or 
Executive stack and the stack is not quadword aligned, or during the 
execution of an REI instruction when Epicode attempts to remove the 
processor state from the User, Supervisor, or Executive stack and the 
stack is not quadword aligned. 

An unaligned Kernel stack causes a Kernel Stack Not Valid halt; see 
Section 6.4.6.l above. 

Stack Alignment aborts are initiated in Kernel mode and push the 
following information on the Kernel stack: 

3 
l 0 

+---------------------------------------------------------------+ 
I 

Processor Status (PS) I :SP 
I 

+-----------~---------------------------------------------------+ I Virtual I 
I Address of Next I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure 6-16: Stack Alignment Abort Exception Frame 

6.4.8 Vector Exceptions 

Vector instructions perform arithmetic, logical, comparison, and 
load/store operations on vector registers which consist of more than 
one element; see Chapter 4, Instruction Descriptions. If an 
arithmetic exception condition is encountered during a vector 
operation, it is not reported until the entire vector has been 
processed. Memory management faults and alignment aborts, however, 
must be reported before the vector operation completes and, for memory 
management faults, sufficient state must be saved so the appropriate 
vector load/store operation can be continued after the fault condition 
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has been corrected. 

One or more vector load/store op~rations may be in 
simultaneously, and therefore it is possible for an 
exception condition to be present concurrently with one or 
memory management fault and/or alignment abort conditions. 

progress 
arithmetic 

more vector 

Memory management faults and alignment aborts occurring on vector 
load/store instructions push the following additional information on 
the Kernel stack prior to pushing the processor state: 

3 3 
l 0 

2 2 2 
8 7 6 

2 2 l l 1 
1 0 9 8 7 

l l 
2 l 6 5 0 

+-+-----+-+-----------+-+-+-+-----------+-----------+-----------+ 
Iv I E I L I I s I o I DI I I SRC I 
IFI T IVI Zero ITIPITI ELT I CNT I or I 
ISi Y IFI IRIRIYI I I DST I 
+-+-----+-+-----------+-+-+-+-----------+-----------+-----------+ 
I Related I 
I Virtual Address in I 
I Page I 
+---------------------------------------------------------------+ I Vector I 
I Base I 
I Address I 
+---------------------------------------------------------------+ Stride 

or 
Index Vector Register Number 

+---------------------------------------------------------------+ 
Figure 6-17: Vector Exception Information Frame 

Bits Description 

5:0 Vector Register (SRC/DST) - The source (store) or destination 
(load) vector register number. 

11:6 Remaining Count (CNT) Count of the number of elements 
remaining to be loaded or stored to/from the vector register. 

17:12 Next Element (ELT) - The index of the next element in the 
vector register to be loaded or stored. 

18 Datatype (DTY) - When clear, the data type is longword; when 
set, the data type is quadword. 

19 Operation Type (OPR) - When clear, the operation is a load; 
when set, the operation is a store. 

20 Indexing Type (STR) - When clear, the operation is stride 
based; when set, the operation is a scatter/gather operation. 

27 Last Vector Frame (LVF) - This bit indicates whether another 
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30:28 

vector exception information frame immediately precedes this 
one on the stack. When set, this is the last vector frame; 
when clear, there is another vector frame preceding this one 
on the stack. 

Exception Type (ETY) - The type of exception described by this 
vector frame. Exception types are: 

O - Access Violation fault 
l - Fault On Read fault 
2 - Fault On Write fault 
3 - Translation Not Valid fault 
4 - Vector Alignment abort 
5 - Instruction Pending 

31 Vector Frame Status (VFS) - This bit indicates whether the 
information in this vector frame has been processed. This bit 
is cleared when the vector frame is pushed on the stack and 
set when Epicode has built a corresponding memory management 
fault frame. 

The above information is pushed for each concurrent vector load/store 
operation that has encountered a memory management fault or alignment 
abort condition. It is used later by the REI instruction to determine 
whether an exception should be initiated or the vector operation 
should be continued. 

\This information is 
information saved in 
decimal instructions.\ 

somewhat analogous to 
the general registers 

the First Part Done 
on VAX for string and 

The vector base address may be the actual base address of the vector 
(e.g., vector gather and scatter instructions and other vector loads 
and stores that receive an exception on the first element) or the 
actual address of the data that caused the exception condition (e.g., 
an exception condition occurring in the middle of a stride-based 
vector load or store instruction). 

Arithmetic exceptions that occur on vector instructions are reported 
as described in Section 6.4.l provided no vector exception information 
frames have been pushed on the Kernel stack. 

If any vector exception information frames have been pushed on the 
Kernel stack, then the current PC followed by a PS with Vector 
Exception Frame (VEF) set are pushed on the Kernel stack and either an 
arithmetic trap, memory management fault, or Vector Alignment abort is 
initiated. 

If an arithmetic exception condition has occurred concurrently, the 
parameters described in Section 6.4.l are pushed on the Kernel stack 
and an arithmetic exception is initiated. Later, when the exception 
has been processed, an attempt to continue execution with an REI 
instruction will encounter a PS with VEF set; see Section 6.4.8.l 
below. 
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If no arithmetic exception has occurred, either a memory management 
fault or Vector Alignment abort exception frame is pushed on the 
Kernel stack; see Sections 6.4.2.2 and 6.4.5 above. If a memory 
management frame is pushed, then the Vector Frame Status (VFS) bit is 
also set. The appropriate exception is then initiated. After the 
operating system has processed the exception, an attempt to continue 
execution with an REI will encounter a PS with VEF set. 

6.4.8.l Vector Exception Continuation 

Execution of an REI instruction with Vector Exception Frame (VEF) set 
requires special processing by Epicode. When this situation arises, 
Epicode must scan the vector exception information frames immediately 
preceding the processor state on the Kernel stack to determine whether 
another vector exception should be initiated or whether one or more 
vector load/store operations should be continued. 

Epicode successively examines each vector exception information frame 
until a frame with Vector Frame Status (VFS) clear (unprocessed) or 
Last Vector Frame (LVF) set is encountered. 

Each vector exception information frame must be checked for validity 
since it is possible for unprivileged code to forge such a frame and 
execute an REI. If an invalid frame is detected, an Illegal Operand 
fault is initiated. 

The logic required to check for this condition is: 

tmp <- CNT 
IF tmp EQ 0 THEN 

tmp <- 64 
IF {tmp + ELT} GT 64 THEN 

{initiate Illegal Operand fault} 

If a vector exception information frame with VFS clear is encountered, 
and the exception type is not Instruction Pending (ETY NE 5), either a 
memory management fault or Vector Alignment abort exception frame is 
pushed on the Kernel stack. If a memory management frame is pushed, 
then the Vector Frame Status (VFS) bit is also set. The appropriate 
exception is then initiated. Note that since the VFS bit is not set 
for Vector Alignment aborts, any attempt to continue with an REI will 
result in the generation of another Vector Alignment abort with 
identical parameters. 

If a vector exception information frame is encountered with Last 
Vector Frame (LVF) set, all vector exceptions occurring as the result 
of vector load/store operations have been processed and the respective 
operations should be continued. For each vector exception information 
frame, Epicode restarts the vector load/store operation in an 
implementation-dependent manner. 

\An implementation may choose to restart vector load and store 
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operations from the beginning or continue from the point of the memory 
management problem. System software must guarantee a minimum 
available working set of 67 pages.\ 

The PC and PS are then restored, the vector frames are removed from 
the Kernel stack, and instruction execution continues. 

6.5 SERIALIZATION OF EXCEPTIONS AND INTERRUPTS 

It is a goal of the architecture to allow and promote parallel 
instruction execution. This means that at any point in time there may 
be several instructions in various stages of execution. When an 
exception or interrupt condition is detected, all active instructions 
must be completed before the exception or interrupt can actually be 
initiated. 

In order to accomplish this, instruction issuing is stopped until all 
instructions in progress have completed. At this point it is possible 
for multiple exception and interrupt events to be present in which 
case arithmetic traps take precedence over vector memory management 
faults, which take precedence over all other faults, which take 
precedence over interrupts. 

Thus the priority of initiation is: 

1. Arithmetic traps 

2. Vector Alignment and memory management exceptions 

3. All other exceptions (faults) 

4. Highest priority interrupt 

If an arithmetic trap and a fault condition are both present, any 
machine state that may have been altered by the fault condition must 
be sufficiently restored before the arithmetic trap is initiated. 

·: Generally, no state may have been altered, but some implementations 
may need to ensure that subsequent scalar register writes after a 
memory management fault are backed up or not allowed to occur. 

If an exception and an interrupt condition are 
exception is initiated. The interrupt will 
conditions permit. This may be on the first 
exception service routine if the exception did 
Machine Check). 

both present, the 
be initiated when 

instruction of the 
not raise IPL (e.g., 

In cases where multiple exceptions are possible in a single 
instruction (e.g., Data Alignment and Translation Not Valid), the 
order in which the exceptions are detected is UNPREDICTABLE. 
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The System Control Block (SCB) is a quadword aligned region of 
physically contiguous memory containing vectors by which exceptions 
and interrupts are dispatched to the appropriate service routines. 
The address of the SCB is held in an internal processor register and 
may be loaded by executing a Move To Processor Register instruction 
specifying the System Control Block Base (MTPR SCBB); See Chapter 8, 
Internal Processor Registers, Section 8.1. 

A vector is a longword in the SCB that is examined by Epicode when an 
exception or interrupt is initiated. A unique vector is defined for 
each interrupt and exception. 

3 
l 2 l 0 

+-----------------------------------------------------------+---+ 
I Virtual I s I 
I Address of I B I 
I Service Routine I Z I 
+-----------------------------------------------------------+---+ 

Figure 6-18: System Control Block Vector 

If Epicode reads a vector for which bits <l:O> are not zero, the 
resultant operation is UNDEFINED. 
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Table 6-1: System Control Block Vector Assignments 

Vector Name 
(hex) 

00 Unused 

04 Machine Check 

08 Fault On Bit 

oc Vector Align 

10 Scalar Align 

14 Access Violat 

Type 

Abort 

Fault 

Abort 

Fault 

Fault 

18 Trans Not Valid Fault 

lC Fault On Exec Fault 

20 Fault On Read Fault 

24 Fault On Write Fault 

28 Arithmetic Trap Trap 

Mode 

Kernel 

Current 

Kernel 

Current 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Number Notes 
Longwds 

Reserved to DIGITAL. 

* Implementation 
specific number of 
longwords pushed on 
stack. 

4 Faulting instruction 
pushed on stack. 

4 Virtual address of 
reference is pushed on 
stack. 

4 Faulting instruction 
and virtual address of 
reference pushed on 
stack. 

4 Virtual address and 
type of reference 
pushed on stack. 

4 Virtual address and 
type of reference 
pushed on stack. 

4 Virtual address and 
type of reference 
pushed on stack. 

4 Virtual address and 
type of reference 
pushed on stack. 

4 Virtual address and 
type of reference 
pushed on stack. 

6 Exception summary and 
vector and scalar 
register write masks 
pushed on stack. 
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Table 6-1: System Control Block Vector Assignments (Continued) 

----------------------------------------------------------------------
Vector Name 
(hex) 

Type Mode Number Notes 
Longwds 

----------------------------------------------------------------------
2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

SC 

60 

64 

68 

Interval Clock Int 

Interproc Int Int 

Software Lvl 1 Int 

Software Lvl 2 Int 

Software Lvl 3 Int 

AST Interrupt Int 

Priv Instruct Fault 

Illegal Operand Fault 

Stack Alignment Abort 

Breakpoint Fault 

Bug Check Fault 

Reserved Opcode Fault 

Power Recovery Int 

Console Receive Int 

Console Transmt Int 

Vector Enable Fault 

6C-3FC Unused 

400-7FC I/O Proc Int Int 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Current 

Current 

Kernel 

Kernel 

Kernel 

Current 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

2 

2 

2 

2 

2 

2 

2 

4 

2 

2 

2 

4 

2 

2 

2 

2 

2 

IPL is raised to 5. 

IPL is raised to 6. 

IPL is raised to 1. 

IPL is raised to 2. 

IPL is raised to 3. 

IPL is raised to 1. 

Faulting instruction 
pushed on stack. 

Faulting instruction 
pushed on stack. 

IPL is raised to 7. 

IPL is raised to 4. 

IPL is raised to 4. 

Reserved to DIGITAL. 

I/O port 
processor 
interrupt 
IPL raised 

and I/O 
specific 
vectors. 

to 4 or 5. 
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At any point in time the processor is in one of four modes (Kernel, 
Executive, Supervisor, or User). There is a stack pointer associated 
with each of these four modes. When the processor changes from one of 
these modes to another, SP (Rl) is saved in an Epicode-dependent 
location for the old state (Epicode may save privileged context in 
internal registers or in the process privileged context area: see 
Chapter 7, Process Structure, Section 7.2). and the new SP is loaded 
from an Epicode-dependent location. 

The Current Mode 
architecturally 
follows: 

(CM) field of PS specifies which 
defined stack pointers is currently 

Mode Stack 

0 Kernel (KSP) 
1 Executive (ESP) 
2 Supervisor (SSP) 
3 User (USP) 

6.7.l Stack Writability 

of 
in 

the 
use, 

four 
as 

In response to various exceptions and interrupts, Epicode pushes 
information on either the Kernel or Current Mode stack. Epicode may 
write this information without first probing to ensure that all such 
writes to the target stack will succeed. If a memory management 
exception occurs while pushing information, the appropriate memory 
management fault is generated rather than the original exception. 

6.7.2 Stack Residency 

The User, Supervisor, and Executive stacks do not need to be resident. 
Software running in Kernel mode can bring in or allocate stack pages 
as Translation Not Valid faults occur. However, since this activity 
is taking place in Kernel mode, the Kernel stack must be resident. 

Translation Not Valid, Access Violation, Fault On Read, and Fault On 
Write faults occurring on Kernel mode references to the Kernel stack 
are considered serious system failures from which recovery is not 
possible. If any of these faults occur, the processor enters the 
restart sequence: see Chapter 11, System Bootstrapping and Console. 

It is not necessary for the Kernel stack to be resident for processes 
other than the current one, but it must be resident before the process 
is selected to run by operating system software. 
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All stacks must be quadword aligned. If Epicode attempts to push on a 
stack that is not quadword aligned, a Stack Alignment abort is 
generated. It is the responsibility of software to ensure that stacks 
are quadword aligned. 

Epicode pushes parameters on various stacks in response to exceptions 
and interrupts. All information pushed is a multiple of quadwords. 
Thus, if the initial value of a stack pointer is quadword aligned and 
all adjustments to the respective stack pointer leave it quadword 
aligned, the stack will remain quadword aligned. 

6.7.4 Initiate Exception Or Interrupt 

Exceptions and interrupts are initiated by Epicode with interrupts 
disabled. When an exception or interrupt is initiated, the associated 
SCB vector is read to determine the address of the service routine. 

Once the service mode and stack have been determined, Epicode then 
attempts to push the PC followed by the PS, and in the case of 
exceptions, other parameters if required, on the target stack. During 
the attempt to push this information, several exceptions can occur. 
These are: 

o Stack Alignment 

o Tr~nslation Not Valid 

o Access Violation 

o Fault On Write 

If the target stack is the Kernel stack and any of the above 
exceptions occur, a Kernel Stack Not Valid abort is initiated and the 
processor enters the restart sequence: see Chapter 11, System 
Bootstrapping and Console. 

If the target stack is User, Supervisor, or Executive and the stack is 
unaligned, a Stack Alignment abort is initiated. 

If the target stack is User, Supervisor, or Executive and a 
Translation Not Valid, Access Violation, or Fault On Write condition 
exists, the exception is turned into the corresponding memory 
management exc~ption, with the PC and PS of the original fault and the 
virtual address of the problem in the target mode stack. 
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check_for_exception_or_interrupt: 

IF NOT {exception or interrupt pending} THEN 
BEGIN 
{fetch next instruction} 
{decode and execute instruction} 
END 

ELSE 
BEGIN 
{wait for in-progress instructions to complete} 
IPR SP[PS<CM>] <- SP 
IF Texception pending} THEN 

BEGIN 
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{back up implementation specific state if necessary} 
IF {vector exception} AND {NOT {machine check}} THEN 

BEGIN 
new ipl <- PS<IPL> 
new-mode <- 0 
new-sp <- KSP 
FOR-i <- l TO {number of exceptions} 

BEGIN 
PUSH(stride[i], base[i]) 
PUSH(virtual[i], reg_data[i]) 
END 

tmp <- PS 
tmp<VEF> <- l 
PUSH(PC, tmp) 
IF {arithmetic exception} THEN 

BEGIN 
PUSH(write mask R63 R32, write mask R31 RO) 
PUSH(write-Mask-Vl5-VO, summary) - -
vector <- TaritlimetTc exception SCB offset} 
END 

ELSE 
BEGIN 
IF reg data[l]<ETY> EQ {vector alignment abort} THEN 

BEGIN 
PUSH(O, virtual[l]) 
vector <- {vector alignment exception SCB offset} 
END 

ELSE 
BEGIN 

END 
END 

ELSE 
BEGIN 

(new sp + B)<VFS> <- l 
tmp <- ZEXT(reg data[l]<OPR>) 
PUSH(tmp, virtual[l]) 
vector <- {memory management exception SCB offset} 
END 
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IF {machine check} THEN 
BEGIN 
new ipl <- 7 
new-mode <- 0 
new sp <- KSP 
END-

ELSE 
BEGIN 
new ipl <- PS<IPL> 
new-mode <- {target mode of exception} 
new:sp <- IPR_SP[new_mode] 
END 

PUSH(PC, PS) 
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FOR i <- {number of parameters} I 2 TO l BY - l 
BEGIN 

END 

PUSH(parameter[{i * 2 } + l], parameter[i * 2]) 
END 

IF {{number of parameters} MOD 2} EQ l THEN 
PUSH(parameter[l], 0) 

vector <- {exception SCB offset} 
END 

ELSE 
BEGIN 
new ipl <- {interrupt source IPL} 
new-mode <- 0 
new-sp <- KSP 
PUSH(PC, PS) 
vector <- {interrupt SCB offset} 
END 

PS<CM> <- new mode 
PS<IPL> <- new ipl 
SP <- new sp -
PC <- (SCBB + vector) 
END 

GOTO check_for_exception_or_interrupt 
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PROCEDURE PUSH(first, last) 

IF new sp<2:0> NE 0 THEN 
BEGIN 
IF new mode EQ 0 THEN 

Company Confidential 

{initiate kernel stack not valid halt} 
ELSE 

BEGIN 
new mode <- 0 
new-sp <- KSP 
PUSH(PC, PS) 
KSP <- new sp 
PS<CM> <- 0 
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PC<- (SCBB + {stack alignment abort SCB offset}) 
GOTO check for exception or interrupt 
END - - - -

END 
ELSE 

BEGIN 

END 

IF ACCESS(new sp - 8, new_mode) THEN 
BEGIN -
(new sp - 4) <- first 
(new-sp - 8) <- last 
new sp <- new_sp - 8 
RETURN 
END 

ELSE 
BEGIN 
IF new mode EQ 0 THEN 

{initiate kernel stack not valid halt} 
ELSE 

BEGIN 

END 
END 

tmp <- new_sp 
new mode <- 0 
new-sp <- KSP 
PUSH(PC, PS) 
PUSH(l, tmp) 
KSP <- new sp 
PS<CM> <- 0 
PC<- (SCBB + {memory management SCB offset}) 
GOTO check for exception or interrupt 
END - - - -
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It is envisioned that most, if not all, implementations will provide 
hardware to check for pending interrupts. This includes software and 
AST interrupts as well as those caused by the console terminal, 
Interval Clock, I/O processors, interprocessor interrupts, and 
powerfail. 

Certain implementations, however, may find it more cost effective to 
implement parts of the interrupt arbitration in Epicode. The console 
terminal, Interval Clock, I/0 interrupts, interprocessor interrupts, 
and powerfail must be monitored by hardware, and when proper enabling 
conditions are present, cause an interrupt to be initiated. Software 
and AST interrupts, however, can totally be implemented in Epicode. 

The following sections describe the Epicode instructions that require 
special checks to implement these capabilities. In all cases, the 
interrupt is initiated before the execution of the next instruction. 
In a system that implements interrupts totally in hardware, an 
identical behavior must be provided. 

6.7.6.1 MTPR AST Request Register 

Writing the ASTRR internal processor register (see Chapter 8, Internal 
Processor Registers, Section 8.1) requests an AST for one of the four 
processor modes. This may request an AST on a formerly inactive level 
and thus cause an AST interrupt. 

The logic required to check for this condition is: 

ASTSR<mode> <- 1 
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> EQ 0} THEN 

{initiate AST interrupt at IPL l} 

6.7.6.2 MTPR Software Interrupt Request Register 

Writing the SIRR internal processor register (see Chapter 8, Internal 
Processor Registers, Section 8.1) requests a software interrupt at one 
of the four software interrupt levels. This may cause a formerly 
inactive level to cause a software interrupt. 

The logic required to check for this condition is: 

SISR<level> <- l 
IF level GT PS<IPL> THEN 

{initiate software interrupt at IPL level} 
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6.7.6.3 Return From Exception Or Interrupt 

The Return from Exception or Interrupt instruction (see Chapter 4, 
Instruction Descriptions, Page 4-85) writes both the current mode and 
IPL fields of the PS; see Section 6.2. This may enable a formerly 
disabled AST or software interrupt to occur. 

The logic required to check for this condition is: 

PS<CM> <- (SP)<CM> 
PS<IPL> <- (SP)<IPL> 
IF RIGHT SHIFT(SISR, PS<IPL> + 1) NE 0 THEN 

{initiate software interrupt at IPL of high bit set in SISR} 
tmp <-NOT LEFT SHIFT(lllO(bin), PS<CM>) 
IF {{tmp AND ASTEN AND ASTSR}<3:0> NE O} AND {PS<IPL> EQ 0} THEN 

{initiate AST interrupt at IPL l} 

6.7.6.4 Swap AST Enable 

Swapping the AST enable state for the current mode results in 
the ASTEN internal processor register (see Chapter 8, 
Processor Registers, Section 8.1). This may enable a 
disabled AST to cause an AST interrupt. 

The logic required to check for this condition is: 

tmp <- R4<0> 
R4 <- ZEXT(ASTEN<PS<CM>>) 
ASTEN<PS<CM>> <- tmp 
IF ASTEN<PS<CM>> AND ASTSR<PS<CM>> AND {PS<IPL> EQ 0} 

{initiate AST interrupt at IPL l} 

6.7.6.5 Swap Interrupt Priority Level 

writing 
Internal 
formerly 

Swapping the Interrupt Priority Level (IPL) writes the IPL field of 
the Processor Status (PS); see Section 6.2. This may enable a 
formerly disabled AST or software interrupt to occur. 

The logic required to check for this condition is: 

tmp <- R4<2:0> 
R4 <- ZEXT(PS<IPL>) 
PS<IPL> <- tmp 
IF RIGHT SHIFT(SISR, PS<IPL> + l) NE 0 THEN 

{initiate software interrupt at IPL of high bit set in SISR} 
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> EQ 0} THEN 

{initiate AST interrupt at IPL l} 
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6.7.7 Processor State Transition Table 

Initial 
State 

USER 
IPL=O 

SUPER 
IPL=O 

EXEC 
IPL=O 

KERNEL 
IPL=O 

KERNEL 
IPL>O 

Table 6-2: Processor State Transitions 

User 
IPL=O 

Final State 

Super Exec Kernel Kernel Program 
IPL=O IPL=O IPL=O IPL>O Halt 

+-------+-------+-------+-------+-------+-------+ 
I I I I I Int I I 
I I NP I NP I Exe I Exe I NP I 
I I I I ISWASTENI I 
+-------+-------+-------+-------+-------+-------+ 
I I I I I Int I I 
I REI* I I NP I Exe I Exe I NP I 
I I I I ISWASTENI I 
+-------+-------+-------+-------+-------+-------+ 
I I I I I Int I I 
I REI* I REI* I I Exe I Exe I NP I 
I I I I ISWASTENI I 
+-------+-------+-------+-------+-------+-------+ 
I I I I I REI I I 
I REI* I REI* I REI* I I SWIPL I HALT I 
I I I I I Int I I 
I I I I I Exe I I 
I I I I I MTPR * I I 
I I I I ISWASTENI I 
+-------+-------+-------+-------+-------+-------+ 
I I I I I I I 
I REI* I REI* I REI* I REI* I I HALT I 
I I I ISWIPL* I I I 
+-------+-------+-------+-------+-------+-------+ 

* - An REI that increases mode or lowers IPL, or 
a SWIPL that lowers IPL, or a MTPR ASTRR or 
MTPR ASTEN, can cause an interrupt request at 
IPL 1. 

Exe - State change caused by an exception. 

Int - State change caused by an interrupt. 

NP - State not possible. 
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Revision History: 

Revision 1.0, 22 December 1985 

1. General rewrite of chapter to better organize information and 
to reflect the change from a 64- to a 32-bit architecture. 

2. Change the number of IPLs from 32 to 8. 

3. Removal of all types of traps except arithmetic traps. 
is now only one kind of trap. 

4. Renamed PSQ to PS and PC. 

There 

s. Previous mode, interrupt stack, and interrupt disable were 
removed from the PS to simplify the privileged architecture. 

6. Added vector fault to the definition of PS for saved copies of 
PS. This bit is similar in functionality to First Part Done 
(FPD) on VAX. 

7. Added vector enable to the definition of PS. This bit enables 
the use of vector instructions and enables optimization of the 
saving and restoring of vector registers for processes that do 
not use them without introducing security holes. 

8. Added Vector Enable fault. 

9. Changed PS to a longword and PC to a longword. 

10. Added I/0 Port Controller interrupts as part of adding the I/O 
architecture. 

11. Removed much information that was duplicated in other places 
and inserted a reference to the proper definition. 

12. Revised arithmetic traps to reflect the agreed upon handling 
at the August 23 technical review. 

13. Added Fault On Bit fault and dropped User Check trap. 

14. Added Fault On Read, Fault On Write, and Fault On Execute 
faults as part of the simplification of memory management. 

15. Dropped the separate fault for emulated instructions and 
combined with reserved opcode. 

16. Changed Bug Check to a fault so the only traps would be 
arithmetic. 

17. Added vector exception information and an explanation of how 
vector arithmetic and memory management faults are handled. 
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18. Grossly simplified serialization rules. 
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19. Added section on instruction issue and how it pertains to 
exceptions and interrupts. 

20. Added section on Epicode interrupt arbitration for 
instructions that alter the state such that an AST or software 
interrupt may be generated. 

21. Updated state transition 
privileged architecture. 

Revision 0.0, July 5, 1985 

1. First review distribution. 

table to reflect simplified 
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CHAPTER 7 

PROCESS STRUCTURE 

7.1 PROCESS DEFINITION 

A process is the basic entity that is scheduled for execution by the 
processor. A process represents a single thread of execution and 
consists of an address space and both hardware and software context. 

The hardware context of a process is defined by: 

o 64 scalar registers 

o 16 vector registers 

o Vector Length register (VL) 

o Vector Count register (VC) 

o Vector Mask register (VM) 

o Processor Status (PS) 

o Program Counter (PC) 

o 4 stack pointers 

o Asynchronous System Trap Enable register (ASTEN) 

o Asynchronous System Trap Summary Register (ASTSR) 

o Process Page Table Base Register (PTBR) 

o Address Space Number (ASN) 

The software context of a process is defined by operating system 
software and is system dependent. 

A process may share the same address space with other processes or 
have an address space of its own. There is, however, no separate 
address space for system software, and therefore, the operating system 
must be mapped into the address space of each process: see Chapter 5, 
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In order for a process to execute, its hardware context must be loaded 
into the scalar registers, vector registers, and internal processor 
registers. While a process is executing, its hardware context is 
continuously updated. When a process is not being executed, its 
hardware context is stored in memory. 

Saving the hardware context of the current process in memory, followed 
by the loading of the hardware context for a new process, is termed 
context switching. Context switching occurs as one process after 
another is scheduled by the operating system for execution. 

7.2 HARDWARE PRIVILEGED PROCESS CONTEXT 

The hardware context of a process is defined by 
which is context switched with the Swap Privileged 
(SWPCTX) (see Chapter 4, Instruction Descriptions, 
nonprivileged part which is context switched 
software. 

a privileged part 
Context instruction 
Page 4-93) and a 
by operating system 

When a process is not executing, its privileged context is stored in a 
quadword aligned memory structure called the Hardware Privileged 
Context Block (HWPCB). 
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3 
1 

1 1 
6 5 8 7 4 3 0 

+-------------------------------+---------------+-------+-------+ 
I 
I Kernel Stack Pointer (KSP) :HWPCB 
I 
+-------------------------------+---------------+-------+-------+ 
I I 
I Executive Stack Pointer (ESP) I +4 
I I 
+-------------------------------+---------------+-------+-------+ 
I I 
I Supervisor Stack Pointer (SSP) I +8 
I I 
+-------------------------------+---------------+-------+-------+ 
I I 
I User Stack Pointer (USP) I +12 
I I 
+-------------------------------+---------------+-------+-------+ 
I I I I I 
I Address Space Number (ASN) I SBZ I ASTEN I ASTSR I +16 
I I I I I 
+-------------------------------+---------------+-------+-------+ 
I 
I Page Table Base Register (PTBR) +20 
I 
+---------------------------------------------------------------+ 

Figure 7-1: Hardware Privileged Context Block 

The Hardware Privileged Context Block (HWPCB) for the current process 
is specified by the Privileged Context Block Base register (PCBB); see 
Chapter 8, Internal Processor Registers, Page 8-15. 

If ASNs are not implemented, the ASN field of the HWPCB Should Be Zero 
(SBZ). 

The Swap Privileged Context instruction (SWPCTX) saves the privileged 
context of the current process into the HWPCB specified by PCBB, loads 
a new value into PCBB, and then loads the privileged context of the 
new process into the appropriate hardware registers. 

The new value loaded into PCBB, 
Privileged Context Block, must 
UNDEFINED operation results: 

as well 
satisfy 

as the 
certain 

contents of the 
constraints or an 

l. The physical address loaded into PCBB must be quadword 
aligned, and describe six contiguous longwords that are 
neither in I/0 space nor in non-existent memory. 

2. The value of PTBR must be 
existent page that is 
non-existent memory. 

the Page Frame Number of 
neither in 1/0 space nor 

an 
in 
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It is the responsibility of the operating system to save and load the 
nonprivileged part of the hardware context. 

The SWPCTX instruction returns ownership of the current HWPCB to 
operating system software and passes ownership of the new HWPCB from 
the operating system to the processor. Any attempt to read or write a 
HWPCB while ownership resides with the processor has UNPREDICTABLE 
results. 

7.3 ASYNCHRONOUS SYSTEM TRAPS (AST) 

Asynchronous System Traps (ASTs) are a means of notifying a process of 
events that are not synchronized with its execution, but which must be 
dealt with in the context of the process with minimum delay. 

Asynchronous System Traps (ASTs) interrupt process execution and are 
controlled by the AST Enable (ASTEN) and AST Summary (ASTSR) internal 
processor registers: see Chapter 8, Internal Processor Registers, 
Pages 8-4 and 8-6. 

The AST Enable register (ASTEN) contains an enable bit for each of the 
four processor access modes. When the bit corresponding to an access 
mode is set,:ASTs for that mode are enabled. The AST enable bit for 
an access mode may be changed by executing a Swap AST Enable 
instruction (SWASTEN): see Chapter 4, Instruction Descriptions, Page 
4-87. 

The AST Summary Register (ASTSR) contains a pending bit for each of 
the four processor access modes. When the bit corresponding to an 
access mode is set, an AST is pending for that mode. The AST pending 
bit for an access mode may be set by requesting an AST for the 
respective mode. 

Kernel mode software may request an AST for a particular access mode 
by executing a Move To Processor Register instruction specifying ASTRR 
(MTPR ASTRR); see Chapter 8, Internal Processor Registers, Page 8-5. 

Hardware or Epicode monitors the state of ASTEN, ASTSR, PS<CM>, and 
PS<IPL>. If PS<IPL> is zero, and there is an AST pending and enabled 
for any access mode that is less than or equal to PS<CM> (i.e., an 
equal or more privileged access mode), an AST interrupt is initiated 
at IPL l. ASTs that are pending and enabled for less privileged 
access modes are not allowed to interrupt execution in more privileged 
access modes. 

7.3.l A Software Model For AST Processing 

It is intended that ASTs represent a single level of interrupt for 
each of the four processor access modes. Therefore, operating system 
software should not allow nested ASTs to occur within a single mode. 
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One way to accomplish this is for operating system software to keep 
track of the access modes for which an AST is currently in progress 
and not request further ASTs for these access modes until processing 
of the respective ASTs has been completed. 

In the following discussion it is assumed that the operating system 
maintains a per process mask that contains one bit for each of the 
access modes for which an AST is currently active. When an AST is 
delivered to a particular access mode, the corresponding bit in the 
active mask is set. Later, when AST processing is completed, the 
operating system clears the respective bit and checks if any ASTs have 
been queued at the particular level but not requested. 

