
Company Confidentia I

PRISM System Reference Manual

Second Draft

Digital Equipment Corporation - Confidential and Proprietary

Revision No:

Date:

Note

This document is the System Reference Manual
for PRISM. THIS DOCUMENT IS CONFIDENTIAL.
Do not copy it, distribute it, or remove it from company
property

1.0

22-DEC-1985

Document Copy:

104

CONTENTS

CHAPTER 1

1.1
1.2
1.3
1.3.1
1. 3.2
1.4
1.5
1.5.1
1. 5.2
1.6
1.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6
1.6. 7
1.6.8

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

CHAPTER 3

3.1
3.1.l
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.3
3.3.l
3.3.2
3.3.3
3.3.3.l
3.3.4
3.3.5

Company Confidential Page iii

CONTENTS

INTRODUCTION

I NT RO DUCT I ON • • • • • • • • • • • • • • • • • •
DIFFICULTIES IN BUILDING A HIGH-END VAX ••••
PRISM ARCHITECTURE OVERVIEW • • • • • • • •

Instruction Set Characteristics

• 1-1
• 1-1
• 1-3
• 1-3
• 1-4 Pipelined Processor Model •••••

ADVANTAGES AND DISADVANTAGES OF PRISM
VAX COMPATIBILITY • • • • • • • •

• • • . . • 1-6
• 1-7

Compatibility Limitations •• • 1-7
Why No VAX Compatibility Mode Is Provided • 1-8

TERMINOLOGY AND CONVENTIONS • 1-9
Numbering • • • • • • • • • • • • • • 1-9
UNPREDICTABLE And UNDEFINED
Ranges And Extents •

• • • . • 1-9
• • • • 1-9

Must Be Zero (MBZ) • • • • • •
Read As Zero (RAZ) • • • • • • • •
Should Be Zero (SBZ) • • • • • • • •
Ignore (IGN) • • •••••••
Figure Drawing Conventions •••••

BASIC ARCHITECTURE

ADDRESS I NG • • • • • •
DATA TYPES • • • • • • • • • • • • • • •

Byte • • • • • • • • • •
Word • • • • • • • • • • • •
Longword • • • • • • • • • •
Quadword • • • • •
F floating ••••••
G-floating • • • • • • • • • •
DATA TYPES WITH NO HARDWARE SUPPORT

INSTRUCTION FORMATS

PRISM REGISTERS • • • • • • • • •
Scalar Registers
Vector Registers •••••••
Program Counter

NOTATION • • • • • • • • • • • • •
Scalar Operand Values
Operators • • • •

. .

INSTRUCTION FORMATS • •

1-10
1-10
1-10
1-10
1-10

• 2-1
2-1

• 2-1
• • • 2-2

• 2-3
• 2-4

• • 2-5
• 2-6
• 2-7

• 3-1
• 3-1
• 3-1
• 3-2
• 3-2
• 3-2
• 3-3
• 3-5

Memory Instruction Format
Branch Instruction Format
Operate Instruction Format

. • 3-5

Convert Instructions •
Epicode Instruction Format ••
Coprocessor Instruction Format •

. • 3-6
• 3-7
• 3-8

3-8
• 3-9

CONTENTS

CHAPTER 4

4.1
4.1.l
4.1.2
4 .1. 3
4.2

4.3

4.4

4.5
4.5.1
4.5.2
4.5.3

Company Confidential Page iv

INSTRUCTION DESCRIPTIONS

INSTRUCTION SET OVERVIEW AND NOTATION
Subsetting Rules •••
Vector Instructions •
Instruction Operand Notation ••••••

MEMORY LOAD/STORE INSTRUCTIONS

.

.
Load Address • • • • • • • • • • • • • • • • •
Load Memory Data into Scalar Register ••••
Read, Mask, Add Quadword, Interlocked ••••
Store Scalar Register Data into Memory ••
Load Memory Data into Vector Register ••••
Gather Memory Data into Vector Register
Store Vector Register Data into Memory •
Scatter Vector Register Data into Memory •••

INTEGER ARITHMETIC INSTRUCTIONS
Integer Add • • • • • • • • • • • • • • •
Integer Signed Compare • • • • • •
Integer Unsigned Compare • . . . Integer Divide ••
Integer Remainder • •
Integer Multiply •••
Integer Subtract • • •
Vector Integer Add • •

.
Vector Integer Compare • • •
Vector Integer Divide ••••••
Vector Integer Remainder ••••••
Vector Integer Multiply ••••
Vector Integer Subtract • • • •

LOGICAL AND SHIFT INSTRUCTIONS
Logical Functions ••••

. . .

Shift Logical ••••••
Shift Arithmetic •••••

.
Rotate • • • • • • • • • •
Vector Logical Functions •
Vector Merge • • • • • • • • • •
Vector Shift Logical •••••••••

FLOATING-POINT INSTRUCTIONS • • •
Literals •••••••••
Accuracy • • • • • • • • • •
Floating-Point Exceptions ••••
Floating Add ••••••••••
Floating Compare ••••••••

. .

Convert F Floating to G Floating •••••
Convert G-Floating to F-Floating ••••
Convert Fioating to Integer
Convert Integer to Floating . . .
Floating Divide ••
Floating Multiply • • • • ••••••
Floating Subtract ••••••
Vector Floating Add ••••••••••
Vector Floating Compare • • • • • • • • • • •
Vector Convert F Floating to G Floating
Vector Convert G-Floating to F-Floating
Vector Convert Fioating to Integer •••

• 4-1
. 4-2
• 4-3
• 4-3
• 4-6
• 4-7
• 4-8
• 4-9
4-10
4-11
4-12
4-14
4-15
4-16
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28

. 4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-43
4-43
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-58
4-60
4-61
4-62

CONTENTS

4.6

4.7

4.8

4.9

CHAPTER 5

5.1
5.2
5.2.1
5.3
5.4
5.5
5.5.1
5.6
5.6.1
5.6.2
5.6.3
5.7
5.8
5.9
5.10

CHAPTER 6

6.1

Company Confidential Page v

Vector Convert Integer to Floating •
Vector Floating Divide ••

.
Vector Floating Multiply •
Vector Floating Subtract •

CONTROL INSTRUCTIONS • • • •
Conditional Branch •••••
Fault On Low Bit Set •••
Jump to Subroutine ••••

MISCELLANEOUS INSTRUCTIONS •
Breakpoint • • • • • • • •
Bug Check • • • • • • • •
Drain Instruction Pipeline •
Flush Instruction Cache • • • .
Generate Compressed Iota Vector
Move Processor Status • • • • •

.
.

Probe Memory Access • • • • • •
Read/Write Vector Count Register •••••
Read/Write Vector Length Register ••••
Read/Write Vector Mask Register •
Return from Exception or Interrupt •
Swap AST Enable • • • • • • • • •

PRIVILEGED INSTRUCTIONS • • • • • • • • • •
HALT • • • • • • • • • • • • • • • •
Move From Processor Register •••••••
Move To Processor Register ••••••••••
Read, Mask, Add Quadword, Interlocked, Physical
Swap Privileged Context • • • • • • • • •
Swap IPL. • • • • • • • • • ••• ·•
Flush Translation Buffer •

COPROCESSOR INSTRUCTIONS • • • • •
Coprocessor Read/Write

MEMORY MANAGEMENT

. .

4-63
4-64
4-66
4-68
4-70
4-71
4-72
4-73
4-74
4-75
4-76
4-77
4-78
4-79
4-80
4-81
4-82
4-83
4-84
4-85
4-87
4-88
4-89
4-90
4-91
4-92
4-93
4-96
4-97
4-98
4-99

INTRODUCTION • • • • • • • • • • • • • • 5-1
VIRTUAL ADDRESS SPACE • • • • • • • 5-2

Virtual Address Format • • • • • • 5-2
PHYSICAL ADDRESS SPACE • • • • • • • • • 5-3
MEMORY MANAGEMENT CONTROL • • • • • • • • • • • • 5-3
PAGE TABLE ENTRIES • • • • • • • • • • 5-3

Changes To Page Table Entries • • • • 5-5
MEMORY PROTECTION • • • • • • • • • • • • • 5-6

Processor Access Modes • • • • • • • • • • • • • 5-6
Protection Code • • • • • • • • • • • • • • 5-7
Access Control Violation Fault • • • • • • 5-9

ADDRESS TRANSLATION • • • • • • • • • • • • 5-9
TRANSLATION BUFFER • • • • • • • • • • 5-12
ADDRESS SPACE NUMBERS • • • • • • • • • 5-12
MEMORY MANAGEMENT FAULTS • • • • • • • • • • • 5-13

EXCEPTIONS AND INTERRUPTS

INTRODUCTION • • • • . • • • • • • • • 6-1

CONTENTS

6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.3
6.3.3.1
6.3.3.2
6.3.4
6.3.5
6.3.5.1
6.3.6
6.3.6.1
6.3.6.2
6.4
6.4.1
6.4.2
6.4.2.1
6.4.2.2
6.4.3

6.4.3.1
6.4.3.2
6.4.3.3
6.4.4
6.4.4.1
6.4.4.2
6.4.4.3
6.4.5
6.4.5.1
6.4.5.2
6.4.5.3
6.4.5.4
6.4.5.5
6.4.6
6.4.6.1
6.4.6.2
6.4.7
6.4.8
6.4.8.1
6.5
6.6
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.6.1

Company Confidential Page vi

Processor Interrupt Priority Level (IPL) •••
Interrupts • • • • • • • • • • • • • • • • • •
Exceptions ••••••••••••••••
Contrast Between Exceptions And Interrupts

PROCESSOR STATE • • • • • • • • • • • • • • • •
INTERRUPTS • • • • • • • • • • • • • • • • • • •

Asynchronous System Trap (AST) - Level 1 • • •
Software Generated Interrupts - Levels 1 To 3

Software Interrupt Summary Register ••••
Software Interrupt Request Register

Console Interrupts - Level 4 •••••
Console Receive Control Status • • • •
Console Transmit Control Status •••

I/0 Port Controllers - Levels 4 And 5
Interval Clock Interrupt - Level 5 • • •

Interval Clock Interrupt Enable
Urgent Interrupts - Levels 6 And 7 • • • • ••

Interprocessor Interrupt Enable Register ••
Interprocessor Interrupt Request Register

EXCEPTIONS • • • • • • • • • • • • • • • •
Arithmetic Traps • • • • • • • • • ••••
Data Alignment Exceptions •••

Scalar Alignment Fault •••••••••••
Vector Alignment Abort ••••••

Faults Occurring As The Result Of An
. . .

Instruction •••••••••••••••••
Breakpoint Fault • • • • • • • • • ~ • •
Bug Check Fault • • • • • • • • • • • ~ • •
Fault On Bit • • • • • • • • • • • • • • • •

Illegal Operand Fault • • • • • • ••
Privileged Instruction •••••••••
Reserved Opcode Fault •••••••••••
Vector Enable • • • • • • • • • • • • •

Memory Management Faults • • • • • • • • • • •
Access Violation • • • • • • •
Translation Not Valid • • • • • ••••
Fault On Execute • • • • • • • • • • •
Fault On Read • • • • • • • • • • •••
Fault On Write • • • • • • • • • • •••

Serious System Failures • • • • • • • • • • •
Kernel Stack Not Valid Halt ••••••••
Machine Check Abort • • • • • • • • •

Stack Alignment Abort • • • • • • • •
Vector Exceptions • • • • • • ••••••

Vector Exception Continuation •••••••
SERIALIZATION OF EXCEPTIONS AND INTERRUPTS • • •
SYSTEM CONTROL BLOCK (SCB) • • • • • • • •
STACKS • • • • • • • • • • • •

Stack Writability ••••
Stack Residency ••• · •••••
Stack Alignment •••••
Initiate Exception Or Interrupt
Instruction Issue Model ••••
Epicode Interrupt Arbitration

MTPR AST Request Register

.

• 6-1
• 6-2
• 6-2
• 6-3
• 6-4
• 6-6
• 6-7
• 6-7
• 6-7
• 6-7
• 6-8
• 6-8
• 6-9
• 6-9
• 6-9
• 6-9
6-10
6-10
6-11
6-11
6-12
6-15
6-15
6-16

6-17
6-17
6-18
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-24
6-25
6-25
6-25
6-25
6-25
6-25
6-27
6-27
6-30
6-31
6-32
6-35
6-35
6-35
6-36
6-36
6-37
6-40
6-40

CONTENTS

6.7.6.2
6.7.6.3
6.7.6.4
6.7.6.5
6.7.7

CHAPTER 7

7.1
7.2
7.3
7.3.1
7.4
7.4.1

CHAPTER 8

8.1

CHAPTER 9

9.1
9.2
9.3
9.4
9.5
9.6

Company Confidential Page vii

MTPR Software Interrupt Request Register • •
Return From Exception Or Interrupt •••••
Swap AST Enable • • • • • • • • • •
Swap Interrupt Priority Level •••••••

Processor State Transition Table •• . . .
PROCESS STRUCTURE

6-40
6-41
6-41
6-41
6-42

PROCESS DEFINITION • • • • • • • • • • • • • • • • 7-1
HARDWARE PRIVILEGED PROCESS CONTEXT • • • • 7-2
ASYNCHRONOUS SYSTEM TRAPS (AST) . 7-4

A Software Model For AST Processing • • • • • • 7-4
PROCESS CONTEXT SWITCHING • • • • • • • • • • 7-6

A Software Model For Process Context Switching • 7-7

INTERNAL PROCESSOR REGISTERS

INTERNAL PROCESSOR REGISTERS • • • • • • • • 8-1
Address Space Number (ASN) • • • • 8-3
AST Enable (ASTEN) • • • • • • • • • • • • • • • 8-4
AST Request Register (ASTRR) • • • • • 8-5
AST Summary Register (ASTSR) • • • • • • 8-6
Console Receive Control Status (CRCS) ••••• 8-7
Console Receive Data Buffer (CRDB) ••••••• 8-8
Console Transmit Control Status (CTCS) _. •• 8-9
Console Transmit Data Buffer ••••• ~ • 8-10
Stack Pointer Registers (ESP, SSP, USP) 8-11
Interval Clock Interrupt Enable (ICIE) • 8-12
Interprocessor Interrupt Enable (IPIE) • • 8-13
Interprocessor Interrupt Request (IPIR) 8-14
Privileged Context Block Base (PCBB) • 8-15
Processor Base Register (PRBR) • • • • • 8-16
Processor Serial Number (PRSN) • • • • • • • • 8-17
Page Table Base Register (PTBR) • • • • 8-18
System Control Block Base (SCBB) • 8-19
System Identification (SID) • • • • • 8-20
Software Interrupt Request Register (SIRR) 8-21
Software Interrupt Summary Register (SISR) 8-22
Translation Buffer Check (TBCHK) • • • • 8-23
Translation Buffer Invalidate By ASN (TBIASN) 8-25
Translation Buffer Invalidate Single (TBIS) 8-26
Time Of Year (TOY) • • • • • 8-27
Who-Am-I (WHAMI) • • • • • • • • • • • • • • • 8-29

SYSTEM ARCHITECTURE AND PROGRAMMING IMPLICATIONS

INTRODUCTION • • • • • ~ • • • • • • • • • • •
DATA SHARING AND SYNCHRONIZATION • • • • • • •
SEPARATION OF PROCEDURE AND DATA • • • • •
TRANSLATION BUFFER, VIRTUAL I AND D CACHES ••
CACHES AND WRITE-BUFFERS • • • • • • • • •
STACKS • • • • • • • • • • • • • • • • • • •

9-1
9-1

• 9-3
9-3

• • 9-4
• 9-8

CONTENTS

CHAPTER 10

10.1
10.2
10.3
10.4

CHAPTER 11

11.1
11.1.1
11.1.1.l
11.1.1.2
11.l.l.3
11.1.1.4
11.1.1.5
11.1.1.6
11.1.1.7
11.1.1.8
11.1.2
11.1. 3
11.1.4
11.1.4.l
11.1.4.2
11.1..4.3
11.1.4.4
11.1.5
11.2
11.2 .1
11. 2. 2
11. 2. 3
11.3
11. 3 .1
11.3.2
11. 3. 3

11. 3. 4

CHAPTER 12

12.l

APPENDIX A

A.l
A.2

Company Confidential

EXTENDED PROCESSOR INSTRUCTION CODE

INTRODUCTION • • • • • • • • • • • •
EPICODE ENVIRONMENT • • • • • • • •
EPICODE EFFECTS ON SYSTEM CODE • •
SPECIAL FUNCTIONS REQUIRED FOR EPICODE •

SYSTEM BOOTSTRAPPING AND CONSOLE

Page viii

.
10-1
10-2
10-3
10-3

BOOT STRAPP I NG • • • • • • • • • • • • • • • • • 11-1
Bootstrapping In A Uniprocessor Environment 11-1

Memory Testing • • • • • • 11-2
Restart Parameter Block • • • • • • • • 11-2
Epicode Loading • • • • • • • • • • • • • • ll-7
Initial Page Tables • • • • ll-7
Bootstrap Flags • • • • • • • • • • • • • • 11-8
Loading Of System Software • • • • • • • ll-8
IPR Initialization • • • • • • • • • • • • • 11-8
Transfer Of Control To System Software • 11-9

Powerf ail • • • • • • • • • • • ll-10
Powerfail Recovery • • • • • • • • • • • • • • 11-10
Multiprocessor Bootstrapping • • • • • • • 11-11

Initial Synchronization • • • • • • 11-11
Actions Of Bootstrap Master ••• 11-12
Actions Of Bootstrap Slaves •••••••• 11-12
Addition Of A Processor To A Running System 11-13

Powerfail In A Multiprocessing System •••• 11-13
CONSOLE • • • • • • • • • • • • • • 11-14

Required Functionality • • • ••••••• 11-14
Entering Console Mode •••••••••••• 11-14
Program Controlled Console I/O • 11-14

CONSOLE LANGUAGE • • • • • • • • • • • • • • 11-15
Control Characters • • • • • • • • • • 11-15
Command Syntax • • • • • • • • • • • 11-16
Commands • • • • • • • • • • • • • • • 11-16

BOOT • • • • • • • • • • 11-17
CONTINUE • • • • • • • • • • • 11-18
DEPOSIT • • • • • • • • • • • • 11-19
EXAMINE • • • • • • • • • • • • • • • • • • 11-20
INITIALIZE • • • • • • • • • • • • ll-24
START • • • • • • • • • • • • • • 11-25
TEST • • • • • • • • • • • • • • • • • • 11-26

Error Messages • • • • • 11-27

I/0 ARCHITECTURE

TO BE SUPPLIED • 12-1

INSTRUCTION SET SUMMARY

ENCODING HINTS • • • • • • •
FUNCTIONAL GROUP LISTING •

• • A-1
• • A-2

CONTENTS

A.3
A.4

APPENDIX B

INDEX

FIGURES

B.l
B.2
B.3
B.3.l
B.3.2
B.3.3
B.4
B.5
B.5.l
B.5.2
B.5.3
B.5.4
B.5.5
B.5.6
B.5.7
B.6
B.6.l
B.6.2
B.6.3
B.6.4
B.7
B.8
B.8.l
B.8.2
B.8.3
B.8.4

B.8.5

B.8.6
B.8.7
B.8.8
B.8.9
B.8.10
B.9

2-1
2-2
2-3
2-4
2-5
2-6
3-1

Company Confidential

MNEMONIC LISTING
OPCODE LISTING • •

64-BIT ARCHITECTURE

GOALS AND NON-GOALS
DATA TYPES • • • •
REGISTERS ••••••

Scalar Registers ••
Vector Registers ••
Program Counter • • • • •

INSTRUCTION FORMATS

Page ix

. A-10
A-17

B-1
B-2

• • B-3
B-3

• • B-3
B-3

INSTRUCTION SET • • • • • • • • • • •
B-3
B-3
B-5 MEMORY LOAD/STORE INSTRUCTIONS

INTEGER ARITHMETIC INSTRUCTIONS
LOGICAL AND SHIFT INSTRUCTIONS • •
FLOATING POINT INSTRUCTIONS
CONTROL INSTRUCTIONS • • • •
MISCELLANEOUS INSTRUCTIONS •
PRIVILEGED INSTRUCTIONS

MEMORY MANAGEMENT
Virtual Address Space
Virtual Address Format •
Physical Address Space ••
Address Translation ••••

. . . .

.

• • B-7
• • B-8

B-10
B-13
B-14

• • • • • B-17
B-18

• • • • B-18
B-18
B-19

PROCESSOR STATE • • • • • • • • • •
EXCEPT I ON ST ACK FRAMES • • • • • • •. •

Arithmetic Traps •••••••••••••••
Scalar Alignment Fault •••

B-19
B-20
B-20
B-21
B-22
B-23 Vector Alignment Abort ••••••••••

BPT, BUGCHK, Vector Enable, And Privileged
Instruction Faults ••••••••••••
FOB, Illegal Operand, And Reserved Opcode
Faults • • • • • • • • • • • •
Memory Management Faults •••••
Machine Check • • • • • • • • • • •
Stack Alignment Abort
Vector Exceptions •••••••
SCB Vectors • • • • • • • • • •

64-BIT MODE INTERNAL PROCESSOR REGISTERS • •

Byte Format
Word Format
Longword Format
Quadword Format
F floating Format
G-f loating Format
Memory Instruction

.
. . .
Format

.
.

B-24

B-25
B-26
B-27
B-28
B-29
B-30
B-31

• 2-1
• 2-2
• 2-3
• 2-4
• 2-5
• 2-6
• 3-6

CONTENTS

3-2
3-3
3-4
3-5
4-l
5-l
5-2
6-l
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-ll
6-12
6-13
6-14
6-15
6-16
6-17
6-18
7-1
8-1
8-2
8-3
8..;4
8-5
8-6
8-7
8-8
8-9
8-10
8-ll
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22

8-23

8-24
8-25
ll-1
ll-2

Company Confidential Page x

Branch Instruction Format •••••••••• 3-6
Operate Instruction Format ••••••••• 3-7
Epicode Instruction F.ormat ••••••••••• 3-8
Coprocessor Instruction Format ••••••••• 3-9
F and G floating Exception Code Format • • • • 4-46
virtual Address Format • • • • • • •••••• 5-3
Page Table Entry • • • • • • • • • • • • • • • • • 5-4
Processor Status • • • • • • • • • • • • 6-5
Program Counter • • • • • • • • • • • • • 6-6
Arithmetic Trap Exception Frame • • • • • • • • 6-13
Exception Summary • • • • • • • • • • • • • 6-14
Scalar Alignment Fault Exception Frame • • • 6-16
Vector Alignment Abort Exception Frame • • • • • 6-17
Breakpoint Fault Exception Frame 6-17
Bug Check Fault Exception Frame • • 6-18
Fault On Bit Fault Exception Frame • • • • • • • 6-19
Illegal Operand Fault Exception Frame 6-20
Privileged Instruction Fault Exception Frame • • 6-21
Reserved Opcode Fault Exception Frame • • • 6-22
Vector Enable Fault Exception Frame • • • • • • 6-23
Memory Management Fault Exception Frame • • • • 6-23
Machine Check Abort Exception Frame 6-26
Stack Alignment Abort Exception Frame • • • • • 6-27
Vector Exception Information Frame • • • • • • • 6-28
System Control Block Vector • • • • • 6-32
Hardware Privileged Context Block • • • • • 7-3
Address Space Number Register (ASN) • • • • • • • 8-3
AST Enable Register (ASTEN) •• ~ • • • 8-4
AST Request Register (ASTRR) • • • • • • • • • • • 8-5
AST Summary Register (ASTSR) ••••••••••• 8-6
Console Receive·control Status Register (CRCS) •• 8-7
Console Receive Data Buffer Register (CRDB) • • • 8-8
Console Transmit Control Status Register (CTCS) • 8-9
Console Transmit Data Buffer Register (CTDB) • • 8-10
Stack Pointer Registers (ESP, SSP, USP) • • • • 8-ll
Interval Clock Interrupt Enable Register (ICIE) 8-12
Interprocessor Interrupt Enable Register (IPIE) 8-13
Interprocessor Interrupt Request Register {IPIR) 8-14
Privileged Context Block Base Register (PCBB) 8-15
Processor Base Register (PRBR) • • • • • • 8-16
Processor Serial Number Register (PRSN) • • • • 8-17
Page Table Base Register (PTBR) • • • • • 8-18
System Control Block Base Register (SCBB) 8-19
System Identification Register (SID) • • • • • • 8-20
Software Interrupt Request Register (SIRR) 8-21
Software Interrupt Summary Register (SISR) • • • 8-22
Translation Buffer Check Register (TBCHK) • • • 8-23
Translation Buffer Invalidate by ASN Register
(TB I ASN) • 8-2 5
Translation Buffer Invalidate Single Register
(TBIS)........... . •••••
Time of Year Register (TOY) • • • • • • •
Who-Am-I Register (WHAMI) ••••••••
Restart Parameter Block • • • •
Per-Processor Portion of RPB

8-26
8-27
8-29
ll-4
ll-5

CONTENTS

TABLES

11-3
11-4
B-1
B-2
B-3
B-4
B-5
B-6
B-7

B-8

B-9
B-10
B-11
B-12
B-13

Company Confidential Page xi

State Longword • • • • • • • • • • • •
Initial Virtual Memory Layout •••
Virtual Address Format •••••••••••••
Processor Status • • • • • • • • • • •
Program Counter • • • • • • • • • • • • •
Arithmetic Trap Exception Frame ••••••••
Scalar Alignment Fault Exception Frame •••
Vector Alignment Abort Exception Frame •••••
BPT, BUGCHK, and Privileged Instruction Fault
Except ion Frame • • • • • • • • • • • • • • • •
FOB, Illegal Operand, and Reserved Opcode Fault
Exception Frame ••••••••••••••••
Memory Management Fault Exception Frame ••••
Machine Check Abort Exception Frame
Stack Alignment Abort Exception Frame •••••
Vector Exception Information Frame •••••••
System Control Block Vector • • • • •

11-6
11-8
B-18
B-20
B-20
B-21
B-22
B-23

B-24

B-25
B-26
B-27
B-28
B-29
B-30

5-l PTE Protection Codes • • • • • • • • • • • • • 5-8
6-l System Control Block Vector Assignments • • • • 6-33
6-2 Processor State Transitions • • • • • • • • 6-42
8-l Internal Processor Register (IPR) Surmnary • 8-2
9-l TB/Cache Invalidation • • • • • • • • • 9-3
11-l IPR Initialization • • • • • • • • • • • • • • • 11-9
11-2 Qualifiers for Examine and Deposit • • • • • 11-21
B-l Instruct ion Not at ion • • • • • • • • • • • • • B-4
B-2 Virtual Address Options • • • • • • • • • • B-18
B-3 Internal Processor Register (IPR) Surmnary B-31

Pref ace Company Confidential

PREFACE

Page xiii
22 December 1985

Several competitors and new start-ups are introducing simplified
architecture machines claiming superior price/performance over VAX.
There are currently about a dozen such companies offering machines
with vector processing (e.g., Convex, Scientific Computer Systems),
symmetric multiprocessing (e.g., Flexible Computer, Sequent), and
fine-grained parallel processing (e.g., Alliant) capabilities.

These competitors are mostly targeting the high end of the VAX market,
which is our most profitable product space. However, we are also
receiving increasing pressure at the low end of our product family
where simplified architectures offer cheaper and faster custom
implementations than VAX.

Several advanced development and research projects within DIGITAL, and
projects elsewhere in the computer industry, have produced results
substantiating our competitor's claims and questioning the viability
of the VAX architecture to sustain DIGITAL through the 1990's.

In response to this challenge, a strategic effort has been initiated
within the company to define a new architecture that will complement
our current VAX/VMS and VAX/ULTRIX offerings and provide DIGITAL with
a competitive architecture through the 1990'.s and beyond.

The following summarizes the assumptions, constraints, goals, and
non-goals that have been set for the architecture.

Assumptions:

1. Simplif~ed architectures show promise for reducing complexity
while improving cost/performance and making higher absolute
performance possible when compared with VAX.

2. Vector processing, multiprocessing, and parallel processing
are well enough understood to make them a science (rather
than a black art), and therefore, are essential to attaining
a competitive architecture.

3. Neither DIGITAL nor its customers can afford the resources
necessary to support an open architecture philosophy, but
rather must be able to leverage software investments across
an entire family of compatible products. This implies that
any new architecture must be rigid and not allow the
instruction set or privileged architecture to be changed from
implementation to implementation.

4. The design work that must be performed is similar to the VAX
architectural effort. An architectural document, at the same
level of detail as produced for VAX, must be produced to
guide implementations of the new architecture. It is
required that this document receive wide review within the

Pref ace Company Confidential Page xiv
22 December 1985

technical community and the company in general. When
completed and accepted, the architecture will be placed under
ECO control and managed by a central architecture group.

5. The architecture will be compatibly extended over time, and
will allow subsets. Each extension will be subsettable and
become a permanent part of the architecture which all
implementations must adhere to. Features of the architecture
that are subsetted in a particular implementation must be
emulated transparently in software.

6. VAX compatibility is very important, especially with
to the way memory is addressed and data is stored.
be achieved with a combination of software and
rather than with just a hardware structure itself.

respect
This can
hardware

7. A VMS-like operating system environment will be constructed
that has a compatible file system, network, and user
interface, and a functionally compatible set of system
services. A continuing effort will be made to ensure that a
compatible applications interface is maintained between VMS
and the new operating system.

8. ULTRIX will be ported to the new architecture and remain
compatible with both the VAX and PDP-11 implementations. An
ongoing effort will be made to ensure that all
implementations of ULTRIX remain:compatible.

9.

10.

Any new architecture must fit into
environment and allow connection
systems, and clusters.

the DIGITAL computing
to local area networks,

Architectural trade-offs will
performance rather than lowest
and cost effective chip-based
possible without having to
technologies.

be made toward higher
cost. However, competitive
implementations must be
resort to risky advanced

Architectural Constraints:

1. The architecture must make it possible to efficiently support
VAX data types. This support can be achieved with a
combination of software and hardware.

2. The architecture must
addressing.

support VAX-compatible memory

3. The architecture must provide a VAX-compatible interlock
capability so that it is possible to connect VAX processors
and I/O peripherals to common memory systems.

4. The architecture must support the execution of identical
program images on all implementations.

Pref ace Company Confidential Page xv
22 December 1985

5. The scalar architecture must provide greater than a factor of
two improvement in cost/performance over a VAX implementation
using the same technology.

Architectural Goals:

1. To make it possible to build machines that are as good or
better than the competition and which have higher absolute
performance limits than VAX.

2. To define an architecture that is inherently easier to
implement than VAX and thus allows shorter development
cycles, or alternatively, allows more effort to be expended
on performance while holding the development cycle constant.

3. To make it attractive to implement the architecture without
microcode.

4. To allow for easy pipelining and parallel instruction
execution directly in the architecture, as opposed to
esoteric implementation complexity to gain performance.

5. To provide integral vector processing capabilities.

6. To allow for symmetric multiprocessing as well as other forms
of parallel processing. ·

7. To provide an extensible architecture with
subsettability.

rules for

8. To provide a corporate architecture for the 1990's that is
more competitive than VAX and which provides more inherent
growth capability.

9. To remedy anticipated deficiencies and limitations in the VAX
architecture (e.g., number of general registers, page size,
physical address space, vector processing etc.).

10. To provide an I/0 architecture that will support current and
future corporate I/O strategies (e.g., BI).

11. To provide the functional capabilities of the VAX privileged
architecture in a more simplified and easier to implement
form.

12. To make it easy for customers to move applications to the new
architecture from VAX.

13. To allow unprivileged VMS and ULTRIX layered products that
are written in a higher-level language to be moved to the new
architecture via recompilation, without loss of language
semantics or file and data type compatibility.

Preface Company Confidential

14. To allow for the
coprocessors.

implementation of

Page xvi
22 December 1985

special purpose

15. To allow for the implementation of a security kernel.

Specific Non-Goals:

1. To include a VAX compatibility mode.

2. To support UNIBUS/QBUS/MASSBUS peripherals.

3. To translate VAX macrocode transparently and efficiently.

4. To address non-architectural issues
implementation of fault tolerant systems.

such as the

5. To support D floating, H_floating, or decimal data types
directly in hardware.

6. To support efficient handling of unaligned operands.

Pref ace
REVISION HISTORY

Company Confidential Page xvii
22 December 1985

Revision History:

Revision 1.0, 22 December 1985

1. General rewrite and rephrasing of the
assumptions, architectural constraints, and
goals.

2. Dropped all references
architectures.

and comparisons

introduction,
architectural

with RISC

3. Added assumption that vector processing, multiprocessing, and
parallelism are essential for a competitive new architecture.

4. Added the assumption that the architecture must allow for
competitive and cost effective chip implementations.

5. Added a goal to
capabilities.

provide integral vector processsing

6. Added a goal to define an I/O architecture that will support
current, as well as future, corporate I/0 strategies.

Revision 0.0, July 5, 1985

1. First review distribution~

Company Confidential

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The difficulty in building cost-effective, high-performance VAX
processors, and the competitive pressure due to recent architectural
developments has motivated the design of the PRISM (Parallel Reduced
Instruction Set Machine) architecture.

The following sections of this introduction describe:

1. Why building a high-end VAX is difficult.

2. An overview of the PRiSM architecture.

3. The PRISM advantages and disadvantages.

4. The constraints and limitations of VAX compatibility on
PRISM.

5. Terminology and conventions used in this document.

1.2 DIFFICULTIES IN BUILDING A HIGH-END VAX

It is currently very difficult to build a high-performance
implementation (20 to 40 times 11/780) of the VAX architecture even
though the circuit technology exists. VAX is an extremely complex
architecture with a large number of intra-instruction and
inter-instruction conflicts.

Intra-instruction conflicts, in both
pipelining techniques difficult to use.

decode and execution,
Some examples are:

make

o The variable instruction lengths and complex operand
specifiers require a large amount of instruction decode and
conflict-detection logic. VAX instructions can range from 1
byte to over 50 bytes in length, depending on the operand
specifiers used.

INTRODUCTION Company Confidential
DIFFICULTIES IN BUILDING A HIGH-END VAX

Page 1-2
22 December 1985

o The side effects of autoincrement and autodecrement
specifiers make pipelining, and the coordinated update of
multiple register file copies, difficult.

o Specifying memory operand requests in the same instruction
that operates on the data either degrades performance
(because the execution unit must wait for the operand) or
increases the cost to buff er the instruction and operands in
order to pipeline the operation. Fetching a memory operand
requires address calculation, address translation, and cache
lookup. This will always be slower than reading a general
register. VAX has insufficient registers in which to load
memory operands prior to operating on the data: 16 are just
not enough, especially when four are dedicated to fixed
functions.

o The indirect specifiers require two memory references to
fetch the operand, making the execution unit wait until the
operand arrives. Alternatively, other architectures allow
these two references to be separated and scheduled.

o Complex branch instructions, such as Branch on Bit (BBx) and
Add Compare and Branch (ACBx), may require several memory
references and execution cycles before the branch decision is
known. These instructions also have the branch displacement
at "the end of the instruction requiring several cycles of
specifier decode before the branch destination is known.

o Instructions like POPR and RSB have implied operands and
implied register modification.

o The bit field instructions require special checks to
determine whether the operand is in a register or memory and
then additional checks to determine reserved operands.

o Compound instructions, such as CALL and POLY, encounter
internal conflicts during execution where the hardware must
stall because it has no other work to do. In addition, these
instructions must read data operands to determine the
semantics of the instruction.

Inter-instruction conflicts make parallel execution and out-of-order
completion of VAX instructions very difficult. Some examples are:

o Virtually every instruction alters the condition codes, so
the test or compare instruction can never be separated from
the conditional branch instruction with intervening
instructions. This means that in a pipelined implementation
the conditional branch is stalled waiting for the condition
codes from the immediately preceding instruction. Branch
prediction could be implemented, but this further complicates
the design and increases branch latency when the prediction
is wrong.

INTRODUCTION Company Confidential
DIFFICULTIES IN BUILDING A HIGH-END VAX

Page 1-3
22 December 1985

o The register interlock and bypass logic is complicated by
implied register operands, quadword and octaword register
writes starting at an arbitrary register, and byte and word
write merges into the general registers.

Most of the general functionality in the VAX architecture is
infrequently used. Studies of operand specifier usage have shown that
register, short literal, register deferred, and displacement mode
operand specifiers constitute 85% to 95% of all operand specifiers
used. The bit field instructions can take arbitrary specifiers for
the size and position operands, but in one study over 90% of the size
and position specifiers were short literals.

1.3 PRISM ARCHITECTURE OVERVIEW

The design of the PRISM architecture was guided by:

o The cost/performance and higher absolute performance
advantages of simplified instruction set architectures.

o Advances in compiler technology. In particular, the ability
to ,1compile procedures in line, better register allocation
algorithms, and instruction scheduling.

o A processor
instruction
completion.

organization
execution

model that allows parallel
and out-of-order instruction

o The ability to implement both chip-level and
machines.

high-end

o The declining cost of memory: memory costs in FYBB are
expected to be around $150 per megabyte.

PRISM has some. of the characteristics of the so-called RISC
architectures but a better comparison would be the CRAY machines.
Below is a brief overview of the PRISM instruction set characteristics
followed by a description of how a pipelined processor might be
implemented.

1.3.1 Instruction Set Characteristics

o All instructions are 32 bits long and have a regular format.

o There are 64 scalar registers (RO through R63), each 32 bits
wide. RO reads as zero and writes to RO are ignored. Rl is
the current stack pointer and is referred to as SP.

INTRODUCTION Company Confidential
PRISM ARCHITECTURE OVERVIEW

Page 1-4
22 December 1985

o There are 16 vector registers (VO through VlS), each
containing 64 elements, 64 bits wide. There is a 6-bit
Vector Length register (VL), a 7-bit Vector Count register
(VC), and a 64-bit Vector Mask register (VM).

o All scalar data manipulation is between scalar registers,
with up to two register source operands (one may be an 8-bit
literal) and one register destination operand.

o All vector data manipulation instructions get their source
operands from one or two vector registers and write their
results to a destination vector register.

o All memory reference instructions are of the load/store type
that move data between scalar or vector registers and memory.

o There are no branch condition codes. Branch instructions
test a scalar register value which may be the result of a
previous compare.

o Integer and logical instructions operate on longwords.

o Floating-point instructions operate
F_floating operands.

1.3.2 Pipelined Processor Model

on G_floating and

The processor model that guided the architecture definition consists
of multiple pipelined function units, each of which executes a class
of instructions. There is one function unit for the load/store
instructions, one for shifts, one for floating add/subtract, one for
integer and floating multiply, and one for integer and floating
divide. The multiply and divide units may or may not be pipelined.

The following is a brief outline of one way to organize a pipelined
design of the PRISM architecture. It should be emphasized that this
is only one model; other implementation models are also possible.

l. Instruction fetch - The instruction to execute is fetched
from the instruction cache.

2. Instruction decode and issue - The instruction is broken down
into its constituent parts and data-independent control and
address signals are generated. Before an instruction can
begin execution ("issue"} several constraints must be
satisfied:

o All source and destination registers for the instruction
must be free, i.e., there must be no outstanding writes
to a needed register from prior instructions.

INTRODUCTION Company Confidential
PRISM ARCHITECTURE OVERVIEW

Page l-5
22 December 1985

o The register write path must be available at the future
cycle in which this instruction will store its result.
Only one result can be stored into the registers per
cycle. All instructions have a fixed,
non-data-independent execution time, except loads, which
are predicted on the basis of cache hits.

o The function unit used by the instruction during
execution must be free. All units are pipelined (except
for divide) and so can accept a new scalar instruction
each machine cycle. A vector instruction reserves the
function unit.

When a memory load/store instruction experiences a cache
miss, at some point the load/store unit busy flag will
cause subsequent load/store instructions to hold-issue
until the miss completes.

When an instruction does issue, the destination register
and write path cycle for the result are reserved.

3. Operand setup All instruction-independent register
addresses are generated, operands are read and latched, and
data-dependent control signals are generated.

4. Instruction: execution - The instruction operands and control
signals are passed to a function unit for execution.

5. Result store - The result from the function unit is stored in
the register files or the cache as necessary.

Although this list is sequential, the five activities can be
pipelined. For instance, making control signals data-independent and
instruction formats regular means that more instruction decode and
operand access can be done in parallel, with less logic and greatly
simplified control.

Once an instruction issues, it may take multiple cycles before the
result of the calculation is available. Meanwhile, !n the next cycle
the next instruction can be decoded and, if all its issue conditions
are satisfied, it can be issued. Therefore, instructions are decoded
and issued in I-Stream order but because of the varying execution
times of different operations the results can be stored into the
registers out of I-Stream order. This complicates exception handling
and hardware retry of failing instructions: however, these are rare
events and the substantial performance gain and hardware savings from
out-of-order completion of compiler-scheduled code favors this
trade-off.

The regular nature of the instruction set and implementation result in
a simple set of rules compilers can use to schedule instructions and
thereby increase performance through parallel instruction execution.

INTRODUCTION Company Confidential Page 1-6
22 December 1985 ADVANTAGES AND DISADVANTAGES OF PRISM

1.4 ADVANTAGES AND DISADVANTAGES OF PRISM

The characteristics of the PRISM architecture will allow developers to
build processors with substantially more performance than a VAX for
the same hardware cost in the same technology. The reasons for this
are:

l. Fixed-length, quickly decoded instructions.

2. 64 scalar registers to reduce memory references and provide
more temporary registers for compiler instruction scheduling
and procedure use.

3. Parallel instruction execution and out-of-order instruction
completion.

4.

5.

No branch condition codes.

No complex compound instructions with internal data
dependencies, e.g., CALL/RET, CASE, ACBx, INSV/EXTV, Decimal.
Inline code for complex functions will be better than VAX
microcode because:

A compiler can pick the best code based on the knowledge
it has and can eliminate special checks, e.g., string

"'overlap, procedure entry mask,· sign of ACBx loop
increment, whether a bit field is in a register or
memory.

VAX microcode must maintain additional state so that in
the event of an exception or interrupt it can either
backup the instruction or save enough state to continue
via first part done.

VAX microcode must make many reserved operand checks that
add overhead, e.g., size and position operands in bit
field instructions with different checks depending on
whether the bit field is in registers or memory.

6. No microcode is required for instruction decode or execution.

7. A small instruction set emphasizing high frequency
operations. Far less logic is spent on functionality that
does not contribute to performance.

8. A larger branch displacement (22 bits versus 8 bits on VAX)
eliminates double branches for conditional branches.

9. A larger page size (8 Kbytes) improves Translation Buffer
(TB) effectiveness and allows the cache and TB lookup to
occur in parallel.

INTRODUCTION Company Confidential
ADVANTAGES AND DISADVANTAGES OF PRISM

The liabilities of the PRISM architecture are:

Page 1-7
22 December 1985

l. PRISM programs may require 2 to 3 times the code size (in
bytes) over VAX with a corresponding increase in instruction
stream bandwidth. However, this trade-off is preferred
because instruction cache miss rates are low and it is easier
to build more instruction stream bandwidth than massive
parallel instruction stream decode.

2. The 8-Kbyte page size will result in more memory
fragmentation. Declining memory costs will help offset this.

3. Unaligned references will be slower because they may be
implemented by macrocode.

4. Context switch time will increase because of the additional
scalar registers (and possibly vector registers) that must be
saved and restored.

1.5 VAX COMPATIBILITY

The PRISM architecture was constrained in a number of ways to support
our existing VAX customer base. The goal is to make it both possible
and easier for :a VAX customer to integrate PRISM with VAX and to move
an application to PRISM rather than to a competitor's machine. This
goal impacts both the architecture and the system software.

1. The architecture uses VAX data types and allows
addressing of memory.

byte

2. It is envisioned that the PRISM and VAX operating systems
will support clustering of PRISM and VAX processors. It is
also envisioned that the PRISM/VMS operating system will
provide a VAX/VMS-compatible file system, DECNET, DCL, and
functionally compatible system services, thus preserving the
customer's VAX computing environment.

3. The PRISM language compilers will retain their VAX-specific
language semantics, e.g., data types and parameter passing,
thus allowing customers to recompile most VAX programs
without alteration.

1.5.1 Compatibility Limitations

There are, however, some compatibility limitations between PRISM and
the VAX architecture that may require changes to some high-level
language programs in order to run them on PRISM.

INTRODUCTION Company Confidential Page 1-8
22 December 1985 VAX COMPATIBILITY

l. Floating-point arithmetic - There are no PRISM instructions
to compute D floating and H floating results. These
operations can be performed by software emulation.

PRISM has neither VAX POLY nor EMOD instructions.
instructions keep extra guard bits.

These

2. Memory protection granularity - PRISM has a page size larger
than VAX. Therefore, VAX programs which rely on 512-byte
protection granularity will not work.

3. Exceptions - Instructions may have been executed after an
instruction that signals an arithmetic exception. Exception
handlers that assume no further instructions have been
executed will not work without changes to make the exception
precise.

4. Dynamic instruction creation Programs which dynamically
construct and execute VAX instruction sequences and/or
calculate addresses or offsets based on the sizes of VAX
instructions will not work.

5. Instruction atomicity - Programs that rely on the atomicity
of VAX instructions may not work, e.g., a multi-threaded
application (such as an AST routine) in which shared memory
dat~ is guaranteed to be in a consistent state only between
VAX instructions with no other means of synchronization being
used. Any uninterruptable VAX instruction which makes more
than one memory reference, e.g., INCL mem or ADDL3
meml,mem2,mern3, could be used in this way. On PRISM the
operation would require multiple instructions and, depending
on where a thread was interrupted, stale data could be used.

6. Data structures - Code that depends upon VAX architected data
structures such as the VAX PSL or call frames will not work.

1.5.2 Why No VAX Compatibility Mode Is Provided

No VAX compatibility mode is provided in the PRISM architecture (in
the same way that PDP-11 compatibility mode is provided on VAX) for
the following reasons:

1. The complexity of the VAX architecture would make it very
expensive and difficult·to provide a VAX compatibility mode
with reasonable performance. VAX requires complex
instruction decode logic, special data path support, e.g.,
condition codes, different memory management, and a microcode
control store. This would defeat the purpose of a simplified
architecture.

INTRODUCTION
VAX COMPATIBILITY

Company Confidential Page 1-9
22 December 1985

2. The majority of applications are written in high-level
languages and can be recompiled. If programs are not
recompiled the performance gain from the additional PRISM
scalar registers, vector registers and instruction scheduling
is lost.

3. The desirable software goal is to cluster PRISM and VAX
processors so customer applications on VAXs can share data
with applications on PRISM. Customers will already own VAXs
on which to run those applications that they don't wish to
port to PRISM.

4. VAX memory management would be difficult to emulate without
giving up the advantage of a larger page size.

1.6 TERMINOLOGY AND CONVENTIONS

1. 6. l Numbering

All numbers are decimal unless otherwise indicated. Where there is
ambiguity, numbers other than decimal are indicated with the name of
the base foHowing the number in parentheses, e.g., FF (hex).

l.6.2 UNPREDICTABLE And UNDEFINED

RESULTS specified as UNPREDICTABLE may vary from moment
implementation to implementation, and instruction to
within implementations. Software can never depend
specified as UNPREDICTABLE.

to moment,
instruction

on results

OPERATIONS specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction
within implementations. The operation may vary in effect from
nothing, to stopping system operation. UNDEFINED operations must not
cause the processor to hang, i.e., reach an unhalted state from which
there is no transition to a normal state in which the machine executes
instructions.

Note the distinction between result and operation.
software cannot invoke UNDEFINED operations.

l.6.3 Ranges And Extents

Non-privileged

Ranges are specified by a pair of numbers separated by a w •• • and are
inclusive, e.g., a range of integers 0 •• 4 includes the integers 0, 1,
2, 3, and 4.

INTRODUCTION Company Confidential
TERMINOLOGY AND CONVENTIONS

Page 1-10
22 December 1985

Extents are specified by a pair of numbers in angle brackets separated
by a colon and are inclusive; e.g., bits <7:3> specify an extent of
bits including bits 7, 6, 5, 4, and 3.

1.6.4 Must Be Zero (MBZ)

Fields specified as Must Be Zero (MBZ) must never be filled by
software with a non-zero value. If the processor encounters a
non-zero value in a field specified as MBZ, an Illegal Operand
exception occurs. See Chapter 6, Exceptions and Interrupts, Section
6.4.4.

1.6.5 Read As Zero (RAZ)

Fields specified as Read As Zero (RAZ) return a zero when read.

1.6.6 Should Be Zero (SBZ)

Fields specified as Should Be Zero (SBZ) should be filled by software
with a zero value. These fields may be used at some future time.
Non-zer~ values in SBZ fields produce UNPREDICTABLE results.

1.6.7 Ignore (IGN)

Fields specified as Ignore (IGN) are ignored when written.

1.6.B Figure Drawing Conventions

Figures which depict registers or memory follow the convention that
increasing addresses run right to left and top to bottom.

NOTE

\A note on the manual format: At certain points in
the manual, comments on why certain decisions were
made, unresolved issues, etc., are between a pair of
backslashes. These comments are provide additional
clarification and will be removed from externally
distributed editions.\

INTRODUCTION
REVISION HISTORY

Company Confidential

Revision History:

Revision 1.0, 22 December 1985

l. Change register width from 64 bits to 32 bits.

2. Remove PC from scalar registers.

3. Specify RO reads zero, writes are ignored.

4. Specify SP mapped to register Rl.

5. Add vector registers.

Revision 0.0, 5 July 1985

l. First review distribution.

Page 1-11
22 December 1985

Company Confidential

CHAPTER 2

BASIC ARCHITECTURE

2.1 ADDRESSING

The basic addressable unit in PRISM is the B-bit byte. Virtual
addresses are 32 bits long: hence, the virtual address space is 2**32
(approximately 4.3 billion) bytes. Virtual addresses as seen by the
program are translated into physical memory addresses by the memory
management mechanism described in Chapter 5, Memory Management.

2.2 DATA TYPES

2.2.l Byte

A byte is eight contiguous bits starting on an addressable byte
boundary. The bits are numbered from right to left 0 through 7:

7 0
+---------------+
I I :A
+---------------+

Figure 2-1: Byte Format

A byte is specified by its address A.
byte is only supported in PRISM
instructions.

A byte is an 8-bit value. The
by zero extended load and store

BASIC ARCHITECTURE
DATA TYPES

2.2.2 Word

Company Confidential Page 2-2
22 December 1985

A word is two contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from right t_o left 0 through 15:

1
5 0

+-------------------------------+ I I :A

+-------------------------------+
Figure 2-2: Word Format

A word is specified by its address A.
word is only supported in PRISM
instructions.

NOTE

A word is a 16-bit value. The
by zero extended load and store

PRISM implementations are likely to impose a
significant performance penalty on access to word
operands that are not naturally aligned. (A naturally
aligned word has zero as the low order bit of its
address.)

NOTE

\On many of the VAX implementations unaligned operands
incurred approximately a 2x performance penalty, i.e.,
two memory references in place of one. It is expected

. that most PRISM implementations will implement
unaligned accesses via software exceptions with the
operating system providing emulation of the load or
store of the unaligned data. The performance penalty
may be expected to be up to a lOOx depending on the
particular implementation.\

BASIC ARCHITECTURE
DATA TYPES

Company Confidential Page 2-3
22 December 1985

2.2.3 Longword

A longword is four contiguous bytes starting on an arbitrary byte
boundary. The bits are numbered from right to left 0 through 31:

3
1 0

+---+
I :A
+---+

Figure 2-3: Longword Format

A longword is specified by its address A, the address of the byte
containing bit 0. When interpreted arithmetically, a longword is a
twos complement integer with bits of increasing significance going O
through 30. Bit 31 is the sign bit. The value of the integer is in
the range -2,147,483,648 •• 2,147,483,647. For the purposes of
addition, subtraction, and comparison, PRISM instructions also provide
direct support for the interpretation of a longword as an unsigned
integer with bits of increasing significance going 0 through 31. The
value of the unsigned integer is in the range o •• 4,294,967,295.

NOTE

PRISM implementations are likely to impose a
significant performance penalty on access to longword
operands that are not naturally aligned. (A naturally
aligned longword has zero as the low order two bits of
its address.)

BASIC ARCHITECTURE
DATA TYPES

Company Confidential Page 2-4
22 December 1985

2.2.4 Quadword

A quadword is eight contiguous bytes starting on an arbitrary byte
boundary. The bits are numbered from right to left 0 through 63:

3
1 0

+---+
I :A
+---+
I I :A+4
+---+

6 3
3 2

Figure 2-4: Quadword Format

A quadword is specified by its address A, the address of the byte
containing bit O. A quadword is a 64-bit value. The quadword is only
supported in PRISM by load and store instructions.

NOTE

PRISM implementations are likely to impose a
significant performance penalty on access to quadword
operands that are not naturally aligned. (A naturally
aligned quadword has zero as the low order three bits
of its address.)

BASIC ARCHITECTURE
DATA TYPES

2.2.5 F_floating

Company Confidential Page 2-5
22 December 1985

An F floating datum is four contiguous bytes starting on an arbitrary
byte-boundary. The bits are labeled from right to left 0 through 31.

1 1
5 4 7 6 0

+-+---------------+-------------+
ISi exp fraction :A
+-+---------------+-------------+
I fraction I :A+2
+-------------------------------+

Figure 2-5: F_floating Format

An F floating datum is specified by its address A, the address of the
byte- containing bit O. The form of an F floating datum is sign
magnitude with bit 15 the sign bit, bits <14:7>-an excess 128 binary
exponent, and bits <6:0> and <31:16> a normalized 24-bit fraction with
the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance go from 16 through 31
and 0 through 6. The 8-bit exponent field encodes the values 0
through 255. An exponent value of 0 together with a sign bit of O, is
taken to indicate that the F floating datum has a value of o.
Exponent values of 1 •• 255 indicate true binary exponents of -127 •• 127.
An exponent value of 0, together with a sign bit of 1, is taken as
reserved. Floating-point instructions processing a reserved operand
take an Arithmetic exception (see Chapter 6, Exceptions and
Interrupts, Section 6.4.l). The value of an F floating datum is in
the approximate range 0.29*10**-38 •• 1.7*10**38. The precision of an
F floating datum is approximately one part in 2**23, i.e., typically 7
decimal digits.

NOTE

PRISM implementations are likely to impose a
significant performance penalty on access to
F floating operands that are not naturally aligned.
(A naturally aligned F floating datum has zero as the
low-order two bits of its address).

BASIC ARCHITECTURE
DATA TYPES

Company Confidential Page 2-6
22 December 1985

2.2.6 G_floating

A G floating datum is eight contiguous bytes starting on an arbitrary
byte boundary. The bits are labeled from right to left 0 through 63:

l 1
5 4 4 3 0

+-+---------------------+-------+
ISi exp I fract I :A
+-+---------------------+-------+
I fraction I :A+2
+-------------------------------+
I fraction I :A+4
+-------------------------------+
I fraction I :A+6
+-------------------------------+

Figure 2-6: G_floating Format

A G floating datum is specified by its address A, the address of the
byte containing bit o. The form of a G floating datum is sign
magnitude with bit 15 the sign bit, bits <14:4>-an excess 1024 binary
exponent, and bits <3:0> and <63:16> a normalized 53-bit fraction with
the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance go from 48 through 63,
32 through 47, 16 through 31, and 0 through 3. The 11-bit exponent
field encodes the values 0 through 2047. An exponent value of O
together with a sign bit of 0, is taken to indicate that the
G floating datum has a value of o. Exponent values of 1 •• 2047
indicate true binary exponents of -1023 •• 1023. An exponent value of
0, together with a sign bit of 1, is taken as reserved.
Floating-point instructions processing a reserved operand take an
Arithmetic exception (see Chapter 6, Exceptions and Interrupts,
Section 6.4.1). The value of a G floating datum is in the approximate
range 0.56*10**-308 •• 0.9*10**308.- The precision of a G floating datum
is approximately one part in 2**52, i.e., typically 15 aecimal digits.

NOTE

PRISM implementations are likely to impose a
significant performance penalty on access to
G floating operands that are not naturally aligned.
(A naturally aligned G floating datum has zero as the
low-order three bits of-its address.)

•

BASIC ARCHITECTURE
DATA TYPES

Company Confidential

2.2.7 DATA TYPES WITH NO HARDWARE SUPPORT

Page 2-7
22 December 1985

The following VAX data types are not directly supported in PRISM
hardware, (see the VAX Architecture Standard for detailed information
on these data types)-.--

0 Octaword

0 D_floating

0 H_floating

0 Variable Length Bit Field

0 Character String

0 Trailing Numeric String

0 Leading Separate Numeric String

0 Packed Decimal String

0 Queues

BASIC ARCHITECTURE
REVISION HISTORY

Revision History:

Company Confidential

Revision 1.0, 22 December 1985

Page 2-8
22 December 1985

1. Removed signed and unsigned descriptions for Byte, Word, and
Quadword.

2. Changed formatting as per Rev 1.0 format.

Revision 0.0, July 5, 1985

1. First Review Distribution

Company Confidential

CHAPTER 3

INSTRUCTION FORMATS

3.1 PRISM REGISTERS

3.1.1 Scalar Registers

There are 64 scalar registers (RO through R63), each 32 bits wide. Rl
is the stack pointer (SP).

When RO is specified as a register source operand, a zero valued
operand is supplied. When RO is specified as a register destination,
the result of the operation is discarded. If an exception is detected
during the execution of an instruction that specifies RO as the
destination, it is UNPREDICTABLE whether or not the exception is
actually signaled.

Some instructions read and write quadword register operands. Quadword
register operands must be specified in even-odd register pairs. Bits
<31:0> of the quadword are in the even register and bits <63:32> are
in the odd register. If bit <O> of an instruction register field
specifying a quadword operand is not 0, the result of the operation is
UNPREDICTABLE. '

When RO is specified as a quadword source operand, bits <31:0> are
zero and bits <63:32> are UNPREDICTABLE. When RO is specified as a
quadword destination, bits <31:0> are ignored (IGN) and bits <63:32>
(the contents of Rl) are UNPREDICTABLE.

3.1.2 Vector Registers

There are 16 vector registers, each containing 64 elements numbered 0
through 63. Each element is 64 bits wide. A vector instruction that
reads or writes longword or F_floating data reads bits <31:0> of each
source element and writes bits <31:0> of each destination element.
Bits <63:32> of the destination element are UNPREDICTABLE.

If the same vector register is used as both a source and a destination
in a Vector Gather (VGATH) instruction, the result of the operation is
UNPREDICTABLE.

INSTRUCTION FORMATS
PRISM REGISTERS

Company Confidential Page 3-2
22 December 1985

The 6-bit Vector Length regis~er (VL) controls how many vector
elements are processed. VL is loaded prior to executing a vector
instruction. Once loaded, VL specifies the length of all subsequent
vector instructions until VL is loaded with a new value. When VL is
zero, 64 elements are processed; otherwise VL elements are processed.

The Vector Mask register (VM) has 64 bits, each corresponding to an
element in a vector register. Bit 0 corresponds to vector element o.
The vector mask is used by the vector compare, merge, and IOTA
instructions.

The 7-bit Vector Count register (VC) receives the length of the offset
vector generated by the IOTA instruction.

3.1.3 Program Counter

The Program Counter (PC) is a special register that addresses the
instruction stream. As each instruction is decoded the PC is advanced
to the beginning of the next sequential instruction. This is referred
to as the •updated Pc.• Any instruction that uses the value of the PC
will use the updated PC. The PC includes only bits <31:2> with bits
<l:O> treated as RAZ/IGN. This quantity is a longword aligned byte
address. The PC is not mapped to a scalar register, rather it is an
implied operand on conditional branch and subroutine jump
instructions.

3.2 NOTATION

The notation used to describe the operation of each instruction is
given as a sequence of control and assignment statements in an
ALGOL-like syntax.

3.2.1 Scalar Operand Values

The notations Rav and Rbv are used to denote the values of the two
scalar source operands, Ra and Rb.

Rav refers to the value of the Ra operand. This could be the contents
of scalar register Ra or a zero extended 8-bit literal in the case of
an Operate format instruction. If the instruction calls for a
quadword operand then the contents of the even-odd register pair
designated by Ra is used or again, a zero extended 8-bit literal may
be specified.

Rbv refers to the
scalar register
then the contents
used.

value of the Rb operand. This is the contents of
Rb. If the instruction calls for a quadword operand
of the even-odd register pair designated by Rb is

INSTRUCTION FORMATS
NOTATION

Company Confidential Page 3-3
22 December 1985

Other Expression Operands:

IPR x

PC

PS

QRn

Rn

Vn

X[m]

3.2.2 Operators

Contents of Internal Processor Register x

Updated PC value

Processor Status

Quadword contents of even-odd scalar register n

Contents of scalar register n

Vector register n

Element m of array X

The following operators are used:

+

*
*U

I

<-

11

{}

(x)

x<m:n>

ACCESS(x,y)

AND

BIT_ROTATE(x,y)

Comment delimiter

Addition

Subtraction

Signed multiplication

Unsigned multiplication

Division

Replacement

Bit concatenation

Indicates explicit operator precedence

Contents of memory location whose address is x

Contents of bit field of x defined by bits
n thru m

Accessibility of the location whose address is x
using the access mode y.

