
RSX-11 M/M-PLUS
1/0 Drivers Reference Manual
Order No. AA-L677 A-TC
Update Notice No. 1 (AD-L677 A-T1)

RSX-11 M Version 4.1
RSX-11 M-PLUS Version 2.1

digital equipment corporation · maynard, massachusetts

First Printing, May 1979
Revised, December 1981

Updated, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (§) 1979, 1981, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DEC US
DECwriter

DIBOL
Edusystem
!AS
MASSBUS
PDP
PDT
RSTS

RSX
UNIBUS
VAX
VMS
VT

~nmnomo

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian}

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1 G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
clo Digital's local subsidiary or
approved distributor

imerna1 oraers snou10 oe p1acea tnrough me Sottware u1stnout1on Genter (8LJG), Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2251

UPDATE NOTICE NO. 1

RSX-11 M/M-PLUS 1/0 Drivers
Reference Manual

AD-L677 A-T1

April 1983

insert this page in the RSX-11 MIM-PLUS 110 Drivers Reference Manual to
maintain an up-to-date record of changes to the manual.

NEW AND CHANGED INFORMATION

This update reflects software changes and additions made in RSX-11 M Version 4.1 and RSX-11 M-PLUS
Version 2.1.

Copyright © 1983 by Digital Equipment Corporation
All rights reserved

INSTRUCTIONS

Add the following pages to the RSX-11MIM-PLUS110 Drivers Reference Manual as replacements for or
additions to current pages. The changes made on the replacement pages are indicated in the outside
margin by change bars (I) for additions, and bullets (•) for deletions. A date at the bottom of the new
pages denotes revised or new information for this update.

OLD PAGE

Title page/Copyright page
...; iii/iv through xix/xx

J, xxv/blank
,] 1-1/1-2 through 1-3/1-4

,; 1-19/1-20 through 1-25/1-26
·.J 2-1 /2-2 through 2-3/2-4

,) 2-9/2-10
,J 2-13/2-14 through 2-1712-18

··~ 2-3712-38 through 2-39/2-40

'i 5-1 /5-2 through 5-3/5-4

"8-1/8-2 through 8-7/8-8
1 8-13/8-14 through 8-15/8-16
'J 10-1/10-2

' 10-3/10-4
A-7/A-8
8-9/8-10

~· C-5/C-6 through C-7 /C-8

J, C-9/C-10
.) C-13/C-14
' lndex-1 /lndex-2 through

lndex-7 /blank
'

1

Readers' Comments/Mailer

NEW PAGE

,_,.title page/Copyright page
./fli/iv through xix/xx
~xv/blank
J i-111-2 through 1-3/1-4
J.1-4.1 /blank
j'1-19/1-20 through 1-25/1-26

2-1 /2-2 through 2-3/2-4
J~-4.1 /blank
-1;2-9/2-10
J/2-13/2-14 through 2-17/2-18
12-3712-38 through 2-39/2-40

, 2-40.1 /blank
V,'5-1 /5-2 through 5-3/5-4
15-4.1 /blank
J 8-1/8-2 through 8-7/8-8
J8-13/8-14 through 8-15/8-16
1./10-1 /10-2
\!10-2.1 /blank
v;10-3/10-4
\/,A-7/A-8
v'8-9/8-10

C-5/C-6 through C-7 /C-8
C-8.1 /blank
C-9/C-10
C-13/C-14
lndex-1 /lndex-2 through

lndex-7 /blank
Readers' Comments/Mailer

CONTENTS

Page

PREFACE xxi

SUMMARY OF TECHNICAL CHANGES xxv

CHAPTER 1

1.1
1.2
1.3
1.4
1.4 .1
1.4 .2
1.4. 3
1.5
1.5 .1
1.5 .2
1.5 .3
1.6
1. 7
1. 7 .1
1. 7 .2

1. 7. 3
1. 7 .4
1. 7. 5
1.7.5.l
1.7.5.2
1. 7 .6
1. 7. 7
1. 7 .8
1.8
1.8 .1
1.8 .2
1.8 .3
1.8 .4
1.8 .5
1.8.6
1.8. 7
1.8 .8
1.9
1.10
1.10.1
1.10. 2
1.11

CHAPTER 2

2.1
2 .1.1

RSX-llM/M-PLUS INPUT/OUTPUT

OVERVIEW OF RSX-llM I/0 •••••••• • 1-1
PHYSICAL, LOGICAL, AND VIRTUAL I/O • • 1-2
RSX-llM DEVICES • • • • • • • 1-2
LOGICAL UNITS • • • • • • • • • • • • 1-5

Logical Unit Number • • • • • ••• • 1-6
Logical Unit Table •••••• • 1-6
Changing LUN Assignments ••••• • • • 1-7

ISSUING AN I/0 REQUEST • • • • 1-7
QIO Macro Format • • • • •
Significant Events •••
System Traps • • • • • • • • • • •

DIRECTIVE PARAMETER BLOCKS •
I/0-RELATED MACROS • • • • • • • • •

The QIO$ Macro: Issuing an I/O Request

• • 1-9
1-12
1-12
1-13
1-14
1-16

The QIOW$ Macro: Issuing an I/O Request and
Waiting for an Event Flag ••••••••••
The DIR$ Macro: Executing a Directive ••••
The .MCALL Directive: Retrieving System Macros
The ALUN$ Macro: Assigning a LUN •••••••

Physical Device Names • • • • • • • • • • •
Pseudo-Device Names ••••••••••••

The GLUN$ Macro: Retrieving LUN Information
The ASTX$S Macro: Terminating AST Service ••
The WTSE$ Macro: Waiting for an Event Flag

STANDARD I/O FUNCTIONS • • • • • • • •
IO.ATT: Attaching to an I/O Device ••••••
IO.DET: Detaching from an I/O Device •• • ••
IO.KIL: Canceling I/O Requests ••••••
IO.RLB: Reading a Logical Block ••••
IO.RVB: Reading a Virtual Block
IO.WLB: Writing a Logical Block •••••
IO.WVB: Writing a Virtual Block ••••
User-Mode Diagnostic Functions •

I/O COMPLETION • • • • • • • • • • • • • •
RETURN CODES • • • • • • • • • •

Directive Conditions • • •••
I/O Status Conditions ••••

POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND
DECTAPE

FULL-DUPLEX TERMINAL DRIVER

1-16
1-16
1-17
1-17
1-18
1-21
1-21
1-24
1-24
1-25
1-26
1-27
1-27
1-28
1-28
1-29
1-29
1-30
1-32
1-32
1-33
1-34

1=39

INTRODUCTION • • • • •
ASR-33/35 Teletypes

• • 2-1
2-3

iii

I

2 .1.2
2 .1.3
2 .1.4
2.1.5
2.1.6
2 .1. 7
2 .1.8
2 .1.9
2 .1. 9A
2 .1. 9B
2 .1.10

CONTENTS
Page

KSR-33/35 Teletypes • • • • • • 2-3
LA12 Portable Terminal • • • • • • • 2-3
LAlOO DECprinter • • • • • 2-3
LA30 DECwriters • • • 2-4
LA36 DECwriter • • • • • • • • • • • • 2-4
LA34/38 DECwriters ••• 2-4
LA120 DECwriter • • • • • 2-4
LA180S DECprinter • • • • • • • • • 2-4
LQP02 Letter-Quality Printer • • • • 2-4
LASO Personal Printer ••••••••• 2-4.1
RT02 Alphanumeric Display Terminal and RT02-C
Badge Reader/Alphanumeric Display Terminal •• 2-4.1

2.1.11 VT05B Alphanumeric Display Terminal ••• 2-5
2.1.12 VT50 Alphanumeric Display Terminal ••••••• 2-5
2.1.13 VT50H Alphanumeric Display Terminal 2-5
2.1.14 VT52 Alphanumeric Display Terminal • • 2-5
2.1.15 VTSS Graphics Display Terminal ••••••••• 2-5
2.1.16 VT61 Alphanumeric Display Terminal • • 2-5
2.1.17 VTlOO DECscope • • • • • • • ••••• 2-5
2.1.18 VTlOl DECscope • • • • • • • • • 2-6
2.1.19 VT102 DECscope • • • • • • • • • • • • ••• 2-6
2.1.20 VT105 DECscope • • • • • • • • • • • • 2-6
2.1.21 VT131 DECscope ••••••••••••••••• 2-6
2.2 GET LON INFORMATION MACRO • • • • • • 2-6
2 .3 QIO MACRO • • • • • • • • • • • • • •••• 2-7
2.3.1 Subfunction Bits • • • • • • • • • • • •• 2-9
2.3.2 Device-Specific QIO Functions 2-10
2.3.2.1 IO.ATA • • • • • • • • • • 2-12
2.3.2.2 IO.ATT!TF.ESQ • • • • • • • • 2-13
2.3.2.3 IO.CCO • • • • • • • • 2-13
2.3.2.4 SF.GMC • • • • 2-13
2.3.2.5 IO.GTS • • • • • • • • • 2-18
2.3.2.6 IO.RAL • • • • • • • • • • • 2-19
2.3.2.7 IO.RNE • • • • • • • • • • • • • • 2-20
2.3.2.8 IO.RPR • • • • 2-20
2.3.2.9 IO.RPR!TE.BIN • • • • • • • • • • • • • 2-20
2.3.2.10 IO.RPR!TE.XOF 2-20
2.3.2.11 IO.RST. • ••• 2-21
2.3.2.12 SF.SMC • • • • • • • • • 2-21
2.3.2.13 IO.RTT • • • • 2-22
2.3.2.14 IO.WAL • • • • • • • • • • • 2-22
2.3.2.15 IO.WBT • 2-22
2.3.2.16 IO.HNG • • 2-23
2.4 STATUS RETURNS • • • • • • • • 2-23
2.5 CONTROL CHARACTERS AND SPECIAL KEYS 2-27
2.5.1 Control Characters • • • • 2-27
2.5.2 Special Keys • • • • • • • • • • • • • • • 2-29
2.6 ESCAPE SEQUENCES • • • • • • • • • • • • • • 2-29
2.6.1 Definition • • • • • • • • • 2-31
2.6.2 Prerequisites • • • • • • • 2-32
2.6.3 Characteristics • • • • • • 2-32
2.6.4 Escape Sequence Syntax Violations 2-32
2.6.4.1 DEL or RUBOUT (177) • • • • • • 2-32
2.6.4.2 Control Characters (0-037) • • • • • • • • • 2-33
2.6.4.3 Full Buffer • • • • • • • • • • • • • • 2-33
2.6.5 Exceptions to Escape-Sequence Syntax 2-33
2.7 VERTICAL FORMAT CONTROL • • • • • • 2-33
2.8 AUTOMATIC CARRIAGE RETURN • • • • • • 2-34
2.9 FEATURES AVAILABLE BY RSX-llM SYSGEN OPTION 2-35
2.9.1 Private Buffer Pool Size • • • • • • • 2-35
2.9.2 Hard Receive Error Detection • • • • • • • • • 2-36
2.10 TASK BUFFERING OF RECEIVED CHARACTERS 2-36
2.11 TYPE-AHEAD BUFFERING • • • • • • 2-37
2.12 FULL-DUPLEX OPERATION • • • • • • 2-38
2.13 PRIVATE BUFFER POOL • • • • • • • 2-38

iv April 1983

2.14
2.15
2.16
2.16.1
2.16.2
2.16.3
2.16.4
2.16.5
2.17
2.11.1
2.17.2
2.17.3
2.17.4
2.17.5
2.17.6

CHAPTER 3

3.1
3 .1.1
3 .1.2
3 .1. 3
3.1.4
3 .1.5
3 .1.6
3 .1. 7

CONTENTS

INTERMEDIATE INPUT AND OUTPUT BUFFERING
TERMINAL-INDEPENDENT CURSOR CONTROL
TERMINAL INTERFACES • • • • • • • • • • • • • •

DHll Asynchronous Serial Line Multiplexer
DHVll Asynchronous Serial Line Multiplexer
DJll Asynchronous Serial Line Multiplexer
DLll Asynchronous Serial Line Interface
DZll Asynchronous Serial Line Multiplexer

PROGRAMMING HINTS • • • •
ESCape Code Conversion • • • • •
RT02-C Control Function • • • • •
using IO.WVB Instead of IO.WLB •
Remote DLll-E, DHll, and DZll Lines
Side Effects of Setting Characteristics
Modem Support • • • • • • • • • • • • •

HALF-DUPLEX TERMINAL DRIVER

Page

2-38
2-39
2-39
2-40
2-40
2-40
2-40
2-40
2-40

2-40.1
2-40.l

2-41
2-41
2-41
2-42

INTRODUCTION • • • • • • • • • • • 3-1
ASR-33/35 Teletypes • • • • • • • • 3-2
KSR-33/35 Teletypes • • • • • • • • • • 3-2
LA30 DECwriters • • • • • • • • 3-2
LA36 DECwriter • • • • • • • • • • 3-2
LA120 DECwriter ••••••••••••• 3-3
LA180S DECprinter • • • • • • • • • • 3-3
RT02 Alphanumeric Display Terminal and RT02-C
Badge Reader/Alphanumeric Display Terminal ••• 3-3

3.1.8 VT05B Alphanumeric Display Terminal •• 3-3
3.1.9 VT50 Alphanumeric Display Terminal • • • 3-3
3.1.10 VT50H Alphanumeric Display Terminal ••• 3-3
3.1.11 VT52 Alphanumeric Display Terminal • • 3-4
3.1.12 VT55 Graphics Display Terminal ••••••••• 3-4
3.1.13 VT61 Alphanumeric Display Terminal ••••••• 3-4
3.1.14 VTlOO DECscope • • • • • • • •••••• 3-4
3. 2 GET LUN INFORMATION MACRO • • • • • • 3-4
3.3 QIO MACRO • • • • • • • • • • • • • • • 3-5
3.3.1 Subfunction Bits • • • • • • • • • • •• 3-7
3.3.2 Details on Device-Specific QIO Functions •••• 3-8
3.3.2.1 IO.ATA • • • • • • • • • • 3-8
3.3.2.2 IO.ATT!TF.ESQ • • • • • 3-10
3.3.2.3 IO.CCO • • • • • 3-10
3.3.2.4 SF.GMC • • • • • • • • • • • • • • • • 3-10
3.3.2.5 IO.GTS • • • • • • • • • • • 3-12
3.3.2.6 IO.RAL • • • • • • • • • • • • • 3-13
3.3.2.7 IO.RNE • • • • 3-13
3.3.2.8 IO.RPR • • • • 3-13
3.3.2.9 IO.RPR!TF.BIN • • • • 3-14
3.3.2.10 IO.RPR!TF.XOF • • • • • • • 3-14
3.3.2.11 IO.RST. • •••• 3-14
3.3.2.12 SF.SMC • • • • • • • • • • • 3-14
3.3.2.13 IO.WAL • • • • • • • • • • • • • • • 3-15
3.3.2.14 IO.WBT • • • • • • • • 3-15
3.4 STATUS RETURNS • • • • • • 3-16
3.5 CONTROL CHARACTERS AND SPECIAL KEYS • • • • • • 3-16
3.5.1 Control Characters • • • • • • 3-20
3.5.2 Special Keys • • • • • • • • • • • 3-22
3.6 ESCAPE SEQUENCES • • • • • • • • • • • 3-22
3.6.l Definition • • • • • • • 3-22
3.6.2 Prerequisites • • • • • • • • • • • • • • 3-24
3.6.3 Characteristics • • • • 3-24
3~6~4 Escape Sequence Syntax Violations • • • • 3-24
3.6.4.1 DEL or RUBOUT (177(8)) • • • • ••• 3-24
3.6.4.2 Control Characters (0-37(8)) • • • • • • 3-25
3.6.4.3 Full Buffer • • • • • • • • • 3-25

v April 1983

I

I

3.6.5
3.7
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.9
3.9.l
3.9.2
3.9.3
3.9.4
3.10
3.10.l
3.10.2
3.10.3
3.10.4
3.10.5
3.10.6
3.10.7
3.10.8
3.10.9
3.10.10

3.10.11
3.10.12
3.10.13

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.1.4
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4

CHAPTER 5

5.1
5 .1.1
5 .1. 2
5 .1.3
5 .1. 4
5 .1.5
5 .1.6
5 .1. 7
5 .1. 8
5 .1.9
5 .1.10
5.1.11
5 .1.12
5.1.13
5 .1.14
5 .1.15

CONTENTS
Page

Exceptions to Escape-Sequence Syntax •
VERTICAL FORMAT CONTROL • • • •
FEATURES AVAILABLE BY SYSGEN OPTION • • • •

Automatic Carriage Return ••••
variable-Length Buffering ••••••••••
Task Buffering of Received Characters ••••
LA30-P Support • • • • • • • • • • • •

3-26
3-26
3-27
3-27
3-28
3-29
3-29
3-29
3-29
3-30
3-30
3-30
3-30
3-30
3-30
3-30
3-31
3,...31
3-31
3-31
3-32
3-32

TERMINAL INTERFACES • • • • • • • • • •
DHll Asynchronous Serial Line Multiplexer
DJll Asynchronous Serial Line Multiplexer
DLll Asynchronous Serial Line Interface
DZll Asynchronous Serial Line Multiplexer

PROGRAMMING HINTS • • • • • • • • •
Terminal Line Truncation
ESCape Code Conversion • • • • •
RT02-C Control Function
Checkpointing During Terminal Input •••••
Time Required for IO.KIL • •
Use of I 0 • WVB • • • • • • • • • • • •
Remote DHll and DZll Lines ••••••
High-Order Bit on Output ••••••
Side Effects of Setting Characteristics
Unsolicited-Input-Character ASTs for Tasks
Attaching Several Terminals • • • • • •
Direct Cursor Control •••••
DLll Receiver Interrupt Enable ••••

3-32
3-33
3-33
3-33 Loadable Driver Restrictions •••••••

VIRTUAL TERMINAL DRIVER

INTRODUCTION • • • • • • •
GET LON INFORMATION MACRO
QIO MACRO • • • • • •

Standard QIO Functions
IO.ATT •
IO.DET •••••
IO.KIL •••••••••
I 0. RLB , I 0. RVB , I 0. WLB , I 0 • WVB •

Device-Specific QIO Function (IO.STC)
SF.GMC •

• • 4-1
4-1

• 4-2
4-4

• 4-4
4-4

• • 4-4
• • 4-4

• 4-5
• • 4-6

IO.GTS • • • • 4-6
IO. RPR
SF.SMC •

STATUS RETURNS

DISK DRIVERS

INTRODUCTION • • • • •

4-7
• 4-7

4-7

5-1
• • 5-1 RFll/RSll Fixed-Head Disk

RS03 Fixed-Head Disk • . . • • . • 5-1
RS04 Fixed-Head Disk ••••
RP11/RP02 or RP03 Pack Disks
RM02/RM03/RM05/RM80 Pack Disk
RP04, RP05, RP06 Pack Disks
RK11/RK05 or RK05F Cartridge Disks ••
RLll/RLOl or RL02 Cartridge Disk ••••••
RK611/RK06 or RK07 Cartridge Disk
RXll/RXOl Flexible Disk ••••••••

• 5-1
• • 5-1

5-3
• 5-3

• • 5-3
• • 5-3
• • 5-3
• • 5-4

• 5-4 RX211/RX02 Flexible Disk •••
ML-11 Disk Emulator
UDA50/RA60/RA80/RA81 Disks •

. 5-4
. 5-4

RC25 Disk Subsystem
RD51 Fixed 5.25 Disk/RX50

• • 5-4 .1
Flexible 5.25 Disk • 5-4.1

vi April 1983

5.2
5.3
5.3.1
5.3.2
5.3.3
5.4
5.5

CHAPTER 6

6.1
6.2
6.3
6.3.1
6.3.2
6.4
6 .. 4..1
6.4.2
6.5
6.5.1
6.5.2
6.5.3
6.5.4

CHAPTER 7

7.1
7 .1.1
7 .1. 2
7.2
7.3
7.3.1
7.3.2
7.3.2.l
7.3.2.2
7.3.2.3
7.3.2.4
7.4

CHAPTER 8

8.1
8 .1.1
8 .1.2
8 .1.3
8 .1. 4
8.2
8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.3.2.3
8.3.2.4
8.3.2.5
8.3.2.6
8.3.2.7
8.4
8.4.1
8.4.2
8.4.3
8.5

CONTENTS
Page

GET LUN INFORMATION MACRO • • • • • •
QIO MACRO • • • • • • • • •

••••• 5-4.1
. . • . . • 5-5

Standard QIO Functions • • • • • • •
Device-Specific QIO Functions • • • • • •
Device-Specific QIO Function for the RASO

• 5-5
••• 5-7

• 5-8
STATUS RETURNS • • • • • • • • • • • 5-8

5-11 PROGRAMMING HINTS • • • • • •

DECTAPE DRIVER

INTRODUCTION • • • • • •
GET LUN INFORMATION MACRO
QIO MACRO • • • • • • • • •

Standard QIO Functions • •
Device-Specific QIO Functions

STATUS RETURNS • • • • • • • •
DECtape Recovery Procedures
Select Recovery • • • •

PROGRAMMING HINTS • • • • • •
DECtape Transfers • • • • •

. 6-1
. 6-1

. 6-2
6-2

• 6-3
• • 6-4

. 6-6

. • . • • 6- 7
• • . • . . • 6- 7

6-7
Reverse Reading and Writing •••• • 6-7
Speed Considerations When Reversing Direction
Aborting a Task • • • • • • • • • • • • • • •

DECTAPE II DRIVER

• 6-7
• 6-8

INTRODUCTION • • • • • • • • • • 7-1
TU58 Hardware • • • • • • • • • 7-1
TU58 Driver • • • • • • • • • • • • • 7-1

GET LON INFORMATION MACRO • • • • • • • • • 7-1
QIO MACRO • • • • • • • • • • • • • • • • • 7-2

Standard QIO Functions • • • 7-2
Device-Specific QIO Functions • 7-3

IO.WLC • • • • • • • • • • • 7-4
IO.RLC • • • • • • • 7-4
IO.BLS • • • • • • • • • • • 7-4
IO.DGN • • • • • • • • • • • 7-4

STATUS RETURNS • • • • • • • • • • • • • • • • 7-4

MAGNETIC TAPE DRIVERS

INTRODUCTION • • • • • • • • • • • • • • • • • 8-1
TE10/TU10/TS03 Magnetic Tape • • • • • • • • • • 8-1
TE16/TU16/TU45/TU77/TU78 Magnetic Tape ••• 8-1
TS11/TU80 Magnetic Tape •••••• 8-1
TSV05 Magnetic Tape • • • • • • 8-2

GET LUN INFORMATION MACRO • • • • • 8-3
QIO MACRO • 8-3

Standard QIO Functions • • 8-4
Device-Specific QIO Functions ••••••••• 8-4

IO. RLV • • • • • • • • • • • • • • 8-4
IO.RWD • • • • • • • • •• 8-5
IO. RWU • • • • • • • • • • • • • 8-5
IO.ERS • • • • • • • 8-6
IO.DSE • • • • • • 8-6
IO.SEC • • • • • • • • • • • • • 8-6
IO.SMO • • • • • 8-9

STATUS RETURNS 8-10
Select Recovery • . • • • • • • • • • • • 8-13
Retry Procedures for Reads and Writes • • • • 8-13
Power-Fail Recovery for Magnetic Tapes • 8-14

PROGRAMMING HINTS • • • • • • • • • • • 8-14

vii April 1983

I

8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8 .. s .. 6

I 8.5.7

CHAPTER 9

9.1
9.2
9.3
9.3.1
9.3.2
9.4
9.4.1
9.5
9.6
9.6.l
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6

CHAPTER 10

10.1
10 .1.1
10 .1. 2
10 .1. 3

I
10 .1. 4
10 .1.5
10.2
10.3
10.4
10.4.1
10.5
10.6
10.6.1
10.6.2
10.6.3

CHAPTER 11

11.1
11.2
11.3
11. 3 .1
11. 3. 2
11.4
11. 4 .1
11.4.2
11. 4. 3
11.5
11. 5 .1
11.6
11. 6 .1
11.6.2
11. 7
11.7.1
11. 7. 2

CONTENTS
Page

Block Size • • • • • • • • • • • • • • • • • • 8-14
Importance of Resetting Tape Characteristics • 8-15
Aborting a Task • • • • • • • • • • 8-15
Writing an Even-Parity Zero-NRZI • • • • 8-15
Density Selection • • • • • • • • • • • 8-15
End-of-Volume Status (Unlabeled Tape) • • • • 8-15
Resetting VCK Indicator • • • • • • • • 8-16

CASSETTE DRIVER

INTRODUCTION • • • • • • •
GET LON INFORMATION MACRO
QIO MACRO • • • • • • • •

9-1
9-.1

• • 9-2
9-2 Standard QIO Functions • •

Device-Specific QIO Functions
STATUS RETURNS • • • • • • • • •

Cassette Recovery Procedures
STRUCTURE OF CASSETTE TAPE •

• • • • • • • 9-3
• • • • • 9-3

PROGRAMMING HINTS • • • • • •
Importance of Rewinding • • • • • • • • •
End-of-File and IO.SPF • • • • •
The Space Functions, IO.SPB and IO.SPF •
verifying of Write Operations
Block Length • • • • •
Logical End-of-Tape •••••

LINE PRINTER DRIVER

INTRODUCTION • • • •
LPll Line Printer
LSll Line Printer
LVll Line Printer
LA180 DECprinter •••••
LNOl Laser Printer •

GET LON INFORMATION MACRO
QIO MACRO • • • • • • •
STATUS RETURNS • • • • •

Ready Recovery • • • • •
VERTICAL FORMAT CONTROL
PROGRAMMING HINTS

RUBOUT Character • • • • • • •
Print Line Truncation •••••
Aborting a Task

CARD READER DRIVER

INTRODUCTION • • • • • • •
GET LON INFORMATION MACRO
QIO MACRO • • • • • • • • •

• • 9-6
• 9-6
• 9-7
• 9-7
• 9-7

• • 9-7
• • 9-8

• 9-8
• 9-8

10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-3
10-4
10-5
10-5
10-6
10-6
10-7
10-7

11-1
11-1
11-2
11-2 Standard QIO Functions •

Device-Specific QIO Functions • • • • • • 11-3
• • • • • • • 11-3 STATUS RETURNS • • • • • • • • • •

Card Input Errors and Recovery •
Ready and Card Reader Check Recovery
I/O Status Conditions •••••••••

FUNCTIONAL CAPABILITIES • • • •
Control Characters • • • • •

CARD READER DATA FORMATS • • • • •
Alphanumeric Format (026 and 0211)
Binary Format • • • • • • • • • • • • •

PROGRAMMING HINTS • • • • • • •

11-3
11-4
11-7
11-8
11-8
11-9
11-9
11-9
11-9

Input Card Limitation
Aborting a Task

• • • • 11-9
• 11-10

viii April 1983

CONTENTS
Page

CHAPTER 12 MESSAGE-ORIENTED COMMUNICATION DRIVERS

12.1 INTRODUCTION 12-1
12.1.1 DAll-B Parallel Interface 12-2
12 .1. 2 DLll-E Asynchronous Line Interface . 12-2
12 .1.3 DMCll Synchronous Line Interface 12-3
12 .1. 4 DPll Synchronous Line Interface 12-3
12 .1. 5 DQll Synchronous Line Interface 12-3
12 .1. 6 DUll Synchronous Line Interface 12-3
12 .1. 7 DUPll Synchronous Line Interface . 12-4
12.2 GET LUN INFORMATION MACRO 12-4
12.3 QIO MACRO 12-5
12.3.1 Standard QIO Functions 12-5
12.3.2 oevice-Specif ic QIO Functions 12-5
12.3.2.1 IO.FOX 12-7
12.3.2.2 IO.HDX 12-7
12.3.2.3 IO. INL and IO.TRM 12-7
12.3.2.4 IO.RNS 12-7
12.3.2.5 IO.SYN 12-8
12.3.2.6 IO.WNS 12-8
12.4 STATUS RETURNS 12-8
12.5 PROGRAMMING HINTS . . 12-11
12.5.1 Transmission Validation . . 12-11
12.s.2 Redundancy Checking 12-11
12.5.3 Half-Duplex and Full-Duplex Considerations . . 12-11
12.5.4 Low-Traffic Sync Character Considerations 12-12
12.5.5 vertical Parity Support 12-12
12.5.6 Power fail with DMCll . 12-12
12.5.7 Importance of IO. INL . 12-12
12.6 PROGRAMMING EXAMPLE . 12-13

CHAPTER 13 PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

13.1 INTRODUCTION • • • • • • • 13-1
13.1.1 PCLll-B Hardware • • • • • 13-1
13.1.2 PCLll Transmitter Driver • • • • • • • 13-1
13.1.3 PC-Lll Receiver Driver • • • • • • • • • • 13-1
13.2 GET LUN INFORMATION MACRO • • • • 13-2
13.3 QIO MACRO -- PCLll TRANSMITTER DRIVER FUNCTIONS 13-3
13.3.1 Standard QIO Functions • • • 13-3
13.3.2 Device-Specific QIO Functions 13-3
13.3.2.1 IO.ATX • • • • • • • • • • 13-5
13.3.2.2 IO.SEC • • • • • • • • • • • • • • • • 13-5
13.3.2.3 IO.STC • • • • • • • • • • • • • • • • 13-5
13.4 PCLll TRANSMITTER DRIVER STATUS RETURNS • • • • 13-6
13.5 QIO MACRO -- PCLll RECEIVER DRIVER FUNCTIONS • • 13-8
13.5.1 Standard QIO Functions • • • • • 13-8
13.5.2 Device-Specific QIO Functions 13-9
13.5.2.1 IO.CRX • • • 13-10
13.5.2.2 IO.RTF • • • • • • • • •• 13-10
13.5.2.3 IO.ATF • • • • • • • • 13-10
13.5.2.4 IO.DRX • • • •••••••••• 13-11
13.6 PCLll RECEIVER DRIVER STATUS RETURNS • • 13-11

CHAPTER 14 ANALOG-TO-DIGITAL CONVERTER DRIVERS

14.1
14 .1.1
14 .1. 2
, JJ
.L':t • L

14.3

INTRODUCTION • • • • • • • • • • • •
AFCll Analog-to-Digital Converter
ADOl-D Analog-to-Digital Converter ••

GET LUN INFORMATION MACRO • • • •
QIO MACRO • • • • • • • • • • • • • •

ix

14-1
14-1
14-1
14-2
14-2

14.3.1
14.3.2
14.4
14.4.1

14.4.2
14.4.3
14.4.4

14.4.5

14.4.6
14.4.7
14.5
14.5.1
14.6
14.6.1
14.7
14.7.1
14.7.2
14.7.3
14.7.4

CHAPTER 15

CONTENTS

Standard QIO Function
Device-Specific QIO Function

FORTRAN INTERFACE • • • • • •
Synchronous and Asynchronous Process Control
I/O • • • • • • • • • • • • • • •
The isb Status Array • • • • • • • • • • • • •
FORTRAN Subroutine Summary • • • • • • • • • •
AIRD/AIRDW: Performing Input of Analog Data in
Random Sequence • • • • • • • • • • • • • • •
AISQ/AISQW: Reading Sequential Analog Input
Channels • • • • • • • • •
ASADLN: Assigning a LON to the ADOl-D
ASAFLN: Assigning a LON to the AFCll

STATUS RETURNS • • • • • • •
FORTRAN Interface Values •

Page

14-2
14-2
14-3

14-3
14-4
14-4

14-5

14-6
14-7
14-7
14-8
14-9

FUNCTIONAL CAPABILITIES
Control and Data Buffers •

• • • • • • • 14-10
• • • • • • 14-10

PROGRAMMING HINTS • • • • • • • 14-10
• • • • • • • 14-10

the AFCll • • 14-10
use of A/D Gain Ranges • •
Identical Channel Numbers on
AFCll Sampling Rate ••••
Restricting the Number of ADOl-D

• • • • • 14-11
Conversions • 14-11

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.1 INTRODUCTION ••••••••• 15-1
15-1
15-2
15-2
15-3
15-3
15-3
15-3
15-3

15.1.1 Creating the UDCll Driver
15.1.2 Accessing UDCll Modules •••••••••••
15.1.2.1 Driver Services
15.1.2.2 Direct Access ••••••••
15.2 GET LUN INFORMATION MACRO
15.3 QIO MACRO • • • • • • • • • •••••
15.3.1 Standard QIO Function •••••••
15.3.2 Device-Specific QIO Functions ••••
15.3.2.1 Contact Interrupt Digital Input (W733

15.3.2.2
15.3.2.3

15.3.2.4
15.3.2.5

15.4
15.4.1
15.4.1.1
15.4.1.2
15.4.2

15.4.3

Modules) • • • • . • • • •
Timer (W734 I/O Counter Modules) •
Latching Digital Output (M685, M803, and

15-6
15-7

M805 Modules) • • • • • • • • • • • • 15-8
Analog-to-Digital Converter (ADUOl Module) • 15-8
ICSll Analog-to-Digital Converter (IAD-IA
Module) • • • • • • • • • • • 15-8

DIRECT ACCESS • • • • • • • • • • • • • • • • • 15-9
Defining the UDCll Configuration •• • • 15-10

Assembly Procedure for UDCOM.MAC • • • 15-10
• 15-10 Symbols Defined by UDCOM.MAC • • •

Including UDCl Symbolic Definitions in the
System Object Module Library •••••
Referencing the UDCll through a Global Common

• 15-12

Block • • • • • • • • • . • • • • 15-12
15.4.3.l Creating a Global Common Block • • • • 15-12
15.4.3.2 Making the Common Block Resident • • • 15-13
15.4.3.3 Linking a Task to the UDCll Common Block •• 15-14
15.5 FORTRAN INTERFACE • • • • • • • • • • • • 15-14
15.5.1 Synchronous and Asynchronous Process Control

15.5.2
15.5.3
15.5.4

15.5.5

15.5.6
15.5.7

I/O • • • • • • • • • • • • • • . . • . 15-15
The isb Status Array •••••••••.••• 15-15
FORTRAN Subroutine Summary •••••••••• 15-16
AIRD/AIRDW: Performing Input of Analog Data in
Random Sequence • • • • • • • • • • 15-17
AISQ/AISQW: Reading Sequential Analog Input
Channels • • • • • • • • . • • . • . • • 15-18
AO/AOW: Performing Analog Output • • 15-19
ASUDLN: Assigning a LUN to the UDCll • 15-20

x

15.5.8
15.5.9
15.5.10
15.5.11
15.5.12
15.5.13

15.5.14
15.5.15
15.5.16

15.5.17

15.5.18

15.5.19

15.5.20
15.5.21
15.6
15.6.1
15.7
15.7.1
15.7.2

CHAPTER 16

CONTENTS

CTDI: Connecting to Contact Interrupts •••
CTTI: Connecting to Timer Interrupts ••••
DFDI: Disconnecting from Contact Interrupts
DFTI: Disconnecting from Timer Interrupts •
DI/DIW: Reading Several Contact Sense Fields
DOL/DOLW: Latching or Unlatching Several

Page

• 15-20
• 15-21
• 15-22
• 15-23
• 15-23

Fields • • • 15-24
DOM/DOMW: Pulsing Several Fields • • • • • • • 15-25
RCIPT: Reading a Contact Interrupt Point • • • 15-25
RDCS: Reading Contact Interrupt
Change-of-State Data from a Circular Buffer • 15-26
RDDI: Reading Contact Interrupt Data from a
Circular Buffer ••••••.•••••••• 15-27
RDTI: Reading Timer Interrupt Data from a
Circular Buffer ••••••••••••.
RDWD: Reading a Full Word of Contact
Interrupt Data from the Circular Buffer

• • 15-28

• 15-29
RSTI: Reading a Timer Module •••
SCTI: Initializing a Timer Module

STATUS RETURNS • • • • • • •
FORTRAN Interface Values

PROGRAMMING HINTS • • • • •
Numbering Conventions

• • 15-30
• • • • • • 15-30
• ••••• 15-31
• • • • 15-33

• • • • • 15-34

Processing Circular Buffer Entries •
• 15-34

• • • 15-34

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.1 INTRODUCTION • • • • • • • • • • • • • • • • • • 16-1
16.1.1 ARll Laboratory Peripheral System • • • • • • 16-2
16.1.2 LPSll Laboratory Peripheral System • • • • 16-2
16.2 GET LUN INFORMATION MACRO • • • • • • 16-2
16.3 QIO MACRO • • • • • • • • • • • • • • 16-2
16.3.1 Standard QIO Function • • • • • • • . • 16-2
16.3.2 Device-Specific QIO Functions (Immediate) 16-3
16.3.2.1 IO.LED • • • • • • • • • • • • • • 16-4
16.3.2.2 IO.REL • • • • • • • • • • • • • • • 16-4
16.3.2.3 IO.SDI • • • • • 16-4
16.3.2.4 IO.SDO • • • • • • • • • 16-4
16.3.3 Device-Specific QIO Functions (Synchronous) 16-4
16.3.3.1 IO.ADS • • • • • • • • • • • • • 16-6
16.3.3.2 IO.HIS • • • • • • • • • • • • 16-7
16.3.3.3 IO.MDA • 16-8
16.3.3.4 IO.MDI • • • • • • • • • • 16-8
16.3.3.5 IO.MOO • • • • • • • • • • • • • • 16-8
16.3.4 Device-Specific QIO Function (IO.STP) 16-9
16.3.4.1 IO.STP • • • • • • • • • • 16-9
16.4 FORTRAN INTERFACE • • • • • • • • • • • • • 16-9
16.4.1 The isb Status Array • • • • • • • • • • • • • 16-9
16.4.2 Synchronous Subroutines • • • • • •••• 16-10
16.4.3 FORTRAN Subroutine Summary • • • 16-11
16.4.4 ADC: Reading a Single A/D Channel •• 16-12
16.4.5 ADJLPS: Adjusting Buffer Pointers • 16-13
16.4.6 ASLSLN: Assigning a LUN to LSO: ••• 16-13
16.4.7 ASARLN: Assigning a LUN to ARO: •• 16-14
16.4.8 CVSWG: Converting a Switch Gain A/D Value to

16.4.9

16.4.10

16.4.11
16.4.12
16.4.13
16.4.14

Floating-Point • • • • • • • • • • • • • • • • 16-15
DRS: Initiating Synchronous Digital Input
Sampling ••••••••••••••••••• 16-15
HIST: Initiating Histogram Sampling (LPSll
only) • • • • • • • • • • • • • • • • • 16-17
!DIR: Reading Digital Input : : • • • . 16=19
!DOR: Writing Digital Output ••••••• 16-20
IRDB: Reading Data from an Input Buffer • 16-20
LED: Displaying in LED Lights (LPSll only) •• 16-21

xi

16.4.15

16.4.16

CONTENTS
Page

LPSTP: Stopping an In-Progress Synchronous
Function • • • • • • • • • • • • • • • • • • • 16-22
POTO: Putting a Data Item into an Output
Buffer • 16-22
RELAY: Latching an Output Relay (LPSll only) • 16-22
RTS: Initiating Synchronous A/D Sampling ••• 16-23
SDAC: Initiating Synchronous D/A Output • 16-25
SDO: Initiating Synchronous Digital Output •• 16-27

16.4.17
16.4.18
16.4.19
16.4.20
16.5
16.5.1
16.5.2
16.5.3
16.5.4
16.6
16.6.1
16.6.2
16.6.3
16.6.4

STATUS RETURNS • • • • • • • • • • 16-29
IE.RSU • • • • • • • • • • • • • • • • • 16-31
Second I/O Status Word • • • • • • • 16-31
IO.ADS and ADC Errors • • • • • • • • • 16-32
FORTRAN Interface Values • • • 16-33

PROGRAMMING HINTS • • • • • • • • • • • • • • • 16-33
The LPSll/ARll Clock and Sampling Rates ••• 16-33
Importance of the I/O Status Block • • • • • • 16-34
Buff er Management • • • • • • • • • 16-35
use of ADJLPS for Input and Output • • • 16-36

CHAPTER 17 PAPER TAPE READER/PUNCH DRIVERS

17.1
17.2
17.3
17.4
17.4.1
17.4.2
17.5
17.5.1
17.5.2

INTRODUCTION • • • • • • • •
GET LON INFORMATION MACRO
QIO MACRO • • • •

17-1
17-1
17-2
17-3
17-4
17-4
17-5
17-5
17-5

STATUS RETURNS • • •
Error Conditions • • • • •
Ready Recovery • • • • •

PROGRAMMING HINTS • • • • • • • • • • • • • • •
Special Action Resulting from Attach and Detach
Reading Past End-of-Tape • • • • • •

CHAPTER 18

18.1
18 .1.1
18.1.1.1
18.1.1.2
18.1.1.3
18 .1. 2
18 .1. 3
18.1.4
18 .1. 5
18.2
18.3
18.3.l
18.3.1.1
18.3.1.2
18.3.2
18.3.3
18.3.4
18.3.5
18.3.6
18.3.6.1
18.3.6.2
18.3.6.3
18.3.6.4
18.3.6.5
18.3.6.6
18.3.6.7
18.3.7
18.3.7.1
18.3.7.2
18.3.7.3

INDUSTRIAL CONTROL SUBSYSTEMS

INTRODUCTION • • • • • • • • • • • • • • • 18-1
Hardware Configuration • • • • • 18-1

ICS/ICR Address Assignments • • • • 18-1
DSS/DRS Address Assignments 18-2
Supported ICS/ICR I/O Modules 18-3

Alternate ICSll Support 18-3
Software Support • • • • • • • • 18-4
UDCll Software Compatibility • • 18-6
Module Addressing Conventions 18-6

LON INFORMATION • • • • • • • • 18-8
ASSEMBLY LANGUAGE INTERFACE 18-8

General Error Status Returns • • • • 18-12
Directive Conditions • • • • • 18-12
I/O Conditions • • • • • • • • • • • • • 18-13

A/D Input - Read Multiple A/D Channels •••• 18-13
Analog Output ~ ~ ~ • • • • • • • • • • • • • 18-15
Momentary Digital Output - Multi-Point •••• 18-16
Bistable Digital Output - Multi-Point 18-17
Unsolicited Interrupt Processing ••••••• 18-17

Connect to Digital Interrupts • • • • • 18-19
Disconnect from Digital Interrupts • 18-20
Connect to Counter Module Interrupts • • 18-21
Set Counter Initial Value • • • • 18-22
Disconnect from Counter Interrupts • 18-22
Connect to Terminal Interrupts • • • • • , • 18-23
Disconnect from Terminal Input • • • • • 18-24

Activating a Task by Unsolicited Interrupts • 18-24
Link a Task to Digital Interrupts • 18-25
Link a Task to Counter Interrupts • . 18-26
Link a Task to Terminal Interrupts • • • 18-27

xii

CONTENTS
Page

18.3.7.4 Link a Task to Error Interrupts •••• 18-27
18.3.7.5 Read Activating Data • • • • • • • 18-28
18.3.8 Unlink a Task from Interrupts •• 18-29
18.3.8.1 Unlink a Task from All Interrupts ••••• 18-30
18.3.8.2 Unlink a Task from all Digital Interrupts • 18-30
18.3.8.3 Unlink a Task from Counter Interrupts ••• 18-30
18.3.8.4 Unlink a Task from Terminal Interrupts • 18-31
18.3.8.5 Unlink a Task from Error Interrupts •• 18-31
18.3.9 Terminal Output • • • • • • • •• 18-32
18.3.10 Maintenance Functions • • • • • • 18-32
18.3.10.1 Disable Hardware Error Reporting • • o • 18-32
18.3.10.2 Enable Hardware Error Reporting •••••• 18-33
18.3.11 Special Functions • • • • • • • • 18-33
18.3.11.1 I/O Rundown • • • • 18-33
18.3.11.2 Kill I/O • • • • • • • • • • • • •• 18-33
18.4 FORTRAN INTERFACE • • • • • •••• 18-34
18.4.1 Synchronous and Asynchronous Process Control

18.4.2
18.4.3
18.4.4

18.4.5
18.4.5.1

18.4.5.2

18.4.6
18.4.7

I/0 • • • • • • • • • • • • • • 18-35
Return Status Reporting • • • • • • • • • 18-35
Optional Arguments • • • • • • • • • 18-37
Assigning Default Logical and Physical Units
for Input and Output - ASICLN/ASUDLN (ICS/ICR)
and ASISLN (DSS/DRS) • • • • • • • • • • • • • 18-38
Analog Input • • • • • • • • • • • • • • • 18-40

AIRD/AIRDW: Analog Input - Specified
Channel Sequence • • • • • • • • • • • • • • 18-40
AISQ/AISQW: Analog Input - Sequential
Channel Sequence • • • • • • • • • • • • • • 18-43

AO/AOW: Analog Output - Multichannel • • • 18-45
DOL/DOLW: Digital Output - Bistable Multiple
Fields • 18-46

18.4.8 Digital Input • • • • • • • • • • • • • • 18-48
18.4.8.1 DI/DIW: Digital Input - Digital Sense

Multiple Fields • • • • • • • • • • • • 18-48
18.4.8.2 RCIPT: Digital Input - Digital Interrupt

Single-Point • • • • • • • • • • • • • • • • 18-49
18.4.9 DOM/DOMW: Digital Output Momentary - Multiple

Fields • • • • • • • • • • • • • • • • • • 18-50
18.4.10 RTO/RTOW: Remote Terminal Output • • • • 18-51
18.4.11 Unsolicited Interrupt Data - Continual

Monitoring • • • • • • • • • • • • • • • • 18-52
18.4.11.1 CTDI: Connect a Buffer for Receiving Digital

18.4.11.2
18.4.11.3

18.4.11.4

18.4.11.5

18.4.11.6
18.4.11.7

18.4.11.8

18.4.11.9

Interrupt Data • • • • • • • • • • • • • 18-52
Reading Digital Interrupt Data • • • • 18-53
DFDI: Disconnect a Buffer from Digital
Interrupts • • • • • • • • • • • • • • • • • 18-57
CTTI: Connect a Buffer for Receiving
Counter Data • • • • • • • • • • • • • • • • 18-57
RDTI: Read Counter Data from the Circular
Buffer • • • • • • • • • • • • • • • • • • • 18-59
Miscellaneous Counter Routines • • • • • • • 18-59
DFTI: Disconnect a Buffer from Counter
Interrupts • • • • • • • • • • • • • • • • • 18-60
CTTY: Connect a Circular Buffer to Terminal
Interrupts • • • • • • • • • • ••••• 18-61
RDTY: Read a Character from the Terminal
Buffer • • • • • • • • • • • • • • • • • • • 18-62

18.4.11.10 DFTY: Disconnect a Circular Buffer from
Terminal Input c e e = e e e • • • • • • • 18-63

18.4.11.11 Programming Example • • • • • • • • • • 18-63
18.4.12 unsolicited Interrupt Processing - Task

18.4.12.1
18.4.12.2
18.4.12.3

Activation ••••••••••• • 18-65
LNK: Link a Task to Interrupts 18-65
RDACT: Read Activation Data •••••••• 18-67
UNLNK: Remove Interrupt Linkage to a Task • 18-69

xiii

CONTENTS
Page

18.4.13 Maintenance Functions ••••••••••
18.4.13.1 OFLIN: Place Selected Unit in Offline

18-70

Status • • • • • • • • • • • • 18-71
18.4.13.2 ONLIN: Return a Device to On-line Status • 18-71
18.5 ERROR DETECTION AND RECOVERY • • •••• 18-71
18.5.1 Serial Line Errors • • • • • • •••••. 18-72
18.5.2 Power-Fail at a Remote Site • • • • • 18-72
18.5.3 Power Recovery at the Processor ••••••• 18-73
18.5.4 Unit in Off-line Status ••••••••••• 18-73
18.5.5 Error Data - !CSR and !CAR Registers • • • 18-74
18.6 DIRECT ACCESS • • • • • • • • • • • • • • 18-75
18.6.1 Linking a Task to the ICS/ICR Common Block •• 18-77
18.6.2 Accessing the I/O Page • • • • • 18-77
18.6.2.1 Mapping Table Format • • • • • • 18-78
18.6.2.2 I/O Page Global Definitions • • • • • • 18-78
18.6.2.3 Sample Subroutine • • • • • • • • 18-79
18.7 CONVERSION OF EXISTING SOFTWARE ••• 18-81
18.7.1 Features • • • • • • • ••••••• 18-81
18.7.2 Module Support • • • • • • • • 18-81
18.7.2.1 !AD-IA A/D Converter and IMX-IA Multiplexer 18-81
18.7.2.2 16-Bit Binary Counter •••••••• 18-82
18.7.2.3 Bistable Digital Output •• 18-82
18.7.2.4 Momentary Digital Output •••••••••• 18-82
18.7.2.5 Noninterrupting Digital Input • • • • • 18-83
18.7.2.6 Analog Output • 18-83
18.7.2.7 Interrupting Digital Input ••••••••• 18-83

CHAPTER 19 NULL DEVICE DRIVER

CHAPTER 20 GRAPHICS DISPLAY DRIVER

20.1
20 .1.1
20 .1. 2
20.2
20.3
20.4
20.5

CHAPTER 21

21.1
21.1.1
21.1.2
21.2
21.3
21.3.1
21.3.l.l
21.3.1.2
21.3.1.3
21.3.1.4

21.3.1.5
21.3.1.6

21.3.1.7

21.3.1.8

INTRODUCTION • • • • • • • • • • •
VTll Graphics Display Subsystem
VS60 Graphics Display Subsystem

GET LUN INFORMATION MACRO
QIO MACRO • • • • • • • • •
STATUS RETURNS • •
PROGRAMMING HINTS

LABORATORY PERIPHERAL ACCELERATOR DRIVER

INTRODUCTION • • • • • • • • • • • • • • •
LPAll-K Dedicated Mode of Operation
LPAll-K Multirequest Mode of Operation •

GET LUN INFORMATION MACRO • • • • • • • • •
THE PROGRAM INTERFACE • • • • • • • • • • • • •

FORTRAN Interface • • • • • • • • • • •
ADSWP: Initiate Synchronous A/D Sweep
CLOCKA: Set Clock A Rate • • • • •
CLOCKB: Control Clock B ••••••••
CVADF: Convert A/D Input to Floating
Point • • • • • • • • • • • • • • • • •
DASWP: Initiate Synchronous D/A Sweep
DISWP: Initiate Synchronous Digital Input

20-1
20-1
20-1
20-1
20-2
20-3
20-3

21-1
21-1
21-1
21-2
21-2
21-2
21-3
21-7
21-7

21-9
21-9

Sweep • • ~ ~ e • • • • • • • • • • • • • • 21-12
DOSWP: Initiate Synchronous Digital Output
Sweep • • • • • • • • • • • • • • • • 21-14
FLT16: Convert Unsigned Integer to a Real
Constant • • • • • • • • ••••• 21-17

21.3.1.9
21.3.1.10
21.3.1.11

IBFSTS: Get Buffer Status • • • • • • 21-17
IGTBUF: Return Buffer Number • • •••• 21-17
INXTBF: Set Next Buffer •••••• 21-18

xiv

21.3.1.12
21.3.1.13
21.3.1.14
21.3.1.15
21.3.1.16
21.3.1.17
21.3.1.18
21.3.1.19
21.3.2
21.3.2.1
21.3.2.2

21.3.2.3
21.3.2.4

CONTENTS
Page

IWTBUF: Wait for Buffer • 21-19
LAMSKS: Set Masks Buffer •• 21-20
RLSBUF: Release Data Buffer ••••• 21-21
RMVBUF: Remove Buffer from Device Queue •• 21-22
SETADC: Set Channel Information • 21-22
SETIBF: Set Array for Buffered Sweep • 21-23
STPSWP: Stop Sweep • • • • • • • • • • 21-24
XRATE: Compute Clock Rate and Preset •• 21-25

MACR0-11 Interface • • • • • • • • • • • • 21-26
Accessing Callable LPAll-K Support Routines 21-26
Standard Subroutine Linkage and CALL Op

Code • • • • • • • • • • • • • • 21-27
Special-Purpose Macros • • • • • • 21-27
Device-Specific QIO Functions • • 21-28
IO.CLK • • • • • • • • • 21-29
IO.IN! • • • • • • • 21-29
IO.LOO • • • • • • • ••• 21-29
IO.STA • • •••• 21-30
IO.STP • • • • • 21-30

The I/O Status Block (IOSB) ••••• 21-30

21.3.2.5
21.3.2.6
21.3.2.7
2le3o2=8
21.3.2.9
21.3.3
21.4
21.5
21.6
21.7
21.8
21.9

BUFFER MANAGEMENT • • 21-32
LOADING THE LPA-11 MICROCODE • • 21-34
UNLOADING THE DRIVER • • • • • • • • • 21-35
TIME-OUT OF THE LPAll-K • 21-35
22-BIT ADDRESSING SUPPORT • • • • • 21-36
SAMPLE PROGRAMS • • . • • • • • • • • 21-37

CHAPTER 22 K-SERIES PERIPHERAL SUPPORT ROUTINES

22.1 INTRODUCTION • • • • • • • • • • • • 22-1
22.1.1 K-Series Laboratory Peripherals 22-1
22.1.1.1 AAll-K D/A Converter • • • • • • 22-2
22.1.1.2 ADll-K A/D Converter • • • • • • 22-2
22.1.1.3 AMll-K Multiple Gain Multiplexer • • • • • • 22-2
22.1.1.4 DRll-K Digital I/O Interface • • 22-2
22.1.1.5 KWll-K Dual Programmable Real-Time Clock 22-3
22.1.2 Support Routine Features • • • • • • 22-3
22.1.3 Generation and Use of K-Series Routines 22-4
22.1.3.1 Generation of K-series Support Routines 22-5
22.1.3.2 Program Use of K-series Routines • • • 22-5
22.2 THE PROGRAM INTERFACE • • • • • • • • 22-6
22.2.l FORTRAN Interface • • • • • • • • • • • • • • 22-7
22.2.1.1 ADINP: Initiate Single Analog Input 22-8
22.2.1.2 ADSWP: Initiate Synchronous A/D Sweep 22-8
22.2.1.3 CLOCKA: Set Clock A Rate • • • • • • • • 22-11
22.2.1.4 CLOCKB: Control Clock B •••••••••• 22-12
22.2.1.5 CVADF: Convert A/D Input to Floating Point • 22-13
22.2.1.6 DASWP: Initiate Synchronous D/A Sweep ••• 22-14
22.2.1.7 DIGO: Digital Start Event ••••••••• 22-16
22.2.1.8 DINP: Digital Input •••••••••••• 22-16
22.2.1.9 DISWP: Initiate Synchronous Digital Input

22.2.1.10

22.2.1.11
22.2.1.12

22.2.1.13
22.2.1.14
22.2.1.15
22.2.1.16
22.2.1.17
22.2.1.18
22.2.1.19

Sweep • • • • • • • • • • • • • • • •
DOSWP: Initiate Synchronous Digital
Output Sweep • • • • •
DOUT: Digital Output •••••
FLT16: Convert Unsigned Integer to a

• 22-17

• 22-19
• • 22-20

Real
Constant • • • • • • • • • • • • • • • • • • 22-21
GTHIST: Gather Interevent Time Data
IBFSTS: Get Buffer Status
ICLOKB: Read 16-bit Clock •••••
IGTBUF~ Return Buffer Number ••••••
INXTBF: Set Next Buffer
IWTBUF: Wait for Buffer ••••••••
RCLOKB: Read 16-bit Clock •••••

xv

• • 22-21
• • 22-23
• • 22-23

• 22-24
• • 22-25

• 22-25

CONTENTS
Page

22.2.1.20
22.2.1.21
22.2.1.22
22.2.1.23
22.2.1.24
22.2.1.25
22.2.1.26
22.2.2
22.2.2.1

RLSBUF: Release Data Buffer • • • • • 22-26
RMVBUF: Remove Buffer from Device Queue 22-26
SCOPE: Control Scope •••••.•••••• 22-27
SETADC: Set Channel Information 22-28
SETIBF: Set Array for Buffered Sweep • • 22-28
STPSWP: Stop Sweep ••••••••••••• 22-29
XRATE: Compute Clock Rate and Preset •••• 22-30

MACR0-11 Interface • • • • • • • • • 22-31
Standard Subroutine Linkage and CALL Op

22.2.2.2
22.2.3
22.3
22.4
22.4.1
22.4.2

CHAPTER 23

Code • • • • • • • • • . • • • • • 22-31
Special-Purpose Macros • • •

The I/O Status Block (IOSB)
BUFFER MANAGEMENT • • • • • • • • • •
SAMPLE FORTRAN PROGRAMS • • • •

Sample Program Using Event Flag ••••
Sample Program Using Completion Routine

UNIBUS SWITCH DRIVER

• • • 22-31
• • 22-32

• • • 22-32
• 22-33
• 22-34
• 22-35

23.l INTRODUCTION ••••••••••• 23-1
23-1
23-1
23-2
23-2
23-2
23-3
23-3
23-3
23-4
23-4
23-5
23-5
23-6
23-6
23-6
23-6
23-6
23-7
23-8

23.1.l DT07 UNIBUS Switches
23.1.2 UNIBUS Switch Driver •••••••••
23.2 GET LUN INFORMATION MACRO
23.3 QIO MACRO •••••
23.3.1 Standard QIO Functions •
23.3.1.1 IO.ATT .•••••••
2 3 • 3 • 1 • 2 I 0. D ET • • • • • • • • • •
23.3.1.3 IO.KIL •••••
23.3.2 Device-Specific QIO Functions
23.3.2.1 IO.CON
23.3.2.2 IO.DIS •••••••
23.3.2.3 IO.DPT
23.3.2.4 IO.SW! •
23.3.2.5 IO.CSR • • ••••
23.4 POWER-FAIL RECOVERY
23.4.1 System Power-Fail Recovery •
23.4.2 UNIBUS Power-Fail Recovery •
23.5 STATUS RETURNS •••••
23.6 FORTRAN USAGE • • • • • • ••••

APPENDIX A

A.l
A. 2
A.3
A.4
A.5
A. 6
A. 7
A.8
A.9
A.10
A.11
A.12
A.13
A.14
A.15
A.15.l
A.15.2
A.16
A.17
A.18
A.19

SUMMARY OF I/O FUNCTIONS

ANALOG-TO-DIGITAL CONVERTER DRIVERS • A-1
CARD READER DRIVER • • • • • • • • • • • • A-1
CASSETTE DRIVER • • • • • • • • • • • • A-1
COMMUNICATION DRIVERS (MESSAGE-ORIENTED) • • A-2
DECTAPE DRIVER • • • • • • • • A-2
DECTAPE II DRIVER • • • • • • • • A-3
DISK DRIVER • • • • • • A-3
GRAPHICS DISPLAY DRIVER • • • • • • A-3
INDUSTRIAL CONTROL SUBSYSTEMS • • • • • • • • • • A-4
LABORATORY PERIPHERAL ACCELERATOR DRIVER • A-5
LABORATORY PERIPHERAL SYSTEMS DRIVERS • • A-5
LINE PRINTER DRIVER • • • • • • • • • A-6
MAGNETIC TAPE DRIVER • • • • • • • • • • • • • • • A-6
PAPER TAPE READER/PUNCH DRIVERS • • • A-6
PARALLEL COMMUNICATION LINK DRIVERS ~ A-7

Transmitter Driver Functions • • •• A-7
Receiver Driver Functions • • • • • •• A-7

TERMINAL DRIVER • • • • • • • • ••••• A-7
UNIBUS SWITCH DRIVER • • • • • • • • • • • • A-9
UNIVERSAL DIGITAL CONTROLLER DRIVER • • • • • A-9
VIRTUAL TERMINAL DRIVER • • • • • • A-9

xvi

APPENDIX B

B.l
B.1.1
B.1.2
B.2
B.2.1
B.2.2
B.3
B.3.1
B.3.2
B.3.3
B.3.4
B.3.5

B.3.6
B.3.7
B.3.8
B.3.9
B.3.10
B.3.11
B.3.12
B.3.13
B.3.14

B.3.14.1
B.3.14.2
B.3.15
B.3.16
B.3.17
B.3.18

APPENDIX C

INDEX

C.l
C.1.1
C.1.2
C.1.2.1
C.1.2.2
C.1.2.3
C.1.3
C.1.4
C.1.5
C.2
C.3
C.4
C.5
C.6
C.6.1
C.6.2
C.6.3
C.6.4
C.6.5
C.7

CONTENTS

I/O FUNCTION AND STATUS CODES

I/0 STATUS CODES • • • • •
I/O Status Error Codes • • • • • •
I/O Status Success Codes • •

