March 1980

This document describes how to use the RT-11 operating system. It provides
the information required to perform ordinary tasks such as program develop-
ment, program execution, and file maintenance.

RT-11
System User’s Guide
Order No. AA-5279B-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes the
RT-11 System User’'s Guide,
Order No. DEC-11-ORGDA-A-D, DN1,
published March 1978.

OPERATING SYSTEM AND VERSION: RT-11 V4.0

SOFTWARE VERSION: RT-11 v4.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1980

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © 1980 by Digital Equipment Corporation

The postage-prepaid READER’S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI

DECnet IAS PDT
DATATRIEVE TRAX

11/80-14

P amiarmian
WUVILICIIWD
Page
Preface xxi
Partl RT-11 Overview
Chapter 1 SystemComponents 1-1
1.1 Hardware 1-1
1.2 Software 1-2
1.21 Monitorscvii i e 1-2
1.2.1.1 Single-Job (SJ) Monitor 1-3
1.2.1.2 Foreground/Background (FB) Monitor ... 1-3
1.2.1.3 Extended Memory (XM) Monitor........ 14
1.2.2 DeviceHandlers 1-5
1.2.3 System Utility Programs 1-5
1.2.3.1 Editing................... ..., 1-5
1.2.3.2 GeneralPurpose 1-6
1.2.3.3 Systemdobs 1-7
1234 Debugging and Patching 1-7
1235 BATCH 1-8
1.24 LanguageProcessors 1-8
3 RT-11 Software Documentation 1-9
14 Nhtninineg Quatarm Qamerinng 1_0
B 4 vuuauuu.s MYODULCILIJTL VILOD ¢ o 2 o s o o o s o s s o o s o s s 0 s 0 0o o 1—v
14.1 Using the Keyboard Monitor Commands 1-9
1.4.2 Using Programs Directly 1-10
1.4.3 The Relationship Between Complex Commands
and System Programs 1-10
144 The System Macro Library and Programmed
Requests i 1-11
14.5 SYSLIB FORTRAN-Callable Subprograms 1-11
Chapter 2 ProgramDevelopment 2-1
2.1 UsinganEditor 2-1
2.2 Usingthe Assembler 2-1
2.3 UsingtheLinker 0 .. 2-2
2.4 UsingtheDebugger 2-2
2.5 UsingtheLibrarian i, 2-2
2.6 Using a High-Level Language 2-3

iii

Partll

Chapter 3

Chapter 4

(1]

System Communication

SystemConventions

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

StartupProcedure,
DataFormats
Physical DeviceNames
File NamesandFileTypes......................
DeviceStructures i,
Special FunctionKeys
Foreground/Background Terminal /O
Type-Ahead Feature

KeyboardCommands

4.1

4.2
4.3

4.4

CommandSyntaxuiiiiinnnnnnnnn

41.1 Factoring File Specifications
4.1.2 File Type Specifications
4.1.3 Abbreviating Keyboard Commands
414 Keyboard Prompts...........................

Wildeards i e

43.1 Creating IndirectFiles.
432 ExecutingIndirectFiles
43.3 Startup IndirectFiles

Keyboard Monitor Commands
APL e

COPY .. e

DIBOL e e

R T o T T T T T T

Page

Part Il

Chapter 5

GET . e 4-102
L 4-103
HELP .. 4-105
INITIALIZE e 4-107
INSTALL i e, 4-112
LIBRARY ... 4-113
LINK o 4-119
LOAD . .. 4-126
MACRO ... 4-128
PRINT . .. 4-133
R 4-137
REENTER i i 4-138
REMOVE i 4-139
RENAME 4-140
RESET ... 4-143
RESUME i 4-144
RUN .. 4-145
SAVE 4-147
SET . . e, 4-149
SHOW . . . 4-160
SQUEEZE 4-167
SRUN .. e 4-169
START ... e 4-171
SUSPENDt e e 4-172
TIME ... e 4-173
TYPE ... e 4-174
UNLOAD ... e e 4-176
Text Editing
TextEditor(EDIT) 5-1
5.1 CallingEDIT 5-1
5.2 ModesofOperationc.cvviiv.... 5-1
5.3 Special KeyCommands 5-2
54 Command Structure eeee... D=3
54.1 Arguments, 5-5
54.2 Command Stringscciiiuunnn. 5-6
5.4.3 Current LocationPointer. 5-7
544 Character- and Line-Oriented Command
Properties i 5-7
545 Command Repetition......................... 5-9
5.5 MemoryUsage, 5-10
5.6 EditingCommands 5-12
5.6.1 File Open and Close Commands 5-12
5.6.1.1 EditRead 5-12
5.6.1.2 EditWrite 5-13
5.6.1.3 EditBackup 5-13
5.6.14 EndFile 5-14

Part IV

Chapter 6

vi

5.6.2 File Input/Output Commands

56.2.1 Read.........

5.6.2.2 Write i

5.6.2.3 Next........

5.6.24 EXit.. e

5.6.3 Pointer Relocation Commands

5.6.3.1 Beginning

5.6.3.2 dJump

5.6.3.3 Advance

564 SearchCommands

5.6.4.1 Get......... e

5.6.4.2 Find

5.6.4.3 Position

5.6.5 Text Listing Commands.

5.6.5.1 List

5.6.5.2 Verify.......

5.6.6 Text Modification Commands.

5.6.6.1 Imsert

5.6.6.2 Delete................

5.6.6.3 Kill

5.6.6.4 Change...................uu. ..

5.6.6.5 Exchange

5.6.7 tilityCommands

5.6.7.1 Save

5.6.7.2 Unsave........ciiiiinine...

5.6.7.3 Macro.........couiiiiiiinan...

5.6.7.4 ExecuteMacro

5.6.7.5 EditVersion

5.6.7.6 Upper- and Lower-Case Commands

5.7 DisplayEditor

571 Using the Digplay Bditor

5.7.2 ImmediateMode

5.8 EDITExample................. 0.

5.9 EDIT Error Conditions ov....
Utility Programs

Command String Interpreter

6.1 Command String Interpreter Syntax

6.2 Prompting Characters

Page

5-15

5-14
5-16
5-17
5-18

5-19

5-19
5-20
5-20

5-21

5-21
5-23
5-23

5-24

5-24
5-25

5-25

5-25
5-28
5-27
5-28
5-30

5-30
5-31
5-32
5-33

6-3

Chapter 7 Peripheral Interchange Program(PIP)................... 7-1
7.1 CallingPIP e 7-1
7.2 OPEIONS . oot e 7-3

7.2.1 Operations Involving Magtape and Cassette -4
7.2.1.1 UsingCassette 74
7.21.2 UsingMagtape 7-8
722 CopyOperationsccviiiniueinnn.. 7-10
7.2.2.1 ImageMode 7-10
7.2.2.2 ASCIIMode (JA) 7-11
7.2.2.3 BinaryMode(/B) 7-11
7.2.24 NewfilesOption (/C) 7-11
7.2.2.5 Ignore Errors Option (/G) 7-12
7.2.2.6 CopiesOption (K:n) 7-12
7.2.2.7 Noreplace Option /N) 7-12
7.2.2.8 Predelete Option (/O) 7-12
7.2.2.9 Exclude Option(/P) 7-13
7.2.2.10 Single-Block Transfer Option (/S) 7-13
7.2.2.11 SetdateOption(/T) 7-13
7.2.2.12 Concatenate Option(/U) 7-13
7.22.13 SystemFilesOption(/Y).............. 7-13
7.2.3 DeleteOption (/D) oo, 7-14
7.24 RenameOption(/R)oit. 7-14
7.2.4.1 File Protection Option (/F) 7-15
7.2.4.2 File “Unprotection” Option (/Z) 7-15
725 LoggingOption (/W) 7-15
726 QueryOption(/Q) i, 7-15
727 WaitOption(/E) 7-16
7.2.711 Single-Volume Operation 7-16
7.2.7.2 Double-Volume Operation 7-17

Chapter 8 Device Utility Program(DUP) 8-1
8.1 CallingDUP i 8-1
8.2 OPLIoNSttt e 8-1

8.2.1 CreateOption(/C/G:n)o 8-3
8.2.2 Image CopyOption (/I) 84
8.2.3 Bad Block Scan Option (/K) 8-6
8.2.3.1 FileOption (F), 7
824 BootOption(/O).......... 0ot 8-8
8.2.5 Boot Foreign Volume Option (/Q) 89
8.2.6 SqueezeOption(/S) 8-9
8.2.7 ExtendOption(/T:n), 8-10
8.2.8 Bootstrap Copy Option(/U) 8-11
8.2.9 VolumelIDOption (VI:ONL]} 8-12
8.2.10 Wait for Volume Option(/W) 8-13
8.2.11 NoqueryOption(/Y) 8-13
8.2.12 Directory Initialization Option (/Z[n]) 8-14

vii

8.2.12.1 Changing Directory Segments (/N:n).

8.2.12.2 Storing VolumeID(V)...............

8.2.12.3 Replacing Bad Blocks (/R[:RET])........

8.2.124 CoveringBadBlocks(/B)

8.2.12.5 RestoringaDisk(/D).................

Chapter 9 DirectoryProgram(DIR)
9.1 CallingDIR i
9.2 Options
9.2.1 Alphabetical Option (/A)

9.2.2 Block Number Option(/B)

9.2.3 Columns Option(/C:n)

924 DateOption(/Dl:date]).

9.2.5 EntireOption(/E)

926 FASTOption(F).........,

9.2.7 BeginOption (/G).o in..

9.2.8 Since Option (J[:date])

9.2.9 Before Option (/K[:date])

9.2.10 ListingOption (/L)

9.2.11 Unused AreasOption (/M)

9.212 SummaryOption(/N)

9.2.13 OctalOption(/O)

9.2.14 ExcludeOption(/P)

9.2.15 DeletedOption(/Q)

9.2.16 ReverseOption(/R)

9.2.17 SortOption (/S[xxx])o ...

9.2.18 VolumeID Option (/V[:ONL])
Chapter 10 MACRO-11ProgramAssembly
10.1 Callingthe MACRO-11Assembler
10.2 Terminating the MACRO-11 Assembler
10.3 TemporaryWorkFile
10.4 File SpecificationOptions
10.4.1 ListingControlOptions

10.4.2 FunctionControlOptions

10.4.3 Macro Library File Designation Option

10.4.4 Cross-Reference (CREF) Table Generation Option . . .
10.4.4.1 Obtaining a Cross-Reference Table

10.4.4.2 Handling Cross-Reference Table Files. . . .

1045 AssemblyPassOption

105 MACRO-118KVersion...........ouviimeennunnnnnn.
106 MACRO-11ErrorCodesoouiiiineunnenn..

viii

Page

8-14
815
8-15
8-16
8-17

Chapter 11 Linker(LINK)

11.1

11.2
11.3

11.4

115

Overview of the LinkerProcess
11.1.1 WhattheLinkerDoes
11.1.1 How the Linker Structures the Load Module

11.1.2.1 AbsoluteSection....................
11.1.2.2 ProgramSections
Global Symbols: Communication Links

BetweenModules,

b
et
-t
co

Calling and UsingtheLinker.
InputandOQutput........

11.3.1 InputObjectModules.........................
11.3.2 InputLibraryModules........................
11.3.3 OutputLoadModule
1134 OutputloadMap

Creating an Overlay Structure

1141 LowMemoryOverlays........................
11.4.2 Extended MemoryOverlays....................

11.4.2.1 Virtual AddressSpace
11.4.2.2 Physical AddressSpace.
11.4.2.3 Virtual and PrivilegeddJobs
11.4.24 Extended Memory Overlay
Option(V/m[m])
11.4.2.5 Combining Low Memory Overlays with
Extended Memory Overlays

1143 LoadMapiviiiiiii i,
Option Descriptions i

11.5.1 Alphabetical Option (/A)
11.5.2 Bottom AddressOption(/B:n).
11.5.3 Continue Option (!C)or ¢/}
11.5.4 Extend Program Section Option (/E:n)
11.5.5 Default FORTRAN Library Option (/F)
11.5.6 Directory Buffer Size Option (/G)
11.5.7 Highest AddressOption(/Hm)
11.5.8 IncludeOption (/D)
11.5.9 Memory Size Option(/Kn).
11.56.10 LDA FormatOption(/L)
11.5.11 Modify Stack Address Option (M[:in]).
11.5.12 Low Memory Overlay Option(/O:n)
11.5.13 Library List Size Option(/P:n)
11.5.14 Absolute Base Address Option (/Q).
11.5.15 RELFormatOption (/Rl:n])
11.5.16 Symbol TableOption (/S)
11.5.17 Transfer Address Option (/T[:n])

11.6

11.5.18
11.5.19
11.5.20
11.5.21
11.5.22
11.5.23

Round UpOption (U:n)c0u....
Extended Memory Overlay Option (/V:n[:m])
Map Width Option (/W)
Bitmap Inhibit Option (/X)
Boundary Option (/Y:n)
ZeroOption (/Z:n)o

LinkerPrompts

Chapter 12 Librarian(LIBR)...........
Callingand Using LIBR

Chapter 13

Chapter 14

12.1
12.2

12.3

Option Commands and Functions for Object Librarie

12.2.1

12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9
12.2.10
12.2.11
12.2.12
12.2.13
12.2.14
12.2.15
12.2.16

n

Include All Global Symbols, Even Absolute

Global Symbols Option(/A).
Command Continuation Options (/Cand /)
Creatinga LibraryFile
Inserting Modulesintoa Library
DeleteOption(/D)
ExtractOption(/E)
Delete Global Option (/G)
Include Module Names Option (/N)
Inciude P-section Names Option (/P)
ReplaceOption(/R)
UpdateOption (/U), ..
WideOption (/W)
Creating Multiple Definition Libraries Option (/X). . .
Listing the Directory of a Library File
Merging Library Files
Combining Library Option Functions

Option Commands and Functions for Macro Libraries

Command Co

Dump Utilitv(DUMP).

13.1
13.2
13.3

Callingand UsingDUMP

Options

Example Commandsand Listings

File Exchange Program (FILEX)

14.1
14.2
14.3

FileFormats
Callingand Using FILEX

Options
14.3.1

14.3.2

..

Transferring Files Between RT-11 and
DOS/BATCH(orRSTS)
Transferring Files Between RT-11 and

Interchange Diskette

Page

1148
1149
11-49
1149
1149
11-50

11-50

12-1

12-1
12-3

12-3
124
124
12-5
12-6
12-6
12-7
12-7
12-8
12-8
12-9
12-9
12-10
12-10
12-11
12-12

12-13
1213

12-14

13-1

13-1
13-1
13-2

14-1

14-1
14-2
14-2

Page
14.3.3 Transferring Files to RT-11 from DECsystem-10 ... 14-8

14.3.4 ListingDirectories. 14-9
14.3.5 Deleting Files from DOS/BATCH (RSTS) DECtapes
and Interchange Diskettes 14-10
Chapter 15 Source Compare(SRCCOM) 15-1
15.1 Callingand UsingSRCCOM 15-1
153 OutputFormat 15-3
153.1 SampleText 15-3
15.3.2 SampleOutputListing 15-3
15.3.3 /ChangebarOption 156
154 CreatingaSLPCommandFile......................... 15-7
154.1 /PatchOption 15-7
1542 JAuditTrailOption, 15-7
Chapter 16 Binary Comparison Program (BINCOM) 16-1
16.1 Callingand Using BINCOM 16-1
162 Options ... e 16-2
163 OutputFormat 16-3
164 Examples 164
16.5 CreatingaSIPPCommandFile 164
Chapter 17 Resource Utility Program (RESORC).................... 17-1
17.1 CallingandUsingRESORC. 17-1
172 Optionso e e e e 17-1
1721 AllOption(JA) i 17-2
17.2.2 Software Configuration Option (/C) 17-3
17.2.3 Device Handler StatusOption (/D) 17-3
17.24 Hardware Configuration Option (H) 174
17.2.5 LoadeddobsOption(/J) 17-5
17.2.6 Device Assignments Option(/L) 17-5
17.2.7 Current Monitor Option(/M) 17-6
17.2.8 Special Features Option /O) 17-7
17.2.9 Terminal StatusOption(/T).................... 17-8
17.2.10 SummaryOption(/Z) 17-9
Chapter 18 Volume Formatting Program (FORMAT)................. 18-1
18.1 Callingand Using FORMAT 18-1
182 Optionst 18-2
18.21 DefaultFormat 18-3
18.2.2 Pattern Verification Option (/P:n) 18-3
18.2.3 Single-DensityOption (/S) 18-5

xi

18.2.4 Verification Option /V[:ONL].................. 18-5
18.2.5 WaitOption (/W) 18-5
18.2.6 NoqueryOption(/Y) 185
Part V System Jobs
Chapter 19 ErrorLogging........... 19-1
191 USES .ottt et e e 19-1
19.2 Error LoggingSubsystem 19-2
19.3 Calling and Using the ErrorLogger 19-3
1931 UsingELINIT ..., .. 194
1922 UsingERROUT.......... 19-5
194 Report Analysis..............oiiiiiiinnnn... 19-6
19.4.1 Storage Device ErrorReport 19-6
19.4.2 MemoryErrorReport 19-8
19.4.3 SummaryErrorReport 19-9
Chapter 20 QueuePackage, 20-1
20.1 Calling and Using the Queue Package 20-1
20.1.1 Callingand RunningQUEUE 20-1
20.1.2 Calling and Running QUEMAN 20-2
20.2 QUEMANOptions, 20-3
20.2.1 HaltingQUEUEGA) 204
20.2.2 Deleting Files After Printing (/D). 204
20.2.3 Printing BannerPages(/H:n)................... 204
20.2.4 Printing Multiple Copies /K:n) 20-5
20.2.5 Removing a Job from the Queue (/M) 20-5
20.2.6 Listing the Contents of the Queue VL) 20-5
20.2.7 NoBanner PagesOption (/N) 20-6
20.2.8 Setting the Queue Package Defaults (/P) 20-6
20.2.9 Suspending OQutput(/S) 20-7
20.2.10 Resuming/Restarting Qutput (/R) 20-7
20.2.11 Continuing a Command String (/) 20-8
Part VI Debugging and Altering Programs
Chapter 21 On-Line Debugging Technique (ODT) 21-1
21.1 CallingandUsingODT 21-1
21.2 Relocation e 214
21.3 CommandsandFunctions 21-6
21.3.1 PrintoutFormats............................ 21-6
21.3.2 Opening, Changing, and Closing Locations 21-6

xii

Chapter 22

21321 Slash(/) i i 21-7
21322 Backslash(V....................... 21-7
21323 LINEFEEDKey(LF)................ 21-8
21.3.24 The Circumiiex or Up Arrow (™). 21-8
21.3.2.5 Underline or Back-Arrow (_) 21-8
21.3.2.6 Open the Addressed Location (@) 21-9
21.3.2.7 Relative Branch Offset (>) 21-9
21.3.2.8 Return to Previous Sequence (<)........ 21-9
21.3.3 Accessing General Registers0-7 21-9
21.3.4 Accessing Internal Registers 21-10
21.35 Radix-50Mode (X) 21-10
21.3.6 Breakpoints.............., 21-11
21.3.7 Running the Program (r;Gandr;P) 21-12
21.3.8 Single-InstructionMode 21-14
2139 Searches 21-14
21.3.9.1 WordSearch(tx;W) 21-15
21.3.9.2 Effective AddressSearch r;E). 21-15
21.3.10 Constant Register (r;C) 21-16
21.3.11 Memory Block Initialization (Fand;I)............ 21-16
21.3.12 Calculating Offsets (r;0) 21-17
21.3.13 Relocation Register Commands 21-18
21.3.14 The Relocation Calculators,n!andnR 21-19
21.3.15 ODTPriorityLevel/($P). 21-19
21.3.16 ASCIIInputand Output (r;nA) 21-20
21.4 Programming Considerations 21-21
21.4.1 Using ODT with Foreground/Background Jobs 21-21
21.4.2 Functional Organization 21-22
2143 Breakpoints................... 21-22
2144 Searches 21-25
2145 Terminallnterrupt 21-26
215 ErrorDetection 21-26
Save Image Patch Program (SIPP) 2241
22.1 CallingandUsingSIPP 221
222 SIPPOptions.............. 22-2
223 SIPPDialog..........o i 22-3
224 SIPPCommands 224
22.4.1 Opening and Modifying Locations WithinaFile. 22-6
2242 BackingUpThroughFiles..................... 22-6
2243 AdvancinginBytes 226
22.44 Entering Octal Values(GO)..................... 2217
22.4.5 Displaying and entering ASCII Values 227
22.4.6 Displaying and entering RAD50 Values. 22-8
22.4.7 Searching Through Files(;S) 22-9
2248 VerifyingGV) 22-10

xiil

Chapter 23

Chapter 24

Chapter 25

xiv

Page

22.4.9 Backing UptoaPreviousPrompt................ 22-11
22.4.10 Completing Code Modifications 22-12
22.4.11 Extending Files and Overlay Segments 22-12
22.4.11.1 Nonoverlaid Program 22-13
22.4.11.2 Overlaid Program, Low Memory
OverlaysOnly 22—-13
22.4.11.3 Overlaid Program, Extended Memory
OverlaysOnly 22-14
22.411.4 Overlaid Program, Both Low Memory
and Extended Memory Overlays 22-14
225 SIPPChecksumttt 22-15
22. Running SIPP fromanIndirectFile 22-16
22.7 Running SIPP from a BatchStream 22-17
Object Module Patch Utility (PAT)....................... 23-1
23.1 CallingandUsing PAT i, 23-1
23.2 HowPATEffectsUpdates 23-3
2321 InputFile i 234
2322 CorrectionFile 234
23.3 Updating Object Modules. 23-5
23.3.1 Overlaying LinesinaModule 23-5
23.3.2 Adding a SubroutinetoaModule 236
23.4 Determining and Validating the ContentsofaFile 23-8
Source Language Patch Program(SLP) 24-1
241 CallingandUsingSLP 24-1
242 Optionscco it 24-2
243 Example 24-3
24.4 Creating and Maintaining a Command File 244
244.1 UpdateLineFormat 244
24.4.2 Creating a Numbered Listing 246
2443 Adding LinestoaFile 24-6
24.4.4 Deleting LinesinaFile 24-8
24.4.5 ReplacingLinesinaFile 24-9
Patch Utility (PATCH) 251
25.1 Callingand UsingPATCH 25-1
252 Optionsoiiii i 25-1
2521 Checksumttt .. 25-2
25.3 Commands e 25-2

25.3.1 PatchingaNewPFile(F)
25.3.2 ExitingfromPATCH®E)
25.3.3 Examining and Changing Locations in the File
25.3.4 Translating and Indirectly Modifying Locations
withaFile.....
25.3.5 Setting Values in the Overlay Handler Tables
ofaProgram
25.3.6 Including the Old Contents into the Checksum.
25.3.7 SettingtheBottom Address
25.3.8 Setting Relocation Registers
254 Examples
25.4.1 PatchingaNonOverlaidFile...................
25.4.2 PatchinganOverlaidFile
Appendix A BATCH
Al Hardware and Software Requirements.
A2 Control StatementFormat............................
A21 CommandFields
A211 CommandNames............ Ce
A212 CommandFieldOptions
A22 SpecificationFields
A221 Physical DeviceNames...............
A222 FileSpecifications
A223 Wildeard Construction
A.224 Specification Field Options
A23 CommentFields
A24 BATCHCharacterSet........................
A25 TemporaryFiles
A3 General Rulesand Conventions
A4 Commands
A41 SBASIC.........,
A42 SCALL
A43 SCHAIN
A44 SCOPY
A45 SCREATE
A4.6 SDATA
A4.6.1 Using $DATA with FORTRAN
Programs
A47 SDELETE
A48 SDIRECTORY............... ...,
A49 SDISMOUNT,
A410 SEOD
A411 SEOJ......

Page

25-4
254
254

25-5

25-7
25-7

ar m
LD {
Lo

25-8

25-8

A-5

A-5
A-6
A-6
A-T

A7
A-8
A-9

A-10
A-11

A-12
A-13
A-14
A-15
A-15
A-16

A-17

A-18
A-18
A-18
A-19
A-20

Xv

Appendix B

Index

Figures

XUl

A412 S$FORTRAN it A-20

A413 SJOB e A-22
A414 SLIBRARY i A-23

A415 SLINK. e A-24

A416 SMACRO. i e A-26

A4.17 SMESSAGE e A-28

A418 SMOUNT i iiiea A-29

A419 SPRINT....... .. A-31
A420 SRTIL ... e A-31

Ad421 SRUN ... e A-31

A422 $SEQUENCE A-32

A423 Sample BATCHStream.................c..... A-32

Ab RT-1IModeciiiiii it i e e eeaan A-34
A51 CommunicatingwithRT-11 A-35

A5.2 Creating RT-11 Mode BATCH Programs A-36

Ab521 Labels A-36

Ab522 Variables A-37

A523 Terminall/OControl A-39

A5.24 Other Control Characters A-39

Ab525 Comments A-40

A53 RT-11ModeExamples A—40

A6 Creating BATCH Programs on Punched Cards. A-41
A7 OperatingProcedures, A-42
A71 LoadingBATCH i, A-42

A72 RunningBATCH............................ A-44

A7.3 Communicating with BATCHdJobs A-47

A74 TerminatingBATCH......................... A-50

A8 Differences Between RT-11 BATCH and
RSX-1IDBATCH e e A-50

Monitor Command Abbreviations
and System Utility Program Equivalents

2-1 Program DevelopmentCycle 2-3
4-1 Sample Command Syntax Illustration 4-3
4-2 Format of a 12-bit Binary Number 4-149
5-1 Display Editor Format, 12-inch Screen. 5-35
10-1 Sample Assembly Listing 10-5
10-2 Cross-ReferenceTable 10-12
11-1 LibrarySearches0 i 11-13
11-2 SampleloadMap i 11-17
11-3 Sample Overlay Structure for a FORTRAN Program 11-19
11-4 OverlayScheme.ottt i e e i 11-20
11-5 The Run-Time OverlayHandler........................ 11-20
11-6 Sample Subroutine Callsand ReturnPaths 11-23

Tables

11-7

11-8
11-9

11-10
11-11
11-12

11-13

11-14

11-15
19-1
19-2
19-3
19-4
19-5
19-6
19-7
21-1
23-1
23-2
A-l

1-1
3-1
3-2

3-4
4-1
4-2
4-3
4-4
4-5

4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
5-2
5-3
5-4
5-5
5-6

Memory Diagram Showing BASIC Link

withOverlayRegions
Program Virtual AddressSpace

Physical Address Space for Program

with Low Memory Overlays
Virtual and Physical AddressSpace
Virtual and Physical AddressSpace

Extended Memory Partitions That Contain

SharingSegments

Memory Diagram Showing Low Memory

and Extended Memory Overlays

Load Map for Program with Unmapped

andVirtualOverlays..............
Extended Memory OverlayHandler.
Error Logging Subsystem
Sample Storage Device ErrorReport
Sample Memory Parity ErrorReport
Sample Cache Memory ErrorReport
Sample Summary Error Report for Device Statistics
Sample Summary Error Report for Memory Statistics
Sample Report File Environment and Error Count Report
Linking ODT withaProgram
Updating a Module Using PAT
Processing Steps Required to Update a Module Using PAT
EOFCardottt

RT-11 Hardware Components
Permanent Device Names
Standard FileTypes.
DeviceStructuresc.. it
Special FunctionKeys L.
Commands Supporting Wildcards
Wildcard Defaults
SortCategoriesc.c.uuiiiiiriiiriennnnn.
OptimizationCodesot inniinnn..
FORTRAN ListingCodes.ttt
DisplayScreenValuesciii...
Default Directory Sizes
Execution and Prompting Sequence of LIBRARY Options
Prompting Sequence for LINK Options
Cross-referenceSections
.DSABL and .ENABL Directive Summary
.LIST and .NLIST Directive Summary
SET Device Conditions and Modification

EDITKeyCommandsc0iiiiunnnn..
EDIT Command Categories
Command Argumentsovuueeiinnneennnnn
EDIT Commandsand FileStatus
Write Command Arguments
Jump Command Arguments

Page

11-26
11-28

11-29
11-30
11-32

11-33
11-35

11-36
11-38
19-3
19-7
19-8
19-8
19-9
19-10
19-10
21-2
23-2
23-2
A—42

1-1

34
3-6

Q r
o

4-69
4-96
4-97
4-104
4-110
4-117
4-120
4-129
4-129
4-132
4-150
5-2

5-5

5-15
5-17
5-20

xvii

5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
6-1
7-1
8-1
8-2
8-3
9-1

10-1
10-2
10-3
10-4
10-5
10-6
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
12-1
12-2
13-1
14-1
14-2
15-1
16-1
17-1
18-1
18-2
19-1

19-2

20-1
21-1
21-2
21-3
21-4
21-5

XUILL

Advance Command Arguments
List Command Arguments.
Delete Command Arguments
KillCommand Arguments.ouunn...
Change Command Argumentsou...
Exchange Command Arguments
Unsave Command Arguments
M Command and Arguments
Immediate Mode Commands
Prompting Characters
PIPOptions.c. i
DUP Options and Categorles
DUPOptions
Default Directory Sizes0 iiiiinnnn..
DIROptionsttt
SortCodeso i it e
Default File Specification Values
File SpecificationOptions
Argumentsfor /Land/NOptions
Argumentsfor/Eand/DOptions
/COptionArguments.
MACRO-1 1 BrrorCodes e
Sectlon Attrlbutes
P-sectOrder00,
Global Reference Resolution
LinkerDefaults o,
LinkerOptions iiinnnn.
Absolute Block Parameters Information
Line-by-Line Sample Load Map Description...............
Line-by-Line Sample Load Map Description...............
Linker Prompting Sequence.
LIBRObjectOptions,
LIBRMacroOptions i,
DUMPOptionsc0 ittt
Supported FILEX Devices
FILEXOptions
SRCCOMOPLIONSttt i e
BINCOMOPLIONS oviee et iiiiee e i e
RESORCOptions0uiiieiieinnnnnnn..
FORMATOptions0v ittt
Verification BitPatterns
Line-by-Line Analysis of the Sample Storage

DeviceErrorReport........... i
Line-by-Line Analysis of the Sample Memory

ErrorReport
QUEMANOptions
Forms of Relocatable Expressions(r)
Internal Registers 00 e ennn..
Radix—50 Terminators,
Single Instruction Mode Commands.
ASCII Terminatorsccuuirimunnnenennnnns

22-1
22-2
22-3
22-4
22-5
24-1
24-2
25-1
25-2
25-3
A-1

A-3
A-4
A-5
A-6
A-7
B-1
B-2

SIPPOPtionsot e 22-2
SIPPCommandso..ttiniiienrnnnnnenn.. 224
Overlaid Program Segment Limits. 22-14
Overlaid Program Segment Limits. 22-14
Overlaid Program Segment Limits. 22-15
SLPOPtionscuviiiminnt i ieiiiinanenn 24-2
SLP Command FileOperators 244
PATCHOptions.ttt ittt e e 25-2
PATCHCommandscuiiiniiimininnnnnnn. 25-3
PATCH Controi Characters 25-5
Command FieldOptions A-3
BATCHFiIleTypescoiuiee e, A-6
Specification FieldOptions A-T
Character Explanation e A-8
BATCHCommandsituiiiieennnnnnnnn. A-11
Operator Directives to BATCH Run-Time Handler A48
Differences Between RT-11 and RSX~-11DBATCH A-50
Monitor Command/System Utility Program Equivalents B-1
System Program/Monitor Command Equivaients........... B-1

xix

Preface

This manual describes how to use the RT-11 system; it provides enough
information for you to perform ordinary tasks such as program devel-
opment, program execution, and file maintenance. The manual is written
for you if you are already familiar with computer software fundamentals

and have some experiernce U.Sii‘i‘g RT-11. If you have no RT-11 experience,
you should first read the Introduction to RT—I11 before consulting this man-
ual. If you have experience with an earlier release of RT—-11 (this is version
4), you should read the RT—11 System Release Notes to learn how RT-11
version 4 differs from earlier versions. If you are interested in more sophis-
ticated programming techniques or in system programming, you should
read this manual first and then proceed to the RT-11 Programmer’s Refer-
ence Manual and the RT-11 Software Support Manual.

The next section, Chapter Summary, briefly describes the chapters in this
manual and suggests a reading path to help you use the manual efficiently.

Chapter Summary

Part I, RT-11 Overview, Chapters 1-2, describes the RT-11 operating sys-
tem in general. It lists the hardware and software components of the RT-11

system, describes the monitors, and explains the program development proc-
ess with RT-11.

Part II, System Communication, Chapters 3-4, describes system conven-
tions, such as data formats, physical device names, file naming conventions,
and special function key commands. It also introduces the keyboard monitor
commands that you use interactively to communicate with the monitor and
to perform system jobs.

Part III, Text Editing, Chapter 5, describes the RT-11 text editor (EDIT)
and shows you how to create and modify files with it.

Part IV, Utility Programs, Chapters 618, consists of thirteen chapters that
describe the Command String Interpreter (CSI) and the many programs pro-
vided with the RT-11 system. These programs include:

PIP Peripheral Interchange Program
DUP Device Utility Program

DIR Directory Program

MACRO MACRO-11 Assembly Language
LINK Linker Program

LIBR Librarian Program

DUMP Dump Program

FILEX File Exchange Program

SRCCOM Source Comparison Program

xxi

BINCOM Binary File Comparison Program
RESORC Resource Program
FORMAT Volume Formatting Program

Part V, System Jobs, Chapters 19-20, describes two utilities that can run as
foreground or system jobs: Error Logging and Queue Package. Both utilities
actually consist of more than one program and a workfile.

Error Logging comprises three programs: EL (either a foreground or system
job), ELINIT (a background job), and ERROUT (a background job).

The Queue Package comprises two programs: QUEMAN (a background job),
and QUEUE (either a foreground or system job).

Note that both utilities run under the foreground/background or extended
memory monitor, and to run them as system jobs, you must enable system
job support through the system generation process.

Part VI, Debugging and Altering Programs, Chapters 21-25, describes the
five utility programs that permit you to examine and change assembled pro-
grams and source files. These utilities are:

OoDT On-line Debugging Technique
SIPP Save Image Patch Program

PAT Object Module Patch Program
SLP Source Language Patch Program

PATCH Patch Utility

Appendix A describes BATCH processing. Appendix B contains a summary
of the keyboard monitor commands, their abbreviations, and their system
program equivalents.

Documentation Conventions

XXl

A description of the symbolic conventions used throughout this manual fol-
lows. Familiarize yourself with these conventions before you continue
reading.

Conventions used in this manual;

1. Examples consist of actual computer output wherever possible. Where
necessary, user input is in red to distinguish it from computer output.

2. Where necessary, this manual uses the symbol @ to represent a car-
riage return, @ to represent a line feed (SPfor a space, and @8 to repre-
sent a tab. Unless the manual indicates otherwise, terminate all
commands or command strings with a carriage return.

3. Terminal and console terminal are general terms used throughout all
RT-11 documentation to represent any terminal device. including DEC-
writers, displays, and Teletypes*.

*l'eletype is a registered trademark of the Teletype Corporation.

You produce several characters in system commands by typing a com-
bination of keys concurrently. For example, while holding down the
CTRL key, type O to produce the CTRL/O character. Key combinations
such as this one are documented as €O, , and so on.

In discussions of command syntax, upper-case letters represent the com-
mand name, which you must type. Lower-case letters represent a vari-
able, for which you must supply a value.

Square brackets ([]) enclose options: you may include the item in
Al . rons 3 1 al

o aleada Ao ot H
WWACKEeLs, OF you Inay omiv

The ellipsis symbol (...) represents repetition. You can repeat the item
that precedes the ellipsis.

The hyphen (-) is a continuation character. Use it at the end of a line if
you continue a command string to another line.

This is a typical illustration of command syntax:

[

DELETE[/option...] filespec[/option...

This example shows that you must type the word DELETE, as shown,
and that you can follow it with one or more options of your choice, but
none are required. You must then leave a space, and supply a file speci-
fication. The file specification can also be followed by one or more
options, but none are required. Here is a typical command string:

DELETE/NOQUERY/ZDATE DTAIMYFILE.FOR

XXl

Part|

RT-11 Overview

Part I of this manual provides a description of the hardware and software
components that make up the RT-11 operating system and a summary of
the program developrnonf cvele.

ULiC Vi 11Tiiv VY

Chapter 1 lists all the hardware devices, monitors, utility programs, and
language processors available in the RT-11 computer system. This chapter
also lists the system services, called keyboard commands, available in
RT-11.

Chapter 2 gives a general description of the steps involved in the program
development cycle. This chapter also summarizes the use of the RT-11
librarian and high-level languages.

Chapter 1
System Components

RT-11 is DIGITAL’s smallest real-time and program development oper-
ating system for the PDP-11 family of minicomputers. This single-user
operating system runs on hardware configurations ranging from the micro-
processor-based PDP-11/03 through the larger PDP-11/60 with cache mem-
ory. RT-11’s design philosophy is to be small, efficient, reliable, and easy to
use.

The RT-11 computer system consists of hardware, software, and documen-
tation. This chapter describes briefly the components available for you to
use with RT-11.

1.1 Hardware

The hardware components of an RT-11 system are drawn from the following
categories:

o PDP-11 and PDT-11 family computers (except the 11/70 or VAX 11/780)
® Printing and video terminals

® (Core and solid state memory

e Line frequency and programmable clocks

® Random-access mass storage devices

® Other peripheral devices

The smallest possible hardware configuration for an RT-11 system must
include a PDP-11 or PDT-11 computer, one terminal, 12K words of mem-
ory, and a random-access mass storage device. Larger systems can have a
clock, more memory, more terminals, and moere peripheral devices.

Table 1-1 lists specific hardware devices that can make up an RT-11 com-
puter system.

Table 1-1: RT-11 Hardware Components

Device Type Controller Device Name
Card reader CR11 CR11
CM11 CM11
Cassette TAll TU60
Clock KW11-L, KW11-P

(continued on next page)

1-1

Table 1-1: RT-11 Hardware Components (Cont.)

Device Type Controller Device Name
DECtape TC11 TU56
DECtape Il data DL11,DLV11 TU58
cartridge
Disk cartridge RK11,RKV11 RKO05, RKO5F
RK611 RKO06, RK07
RL11,RLV11 RLO1, RL02
Diskette RX11,RXV11 RX01
RX211, RXV21 RX02
Fixed-head RF11 RS11
RH11 RJS03, RJS04
Removable pack | RP11 RP02, RP03
Display processor VTi11 VR14-L, VR17-L
VS60
Line printer LS11 LS11,LA180
Lvii LV11 (printer only)
LP11,LPV11 all LP11-controlled printers
Magtape TM11, TMA11 TU10, TS03, TE16
RH11 TJU16, TU45
TS11
Paper tape
Reader PR11 PR11
Reader/punch PC11 PC11
Terminal DLi1,DLVIi1 LA30P, LA36, LA120,
DZ11,DZV11 LS120, LT33, LT35,
VTO05, VT50, VT52,
VT55,VT61, VT100
Terminal and clock | DL11-W terminal/clock combination

1.2 Software

1-2

The software components of the RT-11 computer system can be divided into
Lo pmom e | P,

1OUT generas groups:

® Monitors

e Utility programs

® Device handlers ® Language processors

These are described in the following sections.

1.2.1 Monitors

An RT-11 monitor is a collection of routines that control the operation of
programs, schedule operations, allocate resources, and perform input and
output. A monitor comprises three major components: RMON (resident
monitor); USR (user service routine); and KMON (keyboard monitor). The
resident monitor (RMON) is the part of the monitor that is always present in

System Components

memory. It is the executive controller for the entire system. The user service
routine (USR) performs operations related to input and output, such as
opening and closing files. The keyboard monitor (KMON) is the interface
between you and the other parts of the system. It contains routines to proc-
ess the keyboard monitor commands, which are your means of performing
common system operations such as loading and running programs, assign-
ing alternate device names, and copying and deleting files.

RT-11 provides three different operating environments that represent com-
promises among size, speed, and capability. Three types of monitor, all con-
taining the main parts described above, supervise the different
environments. These three monitors are the single-job monitor (SJ), the
foreground/background monitor (FB), and the extended memory monitor
(XM). The three environments are upward compatible:

® The single-job monitor supports the basic environment.

® The foreground/background monitor includes all the support of the
single-job monitor and adds some extra features.

® The extended memory monitor is an extension of the foreground/
background monitor that includes all the foreground/background fea-
tures in addition to the extended memory capabilities.

1.2.1.1 Single-Job (SJ) Monitor — The single-job monitor, called the SJ
monitor, can run one job at a time. It is the smallest of the three monitors.
While the SJ monitor does not offer some of the optional features that the
other monitors have, you can use all the system utility programs, most of
the keyboard monitor commands, and many of the programmed requests.
Only 12K words of memory are required for a single-job system, though, and
since the SJ monitor uses 2K words itself, this leaves 10K words for system
utility programs or for your application program. The SJ monitor is ideal for
real-time applications that require a high data transfer rate because it ser-
vices interrupts quickly. In the SJ environment, programs can access up to
28K words of memory (and up to 30K words on some LSI-11’s).

A version of the SJ monitor, the base-line (BL) monitor, can run in a min-
imum configuration of 8K words of memory, but it does not support optional
monitor and device functions. The BL monitor is best suited for very small
hardware configurations, or for larger configurations where the application
requires minimal executive support.

1.2.1.2 Foreground/Background (FB) Monitor — The foreground/back-
ground monitor, called the FB monitor, can accommodate two jobs that
appear to run concurrently: a foreground job, and a background job. All pro-
grams that run in the single-job environment, including system utility pro-
grams and language processors, can run as background jobs in the
foreground/background environment. The foreground job is the time-criti-
cal, real-time job, and the FB monitor gives it priority over the background
job. A foreground/background system requires 16K words of memory and a
system clock.

System Components 1-3

14

Quite often, the central processor of a computer system spends much of its
time waiting for some external event to occur. Usually, this event is a real-
time interrupt or the completion of an I/O transfer. The FB monitor lets you
take advantage of the unused processor capacity to accomplish lower prior-
ity tasks in the background.

Whenever the foreground job reaches a state in which no useful processing
can be done until some external event occurs, the monitor executes the back-
ground job. The background job runs until the foreground job is again ready
to execute. The processor then interrupts the background job and resumes
the foreground job.

In effect, the FB monitor allows a time-critical job to run in the foreground
while a less critical task, takes place in the background. All the system util-
ity programs and language processors can run as background jobs in a fore-
ground/background system. Thus, you can use FORTRAN or EDIT, for
example, in the background, while the foreground job is collecting, storing,
and analyzing data.

Compared to the SJ monitor, the FB monitor is somewhat larger and has
slightly slower response time. However, it provides support for the fore-
ground/background environment. In the FB environment, programs can
access 28K words of memory (and up to 30K words on some LSI-11’s). Spe-
cial keyboard monitor commands are designed to link, run, suspend, and
resume foreground jobs. In addition, programmed requests permit a fore-
ground job and a background job to share data. Special system jobs
(described in Part V) run in the foreground/background environment.

1.2.1.3 Extended Memory (XM) Monitor — The extended memory monitor,
called XM, includes all the features of the FB monitor. In fact, it is produced
by a conditional assembly of the FB monitor file, RMONFB. Throughout
this manual, references to the FB environment also apply to the XM envi-
ronment, unless otherwise stated. The XM monitor provides means for a
program to access up to 124K words of physical memory. Tt permits fore-
ground and background jobs to extend their logical program space beyond
the 32K-word limit imposed by the 16-bit PDP-11 address word. The XM
monitor requires a system with the Extended Instruction Set (EIS), a KT11
memory management unit, and more than 28K words of memory.

Extended memory services, or the ability to use memory mapping, are avail-
able at a variety of levels. The XM environment was originally designed
primarily for high-level language processors such as DIBOL and FORTRAN
that automatically make use of extended memory. For DIBOL users, for
example, the mapping to extended memory is completely transparent. FOR-
TRAN programmers can use virtual arrays to store large amounts of data in
extended memory. Now, a command to the linker permits RT-11 program-
mers to store overlays in extended memory instead of on disk, thus increas-
ing an overlaid program’s execution speed markedly. A .SETTOP
programmed request permits a MACRO-11 program to dynamically allo-
cate buffers in extended memory without concern for memory mapping.
Finally, on the most basic level, RT-11 provides other programmed requests

System Components

that MACRO-11 programs can use to control their own mapping to
extended memory. Keep in mind that designing an application program to
use extended memory this way requires considerable thought and careful
planning. ‘

In the XM environment, jobs are described as being either privileged or vir-
tual jobs. Foreground or background jobs that execute in the FB or SJ envi-
ronments can also execute in the XM environment as privileged jobs. That
is, they use the default mapping from logical virtual to physical memory.
Except for jobs that include interrupt service routines, these privileged jobs

avne b seac ner A st el e

need no migjor uhaugca to execute properiy in the XM environment. Jobs
that you design specifically to take advantage of extended memory are
called virtual jobs.

1.2.2 Device Handlers

Device handlers are routines that provide the interface to the various hard-
ware devices that are part of the computer system. The handlers drive, or
service, peripheral devices and control the physical activities on the devices.
In RT-11, the terms device handler and device driver are used
interchangeably.

A handler exists for every device the system supports (except for the
VT-11). When you reference a device by its physical name, such as DL: for
the RLO1 disk, you are actually referring to the name of the device handler
for that peripheral.

Chapter 3 contains a list of all the devices that RT-11 supports, along with
their physical names. If you need to use a peripheral device that is not sup-
ported by RT-11, you usually must write the handler for it yourself. The
procedure for doing this is documented in the RT-11 Software Support
Manual.

1.2.3 System Utility Programs

RT-11 provides a number of utility programs that are designed to help you
develop programs and perform system housekeeping. The following sections
describe these utilities briefly and show where they are documented in
greater detail.

1.2.3.1 Editing — You use text editors to create and modify source programs
and to maintain files of any ASCII data, such as memos or documentation
for your own application programs. DIGITAL distributes three text file edi-
tors with RT-11, so that you can choose the one that best suits your needs
and experience: EDIT, KED, and K52.

The RT-11 text editor (EDIT, described in Chapter 5) is a character-oriented
editor suitable for hard copy terminals. Its text manipulation commands

System Components 1-5

1-6

permit you to make text insertions or changes quickly and easily. EDIT also
has a special mode for VT11 or VS60 graphics display terminals.

The keypad editor (KED, and K52 described in the PDP-11 Keypad Editor
User’s Guide) is designed especially for the VT100 and VT52 video termi-
nals that have the special function keypad. The keypad keys control the
editing functions. They permit you to position a visible cursor anywhere in
your text file and make insertions or changes easily. KED runs on VT100
terminals, and K52 runs on VT52 terminals.

1.2.3.2 General Purpose — RT-11 provides several utility programs that
help you perform maintenance on your system and aid in program
development.

The peripheral interchange program (PIP, described in Chapter 7) is the
RT-11 file maintenance program. It transfers files between the devices that
are part of the RT-11 system, and it deletes and renames files as well.

The device utility program (DUP, described in Chapter 8) performs general
device tasks such as initializing devices, scanning for bad blocks, dupli-
cating device contents, and reorganizing files on the device. It operates only
on RT-11 file-structured devices.

The directory listing program (DIR, described in Chapter 9) performs a wide
range of directory listing operations and can list details about certain files,
such as file names, file types, and block sizes.

The linker program (LINK, described in Chapter 11) converts a collection of
object modules from compiled or assembled programs and subroutines into a
memory image file that RT-11 can load and execute. The linker also allows
you to:

® Search library files for subroutines that you specify
® Produce a load map that lists the assigned absolute addresses
e Set up a disk or memory resident overlay structure for large programs

e Create a symbol table file that lists all the global symbols used in the
program

® Produce files suitable for execution as foreground jobs

The librarian program (LIBR, described in Chapter 12) lets you create and
maintain libraries of functions and routines. These routines can be stored on
a random-access device in library files where the linker can reference them
and add them to a program’s memory image file. You can create object
libraries and macro libraries. The latter are used by the MACRO assembler.

The dump program (DUMP, described in Chapter 13) prints all or any part
of a file or volume in octal words, octal bytes, ASCII characters, or Radix~50
characters.

System Components

The file exchange program (FILEX, described in Chapter 14) transfers files
among DECsystem—10, PDP-11 RSTS/E, and DOS BATCH systems on
DECtape and disks, and between RT-11 and IBM systems on diskettes.

The source file comparison program (SRCCOM, described in Chapter 15)
performs a character-by-character comparison of two ASCII text files. You
can request that the differences be listed in an output file or directly on the
line printer or terminal to make sure that edits to a file have been performed
correctly. SRCCOM can also produce a file that is suitable as input to SLP,
the source file patching utility.

The binary file comparison program (BINCOM, described in Chapter 16)
compares two binary files and lists the differences between them. It can pro-
vide a quick way of telling whether two data files, or output from two ver-
sions of a program, are identical. BINCOM can also produce a file that can
be run as an indirect command file for the save image patch program (SIPP)
to patch one file in the binary comparison so it matches the other.

The resource program (RESORC, described in Chapter 17) lists information
about your system configuration and system generation special features.

The volume formatting program (FORMAT, described in Chapter 18) pro-
vides a way to format RK05, RK06, and RK07 disks, and diskettes. It also
provides disk verification by writing patterns and reading them on each
block of your volume.

1.2.3.3 System Jobs — RT-11 provides two utilities that you can run as
system jobs if you have enabled system job support through the system gen-
eration process: Error Logging and the Queue Package. Both utilities run
under the FB and XM monitors.

The Error Logger (described in Chapter 19) keeps a statistical record of all
I/0 transfers for each device it supports. The Error Logger also records mem-
ory parity and cache errors as they occur. With the Error Logger enabled on
your system volume, you can collect data on each I/O and memory error that
occurs. The Error Logger consists of three programs and a work file. This
utility is a special feature; that is, you must enable it through the system
generation process.

The Queue Package (described in Chapter 20) sends files to any valid RT-11
device. The Queue Package is particularly useful for queuing files for sub-
sequent printing, although output is not restricted to the line printer.
Unlike the Error Logger, the Queue Package is not a special feature. (You
need not perform system generation to enable it.)

1.2.3.4 Debugging and Patching — These utility programs help you in find,
diagnose, and correct programming errors.

The on-line debugging technique (ODT, described in Chapter 21) is an object
module that you link with your program. It helps you debug assembled and
linked programs. ODT can:

System Components 1-7

1-8

® Print and change the contents of specified locations
® Execute all or part of the object program
® Search the object program for specific bit patterns

The save image patch program (SIPP, described in Chapter 22) can patch
programs that were linked with the RT-11 V04 linker. It can also patch
nonoverlaid programs from versions V03 and V03B of RT-11. The major
advantage in using SIPP rather than PATCH (described below) is that
SIPP’s format makes it easier to use.

The object module patch program (PAT, described in Chapter 23) performs
minor modifications to files in object format (output files produced by the
FORTRAN compiler or the MACRO assembler). It can merge several object
files into one.

The source language patch program (SLP, described in Chapter 24) provides
an easy way to make changes to source files. SLP can use an indirect com-
mand file (or the keyboard monitor command DIFFERENCES/SLP/
OUTPUT filespec,) created by the SRCCOM /P option to make two source
files match.

The patch program (PATCH, described in Chapter 25 performs minor modi-
fications to memory image files that are output by the pre-V04 linkers. Do
not use PATCH for files linked with the V04 linker.

1.2.3.5 BATCH - The batch program (BATCH, described in Appendix A) is
a complete job-control language that allows RT-11 to operate unattended.

1.2.4 Language Processors

RT-11 supports a number of language processors to help you develop pro-
grams. The Introduction to RT-11 contains detailed information on the dif-
ferences between assembly language and high-level languages. It also offers
guidelines for choosing a programming language and provides demonstra-
tions of MACRO, BASIC, and FORTRAN programs.

The MACRO-11 assembler (see Chapter 10) is part of the RT-11 system.
Because MACRO-11 is an assembly language, it gives you control over the
system at the most elementary level. On the other hand, it is probably more
difficult to learn and use than any of the high-level languages.

The other languages RT-11 supports are:

e APL e DIBOL
e BASIC e FORTRANIV

System Components

1.3 RT-11 Software Documentation

The software documentation for an RT-11 system consists of the manuals
that document the RT-11 system itself, plus the documentation for any
optional languages or application packages you may have.

The RT—-11 Documentation Directory summarizes the manuals in the RT-11
documentation set. Reading this directory gives you a general picture of the
topics covered in the manuals.

To find more specific information, refer to the RT—-11 Master Index. This is a
compilation of the indexes of the other RT-11 manuals. It pinpoints refer-
ences by manual name and page number. It also indicates which reference is
the primary source of information on the specific topic.

1.4 Obtaining System Services

The RT-11 system provides many services that allow you, for example, to
copy and delete files, to examine locations in memory, to run programs, and
to open and close files. Some of these services are available to you at the con-
sole terminal; others are available to application programs.

1.4.1 Using the Keyboard Monitor Commands

The keyboard monitor commands are a set of English-language commands
that permit you to perform common system operations. When you type a
keyboard monitor command at the console terminal, RT-11 responds by per-
forming the operation you specify. The monitor then prompts you for
another command and waits for you to respond. Chapter 4 describes the syn-
tax and function of each of the keyboard monitor commands.

The set of keyboard monitor commands consists of two types of command:
simple and complex. Simple, or direct, commands are executed directly by
the keyboard monitor, and no other software components are required. The
complete set of simple commands is as follows:

ASSIGN Deposit INSTALL RESET START
Base Examine LOAD RESUME SRUN
CLOSE FRUN R RUN SUSPEND
DATE GET REENTER SAVE TIME
DEASSIGN GT REMOVE SET UNLOAD

Complex, or expanded, commands are not executed directly by the keyboard
monitor. Instead, a utility program or language processor is called by the
keyboard monitor to perform the operations. The keyboard monitor expands
the command line piece by piece and translates the command into an R com-
mand followed by a program name and one or more lines of file specifications
and options for that program. When the operation completes, control returns
to the keyboard monitor and it prompts you for another command. The set of
complex commands is as follows:

System Components 1-9

1-10

APL DELETE EXECUTE LIBRARY SQUEEZE

BASIC DIBOL FOCAL LINK TYPE
BOOT DIFFERENCES FORMAT MACRO

COMPILE DIRECTORY FORTRAN PRINT

COPY DUMP HELP RENAME

CREATE EDIT INITIALIZE SHOW

1.4.2 Using Programs Directly

Another way to obtain services from RT-11 is to invoke system utility pro-
grams or language processors yourself, instead of invoking them indirectly
through the keyboard monitor commands. By using this method you can
obtain all the services provided by the complex keyboard monitor com-
mands. (The only way to obtain the services provided by the simple
keyboard monitor commands is to issue those commands.) A limited number
of utility program operations are not implemented through the keyboard
monitor. In addition, you must run some of the utility programs directly in
order to use them at all. Programs in this group include the patching and
debugging utilities.

To invoke a system utility program or a language processor run the appro-
priate program and specify a combination of file specifications and single
alphabetic character options. Chapter 6 describes the syntax you use to
interact with the utility programs and language processors. Chapters 7
through 20 contain detailed information on each program.

1.4.3 The Relationship Between Complex Commands and System
Programs

It is possible to obtain the services provided by the complex keyboard mon-
itor commands by directly running the appropriate system programs.
Appendix B provides a compiete list of the keyboard monitor commands and
the system programs they invoke.

The following example demonstrates two ways of copying a listing of a pro-
gram from the system disk, where it is stored as MYFILE.LST, to the line
printer. The keyboard monitor command to do this is as follows:

s FRINT MYFTLE<RET

The commands to invoke a utility program, specify the same operation, and
return control to the monitor are:

+ROPIPCRET
XLPI=DKOIMYFILE LST=RET >
x~C

o, although there are two ways of obtaining the same services, bear in
mind that the syntax for using the utility programs and language processors
is quite different from the keyboard monitor command syntax. Since the

System Components

keyboard commands are designed to be easy to remember and easy to use, it
makes sense to use them whenever possible.

1.4.4 The System Macro Library and Programmed Requests

The system macro library, called SYSMAC.SML, contains routines that you
can use in MACRO assembly language programs and in device handlers.
You call the routines in your assembly language program, and they expand
into lines of source code. These macros can save you considerable program-
ming effort. See the RT-11 Programmer’s Reference Manual.

1.4.5 SYSLIB FORTRAN - Callable Subprograms

Most of the system subroutine library (SYSLIB) routines are written in
MACRO. They give the FORTRAN programmer many of the services that
the MACRO programmer can obtain from the system macro library (SYS-
MAC.SML). These subprograms can be called from a program written in
any programming language, as long as the program conforms to the FOR-
TRAN calling conventions described in the RT—11 Programmer’s Reference
Manual.

System Components 1-11

Chapter 2
Program Development

The number and type of tools available on any system depend on many fac-
tors, including the size of the system, its application, and its cost. RT-11 pro-

"‘;f}ea an"n”ﬁ‘l MPNATYrarnm AQ"O}G“MD“{' O;ﬂ‘ﬂ ;“n’l“ﬂ“;“” aﬁ e'];+l\” arm n(‘ﬁem‘r\‘l(\”
ViGes S€verai progran GeveiOpIneiil aias, infiuding an SQaitdl, an asseiiilier,

a linker, a debugger, and a librarian. High-level languages, such as FOR-
TRAN or BASIC, are optionally available.

This chapter describes briefly the program development cycle, which is illus-
trated in Figure 2-1. The Introduction to RT—-11 contains a much more thor-

ough treatment of program development including demonstrations of
MACRO, BASIC, and FORTRAN programs.

2.1 Using an Editor

You use an editor to create and modify textual material. Text may be the
statements in a source program, or any other ASCII data, such as reports or
memos. In this respect, using an editor is analogous to using a typewriter;
you sit at a keyboard and type text. However, the functions of an editor far
exceed those of a typewriter. Once a text file has been created, you can mod-
ify, relocate, replace, merge, or delete text, all by means of simple editing
commands. When you are satisfied with your text, you can save it on a stor-
age device where it is available for later reference.

2.2 Using the Assembler

Program development does not stop with the creation of a source program.
Since the computer cannot understand any language but machine language,
you need an intermediary program to convert source code into the instruc-
tions the computer can execute. This is the function of an assembler.

The assembler accepts alphanumeric representations of PDP-11 coding
instructions, interprets the code, and produces as output the appropriate
machine, or object, code. You can direct the assembler to generate a listing
of both the source code and binary output, as well as more specific listings
that are helpful during the program debugging process. In addition, the
assembler is capable of detecting certain common coding errors and issuing
appropriate warnings.

The assembler’s output is called object output because it is composed of
object, or binary, code. On PDP-11 systems, the object output is called a
module; it contains your source program in the binary language that, when
linked, is acceptable to a PDP-11 computer.

2-1

2.3 Using the Linker

Source programs may be complete and functional by themselves; however,
some programs are written in such a way that they must be used with other
programs or modules to form a complete and logical flow of instructions. For
this reason, the object code produced by the assembler must be relocatable.
That is, assignment of memory locations must be deferred until the code is
combined with all other necessary object modules. The linker performs this
function.

The linker combines and relocates separately assembled object programs.
The output produced by the linker is a load module, the final linked program
that is ready for execution. You can, if you wish, request a load map that dis-
plays all addresses assigned by the linker.

2.4 Using the Debugger

You can rarely create a program that does not contain at least one error,
either in the logic of the program or in its coding. You may discover errors
while you are editing the program, or the assembler may find errors during
the assembly process and inform you by means of error codes. The linker
may also catch certain errors and issue appropriate messages. Often, how-

ver, it is not until execution that you discover that your program is not
working properly. Programming errors may be extremely difficult to find,
and for this reason, a debugging tool, ODT (described in Chapter 21), is
available to help you find the cause of errors.

ODT allows you to control the execution of your program interactively. With
it, you can examine the contents of individual locations, search for specific
bit patterns, set designated stopping points during execution, change the
contents of locations, continue execution, and test the results — all without
editing and reassembling the program.

Nlndn bl nd 34 35 e N |
ANULC Lullal 1u 1d auvidaul L

for which results are already known. If the results do not match, you know
you have errors.

P I 4

O

[l

At
TOUL

(4

LEW P

2.5 Using the Librarian

2-2

When programs are written and debugged, they are useful to other pro-
grammers. Often, routines that are common to many programs, such as
input and output routines, or sections of code that are used over and over
again, are more useful if they are placed in a library where they can be
retrieved by any interested user. A librarian provides such a service by
allowing creation of a library file. Once created, the library can be expanded
or updated, or a directory of its contents can be listed.

Program Development

2.6 Using a High-level Language

High-level languages simplify your work by providing an alternative
means, other than assembly language, of writing a source program. Gener-
ally, high-level languages are easy to learn. A single command causes the
computer to perform many machine-language instructions. You do not need
to know about the mechanics of the computer to use a high-level language.
In addition, some high-level languages, such as BASIC, offer a special
immediate mode that allows you to solve equations and formulas as though
you were using a calculator. You can concentrate on solving the problem
rather than on using the system.

Figure 2-1: Program Development Cycle

START @

w “

PAPER) LINK

EDIT ERRORS?

I

{ SOURCE
FILE
T LINK
\ WITH
oDT
ASSEMBLE
or RUN)
COMPILE

RESULTS NO

oK?

ERRORS?

OBJECT
FILE

Program Development 2-3

Part i
System Communication

The monitor is the center of RT-11 system communications; it provides
access to system and user programs, performs input and output functions,

and controls foreground and background jobs.

You communicate with the monitor through keyboard commands and pro-
grammed requests. You can use the keyboard commands (described in
Chapter 4) to load and run programs, start or restart programs at specific
addresses, modify the contents of memory, and assign and deassign alter-
nate device names, to name only a few of the functions.

Programmed requests (described in detail in the RT-11 Programmer’s Ref-
erence Manual) are source program instructions that request the monitor to
perform monitor services. These instructions allow assembly language pro-
grams to use the monitor features. A running program communicates with
the monitor through programmed requests. FORTRAN programs have
access to programmed requests through the system subroutine library (SYS-
LIB). Programmed requests can, for example, manipulate files, perform
input and output, and suspend and resume program operations.

Of the two chapters in this part, Chapter 3 describes system conventions and
contains information that helps you get started with RT-11; Chapter 4
introduces the keyboard monitor commands, which are your means of con-
trolling the RT-11 system.

Chapter 3
System Conventions

This chapter contains information that will help you start using the RT-11
system. It describes:

e Startupp
® Data formats

® Physical device names

® File names and file types

® Device structures

® Special function keys

® Foreground/background terminal I/O
® Type-ahead feature

Before you operate the RT-11 system, you should be familiar with the spe-
cial character commands, file naming procedures and other conventions that
are standard for the system. These conventions are described in this
chapter.

3.1 Startup Procedure

For information on building the system and loading the monitor, refer to the
Introduction to RT-11, to the RT-11 Installation and System Generation
Guide, or to any instructions provided by your DIGITAL representative.

When the system has been built and you load the monitor into memory, the
monitor prints one of the following identification messages on the terminal:

RT-11SJ (S) Vxx.nnp
RT-11FB (S) Vxx.nnp
RT-11XM (S) Vxx.nnp

The message indicates which monitor (SJ, FB, or XM) is loaded; you estab-
lish which is to be loaded when you install the system. The (S) indicates that
the monitor was created through the system generation process, if
applicable.

Vxx represents the version and release number of the monitor — for
example, V04, for Version 4 (release A). nnp represents the library sub-
mission number and the patch level — for example, 01B, for library number
1 (patch level B).

3-1

As soon as a monitor takes control of the system, it attempts to execute
keyboard monitor commands from a startup indirect command file called
STARTS.COM, for the SJ monitor; STARTF.COM, for the FB monitor; or
STARTX.COM for the XM monitor. You can place commands in this startup
file that will perform routine tasks such as assigning logical device names to
physical devices, or setting the current date. If the monitor does not find the
appropriate file, it issues a warning message. After executing the startup
indirect command file, the system prints its prompt (.) indicating that it is
ready to accept commands. You should now write-enable the system device.
(Note that if you do not want the startup indirect command file feature, you
can disable it during system generation or you can apply a customization
patch.)

3.2 Data Formats

3-2

The RT-11 system stores data in two formats: ASCII and binary. The binary
data can be organized in many formats, including object, memory image,
relocatable image, and load image.

Files in ASCII format conform to the American Standard Code for Informa-
tion Interchange, in which each character is represented by a 7-bit code.
Files in ASCII format include program source files created by the editor and
BASIC, listing and mabp files created by various system programs, and data

files consisting of alphanumeric characters.

Files in binary object format consist of data and PDP-11 machine language
code. Object files are the files the assembler or language compiler produces;
they are used as input to the linker.

The linker can produce runnable files in one of three formats: (1) memory
image format (.SAV), (2) relocatable image format (.REL), or (3) load image
format (.LDA).

A memory image file (.SAV) is a picture of what memory looks like after you
load a program. The file itself requires the same number of disk blocks as
the corresponding number of 256-word memory blocks. A memory image file
does not require relocation and can run in an SJ environment, as a back-
ground program under the FB or XM monitor, or as a foreground virtual job
under the XM monitor.

A relocatable image file (REL) is linked as though its bottom address were
1000, but relocation information is included with its memory image. When
you call the program with the FRUN command, the file is relocated as it is
loaded into memory. A relocatable image file can run in a foreground
environment.

You can produce a load image (.LDA) file for compatibility with the PDP-11
paper tape system. The absolute binary loader loads this file. You can load
and execute load image files in stand-alone environments without relocat-
ing them.

System Conventions

3.3 Physical Device Names

When you request services from the monitor, you must sometimes specify a
peripheral device. You can specify devices by means of a standard two-char-
acter physical device name. Table 3—1 lists each name and its related device.
If you do not specify a unit number for devices with more than one unit, the
system assumes unit 0.

Table 3-1: Permanent Device Names

Permanent Name | I/O Device
CR: CR11/CM11 Card Reader
CTn: TA11 Cassette (nisOor 1)
DDn: TU58 DECtape II (n is an integer in the range 0-3)
4.DK The default logical storage device for all files (DK: is initially the
same as SY:)
DKn: The specified unit of the same device type as the system device
DLn: RLO1, RLO2 Disk (r is an integer in the range 0-3)
DMn: RKO06, RK07 Disk (n is an integer in the range 0-7)
DPn: RP02, RP03 Disk (n is an integer in the range 0-7)
DSn: RJS03/4 Fixed-Head Disks (n is an integer in the range 0-7)
DTn: DECtape (n is an integer in the range 0-7)
DXn: RXO01 Diskette (n is an integer in the range 0—3)
-DYn: RX02 Diskette (n is an integer in the range 0—3)
LP: Line Printer
LS: Serial Line Printer (a hard copy output device connected to a DL11
interface)
MMn: TJU16/TU45 (industry-compatible) Magtape (n is an integer in the
range 0-7)
MQ: Message queue pseudo-device for inter-job communication under the
FB monitor.
MSn: TS11 Magtape (n is an integer in the range 0~7)
MTn: TM11/TMA11/TS03/TE16 (industry-compatible) Magtape (n is an
integer in the range 0-7)
NL: Null device
PC: PC11 Combined High-Speed Paper Tape Reader and Punch
PDn: The mass storage volume for the PDT-130/150 intelligent terminal.
Volumes are DECtape II or single-density diskettes (n is either 0
or1).
RF: RF11 Fixed-Head Disk Drive
RKn: RKO05 Disk Cartridge Drive (n is an integer in the range 0-7)
SY: The default logical system device; the device and unit from which the
system is bootstrapped
SYn: The specified unit of the same device type as SY:
TT: Console Terminal Keyboard and Printer

System Conventions 3-3

In addition to using the permanent names shown in Table 3-1, you can
assign logical names to devices. A logical name takes precedence over a
physical name and thus provides device independence. With this feature,
you do not have to rewrite a program that is coded to use a specific device if
the device becomes unavailable. You associate logical names with physical
devices by using the ASSIGN command, which is described in Section 4.4.

3.4 File Names and File Types

34

You can reference files symbolically by a name of one to six alphanumeric
characters (followed, optionally, by a period and a file type of up to three
alphanumeric characters). No spaces or tabs are allowed in the file name or
file type. The file type generally indicates the format or contents of a file. It
is good practice to conform to the standard file types for RT—11. If you do not
specify a file type for an input or output file, most system programs use or
assign an appropriate default file type. Table 3-2 lists the standard file
types used in RT-11.

Table 3-2: Standard File Types

File Type | Meaning

BAD Files with bad (unreadable) blocks; you can assign this file type whenever
bad areas occur on a device. The .BAD file type makes the file permanent in
that area, preventing other files from using it and consequently becoming
unreadable

.BAK Editor backup file

.BAS BASIC source file (BASIC input)

.BAT BATCH command file

.CND System generation conditional file

.COM Indirect command file

.CTL BATCH control file generated by the BATCH compiler

.CTT BATCH internal temporary file

.DAT BASIC or FORTRAN data file

.DBL DIBOL source file

.DDF DIBOL data file

.DIF SRCCOM output file

.DIR Directory listing file

.DMP DUMP output file

FOR FORTRAN 1V source file (FORTRAN input)

.LDA Absolute binary (load image) file (optional linker output)

.LOG BATCH log file

.LST Listing file MACRO, FORTRAN, LIBR, or DIBOL output)

.MAC MACRO source file (MACRO or SRCCOM input, LIBR input and output)

.MAP Map file (linker output)

(continued on next page)

System Conventions

Table 3-2: Standard File Types (Cont.)

File Type | Meaning

.OBJ Relocatable binary file (MACRO or FORTRAN output, linker input, LIBR
input and output)

.REL Foreground job relocatable image (linker output, default for monitor FRUN
command)

SAV Memory image; default for R, RUN, SAVE, and GET keyboard monitor com-
mands; also default for linker output

.SML System MACRO library

.SLP SLP command file

.SOU Temporary source file generated by BATCH

.STB Symbol table file in object format containing all the symbols produced during
alink

.SYS Monitor files, handlers, and system job files

TMP ERROUT temporary file; QUEUE work file

TXT Text file

3.5 Device Structures

RT-11 devices are categorized according to two characteristics: (1) the
device’s method of processing information, and (2) the device’s physical
structure.

All RT-11 devices are either randomly accessed or sequentially accessed.
Random-access devices allow the system to process blocks of data in a ran-
dom order — that is, independent of the data’s physical location on the
device or its location relative to any other information. All disks, diskettes,
DECtape, and DECtape II fall into this category. Random-access devices are
sometimes called block-replaceable devices, because you can manipulate
(rewrite) individual data blocks without affecting other data blocks on the
device.

Sequential-access devices require sequential processing of data; the order in
which the system processes the data must be the same as the physical order
of the data. RT-11 devices that are sequential devices are cassette, paper
tape reader and punch, card reader, line printer, terminal, and the null
device.

File-structured devices are those devices that allow the system to store data
under assigned file names. RT-11 devices that are file-structured include all
disk, diskette, DECtape, DECtape II, magtape, and cassette devices. Non-
file-structured devices, however, do not store files; they contain a single log-
ical collection of data. These devices, which include the line printer, card
reader, terminal, and paper tape reader and punch, are generally used for
reading and listing information.

System Conventions 3-5

File-structured devices that have a standard RT-11 directory at the begin-
ning are RT-11 directory-structured devices. A device directory consists of a
series of directory segments that contain the names and lengths of the files
on that device. The system updates the directory each time a program
moves, adds, or deletes a file on the device. (The RT-11 Software Support
Manual contains a more detailed explanation of a device directory.) RT-11
directory-structured devices include all disks and DECtapes. Some devices
that do not have the standard RT-11 directory structure, such as magtape
and cassette, store directory information at the beginning of each file, but
the system must read the device sequentially to obtain all information about
all files.

Table 3-3 shows the relationships among devices, access methods, and
structures. ‘

Table 3-3: Device Structures

Structure
Device File Non-file RT-directory | Non-RT-directory

Random Access

Disk, diskette X X

DECtape, DECtape II X X
Sequential Access

Magtape X X

Cassette X X

Paper tape X

Card reader X

Line printer X

Terminal X

3.6 Special Function Keys

3-6

Special function keys and keyboard commands let you communicate with
the RT-11 monitor to allocate system resources, manipulate memory
images, start programs, and use foreground/background services.

The special functions of certain terminal keys you need for communication
with the keyboard monitor are explained in Table 3—4. In the FB system, the
keyboard monitor runs as a background job when no other background job is
running.

Enter CTRL commands by holding the CTRL key down while typing the
appropriate letter.

System Conventions

Table 3—4: Special Function Keys

Key Function

CTRL/A | Is valid only after you type the monitor GT ON command and use the display.
CTRL/A, a command that does not echo on the terminal, pages output if you
use it after a CTRL/S. The system permits console output to resume until the
screen is completely filled; text currently displayed scrolls upward off the
screen. CTRL/A has no special meaning if the keyboard monitor command GT
ON is not in effect.

Fal T /M 8 N i‘- PR P d....uu. A1T Teasrhanaed femenas b.... -,...,..-_d e W2
CIRLW/D \Jdubes ulie bybwlll w uLrecy d.ll ACyUuvalu l.l.lpl.lla W uu: alnpgluull JUU 1uc ruo

monitor echoes B> on the terminal. The system takes at least one line of out-
put from the background job. The foreground or system job, however, has prior-
ity, so the system returns control to the foreground or system job when it has
output. In multi-terminal systems, CTRL/B has no special meaning if the
background console is not shared. CTRL/B directs all typed input to the back-
ground job until a CTRL/F redirects input to the foreground job or a CTRL/X
directs input to a system job. CTRL/B has no special meaning when used under
a single-job monitor or when a SET TT NOFB command is in effect.