Logical product

Left circular shift of the first operand by the
second operand

INSTRUCTION FORMATS
NOTATION

Company Confidential Page 3-4
22 December 1985

LEFT_SHIFT(x,y) Logical left shift of first operand by the second
operand

NOT

OR

RELATIONSHIP

LT

LTU

LE

LEU

EQ

NE

GE

GEU

GT

GTU

Logical (ones) complement

Logical sum

Less than signed

Less than unsigned

Less or equal signed

Less or equal unsigned

Equal signed and unsigned

Not equal signed and unsigned

Greater or equal signed

Greater or equal unsigned

Greater signed

Greater unsigned

REM(x,y) Remainder of x and y, such that x REM y has the
same sign as the dividend x

ARITH_SHIFT(x,y) Arithmetic shift right of first operand by the
second operand

RIGHT_SHIFT(x,y) Logical right shift of first operand by the
second operand

SEXT(x)

TEST(x)

XOR

ZEXT(x)

X is sign extended to the required size

Contents of register x tested for branch
condition true

Logical difference

X is zero extended to the required size

The following conventions are used:

l. Only operands appearing on the left-hand
replacement operator are modified.

side of a

INSTRUCTION FORMATS
NOTATION

Company Confidential Page 3-5
22 December 1985

2. No operator precedence is assumed other than that replacement
(<-) has the lowest precedence. Explicit precedence is
indicated by the use of "{}."

3. All arithmetic, logical, and relational operators
in the context of their operands. For example,
to G floating operands means a G floating add
applTed to longword operands is an integer add.
"LS" is a G floating comparison when applied to
operands and an integer comparison when applied
operands.

3.3 INSTRUCTION FORMATS

There are five PRISM instruction formats. They are:

l. Memory

2. Branch

3. Operate

4. Epicode

s. Coprocessor

are defined
"+" applied
while "+"
Similarly,
G_floating

to longword

All instruction formats are 32 bits long with a 6-bit major opcode
field in bits <31:26> of the instruction. There are up to three 6-bit
register fields, Ra, Rb, and Re, in an instruction.

Each format is described below.

3.3.l Memory Instruction Format

The Memory format is used to transfer data between scalar registers
and memory, loading an effective address, and for subroutine jumps.
It has the following format:

INSTRUCTION FORMATS
INSTRUCTION FORMATS

3
l

2 2
6 5

Company Confidential

2 l
0 9

l l
4 3

Page 3-6
22 December 1985

0
+-----------+-----------+-----------+---------------------------+
I opcode I Ra I Rb I Memory_disp I
+-----------+-----------+-----------+---------------------------+

Figure 3-1: Memory Instruction Format

There is a 6-bit opcode field, two 6-bit register address fields, Ra
and Rb, and a 14-bit signed displacement field.

The displacement field is a signed byte offset and is added to the
contents of register Rb to form a virtual address.

The virtual address is used as a memory load/store address or a result
value depending on the specific instruction. The virtual address (va)
is computed as follows:

va <- Rbv + SEXT(Memory_disp)

3.3.2 Branch Instruction Format

The Branch format is used for the conditional branch instructions and­
PC relative subroutine jumps. It has the following format:

3
l

2 2
6 5

2 1
0 9 0

+-----------+-----------+---------------------------------------+
I opcode I Ra I Branch_disp I
+-----------+-----------+---------------------------------------+

Figure 3-2: Branch Instruction Format

There is a 6-bit opcode field, one 6-bit register address field (Ra),
and a 20-bit signed displacement field.

The displacement is treated as a signed longword offset. This means
it is shifted left two bits {to address a longword boundary), sign
extended to 32 bits and added to the updated PC to form the target
virtual address. The target virtual address {va) is computed as
follows:

va <- PC+ {4*SEXT(Branch_disp)}

INSTRUCTION FORMATS
INSTRUCTION FORMATS

Company Confidential

3.3.3 Operate Instruction Format

Page 3-7
22 December 1985

The Operate format is used for instructions that perform
register-to-register operations. The Operate format allows the
specification of one destination operand and two source operands. One
of the source operands can be a literal constant. The Operate format
is shown below for the two cases when bit <8> of the instruction, the
Literal field (L), is 0 and l.

3
l

2 2
6 5

2 l
0 9

l l
4 3 9 8 7 6 5 0

+-----------+-----------+-----------+---------+-+---+-----------+
I opcode I Ra I Rb I func IOISBZI Re
+-----------+-----------+-----------+---------+-+---+-----------+
+-----------+-----------+-----------+---------+-+---+-----------+
I opcode I lit I Rb I func llllitl Re
+-----------+-----------+-----------+---------+-+---+-----------+

Figure 3-3: Operate Instruction Format

There is a 6-bit opcode field and a 5-bit function field (func).
Unused function encodings produce UNPREDICTABLE but not UNDEFINED

~ results: i.e., they are not security holes.

There are three operand fields, Ra, Rb, and Re.
specifies either a scalar or vector operand
instruction. If a vector operand field contains
number greater than 15, the result of the
UNPREDICTABLE. Note that vector register VO can
scalar register RO.

Each operand field
as defined by the
a vector register

vector operation is
contain data, unlike

The Ra field specifies a source operand. Scalar operands can specify
a literal or a scalar register using the literal control bit (L) in
the instruction. Vector operands can specify a vector register only.
The result of the vector operation is UNPREDICTABLE if a literal is
specified for a vector operand.

If L is O, the Ra field specifies a source register operand. Bits
<7:6> of the instruction Should Be Zero.

If L is 1, an 8-bit zero extended literal constant is formed by
combining the Ra field with bits <7:6> of the instruction. The
literal is interpreted as a positive integer between 0 and 255 and is
zero extended to 32 bits (64 bits for quadword operands).
Symbolically the scalar Rav operand is formed as follows,

INSTRUCTION FORMATS
INSTRUCTION FORMATS

Company Confidential Page 3-8
22 December 1985

IF L EQ 1 THEN
Rav <- ZEXT(inst<25:20>

ELSE
BEGIN
Rav <- Ra
QRav <- QRa
END

I I inst<7: 6>)

!longword
!quadword

The Rb field specifies a source operand. Symbolically the scalar Rbv
operand is formed as follows,

Rbv <- Rb
QRbv <- QRb

!longword
!quadword

The Re field specifies a destination operand.

3.3.3.1 Convert Instructions

Convert instructions use a subset of the Operate format and perform
register-to-register conversion operations. The Ra operand specifies
the source and the Rb field Should Be Zero.

3.3.4 Epicode Instruction Format

The Extended Processor Instruction (Epicode) format is used to specify
extended processor functions. It has the following format:

3
1

2 2
6 5

1 1
4 3 6 5 0

+-----------+-----------------------+---------------+-----------+
I opcode I//////// SBZ //////////1 Epicode func I/// SBZ ///I
+-----------+-----------------------+---------------+-----------+

Figure 3-4: Epicode Instruction Format

The 8-bit Epicode function field specifies the operation.

The source and destination operands for Epicode
supplied in fixed scalar registers that are
individual instruction descriptions.

instructions
specified in

are
the

An opcode of zero and an Epicode function of zero specify the HALT
instruction.

\The Epicode function field can be used to form a hardware dispatch
address. The processor transfers control to a function specific
Epicode routine. Many of the complex instructions that implement the
privileged architecture, e.g., MxPR, REI, etc., are implemented as

INSTRUCTION FORMATS
INSTRUCTION FORMATS

Company Confidential Page 3-9
22 December 1985

Epicode routines. In addition, memory management (TB fill) and
hardware exception handling (Translation Not Valid fault, arithmetic
trap) may be performed in Epicode. However, some Epicode functions
may be implemented in hardware.

Epicode instructions must drain the pipeline so that user exceptions
resulting from prior instructions will not be reported after entering
the Epicode routine. The signaling of user exceptions has priority
over the execution of the Epicode instruction. See Chapter 10 on
Epicode for more details.\

3.3.5 Coprocessor Instruction Format

The Coprocessor format is used for reading and writing Coprocessor
registers. It has the following format:

3
1

2 2
6 5

2 1
0 9

1
0 9 8 0

+-----------+-----------+-------------------+-+-----------------+ I opcode I Ra I Co-Pree Control ITI Co-Proc Address I
+-----------+-----------+-------------------+-+-----------------+

Figure 3-5: Coprocessor Instruction Format

There is a 6-bit opcode field, a 6-bit Ra field, a 10-bit Coprocessor
control field, a 1-bit trap enable field (T), and a 9-bit Coprocessor
address field.

The Ra field on a Coprocessor Read or Write specifies a PRISM
destination or source scalar register, respectively.

The Coprocessor control field is transmitted to the coprocessor to
control the operation performed.

The Coprocessor address field selects a specific coprocessor in a
system with multiple coprocessors.

The trap enable field (T) is used to enable exceptions on transactions
with a coprocessor. See Chapter 4, Instruction Descriptions, Page
4-99.

The Coprocessor instruction format may be omitted in a subset
implementation that does not provide a Coprocessor interface.

INSTRUCTION FORMATS
REVISION HISTORY

Revision History:

Company Confidential

Revision 1.0, 22 December 1985

l. Change register width from 64 bits to 32 bits.

2. Remove PC from scalar registers.

3. Specify RO reads zero, writes are ignored.

4. Specify SP mapped to register Rl.

5. Defined quadwords in even-odd register pairs.

6. Renamed Move format to Memory format.

Page 3-10
22 December 1985

7. Changed Operate format to write Re and use Ra field for
literal.

8. Eliminated Operate format address calculation.

9. Eliminated JSR and Convert format descriptions.

10. Added vector registers, VM, VL, vc.
ll. Added Coprocessor instruction format.

Revision 0.0, 5 July 1985

1. First review distribution.

Company Confidential

CHAPTER 4

INSTRUCTION DESCRIPTIONS

4.1 INSTRUCTION SET OVERVIEW AND NOTATION

This Chapter describes the instructions
architecture. The instruction set is
sections:

1. Memory Load and Store

2. Integer arithmetic

3. Logical and Shift

4. Floating-point arithmetic

5. Control

6. Miscellaneous

7. Privileged

8. Coprocessor

implemented by the PRISM
divided into the following

Within each major section, closely related instructions are combined
into groups and described together. The instruction group description
is composed of the following:

o The group name.

o The format of each instruction in the group. This gives the
name, access type, and data type of each instruction operand.

o The operation of the instruction.

o Exceptions specific to the instruction.

o The mnemonic and name of each instruction in the group.

INSTRUCTION DESCRIPTIONS Company Confidential
INSTRUCTION SET OVERVIEW AND NOTATION

o A description of the instruction operation.

Page 4-2
22 December 1985

o Programming examples and optional notes on the instruction.

4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the PRISM
architecture means that the instruction is not performed in either
hardware or Epicode. System software may provide emulation routines
for subsetted instructions. The following groups of instructions may
be omitted as a group in a subset implementation. If one instruction
in a group is provided then all other instructions in that group must
be provided.

1. Integer Multiplication (MULV, MULL, MULH, UMULH)

2. Integer Division and Remainder (DIV, DIVV, REM)

3. Add F floating (ADDF, ADDFZ, ADDFU, ADDFUZ)
Subtrict F floating (SUBF, SUBFZ, SUBFU, SUBFUZ)
Compare F Iloating (CMPFEQ, CMPFNE, CMPFLT, CMPFLE, CMPFGT,
CMPFGE) -

4. Convert Longword Integer to F floating (CVTLF; CVTLFZ)
Convert F_floating to Longwora Integer (CVTFL, CVTFLZ)

5. Convert F floating to G floating (CVTFG)
Convert G-floating to -F_floating (CVTGF, CVTGFZ, CVTGFU,
CVTGFUZ) -

6. Multiply F_floating (MULF, MULFZ, MULFU, MULFUZ)

7. Divide F_floating (DIVF, DIVFZ, DIVFU, DIVFUZ)

8. Add G floating (ADDG, ADDGZ, ADDGU, ADDGUZ)
Subtrict G floating (SUBG, SUBGZ, SUBGU, SUBGUZ)
Compare G Iloating (CMPGEQ, CMPGNE, CMPGLT, CMPGLE, CMPGGT,
CMPGGE) -

9. Convert Longword Integer to G floating (CVTLG)
Convert G_f loating to Longword Integer (CVTGL, CVTGLZ)

10. Multiply G_floating (MULG, MULGZ, MULGU, MULGUZ)

11. Divide G_floating (DIVG, DIVGZ, DIVGU, DIVGUZ)

12. The vector instructions (including the instructions that read
and write vector count (VC), vector length (VL), and vector
mask (VM))

INSTRUCTION DESCRIPTIONS Company Confidential
INSTRUCTION SET OVERVIEW AND NOTATION

Page 4-3
22 December 1985

13. Coprocessor instructions (COPRD, COPWR)

The individual instruction
instruction can be subsetted.

4.1.2 Vector Instructions

descriptions indicate whether an

The PRISM architecture provides vector instructions for most
arithmetic and data movement operations. There are 16 vector
registers, each 64 elements long. All vector instructions use the
Operate instruction format. Most vector instructions get their source
operands from one or two vector registers and write their results to
another vector register. There are also vector load and store
instructions to move data between memory and the vector registers.

Generally two variations of each vector instruction is provided.
operates on data from two vector registers and writes the result
a destination vector register. The other variant operates on
from a scalar register and a vector register, writing the result
a destination vector register.

One
into
data
into

The instruction descriptions distinguish the two variations by
specifying in the first instruction operand position a vector operand
(Va) or a scalar operand (Ra or a literal). This corresponds to the
register field "Ra" in the Operate format instruction. The actual
opcode assignment for each variation is different.

Vector instructions are only executed when Vector Enable (VEN) is set
in the Processor Status (PS). If PS<VEN> is clear, a Vector Enable
exception is generated when a vector instruction is executed. See
Chapter 6, Exceptions and Interrupts, Sections 6.2 and 6.4.4.3.

4.1.3 Instruction Operand Notation

The notation·used to describe instruction operands follows from the
operand specifier notation used in the VAX Architecture Standard.
Instruction operands are described as followS:-

where:

1.

<narne>.<access type><data type>

Name specifies the instruction field (Ra, Rb, Re, or
and register type of the operand (scalar or vector).
be one of the following:

o disp - The displacement field of the instruction.

disp)
It can

o Ra - A scalar register operand in the Ra field of the
instruction.

INSTRUCTION DESCRIPTIONS Company Confidential Page 4-4
INSTRUCTION SET OVERVIEW AND NOTATION 22 December 1985

0 #a - A scalar literal operand in the Ra field of the
instruction.

0 Rb - A scalar register operand in the Rb field of the
instruction.

0 Re - A scalar register operand in the Re field of the
instruction.

0 Va - A vector register operand in the Ra field of the
instruction.

0 Vb - A vector register operand in the Rb field of the
instruction.

0 Ve - A vector register operand in the Re field of the
instruction.

2. Access type is a letter denoting the operand access type:

3.

o a - The operand is used in an address calculation to
form an effective address. The data type code which
follows indicates the units of addressability (or scale
factor) applied to this operand when the instruction is
decoded, e.g., •.al" means scale by~ (longwords) to get
byte units (used in branch displacements), •.ab" means
the operand is already in byte units (used in load/store
instructions).

o i - The operand is an 8-bit immediate literal in the
instruction.

o r - The operand is read only.

o w - The operand is write only.

Data type is a letter denoting the data type of the operand:

0 b - Byte

0 f - F_floating

0 g - G_f loating

0 1 - Longword

0 q - Quadword

0 w - Word

0 x - The data type is specified by the instruction

INSTRUCTION DESCRIPTIONS Company Confidential
INSTRUCTION SET OVERVIEW AND NOTATION

Page 4-5
22 December 1985

Quadword and G floating data that are in scalar registers
must be in even-odd register pairs. The even register number
should be specified in the instruction register fields.

..
'

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

4.2 MEMORY LOAD/STORE INSTRUCTIONS

Page 4-6
22 December 1985

The instructions in this section move data between the scalar
registers and memory, move data between the vector registers and
memory, and perform interlocked operations on shared memory data.

They use the Memory and Epicode instruction formats. The instructions
are summarized below:

Mnemonic Operation -------- ---------
LOA Load Address

LDB Load Zero Extended Byte
LDW Load Zero Extended Word
LDL Load Longword
LDQ Load Quadword

RMAQI Read, Mask, Add Quadword, Interlocked

STB Store Byte
STW Store Word
STL Store Longword
STQ Store Quadword

VLDL Vector Load Longword:
VLDQ Vector Load Quadword
VGATHL Vector Gather Longword
VGATHQ Vector Gather Quadword

VSTL Vector Store Longword
VSTQ Vector Store Quadword
VSCATQ Vector Scatter Quadword
VSCATL Vector Scatter Longword

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

Load Address

Format:

LDA disp.ab(Rb.ab),Ra.wl

Operation:

Ra <- Rbv + SEXT(disp)

Exceptions:

None

Opcodes:

LDA Load Address

Description:

Page 4-7
22 December 1985

!Memory format

The virtual address is computed by adding register Rb to the sign
extended 14-bit displacement. The 32-bit result is written to
register Ra.

When Rb is RO the signed 14-bit displacement is written to register
Ra.

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

Load Memory Data into Scalar Register

Format:

LD disp.ab(Rb.ab),Ra.wx

Operation:

va <- Rbv + SEXT(disp)

Ra <- ZEXT((va)<7:0>)
Ra <- ZEXT((va)<l5:0>)
Ra <- (va)<31:0>
QRa <- (va)<63:0>

Exceptions:

Opcodes:

Access Violation
Fault On Read
Scalar Alignment
Translation Not Valid

!LDB
!LDW
!LDL
!LDQ

Page 4-8
22 December 1985

!Memory format

LDB Load Zero Extended Byte from Memory to Register
LDW Load Zero Extended Wor~ from Memory to Register
LDL Load Longword from Memory to Register
LDQ Load Quadword from Memory to Register Pair

Description:

The virtual address is computed by adding register Rb to the sign
extended 14-bit displacement. The source operand is fetched from
memory, zero extended to a longword for LDB and LDW, and written to
register Ra.

LDQ fetches a quadword from memory and writes it to the even-odd
register pair specified by Ra.

Software Note:

In some implementations these instructions may be emulated if the
memory operand is not naturally aligned. This could be on the order
of 100 times slower. Consequently, when compilers can detect this,
e.g., a field in a packed record, they should emit the
multi-instruction sequence inline to fetch the operand in pieces
rather than incur the emulation overhead.

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

Read, Mask, Add Quadword Interlocked

Format:

Page 4-9
22 December 1985

RMAQI !Epicode format

Operation:

R4 contains the quadword aligned virtual address
QR6 contains the quadword mask data
QR8 contains the quadword addend data
QR4 receives the quadword read data

addr <- R4
IF addr<2:0> NE 0 THEN

{Illegal Operand exception}

{check for ACV, FOR, FOW, TNV and take Memory Management exception}

QR4 <- (addr){interlocked} !acquire hardware interlock.

(addr){interlocked} <- {QR4 AND QR6} + QR8
!release hardware interlock

Exceptions:

Opcodes:

Access Violation
Fault On Read
Fault On Write
Illegal Operand
Translation Not Valid

RMAQI Read, Mask, Add Quadword, Interlocked

Description:

The quadword aligned memory operand, whose virtual address is in R4,
is fetched and written to QR4. The memory operand is ANDed with the
mask in QR6 and then added to the addend data in QR8. The result is
then written to the original memory location.

This instruction performs an interlocked memory access in that no
other processor in a multiprocessor system can perform an interlocked
operation on the same operand until the current interlocked operation
has completed.

If the operand address in R4 is not quadword aligned an Illegal
Operand exception is signaled. The operation is UNPREDICTABLE if
RMAQI accesses I/O space. If both Fault On Read and Fault On Write
conditions exist, it is UNPREDICTABLE which is taken.

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

Store Scalar Register Data into Memory

Format:

Page 4-10
22 December 1985

ST Ra.rx,disp.ab(Rb.ab) !Memory format

Operation:

va <- Rbv + SEXT(disp)

(va) <- Rav<7:0>
(va) <- Rav<l5:0>
(va) <- Rav
(va) <- QRav

Exceptions:

Opcodes:

Access Violation
Fault On Write
Scalar Alignment
Translation Not Valid

!STB
!STW
!STL
!STQ

STB Store Byte from Register to Memory
STW Store Word from R~gister to Memory
STL Store Longword from Register to Memory
STQ Store Quadword from Register Pair to Memory

Description:

The virtual address is computed by adding register Rb to the sign
extended 14-bit displacement. The Ra operand is written to memory at
this address.

STQ stores to memory the contents of the even-odd register pair
specified by Ra.

Software Note:

In some implementations these instructions may be emulated if the
memory operand is not naturally aligned. This could be on the order
of 100 times slower. Consequently, when compilers can detect this,
e.g., a field in a packed record, they should emit the
multi-instruction sequence inline to store the operand in pieces
rather than incur the emulation overhead.

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

Load Memory Data into Vector Register

Format:

VLD
VLD

Operation:

Ra.rl,Rb.rl,Vc.wx
#a.ib,Rb.rl,Vc.wx

va <- Rbv
FOR i <- 0 TO VL-1

BEGIN
IF {va unaligned} THEN

{Vector Alignment Exception}

Vc[i] <- (va)<31:0> !VLDL
Vc[i] <- (va)<63:0> !VLDQ

Page 4-11
22 December 1985

! Operate format

va <- va +Rav !Increment by stride
END

Exceptions:

Opcodes:

Access Violation
Fault On Read
Translation Not Valid
Vector Alignment

VLDL
VLDQ

Load Longword Vector from Memory to Vector Register
Load Quadword Vector from Memory to Vector Register

Description:

The source operand vector is fetched from memory and written to vector
register Ve. The length of the vector is specified by the VL
register. The virtual address of the vector is computed using the
base address in Rb and the stride in Ra. The address of element i
(0 LE i LE VL-1) is computed as {Rbv + {i*Rav}}. The stride can be
either positive or negative.

In VLDL, bits <31:0> of each destination vector element receive the
memory data and bits <63:32> are UNPREDICTABLE.

If the vector operand is not naturally aligned in memory a Vector
Alignment exception occurs.

An implementation may allow multiple vector streams or scalar and
vector streams to proceed concurrently on the same processor. It is
the responsibility of software to determine when read/write memory
data conflicts might produce incorrect results and insert DRAIN
instructions to ensure correct operation.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

Gather Memory Data into Vector Register

Format:

VGATH
VGATH

Ra.rl,Vb.rl,Vc.wx
#a.ib,Vb.rl,Vc.wx

Operation:

FOR i <- 0 TO VL-1
BEGIN
va <-Rav+ Vb[i]<31:0>
IF {va unaligned} THEN

{Vector Alignment exception}

Vc[i] <- (va)<31:0>
Vc[i] <- (va)<63:0>
END

Exceptions:

Opcodes:

Access Violation
Fault On Read
Translation Not Valid
Vector Alignment

!VGATHL
!VGATHQ

Page 4-12
22 December 1985

!Operate format

VGATHL
VGATHQ

Gather Longword Vector from Memory to Vector Register
Gather Quadword Vector from Memory to Vector Register

Description:

The source operand vector is fetched from memory and written to vector
register Ve. The length of the vector is specified by the VL
register. The virtual address of the vector is computed using the
base address in Ra and the longword element offsets in vector register
Vb. The address of element i (0 LE i LE VL-1) is computed as
{Rav+ Vb[i]}. The longword element offset can be either positive or
negative.

In VGATHL, bits <31:0> of each destination vector element receive the
memory data and bits <63:32> are UNPREDICTABLE.

If any vector element is not naturally aligned in memory, a Vector
Alignment exception occurs.

An implementation may allow multiple vector streams or scalar and
vector streams to proceed concurrently on the same processor. It is
the responsibility of software to determine when read/write memory
data conflicts might produce incorrect results and insert DRAIN
instructions to ensure correct operation.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

Note:

Page 4-13
22 December 1985

If the same vector register is used as both a source (Vb) and a
destination (Ve), the result of the operation is UNPREDICTABLE.

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

Store Vector Register Data into Memory

Format:

VST
VST

Ra.rl,Rb.rl,Vc.rx
#a.ib,Rb.rl,Vc.rx

Operation:

va <- Rbv

FOR i <- 0 TO VL-1
BEGIN
IF {va unaligned} THEN

{Vector Alignment exception}

(va) <- Vc[i]<31:0>
(va) <- Vc[i]
va <- va + Rav
END

Exceptions:

Opcodes:

Access Violation
Fault On Write
Translation Not Valid
Vector Alignment

Page 4-14
22 December 1985

! Operate format

!VSTL
!VSTQ
!Increment by stride

VSTL
VSTQ

Store Longword Vector from Vector Register to Memory
Store Quadword Vector from Vector Register to Memory

Description:

The source operand vector is read from vector register Ve and written
to memory. The length of the vector is specified by the VL register.
The virtual address of the vector is computed using the base address
in Rb and the stride in Ra. The address of element i (0 LE i LE VL-1)
is computed'as {Rbv + {i*Rav}}. The stride can be either positive or
negative.

If the vector operand is not naturally aligned in memory, a Vector
Alignment exception occurs.

An implementation may allow multiple vector streams or scalar and
vector streams to proceed concurrently on the same processor. It is
the responsibility of software to determine when read/write memory
data conflicts might produce incorrect results and insert DRAIN
instructions to ensure correct operation.

The order in which the elements are stored is UNPREDICTABLE.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
MEMORY LOAD/STORE INSTRUCTIONS

Scatter Vector Register Data into Memory

Format:

VSCAT
VSCAT

Ra.rl,Vb.rl,Vc.rx
#a.ib,Vb.rl,Vc.rx

Operation:

FOR i <- 0 TO VL-1
BEGIN
va <- Rav+ Vb[i]<31:0>
IF {va unaligned} THEN

{Vector Alignment exception}

(va) <- Vc[i]<31:0>
(va) <- Vc[i]
END

Exceptions:

Opcodes:

Access Violation
Fault On Write
Translation Not Valid
Vector Alignment

Page 4-15
22 December 1985

!Operate format

!VSCATL
!VSCATQ

VSCATL
VSCATQ

Scatter Longword Vector from Vector Register to Memory
Scatter Quadword Vector from Vector Register to Memory

Description:

The source operand vector is read from vector register Ve and written
to memory. The length of the vector is specified by the VL register.
The virtual ~ddress of the vector is computed using the base address
in Ra and the longword element offsets in vector register Vb. The
address of element i (0 LE i LE VL-1) is computed as {Rav+ Vb[i]}.
The longword element offset can be either positive or negative.

If any vector element is not naturally aligned in memory, a Vector
Alignment exception occurs.

An implementation may allow multiple vector streams or scalar and
vector streams to proceed concurrently on the same processor. It is
the responsibility of software to determine when read/write memory
data conflicts might produce incorrect results and insert DRAIN
instructions to ensure correct operation.

An implementation may store the vector elements in
therefore, the order in which the elements are
UNPREDICTABLE.

parallel:
stored is

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Page 4-16
22 December 1985

4.3 INTEGER ARITHMETIC INSTRUCTIONS

The integer arithmetic instructions perform add, subtract, multiply,
divide, remainder, and signed and unsigned compare operations.

The integer instructions are summarized below:

Mnemonic

ADD
ADDV

CMPEQ
CMPNE
CMPLT
CMPLE
CMPGT
CMPGE

CMPULT
CMPULE
CMPUGT
CMPUGE

DIV
DIVV

REM

MULV
MULL
MULH
UMULH

SUB
SUBV

Operation

Add Longword with no Overflow Detect
Add Longword with Overflow Detect

Compare Signed Longword Equal
Compare Signed Longword Not Equal
Compare Signed Longword Less Than
Compare Signed Longword Less Than or Equal
Compare Signed Longword Greater Than
Compare Signed Longword Greater Than or Equal

Compare Unsigned Longword Less Than
Compare Unsigned Longword Less Than or Equal
Compare Unsigned Longword Greater Than
Compare Unsigned Longword Greater Than or Equal

Divide Longword with no overflow Detect
Divide Longword with overflow Detect

Longword Remainder

Multiply Longword with overflow Detect
Multiply Longword and Return Low 32 Product Bits
Multiply Longword and Return High 32 Product Bits
Unsigned Multiply Longword and Return High 32
Product Bits

Subtract Longword with no overflow Detect
Subtract Longword with Overflow Detect

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Page 4-17
22 December 1985

Mnemonic

VADD
VADDV

VCMPEQ
VCMPNE
VCMPLT
VCMPLE
VCMPGT
VCMPGE

VDIV
VDIVV

VREM

VMULL
VMULV

VSUB
VSUBV

Operation

Vector Add Longword with no Overflow Detect
Vector Add Longword with Overflow Detect

Vector Compare Signed Longword Equal
Vector Compare Signed Longword Not Equal
Vector Compare Signed Longword Less Than
Vector Compare Signed Longword Less Than or Equal
Vector Compare Signed Longword Greater Than
Vector Compare Signed Longword Greater Than or Equal

Vector Divide Longword with no Overflow Detect
Vector Divide Longword with Overflow Detect

Vector Longword Remainder

Vector Multiply Longword and Return Low 32 Product
Vector Multiply Longword with Overflow Detect

Vector Subtract Longword with no Overflow Detect
Vector Subtract Longword with Overflow Detect

Bits

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Integer Add

Format:

ADD
ADD

Operation:

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

Re <- Rav + Rbv

Exceptions:

Integer Overflow

Opcodes:

Add Integer with no Overflow Detect

Page 4-18
22 December 1985

!Operate format

ADD
ADDV Add Integer with Longword Overflow Detect

Description:

Register Ra or a literal is added to register Rb and the 32-bit sum is
written to register Re. If integer overflow is detected, an Integer
Overflow exception occurs.

The unsigned~compare instructions can be used to generate carry.
After adding two values, if the sum is less unsigned than either one
of the inputs, there was a carry out of the most significant bit.

. ~.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Integer Signed Compare

Format:

Page 4-19
22 December 1985

CMP
CMP

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

!Operate format

Operation:

IF Rav SIGNED RELATION Rbv THEN
Re <- 1 -

ELSE
Re <- 0

Exceptions:

Opcodes:

None

CMPEQ
CMPNE
CMPLT
CMPLE
CMPGT
CMPGE

Description:

Compare
Compare
Compare
Compare
Compare
Compare

Signed Longword Equal
Signed Longword Not Equal
Signed Longword Less Than
Signed Longword Less Than or
Signed Longword Greater Than
Signed Longword Greater Than

Register Ra or a literal is compared to Register Rb.
relationship is true, the value one is written
otherwise, zero is written to Re.

Equal

or Equal

If the specified
to register Re;

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Integer Unsigned Compare

Format:

Page 4-20
22 December 1985

CMP
CMP

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

! Operate format

Operation:

IF Rav UNSIGNED RELATION Rbv THEN
Re <- 1 -

ELSE
Re <- 0

Exceptions:

None

Opcodes:

Compare Unsigned Longword Less Than CMPULT
Of PULE
CMPUGT
CMPUGE

Compare Unsigned Longword Less Than or Equal
Compare Unsigned Longword Greater Than
Compare Unsigned Longword Greater Than or Equal

Descrip_tion:

Register Ra or a literal is compared to Register Rb.
relationship is true, the value one is written
otherwise, zero is written to Re.

If the specified
to register Re:

·~.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Integer Divide

Format:

DIV Ra.rl,Rb.rl,Rc.wl
DIV #a.ib,Rb.rl,Rc.wl

Operation:

Re <- Rbv I Rav

Exceptions:

Opcodes:

Integer Divide by Zero
Integer Overflow

Page 4-21
22 December 1985

!Operate format

DIV Divide Longword with no Overflow Detect
DIVV Divide Longword with Overflow Detect

Description:

Register Rb is divided by register Ra or a literal and the quotient is
written to register Re.

DIV suppresses the detection of integer overflow. The quotient result
with a zero divisor is UNPREDICTABLE.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Integer Remainder

Format:

REM
REM

Operation:

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

Re <- REM(Rbv, Rav)

Exceptions:

Integer Divide by Zero

Opcodes:

REM Longword Integer Remainder

Description:

Page 4-22
22 December 1985

! Operate format

Register Rb is divided by register Ra or a literal and the remainder
is written to register Re. The remainder is calculated such that it
has the same sign as the dividend operand.

The REM result is UNPREDICTABLE when the divisor is zero.

This instruction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Integer Multiply

Format:

MUL
MUL

Operation:

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

Page 4-23
22 December 1985

!Operate format

tmp <- Rav * Rbv
tmp <- Rav *U Rbv
Re <- tmp<31:0>
Re <- tmp<63:32>

!Signed multiply for MULV, MULL, MULH
!Unsigned multiply for UMULH
!MULV and MULL
!MULH and UMULH

Exceptions:

Integer Overflow

Opcodes:

MULV Multiply Longword with Overflow Detect

The following instructions do not detect overflow:

MULL
MULH
UMULH

Multiply Longword and Return Low 32 Product Bits
Multiply Longword and Return High 32 Product Bits
Unsigned Multiply Longword and Return High 32
Product Bits

Description:

Register Ra or a literal is multiplied by register Rb and either the
least or most significant 32 bits of the 64-bit product are written to
the destination register. The multiplication is signed for MULV,
MULL, and MULH, and unsigned for UMULH.

MULV writes the least significant
detection. If integer overflow
exception occurs.

32 product
is detected,

bits with overflow
an Integer Overflow

MULL writes the least significant 32 product bits with no overflow
detection.

MULH and UMULH write the most significant 32 product bits.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Integer Subtract

Format:

SUB
SUB

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

Operation:

Re <- Rbv - Rav

Exceptions:

Integer Overflow

Opcodes:

Page 4-24
22 December 1985

!Operate format

SUB Subtract Longword with no Overflow Detect
SUBV Subtract Longword with Overflow Detect

Description:

Register Ra or a literal is subtracted from register Rb and the 32-bit
difference is written to register Re. If integer overflow is
detected, an Integer Overflow exception occurs.

The unsigned compare instructions can be used to generate borrow. If
the minuend (Rbv) is less unsigned than the subtrahend.(Rav), there
will be a borrow.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Vector Integer Add

Format:

VADD
VADD
VADD

Va.rl,Vb.rl,Vc.wl
Ra.rl,Vb.rl,Vc.wl
#a.ib,Vb.rl,Vc.wl

Operation:

FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- Va[i]<31:0> + Vb[i]<31:0>
Vc[i] <-Rav+ Vb[i]<31:0>
END

Exceptions:

Integer Overflow

Opcodes:

Page 4-25
22 December 1985

!Operate format

!Vector + Vector
!Scalar + Vector

VADD
VADDV

Vector Add Longword with no Overflow Detect
Vector Add Longword with Overflow Detect

Description:

A vector operand (in register Va) or a scalar operand (in register Ra
or a literal) is added, element-wise, to vector register Vb and the
32-bit sum is written to vector register Ve. Only bits <31:0> of each
vector element participate in the operation. Bits <63:32> of the
destination vector elements are UNPREDICTABLE. The length of the
vector is specified by the VL register.

If integer overflow is detected, an Integer Overflow exception occurs
when the vector operation completes.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Page 4-26
22 December 1985

Vector Integer Compare

Format:

VCMP
VCMP
VCMP

Va.rl,Vb.rl
Ra.rl,Vb.rl
#a.ib,Vb.rl

!Operate format

Operation:

VM <- 0
FOR i <- 0 TO VL-1

BEGIN
!Vector cmp Vector

IF Va[i]<31:0> SIGNED RELATION Vb[i]<3l:O> THEN
VM<i> <- 1

IF Rav SIGNED RELATION Vb[i]<31:0>
VM<i> <- 1-

END

!Scalar cmp Vector
THEN

Exceptions:

Opcodes:

None

VCMPEQ Vector Compare Signed Longword Equal
VCMPNE Vector Compare Signed Longword Not Equal
VCMPLT Vector Compare Signed Longword Less Than
VCMPLE Vector Compare Signed Longword Less Than or Equal
VCMPGT Vector Compare Signed Longword Greater Than
VCMPGE Vector Compare Signed Longword Greater Than or Equal

Description:

A vector operand (in register Va) or a scalar operand (in register Ra
or a literal) is compared, element-wise, with vector register Vb. The
length of the vector is specified by the VL register. The Vector Mask
register (VM) is cleared at the start of the operation. For each
element comparison, if the specified relationship is true, the Vector
Mask bit (VM<i>) corresponding to the vector element is set to l.
Only bits <31:0> of each vector element participate in the operation.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Vector Integer Divide

Format:

VDIV
VDIV
VDIV

Va.rl,Vb.rl,Vc.wl
Ra.rl,Vb.rl,Vc.wl
#a.ib,Vb.rl,Vc.wl

Operation:

FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- Vb[i]<31:0> I Va(i]<31:0>
Vc[i] <- Vb[i]<31:0> I Rav
END

Exceptions:

Opcodes:

Integer Divide by Zero
Integer Overflow

Page 4-27
22 December 1985

!Operate format

!Vector I Vector
!Vector I Scalar

VDIV
VDIVV

Vector Divide Longword with no Overflow Detect
Vector Divide Longword with Overflow Detect

Description:

Vector register Vb is divided, element-wise, by a vector operand (in
register Va) or a scalar operand (in register Ra or a literal) and the
32-bit quotient is written to vector register Ve. Only bits <31:0> of
each vector element participate in the operation. Bits <63:32> of the
destination vector elements are UNPREDICTABLE. The length of the
vector is specified by the VL register.

If integer overflow or integer divide
Overflow or Integer Divide By Zero
when the vector operation completes.
divisor is UNPREDICTABLE.

by zero is detected, an Integer
exception (possibly both) occurs
The quotient result with a zero

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Vector Integer Remainder

Format:

VREM
VREM
VREM

Va.rl,Vb.rl,Vc.wl
Ra.rl,Vb.rl,Vc.wl
#a.ib,Vb.rl,Vc.wl

Operation:

FOR i <- 0 TO VL-1
BEGIN

Page 4-28
22 December 1985

!Operate format

Vc[i] <- REM(Vb[i]<31:0>, Va[i]<31:0>) !Vector REM Vector
Vc[i] <- REM(Vb[i]<31:0>, Rav) !Vector REM Scalar
END

Exceptions:

Integer Divide by Zero

Opcodes:

VREM Vector Longword Remainder

Description:

Vector register Vb is divided, element-wise, by a vector operand (in
register Va) or a scalar operand (in register Ra or a literal) and the
32-bit remainder is written to vector register Ve. The remainder is
calculated such that it has the same sign as the dividend operand.
Only bits <31:0> of each vector element participate in the operation.
Bits <63:32> of the destination vector elements are UNPREDICTABLE.
The length of the vector is specified by the VL register.

If integer divide by zero is detected, an Integer Divide By Zero
exception occurs when the vector operation completes. The remainder
result with a zero divisor is UNPREDICTABLE.

This instruction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Vector Integer Multiply

Format:

VMUL
VMUL
VMUL

Operation:

va.rl,Vb.rl,Vc.wl
Ra.rl,Vb.rl,Vc.wl
#a.ib,Vb.rl,Vc.wl

FOR i <- 0 TO VL-1

Page 4-29
22 December 1985

!Operate format

BEGIN !Vector * Vector
Vc[i] <- {Va[i]<31:0> * Vb[i]<31:0>}<3l:O>

Vc[i] <- {Rav * Vb[i]<31:0>}<31:0>
END

!Scalar * Vector

Exceptions:

Opcodes:

Integer Overflow

VMULL Vector Multiply Longword with no Overflow Detect
VMULV Vector Multiply Longword with Overflow Detect

Description:

A vector operand (in register Va) or a scalar operand (in register Ra
or a literal) is multiplied, element-wise, by vector register Vb and
the least significant 32 bits of the signed 64-bit product are written
to vector register Ve. Only bits <31:0> of each vector element
participate in the operation. Bits <63:32> of the destination vector
elements are UNPREDICTABLE. The length of the vector is spec_ified by
the VL register.

If integer overflow ls detected, an Integer Overflow exception occurs
when the vector operation completes.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
INTEGER ARITHMETIC INSTRUCTIONS

Vector Integer Subtract

Format:

VSUB
VSUB
VSUB

Va.rl,Vb.rl,Vc.wl
Ra.rl,Vb.rl,Vc.wl
#a.ib,Vb.rl,Vc.wl

Operation:

FOR i <- 0 TO VL-1
BEGIN

Page 4-30
22 December 1985

!Operate format

Vc[i] <- Vb[i]<3l:O> - Va[i]<31:0> !Vector - Vector
Vc[i] <- Vb[i]<31:0> - Rav !Vector - Scalar
END

Exceptions:

Integer Overflow

Opcodes:

VSUB
VSUBV

Description:

Vector Subtract Longword with no Overflow Detect
Vector Subtract Longword with Overflow Detect

A vector operand (in register Va} or a scalar operand (in register Ra
or a literal) is subtracted, element-wise, from a vector operand (in
register Vb). The 32-bit difference is writte~ to vector register Ve.
Only bits <31:0> of each vector element participate in the operation.
Bits <63:32> of the destination vector elements are UNPREDICTABLE.
The length of the vector is specified by the VL register.

If integer overflow is detected, an Integer Overflow exception occurs
when the vector operation completes.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
LOGICAL AND SHIFT INSTRUCTIONS

Page 4-31
22 December 1985

4.4 LOGICAL AND SHIFT INSTRUCTIONS

The logical instructions perform longword Boolean operations. The
shift instructions perform left and right logical shift, right
arithmetic shift, and rotate operations. These are surrunarized below:

Mnemonic

AND
BIC
OR
ORNOT
XOR
EQV

Operation

Logical Product
Logical Product with Complement
Logical Sum
Logical Sum with Complement
Logical Difference
Logical Equivalence

SLL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic
ROT Rotate

VAND
VBIC
VOR
VO RN OT
VMERGE
VXOR
VEQV

Vector Logical Product
Vector Logical Product with Complement
Vector Logical Sum
Vector Logical Sum with Complement
Vector Merge
Vector Logical Difference
Vector Logical Equivalence

VSLL Vector Shift Left Logical
VSRL Vector Shift Right Logical

\There is no arithmetic left shift instruction because, typically,
where an arithmetic left shift would be used, a logical shift will do.
For multiplying by a small power of two in address computations,
logical left shift is acceptable. Arithmetic left shift is more
complicated because it requires overflow detection. Integer multiply
should be used to perform an arithmetic left shift with overflow
checking.

Bit field
extension
shift.

extracts can be done with two logical shifts. Sign
can be done with left logical shift and a right arithmetic

There are no quadword shifts because this requires three source
register operands (two for data, one for count). Quadword shift
returning a longword can be done with a three instruction sequence
{SLL, SRL, OR).\

INSTRUCTION DESCRIPTIONS Company Confidential
LOGICAL AND SHIFT INSTRUCTIONS

Logical Functions

Format:

opcode
opcode

Operation:

dst <-
dst <-
dst <-
dst <-
dst <-
dst <-

Exceptions:

Opcodes:

None

AND
OR
XOR
BIC
ORN OT
EQV

Description:

Ra.rl,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

Rav AND Rbv
Rav OR Rbv
Rav XOR Rbv
{NOT Rav} AND Rbv
{NOT Rav} OR Rbv
{NOT Rav} XOR Rbv

Logical Product
Logical Sum
Logical Difference
Bit Clear

!AND
!OR
!XOR
!BIC
!ORNOT
!EQV

Logical Sum with Complement
Logical Equivalence

Page 4-32
22 December 1985

!Operate format

These instructions perform the designated Boolean function between
register Ra or a literal and register Rb. The result is written to
register Re.

The •NOT" function can be performed by doing an ORNOT with zero (Rb =
RO).

INSTRUCTION DESCRIPTIONS Company Confidential
LOGICAL AND SHIFT INSTRUCTIONS

Shift Logical

Format:

opcode
opcode

Operation:

Ra.rb,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

Re <- LEFT SHIFT(Rbv, Rav<4:0>)
Re <- RIGHT_SHIFT(Rbv, Rav<4:0>)

Exceptions:

None

Opcodes:

SLL Shift Left Logical
SRL Shift Right Logical

Description:

Page 4-33
22 December 1985

!Operate format

!SLL
!SRL

Register Rb is shifted logically left or right 0 to 31 bits by the
count in register Ra or a literal. The result is written to register
Re. Zero bits are propagated into the vacated bit positions.

Bits <31:5> of the count operand are ignored.

INSTRUCTION DESCRIPTIONS Company Confidential
LOGICAL AND SHIFT INSTRUCTIONS

Shift Arithmetic

Format:

SRA
SRA

Operation:

Ra.rb,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

Re <- ARITH_SHIFT{Rbv, Rav<4:0>)

Exceptions:

None

Opcodes:

SRA Shift Right Arithmetic

Description:

Page 4-34
22 December 1985

!Operate format

Register Rb is right shifted arithmetically 0 to 31 bits by the count
in register Ra or a literal. The result is written to register Re.
The sign bit (Rbv<31>) is propagated into the vacated bit positions.

Bits <31:5> of the count operand are ignored.

INSTRUCTION DESCRIPTIONS Company Confidential
LOGICAL AND SHIFT INSTRUCTIONS

Rotate

Format:

ROT
ROT

Operation:

Ra.rb,Rb.rl,Rc.wl
#a.ib,Rb.rl,Rc.wl

Re <- BIT_ROTATE(Rbv, Rav<4:0>)

Exceptions:

None

Opcodes:

ROT Rotate Bits

Description:

Page 4-35
22 December 1985

!Operate format

Register Rb is rotated left 0 to 31 bits by the count in register Ra
or literal. The result is written to register Re.

Bits <31:5>.of the count operand are ignored.

INSTRUCTION DESCRIPTIONS Company Confidential
LOGICAL AND SHIFT INSTRUCTIONS

Vector Logical Functions

Format:

Page 4-36
22 December 1985

opcode
opcode
opcode

Va.rl,Vb.rl,Vc.wl
Ra.rl,Vb.rl,Vc.wl
#a.ib,Vb.rl,Vc.wl

!Operate format

Operation:

FOR i <- 0 TO VL-l
BEGIN
! Vector op Vector
Vc[i] <- Va[i]<3l:O> AND Vb[i]<31:0>
Vc[i] <- Va[i]<31:0> OR Vb[i]<31:0>
Vc[i] <- Va(i]<31:0> XOR Vb[i]<3l:O>
Vc[i] <- {NOT Va[i]<31:0>} AND Vb[i]<31:0>
Vc[i] <- {NOT Va[i]<31:0>} OR Vb(i]<31:0>
Vc[i] <- {NOT Va[i]<31:0>} XOR Vb[i]<31:0>

! Scalar op Vector
Vc[i] <- Rav AND Vb[i]<3l:O>
Vc[i] <-Rav OR Vb[i]<31:0>
Vc[i] <- Rav XOR Vb[i]<3l:O>
Vc[i] <- {NOT Rav} AND Vb[i]<31:0>
Vc[i] <- {NOT Rav} OR Vb[i]<31:0>
Vc[i] <- {NOT Rav} XOR Vb[i]<31:0>
END

Exceptions:

Opcodes:

None

VAND
VOR
VXOR
VBIC
VORNOT
VEQV

Description:

Vector Logical Product
Vector Logical Sum
Vector Logical Difference
Vector Logical Product with Complement
Vector Logical Sum with Complement
Vector Logical Equivalence

!VAND
!VOR
!VXOR
!VBIC
!VORNOT
!VEQV

!VAND
!VOR
!VXOR
!VBIC
!VORNOT
!VEQV

A vector operand (in register Va) or a scalar operand (in register Ra
or a literal) are combined, element-wise, using the specified Boolean
function, with vector register Vb and the 32-bit result is written to
vector register Ve. Only bits <31:0> of each vector element
participate in the operation. Bits <63:32> of the destination vector
elements are UNPREDICTABLE. The length of the vector is specified by
the VL register.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
LOGICAL AND SHIFT INSTRUCTIONS

Vector Merge

Format:

VMERGE
VMERGE
VMERGE

va.rq,Vb.rq,Vc.wq
Ra.rq,Vb.rq,Vc.wq
#a.ib,Vb.rq,Vc.wq

Operation:

FOR i <- 0 TO VL-1
BEGIN
IF VM<i> EQ 0 THEN

Ve[i] <- Va [i]
ELSE

Ve[i] <- Vb[i]

IF VM<i> EQ 0 THEN
Ve[i] <- QRav

ELSE
Vc[i] <- Vb[i]

END

Exceptions:

None

Opcodes:

VMERGE Vector Merge

Description:

Page 4-37
22 December 1985

!Operate format

!Vector op Vector

!Scalar op Vector

A vector operand (in register Va) or a scalar operand (in register QRa
or a literal) are merged, element-wise, with vector register Vb and
the resulting vector is written to vector register Ve. The length of
the vector operation is specified by the VL register.

For each vector element, i, if the corresponding Vector Mask bit
(VM<i>) is zero, Va[i] or Qrav is written to the destination vector
element Vc[i]. If VM<i> is one, Vb[i] is written to the destination
vector element.

Software Note:

VMERGE can be used to load a vector register with a constant or to
copy a vector register.

This instruction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
LOGICAL AND SHIFT INSTRUCTIONS

Page 4-38
22 December 1985

Vector Shift Logical

Format:

opcode
opcode
opcode

Va.rl,Vb.rl,Vc.wl
Ra.rl,Vb.rl,Vc.wl
#a.ib,Vb.rl,Vc.wl

Operation:

FOR i <- 0 TO VL-1
BEGIN
! shift vector by vector
Vc[i] <- LEFT SHIFT(Vb[i]<31:0>,
Vc[i] <- RIGHT_SHIFT(Vb[i]<31:0>,

! shift vector by scalar

!Operate format

Va[i]<4:0>) !SLL
Va[i]<4: O>) ! SRL

Vc[i] <- LEFT SHIFT(Vb[i]<31:0>, Rav<4:0>) !SLL
Vc[i] <- RIGHT SHIFT(Vb[i]<31:0>, Rav<4:0>) !SRL
END -

Exceptions:

None

Opcodes:

VSLL Vector Shift Left Logical
VSRL Vector Shift Right Logical

Description:

Each element in vector register Vb is shifted logically left or right
0 to 31 bits by the count specified by a vector operand (in register
Va) or a scalar operand (in register Ra or a literal). The shifted
results are written to vector register Ve. Zero bits are propagated
into the vacated bit positions. Only bits <4:0> of the count operand
and bits <31:0> of each Vb element participate in the operation. Bits
<63:32> of the destination vector elements are UNPREDICTABLE. The
length of the vector is specified by the VL register.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-39
22 December 1985

4.5 FLOATING-POINT INSTRUCTIONS

PRISM provides instructions for operating on VAX G_floating and
F floating-point operand formats. The floating-point arithmetic
instructions are add, subtract, compare, multiply, and divide. Two
rounding modes are provided: VAX rounding and round toward zero
(chopped).

All G floating operands must be in even-odd register pairs or the
result of the operation is UNPREDICTABLE.

Data conversion instructions are provided to convert operands between
G_floating and F_floating and longword integer.

The instructions provided are summarized below:

Mnemonic

ADDF
ADDFZ
ADD FU
ADDFUZ

CMPFEQ
CMPFNE
CMPFLT
CMPFLE
CMPFGT
CMPFGE

CVTLF
CVTLFZ
CVTFL
CVTFLZ

CVTFG

DIVF
DIVFZ
DIVFU
DIVFUZ

MULF
MULFZ
MULFU
MULFUZ

SUBF
SUBFZ
SUB FU
SUBFUZ

Operation

Add F floating Underflow Disabled VAX Rounding
Add F-f loating Underflow Disabled Round toward Zero
Add F-f loating Underflow Enabled VAX Rounding
Add F:f loating Underflow Enabled Round toward Zero

Compare F floating Equal
Compare F-f loating Not Equal
Compare F-floating Less Than
Compare F-floating Less Than or Equal
Compare F-floating Greater Than
Compare F:noating Greater Than or Equal

Convert Longword Integer to F floating VAX Rounding
Convert Longword Integer to F-floating Round toward Zero
Convert F floating to Longwora Integer VAX Rounding
Convert F:f loating to Longword Integer Round toward Zero

Convert F_floating to G_floating

Divide F floating Underflow Disabled VAX Rounding
Divide F-floating Underflow Disabled Round toward Zero
Divide F-floating Underflow Enabled VAX Rounding
Divide F:floating Underflow Enabled Round toward Zero

Multiply F floating Underflow Disabled VAX Rounding
Multiply F-floating Underflow Disabled Round toward Zero
Multiply F-floating Underflow Enabled VAX Rounding
Multiply F:floating Underflow Enabled Round toward Zero

Subtract F floating Underflow Disabled VAX Rounding
Subtract F-f loating Underflow Disabled Round toward Zero
Subtract F-floating Underflow Enabled VAX Rounding
Subtract F:floating Underflow Enabled Round toward Zero

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-40
22 December 1985

Mnemonic

ADDG
ADDGZ
ADDGU
ADDGUZ

CMPGEQ
CMPGNE
CMPGLT
CMPGLE
CMPGGT
CMPGGE

CVTGF
CVTGFZ
CVTGFU
CVTGFUZ

CVTLG
CVTGL
CVTGLZ

DIVG
DIVGZ
DIVGU
DIVGUZ

MULG
MULGZ
MULGU
MULGUZ

SUBG
SUBGZ
SUBGU
SUBGUZ

Operation

Add G floating Underflow Disabled VAX Rounding
Add G-floating Underflow Disabled Round toward Zero
Add G-floating Underflow Enabled VAX Rounding
Add G-f loating Underflow Enabled Round toward Zero

Compare G floating Equal
Compare G-f loating Not Equal
Compare G-f loating Less Than
Compare G-floating Less Than or Equal
Compare G-f loating Greater Than
Compare G-f loating Greater Than or Equal

Convert G to F floating Nounderflow VAX Rounding
Convert G- to F-f loating Nounderflow Round toward Zero
Convert G- to F-f loating Underflow Enabled VAX Rounding
Convert G- to F:f loating Underflow Enabled Round toward Zero

Convert Longword Integer to G floating
Convert G floating to Longword Integer VAX Rounding
Convert G:f loating to Longword Integer Round toward Zero

Divide G floating Underflow Disabled VAX Rounding
Di~ide G-f loating Underflow Disabled Round toward Zero
Divide G-floating Underflow Enabled VAX Rounding:
Divide G:f loating Underflow Enabled Round toward Zero

Multiply G floating Underflow Disabled VAX Rounding
Multiply G-floating Underflow Disabled Round toward Zero
Multiply G-f loating Underflow Enabled VAX Rounding
Multiply G:floating Underflow Enabled Round toward Zero

Subtract G floating Underflow Disabled VAX Rounding
Subtract G-f loating Underflow Disabled Round toward Zero
Subtract G-floating Underflow Enabled VAX Rounding
Subtract G:floating Underflow Enabled Round toward Zero

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-41
22 December 1985

Mnemonic

VADDF
VADDFZ
VADDFU
VADDFUZ

VCMPFEQ
VCMPFNE
VCMPFLT
VCMPFLE
VCMPFGT
VCMPFGE

VCVTLF
VCVTLFZ
VCVTFL
VCVTFLZ

VCVTFG

VD I VF
VDIVFZ
VDIVFU
VDIVFUZ

VMULF
VMULFZ
VMULFU
VMULFUZ

VSUBF
VSUBFZ
VSUBFU
VSUBFUZ

Operation

Vector Add F floating Underflow Disabled VAX Rounding
Vector Add F-floating Underflow Disabled Round toward Zero
Vector Add F-floating Underflow Enabled VAX Rounding
Vector Add F-floating Underflow Enabled Round toward Zero

Vector Compare F floating Equal
Vector Compare F-f loating Not Equal
Vector Compare F-floating Less Than
Vector Compare F-floating Less Than or Equal
Vector Compare F-floating Greater Than
Vector Compare F-floating Greater Than or Equal

Vector Convert Longword Integer to F floating VAX Rounding
Vector Convert Longword Integer to F-floating Round toward Zero
Vector Convert F floating to Longwora Integer VAX Rounding
Vector Convert F=f loating to Longword Integer Round toward Zero

Vector Convert F_floating to G_floating

Vector Divide F floating Underflow Disabled VAX Rounding
Vector Divide F-f loating Underflow Disabled Round toward Zero
Vector Divide F-f loating Underflow Enabled VAX Rounding
Vector Divide F=floating Underflow Enabled Round toward zero

Vector Multiply F floating Underflow Disabled VAX Rounding
Vector Multiply F-floating Underflow Disabled Round toward Zero
Vector Multiply F-floating Underflow Enabled VAX Rounding
Vector Multiply ()loating Underflow Enabled Round toward Zero

Vector Subtract F floating Underflow Disabled VAX Rounding
Vector Subtract F-floating Underflow Disabled Round toward Zero
Vector Subtract F-floating Underflow Enabled VAX Rounding
Vector Subtract F=floating Underflow Enabled Round toward Zero

.,

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-42
22 December 1985

Mnemonic

VADDG
VADDGZ
VADDGU
VADDGUZ

VCMPGEQ
VCMPGNE
VCMPGLT
VCMPGLE
VCMPGGT
VCMPGGE

VCVTGF
VCVTGFZ
VCVTGFU
VCVTGFUZ

VCVTLG
VCVTGL
VCVTGLZ

VD IVG
VDIVGZ
VDIVGU
VDIVGUZ

VMULG
VMULGZ
VMULGU
VMULGUZ

VSUBG
VSUBGZ
VSUBGU
VSUBGUZ

Operation

Vector Add G floating Underflow Disabled VAX Rounding
Vector Add G-floating Underflow Disabled Round toward Zero
Vector Add G-f loating Underflow Enabled VAX Rounding
Vector Add G:floating Underflow Enabled Round toward Zero

Vector Compare G floating Equal
Vector Compare G-f loating Not Equal
Vector Compare G-f loating Less Than
Vector Compare G-floating Less Than or Equal
Vector Compare G-f loating Greater Than
Vector Compare G-floating Greater Than or Equal

Vector
Vector
Vector
Vector
toward

Convert
Convert
Convert
Convert
Zero

to F floating
to F-float ing
to F-float ing
to F:float ing

No underflow VAX Rounding
No underflow Round toward Zero
Underflow Enabled VAX Rounding
Underflow Enabled Round

Vector Convert Longword Integer to G floating
Vector Convert G floating to Longwora Integer VAX Rounding
Vector Convert G:f loating to Longword Integer Round toward Zero

Vector Divide G floating Underflow Disabled VAX Rounding
Vector Divide G-floating Underflow Disabled· Round toward Zero
Vector Divide G-floating Underflow Enabled VAX Rounding
Vector Divide G:floating Underflow Enabled Round toward Zero

Vector Multiply G floating Underflow Disabled VAX Rounding
Vector Multiply G-floating Underflow Disabled Round toward Zero
Vector Multiply G-floating Underflow Enabled VAX Rounding
Vector Multiply G:floating Underflow Enabled Round toward Zero

Vector Subtract G floating Underflow Disabled VAX Rounding
Vector Subtract G-floating Underflow Disabled Round toward Zero
Vector Subtract G-floating Underflow Enabled VAX Rounding
Vector Subtract G:f loating Underflow Enabled Round toward Zero

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

4.5.l Literals

Page 4-43
22 December 1985

Literals used as floating-point operands produce UNPREDICTABLE
results. Literals are allowed for integer source operands in convert
instructions.

4.5.2 Accuracy

PRISM generates floating-point results with an error bound of 1/2
Least Significant Bit (LSB) for all floating-point instructions using
VAX rounding.

General comments on the accuracy of the
instruction set are presented here.

PRISM floating-point

An instruction is defined to be exact if its result, extended on the
right by an infinite sequence of zeros, is identical to that of an
infinite-precision calculation involving the same operands. The a
priori accuracy of the operands is thus ignored. For all arithmetic
operations, except DIV, a zero operand implies that the instruction is
exact. The same statement holds for DIV if the zero operand is the
dividend. But if it is the divisor, division is undefined, the result
is UNPREDICTABLE, and the operation causes an Arithmetic exception.

For non-zero:floating-point operands, the fractio~al factor is binary
normalized with 24 or 53 bits for single (F floating) or double
precision (G_Floating), respectively. -

\For ADD, SUB, MUL, and DIV, an overflow bit, on the left, and two
guard bits, on the right, are necessary and sufficient to guarantee
return of a rounded result identical to the corresponding
infinite-precision operation rounded to the specified word length.
Thus with two guard bits, a rounded result has an error bound of 1/2
LSB.\

Note that an arithmetic result is exact if no non-zero bits are lost
in chopping the infinite-precision result to the data length to be
stored. Chopping is defined to mean that the 24 (F floating) or 53
(G floating) high order bits of the normalized result fraction are
stored; the rest of the bits are discarded. The first bit lost in
chopping is referred to as the •rounding• bit. The value of a rounded
result is related to the chopped result as follows:

1. If the rounding bit is 1, the rounded result is the chopped
result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results are
identical.

All PRISM processors implement rounding so as to produce results ·
identical to the results produced by the following algorithm. After

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-44
22 December 1985

normalization, add a 1 to the rounding bit, and propagate the carry,
if it occurs. Note that a re-normalization may be required after
rounding takes place. The following statements summarize the
relations among chopped, rounded, and true (infinite-precision)
results:

o If a stored result is exact

rounded value = chopped value = true value.

o If a stored result is not exact, its magnitude is always:

1. Less than that of the true result for chopping.

2. Less than that of the true result for rounding if the
rounding bit is 0.

3. Greater than that of the true result for rounding if the
rounding bit is 1.

One overflow bit and two guard bits are adequate to guarantee accuracy
of rounded ADD, SUB, MUL, or DIV, provided that the algorithms are
properly chosen.

o ADD or SUB: Note, first, that ADD or SUB may result in
propagation of a carry, and hence the overflow bit is
necessary. Second, if in ADD or SUB there is a one-bit loss
of significance with an alignment shift of two or more bits,
the first guard bit is needed for the LSB of the normalized
result, and the second is then the rounding bit. Therefore,
the three bits are necessary. A number of constraints must
be observed in selection of the algorithms for the basic
operations, in order for these three bits to be sufficient to
guarantee an error bound of 1/2 LSB for unbiased rounding:

1. If the alignment shift does not exceed two, there are no
constraints, because no bits can be lost.

2. If the alignment shift exceeds two (or however many guard
bits are used, say g GE 2), no negations may be made
after the alignment shift takes place.

