RSX-11M/M-PLUS

Error Logging Manual
Order No. AA-L674B-TC

RSX-11M Version 4.1
RSX-11M-PLUS Version 2.1

digital equipment corporation - maynard, massachusetts

First Printing, January 1982
Revised, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1982, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS I1AS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP vT
DECSYSTEM-20 PDT IE
DECUS RSTS ﬂu@n n
DECwriter

ZK2344

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO) DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Soitware Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

CONTENTS

Page
PREFACE ix
SUMMARY OF TECHNICAL CHANGES xi
CHAPTER 1 INTRODUCTION
1.1 THE PURPOSE OF ERROR LOGGING . 4 « + o « o o o« o« 1-1
1.2 ERROR LOGGING OPERATION . & & & o o o o o o s & 1-1
1.2.1 Executive Routines . . + . v ¢« ¢« ¢« ¢ ¢ ¢« ¢« o « . 1-3
1.2.2 ERRLOG and ELTI . . & ¢ ¢ o o o o o s o o s o« o » 1-4
1.2.3 RPT & ¢ ¢ ¢ ¢ o o o o o o o o s o s o o o o« o o« 1=-4
1.2.4 CFL & « & ¢ o o o o o o o s o o s o o o o o« & o 1=5
1.3 ERROR LOGGING OPTIONS &+ ¢ « o e ¢ o o o o o« o o o« 1-6
1.3.1 Unexpected Traps or InterruptsS . « « « « o« « « « 1-6
1.3.2 Device ErIOrS « v & « &+ o o o o o o o o o« o o« o« 1-6
1.3.3 Interrupt TimMEOULS + ¢ & & ¢ o ¢ o ¢ o o« o« o « o 1-6
1.3.4 Memory ErrorsS . « o o o o o o o« o s o o« o o o « 1-6
CHAPTER 2 ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)
2.1 INSTALLING ERRLOG AND ELI . . 4 &4 o o ¢ o o o o o« 2-1
2.2 USING ERRLOG AND ELI 4 4 4 o o o o o o o o o o o o 2=2
2.3 ELI SWITCHES . ¢ ¢ ¢ ¢ & o o o o o s o o s o o o o« 2=2
2.3.1 Logging Switches . . . e o o o o o o o o o o o 2-4
2.3.2 ERROR Limiting Sw1tches e o o o s s e s o s s e« 2-6
2.3.2.1 The Limit Switch . . . ¢ ¢« ¢ ¢ ¢ ¢« ¢ ¢ ¢« &« « .« 2-6
2.3.2.2 The Hard Limit Switch ¢ . . . & & o & 2=7
2.3.2.3 The Reset Switch e e e e s e o e 2=7
2.3.2.4 The Soft Limit Switch ¢« . . . 2=7
2.3.3 File Naming Switches « « ¢« v + « + . . 2-8
2.3.3.1 The Log Switch ¢ ¢ ¢« ¢« ¢ ¢ ¢« &« « . 2-8
2.3.3.2 The Append Switch + ¢« ¢ ¢ ¢« « ¢« &« « o« 2-8
2.3.3.3 The Switch Switch . e o e s o o u e o o« » 2-8
2.3.3.4 The Backup Switch ¢« ¢« ¢« ¢« ¢ ¢« ¢« « . 2-9
2.3.4 Display Switch . « & & & ¢ ¢ 4 ¢ ¢ ¢ o o« o « « 2-10
2.4 ERRLOG AND ELI MESSAGES . ¢ v ¢ o o o o « o« « o 2-11
2.4.1 ELI Messages . . . + 2 2 2 2 2 2 2 = = = = = = 2-11
2.4.2 ERRLOG MeSSageS « v & &4 o o 2 o o o o« o o o« o« 2-12
CHAPTER 3 REPORT GENERATOR TASK (RPT)
3.1 INSTALLING AND RUNNING RPT e o o o o o & 3-1
3.2 USING RPT TO CREATE ERROR LOG REPORTS e o s s o 3-2
3.2.1 The RPT Command Line« o o . e o o o 3-2
3.2.2 Using Multiple Qualifiers in RPT Command Lines . 3-3
3.2.3 Using the Default RPT Command Line 3-4
3.3 RPT REPORT SWITCHES . . & ¢« ¢ ¢« ¢ ¢ o« o o« o« « o & 3-5
3.3.1 Packet Selection Switches « . . 3=7
3.3.1.1 The Date Switch + ¢« ¢« ¢« & v ¢ « & « 3-7

CONTENTS

3.3.1.2 The Device Switch . . ¢« ¢« ¢ ¢ ¢« ¢« ¢ o o« « « « 3-8
3.3.1.3 The Packet Switch + ¢ ¢« ¢« ¢ ¢« o « « o« 3-8
3.3.1.4 The Drive and Pack Serial Number Switch . . . 3-9
3.3.1.5 The Type Switch . . . e o o s+ s s s s o s o 379
3.3.1.6 The Volume Label Sw1tch e o s o o o s & o « 3-10
3.3.2 Report Format Switch . . . ¢« ¢« ¢« ¢ ¢ ¢ ¢« o « o 3-11
3.3.2.1 Brief RepPOrtS . & & ¢ ¢ & o o o o o o o o« « 3-11
3-302-2 FUll Reports '. 3_15
3.3.2.3 Register Reports . . . o« &+ ¢« o« « o « o « « o 3-18
3.3.2.4 NO REPOLL v« & &« o o o s o o o o o o o o o o 3-20
3.3.3 Summary Switch (RSX-11M-PLUS only) 3-20
3.3.3.1 The All Qualifier . .« ¢ ¢« ¢ ¢ o ¢ « « o o « 3-20
3.3.3.2 The Error Qualifier . . . ¢« « ¢« ¢ « « « « o« 3-20
3.3.3.3 The Geometry Qualifier « « « ¢« « « o 3-23
3.3.3.4 The History Qualifier . . . ¢ ¢« ¢« « « ¢« « « 3-25
3.3.3.5 The None Qualifier . .+ ¢ o o« ¢ ¢ o o o o o o 3-27
3.3.4 The Report Switch . . . & ¢ ¢ ¢ ¢ o o o « « o 3-27
3.3.4.1 Predefined Switch Strings . . + ¢« &« « « & o 3-27
3.3.4.2 User Defined Switch Strings« . « . 3-28
3.3.5 The Width Switch . . ¢« ¢« ¢ ¢« ¢ ¢ « o « o o « o 3-28
3.4 ERLCNF REPORT MESSAGES . &« ¢ « ¢ « o o o o « s« o« 3=-29
3.5 ERLRPT REPORT MESSAGES . + « « « « o s o o« o « o« 3-35

CHAPTER 4 ERROR LOG CONTROL FILE ARCHITECTURE

4,1 TERMS AND CONCEPTS . « ¢ o o o o s s o 5 s o o o o 4-1
4.2 CONTROL FILE MODULE ARCHITECTURE . . ¢« ¢ ¢ « « o « 4-2
4.2.1 RSX-11M and RSX-11M-PLUS Control File Modules . 4-3
4.,2.2 Program Control FlOoW . « « « « o o « o o « « » 4-10
4,2.3 Compilation Paths . & &« ¢ s ¢ o ¢ o o o o o« o 4-11
4.2.4 Modification and Recompilation « . 4-13
4.3 INTERNAL INTERFACES . « ¢ « « o o o o o o o o o« 4-13
4.3.1 Interaction Between Dispatcher and Device-Level

Modules . . « ¢« o« ¢ o o o & e e« o e o o o o 4-13
4.3.1.1 Interaction between DSP2M1 and ERM23 4-14
4.3.1.2 Interaction Between DSP2P1 and ERM23 4-15
4.4 DISPATCHING « &« « + o o o s o o o o o o « o « » 4-16
4.4.1 Event-Level Dispatching e« « o » o 4-16
4.4.2 Device-Level Dispatching ¢« . . . 4-18
4.4.3 CPU-level Dispatching . ¢« « ¢ ¢ ¢ ¢ o« « « « o 4-19
4.5 SUPPORT OF NON-DIGITAL DEVICES . . . + « « « « o 4-19
4.5.1 Error-logging of Unknown Devices 4-19
4.5.2 Providing Driver Support for a Non-DIGITAL

DEVICE o« o « ¢ ¢ o o o o o o o o o o o o o o o 4-19
4.5.2.1 SBMSET on RSX-11M . . ¢ &« &« o o o o« o o o o 4-20
4,5.2.2 $BMSET on RSX-11M-PLUS e o« o s s o o o o o 4-20
4.,5.2.3 $DVTMO and $DTOER on RSX-11M e o o o o o o 4-20
4.5.2.4 SDVTMO and $DTOER on RSX-11M-PLUS 4-21
4.5.2.5 $SDVERR and $DVCER on RSX-11M e o o o o o o 4-21
4.5.2.6 $DVERR and $DVCER on RSX-11M-PLUS 4-22
4.5,2.7 S$NSIER e e e e e s s e s e s e o o o o o o 4-22
4.5.2.8 SFNERL « ¢ ¢« « o o o o o o s o o o o o o o o 4-22
4,5.2.9 SLOGER ¢« « o o o o o s o o o o o o s o o o » 4-23
4.5.2.10 LOGTST « « o o o o o s o s o o o o « o o o o 4-23
4.5.2.11 SCRPKT e o o s o & o & o o o o 4-23
4.5.2.12 CALDEV on RSX—llM PLUS e e e e e o o o o . 4-24
4,5.2.13 SOUPKT o« o ¢ o o o o o s o s o o o o o o « «» 4-24
4.5-2014 $QBRMV * » s . . L]] ° 4—25
4.5.,3 Error~Logging Support for a Non-DIGITAL Device 4-25
4.5.3.1 How to Write a Device-Level Module 4-25
4,5.3.1.1 MODULE Statement . . « « & « o o « o « « o 4-26
4.5.3.1.2 PROCEDURE Statement . . . « ¢ ¢ « o o o o 4-26
4.,5.3.1.3 SUBPACKET Declaration . . « + « &« o« « o« . 4-26
4.5.3.1.4 Register Definitions . . . « ¢« « &« &+ « « . 4-27

iv

CONTENTS

Page

4,5.3.1.5 Declaration of Local Work Variables and
Tables o e s e s e e « o 4-29
4.5.3.1.6 Loading of the Intermodule Varlables e+« o 4-29
4.5.3.1.7 Determination of the Error Type 4-30
4.5.3.1.8 Coroutine Back to Caller ¢« & « « . 4-30

4.5.3.1.9 Perform the Bit-To-Text Translation and
Register Printing 4-30
4.5.3.1.10 Indicate Any Notes that are Required . . . 4-31
4.5.3.1.11 Exit themodule ¢ ¢ ¢ « o« . 4-31
4,5.3.2 How to Write a Notes Module 4-31
4.5.3.2.1 MODULE Statement ¢« ¢« ¢ &« ¢« « o 4-32
4.5.3.2,2 PROCEDURE Statement + ¢« ¢ « o« o« o 4-=32
4.5.3.2.3 Notes Heading . . o ¢ ¢« ¢ o ¢ ¢ « o o o« o 4-32
4.5.3.2.4 Selecting a Note for Printing 4-33
4.5.3.2.5 Handling an Unknown Note Number 4-33
4.5.3.2.6 Getting the Next Note 4-33
4.5.3.2.7 Exit the Module e o o o o 4-33
4.5.3.3 MASSBUS and Non-MASSBUS Cons1derat10ns e o o 4-33
4.5.3.4 Making the New Device-Level Module Known . . 4-34
4.6 CODE EXAMPLES o o o . e o o o o o 4-37
4.6.1 RM02/03 Device-Level Module ERM23 e o o o o o 4-37
4.6,.2 DSP2M1 Dispatcher Module for RSX-11M 4-50
4.6.3 DSP2P1 Dispatcher Module for RSX-11M-PLUS . . 4-57
4.6.4 RM02/03 Notes Module NRM23 . . . ¢« &« &« « o + . 4-67
4,6.5 Subpacket Definitions 4-69
4.6.5.1 Subpackets Declared by DISPATCH 4-69
4.6.5.2 Subpackets Declared by DSPIM1/DSP1P1 4-72
4.6.5.3 Subpackets Declared by DSP2M1/DSP2P1 4-73
4,6.5.4 Subpackets Declared by DSP3M1/DSP3P1 4-73
4.6.5.5 Subpackets Declared by DSP4M1/DSP4Pl 4-74
4.6.5.6 Subpackets Declared by DSP5M1/DSP5P1 4-74
4.6.5.7 Subpackets Declared by DSP6M1/DSP6P1 4-74
4.6.5.8 Subpackets Declared by DSP7M1/DSP7Pl 4-75

CHAPTER 5 CONTROL FILE LANGUAGE GUIDE
5.1 CONTROL FILE OVERVIEW . . ¢ 4 ¢ ¢ ¢ « o « o s & & 5-1
5.1.1 Report Generator General Processing . . e o o 5-1
5.1.2 The General Format of an Error Log Packet e o o 5-2
5.1.3 Control File Language . ¢ &+ + ¢ o« o « o« o o o o 5=2
5.1.4 General Format of Control File Modules e o o o+ 5-2
5.1.5 Files ® o o o o & o o o s s o s & 5=3
5.2 TYPES AND EXPRESSIONS e o o o o o e o o o o o o o 5-4
5.2.1 Data TYPES ¢ v ¢ v 4 o o o ¢ o o o o o o o o o o 5-4
5.2.1.1 LOGICAL TYPE® + ¢ ¢ ¢ o o o 2 o o « o« o o o« o o 5-4
5.2.1.2 STRING TYPE + ¢ o« « o « o o o o o o « o o o « 5-4
5.2.1.3 ASCII TYPE ¢ ¢ ¢ ¢ o 4 o o o o o o o o« o« o o o« 5=5
5.2.1.4 Numeric TYPeS .+ v ¢ ¢ ¢ v ¢« o« o o« « o « o & & 5-5
5.2.1.5 Field TYPES v & & o ¢ ¢ « o o o o o o o o o o 5=7
5.2.1.6 POINTER TYPE « + « o o ¢ o « o o o o o « o o o« 5=7
5.2.1.7 RSX TIME Type - « =« : « s : &+ & o« 5=7
5.2.1.8 VMS TIME TYPE ¢ ¢ ¢ o o o o o o o o o o o« o o« 5=7
5.2.2 Variables . v ¢ ¢ ¢ ¢ v 4 e 4 4 e 4 e e s s . . 5-8
5.2.3 Literals e o o o s s e s s o s s s s e e e+ e« o 59
5.2.4 EXPressions . . ¢ ¢ ¢ v 4 4 4 4 4 4 o 4 o o o & 5-9
5.2.4.1 String Operators « ¢ v v ¢ 4 ¢ o« + ¢ o o o « o 59
5.2.4.2 Logical Operators . . ¢« ¢ ¢« ¢« v « & o« « « « 5-10
5.2.4.3 Relational Operators . « « v « « &« o « o o o 5-11
5.2.,4.4 Numeric Operators . .« « « « o « o o« « o« &« o 5-13
5.2.5 Operator Precedence . . o+ o« « o« « o« « o o « « 5-15
5.3 FUNCTIONS . & & & o o o o & e o o o o o s o o 5-16
5.3.1 $CND Functions - Condltlonal Functions 5-17
5.3.2 $CNV Functions - Conversion Functions 5-17
5.3.2.1 %CNV Functions - Numeric Conversion Functions 5-17

CONTENTS

Functions .

3 $COD
4 $COM
5 $CTL
6 $LOK
7 $PKT
8
9
1
1

¢« o o o o o

$RPT
$STR
0 $TIM
1 $USR

CALL

CASE

G EGELRGEGEGEGES IR R R, RE NG EE R RE RGN N R R R R R RS R R

TABLES
.1

.2

'3

.4 FILE
.5

.6 FIND
.7

LISTS
1 LIST
2

oot aa

e o o o e o e & * o

Functions - Encoding Functions

Functions
Functions
Functions
Functions
Functions
Functions
Functions

Function - User I/0 Function
DECLARATIONS . .

sStatement

Statement

Table Structure
TABLE Statement

Statement

Statement

PUT Statement

Statement

-Computational Functions

4
4.1 Scope of Declarations
4.2 DECLARE Statement
4.3 PACKET Statement
4.4 SUBPACKET Statement .
4.5 Conditional Declaration
ACTION STATEMENTS
1 SET Statement
2 INCREMENT and DECREMENT Sta
3 WRITE Statement
4
5

WRITE_GROUP Statement
DECODE Statement
CONTROL STATEMENTS
MODULE Statement
LITERAL Statement

1

2

3

4 RETURN Statement

5 PROCEDURE Statement
6 IF-THEN-ELSE Statement
7

8

9

1

1

1

SELECT Statement
WHILE/UNTIL/DO Statemen
0 LEAVE Statement .
1 BEGIN-END Statement .
2 Lexical Conditionals .

DYNAMIC TABLE Statement

POINTER Statement

SEARCH Statement
SIGNALLING

1 Signalling . . .
2 ENABLE Statement .
3 SIGNAL Statement .
4 SIGNAL STOP Statement
5 .
6 .

MESSAGE Statement
CRASH Statement
PRINT FORMATTING
FORMAT keyword string

1

1.1 Control Directives .

1.2 Formatting Directives . .

1.3 Data-formatting Directives
USER INTERFACE HANDLING

.1 Overview of User Interface Handllng

.2 Command Mode .

.3 Option Mode .

ERLCFL REPORT MESSAGES . o« « « + &+ &

RPT Control
Lookahead Functions
Packet Information
Report Control .
String Handling
Time Handling . .

s L .
tat

(a2

o o @ o % o e o & o v o o [N e o o e o e o o

.

® o 6 & & 9 ° ¢ o o ¢ o & o ¢ s ¢ ¢ O o

. e .

[(]
e 6 0 & 6 o & o 0 o 0 o o T e o o o * s * 0
1]

@ e ® o ® o ® & % o ® ¢ ° e e e o * s ¢ o

(T o © a ¢ o o o o o o o2 o
e o ® o & s o o s & 0 o o

¢ o & o o o

S

e o ¢ o

o o o o ©® s o o @
e o ¢ o © ¢ ® & * o o
e o ® e * o & 2 v o o
® e ® 9 & o o 9 o o o o
* e & o o o & o o
® o 6 o ® & & o 0

. e o

.
« o * o o

.
. . L] . .
.
s s o e o

e o o o ¢ o
e o ® o © o
e o © o o o

* o @ o ® o ¢ s & ¢ ¢ o
¢ e ° o & s o o

. o o . . e . . .

vi

e © o ¢ 8 ® o ® o & g © g © o % & * o O s s g & s o o+ .

.

@ o o 8 o ® & ® o ¢ o o o

® e ® 9 ® @ © 9 ° s o o & o

e o ® o & & ® o ® o ° o

e o o o

e ®& 4 ¢ o 8 4 6 o & o o+ o

%CNV Functions - Miscellaneous Conversion

® e ® o © & ® o ° e ® o *

® o ® o % e ® ¢ ® 8 & ¢ & & & o * @ O o * o & o+ 2 * o

e © o ¢ o o o

e o ® o & o 8 o & o ® ¢ & ¢ O 9 * o & ¢ * o ¢ o

® o ® o ® ¢ & o % & 8 & O o ® e & o & o & ¢ 0 4 0 o 0 g O o ¢ o

* o 0 o * o & o °

Page

APPENDIX A

APPENDIX B

APPENDIX C

EXAMPLE

FIGURE

TABLE

APWWWWWWN
|
HHEAVDWN - -

U

WD DWW N
]
HNHWN NN

CONTENTS

TUNING THE ERROR LOGGING UNIVERSAL LIBRARY
DRIVE SERIAL NUMBERS

ERROR LOG PACKET FORMAT

EXAMPLES

Error Logging Status
Error Log Brief Report . . .
Error Log Full Report . . .
Error Log Register Report .
Error Summary Report
Geometry Summary Report . .
History Summary Report . . .
Sample Execution of TUNE.CMD
Error Log Packet Format . .

e o o a2 ® o o o o
e o o 2 o e 0 & o
o o ¢ 3 e o o o o
e o 2 o o & o »
e o 3 © o o o o
® e ® 3 ° & 0 ¢ o
& o 6 9 o o o o e
* 2 e o o o

FIGURES

Error Logging System . . . ¢ & & & o o & & &
Structure of Error-Logging Packet . .

Compilation Path for RSX-11M Control F11e Modules 4-1

® o o a3 o o & s o

Compilation Path for RSX-11M-PLUS Contrcl File

Modules e o o e & o 8 & o o o s+ e 6 & o @

TABLES

ELI Switches and Subswitches
Error Logging Devices . . . o o e
RPT File Specification Defaults o o
RPT Report Switches and Subswitches .
Error Logging Code/Subcode Combinations
Event Types, Codes, and Their Dispatcher
The DEVICE_INFO Table « . « . .
Modules in ERRLOG.ULB for RSX-11M
Modules in ERRLOG.ULB for RSX-11M-PLUS . . .
Significant Digits in Drive Serial Numbers .

.
.
.
.

* Xe o o o o
o]
e 0,0 o o o o

vii

¢ e o o o o

.

Page

2-10
3-13
3-16
3-19
3-22
3-24
3-26
. A-2
. C-l

. 1-2
. 4-3
1

4-12

PREFACE

This manual contains information about operatin the RSX-11M/M-PLUS
Error Logging System. It explains how the Error Logger collects
information on system events and errors and how the Report Generator
and Control File produce various kinds of reports on those events and
errors. It also includes information on the control file architecture
and on how to add wuser-written modules. The error logging system
allows you to monitor the reliability of the hardware on vyour system
and to set error limits and display messages on the console terminal
if the number of errors on a device exceeds those limits.

This manual assumes you are familiar with the following documents:

The RSX-11M/M-PLUS MCR Operations Manual

The RSX-11M/M-PLUS Utilities Manual

The RSX-11M-PLUS or RSX-11M System Generation and Installation
Guide

The RSX-11M and RSX-11M-PLUS Information Directory and Master Index
define the intended readership for each manual in the documentation
set and provide a synopsis of each manual's contents. When this
manual refers to other documents, consult the appropriate information
directory for information about the document.

INTENDED AUDIENCE

This manual is intended for Field Service personnel, system managers,
and others responsible for maintaining the integrity of hardware
devices connected to an RSX-11M or RSX-11M-PLUS system.

In addition to understanding the RSX-11M or RSX-11M-PLUS operating
system and the Error Logging System, you need a thorough knowledge of
the hardware devices that the Error Logging System is monitoring.
This manual does not attempt to describe or explain the hardware
information that appears in the Error Log Reports. For information
about a specific device, consult the hardware documentation for that
device.

STRUCTURE OF THIS DOCUMENT

Chapter 1 provides an overview of the purpose and function of the
Error Logging System. It describes some features and limitations of
the system and explains the operating system resources that error
logging requires.

Chapter 2 describes the procedures for operating the Error Logger and

explains the Error Log Interface commands to control logging and
limiting.

ix

Chapter 3 describes the procedures for operating the Report Generator
and describes the report formatting available.

Chapter 4 explains the control file modules in detail, including flow
of program control, interfaces between modules, and module
dispatching. A knowledgeable system programmer can use the
information presented to add user-written modules to the Error Logging
System. The chapter includes extensively annotated examples of
DIGITAL-supplied modules.

Chapter 5 describes the Control File Language, which is used to write
control-file modules.

Appendix A describes the indirect command file, TUNE.CMD, that you can
use to remove devices from the Error Logging ULB and make it smaller.

Appendix B describes the formats used for drive serial numbers on
DIGITAL devices.

Appendix C describes the formats for standard error log subpackets.

CONVENTIONS USED IN THIS DOCUMENT

Examples of Error Log Reports illustrate the operation of the Report
Generator. They do not attempt to explain the specific
hardware-related events that the reports describe.

Black ink in command line descriptions designates what the computer
displays at the terminal.

Red ink designates what the user enters at the terminal.

Square brackets [] enclose the optional parameters for an ELI, RPT, or
CFL command.

Uppercase characters in command lines or syntax descriptions indicate
required syntax for the command.

Lowercase characters indicate variable parameters that the user
selects.

Pink shading in text and exampies indicates featufes that appear only
on RSX-11M systems. .. o ' ‘ ' ,

SUMMARY OF TECHNICAL CHANGES

The Error Logging System will now allow the hard and soft error limits
to be reached independently. Previously, reaching one of the limits
would disable logging of either kind of error on that device,. Now,
reaching the soft 1limit will not affect the logging of hard errors,
nor will reaching the hard limit affect the logging of soft errors.

Device timeouts are now logged as hard errors if unrecoverable, and as
soft errors if recoverable.

When generating a report, RPT looks first for LX:[1l,6]ERRLOG.ULB. 1f
it fails to find that file, it looks for LB:[1l,6]ERRLOG.ULB.

The Executive ERROR module now resides in a directive common on
RSX-11M-PLUS systems and may reside in a directive common on RSX-11M
systems. Therefore, drivers that create data areas containing
information to be passed to the Executive ERROR module must not create
the data area in memory mapped by APRS.

There are no user interface changes except for a number of new error
messages.,

Two new chapters in this manual document the architecture of error log
control files and the Control file Language (CFL). These chapters
replace Appendix A in the previous version of this manual.
There have been a number of minor changes in CFL. Here is a 1list of
differences Dbetween CFL in RSX-11M V4.1 and RSX-11M-PLUS V2.1 and the
previous releases:

e DYNAMIC TABLE statement:

DYNAMIC TABLE is a synonym for FILE. You should use this new
statement in place of any FILE statement in new code.

e FILE statement:

The FILE statement will be removed from a future release.
Please convert your code to use DYNAMIC TABLE instead of FILE.

%CNVSxxx functions:

The field width parameter is now optional and interacts with
the optional fill character parameter to determine whether the
resulting string 1is printed as is or is left- or
right-justified. In the earlier version, the digits in the
string were always right-justified and blank-filled if no
fill _character was specified.

X1

SUMMARY OF TECHNICAL CHANGES

$LOKSLENGTH function:

This function always returns the length of the data in a
packet or subpacket. The length word for the packet or
subpacket is not considered part of the data and 1is not
counted in determining the length value returned.

$LOKSBYTE, %LOK$WORD, 3%LOKSLONGWORD functions:

The offset parameter is the offset within the data of the
packet/subpacket at which the byte, word, or longword begins.
The offset unit is always in bytes, with the <first byte of
data in the packet/subpacket being offset 0.

$STRSUPCASE function:

STRSUPCASE accepts an ASCII string as a parameter, and returns
the ASCII string with all lowercase ASCII characters converted
to uppercase.

WRITE and WRITE GROUP statements:

Because of overlay restrictions, the following operators and
functions cannot be used in expressions 1in WRITE or
WRITE GROUP statements:

single and double operand numeric operators
the MATCH operator
$CODSxxx functions
$CTLSxxx functions
$PKTSxxx functions
$RPTSxxx functions
$STRSxxx functions
$TIMS$Sxxx functions
%USRSxxx functions

xii

CHAPTER 1

INTRODUCTION

1.1 THE PURPOSE OF ERROR LOGGING

The RSX-11M/M-PLUS Error Logging System records information about
errors and events that occur on your system hardware, either for
immediate action or for later analysis and reporting. Error logging
handles mass storage device (disk and tape) errors, as well as memory
errors. Since error logging is a part of the RSX-11M/M-PLUS system,
it is most effective for hardware errors that allow the system to
continue functioning.

Error logging is not used to detect information about operating system
failures or about device problems that cause the system to fail.
However, it does provide information about what 1I/0 activities
occurred on a device at the time of an I/0 failure. 1If your system
includes the Crash Dump Analyzer (CDA), CDA can bprovide reports on
operating system failures.

You can use Error Log Reports to determine that a device 1is having
problems before the device actually fails and causes you to lose data.
For example, a report showing a pattern of recurring errors from

different blocks on a single disk head may indicate that the head
needs to be replaced.

1.2 ERROR LOGGING OPERATION
The complete Error Logging System is composed of four tasks.

e The Error Logger (ERRLOG)

e The Error Log Interface (ELI)

® The Report Generator (RPT)

e The Control File Language Compiler (CFL)
When the executive or a device driver detects an error, Executive
routines create an Error Log Packet in pool to describe the event.
(See Appendix C for a description of the Error Log packet.) ERRLOG
then writes the packet from pool into the Error Log File on disk,

usually within a few seconds of when the packet is created.

Figure 1-1 shows the interaction of the Error Logging System tasks
with routines in the Executive.

EXECUTIVE

ERROR LOG FILE

POOL

LPACKET-ﬂ I PACKET-ZJ

COMMAND PKT

ERRLOG

KET-1

LoG.€RR
PACKET-2
COMMAND PKT

/
—

ELI

L | COMMAND PKT

DRIVER

ERROR
module

.

ERRLOG.ULB

CFL CONTROL
COMPILER FILE
CONTROL

FILE
MODULE

Figure 1-1 Error Logging System

REPORT
GENERATOR

RPT

ERROR LOG
REPORT

ZK-495-81

NOILDONAOJLINI

INTRODUCTION

ERRLOG receives user commands from the Error Log Interface (ELI) to
control ERRLOG operation. These commands send error log packets
called command packets to the ERRLOG task.

The Report Generator (RPT) generates reports from the information in
the Error Log File.

RPT uses a library of modules written in the Control File Language
(CFL) to interpret data from the Error Log File and from user
commands. The CFL compiler is also part of the Error Logging System.
You can use CFL to recompile DIGITAL-supplied Control File Modules to
include patches to the modules supplied in the future. You can also
use CFL to create and compile Control File Modules for devices other
than those DIGITAL supplies. Chapter 4 explains the control file
module architecture and includes annotated DIGITAL control file
modules. Chapter 5 documents the Control File Language (CFL).

1.2.1 Executive Routines

Whenever the RSX-11M or RSX-11M-PLUS system 1is running and error
logging 1is active, routines in the Executive collect information from
device drivers and other tasks and write the information into error
log packets in system pool.

The Executive gathers information on the state of the registers when a
device error occurs, and includes information on system events, such
as device Mounts and Dismounts. You can also insert a text message
into the error log file using the MCR System Service Message command
(SSM). (See the RSX-11M/M-PLUS MCR Operations Manual).

I1f Error Logging is not active on the system, the device drivers still
detect each hardware error, but the Executive does not create Error
Log packets.

The Error Logging System makes a distinction between hard errors and
soft errors. Hard errors are those that cause an I/0 operation to be
aborted because the device driver cannot recover from the error. The
task that 1issued the 1I/0 request receives an error code indicating
that the operation failed. Soft errors are those from which the
device driver can recover. The task that issued the I/0 request does
not receive an error notification because the request eventually
succeeds.

The Error Logging System logs both hard and soft errors. Thus, you
can have a system functioning properly, with no errors reported to any
tasks in the system, with errors still being encountered and logged.
Thus error logging terminology sometimes refers to errors as events:
they do not always mean an actual failure.

When Error Logging is active, the Executive writes the data from a
single event into one Error Log Packet and assigns a sequence number,
unique to that event, to the packet. The Resource Monitoring Display
(RMD) shows the highest assigned sequence number as ERRSEQ, the total
number of errors since error logging operations began.

When ERRLOG writes the packet in a file, the packet gets a number that
describes 1its location 1in the file relative to other packets. RPT
uses this number to refer to the event in later operations. The
number does not change unless the organization of the file changes.
For example, if an earlier error log file is appended to the current
error log file, the packet numbers in the appended file will change.

INTRODUCTION

Thus, you can generate a brief format RPT report to determine the
packet numbers of the most significant errors on your system, and then
generate a full format report, by packet number, of only those errors.