CTRL/C | Terminates program execution and returns control to the keyboard monitor.
CTRL/C echoes ~C on the terminal. You must type two CTRL/Cs to terminate
execution unless the program to be terminated is waiting for terminal input or
is using the TT handler for input. In these cases, one CTRL/C terminates exe-
cution. Under the FB monitor, the job that is currently receiving input is the
job that is stopped (determined by the most recently typed command, CTRL/F
or CTRL/B). To make sure that the command is directed to the proper job, type
CTRL/B or CTRL/F before typing CTRL/C.

CTRL/E | Causes all terminal output to appear on both the display screen and the con-
sole terminal simultaneously. CTRL/E is valid after you type the monitor GT
ON command and use the display. The command does not echo on the termi-
nal. A second CTRL/E disables console terminal output. CTRL/E has no special
meaning if GT ON is not in effect.

CTRL/F | Causes the system to direct all keyboard input to the foreground job and take
all output from the foreground job The FB monitor echoes F> on the terminal
ex1sts the monltor prmts an error message (F?) Othermse, control remams
with the foreground job until redirected to the background job (with CTRL/B),
or redirected to a system job (with CTRL/X), or until the foreground job termi-
nates. In multi-terminal systems, CTRL/F has no special meaning if the fore-
ground consote is not shared. CTRL/F has no special meaning when used under
a single-job monitor, or when a SET TT NOFB command is in effect.

CTRL/O | Causes RT—11 to suppress terminal output while continuing program execu-
ion. CTRL/O echoes as ~O on the terminal. RT-11 reenables terminal output
when one of the following occurs:

1. Youtype a second CTRL/O.

2. You return control to the monitor by typing CTRL/C or by issuing the
.EXIT request in your program.

3. The running program issues a .RCTRLO programmed request (see the
RT-11 Programmer’s Reference Manual). RT-11 system programs reset
CTRL/O to the echoing state each time you enter a new command string.

Note that when you are using CTRL/O under the single-job monitor, the system
can print an extraneous character after the monitor echoes the CTRL/O and a
carriage return/line feed.

(continued on next page)

System Conventions 317

Table 3—4: Special Function Keys (Cont.)

Key

Function

CTRL/Q

CTRL/S

CTRL/U

CTRL/X

CTRL/Z

DELETE
or
RUBOUT

Resumes printing characters on the terminal from the point printing pre-
viously stopped because of a CTRL/S. CTRL/Q does not echo and has no special
meaning under a multi-terminal SJ or FB monitor if a SET TT NOPAGE com-
mand is in effect.

Temporarily suspends output to the terminal until you type a CTRL/Q. CTRL/S
does not echo. Under a multi-terminal SJ or FB monitor, CTRL/S is not inter-
cepted by the monitor if TT NOPAGE is in effect.

Deletes the current input line and echoes as “U followed by a carriage return at
the terminal. (The current line is defined as all characters back to, but not

including, the most recent line feed, CTRL/C, or CTRL/Z.)

Causes the system to prompt you for a job name, then to direct all keyboard
input to the system job you specify. When you type CTRL/X, the system prints
Job? at the terminal. Specify the system job name (or logical job name) of the
system job to which you want to direct input. Specify B or F to direct keyboard
input to the background or foreground job, respectively. If the specified job does
not exist, the system prints a question mark (?), otherwise it prints the system
job name at the terminal. Control remains with the specified system job until
the job terminates, or control is redirected to the background job (with
CTRL/B), the foreground job (with CTRL/F), or another system job (with
CTRL/X). CTRL/X has no special meaning when used with a monitor that does
not have system job support or when SET TT NOFB.

Terminates input when used with the terminal device handler (TT). It echoes
as “Z on the terminal. The CTRL/Z itself does not appear in the input buffer.
Note that because CTRL/Z is a line terminator, you cannot delete it, once typed.
If TT is not being used, CTRL/Z has no special meaning.

Deletes the last character from the current line and echoes a backslash plus the
character deleted. Each RUBOUT succeeding DELETE deletes and echoes
another character. The system prints an enclosing backslash when you type a
key other than DELETE. This erasure is performed from right to left up tothe

beginning of the current line. If you are using a video display terminal and you
.“I9‘7O 1¢§|10f‘ +]’\ﬂ QF"T‘ 'Tv" Qpnpu‘ l‘nmmonr‘ nw' F"T‘p O"‘QGOG ﬂl\‘)"')f'*ﬂ"ﬁ "KY'lfl\

backspace, space, backspace sequence. Your corrections appear on the screen;
RUBOUT does not enclose them with backslash characters.

3.7 Foreground/Background Terminal I/O

3-8

Console input and output under FB are independent functions; therefore,
you can type input to one job while another job prints output. You may be in
the process of typing input to one job when the system is ready to print out-
put from another job on the terminal. In this case, the job that is ready to
print interrupts you and prints the message on the terminal; the system
does not redirect input control to this job, however, unless you type a
CTRL/B, CTRL/F, or CTRL/X, whichever applies. If you type input to one job
while another has output control, the system suppresses the echo of the
input until the job accepting input gains output control; at this point, all

PR Todnd tamsiid anhana

accumuilawea 1I1PuUy ©Li1uco.

System Conventions

If the two jobs are ready to print output at the same time, the job with the
higher job number has priority. For example, in an FB system, the system
prints output from the foreground job until it encounters a line feed. Each
time the system prints a line feed, it checks to see if the foreground job (or,in
a monitor with system job support, any higher priority job) has output; if so,
the system gives control to the highest priority job that is ready to print.

When the foreground job terminates, control reverts automatically to the
background job.

3.8 Type-ahead Feature

The monitor has a type-ahead feature that lets you enter terminal input
while a program is executing. For example:

+DIRECTORY/FRINTER
DATE

Although the system echoes the characters you type immediately after you
type them, the system stores this terminal input in a buffer and uses it when
the system completes the first operation.

If type-ahead input exceeds the input buffer capacity (usually 134 charac-
ters), the terminal bell rings and the system accepts no characters until a
program uses part of the type-ahead buffer, or until you delete characters.
No input is lost. Type-ahead is particularly useful when you specify multiple
command lines to system programs.

Note that after you bootstrap any RT—11 monitor, the system does not recog-
nize the type-ahead feature until either the keyboard prompting character
(.) prints or the startup indirect command file begins executing. If you type
ahead prior to this, the system either ignores or truncates your type-ahead.

If you type a single CTRL/C while the system is in this mode, the system
puts CTRL/C into the buffer. The program currently executing exits when it
makes a terminal input request. Typing a double CTRL/C returns control to
the monitor immediately. If you terminate a job by typing two CTRL/Cs, the
system discards any unprocessed type-ahead.

System Conventions 3-9

Chapter 4
Keyboard Commands

Keyboard commands allow you to communicate with the RT-11 system.
You enter keyboard commands at the termmal esponse to the keyboard

do A4 £\ P VR PR 1. S R
TMHONITOT O0T,) AT llll—' llllHlAIlllU AR
MoniLer aoy (L), anu pprrauing

This chapter uses some symbolic conventions to describe the monitor com-
mand language. The preface to this manual contains a more detailed list of
the symbolic conventions used throughout the manual. You should familiar-
ize yourself with the symbols and their meaning before reading this chapter.

4.9 Command Syntax

The system accepts commands as either: (1) a complete string containing all
the information necessary to execute a command, or (2) as a partial string.
In the latter case the system prompts you to supply the rest of the informa-
tion. Terminate each command with a carriage return.

The general syntax for a command is:

command[/option...] input-filespecl/option...]
output-filespec{/option...]

or
command(/option...]

promptl? input-filespeci/option...]
prompt2? output-filespec[/option...]

where:
command is the command name
/option represents a command qualifier that specifies the
exact action to be taken. Any option you supply
immediately following the command applies to the
entire command string
prompt represents the keyboard monitor prompt for more

information. The keyboard monitor prints an appro-
priate prompt only if you omit input and/or output
file or device specifications in the initial command
line (Note that not all keyboard monitor commands
print prompts.)

input-filespec represents the file on which the action is to be taken

41

4-2

/option represents a file qualifier that specifies more detailed
information about that particular file or action to be
taken

output-filespec represents the file that is to receive the results of the
operation

/option represents a file qualifier that specifies more detailed
information about that particular file or action to be
taken

In the alphabetical listing of keyboard monitor commands in Section 4.4,
each command begins with a graphic presentation of the syntax involved
(see Figure 4-1 for an illustration of a typical command). These presenta-
tions provide a ready-reference list of the options that the commands accept,
as well as information that makes the commands easier to use. The follow-
ing list describes the conventions used.

1.

Capital letters represent command names or options, which you must
type as shown. (Abbreviations are discussed later in this section.)

Lower-case letters represent arguments or variables, for which you
must supply values. For options that accept numeric arguments, the
system interprets the values as decimal, unless otherwise stated. Some
values, usually memory addresses, are interpreted as octal; these cases
are noted in the accompanying text.

Square brackets ([]) enclose options; you can include the item that is
enclosed in the brackets or you can omit it, as you choose. If a vertical
list of items is enclosed in square brackets, you can combine the options
that appear in the list. However, an option set off from the others by
blank lines (see /BOOT and /DEVICE in Figure 4-1) indicates that you
cannot combine that option with any other option in the list.

Braces ({ }) enclose options that are mutually exclusive. You can choose
oniy one option from a group of options that appear in braces.

It is conventional to place command options (those qualifiers that apply
to the entire command line) immediately after the command. However,
it is also acceptable to specify a command option after a file specifica-
tion. File options (those that qualify a particular file specification) must
appear in the command line directly after the file to which they apply.
The graphic representation of each command shows which options are
file qualifiers, and whether they must follow input or output file
specifications.

A line such as [NOJQUERY represents two mutually exclusive options:
QUERY and NOQUERY.

Underlining indicates default options, that is, the option that the sys-
tem uses if you do not specify any choice of action.

Keyboard Commands

Figure 4-1:

Sample Command Syntax Illustration

IDEVICE
IFILES

IBINARY

[IASCH
/IMAGE

fINO] QU

IWAIT

JICONCATENATE
IEXCLUDE
/IGNORE

/INOJ] LOG
INEWFIL|
IPACKED
IPREDELETE

/INO] REPLACE
ISETDATE
ISLOWLY
ISYSTEM

IINTERCHANGE
1] /POSITION:n IlNTERCHANGE(size]

ITOPS IPOSIT|ON n J
JEND:n ISTART n J

ISTART:n

COPY [/BOOT[val | input-ﬁlespem"[DOS [lOWNER:lnnn,nnnl]” output- lllespec\' IALLOCATE size]

|

=

ERY

A filespec represents a specific file

nd the device on which it is stored. Its

3]

syntax is:
dev:filnam.typ
where:
dev: represents either a logical device name or a physical device

name, which is a two- or three-character name from Table
3-1

filnam represents the one- to six-character alphanumeric name of

typ

the file

represents the one- to three-character alphanumeric file
type, some of which are listed in Table 3—2

There are several ways to indicate the device on which a file is stored. You
can explicitly type the device name in the file specification:

DY1ITEST, LT

You can omit the device name:

TEST.LST

In this case,

the system assumes that the file is stored on device DK:.

4.1.1 Factoring File Specifications

If you want to specify several files on the same device, you can use factoring.

That is, you

can enclose multiple file names in parentheses, as in the follow-

ing example:

DTOS(TESTLSTyTESTA.LST»TESTE.LET)

Keyboard Commands 43

44

The command shown above has the same meaning as and is easier to use
than the next command:

DTOSTESTLSTyDTOITESTALLST»OTOSTESTR,LLST

When you use factoring the device name outside the parentheses applies to
each file specification inside the parentheses. Without factoring, the system
interprets each file specification to be DK:filespec unless you explicitly spec-
ify another device name.

Factoring is useful for complicated command lines. It is a general method of
string replacement that you can use in many different situations. The mon-
itor uses the following algorithm to interpret command lines that require
factoring:

Format of the command line you type:

D1 T1 (T3D3T4D4..Tn) T2 D2

Format of the command line after the monitor performs the factoring:
D1 Ti1T3T2 D3 TIT4T2 D4..T1TnT2 D2

In the skeleton examples shown above, the symbols have the following
meaning:

D represents a delimiter
D1 isone of the following delimiters:

comma
space
beginning of line

D2 is one of the following delimiters:

comma
space
slash
end of line

)
R
-
,-l
]
)
3
,‘
%)
3
3
e
3
L
ct
o
>
e,
£=
]
3
9

T represents a text string

The following example shows how a command line expands after factoring.
Note that the /SYSTEM option appears only once in the resulting output
line.

Original command line:

1

OF7T DRIFTILCLeZy30.8575/878TEM RNL:

c

Keyboard Commands

Resulting command line (after factoring):
COPY DXIFIL1.SYSsDXFIL2.SYSyDXIFIL3.SYS/SYSTEM RK1:
NOTE

There is a restriction on the use of factoring. The command
string that results from the expansion of the line you enter
must not exceed 80 characters in length. If you use six-
character file names and you also use factoring, specify only
five files in a command line.

4.1.2 File Type Specification

If you omit the file type in a file specification, the system assumes one of a
number of defaults, depending on which command you issue. The MACRO
command, for example, assumes a file type of . MAC for the input file specifi-
cation, and the PRINT command assumes .LST. Some commands (such as
COPY) do not assume a particular file type, and may assume a wildcard
default (see Section 4.2). If you need to specify a file that has no file type ina
command that assumes a default file type, type a period after the file name.
For example, to run the file called TEST, type:

RUN TEST.

If you omit the period after the file name, the system assumes a .SAV file
type and tries to execute a file called TEST.SAV.

You can enter up to six input files and up to three output files for some com-
mands. If the command string does not fit on one line of your terminal, use
the hyphen (-) continuation character as the last character in the line to
break the string into smaller sections. Use a carriage return to terminate
the command string. Note that there is still a limit of 80 characters for an
expanded command line.

Some of the command and file options are mutually exclusive. You should

avoid using combinations of options that give contradictory instructions to
the system. For example,

+IDELETE/QUERY /NOQUERY TEST.LST

This command is not meaningful. Some mutually exclusive options are less
obvious; these are noted, where necessary, in the list of options following
each command and are enclosed by braces ({ }) in the graphic representa-
tions of the command syntax.

4.1.3 Abbreviating Keyboard Commands

Although the keyboard monitor commands are all English-language words
and therefore easy to use, it can become tedious to type words like CROSS-
REFERENCE and ALLOCATE frequently. You can use as abbreviations
the minimum number of characters that are needed to make the command

Keyboard Commands 4-5

4-6

or option unique. Table B-1 in Appendix B lists the minimum abbreviations
for the commands and options. Note also that in Section 4.4, the abbrevia-
tions are in red.

An easy way to abbreviate the commands, and one that is always correct, is
to use the first four characters or the first six characters if the qualifier
starts with NO. For example:

CONCATENATE can be shortened to CONC
NOCONCATENATE can be shortened to NOCONC

The system prints an error message if you use an abbreviation that is not
unique. For example, typing the following command produces an error,
because C could mean COPY or COMPILE.

C TEST.LST

4.1.4 Keyboard Prompts

The prompting form of the command may be easier for you to learn if youare
a new user. If you type a command followed by a carriage return, the system
prompts you for an input file specification:

COFY/CONCATENATE
From?

You should enter the input file specification and a carriage return:
DX1:CTEST.LST»TESTALLST)

The system prompts you for an output file specification:

To 7

You should enter the output file specification and a carriage return:

OX23TEST.LST

The command now executes.

The system continues to prompt for an input and output file specification
until you provide them. If you respond to a prompt by entering only a car-
riage return, the prompt prints again. You can combine the normal form of a
command with the prompting form, as this example shows:

LOPY ARCLLST
To 7 DEF .1.8T

The system always prompts you for information if any required part of the
command is missing. You can also enter just an option in response to a
prompt. The two following examples are equivalent.

Keyboard Commands

«COFY s COFY

From 7 ¥ . MAC/NDLOG From 7 /NOLOG

To 7 X.BAK From ? ¥ +MAC
To ? X . BAK

4.2 Wildcards

Some commands accept wildcards (% and *) in place of the file name, file
type, or characters in the file name or file type. The system ignores the con-
tents of the wild field and selects all the files that match the remaining

Cciivs VL LAiT 2100 I A1l dTiouLn all LAl 111%s Liigal 12atLil Uil cillarlllils

fields.
An asterisk (*) can replace a file name:
¥ MAC

The system selects all files on device DK: that have a MAC file type, regard-
less of their name.

An asterisk (*) can replace a file type:
TEST. X

The system selects all files on device DK: that are named TEST, regardless
of their file type.

An asterisk (*) can replace both a file name and a file type:
* . *
The system selects all files on device DK:.

An embedded asterisk (*) can replace any number of characters in the input
file name or file type:

AXE MAC

The system selects all files on device DK: with a file type of . MAC whose file
names start with A and end with B. For example, AB, AXB, AXYB, etc.,
would be selected.

The percentage symbol (%) is always considered to be an embedded wild-
card. It can replace a single character in the input file name or file type:

AR MAT

The system selects all files on device DK: with a file type of . MAC whose file
names are three characters long, start with A, and end with B. For example,
AXB, AYB, AZB, etc., would be selected.

Table 4-1 lists commands that support wildcards.

Keyboard Commands 4-7

4-8

Table 4-1: Commands Supporting Wildcards

Specification 7
Command Input File Output File

COopPY X X
DELETE
DIRECTORY
HELP
PRINT
RENAME
TYPE

Ca T o T B B

For commands that support wildcards the system has a special way of inter-
preting the file specifications you type. You can omit certain parts of the
input and output specifications, and the system assumes an asterisk (*) for
the omitted item. Table 4-2 shows the defaults that the system assumes for
the input and output specifications of the valid commands.

Table 4-2: Wildcard Defaults

Default
Command Input Output
COPY, RENAME * ¥ * %
DIRECTORY DK:* *
PRINT, TYPE * LST
DELETE filnam.*

For exampie, if you need to copy aii the files cailed MYPROG from DK: to
DX1:, use this command:

+COPY/NOQUERY MYFROG [DX1?

The system interprets this command to mean:

+COPY/NOQUERY DKIMYFROG.¥ DX1$¥.%

The system copies all the files called MYPROG, regardless of their file type,
to device DX1: and gives them the same names.

If you need a directory listing of all the files on device DK, type the follow-
ing command:

+DIRECTORY
[4 2} T S DN SRR ST 4 VTR S R
I'ne system interpreis bnis comimana Lo mean:

+DIRECTORY DKIk.X

Keyboard Commands

To list on the printer all the files on device DK: that have a .LST file type,
use this command:

LFRINT . DK2

JPRINT OKI¥.LET

To delete all the files on device DK: called MYPROG, regardless of their file
type, use this command:

+DELETE/NOQUERY MYFROG

The system interprets this to mean:

LOELETE/NOQUERY DRIMYFROG. X

You can use the SET WILDCARDS EXPLICIT command (described in Sec-
tion 4.4) to change the way the system interprets these commands.

4.3 Indirect Files

You can group together as a file a collection of keyboard commands that you
want to execute sequentially. This collection is called an indirect command
file, or indirect file. Indirect files are best suited to perform tasks that
require a significant amount of computer time and that do not require your
supervision or intervention. Any series of commands that you are likely to
type often can also run easily as an indirect file. The indirect file concept is
similar to BATCH processing. Although indirect files lack some of the capa-
bilities of BATCH, they are easier to use, use the same commands as normal
operations, and generally require less memory overhead than the BATCH
processor. (RT-11 BATCH is described in Appendix A of this manual.) This
section describes how to create indirect files and how to execute them.

4.3.1 Creating Indirect Files

Create an indirect file by using the EDIT/CREATE command described in
Section 4.4. It is conventional to use a .COM file type for an indirect file, but
you can choose any file name that you wish. Structure the lines of text to
look like keyboard input, placing one command on each line of the file and
terminating each line with a carriage return. Do not include the prompt
character (.) in the line. Any keyboard monitor command you can type at the
terminal you can also include in an indirect file. The following file, for
example, prints the date and time, and creates backup copies of all FOR-
TRAN source files:

DATE
TIME
CORY %.FOR *.BAK

Control returns to the monitor at the console terminal after this indirect file
executes.

Keyboard Commands 49

4-10

In addition to using the keyboard monitor commands, you can also run one
of the RT-11 system utility programs in an indirect file. In this case, struc-
ture your input to conform to the Command String Interpreter syntax
described in Chapter 6. Do not include the CSI asterisk (*) in any line that
provides input or output to a utility program. The following file starts the
directory system utility program and lists the directory of two devices on the
line printer.

R DIR
LP$=CTO: /033
LPi=0T1:/Ct3
~C

Note that the last command line is “C. This is not the standard CTRL/C
sequence you enter by holding down the CTRL key and typing a C. Rather,
it is a readable character sequence that consists of two separate characters:
a circumflex (uparrow) followed by a C. This sequence represents CTRL/C in
indirect files. This sequence terminates the directory program so that con-
trol returns to the monitor when the indirect file finished executing. Other-
wise, the directory program would be left waiting for input from the console
terminal when the indirect file finished executing.

Remember to terminate the last command line with a carriage return, as
you would any other line.

NOTE

If you have a small (12K) configuration or a very large
indirect command file, use frequent CTRL/Cs in your
indirect files. When the system processes an indirect file, it
first places each line in a special memory buffer. This mem-
ory buffer must expand to accommodate each line in an
indirect file, and if there are too many lines before the sys-
tem reaches a CTRL/C the processor’s memory area may

haonnrma B11ad Dloasinge o OTDRT /(Y Avrawy n linoa avaida
OECOIIE ueh. 1 u:.\,.lus a vilwiv TVEDY ten or so lines avoids

this problem.

Some commands normally require a response from you as they execute. The
INITIALIZE command, for exampie, prints the Are you sure? message and
waits for you to type Y and a carriage return before it executes. The
DELETE command also requests confirmation from you before it deletes a
file. There are three ways to control interaction with the executing com-
mand. One way is to use the /NOQUERY option on each command that
allows it. This option suppresses the confirmation messages entirely when
you use the command in an indirect file.

Another method of interacting applies to a command like DELETE. This
command can have a variable number of confirmation queries, especially if
you use a wildcard in the file specification. This type of command accepts
your responses directly from the terminal and allows you to make a decision
before deleting each file. However, in this case the indirect file cannot oper-
ate unattended.

Keyboard Commands

There is yet another way to deal with commands that require a response
from you. Both the INITIALIZE and LINK commands have options that
cause the system to prompt you for data. This section describes two methods
of responding to these prompts, where more than just a Y response is
required. The INITIALIZE command with the /VOLUMEID option permits
you to specify a volume ID and owner name for a device. You can place your
responses in the indirect file, as this example shows:

INITIALIZE/NOQUERY/VOLUMETID DT?
TAFES
PAYROLL.

You can change the indirect file so that the prompts appear on the console
terminal and you can type your responses there:

INITIALIZE/NORUERY/VOLUMETD DT¢
~C

The "“C informs the system that the responses are to be entered at the termi-
nal. Execution of the indirect file pauses until you enter the responses.

Similarly, the LINK command lets you specify some data either in the
indirect file or from the console terminal. The following example contains
the response to the TRANSFER prompt.

LINK/ TRANSFER MYFROGODT
0.0nT

You can specify the same information interactively, as this example shows:

LINK/TRANSFER MYFROGYODT
G

The ~C informs the system that the response to the prompt is to be entered
at the terminal. Execution of the indirect file pauses until you enter your
response.

You can specify overlays to the LINK command by either of these two meth-
ods. The following indirect file links an overlaid program consisting of a root
module and four overlay modules that reside in two overlay segments.

LINK/FROMFT ROOT
OVR1L/0D%1
OVR2/70¢1
OVR3/70:2
OQURA/OL2/ S

Note in the above example that two slashes (/) terminate the module list.
You can also enter all or part of the overlay information interactively, as
this example shows:

LINK/FROMEFT ROQT
OVR1/0%01
~C

Keyboard Commands 4-11

4-12

The “C informs the system that more overlay information is to be entered
from the terminal. Execution of the indirect file pauses when the system
requires the information. Respond to the asterisk prompt by entering the
overlay information. Terminate the last overlay line with two slashes (//).
Execution of the indirect file then proceeds. Chapter 11 describes the LINK
program and explains how to use overlays.

If you need to link more than six modules, you can specify the extra modules
on the next line in the indirect file, as this example shows:

LINK/FROMFT FIL1.FIL2yFIL3yFILASFILSSFILS
FIL7»FIL8//

Or, you can enter the extra modules from the terminal:

LINK/FROMFT FIL1sFIL2yFIL3sFILAYFILSYFILS
~C

Execution of the indirect file pauses until you enter the remaining module
names. Remember to follow the last name with two slashes (/).

You can include comments in an indirect file to help you document your
work. These comments do not print on the console terminal when the
indirect file executes. You begin each line of comment with an exclamation
point (!). The system ignores any characters it finds between the exclama-
tion point and the end of the current line. The following example shows an
indirect file that contains comments.

PINDIRECT FILE

DATE IFRINT DATE

TIME FPFRINT TIME

RENAME ¥ .MAL ¥ BAK ISAVE .MAC FILES

CFROCES YCALL ANOTHER INDIRECT FILE

NIRECTORY H.IST DIRECTORY OF DK:
NOTE

You cannot place in indirect files responses to prompts that
result in destruction of data. For example, you cannot use
the INITIALIZE command followed by a Y on the following
line in an indirect file. Commands like INITIALIZE and
DELETE require responses that you must enter at the ter-
minal. (You can avoid the need for a response by using the
/NOQUERY option.)

4.3.2 Executing Indirect Files

You can execute indirect files under the SJ monitor, or in the background
area under the FB or XM monitor.

Keyboard Commands

To execute an indirect file, specify a command string according to the follow-
ing syntax:

@filespec

- where:
@ is the monitor command that indicates an indirect file

filespec represents the name and file type of the indirect file, as
well as the device on which it is stored. The default file
type is .COM

If you omit the device specification, DK: is assumed. If you specify any other
block-replaceable device, the monitor automatically loads the handler for
that device. It is conventional to type the indirect file command directly in
response to the monitor’s prompt, as this example shows:

+@INDCT

However, you can place the indirect command anywhere in a keyboard mon-
itor command string, as long as it is the last element in the string, not
including comments. For example:

SIOELETE/NOQUERY @INDCT!COMMENTS

This is a valid command string. The first line of the file should contain the
list of files to be deleted. In the example above, assume the first line of the
indirect file is:

¥ BAK
This is the command that will actually execute:
DELETE/NOQUERY %, BAK

Check your indirect file carefully for errors before you execute it. When the
monitor or any program that has control of the system encounters an illegal
command line, or if an execution error of any kind occurs, that particular
line does not execute properly. Execution of the indirect file does proceed,
however, until any program that may be running relinquishes control to the
monitor. Be careful of this if you run a system utility program in an indirect
file, as this example shows:

R FIFP

DXLk k=IX0 K, K
DXO k. MAL/D

~C

FRINT DX0O:%, 19T

If device DX1: becomes full before all the files from DXO0: are copied to it, the
second line of the indirect file does not execute completely. Execution then
passes to the next line and the system deletes all MACRO files from DXO:.
The *C returns control to the monitor, which aborts the rest of the indirect
file. This example shows that it is possible to destroy files accidentally
because of the way indirect files execute. To be safe, use only keyboard mon-

Keyboard Commands 4-13

4-14

itor commands in an indirect file. This way the monitor regains control after
each operation and can abort the indirect file as soon as it detects an error. A
better way to perform the same operations as the indirect file shown above is
as follows:

COFY DXOix.X DX1ik.%
DELETE DX0:x.MAC
FRINT DXO:1%,1.9T

You can use the SET ERROR command, described in Section 4.4, to define
the severity of error that causes an indirect file to stop executing.

Normally, as each line of an indirect file executes, it echoes on the console
terminal so that you can cbserve the progress of the job. However, you can
use the SET TT QUIET command, described in Section 4.4, to suppress this
printout. In this case, only the prompting messages, if any, print. You can
stop execution of an indirect file at any time by typing two CTRL/C charac-
ters. Control returns to the monitor and you can enter a new command. You
can also abort the indirect file by typing a single CTRL/C in response to a
query or prompt. If you use an indirect file to execute a MACRO program,
read the appropriate section in the RT-11 Programmer’s Reference Manual
to learn about certain restrictions on using the .EXIT call with indirect files.

You can call another indirect file from within an indirect file. This procedure
is called nesting. Restrict nesting to three levels of indirect files (see the
RT-11 Installation and System Generation Guide for details on selecting the
indirect file nesting depth). The following example shows two-level nesting.
Assume a programmer types this command at the console terminal in
response to the monitor’s prompt:

BFIRST

The file FIRST.COM contains these lines:

DATE

TIME

COFY X.MAC X.RAK
@SECOND

FRINT ©
DIRECTORY/FRINTER DIKG
DELETE/NOQUERY X.MAC

When this file executes it calls another indirect file, SECOND.COM, which
contains this line:

MACRO/CROSSREFERENCE A+RBR+CALIST

When file SECOND.COM finishes executing, control returns to file
FIRST.COM, at the line following the indirect file specification.
FIRST.COM then prints the contents of the file C.LST on the line printer,
followed by a directory listing of device DK:. Then control returns to the
monitor at the console terminal.

Keyboard Commands

4.3.3 Startup Indirect Files

Section 3.1 introduced the startup indirect command files: STARTS.COM
(for SJ), STARTF.COM (for FB), and STARTX.COM (for XM). Each monitor
automatically invokes its own indirect command file when you bootstrap the
system, and you can modify these files to perform standard system con-
figurations. Since many of the system parameters are reset by a bootstrap
operation (see the SET command, Section 4.4), you should use the startup
indirect files to set the system parameters you normally use. For example, if
vou use the FB monitor and have a visual display console terminal that sup-
ports hardware tabs, add the SET TT: SCOPE and SET TT: TAB commands
to the file STARTF.COM. You could also include a SET TT: QUIET com-
mand at the beginning of STARTF.COM and a SET TT: NOQUIET com-
mand at the end to suppress extra type-out at bootstrap time. If you have a
list of commands that you need to execute, regardless of the monitor you
bootstrap, include these commands in a separate indirect file, such as COM-
MON.COM, and invoke this file from all three startup indirect files. The fol-
lowing example shows a typical STARTF.COM file.

SET TT: QUIET FTURN OFF TTY FRINTING
SET TT: SCOFE

SET TT!: TAER

CCOMMON 'FPERFORM COMMOM OFERATIONS
SET TT: NOQUIET ITURN ON TTY FRINTING

If you use BATCH frequently, use a startup indirect file to assign devices
and load handlers. You can also use the startup indirect files to run your
own programs, set the date, or do other housekeeping chores.

4.4 Keyboard Monitor Commands

The keyboard monitor commands are your means of communicating with
the system and controlling the monitor. This section lists the keyboard mon-
itor commands in alphabetical order. Each command description includes
the command syntax, a table of valid options, and some sample command
lines, as well as a general discussion of how to use the command.

You can type almost all the commands to any of the three monitors. The
- exceptions are FRUN, SRUN, SUSPEND, and RESUME. These are not
valid for the SJ monitor because they apply to foreground programs.

Any reference to the background program applies also to the program run-
ning under the SJ monitor. Any reference to FB operation also applies to the
XM operation.

NOTE

Unless noted otherwise, all numeric values you supply to
keyboard commands should be in decimal.

Keyboard Commands 4-15

4-16

If you make a mistake in a command line, or if the system cannot perform
the action you request, an error message prints on your terminal. The error
message indicates which error occurred; see the RT—11 System Message
Manual for a more complete description of the error and for the recom-
mended action to take. The error message also indicates which system util-
ity program detected the error. For example, if your keyboard monitor
command line contains a syntax error, the keyboard monitor prints an error
message. If the utility program the keyboard monitor invokes cannot exe-
cute a command, that utility prints the error message.

RT-11 permits you to remove some of the monitor commands at system gen-
eration time. If you type a command that is not part of your system, the sys-
tem prints an error message.

Keyboard Commands

APL

The APL command invokes the APL interpreter.

APL

Because APL has its own command language, the APL command accepts no
options and no file specifications. For information on using the APL inter-
preter, see the APL—11 Programmer’s Reference Manual.

Keyboard Commands 4-17

4-18

ASSIGN

The ASSIGN command associates the logical name you specify with a phys-
ical device.

ASSIGN physical-device-name logical-device-name

In the command syntax illustrated above, physical-device-name represents
the RT-11 standard permanent name that refers to a particular device that
is installed on your system. Table 3—1 contains a list of these names. The
term logical-device-name represents an alphanumeric name, from one to
three characters long, that you assign to a particular device. Note that you
can not use spaces or tabs in the logical device name. If you type ASSIGN,
followed by a carriage return, the system prompts: Physical device name?. If
you follow the physical device name with a carriage return, the system
prompts: Logical device name?.

If the logical device name you supply is already associated with a physical
device, the system disassociates the logical name from that physical device
and assigns it to the current device. You can assign only one logical name
with each ASSIGN command, but you can use several ASSIGN commands
to assign different logical names to the same device. You can also use the
ASSIGN command to assign FORTRAN logical units to physical devices
(see the RT-11/RSTS/E FORTRAN IV User’s Guide).

The ASSIGN command simplifies programming. When you write a pro-
gram, for example, you can request input from a device called INP: and
direct output to a device called OUT:. When you are ready to execute the
program, you can assign those logical names to the physical devices you
need to use for that job. The ASSIGN command is especially helpful when a
program refers to a device that is not available on a certain system; the
ASSIGN command allows you to direct input and ouput to an available
device.

Nonto that RA and QV ara
A VTVUUGD VAILA WY A4 A AJ A A

a (=1 o
3] 4 A AL <. GRLYVA YD 111V L

The following command, for example, causes data that you write to device
LSST: to print on the line printer.

. ASSIGN LY LET?

If your program attempts to access a device by using a logical name (such as
LST:) and you do not issue an appropriate ASSIGN command, an error
occurs in the program.

The following command redirects printer output to the terminal.

ACCTMA TT e 1
FRERE*Re Rt 1) S B W

The command shown above illustrates how you can run a program that spe-
cifically references LP: without using a line printer.

Keyboard Commands

The next command redefines the default file device.
+ ASSIGN RK1! DK:

If you supply a file specification and omit the device name, it now defaults to
RK1:. Note that this does not affect the default system device, SY:.

The last example is typical for a system that uses a dual-drive diskette
device. Several users can share the same system software on DXO0: and
maintain their own data files on diskettes that they run in drive 1. When
you use the following command, references to files without an explicit device
name automatically access DX1:.

+» ASSIGN DdXdld DK

Use the SHOW command to display logical device name assignments on the
terminal.

Keyboard Commands 4-19

4-20

The B (Base) command sets a relocation base. To obtain the address of the
location to be referenced in a subsequent Examine or Deposit command, the
system adds this relocation base to the address you specify.

8 [(5P) address]

In the command syntax shown above, address represents an octal address
that the system uses as a base address for subsequent Examine and Deposit
commands. If the address you supply is an odd number, the system decreases
it by one to make the address even. Note that if you do not specify an
address, this command sets the base to zero.

Use the B command when using the Examine and Deposit commands to ref-
erence linked modules that you have loaded into memory with the GET com-
mand. (Note that the Base command has no effect on program execution.)
The system adds the current base address to the value you supply in an
Examine or Deposit command. You can set the current base address to the
address where a particular module is loaded. Then you can use the reloca-
table addresses printed in the assembler, compiler, or map listing of that
module to reference locations within the module.

The following command sets the base to 0.
B
The next two commands both set the base to 1000.

+B 1000
+B 1001

Keyboard Commands

BASIC

The BASIC command invokes the BASIC language interpreter.

BASIC

Because BASIC has its own command lénguage, the BASIC command
accepts no options and no file specifications. For information on using the
BASIC interpreter, see the BASIC~11 Language Reference Manual.

Keyboard Commands 4-21

4-22

BOOT

The BOOT command directs a new monitor to take control of the system. It
can also read into memory a new copy of the monitor that is currently con-
trolling the system.

BOOT [IFORE!GN] filespec
IWAIT

In the command syntax illustrated above, filespec represents the device or
monitor file to be bootstrapped. If you omit filespec, the system prompts you
with Device or file?. The BOOT command can perform either of two oper-
ations: (1) a hardware bootstrap of a specific device, or (2) a direct bootstrap
of a particular monitor file that does not use the bootstrap blocks on the
device. When you bootstrap a volume, make sure that the appropriate device
handler is present on that volume.

To perform a hardware bootstrap, specify only a device name in the com-
mand line. The following devices are valid for this operation:

DTO0:-DT7: DX0:-DX1:
RKO0:-RK7: PDO:-PD1:

RF: DD0:-DD1:
SY: DLO0:-DL3:
DK: DYO0:-DY1:
DPO:-DP7: DMO0:-DM7:
DS0:-DS7:

You can also boot any of the above storage volumes by specifying its logical
name, if assigned (see the ASSIGN command). The hardware bootstrap
operation gives control of the system to the monitor whose bootstrap is writ-
ten on the device. (You can change this monitor by using the COPY/BOOT
command.) This example bootstraps the single-job monitor, RT11SJ, whose
bootstrap information is written on device DK:.

, BOOT DK
RT-116.0 V04.00

To bootstrap a particular monitor file, specify that file name and the device
on which it is stored, if necessary, in the command line. SY: is the default
device, and .SYS is the default file type.

You can use the BOOT command to alternate between the single-job and
foreground/background monitors. When you use the BOOT command to
change monitors you do not have to reenter the date and time. The system
clock, however, may lose a few seconds during a reboot. The next example
bootstraps the foreground/background monitor on device SY:, which is cur-
rently RKO:.

. BOOT RTLIFER

RT-11FR V04.00

Keyboard Commands

/FOREIGN Use this option to boot a pre-version 4 volume or anon-RT-11
system. You may not specify a file name with /FOREIGN. The /FOREIGN
option does not preserve the date or time.

/WAIT The /WAIT option is useful if you have a single-disk system. When
you use this option, the system initiates the BOOT procedure but then
pauses and waits for you to mount the volume you want to bootstrap. When
the system pauses, it prints Mount input volume in <device>; Continue? at
the terminal, where <device> represents the device into which you mount
the volume. Mount the volume you want to bootstrap, then type Y followed

N . .
[2% =1 [=} TN PATITI
Oy a arriage revuri.

The following sample command line boots an RK05 disk:

BOOT/WAIT RKO!
Mount ineut volume in RKO!F Continue® vy

Keyboard Commands 4-23

4-24

CLOSE

The CLOSE command closes and makes permanent all output files that are
currently open in the background job.

CLOSE

The CLOSE command accepts no options or arguments.

You can use the CLOSE command to make tentative open files permanent;
otherwise, they do not appear in a normal directory listing and the space
associated with the files is available for reuse. The CLOSE command is par-
ticularly useful after you type a CTRL/C to abort a background job. You can
also use it after an unexpected program termination to preserve any new
files that were being used by the terminated program. Note that the CLOSE
command has no effect on a foreground job and that you cannot use CLOSE
on files opened on magnetic tape or cassette.

The CLOSE command does not work if your program defines new input or
output channels (with the .CDFN programmed request). Because CTRL/C or
.EXIT resets channel definitions, the CLOSE command has no effect on
channels it does not recognize.

The following example shows how the CLOSE command makes temporary
files permanent.
+R FROG

~“Cc ~C
+ CLOSE

Keyboard Commands

COMPILE

The COMPILE command invokes the appropriate language processor to
assemble or compile the files you specify.

—

COMPILE ILIST [:filespec] [/ALLOCATE:size] filespec [~ /LIBRARY
/INO] OBJECT [ilespec] JALLOCATE:size] IPASS:1

i inteot I
1DIsCL

[JALPHABETIZE
ICROSSREFERENCE
/INO] LINENUMBERS
JONDEBUG

JINO] WARNINGS

JFORTRAN

ICODE:type
IDIAGNOSE

IEXTEND

IHEADER

n4

/INO] LINENUMBERS
IONDEBUG

NINO] OPTIMIZE [:type]
JRECCORD:Iength
ISHOW [:valus]
ISTATISTICS

RANO] SWAP

IUNITS:n

AINOJ VECTORS

L /WARNINGS J
IMACRO

[ICROSSREFERENCE [:type]. . .:type]l }

IDISABLE:value [. . .:vaiue]
IENABLE:value [. . .:value]
fINO] SHOW:value

In the command line shown above, filespecs represents one or more files to be
included in the assembly or compilation. The default file types for the output
files are .LST for listing files and .OBJ for object files. The defaults for input
files depend on the particular language processor involved and include
.MAC for MACRO files, .FOR for FORTRAN files, and .DBL for DIBOL files.

To compile (or assemble) multiple source files into a single object file, sepa-
rate the files by plus (+) signs in the command line. Unless you specify oth-
erwise, the system creates an object file with the same name as the first
input file and gives it an .OBJ file type. To compile multiple files in inde-
pendent compilations, separate the files by commas (,) in the command line.
This generates a corresponding object file for each set of input files. You can
combine up to six files for a compilation producing a single object file.

Language options are position-dependent — that is, they have different
meanings depending on where you place them in the command line. Options
that qualify a command name apply across the entire command string.
Options that follow a file specification apply only to the file (or group of files
separated by plus signs) that they follow in the command string.

You can specify the entire COMPILE command as one line, or you can rely
on the system to prompt you for information. The COMPILE command
prompt is Files?.

Keyboard Commands 4-25

4-26

There are three ways to establish which language processor the COMPILE
command invokes.

1. Specify a language-name option, such as /MACRO, which invokes the
MACRO assembler.

2. Omit the language-name option and explicitly specify the file type for
the source files. The COMPILE command then invokes the language
processor that corresponds to that file type. Specifying the file
SOURCE.MAUQC, for example, invokes the MACRO assembler.

3. Let the system choose a file type of . MAC, .DBL, or .FOR for the source
file you name. To do this, the handler for the device you specify must be
loaded. If you specify DX1:A and the DX handler is loaded, the system
searches for source files A AMAC and A.DBL, in that order. If it finds one
of these files, the system invokes the corresponding language processor.
If it cannot find one of these files, or if the device handler associated with
the input file is not resident, the system assumes a file type of .FOR and
invokes the FORTRAN compiler.

If the language processor selected as a result of one of the procedures
described above is not on the system device (SY:), the system issues an error
message.

The following sections explain the options you can use with the COMPILE
command.

/ALLOCATE:size Use this option with /LIST or /OBJECT to reserve
space on the device for the output file. The argument size represents the
number of blocks of space to allocate. The meaningful range for this value is
from 1 to 32767. A value of ~1 is a special case that creates the largest file
possible on the device.

/ALPHABETIZE Use this option with /DIBOL to alphabetize the entries
in the symbol table listing. This is useful for program maintenance and
debugging.

/CODE:type Use this option with /FORTRAN to produce object code that
is designed for a particular hardware configuration. The argument type rep-
resents a three-letter abbreviation for the type of code to produce. The legal
values are: EAE, EIS, FIS, and THR. See the RT-11/RSTS/E FORTRAN IV
User’s Guide for a complete description of the types of code and their
function.

/CROSSREFERENCE]|:typel...:typell Use this option with /MACRO or
/DIBOL to generate a symbol cross-reference section in the listing. This
information is useful for program maintenance and debugging. Note that
the system does not generate a listing by default. You must also specify
/LIST in the command line to get a cross-reference listing.

With /MACRO, this option takes an optional argument. The argument type
represents a one-character code that indicates which sections of the cross-
reference listing the assembler should include. See the MACRO command in
this chapter for a summary of valid arguments and their meaning.

Keyboard Commands

/DIAGNOSE Use this option with /FORTRAN to help analyze an internal
compiler error. /DIAGNOSE expands the crash dump information to include
internal compiler tables and buffers. Submit the diagnostic printout to
DIGITAL with an SPR form. The information in the listing can help the

DIGITAL programmers locate the compiler error and correct it.

/DIBOL This option invokes the DIBOL language processor to compile the
associated files.

/DISABLE:valuel...:.value] Use this option with /MACRO to specify a

nQAR}' r}';rnn"}";‘rn Qéﬁ {’"né ?vapnn f‘f\“rﬁ‘rﬁﬁﬁf} iﬁ f‘fliﬁ l_'}ﬁﬁ““‘" [“r 9 QIIMIMIarv
CAINIL AAT 5d \ALLA VUL VU AOUT VALT AVAL AN AVNS VNV A12212C02iNA A2A VARID v;.xuplcer wogra Summa{‘y
of the arguments and their meaning. See the PDP-11 MACRO Language
Reference Manual for a description of the directive and a list of all legal

values.

/ENABLE:valuel...:.value] Use this option with /MACRO to specify an
.ENABL directive. See the MACRO command in this chapter for a summary
of the arguments and their meaning. See the PDP-11 MACRO Language
Reference Manual for a description of the directive and a list of all legal
values.

/EXTEND Use this option with /FORTRAN to change the right margin
for source input lines from column 72 to column 80.

/FORTRAN This option invokes the FORTRAN language processor to
compile the associated files.

/HEADER Use this option with /FORTRAN to include in the printout a
list of options that are currently in effect.

/14 Use this option with /FORTRAN to allocate two words for the default
integer data type (FORTRAN uses only one-word integers) so that it takes
the same physical space as real variables.

/LIBRARY Use this option with /MACRO to identify a macro library file;
use it only after a library file specification in the command line. The
MACRO assembler looks first to any MACRO libraries you specify before
going to the default system macro library, SYSMAC.SML, to satisfy refer-
ences (made with the MCALL directive) from MACRO programs. In the
example below, the two files A.FOR and B.FOR are compiled together, pro-
ducing B.OBJ and B.LST. The MACRO assembler assembles C.MAC, satis-
fying .MCALL references from MYLIB.MAC and SYSMAC.SML. It
produces C.OBJ and C.LST.

LOOMPTLE A+RZLIST/0BJECT s MYLIB/LIBRARY 0 MAT/LIST/Z0BJECT

/LINENUMBERS Use this option with /DIBOL or /FORTRAN to include
internal sequence numbers in the executable program. These numbers are
especially useful in debugging programs. This is the default operation.

/NOLINENUMBERS Use this option with /DIBOL or /FORTRAN to sup-
press the generation of internal sequence numbers in the executable pro-
gram. This produces a smaller program and optimizes execution speed. Use
this option to compile only those programs that are already debugged; other-

Keyboard Commands 4-27

4-28

wise the line numbers in DIBOL or FORTRAN error messages are difficult
to interpret.

/LIST(:filespec] You must specify this option to produce a compilation or
assembly listing. The /LIST option has different meanings depending on its
position in the command line.

If you specify /LIST without a file specification in the list of options that
immediately follows the command name, the system generates a listing that
prints on the line printer. If you follow /LIST with a device name, the system
creates a listing file on that device. If the device is a file-structured device,
the system stores the listing file on that device, assigning it the first input
file name and a .LST file type. The following command produces a listing on
the terminal:

JCOMPILEZLISTITT: ALFOR

The next command creates a listing file called A.LST on RK3:.
LCOMFILE/LISTIRK3: A.MAC

If the /LIST option contains a name and file type to override the default of
.LST, the system generates a listing file with that name. The following com-
mand, for example, compiles A.FOR and B.FOR together, producing files
A.OBJ and FILE1.OUT on device DK:.

JCOMFILE/ZFORTRANALISTIFTLEL.QUT AtR

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input
file, you can use a command similar to this one:

LCOMPILE/ZRIRDL A+R/LISTERKES

The command shown above compiles A.DBL and B.DBL together, producing
files DK:A.OBJ and RK3:B.LST. If you specify a ﬁle name on a /LIST option

‘1Y mcmrioam e a £1a grmansfa 4+hn ansarm oA 13 + hacthn cnsncn smam i

fUl.l.UWl.l.l.s a 111T bl}UblLl\;ablUll l.ll. u.uc Lulliiiialia u.u.t:, l.b uaa bl.lU Sallic .l..ll.cd.l.lll..ls
as when it follows the command. The following two commands have the
same results:

LCOMPILE/ZMACRO A/LISTIR

LCOMPILE/ZMACRO/LISTIR A

Both the commands shown above generate as output files A.OBJ and B.LST
on device DK.:.

Remember that file options apply only to the file (or group of files that are
separated by plus signs) they follow in the command string. For example:

JCOMPTLE AMAC/LISTyRFOR

This command compiles A.MAC, producing A.OBJ and A.LST on DK:. It
also compiles B.FOR, producing B.OBJ on DK:. However, it does not pro-
duce any listing file for the compilation of B.FOR.

Keyboard Commands

/MACRO This option invokes the MACRO assembler to assemble the
associated files.

/OBJECTI:filespec] Use this option to specify a file name or device for the
object file. Because the COMPILE command creates object files by default,
the foilowing two commands have the same meaning:

COMFILE/FORTRAN A
COMFILE/FORTRAN/ORJECT A

Rath o nAa cnmnil A TOR and nradna A ORT Antnnit Tha
Dot ceommandas vv.u.ltu.xe 1.4 ViIv aliG tl.l.ou e A.UDy as ¢ vpuL. 11l

/OBJECT option functions like the /LIST option; it can be either a command
or a file qualifier. :

As a command option, /OBJECT applies across the entire command string.
The following command, for example, assembles A.MAC and B.MAC sepa-
rately, creating object files A.OBJ and B.OBJ on RK1..

COMPILE/ORBJECTIRKL: (AsR) MAC

Use /OBJECT as a file option to create an object file with a specific name or
destination. The following command compiles A.DBL and B.DBL together,
creating files B.LST and B.OBJ.

COMPILE/DIEBOL A+R/LIST/ORJECT

/NOOBJECT Use this option to suppress creation of an object file. As a
command option, NOOBJECT suppresses all object files; as a file option, it
suppresses only the object file produced by the related input files. In this
command, for example, the system compiles A.FOR and B.FOR together,
producing files A.OBJ and B.LST. It also compiles C.DBL and produces
C.LST, but it does not produce C.OBJ.

COMPILE AJFORYR.FOR/LISTC OBL/NODORIECT/ZLIST

/ONDEBUG Use this option with /DIBOL to include a symbol table in the
object file. You can then use a debugging program to find and correct errors
in the object file.

Use /ONDEBUG with FORTRAN to include debug lines (those that have a
D in column 1) in the compilation. You do not, therefore, have to edit thefile
to include these lines in the compilation or to logically remove them. This
option means that you can include messages, flags, and conditional branches
to help you trace program execution and find errors.

/OPTIMIZE[:type] Use this option with /FORTRAN to enable certain
options that optimize object code for various conditions. The argument type
represents the three-letter code for the type of optimization to enable. Table

4—4 summarizes the codes and their meaning. This option is not available in
version 2.5 of the FORTRAN compiler.

/NOOPTIMIZE[:type] Use this option with /FORTRAN to disable certain
options that optimize object code for various conditions. The argument ¢ype
represents the three-letter code for the type of optimization to disable. Table

Keyboard Commands 4-29

430

4—4 summarizes the codes and their meaning. This option is not available in
version 2.5 of the FORTRAN compiler.

/PASS:1 Use this option with /MACRO on a prefix macro file to process
that file during pass 1 of the assembly only. Using this option means that
you can assemble a source program together with a prefix file that contains
only macro definitions, because these definitions do not need to be redefined
in pass 2 of the assembly. The following command assembles a prefix file and

a source file together, producing files PROG1.0BJ and PROG1.LST.
COMPILE/MACRD FREFIX/FASSS1+PROGL/LIST/OBJECT

/RECORD:length Use this option with /FORTRAN to override the
default record length of 132 characters for ASCII sequential formatted input
and output. The meaningful range for the argument length is from 4 to 4095.

/SHOW:value Use this option with /FORTRAN to control FORTRAN list-
ing format. The argument value represents a code that indicates which list-
ings the compiler is to produce. Table 4-5 summarizes the codes and their
meaning.

Use this option with /MACRO to specify any MACRO .LIST directive. Table
4-12 summarizes the valid arguments and their meaning. The PDP-11
MACRO Language Reference Manual explains how to use these directives.

/NOSHOW:value Use this option with MACRO to specify any MACRO
.NLIST directive. Table 4-12 summarizes the valid arguments and their
meaning. The PDP-11 MACRO Language Reference Manual explains how
to use these directives.

/STATISTICS Use this option with /FORTRAN to include compilation
statistics in the listing, such as amount of memory used, amount of time
elapsed, and length of the symbol table.

/ISWAP Use this option with /FORTRAN to permit the USR (User Service
Routine) to swap over the FORTRAN program in memory. This is the
default operation.

/NOSWAP Use this option with /FORTRAN to keep the USR resident
during execution of a FORTRAN program. This may be necessary if the
FORTRAN program uses some of the RT-11 system subroutine calls (see
the RT-11 Programmer’s Reference Manual). If the program frequently
updates or creates a large number of different files, making the USR resi-
dent can improve program execution. However, the cost for making the USR
resident is 2K words of memory.

/UNITS:n Use this option with FORTRAN to override the default number
of logical units (6) to be open at one time. The maximum value you can spec-
ify for n is 16.

/VECTORS This option directs FORTRAN to use tables to access multi-
dimensional arrays. This is the defauit mode of operation.

Keyboard Commands

/NOVECTORS This option directs FORTRAN to use multiplication oper-
ations to access multidimensional arrays.

/WARNINGS Use this option to include warning messages in DIBOL or
FORTRAN compiler diagnostic error messages. These messages call certain
conditions to your attention but do not interfere with the compilation. This
is the default operation for DIBOL.

/NOWARNINGS Use this option with /DIBOL or /FORTRAN to suppress
Warmng messages durmg compllatlon These messages are for your 1nfor-

41
™ a ‘I"I nmn n
mation only; they

for FORTRAN.

I
an
e oaxlS

Keyboard Commands 4-31

4-32

COPY

The COPY command performs a variety of file transfer and maintenance
operations.

/INTERCHANGE

COPY | /BOOT [val] 1inpu|~¢i|especs IDOS [JOWNER:{nnn,nnn]} output~lilespec Umuocnszsize ”
IDOS

IDEVICE /POSITION:n NIINTERCHANGE[:size]
IFILES ITOPS IPOSITION:n
IEND:n ISTART:n
[IASCIIl ISTART:n
IB|NARY]
/IMAGE
ICONCATENATE
IEXCLUDE
N\GNORE
fiNOj LOG
INEWFILES
IPACKED
IPREDELETE
NNO} QUERY

/INO} REPLACE
ISETDATE
ISLOWLY

ISYSTEM
WAIT J

The COPY command transfers:

® one file to another file

® anumber of files to a single file by concatenation
® the contents of a device to another device

® the contents of a bootstrap to a device

® the contents of a device to a file and vice versa

In the command syntax shown above, inpui-filespecs represents the data to
copy. The inpui-filespec can be a device name, if you use the /DEVICE
option. Otherwise, you can specify as many as six files for input. Ouitput-
filespec represents the device or file to receive the data. You can specify only

A Aradenaid dacrian ~w HTA
O1iC Dulvpuv GEVICE U1 1.

Normally, commas separate the input files if you specify more than one.
However, you can separate them by plus (+) signs if you want to combine
them, as the following example shows:

+CORY AJFOR+R.FOR C.FOR

This command combines DK:A . FOR with DK:B.FOR and stores the results
in DK:C.FOR.

Note that because of the file protection feature, you cannot execute any
COPY operations that result in the deletion of a protected file. For example,
you cannot copy a file from one volume to another if a protected file of the
same name already exists on the output volume.

Keyboard Commands

You can use wildcards in the input or output file specification of the com-
mand. However, the output file specification cannot contain embedded wild-
cards. Note that for all operations except CONCATENATE, if you use a
wildcard in the input file specification, the corresponding output file name or
file type must be an asterisk (*). This example uses wildcards correctly:

+COFY AXE.MAC X.BAR

In the CONCATENATE operation, the dutput specification must represent
a single file. Therefore, no wildcards are allowed.

P PR

You can enter the COPY command as one line, or you can rely on the system
to prompt you for information. If you type COPY followed by a carriage
return, the system prompts From?. If you type the input specification fol-
lowed by a carriage return, the system prompts 7'0?.

The system has a special way of handling system (.SYS) files and files that
cover bad blocks (.BAD files). The system requires you to use the /SYSTEM
option when you need to copy system files. You cannot copy system files sim-
ply by placing wildcards in file specifications. To copy a .BAD file, you must
specify it by explicitly giving its file name and file type. Since .BAD files
cover bad blocks on a device, you usually do not need to copy, delete, or oth-
erwise manipulate these files. You can copy protected files (see RENAME),
but you cannot copy the protection status of a protected file (except with the
COPY/DEVICE command).

NOTE

If you transfer files to a storage volume that has never been
initialized with RT-11, a system failure may result.

The following sections describe the COPY command options and include
command examples.

/ALLOCATE:size Use this option after the output file specification to
reserve space on the device for the output file. The argument size represents
the number of blocks of space to allocate. The meaningful range for this
value is from 1 to 32767. A value of -1 is a special case that creates thelarg-
est file possible on the device.

/ASCII This option copies files in ASCII mode, ignoring and eliminating
nulls and rubout characters. It converts data to the ASCII 7-bit format and
treats CTRL/Z (32 octal) as the logical end-of-file on input. Files that consist
of ASCII-format data include source files you create with the editor, map
files, and list files. The following example copies a FORTRAN source pro-
gram from DXO0: to DX1:, giving it a new name, and reserving 50 blocks of
space for it.

CCOPY/7ASTLL DXOIMATRIXKFOR DX1TESTFOR/ALLUCATE N0

/BINARY Use this option to copy formatted binary files, such as .OBJ files
produced by the assembler or the FORTRAN compiler, and .LDA files pro-
duced by the linker. The system verifies checksums and prints a warning if a

Keyboard Commands 4-33

checksum error occurs. If this happens, the copy operation does not com-
plete. The following command copies a binary file from DK: to a diskette.

+COPY/ZBINARY ANALYZ ORI DXL XK. X%

Note that you cannot copy library files with the /BINARY option because a
checksum error occurs. Copy them in image mode, or when you are creating
a bootable RX01 system while the current system is on an RX02.

/BOOTI[:val]l This option copies bootstrap information from a monitor and
handler files to blocks 0 and 2 through 5 of a random-access volume, permit-
ting you to use that volume as a system volume. The optional argument val
represents a two-letter target system device name that you use when you
are creating a bootable PDT system volume on a PDP-11, and vice versa.
You can also use this notation to create a bootable RX01 system while the
current system is on an RX02 diskette. Note that you cannot combine
/BOOT with any other option, and that your input and output volume must
be the same. Also note that you can name your monitor file any name you
wish. When you perform this operation, you must have the correct device
handler to go with the volume. For example, to create a bootable RK05 disk,
you must have the handler file RK.SYS on that RK05.

To create a bootable system volume, follow the procedure below:

1. Initialize the volume, using the keyboard monitor command
INITIALIZE. (Note that if the volume is an RK06/07 or an RL01/02, you
should also use the /REPLACE option.)

2. Copy files onto the volume, using the COPY/SYSTEM command.
3. Write the monitor bootstrap onto the volume, using COPY/BOOT.

The following example creates a system diskette.

SINITIALIZE DXI13
nX1:/Initizlizes Are wou sure? Y

LCORYZSYSTEM OXO3 ¥k XL ik, X
Files coried:
DXOIRTL119.J.5Y8 to DX1:RTL18.),.5YS

nXoinT.s8Ys to IX1:i0T.5Y8
ODXQINX.5YS to DX1:DX.5Y5
OX0:TT.5Y8 to DX1:TT.S8YS
DXORLF.8YS to DX1LLP.SYS
DXOINIR, SAV to DX1IDIR.5AY
DXOIDUF, SAY Lo DXLiDUF.SaY
nX03ARC, MAC to X1 2ARC, MAD
X0 :AAF « MAC Lo DX1iAAF . HMAT
DXOICT.5YS to IX13CT.5YS
DXOIFIF.SAY to DXLIPIF.SAY
DXOIMT . 5Y8S to DX1IMT.S5YS
DXOI MM 5YS to DX1iMM.5Y5

DXOICOME . DAT to DX1LICOMB.DAT
DXOIRTLIFR.SYS to DXIIRTLIIFER.S5YS

+COFY/ZBDOT DXIIRTLIIFE.SYS NX18

4-34 Keyboard Commands

al

The device names you can use for the optional argument val are PD, DD,
DX, and DY. The following example creates a bootable system diskette for a
PDT while the current system is on a PDP-11:

+COPY/ROOTIFD DOXORT118J.5Y8 DIXO$

The following example creates a bootable system diskette for a PDP-11
while the current system is on a PDT-11/150:

COPY/RODT:DX FDLIIRT11SJ.8YS FD1:

error (BSE) you are domg bad block replacement f
a boot error results when you bootstrap the system. In thls case, move the
monitor so that it does not reside on a block with a BSE error.

/{CONCATENATE Use this option to combine several input files into a
single output file. This option is particularly useful to combine several object
modules into a single file for use by the linker or librarian. The following
command combines all the .FOR files on DX1: into a file called MERGE.FOR
on DX0:.

+COFYZCONCATENATE X1 k. FOR IXOQOIMERGE .FOR
Files coried:?

nX1tA.FOR to DXOIMERGE.FOR
DX1iR.FOR to DXOIMERGE FOR
DX1:C.FOR to DIXOIMERGE FOR

Wildcards are illegal in the output file specification.

/DEVICE This option copies block for block the image of one device to
another. This option copies all data from one disk to another without chang-
ing the file structure or the location of the files on the device. This is conven-
ient in that the bootstrap blocks also remain unchanged. You can also copy

disks that are not in RT-11 format, as long as they have no bad blocks. If the
encounters a l-\-:.\r]]'\]nn]z ﬂnrnﬁg fhn (‘OPY/T)T«“VT(“F nnarnhnn ‘lt

system encour

J VLl - a9

prints an error message. However, it then retries the operatlon and per-
forms the copy one block at a time. If only one error message prints, you can

assume that the transfer completed correctly.

If one device is smaller than the other, the system copies only as many
blocks as the smaller device contains. For example, if you copy a large vol-
ume to a smaller one, you copy the entire directory of the input volume, but
not every file in the input volume. It is possible to copy blocks between disk
and magtape, even though magtape is not a random-access device. The data
is stored on tape formatted in 1K-word blocks. Because magtape is not file-
structured, there is room for only one disk image on a magtape. The follow-
ing command copies an image of DXO0: to DX1..

+COPY/ZDEVICE DX0: DXL:
IX1:/Cords Are wou sure® Y

Respond to the query message by typing Y and a carriage return. Any
response not beginning with Y cancels the command and the COPY oper-
ation does not proceed.

Keyboard Commands 435

4-36

NOTE

The COPY command does not copy track 0 of diskettes.
However, this restriction has no impact on any copy oper-
ations if your diskette was supplied by DIGITAL.

/DOS Use this option to transfer files between RSTS/E or DOS-11 format
and RT-11 format. The option must appear in the command line after the
file to which it applies. Valid input devices are DECtape and RK05; the only
valid output device is DECtape. The only other options allowed with /DOS
are /ASCII, /BINARY, /IMAGE, and /OWNER:[nnn,nnn]. The following
command transfers a BASIC source file from a DOS-11 disk to an RT-11
disk.

+CORPY RKIFROG.RAS/NOS/OWNERIL200+200] SYIXK.X

The next command copies a memory image file from an RT-11 disk to a
RSTS/E format DECtape.

+CORPY DUMF.SAV DT X &/N085

/END:n Use with /START:n and /DEVICE to specify the last block of the
volume you are copying. The /END:n notation must follow the input file
specification. The argument n represents a decimal block number. The fol-
lowing example copies blocks 0 to 500 from RKO: to RK1:, starting at block
501, in a file named ADAM.MAC:

«COFY RKOI/START!O/ENDIG00 RKLIADAM.MAC/STARTISOL

/EXCLUDE This option copies all the files on a device except the ones you
specify. The following command copies all files from DXO0: to DX1: except
.OBJ and .SAYV files.

+COFYZEXCLUDE DXOD R ORJ» X 5AVY DX 2k %

/FILES Use with /DEVICE to copy a volume to a file on another volume or
vice versa. If you use a magtape or cassette for the input voiume, you must
specify a file name with the input volume. This operation is useful if you
wish to make several copies of a volume that is on a slow device. You can

1 1 A+l
copy the volume as a file onte a velume that is on a faster device, and then

- proceed to make copies. Note that when you copy a file to a volume, the

bootstrap and directory of the output volume are replaced by the equivalent
blocks of the input file.

The following example copies diskette DXO: to DL1: as file FLOPPY.BAK:
SCORY/DEVICE/FILES IX0! DL1IFLOFFY.RAK

The following example copies file DECTAP.BAK to DDO:
PCOFY/DEVICE/FILES DECTAF.BAK TNOY

/IGNORE Use this option to ignore errors during a copy operation.
/IGNORE forces a single-block data transfer, which you can invoke at any
other time with the /SLOWLY option. Use /IGNORE if an input error

Keyboard Commands

occurred when you tried to perform a normal copy operation. This procedure
can sometimes recover a file that is otherwise unreadable. If there is still an
error, an error message prints on the terminal, but the copy operation con-
tinues. This option is invalid with /DOS, /TOPS, and INTERCHANGE.

/IMAGE If you enter a command line without an option, or if you use
the IMAGE option, the copy operation proceeds in image mode. Use this
method to transfer memory image files and any files other than ASCII or for-
matted binary. Note that you cannot transfer memory image files reliably to
or from paper tape, or to the line printer or console terminal. You can image-
copy ASCII and binary data with the following restrictions:

1. For ASCII data, there is no check for nulls.

2. For binary data, there is no checksum consideration.

This command copies a text file to a DECtape for storage:
LCORY LETTER.TXT DTOIX. %

The primary advantage to using /IMAGE is that it is faster than /ASCII and
/BINARY.

/INTERCHANGE[:size] This option transfers data in interchange format
between RT-11 block-replaceable devices and interchange diskettes that
are compatible with IBM 3741 format. The option must appear in the com-
mand line after the file to which it applies. If the output file is to be in inter-
change format, you can specify the length of each record. The argument size
represents the record length in characters. The following command trans-
fers the RT-11 file WAIT.MAC from device DK: to device DX1: in inter-
change format, giving it the name WAIT.MA. The record length is set to 128
(decimal) bytes.

+COPY WAIT.MAC DX1:iX.X/INTERCHANGE 128,

/LOG This option lists on the terminal the names of the files that were cop-
ied by the current command. Normally, the system prints a log only if there
is a wildcard in the file specification. If you specify /QUERY, the system
prints the name of each file and asks you for confirmation before the oper-
ation proceeds. In this case, the query messages replace the log, unless you
specifically type /[LOG/QUERY in the command line. The following example
shows a copy command line and the resulting log.

+COFY/ZLOG DX1IFILE.MAC DXOIFILE.MAC
Files coried!
DX1:FILE.MAC to DXOIFILE.MAC

/NOLOG This option prevents a list of the files copied from appearing on
the terminal.

/NEWFILES Use this option in the command line if you want to copy only
those files that have the current date. The following example shows a con-
venient way to back up all new files after a session at the computer.

Keyboard Commands 437

4-38

JCORY/NEWFILES XX DX13X.%
Files coried?

DK:AFOR to OX1!A.FOR
DKi{R.FOR to DX1iE.FOR
DK:C.FOR to IX1:C.FOR

/OWNER:[nnn,nnn] Use this option with /DOS to represent a DOS-11
user identification code (UIC) for a DOS-11 input device. Note that the

square brackets are part of the UIC; you must type them. The initial default
for the UIC is [1,1].

/PACKED This option copies files in DECsystem-10, DOS, or interchange
mode. You can use /PACKED on an input file specification with the /TOPS,
/DOS, or INTERCHANGE option to transfer files to RT-11 format.

/POSITION:n Use this option when you copy files to or from magtape or
cassette. The /POSITION:n option lets you direct the tape operation; you can
move the tape and perform an operation at the point you specify. For all
operations, omitting the argument n has the same effect as setting n equal
to O (n is interpreted as a decimal number). Since this option applies to the
device and not to the files, you can specify one /POSITION:n option for the
output file and one for the input files.

For magtape read (copy from tape) operations, the /POSITION:n option
initiates these procedures:

1. IfnisO:
The tape rewinds and the handler searches for the file you specify. If you
specify more than one file, the tape rewinds before each search. If the
file specification contains a wildcard, the tape rewinds only once and
then the handler copies all the appropriate files.

2. Ifnisa positive integer:
The handler looks for the file at file sequence number n. If the file it
finds there is the one you specify, the handler copies it. Otherwise, the it
prints an error message. If you use a wildcard in the file specification,
the handler goes to file sequence number n and then begins to look for
the appropriate files.

ifnis-1:
The handler starts its search at the current position. Note that if the

current position is not the beginning of the tape, it is possible that the
file you specify will not be found, even though it does exist on the tape.

w

For magtape write (copy to tape) operations, the /POSITION:n option has
this effect:

i. IfnisO:
The tape rewinds before the handler copies each file. A warning mes-
sage prints on the terminal if the handler finds another file on the tape
with the same name and file type, and the handler does not copy the file.

2. If nis a positive integer:
The handler goes to file sequence number 7 or to the logical end of tape,

Keyboard Commands

whichever comes first. Then it enters the file you specify. If you specify
more than one file, or if you use a wildcard in the file specification, the
tape does not rewind before the handler writes each file, and the handler
does not check for duplicate file names. If the handler finds the sequence

number n. it creates a new logical end of tane, If there are anv files with
, 1t creates a new logical end of tape. If there are any Iiles with

iz,

a sequence number greater than n, they are lost.

Ifnis-1:
The handler goes to the logical end-of-tape and enters the file you spec-
ify. It does not rewind, and it does not check for duplicate file names.

Ifnis-2:

The tape rewinds between each copy operation. The handler enters the
file you specify at logical end-of-tape or at the first occurrence of a dupli-
cate file name (but if the handler enters the file over the duplicate file,
you lose everything after that file).

The handler also has special procedures for handling cassettes. For cassette
read (copy from tape) operations, the /POSITION:n option initiates these
procedures:

1.

IfnisO:

The cassette rewinds and the handler searches for the file you specify. If
you specify more than one file, or if you use a wildcard in the file specifi-
cation, the cassette rewinds before each search.

If n is a positive integer:

The handler starts from the cassette’s present position and searches for
the file you specify. If the handler does not find the file you specify before
it reaches the nth file from its starting position, it reads the nth file.
Note that if the starting position is not the beginning of the tape, it is
possible that the handler will not find the file you specify, even though it
does exist on the tape.

If n is a negative integer:
The cassette rewinds, then the handler follows the procedure outlined in
step 2 above.

For cassette write (copy to tape) operations, the /POSITION:n has this effect:

1.

2.

IfnisO:

The cassette rewinds and the handler writes the file you specify at the
logical end-of-tape. The handler automatically deletes any file it finds
that has the same name and file type as the file you specify.

If n is a positive integer:

The handler starts from the cassette’s present position and searches n
files ahead, deleting along the way any file it finds that has the same
name and file type as the file you specify. If the handler does not reach
the logical end-of-tape before it reaches the nth file from its starting
position, it enters the file you specify over the nth file and deletes any
files beyond it on the tape. If the handler reaches the logical end-of-tape

Keyboard Commands 4-39

440

before it reaches the nth file, it writes the file you specify at the end-of-
tape position.

3. Ifnis a negative integer:
The cassette rewinds, then the handler follows the same procedure out-
lined in step 2 above.

Chapter 7, Section 7.2.1, contains more detailed information about oper-
ations involving magtape and cassette.

/PREDELETE This option deletes a file on the output device that has the
same name as a file you copy to that device. The system deletes the file on
the output device before the copy occurs. Normally, the system deletes a file
of the same name after the copy operation successfully completes. This
option is useful for operations involving devices that have limited space,
such as diskette. Be careful when you use the /PREDELETE option; if for
any reason the input file is unreadable, the output file will already have
been deleted and you are left with no usable version of the file. Cassette
devices are valid for input files but not for output.

/QUERY If you use this option, the system requests confirmation
from you before it performs the operation. /QUERY is particularly useful on
operations that involve wildcards, when you may not be sure which files the
system selected for an operation. The /QUERY option is valid on the COPY
command only if both input and output are in RT-11 format. Note that if
you specify /QUERY in a copy command line that also contains a wildcard in
the file specification, the confirmation messages that print on the terminal
replace the log messages that would normally appear. You must respond to
a query message by typing Y (or anything that begins with a Y) and a car-
riage return. The system interprets any other response to mean NO, and it
does not copy the file. The following example copies three of the four FOR
files stored on DK: to DX1.:.

LCOFY/QUERY DKIX.FOR DX1i%k.%

DKiA.FOR to BX1iAFOR TY
DKIR.FOR to DX1iBR.FOR Ty
OR:C.FOR to DX1:iC.FOR TN
DKIDEMOF1.FOR to DX1:DEMOFL.FOR? Y

/NOQUERY This option suppresses the confirmation message that the
system prints for some operations, such as COPY/DEVICE. It also sup-
presses logging of file names if the command line contains a wildcard. You
must explicitly type /LOG to obtain a list of the files copied.

/REPLACE This is the default mode of operation for the COPY command.
If a file exists on the output device with the same name as the file you specify
for output, the system deletes the duplicate file after the copy operation suc-
cessfully completes.

/NOREPLACE This option prevents execution of the copy operation if a
file with the same name as the output file you specity already exists on the
output device. NOREPLACE is valid only if both the input and output are

inm PT_11 farmat

111 AviT"1 4 1ULiLIQVU.

Keyboard Commands

/SETDATE This option causes the system to put the current date on all
files it transfers, unless the current system date is zero. Normally, the sys-
tem preserves the existing file creation date when it copies a file block for
block. This option is invalid for operations involving magtape and cassette,
because the system always uses the current date for tape files.

/SLOWLY This option transfers files one block at a time. On some devices,
a single-block transfer increases the chances of an error-free transfer. Use
this option if a previous copy operation failed because of a read or write
error.