3. If the above constraint is observed, the error bound for
a rounded result is 1/2 LSB. If, however, a negation
follows the alignment shift, the error bound will be:

(l/2)*(1 + 2**(-g + 2))LSB

This is because a "borrow" will be lost on an implicit
subtraction, if non-zero bits were lost in the alignment
shift. Note: The error bound is l LSB if the constraint
is ignored and there are only two guard bits (g = 2).

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-45
22 December 1985

4. The constraint on no negations after the alignment shift
may be replaced by keeping track of non-zero bits lost
during the alignment shift, and then negating by ones
complement if any "ones" were lost, and by twos
complement if none were lost. If this is done, the error
bound will be 1/2 LSB.

o MUL:

1. The product of two normalized binary fractions can be as
small as 1/4, and must be less than one. The overflow
bit is not needed for MUL, but the first guard bit will
be necessary for normalization if the product is less
than 1/2, and, in this case, the second guard bit is the
rounding bit.

2. The first constraint on MUL is that the product be
generated from the least to the most significant bit.
Low order bits, in positions to the right of the second
guard bit, may be discarded, but ONLY AFTER they have
made their contribution to carries which could propagate
into the guard bits or beyond.

3. For the same reasons as for ADD or SUB, if low order bits
- of the product have been discarded, no negations can be

made after generating the product.

o DIV:

1. For standard algorithms it is necessary that the
remainder be generated exactly at each step: the overflow
and two guard bits are adequate for this purpose. The
register receiving the quotient must have a guard bit for
the rounding bit, and the quotient must be developed to
include the rounding bit.

2. The Newton-Raphson quadratic convergence algorithms,
which might make good use of high-speed multiplication
logic, require a number of guard bits equal to twice the
number of bits desired in the result if the correctness
of the rounding bit is to be guaranteed.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

4.5.3 Floating-Point Exceptions

Page 4-46
22 December 1985

All floating-point exceptions are traps on PRISM (see Chapter 6,
Exceptions and Interrupts, Section 6.4.1). The floating-point
operation completes by writing a reserved operand with the exception
type encoded in it. The figure below illustrates this:

l 1
5 4 7 6 4 3 0

+-+---------------+-----+-------+
Ill 0 lxxxxxl ETYPE I :A
+-+---------------+-----+-------+
lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl :A+2
+-------------------------------+

1 1
5 4 4 3 0

+-+---------------------+-------+
Ill 0 I ETYPE I :A
+-+---------------------+-------+
lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl :A+2
+-------------------------------+
lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl :A+4
+-------------------------------+
lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl :A+6
+-------------------------------+

Figure 4-l: F_ and G_floating Exception Code Format

The sign, bit <15>, is l and the exponent (bits <14:7> for F floating
and bits <14:4> for G floating) is zero. The exception type (ETYPE)
is encoded in bits <3:0>, so as to correspond to bits <3:0> in the
exception summary (see Chapter 6, Exceptions and Interrupts, Figure
6-4, Page 6-14). If multiple exceptions occur, multiple bits may be
set in the ETYPE field.

The state of all other bits in the result (denoted with an "x") are
UNPREDICTABLE.

If the Floating Underflow exception is suppressed by the instruction,
a zero result is written to the destination register and no Underflow
exception is signaled. Floating Overflow is always enabled.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Floating Add

Format:

Page 4-47
22 December 1985

ADD Ra.rx,Rb.rx,Rc.wx ! Operate format

Operation:

Re <- Rav + Rbv
QRc <- QRav + QRbv

!F floating
!()loating

Exceptions:

Opcodes:

Floating Overflow
Floating Reserved Operand
Floating Underflow

The following instructions disable the Floating Underflow exception:

ADDF
ADDFZ
ADDG
ADDGZ

Add F Floating VAX Rounding
Add F-Floating Round toward Zero
Add G-Floating VAX Rounding
Add G:Floating Round toward Zero

The following instructions enable the Floating Underflow exception:

ADD FU
ADDFUZ
ADDGU
ADDGUZ

Description:

Add F floating VAX Rounding
Add F-floating Round toward Zero
Add G-f loating VAX Rounding
Add G-f loating Round toward Zero

Register Ra is added to register Rb and the sum is written to register
Re. If Floating Underflow is disabled, zero is written to the
destination register Re when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Floating Compare

Format:

CMP Ra.rx,Rb.rx,Rc.wl

Operation:

IF Rav SIGNED RELATION Rbv THEN
Re <- l -

ELSE
Re <- 0

IF QRav SIGNED RELATION QRbv THEN
Re <- 1 -

ELSE
Re <- 0

Exceptions:

Floating Reserved Operand

Opcodes:

CMPFEQ Compare F floating Equal
CMPFNE Compare F-floating N~t Equal
CMPFLT Compare F-floating Less Than
CMPFLE Compare F-floating Less Than or
CMPFGT Compare F-floating Greater Than
CMPFGE Compare F:floating Greater Than

CMPGEQ Compare G floating Equal
-CMPGNE Compare G-floating Not Equal
CMPGLT Compare G-floating Less Than
CMPGLE Compare G-floating Less Than or
CMPGGT Compare G-floating Greater Than
CMPGGE Compare G:floating Greater Than

Description:

Page 4-48
22 December 1985

!Operate format

!F_floating

!G_f loating

Equal

or Equal

Equal

or Equal

The two F or G floating operands are compared. If
relationship ii true, the value one is written
otherwise, zero is written to Re.

the specified
to register Re:

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Convert F_Floating to G_Floating

Format:

CVT Ra.rf ,Rc.wg

Operation:

QRc <- {conversion of Rav}

Exceptions:

Floating Reserved Operand

Opcodes:

CVTFG Convert F_f loating to G_floating

Description:

Page 4-49
22 December 1985

!Operate format

The F floating source operand in register Ra is converted to a
G floating result and written to register Re. No rounding is required
because there are more fraction bits in a G_floating operand than in
an F_floating operand.

This instruction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Convert G_Floating to F_Floating

Format:

CVT Ra.rg,Rc.wf

Operation:

Re <- {conversion of QRav}

Exceptions:

Opcodes:

Floating Overflow
Floating Reserved Operand
Floating Underflow

Page 4-50
22 December 1985

!Operate format

The following instructions disable the Floating Underflow exception:

CVTGF Convert G floating to F floating VAX Rounding
CVTGFZ Convert G:floating to F:floating Round toward Zero

The following instructions enable the Floating Underflow exception:

CVTGFU Convert G floating to F floating VAX Rounding
CVTGFUZ Convert G:floating to F:floating Round toward Zero

Description:

The G floating source operand
F floating result and written
is disabled, zero is written to
exponent underflow occurs.

in register Ra is rounded to an
to register Re. If Floating Underflow
the destination register Re when an

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Convert Floating to Integer

Format:

CVT Ra.rx,Rc.wl

Operation:

Re <- {conversion of Rav}
Re <- {conversion of QRav}

Exceptions:

Integer Overflow
Floating Reserved Operand

Opcodes:

Page 4-51
22 December 1985

!Operate format

! F floating
! G=float ing

CVTFL
CVTFLZ
CVTGL
CVTGLZ

Convert F floating to Longword VAX Rounding
Convert F-f loating to Longword Round toward Zero
Convert G-floating to Longword VAX Rounding
Convert G=floating to Longword Round toward Zero

Description:

The F or G floating source operand in register Ra is converted to a
longword integer and written· to register Re.

These instructions may be omitted in a subset implementation.

f"·

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Convert Integer to Floating

Format:

CVT
CVT

Operation:

Ra.rl,Rc.wx
#a.ib,Rc.wx

Re <- {conversion of Rav}
QRc <- {conversion of Rav}

Exceptions:

None

Opcodes:

Page 4-52
22 December 1985

!Operate format

!F floating
!G:floating

CVTLF
CVTLFZ
CVTLG

Convert Longword to F floating VAX Rounding
Convert Longword to F-floating Round toward Zero
Convert Longword to G:f loating

Description:

The longword integer source operand in register Ra or a literal is
converted to an F or G floating result and written to register Re.
No rounding is required on-CVTLG because the result is exact.

These instructions may be omitted in a subset implementation.

. .-
;

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Floating Divide

Format:

Page 4-53
22 December 1985

DIV Ra.rx,Rb.rx,Rc.wx !Operate format

Operation:

Re <- Rbv I Rav
QRc <- QRbv I QRav

Exceptions:

Opcodes:

Floating Divide by Zero
Floating Overflow
Floating Reserved Operand
Floating Underflow

!F floating
!G:floating

The following instructions disable the Floating Underflow exception:

The

DIVF
DIVFZ
DIVG:
DIVGZ

following

DIVFU
DIVFUZ
DIVGU
DIVGUZ

Description:

Divide F floating VAX Rounding
Divide F-f loating Round toward Zero
Divide G-f loating VAX Rounding
Divide_G:floating Round toward Zero

instructions enable the Floating Underflow

Divide F floating VAX Rounding
Divide F-floating Round toward Zero
Divide G-floating VAX Rounding
Divide G:floating Round toward Zero

exception:

The dividend in register Rb is divided by the divisor in register Ra,
and the quotient is written to register Re. If Floating Underflow is
disabled, zero is written to the destination register Re when an
exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Floating Multiply

Format:

Page 4-54
22 December 1985

MUL Ra.rx,Rb.rx,Rc.wx !Operate format

Operation:

Re <- Rbv * Rav
QRc <- QRbv * QRav

!F floating
!G:float ing

Exceptions:

Opcodes:

Floating Overflow
Floating Reserved Operand
Floating Underflow

The following instructions disable the Floating Underflow exception:

MULF
MULFZ
MULG
MULGZ

Multiply F floating VAX Rounding
Multiply F-f loating Round toward Zero
Multiply G-floating VAX Rounding
Multiply G-floating Round toward Zero

The following instructions enable the Floating Underflow exception:

MULFU
MULFUZ
MULGU
MULGUZ

Description:

Multiply F floating VAX Rounding
Multiply F-floating Round toward Zero
Multiply G-floating VAX Rounding
Multiply G:f loating Round toward Zero

The multiplicand in register Rb is multiplied by the multiplier in
register Ra, and the product is written to register Re. If Floating
Underflow is disabled, zero is written to the destination register Re
when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-55
22 December 1985

Floating Subtract

Format:

SUB Ra.rx,Rb.rx,Rc.wx ! Operate format

Operation:

Re <- Rbv - Rav
QRc <- QRbv - QRav

Exceptions:

Opcodes:

Floating Overflow
Floating Reserved Operand
Floating Underflow

! F floating
!G::floating

The following instructions disable the Floating Underflow exception:

SUBF
SUBFZ
SUBG
SUBGZ

Subtract F floating VAX Rounding
Subtract F-f loating Round toward Zero
Subtract G-f loating VAX Rounding
Subtract G::f loating Round toward Zero

The following instructions enable the Floating Underflow exception:

SUB FU
SUBFUZ
SUB GU
SUBGUZ

Description:

Subtract F floating VAX Rounding
Subtract F-f loating Round toward Zero
Subtract G-f loating VAX Rounding
Subtract G::f loating Round toward Zero

The subtrahend operand in register Ra is subtracted from
operand in register Rb, and the difference is written to
If Floating Underflow is disabled, zero is written to the
register Re when an exponent underflow occurs.

the minuend
register Re.
destination

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-56
22 December 1985

Vector Floating Add

Format:

VADD
VADD

Va.rx,Vb.rx,Vc.wx
Ra.rx,Vb.rx,Vc.wx

!Operate format

Operation:

FOR i <- 0 TO VL-1
BEGIN

Vc[i] <- Va[i]<31:0> + Vb[i]<3l:O>
Vc[i] <- Rav + Vb[i]<31:0>

Vc[i] <- Va[i] + Vb[i]
Vc[i] <- QRav + Vb[i]
END

!VADDF
!Vector + Vector
!Scalar + Vector

!VADDG
!Vector + Vector
!Scalar + Vector

Exceptions:

Opcodes:

Floating Overflow
Floating Reserved Operand
Floating Underflow

The following instructions disable the Floating Underflow exception:

VADDF
VADDFZ
VADDG
VADDGZ

Vector Add F Floating VAX Rounding
Vector Add F-Floating Round toward Zero
Vector Add G-Floating VAX Rounding
Vector Add G:Floating Round toward Zero

The following instructions enable the Floating Underflow exception:

VADDFU Vector Add F floating VAX Rounding
VADDFUZ Vector Add F-floating Round toward Zero
VADDGU Vector Add G-floating VAX Rounding
VADDGUZ Vector Add G:f loating Round toward Zero

Description:

A vector operand {in register Va) or a scalar operand (in register Ra
or QRa) is added, element-wise, to vector register Vb and the sum is
written to vector register Ve. The length of the vector is specified
by the VL register.

In VADDFx, only bits <31:0> of each vector element participate in the
operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE.

If an exception is detected, it occurs when the vector operation

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-57
22 December 1985

completes. If Floating Underflow is disabled, zero is written to the
destination element when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-58
22 December 1985

Vector Floating Compare

Format:

VCMP
VCMP

Va.rx,Vb.rx
Ra.rx,Vb.rx

!Operate format

Operation:

VM <- 0
FOR i <- 0 TO VL-1

BEGIN
!VCMPF Vector cmp Vector

IF Va[i]<31:0> SIGNED_RELATION Vb[i]<31:0> THEN
VM<i> <- 1

!VCMPF Scalar cmp Vector
IF Rav SIGNED RELATION Vb[i]<31:0> THEN

VM<i> <- 1-
!VCMPG Vector cmp Vector

IF Va[i] SIGNED RELATION Vb[i] THEN
VM<i> <- 1 -

!VCMPG Scalar cmp Vector
IF QRav SIGNED RELATION Vb[i] THEN

VM<i> <- 1 -
END

Exceptions:

Floating Reserved Operand

Opcodes:

VCMPFEQ Vector Compare F floating Equal
VCMPFNE Vector Compare F-floating Not Equal
VCMPFLT Vector Compare F-floating Less Than
VCMPFLE Vector Compare F-floating Less Than or
VCMPFGT Vector Compare F-floating Greater Than
VCMPFGE Vector Compare F-floating Greater Than

Equal

or Equal

VCMPGEQ Vector Compare G floating Equal
VCMPGNE Vector Compare G-floating Not Equal
VCMPGLT Vector Compare G-floating Less Than
VCMPGLE Vector Compare G-floating Less Than or
VCMPGGT Vector Compare G-floating Greater Than
VCMPGGE Vector Compare (:floating Greater Than

Equal

or Equal

De script ion:

A vector operand (in register Va) or a scalar operand (in register Ra
or QRa) is compared, element-wise, with vector register Vb. The
length of the vector is specified by the VL register. The Vector Mask
register (VM) is cleared at the start of the operation. For each
element comparison, if the specified relationship is true, the Vector
Mask bit (VM<i>) corresponding to the vector element is set to 1. In

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-59
22 December 1985

VCMPFx, only bits <31:0> of each vector element participate in the
operation.

If an exception is detected, it occurs when the vector operation
completes.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Vector Convert F_Floating to G_Floating

Format:

VCVT Va.rf,Vc.wg

Operation:

FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- {conversion of Va[i]<31:0>}
END

Exceptions:

Floating Reserved Operand

Opcodes:

Page 4-60
22 December 1985

!Operate format

VCVTFG Vector Convert F_floating to G_floating

Description:

The F floating vector elements in vector register Va are converted to
G floating results and written to vector register Ve. No rounding is
required because all F floating fraction bits fit within a G floating
fraction. The length of the vector is specified by the VL register.

If an exception is detected, it occurs when the vector operation
completes.

This instruction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Vector Convert G_Floating to F_Floating

Format:

VCVT Va.rg,Vc.wf

Operation:

FOR i <- 0 TO VL-l
BEGIN
Vc[i) <- {conversion of Va[i]}
END

Exceptions:

Opcodes:

Floating Overflow
Floating Reserved Operand
Floating Underflow

Page 4-61
22 December 1985

!Operate format

The following instructions disable the Floating Underflow exception:

VCVTGF Vector Convert G floating to F floating VAX Rounding
VCVTGFZ Vector Convert G:floating to F:floating Round toward Zero

The following instructions enable the Floating Underflow exception:

VCVTGFU Vector Convert G floating to F floating VAX Rounding
VCVTGFUZ Vector Convert G:floating to F:f loating Round toward Zero

Description:

The G floating vector elements in vector register Va are converted to
F floating results and written to bits <31:0> of vector register Ve.
BTts <63:32> of the destination vector elements are UNPREDICTABLE.
The length of the vector is specified by the VL register. If Floating
Underflow is disabled, zero is written to the destination vector
element when an exponent underflow occurs.

If an exception is detected, it occurs when the vector operation
completes.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Vector Convert Floating to Integer

Format:

VCVT Va.rx,Vc.wl

Operation:

FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- {conversion of Va[i]}
Vc[i] <- {conversion of Va[i]<31:0>}
END

Exceptions:

Opcodes:

Floating Reserved Operand
Integer Overflow

Page 4-62
22 December 1985

!Operate format

!VCVTGL
!VCVTFL

VCVTFL Vector Convert F floating to Longword VAX Rounding
VCVTFLZ Vector Convert F-f loating to Longword Round toward Zero
VCVTGL Vector Convert G-f loating to Longword VAX Rounding
VCVTGLZ Vector Convert G:f loating to Longword Round toward Zero

Description:

The F or G floating vector
converted to longwords and
register Ve. Bits <63:32> of
UNPREDICTABLE. The length
register.

elements in vector register Va are
written to bits <31:0> of the vector
the destination vector elements are

of the vector is specified by the VL

If an exception is detected, it occurs when the vector operation
completes.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Vector Convert Integer to Floating

Format:

VCVT Va.rl,Vc.wx

Operation:

FOR i <- 0 TO VL-1
BEGIN

Exceptions:

None

Opcodes:

Vc[i] <- {conversion of Va[i]<31:0>}
END

Page 4-63
22 December 1985

!Operate format

VCVTLG Vector Convert Longword to G floating
VCVTLF Vector Convert Longword to F-floating VAX Rounding
VCVTLFZ Vector Convert Longword to F:floating Round toward Zero

Description:

The longword integer vector elements in register Va are converted to
F : or G floating results and written to vector register Ve. In
VCVTLF, only bits <31:0> of each vector element participate in the
operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE. No rounding is required on VCVTLG because the result
is exact. The length of the vector is specified by the VL register.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-64
22 December 1985

Vector Floating Divide

Format:

VDIV
VDIV

Va.rx,Vb.rx,Vc.wx
Ra.rx,Vb.rx,Vc.wx

! Operate format

Operation:

FOR i <- 0 TO VL-1
BEGIN

Vc[i] <- Vb[i]<31:0> I Va[i]<31:0>
Vc[i] <- Vb[i]<31:0> I Rav

Vc[i] <- Vb[i] I Va[i]
Vc[i] <- Vb[i] I QRav
END

!VDIVF
!Vector
!Vector

!VDIVG
!Vector
!Vector

I Vector
I Scalar

I Vector
I Scalar

Exceptions:

Opcodes:

Floating Divide by Zero
Floating Overflow
Floating Reserved Operand
Floating Underflow

The following instructions disable the Floating Underflow exception:

VD I VF
VDIVFZ
VD IVG
VDIVGZ

Vector Divide F floating VAX Rounding
Vector Divide F-f loating Round toward Zero
Vector Divide G-f loating VAX Rounding
Vector Divide G-f loating Round toward Zero

The following instructions enable the Floating Underflow exception:

VDIVFU Vector Divide F floating VAX Rounding
VDIVFUZ Vector Divide F-f loating Round toward Zero
VDIVGU Vector Divide G-f loating VAX Rounding
VDIVGUZ Vector Divide G:f loating Round toward Zero

Description:

The dividend in vector register Vb is divided,
divisor vector operand (in register Va) or
register Ra or QRa), and the quotient is written
Ve. The length of the vector is specified by the

element-wise, by a
a scalar operand (in
to vector register
VL register.

In VDIVF, only bits <31:0> of each vector element participate in the
operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-65
22 December 1985

If an exception is detected, it occurs when the vector operation
completes. If Floating Underflow is disabled, zero is written to the
destination vector element when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-66
22 December 1985

Vector Floating Multiply

Format:

VMUL
VMUL

Va.rx,Vb.rx,Vc.wx
Ra.rx,Vb.rx,Vc.wx

!Operate format

Operation:

FOR i <- 0 TO VL-1
BEGIN

Vc[i] <- Va[i]<31:0> * Vb[i]<31:0>
Vc[i] <- Rav * Vb[i]<31:0>

Vc[i] <- Va[i] * Vb[i]
Vc[i] <- QRav * Vb[i]
END

!VMULF
!Vector * Vector
!Scalar * Vector

!VMULG
!Vector * Vector
!Scalar * Vector

Exceptions:

Opcodes:

Floating overflow
Floating Reserved Operand
Floating Underflow

The following instructions disable the Floating Underflow exception:

VMULF
VMULFZ
VMULG
VMULGZ

Vector Multiply F floating VAX Rounding
Vector Multiply F-f loating Round toward Zero
Vector Multiply G-f loating VAX Rounding
Vector Multiply G:f loating Round toward Zero

The following instructions enable the Floating Underflow exception:

VMULFU
VMULFUZ
VMULGU
VMULGUZ

Description:

Vector
Vector
Vector
Vector

Multiply F floating
Multiply F-floating
Multiply G-floating
Multiply G:floating

VAX Rounding
Round toward
VAX Rounding
Round toward

Zero

Zero

The multiplicand in vector register Vb is multiplied, element-wise, by
the multiplier vector operand (in register Va) or a scalar operand (in
register Ra or QRa), and the product is written to vector register Ve.
The length of the vector is specified by the VL register.

In VMULF, only bits <31:0> of each vector element participate in the
operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE.

If an exception is detected, it occurs when the vector operation

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-67
22 December 1985

completes. If Floating Underflow is disabled, zero is written to the
destination vector element when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-68
22 December 1985

Vector Floating Subtract

Format:

VSUB
VSUB

Va.rx,Vb.rx,Vc.wx
Ra.rx,Vb.rx,Vc.wx

!Operate format

Operation:

FOR i <- 0 TO VL-1
BEGIN

Vc[i] <- Vb[i]<31:0> - Va[i]<31:0>
Vc[i] <- Vb[i]<31:0> - Rav

Vc[i] <- Vb[i] - Va[i]
Vc[i] <- Vb[i] - QRav
END

!VSUBF
!Vector - Vector
!Vector - Scalar

!VSUBG
!Vector - Vector
!Vector - Scalar

Exceptions:

Opcodes:

Floating Overflow
Floating Reserved Operand
Floating Underflow

The following instructions disable the Floating Underflow exception:

VSUBF
VSUBFZ
VSUBG
VSUBGZ

Vector Subtract F floating VAX Rounding
Vector Subtract F-floating Round toward Zero
Vector Subtract G-floating VAX Rounding
Vector Subtract G:floating Round toward Zero

The following instructions enable the Floating Underflow exception:

VSUBFU Vector Subtract F floating VAX Rounding
VSUBFUZ Vector Subtract F-f loating Round toward Zero
VSUBGU Vector Subtract G-floating VAX Rounding
VSUBGUZ Vector Subtract G:floating Round toward Zero

Description:

A vector operand (in register Va) or a scalar operand (in register Ra
or QRa) is subtracted, element-wise, from vector register Vb and the
difference is written to vector register Ve. The length of the vector
is specified by the VL register.

In VSUBFx, only bits <31:0> of each vector element participate in the
operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE.

If an exception is detected, it occurs when the vector operation

INSTRUCTION DESCRIPTIONS Company Confidential
FLOATING-POINT INSTRUCTIONS

Page 4-69
22 December 1985

completes. If Floating Underflow is disabled, zero is written to the
destination element when an exponent underflow occurs.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS
CONTROL INSTRUCTIONS

Company Confidential Page 4-70
22 Dec .nber 1985

4.6 CONTROL INSTRUCTIONS

PRISM provides eight conditional branch instructions, a Fault On Bit
instruction, and a Jump To Subroutine instruction.

Mnemonic

BEQ
BNE
BLT
BLE
BGT
BGE
BLBS
BLBC

FOB

JSR

Operation

Branch if Register Equal to Zero
Branch if Register Not Equal to Zero
Branch if Register Less Than Zero
Branch if Register Less Than or Equal to Zero
Branch if Register Greater Than Zero
Branch if Register Greater Than or Equal to Zero
Branch if Register Low Bit is Set
Branch if Register Low Bit is Clear

Fault On Low Bit Set

Jump to Subroutine

INSTRUCTION DESCRIPTIONS
CONTROL INSTRUCTIONS

Company Confidential Page 4-71
22 December 1985

Conditional Branch

Format:

Bxx Ra.rl,disp.al

Operation:

va <- PC + {4*SEXT(disp)}
IF TEST(Rav) THEN

PC <- va

Exceptions:

Opcodes:

None

BEQ
BNE
BLT
BLE
BGT
BGE
BLBS
BLBC

Description:

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

if Register
if Register
if Register
if Register
if Register
if Register
if Register
if Register

!Branch format

Equal to Zero
Not Equal to Zero
Less Than Zero
Less Than or equal to Zero
Greater Than Zero
Greater Than or Equal to Zero
Low Bit is Set
Low Bit is Clear

~egister Ra is tested. If the specified relationship is true, the PC
is loaded with the target virtual address: otherwise, execution
continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This means
it is shifted left two bits (to address a longword boundary), sign
extended to 32 bits, and added to the updated PC to form the target
virtual address.

The conditional branch instructions are PC-relative only. The 20-bit
signed displacement gives a forward/backward branch distance of
+/- 512K instructions.

The test is on the longword integer interpretation of the register
contents. To test floating data, first compare the data with zero
using CMPF or CMPG, and then branch on the result of the compare.

PC-relative unconditional
"BEQ RO,target".

branches can be performed by

INSTRUCTION DESCRIPTIONS
CONTROL INSTRUCTIONS

Fault On Low Bit Set

Format:

FOB Ra.rl,disp.al

Operation:

Company Confidential

IF Rav<O> EQ 1 THEN
{FOB exception}

Exceptions:

Fault On Bit

Opcodes:

FOB Fault On Low Bit Set

Description:

Page 4-72
22 December 1985

!Branch format

Bit <O> of Register Ra is tested. If it is set to 1, a Fault On Bit
exception is generated (see Chapter 6, Exceptions and Interrupts,
Section 6.4.3.3: otherwise, execution continues with the next
sequential instruction.

The displacement field of this instruction may be used:by software to
code exception type information.

INSTRUCTION DESCRIPTIONS
CONTROL INSTRUCTIONS

Jump to Subroutine

Format:

JSR Ra.wl,disp.al
JSR Ra.wl,(Rb.ab)

Operation:

Company Confidential

va <- PC + {4*SEXT(disp)}
va <- Rbv AND {NOT 3}

Ra <- PC
PC <- va

Exceptions:

None

Opcodes:

JSR Jump to Subroutine

Description:

Page 4-73
22 December 1985

!Branch format
!Memory format

!Branch format
!Memory format

The PC of the instruction following the JSR instruction (the updated
PC) is written to register Ra, followed by loading :the PC with the
target virtual address.

The JSR instruction has two formats: Branch and Memory.

In the Branch format, the displacement is treated as a signed longword
offset. This means it is shifted left two bits (to address a longword
boundary), sign extended to 32 bits, and added to the updated PC to
form the target virtual address.

In the Memory format, the new PC is supplied from register Rb and the
displacement field Should Be Zero. The low two bits of the target
address are ignored.

An unconditional jump can be performed by "JSR RO,target".

Co-routine linkage can be performed by specifying the same register in
both the Ra and Rb operands.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Page 4-74
22 December 1985

4.7 MISCELLANEOUS INSTRUCTIONS

PRISM provides the following miscellaneous instructions:

Mnemonic

BPT
BUGCHK
DRAIN
I FLUSH
IOTA
MOVPS
PROBER
PRO BEW
RDVC
RDVL
RDVMH
RDVML
REI
SWASTEN
WRVC
WRVL
WRVMH
WRVML

Operation

Breakpoint
System Bug Check
Drain the Pipeline
Flush I-Stream Cache
Generate Compressed Iota Vector
Move Processor Status
Probe Read Access
Probe Write Access
Read Vector Count Register
Read Vector Length Register
Read Vector Mask Register, High Part
Read Vector Mask Register, Low Part
Return from Exception or Interrupt
Swap AST Enable
Write Vector Count Register
Write Vector Length Register
Write Vector Mask Register, High Part
Write Vector Mask Register, Low Part

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Breakpoint

Format:

BPT

Operation:

{push current PC and PS on Kernel stack}

{Change Mode to Kernel}

{dispatch through Breakpoint SCB vector}

Exceptions:

Kernel Stack Not Valid

Opcodes:

BPT Breakpoint

Description:

Page 4-75
22 December 1985

!Epicode format

This instruction is provided for program debugging. It switches to
Kernel mode and pushes the current PC and PS on the Kernel stack. It
then dispatches to the address in the Breakpoint sea: vector. See
Chapter 6, Exceptions and Interrupts, Section 6.4.3.1.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Page 4-76
22 December 1985

Bug Check

Format:

BUGCHK !Epicode format

Operation:

{push current PC and PS on Kernel stack}

{Change Mode To Kernel}

{dispatch through BUGCHK SCB vector}

Exceptions:

Kernel Stack Not Valid

Opcodes:

BUGCHK Bug Check

Description:.

This instruction is used to report software-detected errors in
software. It switches to Kernel mode and pushes the current PC
on the Kern~l stack.· It then dispatches to the address:in the
SCB vector. See Chapter 6, Exceptions and Interrupts,
6.4.3.2.

system
and PS
BUGCHK

Section

iotc
re

zerc
inat
etur
th i

ins

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Drain Instruction Pipeline

Format:

DRAIN

Operation:

Page 4-77
22 December 1985

!Epicode format

{Stall instruction issuing until all prior instructions have
completed.}

Exceptions:

None

Opcodes:

DRAIN Drain Instruction Pipeline

Description:

The DRAIN instruction allows software to guarantee that in a pipelined
implementation all previous instructions have completed before any
more instructions are issued. For example, it should be used before
changing an exception handler to ensure that all exceptions on
previous in.s.tructions are processed in the current exception-handling
environment.

The DRAIN instruction is not issued until all
have completed without exceptions. If an
continuation PC in the exception stack frame
instruction.

previous
exception
points to

instructions
occurs, the

the DRAIN

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Flush Instruction Cache

Format:

I FLUSH

Operation:

Page 4-78
22 December 1985

! Epicode format

{Invalidate instruction prefetch and instruction cache}

Exceptions:

None

Opcodes:

IFLUSH Flush Instruction Cache

Description:

An IFLUSH instruction must be executed when software or I/0 processors
write into the instruction stream. An implementation may contain an
instruction cache that does not track either processor or I/O writes
into the instruction stream. The instruction cache and any prefetched
instructions are invalidated by an IFLUSH instruction.

The cache coherency and sharing rules are described in Chapter 9,
System Architecture and Programming Implications.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Page 4-79
22 December 1985

Generate Compressed Iota Vector

Format:

IOTA
IOTA

Ra.rl,Vc.wl
#a.ib,Vc.wl

!Operate format

Operation:

j <- 0
tmp <- 0
FOR i <- 0 TO VL-1

BEGIN
IF VM<i> EQ 1 THEN

BEGIN
Vc[j] <- tmp
j <- j + 1
END

tmp <- tmp + Rav
END

vc <- j !return vector count

Exceptions:

None

Opcodes:

IOTA Generate Compressed Iota Vector

Description:

IOTA constructs a vector of offsets for use
gather/scatter instructions VGATH and VSCAT.

by

IOTA first generates an iota vector of length VL using
operand in register Ra (or a literal). An iota vector
whose first element is zero and whose subsequent elements
by th4' ~tride increment. For example,

O*Rav, l*Rav, 2*Rav, 3*Rav, ••• , {VL-l}*Rav

the vector

the stride
is a vector
are spaced

The
Mask
non­
des t
is r
leng•

.'l vector is then compressed using the contents of the Vector
~gister (VM). Elements of the iota vector corresponding to the
> bits of VM are written to contiguous elements of the

This

ion vector register, Ve. The number of elements written to Ve
·ned in the Vector Count register (VC) for use as a vector
.n subsequent operations.

:truction may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Move Processor Status

Format:

MOVPS

Operation:

R4 <- PS

Exceptions:

None

Opcodes:

MOVPS Move Processor Status

Description:

Page 4-80
22 December 1985

!Epicode format

MOVPS writes the Processor Status (PS) to register R4. The Processor
Status is described in Chapter 6, Exceptions and Interrupts, Section
6.2.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Probe Memory Access

Format:

Page 4-81
22 December 1985

PROBE !Epicode format

Operation:

R4 contains the base address
RS contains the signed offset
R6 contains the access mode
R7 receives the completion status

Bit <O> <- 1 if success, 0 if failure
Bit <31:1> <- 0

first <- R4
last <- R4+R5
probe mode <- MAXU(R6<1:0>, PS<CM>)
IF ACCESS(first, probe mode) AND ACCESS(last, probe_mode) THEN

R7 <- 1 -
ELSE

R7 <- 0

Exceptions:

Opcodes:

Translation Not Valid

PROBER Probe for Read Access
PROBEW Probe for Write Access

Description:

PROBE checks the read or write accessibility of the first and last
byte specified by the base address and the signed offset; the bytes in
between are not checked. System software must check all pages between
the two bytes if they are to be accessed. If both bytes are
accessible, PROBE returns the value one in R7; otherwise, PROBE
returns zero. The Fault On Read and Fault On Write PTE bits are not
checked. A Translation Not Valid exception is signaled only if the
first level PTE is invalid.

The protection is checked against the less privileged of the modes
specified by R6<l:O> and the Current Mode (PS<CM>). See Chapter 6,
Exceptions and Interrupts, Section 6.2 for access mode encodings.

PROBE is intended only to check a single datum for accessibility. It
does not check all intervening pages because this could result in
excessive interrupt latency.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Read/Write Vector Count Register

Format:

RDVC
WRVC
WRVC

Operation:

Rc.wl
Ra.rl
#a. ib

Re <- ZEXT(VC)

VC <- Rav<6:0>

Exceptions:

Opcodes:

None

RDVC
WRVC

Description:

Read Vector Count Register
Write Vector Count Register

Page 4-82
22 December 1985

!Operate format

!RDVC

!WRVC

• RDVC reads the 7-bit Vector Count register and writes it zero extended
to register Re.

WRVC writes Rav<6:0> to the Vector Count register.

The Vector Count register is also written as a result of executing the
IOTA instruction.

These instructione may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Read/Write Vector Length Register

Format:

RDVL
WRVL
WRVL

Rc.wl
Ra.rl
#a. ib

Operation:

Re <- ZEXT(VL)

VL <- Rav<S:O>

Exceptions:

None

Opcodes:

RDVL Read Vector Length Register
WRVL Write Vector Length Register

Description:

Page 4-83
22 December 1985

! Operate format

!RDVL

!WRVL

RDVL reads the 6-bit Vector Length register and writes it zero
extended to register Re.

WRVL writes Rav<S:O> to the Vector Length register. Writing a zero to
VL is equivalent to a vector length of 64.

These instructione may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Read/Write Vector Mask Register

Format:

RDVM
WRVM
WRVM

Rc.wl
Ra.rl
#a. ib

Operation:

Re <- VM<63:32>
Re <- VM<31:0>

VM<63:32> <- Rav
VM<31:0> <- Rav

Exceptions:

None

Opcodes:

Page 4-84
22 December 1985

! Operate format

!RDVMH
!RDVML

!WRVMH
!WRVML

RDVMH
RDVML
WRVMH
WRVML

Read Vector Mask Register, High Part
Read Vector Mask Register, Low Part
Write Vector Mask Register, High Part
Write Vector Mask Register, Low Part

Description:

RDVM reads the high or low 32 bits of the 64-bit Vector Mask register
and writes it to register Re.

WRVM writes the high or low 32 bits of the 64-bit Vector Mask register
from register Ra or a literal.

These instructions may be omitted in a subset implementation.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Return from Exception or Interrupt

Format:

Page 4-85
22 December 1985

REI !Epicode format

Operation:

IF SP<2:0> NE 0 THEN
{Stack Alignment exception}

tmpl <- (SP)
tmp2 <- (SP+4)

IF PS<CM> NE 0 THEN
BEGIN

!pick up saved PS
!pick up saved PC

IF {tmpl<CM> LTU PS<CM>} OR
{tmpl<MBZ> NE O} OR
{tmpl<IPL> NE 0} THEN
{Illegal Operand exception}

tmpl<VEN> <- tmpl<VEN> AND PS<VEN>
IF {NOT tmpl<VEN>} AND tmpl<VEF> THEN

{Illegal Operand exception}
END

IF tmpl<VMM> EQ l THEN
{perform TBD action}

IF tmpl<VEF> EQ l THEN
{perform Vector Exception Continuation}

SP <- SP + 8
IPR SP[PS<CM>] <- SP
SP <- IPR_SP[tmpl<CM>]

PC <- tmp2 AND {NOT 3}
PS <- tmpl

!switch stack

{check for pending ASTs or interrupts}

Exceptions:

Opcodes:

Access Violation
Fault on Read
Illegal Operand
Kernel Stack Not Valid
Stack Alignment
Translation Not Valid

REI Return from Exception or Interrupt

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Description:

Page 4-86
22 December 1985

The PS and PC are popped from the current stack and held in temporary
PS and PC registers. The new PS is checked for validity and
consistency. If <VEF> is set in the new PS then REI will perform a
vector exception continuation operation. See Chapter 6, Exceptions
and Interrupts, Section 6.4.8.1 for details. The current stack
pointer is saved and a new stack pointer is selected according to the
new PS<CM> field. A check is made to determine if an AST or interrupt
is pending (see Chapter 6, Exceptions and Interrupts, Section 6.7.6).

If the enabling
completion of
instruction.

Notes:

conditions are present for an interrupt at the
this instruction, the interrupt occurs before the next

1. \This instruction differs from the VAX REI instruction in
that instruction lookahead in the processor is NOT
re-initialized. Also, there is no interrupt stack and in
Kernel mode the checks are simplified.\

2. The low two bits of the new PC are ignored.

INSTRUCTION DESCRIPTIONS Company Confidential
MISCELLANEOUS INSTRUCTIONS

Swap AST Enable

Format:

SWASTEN

Operation:

tmp <- R4<0>
R4 <- ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>> <- tmp

{check for pending ASTs}

Exceptions:

None

Opcodes:

SWASTEN Swap AST Enable for Current Mode

Description:

Page 4-87
22 December 1985

!Epicode format

SWASTEN swaps the AST enable bit for the current mode. The new state
for the enable bit is supplied in register R4<0> and previous state of
the enable bit is returned, zero extended, in R4. ·

A check is made to determine if an AST is pending (see Chapter 6,
Exceptions and Interrupts, Section 6.7.6.4).

If the enabling
completion of
instruction.

conditions are present for an interrupt at the
this instruction, the interrupt occurs before the next

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Company Confidential

4.8 PRIVILEGED INSTRUCTIONS

Page 4-88
22 December 1985

Privileged instructions are allowed in Kernel mode only; otherwise, a
Privileged Instruction exception occurs. The following privileged
instructions are provided:

Mnemonic

HALT
MFPR
MTPR
RMAQIP
SWPCTX
SW IPL
TB FLUSH

Operation

Halt Processor
Move From Processor Register
Move To Processor Register
Read, Mask, Add Quadword, Interlocked, Physical
Swap Privileged Context
Swap IPL
Flush Translation Buffer

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Company Confidential

Halt

Format:

HALT

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

IF {halt action} EQ HALT THEN
{enter console mode}

ELSE
{enter restart sequence}

Exceptions:

Privileged Instruction

Opcodes:

HALT Halt Processor

Description:

Page 4-89
22 December 1985

!Epicode format

The HALT instruction stops normal instruction processing, and
depending on the HALT action switch, the processor may either enter
console mode or the restart sequence. See Chapter 11, System
Bootstrapping and Console, Section 11.2.2.

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Company Confidential

Move.From Processor Register

Format:

MFPR IPR Name

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{result <- IPR specific function}

Page 4-90
22 December 1985

!Epicode format

! IPR specific results are returned in R4, RS, and R6.

Exceptions:

Privileged Instruction

Opcodes:

MFPR Move From Processor Register

Description:

The internal processor register specified by the Epicode function
field is written to the IPR-specific scalar register(s).: Processor
registers are implemented such that any side effects that may happen
as the result of reading the register, e.g., interrupt request is
cleared, are guaranteed to occur exactly once.

See Chapter 8, Internal Processor Registers, for a description of each
IPR.

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Move To Processor Register

Format:

MTPR IPR Name

Operation:

Company Confidential

IF PS<CM> NE 0 THEN
{privileged instruction exception}

Page 4-91
22 December 1985

!Epicode format

! R4 and RS contain IPR specific source operands

{IPR <- result of IPR specific function}

Exceptions:

Privileged Instruction

Opcodes:

MTPR Move To Processor Register

Description:

The IPR-specific
written to the
function field.
guaranteed to be

source operands in scalar registers R4 and RS are
internal processor register specified by the epicode
The effect of loading a processor register is

active on the next instruction.

See Chapter 8, Internal Processor Registers, for a description of each
IPR.

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Company Confidential

Read, Mask, Add Quadword, Interlocked, Physical

Format:

Page 4-92
22 December 1985

RMAQIP !Epicode format

Operation:

QR4 contains the quadword aligned physical address
QR6 contains the quadword mask data
QRB contains the quadword addend data
QR4 receives the quadword read data

IF PS<CM> NE 0 THEN
{privileged instruction exception}

addr <- QR4 AND {NOT 7}

QR4 <- (addr){interlocked} !acquire hardware interlock

(addr){interlocked} <- {QR4 AND QR6} + QRS
!release hardware interlock

Exceptions:

Opcodes:

Machine Check
Privileged Instruction

RMAQIP Read, Mask, Add Quadword, Interlocked, Physical

Description:

!he quadword aligned memory operand, whose physical address is in QR4,
is fetched and written to QR4. The memory operand is ANDed with the
mask in QR6 and then added to the addend data in QRS. The result is
then written to the original memory location. The low three bits of
the operand address in QR4 are ignored.

This instruction performs an interlocked memory access in that no
other processor in a multiprocessor system can perform an interlocked
operation on the same operand until the current interlocked operation
has completed. This is an Epicode instruction.

The operation is UNDEFINED if RMAQIP accesses I/0 space.

A reference to non-existent memory causes a Machine
Unimplemented physical address bits are SBZ.
UNDEFINED if any of these bits are set.

Check exception.
The operation is

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Company Confidential Page 4-93
22 December 1985

Swap Privileged Context

Format:

SWPCTX !Epicode format

Operation:

! QR4 contains the physical address of the new HWPCB.

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! Store old HWPCB contents

(HWPCB KSP) <- SP
IF {internal registers for stack pointers} THEN

BEGIN
(HWPCB ESP) <- IPR ESP
(HWPCB-SSP) <- IPR-SSP
(HWPCB-USP) <- IPR-USP
END -

(HWPCB ASTSR) <- IPR ASTSR
(HWPCB:ASTEN) <- IPR-ASTEN

! Load new HWPCB contents

IPR_PCBB <- QR4

IF {ASNs not implemented} THEN
{invalidate translation buffer entries with PTE<ASM> EQ O}

ELSE
IPR_ASN <- (HWPCB_ASN)

IF {virtual instruction cache implemented} THEN
{flush instruction cache}

SP <- (HWPCB_KSP)

IF {internal registers for stack pointers} THEN
BEGIN
IPR ESP <- (HWPCB ESP)
IPR-SSP <- (HWPCB-SSP)
IPR-USP <- (HWPCB:usP)
END-

! PR PTBR <- (HWPCB PTBR)
IPR-ASTSR <- (HWPCB-ASTSR)
IPR-ASTEN <- (HWPCB:ASTEN)

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Exceptions:

Company Confidential

Machine Check
Privileged Instruction

Opcodes:

SWPCTX Swap Privileged Context

Description:

Page 4-94
22 December 1985

The SWPCTX instruction returns ownership of the current Hardware
Privileged Context Block (HWPCB) to the operating system and passes
ownership of the new HWPCB to the processor.

SWPCTX saves the privileged context from the internal processor
registers into the HWPCB specified by the physical address in the PCBB
internal processor register. It then loads the privileged context
from the new HWPCB specified by the physical address in QR4. Note
that the actual sequence of the save and restore operation is not
specified so any overlap of the current and new HWPCB storage areas
produces UNDEFINED results.

The privileged context includes the four stack pointers, the Page
Table Base Register (PTBR), the Address Space Number (ASN), and the
AST enable and summary registers. However, PTBR is never saved in the
HWPCB and it is UNPREDICTABLE whether or not ASN is saved. These
values cannot be changed for a running process. The process scalar
and vector registers are saved and restored by the operating system.
See Chapter 7, Process Structure, Figure 7-1, for the HWPCB format.

Any change to the current HWPCB while the processor has ownership may
result in UNDEFINED operation. All the values in the current HWPCB
can be read through IPRs.

If the enabling
completion of
instruction.

conditions are present for an interrupt at the
this instruction, the interrupt occurs before the next

Epicode sets up the PCBB at boot time to point to the HWPCB storage
area in the Restart Parameter Block (RPB). See Chapter 11, System
Bootstrapping and Console.

The operation is UNDEFINED if SWPCTX accesses I/O space.

A reference to non-existent memory causes a Machine
Unimplemented physical address bits are SBZ.
UNDEFINED if any of these bits are set.

Note:

Check exception.
The operation is

Processors may keep a copy of each of the per-process stack pointers
in internal registers. In those processors, SWPCTX stores the
internal registers into the HWPCB. Processors that do not keep a copy

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Company Confidential Page 4-95
22 December 1985

of the stack pointers in internal registers, keep only the stack
pointer for the current access mode in SP and switch this with the
HWPCB contents whenever the current access mode changes.

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Company Confidential

Swap IPL

Format:

SWIPL

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

tmp <- R4<2:0>
R4 <- ZEXT(PS<IPL>)
PS<IPL> <- tmp

{check for pending ASTs or interrupts}

Exceptions:

'Privileged Instruction

Opcodes:

SW IPL Swap Processor IPL level

Description:

Page 4-96
22 December 1985

!Epicode format

SWIPL swaps the processor IPL level. The new IPL level is supplied in
register R4<2:0> and- previous IPL level is returned in R4.

A check is made to determine if an AST is pending (see Chapter 6,
Exceptions and Interrupts, Section 6.7.6).

If the enabling
completion of
instruction.

conditions are present for an interrupt at the
this instruction, the interrupt occurs before the next

INSTRUCTION DESCRIPTIONS
PRIVILEGED INSTRUCTIONS

Flush Translation Buffer

Format:

TBFLUSH

Operation:

Company Confidential

IF PS<CM> NE 0 THEN
{privileged instruction exception}

Page 4-97
22 December 1985

!Epicode format

{Invalidate all translation buffer entries}

Exceptions:

Privileged Instruction

Opcodes:

TBFLUSH Flush Translation Buffer

Description:

The TBFLUSH instruction is used to invalidate all TB entries and
flushes all virtual caches. To invalidate a single TB entry use the
MTPR TBIS instruction.

INSTRUCTION DESCRIPTIONS
COPROCESSOR INSTRUCTIONS

Company Confidential

4.9 COPROCESSOR INSTRUCTIONS

Page 4-98
22 December 1985

The Coprocessor instructions provide the means to transfer data,
control, and status information between a PRISM processor and one or
more application-specific computing elements called coprocessors.
They also provide the ability for a program on a PRISM processor to
synchronize itself with the operation of a coprocessor. The actual
operation performed by a coprocessor is implementation-specific.

The following instructions are provided:

Mnemonic

COP RD
COP WR

Operation

Coprocessor Read
Coprocessor Write

INSTRUCTION DESCRIPTIONS
COPROCESSOR INSTRUCTIONS

Company Confidential Page 4-99
22 December 1985

Coprocessor Read/Write

Format:

COP RD

COPWR
COPWR

Ra.wl,#ctrl.ix,#caddr.ix,#te.ix

Ra.rl,#ctrl.ix,#caddr.ix,#te.ix
#a.ib,#ctrl.ix,#caddr.ix,#te.ix

!Coprocessor format

Operation:

Coprocessor[caddr] <-Rav II ctrl

Coprocessor[caddr] <- ctrl
Ra <- Coprocessor_data[caddr]

IF {te EQ l} AND {Coprocessor Exception} THEN
{take Arithmetic exception}

Exceptions:

Opcodes:

Arithmetic

COPRD Coprocessor Read
COPWR Coprocessor Write

Description:

!COPWR

!COPRD
!COPRD

COPRD reads data from a coprocessor and writes it to the PRISM scalar
register Ra. COPWR writes the data in PRISM scalar register Ra to a
coprocessor.

The Coprocessor instruction format provides a 10-bit
control field (ctrl operand), a 9-bit Coprocessor address
operand) and a 1-bit trap enable field (te operand). See
Instruction Formats, Section 3.3.5.

Coprocessor
field (caddr
Chapter 3,

o The ctrl operand is passed to the coprocessor to control the
operation performed.

o The caddr operand is used to select a specific coprocessor in
a system with more than one.

o The te operand is used to enable exceptions on transactions
with a coprocessor. A Coprocessor Read or Write can generate
an exception if an exception condition is present in the
coprocessor and te is set to 1. When the exception occurs on
a COPRD, the value written to the PRISM destination register
(Ra) is UNPREDICTABLE. The coprocessor may contain a status
register that can be read with a COPRD to give additional
information about the exception. If te is 0, the Arithmetic

INSTRUCTION DESCRIPTIONS
COPROCESSOR INSTRUCTIONS

Company Confidential Page 4-100
22 December 1985

exception is suppressed. This could be used to ignore
exceptions (e.g., when context switching).

These instructions may be omitted in a subset implementation that does
not provide a Coprocessor interface.

INSTRUCTION DESCRIPTIONS
REVISION HISTORY

Revision History:

Company Confidential

Revision 1.0, 22 December 1985

Page 4-101
22 December 1985

1. Changed register width from 64 bits to 32 bits.

2. Changed Epicode parameter registers to R4-R7.

3. Changed instruction descriptions to use instruction fields.

4. Changed MOVx mnemonics to LD/ST.

5. Changed REI to match new privileged architecture.

6. Changed Unbiased rounding to VAX rounding.

1. Added RMAQI, Read, Mask, Add Quadword, Interlocked.

8. Added RMAQIP, Read, Mask, Add Quadword, Interlocked, Physical.

9. Added SWIPL, Swap IPL.

10. Added SWASTEN, Swap AST enable.

11. Added SWPCTX, Swap Privileged Context.

12. Added FOB, Fault On Low Bit Set.

13. Added UMULH, Unsigned 32-bit Multiply, Return High bits.

14. Added F_Floating operations.

15. Added floating-point exception error result.

16. Added vector registers and vector instructions.

17. Added Coprocessor instructions.

18. Eliminated sign extended byte and word loads.

19. Eliminated operate format loads and stores.

20. Eliminated Compare address instructions.

21. Eliminated ADDRC, Add and Return Carry.

22. Eliminated SUBRB, Subtract and Return Borrow.

23. Eliminated CMPUEQ, CMPUNE, Compare Unsigned Equality

24. Eliminated Convert Quad to Long,Word,Byte instructions.

INSTRUCTION DESCRIPTIONS
REVISION HISTORY

Company Confidential Page 4-102
22 December 1985

25. Eliminated Directed roundings to Plus and Minus Infinity.

26. Eliminated Queue instructions.

27. Eliminated Change Mode instructions.

28. Eliminated USRCHK, User Check.

29. Eliminated Quadword parameter from BUGCHK.

30. Eliminated PROBEPx, Probe Previous Mode Read/Write.

31. Eliminated INTON/INTOFF.

32. Eliminated RDSP/WRTSP, Read and Write Stack Pointer.

33. Eliminated SWIS, SWKS, Switch to Interrupt/Kernel stack.

34. Eliminated PREFETCH.

35. Eliminated MOVCNT, MOVCYT, Move Count/Cycle Time.

Revision 0.0, 5 July 1985

1. First Review Distribution

Company Confidential

CHAPTER 5

MEMORY MANAGEMENT

5.1 INTRODUCTION

Memory management consists of the hardware and software which control
the allocation and use of physical memory. Typically, in a
multiprogramming system, several processes may reside in physical
memory at the same time: see Chapter 7, Process Structure. PRISM uses
memory protection and multiple address spaces to ensure that one
process will not affect other processes or the operating system.

To further improve software reliability, four hierarchical access
modes provide memory access control. They are, from most to least
privileged: Kernel, Executive, Supervisor, and User. Protectlon is
specified at the individual page level for data and instruction
access. A page may be inaccessible or may have different data or
instruction accessibility for each of the four access modes. Data
accessibility can be read-only, read/write, or no access. Any
location accessible as data to one mode is also accessible as data to
all more privileged modes. Furthermore, for each access mode, any
location that can be written can also be read. For instructions,
execute access in one mode implies execute access in all more
privileged modes.

A program uses virtual addresses to access its data and instructions.
However, before these virtual addresses can be used to access memory,
they must be translated into physical addresses. Memory management
software maintains tables of mapping information (page tables) that
keep track of where each virtual page is located in physical memory.
The processor utilizes this mapping information when it translates
virtual addresses to physical addresses.

Therefore, m~mory management provides both memory protection and
memory mapping mechanisms. The PRISM memory management architecture
is designed to meet several goals:

o Provide a large address space for instructions and data.

o Allow programs to run on hardware with physical memory
smaller than the virtual memory used.

MEMORY MANAGEMENT
INTRODUCTION

Company Confidential Page 5-2
22 December 1985

o Provide convenient and efficient sharing of instructions and
data.

o Allow sparse use of a large address space without excessive
page table overhead.

o Contribute to software reliability.

o Provide independent
protection.

execute, read and write access

o Provide an efficient mechanism for controlled entry to
privileged operating system functions.

5.2 VIRTUAL ADDRESS SPACE

A virtual address is a 32-bit unsigned integer which specifies a byte
location within the virtual address space. The programmer sees a
linear array of 4,294,967,296 bytes. The virtual address space is
broken into pages, which are the units of relocation, sharing, and
protection. The page size is 8 Kbytes. Future implementations of
PRISM may use page sizes ranging up to 64 Kbytes (see Appendix B).
System software should, therefore, allocate regions with differing
protection on 64-Kbyte virtual address boundaries to ensure image
compatibility across all PRISM implementations.

Memory management
virtual address
operating system
tables, and saves
space on external

provides the mechanism to map the active part of the
space to the available physical address space. The
controls the virtual-to-physical address mapping
the inactive (but used) parts of the virtual address
storage media.

The operating system must be mapped into the same part of the address
space for every process.

5.2.1 Virtual Address Format

The PRISM processor genera~es a 32-bit virtual address for each
instruction and operand in memory. The virtual address consists of
two segment number fields, and a Byte Within Page field.

MEMORY MANAGEMENT
VIRTUAL ADDRESS SPACE

3
l

2 2
3 2

Company Confidential

1 l
3 2

Page 5-3
22 December 1985

0
+-----------------+-------------------+-------------------------+

Segl Number I Seg2 Number I Byte Within Page - -+-----------------+-------------------+-------------------------+
Figure 5-1: Virtual Address Format

The segment number fields, bits <31:13> of a virtual address, specify
the virtual page to be referenced. The Byte Within Page field, bits
<12:0> of a virtual address, specifies the byte offset within the
page. A page contains 8 Kbytes.

5.3 PHYSICAL ADDRESS SPACE

Physical addresses are, at most, 45 bits. A processor may choose to
implement a smaller physical address space by not implementing some
number of high order bits. The most significant implemented physical
address bit selects memory space when it is 0, and I/0 space when it
is l. For example, in a 30-bit physical address space, bit <29>
selects memory or I/O space.

5.4 MEMORY MANAGEMENT CONTROL

Memory management is always enabled when the processor is not running
Epicode. At processor initialization time, the processor executes
Epicode with memory management disabled.

5.5 PAGE TABLE ENTRIES

The processor uses a quadword Page Table Entry (PTE) to translate
virtual addresses to physical addresses. A PTE contains hardware and
software control information and the physical Page Frame Number.

MEMORY MANAGEMENT
PAGE TABLE ENTRIES

Company Confidential Page 5-4
22 December 1985

3 3 2 2 2 2 2
l 0 9 8 7 6 5

2 l l
0 9 8

l l
6 5 0

+-+-+-+-+-+-+-----------+-+-----+-------------------------------+
I
I Page Frame Number :A
I
+-+-+-+-+-+-+-----------+-+-----+-------------------------------+
I IFIFIFIDIAI III I I
IVIOIOIOICISI ProtectionlNI RSVDI Reserved for Software I :A+4
I IRIWIEIVIMI IDI I I
+-+-+-+-+-+-+-----------+-+-----+-------------------------------+

Figure 5-2: Page Table Entry

Fields in the highest addressed longword are interpreted as follows:

Bits

31

30

29

28

Description

Valid (V) - Indicates the validity of the DCV, ASM, FOE, FOW,
FOR bits and the PFN field. When V is set, the DCV, ASM, FOE,
FOW, FOR bits and the PFN fields are valid for use by
hardware. When V is clear, the PFN field is reserved for use
by software.

Fault On Read (FOR) - When set, a Fault On Read exception
occurs on an attempt to read any location in the page.

Fault On Write (FOW) - When set, a Fault On Write exception
occurs on an attempt to write any location in the page.

Fault On Execute
exception occurs
the page.

(FOE) When set, a Fault On Execute
on an attempt to execute an instruction in

27 Don't Cache Virtual (DCV) - When set, contents of locations in
this page are not cached in a virtual cache.

\This is intended for use in systems with virtual caches when
shared writable pages exist at multiple virtual addresses and
map to the same physical address.\

26 Address Space Match (ASM) - When set, this PTE matches all
Address Space Numbers.

25:20 Protection (PROT) - Indicates at what access modes a process
can reference the page. This field is always valid in the
final PTE and is used by the processor hardware even when V is
clear.

19 Indirect Page Table Pointer (IND) - If V is clear, and IND is
set, then bits <44:0> contain the physical address of the
indirect quadword aligned PTE, and all other bits are ignored.
When v is set, IND is ignored.

MEMORY MANAGEMENT
PAGE TABLE ENTRIES

Company Confidential

Reserved for future use by DIGITAL.

Page 5-5
22 December 1985

18:16

15:0 Reserved for software except when V is clear and IND is set.

Fields in the lowest addressed longword are interpreted as follows:

Bits Description

31:0 Page Frame Number (PFN) - The PFN field always points to a
page boundary. If V is set, the PFN is concatenated with the
Byte Within Page bits of the virtual address to obtain the
physical address. See Section 5.7. If V is clear and IND is
clear, this field may be used by software.

5.5.1 Changes To Page Table Entries

The operating system changes PTEs as part of its memory management
functions. For example, the operating system may set or clear the
valid bit, change the PFN field as pages are moved to and from
external storage media, or modify the software bits. The processor
hardware never changes PTEs.

Software must guarantee that each PTE is always consistent within
itself. Changing a PTE one field at a time may give incorrect ~ystem
operation, e.g., setting PTE<V> with one instruction before
establishing PTE<PFN> with another. Execution of an interrupt service
routine between the two instructions could use an address that would
map using the inconsistent PTE. Software can solve this problem by
building a complete new PTE in an even-odd register pair and then
moving the new PTE to the page table using a Store Quadword
instruction (STQ).

Multiprocessing makes the problem more complicated. Another processor
could be reading (or even changing) the same PTE that the first
processor is changing. Such concurrent access must produce consistent
results. Software must either use the Read Mask and Add Quadword
Interlocked (RMAQI or RMAQIP) instruction, or use some other form of
software synchronization to modify PTEs that are already valid. Once
a processor has modified a valid PTE, it is possible that other
processors in a multiprocessor system may have old copies of that PTE
in their Translation Buffer. Software must inform other processors of
changes to PTEs via the interprocessor interrupt mechanism and an
associated software protocol. PTEs may be read with non-interlocked
quadword operations if they are not being modified. Software may
write new values into invalid PTEs using non-interlocked quadword
store instructions (i.e., STQ). Hardware must ensure that aligned
quadword reads and writes are indivisible operations.

~-

MEMORY MANAGEMENT
MEMORY PROTECTION

Company Confidential Page 5-6
22 December 1985

5.6 MEMORY PROTECTION

Memory protection is the function of validating whether a particular
type of access is allowed to a particular page from a particular
access mode. Access to each page is controlled by a protection code
that specifies, for each access mode, whether data read, data write,
or execute references are allowed.

The processor uses the following to determine whether an intended
access is allowed:

o The virtual address, which is used to index page tables.

o The intended access type (read data, write
instruction fetch}.

o The current access mode from the Processor Status.

data, or

If the access is allowed and the address can be mapped (the Page Table
Entry is valid), the result is the physical address corresponding to
the specified virtual address.

The intended access is READ if the operation to be performed is a data
read. The intended access is WRITE if the operation to be performed
is a data write. The intended access is EXECUTE if the operation to
be performed is an instruction fetch.

If an operand is an address operand, then no reference is made to
memory. Hence, the page need not be accessible nor map to a physical
page.