The Executive includes a directive for error 1logging (SMSGS) that
sends Error Log Packets directly to the Error Logger. (See the
RSX-11M/M-PLUS Executive Reference Manual for an explanation of how to
use this directive.) User tasks can use SMSG$ to communicate with the
Error Logger.

1.2.2 ERRLOG and ELI

ERRLOG writes the Error Log Packets from pool to the Error Log File in
binary format. Only RPT can interpret and format data from the Error
Log File.

To issue a command to ERRLOG, type an ELI command to perform one of
the ERRLOG functions (logging, limiting, or file naming). ELI sends
an error log command packet to ERRLOG with instructions on the
function to ©be performed, and ERRLOG returns the results, if any, to
ELI.

The ERRLOG task allows you to specify two files to contain the error
log packets written to disk. ERRLOG uses the first file, the error
log file, unless an error is detected while ERRLOG writes to the file.
if an error 1is detected, ERRLOG switches to the second file, the
backup file. ELI commands allow you to establish or change the names
of the error log file and backup file.

The error logging system automatically limits the number of events it
logs on a given device. This error limit can be changed dynamically
by ELI commands while error 1logging 1is running. The system does
limiting in case the device starts to accumulate a large number of
errors. Without limiting in these cases, the error 1log file would
quickly become large and difficult to analyze. The limiting does not
throw away useful information, because usually when a large number of
events occurs on a device, most of them are the same and you can
generalize from a report on a small number of the events.

After a device reaches a particular error limit, logging of that type
of error on the device stops until you reset the error count to zero
or raise the error limit.

ERRLOG sends a message to the console terminal or to any terminal that
has allocated the device, explaining that the device reached the error
limit. Limiting does not affect operation of the device itself; it
only starts or stops error logging on the device.

1.2.3 RPT

RPT creates reports on the data in the Error Log File, based on
information in the Error Log Control File and commands supplied by the
user. Modules in the Error Log Control File tell RPT how to interpret
and print entries from the Error Log File for a specific operating
system.

When you are ready to generate an Error Log Report, you can run RPT to
select the information you want to include in the report. RPT can
generate reports in brief and full format on any collection of Error
Log Packets you select. For example, you can select reports on a

INTRODUCTION

specific device by device name, device type, volume 1label, pack
identification, or drive serial number. You can also select reports
of a specific error type or you can select a full report of all the
Error Log Packets in the Error Log File.

Error log reports can contain both context information and
device-supplied information.

Context information, which appears in full format reports, contains
operating system version information and some information about the
CPU model. Context information on the I/0 operation that encountered
the failure is recorded for device errors. This information is useful
to correlate events recorded in the error log file with other events
in the system. For example, hard I/0 errors often cause the task
issuing the I/0 request to exit with an error, since many tasks cannot
recover from I/0 errors. Information on the I/O operation is also
useful to determine the operation the device driver attempted at the
time of the failure.

In a full report, RPT also includes all device-supplied information,
including registers and any other information the device provides.
Each device supplies one or more machine words of information when an
error Ooccurs. RPT decodes each item of device information according
to the terminology used in the device maintenance manual. If
additional information is useful to understand the significance of a
decoded item, that information is listed in parentheses.

Decoded items that are abnormal are flagged with a "*" in reports.
These items may or may not represent error conditions, depending on
the state of the device. Interpret items flagged with a "*" as "look
at me first"™. RPT reports flag more than one item on most devices.

RPT reports also flag more than one item if a device encounters an
error or cannot perform an operation because of another error
condition. This condition occurs when an abnormal device status
condition causes an I/0 function to fail. The RPT report flags both
the I/0 function failure and the abnormal device status.

An error type definition in the RPT report then boils all the
device-supplied information down to a single item reflecting the most
probable error reported by the device.

1.2.4 CFL

The Error Logging System includes a Control File Language compiler
(CFL) used to recompile patched DIGITAL-written Control File Modules
or user-written modifications or additions to modules. Chapters 4 and
5 describe the operation of the CFL compiler and the DIGITAL-supplied
control file module for the RM02/RMO03.

INTRODUCTION

1.3 ERROR LOGGING OPTIONS
Routines in the Executive respond to four types of errors:
® Unexpected traps or interrupts
e Device errors
e Device timeouts
® Memory errors

All systems that include Error Logging support at system generation
i the first three types of errors.

‘However, support . for ' .logging memory - errors.

ransepérate‘system
.genieration option on RSX-11M. ; L

1.3.1 OUnexpected Traps or Interrupts

When your system includes Error Logging support, all wunused system
vectors are filled with pointers to routines in the Executive.
Therefore, routines in the Executive are called if a trap or interrupt
occurs to one of these wunused vectors. For example, a noisy
electrical environment or a static discharge may cause an unexpected
trap or interrupt to one of the unused vectors, or a valid interrupt
may be vectored to the wrong address. 1In these cases, the Executive
records this information.

1.3.2 Device Errors

Device errors are problems that a device encounters while carrying out
a software-requested operation. When a device error occurs and Error
Logging is active, the device driver «calls Executive routines to
record the contents of the device registers or other hardware-supplied
information. The registers indicate the state of the device and its
controller. The routines also record information found in the actual
1/0 request to the driver, such as the type of operation attempted.
This information aids you in the interpretation of the device error.

1.3.3 Interrupt Timeouts

Interrupt timeouts occur when the device that initiated an operation
fails to complete the operation within the length of time the driver
specified. Software timers that start when the transfer starts,
detect interrupt timeouts. The system records the same information
for timeouts that it records for device errors.

1.3.4 Memory Errors

Memory errors occur when the parity bit stored with the data during a
write operation does not match the parity calculated when the data is
read. Some types of main memory us parlt i

The

support

CHAPTER 2

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

This chapter describes how to use the Error Log Task (ERRLOG) and the
Error Log Interface (ELI). Chapter 1 provided a general overview of
how ERRLOG and ELI work, along with the Report Generator (RPT), to
form the complete Error Logging System.

ERRLOG gets event and status information from device drivers and the
executive in the form of Error Log Packets and writes the packets in
an Error Log File on disk. The executive also performs error limiting
to allow a maximum number of errors to be logged on each device before
logging stops.
ELI, the user interface to ERRLOG, includes switches to:

e Start or stop logging or limiting

® Change device error limits or error counts

e Establish or change log file or backup file names

e Display information about the error 1logging status of any
device or of the entire system

ERRLOG is the only part of the Error Logging System that must be
installed for error 1logging to occur. You can install ELI when you
issue commands to ERRLOG and install RPT when you create reports.

2.1 INSTALLING ERRLOG AND ELI

To install the ERRLOG task, enter the following MCR command from a
privileged terminal or as an entry in the system startup command file:

INS SERL

To install ELI, enter the following MCR command from a privileged
terminal or as an entry in the system startup command file:

INS SELI®D

If ELI is not installed, you can invoke it from a privileged terminal
using the following MCR command:

RUN S$SELI GED

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

2.2 USING ERRLOG AND ELI

To invoke ELI after it is installed, issue the following MCR command
from any terminal:

ELI @ED
ELI>

You can use the ELI /SH switch to display error 1logging information
from any terminal. However, you must use a privileged terminal to
execute any other ELI commands.

Enter each command on a separate line unless the command description
specifies otherwise.

The general format of an ELI command is:
[filespec]/switchl[...switchn]
filespec

A device mnemonic or the name of an error log file, backup file,
or file to append to the current error log file.

switches
Switches to set, change, or display ERRLOG operation. (You must
specify at least one switch on each ELI command line.)

If you want to use only the ERRLOG defaults and start logging, enter
the following ELI command:

/LOG

This command starts ERRLOG, using LB:[1,6]LOG.ERR as the default log
file and LB:[1,6]BACKUP.ERR as the default backup file. You must
specify the /LOG switch to use ERRLOG defaults.

The /LOG switch also starts error limiting to limit the number of hard
and soft errors ERRLOG records on each device before it stops logging
on that device. The default error limit, used when you begin limiting
with the /LOG switch, is five hard errors and eight soft errors for
each device. You can change these limits with the /HL or /SL switches
described 1in Section 2,.,3.2. However, you cannot use the switches to
change limits on the same command line as the /LOG switch.

2.3 ELI SWITCHES

This section describes the ELI switches and subswitches, divided into
four types:

e Logging switches

e Limiting switches

e File naming switches

e Display switch
Remember that these switches only control operation of the Error
Logger. Chapter 3 describes the RPT commands that generate actual

Error Log Reports. Chapter 5 describes the commands that control the
Control File Language Compiler.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELTI)

Table 2-1 summarizes the ELI switches in alphabetical order. ELI
syntax requires that you specify at least two characters of a switch
name and as many additional characters as it takes to make the switch
unique. However, the Logging and Limiting switches are called /LOG
and /LIM to make their names easier to remember.

Table 2-1
ELI Switches and Subswitches

Switch Subswitch Function
filespec/AP Appends the specified file to
(Append) the current Error Log File.

/DE Deletes the specified file
(Delete) after appending it to the
current Error Log File.
filespec/BA Sets the name for a backup file
(Backup) to the next highest version of
the file named.
device(s)/HL:n Set limits for hard (unre-
(Hard Error Limit) coverable) errors on a device.

You can use /SL, the Soft Error
Limits switch, on the same
command line.

/LIM Starts the use of error
(Limiting) limiting, using either default
limits or those set with ELI
switches. The /LOG switch

begins error limiting by
default.

/-LIM Stops the use of error limit-

/NOLIM ing.

(No Limiting)

[filespec] /LOG Begins error logger operation,

(Logging) turns on error limiting by
default, and, if you specify a
file name, overrides the

default name of the error log
file (LB:[1,6]LOG.ERR). If the
error log file already exists,
the /LOG switch uses the
existing file,

/-LIM Turns off error limiting while
the error logger is running.

/NV Creates a new version of the
(New Version) given file instead of using the
current version.

/-LOG Stops error logger operation
/NOLOG and turns off error limiting.
(No Logging)

(continued on next page)

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

Table 2-1 (Cont.)
ELI Switches and Subswitches

Switch Subswitch Function
device(s) /RE Resets the QIO and error counts
(Reset) on the specified devices to
zero. ’
device(s)/SH Displays error logging
(Show) information for the specified
devices. (If you do not

specify device names, /SH
displays 1information for all
error logging devices on the

system.)
device(s)/SL:n Sets limits for soft (recover-
(Soft Error Limit) able) errors on a device. (You

can use /HL, the Hard Error
Limit switch, on the same
command line.)

filespec/SW Copies current error log file
(Switch) to the specified file and
transfers logging to that file.

/DE Deletes the o0ld file after the
/SW switch performs the copy
operation.

/NV Creates a new version of the
specified file instead of
appending data to the current
version.

2.3.1 Logging Switches
[filespec] /LOG
/-LOG
/NOLOG

ELI Logging Switches start or stop 1logging on all error logging
devices in the system. (See Table 2-2)

Table 2-2 1lists the device modules included in the original
LB: [1,6]ERRLOG.ULB as distributed with the Error Logging System.
However, if you have deleted any device modules from this ULB, wusing
the indirect command file described in Appendix A, your system will
not include support for those devices. If you want error 1logging
support for the devices listed in Table 2-2, the Control File Module
listed with the device must be included in the ULB. See Appendix A
for information on how to include and delete modules from the ULB.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

Table 2-2
Error Logging Devices

Device Control File Module
ML11 EML11
RK03/RK05 ERKO5
RK06/RK07 ERK67
RLO1/RLO2 ERL12
RMO5 ERMOS
RMO2/RMO3 ERM23
RAS80/RAS81 MSCP80

MSCPAT
MSCPCE
MSCPEN
MSCPTO
DEVUDA
RAG0 MSCP60
MSCPAT
MSCPCE
MSCPEN
MSCPTO
DEVUDA
RC25/RD51/RX50 MSCPSD
MSCPAT
MSCPCE
MSCPEN
MSCPTO
DEVUDA
RM80 ERMS80
RPO7 ERPO7
RP02/RP0O3 ERP23
RP04 /RP05/RP0O6 ERP456
RS11 ERS11
RS03 /RS04 ERS34
RX01 ERXO1
RX02 ERX02
TAll ETAll
TC1l1 ETC1l1
TS11/TU80 ETS11
TUS8 ETUS8
TU77 ETU77
TUl6/TE16/TU4S ET1645
TU60 ETU60
TS03/TE10/TU10 ET0310
TSV05 ETSVO05

The /LOG switch begins error logging operation and optionally allows
you to specify a file in which the error logger writes the data it
collects. (See the file naming section below.) If you specify an
existing file, the /LOG switch appends new data to that file unless
you also specify the New Version switch (/NV) in the command line.

The /LOG switch also turns on error limiting, by default, unless you
specify the No Limiting (/-LIM) switch to override it.

The NOLOG (/-LOG) switch stops error logging and, by default, stops
error limiting.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

/LOG Subswitches:

You can use the following subswitches on a command line with the /LOG
switch:

/-LIM[IT]

The /-LIM subswitch turns off error limiting. This
subswitch overrides the default ERRLOG operation in which
/LOG automatically turns on error limiting.

/NV

The /NV subswitch causes the error logger to «create a new
version of the error log file (either the file you specify
in the command 1line or the default error log file
LB:[1,6]LOG.ERR). This subswitch overrides the default
operation in which the /LOG switch appends data to the
current version of the error log file.

2.3.2 ERROR Limiting Switches

The following switches control the error limiting operation of ERRLOG.
You can use them to start or stop error limiting or to change error
limits on specific devices. When a device reaches the user-specified
error limit or the default ecror limit, ERRLOG displays the foilowing
warning message on the console terminal or on any terminal that has
allocated or attached the device:

ERRLOG ~- **WARNING: Device dd: Exceeded (xxxx) Limit (n)

In the message, xxxx is the type of limit (hard or soft) and n is the
number to which the limit is set.

When the device reaches an error limit, error logging for that type of

error stops on the device until you reset the error and QIO counts to
0 or raise the error limit.

You can reset the error and QIO counts to =zero with the ELI /RE
switch. Mounting or dismounting the device or rebooting the system
also resets the error and QIQ counts to =zero. However, using the
/-LOG switch to stop logging does not reset the error and QIO counts.

Logging on a device stops only when the device reaches both of the
limits set for hard and soft errors. 1If, for example, the device
reaches its limits for hard errors but not for soft errors, it will
continue to 1log soft errors until the soft error limit is also
reached.

2,3.2,1 The Limit Switch

/LIM

/-LIM

/NOLIM
The /LIM switch starts or stops use of error limits. These limits are
set by default for all devices on the system when you enable error
logging or they are set for individual devices with the hard and soft

limit switches described below. The /LIM switch does not activate
error logging if it is not currently active on the system.

2-6

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

When vyou specify the /LOG switch to begin error 1logging, it
automatically starts error 1limiting on all error logging devices
unless you inhibit limiting with the /-LIM switch.

2.3.2.2 The Hard Limit Switch

devl:{,...devn]l:/HL:n

The /HL switch sets limits for the number of hard errors that error
logging records on the device specified. Hard errors occur on a
device when an I/0 operation fails and cannot be recovered by the
device driver. You can set hard error limits for more than one device
in the same command line, as long as the limits are the same. The
default hard error limit on each device is five.

The value n can be 0 to 255. If you set the 1limit to 255, logging
continues without stopping (the limit is infinite). 1If the limit is
set to 0, no errors will be logged.

Subswitch:

an use the following switch as a subswitch on a command iine with
i :

In this way, you can set both hard and soft error limits for
devices on the same command line.

2.3.2.3 The Reset Switch
devl:[,...devn:]/RE[SET]

The /RE switch resets the QIO count and error count for the specified
devices to zero. You can specify up to 14 devices in one command
line. You cannot reset QIO and error counts on all devices in the
system at once by specifying the /RE switch without specifying
devices.

When ERRLOG resets the counts to zero, it displays the following
message on the Console Terminal:

ERRLOG -~ Error and QIO counts reset for ddnn:

2.3.2.4 The Soft Limit Switch
devl:[,...devn:]/SL:n

The /SL switch sets limits for soft errors. Soft errors occur on a
device when an I/0 operation fails, but succeeds in a subsequent retry
attempt. You can set soft error limits for more than one device in
the same command line, as long as the limit is the same. The default
soft error limit for each device is eight.

The value n can be 0 to 255. If you set the 1limit to 255, 1logging
continues without stopping (the limit is infinite). If the limit is
set to 0, no errors will be logged.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

Subswitch:

You can use the following subswitch on a command 1line with the /SL
switch:

/HL

In this way, you can set both hard and soft error limits for
devices on the same command string.

2.3.3 File Naming Switches

The following sections describe switches that establish and change the
names of Error Log Files and Backup Files.

2.3.3.1 The Log Switch
[filespec] /LOG

The /LOG switch, which also initializes the error 1logger, sets the
name of the error log file that the error logger uses. If you specify
an existing error log file, the default operation is to append data to
the current version of that file. To override the default, specify
the /NV switch. The error logger then creates and writes data in a
new version of the file. This switch does not work when error logging
is already active on your system. The default error 1log file
specification is LB:{[1,6]LOG.ERR. The /LOG switch also specifies
LB: [1,6]BACKUP.ERR as the backup file. See Section 2.3.3.4 for more
information,

2.3.3.2 The Append Switch
filespec/AP[PEND]

The /AP switch appends the specified file to the end of the current
log file. Error logging must be active for this switch to work.

The default operation is to append the specified file to the current
error log file and to keep the appended file.

Subswitch:

You can use the following subswitch on the command line with the /AP
switch:

/DE [LETE]
The /DE subswitch causes the error logger to delete the

specified file after it copies the file to the end of the
current error log file,

2.3.3.3 The Switch Switch
[filespec] /SW[ITCH]

The /SW switch copies the current error 1log file to the file you
specify and begins logging in that file. The default operation

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

appends data to an existing version of the file and preserves the old
version of the error log file.

Subswitches:

<

[¢

)
3
o

o h t

w

can use the following subswitches on the command line wi he /SW
3=
tch

i

-

(e
Y]

w

/NV

The /NV subswitch creates a new version of the file you
specify. This subswitch overrides the default operation in
which the /SW switch appends data to the latest version of
the file.

/DE [LETE]

The /DE subswitch causes the error logger to delete the
current error 1log file after it copies the file to the new
file you specify.

2.3.3.4 The Backup Switch
filespec/BA [CKUP]

The /BA switch specifies the file to be used as a backup file if the
Error Logger cannot write to the current log file., By default, the
backup file is LB:[1l,6]BACKUP.ERR.

The backup file specification is kept, but no file is created until
needed. You may wish to have your backup file on a different device
from the current log file. By default, both files are on pseudo
device LB:.

When the Error Logger cannot write to the current log file, it creates
and opens the Dbackup file and writes to it. At that point, you no
longer have a backup file, and the Error Logger displays the following
message on the Console Terminal:

ERRLOG -- Log file error - logging continuing on backup file

After error logging switches to the backup file, there is no longer a
backup file available.

The error logger uses the specified backup file as the current error
log file. It does not rename the file to LOG.ERR, even though the
file is now the error log file.

At this point, you should specify a new backup file, wusing the /BA
switch. Otherwise, if error logging cannot write to the new log file,
it will not be able to continue by writing in a backup file.

If the error logger tries to switch logging to a nonexistent backup
file, it displays the following message:

ERRLOG -- Backup file error - logging discontinued
When that happens, logging stops and must be restarted.
If you create the backup file on a disk other than the disk containing

the error 1log £file, this ensures that logging will continue even if
the disk with the error log file develops problems.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

2.3.4 Display Switch

The /SH switch allows you to display information on the status of
error logging on the system.

[devl,...devn] /SH[OW]

/SH[OW]
The /SH switch allows you to display information on the status of
error logging on the system. The /SH switch displays Error Logging
information on the devices specified (up to 14). If the command does
not specify devices, the Error Logger displays information on all
error logging devices in the system. Example 2-1 illustrates the
output from the operation of the /SH switch:

Example 2-1 Error Logging Status
Error Logging Status 12-JAN-82 00:51:54
Logging: On Limiting: On
Log File: LB:[1,6]LOG.ERR File ID: DR3: 32,252

Backup File: LB:[1,6]BACKUP.ERR

Device Hard Error Soft Error Q10
Name Count/Limit Count/Limit Count
MMO: 0./5. 0./8. 23.
MM1: 0./5. 0./8. 9776.
MM2: 0./5. 0./8. 0.

MM3: 0./5. 0./8. 0.

DBO: 0./5. 0./8. 14144,
DB1l: 0./5. 0./8. 0.

DB2: 0./5. * 8./8. 46528.
DRO: 0./5. 0./8. 0.

DR1: 0./5. 0./8. 0.

DR2: 0./5. 0./8. 164234,
DR3: 0./5. 0./8. 625364.
DSO: 0./5. 0./8. 130.
DS1: 0./0. 0./0. 0. (Offline)
DKO: 0./5. 0./8. 1.

DK1: 0./5. 0./8. 0.

DMO: 0./5. 0./8. 0.

DM1: 0./5. 0./8. 0.

DLO: 0./5. 0./8. 0.

DL1: 0./5. 0./8. 0.

DTO: 0./5. 0./8. 0.

DT1: 0./5. 0./8. 0.

DT2: 0./5. 0./8. 0.

DT3: 0./5. 0./8. 0.

DYO0: 0./5. 0./8. 1.

DY1l: 0./5. 0./8. 1.

DDO: 0./5. 0./8. 0.

DD1l: 0./5. 0./8. 0.

2-10

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

If you specify device names in the /SH switch, the output is the same
as Example 2-1, except that the display only includes information on
the devices you specified.

The asterisk next to the soft error limit for DB2: indicates that
DB2: reached the soft error limit and logging of soft errors stopped.
Note that the logging of hard errors will continue on DB2: until the
hard error limit is reached.

The display continues to record additional QIOs on the device, even
after logging stops because the Executive maintains the QIO count.

Therefore, the ratio of errors to QIOs on the device does not
necessarily give you a statistical error percentage.

2.4 ERRLOG AND ELI MESSAGES

ERRLOG displays messages on the console terminal when errors occur
during an operation. In some cases, ERRLOG displays messages on any
terminal that has allocated or attached the device on which the error
occurs. ELI displays messages on the terminal that invoked it. This

section describes the messages, their causes, and possible user
response,

2.4.1 ELI Messages

ELI -- ERRLOG not installed

Explanation: ERRLOG is not installed on the system.
User Action: 1Install ERRLOG from a privileged terminal and issue
the ELI command again.

ELI -- Failed to communicate with ERRLOG

Explanation: ELI could not communicate with ERRLOG using the
Executive directive (SMSGS).

User Action: Fatal error. No user action is possible.

ELI -- File name must be specified

Explanation: You used a Backup, Append, or Switch switch without
specifying a file name.

User Action: Reenter the ELI command with an appropriate file
specification.

ELI -- Get Command Line error
Explanation: The Get Command Line procedure failed.

User Action: This may be a temporary condition. Retry the
operation.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

ELI -- Illegal switch combination
Explanation: You used an ELI switch in combination with
subswitches other than those allowed on a command string with
that switch. (See Table 3-1.)
User Action: Reenter the command string, specifying a 1legal
combination of switches on each string. Use a separate command
string for additional switches, if necessary.

ELI -- Maximum number of devices exceeded

Explanation: You attempted to reset QIO and error counts on more
than 14 devices in one command string.

User Action: Specify the /Reset Switch again, with 14 devices or
less.
ELI -- Switch requires device name (ddnn:) only

Explanation: You specified both a device name and UFD and/or
file name an ELI switch that only accepts a device name.

User Action: Reenter the command; omit the UFD and file name.

ELI -- Syntax error

Explanation: You used an illegal switch or file specification or
made some other syntactical error.

User Action: Reenter the command, using the proper command
string syntax.

2.4.2 ERRLOG Messages
ERRLOG -- Backup file error - logging discontinued

Explanation: ERRLOG encountered an error when it wrote in the
log file. It then tried to write in the backup file, but could
not. This error occurs if you fail to establish a new backup
file after ERRLOG switches logging to the backup file.

User Action: 1Issue an ELI /BA command to establish a new backup
file and restart logging.
ERRLOG -- Device not in system

Explanation: ERRLOG tried to use a device that 1is not in the
system configuration.

User Action: Check to be sure you specified the correct device
and reenter the command. If the device is correct, no user
action is possible.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

ERRLOG -- Error and QIO counts reset for ddnn:
Explanation: The error and QIO counts for a given device were
reset.
User Action: No user action 1is necessary. This is an

informational message.

ERRLOG -- Error Log packet too long

Explanation: ERRLOG encountered an Error Log Packet that was too
large. The error log packet was corrupt.

User Action: If the Error Logging System includes user-generated
error log packets, check the code to make sure none of the
packets are too long., Otherwise, submit an SPR.

ERRLOG -~ Failed to assign LUN

Explanation: ERRLOG tried to assign a Logical Unit Number to a
terminal to send a notification message and the assignment
failed. This occurs when a device exceeds the error 1limit set

for it and ERRLOG tries to notify the terminal or task that has
the device allocated or attached.

o

User Action: No user action 1is necessary. The limiting
operation succeeded. This informational message tells you ERRLOG
was unable to notify the allocating terminal.

ERRLOG -- File I/0 error

Explanation: ERRLOG tried to execute a Switch or Append command
and could not open the new file or copy the 0ld file to the new
one. When this error occurs, logging continues in the original
log file,

User Action: No action is required to continue 1logging. Retry
the Switch or Append command.

ERRLOG -- Log file error - logging continued on backup file

Explanation: An error occurred when ERRLOG tried to write in the
Error Log File. The logging operation transferred to write in
the backup file. The backup file becomes the 1log file, but
retains the given name.

User Action: Issue an ELI command to establish a new backup
file. Otherwise, if ERRLOG gets an error when it writes in the
new file (the previous backup file), it will not find a backup

£3 71 & L
L1l LU uUudDCT.,.

ERRLOG -- Logging already active

Explanation: ERRLOG received an ELI command to begin logging
when logging was running.

User Action: No user action is necessary to continue logging.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

ERRLOG -- Logging initialized

Explanation: When ELI starts ERRLOG operation, wusing the /LOG
switch, ERRLOG displays this message on the Console Terminal.

User Action: No user action 1is necessary. This is an
informational message.
ERRLOG ~-- Logging not active

Explanation: The ERRLOG task is not currently running on your
system.

User Action: 1Issue an ELI /LOG command from a privileged
terminal and retry the operation.
ERRLOG -- Logging stopped

Explanation: When ELI stops ERRLOG operation, wusing the /-LOG
switch, ERRLOG displays this message on the Console Terminal.

User Action: No wuser action 1is necessary. This is an
informational message.

ERRLOG —-- No data subpacket
Explanation: ERRLOG tried to use a corrupted data subpacket.
User Action: If the Error Logging System includes a user-written
control file module to generate error log packets, check the
code. Otherwise, submit an SPR.

ERRLOG -- No device subpacket
Explanation: ERRLOG tried to use a corrupted device subpacket.
User Action: If the Error Logging System includes a user-written
control file module to generate error log packets, check the
code. Otherwise, submit an SPR.

ERRLOG -- Privilege violation
Explanation: You tried to issue a privileged ELI command (to set
or change ERRLOG operations) from a nonprivileged terminal.
Nonprivileged users can only issue ELI Show commands.
User Action: Log on a privileged terminal and issue the
commands.

ERRLOG -- Task subpacket corrupted

Explanation: ERRLOG tried to use a corrupted task subpacket.

User Action: Submit an SPR.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

ERRLOG -- Unable to open file

Explanation: ERRLOG could not open the 1log file to begin
logging. ERRLOG then transfers 1logging to the backup file
immediately.

User Action: Issue an ELI command to establish a new backup
file.
ERRLOG -- Unknown command packet subtype

Explanation: ERRLOG encountered an unknown command packet
subtype.

User Action: If the Error Logging System includes a user-written
control file module to generate Error Log Packets, check the
code. Otherwise, submit an SPR.

ERRLOG -- **WARNING: Device ddnn: exceeded xx Limit (x)
Explanation: Device ddnn exceeded the error limit set with an
ELI Hard or Scft Limit switch or the default error limit of five

hard errors and eight soft errors.

User Action: Check to see if the number of errors indicates a
serious hardware malfunction. To continue logging on the device,
reset the QIO and error counts to zero with the /Reset switch or
change the limits using the /HL or /SL switch.

CHAPTER 3

REPORT GENERATOR TASK (RPT)

This chapter describes how to use the Report Generator Task (RPT) to
create Error Log Reports.

Chapter 1 provided an overview of the interaction of elements in the
Error Logging System (the Error Log Control File and the Control File
Language Compiler). The RPT switches described in this chapter use
modules from the Error Log Control File to determine how to interpret
and format information from the error log file. (See Chapter 2 for a
description of how the Error Logger creates the error log file.) RPT
and modules in the error log control file work together to interpret
the information in the error log file and define an event that occurs
on a device. They do not analyze the event itself or attempt to
diagnose hardware failures.

All RPT reports use the same entry number to refer the same Error Log
Packet, so you <can use RPT brief reports to isolate a device or
specific events occurring on that device, and then specify entry
numbers to generate a full report on only the specific events you want
to look at in more detail. Note, however, that some ELI commands may
change the packet number associated with an event. For. example,
appending a file to the error log file will change the packet numbers
in the appended file.

3.1 INSTALLING AND RUNNING RPT

Since RPT is a nonprivileged task, any user can use it to create Error
Log Reports when it is installed on the system. To install RPT, enter
the following MCR command from a privileged terminal or as an entry in
the system startup command file:

>INS SRPTEED

If RPT is not installed, you can invoke it from any terminal, using
the following MCR command:

>RUN SRPTRE)
RPT>

To invoke RPT when it is installed, issue the following MCR command
from any terminal:

>RPT FED
RPT>

REPORT GENERATOR TASK (RPT)

3.2 USING RPT TO CREATE ERROR LOG REPORTS

The Error Log Control file needs at least two types of information
from RPT switches to generate Error Log Reports:

e How to select which Error Log Packets to analyze

e How to format the Error Log Packets

Switches on the RPT command line provide this information, which Iis
independent of the file specification they accompany.

3.2.1 The RPT Command Line

The only element you must specify in an RPT command line is the equals
sign (=). All other file and switch specifications in the command
line are optional.

The general format of an RPT command line is
[reporttile/switches]]=[inputfilei/switches]]

reportfile
The name of the listing file that contains the Error Log Report.

Instead of a report file, you can specify TI: to send the report
to your terminal. On RSX-11M-PLUS systems with transparent
spooling you can specify LP: to send the report to the 1line
printer.

Optional switches to control how RPT selects, formats, and (on
RSX-11M-PLUS) summarizes information from the error log file.
You can use the same switches with either the report file
specification or the input file specification on the command
line. RPT uses the switches in the order you specify, but
ignores which file specification they accompany.

input file

The only input file you can specify in the command 1line 1is the
Error Log File, the disk file that the Error Logger creates.

RPT also uses a universal library of compiled control file modules as
input. RPT 1looks first for the file LX:[1,6]ERRLOG.ULB. If it does
not find it, RPT looks for the file LB:[1,6]ERRLOG.ULB. Use pseudo
device LX: 1if you wish to save space on LB:. RPT includes this file
by default and you cannot specify or change it from the command 1line,
so it is not part of the format described above,

RPT can, however, prompt for the name of a universal library. If vyou
want RPT to prompt you for the universal library name, you must edit
the RPTBLD.BLD file and make the value of USERCM non-zero, then relink

REPORT GENERATOR TASK (RPT)

RPT. If you do make this alteration, note that it has the additional
effect of preventing you from issuing an RPT command line from the MCR
level. That is, the following is the way to invoke RPT.

>RPT
CTL> (universal library filespec)
RPT> command line

The RPT input and output files described above assume the defaults
listed in Table 3-1, unless you specify otherwise in the command line.