The operating system must also keep track of the access mode which is 
to receive an AST when the event associated with the AST is completed. 
Typically, such an event is the completion of an asynchronous I/O 
request or the expiration of a timer. The simplest way to do this is 
to construct an AST control block when the original request is 
received and record in the control block the access mode and address 
of the AST routine that is to be executed. 

A simple model for uniprocessor AST delivery: 

l. The completion of an event for which an AST has been 
requested causes operating system software to place an AST 
control block in a queue associated with the target process. 
The AST queue is ordered by access mode with more privileged 
entries at the front of the queue. 

2. If the target process is currently executing and an AST is 
not currently in progress for the specified access mode, an 
AST is requested for the corresponding access mode by 
executing a MTPR ASTRR instruction. If the target process is 
not currently executing and an AST is not currently in 
progress for the specified access mode, an AST is requested 
by setting the bit corresponding to the specified access mode 
in the saved ASTSR of the target process. 

3. Hardware or Epicode monitors the state of ASTEN, ASTSR, 
PS<CM>, and PS<IPL>. If PS<IPL> is zero and there is an AST 
pending and enabled for any access mode that is less than or 
equal to PS<CM> (i.e., an equal or more privileged access 
mode), an AST interrupt is initiated at IPL l. 

4. The AST delivery interrupt service routine is entered at IPL 
l in Kernel mode and attempts to remove an AST control block 
from the process AST queue. The AST queue must be scanned 
from the front looking for an entry that specifies an access 
mode that is less than or equal to the current mode of the 
saved PS (an access mode that is equal to or more privileged 
than the previous access mode) and for which ASTs are enabled 
and not active (i.e., there is not already an AST in progress 
for the mode). If an appropriate entry is located, then it 
is removed from the queue and the bit corresponding to the 
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destination access mode is set in the active mask. An 
appropriate PS and PC are constructed on the Kernel stack and 
an REI is executed which begins execution of the AST routine. 
If an appropriate AST control block cannot be located, the 
AST interrupt is simply dismissed. (It is possible for this 
condition to arise in the special case where an AST interrupt 
is initiated, clearing the corresponding pending bit in 
ASTSR, and before operating system software sets the 
appropriate bit in the active mask, another AST for the same 
access mode is requested.) 

5. At the conclusion of processing an AST, the AST routine calls 
the operating system to exit from the AST. The operating 
system clears the appropriate bit in the active mask and 
checks to see if another AST has been queued for the 
specified access mode. If another AST has been queued, an 
AST is requested by executing an MTPR ASTRR specifying the 
appropriate access mode. 

7.4 PROCESS CONTEXT SWITCHING 

Process context switching occurs as one process after another is 
scheduled for execution by operating system software. Context 
switching requires the hardware context of one process to be saved in 
memory followed by the loading of the hardware context for another 
process into the hardware registers. 

The privileged hardware context is swapped with the Swap Privileged 
Context instruction (SWPCTX). Other hardware context must be saved 
and restored by operating system software. 

The sequence in which process context is changed is important since 
the SWPCTX instruction changes the environment in which the context 
switching software itself is executing. Also, although not enforced 
by hardware, it is advisable to execute the actual context switching 
software in an environment which is not context switchable (i.e., at 
an IPL high enough that rescheduling cannot occur). 

The SWPCTX instruction is the only method provided for loading certain 
internal processor registers. The SWPCTX instruction always saves the 
privileged context of the old process and loads the privileged context 
of a new process. Therefore, a valid HWPCB must be available to save 
the privileged context of the old process as well as load the 
privileged context of the new process. 

At system initialization, a valid HWPCB is constructed in the Restart 
Parameter Block (RPB) for each processor: see Chapter 11, System 
Bootstrapping and Console, Section 11.1.1.2. Thereafter, it is the 
responsibility of operating system software to ensure a valid HWPCB 
when executing a SWPCTX instruction. 
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7.4.1 A Software Model For Process Context Switching 

The following context switching code represents 
operating system software can switch context 
another. 

a model by which 
from one process to 

Certain assumptions are made regarding the entry and exit conditions 
of this code. At entry it is assumed that the code is executing in 
Kernel mode at IPL 2 and that the continuation PC and PS have already 
been saved on the Kernel stack. At exit, the execution of the new 
process is to be continued by an REI instruction. 

SWAP PROCESS CONTEXT: 

10$: 

SUB 
STQ 
STQ 
MFPR 
LDL 
STQ 
STQ 
STQ 

STQ 
STQ 
STQ 
LDL 
SRL 
BLBC 
RDVC 
RDVL 
STQ 
RDVML 
RDVMH 
STQ 
WRVL 
LDA 
VSTQ 
LDA 
VSTQ 
LDA 
VSTQ 

LDA 
VSTQ 
LDA 
VSTQ 
LDA 
VSTQ 

allocate room to save registers 
save scalar registers R4 and RS 
save scalar registers R2 and R3 

#4*4,SP,SP 
R4,8(SP) 
R2, (SP) 
PRBR read processor base register into R4 

; get address of current software PCB 
; save scalar registers R6 and R7 

PRB$L SWPCB(R4),R2 
R6,SWPCB$L R6(R2) 
R8,SWPCB$L-R8(R2) 
Rl0,SWPCB$L_Rl0(R2) ; 

save scalar registers RS and R9 
save scalar registers RlO and Rll 

RS8,SWPCB$L R58(R2) save scalar registers R58 and R59 
R60,SWPCB$L-R60(R2) : save scalar registers R60 and R61 
R62,SWPCB$L-R62(R2) . save scalar registers R62 and R63 , 
l6(SP) ,R4 - get saved PS 
#PS$V VEN,R4,R3 . shift PS<VEN> to low bit , 
R3, 10$ . if low bit clear, not using vectors , 
R4 . read vector count register , 
RS read vector length register 
R4,SWPCB$L_VC(R2) . save vector count and length registers I 

R4 read low half of vector mask register 
RS . read high half of vector mask register , 
R4,SWPCB$L VML(R2) . save vector mask register , 
RO - . set vector length to 64 elements I 

SWPCB$Q VO(R2),R2 get base address of vector save area 
#8,R2,VO . save vector register VO I 

64*8 (R2) ,R2 get address of next vector save area 
#8,R2,Vl save vector register Vl 
6 4 * 8 ( R2 ) , R2 get address of next vector save area 
#8,R2,V2 save vector register V2 

64*8(R2),R2 . get address of next vector save area , 
#8,R2,Vl3 save vector register Vl3 
6 4 * 8 ( R2 ) , R2 get address of next vector save area 
#8,R2,Vl4 save vector register Vl4 
64*8(R2) ,R2 get address of next vector save area 
#8,R2,VlS . save vector register VlS , 
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: Execute operating system dependent code to select new process • . , 
: Exit with: . , 
: R2 - address of new process software PCB • . , 

. , 

MFPR 
STL 
LDQ 
SWPCTX 

PRBR : read processor base register 
R2,PRB$L SWPCB(R4) : set address of new software PCB 
SWPCBSQ HwPCB(R2),R4 : get physical address of hardware PCB 

- : swap privileged context 

: The privileged context has been swapped at this point and thus 
: a new address space is in effect as is a new Kernel stack pointer 
: and saved PC and PS • . , 

20$: 

LDL 
SRL 
BLBC 
WRVL 
LDA 
VLDQ 
LDA 
VLDQ 
LDA 
VLDQ 

LDA 
VLDQ 
LDA 
VLDQ 
LDA 
VLDQ 
LDQ 
WRVC 
WRVL 
LDQ 
WRVML 
WRVMH 

LDQ 
LDQ 
LDQ 

LDQ 
LDQ 
LDQ 

• 

16 (SP), R4 
#PS$V VEN,R4,R3 
R3,20$ . 
RO . 
SWPCBSQ VO(R2),R3 
#8,R3,VO 
64*8(R3) ,R3 
#8,R3,Vl 
64*8(R3) ,R3 
#8,R3,V2 

64*8(R3) ,R3 
#8,R3,Vl3 
64*8(R3),R3 
#8,R3,Vl4 
64*8(R3),R3 
#8,R3,VlS 
SWPCB$L VC(R2),R4 
R4 -
RS 
SWPCBSL VML(R2),R4 
R4 -
RS 

: get saved PS 
: shift PS<VEN> to low bit 
: if low bit clear, not using vectors 
: set vector length to 64 elements 
: get base address of vector save area 
: load vector register VO 
: get address of next vector save area 
: load vector register Vl 
: get address of next vector save area 
: load vector register V2 

: get address of next vector save area 
: load vector register Vl3 
: get address of next vector save area 
: load vector register Vl4 
: get address of next vector save area 
: load vector register Vl5 

get saved vector count and length 
: write vector count register 

write vector length register 
: get saved vector mask 

write low half of vector mask register 
: write high half of vector mask register 

: load scalar registers R6 and R7 
load scalar registers RB and R9 
load scalar registers RlO and Rll 

SWPCB$L R6(R2),R6 
SWPCB$L-R8(R2),R8 
SWPCB$L:Rl0(R2),Rl0 : 

SWPCBSL RS8(R2),R58 
SWPCB$L-R60(R2),R60 
SWPCB$L:R62(R2),R62 : 

load scalar registers RSB and R59 
load scalar registers R60 and R61 
load scalar registers R62 and R63 
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LDQ 
LDQ 
ADD 
REI 

(SP) , R2 
8 (SP), R4 
#4*4,SP,SP 

load scalar registers R2 and R3 
load scalar registers R4 and R5 
deallocate register save area 
resume process execution 
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Revision History: 
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to reflect simplified privileged 

2. Removed all explicit assumptions about how operating system 
software uses the hardware process structure. 

3. Removed references to PSW, ASTLVL, and the interrupt stack. 

4. Added new definition of hardware context and defined the 
Hardware Privileged Context Block (HWPCB). 

5. Revised the AST section and added a software model of AST 
processing. 

6. Deleted the section on Process Structure Interrupts. 

7. Combined the sections on saving and loading process context 
into a single section on swapping context. 

Revision 0.0, July 5, 1985 

1. First review distribution. 
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CHAPTER 8 

INTERNAL PROCESSOR REGISTERS 

8.1 INTERNAL PROCESSOR REGISTERS 

This chapter describes the PRISM Internal Processor Registers (IPRs). 
These registers are read and written with Move From Processor Register 
(MFPR) and Move To Processor Register (MTPR) instructions: see Chapter 
4, Instruction Descriptions, Pages 4-90 and 4-91. 

These instructions accept input operands from and write results to the 
scalar registers R4, RS, and R6. Prior to execution of an MTPR/MFPR, 
required input operands must be loaded into scalar registers R4 and 
RS. In certain cases no input operands are required. MFPR returns 
the IPR contents in one or more of the scalar registers R4, RS, and 
R6. 

Internal Processor Registers may or may not be implemented as actual 
hardware registers. An implementation may choose any combination of 
Epicode and hardware that produces the architecturally specified 
functionality. 

Internal Processor Registers are only accessible from Kernel mode. 
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Table 8-1: Internal Processor Register (IPR) Summary 

-----------------------------------------------------------------------Register Name Mnemonic Access R4 RS R6 
-----------------------------------------------------------------------Address Space Number 
AST Enable 
AST Request Register 
AST Summary Register 
Console Receive Ctrl. Status 
Console Receive Data Buffer 
Console Transmit Ctrl. Status 
Console Transmit Data Buffer 
Stack Pointer Registers 

Executive Stack Pointer 
Supervisor Stack Pointer 
User Stack Pointer 

Interval Clock Int. Enable 
Interprocessor Int. Enable 
Interprocessor Int. Request 
Privileged Context Block Base 
Processor Base Register 
Processor Serial Number 
Page Table Base Register 
System Control Block Base 
System Identification 
Software Int. Request Register 
Software Int. Summary Register 
Trans. Buffer Check 
Trans. Buffer Invalidate ASN 
Trans. Buffer Invalidate Single 
Time Of Year 
Who-Am-I 

ASN 
AS TEN 
AST RR 
AST SR 
CRCS 
CRDB 
CTCS 
CTDB 

ESP 
SSP 
USP 
ICIE 
IPIE 
IPIR 
PCBB 
PRBR 
PRSN 
PTBR 
SCBB 
SID 
SIRR 
SISR 
TBCHK 
TBIASN 
TBIS 
TOY 
WHAM I 

R 
R 
w 
R 
R/W 
R 
R/W 
w 

R/W 
R/W 
R/W 
R/W 
R/W 
w 
R 
R/W 
R 
R 
R/W 
R 
w 
R 
R 
w 
w 
R/W 
R 

number 
mask 
mode 
mask 
enable 
char 
enable 
char 

address 
address 
address 
enable 
enable 
number 
address 
value 
serial 
frame 
address 
ident 
level 
mask 
number 
number 
number 
time 
number 

address 

address 
value 

address 

address 
time 

status 
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Address Space Number (ASN) 

Access: 

Read 

Operation: 

R4 <- ZEXT{ASN<l5:0>} 

Value at System Initialization: 

Format: 

3 
1 

Zero 
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0 
+-------------------------------+-------------------------------+ 
I I I 
I RAZ I Address Space Number I :R4 
I I I 
+-------------------------------+-------------------------------+ 

Figure 8-1: Address Space Number Register (ASN) 

Description: 

Address Space Numbers (ASNs} are used to further qualify Translation 
Buffer references; see Chapter 5, Memory Management. The current ASN 
may be read by executing an MFPR instruction specifying ASN. 

As processes are scheduled for execution, the ASN for 
to execute is loaded using the Swap Privileged 
instruction: see Chapter 4, Instruction Descriptions, 
Chapter 7, Process Structure. 

the next process 
Context (SWPCTX) 

Page 4-93 and 
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AST Enable (ASTEN) 

Access: 

Read 

Operation: 

R4 <- ZEXT(ASTEN<3:0>) 

Value at System Initialization: 

Format: 

3 
1 

Zero 
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4 3 2 1 0 
+-------------------------------------------------------+-+-+-+-+ I IUISIEIKI 
I RAZ IEIEIEIEI :R4 
I ININININI 
+-------------------------------------------------------+-+-+-+-+ 

Figure 8-2: AST Enable Register (ASTEN) 

Description: 

The AST Enable register records the AST enable state for each of the 
., modes: Kernel (KEN), Executive (EEN), Supervisor (SEN), and User 
~ (UEN). The current AST enable state may be read by executing an MFPR 

instruction specifying ASTEN. 

As processes are scheduled for execution, the state of the AST enables 
for the next process to execute is loaded using the Swap Privileged 
Context (SWPCTX) instruction. The Swap AST Enable (SWASTEN) 
instruction can be used to change the enable state for the current 
access mode. See Chapter 4, Instruction Descriptions, Pages 4-93 and 
4-87, and Chapter 7, Process Structure. 
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AST Request Register (ASTRR) 

Access: 

Write 

Operation: 

ASTRR <- R4<1:0> 

Value at System Initialization: 

Format: 

3 
l 

Not Applicable 

2 l 0 
+-----------------------------------------------------------+---+ I I M I 
I IGN I O I :R4 
I I D I 
+-----------------------------------------------------------+---+ 

Figure 8-3: AST Request Register (ASTRR) 

Description: 

An AST may be requested for a 
MTPR instruction specifying 
used in the Processor Status 
Interrupts, Section 6.2. 

particular access mode by executing an 
ASTRR. Access mode encodings are those 

(PS); see Chapter 6, Exceptions and 

An MTPR ASTRR sets the bit corresponding to the specified access mode 
in the AST Summary Register; see Page 8-6. If proper enabling 
conditions are present, an AST interrupt is initiated prior to issuing 
the next instruction; see Chapter 6, Exceptions and Interrupts, 
Section 6.7.~. 
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AST Summary Register (ASTSR) 

Access: 

Read 

Operation: 

R4 <- ZEXT(ASTSR<J:O>) 

Value at System Initialization: 

zero 

Format: 

3 
l 
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4 3 2 1 0 
+-------------------------------------------------------+-+-+-+-+ 

RAZ 
IUISIEIKI 
IPIPIPIPI :R4 
II>IDIDIDI 

'°· +---.----------------------~------------------------------+-+-+-+-+ 

( ,.. 
' 

Figure 8-4: AST Summary Register (ASTSR) 

Description: 

The AST Summary Register records the AST pending state for each of the 
modes: Kernel (KPO), Executive (EPO), Supervisor (SPD), and User 
(UPD). The current AST pending state may be read by executing an MFPR 
instruction specifying ASTSR. 

As processes are scheduled for execution, the pending AST state for 
the next process to execute is loaded using the Swap Privileged 
Context (SWPCTX) instruction: see Chapter 4, Instruction Descriptions, 
Page 4-93 and Chapter 7, Process Structure. 

MTPR ASTRR requests an AST at a particular access mode and sets the 
correspondin9 pending bit in ASTSR; see Page 8-5. 

When the processor IPL is O, and proper enabling conditions are 
present, an AST interrupt is initiated at IPL l and the corresponding 
access mode bit in ASTSR is cleared: see Chapter 6, Exceptions and 
Interrupts, Section 6.7.6. 
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Console Receive Control Status (CRCS) 

Access: 

Read/Write 

Operation: 

R4 <- CRCS 

CRCS<O> <- R4<0> 

Value at System Initialization: 

Format: 

3 3 
1 0 

Zero 

Read 

Write 
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1 0 
+-+-----------------------------------------------------------+-+ IRI I I 
IDI IGN/RAZ III :R4 
IYI IEI 
+-+-----------------------------------------------------------+-+ 

t Figure 8-5: Console Receive Control Status Register (CRCS) 
,~· 

., 

/·· 

Description: 

The Console Receive Control Status register provides access to console 
input status and controls whether interrupts are generated when 
characters are received from the console terminal: see Chapter 11, 
System Bootstrapping and Console, Section 11.2. 

The Console Receive Control Status register may be read and written by 
executing MFPR and MTPR instructions that specify CRCS. When CRCS is 
written, a value of 1 enables console receive interrupts and a value 
of 0 disables interrupts: see Chapter 6, Exceptions and Interrupts, 
Section 6.3.3.1. Reading CRCS returns the current interrupt enable 
(IE) status and whether a character is ready (RDY) to be read from the 
Console Receive Data Buffer (CRDB): see Page 8-B. 

Character ready (RDY) is set when a character is received from the 
console. If interrupts are enabled when RDY is set, a console receive 
interrupt is generated when conditions permit. 

When the state of interrupt enable (IE) transitions from disabled (0) 
to enabled (1) and a character is available (RDY is set), it is 
UNPREDICTABLE whether a console receive interrupt is generated. 
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Console Receive Data Buffer (CRDB) 

Access: 

Read 

Operation: 

R4 <- CRDB 

Value at System Initialization: 

Format: 

3 3 
1 0 

Undefined 

8 7 0 
+-+---------------------------------------------+---------------+ IEI I I 
IRI RAZ I Character ·I :R4 
IRI I I 

c~ +-+---------------------------------------------+---------------+ 
Figure 8-6: Console Receive Data Buffer Register (CRDB) 

~· Description: 

~ The Console Receive Data Buffer register allows characters to be read 
from the console by executing an MFPR instruction specifying CRDB; see 
Chapter 11, System Bootstrapping and Console, Section 11.2. 

CRDB may be read when a character is ready for input (CRCS<RDY> is 
set): see Page 8-7. If CRDB is read when a character is not ready for 
input (CRCS<RDY> is clear), the result is UNPREDICTABLE. 

Reading CRDB returns an error indication (ERR) and an 8-bit ASCII 
character. ERR is set if an error, such as data overrun or loss of 
.carrier, is~t!etected while the character is being ·received. 

Reading CRDB clears CRCS<RDY>. 
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Console Transmit Control Status (CTCS) 

Access: 

Read/Write 

Operation: 

R4 <- CTCS 

CTCS<O> <- R4<0> 

Value at System Initialization: 

Format: 

3 3 
l 0 

Zero 

Read 

Write 
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l 0 
+-+-----------------------------------------------------------+-+ IDI 
IOI 
INI 

IGN/RAZ 
I I 
I I I :R4 
IEI 

+-+-----------------------------------------------------------+-+ 
Figure 8-7: Console Transmit Control Status Register (CTCS) 

Description: 

The Console Transmit Control Status register provides access to 
console output status and controls whether interrupts are generated 
when characters have been transmitted to the console: see Chapter 11, 
System Bootstrapping and Console, Section 11.2. 

The Console ~ransmit Control Status register may be read and written 
by executing MFPR and MTPR instructions that specify CTCS. When CTCS 
is written, a value of 1 enables console transmit interrupts and a 
value of 0 disables interrupts: see Chapter 6, Exceptions and 
Interrupts, Section 6.3.3.2. Reading CTCS returns the current 
interrupt enable (IE) status and whether a character can be 
transmitted (DON) to the Console Transmit Data Buffer (CTDB): see Page 
8-10. 

Character done (DON) is cleared when a character is written to CTDB 
and set when the character has been transmitted to the console. If 
interrupts are enabled when DON is set, a console transmit interrupt 
is generated when conditions permit. 

When the state of interrupt enable transitions from disabled (0) to 
enabled (1) and a character has finished transmission (DON is set), it 
is UNPREDICTABLE whether a console transmit interrupt is generated. 
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Console Transmit Data Buffer (CTDB) 

Access: 

Write 

Operation: 

CTDB <- R4<7:0> 

Value at System Initialization: 

Format: 

3 
l 

Not Applicable 

8 7 0 
+-----------------------------------------------+---------------+ 

IGN Character 

+-------------------~---------------------------·---------------+ 
. Figure 8-8: Console Transmit Data Buffer Register (CTOB) 

Descdption: 

:R4 

The Console Transmit Data 
characters to be written 
instruction specifying CTDB; 
Console, Section 11.2. 

Buffer register allows 8-bit ASCII 
to the console by executing an MTPR 
see Chapter 11, System Bootstrapping and 

CTDB may be written when any previously written characters have 
transmitted (CTCS<DON> is set); see Page 8-9. If CTDB is written 
a character is currently being transmitted (CTCS<DON> is clear), 
result is UNPREDICTABLE. 

Writing CTDB clears CTCS<DON>. 

been 
when 

the 
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Stack Pointer Registers (ESP, SSP, USP) 

Access: 

Read/Write 

Operation: 

R4 <- xSP 

xSP <- R4 

Value at System Initialization: 

Format: 

3 
1 

Undefined 

Read 

Write 

0 
+---------------------------------------------------------------+ 

Stack Address :R4 

+---------------------------------------------------------------+ 
Figure 8-9: Stack Pointer Registers (ESP, SSP, USP) 

Description: 

These registers allow the stack pointers for the 
Executive (ESP), Supervisor (SSP), and User (USP) 
written via MFPR and MTPR instructions that specify the 
stack pointer. 

access modes 
to be read and 
corresponding 

The current stack pointer may be read and written directly by 
specifying scalar register SP (Rl). 

No internal processor register is provided to read and write the 
Kernel stack pointer. MxPR instructions can only be executed from 
Kernel mode, and while in Kernel mode, the current (Kernel mode) stack 
pointer can be directly read and written. 

As processes are scheduled for execution, the four stack pointers for 
the next process to execute are loaded using the Swap Privileged 
Context (SWPCTX) instruction: see Chapter 4, Instruction Descriptions, 
Page 4-93 and Chapter 7, Process Structure. 

Stack pointers must be quadword aligned or a stack alignment exception 
may occur. An unaligned Executive, Supervisor, or User stack results 
in a Stack Alignment abort exception. An unaligned Kernel stack 
results in a Kernel Stack Not Valid halt. See Chapter 6, Exceptions 
and Interrupts, Section 6.4.7. 
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Interval Clock Interrupt Enable (ICIE) 

Access: 

Read/Write 

Operation: 

R4 <- ZEXT(ICIE<O>) 

ICIE <- R4<0> 

Value at System Initialization: 

Format: 

3 
1 

Zero 

Read 

Write 
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1 0 
+-------------------------------------------------------------+-+ 

IGN/RAZ 
I I 
I I I :R4 
IEI 

+-------------------------------------------------------------+-+ 
Figure 8-10: Interval Clock Interrupt Enable Register (ICIE) 

Description: 

The Interval Clock provides the capability to regularly interrupt the 
processor at 10 millisecond intervals. The interval clock has an 
accuracy of .0025\ or better (approximately 65 seconds per month). 
The Interval Clock Enable register controls whether clock interrupts 
are enabled or disabled. 

The Interval Clock Interrupt Enable register may be read and written 
by executing MFPR and MTPR instructions that specify ICIE. When ICIE 
is written, ~-~value of l enables clock interrupts and -a ·value of 0 
disables interrupts. After enabling Interval Clock interrupts, the 
first interrupt may occur in less than 10 milliseconds. 

~ Interval Clock interrupts are initiated at IPL 5; see Chapter 6, 
Exceptions and Interrupts, Section 6.3.5. 
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Interprocessor Interrupt Enable (IPIE) 

Access: 

Read/Write 

Operation: 

R4 <- ZEXT(IPIE<O>) 

IPIE <- R4<0> 

Value at System Initialization: 

Format: 

3 
1 

Zero 

Read 

Write 
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1 0 
+-------------------------------------------------------------+-+ 

IGN/RAZ 
I I 
I I I :R4 
IEI 

~ +-------------------------------------------------------------+-+ 
Figure 8-11: Interprocessor Interrupt Enable Register (IPIE) 

~ Description: 

The PRISM architecture provides the capability for one processor to 
interrupt another processor via an IPR: see Page 8-14. The 
Interprocessor Interrupt Enable register controls whether 
interprocessor interrupts are enabled or disabled. 

The Interprocessor Interrupt Enable register may be read and written 
by executingMFPR and MTPR instructions that specify IPIE. When IPIE 
is written, • value of l enables interprocessor interrupts and a value 
of O disables interrupts. 

An interprocessor interrupt is initiated when interprocessor 
interrupts are enabled, an interprocessor interrupt request has been 
received from another processor, and the current IPL is less than 6. 

Interprocessor interrupts are initiated at IPL 6: see Chapter 6, 
Exceptions and Interrupts, Section 6.3.6.1. 



·' 

INTERNAL PROCESSOR REGISTERS Company Confidential 
Interprocessor Interrupt Request (IPIR) 

Page 8-14 
22 December 1985 

Interprocessor Interrupt Request (IPIR) 

Access: 

Write 

Operation: 

IPIR <- R4 

Value at System Initialization: 

Format: 

3 
1 

Not applicable 

0 
+---------------------------------------------------------------+ 

Processor Number 

+---------------------------------------------------------------+ 
Figure 8-12: Interprocessor Interrupt Request Register (IPIR) 

Description: 

:R4 

:: An interprocessor interrupt can be requested on a ·Specified processor 
by executing an MTPR instruction specifying IPIR. The interrupt 
request is recorded on the target processor and is initiated when 
proper enabling conditions are present: see Page 8-13. 

If the target processor is the same as the current processor, and 
proper enabling conditions are present, an interprocessor interrupt is 
initiated prior to issuing the next instruction: see Chapter 6, 
Exceptions a~d Interrupts, Sections 6.3.6.2 and 6.7.6. 

~- . 
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Privileged Context Block Base (PCBB) 

Access: 

Read 

Operation: 

QR4 <- ZEXT(PCBB) 

Value at System Initialization: 

See Chapter 11, System Bootstrapping and Console. 

Format: 

3 
1 

1 1 
3 2 0 

+--------------------------------------+------------------------+ I I 
I Physical Address<31:0> I :R4 
I I 
+--------------------------------------+------------------------+ I I 

RAZ I Physical Address<44:32>1 :RS 
I I 

+--------------------------------------+------------------------+ 
l Figure 8-13: Privileged Context Block Base Register (PCBB) 

Description: 

The Privileged Context Block Base register contains the physical 
address of the privileged context block for the current process. It 
may be read by executing an MFPR instruction specifying PCBB. 

PCBB is written by the Swap Privileged Context (SWPCTX) instruction: 
see Chapter 4, Instruction Descriptions, Page 4-93 and Chapter 7, 
Process Structure. 
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Processor Base Register (PRBR) 

Access: 

Read/Write 

Operation: 

R4 <- PRBR 

PRBR <- R4 

Value at System Initialization: 

Format: 

3 
1 

Undefined 

Read 

Write 

0 
+---------------------------------------------------------------+ 

Operating System Dependent Value 

+--------------------------------------------·------------------+ 
Figure B-14: Processor Base Register (PRBR) 

Description: 

:R4 

In a multiprocessor system, it is desirable for the operating system 
to be able to locate a processor~specif ic data structure in a simple 
and straightforward manner. The Processor Base Register provides a 
longword of operating system-dependent state that can be read and 
written via MFPR and MTPR instructions that specify PRBR. 
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Processor Serial Number (PRSN) 

Access: 

Read 

Operation: 

IF {implemented} THEN 
R4 <- PRSN 

ELSE 
R4 <- 0 

Value at System Initialization: 

Processor serial number or zero 

Format: 

3 
l 0 

+---------------------------------------------------------------+ 
I I 
I Serial Number I :R4 
I I 
+---------------------------------------------------------------+ 

Figure 8-15: Processor Serial Number Register (PRSN) 

Description: 

The Processor Serial Number register provides access to the processor 
serial number by executing an MFPR instruction specifying PRSN. 

Implementation of serial numbers is optional. If implemented, the 
serial number is returned. Otherwise, a value of zero is returned 
(zero is an invalid serial number). 
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Page Table Base Register (PTBR) 

Access: 

Read 

Operation: 

R4 <- PTBR 

Value at System Initialization: 

Format: 

3 
l 

See Chapter 11, System Bootstrapping and Console 

0 
+---------------------------------------------------------------+ 

Page Frame Number :R4 

·---------------------------------------------------------------+ 
,Figure 8-16: Page Table Base Register (PTBR) 

Description: 

The Page Table Base Register contains the page frame number 
first-level page table for the current process. It may be 
executing an MFPR instruction specifying PTBR; see Chapter 5, 
Management. 

of the 
read by 
Memory 

As processes are scheduled for execution, the PTBR for the next 
process to execute is loaded using the Swap Privileged Context 
(SWPCTX) instruction; see Chapter 4, Instruction Descriptions, Page 
4-93 and Chapter 7, Process Structure. 
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System Control Block Base (SCBB) 

Access: 

Read/Write 

Operation: 

QR4 <- ZEXT(SCBB) 

SCBB <- QR4 

Value at System Initialization: 

Read 

Write 

See Chapter 11, System Bootstrapping and Console 

Format: 

3 
l 

l l 
3 2 0 

+--------------------------------------+------------------------+ I I 
I Physical Address<3l:O> I :R4 
I I 
+----------~--------------------------+------------------------+ I I I 
I IGN/RAZ I Physical Address<44:32>1 :RS 
I I I 

f +--------------------------------------+------------------------+ 
Figure B-17: System Control Block Base Register (SCBB) 

Description: 

The System Control Block Base register holds the physical address of 
the System Control Block which is used to dispatch exceptions and 
interrupts and may be read and written by executing MFPR and MTPR 
instructions that specify SCBB; see Chapter 6, Exceptions and 
Interrupts, Section 6.6. 

When SCBB is written, the specified physical address must be the 
quadword aligned address of a contiguous B Kbyte block which is 
neither in I/O space nor non-existent memory, or an UNDEFINED 
operation may result. 
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System Identification (SID) 

Access: 

Read 

Operation: 

QR4 <- SID 

Value at System Initialization: 

Format: 

3 
l 

System Identification 

2 2 
4 3 

l l 
6 5 8 7 
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0 
+---------------+---------------+---------------+---------------+ I 
I Processor Hardware Epicode System :R4 
I Type Revision Revision Type 
+---------------+---------------+---------------+---------------+ I 
I Implementation Dependent Data :RS 
I 
+---------------------------------------------------------------+ 

Figure 8-18: System Identification Register (SID) 
·~ 

''· Description: 
... 

The System Identification register provides information about the 
processor type, hardware and Epicode revision levels, system type, and 
implementation dependent information. 

The System Identification register may be read by executing an MFPR 
inst.ruction :.specifying SID. 
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Software Interrupt Request Register (SIRR) 

Access: 

Write 

Operation: 

SIRR <- R4<1:0> 

Value at System Initialization: 

Format: 

3 
1 

Not applicable 
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2 1 0 
+-----------------------------------------------------------+---+ 
I I L I 

~. I IGN I V I :R4 
I I L I 
+-----------------------------------------------------------+---+ 

Figure 8-19: Software Interrupt Request Register (SIRR) 

Description: 

A software interrupt may be requested for a particular Interrupt 
Priority Level (IPL) by executing an MTPR instruction specifying SIRR. 
Software interrupts may be requested at levels 0, l, 2, and 3 
(requests at level 0 are ignored). 