DIRECTIVES CODES • • • • • •

Page

• .. • • • • B-1
B-1

• • • • • • B-3
• • • • • • • B-4

Directive Error Codes
Directive Success Codes

• • • • • • • • B-4
B-4

I/O FUNCTION CODES • • • • •
Standard I/O Function Codes • • • •

. B-4
• B-4

• • • B-5 Specific A/D Converter I/0 Function Codes
Specific Card Reader I/O Function Codes
Specific Cassette I/O Function Codes •••
Specific Communication (Message-Oriented) I/O

B-5
• B-5

Function Codes • • • • • • • • . • • • B-5
Specific DECtape I/O Function Codes • B-6
Specific DECtape II I/O Function Codes • • • B-6
Specific Disk I/0 Function Codes •••••••• B-6
Specific Graphics Display I/O Function Codes • • B-7
Specific ICS/ICR, DSS/DR I/O Function Codes •• B-7
Specific LPAll-K I/O Function Codes • • • • • • B-8
Specific LPS I/O Function Codes • • • • • • • • B-9
Specific Magtape I/O Function Codes • • • • B-9
Specific Parallel Communications Link I/O
Function Codes • • • • • • • • • • • • • • • • B-10

Transmitter Driver Functions • B-10
Receiver Driver Functions • • • • B-10

Specific Terminal I/O Function Codes • B-10
Specific UDC I/O Function Codes • • • • B-12
Specific UNIBUS Switch I/O Function Codes B-12
Specific Virtual Terminal I/O Function Codes • B-12

QIO INTERFACE TO THE ACPS

QIO PARAMETER LIST FORMAT • • • • •
File Identification Block
The Attribute List • • ••••

The Attribute Type ••••
Attribute Size •••••
Attribute Buffer Address •

• C-1
C-2

• • C-2
• • • • • • • C-3

• C-4
• C-5

Size and Extend Control •••• • • • • • • C-5
Window Size and Access Control •
File Name Block Pointer

PLACEMENT CONTROL . • • • •
BLOCK LOCKING • • • • • • •
SUMMARY OF FllACP FUNCTIONS • • • •
SUMMARY OF MTAACP FUNCTIONS
HOW TO USE THE ACP QIOS • • • • •

• • • C-5
C-6

• • • • • • • C- 7
•• C-7
• • C-7

• • • • • • C-9
C-11

Creating a File • • • • • • • • • • • • • C-12
Opening a File • • • • • • • • • • • • • • C-12
Closing a File • • • • • • • • • • • C-12
Extending a File • C-12
Deleting a File • • • • • • • • • • C-12

ERRORS RETURNED BY THE FILE PROCESSORS • • • • • C-12

xvii

FIGURE 1-1
1-2
8=1

TABLE

8-2

9-1
18-1
18-2
19-1
C-1

1-1
1-2
1-3
2-1
2-2
2-3

2-4
2-5

2-6

2-7

2-8
2-9
2-9
2-10
2-11
3-1
3-2
3-3

3-4
3-5

3-6

3-7

3-8
3-9
3-10
3-11
4-1

4-2
4-3

4-4

5-1
5-2
5-3

CONTENTS
Page

FIGURES

Logical Unit Table •••••••••••••••• 1-6
QIO Directive Parameter Block • • • • . • • • • 1-14
Determination of Tape Characteristics for the
TElO/TUlO • • • • • • • • • • • • • • • • • • 8-8
Determination of Tape Characteristics for the
TE16/TU16/TU45/TU77 • • • • 8-9
Structure of Cassette Tape • • • • • • . • • • 9-6
Mapping Table Format •••••••••••••• 18-78
Mapping Table Entry Format • • • • • • • • 18-79
Indirect TKB Command File TESTBLD.CMD. • 19-1
File Identification Block • • • • • • • • • C-2

TABLES

Get LUN Information
Directive Conditions
I/O Status Conditions
Supported Terminal Devices • • • • •
Standard Terminal Interfaces • • • • •
Standard and Device-Specific QIO Functions for

1-22
1-33
1-36

• 2-2
• 2-3

Terminals • • • • • • • • • • • • • • • • 2-7
Subfunction Bits - Summary • • • • • • 2-11
Full-Duplex Terminal Driver-Terminal
Characteristics for SF.GMC and SF.SMC Functions
Bit TC.TTP (Terminal Type) Values Set by SF.SMC
and Returned by SF.GMC •••••••••••
Information Returned by Get Terminal Support
(IO.GTS) QIO •••••••••
Terminal Status Returns • • • •
Terminal Control Characters
Terminal Control Characters
Special Terminal Keys • • • • • • • •
Vertical Format Control Characters • • • • •
Supported Terminal Devices • • • • • • • • • •
Standard Terminal Interfaces
Standard and Device-Specific QIO Functions for

2-14

2-17

2-19
2-23
2-27
2-28
2-30
2-34

3-1
3-2

Terminals • • • • • • •
Subfunction Bits ••••

• • 3-5
• • 3-9

Terminal Characteristics for SF.GMC and SF.SMC
Requests • • • • • • • • • • • • •
Bit TC.TTP (Terminal Type): Values Set by SF.SMC
and Returned by SF.GMC •••••••••••
Information Returned by Get Terminal Support
(IO.GTS) QIO • ~ ~ ~ e e ~ e =
Terminal Status Returns • • • •
Terminal Control Characters • • • •
Special Terminal Keys • • • •
vertical Format Control Characters •
Standard and Device-Specific QIO Functions for
Virtual Terminals ••••••••••••
Virtual Terminal Characteristics •••••
Virtual Terminal Status Returns for Offspring Task

3-11

3-11

3-12
3-17
3-20
3-23
3-26

4-2
4-7

Requests • • • • • • • • • • • • • • • • • • 4-8
Virtual Terminal Status Returns for Parent Task
Requests • • • •
Standard Disk Devices

4-9
• 5-2

Standard Q!O Functions for Disks • • • • • • • 5-6
Device-Specific Functions for the RX01,RX02, RLOl,
and RL02 Disk Drivers • • . • • • • • • • • 5-7

xviii

5-4

5-5
5-5
5-5
6-1
6-2
6-3
7-1
7-2
7-3
8-1
8-2
8-3
8-4
8-5

9-1
9-2
9-3
10-1
10-2
10-3
10-4
11-1
11-2
11-3
11-4
11-5
11-6
12-1
12-2

12-3

12-4
13-1
13-2

13-3
13-4
13-5
13-6
14-1
14-2
14-3

14-4
14-5
14-6

14-7
14-8
15-1
15-2
15-3
15-4
15-5
15-6
15-7
16-1
16-2

16-3

CONTENTS
Page

Device-Specific QIO Function for the RASO Disk
Driver • • • • • • • • • • • • • • • • • • • 5-8
Disk Status Returns • • • • • • • • • • 5-8
Disk Status Returns • • • • • • • • 5-10
Disk Status Returns • • • • • • • • • 5-11
Standard QIO Functions for DECtape • • 6-2
Device-Specific Functions for DECtape • 6-3
DECtape Status Returns • • • • • • • • • • • • • • 6-4
Standard QIO Functions for the TU58 • • • • • • • 7-3
Device-Specific QIO Functions for the TU58 • • • • 7-3
TU58 Driver Status Returns • • • • • • 7-5
Standard Magtape Devices • • • • • • • • • • • 8-2
Standard QIO Functions for Magtape • • • • • • 8-4
Device-Specific QIO Functions for Magtape 8-5
Magtape Status Returns • • • • • • • • 8-10
Information Contained in the Second I/O Status
Word . . • • • . • . • • • • • • • • • • • 8-13
Standard QIO Functions for Cassette Q 9-2
Device-Specific QIO Functions for Cassette •• 9-3
Cassette Status Returns • • • • • • • • • • 9-4
Standard Line Printer Devices • • • • • • • • • 10-1
Standard QIO Functions for Line Printers • • 10-3
Line Printer Status Returns • • • • • • • • • • 10-4
vertical Format Control Characters • • • 10-6
Standard QIO Functions for the Card Reader • 11-2
Device-Specific QIO Function for the Card Reader 11-3
Card Reader Switches and Indicators • • • • 11-5
Card Reader Status Returns • • • • • • • • • 11-7
Card Reader Control Characters • • • 11-9
Translation from DEC026 or DEC029 to ASCII ••• 11-10
Message-Oriented Communication Interfaces 12-2
Standard QIO Functions for Communication
Interfaces • • • • • • • • • • • • • • • •
Device-Specific QIO Functions for Communication
Interfaces • • • • • • • • • • • • • • • • • • •
Communication Status Returns • • • • • • • • • •
Standard QIO Functions for PCLll Transmitters
Device-Specific QIO Functions for PCLll

12-5

12-6
12-8
13-3

Transmitters • • • • • • • • • • • • • • • 13-3
PCLll Transmitter Driver Status Returns • • • • 13-7
Standard QIO Functions for PCLll Receivers 13-9
Device-Specific QIO Functions for PCLll Receivers 13-9
PCLll Receiver Driver Status Returns •••••• 13-11
Standard Analog-to-Digital Converters 14-1
Standard QIO Function for the A/D Converters • • 14-2
Device-Specific QIO Function for the A/D
Converters • • • • • • . . • • . • • • 14-2
A/D Conversion Control Word 14-3
Contents of First Word of isb • • • • 14-4
FORTRAN Interface Subroutines for the AFCll and
ADOl-D • • • • . • • • . • • • • • • • 14-5
A/D Converter Status Returns • • • • • • • • • • 14-8
FORTRAN Interface Values • • • • • • • • • • 14-9
Standard QIO Function for the UDCll • • • • 15-3
Device-Specific QIO Functions for the UDCll 15-4
A/D Conversion Control Word • • • • • • • • 15-5
Contents of First Word of isb ••••••••• 15-15
FORTRAN Interface Subroutines for the UDCll • • 15-16
UDCll Status Returns • • • • • • • • • • 15-31
FORTRAN Interface Values • • • • • • • • • • • • 15-33
Laboratory Peripheral Systems • • • • • • 16-1
Standard QIO Function for Laboratory Peripheral
Systems ••..•••••••••••••••• 16-2
Device-Specific QIO Functions for the Laboratory
Peripheral Systems (Immediate) • • • • • • • • • 16-3

xix

16-4

16-5

16-6
16-7

16-8
16-9
16-10
17-1

17-2
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9
20-1

20-2
21-1
21-2
21-3
22-1

22-2
22-3
23-1
23-2
23-3
C-1
C-2

CONTENTS
Page

Device-Specific QIO Functions for the Laboratory
Peripheral Systems (Synchronous) • • • • • • 16-5
Device-Specific QIO Function for the Laboratory
Peripheral Systems (IO.STP) • • • • • • • • • • 16-9
Contents of First word of isb • • • • • • • • • 16-10
FORTRAN Interface Subroutines for Laboratory
Peripheral Systems ••••••••••••••
Laboratory Peripheral Systems Status Returns •
Returns to Second Word of I/O Status Block •
FORTRAN Interface Values • • • • • •
Standard QIO Functions for the Paper Tape

• 16-11
• 16-29

16-32
• 16-33

Reader/Punch • • • • • • • • • • • • • • • • • • 17-2
Paper Tape Reader/Punch Status Returns • • 17-3
ICS/ICR Address Assignments • • • • • 18-2
Sample ICS/ICR Configuration • • • • • 18-7
Sample DSS/DRS Configuration • • • • • • • • • • 18-7
Summary of Industrial Control QIO Functions 18-8
A/D Conversion Control Word • • • 18-15
FORTRAN Interface • • • • 18-34
Return Status Summary • • • • • 18-36
!CSR Contents • • • • • • • • • • • • 18-74
!CAR Contents • • • • • • • • • • • • • • • 18-75
Standard and Device-Specific QIO Functions for
Graphics Displays • • • • • • • • • • • 20-2
Graphics Display Status Returns • • • • • 20-3
FORTRAN Subroutines for the LPAll-K 21-3
Device-Specific QIO Functions for the LPAll-K • 21-28
Contents of First Word of IOSB • • • • • • • • • 21-31
FORTRAN Subroutines for K-series Laboratory
Peripherals • • • • • • • • • • • • • • 22-7
Scope Control Word Values • • • • • 22-27
Contents of First word of IOSB • • • • • • • 22-32
Standard QIO Functions for UNIBUS Switches 23-2
Device-Specific QIO Functions for UNIBUS Switches 23-4
UNIBUS Switch Driver Status Returns 23-7
Maximum Size for Each File Attribute • C-4
File Processor Error Codes • • • • • • C-13

xx

PREFACE

MANUAL OBJECTIVES

The purpose of this manual is to provide all information necessary to
interface directly with the I/O device drivers supplied as part of the
RSX-llM/M-PLUS system.

INTENDED AUDIENCE

This manual is intended for use by experienced RSX-llM/M-PLUS
programmers who want to take advantage of the time and/or space
savings which result from direct use of the I/O drivers. Readers are
expected to be familiar with the information contained in the
RSX-llM/M-PLUS Executive Reference Manual, and to have some experience
using the Task Builder and either MACR0-11 or FORTRAN programs and to
be familiar with the manuals describing their use.

STRUCTURE OF THE DOCUMENT

Chapter 1 provides an overview of RSX-llM input/output operations. It
is somewhat tutorial in its approach in introducing the reader to the
use of logical unit numbers, directive parameter blocks, event flags,
macro calls, etc. The discussions include the standard I/O functions
common to a variety of devices, and summarizes standard error and
status conditions relating to completion of I/O requests._

Chapters 2 through 23 describe the use of all device drivers supported
by RSX-llM and/or RSX-llM-PLUS; refer to the preceding Summary Of
Technical Changes to determine which drivers are supported in your
operating system. Descriptions by chapter are as follows:

Chapter

2

3

4

5

6

7

8

Device Drivers

Full-duplex terminal communications
interface

Half-duplex terminal communications
interface

Virtual terminal driver

Disks

DECtape

DECtape II

Magnetic tape

xxi

line

line

Chapter

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

PREFACE

Cassette

Line printers

Card reader

Message-oriented
interfaces

Device Drivers

communications

PCLll parallel communications
transmitter and receiver

Analog-to-digital converters

Universal digital controller

Laboratory peripheral systems

Paper tape reader/punch

Industrial control subsystems

The null device

Graphics display terminals

line

link

LPAll-K laboratory peripheral accelerator

K-series laboratory peripherals

UNIBUS switch

Each of these chapters is structured in similar fashion and focuses on
the following basic elements:

• Description of the device, including information on physical
characteristics such as speed, capacity, access, and usage

• Summary of standard functions supported by the devices and
descriptions of device-specific functions

• Discussion of special characters, carriage control codes, and
functional characteristics, if relevant

• Summary of error and status conditions returned on acceptance
or rejection of I/O requests

• Description of programming hints for users of the device under
RSX-llM

xxii

PREFACE

Appendixes A through C provide quick reference material on I/O
functions and status codes. These include the following:

Appendix Contents

A Summary of I/O functions by device

B I/O function and status codes

c QIO$ interface to Ancillary Control
Processors

ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in the RSX-llM/RSX-llS Information Directory and the
RSX-llM-PLUS Information Directory. Each Directory defines the
intended readership of each manual in the RSX-llM/RSX-llS or
RSX-llM-PLUS set and provides a brief synopsis of each manual's
contents.

CONVENTIONS USED IN THIS MANUAL

There are a number of conventions and assumptions used in this manual
to present syntax and program coding examples. These are described in
the following list.

1. Brackets ([])
parameters.

in syntactic models enclose optional

The following example illustrates this format:

ASTX$S [err]

2. Braces ({ }) in syntactic models indicate that one of the
items must be selected, as in the following:

{
DOM }

CALL <inm,icont,idata,[idx] ,[isb] ,[lun]>
DOMW

3. An ellipsis (•••) in a syntactic model or coding example
indicates that parameters have been omitted. As used in this
manual, an ellipsis in a QIO macro call indicates omission of
standard QIO parameters described in Section 1.5.1. This is
illustrated below:

4.

QIO$C IO.RLV, ••• ,<stadd,size>

Consecutive
arguments.

commas in a coding example indicate
The following illustrates this usage:

QIO$C IO.ATT,6,,,,ASTOl

null

5. Commas indicating null trailing optional arguments may be
omitted, as in the following:

QIO$C IO.KIL,9.

xx iii

PREFACE

6. Certain parameters are required but ignored by RSX-llM or
RSX-llM-PLUS; this is necessary to maintain compatibility
with RSX-llD. For example, in the following, the priority
specification (fourth parameter) is ignored:

QIO$C IO.WLB,8.,EV,,IOSB,ASTX,<IOBUF,NBUF>

7. With the exception of MACR0-11 coding examples, all numbers
in the text of this manual are assumed to be decimal; octal
radix is explicitly declared as in the following:

An illegal logical block number has been specified
for DECtape. The number exceeds 577 (1101 octal).

In MACR0-11 coding examples, all numbers are assumed to be
octal; decimal radix is explicitly designated by following
the number with a decimal point, as in the following example:

QIO$C IO.RDB,14.,,,IOSB,,<IOBUF,80.>

8. In FORTRAN subroutine models, parameters which begin with the
letters i through n indicate integer variables, as in the
following example:

CALL DRS (ibuf ,ilen,imode,irate,iefn,imask,isb,
[nbuf], [istart], [istop])

In general, where hoth i and n prefixes are used in a call,
the i form indicates the name of an array and the n form
specifies the size of the array.

All integer arrays and variables are assumed to occupy one
storage word per variable (that is, INTEGER*2) and all real
arrays and variables are assumed to occupy two storage words
per variable (that is, REAL*4).

xxiv

SUMMARY OF TECHNICAL CHANGES

This update to the I/O Drivers Reference Manual contains changes
additions to document two operating systems: RSX-llM V4.l
RSX-llM-PLUS V2.l. The following list contains a brief summary
technical changes for both operating systems:

and
and
of

• Terminal driver support has been added for the following
terminals:

LQP02
LA50
DHVll

• Disk driver support has been added for the following new disk
devices:

UDA50/RA81
UDA50/RA60
RC25
RD51
RXSO

• Magnetic tape driver support has been added for the TUBO and
TSVOS.

• Line printer driver support has been added for the following
printers:

LNOl
LP07
LP26
LP27

xxv April 1983

I

I

CHAPTER 1

RSX-llM/M-PLUS INPUT/OUTPUT

1.1 OVERVIEW OF RSX-llM I/O

The RSX-llM/M-PLUS Real-Time Executives support a wide variety of
PDP-11 input and output devices, including disks, DECtapes, magnetic
tapes, tape cassettes, line printers, card readers, and such
laboratory and industrial devices as analog-to-digital converters,
universal digital controllers, and laboratory peripheral systems.
Drivers for these devices are supplied by Digital Equipment
Corporation as part of the system software. This manual describes all
of the device drivers supported by the system and the characteristics,
functions, error conditions, and programming hints associated with
each. Devices not described in this manual can be added to basic
system configurations, but users must develop and maintain their own
drivers for these devices. (See the RSX-llM Guide to Writing an I/O
Driver, including Update No. 1, or the RSX-llM=-PLTIS Guide to writTng
an I/O Driver, depending upon the system you are us1n~ ~

Input/output operations under RSX-llM are extremely flexible and are
as device- and function-independent as possible. Programs issue I/O
requests to logical units that have been previously associated with
particular physical device units. Each program or task is able to
establish its own correspondence between physical device units and
logical unit numbers (LUNs). I/0 requests are queued as issued; they
are subsequently processed according to the relative priority of the
tasks that issued them. I/O requests (for appropriate devices) can be
issued from tasks by means of either the File Control Services or
Record Management Services, or can be interfaced directly to an I/0
driver by means of the Queue I/O (QIO) system directive.

All of the I/O services described in this manual are requested by the
user in the form of QIO system directi~es. A function code included
in the QIO directive indicates the particular input or output
operation to be performed. I/0 functions can be used to request such
operations as:

• Attaching or detaching a physical device unit for a task's
exclusive use

• Reading or writing a logical or virtual block of data

• Cancelling a task's I/O requests

A wide variety of device-specific input/output operations (for
example, reading DECtape in-reverse, rewinding cassette tape) can also
be specified with QIO directives.

1-1

I

RSX-llM/M-PLDS INPDT/ODTPDT

1.2 PHYSICAL, LOGICAL, AND VIRTDAL I/O

There are three possible modes in which an I/O transfer can take
place: physical, logical, and virtual.

Physical I/O concerns reading and writing data in the actual physical
units accepted by the hardware (for example, sectors on a disk). For
most devices, physical I/O is identical to logical I/O. For example,
the RKOS disk has sectors of 256 words, the same size as RSX-llM
logical blocks for all disks. Thus, in this case, a logical block
maps directly into a physical block. For other devices, the mapping
is not one to one. The RFll disk, for example, is word addressable;
however, no physical I/O may be done with the RFll. Data is always
written in 256-word logical blocks. Another example is the RXOl
flexible disk. Data for the RXOl is recorded in physical sectors of
64 words each. Therefore, logical blocks for the RXOl are made up of
four physical sectors.

Logical I/O concerns reading and writing data in blocks that are
convenient for the operating system. In most cases, logical blocks
map directly into physical blocks. For block-structured devices (for
example, disks), logical blocks are numbered beginning at O. For
non-block-structured devices (for example, terminals), logical blocks
are not addressable.

Virtual I/O concerns reading and writing data to open files. In this
case, the executive maps virtual blocks into logical blocks. For
file-structured devices (disks or DECtapes) , virtual blocks are the
same size as logical blocks and are numbered starting from one (1) and
are relative to the file rather than to the device. For
non-file-structured devices, the mapping from virtual block to logical
block is direct.

1.3 RSX-llM DEVICES

The devices listed below are supported by both RSX-llM and
RSX-llM-PLUS, except as indicated. Drivers are supplied for each of
these devices, and I/0 operations for them are described in detail in
subsequent chapters of this manual.

1. A variety of terminals, including the following:

• ASR/KSR-33 and ASR/KSR-35 Teletypesl

• LA12 DECwriter

• LAlOO DECwriter

• LA30 DECwriters {serial and parallel)

e LA34/LA38 DECwriter IV

e LA36 DECwriter II

• LA120 DECwriter III

• LA180S DECprinter

• LQP02 Letter-Quality Printer

1. Teletype is a registered trademark of the Teletype Corporation.

1-2 April 1983

RSX-llM/M-PLUS INPOT/OOTPUT

• LASO Personal Printer

• VT05B Alphanumeric Display Terminal

• VT50 Alphanumeric Display Terminal

• VT50H Alphanumeric Display Terminal

• VT52 Alphanumeric Display Terminal

• VT55 Graphics Display Terminal

• VT61 Alphanumeric Display Terminal

• VTlOO Alphanumeric Display Terminal

• VTlOl Alphanumeric Display Terminal

• VT102 Alphanumeric Dispiay Terminal

• VT105 Alphanumeric Display Terminal

• VT125 Alphanumeric Display Terminal

• VT131 Alphanumeric Display Terminal

• VT132 Alphanumeric Display Terminal

• RT02 Data Entry Terminal

• RT02-C Badge Reader and Data Entry Terminal

These terminals are supported on the following asynchronous
line interfaces:

• DJll Asynchronous Communication Line Interface Multiplexer

• DHll and DHll-DMll-BB Asynchronous Communication Line
Interface Multiplexer

• DHVll Asynchronous
Multiplexer

Communications Line

e DLll-A, DLll-B, DLll-C, DLll-D, DLll-E
Asynchronous Communication Line Interfaces

Interface

and DLll-W

• DLVll-E, DLVll-F
Interfaces

Asynchronous Communication Line

• DZll Asynchronous Communication Line Interface Multiplexer

2. A variety of disks, including the following:

• ML-11 Fast Electronic Mass Storage Device

e RFll/RSll Fixed-Head Disk

• RS03/RS04 Fixed-Head Disk

• UDA50/RA80/RA81 Fixed-Media Disk

• UDA50/RA60 Pack Disk

• RM80 Fixed-Media Disk

1-3 April 1983

I

I

I

I

I

I

I

RSX-llM/M-PLUS INPUT/OUTPUT

• RP07 Fixed-Media Disk

• RP11/RP02 or RP03 Pack Disks

• RM02, RM03, RM05 Pack Disk

• RP04, RP05, RP06 Pack Disks

• RK11/RK05 or RK05F Cartridge Disks

e RLll/RLOl or RL02 Cartridge Disk

• RK611/RK06 or RK07 Cartridge Disk

• RC25 Fixed-Media/Removable Cartridge Disk Subsystem

• RD51 Fixed-Media Disk

• RX50 Flexible Disk

• RXll/RXOl Flexible Disk

• RX211/RX02 Flexible Disk

3. TC11/TU56 DECtape

4. DL11/TU58 DECtape II

5. A variety of magnetic tapes including the following:

• TOSO Magnetic Tape Subsystem

• TSV05 Magnetic Tape Subsystem

• TSll Magnetic Tape Subsystem

• TMll Magnetic Tape Controller with TElO,TUlO, or TS03
Drive

• RHll/70 Controller with TM02/03 Formatter and TE16, TU16,
or TU45 Drive

• RHll/70 Controller with TM03 Formatter and TU77 Drive

• RH11/RH70 Controller with TM78 Formatter and TU78 Drive

6. TAll Tape Cassette

7. A variety of line printers:

• LPll Controller with LP14, LPOl, LP02, LP04, LP05, LP06,
LP07, LP26, LP27 Line Printers

• LSll Controller and Line Printer

• LVll Controller with LVOl Line Printer

• LA180 Controller and Line Printer

• LNOl Laser Printer

8. CRll Card Reader

1-4 April 1983

RSX-llM/M-PLUS INPUT/OUTPUT

9. Synchronous and asynchronous line interfaces:

• DAll-B Asynchronous Communication Line Interface (RSX-llM
support only)

• DLll-E Asynchronous Communication Line Interface (RSX-llM
support only)

• DLVll-E Asynchronous Communication Line Interface

• DMCll Synchronous Communication Line Interface

• DPll Synchronous Communication Line Interface (RSX-llM
support only)

• DQll Synchronous Communication Line Interface (RSX-llM
support only)

• DUll Synchronous Communication Line Interface (RSX-llM
support only)

• DUPll Synchronous Communication Line Interface

1-4.1

RSX-llM/M-PLUS INPUT/OUTPUT

10. Two analog-to-digital converters:

• AFCll Analog-to-Digital Converter (RSX-llM support only)

• ADOl-D Analog-to-Digital Converter (RSX-llM support only)

11. UDCll Universal Digital Controller (RSX-llM support only)

12. Laboratory peripheral systems:

• ARll Laboratory Peripheral System (RSX-llM support only)

• LPSll Laboratory Peripheral System (RSX-llM support only)

13= Paper tape devices:

• PCll Paper Tape Reader/Punch

• PRll Paper Tape Reader

14. Industrial control subsystems:

• ICS/ICR Local and Remote Subsystems (RSX-llM support only)

e DSS/DRS Digital Input and Output Subsystems (RSX-llM
support only)

15. The "Null Device," a software construct that facilitates
eliminating unwanted output

16. Two graphics subsystems:

• VTll Graphics Display System (RSX-llM support only)

• VS60 Graphics Display System (RSX-llM support only)

17. Laboratory Peripheral Accelerator:

e LPAll-K

18. K-series laboratory peripherals:

• AAll-K Digital~to-Analog Converter and Display

• ADll-K Analog-to-Digital Converter

• AMll-K Multiple-Gain Multiplexer

• DRll-K Digital I/O Interface

• KWll-K Programmable Real-Time Clock

19. PCLll Parallel Communications Link (RSX-llM-PLUS support
only)

20. DT07 (RSX-llM-PLUS support only) UNIBUS Switch

21. Virtual Terminals (RSX-llM-PLUS support only)

1.4 LOGICAL UNITS

This section describes the construction of the logical unit table and
the use of logical unit numbers.

1-5

RSX-llM/M-PLUS INPUT/OUTPUT

1.4.1 Logical Unit Number

A logical unit number, or LUN, is a number associated with a physical
device unit during RSX-llM/M-PLUS I/O operations. For example, LUN 1
might be associated with one of the terminals in the system, LUNs 2,
3, 4, and 5 with DECtape drives, and LUNs 6, 7, and 8 with disk units.
The association is a dynamic one; each task running in the system can
establish its own correspondence between LUNs and physical device
units, and can change any LUN/physical-device-unit association at
almost any time. The flexibility of this association contributes
heavily to system device independence.

A logical unit number is simply a short name used to represent a
logical-unit/physical-device-unit association. Once the association
has been made, the LUN provides a direct and efficient mapping to the
physical device unit, and eliminates the necessity to search the
device tables whenever the system encounters a reference to a physical
device unit.

The user should remember that, although a LUN/physical-device-unit
association can be changed at any time, reassignment of a LUN at run
time causes pending I/O requests for the previous LUN assignment to be
cancelled. It is the user's responsibility to verify that all
outstanding I/O requests for a LUN have been serviced before that LUN
is associated with another physical device unit.

1.4.2 Logical Unit Table

There is
system.
header.
logical
option.

one Logical Unit Table (LUT) for each task running in a
This table is a variable-length block contained in the task

Each LUT contains sufficient 2-word entries for the number of
units specified by the user at task-build time by the "UNITS="

Each entry or slot contains a pointer to the physical device unit
currently associated with that LUN. Whenever a user issues an I/O
request, the system matches the appropriate physical device unit to
the LUN specified in the call by indexing into the LUT by the number
supplied as the LUN. Thus, if the call specifies 6 as the LUN, the
system accesses the sixth 2-word entry in the LUT and associates the
I/O request with the physical device unit to which the entry points.
The number of LUN assignments valid for a task ranges from 0 to 255,
but cannot be greater than the number of LUNs specified at task-build
time.

Figure 1-1 illustrates a typical Logical Unit Table.

l NUMBER OF LUNS

UCB
~- - - - - --

LUN 1 0

UCB
~- -- - -

LUN 2 0

~
UCB

- -- -- - -
LUN 3 0

UCB
~-- - - - - -

LUN 4 0

ZK-004-81

Figure 1-1 Logical Unit Table

1-6

RSX-llM/M-PLUS INPUT/OUTPUT

Word 1 of each active (assigned) 2-word entry in the logical unit
table points to the Unit Control Block (UCB) of the physical device
unit with which the LUN is associated. This linkage may be indirect;
that is, the user may force redirection of references from one unit to
another unit with the MCR command REDIRECT. Word 2 of each entry is
reserved for mountable devices.

1.4.3 Changing LUN Assignments

Logical unit numbers have no significance until they are associated
with a physical device unit by means of one of the methods described
below:

1. At task-build time, the user can specify an ASG keyword
option, which associates a physical device unit with a
logical unit number referenced in the task being built.

2. The user or system operator can issue a REASSIGN command to
MCR; this command reassigns a LUN to another physical device
unit and thus changes the LUN-physical device unit
correspondence. Note that this reassignment has no effect on
the in-core image of a task.

3. At run time, a task can dynamically change a LUN assignment
by issuing the Assign LUN system directive, which changes the
association of a LUN with a physical device unit during task
execution.

1.5 ISSUING AN I/0 REQUEST

User tasks perform I/O in the RSX-llM/M-PLUS system by submitting
requests for I/O service in the form of QIO or QIO And Wait system
directives. See the RSX-llM/M-PLUS Executive Reference Manual for a
complete description of system directives.

In RSX-llM/M-PLUS, as in most multiprogramming systems, tasks do not
normally access physical device units directly. Instead, they utilize
input/output services provided by the Executive, since it can
effectively multiplex the use of physical device units over many
users. The Executive routes I/O requests to the appropriate device
driver and queues them according to the priority of the requesting
task. I/O operations proceed concurrently with other activities in an
RSX-llM/M-PLUS system.

Before a request is queued, it must
administered by the Executive. If
this rejection is signalled by the
statement following the QIO is
practice to check for directive
directive with a BCS instruction.

pass a battery of acceptance tests
the request fails, it is rejected;
setting of the C-bit when the
executed. It is good programming
rejection by following the QIO

After an I/O request has been queued, the system does not wait for the
operation to complete. If at any time the user task that issued the
QIO request cannot proceed until the I/O operation has completed, it
should specify an event flag (see Sections 1.5.1 and 1.5.2) in the QIO
request and should issue a Waitfor system directive specifying the
same event flag at the point where synchronization must occur. The
task then waits for completion of I/O by waiting for the specified
event flag to be set.

1-7

RSX-llM/M-PLUS INPUT/OUTPUT

The QIOW directive, QIO And Wait, is a more economical way to achieve
this synchronization. QIOW automatically waits until I/O has
completed before returning control to the task. Thus, the additional
Waitfor directive is not necessary.

Each QIO or QIOW directive must supply sufficient information to
identify and queue the ,I/O request. The user may also want to include
locations to receive error or status codes and to specify the address
of an asynchronous system trap service routine. Certain types of I/O
operations require the specification of device-dependent information
as well. Typical QIO parameters are the following:

• I/O function to be performed

• Logical unit number associated with the physical device unit
to be accessed

• Optional event flag number for synchronizing I/O completion
processing (required for QIOW)

• Optional address of the I/O status block to which information
indicating successful or unsuccessful completion is returned

• Optional address of an asynchronous system trap service
routine to be entered on completion of the I/O request

• Optional device- and function-dependent parameters specifying
such items as the starting address of a data buffer, the size
of the buffer, and a block number

A set of system macros that facilitate the issuing of QIO directives
is supplied with the RSX-llM/M-PLUS system. These macros, which
reside in the System Macro Library (LB: [l,l]RSXMAC.SML), must be made
available to the source program by means of the MACR0-11 Assembler
directive .MCALL. The function of .MCALL is described in Section
1.7.3. Several of the first six parameters in the QIO directive are
optional, but space for these parameters must be reserved.

During expansion of a QIO macro, a value of 0 is defaulted for all
null (omitted) parameters. Inclusion of the device- and
function-dependent parameters depends on the physical device unit and
function specified. If the user wanted to specify only an I/O
function code, a LUN, and an address for an asynchronous system trap
service routine, the following might be issued:

QIOSC IO.ATT,6,,,,ASTOX

IO.ATT

The I/O function code for attach.

6

The LUN.

AST OX

The AST address.

1-8

, , , ,

RSX-llM/M-PLUS INPUT/OUTPUT

Null arguments for the event flag number, the request priority,
and the address of the I/O status block.

No additional device- or function-dependent parameters are required
for an attach function. The C form of the QIO$ macro is used here and
in most of the examples included in Chapter 1. Section 1.7 describes
the three legal forms of the macro.

For convenience, any comma may be omitted if no parameters appear to
the right of it. The command above could therefore be issued as
follows, if the asynchronous system trap was not desired:

QIO$C IO.ATT,6

All extra commas have been dropped. If, however, a parameter appears
to the right of any place-holding comma, that comma must be retained.

1.5.1 QIO Macro Format

The arguments for a specific QIO macro call may be different for each
I/O device accessed and for each I/O function requested. The general
format of the call is, however, common to all devices and is as
follows:

QIO$C fnc,lun, [efn], [pri], [isb], [ast] [,<pl,p2, ••• ,p6>]

where brackets ([]) enclose optional or function-dependent parameters.
If function-dependent parameters <pl, ••. ,p6> are required, these
parameters must be enclosed within angle brackets (<>). The following
paragraphs summarize the use of each QIO parameter. Section 1.7
discusses different forms of the QIO$ macro itself.

The fnc parameter is a symbolic name representing the I/O function to
be performed. This name is of the form

IO.xxx

xxx

Identifies the particular I/O operation.

For example, a QIO request to attach the physical device unit
associated with a LUN specifies the function code

IO.ATT

A QIO request to cancel (or kill) all I/O requests for a specified LUN
begins in the following way:

QIO$C IO.KIL, •••

The fnc parameter specified in the QIO request is stored internally as
a fun~tion code in the high-order byte and modifier bits in the
low-order byte of a single word. The function code is in the range 0
through 31 and is a binary value supplied by the system to match the
symbolic name specified in the QIO request. The correspondence
between global symbolic names and function codes is defined in the

1-9

RSX-llM/M-PLUS INPUT/OUTPUT

system object module library, which is automatically searched by the
Task Builder. Local symbolic definitions may also be obtained by the
FILIO$ and SPCIOS macros, which reside in the System Macro Library and
are summarized in Appendix A. Several similar functions may have
identical function codes, and may be distinguished only by their
modifier bits. For example, the DECtape read logical forward and read
logical reverse functions have the same function code. Only the
modifier bits for these two operations are stored differently.

The lun parameter represents the logical unit number (LUN) of the
associated physical device unit to be accessed by the I/O request.
The association between the physical device unit and the LUN 1s
specific to the task that issues the I/O request, and the LUN
reference is usually device independent. An attach request to the
physical device unit associated with LUN 14 begins in the following
way:

QIO$C IO.ATT,14., •••

Because each task has its own LUT in which the physical device
unit-LUN correspondences are established, the legality of a LUN
parameter is specific to the task that includes this parameter in a
QIO request. In general, the LUN must be in the following range:

0 <LUN <length of task's LUT (if nonzero)

The number of LUNs specified in the LUT of a particular task cannot
exceed 255.

The efn parameter is a number representing the event flag to be
associated with the I/O operation. It may optionally be included in a
QIO or QIO And Wait request. The specified event flag is cleared when
the I/O request is queued and is set when the I/O operation has
completed. If the task has issued the QIO And Wait directive,
execution is automatically suspended until the I/O completes. If a
QIO directive has been issued (with no Waitfor directive), then task
execution proceeds in parallel with the I/O. When the task continues
to execute, it may test the event flag whenever it chooses by using
the Read All Event Flags system directive (if group global event flags
are not being used) or the Read Extended Flags system directive (for
all event flags, including group-global event flags). If the user
specifies an event flag number, this number must be in the range 1
through 9n. If an event flag specification is not desired, efn can be
omitted or can be supplied with a value of O. Event flags 1 through
32 are local (specific to the issuing task); event flags 33 through
64 are global {shared by all tasks in the system). Event .flags 65
through 96 are group-global event flags (shared by all tasks in the
same user group) • Flags 25 through 32 and 57 through 64 are reserved
for use by system software. Within these bounds, the user can specify
event flags as desired to synchronize I/O completion and task
execution. Section 1.5.2 provides a more detailed explanation of
event flags and significant events.

NOTE

If an event flag is not specified, the
Executive treats the directive as if it
were a simple QIO request.

1-10

RSX-llM/M-PLUS INPUT/OUTPUT

The optional pri parameter is supplied only to make RSX-llM/M-PLUS QIO
requests compatible with RSX-llD. An RSX-llM I/O request
automatically assumes the priority of the requesting task. Thus, it
is recommended that a value of 0 (or a null) be used for this
parameter.

The optional isb parameter identifies the address of the I/O status
block (I/O status double-word) associated with the I/O request. This
block is a 2-word array in which a code representing the final status
of the I/O request is returned on completion of the operation. This
code is a binary value that corresponds to a symbolic name of the form
IS.xxx (for successful returns) or IE.xxx (for error returns). The
binary error code is returned to the low-order byte of the first word
of the status block. It can be tested symbolically, by name. For
example, the symbolic status IE.BAD is returned if a bad parameter is
encountered. The following illustrates the examination of the I/O
status block, IOST, to determine if a bad parameter has been detected:

QIO$C
BCS
WTSE$C

CMPB
BNE

IO.ATT,14.,2,,IOST
DIRERR
2

#IS.SUC,IOST
ERROR

The correspondence between global symbolic names and I/O completion
codes is defined in the system object module library, which is
automatically searched by TKB. Local symbolic definitions, which are
summarized in Appendix B, may also be obtained by the IOERR$ macro,
which resides in the System Macro Library.

Certain device-dependent information is returned to the high-order
byte of the first word of isb on completion of the I/O operation. If
a read or write operation is successful, the second word is also
significant. For example, in the case of a read function on a
terminal, the number of bytes typed before a carriage return is
returned in the second word of isb. If a magtape unit is the device
and a write function is specified, this number represents the number
of bytes actually transferred. The status block can be omitted from a
QIO request if the user does not intend to test for successful
completion of the request.

The optional ast parameter specifies the address of a service routine
to be entered when an .a.synchronous system trap occurs. Section 1.5.3
discusses the use of asynchronous system traps, and Section 2.2.5 of
the RSX-11M/M-PLUS Executive Reference Manual describes traps in
detail. If the user wants to interrupt his task to execute special
code on completion of an I/O request, an asynchronous system trap
routine can be specified in the QIO request. When the specified I/O
operation completes, control branches to this routine at the software
priority of the requesting task. The asynchronous code beginning at
address ast is then executed, much as an interrupt service routine
would be. If the user does not want to perform asynchronous
processing, the ast parameter can be omitted or a value of 0 specified
in the QIO macro call.

The additional QIO parameters, <pl,p2, ••• ,p6>, are dependent on the
particular function and device specified in the I/O request. Typical
parameters may include I/O buffer address, I/O buffer length, and so
forth. Between zero and six parameters can be included, depending on
the particular I/O function. Rules for including these parameters and
legal values are described in subsequent chapters of this manual.

1-11

RSX-llM/M-PLUS INPUT/OUTPUT

1.5.2 Significant Events

"Significant event" is a term used in real-time systems to indicate a
change in system status. In RSX-llM/M-PLUS, a significant event is
declared when an I/O operation completes. This signals the system
that a change in status has occurred and indicates that the Executive
should review the eligibility of all tasks in the system to determine
which task should run next. The use of significant events helps
cooperating tasks in a real-time system to communicate with each
other, and thus allows these tasks to control their own sequence of
execution dynamically.

Significant events are normally set by system directives, either
directly or indirectly, by completion of a specified function. Event
flags associated with tasks may be used to indicate which significant
event has occurred. Of the 96 event flags available in
RSX-llM/M-PLUS, the flags numbered 1 through 32 are local to an
individual task and are set or reset only as a result of that task's
operation. The event flags numbered 33 through 64 are common to all
tasks. Flags 25 through 32 and 57 through 64 are reserved for system
software use. The event flags numbered 65 through 96 are group-global
event flags, which are common to all tasks running under the same user
group.

An example of the use of significant events follows. A task issues a
QIO directive with an efn parameter specified. A Waitfor directive
follows the QIO and specifies as an argument the same event flag
number. The event flag is cleared when the I/O request · queued by
the Executive, and the task is blocked when it executes the Waitfor
directive until the event flag is set and a significant event is
declared at the completion of the I/O request. The task resumes when
the appropriate event flag is set, and execution resumes at the
instruction following the Waitfor directive. During the time that the
task is blocked, other tasks have a chance to run, thus increasing
throughput in the system.

1.5.3 System Traps

System traps are used to interrupt task execution and to cause a
transfer of control to another memory location for special processing.
Traps are handled by the Executive and are relevant only to the task
in which they occur. To use a system trap, a task must contain a trap
service routine, which is automatically entered when the trap occurs.

There are two types of system traps: synchronous and asynchronous.
Both are used to handle error or event conditions, but the two traps
differ in their relation to the task that is running when they are
detected. Synchronous traps signal error conditions within the
executing task. If the same instruction sequence were repeated, the
same synchronous trap would occur at the same place in the task.
Asynchronous traps signal the completion of an external event such as
an I/O operation. An asynchronous system trap (AST) usually occurs as
the result of initiating or completing an external event rather than a
program condition.

The Executive queues ASTs in a first-in-first-out queue for each task
and monitors all asynchronous service routine operations~ Because
asynchronous traps may be the end result of I/0-related activity, they
cannot be controlled directly by the task that receives them.
However, the task may, under certain circumstances, block recognition
of ASTs to prevent simultaneous access to a critical data region.

1-12

RSX-llM/M-PLUS INPUT/OUTPUT

When access to the critical data region has been completed, the queued
ASTs may again be honored. The DSAR$S (Disable AST Recognition) and
ENAR$S (Enable AST Recognition) system directives provide the
mechanism for accomplishing this. An example of an asynchronous trap
condition is the completion of an I/O request. The timing of such an
operation clearly cannot be predicted by the requesting task. If an
AST service routine is not specified in an I/O request, a trap does
not occur and normal task execution continues.

Asynchronous system traps associated with I/O requests enable the
requesting task to be truly event driven. The AST service routine
contained in the initiating task is executed as soon as possible,
consistent with the task's priority. Using the AST routine to service
I/0-related events provides a response time that is considerably
better than a polling mechanism, and provides for better overlap
processing than the simple QIO and Waitfor sequence. Asynchronous
system traps also provide an ideal mechanism for use in multiple
buffering of I/O operations.

All ASTs are inserted in a first-in-first-out queue on a per task
basis as they occur (that is, the event that they are to signal has
expired). They are effected one at a time whenever the task does not
have ASTs disabled and is not already in the process of executing an
AST service routine. The process of effecting an AST involves storing
certain information on the task's stack, including the task's Waitfor
mask word and address, the Directive Status Word (DSW), the PS, the PC
and any trap dependent parameters. The task's general-purpose
registers RO-RS are not saved, and thus it is the responsibility of
the AST service routirie to save and restore the registers it uses.
After an AST is processed, the trap-dependent parameters (if any) must
be removed from the task's stack and an AST Service Exit directive
executed. The ASTX$S macro described in Section 1.7.6 of this manual
is used to issue the AST Service Exit directive. On AST service exit,
control is returned to another queued AST, to the executing task, or
to another task that has been waiting to run. The RSX-llM/M-PLUS
Executive Reference Manual describes in detail the purpose of AST
service routines and all system directives used to handle them.

1.6 DIRECTIVE PARAMETER BLOCKS

A Directive Parameter Block (DPB) is a fixed-length area of contiguous
memory that contains the arguments specified in a system directive
macro call. The DPB for a QIO directive has a length of 12 words. It
is generated as the result of expanding a QIO macro call. The first
byte of the DPB contains the directive identification code (DIC)
-- always 1 for QIO. The second byte contains the size of the DPB in
words -- always 12 for RSX-llM/M-PLUS. During assembly of a user task
containing QIO requests, the MACR0-11 Assembler generqt~s a DPB for
each I/O request specified in a QIO macro call. At run time, the
Executive uses the arguments stored in each DPB to create, for each
request, an I/O packet in system dynamic storage. The packet is
entered by priority into a queue of I/O requests for the specified
physical device unit. This queue is created and maintained by the
Executive and is ordered by the priority of the tasks that issued the
requests. The I/O drivers examine their respective queues for the I/O
request with the highest priority capable of being executed. This
request is dequeued (removed from the queue) and the I/O operation is
performed= The process is then repeated until the queue is emptied of
all requests.

1-13

RSX-llM/M-PLUS INPUT/OUTPUT

After the I/O request has been completed, the Executive declares a
significant event and may set an event flag, cause a branch to an
asynchronous system trap service routine, and/or return the I/O
status, depending on the arguments specified in the original QIO macro
call. Figure 1-2 illustrates the layout of a sample DPB.

0

WORD 0 SIZE OF DPB --- 12 1

FNC MODIFIERS

2 ~{{sf~;g~
~

LUN

3 PRIORITY --- PAI EFN

4 ISB

5 AST

6 DEVICE-

DEPENDENT

PARAMETERS

11

BYTE

DIC FOR 010
--- DIRECTIVE

--- 1/0 FUNCTION

--- LOGICAL UNIT NUMBER

--- EVENT FLAG NUMBER

---- ADDRESS OF 1/0
ST A TUS BLOCK

___ ADDRESS OF

ASYNCHRONOUS TRAP
SERVICE ROUTINE

ZK-005-81

Figure 1-2 QIO Directive Parameter Block

1.7 I/0-RELATED MACROS

Several system macros are supplied with the RSX-llM/M-PLUS system to
issue and return information about I/O requests. These macros reside
in the System Macro Library and must be made available during assembly
by the MACR0-11 assembler directive .MCALL.

Also supplied are FORTRAN-callable subroutines that perform the same
functions as the system macros. See the RSX-llM/M-PLUS Executive
Reference Manual for details.

There are three distinct forms of most of the system directive macros
discussed in this section. The following list summarizes the forms of
QIO$, but the characteristics of each form also apply to QIOW$, ALUN$,
GLUN$, and other system directive macros described below.

1. QIO$ generates a directive parameter block for the I/O
request at assembly time, but does not provide the
instructions necessary to execute the request. This form of
the request is actually executed using the DIR$ macro. It is
useful if the DPB is to be used in several different places
in the task and/or modified or referenced by the task at run
time.

1-14

RSX-llM/M-PLUS INPUT/OUTPUT

2. QIO$S generates a directive parameter block for the I/O
request on the stack, and also generates code to execute the
request. This is a useful form for reentrant, shareable code
since the DPB is generated dynamically at execution time.

3. QIO$C generates a directive parameter block for the I/O
request at assembly time, and also generates code to execute
the request. The DPB is generated in a separate program
section called $DPS$$. This approach incurs little system
overhead and is useful when an I/O request is executed from
only one place in the program.

Parameters for both the QIO$ and QIO$C forms of the macro must be
valid expressions to be used in assembler data-generating directives
such as .WORD and .BYTE. Parameters for the QIO$S form must be valid
source operand address expressions to be used in assembler
instructions such as MOV and MOVB. The following example references
the same parameters in the three distinct forms of the macro call.

QIO$

QIO$C

QIO$S

IO.RLB,6,2,,,ASTOl,<RDBUF,80.>

IO.RLB,6,2,,,ASTOl,<RDBUF,80.>

#IO.RLB,#6,#2,,,#ASTOl,<#RDBUF,#80.>

Only the QIO$S form of the macro produces the DPB dynamically. The
other two forms generate the DPB at assembly time. The
characteristics and use of these different forms are described in
greater detail in the RSX-llM/M-PLUS Executive Reference Manual.

The following Executive directives and assembler macros are described
in this section:

1. QIO$, which is used to request an I/O operation and supply
parameters for that request

2. QIOW$, which is equivalent to QIOS followed by WTSE$

3. DIR$, which specifies the address of a directive parameter
block as its argument, and generates code to execute the
directive

4. .MCALL, which is used to make available from the System Macro
Library all macros referenced during task assembly

5. ALUNS, which is used to associate a logical unit number with
a physical device unit at run time

6. GLUN$, which requests that the information about a physical
device unit associated with a specified LUN be returned to a
user-specified buffer

7. ASTX$S, which is used to terminate execution of an
asynchronous system trap (AST) service routine

8. WTSE$, which instructs the system to block execution of the
issuing task until a specified event flag is set

1-15

RSX-llM/M-PLUS INPUT/OUTPUT

1.7.1 The QIO$ Macro: Issuing an I/O Request

As described in Section 1.7, there are three distinct forms of the
QIO$ macro. QIO$S generates a DPB for the I/O request on the stack,
and also generates code to execute the request. QIO$C generates a DPB
and code, but the DPB is generated in a separate program section.
QIO$ generates only the DPB for the I/O request. This form of the
macro call is used in conjunction with DIR$ (see Section 1.7.2) to
execute an I/O request. In the following example, the DIR$ macro
actually generates the code to execute the QIO$ directive. It
provides no QIO parameters of its own, but references the QIO
directive parameter block at address QIOREF by supplying this label as
an argument.

QIOREF: QIO$ IO.RLB,6,2,,,ASTOl,<BUFFER,80.>
CREATE QIO DPB

READl: DIR$ #QIOREF ISSUE I/O REQUEST

READ2: DIR$ #QIOREF ISSUE I/O REQUEST

1.7.2 The QIOW$ Macro: Issuing an I/O Request and Waiting for an
Event Flag

The QIOW$ macro is equivalent to a QIO$ followed by a WTSE$. It is
more economical to issue a QIO And .Wait request than to use the two
separate macros. An event flag {efn parameter) must be specified with
QIOW$.

1.7.3 The DIR$ Macro: Executing a Directive

The DIR$ (execute directive) macro has been
task to reference a previously defined DPB.

implemented to allow a
It is issued in the form:

addr

err

DIR$ [addr] [,err]

The address of a directive parameter block to be used in the
directive. If addr is not included, the DPB itself or the
address of the DPB is assumed to already be on the stack. This
parameter must be a valid source operand for a MOV instruction
generated by the DIR$ macro.

An optional argument which specifies the address of an error
routine to which control branches if the directive is rejected.
The branch occurs by means of a JSR PC, err if the C-bit is set,
indicating rejection of the QIO directive.

1-16

RSX-llM/M-PLUS INPUT/OUTPUT

1.7.4 The .MCALL Directive: Retrieving System Macros

.MCALL is a MACR0-11 Assembler directive that retrieves macros from
the System Macro Library (LB: [l,l]RSXMAC.SML) for use during assembly.
It must be included in every user task invoking system macros. .MCALL
is usually placed at the beginning of a user-task source module and
specifies, as arguments in the call, all system macros that must be
made available from the library.

The following example illustrates the use of this directive:

.MCALL QIO$,QIO$S,DIR$,WTSE$S MAKE MACROS AVAILABLE

ATTACH: QIO$S #IO.ATT,#6,,,IOSB,#AST02 ATTACH DEVICE

QIOREF: QIO$ IO.RLB,6,,,IOSB,ASTOl, ••• CREATE ONLY QIO DPB

READl: DIR$ #QIOREF,DIRERR ISSUE I/O REQUEST

As many macro references as can fit on a line can be included in a
single .MCALL directive. There is no limit to the number of .MCALL
directives that can be specified.

1.7.5 The ALUN$ Macro: Assigning a LUN

The Assign LUN macro is used to associate a logical unit number with a
physical device unit at run time. All three forms of the macro call
may be used. Assign LUN does not request I/O for the physical device
unit, nor does it attach the unit for exclusive use by the issuing
task. It simply establishes a LUN-physical device unit relationship,
so that when the task requests I/O for that particular LUN, the
associated physical device unit is referenced. The macro is issued
from a MACR0-11 program in the following way:

lun

dev

unt

ALUN$ lun,dev,unt

The logical unit number to be associated with the specified
physical device unit.

The device name of the physical device or a logical device name
assigned to a physical device (see MCR ASN command).

The unit number of that device specified above.

1-17

RSX-llM/M-PLUS INPUT/OUTPUT

For example, to associate LUN 10 with terminal unit 2, the following
macro call could be issued by the task:

ALUN$C 10.,TT,2

A unit number of 0 represents unit 0 for multiunit devices such as
disk, DECtape, or terminals; it indicates the single available unit
for devices without multiple units, such as card readers and line
printers.

Logical devices are SYSGEN options that allow the user to assign
logical names to physical devices by means of the MCR command ASN.
See the RSX-llM/M-PLUS MCR Operations Manual for a full description.

The example included below illustrates the use of the three forms of
the ALUN$ macro.

DATA DEFINITIONS

ASSIGN: ALUN$ 10.,TT,2 GENERATE DPB

EXECUTABLE SECTION

DIR$ #ASSIGN

ALUN$C 10.,TT,2

ALUN$S #10.,#"TI,#0

EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

1.7.5.1 Physical Device Names - The following list contains physical
device names, listed alphabetically, that may be included as dev
parameters:

Name

AD

AF

AR

Device

ADOl-D Analog-to-Digital Converter (not supported in
RSX-llM-PLUS systems)

AFCll Analog-to-Digital Converter (not supported in
RSX-llM-PLUS systems)

ARll Laboratory Peripheral System (not supported in
RSX-llM-PLUS systems)

1-18

Name

BS

CD

CP

CR

CT

DB

DD

DF

DK

DL

OM

DP

DR

OS

OT

DU

DX

DY

EM

GR

IC

IS

LA

LP

LS

RSX-llM/M-PLUS INPUT/OUTPUT

Device

DT03/DT07 UNIBUS Switch (supported in RSX-llM-PLUS
systems only)

CDll Card Reader

Central Processor Unit (CPU) in a multiprocessor
system (supported in RSX-llM-PLUS systems only)

CRll/CMll Card Reader

TA11/TU60 Tape Cassette

RP04, RPOS, RP06 Pack Disk

TU58 DECtape II

RFll/RSll Fixed-Head Disk

RK11/RK05 Cartridge Disk

RL11/RL01/RL02 Cartridge Disk

RK611/RK06 and RK711/RK07 Cartridge Disk

RP11/RP02/RP03 Pack Disk

RM02/RM03/RM05 Pack Disk and RM80/RP07 Fixed-Media
Disk

RS03 and RS04 Fixed-Head Disks

TC11/TU56 DECtape

RA80/RA81 Fixed-Media Disk, RA60 Pack Disk, RC25 Disk I
Subsystem, RD51 Fixed-Media Disk, and RX50 Flexible
Disk

RXll/RXOl Flexible Disk

RX211/RX02 Flexible Disk

ML-11 Fast Electronic Mass Storage Device

VT11/VS60 Graphics Systems
RSX-llM-PLUS systems)

(not supported in

ICS/ICR Industrial Control Local and Remote Subsystems
(not supported in RSX-llM-PLUS systems)

DSS/DRS Digital Input and Output Subsystems (not
supported in RSX-llM-PLUS systems)

LPAll-K Laboratory Peripheral Accelerator

LA180/LP11/LS11/LV11 Line Printers and LNOl Laser I
Printer

LPSll Laboratory Peripheral System (not supported in
RSX-llM-PLUS systems)

1-19 April 1983

Name

MF

MM

I MS

MT

NL

pp

PR

LR

TT

LT

OD

XB

XL

XM

XP

XQ

XU

xw

I YH

YL

YZ

ZA-ZZ

RSX-llM/M-PLUS INPUT/OUTPUT

Device

TU78 Magnetic Tape

TU16/TE16/TU45/TU77/TM02/TM03 Magnetic Tape

TSll, TOSO, or TSV05 Magnetic Tape

TMll/TUlO/TUll or TS03 Magnetic Tape

The Null Device

PCll Paper Tape Punch

PCll or PRll Paper Tape Reader

PCLll-A/PCLll-B Receiver
RSX-llM-PLUS systems only)

Port

Terminals (regardless of interface)

PCLll-A/PCLll-B Transmitter
RSX-llM-PLUS systems only)

Port

(supported

(supported

in

in

UDCll Universal Digital Controller (not supported in
RSX-llM-PLUS systems)

DAll-B Parallel Unibus Link
RSX-llM-PLUS systems)

(not supported in

DLll-E Asynchronous Communication Line Interface (not
supported in RSX-llM-PLUS systems)

DMCll Synchronous Communication Line Interface

DPll Synchronous Communication Line Interface (not
supported in RSX-llM-PLUS systems)

DQll Synchronous Communication Line Interface (not
supported in RSX-llM-PLUS systems)

DUll Synchronous Communication Line Interface (not
supported in RSX-llM-PLUS systems)

DUPll Synchronous Communication Line Interface

DHll or DHVll
Multiplexer

Asynchronous Communications Line

DLll-A/DLll-B/DLll-C/DLll-D/DLll-E Asynchronous
Communications Line Interface (DLll-B, DLll-E, DPll,
DQll, and DUll are not supported in RSX-llM-PLUS
systems)

DZll Asynchronous Communications Line Multiplexer

Reserved for customer use (not used by DIGITAL)

1-20 April 1983

RSX-llM/M-PLUS INPUT/OUTPUT

1.7.5.2 Pseudo-Device Names - A pseudo-device is a logical device
that can normally be redirected by the operator to another physical
device unit at any time, without requiring changes in programs that
reference the pseudo-device. Dynamic redirection of a physical device
unit affects all tasks in the system; reassignment by means of the
MCR REASSIGN command affects only one task. The following
pseudo-devices are supported, as indicated:

Code

CL

co

HT

LB

NL

NS

NX

RD

SP

SY

VD

TI

VT

Device

Console listing, normally the line printer.

Console output, normally the main operator's console.

Network remote terminal

System library device, normally the device from which
the system was bootstrapped. For example, LB: is the
device that tasks such as TKB and MAC access for
default library files.

Null device.

Network pseudo-device for NSP.

Network pseudo-device for DLX.

On-line reconfiguration pseudo-device
only) •

Spooling scratch disk device.

(RSX-UM-PLUS

User default device. On nonmultiuser systems, SY: is
normally the disk from which the system was
bootstrapped. On multiuser systems, SY: is normally
the default login device.

Virtual Device.

Pseudo-input terminal; TIO:
which a task was requested.

is the terminal from

The pseudo-device TI cannot be redirected, since such
redirection would have to be handled on a per-task
rather than a system-wide basis (that is, change the TI
device for one task without affecting the TI
assignments for other tasks) •

Virtual terminal. Used by some RSX-llM-PLUS offspring
tasks as TI: for command and data I/O. (Supported in
RSX-llM-PLUS systems only).