Table 3-1
RPT File Specification Defaults
Universal
Report File Input File Library Filel

Device: SYO: LB: LX:, LB:
UIC: Current UIC [1,6] [1,6]
File Name: ERRREPORT LOG ERRLOG
File Type: .LST . ERR .ULB
Version: new latest latest

1. Not specified by user.

3.2.2 Using Multiple Qualifiers in RPT Command Lines

You can only specify each RPT switch once in a command line. However,
some switches provide an alternative syntax that allows you to specify
more than one argument for the switch.

To specify more than one argument for an RPT switch, use the following
command syntax:

/switch: (qualifierl,qualifier2...qualifiern)
The parentheses, which are a required part of the command syntax,
allow RPT to wuse more than one qualifier for the switch. If you do
not specify the parenthesis, RPT displays the following message on
your terminal and exits:

ERLCNF-F-SYNTAXERR command line syntax error

For example, to specify a report on more than one device, use the
following RPT switch:

/DE: (DB,DM2:,DR)

RPT generates a report on all the DB and DR devices in your system, as
well as device DM2:.

REPORT GENERATOR TASK (RPT)
The switches that permit you to specify multiple qualifiers in this
way are:
e The DEVICE switch
e The PACKET switch

e The SERIAL switch (one drive and one pack serial number)

e The TYPE switch

3.2.3 Using the Default RPT Command Line

To use the RPT default command line, enter the following command:
RPT>= EED

This command causes RPT to use the file specification defaults (listed

in Table 3.1) and switch defaults (listed below). 1In general, this

command creates a brief format report, without any summaries, wusing

all of the Error Log Packets in the error log file.

The RPT default command line invokes the following switches:

/F [ORMAT] :B {RIEF]

Creates a brief format report containing one line for each error
log packet described in the report. (See Section 3.3.2.)

/TI[YPE]:A[LL]
Creates a report on packets describing all types of events:
peripheral, processor, memory, control, and system information
packets. (See Section 3.3.1l.5.)
/DA[TE] :R{ANGE] :*:*
Creates a report on packets of all dates. (See Section 3.3.1l.1.,)
/DE [VICE] :ALL
Creates a report on all error logging devices in the system
/PA [CKET] :*:%

Creates a report for all packet numbers., (See Section 3.3.1.3.)

/W[IDTH] :W[IDE]

Creates a wide (132 column) report.

REPORT GENERATOR TASK (RPT)

3.3 RPT REPORT SWITCHES

This section

describes the RPT
requirement that they fulfill,

the following tasks:

® Select packets

e Format packets

switches,
These switches tell RPT how to perform

according to the RPT

e Summarize information from packets (on RSX-11M-PLUS only)

RPT syntax only requires that you

comman

The command line examples used throughout this chapter
command they describe. Any

or qualifier ¢
/T for the /TYPE switch,
switch to distinguish it

specify
make it unique.
but you must specify /SU for the
from the /SERIAL switch.

switches

enough characters in a
For example, you can specify
/SUMMARY

highlight the
not explained in the command

descriptions assume the default values described in Section 3.2.3.

Table 3-2 summarizes the RPT report switches in alphabetical order.

Table 3-2
RPT Report Switches and Subswitches

Switch Qualifiers Function
/DA:qualifier P [REVIOUS] :ndays Select packet based on date.
(Date) R[ANGE] :start:end

/DE:qualifier
(Device)

/F:qualifier
(Format)

/P:gqualifier
(Packet number)

T [ODAY]
Y [ESTERDAY]

device_name (,s)

ALL

B[RIEF]

F[ULL]

N [ONE]

R{EGISTER]

EXLILLED o LBENILE
nnnn.nnn [:mmmm,mmm]

Select packets based on device.

Describes how RPT formats the error
log packets.

Display format
(one

packets in brief
line for each packet).
Display all of the information in
the specified packet.

Does not display information on a
packet-by-packet basis.

Displays the same information as
the FULL qualifier, but shows only
the device registers on packets for
peripheral errors.

..............

(continued on next page)

REPORT GENERATOR TASK (RPT)

Table 3-2 (Cont.)
RPT Report Switches and Subswitches

Switch Qualifiers Function
/R:qualifier DAY Invokes a predefined string of
(Report) MONTH switches for RPT to use. The
SYSTEM qualifier can be one of four
WEEK DIGITAL-defined strings or a user-

user_string defined switch string.
/SE:qualifier D[RIVE] :number Selects packets based on drive
(Serial number) P [ACK] :number and/or pack serial number. The pack

serial number 1is supplied only on
MSCP and last-track devices.

/Traqualifier Selects packets Dbased on packet
(Type) type.
A[LL] Selects all packets in the Error Log
File.
C[ONTROL] Selects command packets from the

Error Log Interface (ELI).

E [RRORS] Selects packets from the processor,
memory, and peripherals.

M[EMORY] Selects packets from events that
occur in memory (such as memory
parity errors).

PE [RIPHERAL] Selects packets from all peripheral
devices that support Error Logging.
This qualifier does not display
system information (such as mounts
or dismounts).

(continued on next page)

REPORT GENERATOR TASK (RPT)

Table 3-2 (Cont.)
RPT Report Switches and Subswitches

Switch Qualifiers Function
/T:qualifier PR[OCESSOR] Selects packets from events that
(Type) (Cont.) occur in the CPU, such asunknown
interrupts.
S[YSTEM_INFO] Selects packets from events that

occur on the system but are not
specifically tied to a single piece
of hardware (such as time changes,
system service messages, mounts and
dismounts).

/V:volume_ label Selects packets based on volume
(Volume label) label.

/Wiqualifier N [ARROW] Selects the width of the report RPT
(Width) W[IDE] creates (80 or 132 columns). The

narrow width qualifier is ignored on
summary reports.

3.3.1 Packet Selection Switches

The following switches tell RPT how to select which Error Log Packets
to report on. This selection is based on an attribute of the device
or the packet or on the date and time that the packet was created.

3.3.1.1 The Date Switch

/DA[TE]:qualifier

QUALIFIERS:

P[REVIOUS] :n days

R[ANGE] :start date:end_date

T [ODAY]

Y [ESTERDAY]

DEFAULT:

/DA:R:* %
The /DATE switch allows you to select packets based on the date that
an event occurred. This switch includes qualifiers to specify a range

of dates or to specify a particular day. DIGITAL also supplies switch
strings to use with the /REPORT switch that use the /DATE switch to

ar a Nnraviniia wsanly Ay mAankl
VL O LUT PLTVIUVUDS WCTRA UL LHULILIL o

The RANGE qualifier accepts starting and ending dates in the standard
RSX format:

DD~-MMM-YY

(DD-MMM-YY HH:MM:SS)

REPORT GENERATOR TASK (RPT)

However, if you specify the second format, with time as well as date,
the parentheses are a required part of the syntax.

When you use the starting date and ending date format, the starting

date rounds off to a time of 00:00:00 and the ending date rounds off
to 23:59:59.

The asterisk (*) used at the beginning of a range specification
indicates any date through the specified ending date. For example,
*312-JAN-82 specifies all of the packets from the beginning of the
error log file through January 12, 1982.

The asterisk (*) used at the end of a range specification indicates
any date since the specified beginning date. For example, 4-FEB-82:*

specifies all of the packets from 00:00:00 on February 4, 1982 through
the end of the error log file.

3.3.1.2 The Device Switch
/DE[VICE] :qualifier
QUALIFIERS:

device_name(,s)
ALL

DEFAULT:
/DE:ALL

The /DEVICE switch allows you to select packets for a particular
device, for more than one device, or for all the devices on the
system. You can specify more than one device with the /DEVICE switch
by using the special syntax described in Section 3.2.2.

RPT uses the following conventions for device names with the /DEVICE

switch:
Mnemonic Meaning
dd Selects all devices with the mnemonic dd.
ddnn: Selects the device with the mnemonic dd and the unit

number nn.

For example, /DE:DM selects all DM devices, and /DE: (DM,DB2:) selects
all DM devices and device DB2:.

3.3.1.3 The Packet Switch

P [ACKET] :nnnn.nn [:mmm.mm]

DEFAULT: -

/P ¥
The /PACKET switch allows you to select a packet or range of packets
by specifying the packet identification numbers. You can determine

the packet numbers you want to see by examining a brief report of all
packets.

REPORT GENERATOR TASK (RPT)

To select just one packet you specify one packet number. For example,
/PA:123.4 selects only packet number 123.4, To select a range of
packets, you specify the first and last packet numbers of that range:
/PA:123.4:432.1 selects all the packets from packet 123.4 through
packet 432.1.

You can also specify more than one packet or packet range by using the
special syntax described in Section 3.2.2.

The asterisk (*) indicates an open-ended number. You can select all

the packets before a particular number (*:235.3), or all the packets
after a particular number (235.3:%).

3.3.1.4 The Drive and Pack Serial Number Switch
/SE[RIAL]:qualifier
QUALIFIERS:

D[RIVE] :serial number
P[ACK] :serial number

{DiRIVE]:serial_ number, P{ACK]:serialnumber)
(P[ACK] :serial number,D[RIVE]:serial number)
DEFAULT:

None

The /SERIAL switch allows you to select packets based on their drive
or pack serial number or both. This switch only applies to peripheral
errors. You can select packets from any device that has a serial
number by drive serial number, but you can only select packets from
MSCP and last track devices by pack serial number. Appendix B
explains where RPT gets drive serial numbers and lists the significant
digits in serial numbers for each error logging device.

You can specify one drive and one pack serial number or both in the
same command line by wusing the special syntax described in Section
3.2.2.

3.3.1.5 The Type Switch

/T[YPE]:[qualifier]
QUALIFIERS:

A[LL]

C [ONTROL]

E[RRORS]

M[EMORY]

PE [RIPHERAL]
PR[OCESSOR]
S[YSTEM_INFORMATION]

DEFAULT:

/T:A

REPORT GENERATOR TASK (RPT)

The /TYPE switch selects Error Log Packets based on their packet type.
You can select the following types of packets (or combination of
types) with the appropriate /TYPE switch qualifier:

Qualifier Packet Type
ALL All Error Log Packets in the Error Log
File.
CONTROL Error Log Command Packets sent by the

Error Log Interface (ELI).

ERRORS All Error Log Packets from peripherals,
processor, and memory.

MEMORY Error Log Packets from events that occur
in memory (such as memory parity errors).

PERIPHERAL Error Log Packets from all peripheral
devices that support Error Logging. This
qualifier does not display system

information (such as mounts and
dismounts) for the devices. That
information is displayed by the
SYSTEM_INFO qualifier.
PROCESSOR Error Log Packets from events that occur
in the CPU, such ag unknown interrupts,
SYSTEM_INFORMATION Error Log Packets from events that occur

on the system, but are not specifically
tied to a single piece of hardware (such
as time changes, system service messages
mounts, and dismounts).

You can specify more than one type of packet by using the special
syntax for the /TYPE switch, described in Section 3.2.2.

3.3.1.6 The Volume Label Switch

/V[OLUME] :volumelabel
DEFAULT:
None

The /VOLUME switch selects packets for peripheral errors based on the
volume label,

For example:
=/T:PE/V:ERRLOGSYS

This command line specifies that RPT find the device or devices
containing a volume with the label ERRLOGSYS and generate a report of
peripheral errors on those devices. Since the /TYPE switch
specification did not include system information, the report will not
include mounts or dismounts for the devices.

REPORT GENERATOR TASK (RPT)

3.3.2 Report Format Switch
/F[ORMAT] :qualifier
QUALIFIERS:

B[RIEF]
F[ULL]
R[EGISTER]
N [ONE]

DEFAULT:
/F:B

The /FORMAT switch tells RPT how to format a report from packets in
the error log file. You can select reports in brief format (one line
for each error), in full format (all the information from the error
log packets specified) or in register format (dumping only the
registers for device errors). The following sections describes
qualifiers to the /FORMAT switch.

3.3.2.1 Brief Reports
/F[ORMAT] :B[RIEF]

Brief reports are short, one-line per packet, reports on selected
packets.

The brief report shown in Example 3-1 displays one line of information
about each of the error log packets specified in the RPT command line,
The following list describes the sections in the brief report. The
numbers in the 1list reflect the numbers of the sections in Example
3-1. Note that all these examples show wide width reports.

@ The Error Log Packet Entry Number which describes the
relative position in the Error Log File. This number does
not change unless the file 1is changed, by an ELI/APPEND
command, for example. It is not changed by normal logging
into the file.

@ The date and time the packet was logged.

€© The type of entry in the error log file; for example, hard
or soft device errors or system information.

(, The device on which the error occurred.

@ The error type as defined by the hardware information. RPT
does not do any interpretation of these errors; it merely
reports the hardware information.

® Any other information error logging gathers on the error,

such as the 1I/0 function that occurred at the time of the
error.

REPORT GENERATOR TASK (RPT)

Thé“forﬂ'tfself”tr x S
e paeKEt L Eima ange sé}ect
;wcrgaFeéxlgﬁfffﬁifQ”’“ ,ﬁﬁﬁ%q¢xwg yww@ %N
T e;ft:; volume 1abel ”’“'Sel eCtmn . e
' kser fi(}sﬁgnbég

“‘Typeéfbf”éummarygrepqxtsﬁﬁéie“%” VQAWV¥”

i LR

B S “‘wgwmpg
ket ‘nur be - selections. =
el Rt ons. o
B M T i *zu,:f«,« e g i e
e e e 0 S e e B G G
W ,«!:, e «"’,w" S xt(‘,,«‘t,(,,rv«\ i ‘x,,«\; o e T j,:’«,,,xxn,;‘,‘j ‘If' ’~v*f‘,~r

et

. >,&. o
e

g m) iy

tL

B

i i
L

's,. .

d,m

e
e

et el
e

£€T-¢

®© © 86 600

,Ea«:h

Example 3~1 Error Log Brief Report

RS)(‘-illM/M-Plus Error Logging System Veet,sion vVO~1 o11---MA13.Rv-1983 08:27:50 Page
Entry Time Stamp Entry Type Device Error Type Additional Information
4.4 04-JAN~1983 09:51:00 Device Hard Error DL000: Cover Open Function = Read Data
5.1 04-JAN-1983 09:51:06 Device Hard Error DL000: Data CRC Error Function = Read Data
5.2 04-JAN-1983 09:51:07 Device Hard Error DL000: Data CRC Error Function = Read Data
10.3 14~JAN-1983 14:20:18 Device Soft Error DM001l: Data Check Function = Read Data
42,2 15-FEB-1983 14:02:23 Device Soft Error MS000: Uncorrectable Data Function = Write

Report: file:
Input file:. .1

- Report format :
- BRIEF

Pack:

Summary selection
© " No History
.- No Error. . -
2= 'No Geometry

(Ldy) MSVI YOLVYIANID ILy0ddy

P1-¢€

Example 3-1 (Cont.)

Error Log Brief Report

(LdY¥) MSVl YOLVHINID Ly0ddd

REPORT GENERATOR TASK (RPT)

3.3.2.2 Full Reports
/F[ORMAT] :F{ULL]

S

Full reports provide a detailed listing of device events. They 1
Brror Lo

and interpret all of the information <collected 1in the
Packets they describe.

.
0

v
L

The full report, shown in Example 3-2, displays the complete contents
of error log packet number 4.4, a Cover Open Error described in the
brief report 1in Example 3-1. The following 1list describes the
sections of the full report. The numbers on the list reflect the
numbered sections in Example 3-2.

@ The same identification information listed in items 1-5 of
the brief report description.

@® sSystem identification information including operating system
and base level, CPU type and address mapping type.

© Device identification information including the device name,
device type, volume label, controller, unit number, pack and
drive serial numbers, total I/0 count on the device, and the

@® 1/0 operation identification includes the terminal and UIC
that initiated the operation, the task name, the beginning
physical memory address of the I/0 buffer, the length of the
I1/0 request (in bytes), the maximum number of retries the
device driver allows for an I/O operation, the number of

tual I/0 cperaticn taking place.

e 3 2 A Rl

Akt~ 3
reécries remaining, ana the ac

I1/0 operation information includes the device 1I/0 function
and type of error as defined by the hardware.

The device error position information locates the error by
cylinder, group, head, sector, and logical block number.

The device-supplied information includes a dump of the device
registers according to name, contents, and interpretation of
the bits in the registers. The * beside some bit
interpretations means that the condition is likely to have
contributed to the error. It is a sign that you may want to
examine the condition.

The following RPT command line generated the full report in Example
3-2:

RPT>EXEMPF.RPT=RAISIN.LOG/PA:4.4/F:F (E]

3-15

9T~¢

Example 3~2 Error Log Full Report

R5X~11M/M~Plus Error Logging System Version V0-1 21-JAN-1982 06:54:13

(’ Entry 4.4 Sequence 1. DLO00: Device Hard Error (Cover Open)
System Identification:

® System Ident Processor Mapping CPU Format

RSX~11M~PLUS 10 PDP~11/70 22-Bit CPA 1.

Device Identification Information:

04~MAY-1981 09:51:00

©® Device Type Volume Label Controller Unit Subunit Pack SN Drive SN
DL000: RLO1 <null label> DL A 0 N/A N/A N/A

I/0 Operation Identification:

O rTI: UIC Task Name Address Length Maximum Retries Retries Remaining

TT000: [003,054] ...BAD 340000 10240. 8. 8.

+ [031,076] DROCFL
: [031,076] BRUT3

I/0 Count

292,

Operation

IO.RLB ! IQ.X

Hard Errors

0.

Page 1

Soft Errors

0.

(Ldy) MSVl HOLVYANAD ILyoddy

LT-€

Example 3~2 (Cont.)

I/0 Operation Information:

® Device Function Type of Error

Read Data Cover Open
Device Error Position Information:

© Cylinder Group Head Sector Block

173. N/A 0 13. 6926.

Device Supplied Information:

Error Log Full Report

= 01 (B)

= RLO1

©® Name Value Interpretation
RLCS 104335 *[15] Composite Error *[11] Data CRC Error
[9: 8] Drive Selected = 0 [7] Controller Ready
[6] Interrupt Enabled [5: 41 BAl7,BAlé
[3: 1] Function = Read Data [o] Drive Ready
RLBA 043000 [15: 0] Bus Address Register
RLDA 126716 [15: 7] Cylinder Address = 173. [6] Head Selected
[5: 0] Sector Address = 14,
RLMP1 133333 [12: 0] Word Count = 9685. words remaining
RLMP2 046074 *[14] Current Head Error *[11 1 Spin Speed Error
*[10] Write Gate Error [7] Drive Type
[6] Head Address = Upper head *[5] Cover Open
[4] Heads Out (over the disk) [3] Brushes Home
]

[2: 0] Drive State = Seek

Lower head

(Ldy) NSVI ¥OLVYIANID LH04IH

REPORT GENERATOR TASK (RPT)

3.3.2.3 Register Reports
/F[ORMAT] :R[EGISTER]

Register reports contain the same information as full reports for all
events except those that occur on peripherals. Register reports list
the contents of all device registers for peripherals, but contain no
other information.

The register report in Example 3-3 includes only the register section
of the full report for packet 4.4 (the Cover Open Error).

The following RPT command line generated the Register Report shown in
Example 3-3:

RPT>EXEMPN,RPT=RAISIN.LOG/F:R/PA:4.4 G{ED

61-€

Example 3-3 Error Log Register Report

RSX~-11M/M~Plus Error Logging System Version V0-1 22~JAN~1982 08:31:15

Entry 4.4 Sequence 1. DL000: Device Hard Error (Cover Open) 04-~MAY-1981 09:51:00

Device Supplied Information:

Name value Interpretation
RLCS 104335 *[15] Composite Error *[11] Data CRC Error
[9: 8] Drive Selected = 0 [7] Controller Ready
[6] Interrupt Enabled [5: 4] BAl7,BAlé6 = 01 (B)
[3: 1] Function = Read Data [o] Drive Ready
RLBA 043000 [15: 0] Bus Address Register
RLDA 126716 [15: 7] Cylinder Address = 173. [6] Head Selected = Lower head
[5: 0] Sector Address = 14,
RLMP1 133333 [12: 0] Word Count = 9685. words remaining
RLMP2 046074 *[14] Current Head Error *[11] Spin Speed Error
*[10] Write Gate Error [7] Drive Type = RLO1
[6] Head Address = Upper head *(5] Cover Open
[4] Heads Out (over the disk) [3] Brushes Home
]

Drive State = Seek

Page

(Ldy) NSVl HOLVYANID JLHOddH

REPORT GENERATOR TASK (RPT)

3.3.2.4 No Report
/F[ORMAT] :N[ONE]

RPT does not generate a formatted output report on event information.
This switch satisfies the requirement to tell RPT how to format the

packets by telling it not to for _packets or produce
acket-b acket report.

The /SUMMARY sthch, wh1ch 1s only avallable on: RSX 11M—PLU w«systems,
tells RPT how to summarize the information from packets in the error
log file. Since the summaries are compilations:of the data“ gathered-
from. the individual packets, -the /SUMMARY. switch ' tells RPT what
particular piece of information: from the packets to use as. the basis
for a 'summary report. : i

RPT cannot create summary reports in narrow Qidth”'\ 1f yoh‘ specify.
narrow width, with the /W:N command, RPT formats: the packet-by- packet
dlsplay in narrow. w1dth but formats the summary in wide width.

The fol owing ‘sections descrxbe the Summary - reports you canﬁ;genexété‘
with /SUMMARY quallflers. : L S

3 3. 3 1 'rhe All Quanfier

PT
REPORT GENERATOR TASK (RPT)

g

B
ummix, e
B e G e d "
: T B 3

nd generated. the @ rt in

e e

e c,
e
it

he fﬁfa;@kowmg

i

Ay w,,

M@

i g
; ¢ L i www
s i
X e s‘ i i

i B
i TG
e G mm.,,,g,,,,f x,“
., s e
u» 7 s el S w«, i
S T e R R St
Eass : i s S e g
s R i Vo X ,m,m wmw-«u S ««w] (;(,mhm..“»w;vxﬁ &\m(»«mx‘s&r mw,h
e ;"‘«'»w,mu N*«g AL m,w,m (,m\., i T e mm, el L , i 1,,,,“ S e S oL
S i G L ; e (e op a
o B e e i e i S SR Gt r er‘ S AL
N T et ORRPT LT e SRR L e a,., ST e
e s '_g, ol 0 B [m,» T i y«x'~,>w,m< s t’“““"""{“’d’i $p o P sl e s, w»r«u
S > xx SR P m, AR R frome g ,,,(1)0,, Tl s ek o i S s
R e o "xx‘-m;,u i ’; Tl 7(”‘”;““ [f e e X,,x b Tx e o £ =5 T 2o etk g
'RMAT : NONE . | i e 1S examples.. . ..
mg.«w»,mw “;*«w,w, Uy x»«wy: B y ,?I'n‘ NQ N L l‘,«m RO b e’,_ prelequ T e
2 W o Dl ‘ i a i N i o rpe vl R R
Hen vou specify « shown .in the
: ﬁii’;’ PE x< Si s,,mag : v .
m, mmxmwm ,\ 3 ﬁ a AT
«» g i if e,
i kerrr—;’ Y‘ P, >

3-21

(44

Example 3-4 Error Sumnary

(LdYd) MSVI HOLVYINID LH0dIH

REPORT GENERATOR TASK (RPT)

»mW«:‘;y»« S S ,;;»,»,mm,v,;n ,;;II}:;’“W g ;‘",, ,.w ««w«ww ‘“”Sx»»'im,I»“;:\':‘“ w s,yt;(;ig;w‘gww’ ‘,:*Lz;;.s,ugztt,;‘;‘;;;;.,,,h,m« “:,,1
8@, e w”“ R «mxsm,n i ,;m P “ “‘v'mv ..,.s»««v g x,m«uh«i?«'xMM«,xVW’V’!“?‘!;M, a ‘xm, i & M /‘"“’ s GO BT e W *;

WM, W,u,“w it e ,,“,»w,.,w, 7 P B ; el 3 s,wf,;:f) : ;; e
ey o SN S o B e R o S e RN N o ‘ e e
‘II,»,,,,,, e e L s e e e e L ..’“‘f(ot ke **,~"‘”ﬂ’“‘w‘ e g '2 ’
e ; St CAE R e B ,,,,(~, o ,“ S i o i e e F W,(, i faing
. /SU[MMARY]:G[EO TRY) v SR AR TR e s
xww““" . sc & e ‘;«' R e i ~ eior e e A ; bt ot Cei, »;‘,Mmm e e
X i b ‘“’uvh N A «,«” Gl P e % £ ; e ""x“mn Se e
B e T R e : 4 ,“(i,,,i,m e Gy Rt 2 SRS T sl o
e S i s MRS i e A eV S e Gk g R m,m“x S SE G,
wv’" I,;“’“ e T, m“,"w et o S PRI Ko ik M i ol ,»,»,,,,« W e b cuw;u e g*),g;'y;m«, o, Tl b

f«m&q@&*‘@maaoc

‘RPT genet f“ﬁ‘ﬁﬁf‘ff,‘,,EZ;»,,3~” a summary r .,ﬁl'ﬁfff 't bas eé‘on,dv ce
£

e AR e i « ’ R g FRNE T v s T st et
or sector, for example). ' The Error Count column Of the summary tells

gﬁ&ﬁi””nﬁﬁtﬁmeam n ror”qééurred“mnuthatwéev &%“£“M”“iﬁﬁ”““”“*“““WM”W”

e
TR o 5T m 3 G o

% 2
G, o e A g 0 0 g

=y
T i, i s o bt e el e T e S S S e e
ﬂ«W<n,«*;wWMMw@:rwwwwmmwhmquw~' § A o R T S C e
o it e e g I i o i 3 % PR A i N i 3 Jos
i o G P gt Rty vt i .,,...m o : e b VR R o g, i ey
sl g S e ;; s , e ~‘~ e e :s, “I“‘} e et ’; e
B i v , e R L R S s 3 m , . g A et g it R i o S s
e f 1owing RDPT i i mth eport in E am lé 3 smmeMWWWW
following ‘RPT. comu @ dgeneratea:: e re ,g toing x MPLe 3=08 . i
‘ m W i st S By i ol e ey i " i g i B IR B «> T e S i s e o s G (s
e N Sl S s v i s 5 5 h ARG ot o GO 0, el
T i, sm,wy;.m g i e ’W'“‘Hm'xmmm.«»« " o ey v <, M:r.“x.“. g0 Al g il w*«ww» i
it e 1“:>' b5 st i et e :‘:,::: ’2,"“*” (:L;,' Pricce TV W et ‘xilf.l 2N el e o e Lt D 0 e
o e RP ,ERB KR e G_/ U G N o . Sy b g o ; s
w7 m’w iy s i <> o ¥ y x; o x R " «m««m,,mm, R m«rum”mw e i m i et i g . Y
i mms wxv‘!x it RN e R i i 4 it ol * Hme? s o i b 3 i 5 mm,;, Bl g“ oty

v¢-¢

ple 3-5 Geometry Summ

(Ld¥) MSVI HOLVHINID LyodId

REPORT GENERATOR TASK (RPT)

9¢-¢

(Ldy) JSVI HOILWHMIANAD Ly0oday

REPORT GENERATOR TASK (RPT)

/RIEPORT]:defined report string
DEFAULT:
None

The /REPORT switch invokes a predefined string of switches for RPT to
use. This switch string usually defines a particular type of report,
such as a report for a particular time period. The string contains
any legal combination of RPT switches. The string cannot include the
/REPORT switch,

The /REPORT switch allows you to access a file that contains the
switch combinations you use frequently and lets you invoke the
switches, using the string name, instead of reentering the switches
explicitly.

RPT uses the normal default values described in Section 3.2.1 for all
switches not defined in the switch string if the switches have
defaults.

The DIGITAL and user—defined switch strings are found in the Control
File Module, PARSEM, or 1in a disk file, LB:[1,6]ERRDEFINE.CFS,
respectively. The /REPORT switch first searches PARSEM, where it
finds DIGITAL-defined strings. If the string is not defined there,
RPT searches ERRDEFINE.CFS.

Since RPT looks in the Control File Module first, you cannot redefine
the DIGITAL~supplied strings unless you alter the control file module.
DIGITAL does not recommend that you alter control file modules. You
can change the definitions for DIGITAL-supplied strings by slightly
altering their names and inserting the switch under the new name in
ERRDEFINE.CFS.

3.3.4.1 Predefined Switch Strings

DIGITAL supplies four predefined switch strings to use with the
/REPORT switch.

3-27

REPORT GENERATOR TASK (RPT)

On RSX-11M systems, the switch strings define:
: 0 : DAY - /FORMAT'FULL/DA'TODAY_
o WEEK - /DA PREVIOUS: 7
e ’)‘MONTH L /DA PREVIOUS: 31
3; (§‘kSYSTEM - uses all default switches

Note that the names of the predefined switch strings must be entered
in full. They cannot be abbreviated.

3.3.4.2 User Defined Switch Strings

You can name and define your own switch strings to use with the
/REPORT switch by creating and editing LB:[1l,6]ERRDEFINE.CFS and
inserting the switch strings you want to define.

Entries in this file must be in the form:

'switchname', 'switchstring’

Note that single quotation marks are a required part of the syntax.

The name of the switch string you are defining. This name
becomes the qualifier to the /REPORT switch when you want to
invoke the string. (The name must be nine characters or less.)

switchstring

The RPT switches you select to generate the report. (The switch
string must be 80 characters or less.,)

For example, if vou want to generate a brief report of peripheral
errors on all the DB dev ices on your system, edit ERRDEFINE.CFS and
insert the following line:

‘DB','/FO:B/TY:PE/DE:DB'
You can then create this report with the following RPT command:
RPT>outfile=infile/R:DB

When you invoke a user-defined string, you must enter the full switch
string name.

3.3.5 The Width Switch
/W[IDTH] :qualifier
QUALIFIERS:

N [ARROW]
W[IDE]

DEFAULT:
JWiW

REPORT GENERATOR TASK (RPT)

The /WIDTH switch allows you to set the line width of the report RPT
generates to narrow (80 columns) or wide (132 columns). The basic
report format does not change when RPT creates a narrow treport.
Instead, each 1long line of the report wraps onto the next line at an
appropriate place.

3.4 ERLCNF REPORT MESSAGES

The Error Log Control File displays messages on your terminal if
errors occur during report generation. The messages include an
abbreviation, a severity 1level code for the error (warning,
informational, or fatal), and text describing the error.

In some cases, RPT also writes the message in the Error Log Report, if
it explains an error that appears in the report. For example, when
RPT fails to find a control file module for a device you specify, it
displays a message on your terminal and in the report that includes
the error message.

This section lists the ERLCNF messages, along with possible causes and
methods for recovery.

The following are Fatal ERLCNF errors:

ERLCNF-F~ARGNOTUNQ, Argument specification <argument> is not unique

Explanation: You did not specify enough characters in a switch
argument to make it unique. It can be confused with another
argument.

User Action: Check the argument syntax and reenter the command.

ERLCNF-W-BADSUBPKT, Possible corruption in the <packetname> subpacket
in item <item label>

Explanation: RPT found something in the subpacket that appeared

to be abnormal. The file may be corrupted or it may be an
internal error within RPT.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have. You can create a
dump of the packet using the starting virtual block number of the
packet: the nnn portion of the packet number nnn.m.

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF-W-DUILLFORM, MSCP format code <code> is undefined

Explanation: This may be an internal error within RPT. It
indicates a format code in the RA80 packet that is corrupted.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

REPORT GENERATOR TASK (RPT)

ERLCNF-F-ILLARGCOM, Illegal argument combination

Explanation: You specified an illegal combination of arguments
with a switch,

User Action: Check the syntax and reenter the command.