5.6.1 Processor Access Modes

In the order of most privileged to least privileged, the four
processor modes are:

o Kernel

o Executive

o Supervisor

o User

The access mode of a running process is stored in the Current Mode
field of the Processor Status (PS): see Chapter 6, Exceptions and
Interrupts, Section 6.2.

. ,
\

MEMORY MANAGEMENT
MEMORY PROTECTION

Company Confidential Page 5-7
22 December 1985

5.6.2 Protection Code

Every page in the virtual address space is protected according to its
use. A program may be prevented from executing, reading, or modifying
portions of its address space. Associated with each page is a
protection code that describes the accessibility of the page for each
processor mode. The code allows a choice of protection for each
processor mode, within the following limits:

o Each mode's access can be read/write, read-only, or no-access
for data references.

o Except for Kernel mode, each mode's access can be execute or
no-execute for instruction execution.

o Data and execution accessibility are specified independently.
Thus, execute access can be allowed to a page that cannot be
read. Also, execution access can be prevented to a page that
can be written as data.

o If any level has execute access then all more privileged
levels also have execute access.

o If any level has read access then all more privileged levels
also have read access.

o If any level has write access then all more privileged ievels
also have write access.

The protection code is specified by a 6-bit field in the
<l:O> specify execute accessibility and bits <5:2>
accessibility.

PTE. Bits
specify data

$.
.,f;.

MEMORY MANAGEMENT Company Confidential Page 5-8
MEMORY PROTECTION 22 December 1985

Table 5-1: PTE Protection Codes

--Accessibility
---------------------------Name Mnemonic PROT Kernel Exec Super User

<5:0>
--no data access
reserved
Kernel write
Kernel read
User write
Exec write
Exec read,

Kernel write
Exec read
Super write
Super read,

Exec write
Super read,

Kernel write
Super read
User read,

Super write
User read,

Exec write
User read,

Kernel write
User read

Kernel execute
Exec execute
Super execute
User execute

NDA
RSVD
KW
KR-
uw-
EW-

ERKW
ER
sw-

SREW

SRKW
SR

URSW

UREW

URKW
UR_

KX
EX
sx
ux

OOOOxx
OOOlxx
OOlOxx
OOllxx
OlOOxx
OlOlxx

OllOxx
Olllxx
lOOOxx

lOOlxx

1010xx
lOllxx

llOOxx

llOlxx

lllOxx
llllxx

xxxxOO
xxxxOl
xxxxlO
xxxxll

none none none none
UNPREDICTABLE

write
read
write
write

write
read
write

write

write
read

write

write

write
read

execute
execute
execute
execute

none none none
none none none
write write write
write none none

read none none
read none none
write write none

write read none

read read none
read read none

write write read

write read read

read read read
read read read

none
execute
execute
execute

none none
none none
execute none
execute execute

The full mnemonic is obtained by concatenating the data and
instruction execution access mnemonics. For example, UR_KX denotes
User read, Kernel execute (code=llllOO (bin)).

MEMORY MANAGEMENT
MEMORY PROTECTION

Company Confidential Page 5-9
22 December 1985

\This encoding was chosen to simplify hardware access checking for
implementations not using a table decoder. An access is allowed if:

{d stream access AND {CODE<5:2> NE O} AND
{{CODE<5:2> EQ 4} OR {CM LTU WM} OR {read_access AND {CM LEU RM}}}}

OR
{i_stream_access AND {CM LEU XM}}

Where:

CM is current processor mode
RM is protection code <5:4>
WM is ones complement of protection code <3:2>
XM is protection code <l:O>

5.6.3 Access Control Violation Fault

An Access Control Violation fault occurs if an illegal access is
attempted, as determined by the current processor mode and the page's
protection field, or if the second longword of a PTE is zero.

5.7 ADDRESS TRANSLATION

Address translation is performed by accessing entries in a two-level
page table structure. The Page Table Base Register (PTBR) contains
the physical Page Frame Number of the first-level page table. If part
of any page table resides in I/O space, or in nonexistent memory, the
operation of the processor is UNDEFINED.

The Page Table Base Register contains the physical Page Frame Number
of the highest-level (Segment l) page table. Bits <31:23> of the
virtual address are used to index into the first-level page table to
obtain the physical Page Frame Number of the base of the second-level
(Segment 2) page table. Bits <22:13> of the virtual address are used
to index into the second level page table to obtain the physical Page
Frame Number (PFN) of the page being referenced. The PFN is
concatenated with virtual address bits <12:0> to obtain the physical
address of the location being accessed.

If the first-level PTE is valid, the protection bits are ignored; the
protection code in the second-level PTE is used to determine
accessibility. If a first-level PTE is invalid, an Access Violation
occurs if the second longword of that PTE equals zero. An Access
Control Violation on a first-level PTE (zero PTE) implies that all
lower-level page tables mapped by that PTE do not exist.

\Note that this mapping scheme does not require multiple contiguous
nhvsical naoes. There are no lenoth reoisters. Two naoP~ (1~ Khvtes)

MEMORY MANAGEMENT
ADDRESS TRANSLATION

Company Confidential

Mbytes) map the entire 4-Gbyte address space.\

Page 5-10
22 December 1985

The PRISM architecture supports indirect PTEs for facilitating shared
pages. If an indirect PTE resides in I/0 space or in nonexistent
memory, the operation of the processor is UNDEFINED. Only one level
of indirection is allowed at each page table level.

\The primary benefit of indirection is that it allows the software
bits to be maintained in a single place for shared pages. It is also
useful for sharing page tables that map read-only code or data, e.g.,
shared runtime libraries.\

The algorithm to generate a physical address from a virtual address is
shown below:

MEMORY MANAGEMENT
ADDRESS TRANSLATION

Company Confidential Page 5-11
22 December 1985

segl pte <- ({PTBR * 8192} + {8 * VA<31:23>})

IF segl pte<V> EQ 0 THEN

!Read Physical

BEGIN
IF segl pte<IND> EQ 0 THEN

IF iegl pte<63:32> EQ 0 THEN
{inTtiate Access Control Violation fault}

ELSE
{initiate Translation Not Valid fault}

ELSE
BEGIN
segl pte <- (segl pte<44:0>) !Read Physical
IF segl pte<V> EQ-0 THEN

IF segl..,..Pte<63:32> EQ 0 THEN
{initiate Access Control Violation fault}

ELSE
{initiate Translation Not Valid fault}

END
END

seg2_pte <- ({segl_pte<PFN> * 8192} + {8 * VA<22:13>}) !Read Physical

IF seg2 pte<V> EQ 0 THEN
BEGIN
IF seg2 pte<IND> EQ 0 THEN

IF Tseg2 pte<PROT> check fails} OR
{seg2:J>te<63:32> EQ 0} THEN
{initiate Access Control Violation fault}

ELSE
{initiate Translation Not Valid fault}

ELSE
BEGIN
seg2_pte <- (seg2_pte<44:0>) !Read Physical
IF seg2_pte<V> EQ 0 THEN

IF {seg2_pte<PROT> check fails} OR
{seg2__pte<63:32> EQ O} THEN

END
END

{initiate Access Control Violation fault}
ELSE

{initiate Translation Not Valid fault}

IF {seg2 pte<PROT> check fails} THEN
{initiate Access Control Violation fault}

ELSE
BEGIN
IF {seg2 pte<FOW> EQ l} AND {write access} THEN

{initiate Fault On Write fault}
IF {seg2 pte<FOR> EQ l} AND {read access} THEN

{initiate Fault On Read fault}
IF {seg2 pte<FOE> EQ l} AND {execute access} THEN

{initiate Fault On Execute fault}
Physical_Address <- {seg2_pte<PFN> * 8192} OR VA<l2:0>
END

MEMORY MANAGEMENT
TRANSLATION BUFFER

5.8 TRANSLATION BUFFER

Company Confidential Page 5-12
22 December 1985

In order to save actual memory references when repeatedly referencing
the same pages, a hardware implementation may include a mechanism to
remember successful virtual address translations and page states.
Such a mechanism is termed a Translation Buffer.

When the process context is changed, a new value is loaded into the
Address Space Number (ASN) internal processor register with a swap
Privileged Context instruction (SWPCTX): see Chapter 4, Instruction
Descriptions, Page 4-93 and Chapter 7, Process Structure. This causes
address translations for pages with PTE<ASM> clear to be invalidated
on a processor that does not implement address space numbers.
Additionally, when the software changes any part (except for the
Software field) of a valid Page Table Entry, it must also move a
virtual address within the corresponding page to the Translation
Buffer Invalidate Single (TBIS) internal processor register with the
MTPR instruction: see Chapter 8, Internal Processor Registers, Page
8-26.

\Some implementations may invalidate the entire Translation Buffer on
an MTPR to TBIASN or TBIS. In general, implementations may invalidate
more than the required translations in the TB.\

The entire Translation Buffer can be
Translation ,,_ Buff er Flush instruction
Instruction Descriptions, Page 4-97.

invalidated
(TBFLUSH):

by executing a
see Chapter_ 4,

t The Translation Buffer must not store invalid PTEs. Therefore, the
software is not required to invalidate Translation Buff er entries when
making changes for PTEs that are already invalid.

The TBCHK internal processor register is available for interrogating
the presence of a valid translation in the Translation Buffer: see
Chapter 8, Internal Processor Registers, Page 8-23.

\Hardware implementors should be aware that a single, direct mapped TB
has a potential problem when a load/store instruction and its data map
to the same TB location. If TB misses are handled in Epicode, there
could be an unending loop unless the instruction is held in an
instruction buffer or a translated physical PC is maintained by the
hardware.\

5.9 ADDRESS SPACE NUMBERS

The PRISM architecture allows a processor to optionally implement
address space numbers (process tags) to reduce the need for
invalidation of cached address translations for process specific
addresses when a context switch occurs. The number of bits in the
address space number is implementation dependent. The address space
number for the current process is loaded by software in the Address
Space Number (ASN) internal processor register with a Swap Privileged

MEMORY MANAGEMENT
ADDRESS SPACE NUMBERS

Company Confidential Page 5-13
22 December 1985

Context instruction. ASNs are processor specific and the hardware
makes no attempt to maintain coherency across multiple processors. In
a multiprocessor system, software is responsible for ensuring the
consistency of TB entries for processes that might be rescheduled on
different processors.

When software reassigns an address space number
process, it must invalidate address translations
process by executing an MTPR to the TBIASN register;
Internal Processor Registers, Page 8-25.

to a different
for the previous
see Chapter 8,

\There are several possible ways of using ASNs. There are several
complications in a multiprocessor system. Consider the case where a
process that executed on processor-1 is rescheduled on processor-2.
If a page is deleted or its protection is changed, the TB in
processor-1 has stale data. One solution would be to send an
interprocessor interrupt to all the processors on which this process
could have run and cause them to invalidate the changed PTE. This
results in significant overhead in a system with several processors.
Another solution would be to have software invalidate all TB entries
for a process on a new processor before it can begin execution, if the
process executed on another processor during its previous execution.
This ensures the deletion of possibly stale TB entries on the new
processor.

Invalidatiorr·of TB entries for a specific ASN can take a long time if
the hardware does not support a mechanism to associatively invalidate
TB entries by ASN. A possible solution to this problem would be for
software to assign a new ASN value to a process when it is rescheduled
on a new processor. When the processor eventually runs out of unused
ASN values, the entire TB can be flushed by software.

Are ASNs really a big win in multiprocessor systems?
rid of them? \

5.10 MEMORY MANAGEMENT FAULTS

Should we get

Five types of faults are associated with memory access and protection:

o Access Control Violation

o Fault On Read

o Fault On Write

o Fault On Execute

o Translation Not Valid

See Chapter 6, Exceptions and Interrupts, for a detailed description
of these faults.

MEMORY MANAGEMENT
MEMORY MANAGEMENT FAULTS

Company Confidential Page 5-14
22 December 1985

An Access Control Violation (ACV) fault is taken when the protection
field of the second-level PTE that maps the data indicates that the
intended page reference would be illegal in the specified access mode.
An Access Control Violation fault is also taken if the second longword
of a PTE is zero.

A Fault On Read (FOR) fault occurs when a read is attempted with
PTE<FOR> set. A Fault On Write (FOW) fault occurs when a write is
attempted with PTE<FOW> set. A Fault On Execute (FOE) fault occurs
when instruction execution is attempted with PTE<FOE> set.

A Translation Not Valid (TNV) fault is taken when a read or write
reference is attempted through an invalid PTE in a first- or
second-level page table. A PTE is invalid if V is clear and IND is
clear. TNV also occurs if an indirect PTE at any level has v clear.

Note that these five faults have distinct vectors in the System
Control Block. The Access Control Violation fault takes precedence
over Translation Not Valid, and Fault On Read/Write/Execute.
Translation Not Valid, and Fault On Read/Write/Execute are mutually
exclusive. Fault On Read and Fault On Write can occur simultaneously
in the Read, Mask, Add Quadword Interlocked instruction, in which case
the order that the exceptions are taken is UNPREDICTABLE: see Chapter
4, Instruction Descriptions, Page 4-9.

MEMORY MANAGEMENT
REVISION HISTORY

Revision History:

Company Confidential

Revision 1.0, 22 December 1985.

1. Change virtual address to 32 bits.

Page 5-15
22 December 1985

2. Simplify PTE format. Eliminate M, and COM in favor of Fault
On Read/Write/Execute. Eliminate skip bits in PTE.

3. Eliminate system space.

4. Change page size to 8 Kbytes

5. Change protection change boundary to 64 Kbytes

6. Move exception frames to Chapter 6.

Revision 0.0, Initial Release, 5 July 1985.

6.l INTRODUCTION

Company Confidential

CHAPTER 6

EXCEPTIONS AND INTERRUPTS

At certain times during the operation of a system, events within the
system require the execution of software outside the explicit flow of
control. When such an event occurs, the processor forces a change in
control flow from that indicated by the current instruction stream.

Some of the events are relevant primarily to the currently executing
process, and normally invoke software in the context of the current
process. The notification of such events is termed an exception.

Other events are primarily relevant to other processes, or · to the
system as a whole, and are therefore serviced in a system-wide
context. The notification for these events is termed an interrupt.

Some interrupts are of such urgency that they require high-priority
service, while others must be synchronized with independent events.
To meet these needs, the processor has priority logic that grants
interrupt service to the highest priority event at any point in time.

6.1.l Processor Interrupt Priority Level (IPL)

The processor has eight Interrupt Priority Levels (IPL's) divided into
four software levels (numbered 0 to 3), and four hardware levels
(numbered 4 to 7). User applications and most operating system
software Lrun at IPL 0, which may be thought of as process level.
Higher numbered interrupt levels have higher priority: i.e., any
request at an interrupt level higher than the processor's current IPL
will interrupt immediately, but requests at lower or equal levels are
def erred.

Interrupt levels 0 to 3 exist solely for use by software. No hardware
event can request an interrupt on these levels. Conversely, interrupt
levels 4 to 7 exist solely for use by hardware. Software cannot
request an interrupt at any of these levels.

EXCEPTIONS AND INTERRUPTS
INTRODUCTION

Company Confidential Page 6-2
22 December 1985

6.1.2 Interrupts

The processor arbitrates interrupt requests according to priority.
When the priority of an interrupt request is higher than the current
processor IPL, the processor will raise the IPL and service the
interrupt request. The interrupt service routine is entered at the
IPL of the interrupting source and does not usually change the IPL set
by the processor.

Interrupt requests can come from I/O Port Controllers,
controllers, other processors, or the processor itself.

memory

The priority level of one processor does not affect the priority level
of other processors. Thus, in a multiprocessor system, interrupt
levels alone cannot be used to synchronize access to shared resources.
Even the various urgent interrupts, including those exceptions that
run at IPL 7, do so on only one processor.

Synchronization with other processors in a multiprocessor system
involves a combination of raising the IPL and executing an
interlocking instruction sequence. Raising IPL prevents the
synchronization sequence itself from being interrupted on a single
processor while the interlock sequence guarantees mutual exclusion
with other processors.

6.1.3 Exceptions

Most exception service routines execute at the current processor IPL
in response to exception conditions caused by s~ftware. Serious
system failures, however, such as machine check, raise IPL to the
highest level (7) to minimize processor interruption until the problem
is corrected. Exception service routines are usually coded to avoid
exceptions: however, nested exceptions can occur.

There are three types of exceptions:

o A fault is an exception condition that occurs during an
instruction and leaves the registers and memory in a
consistent state such that elimination of the fault condition
and subsequent re-execution of the instruction will give
correct results. Faults are not guaranteed to leave the
machine in exactly the same state it was in immediately prior
to the fault, but rather in a state such that the instruction
can be correctly executed if the fault condition is removed.

0 An abort is an exception condition
instruction and potentially leaves
in an indeterminate state such that
necessarily be correctly restarted,
undone.

that occurs during an
the registers and memory
the instruction cannot
completed, simulated, or

EXCEPTIONS AND INTERRUPTS
INTRODUCTION

Company Confidential Page 6-3
22 December 1985

o A trap is an exception condition that occurs at the
completion of the operation that caused the exception. Since
several instructions may be in various stages of execution at
any point in time, it is possible for multiple traps to occur
simultaneously. The next instruction address that is
reported on traps is that of the next instruction that would
have issued if the trapping condition had not occurred. This
is not necessarily the address of the instruction immediately
following the one encountering the trap condition.
Therefore, in general, it is difficult to fix up results and
continue program execution at the point of the trap.
Software can force a trap to be more easily continuable
without the need for complicated fix-up code. This is
accomplished by placing a Drain Pipeline (DRAIN) instruction
immediately after the instruction whose possible trap is to
be made continuable; see Chapter 4, Instruction Descriptions,
Page 4-77.

For example:

MULG
DRAIN

R4,R6,R8

In this example, no further instructions are allowed to issue until
the MULG has completed and any possible trap has been initiated.

6.1.4 Contrast Between Exceptions And Interrupts

Generally, exceptions and interrupts are very similar. However, there
are five important differences:

1. An exception condition is caused by the execution of an
instruction while an interrupt is caused by some activity in
the system that may be independent of any instruction.

2. The IPL of the processor is usually not changed when the
processor initiates an exception, while the IPL is always
raised when an interrupt is initiated.

3. Exceptions are always initiated immediately, no matter what
the processor IPL is, while interrupts are deferred until the
processor IPL drops below the IPL of the requesting source.

4. Some exceptions can be selectively disabled by selecting
instructions that do not check for exception conditions. If
an exception condition occurs when checking is disabled, the
exception will not occur on a subsequent instruction that
does check such conditions. If an interrupt request occurs
while the processor IPL is equal to or greater than that of
the interrupting source, the condition will eventually
initiate an interrupt if the interrupt request is still

EXCEPTIONS AND INTERRUPTS
INTRODUCTION

Company Confidential Page 6-4
22 December 1985

present and the processor IPL is lowered below that of the
interrupting source.

5. Interrupts always set the (new) current mode to Kernel while
exceptions set the (new) current mode to either Kernel or
leave it the same as it was immediately prior to the
exception.

6.2 PROCESSOR STATE

Processor state consists of a longword of privileged information
called the Processor Status (PS) and a longword containing the Program
Counter (PC), which is the 32-bit virtual address of the next
instruction.

When either an exception or interrupt is initiated the current
processor state must be preserved. This is accomplished by
automatically pushing the PC, followed by the PS, on the target mode
stack. Subsequently, instruction execution can be continued at the
point of the exception or interrupt by executing a Return from
Exception or Interrupt (REI) instruction: see Chapter 4, Instruction
Descriptions, Page 4-85.

\Initiation of an exception or interrupt causes the PC, followed :by
the PS, to be pushed on the target mode stack. This is opposite to
VAX which pushes PSL followed by PC. We want to allow for the
possibility of future machines being 64-bits with a 32-bit
compatibility mode. Pushing PS last allows Epicode to test a 32-bit
mode bit in the PS and determine the format of the PS and PC that were
pushed on the stack.\

Process context such as the mapping information is not saved or
restored on each interrupt or exception. Instead, it is saved and
restored when process context switching is performed. Other processor
status is changed even less frequently: see Chapter 7, Process
Structure.

The PS can be explicitly stored with the Move Processor Status (MOVPS)
instruction: see Chapter 4, Instruction Descriptions, Page 4-80. The
PC can be explicitly stored with the Jump to Subroutine (JSR)
instruction. All branching instructions also load a new value into
the PC: see Chapter 4, Instruction Descriptions, Pages 4-73 and 4-71.

The terms current PS and saved PS are used to distinguish between this
status information when it is stored internal to the processor and
when copies of it are materialized in memory.

EXCEPTIONS AND INTERRUPTS
PROCESSOR STATE

Company Confidential Page 6-5
22 December 1985

3
1 a 1 5 4 3 2 1 0

+---+-----+-+-+-+---+
I I IVIVIVI I
I MBZ I IPL IEIEIMI CMI
I I INIFIMI I
+---+-----+-+-+-+---+

Bits

1:0

Figure 6-1: Processor Status

Description

Current Mode (CM). The access mode of the currently executing
process as follows:

0 - Kernel
l - Executive
2 - Supervisor
3 - User

2 Virtual Machine Mode (VMM) - When set, the processor is in
virtual machine mode. This bit is only meaningful when
running with a virtual machine monitor. When clear, the
processor is running in real machine mode.

\The exact rules for using this bit have not been ful~y
defined.\

3 Vector Exception Frame (VEF) This bit can only be set in a
PS which has been saved during the initiation of an exception.
When set, one or more vector exception information frames have
been pushed on the stack prior to the saved PS and PC.

4 Vector Enable (VEN) This bit controls whether vector
instructions can be executed. When this bit is set, vector
instructions execute normally. When this bit is clear, an
attempt to issue a vector instruction causes a Vector Enable
fault.

7:5 Interrupt Priority Level (IPL)
priority, in the range 0 to 7.

31:8 Reserved to DIGITAL, MBZ.

The current

At bootstrap, the initial value of PS is set to EO (hex).
VMM, and CM are clear and IPL is 7.

processor

VEF, VEN,

EXCEPTIONS AND INTERRUPTS
PROCESSOR STATE

3
1

Company Confidential Page 6-6
22 December 1985

2 l 0
+---+---+
I I I I
I Instruction Virtual Address I G I
I I N I
+---+---+

Figure 6-2: Program Counter

All instructions are aligned on longword boundaries and, therefore,
hardware can assume zero for the two low order bits of PC.

6.3 INTERRUPTS

In some implementations, several instructions may be in various ~tages
of execution simultaneously. Before the processor can service an
interrupt request, all active instructions must be allowed to complete
without exception (e.g., an exception could occur in a currently
active instruction, in which case the exception would be initiated
befor.e the interrupt).

The following events cause an interrupt:

o Asynchronous System Trap (AST) - IPL l.

o Software interrupt - IPL 1 to 3.

o Console interrupts - IPL 4.

o I/O Port Controller interrupts - IPL 4 and 5.

o 10 ms Interval Clock interrupt - IPL 5.

o Interprocessor interrupt - IPL 6.

o Power Recovery interrupt - IPL 7.

o Machine Check exception/interrupt - IPL 7.

Each interrupt source has a separate vector location (offset) within
the System Control Block (SCB): see Section 6.6 below. The vector
location for architecturally defined interrupts is fixed by the
architecture.

\It would be nice if there were no assignable vectors. Do we really
need them?\

In order to reduce interrupt overhead, no memory mapping information
is changed when an interrupt occurs. Therefore, the instructions,
data, and the contents of the interrupt vector for the interrupt
service routine must be present in every process at the same virtual

EXCEPTIONS AND INTERRUPTS
INTERRUPTS

address.

Company Confidential Page 6-7
22 December 1985

Interrupt service routines should follow the discipline of not
lowering IPL below their initial level. Lowering IPL in this way
could result in an interrupt at an intermediate level which would
cause the stack nesting to be incorrect.

Kernel mode software may need to raise and lower IPL during certain
instruction sequences that must synchronize with possible interrupt
conditions (e.g., Power Recovery). This can be accomplished by
specifying the desired IPL and executing a Swap IPL instruction
(SWIPL) or by executing an REI instruction that restores a PS that
contains the desired IPL: see Chapter 4, Instruction Descriptions,
Pages 4-96 and 4-85.

6.3.1 Asynchronous System Trap (AST) - Level 1

Asynchronous System Traps are a means of notifying a process of events
that are not synchronized with its execution, but which must be dealt
with in the context of the process. An Asynchronous System Trap is
initiated when an REI instruction restores a PS with a current mode
that is less. privileged than or equal to a mode for which an AST is
pending and not disabled: see Chapter 7, Process Structure, Section
7.3.

6.3.2 Software Generated Interrupts - Levels 1 To 3

6.3.2.1 Software Interrupt Summary Register

The architecture provides three priority interrupt levels for use by
software (level 0 is also available for use by software but interrupts
can never occur at this level). The Software Interrupt Summary
Register (SISR) stores a mask of pending software interrupts. Bit
positions in this mask which contain a l, correspond to the levels on
which software interrupts are pending.

When the processor IPL drops below that of
software interrupt, a software interrupt
corresponding bit in the SISR is cleared.

the highest requested
is initiated and the

The SISR is a read-only internal processor register which may be read
by Kernel mode software by executing a Move From Processor Register
instruction specifying SISR (MFPR SISR): see Chapter 8, Internal
Processor Registers, Section 8.1.

6.3.2.2 Software Interrupt Request Register

The Software Interrupt Request Register (SIRR) is a write-only

EXCEPTIONS AND INTERRUPTS
INTERRUPTS

Company Confidential Page 6-8
22 December 1985

internal processor register used for making software interrupt
requests.

Kernel mode software may request a software interrupt at a particular
level by executing a Move To Processor Register instruction specifying
SIRR (MTPR SIRR): see Chapter 8, Internal Processor Registers, Section
8.l.

If the requested interrupt level is greater than the current IPL, the
interrupt will occur before the execution of the next instruction.
If, however, the requested level is equal to or less than the current
processor IPL, the interrupt request will be recorded in the Software
Interrupt Summary Register (SISR) and deferred until the processor IPL
drops to the appropriate level.

Note that no indication is given if there is already a request at the
specified level. Therefore, the respective interrupt service routine
must not assume that there is a one-to-one correspondence between
interrupts requested and interrupts generated. A valid protocol for
generating this correspondence is:

1. The requester places information in a control block and then
inserts the control block in a queue associated with the
respective software interrupt level.

2. The requester uses MTPR SIRR to request an interrupt at the
appropriate level.

3. The interrupt service routine attempts to remove a control
block from the request queue. If there are no control blocks
in the queue, the interrupt is dismissed with an REI.

4. If a valid control block is removed from the queue, the
requested service is performed and Step 3 is repeated.

6.3.3 Console Interrupts - Level 4

Console interrupts are requested, if enabled, as characters are
received from and transmitted to the console termi1nal.

6.3.3.l Console Receive Control Status

The Console Receive Control Status register (CRCS) is a read/write
internal processor register used to enable and disable console receive
interrupts. Console receive interrupts are used to synchronize the
input of characters from the console terminal.

CRCS may be read by Kernel mode software by executing a Move From
Processor Register instruction specifying CRCS (MFPR CRCS). Kernel

EXCEPTIONS AND INTERRUPTS
INTERRUPTS

Company Confidential Page 6-9
22 December 1985

mode software may write CRCS by executing a Move To Processor Register
instruction specifying CRCS (MTPR CRCS). See Chapter 8, Internal
Processor Registers, Section 8.1.

6.3.3.2 Console Transmit Control Status

The Console Transmit Control Status register (CTCS) is a read/write
internal processor register used to enable and disable console
transmit interrupts. Console transmit interrupts are used to
synchronize the output of characters to the console terminal.

CTCS may be read by Kernel mode software by executing a Move From
Processor Register instruction specifying CTCS (MFPR CTCS). Kernel
mode software may write CTCS by executing a Move To Processor Register
instruction specifying CTCS (MTPR CTCS). See Chapter 8, Internal
Processor Registers, Section 8.1.

6.3.4 I/0 Port Controllers - Levels 4 And 5

The architecture provides two priority levels for use by I/0 Port
Controllers.

I/0 Port Controller interrupts are requested when a
attention packet is inserted into an empty I/O
response queue by an I/O processor.

6.3.5 Interval Clock Interrupt - Level 5

completion or
Port Controller

The lOms Interval Clock requests an interrupt every lOrns if clock
interrupts are enabled.

6.3.5.l Interval Clock Interrupt Enable

The Interval Clock Interrupt Enable register (ICIE) is a read/write
internal processor register used to enable and disable Interval Clock
interrupts.

ICIE may be read by Kernel mode software by executing a Move From
Processor Register instruction specifying ICIE (MFPR ICIE). Kernel
mode software may write ICIE by executing a Move To Processor Register
instruction specifying ICIE (MTPR ICIE). See Chapter 8, Internal
Processor Registers, Section 8.1.

EXCEPTIONS AND INTERRUPTS
INTERRUPTS

Company Confidential

6.3.6 Urgent Interrupts - Levels 6 And 7

Page 6-10
22 December 1985

The architecture provides two priority levels for use by urgent
conditions including serious errors (e.g., Machine Check),
interprocessor interrupts, and Power Recovery. Interrupts on these
levels are initiated by the processor upon detection of certain
conditions. Some of these conditions are not interrupts. For
example, Machine Check is usually an exception but it runs at a high
priority level.

Interrupt Level 7 is reserved for those conditions that must lock out
all processing until handled. This includes the hardware "disaster"
Machine Check and Power Recovery. Machine Check is documented below
under Exceptions, Section 6.4.6.2.

The Power Recovery interrupt is generated when power is restored after
a power failure. The power-down sequence is handled totally in
Epicode. After having saved volatile machine state in memory (e.g.,
scalar registers, vector registers, Epicode registers, writeback cache
data, etc.), Epicode gracefully stops system operation in an
implementation-dependent manner. When power is restored the system
enters a restart sequence. At the end of the sequence, if successful,
a Power Recovery interrupt is initiated: see Chapter 11, System
Bootstrapping and Console, Section 11.1.3.

Even though the power-down sequence is handled totally in Epicode, it
will not be initiated until the processor IPL drops below 7. Thus
critical code sequences can block the power-down sequence by ra1s1ng
the IPL to 7. Software, however, must take extra care not to lock out
the power-down sequence for an extended period of time.

Interrupt level 6 is reserved for interprocessor interrupt requests.

6.3.6.1 Interprocessor Interrupt Enable Register

The Interprocessor Interrupt Enable register (IPIE) is a read/write
internal processor register used to enable and disable interprocessor
interrupts. Interprocessor interrupts are used in multiprocessing
systems to notify other processors of state changes. When
interprocessor interrupts are enabled, a processor can receive
interrupts from other processors.

The IPIE may be read by Kernel mode software by executing a Move From
Processor Register instruction specifying IPIE (MFPR IPIE). Kernel
mode software may write IPIE by executing a Move To Processor Register
instruction specifying IPIE (MTPR IPIE); see Chapter 8, Internal
Processor Registers, Section 8.1.

Explicit state is not provided by the architecture for software to
directly determine whether there was an outstanding interprocessor
interrupt when powerfail occurred. It is the responsibility of
software to leave sufficient information in memory so that it may

.r

EXCEPTIONS AND INTERRUPTS
INTERRUPTS

Company Confidential Page 6-11
22 December 1985

determine the proper action on power-up. One such method would be for
software to maintain an action or request queue for each processor.
On power-up software would examine the action/request queue for each
processor and if the queue is not empty, request an interprocessor
interrupt with the respective processor as the target.

6.3.6.2 Interprocessor Interrupt Request Register

The Interprocessor Interrupt Request Register (IPIR) is a write-only
internal processor register used for making a request to interrupt a
specific processor.

Kernel mode software may request to interrupt a particular processor
by executing a Move To Processor Register instruction specifying IPIR
(MTPR IPIR); see Chapter 8, Internal Processor Registers, Section 8.1.

If the specified processor is the same as the current processor, the
current IPL is less than 6, and interprocessor interrupts are enabled,
the interrupt will be taken on the initiating processor before the
execution of the next instruction.

Note that, like software interrupts, no indication is given as to
whether there is already an interprocessor interrupt pending when one
is requested. Therefore, the interprocessor interrupt service routine
must not ··assume there is a one-to-one correspondence between
interrupts requested and interrupts generated. A valid protocol
similar to the one for software interrupts for generating this
correspondence is:

1. The requester places information in a control block and then
inserts the control block in a queue associated with the
target processor.

2. The requester uses MTPR IPIR to request an interprocessor
interrupt on the target processor.

3. The interprocessor jnterrupt service routine
processor· attempts to remove a control block
queue. If there are no control blocks
interrupt is dismissed with an REI.

on the target
from its request
remaining, the

4. If a valid control block is removed from the queue, the
specified action is performed and Step 3 is repeated.

6.4 EXCEPTIONS

Exceptions can be grouped into seven categories:

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-12
22 December 1985

1. Arithmetic traps

2. Data Alignment exceptions

3. Faults occurring as a consequence of an instruction

4. Memory management faults

5. Serious system failures

6. Stack Alignment aborts

7. Vector exceptions

Each exception has a separate vector location (offset) within the
System Control Block (SCB); see Section 6.6 below.

When initiating an exception, various parameters are pushed on the
target stack. These parameters represent information that is
necessary to process the respective exception. An even number of
longwords is always pushed. Minimally this consists of the processor
state (PC and PS), but can also include such things as virtual
addresses and instruction values. If the number of parameters is not
an even number of longwords, then a zero longword is pushed to ensure
that the stack remains quadword aligned; see Section 6.4.7 below.

6.4.l Arithmetic Traps

An arithmetic trap is an exception that occurs as the result of
performing an arithmetic or conversion operation. In general, it is
difficult to fix up results and continue from this type of exception.
Software can, however, force an arithmetic trap to be more easily
continuable by placing a DRAIN instruction immediately following an
instruction that can cause an arithmetic trap.

If scalar register RO is specified as the
that can cause an arithmetic trap, it
trap will actually occur, even if the
produce an exceptional result.

destination of an operation
is UNPREDICTABLE whether the
operation would definitely

Furthermore, the order of discovery of F and G floating arithmetic
traps is UNPREDICTABLE. For example~ if both-a zero divisor and a
reserved dividend are specified, it is UNPREDICTABLE which will
actually be reported.

It is permissible for an implementation to use a forwarded or bypassed
result in a subsequent instruction, even if the result is exceptional,
provided that error information is propagated to the destination
register and the appropriate bits are set in the respective register
write mask (see below).

Arithmetic traps are initiated in Kernel mode and push the following

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-13
22 December 1985

information on the Kernel stack:

3
l

1 1
6 5 0

+-------------------------------+-------------------------------+
I I
I Exception Summary I :SP
I I
+-------------------------------+-------------------------------+ I I Vector Register
I Zero I Write Mask for
I I Registers VO - Vl5
+-------------------------------+-------------------------------+ I Scalar Register
I Write Mask for
I Registers RO - R31
+---+ I Scalar Register I
I Write Mask for I
I Registers R32 - R64 I
+---+
I I
I Processor Status (PS) I
I I
+---+ I Virtual I
I Address of Next I
I Instruction I
+---+

Figure 6-3: Arithmetic Trap Exception Frame

When an arithmetic exce~tion condition is detected, several
instructions may be in various stages of execution. These
instructions are allowed to complete before the arithmetic exception
can be initiated. Some of these instructions may themselves cause
further arithmetic exceptions. Thus it is possible for several
arithmetic exceptions to occur simultaneously.

The Exception Summary parameter records the various
arithmetic exceptions that can occur together.

types of

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-14
22 December 1985

3
1 7 6 5 4 3 2 1 0

+---+-+-+-+-+-+-+-+
I ICIIIIIFIFIFIFI
I Zero IOIOIDIOIRIDIUI
I IEIVIZIVISIZINI
+---+-+-+-+-+-+-+-+

Figure 6-4: Exception Summary

Bit Description

0 Floating Underflow (FUN) - An F or G floating arithmetic or
conversion operation underflowed the destination exponent.

1 Floating Divide by Zero (FDZ) - An attempt was made to perform
an F or G_floating divide operation with a divisor of zero.

2 Floating Reserved Operand (FRS)
perform an F or G floating
comparison operation, and one or
were reserved.

An attempt was made to
arithmetic, conversion, or

more of the operand values

3 Floating Overflow {FOV) - An F or G floating arithmetic or
conversion operation overflowed the destination exponent.

4 Integer Divide by Zero (IDZ) - An attempt was made to perform
an integer divide operation with a divisor of zero.

5 Integer Overflow {IOV) - An integer arithmetic operation or a
conversion from F or G_f loating to integer overflowed the
destination precision.

6 Coprocessor Exception {COE) - A Coprocessor read or write
instruction with trap enable set was executed when a
Coprocessor exception was present.

The Vector Register Write Mask parameter records which vector
registers were written with one or more elements containing
exceptional results. There is a one-to-one correspondence between
bits in the Vector Register Write Mask longword and the vector
register numbers. The mask records, starting at bit 0 and proceeding
right to left to bit 15, which of the vector registers VO through Vl5
were written with one or more elements containing an exceptional
result.

The Scalar Register Write Mask parameters record which scalar
registers were written with exceptional results. There is a
one-to-one correspondence between bits in the Scalar Register Write
Mask longwords and the scalar register numbers. Thus the first
longword records, starting at bit 0 and proceeding right to left,
which of the scalar registers RO through R31 received an exceptional
result. The second longword records the same information, again
starting at bit 0 and proceeding right to left, for scalar registers

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-15
22 December 1985

R32 through R63. When the exceptional value is a quadword, the bits
corresponding to the register numbers of the low and high parts of the
result are both set in the appropriate longword mask.

The actual exceptional value written to the destination register
depends on the operation being performed and the type of exception:

o For Integer Overflow the low order 32-bits of the true result
are written to the destination register.

o The exceptional result written to the destination register
for' an Integer Divide by Zero is UNPREDICTABLE.

o The result of a floating comparison or conversion from
floating to integer is UNPREDICTABLE if any of the floating
operands are reserved.

0 All floating exceptional values
operands with an exception type
the word containing the exponent:

are encoded as reserved
inserted in the low bits of
see Chapter 4, Instruction

Descriptions, Page 4-46.

6.4.2 Data Alignment Exceptions

All data must be naturally aligned or an alignment exception may be
generated. Natural alignment means that data bytes are on byte
boundaries, data words are on word boundaries, data longwords are on
longword boundaries, and data quadwords are on quadword boundaries.

6.4.2.1 Scalar Alignment Fault

A Scalar Alignment fault may be generated when an attempt is
load or store a word, longword, or quadword to/from a scalar
using an address that does not have the natural alignment
particular data reference.

made to
register
of the

Scalar Alignment faults are initiated in the current mode and push the
following information on the Current Mode stack:

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-16
22 December 1985

3
l 0

+---+ I Virtual I
I Address of I :SP
I Reference I
+---+
I I
I Faulting Instruction I
I I
+---+
I I
I Processor Status (PS) I
I I
+---+ I Virtual
I Address of Faulting
I Instruction
+---+

Figure 6-5: Scalar Alignment Fault Exception Frame

The faulting instruction is pushed on the stack so that emulation
software can determine the register operands and opcode value. This
would not be possible if the instruction was contained in a page that
was executable, but not readable, in the current mode.

An implementation may elect to implement scalar data alignment in
hardware or Epicode, or force the operating system, or possibly the
user (for non-DIGITAL operating system software) to emulate the
specified operation by generating this exception.

Emulation software, whether Epicode,
code, or hardware may write partial
to make sure all writes will succeed
operations.

an operating system, or user
results to memory without probing
when dealing with unaligned store

If a memory management exception condition occurs while reading or
writing part of the unaligned data, the appropriate memory management
fault is generated.

Software should avoid data misalignment whenever possible since the
emulation performance penalty may be as large as 100 to 1.

6.4.2.2 Vector Alignment Abort

A Vector Alignment abort is generated when an attempt is
load/store a longword or quadword element to/from a vector
using an address that does not have the natural alignment
particular data reference.

made to
register
of the

Vector Alignment aborts are initiated in Kernel mode and push the

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-17
22 December 1985

following information on the Kernel stack:

3
1 0

+---+
I Virtual I
I Address of I :SP
I Reference I
+---+
I
I Zero
I I
+---+
I I
I Processor Status (PS) I
I I
+---+
I Virtual I
I Address of Next I
I Instruction I
+---+

Figure 6-6: Vector Alignment Abort Exception Frame

6.4.3 Faults Occurring As The Result Of An Instruction

6.4.3.1 Breakpoint Fault

A Breakpoint fault is an exception that occurs when a Breakpoint (BPT)
instruction is executed: see Chapter 4, Instruction Descriptions, Page
4-75. Breakpoint faults are intended for use by debuggers and can be
used to place breakpoints in a program.

A Breakpoint fault is initiated in Kernel mode and pushes the
following information on the Kernel stack:

3
1 0

+---+
I I
I Processor Status (PS) I :SP
I I
+---+
I Virtual I
I Address of BPT I
I Instruction I
+---+

Figure 6-7: Breakpoint Fault Exception Frame

Breakpoint faults are initiated in Kernel mode so that system
debuggers can capture breakpoint faults that occur while the user is
executing system code.

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-18
22 December 1985

6.4.3.2 Bug Check Fault

A Bug Check fault is an exception that occurs when a Bug Check
(BUGCHK) instruction is executed: see Chapter 4, Instruction
Descriptions, Page 4-76. This opcode is provided for use by operating
system error reporting software.

Bug Check faults are initiated in Kernel mode and push the following
information on the Kernel stack:

3
l 0

+---+
I I
I Processor Status (PS) I :SP
I I
+---+ I Virtual I
I Address of BUGCHK I
I Instruction I
+---+

Figure 6-8: Bug Check Fault Exception Frame

6.4.3.3 Fault On Bit

A Fault On Bit fault is an exception that occurs when a Fault On Bit
(FOB) instruction is executed and the low order bit of the specified
scalar register is set; see Chapter 4, Instruction Descriptions, Page
4-72.

Fault On Bit faults are initiated in the current mode and push the
following information on the Current Mode stack:

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

3
1

Company Confidential Page 6-19
22 December 1985

0
+---+
I I
I Zero I :SP
I I
+---+
I I
I Faulting Instruction I
I I
+---+
I
I Processor Status (PS)
I
+---+
I Virtual I
I Address of FOB I
I Instruction I
+---+

Figure 6-9: Fault On Bit Fault Exception Frame

The faulting instruction is pushed on the stack so that software can
determine the exact cause of the fault. This would not be possible if
the instruction was contained in a page that was executable, but not
readable, in the current mode.

6.4.4 Illegal Operand Fault

An Illegal Operand fault occurs when an attempt is made to execute an
Epicode instruction with operand values that are illegal or reserved
~or future use by DIGITAL.

Illegal Operand faults are initiated in the current mode and push the
following information on the Current Mode stack:

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

3
1

Company Confidential Page 6-20
22 December 1985

0
+---+
I I
I Zero I :SP
I I
+---+
I
I Faulting Instruction
I
+---+
I I
I Processor Status (PS) I
I I
+---+
I Virtual I
I Address of Faulting I
I Instruction I
+---+

Figure 6-10: Illegal Operand Fault Exception Frame

Illegal operands include:

o An interlock address that is not quadword aligned (RMAQI)

o An invalid combination of bits in the PS restored by REI

The faulting instruction is pushed on the stack so that software can
determine the exact cause of the fault. This would not be possible if
the instruction was contained in a page that was executable, but not
readable, in the current mode.

6.4.4.1 Privileged Instruction

A Privileged Instruction fault is an exception that occurs when an
attempt is made to execute a privileged instruction while the current
mode is User, Supervisor, or Executive. Privileged operations can
only be executed in Kernel mode.

Privileged Instruction faults are initiated in the current mode and
push the following information on the Current Mode stack:

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-21
22 December 1985

3
l 0

+---+
I
I Processor Status (PS) :SP
I
+---+
I Virtual I
I Address of Privileged I
I Instruction I
+---+

Figure 6-ll: Privileged Instruction Fault Exception Frame

Note that the faulting instruction
instruction was contained in a
readable in the current mode, then
would provide information normally

6.4.4.2 Reserved Opcode Fault

is not pushed on the stack. If the
page that was executable, but not

pushing the faulting instruction
not available to the current mode.

A Reserved Opcode fault is an exception that occurs when an attempt is
made to execute an opcode that is reserved to DIGITAL or a subsetted
opcode that requires emulation on the host implementation.

Reserved Opcode faults are initiated in the current mode and push the
following information on the Current Mode stack:

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

3
l

Company Confidential Page 6-22
22 December 1985

0
+---+
I I
I Zero I :SP
I I
+---+
I I
I Faulting Instruction I
I I
+---+
I I
I Processor Status (PS) I
I I
+---+
I Virtual I
I Address of Reserved I
I Instruction I
+---+

Figure 6-12: Reserved Opcode Fault Exception Frame

The faulting instruction is pushed on the stack so that software can
determine the exact cause of the fault. This would not be possible if
the instruction was contained in a page that was executable, but not
readable, in~the current mode.

6.4.4.3 Vector Enable

A Vector Enable fault is generated if an attempt is made to execute a
vector instruction when vector instructions are disabled (PS<VEN> is
clear).

Vector Enable faults are initiated in Kernel mode and push the
following information on the Kernel stack:

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-23
22 December 1985

3
l 0

+---+
I
I Processor Status (PS) :SP
I I
+---+
I Virtual I
I Address of Vector I
I Instruction I
+---+

Figure 6-13: Vector Enable Fault Exception Frame

Vector Enable faults can be used
restoring of vector registers
introducing security holes.

to avoid unnecessary saving and
during context switches without

6.4.5 Memory Management Faults

Memory management faults occur when a virtual address translation
encounters an exception condition. This can occur as the result of
instruction fetch or during a load or store operation.

Memory management faults are generated in Kernel mode and push the
following information on the Kernel stack:

3
l l 0

+---+-+ I Related I
I Virtual Address in I :SP
I Page I
+---+-+
I IRI
I Zero I/I
I IWI
+---+-+
I I
I Processor Status (PS) I
I I
+---+

Virtual I
Address of Next I

Instruction I
+---+

Figure 6-14: Memory Management Fault Exception Frame

The first parameter is a virtual address in the page encountering the
fault condition, but not necessarily the exact virtual address.

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-24
22 December 1985

The second parameter indicates whether the reference was a read (0) or
a write (1).

If the memory management fault was caused by a scalar load or store
instruction, the virtual address of the next instruction is that of
the scalar load or store instruction itself. However, if the memory
managrnent fault was caused by a vector load or store instruction, then
the virtual address of the next instruction is that of the next
instruction that would have been executed had the faulting condition
not been present.

Chapter 5, Memory Management, describes the
architecture of PRISM in more detail.

6.4.5.1 Access Violation

memory management

An Access Violation fault is an exception indicating that an attempted
access to a virtual address was not allowed in the current mode.

Access violations usually indicate program errors, but in some cases,
such as automatic stack expansion, can mean implicit operating system
functions.

Access Violation faults take precedence over Translation Not Valid,
Fault On Read, Fault On Write, and Fault On Execute faults.

Access violations take precedence over Translation Not Valid faults
for two important reasons:

1. A malicious user could degrade system performance by causing
spurious page faults to pages for which no access is allowed.

2. The page fault rate on inaccessible pages could be used as a
low bandwidth timing channel to pass critical information and
compromise system integrity.

6.4.5.2 Translation Not Valid

A Translation Not Valid fault is an exception that indicates that an
attempted access was made to a virtual address whose Page Table Entry
(PTE) was not valid.

Software may use Translation Not Valid faults to implement virtual
memory capabilities.

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

6.4.5.3 Fault On Execute

Company Confidential Page 6-25
22 December 1985

A Fault On Execute fault is an exception that indicates that an
attempted instruction stream access was made to a virtual address
whose Page Table Entry (PTE) had the Fault On Execute bit set.

Software may use Fault On Execute faults to implement access mode
changes and protected entry to inner modes, and for collecting page
usage statistics.

6.4.5.4 Fault On Read

A Fault On Read fault is an exception that indicates that an attempted
read access was made to a virtual address whose Page Table Entry (PTE)
had the Fault On Read bit set.

Software may use Fault On Read faults to implement watchpoints and for
collecting page usage statistics.

6.4.5.5 Fault On Write

A Fault On Write fault is an exception that indicates that an
attempted write access was made to a virtual address whose Page Table
Entry (PTE) had the Fault On Write bit set.

Software may use Fault On Write faults to maintain modified page
information, to implement copy on write capabilities and watchpoints,
and for collecting page usage statistics.

6.4.6 Serious System Failures

6.4.6.l Kernel Stack Not Valid Halt

A Kernel Stack Not Valid halt is an exception that indicates that the
Kernel stack was not valid, was unaligned, or a memory error occurred
when Epicode attempted to push parameter information during the
initiation of an interrupt or exception. Immediately upon detecting
this condition the processor enters the restart sequence: see Chapter
11, System Bootstrapping and Console, Section ll.2.2.

6.4.6.2 Machine Check Abort

A Machine Check abort indicates that the processor detected an
internal machine error. Common machine check conditions are cache
parity errors and internal bus errors.

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-26
22 December 1985

Machine Check aborts raise IPL to 7 and are initiated in Kernel mode.
The following information is pushed on the Kernel stack:

3
l 0

+---+
I Number
I of : SP
I Bytes Pushed
+---+
I
I Zero
I
+---+

.
An even number of

implementation
specific

longwords

+---+
I I
I Processor Status (PS) I
I I
+---+
I Virtual I
I Address of Next I
I Instruction I
+---+

Figure 6-15: Machine Check Abort Exception Frame

Implementation-specific information is pushed on the stack as
longwords. An even number of informational longwords are pushed in
order to keep the stack quadword aligned. A zero longword followed by
the number of parameter bytes are then pushed. The number of
parameter bytes does not include the processor state (PS and PC), but
does include the count and zero longwords.

Software must decide, on an implementation-specific basis, depending
on the parameters provided, if operations should be aborted. If retry
is possible, Epicode is responsible for executing the appropriate
action.

If a second Machine Check is detected while Epicode is initiating a
machine check exception, a Double Error halt is generated and the
processor enters the restart sequence; see Chapter 11, System
Bootstrapping and Console.

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-27
22 December 1985

6.4.7 Stack Alignment Abort

All stacks are required to be quadword aligned. It is the
responsibility of software to ensure that the initial values for stack
pointers are quadword aligned and that subsequent adjustments to the
stack pointers are made in increments of quadwords.

Epicode pushes and pops information to/from the target/source stack on
the initiation of exceptions and interrupts and during an REI
instruction. Epicode always pushes and pops an even number of
longwords from the subject stack, thus preserving quadword alignment.

\Quadword alignment is maintained to ensure that a 64-bit architecture
can compatibly handle exceptions, interrupts, and the REI
instruction.\

A Stack Alignment abort occurs during the initiation of an exception
when Epicode attempts to push information on the User, Supervisor, or
Executive stack and the stack is not quadword aligned, or during the
execution of an REI instruction when Epicode attempts to remove the
processor state from the User, Supervisor, or Executive stack and the
stack is not quadword aligned.

An unaligned Kernel stack causes a Kernel Stack Not Valid halt; see
Section 6.4.6.l above.

Stack Alignment aborts are initiated in Kernel mode and push the
following information on the Kernel stack:

3
l 0

+---+
I

Processor Status (PS) I :SP
I

+-----------~---+ I Virtual I
I Address of Next I
I Instruction I
+---+

Figure 6-16: Stack Alignment Abort Exception Frame

6.4.8 Vector Exceptions

Vector instructions perform arithmetic, logical, comparison, and
load/store operations on vector registers which consist of more than
one element; see Chapter 4, Instruction Descriptions. If an
arithmetic exception condition is encountered during a vector
operation, it is not reported until the entire vector has been
processed. Memory management faults and alignment aborts, however,
must be reported before the vector operation completes and, for memory
management faults, sufficient state must be saved so the appropriate
vector load/store operation can be continued after the fault condition

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-28
22 December 1985

has been corrected.

One or more vector load/store op~rations may be in
simultaneously, and therefore it is possible for an
exception condition to be present concurrently with one or
memory management fault and/or alignment abort conditions.

progress
arithmetic

more vector

Memory management faults and alignment aborts occurring on vector
load/store instructions push the following additional information on
the Kernel stack prior to pushing the processor state:

3 3
l 0

2 2 2
8 7 6

2 2 l l 1
1 0 9 8 7

l l
2 l 6 5 0

+-+-----+-+-----------+-+-+-+-----------+-----------+-----------+
Iv I E I L I I s I o I DI I I SRC I
IFI T IVI Zero ITIPITI ELT I CNT I or I
ISi Y IFI IRIRIYI I I DST I
+-+-----+-+-----------+-+-+-+-----------+-----------+-----------+
I Related I
I Virtual Address in I
I Page I
+---+ I Vector I
I Base I
I Address I
+---+ Stride

or
Index Vector Register Number

+---+
Figure 6-17: Vector Exception Information Frame

Bits Description

5:0 Vector Register (SRC/DST) - The source (store) or destination
(load) vector register number.

11:6 Remaining Count (CNT) Count of the number of elements
remaining to be loaded or stored to/from the vector register.

17:12 Next Element (ELT) - The index of the next element in the
vector register to be loaded or stored.

18 Datatype (DTY) - When clear, the data type is longword; when
set, the data type is quadword.

19 Operation Type (OPR) - When clear, the operation is a load;
when set, the operation is a store.

20 Indexing Type (STR) - When clear, the operation is stride
based; when set, the operation is a scatter/gather operation.

27 Last Vector Frame (LVF) - This bit indicates whether another

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-29
22 December 1985

30:28

vector exception information frame immediately precedes this
one on the stack. When set, this is the last vector frame;
when clear, there is another vector frame preceding this one
on the stack.

Exception Type (ETY) - The type of exception described by this
vector frame. Exception types are:

O - Access Violation fault
l - Fault On Read fault
2 - Fault On Write fault
3 - Translation Not Valid fault
4 - Vector Alignment abort
5 - Instruction Pending

31 Vector Frame Status (VFS) - This bit indicates whether the
information in this vector frame has been processed. This bit
is cleared when the vector frame is pushed on the stack and
set when Epicode has built a corresponding memory management
fault frame.

The above information is pushed for each concurrent vector load/store
operation that has encountered a memory management fault or alignment
abort condition. It is used later by the REI instruction to determine
whether an exception should be initiated or the vector operation
should be continued.

\This information is
information saved in
decimal instructions.\

somewhat analogous to
the general registers

the First Part Done
on VAX for string and

The vector base address may be the actual base address of the vector
(e.g., vector gather and scatter instructions and other vector loads
and stores that receive an exception on the first element) or the
actual address of the data that caused the exception condition (e.g.,
an exception condition occurring in the middle of a stride-based
vector load or store instruction).

Arithmetic exceptions that occur on vector instructions are reported
as described in Section 6.4.l provided no vector exception information
frames have been pushed on the Kernel stack.

If any vector exception information frames have been pushed on the
Kernel stack, then the current PC followed by a PS with Vector
Exception Frame (VEF) set are pushed on the Kernel stack and either an
arithmetic trap, memory management fault, or Vector Alignment abort is
initiated.

If an arithmetic exception condition has occurred concurrently, the
parameters described in Section 6.4.l are pushed on the Kernel stack
and an arithmetic exception is initiated. Later, when the exception
has been processed, an attempt to continue execution with an REI
instruction will encounter a PS with VEF set; see Section 6.4.8.l
below.

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-30
22 December 1985

If no arithmetic exception has occurred, either a memory management
fault or Vector Alignment abort exception frame is pushed on the
Kernel stack; see Sections 6.4.2.2 and 6.4.5 above. If a memory
management frame is pushed, then the Vector Frame Status (VFS) bit is
also set. The appropriate exception is then initiated. After the
operating system has processed the exception, an attempt to continue
execution with an REI will encounter a PS with VEF set.

6.4.8.l Vector Exception Continuation

Execution of an REI instruction with Vector Exception Frame (VEF) set
requires special processing by Epicode. When this situation arises,
Epicode must scan the vector exception information frames immediately
preceding the processor state on the Kernel stack to determine whether
another vector exception should be initiated or whether one or more
vector load/store operations should be continued.

Epicode successively examines each vector exception information frame
until a frame with Vector Frame Status (VFS) clear (unprocessed) or
Last Vector Frame (LVF) set is encountered.

Each vector exception information frame must be checked for validity
since it is possible for unprivileged code to forge such a frame and
execute an REI. If an invalid frame is detected, an Illegal Operand
fault is initiated.

The logic required to check for this condition is:

tmp <- CNT
IF tmp EQ 0 THEN

tmp <- 64
IF {tmp + ELT} GT 64 THEN

{initiate Illegal Operand fault}

If a vector exception information frame with VFS clear is encountered,
and the exception type is not Instruction Pending (ETY NE 5), either a
memory management fault or Vector Alignment abort exception frame is
pushed on the Kernel stack. If a memory management frame is pushed,
then the Vector Frame Status (VFS) bit is also set. The appropriate
exception is then initiated. Note that since the VFS bit is not set
for Vector Alignment aborts, any attempt to continue with an REI will
result in the generation of another Vector Alignment abort with
identical parameters.

If a vector exception information frame is encountered with Last
Vector Frame (LVF) set, all vector exceptions occurring as the result
of vector load/store operations have been processed and the respective
operations should be continued. For each vector exception information
frame, Epicode restarts the vector load/store operation in an
implementation-dependent manner.

\An implementation may choose to restart vector load and store

EXCEPTIONS AND INTERRUPTS
EXCEPTIONS

Company Confidential Page 6-31
22 December 1985

operations from the beginning or continue from the point of the memory
management problem. System software must guarantee a minimum
available working set of 67 pages.\

The PC and PS are then restored, the vector frames are removed from
the Kernel stack, and instruction execution continues.

6.5 SERIALIZATION OF EXCEPTIONS AND INTERRUPTS

It is a goal of the architecture to allow and promote parallel
instruction execution. This means that at any point in time there may
be several instructions in various stages of execution. When an
exception or interrupt condition is detected, all active instructions
must be completed before the exception or interrupt can actually be
initiated.

In order to accomplish this, instruction issuing is stopped until all
instructions in progress have completed. At this point it is possible
for multiple exception and interrupt events to be present in which
case arithmetic traps take precedence over vector memory management
faults, which take precedence over all other faults, which take
precedence over interrupts.

Thus the priority of initiation is:

1. Arithmetic traps

2. Vector Alignment and memory management exceptions

3. All other exceptions (faults)

4. Highest priority interrupt

If an arithmetic trap and a fault condition are both present, any
machine state that may have been altered by the fault condition must
be sufficiently restored before the arithmetic trap is initiated.

·: Generally, no state may have been altered, but some implementations
may need to ensure that subsequent scalar register writes after a
memory management fault are backed up or not allowed to occur.

If an exception and an interrupt condition are
exception is initiated. The interrupt will
conditions permit. This may be on the first
exception service routine if the exception did
Machine Check).

both present, the
be initiated when

instruction of the
not raise IPL (e.g.,

In cases where multiple exceptions are possible in a single
instruction (e.g., Data Alignment and Translation Not Valid), the
order in which the exceptions are detected is UNPREDICTABLE.

EXCEPTIONS AND INTERRUPTS Company Confidential
SYSTEM CONTROL BLOCK (SCB)

6.6 SYSTEM CONTROL BLOCK (SCB)

Page 6-32
22 December 1985

The System Control Block (SCB) is a quadword aligned region of
physically contiguous memory containing vectors by which exceptions
and interrupts are dispatched to the appropriate service routines.
The address of the SCB is held in an internal processor register and
may be loaded by executing a Move To Processor Register instruction
specifying the System Control Block Base (MTPR SCBB); See Chapter 8,
Internal Processor Registers, Section 8.1.

A vector is a longword in the SCB that is examined by Epicode when an
exception or interrupt is initiated. A unique vector is defined for
each interrupt and exception.

3
l 2 l 0

+---+---+
I Virtual I s I
I Address of I B I
I Service Routine I Z I
+---+---+

Figure 6-18: System Control Block Vector

If Epicode reads a vector for which bits <l:O> are not zero, the
resultant operation is UNDEFINED.

EXCEPTIONS AND INTERRUPTS Company Confidential
SYSTEM CONTROL BLOCK (SCB)

Page 6-33
22 December 1985

Table 6-1: System Control Block Vector Assignments

Vector Name
(hex)

00 Unused

04 Machine Check

08 Fault On Bit

oc Vector Align

10 Scalar Align

14 Access Violat

Type

Abort

Fault

Abort

Fault

Fault

18 Trans Not Valid Fault

lC Fault On Exec Fault

20 Fault On Read Fault

24 Fault On Write Fault

28 Arithmetic Trap Trap

Mode

Kernel

Current

Kernel

Current

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Number Notes
Longwds

Reserved to DIGITAL.

* Implementation
specific number of
longwords pushed on
stack.

4 Faulting instruction
pushed on stack.

4 Virtual address of
reference is pushed on
stack.

4 Faulting instruction
and virtual address of
reference pushed on
stack.

4 Virtual address and
type of reference
pushed on stack.

4 Virtual address and
type of reference
pushed on stack.

4 Virtual address and
type of reference
pushed on stack.

4 Virtual address and
type of reference
pushed on stack.

4 Virtual address and
type of reference
pushed on stack.

6 Exception summary and
vector and scalar
register write masks
pushed on stack.

EXCEPTIONS AND INTERRUPTS Company Confidential
SYSTEM CONTROL BLOCK (SCB)

Page 6-34
22 December 1985

Table 6-1: System Control Block Vector Assignments (Continued)

--
Vector Name
(hex)

Type Mode Number Notes
Longwds

--
2C

30

34

38

3C

40

44

48

4C

50

54

58

SC

60

64

68

Interval Clock Int

Interproc Int Int

Software Lvl 1 Int

Software Lvl 2 Int

Software Lvl 3 Int

AST Interrupt Int

Priv Instruct Fault

Illegal Operand Fault

Stack Alignment Abort

Breakpoint Fault

Bug Check Fault

Reserved Opcode Fault

Power Recovery Int

Console Receive Int

Console Transmt Int

Vector Enable Fault

6C-3FC Unused

400-7FC I/O Proc Int Int

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Current

Current

Kernel

Kernel

Kernel

Current

Kernel

Kernel

Kernel

Kernel

Kernel

2

2

2

2

2

2

2

4

2

2

2

4

2

2

2

2

2

IPL is raised to 5.