/START[:n] Use with the /DEVICE option to specify the starting block
and, with /END:n, to specify the last block of the disk you are copying. The
/START:n notation must follow the input or output file specification. The
argument n with both /START and /END represents a decimal block
number.

You can use /START:n with the output file specification to specify the start-
ing block number for the write operation on the output volume.

The following example copies blocks 500 to 550 of RKO: to RK1: starting at
block 100:

LCOPY RKOIZSTARTISQO/ENDZIES0 RKLII/Z8TARTILOO

X
If you do not supply a value with /START, the system assumes the first block
on the volume. If you do not specify a value with /END, the system assumes
the last block on the volume. Note that the first block of a file or volume is
block 0.

/SYSTEM Use this option if you need to copy system (.SYS) files. If you
omit this option, the .SYS files are excluded from all operations and a mes-
sage is printed on the terminal to remind you.

fTOPS This option transfers files on DECsystem—10 DECtape to RT-11
format. The option must follow the input file specification. Note that DEC-
tape is the only valid input device. You cannot perform this copy operation
while a foreground job is running. Use /PACKED with /TOPS to convert
from TOPS-10 7-bit ASCII format to standard PDP-11 byte ASCII format.
The following command copies in ASCII format all the files named MOD-
ULE from the DECsystem—-10 DECtape DTO: to RT-11 device RKO:.

JLORPYZASCIT DTOMMODULE «X/TOFS RKO . %

/WAIT Use this option on systems that have only a single-disk drive, or on
systems that have dual drive and the system volume is neither the input nor
output volume. When you use this option, the system initiates execution of a
command but then pauses and prints the message Continue?. At this time,
you can remove the system disk and mount the disk on which you want the
operation to take place. When the new disk is loaded, type a Y followed by a
carriage return to resume the operation. When the operation completes, the
system prints the Continue? message again. Mount the system volume and
type a Y followed by a carriage return. The system then prints the keyboard

Keyboard Commands 4-41

4-42

monitor prompt. Make sure PIP and DUP are on your system volume when
you use the /WAIT option. The /WAIT option is valid with /DEVICE.

Single-Volume Operation

If you want to transfer a file between two storage volumes, and you have
only one drive for that type of storage volume, follow the procedure below.

1.

Enter a command string according to this general syntax:
COPY/WAIT input-filespec output-filespec

where output-filespec represents the destination device and file specifi-
cation, and input-filespec represents the source device and file
specification.

The system responds by printing the following message at the terminal.
Mourt ineut volume in <devicers Continue?

<device> represents the device into which you are to mount your input
volume. Type a Y followed by a carriage return after you have mounted
your input volume.

The system continues the copy procedure and prints the following mes-
sage on the terminal:

Mount outrut volume in <devicers Contirnue?

After you have removed your input volume from the device, mount your
output volume, then type Y followed by a carriage return.

Depending on the size of the file, the system may repeat the transfer
cycle (steps 2 and 3) several times before the transfer is complete. When
the transfer is complete, the system prints the following prompt at the
terminal:

Mount suwstem volume in <devicerxs Conbinue?

When you mount your system volume and type a Y followed by a car-
riage return in response to the last instruction, you terminate the copy

PR -y
UpCLaviuil.

Double-Volume Operation

If you have a small disk system, you can use the /WAIT option for transfer-
ring files between two non-system volumes. The procedure for transferring
files this way follows.

1.

With your system volume mounted, enter a command according to the
following general syntax:

COPY/WAIT input-filespec output-filespec

where output-filespec represents the destination device and file specifi-
cation, and input-filespec represents the source device and file
specification.

Keyboard Commands

After you have entered the last command string, the system responds
with the following prompt:

Mourt input volume in <devicex; ContinueT

Type a Y followed by a carriage return when you have mounted the
input volume:

The system then prints the next instruction for you to mount the output
volume:

s . M B A O T
U wvOolume in S O0evilice sy LOnitiniie ¥

Type a Y followed by a carriage return in response to the last message
after you have mounted the output volume:

Unlike the single-volume transfer, the double-volume transfer involves
only one cycle of mounting the input and output volumes. When the file
transfer is complete, PIP prints the following instruction:

Mourt sustem volume in <devicers ContinueT?

When you mount your system volume and type a Y followed by a car-
riage return in response to the last instruction, you terminate the copy
operation.

Keyboard Commands 4-43

444

CREATE

The CREATE command creates or extends a file with a specific name, loca-
tion, and size on the block replaceable volume that you specify.

JEXTENSION:n

CREATE filespec [{ISTART:n uALLOCATE:n]]]

In the command syntax illustrated above, filespec represents the device and
file specifications of the file you wish to create or extend. If you are usingthe
CREATE command to create a file, this command only creates a directory
entry for the file. This command does not store any data in a file. You must
specify both the file name and type of the file you wish to create or extend.

If you type a carriage return after typing CREATE, the system prompts
File?.

The following sections describe the options you can use with the CREATE
command.

/ALLOCATE:n Use this option following the file specification to allocate
n blocks for the file you are creating, where n represents a decimal number.
A value of -1 for n indicates a file of the maximum size available on the vol-
ume. If you do not use /ALLOCATE, the system assumes one block.

/EXTENSION:n Use this option to extend an existing file you specify by n
blocks, where n is a decimal number. When you use this option following the
file specification, make sure that there is enough unused space on the vol-
ume for the size you specify (use the DIRECTORY/FULL command to do
this). If you do not supply a value with /EXTENSION, the system assumes
one block.

The following example illustrates the procedure for extending a file with the
CREATE command. In this example, BUILD.MAC is extended by 20 blocks.
First, a DIRECTORY/FULL command determines whether there is avail-
able space adjacent to BUILD.MAC.

+ DIRECTORY/FULL DXO01?

05~DEC~79
MYFROG . MAC 36F 19-NOV-79 TH +MAC 25 27-NOV-79
VTHAC +MAC 7 19-NOV-79 SYSMAC . MAC 41 19-NOV-79
< UNUSED 25 RT118J.8YS 67 19-NOV-79
TT .5YS 2 19-NOY-79 IX .5YS 3 19-NOV-79
LELA JLEM 1 05-DEC-79 BUILD .MAC 20 19-NOY-79
< UNUSED > 199

? Filess 262 Hlocks
224 Free bhlocks

Next the CREATE command extends BUILD MAC by 20 blocks.

« CREATE DXOIRUILILMAC/EXTENSIONIRZO

Keyboard Commands

/START:n Use this option to specify the starting block number of the file
you are creating. The argument n represents a decimal block number. If you
do not use /START, the system uses the first available space on the volume.

The following example illustrates the procedure for creating a file with the
CREATE command. In this example, SWAP.SYS is restored after having
been previously deleted. First, a DIRECTORY/DELETED command estab-
lishes the starting block numbers of the deleted files on DXO0:

+DIRECTORY/DELETED IIX0$

05-NEC-79

Swar .8YS 25 19-NOV-79 117 EMFTY.FIL 179 31-0CT-79 315
0 Filess O BRlocks

204 Free blocks

Next, the CREATE command restores SWAP.SYS, starting at block 117,
and using the /ALLOCATE:n option to allocate 25 blocks.

+CREATE DXOISWAF.SYS/START (117/7ALLOCATE RS

See the RT-11 Software Support Manual for a detailed description of the
RT-11 file structure.

Keyboard Commands 4-45

4-46

D

The D (Deposit) command deposits values in memory, beginning at the loca-
tion you specify.

D address =value [,. . .value]}

In the command syntax illustrated above, address represents an octal
address that, when added to the relocation base value from the Base com-
mand (if you used one), provides the actual address where the system must
deposit the values. The argument value represents the new contents of the
address. If you do not specify a value, the system assumes a value of 0. If you
specify more than one value and separate the values by commas, the system
deposits the values in sequential locations, beginning at the location you
specify.

The Deposit command accepts both word and byte addresses, but it always
executes the command as though you specified a word address. (If you spec-
ify an odd address, the system decreases it by one to make it even.) The
Deposit command stores all values as word quantities.

Use commas to separate multiple values in the command line. Two or more
adjacent commas cause the system to deposit zeroes at the location you spec-
ify and at the following locations, if indicated.

Note that you cannot specify an address that references a location outside
the area of the background job. You can use the D command with GET and
START to temporarily alter a program’s execution. Use the SAVE command
before START to make the alteration permanent.

’!‘hc_a following command deposits zeroes into locations 300, 302, 304, and
306.

TN 300y vy

The next command sets the base address to 0.

‘B

The following command deposits 3705 into location 1000.

I 1000=370%

The next command sets the relocation base to 1000.

‘B 1000

The next command puts 2503 into location 1500 (offset of 500 from the last B
command) and 22 into location 1502,

L) QAL L4 Ll

o0 GO0=R2003y 22

Keyboard Commands

DATE

Use the DATE command to set or to inspect the current system date.

DATE | dd-mmm-yy]

In the command syntax shown above, dd represents the day (a decimal num-

~ Q1) A PR T

T e 1 4 [y . PR Y SN R I . I IR LIS IR of
per 1roiil 1L vo o1, Imunmn represeiius e i_lI'SL LIree cnardaciers o1 unie naimme o1
the month; and yy represents the year (a decimal number from 73 to 99).

To enter a date into the system, as soon as you bootstrap the system specify
the date in the format described above. The system uses this date for newly
created files, for files that you transfer to magtape or cassette, and for listing
files. The following example enters the current date.

JOATE 18-MAY-~77

To display the current system date, type the DATE command without an
argument, as this example shows.

LDATE
18-May~77

The FB and XM monitors automatically increment the date at midnight
each day. The SJ monitor increments the date only if you select timer sup-
port as a system generation special feature. Note that you can also select
automatic end-of-month date advancement through system generation.

Keyboard Commands 447

448

DEASSIGN

The DEASSIGN command disassociates a logical device name from a phys-
ical device name.

DEASSIGN [(SP) logical-device-name]

In the command syntax illustrated above, logical-device-name represents an
alphanumeric name, from one to three characters long, that is assigned to a
particular device. Note that spaces and tabs are not permitted in the logical
device name.

To remove the assignment of a particular logical device name to a physical
device, specify that logical device name in the command line. The following
example disassociates the logical name INP: from the physical device to
which it is assigned.

+DEASSIGN INF2

If you specify a logical name that is not currently assigned, the system
prints an error message, as this example shows.

+DEASSIGN INFG
PTRMON-F~Logical name not found

To disassociate all logical names from physical devices, type the DEASSIGN
command without an argument. The following example disassociates all
logical device names (except SY:) from physical devices and resets the log-
ical names DK: and SY: to represent the system volume.

JTEASSIGN
If DK: is assigned to a non-system device {(such as DX1:, for example), the
following command disassociates DK: from DX1: and restores the default

association of DK: to SY:, the system device.

+DEASSIGN DK

Keyboard Commands

DELETE

The DELETE command deletes the files you specify.

DELETE | /DOS filespecs
/INTERCHANGE

IEXCLUDE
ILOG

{POSITION:n
/INO}] QUERY
ISYSTEM
IWAIT

JENTRY

In the command syntax shown above, filespecs represents the files to be
deleted. You can specify up to six files; separate them with commas. You can
enter the DELETE command as one line, or you can rely on the system to
prompt you for information. If you omit the file specification, the DELETE
command prompts Files?. If you delete a file accidentally, it may be possible
to recover the file if you act immediately (see CREATE). A procedure for
doing this is described in Chapter 8.

The system has a special way of handling system (.SYS) files and files that
cover bad blocks ((BAD files). So that you do not delete system files by acci-
dent when you use a wildcard in the file specification, the system requires
you to use the /SYSTEM option when you need to delete system files. To
delete a .BAD file, you must specify it by explicitly giving its file name and
file type. Since .BAD files cover bad blocks on a device, you do not need to
copy, delete, or otherwise manipulate these files. To delete a protected file (a

the RENAME/NOPROTECTION command.

Another feature of the DELETE command is that the system unless using
/LOG or /NOQUERY requests confirmation from you before it deletes a file.
You must respond to the query message by typing Y followed by a carriage
return in order to execute the command.

The following sections describe the options you can use with the DELETE
command.

/DOS Use this option to delete a file that is in DOS-11 or RSTS/E format.
The valid devices for this type of file are disks or DECtapes. You cannot use
any other option in combination with /DOS.

/ENTRY Use this option to delete a job from the queue. Use /ENTRY
when QUEUE is running as a foreground or system job (see Chapter 20,
Queue Package).

Keyboard Commands 4-49

4-50

When you use /ENTRY, you do not have to specify the input files in the job,
only the job name. If you have not specified a job name, the system uses the
first file name in the job as the job name. The following example deletes
MILLER from the queue:

SOELETE/ZENTRY MILLER

If QUEUE is printing a job when you delete that job, QUEUE immediately
stops processing that job.

/EXCLUDE This option deletes all the files on a device except the ones
you specify. The following command, for example, deletes all files from DXO:
except .SAYV files.

SOELETEZBEXCLUDE DXk, 54Y

PRIF-W-No .5Y8 action
Files deleted?

DXOtARC.OLD Y

oXo:AAF . 0LD 7Y

X0 COME., Y
OXOIMERGE .OLD 7 Y

/INTERCHANGE Use this option to delete from a diskette a file that is in
interchange format. You cannot use any other option with
/INTERCHANGE.

/LOG This option lists on the terminal a log of the files that are deleted by
the current command. Note that if you specify /LOG, the system does not ask
you for confirmation before execution proceeds (that is, /LOG implies
/NOQUERY). Use both /[LOG and /QUERY to invoke logging and querying.

/NEWFILES Use this option to delete only the files that have the current
system date. This is a convenient way to remove all the files that you just
created in a session at the computer. The following example deletes the files
created today.

CJOELETE/NEWFTLES DXL td, Bak
Files deleted
X1 IHMERGE « BAK 7 Y

/POSITIONENn] You can use this opiion when you deiete files from cas-
sette. It permits you to move the tape and perform an operation at the point
you specify. Omitting the argument n has the same effect as setting nequal
to O (n is interpreted as a decimal number). The /POSITION:n option has the
following effect:

1. IfnisO:
The cassette rewinds and the system searches for the file you specify. If
you specify more than one file, or if you use a wildcard in the file specifi-
cation, the cassette rewinds before each search.

2. If nis a positive integer:
The system starts from the cassette’s present position and searches for
the file you specify. If the system does not find the file you specify before

it reaches the nth file from its starting position, it deletes the nth file

CIIES LilT Lil 2120 12211 1L svalllll VSaivallid M2V VTS vaiT svvix 110,

Keyboard Commands

Note that if the starting position is not the beginning of the tape, it is
possible that the system will not find the file you specify, even though it
does exist on the tape.

3. Ifnis anegative integer:
The cassette rewinds, then the system follows the procedure outlined in
step 2 above.

/QUERY Use this option to request a confirmation message from the sys-
tem before it deletes each file. This option is particularly useful on oper-

S 4l o rnlern werildannda ~le axr mat ha anmanwladales

f‘flullb !,“d' '"V'"‘“" WIii1GCary us, WiEn)’“” '”O." oL Oe © '"'li.“"‘l"'l.‘,’ suire Wh“ h
files the system selected for the operation. This is the default mode of oper-
ation. Note that specifying /LOG eliminates the automatic query; you must
specify /QUERY with /LOG to retain the query function. You must respond
to a query message by typing Y (or anything that begins with a Y) and a car-
riage return to initiate execution of a particular operation. The system
interprets any other response as NO; it does not perform the operation. The
following example shows querying. Only one file is deleted.

SOELETEZQUERY DXLk %
Files deleted:

X1 1ARC MAC TN

X1 L AAF « MAC Ty

X1 IMERGE . FOR 7 N

/NOQUERY This option suppresses the confirmation message the system
prints before it deletes each file.

/SYSTEM Use this option if you need to delete system (.SYS) files. If you
omit this option the system files are excluded from the DELETE operation,
and a message is printed on the terminal. (Note that the system prlnts this
message only when system files might otherwise be included in the
operation.)

/WAIT This option is useful if you have a single-disk system. When you
use this option, the system initiates the DELETE operation but then pauses
for you to mount the volume on which you want the operation to take place.
When the system pauses, it prints Mount input volume in <device>; Con-
tinue?, where <device> represents the device into which you mount the vol-
ume. When the volume is mounted, type Y followed by a carriage return.

The following example deletes FILE.MAC from an RKO05 disk:

JOELETE/WAIT RKO!FILE.MAC

Mount ineut volume in RKOI# Continue? Y
RKOSIFILE .MAC?T Y

Mount sustem volume in RKO!F Continue? Y

This option is invalid with INTERCHANGE and /DOS.

Keyboard Commands 4-51

4-52

DIBOL

The DIBOL command invokes the DIBOL compiler to compile one or more
source programs.

DIBOL | ILIST [filespec] [[ALLOCATE:size] filespecs
NINO) OBJECT [filespec] /ALLOCATE:size]

IALPHABETIZE
ICROSSREFERENCE
/INO] LINENUMBERS
JONDEBUG

/INO] WARNINGS

In the command syntax illustrated above, filespecs represents one or more
files to be included in the compilation. If you omit a file type for an input file,
the system assumes .DBL. Output default file types are .LST for listing files
and .OBJ for object files. To compile multiple source files into a single object
file, separate the files by plus (+) signs in the command line. Unless you
specify otherwise, the system creates an object file with the same name as
the first input file and gives it an .OBJ file type. To compile multiple filesin
independent compilations, separate the files by commas (,) in the command
line. This generates a corresponding object file for each set of input files.

Language options are position-dependent — that is, they have different
meanings depending on where you place them in the command line. Options
that qualify a command name apply across the entire command string.
Options that follow a file specification apply only to the file (or group of files
separated by plus signs) they follow in the command string.

You can enter the DIBOL command as one line, or you can rely on the sys-
tem to prompt you for information. The DIBOL command prompt is Files?
for the input specification.

The DIBOL—-11 Language Reference Manual contains more detailed infor-
mation about using DIBOL. The following sections describe the options you
can use with the DIBOL command.

/ALLOCATE:size Use this option with /LIST or /OBJECT to reserve
space on the device for the output file. The argument size represents the
number of blocks of space to allocate. The meaningful range for this value is
from 1 to 32767. A value of —1 is a special case that creates the largest file
possible on the device.

/ALPHABETIZE Use this option to alphabetize entries in the symbol and
label tables. This is useful for program maintenance and debugging.

/CROSSREFERENCE This option generates a symbol cross-reference
section in the listing to which it adds as many as four separate sections to
the listing. These sections are: (1) symbol cross-reference table, (2) label
cross-reference table, (3) external subroutine cross-reference table, (4)
COMMON cross-reference table. Note that the system does not generate a

Keyboard Commands

listing by default. You must also specify /LIST in the command line to get a
cross-reference listing.

/LINENUMBERS This option generates line numbers for the program
during compilation. These line numbers are referenced by the symbol table
segment, label table segment, and the cross-reference listing; they are espe-
cially useful in debugging DIBOL programs. This is the default operation.

/NOLINENUMBERS This option suppresses the generation of line num-
bers during compilation, which produces a smaller program and optimizes

execution sneed. Use this ontion to com
execution speed. m

PGS PR U & N e U, J
NS NIV NrooTrams Lnai are aireaav
OT Uaiil VppvaUal VU LVALIpaaT VALY pa v Ri22T VALK Y QAT Qe TRy

debugged; otherwise the DIBOL error messages are difficult to interpret.

/LISTI[:filespec] You must specify this option to produce a DIBOL com-
pilation listing. The /LIST option has different meanings depending on
where you place it in the command line.

The /LIST option produces a listing on the line printer when /LIST follows
the command name. For example, the following command line produces a
line printer listing after compiling a DIBOL source file:

LOIROLALIST MYPROGERET:

When the /LIST option follows the file specification, it produces a listing file.
For example, the following command line produces the listing file
DK:MYPROG.LST after compiling a DIBOL source file:

LOIBOL MYPROG/ZLISTRET:

If you specify /LIST in the list of options that immediately follows the com-
mand name, but omit a file specification, the DIBOL compiler generates a
listing that prints on the line printer. If you follow /LIST with a device
name, the system creates a listing file on that device. If the device is a file-
structured device, the system stores the listing file on that device, assigning

1+ tha cama nama aa tha ihnnt fila with a TQT Ala tvna Tha foallawing cnm.
AUV VIAC DCLI1LV LiClLilly QA0 viiv L‘lyu ALAIN, ¥V LVAIL QA JAANJ A LiLVC UJ t’\/l A LIV AVLILIVUYY 1116 wALLL

mand produces a listing on the terminal.

JOTBOL/LISTITTE A

The next command creates on RK3: a listing file called A.LST.
LOIROL/LISTIRKS: A

If the /LIST option contains a name and file type to override the default of
.LST, the system generates a listing file with that name. The following com-
mand, for example, compiles A.DBL and B.DBL together, producing on
device DK: files A.OBJ and FILE1.OUT:

SOTBOLZLISTIFILEL.OUT A+R

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input
file, you can use a command similar to this one:

SOIROL AHRALIGTIRKS:

Keyboard Commands 4-53

4-54

The command shown above compiles A.DBL and B.DBL together, producing
files DK:A.OBJ and RK3:B.LST. If you specify a file name on a /LIST option
following a file specification in the command line, it has the same meaning
as when it follows the command. The following two commands have the
same results:

JOIROL A/ZLISTIR

JOIBOL/LISTIE A

Both commands generate as output files A.OBJ and B.LST.

Remember that file options apply only to the file (or group of files that are
separated by plus signs) they follow in the command string. For example:

LOIBOL A/ZLISTqE

This command compiles A.DBL, producing A.OBJ and A.LST. It also com-
piles B.DBL, producing B.OBJ. However, it does not produce any listing file
for the compilation of B.DBL.

/OBJECTt:ﬁlespec] Use this option to specify a file name or device for the
object file. Because DIBOL creates object files by default, the following two
commands have the same meaning:

LOTEOLZOBJECT A

Both commands compile A.DBL and produce A.OBJ as output. The
/OBJECT option functions like the /LIST option; it can be either a command
or a file qualifier.

As a command option, /OBJECT applies across the entire command string.
The following command, for example, compiles A.DBL and B.DBL sepa-
rately, creating object files A.OBJ and B.OBJ on RK1.:.

LOIBOLZORJECTIRKL T A E

Use /OBJECT as a file option to create an object file with a specific name or
destination. The following command compiles A.DBL and B.DBL together,
creating files B.LST and B.OBJ.

LIIROL A+R/ZLISTZORJECT

/NOOBJECT Use this option to suppress creation of an object file. As a
command option, NOOBJECT suppresses all object files; as a file option, it
suppresses only the object file produced by the related input files. In this
command, for example, the system compiles A.DBL and B.DBL together,
producing files A.OBJ and B.LST. It also compiles C.DBL and produces
C.LST, but does not produce C.OBdJ.

LITIROL A+R/LLISTy C/NOOBJECT/LIST

/ONDEBUG This option includes a symbol table in the object file. You can
then use a debugging program to find and correct errors in the object file.

Keyboard Commands

/WARNINGS Use this option to include warning messages in DIBOL
compiler diagnostic error messages. These messages call certain conditions
to your attention, but they do not interfere with the compilation. This is the
default operation.

/NOWARNINGS Use this option to suppress warning messages during
compilation.

Keyboard Commands 4-55

4-56

DIFFERENCES

The DIFFERENCES command compares two files and lists the differences
between them.

IPRINTER

DIFFERENCES {IOUTPUT:(iIespec [IALLOCATE:size]] N oldfile, newfile
ITERMINAL

IBINARY |JALWAYS ['START:n] /END:n]
IBYTES
IQUIET
ISIPP-filespec

IAUDITTRAIL

IBLANKLINES

ICHANGEBAR

NINO) COMMENTS

IFORMFEED

IMATCH:n

ISLP

/INO] SPACES

INO] TRIM

- -

In the command syntax shown above, oldfile represents the first file to be
compared and newfile represents the second. The default output device is the
console terminal. The default file type for input files is . MAC; for output files
it is .DIF. You can specify the entire command on one line, or you can rely on
the system to prompt you for information. The DIFFERENCES command
prompts are File 1? and File 22.

The DIFFERENCES command is particularly useful when you want to com-
pare two similar versions of a source or binary program, typically, an
updated version against a backup version. A file comparison listing high-
lights the changes made to a program during an editing session. The follow-
ing sections describe the various options you can use with the
DIFFERENCES command. Following the descriptions of the options is a

samnle listing and an exnlanation of how to interpret it.

DRAILPAT 223Vl 33 L0 o 8 8 3 3 it (LA 2 S AV o SLU) Sy PR 4

The DIFFERENCES command is also useful for creating command files that
can install patches to backup versions of programs so they match the
updated versions. The /SLP and /SIPP;filespec options are designed espe-
cially for this purpose.

/ALLOCATE:size Use this option with /OUTPUT and /SIPP to reserve
space on the device for the output listing file. The argument size represents
the number of blocks of space to allocate. The meaningful range for this
value is from 1 to 32767. A value of -1 is a special case that creates the larg-
est file possible on the device.

/ALWAYS When you use this option with /BINARY or /SIPP:filespec, the
system creates an output file regardless of whether there are any differences
between the two input files. This option is useful when running BATCH
streams to prevent job step failures due to the absence of a DIFFERENCES
output file.

Keyboard Commands

The /ALWAYS option is position dependent. That is, you must use it imme-
diately after the output file to which you want it to apply. If you use it at the
end of the command string, it applies to all cutput files.

/AUDITTRAIL Use this option with /SLP to specify an audit trail. The
/SLP option, described below, creates a command file which, when run with
the source language patch program (SLP), can patch oldfile so it matches
newfile. When you use SLP to modify a file, it creates an output file that has
audit trails. An audit trail is a string of characters that appears in the right
margin of each line that has been changed by the modification procedure.
The audit trail keeps track of the patches you make to the patched source
file.

By default, SLP uses the following characters for the audit trail:

§ XKNEWXX

When you use the /AUDITTRAIL option, the system prints the following
prompt at the terminal.

Audit trail?

Enter a string of up to 12 ASCII characters that you want to use in place of
the default audit trail. Do not use the slash (/) in the audit trail.

/BINARY When you use this option, the system compares two binary files
and lists the differences between them. This option is useful for comparing
and relocatable image files (that is, machine runnable programs and object
files) and provides a quick way of telling whether two files are identical. For
example, you can use /BINARY to tell whether two versions of a program
produce identical output.

When you use /BINARY and do not specify an output file, the system prints
output at the terminal according to the following general syntax:

bbbbbb o000/ ffffff ssssss xXxxXXXX

where:

bbbbbb represents the octal block number of the block that
contains the difference

000 represents the octal offset within the block that con-
tains the difference

yiiiiig represents the value in the first file you are comparing

SssSss represents the value in the second file you are
comparing

XXXXXX represents the logical exclusive OR of the two values
in the input files

If you use the /OUTPUT filespec option with /BINARY, the system stores
the differences listing in the file you specify (if there are any differences
found), instead of printing the differences at the terminal.

Keyboard Commands 4-57

4-58

/BLANKLINES Use this option to include blank lines in the file com-
parison. Normally, the system disregards blank lines.

/BYTES When you use this option with /BINARY, the system lists the dif-
ferences byte-by-byte.

/CHANGEBAR Use this option to create an output file that contains new-
file with a changebar character next to the lines in newfile that differ from
oldfile. The system inserts a vertical bar next to each line that has been
added to newfile, and a bullet (lower-case letter o) next to each line that has
been deleted.

The output defaults to the terminal. Use the /PRINTER option to list the
output to the line printer. Specify an output file with the /OUTPUTfilespec
option.

The sample that follows creates a listing of RTLIB.MAC with a changebar
character at the left margin of each line that is different from RTLIB.BAK:

DIFFERENCES/CHANGERAR RTLIER.RAK,RTLIE.MAC

/COMMENTS When you use this option, the system includes in the file
comparison all assembly language comments it finds in the two files. (Com-
ments are preceded by a semicolon on the same line.) This is the default
operation.

/NOCOMMENTS Use this option to exclude comments from the com-
parison. (Comments are preceded by a semicolon on the same line.) This is
useful if you are comparing two MACRO source programs with similar con-
tent but different format.

/END[:n] Use this option with /BINARY to specify the ending block num-
ber of the file comparison, where n is an octal number that represents the
ending block number. If you do not supply a value with /END, the system
defaults to the last block of the file or volume.

/FORMFEED Use this option to include form feeds in the output listing.
Normally, the system compares form feeds but does not include them in the
output listing.

/MATCH[:n] Use this option to specify the number of lines from each file
that must agree to constitute a match. The value n is an integer in the range
1-200. The default value for n is 3.

/OUTPUT:filespec Use this option to specify a device and file name for
the output listing file. Normally, the listing appears on the console terminal.
If you omit the file type for the listing file, the system uses .DIF. Note that
the system creates this file only if there are any differences found. Use the
/ALWAYS option if you want the system to create an output file regardless
of whether any differences are found.

/PRINTER Use this option to print a listing of differences on the prinier.
Normally, the listing appears on the console terminal.

Keybnard Commands

/QUIET When you use this option with /BINARY, the system suppresses
printing the differences at the terminal and prints 2BINCOM-W-Files are
different, if applicable.

/SIPP:filespec Use this option with /BINARY to output a file that you can

e oo o Sk oo AR do AL oo S L QTN 1
US€ as an inpic Comimana 1€ to uie Save image paiCn program oLr r, Wiere

filespec represents the name of the output file.
The file you create with /SIPP can patch oldfile so it matches newfile.

The example that follows creates an input command file which, when run

with SIPP, patches DEMOF1.BAK so it matches DEMOF1.SAV.
DIFFERENCES/BINARY/SIFF!FATCH.COM DEMOF1.BAKs DEMOF1.SAV

To execute the input command file created by /SIPP, see Chapter 22, Save
Image Patch Program (SIPP).

/SLP Use this option with /OUTPUT:filespec to create a command file
that, when run with the source language patch utility SLP, patches oldfile to
match newfile. If you do not use the /OQUTPUT:filespec option with /SLP, the
system prints the command file at the terminal.

The sample that follows creates the command file PATCH.COM.
PATCH.COM can be used as input to the program SLP to patch RTLIB.BAK
so that it matches RTLIB.MAC.

+DIFFERENCES/SLF/0UTFUT {FATCH.COM RTLIRB.RBARyRTLIE.MAC

To execute the command file you create with /SLP, see Chapter 24, Source
Language Patch Program (SLP).

/SPACES This option includes spaces and tabs in the file comparison.
This is the default operation and is particularly useful when you are com-
paring two text files and must pay careful attention to spacing.

/NOSPACES Use this option to exclude spaces and tabs from the file com-
parison. This is useful when you are comparing two source programs with
similar contents but different formats.

/START[:n] Use this option with /BINARY to specify the starting block
number of the file comparison, where n represents the octal starting block
number. If you do not supply a value with /START, the system defaults to
the first block in the file.

/TERMINAL Use this option to cause the list of differences to appear on
the console terminal. This is the default operation.

To understand how to interpret the output listing, first look at the following
two text files.

+TYFE FILE1.TXT

HERE’S A RBOTTLE AND AN HONEST FRIEND!
WHAT Walh YE WISH FOR MAIR» MANT

WHA KENSy EREFORE HIS LIFE MAY ENDe
WHAT HIS SHAME MAY RE 0/ CAREs MANT

Keyboard Commands 4-59

4-60

THEN CATCH THE MOMENTS AS THEY FLY»
AND USE THEM AS YE OUGHT» MANI ~-
RELIEVE MEr» HAFFINESS IS SLY»
AND COMES NOT AY WHEN SOUGHTy MAN.

~=-8COTTISH SONG

+TYFE FILE2.TXT

HERE’S A ROTTLE AND AN HONEST FRIEND!
WHAT WAD YE WISH FOR MAIR: MANT

WHA KENSs> BEFORE HIS LIFE MAY ENDy
WHAT HIS SHARE MAY RBE 07 CARE» MANT

THEN CATCH THE MOMENTS AS THEY FLY:»
AND USE THEM A5 YE OUGHT», MANZ --

BELIEVE MEy HAFFINESS IS SHY»
AND COMES NOT AY WHEN SOUGHT, MAN.

~~GCOTTISH SONG
Notice that in the fourth line of FILE1.TXT, shame should be share; in the
seventh line, sly should be shy.

The following command compares the two files, creating a listing file called
DIFF.TXT.

+DNIFFERENCES/MATCH! 1 /0UTPUTIDIFF.TXT FILEL.TXTFILE2.TXT
PSRCCOM-W-Files are different

The following listing shows file DIFF.TXT.

+TYFE DIFFTXT
1) DKIFILEL.TXT
2) DRIFILER.TXY

KXokkkokkkEk XK

»1 WHAT HIS SHAME MAY BE O‘ CAREs MANT
1 THEN CATCH THE MOMENTS AS THEY FLY»
X¥kxk

21 WHAT HIS SHARE MAY BE 0’ CARE» MANT
2) THEN CATCH THE MOMENTS AS THEY FLY»
Fookkokokkokk ok

i BELIEVE ME» HAFFINESS IS5 SLY»

1 AND COMES NOT AY WHEN SOUGHT: MAN.
kKK

1 BELIEVE ME» HAFFINESS IS SHY»

2) ANDI COMES NOT AY WHEN SOUGHTr MAN.
KEKREKIOKKK KK

If the files are different, the system always prints the file name of each file as
identification:

1) DKIFILEL.TXT
2) DKIFILE2.TXT

The numbers at the left margin have the form n)m, where n represents the
source file (either 1 or 2) and m represents the page of that file on which the
specific line is located.

.

The system next prints ten asterisks and then lists the differences between
the two files. The /MATCH:n option was used in this example to set to 1 the
number of lines that must agree to constitute a match.

Keyboard Commands

The first three lines of the song are the same in both files, so they do not
appear in the listing. The fourth line contains the first discrepancy. The sys-
tem prints the fourth line from the first file, followed by the next matching
line as a reference.

01 WHAT HIS SHAME MAY BE 0O’ CAREr MANT
1 THEN CATCH THE MOMENTS AS THEY FLY»
XAKKX

The four asterisks terminate the differences section from the first file.

P Wy e at e de i~ e i3 e AT 3

The system then prints the fourth line from the second file, again fol
by the next matching line as a reference:

21 WHAT HIS SHARE MAY BRE 07 CARE. MANT
2) THEN CATCH THE MOMENTS AS THEY FLY.
Kok kkokokkok

The ten asterisks terminate the listing for a particular difference section.

The system scans the remaining lines in the files in the same manner. When
it reaches the end of each file, it prints 2SRCCOM-W-Files are different on
the terminal.

If you compare two files that are identical, the system does not create an out-
put listing, but prints:

PSRCCOM~I-No differences found

TRIM Use the /TRIM option with /SLP to ignore tabs and spaces that
appear at the ends of source lines. This is the default setting.

/NOTRIM Use /NOTRIM with /SLP to include in the comparison spaces
and tabs that appear at the ends of source lines. /TRIM is the default setting.

Keyboard Commands 4-61

4-62

DIRECTORY

The DIRECTORY command lists information you request about a device, a
file, or a group of files.

DIRECTORY r {IOUTPUT:ﬁIespec [lALLOCATE:size]] 7] [ﬁlespecs[lBEGlN]]
IPRINTER
TERMINAL

IBADBLOCKS [IFILES] [/START:n] /END:n] [/'VERIFY]
{DOS [/OWNER:{nnn,nnn}j

NINTERCHANGE

TOPS

NOLUMEID [:ONL}
IBEFORE [date]
IDATE [date]
INEWFILES
ISINCE [date]

IALPHABETIZE [/REVERSE]
IORDER [:category] [[REVERSE]
ISORT [:category] /[REVERSE]
IBLOCKS

IBRIEF

ICOLUMNS:n

IDELETED

{EXCLUDE

iFAST

IFREE

[FULL

IOCTAL

IPOSITION

ISUMMARY

In the command syntax shown above, filespecs represents the device, file, or
group of files whose directory information you request. The DIRECTORY
command can list directory information about a specific device, such as the
number of files stored on the device, their names, and their creation dates. It
can list details about certain files including their names, their file types, and
obtain directory information about many files by using wildcards in the file
specification. The DIRECTORY command can also print a device directory

qrrrnnawer nwganmimad 11 gavanal seawra crvalh o ac Al aladio T o Al Tt
Sultlitiialy, UL 5AliiLou 111 STYTladl wayd, dulll ad alpiiaveuital UL Clironuivgicdl.

Normally, the DIRECTORY command prints listings in two columns on the
terminal. Read these listings as you would read a book; read across the col-
umns, moving from left to right, one row at a time. Directory listings that
are sorted (with /ALPHABETIZE, /ORDER, or /SORT) are an exception to
this. Read these listings as you would a telephone directory, by reading the
left column from top to bottom, then reading the right column from top to
bottom.

The DIRECTORY command does not prompt you for any information. If you
omit the file specification, the system lists directory information about

aving DWW oo dlie ooty oL
device LA, a8 U1is eXaiiipi€ Snows.

Keyboard Commands

LOIRECTORY

27-Nov-79

KRT11S4,8YS 67F 03-Jul-79 RT11FE.SYS 80F 13-Aug-79
RT11BL.SYS 63F 15-Mar-79 nXx . 8YS 3F 13-Aud-79
SWAF ,SYS 25F 13-Aug-79 TT +8YS 2F 13-Audg-79
il +SYS 3IF 13-Aug-79 ny . 8YS AF 13-Audg-79
LF +SYS 2F 27-Nov-7% FIF +SAV 16 25-Jul-7%
nue +SAV 41 26-Mar-79 RESORC.SAV 15 13-Aug-7Y
ERIT .SAV 19 13-Aug-79 STARTS.COM 1 27-Aug-79
SIFP .SAV 14 13-Aug-79

15 Filess 413 Rlocks
73 Free blocks

A “P” next to the block size number of a file’s directory entry indicates that
the file is protected from deletion (see RENAME/PROTECTION).

If you specify only a device in the file specification, the system lists directory
information about all the files on that device. If you specify a file name, the
system lists information about just that file, as this example shows.

JOIRECTORY DXO:RT11FE.SYS
i0-lec-79
RT11FER.SYS 8OF 13-Aug-79
1 Filey 80 Elocks
4 Free blocks

The following sections describe the options you can use with the DIREC-
TORY command and provide sample directory listings. Some of the options
accept a date or part of a date as an argument. The syntax for specifying the
date is:

[:dd][:mmm][:yy]
where:

dd represents the day (a decimal integer in the range
1-31)

mmm represents the first three characters of the name of
the month

yy represents the year (a decimal integer in the range
73-99)

The default value for the date is the current system date. If you specify just
the day, the system interprets it as the given day of the current month and
year. If you specify just the month, the system interprets it to be the first day
of the given month in the current year. If you specify only the year, the sys-
tem interprets it as the start of that year. If the current system date is not
set, it is considered 0 (the same as for an undated file in a directory listing).

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date of the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system
prints -BAD- in the creation date column of each file created beyond the end-

Keyboard Commands 4-63

4-64

of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

/ALLOCATE:size Use this option with /OUTPUT to reserve space on the
device for the output listing file. The argument size represents the number
of blocks of space to allocate. The meaningful range for this value is from 1
to 32767. A value of -1 is a special case that creates the largest file possible
on the device.

/ALPHABETIZE This option lists the directory of the device you specify
in alphabetical order by file name and file type. It has the same effect as the
/ORDER:NAME option. Note that this option sorts numbers after letters.

/BADBLOCKS Sometimes devices (disks and DECtapes) have bad blocks,
or they develop bad blocks as a result of use and age. Use the /BADBLOCKS
option to scan a device and locate bad blocks on it. The system prints the
absolute block number of these blocks on the devices that return hardware
errors when the system tries to read them. This procedure does not destroy
data that is already stored on the device. Remember that block numbers are
listed in both octal and decimal and the first block on a device is block 0. If a
device has no bad blocks, an informational message prints on the terminal.

+OIRECTORY /BADBLOCKS DiX1¢
POUF-I-No bad bhlocks detected

If BADBLOCKS is the only option in the command line, the volume being
scanned does not need a valid RT-11 directory structure.

/BEFORE[date] This option prints a directory of files created before the
date you specify. The following command lists on the terminal all files stored
on device DX1: that were created before December 1979.

+OIRECTORY/BEFOREIDEC DX13
l4-lec~-79

MYFROG « MAC 36F 19-Nov-79 TH +MAC 25 27-Nov=79
UTHAC MAC 7 19-Nov=7% BYSMAC . MAL 41 19-Nov-7%
RT115.J.SYS 0 19-Nav-79 RT118J.8Y8 67 19-Nov-79
TT .8YS 2 19-Nov=79 X $5YS 3 19-Nov-79

BULLD JHAC 100 19-Nov=-79
? Filesy 281 Rlocks
180 Free blocks

/BEGIN This option lists the directory of the device you specify, beginning
with the file you name and including all the files that follow it in the direc-
tory. The occurrence of file names in the listing is the same as the order of
the files on the device.

The following example lists the file VIMAC MAC on device DX0: and all
the files that follow it in the directory.

Keyboard Commands

+DIRECTORY DXO3VTMAC.MAC/REGIN

10-Dec-79
VTMAC .MAC 15 10-Aus-79 IR +SAV 17 03-Aug-79
RK +SYS 3 13-Aug-79 EDIT + 3AV 19 03-Aus-79
STARTS,.COM 1 27-Aug-79 on +8YS S 19-Aug-79
SRCCOM.SAV 13 13-Aug-79 EINCOM.SAV 11 5-0ct-79
SLP +SAV ? 13-Aud-79 SIFF .54V 14 05-0ct-79

10 Filessy 107 Rlocks
73 Free blocks

/BLOCKS This option prints a d1rectory of the dev10e you specify and
1 I'e 2

2amnlea 4L~ b naeds 1~.1-

iNICINIOes Tne \l/‘llllllg UIIIIK zllllllte“ in dlﬂll

a2l R LINT Staliil AU cUL

/OCTAL) of all the files listed. The following exampl
DXO0:, including the starting block numbers of files.

L
L OCta IY VOl iise
al \Q ye

ists the directory of

[
D—l [

+DIRECTORY/EBLOCKS DX0:

14-pec~-79
FSH + MAC 31F 19-Nov-79 29355 EATCH .MAC 102F 19-Nov-79 2984
ELCOPY.MAC 8F 19-Nov-79 3088 ELINIT.MAC 15F 19-Nov-7%2 30%¢
ELTASK.MAC 15F 19-Nov-79 3111 ERROUT . MAC 48F 19-Nov-7%9 3126
ERRTXT.MAC 9F 19-Nov-79 3174 SYCND .EL 3F 19-Nov-7% 3183
SYSTBL.EBL 4F 19-Nov-=7% 3186 SYCNL LIS 5P 19-Nov-7% 3190
SYSTEL.DIS 4F 19-Nov~-79 3195 SYCND .HD SF 19-Nov-79 3199

ABRSLOD,. SAV 48 15-Mar-76 3204 CHESS .SAV 40 17-Aug-75 3252
FETAL .SAV 36 11-8Ser~-75 3292 LAMF .SAV 29 16-Mar-79 3328
WUMFUS.SAV 30 16-Mar-?79 3357

17 Filess 348 Rlocks

138 Free blocks

/BRIEF This option lists only file names and file types, omitting file
lengths and associated dates. It produces a five-column listing, as the follow-
ing example shows.

+DIRECTORY/BRIEF RK1:

14-ltec~-79
SWAF .SYS RT1184.8YS RT11FER.SYS RT11RL.SYS 1T +8YS
DT +SYS oF +8YS DX +SYS ny +8YS RF +8YS
K +SYS DL +8YS Tt +8YS8 s +8YS oo +SYS
LF +8SYS LS +SYS CR +SYS MS +8YS MTHD .8YS
DISMT1.COM MMHD .SYS NUMEBER.FAS WLOCK .SAV MYFROG.MAC
FROG .MAF ANTONY . BAK MSHDK .SYS NL +8Y8 FC +8YS
FD +8YS cT +SYS BA +8YS MYFROG.SAV onT » SAY

35 Files» 408 Blocks
78 Free blocks

/COLUMNS:n Use this option to list a directory in a specific number of
columns. The value n represents an integer in the range 1-9. Normally, the
system uses two columns for regular listings and five columns for brief list-
ings. The following example lists the directory information for device DX1:
in one column.

Keyboard Commands 4-65

4-66

LODIRECTORY/COLUMNS!1 DX13
29-Nov-79

SWAF ,SYS 25F 19-Nov-79

RT11SJ,8YS 67F 19-Nov-79

RT11FE,SYS 80F 19-Nov-79

RT11EKL.SYS 44F 19-Nav-79

TT +SYS 2F 19--Nov~-79
oT »SYS IF 19-Nov-79?
nF +8YS IF 19-Nov-79

7 Filess 244 BRlocks
242 Free blocks

/DATE[date] Use this option to include in the directory listing only those
files with a certain date. The following command lists all the files on device
DXO0: that were created on 13 August 1979.

+OIRECTORY/DATE!131AUG: 79 DIXO0!

15-Ser~-79
RT11S4.8YS 67F 13-Audg-79 RTLIFE.S8YS 8OF 13-Aug-7%
RT11BL.SYS &3P 13-Aug-79 nXx +BYS 3IF 1Z2-Audg-79
SWAF .SYS 25F 13-Aus-79 17 «8YS 2F 13-Aug-79
DP . +8YS 3IF 13-Aug-79 ny +5YS 4F 13--Aug-79
LP «8YS 2F 13-Aug-79 FIF +54AY 14 13-Audg-7%
pup .SAV 41 13-Aug-79 RESORC.5AY 19 13-Audg-79
DIR +SAV 17 13-Aug-79 RK +8YS 3 13-Aus-79
EDIT .SAV 19 13-Aug-79 oo +8Y8 S 13-Aug-79
SRCCOM.SAV 13 13-4ug-7% RINCOM.SAY 11 13-Aus-79
SLP +SAY ? 13-Aud-79 SIFF .SAV 14 13-Ausg-79

20 Filess 412 Blocks

73 Free blocks

/DELETED This option lists a directory of files that have been deleted
from a specific device, but whose file name information has not been
destroyed. The listing includes the file names, types, sizes, creation dates,
and starting block numbers in decimal of the files. The file names that print
also represent tentative files. The listing can be useful in recovering files
that have been accidentally deleted. Once you identify the file name and
location, you can use the CREATE command or DUP to rename the area
(see Section 8.2.1 for this procedure). The following command lists files on
device DXO0: that have been deleted.

+OIRECTORY/DELETEDI DI'X03

14-Dec-79
SYSGEN.CNI 11 19-Nov-79 1403 T8 s MAC 2 27-Nov-79 2895
™ +MAC 26 19-Nov-79 2726 MT +8YS 32 27-Nov-79 3415
4468DAT.DIR 1 14-Dlec~-79 3701 4468LHEL.DIR S27 14-Nlec~79 3704
NUM2 . MAC 4 21-Nov-79 4231 NUMZ2 LLST S565 06-Ser-79 4235

0 Filesy 0 Blocks
1164 Free blocks

Note in the example shown above that, since a deleted file does not really
exist, the total number of files and blocks is 0.

/DOS Use this option to list the directory of a device that is in RSTS/E or
DOS format. The only other options valid with /DOS are /BRIEF, /FAST,
and /OWNER. The valid devices are DECtape for RSTS/E and DOS, and
RKO05 for DOS.

Keyboard Commands

/END:n Use with /START:n and /BADBLOCKS to specify the last block
number of a bad block scan. If you do not specify /END:n, the system scans to
the last block on the volume.

/EXCLUDE This option lists a directory of all the files on a device except
those files you specify. The foliowing exampie lists aii files on DX0: except
the .SAV and .SYS files.

+OIRECTORY/EXCLUDE DXO:(*.SAV»%.8YS)

29-0ct-79

RT118J.HAC L7F 04-Ser-79 RT11FR.MAC 80F 0&4&-See-79
RT11ERL .MAC 63F 06-Ser-79 DX +MAC 3F 06-Ser-79
SWAF .MAC 25F 046-Ser-79 TT + MAC 2F 06-Ser-79
oF + MAC 3F 06-Ser-79 oy +MAC 4F 0&6-Ser-79
LF «MAC 2F 06-Ser-79 RK +MAaC 3 06-Ser-79
STARTS.COM 1 27-Aug-79 oo +MAC S 06-Ser-79

12 Filess 258 Rlocks
73 Free blocks

/FAST This option lists only file names and file types, omitting file lengths
and associated dates. This is the same as /BRIEF.

/FILES Use this option with /BADBLOCKS to print the file names of bad
blocks. If the system does not find any bad blocks, it prints only the heading,
as the following example shows. Do not use this option if the volume is not a
standard RT-11 directory-structured volume or if the volume does not con-
tain an RT-11 directory.

DIRECTORY/BADBLOCKS/FILES DT13
POUF-I-No bad blocks detected DTL

/FREE Use this option to print a directory of unused areas and the size of
each. This example lists the unused areas on device DK.:.

+DIRECTORY/FREE

14-Dec-79

L UNUSED 11 < UNUSED 2
< UNUSED > 26 < UNUSED = 32
< UNUSED > 1 < UNUSED > 525
< UNUSELD > 0 < UNUSED > 560

Q0 Filess 0O BRlocks
11462 Free hlocks

/FULL This option lists the entire directory, including unused areas and

their sizes in blocks (decimal). The following example lists the entire direc-
tory for device DXO:.

Keyboard Commands 4-67

4-68

«DIRECTORY/FULL DXO0:

14-Dec-79

SWAF .8YS 25F 23-0ct-79 ET1184.8YS &7F 23-0ct-79
RT11FER.SYS 80F 19-Nov-79 RT11EL.5Y8 64F 19-Nov-77
T +SYS 2F 19-Nowv-7% nT +5YS 3F 19-Nov~-79
DnF +SYS 3F 23-0ct-79 nx «8YS§ 3F 19-Nov-77%
oy +5YS 4F 19-Nov-79 RF +8YS IF 17-Nav-79
RK +SYS 3F 19-Nov-79 oL +8YS 4F 23-0ct-7v
iy} +SYS SF 23-0ct-79 ns +SYS 3F 19-Nov-79
oo +8YS SF 23-0ct-79 LF +8Y5 2F 23-0ct-77
LS +8YS 2F 19-Nov-79 CR +8YS 3F 19-Nov-—-77%
MS +8YS§ 9F 27-Nov-79 MTHDIY .SYS 3P 23-0ct-79
DISMT1.COM 9F 27-Nov-79 MMHD . SYS 4F 19-Nov-79
NUMBER .FPAS 1 11-Dec-7% TONY . AGF 14 17-Aug-77
NUM3 .LST 1 13-Dec-79 < UNUSED > 565

25 Filesy» 322 EBlocks
164 Free blocks

/INTERCHANGE Use this option to list the directory of a diskette that is
in interchange format. The only other options valid with INTERCHANGE
are /BRIEF and /FAST.

/NEWFILES This option includes in the directory listing only those files
that were created on the current day. This is a convenient way to list the

files you created in one session at the computer. The following command
lists the new files on 19 May 1979.

+DIRECTORY/NEWFILES DOTO!

19-HMau-79
FILE1 ,TXT 1 19-Maw-79 FILER2 TXT 1 19-Mag-79
2 Filesy 2 BRlocks

328 Free blocks

/OCTAL This option lists the sizes (and starting block numbers if you also
use /BLOCKS) in octal. If the device you specify is a magtape or cassette, the
system prints the sequence numbers in octal. The following example shows
an octal listing of device DXO0:.

+DIRECTORY/QCTAL DIX0:
14-Tec-79 Octal

MYFROG . MAC 44F 12-Nov-79 ™ + MAC 31 27-Nov-79

VTMAC .MAC 7 18-0ct-79 SYSMAC.MAC 51 19-Nov-79

sWap . QYSg 21 08-Ceer-79 ANTOM MAC 4 19-Nov-7%

RT11S8J.5YS 103 19-Nov-79 TT +8YS 2 19-Nov-79

DX +8YS 3 29-Au=g-79 BUILD .MAC 144 1%9-Nov-79
10 Files, 4462 Blocks

264 Free blocks

/ORDERI[:category] This option sorts the directory of a device according
to the category you specify. Table 4-3 summarizes the categories and their
functions.

Keyboard Commands

Table 4-3: Sort Categories

Category | Function

DATE Sorts the directory chronologically hy creation date, Files that have the

anma
Ly ¥ VALGAV LI Y U ULIU ST

date are sorted alphabetically by file name and file type.

NAME Sorts the directory alphabetically by file name. Files that have the same file
name are sorted alphabetically by file type (this has the same effect as the
/ALPHABETIZE option).

POQTTIN Ticta tha filag annnrdineg +a thain nacitian an $ha Ao (4hiq io 4k -
PV AV a CE (Ll 8 K

e
&N TILOUS VAIT 13100 QUL UG W wiCLr pUB1uUI UL

using /ORDER with noucategory).

=
£
=
»

SIZE Sorts the directory based on file size in blocks. Files that are the same size are
sorted alphabetically by file name and file type.
TYPE Sorts the directory alphabetically by file type. Files that have the same file

type are sorted alphabetically by file name.

The following examples list the directory of device DXO0:, according to each
of the categories.

LOIRECTORY/ORDERIDATE DXQ:

14-llec-79
RUILD .MAC 100 04-Ser~-79 SYSMAC . MAC 41 19-Nov-79
nx +8YS 3 06-%er-79 TT +5YS 2 19-Nov-79
MYPROG.MAC 36F 12-0ct-79 VUTMAC .MAC 7 19-Nov-79
RFUNCT . MAC 4 19-Nov-79 ™ +MAC 25 27-Nov-79
RT11SJ.8YS 67 19-Nov-79 SWAF .SYS 25 05-Dec-79

10 Filessy 306 Rlocks

180 Free blocks

JDIRECTORY/ORDERINAME IX01:

14-Dec-79
RUILD .MAC 100 06~-Sep-79 SWAF .SYS 25 05-DNlec-79
ny +5YS I 06-Ses-79 SYSMAC . MAC 41 19-Nov-79
MYPROG . MAC 34F 12-0ct-79 ™ +MAC 25 27-Nov-79
RFUNCT.SYS 4 19-Nov-7% TT +5YS 2 19-Nov-7%9
RT115J.8YS 67 19-Nov-79 YTHAC +MAC 7 19-Nov-79

10 Filessy 306 Rlocks

180 Free blocks

+OIRECTORY/ORDERIFOSITION DXO?

14-Tiec-79%
RT118J.8YS 67 192-Nov-79 BUILD .MAC 100 (06~-Ser-79
ox +SYS 3 06-Ser-79 SYSMAC . MAC 41 19-Nov-79
MYFROG . MAC 36F 12-0ct-79 ™ + MAC 25 27-Nov-7%
SWAF .SYS 25 0S-DNec-77 YTMAC MAC 7 19-Nov-79
RFUNCT.SYS 4 19-Nov-79 TT +8YS 2 19-Nov-79

10 Filesy 306 Blocks
180 Free blocks

Keyboard Commands 4-69

4-70

LOIRECTORY/ORDERISIZE DX0!

14-Ttec-79
TT +8YS 2 19-Nov-7% SWAF .EYS 25 0%5-Dec-79
nX +SYS 3 06-Ser~-79 MYFPROG.MAC 34F 12-0ct-79
RFUNCT.SYS 4 19-Nov-79 SYSMAC . MAC 41 19-Nov-79
YTMAC «MAC 7 19-Nov-79 RT118..5Y5 67 19-Nov-79
™ +MAC 25 27-Nov-79 BUILD .MAC 100 06-Ser-79

10 Filess 306 Elocks
180 Free blocks

LDIRECTORY/ORDER!TYFPE DXO?

14-Dec-79
BUILD ,MAC 100 04-Ser-79 X .SYS 3 06-Ser-79
MYFPROG . MAC 36F 12-0ct-79 RFUNCT.SYS 4 19-Nov-79
SYSMAC . MAC 41 19-Nov-79 RT118J.5YS 67 19-Nov-79
™ + MAC 25 27-Nov-79 SWAF .SYS 25 05-Dec-79
UTMAC .MAC 7 19-Nov-79 TT .8YS 2 19-Nov-79

10 Filess 306 Rlocks
180 Free blocks

/OUTPUT filespec Use this option to specify a device and file name for
the output listing file. Normally, the directory listing appears on the console
terminal. If you omit the file type for the listing file, the system uses .DIR.

/OWNER:[nnn,nnn] Use this option with /DOS to specify a user identi-
fication code (UIC). Note that the square brackets are part of the UIC; you
must type them.

/POSITION Use this option to list the file sequence numbers of files stored
on a magtape. See /COLUMNS:n for a sample listing.

/PRINTER Use this option to print the directory listing on the line
printer. The default output device is the terminal. Note that the /PRINTER
option does not use the QUEUE program to queue the directory listing.

/REVERSE This option lists a directory in the reverse order of the sort

you specify with /ALPHABETIZE, /ORDER, or /SORT. The following exam-
ple sorts the directory of DXO0: and lists it in reverse order by size.

LOIRECTORY/ORIERISIZE/REVERSE DIX0$

14-llec~-79
RUILD .MAC 100 0&~Ser-79 ™ . MaC 25 27-Nov-79
RT1154,5YS 67 19-Nov-79 UTMAC «MAC 7 19-Nov-79
SYSHAC . MAC 41 19-Nov-79 RFUNCT.SYS 4 19-Nov-79
MYFROG . MAC J46F 12-0ct-79 0x +SYS 3 06-Ser-79
SWAF ,SYS 25 05-Dec-79 TT +8YS 2 19-Nov-79

10 Filess 306 Rlocks
180 Free blocks

/SINCEI[date] This option lists a directory of all files on a specified device
that were created on or after a specified date. The following command lists
only those files on DK: that were created on or after 13 August 1977.

Keyboard Commands

+DIRECTORY/SINCE:13tAUGI7Y
14-lec-79

RT118J.5YS 67F 14-Aug-79 RT11FE.SYS 80F 02-Ser-79
RT11ERL .8YS 43F 19-Aug-79 nx :5YS 3IF 10-35er-79
SWAF ,SYS 25F 02-Ser-79 17 +5YS 2P 15-5er-79
SIFF .SAV 14 02-Ser-79

7 Filess: 154 RBlaocks

332 Free blocks

/ISORTI[:category] This option sorts the directory of a device according to
the category you specify. It is the same as /ORDER|:category].

/START[:n] Use this option with the /BADBLOCKS option to specify the
starting block, and optionally the last block if you use /END:n, of the bad
block scan. The argument n represents a block number in decimal. If youdo
not supply a value with /START, the system scans from the first block on the
volume. If you do not specify /END:n, the system scans to the end of the
volume.

/SUMMARY This option lists a summary of the device directory. The
summary lists the number of files in each segment and the number of seg-
ments in use on the volume you specify. The /SUMMARY option does not
list the segments in numerical order, only the order in which they are linked
on the volume. The following example lists the summary of the directory for
device DK:.

+DIRECTORY/SUMMARY
14-Nov~-79

44 Fi1les in sedment 1

446 Files in sedgment 4

37 Files in segment 2

34 Files in sadment 3

38 Files in zesgment 3

16 Available segments:s 5 in use
199 Filess 3647 Rlocks

1115 Free blacks

/TERMINAL This option lists directory information on the console termi-
nal. This is the default operation.

/TOPS Use this option to list the directory of a DECtape that is in DEC-
system—10 format. The only other options valid with /TOPS are /BRIEF and
/FAST.

/VERIFY Use this option with the /BADBLOCKS option to read a bad
block, write to it, and read it again. If the system can not read the block, it
reports a hard error. If the block recovers, it reports a soft error. This pro-
cedure does not destroy data already on the volume.

Use this option only when necessary; DIGITAL does not guarantee the
integrity of the data recovered from a soft bad block error.

Keyboard Commands 4-71

/VOLUMEID[:ONLY] Use /VOLUMEID to print the volume ID and
owner name along with the directory listing of the storage volume. If you
include the optional argument, ONLY, the system prints only the volume ID
and owner name.

The following example displays the volume ID of volume DK1:

+RIRECTORY/VOLUMEID DX1:

14-Dec-79

Volume ID! BACKUF2

Qwner 1 Marcy
SWAF .SYS 25F 19-Nov-79 RT115J4,.8YS &7F 19-Nov-79
RT11FER,.SYS 80F 19-Nov-79 RT11EL.SYS 44F 19-Nov-79
17 +«8YS 2F 19-Nov-79 DT +8YS 3IF 19~Now-—-77
DP +SYS 3F 19-Nov-79 nx «.5YS IF 19-Now-2%
ny +8YS 4F 19-Nov-7% RF +8YS IF 19-Nov-79
RK +SYS 3F 19-Nov-79 L +3Y5 4F 19-Nov-77

12 Filesy 271 ERlocks
215 Free blocks

/WAIT Use with the / BADBLOCKS option when you want the system to
initiate a bad block scan but to pause for you to mount the input volume.
This option is particularly useful if you have a single-disk system. When you
use this option, and the system volume is mounted, the system initiates the
operation you specify, then prints Mount input volume in <device>; Con-
tinue?. The prompt <device> represents the device into which you mount
the volume. Mount your input volume and type Y, followed by a carriage
return.

The following sample performs a bad block scan on an RK05 disk.

DIRECTORY /WAIT/BADRLOCKS RKO?

Mournt imrut volume in RKO: Continue? Yy
TOUF-I~No bad blocks detected RKO?
Mount sustem volume ir RKO: Continue® Y

4-72 Keyboard Commands

DUMP

The DUMP command can print on the terminal or line printer, or write toa
file all or any part of a file in octal words, octal bytes, ASCII characters,
and/or Radix—50 characters. It is particularly useful for examining direc-
tories and files that contain binary data.

DUNP { IOUTPUT-iiespec FALLOCATE:size}) (5P filespec
llPRINTER ~
TERMINAL

fINOJ ASCII

IBYTES

NGNORE

IONLY:block

/RAD50

[/START:block] /END:block]
[WORDS

In the command syntax shown above, filespec represents the device or file
you want to examine. If you do not specify an output file, the listing prints
on the line printer. If you do not specify a file type for an output file, the sys-
tem uses .DMP. You can specify the entire command on one line, or you can
rely on the system to prompt you for information. The DUMP command
prompt is Device or file?.

Notice that some of the options (/ONLY, /START, and /END) accept a block
number as an argument. Remember that all block numbers are in octal, and
that the first block of a device or file is block 0. To specify a decimal block
number, follow the number with a decimal point. If you are dumping a file,
the block numbers you specify are relative to the beginning of that file. If
you are dumping a device, the block numbers are the absolute (physical)
block numbers on that device.

The system handles operations involving magtape and cassette differently
from operations involving random-access devices. If you dump an RT-11
file-structured tape and specify only a device name in the file specification,
the system reads only as far as the logical end-of-tape. Logical end-of-tape is
indicated by an end-of-file label (EOF1) followed by two tape marks. For
non-file-structured tape, logical end-of-tape is indicated by two consecutive
tape marks. If you dump a cassette and specify only the device name in the
file specification, the results are unpredictable. For magtape dumps, tape
mark messages appear in the output listing as the system encounters them
on the tape.

NOTE

The DUMP operation does not print data from track 0 of
diskettes.

The following sections describe the options you can use with the DUMP com-
mand. Following the options are some sample listings and an explanation of
how to interpret them.

Keyboard Commands 4-73

4-74

/ALLOCATE:ize Use this option with /OUTPUT to reserve space on the
device for the output listing file. The argument size represents the number
of blocks of space to allocate. The meaningful range for this value is from 1
to 32767. A value of -1 is a special case that creates the largest file possible
on the device.

/ASCII This option prints the ASCII equivalent of each octal word or byte
that is dumped. A dot (.) represents characters that are not printable. This is
the default operation.

/NOASCII Use this option to suppress the ASCII output, which appears in
the right hand column of the listing (or below the bytes if you have specified
/BYTES). This allows the listing to fit in 72 columns.

BYTES Use this option to display information in octal bytes. The system
does not display words unless you also use /WORDS.

/END:block Use this option to specify an ending block number for the
dump. The system dumps the device or file you specify, beginning with block
0 (unless you use /START) and continuing until it dumps the block you spec-
ify with /END.

/FOREIGN Use this option to dump a magtape that is not RT-11 file-
structured.

IGNORE Use this option to ignore errors that occur during a dump oper-
ation. Use /IGNORE if an input or output error occurred when you tried to
perform a normal dump operation.

/ONLY:block Use this option to dump only the block number you specify.

/OUTPUT:filespec Use this option to specify a device and file name for
the output listing file. Normally, the listing appears on the line printer. If
you omit the file type for the listing file, the system uses .DMP.

/PRINTER This option causes the output listing to appear on the line

_____ PRSP

U SR R o 3 | I : T A L1 P
rinter. This is the aefaulit operation.
M

/RAD50 This option prints the Radix—-50 equivalent of each octal word
that is dumped.

/START:block Use this option to specify a starting block number for the
dump. The system dumps the device or file, beginning at the block number
you specify with /START and continuing to the end of the device or file
(unless you use /END).

/TERMINAL This option causes the output listing to appear on the con-
sole terminal. Normally, the listing appears on the line printer.

/WORDS This option displays information in octal words. This is the
default operation.

The following command dumps block 1 of the file SYSMAC.MAC. The out-
put listing, which shows octal bytes and their ASCII equivalent, is stored in
file MACLIB.DMP. The PRINT command prints the contents of the file on
the line printer.

Keyboard Commands

+ DUMP/0OUTFUT ¢ MACLIB/BRYTES/ONLY 1 SYSMAC.MAC

+ FRINT MACLIE.DMF

SYISYSMAC,.MAC

BLOCK NUMBER

000/
020/

04y/

160/
200/
220/
240/
260/

300/

600/
620/
640/
660/
700/
720/
740/
160/

120
P
101
A
012

101
A
106
F
124
T
110
H
101
A
040
040
124

111

014
056
056
115
M

054
’

015
117
011
056
103
C

040

122

117
116

040

0vo0o1

117
0
165

115
054
’

056
056
056
056
103
064
4

1u6
F
040

101
061
056
056
105
056
056
115
054

’

04U
04U
040

040

115
054

]
056

124
123

116

Z

[(%]
[

[R
-
-

040
110

lie
]
110

103
C
040

040

110

040
105

22

feogll ol SRR E O ol o o]

123
105
103

lu4

125
124
040
122

040

U556
056
126
115
103
115
054

056

Vo1
050
U56

056
056
115
]

075
103
114
054
’

0506

103

Keyboard Commands

065
Oel
122
114
056
556

11>

4-75

4-76

In the printout above, the heading shows which file was dumped and which
block of the file follows. The numbers in the leftmost column indicate the
byte offset from the beginning of the block. Remember that these are all
octal values, and that there are two bytes per word. The octal bytes that
were dumped appear in the next eight columns. The ASCII equivalent of
each octal byte appears underneath the byte. The system substitutes a dot (.)
for nonprinting codes, such as those for control characters.

The last example shows block 6 (the directory) of device RKO:. The output is
in octal words with Radix—50 equivalents below each word.

+ DUMFP/NOASCII/RADSO/0ONLY 6 RKOS

RKO:/N/X/0z0
BLUCK NUMBER 00000
000/ 000020 000002 000004 00000G 000046 002000 075131 062000
P B D 8 ¥X SHWA P
020/ 075273 000031 000000 027147 002000 071677 142302 075273
SIS Y GP9 ¥X RT1 18J SYs
040/ 000103 000000 027147 002000 071677 141262 075273 000120
AS GP9 X RT1 1FB SYS B
060/ 000000 027147 002000 071677 141034 075273 000100 0000060
GP9 XX RT1 1BL SYS AX
100/ 027147 002000 100040 000000 075273 000002 000000 027147
GP9 X TT SYS B GP9
120/ 002000 016040 000000 075273 000003 000000 027147 002000
X DT SYS C GP9 X
146G/ 0156060 000000 075273 000003 000000 027147 002000 016300
13)4 SYS C GPY XX DX
160/ 000000 075273 000003 000000 027147 002000 016350 000000
SYS C GP9 X DY
200/ 075273 000004 000000 027147 002000 070560 000000 075273
S5YS D GP9 XX RF SYS
220/ 006003 000000 027147 002000 C7107C 000000 075273 000003
C GP9 YX RK SYSs C
240/ 000000 027147 002000 015340 000000 075273 000004 000000
GP9 X DL SY¥Ss D
260/ 027147 002000 015410 000000 075273 000005 000000 027147
GP9 YX DM S5YS E GP9
300/ 002000 015770 000000 075273 000003 000000 027147 002000
Yx DS SYS C GP9 X
320/ 014640 000000 075273 000005 000000 027147 002000 040600
oD sis £ GP9 3.4 Lp
340/ 000000 075273 000002 000000 027147 002000 V46770 000000
SYS B GPY Y& LS
360/ 075273 000002 000000 027147 002000 012620 000000 075273
SYS B GP9 X CR SYS§
400/ 000003 000000 027147 002000 V52070 QYULULL 075273 000011
C GP9 X MS SYS 1
420/ 000000 027547 002000 052150 014400 075273 000003 000000
Gw0 YX MTH D 5YS C
440/ 027147 002000 015173 052177 012445 000011 V00000 027547
GP9 YX DIS MT1 camM I ow0
460/ 002000 051520 014400 075273 000004 000000 027147 002000
123 MMA D SYS D GPY ¥x
500/ 015173 052200 012445 000010 000000 027547 002000 052100

Lls tMT2 coM H GwO ¥X ' mSH
520/ 014400 075273 000004 000000 027147 002000 054540 000000
b SYS D GP9 X Nl
5§40/ 075273 000002 000000 027147 002000 06217v 000000 075273
S5YS B GP9 XX pC SyS
560/ 000002 LOOL0OO 027147 002000 062240 000000 075273 000003
B GP9 YX P SYS C
600/ 000000 027147 002000 C12740 €00000 075272 000005 000000
GP9 X CT SYS E
620/ 027147 002000 006250 000000 075273 000007 000000 027147
GPY X BA SYS G GF9

Keyboard Commands

002000
X
023752
FOR
060223
ORC
073378
SAV
000052
AB
000000

016130
oup
050574
MAT
073376
SAV
000021

Q
000000

027147
GP9

000000

073376
SAV
000023
S
000000

027147
GP9
002000
X
042614
KED

000051
AA
000000

027147

GP9
002000

XX
017751
EDI
000000

000000 027147

GP9

027147 002000

GP9

X

002000 015172

XX

DIR

075273 050553

SIS

MAC

076400 073376

T

SAV

073376 000073

SAV

AS

Keyboard Commands

002000
¥X
070533
RES
000000
074324
SML
000023

S
000000

4-77

4-78

E

The E (Examine) command prints in octal the contents of an address on the
console terminal.

E address [-address]

In the command syntax illustrated above, address represents an octal ad-
dress that, when added to the relocation base value from the Base command,
provides the actual address that the system examines. This command per-
mits you to open specific locations in memory and inspect their contents. It is
most frequently used after a GET command to examine locations in a
program.

The Examine command accepts both word and byte addresses, but it always
executes the command as though you specified a word address. (If you spec-
ify an odd address, the system decreases it by one.)

If you specify more than one address (in the form addressI-address2), the
sys- tem prints the contents of addressl through address2, inclusive. The
second address (address2) must always be greater than the first address. If
you do not specify an address, the system prints the contents of relative

location 0. "

Note that you cannot examine addresses outside the background.

The following example prints the contents of location 1000, assuming the
relocation base is 0.

JE 1000

127401

The next command sets the relocation base to 1000.
. B 1000

The following command prints the contents of locations 2000 (offset of 1000
from last B command) through 2005.

+E 1001-1000

127401 007624 127400

Keyboard Commands

EDIT

The EDIT command invbkes the text editor.

ICREATE

IKED
EDIT li[IK52 } :l l:{ /INSPECT]] filespec /ALLOCATE:size]

ITECO JIOUTPUT:filespec [/ALLOCATE:size]

The text editor, EDIT, is a program that creates or modifies ASCII files for
use as input to programs such as the MACRO assembler or the FORTRAN
compiler. The editor reads ASCII files from any input device, makes speci-
fied changes, and writes the file on an output device. It also allows efficient
use of VT11 or VS60 display hardware, if this is part of the system con-
figuration (except in multi-terminal systems).

You can aiso use the Keypad Editor (KED for VT100 terminais, K52 for
VT52 terminals) as an alternative to EDIT. The Keypad Editor is restricted
to the VT100 and VT52 terminals, however. You can invoke the Keypad
Editor with the /KED or /K52 options described below. For more information
on the Keypad Editor, see the PDP-11 Keypad Editor User’s Guide.

NOTE

You can use the SET EDIT command to set a default editor
(EDIT, KED, or K52) so that when you issue the EDIT com-
mand, you invoke that editor. The system defaults to the
EDIT editor each time you bootstrap, however. For more
details, see the SET EDIT command description.

EDIT considers a file to be divided into logical units called pages. A page of
text is generally 50-60 lines long (delimited by form feed characters) and
corresponds approximately to a physical page of a program listing. EDIT
reads one page of text at a time from the input file into its internal buffers
where the page becomes available for editing. You can then use editing com-
mands to:

® Locate text to be changed

® Execute and verify the changes

® List an edited page on the console terminal
® Output a page of text to the output file

In the command syntax illustrated above, filespec represents the file you
wish to edit. You can enter the EDIT command on one line, or you can rely
on the system to prompt you for information. If you do not supply a file speci-
fication for the file to edit, the system prompts File?. If you do not specify any
option with the EDIT command, the text editor performs the edit backup
operation. To do this, it changes the name of the original file, giving it a file

Keyboard Commands 4-79

4-80

type of .BAK when you finish making your editing changes. The actual file
renaming occurs when you successfully exit from the editor.