An MTPR SIRR sets the bit corresponding to the specified interrupt 
level in the Software Interrupt Summary Register; see Page 8-22. If 
proper enabling conditions are present, a software interrupt is 
initiated p~ior to issuing the next instruction; see Chapter 6, 
Exceptions arid Interrupts, Sections 6.3.2 and 6.7.6. 
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Software Interrupt Summary Register (SISR) 

Access: 

Read 

Operation: 

R4 <- ZEXT(SISR<3:0>) 

Value at System Initialization: 

Format: 

3 
l 

Zero 

Page 8-22 
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' 3 2 1 0 
+-------------------------------------------------------+-+-+-+-+ 

RAZ 
I I I I I I IRI 
IRIRIRIAI :R4 
l312lllZI 

+-------------------------------------------------------+-+-+-+-+ 
Figure 8-20: Software Interrupt Summary Register (SISR) 

Description: 

The Software Interrupt Summary Register records the interrupt pending 
·.•·· state for each of the interrupt levels 1, 2, and 3. The current 

interrupt pending state may be read by executing an MFPR instruction 
specifying SISR. 

MTPR SIRR requests an interrupt at a particular interrupt level and 
sets the corresponding pending bit in SISR: see Page 8-21. 

When the processor IPL falls below the level of a pending request, an 
., interrupt is· initiated and the corresponding bit in SISR is cleared: 

see Chapter 6, Exceptions and Interrupts, Sections 6.3.2 and 6.7.6. 
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Translation Buffer Check (TBCHK) 

Access: 

Read 

Operation: 

R6 <- 0 
IF {implemented} THEN 

R6<0> <- {entry in TB using R4<15:0>, RS} 
ELSE 

R6<31> <- l 

Value at System Initialization: 

Format: 

3 
l 

Correct results are always returned 

l l 
6 5 
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0 

+-------------------------------+-------------------------------+ I I I 
I IGN I Address Space Number I :R4 
I I I 
+-------------------------------+-------------------------------+ I 
I Virtual Address :RS 

,,~~ I 

+---------------------------------------------------------------+ 
3 3 
l 0 l 0 

+-+-----------------------------------------------------------+-+ 
I I I IPI 
IMI RAZ IRI :R6 
IPI ISi 
+-+---------~---------~---------------------------------------+-+ 

Figure 8-21: Translation Buffer Check Register (TBCHK) 

Description: 

The Translation Buffer Check register provides the capability to 
determine if a virtual address is present in the Translation Buffer by 
executing an MFPR instruction specifying TBCHK: see Chapter 5, Memory 
Management. 

A virtual address and Address Space Number (ASN) are specified as 
input (if ASNs are not implemented, ASN is ignored). The virtual 
address can be any address within the desired page. The value read 
contains an indication of whether the function is implemented and 
whether the virtual address is present in the Translation Buffer. 
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If the function is not implemented, a value is returned with bit <31> 
set and bit <O> clear. Otherwise, a value is returned with bit <31> 
clear and bit <O> indicates whether the virtual address is present (1) 
or absent (0) in the Translation Buffer. 

The TBCHK register can be used by system software for working set 
management. 
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Translation Buffer Invalidate By ASN {TBIASN) 

Access: 

Write 

Operation: 

{invalidate all TB entries with ASN EQ R4<15:0>} 

Value at System Initialization: 

Format: 

3 
1 

Not applicable 

1 1 
6 5 0 

+-------------------------------+-------------------------------+ 
IGN Address Space Number 

+-------------------------------+-------------------------------+ 
:R4 

Figure 8-22: Translation Buffer 
(TBIASN) 

Invalidate by ASN Register 

Description: 

The Translation Buffer Invalidate by ASN register provides the 
capability to invalidate all entries in the Translation Buffer for a 
particular ASN by executing an MTPR instruction specifying TBIASN: see 
Chapter 5, Memory Management. 

If ASNs are not implemented, a write to this register invalidates all 
Translation Buffer entries which do not have the Address Space Match 
{ASM) bit set: see Chapter 5, Memory Management, Section 5.5. 
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Translation Buffer Invalidate Single (TBIS) 

Access: 

Write 

Operation: 

{Invalidate single TB entry using R4<15:0>, RS} 

Value at System Initialization: 

Format: 

3 
1 

Not applicable 

l 1 
6 5 0 

+-------------------------------+-------------------------------+ I I I 
I IGN I Address Space Number I :R4 
I I I 
+------------------------~------+-------------------------------+ I I 
I Virtual Address I :RS 
I I 
+---------------------------------------------------------------+ 

Figure 8-23: 

Description: 

Translation Buff er Invalidate Single 
(TBIS) 

Register 

The Translation Buffer Invalidate Single register provides the 
capability to invalidate a single entry in the Translation Buffer by 
executing an MTPR instruction specifying TBIS: see Chapter 5, Memory 
Management. 

A virtual address and Address Space Number (ASN) are specified as 
input (if ASNs are not implemented, ASN is ignored). The virtual 
address can be any address within the desired page. 
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Time Of Year (TOY) 

Access: 

Read/Write 

Operation: 

QR4 <- TOY 

TOY <- QR4 

Value at System Initialization: 

Read 

Write 

Correct time or invalid time indication 

Format: 

3 3 
l 0 

2 2 
8 7 

2 2 
4 3 

2 1 
0 9 

1 1 
6 5 

l 1 
2 l 8 7 
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4 3 0 
+-+-----+-------+-------+-------+-------+-------+-------+-------+ I I I I I I I I I 
I Dl I DO I Hl I HO I Mil I MIO I Sl I SO I :R4 
I I I I I I I I I 
+-+-----+-------+-------+-------+-------+-------+-------+-------+ 
I I I I I I I I I 
IVI IGN/RAZ I Y3 I Y2 I Yl I YO I MOl I MOO I :RS 
I I I I I I I I I 
+-+-------------+-------+-------+-------+-------+-------+-------+ 

Figure 8-24: Time of Year Register (TOY) 

Description: 

The Time Of Year register provides the capability to read and write 
the current time from a battery backed-up source by executing MFPR and 
MTPR instructions that specify TOY. Access to this register may be 
very slow (e.g., many milliseconds). 

TOY records the time in Binary Coded Decimal (BCD) format and is 
updated once a second. TOY has an accuracy of .0025% (approximately 
65 seconds per month) and is battery backed up. Once TOY is written, 
the time will remain valid until backup power is lost. 

When TOY is read, a valid indication is returned in bit 31 of the 
high-order longword. If bit 31 is set, the contents of TOY are valid. 
Otherwise, backup power has been lost and the contents of TOY are 
invalid. 

When TOY is written, the time base used is operating system dependent 
(e.g., Greenwich Mean Time, Universal Time, daylight savings time, 
standard time, etc.). 
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Time Of Year (TOY) 

TOY encoding is: 

4 BCD digits of year (Y3,Y2,Yl,YO) 
2 BCD digits of month (M01,M02) 
2 BCD digits of day (Dl,DO) 
2 BCD digits of hour (Hl, HO) 
2 BCD digits of minutes (Mil,MIO) 
2 BCD digits of seconds (Sl,SO) 

Page 8-28 
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Who-Am-I (WHAMI) 

Access: 

Read 

Operation: 

R4 <- WHAMI 

Value at System Initialization: 

Format: 

3 
l 

Processor number 
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0 

+---------------------------------------------------------------+ 
Processor Number :R4 

+---------------------------------------------------------------+ 
Figure 8-25: Who-Am-I Register (WHAMI) 

Description: 

The Who-Am-I register provides the capability to read the current 
processor number by executing an MFPR instruction specifying WHAMI. 

The current processor number is useful in a multiprocessing system to 
index arrays that store per processor information. Such information 
is operating system dependent. 
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l. Removed the following Internal Process Registers: 

1. ISP - Interrupt Stack Pointer 

2. KSP - Kernel Stack Pointer 

3. PBR - Process Page Table Base Register 

4. SBR - System Page Table Base Register 

5. IPL - Interrupt Priority Level 

6. ASTLVL - AST Level 

7. ASNSIZ - Address Space Number Size 

B. PME - Performance Monitor Enable 

9. PAGSIZ - Page Size 

10. BOOTFLAGS - Bootstrap Flags 

2. Added the following Internal Processor Registers: 

1. CRCS - Console Receive Control Status 

2. CRDB - Console Receive Data buffer 

3. CTCS - Console Transmit Control Status 

4. CTDB - Console Transmit Data Buffer 

5. PTBR - Page Table Base Register 

6. PCBB - Privileged Context Block Base 

7. ASTRR - AST Request Register 

8. ASTSR - AST Summary Register 

9. ASTEN - AST Enable Register 

3. Changed the following Internal Processor Register names: 

1. ICCS changed to ICIE 
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2. CPUSN changed to PRSN 

3. CPUBR changed to PRBR 

4. Changed parameter registers to R4, RS, R6. 

5. Changes to reflect new 32 bit register sizes. 

6. PTBR changed from address to page frame number. 

7. Added system type to SID. 

8. Eliminated zero default in ASN parameters. 

9. Corrected accuracy of timer and clock. 

10. Removed duplicate material and added pointers to 
chapters. 

Revision 0.0, July 5, 1985 

1. First review distribution. 

other 
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CHAPTER 9 

SYSTEM ARCHITECTURE AND PROGRAMMING IMPLICATIONS 

9.1 INTRODUCTION 

Portions of the PRISM architecture have implications for programming 
and the system structure of implementations. Architectural 
implications considered in the following sections are: 

o Data sharing and synchronization 

o Separation of procedures and data 

o Translation Buffer 

o Caches 

o Stacks 

To meet the requirements of the PRISM architecture, software and 
hardware implementors have to take these issues into consideration. 

9.2 DATA SHARING AND SYNCHRONIZATION 

The memory system must be implemented such that the granularity of 
access for independent modification is a quadword or less. Note that 
this does not imply a maximum reference size of one quadword, but only 
that independent accesses to adjacent quadwords produce the same 
results regardless of the order of execution. Systems may choose to 
do masked writes (less than quadword) in the cache by reading the 
needed quadword from memory, merging it in the cache, and then writing 
the quadword back to memory, thereby only supporting quadword writes 
to the main memory system. 

NOTE 

\A system may also build a VAX-style memory system 
with masked writes to the main memory. The quadword 
granularity of sharing is being included to allow 
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simpler and cheaper systems to be built. But since 
some PRISM systems will use a common memory system 
with a given VAX implementation we are not going to 
disallow reusing the existing memory subsystems.\ 

For example, suppose locations O and 8 contain the values 5 and 6. 
Suppose one processor does a BYTE STORE of a 6 in memory at location 
O. Also, suppose a second processor does a BYTE STORE of a 7 in 
memory at location 8. Then, regardless of the order of execution, 
including effectively simultaneous execution, the final contents must 

. be 6 and 7 •. 

As a second example, suppose locations 0 and l contain the values 5 
and 6. Suppose one processor does a BYTE STORE of a 6 in memory at 
location O. Also, suppose a second processor does a BYTE STORE of a 7 
in memory at location 1. After both processors finish execution of 
the sequences the results are UNPREDICTABLE. Locations 0 and 1 may 
contain 6 and 7, or 6 and 6, or 5 and 7. 

Access to explicitly shared data that may be written must be 
synchronized by the programmer. Before accessing shared writable 
data, the programmer must acquire control of the data structure. The 
interlock instructions (RMAQI, and RMAQIP) are provided to allow the 
programmer to·control •interlocked• access to a control variable. 
These interlocked instructions are implemented in such a way that once 
an interlock is granted, other processors and I/0 devices are locked 
out of performing interlocked operations on the same control variable 

· until the interlock is released. This is termed an interlocked 
sequence. Only interlocked accesses are locked out by the interlock. 
An interlocked access must ensure that all previous writes from the 
issuing processor are visible to all users of the memory system before 
the interlocked sequence starts, e.g., a write-buffer must be flushed 
before the read of any interlocked variable). 

NOTE 

\In the VAX architecture, many instructions provide 
noninterruptable read-modify-write sequences to memory 
variables. In the VAX, most of the data sharing is 
more an issue for hardware implementors and a few 
system programmers. Most programmers never regard 
data sharing as an issue. In the PRISM architecture, 
programmers will have to pay more attention to 
synchronizing access to shared data. One of the major 
areas this may show up in is AST routines. In the 
VAX, a programmer can use an ADDL2 to update a 
variable shared between a •MAIN• routine and an AST 
routine if running on a single processor. In the 
PRISM architecture, a programmer will have to deal 
with AST routines as if they could be run on different 
processors. \ 
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9.3 SEPARATION OF PROCEDURE AND DATA 

The PRISM architecture encourages separation of procedure 
(instructions), read-only data, and writable data. PRISM procedures 
may NOT write data that is to be subsequently executed as an 
instruction without an intervening IFLUSH instruction. If no IFLUSH 
occurs between a procedure writing data and a subsequent attempt to 
execute that data as instructions, the results are UNPREDICTABLE. 

9.4 TRANSLATION BUFFER, VIRTUAL I AND D CACHES 

A system may choose to include a Translation Buffer (TB), a Virtual 
Instruction Cache (Virtual I Cache), or a Virtual Data Cache (Virtual 
D Cache). The contents of these caches and/or translation buffers may 
become invalid, depending upon what operating system activity is being 
performed. The following table shows what needs to be invalidated for 
given operating system functions. 

Table 9-1: TB/Cache Invalidation 

OS Function 

Remove from Working Set 

~ Delete virtual address 

Change 
PTE<I PROT>, 
PTE<FOE> 

Change 
PTE<D PROT>, 
PTE<FOR>, PTE<FOW> 

Change I-Stream 
(e.g., processor writes) 

I/0 writes new I-Stream 

Assumptions on the above table: 

TB 

Invalidate 

Invalidate 

Invalidate 

Invalidate 

Virtual 
I Cache 

Invalidate 

Invalidate 

Invalidate 

Invalidate 

o The D Cache watches I/0 and processor writes. 

Virtual 
D Cache 

Invalidate 

Invalidate 

Invalidate 

o The I Cache does not watch I/O or processor writes. 

Note the Translation Buffer Invalidate instructions (TBFLUSH, MTPR 
TBIASN, MTPR TBIS) only operate on a Translation Buffer and Virtual D 
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Cache, while the IFLUSH instructions only operate on the Virtual I 
Cache. 

9.5 CACHES AND WRITE-BUFFERS 

A hardware implementation may include mechanisms to reduce memory 
access time by making local copies of recently used or expected to be 
used memory contents or by buffering writes to complete at a later 
time. Caches and write-buffers are examples of· these mechanisms. A 
cache must be implemented in such a way that its existence is 
transparent to software (except for timing and error 
~eporting/control/recovery and modification to the I-stream). 

The following requirements must be met by all cache/write-buffer 
implementations. All processors and I/O peripherals must provide a 
coherent view of memory. This is relaxed only in that the granularity 
of sharing is a quadword and by allowing buffering of writes between 
interlocked operatio~s or writes to the I/0 space. 

1. Caches/write-buffers that buffer write data must be able to 
detect a later write from an 1/0 device and invalidate their 
write. 

2. A processor must guarantee that all of its previous writes 
are visible to all other processors and/or I/0 devices before 
the write of an interlocked read-modify-write becomes visible 
to other processors or I/O devices. 

3. A processor must guarantee that all of its previous writes 
are visible to all other processors and I/O devices before a 
read or write to 1/0 space. 

4. A processor must guarantee that a data store to a location 
followed by a data load from the same location must read the 
updated value. 

5. A processor must guarantee that all of its previous writes 
are visible to all other processors and I/0 devices before a 
HALT instruction completes. A processor must guarantee that 
its caches are coherent with the rest of the system before 
continuing from a HALT. 

6. A processor must guarantee that across a powerfail/recovery 
sequence that the memory system remains coherent. Data can 
not be lost that was written by the processor before the 
powerf ail and the cache must be in a valid state before 
normal instruction processing is continued after power is 
restored. 
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NOTE 

The SWPCTX instruction does not flush pending writes. 
Therefore, the operating system must perform an 
interlocked operation after saving the process state 
to ensure that all of a process's state is visible to 
all other processors in a multiprocessor system before 
the process can be continued on a different processor. 

There are many different ways to implement caches. Three different 
ways currently being used at DIGITAL are write-through, write-back, 
and write-buffers with a write-through cache. Each method has 
different problems meeting the PRISM requirements for a cache. The 
notes following each requirement explain what that requirement means 
to different implementations. 

1. Processor writes to memory followed by a peripheral output 
transfer must output the updated data • 

o Write-through - In a system with a write-through cache 
the memory is written as soon as any write is done so the 
cache need not be able to present its data in place of 

: the memory system. 

o Write-back - In a system with a write-back cache the 
cache must watch the memory bus and have a mechanism for 
presenting the correct data when an I/O device accesses a 
location that it has cached. 

o Write-buffer - In a system with a write-buffer the 
write-buffer must either watch the memory bus and have a 
mechanism for presenting the correct data when an I/O 
device accesses a location that it has buffered or it 
must purge its contents on all access to I/0 space and 
all interlocked sequences. 

2. Completing a peripheral input transfer followed by the 
program reading of the memory must read the input value. 

o Write-through - In a system with a write-through cache 
the cache must watch the memory bus and have a mechanism 
for either updating or invalidating locations that are 
written by an I/O device or another processor. 

o Write-back - In a 
cache must watch 
either updating 
written by an I/0 

system with a write-back cache 
the memory bus and have a mechanism 
or invalidating locations that 
device or another processor. 

the 
for 
are 

o Write-buffer - In a system with a write-buffer the 
write-buffer must either watch the memory bus and have a 
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3. 

mechanism invalidating pending writes when an I/O device 
writes a location that it has buffered or it must purge 
its contents on all accesses to I/0 space and all 
interlocked sequences. 

A write followed by a HALT on the same processor, followed by 
a read on another processor, must read the updated value. 

o Write-through In a multiprocessor system with a 
write-through cache the memory is written as soon as any 

,write is done so there are no additional requirements. 

o Write-back - In a multiprocessor system with a write-back 
cache, the cache must either continue to watch the memory 
bus for reads and present the correct data when the other 
processor accesses a location that it has cached or the 
cache must propagate all dirty locations to memory before 
completing execution of a HALT. 

o Write-buffer In a multiprocessor system with 
write-buffer all buffered writes must be written to 
memory before completing execution of a HALT. 

4. A HALT on one processor, followed by a write on a second 
processor, followed by a continue on the first processor, 
followed by a read on the first processor, must read the 
updated value. 

o Write-through In a multiprocessor system with a 
write-through cache, the cache must either continue to 
watch the memory bus for writes to locations it has 
cached, or the cache must invalidate all entries before 
continuing execution from the HALT. 

o Write-back - In a multiprocessor system with a write-back 
cache, the cache must either continue to watch the memory 

~:bus for writes to locations it has cached, or the cache 
must invalidate all entries before continuing execution 
from the HALT. 

o Write-buffer In a multiprocessor system with 
write-buffer all buffered writes must be written to 
memory before completing execution of a HALT. 
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5. A write followed by a power failure, followed by restoration 
of power, followed by a read, must read the updated value 
provided that the duration of the power failure does not 
exceed the maximum non-volatile period of the main memory. 

o Write-through - In a system with a write-through cache 
the cache power supply must be backed up or the cache 
must be invalidated on restoration of power. 

o Write-back - In a system with a write-back cache either 
the cache power supply must be backed up or the cache 

·must be written back to main memory on powerfail and the 
cache invalidated on restoration of power. 

o Write-buffer - In a system with a write-buffer either the 
write-buffer power supply must be backed up or the 
write-buffer must be written back to main memory on 
powerfail and the write-buffer initialized to empty on 
restoration of power. 

NOTE 

An implementation may choose not to provide 
powerfail recovery. 

6. In multiprocessor systems access to variables shared between 
processors must be interlocked by software executing one of 
the interlocked instructions. A cache or write-buffer must 
ensure ~hat all previous writes from the issuing processor 
are visible to all users of the memory system before the 
interlocked sequence completes. 

o Write-through - In a system with a write-through cache 
the memory is written as soon as any write is done so 

., there are no additional requirements. 

o·,.write-back - In a system with a write-back cache it must 
either remain coherent with all the other caches or 
become coherent as part of the interlocked operation. 

o Write-buffer - In a system with a write-buffer the 
write-buffer must purge all its pending writes before the 
interlocked operation completes. 

NOTE 

\In a multiprocessor system with caches, the 
interlocked instructions must cause the data 
being accessed to be coherent across all 
processors sharing it. This implies some 
form of global locking at some granularity. 



Architecture And Prog Implications 
CACHES AND WRITE-BUFFERS 

Company Confidential Page 9-8 
22 December 1985 

The simplest could be a single global lock 
that is required to perform any interlocked 
operation. For performance reasons an 
implementor may choose to have more locks 
that interlock access to a subset of all 
memory. \ 

7. Access to I/0 space must not be cached or buffered. 
Interlocked access to I/0 space addresses gives UNPREDICTABLE 
results. 

8. A cache may prefetch instructions or data. A memory 
management exception condition cannot be taken until the 
prefetched data is referenced. 

NOTE 

\If the granularity of access to memorf is 
larger than the request and there 1s a 
hardware error (e.g., uncorrected read error, 
bus parity error, etc.) in part of the 
requested data (but not the part being 
accessed), it is valid to report the error as 
including the valid part. \ 

9. Processor initialization must leave 
write-buffer either empty or valid. 

the cache 

9.6 STACKS 

and/or 

To provide support 
instructions on 
reserves the right 
the stack, given 
bytes in the range 
data in this area. 

for exception handling, and emulation of missing 
subset implementations, the PRISM architecture 

to modify the next 256 quadwords (2048 bytes) of 
normal access checks allow access. These are the 

from -l(SP) •• -2047(SP). Programs should not store 
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CHAPTER 10 

EXTENDED PROCESSOR INSTRUCTION CODE 

10.1 INTRODUCTION 

In a family of machines both users and operating system implementors 
require functions to be implemented consistently. When functions are 
implemented to a common interface, the code that uses those functions 
can be used on several different implementations without modification. 

These functions range from the binary encoding of the instruction and 
data, to the exception mechanisms and synchronization primitives. 
Some of these functions can be cost effectively implemented in 
hardware, but several are impractical to implement directly in 
hardware. These functions include low-level hardware support 
functions such as Translation Buffer miss fill routines, interrupt 
acknowledge, and vector dispatch. It also includes support for 
privileged and atomic operations that require long instruction 
sequences such as Return from Exception or Interrupt (REI). 

!n the VAX, these functions are generally provided by microcode. This 
is not seen as a problem because the VAX architecture leads to a 
microcoded implementation. 

In PRISM, a goal is that microcode will not be necessary for practical 
implementation. But it is still desirable to provide an architected 
interface to these functions that will be consistent across the entire 
family of machines. The Extended Processor Instruction code (Epicode) 
provides a mechanism to implement these functions without resorting to 
a microcoded machine. Hardware development groups provide and 
maintain the Epicode for a given implementation. 

NOTE 

\The hardware development groups provide and maintain 
the Epicode for a given implementation. The Epicode 
may be in ROM or loaded into RAM from some sort of a 
console load device. Many of the same trade-offs 
exist for Epicode that exist for VAX microcode around 
patching, loading, and booting.\ 
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10.2 EPICODE ENVIRONMENT 

Epicode runs in an environment with privileges enabled, and I-stream 
mapping and interrupts disabled. The enabling of privileges allows 
all functions of the machine to be controlled. Disabling of I-stream 
mapping allows Epicode to be used to support the memory management 
functions (e.g., Translation Buffer miss routines cannot be run via 
mapped memory). Epicode also needs to make both virtual and physical 
D-stream references. The disabling of interrupts allows the system to 
provide multi-instruction sequences as atomic operations {i.e., 
RMAQI/RMAQIP). 

The PRISM architecture allows these functions to be implemented in 
standard machine code resident in main memory. Epicode is written in 
standard machine code with some implementation specific extensions to 
provide access to the •real hardware.• Epicode can be used to 
implement the following functions: 

o Instructions that require complex sequencing as an atomic 
operation (i.e., REI) 

o Instructions that require interlocked memory access (i.e., 
RMAQI) . . 

o Privileged instructions (i.e., MxPR, RMAQIP) 
_'{ 

o Memory management control functions (i.e., TB miss routines, 
ACV/TNV dispatch routines) 

o Interrupt and exception dispatch routines 

o Power up initialization and booting 

o Console functions 

o Emulation of instructions with no hardware support (i.e., an 
implementation may chose to do MULL via a multiply step 
fuQction in the integer ALU) 

o Support for unaligned memory operands 

A PRISM implementation can make various design trade-offs based on the 
hardware technology being used to implement the machine. The Epicode 
will then be used to hide these differences from the system software. 

For example, in a MOS VLSI implementation, a small (16 entry) fully 
associative TB may be the right match to the media given that chip 
area is a costly resource. In an ECL version, a large (1024 entry) 
direct-mapped TB may be used because it will use RAM chips and does 
not have fast associative memories available. This difference would 
be handled by implementation-specific versions of the epicode on the 
two systems, both providing transparent TB miss service routines. The 
operating system code would not need to know there were any 
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differences. 

10.3 EPICODE EFFECTS ON SYSTEM CODE 

Epicode will have one major effect on system code. Because Epicode 
may be resident in main memory and maintain privileged data structures 
in main memory, the operating system code that allocates physical 
memory cannot use all of physical memory. The amount of memory 
Epicode will require will be small, so the loss to the system is 
negligible. 

10.4 SPECIAL FUNCTIONS REQUIRED FOR EPICODE 

Epicode uses the PRISM instruction set for most of its operations. 
There are a small number of additional functions needed to implement 
the Epicode. There are five opcodes reserved to implement Epicode 
functions (i.e., EPIRESO, EPIRESl, EPIRES2, EPIRES3 and EPIRES4). 
These instructions produce a Reserved Opcode fault if executed while 
not in the Epicode environment. 

o Epicode needs a hardware mechanism to transition the machine 
from the Epicode environment to the non-Epicode environment. 
This instruction loads the PC, enables interrupts, enables 
mapping, and disables Epicode privileges in a single 
instruction. 

o Epicode needs a set of instructions to access the hardware 
control registers (i.e., a hardware MxPR). 

o Epicode needs a mechanism to save the current state of the 
machine and dispatch into Epicode. 

A PRISM implementation may also choose to provide additional functions 
to simplify or improve performance of some Epicode functions. The 
following are some examples: 

o A PRISM implementation may include a READ/WRITE virtual 
function that allows Epicode to perform mapped memory 
accesses using the mapping hardware rather than providing the 
virtual-to-physical translation in Epicode routines. Epicode 
may provide a special function to do PHYSICAL READs/WRITEs 
and have the PRISM LOADs/STOREs continue to operate on 
virtual address in the Epicode environment. 

o A PRISM implementation may include hardware assists for 
various functions, for example, saving the virtual address of 
a reference on a memory management error rather than having 
to generate it by simulating the effective address 
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calculation in Epicode. 

o A PRISM implementation may include private registers so it 
cari function without having to save and restore the native 
general registers. 



Extended Processor Instruction Code Company Confidential Page 10-5 
REVISION HISTORY 22 December 1985 

Revision History: 

Revision 1.0, 22 December 1985 

1. General edits to make it clear that Epicode can be done in any 
way that works well for a given implementation. 
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CHAPTER 11 

SYSTEM BOOTSTRAPPING AND CONSOLE 

This chapter describes system bootstrapping and required console 
functionality. 

NOTE 

/This chapter is not yet complete and will evolve as 
the hardware and software design progresses./ 

11.1 BOOTSTRAPPING 

This section describes PRISM bootstrapping. Topics covered include 
responsibilities of the console, the initial state seen by system 
software, and powerfail recovery. Bootstrapping is discussed in both 
a multiprocessor and uniprocessor environment. 

Many of the actions described below are the responsibility of the 
console. This does not imply that a separate console processor is 
required. Rather, it is expected that console functionality will be 
implemented in Epicode running in the PRISM processor. Thus, anywhere 
the console is referred to in this chapter, it is meant that the 
function must be provided, not that a console processor exists. 

11.1.1 Bootstrapping In A Uniprocessor Environment 

In this section a cold start in a uniprocessor environment is 
discussed. Powerfail recovery and multiprocessor bootstrapping are 
described in Sections 11.1.3 and 11.l.4. 

The following steps occur in the bootstrap sequence. 
discussed in more detail in subsequent sections: 

Each is 
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l. Test memory for bootstrapping 

2. Build the Restart Parameter Block (RPB) 

3. Load Epicode 

4. Initialize the page table 

5. Load system software 

6. Initialize processor IPRs 

7. Transfer control to system software 

Page ll-2 
22 December 1985 

Note that these steps may be performed in different orders on 
different implementations of the PRISM architecture. The final state 
seen by system software is defined, but the implementation-dependent 
procedure is not. 

11.1.1.1 Memory Testing 

In general, Jllemory sizing and testing is the responsibility of .system 
software. . "'rhe exception to this is the memory needed to set up· the 
initial environment for system software as described below. This 
includes the memory for Epicode, the RPB, page tables, and system 
software. It is the responsibility of the console to find the lowest 
addressable good memory for these purposes. 

11.1.1.2 Restart Parameter Block 

The Restart Parameter Block is the primary mechanism for passing data 
between the console and system software. It is also critical in 
powerfail re.~overy. The console is responsible for setting up a page 
aligned RPB in the first good memory that can be found. UNDEFINED 
operation will result if the RPB memory is reused by system software 
for any other purpose. 

An area is reserved in the RPB for each processor. The per-processor 
areas immediately follow the main portion of the RPB in the same page 
and any necessary contiguous pages. Each per-processor area must be 
quadword aligned. A field in the RPB specifies the number of 
processor slots. 

A state longword for each processor is included in the per-processor 
area. It contains several flags used to either control bootstrapping 
or record progress. This longword can only be modified with 
interlocked instructions to guarantee proper synchronization in 
multiprocessor systems. 
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The RPB, including all per-processor areas, is initialized at this 
time. Other than the fields listed below, the initialization value is 
zero: 

0 Physical address of RPB 

0 Version number 

0 Number of processor slots 

0 Physical address of per-processor area 

0 Physical address of checksum area 

0 Checksum 

0 Page size 

0 ASN size 

0 Number of physical address bits 

A checksum area must be created for use during powerfail. This area 
exists only to help guarantee that a valid_RPB can be located. This 
area can be anywhere that is accessible to all processors, including 
at the end of the RPB. It can contain any data that does not change. 
(Zero data is not recommended because it increases the probability of 
locating a spurious RPB.) 

Note that the RPB does not contain a save area for vector registers. 
Instead, there is only a pointer to this area. It is the 
responsibility of system software to allocate a page aligned 8-Kbyte 
vector register save area for each processor. 

The length of the RPB can be calculated by software based on the 
version number and the number of slots. 
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3 
l 0 

+-------------------------------------~-------------------------+ 
+ Physical Address of RPB + :RPB 

I I +4 
+---------------------------------------------------------------+ I RPB Version Number +8 
+---------------------------------------------------------------+ Number of Processor Slots +12 
+---------------------------------------------------------------+ +16 
+. 
I 

Physical Address of Per-Processor Area of RPB + 
I +20 

+---------------------------------------------------------------+ +24 
+ 
I 

Physical Address of Checksum Area + 
I +28 

+---------------------------------------------------------------+ Checksum +32 
+---------------------------------------------------------------+ Page Size +36 
+-------------------~-------------------------------------------+ ASN Size +40 
+---------------------------------------------------------------+ Number of Physical Address Bits I +44 
+-----------~---------------------------------------------------+ Bootstrap Master ID +48 
+---------------------------------------------------------------+ Length of Available Epicode Memory +52 
+---------------------------------------------------------------+ +56 
+ 
I 

Physical Address of Available Epicode Memory + 
I +60 

+---------------------------------------------------------------+ Bootstrap Options 
+---------------------------------------------------------------+ LBN Bootstrap Data 
+---------------------------------------------------------------+ 
+ 
I 

System Device + 
I 

+---------------------------------------------------------------+ 
+ 
I 

System Software Filename + 
I 

+---------------------------------------------------------------+ Network Bootstrap 
+---------------------------------------------------------------+ 

Figure 11-1: Restart Parameter Block 
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3 
l 0 

+---------------------------------------------------------------+ 
I State Longword I :SLOT 
+---------------------------------------------------------------+ I Epicode Length I +4 
+---------------------------------------------------------------+ 
I I +8 + Epicode Physical Address + 
I I +12 
+---------------------------------------------------------------+ 
I I +16 
+ Restart SCBB + 
I I +20 
+---------------------------------------------------------------+ 
I I +24 + Restart PCBB + 
I I +28 
+---------------------------------------------------------------+ Restart IPIE +32 
+---------------------------------------------------------------+ I .. Restart SISR +36 
+---------------------------------------------------------------+ I Restart ICIE I +40 
+---------------------------------------------------------------+ Restart PRBR I +44 
+---------------------------------------------------------------+ Restart R2 I +48 

: I 
Restart R63 I +292 

+---------------------------------------------------------------+ I Restart PC I +296 
+---------------------------------------------------------------+ I Restart PS I +300 
+---------------------------------------------------------------+ Restart VC I +304 
+---------------------------------------------------------------+ I Restart VL I +308 
+---------------------------------------------------------------+ I Restart VML +312 
+---------------------------------------------------------------+ Restart VMH 
+---------------------------------------------------------------+ I 
+ Physical Address of Vector Register Save Area + 

+316 

+320 

I I +324 
+---------------------------------------------------------------+ HWPCB For Use During Bootstrap and Powerfail +328 

+---------------------------------------------------------------+ 
Figure 11-2: Per-Processor Portion of RPB 
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3 
1 9 8 7 6 5 4 3 2 1 0 

+----------------------------------------------+-+-+-+-+-+-+-+-+-+ 
I ICISIPIEISIPIPIRIBI 
I Zero ITIRIEILITISISIIIII 
I ISi I I ICICISIPIPI 
+----------------------------------------------+-+-+-+-+-+-+-+-+-+ 

Figure 11-3: State Longword 

Fields in the state longword are interpreted as shown below: 

Bits Description 

0 

l 

'2 

3 

4 

5 

6 

7 

Bootstrap in Progress (BIP) 
bootstrapping. This bit is 
system software. 