IPL is raised to 6.

IPL is raised to 1.

IPL is raised to 2.

IPL is raised to 3.

IPL is raised to 1.

Faulting instruction
pushed on stack.

Faulting instruction
pushed on stack.

IPL is raised to 7.

IPL is raised to 4.

IPL is raised to 4.

Reserved to DIGITAL.

I/O port
processor
interrupt
IPL raised

and I/O
specific
vectors.

to 4 or 5.

EXCEPTIONS AND INTERRUPTS
STACKS

6.7 STACKS

Company Confidential Page 6-35
22 December 1985

At any point in time the processor is in one of four modes (Kernel,
Executive, Supervisor, or User). There is a stack pointer associated
with each of these four modes. When the processor changes from one of
these modes to another, SP (Rl) is saved in an Epicode-dependent
location for the old state (Epicode may save privileged context in
internal registers or in the process privileged context area: see
Chapter 7, Process Structure, Section 7.2). and the new SP is loaded
from an Epicode-dependent location.

The Current Mode
architecturally
follows:

(CM) field of PS specifies which
defined stack pointers is currently

Mode Stack

0 Kernel (KSP)
1 Executive (ESP)
2 Supervisor (SSP)
3 User (USP)

6.7.l Stack Writability

of
in

the
use,

four
as

In response to various exceptions and interrupts, Epicode pushes
information on either the Kernel or Current Mode stack. Epicode may
write this information without first probing to ensure that all such
writes to the target stack will succeed. If a memory management
exception occurs while pushing information, the appropriate memory
management fault is generated rather than the original exception.

6.7.2 Stack Residency

The User, Supervisor, and Executive stacks do not need to be resident.
Software running in Kernel mode can bring in or allocate stack pages
as Translation Not Valid faults occur. However, since this activity
is taking place in Kernel mode, the Kernel stack must be resident.

Translation Not Valid, Access Violation, Fault On Read, and Fault On
Write faults occurring on Kernel mode references to the Kernel stack
are considered serious system failures from which recovery is not
possible. If any of these faults occur, the processor enters the
restart sequence: see Chapter 11, System Bootstrapping and Console.

It is not necessary for the Kernel stack to be resident for processes
other than the current one, but it must be resident before the process
is selected to run by operating system software.

EXCEPTIONS AND INTERRUPTS
STACKS

6.7.3 Stack Alignment

Company Confidential Page 6-36
22 December 1985

All stacks must be quadword aligned. If Epicode attempts to push on a
stack that is not quadword aligned, a Stack Alignment abort is
generated. It is the responsibility of software to ensure that stacks
are quadword aligned.

Epicode pushes parameters on various stacks in response to exceptions
and interrupts. All information pushed is a multiple of quadwords.
Thus, if the initial value of a stack pointer is quadword aligned and
all adjustments to the respective stack pointer leave it quadword
aligned, the stack will remain quadword aligned.

6.7.4 Initiate Exception Or Interrupt

Exceptions and interrupts are initiated by Epicode with interrupts
disabled. When an exception or interrupt is initiated, the associated
SCB vector is read to determine the address of the service routine.

Once the service mode and stack have been determined, Epicode then
attempts to push the PC followed by the PS, and in the case of
exceptions, other parameters if required, on the target stack. During
the attempt to push this information, several exceptions can occur.
These are:

o Stack Alignment

o Tr~nslation Not Valid

o Access Violation

o Fault On Write

If the target stack is the Kernel stack and any of the above
exceptions occur, a Kernel Stack Not Valid abort is initiated and the
processor enters the restart sequence: see Chapter 11, System
Bootstrapping and Console.

If the target stack is User, Supervisor, or Executive and the stack is
unaligned, a Stack Alignment abort is initiated.

If the target stack is User, Supervisor, or Executive and a
Translation Not Valid, Access Violation, or Fault On Write condition
exists, the exception is turned into the corresponding memory
management exc~ption, with the PC and PS of the original fault and the
virtual address of the problem in the target mode stack.

EXCEPTIONS AND INTERRUPTS Company Confidential
STACKS

6.7.5 Instruction Issue Model

check_for_exception_or_interrupt:

IF NOT {exception or interrupt pending} THEN
BEGIN
{fetch next instruction}
{decode and execute instruction}
END

ELSE
BEGIN
{wait for in-progress instructions to complete}
IPR SP[PS<CM>] <- SP
IF Texception pending} THEN

BEGIN

Page 6-37
22 December 1985

{back up implementation specific state if necessary}
IF {vector exception} AND {NOT {machine check}} THEN

BEGIN
new ipl <- PS<IPL>
new-mode <- 0
new-sp <- KSP
FOR-i <- l TO {number of exceptions}

BEGIN
PUSH(stride[i], base[i])
PUSH(virtual[i], reg_data[i])
END

tmp <- PS
tmp<VEF> <- l
PUSH(PC, tmp)
IF {arithmetic exception} THEN

BEGIN
PUSH(write mask R63 R32, write mask R31 RO)
PUSH(write-Mask-Vl5-VO, summary) - -
vector <- TaritlimetTc exception SCB offset}
END

ELSE
BEGIN
IF reg data[l]<ETY> EQ {vector alignment abort} THEN

BEGIN
PUSH(O, virtual[l])
vector <- {vector alignment exception SCB offset}
END

ELSE
BEGIN

END
END

ELSE
BEGIN

(new sp + B)<VFS> <- l
tmp <- ZEXT(reg data[l]<OPR>)
PUSH(tmp, virtual[l])
vector <- {memory management exception SCB offset}
END

EXCEPTIONS AND INTERRUPTS
STACKS

Company Confidential

IF {machine check} THEN
BEGIN
new ipl <- 7
new-mode <- 0
new sp <- KSP
END-

ELSE
BEGIN
new ipl <- PS<IPL>
new-mode <- {target mode of exception}
new:sp <- IPR_SP[new_mode]
END

PUSH(PC, PS)

Page 6-38
22 December 1985

FOR i <- {number of parameters} I 2 TO l BY - l
BEGIN

END

PUSH(parameter[{i * 2 } + l], parameter[i * 2])
END

IF {{number of parameters} MOD 2} EQ l THEN
PUSH(parameter[l], 0)

vector <- {exception SCB offset}
END

ELSE
BEGIN
new ipl <- {interrupt source IPL}
new-mode <- 0
new-sp <- KSP
PUSH(PC, PS)
vector <- {interrupt SCB offset}
END

PS<CM> <- new mode
PS<IPL> <- new ipl
SP <- new sp -
PC <- (SCBB + vector)
END

GOTO check_for_exception_or_interrupt

EXCEPTIONS AND INTERRUPTS
STACKS

PROCEDURE PUSH(first, last)

IF new sp<2:0> NE 0 THEN
BEGIN
IF new mode EQ 0 THEN

Company Confidential

{initiate kernel stack not valid halt}
ELSE

BEGIN
new mode <- 0
new-sp <- KSP
PUSH(PC, PS)
KSP <- new sp
PS<CM> <- 0

Page 6-39
22 December 1985

PC<- (SCBB + {stack alignment abort SCB offset})
GOTO check for exception or interrupt
END - - - -

END
ELSE

BEGIN

END

IF ACCESS(new sp - 8, new_mode) THEN
BEGIN -
(new sp - 4) <- first
(new-sp - 8) <- last
new sp <- new_sp - 8
RETURN
END

ELSE
BEGIN
IF new mode EQ 0 THEN

{initiate kernel stack not valid halt}
ELSE

BEGIN

END
END

tmp <- new_sp
new mode <- 0
new-sp <- KSP
PUSH(PC, PS)
PUSH(l, tmp)
KSP <- new sp
PS<CM> <- 0
PC<- (SCBB + {memory management SCB offset})
GOTO check for exception or interrupt
END - - - -

EXCEPTIONS AND INTERRUPTS
STACKS

Company Confidential

6.7.6 Epicode Interrupt Arbitration

Page 6-40
22 December 1985

It is envisioned that most, if not all, implementations will provide
hardware to check for pending interrupts. This includes software and
AST interrupts as well as those caused by the console terminal,
Interval Clock, I/O processors, interprocessor interrupts, and
powerfail.

Certain implementations, however, may find it more cost effective to
implement parts of the interrupt arbitration in Epicode. The console
terminal, Interval Clock, I/0 interrupts, interprocessor interrupts,
and powerfail must be monitored by hardware, and when proper enabling
conditions are present, cause an interrupt to be initiated. Software
and AST interrupts, however, can totally be implemented in Epicode.

The following sections describe the Epicode instructions that require
special checks to implement these capabilities. In all cases, the
interrupt is initiated before the execution of the next instruction.
In a system that implements interrupts totally in hardware, an
identical behavior must be provided.

6.7.6.1 MTPR AST Request Register

Writing the ASTRR internal processor register (see Chapter 8, Internal
Processor Registers, Section 8.1) requests an AST for one of the four
processor modes. This may request an AST on a formerly inactive level
and thus cause an AST interrupt.

The logic required to check for this condition is:

ASTSR<mode> <- 1
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> EQ 0} THEN

{initiate AST interrupt at IPL l}

6.7.6.2 MTPR Software Interrupt Request Register

Writing the SIRR internal processor register (see Chapter 8, Internal
Processor Registers, Section 8.1) requests a software interrupt at one
of the four software interrupt levels. This may cause a formerly
inactive level to cause a software interrupt.

The logic required to check for this condition is:

SISR<level> <- l
IF level GT PS<IPL> THEN

{initiate software interrupt at IPL level}

EXCEPTIONS AND INTERRUPTS
STACKS

Company Confidential Page 6-41
22 December 1985

6.7.6.3 Return From Exception Or Interrupt

The Return from Exception or Interrupt instruction (see Chapter 4,
Instruction Descriptions, Page 4-85) writes both the current mode and
IPL fields of the PS; see Section 6.2. This may enable a formerly
disabled AST or software interrupt to occur.

The logic required to check for this condition is:

PS<CM> <- (SP)<CM>
PS<IPL> <- (SP)<IPL>
IF RIGHT SHIFT(SISR, PS<IPL> + 1) NE 0 THEN

{initiate software interrupt at IPL of high bit set in SISR}
tmp <-NOT LEFT SHIFT(lllO(bin), PS<CM>)
IF {{tmp AND ASTEN AND ASTSR}<3:0> NE O} AND {PS<IPL> EQ 0} THEN

{initiate AST interrupt at IPL l}

6.7.6.4 Swap AST Enable

Swapping the AST enable state for the current mode results in
the ASTEN internal processor register (see Chapter 8,
Processor Registers, Section 8.1). This may enable a
disabled AST to cause an AST interrupt.

The logic required to check for this condition is:

tmp <- R4<0>
R4 <- ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>> <- tmp
IF ASTEN<PS<CM>> AND ASTSR<PS<CM>> AND {PS<IPL> EQ 0}

{initiate AST interrupt at IPL l}

6.7.6.5 Swap Interrupt Priority Level

writing
Internal
formerly

Swapping the Interrupt Priority Level (IPL) writes the IPL field of
the Processor Status (PS); see Section 6.2. This may enable a
formerly disabled AST or software interrupt to occur.

The logic required to check for this condition is:

tmp <- R4<2:0>
R4 <- ZEXT(PS<IPL>)
PS<IPL> <- tmp
IF RIGHT SHIFT(SISR, PS<IPL> + l) NE 0 THEN

{initiate software interrupt at IPL of high bit set in SISR}
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> EQ 0} THEN

{initiate AST interrupt at IPL l}

EXCEPTIONS AND INTERRUPTS Company Confidential
STACKS

Page 6-42
22 December 1985

6.7.7 Processor State Transition Table

Initial
State

USER
IPL=O

SUPER
IPL=O

EXEC
IPL=O

KERNEL
IPL=O

KERNEL
IPL>O

Table 6-2: Processor State Transitions

User
IPL=O

Final State

Super Exec Kernel Kernel Program
IPL=O IPL=O IPL=O IPL>O Halt

+-------+-------+-------+-------+-------+-------+
I I I I I Int I I
I I NP I NP I Exe I Exe I NP I
I I I I ISWASTENI I
+-------+-------+-------+-------+-------+-------+
I I I I I Int I I
I REI* I I NP I Exe I Exe I NP I
I I I I ISWASTENI I
+-------+-------+-------+-------+-------+-------+
I I I I I Int I I
I REI* I REI* I I Exe I Exe I NP I
I I I I ISWASTENI I
+-------+-------+-------+-------+-------+-------+
I I I I I REI I I
I REI* I REI* I REI* I I SWIPL I HALT I
I I I I I Int I I
I I I I I Exe I I
I I I I I MTPR * I I
I I I I ISWASTENI I
+-------+-------+-------+-------+-------+-------+
I I I I I I I
I REI* I REI* I REI* I REI* I I HALT I
I I I ISWIPL* I I I
+-------+-------+-------+-------+-------+-------+

* - An REI that increases mode or lowers IPL, or
a SWIPL that lowers IPL, or a MTPR ASTRR or
MTPR ASTEN, can cause an interrupt request at
IPL 1.

Exe - State change caused by an exception.

Int - State change caused by an interrupt.

NP - State not possible.

EXCEPTIONS AND INTERRUPTS
REVISION HISTORY

Company Confidential Page 6-43
22 December 1985

Revision History:

Revision 1.0, 22 December 1985

1. General rewrite of chapter to better organize information and
to reflect the change from a 64- to a 32-bit architecture.

2. Change the number of IPLs from 32 to 8.

3. Removal of all types of traps except arithmetic traps.
is now only one kind of trap.

4. Renamed PSQ to PS and PC.

There

s. Previous mode, interrupt stack, and interrupt disable were
removed from the PS to simplify the privileged architecture.

6. Added vector fault to the definition of PS for saved copies of
PS. This bit is similar in functionality to First Part Done
(FPD) on VAX.

7. Added vector enable to the definition of PS. This bit enables
the use of vector instructions and enables optimization of the
saving and restoring of vector registers for processes that do
not use them without introducing security holes.

8. Added Vector Enable fault.

9. Changed PS to a longword and PC to a longword.

10. Added I/0 Port Controller interrupts as part of adding the I/O
architecture.

11. Removed much information that was duplicated in other places
and inserted a reference to the proper definition.

12. Revised arithmetic traps to reflect the agreed upon handling
at the August 23 technical review.

13. Added Fault On Bit fault and dropped User Check trap.

14. Added Fault On Read, Fault On Write, and Fault On Execute
faults as part of the simplification of memory management.

15. Dropped the separate fault for emulated instructions and
combined with reserved opcode.

16. Changed Bug Check to a fault so the only traps would be
arithmetic.

17. Added vector exception information and an explanation of how
vector arithmetic and memory management faults are handled.

EXCEPTIONS AND INTERRUPTS Company Confidential
REVISION HISTORY

18. Grossly simplified serialization rules.

Page 6-44
22 December 1985

19. Added section on instruction issue and how it pertains to
exceptions and interrupts.

20. Added section on Epicode interrupt arbitration for
instructions that alter the state such that an AST or software
interrupt may be generated.

21. Updated state transition
privileged architecture.

Revision 0.0, July 5, 1985

1. First review distribution.

table to reflect simplified

Company Confidential

CHAPTER 7

PROCESS STRUCTURE

7.1 PROCESS DEFINITION

A process is the basic entity that is scheduled for execution by the
processor. A process represents a single thread of execution and
consists of an address space and both hardware and software context.

The hardware context of a process is defined by:

o 64 scalar registers

o 16 vector registers

o Vector Length register (VL)

o Vector Count register (VC)

o Vector Mask register (VM)

o Processor Status (PS)

o Program Counter (PC)

o 4 stack pointers

o Asynchronous System Trap Enable register (ASTEN)

o Asynchronous System Trap Summary Register (ASTSR)

o Process Page Table Base Register (PTBR)

o Address Space Number (ASN)

The software context of a process is defined by operating system
software and is system dependent.

A process may share the same address space with other processes or
have an address space of its own. There is, however, no separate
address space for system software, and therefore, the operating system
must be mapped into the address space of each process: see Chapter 5,

PROCESS STRUCTURE
PROCESS DEFINITION

Memory Management.

Company Confidential Page 7-2
22 December 1985

In order for a process to execute, its hardware context must be loaded
into the scalar registers, vector registers, and internal processor
registers. While a process is executing, its hardware context is
continuously updated. When a process is not being executed, its
hardware context is stored in memory.

Saving the hardware context of the current process in memory, followed
by the loading of the hardware context for a new process, is termed
context switching. Context switching occurs as one process after
another is scheduled by the operating system for execution.

7.2 HARDWARE PRIVILEGED PROCESS CONTEXT

The hardware context of a process is defined by
which is context switched with the Swap Privileged
(SWPCTX) (see Chapter 4, Instruction Descriptions,
nonprivileged part which is context switched
software.

a privileged part
Context instruction
Page 4-93) and a
by operating system

When a process is not executing, its privileged context is stored in a
quadword aligned memory structure called the Hardware Privileged
Context Block (HWPCB).

PROCESS STRUCTURE Company Confidential
HARDWARE PRIVILEGED PROCESS CONTEXT

Page 7-3
22 December 1985

3
1

1 1
6 5 8 7 4 3 0

+-------------------------------+---------------+-------+-------+
I
I Kernel Stack Pointer (KSP) :HWPCB
I
+-------------------------------+---------------+-------+-------+
I I
I Executive Stack Pointer (ESP) I +4
I I
+-------------------------------+---------------+-------+-------+
I I
I Supervisor Stack Pointer (SSP) I +8
I I
+-------------------------------+---------------+-------+-------+
I I
I User Stack Pointer (USP) I +12
I I
+-------------------------------+---------------+-------+-------+
I I I I I
I Address Space Number (ASN) I SBZ I ASTEN I ASTSR I +16
I I I I I
+-------------------------------+---------------+-------+-------+
I
I Page Table Base Register (PTBR) +20
I
+---+

Figure 7-1: Hardware Privileged Context Block

The Hardware Privileged Context Block (HWPCB) for the current process
is specified by the Privileged Context Block Base register (PCBB); see
Chapter 8, Internal Processor Registers, Page 8-15.

If ASNs are not implemented, the ASN field of the HWPCB Should Be Zero
(SBZ).

The Swap Privileged Context instruction (SWPCTX) saves the privileged
context of the current process into the HWPCB specified by PCBB, loads
a new value into PCBB, and then loads the privileged context of the
new process into the appropriate hardware registers.

The new value loaded into PCBB,
Privileged Context Block, must
UNDEFINED operation results:

as well
satisfy

as the
certain

contents of the
constraints or an

l. The physical address loaded into PCBB must be quadword
aligned, and describe six contiguous longwords that are
neither in I/0 space nor in non-existent memory.

2. The value of PTBR must be
existent page that is
non-existent memory.

the Page Frame Number of
neither in 1/0 space nor

an
in

PROCESS STRUCTURE Company Confidential
HARDWARE PRIVILEGED PROCESS CONTEXT

Page 7-4
22 December 1985

It is the responsibility of the operating system to save and load the
nonprivileged part of the hardware context.

The SWPCTX instruction returns ownership of the current HWPCB to
operating system software and passes ownership of the new HWPCB from
the operating system to the processor. Any attempt to read or write a
HWPCB while ownership resides with the processor has UNPREDICTABLE
results.

7.3 ASYNCHRONOUS SYSTEM TRAPS (AST)

Asynchronous System Traps (ASTs) are a means of notifying a process of
events that are not synchronized with its execution, but which must be
dealt with in the context of the process with minimum delay.

Asynchronous System Traps (ASTs) interrupt process execution and are
controlled by the AST Enable (ASTEN) and AST Summary (ASTSR) internal
processor registers: see Chapter 8, Internal Processor Registers,
Pages 8-4 and 8-6.

The AST Enable register (ASTEN) contains an enable bit for each of the
four processor access modes. When the bit corresponding to an access
mode is set,:ASTs for that mode are enabled. The AST enable bit for
an access mode may be changed by executing a Swap AST Enable
instruction (SWASTEN): see Chapter 4, Instruction Descriptions, Page
4-87.

The AST Summary Register (ASTSR) contains a pending bit for each of
the four processor access modes. When the bit corresponding to an
access mode is set, an AST is pending for that mode. The AST pending
bit for an access mode may be set by requesting an AST for the
respective mode.

Kernel mode software may request an AST for a particular access mode
by executing a Move To Processor Register instruction specifying ASTRR
(MTPR ASTRR); see Chapter 8, Internal Processor Registers, Page 8-5.

Hardware or Epicode monitors the state of ASTEN, ASTSR, PS<CM>, and
PS<IPL>. If PS<IPL> is zero, and there is an AST pending and enabled
for any access mode that is less than or equal to PS<CM> (i.e., an
equal or more privileged access mode), an AST interrupt is initiated
at IPL l. ASTs that are pending and enabled for less privileged
access modes are not allowed to interrupt execution in more privileged
access modes.

7.3.l A Software Model For AST Processing

It is intended that ASTs represent a single level of interrupt for
each of the four processor access modes. Therefore, operating system
software should not allow nested ASTs to occur within a single mode.

PROCESS STRUCTURE Company Confidential
ASYNCHRONOUS SYSTEM TRAPS (AST)

Page 7-5
22 December 1985

One way to accomplish this is for operating system software to keep
track of the access modes for which an AST is currently in progress
and not request further ASTs for these access modes until processing
of the respective ASTs has been completed.

In the following discussion it is assumed that the operating system
maintains a per process mask that contains one bit for each of the
access modes for which an AST is currently active. When an AST is
delivered to a particular access mode, the corresponding bit in the
active mask is set. Later, when AST processing is completed, the
operating system clears the respective bit and checks if any ASTs have
been queued at the particular level but not requested.

The operating system must also keep track of the access mode which is
to receive an AST when the event associated with the AST is completed.
Typically, such an event is the completion of an asynchronous I/O
request or the expiration of a timer. The simplest way to do this is
to construct an AST control block when the original request is
received and record in the control block the access mode and address
of the AST routine that is to be executed.

A simple model for uniprocessor AST delivery:

l. The completion of an event for which an AST has been
requested causes operating system software to place an AST
control block in a queue associated with the target process.
The AST queue is ordered by access mode with more privileged
entries at the front of the queue.

2. If the target process is currently executing and an AST is
not currently in progress for the specified access mode, an
AST is requested for the corresponding access mode by
executing a MTPR ASTRR instruction. If the target process is
not currently executing and an AST is not currently in
progress for the specified access mode, an AST is requested
by setting the bit corresponding to the specified access mode
in the saved ASTSR of the target process.

3. Hardware or Epicode monitors the state of ASTEN, ASTSR,
PS<CM>, and PS<IPL>. If PS<IPL> is zero and there is an AST
pending and enabled for any access mode that is less than or
equal to PS<CM> (i.e., an equal or more privileged access
mode), an AST interrupt is initiated at IPL l.

4. The AST delivery interrupt service routine is entered at IPL
l in Kernel mode and attempts to remove an AST control block
from the process AST queue. The AST queue must be scanned
from the front looking for an entry that specifies an access
mode that is less than or equal to the current mode of the
saved PS (an access mode that is equal to or more privileged
than the previous access mode) and for which ASTs are enabled
and not active (i.e., there is not already an AST in progress
for the mode). If an appropriate entry is located, then it
is removed from the queue and the bit corresponding to the

PROCESS STRUCTURE Company Confidential
ASYNCHRONOUS SYSTEM TRAPS (AST)

Page 7-6
22 December 1985

destination access mode is set in the active mask. An
appropriate PS and PC are constructed on the Kernel stack and
an REI is executed which begins execution of the AST routine.
If an appropriate AST control block cannot be located, the
AST interrupt is simply dismissed. (It is possible for this
condition to arise in the special case where an AST interrupt
is initiated, clearing the corresponding pending bit in
ASTSR, and before operating system software sets the
appropriate bit in the active mask, another AST for the same
access mode is requested.)

5. At the conclusion of processing an AST, the AST routine calls
the operating system to exit from the AST. The operating
system clears the appropriate bit in the active mask and
checks to see if another AST has been queued for the
specified access mode. If another AST has been queued, an
AST is requested by executing an MTPR ASTRR specifying the
appropriate access mode.

7.4 PROCESS CONTEXT SWITCHING

Process context switching occurs as one process after another is
scheduled for execution by operating system software. Context
switching requires the hardware context of one process to be saved in
memory followed by the loading of the hardware context for another
process into the hardware registers.

The privileged hardware context is swapped with the Swap Privileged
Context instruction (SWPCTX). Other hardware context must be saved
and restored by operating system software.

The sequence in which process context is changed is important since
the SWPCTX instruction changes the environment in which the context
switching software itself is executing. Also, although not enforced
by hardware, it is advisable to execute the actual context switching
software in an environment which is not context switchable (i.e., at
an IPL high enough that rescheduling cannot occur).

The SWPCTX instruction is the only method provided for loading certain
internal processor registers. The SWPCTX instruction always saves the
privileged context of the old process and loads the privileged context
of a new process. Therefore, a valid HWPCB must be available to save
the privileged context of the old process as well as load the
privileged context of the new process.

At system initialization, a valid HWPCB is constructed in the Restart
Parameter Block (RPB) for each processor: see Chapter 11, System
Bootstrapping and Console, Section 11.1.1.2. Thereafter, it is the
responsibility of operating system software to ensure a valid HWPCB
when executing a SWPCTX instruction.

PROCESS STRUCTURE Company Confidential Page 7-7
22 December 1985 PROCESS CONTEXT SWITCHING

7.4.1 A Software Model For Process Context Switching

The following context switching code represents
operating system software can switch context
another.

a model by which
from one process to

Certain assumptions are made regarding the entry and exit conditions
of this code. At entry it is assumed that the code is executing in
Kernel mode at IPL 2 and that the continuation PC and PS have already
been saved on the Kernel stack. At exit, the execution of the new
process is to be continued by an REI instruction.

SWAP PROCESS CONTEXT:

10$:

SUB
STQ
STQ
MFPR
LDL
STQ
STQ
STQ

STQ
STQ
STQ
LDL
SRL
BLBC
RDVC
RDVL
STQ
RDVML
RDVMH
STQ
WRVL
LDA
VSTQ
LDA
VSTQ
LDA
VSTQ

LDA
VSTQ
LDA
VSTQ
LDA
VSTQ

allocate room to save registers
save scalar registers R4 and RS
save scalar registers R2 and R3

#4*4,SP,SP
R4,8(SP)
R2, (SP)
PRBR read processor base register into R4

; get address of current software PCB
; save scalar registers R6 and R7

PRB$L SWPCB(R4),R2
R6,SWPCB$L R6(R2)
R8,SWPCB$L-R8(R2)
Rl0,SWPCB$L_Rl0(R2) ;

save scalar registers RS and R9
save scalar registers RlO and Rll

RS8,SWPCB$L R58(R2) save scalar registers R58 and R59
R60,SWPCB$L-R60(R2) : save scalar registers R60 and R61
R62,SWPCB$L-R62(R2) . save scalar registers R62 and R63 ,
l6(SP) ,R4 - get saved PS
#PS$V VEN,R4,R3 . shift PS<VEN> to low bit ,
R3, 10$. if low bit clear, not using vectors ,
R4 . read vector count register ,
RS read vector length register
R4,SWPCB$L_VC(R2) . save vector count and length registers I

R4 read low half of vector mask register
RS . read high half of vector mask register ,
R4,SWPCB$L VML(R2) . save vector mask register ,
RO - . set vector length to 64 elements I

SWPCB$Q VO(R2),R2 get base address of vector save area
#8,R2,VO . save vector register VO I

64*8 (R2) ,R2 get address of next vector save area
#8,R2,Vl save vector register Vl
6 4 * 8 (R2) , R2 get address of next vector save area
#8,R2,V2 save vector register V2

64*8(R2),R2 . get address of next vector save area ,
#8,R2,Vl3 save vector register Vl3
6 4 * 8 (R2) , R2 get address of next vector save area
#8,R2,Vl4 save vector register Vl4
64*8(R2) ,R2 get address of next vector save area
#8,R2,VlS . save vector register VlS ,

PROCESS STRUCTURE Company Confidential Page 7-8
22 December 1985 PROCESS CONTEXT SWITCHING

: Execute operating system dependent code to select new process • . ,
: Exit with: . ,
: R2 - address of new process software PCB • . ,

. ,

MFPR
STL
LDQ
SWPCTX

PRBR : read processor base register
R2,PRB$L SWPCB(R4) : set address of new software PCB
SWPCBSQ HwPCB(R2),R4 : get physical address of hardware PCB

- : swap privileged context

: The privileged context has been swapped at this point and thus
: a new address space is in effect as is a new Kernel stack pointer
: and saved PC and PS • . ,

20$:

LDL
SRL
BLBC
WRVL
LDA
VLDQ
LDA
VLDQ
LDA
VLDQ

LDA
VLDQ
LDA
VLDQ
LDA
VLDQ
LDQ
WRVC
WRVL
LDQ
WRVML
WRVMH

LDQ
LDQ
LDQ

LDQ
LDQ
LDQ

•

16 (SP), R4
#PS$V VEN,R4,R3
R3,20$.
RO .
SWPCBSQ VO(R2),R3
#8,R3,VO
64*8(R3) ,R3
#8,R3,Vl
64*8(R3) ,R3
#8,R3,V2

64*8(R3) ,R3
#8,R3,Vl3
64*8(R3),R3
#8,R3,Vl4
64*8(R3),R3
#8,R3,VlS
SWPCB$L VC(R2),R4
R4 -
RS
SWPCBSL VML(R2),R4
R4 -
RS

: get saved PS
: shift PS<VEN> to low bit
: if low bit clear, not using vectors
: set vector length to 64 elements
: get base address of vector save area
: load vector register VO
: get address of next vector save area
: load vector register Vl
: get address of next vector save area
: load vector register V2

: get address of next vector save area
: load vector register Vl3
: get address of next vector save area
: load vector register Vl4
: get address of next vector save area
: load vector register Vl5

get saved vector count and length
: write vector count register

write vector length register
: get saved vector mask

write low half of vector mask register
: write high half of vector mask register

: load scalar registers R6 and R7
load scalar registers RB and R9
load scalar registers RlO and Rll

SWPCB$L R6(R2),R6
SWPCB$L-R8(R2),R8
SWPCB$L:Rl0(R2),Rl0 :

SWPCBSL RS8(R2),R58
SWPCB$L-R60(R2),R60
SWPCB$L:R62(R2),R62 :

load scalar registers RSB and R59
load scalar registers R60 and R61
load scalar registers R62 and R63

PROCESS STRUCTURE Company Confidential Page 7-9
22 December 1985 PROCESS CONTEXT SWITCHING

LDQ
LDQ
ADD
REI

(SP) , R2
8 (SP), R4
#4*4,SP,SP

load scalar registers R2 and R3
load scalar registers R4 and R5
deallocate register save area
resume process execution

PROCESS STRUCTURE
REVISION HISTORY

Company Confidential Page 7-10
22 December 1985

Revision History:

Revision 1.0, 22 December 1985

1. Chapter rewritten
architecture.

to reflect simplified privileged

2. Removed all explicit assumptions about how operating system
software uses the hardware process structure.

3. Removed references to PSW, ASTLVL, and the interrupt stack.

4. Added new definition of hardware context and defined the
Hardware Privileged Context Block (HWPCB).

5. Revised the AST section and added a software model of AST
processing.

6. Deleted the section on Process Structure Interrupts.

7. Combined the sections on saving and loading process context
into a single section on swapping context.

Revision 0.0, July 5, 1985

1. First review distribution.

Company Confidential

CHAPTER 8

INTERNAL PROCESSOR REGISTERS

8.1 INTERNAL PROCESSOR REGISTERS

This chapter describes the PRISM Internal Processor Registers (IPRs).
These registers are read and written with Move From Processor Register
(MFPR) and Move To Processor Register (MTPR) instructions: see Chapter
4, Instruction Descriptions, Pages 4-90 and 4-91.

These instructions accept input operands from and write results to the
scalar registers R4, RS, and R6. Prior to execution of an MTPR/MFPR,
required input operands must be loaded into scalar registers R4 and
RS. In certain cases no input operands are required. MFPR returns
the IPR contents in one or more of the scalar registers R4, RS, and
R6.

Internal Processor Registers may or may not be implemented as actual
hardware registers. An implementation may choose any combination of
Epicode and hardware that produces the architecturally specified
functionality.

Internal Processor Registers are only accessible from Kernel mode.

INTERNAL PROCESSOR REGISTERS
IPR Summary

Company Confidential Page 8-2
22 December 1985

Table 8-1: Internal Processor Register (IPR) Summary

---Register Name Mnemonic Access R4 RS R6
---Address Space Number
AST Enable
AST Request Register
AST Summary Register
Console Receive Ctrl. Status
Console Receive Data Buffer
Console Transmit Ctrl. Status
Console Transmit Data Buffer
Stack Pointer Registers

Executive Stack Pointer
Supervisor Stack Pointer
User Stack Pointer

Interval Clock Int. Enable
Interprocessor Int. Enable
Interprocessor Int. Request
Privileged Context Block Base
Processor Base Register
Processor Serial Number
Page Table Base Register
System Control Block Base
System Identification
Software Int. Request Register
Software Int. Summary Register
Trans. Buffer Check
Trans. Buffer Invalidate ASN
Trans. Buffer Invalidate Single
Time Of Year
Who-Am-I

ASN
AS TEN
AST RR
AST SR
CRCS
CRDB
CTCS
CTDB

ESP
SSP
USP
ICIE
IPIE
IPIR
PCBB
PRBR
PRSN
PTBR
SCBB
SID
SIRR
SISR
TBCHK
TBIASN
TBIS
TOY
WHAM I

R
R
w
R
R/W
R
R/W
w

R/W
R/W
R/W
R/W
R/W
w
R
R/W
R
R
R/W
R
w
R
R
w
w
R/W
R

number
mask
mode
mask
enable
char
enable
char

address
address
address
enable
enable
number
address
value
serial
frame
address
ident
level
mask
number
number
number
time
number

address

address
value

address

address
time

status

INTERNAL PROCESSOR REGISTERS
Address Space Number (ASN)

Address Space Number (ASN)

Access:

Read

Operation:

R4 <- ZEXT{ASN<l5:0>}

Value at System Initialization:

Format:

3
1

Zero

Company Confidential

1 1
6 5

Page 8-3
22 December 1985

0
+-------------------------------+-------------------------------+
I I I
I RAZ I Address Space Number I :R4
I I I
+-------------------------------+-------------------------------+

Figure 8-1: Address Space Number Register (ASN)

Description:

Address Space Numbers (ASNs} are used to further qualify Translation
Buffer references; see Chapter 5, Memory Management. The current ASN
may be read by executing an MFPR instruction specifying ASN.

As processes are scheduled for execution, the ASN for
to execute is loaded using the Swap Privileged
instruction: see Chapter 4, Instruction Descriptions,
Chapter 7, Process Structure.

the next process
Context (SWPCTX)

Page 4-93 and

INTERNAL PROCESSOR REGISTERS
AST Enable (ASTEN)

AST Enable (ASTEN)

Access:

Read

Operation:

R4 <- ZEXT(ASTEN<3:0>)

Value at System Initialization:

Format:

3
1

Zero

Company Confidential Page 8-4
22 December 1985

4 3 2 1 0
+---+-+-+-+-+ I IUISIEIKI
I RAZ IEIEIEIEI :R4
I ININININI
+---+-+-+-+-+

Figure 8-2: AST Enable Register (ASTEN)

Description:

The AST Enable register records the AST enable state for each of the
., modes: Kernel (KEN), Executive (EEN), Supervisor (SEN), and User
~ (UEN). The current AST enable state may be read by executing an MFPR

instruction specifying ASTEN.

As processes are scheduled for execution, the state of the AST enables
for the next process to execute is loaded using the Swap Privileged
Context (SWPCTX) instruction. The Swap AST Enable (SWASTEN)
instruction can be used to change the enable state for the current
access mode. See Chapter 4, Instruction Descriptions, Pages 4-93 and
4-87, and Chapter 7, Process Structure.

INTERNAL PROCESSOR REGISTERS Company Confidential
AST Request Register (ASTRR)

Page 8-5
22 December 1985

AST Request Register (ASTRR)

Access:

Write

Operation:

ASTRR <- R4<1:0>

Value at System Initialization:

Format:

3
l

Not Applicable

2 l 0
+---+---+ I I M I
I IGN I O I :R4
I I D I
+---+---+

Figure 8-3: AST Request Register (ASTRR)

Description:

An AST may be requested for a
MTPR instruction specifying
used in the Processor Status
Interrupts, Section 6.2.

particular access mode by executing an
ASTRR. Access mode encodings are those

(PS); see Chapter 6, Exceptions and

An MTPR ASTRR sets the bit corresponding to the specified access mode
in the AST Summary Register; see Page 8-6. If proper enabling
conditions are present, an AST interrupt is initiated prior to issuing
the next instruction; see Chapter 6, Exceptions and Interrupts,
Section 6.7.~.

INTERNAL PROCESSOR REGISTERS Company Confidential
AST Summary Register (ASTSR)

AST Summary Register (ASTSR)

Access:

Read

Operation:

R4 <- ZEXT(ASTSR<J:O>)

Value at System Initialization:

zero

Format:

3
l

Page 8-6
22 December 1985

4 3 2 1 0
+---+-+-+-+-+

RAZ
IUISIEIKI
IPIPIPIPI :R4
II>IDIDIDI

'°· +---.----------------------~------------------------------+-+-+-+-+

(,..
'

Figure 8-4: AST Summary Register (ASTSR)

Description:

The AST Summary Register records the AST pending state for each of the
modes: Kernel (KPO), Executive (EPO), Supervisor (SPD), and User
(UPD). The current AST pending state may be read by executing an MFPR
instruction specifying ASTSR.

As processes are scheduled for execution, the pending AST state for
the next process to execute is loaded using the Swap Privileged
Context (SWPCTX) instruction: see Chapter 4, Instruction Descriptions,
Page 4-93 and Chapter 7, Process Structure.

MTPR ASTRR requests an AST at a particular access mode and sets the
correspondin9 pending bit in ASTSR; see Page 8-5.

When the processor IPL is O, and proper enabling conditions are
present, an AST interrupt is initiated at IPL l and the corresponding
access mode bit in ASTSR is cleared: see Chapter 6, Exceptions and
Interrupts, Section 6.7.6.

INTERNAL PROCESSOR REGISTERS Company Confidential
Console Receive Control Status (CRCS)

Console Receive Control Status (CRCS)

Access:

Read/Write

Operation:

R4 <- CRCS

CRCS<O> <- R4<0>

Value at System Initialization:

Format:

3 3
1 0

Zero

Read

Write

Page 8-7
22 December 1985

1 0
+-+---+-+ IRI I I
IDI IGN/RAZ III :R4
IYI IEI
+-+---+-+

t Figure 8-5: Console Receive Control Status Register (CRCS)
,~·

.,

/··

Description:

The Console Receive Control Status register provides access to console
input status and controls whether interrupts are generated when
characters are received from the console terminal: see Chapter 11,
System Bootstrapping and Console, Section 11.2.

The Console Receive Control Status register may be read and written by
executing MFPR and MTPR instructions that specify CRCS. When CRCS is
written, a value of 1 enables console receive interrupts and a value
of 0 disables interrupts: see Chapter 6, Exceptions and Interrupts,
Section 6.3.3.1. Reading CRCS returns the current interrupt enable
(IE) status and whether a character is ready (RDY) to be read from the
Console Receive Data Buffer (CRDB): see Page 8-B.

Character ready (RDY) is set when a character is received from the
console. If interrupts are enabled when RDY is set, a console receive
interrupt is generated when conditions permit.

When the state of interrupt enable (IE) transitions from disabled (0)
to enabled (1) and a character is available (RDY is set), it is
UNPREDICTABLE whether a console receive interrupt is generated.

INTERNAL PROCESSOR REGISTERS Company Confidential
Console Receive Data Buffer (CRDB)

Page 8-8
22 December 1985

Console Receive Data Buffer (CRDB)

Access:

Read

Operation:

R4 <- CRDB

Value at System Initialization:

Format:

3 3
1 0

Undefined

8 7 0
+-+---+---------------+ IEI I I
IRI RAZ I Character ·I :R4
IRI I I

c~ +-+---+---------------+
Figure 8-6: Console Receive Data Buffer Register (CRDB)

~· Description:

~ The Console Receive Data Buffer register allows characters to be read
from the console by executing an MFPR instruction specifying CRDB; see
Chapter 11, System Bootstrapping and Console, Section 11.2.

CRDB may be read when a character is ready for input (CRCS<RDY> is
set): see Page 8-7. If CRDB is read when a character is not ready for
input (CRCS<RDY> is clear), the result is UNPREDICTABLE.

Reading CRDB returns an error indication (ERR) and an 8-bit ASCII
character. ERR is set if an error, such as data overrun or loss of
.carrier, is~t!etected while the character is being ·received.

Reading CRDB clears CRCS<RDY>.

INTERNAL PROCESSOR REGISTERS Company Confidential
Console Transmit Control Status (CTCS)

Console Transmit Control Status (CTCS)

Access:

Read/Write

Operation:

R4 <- CTCS

CTCS<O> <- R4<0>

Value at System Initialization:

Format:

3 3
l 0

Zero

Read

Write

Page 8-9
22 December 1985

l 0
+-+---+-+ IDI
IOI
INI

IGN/RAZ
I I
I I I :R4
IEI

+-+---+-+
Figure 8-7: Console Transmit Control Status Register (CTCS)

Description:

The Console Transmit Control Status register provides access to
console output status and controls whether interrupts are generated
when characters have been transmitted to the console: see Chapter 11,
System Bootstrapping and Console, Section 11.2.

The Console ~ransmit Control Status register may be read and written
by executing MFPR and MTPR instructions that specify CTCS. When CTCS
is written, a value of 1 enables console transmit interrupts and a
value of 0 disables interrupts: see Chapter 6, Exceptions and
Interrupts, Section 6.3.3.2. Reading CTCS returns the current
interrupt enable (IE) status and whether a character can be
transmitted (DON) to the Console Transmit Data Buffer (CTDB): see Page
8-10.

Character done (DON) is cleared when a character is written to CTDB
and set when the character has been transmitted to the console. If
interrupts are enabled when DON is set, a console transmit interrupt
is generated when conditions permit.

When the state of interrupt enable transitions from disabled (0) to
enabled (1) and a character has finished transmission (DON is set), it
is UNPREDICTABLE whether a console transmit interrupt is generated.

i
·~

INTERNAL PROCESSOR REGISTERS Company Confidential
Console Transmit Data Buffer (CTDB)

Page 8-10
22 December 1985

Console Transmit Data Buffer (CTDB)

Access:

Write

Operation:

CTDB <- R4<7:0>

Value at System Initialization:

Format:

3
l

Not Applicable

8 7 0
+---+---------------+

IGN Character

+-------------------~---------------------------·---------------+
. Figure 8-8: Console Transmit Data Buffer Register (CTOB)

Descdption:

:R4

The Console Transmit Data
characters to be written
instruction specifying CTDB;
Console, Section 11.2.

Buffer register allows 8-bit ASCII
to the console by executing an MTPR
see Chapter 11, System Bootstrapping and

CTDB may be written when any previously written characters have
transmitted (CTCS<DON> is set); see Page 8-9. If CTDB is written
a character is currently being transmitted (CTCS<DON> is clear),
result is UNPREDICTABLE.

Writing CTDB clears CTCS<DON>.

been
when

the

INTERNAL PROCESSOR REGISTERS
Stack Pointer Registers

Company Confidential Page 8-11
22 December 1985

Stack Pointer Registers (ESP, SSP, USP)

Access:

Read/Write

Operation:

R4 <- xSP

xSP <- R4

Value at System Initialization:

Format:

3
1

Undefined

Read

Write

0
+---+

Stack Address :R4

+---+
Figure 8-9: Stack Pointer Registers (ESP, SSP, USP)

Description:

These registers allow the stack pointers for the
Executive (ESP), Supervisor (SSP), and User (USP)
written via MFPR and MTPR instructions that specify the
stack pointer.

access modes
to be read and
corresponding

The current stack pointer may be read and written directly by
specifying scalar register SP (Rl).

No internal processor register is provided to read and write the
Kernel stack pointer. MxPR instructions can only be executed from
Kernel mode, and while in Kernel mode, the current (Kernel mode) stack
pointer can be directly read and written.

As processes are scheduled for execution, the four stack pointers for
the next process to execute are loaded using the Swap Privileged
Context (SWPCTX) instruction: see Chapter 4, Instruction Descriptions,
Page 4-93 and Chapter 7, Process Structure.

Stack pointers must be quadword aligned or a stack alignment exception
may occur. An unaligned Executive, Supervisor, or User stack results
in a Stack Alignment abort exception. An unaligned Kernel stack
results in a Kernel Stack Not Valid halt. See Chapter 6, Exceptions
and Interrupts, Section 6.4.7.

INTERNAL PROCESSOR REGISTERS Company Confidential
Interval Clock Interrupt Enable (ICIE)

Interval Clock Interrupt Enable (ICIE)

Access:

Read/Write

Operation:

R4 <- ZEXT(ICIE<O>)

ICIE <- R4<0>

Value at System Initialization:

Format:

3
1

Zero

Read

Write

Page 8-12
22 December 1985

1 0
+---+-+

IGN/RAZ
I I
I I I :R4
IEI

+---+-+
Figure 8-10: Interval Clock Interrupt Enable Register (ICIE)

Description:

The Interval Clock provides the capability to regularly interrupt the
processor at 10 millisecond intervals. The interval clock has an
accuracy of .0025\ or better (approximately 65 seconds per month).
The Interval Clock Enable register controls whether clock interrupts
are enabled or disabled.

The Interval Clock Interrupt Enable register may be read and written
by executing MFPR and MTPR instructions that specify ICIE. When ICIE
is written, ~-~value of l enables clock interrupts and -a ·value of 0
disables interrupts. After enabling Interval Clock interrupts, the
first interrupt may occur in less than 10 milliseconds.

~ Interval Clock interrupts are initiated at IPL 5; see Chapter 6,
Exceptions and Interrupts, Section 6.3.5.

.•\-

INTERNAL PROCESSOR REGISTERS Company Confidential
Interprocessor Interrupt Enable (IPIE)

Interprocessor Interrupt Enable (IPIE)

Access:

Read/Write

Operation:

R4 <- ZEXT(IPIE<O>)

IPIE <- R4<0>

Value at System Initialization:

Format:

3
1

Zero

Read

Write

Page 8-13
22 December 1985

1 0
+---+-+

IGN/RAZ
I I
I I I :R4
IEI

~ +---+-+
Figure 8-11: Interprocessor Interrupt Enable Register (IPIE)

~ Description:

The PRISM architecture provides the capability for one processor to
interrupt another processor via an IPR: see Page 8-14. The
Interprocessor Interrupt Enable register controls whether
interprocessor interrupts are enabled or disabled.

The Interprocessor Interrupt Enable register may be read and written
by executingMFPR and MTPR instructions that specify IPIE. When IPIE
is written, • value of l enables interprocessor interrupts and a value
of O disables interrupts.

An interprocessor interrupt is initiated when interprocessor
interrupts are enabled, an interprocessor interrupt request has been
received from another processor, and the current IPL is less than 6.

Interprocessor interrupts are initiated at IPL 6: see Chapter 6,
Exceptions and Interrupts, Section 6.3.6.1.

·'

INTERNAL PROCESSOR REGISTERS Company Confidential
Interprocessor Interrupt Request (IPIR)

Page 8-14
22 December 1985

Interprocessor Interrupt Request (IPIR)

Access:

Write

Operation:

IPIR <- R4

Value at System Initialization:

Format:

3
1

Not applicable

0
+---+

Processor Number

+---+
Figure 8-12: Interprocessor Interrupt Request Register (IPIR)

Description:

:R4

:: An interprocessor interrupt can be requested on a ·Specified processor
by executing an MTPR instruction specifying IPIR. The interrupt
request is recorded on the target processor and is initiated when
proper enabling conditions are present: see Page 8-13.

If the target processor is the same as the current processor, and
proper enabling conditions are present, an interprocessor interrupt is
initiated prior to issuing the next instruction: see Chapter 6,
Exceptions a~d Interrupts, Sections 6.3.6.2 and 6.7.6.

~- .

(

INTERNAL PROCESSOR REGISTERS Company Confidential
Privileged Context Block Base (PCBB)

Page 8-15
22 December 1985

Privileged Context Block Base (PCBB)

Access:

Read

Operation:

QR4 <- ZEXT(PCBB)

Value at System Initialization:

See Chapter 11, System Bootstrapping and Console.

Format:

3
1

1 1
3 2 0

+--------------------------------------+------------------------+ I I
I Physical Address<31:0> I :R4
I I
+--------------------------------------+------------------------+ I I

RAZ I Physical Address<44:32>1 :RS
I I

+--------------------------------------+------------------------+
l Figure 8-13: Privileged Context Block Base Register (PCBB)

Description:

The Privileged Context Block Base register contains the physical
address of the privileged context block for the current process. It
may be read by executing an MFPR instruction specifying PCBB.

PCBB is written by the Swap Privileged Context (SWPCTX) instruction:
see Chapter 4, Instruction Descriptions, Page 4-93 and Chapter 7,
Process Structure.

INTERNAL PROCESSOR REGISTERS Company Confidential
Processor Base Register (PRBR)

Page 8-16
22 December 1985

Processor Base Register (PRBR)

Access:

Read/Write

Operation:

R4 <- PRBR

PRBR <- R4

Value at System Initialization:

Format:

3
1

Undefined

Read

Write

0
+---+

Operating System Dependent Value

+--·------------------+
Figure B-14: Processor Base Register (PRBR)

Description:

:R4

In a multiprocessor system, it is desirable for the operating system
to be able to locate a processor~specif ic data structure in a simple
and straightforward manner. The Processor Base Register provides a
longword of operating system-dependent state that can be read and
written via MFPR and MTPR instructions that specify PRBR.

':

INTERNAL PROCESSOR REGISTERS Company Confidential Page 8-17
Processor Serial Number (PRSN) 22 December 1985

Processor Serial Number (PRSN)

Access:

Read

Operation:

IF {implemented} THEN
R4 <- PRSN

ELSE
R4 <- 0

Value at System Initialization:

Processor serial number or zero

Format:

3
l 0

+---+
I I
I Serial Number I :R4
I I
+---+

Figure 8-15: Processor Serial Number Register (PRSN)

Description:

The Processor Serial Number register provides access to the processor
serial number by executing an MFPR instruction specifying PRSN.

Implementation of serial numbers is optional. If implemented, the
serial number is returned. Otherwise, a value of zero is returned
(zero is an invalid serial number).

INTERNAL PROCESSOR REGISTERS Company Confidential
Page Table Base Register (PTBR)

Page 8-18
22 December 1985

Page Table Base Register (PTBR)

Access:

Read

Operation:

R4 <- PTBR

Value at System Initialization:

Format:

3
l

See Chapter 11, System Bootstrapping and Console

0
+---+

Page Frame Number :R4

·---+
,Figure 8-16: Page Table Base Register (PTBR)

Description:

The Page Table Base Register contains the page frame number
first-level page table for the current process. It may be
executing an MFPR instruction specifying PTBR; see Chapter 5,
Management.

of the
read by
Memory

As processes are scheduled for execution, the PTBR for the next
process to execute is loaded using the Swap Privileged Context
(SWPCTX) instruction; see Chapter 4, Instruction Descriptions, Page
4-93 and Chapter 7, Process Structure.

INTERNAL PROCESSOR REGISTERS Company Confidential
System Control Block Base (SCBB)

Page 8-19
22 December 1985

System Control Block Base (SCBB)

Access:

Read/Write

Operation:

QR4 <- ZEXT(SCBB)

SCBB <- QR4

Value at System Initialization:

Read

Write

See Chapter 11, System Bootstrapping and Console

Format:

3
l

l l
3 2 0

+--------------------------------------+------------------------+ I I
I Physical Address<3l:O> I :R4
I I
+----------~--------------------------+------------------------+ I I I
I IGN/RAZ I Physical Address<44:32>1 :RS
I I I

f +--------------------------------------+------------------------+
Figure B-17: System Control Block Base Register (SCBB)

Description:

The System Control Block Base register holds the physical address of
the System Control Block which is used to dispatch exceptions and
interrupts and may be read and written by executing MFPR and MTPR
instructions that specify SCBB; see Chapter 6, Exceptions and
Interrupts, Section 6.6.

When SCBB is written, the specified physical address must be the
quadword aligned address of a contiguous B Kbyte block which is
neither in I/O space nor non-existent memory, or an UNDEFINED
operation may result.

;i

-·

INTERNAL PROCESSOR REGISTERS Company Confidential
System Identification (SID)

System Identification (SID)

Access:

Read

Operation:

QR4 <- SID

Value at System Initialization:

Format:

3
l

System Identification

2 2
4 3

l l
6 5 8 7

Page 8-20
22 December 1985

0
+---------------+---------------+---------------+---------------+ I
I Processor Hardware Epicode System :R4
I Type Revision Revision Type
+---------------+---------------+---------------+---------------+ I
I Implementation Dependent Data :RS
I
+---+

Figure 8-18: System Identification Register (SID)
·~

''· Description:
...

The System Identification register provides information about the
processor type, hardware and Epicode revision levels, system type, and
implementation dependent information.

The System Identification register may be read by executing an MFPR
inst.ruction :.specifying SID.

INTERNAL PROCESSOR REGISTERS Company Confidential
Software Interrupt Request Register (SIRR)

Software Interrupt Request Register (SIRR)

Access:

Write

Operation:

SIRR <- R4<1:0>

Value at System Initialization:

Format:

3
1

Not applicable

Page 8-21
22 December 1985

2 1 0
+---+---+
I I L I

~. I IGN I V I :R4
I I L I
+---+---+

Figure 8-19: Software Interrupt Request Register (SIRR)

Description:

A software interrupt may be requested for a particular Interrupt
Priority Level (IPL) by executing an MTPR instruction specifying SIRR.
Software interrupts may be requested at levels 0, l, 2, and 3
(requests at level 0 are ignored).

An MTPR SIRR sets the bit corresponding to the specified interrupt
level in the Software Interrupt Summary Register; see Page 8-22. If
proper enabling conditions are present, a software interrupt is
initiated p~ior to issuing the next instruction; see Chapter 6,
Exceptions arid Interrupts, Sections 6.3.2 and 6.7.6.

INTERNAL PROCESSOR REGISTERS Company Confidential
Software Interrupt Summary Register (SISR)

Software Interrupt Summary Register (SISR)

Access:

Read

Operation:

R4 <- ZEXT(SISR<3:0>)

Value at System Initialization:

Format:

3
l

Zero

Page 8-22
22 December 1985

' 3 2 1 0
+---+-+-+-+-+

RAZ
I I I I I I IRI
IRIRIRIAI :R4
l312lllZI

+---+-+-+-+-+
Figure 8-20: Software Interrupt Summary Register (SISR)

Description:

The Software Interrupt Summary Register records the interrupt pending
·.•·· state for each of the interrupt levels 1, 2, and 3. The current

interrupt pending state may be read by executing an MFPR instruction
specifying SISR.

MTPR SIRR requests an interrupt at a particular interrupt level and
sets the corresponding pending bit in SISR: see Page 8-21.

When the processor IPL falls below the level of a pending request, an
., interrupt is· initiated and the corresponding bit in SISR is cleared:

see Chapter 6, Exceptions and Interrupts, Sections 6.3.2 and 6.7.6.

INTERNAL PROCESSOR REGISTERS Company Confidential
Translation Buffer Check (TBCHK)

Translation Buffer Check (TBCHK)

Access:

Read

Operation:

R6 <- 0
IF {implemented} THEN

R6<0> <- {entry in TB using R4<15:0>, RS}
ELSE

R6<31> <- l

Value at System Initialization:

Format:

3
l

Correct results are always returned

l l
6 5

Page 8-23
22 December 1985

0

+-------------------------------+-------------------------------+ I I I
I IGN I Address Space Number I :R4
I I I
+-------------------------------+-------------------------------+ I
I Virtual Address :RS

,,~~ I

+---+
3 3
l 0 l 0

+-+---+-+
I I I IPI
IMI RAZ IRI :R6
IPI ISi
+-+---------~---------~---------------------------------------+-+

Figure 8-21: Translation Buffer Check Register (TBCHK)

Description:

The Translation Buffer Check register provides the capability to
determine if a virtual address is present in the Translation Buffer by
executing an MFPR instruction specifying TBCHK: see Chapter 5, Memory
Management.

A virtual address and Address Space Number (ASN) are specified as
input (if ASNs are not implemented, ASN is ignored). The virtual
address can be any address within the desired page. The value read
contains an indication of whether the function is implemented and
whether the virtual address is present in the Translation Buffer.

INTERNAL PROCESSOR REGISTERS Company Confidential
Translation Buffer Check (TBCHK)

Page 8-24
22 December 1985

If the function is not implemented, a value is returned with bit <31>
set and bit <O> clear. Otherwise, a value is returned with bit <31>
clear and bit <O> indicates whether the virtual address is present (1)
or absent (0) in the Translation Buffer.

The TBCHK register can be used by system software for working set
management.

INTERNAL PROCESSOR REGISTERS Company Confidential
Translation Buffer Invalidate By ASN {TBIASN)

Page 8-25
22 December 1985

Translation Buffer Invalidate By ASN {TBIASN)

Access:

Write

Operation:

{invalidate all TB entries with ASN EQ R4<15:0>}

Value at System Initialization:

Format:

3
1

Not applicable

1 1
6 5 0

+-------------------------------+-------------------------------+
IGN Address Space Number

+-------------------------------+-------------------------------+
:R4

Figure 8-22: Translation Buffer
(TBIASN)

Invalidate by ASN Register

Description:

The Translation Buffer Invalidate by ASN register provides the
capability to invalidate all entries in the Translation Buffer for a
particular ASN by executing an MTPR instruction specifying TBIASN: see
Chapter 5, Memory Management.

If ASNs are not implemented, a write to this register invalidates all
Translation Buffer entries which do not have the Address Space Match
{ASM) bit set: see Chapter 5, Memory Management, Section 5.5.

INTERNAL PROCESSOR REGISTERS Company Confidential
Translation Buffer Invalidate Single (TBIS)

Page 8-26
22 December 1985

Translation Buffer Invalidate Single (TBIS)

Access:

Write

Operation:

{Invalidate single TB entry using R4<15:0>, RS}

Value at System Initialization:

Format:

3
1

Not applicable

l 1
6 5 0

+-------------------------------+-------------------------------+ I I I
I IGN I Address Space Number I :R4
I I I
+------------------------~------+-------------------------------+ I I
I Virtual Address I :RS
I I
+---+

Figure 8-23:

Description:

Translation Buff er Invalidate Single
(TBIS)

Register

The Translation Buffer Invalidate Single register provides the
capability to invalidate a single entry in the Translation Buffer by
executing an MTPR instruction specifying TBIS: see Chapter 5, Memory
Management.

A virtual address and Address Space Number (ASN) are specified as
input (if ASNs are not implemented, ASN is ignored). The virtual
address can be any address within the desired page.

INTERNAL PROCESSOR REGISTERS Company Confidential
Time Of Year (TOY)

Time Of Year (TOY)

Access:

Read/Write

Operation:

QR4 <- TOY

TOY <- QR4

Value at System Initialization:

Read

Write

Correct time or invalid time indication

Format:

3 3
l 0

2 2
8 7

2 2
4 3

2 1
0 9

1 1
6 5

l 1
2 l 8 7

Page 8-27
22 December 1985

4 3 0
+-+-----+-------+-------+-------+-------+-------+-------+-------+ I I I I I I I I I
I Dl I DO I Hl I HO I Mil I MIO I Sl I SO I :R4
I I I I I I I I I
+-+-----+-------+-------+-------+-------+-------+-------+-------+
I I I I I I I I I
IVI IGN/RAZ I Y3 I Y2 I Yl I YO I MOl I MOO I :RS
I I I I I I I I I
+-+-------------+-------+-------+-------+-------+-------+-------+

Figure 8-24: Time of Year Register (TOY)

Description:

The Time Of Year register provides the capability to read and write
the current time from a battery backed-up source by executing MFPR and
MTPR instructions that specify TOY. Access to this register may be
very slow (e.g., many milliseconds).

TOY records the time in Binary Coded Decimal (BCD) format and is
updated once a second. TOY has an accuracy of .0025% (approximately
65 seconds per month) and is battery backed up. Once TOY is written,
the time will remain valid until backup power is lost.

When TOY is read, a valid indication is returned in bit 31 of the
high-order longword. If bit 31 is set, the contents of TOY are valid.
Otherwise, backup power has been lost and the contents of TOY are
invalid.

When TOY is written, the time base used is operating system dependent
(e.g., Greenwich Mean Time, Universal Time, daylight savings time,
standard time, etc.).