1.7.6 The GLUN$ Macro: Retrieving LON Information

The Get LUN Information macro requests that information about a
LUN-physical device unit association be returned in a 6-word buffer
specified by the issuing task. Upon successful completion of the
directive processing; the buffer contains the information listed in
Table 1-1, as appropriate for the specific device. All three forms of
the macro call may be used. It is issued from a MACR0-11 program in
the following way:

GLUN$ lun,buf

1-21

lun

buf

RSX-llM/M-PLUS INPOT/OOTPOT

The logical unit number associated with the physical device unit
for which information is requested.

The 6-word buffer to which information is returned.

For example, to request information on the disk unit associated with
LON 8, the following call is issued:

GLUN$C

Numerical Offset
Word Byte Bit

0

1 0

1

2

0

1

2

3

4

5

6

8.,IOBUF

Table 1-1
Get LUN Information

Symbolic Offset
Word Byte Bit

G.LUNA

G.LUNU

G.LUFB

G.Lucwl

(U .CWl) (DV .REC)

(DV.CCL)

(DV.TTY)

(DV.DIR)

(DV.SDI)

(DV. SQD)

(DV.MSD)

Contents

Name of device associated with
LUN (ASCII bytes)

Unit number of associated device

Driver flag value. Returned as
200 octal if the driver is
resident, or as 0 if a loadable
driver is not in the system

First device characteristics
word:

Unit record-oriented device (for
example, card reader, line
printer) (1 = yes)

Carriage-control device (for
example, line printer, terminal)
(1 = yes)

Terminal device (1 = yes)

Directory device (for example,
DECtape, disk) (1 = yes)

Single directory device (for
example, ANSI-standard mag tape)
(1 = yes)

Sequential device (for example,
ANSI-standard magtape) (1 = yes)

Mass storage device (for example,
disks and tapes) (1 = yes)

1. The following word and bit symbols shown in parentheses are symbols used in
defining and referencing corresponding items in the device UCB.

(continued on next page)

1-22 April 1983

Numerical Off set
Word Byte Bit

7

8

9

10
I I

11

12

13

14

15

3

4

5

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-1 (Cont.)
Get LUN Information

Symbolic Offset
Word Byte Bit Contents

G.LUCW+02

(U.CW2) (U2 .xxx)

G.LUCW+04

(U.CW3)

G.LUCW+06

(U.CW4)

(DV.UMD) User-mode diagnostics supported
(1 = yes)

(DV.EXT) Device supports 22-bit
addressing

direct

(DV.SWL) Unit software write-locked
(1 = yes)

(DV.ISP) Input spooled device (1 = yes)

(DV.OSP) Output spooled device (1 = yes)

(DV.PSE) Pseudo-device (1 = yes)

(DV.COM) Device mountable as a
communications channel for
Digital network support (for
example, DPll, DUll) (1 = yes)

(DV.Fll) Device mountable as a FILES-11
device (for example, disk or
DECtape) (1 = yes)

(DV.MNT) Device mountable {logical OR of
bi ts 13 and 14) (1 = yes)

Second
word:

device characteristics

Device-specific information

Third
word:

device characteristics

{U3.xxx) Device-specific information2

Fourth
word:

device characteristics

Default buffer size {for example,
for disks, and line length for
terminals) •

2. For mass storage devices, such as disks, DECtape, and DECtape II, this is
the number of blocks (maximum logical block number plus one). For the proper
use of the RX211/RX02 flexible disk, it is important to be able to test
G.LUCW+4 to determine the media density.

1-23 April 1983

RSX-llM/M-PLUS INPUT/OUTPUT

The example included below illustrates the use of the three forms of
the GLUN$ macro.

DATA DEFINITIONS

GETLUN: GLUN$ 6,DSKBUF GENERATE DPB

EXECUTABLE SECTION

DIR$ #GETLUN EXECUTE DIRECTIVE

GLUN$C 6,DSKBUF GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GLUN$S #6,#DSKBUF GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

1.7.7 The ASTX$S Macro: Terminating AST Service

The AST Service Exit macro is used to terminate execution
service routine. All forms of the macro are provided.
S-form is preferred because it requires less space and
least as fast as the ASTX$ or ASTX$C form of the macro.
issued in the following way:

ASTX$S [err]

err

of an AST
However, the
executes at
The macro is

An optional argument which specifies the address of an error
routine to which control branches if the directive is rejected.

On completion of the operation specified in this macro call, if
another AST is queued and asynchronous system traps have not been
disabled, then the next AST is immediately entered. Otherwise, the
task's state before the AST was entered is restored (it is the AST
service routine's responsibility to save and restore the registers it
uses) •

1.7.8 The WTSE$ Macro: Waiting for an Event Flag

The Wait For Single Event Flag macro instructs the system to suspend
execution of the issuing task until the event flag specified in the
macro call is set. This macro is extremely useful in synchronizing
activity on completion of an I/0 operation. All three forms of the
macro call may be used. It is issued as follows:

WTSE$ efn

1-24

RSX-llM/M-PLUS INPUT/OUTPUT

efn

The event flag number.

WTSE$ causes the task to be blocked from execution until the specified
event flag is set. Frequently, an efn parameter is also included in a
QIO$ macro call, and the event flag is set on completion of the I/O
operation specified in that call. The following example illustrates
task blocking until the setting of the specified event flag occurs.
This example also illustrates the use of the three forms of the macro
call.

DATA DEFINITIONS

WAIT:
IOSB:

WTSE$
.BLKW

5
2

EXECUTABLE SECTION

GENERATE DPB
I/0 STATUS BLOCK

ALUN$S
QIO$C
DIR$

#14. ,# 11 MM
IO.ATT,14.,5
#WAIT

ASSIGN LON 14 TO MAGTAPE UNIT ZERO
ATTACH DEVICE
EXECUTE WAITFOR DIRECTIVE

QIO$S #IO.RLB,#14.,#2,,#IOSB,,<#BUF,#80.>
; READ RECORD, USE EFN2

WTSE$S #2 WAIT FOR READ TO COMPLETE

QIO$C IO.WLB,14.,3,,IOSB,,<BUF,80.>
; WRITE RECORD, USE EFN3

WTSE$C 3 WAIT FOR WRITE TO COMPLETE

QIO$C IO.DET,14. DETACH DEVICE

1.8 STANDARD I/0 FUNCTIONS

The number of input/output operations that can be specified by
of the QIO directive is large. A particular operation
requested by including the appropriate function code as the
parameter of a QIO macro call. Certain functions are standard.

1-25

means
can be
first
These

RSX-llM/M-PLUS INPUT/OUTPUT

functions are almost totally device independent and can thus be
requested ·for nearly every device described in this manual. Others
are device dependent and are specific to the operation of only one or
two I/O devices. This section summarizes the function codes and
characteristics of the following device-independent I/O operations:

• Attach to an I/O device

• Detach from an I/O device

• Cancel I/O requests

• Read a logical block

• Read a virtual block

• Write a logical block

• Write a virtual block

For certain physical device units
I/O function may be described
operation is performed as a result
I/O status code of rs.sue is
specified in the QIO macro call.

discussed in this manual, a standard
as being a NOP. This means that no
of specifying the function, and an
returned in the I/O status block

In the following descriptions and in formats shown in subsequent
chapters, the five QIO directive parameters lun, efn, pri, isb, and
ast are represented by the ellipsis (•••) (see Section 1.5.1).

1.8.1 IO.ATT: Attaching to an I/O Device

The function code IO.ATT is specified by a user task when that task
requires exclusive use of an I/O device. This function code is
included as the first parameter of a QIO macro call in the following
way:

QIO$C IO.ATT, .••

Successful completion of an IO.ATT request causes the specified
physical device unit to be dedicated for exclusive use by the issuing
task. This enables the task to process input or output in an unbroken
stream and is especially useful on sequential, non-file-oriented
devices such as terminals, card readers, and line printers. An
attached physical device unit remains under control of the issuing
task until it is explicitly detached by that task. To detach the
device, the task can specify any LUN previously assigned to the
attached device.

While a physical device unit is attached, the I/O driver for that unit
dequeues only I/O requests issued by the task that issued the attach.
Thus, a request to attach a device unit already attached by another
task will not be processed until the attachment is broken and no
higher priority request exists for the unit. A LUN that is associated
with an attached physical device unit may not be reassigned by means
of an Assign LON directive except when at least one LUN is still
assigned to the attached device.

1-26 April 1983

RSX-llM/M-PLUS INPUT/OUTPUT

If the task that issued an attach function exits or is aborted before
it issues a corresponding detach, the Executive automatically detaches
the physical device unit.

1.8.2 IO.DET: Detaching from an I/O Device

The function code IO.DET is used to detach a physical device unit that
has been previously attached by means of an IO.ATT request for
exclusive use of the issuing task. This function code is included as
the first parameter of a QIO macro call in the following way:

QIO$C IO.DET, •••

The LUN specifications of both IO.ATT and IO.DET must be the same, as
in the following example, which also illustrates the use of s- forms
of several macro calls.

LOOP:

.MCALL
ALUN$S

QIO$S

QIO$S

QIO$S

ALUNS,QIOS
#14.,#"CR

#IO.ATT,#14.

#IO.RLB,#14., •••

#IO.DET,#14.

1.8.3 IO.KIL: Canceling I/O Requests

ASSOCIATE CARD READER WITH LUN 14

ATTACH CARD READER

READ CARD

DETACH CARD READER

The function IO.KIL is issued by a task to cancel all of that task's
I/O requests for a particular physical device unit.

For I/O requests waiting for service -- that is, in the I/O driver's
queue -- a status code of IE.ABO is returned in the I/O status block.
An event flag is set, if specified. But any AST service routine that
may have been specified is not initiated.

For I/O requests being processed by an I/O driver -- other than the
disk or DECtape drivers -- the IE.ABO status code is returned. Other
status information (byte count, and so forth) is also returned in the
I/O status block. An AST, if specified, is activated.

For disk, DECtape, or DECtape II I/O requests being processed when an
IO.KIL is issued, the IO.KIL acts as a NOP. The request is allowed to
complete, except in the case in which a DECtape transfer is blocked by
a select error. Because disk and DECtape operate quickly, IO.KIL
simply causes the return of rs.sue in the I/O status block.

This function code is included as the first parameter of a QIO macro
in the following way:

QIO$C IO.KIL, •••

IO.KIL is useful in such special cases as canceling an I/O request on
a physical device unit from which a response is overdue (for example,
a read on a paper tape reader) •

1-27

RSX-llM/M-PLUS INPUT/OUTPUT

1.8.4 IO.RLB: Reading a Logical Block

The function code IO.RLB.is specified by a task to read a block of
data from the physical device unit specified in the macro call. This
function code is included as the first parameter of a QIO macro in the
following way:

stadd

size

pn

QIO$C IO.RLB, ••• ,<stadd,size,pn>

The starting address of the data buffer.

The data buffer size in bytes.

One to four optional parameters, used to specify such additional
information as block numbers for certain devices.

1.8.5 IO.RVS: Reading a Virtual Block

The function code IO.RVS is used to read a virtual block of data from
the physical device unit specified in the macro call. A "virtual"
block indicates a relative block position within a file and is
identical to a "logical" block for such sequential, record-oriented
devices as terminals and card readers. For these sequential,
record-oriented devices, IO.RVB is converted to IO.RLB before being
issued.

NOTE

Any subfunction bits specified in the
IO.RVB request (see Sections 2.3.1 and
3.3.1) are stripped off in this
conversion.

It is recommended that all tasks use virtual rather than logical
reads. However, if a virtual read is issued for a file-structured
device (disk, DECtape, or DECtape II), the user must ensure that a
file is open on the specified physical device unit. This function
code is included as the first parameter of a QIO macro call in the
following way:

QIO$C IO.RVB, ••• ,<stadd,size,pn>

stadd

The starting address of the data buffer.

size

The data buffer size in bytes.

1-28

pn

RSX-llM/M-PLUS INPUT/OUTPUT

One to four optional parameters, used to specify such additional
information as block numbers for certain devices.

1.8.6 IO.WLB: Writing a Logical Block

The function code IO.WLB is specified by a task to write a block of
data to the physical device unit specified in the macro call. This
function code is included as the first parameter of a QIO macro call
in the following way:

stadd

size

pn

QIO$C

The starting address of the data buffer.

The data buffer in bytes.

One to four optional parameters, used to specify such additional
information as block numbers or format control characters for
certain devices.

1.8.7 IO.WVB: Writing a Virtual Block

The function code IO.WVB is used to write a virtual block of data to a
physical device unit. A "virtual" block indicates a block position
relative to the start of a file. For sequential, record-oriented
devices such as terminals and line printers, the function IO.WVB is
converted to IO.WLB.

NOTE

Any subfunction bits specified in the
IO.WVB request (see Sections 2.3.1 and
3.3.1) are stripped off in this
conversion.

It is recommended that all tasks use virtual rather than logical
writes. However, if a virtual write is issued for a file-structured
device (disk, DECtape, or DECtape II), the user must ensure that a
file is open on the specified physical device unit. This function
code is included as the first parameter of a QIO macro call in the
following way:

QIO$C IO.WVB, .•• ,<stadd,size,pn>

stadd

The starting address of the data buffer.

1-29

size

pn

RSX-llM/M-PLUS INPUT/OUTPUT

The data buffer size in bytes.

One to four optional parameters, used to specify such additional
information as block numbers or format control characters for
certain devices.

1.8.8 User-Mode Diagnostic Functions

The I/O function code subfunction bit, IQ.UMD, provides support for
user-mode diagnostics. To perform a diagnostic function, you must
specify in the QIO directive parameter block the logical OR of IQ.UMD
and the function you want to perform. For example, to perform a
diagnostic Read Logical Block operation, specify IO.RLB!IQ.UMD as the
I/O function code parameter to the QIO directive. You can perform
standard I/O functions such as Read Logical Block, Write Logical
Block, Attach to Device, and Detach from Device in diagnostic mode.

Support for user-mode diagnostics is always present for RSX-llM-PLUS,
but not all drivers support user-mode diagnostic functions.
Unpredictable device and driver behavior results when you set the
IQ.UMD subfunction bit in QIOs that are directed to the device if it
does not support user-mode diagnostics. Problems can be avoided if
you do a Get LUN directive and check the user-mode diagnostics bit
before emitting the user-mode diagnostic QIO.

To support user-mode diagnostics, the DV.UMD bit in the UCB must be
set. DV.UMD is at offset U.CWl in the UCB.

In addition to standard I/O functions, RSX-llM-PLUS provides the
following device-dependent, user-mode diagnostic functions:

1. Disk diagnostic functions

• IO.HMS Home seek or recalibrate

e IO.BLS Block seek (explicit seek)

e IO.OFF Offset position

e IO.ROH Read disk header

e IO.WDH Write disk header

• IO.WCK Writecheck

2. DECtape diagnostic functions

• IO.RNF Read block number forward

e IO.RNR Read block number reverse

3. Magtape diagnostic functions

e IO.LPC Read longitudinal parity character

• IO.ERB Erase tape

UMDIO$ is the macro that defines these functions.

1-30

RSX-llM/M-PLUS INPUT/OUTPUT

To execute a us~r-mode diagnostic function, you must first attach for
diagnostics using I/O function code IO.ATT!IQ.UMD. Execute the
diagnostic functions and then detache

The parameter list in words 1 through 6 of the DPB should contain the
following information:

• I/O buff er address

• I/O buffer size

• Offset factor for disks with offset recovery (to determine the
offset factor, refer to the offset register in the hardware
reference manual); this parameter is not used if the device
does not have offset recovery.

• Double-precision logical block number

• User's register buffer address {the I/O driver copies
hardware registers to this buffer in the user's program);
a hardware reference manual for the length of the address

see

A typical DPB for a diagnostic function might look like the following:

$DSKPB::
• BYTE
.WORD
.WORD
.BYTE
.WORD
.WORD

3,12 •
IO.WDH!IQ.UMD
THELUN
THEEFN,O
$IOSTS

Size of the DPB, QIOWAIT directive code
I/O function code

$IOBUF:: .WORD
.WORD
.WORD

SLBH:: .WORD
$LBL:: • WORD

.WORD

0
0
0
0
0
0
$RGBUF

Logical Unit Number
Event flag number
I/O status block address
AST address
Buffer address
Transfer size in bytes
Device dependent
High-order logical block number
Low-order logical block number
Register buffer address

The user-mode diagnostic functions return either Success (IS.SUC) or
Device Not Ready (IE.DNR). No other error codes are returned. All
error recovery is completely up to the user. Any errors that occur
will not be logged in the error log.

A typical program fragment, using the user-mode diagnostic functions,
might look like the following:

UMDIO$
ALUN$S
QIO$S

QIO$S

QIOSS

QIO$S

QIO$S

.MCALL UMDIO$,ALUN$S,QIO$S
Define diagnostic functions

#14.,#"DM,#0 ; Associate DMO with lun 14
#14.,#"DM,#0 ; Associate DMO with lun 14

#IO.ATT!IQ.UMD,#14. Attach DM for diagnostic I/O

#IO~RDH!IQ.UMD,#14.,,,,,<#$IOBUF,#512.,,#LBH,ILBL,#$RGBUF> Read disk header

#IO.RLB!IQ.UMD,#14.,,,,~<1$IOBUF,l512.,,ILBH,ILBL,l$RGBUF> Read logical block

#IO.DET!IQ.UMD,114. Detach DM

1-31

RSX-llM/M-PLUS INPUT/OUTPUT

1.9 I/O COMPLETION

When an I/O request has been completed, either successfully or
unsuccessfully, one or more actions may be taken by the Executive.
Selection of return conditions depends on the parameters included in
the QIO macro call. There are three major returns:

1. A significant event is declared on completion of an I/O
operation. If an efn parameter was included in the I/O
request, the corresponding event flag is set.

2. If an isb parameter was specified in the QIO macro call, a
code identifying the type of success or failure is returned
in the low-order byte of the first word of the I/O status
block at the location represented by isb.

This status return code is of the form IS.xxx (success) or
IE.xxx (error). For example, if the device accessed by the
I/O request is not ready, a status code of IE.DNR is returned
in isb. The section below (Return Codes) summarizes general
codes returned by most of the drivers described in this
manual.

If the isb parameter was omitted, the requesting task cannot
determine whether the I/O request was successfully completed.
A carry clear return from the directive itself simply means
that the directive was accepted and the I/O request was
queued, not that the actual input/output operation was
successfully performed.

3. If an ast parameter was specified in the QIO macro call, a
branch to the AST servic~ routine that begins at the location
identified by ast occurs on completion of the I/O operation.
See Section 1.5.3 for a detailed description of AST service
routines.

1.10 RETURN CODES

There are two kinds of status conditions recognized and handled by
RSX-llM/M-PLUS when they occur in I/O requests:

• Directive conditions, which indicate the
rejection of the QIO directive itself

acceptance or

• I/O status conditions, which indicate the success or failure
of the I/O operation

Directive conditions relevant to I/O operations may indicate any of
the following:

• Directive acceptance

• Invalid buffer specification

• Invalid efn parameter

• Invalid lun parameter

• Invalid DIC number or DPB size

• Unassigned LUN

• Insufficient memory

1-32

RSX-llM/M-PLUS INPUT/OUTPUT

A code indicating the acceptance or rejection of a directive is
returned to the Directive Status Word at symbolic location $DSW. This
location can be tested to determine the type of directive condition.

I/O conditions indicate the success or failure of the I/O operation
specified in the QIO directive. I/O driver errors include such
conditions as device not ready, privilege violation, file already
open, or write-locked device. If an isb parameter is included in the
QIO directive, identifying the address of a 2-word I/O status block,
an I/O status code is returned in the low-order byte of the first word
of this block on completion of the I/O operation. This code is a
binary value corresponding to a symbolic name of the form IS.xxx or
IE.xxx. The low-order byte of the word can be tested symbolically, by
name, to determine the type of status return. The correspondence
between global symbolic names and directive and I/O completion status
codes is defined in the system object module library. Local symbolic
definitions may also be obtained by the DRERR$ and IOERR$ macros,
which reside in the System Macro Library and are summarized in
Appendix B.

Binary values of status codes always have the following meanings:

Code Meaning

Positive (greater than 0) Successful completion

0 Operation still pending

Negative Unsuccessful completion

A pending operation means that the I/O request is still in the queue
of requests for the respective driver, or the driver has not yet
completely serviced the request.

1.10.1 Directive Conditions

Table 1-2 summarizes the directive conditions that may be encountered
in QIO directives. The acceptance condition is first, followed by
error codes indicating various reasons for rejection, in alphabetical
order.

Code

rs.sue

IE.ADP

Table 1-2
Directive Conditions

Reason

Directive accepted

The first six parameters of the QIO directive were
valid, and sufficient dynamic memory was available
to allocate an I/O packet. The directive is
accepted.

Invalid address

The I/O status block or the QIO DPB was outside of
the issuing task's address space or was not aligned
on a word boundary.

(continued on next page)

1-33

Code

IE.IEF

IE.ILU

IE.SOP

IE.ULN

IE.UPN

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-2 (Cont.)
Directive Conditions

Reason

Invalid event flag number

The efn specification in a QIO directive was less
than 0 or greater than 96.

Invalid logical unit number

The lun specification in a QIO directive was
invalid for the issuing task. For example, there
were only 5 logical unit numbers associated with
the task, and the value specified for lun was
greater than 5.

Invalid DIC number or DPB size

The directive identification code (DIC) or the size
of the Directive Parameter Block (DPB) was
incorrect; the legal range for a DIC is from 1
through 127, and all DIC values must be odd. Each
individual directive requires a DPB of a certain
size. If the size is not correct for the
particular directive, this code is returned. The
size of the QIO DPB is always 12 words.

Unassigned LUN

The logical unit number in the QIO directive was
not associated with a physical device unit. The
user may recover from this error by issuing a valid
Assign LUN directive and then reissuing the
rejected directive.

Insufficient dynamic memory

There was not enough dynamic memory to allocate an
I/O packet for the I/O request~ The user can try
again later by blocking the task with a Waitfor
Significant Event directive. Note that Waitfor
Significant Event is the only effective way for the
issuing task to block its execution, since other
directives that could be used for this purpose
themselves require dynamic memory for their
execution (for example, Mark Time).

1.10.2 I/O Status Conditions

The following list summarizes status codes that may be returned in the
I/O status block specified in the QIO directive on completion of the
I/O request. The I/O status block is a 2-word block with the
following format:

• The low-order byte of the first word receives a status code of
the form IS.xxx or IE.xxx on completion of the I/O operation.

• The high-order byte of the first word is usually device
dependent; in cases where the user might find information in
this byte helpful, this manual identifies that information.

1-34

RSX-llM/M-PLUS INPUT/OUTPUT

• The second word contains the number of bytes transferred or
processed if the operation is successful and involves reading
or writing.

If the isb parameter of the QIO directive is omitted, this information
is not returned.

The following illustrates a sample 2-word I/O status block on
completion of a terminal read operation:

1 0 Byte

Word 0 0 1-10.

l Number of bytes read

where -10 is the status code for IE.EOF (end of file). If this code
is returned, it indicates that input was terminated by typing CTRL/Z,
which is the end-of-file termination sequence on a terminal.

To test for a particular error condition, the user generally compares
the low-order byte of the first word of the I/O status block with a
symbolic value, as in the following:

CMPB #IE.DNR,IOSB

However, to test for certain types of successful completion of the I/O
operation, the entire word value must be compared. For example, if a
carriage return terminated a line of input from the terminal, a
successful completion code of IS.CR is returned in the I/O status
block. If an Escape (or Altmode) character was the terminator, a code
of IS.ESC is returned. To check for these codes, the user should
first test the low-order byte of the first word of the block for
rs.sue and then test the full word for rs.cc, IS.CR, IS.ESC, or
IS.ESQ. (Other success codes that must be read in this manner are
listed in Appendix B, Section B.1.2.)

Note that both of the following comparisons will test as equal since
the low-order byte in both cases is +l.

CMP #IS.CR,IOSB

CMPB #IS.SUC,IOSB

In the case of a successful completion where the carriage return is
the terminal indicator (IS.CR), the following illustrates the status
block:

1 0 Byte

Word 0 15 J+1
1 Number of bytes read

(excluding the CR)

where 15 is the octal code for carriage return and +l is the status
code for successful completion.

The codes described in Table 1-3 are general status codes that apply
to the majority of devices presented in subsequent chapters. Error
codes specific to only one or two drivers are described only in
relation to the devices for which they are returned. The list below
describes successful and pending codes first, then error codes in
alphabetical order.

1-35

Code

rs.sue

IS.PND

IE.ABO

IE.ALN

IE.BAD

IE.BBE

IE.BLK

IE.BYT

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-3
I/O Status Conditions

Reason

Successful completion

The I/O operation specified in the QIO directive
was completed successfully. The second word of the
I/O status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing.

I/O request pending

The I/O operation specified in the QIO directive
has not yet been executed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was cancelled with
IO.KIL while in progress or while still in the I/O
queue.

File already open

The task attempted to open a file on the physical
device unit associated with the specified LUN, but
a file has already been opened by the issuing task
on that LUN.

Bad parameter

An illegal specification was supplied for one or
more of the device-dependent QIO parameters (words
6-11). For example, a bad channel number or gain
code was specified in an analog-to-digital
converter I/O operation.

Bad block on device

One or more bad blocks were found by executing the
BAD utility. Data cannot be written on bad blocks.

Illegal block number

An illegal block number was
file-structured physical device
returned, for example, if block
for an RK05 disk, on which
extend from 0 through 4799.

Byte-aligned buffer specified.

specified for a
unit. This code is
4800 is specified
legal block numbers

Byte alignment was specified for a buffer, but only
word (or double-word) alignment is legal for the
physical device unit. For example, a disk function
requiring word alignment was requested, but the
buffer was aligned on a byte boundary.
Alternately, the length of a buffer was not an
appropriate multiple of bytes. For example, all
RP03 disk transfers must be an even multiple of
four bytes.

(continued on next page)

1-3~

Code

IE.DAA

IE.DNA

IE.DNR

IE.EOF

IE.FHE

IE.IFC

IE.NLN

IE.NOD

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/O Status Conditions

Reason

Device already attached

The physical device unit specified in an IO.ATT
function was already attached to the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Device not attached

The physical device unit specified in an IO.DET
function was not attached to the issuing task.
This code has no bearing on the attachment status
with respect to other tasks=

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is often returned as the
result of an interrupt time-out; that is, a
"reasonable" amount of time has passed, and the
physical device unit has not responded.

End-of-file encountered

An end-of-file mark, record, or control character
was recognized on the input device.

Fatal hardware error

Controller is physically unable to reach the
location where input/output is to be performed on
the device. The operation cannot be completed.

Illegal function

A function code was specified in an I/O request
that was illegal for the specified physical device
unit. This code is returned if the task attempts
to execute an illegal function or if, for example,
a read function is requested on an output-only
device, such as the line printer.

File not open

The task attempted to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate
a secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for such an operation.

(continued on next page)

1-37

Code

IE.OFL

IE.OVR

IE.PRI

IE.SPC

IE.VER

IE.WCK

IE.WLK

RSX-llM/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/O Status Conditions

Reason

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Illegal read overlay request

A read overlay was requested and the physical
device unit specified in the QIO directive was not
the physical device unit from which the task was
installed. The read overlay function can only be
executed on the physical device unit from which the
task image containing the overlays was installed.

Privilege violation

The task that issued a request was not privileged
to execute that request. For example, for the
UDCll and LPSll, a checkpointable task attempted to
connect to interrupts or to execute a synchronous
sampling function.

Illegal address space

The buffer requested for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
0 was specified.

Unrecoverable error

After the system's standard number of retries have
been attempted upon encountering an error, the
operation still could not be completed. This code
is returned in the case of parity, CRC, or similar
errors.

Write check error

An error was detected during the check (read)
following a write operation.

Write-locked device

The task attempted to write on a write-locked
physical device unit.

1-38

RSX-llM/M-PLUS INPUT/OUTPUT

1.11 POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND DECTAPE

Power-fail recovery recommendations for various devices are included
in the following chapters, as appropriate, to assist the user in
restoring device operation after a power failure. For disks and
DECtape, it is recommended that power recovery ASTs be used. The AST
service routine should provide a sufficient time delay, prior to
returning for normal I/O operations, that will allow the disk to
attain normal operating speed before actually attempting read and
write operations.

If QIOs are being used for disk or DECtape I/O operations during
power-fail recovery, an IE.DNR error status may be returned if the
device is not up to operating speed when the request is issued. When
this error is returned, it is recommended that the user task wait a
sufficient time for the device to attain operating speed, and attempt
the I/O operation again prior to reporting an error. For example, an
RKOS disk may require approximately 1 minute to attain operating speed
after a power failure.

1-39

CHAPTER 2

FULL-DUPLEX TERMINAL DRIVER

2.1 INTRODUCTION

Two terminal drivers are available as SYSGEN options for use in
RSX-llM systems:

1. A compact, half-duplex terminal driver for use with a wide
variety of terminals, containing all basic features required
for RSX-llM terminal support. (This terminal driver is not
available on RSX-llM-PLUS systems.) This terminal driver is
described in Chapter 3.

2. A full-duplex terminal driver, as described in this chapter,
containing all features of the half-duplex terminal driver,
plus the following:

• Full-duplex operation

• Type-ahead buffering

• Eight-bit characters

• Detection of hard receive errors

• Increased byte transfer length (8128 bytes)

• Additional terminal characteristics

• Additional terminal types

• Optional time-out on solicited and/or unsolicited input

• Device-independent cursor control

• Redisplay of prompt buffer upon CTRL/R or CTRL/U

• Automatic XOFF character generation upon completion of a
read (except when in the full-duplex mode) , if requested

• Autobaud speed detection

• Added hardware support

Note that either terminal driver can be selected during RSX-llM
SYSGEN. RSX-llM-PLUS systems use the full-duplex terminal driver
only.

2-1 April 1983

•

I

FULL-DUPLEX TERMINAL DRIVER

Throughout the remainder of this chapter, references made to MCR can
generally be applied to other command line interpreters (for example,
DCL). In addition, the prompt displayed on a terminal in response to
invoking a command line interpreter will be appropriate for the
specific command line interpreter in use. For example, when MCR is
invoked, the MCR prompt is displayed as follows:

MCR>

Terminal driver support is provided for a variety of terminal devices,
as listed in Table 2-1. Subsequent sections describe each device in
greater detail.

Model Columns

ASR-33/35 72
KSR-33/35 72
LA12 132
LAlOO 132
LA30-P 80
LA30-S 80
LA34 132
LA36 132
LA38 132
LA120 132
LA180S 132
LQP02 132/158
LASO 80/96/132
RT02 64
RT02-C 64
VT05B 72
VT50 80
VT50H 80

I
VT52 80
VT55 80
VT61 80
VTlOO 80-132
VT101 80-132
VT102 80-132
VT105

I
80-132

VT125 80-132
VT131 80-132
VT132 80-132

Table 2-1
Supported Terminal Devices

Lines/1 Character Baud
Screen Set Range

64 110
64 110
96 50-9600
96 110-9600
64 300
64 110-300
96 110-300

64-96 110-300
96 110-300
96 50-9600
96 300-9600

110-9600
110-4800

1 64 110-1200
1 64 110-1200
20 64 110-2400
12 64 110-9600
12 64 110-9600
24 96 110-9600
24 96 110-9600
24 96 110-9600
24 96 50-9600
24 96 50-19200
24 96 50-9600
24 96 50-19200
24 96 50-9600
24 96 50-19200
24 96 50-19200

1. Applies only to video terminals.

U...E.E_er- & Lowercase?
Send Receive

yes yes
yes yes

yes yes
yes yes2
yes yes
yes yes

yes

yes

yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes

2. Only for 96-character terminal. The terminal driver supports the
terminal interfaces summarized in Table 2-2. These interfaces are
described in greater detail in Section 2.9. Programming is identical
for all interfaces.

2-2 Apr:t,l 1983

Model

DHll

DHVll

FULL-DUPLEX TERMINAL DRIVER

Table 2-2
Standard Terminal Interfaces

Type

16-line multiplexerl

8-line multiplexerJ

DHll-DMll-BB 16-line multiplexer with modem control2

DJll 16-line multiplexer

DLll-A/B/C/D/E/W Single-line interfaces

DLVll-E/F Single-line interfaces3

DZll 8-line multiplexer with modem control3

1. Direct memory access (OMA) is supported in the
full-duplex terminal driver only.

2. Full-duplex control only. For example, in the USA, a
Bell 103A-type modem.

3. DLVll and DHVll support with modem control is provided
in the full-duplex terminal driver only.

Terminal input lines can have a maximum length of 8128 (8K minus 64)
bytes. Extra characters of an input line that exceed the maximum line
length generally become an unsolicited input line if the terminal is
not attached with typeahead enabled.

2.1.1 ASR-33/35 Teletypes*

The ASR-33 and ASR-35 Teletypes are asynchronous, hard-copy terminals.
No paper-tape reader or punch capability is supported.

2.1.2 KSR-33/35 Teletypes*

The KSR-33 and KSR-35 Teletypes are asynchronous, hard-copy terminals.

2.1.3 LA12 Portable Terminal

The LA12 is a personal, portable, hard-copy terminal.

2.1.4 LAlOO DECprinter

The LAlOO is a desk-top, matrix, hard-copy terminal.

1. Teletype is a registered trademark of the Teletype Corporation.

2-3 April 1983

I

I

FULL-DUPLEX TERMINAL DRIVER

2.1.5 LA30 DECwriters

The LA30 DECwriter is an asynchronous, hard-copy terminal that is
capable of producing an original and one copy. The LA30-P is a
parallel model and the LA30-S is a serial model.

2.1.6 LA36 DECwriter

The LA36 DECwriter is an asynchronous terminal that produces hard copy
and operates in serial mode. It has an impact printer capable of
generating multipart and special preprinted forms. The LA36 can
receive and transmit both uppercase and lowercase characters.

2.1.7 LA34/38 DECwriters

The LA34 DECwriter is an asynchronous terminal that produces hard copy
and uses a platen paper feed mechanism.

The LA38 DECwriter includes a detachable tractor feed mechanism for
use with continuous forms.

2.1.8 LA120 DECwriter

The LA120 DECwriter is a hard-copy, upper- and lowercase terminal,
capable of printing multipart forms at speeds up to 180
characters-per-second. Serial communications speed is selected from
14 baud rates ranging from 50 to 9600 bps; split transmit and receive
baud rates are supported by the terminal driver. Hardware features
allow bidirectional printing for maximum printing speed, and also
allow user-selected features, including font size, line spacing, tabs,
margins, and forms control. These functions can also be set up by the
system by issuing appropriate ANSI-standard escape sequences.

2.1.9 LA180S DECprinter

The LA180S DECprinter is a serial version of the LA180. It is a
print-only device (it has no keyboard) that can generate multipart
forms. The LA180S can print uppercase and lowercase letters.

2.l.9A LQP02 Letter-Quality Printer

The LQP02 Letter-Quality Printer is a formed character, desktop
printer incorporating daisywheel technology. This letter-quality
printer offers over 100 character sets and handles regular office
stationery up to a maximum of 15 inches, but the print capacity is
13.5 inches. The lines per inch and characters per inch are software
selectable; characters at 10 and 12 and lines at 2, 3, 4, 6, and 8.
At 10 characters per inch you get 132 columns and at 12 characters you
get 158 columns. The buffer capacity is 256 characters.

2-4 April 1983

FULL-DUPLEX TERMINAL DRIVER

2.l.9B LASO Personal Printer

The LASO Personal Printer is a desktop dot-matrix impact printer. It
has two print modes; text mode and enhanced print mode. In text
mode, it prints at 100 characters per second. The enhanced print
quality mode prints at 50 characters per second and creates a crisper,
more uniform character than an ordinary dot-matrix printer. You can
choose characters per inch at 10, 12, or 16 which gives columns at 80,
96, or 132 and lines per inch can be 6, 8, or 12. The buffer capacity
is 255 characters.

2.1.10 RT02 Alphanumeric Display Terminal
Reader/Alphanumeric Display Terminal

and RT02-C Badge

The RT02 is a compact, alphanumeric display terminal designed for
applications in which source data is primarily numeric. A shift key
permits the entry of 30 discrete characters, including uppercase
alphabetic characters. The RT02 can, however, receive and display 64
characters.

The RT02-C model also contains a badge reader. This option provides a
reliable method of identifying and controlling access to the PDP-11 or
to a secure facility. Furthermore, data in a format corresponding to
that of a badge (22-column fixed data) can be entered quickly.

2-4.1 April 1983

FULL-DUPLEX TERMINAL DRIVER

2.1.11 VTOSB Alphanumeric Display Terminal

The VTOSB is an alphanumeric display terminal that consists of a CRT
display and a self-contained keyboard. From a programming point of
view, it is equivalent to other terminals, except that the VT05B
offers direct cursor addressing.

2.1.12 VTSO Alphanumeric Display Terminal

The VT50 is an alphanumeric display terminal that consists of a CRT
display and a keyboard. It is similar to the VT05B in operation, but
does not offer direct cursor addressing.

2.1.13 VTSOH Alphanumeric Display Terminal

The VT50H is an alphanumeric display terminal with CRT display,
keyboard, and numeric pad. It offers direct cursor addressing. (The
VT50H's direct cursor addressing is not compatible with that of the
VTOSB.)

2.1.14 VT52 Alphanumeric Display Terminal

The VT52 is an upper- and lowercase alphanumeric terminal with numeric
pad and direct cursor addressing. (The VT52's direct cursor
addressing is compatible with that of the VT50H, not with that of the
VTOSB.) The VT52 can be configured with a built-in thermal printer.

2.1.15 VT55 Graphics Display Terminal

The VT55 is similar to the VT52 in its operation as an alphanumeric
terminal. The VT55 offers graphics display features that are not
supported by RSX-llM, although the system allows a knowledgeable task
to access the explicitly special features of the VT55.

2.1.lo VT61 Alphanumeric Display Terminal

The VT61 is an "intelligent" upper- and lowercase alphanumeric
terminal with an integral microprocessor. It offers two 128-member
character sets and numerous built-in functions for editing and forms
preparation as well as a block-transfer mode. (None of these special
features is supported by RSX-llM.)

2.1.17 VTlOO DECscope

The VTlOO DECscope is an upper- and lowercase alphanumeric
keyboard/video display terminal. It is capable of displaying 24 lines
of 80 to 132 characters (each line). Serial communications speed is
selected from baud rates ranging from 50 to 9600 bps. Hardware
features allow user selection of display characteristics and functions
including smooth scroll, reverse video, and so forth. These functions
can also be set up by the system by issuing appropriate ANSI-standard
escape sequences.

2-5

FULL-DUPLEX TERMINAL DRIVER

2.1.18 VTlOl DECscope

The VT101 DECscope is functionally identical to the VTlOO.
it does not support the advanced video features.

2.1.19 VT102 DECscope

However,

The VT102 DECscope is functionally identical to the VTlOO. However,
it does not have any expansion capability and does not support the
advanced video features. It has enhanced modem control and it
includes a port for a printer.

2.1.20 VTlOS DECscope

The VT105 DECscope is a video terminal. It has both alphanumeric and
graphic display. The VT105 can display two graphs, two shaded graphs,
or two strip charts. These graphs may have alphanumeric labels.

2.1.21 VT131 DECscope

The VT131 is the same as the VT102 with the addition of built-in
editing features.

2.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for terminals. A setting of 1 indicates that the
described characteristic is true for terminals.

Bit Setting Meaning

0 1 Record-oriented device

1 1 Carriage-control device

2 1 Terminal device

3 0 File structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Mass storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

2-6

FULL-DUPLEX TERMINAL DRIVER

Bit Setting

10 0

11 0

12 0

13 0

14 0

15 0

Words 3 and 4 of the buffer
default buff er size (the
screen).

2.3 QIO MACRO

Meaning

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications
channel

Device mountable as a FILES-11 volume

Device mountable

are undefined. Word 5 indicates the
width of the terminal carriage or display

Table 2-3 lists the standard and device-specific functions of the QIO
macro that are valid for terminals. Some device-specific functions
are options that may be selected during SYSGEN.

Two device-specific functions, SF.SMC
function names. These names are
RSX-llD.

and SF.GMC, have nonstandard
retained for compatibility with

Table 2-3
Standard and Device-Specific QIO Functions for Terminals

Format

STANDARD FUNCTIONS:

QIO$C IO.ATT, •••

QIO$C IO. DET, •••

QIO$C IO.KIL, •.•

QIO$C IO.RLB, ••• ,<stadd,size[,tmo]>

QIO$C IO.RVB, ••• ,<stadd,size[,tmo]>

QIO$C IO.WLB, ••• ,<stadd,size,vfc>

QIOSC IO.WVB, ••• ,<stadd,size,vfc>

2-7

Function

Attach device.

Detach device.

Cancel I/O requests.

READ logical block
(read typed input into
buffer) •

READ virtual block
(read typed input into
buffer) •

WRITE logical block
(print buffer
contents) •

WRITE virtual block
(print butfer
contents) •

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-3 (Cont.)
Standard and Device-Specific QIO Functions for Terminals

Format

DEVICE-SPECIFIC FUNCTIONS:

QIO$C IO.ATA, ••• ,<ast,
[parameter 2] [, as t 2] > 1

QIO$C IO.CCO, ••• ,<stadd,size,vfc>

QIO$C SF.GMC, ••• ,<stadd,size>l

QIO$C IO.GTS, ••• ,<stadd,size>l

QIO$C IO. HNG, •••

QIO$C IO.RAL, ••• ,<stadd,size[,tmo]>

QIO$C IO.RNE, ••• ,<stadd,size[,tmo]>

QIO$C IO.RPR, ••• ,<stadd,size,
[tm o] , pr add , pr s i z e , v f c > 1

QIO$C IO.RST, ••• ,<stadd,size[,tmo]>

QIO$C IO.RTT, ••• ,<stadd,size,
[tmo] ,table>

QIO$C SF.SMC, ••• ,<stadd,size>l

QIO$C IO.WAL, ••• ,<stadd,size,vfc>

QIO$C IO.WBT, ••• ,<stadd,size,vfc>l

ast

Function

ATTACH device, specify
unsolicited-input­
character AST.

CANCEL CTRL/O (if in
effect), then write
logical block.

GET multiple
characteristics.

GET terminal support.

HANGUP remote line.

READ logical block,
pass all bi ts.

READ logical block, do
not echo.

READ logical block
after prompt.

READ logical block
ended by special
terminators.

READ logical block
ended by specified
special terminator.

SET multiple
characteristics.

WRITE logical block,
pass all bi ts.

WRITE logical block,
break through any I/O
conditions at
terminal.

The entry point for an unsolicited- input-character AST.

parameter 2

A number that can be used to identify this terminal as the input
source upon entry to an unsolicited character AST routine.

l. SYSGEN options in RSX-iiM.

2-8

ast2

pr add

FULL-DUPLEX TERMINAL DRIVER

The entry point for an unsolicited CTRL/C AST.

The starting address of the byte buffer where the prompt is
stored.

prsize

size

st add

The size of the pradd prompt buffer in bytes. The specified size
must be greater than 0 and less than or equal to 8128. The
buffer must be within the task's address space.

The size of the stadd data buffer in bytes. The specified size
must be greater than 0 and less than or equal to 8128. The
buffer must be within the task's address space. For SF.GMC,
IO.GTS, and SF.SMC functions, size must be an even value.

The starting address of the data buffer. The
word aligned for SF.GMC, IO.GTS, and SF.SMC;
may be on a byte boundary.

address must be
otherwise, stadd

table

tmo

vf c

The address of the 16-word special terminator table.

An optional time-out count in 10-second intervals for the
full-duplex terminal driver. If 0 is specified, no time-out can
occur. Time-out is the maximum time allowed between two input
characters before the read is aborted. The maximum timeout value
is 255.

A character for vertical format control from Table 2-11 (see
Section 2.7).

2.3.1 Subfunction Bits

Most device-specified functions supported by terminal drivers
described in this section are selected using "subfunction bits." One
or more functions can be selected by ORing their relative bits in a
~iv function. Table 2-4 contains a listing of QIO functions and
relative subfunction bits that can be issued.

2-9 April 1983

I

•

FULL-DUPLEX TERMINAL DRIVER

Each subfunction bit and subfunction selected when it is included in a
QIO function is listed as follows:

Symbolic
Name

TF.AST
TF .BIN
TF.CCO
TF.ESQ
TF.NOT

TF.RAL
TF.RCU
TF.RNE
TF.RST
TF.TMO
TF.WAL
TF.WBT
TF.XCC

TF.XOF

Subfunction

Unsolicited-input-character AST
Binary prompt
Cancel CTRL/O
Recognize escape sequences
Unsolicited input AST notification; unsolicited
characters are stored in the type-ahead buffer
until they are read by the task
Read all bi ts
Restore cursor position
Read with no echo
Read with special terminators
Read with time-out
Write all bits
Break-through write
CTRL/C starts a command line interpreter command
line (Command line characters are not sent to
the task.)
Send XOFF

Table 2-4 lists subfunction bits that can be ORed with QIO functions.
Additional details for using subfunction bits are included in Section
2.3.2.

If a task invokes a subfunction bit that is not supported on the
system, the subfunction bit is ignored, but the QIO request is not
rejected. For example, if break-through write (TF.WBT) is not
selected, an IO.WBT or IO.WLB!TF.WBT function is interpreted as an
IO.WLB function.

The following example is a QIO request using more than one subfunction
bit: a nonechoed (TF.RNE) read, terminated by a special terminator
character (TF.RST) and preceded by a prompt.

QIO$C IO.RPR!TF.RNE!TF.RST, ••. ,<stadd,size,,pradd,prsize,vfc>

2.3.2 Device-Specific QIO Functions

Some device-specific functions described in this section are SYSGEN
options. All except SF.GMC, IO.RPR, SF.SMC, IO.RTT, and IO.GTS can be
issued by ORing a particular subfunction bit with another QIO
function. These subfunction bits are specified in the following
descriptions; subfunction bits are described in general in Section
2.3.l.

In addition to the device-specific QIO functions, this section also
describes the use of subfunction bits TF.ESQ, TF.BIN, and TF.XOF.

2-10 April 1983

~~ Equivalent
~~ion Subfunctions TF.AST TF. BIN TF.CCO

STANDARD FUNCTIONS

IO.A'fT x
IO.DET
IO. KIL
IO.RLB
IO.RVB
IO.WLB x
IO.WVB 2

DEVICE-SPECIFIC FUNCTIONS

IO.A'rA IO.ATT!TF.AST
Io.cco IO.WLB!TF.CCO
SF.GMC
IO. G'.PS
IO. RAL IO.HLB!TF.RAL
IO.RNE IO.HLR!TF.RNE
IO.RJ?R x
IO.RST IO.HLB!TF.RST
IO.R'.PT
SF.SMC
IO. WAL IO.WLB!TF.WAL 3
IO.WBT IO.WLB!TF.WBT x

Table 2-4
Subfunction Bits - Summary

-·

Allowed Subfunction

TF.ESQ TF.NOT TF.RAL TF.RCU TF.RNE

x

1 x
2 2

x
2

x x

x
1
1 x
1 x

1 x

3
x

Bits
---.----· ·--,----· .

TF.RST TF.TMO TF WAL TF.WBT TF.XCC ·-1--·

1 x
2 2 3

x
2 2

x
3 x

1 x
1 x
1 x

x
x x

3
3

-- -------'---·

1. Exercise great care when using Read All and Read with Special Terminators together. Obscure problems can result.

--
TF.XOF

x
2

x
x
x
x

2. These subfunctions are allowed but are not effective. They are stripped off when the read or write virtual operation is
converted to a read or write logical operation.

3. During a write-pass-all operation (IO.WAL or IO.WLB!TF.WAL) the terminal driver
interpretation; it does not keep track of cursor position.

outputs characters without

FULL-DUPLEX TERMINAL DRIVER

2.3.2.1 IO.ATA - IO.ATA is a variation of the Attach function. The
use of this function is eased by the addition of TF.NOT and TF.XCC
subfunction bits, described later in this section. IO.ATA specifies
asynchronous system traps (ASTs) to process unsolicited input
characters. When called as follows:

QIO$C IO.J..TA, ••• ,<[AST] I [PARAMETER2] [,AST2] >

NOTE

A minimum of one AST parameter (ast or
ast2) is required.

This function attaches the terminal and identifies "ast" and "ast2" as
entry points for an unsolicited-input-character AST. Control passes
to ast whenever an unsolicited character (other than CTRL/Q, CTRL/S,
CTRL/X, or CTRL/O) is input. If the ast2 parameter is specified, an
unsolicited CTRL/C character will result in entering the AST specified
in that parameter. If ast2 is not specified, an unsolicited CTRL/C
will result in entering the AST specified in the ast parameter.

Unless the TF.XCC subfunction is specified, CTRL/C is trapped by the
task and does not reach MCR. Thus, any task that uses IO.ATA without
the TF.XCC subfunction should recognize some input sequence as a
request to terminate; otherwise, MCR cannot be invoked to abort the
task in case of difficulty.

Note that either ast2 or TF.XCC can be used, but not both in the same
QIO request. If both are specified in the request, an IE.SPC error is
returned.

Upon entry to the AST routines, the unsolicited character
parameter 2 are in the top word on the stack, as shown below.
word must be removed from the stack before exiting the AST.

and
That

SP+lO

SP+06

SP+04

SP+02

SP+OO

Event flag mask word

PS of task prior to AST

PC of task prior to AST

Task's directive status word

Unsolicited character in low byte; parameter 2, in the
high byte, is a user-specified value that can be used
to identify individual terminals in a multiterminal
environment

The processing of unsolicited input ASTs is eased through the use of
TF.NOT and TF.XCC subfunction bits. When TF.XCC is included in the
IO.ATA function, all characters (except CTRL/C) are handled in the
manner previously described. CTRL/C marks the beginning of a command
line interpreter (CLI) line that will be processed by a CLI task (for
example, MCR); none of the characters, including the CTRL/C, are sent
to the task issuing the function.

When unsolicited terminal input (except CTRL/C) is received by the
full-duplex terminal driver and the TF.NOT subfunction is used, the
resulting AST serves only as notification of unsolicited terminal
input; the terminal driver does not pass the character to the task.
Upon entry to the AST service routine, the high byte of the first word
on the stack identifies the terminal causing the AST (parameter 2).

2-12

FULL-DUPLEX TERMINAL DRIVER

After the AST has been effected, the AST becomes "disarmed" until a
read request is issued by the task. If multiple characters are
received before the read request is issued, they are stored in the
type-ahead buffer. Once the read request is received, the contents of
the type-ahead buffer, including the character causing the AST, is
returned to the task; the AST is then "armed" again for new
unsolicited input characters. Thus, using the TF.NOT subfunction
allows a task to monitor more than one terminal for unsolicited input
without the need to continuously read each terminal for possible
unsolicited input. Note that the TF.NOT subfunction cannot be used
with the CTRL/C AST; an unsolicited CTRL/C character flushes the
type-ahead buffer.

See the RSX-llM/llM-PLUS Executive Reference Manual for further
details on ASTs.

IO.ATA is equivalent to IO.ATT ORed with the subfunction bit TF.AST.

2.3.2.2 IO.ATT!TF.ESQ - The task issuing this function attaches a
terminal and notifies the driver that it recognizes escape sequences
input from that terminal. Escape sequences are recognized only for
solicited input. (See Section 2.6 for a discussion of escape
sequences.}

If the terminal has not been declared capable of generating escape
sequences, IO.ATT!TF.ESQ has no effect other than attaching the
terminal. No escape sequences are returned to the task because any
ESC sent by the terminal acts as a line terminator. The SF.SMC
function or the MCR SET /ESCSEQ command are used to declare the
terminal capable of generating escape sequences (see Table 2-5 and
Section 2.3.2.12}.

2.3.2.3 IO.CCO - This write function directs the driver to write to
the terminal regardless of a CTRL/O condition that may be in effect.
If CTRL/O is in effect, it is cancelled before the write is done.

IO.CCC is equivalent to IO.WLB!TF.CCO.

2.3.2.4 SF.GMC - The Get Multiple Characteristics function returns
terminal characteristics information, as follows:

st add

QIO$C SF.GMC, •.. ,<stadd,size>

The starting address of a data buffer of length "size" bytes.
Each word in the buffer has the form

.BYTE

.BYTE
characteristic-name
0

characteristic-name

One of the bit names given in Table 2-5. The value returned in
the high byte of each byte-pair is 1 if the characteristic is
true for the terminal and 0 if it is not true.

For the TC.TTP characteristic (terminal type}, one of the values shown
in Table 2-6 is returned in the high byte.

2-13

Bit
Name

TC.ABO

TC.ACR

I TC.AN!

TC.ASPl

I
)

TC.AVO

TC.BIN

I TC.BLK

TC.CTS

I TC.DEC

TC.DLU4

I

TC.EDT

TC.EPA

~C.ESQ ~

/: "" TC.FOX

-tTC.HFF

I

.11 TC.HFL

{TC.HHT

Vt TC. HLDl

TC. ISL

l TC. LPP

FULL-DUPLEX TERMINAL DRIVER

Table 2-5
Full-Duplex Terminal Driver-Terminal Characteristics

for SF.GMC and SF.SMC Functions

Octal
Value

77

24

122

76

123

65

44

72

124

41

125

42

35

64

17

13

21

44

6

2

Meaning (if asserted)

Auto-baud detection

Wrap-around mode

ANSI CRT terminal

Remote line answer speed

VTlOO-family terminal display

Binary input mode (read-pass-all)
no characters are interpreted
as control characters.

Terminal is capable of block
mode transfers

Suspend output to terminal
0 = resume
1 = suspend

Digital CRT terminal

Dial-up line

Terminal performs editing functions

When TC.PAR is enabled:
O=odd parity
l=even parity

Input escape sequence
recognition

Full-duplex mode

Hardware form-feed capability
(If 0, form-feeds are simulated
using TC.LPP.)

Number of fill characters to
insert after a carriage return (0-7=x)
(Use a value of 7 for the LA30-S.)

Horizontal tab capability (if O,
horizontal tabs are simulated using
spaces.)

Hold screen mode

Corresponding
MCR Command

SET /ABAUD=TTnn:

SET /WRAP=TTnn:

SET /REMOTE=TTnn:speed

SET /RPA=TTnn:

SET /REMOTE=TTnn:

SET /ESCSEQ=TTnn:

SET /FDX=TTnn:

SET /FORMFEED=TTnn:

SET /HFILL=TTnn:x

SET /HHT=TTnn:

SET /HOLD=TTnn:

Subline on interface (=0-15) (Read only) --

l Page length (1-255.=x) SET /LINES=TTnn:x

(continued on next page)

2-14 April 1983

Bit
Name

TC.NBR

f TC.NEC I
TC.PAR

I

I TC.PR!

I TC. RAT

TC.RGS

TC. RSP2

./-1'C.SCP

TC.SLV

('rc.SMR

TC.TBF

TC.TBS

TC.TBM

' TC.TTP

J.'Tc. VFL

Tc. wrn3

Tc.xsp2

" TC. 8BC

FULL-DUPLEX TERMINAL DRIVER

Table 2-5 (Cont.)
Full-Duplex Terminal Driver-Terminal Characteristics

for SFeGMC and SF.SMC Functions

Octal
Value

102

47

41

51

7

126

3

12

50

25

71

100

101

10

14

1

4

67

Meaning (if asserted)

Broadcast disabled

Echo suppressed

Generate and check parity

Terminal is privileged (Read only)

I

I

Type-ahead buffer:
0 = 1-character type-ahead
1 = 36-character type-ahead

I (RSX-llM only)

Terminal supports REGIS
instructions

Receiver speed (bits-per-second)

Terminal is a scope (CRT)

Terminal is a slave

Upper-case conversion disabled

Type-ahead buffer count (read),
or flush (write)

Type-ahead buffer size (0-255=x)
(RSX-llMPLUS only)

Type-ahead buffer mode
O=task typeahead
l=CLI typeahead
(RSX-llM-PLUS only)

Terminal type (=0-255.=x)

Send four fill characters after
line feed

Page width (=l-255.=x)

Transmitter speed (bits-per-second)

Pass eight bits on input, even
if not binary input mode
(TC .BIN)

2-15

Corresponding
MCR Command

SET /NOBRO=TTnn:

SET /ECHO=TTnn:

I
--

I SET /PRIV=TTnn:
I

SET /TYPEAHEAD=TTnn:

SET /SPEED=TTnn:rcv:xmit

SET /CRT=TTnn:

SET /SLAVE=TTnn:

SET /LOWER=TTnn:

SET /TYPEAHEAD=TTnn:x

SET /X=TTnn:
SET /TERM=TTnn:x

SET /VFILL=TTnn:

SET /BUF=TTnn:x

SET /SPEED=TTnn:rcv:xmit

SET /EBC=TTnn:

April 1983

I

I

I

I

I

I

FULL-DUPLEX TERMINAL DRIVER

1. Effective for VT5x and VT61 only.

2. TC.RSP, TC.XSP, TC.ASP and corresponding MCR SET /SPEED and SET /REMOTE
command values for terminal receiver and transmitter speeds are listed below.
(The valid combinations for each interface are in the RSX-llM/M-PLUS MCR
Operations Manual.)

NOTE

The MCR SET /SPEED command requires parameters for both receiver (rev)
and transmitter (xmit) baud rates, as follows:

SET /SPEED=TTnn:rcv:xmit

TC.ASP
TC.RSP or
TC.XSP Actual baud rate (in bps)
value and val id MCR SET /SPEED" or SET /REMOTE

values

s.o (disabled)
S.50 50 (Baudot codes are not

supported)
S.75 75
S.110 110
S.134 134
S.150 150
S.200 200
S.300 300
S.600 600
S.1200 1200
S.1800 1800
s.2000 2000
S.2400 2400
S.3600 3600
S.4800 4800
s. 7200 7200
S.9600 9600
S.EXTA (DHll external speed A)
S.EXTB (DHll external speed B)
S.19.2 19200

NOTE

Speed can be set only on DHll and DZll controllers. DZll transmitter and
receiver speeds must be equal (no split baud rates permitted). Only one
value may be specified for the remote answer speed. This value applies
to both the transmitter and receiver.

3. Unsolicited input that fills the buffer before a terminator is received is
likely invalid. When this happens, the driver discards the input by simulating
a CTRL/O and echoing Au.

4. A program can enable the auto-call feature of the DF03 modem by setting
TC.DLU to a value of two. (This is in addition to receiving incoming calls.)
While in this mode, read and write requests are serviced even when a line is not
in use. Consequently, I/O requests will not fail when the line is hung-up,
which is the case for remote lines (TC.DLO=l).

2-16 April 1983

FULL-DUPLEX TERMINAL DRIVER

The TC.TTP characteristic, when read by the terminal driver, sets
implicit values for terminal characteristics TC.LPP, TC.WID, TC.HFF,
TC.HHT, TC.VFL, and TC.SCP as shown in Table 2-6. These values can be
changed (overridden) by subsequent Set Multiple Characteristics
requests. In addition, TC.TTP is used by the terminal driver to
determine cursor positioning commands, as appropriate.

Table 2-6
Bit TC.TTP {Terminal Type) Values Set by SF.SMC

and Returned by SF.GMC

I Terminal I
Implicit Characteristics2 J I octal

I TC.HHT
I lvaluel Symbolic I Type l TC.LPP TC.WID TC.HFF TC.HFL TC.VFL TC. SCPJ

I 0 T.UNKO Unknown

I I 1 I T.AS33 ASR33 66 72 1
2 T.KS33 KSR33 66 72 l
3 I T.AS35 ASR35 66 72 1
4

I
T.L30S LA30S 66 80 7

5 T.L30P LA30P 66 80
6 T.LA36 LA36 66 132
7 T.VTOS VTOS 20 72 1 1 1
10 T.VTSO VTSO 12 80 1 1
11 T.VT52 VT52 24 80 1 1
12 T.VTSS VTSS 24 80 1 1
13 T.VT61 VT61 24 80 1 1
14 T.Ll80 LA180S 66 132 1
15 T.VlOO VTlOO 24 80 1 1
16 T.Ll20 LA120 66 132 1
20 T.LA12 LA12 66 132 1 1
21 T.LlOO LAlOO 66 132 1 1
22 T.LA34 LA34 66 132 1
23 T.LA38 LA38 66 132 1
24 T.VlOl VTlOl 24 80 1 1
25 T.Vl02 VT102 24 80 1 1
26 T.VlOS VT105 24 80 1 1
27 T.Vl25 VT125 24 80 1 1
30 T.Vl31 VT131 24 80 1 1
31 T.Vl32 VT132 24 80 1 1
32 T.LASO LASO 60 80 1 1
33 T.LQPl LQPOl 66 132 1 1
34 T. LQP2 LQP02 66 132 1 1

l.Octal values 0-177 are reserved by DIGITAL. values 200-377 are available for
customer use to define non-DIGITAL terminals.