The system is currently 
set by Epicode and cleared by 

Restart in Progress (RIP) - The system is currently restarting 
after powerfail. · This bit is set by Epicode and cleared by 
system software. 

·powerf ail Sequence Started (PSS) Epicode has entered 
powerfail processing. This bit is set and cleared by Epicode. 

Powerfail Sequence Completed (PSC) - Epicode has completed 
powerfail processing. This bit is set and cleared by Epicode. 

Self Test Complete (STC) - Any self test functions have been 
completed during bootstrapping or powerfail restart. This bit 
is set by Epicode. 

Epicode Loaded (EL) - Epicode loading is complete. 
is set by Epicode. 

This bit 

Processor Enabled (PE) 
system is enabled. 
software. 

- A processor in a multiprocessor 
This bit is set and cleared by system 

Slave Request (SR) - A slave processor is ready to 
in a multiprocessor system. This bit is set 
processor Epicode and cleared by system software. 

bootstrap 
by slave 

8 Control Transferred to System Software (CTS) Epicode has 
transferred control to system software during bootstrapping. 
This bit is set by Epicode. 
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If Epicode does not reside in a ROM, it is loaded into the next 
available good memory and its address and length are recorded in the 
per-processor slot of the RPB. The Epicode is always page aligned. 
The Epicode source and its loading mechanism is 
implementation-specific. The source may be a special console device, 
a system device, or any other implementation-specific source. 
Possible loading mechanisms include a diagnostic processor or ROM. 
The physical address and length of the Epicode is recorded in the RPB. 

If control must be transferred to Epicode in memory or ROM at this 
point, it is done in an implementation-specific manner. 

Certain assumptions are made about the state of the system when 
Epicode is to be loaded or is to gain control if it is in ROM. First, 
it must be possible to access a bootstrap device. This may be ROM, 
mass storage, or a communication line. This is necessary to load 
either Epicode, controller microcode, or system software. Note that 
this does not have to be the device which contains the system 
software. Another device, perhaps one dedicated to console functions, 
may contain the necessary Epicode and controller microcode. Second, 
the I/O processors and controllers need not contain microcode to 
support their full functionality. They need only be capable of the 
primitive operations necessary to read the full microcode from disk. 

C• 11.l.l.4 Initial Page Tables 

All system software runs in a virtual memory environment. 
the responsibility of the console to set up initial 
These are located in the next available good ~emory. 
tables map four regions of virtual memory: 

l. The page tables themselves 

2. The Restart Parameter Block (RPB) 

3. The I/0 registers for the port controller 

Thus, it is 
page tables. 

These page 

4. 256 Kbytes of good memory for use by system software 

The virtual memory is at the high end of the 32-bit virtual address 
space and is laid out as shown below: 
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I FFFSOOOO 
256 KB I 256 KB of good memory I FFFBFFFF 

+---------------------------------+ I I FFFCOOOO 
64 KB I I/O port controller registers I FFFCFFFF 

+---------------------------------+ I FFFDOOOO 
64 KB I RPB FFFDFFFF 

+---------------------------------+ I FFFEOOOO 
64 KB level 2 page table I FFFEFFFF 

+---------------------------------+ I FFFFOOOO 
64 KB level 1 page table I FFFFFFFF 

+---------------------------------+ 
Figure 11-4: ·Initial Virtual Memory Layout 

All pages have Kernel read/write/execute protection • 

.. 11.1.1.s Bootstrap Flags 

The console sets the Bootstrap-in-Progress (BIP) flag in the RPB state 
longword whenever a cold (not powerfail recovery) bootstrap is done. 
System software is responsible for clearing the flag at the 
appropriate time. This should be done after system software is 
capable of handling powerfail recovery. 

\The Bootstrap-in-Progress (BIP) and 
exist only in the RPB. They do not 
a VAX. The RPB is sufficient since 
console and the system software.\ 

11.1.1.6 Loading Of System Software 

Restart-in-Progress (RIP) flags 
exist in an IPR as is the case in 
it is accessible to both the 

The console is responsible for loading system software into the 256 
Kbytes of good memory. This software is expected to be a bootstrap 
which is responsible for loading other system software. However, it 
may be diagnostics or other special purpose software, see Section 11.3 
below. 

11.l.l.7 IPR Initialization 

Before control is transferred to system software, certain IPRs must be 
initialized as shown in the following table: 
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----------------------------------------------------------------------
Mnemonic Register Name Initialized State 
----------------------------------------------------------------------
ASN 
AST EN 
AST SR 
CRSR 
CTSR 
ICIE 
IPIE 
PCBB 
PTBR 
SISR 

Address Space Number 
AST Enable 
AST Summary 
Console Receive Status 
Console Transmit Status 
Interval Clock Int Enable 
Interprocessor Int Enable 
Privileged Context Block 
Page Table Base Register 
Software Interrupt Summary 

zero 
disabled 
zero 
disabled 
disabled 
disabled 
disabled 
RPB HWPCB 
bootstrap page table PFN 
zero 

The contents of all other IPRs are UNPREDICTABLE. 

ll.l.l.B Transfer Of Control To System Software 

At this point there is a conceptual change from console control to 
normal Epicode since the PRISM system is now running in its normal 
mode rather than bootstrapping. There may or may not be an actual 
change of control. Depending on implementation details of a PRISM 
processor, normal Epicode may have gained control at any point before 
this. 

When the console has completed the actions described above, control is 
transferred to system software in Kernel mode at IPL 7 with virtual 
memory management enabled. The Hardware Privileged Context Block 
(HWPCB) in the RPB is already initialized and is active. System 
software is loaded into the lowest portion of the 256-Kbyte region 
reserved for this purpose and control is transferred to its first 
byte. All locations have Kernel read/write/execute access. 

All scalar and vector register contents, including the stack pointer, 
are undefined. 

All bootstrap information is passed from the console to system 
software in the RPB. This includes: 

o System device name 

o System software file name 

o Bootstrap options 

o Logical Block Number (LBN) bootstrap data if appropriate 
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o Network bootstrap data if appropriate 
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The rest of the bootstrap process is the responsibility of system 
software. 

11.1.2 Powerfail 

When powerfail is detected, control is transferred to Epicode in an 
implementation-specific manner. If the Restart-in-Progress (RIP) or 

'Bootstrap-in-Progress (BIP) flag is set in the RPB per-processor state 
longword, no powerfail processing is possible and Epicode takes no 
action. Otherwise, Epicode sets the Powerfail Sequence Started (PSS) 
flag in the per-processor state longword in the RPB and then saves all 
volatile processor state in a combination of the per-processor portion 
of the RPB and Epicode private storage. Vector registers are saved 
only if system software has allocated a save area and recorded its 
address in the RPB and if the Vector Enable bit is set in the 
Processor Status (PS<VEN>). System software does not have the 
opportunity to take any action until powerfail recovery. After 
Epicode completes all powerfail processing, the Powerfail Sequence 
Complete (PSC) flag in the per-processor state longword in the RPB is 
•et. 

ll.1.3 Powerfail Recovery 

Powerfail recovery occurs if memory is preserved by battery backup 
during an interruption of power to the processor and the halt action 
is restart. After determining that memory was backed up and the halt 
action is restart, the console locates the RPB and examines the 
per-processor RPB state longword flags to determine that powerf ail was 
completed (PSC set) and that restart or bootstrapping was not in 
progress (BIP and RIP clear). If these conditions are not met, the 
processor either halts or starts a cold bootstrap. 

The RPB is found by a search of memory looking for the distinctive 
signature of the RPB as described below. If the search fails, the 
processor either halts or starts a cold bootstrap. 

1. Search for a page of memory that contains its physical 
address in the first two longwords. If none is found, the 
search for an RPB has failed. 

2. Get the physical address of the checksum area from the 
potential RPB. If it is not a valid physical address, return 
to Step l. 

3. Calculate the 32-bit twos complement sum (ignoring overflows) 
of the 31 longwords in the checksum area. If the sum does 
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not match the checksum in the potential RPB, return to 
l. 

Step 

4. A valid RPB has been found. 

If all tests pass, the console transfers control to the Epicode 
restart routine in an implementation-specific manner. Epicode 
properly restores internal processor registers and the contents of the 
HWPCB. After setting the Restart-in-Progress (RIP) flag and clearing 
the Powerfail Sequence Started (PSS) and Completed (PSC) flags in the 
per-processor- state longword, Epicode initiates a Powerfail Recovery 
interrupt to transfer control to system software. When the Powerfail 
Recovery interrupt is initiated, PC and PS (saved in the RPB) are 
pushed onto the Kernel stack. System software is responsible for 
restoring all other scalar and vector registers. Note that no Epicode 
or system software is loaded during a restart. 

•~- 11.1.4 Multiprocessor Bootstrapping 
~ 

t Multiprocessor bootstrapping differs from uniprocessor bootstrapping 
primarily in areas relating to synchronization between processors. 
Obviously, in a shared memory system, processors cannot independently 
load and start system software. 

~ 11.1.4.1 Initial Synchronization 

In a multiprocessor system, the console must be capable 
primitive operations before Epicode is loaded into memory. 
necessary to synchronize with other processors in the 
described below. 

of some 
These are 

system as 

Before continuing the bootstrap process a master processor must be 
chosen to control bootstrapping. This can be done in any fashion that 
guarantees choosing exactly one master. 

To provide one example of choosing a master; the presence of a 
register which can be accessed with interlocked instructions is 
assumed. Note that this is only an example: any workable mechanism, 
including a predefined master, can be used. An interlocked sequence 
must be done to see if the interlocked register is clear. If the 
register is clear, it is loaded with a flag (l) to indicate that a 
processor is in control of bootstrapping. If the register is already 
set, there must be a mechanism to loop waiting for an interprocessor 
interrupt. This can be Epicode in ROM or any other 
implementation-specific mechanism. 
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The first processor to gain control is referred to as the bootstrap 
master. (In the example, this was the first processor to gain the 
interlock.) It is the responsibility of this processor to control 
bootstrapping and allow all other processors to proceed only at the 
appropriate time. The bootstrap master allocates an RPB and writes 
its ID into the RPB. It then proceeds with the normal uniprocessor 
bootstrap. When bootstrapping is complete, system software sets 
Processor Enabled (PE) flags in the RPB per-processor state longwords 
to indicate which other processors are enabled. At this time, it 
requests interprocessor interrupts to these processors. 

11.1.4.3 Actions Of Bootstrap Slaves 

Bootstrapping processors other than the bootstrap master are ref erred 
to as bootstrap slaves. After failing to become master, a slave 
remains in console mode and polls for interprocessor interrupts. When 
an interprocessor interrupt is received, the bootstrap slave must 
locate the RPB and then check its state longword to ensure that it is 
enabled. If Epicode memory is required, the slave loads the Epicode 
length field in the RPB slot. Regardless of the need for memory, the 
slave then sets the Slave Request (SR) bit in its state word and 
initiates an..,..interrupt to the bootstrap master.. The slave now waits r· 'for an interrupt to indicate that memory has been allocated and the 

!' address returned in the RPB. Epicode is . then loaded by the slave 
'\;· (possibly different Epicode than that loaded by the master). If no 
} memory was required, the slave simply continues with the bootstrap 

process at this point. The master clears the Slave Request bit before 
initiating the second interrupt to the slave. 

All processors should be prepared to load Epicode on any 8-Kbyte 
boundary. This is to allow packing of Epicode in large pages in the 
future. An RPB cell is used to keep track of available memory. 

Note that system software in the bootstrap master is responsible for 
allocating the .Epicode memory for the slaves. The master should wait 
a •reasonable• period of time for a memory request from each slave. 
Slaves that do not respond are disabled. Explicit operator action is 
then required to enable additional slaves at a later time. (This is 
described in the next section.) 

Once Epicode is loaded and control transferred to Epicode, the proper 
environment must be established for system software. This is done by 
loading the powerfail restart IPRs and registers from the 
per-processor portion of the RPB and then transferring control to the 
address specified in the PC field of the RPB. System software in the 
master is responsible for initializing the RPB fields containing the 
IPRs and registers. 
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Once bootstrapping is complete, system software is no longer expecting 
requests for Epicode memory from bootstrapping processors. Thus, the 
RPB is not examined when interprocessor interrupts are received. In 
order to add a new processor, system software must provide an operator 
function to request that the bootstrap sequence be completed for any 
new processor. 

ll.l.5 Powerfail In A Multiprocessing System 

Powerfail processing is identical in multiprocessor and uniprocessor 
systems. Epicode saves state without any communication with other 
processors. 

Powerfail recovery proceeds almost exactly as in a uniprocessor 
system. Epicode determines if powerf ail was not ~uccessfully 
completed (PSC clear) or if restart or bootstrapping was 1n progress 
(RIP or BIP set). If so, further checks are done as described below. 
In the normal case, Epicode restores state and initiates a powerfail 
recovery interrupt just as in a uniprocessor system. It is the 
responsibili~y of system software to coordinate recovery in a 
multiprocessor system. The multiprocessor system software has the 
context to determine if it is necessary to wait for some other 
processor or if this processor should be rebooted. It is responsible 
for all further powerfail recovery synchronization. 

If a processor cannot complete normal powerfail recovery, further 
checks are needed to distinguish between cases where a cold bootstrap 
must be initiated and those where the processor must enter slave mode 
waiting for an interrupt from another processor. The processor must 
examine all per-processor RPB slots looking for a processor which is 
either running (PSS, PSC, RIP, and BIP clear) or has successfully 
completed powerfail processing (PSC set). If one is found, the 
processor enters slave mode and waits for an interrupt from the 
running or P.owerfailed processor. Note that this is exactly the state 
a slave enters after failing to become a master on cold bootstrap. If 
no processors are running or have successfully completed powerfail, a 
cold bootstrap is initiated. This procedure is necessary to guarantee 
that a processor which failed to complete powerfail processing cannot 
interfere with powerfail recovery of the rest of the system by 
becoming a master and performing a cold bootstrap. Very unlikely 
windows do exist where all processors can hang. In particular, if the 
master/slave interlock is not cleared, it may be impossible to select 
the new master. However, this is considered more acceptable than an 
unsynchronized bootstrap. 

This procedure is independent of whether or not all processors 
powerfailed. 
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This section describes the PRISM console functionality. 
Implementation-specific considerations such as diagnostic functions 
are not discussed. 

A console terminal is connected to each PRISM processor. More 
information on communication with console terminals can be found in 
Chapter 8, Internal Processor Registers. 

11.2.l Required Functionality 

All PRISM systems must provide console functionality to perform all of 
the functions described as console responsibility in the bootstrapping 
portion of this chapter. These include testing part of memory, 
loading Epicode, setting up a system software environment, loading 
system software, and handling powerfail recovery. Note that all of 
these functions are expected to be done with special Epicode executed 
in the PRISM processor. 

-"' · .. ~; 11.2.2 Entering Console Mode 

The PRISM processor can be put in console mode as follows: 
~-
,,;.. 

~- l. Console terminal BREAK key 

2. HALT instruction, Kernel Stack Not Valid, or a Double Machine 
Check Error 

In all cases, the console is now ready to accept commands. 

The result of a HALT instruction, Kernel Stack Not Valid, or a Double 
Machine Check Error depends on the current setting of the 
implementation-dependent halt action. This may be either halt, warm 
restart, or cold boot. 

If enabled, the BREAK key on the console terminal will always cause 
the PRISM processor to enter console mode. 

11.2.3 Program Controlled Console I/O 

Program controlled console I/O is necessary to allow system software 
to communicate with the operator during the bootstrap process. More 
information on communication with console terminals can be found in 
Chapter 8, Internal Processor Registers. 
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ll.3 CONSOLE LANGUAGE 

The PRISM console interprets commands typed on the console terminal, 
and controls the operation of the PRISM processor. 

Through the console terminal, an operator can boot the operating 
system, or a field service engineer can maintain the system. When the 
processor is halted, the operator controls the system through the 
console command language. When the processor is in console mode, the 
operator is prompted for input with the string •pn>>>• where n is the 
processor number. 

It may be possible for the operator to put the system in an 
inconsistent state through the use of the console commands. For 
example, it may be possible to use the console to set bits in MBZ 
fields, or to set conflicting control bits. The operation of the 
processor in such a state is UNDEFINED. 

11.3.1 Control Characters 

In console I/0 mode, several characters have special meanings. 

0 Carriage Return Ends a command line. A null 
terminated by a carriage return is treated as a valid, 
command. Carriage return is echoed as carriage return, 
feed. 

line 
null 
line 

o RUBOUT - When the operator types RUBOUT, the console ignores 
the entire line and prompts for another command. 

o CTRL/U - When the operator types CTRL/U the console ignores 
the entire line and prompts for another command. If CTRL/U 
is typed on an empty line, it is echoed, and otherwise 
ignored. The console prompts for another command. 

o CTRL/S - Stops output to the console terminal until CTRL/Q is 
typed. Additional input between CTRL/S and CTRL/Q is 
ignored. Additional CTRL/Ss before the CTRL/Q are ignored. 
CTRL/S and CTRL/Q are not echoed. 

0 CTRL/Q Resumes output stopped by CTRL/S. Additional 
CTRL/Qs are ignored. CTRL/S and CTRL/Q are not echoed. 

o BREAK - If the console is in console I/0 mode, BREAK is 
ignored. If the console is in program I/0 mode and BREAK is 
disabled, BREAK is passed to the operating system like any 
other character. If the console is in program I/O mode and 
BREAK is enabled, BREAK causes the processor to enter console 
I/O mode. 
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All commands are abbreviated to a single character. Multiple adjacent 
spaces and tabs are treated as a single space by the console. Leading 
and trailing spaces and tabs are ignored. Illegal characters are 
ignored and echoed as BEL (ASCII code 7). 

Command qualifiers must appear immediately after the command keyword 
without intervening spaces. 

All numbers (addresses, data, counts) are in hexadecimal. (Note, 
though, that symbolic register names include decimal digits.) Hex 
digits are o.through 9, and A through F. The console does not 
distinguish between upper and lower case. Both are accepted. 

11.3.3 Commands 

Processor control commands: 

o INITIALIZE 

o START 

o CONTINUE 

o BOOT 

Data transfer commands: 

o EXAMINE 

o DEPOSIT 

Console control commands: 

o TEST 
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BOOT 

Format: 

B [<qualifier list>] [<device:>][<filename>] 

Qualifiers: 

o /<data> - This allows a console user to specify the 
bootstrap options parameter to be stored in the RPB. 

o IS - The console loads the bootstrap program and prompts 
for further console commands. 

o /L - The console loads the bootstrap program from the 
logical block number O. 

Description: 

The device specification format is consistent with the PRISM system 
software naming conventions. 

The console initializes the processor, and loads a file and starts the 
system bootstrap program running: see Section 11.1 above. The system 
bootstrap program boots the operating system from the specified 
device. The default device and filename are implementation-dependent. 
The console searches through an implementation-dependent default 
search list. 
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CONTINUE 

Format: 

c 

Qualifiers: 

None 

Description: 
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The processor begins instruction execution at the address currently 
contained in the Program Counter. Processor initialization is not 
performed. The console enters program I/0 mode. 
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DEPOSIT 

Format: 

D [<qualifier list>] <address> <data> 

Qualifiers: 

See Table 11-2 in the description of the EXAMINE command. 

Description: 

Deposits the data into the address specified. If no address space or 
data size qualifiers are specified, the defaults are the last address 
space and data size used in a DEPOSIT or EXAMINE command. On each 
entry to console mode, the default address space is virtual memory, 
the default data size is longword, and the default address is zero. 

If the specified data is larger than the destination data size, the 
console truncates the data to the least significant digits typed. If 
the specified data is smaller than the data size to be deposited, it 
is zero extended. 

Deposits to IPRs execute the equivalent MTPR instructions using the 
contents of scalar registers R4 and RS (when needed) for their data. 
See Chapter 8 for register usage. 

Examples: 

D/P/B/N:200 0 0 

D/V/L/N:4 1234 5 

D/R/N:B R2 FFFFFFFF 

D/N:200 - 0 

DIR ESP 

Clears the first 512 bytes of physical memory. 

Deposits •5• into 4 longwords in virtual 
memory. 

Loads general registers R2 through R9 with 
FFFFFFFF. 

Clears 512 locations starting at the previous 
address. 

Deposits the contents of R4 in the Executive 
Stack Pointer. 
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<tab><address space identifier> <address> <data> 

The address space identifier can be: 

o P - Physical memory. Note that when virtual memory is 
examined, the address space and address in the response 
are the translated physical address. 

o R - Register. 

o M - Machine-dependent address space. 

Description: 

Examines the contents of the specified address. 
specified, •+• is assumed. 

If no address is 

Examining an IPR executes the equivalent MFPR instruction and writes 
the appropriate scalar registers called for in the MFPR description. 
See Chapter 8 for register usage. The response displays the registers 
that are written and the data. 

Examples: 

The response to E/R WHAMI on processor 3 is: 

R R4'00000003 

The response to E/V 1234564 is: 

P OOOOFE3C 01739102 

Where the virtual address 1234564 maps to the physical address FE3C. 

The response to E/P FEJC is: 

P OOOOFE3C 01739102 
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Table 11-2: Qualifiers for Examine and Deposit 

----------------------------------------------------------------------Qualifier Meaning 
----------------------------------------------------------------------/B 

/W 

/L 

IQ 

/V 

/P 

/R 

The data size is byte. 

The data size is word. 

The data size is longword. 

The data size is quadword. 

The address space is virtual memory. No access and 
protection checking occurs. If the virtual address 
cannot be translated due an invalid PTE, the console 
issues a •?TNV• error message. 

The address space is physical memory. If an attempt 
is made to reference a non-existant memory location, 
The console issues a •?NXM• error message. 

The address space is registers. These are the scalar 
registers, vector registers, internal processor 
registers, Program Counter, and Processor Status. 

The following symbolic addresses can be used for 
either Examine or Deposit commands: 

PS 
PC 
SP 

Rn 

Vn[m] 

vc 
VL 
VM 
CRCS 
CTCS 
ESP 
ICIE 
IPIE 
KSP 
PRBR 
SCBB 
SSP 
TOY 
USP 

- Processor Status. 
- Program Counter. 
- Current Mode Stack Pointer (scalar 

register Rl). 
- Scalar Register 'n'. The register number 

is in decimal and in the range 0-63. 
- Vector Register 'n', element 'n'. The 

register number is decimal and in the 
range 0-15; the element number is 
decimal and in the range 0-63. 

- Vector Count. 
- Vector Length. 
- Vector Mask. 
- Console Receive Control Status. 
- Console Transmit Control Status. 
- Executive Stack Pointer. 
- Interval Clock Interrupt Enable. 
- Interprocessor Interrupt Enable. 
- Kernel Stack Pointer. 
- Processor Base Register. 
- System Control Block Base. 
- Supervisor Stack Pointer. 
- Time Of Year. 
- User Stack Pointer. 
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Table ll-2: Qualifiers for Examine and Deposit (Continued) 

----------------------------------------------------------------------Qualifier Meaning 
----------------------------------------------------------------------

/M 

/N:<count> 

The following symbolic addresses can be used for the 
Examine command only: 

ASN 
A STEN 
AST SR 
CRDB 
PCBB 
PRSN 
PTBR 
SID 
SISR 
TBCHK 
WHAM I 

" 

- Address Space Number. 
- AST Enable. 
- AST Summary Register. 
- Console Receive Data Buff er. 
- Privileged Context Block Base. 
- Processor Serial Number. 
- Page Table Base Register. 
- System Identification. 
- Software Interrupt Summary Register. 
- Translation Buffer Check. 
- Who-Am-I. 

The following symbolic addresses can be used for the 
Deposit command only: 

ASTRR - AST Request Register. 
CTDB - Console Transmit Data Buffer. 
IPIR Interprocessor Interrupt Request. 
SIRR - Software Interrupt Request Register. 
TBIASN - Translation Buffer Invalidate by ASN 
TBIS - Translation Buffer Invalidate Single. 

(Optional) The address space is machine dependent. 

The address is the first of a range. The 
console examines or deposits the specified number of 
addresses starting at the first address. If the 
first address is the symbolic address •-•, the 
succeeding addresses are at still larger addresses. 
The symbolic address specifies only the starting 
address, not the direction of succession. 

The address parameter may also be one of the following symbolic 
addresses: 

'+' - The location immediately following the last 
location referenced in an examine or deposit. 
For references to physical or virtual memory 
spaces, the location referenced is the last 
address, plus the size of the last reference 
(l for byte, 2 for word, 4 ·for longword, and 8 
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Table 11-2: Qualifiers for Examine and Deposit (Continued) 

----------------------------------------------------------------------Qualifier Meaning 
----------------------------------------------------------------------for quadword). For other address spaces, the 

address is the last addressed referenced, 
plus l. 

'-' - The location inunediately preceding the last 
location referenced in an examine or deposit. 
For references to physical or virtual memory 
spaces, the location referenced is the last 
address minus the size of this reference (1 
for byte 2 for word, 4 for longword, and 8 
for quadword). For other address spaces, the 
address is the last addressed referenced 
minus 1. 

'*' - The location last referenced in an examine or 
deposit. 

'@' - The location addressed by the last location 
referenced in an examine or deposit. 
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INITIALIZE 

Format: 

I 

Qualifiers: 

None 

Description: 

Company Confidential Page ll-24 
22 December 1985 

A processor initialization is performed; see Section 11.l.l.7 for 
initial register contents. 
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START 

Format: 

S [<address>] 

Qualifiers: 

None 

Description: 
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The console starts instruction execution at the specified address. 
The default address is implementation dependent. Instructions are 
executed from virtual memory. The START command is equivalent to a 
DEPOSIT to PC, followed by a CONTINUE. No INITIALIZE is performed. 
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TEST 

Format: 

T [<qualifier list>] 

Qualifiers: 

Company Confidential 

Implementation-dependent 

Description: 

The PRISM processor executes a self test. 
optional. 
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All qualifiers are 
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o BEL - Illegal characters are ignored and are echoed as BEL. 

o ?NXM - Non-existent memory. 

o ?TNV - Translation Not Valid. 
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APPENDIX A 

INSTRUCTION SET SUMMARY 

This appendix summarizes the instruction mnemonics and their opcode 
and function code fields in hex. There are three listings: 

o Functional group listing Groups related instructions 
together. 

o Mnemonic listing - Lists the instructions sorted by mnemonic. 

o Opcode listing - Lists the instructions sorted by opcode and 
function code. 

A.l ENCODING HINTS 

The instruction encoding was worked out so that it would simplify 
instruction-issue logic. The following comments and equations may be 
helpful in understanding the encoding that was chosen. In the 
following, the term OPCODE is used for instruction bits <31:26> and 
FUNC is used for instruction bits <13:9>. 

1. All scalar load and store instructions have OPCODE<5:3> equal 
to lll(bin). OPCODE<2> is a 0 for load and a 1 for store. 
OPCODE<l:O> specifies the data size (0 for byte, l for word 2 
for longword, and 3 for quadword). 

2. All floating-point instructions encode floating underflow 
enable in FUNC<3> (0 for underflow disabled and l for 
underflow enabled). 

3. All floating-point instructions encode floating rounding mode 
in FUNC<2> (0 for round toward zero and 1 for VAX rounding). 