ERLCNF-F-ILLFILSPC, Illegal file specification - <filename>

Explanation: You used an illegal file specification with an RPT
report generating command.

User Action: Check the syntax and try the operation again.

ERLCNF-W-ILLPACCOD, Illegal code in packet <packetid>, Code = <xx>

Explanation: The major code for the indicated packet 1is beyond
the range that RPT can handle.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

mAadisT +had r X
mviuLT viidaw AL I
.

to the library

If the message refers to a packet that you have ltered
ol rote 1 rec ile an

[P
t o

o
ad

2~

a
a omn i
e, omp 1

ERLCNF-F-ILLPACRAN, Illegal packet range - LOW = <xx>, HIGH = <xx>

Explanation: The RPT Packet Selection switch requires arguments

1
_____ -
rorimace.

User Action: Determine the correct number for the packet you
want to display, check the syntax and reenter the command.

ERLCNF-W-ILLPACSBC, Illegal subcode in packet <packetid>, Code = <xx>,
Subcode = <xx>

Explanation: The subcode for the indicated packet is beyond the
range that RPT can handle.

User Action: You should never see this message. 1If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library,

ERLCNF~-F-ILLSWTARG, Illegal switch argument - <argument>

Explanation: RPT recognized the switch argument, but determined
that the argument is incorrect in the context given.

User Action: Check the syntax and reenter the command.

REPORT GENERATOR TASK (RPT)

ERLCNF-F-INTERR001, Internal error detected at position number <n>

Explanation: This is an internal RPT error. It occurs with
PARSECLST and PARSECTION error messages.

User Action: You should never see this message. If you do,

in an SPR and the command line that generated the message and
other information you have.

ERLCNF~F-MODNOTFND, Module not found - <module>

Explanation: RPT searched ERRLOG.ULB for the module and did
find it.

User Action: You should never see this message. If you do,
in an SPR and the command line that generated the message.
sure to include the name of the module that was missing,

ERLCNF-F-MULARGSPC, Argument <argument> specified multiple times

Explanation: You specified an RPT switch argument more
once.

User Action: Check the syntax and reenter the command.

ERLCNF-F-MULSWTSPC, Switch <switch> specified multiple times

Explanation: You entered the specified switch more than once

the

send
any

not

send
Be

than

on

the same RPT command line. RPT only allows you to specify each

switch once.

User Action: Check the syntax and reenter the command. Use

the

special syntax for multiple switch specifications described in

Chapter 3 if the switch allows it.

ERLCNFrW%NODACSPRT1 Nd IQfACTIVITx support,,packet = (packet)

TExplanatlon. Thls is usually caused by ,enabllng I/o actl

v1ty

~-support: RSX 11M systems w1thout enabllng the correspond1ng

‘support 1n the error 1og control f11e.

. gser Actlon.: You should Hever ‘dee this message. If you do,
~in .an’' SPR along . with a dump of. the packet that generated

send
the

‘message - and any - other information you ‘have (See BADSUBPKT

kdescrlptlon).

If the message refers to.a packet that you have altered, or a
module that -'you wrote, correct the module, recompile and add it

to the library.

ERLCNF-F-NODIDPACK, No Device ID subpacket
Explanation: This is an internal error within RPT.
User Action: You should never see this message. If you do,

in an SPR along with a dump of the packet that generated
message and any other information you have.

send
the

REPORT GENERATOR TASK (RPT)

ERLCNF-W-NODRIVSZ, No drive of size <size> for mnemonic <ddnn>; using
EUNKWN

Explanation: This may be an internal error within RPT.

User Action: You should never see this message if you have all
DIGITAL hardware. If you have non-DIGITAL hardware, and you
receive this message, it is caused by a disagreement between
RPT's table of device sizes and the actual size of the device.
See Section 4.5.3.4 for information on changing the table of
device sizes.

ERLCNF-W-NODRIVTYP, No drive type <type> for mnemonic <dd>; using
EUNKWN

Explanation: This may be an internal error within RPT. From the
mnemonic, the drive appears to be a MASSBUS device. However, RPT
does not recognize the device type as a MASSBUS device.

User Action: You should never see this message if you have only
DIGITAL hardware., If you have non-DIGITAL hardware, the error is
caused by disagreement between RPT's table of device sizes and
the size of the actual device. See Section 4.5.3.4 for
information on changing the table of device sizes.

ERL.CNF-F-NOINPFILE. No input file specified

Explanation: RPT did not find an input file on the command line,
This message occurs when you failed to specify an equals (=) sign
in the command.

User Action: Check the syntax and reenter the command.

ERLCNF-W-NONOTES, No notes available for device <devicename>

Explanation: RPT includes a facility for displaying notes at the
bottom of Full or Register reports. This internal error message
indicates that a device which did not have an associated NOTES
module.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF-F-NOREMATCH, No predefined switch string for <string>
Explanation: RPT did not find the defined report string you used
in a /R[EPORT] command, either in ERRDEFINE.CFS or among the
DIGITAL-defined report strings. Remember to use the entire name

of the DIGITAL or user-defined string.

User Action: Check the syntax and reenter the command.

REPORT GENERATOR TASK (RPT)

ERLCNF-F-OPNINPFIL, Failed to open the input file

Explanation: RPT could not open the input file specified. This
message is accompanied by the FILERRCOD information message, that
displays the FCS error code from the file.

OUser Action: Check the FCS error code and retry after correcting
the indicated condition.

ERLCNF-F-OPNREPFIL, Failed to open the report file

Explanation: RPT could not open the report (output) file
specified, This message 1is accompanied by the FILERRCOD
information message, that displays the FCS error code from the
report file,

User Action: Check the FCS error code and retry after correcting
the indicated condition.

ERLCNF-F-OPNUSRFIL, Failed to open the user file

+

n
iy il

o a ila anani fiaA3 mh 3 o

~ = P N — oy%v;;;cu. 11120
message is accompanied by the FILERRCOD information message, that
displays the FCS error code from the file.

Explanation: RPT could not op

lanati RPT user £

User Action: Check the FCS error code and retry after correcting
the indicated condition.

ERLCNF-F-SWTNOTUNQ, Switch specification <switch> is not unique

Explanation: You did not specify enough characters of a switch
to make it unique. It can be confused with another switch.

User Action: Check the switch syntax and reenter the command.

ERLCNF~F-SYNTAXERR, Command line syntax error

Explanation: Some element of the command line does not have the
correct syntax.

User Action: Check the syntax and reenter the command.

ERLCNF-F-TOOFEWARG, Too few arguments in switch <switch name>

Explanation: You specified a switch that requires one or more
arguments, without specifying enough arguments.

User Action: Check the syntax and reenter the command.

ERLCNF -F-UNKNWARG, Unknown argument - <argument>
Explanation: You specified an argument that is unknown to RPT.

User Action: Check the syntax and reenter the command.

REPORT GENERATOR TASK (RPT)

ERLCNF-W-UNKNWNDEV, Device mnemonic <dd> is unknown; using EUNKWN
Explanation: This may be an internal error within RPT.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF~-W-UNKNWNNOT, No note number <number> for device <devicename)

Explanation: RPT includes a facility for displaying notes at the
bottom of reports. This internal error message indicates that a
device tried to print a note that was not available.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF-F-UNKNWSWT, Unknown switch - <switchname>

Explanation: You specified an unknown RPT switch.

lan ~mmnan o p- |

:
o~ - £
User Acticn Er Tn€é Comimaid.

-
Viie

OChAasly -
wacln o

The following are ERLCNF Warning messages:

ERLCNF-W-USEEUNKWN, Module <modulename> not found; using EUNKWN

Explanation: RPT was not able to find the module specified in
the Error Logging Universal Library and went to the EUNKWN module
instead. This causes a formatted dump of the device register to
appear in the report. This message usually occurs if you tune
vour ULB and eliminate the module for a device yvou want to use.

User Action: Retune the ULB to include the missing module.
The following are ERLCNF Informational messages. They accompany other
ERLCNF messages to give you additional information. They do not
affect RPT operation.
ERLCNF-I-FILERRCOD, File error code = <errorcode>

Explanation: This message displays the FCS error code for a
file. It accompanies messages on file access failures.

User Action: None 1is necessary. This 1is an informational
message.

REPORT GENERATOR TASK (RPT)

ERLCNF-I-PARSECLST, PARSE.SECTION_LIST = <buf>

Explanation: This is an internal error within RPT. This message
accompanies the INTERR001l message described above.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF~-I-PARSECTION, PARSE.SECTION = <buf>

Explanation: This is an internal error within RPT. It
accompanies the INTERR001 message described above.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

3.5 ERLRPT REPORT MESSAGES

Most of the following error messages are either associated with errors
in the control file module that RPT is interpreting, or internal RPT
errors.

If the message refers to a control file module that you have altered,
or a module that you wrote and added to the error logging system,
correct the error, recompile the module, and add it to the library.
The module in which the error occurred is specified in the first (or
top) 1line of the execution stack dump produced by RPT. This
information appears on the report file and on the terminal from which
RPT is being run.

If the message refers to a DIGITAL-supplied module or is an internal
RPT error, please submit an SPR and include a listing of the error log
report file produced by RPT.

ERLRPT-F-ACCUDFVAR, Attempt to access undefined variable.

Explanation: A control file module attempted to access a
variable which had not been defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

3-35

REPORT GENERATOR TASK (RPT)

ERLRPT-F-BADDIGIT, Invalid numeric digit in conversion.

Explanation: A numeric literal or the ASCII string argument for
the CODOCTAL, $%CODSDECIMAL, %CODSHEX, %CODS$SBCD, 3COD$BINARY, or
$CODSMACHINE function contained an 1illegal character for the
specified radix or was null or blank.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-BITFLDSIZ, Bit or field too large in extraction operation.

Explanation: The bit or field in an extraction operation
exceeded the size of the value on which the extraction was
performed.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.,

ERLRPT-F-BITTOOHIG, Bit number too large for specified storage unit.

Explanation: The bit number specified by the <character string
portion of a #BI, #WI, #LI, #Q0I, or #VI numeric literal was too
large for the specified value size,

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.,

ERLRPT-F-CASENOMAT, CASE selection expression has no matching value.

Explanation: No match was found for the value of the selector
expression 1in a CASE statement, and no ELSE clause was specified
in the CASE statement.

User Action: Correct the user-written module or submit an SPR

£ o wm TATMAT s 14 A~
for DIGITAL-supplied modules,

ERLRPT-F-CONTROLFI, Could not open control file,
Explanation: The control file module could not be opened.

User Action: If using the default control file library, check to
see that it is in either LX:{1,6] or LB:{1,6] and is not locked,
and that you have read acces to it., If using a wuser specified
control file, check to see that it is not locked and that you
have read access,

ERLRPT-F-COROUMIS, COROUTINE statement executed with no COROUTINE
stack frame.

Explanation: A COROUTINE statement was executed without
specifying a coroutine in the corresponding CALL statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F~-CRASH, Control file requested abort.

Explanation: The CRASH statement was executed by a control file
module.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DATNOTEXI, Data declaration is longer than data.

Explanation: The amount of data specified in a PACKET or
SUBPACKET declaration was larger than the amount of data in the
PACKET or SUBPACKET. This condition may be due to an error in
the control file module or an error in the error log packet being
analyzed.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT~F-DECAGAIN, Group in declaration already declared.
Redeclaration illegal.

Explanation: A DECLARE, PACKET, SUBPACKET, TABLE, or
DYNAMIC TABLE statement was executed with a group name that was
already defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DECGRPCTX, Group in DECODE statement has no context.

Explanation: The group in the DECODE statement was a TABLE,
DYNAMIC_TABLE, or PACKET or SUBPACKET with the REPEATED attribute
for which the current record context was not valid.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules,

ERLRPT-F-DECNOBIT, No BIT declaration corresponding to DECODE list
item.

Explanation: The bit number specified for a data item in the
DECODE statement had no corresponding BIT declaration for the
data item in the specified group.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DECNOTEXT, No bit to text translation for DECODE 1iist item.

Explanation: The BIT declaration corresponding to the bit number
specified for a data item in the DECODE statement, had no print
expression.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-DEFCASELS, No match for control expression in CASE
conditional definition.
Explanation: No match was found for the value of the selector
expression 1in a CASE conditional definition and no ELSE clause
was specified.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT~F-DEFNOCONT, Attempt to access data in variable in group with
null context.
Explanation: The control file module attempted to access a
variable 1in a TABLE, DYNAMIC TABLE, or PACKET or SUBPACKET with
the REPEATED attribute for which the current record context was
not valid.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DEFNOSTAK, Declaration stack overflow.

Explanation: The stack used for processing declarations has
overflowed.

User Action: Edit RPTBLD.CMD to increase the psect extension for
psect DCSTKO, and rebuild RPT.
ERLRPT-F-DEFSTKUND, Internal error - Declaration stack underflow.

User Action: Please submit an SPR with any information you have.

ERLRPT-F~DIVZERO, Attempt to divide by zero.
Explanation: A control file module attempted to divide by zero.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-EXEINVCOD, Internal error - Execution stack entry has invalid
code.,
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have,
ERLRPT-F-EXEINVPOS, Internal error - INPUT file has 1invalid position
value,
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

3-38

REPORT GENERATOR TASK (RPT)

ERLRPT-F-EXPGRPNOC, Attempt to reference POINTER for group without
context.

Explanation: A control file module attempted to reference the
POINTER special variable for a TABLE, DYNAMIC TABLE, or PACKET or
SUBPACKET with the REPEATED attribute for which the current
record context was not valid,
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-EXPINVCOD, Internal error - Invalid expression item code in
expression.
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.
ERLRPT-F-EXPINVTYP, Internal error - invalid symbol data type in
expression.
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.
ERLRPT-F-EXPNORSYM, Symbol without read access referenced in

expression.

Explanation: A control file module attempted to read a variable
defined in a DECLARE statement, which had not been initialized.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-EXPUDFGRP, Undefined group referenced in expression.

Explanation: A control file module attempted to reference a
group which had not been defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-EXPUDFSYM, Undefined symbol referenced in expression

evaluation.

Explanation: A control file module attempted to access an
undefined symbol.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-EXPVALOVR, Value stack overflow during expression evaluation.

Explanation: The stack used for processing values and
expressions has overflowed.

User Action: Edit RPTBLD.CMD to increase the psect extension for
psect VLSTKO, and rebuild RPT.

3-39

REPORT GENERATOR TASK (RPT)

ERLRPT-F-EXPVARNOC, Attempt to access variable without context in

expression.

Explanation: A control file module attempted to reference a
variable 1in a TABLE, DYNAMIC TABLE, or PACKET or SUBPACKET with
the REPEATED attribute for which the current record context was
not valid.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FILERCLOS, File close error,

Explanation: An error occurred when RPT attempted to close a
file.

User Action: Check for file access conflicts, device errors, or
low pool condition.

ERLRPT-F-FILERREAD, File read error.

Explanation: An error occurred when RPT attempted to read a
file.

User Action: Check for file access conflicts, device errors, or
low pool condition.

ERLRPT-F-FILERSPAN, Records in file are not allowed to span blocks.

Explanation: The span block attribute of the error 1log file
being analyzed was set. ELT creates the error log file with this
attribute set, and neither ELI, ERRLOG, nor RPT will modify it,
but some other task may have.

User Action: Use ELI to (re)start error 1logging with a new
version of the error 1log file, then use PIP to append the
previous version to the new version. PIP may produce the
following warning message:

PIP -- Input files have conflicting attributes

This message can be ignored.

ERLRPT-F-FILERWRIT, File write error.

Explanation: An error occurred when RPT attempted to write to a
file.

User Action: Check for file access conflicts, device errors, or
low pool condition.

ERLRPT-F-FILINTOPN, Internal error - file already open.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

3-40

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FILINVCOD, Internal error - invalid file code for specified
operation.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-FILINVMOD, Control file library has invalid module name table
format.

Explanation: The control file library has an invalid module name
table format. The control file must be a universal library.

User Action: Make sure that the control file 1is a valid
universal library and rerun RPT.

ERLRPT-F-FILNOTCTX, Operation requires that dynamic file have context.

Explanation: A control file module executed a POINTER DELETE or
POINTER MOVE statement on a DYNAMIC TABLE for which the current
record context was not valid,

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FILNOTEXI, Internal error - declared dynamic file does not
exist.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-FILNOTVIR, Could not create virtual address space for module
table.

Explanation: RPT could not dynamically extend its address space
to create room for the module table.

User Action: If the maximum task size for the partition is less
than 32K, use the MCR command SET /MAXEXT or DCL command SET
SYSTEM/EXTENSION LIMIT to increase the maximum task size, or run
RPT in a different partition.

ERLRPT-F-FILTOOBIG, File too large to read.

Explanation: RPT cannot analyze error log files which are larger
than 65535 blocks.

User Action: Use ELI to create new error log files more often.

ERLRPT-F-FINDFIELD, FIELD in FIND statement does not have valid data
type.

Explanation: A control file module executed a FIND statement
where the specified FIELD was not NUMERIC, STRING, ASCII,
RSXTIME, VMSTIME, or LOGICAL.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

3-41

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FINDNOCON, FIND statement not valid on a group with

context.

no

Explanation: A control file module executed a FIND statement for
a TABLE or DYNAMIC TABLE attribute for which the current record

context was not valid.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLRPT-F-FORCLSNUL, FORMAT clause null,

Bxplanation: A control file module executed a WRITE

WRITE GROUP statement with a null FORMAT clause.

User Action: Correct the user-written module or submit an

for DIGITAL-supplied modules.

ERLRPT-F-FORFIELDS, FORMAT error - Field too narrow for variable

print,

SPR

oxr

SPR

to

Explanation: A control file module executed a WRITE GROUP
statement where the width specified by a !DP directive was too

short for the corresponding variable.

=3 - lole) + +h s Lhmm
User Action: <O C C©n =

2oy -
USTL —WL LLLTL
S.

for DIGITAL-supplied module

o
<7}
[
'-d
M
Q
2}
n
o
g
e
cr
Qi
]

ERLRPT-F-FORFIELDW, FORMAT error - Name too long for field in
directive.

[}
)
a)

!DF

Biplanation: A control file moduie executed a WRITE GROUP
statement where the width specified in a !DF directive was less

than the length of the name of the corresponding variable

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLRPT-F-FORINVCHA, FORMAT error - Invalid character in FORMAT clause.

Explanation: A control file module executed a WRITE

WRITE_GROUP statement with a FORMAT clause containing

non-printing character.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLRPT-F-FORINVDIR, FORMAT error - Invalid format directive code.

Explanation: A control file module executed a WRITE

or
a

SPR

or

WRITE_GROUP statement with a FORMAT clause containing an invalid

format directive.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

SPR

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FORINVVTY, FORMAT error - Attempt to output invalid variable
type.

Explanation: A control file module executed a WRITE or
WRITE GROUP statement with a FORMAT clause containing a IDP
directive for which the corresponding variable was the wrong

type.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F~-FORLINEOV, FORMAT error - Line overflow in FORMAT clause.

Explanation: A control module executed a WRITE or WRITE_ GROUP
statement during which the output buffer overflowed while
processing the FORMAT clause. The output buffer is 132
characters wide.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORNOARG, FORMAT error - Format directive missing required

Explanation: A control file module executed a WRITE or
WRITE GROUP statement with a FORMAT clause containing an !FC or
IFS directive with no numeric argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORNONAME, FORMAT error - request to print a field name for a
value.

Explanation: A control file module executed a WRITE or
WRITE_GROUP statement with a FORMAT clause containing a !IDF
directive matched with a value rather than a variable.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORNOREAD, FORMAT error - Attempt to print a variable without
read access.,
Explanation: A control file module executed a WRITE or
WRITE_GROUP statement which attempted to print a variable without
read access.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORNOTASC, FORMAT clause not ASCII.

Explanation: A control file module executed a WRITE or
WRITE_GROUP statement with a non-ASCII FORMAT clause.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FUNDATNOT, Specified (sub)packet is not large enough for
offset.

Explanation: A control file module executed a look-~ahead
function where the value of the offset argument was larger than
the specified PACKET or SUBPACKET.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FUNFIELDS, 1Invalid conversion code argument to time
conversion function.

Explanation: A control file module executed a time conversion
function with an illegal value for the conversion code argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FUNINVPOI, Invalid string pointer value in string function.

Explanation: A control file module executed a %STRSPARSE or
$STRYQUOTE function where the value of the pointer argument was
larger than the length of the string argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FUNNOTCHA, Argument to STR$CHAR is not in valid range for
character.

Explanation: The value of the argument for the $STRSCHAR.
function must be in the range 0 to 127(10).

User Action: Correct the user-written module or submit an SPR
for DICITAL-supplied modules,

ERLRPT-F-FUNNOTIMP, Function not implemented.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-FUNQUOODD, Quote string in STRSQUOTE function must have even
length.

Explanation: A control file module executed a $STRSQUOTE
function, where the quote string argument was not an even length.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FUNSTRSIZ, Output string from string function too large.

Explanation: A control file module executed a string function
which resulted in a string longer than 255 characters.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

3-44

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FUNWRONGA, Incorrect number of arguments in function call.

Explanation: A control file module executed a function call with
the wrong number of arguments.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-GROUPDEF, Attempt to reference undefined group.

Explanation: A control file module attempted to reference an
undefined group.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-GROUPNOC, POINTER statement executed on a dgroup without
context.
Explanation: A control file module executed a POINTER statement
on TABLE or DYNAMIC TABLE for which the current record context
was not wvalid. -
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-HEAPOVERF, Heap too small to hold value. Overflow.

Explanation: The heap used for processing values and expressions
has overflowed.

User Action: Edit RPTBLD.CMD to increase the psect extension for
psect VHEAPO, and rebuild RPT.

ERLRPT-F-INCFORWRI, Too few FORMAT expressions in WRITE_GROUP
statement.
Explanation: A control file module executed a WRITE_GROUP
statement which did not have two FORMAT expressions in the FORMAT
clause,
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-INCRDECRL, Numeric variable in INCREMENT or DECREMENT larger

than value.

Explanation: A control file module executed an INCREMENT or
DECREMENT statement on a variable which was larger than a word.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

3-45

REPORT GENERATOR TASK (RPT)
ERLRPT-F-INCRDECRN, Variable in INCREMENT or DECREMENT statement not

numeric.

Explanation: A control file module executed an INCREMENT or
DECREMENT statement on a non-numeric variable.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-INCRDECRV, Variable in INCREMENT or DECREMENT not valid or
read-only.
Explanation: A control file module executed an INCREMENT or
DECREMENT statement on a variable which was not both readable and
writeable.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules,
ERLRPT-F-INTINVDEC, Internal error - Invalid declaration entry type in
WRITEGROUP.
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.
ERLRPT-F-INTVALSTK, Internal error - statement 1left information on
value stack.
Explanation: This is an internal error within RPT.
ion: Please submit an SPR with any information you have.
ERLRPT-F-INVRADCNV, Internal error - Invalid radix code for
conversion.
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.
ERLRPT-F-LEAVENOC, LEAVE statement executed outside of a conditional

block.

Explanation: A control file module executed a LEAVE statement,
which was not inside a loop statement block.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-LISTNOEXP, No expression in LIST for corresponding SEARCH
variable.

Explanation: A control file module executed a SEARCH statement
in which a match was found, but there were not enough expressions
in the list element for the number of variables specified in the
GET clause of the SEARCH statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-LISTNOMAT, Too many expressions in SEARCH statement for
referenced LIST.

Explanation: A control file module executed a SEARCH statement
in which there were too many search expressions for the specified
LIST.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules,

ERLRPT-F-LISTNOTDF, Group referenced in SEARCH statement 1is not
defined.

Explanation: A control file module executed a SEARCH statement
in which the name specified for the LIST was not defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-LISTNOTLS, Group referenced in SEARCH statement 1is not a
LIST.

Explanation: A control file module executed a SEARCH statement
in which the name specified for the LIST was not defined as a
list,

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-MATDIFTYP, Values of differing type cannot be matched.

Explanation: A control file module executed a MATCH statement
which tried to match values of differing types.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-MATVALSIZ, Values of different size cannot be matched.

Explanation: A control file module executed a MATCH statement
which tried to match values of differing size.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-MEMALLFAI, Memory allocation failure - insufficient wvirtual
memory.

Explanation: RPT could not dynamically extend its address space
to create room for DYNAMIC_TABLEs or control file modules.

User Action: If the maximum task size for the partition is less
than 32K, use the MCR command SET /MAXEXT or DCL command SET
SYSTEM/EXTENSION LIMIT to increase the maximum task size, or run
RPT in a different partition. If this occurs while generating
summaries for large numbers of packets, try reducing the amount
of data needed by using RPT switches to reduce the number of
packets analyzed for each summary.

3-47

REPORT GENERATOR TASK (RPT)

ERLRPT-F-MEMINIFAI, Memory allocation initialization failure.

Explanation: RPT could not dynamically extend its address space

to create room for its data structures.

User Action: If the maximum task size for the partition is

than 32K, use the MCR command SET /MAXEXT or DCL command SET

SYSTEM/EXTENSION_LIMIT to increase the maximum task size, or
RPT in a different partition.

ERLRPT-F-MODLOAGRP, Undefined group referenced by module to be loaded.

Explanation: The control file module being loaded, attempted
reference an undefined group.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLRPT-F~-MODLOASYM, Undefined symbol in module to be loaded.

Explanation: The control file module being loaded, attempted
reference an undefined symbol.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLRPT-F-MODNAMENL, Module name cannot be null.

Explanation: A control file module attempted to access another

control file module which had a null or blank name.
: C the user-written module or submit an

ion orrect
TAL-supplied modules.

ERLRPT-F-MODNOMEM, Insufficient free memory to load module.

Explanation: RPT could not dynamically extend its address space

to create room for control file modules.

User Action: If the maximum task size for the partition is

than 32K, use the MCR command SET /MAXEXT or DCL command SET

SYSTEM/EXTENSION LIMIT to increase the maximum task size, or

RPT in a different partition. If this occurs while generating
summaries for large numbers of packets, try reducing the amount
of data needed by using other switches to reduce the number of

packets analyzed for each summary.

ERLRPT-F-MODSTART, Starting module for execution not found.

Explanation: The control file 1library must contain a module

named DISPATCH.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-MODZERO, Attempt to modulus by zero.

Explanation: A control file module attempted to perform a MOD by
Zero.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-NOMORESTK, Execution stack overflow.
BExplanation: RPT's execution stack has overflowed.
User Action: Edit RPTBLD.CMD to increase the psect extension for
psect XCSTKO, and rebuild RPT.

ERLRPT-F-NOSTACKE, Internal error - Pop from execution stack with
empty stack.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-NOTDYNFIL, Dynamic file operation performed on invalid group.
Explanation: A control file module specified a group which was
not defined as DYNAMIC TABLE in a statement or operation
requiring ‘a DYNAMIC TABLE.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-NOTPOINT, POINTER LOAD or MOVE executed with a non-pointer

variable.

Explanation: A control file module executed a POINTER LOAD or
MOVE with a variable which was not a pointer.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-NOTPOIVAR, POINTER LOAD with no pointer variable specified.

Explanation: A control file module executed a POINTER LOAD or
MOVE with no variable specified.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-NUMINVOPR, Invalid numeric double-operand operation code.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-OPRINVLOG, Attempt to perform logical operation on an invalid
type.

Explanation: A control file module attempted to perform a
logical operation with operands that were neither NUMERIC nor
LOGICAL.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-OPRNOTIMP, Operation not implemented.

Explanation: A control file module attempted to perform a
multiplication where both operands were larger than a word value.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-PACKETSIZ, Illegal packet size.

Explanation: The size of an error log packet was zero or would
cause the packet to cross a block boundary.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-POISETGRP, POINTER variable is not from correct group in
PCINTER ... LOAD or MOVE.

Explanation: A control file module executed a POINTER LOAD or
MOVE statement 1in which the optional pointer variable was not a
pointer to the specified DYNAMIC TABLE.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-POISETMOD, POINTER variable is from wrong module in POINTER
... LOAD or MOVE.

Explanation: A control file module executed a POINTER LOAD or
MOVE statement in which the DYNAMIC TABLE pointed to by the
optional pointer variable was not in the same module as the
DYNAMIC_TABLE specified in the POINTER statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules,.

ERLRPT-F-POISETSIZ, GROUP too small for POINTER in POINTER ... LOAD
or MOVE.
Explanation: A control file module executed a POINTER LOAD or
MOVE statement in which the optional pointer variable was

pointing past the end of the specified DYNAMIC_ TABLE.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules,

3-50

REPORT GENERATOR TASK (RPT)

ERLRPT-F-PROCNAMEN, Null procedure name.

Explanation: A control file module specified a null or blank
procedure name in a CALL or ENABLE statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-RADS0BYTE, Cannot convert a byte using RAD50 conversion.

Explanation: A control file module attempted to convert an ASCII
string or numeric literal to a BYTE using RAD50 conversion.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-RELINVCOD, Invalid relational operator.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-RETURNNOC, A RETURN was executed with no corresponding CALL.

Explanation: A control file module executed a RETURN statement
outside of a procedure or coroutine,

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-SELECTNOM, SELECT statement index has no matching statement
block.

Explanation: A control file module executed a SELECT statement
with no statement block to match the value of the numeric control
expression.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-SIGNOTASC, Parameter or message in SIGNAL-class statement not
ASCII.

Explanation: A control file module executed a SIGNAL,
SIGNAL_STOP, or MESSAGE statement with a non-ASCII argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-SIGTOOBIG, Message and parameters in SIGNAL-class statement
too long.

Explanation: A control file module executed a SIGNAL,
SIGNAL STOP, or MESSAGE statement 1in which the length of the
concatenated message and parameters was longer than 255
characters.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

3-51

REPORT GENERATOR TASK (RPT)

ERLRPT-F-SIGTOOMAN, Cannot issue a SIGNAL during SIGNAL processing.
Explanation: A control file module executed a SIGNAL or
SIGNAL_STOP statement while processing a previous SIGNAL or
SIGNAL_STOP.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-STANOTIMP, Statement not implemented.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-STANOTVAL, Internal error - invalid statement code.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-SUBEXTBIG, Substring extraction end element exceeds string.

Explanation
PrpTs Nupte RV Ty
DUWO Ll Lll_’

the string.

control fi
=3 - el d
- - ik

.
.
&3

» &
N

o~ rede 3 oA
Qv LUl

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-SUBPKTS1Z, Illegal subpacket size.

Explanation: The current subpacket, exceeded the bounds of the
packet.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-UNDEFPROC, Specified procedure not found.

Explanation: A control file module has executed a CALL
statement, and the specified procedure was not found.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-UNDMODULE, Specified module not found.

Explanation: A control file module has executed a CALL
statement, and the specified module was not found.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

3-52

REPORT GENERATOR TASK (RPT)

ERLRPT-F-VALSTKOVR, Value stack overflow.

Explanation: The stack used for processing values and
expressions has overflowed.

User Action: Edit RPTBLD.CMD to increase the psect extension for
psect VLSTKO, and rebuild RPT.

ERLRPT-F-VALUESIZE, Value in expression is too large.

Explanation: A control file module evaluated an expression in
which an intermediate value or the final value was too large.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-VALUETYPE, Value in expression is wrong type.

Explanation: A control file module evaluated an expression in
which an intermediate wvalue or the final value was the wrong
type.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-VARNOCONT, Attempt to access variable 1in group without

ceontext,

Explanation: A control file module attempted to reference a
variable for a TABLE, DYNAMIC TABLE, or PACKET or SUBPACKET with
the REPEATED attribute for which the current record context was
not valid.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-VARNODATA, Attempt to access variable in group with no data.
Explanation: A control file module attempted to reference a
variable for a TABLE, DYNAMIC_TABLE, or PACKET or SUBPACKET with
no data.