2.Implicit characteristics are shown as supported by the driver. Values not shown
are not automatically set by the driver. An "unknown" terminal type has no
implicit characteristics.

The TC.CTS characteristic returns the present suspend (CTRL/S), resume
(CTRL/Q), or suppress (CTRL/O) state set via the SF.SMC function.
Values returned are as follows:

Value
Returned

0
1
2
3

State

Resume (CTRL/Q)
Suspend (CTRL/S)
Suppress (CTRL/0)
Both suppress and suspend

2-17 April 1983

I

I

I

FULL-DUPLEX TERMINAL DRIVER

When a value of 0 is used with the SF.SMC function, the suspend state
is cleared; a value of 1 selects the suspend state.

The TC.TBF characteristic returns the number of unprocessed characters
in the type-ahead buffer for the specified terminal. This allows
tasks to determine if any characters were typed that did not require
AST processing. In addition, the value returned can be used to read
the exact number of characters typed, rather than a typical value of
80. or 132. characters for the terminal.

NOTES

1. It is necessary that the task attach
the terminal to receive characters
from the type-ahead buffer.

2. The maximum capacity of the
type-ahead buffer is 36. characters
for RSX-llM systems and 255.
characters for RSX-llM-PLUS systems.

3. Using TC.TBF in an SF.SMC function
will flush the type-ahead buffer.

2.3.2.5 IO.GTS - This function is a Get Terminal Support request that
returns information to a 4-word buffer specifying which SYSGEN-option
features are part of the terminal driver. Only two of these words are
currently defined. Table 2-7 gives details for these words. The
IO.GTS function is a SYSGEN option. If IO.GTS is issued on a system
without IO.GTS support, IE.IFC is returned in the I/O status block.

The various symbols used by the IO.GTS, SF.GMC, and SF.SMC functions
are defined in a system module, TTSYM. These symbols include: Fl.xxx
and F2.xxx (Table 2-7); T.xxxx (Table 2-6); TC.xxx (Table 2-5); and
the SE.xxx error returns described in Table 2-8, Section 2.4. These
symbols may be defined locally within a code module by using:

.MCALL TTSYM$

TTSYM$

Symbols that are not defined locally are automatically defined by the
Task Builder.

Octal values shown for the symbols are subject to change.
it is recommended that only the symbolic names be used.

2-18

Therefore,

Bit

FULL-DUPLEX TERMINAL DRIVER

Table 2-7
Information Returned by Get Terminal Support (IO.GTS) QIO

Octal
Value Mnemonic Meaning When Set to 1

Word 0 of Buffer:

0
1
2
3
4
5

6
7
8
9

10
11
12
13
14

15

1
2
4

10
20
40

100
200
400

1000
2000
4000

10000
20000
40000

100000

Fl.ACR
Fl.BTWl
Fl. BUF
Fl.UIA1

Fl. CCO .
Fl.ESQl

Fl. HLD
FLLwcl
Fl. RNE
Fl. RPRl
Fl.RST
Fl. RUBl
Fl. SYN
Fl.TRW
Fl.UTB

Fl.VBF

Automatic CR/LF on long lines
Break-through write
Checkpointing during terminal input
Unsolicited-input-character AST
Cancel CTRL/O before writing
Recognize escape sequences in solicited
input
Hold-screen mode
Lower- to uppercase conversion
Read with no echo
Read after prompting
Read with special terminators
CRT rubout
CTRL/R terminal synchronization
Read all and write all
Input characters buffered in task's
address space
Variable-length terminal buffers

Word 1 of Buffer:

0
1
5
()

7

1
2

40
100
200

F2.SCH1
F2.GCH 1

F2.SFF
F2.CUP1

F2.FDX

Set characteristics QIO (SF.SMC)
Get characteristics QIO (SF.GMC)
Formfeed can be simulated
Cursor positioning
Full Duplex Terminal Driver

1. SYSGEN options on RSX-llM systems.

2.3.2.6 IO.RAL - The Read All function causes the driver to pass all
bits to the requesting task. The driver does not intercept control
characters or mask out the "parity" (high-order) bit. For example,
CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to the program
and are not interpreted by the driver.

NOTE

IO.RAL echoes the characters that are
read. The terminal driver in Version 2
of RSX-llM did not echo a Read All. To
read all bits without echoing, use
IO.RAL!TF.RNE.

IO.RAL is equivalent to IO.RLB ORed with the subfunction bit TF.RAL.
The IO.RAL function can be terminated only by a full character count
(input buffer full).

2-19

FULL-DUPLEX TERMINAL DRIVER

2.3.2.7 IO.RNE - The IO.RNE function reads terminal input characters
without echoing the characters back to the terminal for immediate
display. This feature can be used when typing sensitive information
(for example, a password or combination) or when reading a badge with
the RT02-C terminal.

(Note that the no-echo mode can also be selected with the SF.SMC
function; see Table 2-5, bit TC.NEC.)

CTRL/R is ignored while an IO.RNE is in progress.

The IO.RNE function is equivalent to IO.RLB ORed with the subfunction
bit TF.RNE.

2.3.2.8 IO.RPR - The IO.RPR Read After Prompt functions as an IO.WLB
(to write a prompt to the terminal) followed by IO.RLB. However,
IO.RPR differs from this combination of functions as follows:

• System overhead is lower with the IO.RPR because only one QIO
is processed.

• When using the IO.RPR function, there is no "window" during
which a response to the prompt may be ignored. Such a window
occurs if IO.WAL/IO.RLB is used, because no read may be posted
at the time the response is received.

• If the issuing task is checkpointable, it can be checkpointed
during both the prompt and the read requested by the IO.RPR.

• A CTRL/O that may be in effect prior to issuing the IO.RPR is
canceled before the prompt is written.

Subfunction bits may be ORed with IO.RPR to write the prompt as a
Write All (TF.BIN) and to send XOFF after the read (TF.XOF). In
addition, read subfunction bits TF.RAL, TF.RNE, and TF.RST can be used
with IO.RPR.

NOTE

If an IO.RPR function is in progress
when the driver receives a CTRL/R or
CTRL/U, the prompt is redisplayed.

2.3.2.9 IO.RPR!TE.BIN - This function results in a read after a
"binary" prompt; that is, a prompt is written by the driver with no
character interpretation (as if it were issued as an IO.WAL).

2.3.2.10 IO.RPR!TE.XOF - This function causes the driver to send an
XOFF to the terminal after its prompt-and-read. The XOFF or CTRL/S
may have the effect of inhibiting input from the terminal, if the
terminal recognizes XOFF for this purpose. TF.XOF is ignored when
full-duplex I/O is in use.

2-20

FULL-DUPLEX TERMINAL DRIVER

2.3.2.11 IO.RST - This function is similar to an IO.RLB, except
certain special characters terminate the read. These characters are
in the ranges 0-037 and 175-177. The driver does not interpret the
terminating character, with certain exceptions.l For example, a
horizontal TAB (011) is not expanded, a RUBOUT (or DEL, 177) does not
erase, and a CTRL/C does not produce an MCR prompt.

Upon successful completion of an IO.RST request that was not
terminated by filling the input buffer, the first word of the I/O
status block contains the terminating character in the high byte and
the rs.sue status code in the low byte. The second word contains the
number of bytes contained in a buffer. The terminating character is
not put in the buffer.

IO.RST is equivalent to IO.RLB!TF.RST.

2.3.2.12 SF.SMC - This function enables a task to set and reset the
characteristics of a terminal. Set Multiple Characteristics is the
inverse function of SF.GMC. Like SF.GMC, it is called in the
following way:

stadd

QIO$C SF.SMC, ••• ,<stadd,size>

The starting address of a buffer of length "size" bytes.
word in the buffer has the form

.BYTE characteristic-name

.BYTE value

Each

characteristic-name

value

One of the symbolic bit names given in Table 2-5.

Either 0 (to clear a given characteristic) or 1 (to set a
characteristic).

Table 2-5 notes the restrictions that apply to these characteristics.

If the characteristic-name is TC.TTP (terminal type), value can have
any of the values listed in Table 2-6.

A nonprivileged task can only issue an SF.SMC request for its own
terminal (TI:). A privileged task can issue SF.SMC to any terminal.

Terminal output can be suspended or resumed (simulated CTRL/S and
CTRL/Q, respectively) by specifying an appropriate value for TC.CTS.
A value of 0 resumes output and a value of 1 suspends output.

1. If upper- to lowercase conversion is disabled, characters 175 and
176 do not act as terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021,
and 023, respectively) are not special terminators. The driver
interprets them as output control characters in a normal manner.

2-21

FULL-DUPLEX TERMINAL DRIVER

Specifying any value for TC.TBF flushes (clears) the type-ahead buffer
(forces the type-ahead buffer count to 0).

2.3.2.13 IO.RTT - This QIO function reads characters in a manner like
the IO.RLB function, except a user-specified character terminates the
read operation. The specified character's code can range from 0-377.
It is user designated by setting the appropriate bit in a 16-word
table that corresponds to the desired character. Multiple characters
can be specified by setting their corresponding bits.

The 16-word table starts at the address specified by the table
parameter. The first word contains bits that represent the first 16
ASCII character codes (0-17); similarly, the second word contains
bits that represent the next ln character codes (20-37), and so forth,
through the sixteenth word, bit 15, which represents character code
377. For example, to specify the % symbol (code 045) as a read
terminator character, set bit 05 in the third word, since the third
word of the table contains bits representing character codes 40-57.

If the CTRL/S (023), CTRL/Q (021), and/or any characters whose codes
are greater than 177 is/are desired as the terminator character(s),
the terminal must be set to read-pass-all operation (TC.BIN=l), or
read-pass 8-bits (TC.SBC), as listed in Table 2-5.

The optional time-out count parameter can be included, as desired.

2.3.2.14 IO.WAL - The Write All function causes the driver to pass
all output from the buffer without interpretation. It does not
intercept control characters. Long lines are not wrapped around if
input/output wrap-around has been selected.

IO.WAL is equivalent to the IO.WLB!TF.WAL function.

2.3.2.15 IO.WBT - The IO.WBT function instructs the driver to write
the buffer regardless of the I/O status of the receiving terminal. If
an IO.WBT function is issued on a system that does not support IO.WBT,
it is treated as an IO.WLB function.

•

•

If another write function is currently
finishes the current request and the IO.WBT
issued. The effect of this is that a CTRL/S
functions. Therefore, it may be desirable
out on IO.WBT operations.

in progress, it
is the next write
can stop IO.WBT
for tasks to time

If a read is currently posted, the IO.WBT proceeps,
automatic CTRL/R is performed to redisplay any input
received before the break-through write was effected
terminal is not in the full-duplex mode).

and an
that was
(if the

• CTRL/O, if in effect, is canceled.

• An escape sequence that was interrupted is rubbed out.

An IO.WBT function cannot break through another IO.WBT that is in
progress.

Break-through write may only be issued
privileged MCR command BRO (broadcast)

2-22

by a privileged
uses IO.WBT.

task. The

FULL-DUPLEX TERMINAL DRIVER

2.3.2.16 IO.HNG - The IO.HNG function disconnects a terminal that is
on a remote line. This function has no arguments.

A nonprivileged task can only issue an IO.HNG request for its own
terminal (TI:). A privileged task can issue IO.HNG to any terminal.

2.4 STATUS RETURNS

Table 2-8 lists error and status conditions that are returned by the
terminal driver to the I/O status block.

Most RSX-llM error and status codes returned are byte values. For
example, the value for IS~SUC is 1. However; IS:CC 1 IS=CR; IS.ESC;
and IS.ESQ are word values. When any of these codes are returned, the
low byte indicates successful completion, and the high byte shows what
type of completion occurred.

To test for one of these word-value return codes, first test the low
byte of the first word of the I/O status block for the value rs.sue.
Then, test the full word for rs.cc, IS.CR, IS.ESC, or IS.ESQ. (If the
full word tests equal to rs.sue, then its high byte is O, indicating
byte-count termination of the read.)

The "error" return IE.EOF may be considered a successful read since
characters returned to the task's buffer can be terminated by a CTRL/Z
character.

The SE.xxx codes are returned by the SF.GMC and SF.SMC functions as
described in Sections 2.3.2.4 and 2.3.2.12. When any of these codes
are returned, the low byte in the first word in the I/O status block
will contain IE.ABO. The second IOSB word contains an offset
(starting from 0) to the byte in error in the QIO's stadd buffer.

Code

IE.EOF

rs.sue

Table 2-8
Terminal Status Returns

Reason

Successful completion on a read with end-of-file

The line of input read from the terminal was
terminated with the end-of-file character CTRL/Z.
The second word of the I/O status block contains the
number of bytes read before CTRL/Z was seen. The
input buffer contains those byte~.

Successful completion

The operation specified in the QIO directive was
completed successfully. If the operation involved
reading or writing, you can examine the second word
of the I/O status block to determine the number of
bytes processed. The input buffer contains those

l bytes.

{continued on next page)

2-23

Code

IS.CC

I IS.CR

IS.ESC

IS.ESQ

IS.PND

IS.TMO

IE.ABO

IE.BAD

IE.BCC

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Reason

Successful completion on a read

The line of
terminated by
the bytes read.

input read
a CTRL/C.

from the terminal was
The input buffer contains

Successful completion on a read

The line of input read from the terminal was
terminated by a carriage return. The input buffer
contains the bytes read.

Successful completion on a read

The line of input read from the terminal was
terminated by an Altmode character. The input buffer
contains the bytes read.

Successful completion on a read

The line of input read from the terminal was
terminated by an escape sequence. The input buffer
contains the bytes read and the escape sequence.

I/O request pending

The operation specified in the QIO directive has not
yet been executed. The I/O status block is filled
with Os.

Successful completion on a read

The line of input read from the terminal was
terminated by a time-out (TF.TMO was set and the
specified time interval was exceeded). The input
buffer contains the bytes read.

Operation aborted

The specified I/O operation was cancelled by IO.KIL
while in progress or while in the I/O queue. The
second word of the I/O status block indicates the
number of bytes that were put in the buffer before
the kill was effected.

Bad parameter

The size of the buffer exceeds 8128 bytes.

Framing error

A framing error was hardware-detected and returned by
the controller. All characters up to (but not
including) the erroneous character are in the buffer.
This condition can result by pressing the BREAK key
on some terminals, or by hardware problems.

(continued on next page)

2-24

Code

IE.DAA

IE.DAO

IE.DNA

IE.DNR

IE.IES

IE.IFC

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Reason

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has already
attached the desired physical device unit, not that
the unit was attached by another task. If the attach
specified TF.AST or TF.ESQ, these subfunction bits
have no effect.

Data overrun error

A data overrun error was hardware-detected and
returned by the controller. All characters up to
(but not including) the erroneous character are in
the buffer. This error occurs when a hardware
failure or incompatibility causes characters to be
received by the controller faster than they can be
processed (that is, an incorrect serial I/O baud rate
or format exists).

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task. This
code has no bearing on the attachment status of other
tasks.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one of
the following conditions:

• A time-out occurred on the physical device unit
(that is, an interrupt was lost).

• An attempt was made to perform a function on a
remote DHll or DZll line without carrier present.

Invalid escape sequence

An escape sequence was started but escape-sequence
syntax was violated before the sequence was
completed. (See Section 2.6.4.) The character
causing the violation is the last character in the
buffer.

Illegal function

A function code
illegal for
specified was a
system.

specified
terminals;

in an I/O request
or, the function

SYSGEN option not selected for

was
code
this

(continued on next page)

2-25

Code

IE.NOD

IE.OFL

IE.PES

IE.PRI

IE.SPC

IE.VER

SE.NIH

SE.FIX

SE.VAL

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Reason

Buffer allocation failure

System dynamic storage has been depleted resulting in
insufficient space available to allocate an
intermediate buffer for an input request or an AST
block for an attach request.

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line. When
the system was booted, a device check indicated that
this physical device unit was not in the
configuration. In RSX-llM-PLUS systems, the physical
device unit could have been configured off line.

Partial escape sequence

An escape sequence was started, but read-buffer space
was exhausted before the sequence was completed. See
Section 2.6.4.3.

Privilege violation

In a multiuser system, a nonprivileged task issued an
IO.WBT, directed an SF.SMC to a terminal other than
TI:, or it attempted to set its privilege bit.

Illegal address space

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task, a byte count of 0 was specified, or an
odd or 0 AST address was specified.

Character parity error

A parity error was hardware-detected and returned by
the controller. All characters up to (but not
including) the erroneous character are in the buffer.

A terminal characteristic other than those in Table
2-5 was named in an SF.GMC or SF.SMC request, or a
task attempted to assert TC.PRI.

An attempt was made to change a fixed characteristic
in a SF.SMC subfunction request (for example, an
attempt was made to change the unit number).

The new value specified in an SF.SMC request for the
TC.TTP terminal characteristic was not one of those
listed in Table 2-6.

(continued on next page)

2-26

Code

SE.NSC

SE.SPD

An

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Reason

attempt was made to change a
characteristic. This error can occur when
is made to make a local-only line a remote

nonsettable
an attempt
line when

the controller does not support remote lines, or when
no remote line support was specified during SYSGEN.

The new speed specified in an SF.SMC subfunction
request was not valid for the controller associated
with the specified terminal.

2.5 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of special terminal control
characters and keys for RSX-llM. Note that the driver does not
recognize control characters and special keys during a Read All
request (IO.RAL), and recognizes only some of them during a Read with
Special Terminators (IO.RST).

2.5.1 Control Characters

A control character is input from a terminal by holding the control
key (CTRL) down while typing one other key. Three of the control
characters described in Table 2-9, CTRL/R, CTRL/U, and CTRL/Z, are
echoed on the terminal as AR, AU, and AZ, respectively.

Character

CTRL/C

Table 2-9
Terminal Control Characters

Meaning

Typing CTRL/C causes unsolicited input on that
terminal to be directed to a control line interpreter
task, such as MCR. (Command line interpreters are
invoked and display a prompt in a manner similar to
that of MCR; therefore, for the purposes of this
discussion, it is assumed that MCR is the command
line interpreter in use, although the terminal driver
will respond to other command line interpreters in a
similar manner.) The "MCR>" prompt is echoed when the
terminal driver is ready to accept an unsolicited MCR
command line for input. When the unsolicited input
is terminated, the command line is passed to MCR.

If the last character typed on the terminal was a
CTRL/S (suspend output) , CTRL/C restarts suspended
output and directs subsequent input to MCR.

,.. .c
.LL the hold~screen mode SYSGEN option has been 1

selected and the terminal is a
hold-screen mode, typing a CTRL/C
terminal from hold-screen mode.

VT5x or VT61 in
removes the

(continued on next page)

2-27

Character

CTRL/I

CTRL/J

CTRL/K

CTRL/L

CTRL/M

CTRL/O

CTRL/Q

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Control Characters

Meaning

CTRL/C characters can also be directed to a task if
the task has attached a terminal and has specified an
unsolicited-input-character AST (see Section
2.3.2.1). CTRL/C characters are also passed to a
task if an IO.RAL or IO.RST function is effected.

NOTE

If the terminal driver receives a CTRL/C
character during a read operation (except
during a Read-Pass-All operation or a Read
With Special Terminators operation), the read
operation is terminated, the type-ahead
buffer is cleared, and an IS.CC status code
is returned to the task.

CTRL/I or TAB characters initiate a horizontal tab,
and the terminal spaces to the next tab stop. Tabs
at every eighth character position are simulated by
the terminal driver.

CTRL/J is equivalent to a LINE FEED character.

CTRL/K initiates a vertical tab, and the
tabs to the next vertical tab stop.
terminal, four LINE FEEDs are output.

terminal
For a CRT

CTRL/L initiates a formfeed. If the terminal has
hardware formfeed support, the driver echos AL.
Otherwise, the driver simulates the formfeed by
outputting enough LINE FEED characters to advance the
next character position to the top of the next page.
If a CRT terminal is in use, four LINE FEEDs are
output.

CTRL/M is equivalent to a carriage RETURN character
(see Section 2. 5. 2).

CTRL/O suppresses terminal output. For attached
terminals, CTRL/O remains in effect (output is
suppressed) until one of the following occurs:

• The terminal is detached.

• Another CTRL/O character is typed.

e An IO.CCO or IO.WBT function is issued.

• Input is entered.

For unattached terminals, CTRL/O suppresses output
for only the current output buffer (typically one
line) •

CTRL/Q resumes terminal output previously suspended
by means of CTRL/S.

(continued on next page)

2-28

Character

CTRL/S

CTRL/R

CTRL/U

CTRL/X

CTRL/Z

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Control Characters

Meaning

CTRL/S suspends terminal output. (Output can be
resumed by typing CTRL/Q or CTRL/C.)

CTRL/R response is a terminal driver feature that can
be selected during RSX-llM V3.2 SYSGEN. Typing
CTRL/R results in a carriage return and line feed
being echoed, followed by the incomplete
(unprocessed) input line. Any tabs that were input
are expanded and the effect of any rubouts is shown.
On hardcopy terminals, CTRL/R allows verifying the
effect of tabs and/or rubouts in an input line*
CTRL/R is also useful for CRT terminals when the CRT
rubout SYSGEN option has been selected (see Section
2.8). For example, after rubbing out the left-most
character on the second displayed line of a wrapped
input line, the cursor does not move to the right of
the first displayed line. In this case, CTRL/R
brings the input line and the cursor back together
again.

Typing CTRL/U before typing a line terminator deletes
previously typed characters back to the beginning of
the line. The system echoes this character as AU
followed by a carriage return and a line feed.

This character clears the type-ahead buffer.

CTRL/Z indicates an end-of-file for the current
terminal input. It signals MAC, PIP, TKB, and other
system tasks that terminal input is complete,
allowing the task to exit. The system echoes this
character as AZ, followed by a carriage return and a
line feed.

2.5.2 Special Keys

The ESCape, carriage RETURN, and RUBOUT keys have special significance
for terminal input, as described in Table 2-10. A line can be
terminated by an ESCape (or Altmode), carriage RETURN, or CTRL/Z
characters, or by completely filling the input buffer (that is, by
exhausting the byte count before a line terminator is typed). The
standard buffer size for a terminal can be determined for a task by
issuing a Get LUN Information system directive and examining Word 5 of
the buffer. An operator can obtain the same information with the MCR
SET /BUF=TI: command.

2.n ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning with
an ESC (033) character. In RSX-llM systems, escape sequence support
described in this section is' a SYSGEN option. Some terminals generate
an escape sequence when a special key is pressed (for example, the FCN
key on the VTnl). On any terminal, an escape sequence may be
generated manually by typing ESCape followed by the appropriate
characters.

2-29

FULL-DUPLEX TERMINAL DRIVER

Escape sequences provide a way to pass input to a task without
interpretation by the operating system. This could be done with a
number 1-character Read All functions, but escape sequences allow them
to be read with IO.RLB requests.

Key

ESCape

RETURN

RUBOUT

Table 2-10
Special Terminal Keys

Meaning

If escape sequences are not recognized, typing ESCape
or Altmode signals the terminal driver that there is
no rurther input on the current line. This line
terminator allows further input on the same line,
because the carriage or cursor is not returned to the
first column position.

If escape sequences are recognized, ESCape signals
the beginning of an escape sequence. (See Section
2.6.)

Typing RETURN terminates the current line and causes
the carriage or cursor to return to the first column
on the line.

Typing RUBOUT deletes the last character typed on an
input line. Only characters typed since the last
line terminator may be deleted. Several characters
can be deleted in sequence by typing successive
RUBOUTs.

For example, on a printing terminal, the first RUBOUT
echoes a backslash (\) followed by the character that
has been deleted, even if the terminal is in the
no-echo mode. Subsequent RUBOUTs cause only the
deleted character to be echoed. The next character
typed that is not a RUBOUT causes another backslash
to be printed, followed by the new character. The
non-RUBOUT character will not be echoed if the
terminal is in the no-echo mode; however, a
backslash is echoed in response to the first
non-RUBOUT character. The following example
illustrates rubbing out ABC and then typing CBA:

ABC\CBA\CBA

The second backslash is not displayed if a line
terminator is typed after rubbing out the characters
on a line, as in the following example:

ABC\CBA

At SYSGEN time, the "CRT rubout" feature can be
selected. This feature applies to a terminal only
after a SET MCR directive has been issued:

SET /CRT=TI:

(continued on next page)

2-30

Key

FULL-DUPLEX TERMINAL DRIVER

Table 2-10 (Cont.)
Special Terminal Keys

Meaning

If the CRT rubout feature was selected, RUBOUT causes
the last typed character (if any) to be removed from
the incomplete input line and a
backspace-space-backspace sequence of characters for
that terminal are echoed. If the last typed
character was a tab, enough backspaces are issued to
move the cursor to the character position before the
tab was typed. If a long input line was split, or

I

"wrapped," by the automatic-carriage-return option,
and a RUBOUT erases the last character of a previous
line, the cursor is not moved to the previous line.
CTRL/R must be used to resynchronize the current.
display with the contents of the incomplete input
line.

2.6.1 Definition

The format of an escape sequence as defined in American National
Standard X 3.41-- 1974 and used in the VTlOO is:

ESC

F

ESC F

The introducer control character_ (33(8)) that is named escape.

The intermediate bit combinations that may or may not be
present. I characters are bit combination 40(8) to 57(8)
inclusive in both 7- and 8-bit environments.

The final character.
to 176(8) inclusive
environments.

F characters are bit combinations 60(8)
in escape sequences in both 7- and 8-bit

The occurrence of characters in the inclusive ranges 0(8) to 37(8)
is technically an error condition whose recovery is to execute
immediately the function specified by the character and then
continue with the escape sequence execution. The exceptions are:
if the character ESC occurs, the current escape sequence is aborted,
and a new one commences, beginning with the ESC just received; if
the character CAN (30(8)) or the character SUB (32(8)) occurs, the
current escape sequence is aborted, as is the case with any control
character.

There are five exceptions to this general definition;
exceptions are discussed in Section 2.6.5.

2-31

these

FULL-DUPLEX TERMINAL DRIVER

2.6.2 Prerequisites

Two prerequisites must be satisfied before escape sequences can be
received by a task.

First, the task must "ask" for them by issuing an IO.ATT function
and invoking the subfunction bit TF.ESQ.

Second, the terminal must be declared capable of generating escape
sequences. This may be done with an MCR SET command:

SET /ESCSEQ=TI:

An alternative way to tell the driver that the terminal can generate
escape sequences is by issuing the Set Multiple Characteristics
request. (See Section 2.3.2.12).

If either of these prerequisites is not satisfied, the ESC character
is treated as a line terminator.

If both prerequisites are satisfied, CTRL/SHIFT/O (037) may be used as
an Altmode character.l This character does not act as an Altmode from
a terminal that cannot generate escape sequences.

2.6.3 Characteristics

Escape sequences always act as line terminators. That is, an input
buffer may contain other characters that are not part of an escape
sequence, but an escape sequence always comprises the last characters
in the buffer.

Escape sequences are not echoed. However, if a non-CRT rubout
sequence is in progress, it is closed with a backslash when an escape
sequence is begun.

Escape sequences are not recognized in unsolicited input streams.
Neither are they recognized in a Read with Special Terminators
(subfunction bit TF.RST) nor in a Read All (subfunction bit TF.RAL).

2.6.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 2.6.1 causes the driver
to abandon the escape sequence and to return an error (IE.IES).

2.6.4.1 DEL or RUBOUT (177) - The character DEL or RUBOUT is not
legal within an escape sequence. Typing it at any point within an
escape sequence causes the entire sequence to be abandoned and deleted
from the input buffer. Thus, use DEL or RUBOUT to abandon an escape
sequence, if desired, once you have begun it.

1. An Altmode is a line terminator that does not cause the cursor to
advance to a new line. On terminals that cannot generate escape
sequences, the ESCape key acts as an Altmode. Characters 175 and 176
also function as Altmodes if the terminal has not been declared
lowercase (MCR command SET /LOWER).

2-32

FULL-DUPLEX TERMINAL DRIVER

2.6.4.2 Control Characters (0-037} - The reception of any character
in the range O to 037 (with four exceptions -- see footnotel) is a
syntax violation that terminates the read with an error (IE.IES).

2.6.4.3 Full Buffer - A syntax error results when an escape sequence
is terminated by running out of read-buffer space, rather than by
receipt of a final character. The error IE.PES is returned. For
example, after a task issues an IO.RLB with a buffer length of 2, and
you type:

ESC ! A

the buffer contains "ESC ! ", and the I/O status block contains:

IOSB A
The "A" is treated as unsolicited input.

2.6.5 Exceptions to Escape-Sequence Syntax

Five "final characters" that normally terminate an escape sequence are
treated as special cases by the terminal driver for use with certain
terminals:

ESC ? •••
ESC 0 •••
ESC p •••
ESC y •••
ESC [...

Refer to documentation supplied with the specific terminal(s)
for correct use of escape sequences.

2.7 VERTICAL FORMAT CONTROL

in use

Table 2-11 is a summary of all characters used for vertical format
control on the terminal. Any one of these characters can be specified
as the value of the vfc parameter in IO.WLB, IO.WVB, IO.WBT, IO.CCO,
or IO.RPR functions.

1. Four control characters are allowed: CTRL/Q, CTRL/S, CTRL/X, and
CTRL/O. These characters are handled normally by the operating system
even when an escape sequence is in progress. For example, entering:

ESC CTRL/S A

gives:

IOSB IS.ESQ

2

with the additional effect of turning off the output stream.

2-33

FULL-DUPLEX TERMINAL DRIVER

2.8 AUTOMATIC CARRIAGE RETURN

Individual terminals can be set for wrap-around, as desired, using the
MCR SET command

>SET /WRAP=TTxx:

Once wrap-around has been selected, the column at which wrap-around
occurs can be selected using the MCR SET command

>SET /BUF=TI:n
>

The SET /BUF command can also be used without an argument to display
the current buffer width for a terminal:

>SET /BUF=TI:
BUF=TI:00072.
>

Octal
Value

040

060

061

053

044

000

Table 2-11
Vertical Format Control Characters

Character Meaning

blank SINGLE SPACE - Output one line feed, print the
contents of the buffer, and output a carriage
return. Normally, printing immediately follows
the previously printed line.

0

1

+

$

null

DOUBLE SPACE - Output two line feeds, print the
contents of the buffer, and output a carriage
return. Normally, the buffer contents are
printed two lines below the previously printed
line.

PAGE EJECT - If the terminal supports FORM
FEEDs, output a form feed, print the contents of
the buffer, and output a carriage return. If
the terminal does not support FORM FEEDs, the
driver simulates the FORM FEED character by
either outputting four line feeds to a crt
terminal, or by outputting enough line feeds to
advance the paper to the top of the next page on
a printing terminal.

OVERPRINT - Print the contents of the buffer and
output a carriage return, normaLly overprinting

I
the previous line.

PROMPTING OUTPUT Output one line feed and
print the contents of the buffer. This mode of
output is intended for use with a terminal on
which a prompting message is output, and input

I is then read on the same line.

INTERNAL VERTICAL FORMAT - Print the buffer
contents without addition of vertical format
control characters. In this mode, more than one

l
line of guaranteed contiguous output can be
printed for each I/O request.

2-34

FULL-DUPLEX TERMINAL DRIVER

All other vertical format control characters are interpreted as blanks
(040).

A task can determine the buffer width by issuing a Get LUN Information
directive and examining word 5 returned in the buffer.

After the SET has been done, typing beyond the buffer width results in
a carriage return and line feed being output before the next character
is echoed. Although only one line only was input, it is displayed on
two terminal lines.

It is possible to lose track of where you are in the input buffer if
wrap-around is enabled for your terminal. For example, while deleting
text on a wrapped line, the cursor will not back up to the previous
line. In order to resynchronize the cursor with the contents of the
incomplete input buffer, type CTRL/R (if this SYSGEN option has been
selected).

2.9 FEATURES AVAILABLE BY RSX-llM SYSGEN OPTION

A number of terminal-driver features are available as RSX-llM SYSGEN
options. (See the RSX-llM System Generation and Installation Guide).
Features previously discussed that are not repeated in this section
include:

• Some device-specific QIO functions (see Section 2.3.2)

• Special keys: CTRL/R -- Write incomplete input buffer (see
Section 2.5.1)

CRT rubout (see Section 2.5.2)

• Escape sequences (see Section 2.6)

The only remaining features selected at SYSGEN time are
terminal-independent cursor control (described in Section 2.15),
private buffer pool size, and hard receive error detection, described
in the following sections.

2.9.1 Private Buffer Pool Size

The private buffer pool is contained within the full-duplex terminal
driver. The size of the whole driver is established during SYSGEN by
the VMR command to load the driver as follows:

LOA TT:/SIZE=nnn

The private buffer pool occupies all of the space from the top of the
actual driver code up to nnn. The argument nnn is expressed in octal
words, and the maximum value is 20000, corresponding to 8K words.
Depending on driver options selected, the code requires from 2.5 to
4.5k words. Thus, the maximum buffer pool size is from 3.5k to 5.5k
words.

Alternatively, on an RSX-llM-PLUS system, it is possible to allocate
the private pool in a separate common block called TTCOM. This block
can range in size up to 4k words. The default size is 4k words, but
it is modifiable, using the SIZE keyword with the VMR LOA command. In
this case, the private pool is used almost exclusively for data
buffers. Other driver-specifc data is allocated from secondary pool.

2-35

FULL-DUPLEX TERMINAL DRIVER

2.9.2 Hard Receive Error Detection

All terminal interfaces supported by the full-duplex terminal driver
are capable of detecting and flagging hard receive errors. Hard
receive errors include framing errors, enable character parity error,
and data overrun error.

NOTE

The driver does not enable parity
generation and checking on DHli and DZll
interfaces.

If the hard receive error detection SYSGEN option (T$$RED) is
selected, the driver handles hard receive errors as follows:

1. If a read request is being processed and the character can be
processed immediately, the read request is terminated with
one of the following error codes returned in the status
block:

Error
Code

IE.BCC
IE.DAO
IE.VER

Hard Receive Error

Framing error
Data overrun
Character parity error

2. If a command line is being input for a command line
interpreter task and the character can be processed
immediately, a CTRL/U is simulated, AU is echoed, and the
input is terminated. No command line is sent to the task.

3. If the character would normally cause an AST if no error was
detected, the character is ignored and no AST occurs.

4. If the character cannot be processed immediately, it is
stored in the type-ahead buffer. A flag is set for the line,
indicating that the last character in the type-ahead buffer
has an error, disabling further storage in the type-ahead
buffer. When the character is retrieved from the buffer, the
appropriate action previously described is taken and the flag
is cleared. Any characters received in the meantime are
discarded, with a bell echoed for each character.

If the T$$RED option is not selected, hard receive errors are ignored.

2.10 TASK BUFFERING OF RECEIVED CHARACTERS

When task-buffering received characters, characters read from the
terminal are sent directly to the task's buffer. Thus, there is no
need to allocate a terminal driver buffer.

Task buffering of received characters does not necessarily reduce
system overhead. For example, in a mapped system each character must
be mapped to the task's buffer. However, if terminal driver buffering
was used, the mapping is only done once for all characters to be
transferred.

2-36

FULL-DUPLEX TERMINAL DRIVER

With the full duplex terminal driver, output buffering is always
performed.

Task buffering is overridden during checkpointing. If a task js
checkpointable, a driver buffer is allocated and the task is made
eligible for checkpointing by any task, regardless of priority, while
the read operation is in progress. (Checkpointing only occurs in this
situation when there is another task that can be made active.) Since
checkpointability is controlled by the task, the user retains control
over this operation.

2.11 TYPE-AHEAD BUFFERING

Characters received by the terminal driver
immediately or stored in the type-ahead buffer.
allows characters to be temporarily stored and
type-ahead buffer is used as follows:

are either processed
The type-ahead buffer

retrieved FIFO. The

1. Store in buffer:

An input character is stored in the type-ahead buffer if one
or more of the following conditions are true:

• The driver is not ready to accept the character (fork
process pending or in progress).

• There is at least one character presently
type-ahead buffer.

in

•

•

The character input requires echo and the output line
the terminal is presently busy outputting a character.

No read request is in progress, no unsolicited input
is specified, and the terminal is attached.

NOTE

Depending on the terminal mode and the presence of a
read function, read subfunctions and an unsolicited
input AST, the CTRL/C, CTRL/O, CTRL/Q, CTRL/S, and
CTRL/X characters may be processed immediately and
not stored in the type-ahead buffer.

the

to

AST

A character is not echoed when it is stored in the buffer.
Echoing a character is deferred until it is retrieved from
the buffer, since the read mode (for example,
read-without-echo) is not known by the driver until then.

2. Retrieve from buffer:

When the driver becomes ready to process input, or when a task issues
a read request, an attempt is made to retrieve a character from the
buffer. If this attempt is successful, the character is processed and
echoed, if required. The driver then loops, retrieving and processing
characters until either the buffer is empty, the driver becomes unable
to process another character, or a read request is finished with the
terminal attached. •

2-37 April 1983

FULL-DUPLEX TERMINAL DRIVER

3. Flush the buffer:

The buffer is flushed (cleared) when:

1. CTRL/C is received.

2. CTRL/X is received.

3. The terminal becomes detached.

Exceptions: CTRL/C and CTRL/X do not flush the buffer if
read-pass-all or read-with-special-terminators is in effect.

If the buffer becomes full, each character that cannot be entered
causes a BELL character to be echoed to the terminal.

If a character is input and echo is required, but the transmitter
section is busy with an output request, the input character is held in
the type-ahead buffer until output (transmitter) completion occurs.

2.12 FULL-DUPLEX OPERATION

When a terminal line is in the full-duplex mode, the full-duplex
driver attempts to simultaneously service one read request and one
write request. The Attach, Detach and Set Multiple Characteristics
functions are only performed with the line in an idle state (not
executing a read or a write request).

2.13 PRIVATE BUFFER POOL

The driver has a private buffer pool for intermediate input and output
buffers on both RSX-llM and RSX-llM-PLUS systems, and type-ahead
buffers and UCB extensions on RSX-llM systems only. Whenever the
driver needs dynamic memory, it first attempts to allocate a buffer in
the private pool. If this fails, a second attempt is made in the
system pool. If the allocation in the system pool fails during
command line input, a CTRL/U is simulated and echoed.

Command line interpreter task buffers are handled in a special way.
When unsolicited input begins, a buffer is allocated, as previously
described, for the command line (a string of characters, followed by
an appropriate terminator character). When the input is completed,
the contents of the buffer is sent directly to the command line
interpreter task if the buffer was allocated in the system pool.
However, if the buffer was allocated in the driver's private pool, it
must first be moved into a buffer in the system pool to provide access
for the task.

2.14 INTERMEDIATE INPUT AND OUTPUT BUFFERING

Input buffering for checkpointable tasks with checkpointing enabled is
provided in the private pool. As each buffer becomes full, a new
buffer is automatically allocated and linked to the previous buffer.
The Executive then transfers characters from these buffers to the task
buffer and the terminal driver deallocates the buffers once the
transfer has been completed.

2-38

FULL-DUPLEX TERMINAL DRIVER

If the driver fails to allocate the first input buffer, the characters
are transferred directly into the task buffer. If the first buffer is
successfully allocated, but a subsequent buffer allocation fails, the
input request terminates with the error code IE.NOD. In this case,
the I/O status block contains the number of characters actually
transferred to the task buffer. The task may then update the buffer
pointer and byte count and reissue a read request to receive the rest
of the data. The type-ahead buffer ensures that no input data is
lost.

All terminal output is buffered. As many buffers as required are
allocated by the terminal driver and linked to a list. If not enough
buffers can be obtained for all output data, the transfer is done as a
number of partial transfers, using available buffers for each partial
transfer. This is transparent to the requesting task. If no buffers
can be allocated, the request terminates with the error code IE.NOD.

The unconditional output buffering serves three purposes:

1. It reduces time spent at system state.

2. It enables long DMA transfers for DHll controllers.

3. It enables task checkpointing during the transfer to the
terminal (if all output fits in one buffer list).

2.15 TERMINAL-INDEPENDENT CURSOR CONTROL

Terminal-independent cursor control capability is provided at SYSGEN
time. The terminal driver responds to task I/O requests for cursor
positioning without the task requiring information about the type of
terminal in use. I/O functions associated with cursor positioning are
described as follows.

Cursor position is specified in the vfc parameter of the IO.WLB or
IO.RPR function. The parameter is interpreted simply as a vfc
parameter if the high byte of the parameter is O. However, if the
parameter is used to define cursor position, the high byte must be
nonzero, the low byte is interpreted as column number (x-coordinate),
and the high byte is interpreted as line number (y-coordinate) • Horne
position, the upper left corner of the display, is defined as 1,1.
Depending upon terminal type, the driver outputs appropriate
cursor-positioning commands appropriate for the terminal in use that
will move the cursor to the specified position. If the most
significant bit of the line number is set, the driver clears the
display before positioning the cursor.

When defining cursor position in an IO.WLB function, the TF.RCU
subfunction can be used to save the current cursor position. When
included in this manner, TF.RCU causes the driver to first save the
current cursor position, then position the cursor and output the
specified buffer, and, finally, restore the cursor to the original
(saved) position once the output transfer has been completed.

2.16 TERMINAL INTERFACES

This section summarizes the characteristics of the standard •
communication-line interfaces supported by RSX-llM. Refer to the
Terminals and Communications Handbook for additional details.

2-39 April 1983

FULL-DUPLEX TERMINAL DRIVER

2.16.1 DHll Asynchronous Serial Line Multiplexer

The DHll multiplexer interfaces up to 16 asynchronous serial
communications lines for terminal use. The DHll supports programmable
baud rates. Input and output baud rates may differ; the input rate
may be set to 0 baud, thus effectively turning off the terminal. The
DMll-BB option may be included to provide modem control for dial-in
iines. These lines must be interfaced by means of a full duplex modem
(for example, in the United States, a Bell 103A or equivalent modem).

2.16.2 DHVll Asynchronous Serial Line Multiplexer

The DHVll multiplexer interfaces up to eight asynchronous serial
communications lines for terminal use. This multiplexer is the Q BUS
version of the DHll UNIBUS multiplexer. The DHVll supports
programmable baud rates with the option of selecting split speed
operation. (Split speed operation allows different transmit and
receive speeds.) Also provided is modem control for full-duplex
point-to-point operation.

2.16.3 DJll Asynchronous Serial Line Multiplexer

The DJll multiplexer interfaces as many as 16 asynchronous serial
lines to the PDP-11 for local terminal communications. The DJll does
not provide a dial-in capability. Baud rates are jumper selectable.

2.16.4 DLll Asynchronous Serial Line Interface

The DLll supports a single asynchronous serial line and handles
communication between the PDP-11 and a terminal. A number of standard
baud rates are available to DLll users. However, since the DLll does
not have an input silo, baud rates greater than 1200 baud are not
recommended. Higher baud rates may cause input characters to be lost.

For hardware reasons, a DLll is susceptible to
interrupt enable in its Receiver Status Register.
the receiver interrupt bit causes the terminal
requests but not to respond to input (for example,
not echo input characters). The terminal driver has
recognizing the disabling. Therefore, it cannot
must be reset with an MCR OPEN command, the console
or a periodically rescheduled task.

2.16~5 DZll Asynchronous Serial Line Multiplexer

losing receiver
The disabling of

to print output
the terminal does
no mechanism for
recover. The bit
switch register,

The DZll multiplexer interfaces up to eight asynchronous serial
communication lines for use with terminals. It supports programmable
baud rates; however, transmit and receive baud rates must be the
same. The DZll can control a full duolex modern in auto-answer mode.

2-40 April 1983

FULL-DUPLEX TERMINAL DRIVER

2.17 PROGRAMMING HINTS

2.17.1 ESCape Code Conversion

If escape sequences are recognized, the character code 037 will
terminate input and a status code IS.ESC is returned. In addition,
character codes will terminate input and return the IS.ESC status if
upper- to lowercase conversion is not enabled.

2.17.2 RT02-C Control Function

Because the screen of an RT02C Badge Reader and Data Entry Terminal
holds only one line of information, special care must be taken when
sending a control character {for example, vertical tab) to the RT02-C.
Use the IO.WAL {Write All) function for this purpose.

It is recommended that read without echoing be used when reading a
badge with the RT02-C. Use IO.RAL or IO.RNE functions, followed by
the IO.WAL function, to echo the information for display.

2-40.l

FULL-DUPLEX TERMINAL DRIVER

2.17.3 Using IO.WVB Instead of IO.WLB

Using IO.WVB instead of IO.WLB is recommended when writing to a
terminal. If the write actually goes to a terminal, the Executive
converts the IO.WVB to an IO.WLB request. However, if the LUN has
been redirected to an inappropriate device (for example, a disk), the
use of an IO.WVB function will be rejected because a file is not open
on the LUN. This prevents privileged tasks from overwriting block
zero of the disk.

Note that any subfunction bits specified in the IO.WVB request (for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped when the IO.WVB is
converted to an IO.WLB.

2.17.4 Remote DLll-E, DHll, and DZll Lines ~

Bef0re a remote line is answered, the driver clears certain terminal j
characteristics (see Table 2-5) that may have been set by an MCR SET I
command, or by an SF.SMC function. The characteristics cleared are:
TC.SCP, TC.ESQ, TC....R'LD, TC.SMR, TC.)1-E'C, TC.~X, TC.JI.Pf', TC.Hfi'T,
TC.)iF"L, TC.,aFL, TC,.;M'P, TC'61fc, and TC_.a..t'N. (Clearing TC.TTP means J
that a terminal type of "unknown" will be returned in an SF.GMC /
request.) The TC~ACR characteristic (automatic wrap around) is set.
Buffer size is set to 72.

A DZll remote line must be declared to be remote before the
driver will handle the modern.

2.17.5 Side Effects of Setting Characteristics

. i
term1:J

Certain terminal characteristics that a task may set or that an
operator may set using MCR commands may have undesirable side effects.
In particular, these characteristics include the hold-screen mode and
the lower- to uppercase conversion disable mode. Their effects are
described as follows.

TC.HLD -- Unexpected behavior can result from a terminal in the
hold-screen mode if its reception rate is much greater than its
transmission rate. (The DHll supports split baud rates.) When in the
hold-screen mode, the terminal automatically sends a CTRL/S during
reception of an output stream when the screen is nearly full. Output
is resumed -- another screen-full -- when you type SHIFT/SCROLL (the
terminal generates CTRL/Q). Thus, no output is lost as a result of
scrolling off the screen before you can read it. However, if the
terminal's transmission rate is far below its reception rate, some
unread output may scroll out of sight before the CTRL/S can be
transmitted.

Note that some terminals and interfaces are hardware buffered. This
can cause obscure timing problems for tasks that attempt to invoke the
hold-screen mode.

TC.SMR -- If this characteristic is asserted (lower- to uppercase
conversion is disabled), octal characters 175 and 176 are interpreted
as "right brace (})" and "tilde (rv) ," respectively. If TC.SMR is
not asserted, these characters are interpreted as an Altrnode (that is,
they function as line terminators that do not advance the cursor to a
new line).

2-41

FULL-DUPLEX TERMINAL DRIVER

2.17.6 Modem Support

The terminal driver supports the following modem control operations:

• Local or remote operation

• Answer speed

• Auto-baud speed detection

The characteristics bit that controls local or remote operation is
TC.DLU. This bit can be set with the MCR command SET /REMOTE (or SET
/NOREMOTE for local operation) • The DCL command SET TERMINAL REMOTE
(or SET TERMINAL LOCAL) can also be used.

When there is an incoming call on a remote line, the TC.ASP
characteristic determines the baud rate for the answering modem.

Split baud rates (different transmit and receive speeds) are not
supported for answer speed.

The default answer speed is set at SYSGEN time. However, _the answer
speed can be set on line using the MCR command SET /REMOTE=TTnn:speed.
VMR can also be used to set the answer speed.

The terminal driver can determine the speed of the incoming call by
sampling the first input character after dial-up for the following
speeds:

110
150
300
1200

This is called auto-baud speed detection. This option can be selected
for each line using the SET /ABAUD command. This command sets the
TC.ABD terminal characteristic. When TC.ABD is set for a given line,
the terminal driver makes three attempts to determine the incoming
speed. If the auto-baud speed detection fails, the terminal driver
will use the default answer speed discussed above.

For auto-baud speed detection to work correctly, the first input
character after dial-up must be either carriage return or CTRL/C.

2-42

CHAPTER 3

HALF-DUPLEX TERMINAL DRIVER

3.1 INTRODUCTION

The half-duplex terminal driver provides support for a variety of
terminal devices under RSX-llM. (This terminal driver is not
supported on RSX-llM-PLUS systems.) The half-duplex terminal driver is
generally used in RSX-llM systems where small driver size is
essential, and the additional functional capability provided by the
larger full-duplex terminal driver (described in Chapter 2) is not
required. Table 3-1 summarizes the terminals supported, and
subsequent sections describe these devices in greater detail.

Table 3-1
Supported Terminal Devices

Model Columns Lines/
Screenl

Character Baud Upper- & Lowercase?
Set Range Send Receive

ASR-33/35 72 64 110
KSR-33/35 72 64 110
LA12 132 96 50-9600
LAlOO 132 96 110-9600
LA30-P 80 64 300
LA30-S 80 64 110-300
LA34 132 96 110-300
LA36 80-132 64-96 110-300
LA38 132 96 110-300
LA120 132 96 50-9600
LA180S 132 96 300-9600
RT02 64 1 64 110-1200
RT02-C 64 1 64 110-1200
VT05B 72 20 64 110-2400
VT50 80 12 64 110-9600
VT50H 80 12 64 110-9600
VT52 80 24 96 110-9600
VT55 80 24 96 110-9600
VT61 80 24 96 110-9600
VTlOO 80-132 24 96 50-9600
VTlOl 80-132 24 96 50-19200
VT102 80-132 24 96 50-9600
VT105 80-132 24 96 50-9200
VT125 80-132 24 96 50-9600
VT131 80-132 24 96 50-19200
VT132 80-132 24 96 50-19200

1. Applies only to video terminals.

2. Only for 96-character terminal. The terminal
the terminal interfaces summarized in Table 3-2.
are described in greater detail in Section 3.9.
identical for all.

3-1

yes yes
yes yes

yes yes
yes yes2
yes yes
yes yes

yes

yes

yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes

driver supports
These interfaces

Programming is

HALF-DUPLEX TERMINAL DRIVER

Table 3-2
Standard Terminal Interfaces

Model

DHll
DHll-DMll-BB
DJll
DLll-A/B/C/D/W
DLVll-F
DZll

Type

16-line multiplexerl
16-line multiplexer with modem control2
16-line multiplexer
Single-line interfaces
Single-line interface
8-line multiplexer with modem control2

1. Direct memory access (DMA) not supported.

2. Full-duplex control only. For example, in the USA, a
Bell 103A-type modem.

Terminal input lines can have a maximum length of 255 bytes (the
maximum is set in the system generation, or SYSGEN, dialog). The
extra characters of an input line that exceeds the maximum length
generally become an unsolicited input line.

3.1.1 ASR-33/35 Teletypesl

The ASR-33 and ASR-35 Teletypes are asynchronous, hard-copy terminals.
No paper tape reader or punch capability is supported.

3.1.2 KSR-33/35 Teletypesl

The KSR-33 and KSR-35 Teletypes are asynchronous, hard-copy terminals.

3.1.3 LA30 DECwriters

The LA30 DECwriter is an asynchronous, hard-copy terminal that is
capable of producing an original and one copy. The LA30-P is a
parallel model and the LA30-S is a serial model.

3.1.4 LA36 DECwriter

The LA36 DECwriter is an asynchronous terminal that produces hard copy
and operates in serial mode. It has an impact printer capable of
generating multipart and special preprinted forms. The LA36 can
receive and transmit both uppercase and lowercase characters.

1. Teletype is a registered trademark of the Teletype Corporation.

3-2

HALF-DUPLEX TERMINAL DRIVER

3.1.5 LA120 DECwriter

The LA120 DECwriter is a hard-copy, upper- and lowercase terminal
capable of printing multipart forms at speeds up to 180
characters-per-second. Serial communications speed is selected from
14 baud rates ranging from 50 to 9600 bps. Hardware features allow
bidirectional printing for maximum printing speed, and also allow
user-selected features, including font size, line spacing, tabs,
margins, and forms control. These functions can also be set up by
user tasks that issue appropriate ANSI-standard escape sequences.

3.1.6 LA180S DECprinter

The LA180S DECprinter is a serial v~rsion of the LA180. It is a
print-only device (it has no keyboard) that can generate multipart
forms. The LA180S can print uppercase and lowercase letters.

3.1.7 RT02 Alphanumeric Display Terminal and RT02-C Badge Reader/
Alphanumeric Display Terminal

The RT02 is a compact, alphanumeric display terminal designed for
applications in which source data is primarily numeric. A shift key
permits the entry of 30 discrete characters, including uppercase
alphabetic characters. The RT02 can, however, receive and display 64
characters.

The RT02-C model also contains a badge reader. This option provides a
reliable method of identifying and controlling access to the PDP-11 or
to a secure facility. Furthermore, data in a format corresponding to
that of a badge (22-column fixed data) can be entered quickly.

3.1.8 VTOSB Alphanumeric Display Terminal

The VT05B is an alphanumeric display terminal that consists of a CRT
display and a self-contained keyboard. From a programming point of
view, it is equivalent to other terminals, except that the VT05B
offers direct cursor addressing.

3.1.9 VTSO Alphanumeric Display Terminal

The VTSO is an alphanumeric display terminal that consists of a CRT
display and a keyboard. It is similar to the VT05B in operation, but
does not offer direct cursor addressing.

3.1.10 VTSOH Alphanumeric Display Terminal

The VT50H is an alphanumeric display terminal with CRT display,
keyboard, and numeric pad. It offers direct cursor addressing. (The
VTSOH's direct cursor addressing is not compatible with that of the
VT05B.)

3-3

HALF-DUPLEX TERMINAL DRIVER

3.1.11 VT52 Alphanumeric Display Terminal

The VT52 is an upper- and lowercase alphanumeric terminal with numeric
pad and direct cursor addressing. (The VT52's direct cursor
addressing is compatible with that of the VTSOH, but not with that of
the VTOSB.) The VT52 can be configured with a built-in thermal
printer.

3.1.12 VT55 Graphics Display Terminal

The VT55 is similar to the VT52 in its operation as an alphanumeric
terminal. The VT55 offers graphics display features that are not
supported by RSX-llM, although the system allows a knowledgeable task
to access the explicitly special features of the VTSS.

3.1.13 VT61 Alphanumeric Display Terminal

The VT61 is an "intelligent" upper- and lowercase alphanumeric
terminal with an integral microprocessor. It offers two 128-member
character sets and numerous built-in functions for editing and
preparing forms, as well as a block-transfer mode. (None of these
special features is supported by RSX-llM.)

3.1.14 VTlOO DECscope

The VTlOO DECscope is an upper- and lowercase alphanumeric
keyboard/video display terminal. It is capable of displaying 24 lines
of 80 characters (each line). Serial communications speed is selected
from baud rates ranging from 50 to 9600 bps. Hardware features allow
user selection of display characteristics and functions including
smooth scroll, reverse video, and so forth. These functions can also
be set up by user tasks that issue appropriate ANSI-standard escape
sequences.

3.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for terminals. A setting of 1 indicates that the
described characteristic is true for terminals.

Bit Setting Meaning

0 1 Record-oriented device

1 1 Carriage-control device

2 1 Terminal device

3 0 File structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Mass storage device

3-4

HALF-DUPLEX TERMINAL DRIVER

Bit Setting Meaning

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications
channel

14 0 Device mountable as a FILES-11 volume

15 0 Device mountable

Words 3 and 4 are undefined. Word 5 indicates the default buffer
size for the device: for terminals the width of the terminal carriage
or display screen.

3.3 QIO MACRO

Table 3-3 lists the standard and device-specific functions of the QIO
macro that are valid for terminals. All device-specific functions are
options that may be selected at system generation.

Two device-specific functions, SF.SMC and SF.GMC, have nonstandard
function names. These names are designed for compatibility with IAS.

Table 3-3
Standard and Device-Specific QIO Functions for Terminals

Format Function

STANDARD FUNCTIONS:

QIO$C IO.ATT, ••• Attach device

QIO$C IO. DET, ••• Detach device

QIO$C IO.KIL, .•• Cancel I/O requests

QIO$C IO.RLB, ••• ,<stadd,size> READ logical block
(read typed input into buffer)

QIOSC IO.RVB, ••• ,<stadd,size> READ virtual block
(read typed input into buffer)

QIO$C IO.WLB, ••• ,<stadd,size,vfc> WRITE logical block
(print 1... •• .C.C-- contents) UULLt:L

QIO$C IO.WVB, ••• ,<stadd,size,vfc> WRITE virtual block
(print buffer contents) •

(continued on next page)

3-5

HALF-DUPLEX TERMINAL DRIVER

Table 3-3 (Cont.)
Standard and Device-Specific QIO Functions for Terminals

Format Function

DEVICE-SPECIFIC FUNCTIONS
(ALL SYSGEN OPTIONS):

QIO$C IO.ATA, ••• ,<ast> ATTACH device, specify
unsolicited- input-character
AST

QIO$C IO.CCO, ••• ,<stadd,size,vfc> CANCEL CTRL/O (if in effect),
then write logical block

QIO$C SF.GMC, ••• ,<stadd,size> GET multiple characteristics

QIO$C IO.GTS, ••• ,<stadd,size> GET terminal support

QIO$C IO.RAL, ••• ,<stadd,size>

QIO$C IO.RNE, ••. ,<stadd,size>

QIO$C IO.RPR, ••• ,<stadd,size,
[tmo] ,pradd,prsize,vfc>

QIO$C IO.RST, ••• ,<stadd,size>

QIO$C SF.SMC, ••• ,<stadd,size>

QIO$C IO.WAL, ••• ,<stadd,size>

READ logical block, pass all
bits

READ logical block, do not echo

READ logical block after prompt

READ logical block ended by
special terminators

SET multiple characteristics

WRITE logical block, pass all
bits

QIO$C IO.WBT, ••• ,<stadd,size,vfc> WRITE logical block, break
through most I/O conditions at
terminal

ast

pr add

The entry point for an unsolicited-input-character AST.

The starting address of the byte buffer where the prompt is
stored. The buffer must be within the task's address space.

prsize

The size of the pradd prompt buffer in bytes. If the system
supports variable length reads, the buffer size must be greater
than 0 and less than or equal to 255. If the system does not
support variable length reads, the specified size must be greater
than 0 and less than or equal to 80~

3-n

size

stadd

tmo

vf c

HALF-DUPLEX TERMINAL DRIVER

The size of the stadd data buffer in bytes (must be greater than
0). If the function is a read and the system supports
variable-length reads, the size must be less than or equal to
255. Otherwise, the size must be less than or equal to 80. The
buffer must be within the task's address space. For SF.GMC,
IO.GTS, and SF.SMC, the size must be an even number less than
40n5 (decimal). If the function is a write, size can be up to
32K bytes.

The starting address of the data buffer. The
word aligned for SF.GMC, IO.GTS, and SF.SMC;
may be on a byte boundary.

address must be
otherwise, stadd

An optional time-out count, included for IAS compatibility. If
supplied, it is ignored.

A character for vertical format control from Table 3-11 (see
Section 3. 7).

3.3.l Subfunction Bits

Most of the device-specific functions supported by the terminal driver
are implemented by way of "subfunction bits." That is, these functions
can be invoked by ORing a named bit with some other function. Table
3-4 shows the relationship of the 10 subfunction bits to the standard
and device-specific functions.