When you want to edit an existing file, the editor does not perform any I/O
operation as a result of your command. You must issue the R command to
the editor to read the first page of text and make it available for you to work
on. The following example invokes EDIT, opens an existing file, and reads
the first page of text:

JEDIT MYFILE.TXT
*R$$

When you issue an EDIT command, the system invokes the text editor. (You
can use the SET EDIT command to set the default editor. If you do not use
the SET EDIT command, the system assumes EDIT.SAV each time you
issue the EDIT command. See the SET EDIT command for more informa-
tion.) It is possible to receive an error or warning message as a result of the
EDIT command. If, for example, the file you need to edit with EDIT does not
exist on device DK:, the editor issues an error message and remains in con-
trol. For example:

JEDIT/ZINSPECT EXAMP3.TXT
TENIT-F~File mot fTound
X"Cs%

When a situation like this occurs, you can either issue another command
directly to the text editor or enter CTRL/C followed by two ESCAPEs to
return control to the monitor.

NOTE

To perform any edit operations on a protected file, you must
disable the file’s protected status (see the RENAME com-
mand description).

The following sections describe the options you can use with the EDIT com-
mand. A complete description of EDIT is contained in Chapter 5.

/ALLOCATE:size Use this option with /OUTPUT or after the file specifi-

it fla Tha ancvirmmnnt asaas
PV darc. 2010 u.l.s\.ullc.uu ovL T
represents the number of blocks of space to allocate. The meaningful range
for this value is from 1 to 32767. A value of -1 is a special case that creates

the largest file possible on the device.

/CREATE Use this option to build a new file. With EDIT you can also cre-
ate a new file while you are working with the text editor by using the EDIT
Write (EW) command, described in Chapter 5. The following example cre-
ates a file called NEWFIL.TXT on device DK:, inserts one line of text, and
then closes the file.

1 1 o nnt
cation to reserve space on the device for the out

+EDIT/CREATE NEWFIL.TXT
XTTHIS TS A NFW FTIF.
%%

XEX$$

Keyboard Commands

To create a file with /KED or /K52, see the PDP-11 Keypad Editor User’s
Guide.

/EXECUTE:filespec Use this option with /TECO to execute the TECO
commands contained in the file you specify with /EXECUTE.

/INSPECT Use this option to open a file for reading. This option does not
create any new output files. You can also open a file for inspection while you
are working with the EDIT by using the Edit Read (ER) command, which is
explained in Chapter 5.

The following command opens an existing file for inspection, lists its con-
tents, and then exits.

+EDIT/INSPECT NEWFIL.TXT
*R$$

X/L$%

THIS IS A NEW FILE.

¥"CH$

/KED This option invokes the Keypad Editor (KED). For more informa-
tion on the Keypad Editor, see the PDP-11 Keypad Editor User’s Guide. Use
/KED only if you are using a VT'100 terminal.

/K52 This option invokes the Keypad Editor. Use /K52 only if you are
using a VT52 terminal. For more information on the Keypad Editor, see the
PDP-11 Keypad Editor User’s Guide.

/OUTPUT:filespec This option directs the text you edit to the file you
specify, leaving the input file unchanged. You can also write text to an out-
put file while you are working with EDIT by using the Edit Write (EW) com-
mand, explained in Chapter 5. The following command reads file
ORIG.TXT, and writes the edited text to file CHANGE.TXT.

+EDIT/0UTFUT {CHANGE « TXT UORIG.TXT
¥

/TECO This option invokes the TECO editor. (TECO is not supported by
DIGITAL. It is distributed on the RT-11 kit for the convenience of those cus-
tomers who normally order TECO from the DECUS Program Library) For
more information on TECO see the PDP-11 TECO User’s Guide.

Keyboard Commands 4-81

4-82

EXECUTE

The EXECUTE command invokes one or more language processors to
assemble or compile the files you specify. It also links object modules and
initiates execution of the resultant program.

EXECUTE JEXECUTE [filespec] /ALLOCATE:size] filespec [ILIBRARY
ILIST [ilespec] [ALLOCATE:size] IPASS:1
IMAP [filespec] [JALLOCATE:size/WIDE]

IOBJECT [:filespec] [/ALLOCATE:size]

IBOTTOM:n

IDEBUG [:filespec]
ILINKLIBRARY [:tilespec]
fINO] RUN

IDIBOL
[JALPHABETIZE
ICROSSREFERENCE
/INO] LINENUMBERS
IONDEBUG
L INO] WARNINGS

IFORTRAN

[~ ICODE:type
IDIAGNOSE
IEXTEND

IHEADER

na

[INO] LINENUMBERS
IONDEBUG

ANO] OPTIMIZE [:type]
IRECORD:length
ISHOW [:value]
ISTATISTICS

ANC] SWAP
JUNITS:n

NINO} VECTORS

L_/WARNINGS -
IMACRO

[~ ICROSSREFERENCE [:typel. . .:type]]
IDISABLE:value [. . .:value}

IENABLE:value {. . .:value]
L_ INO] SHOW:value _J

- -

In the command line shown above, filespecs represents one or more files to be
included in the assembly. The default file types for the output files are .LST
for listing files, .MAP for load map files, .OBJ for object files, and .SAV for
memory image files. The defaults for input files depend on the language
processor involved. These defaults include .MAC for MACRO files, .FOR for
FORTRAN files, and .DBL for DIBOL files.

To compile (or assemble) multiple source files into a single object file, sepa-
rate the files by plus (+) signs in the command line. Unless you specify oth-
erwise, the system creates an object file with the same name as the first
input file and gives it an .OBJ file type.

To compile multiple files in independent compilations, separate the files by
commas (,) in the command line. This generates a corresponding object file
for each set of input files. The system then links together all the object files
and creates a single executable file. You can combine up to six files for a
compilation producing a single object file. You can specify the entire EXE-
CUTE command as one line, or you can rely on the system to prompt you for
information. The EXECUTE command prompt is Files?.

Keyboard Commands

There are several ways to establish which language processor the EXE-
CUTE command invokes:

1. Specify a language-name option, such as /MACRO, to invoke the
MACRO assembler.

2. Omit the language-name option and explicitly specify the file type for
the source files. The EXECUTE command then invokes the language
processor that corresponds to that file type. Specifying the file
SOURCE.MAC, for example, invokes the MACRO assembler.

3. Let the system choose a fiie type of . MAC, .DBL, or .FOR for the source
file you name. The handler for the device you specify must be loaded. If
you specify DX1:A, and the DX handler is loaded, the system searches
for source files A.MAC and A.DBL, in that order. If it finds one of these
files, the system invokes the corresponding language processor. If it can-
not find one of these files, or if the device handler associated with the
input file is not resident, the system assumes a file type of .FOR and
invokes the FORTRAN compiler.

If the language processor selected as a result of this procedure described
above is not on the system device (SY:), the system issues an error
message.

Language options are position-dependent. That is, they have different
meanings depending on where you place them in the command line. Options
that qualify a command name apply across the entire command string.
Options that follow a file specification apply only to the file (or group of files
separated by plus signs) that they follow in the command string.

The following sections describe the options you can use with the EXECUTE
command.

/ALLOCATE:size Use this option with /EXECUTE, /LIST, /MAP, or

INMD TRV & e cmmmnney mim dlaa Aot Lo 4 ~Loda.d £T. m}.,. PR
JIUDJL/UL WU IEDCLVE led.LU UIl LIIE UCVILE 101 LIS VULPUL 111C. 11IC al gullIciiy
size represents the number of blocks of space to allocate. The meaningful
range for this value is from 1 to 32767.. A value of -1 is a special case that

creates the largest file possible on the device.

/ALPHABETIZE Use this option with /DIBOL to alphabetize the entries
in the symbol table listing. This is useful for program maintenance and
debugging.

/BOTTOM:n Use this option to specify the lowest address to be used by
the relocatable code in the load module. The argument n represents a six-
digit, unsigned, even octal number. If you do not use this option, the system
positions the load module so that the lowest address is location 1000 (octal).
This option is invalid for foreground links.

/CODE:type Use this option with /FORTRAN to produce object code that
is designed for a particular hardware configuration. The argument ¢ype rep-
resents a three-letter abbreviation for the type of code to be produced. The
valid values are: EAE, EIS, FIS, and THR. See the RT-11/RSTS/E FOR-

Keyboard Commands 4-83

4-84

TRAN IV User’s Guide for a complete description of the types of code and
their function.

/CROSSREFERENCE[:typel....typell Use this option with /MACRO or
/DIBOL to generate a symbol cross-reference section in the listing. This
information is useful for program maintenance and debugging. Note that
the system does not generate a listing by default. You must also specify
/LIST in the command line to get a cross-reference listing.

With MACRO this option takes an optional argument. The argument type
represents a one-character code that indicates which sections of the cross-
reference listing the assembler should include. Table 4-10 summarizes the
valid arguments and their meaning.

/DEBUGI:filespec] Use this option to link ODT (on-line debugging tech-
nique, described in Chapter 21) with your program to help you debug it. If
you supply the name of another debugging program, the system links the
debugger you specify with your program. The debugger is always linked low
in memory relative to your program.

/DIAGNOSE Use this option with /FORTRAN to help analyze an internal
compiler error. DIAGNOSE expands the crash dump information to include
internal compiler tables and buffers. Submit the diagnostic printout to DIG-
ITAL with a software performance report (SPR) form. The information in
the listing can help DIGITAL programmers locate the compiler error and
correct it.

/DIBOL This option invokes the DIBOL language processor to compile the
associated files.

/DISABLE:valuel...:value] Use this option with /MACRO to specify a
.DSABL directive. Table 4-11 summarizes the arguments and their mean-
ing. See the PDP-11 MACRO Language Reference Manual for a description
of the directive and a list of all legal values.

/ENABLE:valuef....valuej Use this option with /MACRO to specify an
.ENABL directive. Table 4-11 summarizes the arguments and their mean-
ing. See the PDP-11 MACRO Language Reference Manual for a description

nf+thao r]rr-nn{wva onr‘ a ‘1e+ n‘ro“]ono] vo]nnc
L \IAA\./ il ve 6

/EXECUTEI:filespec] Use this option to specify a file name or device for
the executable file. Because the EXECUTE command creates executable
files by default, the following two commands have the same meaning:

+EXECUTE MYFROG

+EXECUTE/EXECUTE MYFROG

Both commands link MYPROG.OBJ and produce MYPROG.SAV as a
result. The /EXECUTE option has different meanings when it follows the
command and when it follows the file speciﬁcation The following command

Ty

creates an executable file called PROG1.SAYV on device RK1:.

TEXECUTE/ZEXECUTEIRKLE PROG1yPROGZ

Keyboard Commands

The next command creates an executable file called MYPROG.SAV on
device DK:.

LEXECUTE RTNL»RTNZ»MYPROG/EXECUTE

/EXTEND Use this option with /FORTRAN to change the right margin
for source input lines from column 72 to column 80.

/FORTRAN This option invokes the FORTRAN language processor to
compile the associated files.

/HEADER Use this option with /FORTRAN to inciude in the printout a
list of options currently in effect.

/14 Use this option with /FORTRAN to allocate two words for the default
integer data type (FORTRAN uses only one-word integers) so that it takes
the same physical space as real variables.

/LIBRARY Use this option with /MACRO to identify the file the option
qualifies as a macro library file. Use it only after a library file specification
in the command line. The MACRO assembler looks first to the library asso-
ciated with the most recent /LIBRARY option to satisfy references (made
with the .MCALL directive) from MACRO programs. It then looks to any
libraries you specified earlier in the command line, and it looks last to
SYSMAC.SML.

In the example below, the two files A.FOR and B.FOR are compiled to-
gether, producing B.OBJ and B.LST. The MACRO assembler assembles
C.MAC, satisfying .MCALL references from MYLIB.MAC and SYS-
MAC.SML. It produces C.OBJ and C.LST. The system then links B.OBJ and
C.OBJ together, resolving undefined references from SYSLIB.OBJ, and pro-
duces the executable file B.SAV. Finally, the system loads and executes
B.SAV.

/LINENUMBERS Use this option with /DIBOL or /FORTRAN to include
internal sequence numbers in the executable program. These are especially
useful in debugging programs. This is the default operation.

/NOLINENUMBERS Use this option with /DIBOL or /FORTRAN to sup-
press the generation of internal sequence numbers in the executable pro-
gram. This produces a smaller program and optimizes execution speed. Use
this option to compile only those programs that are already debugged; other-
wise the line numbers in DIBOL or FORTRAN error messages are difficult
to interpret.

/LINKLIBRARY:filespec Use this option to include the library file name
you specify as an object module library during the linking operation. Repeat
the option if you need to specify more than one library file.

/LIST[:filespec] You must specify this option to produce a compilation or
assembly listing. The /LIST option has different meanings depending on
where you put it in the command line.

Keyboard Commands 4-85

4-86

If you specify /LIST without filespec in the list of options that immediately
follows the command name, the system generates a listing that prints on the
line printer. If you follow /LIST with a device name, the system creates a
listing file on that device. If the device is a file-structured device, the system
stores the listing file on that device, assigning it the same name as the input
file with a .LST file type. The following command produces a listing on the
terminal:

EXECUTE/LISTSTT A.FOR

The next command creates a listing file called A.LST on RK3:.
LEXECUTE/LISTIRKE: AL MAC

If the /LIST option contains a name and file type to override the default of
.LST, the system generates a listing file with that name. The following com-
mand, for example, compiles A.FOR and B.FOR together, producing files
A.OBJ and FILE1.OUT on device DK.:. It then links A.OBJ (using SYS-
LIB.OBJ as needed) and produces A.SAV.

LIEXECUTEZNORUN/FORTRAN/LISTIFILEL..QUT AR

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input

file, you can use a command similar to this one:
JEXECUTE/DIBOL A+RB/LISTIRKZ:

The command shown above compiles A.DBL and B.DBL together, producing
files DK:A.OBdJ and RK3:B.LST. It then links A.OBJ (using SYSLIB.OBJ as
needed) and produces DK:A.SAV. If you specify a file name on a /LIST
option following a file specification in the command line, it has the same
meaning as when it follows the command. The following two commands
have the same results:

LEXECUTE/MACRO A/LISTIR

JLEXECUTE/MACROZLISTIR A

Remember that file options apply only to the file (or group of files that are
separated by plus signs) that they follow in the command string. For
example:

LEXECUTE/NORUN AMAC/LIST»RB.FOR

This command compiles A.MAC, producing A.OBJ and A.LST. It also com-
piles B.FOR, producing B.OBJ. However, it does not produce any listing file
for the compilation of B.FOR. Finally, the system links A.OBJ and B.OBJ
together, producing A.SAV.

/MACRO This option invokes the MACRO assembler to assemble associ-
ated files.

/MAPI[:filespec] You must specify this option to produce a load map after
a link operation. The /MAP option has different meanings depending on

Keyboard Commands

where you put it in the command line. It follows the same general rules out-
lined above for /LIST.

/OBJECT];filespec] Use this option to specify a file name or device for the
object file. Because the EXECUTE command creates object files by default,
the following two commands have the same meaning:

+EXECUTE/FORTRAN A

+ EXECUTE/FORTRAN/OBJECT A

111

/OBJECT optlon functlo
or a file qualifier.

As a command option, /OBJECT applies across the entire command string.
The following command, for example, assembles A . MAC and B.MAC sepa-
rately, creating object files A.OBJ and B.OBJ on RK1.:.

+EXECUTE/ORBJECTIRK1: A.MAC:R.MAC

Use /OBJECT as a file option to create an object file with a specific name or
destination. The following command compiles A.DBL and B.DBL together,
creating files B.L.ST, B.OBJ, and B.SAV.

<EXECUTE/DIROL AYB/LIST/ORJECT /EXECUTE

/ONDEBUG Use this option with /DIBOL to include a symbol table in the
object file. You can then use a debugging program to find and correct errors
in the object file.

Use /ONDEBUG with /FORTRAN to include debug lines (those that have a
D in column one) in the compilation. You do not, therefore, have to edit the
file to include these lines in the compilation or to logically remove them.
You can include messages, flags, and conditional branches to help you trace

v s nwrantidias atnd Band aim A
prograin €Xecuuioi ana find an error.

/OPTIMIZE:type Use this option with /FORTRAN to enable certain
options that optimize object code for various conditions. The argument type
represents the three-letter code for the type of optimization to be enabled.

Table 44 summarizes the codes and their meaning. This option is not avail-
able with version 2.5 of the FORTRAN compiler.

/NOOPTIMIZE:type Use this option with /FORTRAN to disable certain
options that optimize object code for various conditions. The argument type
represents the three-letter code for the type of optimization to be disabled.

Table 44 summarizes the codes and their meaning. This option is not avail-
able with version 2.5 of the FORTRAN compiler.

/PASS:1 Use this option with /MACRO on a prefix macro file to process
that file only during pass 1 of the assembly. This option is useful when you
assemble a source program together with a prefix file that contains only
macro definitions, since these do not need to be redefined in pass 2 of the

Keyboard Commands 4-87

4-88

assembly. The following command assembles a prefix file and a source file
together, producing files PROG1.0BJ, PROG1.LST, and PROG1.SAV.

«EXECUTE/NORUN/MACRDO FREFIX/FASSI1+FROGL/LIST/0RBJECT/EXECUTE

/RECORD:length Use this option with /FORTRAN to override the
default record length of 132 characters for ASCII sequential formatted input
and output. The meaningful range for length is from 4 to 4095.

/RUN Use this option to initiate execution of your program if there are no
errors in the compilation or the link. This is the default operation. Do not
use /RUN with any option that requires a response from the terminal.

/NORUN Use this option to suppress execution of your program. The sys-
tem performs only the compilation and the link,

/SHOWI[:value] Use this option with /FORTRAN to control FORTRAN
listing format. The argument value represents a code that indicates which
listings the compiler is to produce. Table 4-5 summarizes the codes and
their meaning.

Use this option with /MACRO to specify any MACRO .LIST directive. Table
4-12 summarizes the valid arguments and their meaning. The PDP-11
MACRO Language Reference Manual explains how to use these directives.

/NOSHOW:value Use this option with /MACRO to specify any MACRO
NLIST directive. Table 4-12 summarizes the valid arguments and their
meaning. The PDP-11 MACRO Language Reference Manual explains how
to use these directives.

/ISTATISTICS Use this option with /FORTRAN to include compilation
statistics, such as amount of memory used, amount of time elapsed, and
length of the symbol table.

/SWAP Use this option with /FORTRAN to permit the USR (user service
routine) to swap over the FORTRAN program in memory. This is the default
operation.

/INOSWAP Use this option with FORTRAN to keep the USR resident dur-
ing execution of a FORTRAN program. This may be necessary if the FOR-
TRAN program uses some of the RT-11 System subroutine library calls (see
the RT-11 Programmer’s Reference Manual). If the program frequently
updates or creates a large number of different files, making the USR resi-
dent can improve program execution. However, the cost for making the USR
resident is 2K words of memory.

/UNITS:n Use this option with /FORTRAN to override the default number
of logical units (6) to be open at one time. The maximum value you can spec-
ify for n is 16.

/VECTORS This option directs FORTRAN to use tables to access multi-
dimensional arrays. This is the default mode of operation.

/NOVECTORS This option directs FORTRAN to use multiplication oper-

PR R o | B P

o dn manaco s
AlIUILS LU ALLTDD 1IIUlLIULIIITIIDIviIAaL allayo.

Keyboard Commands

/WARNINGS Use this option to include warning messages in DIBOL or
FORTRAN compiler diagnostic error messages. These messages call certain
conditions to your attention but do not interfere with the compilation. This
is the default operation for DIBOL.

/NOWARNINGS Use this option with /DIBOL to suppress warning mes-
sages during compilation. These messages are for your information only;
they do not affect the compilation. This is the default operation for

FORTRAN.

sal
istin

ISTinT
D

PRy PN |
4L

&
&
st

/WIDE U n with roduce a wide load map y
mally, the hstlng ide enough for three Global Value columns, which is
suitable for a page with 72 or 80 columns. The /WIDE option produces a list-

ing that is six Global Value columns wide, or 132 columns.

aontio .-.itl.. Im{

l'l)

o
P

Keyboard Commands 4-89

4-90

FORMAT

The FORMAT command formats disks and diskettes, and verifies any disk,
diskette, DECtape, or DECtape II.

FORMAT | IPATTERN [value] device

ANO] QUERY
ISINGLEDENSITY
IVERIFY [:ONLY]
WAIT

In the command syntax described above, device represents the storage vol-
ume you wish to format and/or verify. Although you can verify any disk or
DECtape, the formatting process is valid only for the disks and diskettes
listed below.

RX01-RX02
RKO05
RP02-RP03
RK06-RK07

When the system formats a volume, it writes headers for each block in the
volume. The header of a block contains data the device controller must use
to transfer data to and from that block. Using the FORMAT command to for-
mat a storage volume makes that volume usable to the RT-11 operating sys-
tem. Formatting is advisable under the following circumstances:

® when you receive a new RKO05 disk from DIGITAL

¢ when you wish to format an RX02 double density diskette to single den-
sity, and vice versa

® when you wish to eliminate bad blocks (though formatting does not guar-
antee the eliminalion of every bad block, formatting can reduce the

number of bad blocks)

When the system verifies a volume, it writes a 16-bit pattern on each block
in the volume, and then reads each pattern. When the system is unable to
write and read a pattern, it reports a bad block. The verification process is
similar to the bad block scan (see INITIALIZE), except that verification is a
data-destructive process. That is, whereas bad block scanning only reads
data from each block on a volume, verifying both writes and reads data,
destroying any data previously existing on the volume. Because the veri-
fication process reads and writes data, it can be more effective than a bad
block scan in establishing the validity of data contained in a block. Veri-
fying also makes sure that the previous formatting operation was:
successful.

NOTE

You can format a diskette (RX01 or RX02) only when you
have mounted the diskette in a doubie density disketie

Keyboard Commands

drive unit (DY). Unless you use the /SINGLEDENSITY
option, the system will format both single and double den-
sity diskettes in double density format. If you attempt to
format a diskette in a single density drive unit (DX), the
system will print an error message.

When you format an RK06 or RK07 disk, the system lists the block numbers
of all the bad blocks in the manufacturer’s bad block table and in the soft-
ware bad block table.

The options you can use with the FORMAT comma

/PATTERN[:value] Use this option with /VERIFY[:ONLY] to specify
which 16-bit patterns you want the system to use when it verifies the vol-
ume. The optional argument value represents an octal integer in the range 0
to 377 that denotes which of eight patterns you want used. The /P:n option in
Chapter 18 provides a complete description of the patterns you can specify
with /PATTERN[:value]. As the system uses each pattern, it prints at the
terminal which pattern it is using.

The command line that follows verifies an RK05 disk with the 16-bit pat-
terns denoted by the value 25.

+ FORMAT/VERIFY/FATTERNI2S5 RKO3Z
RKO!/FORMAT-Are sou sure? Y
PFORMAT-I-Formatting comrlete
FATTERN #5

FATTERN #3

FATTERN #1
PFORMAT~I~-Verification comslete

If you do not supply a value with /PATTERN, the system uses pattern #8.

/IQUERY Use this option when you want the system to print a con-
firmation message before it performs formatting or verification. This is the
default setting.

/INOQUERY Use this option if you do not want the system to print a con-
firmation message before it performs formatting or verification. When you
use this option in the FORMAT command line, the system prints only the
pattern numbers it uses if it performs verification and the informational
messages indicating the formatting or verification is complete. The default
setting is /QUERY.

/SINGLEDENSITY Use this option to format an RX02 double density
diskette in single density format. The following example uses the /SINGLE-
DENSITY option to format an RX02 in drive unit 1 as a single density
diskette.

L, FORMAT/SINGLEDENSITY DY1:
DY1:/FORMAT~Are wsou sure® Y
PFORMAT~I~Formatting comrlete

/VERIFY[:ONLY] Use this option when you want to verify a volume fol-
lowing formatting. Use the optional argument, :ONLY, when you want the

Keyboard Commands 4-91

4-92

system to only verify a volume. (Note that although you can format only a
limited variety of storage volumes, you can verify any disk, diskette, DEC-
tape, or DECtape I1.) When you use /VERIFY, the system first formats the
specified volume, and then writes a bit pattern to each block on the volume.
Next, the system reads each pattern. After the verification process is com-
plete, the system prints at the terminal the block number of each bad block
it found. '

The example that follows uses /VERIFY to format and verify an RK05 disk
in drive unit 2.

+ FORMAT/VERIFY RK23
RK2:/FORMAT~Are wou sure? Y
PFORMAT~I~-Formatting comslete
FATTERN #8
PFORMAT-1~Verification comrlete

The next example uses /VERIFY:ONLY to only verify an RX01 diskette in
drive unit 0.

+ FORMAT/VERIFY $ONLY DXOt
DX0!/VERIFY—-Are wou sure? Y
FATTERN #8
PFORMAT-I-Verification comrlete

/WAIT Use this option to pause before formatting begins in order to sub-
stitute a second volume for the volume you specify in the command line. The
/WAIT option is useful for single drive systems. After the system accepts
your command line, it pauses while you exchange velumes. Type a2 Y fol-
lowed by a carriage return when you have exchanged volumes and are ready
for formatting to begin. When formatting completes, the system pauses
again while you replace the system volume. Type a Y followed by a carriage
return after you have remounted the system volume to terminate the for-
matting operation.

The following example uses the /WAIT option to format an RK05 disk.

+ FORMAT/WALT RKOZ

RKO: /FORMAT-Are wou sure®™ Y

Insert volume wou wizh to Tormat. CONTINUECY/NITY
/FORMAT~I~Formatting comslete

rerlace original volume. CORTINUECY/NYTY

Keyboard Commands

FORTRAN

The FORTRAN command invokes the FORTRAN IV compiler to compile
one or more SOurce programs.

FORTRAN ILIST [:filespec] ALLOCATE:sizej (sp) filespecs
NINO] OBJECT [filespec] VALLOCATE:size]
ICODE:type
IDIAGNOSE
JEXTEND
IHEADER

na

NINO] LINENUMBERS
IONDEBUG

AINO] OPTIMIZE [:type]
/RECORD:length
ISHOW [:value]
ISTATISTICS

INO] SWAP
IUNITS:n

fINO] VECTORS
IWARNINGS

You can enter the FORTRAN command as one line, or you can rely on the
system to prompt you for information. The FORTRAN command prompt is
Files? for the input specification.

In the command syntax illustrated above, filespecs represents one or more
files to be included in the compilation. If you omit a file type for an input file,
the system assumes .FOR. Output default file types are .LST for listing files
and .OBJ for object files. To compile multiple source files into a single object
file, separate the files with plus (+) signs in the command line. Unless you
specify otherwise, the system creates an object file with the same name as
the first input file and gives it an .OBJ file type. To compile multiple files in
independent compilations, separate the files with commas (,) in the com-
mand line. This generates a corresponding object file for each set of input
files.

Language options are position-dependent — that is, they have different
meanings depending on where you place them in the command line. Options
that qualify a command name apply across the entire command string.
Options that follow a file specification apply only to the file (or group of files
separated by plus signs) that they follow in the command string.

The RT-11/RSTS/E FORTRAN IV User’s Guide contains detailed informa-
tion about using FORTRAN. The following sections describe the options you
can use with the FORTRAN command.

/ALLOCATE:size Use this option with /LIST or /OBJECT to reserve
space on a device for the output file. The argument size represents the num-
ber of blocks of space to allocate. The meaningful range for this value is from
1t0 32767. A value of —1 is a special case that creates the largest file possible
on the device.

Keyboard Commands 4-93

4-94

/CODE:type Use this option to produce object code that is designed for a
particular hardware configuration. The argument ¢ype represents a three-
letter abbreviation for the type of code to be produced. The legal values are:

EAE, EIS, FIS, and THR. See the RT-11/RSTS/E FORTRAN IV User’s
Guide for a complete description of the types of code and their function.

/DIAGNOSE Use this option to help analyze an internal compiler error.
/DIAGNOSE expands the crash dump information to include internal com-
piler tables and buffers. Submit the diagnostic printout to DIGITAL with a
software performance report (SPR) form. The information in the listing can
help DIGITAL programmers locate the compiler error and correct it.

/EXTEND Use this option to change the right margin for source input
lines from column 72 to column 80.

/HEADER This option includes in the printout a list of options that are
currently in effect.

/14 Use this option to allocate two words for the default integer data type
(FORTRAN uses one-word integers) so that it takes the same physical space
as real variables.

/LINENUMBERS Use this option to include internal sequence numbers
in the executable program. These are especially useful in debugging a FOR-
TRAN program. They identify the FORTRAN statements that cause run-

time diagnostic error messages. This is the default operation.

/NOLINENUMBERS This option suppresses the generation of internal
sequence numbers in the executable program. This produces a smaller pro-
gram and optimizes execution speed. Use this option to compile only those
programs that are already debugged; otherwise the line numbers in FOR-
TRAN error messages are replaced by question marks and the messages are
difficult to interpret.

/LIST(:filespec] You must specify this option to
cnmnﬂahnn listing. The /I.IST option has different

g2 58 &G ualal ioNilise 11 A2CRD \AAELTA T

where you place it in the command line.

D‘V\
a.a.uu. LLLLL 5 Vii

The /LIST option produces a listing on the line printer when /LIST follows
the command name. For example, the following command line produces a
line printer listing after compiling a FORTRAN source file:

« FORTRAN/LIST MYFROG<RET:>»

When the /LIST option follows the file specification, it produces a listing file.
For example, the following command line produces the listing file
DK:MYPROG.LST after compiling a FORTRAN source file:

+ FORTRAN MYPROG/L.IST<RET:

If you specify /LIST without a file specification in the list of options that
immediately follows the command name, the FORTRAN compiler generates
a listing that prints on the line printer. If you follow /LIST with a device
name, the system creates a listing file on that device. If the device is a file-

Keyboard Commands

structured device, the system stores the listing file on that device, assigning
it the same name as the input file with a .LST file type. The following com-
mand produces a listing on the terminal:

JSFORTRAN/LISTITTE A

The next command creates a listing file called A.LST on RK3:.
JFORTRAN/LISTIRK3?! A

If the /LIST option contains a name and file type to override the default of
.LST, the system generates a listing file with that name. The following com-

mand, for example, compiles A.FOR and B.FOR together, producing files
A.OBJ and FILE1.OUT on device DK:.

LFORTRAN/LISTIFILEL.OUT A+R

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input
file, you can use a command similar to this one:

JFORTRAN A+R/LISTIRK3:

The above command compiles A.FOR and B.FOR together, producing files
DK:A.OBJ and RK3:B.LST. If you specify a file name on a /LIST option fol-
lowing a file specification in the command line, it has the same meaning as
when it follows the command. The following two commands have the same
results:

LJFORTRAN A/LISTIE

JFORTRANZLISTIER A

Both the above commands generate A.OBJ and B.LST as output files.

Remember that file options apply only to the file (or group of files that are
separated by plus signs) that they follow in the command string. For
example:

JFORTRAN A/LIST/E
This command compiles A.FOR, producing A.OBJ and A.LST. It also com-

piles B.FOR, producing B.OBJ. However, it does not produce any listing file
for the compilation of B.FOR.

/OBJECT!:filespec] Use this option to specify a file name or device for the
object file. Because FORTRAN creates object files by default, the following
two commands have the same meaning:

LFORTRAN A

JFORTRAN/OBJECT A

Both commands compile A.FOR and produce A.OBJ as output. The
JOBJECT option functions like the /LIST option; it can be either a command
or a file qualifier.

Keyboard Commands 4-95

4-96

As a command option, /OBJECT applies across the entire command string.
The following command, for example, compiles A.FOR and B.FOR sepa-
rately, creating object files A.OBJ and B.OBJ on RK1.:.

+FORTRAN/ORJECTIRK1: AsE

Use /OBJECT as a file option to create an object file with a specific name or
destination. The following command compiles A.FOR and B.FOR together,
creating files B.LST and B.OBJ.

+FORTRAN A+R/LIST/0BJECT

/NOOBJECT Use this option to suppress creation of an object file. As a
command option, NOOBJECT suppresses all object files; as a file option, it
suppresses only the object file produced by compilation of the related input
files. In this command, for example, the system compiles A.FOR and B.FOR
together, producing files A.OBJ and B.LST. It also compiles C.FOR and pro-

‘duces C.LST, but does not produce C.OBJ.

+FORTRAN A+B/LISTC/NOORJECT/LIST

/ONDEBUG Use this option to include debug lines (those that have a D in
column one) in the compilation. You do not, therefore, have to edit the file to
include these lines in the compilation or to logically remove them. This
option is useful in debugging a program. You can inciude messages, flags,
and conditional branches to help you trace program execution and find an
error.

/OPTIMIZE:type Use this option to enable certain options that optimize
object code for various conditions. The argument type represents the three-
letter code for the type of optimization to be enabled. Table 44 summarizes
the codes and their meaning.

Table 44: Optimization Codes

Code| Meaning

BND | Global register bindings for inline code generation
CSE | Common subexpression elimination

SPD | Optimization for speed of execution, as opposed to minimal program size

STR | Strength reduction optimization

This option is not available with version 2.5 of the FORTRAN compiler.

/NOOPTIMIZE:type Use this option to disable certain options that opti-
mize object code for various conditions. The argument #ype represents the
three-letter code for the type of optimization to be disabled. Table 44 sum-

marizes the codes and their meaning. This option is not available with ver-
sion 2.5 of the FORTRAN compiler.

/RECORD:length Use this option to override the default record length of,
usually 132, characters for ASCII, sequentially formatted input and output.
The meaningful range for length is from 4 to 4095.

Keyboard Commands

/SHOW/[:value] Use this option to control FORTRAN listing output. The
argument value represents a code that indicates which listings the compiler
is to produce. Table 4-5 summarizes the codes and their meaning. You can
combine options by specifying the sum of their numeric codes. For example:

/ISHOW:7
or

/SHOW:ALL

The two options shown above have the same meaning. If you specify no code,
the default value is 3, a combination of SRC and MAP.

Table 4-5: FORTRAN Listing Codes

Code Listing Content

0 Diagnostics only

1or SRC Source program and diagnostics

2 or MAP Storage map and diagnostics

3 Diagnostics, source program, and storage map

4 0or COD Generated code and diagnostics

Tor ALL Diagnostics, source program, storage map, and generated code

/STATISTICS Use this option to include compilation statistics in the list-
ing, such as amount of memory used, amount of time elapsed, and length of
the symbol table.

/SWAP Use this option to permit the USR (user service routine) to swap
over the FORTRAN program in memory. This is the default operation.

/NOSWAP This option keeps the USR resident during execution of a
FORTRAN program. This may be necessary if the FORTRAN program uses
some of the RT—11 system subroutine library calls (see Chapter 4 of the
RT-11 Programmer’s Reference Manual). If the program frequently updates
or creates a large number of different files, making the USR resident can
improve program execution. However, the cost for making the USR resident
is 2K words of memory.

/UNITS:n Use this option to override the default number of logical units
(8) to be open at one time. The maximum value you can specify for is 16.

/VECTORS This option directs FORTRAN to use tables to access multi-
dimensional arrays. This is the default mode of operation.

/NOVECTORS This option directs FORTRAN to use multiplication oper-
ations to access multidimensional arrays.

/WARNINGS Use this option to include warning messages in FORTRAN
compiler diagnostic error messages. These messages call certain conditions
to your attention, but do not interfere with the compilation. A warning mes-

Keyboard Commands 4-97

sage prints, for example, if you change an index within a DO loop, or if you
specify a variable name longer than six characters.

/NOWARNINGS Use this option to exclude warning messages in FOR-
TRAN compiler diagnostic error messages. This is the default setting.

4-98 Keyboard Commands

FRUN
The FRUN command initiates foreground jobs. The default file type is .REL.

FRUN (SP) filespec [IBUFFER :n

IPAUSE
ITERMINAL:n
'_INAME.;obname

In the command syntax illustrated above, filespec represents the program to
execute. Because this command runs a foreground job, it is valid for the FB
and XM monitors only.

If a foreground job is active when you issue the FRUN command, an error
message prints on the terminal. You can run only one foreground job at a
time. If a terminated foreground job is occupying memory, the system
reclaims that region for your program. Then, if the system finds your pro-
gram and if your program fits in the available memory, execution begins.

The following sections describe the options you can use with FRUN. Note
that the option must follow the file specification in the command line.

Note that you can use the FRUN command to run a virtual foreground job,
and that you can use FRUN to run a virtual .SAV file in the foreground
under the XM monitor.

/BUFFER:n Use this option to reserve more space in memory than the
actual program size. The argument n represents, in octal, the number of
words of memory to allocate. You must use this option to execute a FOR-
TRAN foreground job. If you use /BUFFER for a virtual job linked with the

1A VAP
IV Upuuu \Ul Il}fxl\v{}, the s ayaucxu Lsuﬁres /BUFFER be”ause it has alrea"y Pro-

vided a buffer in extended memory.

The following formula determines the space needed to run a FORTRAN pro-
gram as a foreground job.

n = [1/2[504 + (33*N) + (R-136) + A*512)]]
where:

A represents the number of files open at one time. If you are using
double buffering, multiply A by 2.

N represents the number of channels (logical unit numbers)

R represents the maximum record length. The default is 136
characters.

This formula must be modified for certain System Subroutine Library (SYS-
LIB) functions.

Keyboard Commands 4-99

4-100

The IQSET function requires the formula to include additional space for
queue elements (qcount) as follows:

n = [1/2[504 +(33*N) + (R-136) + A*512]]+ [10*qcount]

The ICDFN function requires the formula to include additional space for the
integer number of channels (num) as follows:

n = [1/2[504 + (33*N) + (R-136) + A*512]] + [6*num]

The INTSET function requires the formula to include additional space for
the number of INTSET calls issued in the program as follows:

n = [1/2[5604 +(33*N) + (R-136) + A*512]]+ [25*INTSET]

Any functions, including INTSET, that invoke completion routines must
include 64(decimal) words plus the number of words needed to allocate the
second record buffer (default is 68(decimal) words). The length of the record
buffer is controlled by the /RECORD option to the FORTRAN compiler. If
the /RECORD option is not used, the allocation in the formula must be
136(decimal) bytes, or the length that was set at FORTRAN installation
time. This modifies the formula as follows:

n = [1/2[504 +(33*N) + (R-136) + A*512]] +[64 + R/2]

If the /BUFFER option does not allocate enough space in the foreground on
the initial call to a completion routine, the following message appears:

TERR Oy NON-FORTRAN error call

This message also appears if there is not enough free memory for the back-
ground job or if a completion routine in the single-job monitor is activated
during another completion routine. In the latter case, the job aborts; you
should use the FB monitor to run multiple active completion routines.

/PAUSE Use this option to help you debug a program. When you type the
carriage return at the end of the command string, the system prints the load
address of your program and waits. You can examine or modify the program
(by using ODT, described in Chapter 21) before starting execution. You
must use the RESUME command to start the foreground job. The following
command loads the program DEMOSP.REL, prints the load address, and
waits for a RESUME command to begin execution.

+FRUN DEMOSF/F
Loaded at 1272764

+RESUME

/TERMINAL:n This option is meaningful only in a multi-terminal sys-
tem. Use it to assign a terminal to interact with the foreground job. The
argument n represents a terminal logical unit number. If you do not use this
option, the foreground job shares the console terminal with the background
job. By assigning a different terminal to interact with the foreground job,
you eliminate the need for the foreground and background jobs to share the
console terminal. Note that the original console terminal still interacts with

Keyboard Commands

the background job and with the keyboard monitor, unless you use the SET
TT:CONSOL command to change this.

/NAME:name Use this option to assign a logical name to the foreground
Jjob. This option is valid only on a monitor that has system job support, a spe-
cial feature enabled by the system generation process.

Keyboard Commands 4-101

4-102

GET

The GET command loads a memory image file into memory.

GET filespec

In the command syntax shown above, filespec represents the memory image
file to be loaded. The default file type is .SAV. Note that magtape and cas-
sette are not block-replaceable devices and therefore are not permitted with
the GET command. Use the GET command for a background job only. You
cannot use GET on a virtual program that executes under the XM monitor.
The GET command is useful when you need to modify or debug a program.
You can use GET with the Base, Deposit, Examine, and START commands
to test changes. Use the SAVE command to make these changes permanent.
You can combine programs by issuing multiple GET commands, as the fol-
lowing example shows. This example loads a program, DEMOSP.SAV, loads
ODT.SAV (on-line debugging technique, described in Chapter 21), and
starts the program using the address of ODT’s entry point.

.GET DEMOSF
LGET ODT
START

onT V01.04
X

If more than one program requires the same locations in memory, the pro-
gram you load later overlays the previous program. Note that you cannot
use GET to load overlay segments of a program,; it can load only the root. If
the file you need to load resides on a device other than the system device, the
syvstem automatically loads that device handler into memory when you issue
the GET command. This prevents problems that occur if you use the START
command and your program is overlaid.

Keyboard Commands

GT
The GT command enables or disables the VT11 or VS60 display hardware.

et (sP) 8:F
[Fa)

When you issue the GT OFF command, you disable the display hardware.
The printing console terminal then becomes the device that prints output
from the system.

When you issue the GT ON command, the display screen replaces the print-
ing console terminal. The display screen offers some advantages over the
printing terminal: (1) it is quieter than a printing terminal, (2) it is faster
than a printing terminal, (3) it does not require a supply of paper, and (4) it
is the device for which EDIT’s immediate mode is intended. The display
screen can speed up the editing process (see Chapter 5 for information on
how to use the text editor). You can use CTRL/A, CTRL/S, CTRL/E, and
CTRL/Q to control scrolling. These commands are explained in Chapter 3.

Note that RT—11 does not permit you to use display hardware (with GT ON)
if you have multi-terminal support (enabled by a user-generated monitor) or
if you have an 8K configuration. You cannot use GT ON or GT OFF when a
foreground or system job is active; this causes the system to print an error
message. Issue the GT ON command before you begin execution of the fore-
ground job. ODT (on-line debugging technique, described in Chapter 21) is
the only system program that cannot use the display screen. Its output
always appears on the console terminal. You can use VDT, a variant of
ODT, because it can interact with the display hardware.

NOTE

If an indirect command file issues a GT ON command, part
of the command may echo on the terminal and the rest may
echo on the graphics screen. Also, if you type the GT ON
command, followed by CTRL/E, the initial line on the ter-
minal overprints when you type GT OFF.

The following options control the number of lines that appear on the screen
and position the first line vertically.

/L:in Use this option to change the number of lines of text that display on
the screen. Table 4-6 shows the valid range for the argument n in decimal.
If you do not use this option the system determines the screen size and auto-
matically assigns the largest valid value.

Keyboard Commands 4-103

/T:n Use this option to change the top position of the scroll display. Table
4—6 shows the valid range for the argument n in decimal. If you do not use
this option, the system determines the screen size and automatically assigns
the largest valid value.

Table 4-6: Display Screen Values

Screen Size |Lines | Top Position

12-inch 1-31 1-744
17-inch 1-40 1-1000 (or larger)

4-104 Keyboard Commands

HELP

The HELP command lists information related to RT-11 commands to help
you remember command syntax, options, and so on, when you are at the
console.

- [[m%” [,opic[subtopictitem H] }

Joption

In the command syntax shown above, topic represents a subject about which
you need information. In the help file supplied with RT-11, the topics are
the keyboard monitor commands. The subtopic represents a category within
a topic. In the RT-11 help file, the subtopics are SYNTAX, SEMANTICS,
OPTIONS, and EXAMPLES. The item represents one member of the sub-
topic group. You can specify more than one item in the command line if you
separate the items by colons (:). If you type HELP followed by a carriage
return, the system lists information on the HELP command.

The HELP command permits you to access the HELP text file. The help file
distributed with RT-11 contains information about the keyboard monitor
commands and how to use them. However, the concept of the help file is a
general one. That is, you can create your own help file to supply quick refer-
ence material on any subject. For information on how to change the HELP
text file, see the RT-11 Installation and System Generation Guide. There are
only two options you can use with the HELP command. They are /PRINTER
and /TERMINAL.

/PRINTER Use this option to list information on the line printer.
/TERMINAL This option lists information on the console terminal. This

is the default operation.
The following examples all make use of the standard RT-11 help file.

The following command lists all the topics for which assistance is available.

+ HELF X

AFL Invokes the AFL langusdge interereter

ASSIGN Associates a lodgical device name with a8 rhuysical device
B Sets 8 relocation base

+
+

*

Keyboard Commands 4-105

4-106

The next command lists all the information about the DATE command.

+HELF DATE

DATE Sets or diserlaus the current sustem date

SYNTAX
DATEL dd-mmm—w3w]

SEMANTICS
All rumeric values are decimals mmm is the first three
characters of the name of the month

OFTIONS
None

EXAMFLES
DATE 12-MAY-79

The next command lists all the options that are valid with the DIRECTORY
command.

+HELF DIRECTORY OFTIONS

OFTIONS
ALLOCATE!size
Use with /0UTPUT to reserve srace for the outrut listing
file
AL FHARETIZE
Sorts the directorw in slrhabetical order by file name
and ture

The next command lists information about the /BRIEF option for the
DIRECTORY command.

. HELF DIRECTORY OFTIONSIBRIEF

BRIEF
Lists onlwy file mames and file tures of files? s3me 3%
/FAST
The LUuUWULg comimand lists information about the DIRECTORY command
options that begin with B.
+ HELF DIRECTORY/E
BADRLOCKS
Scans the device for bad blocks and tures their octal
number
BEFORELdateld
Lists the files crested before the date wou srecifw
BREGIN
Lists the directorwr starting with the file wou srecifw
BLOCKS
- Lists the starting block rnumbers of the files
BRIEF
lLists only file names and file tures of files? same a5
/FAST

Keyboard Commands

INITIALIZE
Use the INITIALIZE command to clear and initialize a device directory.

INITIALIZE [7DOS [INCJQUERY] i device
/INTERCHANGE [[[NO)JQUERY]

IFILE:filespec

fINO] QUERY
IVOLUMEID [:ONLY]
ISEGMENTS:n
IREPLACE L:RETAIN]}
/BADBLOCKS

IWAIT

|/RESTORE

In the command syntax illustrated above, device represents the volume you
need to initialize. The initialize operation must always be the first operation
you perform on a new volume after you receive it, formatted, from the manu-
facturer. If the volume is not formatted, use the FORMAT command (see the
FORMAT command description) to format the volume. The INITIALIZE
command destroys any data that may already exist on a device. After you
use the INITIALIZE command, there are no files in the directory. If you use
the INITIALIZE command with no options, the system simply initializes the
device directory. You can enter the INITIALIZE command as one line, or
you can rely on the system to prompt you for the name of the device with
Device?. The following sections describe the options you can use with
INITTALIZE and give some examples of their use.

The default number of directory segments for RT—11 directory structured
volumes is listed in Table 4-7. If any default is too small for your needs, see
the RT-11 Installation and System Generation Guide for details on chang-
ing this default directory size.

If the volume you are initializing has protected files, the system always
prints a confirmation message as in the following example.

+INIT RKO?
RKO$/Initializes Are gou sure? Y <RET>
Volume contains rrotected files? Are wou sure? Y <RET:

/BADBLOCKS[:RET] Use this option to scan a volume (disk or DECtape)
for bad blocks and write .BAD files over them. For each bad block the system
encounters on the volume, it creates a file called FILE.BAD to cover it. After
the volume is initialized and the scan completed, the directory consists of
only FILE.BAD entries to cover the bad blocks. This procedure ensures that
the system will not attempt to access these bad blocks during routine oper-
ations. If the system finds a bad block in either the boot block or the volume
directory, it prints an error message and the volume is not usable. DIGITAL
recommends that you use the DIRECTORY/BADBLOCKS command after
using the INITIALIZE/BADBLOCKS command so that you can find out

Keyboard Commands 4-107

4-108

where the bad blocks are, if any. The following command initializes volume
RK1: and scans for bad blocks.

+INITIALIZE/BADBLOCKS RK1?
RK1$/Initializes Are vour sure? Y

If you use /' BADBLOCKS:RET, the system will retain through initialization
all files with a .BAD file type that it finds on the volume, giving them the
name FILE.BAD. The system does not do a bad block scan. The advantage in
using :RET is that initializing takes less time. Note that some volumes sup-
port bad block replacement; DIGITAL recommends you use the
/REPLACE[:RET] option instead of/ BADBLOCKSI[:RET] for these volumes
when scanning for bad blocks.

/DOS Use this option to initialize a DECtape for DOS-11 format.

/FILE:filespec Use this option to initialize a magtape and create a boot-
able tape. For filespec, substitute devzMBOOT.BOT. This file is distributed

‘'with RT-11 for this purpose only. Consult the RT-11 Installation and Sys-

tem Generation Guide for more information. The following example creates
a bootable magtape.

»INITIALIZE/FILEIMROOT.BOT MTO2

/AINTERCHANGE Use this option to initialize a diskette for interchange
format. The following example initializes DX1: in interchange format.

+INITIALIZE/INTERCHANGE DX1:
DX1:/Init Are wou sure? Y

/QUERY This option prompts you for confirmation before it initializes a
device. Respond by typing a Y followed by a carriage return to initiate exe-
cution of the command. The system interprets a response beginning with
any other character to mean NO. /QUERY is the default operation.

/NOQUERY Use this option to suppress the confirmation message the
system prints before it proceeds with the initialization.

/REPLACE[:RET] If you have an RK06, RK07, RL01, or RL02 disk,
uge this option to gcan a digk for bad blocks. If the system finds any bad
blocks, it creates a replacement table so that routine operations access good
blocks instead of bad ones. Thus, the disk appears to have only good blocks.
Note, though, that accessing this replacement table slows response time for
routine input and output operations. With /REPLACE, you have the option
of deciding which bad blocks you want replaced if there is a replacement
table overflow. The RK06s and RK07s support up to 32 bad blocks in the
replacement table; the RLO1s and RL02s support up to 10.

With an RK06 or RK07 disk, the system can replace only those bad blocks
that generate a bad sector error (BSE). Of the blocks the system cannot
replace, the system can report a bad block as being hard or soft. If you use
/VERIFY with /REPLACE and the system stili cannot use the biock, the sys-
tem reports a hard bad block. If the system can use the block, it reports a soft
had block

MG ViUV,

Keyboard Commands

With an RLO1 or RLO2 disk, the system can replace any kind of bad block.

When you use /REPLACE, the system prints a list of replaceable bad blocks
as in the following sample:

+ INITIALIZE/REFLACE DLO?

Rlock Ture
030722 1275%4. Rerlaceable
1150446 394462, Rerlaceable
133417 44991+ Rerlaceable
136175 48253. Rerlaceable
136277 48319. Rerlaceable
136401 48385. Rerlaceable
140405 49413, Rerlaceable

146252 52394, Rerlaceable
DUF-I-Bad blocks detected 8.

If there is a replacement table overflow, the system prompts you to indicate
~which blocks you want replaced as follows:

TOUP-W-Rerlacement table overflow
Ture <RET>y Oy or nonnnn (<RET>)
Rerlace block #

nnnnnn represents the octal number of the block you want the system to
replace.

After you enter a block number, the system responds by repeating the
Replace block # prompt. If you type a 0 at any time you do not want any
more blocks replaced, prompting ends and any blocks not placed in the
replacement table are marked as FILE.BAD.

If you enter a carriage return at any time, the system places all bad blocks
you have not entered into the replacement table, starting with the first on
the disk, until the table is full. The system assigns the name FILE.BAD to

P S A hloalea o d aeo it o s Ao
any remaining bad blocks and Prompuing ends.

If you use /NOQUERY with /REPLACE, and there is a replacement table
overflow, the effect will be as if you had entered a carriage return in
response to the first Replace block # prompt.

If you use :RET with /REPLACE, the system initializes the volume and
retains the bad block replacement table (and FILE.BAD files) created by the
previous /REPLACE command.

Note that if the monitor file resides on a block that contains a bad sector
error (BSE) and you are doing bad block replacement, a boot error results
when you attempt to bootstrap the system. In this case, move the monitor.
Use the DIRECTORY/BADBLOCKS/FILES command to determine which
files reside on bad blocks.

/RESTORE Use this option to uninitialize a volume. That is, you can use
this option to restore the directory and files that were present on the volume
prior to the previous initialization. You can use /RESTORE only if no files
have been transferred to the volume since the last time it was initialized.

Keyboard Commands 4-109

4-110

The /RESTORE option does not restore the boot blocks; so if you use
/RESTORE to restore a previously bootable volume, use the COPY/BOOT
command to make the volume bootable again.

/SEGMENTS:n Use this option if you need to initialize a disk and also
change the number of directory segments. The number of segments in the
directory establishes the number of files that can be stored on a device. The
system allows a maximum of 72 files per directory segment, and 31 directory
segments per device. The argument n represents the number of directory
segments. The valid range for n is from 1 to 31 (decimal). Table 4-7 shows
the default values of n for standard RT-11 devices.

Table 4-7: Default Directory Sizes

Size (decimal) of
Device Directory in Segments
RK 16
DD 1
DT 1
RF 4
DS 4
DP 31
DX 1
DM B}
DY 4
DL 16
PD 1

/VOLUMEID[:ONLY] Use /VOLUMEID to write a volume identification
on a device when you initialize it. This identification consists of a volume ID
(up to 12 characters long for a block-replaceable device, up to 6 characters
long for magtape) and an owner name (up to 12 characters long for a block-

wroamiaonna Fa) n"‘nn I (2} o awvranntroavrg 2y aleld NY [a2 aVaY o~ e l\"‘f‘“"
1 hlr 4 tn 10 o + 1 fn aot Y Tha fall
repiafancait GeViCe, Up 0 iU Characicrs i0ng ior magiape)/. 11 i0ulwWing

example initializes device RK1: and writes a volume identification on it.

LINTTTAL TZE/ZU01 IMETN RK1

RRK1!/Initialize’ Are wou sure? Y
Volume IDT FORTRAN VOL.
Owner? Marcy

Use /VOLUMEID:ONLY to write a new volume identification on a device
without reinitializing the device. You cannot change the volume ID of a
magtape or cassette without initializing the entire tape.

/WAIT The /WAIT option is useful if you have a single-disk system. When
you use this option to initialize a volume, the system begins the procedure
but then pauses and waits for you to mount the volume you want to
initialize. When the system pauses, it prints the following prompt at the
terminal:

Mourt irmrut volume in <devicerxs Continue?

Keyboard Commands

<device> is the name of the device into which you mount the volume to be
initialized. After you have mounted the input volume, type Y followed by a
carriage return. After the system completes the initialization process, it
prints the following message prompting you to mount the system volume:

Mount swstem volume in <devicex’ Continue?

After you mount the system volume, type Y followed by a carriage return.
When you use /WAIT, make sure that DUP is on the system volume.

Keyboard Commands 4-111

4-112

INSTALL

The INSTALL command installs the device you specify into the system.

INSTALL device [,. . . device]

In the command syntax shown above, device represents the name of the
device to be installed. The INSTALL command accepts no options. It allows
you to install into the system tables a device that was not installed into the
system when it was bootstrapped. (A device handler must exist in the sys-
tem tables before you can use that device.) The device occupies the first
availabie device siot. Using the INSTALL command does not change the
monitor disk image; it only modifies the system tables of the monitor that is
currently in memory. '

You can enter the command on one line, or you can rely on the system to
prompt you for information. The INSTALL command prompt is Device?.

When you specify a device name, the system searches the system device for
the corresponding device handler file. For SJ and FB systems, if LP: is to be
installed, the INSTALL command searches for the file SY:LP.SYS. For XM
systems, INSTALL searches for SY:LPX.SYS. The INSTALL command does
not allow a device handler built for a different configuration of the system to
be installed in a given system. Note that you cannot install the device
names SY, DK, or BA.

To permanently install a device, include the INSTALL command in the
standard, system startup indirect command file. This file is invoked auto-
matically when you boot the system. The INSTALL command also allows
you to configure a special system for a single session without having to
reconfigure to revert to the standard device configuration. If there are no
free device slots (use the SHOW DEVICES command to ascertain this), you
must remove an existing device (with the REMOVE command) before you
can install a new device.

The following command installs the card reader into the system tables from
the file CR.SYS. (The colon (:) that follows the device handler name is
optional.)

LINSTALL CR?
The next example installs the line printer, the card reader, and DECtape.

+INSTALL LF:sCRI5DT2

Keyboard Commands

LIBRARY

The LIBRARY command lets you create, update, modify, list, and maintain
library files.

LIBRARY | ILIST [filespec] [IALLOGATE:size] 7] library [filespecs [{ ;Sggﬂ‘f}]]

NINO] OBJECT [:filespec] JALLOCATE:size]

ICREATE
IEXTRACT
IINSERT
IMACRO

L 41

IDELETE
IPROMPT
IREMOVE

In the command syntax illustrated above, library represents the library file
name, and filespecs represents the input module file names. Separate the
library file specification from the module file specifications with a space.
Separate the module file specifications with commas. The system uses .LST
as the defauit file type for library directory listing files. It uses .OBJ as the
default file type for object libraries and object input files, and .MAC for
macro libraries and macro input files. Object libraries contain machine-level
object modules, and macro libraries contain MACRO source modules. You
cannot combine object modules with MACRO modules. The default oper-
ation, if you do not specify an option, is /INSERT. If you do not specify a
library file in the command line, the system prompts Library?. If you specify
/CREATE, /INSERT, or /MACRO and omit the module file specification, the
system prompts Files?. If you specify /EXTRACT, the system prompts File?.
Note that no other option causes the File? or Files? prompt. .

The LIBRARY command can perform all the functions listed above on object
library files. It can also create macro library files for use with the
MACRO-11 assembler. A library file is a direct-access file (a file that has a
directory) that contains one or more modules of the same type. The system
organizes library files so the linker and MACRO-11 assembler can access
them rapidly. Each library is a file that contains a library header, library
directory, and one or more object modules. The object modules in a library
file can be routines that are repeatedly used in a program, routines that are
used by more than one program, or routines that are related and simply
gathered together for convenience. An example of a typical object library file
is the default system library, SYSLIB.OBJ, used by the linker. An example
of a macro library file is SYSMAC.SML.

You access object modules in a library file by making calls or references to
their global symbols; you link the object modules with the program that uses
them by using the LINK command to produce a single executable module.
Each input file for an object library consists of one or more object modules,
and is stored on a device under a specific file name and file type. Once you
insert an object module into a library file, you no longer reference the mod-
ule by the file name of which it was a part; reference it by its individual mod-
ule name. For example, the input file FORT.OBJ may exist on DT2: and can

Keyboard Commands 4-113

4-114

contain an object module called ABC. Once you insert the module into a
library, reference only ABC, and not FORT.OBJ.

The input files normally do not contain main programs but only sub-
programs, functions, and subroutines. The library file must never contain a
FORTRAN BLOCK DATA subprogram because there is no undefined global
symbol to cause the linker to load it automatically.

The following sections describe the LIBRARY command options and explain
how to use them. The last section under this command describes the
LIBRARY prompting sequence and order of execution for commands that
combine two or more LIBRARY options. Chapter 12 contains more detailed
information on object and macro libraries.

/ALLOCATE:size Use this option only with /LIST or /OBJECT to reserve
space on the device for the output file. The value size represents the number
of blocks of space to allocate. The meaningful range for this value is from 1
to 32767. A value of -1 is a special case that allocates the largest area avail-
able on the device.

The following example uses /ALLOCATE to create the object library
MYLIB.OBJ from the object library MYFILE.OBJ. The argument, —1, is
specified with /ALLOCATE.

LIBRARY/0BJECT {MYLIB/ALLOCATE: -1 MYFILE

/CREATE Use this option by itself to create an object library. Specify a
library name followed by the file specifications for the modules that are to be
included in that library. The following command creates a library called
NEWLIB.OBJ from the modules contained in files FIRST.OBJ and
SECOND.OBJ.

+LIBRARY/CREATE NEWLIR FIRST,SECOND

/DELETE Use this option to delete an object module and all its associated

global symbels from the library. Specify the library name in the command

line. The system prompts you for the names of the modules to delete. The
prompt is:

Module name?

Respond with the name of a module. (Be sure to specify a module name and
not a global name.) Follow each module name with a carriage return. Enter
a carriage return on a line by itself to terminate the list of module names.
The following example deletes modules SGN and TAN from the library
called NEWLIB.OBJ.

+LIBRARY/NELETE NEWLIB
Module name? SGN
Module name? TAN
Module name?

/EXTRACT Use this option to extract an object module from a library and
store it in a file with the same name as the module and a file type of .OBdJ.

Keyboard Commands

You cannot combine this option with any other option. The system prompts
you for the name of the object module to be extracted. The prompt is:

Global?

If you specify a global name, the system extracts the entire module of which
that global is a part. Follow each glebal name with a carriage return. Enter
a carriage return on a line by itself to terminate the list of global symbols.
The following example shows how to extract the module ATAN from the
library called NEWLIB.OBJ and store it in file ATAN.OBJ on DX1:.

+LLIBRARY /EXTRACT
Librare? NEWLIB
File T DX1:ATAN
Global 7 ATAN
Global 7

/INSERT Use this option to insert an object module into an exisfing
library. Although you can insert object modules that have duplicate names,
this practice is not recommended because of the difficulty invelved in replac-
ing or updating these modules. Note that /INSERT is the default operation.
If you do not specify any option, insertion takes place. The following
example inserts the modules contained in the files THIRD.OBJ and
FOURTH.OBJ into the library called OLDLIB.OBJ.

+LIBRARY/INSERT OLDLIE THIRDsFOURTH

/LIST(:filespec] Use this option to obtain a directory listing of an object
library. The following example obtains a directory listing of OLDLIB.OBJ
on the terminal (the line printer is the default device).

+LIBRARY/LISTITT! OLDLIE

The directory listing prints global symbol names.

C

l-; >
4=
c
wn
2.
v je]
B
+
5
[
(=n
@

PR, S | 1 1l 43 A 1;
module column indicates a continued line. See Sect

to include module names in the directory listing.

[

You can also use /LIST with other options (except /MACRO) to obtain a
directory listing of an object library after you create or modify it. The follow-
ing command, for example, inserts the modules contained in the files
THIRD.OBJ and FOURTH.OBJ into the library called OLDLIB.OBJ; it
then prints a directory listing of the library on the terminal.

‘LIBRARY/INSERT/LIST:TT: OLDLIE THIRDsFQURTH
You cannot obtain a directory listing of a macro library.

Make sure when you use /LIST with LIBRARY that you use it on the com-
mand side of the command string, and not after the file specification.

/MACRO Use this option to create a macro library. Note that this is the
only valid function for a macro library. You can create a macro library, but

you cannot list or modify it. To update a macro library, simply edit the
ASCII text file and then reprocess the file with the LIBRARY/MACRO com-

Keyboard Commands 4-115

4-116

mand. The following example creates a macro library called NEWLIB.MAC
from the ASCII input file SYSMAC.MAC.

+LIBRARY/MACRO/CREATE NEWLIE SYSMAC

When you use /MACRO with LIBRARY, use it on the command side of the
command string, and not after the file specification.

/OBJECT!:filespec] The system creates object library files by default as a
result of executing a LIBRARY command. When you modify an existing
library, the system actually makes the changes to the library you specify,
thus creating a new, updated library that it stores under the same name as
the original library. Use this option to give a new name to the updated
library file and preserve the original library. The following example creates
a library called NEWLIB.OBJ, which consists of the library OLDLIB.OBJ
plus the modules that are contained in files THIRD.OBJ and FOURTH.OBJ.

+LIBRARY/INSERT/DRJECTINEWLIE OLDLIE THIRD.FOURTH

/NOOBJECT Use this option to suppress the creation of a new object
library as a result of a LIBRARY command.

/PROMPT Use this option to specify more than one line of input file speci-
fications in a LIBRARY command. This option is valid with all other library
functions except the /EXTRACT option. You must specify // as the last input
in order to terminate the input list. Note that the file specifications you
enter after typing the /PROMPT option must conform to Command String
Interpreter conventions. The following example creates a macro library
called MACLIB.MAC from seven input files.

+LIBRARY/MACRO/FROMFT MACLIE As Ry Cy U
¥EyF G
X//

/REMOVE This option permits you to delete a specific global symbol from
a library file’s directory. Since globals are deleted only from the directory
(and not from the object module itself), all the globals that were previously
deleted are restored whenever you update that library, unless you use
/REMOVE again to delete them. This feature lets you recover a library if
you have inadvertently deleted the wrong global. The system prompts you
for the names of the global symbols to remove. The prompt is:

Glohal?

Respond with the name of a global symbol to be removed. Follow each global
symbol with a carriage return. Enter a carriage return on a line by itself to
terminate the list of global symbols. The following example deletes the glob-
als GA, GB, GC, and GD from the library OLDLIB.OBJ.

+LIERARY/REMOVE OLDLIE
Global® Ba

Globz1? np

Global?® gC

Global? Go

Global?

Keyboard Commands

/REPLACE Use this option to replace modules in an existing object
library with modules of the same name contained in the files you specify.
The following example replaces a module called SQRT in the library

MATHLB.OBJ with a new module, also called SQRT, from the file called
MFUNCT.ORJ.

LIBRARY MATHLE MFUNCT/REPLACE

Note that the /REPLACE option must follow each file specification that con-
tains a module to be inserted into the hbrary Note also that you can use

Ty
1o g e A iy e AAdlaial "Aaxran shrawer Alaia)

T ACT
/REY LAV OnY with a modauiess), and never a 1 uULaLJ iiie(s).

/UPDATE This option combines the functions of /INSERT and
/REPLACE. Specify it after each file specification to which it applies. If the
modules in the input file already exist in the library, the system replaces
those library modules. If the modules in the input file do not exist in the

library, the system inserts them. The following example updates the library
OLDLIB.OBJ.

Note that the /UPDATE option must follow each file specification to which it
applies, and that you can use this option only with modules, not files.

You can combine the LIBRARY options with the exceptions of /EXTRACT
and /MACRO, which you cannot combine with most of the other functions.
Table 4-8 lists the sequence in which the system executes the LIBRARY
options and prompts you for additional information.

Table 4-8: Execution and Prompting Sequence of

LIBRARY Options
Option Prompt
/CREATE
/DELETE Module name?
/REMOVE Global?
/UPDATE
/REPLACE
/INSERT
/LIST

The following example combines several options.

LIBRARY/LISTITT!/REMOVE/INSERT NEWLIR LIB2/REFLACEsLIE3
Global? SORT

Global?
RT-11 LIBRARIAN V03.10 FRI 15-JUL~-79 00:08:37
NEWLIE FRI 13~-JuUbL-79 00308135
MODULE GLORALS - GLORALS GLOBALS
cas SIN
DATAN DATANZ
ATAN ATANZ
ncos OSIN

Keyboard Commands 4-117

4-118

The command executes in the following sequence:

1.

2
3.
4

Removes global SQRT from NEWLIB

Replaces any duplicates of the modules in the file LIB2.0BJ
Inserts the modules in the file LIB3.OBJ

Lists the directory of NEWLIB.OBJ on the terminal

Keyboard Commands

LINK

The LINK command converts object modules into a format suitable for load-
ing and execution.

- 7
LINK fINO] EXECUTE ([:filespec] SP) filespecs
IMAP [-filespec] [/[ALLOCATE:size] [/WIDE]

ILDA
IFOREGROUND [:stacksize]
IFILL:n

1 r

/BOTTOM:n
IFILL:n
IRUN
ISTACK [:n]

IALPHABETIZE
NNO] BITMAP
/BOUNDARY:value
IDEBUG [:filespec]
JEXTEND:n
INCLUDE
ILIBRARY:filespec
/LINKLIBRARY:filespec
IPROMPT
/ROUND:n
ISLOWLY
ISYMBOLTABLE
TopP

ITRANSFER [:n]
XM

The RT-11 system lets you separately assemble a main program and each of
its subroutines without assigning an absolute load address at assembly
time. The linker can then process the object modules of the main program
and subroutines to relocate each object module and assign absolute
addresses. It links the modules by correlating global symbols that are
defined in one module and referenced in another, and it creates the initial
control block for the linked program. The linker can also create an overlay
structure (if you specify the /PROMPT option) and include the necessary
run-time overlay handlers and tables. The linker searches libraries you
specify to locate unresolved global symbols, and it automatically searches
the default system subroutine library, SYSLIB.OBJ, to locate any remain-
ing unresolved globals. Finally, the linker produces a load map (if you spec-
ify /MAP) that shows the layout of the executable module. See Chapter 11
for a more detailed explanation of the RT-11 linker. The linker also can pro-
duce and STB file.

In the command syntax illustrated above, filespecs represents the object
modules to be linked. Each input module should be stored on a random-
access device (disk, diskette, DECtape, or DECtape II); the output device for
the load map file can be any RT-11 device. The output for an .LDA file (if
you specify /LDA) can also be any RT-11 device, even those that are not
block replaceable, such as paper tape.

The default file types are as follows:

Load Module : SAV,.REL(UFOREGROUND), .LDA(/LDA)
Map Output : .MAP
Object Module : .OBJ

Keyboard Commands 4-119

4-120

If you specify two or more files to be linked, separate the files by commas.
The system creates an executable file with the same name as the first file in
the input list (unless you use /EXECUTE to change it).

The LINK command options and explanations of how to use them follow.
Table 4-9 summarizes LINK prompting sequence for commands that com-
bine two or more LINK options.

Table 4-9: Prompting Sequence for LINK Options

Option Prompt
/TRANSFER Transfer symbol?
/ISTACK Stack symbol?
/EXTEND:n Extend section?
/BOUNDARY:value Boundary section?
/ROUND:n Round section?
/INCLUDE Library search?

If you combine any of the options listed in Table 4-9, the system prompts
you for information in the sequence shown in the table. Note that the
Library search? prompt is always last. This is the only prompt that accepts
more than one line as a response. For all the prompts, terminate your
response with a carriage return. Terminate your list of responses to the
Library search? prompt by typing an extra carriage return. Note that if the
command lines are in an indirect file and the system encounters an end-of-
file before all the prompting information has been supplied, it prints the
prompt messages on the terminal.

/ALLOCATE:ssize Use this option with /EXECUTE or /MAP to reserve
space on the device for the output file. The argument size represents the
number of blocks of space to allocate. The meaningful range for this value is
from 1 to 32767. A value of -1 is a special case that creates the largest file
possible on the device. When used with /EXECUTE, /ALLOCATE is valid
only when you are generating a .REL or .LDA file.

IATPHARETIZE Whan von nca thic ontion. tha linkar licte in tha lnad
JTALSIAADL AL wnen you use thls ¢plien, tne er 11sts 1n Ine icaa

3-89+

map your program’s global symbols in alphabetical order.

/BITMAP Use this option if you want the linker to create a memory usage
bitmap. This is the default setting.

/NOBITMAP Use this option if you do not want the linker to create a
memory usage bitmap. This option is useful if you are preparing your pro-
gram for ROM storage and its code lies between locations 360 and 377
inclusive. /BITMAP is the default setting.

/BOTTOM:n Use this option to specify the lowest address to be used by
the relocatable code in the load module. The argument n represents a six-
digit unsigned, even octal number. If you do not use this option, the linker

Keyboard Commands

positions the load module so that the lowest address is location 1000 (octal).
This option is invalid for foreground links.

/BOUNDARY:value Use the / BOUNDARY option to start a specific pro-
gram section on a particular address boundary. The system generates a
whole number muitiple of the value you specify for the starting address of
the program section. The argument value must be a power of 2. The system
extends the size of the previous program section to accommodate the new
starting address for the specific section. When you have entered the com-
plete LINK command, the system prompts you for the name of the section

i e ~ v
Ao o EE e o) oo manA FA v b

J— o 4~ vt A rma s [P IIY p-Pee
WI11UdDT dual bllls aull con yuu 11ccu v LI.I.ULUJ.J . 111T Frl}ll.ll}b 1S,
Boundary section?

Respond with the appropriate program section name and terminate your
response with a carriage return.

/DEBUG(:filespec] Use this option to link ODT (on-line debugging tech-
nique, described in Chapter 21) with your program to help you debug it. If
you supply the name of another debugging program, the system links the
debugger you specify with your program. The system links the debugger low
in memory relative to your program.

/EXECUTE[:filespec] Use this option to specify a file name or device for
the executable file. Because the LINK command creates executable files by
default, the following two commands have the same meaning:

,LINK MYFROG

LLINK/EXECUTE MYFROG

Both commands link MYPROG.OBJ and produce MYPROG.SAV as a
result. The /EXECUTE option has different meanings when it follows the

command and when it follows the file specification. The following command
creates an executable file called PROG1.SAV on device RK1.:.

+LINK/EXECUTEIRK1: FROG1,FROG2

The next command creates an executable file called MYPROG.SAV on
device DK:. ‘

LINK RTN1sRTNZ2yMYFROG/EXECUTE
/NOEXECUTE Use this option to suppress creation of an executable file.

/EXTEND:n This option allows you to extend a program section to a spe-
cific octal value n. The resultant program section size is equal to or greater
than the value you specify, depending on the space the object code requires.
When you have entered the complete LINK command, the system prompts
you for the name of the program section you need to extend. The prompt is:

Extend section?

Respond with the appropriate program section name, and terminate your
response with a carriage return.

Keyboard Commands 4-121

4-122

/FILL:n Use this option to initialize unused locations in the load module
and place a specific octal value n in those locations. Note that the linker
automatically initializes to O unused locations in the load module; use this
option to place another value in those locations. This option can be useful in
eliminating random results that occur when a program references uninitia-
lized memory by mistake. It can also help you to determine which locations
have been modified by the program and which remain unchanged.

/FOREGROUNDI:stacksize] This option produces an executable file in
relocatable ((REL) format for use as a foreground job under the FB or XM
monitor. You cannot use .REL files under the single-job system. This option
assigns the default file type .REL to the executable file. The argument stack-
size represents the number of bytes of stack space to allocate for the fore-

i T L. .
ground job. The value you supply is interpreted as an octal number; specify

an even number. Follow n with a decimal point (n.) to represent a decimal
number. The default value is 128 (decimal) (or 200 octal) bytes of stack
space. DIGITAL recommends that you allocate 256. bytes of stack space
when linking a FORTRAN program to run in the foreground.