INTERNAL PROCESSOR REGISTERS Company Confidential
Time Of Year (TOY)

TOY encoding is:

4 BCD digits of year (Y3,Y2,Yl,YO)
2 BCD digits of month (M01,M02)
2 BCD digits of day (Dl,DO)
2 BCD digits of hour (Hl, HO)
2 BCD digits of minutes (Mil,MIO)
2 BCD digits of seconds (Sl,SO)

Page 8-28
22 December 1985

INTERNAL PROCESSOR REGISTERS
Who-Am-I (WHAMI)

Who-Am-I (WHAMI)

Access:

Read

Operation:

R4 <- WHAMI

Value at System Initialization:

Format:

3
l

Processor number

Company Confidential Page 8-29
22 December 1985

0

+---+
Processor Number :R4

+---+
Figure 8-25: Who-Am-I Register (WHAMI)

Description:

The Who-Am-I register provides the capability to read the current
processor number by executing an MFPR instruction specifying WHAMI.

The current processor number is useful in a multiprocessing system to
index arrays that store per processor information. Such information
is operating system dependent.

INTERNAL PROCESSOR REGISTERS
REVISION HISTORY

Revision History:

Company Confidential

Revision 1.0, 22 December 1985

Page 8-30
22 December 1985

l. Removed the following Internal Process Registers:

1. ISP - Interrupt Stack Pointer

2. KSP - Kernel Stack Pointer

3. PBR - Process Page Table Base Register

4. SBR - System Page Table Base Register

5. IPL - Interrupt Priority Level

6. ASTLVL - AST Level

7. ASNSIZ - Address Space Number Size

B. PME - Performance Monitor Enable

9. PAGSIZ - Page Size

10. BOOTFLAGS - Bootstrap Flags

2. Added the following Internal Processor Registers:

1. CRCS - Console Receive Control Status

2. CRDB - Console Receive Data buffer

3. CTCS - Console Transmit Control Status

4. CTDB - Console Transmit Data Buffer

5. PTBR - Page Table Base Register

6. PCBB - Privileged Context Block Base

7. ASTRR - AST Request Register

8. ASTSR - AST Summary Register

9. ASTEN - AST Enable Register

3. Changed the following Internal Processor Register names:

1. ICCS changed to ICIE

INTERNAL PROCESSOR REGISTERS
REVISION HISTORY

Company Confidential Page 8-31
22 December 1985

2. CPUSN changed to PRSN

3. CPUBR changed to PRBR

4. Changed parameter registers to R4, RS, R6.

5. Changes to reflect new 32 bit register sizes.

6. PTBR changed from address to page frame number.

7. Added system type to SID.

8. Eliminated zero default in ASN parameters.

9. Corrected accuracy of timer and clock.

10. Removed duplicate material and added pointers to
chapters.

Revision 0.0, July 5, 1985

1. First review distribution.

other

Company Confidential

CHAPTER 9

SYSTEM ARCHITECTURE AND PROGRAMMING IMPLICATIONS

9.1 INTRODUCTION

Portions of the PRISM architecture have implications for programming
and the system structure of implementations. Architectural
implications considered in the following sections are:

o Data sharing and synchronization

o Separation of procedures and data

o Translation Buffer

o Caches

o Stacks

To meet the requirements of the PRISM architecture, software and
hardware implementors have to take these issues into consideration.

9.2 DATA SHARING AND SYNCHRONIZATION

The memory system must be implemented such that the granularity of
access for independent modification is a quadword or less. Note that
this does not imply a maximum reference size of one quadword, but only
that independent accesses to adjacent quadwords produce the same
results regardless of the order of execution. Systems may choose to
do masked writes (less than quadword) in the cache by reading the
needed quadword from memory, merging it in the cache, and then writing
the quadword back to memory, thereby only supporting quadword writes
to the main memory system.

NOTE

\A system may also build a VAX-style memory system
with masked writes to the main memory. The quadword
granularity of sharing is being included to allow

Architecture And Prog Implications
DATA SHARING AND SYNCHRONIZATION

Company Confidential Page 9-2
22 December 1985

simpler and cheaper systems to be built. But since
some PRISM systems will use a common memory system
with a given VAX implementation we are not going to
disallow reusing the existing memory subsystems.\

For example, suppose locations O and 8 contain the values 5 and 6.
Suppose one processor does a BYTE STORE of a 6 in memory at location
O. Also, suppose a second processor does a BYTE STORE of a 7 in
memory at location 8. Then, regardless of the order of execution,
including effectively simultaneous execution, the final contents must

. be 6 and 7 •.

As a second example, suppose locations 0 and l contain the values 5
and 6. Suppose one processor does a BYTE STORE of a 6 in memory at
location O. Also, suppose a second processor does a BYTE STORE of a 7
in memory at location 1. After both processors finish execution of
the sequences the results are UNPREDICTABLE. Locations 0 and 1 may
contain 6 and 7, or 6 and 6, or 5 and 7.

Access to explicitly shared data that may be written must be
synchronized by the programmer. Before accessing shared writable
data, the programmer must acquire control of the data structure. The
interlock instructions (RMAQI, and RMAQIP) are provided to allow the
programmer to·control •interlocked• access to a control variable.
These interlocked instructions are implemented in such a way that once
an interlock is granted, other processors and I/0 devices are locked
out of performing interlocked operations on the same control variable

· until the interlock is released. This is termed an interlocked
sequence. Only interlocked accesses are locked out by the interlock.
An interlocked access must ensure that all previous writes from the
issuing processor are visible to all users of the memory system before
the interlocked sequence starts, e.g., a write-buffer must be flushed
before the read of any interlocked variable).

NOTE

\In the VAX architecture, many instructions provide
noninterruptable read-modify-write sequences to memory
variables. In the VAX, most of the data sharing is
more an issue for hardware implementors and a few
system programmers. Most programmers never regard
data sharing as an issue. In the PRISM architecture,
programmers will have to pay more attention to
synchronizing access to shared data. One of the major
areas this may show up in is AST routines. In the
VAX, a programmer can use an ADDL2 to update a
variable shared between a •MAIN• routine and an AST
routine if running on a single processor. In the
PRISM architecture, a programmer will have to deal
with AST routines as if they could be run on different
processors. \

Architecture And Prog Implications
SEPARATION OF PROCEDURE AND DATA

Company Confidential Page 9-3
22 December 1985

9.3 SEPARATION OF PROCEDURE AND DATA

The PRISM architecture encourages separation of procedure
(instructions), read-only data, and writable data. PRISM procedures
may NOT write data that is to be subsequently executed as an
instruction without an intervening IFLUSH instruction. If no IFLUSH
occurs between a procedure writing data and a subsequent attempt to
execute that data as instructions, the results are UNPREDICTABLE.

9.4 TRANSLATION BUFFER, VIRTUAL I AND D CACHES

A system may choose to include a Translation Buffer (TB), a Virtual
Instruction Cache (Virtual I Cache), or a Virtual Data Cache (Virtual
D Cache). The contents of these caches and/or translation buffers may
become invalid, depending upon what operating system activity is being
performed. The following table shows what needs to be invalidated for
given operating system functions.

Table 9-1: TB/Cache Invalidation

OS Function

Remove from Working Set

~ Delete virtual address

Change
PTE<I PROT>,
PTE<FOE>

Change
PTE<D PROT>,
PTE<FOR>, PTE<FOW>

Change I-Stream
(e.g., processor writes)

I/0 writes new I-Stream

Assumptions on the above table:

TB

Invalidate

Invalidate

Invalidate

Invalidate

Virtual
I Cache

Invalidate

Invalidate

Invalidate

Invalidate

o The D Cache watches I/0 and processor writes.

Virtual
D Cache

Invalidate

Invalidate

Invalidate

o The I Cache does not watch I/O or processor writes.

Note the Translation Buffer Invalidate instructions (TBFLUSH, MTPR
TBIASN, MTPR TBIS) only operate on a Translation Buffer and Virtual D

Architecture And Prog Implications Company Confidential Page 9-4
TRANSLATION BUFFER, VIRTUAL I AND D CACHES 22 December 1985

Cache, while the IFLUSH instructions only operate on the Virtual I
Cache.

9.5 CACHES AND WRITE-BUFFERS

A hardware implementation may include mechanisms to reduce memory
access time by making local copies of recently used or expected to be
used memory contents or by buffering writes to complete at a later
time. Caches and write-buffers are examples of· these mechanisms. A
cache must be implemented in such a way that its existence is
transparent to software (except for timing and error
~eporting/control/recovery and modification to the I-stream).

The following requirements must be met by all cache/write-buffer
implementations. All processors and I/O peripherals must provide a
coherent view of memory. This is relaxed only in that the granularity
of sharing is a quadword and by allowing buffering of writes between
interlocked operatio~s or writes to the I/0 space.

1. Caches/write-buffers that buffer write data must be able to
detect a later write from an 1/0 device and invalidate their
write.

2. A processor must guarantee that all of its previous writes
are visible to all other processors and/or I/0 devices before
the write of an interlocked read-modify-write becomes visible
to other processors or I/O devices.

3. A processor must guarantee that all of its previous writes
are visible to all other processors and I/O devices before a
read or write to 1/0 space.

4. A processor must guarantee that a data store to a location
followed by a data load from the same location must read the
updated value.

5. A processor must guarantee that all of its previous writes
are visible to all other processors and I/0 devices before a
HALT instruction completes. A processor must guarantee that
its caches are coherent with the rest of the system before
continuing from a HALT.

6. A processor must guarantee that across a powerfail/recovery
sequence that the memory system remains coherent. Data can
not be lost that was written by the processor before the
powerf ail and the cache must be in a valid state before
normal instruction processing is continued after power is
restored.

. :.,

Architecture And Prog Implications
CACHES AND WRITE-BUFFERS

Company Confidential Page 9-5
22 December 1985

NOTE

The SWPCTX instruction does not flush pending writes.
Therefore, the operating system must perform an
interlocked operation after saving the process state
to ensure that all of a process's state is visible to
all other processors in a multiprocessor system before
the process can be continued on a different processor.

There are many different ways to implement caches. Three different
ways currently being used at DIGITAL are write-through, write-back,
and write-buffers with a write-through cache. Each method has
different problems meeting the PRISM requirements for a cache. The
notes following each requirement explain what that requirement means
to different implementations.

1. Processor writes to memory followed by a peripheral output
transfer must output the updated data •

o Write-through - In a system with a write-through cache
the memory is written as soon as any write is done so the
cache need not be able to present its data in place of

: the memory system.

o Write-back - In a system with a write-back cache the
cache must watch the memory bus and have a mechanism for
presenting the correct data when an I/O device accesses a
location that it has cached.

o Write-buffer - In a system with a write-buffer the
write-buffer must either watch the memory bus and have a
mechanism for presenting the correct data when an I/O
device accesses a location that it has buffered or it
must purge its contents on all access to I/0 space and
all interlocked sequences.

2. Completing a peripheral input transfer followed by the
program reading of the memory must read the input value.

o Write-through - In a system with a write-through cache
the cache must watch the memory bus and have a mechanism
for either updating or invalidating locations that are
written by an I/O device or another processor.

o Write-back - In a
cache must watch
either updating
written by an I/0

system with a write-back cache
the memory bus and have a mechanism
or invalidating locations that
device or another processor.

the
for
are

o Write-buffer - In a system with a write-buffer the
write-buffer must either watch the memory bus and have a

;; ..

Architecture And Prog Implications
CACHES AND WRITE-BUFFERS

Company Confidential Page 9-6
22 December 1985

3.

mechanism invalidating pending writes when an I/O device
writes a location that it has buffered or it must purge
its contents on all accesses to I/0 space and all
interlocked sequences.

A write followed by a HALT on the same processor, followed by
a read on another processor, must read the updated value.

o Write-through In a multiprocessor system with a
write-through cache the memory is written as soon as any

,write is done so there are no additional requirements.

o Write-back - In a multiprocessor system with a write-back
cache, the cache must either continue to watch the memory
bus for reads and present the correct data when the other
processor accesses a location that it has cached or the
cache must propagate all dirty locations to memory before
completing execution of a HALT.

o Write-buffer In a multiprocessor system with
write-buffer all buffered writes must be written to
memory before completing execution of a HALT.

4. A HALT on one processor, followed by a write on a second
processor, followed by a continue on the first processor,
followed by a read on the first processor, must read the
updated value.

o Write-through In a multiprocessor system with a
write-through cache, the cache must either continue to
watch the memory bus for writes to locations it has
cached, or the cache must invalidate all entries before
continuing execution from the HALT.

o Write-back - In a multiprocessor system with a write-back
cache, the cache must either continue to watch the memory

~:bus for writes to locations it has cached, or the cache
must invalidate all entries before continuing execution
from the HALT.

o Write-buffer In a multiprocessor system with
write-buffer all buffered writes must be written to
memory before completing execution of a HALT.

Architecture And Prog Implications
CACHES AND WRITE-BUFFERS

Company Confidential Page 9-7
22 December 1985

5. A write followed by a power failure, followed by restoration
of power, followed by a read, must read the updated value
provided that the duration of the power failure does not
exceed the maximum non-volatile period of the main memory.

o Write-through - In a system with a write-through cache
the cache power supply must be backed up or the cache
must be invalidated on restoration of power.

o Write-back - In a system with a write-back cache either
the cache power supply must be backed up or the cache

·must be written back to main memory on powerfail and the
cache invalidated on restoration of power.

o Write-buffer - In a system with a write-buffer either the
write-buffer power supply must be backed up or the
write-buffer must be written back to main memory on
powerfail and the write-buffer initialized to empty on
restoration of power.

NOTE

An implementation may choose not to provide
powerfail recovery.

6. In multiprocessor systems access to variables shared between
processors must be interlocked by software executing one of
the interlocked instructions. A cache or write-buffer must
ensure ~hat all previous writes from the issuing processor
are visible to all users of the memory system before the
interlocked sequence completes.

o Write-through - In a system with a write-through cache
the memory is written as soon as any write is done so

., there are no additional requirements.

o·,.write-back - In a system with a write-back cache it must
either remain coherent with all the other caches or
become coherent as part of the interlocked operation.

o Write-buffer - In a system with a write-buffer the
write-buffer must purge all its pending writes before the
interlocked operation completes.

NOTE

\In a multiprocessor system with caches, the
interlocked instructions must cause the data
being accessed to be coherent across all
processors sharing it. This implies some
form of global locking at some granularity.

Architecture And Prog Implications
CACHES AND WRITE-BUFFERS

Company Confidential Page 9-8
22 December 1985

The simplest could be a single global lock
that is required to perform any interlocked
operation. For performance reasons an
implementor may choose to have more locks
that interlock access to a subset of all
memory. \

7. Access to I/0 space must not be cached or buffered.
Interlocked access to I/0 space addresses gives UNPREDICTABLE
results.

8. A cache may prefetch instructions or data. A memory
management exception condition cannot be taken until the
prefetched data is referenced.

NOTE

\If the granularity of access to memorf is
larger than the request and there 1s a
hardware error (e.g., uncorrected read error,
bus parity error, etc.) in part of the
requested data (but not the part being
accessed), it is valid to report the error as
including the valid part. \

9. Processor initialization must leave
write-buffer either empty or valid.

the cache

9.6 STACKS

and/or

To provide support
instructions on
reserves the right
the stack, given
bytes in the range
data in this area.

for exception handling, and emulation of missing
subset implementations, the PRISM architecture

to modify the next 256 quadwords (2048 bytes) of
normal access checks allow access. These are the

from -l(SP) •• -2047(SP). Programs should not store

Architecture And Prog Implications
REVISION HISTORY

Revision History:

Revision 1.0, 22 December 1985

Company Confidential Page 9-9
22 December 1985

l. General rewrite to reflect change from byte granularity of
access for independent modification to quadword or less
granularity of access for independent modification.

2. Expanded Translation Buffer invalidation rules.

3. Expanded cache rules to cover write-buffers.

4. Corrected range of access allowed beyond end of stack.

Revision 0.0, July 5, 1985

l. First Review Distribution

Company Confidential

CHAPTER 10

EXTENDED PROCESSOR INSTRUCTION CODE

10.1 INTRODUCTION

In a family of machines both users and operating system implementors
require functions to be implemented consistently. When functions are
implemented to a common interface, the code that uses those functions
can be used on several different implementations without modification.

These functions range from the binary encoding of the instruction and
data, to the exception mechanisms and synchronization primitives.
Some of these functions can be cost effectively implemented in
hardware, but several are impractical to implement directly in
hardware. These functions include low-level hardware support
functions such as Translation Buffer miss fill routines, interrupt
acknowledge, and vector dispatch. It also includes support for
privileged and atomic operations that require long instruction
sequences such as Return from Exception or Interrupt (REI).

!n the VAX, these functions are generally provided by microcode. This
is not seen as a problem because the VAX architecture leads to a
microcoded implementation.

In PRISM, a goal is that microcode will not be necessary for practical
implementation. But it is still desirable to provide an architected
interface to these functions that will be consistent across the entire
family of machines. The Extended Processor Instruction code (Epicode)
provides a mechanism to implement these functions without resorting to
a microcoded machine. Hardware development groups provide and
maintain the Epicode for a given implementation.

NOTE

\The hardware development groups provide and maintain
the Epicode for a given implementation. The Epicode
may be in ROM or loaded into RAM from some sort of a
console load device. Many of the same trade-offs
exist for Epicode that exist for VAX microcode around
patching, loading, and booting.\

l •.,

Extended Processor Instruction Code Company Confidential Page 10-2
EPICODE ENVIRONMENT 22 December 1985

10.2 EPICODE ENVIRONMENT

Epicode runs in an environment with privileges enabled, and I-stream
mapping and interrupts disabled. The enabling of privileges allows
all functions of the machine to be controlled. Disabling of I-stream
mapping allows Epicode to be used to support the memory management
functions (e.g., Translation Buffer miss routines cannot be run via
mapped memory). Epicode also needs to make both virtual and physical
D-stream references. The disabling of interrupts allows the system to
provide multi-instruction sequences as atomic operations {i.e.,
RMAQI/RMAQIP).

The PRISM architecture allows these functions to be implemented in
standard machine code resident in main memory. Epicode is written in
standard machine code with some implementation specific extensions to
provide access to the •real hardware.• Epicode can be used to
implement the following functions:

o Instructions that require complex sequencing as an atomic
operation (i.e., REI)

o Instructions that require interlocked memory access (i.e.,
RMAQI) . .

o Privileged instructions (i.e., MxPR, RMAQIP)
_'{

o Memory management control functions (i.e., TB miss routines,
ACV/TNV dispatch routines)

o Interrupt and exception dispatch routines

o Power up initialization and booting

o Console functions

o Emulation of instructions with no hardware support (i.e., an
implementation may chose to do MULL via a multiply step
fuQction in the integer ALU)

o Support for unaligned memory operands

A PRISM implementation can make various design trade-offs based on the
hardware technology being used to implement the machine. The Epicode
will then be used to hide these differences from the system software.

For example, in a MOS VLSI implementation, a small (16 entry) fully
associative TB may be the right match to the media given that chip
area is a costly resource. In an ECL version, a large (1024 entry)
direct-mapped TB may be used because it will use RAM chips and does
not have fast associative memories available. This difference would
be handled by implementation-specific versions of the epicode on the
two systems, both providing transparent TB miss service routines. The
operating system code would not need to know there were any

Extended Processor Instruction Code Company Confidential Page 10-3
EPICODE ENVIRONMENT 22 December 1985

differences.

10.3 EPICODE EFFECTS ON SYSTEM CODE

Epicode will have one major effect on system code. Because Epicode
may be resident in main memory and maintain privileged data structures
in main memory, the operating system code that allocates physical
memory cannot use all of physical memory. The amount of memory
Epicode will require will be small, so the loss to the system is
negligible.

10.4 SPECIAL FUNCTIONS REQUIRED FOR EPICODE

Epicode uses the PRISM instruction set for most of its operations.
There are a small number of additional functions needed to implement
the Epicode. There are five opcodes reserved to implement Epicode
functions (i.e., EPIRESO, EPIRESl, EPIRES2, EPIRES3 and EPIRES4).
These instructions produce a Reserved Opcode fault if executed while
not in the Epicode environment.

o Epicode needs a hardware mechanism to transition the machine
from the Epicode environment to the non-Epicode environment.
This instruction loads the PC, enables interrupts, enables
mapping, and disables Epicode privileges in a single
instruction.

o Epicode needs a set of instructions to access the hardware
control registers (i.e., a hardware MxPR).

o Epicode needs a mechanism to save the current state of the
machine and dispatch into Epicode.

A PRISM implementation may also choose to provide additional functions
to simplify or improve performance of some Epicode functions. The
following are some examples:

o A PRISM implementation may include a READ/WRITE virtual
function that allows Epicode to perform mapped memory
accesses using the mapping hardware rather than providing the
virtual-to-physical translation in Epicode routines. Epicode
may provide a special function to do PHYSICAL READs/WRITEs
and have the PRISM LOADs/STOREs continue to operate on
virtual address in the Epicode environment.

o A PRISM implementation may include hardware assists for
various functions, for example, saving the virtual address of
a reference on a memory management error rather than having
to generate it by simulating the effective address

Extended Processor Instruction Code Company Confidential Page 10-4
SPECIAL FUNCTIONS REQUIRED FOR EPICODE 22 December 1985

calculation in Epicode.

o A PRISM implementation may include private registers so it
cari function without having to save and restore the native
general registers.

Extended Processor Instruction Code Company Confidential Page 10-5
REVISION HISTORY 22 December 1985

Revision History:

Revision 1.0, 22 December 1985

1. General edits to make it clear that Epicode can be done in any
way that works well for a given implementation.

Revision 0.0, July 5, 1985

l. First Review Distribution

Company Confidential

CHAPTER 11

SYSTEM BOOTSTRAPPING AND CONSOLE

This chapter describes system bootstrapping and required console
functionality.

NOTE

/This chapter is not yet complete and will evolve as
the hardware and software design progresses./

11.1 BOOTSTRAPPING

This section describes PRISM bootstrapping. Topics covered include
responsibilities of the console, the initial state seen by system
software, and powerfail recovery. Bootstrapping is discussed in both
a multiprocessor and uniprocessor environment.

Many of the actions described below are the responsibility of the
console. This does not imply that a separate console processor is
required. Rather, it is expected that console functionality will be
implemented in Epicode running in the PRISM processor. Thus, anywhere
the console is referred to in this chapter, it is meant that the
function must be provided, not that a console processor exists.

11.1.1 Bootstrapping In A Uniprocessor Environment

In this section a cold start in a uniprocessor environment is
discussed. Powerfail recovery and multiprocessor bootstrapping are
described in Sections 11.1.3 and 11.l.4.

The following steps occur in the bootstrap sequence.
discussed in more detail in subsequent sections:

Each is

Bootstrapping and Console
BOOTSTRAPPING

Company Confidential

l. Test memory for bootstrapping

2. Build the Restart Parameter Block (RPB)

3. Load Epicode

4. Initialize the page table

5. Load system software

6. Initialize processor IPRs

7. Transfer control to system software

Page ll-2
22 December 1985

Note that these steps may be performed in different orders on
different implementations of the PRISM architecture. The final state
seen by system software is defined, but the implementation-dependent
procedure is not.

11.1.1.1 Memory Testing

In general, Jllemory sizing and testing is the responsibility of .system
software. . "'rhe exception to this is the memory needed to set up· the
initial environment for system software as described below. This
includes the memory for Epicode, the RPB, page tables, and system
software. It is the responsibility of the console to find the lowest
addressable good memory for these purposes.

11.1.1.2 Restart Parameter Block

The Restart Parameter Block is the primary mechanism for passing data
between the console and system software. It is also critical in
powerfail re.~overy. The console is responsible for setting up a page
aligned RPB in the first good memory that can be found. UNDEFINED
operation will result if the RPB memory is reused by system software
for any other purpose.

An area is reserved in the RPB for each processor. The per-processor
areas immediately follow the main portion of the RPB in the same page
and any necessary contiguous pages. Each per-processor area must be
quadword aligned. A field in the RPB specifies the number of
processor slots.

A state longword for each processor is included in the per-processor
area. It contains several flags used to either control bootstrapping
or record progress. This longword can only be modified with
interlocked instructions to guarantee proper synchronization in
multiprocessor systems.

Bootstrapping and Console
BOOTSTRAPPING

Company Confidential Page 11-3
22 December 1985

The RPB, including all per-processor areas, is initialized at this
time. Other than the fields listed below, the initialization value is
zero:

0 Physical address of RPB

0 Version number

0 Number of processor slots

0 Physical address of per-processor area

0 Physical address of checksum area

0 Checksum

0 Page size

0 ASN size

0 Number of physical address bits

A checksum area must be created for use during powerfail. This area
exists only to help guarantee that a valid_RPB can be located. This
area can be anywhere that is accessible to all processors, including
at the end of the RPB. It can contain any data that does not change.
(Zero data is not recommended because it increases the probability of
locating a spurious RPB.)

Note that the RPB does not contain a save area for vector registers.
Instead, there is only a pointer to this area. It is the
responsibility of system software to allocate a page aligned 8-Kbyte
vector register save area for each processor.

The length of the RPB can be calculated by software based on the
version number and the number of slots.

·.;.:

Bootstrapping and Console
BOOTSTRAPPING

Company Confidential Page ll-4
22 December 1985

3
l 0

+-------------------------------------~-------------------------+
+ Physical Address of RPB + :RPB

I I +4
+---+ I RPB Version Number +8
+---+ Number of Processor Slots +12
+---+ +16
+.
I

Physical Address of Per-Processor Area of RPB +
I +20

+---+ +24
+
I

Physical Address of Checksum Area +
I +28

+---+ Checksum +32
+---+ Page Size +36
+-------------------~---+ ASN Size +40
+---+ Number of Physical Address Bits I +44
+-----------~---+ Bootstrap Master ID +48
+---+ Length of Available Epicode Memory +52
+---+ +56
+
I

Physical Address of Available Epicode Memory +
I +60

+---+ Bootstrap Options
+---+ LBN Bootstrap Data
+---+
+
I

System Device +
I

+---+
+
I

System Software Filename +
I

+---+ Network Bootstrap
+---+

Figure 11-1: Restart Parameter Block

.. •.

~-

Bootstrapping and Console
BOOTSTRAPPING '

Company Confidential Page 11-5
22 December 1985

3
l 0

+---+
I State Longword I :SLOT
+---+ I Epicode Length I +4
+---+
I I +8 + Epicode Physical Address +
I I +12
+---+
I I +16
+ Restart SCBB +
I I +20
+---+
I I +24 + Restart PCBB +
I I +28
+---+ Restart IPIE +32
+---+ I .. Restart SISR +36
+---+ I Restart ICIE I +40
+---+ Restart PRBR I +44
+---+ Restart R2 I +48

: I
Restart R63 I +292

+---+ I Restart PC I +296
+---+ I Restart PS I +300
+---+ Restart VC I +304
+---+ I Restart VL I +308
+---+ I Restart VML +312
+---+ Restart VMH
+---+ I
+ Physical Address of Vector Register Save Area +

+316

+320

I I +324
+---+ HWPCB For Use During Bootstrap and Powerfail +328

+---+
Figure 11-2: Per-Processor Portion of RPB

1-
~

t

.. :.n

.i
t-:

·?,.

Bootstrapping and Console
BOOTSTRAPPING

Company Confidential Page 11-6
22 December 1985

3
1 9 8 7 6 5 4 3 2 1 0

+--+-+-+-+-+-+-+-+-+-+
I ICISIPIEISIPIPIRIBI
I Zero ITIRIEILITISISIIIII
I ISi I I ICICISIPIPI
+--+-+-+-+-+-+-+-+-+-+

Figure 11-3: State Longword

Fields in the state longword are interpreted as shown below:

Bits Description

0

l

'2

3

4

5

6

7

Bootstrap in Progress (BIP)
bootstrapping. This bit is
system software.

The system is currently
set by Epicode and cleared by

Restart in Progress (RIP) - The system is currently restarting
after powerfail. · This bit is set by Epicode and cleared by
system software.

·powerf ail Sequence Started (PSS) Epicode has entered
powerfail processing. This bit is set and cleared by Epicode.

Powerfail Sequence Completed (PSC) - Epicode has completed
powerfail processing. This bit is set and cleared by Epicode.

Self Test Complete (STC) - Any self test functions have been
completed during bootstrapping or powerfail restart. This bit
is set by Epicode.

Epicode Loaded (EL) - Epicode loading is complete.
is set by Epicode.

This bit

Processor Enabled (PE)
system is enabled.
software.

- A processor in a multiprocessor
This bit is set and cleared by system

Slave Request (SR) - A slave processor is ready to
in a multiprocessor system. This bit is set
processor Epicode and cleared by system software.

bootstrap
by slave

8 Control Transferred to System Software (CTS) Epicode has
transferred control to system software during bootstrapping.
This bit is set by Epicode.

. ~ ' -

~I-

~

Bootstrapping and Console
BOOTSTRAPPING

11.l.l.3 Epicode Loading

Company Confidential Page 11-7
22 December 1985

If Epicode does not reside in a ROM, it is loaded into the next
available good memory and its address and length are recorded in the
per-processor slot of the RPB. The Epicode is always page aligned.
The Epicode source and its loading mechanism is
implementation-specific. The source may be a special console device,
a system device, or any other implementation-specific source.
Possible loading mechanisms include a diagnostic processor or ROM.
The physical address and length of the Epicode is recorded in the RPB.

If control must be transferred to Epicode in memory or ROM at this
point, it is done in an implementation-specific manner.

Certain assumptions are made about the state of the system when
Epicode is to be loaded or is to gain control if it is in ROM. First,
it must be possible to access a bootstrap device. This may be ROM,
mass storage, or a communication line. This is necessary to load
either Epicode, controller microcode, or system software. Note that
this does not have to be the device which contains the system
software. Another device, perhaps one dedicated to console functions,
may contain the necessary Epicode and controller microcode. Second,
the I/O processors and controllers need not contain microcode to
support their full functionality. They need only be capable of the
primitive operations necessary to read the full microcode from disk.

C• 11.l.l.4 Initial Page Tables

All system software runs in a virtual memory environment.
the responsibility of the console to set up initial
These are located in the next available good ~emory.
tables map four regions of virtual memory:

l. The page tables themselves

2. The Restart Parameter Block (RPB)

3. The I/0 registers for the port controller

Thus, it is
page tables.

These page

4. 256 Kbytes of good memory for use by system software

The virtual memory is at the high end of the 32-bit virtual address
space and is laid out as shown below:

. ·~.

Bootstrapping and Console
BOOTSTRAPPJNG

Company Confidential

+---------------------------------+

Page 11-8
22 December 1985

I FFFSOOOO
256 KB I 256 KB of good memory I FFFBFFFF

+---------------------------------+ I I FFFCOOOO
64 KB I I/O port controller registers I FFFCFFFF

+---------------------------------+ I FFFDOOOO
64 KB I RPB FFFDFFFF

+---------------------------------+ I FFFEOOOO
64 KB level 2 page table I FFFEFFFF

+---------------------------------+ I FFFFOOOO
64 KB level 1 page table I FFFFFFFF

+---------------------------------+
Figure 11-4: ·Initial Virtual Memory Layout

All pages have Kernel read/write/execute protection •

.. 11.1.1.s Bootstrap Flags

The console sets the Bootstrap-in-Progress (BIP) flag in the RPB state
longword whenever a cold (not powerfail recovery) bootstrap is done.
System software is responsible for clearing the flag at the
appropriate time. This should be done after system software is
capable of handling powerfail recovery.

\The Bootstrap-in-Progress (BIP) and
exist only in the RPB. They do not
a VAX. The RPB is sufficient since
console and the system software.\

11.1.1.6 Loading Of System Software

Restart-in-Progress (RIP) flags
exist in an IPR as is the case in
it is accessible to both the

The console is responsible for loading system software into the 256
Kbytes of good memory. This software is expected to be a bootstrap
which is responsible for loading other system software. However, it
may be diagnostics or other special purpose software, see Section 11.3
below.

11.l.l.7 IPR Initialization

Before control is transferred to system software, certain IPRs must be
initialized as shown in the following table:

Bootstrapping and Console
BOOTSTRAPPING

Company Confidential

Table 11-1: IPR Initialization

Page 11-9
22 December 1985

--
Mnemonic Register Name Initialized State
--
ASN
AST EN
AST SR
CRSR
CTSR
ICIE
IPIE
PCBB
PTBR
SISR

Address Space Number
AST Enable
AST Summary
Console Receive Status
Console Transmit Status
Interval Clock Int Enable
Interprocessor Int Enable
Privileged Context Block
Page Table Base Register
Software Interrupt Summary

zero
disabled
zero
disabled
disabled
disabled
disabled
RPB HWPCB
bootstrap page table PFN
zero

The contents of all other IPRs are UNPREDICTABLE.

ll.l.l.B Transfer Of Control To System Software

At this point there is a conceptual change from console control to
normal Epicode since the PRISM system is now running in its normal
mode rather than bootstrapping. There may or may not be an actual
change of control. Depending on implementation details of a PRISM
processor, normal Epicode may have gained control at any point before
this.

When the console has completed the actions described above, control is
transferred to system software in Kernel mode at IPL 7 with virtual
memory management enabled. The Hardware Privileged Context Block
(HWPCB) in the RPB is already initialized and is active. System
software is loaded into the lowest portion of the 256-Kbyte region
reserved for this purpose and control is transferred to its first
byte. All locations have Kernel read/write/execute access.

All scalar and vector register contents, including the stack pointer,
are undefined.

All bootstrap information is passed from the console to system
software in the RPB. This includes:

o System device name

o System software file name

o Bootstrap options

o Logical Block Number (LBN) bootstrap data if appropriate

J
;

. .

'
i

Bootstrapping and Console
BOOTSTRAPPING

Company Confidential

o Network bootstrap data if appropriate

Page 11-10
22 December 1985

The rest of the bootstrap process is the responsibility of system
software.

11.1.2 Powerfail

When powerfail is detected, control is transferred to Epicode in an
implementation-specific manner. If the Restart-in-Progress (RIP) or

'Bootstrap-in-Progress (BIP) flag is set in the RPB per-processor state
longword, no powerfail processing is possible and Epicode takes no
action. Otherwise, Epicode sets the Powerfail Sequence Started (PSS)
flag in the per-processor state longword in the RPB and then saves all
volatile processor state in a combination of the per-processor portion
of the RPB and Epicode private storage. Vector registers are saved
only if system software has allocated a save area and recorded its
address in the RPB and if the Vector Enable bit is set in the
Processor Status (PS<VEN>). System software does not have the
opportunity to take any action until powerfail recovery. After
Epicode completes all powerfail processing, the Powerfail Sequence
Complete (PSC) flag in the per-processor state longword in the RPB is
•et.

ll.1.3 Powerfail Recovery

Powerfail recovery occurs if memory is preserved by battery backup
during an interruption of power to the processor and the halt action
is restart. After determining that memory was backed up and the halt
action is restart, the console locates the RPB and examines the
per-processor RPB state longword flags to determine that powerf ail was
completed (PSC set) and that restart or bootstrapping was not in
progress (BIP and RIP clear). If these conditions are not met, the
processor either halts or starts a cold bootstrap.

The RPB is found by a search of memory looking for the distinctive
signature of the RPB as described below. If the search fails, the
processor either halts or starts a cold bootstrap.

1. Search for a page of memory that contains its physical
address in the first two longwords. If none is found, the
search for an RPB has failed.

2. Get the physical address of the checksum area from the
potential RPB. If it is not a valid physical address, return
to Step l.

3. Calculate the 32-bit twos complement sum (ignoring overflows)
of the 31 longwords in the checksum area. If the sum does

Bootstrapping and Console
BOOTSTRAPPING

Company Confidential Page ll-11
22 December 1985

not match the checksum in the potential RPB, return to
l.

Step

4. A valid RPB has been found.

If all tests pass, the console transfers control to the Epicode
restart routine in an implementation-specific manner. Epicode
properly restores internal processor registers and the contents of the
HWPCB. After setting the Restart-in-Progress (RIP) flag and clearing
the Powerfail Sequence Started (PSS) and Completed (PSC) flags in the
per-processor- state longword, Epicode initiates a Powerfail Recovery
interrupt to transfer control to system software. When the Powerfail
Recovery interrupt is initiated, PC and PS (saved in the RPB) are
pushed onto the Kernel stack. System software is responsible for
restoring all other scalar and vector registers. Note that no Epicode
or system software is loaded during a restart.

•~- 11.1.4 Multiprocessor Bootstrapping
~

t Multiprocessor bootstrapping differs from uniprocessor bootstrapping
primarily in areas relating to synchronization between processors.
Obviously, in a shared memory system, processors cannot independently
load and start system software.

~ 11.1.4.1 Initial Synchronization

In a multiprocessor system, the console must be capable
primitive operations before Epicode is loaded into memory.
necessary to synchronize with other processors in the
described below.

of some
These are

system as

Before continuing the bootstrap process a master processor must be
chosen to control bootstrapping. This can be done in any fashion that
guarantees choosing exactly one master.

To provide one example of choosing a master; the presence of a
register which can be accessed with interlocked instructions is
assumed. Note that this is only an example: any workable mechanism,
including a predefined master, can be used. An interlocked sequence
must be done to see if the interlocked register is clear. If the
register is clear, it is loaded with a flag (l) to indicate that a
processor is in control of bootstrapping. If the register is already
set, there must be a mechanism to loop waiting for an interprocessor
interrupt. This can be Epicode in ROM or any other
implementation-specific mechanism.

::...

.. ,,

Bootstrapping and Console
BOOTSTRAPPING

Company Confidential

11.1.4.2 Actions Of Bootstrap Master

Page ll-12
22 December 1985

The first processor to gain control is referred to as the bootstrap
master. (In the example, this was the first processor to gain the
interlock.) It is the responsibility of this processor to control
bootstrapping and allow all other processors to proceed only at the
appropriate time. The bootstrap master allocates an RPB and writes
its ID into the RPB. It then proceeds with the normal uniprocessor
bootstrap. When bootstrapping is complete, system software sets
Processor Enabled (PE) flags in the RPB per-processor state longwords
to indicate which other processors are enabled. At this time, it
requests interprocessor interrupts to these processors.

11.1.4.3 Actions Of Bootstrap Slaves

Bootstrapping processors other than the bootstrap master are ref erred
to as bootstrap slaves. After failing to become master, a slave
remains in console mode and polls for interprocessor interrupts. When
an interprocessor interrupt is received, the bootstrap slave must
locate the RPB and then check its state longword to ensure that it is
enabled. If Epicode memory is required, the slave loads the Epicode
length field in the RPB slot. Regardless of the need for memory, the
slave then sets the Slave Request (SR) bit in its state word and
initiates an..,..interrupt to the bootstrap master.. The slave now waits r· 'for an interrupt to indicate that memory has been allocated and the

!' address returned in the RPB. Epicode is . then loaded by the slave
'\;· (possibly different Epicode than that loaded by the master). If no
} memory was required, the slave simply continues with the bootstrap

process at this point. The master clears the Slave Request bit before
initiating the second interrupt to the slave.

All processors should be prepared to load Epicode on any 8-Kbyte
boundary. This is to allow packing of Epicode in large pages in the
future. An RPB cell is used to keep track of available memory.

Note that system software in the bootstrap master is responsible for
allocating the .Epicode memory for the slaves. The master should wait
a •reasonable• period of time for a memory request from each slave.
Slaves that do not respond are disabled. Explicit operator action is
then required to enable additional slaves at a later time. (This is
described in the next section.)

Once Epicode is loaded and control transferred to Epicode, the proper
environment must be established for system software. This is done by
loading the powerfail restart IPRs and registers from the
per-processor portion of the RPB and then transferring control to the
address specified in the PC field of the RPB. System software in the
master is responsible for initializing the RPB fields containing the
IPRs and registers.

l
.t.
~·

Bootstrapping and Console
BOOTSTRAPPING

Company Confidential

ll.l.4.4 Addition Of A Processor To A Running System

Page 11-13
22 December 1985

Once bootstrapping is complete, system software is no longer expecting
requests for Epicode memory from bootstrapping processors. Thus, the
RPB is not examined when interprocessor interrupts are received. In
order to add a new processor, system software must provide an operator
function to request that the bootstrap sequence be completed for any
new processor.

ll.l.5 Powerfail In A Multiprocessing System

Powerfail processing is identical in multiprocessor and uniprocessor
systems. Epicode saves state without any communication with other
processors.

Powerfail recovery proceeds almost exactly as in a uniprocessor
system. Epicode determines if powerf ail was not ~uccessfully
completed (PSC clear) or if restart or bootstrapping was 1n progress
(RIP or BIP set). If so, further checks are done as described below.
In the normal case, Epicode restores state and initiates a powerfail
recovery interrupt just as in a uniprocessor system. It is the
responsibili~y of system software to coordinate recovery in a
multiprocessor system. The multiprocessor system software has the
context to determine if it is necessary to wait for some other
processor or if this processor should be rebooted. It is responsible
for all further powerfail recovery synchronization.

If a processor cannot complete normal powerfail recovery, further
checks are needed to distinguish between cases where a cold bootstrap
must be initiated and those where the processor must enter slave mode
waiting for an interrupt from another processor. The processor must
examine all per-processor RPB slots looking for a processor which is
either running (PSS, PSC, RIP, and BIP clear) or has successfully
completed powerfail processing (PSC set). If one is found, the
processor enters slave mode and waits for an interrupt from the
running or P.owerfailed processor. Note that this is exactly the state
a slave enters after failing to become a master on cold bootstrap. If
no processors are running or have successfully completed powerfail, a
cold bootstrap is initiated. This procedure is necessary to guarantee
that a processor which failed to complete powerfail processing cannot
interfere with powerfail recovery of the rest of the system by
becoming a master and performing a cold bootstrap. Very unlikely
windows do exist where all processors can hang. In particular, if the
master/slave interlock is not cleared, it may be impossible to select
the new master. However, this is considered more acceptable than an
unsynchronized bootstrap.

This procedure is independent of whether or not all processors
powerfailed.

Bootstrapping and Console
CONSOLE

11.2 CONSOLE

Company Confidential Page 11-14
22 December 1985

This section describes the PRISM console functionality.
Implementation-specific considerations such as diagnostic functions
are not discussed.

A console terminal is connected to each PRISM processor. More
information on communication with console terminals can be found in
Chapter 8, Internal Processor Registers.

11.2.l Required Functionality

All PRISM systems must provide console functionality to perform all of
the functions described as console responsibility in the bootstrapping
portion of this chapter. These include testing part of memory,
loading Epicode, setting up a system software environment, loading
system software, and handling powerfail recovery. Note that all of
these functions are expected to be done with special Epicode executed
in the PRISM processor.

-"' · .. ~; 11.2.2 Entering Console Mode

The PRISM processor can be put in console mode as follows:
~-
,,;..

~- l. Console terminal BREAK key

2. HALT instruction, Kernel Stack Not Valid, or a Double Machine
Check Error

In all cases, the console is now ready to accept commands.

The result of a HALT instruction, Kernel Stack Not Valid, or a Double
Machine Check Error depends on the current setting of the
implementation-dependent halt action. This may be either halt, warm
restart, or cold boot.

If enabled, the BREAK key on the console terminal will always cause
the PRISM processor to enter console mode.

11.2.3 Program Controlled Console I/O

Program controlled console I/O is necessary to allow system software
to communicate with the operator during the bootstrap process. More
information on communication with console terminals can be found in
Chapter 8, Internal Processor Registers.

Bootstrapping and Console
CONSOLE LANGUAGE

Company Confidential Page 11-15
22 December 1985

ll.3 CONSOLE LANGUAGE

The PRISM console interprets commands typed on the console terminal,
and controls the operation of the PRISM processor.

Through the console terminal, an operator can boot the operating
system, or a field service engineer can maintain the system. When the
processor is halted, the operator controls the system through the
console command language. When the processor is in console mode, the
operator is prompted for input with the string •pn>>>• where n is the
processor number.

It may be possible for the operator to put the system in an
inconsistent state through the use of the console commands. For
example, it may be possible to use the console to set bits in MBZ
fields, or to set conflicting control bits. The operation of the
processor in such a state is UNDEFINED.

11.3.1 Control Characters

In console I/0 mode, several characters have special meanings.

0 Carriage Return Ends a command line. A null
terminated by a carriage return is treated as a valid,
command. Carriage return is echoed as carriage return,
feed.

line
null
line

o RUBOUT - When the operator types RUBOUT, the console ignores
the entire line and prompts for another command.

o CTRL/U - When the operator types CTRL/U the console ignores
the entire line and prompts for another command. If CTRL/U
is typed on an empty line, it is echoed, and otherwise
ignored. The console prompts for another command.

o CTRL/S - Stops output to the console terminal until CTRL/Q is
typed. Additional input between CTRL/S and CTRL/Q is
ignored. Additional CTRL/Ss before the CTRL/Q are ignored.
CTRL/S and CTRL/Q are not echoed.

0 CTRL/Q Resumes output stopped by CTRL/S. Additional
CTRL/Qs are ignored. CTRL/S and CTRL/Q are not echoed.

o BREAK - If the console is in console I/0 mode, BREAK is
ignored. If the console is in program I/0 mode and BREAK is
disabled, BREAK is passed to the operating system like any
other character. If the console is in program I/O mode and
BREAK is enabled, BREAK causes the processor to enter console
I/O mode.

f

.t
?~­
·~

Bootstrapping and Console
CONSOLE LANGUAGE

11.3.2 Command Syntax

Company Confidential Page 11-16
22 December 1985

All commands are abbreviated to a single character. Multiple adjacent
spaces and tabs are treated as a single space by the console. Leading
and trailing spaces and tabs are ignored. Illegal characters are
ignored and echoed as BEL (ASCII code 7).

Command qualifiers must appear immediately after the command keyword
without intervening spaces.

All numbers (addresses, data, counts) are in hexadecimal. (Note,
though, that symbolic register names include decimal digits.) Hex
digits are o.through 9, and A through F. The console does not
distinguish between upper and lower case. Both are accepted.

11.3.3 Commands

Processor control commands:

o INITIALIZE

o START

o CONTINUE

o BOOT

Data transfer commands:

o EXAMINE

o DEPOSIT

Console control commands:

o TEST

Bootstrapping and Console
CONSOLE LANGUAGE

Company Confidential Page 11-17
22 December 1985

BOOT

Format:

B [<qualifier list>] [<device:>][<filename>]

Qualifiers:

o /<data> - This allows a console user to specify the
bootstrap options parameter to be stored in the RPB.

o IS - The console loads the bootstrap program and prompts
for further console commands.

o /L - The console loads the bootstrap program from the
logical block number O.

Description:

The device specification format is consistent with the PRISM system
software naming conventions.

The console initializes the processor, and loads a file and starts the
system bootstrap program running: see Section 11.1 above. The system
bootstrap program boots the operating system from the specified
device. The default device and filename are implementation-dependent.
The console searches through an implementation-dependent default
search list.

Bootstrapping ·and Console
CONSOLE LANGUAGE

CONTINUE

Format:

c

Qualifiers:

None

Description:

Company Confidential Page ll-18
22 December 1985

The processor begins instruction execution at the address currently
contained in the Program Counter. Processor initialization is not
performed. The console enters program I/0 mode.

Bootstrapping and Console
CONSOLE LANGUAGE

Company Confidential Page 11-19
22 December 1985

DEPOSIT

Format:

D [<qualifier list>] <address> <data>

Qualifiers:

See Table 11-2 in the description of the EXAMINE command.

Description:

Deposits the data into the address specified. If no address space or
data size qualifiers are specified, the defaults are the last address
space and data size used in a DEPOSIT or EXAMINE command. On each
entry to console mode, the default address space is virtual memory,
the default data size is longword, and the default address is zero.

If the specified data is larger than the destination data size, the
console truncates the data to the least significant digits typed. If
the specified data is smaller than the data size to be deposited, it
is zero extended.

Deposits to IPRs execute the equivalent MTPR instructions using the
contents of scalar registers R4 and RS (when needed) for their data.
See Chapter 8 for register usage.

Examples:

D/P/B/N:200 0 0

D/V/L/N:4 1234 5

D/R/N:B R2 FFFFFFFF

D/N:200 - 0

DIR ESP

Clears the first 512 bytes of physical memory.

Deposits •5• into 4 longwords in virtual
memory.

Loads general registers R2 through R9 with
FFFFFFFF.

Clears 512 locations starting at the previous
address.

Deposits the contents of R4 in the Executive
Stack Pointer.

Bootstrapping and Console
CONSOLE LANGUAGE

EXAMINE

Format:

Company Confidential

E [<qualifier list>] <address>

Qualifiers:

See Table ll-2

Response:

Page 11-20
22 December 1985

<tab><address space identifier> <address> <data>

The address space identifier can be:

o P - Physical memory. Note that when virtual memory is
examined, the address space and address in the response
are the translated physical address.

o R - Register.

o M - Machine-dependent address space.

Description:

Examines the contents of the specified address.
specified, •+• is assumed.

If no address is

Examining an IPR executes the equivalent MFPR instruction and writes
the appropriate scalar registers called for in the MFPR description.
See Chapter 8 for register usage. The response displays the registers
that are written and the data.

Examples:

The response to E/R WHAMI on processor 3 is:

R R4'00000003

The response to E/V 1234564 is:

P OOOOFE3C 01739102

Where the virtual address 1234564 maps to the physical address FE3C.

The response to E/P FEJC is:

P OOOOFE3C 01739102

Bootstrapping and Console
CONSOLE LANGUAGE

Company Confidential Page 11-21
22 December 1985

Table 11-2: Qualifiers for Examine and Deposit

--Qualifier Meaning
--/B

/W

/L

IQ

/V

/P

/R

The data size is byte.

The data size is word.

The data size is longword.

The data size is quadword.

The address space is virtual memory. No access and
protection checking occurs. If the virtual address
cannot be translated due an invalid PTE, the console
issues a •?TNV• error message.

The address space is physical memory. If an attempt
is made to reference a non-existant memory location,
The console issues a •?NXM• error message.

The address space is registers. These are the scalar
registers, vector registers, internal processor
registers, Program Counter, and Processor Status.

The following symbolic addresses can be used for
either Examine or Deposit commands:

PS
PC
SP

Rn

Vn[m]

vc
VL
VM
CRCS
CTCS
ESP
ICIE
IPIE
KSP
PRBR
SCBB
SSP
TOY
USP

- Processor Status.
- Program Counter.
- Current Mode Stack Pointer (scalar

register Rl).
- Scalar Register 'n'. The register number

is in decimal and in the range 0-63.
- Vector Register 'n', element 'n'. The

register number is decimal and in the
range 0-15; the element number is
decimal and in the range 0-63.

- Vector Count.
- Vector Length.
- Vector Mask.
- Console Receive Control Status.
- Console Transmit Control Status.
- Executive Stack Pointer.
- Interval Clock Interrupt Enable.
- Interprocessor Interrupt Enable.
- Kernel Stack Pointer.
- Processor Base Register.
- System Control Block Base.
- Supervisor Stack Pointer.
- Time Of Year.
- User Stack Pointer.

"'.•.

Bootstrapping and Console
CONSOLE LANGUAGE

Company Confidential Page ll-22
22 December 1985

Table ll-2: Qualifiers for Examine and Deposit (Continued)

--Qualifier Meaning
--

/M

/N:<count>

The following symbolic addresses can be used for the
Examine command only:

ASN
A STEN
AST SR
CRDB
PCBB
PRSN
PTBR
SID
SISR
TBCHK
WHAM I

"

- Address Space Number.
- AST Enable.
- AST Summary Register.
- Console Receive Data Buff er.
- Privileged Context Block Base.
- Processor Serial Number.
- Page Table Base Register.
- System Identification.
- Software Interrupt Summary Register.
- Translation Buffer Check.
- Who-Am-I.

The following symbolic addresses can be used for the
Deposit command only:

ASTRR - AST Request Register.
CTDB - Console Transmit Data Buffer.
IPIR Interprocessor Interrupt Request.
SIRR - Software Interrupt Request Register.
TBIASN - Translation Buffer Invalidate by ASN
TBIS - Translation Buffer Invalidate Single.

(Optional) The address space is machine dependent.

The address is the first of a range. The
console examines or deposits the specified number of
addresses starting at the first address. If the
first address is the symbolic address •-•, the
succeeding addresses are at still larger addresses.
The symbolic address specifies only the starting
address, not the direction of succession.

The address parameter may also be one of the following symbolic
addresses:

'+' - The location immediately following the last
location referenced in an examine or deposit.
For references to physical or virtual memory
spaces, the location referenced is the last
address, plus the size of the last reference
(l for byte, 2 for word, 4 ·for longword, and 8

Bootstrapping and Console
CONSOLE LANGUAGE

Company Confidential Page 11-23
22 December 1985

Table 11-2: Qualifiers for Examine and Deposit (Continued)

--Qualifier Meaning
--for quadword). For other address spaces, the

address is the last addressed referenced,
plus l.

'-' - The location inunediately preceding the last
location referenced in an examine or deposit.
For references to physical or virtual memory
spaces, the location referenced is the last
address minus the size of this reference (1
for byte 2 for word, 4 for longword, and 8
for quadword). For other address spaces, the
address is the last addressed referenced
minus 1.

'*' - The location last referenced in an examine or
deposit.

'@' - The location addressed by the last location
referenced in an examine or deposit.

Bootstrapping and Console
CONSOLE LANGUAGE

INITIALIZE

Format:

I

Qualifiers:

None

Description:

Company Confidential Page ll-24
22 December 1985

A processor initialization is performed; see Section 11.l.l.7 for
initial register contents.

Bootstrapping and Console
CONSOLE LANGUAGE

START

Format:

S [<address>]

Qualifiers:

None

Description:

Company Confidential Page 11-25
22 December 1985

The console starts instruction execution at the specified address.
The default address is implementation dependent. Instructions are
executed from virtual memory. The START command is equivalent to a
DEPOSIT to PC, followed by a CONTINUE. No INITIALIZE is performed.

Bootstrapping and Console
CONSOLE LANGUAGE

TEST

Format:

T [<qualifier list>]

Qualifiers:

Company Confidential

Implementation-dependent

Description:

The PRISM processor executes a self test.
optional.

Page 11-26
22 December 1985

All qualifiers are

Bootstrapping and Console
CONSOLE LANGUAGE

11.3.4 Error Messages

Company Confidential

The following are the console error messages:

Page 11-27
22 December 1985

o BEL - Illegal characters are ignored and are echoed as BEL.

o ?NXM - Non-existent memory.

o ?TNV - Translation Not Valid.

Bootstrapping and Console
REVISION HISTORY

Revision History:

Company Confidential

Revision 1.0, 22 December 1985

1. Initial review version.

Page 11-28
22 December 1985

12.l TO BE SUPPLIED

Company Confidential

CHAPTER 12

I/0 ARCHITECTURE

Company Confidential

APPENDIX A

INSTRUCTION SET SUMMARY

This appendix summarizes the instruction mnemonics and their opcode
and function code fields in hex. There are three listings:

o Functional group listing Groups related instructions
together.

o Mnemonic listing - Lists the instructions sorted by mnemonic.

o Opcode listing - Lists the instructions sorted by opcode and
function code.

A.l ENCODING HINTS

The instruction encoding was worked out so that it would simplify
instruction-issue logic. The following comments and equations may be
helpful in understanding the encoding that was chosen. In the
following, the term OPCODE is used for instruction bits <31:26> and
FUNC is used for instruction bits <13:9>.

1. All scalar load and store instructions have OPCODE<5:3> equal
to lll(bin). OPCODE<2> is a 0 for load and a 1 for store.
OPCODE<l:O> specifies the data size (0 for byte, l for word 2
for longword, and 3 for quadword).

2. All floating-point instructions encode floating underflow
enable in FUNC<3> (0 for underflow disabled and l for
underflow enabled).

3. All floating-point instructions encode floating rounding mode
in FUNC<2> (0 for round toward zero and 1 for VAX rounding).

4. All vector instructions use FUNC<4> to determine whether the
Ra field selects a scalar or a vector register (0 for scalar
Ra and l for vector Ra).