The 10 subfunction bits, and their octal values, are:

TF.AST Unsolicited-input-character AST 10
TF .BIN Binary prompt 2
TF.CCO Cancel CTRL/O 40
TF.ESQ Recognize escape sequences 20
TF.RAL Read all bits 10
TF.RNE Read with no echo 20
TF.RST Read with special terminators l
TF.WAL Write all bits 10
TF.WBT Break-through write 100
TF.XOF Send XOFF 100

The subfunction bits are defined in the system module TTSYM (discussed
further in Section 3.3.2.5). The octal values of these entities are
subject to change; therefore, it is recommended that you always use
the symbolic names. As Table 3-4 shows, 7 of the 10 subfunction bits
can be ORed with standard QIO functions to invoke device-specific
functions. The remaining three subfunction bits {TF.BIN, TF.ESQ, and
TF.XOF) can be ORed with Attach and Read After Prompt QIOs to provide
added features, as described in Section 3.3.2.

3-7

HALF-DUPLEX TERMINAL DRIVER

Of the 10 subfunction bits, 3 can be used with Read QIO functions, 3
with Write functions, 2 with Attach functions, and 5 with Read After
Prompt. The breakdown is:

Read
Write
Attach

TF.RAL, TF.RNE, TF.RST
TF.CCO, TF.WAL, TF.WBT
TF.AST, TF.ESQ

Read After Prompt TF.BIN, TF.XOF, TF.RAL, TF.RNE, TF.RST

If a task invokes a subfunction bit that is not supported on the
system, the subfunction bit is ignored, not rejected. For example, if
Read with Special Terminators is not selected, either IO.RST or
IO.RLB!TF.RST is interpreted as IO.RLB.

The following example shows a QIO request
subfunction bit: a nonechoed read, which
special terminator, after a prompt.

using more than one
may be concluded by a

QIO$C IO.RPR!TF.RNE!TF.RST, ••• ,<stadd,size,,pradd,prsize,vfc>

3.3.2 Details on Device-Specific QIO Functions

All the device-specific functions described in this section are SYSGEN
options. All except SF.GMC, IO.RPR, SF.SMC, and IO.GTS can be issued
by ORing a particular subfunction bit with another QIO function.
These subfunction bits are specified in the text; subfunction bits
are described in general in Section 3.3.1.

In addition to the 11 device-specific QIO functions, this section also
gives details on the features provided by the 3 subfunction bits
TF.ESQ, TF.BIN, and TF.XOF.

3.3.2.1 IO.ATA - IO.ATA is a variation of the Attach directive. It
specifies an asynchronous system trap (AST) to process an unsolicited
input character. When called as follows:

QIO$C IO.ATA, ••• ,<ast>

this function attaches the terminal and identifies "ast" as the entry
point for an unsolicited-input-character AST. Control passes to this
address whenever any unsolicited character (other than CTRL/Q, CTRL/S,
or CTRL/O) is input. Note that little checking is done on the
specific AST address. A bad address is frequently detected only when
the Executive tries to transfer control to it and the task crashes.

In particular, CTRL/C is trapped by the task and does not reach MCR.
Thus, any task that uses IO.ATA should recognize some.input sequence
as a request to terminate, because MCR can not be invoked to abort the
task in case of difficulty.

Note that this mechanism is intended to get a single character into
the system not a series of characters. Since the driver must
become a fork process in order to declare an AST, a second character
can.arrive before the driver can queue an AST for the first character.
The buffer for unsolicited input characters, however, is one byte
long. Therefore, the terminal driver ignores the second character.
This circumstance can occur because of fast input on a busy system or
because output is in progress when the characters are received. The
implications of this are that neither type-ahead nor full-duplex
operations can be simulated perfectly using unsolicited character
ASTs.

w
I

\.0

Function Equivalent with
subfunction bits TF.AST TF.BIN

STANDARD FUNCTIONS

IO.ATT x

IO.DET

IO.KIL

IO.RLB

IO.RVS

IO.WLB

IO.WVB

DEVICE-SPECIFIC FUNCTIONS

IO.ATA IO.ATT!TF.AST

Io.cco IO.WLB!TF.CCO

SF.GMC

IO.GTS

IO.RAL IO.RLB!TF.RAL

IO.RNE IO.RLB!TF.RNE

IO.RPR x

IO.RST IO.RLB!TF.RST

SF.SMC

IO.WAL IO.WLB!TF.WAL

IO.WBT IO.WLB!TF.WBT

Table 3-4
Subfunction Bits

Allowed Subfunction

TF.CCO TF.ESQ TF.RAL TF.RNE

x

1 x

2 2

x

2

x

x

1

1 x

1 x

x

x

Bits

TF.RST TF.WAL TF.WBT TF.XOF

1

2

x x

2 2

x x

1

1

1 x

x

x

1. Exercise great care when using Read All and Read with Special Terminators together. Obscure problems can
result.

2. These subfunction bits are allowed but are not effective. They are stripped off when the read or write
virtual is converted to a read or write logical.

HALF-DUPLEX TERMINAL DRIVER

At entry, the unsolicited character is the low-order byte of the top
word on the stack. Before exiting the AST, be sure to pop that word
off the stack; otherwise, the task will crash. In all other respects
the AST environment is standard:

SP+lO Event flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 Task's directive status word

SP+OO Unsolicited character in low byte

See the RSX-llM/M-PLUS Executive Reference Manual for further details
on ASTs. See Section 3.10.10 for hints on ASTs in a multiterminal
environment.

IO.ATA is equivalent to IO.ATT ORed with the subfunction bit TF.AST.

3.3.2.2 IO.ATT!TF.ESQ - The task issuing this directive attaches a
terminal and notifies the driver that it recognizes escape sequences
input from that terminal. Escape sequences are recognized only for
solicited input. See Section 3.6 for a discussion of escape
sequences.

If the terminal has not been declared capable of generating escape
sequences, IO.ATT!TF.ESQ has no effect beyond attaching the terminal.
No escape sequences are returned to the task, because any ESC sent by
the terminal acts as a line terminator. The SF.SMC QIO or the MCR SET
/ESCSEQ command is used to declare the terminal capable of generating
escape sequences (see Table 3-5 and Section 3.3.2.12).

3.3.2.3 IO.CCO - This write function directs the driver to write to
the terminal regardless of a CTRL/O condition that may be in effect.
If CTRL/O is in effect, it is canceled before the write is done.

IO.CCO is equivalent to IO.WLB!TF.CCO.

3.3.2.4 SF.GMC - The Get Multiple Characteristics function returns
information on terminal characteristics. Get Multiple Characteristics
is used in the following way:

stadd

QIO$C SF.GMC, ••• ,<stadd,size>

The starting address of a data buffer of length "size" bytes.
Each word in the buffer has the form

.BYTE characteristic-name

.BYTE 0

characteristic-name

One of the eight bit names given in Table 3-5.

3-10

HALF-DUPLEX TERMINAL DRIVER

The QIO function returns a value in the high-order byte of each
byte-pair: 1 if the characteristic is true for the terminal, 0 if not
true.

For the TC.TTP characteristic (terminal type), one of three values is
returned in the high-order byte, as shown in Table 3-6.

NOTE

The half-duplex terminal driver treats
the terminal type as a required
characteristic for the type of terminal
specified. The terminal type (TC.TTP)
does not set any implicit terminal
characteristics other than those noted
in Table 3-6.

Table 3-5
Terminal Characteristics for SF.GMC and SF.SMC Requests

Bit
Name

TC.ASP3
TC.ESQ
TC.HLDl
TC.NEC
TC.PRI2
TC.SCP
TC.SLV
TC.SMR

TC.TTP

TC.HFF
TC.RSP3
TC.XSP3

Octal Meaning
Value (If Asserted): Terminal •••

76
35
44
47
51
12
50
25

10

17
3
4

Remote line answer speed
••• can generate escape sequences
••• is in hold-screen mode
••• is in no-echo mode
••• is privileged
••• is a scope (CRT)
••• is slaved
Uppercase conversion disabled
on input
Terminal type

••• handle hardware form feeds
Receiver speed
Transmitter speed

Corresponding
MCR Command

SET /REMOTE=TI:speed
SET /ESCSEQ=TI:
SET /HOLD=TI:
SET /NOECHO=TI:
SET /PRIV=TTnn:
SET /CRT=TI:
SET /SLAVE=TTnn:
SET /LOWER=TI:

SET /LA30S=TI:
SET /VT05B=TI:
SET /FORMFEED=TI:
SET /SPEED=TI:rcv:xmit
(As above)

1. Effective for VT5x and VT61 only.

2. Cannot be changed by a task; must use MCR command.

3. Recognized only by the SF.SMC function.

Table 3-6
Bit TC.TTP (Terminal Type): Values Set by SF.SMC

and Returned by SF.GMC

Octal Value Symbolic Meaning

0 T.UNKO Terminal type is unknown
(resets all other types)

1 T.AS33 Terminal is an ASR
(sets uppercase conversion
output)

4 T.L30S Terminal is an LA30
(sets horizontal fill after
carriaae return)

7 T.VT05 Termin~l is a VT05B
(sets a vertical fill count

3-11

on

of 4)

HALF-DUPLEX TERMINAL DRIVER

3.3.2.5 IO.GTS - The Get Terminal Support QIO returns a 4-word buffer
of information specifying which SYSGEN-option features are part of the
terminal driver. Of these four words, two are currently defined.
Table 3-7 gives details on these two words. The IO.GTS QIO is itself
a SYSGEN option. If IO.GTS is issued on a minimum system (one with no
terminal-driver SYSGEN options), IE.IFC is returned in the I/O status
block.

Table 3-7
Information Returned by Get Terminal Support (IO.GTS) QIO

Bit Value Mnemonic

Word 0 of Buffer: -- - -

0 1 Fl.ACR
1 2 Fl.BTW
2 4 Fl.BUF
3 10 Fl. UIA
4 20 Fl. CCO
5 40 Fl. ESQ
6 100 Fl. HLD
7 200 Fl. LWC
8 400 Fl. RNE
9 1000 Fl. RPR

10 2000 Fl.RST
11 4000 Fl. RUB
12 10000 Fl. SYN
13 20000 Fl.TRW
14 40000 Fl. UTB

15 100000 Fl. VBF

Word 1 ---

0
1

of - Buffer:

1
2

F2eSCH
F2.GCH

Meaning When Set to 1

Automatic CR/LF on long lines
Break-through write
Checkpointing during terminal input
Unsolicited-input-character AST
Cancel CTRL/O before writing
Recognize escape sequences in solicited input
Hold-screen mode
Lower- to uppercase conversion
Read with no echo
Read after prompting
Read with speciaf terminators
CRT rubout
CTRL/R terminal synchronization
Read all and write all
Input characters buffered in task's address
space
Variable-length terminal buffers

Set characteristics QIO (SF.SMC)
Get characteristics QIO (SF.GMC)

The various symbols used by the IO.GTS, SF.GMC, and SF.SMC QIOs are
defined in a system module, TTSYM. These symbols include: Fl.xxx and
F2.xxx (Table 3-7); T.xxxx (Table 3-6); TC.xxx (Table 3-5); and the
SE.xxx error returns described in Table 3-8, Section 3.4. These
symbols may be defined locally within a code module by using:

.MCALL TTSYM$

TTSYM$

If the symbols are not defined locally, they are automatically defined
by the Task Builder.

The octal values of these symbols are subject to change.
it is recommended that you always use the symbolic names.

3-12

Therefore,

HALF-DUPLEX TERMINAL DRIVER

3.3.2.6 IO.RAL - The Read All function causes the driver to pass all
bits to the requesting task. The driver does not intercept control
characters or mask out the "parity" (high-order) bit. This means, for
example, that CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to
the program and are not interpreted by the driver.

NOTE

IO.RAL echoes the characters that are
read. To read all bits without echoing,
use IO.RAL!TF.RNE.

IO.RAL is equivalent to IO.RLB ORed with the subfunction bit TF.RAL.
The only way to terminate an IO.RAL function is by a character count
(that is, filling the input buffer).

3.3.2.7 IO.RNE - IO.RNE causes the driver to read a line from the
terminal without echoing the characters that are input. This feature
is useful when typing sensitive information: for example, a password
or combination. IO.RNE is also used to read a badge with the RT02-C.

(Another way to suppress echoing of input is to set the terminal to
no-echo mode with the SF.SMC QIO or the MCR SET /NOECHO command. See
Table 3-5, bit TC.NEC.)

Note that the TC.NEC subfunction only suppresses echoing of solicited
input. Unsolicited input is still echoed.

CTRL/R, if selected as a SYSGEN option, is ignored while an IO.RNE is
in progress.

IO.RNE is equivalent to IO.RLB ORed with the subfunction bit TF.RNE.

3.3.2.8 IO.RPR - The QIO function IO.RPR (Read After Prompt) has the
same effect as IO.WLB (to write a prompt to the terminal) followed by
IO.RLB. However, IO.RPR differs in four ways from this combination of
QIOs. With IO.RPR:

• System overhead is lower because only one QIO is processed.

• There is no "window" during which a response to the prompt may
be ignored. Such a window occurs if IO.WAL/IO.RLB is used,
because no read may be posted at the time the response is
received.

• If the issuing task is checkpointable, it is checkpointed
during both the prompt and the read.

• A CTRL/O that may be in effect is canceled before the prompt
is written.

The third user-specified argument to IO.RPR, tmo, is required for
compatibility with IAS. If supplied, it is ignored.

Subfunction bits may be ORed with IO.RPR to write the prompt as a
Write All (TF.BIN) and to send XOFF after the read (TF.XOF). See the
next two sections. In addition, the three Read subfunction bits
(TF.RAL, TF.RNE, TF.RST) can be used with IO.RPR.

3-13

HALF-DUPLEX TERMINAL DRIVER

3.3.2.9 IO.RPR!TF.BIN - This QIO function results in a read after a
"binary" prompt, that is, a prompt that is written by the driver with
no character interpretation (as if it were issued as an IO.WAL).

3.3.2.10 IO.RPR!TF.XOF =This QIO function causes the driver to send
an XOFF to the terminal after its prompt-and-read. The XOFF, or
CTRL/S, may have the effect of inhibiting input from the terminal, if
the terminal recognizes XOFF for this purpose.

3.3.2.11 IO.RST - This QIO function acts like IO.RLB, except that
certain special characters terminate the read. These characters are
in the ranges 0-37(8) and 175-177(8). The driver does not interpret
the terminating character, with certain exceptions.l For example, a
horizontal TAB (11 octal) is not expanded, a RUBOUT (or DEL, 177
octal) does not erase, and a CTRL/C does not get MCR's attention.

Upon successful completion
terminated by filling the
like the following:

of an IO.RST request that was not
input buffer, the I/O status block looks

IOSB

Terminating
character

1

' i of bytes

IS.SUC&377

in buffer

The terminating character is not in the buffer.

IO.RST is equivalent to IO.RLB!TF.RST.

3.3.2.12 SF.SMC - This QIO function allows a task to set and reset
the characteristics of a terminal. Set Multiple Characteristics is
the inverse of SF.GMC. Like SF.GM.C, it is called in the following
way:

stadd

QIO$C SF.SMC, ••• ,<stadd,size>

The starting address of a buffer of length "size" bytes.

Each word in the buffer has the form

.BYTE characteristic-name

.BYTE value

1. If upper- and lowercase conversion is disabled (see remarks in
Section 3.10.9), the character 175(8) echoes as right-brace and 176{8)
as tilde, and these characters do not act as terminators. The three
characters CTRL/O, CTRL/Q, and CTRL/S (17, 21, and 23(8),
respectively) are not special terminators. The driver interprets them
as output effectors.

3-14

HALF-DUPLEX TERMINAL DRIVER

characteristic-name

value

One of the symbolic bit names given in Table 3-5.

Either O (to clear a given characteristic) or 1 (to set a
characteristic). Table 3-5 notes the restrictions that apply to
these characteristics.

If characteristic-name is TC.TTP (terminal type), then value can have
any of the values listed in Table 3-6.

A nonprivileged task can only issue an SF.SMC request
own terminal, TIO:. A privileged task can issue
terminal.

to affect its
SF.SMC to any

3.3.2.13 IO.WAL - The Write All function causes the driver to pass
all output from the buffer without interpretation. It does not
intercept control characters. Lines are neither wrapped around (if
input/output wrap-around has been selected) nor truncated (if
wrap-around is not selected).

IO.WAL is equivalent to IO.WLB!TF.WAL.

3.3.2.14 IO.WBT - The Write Break Through function instructs the
driver to write the buffer regardless of the I/O status of the
receiving terminal. If an IO.WET is issued on a system that does not
support IO.WET, it is treated as an IO.WLB.

• If another write is in progress, it finishes and the IO.WET is
the next write issued. The effect of this is that IO.WBTs can
be stopped by a CTRL/S. Therefore, tasks may still want to
time out on IO.WET.

• If a read is posted, the IO.WET proceeds anyway, and an
automatic CTRL/R is performed to redisplay any input that was
received before the break-through write.

• CTRL/S and/or CTRL/O, if in effect, are canceled.

• Characters input during a break-through write are ignored.

An IO.WET cannot break through another IO.WET that is in progress or
if a prompt is bein~ written by IO.RPR. In either case, the low-order
byte of the first word of the I/O status block contains IE.RSU&377.
The task receiving this error need only reissue the write.

Break-through write may only be issued by a privileged task. However,
the task does not have to be mapped to the Executive (Task Builder
options /PR:4 or /PR:5). A task can use IO.WET if it is built with
the /PR:O switch specified. The privileged MCR command BRO
(broadcast) uses IO.WET.

Break-through write cannot break through a multiecho. Instead, it
returns error code IE.RSU. When this occurs, the task should reissue
the write request.

3-15

HALF-DUPLEX TERMINAL DRIVER

3.4 STATUS RETURNS

Table 3-8 lists error and status conditions that are returned by the
terminal driver.

Upon successful completion of a read, the I/O status block contains
data of this sort:

1 0 Byte

Word 0 ret I+l

1 Number of bytes read

ret 0 means read terminated by buff er full
(byte count satisfied);

ret 15 means IS.CR: read terminated by carriage return.

ret 33 means IS. ESC: read terminated by an Altmode.

ret 233 means IS.ESQ: read terminated by an escape sequence.

+l is IS. sue: the return code for successful
completion.

Most RSX-llM return codes are byte values: for example, rs.sue = 1 is
a byte value. By contrast, the three return codes IS.CR, IS.ESC, and
IS.ESQ are word values. The low-order byte indicates successful
completion, and the high-order byte is required to show what type of
completion occurred.

To test for one of these word-value ·return codes, first test the
low-order byte of the first word of the IOSB for the value rs.sue.
Then test the full word for IS.CR, IS.ESC, or IS.ESQ. (If the full
word tests equal to rs.sue, then its high-order byte is o, indicating
byte-count termination of the read.)

The "error" return IE.EOF may be considered to indicate a successful
read, because characters can be returned to the task's buffer.

The three errors in Table 3-8 with SE.xxx codes are returned by the
SF.GMC and SF.SMC QIOs. They are characterized by IE.AB0&377 in the
low-order byte of the first IOSB word. The high-order byte contains
the error code. The second IOSB word contains an offset (starting
from 0) to the byte in error in the QIOs stadd buffer.

3.5 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of special terminal control
characters and keys for RSX-llM. Note that the driver does not
recognize control characters and special keys during a Read All
request (IO.RAL), and recognizes only some of them during a Read with
Special Terminators (IO.RST).

3-16

Code

IE.EOF

IS.CR

IS.ESC

IS.ESQ

IS.PND

IE.ABO

IE.BAD

HALF-DUPLEX TERMINAL DRIVER

Table 3-8
Terminal Status Returns

Reason

Successful completion on a read with end-of-file

The line of input read from the terminal was
terminated with the end-of-file character CTRL/Z.
The second word of the I/O status block contains
the number of bytes read before CTRL/Z was seen.
The input buffer contains those bytes.

Successful completion

The operation specified in the QIO directive was
completed successfully. If the operation involved
reading or writing, you can examine the second word
of the I/O status block to determine the number of
bytes processed. The input buffer contains those
bytes.

Successful completion on a read

The line of input read from the terminal was
terminated by a carriage return. The input buffer
contains the bytes read.

Successful completion on a read

The line of input read from the terminal was
terminated by an Altmode character. The input
buffer contains the bytes read.

Successful completion on a read

The line of input read from the terminal was
terminated by an escape sequence. The input buffer
contains the bytes read and the escape sequence.

I/O request pending

The operation specified in the QIO directive has
not yet been executed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was canceled by IO.KIL
while in progress or while in the I/O queue. The
second word of the IOSB shows how many bytes were
processed before the kill took effect. Note that
the SE.xxx error codes are characterized by IE.ABO&
377 in the low-order byte of the first word of the
IOSB.

Bad parameter

The size of the prompt in a read-after-prompt QIO
is too big (that is, greater than 255 bytes on
systems supporting variable-length buffers or
greater than 80 on systems that do not).

(continued on next page)

3-17

Code

IE.DAA

IE.DNA

IE.DNR

IE.IES

IE.IFC

I IE.NOD

I

HALF-DUPLEX TERMINAL DRIVER

Table 3-8 (Cont.)
Terminal Status Returns

Reason

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task. If
the attach specified TF.AST or TF.ESQ, these
subfunction bits have no effect.

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one
of the following conditions:

• A time-out occurred on the physical device unit
(that is, an interrupt was lost).

• An attempt was made to perform a function on a
remote DHll or DZll line without carrier
present. (The line is hung up.)

Invalid escape sequence

An escape sequence was started but escape-sequence
syntax was violated before the sequence was
completed. See Section 3.6.4.

Illegal function

A function code specified in an I/O request was
illegal for terminals; or, the function code
specified was a SYSGEN option not selected for this
system.

Buffer allocation failure I
System dynamic storage has been depleted, and there
was insufficient space available to allocate anj
intermediate buffer for an input request.

(continued on next page}

3-18

Code

IE.OFL

IE.PES

IE.PR!

IE.RSU

IE.SPC

SE.BIN

SE.NIH

SE.VAL

HALF-DUPLEX TERMINAL DRIVER

Table 3-8 (Cont.)
Terminal Status Returns

Reason

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Partial escape sequence

An escape sequence was started, but read-buffer
space was exhausted before the sequence was
completed. See Section 3.6.4.3.

Privilege violation

In a multiuser system, a nonprivileged task
issued an IO.WBT or directed an SF.SMC
terminal other than its own TIO:.

Resource in use

The prompt of an IO.RPR, or a break-through
was in progress when an IO.WBT was issued.
the IO.WBT later.

Illegal address space

either
to a

write,
Reissue

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
0 was specified.

The new value specified for a terminal
characteristic in an SF.SMC request was not 0 or 1.
(Characteristics other than TC.TTP -- see Table
3-5.)

A terminal characteristic other than those in Table
3-5 was named in an SF.GMC or SF.SMC request; or,
a task attempted to assert TC.PR!.

The new value specified in an SF.SMC request for
the TC.TTP terminal characteristic was not one of
those listed in Table 3-6, or the baud rate (speed)
specified is not valid.

3-19

HALF-DUPLEX TERMINAL DRIVER

3.5.1 Control Characters

A control character is input from a terminal by holding the control
key (CTRL) down while typing one other key. Two of the control
characters described in Table 3-9, CTRL/U and CTRL/Z, are echoed on
the terminal as AU and AZ, respectively. Other control characters are
recognized by the terminal driver, but are not printing characters and
therefore are not echoed.

Character

CTRL/C

CTRL/I

CTRL/J

CTRL/K

CTRL/L

CTRL/M

Table 3-9
Terminal Control Characters

Meaning

Typing CTRL/C repeatedly is the way to
terminal's attention. Normally, typing
causes unsolicited input on that terminal
directed to the Monitor Control Routine
"MCR>" echoes when the terminal is ready to
unsolicited input. When the unsolicited
completes, it is passed to MCR.

get a
CTRL/C
to be
(MCR).
accept

input

If the last item typed on the terminal was CTRL/S
(suspend output), then CTRL/C restarts suspended
output and directs subsequent input to MCR.

If the hold-screen mode option has been selected at
SYSGEN, and if the terminal is a VT5x or VT61 in
hold-screen mode, then typing a string of CTRL/Cs
eventually removes the terminal from hold-screen
mode.

Not all CTRL/Cs act to get MCR's attention.
CTRL/Cs are directed to a task if the task has
attached a terminal and has specified an
unsolicited-input-character AST. See the discussion
on unsolicited-input-character ASTs, Section
3.3.2.1. CTRL/Cs also go to a task if an IO.RAL
(Read All) or IO.RST (Read with Special
Terminators) is posted.

Typing CTRL/I or TAB initiates a horizontal tab,
and the terminal spaces to the next tab stop. Tabs
at every eighth character position are simulated by
the terminal driver.

Typing CTRL/J is equivalent to typing the LINE FEED
key on the terminal.

Typing CTRL/K initiates a vertical tab, and the
terminal performs four line feeds.

Typing CTRL/L initiates a form feed, and the
terminal performs eight line feeds. Paging is not
performed.

Typing CTRL/M is equivalent to typing the carriage
RETURN key on the terminal (see Section 3.5.2).

(continued on next page)

3-20

Character

CTRL/O

CTRL/Q

CTRL/R

CTRL/S

CTRL/U

CTRL/Z

HALF-DUPLEX TERMINAL DRIVER

Table 3-9 (Cont.)
Terminal Control Characters

Meaning

Typing CTRL/O suppresses output being
terminal by the current I/O request.
terminals, CTRL/O remains in effect,
continues to be suppressed until
following occurs:

1. The terminal is detached.

2. Input is entered.

3. Another CTRL/O character is typed.

sent to a
For attached

and output
any of the

4. An IO.CCO, IO.WBT, or IO.RPR is processed.

For unattached terminals, CTRL/O suppresses output
for only the current output buffer (generally one
1 ine) •

(SYSGEN option.) Typing CTRL/Q resumes terminal
output previously suspended by means of CTRL/S.

(SYSGEN option.) Typing CTRL/R on a terminal
results in the echo of CR/LF followed by the
incomplete (unprocessed) input line. Any tabs that
were input are expanded and the effect of any
rubouts is shown. On hard-copy terminals, CTRL/R
allows you to verify the effect of tabs and/or
rubouts in an input line. CTRL/R is also useful
for CRT terminals when the automatic-cariage-return
and CRT rubout SYSGEN options have been selected
(see Section 3.8). For example, after rubbing out
the leftmost character on the second displayed line
of a wrapped input line, you will find that the
cursor does not move to the right of the first
displayed line. In this case, CTRL/R brings the
input line and the cursor back together again.

{SYSGEN option.) Typing
output to be suspended.
typing CTRL/Q or CTRL/C.

CTRL/S causes terminal
Output is resumed by

Typing CTRL/U before typing a line terminator
causes previously typed characters to be deleted
back to the beginning of the line. The system
echoes this character as AU followed by a carriage
return and a line feed. This allows you to retype
the line.

Typing CTRL/Z indicates
current terminal input.
and other system tasks
complete and the task
echoes this character as
return and a line feed.

3-21

an end-of-file for the
It signals MAC, PIP, TKB,
that terminal input is
should exit. The system

AZ followed by a carriage

HALF-DUPLEX TERMINAL DRIVER

3.5.2 Special Keys

The ESCape, carriage RETURN, and RUBOUT, keys have special significance
for terminal input, as described in Table 3-10. A line can be
terminated by an ESCape (or Altmode) character, by a carriage RETURN,
by CTRL/Z, or by completely filling the input buffer (that is, by
exhausting the byte count before a line terminator is typed) e The
standard buffer size for a terminal can be determined by issuing a GET
LUN INFORMATION system directive and examining Word 5 of the
information buffer. Another way is to type the MCR command "SET
/BUF=TI:".

3.6 ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning with
33 octal. Some terminals generate an escape sequence when a special
key is pressed (for example, the PFl key on the VTlOO). On any
terminal, an escape sequence may be generated manually by typing
ESCape and the appropriate following characters.

Escape sequences provide a way to pass input to a task without
interpretation by the operating system. This could be done with a
number of 1-character Read Alls, but escape sequences allow a neater
way to accomplish it (they can be read with ordinary IO.RLBs).

Most DIGITAL software currently does not employ escape sequences. The
specifics provided here are for the benefit of users who wish to take
advantage of escape sequences in their own tasks.

3.6.1 Definition

An escape sequence is defined as follows:

ESC

int

fin

ESC [int] ••• [int] fin

The result of pressing the ESCape key, a byte (character) of
33(8).

An "intermediate character" in the range 40(8) to 57(8). This
range includes the character "space" and 15 punctuation marks.
An escape sequence may contain any number of intermediate
characters, or none.

A "final character" in the range 60{8) to 176{8). This range
includes upper- and lowercase letters, numbers, and 113
punctuation marks.

There are four exceptions to this general definition discussed in
Section 3.6.5.

3-22

Key

ESCape

RETURN

RUBOUT

HALF-DUPLEX TERMINAL DRIVER

Table 3-10
Special Terminal Keys

Meaning

If escape sequences are not recognized, typing
ESCape or Altmode signals the terminal driver that
there is no further input on the current line.
This line terminator allows further input on the
same line, because the carriage or cursor is not
returned to the first column position.

If escape sequences are recognized, ESCape signals
the beginning of an escape sequence. See Section I

3.o.

Typing RETURN terminates the current line and
causes the carriage or cursor to return to the
first column on the line.

Typing RUBOUT deletes the last character typed on
an input line. Only characters typed since the
last line terminator may be deleted. Several
characters can be deleted in sequence by typing
successive RUBOUTs.

The first RUBOUT echoes as a backslash (\),
followed by the character that has been deleted.
Subsequent RUBOUTs cause only the deleted character
to be echoed. The next character typed that is not
a RUBOUT causes another backslash, followed by the
new character, to be echoed. The following example
illustrates rubbing out ABC and then typing CBA:

ABC\CBA\CBA

The second backslash is not displayed if a
terminator is typed after rubbing out
characters on a line, as in the following:

line
the

ABC\CBA

(SYSGEN option.) At SYSGEN time you
support a "CRT rubout" feature.
applies to a terminal only after
directive has been issued:

SET /CRT=TI:

may elect to
This feature

a SET MCR

(Note: See Section 3.3.2.12 for another way this
SET can be accomplished, with the SF.SMC QIO
function.) When a RUBOUT is struck, the last typed
character (if any) is removed from the incomplete
input line and backspace-space-backspace is echoed.
If the last typed character was a tab, enough
backspaces are issued to move the cursor to the
character position before the tab was typed. If a
long input line was split, or "wrapped," by the
automatic-carriage-return option, and a RUBOUT
erases the last character of a previous line, the
cursor is not moved to the previous line. CTRL/R
must be used to resynchronize the display with the
contents of the incomplete input line.

3-23

HALF-DUPLEX TERMINAL DRIVER

3.6.2 Prerequisites

Two prerequisites must be satisfied before escape sequences can be
received by a task.

First, the task must "ask" for them by issuing an IO.ATT and invoking
the subfunction bit TF~ESQ~

Second, the terminal must be declared capable of generating escape
sequences. This may be done with an MCR SET command:

SET /ESCSEQ=TI:

An alternative way to tell the driver that the terminal can generate
escape sequences is by issuing the Set Multiple Characteristics QIO.
See Section 3.3.2.13.

If either of these prerequisites is not satisfied, the ESC character
is treated as a line terminator. If both prerequisites are satisfied,
then an additional feature results. CTRL/SHIFT/O (37(8)) may be used
as an Altmode.l

This character does not act as an Altmode from a terminal that cannot
generate escape sequences.

3.6.3 Characteristics

Escape sequences always act as line terminators. That is, an input
buffer may contain other characters that are not part of an escape
sequence, but an escape sequence always comprises the last characters
in the buffer.

Escape sequences are not echoed. However, if a non-CRT rubout
sequence is in progress, it is closed with a backslash when an escape
sequence is begun.

Escape sequences are not recognized in unsolicited input streams.
Neither are they recognized in a Read with Special Terminators
(subfunction bit TF.RST) nor in a Read All (subfunction bit TF.RAL).

3.6.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 3.6.1 causes the driver
to abandon the escape sequence and to return an error (IE.IES).

3.6.4.1 DEL or RUBOUT {177{8)) - The character DEL or RUBOUT is not
legal within an escape sequence. Typing it at any point within an
escape sequence causes the entire sequence to be abandoned and deleted

1. An Altmode is a line terminator that does not cause the cursor to
advance to a new line. On terminals that cannot generate escape
sequences, the ESCape key acts as an Altmode. So do the characters
175(8) and 176(8), if the terminal has not been declared lowercase
(MCR command SET /LOWER). If the terminal is lowercase, then these
characters represent right-brace and tilde, respectively.

3-24

HALF-DUPLEX TERMINAL DRIVER

from the input buffer.
sequence, if desired,
enter:

AB ESC II DEL CR

Thus, use DEL or RUBOUT to abandon an escape
once you have begun it. For example, if you

the buffer contains "AB" and the I/O status block looks like the
following:

IOSB

3.6.4.2 Control Characters (0-37(8)) - The reception of any character
in the range 0 to 37(8) (with four exceptions -- see footnotel) is a
syntax violation that terminates the read with an error (IE.IES). For
example, entering:

ESC CTRL/SHIFT/O

results in a buffer that contains these three characters and an I/O
status block that is similar to the following:

IOSB ~

3.6.4.3 Full Buffer - A syntax error results when an escape sequence
is terminated by running out of read-buffer space, rather than by
reception of a final character. The error IE.PES is returned. For
example, after a task issues an IO.RLB QIO with a buffer length of 2,
and you type:

ESC ! A

the buffer contains "ESC ! " , and the I/O status block contains:

IOSB Ed
The "A" is treated as unsolicited input.

1. Four control characters are allowed: CTRL/Q, CTRL/S, CTRL/C, and
CTRL/O. These characters are handled normally by the operating system
even when an escape sequence is in progress. For example, entering:

ESC CTRL/S A

gives:

IOSB IS.ESQ

2

with the side effect of turning off the output stream.

3-25

HALF-DUPLEX TERMINAL DRIVER

3.6.5 Exceptions to Escape-Sequence Syntax

Four "final characters" that normally would terminate an escape
sequence are treated as special cases by the terminal driver. These
special cases exist for historical compatibility reasons. Three of
these ch a r a c t e r s a re : ; (7 3 (8)) , ? (7 7 (8)) , and O (117 (8)) • The
syntax for escape sequences that contain these four characters as
intermediates is:

ESC (int] [int] fin

ESC ? [int] [int] fin

ESC 0 [int] [int] f inl

int => 40-57 (8) •
fin => 60-176 (8) •
f inl => 100-176 (8) •

The fourth exception to the general syntax given in Section 3.6.1
involves the "final character" Y (131(8)). Historically (for example,
in the VT52), ESC Y has been used to signal the cursor position. It
is followed by two numbers signifying column and row positions:

ESC Y colpos rowpgs

where colpos and rowpos are both characters in the range 40-176(8).
They represent bias-40 numbers: colpos = 40 corresponds to column O,
and so forth.

3.7 VERTICAL FORMAT CONTROL

Table 3-11 summarizes the meanings of all characters used for vertical
format control on the terminal. Any one of these characters can be
specified as the value of the vfc parameter in the functions IO.WLB,
IO.WVB, IO.WBT, IO.CCO, or IO.RPR.

Octal
Value

40

60

61

Table 3-11
Vertical Format Control Characters

Character

blank

0

1

Meaning

SINGLE SPACE - Output a line feed, print the
contents of the buffer, and output a carriage
return. Normally, printing immediately
follows the previously printed line.

DOUBLE SPACE - Output two line feeds, print
the contents of the buffer, and output a
carriage return. Normally, the buffer
contents are printed two lines below the
previously printed line.

PAGE EJECT - Output eight line feeds (or, if
the terminal is an LA180S, output a form
feed), print the contents of the buffer, and
output a carriage return.

(continued on next page)

3-26

I

I

Octal
Value

53

44

00

HALF-DUPLEX TERMINAL DRIVER

Table 3-11 (Cont.)
Vertical Format Control Characters

Character Meaning

+

$

null I

j

OVERPRINT - Print the contents of the buffer
and output a carriage return, normally
overprinting the previous line.

PROMPTING OUTPUT - Output a line feed and
print the contents of the buffer. This mode
of output is intended for use with a terminal
on which a prompting message is output, and
input is then read on the same line.

INTERNAL VERTICAL FORMAT - Print the buffer
contents without addition of vertical format
control characters. In this mode, more than
one line of guaranteed contiguous output can
be printed for each I/O request.

All other vertical format control characters are interpreted as blanks
(40(8)).

3.8 FEATURES AVAILABLE BY SYSGEN OPTION

A number of terminal-driver features are available as options at the
time the RSX-llM system is generated (see the RSX-llM System
Generation and Management Guide or RSX-llS System Generation and
Installatio~Guide, as appropriate). Some that have been mentioned
previously in the text are:

• All the device-specific QIO functions

• Special keys

CTRL/S

CTRL/Q

CTRL/R

CRT rubout

Suspend output

Resume suspended output

Write incomplete input buffer

• Escape sequences

Other features that you may select at SYSGEN time are described in the
following sections.

3.8.1 Automatic Carriage Return

By SYSGEN option, all terminals in a system may be set to "wrap
around," on input and output, after a specified number of columns. If
this option is selected, the number of characters per line is
determined on a terminal-by-terminal basis. An MCR SET command is
used to specify the wrap-around column, n:

>SET /BUF=TI:n
>

3-27

HALF-DUPLEX TERMINAL DRIVER

(Note that n is an octal number by default. Type an explicit decimal
point to enter a decimal number.) After SYSGEN and before this SET has
been done for a given terminal, the default column width is 72
(decimal).

The SET /BUF command used without an argument is an enquiry that
returns the current buffer width for a terminal:

>SET /BUF=TI:
BUF=TI0:00072.
>

A task can determine the buffer width by issuing a Get LUN Information
directive and examining word 5.

After the SET has been done, typing the n+lst character results in a
CR/LF being output before the n+lst character is echoed (at the
leftmost character position of the next line). There is still only
one input line, but it is displayed on two lines on the terminal.

Output also wraps around after column n. This is undesirable for some
applications. To disable wrap-around, set the buffer to some number
greater than the terminal's column width. Output -- and input
too -- beyond the column width will then overprint at the right
margin. Wrap-around is also disabled when executing the IO.WAL
function (see Section 3.10.11), because the driver does not keep track
of the cursor's position.

It is possible to lose track of where you are in the input buffer if
both the automatic carriage return and the CRT rubout features have
been selected at SYSGEN. If, while rubbing out text on a wrapped
line, you rub out the first character on that line, the cursor will
not back up to the previous line. In order to resynchronize the
cursor with the contents of the incomplete input buffer, type CTRL/R
(if this option has been selected).

It is also possible to cause wrap-around to malfunction. This can
occur when mora than 255(10) characters are output without an
intervening carriage return. This condition is possible because the
driver maintains a byte location with the current cursor position;
thus, counts greater than 255(10) are truncated, and the cursor count
will be invalid until the next carriage return is received.

3.8.2 Variable-Length Buffering

If this user-transparent SYSGEN option is selected, up to 255(10)
characters may be read from a terminal. The terminal driver allocates
an Executive buffer the same size as the read request.

If the variable-length option is not chosen, any number of characters
may be read from a terminal, but a maximum of 80(10) are transferred
to the task issuing the read request. An Executive buffer of 80(10)
characters is always allocated.

Note that, whether variable-length buffering is selected or not, a
maximum of 80(10) characters may be directed to MCR as unsolicited
input.

3-28

HALF-DUPLEX TERMINAL DRIVER

3.8.3 Task Buffering of Received Characters

This user-transparent SYSGEN option causes characters read from the
terminal to be sent directly to the reading task's buffer. With this
option, no Executive buffer need be allocated, and the completed input
line need not be transferred to the task's buffer. This option,
however, does not necessarily reduce system overhead. In a mapped
system, each character must be mapped to the task's buffer. If
Executive buffering was used, the mapping is done once and then all
the characters are transferred. For the half-duplex terminal driver,
the Executive buffers only input except for the prompt output on an
IO.RPR request.

Task buffering may be overridden by checkpointing. If a task is
checkpointable, an Executive buffer is allocated in the normal way and
the task is made eligible for checkpointing by any task, regardless of
priority, while the read proceeds. (Checkpointing only occurs when
there is another task that can be made active.) Since
checkpointability is a dynamic quality controlled by the task, the
user retains control over the resource trade-off.

3.8.4 LA30-P Support

This option provides a 1-byte software buffer for terminal input from
an LA30-P. Because LA30-Ps communicate with RSX-llM by a
single-buffered hardware interface, the echoing of an input character
may block the reception of the next input character. This is because
a character is normally discarded by the terminal driver if it is
received before the echo of the previous character completes. The
SYSGEN option for LA30-P support (transparent to the user) will buffer
the second character in the software.

This option should not be chosen at SYSGEN if there are no LA30-Ps in
the system.

3.9 TERMINAL INTERFACES

This section summarizes the characteristics of the four
standard communication-line interfaces supported by RSX-llM.
interfaces support parity, but RSX-llM does not.

3.9.1 DHll Asynchronous Serial Line Multiplexer

types of
All four

The DHll multiplexer interfaces up to 16 asynchronous serial
communications lines for terminal use. The DHll supports programmable
baud rates. Input and output baud rates may differ; the input rate
may be set to 0 baud, thus effectively turning off the terminal. The
DMll-BB option may be included to provide modem control for dial-in
lines. These lines must be interfaced by means of a full duplex modem
(for example, in the United States, a Bell 103A or equivalent modem).

The direct memory access {DMA) capability of the DHll is not supported
by the RSX-llM terminal driver.

3-29

HALF-DUPLEX TERMINAL DRIVER

3.9.2 DJll Asynchronous Serial Line Multiplexer

The DJll multiplexer interfaces as many as 16 asynchronous serial
lines to the PDP-11 for local terminal communications. The DJll does
not provide a dial-in capability, but supports jumper-selectable baud
rates.

3.9.3 DLll Asynchronous Serial Line Interface

The DLll supports a single asynchronous serial line and handles
communication between the PDP-11 and a terminal. A number of standard
baud rates are available to DLll users. Four versions of the DLll
interface are supported by RSX-llM for terminal use: DLll-A, DLll-B,
DLll-C, and DLll-D. The DLll-E is supported by the full-duplex
terminal driver described in Chapter 2, and by the message-oriented
communication drivers described in Chapter 11.

3.9.4 DZll Asynchronous Serial Line Multiplexer

The DZll multiplexer interfaces up to eight asynchronous serial
communication lines for use with terminals. It supports programmable
baud rates; however, input and output speeds must be the same. The
DZll can control a full duplex modern in auto-answer mode.

3.10 PROGRAMMING HINTS

This section contains information relevant to users of the terminal
driver.

3.10.1 Terminal Line Truncation

If automatic carriage return has not been selected at SYSGEN, and if
the number of characters to be printed exceeds the line length of the
physical device unit, then the terminal driver discards the excess
characters until it receives one that instructs it to return to
horizontal position 1. You can determine when this will happen by
examining word 5 of the information buffer returned by the Get LUN
Information system directive, or by typing "SET /BUF=TI:".

3.10.2 ESCape Code Conversion

If escape sequences are not recognized, an ESCape or Altmode character
code of 33, 175, or 176 is converted internally to 33 before it is
returned to the user on input.

3.10.3 RT02-C Control Function

Because the screen of an RT02C Badge Reader and Data Entry Terminal
holds only one line of information, special care must be taken when
sending a control character (for example, vertical tab) to the RT02-C.
Use IO.WAL (Write All).

3-30

HALF-DUPLEX TERMINAL DRIVER

It is advisable to read without echoing when reading a badge with the
RT02-C. Use IO.RAL or IO.RNE, and then write the received
information.

3.10.4 Checkpointing During Terminal Input

If checkpointing during terminal input was selected as a SYSGEN
option, a checkpointable task is stopped (and therefore eligible to be
checkpointed) when trying to read. Therefore, a stratagem such as
issuing a read followed by a mark-time does not work. The intent
might be to time out the read if input is not received in a reasonable
length of time. But the mark-time is not issued until the read
completes.

You can circumvent this behavior by disabling checkpointing for the
read. This is not a desirable solution because it forces a task to
remain in memory during the entire read. This defeats the purpose of
selecting the checkpoint-during-terminal-input option.

3.10.5 Time Required for IO.KIL

An IO.KIL request may take up to 1 second to succeed, because an
internal mark-time mechanism is used to generate a software interrupt
to get into a clean state. The I/O may reach a state in which the
kill can complete within this time (for instance, if a hardware
interrupt is received). If not, the request is killed after 1 second.

3.10.6 Use of IO.WVB

We recommend that you routinely use IO.WVB, instead of IO.WLB, when
writing to a terminal. If the write actually goes to a terminal, the
Executive converts your IO.WVB into IO.WLB. However, if the LUN has
been redirected to some inappropriate device -- a disk, for
example -- using an IO.WVB will be rejected because a file is not open
on the LUN. This prevents privileged tasks from overwriting block
zero of the disk (the boot block).

Note that any subfunction bits specified in the IO.WVB request (for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped off when the QIO is
converted to an IO.WLB.

3.10.7 Remote DHll and DZll Lines

All remote DHll lines in a system are answered at the same baud rate.
All remote DZll lines are also answered at the same rate, which may
differ from the DHll rate. These rates are specified at system
generation.

Before a remote DHll or DZll line is answered, the driver clears
certain of the terminal characteristics (see Table 3-5) that may have
been set by an MCR SET command or by an SF.SMC QIO. The
characteristics cleared are: TC.SCP, TC.ESQ, TC.HLD, TC.SMR, and
TC.TTP. (Clearing TC.TTP means that a terminal type of "unknown" is
returned to an SF.GMC request.) Also, buffer size is set to 73.

3-31

HALF-DUPLEX TERMINAL DRIVER

A DZll remote line must be declared to be remote before the terminal
driver will correctly handle the modem. This is done with the MCR
command SET /REMOTE=TI:.

NOTE

Because of the few modem signals that
the DZll handles and the lack of
interrupt support provided for those
signals, the DZll may not adequately
handle telephone exchange requirements
in all countries.

3.10.8 High-Order Bit on Output

Setting the high-order bit of an output byte causes it to be
transmitted but not interpreted by the driver.

3.10.9 Side Effects of Setting Characteristics

Some of the characteristics that a task may set, or that you may set
from a terminal, have side effects that should be noted.

• TC.HLD -- Unexpected behavior can result from a terminal in
hold-screen mode if its reception rate is much greater than
its transmission rate. (The DHll supports split baud rates.)
In hold-screen mode the terminal sends a CTRL/S during
reception of an output stream, when the screen is nearly full.
Output is resumed -- another screen-full -- when you type
SHIFT/SCROLL (the terminal generates CTRL/Q). Thus, no output
is lost as a result of scrolling off the screen before you can
read it. However, if the terminal's transmission rate is far
below its reception rate, some unread output may scroll out of
sight before the CTRL/S can be transmitted.

A related point to note is that some terminals and interfaces
are hardware buffered. This fact can cause obscure timing
problems for tasks that try to implement hold-screen mode.

• TC.SMR -- If this characteristic is asserted (that is, if
lower-/uppercase conversion is disabled by, for example, SET
/LOWER=TI:), the two characters 175(8) and 176(8) are
interpreted as [(right-brace) and (tilde), respectively.
If TC.SMR is not asserted, these two characters act as
Altmodes. That is, they act as line terminators that do not
advance the cursor to a new line. Altmodes are npt echoed.

3.10.10 Unsolicited-Input-Character ASTs for Tasks Attaching Several
Terminals

For a task that attaches several terminals (for example, a reentrant
language processor), the handling of unsolicited input requires
special care. When the terminal driver passes an unsolicited input
character to a task, it does not pass any information about which of
several terminals generated the character. The task must ascertain
this for itself.

3-32

HALF-DUPLEX TERMINAL DRIVER

One solution is for the task to name uniquely the AST entry points for
each attached terminal. Each separate AST then identifies its
terminal before branching to a common routine that processes the
unsolicited character. For example:

ATTl: QIO$C IO.ATA, ••• ,<UICl>
BR CONT

ATT2: QIO$C IO.ATA, ••. ,<UIC2>
BR CONT

UICl: MOV #1,-(SP)
BR UIC

UIC2: MOV #2 1 -(SP)
BR UIC

UIC: MOV (SP)+,INDEX

3.10.11 Direct Cursor Control

The terminal driver generally examines the output stream in order to
keep track of the cursor's horizontal position (so that output can be
wrapped around or discarded). Therefore, tasks that want to use
direct cursor control should use IO.WALs. This prevents the terminal
driver from inserting CR/LFs (that the task considers spurious) into
the output stream. FORTRAN WRITE statements become IO.WVBs, which are
interpreted by the driver. To prevent this, a FORTRAN task can use
the CALL QIO routine or can issue carriage returns at frequent
intervals (to make the driver think the cursor is always well to the
left of the rightmost column, and therefore no CR/LFs need be emitted
to keep the cursor on the screen) •

3.10.12 DLll Receiver Interrupt Enable

For hardware reasons, a DLll is susceptible to losing receiver
interrupt enable in its Receiver Status Register. The disabling of
the receiver interrupt bit causes the terminal to print output
requests but not to respond to input (for example, the terminal does
not echo input characters). The terminal driver has no mechanism for
recogn1z1ng the disabling. Therefore, it cannot recover. The bit
must be reset with an MCR OPEN command, the console switch register,
or a periodically rescheduled task.

3.10.13 Loadable Driver Restrictions

Checkpointing during terminal input, variable-length terminal buffer
support, and escape sequence support require the presence of
conditionally assembled Executive support. If a loadable terminal
driver supports one of these features and the Executive does not (or
vice versa) , the best that can happen is an undefined global when the
terminal driver is built. At worst, the system is corrupted.

3-33

CHAPTER 4

VIRTUAL TERMINAL DRIVER

4.1 INTRODUCTION

The virtual terminal driver supports offspring task use of virtual
terminals in RSX-llM-PLUS systems. Virtual terminals are not physical
hardware devices; they are actually implemented in software through
the use of data structures created by the RSX-llM-PLUS Executive.
Virtual terminals are created by the Executive when requested by
parent tasks with the Create Virtual Terminal directive. Virtual
terminals are useful in batch processing and other processing
environments in providing noninteractive terminal I/O support for
offspring tasks, eliminating the need for operator intervention.

Offspring task(s) "spawned" by or "connected" to the parent task that
created the virtual terminal can perform terminal I/O operations with
the virtual terminal in the same manner as with physical terminals.
Virtual terminals differ from physical terminals in that they receive
input from or output to a program (the parent task), rather than from
a keyboard or to a display (or printer), respectively.

4.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for virtual terminals. A setting of 1 indicates that the
described characteristic is true for virtual terminals.

Bit Setting Meaning

0 1 Record-oriented device

1 1 Carriage-control device

2 1 Terminal device

3 0 File-structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Reserved

7 n User-mode diagnostics supported v

4-1

VIRTUAL TERMINAL DRIVER

Bit Setting Meaning

8 0 Massbus device

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 0 Device mountable as a FILES-11 volume

15 0 Device mountable

Words 3 and 4 are undefined. Word 5 specifies the maximum byte count
(that is, maximum buffer size) to which offspring requests will be
truncated; this value is specified by the parent task in the Create
Virtual Terminal system directive, as described in the RSX-llM/M-PLUS
Executive Reference Manual.

4.3 QIO MACRO

Table 4-1 lists the standard and device-specific functions of the QIO
macro that are valid for virtual terminals.

Table 4-1
Standard and Device-Specific QIO Functions for Virtual Terminals

Format

STANDARD FUNCTIONS:

QI 0 $C IO • A TT , •••

QI0$C IO. DET, •••

QIO$C IO. KIL, •••

QIO$C IO.RLB, ••• ,<stadd,size>

QIO$C IO.RVB, ••• ,<stadd,size>

QIO$C IO.WLB, ••• ,<stadd,size,stat>

QIO$C IO.WVB, ••• ,<stadd,size,stat>

4-2

Function

Attach device

Detach device

Cancel I/O request

Read logical block

Read virtual block
(e ff e c ts I 0 • R LB)

Write logical block

Write virtual block
(effects IO.WLB)

(continued on next page)

I

j

VIRTUAL TERMINAL DRIVER

Table 4-1 (Cont.)
Standard and Device-Specific QIO Functions for Virtual Terminals

Format Function

DEVICE-SPECIFIC FUNCTIONS:

QIO$C IO.STC, •.• ,<cb,sw2,swl> Set terminal characteristics
(enable/disable intermediate
I/O buffering, or return I/O
completion status to
offspring task)

I

QIO$C SF.GMC, ••• ,<stadd,size>

I

Get multiple characteristics

QIO$C IO.GTS, ••• ,<stadd,size> Get terminal support

I QIO$C IO.RPR, ••• ,<stadd,size,[tmo], I Read logical block
pradd,prsize,vfc> after prompt

QIO$C SF.SMC, ••• ,<stadd,size> Set multiple characteristics

size

stadd

stat

cb

The size of the data buffer in bytes (must be greater than 0).
The buffer must be located within the addressing space of the
parent or offspring task issuing the I/O request.

The starting address of the data buffer. The
word aligned for SF.GMC, IO.GTS, and SF.SMC;
be aligned on a byte boundary~

address must be
otherwise, it may

The I/O completion status code, specified by the parent task,
that is issued by the virtual terminal driver in response to an
offspring task's read request upon successful completion.

Characteristic bits to become set, selecting th~ following
virtual terminal functions:

cb Value Bits Set

0 none

1 0

2 1

3 0 and 1

4-3

Function

Enable intermediate
buffering in the Executive
pool

Return the specified
virtual terminal I/O
completion status to the
requesting offspring task

Disable
buffering

Return

intermediate

status for
offspring write request

swl

tmo

vfc

pr add

VIRTUAL TERMINAL DRIVER

The I/O completion code for I/O completion status.

NOTE

The sw2 and swl parameters are valid in
the IO.STC function only when cb=l or
cb=3.

An optional time-out count (see below).

A character for vertical format control. See Table 3-11.

The starting address of the prompt buffer.

prsize

The size of the prompt buffer in bytes. The buffer must be
located within the address space of the offspring task issuing
the I/O request.

4.3.1 Standard QIO Functions

4.3.1.1 IO.ATT - This I/O function can be issued by offspring task
tasks to attach the virtual terminal. (It is illegal for parent tasks
to issue IO.ATT). Attaching a virtual terminal prevents other
offspring tasks from executing I/O operations with the virtual
terminal. However, parent task I/O requests are always serviced when
issued.

4.3.1.2 IO.DET - This I/O function can be issued by offspring tasks
to detach the virtual terminal, making it available for use by other
offspring tasks connected to the same parent task. (It is illegal for
parent tasks to issue IO.DET.)

4.3.1.3 IO.KIL - Parent and offspring tasks can issue IO.KIL to
cancel I/O requests. An offspring task issuing IO.KIL can result in
IE.ABO being returned to the parent task.

4.3.1.4 IO.RLB, IO.RVB, IO.WLB, IO.WVB - These read and write
functions execute requested I/O operations with virtual terminals in
the same manner as with terminals described in Chapter 2, except as
follows:

1. The virtual terminal driver returns the tmo parameter of an
offspring task's IO.RLB or IO.RVB request, or the vfc
parameter of an offspring task's IO.WLB or IO.WVB request as
a stack parameter on entry to the appropriate AST for the
parent task.

4-4

VIRTUAL TERMINAL DRIVER

2. The virtual terminal driver returns I/O completion status to
the offspring task in response to successful completion of
the offspring task's IO.RLB -0r IO.RVB request; however, the
actual I/O completion status values returned are specified
for data transfers in the third parameter word of the parent
task's IO.WLB or IO.WVB response, or in the second and third
parameters of the parent task's IO.STC function response when
no data transfer is desired.

4.3.2 Device-Specific QIO Function (IO.STC)

The IO.STC function can be issued by parent tasks to enable/disable
offspring task I/O buffering in secondary pool, or to force an
appropriate I/O completion status for an offspring task read I/O
request when no data transfer is desired. Both of these applications
for the IO.STC function are described as follows.

Parent tasks can use IO.STC to enable (or disable) intermediate
buffering in secondary pool. Intermediate buffering, when enabled, is
performed on offspring task virtual terminal read and write requests
when the offspring task is checkpointable.

Thus, offspring tasks can be stopped for virtual terminal I/O and
checkpointed in a manner similar to that when physical terminals are
used. Whenever the virtual terminal driver determines that
intermediate buffering should not be used, offspring tasks that issue
terminal requests become locked in memory until I/O completion;
transfers occur directly between parent task and offspring task
buffers without intermediate buffering in secondary pool.

In addition to the conditions that permit intermediate buffering (when
specified), one condition can automatically disable intermediate
buffering of the parent task. If the buffer size specified in the
Create Virtual Terminal directive exceeds the maximum size specified
at system generation time (512(10) maximum), intermediate buffering is
disabled.

The second application for IO.STC is to allow the virtual terminal
driver to return an appropriate I/O completion status in response to
an offspring task read request. I/O status returned in this manner
allows successful completion of the offspring task's request when the
parent task determines that no data transfer is desired; this
condition can occur, for example, when no data is available for input
to the offspring task by the virtual terminal driver. When used in
this manner, the IO.STC function must include three parameters,
<cb,sw2,swl>, as follows:

cb

A value of 1 is specified to indicate that the I/O completion
status return to the offspring task is desired.

NOTE

If the virtual terminal is operating in full duplex mode,
a cb value of l returns status for an offspring read
request, and a cb value of 3 returns status for an
offspring write request.

4-5

sw2

sw2

VIRTUAL TERMINAL DRIVER

This parameter is the second word returned in the I/O completion
status indicating the number of bytes read upon successful
completion of an offspring task's read request. However, since
no data transfer actually occurs, the value specified is O; the
byte count of 0 specified in this function is legal (and
desired), whereas a byte count of 0 in write operations is
illegal (and will result in an error being returned to the parent
task) •

This parameter specifies the status code to be returned to the
offspring task by the virtual terminal driver in the first word
of the I/O completion status. This value is returned in the high
byte and a value of +l is returned in the low byte of the status
word. Typical values and the status that each represent are
listed as follows:

Code Value Completion Status Indicated

IS. sue + 1 Successful completion

IS.CR 15 Read terminated by carriage
return

IS. ESC 33 Read terminated by an Altmode

IS. ESQ 233 Read terminated by an escape
sequence

4.3.3 SF.GMC

The Get Multiple Characteristics function returns information on
terminal characteristics. This function can be issued by both the
parent and the offspring tasks. The virtual terminal driver returns
the characteristics that were set by the previous corresponding SF.SMC
request. However, only the full duplex mode (TC.FOX) characteristic
affects the operation of the virtual terminal driver. The SF.GMC
function is provided only to maintain transparency to the offspring
task.

Valid virtual terminal characteristics are listed in Table 4-2.

4 • 3 • 4 IO. GTS

The Get Terminal Support function returns a 4-word buffer of
information specifying which features are a part of the virtual
terminal driver. The virtual terminal driver provides the IO.GTS
function only to maintain transparency to the offspring task. Table
2-7 lists the options returned by the full duplex terminal driver. Of
those listed, the virtual terminal driver returns the following:

Word 1 Fl.BUF, Fl.RPR, Fl.UTB, and Fl.VBF

Word 2 F2.SCH and F2.GCH

4-6

VIRTUAL TERMINAL DRIVER

4.3.5 IO.RPR

The Read After Prompt (IO.RPR) function can be issued only by the
offspring task. When the offspring task issues this function, the
function appears to the parent task as a separate write request
followed by a read request. This function is described in Chapter 3.

4.3.6 SF.SMC

The SF.SMC function allows a task to set and reset the characteristics
of a terminal. Both the parent and the offspring tasks may issue this
function. The parent task may set virtual terminals to full duplex
operation by using the SF.SMC function with the characteristics bit
TC.FOX. When in full duplex mode, the virtual terminal driver
attempts to process the offspring task's read and write requests
simultaneously. In order to insure that these operations are
overlapped, the parent task should minimize the amount of time it
spends in AST state.

The virtual terminal driver defaults to half duplex mode.

Table 4-2 lists the characteristics that either the parent or the
offspring task may set.

Table 4-2
Virtual Terminal Characteristics

Bit Name Octal Meaning (If Asserted) Default Value
Value

TC.FOX 64 Full duplex mode 0

TC.SCP 12 Terminal is a scope 0

TC.SMR 25 Uppercase conversion 0
disabled

TC.TTP 10 Terminal type 0

4.4 STATUS RETURNS

The error and status conditions listed in Tables 4-3 and 4-4 are
returned by the virtual terminal driver described in this chapter.
The SE.NIH error is returned by the SF.GMC and SF.SMC functions. For
this error, the low byte of the first word in the I/O status block
contains IE.ABO. The second word in the I/O status block contains an
offset (starting at 0) pointing to the erroneous byte in the stadd
buffer.