User Action: Correct the user-written module or submit an SPR

for DIGITAL-supplied modules.

ERLRPT-F-VARNOTDAT, Attempt to load data into a BIT or FIELD variable.

Rvnlamariane A ~rAantral fFila mnadnla ar+amnitaAd = 1AaaAd a walina
Explanation: A contrel file module attempted tc lcad a value
into a BIT or FIELD in a group, rather than into the data item
for which the BIT or FIELD was defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

3-53

REPORT GENERATOR TASK (RPT)

ERLRPT-F-WRITEACCV, Attempt to 1load a value into a non-writable

variable.

Explanation: A control file module attempted to 1load a value
into a data item in a PACKET, SUBPACKET or TABLE.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

CHAPTER 4

ERROR LOG CONTROL FILE ARCHITECTURE

This chapter describes the architecture of Error Log Control Files. A
knowledgeable system programmer can use the information presented here
to add user-written modules to the Error Logging System.

This chapter includes the following major sections:

e Terms and Concepts -- Defines the most important terms and
concepts presented in this chapter.

e Control File Module Architecture -- Describes RSX-11M and
RSX-11M-PLUS control file modules, the flow of program control
through the modules, module compilation paths, and recompiling
modules after modifications.

® Internal Interfaces -- Describes interaction between control
file modules, with examples.

@ Module Dispatching -- Explains event-level and device- or
CPU-level dispatching.

e Support of Non-DIGITAL Devices -- Provides the information you
need to include driver and error logging support for
non-DIGITAL devices.

e Error Logging System Source Code Examples - Includes
annotated listings of source code for four modules: ERM23,
DSP2M1, DSP2P1, and NRM23. The source code is keyed to
discussions in the Internal Interfaces section (4.3) and
Support of Non-DIGITAL Devices section (4.5) of this chapter.

4.1 TERMS AND CONCEPTS

Here are definitions of the most important terms and concepts
presented in this chapter:

e Control File - A collection of modules that together perform a
function, such as processing error log files.

e Module - A component of the Error Logging System. There are
three kinds of modules: source modules, which have the file
type .CNF, object modules, which have the file type .ICF, and
listing modules, which have the file type .LST. Module names
that end in Ml are generally common to both RSX-11M and
RSX-11M-PLUS systems (for example, DEVSM1l), except where the
module name has an alternate Pl ending (for example, DSP2M1l
and DSP2P1). In this case, module names that end in M1l are
for RSX-11M systems only and those that end 1in Pl are for
RSX-11M-PLUS systems only.

ERROR LOG CONTROL FILE ARCHITECTURE

e Control File Language - The language in which control files
are written. The Control File Language (CFL) is described in
Chapter 5.

e Error Log File - The file that contains the raw error 1logging
data. One record in the file corresponds to one event. The
default specification for this file is LB:[1,6]LOG.ERR.

e Event - Something that is logged in the error 1log file. An
event may be the recording of an actual device error or it
could be some informational data, such as a device mount or a
change in system time.

e Packets/Subpackets - Each record (or event) is also a packet.
A packet begins with a length word and is followed by data,
which can consist of zero or more subpackets. A subpacket
also consists of a length word followed by data. Every packet
in the Error Logging System contains at least one subpacket.

NOTE

The packet length word begins the packet, but it is
not part of the packet; the packet length word is
kept by FCS. Therefore, the packet length word is not
included in the 1length of the packet. However, the
subpacket length words are part of the packet and are
1mmT1:2323 2, ke 1an~kh mh 4
11 1L unIcTu 4Ll i v .I.Cllj “il e A1l

the Error Logging System.

s 10 ~Aancictant Fhrounohout
15 1S5S ¢ensigtentT Tarcgcugacut

See Figure 4-1 for the general structure of an error-logging
packet.

4,2 CONTROL FILE MODULE ARCHITECTURE

The Error Logging System is modular; that 1is, information and
dependencies specific to different devices are isolated in modules
written for each device. This section describes the architecture of
the RSX-11M and RSX-11M-PLUS control file modules: the modules
themselves, the flow of program control through the modules, the
compilation paths, and modifying and recompiling the modules.

ERROR LOG CONTROL FILE ARCHITECTURE

PACKET LENGTH

SUBPACKET LENGTH

HEADER SUBPACKET

SUBPACKET LENGTH

TASK SUBPACKET

SUBPACKET LENGTH

DEVICE IDENTIFICATION SUBPACKET —

SUBPACKET LENGTH

DEVICE OPERATION SUBPACKET

SUBPACKET LENGTH

DEVICE ACTIVITY SUBPACKET
(OPTIONAL ON RSX-11M)

B ———

SUBPACKET LENGTH

DATA SUBPACKET

ZK-i111-82

Figure 4-1 - Structure of Error-Logging Packet

4.2.1 RSX-11M and RSX-11M-PLUS Control File Modules

Here are short descriptions of the function of each of the RSX-11M and
RSX-11M-PLUS control file modules. Remember that modules with names
that end with "M1" are either common to both RSX-11M and RSX-11M-PLUS
or are for RSX-11M only, and modules with names ending with "P1" are
for RSX-11M-PLUS only.

DISPATCH
DISPATCH is the root module for the Error Logging System. It
declares all commonly used variables, calls the INITM1l module to

initialize the system, and then calls the PARSEM module to obtain
and parse the command line. DISPATCH then requests the records

4-3

ERROR LOG CONTROL FILE ARCHITECTURE

from the input log file, declares the common subpackets (HEADER,
TASK, DEVICE ID, DEVICE OPERATION, and DEVICE ACTIVITY (optional
on RSX-11M, standard on RSX-11M-PLUS)) for each record, computes
the correct dispatcher module name, and calls that module. When
all the records are processed, it calls the summary modules if
requested (RSX-11M-PLUS only), and finally calls the
FINLM1/FINLPl1 module to clean up. See Section 4.6.5 for the
definitions of the standard DIGITAL subpackets. Dispatching is
described in more detail in Section 4.4.

PARSEM

PARSEM declares variables local to the processing of the command
line and calls the PARSIM module to obtain the command line. It
then calls the PARS2M module to process any switches and the
PARS3M module to open the various files. PARSEM also provides
commonly used parsing routines to the other parsing modules.

PARS1M

PARS1M initializes parsing variables and gets the command 1line
from RPT. It then breaks all of the file specifications out of
the command line, leaving all of the switches. PARSIM then
searches for the /REPORT switch. If it finds the switch, PARS1M
replaces it with the specified string of predefined switches.

PARS2M

PARS2M gets a switch from the string of switches produced by
PARS1M. It then checks the switch for ambiguity and calls PRS2AM
to process the switch. If PRS2AM does not recognize the switch,
it 1is passed to the PRS2BM module. PARS2M repeats this process
until all switches have been processed.

P T

PRKOLAM

PRS2AM processes the following switches: DATE, DEVICE, and
PACKET.

PRS2BM

PRS2BM processes the following switches: FORMAT, SERIAL, SUMMARY
(RSX-11M-PLUS only), TYPE, VOLUME, and WIDTH.

PARS3M

PARS3M applies the default values to any switches that were not
specified and opens the specified files.

SELTM1

SELTM1 is called by DISPATCH to determine if the current packet
meets the selection criteria of the command line switches.

DSPIM1/DSP1P1l

The DSP1M1/DSP1P1l modules process Error Log Control events (See
Section 4.4.1). These modules declare the DATA subpacket for
each type of event and process the event to completion, calling
the formatter modules to print the common data if the FULL report
format is specified.

ERROR LOG CONTROL FILE ARCHITECTURE

DSP2M1/DSP2P1

The DSP2M1/DSP2P1 modules process Device Error events (See
Section 4.4.1). These modules call DEVSM1 to determine the name
of the device-level module required to process the event and then
calls that module as a co-routine and passes control to it. The
device-level module declares the DATA subpacket and then extracts
information from the registers of the logged device so it can
provide additional selection information. When the device-level
module returns control to DSP2M1/DSP2P1l, it performs the last of
the selection tests and makes the decision whether to continue
with this event or not. If DSP2M1/DSP2P1 decides to continue,
and if the FULL report format has been specified, DSP2M1/DSP2P1
calls the formatter modules +to print the common information.
Once printing is completed, control returns to the device-level
module, which prints the device registers.

If the BRIEF report has been specified, DSP2M1/DSP2Pl still must
decide whether to continue, but there 1is no need for the
formatter modules and DSP2M1/DSP2P1 does its own printing.

DSP3M1/DSP3P1

The DSP3M1/DSP3Pl modules process Device Information events (See
Section 4.4.1). They perform the same function as the
DSP2M1/DSP2P1 modules, but for device errors not related to 1I/0.
These modules are required only if you have a TU78 or MSCP (Mass
Storage Control Protocol) device.

DSP4M1/DSP4P1

The DSP4M1/DSP4P1 modules process Device Control Information
events (See Section 4.4.1). DSP4M1/DSP4Pl calls DEVSMl to get
the type of device associated with the device mnemonic.

Mount, dismount and reset operations have no DATA subpacket. The
formatter modules print the information if the FULL report mode
is specified; otherwise, the module does all the printing
itself. Like the DSP2P1 and DSP3Pl modules, DSP4Pl records
summary information if requested.

The Block Replacement event does have a DATA subpacket which is
processed entirely by this module. This type of event does not
contribute to summaries.

DSP5M1/DSP5P1

The DSP5M1/DSP5P1 modules process events detected by the CPU (See
Section 4.4.3). DSP5M1/DSP5P1 gets the CPU type from the HEADER
subpacket declared by DISPATCH and calls the appropriate
CPU-level module as a co-routine if the event was a memory parity
error. The processing then proceeds much like that for device
errors.

If the event was an unknown interrupt, the module declares and
processes the DATA subpacket itself.

ERROR LOG CONTROL FILE ARCHITECTURE

DSP6M1/DSP6P1

The DSP6M1/DSP6P1 modules process System Control Information
events (See Section 4.4). There is no DATA subpacket associated
with the power recovery event. The formatter modules print the
common information if in FULL-report mode; otherwise, the module
does all the printing itself.

DSP7M1/DSP7P1

The DSP7M1/DSP7P1 modules process Control Information events (See
Section 4.4). These modules declare the DATA subpacket for each
type of event and process the event to completion, calling the
formatter modules to print the common data if the FULL report
format is specified.

FINLM1/FINLP1

FINLMl or FINLPl is called by DISPATCH to clean up after all the
error log events are processed.

FMINM1/FM1WM1l are formatter modules. They print information at
the top of each page of a FULL report. The information comes
mostly from the HEADER subpacket. FM1NM1 prints reports in
NARROW format and FMIWMl prints reports in WIDE format.

FM2CML

FM2CM1 is one of the formatter modules. It prints the Requesting
Task section of a FULL report. The information comes from the

TASK subpacket., FM2CM1l prints reports in both NARROW and WIDE
formats.

FM3CM1
FM3CM1 is a formatter module. It prints the Device
Identification Information section of a FULL report. The

information comes from the DEVICE ID subpacket. FM3CM1 prints
reports in both NARROW and WIDE formats.

FM4NM1/FM4WM1

FM4NM1/FM4WM1 are formatter modules. They print the 1/0
Operation Identification section of a FULL report. The
information comes from the DEVICE OPERATION subpacket. FM4NM1
prints reports in NARROW format, and FM4WMl prints reports in
WIDE format.

Optionally, FM4NM1/FMAWMl also prints the Concurrent I/0 Activity
section of a FULL report. The information comes from the DEVICE
ACTIVITY subpacket. See Section 4.1 for more information.

ERROR LOG CONTROL FILE ARCHITECTURE

FMTNP1/FMTWP1

FMTNP1/FMTWPL are formatter modules. They print the first page
of a FULL report, that 1is, all of the information from the
HEADER, TASK, DEVICE 1D, DEVICE OPERATION, and DEVICE ACTIVITY
subpackets. FMTNPl prints reports in NARROW format, and FMTWP1
prints reports in WIDE format.

INITML1

INITM]1 initializes variables to be used later in the control
file. It sets up the page-top banners, formatter module
selectors, and WRITE GROUP format statements, based on whether
the report is NARROW or WIDE.

DEVSM1

DEVSM1 is called by DSP2M1/DSP2P1, DSP3M1/DSP3P1, and
DSP4M1/DSP4P1l to provide certain device-related information.
DSP2M1/DSP2P1 and DSP3M1/DSP3Pl call it to find, among other
things, the name of the device-level module that should help
process the event. DSP4M1/DSP4Pl calls DEVSM1l to find out the
name of the device associated with a device mnemonic.

If the device mnemonic is DU, DEVSMl then calls DEVUDA to do most
of the processing.

DEVUDA

DEVUDA is called only by DEVSMI. It assists DEVSM1 in the
processing of events on MSCP devices.

ERRORM

ERRORM is the error processor for the Error Logging System.
Whenever a SIGNAL or SIGNAL STOP occurs, ERRORM processes the
error.

SMRYEP

SMRYEP prints Error summaries on RSX-11M-PLUS only. DISPATCH
calls SMRYEP after all packets have been processed if an Error
summary was requested.

SMRYGP

SMRYGP prints Geometry summaries on RSX-11M-PLUS only. DISPATCH
calls SMRYGP after all packets have been processed if a Geometry
summary was requested.

SMRYHP

SMRYHP prints History summaries on RSX-11M-PLUS only. DISPATCH
calls SMRYHP after all packets have been processed if a History
summary was requested.

CPU-level modules

There are five CPU-level modules, all with names derived from
their associated processors. They are called as co-routines by
DSP5M1/DSP5P1 to process memory parity errors.

e FE1134 (RSX-11M only) - Processes errors from the PDP-11/34.

ERROR LOG CONTROL FILE ARCHITECTURE

e Ell44 - Processes errors from the PDP-11/44.

PDP-11/60.
® El17X - Processes errors from the PDP-11/70 and PDP-11/74.
® El1XX - Processes errors from all other PDP-11 processors.

EUNKWN

EUNKWN is a universal device-level or CPU-level module. EUNKWN
is called if a particular device-level module is unavailable, or
if the device mnemonic is unknown to the Error Logging System.
EUNKWN is also called if the CPU type is unknown.

EUNKWN produces a formatted dump of the data, showing the
relative offset within the data, and the data itself, in word,
high-byte, and low-byte formats (all octal), and in binary word
format. See Section 4.5 for more information on error logging
from unknown devices.

DMPALL
DMPALL is similar to EUNKWN. DMPALL is called if the packet
cannot be processed due to an error in format or structure.
DISPATCH calls DMPALL if the packet fails any sanity check.
DMPALIL. produces a formatted dump of the data, showing the
relative offset within the data, and the data itself, in word,
high-byte, and low-byte formats (all octal), and in binary word
format.

Device-Level Modules

ce~level mecdules contain details of the bit-to-text

translation for all supported error-logging devices.
DSP2M1/DSP2P1 and DSP3M1/DSP3P1 call them as co-routines. Their
names are derived from the names of the associated devices.

See Section 4.5 for information on how these modules are
constructed, and how you can write device-level modules for
unsupported devices.

Here are the standard error-logging device-level modules:

e EML11 - Processes ML1ll errors

e ERKO5 - Processes RKO5 errors

e ERK67 - Processes RKO6 and RK07 errors

e ERL12 - Processes RL0O1 and RL02 errors

e ERM0O5 - Processes RM0O5 errors

e FERM23 - Processes RM02 and RM03 errors

e ERM80 ~ Processes RM80 errors

® ERP0O7 - Processes RP(07 errors

e ERP23 Processes RP02 and RP0O3 errors

e ERP456 - Processes RP04, RP0O5 and RP06 errors

ERROR LOG CONTROL FILE ARCHITECTURE

e ERS11 Processes RS11l errors
e ERS34 - Processes RS03 and RS04 errors

e ERXOL Processes RX0l errors

® ERX0Z - Processes RX0Z errors
e ET0310 - Processes TS03, TE10, and TUl0 errors
® ET1645 - Processes TEl6, TUl6, and TU45 errors
e ETAll - Processes TAll errors
e ETCll - Processes TCll errors
e ETS1l - Processes TS1l1l, TU80 errors
e ETSV0O5 - Processes TSV05 errors
® ETU58 - Processes TU58 errors
e ETU77 - Processes TU77 errors
® MSCPAT - Processes MSCP Attention errors
® MSCPE - Processes MSCP controller errors
® MSCP60 - Processes MSCP RA60 errors
® MSCP80 - Processes MSCP RA80/RA81 errors
® MSCPEN - Processes MSCP End Packet errors
® MSCPSD - Processes MSCP Small Disk (RC25/RD51/RD50) errors
® MSCPTO - Processes MSCP Timeout errors
Notes Modules
Notes modules contain notes for error conditions that need
additional explanation. Notes modules are device-specific and
have names derived from the names of the associated device-level
module. See Section 4.5.3.2 for more information on how these
modules are constructed.
Here are the standard error-logging notes modules:
e NML1l - Processes ML1ll notes

® NRK67 Processes RK06 and RK07 notes

® NRMO5S Processes RM05 notes

® NRM23 - Processes RM02 and RM0O3 notes
e NT0310 - Processes TS03, TE10, TUl0 notes

® NTS1ll - Processes TS1l1l, TU80 notes

ERROR LOG CONTROL FILE ARCHITECTURE

4.2.2 Program Control Flow

Here is a description of the general flow of program control through
the control file modules:

1.

‘packet es

RPT opens the control file. In most cases, this 1is the
default control file LX: or LB:[1,6]ERRLOG.ULB. If you wish
to use some other filespec, RPT must be rebuilt to prompt for
the new name of the file.

RPT creates the module table in its dynamic work space. This
table contains an entry for each module in the control file
universal library.

RPT loads the DISPATCH module and transfers control to the
ENTRY procedure.

The ENTRY procedure is very similar to the root module in
most MACRO-11 programs. This procedure declares most of the
commonly used data structures. It then enables the ERROR 1
procedure in the ERRORM module as an error handler. Next, it
gets and parses the command line by calling the SETUP
procedure in the PARSEM module. That done, it performs some
general initialization with the INIT 1 procedure from INITMI.
ENTRY then sets up a loop which steps through the
PACKET RANGE file, extracting pairs of packet ranges which
are fed Dback to RPT. The next step, performed for each
packet range, is Lo loop through
requesting each packet
procedure in the

e i am e e L aamlral sasmeen
1g<
Lvuyill Lue vuLLTuL pacvac o LrLaiy r

1L
in turn and calling the DISPATCH
Whie al 4

The DISPATCH procedure in the DISPATCH module declares all of

the common subpackets. These are, in order of appearance,
URANEDR TASK, DEVICE 1ID, DEVICE 0P, and T0 ACTIVITY

it/ g E ey
(conditionally supported on RSX-11M). Each of these
subpackets has a mask bit in the HEADER subpacket which
indicates the presence of the subpacket. If the bit is set,
the subpacket is present and therefore declared. If the bit
is not set, the subpacket is not present and consequently not
declared. Note that the HEADER subpacket must always be
present. As each subpacket is declared, various tests are
performed that must be passed or the entire packet is
rejected. These tests are for the various selection criteria
that the user can specify using command line qualifiers. If
the tests are passed, the procedure then computes the name of
the appropriate dispatcher module. The dispatcher module
name is derived by concatenating the following elements:

e The string "DSP"

e The event code (HEADER.CODE TYPE) converted to ASCII
decimal

e The string "M1" (for RSX-11M) or "P1" (for RSX-11M-PLUS)

For example, an event with a code of 5 would be dispatched to
the module DSP5M1 or DSP5P1, depending on the operating
system.

ERROR LOG CONTROL FILE ARCHITECTURE

6. The dispatcher modules (or modules they may call) handle the
declaration of the DATA subpacket if one is present. The
dispatcher modules also perform further selection tests, as
appropriate. Eventually, the dispatcher module decides
whether or not information about the event should be printed.
BRIEF format reports are printed entirely by the dispatcher
module. FULL and REGISTER format reports are printed by a
combination of:

® One or more of the RSX-11M formatter modules (FM1NM1,
FM1wM1l, FM2CM1l, FM3CM1l, FM4NM1l, FM4WMl), or one of the
RSX-11M-PLUS formatter modules (FMTNPl, or FMTWP1l)

e The appropriate dispatcher module

o A device-level module (if it is a device error), or a
CPU-1level module (if it is a processor or memory error)

4.2.3 Compilation Paths

For both the RSX-11M and RSX-11M-PLUS operating systems, the DISPATCH
module must be compiled first. The next modules to be compiled are at
the next level, namely (for RSX-11M) ERRORM, DSP2Ml, DSP1M1l, DSP5M1,
and PARSEM using as input the symbol file produced from the
compilation of DISPATCH. Modules in the same group, such as ERRORM,
INITM1, SELTM1l, and FINLM1l all use the same input symbol file (in this
case, DISPATCH) and can be compiled in any order.

Figures 4-2 and 4-3 indicate the compilation paths for the RSX-11M and
RSX-11M-PLUS modules, respectively.

DISPATCH
~ ERRORM' " "DSP2M1 ' ".DSPIM1. ‘. . -DSP5M1 " T PARSEM
INITM1 : . DSP3M1 L
{SELTM1 S DSPAMY
FINLMT r DSP6M1
' ' Y " DSPTMT
| | |
DEVSM1 FM1NM1 DEVICE ETIXX PARL1M ‘ PARS2M PARS3M
FM1WM1 LEVEL E1134 |
_FM2CM1 © MODULES E1144 PRS2AM
FM3NM1 . E1160 PRS2BM
DEVUDA FM3WM1 . E117X
FM4NM1
FM4WM1

ZK-1112-82

Figure 4-2 - Compilation Path for RSX-11M Control File Modules

ERROR LOG CONTROL FILE ARCHITECTURE

i
B en
s

i

g
R

Where modules in the figure are connected by vertical lines, the upper
module is compiled first. The 1lower module or modules are then
compiled using the symbol file produced by the module at the next
higher 1level. Therefore, again using an RSX-11M example, the DSP2M1l
module is compiled using the symbol file from DISPATCH, the DEVSM1
module is compliled using the symbol file from DSE2M1, and s0 on.

Many of the modules in the RSX-11M error log control . file ‘have a
common source with RSX-11M-PLUS modules. Compile-time conditionals in
some of these modules generate variants specific to each operating
system. Modules wused in ‘the RSX-11M Error Logging System must be
compiled using the following compile-time literal declarations:

Option> LITERAL SUPPORT.RSX 11M = TRUE
Option> LITERAL SUPPORT.RSX 11M PLUS = FALSE
Option> LITERAL SUPPORT.IO ACTIVITY = FALSE

On+inny / :
ot

s

The declaration,

LITERAL SUPPORT.IO ACTIVITY = FALSE
can be changed to TRUE to ‘enable processing of 1/0 'adtivity
subpackets. . If you choose to do this, you must recompile all control
file modules and generate a new system after defining the symbol

ESSACT in RSXMC. > ; N T T AR T

See Chapter 5 for a description of the Control File Language used in
these declarations.

ERROR LOG CONTROL FILE ARCHITECTURE

4.2.4 Modification and Recompilation

You can modify any control file module. After doing so, you must
recompile the module and replace it in the control file library.

There is one very important rule to remember when modifying any
control file module:

IF
your modification to a module creates new groups, tables, or
dynamic tables, OR creates a new variable within any of
these structures, OR reorders a variable within any of these
structures

THEN
you must also recompile all modules on the same branch of
the tree at levels lower than the modified module.

END_IF

Note that recompilation of lower-level modules is not necessary if you
modify the run-time logic. For example, modifying the statement

IF %STRSLENGTH(PARSE.SWITCH LIST) EQ 0
to
IF %STRSLENGTH(PARSE.SWITCH_LIST) EQ 1

in the PARSEM module would not require recompiling any of the lower
level modules, namely PARS1M, PARS2M, PARS3M, PRS2AM, or PRS2BM.

However, changing the line to read
IF %STR$LENGTH(PARSE.SWT_LIST) EQ 1

and creating the new variable SWT LIST in the PARSE group requires
recompilation of the 1lower-level modules. This 1is because the
information in the symbol file consists of group names (in
alphabetical order) and the variables defined within the group (in the
order declared). The compiler uses the information from the input
symbol file to compute relative group and variable numbers for use
when a module references a group and/or variable declared in a higher
level module. These group and variable numbers, rather than the
names, are used to resolve references to groups and variables when a
module is loaded. Defining new groups, or variables within a group,
changes the relative order of these symbols.)

4.3 INTERNAL INTERFACES

This section discusses the specifics of various internal interfaces of
the Error Log Control File modules. All of the modules used as
examples in this chapter appear at the end of this chapter.

4.3.1 1Interaction Between Dispatcher and Device-Level Modules

The following two sections describe, in detail, the interaction
between a dispatcher module and a device-level module, using the
processing of an RMO3 error as an example. Section 4.3.1.1 describes
the interaction wusing an RSX-11M module (DSP2M1). Section 4,3.1.2

4-13

ERROR LOG CONTROL FILE ARCHITECTURE

For this detailed examination, the following discussion refers to the
ERM23 device-level module code in Section 4.6.1 and the DSP2M1
dispatcher module code in Section 4.6.2. Both the discussion here and
the code in those two sections are keyed to each other by the module
names (either ERM23 or DSP2Ml) and numbers that look like this: ('.

You may wish to remove the pages for Sections 4.6.1 and 4.6.2 from
your book for easier reference in following the interaction between
these two modules.

4.3.1.1 Interaction between DSP2M1 and ERM23 - Processing in DSP2Ml
begins with DISPATCH having declared all subpackets, except for the
DATA subpacket. All subpackets, except for the TASK subpacket, are
needed for a device error. DSP2M1 begins by determining that
peripheral errors are requested and that the subcode is valid. Having
completed these checks, DSP2M1 calls DEVSMl (DSP2M1 @). DEVSM1

returns device information in three variables.
INTERMOD DEVERR.DISP NAME contains the name of the device-~level module
needed to process the DATA subpacket, in this case "ERM23".,

INTERMOD DEVERR.DRIVE TYPE contains the string "RMO3" for the drive
type. The last variable, INTERMOD DEVERR.ALT NAME contains the string
"RM02/03" for the alternate drive type. (The alternate name variable
is not used during device error processing.)

After returning from DEVSM1 the NOTE NUMBERS file is cleared (DSP2Ml
). This deletes any records that may remain there from previous
events.

The next step establishes the coroutine relationship with the
device-ievel module (DSP2zMl1 @). The DEVICE ERROR procedure in the
DSP2M1 module is one partner while the DEVICE ENTRY procedure in the
ERM23 module is the other. Control passes to the DEVICE_ERROR

procedure.

The first thing the DEVICE ERROR procedure does is pass control to its
partner (DSP2M1 @ . Module ERM23 receives control at the beginning
of the DEVICE ENTRY procedure (ERM23 @).

DEVICE ENTRY proceeds to declare the DATA subpacket (ERM23 G)). Once
this 1s completed the INTERMOD DEVERR variables are filled in (ERM23
® and @). 2ll of the variables must be filled in. If the
information for a particular variable 1is wunavailable or not
applicable, use the string "N/A". For the variable
INTERMOD DEVERR.ERROR CYLINDER the string "?2?2?" also has a special
meaning; it indicates to DSP2M1 that the section titled Device Error
Position Information is to be suppressed.

Once the INTERMOD DEVERR variables are all filled 1in, DEVICE_ENTRY
will coroutine back DEVICE ERROR (ERM23 Q). DEVICE_ERROR regains
control where it left off (DSP2ML @).

DSP2M1 then performs the serial number tests, 1if required, after
having first initialized the variable INTERMOD DEVERR.REJECT FLAG to
FALSE. If the serial number test is failed, the variable
INTERMOD_DEVERR.REJECT_FLAG is set to TRUE.

The path through the two modules now depends on the report format,
either BRIEF, FULL, REGISTER or NONE. Following are explanations of
each of these paths.

ERROR LOG CONTROL FILE ARCHITECTURE

BRIEF

The REJECT FLAG variable 1is tested (DSp2M1 (3) . If TRUE,
nothing is output. If FALSE, one line is output which contains
the information required for a BRIEF report. In either case, the
variable INTERMOD DEVERR.PRINT FLAG is set to FALSE.

FULL
The REJECT FLAG variable 1is tested (DSP2M1 Q). If TRUE,
nothing is output and the PRINT FLAG variable is set to FALSE.
If REJECT FLAG is FALSE, the four formatter modules are called to
print the information from the common subpackets. The DSP2M1
module then prints (still on the first page) the information
passed back in the INTERMOD DEVERR variables filled in by ERM23.
DSP2M1 generates a page break, then prints a header on the second
page. When done DSP2M1 sets the PRINT FLAG variable to TRUE.
REGISTER
The REGISTER path is almost identical to the FULL path. The only
difference 1is that the page containing all of the common
information is not printed. The header on the page containing
the register translation supplies a summary of the information
instead.
NONE
The NONE path sets the PRINT FLAG variable to FALSE (DSP2Ml (8]).
All of these paths converge again at DSP2Ml @ . At this point

control once again passes to the DEVICE ENTRY procedure in ERM23.

The first thing the DEVICE ENTRY procedure does upon regaining control
is test the PRINT FLAG variable (ERM23 ©®). If it is FALSE, the
module exits (ERM23 ~ @).

If the PRINT_FLAG variable is TRUE, ERM23 performs the bit~to-text
translation of the registers. Following that, any required notes are
indicated by PUTs to the NOTE NUMBERS file specifying the note index
(ERM23 0). The module then exits (ERM23 @).

When ERM23 exits DSP2Ml regains control and the coroutine partnership
is broken (DSP2M1 ﬂD). The DEVICE ERROR procedure then checks for
entries in the NOTE NUMBERS file. If there are any, DSP2Ml computes
the name of the notes file. The name of a notes module is the same as
its corresponding device-level module except the first character of
the module name is the 1letter "N", in this case NRM23. The notes
module is then called to print the requested notes.

4.3.1.2 1Interaction Between DSP2P1 and ERM23 - The relationship and
flow of control between the DSP2M1/DSP2P1 module and device-level
modules is identical. They both pass the same information and control
back and forth at the same points. However, there are differences in
the modules themselves. This section explains those differences.

As in the previous discussion, you may wish to remove the pages for
Sections 4.6.1 and 4.6.3 from your book for easier reference in
following the interaction between these two modules.

ERROR LOG CONTROL FILE ARCHITECTURE

Following are the differences between the DSP2M1 and DSP2P1 modules.

DSP2P1 declares the logical variable INDICATE.TAPE FLAG (DSP2P1 ‘)) .
This variable 1is set by DEVSMl to indicate whether or not the device
is a magtape. The variable is wused later in processing summary
information.

If the packet is not rejected and if the report format is not NONE,
the variable REPORT.PRINT COUNT is incremented (DSP2P1 @). This
variable keeps a count of how many events were printed (as opposed to
looked at, which is a separate tally).

After the device-level module has printed (if instructed to) and has
exited back to DSP2Pl, the UPDATE_RECORD procedure in DSP2Pl is called
(DSP2P1 @).

The UPDATE RECORD procedure tests to see if an ERROR summary was
requested (DSP2P1 C)). If not, processing goes on to the GEOMETRY
section.

If an ERROR summary was requested, DSP2P1 searches the ERROR_INFO E
file to see if an error having the same error type has been
encountered. If so, the record in the file describing that type of
error is updated to show that one more error occurred, and when it
occurred. If no such error is found in the file, a new record that
describes the error is added to the file. Processing then goes on to
the GEOMETRY section.

The UPDATE_RECORD procedure then tests to see if a GEOMETRY summary
was requested (DSP2P1 ©). If not, the procedure exits.