/INCLUDE This option lets you take global symbols from any library and
include them in the linked memory image. When you have entered the com-
plete LINK command, the system prompts you for a list of global symbols to
include in the load module. The prompt is:

Library search?

Respond by typing the global symbols to be included in the load module.
Type a carriage return after each global symbol. Type a carriage return on a
line by itself to terminate the list. This option forces modules that are not
called by other modules to be loaded from the library.

/LDA This option produces an executable file in LDA format. The LDA-
format file can be output to any device, including those that are not block-
replaceable, such as the paper tape punch or cassette. The default file type
.LDA is assigned by /LDA to the executable file. This option is useful for files
that you need to load with the Absolute Binary Loader.

/LIBRARY This option is the same as /LINKLIBRARY. It is included

here oniy for system compatibility.

/LINKLIBRARY:filespec You can use this option to include the library
file you specify as an object module library in the linking operation. Because
the system automatically recognizes library files in the linking operation

you do not normally need this option; it is provided for compatibility with
the EXECUTE command.

/MAPI:filespeci You must specify this option to produce a load map list-
ing. The /MAP option has different meanings depending on where you put it
in the command line.

If you specify /MAP without a filespec in the list of options that immediately
follows the command name, the system generates a listing that prints on the
line printer. If you follow /MAP with a device name, the system creates a

Keyboard Commands

]

map file on that device. If the device is a file-structured device, the system
stores the listing file on that device, assigning it the same name as the first
input file and a .MAP file type. The following command produces a load map
on the terminal.

+LINK/MAFPITTE MYFROG

The next command creates a map listing file called MYPROG.MAP on RK3:.
LLINK/MAFIRK3: MYPROG

If the /MAP option contains a name and file type to override the default of
.MAP, the system generates a listing with that name. The following com-
mand, for example, links PROG1 and PROGZ2, producing a map listing file
called MAP.OUT on device DK:.

+LINK/MARP IMAF . OUT PROGL yFROG2

Another way to specify /MAP is to type it after the file specification to which
it applies. To link a file and produce a map listing file with the same name,
use a command similar to this one.

+LINK PROGLsFROGZ/EXECUTE/MAF

The command shown above links PROG1 and PROG2, producing files
PROG2.SAV and PROG2.MAP. If you specify a file name on a /MAP option
following a file specification in the command line, it has the same meaning
as when it follows the command.

/PROMPT Use this option to enter additional lines of input. The system
continues to accept lines of linker input until you enter two slashes (/).
Chapter 11 describes the commands you can enter directly to the linker.
When you use the /PROMPT option, note that successive lines of input must
conform to CSI conventions (see Chapter 6, Command String 'Interpreter).
The example that follows uses the /PROMPT option to create an overlay

structure for the program COSINE.MAC:

+LINK/FROMFT COSINE
*TAN/D 1

¥0081/001

*SIN3/02

xLML3 02/

The /PROMPT option also gives you a convenient way to create an overlaid
program from an indirect file. The file ANTON.COM contains these lines:

A/FROMFT
SUR1/0:1
SUR2/0%1
SUB3yBUR4/0L1L
e

The following command produces an executable file, DK:A.SAV, and a link
map on the printer.

LINK/ZMAF QANTON

Keyboard Commands 4-123

4-124

/ROUND:n This option rounds up the section you specify so that the size of
the root segment is a whole number of the value n you supply. The argument
n must be a power of 2. When you have entered the complete LINK com-
mand, the system prompts you for the name of the section that you need to
round. The prompt is:

Rournd section?

Respond with the appropriate program section name, and terminate your
response with a carriage return.

/RUN Use this option to initiate execution of the resultant .SAV file. This
option is valid for background jobs only. Do not use /RUN with any option

that requires a response from the terminal.

/SLOWLY This option instructs the system to allow the largest possible
memory area for the link symbol table at the expense of making the link
process slower. Use this option only if an attempt to link a program failed
because of symbol table overflow.

/STACKI[:n] This option lets you modify the stack address, location 42,
which is the address that contains the value for the stack pointer. When
your program executes, the monitor sets the stack pointer (SP) to the con-
tents of location 42. The argument »n is an even, unsigned, six-digit, octal
number that defines the stack address. When you have entered the complete
LINK command, the system prints the following prompt message if you did
not already specify a value for n:

Stack swembol?

Respond with the global symbol whose value is the stack address. You can-
not specify a number at this point. Terminate your response with a carriage
return. If you specify a nonexistent symbol, the system prints an error mes-
sage. It then sets the stack address to 1000 (for memory image files) or to the
bottom address if you used /BOTTOM.

/ISYMBOLTABLE[:filespec] When you use this option, the linker creates
a file that contains symbol definitions for all the global symbols in the load

mndnla Dhi‘ » tha ouvmhal +ahls Ala annn

T FRnnts athn 4hind ~ 0
LilUAIL . 10CT Al Oy vl va 01T 111l ayb\d;.{\,au;u.ﬂ as UG uiaira uuuyuu DPCb.ul'

cation in the LINK command line. If you do not specify a file name, the
linker uses the name of the first input file and assigns a .STB file type. By
default, the system does not create a symbol table file.

The following example creates the symbol table file BTAN.STB.

+ LINK BORJy ROB.J2 ADKRJ s ROBRJ/SYMROLTARLE I BTAN

TOP:value Use this option to specify the highest address to be used by
the relocatable code in the load module. The argument value represents an
unsigned, even octal number.

/TRANSFER[:n] The transfer address is the address at which a program

starts when you initiate execution with R RUN, FRUN, or SRUN. The
/TRANSFER ontion letg yvou specify the start address of the load meodule

AViaadNRS pravii iT WD Ve Spovixy wviil u L¥3 TOS Ui VAU 111UV UIC.

Keyboard Commands

The argument n is an even, unsigned, six-digit, octal number that defines
the transfer address. When you have entered the complete LINK command,
the system prints the following prompt message if you did not already spec-
ify a value for n:

Transfer sumbol?

Respond with the global symbol whose value is the transfer address. You
cannot specify a number at this point. Terminate your response with a car-
riage return. If you specify a nonexistent symbol, an error message prints
and the linker sets the transfer address to 1 so that the system cannot exe-
cute the program. If the transfer address you specify is odd, the program
does not execute after loading, and control returns to the monitor.

/WIDE Use this option with /MAP to produce a wide load map listing. Nor-
mally, the listing is wide enough for three Global Value columns, which is
suitable for paper with 72 or 80 columns. The /WIDE option produces a list-
ing that is six Global Value columns wide, which is equivalent to 132
columns.

Table 4-9 lists the sequence in which the system prompts you for additional
information when you combine LINK options.

/XM When you use this option, you enable special .SETTOP and .LIMIT
features provided in the XM monitor. This option allows a virtual job to map
a scratch region in extended memory with the .SETTOP programmed
request. See the RT-11 Programmer’s Reference Manual and the RT-11

Software Support Manual, for more details on these special features. Do not
use with /FOREGROUND.

If you want to create an extended memory overlay structure for your pro-
gram, use the /PROMPT option. You can then specify on subsequent lines
the overlay structure using the LINK /V option (see Chapter 11 of this man-

N Nat 3
ual). Note that when you use /V to create an overlay structure, the linker

automatically enables the special .SETTOP and .LIMIT features.

Keyboard Commands 4-125

4-126

LOAD

The LOAD command loads a device handler into memory for use with fore-
ground, background, or system jobs, or BATCH.

LOAD device [=jobname] . . .device [= jobnamel)

In the command syntax shown above, device represents the device handler
to be made resident; jobtype assigns the device handler to the background
job if it has the value B, or to the foreground or system job if it has the value
F. The jobtype specification is invalid with the SJ monitor. Under a monitor
that has system job support, jobtype can be the logical job name of a system
job.

The LOAD command helps control system execution by bringing a device
handler into memory and optionally allocating the device to a job. The sys-
tem allocates memory for the handler as needed. Before you use a device in a
foreground program with the FB monitor, or any device at all with the XM
monitor, you must first load the device handler. A device can be owned
exclusively by either the foreground, background, or system job. (Note that
BATCH, if running, is considered to be a background job under the FB and
XM monitors.) This exclusive ownership prevents the input and output of
two different jobs from being intermixed on the same non file-structured
device. In the following example, magtape belongs to the background job,
while DECtape is available for use by either the background, foreground, or
system job; the line printer is owned by the foreground job. All three han-
dlers are made resident in memory.

LLOAD DT s MT =By LFI=F

For a monitor with system job support, the following example reserves the
line printer for the system job QUEUE.

LLOAD LLF:=QUEUE

Different units of the same random-access device controller can be owned by
different jobs. Thus, for example, DT1: can belong to the background job,
while DT5: can belong to the foreground or system job. If no ownership is
indicated, the device is available for public use.

NOTE

If you use the LOAD command to load a non-file-structured
device handler, and assign ownership of that handler to a
give example job, all units of that particular device become
assigned to that job. This means, no other job can use any
unit of that particular device.

To change ownership of a device, use another LOAD command. It is not nec-
essary to first unload the device. For example, if the line printer has been
loaded into memory and assigned to the foreground job as in the example

4 LE Caallll’

Keyboard Commands

above, the following command reassigns it to the background job without
unloading the handler first.

L0AD ILFi=

Note, however, that if you interrupt an oper ation that involves magtape or
cassette, you must unload (with the UNLOAD command) then load the
appropriate device handler (MM, MT, MS, or CT). When using the MT han-
dler with the FB monitor, this restriction does not apply.

Vaon cannot asgion ownershin of the system unit (the uni vou 1 boo q’rram)ed)

L UU VRV v QSSinis UVWIaTA Sl V2 S22T SCIIl Wilie Ll

of a system device, and any attempt to do so is ignored. Yo u can, however
assign ownership of other units of the same type as the system device.
LOAD is valid for use with logical names. For example:

+ASSIGN RK? XY
+LOAD XYi=

If you are using a diskette, loading the necessary device handlers into mem-
ory can improve system performance significantly, since no handlers need to
be loaded dynamically from the diskette. Use the SHOW command to dis-
play on the terminal the status of device handlers and device ownership.

Keyboard Commands 4-127

4-128

MACRO

The MACRO command invokes the MACRO assembler to assemble one or
more source files.

MACRO ILIST [filespec) /ALLOCATE:size] . filespecs | /LIBRARY
[[NO] OBJECT [:filespec] [J[ALLOCATE:size] IPASS:1

ICROSSREFERENCE [:typel. . .:type]]
IDISABLE:value [. . .:value)
{ENABLE:value [. . .:value]

INO] SHOW [:value]

In the command syntax shown above, filespecs represents one or more files to
be included in the assembly. If you omit a file type for an input file, the sys-
tem assumes .MAC. Output default file types are .LST for listing files and
.OBJ for object files.

To assemble multiple source files into a single object file, separate the files
by plus (+) signs in the command line. Unless you specify otherwise, the
system creates an object file with the same name as the first input file and
gives it an .OBJ file type To assemble multiple files in independent assem-
blies, separate the files by commas (,) in the command line. This generates a
corresponding object file for each set of input files.

Language options are position-dependent — that is, they have different
meanings depending on where you place them in the command line. Options
that qualify a command name apply across the entire command string.
Options that follow a file specification apply only to the file (or group of files
separated by plus signs) that they follow in the command string.

You can enter the MACRO command as one line, or you can rely on the sys-
tem to prompt you for information. The MACRO command prompt is Files?
frvr tha 1nnnat o

for the iInpuv opcuﬁ\,at;uu The s aybuclu pr ints on the terminal the number of
errors MACRO detects during an assembly, as this printout shows:

+MACRO/CROSSREFERENCE FROG1+FROG2/LIST/0BJECT
ERRORS LETECTED: ©

Chapter 10 and the PDP-11 MACRO Language Reference Manual contain
more detailed information about using MACRO. The options you can use
with the MACRO command follow.

/ALLOCATE:size Use this option with /LIST or /OBJECT to reserve
space on the device for the output file. The argument size represents the
number of blocks of space to allocate. The meaningful range for this value is
from 1 to 32767. A value of -1 is a special case that creates the largest file
possible on the device.

/CROSSREFERENCEI(:typel....type] Use this option to generate a sym-
bol cross-reference section in the listing. This information is useful for pro-
gram maintenance and debugging. Note that the system does not generate a

Keyboard Commands

listing by default. You must also specify /LIST in the command line to get a
cross-reference listing. The argument type represents a one-character code
that indicates which sections of the cross-reference listing the assembler
should include. Table 4-10 summarizes the arguments and their meaning.

Table 4-10: Cross-reference Sections

Argument Section Type

User-defined symbols
Register symbols

Macro symbolic names

Permanent symbols (instructions, directives)
Control sections (. CSECT symbolic names)
Error codes

no argument | Equivalent to :S:M:E

HMQUZD®

/DISABLE:valuel...:value] Use this option to specify a MACRO .DSABL
directive. See the PDP-11 MACRO Language Reference Manual for a
description of the directive and a list of all legal values. Table 4-11 summa-
rizes the arguments and their meaning.

Table 4-11: .DSABL and .ENABL Directive Summary

Argument Default | Enables or Disables

ABS disable Absolute binary output

AMA disable Assembles all absolute addresses as relative addresses

CDR disable Treats source columns 73 and greater
as comments

FPT disable Floating-point truncation

GBL disable Treats undefined symbols as globals

LC disable Accepts lower case ASCII input

LSB disable Local symbol block

PNC enable Binary output

REG enable Mnemonic definitions of registers

/ENABLE:vatluel....value] Use this option to specify a MACRO .ENABL
directive. See the PDP-11 MACRO Language Reference Manual for a
description of the directive and a list of all legal values. Table 4-11 summa-
rizes the arguments and their meaning.

/LIBRARY This option identifies the file it qualifies as a library file; use it
only after a library file specification in the command line. The MACRO
assembler looks first to the library file or files you specify and then to the
system library, SYSMAC.SML, to satisfy references (made with the
.MCALL directive) from MACRO programs. In the example below, the com-
mand string includes two user libraries.

+MACRO MYLIE1/LLIRRARY+A+MYLIR2/LIRRARY+H

When MACRO assembles file A, it looks first to the library, MYLIB1.MAC,
and then to SYSMAC.SML to satisfy MCALL references. When it assem-

Keyboard Commands 4-129

4-130

bles file B, MACRO searches MYLIB2.MAC, MYLIB1.MAC, and then SYS-
MAC.SML, in that order, to satisfy references.

/LISTI:filespec] You must specify this option to produce a MACRO assem-

bly listing. The /LIST option has different meanings depending on where

you place it in the command line.

The /LIST option produces a listing on the line printer when /LIST follows
the command name. For example, the following command line produces a
line printer listing after compiling a MACRO source file:

+MACRO/LIST MYFROG<RET:

When the /LIST option follows the file specification, it produces a listing file.
For example, the following command line produces the listing file
DK:MYPROG.LST after compiling a MACRO source file:

MACRO MYFROG/LIST<RET:

If you specify /LIST without a file specification in the list of options that
immediately follows the command name, the MACRO assembler generates
a listing that prints on the line printer. If you follow /LIST with a device
name, the system creates a listing file on that device. If the device is a file-
structured device, the system stores the listing file on that device, assigning
it the same name as the input file and a .LST file type. The following com-
mand produces a listing on the terminal.

+MACRO/LISTITT: A
The next command creates a listing file called A.LST on RK3..
+MACRO/LIST!RK3: A

If the /LIST option contains a name and file type to override the default of
.LST, the system generates a listing file with that name. The following com-
mand for example, assembles A.MAC and B.MAC together, producing files
A OBJ and FILE1.QUT on device DK:

VIVY 3743

+MACRO/ZLISTIFILEL.QUT A+R

1 + Ton 4hain neemamaT &
You cannot use a command like the next one. In this example, &

listing file would replace the first one and cause an error.

R |
11€ BSEeCLIIU

+MACRO/LISTIFILER AR

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input
file, you can use a command similar to this one:

+MACRO A+B/LISTIRKI!

The above command assembles AMAC and B.MAC, producing files
DK:A.OBJ and RK3:B.LST. If you specify a file name on a /LIST option fol-
lowing a file specification in the command line, it has the same meaning as

Keyboard Commands

P

when it follows the command. The following two commands have the same
results:

+MACRD A/LISTIR

JMACRO/LISTIE A
Both commands generate output files A.OBJ and B.LST.

Remember that file options apply only to the file (or group of files that are
separated by plus signs) they follow in the command string. For example:

+MACRO A/LIST»R

This command assembles A.MAC, producing A.OBJ and A.LST. It also
assembles B.MAC, producing B.OBJ. However, it does not produce any list-
ing file for the assembly of B.MAC.

/OBJECT(:filespec] Use this option to specify a file name or device for the
object file. Because MACRO creates object files by default, the following two
commands have the same meaning:

+MACRO A

+MACRO/0BJECT A

Both commands assemble A.MAC and produce A.OBJ as output. The
JOBJECT option functions like the /LIST option; it can be either a command
or a file qualifier.

As a command option, /OBJECT applies across the entire command string.
The following command, for example, assembles A.MAC and B.MAC sepa-
rately, creating object files A.OBJ and B.OBJ on RK1..

+MACRO/0OBJECTIRKL?! AvE

Use /OBJECT as a file option to create an object file with a specific name or
destination. The following command assembles A.MAC and B.MAC
together, creating files B.LST and B.OBJ.

JMACRD A+R/LIST/ORJECT

/NOOBJECT Use this option to suppress creation of an object file. As a
command option, NOOBJECT suppresses all object files; as a file option, it
suppresses only the object file produced by the related input files. In this
command, for example, the system assembles A.MAC and B.MAC together,
producing files A.OBJ and B.LST. It also assembles C.MAC and produces
C.LST, but does not produce C.OBJ.

TMACRO A+R/LIST»C/NOQRJECTZLIST

/PASS:1 Use this option on a prefix macro file to process that file during
pass 1 of the assembly only. This option is useful when you assemble a
source program together with a prefix file that contains only macro defini-
tions, since these definitions do not need to be redefined in pass 2 of the

Keyboard Commands 4-131

4-132

assembly. The following command assembles a prefix file and a source file
together, producing files PROG1.0BJ and PROG1.LST.

+MACRO PREFIX.MAC/FASS!1+FROGL/LIST/0RJECT

/SHOW:value Use this option to specify any MACRO .LIST directive. The
PDP-11 MACRO Language Reference Manual explains how to use these
directives. Table 4-12 summarizes the arguments and their meaning. Note
that you must explicitly request a listing file with the /LIST option.

Table 4-12: .LIST and .NLIST Directive Summary

Argument | Default Controls
SEQ list Source line sequence numbers
LOC list Location counter
BIN list Generated binary code
BEX list Binary extensions
SRC list Source code
COM list Comments
MD list Macro definitions, repeat range expansions
MC list Macro calls, repeat range expansions
ME nolist Macro expansions
MEB nolist Macro expansions binary code
CND list Unsatisfied conditionals, .IF and .ENDC statements
LD nolist Listing directives with no arguments
TOC list Table of Contents
TT™M line printer | Output format
mode
SYM list Symbol table

/NOSHOW:value Use this option to specify any MACRO .NLIST direc-
tive. The PDP-11 MACRO Language Reference Manual explains how to use

1 1 1 - Ao e 4l ndae
these directives. Table 4-12 summarizes the valid arguments and theii

meaning. Note that you must explicitly request a listing file with the /LIST
option.

Keyboard Commands

————

PRINT

The PRINT command lists the contents of one or more files on the line
printer.

ELETE
/INO} LOG
INEWFILES
IPROMPT
1 IGQUERY |

-
PRINT [/COPIES:n l filespecs

IWAIT
/[NO) FLAGPAGE
INAME:jobname

In the command syntax illustrated above, filespecs represents the file or files
to be printed. You can explicitly specify up to six files as input to the PRINT
command. The system prints the files in the order in which you specify them
in the command line. You can also use wildcards in the file specification. In
this case, the system prints the files in the same order that they occur in the
directory of the specified device. If you specify more than one file, separate
the files by commas. If you omit the file type for a file specification, the sys-
tem assumes .LST. You can specify the entire command on one line, or you
can rely on the system to prompt you for information. The PRINT command
prompt is Files?.

If you are running QUEUE as either a foreground or system job, many of the
PRINT commands are executed by this program, therefore, the keyboard
monitor may return the dot prompt immediately. See Chapter 20, Queue
Package, for more information. If QUEUE is not running, some PRINT
options are invalid (as noted). Likewise, some PRINT options are invalid if
QUEUE is running. You should use the LOAD command to assign own-
ership of a non-file structured device to QUEUE so that another job and
QUEUE will not intermix output on that device.

The PRINT command options follow; they include command examples.

/COPIES:n Use this option to print more than one copy of the file. The
meaningful range of values for the decimal argument r is from 1 to 32 (1 is
the default). This option must appear immediately after the PRINT com-
mand, and not after the file specification. The following command, for
example, prints three copies of the file REPORT.LST on the line printer.

JFRINT/COFIES:3 REFORT

/DELETE Use this option to delete a file after it lists on the line printer.
This option must appear following the command in the command line. The
PRINT/DELETE operation does not ask you for confirmation before it exe-

cutes. You must use /QUERY for this function. The following example
prints PROG1.BAS on the line printer, then deletes it from DX1:.

JFRINT/DELETE DX1:FPROGL.RBAS

Keyboard Commands 4-133

4-134

/[FLAGPAGE:n Use this option if you want banner pages for each file
being printed, where n represents the number of banner pages you want for
each file. This option is valid only if you are running QUEUE. If you specify
more than one file to be printed, QUEUE prints a banner page for each file.

The banner page that QUEUE creates consists of a page showing the file
name in large, block letters. The banner page also includes a trailer that
lists the job name, the date and time the job was output, the copy number
and number of copies in the job, and the input file specification.

NOTE

If you use the PRINT command to output files, and QUEUE
is running, you may get banner pages even when you do not
specify /FLAGPAGE. This condition is due to a default
value you can set when you run QUEMAN, the background
job that serves as an interface between you and QUEUE.
The QUEMAN /P option sets the default number of banner
pages for output jobs, so that each time you output a job,
you get banner pages. This condition remains in effect until
you reset it with the QUEMAN /P option. For more infor-
mation on QUEMAN and the /P option, see Chapter 20,
Queue Package.

The following example prints three banner pages for each file in the com-
mand line.

+FRINT/FLLAGFAGE?!3 FROGL.MACYFROGL.LSTFROGL.STR

/NOFLAGPAGE Use this option if you do not want any banner pages
printed for each of the files in the job you want printed. Use this option only
if you are running QUEUE. This option is useful if you have previously set
QUEMAN’s /P option to create banner pages each time a job is output (see
note above). The default setting is/ NOFLAGPAGE unless you specify other-
wise with the QUEMAN /P option.

/LOG This option lists on the terminal the names of the files that are
printed by the current command. Normally, the system prints a log only if
there is a wildeard in the file specification. If you specify /QUERY, the guery
messages replace the log, unless you specifically type /LOG/QUERY in the
command line. The following example shows a PRINT command and the
resulting log.

+PRINT/LOG/DELETE REFORT
Files coried/deleted?

DKIREFORT.LST to LF:

This option is invalid if QUEUE is running.

/NOLOG This option prevents a list of the files copied from typing out on
the terminal. You can use this option to suppress the log when you use a
wildcard in the file specification. This option is invalid if QUEUE is
running.

Keyboard Commands

/NAME:[dev:]jobname Use this option to specify a job name for the files
you want printed. This option is valid only if you are running QUEUE. You
can use up to six alphanumeric characters for the job name. If you do not use
the /NAME option, the system uses the first input file name as the job name.
If you specify a device with the job name, you can send the files to that
device, permitting you to send files to any valid RT-11 device. If you send
the files to a mass storage volume, the system uses the job name as the file
name for the job, assigning a .JOB file type. Note that the handler for the
output device must be loaded in memory (see the LOAD command

h] b i’ AY
aescripuion).

The following example sends JOB5, consisting of FILE1.LST, FILE2.LST,
and FILE3.LST, to DX1.:.

(FRINT/NAME$DX13JOES FILEL,FILE2,FILE3
The files from this example reside on DX1: as JOB5.JOB.

/NEWFILES Use this option in the command line if you need to print only
those files that have the current date. The following example shows a con-
venient way to print all new files after a session at the computer.

JPFRINT/NEWFILES X, 8T
Files coried?

DK:OUTFIL.LST to LF?
IKIREFPORT..LST to LP?

This option is invalid if QUEUE is running.

/PROMPT Use this option to continue a command string onto subsequent
lines. This option is valid only if you are running QUEUE. When you use
/PROMPT, you can enter file specifications on subsequent lines directly to
QUEMAN, described in Chapter 20. Terminate the command with two
slashes (//).

The following example uses /PROMPT to print FILE1,FILE2 FILE3,FILE4,
and FILE5:

PRINT/PROMPT FTLEA
*FILE2y FILE3
*FILEA4

*FILES//

/QUERY If you use this option, the system requests confirmation
from you before it performs the operation. /QUERY is particularly useful on
operations that involve wildcards, when you may not be sure which files the
system selected for an operation. Note that if you specify /QUERY in a
PRINT command line that also contains a wildcard in the file specification,
the confirmation messages that print on the terminal replace the log mes-
sages that would normally appear. You must respond to a query message by
typing Y (or anything that begins with Y) and a carriage return to initiate
execution of a particular operation. The system interprets any other

Keyboard Commands 4-135

4-136

response to mean NO; it does not perform the specific operation. The follow-
ing example uses /QUERY.

+ PRINT/QUERY X.LST

Files coried?
DR:OUTFIL.LST to LFI7 N
DKIREPORT.LST to LFI? vy

This option is invalid if QUEUE is running.

/WAIT This option is useful if you have a single-disk system. When you
use this option, the system initiates the PRINT operation, but then pauses
and waits for you to mount the volume from which you want the operation to
take place. When the system pauses, it prints Mount input volume in
<device>; Continue?. When the volume is mounted, type Y followed by a
carriage return.

The following command line prints ERREX.MAC from RKO:

+PRINT/WAIT RKO!ERREX.MAC
Mournt inPput volume in RKO!F Contirue?y
Mount sustem volume in RKO!? ContirueTy

In the case of PRINT, the system prints the file or files you specify before it
prints Mount system volume in <device>; Continue?. Make sure when you
use /WAIT that PIP is on the system volume. This option is invalid if
QUEUE is running.

Keyboard Commands

it

R

The R command loads a memory image file from the system device into
memory and starts execution.

R filespecs

In the command syntax shown above, filespec represents the program to be
executed. The defauit file type is .SAV. The oniy valid device is SY:. The R
command is similar to the RUN command except that the file you specify in
an R command string must be on the system device (SY:). Use the R com-
mand only with background jobs including privileged jobs in XM. (Use
FRUN to execute a foreground job under the FB or XM monitor.) The follow-
ing command loads and executes MYPROG.SAYV from device SY:.

+R MYFROG

The R command is the only monitor command that can execute a back-
ground virtual job under the XM monitor. The R command creates a virtual
memory partition for the job, creates a region 0 and window 0 definition
block, and sets up the user mapping registers.

Keyboard Commands 4-137

4-138

REENTER

The REENTER command starts the program at its reentry address (the
start address minus 2).

REENTER

The REENTER command accepts no options or arguments. REENTER does
not clear or reset any memory areas. Use it to avoid reloading the same pro-
gram for subsequent execution. You can use REENTER to return to a sys-
tem program or to any program that allows for a REENTER after the
program terminates. You can also use REENTER after you have used two
CTRL/Cs to interrupt those programs.

If you issue the REENTER command and it is not valid, the message
2KMON-F-Illegal command is printed. You must start that program with
an R or RUN command.

In the following example the directory program (DIR) lists the directory of
DK: on the line printer. Two CTRL/Cs interrupt the listing and return to the
monitor. REENTER starts DIR at its reentry address, and DIR prompts for a
line of input.

R DIR
KL =IIK X X

~C
.
-~

REENTER
X

Note in the example above that using REENTER does not mean that the
directory listing continues from where it was interrupted, only that the
DIRECTORY program re-commences execution.

Keyboard Commands

it

REMOVE

The REMOVE command removes a device name from the system tables.

REMOVE device [,.. . device]

In the command syntax shown above, device represents the device to be
removed from the system tables. The REMOVE command accepts no
options. You can enter the REMOVE command on one line, or you can rely
on the system to prompt you for information. The REMOVE command
prompt is Device?.

Using the REMOVE command does not change the monitor disk image; it
only modifies the system tables of the monitor currently in core. This allows
you to configure a special system for a single session at the computer with-
out having to reconfigure to return to your standard device configuration.
Bootstrapping the system device restores the original device configuration.
To permanently REMOVE a device, include the REMOVE command in the
standard system startup indirect command file.

You cannot remove SY: (the handler for the system device), BA: (the
BATCH handler), or TT: (the terminal handler). If you attempt to REMOVE
a device that does not exist in the running monitor’s system table, the sys-
tem prints an error message. You can use the INSTALL command to install
a new device after using the REMOVE command to remove a device (thus
creating a free device slot).

The following command removes the line printer handler and the card
reader handler from the system. Note that the colons (:) are optional.

. REMOVE LF!sCR?E

Use the SHOW command to display on the terminal a list of devices that are
currently available on your system.

Keyboard Commands 4-139

4-140

RENAME

The RENAME command assigns a new name to an existing file.

RENAME | [INO] LOG inputfilespecs outputilespecs

INO) PROTECTION
IQUERY

INO] REPLACE
ISETDATE
ISYSTEM

IWAIT

In the command syntax illustrated above, input-filespecs represents the files
to be renamed, and output-filespec represents the new name. You can specify
up to six input files, but only one output file. Note that the device specifica-
tion must be the same for input and output; you cannot rename a file from
one device to another. If a file exists with the same name and file type as the
output file you specify, the system deletes the existing file unless you use the

/NOREPLACE option to prevent this.

So that you do not rename system (.SYS) files by accident when you use a
wildcard in the file specification, the system requires you to use the /SYS-
TEM option when you need to rename system files. To rename files that
cover bad blocks (.BAD files), you must explicitly give the file name and file
type of the specified .BAD file. Since .BAD files cover bad blocks on a device,
you usually do not need to rename or otherwise manipulate these files.

Note that because of the file protection feature, you cannot execute any
RENAME operations that result in deleting a protected file. For example,
you cannot rename a file to the name of a protected file that already exists
on the same volume.

The options you can use with the RENAME command follow.

/LLOG This option lists on the terminal the files that were renamed by the
current command. Normally, the system prints a log only if there is a wild-
card in the file specification. If you specify /QUERY, the query messages
replace the log (unless you specifically type /LOG/QUERY in the command
line).

This example demonstrates logging.

JRENAME DXO! (AX.MAC X FOR)
Files renamed:

X0 1ARC .. MAC to NXO1ABRC.FOR
X0 1 AAF . MAC Lo DX0:AAF.FOR

/NOLOG This option prevents a list of the files that are renamed from
appearing on the terminal.

/NEWFILES Use this option in the command line if you want to rename
only those files that have the current date. This is a convenient way to
access all new files after a session at the computer.

Keyboard Commands

-

/PROTECTION Use this option to give a file protected status so that it
cannot be deleted until you disable that status. Note that if a file is pro-
tected, you cannot delete it implicitly. For example, you cannot perform any
operations on a file that result in deleting a protected file. You can change a
protected file’s name, but not its protected status, unless you also use the

/NOPROTECTION option.

/NOPROTECTION Use this option to enable a file for deletion. This
option disables a file’s protected status.

1T TTITRCY T, i i i1] g ~ i
HATRE 124§ IT you uge Tnis opLion Tne gvsiem reaguiagis connrmanion
I RdAV & 4L yUU UDT vl Upuivill, ViLT) PULiil LU uTiou VAULILEL AL VAU AR

from you before it performs the operation. /QUERY is particularly useful on
operations that involve wildcards, when you may not be sure which files the
system selected for the operation. Using the /QUERY option also provides a
quick way of performing operations on several files. For example, renaming
several files is easier if you use /QUERY. You can then specify Y for each file
you want renamed, as the following example shows.

TRENAME/ZQUERY X%.BAK X.MAC
Files renamed:

DK IPROGL « BAK to DKIPROGL.MAC 7
NRKIFROG2 . BAK to DKIFROG2.MAC
IKIFPROGS . BAK to DKIFROGS.MAC 7
DK {LMLBA . BAK to DK!LMLBA.MAC
DKILMLY +BAK to DKILMLS? MAC

fat

Y
Y
Y

o) o=}

Y

Note that if you specify /QUERY in a command line that also contains a
wildcard in the file specification, the confirmation messages that print on
the terminal replace the log messages that would normally appear. You
must respond to a query message by typing Y (or anything that begins with
Y) and a carriage return to initiate execution of a particular operation. The
system interprets any other response to mean NO; it does not perform the
specific operation. The following example demonstrates querying.

JRENAME/ZQUERY IIX0O! (FIF1.54V FIF.SAV)
Files renamed?
DXOIFIP1.8AV to DXO:FIF.S5AV Y

/REPLACE This is the default mode of operation for the RENAME com-
mand. If a file exists with the same name as the file you specify for output,
the system deletes that duplicate file when it performs the rename
operation.

/NOREPLACE This option prevents execution of the rename operation if
a file with the same name as the output file you specify already exists on the
same device. The following example uses /NOREPLACE. In this case, the
output file already existed and no action occurs.

+RENAME /NOREFLLACE DXO:!TEST.SAV IX0:DUF.SAV
PRIF-W-0Outrut file foundy no oreration rerformed DXO!TEST.SAV

/SETDATE This option causes the system to put the current date on all
files it renames, unless the current system date is not set. Normally, the sys-

Keyboard Commands 4-141

4-142

tem preserves the existing file creation date when it renames a file. The fol-
lowing example renames files and changes their dates.

+ RENAME/SETDATE DXO0$! (X.FOR %.,0LID
Files renamed?

DXO:ARC.FOR to DXO3ARC.OLD

DX03AAF .FOR to DXOiAAF,.OLD

DXOIMERGE.FOR to DXO!MERGE.OLD

/SYSTEM Use this option if you need to rename system (.SYS) files. If you
omit this option, the system files are excluded from the rename operation

and a message is printed on the terminal to remind you of this. This example
renames MM.SYS to MX.SYS.

+ RENAME/SYSTEM DIXOIMM.SYS DXOIMX.SYS

/WAIT This option is useful if you have a single-disk system. When you
use this option, the system initiates the RENAME operation, but then
pauses and waits for you to mount the input volume on which the operation
is to take place. When the system pauses, it prints Mount input volume in
<device>; Continue? where <device> represents the device into which you
mount the volume. When the volume is mounted, type Y followed by a car-
riage return.

The following command line renames PRIAM.TXT to NESTOR.TXT.
PRIAM.TXT is on an RKO05 disk.

+ RENAME/WAIT/NOLOG RRKOIPRIAM.TXT NESTOR.TXT
Mount inPut volume in RKO!F Continue?Y
Mount sustem volume in RKO!# Continue?Y

Keyboard Commands

RESET

The RESET command resets several background system tables and does a
general clean-up of the background area.

RESET

The RESET command accepts no options or arguments.

It causes the system to purge all open input/output channels, initialize the
user program memory area, and release any device handlers that were not
explicitly made resident with the LOAD command. It also disables CTRL/O,
clears locations 40-53, and resets the KMON (keyboard monitor) stack
pointer. Use RESET before you execute a program if a device or the monitor
needs reinitialization, or when you need to discard the results of previously
issued GET commands. The RESET command has no effect on the fore-
ground or system job. The following example uses the RESET command
before running a program.

+RESET
R MYFROG

Keyboard Commands 4-143

4-144

RESUME

The RESUME command continues execution of the foreground or system job
from the point at which a SUSPEND command was issued.

RESUME [jobname]

If you have system job support enabled on your monitor, the RESUME com-
mand must be followed by the name of the foreground or system job you wish
to resume. (The RESUME command accepts logical job names.) If you do not
have system job support enabled on your monitor, do not include the name of
the foreground job you wish to resume. When you issue the RESUME com-
mand, the foreground or system job enters any completion routines that
were scheduled while the job was suspended. Note that RESUME is valid
only with the FB and XM monitors. The following command resumes execu-
tion of the foreground job that is currently suspended.

+ RESUME

The next command resumes execution of the system job, QUEUE.SYS, that
is currently suspended.

+ RESUME QUEUE

You can also use the RESUME command to start a foreground job that you
loaded with FRUN using /PAUSE. Likewise, you can use RESUME to start
a system job that you loaded with SRUN using /PAUSE.

Keyboard Commands

-

RUN

The RUN command loads a memory image file into memory and starts
execution.

RUN filespec input-list [output-lis(}
argument

In the command syntax illustrated above, filespec represents the program to
be executed. The system assumes a .SAV file type for the executable file,
which can reside on any RT-11 block-replaceable device. The default device
is DK:. The RUN command automatically loads the device handler for the
device you specify if it is not already resident. This eliminates the need to
explicitly load a device handler when you run an overlaid program from a
device other than the system device. The RUN command executes only those
programs that have been linked to run as background jobs. (Use FRUN to
execute foreground jobs under the FB or XM monitor.)

RUN is a combination of the GET and START commands. First it loads a
memory image file from a storage device into memory. Then it begins execu-
tion at the program’s transfer address. You can use RUN to execute a privi-
leged job under the XM monitor the same way you execute any other
background job in FB or SJ. However, a virtual job in XM requires special
preparation for execution. You must use the R command to execute a back-
ground virtual job. The R command creates a virtual memory partition for
the job, creates a region 0 and window 0 definition block for the partition,
and sets up the user mapping registers. The following command, for
example, executes MYPROG.SAYV, which is stored on device DX1:.

+ RUN DX1iMYPROG

You can also pass an argument in the RUN command to the program, or
specify a list of input and output. This allows you to specify a line of input for
a user program or for a system utility program (which accepts file specifica-
tions in the special syntax described in Chapter 6). The system automati-
cally converts the input list and the output list you specify into a format that
the Command String Interpreter accepts. For example, to execute the direc-
tory program (DIR) and obtain a complete listing of the directory of DX1: on
the printer, you can use the following command.

SRUN DIR DXL3kex LFI/E

+

Keyboard Commands 4-145

4-146

This command has the same effect as the following lines.

+RUN THIR
XLF 3 /E=DX1 1%, %
xC

*

Note that when you use either an argument or an input list and output list
with RUN, control returns to the monitor when the program completes.

Keyboard Commands

i

SAVE

The SAVE command writes memory areas in memory image format to the
file and device that you specify.

SAVE filespec [parameters]

In the command syntax shown above, filespec represents the file to be saved
on a block-replaceable device. If you do not specify a file type, the system
uses .SAV. The parameters represent memory locations to be saved.

Parameters are of the form:
address[-address(2)][,address(3)[-address(n)]]
where:

address is an octal value representing a specific block of memory
locations to be saved. If you specify more than one address,
each address must be higher than the previous one

RT-11 transfers memory in 256-word blocks, beginning on
boundaries that are multiples of 256 (decimal). If the loca-
tions you specify make a block that is less than 256 words,
the system saves additional words to make a 256-word block

The system saves memory from location 0 to the highest memory address
specified by the parameter list or to the program high limit (location 50 in
the system communication area). Initially, the system gives the start
address and the Job Status Word the default value 0 and sets the stack to
1000. If you want to change these or any of the following addresses, you can
use the Deposit command to alter them and the SAVE command to save the
correct areas.

Area Location
Start address 40
Stack 42
JSW 44
USR address 46
High address 50
Fill characters 56

If you change the values of the addresses, it is your responsibility to reset
them to their default values. For more information concerning these
addresses refer to the RT—11 Programmer’s Reference Manual. Note that
the SAVE command does not write the overlay segments of programs; it
saves only the root segment. You cannot use the SAVE command for fore-
ground or virtual jobs.

Keyboard Commands 4-147

4-148

The following command saves locations 10000 through 11777, and 14000
through 14777. It stores the contents of these locations in the file
FILE1.SAV on device DK:.

«SAVE FTLE1 10000-11000y14000-14100

The next example sets the reenter bit in the JSW and saves locations 1000
through 5777 in file PRAM.SAV on device SY:.

+ 1 44=2000
«BAVE SYIFRAM 1000-5777

Keyboard Commands

——

SET

The SET command changes device handler characteristics and certain sys-
tem configuration parameters.

item

SET { physicaldevice-name} condition

In the command syntax illustrated above, physical-device-name represents
the device handler whose characteristics you need to modify.

See Table 3-1 in this manual for a list of the standard RT-11 permanent
device names. The argument item represents a system parameter that you
need to modify. The system items you can change include error handling
(SET ERROR) and wildcard handling (SET WILD). Table 4-13 lists the
devices and items you can modify, as well as the valid conditions for these
devices and items. If you set more than one condition for a device, separate
the conditions with commas. With the exception of the SET TT, SET USR,
and SET item commands, the SET command locates the file SY:device.SYS
and permanently modifies it. The SET commands are valid for all three
RT-11 monitors unless otherwise specified. They permanently modify the
device handlers (except where noted); this means that the conditions remain
set even across a reboot. For those SET commands that do not permanently
modify the device handlers, the conditions return to the default setting after
a reboot. To make these settings appear permanent, include the appropriate
SET commands in your system’s startup indirect command file (see Section
4.3.3). The command you enter must be completely valid for the modifica-
tion to take place.

NOTE

If a handler (except for TT:) is already loaded when you
issue a SET command for it, you must unload the handler
and install a fresh copy from the system device for the mod-
ification to have an effect on execution.

The colon (:) after each device name is optional.

Figure 4-2: Format of a 12-bit Binary Number

PDP-11 WORD
15 11 12 19 11 10 Q o 7 & 5 4 3 2 1 0

ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE
12 11 0 1 2 3 4 5 6 7 8 9

UNUSED (ALWAYS 0}
1 l 1

Keyboard Commands 4-149

4-150

Table 4-13: SET Device Conditions and Modification

Device or
Item

Condition

Modification

CR:

CR:

CR:

CR:

CR:

CR:

CR:

CR:

CR:
CT:

CT:

DD:

CODE=n

CRLF

NOCRLF

HANG

NOHANG

IMAGE

NOIMAGE

TRIM

NOTRIM
RAW

NORAW

VECTOR=n

Modifies the card reader handler to use either the DEC 026 or
DEC 029 card codes. The argument n must be either 26 or 29.
The default value is 29.

Appends a carriage return/line feed combination to each card
image. This is the normal mode.

Transfers each card image without appending a carriage
return/line feed combination. The default is CRLF.

Waits for you to make a correction if the reader is not ready at
the start of a transfer. This is the normal mode.

Generates an immediate error if the device is not ready at the
start of a transfer. The handler waits (regardless of how the
condition is set) if the reader is not ready at some point dur-

ing a transfer (that is, the input hopper is empty, but an end-
of-file card has not been read). The default is HANG.

Causes each card column to be stored as a 12-bit binary num-
ber, one column per word. The CODE option has no effect in
IMAGE mode. Figure 4-2 illustrates the format of the 12-bit
binary number. This format allows the system to read binary
card images. It is especially useful if you use a special encod-
ing of punch combinations. Mark-sense cards can be read in
this mode. The default is NOIMAGE.

Allows the normal translation (as specified by the CODE
option) to take place. The system packs data one column per
byte. It translates invalid punch combinations into the error
character, ASCII backslash (\), which is octal code 134. This is
the normal mode.

Removes trailing blanks from each card that the system
reads. You should not use TRIM and NOCRLF together
because card boundaries become difficult to read. TRIM is the
normal mode.

Transfers a full 80 characters per card. The default is TRIM.

Performs a read-after-write check for every record written.
The system retries if an output error occurs. Tf three retries
fail, the system indicates an output error. The default is
NORAW.

Writes every record directly without reading it back for veri-
fication. This setting significantly increases transfer rates at
the risk of increased error rates. This is the normal mode.

Modifies the DECtape II handler to use n as the vector
address for the first DECtape II controller (n is an octal num-
ber). This option, and the next three, enabie you to set vector
and Control and Status Register (CSR) values in the handler
itself, without having to modify the handler source code and
reassemble. Use these options if you have installed the DEC-
tape II controller(s) at nonstandard addresses.

Keyboard Commands

(continued on next page)

——

Table 4-13: SET Device Conditions and Modification (Cont.)

Device or
Item

Condition

Modification

DD:

=
e

EDIT

EDIT

EDIT

EDIT

ERROR

ERROR

CSR=n

CSR2=n

EDIT

KED

K52

TECO

WARNING

ERROR

Modifies the DECtape II handler to use n as the CSR address
for the first DECtape Il controller. When you use this option,
the system prints a message that indicates where to patch the
DECtape II handler bootstrap, if you want to use a DECtape
II as your system volume.

Moedifies the DECtape II handler o use n as the vector for the
second DECtape II controller. This option is valid only if you
create the DECtape II dual controller handler (through sys-

tem generation).

Modifies the DECtape II handler to use n as the CSR address
for the second DECtape II controller. This option is valid only
if you create the DECtape II dual controller handler (through
system generation).

Invokes the text editor EDIT with the keyboard monitor
EDIT command. This is the normal mode. The system returns
to this condition after a reboot.

Invokes the Keypad Editor (KED). For more information on
the Keypad Editor, see the PDP-11 Keypad Editor User’s
Guide. This condition is valid only for VT'100 terminals. The
system returns to EDIT EDIT after a reboot.

Invokes the Keypad Editor (K52); valid if your terminal is a
VT52. For more information on the Keypad Editor, see the
PDP-11 Keypad Editor User’s Guide. The system returns to
EDIT EDIT after a reboot.

Invokes the text editor TECO with the keyboard monitor
EDIT command. The default is EDIT. The system returns to
that condition after a reboot.

Causes indirect command files and keyboard monitor com-
mands to abort if warnings, errors, or severe or fatal errors
occur. See SET ERROR ERROR, which is the default setting.
Warning error messages contain the -W- characters. The sys-
tem returns to that condition after a reboot.

Causes indirect command files and keyboard monitor com-
mands that perform multiple operations (such as EXECUTE,
which combines assembling, linking, and running) to abort if
errors or severe or fatal errors occur. This setting causes
indirect files and keyboard monitor commands to abort on
MACRO assembly errors. An example of an error is an unde-
fined symbol in an assembly. An example of a severe error is a
device that is write-locked when the system attempts to write
to it. If either condition occurs, the indirect command file or
keyboard monitor command aborts the next time the monitor
gets control of the system. Error error messages contain the
-E- characters. This is the normal setting. The system returns
to this condition after a reboot.

(continued on next page)

Keyboard Commands 4-151

Table 4-13: SET Device Conditions and Modification (Cont.)

Device or
Item

Condition Modification

ERROR SEVERE Causes indirect command files and keyboard monitor com-
mands to abort only if severe or fatal errors occur. Severe
error messages contain the -F- characters. See SET ERROR
ERROR, which is the default setting. The system returns to
that condition after a reboot.

ERROR NONE Allows indirect command files and keyboard monitor com-
mands to continue to execute even though they contain sig-
nificant errors. Most monitor fatal errors still cause the
indirect command file or keyboard monitor command to
abort. Fatal errors that always abort indirect command files
contain the -U- characters in the error messages. See SET
ERROR ERROR, which is the default setting. The system
returns to that condition after a reboot.

LP: CR Sends carriage returns to the printer. To allow overstriking
on the printer, use this condition for any FORTRAN program
that uses formatted input and output. Use CR also for any
LS11 or LPO5 line printer to prevent loss of the last line in the
buffer. LP NOCR is the normal mode.

LP: NOCR Prevents the system from sending carriage returns to the
printer, This setting produces a significant increase in print-
ing speed on LP11 printers, where the line printer controller
causes a line feed to perform the functions of a carriage

return. This is the default setting.

LP: CSR=n Modifies the line printer handler to use n as the Control and
Status Register (CSR) address for the line printer controller.
The value you supply must be an octal word address not less
than 160000. This option enables you to set a special CSR
value in the line printer handler itself, without having to
modify and reassemble the handler source code. Use this
option if you have installed the line printer controller at a
nonstandard address.

LP: CTRL Passes all characters, including nonprinting control charac-
ters, to the printer. Use this condition to pass the bell charac-
ter to the LA180 printing terminal. You can use this mode for

1.911 lina nrintare. (Othor lina nrinters nrint 2 onane far a
aacax 20 PIMNTETS, (LUACT DT PrINLEYS Print a Space ior &

control character.) The default is NOCTRL.

LP: NOCTRL Ignores nonprinting control characters. This is the normal
mode.
LP: FORM Declares that the line printer has hardware form feeds, caus-

ing the line printer handler to send form feeds to the con-
troller. When you use this option, the line printer handler
sends the form feed character to the printer each time the
handler encounters a form feed. This is the default setting.

(continued on next page)

4--152 Keyboard Commands

Table 4-13: SET Device Conditions and Modification (Cont.)

Device or
Item

Condition

Modification

T T

Lo

LP:

LP:
LP:

LP:

LP:

LP:

LP:

LP:

LP:

ATNATNDARAL
ANV vl

FORMO

NOFORMO
HANG

NOHANG

LC

NOLC

LENGTH=n

SKIP=n

TAB

NOTAB

VECTOR=n

Causes the line printer handler to simulate hardware form
feeds by sending one or more line feeds to the printer. When
you use this setting, you must also use the LENGTH =n set-
ting and position the paper at the top of a form (that is, at the
page perforation) before you start to use the printer. Using
the NOFORM condition is useful if you are using a preprinted
form that has a nonstand

ting if your printer does not accommodate form feeds. FORM
is the default setting.

4 1wy N) .
a nonstandard iengih. You must use tnis set-

Issues a form feed before a request to print blocks 0. This is
the normal mode.

Turns off FORMO mode, which is the default.

Waits for you to make a correction if the line printer is not
ready or is not ready at some point during printing. If you
expect output from the line printer and the system does not
respond or appears to be idle, check to see if the line printer is
powered on and ready to print. This is the normal mode.

Generates an immediate error if the line printer is not ready.
The default is HANG.

Allows the system to send lower-case characters to the
printer. Use this condition if your printer has a lower-case
character set. The default is NOLC.

Translates characters in lower case to upper case before
printing. This is the normal mode.

Causes the line printer to use n as the number of lines per
page. The default number of lines per page is 66. Use this
option with the NOFORM and SKIP = n settings.

Causes the line printer handler to send a form feed to the
printer when it comes within n lines of the bottom of a page.
Use this setting to prevent the printer from printing over
page perforations. The value you supply for n should be an
integer from 0 to the maximum number of lines on the paper.
If you set SKIP =0, the handler sends lines to the printer
regardless of the position of the paper. To disable this condi-
tion, set SKIP=0. When you use this setting, you must also
use the LENGTH =n setting.

Sends TAB characters to the line printer. The default is
NOTAB.

Expands TAB characters by sending multiple spaces to the
line printer. This is the normal mode.

Modifies the line printer handler to use n as the vector of the
line printer controller. The value you supply for n must be an
even octal address below 500. This option enables you to set a
special vector value in the line printer handler itself, without
having to modify the handler source code and reassemble.
Use this option if you have installed the line printer con-
troller at a nonstandard address.

(continued on next page)

Keyboard Commands 4-153

4-154

Table 4-13: SET Device Conditions and Modification (Cont.)

Device or
Item

Condition

Modification

LP:

LS:

LS:

LS:

LS:

LS:

LS:

LS:
LS:

WIDTH=n

CR

NOCR

CSR=n

CTRL

NOCTRL

FORM

NOFORM

FORMO

NOFORMO
HANG

Sets the line printer width to n, where n is a decimal integer
between 30 and 255, inclusive. The system ignores any char-
acters that print past column r. The default is 132.

Sends carriage returns to the printer. To allow overstriking
on the printer, use this condition for any FORTRAN program
that uses formatted input and output. (Use CR also for any
LS11 or LP05 line printer to prevent loss of the last line in the
buffer.) This is the normal mode.

Prevents the system from sending carriage returns to the

printing speed on some line printers. Where the printer con-
troller causes a line feed to perform the functions of a carriage
return. The default is CR.

Modifies the line printer handler to use n as the Control and
Status Register (CSR) address for the printer controller. The
value you supply for n must be an octal word address not less
than 160000. This option enables you to set a special CSR
value in the printer handler itself, without having to modify
the handler source code and reassemble. Use this option if
you have installed the printer controller at a nonstandard
address.

Passes all characters, including nonprinting control charac-
ters, to the printer. Use this condition to pass the bell charac-
ter to the LA180 printing terminal. The default is NOCTRL.

Ignores nonprinting control characters. This is the normal
mode.

Declares that the line printer has hardware form feeds, caus-
ing the line printer handler to send form feeds to the con-
troller. When you use this option, the line printer handler
sends the form feed character to the printer each time the
handler encounters a form feed. This is the default setting.

Causes the line printer handler to simulate hardware form
feeds by sending one or more line feeds to the printer. When
you use this setting, you must also use the LENGTH =n set-
ting and position the paper at the top of a form (that 1s, at the
page perforation) before you start to use the printer. Using
the NOFORM condition is useful if you are using a preprinted
form that has a nonstandard length. You must use this set-
ting if your printer does not accommodate form feeds. FORM
is the default setting.

Issues a form feed before a request to print block 0. This is the
normal mode.

Turns off FORMO mode. The default is FORMO.

Waits for you to make a correction if the line printer is not
ready or becomes not ready during printing. If you expect out-
put from the printer and the system does not respond or
appears to be idle, check to see if the printer is powered on
and ready to print. This is the normal mode.

Keyboard Commands

(continued on next page)

i~

Table 4-13: SET Device Conditions and Modification (Cont.)

Device or
Item

Condition

Modification

Lo

LS:

LS:
LS:

LS:

MM:

MM:

MM:

LENGTH=n

SKIP=n

TAB
NOTAB

VECTOR=n

WIDTH=n

DEFALT=9

DENSE =[800
or 809
or 1600]

ODDPAR

A d o o e AL d mcemenea 3
enerales dii 1ineuiale ©iivl 1.

default setting is HANG.

Allows the system to send lower-case characters to the
printer. Use this condition if your printer has a lower-case
character set. The default is NOLC.

~ . M - , .
Twanglatag In - ra
iransiates iower-case characiers U

o
=
3

’g
[}

[x]

W

n

4]

=)

o

P

[}

=

(o]

R3

”

=

3

o
)

ing. This is the normal mode.

Causes the printer to use n as the number of lines per page.
The default number of lines per page is 66. Use this option
with the NOFORM and SKIP =n settings.

Causes the line printer handler to send a form feed to the
printer when it comes within n lines of the bottom of a page.
Use this setting to prevent the printer from printing over
page perforations. The value you supply for n should be an
integer from O to the maximum nuimber of lines on the paper.
If you set SKIP=0, the handler sends lines to the printer
regardless of the position of the paper. To disable this condi-
tion, set SKIP=0. When you use this setting, you must also
use the LENGTH =n setting.

Sends TAB characters to the printer. The default is NOTAB.

Expands TABS by sending multiple spaces to the printer.
This is the normal mode.

Modifies the printer handler to use rn as the vector of the line
printer controller. The value you supply for » must be an even
octal address below 500. This option enables you to set a spe-
cial vector value in the line printer handler itself, without
having to modify the handler source code and reassemble.
Use this option if you have installed the printer controller at
a nonstandard address.

Sets the printer to width n, where n is a decimal integer
between 30 and 255, inclusive. The system ignores any char-
acters that print past column 7. The default is 132.

Returns to default settings for 9-track tape. The 9-track
defaults are:

DENSE =809
ODDPAR
NODUMP

Sets density for the 9-track tape handler. Do not alter the
density setting within a volume. A density setting of 1600
bits per inch (BPI) automatically sets parity to odd. The valid
density settings for 9-track tape are:

800 BPI
1600 BPI

Sets parity to odd for 9-track tape. DIGITAL recommends this
setting.

(continued on next page)

Keyboard Commands 4-155

4-156

Table 4-13: SET Device Conditions and Modification (Cont.)

Device or
Item

Condition

Modification

MM:

MT:

NOODDPAR

DEFALT=[7
or 9]

DENSE =[200
or 556 or 807
or 8091

DUMP
ODDPAR

NOODDPAR

CONSOL=n

CRLF

NOCRLF

Sets parity to even for 9-track tape. DIGITAL does not recom-
mend this setting for normal operation, and provides it only
for compatibility with other systems.

Returns to default settings for 7- or 9-track tape. The 7-track
defaults are:

DENSE =807
ODDPAR
DUMP

The 9-track defaults are:

DENSE =809
ODDPAR
NODUMP

The default setting is DEFALT =9.

Sets density for 7- or 9-track tape. 807 represents 800 BPI for
7-track tape; 809 represents 800 BPI for 9-track tape. Do not
alter the density within a tape volume. You must set density
to 807 for 7 track tape if you want dump mode. The valid den-
sity settings for 7 and 9 track tape are:

7-track: 200 BPI
556 BPI
800 BPI
800 BPI Dump

9-track: 800 BBI
Writes bytes to 7-track tape. You must also set density to 807.

Sets parity to odd for 7- or 9-track tape. DIGITAL recom-
mends this setting.

Sets parity to even for 7- or 9-track tape. DIGITAL does not

recommend this setting for normal operation, and provides it

only for compatibility with other systems.

Directs the system to use the terminal whose logical unit
number you specify as the console terminal. The terminal
whose logical unit number you specify must not be currently
attached by the foreground or any system job. To use this set-
ting, you must have a multi-terminal configuration. The sys-
tem returns to this default after a reboot. You cannot use this
setting for a remote line.

Issues a carriage return/line feed combination on the console
terminal whenever you attempt to print past the right mar-
gin. You can change the margin with the WIDTH command.
This is the normal mode. This setting is invalid with a non-
multi-terminal SJ monitor. The system returns to this condi-
tion after a reboot.

Takes no special action at the right margin. This setting is
invalid with a non-muiti-terminal SJ monitor. The default is
CRLF. The system returns to that condition after a reboot.

Keyboard Commands

(continued on next page)

e

Table 4-13: SET Device Conditions and Modification (Cont.)

Device or
Item

Condition

Modification

TT:

FB

FORM

NOFORM

HOLD

NOHOLD

PAGE

NOPAGE

QUIET

NOQUIET

Treats CTRL/B and CTRL/F (and CTRL/X in system job mon-
itors) as background and foreground program contro! charac-
ters and does not transmit them to your program. This is the
normal mode. This setting is not valid for the SJ monitor. The
system returns to this condition after a reboot.

Causes CTRL/B and CTRL/F {(and CTRL/X in system job mon-

itors) to have no special meaning. Issue SET TT: NOFB to
KMON, which runs as a background job, to disable all com-
munication with the foreground or system job. To enable com-
munication with the foreground job, issue the command SET
TT FB. This setting is not valid for the SJ monitor. The
default is FB. The system returns to that condition after a
reboot.

Indicates that the console terminal is capable of executing
hardware form feeds. This setting is invalid with a non-multi-
terminal SJ monitor.

Simulates form feeds by generating eight line feeds. This set-
ting is not valid for the non-multi-terminal SJ monitor. This
is the normal mode. The system returns to this condition after
a reboot.

Enables the Hold Screen mode of operation for the VT50,
VT52, and VT61 terminals. The command has no effect on any
other terminals, but it can cause a left square bracket ([) to
print. This setting is valid for all monitors. NOHOLD is the
default setting. The system returns to that condition after a
reboot.

Disables the Hold Screen mode of operation for the VT50 ter-
minal. The command has no effect on any other terminal, but
it can cause a backslash (\) to print. This setting is valid for all
monitors. The default is NOHOLD. The system returns to

that condition after a reboot.

Treats CTRL/S and CTRL/Q characters as terminal output
hold and unhold flags and does not transmit them to your pro-
gram. You must use this setting if you are using a VT100 ter-
minal. This setting is not valid for the non-multi-terminal SJ
monitor. This is the normal mode. The system returns to this
condition after a reboot.

Causes CTRL/S and CTRL/Q to have no special meaning. This
setting is not valid for the non-multi-terminal SJ monitor.
The default is PAGE. The system returns to that condition
after a reboot.

Prevents the system from echoing lines from indirect files.
The default is NOQUIET. The system returns to that condi-
tion after a reboot.

Echoes lines from indirect files. This is the default mode. The
system returns to this condition after a reboot.

(continued on next page)

Keyboard Commands 4-157

Table 4-13: SET Device Conditions and Modification (Cont.)

Device or
Item

Condition

Modification

TT:

USR

USR

WILD

WILD

SCOPE

NOSCOPE

TAB

NOTAB

WIDTH=n

SWAP

NOSWAP

EXPLICIT

IMPLICIT

Echoes RUBOUT characters as backspace-space-backspace.
Use this mode if your console terminal is a VT50, VT05,
VT52, VT55, VT61, VT100, or if GT ON is in effect. The
default is NOSCOPE. The system returns to that condition
after a reboot. Note that you delete TAB characters by typing
a single RUBOUT or DELETE, even though the cursor does
not move back the correct number of spaces. This is a restric-
tion in SCOPE modes.

Echoes RUBOUT characters by enclosing the deleted charac-
ters in backslashes. This is the normal mode. The system
returns to this condition after a reboot.

Indicates that the console terminal is capable of executing
hardware tabs. This setting is not valid for the non-multi-ter-
minal SJ monitor. The default is NOTAB. The system returns
to that condition after a reboot.

Simulates tab stops every eight positions. Many terminals
supplied by DIGITAL have hardware tabs. This setting is not
valid for the non-multi-terminal SJ monitor. This is the nor-
mal mode. The system returns to this condition after a reboot.

Sets the terminal width to n, where n is an integer between 30
and 255. The system initially sets the width to 80. This setting
is not valid for the non-multi-terminal SJ monitor. (See SET
TT CRLF.) The system returns to 80 after a reboot.

Aliows the background job to piace the user service routine
(USR) in a swapping state. This setting is not valid for the XM
monitor. This is the normal mode for FB and SJ monitors. The
system returns to this condition after a reboot.

Prevents the background job from placing the USR in a
swapping state. This setting is not valid for the XM monitor.
The default is SWAP for FB and SJ monitors. The system
returns to that condition after a reboot.

Causes the system to recognize file specifications exactly as
you type them. If you omit a file name or a file type in a file
annnifiaatian +ha avatarm Adana mat artarmatinanlle wanlansa +ha
Dtlclalll\oalt.l\lll vilo DJD\AUIII UUTDO VUL a.u.uux.nuu;uall_y LCFL‘L\'U viio
missing item with an asterisk (*). Wildcards are described in
Section 4.2 of this manual. The default is IMPLICIT. The sys-

tem returns to that condition after a reboot.

Causes the system to interpret missing fields in file specifica-
tions as asterisks (¥). Wildcards are described in Section 4.2 of
this manual. Table 4-2 shows how the system interprets com-
mands that have missing fields. This is the normal mode. The
system returns to this condition after a reboot.

4-158 Keyboard Commands

]

The following examples illustrate the SET command. This command allows
the system to send lower-case characters to the printer:

«SET LF LC

The next command sets the sys
JSET WILD IMPLICIT

As a result of this command the system inserts an asterisk in place of a miss-
ing file name or file type in a file specification. See Table 4-2 for a list of
these commands.

Keyboard Commands 4-159

SHOW

The SHOW command prints information about your RT-11 system on the
console terminal.

SHOw [aLL

CONFIGURATION

DEVICES

ERRORS |/ALL
IFILE:filespec
IFROM [:date]
IOUTPUT:filespec
IPRINTER
ISUMMARY
TERMINAL
TO [:date]

JOBS
QUEUE
LTERMINALS

The information includes hardware configuration, monitor version, special
features in effect, device names and logical device name assignments, termi-
nal characteristics for terminals currently active on a multi-terminal sys-
tem, and device handler status. If you are running the Error Logger or
QUEUE, the SHOW command can provide information on errors and the
update status of files waiting to be sent to an output device.

If you specify SHOW without an option, SHOW displays your system’s
device assignments. The devices the system lists are those known by the
RT-11 monitor currently running in memory. This list reflects any addi-
tions or deletions you have made with the INSTALL and REMOVE com-
mands. The listing also includes additional information about particular
devices. The informational messages and their meanings are:

Message Indicated Condition
(RESORCQ) The device or unit is assigned to the back-
or =RESORC ground job RESORC (for FB and XM moniters
only).
(FORE) The device or unit is assigned to the fore-
or =FORE ground job (for FB and XM monitors only and
monitors without system job support).
(jobname) The device or unit is assigned to the system or
or =jobname foreground job (for FB and XM monitors that

have system job support), where jobname rep-
resents the name of the system or foreground
job.

(Loaded) The handler for the device has been loaded
into memory with the LOAD command.

(Resident) The handler for the device is included in the
resident monitor.

4-160 Keyboard Commands

N

=logical-device-name(1), The device or unit has been assigned the
logical-device-name(2)... indicated logical device names with the
,Jogical-device-name(n) ASSIGN command.

xx free slots The last line tells the number of unassigned,
or free, device siots.

The following example was created under an FB monitor that has system job
support. It shows the status of all devices known to the system.

+ SHOW
TT (Resident)
RK (Resident)
RK1 = §Yy DKy OBJy SRCs RIN
RK2 = LSTs MAF
MQ (Resident)
L (Loaded)
oM
X (Loaded)
nxo: (MYFROG)
DX1: (RESORC)
LP! (Loaded=Q0UEUE)
MT
CT
5 free slots

The listing shows first that TT and RK are resident in memory. The other
device handlers known to the system are MQ, DL, DM, DX, LP, MT, and CT.
There are five free slots in the table. RKO: has the logical names SY, DK,
OBJ, SRC, and BIN. RK1: has the logical names LST and MAP. The DX
handler is loaded and device DXO0: belongs to the foreground job, MYPROG.
The LP: handler is loaded and belongs to the system job, QUEUE.

The options for the SHOW command follow.

ALL This option is a combination of CONFIGURATION, DEVICES,
JOBS, and TERMINALS, in that order. The ALL option also tests the device

assignments.

CONFIGURATION This option displays the monitor version number
and patch level, the monitor SET options in effect, the hardware con-
figuration, and the special features in effect (if any). The listing varies, of
course, depending on which monitor and which hardware system you are
using.

First, the listing always shows the version number and patch level of the
currently running monitor.

Next, information about the monitor is displayed. The first line indicates the
device from which the system was bootstrapped. The next line prints the
resident monitor’s base address, in octal. Then the listing shows whether the
user service routine (USR) is set to SWAP or NOSWAP. Another line prints
out if a foreground job is loaded. The listing shows whether TT is set QUIET
or NOQUIET, and whether the indirect file abort level is set to NONE,
WARNING, ERROR, or SEVERE. The indirect file nesting depth prints out
as a decimal number.

Keyboard Commands 4-161

4-162

Next, the listing displays the system hardware configuration. It lists the
processor type, which can be one of the following:

LSI11

PDT 130/150

PDP 11/04

PDP 11/05,10

PDP 11/15,20
~PDP 11/23

PDP 11/34

PDP 11/35,40

PDP 11/45,50,55

PDP 11/60
PDP 11/70

AsL LAl dV

A separate line prints out for each of the following items that is present on
your system:

-FP11 Hardware Floating Point Unit
Commercial Instruction Set (CIS)
“Extended Instruction Set (EIS)
Floating Instruction Set (FIS)
~KT11 Memory Management Unit
“Parity Memory
Cache Memory

If you have graphics hardware (VT11 or VS60), another line is printed out to
indicate it. The clock frequency (50 or 60 cycles) prints next, followed by a
line for the KW11-P programmable clock, if there is one on your system.

Finally, the listing either shows that there are no special features in effect,
or it lists the appropriate features from the following list:

 Device I/O time-out support
Error logging support
'‘Muiti-terminal support
Memory parity support
“SJ timer support

Systein job suppori
The following example was created on a PDP 11/23 processor:

+SHOW CONFIGURATION
RT-11FR(S) V04.00

Booted from RKO?

Resident Monitor base is 137500 (489460.)
USR is set SWAF

TT is set NOQUIET

Indirect file abort level is ERROR
Indirect file rnesting desth iz 3

FIIF 11/23

60 Cuwclie Sustem Clock

Error losgsging surrort
Nevice I/0 Lime-out susmort

e £y ¥ e b rs e e e e ok
Memorw rarity susrord

Keyboard Commands

DEVICES This option displays the RT-11 device handlers, their status,
and their vectors. The messages for handler status are as follows:

Installed

Not installed
-Not installed (the handier special features do not match those of the

monitor)

nnnnnn (load address of handler)

Resident

+ SHOW

Levice

nx
RK
RF
oT
L
CR
NL.
FC
cT
ns
oM
DL
il
ny
MT
MM

BEVICES

Status

Installed
Resident

Not installed
Installed
Ingtzlled

Not inmstalled
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed

Not installed

264
220
204
214
200
230
Q00
070
260
204
210
330
254
270
224

224

Vector

074

In the preceding example, note that the PC handler has two vectors. One is
for the paper tape reader and the other is for the paper tape punch. Because
of its special format, the TT handler is never listed.

JOBS This option displays data about the jobs that are currently

This option also tells the following:

PROEE o |
vaucu.

the job name and number (if you have not enabled system job support on
your monitor, the foreground job name appears as FORE, and its priority

isl)

the console the job owns (if a non-multi-terminal monitor, this space is

blank)

the priority level of the job

the job’s running state (running, suspended, or done (but not unloaded))

the low and high memory limits of the job

the start address of the job’s impure area

Keyboard Commands

4-163

4-164

The example that follows displays data about currently running jobs:

+SHOW JOES

Sob Name Console lLevel State Low High Imrure
14 QUEUE 0 é Susrend 116224 130306 115254
0 RESORC Q 0 Rur 000000 113210 134124

ERRORS The SHOW ERRORS command is valid only if you have error
logging enabled on your monitor. For a complete description of the error log-
ger and directions on how to start it, see Chapter 19, Error Logging. Note
that the error logger is a special feature, available only through the system
generation process. Because the error logger compiles statistics on each I/O
transfer that occurs, in addition to hardware errors that occur, it is a good
idea to enable error logging on a spare system volume that you use only
when you want to compile error statistics.

The SHOW ERROR command invokes ERROUT, one of the three programs
in the error logging package that runs as a background job. ERROUT cre-
ates reports on the I/O and error statistics the error logger compiles, and can
print the reports at the terminal, line printer, or store the reports in a file
you specify. For complete descriptions of the reports ERROUT creates, see
Chapter 19, Error Logging.

ERRORS <RET> prints a full report on each I/O transfer that
has occurred in addition to each I/O, memory
parity, and cache memory error that has

occurred.
ERRORS/ALL same as SHOW ERRORS <RET>
ERRORS/FILE:filespec prints a full I/O transfer and error report from

the file you specify. The file you specify must
be of the same format that the error logger
uses for its statistics compilations.

ERRORS/FROM][:date] prints a full I/O transfer and error report for
errors that occurred starting from the date
you specify. Enter the date as dd:mmm.:vyy,
where

dd is a two-digit date (decimal)
mmm is the first three characters of a month
vy is a two-digit year

ERRORS/TOl:date] prints a full I/O transfer and error report for
errors that occurred up to the date you
specify. ‘

ERRORS/OUTPUT:filespec ~ enters the I/O transfer and error report in the
output file you specify. This is useful if you
want to save the error logging reports.

Keyboérd Commands

sl

ERRORS/PRINTER prints the I/O transfer and error report at the
line printer.

ERRORS/SUMMARY prints a summary error report at the termi-
nal. The summary error report lists only the
errors that occurred, not the successful /O
transfers.

ERRORS/TERMINAL prints the I/O transfer and error report at the
terminal. TERMINAL is the default setting.

QUEUE Use the SHOW QUEUE command to get a listing of the contents
of the queue. This option is invalid if you are not running QUEUE (see
Chapter 20, Queue Package). The listing shows the output device, job name,
input files, job status, and number of copies for each job that is queued. The
sample command line that follows lists the current contents of the queue.

+SHOW QUEUE
DEVICE JOR STATUS COFIES FILES

LFO? LAEZ P 1 FASS3 LST
2 FASS4 JLST
2 FASSS LST
LFO? HODG Q 3 MESMAN. DOC
DT1: JUDITH @ 2 FART1 DIOC
2 FART2 .DOC
MT1t SZYM Q 1 REFMAN. TXT
LFO? JOYCE Q 1 8SM .D0C
1 DOCFLN,DOC

The job STATUS column prints a P if the job is currently being output, an S
if the job being output is suspended, or a @ if the job is waiting to be output.
If you have a large lineup of files, and your console is a video terminal, you
can use the CTRL/S and CTRL/Q commands to control the scrolling of the
listing.

TERMINALS This option indicates the status of and special features in
effect for currently active terminals on multi-terminal systems. If your sys-
tem has only the console terminal, the following message prints:

No multi-terminal surrort

Multi-terminal support is a special feature; it is not part of the distributed
RT-11 monitors.

If your system does have multi-terminal support, SHOW TERMINALS
prints a table of the existing terminals and lists the following information:

Unit number (0-15)

Owner: Background, foreground, system job owner, or none
Type: Local

Remote (dial-up)

Console

(continued on next page)

Keyboard Commands 4-165

4-166

Unit number (0-15)

S-console (shared by background and foreground or sys-
tem job)
Is attached to another job (the foreground)

Interface type: DL DZ
Width: (width in characters, up to 255)

SET options in effect:
TAB
CRLF
FORM
SCOPE

Line speed: (baud rate if DZ; not applicable if DL)
The following example shows the terminal status of an RT-11 system.