4-7

VIRTUAL TERMINAL DRIVER

Table 4-3
Virtual Terminal Status ~eturns for Offspring Task Requests

Code

rs.sue

IE.IFC

IE.ABO

IE.SPC

IE.UPN

SE.NIH

Reason

Successful completion of an offspring task read
request results in an I/O completion status specified
in a parent task QIO parameter being returned.
Typically, the status information returned simulates
a subset of I/O returns normally produced by the
terminal drivers described in Chapter 2.

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block indicates the number of bytes
transferred on a write operation.

Invalid function code

The offspring task attempted a read or a write
function and the parent task did not specify an AST
address in its response to the requested I/O
function, or the offspring task issued an IO.STC or
other invalid function.

Request terminated

The offspring task issued IO.KIL or the parent task
eliminated the virtual terminal unit.

Illegal address space

Part or all of the buffer specified for a read or
write request was outside of the task's address
space, or a byte count of 0 was specified.

Insufficient dynamic storage

The driver could not allocate an AST block to notify
the parent task of an offspring task request, or the
driver could not allocate an intermediate buffer in
the Executive pool.

A terminal characteristic other than those in Table
4-2 was specified, or an offspring task attempted to
assert TC.FDX.

4-8

VIRTUAL TERMINAL DRIVER

Table 4-4
Virtual Terminal Status Returns for Parent Task Requests

Code

rs.sue

IE.EOF

IE.BAD

IE.DUN

IE.IFC

SE.NIH

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block indicates the number of bytes
transferred on a read or write operation.

End of file encountered

The IO.STC function was completed successfully.

Bad parameters

The parent task specified a buffer size that exceeded
the system maximum specified at system generation
time.

Device not attachable

An IO.ATT or IO.DET function was issued by the parent
task.

Invalid function code

A read, write, or IO.STC function was issued without
a pending offspring task request. This status can
occur if the offspring task cancels a pending read or
write request. This function code is also returned
when IO.STC is issued to enable intermediate
buffering on a virtual terminal unit whose buffer
size, specified in the Create Virtual Terminal
directive, exceeds the system maximum specified at
system generation time.

A terminal characteristic other than those in Table
4-2 was specified in an SF.GMC or SF.SMC request.

4-9

CHAPTER 5

DISK DRIVERS

5.1 INTRODUCTION

The RSX-llM disk drivers support the disks summarized in Table 5-1.
Subsequent sections describe these devices in greater detail.

All of the disks described in this chapter are accessed in essentially I
the same manner. Up to eight disks of each type (except RXOl, RX02,
RX50, RD51, RC25, RLOl, RL02, RA60, RASO, or RA81) may be connected to
their respective controllers. Disks and other file-structured media
are divided logically into series of 256-word blocks.

5.1.1 RFll/RSll Fixed-Head Disk

The RFll controller/RSll fixed-head disk provides random access bulk
storage. It features fast track-switching time and a redundant set of
timing tracks.

5.1.2 RS03 Fixed-Head Disk

The RS03 (RH11-RH70 controller/RS03 fixed-head disk) is a fixed-head
disk that offers speed and efficiency. With 64 tracks per platter and
recording on one surface, the RS03 has a capacity of 262,144 words.

5.1.3 RS04 Fixed-Head Disk

The RS04 (RH11-RH70 controller/RS04 fixed-head disk) is similar to the
RS03 disk and interfaces to the same controller, but provides twice
the number of words per track by recording on both surfaces of the
platter, and thus has twice the capacity.

5.1.4 RP11/RP02 or RP03 Pack Disks

The RPll controller/RP02 or RP03 pack disk consists of 20 data
surfaces and a moving read/write head. The RP03 has twice as many
cylinders, and thus double the capacity of the RP02. Only an even
number of words can be transferred in a read/write operation.

5-1 April 1983

Controller/
Drive RPM

RFll/RSll 1800

RHXX/RS03 3600

RHXX/RS04 3600

RP11E/RPR02 2400

RP11C/RP03 2400

RHXX/RM02 2400

RHXX/RM03 3600

RH70/RM05 3600

RH11/RP04,RP05 3600

RH70/RP06 3600

RH70/RP07 3600

RH70/RM80 3600

RK11/RK05 1500

RLll/RLOl 2400

RL11/RL02 2'400

RK611/RK06 2400

RK611/RK07 2400

RXll/RXOl 360

RX211/RX02 360

UDA50/RA80 3600

I UDAS 0 /RA8 l \ 3600
I

l UDA50/RA60 3600

I

2850 I RC25

RD51 3600

I RXSO 300

DISK DRIVERS

Table 5-1
Standard Disk Devices

Secs Tr ks Cy ls

-- 1 128

641 1 64

641 1 64

10 20 200

10 20 400

32 5 823

32 5 823

32 19 823

22 19 411

22 19 815

50 32 6302

31 14 5592

12 2 200

403 2 256

403

I
2 512

22 I 3 411
I

22 I 3 815

264 1 77

264 1 77

31 14 546

51 14 1248

42 4 2382

~,
..).L. 2

J

796

16 4 306

10 1 80

1. The RS03 has 64 words per sector;
words/sector.

Bytes/ Decimal
Drive Blocks

524,288 1024

524,288 1024

1,048,576 2048

20,480,000 40,000

40,960,000 80,000

67,420,160 131,680

67,420,160 131,680

256,196,608 500,384

87,960,576 171,798

174,423,040 340,670

516,096,000 1,008,000

124,214,272 242,606

2,457,600 4800

5,242,880 10,240

10,485,760 20,480

13,888,512 27,126

27,810,800 53,790

256,256 494

512,512 988

121,325,568 236,964

456,228,864 891,072

204, 890, 112 400,176

26,061,824 50,902

10,027,008 19,584

409,600 800

the RS04 has 128

2. The RPO? and the RM80 each have two additional CE cylinders.

3. The RLOl and RL02 each have 128 words per sector.

4. The RXOl has 64 words per sector; the RX02 has 128 words per
sector.

5-2 April 1983

DISK DRIVERS

5.1.5 RM02/RM03/RM05/RM80 Pack Disk

The RM02/RM03, RM05, and RM80 are MASSBUS disk drives and adapters
that use the existing MASSBUS controller. With a single head per
surface, they provide a 1.2 megabyte-per-second data transfer rate.
The RM03, RM05, and RM80 are used with the RH70 controller on
PDP-11/70 systems. All other systems use the RM02 with the RHll
controller.

5.1.6 RP04, RPOS, RP06 Pack Disks

The RP04 or RP05 {RH11-RH70 controller/RP04 or RP05 pack disk)
disks consist of 19 data surfaces and a moving read/write head.
offer large storage capacity with rapid access time. The RP06
disk has approximately twice the capacity of the RP04 or RP05.
RP07 fixed-media disk has approximately 3 times the capacity of
RP06.

5.1.7 RKll/RKOS or RKOSF Cartridge Disks

pack
Both
pack

The
the

The RKll controller/RK05 DECpack cartridge disk is an economical
storage system for medium-volume, random access storage. The
removable disk cartridge offers the flexibility of large off-line
capacity with rapid transfers of files between on- and off-line units
without necessitating copying operations. The RK05F has twice the
storage capacity of the RK05 and has a fixed {nonremovable) disk
cartridge.

5.1.8 RLll/RLOl or RL02 Cartridge Disk

The RLOl is a low-cost, single-head per surface disk with a burst data
transfer rate of 512 kilobytes per second. The storage capacity of
the RL02 is twice that of the RLOl.

5.1.9 RK611/RK06 or RK07 Cartridge Disk

The RK611 controller/RK06 cartridge disk is a removable, random
access, bulk-storage system with three data surfaces. The storage
capacity is 6,944,256 words per pack. The system, expandable to eight
drives, is suitable for medium to large systems.

The RK611 controller/RK07 cartridge disk is generally similar to the
RK611/RK06, except storage capacity is increased to approximately
13,905,400 words per pack. Both RK06 and RK07 disks can use the same
RK611 controller; mixing RK06 and RK07 disks on the same controller
is permitted.

5-3 April 1983

DISK DRIVERS

5.1.10 RXll/RXOl Flexible Disk

The RXll controller/RXOl flexible disk is an economical storage system
for low-volume, random access storage. Data is stored in twenty-six
64-word sectors per track; there are 77 tracks per disk. Data may be
accessed by physical sector or logical block. If logical or virtual
block I/O is selected, the driver reads four physical sectors. These
sectors are interleaved to optimize data transfer. The next logical
sector that falls on a new track is skewed by six sectors to allow for
track-to-track switch time. Physical block I/O provides no
interleaving or skewing and provides access to all 2002 sectors on the
disk. Logical or virtual I/O starts on track 1 and provides access to
494 logical blocks.

5.1.11 RX211/RX02 Flexible Disk

The RX211 controller/RX02 flexible disk is an economical storage
system for low-volume, random access storage. It is capable of
operating in either an industry-standard, single-density mode (as
stated for the RXll/RXOl flexible disk), or a double-density mode (not
industry standard). In the single-density mode, each drive can store
data exactly as stated in Section 5.1.10. In the double-density mode,
data is stored in twenty-six 128-word sectors per track; there are 77
tracks per disk. The RX211/RX02 operating in the single-density mode
can read disks written by an RXll/RXOl flexible disk system. In
addition, disks written by the RX211/RX02 operating in the
single-density mode can be read by the RXll/RXOl flexible disk system.

5.1.12 ML-11 Disk Emulator

The ML-11 is a fast, random access, block-mode MOS memory system. The
RSX-llM and RSX-llM-PLUS operating systems treat the ML-11 as a disk.
However, since it is not a disk, the statistics in Table 5-1 do not
apply. Unlike a disk, the number of bytes per drive varies. One
ML-11 provides from 512 blocks to 8192 blocks of storage.

5.1.13 UDASO/RA60/RA80/RA81 Disks

The ODA controller is an intelligent disk controller, which contains a
high-speed microprogrammed processor capable of performing all disk
functions, including data handling, error detection and correction,
and optimization of disk drive activity and data transfers. The types
of drives that can be connected to the UDA50 controllers are the RA60
disk drive, which has a removable pack, and the RASO and RA81, both of
which are fixed media drives. (For data capacities and rates, see
Table 5-1.) Up to four of these drives can be connected to a ODA, in
any desired combination.

The ODA controller also has two addressable registers in the I/O page
that are used for the initialization sequence and to initiate polling
of command packet buffers in memory. In addition, this controller is
also capable of carrying out an extensive self-test on power-up or
initialization.

5-4 April 1983

DISK DRIVERS

5.1.14 RC25 Disk Subsystem

The RC25 Subsystem combines, in one package, a controller and a single
disk drive that has a removable disk and a fixed disk. These disks
reside in the drive as two separate logical units on a single spindle.
Their size is the same. Both are single eight-inch disks with two
surfaces, and both disks have the same data capacity. But
mechanically they are different: One is a removable front-loading
cartridge disk, while the other cannot be removed from the drive. The
drive is designed with loadable Winchester type heads.

An additional disk drive can be added to
providing a dual spindle configuration
removable disks. The added-on disk drive
subsystem that has the controller.

the RC25 Disk Subsystem,
with two fixed and two

is a slave to the disk

5elel5 RD51 Fixed 5.25 Disk/RX50 Flexible 5.25 Disk

This subsystem is designed to serve a hard(RD)/flexible(RX) disk
combination that can be used as a mass storage medium for small
systems. The basic configuration for this mass storage scheme is an
RD51 fixed disk drive and an RX50 flexible dual disk drive. In this
configuration, the RD51 is the system device and the RX50 is used as a
data device and/or as a backup. The RX50 dual disk is addressed as
two separate units resulting in a basic configuration of three disk
units. Also, another RD51 can be added to increase storage capacity.
Some of the characteristics of the RD/RX drives are given in Table 5-1
and in the following paragraphs.

The RD51 disk drive is a 5.25 inch fixed disk with Winchester type
heads. It has two disks with four data surfaces. The RD51 is soft
sectored and field formattable. The headers for each sector contain
the sector's cylinder number, head number, and sector number. The
sector number is the logical sector number (0-15) that reflects the
sector interleave of the disk.

The RX50 dual diskette drive is a compact mass storage drive with two
access slots. Each slot can hold a single-sided 5.25 flexible disk.
These diskettes are firm sectored and are not field formattable.
Every track has sectors numbered from 1 to 10. The two diskettes
share the same head transport mechanism.

5.2 GET LON INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for disks. A bit setting of 1 indicates that the
described characteristic is true for disks.

5-4.1 April 1983

DISK DRIVERS

Bit Setting Meaning

0 0 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 1 File structured device

4 0 Single-directory device

5 0 Sequential device

6 1 Mass storage device

7 x User-mode diagnostics supported (device
dependent)

8 x Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo-device

13 0 Device mountable as a communications
channel

14 1 Device mountable as a FILES-11 volume

15 1 Device mountable

Words 3 and 4 of the buffer contain the maximum logical block number.
Note that the high byte of U.CW2 is undefined. The user should clear
the high byte in the buffer before using the block number. For the
RASO disk, these two words are undefined until the device has been
accessed at least once. Word 5 indicates the default buffer size,
which is 512 bytes for all disks.

5. 3 QIO MACRO

This section summarizes the standard, and
functions for disk drivers.

5.3.1 Standard QIO Functions

device-specific QIO

Table 5-2 lists the standard functions of the QIO macro that are valid
for disks.

5-5

DISK DRIVERS

Table 5-2
Standard QIO Functions for Disks

QIO$C IO. ATT, •••

QIO$C IO. DET, •••

QIO$C IO.KIL, •••

Format

QIO$C IO.RLB, ••• ,<stadd,size,,blkh,blkl>

QIO$C IO.RVB, ••• ,<stadd,size,,blkh,blkl>

QIO$C IO.WLB, ••• ,<stadd,size,,blkh,blkl>

QIO$C IO.WLC, ••• ,<stadd,size,,blkh,blkl>

QIO$C IO.WVB, ••• ,<stadd,size,,blkh,blkl>

Function

Attach devicel

Detach device

Kill I/02

READ logical block

READ virtual block

WRITE logical block

WRITE logical block
followed by write
check3

WRITE virtual block

1. In RSX-llM systems, only unmounted volumes may be attached;
in RSX-llM-PLUS systems, only volumes mounted foreign may be
attached. Any other attempt to attach a mounted volume will
result in an IE.PRI status being returned in the I/O status
doubleword.

2. In-progress disk operations are allowed to complete when
IO.KIL is received, because they take such a short time. I/O
requests that are queued when IO.KIL is received are killed
immediately. An IE.ABO status is returned in the I/O status
doubleword.

3. Not supported on RXOl or RX02 flexible disks.

stadd

size

The starting address of the data buffer (must be on a word
boundary) •

The data buffer size in bytes (must be even, greater than O, and,
for the RP02 and RP03, also a multiple of four byte·s~.

blkh/blkl

Block high and block low, combining to form a double-precision
number that indicates the actual logical/virtual block address on
the disk where the transfer starts; blkh represents the high 8
bits of the address, and blki the low 16 bits.

5-6

DISK DRIVERS

IO.RVB and IO.WVB are associated with file operations (see the
IAS/RSX-11 I/O Operations Reference Manual). For these functions to
be executed,~a-file must be open on the specified LUN if the volume
associated with the LUN is mounted. Otherwise, the virtual I/O
request is converted to a logical I/O request using the specified
block numbers.

NOTE

When writing a new file using QIOs, the
task must explicitly issue .EXTND File
Control System library routine calls as
necessary to reserve enough blocks for
the file, or the file must be initially
created with enough blocks allocated for
the file. In addition, the task must
put an appropriate value in the FDB for
the end-of-file block number (F.EFBK)
before closing the file. (Refer to the
.EXTND routine description in the
IAS/RSX-11 I/O Operations Reference
Manual.) ~-

Each disk driver supports the subfunction bit IQ.X: inhibit retry
attempts for error recovery. The subfunction bit is used by ORing it
into the desired QIO; for example:

QIO$C IO.WLB!IQ.X, ••• ,<stadd,size,,blkh,blkl>

The IQ.X subfunction permits user-specified retry algorithms for
applications in which data reliability must be high.

The overlapped seek drivers for RSX-llM-PLUS support subfunction bit
IQ.Q: queue the request immediately without doing a seek (that is,
use implied seeks).

5.3.2 Device-Specific QIO Functions

The device-specific functions of the QIO macro are valid for the RXOl
only; they are shown in Table 5-3.

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

Table 5-3
Device-Specific Functions for the

RX01,RX02, RLOl, and RL02 Disk Drivers

Format Function

IO.RPB, ••• ,<stadd,size,,,pbn> Read physical block

IO.SEC, ••• Sense diskette characteristics
(RX02 only)

IO.SMD, ••• ,<density,,> SET media density (RX02 only)

IO.WDD, ••• ,<stadd,size,,,pbn> Write physical block (with deleted
data mark) (RXOl and RX02 only)

IO.WPB, ••• ,<stadd,size,,,pbn> Write physical block

5-7

DISK DRIVERS

stadd

The starting address of the data buffer (must be on a word
boundary).

size

The data buffer size in bytes must be even and greater than 0).

pbn

The physical block number where the transfer
validation will occur).

density

The media density as follows:

0 single (RXOl-compatible) density
2 double density

5.3.3 Device-Specific QIO Function for the RASO

starts (no

The RA80 driver supports the device-specific QIO function shown in
Table 5-4.

Table 5-4
Device-Specific QIO Function for the RA80 Disk Driver

Format Function

QIO$C IO.RLC, ••• ,<stadd,size,,blkh,blkl> Read Logical with Read Check
modifier

5.4 STATUS RETURNS

The error and status conditions listed in Table 5-5 are returned by
the disk drivers described in this chapter.

Table 5-5
Disk Status Returns

Code Reason

rs. sue Successful completion

I The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing.

(continued on next page)

5-8

Code

IS.PND

IS.ROD

IE.ABO

IE.ALN

IE.BLK

IE.BBE

IE.BYT

IE.DNR

DISK DRIVERS

Table 5-5 (Cont.)
Disk Status Returns

Reason

I/O request pending

The operation specified in the QIO d_irective has
not yet been executed. The I/O status block is
filled with Os.

Deleted data mark read

A deleted record was encountered while executing an
IO.RPB function. The second word of the I/O status
block can be examined to determine the number of
bytes processed (RXOl and RX02 only) •

Request aborted

An I/O request was queued (not yet acted upon by
the driver) when an IO.KIL was issued.

File already open

The task attempted to open a file on the physical
device unit associated with specified LUN, but a
file has already been opened by the issuing task on
that LUN.

Illegal block number

An illegal logical block number was specified.
This code would be returned, for example, if block
4800 were specified for an RK05 disk, on which
legal block numbers extend from 0 through 4799.
IE.BLK would also be returned if an attempt was
made to write on the last track of an RK06 disk.
(See Section 5.5.)

Bad block error

The disk sector (block) being read was marked as a
bad block in the header word.

Byte-aligned buffer specified

Byte alignment was specified for a buffer, but only
word alignment is legal for disk. Alternatively,
the length of a buffer is not an appropriate number
of bytes. For example, all RP03 and RP02 disk
transfers must be multiples of four bytes.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation.

(continued on next page)

5-9

Code

IE.FHE

IE. IFC

IE.NLN

IE. NOD

IE.OFL

IE. OVR

IE. PR!

DISK DRIVERS

Table 5-5 (Cont.)
Disk Status Returns

Reason

Fatal hardware error

The controller is physically unable to reach the
location where input/output operation is to be
performed. The operation cannot be completed.

Illegal function

A function code was specified in an I/O request
that is illegal for disks.

File not open

The task attempted to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate
a secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for this operation.

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Illegal read overlay request

A read overlay was requested, and the physical
device unit specified in the QIO directive was not
the physical device unit from which the task was
installed. The read overlay function can only be
executed on the physical device unit from which the
task image containing the overlays was installed.

Privilege violation

I
The task that issued the request was not privileged 1·

to execute that request. For disk, this code is
returned if a nonprivileged task attempts to read
or write a mounted volume directly (that is, using
IO.RLB or IO.WLB). Also, this code is returned if
any task attempts to attach a mounted volume.

(continued on next page)

5-10

Code

IE.SPC

IE.VER

IE.WCK

IE.WLK

DISK DRIVERS

Table 5-5 (Cont.)
Disk Status Returns

Reason

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
0 was specified.

Unrecoverable error

I
After the system's standard number of retries has
been attempted upon encountering an error, the

I
operation still could not be completed. For disk,
unrecoverable errors are usually parity errors.

Write check error

I
An error was detected
portion of an operation.

Write-locked device

during the write check

The task attempted to write on a disk that was
write-locked.

When a disk I/O error condition is detected, an error is usually not
returned immediately. Instead, RSX-llM attempts to recover from most
errors by retrying the function as many as eight times. Unrecoverable
errors are generally parity, timing, or other errors caused by a
hardware malfunction.

5.5 PROGRAMMING HINTS

For the RK611 controller/RK06 or RK07 disk, the RLll controller/RLOl
or RL02 disk, RM02 disk, RM03 disk, RM05 disk, RM80 disk, and RP07
disk, the driver write-protects the last track of the cartridge. This
track contains the factory-recorded bad-sector file.

5-11

CHAPTER 6

DECTAPE DRIVER

6.1 INTRODUCTION

The RSX-llM DECtape driver supports the TCll-G dual DECtape controller
with up to three additional dual DECtape transports. The TCll-G is a
dual-unit, bidirectional, magnetic-tape transport system for auxiliary
data storage. DECtape is formatted to store data at fixed positions
on the tape, rather than at unknown or variable positions as on
coventional magnetic tape. The system uses redundant recording of the
mark, timing, and data tracks to increase reliability. Each reel
contains 578 logical blocks. As with disk, each of these blocks can
be accessed separately, and each contains 256 words.

6.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get
directive (the first characterics word)
information for DECtapes. A bit setting of
described characteristic is true for DECtapes.

LUN Information system
contains the following

1 indicates that the

Bit Setting Meaning

0 0 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 1 File structured device

4 0 Single-directory device

5 0 Sequential device

6 1 Mass storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit addressing

9 0 Unit software write-locked

6-1

I

Bit Setting

10 0

11 0

12 0

13 0

14 1

15 1

DECTAPE DRIVER

Meaning

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications
channel

Device mountable as a FILES-11 volume

Device mountable

Words 3 and 4 of the buffer contain the maximum LBN. Word 5 indicates
the default buffer size, 512 bytes, for DECtape.

6. 3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the DECtape driver.

6.3.1 Standard QIO Functions

Table 6-1 lists the standard functions of the QIO macro that are valid
for DECtape.

Table 6-1
Standard QIO Functions for DECtape

Format Function

QIO$C IO.ATT, ••• Attach devicel

QIO$C IO.DET, ••• Detach device

QIO$C IO. KIL, ••• Kill I/02

QIO$C IO.RLB, ••• ,<stadd,size,,,lbn> READ logical block (forward)

I
I

I

I
QIO$C IO.RVB, ••• ,<stadd,size,,,lbn> READ virtual block (forward) I

I

l
QIO$C IO.WLB, ••• ,<stadd,size,,,lbn> WRITE logical block (forward)

QIO$C IO.WVB, ••• ,<stadd,size,,,lbn> WRITE virtual block {forward)

1. Only unmounted volumes may be attached. An attempt to attach a
mounted volume will result in an IE.PRI status being returned in the
I/O status doubleword.

2. In-progress DECtape operations are allowed to complete when
IO.KIL is received, unless the unit is not ready, because they take
such a short time. I/O requests that are queued when IO.KIL is
received are killed. An IE.ABO status is returned in the I/O status
doubleword.

6-2

stadd

size

lbn

DECTAPE DRIVER

The starting address of the data buffer {must be on a word
boundary) •

The data buffer size in bytes {must be even and greater than 0).

The logical block number on the DECtape where the transfer starts
(must be in the range 0-577).

IO.RVB and IO.WVB are associated with file operations (see the
IAS/RSX-11 I/O Operations Reference Manual). For these functions to
be executed,~a-file must be open on the specified LUN if the volume
associated with the LUN is mounted. Otherwise, the virtual I/O
request is converted to a logical I/O request using the specified
block numbers.

6.3.2 Device-Specific QIO Functions

The device-specific functions of the QIO macro that are valid for
DECtape are shown in Table 6-2.

Table 6-2
Device-Specific Functions for DECtape

Format Function

QIO$C IO.RLV, ••• ,<stadd,size,,,lbn> READ logical block (reverse)

QIO$C IO.WLV, ••• ,<stadd,size,,,lbn> WRITE logical block (reverse)

stadd

size

lbn

The starting address of the data buffer {must be on a word
boundary).

The data buffer size in bytes {must be even and greater than 0).

The transfer starts (must be in the range 0-577).

6-3

DECTAPE DRIVER

6.4 STATUS RETURNS

The error and status conditions listed in Table 6-3 are returned by
the DECtape driver described in this chapter.

Code

rs.sue

IS. PND

IE.ABO

IE.ALN

IE.BLK

IE. BYT

I IE.DNR

IE. IFC

Table 6-3
DECtape Status Returns

Reason

Successful completion

The operation specified in the QIO
completed successfully. The second
status block can be examined to
number of bytes processed, if
involved reading or writing.

I/O request pending

directive was
word of the I/O
determine the
the operation

The operation specified in the QIO directive has
not yet been executed. The I/O status block is
filled with Os.

Request aborted

An I/O request was queued (not yet acted upon by
the driver) when an IO.KIL was issued.

File already open

The task attempted to open a file on the physical
device unit associated with the specified LUN, but
a file has already been opened by the issuing task
on that LUN.

Illegal block number

An illegal logical block number was specified for
DECtape. The number exceeds 577 (1101 (8)).

Byte-aligned buffer specified

Byte alignment was specified for a buffer, but only
word alignment is legal for DECtape. Alternately,
the length of the buffer is not an even number of
bytes.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation.

Illegal function

A function code was specified in an I/O request
that is illegal for DECtape.

(continued on next page)

6-4

Code

IE.NLN

IE.NOD

IE.OFL

IE.OVR

IE. PRI

IE. SPC

DECTAPE DRIVER

Table 6-3 (Cont.)
DECtape Status Returns

Reason

File not open

The task attempted to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

I
Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate

I a secondary control block. For example, if a task

I

I attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for this operation.

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Illegal read overlay request

A read overlay was requested and the physical
device unit specified in the QIO directive was not
the physical device unit from which the task was
installed. The read overlay function can only be
executed on the physical device unit from which the
task image containin9 the overlays was installed.

Privilege violation

The task that issued the request was not privileged
to execute that request. For DECtape, this code is
returned when a nonprivileged task attempts to read
or write a mounted volume directly (that is,
IO.RLB, IO.RLV, IO.WLB, or IO.WLV). Also, this
code is returned if any task attempts to attach a
mounted volume.

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
O was specified.

(continued on next page)

6-5

Code

IE.VER

IE.WLK

DECTAPE DRIVER

Table 6-3 (Cont.)
DECtape Status Returns

Reason

Unrecoverable error

After the system's standard number of retries has
been attempted upon encountering an error, the
operation still could not be completed. For
DECtape, this code is returned to indicate any of
the following conditions.

• A parity error was encountered.

• The task attempted a forward multiblock transfer
past block 577 (1101 (8)).

• The task attempted a
transfer past block O.

Write-locked device

backward multi block

The task attempted to write on a DECtape unit that
was physically write-locked.

6.4.1 DECtape Recovery Procedures

When a DECtape I/O error condition is detected, RSX-llM attempts to
recover from the condition by retrying the function as many as five
times. Unrecoverable errors are generally parity, mark track, or
other errors caused by a faulty recording medium or a hardware
malfunction. An unrecoverable error condition also occurs when a read
or write operation is performed past the last block of the DECtape on
a forward operation, or the first block of the DECtape on a reverse
operation.

In addition to the standard error conditions, an unrecoverable error
is reported when the "rock count" exceeds 8. The rock count is the
number of times the DECtape driver reverses the direction of the tape
while looking for a block number. Assume that the block numbers on a
portion of DECtape are 99, 96, and 101, where one bit was dropped from
block number 100, making it 96. If an I/O request is received for
block 100' and the tape is positioned at block 99, the driver starts
searching forward for block 100. The first block to be encountered is
96 and, because the driver is searching for block 100 in a forward
direction and 96 is less than 100, the search continues forward.
Block 101 is the next block and, because number 101 is greater than
100, the driver reverses the direction of the tape and starts to
search backwarde The next block number in this direction is 96, and
the direction is reversed again because 100 is greater than 96. To
prevent the DECtape from being hung in this position, continually
rocking between block numbers 96 and 100, a maximum rock count of 8
has been established.

DECTAPE DRIVER

6.4.2 Select Recovery

If the DECtape unit is in an off-line condition when the I/O function
is performed, the message shown below is output on the operator's
console.

*** DTn: -- SELECT ERROR

where n is the unit number of the drive that is currently off line.
The user should respond by placing the unit to REMOTE. The driver
retries the function, from the beginning, once every second. It
displays the message once every 15 seconds until the appropriate
DECtape unit is selected. A select error may also occur when there
are two drives with the same unit number or when no drive has the
appropriate unit number.

6.5 PROGRAMMING HINTS

This section
considerations
this chapter.

contains
relevant

6.5.1 DECtape Transfers

information on important programming
to users of the DECtape driver described in

If the transfer length on a write is less than 256 words, a partial
block is transferred with zero fill for the rest of the physical
block. If the transfer length on a read is less than 256 words, only
the number of words specified is transferred. If the transfer length
is greater than 256 words, more than one physical block is
transferred.

6.5.2 Reverse Reading and Writing

The DECtape driver supports reverse reading and writing, because these
functions speed up data transfers in some cases. A block should
normally be read in the same direction in which it was written. If a
block is ·read from a DECtape into memory in the opposite direction
from that in which it was written, it is reversed in memory (for
example, word 255 becomes word 0, and 254 becomes word 1). If this
occurs, the user must then reverse the data within memory.

6.5.3 Speed Considerations When Reversing Direction

It is possible to reverse direction at any time while reading or
writing DECtape. However, the user should understand that reversing
direction substantially slows down the movement of the tape. Because
DECtape must be moving at a certain minimum speed before reading or
writing can be performed, a tape block cannot be accessed immediately
after reversing direction. Two blocks must be bypassed before a read
or write function can be executed, to give the tape unit time to build
up to normal access speed. Furthermore, when a request is issued to
read or write in a certain direction, the tape first begins to move in
that direction, then starts detecting block numbers. The following
examples illustrate these principles.

6-7

DECTAPE DRIVER

If a DECtape is positioned at block number 12 and the driver receives
a request to read block 10 forward, the tape starts to move forward,
in the direction requested. When block number 14 is encountered, the
driver reverses the direction of the tape, since 14 is greater than
10. The search continues backward, and block numbers 11 and 10 are
encountered. Because the direction must be reversed and the driver
requires two blocks to build up sufficient speed for reading, block
number 9 and 8 are also bypassed in the backward direction. Then the
direction is reversed and the driver encounters blocks 8 and 9 forward
before reaching block number 10 and executing the read request.

6.5.4 Aborting a Task

If a task is aborted while waiting for a unit to be selected, the
DECtape driver recognizes this fact within 1 second.

6-8

CHAPTER 7

DECTAPE II DRIVER

7.1 INTRODUCTION

The DECTAPE II {TU58) driver supports TU58 system hardware, providing
low-cost, block-replaceable mass storage.

7.1.l TUS8 Hardware

Each TU58 DECTAPE II system consists of one or two TU58 cartridge
drives, one tape drive controller, and one DLll-type serial line
interface. Each TU58 drive functions as a random access,
block-formatted mass storage device. Each tape cartridge is capable
of storing 512(10) blocks of 512(10) bytes each. Access time averages
10 seconds. All I/O transfers (commands and data) occur by means of
the serial line interface at serial transmission rates of 9600 bps.
All read and write check operations are performed by the controller
hardware using a 16-bit checksum. The controller performs up to eight
attempts to read a block, as necessary, before aborting the read
operation and returning a hard error; however, whenever more than one
read attempt is required for a successful read, the driver is notified
in order to report a soft error message to the error logger.

7.1.2 TU58 Driver

The TU58 driver communicates with the TU58 hardware by means of a
serial line interface (DLll); no other interface is required. All
data and command transfers between the PDP-11 system and the TU58 are
done with programmed I/O and interrupt-driven routines; NPRs are not
supported.

7.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for the TU58. A bit setting of 1 indicates that the
described characteristic is true for this device.

7-1

DECTAPE II DRIVER

Bit Setting Meaning

0 0 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 1 File-structured device

4 0 Single-directory device

5 0 Sequential device

6 1 Mass storage device

7 1 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 1 Device mountable as a FILES-11 volume

15 1 Device mountable

Words 3 and 4 of the buffer are a double-precision number specifying
the total number of blocks on the device; this value is 512(10)
blocks. Word 5 indicates the default buffer size, which is 512(10)
bytes.

7.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the TU58.

7.3.1 Standard QIO Functions

Table 7-1 lists the standard QIO system directive functions of the QIO
macro that are valid for the TU58.

7-2

I
I

DECTAPE II DRIVER

Table 7-1
Standard QIO Functions for the TU58

Format Function

QIO$C IO.ATT, ••• Attach device

QIO$C IO.DET, ••• Detach device

QIO$C IO. KIL, ••• Cancel I/O requestsl

QIO$C IO.RLB, ••• ,<stadd,size,,,lbn> READ logical block

QIO$C IO.WLB, ••• ,<stadd,size,,,lbn> WRITE logical block

1. In-progress operations are allowed to complete when IO.KIL
is received. I/O requests that are queued when IO.KIL is
received are killed.

stadd

size

lbn

The starting address of the data buffer (must be on a word
boundary).

Th~ data buffer size in bytes (must be even and greater than 0).

The logical block number on the cartridge tape where the data
transfer starts (must be in the range of 0-777).

7.3.2 Device-Specific QIO Functions

The device-specific QIO system directive functions that are valid for
the TU58 are shown in Table 7-2.

Table 7-2
Device-Specific QIO Functions for the TU58

Format Function

QIO$C IO.WLC, ••• ,<stadd,size,,,,lbn> WRITE logical block with check

QIO$C IO.RLC, ••• ,<stadd,size,,,,lbn> READ logical block with check

QIO$C IO.BLS!IQ.UMD, ••• ,<lbn> POSITION tape

QIO$C IO.DGN!IQ.UMD,... Run internal diagnostics

7-3

stadd

size

lbn

DECTAPE II DRIVER

The starting address of the data buffer (must be on a word
boundary) •

The data buffer size in bytes (must be even and grea~er than 0).

The logical block number on the cartridge tape where the data
transfer starts (must be in the range of 0-777).

Additional details for device-specific QIO functions are provided in
the following paragraphs.

7.3.2.1 IO.WLC - The IO.WLC function writes the specified data onto
the tape cartridge. A checksum verification is then performed by
reading the data just written; data is not returned to the task
issuing the function. An appropriate status, based on the checksum
verification, is returned to the issuing task.

7.3.2.2 IO.RLC - The IO.RLC function reads the tape with an increased
threshold in the TUSB's data recovery circuit. This is done as a
check to insure data read reliability.

7.3.2.3 IO.BLS - The IO.BLS function is used for diagnostic purposes
to position the tape to the specified logical block number. If you
specify IO.BLS, you must use the IQ.UMD subfunction (see Chapter 1).

7.3.2.4 IO.DGN - The IO.DGN function is used for diagnostic purposes
to execute the TU58's internal (firmware) diagnostics. Appropriate
status information is returned to the issuing task by the I/O status
block. If you specify IO.DGN, you must use the IQ.UMD subfunction
(see Chapter 1).

7.4 STATUS RETURNS

Table 7-3 lists the error and status conditions that are returned by
the TU58 driver.

7-4

I
Code

rs.sue

IE.DNR

IE.IFC

IE.FHE

IE.TMO

IE.VER

IE.WLK

DECTAPE II DRIVER

Table 7-3
TU58 Driver Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number of
bytes processed, if the operation involved reading or
writing.

Device not ready

The physical device unit specified in the QIO directive
was not ready to perform the desired I/O operation.

Illegal function

A function code was specified in an I/O request that is
illegal for the TU58.

Fatal hardware error

Time-out error

The TU58 failed to respond to a function within the
normal time specified by the driver.

Unrecoverable error

After the system's standard number of retries (8) has
been attempted upon encountering an error, the operation
still could not be successfully completed.

Cartridge write-locked

The task attempted to write on a tape cartridge that is
physically write-locked.

7-5

CHAPTER 8

MAGNETIC TAPE DRIVERS

8.1 INTRODUCTION

RSX-llM and RSX-llM-PLUS support a variety of magnetic tape devices.
Table 8-1 summarizes these devices and subsequent sections describe
them in greater detail.

Programming for magtape is quite similar
magnetic tape cassette (see Chapter 9).
magtape can handle variable-length records
select a parity mode.

8.1.1 TE10/TU10/TS03 Magnetic Tape

to programming for the
Unlike cassette, however,

and allows the user to

The TE10/TU10/TS03 consists of a TMll controller with a TElO, TUlO, or
TS03 transport. It is a low-cost, high-performance system for serial
storage of large volumes of data and programs in an
industry-compatible format. All recording is nonreturn-to-zero,
inverted (NRZI).

8.1.2 TE16/TU16/TU45/TU77/TU78 Magnetic Tape

The TE16/TU16/TU45/TU77/TU78 consists of an RH11/RH70 controller, a
TM02, TM03, or TM78 formatter, and a TE16/TU16/TU45/TU77/TU78
transport. They are quite similar to the TE10/TU10 but are Massbus
devices, with a common controller, a specialized formatter, and
drives. Recording is either 800 bpi NRZI or 1600 bpi phase-encoded
(PE) for the TE16/TU16/TU45/TU77. The TU78 records in 1600 bpi
phase-encoded or 6250 bpi GCR modes.

8.1.3 TS11/TU80 Magnetic Tape

The TSll and TOSO are integrated subsystems. Each has a drive, a
controller, and a formatter. The hardware is microprocessor
controlled for all operations, including I/O transfers, tape motion,
and so forth, and has comprehensive (internal) diagnostic test
execution. Recording is 1600 bpi phase-encoded (PE).

The TSll operates in conventional start and stop mode while the TU80 I
operates at either low speed (start and stop mode) or high speed
(streaming mode). Tape speed is microprocessor controlled.

8-1 April 1983

MAGNETIC TAPE DRIVERS

8.1.4 TSVOS Magnetic Tape

The TSV05 tape subsystem is a Q BUS device. It is an integrated
subsystem with a drive, a controller, and a formatter. The hardware
is microprocessor controlled for all operations, including I/O
transfers, tape motion, and so forth and has comprehensive (internal)
diagnostic test execution. Recording is 1600 bpi phase-encoded (PE).
The TSV05 operates at 25 inches per second.

Devices Channels

TE10,T010 9 (TElO)
7 or 9 (T010)

TE16,!l'Ul6 9

T045 9

T077 9

TS0-3 9

TSll 9

T078 9
I

TOSO 9

TSV05 9

1. Low Speed
2. High Speed

Table 8-1
Standard Magtape Devices

Maximum Data
Recording Density Tape Speed Transfer Rate
(Frames/Inch) (Inches/Second) (Bytes/Second)

For 7-channel: 45 36,000
200, 556, or
800
For 9-channel:
800

800 or 1600 45 For 800 bpi:
36,000
For 1600 bpi:
72,000

800 or 1600 75 For 800 bpi:
60,000
For 1600 bpi:
120,000

800 or 1600 125 For 800 bpi:
100,000
For 1600 bpi:
200,000

800 15 12,000

1600 45 72,000

1600 or 6250 125 For 1600 bpi:
200,000
For 6250 bpi:
781,000

1600 251
100 2

40,0001
160,000 2

1600 25 40,000

8-2

Recording
Method

NRZI

NRZI or
Phase
Encoding

NRZI or
Phase
Encoding

NRZI or
Phase
Encoding

NRZI

Phase Encoding

Phase Encoding
or GCR (Group
Cyclical
Recording)

Phase Encoding

Phase Encoding

April 1983

MAGNETIC TAPE DRIVERS

8.2 GET LON INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for magtapes. A bit setting of 1 indicates that the
described characteristic is true for magtapes.

Bit Setting

0 0 or 1

1 0

2 0

3 0

4 0 or 1

5 1

6 1

7 0 or 1

8 0 or 1

9 0

10 0

11 0

12 0

13 0

14 0 or 1

15 0 or 1

Meaning

Record-oriented device (0 if the tape is
mounted, 1 if it is not)

Carriage-control device

Terminal device

File-structured device

Single-directory device (0 if the tape is not
mounted, 1 if it is}

Sequential device

Mass storage device

User-mode diagnostics supportedl

Massbus device (set only for TE16, TU16,
TU45, TU77, or TU78 drives interfaced by
means of an RH70 controller)l

Unit software write-locked

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications
channel

Device mountable as a FILES-11 volumel

Device mountablel

Words 3 and 4 of the buffer are undefined;
default buffer size, for magtapes 512 bytes.

word 5 indicates the

8.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the magtape drivers.

1. SYSGEN and device-dependent characteristic.

8-3

I

MAGNETIC TAPE DRIVERS

8.3.1 Standard QIO Functions

Table 8-2 lists the standard functions of the QIO macro that are valid
for magtape.

Table 8-2
Standard QIO Functions for Magtape

Format Function

QIO$C IO.ATT, ••• Attach device

QIO$C I 0. DET, ••• Detach device

QIO$C IO.KIL, ••• Cancel I/O requests

QIO$C IO.RLB, ••. ,<stadd,size> READ logical block
(read tape into buffer)

QIO$C IO.RVB, ••• ,<stadd,size> READ virtual block
(read tape into buffer)

QIO$C IO.WLB, ••• ,<stadd,size> WRITE logical block
(write buffer contents to tape)

QIO$C IO.WVB, ••• ,<stadd,size> WRITE virtual block
(write buffer contents to tape)

stadd

The starting address of the data buffer (must be on a word
boundary) •

size

The data buffer size in bytes. Size must be even, greater than
O, and, for a write, must be at least 14 bytes.

IO.KIL does not cancel an in progress request unless a select error
has occurred.

8.3.2 Device-Specific QIO Functions

Table 8-3 lists the device-specific functions of the QIO macro that
are valid for magtape. Additional details on certain functions appear
below.

8.3.2.1 10.RLV - The data appears in the specified buffer in a
fashion identical with IO.RLB or IO.RVB, as long as the data block has
the same length as the buffer.

8-4 April 1983

MAGNETIC TAPE DRIVERS

8.3.2.2 IO.RWD - Completion of IO.RWD means that the rewind has been
initiated. Additional operations on that controller may then be
queued. However, a request for the same unit will be queued by the
driver until load point {BOT) is reached.

8.3.2.3 IO.RWU - IO.RWU is normally used when operator intervention
is required (for example, to load a new tape). The operator must turn
the unit back on line manually before subsequent operations can
proceed.

Table 8-3
Device-Specific QIO Functions for Magtape

Format

QIO$C IO. DSE, •••

QIO$C IO. EOF, •••

QIO$C IO. ERS, .••

QIO$C IO.RLV, ••• ,<stadd,size>

QIO$C IO. RWD, •••

QIO$C IO.RWU, •••

QIO$C IO.SEC, •••

QIO$C IO.SMO, ••• ,<cb>

QIO$C IO.SPB, ••• ,<nbs>

QIO$C IO.SPF, ••. ,<nes>

QIO$C IO.STC, ••• ,<cb>

cb

Function

Data Security Erase (TU78 only)

Write end-of-file mark (tape mark)

Erase (TElO and TUlO not
supported)

READ logical block reverse (TElO
and TUlO not supported.)

Rewind unit

Rewind and turn unit off line

Sense tape characteristics

MOUNT tape and set tape
characteristics (Unit must be
READY, tape at LOAD POINT.)

SPACE blocks

SPACE files

SET tape characteristics

The characteristic bits to set.

nbs

The number of blocks to space past (positive if forward;
negative if reverse).

8-5 April 1983

I

I

nes

size

stadd

MAGNETIC TAPE DRIVERS

The number of EOF marks to space past (positive if forward,
negative if reverse).

The size of the stadd data buffer in bytes (must be an even
number of bytes greater than 0) •

The starting address of the data buffer (may be on a byte
boundary) •

8.3.2.4 IO.ERS - Erases 3 inches of (write blank) tape, effectively
providing an extended interrecord gap. (Not supported on TUlO and
TElO.)

8.3.2.5 IO.DSE - The TU78 will erase from the current position to
end-of-tape and then rewind the tape to beginning-of-tape.

8.3.2.6 IO.SEC - This function returns the tape characteristics in
the second I/O status word. The tape characteristic bits are defined
as follows:

Bit

0

1

2

3

Meaning When Set

For TUlO, 556 bpi
density (7-channel).
For TE16, TU16, TU45, TU77,
TU78, and TSll, reserved.

For TUlO, 200 bpi
density (7-channel).
For TE16, TU16, TU45, TU77, and
TU78, reserved.

For TSll, TOSO, and TSV05,
swap byte mode (read/write).

For TUlO, core-dump
mode (7-channel, see below).
For TE16, TU16, TSll, TU45,
TU77, and TU78 reserved.

Even parity (default is odd).
(Not selectable for the TSll.)

4 Tape is past EOT.

5 Last tape command encountered
EOF (unless last command was
backspace) .

8-6

Can Be Set by
IO.SMO and IO.STC

x

x

x

x

April 1983

MAGNETIC TAPE DRIVERS

Can Be Set by
Bit Meaning When Set IO.SMO and IO.STC

6 Writing is prohibited. X

7 Writing with extended inter- X
record gap is prohibited
(that is, no recovery is attempted
after write error).

8 Select error on unit.

9 Unit is rewinding.

10 Tape is physically write-locked.

11

12

For TElO, TUlO, and TS03, reserved.
For all other tapes, 1600 bpi density.

For TUlO, drive is 7-channel.
For all other tapes, reserved.

13 Tape is at load point (BOT).

14 Tape is at end-of-volume (EOV).

15 Tape is past EOV (reserved for dri­
ver; always 0 when read by user).

x

In core-dump mode (TUlO only, 800 bpi density, and 7-channel), each
8-bit byte is written on 2 tape frames, 4 bits per frame. In other
modes on 7-channel tape, only 6 low-order bits per byte are written.

For the TSll, 1600 bpi density is always selected (bit 11=1). Bit 11
cannot be modified by either the IO.SMC or IO.STC functions. For
drives that use the TM03 controller, this bit can be either set or
cleared; however, once the tape is moved from the load (beginning of
tape) position (BOT), the device driver modifies this bit to reflect
the actual density of the tape currently mounted. You cannot change
bit 11 once the tape is moved beyond BOT. For the TU78, bit 11 set
indicates 1600 bpi and bit 11 clear indicates 6250 bpi. Bit 11 cannot
be set or cleared once the tape is moved beyond BOT.

The effect of these settings is illustrated in Figure 8-1 for the TElO
and TUlO, and in Figure 8-2 for the TE16, TU16, TU45, and TU77.

8-7 April 1983

I

SET EVEN
PARITY

SET 800 BPI,
NINE-CHANNEL

MAGNETIC TAPE DRIVERS

YES

YES

SET 800 BPI,
>--Y_ES __ _.. SEVEN-CHANNEL,

CORE-DUMP
MODE

SET 556 BPI, __ Y_E_s ___ -<

SEVEN-CHANNEL

YES SET 200 BPI.
SEVEN-CHANNEL

SET 800 BPI.
SEVEN-CHANNEL

ZK-002-8~

Figure 8-1 Determination of Tape Characteristics for the TE10/TU10

8-8

MAGNETIC TAPE DRIVERS

YES
SET 1600 BPI

NO

SET 800 BPI

YES SET
EVEN PARITY

ZK-003-81

Figure 8-2 Determination of Tape Characteristics
for the TE16/TU16/TU45/TU77

8.3.2.7 IO.SMO - This function can be used as a combination of the
sense (IO.SEC) and set (IO.STC) tape characteristics functions.
Unlike IO.STC, however, the IO.SMO function requires that the unit be
READY and the tape be at load point (BOT). If either of these
conditions is not met, the function returns an error status code of
IE.FHE (refer to Table 8-4).

The IO.SMO function should be used to set the characteristics of a
newly loaded tape. If the IE.FHE error code is returned, the tape
drive is not on line and is not at BOT.

8-9

MAGNETIC TAPE DRIVERS

8.4 STATUS RETURNS

The error and status conditions listed in Table 8-4 are returned by
the magtape drivers described in this chapter.

Code

rs.sue

IS.PND

IE.ABO

IE.BBE

IE.BYT

IE.DAA

Table 8-4
Magtape Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing. This code is also
returned if nbs equals 0 in an IO.SPB function or
if nes equals 0 in an IO.SPF function.

I/O request pending

The operation specified in the QIO directive has
not yet been completed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was canceled by IO.KIL
while in progress or while still in the I/O queue.

Bad block

A bad block was encountered while reading or
writing and the error persists after nine retries.
The number of bytes transferred is returned in the
second word of the I/O status block. For TMll,
IE.BBE may also indicate that a bad tape error
(BTE) has been encountered while reading or
spacing.

Byte-aligned buffer specified

Byte alignment was specified for a buffer, while
only word alignment is legal for the QIO.
Alternatively, the length of a buffer is not an
even number of bytes.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

(continued on next page)

8-10

Code

IE.DAO

IE.DNA

IE.DNR

IE.EOF

IE.EQT

MAGNETIC TAPE DRIVERS

Table 8-4 (Cont.)
Magtape Status Returns

Reason

Data overrun

On a read, a record exceeded the stated buffer
size. The final portion of the buffer is checked
for parity, but is not read into memory.

Device not attached

The physical device unit specified in an IO.DET I

function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one
of the following conditions:

• A time-out occurred on the physical device unit
(that is, an interrupt was lost).

• A vacuum failure occurred on the magtape drive.

• While trying to read or space, the driver
detected blank tape.

• The LOAD switch on the physical drive was
switched to the off position.

• The unit failed internal diagnostic tests (TS04
only)

End-of-file encountered

An end-of-file (tapemark) was encountered.

End-of-tape encountered

The end-of-tape {physical end-of-volume) was
encountered while the tape was moving in the
forward direction. A 10-foot length of tape is
provided past EOT to be used for writing data and
markers, such as volume trailer labels. The IE.EQT
code will continue to be returned in the I/O status
block until the EOT marker is passed in the reverse
direction. IE.EQT is not returned on a read
operation.

(continued on next page)

8-11

Code

IE.EOV

IE.FHE

IE.IFC

IE.OFL

IE.SPC

IE.VER

IE.WLK

MAGNETIC TAPE DRIVERS

Table 8-4 (Cont.)
Magtape Status Returns

Reason

End-of-volume encountered (unlabeled tape)

On a forward space function, the logical
end-of-volume was encountered. An end-of-volume is
two consecutive end-of-file marks (EOF), or a
beginning-of-tape mark (BOT) followed by an EOF.
The tape is normally left positioned between the
two marks.

Fatal hardware error

Nonrecoverable hardware malfunction: e.g., magtape
unit not READY and/or tape not at LOAD POINT when
IO.SMO is issued.

Illegal function

An illegal function (or subfunction bit) was
specified in a magtape I/O request. Refer also to
Section 8.4.3.

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. For magtape, this code is
also returned if a byte count of 0 was specified or
if the user attempted to write a block that was
less than 14 bytes long.

Unrecoverable error

After the system's standard number of retries has
been attempted upon encountering an error, the
operation still could not be completed. For
magtape, this code is returned in the case of CRC
or checksum errors or when a tape block could not
be read.

Write-locked device

The task attempted to write on a magtape unit that
was physically write-locked. Alternatively, tape
characteristic bit 6 was set by the software to
write-lock the unit logically.

8-12

MAGNETIC TAPE DRIVERS

After processing a QIO request, the magnetic tape driver returns two
status words. The first word contains one of the I/O status codes
listed in Table 8-4.

For successful QIO execution (IS.SUC) or read requests (IE.DAO), the
second I/O status word may contain further information. The
operations for which this is true, and the information returned, are
shown in Table 8-5. For all other cases this word is undefined.

Table 8-5
Information Contained in the Second I/O Status Word

I/O Function Code Information Returned

IO.RLB
I

Number of bytes transferred
IO. RLV Number of bytes transferred
IO.RVB Number of bytes transferred
IO.SEC Tape characteristics word
IO.SPB Number of records spaced over
IO.SPF Number of files spaced over
IO.WLB Number of bytes transferred
IO.WVB Number of bytes transferred

8.4.1 Select Recovery

If a request fails because the desired unit is off line, no drive has
the desired unit number, or has its power off, the following message
is output on the operator's console:

*** MTn: -- SELECT ERROR

n

The unit number of the specified drive.

The driver checks the unit for readiness and repeats the message every
15 seconds until the requesting task is aborted or the unit is made
available. In the latter case, the driver then proceeds with the
request.

8.4.2 Retry Procedures for Reads and Writes

If an error occurs during a read (for example, vertical parity error),
the recovery procedure depends on the type of magtape in use. Read
errors for TElO, TUlO, TS03, TE16, TU16, TU45, TU77, are retried by
backspacing one record and then rereading the record in question. If
the error persists after nine retries, IE.VER is returned. Read
errors for the TU78 are retried using a combination of backspacing one
record and then rereading the record in question, rereading in the
opposite direction, rereading at both normal/low thresholds, and
cleaning the tape.

8-13 April 1983

I

MAGNETIC TAPE DRIVERS

Read errors for the TSll, TOSO, and TSVOS are retired by rereading the
block in error a predetermined number of times. Every eighth reread,
the block is passed by the tape cleaner blade. If the error persists
after a predetermined number of retries, IE.VER is returned.

Write recovery is the same for all devices. When a write operation
fails, the driver attempts the following error recovery procedure:

1. Repositions the tape

2. Erases three inches of tape (resulting in an extended
interrecord gap)

3. Retries the write operation

If the error persists after a predetermined number of retries, IE.VER
is returned. The requesting task can use IO.STC to prohibit writing
with an extended interrecord gap. In this case, the tape is
backspaced and the write is retried.

8.4.3 Power-Fail Recovery for Magnetic Tapes

If a power failure and/or loss of vacuum occurs on a magnetic tape
drive, tape position is lost. (Note that an initial system boot
simulates a recovery from a power failure.) Additionally, on auto-load
drives, the tape will be positioned at BOT when the unit is turned on
line.

To prevent accidental destruction of data currently on tape, the
driver maintains a power-fail status indicator. When this indicator
is set, the driver disallows any data transfer or tape motion commands
until a rewind (IO.RWD), rewind unload (IO.RWU), or mount and set
characteristics (IO.SMC) function is issued. These functions clear
the power-fail indicator and allow all tape functions to be issued.
It is also possible to issue the set and sense characteristics
functions (IO.STC and IO.SEC) while the power-fail indicator is set.
These functions, however, will not clear the bit.

All functions other than those just described are considered illegal
and cause the return of the IE.IFC (illegal function) error code to
the requesting task. In situations where a tape is currently a
mounted volume, the tape should be dismounted and then remounted
before use. In doing this, the rewind command will be issued, thereby
clearing the power-fail indicator.

8.5 PROGRAMMING HINTS

This section
considerations
chapter.

contains information on important programming
relevant to users of magtape drivers described in this

8.5.1 Block Size

Each block must contain an even number of bytes, at least 14 for a
write and at most 65,534. However, tape usage is more efficient with
a larger buffer.

8-14 April 1983

MAGNETIC TAPE DRIVERS

8.5.2 Importance of Resetting Tape Characteristics

A task that uses magtape should always set the tape characteristics to
the proper value before beginning I/O operations. The task cannot be
certain in what state a previous task left these characteristics. It
is also possible that an operator might have changed the magtape unit
selection. If the selection switch is changed, the new physical
device unit may not correspond to the characteristics of the unit
described by the respective unit control block.

8.5.3 Aborting a Task

If a task is aborted while waiting for a rnagtape unit to be selected;
the magtape driver recognizes this fact within 1 second.

If a task is aborted while waiting for a magtape unit to complete a
space operation, the magtape driver may allow spacing to the next tape
mark.

8.5.4 Writing an Even-Parity Zero-NRZI

If an even-parity 0 were written normally, it would appear to the
drive as blank tape. It is therefore converted to 20 (8). If this
conversion is undesirable, the user must ensure that no even-parity Os
are output on the tape.

8.5.5 Density Selection

The TM03 and TM78 controllers impose the following density selection
restriction: The user cannot mix recording densities on any volume
associated with the controller.

Density for write operations is selected when the tape is at the load
(BOT) position. Density for read operations is hardware - selected
during the first read (away from BOT); after the first read, the
IO.SEC function can be used to determine (sense) tape density.

8.5.6 End-of-Volume Status {Unlabeled Tape)

The magnetic tape driver detects end-of-volume when it spaces over the
second of two consecutive tape marks. The tape is left positioned
between the two tape marks.

The magnetic tape driver returns the IE.EOV status code only on space
operations. IE.EOV is never returned by read operations.

For the purpose of checking for end-of-volume, the driver treats
beginning of tape (BOT) as a tape mark. Therefore, any forward space
operation from BOT that immediately encounters a tape mark will return
IE.EOV.

If a space operation stops between two tape marks but does not space
over the second one, the driver will return end of file rather than
end-of-volume. Any subsequent space operation from this point that
immediately spaces over the second tape mark will return
end-of-volume.

8-15

MAGNETIC TAPE DRIVERS

During IO.SPF operations, the driver considers all tape marks to be
files except for BOT and for the second tape mark spaced over at the
end of volume.

Note that both IO.SPF and IO.SPB operations leave the tape positioned
·a£ter the tape mark in the direction of travel.

If you want to treat two consecutive tape marks as end-of-volume on
read operations, your application must keep track of the tape marks.
The magnetic tape driver does not support two consecutive tape marks
as end-of-volume on read operations.

8.5.7 Resetting VCK Indicator

When the tape transport status for a TSll, TU80, or TSV05 changes
(goes on-line or off-line), further I/O operations are inhibited. A
deliberate I/O sequencing must occur to reset the VCK indicator and
allow physical I/O to proceed. This sequencing is done by issuing a
IO.RWD or IO.SMO QIO or including /RW or /REW switches to command
requests (such as DMP).

8-16 April 1983

CHAPTER 9

CASSETTE DRIVER

9.1 INTRODUCTION

RSX-llM supports the TAll magnetic tape cassette (a TAll controller
with a TU60 dual transport). Programming for cassette is quite
similar to programming for magtape (see Chapter 8). The TAll system
is a dual-drive, reel-to-reel unit designed to replace paper tape.
Its two drives run nonsimultaneously, using DIGITAL Proprietary
Philips-type cassettes.

The maximum capacity of a cassette, in bytes, is 92,000 (minus 300 per
file gap and 46 per interrecord gap). It can transfer data at speeds
of up to 562 bytes per second. Recording density ranges from 350 to
700 bits ber inch, depending on tape postion.

9.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for cassettes. A bit setting of 1 indicates that the
described characteristic is true for cassettes.

Bit

0

1

2

3

4

5

6

7

8

Setting

1

0

0

0

0

1

1

0

0

Meaning

Record-oriented device

Carriage-control device

Terminal device

File structured device

Single-directory device

Sequential device

Mass storage device

User-mode diagnostics supported

Device supports 22-bit direct addressing

9-1

CASSETTE DRIVER

Bit Setting Meaning

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 0 Device mountable as a FILES-11 volume

15 0 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, for cassettes 128 bytes.

9.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the cassette driver.

9.3.1 Standard QIO Functions

Table 9-1 lists the standard functions of the QIO macro that are valid
for cassette.

Table 9-1
Standard QIO Functions for Cassette

Format

QIO$C IO. ATT, •••

QIO$C IO.DET, •••

QIO$C IO.KIL, •••

QIO$C IO.RLB, ••• ,<stadd,size>

QIO$C IO.RVB, ••• ,<stadd,size>

QIO$C IO.WLB, ••• ,<stadd,size>

QIO$C IO.WVB, ••• ,<stadd,size>

9-2

Function

Attach device

Detach device

Cancel I/O requests

READ logical block
(read tape into buffer)

READ virtual block
(read tape into buffer)

WRITE logical block
(write buffer contents to
tape)

WRITE virtual block
(write buffer contents to
tape)

l
1

stadd

size

CASSETTE DRIVER

The starting address of the data buffer (may be on a byte
boundary).