4. All vector instructions use FUNC<4> to determine whether the 
Ra field selects a scalar or a vector register (0 for scalar 
Ra and l for vector Ra). 
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A.2 FUNCTIONAL GROUP LISTING 

Opcode Function 
Mnemonic (hex) Code (hex) 
-------------------------- ------ ----------
LDB d(rb),ra 38 
LDW d(rb) ,ra 39 
LDL d(rb) ,ra 3A 
LDQ d(rb),ra JB 

STB ra,d(rb) 3C 
STW ra,d(rb) JD 
STL ra,d(rb) 3E 
STQ ra,d(rb) 3F 

VLDL ra,rb,ve 30 02 
VLDQ ra,rb,ve 30 03 
VSTL ra,rb,ve 30 06 
VSTQ ra,rb,ve 30 07 

VGATHL ra·1vb,ve 31 02 
VGATHQ ra,vb,ve 31 03 
VSCATL ra,vb,vc 31 06 
VSCATQ ra,vb,ve 31 07 

RDVL re 32 00 
RDVC re 32 01 
RDVML re 32 02 
RDVMH re 32 03 
WRVL ra 33 00 
WRVC ra 33 01 
WRVML ra 33 02 
WRVMH ra 33 03 

COP RD ra 34 
COPWR ra 35 

EPIRES3 36 
EPIRES4 37 

BEQ ra,dest 20 
BNE ra,dest 21 
BGT ra,dest 22 
BLE ra,dest 23 
BGE ra,dest 24 
BLT ra,dest 25 
BLBC ra,dest 26 
BLBS ra,dest 27 

JSR ra,dest 28 
JSR ra,(rb) 29 00 
FOB ra 2A 
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EPIRESO 
EPIRESl 
EPIRES2 

ADD ra,rb,rc 
ADDV ra,rb,rc 
SUB ra,rb,rc 
SUBV ra,rb,rc 

CMPEQ ra,rb,rc 
CMPNE ra,rb,rc 
CMPGT ra,rb,rc 
CMPLE ra,rb,rc 
CMPGE ra,rb,rc 
CMPLT ra,rb,rc 
CMPUGT ra,rb,rc 
CMPULE ra,rb,rc 
CMPUGE ra,rb,rc 
CMPULT ra,rb,rc 

SLL ra,rb,rc 
SRL ra,rb,rc 
SRA ra,rb,rc 
ROT ra,rb,rc 
AND ra,rb,rc 
BIC ra,rb,rc 
OR ra,rb,rc 
ORN OT ra,rb,rc 
XOR ra,rb,rc 
EQV ra,rb,rc 

DIV ra,rb,rc 
DIVV ra,rb,rc 
REM ra,rb,rc 
MULL ra,rb,rc 
MULV ra,rb,rc 
MULH ra,rb,rc 
UMULH ra,rb,rc 

CVTFL ra,rc 
CVTFLZ ra,rc 
CVTLF ra,rc 
CVTLFZ ra,rc 

CVTFG ra,rc 
CVTLG ra,rc 

CVTGL ra,rc 
CVTGLZ ra,rc 
CVTGF ra,rc 
CVTGFZ ra,rc 
CVTGFU ra,rc 
CVTGFUZ ra,rc 

Company Confidential 

2D 
2E 
2F 

01 
01 
01 
01 

02 
02 
02 
02 
02 
02 
02 
02 
02 
02 

03 
03 
03 
03 
03 
03 
03 
03 
03 
03 

04 
04 
04 
04 
04 
04 
04 

05 
05 
05 
05 

06 
06 

07 
07 
07 
07 
07 
07 
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00 
01 
08 
09 

08 
09 
OA 
OB 
oc 
OD 
lA 
lB 
lC 
lD 

04 
05 
06 
07 
00 
08 
01 
09 
02 
OA 

00 
01 
04 
02 
03 
06 
OA 

04 
00 
05 
01 

00 
01 

04 
00 
05 
01 
OD 
09 
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ADDG ra,rb,rc 
ADDGZ ra,rb,rc 
ADDGU ra,rb,rc 
ADDGUZ ra,rb,rc 
SUBG ra,rb,rc 
SUBGZ ra,rb,rc 
SUB GU ra,rb,rc 
SUBGUZ ra,rb,rc 

ADDF ra,rb,rc 
ADDFZ ra,rb,rc 
ADD FU ra,rb,rc 
ADDFUZ ra,rb,rc 
SUBF ra,rb,rc 
SUBFZ ra,rb,rc 
SUB FU ra,rb,rc 
SUBFUZ ra,rb,rc 

CMPGEQ ra,rb,rc 
CMPGNE ra,rb,rc 
CMPGGT ra,rb,rc 
CMPGLE ra,rb,rc 
CMPGGE ra,rb,rc 
CMPGLT ra,rb,rc 

CMPFEQ ra,rb,rc 
CMPFNE ra,rb,rc 
CMPFGT ra,rb,rc 
CMPFLE ra,rb,rc 
CMPFGE ra,rb,rc 
CMPFLT ra,rb,rc 

DIVG ra,rb,rc 
DIVGZ ra,rb,rc 
DIVGU ra,rb,rc 
DIVGUZ ra,rb,rc 
MULG ra,rb,rc 
MULGZ ra,rb,rc 
MULGU ra,rb,rc 
MULGUZ ra,rb,rc 

DIVF ra,rb,rc 
DIVFZ ra,rb,rc 
DIVFU ra,rb,rc 
DIVFUZ ra,rb,rc 
MULF ra,rb,rc 
MULFZ ra,rb,rc 
MULFU ra,rb,rc 
MULFUZ ra,rb,rc 

LDA d(rb),ra 

VMERGE ra,vb,vc 

08 
08 
08 
OB 
08 
08 
08 
08 

09 
09 
09 
09 
09 
09 
09 
09 

OA 
OA 
OA 
OA 
OA 
OA 

OB 
OB 
OB 
OB 
OB 
OB 

oc 
oc 
oc 
oc 
oc 
oc 
oc 
oc 
OD 
OD 
OD 
OD 
OD 
OD 
OD 
OD 

OE 

10 
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04 
00 
oc 
08 
05 
01 
OD 
09 

04 
00 
oc 
08 
05 
01 
OD 
09 

00 
01 
02 
03 
04 
05 

00 
01 
02 
03 
04 
05 

04 
00 
oc 
08 
05 
01 
OD 
09 

04 
00 
oc 
08 
05 
01 
OD 
09 

00 
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VMERGE va,vb,vc 10 10 
IOTA ra,vc 10 01 

VADD ra,vb,vc 11 00 
VADDV ra,vb,vc 11 01 
VSUB ra,vb,vc 11 02 
VSUBV ra,vb,vc 11 03 
VADD va,vb,vc 11 10 
VADDV va,vb,vc 11 11 
VSUB va,vb,vc 11 12 
VSUBV va,vb,vc 11 13 

VCMPEQ ra,vb 12 00 
VCMPNE ra,vb 12 01 
VCMPGT ra,vb 12 02 
VCMPLE ra,vb 12 03 
VCMPGE ra,vb 12 04 
VCMPLT ra,vb 12 05 
VCMPEQ va,vb 12 10 
VCMPNE va,vb 12 11 
VCMPGT va,vb 12 12 
VCMPLE va,vb 12 13 
VCMPGE va,vb 12 14 
VCMPLT va,vb 12 15 

VSLL ra,vb,vc 13 04 
VSRL ra,vb,vc 13 05 
VAND ra,vb,vc 13 00 
VBIC ra,vb,vc 13 08 
VOR ra,vb,vc 13 01 
VORNOT ra,vb,vc 13 09 
VXOR ra,vb,vc 13 02 
VEQV ra,vb,vc 13 OA 
VSLL va,vb,vc 13 14 
VSRL va,vb,vc 13 15 
VAND va,vb,vc 13 10 
VBIC va,vb,vc 13 18 
VOR va,vb,vc 13 11 
VO RN OT va,vb,vc 13 19 
VXOR va,vb,vc 13 12 
VEQV va,vb,vc 13 lA 

VDIV ra,vb,vc 14 00 
VDIVV ra,vb,vc 14 01 
VREM ra,vb,vc 14 04 
VMULL ra,vb,vc 14 02 
VMULV ra,vb,vc 14 03 
VDIV va,vb,vc 14 10 
VDIVV va,vb,vc 14 11 
VREM va,vb,vc 14 14 
VMULL va,vb,vc 14 12 
VMULV va,vb,vc 14 13 

VCVTFL va,vc 15 14 
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VCVTFLZ va,vc 15 10 
VCVTLF va,vc 15 15 
VCVTLFZ va,vc 15 11 

VCVTFG va,vc 16 10 
VCVTLG va,vc 16 11 

VCVTGL va,vc 17 14 
VCVTGLZ va,vc 17 10 
VCVTGF va,vc 17 15 
VCVTGFZ va,vc 17 11 
VCVTGFU va,vc 17 lD 
VCVTGFUZ va,vc 17 19 

VADOG ra,vb,vc 18 04 
VADOGZ ra,vb,vc 18 00 
VADDGU ra,vb,vc 18 oc 
VADDGUZ ra,vb,vc 18 08 
VSUBG ra,vb,vc 18 05 
VSUBGZ ra,vb,vc 18 01 
VSUBGU ra,vb,vc 18 OD 
VSUBGUZ ra,vb,vc 18 09 
VADDG va,vb,vc 18 14 
VADDGZ va,vb,vc 18 10 
VADDGU va,vb,vc 18 lC 
VADDGUZ va,vb,vc 18 18 
VSUBG va,vb,vc 18 is: 
VSUBGZ va,vb,vc 18 11 
VSUBGU va,vb,vc 18 lD 
VSUBGUZ va,vb,vc 18 19 

VADDF ra,vb,vc 19 04 
VADDFZ ra,vb,vc 19 00 
VADDFU ra,vb,vc 19 oc 
VADDFUZ ra,vb,vc 19 08 
VSUBF ra,vb,vc 19 05 
VSUBFZ ra,vb,vc 19 01 
VSUBFU ra,vb,vc 19 OD 
VSUBFUZ ra,vb,vc 19 09 
VADDF va,vb,vc 19 14 
VADDFZ va,vb,vc 19 10 
VADDFU va,vb,vc 19 lC 
VADDFUZ va,vb,vc 19 18 
VSUBF va,vb,vc 19 15 
VSUBFZ va,vb,vc 19 11 
VSUBFU va,vb,vc 19 10 
VSUBFUZ va,vb,vc 19 19 

VCMPGEQ ra,vb lA 00 
VCMPGNE ra,vb lA 01 
VCMPGGT ra,vb lA 02 
VCMPGLE ra,vb lA 03 
VCMPGGE ra,vb lA 04 
VCMPGLT ra,vb lA 05 
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VCMPGEQ va,vb lA 10 
VCMPGNE va,vb lA ll 
VCMPGGT va,vb lA 12 
VCMPGLE va,vb lA 13 
VCMPGGE va,vb lA 14 
VCMPGLT va,vb lA 15 

VCMPFEQ ra,vb lB 00 
VCMPFNE ra,vb lB 01 
VCMPFGT ra,vb lB 02 
VCMPFLE ra,vb lB 03 
VCMPFGE ra,vb lB 04 
VCMPFLT ra,vb lB 05 
VCMPFEQ va,vb lB 10 
VCMPFNE va,vb lB ll 
VCMPFGT va,vb lB 12 
VCMPFLE va,vb lB 13 
VCMPFGE va,vb lB 14 
VCMPFLT va,vb lB 15 

VD IVG ra,vb,vc lC 04 
VDIVGZ ra,vb,vc lC 00 
VDIVGU ra,vb,vc lC oc 
VDIVGUZ ra,vb,vc lC 08 
VMULG ra,vb,vc lC 05 
VMULGZ ra,vb,vc lC 01 
VMULGU ra,vb,vc lC -OD 
VMULGUZ ra,vb,vc lC 09 
VD IVG va,vb,vc lC 14 
VDIVGZ va,vb,vc lC 10 
VDIVGU va,vb,vc lC lC 
VDIVGUZ va,vb,vc lC 18 
VMULG va,vb,vc lC 15 
VMULGZ va,vb,vc lC 11 
VMULGU va,vb,vc lC lD 
VMULGUZ va,vb,vc lC 19 

VD I VF ra,vb,vc lD 04 
VDIVFZ ra,vb,vc lD 00 
VDIVFU ra,vb,vc lD oc 
VDIVFUZ ra,vb,vc lD 08 
VMULF ra,vb,vc lD 05 
VMULFZ ra,vb,vc lD 01 
VMULFU ra,vb,vc lD OD 
VMULFUZ ra,vb,vc lD 09 
VD I VF va,vb,vc lD 14 
VDIVFZ va,vb,vc lD 10 
VDIVFU va,vb,vc lD lC 
VDIVFUZ va,vb,vc lD 18 
VMULF va,vb,vc lD 15 
VMULFZ va,vb,vc lD 11 
VMULFU va,vb,vc lD lD 
VMULFUZ va,vb,vc lD 19 
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HALT 00 00 
DRAIN 00 30 
REI 00 02 
BPT 00 03 
BUGCHK 00 04 

I FLUSH 00 31 

MOVPS 00 32 

PROBER 00 OA 
PROBEW 00 OB 

SWASTEN 00 05 
SW IPL 00 06 
SWPCTX 00 07 

RMAOI 00 38 
RMAOIP 00 39 

TBFLUSH 00 OB 

MFPR ESP 00 Cl 
MTPR ESP 00 81 
MFPR SSP 00 C2 
MTPR SSP 00 82 
MFPR USP 00 C3 
MTPR USP 00 83 

MFPR PTBR 00 C4 
MFPR PCBB 00 cs 
MFPR SCBB 00 C6 
MTPR SCBB 00 86 

MTPR AST RR 00 87 
MFPR AST SR 00 ca 
MFPR AS TEN 00 C9 
MTPR SIRR 00 SA 
MFPR SISR 00 CA 

MFPR ICIE 00 CB 
MTPR ICIE 00 SB 
MFPR TOY 00 cc 
MTPR TOY 00 SC 

MFPR ASN 00 CD 
MFPR TBCHK 00 CE 
MTPR TBIS 00 SF 
MTPR TBIASN 00 90 

MTPR IPIR 00 91 
MFPR IPIE 00 D2 
MTPR IPIE 00 92 
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MFPR PRBR 00 D3 
MTPR PRBR 00 93 
MFPR WHAM I 00 D4 
MFPR SID 00 D5 
MFPR PRSN 00 D6 

MFPR CRCS 00 D7 
MTPR CRCS 00 97 
MFPR CRDB 00 DB 
MFPR CTCS 00 D9 
MTPR CTCS 00 99 
MTPR CTDB 00 9A 

reserved OF 00 
reserved lE 00 
reserved lF 00 
reserved 2B 00 
reserved 2C 00 
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A.3 MNEMONIC LISTING 

Opcode Function 
Mnemonic (hex) Code (hex) 
-------------------------- ------ ----------
ADD ra,rb,rc 01 00 
ADDF ra,rb,rc 09 04 
ADD FU ra,rb,rc 09 oc 
ADDFUZ ra,rb,rc 09 OB 
ADDFZ ra,rb,rc 09 00 
ADDG ra,rb,rc OB 04 
ADDGU ra,rb,rc OB oc 
ADDGUZ ra,rb,rc OB OB 
ADDGZ ra,rb,rc OB 00 
ADDV ra,rb,rc 01 01 
AND ra,rb,rc 03 00 
BEQ ra,dest 20 
BGE ra,dest 24 
BGT ra,dest 22 
BIC ra,rb,rc 03 OB 
BLBC ra,dest 26 
BLBS ra,dest 27 
BLE ra,dest 23 
BLT ra,dest 25 
BNE ra,dest 2f 
BPT 00 03 
BUGCHK 00 04 
Ofi>EQ ra,rb,rc 02 OB 
Ofi>FEQ ra,rb,rc OB 00 
Ofi>FGE ra,rb,rc OB 04 
Ofi>FGT ra,rb,rc OB 02 
Ofi>FLE ra,rb,rc OB 03 
Ofi>FLT ra,rb,rc OB 05 
Ofi>FNE ra,rb,rc OB 01 
Ofi>GE ra,rb,rc 02 oc 
CMPGEQ ra,rb,rc OA 00 
Ofi>GGE ra,rb,rc OA 04 
Ofi>GGT ra,rb,rc OA 02 
Ofi>GLE ra,rb,rc OA 03 
CMPGLT ra,rb,rc OA 05 
Ofi>GNE ra,rb,rc OA 01 
CMPGT ra,rb,rc 02 OA 
CMPLE ra,rb,rc 02 OB 
CMPLT ra,rb,rc 02 OD 
CMPNE ra,rb,rc 02 09 
Ofi>UGE ra,rb,rc 02 lC 
Ofi>UGT ra,rb,rc 02 lA 
CMPULE ra,rb,rc 02 lB 
CMPULT ra,rb,rc 02 lD 
COP RD ra 34 
COPWR ra 35 
CVTFG ra,rc 06 00 
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CVTFL ra,rc 05 04 
CVTFLZ ra,rc 05 00 
CVTGF ra,rc 07 05 
CVTGFU ra,rc 07 OD 
CVTGFUZ ra,rc 07 09 
CVTGFZ ra,rc 07 01 
CVTGL ra,rc 07 04 
CVTGLZ ra,rc 07 00 
CVTLF ra,rc 05 05 
CVTLFZ ra,rc 05 01 
CVTLG ra,rc 06 01 
DIV ra,rb,rc 04 00 
DIVF ra,rb,rc OD 04 
DIVFU ra,rb,rc OD oc 
DIVFUZ ra,rb,rc OD 08 
DIVFZ ra,rb,rc OD 00 
DIVG ra,rb,rc oc 04 
DIVGU ra,rb,rc oc oc 
DIVGUZ ra,rb,rc oc 08 
DIVGZ ra,rb,rc oc 00 
DIVV ra,rb,rc 04 01 
DRAIN 00 30 
EPIRESO 2D 
EPIRESl 2E 
EPIRES2 2F 
EPIRES3 36 
EPIRES4 : 37 
EQV ra,rb,rc 03 OA 
FOB ra 2A 
HALT 00 00 
I FLUSH 00 31 
IOTA ra,vc 10 01 
JSR ra,(rb) 29 00 
JSR ra,dest 28 
LDA d(rb) ,ra OE 
LDB d(rb) ,ra 38 
LDL d(rb) ,ra 3A 
LDQ d(rb) ,ra 3B 
LDW d(rb) ,ra 39 
MFPR ASN 00 CD 
MFPR AS TEN 00 C9 
MFPR AST SR 00 CB 
MFPR CRCS 00 D7 
MFPR CRDB 00 DB 
MFPR CTCS 00 D9 
MFPR ESP 00 Cl 
MFPR ICIE 00 CB 
MFPR IPIE 00 D2 
MFPR PCBB 00 cs 
MFPR PRBR 00 D3 
MFPR PRSN 00 D6 
MFPR PTBR 00 C4 
MFPR SCBB 00 C6 
MFPR SID 00 DS 
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MFPR SISR 00 CA 
MFPR SSP 00 C2 
MFPR TBCHK 00 CE 
MFPR TOY 00 cc 
MFPR USP 00 C3 
MFPR WHAM I 00 D4 
MOVPS 00 32 
MTPR AST RR 00 S7 
MTPR CRCS 00 97 
MTPR CTCS 00 99 
MTPR CTDB 00 9A 
MTPR ESP 00 Sl 
MTPR ICIE 00 SB 
MTPR IPIE 00 92 
MTPR IPIR 00 91 
MTPR PRBR 00 93 
MTPR SCBB 00 S6 
MTPR SIRR 00 SA 
MTPR SSP 00 S2 
MTPR TBIASN 00 90 
MTPR TBIS 00 SF 
MTPR TOY 00 BC 
MTPR USP 00 83 
MULF ra,rb,rc OD 05 
MULFU ra,rb,rc OD OD 
MULFUZ ra,rb,rc OD 09 
MULFZ ra,rb,rc OD 01 
MULG ra,rb,rc oc 05 
MULGU ra,rb,re oc OD 
MULGUZ ra,rb,re oc 09 
MULGZ ra,rb,re oc 01 
MULH ra,rb,re 04 06 
MULL ra,rb,rc 04 02 
MULV ra,rb,rc 04 03 
OR ra,rb,rc 03 01 
ORNOT ra,rb,re 03 09 
PROBER 00 OA 
PRO BEW 00 OB 
RDVC re 32 01 
RDVL re 32 00 
RDVMH re 32 03 
RDVML re 32 02 
REI 00 02 
REM ra,rb,rc 04 04 
RMAQI 00 38 
RMAQIP 00 39 
ROT ra,rb,re 03 07 
SLL ra,rb,re 03 04 
SRA ra,rb,rc 03 06 
SRL ra,rb,rc 03 05 
STB ra,d(rb) 3C 
STL ra,d(rb) 3E 
STQ ra,d(rb) 3F 
STW ra,d(rb) 30 
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SUB ra,rb,rc 01 OB 
SUBF ra,rb,rc 09 05 
SUB FU ra,rb,rc 09 OD 
SUBFUZ ra,rb,rc 09 09 
SUBFZ ra,rb,rc 09 01 
SUBG ra,rb,rc 08 05 
SUBGU ra,rb,rc 08 OD 
SUBGUZ ra,rb,rc 08 09 
SUBGZ ra,rb,rc 08 01 
SUBV ra,rb,rc 01 09 
SWASTEN 00 05 
SWIPL 00 06 
SWPCTX 00 07 
TB FLUSH 00 08 
UMULH ra,rb,rc 04 OA 
VADD ra,vb,vc 11 00 
VADD va,vb,vc 11 10 
VADDF ra,vb,vc 19 04 
VADDF va,vb,vc 19 14 
VADDFU ra,vb,vc 19 oc 
VADDFU va,vb,vc 19 lC 
VADDFUZ ra,vb,vc 19 08 
VADDFUZ va,vb,vc 19 18 
VADDFZ ra,vb,vc 19 00 
VADDFZ va,vb,vc 19 10 
VADDG ra,vb,vc 18 04 
VADDG va,vb,vc 18 14 
VADDGU ra,vb,vc 18 oc 
VADDGU va,vb,vc 18 lC 
VADDGUZ ra,vb,vc 18 08 
VADDGUZ va,vb,vc 18 18 
VADDGZ ra,vb,vc 18 00 
VADDGZ va,vb,vc 18 10 
VADDV ra,vb,vc 11 01 
VADDV va,vb,vc 11 11 
VAND ra,vb,vc 13 00 
VAND va,vb,vc 13 10 
VBIC ra,vb,vc 13 08 
VBIC va,vb,vc 13 18 
VCMPEQ ra,vb 12 00 
VCMPEQ va,vb 12 10 
VCMPFEQ ra,vb lB 00 
VCMPFEQ va,vb lB 10 
VCMPFGE ra,vb lB 04 
VCMPFGE va,vb lB 14 
VCMPFGT ra,vb lB 02 
VCMPFGT va,vb lB 12 
VCMPFLE ra,vb lB 03 
VCMPFLE va,vb lB 13 
VCMPFLT ra,vb lB 05 
VCMPFLT va,vb lB 15 
VCMPFNE ra,vb lB 01 
VCMPFNE va,vb lB 11 
VCMPGE ra,vb 12 04 
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VCMPGE va,vb 12 14 
VCMPGEQ ra,vb lA 00 
VCMPGEQ va,vb lA 10 
VCMPGGE ra,vb lA 04 
VCMPGGE va,vb lA 14 
VCMPGGT ra,vb lA 02 
VCMPGGT va,vb lA 12 
VCMPGLE ra,vb lA 03 
VCMPGLE va,vb lA 13 
VCMPGLT ra,vb lA 05 
VCMPGLT va,vb lA 15 
VCMPGNE ra,vb lA 01 
VCMPGNE va,vb lA 11 
VCMPGT ra,vb 12 02 
VCMPGT va,vb 12 12 
VCMPLE ra,vb 12 03 
VCMPLE va,vb 12 13 
VCMPLT ra,vb 12 05 
VCMPLT va,vb 12 15 
VCMPNE ra,vb 12 01 
VCMPNE va,vb 12 11 
VCVTFG va;·vc 16 10 
VCVTFL va,vc 15 14 
VCVTFLZ va,vc 15 10 
VCVTGF va,vc 17 15 
VCVTGFU va,vc 17 lD 
VCVTGFUZ va,vc 17 19 
VCVTGFZ va,vc 17 11 
VCVTGL va,vc 17 14 
VCVTGLZ va,vc 17 10 
VCVTLF va,vc 15 15 
VCVTLFZ va,vc 15 11 
VCVTLG va,vc 16 11 
VDIV ra,vb,vc 14 00 
VDIV va,vb,vc 14 10 
VDIVF ra,vb,vc lD 04 
VDIVF va,vb,vc lD 14 
VDIVFU ra,vb,vc lD oc 
VDIVFU va,vb,vc lD lC 
VDIVFUZ ra,vb,vc lD 08 
VDIVFUZ va,vb,vc lD 18 
VDIVFZ ra,vb,vc lD 00 
VDIVFZ va,vb,vc lD 10 
VDIVG ra,vb,vc lC 04 
VDIVG va,vb,vc lC 14 
VDIVGU ra,vb,vc lC OC 
VDIVGU va,vb,vc lC lC 
VDIVGUZ ra,vb,vc lC 08 
VDIVGUZ va,vb,vc lC 18 
VDIVGZ ra,vb,vc lC 00 
VDIVGZ va,vb,vc lC 10 
VDIVV ra,vb,vc 14 01 
VDIVV va,vb,vc 14 11 
VEQV ra,vb,vc 13 OA 
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VEQV va,vb,vc 13 lA 
VGATHL ra,vb,vc 31 02 
VGATHQ ra,vb,vc 31 03 
VLDL ra,rb,vc 30 02 
VLDQ ra,rb,vc 30 03 
VMERGE ra,vb,vc 10 00 
VMERGE va,vb,vc 10 10 
VMULF ra,vb,vc lD 05 
VMULF va, vb, vc lD 15 
VMULFU ra,vb,vc lD OD 
VMULFU va, vb, vc lD lD 
VMULFUZ ra,vb,vc lD 09 
VMULFUZ va,vb,vc lD 19 
VMULFZ ra,vb,vc lD 01 
VMULFZ va,vb,vc lD 11 
VMULG ra,vb,vc lC 05 
VMULG va,vb,vc lC 15 
VMULGU ra,vb,vc lC OD 
VMULGU va,vb,vc lC lD 
VMULGUZ ra,vb,vc lC 09 
VMULGUZ va, vb, vc lC 19 
VMULGZ ra,vb,vc lC 01 
VMULGZ va,vb,vc lC 11 
VMULL ra,vb,vc 14 02 
VMULL va,vb,vc 14 12 
VMULV ra,vb,vc 14 03 
VMULV va,vb,vc 14 13 
VOR ra,vb,vc 13 01 
VOR va,vb,vc 13 11 
VO RN OT ra,vb,vc 13 09 
VORNOT va,vb,vc 13 19 
VREM ra,vb,vc 14 04 
VREM va,vb,vc 14 14 
VSCATL ra,vb,vc 31 06 
VSCATQ ra,vb,vc 31 07 
VSLL ra,vb,vc 13 04 
VSLL va,vb,vc 13 14 
VSRL ra,vb,vc 13 05 
VSRL va,vb,vc 13 15 
VSTL ra,rb,vc 30 06 
VSTQ ra,rb,vc 30 07 
VSUB ra,vb,vc 11 02 
VSUB va,vb,vc 11 12 
VSUBF ra,vb,vc 19 05 
VSUBF va,vb,vc 19 15 
VSUBFU ra,vb,vc 19 OD 
VSUBFU va,vb,vc 19 lD 
VSUBFUZ ra,vb,vc 19 09 
VSUBFUZ va,vb,vc 19 19 
VSUBFZ ra,vb,vc 19 01 
VSUBFZ va,vb,vc 19 ll 
VSUBG ra,vb,vc 18 05 
VSUBG va,vb,vc 18 15 
VSUBGU ra,vb,vc 18 OD 
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VSUBGU va,vb,vc 18 lD 
VSUBGUZ ra,vb,vc 18 09 
VSUBGUZ va,vb,vc 18 19 
VSUBGZ ra,vb,vc 18 01 
VSUBGZ va,vb,vc 18 11 
VSUBV ra,vb,vc 11 03 
VSUBV va,vb,vc 11 13 
VXOR ra,vb,vc 13 02 
VXOR va,vb,vc 13 12 
WRVC ra 33 01 
WRVL ra 33 00 
WRVMH ra 33 03 
WRVML ra 33 02 
XOR ra,rb,rc 03 02 
reserved OF 00 
reserved lE 00 
reserved lF 00 
reserved 2B 00 
reserved 2C 00 
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A.4 OPCODE LISTING 

Opcode Function 
Mnemonic (hex) Code (hex) 
-------------------------- ------ ----------
HALT 00 00 
REI 00 02 
BPT 00 03 
BUGCHK 00 04 
SWASTEN 00 05 
SW IPL 00 06 
SWPCTX 00 07 
TB FLUSH 00 08 
PROBER 00 OA 
PRO BEW 00 OB 
DRAIN 00 30 
I FLUSH 00 31 
MOVPS 00 32 
RMAQI 00 38 
RMAQIP 00 39 
MTPR ESP 00 Sl 
MTPR SSP 00 S2 
MTPR USP 00 S3 
MTPR SCBB 00 S6 
MTPR ASTRR 00 S7 
MTPR SIRR 00 SA 
MTPR ICIE 00 SB 
MTPR TOY 00 sc 
MTPR TBIS 00 SF 
MTPR TBIASN 00 90 
MTPR IPIR 00 91 
MTPR IPIE 00 92 
MTPR PRBR 00 93 
MTPR CRCS 00 97 
MTPR CTCS 00 99 
MTPR CTDB 00 9A 
MFPR ESP 00 Cl 
MFPR SSP 00 C2 
MFPR USP 00 C3 
MFPR PTBR 00 C4 
MFPR PCBB 00 cs 
MFPR SCBB 00 C6 
MFPR AST SR 00 cs 
MFPR A STEN 00 C9 
MFPR SISR 00 CA 
MFPR ICIE 00 CB 
MFPR TOY 00 cc 
MFPR ASN 00 CD 
MFPR TBCHK 00 CE 
MFPR IPIE 00 D2 
MFPR PRBR 00 D3 
MFPR WHAM I 00 D4 
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MFPR SID 00 DS 
MFPR PRSN 00 D6 
MFPR CRCS 00 D7 
MFPR CRDB 00 DB 
MFPR CTCS 00 D9 
ADD ra,rb,rc 01 00 
ADDV ra,rb,rc 01 01 
SUB ra,rb,rc 01 08 
SUBV ra,rb,rc 01 09 
CMPEQ ra,rb,rc 02 08 
CMPNE ra,rb,rc 02 09 
CMPGT ra,rb,rc 02 OA 
CMPLE ra,rb,rc 02 OB 
CMPGE ra,rb,rc 02 oc 
CMPLT ra,rb,rc 02 OD 
CMPUGT ra,rb,rc 02 lA 
CMPULE ra,rb,rc 02 lB 
CMPUGE ra,rb,rc 02 lC 
CMPULT ra,rb,rc 02 lD 
AND ra,rb,rc 03 00 
OR ra,rb,rc 03 01 
XOR ra,rb,rc 03 02 
SLL ra;rb,rc 03 04 
SRL ra,rb,rc 03 05 
SRA ra,rb,rc 03 06 
ROT ra,rb,rc 03 07 
BIC ra,rb,rc 03 08 
ORN OT ra,rb,rc 03 09 

~ EQV ra,rb,rc 03 OA 
DIV ra,rb,rc 04 00 
DIW ra,rb,rc 04 01 
MULL ra,rb,rc 04 02 
MULV ra,rb,rc 04 03 
REM ra,rb,rc 04 04 
MULH ra,rb,rc 04 06 
UMULH ra,rb,rc 04 OA 
CVTFLZ ra,rc 05 00 
CVTLFZ ra,rc 05 01 
CVTFL ra,rc 05 04 
CVTLF ra,rc 05 05 
CVTFG ra,rc 06 00 
CVTLG ra,rc 06 01 
CVTGLZ ra,rc 07 00 
CVTGFZ ra,rc 07 01 
CVTGL ra,rc 07 04 
CVTGF ra,rc 07 05 
CVTGFUZ ra,rc 07 09 
CVTGFU ra,rc 07 OD 
ADDGZ ra,rb,rc 08 00 
SUBGZ ra,rb,rc 08 01 
ADDG ra,rb,rc 08 04 
SUBG ra,rb,rc 08 05 
ADDGUZ ra,rb,rc 08 08 
SUBGUZ ra,rb,rc 08 09 
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ADDGU ra,rb,rc OB oc 
SUBGU ra,rb,rc OB OD 
ADDFZ ra,rb,rc 09 00 
SUBFZ ra,rb,rc 09 01 
ADDF ra,rb,rc 09 04 
SUBF ra,rb,rc 09 05 
ADDFUZ ra,rb,rc 09 08 
SUBFUZ ra,rb,rc 09 09 
ADD FU ra,rb,rc 09 oc 
SUB FU ra,rb,rc 09 OD 
CMPGEQ ra,rb,rc OA 00 
CMPGNE ra,rb,rc OA 01 
CMPGGT ra,rb,rc OA 02 
CMPGLE ra,rb,rc OA 03 
CMPGGE ra,rb,rc OA 04 
CMPGLT ra,rb,rc OA 05 
CMPFEQ ra,rb,rc OB 00 
CMPFNE ra,rb,rc OB 01 
CMPFGT ra,rb,rc OB 02 
CMPFLE ra,rb,rc OB 03 
CMPFGE ra,rb,rc OB 04 
CMPFLT ra,rb,rc OB 05 
DIVGZ ra,rb,rc oc 00 
MULGZ ra,rb,rc oc 01 
DIVG ra,rb,rc oc 04 
MULG ra,rb,rc oc 05 
DIVGUZ ra,rb,rc oc OB 
MULGUZ ra,rb,rc oc 09 
DIVGU ra,rb,rc oc oc 
MULGU ra,rb,rc oc OD 
DIVFZ ra,rb,rc OD 00 
MULFZ ra,rb,rc OD 01 
DIVF ra,rb,rc OD 04 
MULF ra,rb,rc OD 05 
DIVFUZ ra,rb,rc OD 08 
MULFUZ ra,rb,rc OD 09 
DIVFU ra,rb,rc OD oc 
MULFU ra,rb,rc OD OD 
LDA d(rb) ,ra OE 
reserved OF 00 
VMERGE ra,vb,vc 10 00 
IOTA ra,vc 10 01 
VMERGE va,vb,vc 10 10 
VADD ra,vb,vc 11 00 
VADDV ra,vb,vc 11 01 
VSUB ra,vb,vc 11 02 
VSUBV ra,vb,vc 11 03 
VADD va,vb,vc 11 10 
VADDV va,vb,vc 11 11 
VSUB va,vb,vc 11 12 
VSUBV va,vb,vc 11 13 
VCMPEQ ra,vb 12 00 
VCMPNE ra,vb 12 01 
VCMPGT ra,vb 12 02 
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VCMPLE ra,vb 12 03 
VCMPGE ra,vb 12 04 
VCMPLT ra,vb 12 05 
VCMPEQ va,vb 12 10 
VCMPNE va,vb 12 11 
VCMPGT va,vb 12 12 
VCMPLE va,vb 12 13 
VCMPGE va,vb 12 14 
VCMPLT va,vb 12 15 
VAND ra,vb,vc 13 00 
VOR ra,vb,vc 13 01 
VXOR ra,vb,vc 13 02 
VSLL ra,vb,vc 13 04 
VSRL ra,vb,vc 13 05 
VBIC ra,vb,vc 13 08 
VORNOT ra,vb,vc 13 09 
VEQV ra,vb,vc 13 OA 
VAND va,vb,vc 13 10 
VOR va,vb,vc 13 11 
VXOR va,vb,vc 13 12 
VSLL va,vb,vc 13 14 
VSRL va,vb,vc 13 15 
VBIC va,vb,vc. 13 18 
VO RN OT va,vb,vc 13 19 
VEQV va,vb,vc 13 lA 
VDIV · ra,vb,vc 14 00 
VDIVV ra,vb,vc 14 01 
VMULL ra,vb,vc 14 02 
VMULV ra,vb,vc 14 03 
VREM ra,vb,vc 14 04 
VDIV va,vb,vc 14 10 
VDIVV va,vb,vc 14 11 
VMULL va,vb,vc 14 12 
VMULV va,vb,vc 14 13 
VREM va,vb,vc 14 14 
VCVTFLZ va,vc 15 10 
VCVTLFZ va,vc 15 11 
VCVTFL va,vc 15 14 
VCVTLF va,vc 15 15 
VCVTFG va,vc 16 10 
VCVTLG va,vc 16 11 
VCVTGLZ va,vc 17 10 
VCVTGFZ va,vc 17 11 
VCVTGL va,vc 17 14 
VCVTGF va,vc 17 15 
VCVTGFUZ va,vc 17 19 
VCVTGFU va,vc 17 lD 
VADDGZ ra,vb,vc 18 00 
VSUBGZ ra,vb,vc 18 01 
VADDG ra,vb,vc 18 04 
VSUBG ra,vb,vc 18 05 
VADDGUZ ra,vb,vc 18 08 
VSUBGUZ ra,vb,vc 18 09 
VADDGU ra,vb,vc 18 oc 
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VSUBGU ra,vb,vc 18 OD 
VADDGZ va,vb,vc 18 10 
VSUBGZ va,vb,vc 18 11 
VADDG va,vb,vc 18 14 
VSUBG va,vb,vc 18 15 
VADDGUZ va,vb,vc 18 18 
VSUBGUZ va,vb,vc 18 19 
VADDGU va,vb,vc 18 lC 
VSUBGU va,vb,vc 18 lD 
VADDFZ ra,vb,vc 19 00 
VSUBFZ ra,vb,vc 19 01 
VADDF ra,vb,vc 19 04 
VSUBF ra,vb,vc 19 05 
VADDFUZ ra,vb,vc 19 08 
VSUBFUZ ra,vb,vc 19 09 
VADDFU ra,vb,vc 19 oc 
VSUBFU ra,vb,vc 19 OD 
VADDFZ va,vb,vc 19 10 
VSUBFZ va,vb,vc 19 11 
VADDF va,vb,vc 19 14 
VSUBF va,vb,vc 19 15 
VADDFUZ va,vb,vc 19 18 
VSUBFUZ va,vb,vc 19 19 
VADDFU va,vb,vc 19 lC 
VSUBFU va,vb,vc 19 lD 
VCMPGEQ ra,vb lA 00 
VCMPGNE ra,vb lA 01 
VCMPGGT ra,vb lA 02 
VCMPGLE ra,vb lA 03 
VCMPGGE ra,vb lA 04 
VCMPGLT ra,vb lA 05 
VCMPGEQ va,vb lA 10 
VCMPGNE va,vb lA 11 
VCMPGGT va,vb lA 12 
VCMPGLE va,vb lA 13 
VCMPGGE va,vb lA 14 
VCMPGLT va,vb lA 15 
VCMPFEQ ra,vb lB 00 
VCMPFNE ra,vb lB 01 
VCMPFGT ra,vb lB 02 
VCMPFLE ra,vb lB 03 
VCMPFGE ra,vb lB 04 
VCMPFLT ra,vb lB 05 
VCMPFEQ va,vb lB 10 
VCMPFNE va,vb lB 11 
VCMPFGT va,vb lB 12 
VCMPFLE va,vb lB 13 
VCMPFGE va,vb lB 14 
VCMPFLT va,vb lB 15 
VDIVGZ ra,vb,vc lC 00 
VMULGZ ra,vb,vc lC 01 
VD IVG ra,vb,vc lC 04 
VMULG ra,vb,vc lC 05 
VDIVGUZ ra,vb,vc lC 08 
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VMULGUZ ra,vb,vc lC 09 
VDIVGU ra,vb,vc lC oc 
VMULGU ra,vb,vc lC OD 
VDIVGZ va,vb,vc lC 10 
VMULGZ va,vb,vc lC 11 
VD IVG va,vb,vc lC 14 
VMULG va,vb,vc lC 15 
VDIVGUZ va,vb,vc lC 18 
VMULGUZ va,vb,vc lC 19 
VDIVGU va,vb,vc lC lC 
VMULGU va,vb,vc lC lD 
VDIVFZ ra,vb,vc 10 00 
VMULFZ ra,vb,vc lD 01 
VD I VF ra,vb,vc lD 04 
VMULF ra,vb,vc lD 05 
VDIVFUZ ra,vb,vc lD 08 
VMULFUZ ra,vb,vc lD 09 
VDIVFU ra,vb,vc 10 oc 
VMULFU ra,vb,vc lD OD 
VDIVFZ va,vb,vc 10 10 
VMULFZ va,vb,vc lD 11 
VD I VF va,vb,vc 10 14 
VMULF va,vb,vc. 10 15 
VDIVFUZ va,vb,vc 10 18 
VMULFUZ va,vb,vc lD 19 
VDIVFU va_,vb,vc 10 le 
VMULFU va,vb,vc 10 10 
reserved lE 00 
reserved lF 00 
BEQ ra,dest 20 
BNE ra,dest 21 
BGT ra,dest 22 
BLE ra,dest 23 
BGE ra,dest 24 
BLT ra,dest 25 
BLBC ra,dest 26 
BLBS ra,dest 27 
JSR ra,dest 28 
JSR ra,(rb) 29 00 
FOB ra 2A 
reserved 2B 00 
reserved 2C 00 
EPIRESO 20 
EPIRESl 2E 
EPIRES2 2F 
VLOL ra,rb,vc 30 02 
VLDQ ra,rb,vc 30 03 
VSTL ra,rb,vc 30 06 
VSTQ ra,rb,vc 30 07 
VGATHL ra,vb,vc 31 02 
VGATHQ ra,vb,vc 31 03 
VSCATL ra,vb,vc 31 06 
VSCATQ ra,vb,vc 31 07 
RDVL re 32 00 
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RDVC re 32 01 
RDVML re 32 02 
RDVMH re 32 03 
WRVL ra 33 00 
WRVC ra 33 01 
WRVML ra 33 02 
WRVMH ra 33 03 
COP RD ra 34 
COPWR ra 35 
EPIRES3 36 
EPIRES4 37 
LDB d(rb),ra 38 
LOW d(rb),ra 39 
LDL d(rb),ra 3A 
LDQ d(rb),ra 3B 
STB ra,d(rb) JC 
STW ra,d(rb) 30 
STL ra,d(rb) 3E 
STQ ra,d(rb) 3F 
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APPENDIX B 