Instruction Set Summary Company Confidential Page A-2
FUNCTIONAL GROUP LISTING 22 December 1985

A.2 FUNCTIONAL GROUP LISTING

Opcode Function
Mnemonic (hex) Code (hex)
-------------------------- ------ ----------
LDB d(rb),ra 38
LDW d(rb) ,ra 39
LDL d(rb) ,ra 3A
LDQ d(rb),ra JB

STB ra,d(rb) 3C
STW ra,d(rb) JD
STL ra,d(rb) 3E
STQ ra,d(rb) 3F

VLDL ra,rb,ve 30 02
VLDQ ra,rb,ve 30 03
VSTL ra,rb,ve 30 06
VSTQ ra,rb,ve 30 07

VGATHL ra·1vb,ve 31 02
VGATHQ ra,vb,ve 31 03
VSCATL ra,vb,vc 31 06
VSCATQ ra,vb,ve 31 07

RDVL re 32 00
RDVC re 32 01
RDVML re 32 02
RDVMH re 32 03
WRVL ra 33 00
WRVC ra 33 01
WRVML ra 33 02
WRVMH ra 33 03

COP RD ra 34
COPWR ra 35

EPIRES3 36
EPIRES4 37

BEQ ra,dest 20
BNE ra,dest 21
BGT ra,dest 22
BLE ra,dest 23
BGE ra,dest 24
BLT ra,dest 25
BLBC ra,dest 26
BLBS ra,dest 27

JSR ra,dest 28
JSR ra,(rb) 29 00
FOB ra 2A

Instruction Set Summary
FUNCTIONAL GROUP LISTING

EPIRESO
EPIRESl
EPIRES2

ADD ra,rb,rc
ADDV ra,rb,rc
SUB ra,rb,rc
SUBV ra,rb,rc

CMPEQ ra,rb,rc
CMPNE ra,rb,rc
CMPGT ra,rb,rc
CMPLE ra,rb,rc
CMPGE ra,rb,rc
CMPLT ra,rb,rc
CMPUGT ra,rb,rc
CMPULE ra,rb,rc
CMPUGE ra,rb,rc
CMPULT ra,rb,rc

SLL ra,rb,rc
SRL ra,rb,rc
SRA ra,rb,rc
ROT ra,rb,rc
AND ra,rb,rc
BIC ra,rb,rc
OR ra,rb,rc
ORN OT ra,rb,rc
XOR ra,rb,rc
EQV ra,rb,rc

DIV ra,rb,rc
DIVV ra,rb,rc
REM ra,rb,rc
MULL ra,rb,rc
MULV ra,rb,rc
MULH ra,rb,rc
UMULH ra,rb,rc

CVTFL ra,rc
CVTFLZ ra,rc
CVTLF ra,rc
CVTLFZ ra,rc

CVTFG ra,rc
CVTLG ra,rc

CVTGL ra,rc
CVTGLZ ra,rc
CVTGF ra,rc
CVTGFZ ra,rc
CVTGFU ra,rc
CVTGFUZ ra,rc

Company Confidential

2D
2E
2F

01
01
01
01

02
02
02
02
02
02
02
02
02
02

03
03
03
03
03
03
03
03
03
03

04
04
04
04
04
04
04

05
05
05
05

06
06

07
07
07
07
07
07

Page A-3
22 December 1985

00
01
08
09

08
09
OA
OB
oc
OD
lA
lB
lC
lD

04
05
06
07
00
08
01
09
02
OA

00
01
04
02
03
06
OA

04
00
05
01

00
01

04
00
05
01
OD
09

Instruction Set Summary Company Confidential
FUNCTIONAL GROUP LISTING

ADDG ra,rb,rc
ADDGZ ra,rb,rc
ADDGU ra,rb,rc
ADDGUZ ra,rb,rc
SUBG ra,rb,rc
SUBGZ ra,rb,rc
SUB GU ra,rb,rc
SUBGUZ ra,rb,rc

ADDF ra,rb,rc
ADDFZ ra,rb,rc
ADD FU ra,rb,rc
ADDFUZ ra,rb,rc
SUBF ra,rb,rc
SUBFZ ra,rb,rc
SUB FU ra,rb,rc
SUBFUZ ra,rb,rc

CMPGEQ ra,rb,rc
CMPGNE ra,rb,rc
CMPGGT ra,rb,rc
CMPGLE ra,rb,rc
CMPGGE ra,rb,rc
CMPGLT ra,rb,rc

CMPFEQ ra,rb,rc
CMPFNE ra,rb,rc
CMPFGT ra,rb,rc
CMPFLE ra,rb,rc
CMPFGE ra,rb,rc
CMPFLT ra,rb,rc

DIVG ra,rb,rc
DIVGZ ra,rb,rc
DIVGU ra,rb,rc
DIVGUZ ra,rb,rc
MULG ra,rb,rc
MULGZ ra,rb,rc
MULGU ra,rb,rc
MULGUZ ra,rb,rc

DIVF ra,rb,rc
DIVFZ ra,rb,rc
DIVFU ra,rb,rc
DIVFUZ ra,rb,rc
MULF ra,rb,rc
MULFZ ra,rb,rc
MULFU ra,rb,rc
MULFUZ ra,rb,rc

LDA d(rb),ra

VMERGE ra,vb,vc

08
08
08
OB
08
08
08
08

09
09
09
09
09
09
09
09

OA
OA
OA
OA
OA
OA

OB
OB
OB
OB
OB
OB

oc
oc
oc
oc
oc
oc
oc
oc
OD
OD
OD
OD
OD
OD
OD
OD

OE

10

Page A-4
22 December 1985

04
00
oc
08
05
01
OD
09

04
00
oc
08
05
01
OD
09

00
01
02
03
04
05

00
01
02
03
04
05

04
00
oc
08
05
01
OD
09

04
00
oc
08
05
01
OD
09

00

Instruction Set SUm.mary Company Confidential Page A-5
FUNCTIONAL GROUP LISTING 22 December 1985

VMERGE va,vb,vc 10 10
IOTA ra,vc 10 01

VADD ra,vb,vc 11 00
VADDV ra,vb,vc 11 01
VSUB ra,vb,vc 11 02
VSUBV ra,vb,vc 11 03
VADD va,vb,vc 11 10
VADDV va,vb,vc 11 11
VSUB va,vb,vc 11 12
VSUBV va,vb,vc 11 13

VCMPEQ ra,vb 12 00
VCMPNE ra,vb 12 01
VCMPGT ra,vb 12 02
VCMPLE ra,vb 12 03
VCMPGE ra,vb 12 04
VCMPLT ra,vb 12 05
VCMPEQ va,vb 12 10
VCMPNE va,vb 12 11
VCMPGT va,vb 12 12
VCMPLE va,vb 12 13
VCMPGE va,vb 12 14
VCMPLT va,vb 12 15

VSLL ra,vb,vc 13 04
VSRL ra,vb,vc 13 05
VAND ra,vb,vc 13 00
VBIC ra,vb,vc 13 08
VOR ra,vb,vc 13 01
VORNOT ra,vb,vc 13 09
VXOR ra,vb,vc 13 02
VEQV ra,vb,vc 13 OA
VSLL va,vb,vc 13 14
VSRL va,vb,vc 13 15
VAND va,vb,vc 13 10
VBIC va,vb,vc 13 18
VOR va,vb,vc 13 11
VO RN OT va,vb,vc 13 19
VXOR va,vb,vc 13 12
VEQV va,vb,vc 13 lA

VDIV ra,vb,vc 14 00
VDIVV ra,vb,vc 14 01
VREM ra,vb,vc 14 04
VMULL ra,vb,vc 14 02
VMULV ra,vb,vc 14 03
VDIV va,vb,vc 14 10
VDIVV va,vb,vc 14 11
VREM va,vb,vc 14 14
VMULL va,vb,vc 14 12
VMULV va,vb,vc 14 13

VCVTFL va,vc 15 14

Instruction Set Summary Company Confidential Page A-6
FUNCTIONAL GROUP LISTING 22 December 1985

VCVTFLZ va,vc 15 10
VCVTLF va,vc 15 15
VCVTLFZ va,vc 15 11

VCVTFG va,vc 16 10
VCVTLG va,vc 16 11

VCVTGL va,vc 17 14
VCVTGLZ va,vc 17 10
VCVTGF va,vc 17 15
VCVTGFZ va,vc 17 11
VCVTGFU va,vc 17 lD
VCVTGFUZ va,vc 17 19

VADOG ra,vb,vc 18 04
VADOGZ ra,vb,vc 18 00
VADDGU ra,vb,vc 18 oc
VADDGUZ ra,vb,vc 18 08
VSUBG ra,vb,vc 18 05
VSUBGZ ra,vb,vc 18 01
VSUBGU ra,vb,vc 18 OD
VSUBGUZ ra,vb,vc 18 09
VADDG va,vb,vc 18 14
VADDGZ va,vb,vc 18 10
VADDGU va,vb,vc 18 lC
VADDGUZ va,vb,vc 18 18
VSUBG va,vb,vc 18 is:
VSUBGZ va,vb,vc 18 11
VSUBGU va,vb,vc 18 lD
VSUBGUZ va,vb,vc 18 19

VADDF ra,vb,vc 19 04
VADDFZ ra,vb,vc 19 00
VADDFU ra,vb,vc 19 oc
VADDFUZ ra,vb,vc 19 08
VSUBF ra,vb,vc 19 05
VSUBFZ ra,vb,vc 19 01
VSUBFU ra,vb,vc 19 OD
VSUBFUZ ra,vb,vc 19 09
VADDF va,vb,vc 19 14
VADDFZ va,vb,vc 19 10
VADDFU va,vb,vc 19 lC
VADDFUZ va,vb,vc 19 18
VSUBF va,vb,vc 19 15
VSUBFZ va,vb,vc 19 11
VSUBFU va,vb,vc 19 10
VSUBFUZ va,vb,vc 19 19

VCMPGEQ ra,vb lA 00
VCMPGNE ra,vb lA 01
VCMPGGT ra,vb lA 02
VCMPGLE ra,vb lA 03
VCMPGGE ra,vb lA 04
VCMPGLT ra,vb lA 05

Instruction Set Summary Company Confidential Page A-7
FUNCTIONAL GROUP LISTING 22 December 1985

VCMPGEQ va,vb lA 10
VCMPGNE va,vb lA ll
VCMPGGT va,vb lA 12
VCMPGLE va,vb lA 13
VCMPGGE va,vb lA 14
VCMPGLT va,vb lA 15

VCMPFEQ ra,vb lB 00
VCMPFNE ra,vb lB 01
VCMPFGT ra,vb lB 02
VCMPFLE ra,vb lB 03
VCMPFGE ra,vb lB 04
VCMPFLT ra,vb lB 05
VCMPFEQ va,vb lB 10
VCMPFNE va,vb lB ll
VCMPFGT va,vb lB 12
VCMPFLE va,vb lB 13
VCMPFGE va,vb lB 14
VCMPFLT va,vb lB 15

VD IVG ra,vb,vc lC 04
VDIVGZ ra,vb,vc lC 00
VDIVGU ra,vb,vc lC oc
VDIVGUZ ra,vb,vc lC 08
VMULG ra,vb,vc lC 05
VMULGZ ra,vb,vc lC 01
VMULGU ra,vb,vc lC -OD
VMULGUZ ra,vb,vc lC 09
VD IVG va,vb,vc lC 14
VDIVGZ va,vb,vc lC 10
VDIVGU va,vb,vc lC lC
VDIVGUZ va,vb,vc lC 18
VMULG va,vb,vc lC 15
VMULGZ va,vb,vc lC 11
VMULGU va,vb,vc lC lD
VMULGUZ va,vb,vc lC 19

VD I VF ra,vb,vc lD 04
VDIVFZ ra,vb,vc lD 00
VDIVFU ra,vb,vc lD oc
VDIVFUZ ra,vb,vc lD 08
VMULF ra,vb,vc lD 05
VMULFZ ra,vb,vc lD 01
VMULFU ra,vb,vc lD OD
VMULFUZ ra,vb,vc lD 09
VD I VF va,vb,vc lD 14
VDIVFZ va,vb,vc lD 10
VDIVFU va,vb,vc lD lC
VDIVFUZ va,vb,vc lD 18
VMULF va,vb,vc lD 15
VMULFZ va,vb,vc lD 11
VMULFU va,vb,vc lD lD
VMULFUZ va,vb,vc lD 19

Instruction Set Summary Company Confidential Page A-8
FUNCTIONAL GROUP LISTING 22 December 1985

HALT 00 00
DRAIN 00 30
REI 00 02
BPT 00 03
BUGCHK 00 04

I FLUSH 00 31

MOVPS 00 32

PROBER 00 OA
PROBEW 00 OB

SWASTEN 00 05
SW IPL 00 06
SWPCTX 00 07

RMAOI 00 38
RMAOIP 00 39

TBFLUSH 00 OB

MFPR ESP 00 Cl
MTPR ESP 00 81
MFPR SSP 00 C2
MTPR SSP 00 82
MFPR USP 00 C3
MTPR USP 00 83

MFPR PTBR 00 C4
MFPR PCBB 00 cs
MFPR SCBB 00 C6
MTPR SCBB 00 86

MTPR AST RR 00 87
MFPR AST SR 00 ca
MFPR AS TEN 00 C9
MTPR SIRR 00 SA
MFPR SISR 00 CA

MFPR ICIE 00 CB
MTPR ICIE 00 SB
MFPR TOY 00 cc
MTPR TOY 00 SC

MFPR ASN 00 CD
MFPR TBCHK 00 CE
MTPR TBIS 00 SF
MTPR TBIASN 00 90

MTPR IPIR 00 91
MFPR IPIE 00 D2
MTPR IPIE 00 92

Instruction Set Summary Company Confidential Page A-9
FUNCTIONAL GROUP LISTING 22 December 1985

MFPR PRBR 00 D3
MTPR PRBR 00 93
MFPR WHAM I 00 D4
MFPR SID 00 D5
MFPR PRSN 00 D6

MFPR CRCS 00 D7
MTPR CRCS 00 97
MFPR CRDB 00 DB
MFPR CTCS 00 D9
MTPR CTCS 00 99
MTPR CTDB 00 9A

reserved OF 00
reserved lE 00
reserved lF 00
reserved 2B 00
reserved 2C 00

Instruction Set Summary Company Confidential Page A-10
MNEMONIC LISTING 22 December 1985

A.3 MNEMONIC LISTING

Opcode Function
Mnemonic (hex) Code (hex)
-------------------------- ------ ----------
ADD ra,rb,rc 01 00
ADDF ra,rb,rc 09 04
ADD FU ra,rb,rc 09 oc
ADDFUZ ra,rb,rc 09 OB
ADDFZ ra,rb,rc 09 00
ADDG ra,rb,rc OB 04
ADDGU ra,rb,rc OB oc
ADDGUZ ra,rb,rc OB OB
ADDGZ ra,rb,rc OB 00
ADDV ra,rb,rc 01 01
AND ra,rb,rc 03 00
BEQ ra,dest 20
BGE ra,dest 24
BGT ra,dest 22
BIC ra,rb,rc 03 OB
BLBC ra,dest 26
BLBS ra,dest 27
BLE ra,dest 23
BLT ra,dest 25
BNE ra,dest 2f
BPT 00 03
BUGCHK 00 04
Ofi>EQ ra,rb,rc 02 OB
Ofi>FEQ ra,rb,rc OB 00
Ofi>FGE ra,rb,rc OB 04
Ofi>FGT ra,rb,rc OB 02
Ofi>FLE ra,rb,rc OB 03
Ofi>FLT ra,rb,rc OB 05
Ofi>FNE ra,rb,rc OB 01
Ofi>GE ra,rb,rc 02 oc
CMPGEQ ra,rb,rc OA 00
Ofi>GGE ra,rb,rc OA 04
Ofi>GGT ra,rb,rc OA 02
Ofi>GLE ra,rb,rc OA 03
CMPGLT ra,rb,rc OA 05
Ofi>GNE ra,rb,rc OA 01
CMPGT ra,rb,rc 02 OA
CMPLE ra,rb,rc 02 OB
CMPLT ra,rb,rc 02 OD
CMPNE ra,rb,rc 02 09
Ofi>UGE ra,rb,rc 02 lC
Ofi>UGT ra,rb,rc 02 lA
CMPULE ra,rb,rc 02 lB
CMPULT ra,rb,rc 02 lD
COP RD ra 34
COPWR ra 35
CVTFG ra,rc 06 00

Instruction Set Summary Company Confidential Page A-11
MNEMONIC LISTING 22 December 1985

CVTFL ra,rc 05 04
CVTFLZ ra,rc 05 00
CVTGF ra,rc 07 05
CVTGFU ra,rc 07 OD
CVTGFUZ ra,rc 07 09
CVTGFZ ra,rc 07 01
CVTGL ra,rc 07 04
CVTGLZ ra,rc 07 00
CVTLF ra,rc 05 05
CVTLFZ ra,rc 05 01
CVTLG ra,rc 06 01
DIV ra,rb,rc 04 00
DIVF ra,rb,rc OD 04
DIVFU ra,rb,rc OD oc
DIVFUZ ra,rb,rc OD 08
DIVFZ ra,rb,rc OD 00
DIVG ra,rb,rc oc 04
DIVGU ra,rb,rc oc oc
DIVGUZ ra,rb,rc oc 08
DIVGZ ra,rb,rc oc 00
DIVV ra,rb,rc 04 01
DRAIN 00 30
EPIRESO 2D
EPIRESl 2E
EPIRES2 2F
EPIRES3 36
EPIRES4 : 37
EQV ra,rb,rc 03 OA
FOB ra 2A
HALT 00 00
I FLUSH 00 31
IOTA ra,vc 10 01
JSR ra,(rb) 29 00
JSR ra,dest 28
LDA d(rb) ,ra OE
LDB d(rb) ,ra 38
LDL d(rb) ,ra 3A
LDQ d(rb) ,ra 3B
LDW d(rb) ,ra 39
MFPR ASN 00 CD
MFPR AS TEN 00 C9
MFPR AST SR 00 CB
MFPR CRCS 00 D7
MFPR CRDB 00 DB
MFPR CTCS 00 D9
MFPR ESP 00 Cl
MFPR ICIE 00 CB
MFPR IPIE 00 D2
MFPR PCBB 00 cs
MFPR PRBR 00 D3
MFPR PRSN 00 D6
MFPR PTBR 00 C4
MFPR SCBB 00 C6
MFPR SID 00 DS

Instruction Set Summary Company Confidential Page A-12
MNEMONIC LISTING 22 December 1985

MFPR SISR 00 CA
MFPR SSP 00 C2
MFPR TBCHK 00 CE
MFPR TOY 00 cc
MFPR USP 00 C3
MFPR WHAM I 00 D4
MOVPS 00 32
MTPR AST RR 00 S7
MTPR CRCS 00 97
MTPR CTCS 00 99
MTPR CTDB 00 9A
MTPR ESP 00 Sl
MTPR ICIE 00 SB
MTPR IPIE 00 92
MTPR IPIR 00 91
MTPR PRBR 00 93
MTPR SCBB 00 S6
MTPR SIRR 00 SA
MTPR SSP 00 S2
MTPR TBIASN 00 90
MTPR TBIS 00 SF
MTPR TOY 00 BC
MTPR USP 00 83
MULF ra,rb,rc OD 05
MULFU ra,rb,rc OD OD
MULFUZ ra,rb,rc OD 09
MULFZ ra,rb,rc OD 01
MULG ra,rb,rc oc 05
MULGU ra,rb,re oc OD
MULGUZ ra,rb,re oc 09
MULGZ ra,rb,re oc 01
MULH ra,rb,re 04 06
MULL ra,rb,rc 04 02
MULV ra,rb,rc 04 03
OR ra,rb,rc 03 01
ORNOT ra,rb,re 03 09
PROBER 00 OA
PRO BEW 00 OB
RDVC re 32 01
RDVL re 32 00
RDVMH re 32 03
RDVML re 32 02
REI 00 02
REM ra,rb,rc 04 04
RMAQI 00 38
RMAQIP 00 39
ROT ra,rb,re 03 07
SLL ra,rb,re 03 04
SRA ra,rb,rc 03 06
SRL ra,rb,rc 03 05
STB ra,d(rb) 3C
STL ra,d(rb) 3E
STQ ra,d(rb) 3F
STW ra,d(rb) 30

Instruction Set Summary Company Confidential Page A-13
MNEMONIC LISTING 22 December 1985

SUB ra,rb,rc 01 OB
SUBF ra,rb,rc 09 05
SUB FU ra,rb,rc 09 OD
SUBFUZ ra,rb,rc 09 09
SUBFZ ra,rb,rc 09 01
SUBG ra,rb,rc 08 05
SUBGU ra,rb,rc 08 OD
SUBGUZ ra,rb,rc 08 09
SUBGZ ra,rb,rc 08 01
SUBV ra,rb,rc 01 09
SWASTEN 00 05
SWIPL 00 06
SWPCTX 00 07
TB FLUSH 00 08
UMULH ra,rb,rc 04 OA
VADD ra,vb,vc 11 00
VADD va,vb,vc 11 10
VADDF ra,vb,vc 19 04
VADDF va,vb,vc 19 14
VADDFU ra,vb,vc 19 oc
VADDFU va,vb,vc 19 lC
VADDFUZ ra,vb,vc 19 08
VADDFUZ va,vb,vc 19 18
VADDFZ ra,vb,vc 19 00
VADDFZ va,vb,vc 19 10
VADDG ra,vb,vc 18 04
VADDG va,vb,vc 18 14
VADDGU ra,vb,vc 18 oc
VADDGU va,vb,vc 18 lC
VADDGUZ ra,vb,vc 18 08
VADDGUZ va,vb,vc 18 18
VADDGZ ra,vb,vc 18 00
VADDGZ va,vb,vc 18 10
VADDV ra,vb,vc 11 01
VADDV va,vb,vc 11 11
VAND ra,vb,vc 13 00
VAND va,vb,vc 13 10
VBIC ra,vb,vc 13 08
VBIC va,vb,vc 13 18
VCMPEQ ra,vb 12 00
VCMPEQ va,vb 12 10
VCMPFEQ ra,vb lB 00
VCMPFEQ va,vb lB 10
VCMPFGE ra,vb lB 04
VCMPFGE va,vb lB 14
VCMPFGT ra,vb lB 02
VCMPFGT va,vb lB 12
VCMPFLE ra,vb lB 03
VCMPFLE va,vb lB 13
VCMPFLT ra,vb lB 05
VCMPFLT va,vb lB 15
VCMPFNE ra,vb lB 01
VCMPFNE va,vb lB 11
VCMPGE ra,vb 12 04

Instruction Set Summary Company Confidential Page A-14
MNEMONIC LISTING 22 December 1985

VCMPGE va,vb 12 14
VCMPGEQ ra,vb lA 00
VCMPGEQ va,vb lA 10
VCMPGGE ra,vb lA 04
VCMPGGE va,vb lA 14
VCMPGGT ra,vb lA 02
VCMPGGT va,vb lA 12
VCMPGLE ra,vb lA 03
VCMPGLE va,vb lA 13
VCMPGLT ra,vb lA 05
VCMPGLT va,vb lA 15
VCMPGNE ra,vb lA 01
VCMPGNE va,vb lA 11
VCMPGT ra,vb 12 02
VCMPGT va,vb 12 12
VCMPLE ra,vb 12 03
VCMPLE va,vb 12 13
VCMPLT ra,vb 12 05
VCMPLT va,vb 12 15
VCMPNE ra,vb 12 01
VCMPNE va,vb 12 11
VCVTFG va;·vc 16 10
VCVTFL va,vc 15 14
VCVTFLZ va,vc 15 10
VCVTGF va,vc 17 15
VCVTGFU va,vc 17 lD
VCVTGFUZ va,vc 17 19
VCVTGFZ va,vc 17 11
VCVTGL va,vc 17 14
VCVTGLZ va,vc 17 10
VCVTLF va,vc 15 15
VCVTLFZ va,vc 15 11
VCVTLG va,vc 16 11
VDIV ra,vb,vc 14 00
VDIV va,vb,vc 14 10
VDIVF ra,vb,vc lD 04
VDIVF va,vb,vc lD 14
VDIVFU ra,vb,vc lD oc
VDIVFU va,vb,vc lD lC
VDIVFUZ ra,vb,vc lD 08
VDIVFUZ va,vb,vc lD 18
VDIVFZ ra,vb,vc lD 00
VDIVFZ va,vb,vc lD 10
VDIVG ra,vb,vc lC 04
VDIVG va,vb,vc lC 14
VDIVGU ra,vb,vc lC OC
VDIVGU va,vb,vc lC lC
VDIVGUZ ra,vb,vc lC 08
VDIVGUZ va,vb,vc lC 18
VDIVGZ ra,vb,vc lC 00
VDIVGZ va,vb,vc lC 10
VDIVV ra,vb,vc 14 01
VDIVV va,vb,vc 14 11
VEQV ra,vb,vc 13 OA

Instruction Set Summary Company Confidential Page A-15
MNEMONIC LISTING 22 December 1985

VEQV va,vb,vc 13 lA
VGATHL ra,vb,vc 31 02
VGATHQ ra,vb,vc 31 03
VLDL ra,rb,vc 30 02
VLDQ ra,rb,vc 30 03
VMERGE ra,vb,vc 10 00
VMERGE va,vb,vc 10 10
VMULF ra,vb,vc lD 05
VMULF va, vb, vc lD 15
VMULFU ra,vb,vc lD OD
VMULFU va, vb, vc lD lD
VMULFUZ ra,vb,vc lD 09
VMULFUZ va,vb,vc lD 19
VMULFZ ra,vb,vc lD 01
VMULFZ va,vb,vc lD 11
VMULG ra,vb,vc lC 05
VMULG va,vb,vc lC 15
VMULGU ra,vb,vc lC OD
VMULGU va,vb,vc lC lD
VMULGUZ ra,vb,vc lC 09
VMULGUZ va, vb, vc lC 19
VMULGZ ra,vb,vc lC 01
VMULGZ va,vb,vc lC 11
VMULL ra,vb,vc 14 02
VMULL va,vb,vc 14 12
VMULV ra,vb,vc 14 03
VMULV va,vb,vc 14 13
VOR ra,vb,vc 13 01
VOR va,vb,vc 13 11
VO RN OT ra,vb,vc 13 09
VORNOT va,vb,vc 13 19
VREM ra,vb,vc 14 04
VREM va,vb,vc 14 14
VSCATL ra,vb,vc 31 06
VSCATQ ra,vb,vc 31 07
VSLL ra,vb,vc 13 04
VSLL va,vb,vc 13 14
VSRL ra,vb,vc 13 05
VSRL va,vb,vc 13 15
VSTL ra,rb,vc 30 06
VSTQ ra,rb,vc 30 07
VSUB ra,vb,vc 11 02
VSUB va,vb,vc 11 12
VSUBF ra,vb,vc 19 05
VSUBF va,vb,vc 19 15
VSUBFU ra,vb,vc 19 OD
VSUBFU va,vb,vc 19 lD
VSUBFUZ ra,vb,vc 19 09
VSUBFUZ va,vb,vc 19 19
VSUBFZ ra,vb,vc 19 01
VSUBFZ va,vb,vc 19 ll
VSUBG ra,vb,vc 18 05
VSUBG va,vb,vc 18 15
VSUBGU ra,vb,vc 18 OD

Instruction Set Summary Company Confidential Page A-16
MNEMONIC LISTING 22 December 1985

VSUBGU va,vb,vc 18 lD
VSUBGUZ ra,vb,vc 18 09
VSUBGUZ va,vb,vc 18 19
VSUBGZ ra,vb,vc 18 01
VSUBGZ va,vb,vc 18 11
VSUBV ra,vb,vc 11 03
VSUBV va,vb,vc 11 13
VXOR ra,vb,vc 13 02
VXOR va,vb,vc 13 12
WRVC ra 33 01
WRVL ra 33 00
WRVMH ra 33 03
WRVML ra 33 02
XOR ra,rb,rc 03 02
reserved OF 00
reserved lE 00
reserved lF 00
reserved 2B 00
reserved 2C 00

Instruction Set Summary Company Confidential Page A-17
OPCODE LISTING 22 December 1985

A.4 OPCODE LISTING

Opcode Function
Mnemonic (hex) Code (hex)
-------------------------- ------ ----------
HALT 00 00
REI 00 02
BPT 00 03
BUGCHK 00 04
SWASTEN 00 05
SW IPL 00 06
SWPCTX 00 07
TB FLUSH 00 08
PROBER 00 OA
PRO BEW 00 OB
DRAIN 00 30
I FLUSH 00 31
MOVPS 00 32
RMAQI 00 38
RMAQIP 00 39
MTPR ESP 00 Sl
MTPR SSP 00 S2
MTPR USP 00 S3
MTPR SCBB 00 S6
MTPR ASTRR 00 S7
MTPR SIRR 00 SA
MTPR ICIE 00 SB
MTPR TOY 00 sc
MTPR TBIS 00 SF
MTPR TBIASN 00 90
MTPR IPIR 00 91
MTPR IPIE 00 92
MTPR PRBR 00 93
MTPR CRCS 00 97
MTPR CTCS 00 99
MTPR CTDB 00 9A
MFPR ESP 00 Cl
MFPR SSP 00 C2
MFPR USP 00 C3
MFPR PTBR 00 C4
MFPR PCBB 00 cs
MFPR SCBB 00 C6
MFPR AST SR 00 cs
MFPR A STEN 00 C9
MFPR SISR 00 CA
MFPR ICIE 00 CB
MFPR TOY 00 cc
MFPR ASN 00 CD
MFPR TBCHK 00 CE
MFPR IPIE 00 D2
MFPR PRBR 00 D3
MFPR WHAM I 00 D4

Instruction Set Summary Company Confidential Page A-18
OPCODE LISTING 22 December 1985

MFPR SID 00 DS
MFPR PRSN 00 D6
MFPR CRCS 00 D7
MFPR CRDB 00 DB
MFPR CTCS 00 D9
ADD ra,rb,rc 01 00
ADDV ra,rb,rc 01 01
SUB ra,rb,rc 01 08
SUBV ra,rb,rc 01 09
CMPEQ ra,rb,rc 02 08
CMPNE ra,rb,rc 02 09
CMPGT ra,rb,rc 02 OA
CMPLE ra,rb,rc 02 OB
CMPGE ra,rb,rc 02 oc
CMPLT ra,rb,rc 02 OD
CMPUGT ra,rb,rc 02 lA
CMPULE ra,rb,rc 02 lB
CMPUGE ra,rb,rc 02 lC
CMPULT ra,rb,rc 02 lD
AND ra,rb,rc 03 00
OR ra,rb,rc 03 01
XOR ra,rb,rc 03 02
SLL ra;rb,rc 03 04
SRL ra,rb,rc 03 05
SRA ra,rb,rc 03 06
ROT ra,rb,rc 03 07
BIC ra,rb,rc 03 08
ORN OT ra,rb,rc 03 09

~ EQV ra,rb,rc 03 OA
DIV ra,rb,rc 04 00
DIW ra,rb,rc 04 01
MULL ra,rb,rc 04 02
MULV ra,rb,rc 04 03
REM ra,rb,rc 04 04
MULH ra,rb,rc 04 06
UMULH ra,rb,rc 04 OA
CVTFLZ ra,rc 05 00
CVTLFZ ra,rc 05 01
CVTFL ra,rc 05 04
CVTLF ra,rc 05 05
CVTFG ra,rc 06 00
CVTLG ra,rc 06 01
CVTGLZ ra,rc 07 00
CVTGFZ ra,rc 07 01
CVTGL ra,rc 07 04
CVTGF ra,rc 07 05
CVTGFUZ ra,rc 07 09
CVTGFU ra,rc 07 OD
ADDGZ ra,rb,rc 08 00
SUBGZ ra,rb,rc 08 01
ADDG ra,rb,rc 08 04
SUBG ra,rb,rc 08 05
ADDGUZ ra,rb,rc 08 08
SUBGUZ ra,rb,rc 08 09

Instruction Set Summary Company Confidential Page A-19
OPCODE LISTING 22 December 1985

ADDGU ra,rb,rc OB oc
SUBGU ra,rb,rc OB OD
ADDFZ ra,rb,rc 09 00
SUBFZ ra,rb,rc 09 01
ADDF ra,rb,rc 09 04
SUBF ra,rb,rc 09 05
ADDFUZ ra,rb,rc 09 08
SUBFUZ ra,rb,rc 09 09
ADD FU ra,rb,rc 09 oc
SUB FU ra,rb,rc 09 OD
CMPGEQ ra,rb,rc OA 00
CMPGNE ra,rb,rc OA 01
CMPGGT ra,rb,rc OA 02
CMPGLE ra,rb,rc OA 03
CMPGGE ra,rb,rc OA 04
CMPGLT ra,rb,rc OA 05
CMPFEQ ra,rb,rc OB 00
CMPFNE ra,rb,rc OB 01
CMPFGT ra,rb,rc OB 02
CMPFLE ra,rb,rc OB 03
CMPFGE ra,rb,rc OB 04
CMPFLT ra,rb,rc OB 05
DIVGZ ra,rb,rc oc 00
MULGZ ra,rb,rc oc 01
DIVG ra,rb,rc oc 04
MULG ra,rb,rc oc 05
DIVGUZ ra,rb,rc oc OB
MULGUZ ra,rb,rc oc 09
DIVGU ra,rb,rc oc oc
MULGU ra,rb,rc oc OD
DIVFZ ra,rb,rc OD 00
MULFZ ra,rb,rc OD 01
DIVF ra,rb,rc OD 04
MULF ra,rb,rc OD 05
DIVFUZ ra,rb,rc OD 08
MULFUZ ra,rb,rc OD 09
DIVFU ra,rb,rc OD oc
MULFU ra,rb,rc OD OD
LDA d(rb) ,ra OE
reserved OF 00
VMERGE ra,vb,vc 10 00
IOTA ra,vc 10 01
VMERGE va,vb,vc 10 10
VADD ra,vb,vc 11 00
VADDV ra,vb,vc 11 01
VSUB ra,vb,vc 11 02
VSUBV ra,vb,vc 11 03
VADD va,vb,vc 11 10
VADDV va,vb,vc 11 11
VSUB va,vb,vc 11 12
VSUBV va,vb,vc 11 13
VCMPEQ ra,vb 12 00
VCMPNE ra,vb 12 01
VCMPGT ra,vb 12 02

Instruction Set Summary Company Confidential Page A-20
OPCODE LISTING 22 December 1985

VCMPLE ra,vb 12 03
VCMPGE ra,vb 12 04
VCMPLT ra,vb 12 05
VCMPEQ va,vb 12 10
VCMPNE va,vb 12 11
VCMPGT va,vb 12 12
VCMPLE va,vb 12 13
VCMPGE va,vb 12 14
VCMPLT va,vb 12 15
VAND ra,vb,vc 13 00
VOR ra,vb,vc 13 01
VXOR ra,vb,vc 13 02
VSLL ra,vb,vc 13 04
VSRL ra,vb,vc 13 05
VBIC ra,vb,vc 13 08
VORNOT ra,vb,vc 13 09
VEQV ra,vb,vc 13 OA
VAND va,vb,vc 13 10
VOR va,vb,vc 13 11
VXOR va,vb,vc 13 12
VSLL va,vb,vc 13 14
VSRL va,vb,vc 13 15
VBIC va,vb,vc. 13 18
VO RN OT va,vb,vc 13 19
VEQV va,vb,vc 13 lA
VDIV · ra,vb,vc 14 00
VDIVV ra,vb,vc 14 01
VMULL ra,vb,vc 14 02
VMULV ra,vb,vc 14 03
VREM ra,vb,vc 14 04
VDIV va,vb,vc 14 10
VDIVV va,vb,vc 14 11
VMULL va,vb,vc 14 12
VMULV va,vb,vc 14 13
VREM va,vb,vc 14 14
VCVTFLZ va,vc 15 10
VCVTLFZ va,vc 15 11
VCVTFL va,vc 15 14
VCVTLF va,vc 15 15
VCVTFG va,vc 16 10
VCVTLG va,vc 16 11
VCVTGLZ va,vc 17 10
VCVTGFZ va,vc 17 11
VCVTGL va,vc 17 14
VCVTGF va,vc 17 15
VCVTGFUZ va,vc 17 19
VCVTGFU va,vc 17 lD
VADDGZ ra,vb,vc 18 00
VSUBGZ ra,vb,vc 18 01
VADDG ra,vb,vc 18 04
VSUBG ra,vb,vc 18 05
VADDGUZ ra,vb,vc 18 08
VSUBGUZ ra,vb,vc 18 09
VADDGU ra,vb,vc 18 oc

Instruction Set Summary Company Confidential Page A-21
OPCODE LISTING 22 December 1985

VSUBGU ra,vb,vc 18 OD
VADDGZ va,vb,vc 18 10
VSUBGZ va,vb,vc 18 11
VADDG va,vb,vc 18 14
VSUBG va,vb,vc 18 15
VADDGUZ va,vb,vc 18 18
VSUBGUZ va,vb,vc 18 19
VADDGU va,vb,vc 18 lC
VSUBGU va,vb,vc 18 lD
VADDFZ ra,vb,vc 19 00
VSUBFZ ra,vb,vc 19 01
VADDF ra,vb,vc 19 04
VSUBF ra,vb,vc 19 05
VADDFUZ ra,vb,vc 19 08
VSUBFUZ ra,vb,vc 19 09
VADDFU ra,vb,vc 19 oc
VSUBFU ra,vb,vc 19 OD
VADDFZ va,vb,vc 19 10
VSUBFZ va,vb,vc 19 11
VADDF va,vb,vc 19 14
VSUBF va,vb,vc 19 15
VADDFUZ va,vb,vc 19 18
VSUBFUZ va,vb,vc 19 19
VADDFU va,vb,vc 19 lC
VSUBFU va,vb,vc 19 lD
VCMPGEQ ra,vb lA 00
VCMPGNE ra,vb lA 01
VCMPGGT ra,vb lA 02
VCMPGLE ra,vb lA 03
VCMPGGE ra,vb lA 04
VCMPGLT ra,vb lA 05
VCMPGEQ va,vb lA 10
VCMPGNE va,vb lA 11
VCMPGGT va,vb lA 12
VCMPGLE va,vb lA 13
VCMPGGE va,vb lA 14
VCMPGLT va,vb lA 15
VCMPFEQ ra,vb lB 00
VCMPFNE ra,vb lB 01
VCMPFGT ra,vb lB 02
VCMPFLE ra,vb lB 03
VCMPFGE ra,vb lB 04
VCMPFLT ra,vb lB 05
VCMPFEQ va,vb lB 10
VCMPFNE va,vb lB 11
VCMPFGT va,vb lB 12
VCMPFLE va,vb lB 13
VCMPFGE va,vb lB 14
VCMPFLT va,vb lB 15
VDIVGZ ra,vb,vc lC 00
VMULGZ ra,vb,vc lC 01
VD IVG ra,vb,vc lC 04
VMULG ra,vb,vc lC 05
VDIVGUZ ra,vb,vc lC 08

Instruction Set Summary Company Confidential Page A-22
OPCODE LISTING 22 December 1985

VMULGUZ ra,vb,vc lC 09
VDIVGU ra,vb,vc lC oc
VMULGU ra,vb,vc lC OD
VDIVGZ va,vb,vc lC 10
VMULGZ va,vb,vc lC 11
VD IVG va,vb,vc lC 14
VMULG va,vb,vc lC 15
VDIVGUZ va,vb,vc lC 18
VMULGUZ va,vb,vc lC 19
VDIVGU va,vb,vc lC lC
VMULGU va,vb,vc lC lD
VDIVFZ ra,vb,vc 10 00
VMULFZ ra,vb,vc lD 01
VD I VF ra,vb,vc lD 04
VMULF ra,vb,vc lD 05
VDIVFUZ ra,vb,vc lD 08
VMULFUZ ra,vb,vc lD 09
VDIVFU ra,vb,vc 10 oc
VMULFU ra,vb,vc lD OD
VDIVFZ va,vb,vc 10 10
VMULFZ va,vb,vc lD 11
VD I VF va,vb,vc 10 14
VMULF va,vb,vc. 10 15
VDIVFUZ va,vb,vc 10 18
VMULFUZ va,vb,vc lD 19
VDIVFU va_,vb,vc 10 le
VMULFU va,vb,vc 10 10
reserved lE 00
reserved lF 00
BEQ ra,dest 20
BNE ra,dest 21
BGT ra,dest 22
BLE ra,dest 23
BGE ra,dest 24
BLT ra,dest 25
BLBC ra,dest 26
BLBS ra,dest 27
JSR ra,dest 28
JSR ra,(rb) 29 00
FOB ra 2A
reserved 2B 00
reserved 2C 00
EPIRESO 20
EPIRESl 2E
EPIRES2 2F
VLOL ra,rb,vc 30 02
VLDQ ra,rb,vc 30 03
VSTL ra,rb,vc 30 06
VSTQ ra,rb,vc 30 07
VGATHL ra,vb,vc 31 02
VGATHQ ra,vb,vc 31 03
VSCATL ra,vb,vc 31 06
VSCATQ ra,vb,vc 31 07
RDVL re 32 00

Instruction Set Summary Company Confidential Page A-23
OPCODE LISTING 22 December 1985

RDVC re 32 01
RDVML re 32 02
RDVMH re 32 03
WRVL ra 33 00
WRVC ra 33 01
WRVML ra 33 02
WRVMH ra 33 03
COP RD ra 34
COPWR ra 35
EPIRES3 36
EPIRES4 37
LDB d(rb),ra 38
LOW d(rb),ra 39
LDL d(rb),ra 3A
LDQ d(rb),ra 3B
STB ra,d(rb) JC
STW ra,d(rb) 30
STL ra,d(rb) 3E
STQ ra,d(rb) 3F

-· ~--

'.~

Company Confidential

APPENDIX B

64-BIT ARCHITECTURE

B.l GOALS AND NON-GOALS

At some point in the future the proposed 32-bit PRISM architecture
will run out of virtual address bits. When this event occurs it is
highly desirable to upgrade the PRISM architecture to a larger virtual
address and migrate software with as little effort as possible.

If all software were written correctly and in a higher level language,
then the source programs could simply be recompiled to take advantage
of the larger virtual address space. It is doubtful, however, that
this level of transportability will be achieved since a large amount
of VAX software which is written in BLISS will be transported to PRISM
architecture machines with little or no change (i.e., most BLISS
software will not be rewritten to alleviate address size
dependencies).

This appendix describes a possible 64-bit extension of the PRISM
architecture. It does not claim or imply that this is an optimal
solution, or for that matter, the one that will actually be
implemented. It assumes that the 32-bit architecture specified in
this document will be implemented first, and later, a 64-bit
architecture with a compatible 32-bit mode will be implemented. This
would allow software to be migrated to the extended architecture
without extensive rewrite.

The 32-bit PRISM architecture has 32-bit registers. There is a
defined set of 32-bit integer operations, 32-bit single precision
floating operations and 64-bit double precision floating operations on
even/odd register pairs. Virtual addresses are 32-bits long.

The proposed 64-bit architecture has 64-bit registers. There is a
defined set of 64-bit integer operations, 32-bit single precision
floating operations and 64-bit double precision floating operations.
Virtual addresses are 64-bits long.

In addition, the 64-bit architecture has a 32-bit mode which is
enabled by a bit in the PS. When running with 32-bit mode enabled,
integer operations are executed compatibly with the 32-bit
architecture and virtual addresses are constrained to 32-bits. Double

"'

64-bit Architecture
GOALS AND NON-GOALS

Company Confidential Page B-2
22 December 1965

precision floating operations are executed using even/odd register
pairs.

Goals of this proposal are:

l. To design an architectural solution to the quandry
surrounding the cost effectiveness of a 32-bit architecture
versus the long-term desirability of a 64-bit architecture.

2. To be able to run 32-bit software on a 64-bit architecture
WITHOUT recompilation or relinking.

Architectural constraints are:

1. A 32-bit program when run on a 64-bit machine must get
identical answers. This means that if a computation
overflows on the 32-bit machine it must also overflow on the
64-bit machine.

2. It must be possible to write a program that may be compiled
and run on either the 32- or 64-bit environment without any
source changes.

j: Non-goals are:

1. For a program compiled for a 64-bit architecture to be able
to run on a 32-bit machine without recompilation.

The architectural modifications are such that new instructions are not
required. The definition of an operation depends on whether the
program is running in 32-bit or 64-bit mode.

B.2 DATA TYPES

The 64-bit architecture supports the following data types:

1. By~e - zero extended loads and stores only.

2. Word - zero extended loads and stores only.

3. Longword - zero extended loads and stores only.

4. Quadword - complete set of arithmetic, logical, and compare
operations. This is the primary integer data type. All
operations provided for longwords in the 32-bit architecture
are provided on quadwords in the 64-bit architecture.

5. F floating - same ope rat ions
eicept that converts to and
instead of longword.

as the 32-bit
from quadword

architecture
are provided

64-bit Architecture
DATA TYPES

Company Confidential Page B-3
22 December 1985

6. G floating - same operations
except that converts to and
instead of longword.

B.3 REGISTERS

B.3.1 Scalar Registers

as the 32-bit
from quadword

architecture
are provided

There are 64 scalar registers, each 64-bits wide. Rl is the stack
pointer. RO always reads as zero and writes are ignored.

B.3.2 vector Regi~ters

The vector registers are identical to those in the 32-bit
architecture. There are 16 vector registers, each containing 64
elements. Each element is 64-bits wide. The Vector Length register
is 6-bits wide. The Vector Mask register is 64-bits wide. The Vector
Count register is 7-bits wide.

B.3.3 Program Counter

The PC is 64-bits wide. Bits <1:0> and high order bits corresponding
to reserved virtual address bits are RAZ/IGN (see Section B.6.2).

B.4 INSTRUCTION FORMATS

All instructions are 32-bits long. The instruction formats and
encodings are identical to those used in the 32-bit architecture.

B.5 INSTRUCTION SET

The definition of an operation depends on whether the program is
running in 32-bit or 64-bit mode. In 32-bit mode all integer
operations are zero extended from bit 32 through 63. This is required
so that addresses are the same in 32-bit mode as they are in 64-bit
mode. The operating system must allocate space for 32-bit mode
programs from the first 4 Gbytes of the virtual address space.
Effective address calculations for loads and stores are zero extended
from bit 32 through 63 also. And branches are constrained to not go
outside the 32-bit range.

j

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-4
22 December 1985

The following sections describe instruction operation in 32- and
64-bit modes. Table B-1 describes the instruction notation.

Table B-1: Instruction Notation

--Notation Meaning
--
L x

L_QRn

I

When used on the left hand side of an assignment
statement, bits x<31:0> receive the result and bits
x<63:32> are cleared. When used as a source operand,
only bits x<31:0> participate in the operation.

When used on the left hand side of an assignment
statement, bits <31:0> of each of the even-odd register
pair QRn receive the low and high parts of the result and
bits <63:32> of each of the register pair are cleared.
When used as a source operand, only bits <31:0> of each
of the even-odd register pair QRn participate in the
operation.

This designator is used to denote integer data type in
convert instruction mnemonics. In 32-bit mode, I denotes
longword, and in 64-bit mode I denotes quadword • .

-----~-----~--

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-5
22 December 1985

B.5.l MEMORY LOAD/STORE INSTRUCTIONS

Instr

LDA

LDB

LDW

LDL

LDQ

STB

STW

STL

STQ

RMAQI

VLDL

VLDQ

32-bit Mode

L Ra <- Rbv + SEXT(disp)

L va <- Rbv + SEXT(disp)
L-Ra <- ZEXT((va)<7:0>)

L va <- Rbv + SEXT(disp)
L-Ra <- ZEXT((va)<lS:O>)

L va <- Rbv + SEXT{disp)
L-Ra <- (va)<Jl:O>

L va <- Rbv + SEXT{disp)
L:QRa <- (va)<63:0>

L va <- Rbv ·+ SEXT(disp)
Cva) <- Rav<7:0>

L va <- Rbv + SEXT(disp)
Cva) <- Rav<lS:O>

L va <- Rbv + SEXT{disp)
(va) <- Rav<Jl:O>

va <- Rbv + SEXT{disp)
(va) <- L_QRav

L va <- R4
L-QR4 <- (va){interlocked}
{va){interlocked} <-

{L_QR4 AND L_QR6} + L_QR8

L va <- Rbv
FOR i <- 0 TO VL-l

BEGIN
Vc[i] <- (va)<Jl:O>
L va <- va + Rav
END

L va <- Rbv
FOR i <- 0 TO VL-1

BEGIN
Vc[i] <- {va)<63:0>
L va <- va + Rav
END

64-bit Mode

Ra <- Rbv + SEXT(disp)

va <- Rbv + SEXT(disp)
Ra <- ZEXT((va)<7:0>)

va <- Rbv + SEXT(disp)
Ra <- ZEXT((va)<l5:0>)

va <- Rbv + SEXT(disp)
Ra<- ZEXT((va)<3l:O>)

va <- Rbv + SEXT(disp)
Ra <- (va)<63:0>

va <- Rbv + SEXT(disp)
(va) <- Rav<7:0>

va <- Rbv + SEXT(disp)
(va) <- Rav<lS:O>

va <- Rbv + SEXT(disp)
(va) <- Rav<3l:O>

va <- Rbv + SEXT(disp)
(va) <- Rav

va <- R4
RS<- (va){interlocked}
(va){interlocked} <-

{RS AND R6} + R7

va <- Rbv
FOR i <- 0 TO VL-l

BEGIN
Vc[i] <- (va)<31:0>
va <- va + Rav
END

va <- Rbv
FOR i <- 0 TO VL-1

BEGIN
Vc[i] <- (va)<63:0>
va <- va + Rav
END

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-6
22 December 1985

Instr 32-bit Mode

VGATHL FOR i <- 0 TO VL-1
BEGIN
L va <-Rav+ Vb[i]
vcCil <- <va)<Jl:O>
END

VGATHQ FOR i <- 0 TO VL-1
BEGIN
L va <- Rav + Vb[i]
Vc[i] <- (VA)<63:0>
END

VSCATL FOR i <- 0 TO VL-1
BEGIN
L va <-Rav+ Vb[i]
(va> <- vc[i]<Jl:O>
END

VSCATQ FOR i <- 0 TO VL-1
BEGIN ··
L va <- Rav + Vb[i]
Cva) <- vcCil
END

64-bit Mode

FOR i <- 0 TO VL-1
BEGIN
va <- Rav + Vb[i]
Vc[i] <- (va)<ll:O>
END

FOR i <- 0 TO VL-1
BEGIN
va <- Rav + Vb[i]
Vc[i] <- (va)<63:0>
END

FOR i <- 0 TO VL-1
BEGIN
va <- Rav + Vb[i]
(va) <- Vc[i]<31:0>
END

FOR i <- 0 TO VL-1
BEGIN
va <-Rav + Vb[i]
(va) <- Vc[i]
END

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-7
22 December 1985

B.5.2 INTEGER ARITHMETIC INSTRUCTIONS

Instr 32-bit Mode

ADD
SUB
MUL
DIV
REM L_Rc <- L_Rbv op L_Rav

MULH L Re <-
-{L_ Rbv * L_Rav}<63:32>

tJMULH L Re <-
-{L_Rbv *U L_Rav}<63:32>

CMP IF L Rav op L Rbv THEN
L Re <- l

VADD
VSUB
VDIV
VMUL

ELSE
L_Rc <- 0

VREM FOR i <- 0 TO VL-1

VCMP

BEGIN

Vc[i]

Vc[i]
END

VM <- 0

{Vector op Vector}
<- L Va[i] op L Vb[i]

{Scalar op victor}
<- L_Rav op L_Vb[i]

FOR i <- 0 TO VL-1
BEGIN

{Vector op Vector}
IF L Va[i] op L Vb[i] THEN

VM'<i> <- 1 -
{Scalar op Vector}

IF L Rav op L Vb[i] THEN
VM'<i> <- l -

END

64-bit Mode

Re <- Rbv op Rav

NOT IMPLEMENTED

NOT IMPLEMENTED

IF Rav op Rbv THEN
Re <- l

ELSE
Re <- 0

FOR i <- 0 TO VL-1
BEGIN

Vc[i] <- Va[i] op Vb[i]

Vc[i] <-Rav op Vb[i]
END

VM <- 0
FOR i <- 0 TO VL-1

BEGIN

IF Va[i] op Vb[i] THEN
VM<i> <- l

IF Rav OP Vb[i] THEN
VM<i> <- l

END

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-8
22 December 1985

B.5.3 LOGICAL AND SHIFT INSTRUCTIONS

Instr 32-bit Mode

AND
BIC
OR
ORN OT
XOR
EQV L Re <- L Rbv op L_Rav

SLL
SRL
SRA L Re <- op{L_Rbv,Rav<4:0>)

ROT L Re <- op{L Rbv,Rav<4:0>)

VAND
VOR
VXOR
VBIC
VO RN OT
VEQV FOR i <- 0 TO VL-1

BEGIN

Vc[i]

Vc[i]
END

{Vector op Vector}
<- L Va[i] op L Vb[i]

Tscalar op Vector}
<- L_Rav op L_Vb[i]

VMERGE FOR i <- 0 TO VL-1
BEGIN

VSLL
VSRL

{Vector op Vector}
IF VM<i> EQ 0 THEN

Vc[i] <- Va[i]
ELSE

Vc[i] <- Vb[i]
{Scalar op Vector}

IF VM<i> EQ 0 THEN
Vc[i] <- L QRav

ELSE -
Vc[i] <- Vb[i]

END

FOR i <- 0 TO VL-1
BEGIN

{vector op vector}
Vc[i] <-

op(L Vb[i],Va[i]<4:0>)
- {vector op scalar}

Vc[i] <­
op(L_Vb[i],Rav<4:0>)

64-bit Mode

Re <- Rbv op Rav

Re <- op(Rbv,Rav<S:O>)

Re <- op(Rbv,Rav<S:O>)

FOR i <- 0 TO VL-1
BEGIN

Vc[i] <- Va[i] op Vb[i]

Vc[i] <- Rav op Vb[i]
END

FOR i <- 0 TO VL-1
BEGIN

IF VM<i> EQ 0 THEN
Vc[i] <- Va[i]

ELSE
Vc(i] <- Vb[i]

IF VM<i> EQ 0 THEN
Vc[i] <- Rav

ELSE
Vc[i] <- Vb[i]

END

FOR i <- 0 TO VL-1
BEGIN

Ve[i] <-
op(Vb[i] ,Va[i]<5:0>)

Ve[i] <-
op(Vb[i] ,Rav<S:O>)

64-bit Architecture
INSTRUCTION SET

END

Company Confidential

END

Page B-9
22 December 1985

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-10
22 December 1985

B.5.4 FLOATING POINT INSTRUCTIONS

Instr 32-bit Mode

ADDF
SUBF
DIVF
MULF L_Rc <- L Rbv op L_Rav

ADDG
SUBG
MULG
DIVG L_QRc <- L_QRbv op L_QRav

CMPF IF L Rav op L_Rbv THEN
Re-<- 1

ELSE
Re <- 0

CMPG IF L QRav op L_QRbv THEN
Re-<- 1

CVTFG

CVTGF

CVTFI

CVTGI

CVTIF

CVTIG

VADDF
VSUBF
VD I VF

ELSE
Re <- 0

L_QRe <- cvt{L_Rav)

L_Rc <- cvt{L_QRav)

L_Rc <- cvt{L_Rav)

L_Rc <- cvt(L_QRav)

L Re <- cvt(L_Rav)

L_QRe <- cvt{L_Rav)

VMULF FOR i <- 0 TO VL-1
BEGIN

Vc[i]

Vc[i]
END

{Vector op Vector}
<- L Va[i] op L Vb[i]

{Scalar op Vector}
<- L_Rav op L_Vb[i]

64-bit Mode

L Re <- L Rbv op L_Rav

Re <- Rbv op Rav

IF L_Rav op L_Rbv THEN
Re <- 1

ELSE
Re <- 0

IF Rav op Rbv THEN
Re <- 1

ELSE
Re <- 0

Re <- cvt{L_Rav)

L_Rc <- cvt{Rav)

Re <- cvt{L_Rav)

Re <- cvt{Rav)

L_Re <- cvt{Rav)

Re <- cvt(Rav)

FOR i <- 0 TO VL-1
BEGIN

Ve[i]

Ve[i]
END

<- L_Va[i] op L_Vb[i)

<- L Rav op L_Vb[i]

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-11
22 December 1985

Instr

VADDG
VSUBG
VD IVG

32-bit Mode

VMULG FOR i <- 0 TO VL-1
BEGIN

Vc[i]

Ve[i]
END

VCMPF VM <- 0

{Vector op Vector}
<- Va[i] op Vb[i]

{Scalar op Vector}
<- L_QRav op Vb[i]

FOR i <- 0 TO VL-1
BEGIN

{Vector cmp Vector}
IF L_Va[i] op L_Vb[i] THEN

VM<i> <- l
ELSE

VM<i> <- 0
{Scalar cmp Vector}

IF ';L Rav op L Vb[i] THEN
VM"<i> <- 1 -

ELSE
VM<i> <- 0

END

VCMPG VM <- 0
FOR i <- 0 TO VL-1

BEGIN
{Vector cmp Vector}

IF Va[i] op Vb[i] THEN
VM<i> <- 1

ELSE
VM<i> <- 0

{Scalar cmp Vector}
IF L QRav op Vb[i) THEN

VM"<i> <- l
ELSE

VM<i> <- 0
END

64-bit Mode

FOR i <- 0 TO VL-1
BEGIN

Vc[i] <- Va[i] op Vb[i]

Vc[i] <- Rav op Vb[i]
END

VM <- 0
FOR i <- 0 TO VL-1

BEGIN

IF L Va[i] op L Vb[i] THEN
VM"<i> <- 1 -

ELSE
VM<i> <- 0

IF L Rav op L Vb[i] THEN
VM"<i> <- l -

ELSE
VM<i> <- 0

END

VM <- 0
FOR i <- 0 TO VL-1

BEGIN

IF Va[i] op Vb[i] THEN
VM<i> <- 1

ELSE
VM<i> <- 0

IF Rav op Vb[i] THEN
VM<i> <- l

ELSE
VM<i> <- 0

END

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-12
22 December 1985

Instr 32-bit Mode

VCVTFG FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- cvt(L Va[i])
END -

VCVTGF FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- cvt(Va[i])
END

VCVTFI FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- cvt(L Va[i])
END -

VCVTGI FOR i <- 0 TO VL-1
BEGIN

VCVTIF

Vc[i] <- cvt(Va[i])
END

VCVTIG FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- cvt(L_Va[i])
END

64-bit Mode

FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- cvt(L Va[i])
END -

FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- cvt(Va[i])
END

FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- cvt(L Va[i])
END -

FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- cvt(Va[i])
END

FOR i <- 0 TO VL-1
BEGIN
Vc[i] <- cvt(Va[i])
END

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-13
22 December 1985

B.5.5 CONTROL INSTRUCTIONS

Instr 32-bit Mode

Bxx L va <-PC+ {4*SEXT(disp)}
IF TEST(L Rav) THEN

PC <- vi

FOB IF Rav<O> EQ 1 THEN
{FOB exception}

JSR {Branch format}
L va <- PC+ (4*SEXT(disp)}

{Memory format}
L va <- Rbv AND {NOT 3}
L Ra <- PC
PC <- va

64-bit Mode

va <-PC+ {4*SEXT(disp)}
IF TEST(Rav) THEN

PC <- va

IF Rav<O> EQ l THEN
{FOB exception}

va <-PC+ {4*SEXT(disp)}

va <- Rbv AND {NOT 3}
Ra <- PC
PC <- va

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-14
22 December 1985

B.5.6 MISCELLANEOUS INSTRUCTIONS

Instr 32-bit Mode

BPT {push current L_PC and
PS on kernel stack}

{Change Mode to Kernel}
{dispatch through SCB vector}

BUGCHK {push current L_PC and
PS on kernel stack}

{Change Mode to Kernel}
{dispatch through SCB vector}

64-bit Mode

{push current PC and
PS on kernel stack}

{Change Mode to Kernel}
{dispatch through SCB vector}

{push current PC and
PS on kernel stack}

{Change Mode to Kernel}
{dispatch through SCB vector}

DRAIN {Stall instruction issuing until all prior instructions completed}

IFLUSH {Invalidate instruction prefetch and instruction cache}

IOTA

MOVPS

PROBE

RDVC

WRVC

RDVL

WRVL

RDVMH

RDVML

WRVMH

j <- 0
tmp <- O
FOR i <- 0 TO VL-1

BEGIN
IF VM<i> EQ 1 THEN

BEGIN
Vc[j] <- tmp
j <- j + l
END

L tmp <- tmp + Rav
END

vc <- j

L R4 <- PS

L R4 contains the base address
L RS contains the signed offset
Rb contains the access mode
R7<0> <- {success}
R7<63:1> <- 0

L_Rc <- ZEXT(VC)

VC <- Rav<6:0>

L_Rc <- ZEXT(VL)

VL <- Rav<S:O>

L Re <- VM<63:32>

L Re <- VM<31:0>

VM<63:32> <- L Rav

j <- 0
tmp <- 0
FOR i <- 0 TO VL-1

BEGIN
IF VM<i> EQ 1 THEN

BEGIN
Vc[j] <- tmp
j <- j + 1
END

tmp <- tmp + Rav
END

vc <- j

R4 <- ZEXT(PS)

R4 contains the base address
RS contains the signed off set
R6 contains the access mode
R7<0> <- {success}
R7<63:1> <- 0

Re <- ZEXT(VC)

VC <- Rav<6:0>

Re <- ZEXT(VL)

VL <- Rav<S:O>

Re <- VM

Re <- VM

VM <- Rav

64-bit Architecture
INSTRUCTION SET

WRVML VM<31:0> <- L Rav

Company Confidential

VM <- Rav

Page B-15
22 December 1985

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-16
22 December 1985

Instr 32-bit Mode

REI tmpl <- (SP)<31:0>
IF tmpl<31> EQ 0 THEN

{return to 32-bit mode}
ELSE

{illegal operation}

SWASTEN tmp <- R4<0>
L R4 <- ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>> <- tmp

64-bit Mode

tmpl <- (SP)<31:0>
IF tmpl<31> EQ 0 THEN

{return to 32-bit mode}
ELSE

{return to 64-bit mode}

tmp <- R4<0>
R4 <- ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>> <- tmp

64-bit Architecture
INSTRUCTION SET

Company Confidential Page B-17
22 December 1985

B.S.7 PRIVILEGED INSTRUCTIONS

Instr 32-bit Mode 64-bit Mode

HALT {halt processor or enter restart sequence}

MFPR

MTPR

RMAQIP

SWPCTX

SWIPL

IPR specific results are
returned in L_R4, L_RS, L_R6

L R4 and L RS contain
IPR specifTc source operands

1 va <- L QR4 AND {NOT 7}
L-QR4 <- Taddr){interlocked}
(va){interlocked} <-

{L_QR4 AND L_QR6} + L_QRB

L QR4 contains the physical
a3dress of the HWPCB.

tmp <- R4<2:0>
L R4 <- ZEXT(PS<IPL>)
PS<IPL> <- tmp

TBFLUSH {Invalidate all TB entries}

IPR specific results are
returned in R4, RS, R6

R4 and RS contain
IPR specific source operands

va <- R4 AND {NOT 7}
RS<- (addr){interlocked}
(va){interlocked} <-

{RS AND R6} + R7

R4 contains the physical
address of the HWPCB.

tmp <- R4<2:0>
R4 <- ZEXT(PS<IPL>)
PS<IPL> <- tmp

'
'

~--
·. ,,

64-bit Architecture
MEMORY MANAGEMENT

B.6 MEMORY MANAGEMENT

Company Confidential

B.6.1 Virtual Address Space

Page B-18
22 December 1985

A virtual address is a 64-bit unsigned integer specifying a byte
location within the virtual address space. The page size ranges from
8 Kbytes to 64 Kbytes.

B.6.2 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction
and operand in memory. The virtual address consists of three Segment
Number fields, and a Byte Within Page field, as shown in Figure B-1

6
3 0

+------+-------------+-------------+-------------+------------------+ I Rsvd I Segl_Number· I Seg2_Number I Seg3_Number I Byte Within Page I
+------+-~-----------+-------------+-------------+------------------+

Figure B-1: Virtual Address Format

The byte within page field can be either 13, 14, 15, or 16 bits
depending on a · particular implementation. Thus, the allowable page
sizes are 8 KBytes, 16 Kbytes, 32 KBytes, and 64 KBytes. All three
segment number fields are the same size for a given implementation.
The segment number field is a function of the page size: all page
table entries at any given level fit in exactly one page. The PFN
field in the PTE is always 32 bits wide. Thus, as the page size grows
the virtual and physical address size also grows (as shown in Table
B-2).

Page
Size
(Bytes)

8 K
16 K
32 K
64 K

Table B-2: Virtual Address Options

Byte
Offset
(bits)

13
14
15
16

Segment
Size
(bits)

10
11
12
13

Virtual
Address
(bits)

43
47
51
55

Physical
Address

(bits)

45
46
47
48

64-bit Architecture
MEMORY MANAGEMENT

Company Confidential

B.6.3 Physical Address Space

Page B-19
22 December 1985

Physical addresses are at most 48 bits. A processor may choose to
implement a smaller physical address space by not implementing some
number of high order bits. The most significant implemented physical
address bit selects memory space when it is 0, and 1/0 space when it
is l.

B.6.4 Address Translation

Address translation is performed by accessing entries in a three-level
page table --structure. The Page Table Base Register (PTBR) contains
the physical page frame number of the highest level (Segment l) page
table. Bits <Segl_Nurnber> of the virtual address are used to index
into the first level page table to obtain the physical page frame
number of the base of the second level (Segment 2) page table. Bits
<Seg2 Number> of the virtual address are used to index into the second
level- page table to obtain the physical page frame number of the base
of the third level (Segment 3) page table. Bits <Seg3 Number> of the
virtual address are used to index the third level page-table to obtain
the physical Page Frame Number (PFN) of the page being referenced.
The PFN is concatenated with virtual address bits <Byte Within Page>
to obtain the physical address of the location being accessed. -

The processor uses a 64-bit Page Table Entry that is identical to the
one used in the 32-bit architecture. The algorithm to generate a
physical address from a virtual address is similar to the one used in
the 32-bit architecture with the addition of one more level of
mapping.

64-bit Architecture
PROCESSOR STATE

B.7 PROCESSOR STATE

3 3
1 0

Company Confidential

8 7

Page B-20
22 December 1985

5 4 3 2 l 0
+-+--+-----+-+-+-+---+
IVI
IAI
IXI

MBZ
I IVIVIVI I
I IPL IEIEIMI CMI
I INIFIMI I

+-+--+-----+-+-+-+---+

Figure B-2: Processor Status

Bits <30:0> of the PS are identical to the PS in the 32-bit
architecture. Bit <31> is the Virtual Address extension (VAX) bit.
When set, the processor is in 64-bit mode. When clear the processor
is in 32 bit mode.

3
1 2 1 0

+---------------~~--+---+ I I I I
I Instruction Virtual Address <31:0> I G I
I I N I
+-------~--~+---+ I .
I Instruction Virtual Address <63:32>
I
+--~----------------------+

Figure B-3: Program Counter

B.B EXCEPTION STACK FRAMES

In 32-bit mode, the exception stack frames are identical to those in
the 32-bit architecture. The exception stack frames for 64-bit mode
are shown in the subsequent sections. A processor always enters
64-bit mode when an exception occurs.