The data buffer size in bytes (must be greater than 0).

IO.KIL does not affect in-progress requests.

9.3.2 Device-Specific QIO Functions

Table 9-2 lists the device-specific functions of the QIO macro that
are valid for cassette~ The section on programming hints below
provides more detailed information about certain functions.

9.4 STATUS RETURNS

The error and status conditions listed in Table 9-3 are returned by
the cassette driver described in this chapter.

nbs

nes

Table 9-2
Device-Specific QIO Functions for Cassette

Format Function

QIO$C IO.EOF, ••• Write end-of-file gap

QIO$C IO.RWD, •.• Rewind unit

QIO$C IO.SPB, ••• ,<nbs> SPACE blocks

QIO$C IO.SPF, ••• ,<nes> SPACE files

The number of blocks to space past {positive if forward, negative
if reverse).

The number of EOF gaps to space past {positive if forward,
negative if reverse).

9-3

Code

rs.sue

IS.PND

IE.ABO

IE.DAA

IE.DAO

IE.DNA

IE.DNR

CASSETTE DRIVER

Table 9-3
Cassette Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the
number of bytes processed if the operation involved
reading or writing, or. the number of blocks or
files spaced if the operation involved spacing
blocks or files.

I/O request pending

The operation specified in the QIO directive has
not yet been executed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was canceled by IO.KIL
while still in the I/O queue.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Data overrun

The driver was not able to sustain the data rate
required by the TAll controller.

Device not attached

The physical device unit specified by an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one
of the following conditions:

• The cassette has not been physically inserted.

• The unit is off line.

• A time-out occurred on the physical device unit
(that is, an interrupt was lost).

(continued on next page)

9-4

Code

IE.EQF

IE.EQT

IE.IFC

IE.QFL

IE.SPC

IE.VER

IE.WLR

CASSETTE DRIVER

Table 9-3 (Cont.)
Cassette Status Returns

Reason

End-of-file encountered

An end-of-file gap was recognized on the cassette
tape. This code is returned if an EQF gap is
encountered during a read, or if the cassette is
physically removed during an I/Q operation.

End-of-tape encountered

While reading or writing, clear trailer at
end-of-tape (EQT) was encountered. Unlike magtape,
writing beyond EOT is not permitted on cassettes*
This condition is always sensed on a write before
it would be sensed on a read of the same section of
tape. If IE.EQT is returned during a write, the
cassette head has encountered EQT before finishing
the writing of the last block. It is recommended
that the user entirely rewrite the block on another
cassette.

Illegal function

A function code was specified in an I/Q request
that is illegal fo~ cassette.

Device off line

The physical device unit associated with the LUN
specified in the QIQ directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternatively, a byte count
of 0 was specified on a transfer.

Nonrecoverable error

This code is returned when a block check error
occurs (see Section 9.6.5). The cyclic redundancy
check (CRC), a 2-byte value located at the end of
each block, is a checksum that is tested during all
read operations to ensure that data is read
correctly. This is returned if a read request did
not specify exactly the number of bytes of data in
the record on tape. If a nonrecoverable error is
returned, the user may attempt recovery by spacing
backward one block and retrying the read operation.

Write-locked device

The task attempted to write on a cassette unit that
was physically write-locked. This code may be
returned after an IQ.WLB, IQ.WVB, or IQ.EOF
function.

9-5

CASSETTE DRIVER

9.4.1 Cassette Recovery Procedures

If an error occurs during a read or write operation, the operation
should be retried several times. The recommended maximum number of
retries is nine for a read and three for a write because each retry
involves backspacing, which does not always position the tape in the
same place. More than three retries of a write operation may destroy
previously written data. For example, to retry a write, it is best to
space two blocks in reverse, then space one block forward. This
insures the tape is in the proper position to rewrite the block that
encountered the error.

After read and write functions, the second I/O status word contains
the number of bytes actually processed by the function. After spacing
functions, it contains the number of blocks or files actually spaced.

9.5 STRUCTURE OF CASSETTE TAPE

Figure 9-1 illustrates a general structure for cassette tape. A
different structure can be employed if the user wishes.

Here the tape consists of blocks of data interspersed with sections of
clear tape that serve as leader, trailer, interrecord gaps (IRGs), and
end-of-file gaps.

The logical end-of-tape in this case consists of a sentinel label
record, rather than the conventional group of end-of-file gaps. Each
file must contain at least one block. The size of each block depends
upon the number of bytes the user specifies when writing the block.

IRGS

BOT
_........-............. ___ ~..._ -.._~ EOT

~ ' 1

CL LPG LR REC REC ... REC EOF LR REC . .. REC EOF SLR CT

FILE 1 FILE 2 LEOT

---... ____________________ ~---------------------------
150 FEET

ZK-006-81

Figure 9-1 Structure of Cassette Tape

Abbreviation Meaning

CL

BOT

LPG

LR

REC

Clear leader

Physical beginning-of-tape

Load point gap (blank tape written by driver
before the first retrievable record)

File label record

Fixed-length record (data)

9-6

CASSETTE DRIVER

Abbreviation Meaning

EOF End-of-file gap

IRG Interrecord gap

SLR Sentinel label record

LEOT Logical end-of-tape

EOT Physical end-of-tape

CT Clear trailer

9.6 PROGRAMMING HINTS

This section
considerations
this chapter.

contains
relevant

information on important programming
to users of the cassette driver described in

9.6.1 Importance of Rewinding

The first cassette operation performed on a tape must always be a
rewind to ensure that the tape is positioned to a known place. When
it is positioned in clear tape, there is no way to determine whether
it is in leader at the beginning-of-tape (BOT) or in trailer at the
end-of-tape (EQT).

9.6.2 End-of-File and IO.SPF

The hardware senses end-of-file (EOF) as a time-out. When IO.SPF is
issued in the forward direction (nes is positive), the tape is
positioned two-thirds of the way from the beginning of the final file
gap. In effect, this is all the way through the file gap. When
IO.SPF is issued in the reverse direction (nes is negative), the tape
is positioned one-third of the way from the beginning of the final
file gap (that is, two-thirds of the way from the beginning of the
last file spaced). Therefore, to correctly position the tape for a
read or write after issuing IO.SPF in reverse, the user should issue
IO.SPB forward for one block, followed by IO.SPB in reverse for one
block.

9.6.3 The Space Functions, IO.SPB and IO.SPF

IO.SPB always stops in an IRG gap, IO.SPF in an EOF gap. Neither
space function actually takes effect until data is encountered. For
example, suppose the tape is positioned in clear leader at BOT and the
user requests that one block be spaced forward. The drive passes over
the remaining leader until it reaches data, passes one block, and
stops in the IRG. Similarly, if the same command is issued when the
tape is at BOT on a blank tape or a tape containing only EOF gaps, the
function does not terminate until EOT.

9-7

CASSETTE DRIVER

9.6.4 Verifying of Write Operations

Certain errors, such as cyclic redundancy check, are detected on
but not write operations. Therefore, to ensure reliability
recording, it is recommended that the user perform a read in order
verify every write operation.

9.6.5 Block Length

read
of
to

The user must specify the exact number of bytes per block when
requesting read or write operations. An attempt to read a block with
an incorrect byte count causes an unrecoverable error (see Section
9.4) to occur.

9.6.6 Logical End-of-Tape

The conventional method of signaling logical end-of-tape by multiple
EOF gaps is inadequate for cassettes, because multiple EOF gaps are
not distinguishable from each other. For example, two sequential EOF
gaps would be read as three instead of two. Also spacing functions,
since they are triggered by encountering data, can not recognize
multiple EOF gaps. Consequently, the use of a sentinel or key record
to signal logical end-of-tape is recommended.

9-8

CHAPTER 10

LINE PRINTER DRIVER

10.1 INTRODUCTION

The RSX-llM line printer driver supports the line printers summarized
in Table 10-1. Subsequent sections of this chapter describe these
printers in greater detail.

Table 10-1
Standard Line Printer Devices

Controller Printer Column Width Character Set Lines per Minute

LPll-C LP14-C 132 64 890

LPll-D LP14-D 132 96 650
I

I LPll-F LPOl-F 80 64 170-1110

LPll-H LPOl-H 80 96 170-1110

LPll-J LP02-J 132 64 170-1110
i

LPll-K LP02-K 132 96 170-1110

LPll-R LP04-R 132 64 1110

LPll-S LP04-S 132 96 1110

LPll-V LP05-V 132 64 300

LPll-W LP05-W 132 96 300

LPll-Y LP06-Y 132 64 600

LPll-Z LP06-Z 132 96 460

LPll-GA LP07 132 96 1200

LPll-EA LP26 132 64 600

LPll-EB LP26 132 64/96 600/420

LPll-UA LP27 132 64/96 1200/800

LSll LSll 132 62 60-200

LVll LVOl 132 96 500

LA180 LA180 132 96 150

LNOl I LNOl variable I * 600

* Software selectable fonts not supported by RSX.

10-1 April 1983

I

LINE PRINTER DRIVER

10.1.l LPll Line Printer

The LPll is a high-speed line printer available in a variety of
models. The LPll model line consists of band line printers and drum
line printers. The drum printers are impact printers, that use one
hammer per column and a revolving drum with uppercase and optional
lowercase characters. The LPll-R and LPll-S are fully buffered models
that operate at a standard speed of 1110 lines per minute. The other
LPll drum models have 20-character print buffers. These printers are
therefore able to print at full speed if the printed line is no longer
than 20 characters. Lines that exceed this maximum are printed at a
slower rate. Forms with up to six parts may be used for multiple
copies. The band line printers are impact printers that have a flat
steel belt with raised metal characters on the face. The LP07, LP26,
and LP27 offer speeds from 420 to 1200 lines per minute.

10.1.2 LSll Line Printer

The LSll is a medium-speed line printer. It has a 20-character print
buffer, and lines of 20 characters or less are printed at a rate of
200 lines per minute. Longer lines are printed at a slower rate.
RSX-llM does not support the LSll expanded character set feature.

10.1.3 LVll Line Printer

The LVll is a fully-buffered, electrostatic printer-plotter that
operates at a standard rate of 500 lines per minute. RSX-llM supports
only the LVll print capability, not the plotter mode.

10.1.4 LA180 DECprinter

The LA180 is a 180-character/sec, dot-matrix impact printer. It
accepts multipart forms and pages of various lengths and widths.

10.1.5 LNOl Laser Printer

The LNOl is a non-impact page printer that uses laser imaging combined
with xerographic printing. This technology provides letter quality
printing at line printer speeds with no noise. Printing is done on
standard 8 1/2 inch by 11 inch paper at 12 pages per minute, which
equates to 600 lines per minute. Contributing to the high print
quality is a printer resolution of 300 by 300 dots per inch. The LNOl
offers the speed of a line printer with the advantages of a
phototypeset device.

10.2 GET LON INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for line printers. A bit setting of 1 indicates that the
described characteristic is true for line printers.

10-2 April 1983

LINE PRINTER DRIVER

Bit Setting Meaning

0 1 Record-oriented device

1 1 Carriage-control device

2 0 Terminal device

3 0 File structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Mass storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 0 Device mountable as a FILES-11 volume

15 0 Device mountable

Words 3 and 4 of the buffer are undefined;
default size for the device, for line
printer carriage (that is, 80 or 132).

word 5 indicates the
printers the width of the

10-2.1

LINE PRINTER DRIVER

10. 3 QIO MACRO

Table 10-2 lists the standard functions of the QIO macro that are
valid for line printers.

Table 10-2
Standard QIO Functions for Line Printers

Format

QIO$C IO.ATT I •••

QI0$C IO. DET I •••

QI0$C IO.KIL, •••

QI0$C IO.WLB, ••• ,<stadd,size,vfc>

QIO$C IO.WVB, ••• ,<stadd,size,vfc>

stadd

Function

Attach device

Detach device

Cancel I/O requests

WRITE logical block
(print buffer contents)

WRITE virtual block
(print buffer contents)

The starting address of the data buffer (may be on a byte
boundary) .

size

The data buffer size in bytes (must be greater than 0).

vf c

A vertical format control character from Table 10-4.

10-3

LINE PRINTER DRIVER

IO.KIL does not cancel an in-progress request unless the line printer
is in an off-line condition because of a power failure or a paper jam,
or because it is out of paper.

The line printer driver supports no device-specific functions.

10.4 STATUS RETURNS

Table 10-3 lists the error and status conditions that are returned by
the line printer driver described in this chapter.

Code

rs.sue

IS.PND

IE.ABO

IE.DAA

IE.DNA

IE.IFC

Table 10-3
Line Printer Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the
I/O status block can be examined to determine the
number of bytes processed, if the operation
involved writing.

I/O request pending

The operation specified in the QIO directive has
not yet been executed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was canceled while in
progress or while in the I/O queue.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Device not attached

The physical device unit specified an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

Illegal function

A function code was specified in an I/O request
that is illegal for line printers.

(continued on next page)

10-4

Code

IE.OFL

I
IE.SPC

l

LINE PRINTER DRIVER

Table 10-3 (Cont.)
Line Printer Status Returns

Reason

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not
in the configuration.

Illegal address space I
The buffer specified for a write request was I
partially or totally outside the address space of J
the issuing task. Alternatively, a byte count of
0 was specified.

10.4.1 Ready Recovery

If any of the following conditions occur:

• Paper jam

• Printer out of paper

• Printer turned off line

• Power failure

the driver determines that the line printer is off line, and the
following message is output on the operator's console:

***LPn: -- NOT READY

n

The unit number of the line printer that is not ready.

The driver retries the function that encountered the error condition
from the beginning, once every second. It displays the message every
m seconds (m is defined at SYSGEN to be a value less than 256. The
default is 15) until the line printer is readied. If a power failure
occurs while printing a line, the entire line is reprinted from the
beginning when power is restored.

10.5 VERTICAL FORMAT CONTROL

Table 10-4 summarizes the meaning of all characters used for vertical
format control on the line printer. Any one of these characters can
be specified as the vfc parameter in an IO.WLB or IO.WVB function.

10-5

LINE PRINTER DRIVER

Table 10-4
Vertical Format Control Characters

Octal
Value

040

060

061

053

044

000

Character

Blank

Zero

One

Plus

Dollar
sign

Null

Meaning

SINGLE SPACE: Output a line feed, print the
contents of the buffer, and output a carriage
return. Normally, printing immediately
follows the previously printed line.

DOUBLE SPACE: Output two line feeds, print
the contents of the buffer, and output a
carriage return. Normally, the buffer
contents are printed two lines below the
previously printed line.

PAGE EJECT: Output a form feed, print the
contents of the buffer, and output a carriage
return. Normally, the contents of the buffer
are printed on the first line of the next
page.

OVERPRINT: Print the contents of the buffer
and perform a carriage return, normally
overprinting the previous line.

PROMPTING OUTPUT: Output a line feed and
then print the contents of the buffer.

INTERNAL VERTICAL FORMAT: The buffer
contents are printed without addition of
vertical format control characters. In this
mode, more than one line of guaranteed
contiguous output can be printed per I/O
request.

All other vertical format control characters are interpreted as blanks
{040(8)).

10.6 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the line printer driver described
in this chapter.

10.6.1 RUBOUT Character

The line printer driver discards the ASCII character code 177 during
output, because a RUBOUT on the LSll printer causes a RUBOUT of the
hardware print buffer.

10-6

LINE PRINTER DRIVER

10.6.2 Print Line Truncation

If the number of characters to be p~inted exceeds the width of the
print carriage, the driver discards excess characters until it
receives one that instructs it to empty the buffer and return to
horizontal position 1. The user can determine that truncation will
occur by issuing a Get LUN Information system directive and exam1n1ng
word 5 of the information buffer. This word contains the width of the
print carriage in bytes.

10.6.3 Aborting a Task

If a task is aborted while waiting for the line printer to be readied,
the line printer driver recognizes this fact within 1 second.

10-7

CHAPTER 11

CARD READER DRIVER

11.l INTRODUCTION

The RSX-llM card reader driver supports the CRll card reader. This
reader is a virtually jam-proof device that reads EIA standard
80-column punched cards at the rate of 300 per minute. The hopper can
hold 600 cards. This device uses a vacuum picker that provides
extreme tolerance to damaged cards and makes card wear insignificant.
Cards are riffled in the hopper to prevent sticking. The reader uses
a strong vacuum to deliver the bottom card. Because it has a very
short card track, only one card is in motion at a time.

11.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for card readers. A bit setting of 1 indicates that the
described characteristic is true for card readers.

Bit Setting Meaning

0 1 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 0 File structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Mass storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

11-1

Bit Setting

10 0

11 0

, ') 0 ..L £.

13 0

14 0

15 0

CARD READER DRIVER

Meaning

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications
channel

Device mountable as a FILES-11 volume

Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, which is 80 bytes for the card reader.

11.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the card reader driver.

11.3.1 Standard QIO Functions

Table 11-1 lists the standard functions of the QIO macro that are
valid for the card reader.

Table 11-1
Standard QIO Functions for the Card Reader

Format Function

QIO$C IO.ATT, ••• Attach device

QIO$C IO.DET, ••• Detach device

QIO$C IO.KIL, ••• Cancel I/O requests

QIO$C IO.RLB, ••• ,<stadd,size> READ logical block
(alphanumeric)

QIO$C IO.RVB, ••• ,<stadd,size> READ virtual block
(alphanumeric)

stadd

size

The starting address of the data buffer (may be on a byte
boundary) •

The data buffer size in bytes (must be greater than 0).

IO.KIL does not cancel an in-progress request unless the card reader
is in an off-line condition because of a pick, read, stack, or hopper
check, because of power failure, or because the RESET button has not
been depressed.

11-2

CARD READER DRIVER

11.3.2 Device-Specific QIO Functions

The device-specific functions of the QIO macro that are valid for the
card reader are shown in Table 11-2.

Table 11-2
Device-Specific QIO Function for the Card Reader

Format Function

QIOSC IO.ATA, ••• ,<AST addr> Attach for unsolicited card AST

QIO$C IO.RDB, ••• ,<stadd,size> Read logical block (binary)

stadd

size

The starting address of the data buffer (may be on a byte
boundary) •

The data buffer size in bytes (must be greater than 0).

11.4 STATUS RETURNS

A wide variety of error conditions and recovery procedures relate to
the use of the card reader. This section describes the three major
ways in which the system reports error conditions.

1. Lights and indicators on the card reader panel are turned on
or off to indicate particular operational problems such as
read, pick, stack, or hopper checks. Switches are available
to turn the reader power on and off and to allow the user to
reset after correcting an error condition.

2. A message is output on the operator's console if operational
checks or power problems occur.

3. An I/O completion code is returned in the low-order byte of
the first word of the I/O status block specified in the QIO
macro to indicate success or failure on completion of an I/O
function.

The following subsections describe each of these returns in detail.

11.4.1 Card Input Errors and Recovery

The table included below describes all external lights and switches
used to indicate to the operator that a hardware problem has occurred
and must be corrected. There are two classes of hardware errors:

• Those requiring the operator to ready the reader and try the
operation again

• Those requiring the operator to remove the last card from the
output stacker, to replace it in the input hopper, and to try
the operation again

11-3

CARD READER DRIVER

In the first case, the card reader was unable to read the current
card. In the second, the card was read incorrectly and must be
physically removed from the output stacker. The card reader driver
automatically restarts a read operation within 1 second after the
cards have been replaced in the input hopper.

Table 11-3 summarizes the functions of lights and indicators on the
front panel of the card reader. It discusses common operational
errors that might be encountered while reading cards and recovery
procedures associated with these error conditions.

11.4.2 Ready and Card Reader Check Recovery

If any of the following conditions occur:

• Power failure

• Reset switch not pressed (reader off line)

• Timing error (Two columns were read before the card reader
driver input the first column from the card reader.)

the driver determines that the card reader is not ready, and the
following message is output on the operator's console:

*** CRn: -- NOT READY

When a timing error occurs, the operator can proc~ed with normal card
reader operation by:

If

1. Placing the card reader off line by pressing the STOP switch

2. Removing the last card read and inserting it where it will be
the next card read

3. Placing the card reader on line by pressing the RESET switch

any of the following conditions occurs:

• Pick error (PICK CHECK)

• Read error (READ CHECK)

• Output stacker error (STACK CHECK)

• Input hopper out of cards (HOPPER CHECK)

• Output stacker full (HOPPER CHECK)

the driver determines that a card reader check has occurred, and the
following message is output on the operator's console:

*** CRn: -- READ FAILURE. CHECK HARDWARE STATUS

where n is the unit number of the card reader that is not ready. The
operator should correct the error and press RESET: The driver
attempts the function from the beginning, once every second. It
displays the message once every m seconds (m is defined at SYSGEN as a
value less than 256. The default is 15) until the card reader is
readied. In all cases except pick error, the last card read should be
reinserted in the input hopper, as described in Section 11.4.1.

11-4

Indicator

POWER
Switch

READ
CHECK
Indicator

PICK
CHECK
Indicator

CARD READER DRIVER

Table 11-3
Card Reader Switches and Indicators

Description

Pushbutton
indicator
switch

I
(alternate
action:
pressed for
both ON and
OFF)

White light

Action

Controls application
of all power to the
card reader.

lwhen indicator is
off, depressing switch
applies power to
reader and causes
associated indica-
tor to 1 ight.

When indicator is
lit, depressing
switch removes all
power from reader and
causes indicator to
go out.

When lit, this light
indicates that the
card just read may be
torn on the leading or
trailing edges, or
that the card may
have punches in
column positions O
or 81.

Because READ CHECK
indicates an error
condition, whenever
this indicator is
lit, it causes the
card reader to stop
operation and extin­
guishes the RESET
indicator.

White light When lit, this light
indicates that the
card reader failed to
move a card into the
read station after
it received a READ
COMMAND from the
controller.

Stops card reader
operation and extin­
guishes RESET
indicator.

Recovery

Card may have been
read incorrectly;
restore power if
possible by depress­
ing the POWER
switch; insert the
card again as the
first card in the
input hopper, and
press the RESET
switch; in some
cases, it may be
necessary to
restart the program.

Card was read incor­
rectly; duplicate if
necessary, insert
the card again as
the first card in the
input hopper, and
press the RESET
switch.

Card could not be
read; press the
RESET switch to try
again or remove the
cards from the input
hopper, smooth the
leading edges, re­
place, and then
press the RESET
switch.

(continued on next page)

11-5

Indicator

STACK
CHECK
Indicator

HOPPER
CHECK
Indicator

STOP
Switch

RESET
Switch

I

I

CARD READER DRIVER

Table 11-3 (Cont.)
Card Reader Switches and Indicators

Description

White light

White light

Momentary
pushbutton/
indicator
switch
(red light)

Momentary
pushbutton/
indicator
switch
(green
1 igh t)

Action

When lit, this light
indicates that the
previous card was not
properly seated in
the output stacker
and therefore may be
badly mutilated.

Stops card reader
operation and ex-
tinguishes RESET
indicator.

When lit, this light
indicates that either
the input hopper is
empty or that the out-
put stacker is full.

When depressed,
immediately lights
and drops the READY
line, thereby extin-
guishing the RESET
indicator. Card
reader operation then
stops as soon as the
card currently in the
read station has been
read.

This switch has no
effect on the system
power; it only stops
the current operation.

When depressed and
released, clears all
error flip-flops and
initializes card
reader logic. Associ-
ated RESET indicator
lights to indicate
that the READY.signal
is applied to the con-
troller.

The RESET indicator
goes out whenever the

I STOP switch is de-
pressed or whenever
an error indicator
lights (READ CHECK,
PICK CHECK, STACK
CHECK, or HOPPER
CHECK) •

11-6

Recovery

Card may have been
read incorrectly and
is not positioned
properly in the out-
put stacker; dupli-
cate the card if it
is damaged; insert
the card again as
the first card in
the input hopper and·
press the RESET
switch.

Card may have been
read incorrectly;
empty the stacker or
fill the hopper; in-
sert the card again
as the fist card in
the input hopper and
press the RESET
switch.

I

I

I

I
I

I

CARD READER DRIVER

11.4.3 I/O Status Conditions

The error and status conditions listed in Table 11-4 are returned by
the card reader driver described in this chapter.

Code

rs.sue

IS.PND

IE.ABO

IE.DAA

IE.DNA

IE.EOF

IE.IFC

IE.NOD

Table 11-4
Card Reader Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the
I/O status block can be examined to determine the
number of bytes processed, if the operation
involved reading.

I/O request pending

The operation specified in the QIO directive has
not yet been executed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was cancelled while in
progress or while still in the I/O queue.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

End-of-file encountered

An end-of-file control card was recognized.

Illegal function

A function code was specified in an I/O request
that is illegal for card readers.

Buffer allocation failure

Dynamic storage space has been depleted, and there
was insufficient buffer space available to
allocate a card buffer (that is, cards are read
into a driver buffer, translated, and then moved
to the user buffer) ~

(continued on next page)

11-7

Code

CARD READER DRIVER

Table 11-4 (Cont.)
Card Reader Status Returns

Reason

IE.OFL Device off line

IE.SPC

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not
in the configuration.

Illegal address space

The buffer specified for a read request was
partially or totally outside the address space of
the issuing task. Alternatively, a byte count of
O was specified.

11.5 FUNCTIONAL CAPABILITIES

The card reader driver can perform the following functions:

1. Read cards in DEC026 format and translate to ASCII

2. Read cards in DEC029 format and translate to ASCII

3. Read cards in binary format

If the QIO macro specifies the IO.RLB or IO.RVB function, the driver
interpets all data as alphanumeric (026 or 029 format). As explained
below, control characters indicate whether 026 or 029 is desired. If
the QIO macro specifies IO.ROB, the driver interprets all data,
including 026 and 029 control characters, as binary.

11.5.1 Control Characters

Table 11-5 lists the multipunched cards that the card reader driver
recognizes as control characters. They are never transferred to the
user's ·buffer or included in the count of transferred bytes in
alphanumeric mode. In binary mode, the only control card recognized
is binary EOF.

DEC026 is the default translation mode when the system is
bootstrapped. This mode remains in effect until explicitly changed by
a control card indicating that DEC029 cards will follow. After
encountering a DEC029 control card, the driver translates all cards in
DEC029 format unless another DEC026 control card is encountered. This
card - overrides the 029 mode specification and indicates that
subsequent cards are to be translated in 026 format. Control
characters are addressed to the card reader itself, and remain in
effect even when the reader is attached and subsequently detached.

11-8

CARD READER DRIVER

The default condition can easily be changed from DEC026 to DEC029 by
reading a 029 control card, and then saving the system with the MCR
SAV command.

Table 11-5
Card Reader Control Characters

Punches Columns Meaning

12-11-0-1-6-7-8-9 1 End-of-file (alphanumeric)

12-11-0-1-6-7-8-9 (All 8 punches in End-of-file (binary)

I I
the first 8 columns)

12-2-4-8 1 026-coded cards follow
I I

12-0-2-4-6-8 1 029-coded cards follow

11.6 CARD READER DATA FORMATS

The card reader reads data in either alphanumeric or binary format.

11.6.1 Alphanumeric Format (026 and 0211)

Table 11-6 summarizes the translation from DEC026 or DEC029 card codes
to ASCII.

11.6.2 Binary Format

In RSX-llM binary format, the data are not packed, but are transferred
exactly as read, one card column per word. Because each word has 16
bits and each card column represents only 12, the data from the column
are stored in the rightmost 12 bits of the word. The word's remaining
four bits contain Os.

11.7 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the card reader driver described
in this chapter. Section 11.4 contains information on operational
error-recovery procedures that might be important from a programming
point of view.

11.7.1 Input Card Limitation

Only one card can be read with a single QIO macro call. A request to
read more than 80 bytes or colµmns, the length of a single card, does
not result in a multiple card transfer. Only 80 columns are
processed. It is possible to read fewer than 80 columns of card input
with a QIO read function. For example, the user can specify that only
the first 10 columns of each card are to be read.

11-9

CARD READER DRIVER

11.7.2 Aborting a Task

If a task waiting for the card reader to be readied is aborted, the
card reader driver recognizes this fact within 1 second.

Table 11-6
Translation from DEC026 or DEC029 to ASCII

Non- Non-
Parity Parity

Character ASCII DEC029 DEC02n Character ASCII DEC029 DEC026

SPACE
!
II

$
%
AND
'
(
)

*
+
:
;

=
>
?
@
A
B
c
D
E
F
G
H
I
J
K
L

173
175
040
041
042
043
044
045
046
047
050
051
052
053
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114

I

12 0
11 0
none
12 8 7
8 7
8 3
11 8 3
0 8 4
12
8 5
12 8
11 8
11 8
12 8
8 2
11 8
12 8
8 6
0 8 6
0 8 7
8 4
12 1
12 2
12 3
12 4
12 5
12 6
12 7
12 8
12 9
11 1
,
.L 1 2
11 3

5
5
4
6

6
4

I

12 0
11 0
none
12 8 7
0 8 5
0 8 6
11 8 3
0 8 7
11 8 7
8 6
0 8 4
12 8 4
11 8 4
12
11 8 2
0 8 2
12 8 6
8 3
11 8
12 8
8 4
12 1
12 2
12 3
12 4
12 5
12 6
12 7
12 8
12 9
11 1 ,
l.i 2
11 3

6
2

11-10

'
-.
I
0
1
2
3
4
5
6
7
8
9
M
N
0
p
Q

R
s

I T

I
u
v
w
x
y
z
[

\
]
" or

or

I

I

054
055
056
057
060
061
062
063
064
065
066
067
070
071
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

I

0 8 3 0 8 3
11 11
12 8 3 12 8 3
0 1 0 1
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
11 4 11 4
11 5 11 5
11 6 11 6
11 7 11 7
11 8 11 8
11 9 11 9
0 2 0 2
0 3 0 3
0 4 0 4
0 5 0 5
0 6 I 0 6
0 7 Io 7
0 8 0 8
0 9 0 9
12 8 2 11 8 5
0 8 2 8 7
11 8 2 12 8 5

....,

I

CHAPTER 12

MESSAGE-ORIENTED COMMUNICATION DRIVERS

12.l INTRODUCTION

RSX-llM supports a variety of communication line interfaces:
synchronous and asynchronous, single-line and multiplexers,
character-oriented and message-oriented. These are used for terminal
communications, remote job entry, multicomputer interfaces, and
laboratory and industrial control communications. Communications line
interfaces can be roughly divided into two categories:

• Terminal (character-oriented) communications devices

• Multicomputer (message-oriented) communications devices

Chapters 1, 2, and 3 describe the character-oriented asynchronous
communications line interfaces used primarily for terminal
communications. The Terminals and Communications Handbook contains
more detail on these devices. This chapter describes in some detail
the RSX-llM message-oriented synchronous and asynchronous
communication line interfaces. These are used most frequently in
multicomputer communications.

Character-oriented communications devices include the DHll, DJll,
DLll-A, DLll-B/C/D, and DZll interfaces. These are asynchronous
multiplexers and single-line interfaces used almost exclusively for
terminal communications. Transfers on all of these interfaces are
performed one character at a time. None of the interfaces in this
category has a driver of its own (that is, they are supported by the
terminal driver), and none can be accessed directly as RSX-llM
devices.

Message-oriented communications line interfaces are used primarily to
link two separate but complementary computer systems. One system must
serve as the transmitting device and the other as the receiving
device. Devices in this category include the synchronous and
asynchronous single-line interfaces summarized in Table 12-1.

The message-oriented communication line interfaces are used primarily
to transfer large blocks of data.

Whereas the character-oriented interfaces can only be accessed
indirectly through the terminal driver, the DAll-B, DLll-E, DMCll,
DPll, DQll, DUll, and DUPll allow I/O requests to be queued directly
for them. These devices have drivers of their own and can be accessed
by means of the logical device names listed in Table 1-1. These names
can be used in assigning LUNs with the Assign LUN system directive, at
task build, or with the REASSIGN MCR command. The following
subsections briefly discuss the message-oriented interfaces supported
for RSX-llM.

12-1

Model

DAll-81

DL11-E2

DMCll

DPlll

DQ111

ou11l

DUPll

MESSAGE-ORIENTED COMMUNICATION DRIVERS

Table 12-1
Message-Oriented Communication Interfaces

Type Rate Duplex Data block
(KBaud) Half/Full (words)

Parallel 500 x 32K

Serial, asynchronous 0.05-9.6 x x 32K

Serial, synchronous 19.2-1000 x x BK

Serial, synchronous 2-19.2 x x 32K

Serial, synchronous 2.4-1000 x x 32K

Serial, synchronous 0.05-9.6 x x 32K

Serial, synchronous 0.05-9.6 x x 32K

1. Support is not provided on RSX-llM-PLUS systems.

Synchronous
Character

No

Programmable

No

Programmable

Programmable

Programmable

Programmable

2. DLll-E support is provided on RSX-llM-PLUS systems using the full-duplex
terminal driver only.

12.1.1 DAll-B Parallel Interface

The DAll-B provides a bit-parallel, direct memory access interface
between two PDP-11 computer systems. Data transfers are performed a
word at a time and are made directly between the memories of the two
systems. The maximum transfer rate is 500,000 baud, and is adjustable
by the user to match the system configuration requirements. Being a
parallel device, the DAll-B does not utilize sync characters. The
interface is half-duplex and transfers data in blocks of up to 32K
words.

The DAll-B requires two cooperating computers to effect a data
transfer. In order to control the physical link between the
computers, the device driver contains its own simple line. protocol.
This protocol requires one system to issue a receive QIO and the other
to issue a transmit QIO before any data is actually transferred.

12.1.2 DLll-E Asynchronous Line Interface

The DLll-E is an asynchronous, serial-bit, single-line interface. It
is a block-transfer device used for remote terminal and multicomputer
communications. Baud rates are selectable between 50 and 9600, and
full data-set control is supported.l

1. Software support for data-set control consists of interlocking RTS
and CTS for data transmission, and the setting of DTR (data terminal
ready) to enable auto-answer modems to answer incoming calls. DTR is
set when an IO.INL QIO (initialize) is issued.

12-2

MESSAGE-ORIENTED COMMUNICATION DRIVERS

12.1.3 DMCll Synchronous Line Interface

The DMCll provides a direct memory access interface between two PDP-11
computer systems using the DDCMP line protocol, thus delivering high
throughput and reliability while simplifying programming. The DMCll
supports Non-Processor Request (NPR) data transfers of up to 8K words
at rates of 1,000,000 baud for local operation (over coaxial cable)
and 19,200 baud for remote operation (using modems). Both full- and
half-duplex modes are supported. The DMCll also implements remote
load detect, allowing it to reinitialize a halted computer system.

12.1.4 DPll Synchronous Line Interface

The DPll provides a program interrupt interface between a PDP-11 and a
serial synchronous line. This interface facilitates the use of the
PDP-11 in remote batch processing, remote data collection, and remote
concentration applications. The modem control feature allows the DPll
to be used in switched or dedicated configurations.

On the DPll, baud rates are selectable between 2000 and 19,200. The
programmer can select a specific sync character that is used to
synchronize the transmitting and receiving systems.

12.1.5 DQll Synchronous Line Interface

The DQll provides a direct memory access interface between a PDP-11
and a serial synchronous line. The direct memory access
characteristic of the DQll allows the device to operate at speeds
higher than those of program interrupt devices, and with a lower
interrupt overhead. Modem control of the DQll allows the device to be
used in switched or dedicated configurations.

The DQll handles data rates from 2400 baud to 1,000,000 baud. The
limiting rate is determined by the modem and data set interface level
converters.

The DQll sync character is programmable in the same manner as the DPll
and the DUll. The maximum data block length transmitted is 65,536
characters.

12.1.6 DUll Synchronous Line Interface

The DUll synchronous line interface is a single-line communications
device that provides a program-controlled interface between the PDP-11
and a serial synchronous line. The PDP-11 can be interfaced with a
high-speed line to perform remote batch processing, remote data
collection, and remote concentration applications. Modem control is a
standard feature of the DUll and allows the device to be used in
switched or dedicated configurations. The DUll transmits data at a
maximum rate of 9600 baud; this rate is limited by modem and data set
interface level converters.

The DUll can be programmed to accept any user-defined sync character.
The use of the sync character is the same for the DUll and the DPll.

12-3

MESSAGE-ORIENTED COMMUNICATION DRIVERS

12.1.7 DUPll Synchronous Line Interface

The DUPll is identical to the DUll, except that it incorporates
hardware to perform cyclic redundancy checking.

12.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for message-oriented communication interfaces. A bit
setting of 1 indicates that the described characteristic is true for
the interfaces described in this chapter.

Bit Setting Meaning

0 0 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 0 File-structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Mass storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 1 Device mountable as a communications channel

14 0 Device mountable as a FILES-11 volume

15 1 Device mountable

Words 3 and 4 are undefined, and word 5 has a special meaning for the
DLll-E, DQll, DPll, and the DUll interfaces. Byte 0 of word 5
contains the number of sync characters to be transmitted before a
synching message {for example, after line turn-around in half-duplex
operation), and byte 1 is used as a sync counter.

12-4

MESSAGE-ORIENTED COMMUNICATION DRIVERS

12 • 3 Q IO MACRO

This section summarizes the standard and device-specific functions of
the QIO macro that are valid for the communication interfaces
described in this chapter.

12.3.1 Standard QIO Functions

Table 12-2 lists the standard functions of the QIO macro that are
valid for the communication devices.

Table 12-2
Standard QIO Functions for Communication Interfaces

Format Function

QIO$C IO.ATT, ••• Attach devicel

QIO$C IO.DET, ••• Detach device

QIO$C IO.KIL, ••• Cancel I/O requests

QIO$C IO.RLB, ••• ,<stadd,size> READ logical block (stripping
sync)

QIO$C IO.WLB, .•• ,<stadd,size> WRITE logical block {preceded by
syncs)

1. Only unmounted channels may be attached. An attempt to attach
a mounted channel will result in an IE.PRI status being returned
in the I/O status doubleword.

stadd

size

The starting address of the data buffer (may be on a byte
boundary) •

The data buffer size in bytes (must be greater than 0).

12.3.2 Device-Specific QIO Functions

The specific functions of the QIO macro that are valid for the
communication line interfaces are shown in Table 12-3.

12-5

MESSAGE-ORIENTED COMMUNICATION DRIVERS

Table 12-3
Device-Specific QIO Functions for Communication Interfaces

Format

QI0$C IO.FDX

QIO$C IO.HDX, ••• ,<stat,mode>

QIOSC IO.INL, •••

QIO$C IO.RNS, ••• ,<stadd,size>

Function

Set device to full-duplex mode;
Not applicable to DAll-B

SET device to half-duplex mode;
Not applicable to DAll-B

Initialize device and set device
characteristics

READ logical block,
stripping sync
(transparent mode); Not
to DQll; for DAll-B
treated like IO.RLB

without
characters
applicable
and DMCll,

QIO$C IO.SYN, ••• ,<syn> SPECIFY sync character; not
applicable to DAll-B or DMCll

QIO$C IO.TRM,... Terminate communication,
disconnecting from physical channel

QIO$C IO.WNS, ••• ,<stadd,size> WRITE logical block without

stadd

size

syn

stat

mode

preceding sync characters
{transparent mode); for DAll-B and
DMCll, treated like IO.WLB

The starting address of the data buffer {may be on a byte
boundary) •

The data buffer size in bytes (must be greater than 0).

The sync character, expressed as an octal value.

The station assignment {primary or secondary).

The transmission mode (normal or maintenance) •

The device-specific functions listed in Table 12-3 are described in
greater detail below.

12-6

MESSAGE-ORIENTED COMMUNICATION DRIVERS

12.3.2.1 IO.FOX - The IO.FOX QIO function is used to set the mode on
a DLll-E, DPll, DQll, DUll, DUPll, or DMCll unit to full-duplex. The
IO.FDX function code can be combined (ORed) with the IO.SYN function
code, if desired, to set the operational characteristics of the
physical device unit.

12.3.2.2 IO.BOX - The IO.HDX QIO function is used to set the mode on
a DLll-E, DPll, DQll, DUll, DUPll, or DMCll unit to half-duplex. The
IO.HDX function code can be combined (ORed together) with the IO.SYN
function code, if desired, to set the operational characteristics of
the physical device unit.

Setting half-duplex on the DMCll also involves setting the station
assignment (primary/secondary) and may include selecting maintenance
mode (MOP) as opposed to normal mode. The station assignment is
included in optional QIO parameter pl. A 0 indicates primary station
and a nonzero indicates secondary station. The DMCll works properly
if both ends are primary stations or if there is one primary and one
secondary station. It does not work if both ends are secondary
stations. Optional QIO parameter p2 is used to select the mode. A 0
selects normal mode and a nonzero selects MOP mode. A DMCll in MOP
mode cannot communicate with a DMCll in normal mode.

12.3.2.3 IO.INL and IO.TRM - These two QIO functions have the same
function code but different modifier bits. IO.INL is used to
initialize a physical device unit for use as a communications link.
It turns the device on line, sets device characteristics, and ensures
that the appropriate data terminal is ready. IO.TRM disconnects the
device. If the device has a dial-up interface, it also hangs up the
line.

12.3.2.4
block of
the data.
that it
stripped.
which the

s

IO.RNS - The IO.RNS QIO function i~ used to read a logical
data, without stripping the sync characters that may precede

A similar function is IO.RLB, which is nontransparent, in
causes sync characters preceding the data message to be

IO.RLB is used at the start of a segmented data request, in
block might have the following layout:

DATA I cs I
2 3 45 6 7 8

ZK-007-81

A sync character.

H

A header character.

cs

A validity check character.

12-7

MESSAGE-ORIENTED COMMUNICATION DRIVERS

The programmer must strip sync characters from the beginning of a data
block in this way. Stripping only at the beginning of a read allows a
later character which happens to have the same binary value as a sync
character to be read without stripping. IO.RLB is used to read a
logical block with leading sync characters stripped; IO.RNS is used
to read the block without stripping leading sync characters. Since
the DAll-B is a parallel device and there are no sync characters, it
treats the latter as if it were IO.RLB. Generally, IO.RLB should be
used.

12.3.2.5 IO.SYN - This QIO function allows the programmer to specify
the sync character to be recognized when an IO.RLB or IO.WLB function
is performed. IO.SYN can be combined (ORed together) with IO.HDX or
with IO.FDX to set the characteristics of the physical device unit.

12.3.2.6 IO.WNS - This QIO function causes a logical block to be
written with no preceding sync characters. To ensure that the two
systems involved in a communication are synchronized, two or more sync
characters are transmitted by one system and received by the other
before any other message can be sent. IO.WLB is used to write a block
of data, preceded by sync characters; IO.WNS is used to perform a
block transfer without sending sync characters first. Since the
DAll-B is a parallel device and there are no sync characters, it
treats the latter as if it were IO.WLB. Generally, IO.WLB should be
used.

12.4 STATUS RETURNS

The error and status conditions listed in Table 12-4 are returned by
the communication drivers described in this chapter.

Code

rs. sue

I IS. PND I

Table 12-4
Communication Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number
of bytes processed, if the operation involved reading
or writing.

I/O request pending

The operation specified in the QIO directive has not
yet been executed. The I/O status block is filled
with Os.

(continued on next page)

12-8

Code

IE.BCC

IE.CNR

IE.DAO

IE.DNR

MESSAGE-ORIENTED COMMUNICATION DRIVERS

Table 12-4 (Cont.)
Communication Status Returns

Reason

Block check error

When the Cyclic Redundancy Check (CRC) option is
present on the DQll, a check character is appended to
each message transmitted. The receiver of the
messages recalculates the check character and
compares it with the one transmitted. This error
code is returned when the two check characters do not

I :::::~t::: ::::::::ts a transmission error.

(DMCll only.) The DMCll has detected that the device
on the other end of the line has restarted itself.
The user can recover by issuing IO.INL (initialize),
and then reissuing the QIO in question.

Data overrun

Due to UNIBUS traffic or a modem problem, the DQll
controller was unable to maintain the data rate
required to prevent data loss (that is, the receipt
of another byte before processing of a previous byte
was completed) •

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one of
the following conditions:

• The physical device unit could not be initialized
(that is, the circuit could not be completed).

• The transmission of a character was not followed
by an interrupt within the period of time selected
as the device time-out period. This time-out
occurs only when a transmission is in progress and
the interrupt marking completion of a message does
not occur. The appropriate response to this
condition is to attempt to resynchronize the
device by initializing and accepting the next
request. A time-out does not occur on a read. If
the rece1v1ng device is not ready, the transfer
will not be initiated by the transmitting device.
Once the transfer is initiated, however, it will
complete either by satisfying the requested byte
count or by timing out.

(continued on next page)

12-9

Code

IE.IFC

IE.OFL

IE.SPC

IE.VER

IE.ABO

IE.RSU

IE.TMO

MESSAGE-ORIENTED COMMUNICATION DRIVERS

Table 12-4 (Cont.)
Communication Status Returns

Reason

Illegal function

A function code was specified in an I/O request that
is illegal for message-oriented communication
devices.

Device off line

The physical device unit associated with the
specified in the QIO directive was not on line.
the system was booted, a device check indicated
this physical device unit was not in
configuration.

Illegal address space

LUN
When
that

the

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task. Alternatively, a byte count of 0 was
specified.

Nonrecoverable error (DAll-B only)

The data transfer terminated before all of the data
has been transmitted. The error.code is returned on
transmit when both systems attempt to transmit at the
same time. This condition is detected by the device
protocol. The error code is returned on receive when
the transmit data count of the transmitting side does
not equal the data count specified by the receive
QIO.

Operation Aborted

The specified I/O operation was canceled by IO.KIL
while in progress or while still in the I/O queue.

Sharable Resources in use

The task attempted to allocate Unibus Mapping
Registers. All UMRs were allocated to other tasks
and were unable to complete the transfer.

Timeout Error

The physical device unit associated with the LUN
specified in the QIO directive timed out. This
occurs during a data transfer operation when the task
does not receive an interrupt within a specified
amount of time.

12-10

MESSAGE-ORIENTED COMMUNICATION DRIVERS

12.5 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the message-oriented communication
interfaces described in this chapter.

12. 5.1 •Transmission Validation

Because there is no way for the transmitting device to verify that the
data block has successfully arrived at the receiving device unless the
receiver responds, the transmitter assumes that any message that is
clocked out on the line (without line or device outage) has been
successfully transmitted. As soon as the receiver is able to satisfy
a read request, it returns a successful status code (IS.SUC) in the
I/O status block. Of course, only the task receiving the message can
determine whether the message has actually been transmitted
accurately.

The receiving device should be ready to receive data (with a read
request) at the time the transmission is sent.

12.5.2 Redundancy Checking

By the nature of message-oriented communications, only the task that
receives a communication can determine whether the message was
received successfully. The transmitter simply transfers data, without
validation of any kind. It is therefore the responsibility of the
communicating tasks which use the device to check the accuracy of the
transmission. A simple validity check is a checksum-type longitudinal
redundancy check. A better approach to validating data is the use of
a cyclic redundancy check (CRC) 5 A CRC can be computed in software or
with a hardware device, such as the KG-11 communications arithmetic
option.

Both DQll and DUPll incorporate hardware to compute a CRC.
CRC hardware requires an extra system unit.

12.5.3 Half-Duplex and Full-Duplex Considerations

The DQll

Because there is a single I/O request queue, only one QIO request can
be performed at a time. It is therefore not possible, through QIOs,
for a device to send and receive data at the same time. Also, since
timeouts are not set for receive functions, a receive QIO is
terminated only by receiving a message from the remote system, or by
issuing an IO.KIL QIO for the device. Therefore, if no message is
transmitted by the remote system, a receive will not terminate, and no
further I/O can be performed on that device until the receive is
killed by issuing an IO.KIL QIO.

Both half-duplex and full-duplex lines can be used with the DLll-E,
DMCll, DPll, DQll, DUll, and DUPll. The mode is settable by using
IO.FDX for full-duplex and IO.HDX for half-duplex. In half-duplex
mode, the modem signal RTS (Request To Send) is cleared after each
"transmit message." In full-duplex, this signal is always left on.
Using full-duplex mode eliminates modem delays in transmission, but
requires full-duplex hardware and communication links.

12-11

MESSAGE-ORIENTED COMMUNICATION DRIVERS

Only half-duplex mode is available with the DAll-B because of the
nature of the hardware.

The DMCll Driver maintains both transmits and receives separately in
its own internal queues. Thus, it is a full-duplex driver. There is
no limit on the number of outstanding I/O requests that can be active
at any given time. The DMCll hardware, however, allows a maximum of
only seven transmits and seven receives to be active at any time. The
driver gives the first seven transmits (or receives) direct~y to the
DMCll and queues the eighth and subsequent transmits (or receives)
internally until the DMCll acknowledges a successful I/O request.
When running on an 11/70, the driver gives only two transmits (or
receives) to the DMCll because each request requires a UNIBUS mapping
register. The DMCll driver is assigned five UMRs: one for base
table(s), two for active transmits, and two for active receives.

12.5.4 Low-Traffic Sync Character Considerations

If message traffic on a line is low, each message sent from a
communications device should be preceded by a sync train. This
enables the controller to resynchronize if a message is "broken" (that
is, part or all of it is lost in transmission). Correspondingly,
every message received by a communications device under low-traffic
conditions, when messages are not contiguous (back-to-back), should be
read with an IO.RLB (read, strip sync) function. This requires that
the first character in the data message itself not have the binary
value of the sync character.

12.5.5 Vertical Parity Support

Vertical parity is not supported by the DAll-B, DLll~E, DPll, DQll, or
DUll. Codes are assumed to be 8-bit only.

12.5.6 Powerfail with DMCll

The DMCll currently cannot recover after a power failure because the
RAM in its internal microprocessor is erased when power fails. Any
I/O requests outstanding at the time of a power failure will return
IE.ABO. These requests must be reissued after initializing the DMCll
(IO.INL).

12.5.7 Importance of IO.INL

After the type of communication line has been determined, and after
IO.SYN has specified the sync character, it is extremely important
that IO.INL be issued before any transfers occur. This ensures that
appropriate parameters are initialized and that the interface is
properly conditioned. Note that IO.INL provides the only means of
setting device characteristics, such as sync character. For this
reason, IO.INL should always be used immediately prior to the first
transfer over a newly activated link.

12-12

MESSAGE-ORIENTED COMMUNICATION DRIVERS

Tasks sending messages to the DMCll should begin by terminating and
reinitializing the device (IO.TRM,IO.INL) .1 IO.INL must be issued
after each IO.KIL (which effectively kills the DMCll), after
power-fail, and upon receipt of any error code.

12.6 PROGRAMMING EXAMPLE

The following example illustrates the
device parameters, and transmission
message-oriented communication device.

.MCALL ALUNS,QIOS

initialization,
of a block of

setting of
data on a

ALUN$S
QIO$S
QIO$S
QIO$S

ll,#"XP,#0 ; USE LUNl FOR DPll

TXAST: CMPB

BEQ

#IO.HDX!IO.SYN,<#1,,,,,#226> ; SET DEVICE PARAMETERS
#IO.INL,#1 ; PUT DEVICE ON LINE
#IO.WLB,#1,,,<#TXSTS,#TXAST,#TXBUF,#lOO>; SEND A BLOCK

#IS.SUC&377,@(SP)+

10$

WAS DATA CLOCKED OU
SUCCESSFULLY?
IF SO, SET UP FOR NEXT
BLOCK

1. Note that this will cause the error IE.CNR to be returned on any
I/O outstanding on the other end of the line.

12-13

CHAPTER 13

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

13.1 INTRODUCTION

PCLll Parallel Communications Link hardware is supported on
RSX-llM-PLUS systems by two drivers. One driver supports the
transmitter function and the other driver supports the receiver
function. The PCLll-B is a hardware interface that functions as a
time division multiplexed (TDM) interface over which several PDP-11
computers can transfer data to each other. Each PCLll-B consists of a
transmitter, receiver, and master section. The transmitter section
can transfer parallel 16-bit words along the TOM bus to a receiver
section of a separate PCLll-B on a different PDP-11 computer's UNIBUS.
One of the PCLll-B units attached to the TDM bus must have its master
section enabled to effect the data transfer.

13.1.1 PCLll-B Hardware

Each PCLll-B transmitter and receiver section has a unique TDM bus
address (hardware-configured). When a master section is enabled, it
places a transmitter address on the TOM bus for a period of time,
called a timeslice. During the timeslice, the addressed transmitter
can address the desired receiver section and transmit one word; the
transmitter waits for the receiver to acknowledge the word or an
indication that the word was not accepted. If the word is not
accepted, it will normally retransmit the word on the next available
timeslice. Thus, a message up to 32k words long can be transmitted to
a receiver one word at a time during the time in which other similar
TDM transactions are multiplexed for other PCLll-B devices.

13.1.2 PCLll Transmitter Driver

The PCLll transmitter driver provides two basic functions. First, it
must receive data sent by the attached task and store it in a silo
buffer in the PCLll hardware. Then, the driver passes proper receiver
address and command information to the PCLll transmitter hardware to
effect the actual transfer over the TDM bus.

13.1.3 PCLll Receiver Driver

The PCLll receiver driver also performs two basic functions. First,
it must remove data from the receiver silo and send it to the
connected task. In addition, the receiver driver must acknowledge a
transmitter when a data transmission is requested by that transmitter.
Subsequent requests by other transmitters on the TDM bus are ignored
until pll message transactions with the current transmitter are
completed.

13-1

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

13.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for the PCLll transmitter and receiver drivers. A setting
of 1 indicates that the described characteristics is true for PCLll
transmitter and receiver drivers.

Bit Setting Meaning

0 1 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 0 File-structured device

4 0 Single-directory device

5 1 Sequential device

6 0 Mass storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 0 Device mountable as a FILES-11 volume

15 0 Device mountable

Word 3 contains device driver-specific information, as follows:

Transmitter driver:

The low byte of word 3 contains the number of transmit retries
remaining after completing the current data transmit function if
the current data transmit function attempt is not accepted by the
addressed receiver. The high byte of word 3 is undefined.

Receiver driver:

The low byte of word 3 contains the index of the current state of
the receiver driver. These states are primarily used for
diagnostic purposes and are defined as follows:

Index Value

0

+2

+4

Meaning

No task is connected.

Task connected but not triggered.

Task triggered and waiting for IO.RTF or
IO.ATF function.

13-2

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

Index Value

+6

-2

-4

-6

Meaning

Task triggered and timed out while waiting for
IO.RTF or IO.ATF function.

IO.ATF function is in progress.

Task connected, not triggered, and has an
IO.ATF function in progress.

An IO.RTF function is in progress.

The high byte of word 3 is undefined.
the default buffer size in bytes.
bytes.

Word 4 is undefined. Word 5 is
For the PCLll, this value is 64

13.3 QIO MACRO -- PCLll TRANSMITTER DRIVER FUNCTIONS

13.3.1 Standard QIO Functions

Table 13-1 lists the standard functions of the QIO macro that are
valid for the PCLll transmitter driver.

Table 13-1
Standard QIO Functions for PCLll Transmitters

Format Function

QIO$C IO. ATT, ..• Attach device

QIO$C IO.DET, ••• Detach device

QIO$C IO. KIL, ••• Cancel I/O request

13.3.2 Device-Specific QIO Functions

Table 13-2 lists the device-specific functions of the QIO macro that
are valid for the PCLll transmitter driver.

Table 13-2
Device-Specific QIO Functions for PCLll Transmitters

Format Function

QIO$C IO.ATX, .•• ,<stadd,size,
flagwd,id,retries,retadd> Attempt message transmission

f"'ITf"'l~f""' Tf"'I C'C"f""' Sense ---.J...-- section status ~..LVY''- ..L\..l•L...1.J.:1'-"t•••f ma;::;Lt:r

QIO$C IO.STC, ••• ,<stadd,size,
[state], [mode], ,retadd> Set master section characteristics

13-3

stadd

size

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

The starting address of a data buffer. (Its description and
function is dependent upon the specific QIO function.)

The data buffer size in bytes. (Its description and function is
dependent upon the specific QIO function.)

flagwd

id

The value of the flagword that is to precede the message being
sent. The flags specify the desired receiver function as defined
by the user's protocol.

The identifier of the CPU to which the message is to be sent.
This identifier is the desired receiver's TDM bus address. It
appears in the high byte of the first word of the master section
I/O status block. The identifier number is an octal value
contained in the high byte of the parameter word. For example,
receiver number 1 is specified as 400, receiver number 2 is
specified as 1000, and so forth.

retries

The number of retries that will be attempted, following the first
attempt, that will be performed if the first attempt is
unsuccessful, or upon detecting transmission errors or master
down conditions, before returning error status to the calling
task.

retadd

state

The starting address of a 7-word buffer into which the contents
of the six transmitter registers and the transmitter
master/maintenance register are moved prior to returning to the
calling task. Information describing the contents of these
registers can be obtained by referring to the hardware
documentation supplied with the PCLll option.

The desired state setting for the transmitter, as follows:

Parameter
Specified

SS.MAS

SS.NEU

State

TDM bus master

Neutral (default state)

13-4

mode

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

The desired mode setting for allocating transmitter timeslices on
the TDM bus, as follows:

Parameter
Entered

MS.AUT

MS.ADS

Mode

Auto addr~ssing (default mode)

Address silo

13.3.2.1 IO.ATX - This I/O function requests an attempt to transmit a
message to a specified CPU. The message to be transmitted is
contained in a data buffer starting at the address specified in the
stadd parameter. This address must be on a word boundary. The data
buffer size specified in the size parameter must be an even, positive
value. The flagword parameter contains user-defined information that
the receiving task will use in determining whether to accept or reject
the message. The id parameter is the receiver TDM bus address. The
task uses this address to direct a message to a specific CPU. Other
parameters are as previously described.

13.3.2.2 IO.SEC - This I/O function is used to sense the master
section status. Upon successful completion of this function, the I/O
status block will contain a typical I/O status code (IS.SUC) return in
the low byte of the first word, and current Transmitter
Master/Maintenance Register (TMMR) contents in the second word, as
follows:

l Status Code

Current TMMR Contents

NOTE

The optional isb parameter (see
1.5.1) must be included in
request.

Section
this QIO

13.3.2.3 IO.STC - This I/O function sets the master section
operational characteristics. IO.STC can only be issued by a
privileged task. Correct use of the function depends upon the current
(or specified) operating state of the master section and proper use of
parameters. Each parameter is used as described in the following
paragraphs. Refer to all parameters in the sequence shown for a
correct interpretation of parameter usage.

13-5

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

State -- The state parameter determines the overall function of this
master section (and transmitter and receiver sections) in the PCLll
communications link as it relates to the TDM bus. The neutral state
(SS.NEU) places the master section in an inactive state where the unit
will send and receive messages in a normal manner, but the master
section cannot control transmitter timeslice allocation on the TDM
bus. The master state {SSeMAS) designates this unit as TDM bus
master, enabling control of transmitter unit timeslice allotments on
the TDM bus; only one master section on the TDM bus can be designated
TDM bus master.

Mode -- The TDM bus master can allocate transmitter timeslices in one
of two ways: auto address mode (MS.AUT) or address silo mode
(MS.ADS). When operating in the auto address mode (MS.AUT), which is
the default mode for the TDM bus master, equal timeslice allotments
are given to each transmitter unit; transmitter unit addresses are
sequentially put on the TDM bus in descending order, one address for
each timeslice. When operating in the address silo mode, transmitter
unit addresses are transmitted in a user-specified sequence, allowing
up to 50% of the timeslices to be allocated to one transmitter unit,
if desired.

The actual sequence of transmitter timeslice allocations for the
address silo mode is set up in the user's task data buffer referenced
by the stadd parameter. Certain constraints must be observed when
specifying this information, as follows:

• Each entry in the buffer is a byte containing a transmitter
unit address.

• At least 20 entries, but not more than 50 entries, must be
specified. If less than 20 entries are specified, the driver
will repeat the entire sequence, as specified, in order to
attain the required minimum of 20 addresses. If more than 50
addresses are specified, no change in timeslice allocation
will be effected and an IE.VER error status will be returned
to the task.

• Identical transmitter addresses in either adjacent bytes or in
first and last bytes should be avoided. When identical
addresses appear in adjacent bytes in this manner, the driver
inserts invalid "pad" transmitter addresses between identical
addresses, effectively resulting in no-operation timeslices.

• Transmitter addresses are decimal values ranging from 1 to 32
(inclusive) which correspond to addresses implemented on the
actual transmitter unit hardware.