64-BIT ARCHITECTURE 

B.l GOALS AND NON-GOALS 

At some point in the future the proposed 32-bit PRISM architecture 
will run out of virtual address bits. When this event occurs it is 
highly desirable to upgrade the PRISM architecture to a larger virtual 
address and migrate software with as little effort as possible. 

If all software were written correctly and in a higher level language, 
then the source programs could simply be recompiled to take advantage 
of the larger virtual address space. It is doubtful, however, that 
this level of transportability will be achieved since a large amount 
of VAX software which is written in BLISS will be transported to PRISM 
architecture machines with little or no change (i.e., most BLISS 
software will not be rewritten to alleviate address size 
dependencies). 

This appendix describes a possible 64-bit extension of the PRISM 
architecture. It does not claim or imply that this is an optimal 
solution, or for that matter, the one that will actually be 
implemented. It assumes that the 32-bit architecture specified in 
this document will be implemented first, and later, a 64-bit 
architecture with a compatible 32-bit mode will be implemented. This 
would allow software to be migrated to the extended architecture 
without extensive rewrite. 

The 32-bit PRISM architecture has 32-bit registers. There is a 
defined set of 32-bit integer operations, 32-bit single precision 
floating operations and 64-bit double precision floating operations on 
even/odd register pairs. Virtual addresses are 32-bits long. 

The proposed 64-bit architecture has 64-bit registers. There is a 
defined set of 64-bit integer operations, 32-bit single precision 
floating operations and 64-bit double precision floating operations. 
Virtual addresses are 64-bits long. 

In addition, the 64-bit architecture has a 32-bit mode which is 
enabled by a bit in the PS. When running with 32-bit mode enabled, 
integer operations are executed compatibly with the 32-bit 
architecture and virtual addresses are constrained to 32-bits. Double 
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precision floating operations are executed using even/odd register 
pairs. 

Goals of this proposal are: 

l. To design an architectural solution to the quandry 
surrounding the cost effectiveness of a 32-bit architecture 
versus the long-term desirability of a 64-bit architecture. 

2. To be able to run 32-bit software on a 64-bit architecture 
WITHOUT recompilation or relinking. 

Architectural constraints are: 

1. A 32-bit program when run on a 64-bit machine must get 
identical answers. This means that if a computation 
overflows on the 32-bit machine it must also overflow on the 
64-bit machine. 

2. It must be possible to write a program that may be compiled 
and run on either the 32- or 64-bit environment without any 
source changes. 

j: Non-goals are: 

1. For a program compiled for a 64-bit architecture to be able 
to run on a 32-bit machine without recompilation. 

The architectural modifications are such that new instructions are not 
required. The definition of an operation depends on whether the 
program is running in 32-bit or 64-bit mode. 

B.2 DATA TYPES 

The 64-bit architecture supports the following data types: 

1. By~e - zero extended loads and stores only. 

2. Word - zero extended loads and stores only. 

3. Longword - zero extended loads and stores only. 

4. Quadword - complete set of arithmetic, logical, and compare 
operations. This is the primary integer data type. All 
operations provided for longwords in the 32-bit architecture 
are provided on quadwords in the 64-bit architecture. 

5. F floating - same ope rat ions 
eicept that converts to and 
instead of longword. 

as the 32-bit 
from quadword 

architecture 
are provided 
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6. G floating - same operations 
except that converts to and 
instead of longword. 

B.3 REGISTERS 

B.3.1 Scalar Registers 

as the 32-bit 
from quadword 

architecture 
are provided 

There are 64 scalar registers, each 64-bits wide. Rl is the stack 
pointer. RO always reads as zero and writes are ignored. 

B.3.2 vector Regi~ters 

The vector registers are identical to those in the 32-bit 
architecture. There are 16 vector registers, each containing 64 
elements. Each element is 64-bits wide. The Vector Length register 
is 6-bits wide. The Vector Mask register is 64-bits wide. The Vector 
Count register is 7-bits wide. 

B.3.3 Program Counter 

The PC is 64-bits wide. Bits <1:0> and high order bits corresponding 
to reserved virtual address bits are RAZ/IGN (see Section B.6.2). 

B.4 INSTRUCTION FORMATS 

All instructions are 32-bits long. The instruction formats and 
encodings are identical to those used in the 32-bit architecture. 

B.5 INSTRUCTION SET 

The definition of an operation depends on whether the program is 
running in 32-bit or 64-bit mode. In 32-bit mode all integer 
operations are zero extended from bit 32 through 63. This is required 
so that addresses are the same in 32-bit mode as they are in 64-bit 
mode. The operating system must allocate space for 32-bit mode 
programs from the first 4 Gbytes of the virtual address space. 
Effective address calculations for loads and stores are zero extended 
from bit 32 through 63 also. And branches are constrained to not go 
outside the 32-bit range. 
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The following sections describe instruction operation in 32- and 
64-bit modes. Table B-1 describes the instruction notation. 

Table B-1: Instruction Notation 

----------------------------------------------------------------------Notation Meaning 
----------------------------------------------------------------------
L x 

L_QRn 

I 

When used on the left hand side of an assignment 
statement, bits x<31:0> receive the result and bits 
x<63:32> are cleared. When used as a source operand, 
only bits x<31:0> participate in the operation. 

When used on the left hand side of an assignment 
statement, bits <31:0> of each of the even-odd register 
pair QRn receive the low and high parts of the result and 
bits <63:32> of each of the register pair are cleared. 
When used as a source operand, only bits <31:0> of each 
of the even-odd register pair QRn participate in the 
operation. 

This designator is used to denote integer data type in 
convert instruction mnemonics. In 32-bit mode, I denotes 
longword, and in 64-bit mode I denotes quadword • . 

-----~-----~----------------------------------------------------------
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B.5.l MEMORY LOAD/STORE INSTRUCTIONS 

Instr 

LDA 

LDB 

LDW 

LDL 

LDQ 

STB 

STW 

STL 

STQ 

RMAQI 

VLDL 

VLDQ 

32-bit Mode 

L Ra <- Rbv + SEXT(disp) 

L va <- Rbv + SEXT(disp) 
L-Ra <- ZEXT((va)<7:0>) 

L va <- Rbv + SEXT(disp) 
L-Ra <- ZEXT((va)<lS:O>) 

L va <- Rbv + SEXT{disp) 
L-Ra <- (va)<Jl:O> 

L va <- Rbv + SEXT{disp) 
L:QRa <- (va)<63:0> 

L va <- Rbv ·+ SEXT(disp) 
Cva) <- Rav<7:0> 

L va <- Rbv + SEXT(disp) 
Cva) <- Rav<lS:O> 

L va <- Rbv + SEXT{disp) 
(va) <- Rav<Jl:O> 

va <- Rbv + SEXT{disp) 
(va) <- L_QRav 

L va <- R4 
L-QR4 <- (va){interlocked} 
{va){interlocked} <-

{L_QR4 AND L_QR6} + L_QR8 

L va <- Rbv 
FOR i <- 0 TO VL-l 

BEGIN 
Vc[i] <- (va)<Jl:O> 
L va <- va + Rav 
END 

L va <- Rbv 
FOR i <- 0 TO VL-1 

BEGIN 
Vc[i] <- {va)<63:0> 
L va <- va + Rav 
END 

64-bit Mode 

Ra <- Rbv + SEXT(disp) 

va <- Rbv + SEXT(disp) 
Ra <- ZEXT((va)<7:0>) 

va <- Rbv + SEXT(disp) 
Ra <- ZEXT((va)<l5:0>) 

va <- Rbv + SEXT(disp) 
Ra<- ZEXT((va)<3l:O>) 

va <- Rbv + SEXT(disp) 
Ra <- (va)<63:0> 

va <- Rbv + SEXT(disp) 
(va) <- Rav<7:0> 

va <- Rbv + SEXT(disp) 
(va) <- Rav<lS:O> 

va <- Rbv + SEXT(disp) 
(va) <- Rav<3l:O> 

va <- Rbv + SEXT(disp) 
(va) <- Rav 

va <- R4 
RS<- (va){interlocked} 
(va){interlocked} <-

{RS AND R6} + R7 

va <- Rbv 
FOR i <- 0 TO VL-l 

BEGIN 
Vc[i] <- (va)<31:0> 
va <- va + Rav 
END 

va <- Rbv 
FOR i <- 0 TO VL-1 

BEGIN 
Vc[i] <- (va)<63:0> 
va <- va + Rav 
END 
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Instr 32-bit Mode 

VGATHL FOR i <- 0 TO VL-1 
BEGIN 
L va <-Rav+ Vb[i] 
vcCil <- <va)<Jl:O> 
END 

VGATHQ FOR i <- 0 TO VL-1 
BEGIN 
L va <- Rav + Vb[i] 
Vc[i] <- (VA)<63:0> 
END 

VSCATL FOR i <- 0 TO VL-1 
BEGIN 
L va <-Rav+ Vb[i] 
(va> <- vc[i]<Jl:O> 
END 

VSCATQ FOR i <- 0 TO VL-1 
BEGIN ·· 
L va <- Rav + Vb[i] 
Cva) <- vcCil 
END 

64-bit Mode 

FOR i <- 0 TO VL-1 
BEGIN 
va <- Rav + Vb[i] 
Vc[i] <- (va)<ll:O> 
END 

FOR i <- 0 TO VL-1 
BEGIN 
va <- Rav + Vb[i] 
Vc[i] <- (va)<63:0> 
END 

FOR i <- 0 TO VL-1 
BEGIN 
va <- Rav + Vb[i] 
(va) <- Vc[i]<31:0> 
END 

FOR i <- 0 TO VL-1 
BEGIN 
va <-Rav + Vb[i] 
(va) <- Vc[i] 
END 
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B.5.2 INTEGER ARITHMETIC INSTRUCTIONS 

Instr 32-bit Mode 

ADD 
SUB 
MUL 
DIV 
REM L_Rc <- L_Rbv op L_Rav 

MULH L Re <-
-{L_ Rbv * L_Rav}<63:32> 

tJMULH L Re <-
-{L_Rbv *U L_Rav}<63:32> 

CMP IF L Rav op L Rbv THEN 
L Re <- l 

VADD 
VSUB 
VDIV 
VMUL 

ELSE 
L_Rc <- 0 

VREM FOR i <- 0 TO VL-1 

VCMP 

BEGIN 

Vc[i] 

Vc[i] 
END 

VM <- 0 

{Vector op Vector} 
<- L Va[i] op L Vb[i] 

{Scalar op victor} 
<- L_Rav op L_Vb[i] 

FOR i <- 0 TO VL-1 
BEGIN 

{Vector op Vector} 
IF L Va[i] op L Vb[i] THEN 

VM'<i> <- 1 -
{Scalar op Vector} 

IF L Rav op L Vb[i] THEN 
VM'<i> <- l -

END 

64-bit Mode 

Re <- Rbv op Rav 

NOT IMPLEMENTED 

NOT IMPLEMENTED 

IF Rav op Rbv THEN 
Re <- l 

ELSE 
Re <- 0 

FOR i <- 0 TO VL-1 
BEGIN 

Vc[i] <- Va[i] op Vb[i] 

Vc[i] <-Rav op Vb[i] 
END 

VM <- 0 
FOR i <- 0 TO VL-1 

BEGIN 

IF Va[i] op Vb[i] THEN 
VM<i> <- l 

IF Rav OP Vb[i] THEN 
VM<i> <- l 

END 



64-bit Architecture 
INSTRUCTION SET 

Company Confidential Page B-8 
22 December 1985 

B.5.3 LOGICAL AND SHIFT INSTRUCTIONS 

Instr 32-bit Mode 

AND 
BIC 
OR 
ORN OT 
XOR 
EQV L Re <- L Rbv op L_Rav 

SLL 
SRL 
SRA L Re <- op{L_Rbv,Rav<4:0>) 

ROT L Re <- op{L Rbv,Rav<4:0>) 

VAND 
VOR 
VXOR 
VBIC 
VO RN OT 
VEQV FOR i <- 0 TO VL-1 

BEGIN 

Vc[i] 

Vc[i] 
END 

{Vector op Vector} 
<- L Va[i] op L Vb[i] 

Tscalar op Vector} 
<- L_Rav op L_Vb[i] 

VMERGE FOR i <- 0 TO VL-1 
BEGIN 

VSLL 
VSRL 

{Vector op Vector} 
IF VM<i> EQ 0 THEN 

Vc[i] <- Va[i] 
ELSE 

Vc[i] <- Vb[i] 
{Scalar op Vector} 

IF VM<i> EQ 0 THEN 
Vc[i] <- L QRav 

ELSE -
Vc[i] <- Vb[i] 

END 

FOR i <- 0 TO VL-1 
BEGIN 

{vector op vector} 
Vc[i] <-

op(L Vb[i],Va[i]<4:0>) 
- {vector op scalar} 

Vc[i] <­
op(L_Vb[i],Rav<4:0>) 

64-bit Mode 

Re <- Rbv op Rav 

Re <- op(Rbv,Rav<S:O>) 

Re <- op(Rbv,Rav<S:O>) 

FOR i <- 0 TO VL-1 
BEGIN 

Vc[i] <- Va[i] op Vb[i] 

Vc[i] <- Rav op Vb[i] 
END 

FOR i <- 0 TO VL-1 
BEGIN 

IF VM<i> EQ 0 THEN 
Vc[i] <- Va[i] 

ELSE 
Vc(i] <- Vb[i] 

IF VM<i> EQ 0 THEN 
Vc[i] <- Rav 

ELSE 
Vc[i] <- Vb[i] 

END 

FOR i <- 0 TO VL-1 
BEGIN 

Ve[ i] <-
op(Vb[ i] ,Va[ i ]<5:0>) 

Ve[ i] <-
op(Vb[ i] ,Rav<S:O>) 



64-bit Architecture 
INSTRUCTION SET 

END 

Company Confidential 

END 

Page B-9 
22 December 1985 



64-bit Architecture 
INSTRUCTION SET 

Company Confidential Page B-10 
22 December 1985 

B.5.4 FLOATING POINT INSTRUCTIONS 

Instr 32-bit Mode 

ADDF 
SUBF 
DIVF 
MULF L_Rc <- L Rbv op L_Rav 

ADDG 
SUBG 
MULG 
DIVG L_QRc <- L_QRbv op L_QRav 

CMPF IF L Rav op L_Rbv THEN 
Re-<- 1 

ELSE 
Re <- 0 

CMPG IF L QRav op L_QRbv THEN 
Re-<- 1 

CVTFG 

CVTGF 

CVTFI 

CVTGI 

CVTIF 

CVTIG 

VADDF 
VSUBF 
VD I VF 

ELSE 
Re <- 0 

L_QRe <- cvt{L_Rav) 

L_Rc <- cvt{L_QRav) 

L_Rc <- cvt{L_Rav) 

L_Rc <- cvt(L_QRav) 

L Re <- cvt(L_Rav) 

L_QRe <- cvt{L_Rav) 

VMULF FOR i <- 0 TO VL-1 
BEGIN 

Vc[i] 

Vc[i] 
END 

{Vector op Vector} 
<- L Va[i] op L Vb[i] 

{Scalar op Vector} 
<- L_Rav op L_Vb[i] 

64-bit Mode 

L Re <- L Rbv op L_Rav 

Re <- Rbv op Rav 

IF L_Rav op L_Rbv THEN 
Re <- 1 

ELSE 
Re <- 0 

IF Rav op Rbv THEN 
Re <- 1 

ELSE 
Re <- 0 

Re <- cvt{L_Rav) 

L_Rc <- cvt{Rav) 

Re <- cvt{L_Rav) 

Re <- cvt{Rav) 

L_Re <- cvt{Rav) 

Re <- cvt(Rav) 

FOR i <- 0 TO VL-1 
BEGIN 

Ve[i] 

Ve[i] 
END 

<- L_Va[i] op L_Vb[i) 

<- L Rav op L_Vb[i] 
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Instr 

VADDG 
VSUBG 
VD IVG 

32-bit Mode 

VMULG FOR i <- 0 TO VL-1 
BEGIN 

Vc[i] 

Ve[ i] 
END 

VCMPF VM <- 0 

{Vector op Vector} 
<- Va[i] op Vb[i] 

{Scalar op Vector} 
<- L_QRav op Vb[i] 

FOR i <- 0 TO VL-1 
BEGIN 

{Vector cmp Vector} 
IF L_Va[i] op L_Vb[i] THEN 

VM<i> <- l 
ELSE 

VM<i> <- 0 
{Scalar cmp Vector} 

IF ';L Rav op L Vb[ i] THEN 
VM"<i> <- 1 -

ELSE 
VM<i> <- 0 

END 

VCMPG VM <- 0 
FOR i <- 0 TO VL-1 

BEGIN 
{Vector cmp Vector} 

IF Va[i] op Vb[i] THEN 
VM<i> <- 1 

ELSE 
VM<i> <- 0 

{Scalar cmp Vector} 
IF L QRav op Vb[i) THEN 

VM"<i> <- l 
ELSE 

VM<i> <- 0 
END 

64-bit Mode 

FOR i <- 0 TO VL-1 
BEGIN 

Vc[i] <- Va[i] op Vb[i] 

Vc[i] <- Rav op Vb[i] 
END 

VM <- 0 
FOR i <- 0 TO VL-1 

BEGIN 

IF L Va[i] op L Vb[i] THEN 
VM"<i> <- 1 -

ELSE 
VM<i> <- 0 

IF L Rav op L Vb[i] THEN 
VM"<i> <- l -

ELSE 
VM<i> <- 0 

END 

VM <- 0 
FOR i <- 0 TO VL-1 

BEGIN 

IF Va[i] op Vb[i] THEN 
VM<i> <- 1 

ELSE 
VM<i> <- 0 

IF Rav op Vb[i] THEN 
VM<i> <- l 

ELSE 
VM<i> <- 0 

END 
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Instr 32-bit Mode 

VCVTFG FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- cvt(L Va[i]) 
END -

VCVTGF FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- cvt(Va[i]) 
END 

VCVTFI FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- cvt(L Va[i]) 
END -

VCVTGI FOR i <- 0 TO VL-1 
BEGIN 

VCVTIF 

Vc[i] <- cvt(Va[i]) 
END 

VCVTIG FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- cvt(L_Va[i]) 
END 

64-bit Mode 

FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- cvt(L Va[i]) 
END -

FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- cvt(Va[i]) 
END 

FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- cvt(L Va[i]) 
END -

FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- cvt(Va[i]) 
END 

FOR i <- 0 TO VL-1 
BEGIN 
Vc[i] <- cvt(Va[i]) 
END 
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B.5.5 CONTROL INSTRUCTIONS 

Instr 32-bit Mode 

Bxx L va <-PC+ {4*SEXT(disp)} 
IF TEST(L Rav) THEN 

PC <- vi 

FOB IF Rav<O> EQ 1 THEN 
{FOB exception} 

JSR {Branch format} 
L va <- PC+ (4*SEXT(disp)} 

{Memory format} 
L va <- Rbv AND {NOT 3} 
L Ra <- PC 
PC <- va 

64-bit Mode 

va <-PC+ {4*SEXT(disp)} 
IF TEST(Rav) THEN 

PC <- va 

IF Rav<O> EQ l THEN 
{FOB exception} 

va <-PC+ {4*SEXT(disp)} 

va <- Rbv AND {NOT 3} 
Ra <- PC 
PC <- va 
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B.5.6 MISCELLANEOUS INSTRUCTIONS 

Instr 32-bit Mode 

BPT {push current L_PC and 
PS on kernel stack} 

{Change Mode to Kernel} 
{dispatch through SCB vector} 

BUGCHK {push current L_PC and 
PS on kernel stack} 

{Change Mode to Kernel} 
{dispatch through SCB vector} 

64-bit Mode 

{push current PC and 
PS on kernel stack} 

{Change Mode to Kernel} 
{dispatch through SCB vector} 

{push current PC and 
PS on kernel stack} 

{Change Mode to Kernel} 
{dispatch through SCB vector} 

DRAIN {Stall instruction issuing until all prior instructions completed} 

IFLUSH {Invalidate instruction prefetch and instruction cache} 

IOTA 

MOVPS 

PROBE 

RDVC 

WRVC 

RDVL 

WRVL 

RDVMH 

RDVML 

WRVMH 

j <- 0 
tmp <- O 
FOR i <- 0 TO VL-1 

BEGIN 
IF VM<i> EQ 1 THEN 

BEGIN 
Vc[j] <- tmp 
j <- j + l 
END 

L tmp <- tmp + Rav 
END 

vc <- j 

L R4 <- PS 

L R4 contains the base address 
L RS contains the signed offset 
Rb contains the access mode 
R7<0> <- {success} 
R7<63:1> <- 0 

L_Rc <- ZEXT(VC) 

VC <- Rav<6:0> 

L_Rc <- ZEXT(VL) 

VL <- Rav<S:O> 

L Re <- VM<63:32> 

L Re <- VM<31:0> 

VM<63:32> <- L Rav 

j <- 0 
tmp <- 0 
FOR i <- 0 TO VL-1 

BEGIN 
IF VM<i> EQ 1 THEN 

BEGIN 
Vc[j] <- tmp 
j <- j + 1 
END 

tmp <- tmp + Rav 
END 

vc <- j 

R4 <- ZEXT(PS) 

R4 contains the base address 
RS contains the signed off set 
R6 contains the access mode 
R7<0> <- {success} 
R7<63:1> <- 0 

Re <- ZEXT(VC) 

VC <- Rav<6:0> 

Re <- ZEXT(VL) 

VL <- Rav<S:O> 

Re <- VM 

Re <- VM 

VM <- Rav 
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Instr 32-bit Mode 

REI tmpl <- (SP)<31:0> 
IF tmpl<31> EQ 0 THEN 

{return to 32-bit mode} 
ELSE 

{illegal operation} 

SWASTEN tmp <- R4<0> 
L R4 <- ZEXT(ASTEN<PS<CM>>) 
ASTEN<PS<CM>> <- tmp 

64-bit Mode 

tmpl <- (SP)<31:0> 
IF tmpl<31> EQ 0 THEN 

{return to 32-bit mode} 
ELSE 

{return to 64-bit mode} 

tmp <- R4<0> 
R4 <- ZEXT(ASTEN<PS<CM>>) 
ASTEN<PS<CM>> <- tmp 
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B.S.7 PRIVILEGED INSTRUCTIONS 

Instr 32-bit Mode 64-bit Mode 

HALT {halt processor or enter restart sequence} 

MFPR 

MTPR 

RMAQIP 

SWPCTX 

SWIPL 

IPR specific results are 
returned in L_R4, L_RS, L_R6 

L R4 and L RS contain 
IPR specifTc source operands 

1 va <- L QR4 AND {NOT 7} 
L-QR4 <- Taddr){interlocked} 
(va){interlocked} <-

{L_QR4 AND L_QR6} + L_QRB 

L QR4 contains the physical 
a3dress of the HWPCB. 

tmp <- R4<2:0> 
L R4 <- ZEXT(PS<IPL>) 
PS<IPL> <- tmp 

TBFLUSH {Invalidate all TB entries} 

IPR specific results are 
returned in R4, RS, R6 

R4 and RS contain 
IPR specific source operands 

va <- R4 AND {NOT 7} 
RS<- (addr){interlocked} 
(va){interlocked} <-

{RS AND R6} + R7 

R4 contains the physical 
address of the HWPCB. 

tmp <- R4<2:0> 
R4 <- ZEXT(PS<IPL>) 
PS<IPL> <- tmp 
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A virtual address is a 64-bit unsigned integer specifying a byte 
location within the virtual address space. The page size ranges from 
8 Kbytes to 64 Kbytes. 

B.6.2 Virtual Address Format 

The processor generates a 64-bit virtual address for each instruction 
and operand in memory. The virtual address consists of three Segment 
Number fields, and a Byte Within Page field, as shown in Figure B-1 

6 
3 0 

+------+-------------+-------------+-------------+------------------+ I Rsvd I Segl_Number· I Seg2_Number I Seg3_Number I Byte Within Page I 
+------+-~-----------+-------------+-------------+------------------+ 

Figure B-1: Virtual Address Format 

The byte within page field can be either 13, 14, 15, or 16 bits 
depending on a · particular implementation. Thus, the allowable page 
sizes are 8 KBytes, 16 Kbytes, 32 KBytes, and 64 KBytes. All three 
segment number fields are the same size for a given implementation. 
The segment number field is a function of the page size: all page 
table entries at any given level fit in exactly one page. The PFN 
field in the PTE is always 32 bits wide. Thus, as the page size grows 
the virtual and physical address size also grows (as shown in Table 
B-2). 

Page 
Size 
(Bytes) 

8 K 
16 K 
32 K 
64 K 

Table B-2: Virtual Address Options 

Byte 
Offset 
(bits) 

13 
14 
15 
16 

Segment 
Size 
(bits) 

10 
11 
12 
13 

Virtual 
Address 
(bits) 

43 
47 
51 
55 

Physical 
Address 

(bits) 

45 
46 
47 
48 
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Physical addresses are at most 48 bits. A processor may choose to 
implement a smaller physical address space by not implementing some 
number of high order bits. The most significant implemented physical 
address bit selects memory space when it is 0, and 1/0 space when it 
is l. 

B.6.4 Address Translation 

Address translation is performed by accessing entries in a three-level 
page table --structure. The Page Table Base Register (PTBR) contains 
the physical page frame number of the highest level (Segment l) page 
table. Bits <Segl_Nurnber> of the virtual address are used to index 
into the first level page table to obtain the physical page frame 
number of the base of the second level (Segment 2) page table. Bits 
<Seg2 Number> of the virtual address are used to index into the second 
level- page table to obtain the physical page frame number of the base 
of the third level (Segment 3) page table. Bits <Seg3 Number> of the 
virtual address are used to index the third level page-table to obtain 
the physical Page Frame Number (PFN) of the page being referenced. 
The PFN is concatenated with virtual address bits <Byte Within Page> 
to obtain the physical address of the location being accessed. -

The processor uses a 64-bit Page Table Entry that is identical to the 
one used in the 32-bit architecture. The algorithm to generate a 
physical address from a virtual address is similar to the one used in 
the 32-bit architecture with the addition of one more level of 
mapping. 
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5 4 3 2 l 0 
+-+----------------------------------------------+-----+-+-+-+---+ 
IVI 
IAI 
IXI 

MBZ 
I IVIVIVI I 
I IPL IEIEIMI CMI 
I INIFIMI I 

+-+----------------------------------------------+-----+-+-+-+---+ 

Figure B-2: Processor Status 

Bits <30:0> of the PS are identical to the PS in the 32-bit 
architecture. Bit <31> is the Virtual Address extension (VAX) bit. 
When set, the processor is in 64-bit mode. When clear the processor 
is in 32 bit mode. 