Updating the ERROR INFO G file is much the same as wupdating the
ERROR_INFO_E file. The only difference 1is that the information
recorded is somewhat different. 1In particular, the GEOMETRY summary
records information regarding where on the device the error occurred.
It is for this reason that we need to know whether or not the device
is a magtape; magtapes have no valid geometry information.

4.4 DISPATCHING

This section discusses module dispatching. Dispatching happens at two
levels: event-level dispatching and device- or CPU-level dispatching.

4.4.1 Event-Level Dispatching

All events that occur in the Error Logging System are assigned a
unique combination of code and subcode. These code/subcode
combinations can be found in the file EPKDF.MAC (EPKDF$ macro in
EXEMC.MLB) along with the definition of the structure of error log
packets. See Appendix C for a listing of EPKDFS. Table 4-1
summarizes the error logging code/subcode combinations.

ERROR LOG CONTROL FILE ARCHITECTURE

Table 4-1
Error Logging Code/Subcode Combinations

Code Subcode

1. Error Log Control . Error Log Status Change
Switch Logging Files
Append File

Declare Backup File
Show (not logged)

. Change Limits

.

AU s W N
.

2. Device Errors 1. Device Hard Error
2. Device Soft Error
3. Device Interrupt Timeout

nterrupt Timeout

3. Device Information 1. Device Information Message

1. Device Mount

2. Device Dismount

3. Device Counts Reset
4. Block Replacement

4. Device Control Information

5. CPU-Detected Errors 1. Memory Error
2. Unexpected Interrupt

6. System Control Information 1. Power Recovery

7. Control Information 1. Time Change
2. System Crash
3. Device Driver Load
4, Device Driver Unload
5. Message

Each code group is processed by one of the dispatcher modules. These
modules are named DSP1M1/DSP1Pl, DSP2M1/DSP2Pl, ..., DSP7M1/DSP7Pl.
The name of the dispatcher module is derived on the fly in the
DISPATCH module's DISPATCH procedure by concatenating the following
elements:

e The string "DSP"
e The event code (HEADER.CODE_TYPE) converted to ASCII decimal
e The string "ML" (for RSX-11M) or "P1" (for RSX-11M-PLUS)

The single-digit ASCII conversion of the code value (obtained from the
HEADER subpacket) 1is required because the RSX-11M/M-PLUS Librarian
utility LBR allows a maximum of six Radix-50 characters for a module
name. The code value 9 is currently unused; values 0 and 8 are
reserved.

Once the dispatcher module has been called it checks to see if this
type of event was requested. If the event type was not requested, the
module returns, effectively 1ignoring the entry. Event types are
requested by using the /TYPE command line qualifier. The event types,
codes, and the dispatcher modules that process them, are 1listed in
Table 4-2.

ERROR LOG CONTROL FILE ARCHITECTURE

Table 4-2
Event Types, Codes, and Their Dispatcher Modules

Type Codes Dispatcher Modules

ALL 1-7 DSP1M1/DSP1P1l, ..., DSP7M1/DSP7P1l

CONTROL 1 DSP1M1/DSP1P1

ERRORS 2,3,5 DSP2M1/DSP2P1, DSP3M1/DSP3P1l, DSP5M1/DSP5P1
MEMORY 5 DSP5M1/DSP5P1

PERIPHERAL 2,3 DSP2M1/DSP2P1, DSP3M1,DSP3P1

PROCESSOR 5 DSP5M1/DSP5P1

SYSTEM_INFO 4,6,7 DSP4M1/DSP4P1, DSP6M1/DSP6P1, DSP7M1/DSP7P1

Once the dispatcher module determines that this type of event was
requested, it checks to see if the subcode is in range. If it is not,
the event is rejected with an error message.

At this point dispatcher modules may declare and print the DATA
subpacket themselves or may call lower level modules to do so. The
error-logging dispatcher modules handle all of the printing for the
BRIEF report mode. 1f the FULL report mode 1is specified, the
dispatcher modules call one or more of the following modules to print
the common portions of the event:

System, Width Formatter Module(s)

~ RSX-11M, NARROW ~ FMINM1, FM2CM1, FM3CM1 and FM4NM1

' RSX-11M, WIDE

.

' FMIWML, FM2CM1, FM3CM1 and FM4WM1

The dispatcher module may print the rest of the event itself or work
with a lower-level module.

4.4.2 Device-Level Dispatching

Device-level dispatching is performed with the assistance of the
DEVSMl module. This module is called by DSP2M1/DSP2P1, DSP3M1/DSP3P1l
and DSP4M1/DSP4Pl and determines, among other things, the correct
device-level module for the event.

Here is a description of how DEVSM1 works (see the source code for
exception cases; this discussion addresses only usual cases). The
first thing DEVSM1l checks is whether there is a DEVICE ID subpacket.
If no DEVICE_ID subpacket is found, an error results. Once past that
check, DEVMS1 uses the device mnemonic to search the DEVICE INFO
table., If the device is not found, DEVSMl specifies the EUNKWN module
in the variable INTERMOD DEVERR.DISP NAME.

Assuming that the mnemonic is recognized, DEVSM1l tests to see if (a)
the mnemonic 1is that of a MASSBUS device, and (b) there is a DATA
subpacket. Assuming both are true, DEVSM1 looks ahead into the DATA
subpacket to obtain the MASSBUS Drive Type from the logged registers.

4-18

ERROR LOG CONTROL FILE ARCHITECTURE

This value is unique for each MASSBUS device. Once this wvalue is
obtained, the DEVICE INFO table is searched again, this time using the
drive-type value as the key. Assuming this search turns up a match,
the variable INTERMOD DEVERR.DISP NAME 1is filled in with the module
name specified by the resulting record in the table.

If there is no DATA subpacket, or if the device 1is not a MASSBUS
device, the search of the table ends up pointing to the first record
that matched on the specified mnemonic. DEVSM1 performs a further
search of the table based on the mnemonic as well as the device size
(which is provided in the variable DEVICE ID.DEV TYPE). The variable
INTERMOD DEVERR.DISP NAME 1is then filled in with the module name
specified in the record that is the result of this search.

4.4.3 CPU-level Dispatching

CPU-level dispatching is performed by DSP5M1/DSP5P1. The HEADER
subpacket contains a variable called PROC TYPE that indicates the type
of processor the error was logged on. DSP5M1/DSP5P1 uses that
variable to search a table that contains module names associated with
the CPU-type value.

4.5 SUPPORT OF NON-DIGITAL DEVICES

This section explains what you have to do to provide error-logging
support for non-DIGITAL devices.

Adding error-logging support for a non-DIGITAL device consists of
either one or three steps, depending on the desired level of support.
The first step is to include error-logging support in the driver.
Without this support no information can be logged for the device. For
full error-logging support, you must perform two more steps: write a
device-level module for the new device, and add it to the control file
library and make the Error Logging System aware of the new module.

The following sections show you what vyou need to accomplish these
steps.

4.5.1 Error-logging of Unknown Devices

The Error Logging System can handle entries from devices unknown to
the system. Entries from an unknown device are handled by the EUNKWN
module, which functions as a universal device-level module. For a
BRIEF report, EUNKWN will pass back "N/A" in the INTERMOD_ DEVERR
variables to indicate that the information is not available. For a
FULL report, EUNKWN prints the device registers in a dump-style format
where the bit-to-text translation would normally take place. The rest

of the report is unchanged.

4.5.2 Providing Driver Support for a Non-DIGITAL Device

The Executive module ERROR contains the routines to be wused by a
driver to 1log device errors. A device error in this sense can be a
real error, a timeout, or perhaps an informational message. The
following sections discuss the routines in general. See the code in
[11,10] ERROR.MAC for more detail.

ERROR LOG CONTROL FILE ARCHITECTURE

For the most part, driver support 1is the same for RSX-11M and
RSX~-11M-PLUS. Where there are differences, the full discussion is
repeated.

4.5.2. l $BMSET on RSX—llM - On RSX-11M, the $BMSET. coroutine raises
the processor’ priority. to 7 (to lock out. 1nterrupts) and then calls
“the‘caller’ to start the ‘I/O functlon.(When the‘ re-called caller
returns, SBMSET 1owers the. processor priorlty to. 0, thus allow1ng
llnterrupts once agaln. L SR T L e

INPUTS
None)f&jtff;f fyi_ tﬂm,)t;¢:<g

OUTPUTS'

None T

4.5.2.3 $DVTMO and $DTOER on RSX-11M - On RSX-11M, the routine $DVTMO
logs device timeouts at PRO, and the routine $DTOER logs device
timeouts at device priority. The routines behave identically, except
that S$DTOER disables the device interrupt and lowers the processor
priority to 0. , «

If the symbol D$$IAG is defined, the routines test to. see if the
timeout . is -a diagnostic function, 0 Diagnostic functions are never
logged : - TR o Ee e e . A

The. routlnes load the error code and subcode 1n ROTfaﬂd' the rohtine
falls into the rout1ne $DVCER.H Y S L

INPUTS~
'R2 = CSR Address ke e, ’ ’
R4 = SCB Address'ﬁyy T
OUTPUTSf“L‘ i e e «
'Rl ;‘I/O Packet Address (1f D$$IAG deflnedr and "'diagﬁOStic
funct1on) e A S

C = 0, 1f D$$IAG not deflned or. ndt .a dlagnostic ffunction.
Create . an error log packet and fill it in. Put a pointer to
the packet, (S.BMSV) in the SCB and - set the "error:in progress"
pit SP.EIP in S.PRI. SR

ERROR LOG CONTROL FILE ARCHITECTURE

C =1, If D$SIAG defined and a diagnostic function, - Set the
© "error in progress"™ ‘'bit 'SP.EIP in S.PRI. Do not create an
error log packet. ‘

4.5.2.4 $DVIMO a ; *
$wmmtwmﬂwwmmnnwmw, : 4 sUsy
ittt il S Bl iy . Sl
i e 1 I s ‘n 5 >,§‘ ;
V.. i e i N "m,“ “\«x"w» & N oty ‘ T
t,wl‘;;x;:»ia« ,1 G e ‘;“ux o 1 ’w T ST
dev ‘;mwit>.m ym, v%~’wg» pwm, nesmwybeh
x o] N«x.,;g v:\:“ il ,u‘ s < o u, (,,\((," R 1, ,,‘,,”y, &% ,“n,g; w\u e g g
identic a«,lr«l»x s, .mep S th o >$QTQER, . :ts tv e he vice. rrupt and
g m R o iy o L(, A 5 %3 ‘n,,, e M i i (‘ S T o e e G g
,m,]:)m«,) Sl m“;‘ 4 BN ,g» o 1o ,,x.wak o e *t ey e i ! ;n,"» Sl e ,,‘,“eg>x»;‘*;»i<,<.;n., it "«»i,»r i «x,,».‘w 3 n«"*!\,,‘ il
i ‘v it = o g 0 Y O SR n,,v b B S e T Do, e o o gl TN
i s s v "» D . 5‘» n‘N g A i u ‘Mun", LX) v‘,» e ;)5%;, W,‘ w %),‘.«wa s x;) .x,msw,gx, w ‘*W“ W e i m’,,u»,m.,,(xm X«Q,M“K’w?,i il
‘ m m,;«,,u T e R ol ~«, U e R R S et AT e AR gt
e e “‘»m««,,w et R L e i e q,k,«ww,(o 5 g uwmw‘«« 5 e ni»:wu,.w;w,,“-
i e x‘)‘x - g R i s S »«x,,ﬂi o o Arah
ki S ,u, il N L cha 0 iR e A i o S
‘L,m A W WAL e e »1,,.uv i «ﬂfsz S ,»mw P S u Do R S Sy o el e
2 S g iy « i ’w‘ L D P f Fkaste o 3 e : s U
et S e gk " 1 - Ty i ‘ v i sl o s
whm ines . cl h “mnte pgr e mwhxtm'xwaa«wmﬁﬁthewmﬁﬁﬁwwwpﬂdg
5“‘,;«,&'&“ S R T T m«;‘) 2 ;;y e ,m,’f‘g»ﬂ“»,(,3;3,::y(,ik*;,»,‘» i ‘;'**x ‘«u‘ ey niwa i ,,s DR e T
L al, i o 1 ae] & 4 i ; b - e, . » o
al N, ; h b gl ke the o1 Bondg @g SEic Tony
pmwzxpumw»wmﬁﬂwmg“&éﬁabx,w@gw(,,sA £oth Ww«k@u,ﬁnmﬁ" iisiacdiagno m¢m 1c £ s
IR e G M ol o *w., o M, b T ’*L @ o e g S nm o L wm PR xw »»! i L By ,tm i m »L, ,,,’nz Sl
r cfunctir ﬁva‘}e etr'*«u ECICE w;;nm o w:;» e bl S w fi R x;w S
o z.,,l»qu,w‘ i v,,’bx Ao 2y e They 5,,.&‘ T et R ;;wr N e .,k’!“:«,mm)‘!u mn Xm,)“ e & et
S e e Mg N 0 W et s e Tt
o i e n,, i s‘ e »x,qx,f‘ngg Pl LG ‘; & n,‘ L e u’ i R {*wmj‘ e
i “ usw ,,,,‘mm«,;;; s ,W»;,*»n;, 5 *« ,‘,;y m x,;z *w«,‘v‘xﬁ;ﬁ i u‘,w;n«, ol I; o x“‘%x‘” ‘;w T o S ,;‘:; ’s,,‘»s(;q M“"‘f?“’gm‘ ey i o H 'j*m»,‘;;,;m;: (v s i isvi‘u,gm‘ ‘x,,‘?x‘):n&
dn) u ét S BEror o raube 1 RO Aan o Crog i
u g i g N i iy ‘q o ‘m M £ »
‘*m:»«n qw;/ «, it ‘w '~ oS g ‘7 . ~=, m‘«;“«zr’m«.w‘ S x.;*»»:}w«.“;m ‘ac‘wmi“n,*», Rt i w«, T ‘w“ R ML N sn' i b S G m-k,xv«u‘w 0 »»m m
fgaia «m,“ 2 m@;“ A mwm g »Me e »,gxxwagk‘;@»v@:«g»w Bl »gp é,’;?iwxi’b“:fn," ’vx»“,s.im;k m,xf;,mgm,;xzwww‘;é« i i :,;, x,:zﬁg,mm, e e “‘1‘" e
ol L TS ot] = it 4 Wx 7»;‘“«1 ‘i‘“”"‘s i ,(n‘ s)»v(‘c o) ‘I““««‘{ixsf“‘w"’ W x(; o L W i "”2"‘ ,,xli&mm m,m;;xx ‘*55“"2?;‘»%"" i uuk
e T e e W | i pidin b R o s <>x i el e e e
x§pwm;v§x» a »gsma,{‘:- a0 xg‘mw‘;@m, «»,;{, o i @m e !m(‘,ES» I Sl e ,‘»Z i Gl ‘k"’,,%‘*vvfnw,2‘“’&,; o o s ﬂm,gg‘ L ?
T Lo L R S G “; L S m,,;” e i e e e
il xmx«‘j;h ? ,,ugn‘,’i:x»"‘wx,g»“; *ty"’ai%xq,‘ . ,w xm m?sf,,:*s e s nu »ﬁm, xx«j‘gw & w,;u,.) il e ‘;”,;““‘hxx,r s i m,s “v”{{’xz&mgﬁ, . ;,m “m‘;*» g «’“m’,?v‘g*xx,’;?f‘,sn,,g >,,;m., s ‘\n‘,g«,,,wa il & %‘ ,,“;,i”
L M P D e e “’i,ﬁ*«»,‘,“ “m« *xx:;,»*w:" ‘m“w.% o L T R e e
X B ok r“m sm‘ o i x‘:x i R («, AN st Wi e I e R mh‘,‘uw i futi]
S m“m k] J i ;hzm";w M* {5 ‘, ,xf“ﬁ A “?a,‘ u"m‘ax;ﬂ’f xx,:”m"‘qyi% . e T i”*x ‘;u,"w ’,;,L‘mi.j*’»& Wy sd‘is;,» *mm‘,x,, i?v,.{"h R ‘”ix» "; Tt
«g, 'xm(‘(;..wy i i e u.f*a(, ol n;x ! w \vs,;m »»,' o u, 5 S x(,,mf"i o i i S i R W e s Gt »c«“ il
hq ’*L " ”’v»w »&%‘Z‘;xxx‘:x(it ﬁw A x,img(xm "3““ s ‘:L hg G gﬂ G ‘%s:;% o x,\’«%‘m,}@ w M“ i M «"*3““”‘ vq‘“" 3,; u; w,“m, w“g;v‘* ;‘x,‘ f%m ZX"’*Z 3"‘“«"‘ ’3”%”“&3"‘:"5“‘;?' ‘f,i‘wﬁ" ss ;x:?;,“*»im W:,ng‘;&o?m(’x% i&ti” m’f ‘*W‘mf“»; % x,’:‘:.,, x,(’n» S
S by m S S T »m w,; i O L Sl i
: Sy ‘m«‘*»mﬁ SR Lo ««wmm S «vw‘ St G s e il o s e ::wiw
i e LGN AT N D SR i e el o ettt o o
‘“’x; i ,«‘f*« mn(‘wm o ey oy e N . o g NG SN ““:nm u,‘,"m(;‘!x,, iy i ,M,, ,;««.X;VVWM e ,,;*»x,r»u R (‘vx,(“qx(el i)
i kx,x,n ,m,k,m,f;w,gnmxx,,“ R . ‘i - aa ¢ 1“@@ i Qf (%e 5 1"* t ,§ m o 1@ i Jt’ he i «“th i qs
wu"mi !”';‘{%’\‘,‘w*‘m’*xx x;,(««u?,a»‘v«' oy wn, x»{’i;»;m»,) el ol ux,}*m«tn(;m,:vu, e i St o R St o g e ol L et w2 e >1,~»»,;»«; i »»mu"‘v” e Phact N it bt
‘ﬁ i ‘vx“"mfwbux R G e ’!r,"x“’%“‘.;“» R n.,; 2 u,.n{:, «{,,‘\ ek 1 "*n H;»“ o Wm]’w R ““«u”w ‘.,x,k I x.(“ Wl 0 B R SR w‘”}" ;;% 15.,“ ;.g.x ot

i staiEn e

;
it ¥ ey

G &
g e
el m,gm,«u, P il L el PR A
ey e s s SOy . i wxh,»x) ’mu,(, U
5 i < e M ! o i
" R x‘*%» P et G R

< o * TN ,,
""x{é W x;m, u{uw: L,W'w"r,’w*',wwx;;imtx\,ﬁsr,x:l::‘é e «3‘?&5« r mifx«;”gi“éu‘ﬁ»{,ﬁ“\“" T im x.«é“,‘*km:"fx‘j‘, i vu,u-ﬁ“m.,,jm,«v Sy m“‘*nw"‘*:\ii‘m 3 ns,ff;yi ‘,‘sww‘”n,‘}’« "m‘v nt‘*‘»;,,(;xu ».L«u b
i Db s e T e G R R O R W% e S g T L s
e Bk R) 7 L bl sl e i P e e e
Lo by,{(xfk,(ak,)i»»‘w,;e,,,x o m G o))Mx,,“«. S x«f“ S i i A e x"" i g e
it g ot x‘ 2 m,“m) xx; i ;,m)zh«ﬁvk s s ”xf"»“:«“"5"(“:“"“*'“, ;;L:xx Dl S el sl u‘;»,))xm « '»sn,:w i e .“, i ;,»»,ﬁm‘ i
il L Yess i St B I B PR e
o T). , 1 S e e ity i G .n, b
b R T o n,,,.(,,» T nz; T et i e : R b i e e e s m il
AR el A w St S S R il S ol e A S ,m; S B, b S
Wi ol mi; S«w g !m, : H(, o ’«n, ’5*’1 A Sl o o i g ‘»7 i e <> e i x\»,,‘k sww, [NG e M e *»gw, g ok
A ’,M.W«x,,‘;x ‘n‘*'.?‘k i ’m:w ’mm’*h, = kv”‘;;&:%‘i i “;m;m.mi;n,‘m,ﬁ»v‘“x i b "*;xi* R ,‘,‘x‘“ b "«m R S Szu’“nq‘xu“qx{f‘ i
i i S "Mm i A 7‘ mu A Sk m, LS S S B “n(xm‘» e Ml G o b e
¢ ‘ i 4 S L i s i;m’w Hen n“.(m; s !xs,vn“xm‘ m,x,w ‘me,’ Y N e txumu,gmm,«m,‘« SRS
il L wmu.gw R A R T J;qu il w», Sl oo Bl B e e («« e e S e o DI
Aok u«ux))*t) *m v m g ,;;Ws» ,,,gk»,z“,w’;»x’n» nxk’:‘ o) n,, i« S s il 4 «Q }‘)Hg‘u, mnbk‘(,}w i s i (w it
e o o iy i RSN R R o e R PRI o . I S (S e RSO T i et i
\,mu il o xw i W, u‘m T, L e T NN i g i oo A“ «,, S R « i .X,..,,»N e
W. i T BB e S e o ‘v M e T AL I N e e R A e . “‘m(‘xu, i e RS e i AV e
St i el ”p,‘u;f" e ,}(>~n§wh;3(x ShR R ’L»"qx“jh,“ »%»VWM‘,,“»x;k“n”‘»‘f“ g “j“x;k,(m,gxx "“z., o s,\:ﬂa’q» f”;(,“ﬁ,,ﬂ i w‘";k M‘xgw D ;ﬂh?, e) e
B R PR e i e ~, i D e e e e LI e R MO N A e e
:‘;w‘“«m g,,hg\&x,,,«*’u,()’«,b‘m,):r. i r;k,,;‘w, {xn)"- A w)‘x R m,rw;,ﬁ st ;:;kmz,, xm’(m 5 o w,}w m\),_ i e wm L;xﬁ‘rr»,z;n "A)xx.““ \m,Q ‘“a;’ m M ,J;.,gxs 52 Ww,kfg,(g), A ,w\u,g;,qu il
P ey B Tt S v;,. o i o i : i U e
il e IO = ‘ i G i n % D 05 ARE 4 S R S S T T O
hx;x,;ﬁ;(«,"“x,m(“:n,‘,‘ :Lgn{“«,r;ixmzl,kq;, S m,ﬁ i >x:, g ”““»}‘"”’ SE Lm,);,)Wt‘;,ﬁ‘m,& SR m{\wx »‘” n‘ >1Xtqu B %%x’z;)g;«(,;‘“,;;«g\;;;,,gn,ﬁw o ngg);&w«:.w iy i s(:h 4 :,,\ o ,%x;’,w, i L,;sm:“’hx;m,,ko,(”xm(uw«;wu S
Sl 5 R m DTy R s i g D e R R wx“m)*‘ L W
“\xxi’:n' it ‘,)Mu i v].."z,wmgm’%x o 3;%;1? 1C ke«stwg‘d L& :»SS,‘,,‘»‘ (e w». },,nm :mf im,‘,m,w u(’*,,“i,wL,H»m("’,(“m,"r\L"‘v(s("),;,"’w’y»,':tr xﬂ«» R e m,)u,m 2 ,,,,x,.‘,‘,,zvm

R e b e o ol S i Sl e e i "u"“ o g, T i s A .
i whx B T xxw»“{ A ‘x«“‘s»"‘ i ‘w”< ”m"‘ m“'w L S B 1 W o *»v‘,%«' «w; 'W“r» “n, wm«, x mw«,, i e S
A ;‘x, S s"'“x.fl"c’:",;’f“m,.ﬁ&»"‘*xg,'ﬂ H e i ’% u,;w o }m;‘w“ e "f,‘,“z’" b w’m»m, S e ‘ he e I ”w;u,w» w»

S e & a3 R nos: e ; i e S R “ o
et i N ot 3 @ t g ", x t S i e w e 1 !

Bl ;y‘ns“m‘~’dx»‘;’5(xg*:f‘“’x'x;*m‘ih‘f i T AL g 31 i »n,n,,; ‘ r@ Koot 5 3‘.» o A,,,m *vu ~~ LYo i 3; 2l ,x P n« e L ‘, L «‘;y,f m,};!

i mtmm i ‘,,n i w(,«,,».w o S);vm, i r,«x L 'm,"“ (o |§xx Tl x»,;n o g;,;,m e, u»;s,;,,;m.o« (i mxmxx.,;ww *17, i 'gw, Gy i zx «x(«x ..‘m,’w. gt
s 1 it mﬁ»x, AN b i i i oy B ¢
i ’x» i Py l 'n,‘w R i"n‘ R x p s S x @ . v W z= 3

S g el - Rl i L £ ' i % i
i i s] S ik N W n S " B N e liend q, T P o " > B S i
S »,,)»»mm,‘ i a.,k.:»,«, ; ; “,g««,‘,‘ i S i, Mxy i I i S S
E;‘v.ls{*mﬁ;sw,‘;‘«&“,»J"x"',«,;:‘,J‘g’x;“j ;1 h X @ t,;;z,,x b A e:c‘;:g o s EIP’ »»1,,“1 2
,w i »Jwﬂ;‘z Q o m,;m,,w n xywmxm "‘;‘«:,13 i n,:‘gasmm: SR w‘;n;*ﬁr»“sxx i Lt ! i s
‘x o !x ‘ w»(“ ,», b s AN e n e, b gy u PEA N o o s ,'u &, i o it EX . ; W “.x,’ i i

S i A e, Sy m.{,,,m,« (v» s ; pan o ‘” S «wm)s il »"«“ b % i s s .,,7“*(,(e,
e *n s “ i),L iy SRR M(,,(i ,izw sl ,sx o e n ot i) oo i e , S (,(: B
i xg,.\ 1 rm e, A ol ,i ‘uk PSR g e, >,,, R x, i i ot i gt x,, »“ gy ;, AT kR M e e
i i n,m m,m A Lr», i, i g e el b ik, NN AR SRR T e o g x,) S B T L LI A TN
*’“;mm,m‘,gy,k ﬁg&‘ Ha«ng‘,ﬁ«f{w.y b mw*m “‘1’?“ X;;w»“' %1 b e Lo ‘“ s Q’; e xs"; ,?am*x,m y ‘;;s)&;u:t) e ««;»,«n;zm,,n’x,ﬁv tzw,,m‘ i ni‘,-u,:xn:“ w",?;u,i} f;» S »h,,m,,x L ,x* ix o L,fimr g
L;‘r«f,‘wu,rvmgu,,»m al ‘q,, iy ».L;«m, e sy xswww‘ «cm :“n"‘g‘f;«x"’ :,g s;wux,‘gyw,,Mw‘tu{» m,’:‘wu,:" ,*xxk,«m’“ n“% S *;;‘“;mﬁ e mgng, L\‘?“ {vm ::x !m:}xb‘{m"‘ "w‘m ‘!» s *,pnﬁwg;w,x;;p L‘«u“ﬁ,.(;«,x;¢!$;1§>x1f:’q m L g
N p&;x, m i 4 "m ot i ILE RSN y iy 2 s i s *w sl
Gy m N o i ik i) "1' o8t m s i u e & y i ‘ anilerr @
ST L z . LT 2O ne i Yo
GRS T »n o o i T et e w“w gl i st i s il , ¢ ‘,)x N S
o \»‘\M o m oy o ’w.‘-n“ u,,, m;’?(zq, i m \‘zm o qz‘;m il »hﬁw» ,M‘ i, m n,w i iy o maw s «,,bx«‘x»gz&m)mm ‘x«“‘“x“r‘)s ww» ‘~x<, »,.“u,*m,,;»,g w«sm il &;,,;N i X‘"*r.u i ‘)»uu,,(i i >i’“"?“w“h 2
o m}Q; a “’nk m ‘!m »if ,m “" “‘ ,x ‘ *'x (‘%3‘«[‘%»"“«“xtﬂ;‘m, n,w,‘)«m o x,{wm;‘q,,:n xx,wa‘,‘ il x.,fw“;x‘,,‘;w“au‘“«y,;)::'x; i e ;‘x,’k : k;ws?‘,:’ e «,,n Ry B bt ‘W’,:‘“n {;xs”“ “nx“‘w,‘wg ,‘m W Qf"m
o ‘ﬂ L 5. g vy W 3 S u,, P x,“ s i A i el i oo oo v,,.m; i 5)9 S "’,y,“m"u,‘”q,& e m‘,'ns,;*x(,, i Mm,,m m'x»w N S
Bl L"‘,»u. S "*v»ti«x., 5»» e m,‘,xex,,‘m,, GO e R e A E RGN, e LN SN R ’wf?”*““mi“ e :«»l«xmunﬁm A T S

4.5.2.5 "$DVERR ‘and $DVCER on' RSX-11M - S$DVERR 'and " $DVCER -‘are “the
same; .. $DVCER : is - the routine ' name, and S$DVERR is,a'synonYm. This
routine logs device errors. If an error is already in progress on the
device, it will - be . ignored. If not, $DVCER allocates an. error log
packet and fills it in with the context of the current transfer. Note
that this routine requires that ‘there'be an I/0 packet assoc1ated with
this error. See the routiné $LOGER (Section 4.5.2.9) to log an error

where there is no I/0 active on the device.
INPUTS

R4 SCB Address
R5 = UCB Address

OUTPUTS

If no error is already in progress on this device, allocate an
error log packet, fill it in, point the SCB to the packet, and
set the "error in progress" bit.

If an error is in progress on this device, this routine is a
no-op.

ERROR LOG CONTROL FILE ARCHITECTURE

4.5.2.7 S$NSIER - This routine logs nonsense interrupts. The routine
identifies the interrupting vector and logs the error.

INPUTS
@(SP) = Contains bits 06:04 of the unused vector number.
OUTPUTS

If a nonsense interrupt is in the process of being 1logged,
increment the interrupt count.

If this is the beginning of the processing of a nonsense
interrupt, identify the vector and create and queue an error
log packet.

4.5.2.8 SFNERL - This routine is called at I/0 completion, or when it
is necessary to queue an error log packet after a successful recovery
of a mid-transfer error. In essence, this routine completes the
processing of an error. '

The routine first inserts the error retry information. It then tests
to see if this was a hard (unrecoverable) error or a soft
(recoverable) error, and updates the packet accordingly. All errors
are assumed to be "hard" up to this point. Depending on the result of
that test, S$FNERL tests against the appropriate limit to see if the
limit has already been met. If the limit had been previously met the
packet is discarded. If not, $FNERL updates the appropriate error
count, 1logs the packet, and sets the SCB to show that the processing
of this error has been completed.

ERROR LOG CONTROL FILE ARCHITECTURE

INPUTS

RO First I/0 Status word
R2 Starting and Final error retry counts (if 0, do not
update limits)

R3 = Error Log Packet Address {if R4 = 0)
R4 = SCB Address or O
R5 = UCB Address

QUTPUTS

Either queue or discard the error log packet (depending on the
limits) and set the SCB to indicate that no error is being
processed.

4.5.2.9 SLOGER - Drivers use SLOGER to create an error log packet
when no I/O0 is present, such as when a driver receives an unsolicited
interrupt from a device that contains information that should be
logged. SLOGER creates the packet normally, but the driver is
responsible for filiing in the DATA subpacket information. Otherwise,
processing is similar to $DVERR.

INPUTS
Length of data to be logged (in bytes)

R4 = SCB Address (If 0, then no I/0 packet is present)
= UCB Address

C = 1, Error cannot be logged for some reason

0, Error can be logged
= Address of DATA area in the packet
= Address of Error Log packet

4.5.2.10 LOGTST - This routine is not for use by drivers. Other
routines in the ERROR module call LOGTST to see if an error can or
should be logged.

4.5.2.11 SCRPKT - This routine creates an error log packet. It is
called as part of the $SMSG directive processing, and by other
Executive routines as part of the processing of a memory error,
nonsense interrupt, time change, power fail recovery, or device error.