+SHOW TERMINALS

Unit Ouwner Ture WIDTH TAR CRLF FORM SCOPE SFEED

o] RESORC S~Comsole DL 132 - No Yes No No N/A
i FORE Local DL 80 Yes No No Yes N/A

Keyboard Commands

SQUEEZE

The SQUEEZE command consolidates all unused blocks into a single area
on the device you specify and consolidates the directory entries on the
device.

/INO] QUERY
IWAIT

SQUEEZE I'IOUTPUT:device‘l device

i i

In the command syntax illustrated above, device represents the block
replaceable volume to be compressed. To perform a squeeze operation, the
system moves all the files to the beginning of the device you specify, produc-
ing a single unused area after the group of files. The squeeze operation does
not change the bootstrap blocks of a device. The system prints a con-
firmation message before it performs the squeeze operation. You must type
Y foilowed by a carriage return to execute the command.

The squeeze operation does not move files with .BAD file types. This feature
prevents you from reusing bad blocks that occur on a disk. The system
inserts files before and after .BAD files until the space between the last file
it moved and the .BAD file is smaller than the next file to be moved. Note
that you should use the SQUEEZE command when you get a directory full
error, even if there is still space remaining on the volume.

If you perform a squeeze operation on the system device, the system auto-
matically reboots the running monitor when the compress operation com-
pletes. This reboot takes place in order to prevent system crashes that might
occur when the monitor file or handler files are moved. The system volume
cannot be squeezed if a foreground or system job is loaded.

The options for the SQUEEZE command follow.

/OUTPUT:filespec Use this option to transfer all the files from the input
device to the output device in compressed format, an operation that leaves
the input device unchanged. The output device must be an initialized block
replaceable volume. (Use the INITIALIZE command to do this.) Note that
the system does not query you for confirmation before this operation pro-
ceeds. If the output device is not initialized, the system prints an error mes-
sage and does not execute the command. Note that /OUTPUT does not copy
boot blocks; you must use the COPY/BOOT command to make the output
volume bootable. The following example transfers all the files from RKO: to
RK1: in compressed format, leaving RKO: unchanged.

LSQUEEZE/OUTRUTSRKLE RKO3
/QUERY This option causes the system to print a confirmation message
before it executes a squeeze operation. You must respond by typing a Y fol-

lowed by a carriage return for execution to proceed. This is the default oper-
ation. /QUERY is invalid with the /OUTPUT option.

Keyboard Commands 4-167

4-168

/NOQUERY Use this option to suppress the confirmation message that
prints before a squeeze operation executes. The following command com-
presses all the files on device DT1: and does not query.

+ SQUEEZE/NOQUERY DT13

/WAIT This option is useful if you have a single-disk system. When you
use /WAIT, the system initiates the SQUEEZE operation, but then pauses
and waits for you to mount the volume you want to squeeze. When the sys-
tem pauses, it prints Mount input volume in <device>; Continue?, where
<device> represents the device into which you mount the volume. When the
volume is mounted, type Y followed by a carriage return.

The following sample command line squeezes an RK05 disk:

SQUEEZE/WAIT RKO:

RKO!/Seueesze’ Are wou sure? Y

Mount inesut volume in RKO!F Continue? Y
Mourt swstem volume in RKO:!$# Cortirue? Y

Note that the system may repeat the Mount input volume—Mount output
volume cycle several times to complete the SQUEEZE operation.

Keyboard Commands

Poe——

SRUN
The SRUN command initiates system jobs.

SRUN tilespec | /BUFFER:n _\
/LEVEL:n
INAME:logical-jobname
IPAUSE
/TERMINAL:n

In the command syntax illustrated above, filespec represents the program to
be executed. Because this command runs a system job, it is valid only for FB
and XM monitors that have system job support — a special feature enabled
through the system generation process.

You can run up to six system jobs simultaneously, in addition to the fore-
ground and background jobs. If you attempt to run a system job that is
already active, an error message prints on the terminal.

Note that when you issue the SRUN command, the monitor assumes a .SYS
file type. If you want to issue the SRUN command for a program that has a
REL file type, either enter the file type with the file name (for example,
SRUN QUEUE .REL), or rename the file so it has a .SYS file type.

In an XM monitor, you can use the SRUN command to run a virtual .SAV
image program. You must type the file type explicitly.

The options that you can use with SRUN follow.

/BUFFER:n Use this option to reserve space in memory over the actual
program size. The argument n represents the number of octal words of mem-
ory to allocate. You must use this option to run any FORTRAN program as a
system job. If you use this option for a virtual job linked with the /V option
(or /’XM), the system ignores /BUFFER because the system provides a buffer
in extended memory.

/LEVEL:n Use this option to assign an execution priority level to the job,
where n can be 1, 2, 3, 4, 5, or 6. If you attempt to assign the same priority
level to two system jobs, an error message prints at the terminal. If omitted,
the priority level defaults to the highest level that is thus far unassigned.

/NAME:logical-jobname Use this option to assign a logical job name to a
program. This is the name that programmed requests and SYSLIB calls use
to reference a system job. If you attempt to assign the same logical job name
to two system jobs, an error message prints at the terminal. If you do not
specify a logical job name, the system assumes the file name of the program.

/PAUSE Use this option to help you debug a program. When you type the
carriage return as the end of the command string, the system prints the load
address of your program and waits. By means of ODT, you can examine or
modify the program before starting execution (see Chapter 21). You must
use the RESUME command to restart the system job. The following com-

Keyboard Commands 4-169

4-170

mand loads the program MFUNCT.SYS, prints the load address, and waits
for a RESUME command to begin execution.

CBRUN MFUNCT/FAUSE

Loaded a3t 126554
L RESUME MFUNCT

/TERMINAL:n Use this option to change the console of the system job.
Your system must have multi-terminal support — a special feature avail-
able only through system generation — before you can use it. The argument
n represents a terminal logical unit number. By assigning a different termi-
nal to interact with the system job, you eliminate the need for system, fore-
ground, and background jobs to share the console terminal. Note that the
original console terminal still interacts with the background job and with
the keyboard monitor, unless you use the SET TT: CONSOL command to
change this.

Keyboard Commands

.

START

The START command initiates execution of the program currently in mem-
ory (loaded with the GET command) at the address you specify.

START { address]

In the command syntax shown above, address is an even octal number rep-
resenting any 16-bit address. If you omit the address or if you specify 0, the
system uses the starting address that is in location 40. If the address you
specify does not exist or is invalid for any reason, a trap to location 4 occurs
and the monitor prints an error message. Note that this command is valid
for background jobs only, and not for extended memory virtual jobs. The fol-
lowing command loads MYPROG.SAYV into memory and begins execution.

«GET MYFROG
«BTART

The next example loads MYPROG.SAV and ODT.SAV into memory, and
begins execution at ODT’s starting address.

«GET MYFROG
SGET OnT
+START 1222
onT Vvo01.04
X

Keyboard Commands 4-171

4-172

SUSPEND

The SUSPEND command temporarily stops execution of the foreground or
system job.

suspenD [((sP) jobname]

If you have system job support enabled on your monitor, specify the name of
the system or foreground job you wish to suspend. If you do not have system
job support, then do not include an argument with the SUSPEND command.
The SUSPEND command is not valid for the SJ monitor. The system per-
mits foreground input and output that are already in progress to finish; how-
ever, it issues no new input or output requests and enters no completion
routines (see the RT—11 Programmer’s Reference Manual for a detailed
explanation of completion routines). You can continue execution of the job
by typing the RESUME command. The following command suspends execu-
tion of the foreground job that is currently running on a system that does not
have system job support.

+SUSFEND

The next command suspends execution of the system job, QUEUE, that is
currently running on a system that does have system job support.

+SUSFEND QUEUE

Keyboard Commands

-

TIME

Use the TIME command to set the time of day or to display the current time
of day.

TIME [hh:mm:ss]

In the command syntax shown above, 2k represents hours (from 0 to 23);
mm represents minutes (from 0 to 59) and ss represents seconds (from 0 to
59). The system keeps time on a 24-hour clock.

To enter the time of day, specify the time in the format described above. You
should do this as soon as you bootstrap the system. The following example
enters the time, 11:15:00 A.M.

JTIME 11315
As this example shows, if you omit one of the arguments the system
assumes 0.

To display the current time of day, type the TIME command without an
argument, as this example shows.

. TIME
1115201

When you install the standard RT-11 monitors, the clock rate is preset to 60
cycles. Consult the RT-11 Installation and System Generation Guide for
information on setting the clock to a 50-cycle rate.

The FB and XM monitors automatically reset the time each day at mid-
night. The SJ monitor resets the time only if you select timer support during
the system generation process.

Keyboard Commands 4-173

4-174

TYPE

The TYPE command prints the contents of one or more files on the terminal.

TYPE [ICOPIES:n filespecs

IDELETE
/INO] LOG
INEWFILES
JQUERY
TWAIT

In the command syntax illustrated above, filespecs represents the file or files
to be typed. You can explicitly specify up to six files as input to the TYPE
command. The system types the files in the order in which you specify them
in the command line. You can also use wildcards in the file specification. In
this case, the system types the files in the order in which they occur in the
directory of the device you specify. If you specify more than one file, separate
the files by commas. If you omit the file type for a file specification, the sys-
tem assumes .LST. You can specify the entire command on one line, or you
can rely on the system to prompt you for information. The TYPE command
prompt is Files?.

The TYPE command options and examples follow.

/COPIES:n Use this option to list more than one copy of the file. The
meaningful range of values for the decimal argument r is from 2 to 32 (1 is

the default). The following command, for example, types three copies of the
file REPORT.LST on the terminal.

» TYFE/ZCOFIESE3 REFORT

/DELETE Use this option to delete a file after it is typed on the terminal.
This option must appear following the command in the command line. The
TYPE/DELETE operation does not ask you for confirmation before it exe-
cutes. You must use /QUERY for this function. The following example types
a BASIC program on the terminal, then deletes it from DX1:.

CTYRE/ZDELETE DX1:!FROGL.ERAS

/LOG This option prints on the terminal the names of the files that were
typed by the current command. Normally, the system prints a log only if
there is a wildcard in the file specification. If you specify /QUERY, the query
messages replace the log, unless you specifically type /LOG/QUERY in the
command line. The following example shows a TYPE command and the
resulting log.

L TYFE/ZLOG OQUTFIL.LST
Files coried?
IKIOUTFIL.LST to TT?

/NOLOG This option prevents a list of the copied files from printing on the
terminal. You can use this option to suppress the log if you use a wildcard in
the file specification.

Keyboard Commands

/NEWFILES Use this option in the command line if you need to type only
those files that have the current date. The following example shows a con-
venient way to type all new files after a session at the computer.

+TYFE/NEWFILES %.LST

Files coried?
DKIREFORT.LST to TT:

/QUERY If you use this option, the system requests confirmation
before it performs the operation. /QUERY is particularly useful on oper-

1l ot tmrnlorn mxrildannds whan vartt mauv nat ha giiva whie
AI "‘I}b CNAay iNVoIive WiiGCaras, winen vuu may lgub UT SUL T Vvlllhh ﬁles the S‘v’S=

tem selected for an operation. Note that if you specify /QUERY in a TYPE
command line that also contains a wildcard in the file specification, the con-
firmation messages printed on the terminal replace the log messages that
would normally appea You must respond to a query message by typing Y
(or anything that begins with y) and a carriage retun to initiate execution
of a articular operation. The system interprets ay other response to mean
NO and does not perform the specific operation.

., TYPE/QUERY/DELETE %.LST

Files coried/deleted!?
IRKS$OUTFIL.LST to TTi® NO
IK{REFORT.LST to TT:? Y

/WAIT This option is useful if you have a single-disk system. When you
use this option, the system initiates the TYPE operation, but then pauses
and waits for you to mount the volume on which you want the operation to
take place. When the system pauses, it prints Mount input volume in
<device>; Continue?, where <device> represents the device into which you
mount the volume. When you have mounted the volume, type Y followed by
a carriage return.

The following sample command types AJAX.DOC from an RKO05 disk:

, TYFE/WAIT RKO!AJAX.DOC
Mourt irnput volume in RKO!§ Continue?Y

After the system has typed AJAX.DOC at the terminal, it issues the follow-
ing prompt:

Mourt swstem volume inm RKO!# Continue?

When you mount the system volume, and type a Y followed by a carriage
return, you terminate the TYPE operation.

Keyboard Commands 4-175

4-176

UNLOAD

The UNLOAD command removes previously loaded handlers from memory,
thus freeing the memory space they occupied. It also removes terminated
foreground or system jobs.

device [,. . . device]
UNLOAD

jobname [,. . .jobname]

In the command syntax shown above, device represents the device handler
to be unloaded. The colon that follows the device handler is optional with SJ,
FB, and XM monitors and monitors that do not have system job support.
You must inciude the colon if your system has system job support.

UNLOAD clears ownership for all units of the device type you specify. A
request to unload the system device handler clears ownership for any
assigned units for that device, but the handler itself remains resident. After
you issue the UNLOAD command, the system returns any memory it frees
to a free memory list. The background job eventually reclaims free memory.
Note that if you interrupt an operation that involves magtapes or cassette,
you must unload and then load (with the LOAD command) the appropriate
device handler (MM, MT, MS, or CT).

The system does not accept an UNLOAD command while a foreground job is
running if the foreground job owns any units of that device. This is because a
handler that the foreground job needs might become nonresident. You can
unload a device while a foreground job is running if none of its units belong
to the foreground job.

A special function of this command is to remove a terminated foreground or
system job and reclaim memory, since the system does not automatically
return the space occupied by the foreground or system job to the free mem-
ory list. The following command unloads the foreground job and frees the
memory it occupied. This command is valid only if the foreground job is not
running.

LUNLOAD F

The following command unloads the system job QUEUE.

LUNLOAD QUEVE

The following command clears ownership of all units of RK:. If RK: is the
system device, the RK handler itself remains resident.

LSUNLOAD RKY

The next command releases the line printer and DECtape handlers and
frees the area they previously held.

HERS IR T CEEL LI B e a g
s LI UIFIA L e P AN

Keyboard Commands

A d—

Part lll
Text Editing

You use an editor to create and modify textual material. Part III describes
the RT-11 text editor, EDIT, and explains how to use it.

—

Chapter 5
Text Editor (EDIT)

The text editor (EDIT) is a program that creates or modifies ASCII source
files for use as input to other system programs such as the MACRO assem-

bier or the FORTRAN compiler. EDIT, which accepts commands you type at
the terminal, reads ASCII files from any input device, makes specific
changes, and writes on any output device. EDIT allows efficient use of VT11

or VS60 display hardware, if they are part of the system configuration.

The editor considers a file to be divided into logical units called pages. A
page of text is generally 50 to 60 lines long (delimited by form feed charac-
ters) and corresponds approximately to a physical page of a program listing.
The editor reads one page of text at a time from the input file into its inter-
nal text buffers, where the page becomes available for editing. Editing com-
mands can:

® Locate text to be changed

® Execute and verify changes

® List an edited page on the console terminal
o Qutput a page of text to the output file

Note that you cannot perform any edit operations on a protected fiie. To dis-
able a file’s protected status, see the RENAME command description.

5.1 Calling EDIT

You can call the text editor when you are at monitor level. The syntax of the
command is:

/INSPECT

EDIT {/CREATE) | (SP) filespec[/ALLOCATE :sizel
JOUTPUT :filespec{/ALLOCATE :size]}]

See Section 4.4 for a description of the EDIT command and its options.

5.2 Modes of Operation

The editor operates in either command mode or text mode. In command
mode the editor interprets all input you type on the keyboard as commands
to perform some operation. In text mode the editor interprets all typed input

Text Editor (EDIT) 5-1

as text to replace, insert into, or append to the contents of the text buffer.
You can use a special editing mode, called immediate mode, with the VT-11
display hardware. Section 5.7.2 describes this mode.

Immediately after being loaded into memory and started, the editor is in
command mode. EDIT prints an asterisk at the left margin of the console
terminal page to indicate that it is ready to accept a command. Terminate
all commands by pressing the ESCAPE key twice in succession. Execution
of commands proceeds from left to right. When EDIT encounters an error
before beginning execution of a command string, it prints an error message
followed by an asterisk at the beginning of a new line, indicating that it is
still in command mode, that it is waiting for a command, and that execution
of the illegal command has not occurred. You should retype the command
correctly.

To enter text mode, type a command that must be followed by a text string.
These commands insert, replace, exchange, or otherwise manipulate text.
When you type one of these commands, EDIT recognizes all succeeding char-
acters as part of the text string until it encounters an ESCAPE character.
The ESCAPE terminates the text string and causes the editor to reenter
command mode.

5.3 Speciai Key Commands

5-2

Table 5-1 lists the EDIT key commands. Type a control command by hold-
ing down the CTRL key while typing the appropriate character.

Table 5-1: EDIT Key Commands

Key Explanation

ESCAPE, Echoes as $. A single ESCAPE terminates a text string. A double ESCAPE
ALTMODE, | (two consecutive ESCAPEs) executes the command string. For example:

or SEL KGMOV AvB$-1D0%%

The first ESCAPE ($) terminates the text object (MOV A,B) of the Get com-
mand. The double ESCAPE (3) terminates the Delete command and causes
execution of the entire statement with the result that the character B will
be deleted.

CTRL/C Echoes at the terminal as "C. If EDIT encounters a CTRL/C as a command
in command mode, it terminates execution and returns control to the mon-
itor. You can restart the editor by typing R EDIT or REENTER in response
to the monitor’s prompt. If EDIT encounters a CTRL/C in a text object, the
CTRL/C is included in the text object, as if it were just like any other charac-
ter. If the editor is executing a lengthy command and you want to stop
EDIT, type two CTRL/C commands in succession. This will abort the com-
mand, generate the 2EDIT-F-COMMAND ABORTED error message, and
return the editor to command mode. For example:

E 3 ST 1 3

X~Cs¢

(continued on next page)

Text Editor (EDIT)

Table5-1: EDIT Key Commands (Cont.)

Key

Explanation

CTRL/C

CTRL/O

CTRL/U

RUBOUT
or
DELETE

TAB

CTRL/X

In the first command, the three CTRL/C characters are part of the text
object of the Insert command. EDIT treats them like any other character. In
the second command string, the CTRL/C occurs at command level, which
causes the editor to terminate.

If no commands (other than CLOSE) are executed between the time you ter-
minate the editor and the time you issue a REENTER command, the text

owama tanmatmodiam oo~ Ty & 4
buffer) Dreser'v'ed asit was at prograim ermiinacion. rnowever, OTiLy tr n: text

buffer is preserved. The input and output files are closed, and the save and
macro buffers are reinitialized.

If you inadvertently terminate an editing session before the output file can
be closed, you can often use the monitor CLOSE command to make per-
manent the portion of the output file that has already been written (see Sec-
tion 4.4). You can then reenter the editor, open a new output file, and
continue the editing session.

Echoes as "O and a carriage return. Inhibits printing on the terminal until
completion of the current command string. Typing a second CTRL/O
resumes output.

Echoes as “U and a carriage return. Deletes all characters on the current
terminal input line. (Typing CTRL/U has the same effect as pressing the
RUBOUT key until all the characters back to the beginning of the line are
deleted.)

Deletes a character from the current command line; echoes as a backslash
followed by the character deleted. Each succeeding RUBOUT you type
deletes and echoes another character. An enclosing backslash prints when
you type a key other than RUBOUT. This erasure is done from right to left.
Since EDIT accepts multiple-line commands, RUBOUT can delete past the
carriage return/line feed combination and delete characters on the previous
line. You can use RUBOUT in both command and text modes.

Spaces to the next tab stop. Tab stops are positioned every eight spaces on
the terminal; pressing the TAB key causes the carriage to advance to the
next tab position.

Echoes as "X and a carriage return. CTRL/X causes the editor to ignore the
entire command string you are currently entering. The editor prints a car-
riage return/line feed combination and an asterisk to indicate that you can
enter another command. For example:

¥IARCT
EFGH™X
X

A CTRL/U would cause only deletion of EFGH; CTRL/X erases the entire
command.

5.4 Command Structure

EDIT commands fall into eight general categories. Table 5-2 lists these cat-
egories, the commands they include, and the sections of this manual where
you will find information on the particular command.

Text Editor (EDIT) 5-3

Table 5~2: EDIT Command Categories

Category Commands Section
File open and close
Edit Backup 5.6.1.3
Edit Read 5.6.1.1
Edit Write 5.6.1.2
End File 5.6.14
File input/output
EXit 5.6.2.4
Next 5.6.2.3
Read 5.6.2.1
Write 5.6.2.2
Immediate mode
ESCAPE 5.7.2
CTRLD 5.7.2
CTRLG 5.7.2
CTRLN 5.7.2
CTRLV 5.7.2
RUBOUT 5.7.2
Pointer location
Advance 5.6.3.3
Beginning 5.6.3.1
Jump 5.6.3.2
Search
Find 5.6.4.2
Get 5.6.4.1
Position 5.6.4.3
Text listing
List 5.6.5.1
Verify 5.6.5.2
Text modification
Change 5.6.6.4
Delete 5.6.6.2
eXchange 5.6.6.5
Insert 5.6.6.1
Kill 5.6.6.3
Utility
Edit Console 5.7.1
Edit Display 5.7.1
Edit Lower 5.6.7.6
Edit Upper 5.6.7.6
Edit Version 5.6.7.5
Execute Macro 5.6.7.4
Macro 5.6.7.3
Save 5.6.7.1
Unsave 5.6.7.2

54 Text Editor (EDIT)

The general syntax for all the EDIT commands, except immediate mode
commands, is:

[n]Cltext]$
or
[n]C$
where:
n represents one of the arguments from Table 5-3
C represents a 1- or 2-letter command

text represents a string of ASCII characters

As a rule, commands are separated from one another by a single ESCAPE;
however, if the command requires no text, the separating ESCAPE is not
necessary. Commands are terminated by a single ESCAPE; typing a second
ESCAPE begins execution. (You use ESCAPE differently when immediate
mode is in effect; see Section 5.7.2.)

The syntax of display editor commands is different from the normal editing
command format, and is described in Section 5.7.

5.4.1 Arguments

An argument is positioned before a command letter. It specifies either the
particular portion of text to be affected by the command or the number of
times to perform the command. With some commands, this specification is
implicit and no argument is needed; other editing commands require an
argument. Table 5-3 lists the possible arguments and their meanings.

Table 5-3: Command Arguments

Argument | Meaning

n Represents an integer in the range —16383 to + 16383 and may, except where
noted, be preceded by a plus (+) or minus (-) sign. If no sign precedes n, it is
assumed to be a positive number. The absence of n implies a 1 (or -1 if a minus
sign precedes a command). This argument can represent the number of char-
acters or lines forward or backward (+ or —) to move the pointer, or it can rep-
resent the number of times to execute the operation.

0 Indicates the text between the beginning of the current line and the reference
pointer (see Section 5.4.3).

! Refers to the text between the reference pointer and the end of the text in the
buffer.

= Represents —n, where n is equal to the length of the last text argument used.
Use this argument with the J, D, and C commands only.

The roles of all arguments are explained in the following sections.

Text Editor (EDIT) 55

5-6

5.4.2 Command Strings

All EDIT command strings are terminated by two successive ESCAPE char-
acters. Use spaces, carriage returns, and line feeds within a command string
to increase command readability. EDIT ignores them unless they appear in
a text string. Commands to insert text can contain text strings that are sev-
eral lines long. Each line you enter is terminated by the carriage return key,
which inserts both a carriage return and a line feed character into the text.
The entire command is terminated by a double ESCAPE.

You can string several commands together and execute them in sequence.
For example:

text object text object text object
KEGHMOYV FUrRO$-ZCRIESKGULE RR2$E
| L
second third fifth
command command| command
first fourth
command command
where:
B is the first command
GMOV PC,R0 is the second command (MOV PC,R0 is the text object)
-2CR1 is the third command (R1 is the text object)
5K is the fourth command

GCLR @R2 is the fifth command (CLR @R?2 is the text object)

$ separates the end of each text object from the follow-
ing command
$$ executes the commands

Execution of a command string begins when you type the double ESCAPE
and proceeds from left to right. EDIT ignores spaces, carriage returns, line
feeds, and single ESCAPEs, except when they are part of a text string. Thus,
example (1) has the same result as example (2):

(1) *BGMOV RO$=CCLR R13AV$$

(2) xps$ GMOV ROS
=CCLR R1%$
At VS

i

Text Editor (EDIT)

5.4.3 Current Location Pointer

Most EDIT commands function with respect to a movable reference pointer
that is normally located between the most recent character operated upon
and the next character in the buffer. It is important to think of this pointer
as being between two characters, and never directly on a character. At the
start of editing operations, the pointer precedes the first character in the
buffer, although it is not displayed on the console terminal. At any time dur-
ing the editing procedure, think of the pointer as representing the current
position of the editor in the text. The pointer moves during editing oper-

A e e o 4 L At L 1 ML 4
arnions Qr-l'nrnlng TO TNo Tvna N1 aairtin Qonerarion nein nariormeq, nerer o
VAIVIID GAVLUS il VU i vy pT Ui TNaivaidl PUiGuiVii OTLE pULIVILGUU. AVWaTl W

text in the buffer as so many characters or lines preceding or following the
pointer. ‘

5.4.4 Character- and Line-Oriented Command Properties

Edit commands are either character-oriented or line-oriented: character-ori-
ented commands affect a specified number of characters preceding or follow-
ing the pointer; line-oriented commands operate on entire lines of text.

The argument of character-oriented commands specifies the number of char-
acters in the buffer on which to operate. If n is unsigned (positive), the com-
mand moves the pointer in a forward direction. If n is preceded by a minus
sign (negative), the command moves the reference pointer backward. LF,
RET, and null characters, although not printed, are embedded in text lines,
counted as characters in character-oriented commands, and treated as any
other text characters. When you press the RET key, both a carriage return
and a line feed character are inserted into the text. For example, assume the
pointer is positioned as indicated in the following text (1 represents the cur-
rent position of the pointer):

MOV #VECTR2 @D,

~r o AT A TN T 2N
CLR @R2GED@DH

The EDIT command -2J moves the pointer back two characters to precede
the carriage return character.

MOV #VECT,R2,@GED(@D
CLR @R2GED@D

The command 10J advances the pointer forward ten characters and places it
between the RET and LF characters at the end of the second line. Note that
the tab character preceding @R2 is also counted as a single character.

MOV~ #VECT,R2
CLR @R2GED,®

Finally, to place the pointer after the C in the first line, use a -14J command.
The J (Jump) command is explained in Section 5.6.3.2.

MOV #VECT,R2GED (P
clR @rR2 ‘e @

Text Editor (EDIT) 5-7

5-8

When you use line-oriented commands, the command argument specifies
the number of lines on which to operate. Because EDIT counts the line-ter-
minating characters to determine the number of lines on which to operate,
an argument n does not affect the same number of lines forward (positive) as
it affects backward (negative). For example, the argument -1 applies to the
line beginning with the first character following the second previous end-of-
line and ending with the character preceding the pointer. The argument 1 in
a line-oriented command, however, applies to the text beginning with the
first character following the pointer and ending at the first end-of-line.
Thus, if the pointer is at the center of the line, the argument -1 affects one
and one-half lines backward from the pointer and the argument 1 affects
one-half line beyond the pointer.

For example, assuime the buffer contains:

MOV +Pc,Rl
ADD #DRIV-.RIGED(@F)
MOV #VECT,R2GED@H

CLR @R2@ED(®P

The command to advance the pointer one line (1A) causes the following
change:

MOV PCRIGED(P
+ADD #DRIV- . ,RIGED (TP
MOV #VECT R2@eD(™H)

CLR @R2@ED(D

The command 2A moves the pointer over two RET LF combinations to pre-
cede the fourth line:

MOV PCRIGED @

ADD #DRIV-.RIGED@P

MOV #VECT,R2
CLR @R2GED@D

Assume the buffer contains:

MOV PCRI1 @

ADD #DRIV-.R1 @
MOV #VEC+T R2GED(@H
CLR @R2 ()

A command of -1A moves the pointer back by one and one-half lines to pre-
cede the second line.

MOV PCRIGED(H
ADD #DRIV-.RIGED(@P

MOV #VECT,R2GED (P

IR @R2GeD(P

4

Now a command of -1A moves the pointer back by only one line.

Text Editor (EDIT)

MoV PC.RIGED @D
ADD #DRIV-.RIGED @
MOV #VECT,R2GED (@
CLR @R2@ED@P

5.4.5 Command Repetition

You can execute portions of a command string more than once by enclosing

B [P« Ry

the portion in angle brackets (<>) and preceding the left angle bracket with
the number of iterations you desire. The syntax is:

n<command>
For example:
C1$C2$n<C3CA>CTH$
where:
C represents a command
n represents an iteration argument

Commands C1 and C2 each execute once, then commands C3 and C4 execute
n times. Finally, command C5 executes once and the command line is fin-
ished. The iteration argument (n) must be a positive number (in the range 1
through 16383); if unspecified, it is assumed to be 1. If the number is nega-
tive or too large, an error message prints. You can nest iteration brackets up
to 20 levels. Before execution, EDIT checks command lines to make certain
the brackets are correctly used and match.

Enclosing a portion of a command string in iteration brackets and preceding
it with an iteration argument (n) has the same result as typing that portion
of the string n times. Thus, example (1) and example (2) are equivalent.

(1) XBGAAA$3:-DIR$~-J:U$$
(2) *BGAAA$-DIE$-J-DIE$-J-DIR$-JIV$$

Similarly, the following two strings are equivalent:

*kB3C2CADVESS
*¥RADADIVADATIVADADVE S

The following bracket structures are examples of legal usage:

LKL >>>
LIS >>I>L>

The following bracket structures are examples of combinations that will
cause an error message:

><I>L<
<LK LK>>

Text Editor (EDIT) 5-9

During command repetition, execution proceeds from left to right until a
right bracket is encountered. EDIT then returns to the last left bracket
encountered, decreases the iteration counter, and executes the commands
within the brackets. When the counter is decreased to 0, EDIT looks for the
next iteration count to the left and repeats the same procedures. The overall
effect is that EDIT works its way to the innermost brackets and then works
its way back again. The most common use for iteration brackets is found in
commands, such as Unsave (U), that do not accept repeat counts. For
example:

X3<U4%

Assume you want to read a file called SAMP (stored on device DK:), and you
want to change the first four occurrences of the instruction MOV #200,R0
on each of the first five pages to MOV #244 R4. Enter the following com-
mand line:

RERSAMPEES N TREHOY F200 RO$ = IEE TGOS -0 b g S

I ~
Y
e

The command line contains three sets of iteration loops (A,B,C) and exe-
cutes as follows:

Execution initially proceeds from left to right; EDIT opens the file SAMP for
input and reads the first page into memory. EDIT moves the pointer to the
beginning of the buffer and initiates a search for the character string MOV
#200,R0. When it finds the string, EDIT positions the pointer at the end of
the string, but the =J command moves the pointer back, so that it is posi-

Pu I A3 1 As
tioned immediately preceding the string. At this point, execution has passed

through each of the first two sets of iteration loops (A,B) once. The
innermost loop (C) is next executed three times, changing the Os to 4s. Con-
trol now moves back to pick up the second iteration of loop B, and again
moves from left to right. When loop C has executed three times, control
again moves back to loop B. When loop B has executed a total of four times,
control moves back to the second iteration of loop A, and so forth, until all
iterations have been satisfied.

5.5 Memory Usage

5-10

The memory area used by the editor is divided into four logical buffers as
follows:

Text Editor (EDIT)

MACRO BUFFER

High Memory

Low Memory

TEXT BUFFER

The text buffer contains the current page of text you are editing, and the
command input buffer holds the command you are currently typing at the
terminal. If a command you are currently entering is within ten characters
of exceeding the space available in the command buffer, the following mes-
sage prints on the terminal.

TEDIT-W-Command buffer almost full

If you can complete the command within ten characters, you can finish
entering the command; otherwise you should press the ESCAPE key twice
to execute that portion of the command line already completed. The warning
message prints each time you enter a character in one of the last ten spaces.

If you attempt to enter more than ten characters, EDIT prints the following
message and aborts the command.

PERIT-F~Command buffer fullino command(s) executed

The save buffer contains text stored with the Save (S) command, and the
macro buffer contains the command string macro entered with the Macro
(M) command. (Both commands are explained in Section 5.6.7.)

EDIT does not allocate space for the macro and save buffers untilan M or S
command executes. Once you enter an M or S command, a OM or OU
(Unsave) command executes to return that space to the free area.

The size of each buffer automatically expands and contracts to accommodate
the text you are entering; if there is not enough space available to accom-
modate required expansion of any of the buffers, EDIT prints the error
message:

TEOIT-F-Irngufficient memory

Text Editor (EDIT) 5-11

5.6 Editing Commands

5-12

This section describes the commands and procedures required to:

® Read text from the input files to the buffer

® Create a backup version of the file

® List the contents of the buffer on the terminal

® Move the reference pointer

® Locate characters or strings of characters within the text buffer
® Insert, relocate, or delete text in the buffer

® (lose the output file

® Terminate the editing session

The following sections are arranged, in order, by category of command func-
tion, as illustrated in Table 5-2.

5.6.1 File Open and Close Commands

You can use file open and close commands to:

® Open an existing file for input and prepare it for editing (ER)

® Open a file for output of newly created or edited text (EW)

® Open an existing file for editing and create a backup version of it (EB)

® Close an open output file (EF)

5.6.1.1 Edit Read — The Edit Read (ER) command opens an existing file for

input and prepares it for editing. Only one file can be open for input at a
time.

The syntax of the command is:
™ 1 ~n1 4 h
nnaevininam.lypd

The argument dev:filnam.typ is limited to 19 characters and specifies the file
to be opened. If you do not specify a device, DK: is assumed. If a file is cur-
rently open for input, EDIT closes that file and opens the new one.

Edit Read does not input a page of text nor does it affect the contents of the
other user buffers.

With Edit Read you can close a file that is already open for input and reposi-
tion EDIT at the beginning of the file. The first Read command following
any Edit Read command inputs the first page of the file.

This command string opens the file SAMP.MAC on device DT1:.

¥ERUTLISAMF MACSH S

Text Editor (EDIT)

NOTE

If you enter EDIT with the monitor EDIT/INSPECT or
EDIT/OUTPUT command, an Edit Read command is auto-
matically performed on the file named in the EDIT

command.

5.6.1.2 Edit Write — The Edit Write (EW) command opens a file for output

of newly created or edited text. However, no text is output and the contents
of the buffers are not affected. Only one file can be open for output at a time.

2 vail AMmaiTIS QAT 200 QAI0ULOS. VALY LA LAl Lall Y <11 LE DL LR 4L LLLLN

EDIT closes any output files currently open and preserves any edlts made to
the file.

The syntax of the command is:
EWdev:filnam.typ[n]$

The argument dev:filnam.typ[n] is limited to 19 characters and is the name
you assign to the output file being opened If you do not specify a device, DK:
is assumed. The optional argument [n] is a decimal number that represents
the length of the file to be opened. Note that the square brackets ([]) are part
of this argument and must be typed. If you do not specify [n], the system will
default to either the larger of one-half the largest available space, or the sec-
ond largest available space. If this is not adequate for the output file size,
you must close this file and open another when this one becomes full. You
should use the [n] construction whenever there is doubt as to whether
enough space is available on the device for one output file.

If a file with the same name already exists on the device, EDIT deletes the
existing file when you type an Exit, End File, or another Edit Write com-
mand. EDIT prints the warning message:

PEDIT-W-Surerseding existing file

t

The following command, for example, opens FILE.BAS on device DK: and
allocates 11 blocks of space for it.

¥EWFILE.RASC111%%

NOTE

If you enter EDIT with the monitor EDIT/CREATE com-
mand, an Edit Write command is automatically performed
on the file named in the EDIT command. If you enter EDIT
with the monitor EDIT/OUTPUT command, an Edit Write
is automatically performed on the file named with the
/OUTPUT option.

5.6.1.3 Edit Backup — The Edit Backup (EB) command opens an existing
file for editing and at the same time creates a backup version of the file.
EDIT closes any input and output file currently open. No text is read or writ-
ten with this command.

Text Editor (EDIT) 5-13

v

5-14

The syntax of the command is:
EBdev:filnam.typ[n]$

The argument dev:filnam.typ[n] is limited to 19 characters. If you do not
specify a device, DK: is assumed. The argument [n] is optional and repre-
sents the length of the file to be opened; if you do not specify [n], the system
defaults to either the larger of one-half the largest available space, or the
second largest available space.

The file you indicate in the command line must already exist on the device
you designate, because text will be read from this file as input. At the same
time, EDIT opens an output file under the same file name and file type.

When the output file is closed, EDIT renames the original file (used as input)

Vid vaalT LA ATLAU 2i2 1i%4 L3idN 1xd QLI W J PLEY 11T

with this file name and a .BAK file type. EDIT closes the new output file and
assigns it the name you specify in the EB command. This renaming of files
takes place when an Exit, End File, or subsequent Edit Write or Edit
Backup command executes. If you terminate the editing session with a
CTRL/C command before the output file is closed, the new output file is not

'made permanent, and the renaming of the current version to .BAK does not

take place. Thus:
KEESY$BAS1 . MACSS

This command opens BAS1.MAC on device SY:. When editing is complete,
the old BAS1.MAC becomes BAS1.BAK, and the new file becomes
BAS1.MAC. EDIT deletes any previous version of BAS1.BAK.

NOTE

In EB, ER, and EW commands, leading spaces between the
command and the file name are not permitted because
EDIT assumes the file name to be a text string. All
dev:file.typ specifications for EB, ER, and EW commands
conform to RT-11 conventions for file naming. File names
entered in command strings used with other system pro-
grams have identical specifications.

If you enter EDIT with the monitor EDIT command, an
Edit Backup command is automatically performed on the
file named in the EDIT command.

5.6.1.4 End File — The End File (EF) command closes the current output
file and makes it permanent. You can use the EF command to create an out-
put file from a section of a large input file or to close an output file that is full
before you open another file. Modifiers are illegal with an EF command.
Note that an implied EF command is included in EW and EB commands.

The syntax of the command is:

RPN Nlrcdrntag +ha ralatinmahie hatwaam 4ba 8o oo o 3 1
Table 54 illustrates the relationship between the file open and close com-

mands and the buffers and files themselves.

Text Editor (EDIT)

Table 5~4: EDIT Commands and File Status

Command File Status
Input Text Buffer | Output
ERXXX$ Opens XXX for input;| Unchanged Unchanged
closes existing input
file, if any
EWXXX$ Unchanged Unchanged Opens XXX for output; closes
existing output file, if any;
performs .BAK renaming if EB is
in effect
EBXXXS$ Opens XXX for input;| Unchanged Opens a temporary file
closes existing input) for output; closes existing
file, if any output file, if any;
’ performs .BAK renaming if EB is
in effect
EF$ Unchanged Unchanged Closes output file; performs
: .BAK renaming if EB is
in effect
EX$ Copies to Copies to Closes output file after
output file output file copying complete; performs .BAK
renaming if EB is in effect

5.6.2 File Input/Output Commands

You use file input/output commands to:

e Read text from an input file into the buffer

e Copy lines of text from the buffer into an output file

® Terminate the editing session

5.6.2.1 Read - Before you can edit text, you must read the input file into
the buffer. The Read (R) command reads a page of text from the input file

(previously specified in an ER or EB command) and appends it to the current
contents of the text buffer (contents can be empty).

The command is:
R

No arguments are used with the R command. If the buffer contains text
when the R command is executed, the pointer does not move; however, if the
buffer does not contain text, the pointer is placed at the beginning of the buf-
fer. EDIT transfers text to the buffer until one of the following conditions
occurs:

1. A form feed character, signifying the end of the page, is encountered.

2. The text buffer is 500 characters from being full. (When this condition
occurs, the Read command inputs up to the next carriage return/line

Text Editor (EDIT) 5-15

5-16

feed combination, then returns to command mode. An asterisk prints as
though the read were complete, but text will not have been fully input.)

3. An end-of-file is encountered. (The ?EDIT-F-End of input file message
prints when all text in the file has been read into memory and no more
input is available.)

The maximum number of characters you can bring into memory with an R
command depends on the system configuration and the memory require-
ments of other system components. EDIT prints an error message if the read
exceeds the memory available or if no input is available.

The following example creates a file using the EB and R commands.

XEBSIK1, BASSES
This command opens SJK1.BAS on DK: and permits modification.

XR/L$$
THIS IS PAGE ONE OF
FILE SJK1.RAS.

This command reads the first page of STJK1.BAS into the buffer. The pointer
is placed at the beginning of the buffer. /L lists the contents of the buffer on
the terminal, beginning at the pomter and ending with the last character in
the buffer.

5.6.2.2 Write — The Write (nW) command copies lines of text from the text
buffer to the output file (as specified in the EW or EB command). The con-
tents of the buffer are not altered and the pointer is left unchanged (unless
an output error occurs).

NOTE
EDIT uses a system of intermediate buffers to store output
hafnra i+ umitag +ha data Attt Bla Ml WAT..id

SCI0TC Iv WTIWeS v Gava vo an vurpun 1€, 11 vvuuc COIll-
mand logically writes to the file, but output to a device does
not occur until the intermediate buffer fills. When the edi-
tor closes a file (that is, after you issue an EF, EB, EX or
EW command), text is written from the buffer to the file
and the file is complete. If the editor does not close a file (if
you exit with CTRL/C and use the CLOSE command), it is
possible that the output file will be missing the last 512
characters.

The syntax of the command is:

nW

The argument you supply with the W command determines the lines of text
to copy. Table 5-5 lists the arguments for the W command.

Text Editor (EDIT)

Table 5-5: Write Command Arguments

Argument | Function

n Writes n lines of text beginning at the pointer and ending with the nth end-of-
line character to the cutput file.

-n Writes n lines of text to the output file beginning with the first character on
the —nth line and terminating at the pointer.

0 Writes to the output file the current line up to the pointer.

Writes to the output file the text between the pointer and the end of the buffer.

If the buffer is empty when the write executes, no characters are output.
The following examples illustrate the use of the W command.
(1) *xSuss

In example (1), the command writes the five lines of text following the
pointer into the current output file.

(2) *-2uss

In example (2), the command writes the two lines of text preceding the
pointer into the current output file.

(3) B/uss

In example (3), the command writes the entire text buffer to the current out-
put file.

NOTE

If an output file fills while a Write command is executing,
EDIT prints the 2EDIT-F-Output file full message. In this
case, EDIT positions the reference pointer after the last
character it wrote successfully. You can then use the fol-

lowing recovery procedure:
1. Close the current output file (EF command).
2. Open a new output file (EW command).

3. Delete the characters just written by using -nD or -nK,
where n is any arbitrary number that exceeds the num-
ber of lines or characters in the buffer.

4. Resume output.
5.6.2.3 Next - The Next (nN) command writes the contents of the text buf-
fer to the output file, deletes the text from the buffer, and reads the next

page of the input file into the buffer. The pointer is positioned at the begin-
ning of the buffer. The syntax of the command is:

nN

Text Editor (EDIT) 5-17

5-18

If you specify the argument n with the Next command, the sequence is exe-
cuted n times.

If EDIT encounters the end of the input file when trying to execute an N
command, it prints 2EDIT-F-End of input file to indicate that no further text
remains in the input file. Since the contents of the buffer have already been
transferred to the output file, the buffer is empty.

Using the N command is a quick way to write edited text to the output file
and set up the next page of text in the buffer. The N command functions as
though it were a combination of the Write, Delete, Read, and Beginning
commands. (Delete is a text modification command, described in Section
5.6.6.2; the Beginning command is a pointer relocation command, described
in Sectlon 5.6.3.1.) Using the N command with an argument is a convenient
way to set up text in the buffer, if you already know its page location. The N
command operates in a forward direction only; therefore, you cannot specify
negative arguments with an N command.

In the following example, an N command copies an 1nput file with more than
one page of text to the output file.

¥EEODKITEST .MACHS

This command opens the file TEST.MAC on device DK: and creates a new
file entitled TEST.MAC for output.

XN/L$%
THIS IS PAGE ONE OF
FILE TEST.MAC.

This command reads the first page of the input file, TEST.MAC, into the buf-
fer and lists the entire page on the terminal.

*N/LES
FENIT-F~Ergd of ineut file
b

This command transfers the contents of the buffer to the output file, clears
the buffer, and encounters the end of the file. Because it cannot complete the
N sequence, EDIT prints ¢EDIT-F-End of input file on the terminal. The
buffer is empty and the entire input file has been written to the output file.

5.6.2.4 EXit — Type the Exit (EX) command to terminate an editing ses-
sion. The Exit command:

® Writes the text buffer to the output file

® Transfers the remainder of the input file to the output file

® Closes all open files

® Renames the backup file with a .BAK file type if an EB command is in
effect

Text Editor (EDIT)

The command is:
EX

No arguments are accepted. Essentially, Exit copies the remainder of the

+ Bla intn th
input file into the output file and returns to the monitor. Exit is legal only

when there is an output file open. If an output file is not open and you Want
to terminate the editing session, return to the monitor with CTRL/C.

NOTE

aciio T ~se LV aeemamn owe el A rmanlra o

You must issue an EF or EX command in order fo make an
output file permanent. If you use CTRL/C to return to the
monitor without issuing an EF command, the current out-
put file will not be saved. (You can, however, make per-
manent that portion of the text file that has already been
written out, by using the monitor CLOSE command.)

An example of the contrasting uses of the EF and EX commands follows.
Assume an input file, SAMPLE, contains several pages of text. The first and
second pages of the file will be made into separate files called SAM1 and
SAM2, respectively; the remaining pages of text will then make up the file
SAMPLE. This can be done by using these commands:

XEWSAMI G4
XERSAMPLESS
KENEF$$
XEWSAM2%4

ANEF $%
KEWSAMPLESEXSS

Note that the EF commands are not necessary in this example since the EW
command closes a currently open output file before opening another.

5.6.3 Pointer Reiocation Commands

Pointer relocation commands allow you to change the current location of the
reference pointer within the text buffer.

5.6.3.1 Beginning — The Beginning (B) command moves the current loca-
tion of the pointer to the beginning of the text buffer.

The command is:

B

There are no arguments.

For example, assume the buffer contains:

MOVB 5(R1),@R2
ADD RI,(R2)+
CLR @R2

MOVB 6(R1),@R2

Text Editor (EDIT) 5-19

5-20

The B command moves the pointer to the beginning of the text buffer.

33327

The text buffer now looks like this:

MOVB 5(R1),@R2
ADD RI(R2)+
CLR @R2

MOVB 6(R1),@R2

-

5.6.3.2 Jump — The Jump (nd) command moves the pointer past a specified
number of characters in the text buffer. The syntax of the command is:

IlJ

Table 5—6 shows the arguments for the J command.

Table 5-6: Jump Command Arguments

Argument | Meaning

(+ or—)n]| Moves the pointer (forward or backward) n characters.
0 Moves the pointer to the beginning of the current line (equivalent to 0A).
/ Moves the pointer to the end of the text buffer (equivaient to /A).

= Moves the pointer backward n characters, where n equals the length of the
last text argument used.

Negative arguments move the pointer toward the beginning of the buffer;
positive arguments move it toward the end. Jump treats carriage returns,
line feeds, and form feed characters the same as any other character, count-
ing one buffer position for each one.

The following examples illustrate the J command.

This command moves the pointer ahead three characters.

K=4.0%%

This command moves the pointer back four characters.

KE$GABCS=J$%

This command moves the pointer so that it immediately precedes the first

occurrence of ABC in the buffer.

5.6.3.3 Advance — The Advance (nA) command is similar to the Jump com-
mand except that it moves the pointer a specific number of lines (rather than
single characters) and leaves it positioned at the beginning of the line. The
syntax of the command is:

nA

Text Editor (EDIT)

i

Table 5-7 lists the arguments for the A command and their meanings.

Table 5-7: Advance Command Arguments

PRSI N I 7 PRy)

n Moves the pointer forward r lines and positions it at the beginning of the nth
line.

-n Moves the pointer backward past n carriage return/line feed combinations
and positions it at the beginning of the — nth line.

0 Moves the pointer to the beginning of the current line (equivalent to 0dJ).

/ Moves the pointer to the end of the text buffer (equivalent to /J).

Following are examples that use the A command.

*x3A%%

This command moves the pointer ahead three lines.

Assume the buffer contains:

CLR @132

The following command moves the pointer to the beginning of the current
line:

X0ASS

Now the buffer looks like this:

Use search commands to locate characters or strings of characters within
the text buffer.

NOTE

Search commands always have positive arguments. They
search ahead in the file. This means that to search for a
character string that has already been written to the out-
put file, you must first close the currently open file (with
EX) and then edit the file that was just used for output
(with EB).

5.6.4.1 Get~ The Get (nG) command is the basic search command in EDIT.
It searches the current text buffer for the nth occurrence of a specific text
string, starting at the current location of the pointer. If you do not supply
the argument n, EDIT searches for the first occurrence of the text object. The
search terminates when EDIT either finds the nth occurrence or encounters

Text Editor (EDIT) 5-21

5-22

the end of the buffer. If the search is successful, EDIT positions the pointer
to follow the last character of the text object. EDIT notifies you of an unsuc-
cessful search by printing ¢EDIT-F-Search failed. In this instance, EDIT
positions the pointer after the last character in the buffer.

The syntax of the command is:
nGtext$
The argument n must be positive. If you omit it, EDIT assumes it to be 1.

The text string may be any length and must immediately follow the G com-
mand. EDIT makes the search on the portion of the text between the pointer
and the end of the buffer.

For example, assume the pointer is at the beginning of the buffer shown
below. '

MOV PCRI
ADD #DRIV-_RI
MOV #VECTR2
CLR @R2
MOVB 5(R1),@R2

ADD RI,(R2)+

CLR @R2

MOVB 6(R1),@R2

The following command searches for the first occurrence of the characters
ADD following the pointer and places the pointer after the searched
characters. .

*GADD$$

Now the buffer looks like this:

MOV PCRI

ADDf #DRIV-_,R1

Tha navt caommand coavrrhac far tha third arcnirvance of tho nsharantare (MR9
A LAy AAN/AAV VWNSALLLALGCALLANA WAL WALV AVA VALY VILLAA ML VUVLV ML A VIAVYSY UL ViLAG VildtAL AV UCAL D QA;.I.UH

following the pointer and leaves the pointer immediately following the text
object.

KIGER2%$

The buffer is changed to:

ADD RI,(R2)+
CLR @RZ_r

After successfully completing a search command, EDIT positions the pointer
immediately following the text object. Using a search command in com-
bination with =J places the pointer in front of the text object, as follows:

XGTESTS=J%%

Text Editor (EDIT)

This command combination places the pointer before TEST in the text
buffer.

5.6.4.2 Find — The Find (nF) command starts at the current pointer loca-

tion and Deavches the entire lnpnf file for fko nth occurrence of the text

string. If EDIT does not find the nth occurrence of the text string in the cur-
rent buffer, it automatically performs a Next command and continues the
search on the new text in the buffer. When the search is successful, EDIT
leaves the pointer immediately following the nth occurrence of the text
ﬂﬂﬂﬂﬂ L f5ilg (that i EDIT M dntnnta +tha and_~AFfLRla far tha 131

\fl |1|5 If‘ f!‘u;- SEe4rcii 1alisS (L4t is; hesr s GELedis Lné ena-gi-iiie ior ine u;yut
file and does not find the nth occurrence of the text string), EDIT prints
?EDIT-F-Search failed. In this instance, EDIT positions the pointer at the
beginning of an empty text buffer. When you use the F command, EDIT
deletes the contents of the buffer after writing it to the output file.

The syntax of the command is:
nFtext$

The argument n must be positive. EDIT assumes it to be 1 if you do not sup-
ply another value.

You can use an F command to copy all remaining text from the input file to
the output file by specifying a nonexistent text object. The Find command
functions like a combination of the Get and Next commands.

The following example uses the F command.
*2FMOVE S(R1) yBR2$%

This command searches the entire input file for the second occurrence of the
text string MOVB 6(R1),@R2. EDIT places the pointer following the text
string. EDIT writes the contents of each unsuccessfully searched buffer to
the output file.

5.6.4.3 Position — The Position (nP) command is identical to the Find (I)
command with one exception. The F command transfers the contents of the
text buffer to the output file as each page is unsuccessfully searched, but the
P command deletes the contents of the buffer after it is searched without
writing any text to the output file.

The syntax of the command is:
nPtext$
The argument n must be positive. If you omit it, EDIT assumes it to be 1.

The nP command searches each page of the input file for the nth occurrence
of the text object starting at the pointer and ending with the last character
in the buffer. If EDIT finds the nth occurrence, it positions the pointer fol-
lowing the text object, deletes all pages preceding the one containing the
text object, and positions the page containing the text object in the buffer.

Text Editor (EDIT) 5-23

5-24

If the search is unsuccessful, EDIT clears the buffer but does not transfer
any text to the output file. EDIT positions the pointer at the beginning of an
empty text buffer.

The Position command is a combination of the Get, Delete, and Read com-
mands; it is most useful as a means of placing the pointer in the input file.
For example, if your aim in the editing session is to create a new file from
the second half of the input file, a Position search saves time.

The following example uses the P command.

*F3%%

This command searches the input file for the first occurrence of the text
object, 3. EDIT positions the pointer after the text object.

¥OL$4%
INFUT FILE FAGE 3

This command lists on the terminal the current line up to the pointer.

5.6.5 TextListing Commands

5.6.5.1 List— The List (nL.) command prints at the terminal lines of text as
they appear in the buffer. The syntax of the command is:

nL

An argument preceding the L command indicates the portion of text to
print. For example, the command, 2L, prints on the terminal the text begin-
ning at the pointer and ending with the second end-of-line character. The
pointer is not altered by the L command. Table 5-8 lists arguments and
their effect upon the list command.

Table 5-8: List Command Arguments

Argument | Meaning

n Prints at the terminal r lines beginning at the pointer and ending with the
nth end-of-line character.

-n Prints all characters beginning with the first character on the —nth line and
terminating at the pointer.

0 Prints the current line up to the pointer. Use this command to locate the
pointer within a line.

/ Prints the text between the pointer and the end of the buffer.

These examples illustrate the use of the L command.

X-21.6%

Text Editor (EDIT)

a—

This command prints all characters starting at the second preceding line
and ending at the pointer.

*4L.5%

This line prints all characters beginning at the peointer and terminating at

the fourth carriage return/line feed combination.
Assuming the pointer location is:

MOVB 5(R1),&R2
ADD, RI,(R2)

The following command prints the previous one and one-half lines up to the
pointer:

*-1L.$%
The terminal output now looks like this:

MOVR S(R1)s@RZ
ALD

5.6.5.2 Verify — The Verify (V) command prints at the terminal the entire
line in which the pointer is located. It provides a ready means of determin-
ing the location of the pointer after a search completes and before you give
any editing commands. (The V command combines the two commands OLL.)
You can also type the V command after an editing command to allow proof-
reading of the results. No arguments are allowed with the V command. The
location of the peointer does not change.

5.6.6 Text Modification Commands

You can use the following commands to insert, relocate, and delete text in
the text buffer.

5.6.6.1 Insert — The Insert (I) command is the basic command for inserting
text. EDIT inserts the text you supply at the location of the pointer and then
places the pointer after the last character of the new text.

The syntax of the command is:
Itext$

No arguments are allowed with the insert command. The text string is lim-
ited only by the size of the text buffer and the space available. All characters
are legal, except ESCAPE, which terminates the text string.

NOTE

If you forget to type the I command, the editor will interpret
the text as commands.

Text Editor (EDIT) 5-25

5-26

EDIT automatically protects the text buffer from overflowing during an
insert. If the I command is the first command in a multiple command line,
EDIT ensures that there will be enough space for the insert to be executed at
least once. If repetition of the command exceeds the available memory, an
error message prints.

The following example illustrates the I command.

XIMOV $RUFF yR2
MOV FLINEsR1
MOVE -1(R2)RO%%
X

This command inserts the text at the current location of the pointer and

Tantwrac thn matnmdam macidsnmad ~ofiaw DN
1€aves une poiner posividonea aiter nu.

DIGITAL recommends that you insert large amounts of text into the file in
small sections rather than all at once. This way, you are less vulnerable to
loss of time and effort due to machine failure or human error. This is the rec-
ommended procedure for inserting large amounts of text:

1. Open the file with the EB command.

2. Insert or edit a few pages of text.

3. Insert a unique text string (like 7???) to mark your place.

4. Use the Exit command to preserve the work you have done so far.
5

Start again, using the F command to search for the unique string you
used to mark your place.

6. Delete your marker and continue editing.

5.6.6.2 Delete — The Delete (nD) command is a character-oriented com-
mand that deletes n characters in the text buffer, beginning at the current
ilocation of the pointer. The syntax of the command is:

nD

If you do not specify n, EDIT deletes the character immediately following
the pointer. Upon completion of the D command, EDIT positions the pointer
immediately before the first character following the deleted text. Table 5-9
lists arguments for the D command.

Text Editor (EDIT)

Table 5-9: Delete Command Arguments

Argument | Meaning

n Deletes n characters following the pointer. Places the pointer before the first
character following the deleted text.
-n Deletes n characters preceding the pointer. Places the pointer before the first
character following the deleted text.

0 Deletes the current line up to the pointer. The position of the pointer does not
change (equivalent to 0K).

/ Deletes the text between the pointer and the end of the buffer. Positions the
pointer at the end of the buffer (equivalent to /K).

= Deletes —n characters, where n equals the length of the last text argument
used.

The following examples illustrate the use of the D command.
%-20%$%

This command deletes the two characters immediately preceding the
pointer.

¥BEFMOV R1$=0%4

This command string deletes the text string MOV R1 (=D in combination
with a search command deletes the indicated text string).

Assume the text buffer contains the following:
ADD RI(R2)+
CLR ,@R2

The following command deletes the current line up to the pointer:

K0TS $
The buffer now contains:

ADD RI(R2)+
‘f(a’RZ
5.6.6.3 Kill - The Kill (nK) command removes 7 lines of text (including the
carriage return and line feed characters) from the page buffer, beginning at
the pointer and ending with the nth end-of-line. The syntax of the command
is:

nK

EDIT places the pointer at the beginning of the line following the deleted
text. Table 5-10 describes each argument and its effect upon the Kill
command.

Text Editor (EDIT) 5-27

5-28

Table 5-10: Kill Command Arguments

Argument | Meaning

n Removes the character string (including the carriage return/line feed com-
bination) beginning at the pointer and ending at the nth end-of-line.

-n Removes the character string beginning at the nth end-of-line preceding the
pointer and ending at the pointer. Thus, if the pointer is at the center of a line,
the modifier —1 deletes one and one-half lines preceding it.

0 Removes the current line up to the pointer (equivalent to 0D).

/ Removes the characters beginning at the pointer and ending with the last line
in the text buffer (equivalent to /D).

The following examples illustrate the K command.

*X2K$$

This command deletes lines starting at the current location of the pointer
and ending at the second carriage return/line feed combination.

Assume the text buffer contains the following:

ADD RI(R2)+
CLR, @R2
MOVB 6(R1),GR2

This command removes the characters beginning at the pointer and ending
with the last line in the text buffer:

*/K$%
The buffer now contains:

ADD RI,(R2)+
CLR,

Kill and Delete commands perform the same function, except that Kill is
line-oriented and Delete is character-oriented.

5.6.6.4 Change — The Change (nC) command changes a specific number of
characters following the pointer. The syntax of the command is:

nCtext

A C command is equivalent to a Delete command followed by an Insert com-

mand. You must insert a text object following the nC command. Table 5-11
lists each argument and itg effect upen tha (' pommand

2a Gy aadaTiiv Qisla 2 uS TiaTu Wil ViAT O LVULLLIIIGLIL,.

Text Editor (EDIT)

i—

Table 5-11: Change Command Arguments

Argument | Meaning

n Replaces n characters following the pointer with the specified text. Places the
pointer after the inserted text.

-n Replaces n characters preceding the pointer with the specified text. Places the
pointer after the inserted text.

0 Replaces the current line up to the pointer with the specified text. Places the

pointer after the inserted text (equivalent to 0X).

/ Replaces the text beginning at the pointer and ending with the last character
in the buffer. Places the pointer after the inserted text (equivalent to /X).

= Replaces —n characters with the indicated text string, where n represents the
length of the last text argument used.

The size of the text is limited only by the size of the text buffer and the space
available. All characters are legal except ESCAPE, which terminates the
text string.

If the C command is to be executed more than once (that is, it is enclosed in
angle brackets) and if there is enough space available for the command to be
entered, it will be executed at least once (provided it appears first in the
command string). If repetition of the command exceeds the available mem-
ory, an error message prints.

The following examples illustrate the C command.
XSCHVECTS$ ‘

This command replaces the five characters to the right of the pointer with
#VECT.

Assume the text buffer contains the following:

CLR @R2
MOV, 5(R1),@R2

The next command replaces the current line up to the pointer with the speci-
fied text.

XOCAIDESS
The buffer now contains:

CLR @R2
ADDB_ 5(R1),@R2

You can use =C with a Get command to replace a specific text string. Here
is an example:

XGFIFTY!$=CFIVE:$

This command finds the text string FIFTY: and replaces it with FIVE:.

Text Editor (EDIT) 5-29

5-30

5.6.6.5 Exchange — The Exchange (nX) command is similar to the change
command except that it changes lines of text, instead of a specific number of
characters. The syntax of the command is:

nXtext

The nX command is identical to an nK command followed by an Insert com-
mand. Table 5-12 lists the Exchange command arguments.

Table 5-12: Exchange Command Arguments

Argument | Meaning

n Replaces n lines, including the carriage return and line feed characters follow-
ing the pointer. Places the pointer after the inserted text.

-n Replaces n lines, including the carriage return and line feed characters pre-
ceding the pointer. Positions the pointer after the inserted text.

0 Replaces the current line up to the pointer with the specified text. Positions
the pointer after the inserted text (equivalent to 0C).

/ Replaces the text beginning at the pointer and ending with the last character
in the buffer with the specified text (equivalent to /C). Positions the pointer
after the inserted text.

All characters are legal in the text string except ESCAPE, which terminates
the text.

If the X command is enclosed within angle brackets to allow more than one
execution, and if there is enough memory space available for the X com-
mand to be entered, EDIT executes it at least once (provided it is first in the
command string). If repetition of the command exceeds the available mem-
ory, an error message prints.

The following example illustrates the X command.

¥2XAann R1.(R2)+
CLR @R2

5%
X

This command exchanges the two lines to the right of the pointer with the
text string.

5.6.7 Utility Commands

During the editing session, you can store text in external buffers and sub-
sequently restore this text when you need it later in the editing session. The
following sections describe the commands that perform this function.

5.6.7.1 Save — The Save (nS) command lets you store text in an external
buffer called a save buffer (described previously in Section 5.5), and sub-
sequently insert it in several piaces in the text.

Text Editor (EDIT)

s—

The syntax of the command is:
nS

The Save command copies n lines, beginning at the pointer, into the save ‘
buffer. The S command operates only in the forward direction; therefore, you
cannot use a negative argument. The Save command destroys any previous
contents of the save buffer; however, EDIT does not change the location of
the pointer or the contents of the text buffer.

If you specify more characters than the save buffer can hold, EDIT prints
2EDIT-F-Insufficient memory. None of the specified text is saved.

For example, assume the text buffer contains the following assembly lan-
guage subroutine:

;SUBROUTINE MSGTYP

‘WHEN CALLED, EXPECTS R0 TO POINT TO AN
:ASCII MESSAGE THAT ENDS IN A ZERO BYTE,
:-TYPES THAT MESSAGE ON THE USER TERMINAL

MSGTYP: TSTB (RO) ;DONE?
BEQ MDONE ;YES-RETURN

MLOOP: TSTB @#177564 ;NO-IS TERMINAL READY?
BPL. MLOOP ;NO-WAIT
MOVB (R0)+,@#177566 ;YESPRINT CHARACTER
BR MSGTYP ;LOOP

MDONE: RTS PC ;RETURN

The following command stores the entire subroutine in the save buffer
(assuming the pointer is at the beginning of the buffer):

insert the contents of the save buffer into a program whenever you
using the Unsave command.

5.6.7.2 Unsave — The Unsave (U) command inserts the entire contents of
the save buffer into the text buffer at the pointer and leaves the pointer posi-
tioned following the inserted text. You can use the U command to move
blocks of text or to insert the same block of text in several places. Table 5-13
lists the U commands and their meanings.

Table 5~13: Unsave Command Arguments

Command | Meaning

U Inserts the contents of the save buffer into the text buffer.

ou Clears the save buffer and reclaims the area for text.

The only argument the U command accepts is 0.

Text Editor (EDIT) 5-31

5-32

The contents of the save buffer are not destroyed by the Unsave command
(only by the 0U command) and can be unsaved as many times as desired. If
the Unsave command causes an overflow of the text buffer, the ?EDIT-F-
Insufficient memory error message prints, and the command does not
execute.

For example:
*U$$

This command inserts the contents of the save buffer into the text buffer.

5.6.7.3 Macro — The Macro (M) command inserts a command string into
the EDIT macro buffer. Table 5-14 lists the M commands and their
meanings.

Table 5-14: M Command and Arguments

Command Meaning

M/command string/ | Stores the command string in the macro buffer.

OM or M// Clears the macro buffer and reclaims the area for text.

The slash (/) represents the delimiter character. The delimiter is always the
first character following the M command, and can be any character that does
not appear in the macro command string itself.

Starting with the character following the delimiter, EDIT piaces the macro
command string characters into its internal macro buffer until the delimiter
is encountered again. At this point, EDIT returns to command mode. The
macro command does not execute the macro string; it merely stores the com-
mand string so that the Execute Macro (EM) command can execute later.
The Macro command does not affect the contents of the text or save buffers.

All characters except the delimiter are legal macro command string charac-
ters, including single ESCAPEs to terminate text commands. All com-
mands, except the M and EM commands, are legal in a command string
macro.

In addition to using the OM command, you can type the M command imme-
diately followed by two identical characters (assumed to be delimiters) and
two ESCAPE characters to clear the macro buffer.

The following examples illustrate the use of the M command.
*M/ /%%

This command clears the macro buffer.

XM/GRO$-C1/$%

This command stores a macro to change RO to R1.

Text Editor (EDIT)

NOTE

Be careful to choose infrequently used characters as macro
delimiters; choosing frequently used characters can lead to
errors. For example:

*M GMOV RO$=CADD R1% $%
PENIT-F-No file oren for insut

In this case, it was intended that the macro be GMOV
R0$=CADD R1$, but since the delimiter character (the
character following the M) is a space, the space following
MOV is used as the second delimiter, terminating the
macro. EDIT then returns an error when it interprets the R

as a Read command.

5.6.7.4 Execute Macro — The Execute macro (nEM) command executes the
command string previously stored in the macro buffer by the M command.

The syntax of the command is:

nEM

The argument n must be positive. The macro is executed n times and

returns control to the next command in the original command string.

The following example uses the EM command.

*M/BGRO$~C1%/%%
XB1000EMSS
PERIT-F~Search failed

%

This command sequence executes the macro stored in the previous example.
EDIT prints an error message when it reaches the end of the buffer. (This
macro changes all occurrences of RO in the text buffer to R1.)

XIMOV PCyR1$2EMICLR BR2%%

X

This command inserts MOV PC,R1 into the text buffer and then executes
the command in the macro buffer twice before inserting CLR @R2 into the
text buffer.

5.6.7.5 Edit Version — The Edit Version (EV) command displays the ver-
sion number of the editor in use on the console terminal.

The command is:

EV

This example displays the running version of EDIT:

XEVES
V03.36

X

Text Editor (EDIT)

5-33

5.6.7.6 Upper- and Lower-Case Commands - If you have an upper- and
lower-case terminal as part of your hardware configuration, you can take
advantage of the two editing commands, Edit Lower (EL) and Edit Upper
(EU).

When the editor is started with the EDIT command, upper-case mode is
assumed — that is, all characters you type are automatically translated to
upper case. To allow processing of both upper- and lower-case characters,
enter the Edit Lower command. For example:

XEL$$%
i You can enter text and commands in UFFER and lower case.$%$
X

The editor now accepts and echoes upper- and lower-case characters
received from the keyboard, and prints text on the terminal in upper and
lower case.

To return to upper-case mode, use the Edit Upper command:

XEU$$

Control also reverts to upper-case mode upon exit from the editor (with EX
or CTRL/C).

Note that when you issue an EL command, you can enter EDIT commands
in either upper or lower case. Thus, the following two commands are
equivalent:

¥GTEXT$=Criew text$VUss

XSTEXTé=cnew te:xtévés

The editor automatically translates (internally) all commands to upper case
without reference to EL or EU.

NOTE

AV

When you use EDIT in EL mode, make sure that text argu-
ments you specify in search commands have the proper
case. The command GTeXt$, for exampie, will not match
TEXT, text, or any combination other than TeXt.

5.7 Display Editor

5-34

In addition to all functions and commands mentioned thus far, the editor
can use VI-11 and VS-60 dispiay hardware that are part of the system con-
figuration (GT40, GT44, DECLAB 11/40, DECLAB 11/34). The most obvious
feature provided by this hardware is the use of the display screen rather
than the console terminal for printing terminal input and output. Another
feature is that the top of the dispiay screen functions like a window into the

text buffer. When all the features of the display editor are in use, a 12-inch
screen disnlavs text as shown in Figure 5-1,

ooy R YRR &8 R2AIVWIAL L D igal

Text Editor (EDIT)

Figure 5-1: Display Editor Format, 12-inch Screen

10 PRECEDING
LINES OF TEXT

|
CURSOR L

{CURRENT LINE]

WINDOW
= INTO THE
TEXT BUFFER

AND 9
FOLLOWING
LINES OF TEXT

SEPARATION
LINE

3 PRECEDING
COMMAND LINES
CURRENT
COMMAND LINE

The major advantage is that you can now see immediately where the pointer
is, because it appears between characters on the screen as a blinking L-
shaped cursor. Remember that pressing the RET key causes both a carriage
return and a line feed character to be inserted into the text. Note that if the
pointer is placed between a carriage return and line feed, it appears in an
inverted position at the beginning of the next line.

In addition to displaying the current line (the line containing the cursor),
the 15 lines of text preceding the current line and the 14 lines following it
are also in view on a 17-inch screen. Each time you execute a command
string (with a double ESCAPE), EDIT refreshes this portion of the screen so
that it reflects the results of the commands you just performed.

The lower section of the 17-inch screen contains eight lines of editing com-
mands. The command line you are currently entering is last, preceded by
the most recent command lines. A horizontal line of dashes separates this
section from the text portion of the screen. As you enter new command lines,
previous command lines scroll upward off the command section so that only
eight command lines are ever in view.

A 12-inch screen displays 20 lines of text and 4 command lines.

5.7.1 Using the Display Editor

The display features of the editor are automatically invoked whenever the
system scroller is in use (a monitor GT ON command is in effect) and you
start the editor. However, if the system does not contain display hardware,
the display features are not enabled.

Text Editor (EDIT) 5-35

5-36

If the system contains display hardware and you wish to use the screen dur-
ing the editing session, you can activate it in one of two ways, whether or not
the display is in use. (All editing commands and functions previously dis-
cussed in this chapter are valid for use.)

1. If the scroller is in use (the GT ON monitor command is in effect), EDIT
automatically uses the screen for display of text and commands. How-
ever, it rearranges the scroller so that a window into the text buffer
appears in the top two-thirds of the screen, while the bottom third dis-
plays command lines. This arrangement is shown in Figure 5-1.

You can use the Edit Console command to return the scroller to its nor-
mal mode so that text and commands use the full screen, and the win-
dow ig eliminated.

The command is:

EC

This example uses the EC command:
KEAEC2L $%

This command lists the second and third lines of the current buffer on
the screen; there is no window into the text buffer at this point.

EDIT ignores subsequent EC commands if the window into the text buf-
fer is not being displayed.

To recall the window, use the Edit Display command:
ED
The screen is again arranged as shown in Figure 5-1.

2. Assume the scroller is not in use (the GT ON command is not in effect).
When you call EDIT with the EDIT command, an asterisk appears on
the console terminal. Use the ED command at this time to provide the
window into the text buffer; however, commands continue to be echoed
to the console terminal.

When you use ED in this case, it must be the first command because you
issue; otherwise, it becomes an illegal command (the memory used by
the display buffer and code, amounting to over 600 words, is reclaimed

as working space). You cannot use the display again until you load a
fresh copy of EDIT.

While the display of the text window is active, EDIT ignores ED
commands.

Typihg the EC command clears the screen and returns all output to the
console terminal.

Text Editor (EDIT)

NOTE
After completing an editing session that uses the ED com-
mand, clear the screen by typing the EC command or by
returning to the monitor and using the monitor RESET
command. Failure to do this may cause unpredictable
results.

5.7.2 Immediate Mode

An additional mode is available to provide easier and faster interaction dur-
ing the editing session. This mode is called immediate mode, which com-
bines the most frequently used functions of the text and command modes —
namely, repositioning the pointer and deleting and inserting characters.

You can use immediate mode only when the VT-11 display hardware is
active and the editor is running. To enter immediate mode type two
ESCAPEs (only) in response to the command mode asterisk:

*$%
The editor responds by displaying an exclamation point (!) on the screen.

The exclamation character remains on the screen as long as immediate
mode is in effect.

Once you enter immediate mode, you can use only the commands in Table
5-15. Any other commands or characters are treated as text to be inserted.
None of these commands echoes, but the text appearing on the screen is con-
stantly refreshed and updated during the editing process.

To return control from immediate mode to normal command mode, type a
single ESCAPE. The editor responds with an asterisk and you may proceed
using all normal editing commands. (Immediate mode commands you type
at this time will be accepted as command mode input characters.) To return
control to the monitor from immediate mode, type ESCAPE to return to
command mode, then type CTRL/C followed by two ESCAPEs.

Table 5-15: Immediate Mode Commands

Command Meaning

CTRL/N Advances the pointer (cursor) to the beginning of the next line (equiva-
lent to A).