3 
1 2 1 0 

+---------------~~------------------------------------------+---+ I I I I 
I Instruction Virtual Address <31:0> I G I 
I I N I 
+-------~--------------------------------------------------~+---+ I . 
I Instruction Virtual Address <63:32> 
I 
+----------------------------------------~----------------------+ 

Figure B-3: Program Counter 

B.B EXCEPTION STACK FRAMES 

In 32-bit mode, the exception stack frames are identical to those in 
the 32-bit architecture. The exception stack frames for 64-bit mode 
are shown in the subsequent sections. A processor always enters 
64-bit mode when an exception occurs. 
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1 0 
+---------------------------------------------------------------+ 
I 
I Except ion Summary : SP 
I 
+---------------------------------------------------------------+ I Vector Register 
I Write Mask for 
I Registers VO - Vl5 
+---------------------------------------------------------------+ I Scalar Register 
I Write Mask for 
I Registers RO - R3l 
+---------------------------------------------------------------+ I Scalar Register I 
I Write Mask for I 
I Registers R32 - R64 I 
+---------------------------------------------------------------+ I 
I Processor Status (PS) 
I 
+---------------------------------------------------------------+ I 
I Zero 
I 
+---------------------------------------------------------------+ Virtual 

Address <31:0> of Next 
Instruction 

+---------------------------------------------------------------+ I Virtual I 
I Address <63:32> of Next I 
I Instruction I 
+---------------------------------------------------------------+ 

Figure B-4: Arithmetic Trap Exception Frame 
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1 0 
+---------------------------------------------------------------+ 
I Virtual I 
I Address <31:0> of I :SP 
I Reference I 
+---------------------------------------------------------------+ 
I Virtual I 
I Address <63:32> of I 
I Reference I 
+---------------------------------------------------------------+ 
I 
I Faulting Instruction 
I 
+---------------------------------------------------------------+ 

Zero 

+---------------~-----------------------------------------------+ 
I 
I Processor Status (PS) 
I I 
+---------------------------------------------------------------+ 
I I 
I Zero I 
I I 
+---------------------------------------------------------------+ 

Virtual 
Address <31:0> of Faulting 

Instruction 
+---------------------------------------------------------------+ 
I Virtual I 
I Address <63:32> of Faulting I 
I Instruction I 
+------------------~---------------------------------------,----+ 

Figure B-5: Scalar Alignment Fault Exception Frame 
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B.8.3 Vector Alignment Abort 

3 
1 0 

+---------------------------------------------------------------+ 
Virtual 

Address <31:0> of :SP 
Reference 

+---------------------------------------------------------------+ 
I Virtual I 
I Address <63:32> of I 
I Reference I 
+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I 
I I 
+---------------------------------------------------------------+ 
I I 
I Zero I 
I I 
+---------------------------------------------------------------+ I Virtual I 
I Address <31:0> of Next I 
I Instruct ion I 
+---------------------------------------------------------------+ 

Virtual I 
Address <63:32> of Next I 

Instruction I 
~ +---------------------------------------------------------------+ 

Figure B-6: Vector Alignment Abort Exception Frame 
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B.8.4 BPT, BUGCHK, Vector Enable, And Privileged Instruction Faults 

3 
l 0 

+---------------------------------------------------------------+ 
Processor Status (PS) 

+---------------------------------------------------------------+ 
I 

Zero I 
I 

+---------------------------------------------------------------+ Virtual I 
Address <31:0> of Faulting I 

Instruction I 
+---------------------------------------------------------------+ Virtual 

Address <63:32> of Faulting 
Instruction 

·----------------~----------------------------------------------+ 

Figure B-,7: · BPT, BUGCHK, and Privileged Instruction Fault 
Exception Frame 

:SP 
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B.8.5 FOB, Illegal Operand, And Reserved Opcode Faults 

3 
l 0 

+---------------------------------------------------------------+ 
I 
I Faulting Instruction :SP 
I 
+---------------------------------------------------------------+ 
I 
I Zero 
I 
+---------------------------------------------------------------+ 
I I 
I Processor Status (PS) I 
I I 
+---------------------------------------------------------------+ 
I 
I Zero 
I 
+---------------------------------------------------------------+ I Virtual 
I Address <31:0> of Faulting 
I Instruction 
+---------------------------------------------------------------+ I ,., · Virtual 
I Address <63:32> of Faulting 
I Instruction 
+---------------------------------------------------------------+ 
Figure B-8: FOB, Illegal Operand, and Reserved Opcode Fault 

Exception Frame 
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l 1 0 
+-------------------------------------------------------------+-+ 
I Bits <31:0> of Related I 
I Virtual Address in I :SP 
I Page I 
+---------------------------------------------------------------+ I Bits <63:32> of Related I 
I Virtual Address in I 
I Page I 
+-------------------------------------------------------------+-+ 
I IRI 
I Zero I /I 
I IWI 
+-------------------------------------------------------------+-+ 
I 
I Zero 
I 
+----------------.-----------------------------------------------+ 
I 
I Processor Status (PS) 
I 
+---------------------------------------------------------------+ 

Zero 
I 
I 
I 

+---------------------------------------------------------------+ I Virtual I 
I Address <31:0> of Faulting I 
I Instruction I 
+---------------------------------------------------------------+ Virtual I 

Address <63:32> of Faulting I 
Instruction I 

+---------------------------------------------------------------+ 

Figure B-9: Memory Management Fault Exception Frame 
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l 0 
+---------------------------------------------------------------+ I Number I 
I of I :SP 
I Bytes Pushed I 
+---------------------------------------------------------------+ 
I I 
I Zero I 
I I 
+---------------------------------------------------------------+ 

• 
• . 

An even number of 
implementation 

specific 
longwords 

• 
+---------------------------------------------------------------+ I 

·~ I Processor Status (PS) 
I 
+---------------------------------------------------------------+ 
I I 
I Zero I 
I I 
+---------------------------------------------------------------+ I Virtual I 
I Address <31:0> of Next I 
I Instruction I 
+---------------------------------------------------------------+ I Virtual I 
I Address <63:32> of Next I 
I Instruction I 
+------------------~--------------------------------------------+ 

Figure B-10: Machine Check Abort Exception Frame 
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B.8.8 Stack Alignment Abort 

3 
1 0 

+---------------------------------------------------------------+ 
Processor Status (PS) :SP 

+---------------------------------------------------------------+ I I 
I Zero I 
I I 
+---------------------------------------------------------------+ Virtual I 

Address <31:0> of Next I 
Instruction I 

+---------------------------------------------------------------+ Virtual I 
Address <63:32> of Next I 

Instruction I 
+---------------------------------------------------------------+ 

Figure B-11: Stack Alignment Abort Exception Frame 
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B.8.9 Vector Exceptions 

3 3 2 2 2 2 2 1 l 1 l 1 
1 0 8 7 6 1 0 9 8 7 2 1 6 5 0 

+-+-----+-+-----------+-+-+-+-----------+-----------+-----------+ 
IV I E I LI IS IO ID I I I SRC I 
IFI T IVI Zero ITIPITI ELT I CNT I or I 
I S I Y I F I IR IR I YI I I DST I 
+-+-----+-+-----------+-+-+-+-----------+-----------+-----------+ 
I I 
I Zero I 
I I 
+---------------------------------------------------------------+ I Bits <31:0> of Related I 
I Virtual Address in I 
I Page I 
+---------------------------------------------------------------+ I Bits <63:32> of Related I 
I Virtual Address in I 
I Page I 
+---------------------------------------------------------------+ I Vector I 
I Base I 
I Address <31:0> I 
+---------------------------------------------------------------+ I · Vector I 
I Base I 
I Address <63:32> I 
+---------------------------------------------------------------+ I Stride <31:0> 
I or 
I Index Vector Register Number 
+---------------------------------------------------------------+ I Stride <63:32> I 
I or I 
I Zero I 
+---------------------------------------------------------------+ 

Figure B-12: Vector Exception Information Frame 
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l 2 1 0 
+-----------------------------------------------------------+---+ 
I Virtual I s I 
I Address <31: O> of I B I 
I Service Routine I z I 
+-----------------------------------------------------------+---+ Virtual 

Address <63:32> of 
Service Routine 

+---------------------------------------------------------------+ 

Figure B-13: System Control Block Vector 
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Table B-3: Internal Processor Register (IPR) Summary 

----------------------------------------------------------------------Register Name Mnemonic Access 

Address Space Number 
AST Enable 
AST Request Register 
AST Summary Register 
Console Receive Ctrl. Status 
Console Receive Data Buff er 
Console Transmit Ctrl. Status 
Console Transmit Data Buffer 
Stack Pointer Registers 

Executive Stack Pointer 
Supervisor Stack Pointer 
User Stack Pointer 

Interval Clock Int. Enable 
Interprocessor Int. Enable 
Interprocessor Int. Request 
Privileged Context Block Base 
Processor Base Register 
Processor Serial Number 
Page Table:Base Register 
System Control Block Base 
System Identification 
Software Int. Request Register 
Software Int. Summary Register 
Trans. Buffer Check 
Trans. Buffer Invalidate ASN 
Trans. Buffer Invalidate Single 
Time Of Year 
Who-Am-I 

ASN 
AS TEN 
AST RR 
AST SR 
CRCS 
CRDB 
CTCS 
CTDB 

ESP 
SSP 
USP 
ICIE 
IPIE 
IPIR 
PCBB 
PRBR 
PRSN 
PTBR 
SCBB 
SID 
SIRR 
SISR 
TBCHK 
TBIASN 
TBIS 
TOY 
WHAM I 

R 
R 
w 
R 
R/W 
R 
R/W 
w 

R/W 
R/W 
R/W 
R/W 
R/W 
w 
R 
R/W 
R 
R 
R/W 
R 
w 
R 
R 
w 
w 
R/W 
R 

R4 

number 
mask 
mode 
mask 
enable 
char 
enable 
char 

address 
address 
address 
enable 
enable 
number 
address 
value 
serial 
frame 
address 
ident 
level 
mask 
number 
number 
number 
time 
number 

RS R6 

address status 

address 

----------------------------------------------------------------------
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INDEX 

Abort 
See Exceptions 

Access Control Violation 
exception, 5-9, 5-14, 6-24 

Access modes 
AST enable bit, 4-87, 7-4 
AST pending bit, 7-4 
defined, 5-1, 5-6 
protection codes, 5-6, 5-7 to 

5-9 
Access type 

defined, 5-6 
operand notation, 4-4 

ACV 
See Access Control Violation 
- exception 

ADD (Add Integer with no Overflow 
Detect), 4-18 

ADDF (Add F Floating VAX 
Rounding), 4-47 

ADDFU (Add F floating VAX 
RoundingT, 4-47 

ADDFUZ fAdd F floating Round 
toward zero), 4-47 

ADDFZ (Add F Floating Round 
toward Zero), 4-47 

ADDG (Add G Floating VAX 
Rounding), 4-4 7 

ADDGU (Add G floating VAX 
RoundingT, 4-47 

ADDGUZ (Add G floating Round 
toward Zero), 4-47 

ADDGZ (Add G Floating Round 
toward Zero), 4-47 

Address Space Match (ASM) bit 
See PTE, Address Space Match 
- bit 

Address Space Number (ASN), 5-12, 
5-12 to 5-13, 8-23, 8-26 

Address Space Number (ASN) 
register, 5-13, 8-3, 11-9 

Address translation 
See Virtual address, 
- translation 

Addressing, 2-1 
ADDV (Add Integer with Longword 

Overflow Detect), 4-18 
Aligrunent 

F floating, 2-5 
G:floating, 2-6 
longword, 2-3 

quadword, 2-4 
word, 2-2 

AND (Logical Product), 4-32 
Arithmetic left shift instruction, 

4-31 
Arithmetic trap 

See Exceptions, Arithmetic trap 
AS~ 

See Address Space Number 
AST 

See Asynchronous System Trap 
AST Enable (ASTEN) register, 6-41, 

7-4, 8-4, 11-9 
AST enable bit, 4-87, 7-4 
AST Request Register (ASTRR), 

6-40, 8-5 
AST Summary Register (ASTSR), 7-4, 

8-6, ll-9 
ASTEN 

See AST Enable (ASTEN) register 
ASTRR 

See AST Request Register 
- (ASTRR) 

AST SR 
See AST Summary Register 
- (ASTSR) 

Asynchronous System Trap 
and REI instruction, 4-86 
and SWASTEN instruction, 4-87 
and SWIPL instruction, 4-96 
AST Request Register (ASTRR), 

6-40 
description, 6-7, 7-4 
enable bit, 4-87, 7-4 
software model for AST 

processing, 7-4 to 7-6 
when initiated, 7-4 

BEL, ll-15, 11-16 
BEQ (Branch if Register Equal to 

Zero), 4-71 
BGE (Branch if Register Greater 

Than or Equal to Zero), 4-71 
BGT (Branch if Register Greater 

Than Zero), 4-71 
BIC (Bit Clear), 4-32 
Bit field extract, 4-31 
Bit numbering, 2-1, 2-2, 2-3, 2-4, 

2-5, 2-6 
BLBC (Branch if Register Low Bit 

is Clear), 4-71 
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BLBS (Branch if Register Low Bit 
is Set), 4-71 

BLE (Branch if Register Less Than 
or equal to Zero), 4-71 

BLT (Branch if Register Less Than 
Zero), 4-71 

BNE (Branch if Register Not Equal 
to Zero), 4-71 

Boolean function instructions, 
4-32 

BOOT console command, 11-17 
Bootstrap in Progress (BIP) bit, 

11-6, 11-8 
Bootstrap master 

!!! Bootstrapping, master 
processor 

Bootstrap slave 
!!! Bootstrapping, slave 

processors 
Bootstrapping 

See also Restart Parameter 
- Block 
adding a processor, 11-13 
BOOT command, 11-17 
console 
a~d powe~fail, 11-10 
and RPB; 11-2 
command syntax, 11-16 
commands, 11-16 to 11-27 
control characters, 11-15 
definition, 11-1 
finding memory, 11-2 
functionality, 11-14 
language, 11-15 
loading system software, 11-8 
page tables, 11-7 

flags, ll-8 
initial page tables, 11-7 to 

11-8 . 
initializing IPRs, 11-8 to 11-9 
master processor, 11-11, 11-12, 

11-13 
memory testing, 11-2 
multiprocessor environment, 

11-11 to 11-13 
Processor Status, 6-5 
program controlled console 1/0, 

11-14 
restart action, 11-10 
ROM, 11-7 
slave processors, 11-12, 11-13 
State Longword, 11-6 
summary of steps, 11-1 
transfer control, 11-9 to 11-10 
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uniprocessor environment, 11-l 
to 11-10 

BPT (Breakpoint), 4-75, 6-17 
Branch condition codes, 1-4, 1-6 
Branch instruction format, 3-6, 

4-73 
Branch instructions 

See also Control instructions 
description of, 4-71 
summary of, 4-70 
test, 1-4, 4-71 

BREAK, 11-14, 11-15 
Breakpoint exception 

description, 6-17 
exception frame, 6-17 
exception frame in 64-bit 

architecture, B-24 
Breakpoint instruction, 4-75, 

6-17 
Breakpoint SCB vector, 4-75 
Bug Check exception 

description, 6-18 
exception frame, 6-18 
exception frame in 64-bit 

architecture, B-24 
Bug Check instruction, 4-76, 6-18 
BUGCHK (Bug Check), 4-76, 6-18 
BUGCHK SCB vector, 4-76 
Byte, 2-1 
Byte Within Page field, 5-2 

Cache 
and IFLUSH instruction, 4-78, 

9-4 
data, 9-3 
description, 9-4 
implementation methods, 9-5 to 

9-8 
implementation requirements, 

9-4 to 9-8 
instruction, 9-3 
invalidation, 9-3 to 9-4 
pref etch, 9-8 
TBFLUSH instruction, 4-97, 9-4 

Character done (DON), 8-9, 8-10 
Character ready (RDY), 8-7, 8-8 
Character string, 2-7 
Chopping, 4-43 
Clusters, 1-7 
CMPEQ (Compare Signed Longword 

Equal), 4-19 
CMPFEQ (Compare F floating Equal), 

4-48 -
CMPFGE (Compare F floating 

Greater Than or Equal), 4-48 
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CMPFGT (Compare F_floating 
Greater Than), 4-48 

CMPFLE (Compare F floating Less 
Than or EqualT, 4-48 

CMPFLT (Compare F floating Less 
Than), 4-48 -

CMPFNE (Compare F_floating Not 
Equal), 4-48 

CMPGE (Compare Signed Longword 
Greater Than or Equal), 4-19 

CMPGEQ (Compare G floating Equal), 
4-48 -

CMPGGE (Compare G_floating 
Greater Than or Equal), 4-48 

CMPGGT (Compare G floating 
Greater Than)~ 4-48 

CMPGLE (Compare G floating Less 
Than or EqualT, 4-48 

CMPGLT (Compare G floating Less 
Than), 4-48 - .. 

CMPGNE (Compare G floating Not 
Equal), 4-48 - · 

CMPGT (Compare Signed Longword 
Greater Than), 4-19 

CMPLE (Compare Signed Longword 
Less Than or Equal), 4-19 

CMPLT (Compare Signed Longword 
Less Than), 4-19 

CMPNE (Compare Signed Longword 
Not Equal), 4-19 

CMPUGE (Compare Unsigned Longword 
Greater Than or Equal), 4-20 

CMPUGT (Compare Unsigned Longword 
Greater Than), 4-20 

CMPULE (Compare Unsigned Longword 
Less Than or Equal), 4-20 

CMPULT (Compare Unsigned Longword 
Less Than), 4-20 

Compilers, 1-5, 1-6, 1-7 
Conditional Branch instructions, 

4-71 
Console 

See Bootstrapping, console 
Console commands 

BOOT, 11-17 
command syntax, 11-16 
CONTINUE, 11-18 
control characters, 11-15 
CTRL/Q, 11-15 
CTRL/S, 11-15 
CTRL/U, 11-15 
DEPOSIT, 11-19 
EXAMINE, 11-20 to 11-23 
INITIALIZE, 11-24 
keywords, ll-16 to 11-27 

START, 11-25 
TEST, 11-26 

Page Index-3 
22 December 1985 

Console interrupts, 6-8 to 6-9 
Console mode, 4-89, 11-14, 11-15 
Console Receive Control Status 

(CRCS) register, 6-8, 8-7, 
11-9 

Console Receive Data Buffer 
(CRDB) register, 8-8 

Console terminal, 11-14, 11-15 
Console Transmit Control Status 

(CTCS) register, 6-9, 8-9, 
11-9 

Console Transmit Data Buffer 
(CTDB) register, 8-10 

Context switch, 1-7, 4-94 to 4-95, 
5-12, 6-4, 7-2, 7-6 to 7-9 

See also SWPCTX 
CONTINUE console command, 11-18 
Control characters, 11-15 
Control instructions 

descriptions of, 4-70 to 4-73 
summary of, 4-70 

Control Transferred to System 
Software (CTS) bit, 11-6 

Conventions 
figure drawing, 1-10 
used in PRISM SRM, 1-9 to 1-10 

Convert F Floating to G Floating 
instruction, 4-49 -

Convert Floating to Integer 
instructions, 4-51 

Convert G Floating to F Floating 
instructions, 4-50 -

Convert instruction format, 3-B 
Convert Integer to Floating 

instructions, 4-52 
COPRD (Coprocessor Read), 4-99 
Coprocessor instruction format, 

3-9 
Coprocessor instructions 

descriptions of, 4-98 to 4-100 
summary of, 4-98 

Coprocessor Read/Write 
instructions, 4-99 to 4-100 

COPWR (Coprocessor Write), 4-99 
CRCS 

See Console Receive Control 
--- Status (CRCS) register 

CRDB 
See Console Receive Data Buffer 
--- (CRDB) register 

CTCS 
See Console Transmit Control 
--- Status (CTCS) register 
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CTDB 
See Console Transmit Data 
- Buff er (CTDB) register 

CTRL/Q console co!Mland, ll-15 
CTRL/S console colMland, 11-15 
CTRL/U console co!Mland, ll-15 
Current Mode stack 

Fault On Bit exception frame, 
6-19 

Illegal Operand exception frame, 
6-20 

Privileged Instruction 
· exception frame, 6-21 
Reserved Opcode exception frame, 

6-22 
Scalar Alignment exception 

frame, 6-16 
CVTFG (Convert F floating to 

G floating),-4-49 
CVTFL-(Convert F floating to 

Longword VA>CRounding), 4-51 
CVTFLZ (Convert F floating to 

Longword Rouno toward Zero), 
4-51 

CVTGF (Convert G floating to 
F_floating Vix Rounding), 
4-50 

CVTGFU (Convert G ·floating to 
F floating VAX Rounding), 
'=so · 

CVTGFUZ (Convert G floating to 
F_floating Round toward Zero), 
4-50 

CVTGFZ (Convert G floating to 
F floating Round toward Zero), 
'=so 

CVTGL (Convert G floating to 
Longword VAX-Rounding), 4-51 

CVTGLZ (Convert G floating to 
Longword Rouno toward Zero), 
4-51 

CVTLF (Convert Longword to 
F_floating VAX Rounding), 
4-52 

CVTLFZ (Convert Longword to 
F_floating Round toward Zero), 
4-52 

CVTLG (Convert Longword to 
G_floating ), 4-52 

D floating data type, 2-7 
Dita Alignment exceptions 

See Exceptions, Data Alignment 
Da~sharing, 9-1 to 9-2, 9•7 
Data type 

byte, 2-1 
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D floating, 2-7 
F-floating, 2-5 
G-floating, 2-6 
H-floating, 2-7 
in 64-bit architecture, B-2 to 

B-3 
in operand specifier notation, 

4-4 
longword, 2-3 
no hardware support for, 2-7 
quadword, 2-4 
word, 2-2 

DEPOSIT console command, ll-19 
Displacement field, 3-6, 4-3 
DIV (Divide Longword with no 

Overflow Detect), 4-21 
DIVF (Divide F floating VAX 

Rounding) ,-4-53 
DIVFU (Divide F floating VAX 

Roundin9>, i-53 
DIVFUZ (Divide F floating Round 

toward Zero)~ 4-53 
DIVFZ (Divide F floating Round 

toward ZeroT, 4-53 
DIVG (Divide G floating VAX 

Rounding),-4-53 _ 
DIVGU (Divide G floating VAX 

Rounding), i-53 
DIVGUZ (Divide G floating Round 

toward Zero)~ 4-53 
DIVGZ (Divide G floating Round 

toward ZeroT, 4-53 
DIVV (Divide Longword with 

Overflow Detect), 4-21 
DON 

See Character done 
Don't cache Virtual bit 

See PTE, Don't Cache Virtual 
- bit 

DRAIN (Drain Instruction 
Pipeline), 4-77, 6-12 

Drain Instruction Pipeline 
instruction, 4-77, 6-12 

Epicode instruction format, 3-8 
to 3-9 

Epicode instructions 
and power-down, 6-10 
and powerfail, 11-10, 11-13 
and RPB, 11-7 
and State Longword, 11-6 
and user exceptions, 3-9 
console functionality, 11-14 
effect on system code, 10-3 
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environment, 10-2 to 10-3 
functions of, 10-l, 10-2 
interrupt arbitration, 6-40 to 

6-41 
loading of, 11-7, ll-12 
optional functions, 10-3 
reserved opcodes, 10-3 
restart routine, ll-11 
special functions required, 

10-3 
Epicode Loaded (EL) bit, 11-6 
EQV (Logical Equivalence), 4-32 
ESP 

See Stack pointer registers 
EXAMINE console command, ll-20 
Exception handling, l-5, 4-77 
Exception stack frame 

Arithmetic trap, 6-13, B-21 
Breakpoint, 6-17, B-24 
Bug Check, 6-18, B~24 
Fault On Bit, 6-19, B-25 
Illegal Operand, 6-20, B-25 
Machine Check, 6-26, B-27 
Memory management, 6-23, B-26 
Privileged\Instruction, 6-21, 

B-24 
Reserved Opcode, 6-22, B-25 
Scalar Alignment, 6-16, B-22 
Stack Alignment, 6-27, B-28 
Vector, 6-29 · 
Vector Alignment, 6-17, B-23 
Vector Enable, 6-23 
Vector exception, B-29 
Vector information frame, 6-28 

to 6-29 
Exceptions 

See also specific exceptions 
abort,6-2 
Access Control Violation, 5-9, 

5-14 I 6-24 
Arithmetic trap 

and floating-point 
instructions, 2-5, 2-6 

definition of, 6-2 to 6-3 
description, 6-12 to 6-15 
exception frame, 6-13 
exception frame in 64-bit 

architecture, B-21 
Exception Summary parameter, 

6-13 to 6-14 
Scalar Register Write Mask 

parameter, 6-15 
Vector Register Write Mask 

parameter, 6-14 
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as result of an instruction, 
6-17 to 6-19 

Breakpoint, 6-17, B-24 
Bug Check, 6-18, B-24 
changes to VAX exception 

handlers, 1-8 
contrast with interrupts, 6-3 

to 6-4 
data alignment, 6-15 to 6-17 
definition of, 6-l 
descriptions of, 6-2 to 6-4, 

6-ll to 6-31 
fault, 6-2 
Fault On Bit, 4-72, 6-18 to 

6-19, B-25 
Fault On Execute, 5-14, 6-25 
Fault On Read, 5-14, 6-25 
Fault On Write, 5-14, 6-25 
floating-point, 4-46 
Illegal Operand 

description, 6-19 to 6-23 
exception frame, 6-20 
exception frame in 64-bit 

architecture, B-25 
integer 

See Arithmetic trap 
Kernel Stack Not Valid, 6-25, 

8-11 
list of, 6-ll 
Machine Check, 6-25 to 6-26, 

B-27 
Memory management 

and pref etch, 9-8 
description, 6-23 to 6-25 
exception frame, 6-23 
exception frame in 64-bit 

architecture, B-26 
summary of, 5-13 to 5-14 

precedence, 5-14, 6-24, 6-31 
Privileged Instruction, 4-88, 

6-20 to 6-21, B-24 
Reserved Opcode, 6-21 to 6-22, 

B-25 
Scalar Alignment, 6-15 to 6-16, 

B-22 
serialization of, 6-31 
serious system failures, 6-25 

to 6-26 
Stack Alignment 

description, 6-27 
exception frame, 6-27 
exception frame in 64-bit 

architecture, B-28 
occurrence of, 8-11 



INDEX 
Company Confidential 

System Control Block vectors, 
5-14, 6-12, 6-32 to 6-34, 
B-30 

Translation Not Valid, 4-81, 
5-14, 6-24 

trap, 6-3 
types of, 6-2 to 6-3 
Vector 

description, 6-27 to 6-31 
exception continuation, 6-30 

to 6-31 
information frame, 6-28 to 

6-29 
information frame in 64-bit 

architecture, B-29 
Vector Alignment, 6-16 to 6-17, 

B-23 
Vector Enable, 4-3, 6-22 to 

6-23 
Executive mode 

See Access modes, defined 
Extended Processor Instruction 

code 
!!.! Epicode instructions 

F floating data type, 2-5 
Fiult On Bit exception 

description, 6-18 to 6-19 
exception frame, 6-19 
exception frame in 64-bit 

architecture, B-25 
FOB (Fault On Low Bit Set) 

instruction, 4-72 
FOB (Fault on Low Bit Set) 

instruction, 6-18 
Fault On Execute (FOE) exception, 

5-14, 6-25 
Fault on Execute bit 

See PTE, Fault On Execute bit 
Fault On Low Bit Set instruction, 

4-72 
Fault on Low Bit Set instruction, 

6-18 
Fault On Read (FOR) exception, 

5-14, 6-25 
Fault on Read bit 

See PTE, Fault On Read bit 
Fault On Write (FOW) exception, 

5-14, 6-25 
Fault on Write bit 

See PTE, Fault On Write bit 
Faults 

See Exceptions 
Figure drawing conventions, 1-10 
Floating Add instructions, 4-47 
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Floating Compare instructions, 
4-48 

Floating Divide instructions, 
4-53 

Floating Multiply instructions, 
4-54 

Floating Subtract instructions, 
4-55 

Floating-point accuracy, 4-43 to 
4-45 

Floating-point exceptions 
description of, 4-46 

Floating-point instructions 
arithmetic exception, 2-5, 2-6 
chopping, 4-43 
D and H, 1-8 
descriptions of, 4-39 to 4-69 
G and F, 1-4 
guard bits, 4-43, 4-44 to 4-45 
overflow bit, 4-43, 4-44 to 

4-45 
relation among chopped, 

rounded, and true, 4-44 
rounding bit, 4-43 to 4-45 
rounding modes, 4-39 
summary of, 4-39 to 4-42 

Flush Instruction Cache 
instruction, 4-78, 9-3, 9-4 

Flush Translation Buffer 
instruction, 4-97, 5-12, 9-3 

FOB (Fault On Low Bit Set), 4-72 
FOB (Fault on Low Bit Set), 6-18 
Function field 

in Epicode instructions, 3-8 to 
3-9 

in Operate instructions, 3-7 
Function units, 1-4, 1-5 

G floating data type, 2-6 
Gather Memory Data into Vector 

Register instructions, 3-1, 
4-12 

Generate Compressed Iota Vector 
instruction, 4-79 

Guard bits, 4-43, 4-44 to 4-45 

H_floating data type, 2-7 
HALT (Halt Processor), 3-8, 4-89, 

9-4, 9-6, 11-14 
HALT action switch, 4-89, 11-14 
Halt instruction, 3-8, 4-89, 9-4, 

9-6, 11-14 
Hardware implementation notes, 

5-12, 9-4, 10-l 
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Hardware Privileged Context Block, 
4-94, 7-2 to 7-4, 7-6 

HWPCB 
See Hardware Privileged Context 
- Block 

I/0 Port Controller 
interrupts, 6-9 
registers, 11-7 

I/0 space, 4-9, 4-92, 5-3, 7-3, 
9-4, 9-5,·9-8 

ICIE 
See Interval Clock Interrupt 
- Enable (ICIE) register 

IFLUSH (Flush Instruction Cache), 
4-78, 9-3, 9-4 

IGN 
See Ignore 

Ignore, 1-10 
Illegal Operand exceptions 

See Exceptions, Illegal Operand 
INDbit 

See PTE, Indirect Page Table 
- Pointer bit 

Indirect Page Table Pointer 
See PTE, Indirect Page Table 
- Pointer bit 

INITIALIZE console conunand, 11-24 
Instruction cache 

See Cache 
Instruction formats 

Branch, 3-6, 4-73 
Convert, 3-8 
Coprocessor, 3-9 
Epicode, 3-8 to 3-9 
in 64-bit architecture, B-3 
Memory, 3-5 to 3-6, 4-73 
Operate, 3-7 to 3-8, 4-3 
summary of, 3-5 

Instruction issue, 1-4 to 1-5 
Instruction issue model, 6-37 to 

6-39 
Instruction set 

in 64-bit architecture, B-3 
overview and notation, 4-1 to 

4-5 
summary of characteristics, 1-3 

to 1-4 
Instructions 

control, 4-70 to 4-73 
coprocessor, 4-98 to 4-100 
floating-point, 4-39 to 4-69 
integer arithmetic, 4-16 to 

4-30 
logical and shift, 4-31 to 4-38 
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memory load/store, 4-6 to 4-15 
miscellaneous, 4-74 to 4-87 
operand notation, 4-3 to 4-5 
privileged, 4-88 to 4-97 
vector, 4-3 

Integer Add instructions, 4-18 
Integer arithmetic instructions 

descriptions of, 4-16 to 4-30 
summary of, 4-16 to t-17 

Integer Divide instructions, 4-21 
Integer exceptions 

See Exceptions, Arithmetic trap 
Integer Multiply instructions, 

4-23 
Integer Remainder instructions, 

4-22 
Integer Signed Compare 

instructions, 4-19 
Integer Subtract instructions, 

4-24 
Integer Unsigned Compare 

instructions, 4-20 
Interlocked memory access 

See Memory access, interlocked 
Internal Processor Registers 

See also Processor Status 
See also Program Counter 
AQQress Space Number (ASN), 

5-13, 8-3, 11-9 
and SWPCTX instruction, 4-94 
AST Enable (ASTEN), 6-41, 7-4, 

8-4, 11-9 
AST Request Register (ASTRR), 

6-40, 8-5 
AST Summary Register (ASTSR), 

7-4, 8-6, 11-9 
Console Receive Control Status 

(CRCS), 6-8, 8-7, 11-9 
Console Receive Data Buff er 

(CRDB), 8-8 
Console Transmit Control Status 

(CTCS), 6-9, 8-9, 11-9 
Console Transmit Data Buffer 

(CTDB), 8-10 
initialization, 11-8 to 11-9 
Interprocessor Interrupt Enable 

(IPIE), 6-10, 8-13, 11-9 
Interprocessor Interrupt 

Request (IPIR), 6-11, 8-14 
Interval Clock Interrupt Enable 

(ICIE), 6-9, 8-12, 11-9 
Kernel mode, 8-1 
MFPR instruction, 4-90, 8-1 
MTPR instruction, 4-91, 8-1 
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Page Table Base Register (PTBR), 
5-9, 8-18, 11-9 

Privileged Context Block Base 
(PCBB), 4-94, 7-3, 8-15, 
11-9 

Processor Base Register (PRBR), 
8-16, 11-9 

Processor Serial Number (PRSN), 
8-17 

Software Interrupt Request 
Register (SIRR), 6-7, 6-40, 
8-21 

Software Interrupt Sununary 
Register (SISR), 6-7, 8-22, 
ll-9 

Stack pointer registers, 8-11, 
11-9 

sununary of, 8-1 to 8-2, B-31 
System Control Block Base 

(SCBB), 8-19, 11-9 
System Identification (SID), 

8-20 
Time Of Year (TOY), 8-27 to 

8-28 
Translation Buffer Check · 

(TBCHK), 5-12, 8-23 to 8-24 
Translation Buffer Invalidate 

by ASN (TBIASN), 5-13, 8-25 
Translation Buffer Invalidate 

Single (TBIS), 5-12, 8-26 
Who-Am-I (WHAMI), 8-29 

Interprocessor Interrupt Enable 
(IPIE) register, 6-10, 8-13, 
11-9 

Interprocessor Interrupt Request 
(IPIR) register, 6-11, 8-14 

Interprocessor interrupts, 6-10 
to 6-11, 8-13, 11-11, 11-12 

Interrupt Priority Level 
and SWIPL instruction, 4-96, 

6-41 . 
description of, 6-1 
field in Processor Status 

register, 6-5 
in multiprocessor system, 6-2 
list of, 6-6 
when changed, 6-3 

Interrupts 
See also Asynchronous System 
- Trap 
See also Machine Check 
console, 6-8 to 6-9 
contrast with exceptions, 6-3 

to 6-4 
definition of, 6-l 
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descriptions of, 6-2, 6-6 to 
6-11 