In general, the routine determines the required format and size of the
packet, allocates the required amount of pool, and then fills in the

packet. It obtains information from SYSCOM, the appropriate DCBs,
UCBs, SCBs, TCBs, VCBs, and the I/0 packet, as required.

Note that a HEADER subpacket is always required. A forced system
crash will result if SCRPKT detects the condition of "no HEADER
subpacket".

Note also that on RSX-11M, information about concurrent I/0 activity
on other .devices can also be optionally logged. Do this by defining
the symbol ESSACT and doing a new system. (You - must recompile the
error-logging control files, as well,) B

ERROR LOG CONTROL FILE ARCHITECTORE

INPUTS

RO = Packet Code and Subcode (See EPKDF for details)
Rl = Length of DATA subpacket

R2 = Control Mask word (See EPKDF for details)

R3 = Beginning Address of data for DATA subpacket

R4 = TCB Address (for TASK subpacket)

R5 = UCB Address (for DEVICE IDENTIFICATION subpacket)

OUTPUTS

R0 = Unchanged

Rl = Beginning Address of data in the DATA subpacket
R2 = Unchanged

R3 = Beginning Address of Error Log packet

R4 = Unchanged

C = 0, A packet was created
C = 1, A packet was not created
R5 = Unchanged

4.5.2.13 $QUPKT - This routine queues an Error Log packet. If there
is no other packet in the queue, $QUPKT requests the error logger task
(ERRLOG) with a delay of 2 seconds. If there is another entry in the
queue, $QUPKT requests ERRLOG to run immediately. Command packets
(from ELI) always cause ERRLOG to run immediately.

INPUTS
R3 = Pointer to packet for insertion in queue
OUTPUTS

None

ERROR LOG CONTROL FILE ARCHITECTURE
4.5.2.14 S$SQERMV - This routine removes an entry from the error log
queue and transfers it to a user buffer. It is called only by ERRLOG.
INPUTS

R4 = Length of user buffer

R5 Address of user buffer
OUTPUTS
R1 Length of packet

R4 = Unchanged

RS Unchanged
C = 0, Packet was successfully removed
C = 1, Either no packet to remove or packet was too long. If

Rl <> 0, the packet was too long and Rl contains the packet
length. If Rl = 0, then there was no packet to remove.

4.5.3 Error-Logging Support for a Non-DIGITAL Device

Full error-logging support requires two steps beyond driver support.
The first step is to write the device-level module for the new device.
This module contains the detailed instructions on how to interpret the
logged information, that is, the bit-to-text translation information
for the device registers. The information common to all events is
interpreted by the DIGITAL-supplied modules.

The second step is to add the new module to the control file 1library

and make the Error Logging System aware of the new module. The
following sections explain these steps in detail.

4.5.3.1 How to Write a Device-Level Module - This section explains
the general structure of device-level modules, using the RM02/03
module ERM23 as an example. Section 4.6.1 is an annotated listing of
ERM23; Section 4.6.4 is an annotated listing of the notes module for
the RM02/03. Both the discussion here and the code in those two
sections are keyed to each other by the module names (either ERM23 or
DSP2M1) and numbers that look like this: @ .

You may wish to remove the pages for Sections 4.6.1 and 4.6.4 from
your book for easier reference in following the interaction between
these two modules.

In general, the flow of a device-level module proceeds as follows:
MODULE statement followed by module header

PROCEDURE statement

SUBPACKET declaration

Register definitions

Declaration of local work variables and table declarations

Intermodule variable loading

OO0 00600e

Error-type determination

ERROR LOG CONTROL FILE ARCHITECTURE

Coroutine back to caller
Bit-to-text translation and register printing
Note requirements indicated

Exit the module.

© 6 00

Each of these procedures are described in the following sections.

4.5.3.1.1 MODULE Statement -

o

The MODULE statement for a device-level module must.be of the form:
MODULE modulename 'ident' ;

The module name must match the name specified for this device 1in the
DISP_NAME field of the DEVICE INFO table in the DEVSM1 module (See
Section 4.5.3.4). Generally, the module name begins with the letter
"E", followed by five or fewer 1letters indicating the device or
devices served by the module. For example, the ERM23 module handles
the RM02 and RMO3 disks, while the ERP456 module serves the RP04, RPOS
and RP06 disks.

The ident field is exactly what it implies, an identification value
that is stored in the module. Generally, the ident begins with a
letter that identifies the operating system the module is intended to
be used with, such as "M", followed by a version and update number in
the standard DIGITAL style.

............................ Thig includes the copyright statement,
author, date written, and audit trails of modifications.
4.5.3.1.2 PROCEDURE Statement -

The PROCEDURE statement for a device-level module must be of the form:
PROCEDURE DEVICE_ENTRY

The procedure name must be DEVICE_ENTRY. This name is hard coded into
the DSP2M1/DSP2P1 and DSP3M1/DSP3P1 dispatcher modules.

4.5.3.1.3 SUBPACKET Declaration -

(3

The device-level module is responsible for the declaration of the
device data (usually in the form of registers). The SUBPACKET
declaration defines the number of registers, how they are printed, and
the bit-to-text translations for the various bits and fields of the
registers. The general format of the statements is as follows:

ERROR LOG CONTROL FILE ARCHITECTURE

SUBPACKET subpacket name = DISP.NEXT_PACKET NAMED ;

reg_name: WORD MACHINE ;
: BIT [15]: 'true_text' ;
: BIT [14]: 'true_text',
‘false text' ;
aux_label: FIELD [12:2]: 'Bits 12 and 13 = '
3CNV_$BINARY (Subpacket_name.aux_label, 2, '0')
' (B)' ;
: BIT [11]: true_text' ;
reg_name: WORD MACHINE ;

-

END_PACKET ;

The subpacket name is usually REGISTER, although this name 1is not
required. DISP.NEXT PACKET is a variable that contains the subpacket
number of the 'data' subpacket and has been set up by the preceding
modules. The NAMED qualifier indicates to RPT that the register
labels are to be saved for later printing.

What follows next are the definitions of the registers and their bits
and fields.

The end of the subpacket declaration is indicated by the statement
'END_PACKET it

4,5.3.1.4 Register Definitions -

4]

The label assigned to a register provides both a reference to the
register (a variable name) and a name for the register when printing.
The register name is printed later on (if you specified a FULL format
report). In most cases, the Error Logging System uses the same
register names used by DIGITAL field service hardware documents.

For the RM02/03, the first register declared looks like:

RMCS1: WORD MACHINE ;
: BIT [15]: '*Special Condition set' ;
RMCS1_TRE: BIT [14]: '*Transfer Error' ;
: BIT [13]: '*MASSBUS Control Bus Parity Err' ;
: BIT (12]: '*yUnused bit set' ;
: BIT [11]: ' Drive Available',
'*Drive not Available (other port using it)' ;
: BIT [10]: ' UNIBUS B Selected for Data Transfer',
' UNIBUS A Selected for Data Transfer' ;
RMCS1 BA: FIELD [8:21: ' BAl7.BAl6 = '

%CNV_SBINARY(REGISTER.RMCSI_BA, 2, '0Y)
' (B)' ;

: BIT [7]: Controller Ready',

Controller not Ready' ;

Interrupt Enabled’',

Interrupt not Enabled' ;

w
-
3
—
N

ERROR LOG CONTROL FILE ARCHITECTOURE

The first line indicates that the name of the register is RMCS1 and
that it 1is a WORD in length (16 bits). The MACHINE qualifier states
that, when printed, the register is to be formatted in the native
radix for the machine that the report is being generated on. The
native radix for the PDP-11 is octal, and for the VAX-11l, hexadecimal.
Other print qualifiers are available to change the radix, such as HEX,
OCTAL, DECIMAL, BCD, BINARY, and RADS5O0.

The second line defines bit 15 of the register RMCS1l, including when
it is to be printed and what is to be printed. Only one text string
is provided. This indicates that the bit is to be printed only when
true (set). Otherwise, nothing is printed for that bit.

Bit 14 has a label of RMCS1 TRE. Labels assigned to bits and fields
are never printed. They are allowed so you can reference the bit or
field as a variable. As with bit 15, the text for this bit is printed
only if the bit is set.

Bit 11 has two text arguments. The first argument is printed if the
bit is set and the second argument is printed if the bit is reset. 1In
other words, this bit will always be printed.

Bits 8 and 9 are defined to be a FIELD with the variable name
RMCS1 BA. The arguments for a field are as follows:

FIELD [starting bit number:number of bits]: 'other string',
- T -7 '0 string’',
i 1:str ing*,
'2 string’',

'N_string' ;

The 0_string is printed if the value of the field 1is zero. The

1 string is printed if the value of the field is 1, and so on. The

other_string is printed if the field has a value that has no

corresponding text string Note that for the field RMCSl_BA there is
+vri ha

.
r\n]tly an f\é-hov s re fcre +hia F-g’lﬁ 1s :'Irr-_stve Nnrin+tad

»
Ciia i r o viii s Gy pLaiuicClUo.

ing. Th
A technique that is used in the DIGITAL device~level modules is to
declare a field over any contiguous unused bits. The other string is
defined to be 'Unused bits set', and the 0_string is defined to be
NULL (the null, or zero length string). If the field has the value
zero, nothing is printed. 1If, however, any of the bits are set, the

field appears in the report.

Note that all of the text strings associated with bits and fields have
as their first character either a space or an asterisk. RPT, when
printing the text for a bit or field, removes the first character of
the string and places it 1in front of the bit or field position
indicator. An asterisk signals some kind of special condition. For
example, bit 11 of RMCS1l can print one of two ways, either as:

[11] Drive Available
or as:
*[11] Drive not Available (other port using it)
Remember that the asterisk does not necessarily indicate an error,

just something interesting. A blank in front of the position
indicator means a normal or status condition.

ERROR LOG CONTROL FILE ARCHITECTURE

You can use IF...THEN...ELSE, CASE, and SELECT statements to
conditionalize the declaration of the subpacket. The statement blocks
in these structures must be enclosed by BEGIN and END. You can use
variables previously declared in the subpacket even though the
declaration of the subpacket is not complete. Also note the wuse of
the %LOK (lookahead) functions in various device-level modules. They
look into a subpacket before it is declared, usually to produce
variables to control the declaration.

Note the variable REGISTER.LENGTH towards the end of the subpacket
declaration in ERM23. This variable was created when the SUBPACKET
statement was executed. The wvariable name is of the form
subpacket name.LENGTH and contains the number of bytes in the
subpacket’,

4.5.3.1.5 Declaration of Local Work Variables and Tables -

(5

The device-level module often needs some local variables and tables.
These are generally defined after the end of the subpacket
declaration, although this is not required. Remember, however, that
variables must be declared in a module before they can be used.

4.5.3.1.6 Loading of the Intermodule Variables -

(6]

The DISPATCH module declares a collection of variables having the
group name INTERMOD DEVERR. Some of these ASCII string variables pass
information from the device-level modules back to their caller. The
variables that must be filled in are:

[] INTERMOD_DEVERR.DRIVE_SN

[INTERMOD_DEVERR.DEV_FUNCTION

[INTERMOD_DEVERR.PHYS_UNIT

[] INTERMOD_DEVERR.ERROR_CYLINDER

[INTERMOD_DEVERR.ERROR_SECTOR

[) INTERMOD_DEVERR.ERROR_HEAD

° INTERMOD_DEVERR.ERROR_GROUP

[) INTERMOD_DEVERR.BLOCK_NUMBER

e INTERMOD DEVERR.ERROR_TYPE

e INTERMOD DEVERR.DRIVE TYPE (See Section 4.5.3.3 for more

details on this variable.)

This section of the module is where these variables are filled in.
Use the string 'N/A' if the information is either not applicable or
not available. Note that for certain devices, most notably magnetic
tapes, the ERROR CYLINDER variable is filled in with the string '222'.
This flag tells the dispatcher module to suppress the printing of the
section entitled Device Error Position Information. Note that one of
the variables to be filled in contains the error type. See the next
section for more details on how the error type is determined.

4-29

ERROR LOG CONTROL FILE ARCHITECTURE

4.5.3.1.7 Determination of the Error Type -

7]

The error-type definition is essentially a determination of the most
likely problem as indicated by the error bits for a given event. It
is not a determination of 'what broke', but rather an 1indication of
‘what happened'. The error type is determined solely on the basis of
the bits in the current event. No inter-event analysis is performed.

The error type is determined by a precedence parse of the various
error bits found 1in the device registers. The DECODE statement, in
conjunction with IF...THEN...ELSE-type constructs, is used to search
the bits in a specific order. The first condition found to be true
stops the search.

4.5.3.1.8 Coroutine Back to Caller -

(8]

Once all of the intermodule variables have been filled in, a coroutine
statement returns control to the device module's caller. The caller
examines the returned information and determines whether to continue
processing the event. Nothing has been printed up to this point in
the processing of this event.

If the decision is not to proceed (to reject the event), the caller
(a) sets the wvariable INTERMOD DEVERR.PRINT FLAG to FALSE and, (b)
coroutines back to the device-level module.

If the decision is to proceed, the caller performs some or all of the
printing, depending on whether the print format is FULL or BRIEF. 1If
the FULL format is specified, the caller (a) prints everything except
the device registers, (b) sets the variable INTERMOD DEVERR.PRINT FLAG

to TRUE, and (c) coroutines back to the device-level module. If the
format is BRIEF, the caller (a) performs all required printing, (b)
sets the variable INTERMOD DEVERR.PRINT FLAG to FALSE and (c)

coroutines back to the device-level module.

When the device-level module regains control it examines the print
flag. If TRUE, the module prints the device registers and generates
any required note indicators. If the print flag is FALSE, the module
exits.

4.5.3.1.9 Perform the Bit-To-Text Translation and Register Printing -

©

If the variable INTERMOD DEVERR.PRINT FLAG is TRUE the device-level
module prints the device registers and performs the required
bit-to-text translation. This is done by executing a WRITE statement
(to produce column headers) followed by a WRITE GROUP statement. The
WRITE GROUP statement references the subpacket name specified in the
SUBPACKET statement. It also uses two variables, REPORT.W G F 1 and
REPORT.W G _F 2, as format strings. These variables are initialized by
the INITM1 module and contain the format strings for printing the
register data in either WIDE or NARROW format. If you need to print
data that does not conform to the formats defined by these variables,
you can define your own format. You can test the 1logical variable
REPORT.WIDE to determine whether a WIDE or NARROW report was
requested.

ERROR LOG CONTROL FILE ARCHITECTURE

If the variable INTERMOD_DEVERR.PRINT_FLAG is FALSE, the device-level
module exits.

4.5.3.1.10 1Indicate Any Notes that are Required -

10

The Error Logging System can print notes for certain conditions that
need additional explanation. If you need such notes, you can create a
notes module (See Section 4.5.3.2 for details) and include it in the
library. You can then request a note by referencing it from the
device-level module.

You request a note by performing a PUT into the NOTE NUMBERS file
specifying the note number in the NOTE NUMBERS.INDEX variable. For
example, the RM02/03 device-level module can optionally generate a
note if certain wunused bits in the RMDA register are set. This is
done with with the code:

If the unused bits 5 to 7 are set in the RMDA register.

o e e

IF (REGISTER.RMDA [5:3] NE #BB'0')
THEN

Print the note saying that it may cause an invalid
sector address to be recognized resulting in a
possible invalid address error.

PUT NOTE NUMBERS INDEX = 1 ;
END_IF ;

When the device-level module exits, the caller tests to see whether
any notes were requested. If notes were requested, the dispatcher
strips the first character from the device-level module's name and
replaces it with the letter 'N'. For example, the notes module for
ERM23 (the RM02/03 device-level module) 1is NRM23. The dispatcher
calls the notes module, which determines which notes were requested
and prints them.

Multiple notes can be requested. They are printed in the order
requested.

4.5.3.1.11 Exit the module -

o

When everything is done, the device-level module exits. Exiting a
module implies a RETURN to the module's caller. Exiting from a
device-level module also breaks the coroutine relationship.

4.5.3.2 How to Write a Notes Module - This section explains the
structure of a notes module using the RM02/03 notes module as an
example. Section 4.6.4 contains an annotated listing of this module.

ERROR LOG CONTROL FILE ARCHITECTURE

Here, in general, is the flow of a notes module:
MODULE statement followed by module header
PROCEDURE statement

Notes heading

Selection of a note for printing

Handling of an unknown note number

Getting the next note

OO0 00600

Exit the module

These sections are now explained in detail.

4,5.3.2.1 MODULE Statement -

The MODULE statement for a notes module must be of the form:
MODULE module name 'ident' ;

The module name of a notes module 1is related to its corresponding
device-level module name by replacing the first 1letter of the
device-level module's name with the letter 'N' to get the notes module
name. This convention must be followed, because the notes module name
is derived from the name of the device-level module and 1is never
looked up in a table.

See Section 4.5.3.1 for an explanation of the 'ident' field of the
MODULE statement.

4,5.3.2.2 PROCEDURE Statement -

(2]

The PROCEDURE statement for a notes module must be of the following
form:

PROCEDURE NOTES

The procedure name must be NOTES. This is wired into the
DSP2M1/DSP2P1 and DSP3M1/DSP3Pl dispatcher modules.

4,5.3.2.3 Notes Heading -

(3]

The notes heading declares what is about to be printed. Notice that
notes appear directly following the register interpretation in FULL
and REGISTER reports only.

ERROR LOG CONTROL FILE ARCHITECTURE

4.5.3.2.4 Selecting a Note for Printing -

(4

Notes are selected for printing by testing the NOTE NUMBERS file for
context after performing a POINTER NOTE NUMBERS FIRST operation. 1If
records remain (that is, if there is context) a SELECT is performed on
the variable NOTE_NUMBERS.INDEX. This variable indicates which note
to print.

4.5.3.2.5 Handling an Unknown Note Number -

(5

The ELSE clause of the SELECT statement traps unknown note numbers. A
SIGNAL 1is performed using the 'UNKNWNNOT' error indication. The note
number and the drive type are passed to the error handler as string
arguments.

4.5.3.2.6 Getting the Next Note -

The next note is obtained by POINTER NOTE_NUMBERS NEXT. This causes
RPT to point to the next record in the NOTE NUMBERS file. If another
record exists, the NOTE_NUMBERS file has context at the top of the
WHILE...DO loop; otherwise there will be no context, which means that
there will be no more notes.

4.5.3.2.7 Exit the Module -

When everything is done, the notes module exits. Exiting a module
implies a RETURN to the module's caller.

4.5.3.3 MASSBUS and Non-MASSBUS Considerations - All device-level
modules work essentially the same way. The only exception is that
MASSBUS modules are not required to fill in the variable
INTERMOD_ DEVERR.DRIVE_TYPE, whereas non-MASSBUS modules are.

This exception has to do with mixed MASSBUS configurations. With
mixed configurations, the Executive's database may not match the
actual configurations. A mismatch can happen if unit plugs have been
inadvertently swapped.

The Error Logging System deals with this possibility as follows:

1. When a device's mnemonic is found in the DEVICE INFO table in
module DEVSM1l, the MASSBUS FLAG is checked. 1If it is TRUE, a
lookahead into the device registers returns the device's
DRIVE_TYPE.

2. The DEVICE INFO table is then searched again to find a record
having that drive type.

ERROR LOG CONTROL FILE ARCHITECTURE

3. The Error Logging System then dispatches to the module
corresponding to the actual registers logged, not to the
module indicated by the mnemonic provided by the Executive.

For MASSBUS devices, the Error Logging System uses the device name
provided by the DEVICE_INFO table. This name will always be correct,
as each MASSBUS device has a unique drive-type value. 1If there 1is a
mismatch between the mnemonic supplied and the device type as
determined by examining the registers, the device-type field in the
printed report is preceded by an asterisk.

For non-MASSBUS devices, it is the device-level module's
responsibility to supply correct drive-type information. The DEVSMI
module fills in the value based on the device's mnemonic and size, but
sometimes this information 1is not accurate. The RKO03 and RK05 are
examples of where this is necessary. Both RK03 and RKO05 device errors
are processed by the ERKO5 module. The ERKO5 module figures out,
based on the device registers, which kind of drive it is and fills in
the DRIVE TYPE variable accordingly. Another example is DU devices.
In this case, the Error Logging System 1is only concerned that the
device mnemonic is DOU. It 1is up to the modules that handle these
devices to provide the drive-type information.

4.5.3.4 Making the New Device-Level Module Known - The Error Logging
System 1is made aware of a new device-level module by adding a record
to the DEVICE INFO table in the DEVSM1l module. A section of the table
is reproduced in Table 4-3.

Table 4-3
The DEVICE_INFO Table

TABLE DEVICE INFO ;

MNEMONIC tASCII [2] ; ! Device mnemonic

PRINT_NAME :ASCII [6] ; ! Name for printing

ALT_PRINT NAME tASCII {12] ; ! Alternate name for printing

DISP_NAME :ASCI1 [6] ; 1 Name of device module

SIZE : LONGWORD ; 1 Size of device

MASSBUS_FLAG :LOGICAL ; I True if a MASSBUS device

DRIVE_TYPE :BYTE ; ! MASSBUS device type number
BEGIN_TABLE

'cT', 'TU6GO', 'TU60', 'ETAll’, #LD'O*, FALSE, #B0O'0’

'DB', 'RPO4', 'RP04/05"', 'ERP456', #LD'171798', TRUE, #BO'20' ;

'DB', 'RPOS‘', 'RP04/05', 'ERP456', #LD'171798', TRUE, #B0'21' ;

'DB', 'RPO6', 'RPO6', YERP456"', #LD'340670', TRUE, #B0O'22' ;

'DD', 'TUS8', 'TUS8"', 'ETUS8', $LD'512"', FALSE, #BO'0' ;

'DF', 'RF11l', 'RF11°', 'ERS11', $LD'-1"', FALSE, #BO'0Q"' ;

'DK', 'RKO5', 'RK03/05"', 'ERKO5', #LD'4800', FALSE, #BO'0' ;

'DL', 'RLOl', 'RLOL1', 'ERL12', #LD'10240°, FALSE, #BO'0' ;

'DL', 'RLOZ2', 'RLO2', 'ERL12', #LD'20480"', FALSE, #BO'0' ;

'DM', 'RKO6', 'RKO6', 'ERK67', #LD'27126°', FALSE, #BO'0Q’

'DM', 'RKO7', 'RKO7', 'ERK67', #LD'53790"'", FALSE, #BO'0' ;

{continued on next page)

ERROR LOG CONTROL FILE ARCHITECTURE

Table 4-3 (Cont.)
The DEVICE_INFO Table

'DP', 'RPO3', 'RPO3", 'ERP23', #LD'80000', FALSE, #B0'0' ;
"DR', 'RMO2', "RM02/03', 'ERM23', #LD'131680', TRUE, #BO'25' ;
'DR', 'RMO3', 'RM02/03', 'ERM23', #LD'131680', TRUE, #B0O'24' ;
'DR', 'RMOS', "RMO5 ', "ERMO5', #LD'500384', TRUE, #B0'27' ;
'DR', 'RM80', "RM80", 'ERM80', #LD'242606', TRUE, #BO'26' ;
'DR', 'RPO7', "RPO7", 'ERPO7', #LD'1008000', TRUE, #B0'42' ;
'pDS', 'RSO3', 'RS03/04', 'ERS34', $LD'1024°, TRUE, #BO'0' ;
'DS', 'RS03', 'RS03/04', 'ERS34', #LD'1024', TRUE, #BO'l' ;
'DS', 'RS04', 'RS03/04°', 'ERS34', $LD'2048', TRUE, #BO0'2' ;
'DS', 'RS04', 'RS03/04', 'ERS34', #LD'2048°', TRUE, #B0'3' ;
'DT', 'TUS6', 'TUS6’, 'ETC11', #LD'576', FALSE, #B0'0' ;

The columns of the table, taken from left to right, correspond to the

Aan~laraAd 1itamae MNEMOMTC DRTNM NAMRE ATmM PDTK‘II'I" NAMDP NTAD NAMBE CT7W
Uclrarcl 1 LTS rININIVINLA Sy ERLINL vowidiy s NLINL N 10y Laior walitiy Slidaby

MASSBUS_FLAG, and DRIVE TYPE. Following are explanations of each of
these declared items.

MNEMONIC

The mnemonic is a two-character ASCII field that is the device
mnemonic, as found in the Device Control Block (DCB). Records
should be kept in alphabetical order by mnemonic.

PRINT NAME

This six-character ASCII field identifies the particular device.
This field 1is used in the printing of the Device Identification
Information section of FULL or REGISTER reports whenever the
device registers are available. 1In general, this field is used
unless devices are being mounted or dismounted. 1In those cases,
the device registers are not available and, depending on the
device, there may be insufficient information to completely
identify a device. When this occurs, the ALT PRINT NAME field is
used instead. - -

ALT PRINT NAME

This twelve-character ASCII field identifies the device when the
device registers are not available, usually for mounts and
dismounts. In these cases, depending on the device, there may be
insufficient information to identify a device completely. For
example, when an RP04 is mounted, the only information available
that can identify the device is the mnemonic DB and the device
size., This information is the same for an RP04 and an RPOS. In
this case, the ALT PRINT NAME field is used, which identifies the
device as an RP04/05. -

DISP_NAME
This six-character ASCII field identifies the name of the

device-level module used to process error-logging entries for the
particular device.

ERROR LOG CONTROL FILE ARCHITECTURE

SIZE

This longword specifies the number of blocks on the device.
There are two special values associated with this field: a value
of zero (0) indicates that the device is a magtape, and a value
of -1 indicates there is no fixed size for the device. DEVSMI1
will not correctly handle combinations of fixed- and
variable-size devices having the same mnemonic.

MASSBUS_FLAG

This logical value indicates whether or not the device 1is a
MASSBUS device. Set it TRUE for MASSBUS devices, and FALSE for
any other devices.

DRIVE_TYPE

This byte specifies the MASSBUS drive-type value. Bach MASSBUS
device has a unique value which is available in the low byte of
the drive-type register. If the record 1is not for a MASSBUS
device, this field should be zero (0).

Once the record has been added to the source module (use SLP so
multiple corrections can be easily merged) the DEVSM1 module must be
recompiled. The first step in this process is to extract the symbol
file for the DSP2M1 module (or DSP2P1 for RSX-11M-PLUS) from the
ERRLOGETC.ULB library. The command should be:

> LBR DSP2M1.SYM=ERRLOGETC.ULB/EX:DSP2M1 (for RSX-11M) or

Once this is done, DEVSMl can be recompiled. The RSX-11M command
sequence is:

>CFL
CFL> DEVSM1,DEVSM1, DEVSM1=DEVSM1,DSP2M1
Option> LITERAL SUPPORT.RSX 11M = TRUE

ONnEioN> rrmonar QEIMRAANM DAV 1TM NrMo = TArCn

bl "R R ¥ [P SRR NP AN B8 SWE DN L o N2 B W R P -g = N - A CARAWS LD
i - mer csermnAnm. T ArmTEr Y -

Option> L {7TERAL SUPPCRT.IC ACTIVITY = FALSE

Option> /

CFL> 7

There is no need to recompile the DEVUDA module as no new variables
are created in this process.

The updated DEVSM1l module can be replaced in the control file 1library
with the command:

> LBR ERRLOG.ULB/RP=DEVEM].ICF

Once this is done, the Error Logging System will be able to associate
the mnemonic of the device with a module used to process entries for
that device.

ERROR LOG CONTROL FILE ARCHITECTURE

At this point you should include the device-level module (and notes
module, if required) in the error log library. This is done by using
the command:

>LBR ERRLOG.ULB/IN=device_level_module.ICF[,notes_module.ICF]

The EUNKWN module is used (with a warning message) if an attempt is
made to process an error log entry for a device that is listed in the
DEVICE INFO table and whose corresponding device-level module is
unavailable.

4.6 CODE EXAMPLES

The following sections consist of examples of source code from the
Error Logging System. These examples are annotated for use with the
preceding narrative text. They are written in the Control File
Language, which 1is documented in the next chapter. The examples in
this chapter are:

e ERM23 device-level module for RM02s and RM03s

e NRM23 notes module for RM02s and RMO03s

4.6.1 RM02/03 Device-Level Module ERM23

Following is an annotated 1listing of ERM23.MAC, the device-level
module for the RM02 and RM03 disk drives.

MODULE ERM23 'MO01.01' ;
ERROR LOG CONTROL FILE MODULE: RM02, RM03

COPYRIGHT (c) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

1
]

1

1

]

!

!

! THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
! AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
! AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
! SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
! OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
! OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERED.

1

1

1

]

1

1

I

!

!

1

1

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT

NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL

s S

EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

VERSION 01.01

ROBERT E. LI 08-~JAN-81

bt b gam S e e s A

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

This is one of the many device modules, which is called by the device
error dispatcher (DSP2cl) or device information dispatcher (DSP3cl)
to process all the device dependent information.
Modified by:

CBP Correct BAE/CS3 register logic

e

PROCEDURE DEVICE_ENTRY

= tem 1= dw e G tee s s

This procedure, which is called via COROUTINE statement from a dispatch
module, declares and translates all .device registers or data fields of
the data subpacket. The intermodule variables required by the dispatch
modules are stuffed with the appropriate values, followed by a COROUTINE
back to the dispatch module. The dispatch module then COROUTINEs back to
this routine a second time, at a point where a write group is used to
print the details of a FULL or REGISTER report.

BEGIN
]

Declare a variable to hold the length of the subpacket.

DECLARE PACKET LENGTH ;

TEMP “:BYTE ;

END_DECLARE ;

-t b= o

- sem s [}

Now get the length of the DATA subpacket. Remember thal the returned value

is in bytes and includes two bytes for the length word.

ET PACKET_LENGTH.TEMP TO %LOK_SLENGTH(DISP.NEXT_PACKET) H
Define the data subpacket offsets and all the print information.
©
SUBPACKET REGISTER = DISP.NEXT_PACKET NAMED ;
(4]
RMCS1: WORD MACHINE ;
: BIT [15]): '*Special Condition set' ;
RMCS1 TRE: BIT [14]: '**Transfer Error' ;
: BIT [13]: '*MASSBUS Control Bus Parity Err' ;
: BIT [12]): '*Unused bit set' ;
: BIT [11]: ' Drive Available',
'**Drive not Available (other port using it)'
: BIT [10]): ' Unibus B Selected for Data Transfer',
' Unibus A Selected for Data Transfer' ;
RMCSl_BA: FIELD [8:2]: ' BAl7,BAle = '
%CNV_$BINARY(REGISTER.RMCSI_BA, 2, '0")
' (B)' ;
: BIT [7]): Controller Ready',
Controller not Ready' ;
BIT [6]: Interrupt Enabled',

Interrupt not Enabled' ;
Function = '
INTERMOD_DEVERR.DEV FUNCTION ;
*Go bit on' ; -

RMCS1_FN: FIELD [1:5]:

BIT [0]:

4-38

°
r

RMDA HD:

RMDA_SEC:

RMCS2:

RMCS2_WC:

es o8 46 o8 ae o0 o

RMCS2_UN:

RMDS:

RMDS_ERR:

e o0 e

TR TR TN TY

s se o0

RMER1:
RMER1_DCK:

s o0 4o ov on

ERROR LOG CONTROL FILE ARCHITECTURE

WORD MACHINE
FIELD [0:16]:

WORD MACHINE
FIELD [0Q:16]:

WORD MACHINE
FIELD [13:3]:
FIELD [8:5]:

FIELD [5:3]:
FIELD [0:5]:

WORD MACHINE

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

DTmM
D11

BIT

BIT

BIT

BIT

[15]:
[14]:
[13]:
[12]:
[11]):
[10]:
[9]:
[8]:
[

71
[6]:
[5]:
[4]):
[3]

FIELD [0:3]:

WORD MACHINE

BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT

BIT

181«

{147:
[13]:
[12]:
fi1}:

[10]:
9]:
8]:
7]:

-~ —

6]:

FIELD [1:5]:

BIT

[0]:

WORD MACHINE

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

[15]:
[14]:
[13]:
{izj:
[11]:
[10]:
{ 9):
[8]:
[71:

Device-Level Module

%CNV_$DECIMAL_P(%COM_$NEGATE(REGISTER.RMWC), 6)
| ' words remaining' ;

' Bus Address Register' ;

'*Unused bits set', NULL ;

' Track Address = '!