CTRL/G Moves the pointer {cursor) to the beginning of the previous line (equiva-
lent to -A).

CTRL/D Moves the pointer (cursor) forward by one character (equivalent to J).

CTRL/V Moves the pointer (cursor) back by one character (equivalent to —J).

(continued on next page)

Text Editor (EDIT) 5-37

Table 5-15: Immediate Mode Commands (Cont.)

Command Meaning

RUBOUT Deletes the character immediately preceding the pointer (cursor) (equiva-
or lent to -D).

DELETE

ESCAPE Single character returns control to command mode; double character
or directs control to immediate mode.

ALTMODE

| Any character | Inserts the character as text positioned immediately before the pointer
other than (cursor) (equivalent to I).
those above

5.8 EDIT Example

The following example illustrates the use of EDIT commands to change a
program stored on the device DK:. Sections of the terminal output are coded
by letter, and corresponding explanations follow the example.

A (SEDIT TESTL.MAC

U kRS
(*/LE%
PTEST FPROGRAM
STaRT: MOy FELOOO» BF PINITIALIZE STAHCK
MOV HMSG e R sFOINT RO TO MESSAGE
B§ JER FCyMBGTYR PRRINT IT
Ml T PETOF
MhG? AHDTIATT WORKSS
SBYTE 1%

SEBYTE 132
s BY TR O

CUITTHE MSGTYR . TYRES

538 Text Editor (EDIT)

TOOTEST SUBROUTINE MSGTYEF. TYRRES

o

0 THE TERMIMAL

GTAHRTD MOV

HEIL
H < Gk

SFOTRT RO TO MESSAGE
sPRINT TT

ks

A Calls the EDIT program and prints *. The input file is TEST1.MAC; the
output file is TEST2.MAC. Reads the first page of input into the buffer.

B Lists the buffer contents.

C Places the pointer at the beginning of the buffer. Advances the pointer
one character (past the ;) and deletes the TEST.

D Positions the pointer after PROGRAM and verifies the position by list-
ing up to the pointer.

t=
[
=}
2]
g
wn
c+
[¢]
7
[

F Searches for .ASCII/ and changes IT WORKS to THE TEST PROGRAM
WORKS.

G Types CTRL/X to cancel the P command. Searches for BYTE 0 and veri-
fies the location of the pointer with the V command.

H Inserts text. Returns the pointer to the beginning of the buffer and lists
the entire contents of the buffer.

I Closes the input and output files after copying the current text buffer as
well as the rest of the input file into the output file. EDIT returns control
to the monitor.

5.9 EDIT Error Conditions

The editor prints an error message whenever it detects an error. EDIT
checks for three general types of error conditions: (1) syntax errors, (2) exe-

Text Editor (EDIT) 539

540

cution errors, and (3) macro execution errors. This section describes the
error message form for each type of error condition.

Before it executes any commands, EDIT first scans the entire command
string for errors in command syntax, such as illegal arguments or an illegal
combination of commands. If the editor finds an error of this type, it prints a
message of this form:

PEDNIT-F-Messadge? no command(s) executed
You should retype the command.

If a command string is syntactically correct, EDIT begins execution. Execu-
tion errors, such as buffer overflow or input and output errors, can still
occur. In this case, EDIT prints a message of the form:

PENIT-F-Messade

EDIT executes all commands preceding the one in error. It does not execute
the command in error or any commands that follow it.

When an error occurs during execution of a macro, EDIT prints a message of
the form:

PEDIT-F~Messade in macros no command(s) executed
or
PEDIT-F~Messade in macro

Most errors are syntax errors. These are usually easy to correct before
execution.

The RT-11 System Message Manual contains a complete list of the EDIT
error messages, along with recommended corrective action for each error.

Text Editor (EDIT)

i

Part IV

Utility Programs

Part IV describes the utility programs available with RT-11. You can take
advantage of nearly all of the capabilities of RT-11 by using the keyboard
commands {described in Chapter 4), but it is the utility programs that
actually perform many of the system’s functions. For example, when you
issue the CREATE command, the utility program DUP performs the create

operation.

This part of the manual explains how to carry out utility operations, those
not performed directly by the monitor, by running a specific utility program
instead of using the keyboard monitor commands. It is not necessary to have
an understanding of the material contained in Part IV in order to use the
RT-11 system. However, the information in this part may be of interest to
you if you have experience with a previous version of RT-11, or if you are a
systems programmer and need to perform certain functions with the utility
programs that are not available with the keyboard monitor commands.

Note that the syntax the Command String Interpreter requires for input
and output specifications is different from the syntax you use to issue a
keyboard monitor command. Chapter 6, the Command String Interpreter,
describes the general syntax of the specification string that the system util-
ity programs accept, and explains certain conventions and restrictions. Read
this chapter carefully before you use any of the system utility programs
directly, and bear in mind that there are many differences between issuing a
monitor command and running a utility program. Chapters 7 through 18
describe the system utility programs themselves.

A

Chapter 6
Command String Interpreter

The Command String Interpreter (CSI) is part of the RT—11 that accepts a
line of ASCII input, usually from the console terminal, and interprets it as a
string of input specifications, output specifications, and options for use by a
utility program. To call a utility program, respond to the dot (.) printed by
the keyboard monitor by typing R followed by a program name and a car-
riage return. This example shows how to call the directory program (DIR):

R IR
X

The Command String Interpreter prints an asterisk (*) at the left margin of
the terminal, indicating that it is ready to accept a list of specifications and
options. The following section describes the syntax of the specifications and
options you can enter.

6.1 CSI Syntax

Once you have started a system program, you must enter the appropriate
information before any operation can be performed. You type a specification
string in response to the prompting asterisk. The specifications are in the
following general syntax:

output-filespecs/option = input-filespecs/option
A few system programs—EDIT and PATCH, for example—require you to
enter this information differently. Complete instructions are provided in the
appropriate chapters.
In all cases, the syntax for output-filespecs is:
dev:filnam.typ[n},...dev:filnam.typ[n]
The syntax for input-filespecs is:
dev:filnam.typ,...dev:filnam.typ
The syntax for /option is:
/ol:oval] or /o[:dval].
where:

dev: represents either a logical device name or a physical
device name, which is a two- or three-character name
from Table 3-1.

Command String Interpreter 6-1

6-2

filnam.typ

[n]

/ol:oval] or
/o[:dval].

If you do not supply a device name, the system uses
device DK:. DK:, or whatever device you specify for the
first file in a list of input or output files, applies to all the
files in that input or output list, until you supply a differ-
ent device name. For example:

*DT1:FIRST.OBJ,LP: =TASK.1,RK1:TASK.2,TASK.3
This command is interpreted as follows:

*DT1:FIRST.OBJ,LP:=DK:TASK.1,
RKI1:TASK.2,RK1:TASK.3

File FIRST.OBJ is stored on device DT1:. File TASK.1 is
stored on default device DK:. Files TASK.2 and TASK .3
are stored on device RK1:. Notice that file TASK.1 is on
device DK:. It is the first file in the input file list and the
system uses the default device DK:. Device DT1: applies

only to the file on the output side of the command

is'the name of a file (consisting of one to six alphanumeric
characters followed optionally by a period and a zero- to
three-character file type). No spaces or tabs are allowed
in the file name or file type. As many as three output and
six input files are allowed. If you omit the dot and the file
type, the system may apply a default file type that the
program specifies.

is an optional declaration of the number of blocks (n) you
need for an output file. n is a decimal number (up to
65,535) enclosed in square brackets immediately follow-
ing the output filnam.typ to which it applies

is one or more options whose functions vary according to
the program you are using (refer to the option table in the
appropriate chapter). oval is either an octal number or
one to three alphanumeric characters (the first of which
must be alphabetic) that the program converts to
Radix—50 characters. dvai. is a decimal number followed
by a decimal point. You can use a minus sign (-) to denote
negative octal or decimal numbers.

This manual uses the /o:oval construction throughout,
except for the keyboard monitor commands, where all
values are interpreted as decimal (unless indicated other-
wise) and the decimal point after a value is not necessary.
However, the /o:dval. format is always valid. Generally,
these options and their associated values, if any, should
follow the device and file name to which they apply.

if the same option is to be repeated several times with dif-
ferent values (for example, /L:MEB/L:TTM/L:CND) you

Command String Interpreter

am—

can abbreviate the line as /L:MEB:TTM:CND. You can
mix octal, Radix—50, and decimal values

is a delimiter that separates the output and input fields.
You can use the < sign in place of the = sign. You can

__4

omit the separator entirely if there are no output files

NOTE

Except where noted, all numeric {'alues you supply to the
CSI must be in octal.

6.2 Prompting Characters

Table 6-1 summarizes the characters RT-11 prints either to indicate that
the system is waiting for your response or to specify which job (foreground,
system, or background) is producing output.

Table 6-1:

Prompting Characters

Character

Explanation

. (dot)

A

The keyboard monitor is waiting for a command.

When the console terminal is being used as an input file, the uparrow (or cir-
cumflex) prompts you to enter information from the keyboard. Typing a CTRL
Z marks the end-of-file.

If a foreground or system job is active, the > character identifies which job,
foreground, system, or background, is producing the output that currently
appears on the console terminal. Each time output from the background job is
to appear, B> prints first, followed by the output. If the foreground job is to
print output, F> prints first. If a system job is to print output, jobname>
appears first, where jobname represents the name of the system job. See Sec-
tion 3.6 for details on special function keys.

The current system utility program is waiting for a line of specifications and
options.

Command String Interpreter 63

Chapter 7
Peripheral Interchange Program (PIP)

The peripheral interchange program (PIP) is a file transfer and file mainte-
nance utility program. You can use PIP to transfer files between any of the
RT-11 devices (listed in Table 3—1) and to merge, rename, and delete files.

LA LCVILOS 1Ll 181 148510 U 111 5C

7.1 Calling PIP

To call PIP from the system device, respond to the keyboard monitor prompt
(.) by typing:

R PIF<RET:

The Command String Interpreter prints an asterisk at the left margin of the
terminal and waits for you to type a command string. If you enter only a car-
riage return at this point, PIP prints its current version number and
prompts you again for a command string. You can type CTRL/C to halt PIP
and return control to the monitor when PIP is waiting for input from the
console terminal. You must type two CTRL/Cs to abort PIP at any other
time. To restart PIP, type R PIP or REENTER followed by a carriage return
in response to the monitor’s dot.

Chapter 6, Command String Interpreter, describes the general syntax of the
command line PIP accepts. You can type as many as six input file names,
but only one output file name is allowed. If you specify a command involving
random access devices for which the output specification is the same as the
input specification, PIP does not move any files. However, it can change the
creation dates on the files if you use /T, or it can rename the files if you
use /R.

Because PIP performs file transfers for all RT-11 data formats (ASCII,
object, and image), it does not assume file types for either input or output
files. You must explicitly specify all file types where file types are
applicable.

On random-access devices, such as disks and DECtape, PIP operations
retain a file’s creation date. If the file’s creation date is 0, PIP gives it the
current system date. However, in transfers to and from magtape and cas-
sette, PIP always gives files the current system date.

You can use all variations of the wildcard construction for the input file
specifications in the PIP command line (Section 4.2 describes wildcard
usage). Output file specifications cannot contain embedded wildcards. If you
use any wild character in an input file specification, the corresponding out-
put file name or file type must be an asterisk. (The concatenate copy oper-

Peripheral Interchange Program (PIP) 7-1

7-2

ation is an exception to this rule because it does not allow wildcards in the
output specification.) The following example shows wildcard usage:

Xk . B=A%ZE . MAC

In the last example, the embedded percent character (%) represents any
single, valid file name character. In the output file specification, the asterlsk
represents any valid file name.

The following command deletes all files with the file type .BAK (regardless
of their file names) from device DK:.

¥k . BAK/D

The next command renames all files with a .BAK file type (regardless of file
names) so that these files now have a .TST file type (maintaining the same
file names).

Xk, TST=%.BAK/R

In most cases, PIP performs operations on files in the order in which they
appear in the device directory. PIP ignores system files with the file type
.SYS unless you also use the /Y option. PIP prints the error message ?PIP-
W-No .SYS action if you omit the /Y option on a command that would oper-
ate on .SYS files.

NOTE

You cannot perform any operations that result in deleting a
protected file. For example, you cannot transfer a file to a
volume if a protected file with the same name already
exists on the output volume.

PIP ignores all files with the file type .BAD unless you explicitly specify
both the file name and file type in the command string. PIP does not print a
warning message when it does not include .BAD files in an operation.
Because of the way PIP handles .BAD files, you cannot use a wildcard
(*.BAD) to perform any operation on them.

This example transfers all files, including system files, (regardless of file
name or file type) from device DK: to device RK1:. It doeg not transfer . BAD
files.

AKRKLIX . k/Y=%. %

NOTE

If you attempt to transfer files to a storage volume that has
never been initialized with RT-11, a system failure may
result.

Peripheral Interchange Program (PIP)

7.2 Options

PIP options, summarized in Table 7-1, permit you to perform various oper-
ations with PIP. If you do not specify an option, PIP assumes that the oper-
ation is a file transfer in image mode. You can put command options at the
end of the command string or type them after any file name in the string.
Operations involving magtape are an exception, because the /M option is
device-dependent and has a different meaning when you specify it on the
input or output side of a command line. Type any number of options in a
command line, as long as only one operation is represented. You can, how-
ever, combine copy and delete operations on one line. '

Table 7-1: PIP Options

Option | Section Explanation

/A 7.2.2.2 Copies files in ASCII mode, ignoring and discarding nulls and
rubouts. It converts input file to 7-bit ASCII and treats CTRL/Z
{32 octal) as the logical end-of-file on input {the default copy
mode is image).

/B 7.2.2.3 Copies files in formatted binary mode (the default copy mode is
image).

/C 7224 Can be used with other options to include only files with the cur-
rent date in the specified operation.

/D 7.2.3 Deletes input files from a specific device. Note that PIP does not

automatically query before it performs the operation. If you com-
bine /D with a copy operation, PIP performs the delete operation
after the copy completes. This option is invalid in an input speci-
fication with magtape.

/E 7.2.7 Transfers files in a single- or small-disk system. PIP initiates the
transfer, but pauses and waits for you to mount the volumes
involved in the transfer.

/F 7.2.4.1 Protects files from deletion. Use with /R. Invalid for magtapes
and cassettes.

/G 7.2.2.5 Ignores any input errors that occur during a file transfer and
continues copying.

/K:n 7.2.2.6 Makes n copies of the output files to any sequential device, such
as LP:, TT:, or PC..

/M:n 7.2.1 You can use /M:n when I/O transfers involve either cassette or
magtape. (See Section 7.2.1, Operations Involving Magtape and
Cassette.)

/N 7.2.2.7 Does not copy or rename a file if a file with the same name exists

on the output device. This option protects you from accidentally
deleting a file. It is invalid for magtape and cassette in the out-
put specification.

/0 7.2.2.8 Deletes a file on the output device if you copy a file with the same
name to that device. The delete operation occurs before the copy
operation. This option is invalid for magtape and cassette in the
output specification.

(continued on next page)

Peripheral Interchange Program (PIP) 7-3

74

Table 7-1: PIP Options (Cont.)

Option | Section Explanation

/P 7.2.2.9 Copies or deletes all files except those you specify.

Q 7.2.6 Use only with another operation. The /Q option causes PIP to
print the name of each file to be included in the operation you
specify. You must respond with a Y to include a particular file.

R 7.2.4 Renames the file you specify. This operation is invalid for mag-
tape and cassette.

/S 7.2.2.10 Copies files one block at a time.

/T 7.2.2.11 Puts the current date on all files you copy or rename, unless the

current date is 0. This option is invalid for magtape and cassette;

P L e LT I oR o M WP P PP i) e TP & Ay piesavy ey S IR 99
opere tions ulvulvulg those devices aiways use uile Currernu aate.

U 7.2.2.12 Copies and concatenates all files you specify.

W 7.2.5 Prints on the terminal a log of copy, rename, and delete
operations.

Y 7.2.213 Includes .SYS files in the operation you specify. You cannot mod-
ify or delete these files unless you use the /Y option.

/Z 7.2.42 Enables files for deletion, if they have been previously protected

with /F. Use with /R. Invalid for magtapes and cassettes.

7.2.1 Operations Involving Magtape and Cassette

PIP handles magtape and cassette devices, which are sequential-access
devices, differently from random-access devices, such as disks, diskettes,
DECtape, and DECtape II. On magtape and cassette devices, files are stored
serially, one after another, and there is no directory at the beginning of each
device that lists the files and gives their location. Thus, you can access only
one file at a time on each sequential-access device unit. Avoid commands
that specify the same device unit number for both the input and output files

— they are invalid.

The /M:n option makes operations that involve magtape and cassette more
efficient. This option lets you specify different tape handling procedures for
PIP to follow. The following sections outline the operations that involve
magtape and cassette and describe the different procedures for using these
devices that you can specify with the /M:n option. Remember that when you
use the /M:n option, n is interpreted as an octal number. You must use n. (n
followed by a decimal point) to represent a decimal number.

7.2.1.1 Using Cassette — The cassette is an inexpensive auxiliary storage
medium. Note that DECtape Il is not a cassette. Cassettes are used typically
to store data such as text files or source programs. Clear plastic leader
indicates the beginning-of-tape (BOT) and physical end-of-tape (EOT). A
special sentinel file marks the end of current data and indicates where new
data can begin. The /M:n option lets you position the tape a particular way,
or rewind it, before beginning an operation. You can also use the /M:n option

Peripheral Interchange Program (PIP)

to specify a special procedure for tape handling during cassette operations
with PIP. The following operations are valid for use with cassettes: /A, /B,
IC, /D, G, /M, /P, /Q, R, /S, /U, /W, and /Y. The following options are invalid
with cassettes: /K, /N, /O, /R, /F, /Z, and /T. If you omit the /M:n option in a
cassette operation, the cassette rewinds before each operation (using /M:0
has the same effect). The character, n in /M:n, represents a count of the num-
ber of files from the present position on the cassette. Note that the /M:n
option has a different meaning for magtape (Section 7.2.1.2 describes how to
use /M:n with magtape).

In copying to cassettes, /M:n functions as follows:
1. IfnisO:

The cassette rewinds and PIP searches for the file you specify. If you
specify more than one file, or if you use a wildcard in the file specifica-
tion, the cassette rewinds before PIP searches for each file.

2. If nis a positive integer:

PIP starts from the cassette’s present position and searches for the file
you specify. If PIP does not find the file by the time it reaches the nth file
from its starting position, it uses the nth file for the read operation. Note
that if PIP’s starting position is not the beginning of the cassette, it is
possible that PIP will not find the file you specify, even though it does
exist on the tape.

3. Ifnisanegative integer:

The cassette rewinds, then PIP follows the procedure outlined in step 2
above.

In writing to cassettes, /M:n functions as follows:

1. IfnisO:

The cassette rewinds and PIP writes the file you specify starting at the
logical end-of-tape (LEOT) position. PIP deletes any file it finds along
the way that has the same name and file type as the file you specify.

2. Ifnis a positive integer:

PIP starts from the cassette’s present position and searches n files
ahead, deleting along the way any file it finds that has the same name
and file type as the file you specify. If it does not reach LEOT before it
reaches the nth file from its starting position, it enters the file you spec-
ify over the nth file and deletes any files beyond it on the tape. If PIP
reaches LEOT before it reaches the nth file, it writes the file you specify
at the end-of-tape.

3. If nis anegative integer:

The cassette rewinds, then PIP follows the procedure outlined in step 2
above.

Peripheral Interchange Program (PIP) 7-5

If you are copying a file to cassette and reach the physical end-of-tape before
the copy completes, PIP automatically continues the file on another cassette.
The cassette device handler prints the CTn: PUSH REWIND OR MOUNT
NEW VOLUME message. If you want to halt the copy operation at this
point, push the cassette rewind button. The tape rewinds, PIP prints an
error message, and then prompts you for a new command. However, if you
want to continue the file on another cassette, remove the first cassette and
put another initialized cassette in its place. The new cassette rewinds imme-
diately. PIP then continues copying the file. The continued part of the file
has the same file name and file type as the first part of the file, but PIP adds
one to its sequence number to show that it is a continued file. Make sure you
have a supply of initialized cassettes handy for cassette copy operations; you
cannot interrupt the copy operation to initialize a cassette when PIP is wait-
ing for a new volume. The following example shows a copy operation that
fills one cassette and continues to another.

KCT13XK . K=RKIRTX.SYSr %X .SYS/Y/W/MS1
Files coried!

RKIRT118.).8Y8 to CT1:RT115J.8YS
CT1: FUSH REWIND OR MOUNT NEW VOLUME
RK:RT11FE.5YS +to CT1i:RT11FR.S5YS

RK:DT.8YS to CT1iDT.SYS
RK:{DF,.8YS to CT1IDF.85YS
RKIDX.SYS to CT1:0X.8YS
RKIRF.SYS to CT1:RF.SYS
RKIRK.85YS to CT1IRK.5YS
RKIDM.SYS to CT1IDM.8YS
RK:DS.8YS to CT1:DS.85YS
RK:TT.SYS to CT1:TT.8YS
RKILFP.5YS to CT1ILP.SYS
RK:CR.5YS to CT1ICR.SYS
RKIMT.5YS to CTL1IMT.SYS
RK:MM.SYS to CT1iMM.SYS
RKINL.SYS to CT1INL.SYS
RKIFC.5YS to CT1IFC.SYS
RKICT.SYS to CT1:CT.SYS
RK:BA.SYS to CT1!BA.SYS
*

A directory listing of the second cassette shows that the first file,
RKMNFB.SYS, is continued from a previous tape. (The number of blocks in
a cassette directory listing is not meaningful; it really represents the total of
sequence numbers in the directory.)

+DIRECTORY CT1:

15-Arr-79
RT11FE.8YS 1 15-Apr-79 T «8YS 0 15%-Arr-79
nF +8YS 0 15-Apr-79 nx .8ys 0 15-OBpr-79
RF +8Y8 0 15-Arr-79 RK .8Y$8 0 15-Apr~-79
oM +8YS 0 15-Arr~-79 08 . 8YS 0 15-Apr-79
TT +8Y8 0 15-Arr-79 L. . 8YS 0 15-Apr-79
CR +8YS 0 13-ArT—-79 MT +SYS O 1Y%-Apr-7Y
MM +8YS 0 15-Arpr-79 NL. +85Y8 0 1%-Apr-79
FC +8YS 0 1%5-Apr-79 El. +8Y8 0 185-Apr-79
CT +8YS 0 15-Apr-79 BA .5YS 0 15-Apr~79

18 Filesy 1 RBlocks

7-6 Peripheral Interchange Program (PIP)

If you are reading a file from cassette that is continued on another volume,
the cassette handler also prints the CTn: PUSH REWIND OR MOUNT
NEW VOLUME message when it reaches the end of the first tape. To abort
the operation, push the cassette rewind button; PIP then issues an error
message and prompts for a new command. To continue the read operation,
remove the first cassette and mount the second one in its place. The second
cassette rewinds immediately and PIP searches for a file with the correct
name and sequence number. PIP repeats the new volume message if it does

not find the correct file. The following example copies a file that is continued

h |
AN a gannna ncacantt
Vii QA OULULIIU vASovuue.

KRK1: X X=CT1:RT11FER,8YS/Y/UW

Files coried!

CTi! FUSH REWIND OR MOUNT NEW VOLUME
CTIRT11FR.SYS to RK1:RT11FE.SYS

X

If you type a double CTRL/C during any output operation to cassette, PIP
does not write a sentinel file at the end of the tape. Consequently, you can-
not transfer any more data to the cassette unless you follow one of these
recovery procedures:

1. Rewind the cassette. Then transfer all good files from the interrupted
cassette to another cassette and initialize the interrupted cassette as
the following example shows. Use any arbitrarily large number for
/M:n.

¥CTLX X=CTOIDMPX . MACs EXAMF «FOR/M$1000
x~C

+« R DUF
*XCTO!/Z/Y
X

2. Determine the sequential number of the file that was interrupted and
use the /M:n option to enter a replacement file (either a new file or a
dummy) over the interrupted file. PIP writes the replacement file and a
sentinel file (LEOT) after it. The following example assumes the bad file
is the fourth file on the cassette.

¥CTOIDUMMY JFIL=DTO!GLORAL .MAC/M!I-4

x~C
« DIRECTORY CTO
19-Arr-77
DMFX «MAC 0 19-Arr-77 MATCH +RAS 0 19-Apr-77
EXAMF .FOR 0 19-ArR-77 nuMMY JFIL 0 19-Arr=-77

4 Filessy O Blocks

A directory listing of the cassette shows three files and the replacement
file.

Peripheral Interchange Program (PIP) 7-7

7-8

To copy multiple files to a cassette with a wildcard command, use the
following:

¥CThdkek/Mil=deviX. X

Continue to mount new cassettes in response to the PUSH REWIND OR
MOUNT NEW VOLUME message. Do not abort the process by typing two
consecutive CTRL/Cs, because continuation files may not be completed and
no sentinel file will be written on the cassette.

To read multiple files from a cassette, use a command such as the following
one. Use any arbitrarily large number for /M:n.

kdevik.k=CTrnik.k/M1000

Whenever PIP detects a continued volume, the PUSH REWIND OR
MOUNT NEW VOLUME message appears, until the entire file has been
copied (assuming that you mount each sequential cassette in response to
each occurrence of the message). When PIP copies the final section of a con-
tinued file, it returns to command level. To copy the remaining files on that
cassette, reissue the command:

kxdeviX.X=CTrik.x/M11000

Repeat the process as often as necessary to copy all files. Do not abort the
process by typing consecutive CTRL/Cs, because continuation files may not
be completed.

7.2.1.2 Using Magtape — Magnetic tape is a convenient auxiliary storage
medium for large amounts of data, and is often used as backup for disks.
Reflective strips indicate the beginning and end of the tape. A special label
(an EOF1 or EOV1 tape label) followed by two tape marks indicates the end
of current data and also where new data can begin. The following PIP
options are valid for use with magtape: /A, /B, /C, /G, /M, /P, /Q, /S, /U, /W,
and /Y. These options are invalid with magtape: /K, /R, /F, /Z, and /T. The
/M:n option lets you direct the tape operation; you can move the tape and
perform an operation at the point you specify. Note that /D is invalid for
input to magtape; /N and /O are invalid for output to magtape.

The /M:n option can be different for the output and input side of the com-
mand line. Since the option applies to the device and not to the files, you can
specify one /M:n option for the output file and one for each input file. The
/M:n option has a different meaning for cassette and magtape. Section
7.2.1.1 describes how to use /M:n with cassette.

Sometimes PIP begins an operation at the current position. To determine
the current position, the magtape handler backspaces from its present posi-
tion on the tape until it finds either an EOF indicator or the beginning of
tape, whichever comes first. PIP then begins the operation with the file that
immediately follows the EOF or BOT. The magtape handler also has a spe-
cial procedure for locating a file with sequence number r7:

Peripheral Interchange Program (PIP)

1. If the file sequence number is greater than the current position, PIP
searches the tape in the forward direction.

2. If the file sequence number is more than one file before the current posi-
tion, or if the file sequence number is less than five files from the begin-
ning-of-tape (BOT), the tape rewinds before PIP begins its search.

3. If the file sequence number is at the current position, or if it is one file
past the current position, PIP searches the tape in the reverse direction.

Whenever you fetch or load a new copy of the magtape handler, the tape
position information is lost. The “new” handler searches backward until it
locates either BOT or a label from which it can learn the position of the tape.

It then operates normally, according to steps 1, 2, and 3 described above.

If you omit the /M:n option, the tape rewinds between each operation. Using
/M:0 has the same effect as omitting /M:n. When r is positive, it represents
the file sequence number. When 7 is negative, it represents an instruction to
the magtape handler.

In copying to magtapes, /M:n functions as follows:
1. IfnisO:

The tape rewinds and PIP searches for the file you specify. If you specify
more than one file, the tape rewinds before each search. If the file speci-
fication contains a wildcard, the tape rewinds only once and then PIP
copies all the appropriate files.

2. If nis a positive integer:

PIP goes to file sequence number n. If the file it finds there is the one you
specify, PIP copies it. Otherwise, PIP prints the ¢PIP-F-File not found
message. If you use a wildcard in the file specification, PIP goes to file
sequence number n and then begins to search for matching files.

3. Ifnis-1:

PIP starts the search at the current position. If the current position is
not the beginning of the tape, PIP may not find the file you specify, even
though it does exist on the tape.

In writing to magtapes, /M:n functions as follows:
1. IfnisO:

The tape rewinds before PIP copies each file. PIP prints a warning mes-
sage if it finds a file with the same name and file type as the input file
and does not perform the copy operation.

2. Ifnis a positive integer:

PIP goes to the file sequence number n and enters the file you specify. If
PIP reaches logical end-of-tape (LEOT) before it finds file sequence
number n, it prints the ?PIP-F-File sequence number not found message.
If you specify more than one file or if you use a wildcard in the file speci-

Peripheral Interchange Program (PIP) 7-9

7-10

fication, the tape does not rewind before PIP writes each file, and PIP
does not check for duplicate file names.

3. Ifnis-1:

PIP goes to the LEOT and enters the file you specify. It does not rewind,
and it does not check for duplicate file names.

4., Ifnis-2:

The tape rewinds between each copy operation. PIP enters the file at
LEOT or at the first occurrence of a duplicate file name.

If PIP reaches the physical end-of-tape before it completes a copy operation,
it cannot continue the file on another tape volume. Instead, it deletes the
partial file by backspacing and writing a logical end-of-tape over the file’s
header label. You must restart the operation and use another magtape.

If you type consecutive CTRL/Cs during any output operation to magtape,
PIP does not write a logical end-of-tape at the end of the data. Consequently,
you cannot transfer any more data to the tape unless you follow one of the
following recovery procedures.

1. Transfer all good files from the interrupted tape to another tape and
initialize the interrupted tape in the following manner:

Xdevl iX.k=devOiX.X
~C

+R DUF

Xdev0?i/Z/Y

2. Determine the sequential number of the file that was interrupted and
use the /M:n construction to enter a replacement file (either a new file or
a dummy) over the interrupted file. PIP writes the replacement file and
a good LEOT after it. The following example assumes the bad file is the
fourth file on the tape:

¥devOifile.new/Mi4=Ffile.dum

7.2.2 Copy Operations

PIP copies files in image, ASCII, and binary format. Other options let you
change the date on the files, access .SYS files, combine files, and perform
other similar operations. PIP automatically allocates the correct amount of
space for new files in copy operations (except for concatenation). For block-
replaceable devices, PIP stores the new file in the first empty space large
enough to accommodate it. If an error occurs during a copy operation, PIP
prints a warning message, stops the copy operation, and prompts you for
another command. You cannot copy .BAD files unless you specifically type
each file name and file type.

7.2.2.1 Image Mode — If you enter a command line without an option, PIP

iag fileg onto the degtination device in im moda Note tha

n aca w01 cannnt
Coples i1 W ine a nalion gevice 1n 1image moQGe. Neve 11at you canngt

Peripheral Interchange Program (PIP)

reliably transfer memory image files to or from paper tape, or to the line
printer or console terminal. PIP can image-copy ASCII and binary data but
it does not do any of the data checking described in Sections 7.2.2.2 and
7.2.2.3.

The following command makes a copy of the file named XYZ.SAV on device
DK: and assigns it the name ABC.SAV. (Both files exist on device DK: after
the operation.)

XARC.SAV=XYZ.5AV

The next example copies from DK: all .MAC files whose names are three
characters long and begin with A. PIP stores the resulting files on DX1..

XOX1 K X=AXZ . MAC

7.2.2.2 ASCIl Mode (/A) — Use the /A option to copy files in 7-bit ASCII
mode. PIP ignores and eliminates nulls and rubouts during file transfer. PIP
treats CTRL/Z (32 octal) as logical end-of-file if it encounters that character
in the input file. The following command copies F2.FOR from device DK:
onto device DT1: in ASCII mode and assigns it the name F1.FOR.

XOT14F1.FOR=F2.FOR/A

7.2.2.3 Binary Mode (/B) — Use the /B option to transfer formatted binary
files (such as .OBJ files produced by the assembler or the FORTRAN com-
piler and .LDA files produced by the linker). The following command, trans-
fers a formatted binary file from the paper tape reader to device DK: and
assigns it the name FILE.OBJ.

XOK:FILE.OBJ=FC:/RB

When performing formatted binary transfers, PIP prints a warning if a
checksum error occurs. If there is a checksum error and you did not use /G to
ignore the error, PIP does not perform the copy operation. You cannot copy
library files with the /B option. Copy library files in image mode.

7.2.2.4 Newfiles Option (/C) — The /C option copies only those files with the
current date. Specify /C only once in the command line; it applies to all the
file specifications in the entire command. The following command copies (in
ASCII mode) all files named ITEM1 that also have the current date. It also
copies the file ITEM2.MAC, if it has the current date, from DK: to DT2:. It
combines all these files under the name NN3.MAC.

X¥OT2INN3MAC=ITEML . X/Cr ITEMZ HAC/A/U

The next command copies all files with the current date (except .SYS and
.BAD files) from DK: to DX1:. This is an efficient way to back up all new files
after a session at the computer.

XDX1Ek k=X.%/C

Peripheral Interchange Program (PIP) 7-11

7-12

7.2.2.5 Ignore Errors Option (/G) — The /G option copies files, but ignores
all input errors. This option forces a single-block transfer, which you can
invoke at any other time with the /S option. Use the /G option if an input
error occurred when you tried to perform a normal copy operation. The pro-
cedure can sometimes recover a file that is otherwise unreadable. If an error
still occurs, PIP prints the ?PIP-W-Input Error message and continues the
copy operation.

The following command, copies the file TOP.SAV in image mode from device
DT1: to device DK: and assigns it the name ABC.SAV.

*ABC . SAV=DT1!TOP.S5AV/G

The next command copies files F1.MAC and F2.MAC in ASCII mode from
device DT1: to device DT2:. This command creates one file with the name
COMB.MAC, and ignores any errors that occur during the operation.

XDT2:COME.MAC=DT1!F1.MAC,F2.MAC/A/G/U

7.2.2.6 Copies Option (/K:n) — The /K:n option directs PIP to generate n
copies of the file you specify. The only legal output devices are the console
terminal, the line printer, and paper tape punch. Normally, each copy of the
file begins at the top of a page; copies are separated by form feeds.

¥LPI=STOTLE.LST/K:3

This command, for example, prints three copies of the listing file,
STOTLE.LST, on the line printer.

7.2.2.7 Noreplace Option (/N) — The /N option prevents execution of a copy
or rename operation if a file with the same name as the output file already
exists on the output device. This option is not valid when output is to mag-
tape or cassette. The following example uses the /N option.

XDXOICT.SYS=DKICT.8YS/Y/N
PPIP-W-0utrut file founds no oreration rerformed DKICT.SYS
} 4

The file named CT.SV!

A LLC ALAVY LACAALAN

not proceed.

7.2.2.8 Predelete Option (/O) — The /O option deletes a file on the output
device if you copy a file with the same name to that device. PIP deletes the
file on the output device before the copy operation occurs. Normally, PIP
deletes a file of the same name after the copy completes. This option is not
valid when output is to magtape or cassette. The following example uses the
/O option.

¥RK1:TEST1 MAC=DT2!TEST.MAC/0

if a file named TEST1.MAC already exists on RK1:, PIP deletes it before
copying TEST.MAC from DT2: to TEST1.MAC on RK1..

Peripheral Interchange Program (PIP)

7.2.2.9 Exclude Option (/P) — The /P option directs PIP to transfer all files
except the ones you specify.

KDTO k. k=DOX11X.MAC/F

MLie annanand F
111§ comimaiia, i1ovr example, Gl

DTO: except the .MAC files.

7.2.2.10 Single-Block Transfer Option (/S) — The /S option directs PIP to
copy files one block at a time. On some devices, this operation increases the

e nne AL i pvean_ fron franafar Va can somhina the /S antion with othar
¢nances 01 ail €IT0r-1rec vIaiisSiTl. 1Uu Lall VULLIVILIT Ll /o Upuivis WILI1 QuIier
f

PIP copy options. For example:

XRK1:TEST.MAC=RKO!TEST.MAC/S

PIP performs this transfer one block at a time.

7.2.2.11 Setdate Option (/T) — This option causes PIP to put the current date
on all files it transfers, unless the current date is 0. Normally, PIP preserves
the existing file creation date on copy and rename operations. This option is
invalid for operations involving magtape and cassette because PIP always
uses the current date for tape files. The following command puts the current
date on all the files stored on device DK:.

*k K=K K/YS/T

Note that the command shown above changes only the dates; PIP does not
move or change the files in any other way.

7.2.2.12 Concatenate Option (/U) — To combine more than one file into a
single file, use the /U option. This option is particularly useful when you
want to combine several object modules into a single file for use by the
linker or librarian. PIP does not accept wildcards on the output specifica-
tion. Use the /B option with /U if you are concatenating object ((OBJ) files.

The following examples show the /U option.

*DK:AA.ORJ=DT1$RBE.0RJ+CC.OBJ DD, 0BJ/U/R

The command shown above transfers files BB.OBJ, CC.OBJ and DD.OBJ to
device DK: as one file and assigns it the name AA.OBJ.

*¥DTZIMERG

m
X
>
o
il
=]
3
3
-
n
b
I
m
:
x
>
I3}
-
m
L}
-
m
[§]
.
X
>
3]
~
o
N
c

This command merges ASCII files FILE2.MAC and FILE3.MAC on DT2:
into one ASCII file named MERGE.MAC on device DT3:.

7.2.2.13 System Files Option (/Y) — Use the /Y option if you need to perform
an operation on system files (.SYS). For example:
KK K=DTI IR K/Y

This command copies to device DK:, in image mode, all files (including .SYS
files) from device DT3:.

Peripheral Interchange Program (PIP) 7-13

7-14

7.2.3 Delete Operation (/D)

Use the /D option to delete one or more files from the device you specify.
Note that PIP does not query you before it performs this operation, unless
you use /Q. Remember to use the /Y option to delete .SYS files. You cannot
delete .BAD files, unless you name each one specifically, including file name
and file type. You can specify only six files in a delete operation unless you
use wildcards. You must always indicate a file specification in the command
line. A delete command consisting only of a device name (dev:/D) is invalid.
The delete option is also illegal for magtape. The following examples illus-
trate the delete operation.

XFILE1.SAV/D
The command shown above deletes FILE1.SAV from device DK:.

XDX1 k. %/D
PPIP-W-No .5YS action
3

The command shown above deletes all files from device DX1: except those
with a .SYS or .BAD file type. If there is a file with a .SYS file type, PIP
prints a warning message to remind you that this file has not been deleted.

XK MAC/D

This command deletes all files with a .MAC file type from device DK:.

7.2.4 Rename Operation (/R)

Use the /R option to rename a file you specify as input, giving it the name
you specify in the output specification. PIP prints an error message if the
command specifications are not valid. Use the /Y option if you rename .SYS
files. You cannot use /R with magtape or cassette.

The following examples illustrate the rename operation.

*OT13F1.MAC=DT1:F0.MAC/R

The command shown above renames FO.MAC to F1.MAC on device DT1:.

K0X1$0UT,SYS=DX1:CT.SYS/Y/R
This command renames file CT.SYS to OUT.SYS.

The rename command is particularly useful when a file contains bad blocks.
By giving the file a .BAD file type, you can ensure that the file permanently
resides in that area of the device. Thus, the system makes no other attempts
to use the bad area. Once you give a file a .BAD file type, you cannot move it
during a compress operation. You cannot rename .BAD files unless you spe-
cifically indicate hoth the file name and file type.

Peripheral Interchange Program (PIP)

P

7.2.4.1 File Protection Option (/F) — Use the /F option with /R to protect a
file from deletion. The file in question appears as a protected file in the direc-
tory of the device in which that file resides. The letter P next to the block
size number in the file’s directory entry indicates the file is protected.

A sample command line for protecting the file SAVEME.TXT follows:

*SAVEME TXT=SAVEME . TXT/R/F

If you copy a protected file, PIP does not copy the protected status.

7.2.4.2 File “Unprotection”’ Option (/Z) — Use the /Z option with /R to
remove a file’s protected status, enabling you to delete or change that file.
When you use the /Z option, PIP removes the “P” from the file’s directory
entry.

In the following example, BOOT.MAC is enabled for deletion:

¥EBOOT . MAC=ROO0T . MAC/R/Z

7.2.5 Logging Operation (/W)

When you use the /W option, PIP prints a list of all files copied, renamed, or
deleted. The /W option is useful if you do not want to take the time to use the
query mode (the /Q option, described in Section 7.2.6), but you do want a list
of the files operated on by PIP.

PIP prints the log for an operation on the terminal under the command line.
This example shows logging with the delete operation.

XOX1 k. X/ 0/
PRIF-W-No .85YS action
Files deleted?
LX1ITEST.MAC
IX11FIX463.5AV
X1 :GRAFH . RAK
X1 OMPX . MAC
DOX13IMATCH.BAS
DX1:EXAMF . FOR
DX1:GRAFPH.FOR
X1 :GLOBAL . MAC
DX1:FROSEC . MAC

DX1iEXAMP . MAC
*

7.2.6 Query Option (/Q)

Use the /Q option with another PIP operation to list all files and to confirn
individually which of these files should be processed. Typing a Y (or any
string that begins with Y) followed by a carriage return causes the named
file to be processed; typing anything else excludes the file. The following
example deletes files from DX1..

Peripheral Interchange Program (PIP) 7-15

7-16

XOX1i%.%/0/Q
Files deleted:?
DX13IFIX463.8AV7
DX13:GRAFH.BAK 7 Y
DX1:DMPX . MAC
OX1iMATCH.RAS
DX1IEXAMP.FOR 7
OX1{GRAPH.FOR 7
DX1{GLOBAL . MACT Y
DX1IFROSEC.MACT Y
DX1:KE.MAC ?
DX1tEXAMP.MAC 7P
X

)

-3
=<

7.2.7 Wait Option (/E)

If you have a single-disk system or a diskette system, you wilil find the /E
option useful for copying operations. You use this option when you need to
exchange storage volumes during a copy procedure. The general format of
the command line follows.

*filespec/E = filespec

You can use any option with /E that is valid with your RT-11 configuration.
You can not use wildcards as input. When you use /E, make sure that PIP is
on your system volume.

When you use the /E option, PIP guides you through a series of steps in the
process of completing the file transfer. After you enter the initial command
string, PIP prints a message telling you what to do. After you complete each
step, type a Y followed by a carriage return to proceed to the next step.
When the transfer is complete, PIP prints a message instructing you to
mount your system volume. After you have mounted the system volume,
type a Y followed by a carriage return.

The sections that follow describe the procedure for single-volume and
double-volume transfer.

7.2.7.1 Single-Volume Operation — If you want to transfer a file between
two storage volumes, and you have only one drive for that type of storage
volume, follow the procedure bhelow,

1. Enter a command string according to this general syntax:
*output-filespec/E = input-filespec

where output-filespec represents the destination device and file specifi-
cation, and input-filespec represents the source device and file
specification.

2. PIP responds by printing the following message at the terminal.
Mount imrut volume in <device*$ Contirue?

<device> represents the device into which you are to mount your input
volume. Type a Y followed by a carriage return after you have mounted

7 »innit valiirmma
YOur inpuv véiume.

Peripheral Interchange Program (PIP)

PIP continues the copy procedure and prints the following message on
the terminal:

Mount outerut volume in <devicers Continue?

4

After you have removed your input volume from the device, mount your
output volume and type Y followed by a carriage return.

Depending on the size of the file, PIP may repeat the transfer cycle

(steps 2 and 3) several times before the transfer is complete. When the
transfer is complete. PIP prints the following message if vou had to

LIALIDITL 1D LULLIYITLT, PLidius vl VLU WIS LOSSS

remove the system volume from <device>:

Mount sustem volume in <device*s ContinueT?

When you type a Y followed by a carriage return in response to the last
instruction, you terminate the copy operation.

7.2.7.2 Double-Volume Operation — You can use the /E option for transfer-
ring files between two non-system volumes. The procedure for transferring
files this way follows.

1.

With your system volume mounted, enter a command string according
to the following general syntax:

*output-filespec/E = input-filespec

where output-filespec represents the destination device and file specifi-
cation, and input-filespec represents the source device and file
specification.

After you have entered the command string, PIP responds with the
message:

Mourt inrut volume in <devicer§ Continue?

Type a Y followed by a carriage return when you have mounted the
input volume.

PIP then prints:

Mount outrut volume in <devicer; ContinueT

Type a Y followed by a carriage return after you have mounted the out-
put volume.

Unlike the single-volume transfer, the double-volume transfer involves
only one cycle of mounting the input and output volumes. When the file
transfer is complete, PIP prints the following message if you had to
remove the system volume from <device>:

Mount system volume irn <devicexi Continue?

When you type a Y followed by a carriage return in response to the last
instruction, you terminate the copy operation.

Peripheral Interchange Program (PIP) 7-17

-

Chapter 8
Device Utility Program (DUP)

The device utility program (DUP) is a device maintenance utility program
that creates files on file-structured RT-11 devices (disks, single- and double-
density diskettes, DECtape, DECtape II, magtape, and cassette). It can also
extend files on certain file-structured devices (disks, single- and double-den-
sity diskettes, DECtape, and DECtape II) and it can compress, image copy,
initialize, or boot RT-11 file-structured devices. DUP does not operate on
non-file-structured devices (line printer, card reader, terminal, and paper
tape).

8.1 Caiiing DUP

To call DUP from the system device, respond to the dot (.) printed by the
keyboard monitor by typing:

R DUP <RET:

The Command String Interpreter prints an asterisk (*) at the left margin of
the terminal and waits for you to type a command string. If you enter only a
carriage return at this point, DUP prints its current version number and
prompts you again for a command string. You can type CTRL/C to halt DUP
and return control to the monitor when DUP is waiting for input from the
console terminal. You must type two CTRL/Cs to abort DUP at any other
time. Note that the /S, /T, and /C operations lock out the CTRL/C command

until the operation completes; these three oper
with CTRL/C. To restart DUP, type R DUP or REENTER in response to the
monitor’s dot. Chapter 6, Command String Interpreter, describes the gen-
eral syntax of the command line that DUP accepts. DUP accepts only one

input file specification and one output file specification in the command line.

.)
tions cannot be interrupted

Q
QAvivii 1120

8.2 Options

Certain options are available for use with DUP. These options are divided
into two categories: (1) Action, and (2) Mode. Action options cause specific
operations to occur. You can use these options alone or with valid mode
options. Usually, you can specify only one action option at a time. Mode
options modify action options. Table 8-1 illustrates which mode options you
can use with a particular action option.

Device Utility Program (DUP) 8-1

Table 8-1: DUP Options and Categories

Action

Mode

N g cH=H®n O RXR"- OO

W,Y,G,E
WY
W,Y,G.EF
W,F,H,G,E
WY
W.X,Y
WY

WY

w,Y

W,B,NR,V,Y,D

Note that /V can be either an action or a mode option, depending on how you

use it.

You can use DUP action options to perform operation such as creating files,
copying devices, scanning for bad blocks, performing a bootstrap operation,
and initializing volumes. You can use the DUP mode options to modify the
action options, where necessary. The following sections describe the various
DUP options and give examples of typical uses. Table 8-2 summarizes the
options you can use with DUP.

Table 8-2: DUP Options

Option

Section

Explanation

/B[:RET]

/C

/E:n

H

8.2.124

8.2.1

8.2.12.5

8.2.2

8.2.3.1

8.2.1

823

Use with /Z to write files with the file type .BAD over any bad
blocks DUP finds on the disk to be initialized. Use :RET to retain
through initialization all .BAD entries created by a previous /B.

Use with /G to create a file on the device you specify; /G specifies
the starting block number for the file to be created.

Use with /Z to “uninitialize” a device. Use only if no files have
been transferred to it since it was initialized.

Specifies the ending block number for a read operation (used with
the /T and /K options).

Has two uses: use with the /K option to transfer the file name con-
taining the bad block together with the relative block number of
the bad block in the file. Or use with /1 either to copy a file to an
output device or copy a device to an output file.

Specifies the starting block number for a read operation {on an
input device) and the starting block number for a write operation
(on an output device). n is an integer that represents a block
number. Use this option with the /C, /1, and /K options.

Use with the /K and /T options. Use with /K to read the bad block,
write to the bad block, and then read it again. This operation does
not destroy information already stored on the device. Use /H with

e 3 P o aribrasd 3o amsa a2l Sl
/T to verify that the output is equal to the input.

(continued on next page)

8-2 Device Utility Program (DUP)

-

Table 8-12:

DUP Options (Cont.)

Option

Section

Explanation

1

/0
Q

/RI:RET]

IS

T:n
/U[:xx]

/VI:ONL]

/X

/Z[:n]

8.2.2

8.2.3

o5}
o
[y
(3]
[y

8.24
8.2.5

8.2.12.3

8.2.6

8.2.7
8.2.8

8.2.9

8.2.10

8.2.6

8.2.11

8.2.12

Copies the image of a disk to another disk or magtape or from
magtape to disk. (Use with /G and /E if you want to specify biock
numbers.)

Scans a device for bad blocks and outputs the octal address of the
bad blocks to the output device. Use with /G and /E if you want to
specify block numbers as boundaries for the scan.

Use with /Z to set the number of directory segments you require if
you do not want the default size; » is an integer in the range 1-37
(octal).

Boots the device or file you specify.

Use with /O to boot a volume that is not RT-11, or is a pre-version
4 volume of RT-11.

Use with /Z to scan a device that supports bad block replacement
for bad blocks. It then creates a replacement table on the disk for
any bad blocks DUP finds. If you use :RET, DUP retains the
replacement table that is already on the disk and does not pre-
scan the disk for bad blocks.

Compresses a disk (or DECtape) onto itself or onto another disk
(or DECtape); the output device, if any, must be initialized.

Extends an existing file by the number of blocks that r indicates.

Writes the bootstrap portion of the monitor file in blocks 0 and
2-5 of the target device. The optional argument, xx, represents
the target system device name.

Prints the user ID and owner name. Use it with /Z (as a mode
option) to place a new user ID and owner name in block 1 of the
initialized disk, or in the VOL1 header block on magtape (not
applicable for cassette). Using /V:ONL with /Z changes only the
ID and owner name, and does not initialize the device (not appli-
cable for magtape or cassette).

Use with any action option (but only one) to initiate an operation
and then pause. This is useful on small, single-disk systems
because it lets you replace the system device with another disk
before performing an operation.

Use with /S to inhibit automatic booting of the system device
when it is compressed.

Use with /C, /1, /0O, /S, /T, or /Z to inhibit the dev:/xxxx Are you
sure? message and the Foreground job loaded, CONTINUE? mes-
sage and ensure immediate execution of the operation.

Initializes the directory of the device you specify. The size of the
directory defaults to the standard RT-11 size; use n to allocate
extra directory words for each entry beyond the default.

8.2.1 Create Option (/C[/G:n])

The /C option creates a file with a specific name, location, and size on the
block-replaceable device that you specify. This option is useful in recovering
files that have been deleted. The /C option creates only a directory entry for

Device Utility Program (DUP) 83

84

the file. It does not store any data in the file. You must specify both the file
name and file type of the file to be created. The syntax of the command is:

filespecin] =/C[/G:n]
where:

filespec[n] represents the device file name, and file type of the file to
be created; [n] is a decimal number representing the size
in blocks of the file to be created. Note that the brackets
here are part of the command; that is, they do not
indicate n is optional. If you do not specify this number,
DUP creates a one-block file

represents the octal numeric value of the starting block of
the file to be created. If you do not use /G:n, DUP creates
the file in the first unused area large enough to contain

the file

+1
(D81

Q
Ei

You can use the /C option to cover bad blocks on a disk by creating a file with
a file type .BAD to cover the bad area.

You can also use /C to recover accidentally deleted files. In this case, use DIR
to obtain a listing of the device. Use the /E and /Q options in DIR to list files,
tentative files, empty areas, and the sizes of all areas. You can then assign a
file name to the area that contains the data you lost.

You can also use DUP to set aside a file on a disk without performing any
input or output operations on the file.

When you use the /C option, make sure that the area in which the file is to be
created is empty (using the DIR /E and /Q options). If there are more blocks
in the empty area than the file you are creating needs, DUP attempts to put
the extra blocks in empty areas that are contiguous to the file you are creat-
ing. If there is not enough room in contiguous empty areas, the error mes-
sage 2DUP-F-No room for file prints, and DUP does not create the file. The
/C option checks for duplicate file names. If the file name you specify already
exists on the device, DUP issues an error message and does not create a sec-

ond file with the same name.

The following example uses /C to create a file named FILE.MAC consisting
of blocks 140, 141, and 142 on device DK1..

XDK1:FILE.MACL31=/C/G1140

8.2.2 Image Copy Option (/i)

The /1 option copies block for block from one volume to another. (This oper-
ation is not applicable for magtape or cassette.) The /I option is often used to
copy one disk to another without changing the file structure or location of
files on the device. For this purpose, it is an added convenience that you do
not have to copy a boot block to the device. You can also copy disks that are

o e

Device Utility Program (DUP)

block on either the input or output volume, it prints an error message. How-
ever, it retries the operation and performs the copy one block at a time. If
only one error message prints, you can assume that the transfer completed

correctly.

Qualifiers to the /I option et you:

1. Specify the blocks to be read from the input device and a starting block
number for the write operation on the output device.

2. Copy a file to a device, or a device to a file, by specifying a file name with
either the input or output device. For example, you can copy a diskette
to an RLO1 as a file, or a file on an RKO05 to a diskette.

NOTE

When you use /F and you have specified a magtape or cas-
sette as the input device, you must specify an input file

name.

output-device: {ﬁlename} [/G:rn] =input-devicelfilenameJ/I[/G:rn/E:rn][/F]
A

where:

filename represents the output file name of the input device, or

/G:rn

/E:rn

/F

(when specified with the input device) represents the input
file name you are copying to the output device. If you spec-
ify an input file, use the dummy file name A with the out-
put specification. Note that you can use a file name with
either the input or output, but never with both

represents a dummy file name (required if the output
device is not a magtape or cassette). Note that either file-
name or A, but not both, can be specified with the output
device

when specified with the output device, represents the start-
ing block number for the write operation. When specified
with the input device, it represents the starting block num-
ber of the read operation

represents the ending block number on the input device for
the read operation

indicates that a file is involved in the transfer

The command string must include an input and an output specification;
there is no default device. The /I operation does not copy to or from a device
that has logical bad blocks. (Physical bad blocks can be logically replaced or

Device Utility Program (DUP) 8-5

8-6

covered, as Sections 8.2.12.3 and 8.2.12.4 describe.) If one device is smaller
than the other, DUP copies only the number of blocks of the smaller device.

You can copy blocks between disk and magtape. DUP stores the data on the
tape, formatting it in 1K-word blocks. It is possible to store only one disk
image on a magtape, regardless of the size of the tape.

NOTE

The /I option does not copy track O of diskettes. However,
this restriction has no impact on any copy operations if your
diskette was supplied by DIGITAL.

The following examples use the /I option. The file name A is not significant;
it is a dummy file name required by the Command String Interpreter.

¥IRL 1 A=RKO: /T
RK13:/Corus Are wou sure?

The command shown above copies all blocks from RKO: to RK1.:.

¥RR1IA/GIS01L=RKOI/T/GI0/E LS00
RK13/Corgs Are gou sure?Y

The command shown above copies blocks 0—500 from RKO: to blocks 501 —
1000 on RK1:.

RK1SFLOFFY BAK/F=0X03:/1T
RK1:/Cory} Are gou sure?Y

The last command copies device DX0: to RK1: in a file named
FLOPPY.BAK.

8.2.3 Bad Block Scan Option (/K)

Some mass storage volumes (digks, diskettes, DECtape, and DECtape IT)

[03 58 Loy 8§ 22T RIS vv-v... LAy Q228 LT 227

have bad blocks, or they develop bad blocks as a result of age and use. You
can use the /K option to scan a device and locate bad blocks on it. DUP prints
the absolute block number of those blocks on the device that return hard-
ware errors when DUP tries to read them. If you specify an output file, DUP
prints the bad block report in that file. Remember that block numbers are
octal and the first block on a device is block 0. If DUP finds no bad blocks, it
prints an informational message. A complete scan of a volume takes from
one to several minutes depending on the size of the volume. It does not
destroy data that is stored on the device.

Device Utility Program (DUP)

i

You can scan selected portions of a device by specifying beginning and
ending block numbers. The syntax of this command is:

[filespec = linput-device:/K[/G:m[/E:n][/H]
where:

filespec represents the output file specifications for the bad block
report

/G:m represents the block number of the first block to be scanned
/E:n represents the block number of the last block to be scanned

If you specify only a starting block number, DUP scans from the block you
specify to the end of the device.

If the device to be scanned has files on it, you can use /F with the /K option to
print the name of the file containing the bad block and the relative block
number within the file that is bad.

You can use /H with /K to read the bad block, write to the bad block, and
then read it again. If the block is still bad, DUP reports a HARD error. If the
block recovers, DUP reports a SOFT error. This procedure does not destroy
data already stored on the device. Note that DIGITAL does not guarantee
the integrity of data recovered from a soft bad block.

8.2.3.1 File Option (/F) — The file option serves two different purposes as a
mode option, depending upon whether you use it with /K or with /1.

When you use /F with /K, DUP does a bad block scan and displays file names
for each bad block it finds. DUP then prints a list of these bad block files
along with their locations within the file. This list includes a relative block
number of each bad block within the file and a report on whether each bad
block is hard or soft. An example of such a list, along with the command line

that generated it, follows.

*xDX0Q:/K/F
Elock Ture File Rlock

000717 463, Hard NUMBER .FAS Q00546 358.
000725 4469, Hard ANTONY . MAL 000554 3464 .
000732 474, Hard CAESAR.MAC 000561 249,
000743 483, Hard < UNUSED > 000572 378,
000751 489, Hard < UNUSED > 000600 384.
000754 492, Hard = UNUSED > 000603 387,

POUP-I-Rad blocks detected 6.

DUP outputs the following list if you use /F with /K on a disk that supports
bad block replacement. In the column marked Type, DUP lists whether the
bad block is replaced in the manufacturer’s bad block replacement table or if
it is hard or soft.

Device Utility Program (DUP) 8-7

8-8

XMl ¢ /K/F

EBlock Ture File Block
003055 1581, Rerlaced MSX .8YS 000007 7.
003465 1845, Rerlaced LRV +0BJ 000077 63,
037061 15921. Rerlaced < UNUSED > 010550 4456,
056106 23622, Rerlaced < UNUSED > 027979 12157,
0356210 23488, Rerlaced < UNUSED > 0274677 12323,
077521 32593, Rerlaced £ UNUSED > 051210 21128,
143116 507466, Rerlaced < UNUSED > 043374 18172,
145337 51935, Rerlaced < UNUSED = 045515 19341.

POUP-I-RBad blocks detected 8.

When you use /F with /I, you use it either to copy a file from an input device
to an output device, or to copy an input device to an output file. Note that /I
does not copy track 0 of diskettes. Note also that if you use a magtape or cas-
sette for either the input or output device, you must specify a file name with
the input device. For more information on /F refer to Section 8.2.2.

8.2.4 Boot Option (/O)

The /O option can perform two operations: (1) a hardware bootstrap of a spe-
cific device containing an RT-11 system and (2) a bootstrap of a particular
RT-11 monitor file that does not affect the bootstrap blocks on the device.
The command syntax for a device bootstrap is as follows:

dev:/O

This operation has the same results as a hardware bootstrap. Valid devices
for the boot operation follow:

DTO:-DT7: DDO0:-DD1:
RKO:-RK7: DLO0:-DL3:

RF: DYO0:-DY1:
SY: DMO:-DM7:
DK: DS0:-DS7:
DP0:-DPT: PDO:-PD1:
DX0:-DX1:

Use the following syntax to boot a monitor without changing the bootstrap
on the device:

dev:monitor-name/O

This makes it easy for you to switch from one monitor to another. Whether
bootstrapping a specific monitor or a specific device, DUP checks to see if the
bootstrap blocks are correctly formatted. If the boot operation you request is
invalid, DUP prints an error message and waits for another command.

When you reboot with the /O option, you do not have to reenter the date and
time of day with the monitor DATE and TIME commands. However, the
clock does lose a few seconds during the reboot.

The following command reboots the RT-11 system under the single-job
monitor:

Device Utility Program (DUP)

XRKO:RT1184.8Y5/0
RT-1154 V04.00

To boot a different monitor, for example the foreground/background monitor
(for DXO0:), type:

XDXOIRT1IFR.SYS/0

8.2.5 Boot Foreign Volume Option (/Q)

Use the /Q option with /O to boot a volume that has a monitor other than the
RT-11 version 4 monitor. Note that you must use /Q to boot any version 3B
or earlier volume of RT—11. The following example boots an RT-11 version
3B volume.

xRK0t/0/Q
RT-115J VO3E-00R

DUP does not retain the date and time when you use the /Q option.

8.2.6 Squeeze Option (/S)

Use the /S option to compress a volume (disk, diskette, DECtape) onto itself
or onto another disk or DECtape. To do this, DUP moves all the files to the
beginning of the device, producing a single, unused area after the group of
files. The squeeze operation does not change the bootstrap blocks of a device.
The output device you specify, if any, must be an initialized device. If you
specify an output device, DUP does not query you for confirmation before it
performs the operation. If you do not specify an output device, DUP prints
the Are you sure? message and waits for your response before proceeding.
You must type Y followed by a carriage return for the command to be exe-
cuted. Since it is critical to perform an error-free squeeze operation, be sure
to scan a device (with /K) before you use /S.

So you cannot reuse bad blocks, the /S option does not operate on files with
.BAD file types. You can rename files containing bad blocks, giving them a
.BAD file type, and therefore cause DUP to leave them in place when you
execute a /S. DUP inserts files before and after .BAD files until the space
between the last file it moved and the .BAD file is smaller than the next file
to be moved. If an error occurs during a squeeze operation, DUP continues
the operation, performing it one block at a time. If only one error message
prints, you can assume that the operation completed correctly.

The syntax of the command is:
[output-device = linput-device/S

Do not use /S on the system device (SY:) when a foreground or system job is
loaded. A 2DUP-F-Can’t squeeze SY: while foreground loaded error message
results if you attempt this, and DUP ignores the /S operation. You must
unload the foreground job before using the /S option.

Device Utility Program (DUP) 8-9

8-10

NOTE

If you perform a compress operation on the system device,
the system automatically reboots when the compress oper-
ation is completed. This operation takes place in order to
prevent system crashes that can occur when a system file is
moved.

You can use /X with /S to suppress the automatic reboot and leave DUP run-
ning. However, you should use /X only if you are certain that the monitor
file will not move. Even then, you should reboot the system when the
squeeze operation completes if the device handlers have moved.

The following examples use the /S option:

XS8Y:/8
SY:!/Saueezes Are vou sure?Y

RT-118J V04.00

The command shown above compresses the files on the system device and
reboots the system when the compress operation completes.

NOTE

If you compress your system volume, make sure DUP pro-
gram within has the name DUP.SAV. If not, a system fail-
ure may occur.

*¥OT13A=0T21/8

This command transfers all the files from device DT2: to device DT1:, leav-
ing DT2: unchanged. The file name A is not significant; it is a dummy file
name required by the Command String Interpreter.

-y e o

ion {/7:n)

8.2.7 Extend Opt

Use the /T option to extend the size of a file. The syntax of the command is:
filespec=/T:n

where:

filespec represents the device, file name, and file type of the file to be
extended

n represents the number of blocks to add to the file

You can extend a file in this manner only if it is followed by an unused area
at least n blocks long. Any blocks not required by the extend operation
remain in the unused area.

The following example uses the /T option:

*¥OTL¢ZYZ.TST=/T$100

Device Utility Program (DUP)

el

This command assigns 100 more blocks to the file named ZYZ.TST on device
DT1..

828 Bootstra

In order to use a volume as a system volume, you must copy a bootstrap onto
it. To do this, first make sure that the appropriate monitor file and handler

are stored on the volume. For a diskette system, for example, check to see
that the file DX .SYS is in the digkette directory. If it is, then you can copy
the desired monitor onto the diskette, using the /U option. The option argu-
ment, xx, represents a target system device name. Use this argument when
you are creating a bootable PDT volume if the current system is a PDP-11,
and vice versa. Also you can use this argument when the current system is

on an RX02 diskette and you wish to create a bootable RX01 diskette.

To copy a bootstrap for the single-job monitor on RK1:, for example, use the
following procedure:

1. Obtain a formatted disk. (Most disks, diskettes, DECtape, and DECtape
II volumes are formatted by the manufacturer. However, Chapter 18,
FORMAT, does outline the procedure for reformatting RK05, RKO06,
RKO07, RP02, RP03 disks, and RX01 and RX02 diskettes.)

2. Initialize the disk with /Z (see Section 8.2.12).

3. Copy files onto the disk.

4. Copy the monitor and RK05 handler, RK.SYS, onto the disk.
5. Copy the monitor bootstrap onto the disk with /U.

The following example shows how to initialize a diskette, copy files to it, and
write a bootstrap onto the diskette:

XDX13/2Z/Y

The command shown above (step 2 of the procedure described above)
initializes the diskette.

ADX1:A=IIX01/8

This command, which combines steps 3 and 4, squeezes all the files from
DXO: onto DX1.:.

XDX1:A=IX0tRTLIFE.8YS/U

The last command (step 5) writes the bootstrap for the fore-
ground/background monitor onto the bootstrap blocks (blocks 0 and 2-5) of
DX1:. The file name A is not significant; it is a dummy file name required by
the Command String Interpreter.

To create a bootable PDT-11/150 system diskette while running on a
PDP-11, specify PD with the /U option. Likewise, if you are running on a
PDT-11/150, and you wish to create a bootable PDP-11 system diskette,

Device Utility Program (DUP) 8-11

8-12

specify DX (for single-density diskette) or DD (for DECtape II) with the /U
option. The following command creates a bootable PDT-11/150 diskette
while the current system is on a PDP-11:

*¥DX0:A=DX0tRT118J.8YS/ULFD

The next command creates a bootable PDP-11 diskette while the current
system is on a PDT-11/150:

XFPLOLA=FDOIRT116J.8YS/UDX

8.2.9 Volume ID Option (/V[:ONL])

You can use the /V option as an action option to print the volume ID of a
device or to change the volume ID. The syntax of the command is:

device:[/Z]/V[:ONL]
where:
device: is the device whose volume ID you want to display or change

If you specify only /V, DUP prints out on the console terminal the volume ID
and owner name of the device you specify. If you specify /Z with /V, DUP
initializes the device and prompts you for a new volume ID and owner name.
If you specify /Z/V:ONL, DUP assumes you want only to change the volume
ID and owner name and not initialize the device.

When you specify either /Z/V or /Z/V:ONL, DUP prompts you for a volume
ID:

Volume ID?

Respond with a volume ID that is up to 12 characters long for a block-
replaceable device. Terminate your response with a carriage return. DUP

thon nramnte far an ownaw

"o
| v.l.l.v.l..l MLV LLPVB AUL ik UV YYLICL .I.].al.l.lc

Owrier?

10 L.
RCSPC'Id v Luh an gwner name that i i3 up to 12 characters 1uug 101 a UlULh-

replaceable device. Terminate your response with a carriage return. DUP
ignores characters you type beyond the legal length. You cannot change the
volume ID of a magtape or cassette without initializing the entire tape. The
/V:ONL command changes only the volume ID and owner name; it does not
initialize the device. Section 8.2.12.2 describes how to use /V with the /Z
option to initialize a device and write new volume identification on it.

The following example uses the /V:ONL option:

XRK1$:/Z/VI0ONL
RKO: /Volume ID chandge’ Are gou sure? Y
Volume ID? FORTRAN VOL

Owrier? Marcy

This command writes a new volume ID and owner name on device RK1:.

Device Utility Program (DUP)

8.2.10 Wait for Volume Option (/W)

The /W option causes DUP to prompt you for the volumes to operate on, and
waits for you to mount them. It is useful for single-disk systems or diskette
systems. It is a mode option that you can use with any of the action options.
However, you can perform only one operation at a time. The /W option
initiates execution of a command, but then pauses and prints the message
Mount input volume in <device>; Continue?, where <device> represents
the device into which you mount the input volume. At this time you can
remove the system disk (if necessary) and mount the disk on which you
actually want the operation to take place. When the new disk is loaded, type
a Y followed by a carriage return to execute the operation. DUP then
prompts you for the input volume, if any. When the operation completes
(except the /O operation, which boots the system), the Mount system volume
in <device>; Continue? message prints. Replace the system device and type
a Y followed by a carriage return. The asterisk (*) prompt prints, and DUP
waits for you to enter another command. The following example uses the /W
option:

XOX1/K/F/7W

Mount ineut volume in DX13 Continue® Y <RET:
POUP-I-No bad blocks detected

Mount sustem volume in IX1i% Continue? Y <RET>
X

This command directs DUP to scan the disk for bad blocks. During the first
pause, the system disk is removed and another disk is mounted. A Y is typed
and the scan operation executes. During the second pause, the system disk
(on which DUP is stored) is replaced and another Y is typed. DUP prompts
for another command. When you use /W, make sure that DUP is on the sys-
tem volume.

8.2.11 Noquery Option (/Y)

Use the /Y option to suppress the query messages that some commands
print. Certain options normally print the Foreground job loaded, Continue?
message if a foréeground job is loaded when you issue one of them (/C, /1, /O,
/Q, /S, /T, and /Z). You must respond to the query message by typing Y fol-
lowed by a carriage return for the operation to proceed. Some other options
(/C, 1, /0, /S, [V, and /Z) print the Are you sure? message and wait for your
response. If a foreground job is loaded and you specify one of these options,
DUP combines the two query messages into one message and waits for your
response. You can suppress all these messages and the pause associated
with them by specifying /Y in the command string. Note, if you use /Y with
/Z to initialize your system volume, the system ignores /Y.

Device Utility Program (DUP) 8-13

8-14

8.2.12 Directory Initialization Option (/Z[:n])

You must initialize a device before you can store files on it. Use the /Z option
to clear and initialize the directory of an RT-11 directory-structured device.
The /Z option must always be the first operation you perform on a new device
after you receive it, formatted, from a manufacturer. After you use /Z, there
are no files in the directory.

The syntax of the command is as follows:
device:/Z[:n]
where:
device represents the device you want to initialize

n is an octal integer (greater than or equal to 1) that represents
the size increase, in words, of each directory entry. DUP adds
this number to the default number of words allocated for
each entry (valid only for directory-structured devices)

The size of the directory determines the number of files that can be stored on
a device. The system allows a maximum of 72 files per directory segment,
and 31 directory segments per device. Each segment uses two blocks of disk
space. If you do not specify n, each entry is seven words long (for file name,
creation date, and file position information). When you allocate extra words,
the number of entries per directory segment decreases. The formula for
determining the number of entries per directory segment is:

(5612-7)/(number of extra words) + 7)

For example, if you use /Z:1, you can make 63 entries per segment. RT-11
does not normally support nonstandard directory formats, and DIGITAL
does not recommend altering the directory format.

22121 Changin

n Dirasntan
WWelime § Sun ¥ L4811l 'U.l Is L 41 A"4 "4

wWE ,
default directory size of the device, use /N with /Z to set the desired number

of directory segments for entries in the directory. The syntax is as follows:

w

am} L TE s o mot want tho
nts ({N:n) = If you do not want the

/N:n

In this option, n is an integer in the range 1-31 that represents the number
of directory segments you want the directory to have.

Table 8-3 lists the default directory sizes, in segments, for RT-11-sup-
ported, directory-structured devices.

Device Utility Program (DUP)

i i,

Table 8-3: Default Directory Sizes

Size (decimal) of
Device | Directory in Segments
RK 16
DD 1
DT 1
RF 4
bs 4
DP 31
DX 1
DM 31
DY 4
DL 16
PD 1

If the default directory size for diskettes is too small for your needs, see the
RT-11 Installation and System Generation Guide for details on increasing
the default number of directory segments.

The following example initializes the directory on device RK1: and allocates
six directory segments.

KRK1I/Z/NL6
RRK1:/Initialize?s Are —ou sure?Y

8.2.12.2 Storing Volume ID (/V) — When you initialize a disk or magtape,
DUP normally maintains the volume ID and owner name. If at initialization
time you want to change the volume ID and owner name, use the /V option
with /Z. For example, the following command initializes device RK1: and
prompts you for a volume ID and owner name. Section 8.2.9 illustrates these
prompts and shows how to use them.

RRKLI/Z/V

RK1:/Initialize’s Are wou sure?Y
Volume IDNT YOUCHERS

Owrmer? PAYARLES

8.2.12.3 Replacing Bad Blocks (/R[:RET]) — If you have RK06, RK07,
RLO1, or RLO2 disks, use this option with /Z to scan a disk for bad blocks. If
DUP finds any bad blocks, it creates a replacement table so that routine
operations access good blocks instead of bad ones. Thus, the disk appears to
have only good blocks. Note, though, that accessing this replacement table
slows response time for routine input and output operations. With /R you
have the option of deciding which bad blocks you want replaced if the num-
ber of bad blocks exceeds what can fit in the replacement table (replacement
table overflow). The RK06 and RK07s support up to 32 (decimal) bad blocks
in the replacement table; the RLO1s and RL02s support up to 10.

Device Utility Program (DUP) 8-15

8-16

When you use /R, DUP prints out a list of replaceable bad blocks as in the
following sample:

Rlock Ture
030722 12754, Rerlaceable
115046 39462, Rerlasceable
1334617 46991. Rerlaceable
136175 48253, Rerlaceable
136277 48319. Rerlaceable
136401 48385, Rerlaceable
140405 49413, Rerlaceable
1446252 52394, Rerlaceable
TOUF~I-Rad blocks detected 8.