Epicode arbitration, 6-40 to 
6-41 

I/O Port Controllers, 6-9 
interprocessor, 6-10 to 6-11, 

8-13, 11-ll, ll-12 
Interval Clock, 6-9, 8-12 
list of, 6-6 
Power Recovery, 6-10, 11-11, 

11-13 
serialization of, 6-31 
software generated, 6-7 to 6-8 
System Control Block vectors, 

6-6, 6-32 to 6-34 
urgent, 6-10 to 6-ll 

Interval Clock Interrupt Enable 
(ICIE) register, 6-9, 8-12, 
11-9 

Interval Clock interrupts, 6-9, 
8-12 

IOTA (Generate Compressed Iota 
Vector), 4-79, 4-82 

IPIE 
See Interprocessor Interrupt 
---- Enable (IPIE) register 

IPIR 
See Interprocessor Interrupt 
---- Request (IPIR) register 

IPL 
See Interrupt Priority Level 

IPRs 
See Internal Processor 
- Registers 

JSR (Jump to Subroutine), 4-73 
Jump to Subroutine instruction, 

4-73 

Kernel mode 
See also Access modes 
and Tiitirnal Processor 

Registers, 8-1 
for Breakpoint instruction, 

4-75 
for Bug Check instruction, 4-76 
Machine Check, 6-26 
privileged instructions, 4-88, 

6-20 
Stack Alignment exception, 6-27 
with interrupts and exceptions, 

6-4 
Kernel stack 

See also Stack 
illgnment, 6-21 
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Arithmetic trap exception frame, 
6-13 

Breakpoint exception frame, 
6-17 

Bug Check exception frame, 6-18 
for Breakpoint instruction, 

4-75 
for Bug Check instruction, 4-76 
Machine Check exception frame, 

6-26 
Memory management exception 

frame, 6-23 
Not Valid exception, 6-25, B-11 
pointer, B-11 
residency, 6-35 
Stack Alignment exception frame, 

6-27 
Vector Alignment exception 

frame, 6-17 
Vector Enable exception frame, 

6-23 
Vector exception information 

frame ,J 6-28 to 6-29 
Kernel Stack Not Valid exception, 

6-25, B-11 

L 
See Literal control bit, 3-7 

LDA°\Load Address), 4-7 
LDB (Load Zero Extended Byte from 

Memory to Register), 4-8 
LDL (Load Longword from Memory to 

Register), 4-8 
LDQ (Load Quadword from Memory to 

Register Pairs), 4-8 
LDW (Load Zero Extended Word from 

Memory to Register), 4-8 
Leading separate numeric string, 

2-7 
Literal 

as floating-point operand, 4-43 
as source operand, 1-4, 3-2, 

3-7, 4-4, 4-43 
field, 3-7 

Literal control bit, 3-7 
Load Address instructions, 4-7 
Load Memory Data into Scalar 

Register instructions, 4-8 
Load Memory Data into Vector 

Register instructions, 4-11 
Logical and shift instructions 

descriptions of, 4-31 to 4-38 
summary of, 4-31 

Logical Functions instructions, 
4-32 

Longword 
format, 2-3 
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signed integer, 2-3 
unsigned integer, 2-3 

Machine Check 
description, 6-25 to 6-26 
exception frame, 6-26 
exception frame in 64-bit 

architecture, B-27 
interrupt level, 6-10, 6-26 
non-existent memory, 4-92, 4-94 

MBZ 
See Must Be Zero 

MeiiiOry access 
See also Cache 
control, 5-1 
criteria, 5-6 
interlocked, 4-9, 4-92, 9-2, 

9-5, 9-7 
protection, 5-6 to 5-9 

Memory costs, 1-3, 1-7 
Memory instruction format, 3-5 to 

3-6, 4-73 
Memory load/store instructions 

cache miss, 1-5 
descriptions of, 4-6 to 4-15 
purpose of, 1-4 
summary of, 4-6 

Memory management 
and Epicode, 10-2 
definition of, 5-1 
enabled, 5-3 
exceptions 

See Exceptions, Memory 
-- management 

in 64-bit architecture, B-18 to 
B-19 

PRISM goals, 5-1 to 5-2 
Memory protection 

See Memory access, protection 
MFPR (Move From Processor 

Register), 4-90, B-1 
Miscellaneous instructions 

descriptions of, 4-74 to 4-87 
summary of, 4-74 

Move From Processor Register 
instruction, 4-90, 8-1 

Move Processor Status instruction, 
4-80, 6-4 

Move To Processor Register 
instruction, 4-91, 5-12, 8-1 

MOVPS (Move Processor Status), 
4-80, 6-4 
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MTPR (Move To Processor Register), 
4-91, 5-12, 8-l 

MULF (Multiply F floating VAX 
Rounding), 4=54 

MULFU (Multiply F floating VAX 
Rounding), 4-54 

MULFUZ (Multiply F_floating Round 
toward Zero), 4-54 

MULFZ (Multiply F_floating Round 
toward Zero), 4-54 

MULG (Multiply G floating VAX 
Rounding), 4=54 

MULGU (Multiply G floating VAX 
Rounding), 4-54 

MULGUZ (Multiply G floating Round 
toward Zero), i-54 

MULGZ (Multiply G_floating Round 
toward Zero), 4-54 

MULH (Multiply Longword and 
Return High 32 Product Bits), 
4-23 

MULL (Multiply Longword and 
Return Low 32 Product Bits), 
4-23 

Multiprocessing 
. See also Interprocessor 
·-interrupts 
adding a processor, 11-13 
and Address Space Numbers, 5-13 
and caches, 9-6, 9-7 
and PTEs, 5-5 
and Translation Buffer entries, 

5-13 
bootstrapping, 11-11 to 11-13 
interlocked memory access, 4-9, 

4-92, 9-2, 9-5, 9-7 
Interrupt Priority Levels, 6-2 
master processor, 11-11, 11-12, 

11-13 
power fail,'' 11-13 
Processor Base Register (PRBR), 

8-16 
Processor Enabled (PE) bit, 

ll-6 
slave processors, 11-12, 11-13 
WHAMI register, 8-29 

MULV (Multiply Longword with 
overflow Detect), 4-23 

Must Be Zero, 1-10 

NOT logical function, 4-32 

Octaword, 2-7 
Opcode field, 3-5 
Operand fields, 3-7 

Page Index-10 
22 December 1985 

See also Register fields 
Operate-Tnstruction format, 3-7 

to 3-8, 4-3 
Operating system 

and hardware context, 7-4 
AST processing, 7-4 to 7-6 
context switching model, 7-7 to 

7-9 
hardware context, 7-6 
software context, 7-l 
transfer control to, ll-9 to 

11-10 
VAX/VMS compatibility, 1-7 

Operator precedence, 3-5 
Operators, 3-3 to 3-4 
OR (Logical Sum), 4-32 
ORNOT (Logical Sum with 

Complement), 4-32 

Packed decimal string, 2-7 
Page 

definition of, 5-2 
protection, 5-1, 5-6, 5-7 to 

5-9 
size, 1-6, 1-7, 5-2, 5-3 

Page Frame Number 
!,!! PTE, Page Frame Number 

Page table, 5-1, 11-7 to 11-8 
Page Table Base Register (PTBR), 

5-9, 8-18, 11-9 
Page Table Entry 

See PTE 
PC-

S e e Program Counter 
PCBB 

See Privileged Context Block 
- Base (PCBB) register 

PFN 
See PTE, Page Frame Number 

Physical address, 5-3 
Physical address space, 5-3, B-19 
Pipelined processor model, 1-4 to 

1-5 
Power Recovery interrupt, 6-10, 

11-11, 11-13 
Powerfail, 9-4, 9-7, 11-2, 11-10 

to 11-11, 11-13 
Powerfail Sequence Completed 

(PSC) bit, 11-6, 11-10 
Powerfail Sequence Started (PSS) 

bit, 11-6, 11-10 
PRBR 

See Processor Base Register 
- (PRBR) 

Prefetch, 9-8 
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PRISM 
advantages, 1-6 
64-bit extension, B-1 to B-2 
code size of programs, 1-7 
comparison with RISC, 1-3 
compatibility with VAX, 1-7 to 

1-9 
design guidelines, 1-3 
disadvantages, 1-6 to 1-7 
meaning of acronym, 1-1 
memory management goals, 5-1 to 

5-2 
operating system, 1-7 
overview, 1-3 to 1-5 
processor model, 1-4 to 1-5 
separation of procedure and 

data, 9-3 
software emulation of 

instructions, 1-8, 4-2 
subset implementations, 4-2 to 

4-3 
Privileged Context Block Base 

(PCBB) register, 4-94, 7-3, 
8-15, 11-9 

Privileged Instruction exception 
description, 6-20 to 6-21 
exception frame, 6-21 
exception frame in 64-bit 

architecture, B-24 
occurrence of, 4-88 

Privileged instructions 
descriptions of, 4-88 to 4-97 
summary of, 4-88 

Probe Memory Access instructions, 
4-81 

PROBER (Probe for Read Access), 
4-81 

PROBEW (Probe for Write Access), 
4-81 

Process 
address space, 7-2 
context switching, 7-2, 7-6 to 

7-9 
context switching model, 7-7 to 

7-9 
definition, 7-1 to 7-2 
hardware context, 7-1, 7-2 
hardware privileged context, 

7-2 to 7-4 
software context, 7-1 

Process tag 
See Address Space Number (ASN) 

Processor Base Register (PRBR), 
8-16, 11-9 
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Processor Enabled (PE) bit, 11-6, 
11-12 

Processor modes 
See Access modes 

Processor Serial Number (PRSN) 
register, 8-17 

Processor state 
definition of, 6-4 
in 64-bit architecture, B-20 
preserving during exception or 

interrupt, 6-4 
transition table, 6-42 

Processor Status 
and MOVPS instruction, 4-80, 

6-4 
as part of processor state, 6-4 
at bootstrap, 6-5 
Current Mode field, 5-6, 6-5, 

6-35 
current versus saved, 6-4 
description, 6-4 to 6-5 
Interrupt Priority Level field, 

6-5 
reserved to DIGITAL field, 6-5 
Vector Enable bit, 4-3, 6-5, 

11-10 
Vector Exception Frame bit, 6-5 
Virtual Machine Mode bit, 6-5 

Program Counter 
and JSR instruction, 4-73, 6-4 
as part of processor state, 6-4 
description, 3-2, 6-5 
in 64-bit architecture, B-3, 

B-20 
with branch instructions, 4-71 

PROT 
See PTE, Protection field 

Protection field 
See PTE, Protection field 

PRSN 

PS 

See Processor Serial Number 
(PRSN) register 

See Processor Status 
PTBR 

See Page Table Base Register 
PTr-

Address Space Match {ASM) bit, 
5-4, 5-12, 8-25 

and multiprocessing, 5-5 
changes to, 5-5 
defined, 5-3 to 5-5 
Don't Cache Virtual (DCV) bit, 

5-4 
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Fault On Execute (FOE) bit, 5-4, 
5-14, 6-25 

Fault On Read (FOR) bit, 4-81, 
5-4, 5-14, 6-25 

Fault On Write (FOW) bit, 4-81, 
5-4, 5-14, 6-25 

first-level, 5-9, 5-14 
indirect, 5-10, 5-14 
Indirect Page Table Pointer 

(IND) bit, 5-4 
Page Frame Number (PFN), 5-3, 

5-5, 5-9, 8-18 
Protection (PROT) field, 5-4 
protection codes, 5-6, 5-7 to 

5-9 
Reserved for DIGITAL field, 5-5 
Reserved for software field, 

5-5 
second-level, 5-9, 5-14 
valid bit, 5-4 

Quadword, 2-4 
Quadword shift instructions, 4-31 
Queues, 2-7 

RAZ 
See Read As Zero 

RDVC-(Read Vector Count Register), 
4-82 

RDVL (Read Vector Length 
Register), 4-83 

RDVMH (Read Vector Mask Register, 
High Part), 4-84 

RDVML (Read Vector Mask Register, 
· Low Part) , 4-84 
RDY 

See Character ready 
Reiir"As Zero, 1-10 
Read, Mask, {Add Quadword, 

Interlocked instruction, 4-9, 
5-5, 5-14 I 9-2 

Read, Mask, Add Quadword, 
Interlocked, Physical 
instruction, 4-92, 5-5, 9-2 

Read/Write Vector Count Register 
instructions, 4-82 

Read/Write Vector Length Register 
instructions, 4-83 

Read/Write Vector Mask Register 
instructions, 4-84 

Register fields, 3-5 
Registers 

See also Internal Processor 
-- Registers 
~ also Processor Status 
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See also Program Counter 
even-=oaa pairs, 3-1, 3-2, 4-5, 

4-39, 5-5 
in 64-bit architecture, B-3 
RO, 1-3, 3-1, 3-7, 6-12 
Rl, 1-3, 3-1, 8-11 
R4, 4-87, 4-91, 4-96, 8-1 
RS, 4-91, 8-1 
R6, 4-81, 8-1 
R7, 4-81 
scalar, 1-3, 1-6, 3-1 
VO, 3-7 
vector, 1-4, 3-1 to 3-2, 4-3, 

11-3 
Vector Count, 1-4, 3-2 
vector count, 4-79, 4-82 
Vector Length, 1-4, 3-2 
vector length, 4-11, 4-12, 4-14, 

4-15, 4-25, 4-26, 4-27, 
4-28, 4-29, 4-30, 4-36, 
4-37, 4-38, 4-56, 4-58, 
4-60, 4-61, 4-62, 4-63, 
4-64, 4-66, 4-68, 4-83 

Vector Mask, 1-4, 3-2 
vector mask, 4-26, 4-58, 4-79, 

4-84 
REI (Return from Exception or 

Interrupt), 4-85, 6-4, 6-41 
REM (Longword Integer Remainder), 

4-22 
Reserved Opcode exception 

description, 6-21 to 6-22 
exception frame, 6-22 
exception frame in 64-bit 

architecture, B-25 
Restart in Progress (RIP) bit, 

11-6 
Restart Parameter Block, 4-94, 

7-6, 11-2 to 11-6, 11-9 
Return From Exception or 

Interrupt instruction, 6-4, 
6-41 

Return from Exception or 
Interrupt instruction, 4-85 
to 4-86 

Revision history, 1-11, 2-8, 3-10, 
4-101, 5-15, 6-43 to 6-44, 
7-10, 8-30 to 8-31, 9-9, 10-5, 
11-28 

RMAQI (Read, Mask, Add Quadword, 
Interlocked), 4-9, 5-5, 5-14, 
9-2 

RMAQIP (Read, Mask, Add Quadword, 
Interlocked, Physical), 4-92, 
5-5, 9-2 
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ROM, 11-7 
ROT (Rotate Bits), 4-35 
Rotate instructions, 4-35 
Rounding bit, 4-43 to 4-45 
Rounding modes, 4-39 
RPB 

See Restart Parameter Block 

SBZ 
See Should Be Zero 

Scalar Alignment exception 
description, 6-15 to 6-16 
exception frame, 6-16 
exception frame in 64-bit 

architecture, B-22 
software emulation of, 6-16 

Scalar operands, 3-2, 3-7 
Scalar registers · 

See Registers, scalar 
Scatter Vector Register Data into 

Memory instructions, 4-15 
SCBB 

See System Control Block Base 
- (SCBB) register 

Security, 3-7 
Segment number field, 5-2 
Self Test Complete (STC) bit, 

11-6 
Serious system failures 

See Exceptions, serious system 
- failures 

Shift Arithmetic instructions, 
4-34 

Shift Logical instructions, 4-33 
Should Be Zero, 1-10 
SID 

See System Identification (SID) 
Sign extension, 4-31 
SIRR 

See Software Interrupt Request 
- Register (SIRR) 

SISR 
See Software Interrupt Summary 
- Register (SISR) 

Slave Request (SR) bit, 11-6, 
ll-12 

SLL (Shift Left Logical), 4-33 
Software emulation 

of instructions, l-8, 4-2 
of Scalar Alignment exception, 

6-16 
Software Interrupt Request 

Register (SIRR), 6-7, 6-40, 
8-21 
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Software Interrupt Summary 
Register (SISR), 6-7, 8-22, 
11-9 

SP 
See Stack Pointer 

S~Shift Right Arithmetic), 
4-34 

SRL (Shift Right Logical), 4-33 
SSP 

See Stack pointer registers 
Stac~ 

See also Current Mode stack 
See also Kernel stack 
i'Iignrnent, 6-21, 6-36 
initiate exception or interrupt, 

6-36 
instruction issue model, 6-37 

to 6-39 
parameters pushed for 

exceptions, 6-12 
programming implications, 9-8 
residency, 6-35 
saving processor state, 6-4 
switching between, 4-86 
writability, 6-35 

Stack Alignment exceptions 
See Exceptions, Stack Alignment 

Stack pointer, 1-3, 3-1, 4-86, 
4-94, 4-95, 6-35, 7-3, 8-11 

Stack pointer registers, 8-11, 
ll-9 

START console command, 11-25 
State Longword, 11-6 

See also Restart Parameter 
- Block 

STB (Store Byte from Register to 
Memory), 4-10 

STL (Store Longword from Register 
to Memory), 4-10 

Store Scalar Register Data into 
Memory instructions, 4-10 

Store Vector Register Data into 
Memory instructions, 4-14 

STQ (Store Quadword from Register 
Pairs to Memory), 4-10 

STQ (Store Quadword from Register 
to Memory), 5-5 

STW (Store Word from Register to 
Memory), 4-10 

SUB (Subtract Longword with no 
Overflow Detect), 4-24 

SUBF (Subtract F floating VAX 
Rounding), 4::-55 

SUBFU (Subtract F floating VAX 
Rounding), 4-55 
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SUBFUZ (Subtract F_floating Round 
toward Zero), 4-55 

SUBFZ (Subtract F floating Round 
toward Zero),-4-55 

SUBG (Subtract G floating VAX 
Rounding), 4=55 

SUBGU (Subtract G floating VAX 
Rounding), 4-;5 

SUBGUZ (Subtract G floating Round 
toward Zero), i-55 

SUBGZ (Subtract G floating Round 
toward Zero),-4-55 

SUBV (Subtract Longword with 
Overflow Detect), 4-24 

Supervisor mode 
See Access modes, defined 

Swap AST Enable instruction, 4-87, 
6-41, 7-4 

Swap IPL instruction, 4-96, 6-41 
Swap Privileged Context 

instruction, 4-94 to 4-95, 
5-12, 5-13, 7-3, 7-6, 8-18, 
9-5 

SWASTEN (Swap AST Enable for 
- Current "Mode), 4-87, 6-41, 

7-4 
SWIPL (Swap Processor IPL), 4-96, 

6-41 
SWPCTX (Swap Privileged Context), 

4-94, 5-12, 5-13, 7-3, 7-6, 
8-18, 9-5 

Synchronization, 9-1 to 9-2, 
11-11 

System Control Block 
and exceptions, 6-12 
and interrupts, 6-6 
description, 6-32 
vectors, 5~14, 6-12, 6-32 to 

6-34, B-30 
System Control Block Base (SCBB) 

register, 8-19, 11-9 
System Identification (SID) 

register, 8-20 

TB 
See Translation Buffer 

TBCHK 
See Translation Buffer Check 
~ (TBCHK) register 

TBFLUSH (Flush Translation 
Buffer), 4-97, 5-12, 9-3 

TBIASN 
See Translation Buffer 
~ Invalidate by ASN (TBIASN) 

register 

TBIS 
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See Translation Buffer 
~ Invalidate Single (TBIS) 

register 
Terminology, 1-9 to 1-10 
TEST console command, 11-26 
Time Of Year (TOY) register, 8-27 

to 8-28 
TNV 

See Translation Not Valid 
~ exception 

TOY 
See Time Of Year (TOY) register 

Triiring numeric string, 2-7 
Translation Buffer 

See also Translation Buffer 
~ Check (TBCHK) register 
See also Translation Buffer 
~ Invalidate Single (TBIS) 

register 
defined, 5-12 
invalidation, 5-12, 9-3 to 9-4 
TBFLUSH instruction, 4-97, 5-12, 

9-3 
Translation Buffer Check (TBCHK) 

register, 5-12, 8-23 to 8-24 
Translation Buffer Invalidate by 

ASN (TBIASN) register, 5-13, 
8-25 

Translation Buffer Invalidate 
Single (TBIS) register, 5-12, 
8-26 

Translation Not Valid exception, 
4-81, 5-14, 6-24 

UMULH (Unsigned Multiply Longword 
and Return High 32), 4-23 

Unconditional branches, 4-71 
Unconditional jump, 4-73 
Undefined, 1-9, 4-92, 4-94, 5-9, 

5-10, 6-32, 7-3, 8-19, i1-2, 
11-15 

UNPREDICTABLE, 5-14 
Unpredictable, 1-9, 1-10, 3-1, 

3-7, 4-9, 4-ll, 4-12, 4-13, 
4-14, 4-15, 4-21, 4-22, 4-25, 
4-27, 4-28, 4-29, 4-30, 4-36, 
4-38, 4-43, 4-46, 4-56, 4-61, 
4-62, 4-63, 4-64, 4-66, 4-68, 
4-94, 4-99, 6-12, 6-15, 7-4, 
8-7, 8-8, 8-9, 8-10, 9-2, 9-3, 
9-8 

User mode 
See Access modes, defined 

USP--
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See Stack pointer registers 

VADD (Vector Add Longword with no 
Overflow Detect}, 4-25 

VADDF (Vector Add F Floating VAX 
Rounding), 4-56-

VADDFU (Vector Add F floating VAX 
Rounding}, 4-56 -

VADDFUZ (Vector Add F floating 
Round toward ZeroT, 4-56 

VADDFZ (Vector Add F_Floating 
Round toward Zero), 4-56 

VADDG (Vector Add G Floating VAX 
Rounding), 4-56-

VADDGU (Vector Add G floating VAX 
Rounding), 4-56 -

VADDGUZ (Vector Add G floating 
Round toward ZeroT, 4-56 

VADDGZ (Vector Add G Floating 
Round toward zero), 4-56 

VADDV (Vector Add Longword with 
Overflow Detect), 4-25 

Valid bit 
See PTE, va'lid bit 

V.ANI>(Vector Logical Product), 
4-36 

Variable length bit field, 2-7 
VAX 

architecture, 1-1, 1-3 
branch instructions, 1-2 
condition codes, 1-2 
data sharing, 9-2 
difficulty in building, 1-1 to 

1-3 
instructions, 1-1 
memory operand fetch, 1-2 
microcode;"l-6, 10-1 
operand specifier usage, 1-3 
pipelining, 1-2 
PRISM compatibility with, 1-7 

to 1-9 
REI compared with PRISM REI, 

4-86 
unaligned operands, 2-2 

VBIC (Vector Logical Product with 
Complement), 4-36 

vc 
See Vector Count register 

VCMPEQ (Vector Compare Signed 
Longword Equal), 4-26 

VCMPFEQ (Vector Compare 
F floating Equal), 4-58 

VCMPFGE (Vector Compare 
F floating Greater Than or 
Equal), 4-58 
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VCMPFGT (Vector Compare 
F floating Greater Than), 
4=50 

VCMPFLE (Vector Compare 
F floating Less Than or 
Equal}, 4-58 

VCMPFLT (Vector Compare 
F floating Less Than}, 4-58 

VCMPFNE (Vector Compare 
F_floating Not Equal}, 4-58 

VCMPGE (Vector Compare Signed 
Longword Greater Than or 
Equal}, 4-26 

VCMPGEQ (Vector Compare 
G_floating Equal), 4-58 

VCMPGGE (Vector Compare 
G_f loating Greater Than or 
Equal), 4-58 

VCMPGGT (Vector Compare 
G floating Greater Than}, 
4=50 

VCMPGLE (Vector Compare 
G_f loating Less Than or 
Equal), 4-58 

VCMPGLT (Vector Compare 
G floating Less Than), 4-58 

VCMPGNE (Vector Compare 
G floating Not Equal), 4-58 

VCMPGT (Vector Compare Signed 
Longword Greater Than}, 4-26 

VCMPLE (Vector Compare Signed 
Longword Less Than or Equal), 
4-26 

VCMPLT (Vector Compare Signed 
Longword Less Than), 4-26 

VCMPNE (Vector Compare Signed 
Longword Not Equal), 4-26 

VCVTFG (Vector Convert F floating 
to G floating), 4-60-

VCVTFL (Vector Convert F floating 
to Longword VAX Rounaing), 
4-62 

VCVTFLZ (Vector Convert 
F_floating to Longword Round 
toward Zero), 4-62 

VCVTGF (Vector Convert G floating 
to F_floating VAX Rounding), 
4-61 

VCVTGFU (Vector Convert 
G floating to F floating VAX 
Rounding), 4-61-

VCVTGFUZ (Vector Convert 
G floating to F floating 
Round toward Zero), 4-61 
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VCVTGFZ (Vector Convert 
G_floating to F_floating 
Round toward Zero), 4-61 

VCVTGL (Vector Convert G floating 
to Longword VAX Rounaing), 
4-62 

VCVTGLZ (Vector Convert 
G floating to Longword Round 
toward Zero), 4-62 

VCVTLF (Vector Convert Longword 
to F floating VAX Rounding), 
4-63- . 

VCVTLFZ (Vector Convert Longword 
to F floating Round toward 
ZeroT, 4-63 

VCVTLG (Vector Convert Longword 
to G floating), 4-63 

VDIV (Vector Divide Longword with 
no Overflow Detect), 4-27 

VDIVF (Vector Divide .. F floating 
VAX Rounding), 4-6i 

VDIVFU (Vector Divide F floating 
VAX Rounding), 4-64- . . 

VDIVFUZ (Vector Divide F floating 
Round toward Zero), t-64 

VDIVFZ (Vector Divide F floating 
Round toward Zero),-4-64 

VDIVG (Vector Divide G floating 
VAX Rounding), 4-6i 

VDIVGU (Vector Divide G floating 
VAX Rounding), 4-64-

VDIVGUZ (Vector Divide G floating 
Round toward Zero), i-64 

VDIVGZ (Vector Divide G floating 
Round toward Zero),-4-64 

VDIVV (Vector Divide Longword 
with overflow Detect), 4-27 

Vector Alignment exception 
description, 6-16 to 6-17 
exception frame, 6-17 
exception frame in 64-bit 

architecture, B-23 
Vector Convert F Floating to 

G Floating instruction, 4-60 
Vector Convert Floating to 

Integer instructions, 4-62 
Vector Convert G Floating to 

F Floating instructions, 4-61 
Vector Convert Integer to 

Floating instructions, 4-63 
Vector Count register, 1-4, 3-2 
Vector count register, 4-79, 4-82 
Vector Enable bit, 4-3, 6-5, 

11-10 
Vector Enable exception 
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description, 6-22 to 6-23 
exception frame, 6-23 
occurrence of, 4-3 

Vector exceptions 
See Exceptions, Vector 

Vector Floating Add instructions, 
4-56 to 4-57 

Vector Floating Compare 
instructions, 4-58 to 4-59 

Vector Floating Divide 
instructions, 4-64 to 4-65 

Vector Floating Multiply 
instructions, 4-66 to 4-67 

Vector Floating Subtract 
instructions, 4-68 to 4-69 

Vector instructions, 4-3 
Vector Integer Add instructions, 

4-25 
Vector Integer Compare 

instructions, 4-26 
Vector Integer Divide 

instructions, 4-27 
Vector Integer Multiply, 4-29 
Vector Integer Remainder 

instructions, 4-28 
Vector Integer Subtract 

instructions, 4-30 
Vector Length register, 1-4, 3-2 
Vector length register, 4-11, 

4-12, 4-14, 4-15, 4-25, 4-26, 
4-27, 4-28, 4-29, 4-30, 4-36, 
4-37, 4-38, 4-56, 4-58, 4-60, 
4-61, 4-62, 4-63, 4-64, 4-66, 
4-68, 4-83 

Vector Logical Functions 
instructions, 4-36 

Vector mask bit, 4-26, 4-37, 4-58 
Vector Mask register, 1-4, 3-2 
Vector mask register, 4-26, 4-58, 

4-79, 4-84 
Vector Merge instruction, 4-37 
Vector operands, 3-7 
Vector registers 

See Registers, vector 
Vector Shift Logical instructions, 

4-38 
VEN 

See Vector Enable bit 
VEQV (Vector Logical Equivalence), 

4-36 
VGATHL (Gather Longword Vector 

from Memory to Vector 
Register), 4-12 
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VGATHQ (Gather Quadword Vector 
from Memory to Vector 
Register), 4-12 

Virtual address 
description, 2-1 
format, 5-2 to 5-3 
format in 64-bit architecture, 

B-18 
in branch instructions, 3-6 
in memory load/store 

instructions, 3-6 
translation, 2-1, 5-1, 5-3, 5-9 

to 5-11 
translation algorithm, 5-10 to 

5-11 
translation in 64-bit 
. architecture, s~l9 

Virtual address space, 5-2 to 5-3, 
11-8, B-18 

VL 
See Vector•Length register 

VL~(Load Longword Vector from 
Memory to Vector Register), 
4-11 

VLDQ (Load Quadword Vector from 
Memory to Vector Register), 
4-11 

VM 
See Vector Mask register 

VMERGE (Vector Merge), 4-37 
VMULF (Vector Multiply F floating 

VAX Rounding), 4-66 -
VMULFU (Vector Multiply 

F floating VAX Rounding), 
4=66 

VMULFUZ (Vector Multiply 
F floating Round toward Zero), 
4=66 

VMULFZ (Vector Multiply 
F floating Round toward Zero), 
4=66 

VMULG (Vector Multiply G floating 
VAX Rounding), 4-66 -

VMULGU (Vector Multiply 
G floating VAX Rounding), 
4=66 

VMULGUZ (Vector Multiply 
G floating Round toward Zero), 
4=66 . 

VMULGZ (Vector Multiply 
G floating Round toward Zero), 
4=66 

VMULL (Vector Multiply Longword 
with no overflow Detect), 
4-29 
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VMULV (Vector Multiply Longword 
with overflow Detect), 4-29 

VOR (Vector Logical Sum), 4-36 
VORNOT (Vector Logical Sum with 

Complement), 4-36 
VREM (Vector Longword Remainder), 

4-28 
VSCATL (Scatter Longword Vector 

from Vector Register to 
Memory), 4-15 

VSCATQ (Scatter Quadword Vector 
from Vector Register to 
Memory), 4-15 

VSLL (Vector Shift Left Logical), 
4-38 

VSRL (Vector Shift Right Logical), 
4-38 

VSTL (Store Longword Vector from 
Vector Register in Memory), 
4-14 

VSTQ (Store Quadword Vector from 
Vector Register in Memory), 
4-14 

VSUB (Vector Subtract Longword 
with no overflow Detect), 
4-30 

VSUBF (Vector Subtract F floating 
VAX Rounding), 4-68 -

VSUBFU (Vector Subtract 
F_floating VAX Rounding), 
4-68 

VSUBFUZ (Vector Subtract 
F floating Round toward Zero), 
4=68 

VSUBFZ (Vector Subtract 
F_floating Round toward Zero), 
4-68 

VSUBG (Vector Subtract G floating 
VAX Rounding), 4-68 -

VSUBGU (Vector Subtract 
G floating VAX Rounding), 
4=68 

VSUBGUZ (Vector Subtract 
G_floating Round toward Zero), 
4-68 

VSUBGZ (Vector Subtract 
G floating Round toward Zero), 
4=68 

VSUBV (Vector Subtract Longword 
with overflow Detect), 4-30 

VXOR (Vector Logical Difference), 
4-36 

WHAM I 
§.!.!!Who-Am-I (WHAM!) register 
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Who-Am-I (WHAMI) register, 8-29 
Word, 2-2 
Write-back cache 

See Cache, implementation 
- methods 

Write-buffer 
description, 9-4 
implementation methods, 9-5 to 

9-8 
implementation requirements, 

9-4 to 9-8 
Write-through cache 

See also Write-buffer 

Page Index-18 
22 December 1985 

See Cache, implementation 
- methods 

WRVC (Write Vector Count 
Register), 4-82 

WRVL (Write Vector Length 
Register), 4-83 

WRVMH (Write Vector Mask 
Register, High Part), 4-84 

WRVML (Write Vector Mask 
Register, Low Part), 4-84 

XOR (Logical Difference), 4-32 