64-bit Architecture
EXCEPTION STACK FRAMES

B.8.1 Arithmetic Traps

3

Company Confidential Page B-21
22 December 1985

1 0
+---+
I
I Except ion Summary : SP
I
+---+ I Vector Register
I Write Mask for
I Registers VO - Vl5
+---+ I Scalar Register
I Write Mask for
I Registers RO - R3l
+---+ I Scalar Register I
I Write Mask for I
I Registers R32 - R64 I
+---+ I
I Processor Status (PS)
I
+---+ I
I Zero
I
+---+ Virtual

Address <31:0> of Next
Instruction

+---+ I Virtual I
I Address <63:32> of Next I
I Instruction I
+---+

Figure B-4: Arithmetic Trap Exception Frame

64-bit Architecture
EXCEPTION STACK FRAMES

Company Confidential

B.8.2 Scalar Alignment Fault

3

Page B-22
22 December 1985

1 0
+---+
I Virtual I
I Address <31:0> of I :SP
I Reference I
+---+
I Virtual I
I Address <63:32> of I
I Reference I
+---+
I
I Faulting Instruction
I
+---+

Zero

+---------------~---+
I
I Processor Status (PS)
I I
+---+
I I
I Zero I
I I
+---+

Virtual
Address <31:0> of Faulting

Instruction
+---+
I Virtual I
I Address <63:32> of Faulting I
I Instruction I
+------------------~---------------------------------------,----+

Figure B-5: Scalar Alignment Fault Exception Frame

...

64-bit Architecture
EXCEPTIO~ STACK FRAMES

Company Confidential Page B-23
22 December 1985

B.8.3 Vector Alignment Abort

3
1 0

+---+
Virtual

Address <31:0> of :SP
Reference

+---+
I Virtual I
I Address <63:32> of I
I Reference I
+---+
I I
I Processor Status (PS) I
I I
+---+
I I
I Zero I
I I
+---+ I Virtual I
I Address <31:0> of Next I
I Instruct ion I
+---+

Virtual I
Address <63:32> of Next I

Instruction I
~ +---+

Figure B-6: Vector Alignment Abort Exception Frame

f.

;_

64-bit Architecture
EXCEPTION STACK FRAMES

Company Confidential Page B-24
22 December 1985

B.8.4 BPT, BUGCHK, Vector Enable, And Privileged Instruction Faults

3
l 0

+---+
Processor Status (PS)

+---+
I

Zero I
I

+---+ Virtual I
Address <31:0> of Faulting I

Instruction I
+---+ Virtual

Address <63:32> of Faulting
Instruction

·----------------~--+

Figure B-,7: · BPT, BUGCHK, and Privileged Instruction Fault
Exception Frame

:SP

64-bit Architecture
EXCEPTION STACK FRAMES

Company Confidential Page B-25
22 December 1985

B.8.5 FOB, Illegal Operand, And Reserved Opcode Faults

3
l 0

+---+
I
I Faulting Instruction :SP
I
+---+
I
I Zero
I
+---+
I I
I Processor Status (PS) I
I I
+---+
I
I Zero
I
+---+ I Virtual
I Address <31:0> of Faulting
I Instruction
+---+ I ,., · Virtual
I Address <63:32> of Faulting
I Instruction
+---+
Figure B-8: FOB, Illegal Operand, and Reserved Opcode Fault

Exception Frame

••

64-bit Architecture
EXCEPTION STACK FRAMES

Company Confidential

B.8.6 Memory Management Faults

3

Page B-26
22 December 1985

l 1 0
+---+-+
I Bits <31:0> of Related I
I Virtual Address in I :SP
I Page I
+---+ I Bits <63:32> of Related I
I Virtual Address in I
I Page I
+---+-+
I IRI
I Zero I /I
I IWI
+---+-+
I
I Zero
I
+----------------.---+
I
I Processor Status (PS)
I
+---+

Zero
I
I
I

+---+ I Virtual I
I Address <31:0> of Faulting I
I Instruction I
+---+ Virtual I

Address <63:32> of Faulting I
Instruction I

+---+

Figure B-9: Memory Management Fault Exception Frame

64-bit Architecture
EXCEPTION STACK FRAMES

B.8.7 Machine Check

3

Company Confidential Page B-27
22 December 1985

l 0
+---+ I Number I
I of I :SP
I Bytes Pushed I
+---+
I I
I Zero I
I I
+---+

•
• .

An even number of
implementation

specific
longwords

•
+---+ I

·~ I Processor Status (PS)
I
+---+
I I
I Zero I
I I
+---+ I Virtual I
I Address <31:0> of Next I
I Instruction I
+---+ I Virtual I
I Address <63:32> of Next I
I Instruction I
+------------------~--+

Figure B-10: Machine Check Abort Exception Frame

64-bit Architecture
EXCEPTION STACK FRAMES

Company Confidential Page B-28
22 December 1985

B.8.8 Stack Alignment Abort

3
1 0

+---+
Processor Status (PS) :SP

+---+ I I
I Zero I
I I
+---+ Virtual I

Address <31:0> of Next I
Instruction I

+---+ Virtual I
Address <63:32> of Next I

Instruction I
+---+

Figure B-11: Stack Alignment Abort Exception Frame

64-bit Architecture Company Confidential Page B-29
EXCEPTION STACK FRAMES 22 December 1985

B.8.9 Vector Exceptions

3 3 2 2 2 2 2 1 l 1 l 1
1 0 8 7 6 1 0 9 8 7 2 1 6 5 0

+-+-----+-+-----------+-+-+-+-----------+-----------+-----------+
IV I E I LI IS IO ID I I I SRC I
IFI T IVI Zero ITIPITI ELT I CNT I or I
I S I Y I F I IR IR I YI I I DST I
+-+-----+-+-----------+-+-+-+-----------+-----------+-----------+
I I
I Zero I
I I
+---+ I Bits <31:0> of Related I
I Virtual Address in I
I Page I
+---+ I Bits <63:32> of Related I
I Virtual Address in I
I Page I
+---+ I Vector I
I Base I
I Address <31:0> I
+---+ I · Vector I
I Base I
I Address <63:32> I
+---+ I Stride <31:0>
I or
I Index Vector Register Number
+---+ I Stride <63:32> I
I or I
I Zero I
+---+

Figure B-12: Vector Exception Information Frame

64-bit Architecture
EXCEPTION STACK FRAMES

B.8.10 SCB Vectors

3

Company Confidential Page B-30
22 December 1985

l 2 1 0
+---+---+
I Virtual I s I
I Address <31: O> of I B I
I Service Routine I z I
+---+---+ Virtual

Address <63:32> of
Service Routine

+---+

Figure B-13: System Control Block Vector

64-bit Architecture Company Confidential
64-BIT MODE INTERNAL PROCESSOR REGISTERS

B.9 64-BIT MODE INTERNAL PROCESSOR REGISTERS

Page B-31
22 December 1985

Table B-3: Internal Processor Register (IPR) Summary

--Register Name Mnemonic Access

Address Space Number
AST Enable
AST Request Register
AST Summary Register
Console Receive Ctrl. Status
Console Receive Data Buff er
Console Transmit Ctrl. Status
Console Transmit Data Buffer
Stack Pointer Registers

Executive Stack Pointer
Supervisor Stack Pointer
User Stack Pointer

Interval Clock Int. Enable
Interprocessor Int. Enable
Interprocessor Int. Request
Privileged Context Block Base
Processor Base Register
Processor Serial Number
Page Table:Base Register
System Control Block Base
System Identification
Software Int. Request Register
Software Int. Summary Register
Trans. Buffer Check
Trans. Buffer Invalidate ASN
Trans. Buffer Invalidate Single
Time Of Year
Who-Am-I

ASN
AS TEN
AST RR
AST SR
CRCS
CRDB
CTCS
CTDB

ESP
SSP
USP
ICIE
IPIE
IPIR
PCBB
PRBR
PRSN
PTBR
SCBB
SID
SIRR
SISR
TBCHK
TBIASN
TBIS
TOY
WHAM I

R
R
w
R
R/W
R
R/W
w

R/W
R/W
R/W
R/W
R/W
w
R
R/W
R
R
R/W
R
w
R
R
w
w
R/W
R

R4

number
mask
mode
mask
enable
char
enable
char

address
address
address
enable
enable
number
address
value
serial
frame
address
ident
level
mask
number
number
number
time
number

RS R6

address status

address

--

.;; ..
'

INDEX
Company Confidential

Page Index-1
22 December 1985

INDEX

Abort
See Exceptions

Access Control Violation
exception, 5-9, 5-14, 6-24

Access modes
AST enable bit, 4-87, 7-4
AST pending bit, 7-4
defined, 5-1, 5-6
protection codes, 5-6, 5-7 to

5-9
Access type

defined, 5-6
operand notation, 4-4

ACV
See Access Control Violation
- exception

ADD (Add Integer with no Overflow
Detect), 4-18

ADDF (Add F Floating VAX
Rounding), 4-47

ADDFU (Add F floating VAX
RoundingT, 4-47

ADDFUZ fAdd F floating Round
toward zero), 4-47

ADDFZ (Add F Floating Round
toward Zero), 4-47

ADDG (Add G Floating VAX
Rounding), 4-4 7

ADDGU (Add G floating VAX
RoundingT, 4-47

ADDGUZ (Add G floating Round
toward Zero), 4-47

ADDGZ (Add G Floating Round
toward Zero), 4-47

Address Space Match (ASM) bit
See PTE, Address Space Match
- bit

Address Space Number (ASN), 5-12,
5-12 to 5-13, 8-23, 8-26

Address Space Number (ASN)
register, 5-13, 8-3, 11-9

Address translation
See Virtual address,
- translation

Addressing, 2-1
ADDV (Add Integer with Longword

Overflow Detect), 4-18
Aligrunent

F floating, 2-5
G:floating, 2-6
longword, 2-3

quadword, 2-4
word, 2-2

AND (Logical Product), 4-32
Arithmetic left shift instruction,

4-31
Arithmetic trap

See Exceptions, Arithmetic trap
AS~

See Address Space Number
AST

See Asynchronous System Trap
AST Enable (ASTEN) register, 6-41,

7-4, 8-4, 11-9
AST enable bit, 4-87, 7-4
AST Request Register (ASTRR),

6-40, 8-5
AST Summary Register (ASTSR), 7-4,

8-6, ll-9
ASTEN

See AST Enable (ASTEN) register
ASTRR

See AST Request Register
- (ASTRR)

AST SR
See AST Summary Register
- (ASTSR)

Asynchronous System Trap
and REI instruction, 4-86
and SWASTEN instruction, 4-87
and SWIPL instruction, 4-96
AST Request Register (ASTRR),

6-40
description, 6-7, 7-4
enable bit, 4-87, 7-4
software model for AST

processing, 7-4 to 7-6
when initiated, 7-4

BEL, ll-15, 11-16
BEQ (Branch if Register Equal to

Zero), 4-71
BGE (Branch if Register Greater

Than or Equal to Zero), 4-71
BGT (Branch if Register Greater

Than Zero), 4-71
BIC (Bit Clear), 4-32
Bit field extract, 4-31
Bit numbering, 2-1, 2-2, 2-3, 2-4,

2-5, 2-6
BLBC (Branch if Register Low Bit

is Clear), 4-71

INDEX
Company Confidential

BLBS (Branch if Register Low Bit
is Set), 4-71

BLE (Branch if Register Less Than
or equal to Zero), 4-71

BLT (Branch if Register Less Than
Zero), 4-71

BNE (Branch if Register Not Equal
to Zero), 4-71

Boolean function instructions,
4-32

BOOT console command, 11-17
Bootstrap in Progress (BIP) bit,

11-6, 11-8
Bootstrap master

!!! Bootstrapping, master
processor

Bootstrap slave
!!! Bootstrapping, slave

processors
Bootstrapping

See also Restart Parameter
- Block
adding a processor, 11-13
BOOT command, 11-17
console
a~d powe~fail, 11-10
and RPB; 11-2
command syntax, 11-16
commands, 11-16 to 11-27
control characters, 11-15
definition, 11-1
finding memory, 11-2
functionality, 11-14
language, 11-15
loading system software, 11-8
page tables, 11-7

flags, ll-8
initial page tables, 11-7 to

11-8 .
initializing IPRs, 11-8 to 11-9
master processor, 11-11, 11-12,

11-13
memory testing, 11-2
multiprocessor environment,

11-11 to 11-13
Processor Status, 6-5
program controlled console 1/0,

11-14
restart action, 11-10
ROM, 11-7
slave processors, 11-12, 11-13
State Longword, 11-6
summary of steps, 11-1
transfer control, 11-9 to 11-10

Page Index-2
22 December 1985

uniprocessor environment, 11-l
to 11-10

BPT (Breakpoint), 4-75, 6-17
Branch condition codes, 1-4, 1-6
Branch instruction format, 3-6,

4-73
Branch instructions

See also Control instructions
description of, 4-71
summary of, 4-70
test, 1-4, 4-71

BREAK, 11-14, 11-15
Breakpoint exception

description, 6-17
exception frame, 6-17
exception frame in 64-bit

architecture, B-24
Breakpoint instruction, 4-75,

6-17
Breakpoint SCB vector, 4-75
Bug Check exception

description, 6-18
exception frame, 6-18
exception frame in 64-bit

architecture, B-24
Bug Check instruction, 4-76, 6-18
BUGCHK (Bug Check), 4-76, 6-18
BUGCHK SCB vector, 4-76
Byte, 2-1
Byte Within Page field, 5-2

Cache
and IFLUSH instruction, 4-78,

9-4
data, 9-3
description, 9-4
implementation methods, 9-5 to

9-8
implementation requirements,

9-4 to 9-8
instruction, 9-3
invalidation, 9-3 to 9-4
pref etch, 9-8
TBFLUSH instruction, 4-97, 9-4

Character done (DON), 8-9, 8-10
Character ready (RDY), 8-7, 8-8
Character string, 2-7
Chopping, 4-43
Clusters, 1-7
CMPEQ (Compare Signed Longword

Equal), 4-19
CMPFEQ (Compare F floating Equal),

4-48 -
CMPFGE (Compare F floating

Greater Than or Equal), 4-48

INDEX
Company Confidential

CMPFGT (Compare F_floating
Greater Than), 4-48

CMPFLE (Compare F floating Less
Than or EqualT, 4-48

CMPFLT (Compare F floating Less
Than), 4-48 -

CMPFNE (Compare F_floating Not
Equal), 4-48

CMPGE (Compare Signed Longword
Greater Than or Equal), 4-19

CMPGEQ (Compare G floating Equal),
4-48 -

CMPGGE (Compare G_floating
Greater Than or Equal), 4-48

CMPGGT (Compare G floating
Greater Than)~ 4-48

CMPGLE (Compare G floating Less
Than or EqualT, 4-48

CMPGLT (Compare G floating Less
Than), 4-48 - ..

CMPGNE (Compare G floating Not
Equal), 4-48 - ·

CMPGT (Compare Signed Longword
Greater Than), 4-19

CMPLE (Compare Signed Longword
Less Than or Equal), 4-19

CMPLT (Compare Signed Longword
Less Than), 4-19

CMPNE (Compare Signed Longword
Not Equal), 4-19

CMPUGE (Compare Unsigned Longword
Greater Than or Equal), 4-20

CMPUGT (Compare Unsigned Longword
Greater Than), 4-20

CMPULE (Compare Unsigned Longword
Less Than or Equal), 4-20

CMPULT (Compare Unsigned Longword
Less Than), 4-20

Compilers, 1-5, 1-6, 1-7
Conditional Branch instructions,

4-71
Console

See Bootstrapping, console
Console commands

BOOT, 11-17
command syntax, 11-16
CONTINUE, 11-18
control characters, 11-15
CTRL/Q, 11-15
CTRL/S, 11-15
CTRL/U, 11-15
DEPOSIT, 11-19
EXAMINE, 11-20 to 11-23
INITIALIZE, 11-24
keywords, ll-16 to 11-27

START, 11-25
TEST, 11-26

Page Index-3
22 December 1985

Console interrupts, 6-8 to 6-9
Console mode, 4-89, 11-14, 11-15
Console Receive Control Status

(CRCS) register, 6-8, 8-7,
11-9

Console Receive Data Buffer
(CRDB) register, 8-8

Console terminal, 11-14, 11-15
Console Transmit Control Status

(CTCS) register, 6-9, 8-9,
11-9

Console Transmit Data Buffer
(CTDB) register, 8-10

Context switch, 1-7, 4-94 to 4-95,
5-12, 6-4, 7-2, 7-6 to 7-9

See also SWPCTX
CONTINUE console command, 11-18
Control characters, 11-15
Control instructions

descriptions of, 4-70 to 4-73
summary of, 4-70

Control Transferred to System
Software (CTS) bit, 11-6

Conventions
figure drawing, 1-10
used in PRISM SRM, 1-9 to 1-10

Convert F Floating to G Floating
instruction, 4-49 -

Convert Floating to Integer
instructions, 4-51

Convert G Floating to F Floating
instructions, 4-50 -

Convert instruction format, 3-B
Convert Integer to Floating

instructions, 4-52
COPRD (Coprocessor Read), 4-99
Coprocessor instruction format,

3-9
Coprocessor instructions

descriptions of, 4-98 to 4-100
summary of, 4-98

Coprocessor Read/Write
instructions, 4-99 to 4-100

COPWR (Coprocessor Write), 4-99
CRCS

See Console Receive Control
--- Status (CRCS) register

CRDB
See Console Receive Data Buffer
--- (CRDB) register

CTCS
See Console Transmit Control
--- Status (CTCS) register

INDEX
Company Confidential

CTDB
See Console Transmit Data
- Buff er (CTDB) register

CTRL/Q console co!Mland, ll-15
CTRL/S console colMland, 11-15
CTRL/U console co!Mland, ll-15
Current Mode stack

Fault On Bit exception frame,
6-19

Illegal Operand exception frame,
6-20

Privileged Instruction
· exception frame, 6-21
Reserved Opcode exception frame,

6-22
Scalar Alignment exception

frame, 6-16
CVTFG (Convert F floating to

G floating),-4-49
CVTFL-(Convert F floating to

Longword VA>CRounding), 4-51
CVTFLZ (Convert F floating to

Longword Rouno toward Zero),
4-51

CVTGF (Convert G floating to
F_floating Vix Rounding),
4-50

CVTGFU (Convert G ·floating to
F floating VAX Rounding),
'=so ·

CVTGFUZ (Convert G floating to
F_floating Round toward Zero),
4-50

CVTGFZ (Convert G floating to
F floating Round toward Zero),
'=so

CVTGL (Convert G floating to
Longword VAX-Rounding), 4-51

CVTGLZ (Convert G floating to
Longword Rouno toward Zero),
4-51

CVTLF (Convert Longword to
F_floating VAX Rounding),
4-52

CVTLFZ (Convert Longword to
F_floating Round toward Zero),
4-52

CVTLG (Convert Longword to
G_floating), 4-52

D floating data type, 2-7
Dita Alignment exceptions

See Exceptions, Data Alignment
Da~sharing, 9-1 to 9-2, 9•7
Data type

byte, 2-1

Page Index-4
22 December 1985

D floating, 2-7
F-floating, 2-5
G-floating, 2-6
H-floating, 2-7
in 64-bit architecture, B-2 to

B-3
in operand specifier notation,

4-4
longword, 2-3
no hardware support for, 2-7
quadword, 2-4
word, 2-2

DEPOSIT console command, ll-19
Displacement field, 3-6, 4-3
DIV (Divide Longword with no

Overflow Detect), 4-21
DIVF (Divide F floating VAX

Rounding) ,-4-53
DIVFU (Divide F floating VAX

Roundin9>, i-53
DIVFUZ (Divide F floating Round

toward Zero)~ 4-53
DIVFZ (Divide F floating Round

toward ZeroT, 4-53
DIVG (Divide G floating VAX

Rounding),-4-53 _
DIVGU (Divide G floating VAX

Rounding), i-53
DIVGUZ (Divide G floating Round

toward Zero)~ 4-53
DIVGZ (Divide G floating Round

toward ZeroT, 4-53
DIVV (Divide Longword with

Overflow Detect), 4-21
DON

See Character done
Don't cache Virtual bit

See PTE, Don't Cache Virtual
- bit

DRAIN (Drain Instruction
Pipeline), 4-77, 6-12

Drain Instruction Pipeline
instruction, 4-77, 6-12

Epicode instruction format, 3-8
to 3-9

Epicode instructions
and power-down, 6-10
and powerfail, 11-10, 11-13
and RPB, 11-7
and State Longword, 11-6
and user exceptions, 3-9
console functionality, 11-14
effect on system code, 10-3

INDEX
Company Confidential

environment, 10-2 to 10-3
functions of, 10-l, 10-2
interrupt arbitration, 6-40 to

6-41
loading of, 11-7, ll-12
optional functions, 10-3
reserved opcodes, 10-3
restart routine, ll-11
special functions required,

10-3
Epicode Loaded (EL) bit, 11-6
EQV (Logical Equivalence), 4-32
ESP

See Stack pointer registers
EXAMINE console command, ll-20
Exception handling, l-5, 4-77
Exception stack frame

Arithmetic trap, 6-13, B-21
Breakpoint, 6-17, B-24
Bug Check, 6-18, B~24
Fault On Bit, 6-19, B-25
Illegal Operand, 6-20, B-25
Machine Check, 6-26, B-27
Memory management, 6-23, B-26
Privileged\Instruction, 6-21,

B-24
Reserved Opcode, 6-22, B-25
Scalar Alignment, 6-16, B-22
Stack Alignment, 6-27, B-28
Vector, 6-29 ·
Vector Alignment, 6-17, B-23
Vector Enable, 6-23
Vector exception, B-29
Vector information frame, 6-28

to 6-29
Exceptions

See also specific exceptions
abort,6-2
Access Control Violation, 5-9,

5-14 I 6-24
Arithmetic trap

and floating-point
instructions, 2-5, 2-6

definition of, 6-2 to 6-3
description, 6-12 to 6-15
exception frame, 6-13
exception frame in 64-bit

architecture, B-21
Exception Summary parameter,

6-13 to 6-14
Scalar Register Write Mask

parameter, 6-15
Vector Register Write Mask

parameter, 6-14

Page Index-5
22 December 1985

as result of an instruction,
6-17 to 6-19

Breakpoint, 6-17, B-24
Bug Check, 6-18, B-24
changes to VAX exception

handlers, 1-8
contrast with interrupts, 6-3

to 6-4
data alignment, 6-15 to 6-17
definition of, 6-l
descriptions of, 6-2 to 6-4,

6-ll to 6-31
fault, 6-2
Fault On Bit, 4-72, 6-18 to

6-19, B-25
Fault On Execute, 5-14, 6-25
Fault On Read, 5-14, 6-25
Fault On Write, 5-14, 6-25
floating-point, 4-46
Illegal Operand

description, 6-19 to 6-23
exception frame, 6-20
exception frame in 64-bit

architecture, B-25
integer

See Arithmetic trap
Kernel Stack Not Valid, 6-25,

8-11
list of, 6-ll
Machine Check, 6-25 to 6-26,

B-27
Memory management

and pref etch, 9-8
description, 6-23 to 6-25
exception frame, 6-23
exception frame in 64-bit

architecture, B-26
summary of, 5-13 to 5-14

precedence, 5-14, 6-24, 6-31
Privileged Instruction, 4-88,

6-20 to 6-21, B-24
Reserved Opcode, 6-21 to 6-22,

B-25
Scalar Alignment, 6-15 to 6-16,

B-22
serialization of, 6-31
serious system failures, 6-25

to 6-26
Stack Alignment

description, 6-27
exception frame, 6-27
exception frame in 64-bit

architecture, B-28
occurrence of, 8-11

INDEX
Company Confidential

System Control Block vectors,
5-14, 6-12, 6-32 to 6-34,
B-30

Translation Not Valid, 4-81,
5-14, 6-24

trap, 6-3
types of, 6-2 to 6-3
Vector

description, 6-27 to 6-31
exception continuation, 6-30

to 6-31
information frame, 6-28 to

6-29
information frame in 64-bit

architecture, B-29
Vector Alignment, 6-16 to 6-17,

B-23
Vector Enable, 4-3, 6-22 to

6-23
Executive mode

See Access modes, defined
Extended Processor Instruction

code
!!.! Epicode instructions

F floating data type, 2-5
Fiult On Bit exception

description, 6-18 to 6-19
exception frame, 6-19
exception frame in 64-bit

architecture, B-25
FOB (Fault On Low Bit Set)

instruction, 4-72
FOB (Fault on Low Bit Set)

instruction, 6-18
Fault On Execute (FOE) exception,

5-14, 6-25
Fault on Execute bit

See PTE, Fault On Execute bit
Fault On Low Bit Set instruction,

4-72
Fault on Low Bit Set instruction,

6-18
Fault On Read (FOR) exception,

5-14, 6-25
Fault on Read bit

See PTE, Fault On Read bit
Fault On Write (FOW) exception,

5-14, 6-25
Fault on Write bit

See PTE, Fault On Write bit
Faults

See Exceptions
Figure drawing conventions, 1-10
Floating Add instructions, 4-47

Page Index-6
22 December 1985

Floating Compare instructions,
4-48

Floating Divide instructions,
4-53

Floating Multiply instructions,
4-54

Floating Subtract instructions,
4-55

Floating-point accuracy, 4-43 to
4-45

Floating-point exceptions
description of, 4-46

Floating-point instructions
arithmetic exception, 2-5, 2-6
chopping, 4-43
D and H, 1-8
descriptions of, 4-39 to 4-69
G and F, 1-4
guard bits, 4-43, 4-44 to 4-45
overflow bit, 4-43, 4-44 to

4-45
relation among chopped,

rounded, and true, 4-44
rounding bit, 4-43 to 4-45
rounding modes, 4-39
summary of, 4-39 to 4-42

Flush Instruction Cache
instruction, 4-78, 9-3, 9-4

Flush Translation Buffer
instruction, 4-97, 5-12, 9-3

FOB (Fault On Low Bit Set), 4-72
FOB (Fault on Low Bit Set), 6-18
Function field

in Epicode instructions, 3-8 to
3-9

in Operate instructions, 3-7
Function units, 1-4, 1-5

G floating data type, 2-6
Gather Memory Data into Vector

Register instructions, 3-1,
4-12

Generate Compressed Iota Vector
instruction, 4-79

Guard bits, 4-43, 4-44 to 4-45

H_floating data type, 2-7
HALT (Halt Processor), 3-8, 4-89,

9-4, 9-6, 11-14
HALT action switch, 4-89, 11-14
Halt instruction, 3-8, 4-89, 9-4,

9-6, 11-14
Hardware implementation notes,

5-12, 9-4, 10-l

INDEX
Company Confidential

Hardware Privileged Context Block,
4-94, 7-2 to 7-4, 7-6

HWPCB
See Hardware Privileged Context
- Block

I/0 Port Controller
interrupts, 6-9
registers, 11-7

I/0 space, 4-9, 4-92, 5-3, 7-3,
9-4, 9-5,·9-8

ICIE
See Interval Clock Interrupt
- Enable (ICIE) register

IFLUSH (Flush Instruction Cache),
4-78, 9-3, 9-4

IGN
See Ignore

Ignore, 1-10
Illegal Operand exceptions

See Exceptions, Illegal Operand
INDbit

See PTE, Indirect Page Table
- Pointer bit

Indirect Page Table Pointer
See PTE, Indirect Page Table
- Pointer bit

INITIALIZE console conunand, 11-24
Instruction cache

See Cache
Instruction formats

Branch, 3-6, 4-73
Convert, 3-8
Coprocessor, 3-9
Epicode, 3-8 to 3-9
in 64-bit architecture, B-3
Memory, 3-5 to 3-6, 4-73
Operate, 3-7 to 3-8, 4-3
summary of, 3-5

Instruction issue, 1-4 to 1-5
Instruction issue model, 6-37 to

6-39
Instruction set

in 64-bit architecture, B-3
overview and notation, 4-1 to

4-5
summary of characteristics, 1-3

to 1-4
Instructions

control, 4-70 to 4-73
coprocessor, 4-98 to 4-100
floating-point, 4-39 to 4-69
integer arithmetic, 4-16 to

4-30
logical and shift, 4-31 to 4-38

Page Index-7
22 December 1985

memory load/store, 4-6 to 4-15
miscellaneous, 4-74 to 4-87
operand notation, 4-3 to 4-5
privileged, 4-88 to 4-97
vector, 4-3

Integer Add instructions, 4-18
Integer arithmetic instructions

descriptions of, 4-16 to 4-30
summary of, 4-16 to t-17

Integer Divide instructions, 4-21
Integer exceptions

See Exceptions, Arithmetic trap
Integer Multiply instructions,

4-23
Integer Remainder instructions,

4-22
Integer Signed Compare

instructions, 4-19
Integer Subtract instructions,

4-24
Integer Unsigned Compare

instructions, 4-20
Interlocked memory access

See Memory access, interlocked
Internal Processor Registers

See also Processor Status
See also Program Counter
AQQress Space Number (ASN),

5-13, 8-3, 11-9
and SWPCTX instruction, 4-94
AST Enable (ASTEN), 6-41, 7-4,

8-4, 11-9
AST Request Register (ASTRR),

6-40, 8-5
AST Summary Register (ASTSR),

7-4, 8-6, 11-9
Console Receive Control Status

(CRCS), 6-8, 8-7, 11-9
Console Receive Data Buff er

(CRDB), 8-8
Console Transmit Control Status

(CTCS), 6-9, 8-9, 11-9
Console Transmit Data Buffer

(CTDB), 8-10
initialization, 11-8 to 11-9
Interprocessor Interrupt Enable

(IPIE), 6-10, 8-13, 11-9
Interprocessor Interrupt

Request (IPIR), 6-11, 8-14
Interval Clock Interrupt Enable

(ICIE), 6-9, 8-12, 11-9
Kernel mode, 8-1
MFPR instruction, 4-90, 8-1
MTPR instruction, 4-91, 8-1

INDEX
Company Confidential

Page Table Base Register (PTBR),
5-9, 8-18, 11-9

Privileged Context Block Base
(PCBB), 4-94, 7-3, 8-15,
11-9

Processor Base Register (PRBR),
8-16, 11-9

Processor Serial Number (PRSN),
8-17

Software Interrupt Request
Register (SIRR), 6-7, 6-40,
8-21

Software Interrupt Sununary
Register (SISR), 6-7, 8-22,
ll-9

Stack pointer registers, 8-11,
11-9

sununary of, 8-1 to 8-2, B-31
System Control Block Base

(SCBB), 8-19, 11-9
System Identification (SID),

8-20
Time Of Year (TOY), 8-27 to

8-28
Translation Buffer Check ·

(TBCHK), 5-12, 8-23 to 8-24
Translation Buffer Invalidate

by ASN (TBIASN), 5-13, 8-25
Translation Buffer Invalidate

Single (TBIS), 5-12, 8-26
Who-Am-I (WHAMI), 8-29

Interprocessor Interrupt Enable
(IPIE) register, 6-10, 8-13,
11-9

Interprocessor Interrupt Request
(IPIR) register, 6-11, 8-14

Interprocessor interrupts, 6-10
to 6-11, 8-13, 11-11, 11-12

Interrupt Priority Level
and SWIPL instruction, 4-96,

6-41 .
description of, 6-1
field in Processor Status

register, 6-5
in multiprocessor system, 6-2
list of, 6-6
when changed, 6-3

Interrupts
See also Asynchronous System
- Trap
See also Machine Check
console, 6-8 to 6-9
contrast with exceptions, 6-3

to 6-4
definition of, 6-l

Page Index-a
22 December 1985

descriptions of, 6-2, 6-6 to
6-11

Epicode arbitration, 6-40 to
6-41

I/O Port Controllers, 6-9
interprocessor, 6-10 to 6-11,

8-13, 11-ll, ll-12
Interval Clock, 6-9, 8-12
list of, 6-6
Power Recovery, 6-10, 11-11,

11-13
serialization of, 6-31
software generated, 6-7 to 6-8
System Control Block vectors,

6-6, 6-32 to 6-34
urgent, 6-10 to 6-ll

Interval Clock Interrupt Enable
(ICIE) register, 6-9, 8-12,
11-9

Interval Clock interrupts, 6-9,
8-12

IOTA (Generate Compressed Iota
Vector), 4-79, 4-82

IPIE
See Interprocessor Interrupt
---- Enable (IPIE) register

IPIR
See Interprocessor Interrupt
---- Request (IPIR) register

IPL
See Interrupt Priority Level

IPRs
See Internal Processor
- Registers

JSR (Jump to Subroutine), 4-73
Jump to Subroutine instruction,

4-73

Kernel mode
See also Access modes
and Tiitirnal Processor

Registers, 8-1
for Breakpoint instruction,

4-75
for Bug Check instruction, 4-76
Machine Check, 6-26
privileged instructions, 4-88,

6-20
Stack Alignment exception, 6-27
with interrupts and exceptions,

6-4
Kernel stack

See also Stack
illgnment, 6-21

INDEX
Company Confidential

Arithmetic trap exception frame,
6-13

Breakpoint exception frame,
6-17

Bug Check exception frame, 6-18
for Breakpoint instruction,

4-75
for Bug Check instruction, 4-76
Machine Check exception frame,

6-26
Memory management exception

frame, 6-23
Not Valid exception, 6-25, B-11
pointer, B-11
residency, 6-35
Stack Alignment exception frame,

6-27
Vector Alignment exception

frame, 6-17
Vector Enable exception frame,

6-23
Vector exception information

frame ,J 6-28 to 6-29
Kernel Stack Not Valid exception,

6-25, B-11

L
See Literal control bit, 3-7

LDA°\Load Address), 4-7
LDB (Load Zero Extended Byte from

Memory to Register), 4-8
LDL (Load Longword from Memory to

Register), 4-8
LDQ (Load Quadword from Memory to

Register Pairs), 4-8
LDW (Load Zero Extended Word from

Memory to Register), 4-8
Leading separate numeric string,

2-7
Literal

as floating-point operand, 4-43
as source operand, 1-4, 3-2,

3-7, 4-4, 4-43
field, 3-7

Literal control bit, 3-7
Load Address instructions, 4-7
Load Memory Data into Scalar

Register instructions, 4-8
Load Memory Data into Vector

Register instructions, 4-11
Logical and shift instructions

descriptions of, 4-31 to 4-38
summary of, 4-31

Logical Functions instructions,
4-32

Longword
format, 2-3

Page Index-9
22 December 1985

signed integer, 2-3
unsigned integer, 2-3

Machine Check
description, 6-25 to 6-26
exception frame, 6-26
exception frame in 64-bit

architecture, B-27
interrupt level, 6-10, 6-26
non-existent memory, 4-92, 4-94

MBZ
See Must Be Zero

MeiiiOry access
See also Cache
control, 5-1
criteria, 5-6
interlocked, 4-9, 4-92, 9-2,

9-5, 9-7
protection, 5-6 to 5-9

Memory costs, 1-3, 1-7
Memory instruction format, 3-5 to

3-6, 4-73
Memory load/store instructions

cache miss, 1-5
descriptions of, 4-6 to 4-15
purpose of, 1-4
summary of, 4-6

Memory management
and Epicode, 10-2
definition of, 5-1
enabled, 5-3
exceptions

See Exceptions, Memory
-- management

in 64-bit architecture, B-18 to
B-19

PRISM goals, 5-1 to 5-2
Memory protection

See Memory access, protection
MFPR (Move From Processor

Register), 4-90, B-1
Miscellaneous instructions

descriptions of, 4-74 to 4-87
summary of, 4-74

Move From Processor Register
instruction, 4-90, 8-1

Move Processor Status instruction,
4-80, 6-4

Move To Processor Register
instruction, 4-91, 5-12, 8-1

MOVPS (Move Processor Status),
4-80, 6-4

·-·
'

INDEX
Company Confidential

MTPR (Move To Processor Register),
4-91, 5-12, 8-l

MULF (Multiply F floating VAX
Rounding), 4=54

MULFU (Multiply F floating VAX
Rounding), 4-54

MULFUZ (Multiply F_floating Round
toward Zero), 4-54

MULFZ (Multiply F_floating Round
toward Zero), 4-54

MULG (Multiply G floating VAX
Rounding), 4=54

MULGU (Multiply G floating VAX
Rounding), 4-54

MULGUZ (Multiply G floating Round
toward Zero), i-54

MULGZ (Multiply G_floating Round
toward Zero), 4-54

MULH (Multiply Longword and
Return High 32 Product Bits),
4-23

MULL (Multiply Longword and
Return Low 32 Product Bits),
4-23

Multiprocessing
. See also Interprocessor
·-interrupts
adding a processor, 11-13
and Address Space Numbers, 5-13
and caches, 9-6, 9-7
and PTEs, 5-5
and Translation Buffer entries,

5-13
bootstrapping, 11-11 to 11-13
interlocked memory access, 4-9,

4-92, 9-2, 9-5, 9-7
Interrupt Priority Levels, 6-2
master processor, 11-11, 11-12,

11-13
power fail,'' 11-13
Processor Base Register (PRBR),

8-16
Processor Enabled (PE) bit,

ll-6
slave processors, 11-12, 11-13
WHAMI register, 8-29

MULV (Multiply Longword with
overflow Detect), 4-23

Must Be Zero, 1-10

NOT logical function, 4-32

Octaword, 2-7
Opcode field, 3-5
Operand fields, 3-7

Page Index-10
22 December 1985

See also Register fields
Operate-Tnstruction format, 3-7

to 3-8, 4-3
Operating system

and hardware context, 7-4
AST processing, 7-4 to 7-6
context switching model, 7-7 to

7-9
hardware context, 7-6
software context, 7-l
transfer control to, ll-9 to

11-10
VAX/VMS compatibility, 1-7

Operator precedence, 3-5
Operators, 3-3 to 3-4
OR (Logical Sum), 4-32
ORNOT (Logical Sum with

Complement), 4-32

Packed decimal string, 2-7
Page

definition of, 5-2
protection, 5-1, 5-6, 5-7 to

5-9
size, 1-6, 1-7, 5-2, 5-3

Page Frame Number
!,!! PTE, Page Frame Number

Page table, 5-1, 11-7 to 11-8
Page Table Base Register (PTBR),

5-9, 8-18, 11-9
Page Table Entry

See PTE
PC-

S e e Program Counter
PCBB

See Privileged Context Block
- Base (PCBB) register

PFN
See PTE, Page Frame Number

Physical address, 5-3
Physical address space, 5-3, B-19
Pipelined processor model, 1-4 to

1-5
Power Recovery interrupt, 6-10,

11-11, 11-13
Powerfail, 9-4, 9-7, 11-2, 11-10

to 11-11, 11-13
Powerfail Sequence Completed

(PSC) bit, 11-6, 11-10
Powerfail Sequence Started (PSS)

bit, 11-6, 11-10
PRBR

See Processor Base Register
- (PRBR)

Prefetch, 9-8

INDEX
Company Confidential

PRISM
advantages, 1-6
64-bit extension, B-1 to B-2
code size of programs, 1-7
comparison with RISC, 1-3
compatibility with VAX, 1-7 to

1-9
design guidelines, 1-3
disadvantages, 1-6 to 1-7
meaning of acronym, 1-1
memory management goals, 5-1 to

5-2
operating system, 1-7
overview, 1-3 to 1-5
processor model, 1-4 to 1-5
separation of procedure and

data, 9-3
software emulation of

instructions, 1-8, 4-2
subset implementations, 4-2 to

4-3
Privileged Context Block Base

(PCBB) register, 4-94, 7-3,
8-15, 11-9

Privileged Instruction exception
description, 6-20 to 6-21
exception frame, 6-21
exception frame in 64-bit

architecture, B-24
occurrence of, 4-88

Privileged instructions
descriptions of, 4-88 to 4-97
summary of, 4-88

Probe Memory Access instructions,
4-81

PROBER (Probe for Read Access),
4-81

PROBEW (Probe for Write Access),
4-81

Process
address space, 7-2
context switching, 7-2, 7-6 to

7-9
context switching model, 7-7 to

7-9
definition, 7-1 to 7-2
hardware context, 7-1, 7-2
hardware privileged context,

7-2 to 7-4
software context, 7-1

Process tag
See Address Space Number (ASN)

Processor Base Register (PRBR),
8-16, 11-9

Page Index-11
22 December 1985

Processor Enabled (PE) bit, 11-6,
11-12

Processor modes
See Access modes

Processor Serial Number (PRSN)
register, 8-17

Processor state
definition of, 6-4
in 64-bit architecture, B-20
preserving during exception or

interrupt, 6-4
transition table, 6-42

Processor Status
and MOVPS instruction, 4-80,

6-4
as part of processor state, 6-4
at bootstrap, 6-5
Current Mode field, 5-6, 6-5,

6-35
current versus saved, 6-4
description, 6-4 to 6-5
Interrupt Priority Level field,

6-5
reserved to DIGITAL field, 6-5
Vector Enable bit, 4-3, 6-5,

11-10
Vector Exception Frame bit, 6-5
Virtual Machine Mode bit, 6-5

Program Counter
and JSR instruction, 4-73, 6-4
as part of processor state, 6-4
description, 3-2, 6-5
in 64-bit architecture, B-3,

B-20
with branch instructions, 4-71

PROT
See PTE, Protection field

Protection field
See PTE, Protection field

PRSN

PS

See Processor Serial Number
(PRSN) register

See Processor Status
PTBR

See Page Table Base Register
PTr-

Address Space Match {ASM) bit,
5-4, 5-12, 8-25

and multiprocessing, 5-5
changes to, 5-5
defined, 5-3 to 5-5
Don't Cache Virtual (DCV) bit,

5-4

INDEX
Company Confidential

Fault On Execute (FOE) bit, 5-4,
5-14, 6-25

Fault On Read (FOR) bit, 4-81,
5-4, 5-14, 6-25

Fault On Write (FOW) bit, 4-81,
5-4, 5-14, 6-25

first-level, 5-9, 5-14
indirect, 5-10, 5-14
Indirect Page Table Pointer

(IND) bit, 5-4
Page Frame Number (PFN), 5-3,

5-5, 5-9, 8-18
Protection (PROT) field, 5-4
protection codes, 5-6, 5-7 to

5-9
Reserved for DIGITAL field, 5-5
Reserved for software field,

5-5
second-level, 5-9, 5-14
valid bit, 5-4

Quadword, 2-4
Quadword shift instructions, 4-31
Queues, 2-7

RAZ
See Read As Zero

RDVC-(Read Vector Count Register),
4-82

RDVL (Read Vector Length
Register), 4-83

RDVMH (Read Vector Mask Register,
High Part), 4-84

RDVML (Read Vector Mask Register,
· Low Part) , 4-84
RDY

See Character ready
Reiir"As Zero, 1-10
Read, Mask, {Add Quadword,

Interlocked instruction, 4-9,
5-5, 5-14 I 9-2

Read, Mask, Add Quadword,
Interlocked, Physical
instruction, 4-92, 5-5, 9-2

Read/Write Vector Count Register
instructions, 4-82

Read/Write Vector Length Register
instructions, 4-83

Read/Write Vector Mask Register
instructions, 4-84

Register fields, 3-5
Registers

See also Internal Processor
-- Registers
~ also Processor Status

Page Index-12
22 December 1985

See also Program Counter
even-=oaa pairs, 3-1, 3-2, 4-5,

4-39, 5-5
in 64-bit architecture, B-3
RO, 1-3, 3-1, 3-7, 6-12
Rl, 1-3, 3-1, 8-11
R4, 4-87, 4-91, 4-96, 8-1
RS, 4-91, 8-1
R6, 4-81, 8-1
R7, 4-81
scalar, 1-3, 1-6, 3-1
VO, 3-7
vector, 1-4, 3-1 to 3-2, 4-3,

11-3
Vector Count, 1-4, 3-2
vector count, 4-79, 4-82
Vector Length, 1-4, 3-2
vector length, 4-11, 4-12, 4-14,

4-15, 4-25, 4-26, 4-27,
4-28, 4-29, 4-30, 4-36,
4-37, 4-38, 4-56, 4-58,
4-60, 4-61, 4-62, 4-63,
4-64, 4-66, 4-68, 4-83

Vector Mask, 1-4, 3-2
vector mask, 4-26, 4-58, 4-79,

4-84
REI (Return from Exception or

Interrupt), 4-85, 6-4, 6-41
REM (Longword Integer Remainder),

4-22
Reserved Opcode exception

description, 6-21 to 6-22
exception frame, 6-22
exception frame in 64-bit

architecture, B-25
Restart in Progress (RIP) bit,

11-6
Restart Parameter Block, 4-94,

7-6, 11-2 to 11-6, 11-9
Return From Exception or

Interrupt instruction, 6-4,
6-41

Return from Exception or
Interrupt instruction, 4-85
to 4-86

Revision history, 1-11, 2-8, 3-10,
4-101, 5-15, 6-43 to 6-44,
7-10, 8-30 to 8-31, 9-9, 10-5,
11-28

RMAQI (Read, Mask, Add Quadword,
Interlocked), 4-9, 5-5, 5-14,
9-2

RMAQIP (Read, Mask, Add Quadword,
Interlocked, Physical), 4-92,
5-5, 9-2

INDEX
Company Confidential

ROM, 11-7
ROT (Rotate Bits), 4-35
Rotate instructions, 4-35
Rounding bit, 4-43 to 4-45
Rounding modes, 4-39
RPB

See Restart Parameter Block

SBZ
See Should Be Zero

Scalar Alignment exception
description, 6-15 to 6-16
exception frame, 6-16
exception frame in 64-bit

architecture, B-22
software emulation of, 6-16

Scalar operands, 3-2, 3-7
Scalar registers ·

See Registers, scalar
Scatter Vector Register Data into

Memory instructions, 4-15
SCBB

See System Control Block Base
- (SCBB) register

Security, 3-7
Segment number field, 5-2
Self Test Complete (STC) bit,

11-6
Serious system failures

See Exceptions, serious system
- failures

Shift Arithmetic instructions,
4-34

Shift Logical instructions, 4-33
Should Be Zero, 1-10
SID

See System Identification (SID)
Sign extension, 4-31
SIRR

See Software Interrupt Request
- Register (SIRR)

SISR
See Software Interrupt Summary
- Register (SISR)

Slave Request (SR) bit, 11-6,
ll-12

SLL (Shift Left Logical), 4-33
Software emulation

of instructions, l-8, 4-2
of Scalar Alignment exception,

6-16
Software Interrupt Request

Register (SIRR), 6-7, 6-40,
8-21

Page Index-13
22 December 1985

Software Interrupt Summary
Register (SISR), 6-7, 8-22,
11-9

SP
See Stack Pointer

S~Shift Right Arithmetic),
4-34

SRL (Shift Right Logical), 4-33
SSP

See Stack pointer registers
Stac~

See also Current Mode stack
See also Kernel stack
i'Iignrnent, 6-21, 6-36
initiate exception or interrupt,

6-36
instruction issue model, 6-37

to 6-39
parameters pushed for

exceptions, 6-12
programming implications, 9-8
residency, 6-35
saving processor state, 6-4
switching between, 4-86
writability, 6-35

Stack Alignment exceptions
See Exceptions, Stack Alignment

Stack pointer, 1-3, 3-1, 4-86,
4-94, 4-95, 6-35, 7-3, 8-11

Stack pointer registers, 8-11,
ll-9

START console command, 11-25
State Longword, 11-6

See also Restart Parameter
- Block

STB (Store Byte from Register to
Memory), 4-10

STL (Store Longword from Register
to Memory), 4-10

Store Scalar Register Data into
Memory instructions, 4-10

Store Vector Register Data into
Memory instructions, 4-14

STQ (Store Quadword from Register
Pairs to Memory), 4-10

STQ (Store Quadword from Register
to Memory), 5-5

STW (Store Word from Register to
Memory), 4-10

SUB (Subtract Longword with no
Overflow Detect), 4-24

SUBF (Subtract F floating VAX
Rounding), 4::-55

SUBFU (Subtract F floating VAX
Rounding), 4-55

INDEX
Company Confidential

SUBFUZ (Subtract F_floating Round
toward Zero), 4-55

SUBFZ (Subtract F floating Round
toward Zero),-4-55

SUBG (Subtract G floating VAX
Rounding), 4=55

SUBGU (Subtract G floating VAX
Rounding), 4-;5

SUBGUZ (Subtract G floating Round
toward Zero), i-55

SUBGZ (Subtract G floating Round
toward Zero),-4-55

SUBV (Subtract Longword with
Overflow Detect), 4-24

Supervisor mode
See Access modes, defined

Swap AST Enable instruction, 4-87,
6-41, 7-4

Swap IPL instruction, 4-96, 6-41
Swap Privileged Context

instruction, 4-94 to 4-95,
5-12, 5-13, 7-3, 7-6, 8-18,
9-5

SWASTEN (Swap AST Enable for
- Current "Mode), 4-87, 6-41,

7-4
SWIPL (Swap Processor IPL), 4-96,

6-41
SWPCTX (Swap Privileged Context),

4-94, 5-12, 5-13, 7-3, 7-6,
8-18, 9-5

Synchronization, 9-1 to 9-2,
11-11

System Control Block
and exceptions, 6-12
and interrupts, 6-6
description, 6-32
vectors, 5~14, 6-12, 6-32 to

6-34, B-30
System Control Block Base (SCBB)

register, 8-19, 11-9
System Identification (SID)

register, 8-20

TB
See Translation Buffer

TBCHK
See Translation Buffer Check
~ (TBCHK) register

TBFLUSH (Flush Translation
Buffer), 4-97, 5-12, 9-3

TBIASN
See Translation Buffer
~ Invalidate by ASN (TBIASN)

register

TBIS

Page Index-14
22 December 1985

See Translation Buffer
~ Invalidate Single (TBIS)

register
Terminology, 1-9 to 1-10
TEST console command, 11-26
Time Of Year (TOY) register, 8-27

to 8-28
TNV

See Translation Not Valid
~ exception

TOY
See Time Of Year (TOY) register

Triiring numeric string, 2-7
Translation Buffer

See also Translation Buffer
~ Check (TBCHK) register
See also Translation Buffer
~ Invalidate Single (TBIS)

register
defined, 5-12
invalidation, 5-12, 9-3 to 9-4
TBFLUSH instruction, 4-97, 5-12,

9-3
Translation Buffer Check (TBCHK)

register, 5-12, 8-23 to 8-24
Translation Buffer Invalidate by

ASN (TBIASN) register, 5-13,
8-25

Translation Buffer Invalidate
Single (TBIS) register, 5-12,
8-26

Translation Not Valid exception,
4-81, 5-14, 6-24

UMULH (Unsigned Multiply Longword
and Return High 32), 4-23

Unconditional branches, 4-71
Unconditional jump, 4-73
Undefined, 1-9, 4-92, 4-94, 5-9,

5-10, 6-32, 7-3, 8-19, i1-2,
11-15

UNPREDICTABLE, 5-14
Unpredictable, 1-9, 1-10, 3-1,

3-7, 4-9, 4-ll, 4-12, 4-13,
4-14, 4-15, 4-21, 4-22, 4-25,
4-27, 4-28, 4-29, 4-30, 4-36,
4-38, 4-43, 4-46, 4-56, 4-61,
4-62, 4-63, 4-64, 4-66, 4-68,
4-94, 4-99, 6-12, 6-15, 7-4,
8-7, 8-8, 8-9, 8-10, 9-2, 9-3,
9-8

User mode
See Access modes, defined

USP--

INDEX
Company Confidential

See Stack pointer registers

VADD (Vector Add Longword with no
Overflow Detect}, 4-25

VADDF (Vector Add F Floating VAX
Rounding), 4-56-

VADDFU (Vector Add F floating VAX
Rounding}, 4-56 -

VADDFUZ (Vector Add F floating
Round toward ZeroT, 4-56

VADDFZ (Vector Add F_Floating
Round toward Zero), 4-56

VADDG (Vector Add G Floating VAX
Rounding), 4-56-

VADDGU (Vector Add G floating VAX
Rounding), 4-56 -

VADDGUZ (Vector Add G floating
Round toward ZeroT, 4-56

VADDGZ (Vector Add G Floating
Round toward zero), 4-56

VADDV (Vector Add Longword with
Overflow Detect), 4-25

Valid bit
See PTE, va'lid bit

V.ANI>(Vector Logical Product),
4-36

Variable length bit field, 2-7
VAX

architecture, 1-1, 1-3
branch instructions, 1-2
condition codes, 1-2
data sharing, 9-2
difficulty in building, 1-1 to

1-3
instructions, 1-1
memory operand fetch, 1-2
microcode;"l-6, 10-1
operand specifier usage, 1-3
pipelining, 1-2
PRISM compatibility with, 1-7

to 1-9
REI compared with PRISM REI,

4-86
unaligned operands, 2-2

VBIC (Vector Logical Product with
Complement), 4-36

vc
See Vector Count register

VCMPEQ (Vector Compare Signed
Longword Equal), 4-26

VCMPFEQ (Vector Compare
F floating Equal), 4-58

VCMPFGE (Vector Compare
F floating Greater Than or
Equal), 4-58

Page Index-15
22 December 1985

VCMPFGT (Vector Compare
F floating Greater Than),
4=50

VCMPFLE (Vector Compare
F floating Less Than or
Equal}, 4-58

VCMPFLT (Vector Compare
F floating Less Than}, 4-58

VCMPFNE (Vector Compare
F_floating Not Equal}, 4-58

VCMPGE (Vector Compare Signed
Longword Greater Than or
Equal}, 4-26

VCMPGEQ (Vector Compare
G_floating Equal), 4-58

VCMPGGE (Vector Compare
G_f loating Greater Than or
Equal), 4-58

VCMPGGT (Vector Compare
G floating Greater Than},
4=50

VCMPGLE (Vector Compare
G_f loating Less Than or
Equal), 4-58

VCMPGLT (Vector Compare
G floating Less Than), 4-58

VCMPGNE (Vector Compare
G floating Not Equal), 4-58

VCMPGT (Vector Compare Signed
Longword Greater Than}, 4-26

VCMPLE (Vector Compare Signed
Longword Less Than or Equal),
4-26

VCMPLT (Vector Compare Signed
Longword Less Than), 4-26

VCMPNE (Vector Compare Signed
Longword Not Equal), 4-26

VCVTFG (Vector Convert F floating
to G floating), 4-60-

VCVTFL (Vector Convert F floating
to Longword VAX Rounaing),
4-62

VCVTFLZ (Vector Convert
F_floating to Longword Round
toward Zero), 4-62

VCVTGF (Vector Convert G floating
to F_floating VAX Rounding),
4-61

VCVTGFU (Vector Convert
G floating to F floating VAX
Rounding), 4-61-

VCVTGFUZ (Vector Convert
G floating to F floating
Round toward Zero), 4-61

INDEX
Company Confidential

VCVTGFZ (Vector Convert
G_floating to F_floating
Round toward Zero), 4-61

VCVTGL (Vector Convert G floating
to Longword VAX Rounaing),
4-62

VCVTGLZ (Vector Convert
G floating to Longword Round
toward Zero), 4-62

VCVTLF (Vector Convert Longword
to F floating VAX Rounding),
4-63- .

VCVTLFZ (Vector Convert Longword
to F floating Round toward
ZeroT, 4-63

VCVTLG (Vector Convert Longword
to G floating), 4-63

VDIV (Vector Divide Longword with
no Overflow Detect), 4-27

VDIVF (Vector Divide .. F floating
VAX Rounding), 4-6i

VDIVFU (Vector Divide F floating
VAX Rounding), 4-64- . .

VDIVFUZ (Vector Divide F floating
Round toward Zero), t-64

VDIVFZ (Vector Divide F floating
Round toward Zero),-4-64

VDIVG (Vector Divide G floating
VAX Rounding), 4-6i

VDIVGU (Vector Divide G floating
VAX Rounding), 4-64-

VDIVGUZ (Vector Divide G floating
Round toward Zero), i-64

VDIVGZ (Vector Divide G floating
Round toward Zero),-4-64

VDIVV (Vector Divide Longword
with overflow Detect), 4-27

Vector Alignment exception
description, 6-16 to 6-17
exception frame, 6-17
exception frame in 64-bit

architecture, B-23
Vector Convert F Floating to

G Floating instruction, 4-60
Vector Convert Floating to

Integer instructions, 4-62
Vector Convert G Floating to

F Floating instructions, 4-61
Vector Convert Integer to

Floating instructions, 4-63
Vector Count register, 1-4, 3-2
Vector count register, 4-79, 4-82
Vector Enable bit, 4-3, 6-5,

11-10
Vector Enable exception

Page Index-16
22 December 1985

description, 6-22 to 6-23
exception frame, 6-23
occurrence of, 4-3

Vector exceptions
See Exceptions, Vector

Vector Floating Add instructions,
4-56 to 4-57

Vector Floating Compare
instructions, 4-58 to 4-59

Vector Floating Divide
instructions, 4-64 to 4-65

Vector Floating Multiply
instructions, 4-66 to 4-67

Vector Floating Subtract
instructions, 4-68 to 4-69

Vector instructions, 4-3
Vector Integer Add instructions,

4-25
Vector Integer Compare

instructions, 4-26
Vector Integer Divide

instructions, 4-27
Vector Integer Multiply, 4-29
Vector Integer Remainder

instructions, 4-28
Vector Integer Subtract

instructions, 4-30
Vector Length register, 1-4, 3-2
Vector length register, 4-11,

4-12, 4-14, 4-15, 4-25, 4-26,
4-27, 4-28, 4-29, 4-30, 4-36,
4-37, 4-38, 4-56, 4-58, 4-60,
4-61, 4-62, 4-63, 4-64, 4-66,
4-68, 4-83

Vector Logical Functions
instructions, 4-36

Vector mask bit, 4-26, 4-37, 4-58
Vector Mask register, 1-4, 3-2
Vector mask register, 4-26, 4-58,

4-79, 4-84
Vector Merge instruction, 4-37
Vector operands, 3-7
Vector registers

See Registers, vector
Vector Shift Logical instructions,

4-38
VEN

See Vector Enable bit
VEQV (Vector Logical Equivalence),

4-36
VGATHL (Gather Longword Vector

from Memory to Vector
Register), 4-12

...

INDEX
Company Confidential

VGATHQ (Gather Quadword Vector
from Memory to Vector
Register), 4-12

Virtual address
description, 2-1
format, 5-2 to 5-3
format in 64-bit architecture,

B-18
in branch instructions, 3-6
in memory load/store

instructions, 3-6
translation, 2-1, 5-1, 5-3, 5-9

to 5-11
translation algorithm, 5-10 to

5-11
translation in 64-bit
. architecture, s~l9

Virtual address space, 5-2 to 5-3,
11-8, B-18

VL
See Vector•Length register

VL~(Load Longword Vector from
Memory to Vector Register),
4-11

VLDQ (Load Quadword Vector from
Memory to Vector Register),
4-11

VM
See Vector Mask register

VMERGE (Vector Merge), 4-37
VMULF (Vector Multiply F floating

VAX Rounding), 4-66 -
VMULFU (Vector Multiply

F floating VAX Rounding),
4=66

VMULFUZ (Vector Multiply
F floating Round toward Zero),
4=66

VMULFZ (Vector Multiply
F floating Round toward Zero),
4=66

VMULG (Vector Multiply G floating
VAX Rounding), 4-66 -

VMULGU (Vector Multiply
G floating VAX Rounding),
4=66

VMULGUZ (Vector Multiply
G floating Round toward Zero),
4=66 .

VMULGZ (Vector Multiply
G floating Round toward Zero),
4=66

VMULL (Vector Multiply Longword
with no overflow Detect),
4-29

Page Index-17
22 December 1985

VMULV (Vector Multiply Longword
with overflow Detect), 4-29

VOR (Vector Logical Sum), 4-36
VORNOT (Vector Logical Sum with

Complement), 4-36
VREM (Vector Longword Remainder),

4-28
VSCATL (Scatter Longword Vector

from Vector Register to
Memory), 4-15

VSCATQ (Scatter Quadword Vector
from Vector Register to
Memory), 4-15

VSLL (Vector Shift Left Logical),
4-38

VSRL (Vector Shift Right Logical),
4-38

VSTL (Store Longword Vector from
Vector Register in Memory),
4-14

VSTQ (Store Quadword Vector from
Vector Register in Memory),
4-14

VSUB (Vector Subtract Longword
with no overflow Detect),
4-30

VSUBF (Vector Subtract F floating
VAX Rounding), 4-68 -

VSUBFU (Vector Subtract
F_floating VAX Rounding),
4-68

VSUBFUZ (Vector Subtract
F floating Round toward Zero),
4=68

VSUBFZ (Vector Subtract
F_floating Round toward Zero),
4-68

VSUBG (Vector Subtract G floating
VAX Rounding), 4-68 -

VSUBGU (Vector Subtract
G floating VAX Rounding),
4=68

VSUBGUZ (Vector Subtract
G_floating Round toward Zero),
4-68

VSUBGZ (Vector Subtract
G floating Round toward Zero),
4=68

VSUBV (Vector Subtract Longword
with overflow Detect), 4-30

VXOR (Vector Logical Difference),
4-36

WHAM I
§.!.!!Who-Am-I (WHAM!) register

INDEX
Company Confidential

Who-Am-I (WHAMI) register, 8-29
Word, 2-2
Write-back cache

See Cache, implementation
- methods

Write-buffer
description, 9-4
implementation methods, 9-5 to

9-8
implementation requirements,

9-4 to 9-8
Write-through cache

See also Write-buffer

Page Index-18
22 December 1985

See Cache, implementation
- methods

WRVC (Write Vector Count
Register), 4-82

WRVL (Write Vector Length
Register), 4-83

WRVMH (Write Vector Mask
Register, High Part), 4-84

WRVML (Write Vector Mask
Register, Low Part), 4-84

XOR (Logical Difference), 4-32