If there is a replacement table overflow, DUP prompts you to indicate which

blocks you want replaced as follows:

TOUF-W-Rerlacement table overflow
Ture <RET>s Qs or nnnnnn (CRET>)
Rerlace block #

nnnnnn represents the octal block number of the block you want the system
to replace.

After you enter a block number, DUP responds by repeating the Replace

lock # prompt. Type a 0 at any time if you do not want any more blocks
replaced, and this will end prompting. DUP marks any blocks not placed in
the replacement table as FILE.BAD.

If you enter a carriage return at any time, DUP places all bad blocks you
have not entered into the replacement table, starting with the first on the
disk, until the table is full. DUP assigns the name FILE.BAD to any
remaining bad blocks and prompting ends.

If you use /Y with /R, the effect will be as if you entered a carriage return in
response to the first Replace block prompt.

If you use :RET with /R, DUP initializes the volume and retains the bad
block replacement table (and FILE.BAD files) created by the previous /R
command.

Note that the monitor file cannot reside on a block that contains a bad sector
error (BSE) if you are doing bad block replacement. If this condition occurs,
a boot error results when you attempt to bootstrap the system. In case this
happens, move the monitor.

8.2.12.4 Covering Bad Blocks (/B[:RET]) — To scan the volume for bad

locks and write files over them, use the /B option with /Z. For every bad
block DUP encounters on the device, it creates a file called FILE.BAD to
cover it. After the disk is initialized and the scan completed, the directory
consists only of FILE.BAD entries that cover the bad blocks. If DUP finds a
bad block in the boot block or the directory, it prinis an error message and
the disk is not usable.

Device Utility Program (DUP)

If you specify :RET with /B, DUP will retain through initialization all
FILE.BAD files created by a previous /B.

8.2.12.5 Restoring a Disk (/D) — Use /D to “uninitialize” a volume if you
have not transferred any files to it since initialization. DUP will restore all
files and directory entries that were present before the volume was
initialized. This option is useful if you initialize a volume by mistake.

Note that /D does not restore boot blocks. Thus, if you use /D to restore a pre-
viously bootable volume, use the bootstrap copy option, /U[:xx], to make the

volume bootable again.

Device Utility Program (DUP) 8-17

-

Chapter 9
The Directory Program (DIR)

The directory program (DIR) performs a wide range of directory listing oper-
ations. It can list directory information about a specific device, either in
summarized form — where only the number of files stored per segment is
given — or in more detailed form — where file names, file types, creation
dates, and other file information is given. DIR can organize its listings in
several ways, such as alphabetically or chronologically.

9.1 Calling and Using DIR

To call DIR from the system device, respond to the dot (.) printed by the
keyboard monitor by typing:

R DIR <RETX

The Command String Interpreter prints an asterisk at the left margin of the
terminal and waits for you to enter a command string. If you enter only a
carriage return in response to the asterisk, DIR prints its current version
number. You can type CTRL/C to halt DIR and return control to the monitor
when DIR is waiting for input from the console terminal. You must type two
CTRL/Cs to abort DIR at any other time. To restart DIR, type R DIR or
REENTER in response to the monitor’s dot. Chapter 6, Command String
Interpreter, describes the general syntax of the command line that DIR
accepts. Unless otherwise indicated, numeric arguments are interpreted as
octal. Remember to put a decimal point after a decimal number to dis-
tinguish it from an octal number. Some of the DIR options accept a date as
an argument in the command line. The syntax for specifying the date is:

dd.:mmm:yy.
where:
dd. represents the day (a decimal integer in the range 1-31)

mmm represents the month (the first three characters of the name of
the month)

yy. represents the year (a decimal integer in the range 73-99)

You can specify only one input device and one output device, but you can
specify up to six file names on the input device. The default device for output
is the terminal. The default file type for an output file is .DIR. The default
device for input is DK:. If you omit the input specification completely, DIR
uses DK:*.* If you do not supply an option, DIR performs the /L operation.
Note that wildcards are valid with DIR for the input specification only.

Directory Program (DIR) 9-1

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, DIR prints
-BAD- in the creation date column of each file created beyond the end-of-
month. (Note that you can eliminate a -BAD- entry by using the
RENAME/SETDATE command after you have set the date.)

Directory listings normally print on the terminal in two columns. Read the
entries across the columns, moving from left to right, one row at a time.
Directory listings that are sorted, however, are an exception to this. (Sorted
directories are produced by /A, /R, and /S options.) Read these listings by
reading the left column from top to bottom, then reading the right column
from top to bottom.

9.2 Options

9-2

You can perform many different directory operations by specifying options
in the DIR command line. Table 9—1 summarizes the operations these
options permit you to perform with DIR. The sections following the table
describe the various DIR options and give examples; the options are
arranged alphabetically in these sections.

Table 9-1: DIR Options

Option | Section |Explanation

/A 9.2.1 Lists the directory of the device you specify in alphabetical
order by file name and type (this is the same as /S:NAM).

/B 9.2.2 Lists the directory of the device you specify, including file
names and types, creation dates, starting block number and
the number of blocks in each file. For magtape, the starting
block number is the file sequence number. Note that DIR lists
block numbers in decimal, unless you use the /O option.

/C:n 9.2.3 Lists the directory in n columns; n is an integer in the range
i-9. The defauit vaiue is two columns for normai listings and
five columns for abbreviated listings.

/Dl:date] | 9.2.4 Lists a directory containing only those files having the date

you specify. If you do not supply a date, DIR uses the system’s
current date.

B 9.2.5 Adds unused spaces and their sizes to the listing of the device
directory. An empty space on a cassette directory represents a
deleted file.

F 9.2.6 Prints a five-column, short directory (file names and types
only) of the device you specify.

/G 9.2.7 Lists the file you specify and all files that follow it in the direc-
tory. This option does not list any files that precede the file you
specify.

Directory Program (DIR)

Table 9-1: DIR Options (Cont.)

Explanation

Option Section
/J[:date] | 5.2.8
/Kl:date] | 9.2.9
/L 9.2.10
™M 9.2.11
/N 9.2.12
/0 9.2.13
/P 9.2.14
Q 9.2.15
R 9.2.16
/S[:xxx] 9.2.17
/V[:ONL] | 9.2.18

Prints a directory of the files created on or after the date you
specify. If you do not supply a date, DIR uses the system’s cur-
rent date.

Prints a directory of files created before the date you specify. If
you do not supply a date, DIR uses the system’s current date.

Lists the directory of the device you specify, including the

number of files, their dates, and the number of blocks each file
occupies. (This is the default operation.)

Lists a directory of unused areas of the device you specify.
Lists a summary of the device directory.

Similar to /L but lists the sizes and block numbers of the files
in octal.

Prints a directory of the device you specify, excluding the files
you list.

Lists a directory of the device you specify, listing the file
names and types, sizes, creation dates and starting block num-
bers of files that have been deleted and whose file name infor-
mation has not been destroyed.

Lists the files in the reverse order of the sort specified with /A
or /S.

Lists the directory of the device you specify in the order you
specify; xxx indicates the order in which DIR sorts the listing
(xxx can be DAT, NAM, POS, SIZ, or TYP).

Lists the volume ID and owner name as part of the directory
listing header. If you specify /V:ONL, DIR lists only the vol-
ume ID and owner name.

9.2.1 Alphabetical Option (/A)

The /A option lists the directory of the device you specify in alphabetical
order by file name and type. Note that /A sorts numbers after letters. It has
the same effect as the /S:NAM option. The following example lists the direc-
tory of device DXO0: in alphabetical order.

xX0X0:/A
14-Dec~-79
RUILD .MAC
134 +8YS
MYPROG . MAC
RFUNCT.SYS
RT1154,.8YS

100
3
36F
4
67

06-8Ser-79 SWAF .S8YS 25 05-Dec-79
06-Ser-79 SYSMAC . MAC 41 19-Nov-79
12-0ct-79 ™ +MAC 25 27-Nov-79
19-Nov=79 TT +8YS 2 19-Nov-79
19-Nov-79 UTMAC .MAC 7 19-Nov-79

10 Filess 3046 ERlocks
180 Free blocks

Directory Program (DIR)

9-3

94

9.2.2 Block Number Option (/B)

The /B option adds the starting block number in decimal of all the files listed
in a directory of the volume you specify. The following example lists the
directory of device DXO:, including the starting block numbers of files.

*xDX0 /R
14-Tlec-79

FSM +MAC 31F 19-Nov-79 2955 BRATCH .MAC 102P 19-Nov-79 2986
ELCOPY.MAC 8F 19-Nov-79 3088 ELINIT.MAC 15P 19-Nav~-79 3096
ELTASK:MAC 1SF 19-Nov-79 3111 ERROUT.MAC 48F 19-Nov-79 3126
ERRTXT . MAC 9F 19-Nov-79 3174 SYCND .BL 3P 19-Nov-79 3183
SYSTEL .BL 4F 19-Nov-79 3186 SYCND .DIS 5F 19-Nov-79 3190
SYSTBL.DIS 4P 19-Nov-79 3195 SYCND .HD SF 19-Nov-79 3199
ARSLOD.SAV 48 15-Mar-76 3204 CHESS ,S4V 40 17-Aug-75 3252
FETAL +85AV 36 1i1-Ser-735 3292 LANF .54V 29 16-Hsr-7 3328
WUMPUS . SAV 30 16-Mar-79 3357

17 Filess 348 Rlocks
138 Free blocks

9.2.3 Columns Option (/C[:n])

The /C[:n] option lists the directory in the number of columns you specify.
The argument, n, represents an integer in the range 1-9. If you do not use
the /C:n option, DIR lists the directory in two columns for normal listings
and five columns for abbreviated listings. The following command, for
example, lists the directory of device DX1: in one column.

xDX1t/C21

29-Nov-79
SWAFP .8YS 25F 19-Nov-79
RT118J.8YS 67F 19~-Nov-79
RT11FEB.SYS 80F 19-Nov-79
RT11RL.SYS 64F 19-Nov-79

T +SYS 2F 19-Nov-79
DT +SYS 3F 19-Nov-7%
il +8YS 3F 19-Nov-79

7 Filess 244 Blocks
242 Free blocks

9.2.4 Date Option (/D[:date])

The /D[:date] option includes in the directory listing only those files having
the date you specify. The default date is the system’s current date. For
example, the following command lists all the files that were created on
August 13, 1979.

*xDX0/D0313, tAUGETY,

15-Ser-79
RT115J4.8YS &7F 13-Aug-79 RT11FER.S5YS 80F 13-Aug-79
RT11RL.SYS 63F 13-Aug-79 1D 4 +8YS 3P 13-Aug-79
SWAFP .SYS 25F 13-Aug-79 TT +8YS 2F 13-Aug-79
DP +SYS 3P 13-Aug-79 Dy +SYS 4F 13-Aug-79
LP +SYS 2F 13-Au=g-79 FIF «SAYV 16 13-Aug-79
nup +SAV 41 13-Aug-79 RESORC.SAYV 15 13-Aug-?79
DIR +SAV 17 13-4yd-79 RK «8YS 3 13-Ausg-79
EDIT .SAV 19 13-Aug-79 1] +8YS S 13-Aug-79
SRCCOM,.SAV 13 13-Aug-79 BINCOM.SAV 11 13-~Au€-79
SLP .5AV ? 13-Aug-79 SIFF .SAV 14 13-Aug-79

20 Filess

73 Free blachks

Directory Program (DIR)

412 Blocks

——

9.2.5 Entire Option (/E)

The /E option lists the entire directory including the unused areas and their
sizes in blocks (decimal). The following example lists the entire directory of
device DX1:, including unused areas. Use it to find free space before you
extend a file (with CREATE or DUP/C).

*xDX1:/E
14-Dlec-79

SWAFP ,SYS 25F 23-0ct-79 RT11S8J.58YS 67F 23-0ct-79
e KRt - =hd =] oanr 40 A .. o T4 40l ove 2 AD 1O _Mmea .70
KilirbB.afa ouUr 17NV /T RILIDL +31O O%F 17 RROVT/ 7
17 +SYS 2F 19-Nov-79 oT +5Y8 3F 19-Nov-79
DP +8YS 3P 23-0ct-79 DX +8YS 3P 1%-Nov-79%
ny +8YS 4F 19-Nov-79 RF +SYS 3F 19-Nov-79
RK +8YS 3F 19-Nov-79 nL +8YS 4P 23-0ct-79
oM +8YS 5P 23-0ct-79 ns +8YS 3F 19-Nov-79
oo +8YS SF 23-0ct-79 LF +8YS 2F 23-0ct-79
LS +8YS 2F 19-Nov-79 CR +5YS 3F 19-Nov-7%
MS +8YS 9P 27-Nov~-79 MTHD .8YS IF 23-0ct-79
DISMT1.COM fF 27-Nov-79 MMHD .SYS 4F 19-Nov-79
NUMEER.PAS 1 11-Dec-79 TONY +AGF 14 17-Aud-79
NUM3 .LST 1 13-Nec-79 + UNUSED > 565

25 Filess 322 Blocks
164 Free blocks

9.2.6 FAST Option (/F)

The /F option lists only file names and file types, omitting file lengths and
associated dates. For example, the following command lists only file names
and types from device DXO:.

*DOX0$ /F

1é6-Aug-79
nx +8YS FIF +SAV LIR +S5AY nuF .84V SWAF L 8YS
RT118J.8Y8 RT11FR.SYS RT11BL.SYS TT +8Y8 nr +8YS

10 Files» 312 Rlocks
174 Free blocks

9.2.7 Begin Option (/G)

The /G option lists the directory of the device you specify, beginning with the
file you specify and including all the files that follow it in the directory. Usu-
ally, the disk you are using as a system device contains a number of files the
operating system needs. These files include .SYS monitor files, .SAV utility
program files, and various .OBJ, .MAC, and .BAK files. They are generally
grouped together and usually listed at the beginning of a normal device
directory. Files that you create and use, such as source files and text files,
are also generally grouped together and follow the operating system files in
the directory. If you specify the name of the last system file with the /G in
the command line, DIR prints a directory of only those files that you created
and stored on the device. The following command, for example, lists the last
system file (CT.SYS) and all the user files that follow it.

Directory Program (DIR) 9-5

9-6

*XDX0ICT.SYS/G

10~-Dec-7%
CT +8YS S 10-Audg-79 DIR +5AV 17 03-Ausg-79
RK +SYS 3 13-Audg-79 EDIT .SAV 19 03-Aug-79
STARTS.COM 1 27-Aug-79 np +SYS S 19-Aug-79
SRCCOM.SAV 13 13-Aug-79 EINCOM,.34V 11 03-0ct-79
SLP +SAV 9 13-Aug-79 SIFF .SAV 14 05-0ct-79

10 Filesy 107 Rlocks
73 Free blocks

9.2.8 Since Option (/J[:date])

The /J[:date] option lists a directory of all files stored on the device you spec-
ify that were created on or after the date you supply. The default date is the
system’s current date. The following command lists all files on device DTO:
that were created on or after 28 July 79.

*¥DTO:/J8128.2JULI79.

14-Tlec-79
RT1158J.8YS 67F 28-Jul-79 RT11FB.SYS 80F 02-Ser-79
RT11BL,SYS 43P 19-Aug-79 X +SYS 3F 10-Ser~-79
SWAF .SYS 25F 02-Sep-79 TT +8YS 2P 15-Ser-79
SIPFF .SAV 14 02-Ser-79

7 Filess 154 Blocks
332 Free blocks

9.2.9 Before Option (/K[:date])

The /Kl[:date] option prints a directory of files created before the date you
specify. The default date is the system’s current date. The following com-
mand lists all files stored on device DX1: that were created before March 15,

1979.
*0X13/K115, tMARLI79,
13-Arpr-79
FORTRA,SAV 191 14-Mar-79 BASIC .SAV 51 25-Feb-79

2 Filessy 242 Rlocks
38 Free blocks

9.2.10 Listing Option (/L)

The /L option lists the directory of the device you specify. The listing con-
tains the current date, all files and their associated creation dates, the num-
ber of blocks used by each file, total free blocks on the device (if disk or
DECtape), the number of files listed, and the total number of blocks used by
the files. File lengths, number of blocks and number of files are indicated as
decimal values. For example, the following command lists on the line

printer the directory for device DT1..

*LFi=0T18/L

Directory Program (DIR)

The line printer output looks like this:

20-Nov-79

RT118J.85YS 67F 03-Jul-79 RT11FR.SYS 80F 13-Aug-79
RT11BL.SYS &43F 15-Mar-79 ox +8YS 3F 13-Aug-79
SWAF +5YS 25F 13-Aug-79 1T .S5YS 2F 13-Aug-79
npP +SYS 3F 13-Ausg-79 ny +8YS 4F 13-Aug-79
LP +8YS 2F 20-Nov-79 FIF +SAV 16 25-Jul-7¢9
nup +SAV 41 26-Mar-79 RESORC.SAV 15 13-Aug-79
EDIT ,SAV 19 13-Aug-79 STARTS.COM 1 27-Aug-79
SIFP .SAV 14 13-Aug-79

15 Filess 413 Blocks
73 Free blocks

9.2.11 Unused Areas Option (/M)

The /M option lists only a directory of unused areas and their size on the
device you specify. For example, the following command lists all the unused
areas on device RKO:.

*¥RKOI/M

14-liec-79
< UNUSED > 11 < UNUSED 2
< UNUSED = 26 < UNUSED > 32
< UNUSED > 1 < UNUSED > 525
< UNUSED > 0 < UNUSED > G545

0 Filess 0 Rlocks
1162 Free bhlocks

9.2.12 Summary Option (/N)

The /N option lists a summary of the device directory. The following com-
mand lists the summary of the directory for device DK:.

X/N
14-Nov-79%

44 Files in sedment 1

446 Files in sedsment 4

[

37 Files in sedsment

o

34 Files in sesgment

38 Files in segment 3

146 Available segmentsy 5 in use

199 Filess 3647 Rlocks
1115 Free blocks

9.2.13 Octal Option (/O)

The /O option is similar to the /L option, but lists the sizes (and starting
block numbers if you use /B) of the files in octal. If the device you specify is a
magnetic tape or cassette, DIR prints the sequence number in octal. For

Directory Program (DIR) 9-7

example, the following command lists the directory of device DXO0:, with
sizes in octal.

X0X03:/0
14-Dec-79 Octeal
MYFPROG . MAC 44F 12-Nov-79 ™ +MAC 31 27-Nov-79
UTMAC .MAC 7 18-0ct-79 SYSMAC . MAC 51 19-Nov-79
SWAF ,SYS 31 05-Ser-79 ANTON MAC 4 19-Nov-79
RT1154.8YS 103 19-Nov-79 TT +8YS 2 19-Nov-7%
1D 4 +8YS 3 29-Aug-79 ERUILD ,MAC 144 192-Nov-79
10 Filess 4462 Rlocks

264 Free blocks

9.2.14 Exclude Option (/P)

The /P option lists a directory of all files on a volume, excluding those that
you specify. You may specify up to six files.

*DX1%k.SAV/F

29-0ct-79
RT118J.MAC 67F 06-Ser-79 RT11FER.MAC 80F 06-Ser-79
RT11EL.MAC 63F 046-Ser-79 nX «MAC 3F 06-Ser—-79
SWAF «MAC 25F 06-Ser-79 1T +HAC 2F 06-Ser-79
il +MAC 3IF 046-8er-79 ny +MAC 4F 046~Ser-7%
LP +MAC 2F 06-Ser-79 RK +MAC 3 06-Ser-79
STARTS.COM 1 27-Aug-79 oo +MAC 5 06-Ser-79

12 Filess 258 Rlocks
73 Free blocks

This command lists all files on device DX1: except .SAV files.

9.2.15 Deleted Option (/Q)

The /Q option lists a directory of the device you specify, listing the file
names, types, sizes, creation dates, and starting block numbers in decimal of
files that have been deleted but whose file name information has not been
destroyed. The file names that print represent either tentative files or files
that have been deleted. This can be useful in recovering files that have been
accidentally deleted. Once you identify the file name and location, you can
use DUP to rename the area. See Section 8.2.1 for this procedure.

XNISK OIR=/0

This command creates a file called DISK.DIR on device DK: that contains
directory information about unused areas from device DK:.

Use the monitor TYPE command to read the file:

+ TYFE DISK.DNIR/LOG

Files coried?
DKIDISK.DIR to TT!

12-0ct-79
EXAMPL .FOR 23 09-Ser-79 MTHD . SMF 5 03-Ser-79
SCOPE .PIC 3 22-Ser-79

0 Filess 0 Rlocks
Q0 Free blocks

9-8 Directory Program (DIR)

9.2.16 Reverse Option (/R)

The /R option lists a directory in the reverse order of the sort you specify

with the /A or /S option.

*DX0$/8:8IZ/R

14-Dec-79

BUILD .MAC 100 06-Ser-79 ™ «MAC 25 27-Nov-79
RT11SJ.5YS 47 19-Nov-79 UTMAC .MAC 7 19-Nov-79
SYSMAC . MAC 41 19-Nov-79 RFUNCT,.SYS 4 19-Nov-79
MYPROG, MAC ILP 12-0ct-79 Dy .8Y8 3 04-Ses-79
SWAP ,8YS 25 05-Dec-79 T .8YS 2 19-Nov-79

10 Filess 306 Rlocks
180 Free blocks

This command lists the directory of device DXO0: in reverse chronological

order.

9.2.17 Sort Option (/S[:xxx])

The /S[:xxx] option sorts the directory of the specified device according to a
three-character code you specify as :xxx. Table 9-2 summarizes the codes
and their functions.

Table 9-2: Sort Codes

Code | Explanation

DAT Chronological by creation date. Files that have the same date are sorted alpha-
betically by file name and file type

NAM | Alphabetical by file name. Files that have the same file name are sorted alpha-
betically by file type (this has the same effect as the /A option)

POS According to the position of the files on the device. This is the same as using /S
with no code)

SI1Z Based on file size in blocks. Files that are the same size are sorted alphabetically
by file name and file type

TYP Alphabetical by file type. Files that have the same file type are sorted alphabeti-
cally by file name

The following examples illustrate the /S option.

*0X0:/SiDAT

14-liec-79
BUILD .MAC 100 0Q6-Ser-79 SYSMAC . MAC 41 19~Nov-79
DX +SYS 3 046-Ser~79 1T +SYS 2 19-Nov-79
MYPROG.MAC 36F 12-0ct-79 VTMAC .MAC 7 12-Nov-79
RFUNCT . MAC 4 19-Nov-79 ™ +MAC 25 27-Nov-79
RT118J.SYS 67 19-Nov-79 SWAF .8YS 25 05-Dec-79

10 Filesy 306 Blocks
180 Free blocks

(continued on next page)

Directory Program (DIR) 9-9

XDX0t/SINAM

14-Dec-79
BUILD .MAC 100 06-Ser-=7% SWAF .SYS 25 05-Dec-79
DX +SYS 3 06-Ser-79 SYSMAC . MAC 41 19-Nov-79
MYPROG . MAC 36F 12-0ct-79 ™ + MAC 25 27-Nov-79
RFUNCT,.SYS 4 19-Nov-79 TT +8YS 2 19-Nov-79
RT118J,8YS 67 19-Nov-7¢9 VTMAC MAC 7 19-Nov-79

10 Filess 306 Rlocks

180 Free blocks
xDX0:/8:P0OS

14-Nlec~79
RT11S8J.5YS 67 19-Nov~-79 RUILD .MAC 100 06é6-Ser-79
nx +8YS 3 06-Ser-79 SYSMAC . MAC 41 19-Nov-79
MYPROG . MAC 36F 12-0ct~-79 ™ +MAC 25 27-Nov-7%
SWAP .SYS 25 05-Dec-79 VTMAC .MAC 7 19-Nov-79
RFUNCT.SYS 4 19-Nov-79 TT +8YS 2 19-Nov-79

10 Filessy 306 Blocks

180 Free blocks
XDX0:/SITYP

14-Dec-79
BUILD .MAC 100 06-Ser-79 DX +8YS 3 06-Sep-79
MYPROG . MAC 346P 12-0ct-79 RFUNCT.SYS 4 19-Nov-79
SYSMAC . MAC 41 19-Noy-79 RT118J.8YS 47 19-Nov-79
™ +MAC 25 27-Nov-79 SWAF .SYS 25 0S5-Dec-79
VTMAC .MAC 7 19-Nov-7% T7 +SYS 2 19-Nov-79

10 Filess 304 Rlocks

180 Free blocks
xDX0t/8:81Z

14-Dec-79
77T +8YS 2 19-Nov-79 SWAF .SYS 25 05-Dec-79
DX +SYS 3 06-Ser-79 MYPROG.MAC 34P 12-0ct~-79
RFUNCT.SYS 4 19-Nov-79 SYSMAC . MAC 41 19-Nov-79
VTMAC .MAC 7 19-Nov-79 RT118J.8Y8 67 19-Nov-79
™ +«MAC 25 27-Nov-79 RUILD .MAC 100 O0A-Sep-79

10 Filess 3046 Blocks
180 Free blocks

9.2.18 Volume ID Option (/V[:ONL])
The /V option prints the volume identification and owner name as part of the

directory listing header. The optional argument, :ONL, prints only the vol-
ume ID and owner name. You can combine /V with any other option.

9-10 Directory Program (DIR)

The following example uses the /V option.

L 31) 94V
14-Dec-79
Volume ID:
Owner H

SWAP .SYS

RT11FB,.SYS

17 +SYS

DP +8YS

DY +SYS

RK .8YS

s

12 Files:

2F
3P
4P
2P

215 Free blocks

BACKUP2
Marcy
25P
80F

19-Nov-79
19-Nov-79
19-Nov-79
19-Nov-79
19-Nov-79
19-Nov-79

271 Blocks

RT115J.,8YS 67P 19-Nov-7¢9
RT11BL.S5YS 64P 19-Nov-79

HMH +8YS 3P 19-Nov-79
DX +SYS 3P 19-Nov-79
RF +8YS 3P 19-Nov-79
oL +8YS 4P 19-Nav-79

The next example uses the :ONL argument.

*xDXO0:/VIONL

Volume ID? RT11 V4
Judith

Owrer :

Directory Program (DIR)

9-11

Chapter 10
MACRO-11 Program Assembly

This chapter describes how to assemble MACRO-11 programs under the
RT-11 operating system.

Output from the MACRO-11 assembler includes any or all of the following:

1. A binary object file—the machine-readable logical equivalent of the
MACRO-11 assembly language source code

2. A listing of the source input file

3. A cross-reference file listing

4. A tabie of contents listing

5. A symbol table listing

To use the MACRO-11 assembler, you should understand how to:

1. Initiate and terminate the MACRO-11 assembler (including how to for-
mat command strings to specify files MACRO-11 uses during assembly)

2. Assign temporary work files to non-default devices, if necessary

3. Use file specification options te override file control directives in the
source program

4. Use the small version of MACRO-11 for PDP-11 systems with 8K mem-
ory, if necessary

5. Interpret error messages

The following sections describe these topics.

10.1 Calling the MACRO-11 Assembler

To call the MACRO-11 assembler from the system device, respond to the
system prompt (a dot printed by the keyboard monitor) by typing:

R MACRO <RET:

When the assembler responds with an asterisk (¥), it is ready to accept com-
mand string input. (You can also call the assembler using the keyboard
monitor MACRO command; see Chapter 4 for a description of this
command.)

Macro-11 Program Assembly 10-1

10-2

The assembler now expects a command string consisting of the following
items, in sequence:

1. Output file specifications
2. Anequals sign
3. Input file specifications

Format this command string as follows (punctuation is required where
shown):

dev:obj,dev:list,dev:cref/s:arg = dev:sourcei,...,dev:sourcen/s:arg

where:
dev is any legal RT-11 device for output; any file-structured
device for input
obj is the file specification of the binary object file that the
assembly process produces; the dev for this file should not be
TT or LP
list is the file specification of the assembly and symbol listing

that the assembly process produces

cref is the file specification of the CREF temporary cross-refer-
ence file that the assembly process produces. (Omission of
dev:cref does not preclude a cross-reference listing, however.)

/s:arg is a set of file specification options and arguments (Section
10.4 describes these options and associated arguments.)

sourcei is a file specification for a MACRO-11 source file or MACRO
library file (These files contain the MACRO language pro-
grams to be assembled. You can specify as many as six
source files.)

The following command string calls for an assembly that uses one source file
plus the system MACRO library to produce an object file BINF.OBJ and a
listing. The listing goes directly to the line printer.

XDK3BINF . OBJyLF $=DK3ISRC,MAC

All output file specifications are optional. The system does not produce an
output file unless the command string contains a specification for that file.

The system determines the file type of an output file specification by its posi-
tion in the command string. Use commas in place of files you wish to omit.
For example, to omit the object file, you must begin the command string
with a comma. The following command produces a listing, including cross-
reference tables, but not binary object files.

P s a [Y t-h | L ad L \
¥,i.Fi/C= (source file specification)

You need not include a comma after the final output file specification in the
command string.

Macro-11 Program Assembly

Table 101 lists the default values for each file specification.

Table 10-1: Default File Specification Values

Default Default Defauit
File Device File Name File Type
Object DK: Must specify | .OBJ
Listing Same as for object Must specify | .LST
file
Cref DK: Must specify | .TMP
First source DK: Must specify | .MAC
Additional source | Same as for preceding | Must specify | MAC
source file
System MACRO | System device SY: SYSMAC .SML
Library
User MACRO DK: if first file, Must specify | .MAC
Library otherwise same as for

preceding source file

10.2 Terminating the MACRO-11 Assembler

If you have typed R MACRO and received the asterisk prompt but have not
yet entered the command string, you can terminate MACRO-11 control by
typing CTRL/C once. After you have completed the command string (thus
beginning an assembly) you can halt the assembly process at any time by
typing CTRL/C twice. This returns control to the system monitor, and a sys-
tem monitor dot prompt appears on the terminal.

To restart the assembly process, type R MACRO in response to the system
monitor prompt. You can also restart using the REENTER command in
most cases; however, the RT—11 system does not accept the REENTER com-
mand if the assembler is producing a cross-reference listing when you halt
the assembly.

10.3 Temporary Work File

Some assemblies need more symbol table space than available memory can
contain. When this occurs the system automatically creates a temporary
work file called WRK.TMP to provide extended symbol table space.

The default device for WRK.TMP is DK. To cause the system to assign a dif-
ferent device, enter the following command:

+ASSIGN dev? WF

The dev parameter is the physical name of a file-structured device. The sys-
tem assigns WRK.TMP to this device.

Macro-11 Program Assembly 10-3

10.4 File Specification Options

At assembly time you may need to override certain MACRO directives
appearing in the source programs. You may also need to direct MACRO-11
on the handling of certain files during assembly. You can satisfy these needs
by including special options in the MACRO-11 command string in addition
to the file specifications. Table 10-2 lists the options and describes the effect
of each.

The general format of the MACRO-11 command string is repeated below for
your convenience:

dev:obj,dev:list,dev:cref/s:arg = dev:sourcei,...,dev:sourcen/s:arg

Table 10-2: File Specification Options

Option | Usage

/L:arg |Listing control, overrides source program directive .LIST

/N:arg |Listing control, overrides source program directive .NLIST

/E:arg] Object file function enabling, overrides source program directive . ENABL
/D:arg | Object file function disabling, overrides source program directive .DSABL
M Indicates input file is MACRO library file

/C:arg | Control contents of cross-reference listing

/P:arg | Specifies whether input source file is to be assembled during pass 1 or pass 2

The /M and /P options affect only the particular source file specification to
which they are directly appended in the command string.

Other options are unaffected by their placement in the command string. The
/L option, for example, affects the listing file, regardless of where you place

it in the command string.

Asaialiiane v

The following subsections describe how to use the file specification options.

104 Macro-11 Program Assembly

10.4.1 Listing Control Options

Two options, /L:arg and /N:arg, pertain to listing control. By specifying
these options with a set of selected arguments (see Table 10-3) you can con-
trol the content and format of assembly listings. You can override at assem-
bly time the arguments of .LIST and .NLIST directives in the source
program.

Figure 10-1 shows an assembly listing of a small program. This listing
shows the more important listing features. It labels each feature with the

e e 2 AQOTT 4 AL AL
TMITIOTTIINIIE,G AN (11 }Il'ullllle'lL LINAL 116881 ~
INDCMIQNIC ALV AL algulllelll uiial uey

the argument SEQ, for instance, control
sequence numbers.

PR YU & SR [N B
S annearance on 1ne 1isStingo:
S appoalalllo O LIIC Listiilyg,

n
=

the appearance of the source line

Specifying the /N option with no argument causes the system to list only the
symbol table, the table of contents, and error messages.

Specifying the /L option with no arguments causes the system to ignore
.LIST and .NLIST directives that have no arguments.

The following example lists binary code throughout the assembly using the
132-column line printer format, and suppresses the symbol table listing.

XIsLF /L IMER/NISYM=FILE

Table 10-3: Arguments for /L and /N Options

Argument | Default | Listing Control

SEQ list Source line sequence number

LOC list Address location counter

BIN list Generated binary code

BEX list Binary extensions

SRC list Source code

COM list Comment

MD list Macro definitions, repeat range expansion

MC list Macro calls, repeat range expansion

ME no list Macro expansions

MEB no list Macro expansion binary code

CND list Unsatisfied conditionals, .IF and .ENDC statements

LD no list List control directives with no arguments

TOC list Table of Contents

TTM no list 132-column line printer format when not specified, terminal
mode when specified

SYM list Symbol table

Macro-11 Program Assembly 105

Sample Assembly Listing

Figure 10-1

’GZ._.w_:_ 031S3N034 1VHL ONIHL1S ANVINWOD 30 AdOD _||v

(S35¥d 7) SAM0M LoV

dinwldldtatstdreaniasotvudtiastan’

S319V¥d €9 d04 FTAVIIVAV RdOW3W DIwVYNXQ

10380 XdOWIW 'IVNIHEIA

S 103103130 SsYoUy3l

zoo 291000 95044
171 9gdope
Y eedoge ‘*sav
rranan = Z2HANS TA9 dAA0000 LMy1S 20¢ 40sd0p0 ¥3JdNe
rennne =NTILI® snnane =H0N9" srsaan = NGNS Z1a90e = 47 Z0e dovdooe dAMSNY
a1e¥l 06wiS
Tef 39Vd (S!FQAIAP olLeNM[=9 VB°NOA OMOVW *NIVW®
LHYLS anNa® 00000 44
MA4409 INTT I04NTE *ZL gy’ td3dang ¢seees 12
HYHOLS dAMSMY du) 4308 MyTa°® t1daAmSny 9vo0ed oL
WSE0. 1x3 _ mms_T.I.v 0SENOT Yrened
11=14 oL Nun1ads Lrxa* vvoe0t 61
HIMSHY NI FHOLS anvd HAMSNY ‘2 AW Tovovy L9018 ©roroe gl ,
cHdNs * 4 ASe AQ0008 L9LYO8 yEo0en n
*Hansg dadlo Ttyd AST4’ 2ddns 1%d vEoeof [V
135S X¥¥¥D AT 4Nl mMAN ¥ QiI9¢ 1dvLs s$Dq L9LEGI TEopod 93
1AENS Y Dd use E 200020 L9LYAD 9Zoped n
o0A0Yr 1TV AN0ANT S 14409 11D 9zZoede 41
TgNs doa rNa34na)SdaY = €93 td'Hda40g# AOW 050000 teLTIg Tlogec OV
ONYZ HLTM® ANTT 40 (N7 HVT4 48751 +(7W) aind 2Taset eloeeY £
ONTAYRY 43N = 40y ¢ s ang LLETAd S1000n 21 nv
J0944 INTT ¥ LI Sywm!d PLIRLE adnd Tieroe (Teoerl T100¢4 11
HA440A N1 FA0LS ANV +(2d) ‘o BACH Tl eloped ot
A4 OINT AVHD v aviy? NIALL® st ¢90000 000000 VOQEOw 6 av
(44933n4)Sday = 24¢ zddaddnge AOQW 31ldyisS «NSA030 ZOLLIB R000EN B
1248 v dnT4d0f 504d LJ3SD° poveed |
SANTINONHENS TyNHILY3 OML* ?HANS ‘1d4nS TveoTy’ rsssssa ePAe0v0 000fe8 o©0eBeR 9 ny
ER — 4 3
FNYN/D4 He P an %38 v
08IYA 8IS0 ¥ ANT4A0° AN 11¢) 0dovw’ t
LTX3® INIALL® T¥OR* 201 ¢
. 03%4 SNIT H0d 10915 21w 24T _ tie0ed) 1
NS oW
N Woo , [ve] o3s
—_~—
ous 1 39¥d LS1€0100 6L=NNT=9 28°NAA OHIVYN °NIVW®

[ws]

10-6 Macro-11 Program Assembly

10.4.2 Function Control Options

Two options, /E:arg and /D:arg, allow you to enable or disable functions at
assembly time, and thus influence the form and content of the binary object

file. These functions can override .ENABLE and .DSABL directives in the
source program.

Table 10—4 summarizes the acceptable /E and /D function arguments, their
normal default status, and the functions they control.

Table 104: Arguments for /E and /D Options

Argument Default Mode Function

ABS Disable Allows absolute binary output

AMA Disable Assembles all absolute addresses as relative addresses

CDR Disable Treats all source information beyond column 72 as
commentary

CRF Enabie Allows cross-reference listing. Disabling this function
inhibits CREF output if option /C is active

FPT Disable Truncates floating point values (instead of rounding)

GBL Disable Treats undefined symbols as globals

LC Disable Allows lower-case ASCII source input

LSB Disable Allows local symbol block

PNC Enable Allows binary output

REG Enable Allows mnemonic definitions of registers

For example, if you type the following commands the system assembles a
file while treating columns 73 through 80 of each source card as
commentary.

R FIF
*CARDS .MAC=CR: /A

*~C

R MACRO

xrLP=CARDS . MAC/E:CDR

Because MACRO-11 is a two-pass assembler, you cannot read the cards
directly from the card reader or other non-file-structured device. You must
use PIP (or the keyboard monitor COPY command) to transfer input to a
file-structured device before beginning the assembly.

Macro-11 Program Assembly 10-7

Use either the function control or listing control option and arguments at
assembly time to override corresponding listing or function control direc-
tives in the source program. For example, assume that the source program
contains the following sequence:

+NLIST MER

+ (MACRO references)
.LIST MER

In this example, you disable the listing of macro expansion binary code for
some portion of the code and subsequently resume MEB listing. However, if
vou indicate /L:MEB in the assembly command string, the system ignores

both the NLIST MEB and the .LIST MEB directives. This enables MEB list-
ing throughout the program.

10.4.3 Macro Library File Designation Option

The /M option is meaningful only if appended to a source file specification. It
designates its associated source file as a macro library.

If the command string does not include the standard system macro library
SYSMAC.SML, the system automatically includes it as the last source file
in the command string.

When the assembler encounters an .MCALL directive in the source code, it
searches macro libraries according to their order of appearance in the com-
mand string. When it locates a macro record whose name matches that
given in the MCALL, it assembles the macro as indicated by that definition.
Thus if two or more macro libraries contain definitions of the same macro
name, the macro library that appears leftmost in the command string takes
precedence.

Consider the following command string:
¥ (output file specification) =AL Ik, MAC/Ms BLIE.MAC/M»XIZ

Assume that each of the two macro libraries, ALIB and BLIB, contain a
macro called .BIG, but with different definitions. Then, if source file XIZ
contains a macro call MCALL .BIG, the system includes the definition of
.BIG in the program as it appears in the macro library ALIB.

Moreover, if macro library ALIB contains a definition of a macro called
.READ, that definition of .READ overrides the standard .READ macro defi-
nition in SYSMAC.SML.

10-8 Macro-11 Program Assembly

10.4.4 Cross-Reference (CREF) Table Generation Option

A cross-reference (CREF) table lists all or a subset of the symbols in a source
program, identifying the statements that define and use symbols.

10.4.4.1 Obtaining a Cross-Reference Table - To obtain a CREF table you
must include the /C:arg option in the command string. Usually you include
the /C:arg option with the assembly listing file specification. You can in fact
place it anywhere in the command string.

If the command string does not include a CREF file specification, the system
automatically generates a temporary file on device DK:. If you need to have
a device other than DK: contain the temporary CREF file, you must include
the dev:cref field in the command string.

If the listing device is magtape or cassette, load the handler for that device
before issuing the command string, using the monitor LOAD command
(described in Chapter 4).

A complete CREF listing contains the following six sections:

1. A crossreference of program symbols; that is, labels used in the program
and symbols defined by a direct assignment statement.

2. A cross reference of register equate symbols. These normally include the
symbols RO, R1, R2, R3, R4, R5, SP, and PC, unless the REG function
has been disabled through a .DSABL REG directive or the /D:REG
option. Also included are any other symbols that are defined in the pro-
gram by the construct:

symbol = % n
where 0=n=7 and n represents the register number.

A cross reference of MACRO symbols; that is, those symbols d

.MACRO and .MCALL directives.

W
]
[¢*]
=
=
a
(=9
(=
{<I

4. A cross reference of permanent symbols, that is, all operation mnemon-
ics and assembler directives.

5. A cross reference of program sections. These symbols include the names
you specify as operands of .CSECT or .PSECT directives. Also included
are the default program sections produced by the assembler, the blank
p-sect, and the absolute p-sect, . ABS.

6. A cross reference of errors. The system groups and lists all flagged errors
from the assembly by error type.

You can include any or all of these six sections on the cross-reference listing
by specifying the appropriate arguments with the /C option. These argu-
ments are listed and described in Table 10-5.

Macro-11 Program Assembly 10-9

10-10

Table 10-5: /C Option Arguments

Argument { CREF Section

User-defined symbols

Register symbols

MACRO symbolic names

Permanent symbols including instructions and directives

Control and program sections

Ha"WZ2 o ®n

Error code grouping

NOTE

Specifying /C with no arguments is equivalent to specifying
/C:S:M:E. That special case excepted, you must explicitly
request each CREF section by including its arguments. No
cross-reference file occurs if the /C option is not specified,
even if the command string includes a CREF file
specification.

10.4.4.2 Handling Cross-Reference Table Files — When you request a
cross-reference listing by means of the /C option, you cause the system to
generate a temporary file, DK:CREF.TMP.

If device DK: is write-locked or if it contains insufficient free space for the
temporary file, you can allocate another device for the file. To allocate
another device, specify a third output file in the command string; that is,
include a dev:cref specification. (You must still include the /C option to con-
trol the form and content of the listing. The dev:cref specification is ignored
if the /C option is not also present in the command string.)

The system then uses the dev:cref file instead of DK:CREF.TMP and deletes
it automatically after producing the CREF listing.

The following command string causes the system to use RK2:TEMP.TMP as
the temporary CREF file.

¥ LF 2 P RK2ITEMP . TMF=S0URCE/C

Another way to assign an alternate device for the CREF.TMP file is to enter
the following command prior to entering R MACRO:

+ASSIGN deviCF

This method is preferred if you intend to do several assemblies, because it
relieves you from having to include the dev:cref specification in each com-
mand string. If you enter the ASSIGN dev: CF command, and later include
a CREF specification in a command string, the specification in the command
string prevails for that assembly only.

Macro-11 Program Assembly

The system lists requested cross-reference tables following the MACRO
assembly listing. Each table begins on a new page. (Figure 10—2 combines
the tables to save space, however.)

The system prints symbols and also symbol values, control sections, and
error codes, if applicable, beginning at the left margin of the page. Refer-
ences to each symbol are listed on the same line, left-to-right across the
page. The system lists references in the form p-/; where p is the page in
which the symbol, control section, or error code appears, and [is the line
number on the page.

A number sign (#) next to a reference indicates a symbol definition. An
asterisk (¥) next to a reference indicates a destructive reference—that is, an
operation that alters the contents of the addressed location.

Macro-11 Program Assembly 10-11

Figure 10-2: Cross-Reference Table

JMAIN,

+GLOBA
«TTYIN
ANSWER
BUFFER
LF
START
SUBR{
SUBR2

MATN,

JEXTT
JITYIN
CALL

«MAIN,

+BLKB
oBLKwW
+CSECT
JEND
MACRO
JMCALL
B8Cs
BNE
CLRE
CMPR
EMT
JER
MOV
MOVE

JMAIN,

« A8,
PROG

MAIN,
RrOSS

e

(= 4

10-12 Macro-11 Program Assembly

MACPO VOA4.C¢ 6=JUNeT79 GB:A3857 PAGE Sei
CROSS REFERENCE TABLE (CREF Velegs)

16
te9
1e18%
{e8
il
184
1e6
16

12204

1e14
te11
1=16
1=15
1=17

1=21#
1222

MACRO V23,22 6«JUN=77 A#:¢3357 PAGE Fel

REFERENCE TABLE (C

foi5s
1e12
tels
1el4ds

1=17#

1e11

1=17%

RPEF VYai=0s%)

1-18
1=13#

NACRO V@3,2@ 6=JuNe?7 923923157 PAGE Ml
CROSS REFEREWNCE TABLE (CREF Vileps)

te2s
i=2%
te3s

1*19

1=19%

{=f7

MACRO VR4.27 6=JUNe79 pA1A3357 PAGE Pel
CROSS REFERENCE TABLE (CREF V@1e¢S)

1=21
1«22
17

1+22
13

1=2

i=i6
112
1+13
o114
1219
118
1+8

felg

118

MACRO V23,22 6«JUNe77 0P3P3:57 PAGE Cet
CROSS REFERENCE TABLE (CREF Voiewos)

d=d
ded
{e?

MACPO VA4.80 6=JUN=T9 YR3@3857 PRAGE Fel
REFERENCE TABLE (CREF Vaieps)

——
[
> o

1+9
1=9

112
1e12 115 1=11

it

10.4.5 Assembly Pass Option

The /P:arg option is meaningful only if appended to a source input file speci-
fication. You must specify either of two arguments with it: 1 or 2.

The specification /P:1 cails for assembly of the file during pass 1 only. Some
files consist entirely of code that is completely assembled at the end of pass
1. By specifying /P:1 for these files, you can cause MACRO-11 to skip proc-

essing of these files through pass 2. In some cases this procedure can save
considerable assembly time.

The specification /P:2 calls for assembly of the file during pass 2 only. (Note:
Situations where the /P:2 option can be meaningfully employed are
unusual.)

10.5 MACRO-11 8K Version

A subset version of MACRO-11, with file name MAC8K.SAYV, is available
for systems with 8K words of memory—that is, systems with insufficient
memory to support operation of the full MACRO-11 assembler.

The full assembler (MACRO) requires approximately 10K words of memory,
or must be operating on at least a 12K system using the single-job (SJ)
monitor.

The subset version (MAC8K) requires approximately 6K words of memory,
or must be operating on an 8K system using the baseline SJ monitor.

The subset version differs from the full assembler as follows:
1. All handlers must be resident (that is, loaded) before you call MAC8K.

2. The full assembler prints the input command string at the end of the

listing; the subset version does not.
3. The subset version does not recognize the following items:
a. The operation codes exclusive to PDP-11/45 and PDP-11/70
b. The Commercial Instruction Set (CIS)
c. The FLT2 and FLT4 floating point directives
4. The system device is the only file medium available under MAC8K.

5. The subset version does not support the cross-reference file and ignores
attempts to obtain such a listing.

6. Assembly times of the subset version are noticeably longer.

7. The subset version operates only under control of the baseline single-job
monitor (see the RT—11 Installation and System Generation Guide).

8. To get a program listing, specify a listing file name in the command line.
You can then obtain the listing by using the PRINT or TYPE command.

Macro-11 Program Assembly 10-13

10.6 MACRO-11 Error Codes

The MACRO-11 system prints diagnostic error codes as the first character
of a source line on which the assembler detects an error. This error code
identifies the type of error; for example, a code of M indicates a multiple defi-
nition of a label. Table 10-6 shows the error codes that might appear on an
assembly listing. For detailed information on error code interpretation and
debugging, see the PDP-11 MACRO-11 Language Reference Manual.

10-14

Table 10-6: MACRO-11 Error Codes

Error Code

Meaning

A

Addressing or relocation error. This message can be generated by any of the
following:

1. a conditional branch instruction target that is too far above or below the
current statement. Conditional branch targets must be within —128 to
—127 (decimal) words of the instruction.

2. astatement that makes an illegal change to the current location counter.
For example, a statement that forces the current location counter to
cross a .PSECT boundary can generate this message.

3. astatement that contains an invalid address expression. For example, an
absolute address expression that has a global symbol, relocatable value,
or complex relocatable value can generate this message. The directives
.BLKB, .BLKW, and .REPT must have an absolute value or an expres-
sion that reduces to an absolute value.

separate expressions in the statement that are not separated by commas.

5. a global definition error. If . ENABL GBL is set, MACRO-11 scans the
symbol table at the end of the first pass and marks any undefined sym-
bols as global references. If one of these symbols is subsequently defined
in the second pass, a general addressing error occurs.

6. a global assignment statement that contains a forward reference to
another symbol.

7. an expression that defines the value of the current location counter and
contains a forward reference.

8. anillegal argument for an assembler directive
9. an unmatched delimiter or illegal argument construction

Instruction or word data are being assembled at an odd address. The system
increments the location counter by 1, and continues.

A non-local label is defined more than once, specifically in an earlier
statement.

The .END assembler directive at the end of the source input is missing. The
system supplies a .END statement and completes the current assembly pass.

MACRO-11 has detected one or more illegal characters. A question mark (?)
replaces each illegal character on the assembly listing, and MACRO-11 con-
tinues after ignoring the character.

An input line is longer than 132 characters. In particular, this error occurs
when the expansion of a macro causes excessive substitution of real argu-
ments for dummy arguments.

{continued on next page)

Macro-11 Program Assembly

Table 10-6: MACRO-11 Error Codes (Cont.)

Error Code | Meaning

M A label is the same as an earlier label (multiple definition of a label). For
example, two labels whose first six characters are identical can generate this
error.

N A number is not in the current program radix. MACRO-11 processes this
number as a decimal value.

(0] Op-code error. Exceeding the permitted nesting level for conditional assem-
blies causes this error. Attempting to expand a macro that remains uniden-
tified after a .MCALL search can also generate this message.

P Phase error. The definition or value of a label differs from one assembler pass
to the next, or a local symbol occurs more than once in a local symbol block.

Q Questionable syntax. For example, missing arguments, too many arguments,
or an incomplete instruction scan can generate this error message.

R Register-type error. For example, if the source program attempts an invalid
reference to a register, the assembler can generate this error message.

T Tyuncation error. A number that generates more than 16 bits in a word, or an
expression in a .BYTE directive or trap instruction, can cause this error
message.

U Undefined symbol. The assembler assigns the undefined symbol a constant
zero value.

Z Incompatible instruction. This message is a warning that the instruction is

not defined for all PDP-11 hardware configurations.

Macro-11 Program Assembly 10-15

Chapter 11
Linker (LINK)

The linker (LINK) converts object modules to a format suitable for loading
and execution If you have no previous experience with the linker, see the

1 3 LI Y ol IR [.4
9 ¥ 7+ A T - 2
Introduction to RT-11 for an muruuucuory ievel gescriplicn ¢ tne inxing

process.

To make this chapter easy to use, the description that follows outlines the
organization of this chapter.

Section 11.1, Overview of the Linking Process, explains:

® some of the terms used exclusively in this chapter

e the functions of the linker

e how the linker structures your program to prepare it for execution
® the communication links between modules within your program

Section 11.2, Calling and Using the Linker, describes how to invoke the
linker from the system device and how to enter the command string. This
section also provides a summary of the options you can use in the command
string.

Section 11.3, Input and Output, lists and describes the files valid for input to
and output from the linker. This section also explains how to use library
files, and how the linker processes library files, which you create with the
librarian utility (see Chapter 12).

Section 11.4, Creating an Overlay Structure, describes how to design and
implement overlay structures for your programs. This section provides
detailed descriptions and illustrations of how overlaid programs work and
how they reside in memory. This section also explains how to create an over-
lay structure in extended memory.

Section 11.5, Options Description, lists and describes the options you can use
with the linker.

Section 11.6, Linker Prompts, lists and explains the prompts the linker
prints at the terminal after you enter a command line.

11.1 Overview of the Linker Process

A few of the terms used frequently within this chapter, along with their defi-
nitions, are listed below. Although the descriptions are brief, you can find
more information on these terms in the Introduction to RT-11 or the RT-11
Software Support Manual.

Linker (LINK) 11-1

11-2

program section

object module

load module

library file

library module

root segment

overlay segment

global symbol
low memory

extended memory

A named, contiguous unit of code (instructions or data)
that is considered an entity and that can be relocated
separately without destroying the logic of the program.
Also known as p-sect.

The primary output of an assembler or compiler, which
can be linked with other modules and loaded into mem-
ory as a runnable program. The object module is com-
posed of the relocatable machine language code, re-
location information, and the corresponding global sym-
bol table defining the use of the symbols within the pro-
gram. Also known as a module.

A program in a format ready for loading and executing.

A file containing one or more relocatable object modules
that are routines that can be incorporated into other
programs.

A module from a library file.

The segment of an overlay structure that, when loaded,
remains resident in memory during the execution of a
program. Also known as the root.

A section of code treated as a unit that can overlay code
already in memory and be overlaid by other overlay seg-
ments when called from the root segment or another
overlay segment. Also known as an overlay.

A global value or global label.
Physical memory from 0 to 28K words.
Physical memory above the 28K word boundary.

11.1.1 What the Linker Does

below.

Y I

S PN Adealan 24 O _ 1l _ O : 1° 1
he load modules, it perforis the functions listed

® Relocates your program module and assigns absolute addresses

® Links the modules by correlating global symbols that are defined in one
module and referenced in another

® Creates the initial control block for the linked program that the GET, R,
RUN, SRUN, and FRUN commands use

® Creates an overlay structure, if specified, and includes the necessary
run-time overlay handlers and tables

® Searches the library files you specify to locate unresolved global symbols

Linker (LINK)

® Produces a load map, if specified, that shows the layout of the load
module

® Produces a symbol table definition file, if specified

The linker requires two passes over the input modules. During the first pass
it constructs the symbol table, which includes all program section names
and global symbols in the input modules. Next, the linker scans the library
files to resolve undefined global symbols. It links only those modules that
are required to resolve undefined global symbols. During the second pass,

i PS
the linker reads in UUJU\.u uwuuico, periorms most of the functions listed

above, and produces the load module.

The linker runs in a minimal RT-11 system of 8K words of memory; any
additional memory is used to facilitate linking and to extend the size of the
symbol table. The linker accepts input from any random-access volume on
the system; there must be at least one random-access volume (disk, diskette,
DECtape, or DECtape II) for memory image or relocatable format output.

11.1.2 How the Linker Structures the Load Module

When the linker processes the assembled or compiled object modules, it cre-
ates a load module in which it has assigned all absolute addresses, has cre-
ated an absolute section, and has allocated memory for the program
sections.

11.1.2.1 Absolute Section — The absolute section is often called the
ASECT because the assembler directive .ASECT allows information to be
stored there. The absolute section appears in the load map with the name
. ABS., and is always the first section in the listing. The absolute section
typically ends at address 1000 (octal) and contains the following:

® asystem communication area
® hardware vectors
® user stack

The system communication area resides in locations 0-377, and contains
data the linker uses to pass program control parameters and a memory
usage bitmap. Section 11.3.3 provides a detailed description of each location
in the system communication area.

The stack is an area that a program can use for temporary storage and sub-
routine linkage. General register 6, the stack pointer (SP), references the
stack.

11.1.2.2 Program Sections — The program sections (p-sects) follow the
absolute section. The set of attributes associated with each p-sect controls
the allocation and placement of the section within the load module. The p-
sect, as the basic unit of memory for a program, has:

Linker (LINK) 11-3

114

® aname by which it can be referenced

® aset of attributes that define its contents, mode of access, allocation, and
placement in memory

® alength that determines how much storage is reserved for the p-sect

You create p-sects by using a COMMON statement in FORTRAN, or the
.PSECT (or .CSECT) directive in MACRO. You can use the .PSECT (or
.CSECT) directive to attach attributes to the section. Note that the attri-
butes that follow the p-sect name in the load map are not part of the name;
only the name itself distinguishes one p-sect from another. You should make
sure, then, that p-sects of the same name that you want to link together also
have the same attribute list. If the linker encounters p-sects with the same
name that have different attributes, it prints a warning message and uses
the attributes from the first time it encountered the p-sect.

Program Section Attributes

The linker collects from the input modules scattered references to a p-sect
and combines them in a single area of the load module. The attributes,
which are listed in Table 11-1, control the way the linker collects and places
this unit of storage.

Table 11-1: P-sect Attributes

Attribute |Value Explanation

access-code*] RW Read/Write — data can be read from, and written into, the p-
sect.
RO Read Only — data can be read from, but cannot be written
into, the p-sect.
type-code D Data — the p-sect contains data, concatenated by byte.
1 Instruction — the p-sect contains either instructions, or data

and instructions, concatenated by word.

2]
o
T
@
&
o
£u
&
)
5d
t-‘

Global — ihe p-sect name is recognized across segment bound-
aries. The linker allocates storage in the root for the p-sect
from references outside the defining overlay segment. If the p-
sect is referenced only in one segment, that p-sect has space
allocated in that segment only.

LCL Local — the p-sect name is recognized only within each indi-
vidual segment. The linker allocates storage for the p-sect
from references within the segment only.

reloc-code REL Relocatable — the base address of the p-sect is relocated rela-
tive to the virtual base address of the program.

ABS Absolute — the base address of the p-sect is not relocated. It is

aiways 0.
alloc-code CON Concatenate — all allocations to a given p-sect name are con-
catenated. The total allocation is the sum of the individual
allocations.
OVR Overlay — all allocations to a given p-sect name overlay each

other. The total allocation is the length of the longest individ-
ual allocation.

* Not supported

Linker (LINK)

The scope-code is meaningful only when you define an overlay structure for
the program. In an overlaid program, a global section is known throughout
the entire program. Object modules contribute to only one global section of
the same name. If two or more segments contribute to a global section, then

dhn Ll an allanatac +tha aha
ui€ 1iNKer audlares wiac 51uua1 section to the root oosuxcut of the program.

In contrast to global sections, local sections are only known within a particu-
lar program segment. Because of this, several local sections of the same
name can appear in different segments. Thus, several object modules con-
trlbutmg to a local section do so only within each segment. An example of a

M I -~ e ama ~ o~
global section is named COMMON in FORTRAN. An example o

tion is the default blank section for each macro routine.

The alloc-code determines the starting address and length of memory allo-
cated by modules that reference a common p-sect. If the alloc-code indicates
that such a p-sect is to be overlaid, the linker stores the allocations from
each module starting at the same location in memory. It determines the
total size from the length of the longest reference to the p-sect. Each mod-
ule’s allocation of memory to a location overwrites that of a previous mod-
ule. If the alioc-code indicates that a p-sect is to be concatenated, the linker
places the allocations from the modules one after the other in the load mod-
ule; it determines the total allocation from the sum of the lengths of the
contributions.

Any data (D) p-sect that contains references to word labels must start on a
word boundary. You can do this by using the .EVEN assembler directive at
the end of each module’s concatenated p-sect. (If you do not do this, the pro-
gram may fail to link, printing the message ?LINK-F-Word relocation
error.)

The allocation of memory for a p-sect always begins on a word boundary. If
the p-sect has the D (data) and CON (concatenate) attributes, all storage
that subsequent modules contribute is appended to the last byte of the pre-
vious allocation. This occurs whether or not that b byte is on a word baundary

For a p-sect with the I (instruction) and CON attributes, however, all stor-
age that subsequent modules contribute begins at the nearest following

word boundary.

The .CSECT directive of MACRO is converted internally by both MACRO
and the linker to an equivalent .PSECT with fixed attributes. An unnamed
CSECT (blank section) is the same as a blank PSECT with the attributes
RW, 1, LCL, REL, and CON.

A named CSECT is equivalent to a named PSECT with the attributes RW, I,
GBL, REL, and OVR. Table 11-2 shows these sections and their attributes.

Linker (LINK) 11-5

11-6

Table 11-2: Section Attributes

access- type- scope- reloc- alloc-
Section code code code code code
CSECT RW I LCL REL CON
CSECT name RW I GBL REL OVR
ASECT (. ABS)) RW I GBL ABS OVR
COMMON/name/ RW D GBL REL OVR
VSECT (. VIR.) RW D GBL REL CON

The names assigned to p-sects are not considered to be global symbols; you
cannot reference them as such. For example:

MOV ¥PNAME s RO

This statement, where PNAME is the name of a section, is invalid and gen-
erates the undefined global error message if no global symbol of PNAME
exists. A name can be the same for both a p-sect name and a global symbol.
The linker treats them separately.

Program Section Order

The linker determines the memory allocation of p-sects by the order of
occurrence of the p-sects in the input modules. Table 11-3 shows the order in
which p-sects appear for both overlaid and nonoverlaid files.

Table 11-3: P-sect Order

Nonoverlaid Overlaid
absolute (. ABS) absolute (. ABS)
blank overlay handler (§OHAND)
named (NAME) overlay table (JOTABL)
blank
named (NAME)

If there is more than one named section, the named sections appear in the
order in which they occur in the input files. For example, the FORTRAN
compiler arranges the p-sects in the main program module so that the USR
can swap over pure code in low memory rather than over data required by
the function making the USR call.

If the size of the blank p-sect is 0, it does not appear in the load map.

11.1.3 Global Symbols: Communication Links Between Modules

Global symbols provide the link, or communication, between object modules.
You create global symbols with the .GLOBL or ENABL GBL assembler
directive (or with double colon, ::, double equals sign, = =, or by = =:). If the
global symbol is defined in an object module (as a label using :: or by direct
assignment using = =), other object modules can reference it. If the global

Linker (LINK)

symbol is not defined in the object module, it is an external symbol and is
assumed to be defined in some other object module. If a global symbol is used
as a label in a routine, it is often called an entry point — that is, it is an
entry point to that subroutine.

As the linker reads the object modules it keeps track of all global symbol def-
initions and references. It then modifies the instructions and data that refer-
ence the global symbols. The linker always prints undefined globals on the
console terminal after pass 1. If you request a load map on the terminal,
they also appear at the end of the load map.

Table 114 shows how the linker resolves global references when it creates
the load module.

Table 114: Global Reference Resolution

Module Global Global
Name Definition Reference
IN1 B1 A
B2 L1
C1
XXX
IN2 A B2
B1
IN3 B1

In processing the first module, IN1, the linker finds definitions for B1 and
B2, and references to A, L1, C1, and XXX. Because no definition currently
exists for these references, the linker defers the resolution of these global
symbols. In processing the next module, IN2, the linker finds a definition for
A that resolves the previous reference, and a reference to B2 that can be

: diatal
immediately resolved.

When all the object modules have been processed, the linker has three unre-
solved global references remaining: L1, C1, and XXX. A search of the
default system library resolves XXX. The global symbols L1 and C1 remain
unresolved and are, therefore, listed as undefined global symbols.

The relocatable global symbol, B1, is defined twice and is listed on the termi-
nal as a global symbol with multiple definitions. The linker uses the first
definition of such a symbol. An absolute global symbol can be defined more
than once without being listed as having multiple definitions, as long as
each occurrence of the symbol has the same value.

11.2 Calling and Using the Linker

To call the linker from the system device, respond to the dot printed by the
keyboard monitor by typing:

R LINK =RET>

Linker (LINK) 11-7

11-8

The Command String Interpreter prints an asterisk at the left margin of the
console terminal when it is ready to accept a command line. If you enter only
a carriage return at this point, the linker prints its current version number.

Type two CTRL/Cs to halt the linker at any time (or a single CTRL/C to halt
the linker when it is waiting for console terminal input) and return control
to the monitor. To restart the linker, type R LINK or REENTER in response
to the monitor’s dot.

The first command string you enter in response to the linker’s prompt has
this syntax:

[bin-filespec],[map-filespecl,[stb-filespec] = obj-filespec[/option...][,...obj-filespecl/option...]]

where:

bin-filespec represents the device, file name, and file type to be
assigned to the linker’s output load module file

map-filespec represents the device, file name, and file type of the
load map output file

stb-filespec represents the device, file name, and file type of the
symbol definition file

obj-filespec represents an object module, a library file, or a symbol
table file, created in a previous link

/option is one of the options listed in Table 11-6

In each file specification above, the device should be a random-access device,
with these exceptions: the output device for the load map file can be any
RT-11 device, as can the output device for an .LDA file if you use the /L
option. If you do not specify a device, the linker uses default device DK:.
Note that the linker load map contains lower-case characters. Use the SET
LP LC command to enable lower-case printing if your printer has lower-case
characters.

If you do not specify an output file, the linker assumes that you do not want
the associated output. For exampie, if you do not specify the ioad moduie and
load map (by using a comma in place of each file specification) the linker
prints only error messages, if any occur.

Table 11-5 shows the default values for each specification.

Table 11-5: Linker Defaults

Device File Name | File Type
Load Module DK: none SAV, REL(/R), LDA(/L)
Map Output DK: or same nene MAP

as load

module

(continued on next page)

Linker (LINK)

i

Table 11-5: Linker Defaults (Cont.)

Device File Name | File Type
Symbol DK: or same none STB
Definition as previous
Output output device
Object Module DK: or same none OBJ

-as previous

object module

If you make a syntax error in a command string, the system prints an error
message. You can then retype the new command string following the aster-
isk. Similarly, If you specify a nonexistent file, a warning error occurs; con-
trol returns to the Command String Interpreter, an asterisk prints and you
can reenter the command string.

Table 11-6 lists the options associated with the linker. You must precede
the letter representing each option by the slash character. Options must
appear on the line indicated if you continue the input on more than one line,
but you can position them anywhere on the line. The column titled Com-
mand Line lists on which line in the command string the option can appear.
(Section 11.5 provides a more detailed explanation of each option.)

Table 11-6: Linker Options

Option | Command

Name | Line Section | Explanation

/A first 11.5.1 Lists global symbols in program sections in alphabe-
tical order.

/B:n first 11.5.2 Changes the bottom address of a program to n
(invalid with /H and /R).

/C any but last | 11.5.3 Continues input specification on another command
line. (You can also use /C /V with /O; do not use /C
with the // option.)

/E:n first 11.5.4 Extends a particular program section in the root to a
specific value.

/F first 11.5.5 Instructs the linker to use the default FORTRAN

library, FORLIB.OBJ; this option is provided only
for compatibility with previous versions of RT-11.

G first 11.5.6 Adjusts the size of the linker’s library directory buf-
fer to accommodate the largest multiple definition
library directory.

/H:n first 11.5.7 Specifies the top (highest) address to be used by the
relocatable code in the load module. Invalid with /B,
/R, /Y and /Q.

1 first 11.5.8 Extracts the global symbols you specify (and their
associated object modules) from the library and links
them into the load module.

(continued on next page)

Linker (LINK) 11-9

11-10

Table 11-6: Linker Options (Cont.)

Option
Name

Command
Line

Section

Explanation

/K:n

/M[:n]

/O:n

/P:n

7

/R[:n]

8

/T:n]

/Y:n

/Z:n

I

first

first

first

any, but first

first

first

first

first

first

first

first

first

first and last

1159

11.5.10

11.5.11

11.5.12

11.5.13

11.5.14

11.5.15

11.5.16

11.56.17

11.5.18

11.5.19

[y
[y
33
i
Ne)

11.5.20
11.5.21

11.5.22

11.5.23

11.5.3

Inserts the value you specify (the valid range for n is
from 1 to 28) into word 56 of block 0 of the image file;
this option is provided only for compatibility with the
RSTS operating system. Invalid with /R.

Produces a formatted binary output file (invalid for
overlaid programs and for foreground links).

Cause the linker to prompt you for a global symbol
that represents the stack address or that sets the
stack address to the value n. Do not use with /R.

Indicates that the program is an overlay structure; n
specifies the overlay region to which the module is
assigned. Invalid with /L.

Changes the default amount of space the linker uses
for a library routines list.

Lets you specify the base addresses of up to eight root
program sections. Invalid with /H or /R.

Produces output in relocatable format and can
indicate stack size for a foreground job. Invalid with
/B,/H, /K, and /L, /V.

Makes the maximum amount of space in memory
available for the linker’s symbol table. (Use this
option only when a particular link stream causes a
symbuol table overflow.)

Cause the linker to prompt you for a global symbol
that represents the transfer address or that sets the
transfer address to the value n.

Rounds up the root program section you specify so
that the size of the root segment is a whole number
multiple of the value you supply (n must be a power

af N
GC1 4y,

Enables special .SETTOP and .LIMIT features pro-
vided by the XM monitor. Invalid with /R and /L.

indicates ihai an exiended memory overiay segment
is to be mapped in virtual region n, and optionally in
partition m.

Directs the linker to produce a wide load map listing.

Does not output the bitmap if the code is placed over
the bitmap (location 360-377). This option is pro-
vided only for compatibility with the RSTS operating
system.

Starts a specific program section in the root on a par-
ticular address boundary. Invalid with /H.

Sets unused locations in the load module to the
value n.

Allows you to specify command string input on addi-
tional lines. Do not use this option with /C.

Linker (LINK)

-

11.3

Input and Output

Linker input and output is in the form of modules; the linker uses one or
more input modules to produce a single output (load) module. The linker
also accepts library modules and symbol table definition files as input, and
can produce a load map and/or symbol table definition file. The sections that
follow describe all valid forms of input to and output from the linker.

11.3.1 Input Object Modules

Object files, consisting of one or more object modules, are the input to the
linker. (Entering files that are not object modules may result in a fatal
error.) Object modules are created by language translators such as the FOR-
TRAN compiler and the MACRO-11 assembler. The module name item
declares the name of the object module (see Section 11.3.4).

The first six Radix—50 characters of the .TITLE assembler directive are used
as the name of the object module. These six characters must be Radix—50
characters (the linker ignores any characters beyond the sixth character).
The linker prints the first module name it encounters in the input file
stream (normally the main routine of the program) on the second line of the
map following TITLE:. The linker also uses the first identity label (issued by
the .IDENT directive) for the load map. It ignores additional module names.

The linker reads each object module twice. During the first pass it reads
each object module to construct a global symbol table and to assign absolute
values to the program section names and global symbols. The linker uses
the library files to resolve undefined globals. It places their associated object
modules in the root. On the second of its two passes, the linker reads the
object modules, links and relocates the modules, and outputs the load
module.

Symbol table definition files are special object files that can serve as input to
LINK anywhere other object files are allowed.

11.3.2 Input Library Modules

The RT-11 linker can automatically search libraries. Libraries consist of
library files, which are specially formatted files produced by the librarian
program (described in Chapter 12) that contain one or more object modules.
The object modules provide routines and functions to aid you in meeting spe-
cific programming needs. (For example, FORTRAN has a set of modules con-
taining all necessary computational functions — SQRT, SIN, COS, and so
on.) You can use the librarian to create and update libraries. Then you can
easily access routines that you use repeatedly or routines that different pro-
grams use. Selected modules from the appropriate library file are linked as
needed with your program to produce one load module. Libraries are further
described in Chapter 12.

Linker (LINK) 11-11

11-12

NOTE

Library files that you combine with the monitor COPY
command or with the PIP /U or /B option are invalid as
input to both the linker and the librarian.

You specify libraries in a command string in the same way as you specify
normal modules; you can include them anywhere in the command string. If
you are creating an overlay structure, specify libraries before you specify
the overlay structure. Do not specify libraries on the same line as overlay
segments. If a global symbol is undefined at the time the linker encounters
the library in the input stream, and if a module is included in the library
that contains that global definition, then the linker pulls that module from
the library and links it into the load image. Only the modules needed to
resolve references are pulled from the library; unreferenced modules are not
linked.

Modules in one library can call modules from another library; however, the
libraries must appear in the command string in the order in which they are
called. For example, assume module X in library ALIB calls Y from the
BLIB library. To correctly resolve all globals, the order of ALIB and BLIB
should appear in the command line as:

et s R ——

’ ™~
*Z=BrALIBrBLIB/)

" Module B is the root. It calls X from ALIB and brings X into the root. X in

turn calls Y, which is brought from BLIB into the root.

Library Module Processing

The linker selectively relocates and links object modules from specific user
libraries that were built by the librarian. Figure 11-1 diagrams this general
process. During pass 1 the linker processes the input files in the order in
which they appear in the input command line. If the linker encounters a
library file during pass 1, it takes note of the library in an internal save
status block, and then proceeds to the next file. The linker processes only
non-library files during the initial phase of pass 1. In the final phase of pass
1 the linker processes only library files. This is when it resolves the unde-
fined globals that were referenced by the non-library files.

The linker processes library files in the order in which they appear in the
input command line. The default system library (SY:SYSLIB.OBJ) is
always processed last.

The search method the linker uses allows modules to appear in any order in
the library. You can specify any number of libraries in a link and they can
be positioned anywhere, with the exception of forward references between
libraries, and they must come before the overlay structure. The default sys-
tem library, SY:SYSLIB.OBJ, is the last library file the linker searches to
resolve any remaining undefined globals.

Some languages, such as FORTRAN, have an Object Time System (OTS)
that the linker takes from a library and includes in the final module. The
most efficient way to accomplish this is to include these OTS routines (such

Linker (LINK)

as NHD, OTSCOM, and V2NS for FORTRAN) in SY:SYSLIB.OBJ. See the
RT-11 Installation and System Generation Guide for details on how to do

this.

Libraries are input to the linker the same way as other input files. Here is a

sample LINK command string:

¥TASKO1,LF$=MAIN»MEASUR

This causes program MAIN.OBJ to be read from DK: as the first input file.
Any undefined symbols generated by program MAIN.OBJ should be satis-
fied by the library file MEASUR.OBJ specified in the second input file. The
linker tries to satisfy any remaining undefined globals from the default
library, SY:SYSLIB.OBJ. The load module, TASK01.SAV, is stored on DK:
and a load map prints on the line printer.

Figure 11-1: Library Searches

I
THERE A FILE

IN THE COMMAND

EXIT PAS