J %CNV_$DECIMAL_P(REGISTER.RMDA_HD, 2) ;
*Unused bits set (see note)', NULL ;

' Sector Address = !

! %CNV_SDECIMAL_P(REGISTER.RMDA_SEC, 2)

'*Data Late' ;

'*Write Check Error' ;

'*parity Error';

'*Nonexistent Drive' ;

'*Nonexistent Memory' ;

'*Program Error' ;

'*Missed Transfer' ;

'*MASSBUS Data Bus Parity Error' ;
Output Ready (silo contains data)',

' Output not Ready (silo empty)' ;

' Input Ready (silo not full)',

' Input not Ready (silo full)' ;

' Controller Clear '

l '(clears all drives as well)' ;
*Parity Test set (even parity)',

' Parity Test reset (odd parity)' ;

'*Bus Address Increment Inhibit' ;

' Drive Selected = '

| INTERMOD_DEVERR.PHYS_UNIT H

' Attention Active' ;

'*Error (RMER1,2 have bits set)' ;

' Position in Progress' ;

' Medium Online', '*Medium not Online' ;

' Drive is Write Locked',

' Drive is Write Enabled' ;

' Last Sector Transfered (last of the pack)' ;
' Programmable (ports program selectable)' ;
' Drive Present', '*Drive not Present' ;

' Drive Ready',

' Drive not Ready' ;

' Volume Valid', '*Volume not Vvalid' ;
'*Unused bits set', NULL ;

' Drive in Offset Mode',

' Drive not in Offset Mode' ;

'*Data Check' ;

'*Drive Unsafe' ;
'*Operation Incomplete' ;
**pDrive Timing Error® ;
'*Write Lock Error' ;
'*Invalid Address Error' ;
'*Address Overflow Error' ;
'*Header CRC Error' ;
'*Header Compare Error' ;

RMER1_ECH:

ee o0 s o6 s es

RMAS:

s se ee 00 es ss se oo

RMLA:

RMLA_ANG:

RMDB:

.
.

RMMR1:

.

.

BIT
BIT
BIT
BIT
BIT
BIT
BIT

ERROR LOG CONTROL FILE ARCHITECTURE

w
—
..

WORD MACHINE
FIELD [8:8]:

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

— - Y —
—
.

WORD MACHINE

FIELD [11:5}:

FIELD [6:5]:

FIELD [0:6]:
WORD MACHINE

FIELD [0:16]:

WORD MACHINE

BIT

BIT

BIT

BIT

BIT

BIT

BIT

[15]:

[14]:

[13]:

[12]:

[11]):

[10]:

[9]:

[8]:

[71:

r

’

r

.
7

NDevice-Level Module

'*ECC Hard Error' ;

'*Write Clock Fail' ;

'*Format Error' ;

'*parity Error' ;

'*Register Modification Refused' ;
'*Illegal Register' ;

'**Illegal Function' ;

$CND SIF(REGISTER RMDT ([11],
NULL, '*Unused bits set'),
NULL ;
Unit #7 Attention®
Unit #6 Attention'
Unit #5 Attention'
Unit #4 Attention'
Unit #3 Attention’
Unit #2 Attention'
Unit #1 Attention’
Unit #0 Attention'

P L
Ne e we Mo we we we we

‘*gnused bits set', NULL ;

' Sector Count = '

] $CNV $DECIMAL P(REGISTER.RMLA ANG, 2) ;
*Unused bits set', NULL ;

' Data Buffer contents' ;

CND_SIF (REGISTER.RMMR1_ MM,

' Debug Clock set', NULL),
$CND_SIF(REGISTER. RMMRl MM,

Debug Clock reset’, NULL) ;

$CND S$IF(REGISTER.RMMR1 MM,

T pebug Clock Enabled', NULL),
$CND SIF(REGISTFR.RMMRI] MM.

T Debug Clock Disabled', NULL) ;
%$CND $IF(REGISTER RMMR1 MM,

7 piagnostic End of Block set', NULL),
$CND SIF(REGISTER.RMMR1 _MM,

T piagnostic End of "Block reset' . NILL)
%2CND SIF(REGISTER.RMMR1 MM,

T Search Time Out disabled', NULL),
%CND SIF(REGISTER.RMMR1 MM,

T Search Time Out enabled’, NULL) ;
%$CND S$IF(REGISTER.RMMR1 MM,

¥ Maintenance Clock set', NULL),
%CND $IF (REGISTER.RMMR1 MM,

T Maintenance Clock reset', NULL) ;
$CND S$IF(REGISTER.RMMR1 MM,

7 Maintenance Read Data set', NULL),

$CND SIF(REGISTER RMMR1 MM,

' Maintenance Read Data reset',NULL)
$CND__ SIF(REGISTER.RMMR1 _MM,

7 Maintenance Unit Ready', NULL),
$CND SIF(REGISTER.RMMR1 MM,

7 Maintenance Unit Not Ready', NULL)
%CND SIF(REGISTER.RMMR1 _MM,

7 Maintenance On Cyllnder', NULL) ,
%CND_$IF(REGISTER RMMR1 MM,
" Maintenance not On Cylinder',NULL)
$CND S$IF (REGISTER.RMMR1 MM,

TxMaintenance Seek Error', NULL) ;

~e

~

~e

s e

RMMR1_MM:

RMDT:

se e ee 00 e

RMDT TYP:

RMSN

RMOF

e oo

RMDC:

-

RMDC_DC:

RMHR:

RMMR2:

s s ev 0e

ERROR LOG CONTROL FILE ARCHITECTURE

BIT {
BIT [5]:

BIT [
BIT [

4]:
3]:

BIT [2}:

BIT [1]:

BIT [0]:

MACHINE
[15]:
[14]:
[13]):
[12]:
[11]:

WORD
BIT
BIT
BIT
BIT
BIT

FIELD [9:2]:
FIELD [0:8]:

WORD MACHINE

FIELD [0:16]:

WORD MACHINE

FIELD [13:3]:

BIT [12]:

BIT [11]:
BIT [10]:

FIELD [8:2]:
BIT [7]:

FIELD [0:7]:

WORD MACHINE

FIELD [10:6]:
FIELD [0:10]:

WORD MACHINE

FIELD [0:16]:

WORD MACHINE
BIT [15]:
BIT [14]:
BIT [13]:
BIT [12]:

BIT
BIT

[11]:
[10]:

’

14

r

-

14

14

Device-Level Module

$CND_SIF (REGISTER.RMMR1 MM,

T*Maintenance Drive Fault',KNULL) ;

$CND_SIF (REGISTER.RMMR1 MM,

7 Maintenance Sector Pulse set',

%CND SIF(REGISTER.RMMR1 _MM,

T Maintenance Sector Pulse reset!',

'*UJnused bit set' ;
$CND SIF(REGISTER RMMR1 MM,

7 Maintenance Write Protect',

%CND_SIF(REGISTER.RMMRL _MM,

T Maintenance Write " Enabled’,

$CND SIF(REGISTER.RMMRL _MM,

T Maintenance Index Pulse set',

$CND SIF (REGISTER.RMMR1 MM,

NULL) ,

NULL) ;

NULL) ,

NUL1

'"Maintenance Index Pulse reset',

$CND_SIF (REGISTER.RMMR1 MM,

)

’

NULL) ,

NULL) ;

T Maintenance Sector Compare set', NULL),

%CND_S$IF (REGISTER.RMMR1 MM,

T Maintenance Sector Compare reset',

' Diagnostic Mode on',
' Diagnostic Mode off' ;

'*Drive not Sector Addressable'

'*Unit is a Tape Drive' ;
NULL,
'*Unused bit set' ;

' DRQ on (dual port unit)?’,

' DRQ off (single port unit)'
'*Unused bits set', NULL ;

' Drive Type = '

| INTERMOD DEVERR.DRIVE_TYPE ;

' Drive Serial Number = '

r

.
7

'*Unit is not a Moving Head Device’

| $CNV_SBCD (REGISTER.RMSN, 4) | ' (BCD)' ;

'*Unused bits set', NULL ;

' 16 Bit Data Format',

'*¥18 Bit Data Format' ;

' ECC Inhibit', ' ECC enabled’
' Header Compare Inhibit',

' Header Compare Enabled' ;
'*Unused bits set', NULL ;

' Offset Direction = Forward',
' Offset Direction = Reverse'
'*Unused bits set', NULL ;

'*Unused bits set', NULL ;
' Desired Cylinder = '

| $CNV_$DECIMAL P (REGISTER.RMDC DC,

' Holding Register contents' ;

ort A Reanect for Ser:s

) r rice
r Request for vice

' Port B Request for Service

' Control Select Tag on' ;

%CND $IF(REGISTER RMMR1 MM,

'

]

1

"U'U

TesSt Sequencer Branching on'
Control or Cylinder Tag on'
Control or Head Tag on' ;

r

-~ =

~ o~

4)

NULL)

I

.
r

NULL) ;

.
14

ERROR LOG
o)

RMMRZ_MBL: FIELD [0:10]: %CND $IF(REGISTER RMMR1 MM,
Maintenance Bus Lines = '
9CNV_SBINARY(REGISTER RMMRZ_MBL, 10, '0")
1 (B)'

, NULL) ;
RMER2: WORD MACHINE ;
: BIT (15]: '*Bad Sector Detected (hdr bit)' ;
: BIT [14]: '*Seek Incomplete' ;
: BIT [13]: '*Operator Plug Error (removed)' ;
: BIT [12]: '*Invalid Command (VV bit reset)' ;
: BIT [11]: '*[,oss of System Clock' ;
: BIT [101]: '*L,oss of Bit Clock' ;
: FIELD [8:2]: '*Unused bits set', NULL ;
: BIT [71: '*Device Check' ;
: FIELD [4:3]: '*Jnused bits set', NULL ;
: BIT [3]: '*Data Parity Error' ;
: FIELD [0:3]: '*UJnused bits set', NULL ;
RMEC1: WORD MACHINE ;

: FIELD [13:3]: '*Unused bits set' NULL ;
RMEC1_PS: FIELD [0:13]: ' ECC Position = | VAR. ECCPS H
RMEC2: WORD MACHINE ;

: FIELD [11:5]: t*Unused bits set', NULL ;
: FIELD [0:11]: ' ECC Pattern = ' | VAR.ECCPAT ;

IF DEVICE OP.FLG_BAE AND (PACKET_LENGTH.TEMP EQ #BD'46")

If the RH70 flag 1is true and the packet length is 22 registers,
declare the BAE and CS3 registers. Note that the packet length check
is necessary because umapped RSX systems will not log BAE and CS3
even if the controller is an RH70.

ame == g Gem Gum

THEN
BEGIN
RMBAE: WORD MACHINE ;
: FIELD [6:10]: **Jnused bits set', NULL ;
RMBAE_EXT: FIELD [0:6]: ' BA2]1 through BAl6 = '
| %CNV_SBINARY(REGISTER.RMBAE_EXT, 6, '0") ;
RMCS3: WORD MACHINE ;
: BIT [15]: '**address Parity Error' ;
: BIT ([14]: '*Data Parity Error, 0dd Word' ;
: BIT [13]: '*Data Parity Error, Even Word' ;
: BIT ([12]: '*Write Check Error, 0dd Word' ;
: BIT [1l1]: '*Write Check Error, Even Word' ;
: BIT [10]: ' Double Word Transfered' ;
: FIELD [7:3]: '*UJnused bits set', NULL ;
: BIT [6]: ' Interrupt Enabled',
' Interrupt not Enabled' ;
: FIELD [4:2]: "*Unused bits set', NULL ;
RMCS3_IPC : FIELD [0:4]: ' Inverse Parity Check Bits = '
$CNV SBINARY (REGISTER.RMCS3 IPC, 4, '0")
' (B)' ; -
END ;
END IF ;
END_PACKET ;

ERROR LOG CONTROL FILE ARCHITECTURE

Device-Level Module

e

i
! Declare all variables needed for the subpacket print information.
1

DECLARE VAR ;
ECCPS:
ECCPAT:

END DECLARE ;
!

ASCIT ([22]
ASCII [22]

! ECC position.
! ECC pattern,

~e ~e

! Create the device function code conversion table.

1

TABLE FUNCTION ;
FUN_CODE:
FUN_TEXT:

BEGIN_TABLE

#B0'03"

s 4= e v o= 1D
4
lw]
3
o
-
o]

Determine if the

BYTE MACHINE ;
ASCII [27] ;

'No Operation'
'Seek Command!
'Recalibrate' ;
'‘Drive Clear' ;
'Release (dual port)' ;

'Of fset Command' ;

'Return to Centerline' ;
'Read_in Preset’' ;

'Pack Acknowledge' ;

'Search Command' ;

'Write Check Data' ;

'Write Check Header and Data' ;
'Write Data' ;

'‘Write Header and Data' ;

'Read Data' ;

'Read Header and Data' ;

~e we

Calculate the ECC Position.

ECC position 1is normal (not used), has
value, points to the starting bit within the sector or is

IF REGISTER.RMEC1 PS LE #WD'4128'

THEN

At this point, the ECC position is within range (0.
Next, find out if the ECC position counter (register) was used.
If the ECC position register value equals an octal

1

1

1

!

! indicates the register was initialized but not used.
1

S

an illegal
irrelevent.

to 4128.).

4066, it

ET VAR.ECCPS TO %CND_$IF(REGISTER.RMECI_PS EQ #WO'4066"',
'Normal', %CNV_$DECIMAL_P(REGISTER.RMECl_PS, 6)) ;

ELSE

SET VAR.ECCPS TO 'Outside of legal range' ;

END_IF ;

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

1
! If the error was a non-correctable hard error or Error Correction
1

was inhibited, then the ECC position and ECC pattern are irrelevant.

IF (REGISTER.RMER1 _ECH EQ TRUE)
THEN

BEGIN
SET VAR.ECCPS TO 'Irrelevant (ECH set)'
SET VAR.ECCPAT TO 'Irrelevant (ECH set)'’
END ;

~e ~e

END_IF ;

IF (REGISTER.RMOF [11] EQ TRUE)
THEN

BEGIN
SET VAR.ECCPS TO 'Irrelevant (ECI set)'
SET VAR.ECCPAT TO 'Irrelevant (ECI set)'
END ;

- we

ELSE
SET VAR.ECCPAT TO CNV_SOCTAL (REGISTER.RMEC2 ([0:11], 4, '0") |

END_IF ;

6]

The following will use the register information to determine the
value of the intermodule variables, which are needed by the
dispatcher and stuff these accordingly

The variables are:

INTERMOD_DEVERR.DRIVE_ SN
INTERMOD DEVERR.DEV_FUNCTION
INTERMOD DEVERR.PHYS UNIT

INTERMOD_DEVERR.ERROR_SECTOR
INTERMOD DEVERR.ERROR_HEAD

(N

INTERMOD DEVERR.ERROR GROUP (not applicable to this device)

INTERMOD:DEVERR.BLOCK:NUMBER
INTERMOD DEVERR.ERROR_TYPE

Return the drive serial number.

1
1
1
1]
1
1
1
]
]
! INTERMOD DEVERR.ERROR CYLINDER
1
]
1
H
t
1
1
1
s

ET INTERMOD_DEVERR.DRIVE_SN TO %CNV_SBCD(REGISTER.RMSN, 12, "' 'y ;
1
i Lookup the function code in the function tabie.

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

!

FIND FUNCTION FUN_CODE = REGISTER.RMCSI_FN ;

1

! Check if a match is found between the register and the table,
!

IF FUNCTION.CONTEXT

THEN
1
! Yes, return the associated function text in the variable.
1

éET INTERMOD_DEVERR.DEV_FUNCTION TO FUNCTION.FUN_TEXT ;
ELSE

]

E Otherwise, return text indicating an invalid function.

1

éET INTERMOD_DEVERR.DEV_FUNCTION TO 'Invalid function' ;

END_IF ;
1

! Return the physical unit number.
!

SET INTERMOD_DEVERR.PHYS_UNIT TO %CNV_S$DECIMAL (REGISTER.RMCS2 UN, 1) ;
1
DISK GEOMETRY INFORMATION.

Calculate the intermodule variables for LBN, GROUP, CYLINDER, TRACK,
and SECTOR address, initially assumming the error packet was NOT caused
by a data error.

LBN = (CYLINDER_ADRS * number of SECTORS/CYL +
HEAD ADRS * number of SECTORS/TRACK +
SECTOR_ADRS)

1
!
!
]
1
i
! Calculate LBN using the formula...
1
1
!
1
5

ET INTERMOD_DEVERR.BLOCK NUMBER TO
$CNV_$DECIMAL P(—
(REGISTER.RMDC_DC * #LD'160' +
REGISTER.RMDA HD * #WD'32' +
REGISTER.RMDA_SEC),
9)

Initialize GROUP. (not applicable to this device)
ET INTERMOD_DEVERR.ERROR_GROUP TO 'N/A' ;

Initialize CYLINDER.

R e]

SET INTERMOD DEVERR.ERROR CYLINDER TO
$CNV_$DECIMAL_P(REGISTER.RMDC_DC, 3) ;

1
! Initialize TRACK (head).
]

SET INTERMOD_DEVERR.ERROR HEAD TO
$CNV_SDECIMAL P(REGISTER.RMDA HD, 2) ;

Initialize SECTOR.

!

!

!

SET INTERMOD DEVERR.ERROR SECTOR TO
%CNV_SDECIMAL_P(REGISTER.RMDA_SEC, 2) ;

- Gum Bem Gum bem b= Bem b fam tm $ Gem G bom Gem Gew Bt s fed Gk See e Sme G Gem S Sem

ERROR LOG CONTROL FI
Device-Level

LE ARCHITECTURE
Module

Correct the geometry information if necessary.

Upon a data error, the hardware will update the GROUP, CYLINDER, TRACK and

SECTOR to point to the sector following the sector in error.
make the intermodule variables for GROUP, CYLINDER,

In order to

TRACK, SECTOR and LBN

point to the media address causing a data error, they are corrected (backed
off by 1) using the following algorithm.

Was it a data error ?
Yes, it was a data error.
Decrement LBN.
Was SECTOR = 0 ?
Yes, SECTOR = 0.
SECTOR = SECTORMAX.
Was TRACK = 0?2
Yes, TRACK = 0.
TRACK = TRACKMAX.
Decrement CYLINDER.
TRACK NOT = 0.
Decrement TRACK.
SECTOR NOT = 0.
Decrement SECTOR.
it was not a data error.

No,
No,
No,

Was it a data error?

(check error bits)

(correction (backoff) is needed)
(recalculate pointing to previous BLK)
(sector underflow boundry?)

(underflow sector and borrow from TRK)
(underflow the sector)

(track underflow boundry?)

(underflow TRK and borrow from CYL)
(underflow the track)

(borrow from CYL for TRK)

(no undeflow of TRK)

(Simply, with no borrow from CYL)

(no underflow at all)

(point to the previous block)
(no correction (backoff) needed)

IF REGISTER.RMER1 DCK OR REGISTER.RMER1_ECH OR REGISTER.RMCS2_WC
THEN

Yes, it was a data error.

BEGIN

Correct the LBN by recalculating

!
!
SET INTERMOD DEVERR

$CNV_SDECIMAL P(

(backed off by one

(LBN and geometry information needs correction)

block) .

(REGISTER.RMDC DC * $#LD'l60' +

REGISTER.RMDA_HD
REGISTER.RMDA_SEC) -1,

[}
Z) e

* $WD'32' +

11
! Was the sector address zero? (Sector underflow?)
1

IF REGISTER.RMDA SEC EQ #BD'00'
THEN
!
! Yes,
!
BEGIN
1
! Underflow the sector.
!

it was zero. (so undeflow the

sector and borrow from track)

SET INTERMOD DEVERR.ERROR_SECTOR TO '31.' ;

1
! Was track (head) address zero?
1
IF REGISTER.RMDA HD EQ #BD'00"'
THEN

1

! Yes, the track was 0,
! and borrow from the cylinder.

(track underflow?)

so underflow the track

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

Underflow the track (head).

[
!
SET INTERMOD_DEVERR.ERROR_HEAD TC '4.' ;
1
! Borrow from the cylinder.
1
SET INTERMOD_DEVERR.ERROR_CYLINDER TO
%CNV_$DECIMAL_P(REGISTER.RMDC_DC -1, 3) ;
END ;
ELSE
1
! No, the track was not zero. Simply decrement it. (no track underflow)
1
SET INTERMOD_DEVERR.ERROR_HEAD TO
%CNV_$DECIMAL_P(REGISTER.RMDA_HD -1, 2y ;
END_IF ;
END ;
ELSE

No, the sector address was not zero. Simply decrement it.
(no sector underflow)

1
1
1
S

ET INTERMOD DEVERR.ERROR_SECTOR TO
%CNV_$DECIMAL_P(REGISTER.RMDA_SEC -1, 2) ;
END IF ;
END ;
END_IF ;
(7
!
! Find the reason causing this error packet and set the variable
! accordingly.
i
IF REGISTER.RMCS1 TRE
THEN -
BEGIN
IF NOT REGISTER.RMDS_ERR
THEN
DECODE
INTERMOD DEVERR.ERROR TYPE = REGISTER ;
RMCS2 [15] ; T 1 Data Late
RMCS2 [14] ; ! Write Check Error
RMCS2 [13] ; ! U.B, Parity Error
RMCS2 [12] ; ! Nonexistent Drive
RMCS2 [11] ; ! Nonexistent Memory
RMCS2 [10]) ; ! Program Error
RMCS2 [9] ; ! Missed Transfer
RMCS2 [8] ; ! MASSBUS Data Bus Parity Error

END_DECODE ;

ERROR LOG CONTROL FILE ARCHITECTURE

Devicae-T.avel Mndule

ELSE
DECODE
INTERMOD DEVERR.ERROR _TYPE = REGISTER ;

RMERZ [15] ; ! Bad Sector Detected (Hdr bit)
RMER2 [14] ; ! Seek Incomplete
RMER2 [13] ; ! Operator Plug Error (removed)
RMER2 [12] ; ! Invalid Command (VV bit reset)
RMER2 ([11] ; ! Lost of System Clock
RMER2 [10] ; ! Lost of Bit Clock
RMER2 [71 ; ! Device Check
RMER2 [3] ; ! Data Parity Error
RMER1 [6] ; { ECC Hard Error
RMER1 [15] ; ! Data Check
RMER1 [14] ; ! Drive Unsafe
RMER1 [13] ; ! Operation Incomplete
RMER1 [12] ; ! Drive Timing Error
RMER1 {11] ; ! Write Lock Error
RMER1 [10] ; ! Invalid Address Error
RMER1 [9] ; ! Address Overflow Error
RMER1 [8] ; ! Header CRC Error
RMERL [71 ; ! Header Compare Error
RMER1 [5] ; ! Write Clock Fail
RMER1 [4] ; ! Format Error
RMER1 [3] ; ! Parity Error
RMERL [2} ; ! Register Modification Refused
RMER1 [1] ; ! Illegal Register
RMER1 [0] ; ! Illegal Function

END DECODE ;

END IF ;
END ;
ELSE
DECODE
INTERMOD DEVERR ERROR TYPE = REGISTER ;
NOT RMDS [12] ! Medium not Online

Drive not Present
Volume not Valid

NOT RMDS [8] !
1
i MASSBUS Control Bus Parity krror
1
!

NOT RMDS [6]
RMCS1 {13]
NOT RMCS1 [11]
NOT RMCS1 [7]
END DECODE ;

END_IF j

Drive not Available
Controller not Ready

e N N we we we

IF (INTERMOD_DEVERR.ERROR TYPE EQ NULL)
THEN

SET INTERMOD DEVERR.ERROR_TYPE TO 'No error bit found' ;
END IF ;

8]

All the intermodule variables have been stuffed, so return to the
coroutine caller (calling dispatch module).

OROUTINE ;

The dispatcher returns control to this module here, with the flag
INTERMOD_DEVERR.PRINT FLAG set to either TRUE or FALSE. If the
flag is TRUE, a FULL or REGISTER report is in progress, the banner
has been printed, and this module prints device registers (or data
fields for packet oriented devices) Otherwise, this module does
not print anything, and simply exits back to the dispatcher. The
width of the report (80/132) 1is controlled by dispatcher defined
format variables REPORT.W G F 1 and REPORT.W G F 2 based on the
user specified /WIDTH switch.

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

IF INTERMOD_ DEVERR,.PRINT FLAG
THEN
BEGIN
1
! Print the header for the Name, Value and Interpretation fields.
1
WRITE
FORMAT
' I5FCName!13FCValue!25FCInterpretation!2FL"' ;
1
! Print the registers according to the format variable (80/132)
{ provided by the dispatcher.
1
WRITE_GROUP REGISTER
FORMAT
1
! Print format for the register name
! and it's associated value.
i
REPORT.W G F 1,
!
! Print format for the exploded bits and fields.
1
REPORT.W G_F 2 ;
1
t If there are any NOTES to be printed, this is where the
! PUT of note indicies is done on the note file. When the
! return from this module is done, the dispatching module
! examines the note file to determine if the note module
! NRM23 should be called to print the notes specified by
! index number.
1
! If the unused bits 5 to 7 are set in the RMDA register.
1
IF (REGISTER.RMDA [5:3] NE #BB'0')
THEN
1
! Print the note saying that it may cause an invalid
! sector address to be recognized resulting in a
! possible invalid address error.
!
PUT NOTE_NUMBERS INDEX = 1 ;
END_IF ;
END ;
END_IF ;
END ;

END_MODULE ;

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M Dispatcher Module
4.6.2 DSP2M1 Dfépatchér»uoauleffor RSX-11M

Follow1ng is”an annotated llstlng of tne DSP2M1 dlspatcher module for
RSX=11M.: ; ; e . :

MODULE DSP2M1 'MOl oo' ;.‘”*
,)" ‘; "

NTROL FILE MODULE' DSPéMi;Vfiﬂﬁ*]Q”

B >
S ’ :
i d : ?copYquHT ey 1981 BY :
ey DIGITAL 'EQUIPMENT. CORPORATION, MAYNARD (
0 | ') | ¢

AN PILI , ;sucu LICENSE f
“AND WITH THE INCLUSION "OF THE ABOVE COPYRIGHT NOTICE. THIS .
SOFTWARE ..OR ANY OTHER ' COPIES THEREOF, MAY NOT BE PROVIDED OR - .
OTHERWISE MADE ~ AVAILABLE TO ANY OTHER PERSON. ' NO TITLE TO AND~»7~ ‘
fOWNERSHIP “‘OF" THE SOFTWARE IS HEREEY TRANSFERED.C x R

“THE INFORMATION IN THIS DOCUMENT IS SUBJECT = TO CHANGE WITHOUT L
'NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT “BY DIGITAL
\EQUIPMENT coapoawaon ;“‘(u, P e L

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR. RELIABILITY OF(
ITS: SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

VERSION 01.00
C. PUNTAM 22—3EP—8°

This module 'is called to process Device Error packets.

Module Name: DSP 2 M 1
Module Prefix: -—-=—=—-=- [R |
Error Code: =—---—-=—-eo—o——2i 1 L
' ~ tt
Operating System: ---—--———-—~- 11
- ' o
Packet Format: ——--=--- BRSSO |

- The foiloWing Error Subdodeéﬂare:definéd:"

Subcode ,Mnemohic . Meaning
oy E: $SDVH{~~.¢’,QQ"” y]*@Dev1ce Hard Error =
DR N S : E $SDVS - ¢ B-;;;g§~wgDeV1ce Soft Error
’ i DR E_$STMO e o Device Inte;rupt,T1m¢out

!
I it Tl A e RIS I IS
L Define‘any~1itéralg~uSedvin»thiSndeulé?7‘“'W
: i SR TR e
LITERAL DSP2 SUB ANY.FORMAT 1 = = = = =
l1/0 operatlon InformatlonzleL"” e

____________________ ~=--=12FL"" ‘ L
"SFCDeV1ce Funct10n'38FCType of Error 1 2FL'
"5FC'30DP'38FC'3ODP'3FL' S i e

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M Dispatcher Module

LITERAL DSP2 SUB ANY.FORMAT 2 =
'Device Error Position Information:!1FL!'

——————————————————————————————— 1 2FL'
'15FCCylinder!15FCGroup!22FCHead! 28FCSector136FCBlock ! 2FL" !
'ISFCI8DPILSFC!ISDPI22FCI4DP!I28FCI6DP!I36FCI10DPI2FL" ;

PROCEDURE START MOD

BEGIN -

[]

Create the Subcode Conversion table.

1
!
TABLE SUBCODE ;

NUMBER tWORD ;
TEXT :ASCII ({187 ;

BEGIN TABLE
1, . "Device Hard Error' ;
2., 'Device Soft. Error'.
3, ' "Device Timeout' ;

END_TABLE ;
! L ~ % : SR RS
! First check to see if PERIPHERAL errors are selected. If they are not,
! simply return. Also determine the packet subtype. I1f it is a known
! subtype code, then proceed. Otherwise it is an error.
1
IF NOT REPORT.PERIPHERAL
THEN
1 . p .
! This type of packet has not been selected for printing.
1
RETURN ;
END IF ;
FIND SUBCODE NUMBER = HEADER.CODE_SUBTYPE H
IF NOT SUBCODE.CONTEXT
THEN
BEGIN
SIGNAL 'ILLPACSBC' PARAMETERS
REPORT.PACKET IDENT,

%CNV_$DECIMALTHEADER.CODE_TYPE, 3),
$CNV_SDECIMAL (HEADER.CODE SUBTYPE, ' 3)

-e

RETURN ;
END ;

END_IF ;

Find the device name by calling the DEVICE_NAME procedure.

Q) o= 4= o=

ALL MODULE 'DEVSM1' PROCEDURE 'DEVICE_ NAME' ;

(2]

Prepare the NOTE NUMBERS file for any notes that may be requested.

OINTER NOTE NUMBERS CLEAR ;

ERROR LOG CONTROL FILE ARCHITECTURE

F T Y P T,
RSX- .L.I.M u.n.bt/cu.\.uc.t A';udu;c

CALL MODULE,INTERMOD DEVERR Dt P'NAM PROCEDURE

'DEvicE;BNTRxf

Dev ce'Hard E r
‘fInterrupt

meout' Dev1ce Error packets. e

[)ID'subpacket contalns 1nformat10n about the
idev1ce on whlch the error occured.t‘f A TN

u"«

jThe DEVICE OP subpacket contaxns 1nformat10n about the I/O
;OPerat1on 1n progress on the dev1ce at the tlme of the error.

‘;u

ot
T
e
[
N

1 E . . i

| 'Obtain information from the coroutine partner.
. ’ « =

COROUTINE. ;

5]

Assume the serial number test will succeed or be irrelevent.

!

!

!

SET INTERMOD_DEVERR.REJECT_FLAG TO FALSE ;

1

! Now test to see if this device passes the drive serial number test.
I

F REPORT.DRIVE SN VALID AND
(INTERMOD DEVERR. DRIVE SN NE $CNV $BCD(REPORT DRIVE_ SN, 12))

!
! Indicate that' the test failed.
1 o :
 SET INTERMOD_DEVERR.REJECT FLAG TO TRUE ;
ND_IF ; | i

E

! 2