• The size parameter must correctly specify the number of
address bytes contained in the buffer referenced by the stadd
parameter.

13.4 PCLll'TRANSMITTER DRIVER STATUS RETURNS

Table 13-3 lists PCLll transmitter driver return status codes and
probable reasons.

13-6

Code

IS. sue

IS. TNC

IE. BAD

IE. DNR

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

Table 13-3
PCLll Transmitter Driver Status Returns

Reason

Successful completion

The QIO function was successfully completed. If
an IO.ATX function was completed, the second
status word contains the number of bytes
transferred; the message was not truncated. If
an IO.SEC function was completed, the second
status word contains the current contents of the
master section's TMMR.

Successful transfer but message truncated

The IO.ATX function was completed, but the message
was truncated by the receiver (the receiver buffer
is too small). The transmitter unit cannot
determine how many words were actually received by
the receiver unit; the second word of the I/O
status block contains the length of the requested
transfer, rather than the actual count of words
successfully received in the receiver's buffer.

Bad parameter specification

A bad parameter specification was included in the
IO.ATX function, or an invalid state parameter or
TDM bus timeslice allocation addressing mode was
specified in the IO.STC function.

This error status is also returned when an IO.STC
function, issued to a TDM bus master operating in
the address silo mode, refers to a data buffer
containing an illegal series of transmitter
addresses. An illegal series of addresses occurs
when the number of entries specified for the
timeslice allocation, plus the required number of
pad addresses, either exceeds 50 or is less than
o.

Device not ready

This error status return occurs in response to an
IO.ATX function when one of the following occurs:

• Power failure in this CPU.

• Device time-out (no response from the addressed
receiver).

• Receiver was too slow in accepting or rejecting
the transfer request.

• The master section is inoperative. This error
status is returned only after the number of
retries specified in the IO.ATX function have
been attempted without success.

(continued on next page)

13-7

Code

IE.VER

IE.SPC

IE.REJ

IE.FLG

IE.BBE

IE.ABO

IE.IFC

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

Table 13-3 (Cont.)
PCLll Transmitter Driver Status Returns

Reason

Unrecoverable error

The IO.STC function state setting could not be
achieved because the task is not privileged or
another device is TOM bus master.

Illegal user buff er

The buffer address specified in the IO.ATF
function is outside of the issuing task's address
space.

Transfer rejected

The data transfer request specified in the IO.ATX
function was rejected by the addressed
receiver--based on the source CPU identifier of
the task issuing the request--and flagword.

Event flag already specified

An event flag was previously specified in an
IO.STC function.

Transmission error

This error status is returned only after the
number of retries specified in the IO.ATX function
have been attempted without a successful
transmission. (Cycle redundancy check errors or
parity errors have been detected on each attempt.)

Request terminated

This status is returned when a pending I/O
function has been aborted in response to an IO.KIL
function being issued by the task.

Illegal function

A function code was specified in an I/O request
that is illegal for PCLll transmitters.

13.5 QIO MACRO -- PCLll RECEIVER DRIVER FUNCTIONS

13.5.1 Standard QIO Functions

Table 13-4 lists the standard function of the QIO macro that is valid
for the PCLll receiver driver.

13-8

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

Table 13-4
Standard QIO Functions for PCLll Receivers

Format Function

QIO$C IO.KIL, ••• Cancel I/O request

13.5.2 Device-Specific QIO Functions

Table 13-5 lists the device-specific functions of the QIO macro that
are valid for the PCLll receiver driver.

tef

Table 13-5
Device-Specific QIO Functions for PCLll Receivers

Format Function

QIO$C IO.CRX, ••• ,<tef,bufadd> CONNECT for reception

QIO$C IO.RTF, ••• Reject transfer

QIO$C IO.ATF, ••• ,<stadd,size,
retadd> Accept transfer

QIO$C IO.DRX, ••• Disconnect from reception

The number of a "trigger" event flag that will be set whenever a
flagword is received over the TDM bus.

bufadd

st add

size

The address of a 2-word buffer containing the transmitter id,
trigger status, and the flagword.

The address of a data buffer to receive the message.
address must occur on a word boundary (even address) •

This

The data buffer size in bytes._ The size specified must be an
even, positive value.

retadd

The address of a 6-word buffer into which the contents of the six
PCLll receiver hardware registers will be returned upon
successful completion of the function. Information describing
the contents of these registers can be obtained by referring to
the hardware documentation supplied with the PCLll option.

13-9

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

13.5.2.1 IO.CRX - This I/O function connects the issuing task to the
receiver, if the receiver is not currently connected to another task.
When connected, this task is the only task capable of receiving
messages by means of the receiver on this CPU. The trigger event flag
(a local, common, or group-global event flag) informs the task when a
message is pending. It is set when a flagword is received over the
TDM bus. When this happens, a significant event is declared and the
connected task is considered "triggered." The flagword is the first
word transmitted by a transmitter when attempting to send a message to
the receiver unit.

The bufadd parameter must be included in this I/O function to specify
the address of a 2-word block, as follows:

sts

id

id sts

f lagwd

The current trigger status.

The identification code of the transmitter attempting to send the
message.

f lagwd

The flagword transmitted to the connected receiver.

Based on the information contained in the flagword and the
identification code of the transmitter unit, the task can accept or
reject the transfer. (Two I/O functions are provided for this
purpose; see Sections 13.5.2.2 and 13.5.2.3.} The receiver must
respond to the transmitter's request within approximately 1.5 seconds;
otherwise, an IE.DNR error status is returned to the task attempting
the transmission.

13.5.2.2 IO.RTF - This function informs the transmitter device that
the message is being rejected by the receiver. Any attempt to issue
this I/O function when the trigger event flag is not set will be
ignored, and an IE.NTR error status will be returned to the task.

13.5.2.3 IO.ATF - This function informs the transmitter device that
the message is being accepted. Parameters specify both the data
buffer into which the received data will be transferred, and the
6-word buffer that will receive the contents of the receiver section
hardware registers upon successfully completing the function.

Unlike the IO.RTF function, the IO.ATF function can be issued before
the task is triggered. When this is done, the IO.ATF function is
queued for reception of any flagword. When the flagword is received,
the receiver driver immediately executes the IO.ATF function; the
connected task is not triggered and the flagword is not made available
to the task. This approach is useful when it is not necessary to
examine flagwords or to accept messages based on the source.

13-10

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

13.5.2.4 IO.DRX - This function is issued by a task to disconnect the
receiver for use by other tasks.

13.6 PCLll RECEIVER DRIVER STATUS RETURNS

Table 13-n lists PCLll receiver driver return status codes and
probable reasons.

Code

rs.sue

IS.TNC

IE. BAD

IE.DNR

Table 13-6
PCLll Receiver Driver Status Returns

Reason

Successful completion

The I/O function or triggering of the task was
successfully completed. When this status is
returned upon completion of the IO.ATF function,
the high-order byte of the first word in the I/O
status block contains the identification code of
the transmitter device that sent the flagword.
The second word of the I/O status block contains
the number of bytes transferred over the TDM bus.
When this status is returned as a result of an
IO.CRX function, and the task being triggered, the
I/O status block contains information that enables
the task to accept or reject the message (see
Section 13. 5. 2.1).

Successful transfer but message truncated

This I/O status is returned when the message is
terminated because the receiver task message
buffer specified in the IO.ATF function is too
small to contain the message being received. The
second word of the I/O status word contains the
number of bytes successfully transferred.

Bad parameter specification

A bad parameter specification was included in the
requested function.

Device not ready

This error status return occurs in response to an
IO.RTF or IO.ATF function when one of the
following occurs:

• Power failure in this CPU.

• Device time-out (no response from addressed
receiver).

• Receiver was too slow in accepting or rejecting
the transfer request.

• The master section is inoperative.

(continued on next page)

13-11

Code

IE.SPC

IE.DNA

IE.DAO

IE.DAA

IE.NTR

IE.BBE

IE.ABO

IE.FHE

IE.IFC

PCLll PARALLEL COMMUNICATIONS LINK DRIVERS

Table 13-6 (Cont.)
PCLll Receiver Driver Status Returns

Reason

Illegal user buffer

The buffer address specified in the IO.ATF
function is outside of the issuing task's address
space.

Task not connected for reception

The requested function cannot be executed because
the task is not connected to the receiver.

Data overrun

This I/O status code is returned when the task is
triggered, but the previous transfer request has
neither been accepted nor rejected. When the task
issues an IO.RTF or IO.ATF function, it will apply
to the new (most recent) flagword; the previous
request is ignored.

Device already connected for reception

This I/O status code is returned in response to
the IO.CRX function when the receiver is already
connected to this task or any other task. No
operation is performed.

Task not triggered

This I/O status code is returned when a task
attempts to issue an IO.RTF function prior to the
task being triggered.

Transmission error

This error status is returned when an IO.ATF
function is in progress and a cycle redundancy
check error or parity error has been detected.

Request terminated

This status is returned when a pending I/O
function has been aborted in response to an IO.KIL
function being issued by the task.

Fatal hardware error

The requested function cannot be executed because
of a hardware failure.

Illegal function

A function code was specified in an I/O request
that is illegal for PCLll transmitters.

13-12

CHAPTER 14

ANALOG-TO-DIGITAL CONVERTER DRIVERS

14.1 INTRODUCTION

The AFCll and ADOl-D analog-to-digital (A/D) converters are used to
acquire industrial and laboratory analog data. (AFCll and ADOl-D
driver support is not provided on RSX-llM-PLUS systems.) Although each
has its own driver, programming for both is quite similar and both are
multichannel, programmable gain devices. The ADOl-D should not be
confused with the ADUOl, a UDC module, which is described in Chapter
15. Table 14-1 compares the AFCll and the ADOl-D briefly, and
subsequent sections describe these devices in greater detail.

Table 14-1
Standard Analog-to-Digital Converters

AFCll ADOl-D

Maximum Sampling Rate (Points 200 (20 per single) Approximately
per Second) channel 10,000

Number of Bits 13 or 14 10 or 11

Maximum Number of Analog Channels 1024 64
That Can Be Multiplexed

14.1.1 AFCll Analog-to-Digital Converter

The AFCll is a differential analog input subsystem for industrial
data-acquisition and control systems. It multiplexes signals, selects
gain, and performs a 13- or 14-bit analog-to~digital conversion under
program control. With the use of appropriate signal-conditioning
modules, the system can intermix and accept low-level, high-level, and
current inputs, with a high degree of noise immunity.

14.1.2 ADOl-D Analog-to-Digital Converter

The ADOl-D is an extremely fast analog data-acquisition system. It
multiplexes signals, selects gain, and performs a 10- or 11-bit
analog-to-digital conversion under program control. The ADOl-D is
normally unipolar, but an optional sign-bit facilitates bipolar
operation.

14-1

ANALOG-TO-DIGITAL CONVERTER DRIVERS

14.2 GET LUN INFORMATION MACRO

If a GET LUN INFORMATION system directive is issued for a LUN
associated with an analog-to-digital converter, word 2 (the first
characteristics word) contains all Os, words 3 and 4 are undefined,
and word 5 is not significant, since there is no concept of a default
buffer size for analog-to-digital converters.

14.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
analog-to-digital converter drivers.

14.3.1 Standard QIO Function

The standard function that is valid for analog-to-digital converters
is shown in Table 14-2.

Table 14-2
Standard QIO Function for the A/D Converters

Format Function

QIO$C IO.KIL, ••• Cancel I/O requests

Since all requests are processed within a small amount of time, no
in-progress request is ever canceled. This function simply cancels
all queued requests.

14.3.2 Device-Specific QIO Function

The device-specific function of the QIO macro that is valid for
analog-to-digital converters is shown in Table 14-3.

Table 14-3
Device-Specific QIO Function for the A/D Converters

Format Function

QIO$C IO.RBC, ••• ,<stadd,size,stcnta> INITIATE multiple A/D
conversions

stadd

The starting address of the data buffer (must be on a word
boundary).

14-2

I

size

ANALOG-TO-DIGITAL CONVERTER DRIVERS

The control buffer size in bytes (must be even and greater than
O); the data buffer is the same size.

stcnta

The starting address of the control buffer (must be on a word
boundary); each control buffer word must be constructed as shown
in Table 14-4.

Table 14-4
A/D Conversion Control Word

Bits Meaning AFCll ADOl-D

0-11 Channel number Range: 0-1023 Range: 0-63

12-15 Gain value for this Gain: Gain:
sample, expressed as
a bit pattern as
follows:

15 14 13 12

0 0 0 0 1 1
0 0 0 1 2 2
0 0 1 0 illegal 4
0 0 1 1 illegal 8
0 1 0 0 10 illegal
0 1 0 1 20

I
illegal

0 1 1 0 illegal illegal
0 1 1 1 illegal illegal
1 0 0 0 50 illegal
1 0 0 1 100 illegal
1 0 1 0 illegal illegal
1 0 1 1 illegal illegal
1 1 0 0 200 illegal
1 1 0 1 1000 illegal
1 1 1 0 illegal illegal
1 1 1 1 illegal illegal

14.4 FORTRAN INTERFACE

A collection of FORTRAN-callable subroutines provide FORTRAN programs
access to the AFCll and the ADOl-D. These are described in this
section. All are reentrant and may be placed in a resident library.

14.4.1 Synchronous and Asynchronous Process Control I/O

The ISA standard provides for synchronous and asynchronous I/O.
Synchronous I/O is indicated by appending a "W" to the name of the
subroutine (for example, AISQ/AISQW). The synchronous call suspends
task execution until the I/O operation is complete. If the
asynchronous form is used, execution continues and the calling program
must periodically test the status word for completion.

14-3

ANALOG-TO-DIGITAL CONVERTER DRIVERS

14.4.2 The isb Status Array

The isb {I/O status block) parameter is a 2-word integer array that
contains the status of the FORTRAN call, in accordance with ISA
convention. This array serves two purposes:

l. It is the 2-word I/O status block to which the driver returns
a status code on completion of an I/O operation.

2. The first word of isb receives a status code from the FORTRAN
interface in ISA-compatible format, with the exception of the
I/O pending condition, which is indicated by a status of O.
The ISA standard code for this condition is +2.

The meaning of the contents of isb varies, depending on the FORTRAN
call that has been executed; but Table 14-5 lists certain general
principles that apply. The section describing each subroutine
provides further details.

Table 14-5
Contents of First Word of isb

Contents Meaning

isb{l) = 0 Operation pending; I/O in progress

isb{l) = 1 Successful completion

isb{l) = 3 Interface subroutine unable to
generate QIO directive, or number of
samples is 0

3 < isb{l) < 300 QIO directive rejected and actual
error code = -{isb(l) - 3)

isb{l) > 300 Driver rejected request and actual
error code = -(isb(l) - 300)

Unless otherwise specified, the value of isb{2) is the value returned
by the driver to the second word of the I/O status block.

FORTRAN interface subroutines depend on asynchronous system traps to
set their status. Thus, if the trap mechanism is disabled, proper
status cannot be set.

14.4.3 FORTRAN Subroutine Summary

Table 14-6 lists the FORTRAN interface subroutines supported for the
AFCll and ADOl-D under RSX-llM.

14-4

ANALOG-TO-DIGITAL CONVERTER DRIVERS

Table 14-6
FORTRAN Interface Subroutines for the AFCll and ADOl-D

Subroutine Function

AIRD/AIRDW Perform input of analog data in random
s quence

AISQ/AISQW Read a series of sequential analog
input channels

ASADLN Assign a LUN to the ADOl-D

ASAFLN Assign a LUN to the AFCll

The following subsections briefly describe the function and format of
each FORTRAN subroutine call. Note the use of ASADLN and ASAFLN to
assign a default logical unit number.

14.4.4 AIRD/AIRDW: Performing Input of Analog Data in Random Sequence

The ISA standard AIRD/AIRDW FORTRAN subroutines input analog data in
random sequence. These calls are issued as follows:

inm

icont

idata

isb

lun

{
AIRD }

CALL
AIRDW

(inm,icont,idata, [isb], [lun])

The number of analog input channels.

An integer array containing terminal connection data-channel
number (right-justified in bits 0-11) and gain (bits 12-15), as
shown in Table 14-4.

An integer array to receive the converted values.

A 2-word integer array to which the subroutine status is
returned.

The logical unit number.

14-5

ANALOG-TO-DIGITAL CONVERTER DRIVERS

The isb array has the standard meaning defined in Section 14.4.2. If
inm = 0, then isb(l) = 3. The contents of idata are undefined if an
error occurs.

14.4.5 AISQ/AISQW: Reading Sequential Analog Input Channels

The ISA standard AISQ/AISQW FORTRAN subroutines read a series of
sequential analog input channels. These calls are issued as follows:

inm

icont

id a ta

isb

lun

{
AISQ }

CALL
AISQW

(inm,icont,idata, [isb], [lun])

The number of analog input channels.

An integer array containing terminal connection data-channel
number (right-justified in bits 0-11) and gain (bits 12-15), as
shown in Table 14-4.

An integer array to receive the converted values.

A 2-word integer array to which the subroutine status is
returned.

The logical unit number.

For sequential analog input, channel number is computed in steps of
one, beginning with the value specified in the first element of icont.
The channel number field is ignored in all other elements of the
array.

The gain used for each conversion is taken from the respective element
in icont. Thus, even though the channel number is ignored in all but
the first element of icont, the gain must be specified for each
conversion to be performed.

The isb array has the standard meaning defined in Section 14.4.2. If
inm = 0, then isb(l) = 3. The contents of idata are undefined if an
error occurs.

14-6

ANALOG-TO-DIGITAL CONVERTER DRIVERS

14.4.6 ASADLN: Assigning a LUN to the ADOl-D

The ASADLN FORTRAN subroutine assigns the specified LUN to the ADOl-D
and defines it as the default logical unit number to be used whenever
a LUN specification is omitted from an AIRD(W)/AISQ(W) subroutine
call. It is issued as follows:

lun

isw

iun

CALL ASADLN (lun,[isw],(iun])

The logical unit number to be assigned to the ADOl-D and defined
as the default unit.

An integer variable to which the result of the ASSIGN LUN system
directive is returned.

The unit number to be assigned. If unspecified, a value of 0 is
assumed.

Only the LUN specified in the last call to ASADLN or ASAFLN is defined
as the default unit.

14.4.7 ASAFLN: Assigning a LUN to the AFCll

The ASAFLN FORTRAN subroutine assigns the specified LUN to the AFCll
and defines it as the default logical unit number to be used whenever
a LUN specification is omitted from an AIRD(W)/AISQ(W) subroutine
call. It is issued as follows:

lun

isw

iun

CALL ASAFLN (lun,[isw],[iun])

The logical unit number to be assigned to AFCll and defined as
the default unit.

An integer variable to which the status from the ASSIGN LUN
system directive is returned.

The unit number to be assigned. If unspecified, a value of 0 is
assumed.

Only the LUN specified in the last call to ASAFLN or ASADLN is defined
as the default unit.

14-7

ANALOG-TO-DIGITAL CONVERTER DRIVERS

14.5 STATUS RETURNS

The error and status conditions listed in Table 14-7 are returned by
the analog-to-digital converter drivers described in this chapter.

Code

rs.sue

IS.PND

IE.ABO

IE.BAD

IE.BYT

IE.DNR

Table 14-7
A/D Converter Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number
of A/D conversions performed.

I/O request pending

The operation specified in the QIO directive has not
yet been executed. The I/O status block is filled
with Os.

Operation aborted

The specified I/O operation was canceled with IO.KIL
while still in the I/O queue.

Bad parameter

An illegal specification was supplied for one or more
of the device-dependent QIO parameters (words 6-11}.
For the analog-to-digital converters, this code
indicates that a bad channel number or gain code was
specified in the control buffer.

Byte-aligned buffer specified

Byte alignment was specified for a data or control
buffer, but only word alignment is legal for
analog-to-digital converters. Alternatively, the
length of the data and control buffer is not an even
number of bytes.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. For the AFCll, this code is returned if
an interrupt time-out occurred or the power failed.
In the case of the ADOl-D, which is not operated in
interrupt mode, this code indicates a software
time-out occurred (that is, a conversion did not
complete within 30 microseconds}.

(continued on next page)

14-8

Code

IE.IFC

IE.OFL

IE. SPC

ANALOG-TO-DIGITAL CONVERTER DRIVERS

Table 14-7 {Cont.)
A/D Converter Status Returns

Reason

Illegal function

A function code was specified in an I/O request that
is illegal for analog-to-digital converters.

Device off line

The physical device unit associated with the
specified in the QIO directive was not on line.
the system was booted, a device check indicated
this physical device unit was not in
configuration.

Illegal address space

LUN
When
that
the

The data or control buffer specified for a conversion
request was partially or totally outside the address
space of the issuing task. Alternately, a byte count
of 0 was specified.

FORTRAN interface values for these subroutines are presented in
Section 14.5.1.

14.5.1 FORTRAN Interface Values

The values listed in Table 14-8 are returned in FORTRAN subroutine
calls.

Table 14-8
FORTRAN Interface Values

Status Return

IS. sue
IS. PND
IE.ABO
IE.ADP
IE.BAD
IE.BYT
IE.DAO
IE.DNR
IE.IEF
IE.IFC
IE. ILU
IE.NOD
IE.CNP
IE.PR!
IE.RSU
IE.SOP
IE.SPC
IE.ULN
IE.UPN

14-9

FORTRAN Value

+01
+00

+315
+101
+301
+319
+313
+303
+100
+302

+99
+323
+305
+316
+317
+102
+306

+08
+04

ANALOG-TO-DIGITAL CONVERTER DRIVERS

14.6 FUNCTIONAL CAPABILITIES

The AFCll and ADOl-D operate only in multisample mode, because the
user can simulate single-sample mode by simply specifying one sample.
Multisample mode permits many channels to be sampled at approximately
the same time without requiring the user to queue multiple I/O
requests.

The maximum number of channels in the configuration is specified at
system-generation time. This value is stored in the respective AFCll
and ADOl-D unit control blocks.

14.6.1 Control and Data Buffers

The user must define two buffers of equal size: the control buffer
and the data buffer. The former contains the control words needed to
perform one A/D conversion per channel specified. Each control word
indicates the channel to be sampled and the gain to be applied (see
Table 14-4).

The data buffer receives the results of the conversions. Each result
is placed in the data buffer location that corresponds to the control
word that specified it.

14.7 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the analog-to-digital converter
drivers described in this chapter.

14.7.1 Use of A/D Gain Ranges

Note that the A/D gain ranges overlap. The key to successful use of
the A/D converters is to change to a higher gain whenever a full-scale
reading is imminent, and to change to a lower gain whenever the last
A/D value recorded was less than half of full scale. This method
maintains maximum resolution while avoiding saturation.

14.7.2 Identical Channel Numbers on the AFCll

When requesting sampling of more than one channel, the user should not
specify multiple sampling of a single channel without 10 or more
intervening samples on other channels. This ensures 50 milliseconds
between samples on a single channel. If sampling occurs more often
than this on a single channel, partial results are returned (see
Section 14.7.3}.

14-10

ANALOG-TO-DIGITAL CONVERTER DRIVERS

14.7.3 AFCll Sampling Rate

Although the AFCll can sample a maximum of 200 points per second, a
single channel can only be sampled at 20 points per second. Because
the channel capacitor needs 50 milliseconds to recharge after each
conversion, more frequent sampling may result in partial readings. If
this occurs, the user will receive no indication that information is
being lost. To ensure that information is not lost on any one
channel, the user should sample approximately 10 other channels before
returning to the first one.

14.7.4 Restricting the Number of AD01-D Conversions

The ADOl-D is an extremely fast device, providing a 25-microsecond
conversion rate, and is driven programmably to minimize system
overhead. However, an excessive number of conversions in a single
request essentially locks out the rest of the system, because the
driver does not return control to the system until it has finished all
the specified conversions. No other task can run, although interrupts
can still occur and are processed.

14-11

CHAPTER 15

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.l INTRODUCTION

The UDCll is a digital input/output system for industrial and process
control applications. It interrogates and/or drives up to 252
directly addressable digital sense and/or control modules. The UDCll
operates under program control as a high-level digital multiplexer,
interrogating digital inputs and driving digital outputs. (UDCll
driver support is not provided on RSX-llM-PLUS systems.)

The UDC driver will support either the UDCll or ICSll subsystem. The
ICSll {Industrial Control Subsystem) operates as an input/output
device that is functionally similar to the UDCll. A maximum of 16 I/O
modules can be placed in one ICSll subsystem; up to 12 ICSlls can be
interfaced to one computer system. The ICSll subsystem is also
supported by the ICS/ICR-11 driver described in Chapter 18. The
reader should consult that chapter for a comparison of driver
features.

While performing analog-to-digital conversions, the UDCll driver can
handle other functions, such as contact or timer interrupts or
latching output. These functions are performed immediately, without
requiring any in-progress analog-to-digital conversions to first be
completed.

Unlike other RSX-llM I/O device drivers, the UDCll driver is neither a
multicontroller nor a multiunit driver.

15.1.1 Creating the UDCll Driver

Each installation must assemble the driver source module with a prefix
file that defines the particular hardware configuration. The prefix
file is created during system generation according to the user's
response to questions relating to the UDCll. This file is named
RSXMC.MAC and includes symbolic definitions of the UDCll
configuration. These definitions encode the relative module number
and the number of modules for each generic type specified in the
system generation dialog. The encoding has the following format:

8 8
number of modules starting module number

15-1

UNIVERSAL DIGITAL CONTROLLER DRIVER

One or more of the following symbols is generated:

Symbol Moduie Type

Analog input
Analog output
Contact interrupt

U$$ADM
U$$AOM
U$$CIM
U$$CSM
U$$LTM
U$$SSM
U$$TIM

Contact sense input
Latching digital output
Single-shot digital output
Timer (I/O counter)

Note that all modules of a given type must be installed together in
sequential slots.

15.1.2 Accessing UDCll Modules

RSX-llM provides two methods of accessing the UDCll:

1. A QIO macro call issued to the driver

2. Restricted direct access by any task to I/O page registers
dedicated to the UDCll

The first method, access through the driver, is required to service
interrupting modules and to set and record the state of latching
digital output modules.

The second method, direct access, is a high-speed, low-overhead way to
service noninterrupting modules. The following functions may be
performed in this manner:

• Analog output

• Contact sense input

• Single-shot digital output

• Read a contact interrupt module

• Read a timer module

15.1.2.l Driver Services - The driver services the following types of
modules:

• Contact interrupt

• Timer (I/O counter)

• Analog input

• Latching digital output

Contact and timer interrupts need not be serviced
One task may be connected to contact interrupts,
interrupts. A nonprivileged task can connect to
these classes by providing a circular buffer
information and an event flag to allow triggering
a buffer entry is made.

15-2

by a single task.
and another to timer
either or both of
to receive interrupt
of the task whenever

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.1.2.2 Direct Access - A global common block within the I/O page
provides restricted direct access to the UDCll device registers. In a
mapped system, the length of the block is set to prevent access to
other device registersa In an unmapped system, the use of the common
block is optional, unless ISA FORTRAN calls are used. The ISA
routines refer symbolically to the UCDll registers, and thus require
the use of global common. Section 15.4 explains direct access more
fully.

15.2 GET LUN INFORMATION MACRO

If a GET LUN INFORMATION system directive is issued for a LUN
associated with the UDCll, word 2 (the first characteristics word)
contains all zeros, words 3 and 4 are undefined, and word 5 is not
significant, since there is no concept of a default buffer size for
universal digital controllers.

15.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the UDCll driver. In issuing them, note the numbering conventions
described in 15.7.2.

15.3.1 Standard QIO Function

The standard function that is valid for the UDCll is shown in Table
15-1.

Table 15-1
Standard QIO Function for the UD~ll

Format Function

QIO$C IO.KIL, ••• Cancel I/O requests

IO.KIL cancels all queued requests and disconnects all interrupt
connections, but does not stop any I/O that is currently in progress.

15.3.2 Device-Specific QIO Functions

Table 15-2 summarizes device-specific QIO functions that are supported
for the UDC12.

15-3

UNIVERSAL DIGITAL CONTROLLER DRIVER

Table 15-2
Device-Specific QIO Functions for the UDCll

Format Function

QIO$C IO.CCI, ••• ,<stadd,sizb,tevf> CONNECT a buffer to contact
interrupts

QIO$C IO.CTI, ••• ,<stadd,sizb,tevf,arv> CONNECT a buffer to timer
interrupts

QIO$C IO.DC!,... Disconnect a buffer from
contact interrupts

QIO$C IO.DTI,... Disconnect a buffer from timer
interrupts

QIO$C IO.ITI, ••• ,<mn,ic> INITIALIZE a timer

QIO$C IO.MLO, ••• ,<opn,pp,dp> OPEN or close latching digital
output points

QIO$C IO.RBC, ••• ,<stadd,size,stcnta> INITIATE multiple A/D
conversions

stadd

sizb

tevf

arv

mn

ic

opn

The starting address of the data buffer (must be on a word
boundary) •

The data buffer size in bytes (must be even and large
include a 2-word buffer header plus one data entry;
may cross a 4K boundary).

The trigger event flag number.

enough to
the buffer

The starting address of the table of initial/reset values (must
be on a word boundary) •

The module number.

The initial count.

The first latching digital output point number, which must be on
a module boundary (evenly divisible by 16).

15-4

pp

dp

size

UNIVERSAL DIGITAL CONTROLLER DRIVER

The ln-bit mask.

The data pattern.

The control buffer size in bytes (must be even and greater than
O); the data buffer is the same size.

stcnta

The starting address of the control buffer (must be on a word
boundary); each control buffer word must be constructed as shown
in Table 15-3.

The following sections describe the functions listed in Table 15-2.

Table 15-3
A/D Conversion Control Word

Bits Meaning ADUOl

0-11 Channel number Range: 0-4095

12-15 Gain value for this Gain:
sample, expressed as
a bit pattern as
follows:

15 14 13 12 - - - -

0 0 0 0 1
0 0 0 1 2
0 0 1 0 Illegal
0 0 1 1 Illegal
0 1 0 0 10
0 1 0 1 20
0 1 1 0 Illegal
0 1 1 1 Illegal
1 0 0 0 50
1 0 0 1 100
1 0 1 0 Illegal
1 0 1 1 Illegal
1 1 0 0 200
1 1 0 1 1000
1 1 1 0 Illegal
1 1 1 1 Illegal

I

15-5

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.3.2.1 Contact Interrupt Digital Input {W733 Modules) - Digital
input and change of state information from contact interrupt modules
is reported in a requester-provided circular buffer. The buffer
consists of a 2-word header, followed by a data area in the following
format:

1
2
3
4

driver index
user index
entry
entry . . .

Whenever a change of state occurs in one or more contact points, an
interrupt is generated. The UDCll driver gains control, determines
whether the change of state is of interest (that is, a contact closure
and point closing (PCL) is set on the module), and then optionally
makes an entry in the data area of the buffer, updates the index
words, and sets the trigger event flag of the connected task.

Each entry consists of five words in the following format:

Word Contents

0 Entry existence indicator

1 Change-of-state (COS) indicator

2 Module data (current point values)

3 Module number (interrupting module)

4 Generic code (interrupting module)

The driver enters data in the location currently indicated by the
driver index. This pointer can be cons~dered as a FORTRAN index into
the bµffer; that is, the first location of the buffer is associated
with the index 1. The beginning of the data area is the location of
the first entry (index 3). Entries are made in a circular fashion,
starting at the beginning of the data area, filling in order of
increasing memory address to the end of the data area, and then
wrapping around from the end to the beginning of the data area.

It is expected that the connected task will maintain its own pointer
(the user index) to the location in the buffer where it is next to
retrieve contact interrupt data. When a task is triggered by the
driver, it should process data in the buffer starting at the location
indicated by its pointer and continuing in a circular fashion until
the two pointers are equal or a zero entry existence indicator is
encountered. Equality of pointers means that the connected task has
retrieved all the contact interrupt information that the driver has
entered into the buffer.

The entry existence indicator is set to nonzero when a buffer entry is
made. When a requester has removed or processed an entry, he must
clear the existence indicator in order to free the buffer entry
position.

15-6

UNIVERSAL DIGITAL CONTROLLER DRIVER

If data input occurs in a burst sufficient to overrun the buffer, data
is discarded and a count of data overruns is incremented. The nonzero
entry existence indicator also serves as an overrun indicator. A
positive value (+l) indicates no overruns between entries; a negative
value is the two's complement of the number of times data have been
discarded between entries.

The module number indicates a module on which a change of state in the
direction of interest has been recognized for one or more discrete
points. The direction of the change may be from 0 to 1 or 1 to O,
depending on the PCL (point closing) and POP (point opening) module
jumpers. The change of state (COS) indicator specifies which point or
points of the module have changed state.

The bit position of an on-bit in the
low-order bits (3-0) of a point number
the high-order bits (15-4). The module
value (polarity) of each point in
interrupt.

COS indicator provides the
and the module number provides
data indicates the logical

the module at the time of the

Contact interrupt data can be reported to only one task. The
functions IO.CCI and IO.DCI in Table 15-2 are provided to enable a
task to connect and disconnect from contact interrupts. If the
connection is successful, the second word of the I/O status block
contains the number of words passed per interrupt in the low-order
byte and the initial FORTRAN index to the beginning of the data area
in the high-order byte.

NOTE

The size of the data area must be a
multiple of the entry size.

15.3.2.2 Timer {W734 I/O Counter Modules) - A timer (I/O counter)
module is a clock that is initialized (loaded), counts up or down, and
then causes an interrupt. The UDCll driver treats such modules in a
way similar to that in which it handles contact interrupts. The
requester provides a circular buffer similar to that for contact
interrupts. Each entry consists of four words in the following
format:

Word Contents

0 Entry existence indicator

1 Module data (current value)

2 Module number (interrupting module)

3 Generic code (interrupting module)

15-7

UNIVERSAL DIGITAL CONTROLLER DRIVER

The IO.CTI function in Table 15-2 enables a task to connect to timer
interrupts. The table of initial/reset values is used to initially
load the timers and to reload them on interrupt (overflow). The table
contains one word for each timer module. The contents of the first
word are used to load the first module, and so forth. If a timer has
a nonzero value when it interrupts, it is not reloaded, so that
self-clocking modules and modules that interrupt on half count can
continue counting from the initial value.

The IO.DTI function in Table 15-2 disconnects a task from timer
interrupts, and the IO.IT! function provides the capability of
initializing a single timer. Requests to initialize a counter are
valid only if the issuing task has connected a buffer for receiving
counter interrupts.

NOTE

The size of the data area must be a
multiple of the entry size.

15.3.2.3 Latching Digital Output {M685, M803, and M805 Modules) -
Each module has 16 latching digital output points. The IO.MLO
function in Table 15-2 opens or closes a set of up to 16 points. Bit
n of the mask and data pattern corresponds to the point opn + n. If a
bit in the mask is set, the corresponding point is opened or closed,
depending on whether the corresponding bit in the data pattern is
clear or set. If a bit in the mask is clear, the corresponding point
remains unaltered.

15.3.2.4 Analog-to-Digital Converter (ADUOl Module) - Each ADUOl
module has eight analog input channels. The IO.RBC function in Table
15-2 initiates A/D conversions on multiple ADUOl input channels.
Restrictions on maximum sampling rates are the same as those defined
for the AFCll in Chapter 14.

The converted analog value is returned as 12 bits, left-justified, in
a 16-bit word with the low-order 4 bits set to o.

15.3.2.5 ICSll Analog-to-Digital Converter (IAD-IA Module) - Each
IAD-IA Module has eight analog input channels. The channel capacity
may be expanded to 120 by the addition of IMX-IA multiplexers. Each
multiplexer adds 16 input channels to the converter. Restrictions on
maximum sampling rates are the same as those defined for the AFCll in
Chapter 14. The IAD-IA module preempts eight module slots regardless
of the number of IMX-IA multiplexers installed.

For addressing purposes, each converter occupies a block of 120
channels. Thus, A/D converter 0 is addressed by referencing channels
O through 119; A/D converter 1 is addressed by referencing channels
120 through 239, and so forth. When fewer than seven multiplexers are
installed, not all addresses within the block are valid.

The converted analog value is returned as 12 bits, left-justified, in
a 16-bit word with the low-order 4 bits set to 0.

15-8

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.4 DIRECT ACCESS

Section 15.1.2 describes UDCll functions that may be performed by
referencing a module through its physical address in the I/O page.
Under RSX-llM such access is accomplished· by one of the following
methods:

1. A privileged task or any task running in an unmapped system
has unrestricted access to the I/O page, and may therefore
access each module by absolute address.

2. Using the Task Builder, a task may link to a global common
area whose physical address limits span a set of locations in
the I/O page. This method applies to either a mapped or
unmapped system.

The latter method allows a task to be transported to any other system
simply by relinking. Furthermore, in a mapped system the memory
management hardware will abort all references to device registers
outside the physical address limits of the common block.

The operations required to implement each method may be summarized as
follows:

1. Unrestricted access to the I/O page

a. An object module is created that defines the UDCll
configuration through a list of absolute global addresses
and addressing limits for each module type.

b. The object module is included in the system library file.

c. A task is created containing the appropriate global
references. Such references are resolved when the task
builder automatically searches the system library file.

Steps a and b are executed once, during system generation (see the
RSX-llM System Generation and Management Guide). Step c is performed
each time a task 1s created---ui"at references the UDC12.

2. Access to the I/O page through a Global Common Block

a. An object module is created that defines the UDCll
configuration through a list of relocatable global
addresses and addressing limits for each module type.

b. The object module is linked, using the Task Builder, to
create an image of the Global Common block on disk.

c. The SET command is used to define a common block that
resides on the I/O page.

d. The INSTALL MCR command is used to make the Global Common
Block resident in memory.

e. A task is created containing the appropriate global
references. Such references are resolved by directing
the Task Builder to link the task to the common block.

Steps a through d are executed once, during system generation. Step e
is performed each time a task is created that references the UDCll
common block. The following paragraphs describe each step in detail.

15-9

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.4.1 Defining the UDCll Configuration

The source module UDCOM.MAC,l when assembled with the proper prefix
file, provides global definitions for the following parameters:

• The starting address of each module type

• The highest point number within a given module type

• The highest module number within a given module type

The last two parameters are absolute quantities that may be used to
prevent a task from referencing a module that is nonexistent or out of
limits.

By means of conditional assembly, the list of addresses may be created
as absolute symbols defining locations in the I/O page, or as symbols
within a relocatable program section to be used when building and
linking to the UDCll Global Common area.

15.4.1.1
with the
RSXMC.MAC.

Assembly Procedure for UDCOM.MAC - UDCOM.MAC is
RSX-llM configuration parameters contained in

assembled
the file

To create relocatable module addresses, either the parameter U$$DCM or
M$$MGE must be defined. M$$MGE will be included in RSXMC.MAC if
memory management was specified when the system was generated. If
not, the user should edit the file to include the following
definition:

U$$DCM=O

The file may then be assembled using the MCR command:

>MAC UDCOM,UDLST=[ll,lO]RSXMC,UDCOM

This command invokes the MACR0-11 assembler, which processes the input
files RSXMC.MAC and UDCOM.MAC to create UDCOM.OBJ and UDLST.LST.

To create absolute module addresses, both U$$DCM and M$$MGE must be
undefined. Edit RSXMC.MAC, if necessary, to remove definitions and
then invoke the MACR0-11 assembler with the following MCR command:

>MAC UDCDF,UDLST=[ll,lO]RSXMC,UDCOM

In this sequence the files UDCDF.OBJ and UDLST.LST are created from
the specified source modules. UDCDF.OBJ contains the module addresses
in absolute form.

15.4.1.2 Symbols Defined by UDCOM.MAC - This
symbolic definitions created by UDCOM.MAC.

section lists the

1. This module resides on the RK05 cartridge of the RSX-llM RK
distribution kit labeled EXECUTIVE SOURCE. For RP distribution kits,
it resides on the RP image. The file is located under UIC [11,10].

15-10

UNIVERSAL DIGITAL CONTROLLER DRIVER

The following symbols define the absolute or relocatable address of
the first module of a given type:

Symbol

$.ADM
$.AOM
$.CIM
$.CSM
$.LTM
$.SSM
$.TIM

Module Type

Analog input
Analog output
Contact interrupt
Contact sense input
Latching digital output
Single-shot digital output
Timer (I/O counter)

The addresses in relocatable form are defined in a program section
named UDCOM having the attributes:

REL - relocatable
OVR - overlaid
D - data
GBL - global scope

Note that these attributes correspond to those attached to a named
common block within a FORTRAN program.

In either the absolute or relocatable case,
referenced by the corresponding symbolic
module index.

individual modules are
address plus a relative

The following symbols define the highest digital point within a module
type:

Symbol

P$.CIM
P$.CSM
P$.LTM
P$.SSM

Module Type

Contact interrupt
Contact sense input
Latching digital output
Single-shot digital output

The highest point number is defined relative to the first point on the
first module of a specific type. For example, if two contact
interrupt modules are installed, the symbol P$.CIM will have an octal
value of 37.

The following symbols define the highest module number within a given
module type.

Symbol

MS.ADM
M$. AOM
M$. CIM
M$.CSM
M$.LTM
M$.SSM
M$.TIM

Module Type

Analog input
Analog output
Contact interrupt
Contact sense input
Latching digital output
Single-shot digital output
Timer (I/O counter)

The highest module number is defined relative to the first module of a
given type. Thus, based on the previous example, M$.CIM will have a
value of L

15-11

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.4.2 Including UDCl Symbolic Definitions in the System Object
Module Library

As described in Section 15.4, a task having unrestricted access to the
I/O page may reference a UDCll module by absolute address. The object
module UDCDF contains symbolic definitions of absolute module
addresses and may be included in the System Object Module Library:

SY: [l, 1] SYS LIB. OLB

The Task Builder automatically searches this file to resolve any
undefined globals remaining after all input files have been processed.

The following example illustrates the procedure for including the file
UDCDF.OBJ in the library:

>SET /UIC=[l,l]
>LBR SYSLIB/IN=[200,200]UDCDF

The SET MCR command is issued to establish the current UIC as (1,1].
Next, the RSXllM Librarian is invoked and instructed, through the use
of the /IN switch, to include the object module UDCDF.OBJ in the file
SYS LIB. OLB.

15.4.3 Referencing the UDCll through a Global Common Block

The following sections define the procedure for creating a Global
Common block in the I/O PAGE, making the block resident in memory, and
creating a task that references UDCll modules within the block.
Examples are given for both mapped and unmapped systems.

15.4.3.1 Creating a Global Common Block - The following sequence
illustrates the use of the object file UDCOM.OBJ to create a disk
image of the global common area in a mapped system:

>SET /UIC=(l,l]
>TKB
TKB>UDCOM/MM,LP:,SY:UDCOM/PI/-HD=[200,200]UDCOM
TKB>/
ENTER OPTIONS:
TKB>PAR=UDCOM:O:lOOO
TKB>STACK=O
TKB>/

In the above example, a current UIC of (1,1] is established and the
Task Builder is initiated. The initial input line to the Task Builder
specifies the following files:

• A core image output file to be named UDCOM.TSK

• A memory map output to the line printer

• A symbol table file to be named UDCOM.STB

All files reside on SY: under UIC
UDCOM.OBJ, containing the UDCll
values, constitutes the input.

[1,1]. The single input file
address definitions as relocatable

15-12

UNIVERSAL DIGITAL CONTROLLER DRIVER

The switches specified for the output files convey the following
information to the Task Builder:

/MM indicates that the core image of the common block will
reside on a system with Memory Management.

/PI indicates that the core image is position independent;
that is, the virtual address of the common block may
appear on any 4K boundary within a task's address
space.

/-HD indicates that the core image will not contain a
header. A header is only required for a core image
file that is to be installed and executed as a task.

The names of the partition, task file, and symbol-table files must
agree.

The STACK option must be used to eliminate the stack space.

The following sequence illustrates the corresponding procedure for an
unmapped system:

>SET /UIC=[l,l]
>TKB
TKB>UDCOM/-MM,LP:,SY:UDCOM/PI/-HD=[200,200]UDCOM
TKB>/
ENTER OPTIONS:
TKB>STACK=O
TKB>PAR=UDCOM:l71000:1000
TKB>/

Again the task builder is requested to produce a core image and symbol
table file under the UIC [1,1], and a map file on the line printer
from the input file UDCOM.OBJ. The output file switches convey the
following information:

/-MM indicates that the core image of the common block will
reside on an unmapped system.

/PI Indicates that the core image is position independent.

/-HD

In an unmapped system, the core image is fixed in the
same address space for all tasks; however, the global
symbols defined in the symbol table file retain the
relocatable attribute.

indicates that a core image without a header is to be
created.

The PAR option specifies the ~ase and length of the common area to
coincide with the standard UDCll addresses in the I/O page. All
references to the common block by tasks will be resolved within this
region.

15.4.3.2
creates
system:

Making the Common Block Resident - The following SET command
a UDCll common block residing in the I/O page for a mapped

>SET /MAIN=UDCOM:7710:10:DEV

15-13

UNIVERSAL DIGITAL CONTROLLER DRIVER

The corresponding command in an unmapped system is:

>SET /MAIN=UDCOM:l710:10:DEV

The preceding sequence specifies the allocation of a common block in
the I/O page whose physical address limits correspond to the UDCll
standard locations. Note that the address bounds and length are
defined in units of 32 words.

The command

>INS [l,l]UDCOM

declares the common block resident in the system.

15.4.3.3 Linking a Task to the UDCll Common Block - A task may access
UDCll modules by linking to the common block as follows:

TKB>TASK,LP:=TASK.OBJ
TKB>/
ENTER OPTIONS:
TKB> COMMON=UDCOM:RW
TKB>/

The above sequence is valid for either a mapped or unmapped system.
In both cases the Task Builder will link the task to the common block
by resolving references to the Global symbol definitions contained in
UDCOM.STB. If memory management is present, the Executive will map
the appropriate physical locations into the task's virtual addressing
space when the task is made active.

15.5 FORTRAN INTERFACE

A collection of FORTRAN-callable subroutines provide FORTRAN programs
access to the UDC12. These are described in this section. All are
reentrant and may be placed in a resident library.

Instead of using the FORTRAN-callable subroutines described in this
section, a FORTRAN program may use the global common feature described
in Section 15.4 to reference UDCll modules directly in the I/O page,
as shown in the following example:

c
C UDCll GLOBAL COMMON
c

COMMON /UDCOM/ ICSM(lO) ,IAO(lO)
c
C READ CONTACT SENSE MODULE l DIRECTLY
c

ICS=ICSM(l)

Note that the position of each module type must correspond to the
sequence in which storage is allocated in the common statements.

15-14

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.5.1 Synchronous and Asynchronous Process Control I/O

The ISA standard provides for synchronous and asynchronous process
I/O. Synchronous I/O is indicated by appending a "W" to the name of
the subroutine (for example, AO/AOW). But due to the fact that nearly
all UDCll I/O operations are performed immediately, in most cases the
"W" form of the call is retained only for compatibility and has no
meaning under RSX-llM. In the case of A/D input, however, the "W"
form is significant: The synchronous call suspends task execution
until input is complete. If the asynchronous form is used, execution
continues and the calling program must periodically test the status
word for completion.

15.5.2 The isb Status Array

The isb (I/O status block) parameter is a 2-word integer array that
contains the status of the FORTRAN call, in accordance with ISA
(Instrument Society of America) convention. This array serves two
purposes:

1. It is the 2-word I/O status block to which the driver returns
an I/O status code on completion of an I/O operation.

2. The first word of isb receives a status code from the FORTRAN
interface in ISA-compatible format, with the exception of the
I/O pending condition, which is indicated by a status of O.
The ISA standard code for this condition is +2.

The meaning of the contents of isb varies, depending on the FORTRAN
call that has been executed; but Table 15-4 lists certain general
principles that apply. The section describing each subroutine gives
more details.

In some cases, the values or states of points being read, pulsed, or
latched are returned to isb word 2.

FORTRAN interface subroutines for analog input depend on asynchronous
system traps to set their status. Thus, if the trap mechanism is
disabled, proper status cannot be set.

Contents

isb(l) = o

isb(l) = 1

isb(l) = 3

3 < isb(l) < 300

isb(l) > 300

Table 15-4
Contents of First Word of isb

Meaning

Operation pending; I/O in progress

Successful completion

Interface subroutine unable to generate
QIO directive or number of points
requested is zero

QIO directive rejected and actual error
code = -(isb(lj - 3)

Driver rejected request and
error code = -(isb(l) - 300)

15-15

actual

UNIVERSAL DIGITAL CONTROLLER DRIVER

For direct access calls (indicated in Table 15-5 below}, errors are
detected and returned by the FORTRAN interface subroutine itself,
rather than by the driver. Although the use of a 2-word status block
is therefore unnecessary, these errors are returned in standard format
to retain compatibility with functions called through QIO directives
and handled by other drivers. Errors of this type that may be
returned are:

isb(l} = 3

isb(l) +321

Number of points requested is
0

Invalid UDCll module

15.5.3 FORTRAN Subroutine Summary

Table 15-5 lists the FORTRAN interface subroutines supported for the
UDCll under RSX-llM. (D) indicates a direct access call, and the
optional logical unit number for such a call may be specified to
retain compatibility with RSX-llD; but this specification is ignored
by RSX-llM.

The following subsections briefly describe the function and format of
each FORTRAN subroutine call. Note the use of ASUDLN to specify a
default logical unit number. Also consider the numbering conventions
described in 15.7.2.

The following FORTRAN functions do not perform I/O directly, but
facilitate conversions between BCD and binary.

Convert four BCD digits to a binary number:

IBIN = KBCD2B(IBCD)

Convert a binary number to four BCD digits:

IBCD = KB2BCD(IBIN)

Table 15-5
FORTRAN Interface Subroutines for the UDCll

Subroutine

AIRD/AIRDW

AISQ/AISQW

AO/AOW

ASUDLN

CTDI

Function

Perform input of analog data in random
sequence

Read a series of sequential analog input
channeis

Perform analog output on several channels
(D)

Assign a LUN to the UDCll

Connect a circular buffer to receive
contact interrupt data

{continued on next page)

15-111

Subroutine

CTTI

DFDI

DFTI

DI/DIW

DOL/DOLW

DOM/DOMW

RC I PT

RDCS

RDDI

RDTI

RDWD

UNIVERSAL DIGITAL CONTROLLER DRIVER

Table 15-5 (Cont.)
FORTRAN Interface Subroutines for the UDCll

Function

Connect a circular buffer to receive
timer interrupt data

Disconnect
interrupts

a buff er from contact I

Disconnect a buffer from timer interrupts

I
Read several 16-point contact sense

I

fields (D)

Latch or unlatch several 16-point fields

Pulse several 16-point fields (D)

Read the state of a single
interrupt point (D)

contact

Read the contents of a contact interrupt
circular buffer, returning data on only
those points that have changed state

Read the contents of a contact interrupt
circular buffer, one point for each call

Read the contents of a timer interrupt
circular buffer, one entry for each call

Read the contents of a contact interrupt
circular buffer, returning 16 bits of
module data and change-of-state
information

RSTI Read a single timer module (D)

SCTI Set a timer module to an initial value

15.5.4 AIRD/AIRDW: Performing Input of Analog Data in Random Sequence

The ISA standard AIRD/AIRDW FORTRAN subroutines input analog data in
random sequence. These calls are issued as follows:

inm

CALL { AIRD } (inm,icont,idata, [isb] ,lun)
AIRDW

The number of analog input channels.

15-17

icont

id a ta

isb

lun

UNIVERSAL DIGITAL CONTROLLER DRIVER

An integer array containing terminal connection data-channel
number (right-justified in bits 0-11) and gain (bits 12-15), as
shown in Table 15-3.

An integer array to receive the converted values.

A 2-word integer array to which the subroutine status is
returned.

The logical unit number.

NOTE

lun is a required parameter.

The isb array has the standard meaning defined in Section 15.5.2. If
inm O, then isb(l) = 3. The contents of idata are undefined if an
error occurs.

15.5.5 AISQ/AISQW: Reading Sequential Analog Input Channels

The ISA standard AISQ/AISQW FORTRAN subroutines read a series of
sequential analog input channels. These calls are issued as follows:

inm

icont

id a ta

CALL { AISQ } (inm,icont,idata,[isb] ,lun)
AISQW

The number of analog input channels.

An integer array containing terminal connection data-channel
number (right-justified in bits 0-11) and gain (bits 12-15), as
shown in Table 15-3.

An integer array to receive the converted values.

15-18

isb

lun

UNIVERSAL DIGITAL CONTROLLER DRIVER

A 2-word integer array to which the subroutine status is
returned.

The logical unit number.

NOTE

lun is a required parameter.

For sequential analog input, channel number is computed in steps of
one, beginning with the value specified in the first element of icont.
The channel number field is ignored in all other elements of the
array.

The gain used for each conversion is taken from the respective element
in icont. Thus, even though the channei number is ignored in all but
the first element of icont, the gain must be specified for each
conversion to be performed.

The isb array has the standard meaning defined in Section 15.5.2. If
inm O, then isb(l) = 3. The contents of idata are undefined if an
error occurs.

15.5.6 AO/AOW: Performing Analog Output

The ISA standard AO/AOW FORTRAN subroutines initiate analog output on
several channels. These calls are issued as follows:

inm

icont

idata

CALL { AO } (inm,icont,idata,[isb],[lun])
AOW

The number of analog output channels.

An integer array containing the channel numbers.

An integer array containing the output voltage settings, in the
range 0-1023.

15-19

isb

lun

UNIVERSAL DIGITAL CONTROLLER DRIVER

A 2-word integer array to which the subroutine status is
returned.

The logical unit number (ignored if present).

The isb array has the standard meaning defined in Section 15.5.2.

15.5.7 ASUDLN: Assigning a LUN to the UDCll

The ASUDLN FORTRAN subroutine assigns the specified LUN to the
specified unit and defines it as the default logical unit number to be
used whenever a LUN specification is omitted from a UDCll subroutine
call. It is issued as follows:

lun

isw

iun

CALL ASUDLN (l un, [i sw] , [i un])

The logical unit number to be assigned to the specified unit, and
defined as the default.

An integer variable to which the result of the ASSIGN LUN system
directive is returned.

An integer defining the UDCll unit number.
specified, 0 is assumed.

If no number is

15.5.8 CTDI: Connecting to Contact Interrupts

The CTDI FORTRAN subroutine connects a task to contact interrupts and
specifies a circular buffer to receive contact interrupt data. The
length of this buffer can be computed by considering the following:

• Rate at which contact module interrupts occur

• Number of modules that can interrupt simultaneously

• Rate at which the circular buffer is emptied

15-20

UNIVERSAL DIGITAL CONTROLLER DRIVER

The UDCll driver generates a 5-word entry for each contact interrupt
and the interface subroutine itself requires 10 words of additional
storage. Thus the isz parameter, described below, can be computed as
follows:

isz (10 + 5 * n)

where n is the number of entries in the buffer and isz is expressed in
words.

The call is issued as follows:

ibuf

isz

iev

isb

lun

CALL CTDI (ibuf ,isz,iev, [isb], [lun])

An integer array that is to receive contact interrupt data.

The length of the array in words, with a minimum size of 15.

The trigger event flag number. The specified event flag is set
whenever the driver inserts an entry in the data buffer.

A 2-word integer array to which the subroutine status is
returned.

The logical unit number.

The isb array has the standard meaning defined in Section 15.5.2.

15.5.9 CTTI: Connecting to Timer Interrupts

The CTTI FORTRAN subroutine connects a task to timer interrupts and
specifies a circular buffer to receive timer interrupt data. The
length of this buffer can be computed by considering the following:

• Rate at which timer module interrupts occur

• Number of modules that can interrupt simultaneously

• Rate at which the circular buffer is emptied

15-21

UNIVERSAL DIGITAL CONTROLLER DRIVER

The UDCll driver generates a 4-word entry for each timer interrupt and
the interface subroutine itself requires 8 words of additional
storage. Thus the isz parameter, described below, can be computed as
follows:

isz (8 + 4 * n)

where n is the number of entries in the buffer and isz is expressed in
words.

When a timer module interrupt occurs, the driver resets the count to
an initial value, normally that specified in iv. The initial value
for a specific module can be modified by calling the SCTI subroutine
(see Section 15. 5.19).

The call is issued as follows:

ibuf

isz

iev

iv

isb

lun

CALL CTTI (ibuf ,isz,iev,iv, [isb], [lun])

An integer array that is to receive timer interrupt data.

The length of the array in words, with a minimum size of 12.

A trigger event flag number. The specified event flag is set
whenever the driver inserts an entry in the data buffer.

An integer array that contains the initial timer module values,
with one entry for each timer module, where entry n corresponds
to timer module number n-1.

A 2-word integer array to which the subroutine status is
returned.

The logical unit number.

The isb array has the standard meaning defined in Section 15.5.2.

15.5.10 DFDI: Disconnecting from Contact Interrupts

The DFDI
interrupts.

FORTRAN subroutine disconnects
It is issued as follows:

CALL DFDI ([isb],[lun])

15-22

a task from contact

isb

lun

UNIVERSAL DIGITAL CONTROLLER DRIVER

A 2-word integer array to which the subroutine status is
returned.

The logical unit number.

The isb array has the standard meaning defined in Section 15.5.2.

15.5.11 DFTI: Disconnecting from Timer Interrupts

The DFTI FORTRAN subroutine disconnects a task from timer interrupts.
It is issued as follows:

isb

lun

CALL DFTI ([isb],[lun])

A 2-word integer array to which the subroutine status is
returned.

The logical unit number.

The isb array has the standard meaning defined in Section 15.5.2.

15.5.12 DI/DIW: Reading Several Contact Sense Fields

The ISA standard DI/DIW FORTRAN subroutines read several 16-point
contact sense fields. These calls are issued as follows:

inm

icont

idata

{

DI
CALL

DIW
} {inm,icont,idata,isb,[lun])

The number of fields to be read.

An integer array containing the initial point number of each
field to be read.

An integer array that is to receive
contact data for each field read.

15-23

input data, 16 bits of

isb

lun

UNIVERSAL DIGITAL CONTROLLER DRIVER

A 2-word integer array to which the subroutine status is
returned.

The logical unit number {ignored if present).

The isb array has the standard meaning defined in Section 15.5.2.

15.5.13 DOL/DOLW: Latching or Unlatching Several Fields

The ISA standard DOL/DOLW FORTRAN subroutines latch or unlatch one or
more 16-point fields. These calls are issued as follows:

inm

icont

id a ta

imsk

isb

lun

{
DOL }

CALL
DOLW

(inm,icont,idata,imsk, [isb], [lun])

The number of fields to be latched or unlatched.

An integer array containing the initial point number of each
16-point field.

An integer array that specifies the points to be latched or
unlatched; bit n of idata corresponds to point number icont + n;
if the corresponding bit in imsk is set, the bit is changed; a
bit value of 1 indicates latching, and O unlatching; each entry
in the array specifies a string of 16 points.

An integer array in which bits are set to indicate points whose
states are to be changed in the corresponding idata bits; each
entry in the array specifies a 16-bit mask word.

A 2-word integer array to which the subroutine status is
returned.

The logical unit number.

The isb array has the standard meaning defined in Section 15.5.2.

15-24

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.5.14 DOM/DOMW: Pulsing Several Fields

The ISA standard DOM/DOMW FORTRAN
fields (1-shot digital output
follows:

subroutines pulse several 16-bit
points). These calls are issued as

inm

icont

idata

idx

isb

lun

CALL {DOM } {inm,icont,idata,[idx],[isb],[lun])
DOMW

The number of fields to be pulsed.

An integer array containing the initial point number of each
16-point field.

An integer array which specifies the points to be pulsed; bit n
of idata corresponds to point number icont + n.

A dummy argument
Instrument Society
calls.

retained for compatibility with existing
of America standard FORTRAN process control

A 2-word integer array to which the subroutine status is
returned.

The logical unit number (ignored if present).

The isb array has the standard meaning defined in Section 15.5.2.

15.5.15 RCIPT: Reading a Contact Interrupt Point

The RCIPT FORTRAN subroutine reads the state of a single contact
interrupt point. It is issued as follows:

ipt

CALL RCIPT (ipt,isb,[lun])

The number of the
sequentially from
interrupt module.

point
0, the

to be
first

15-25

read;
point

points
on the

are numbered
first contact

UNIVERSAL DIGITAL CONTROLLER DRIVER

isb

A 2-word integer array to which the subroutine status is
returned.

lun

The logical unit number (ignored if present).

The isb array has the same basic meaning defined in Section
However, isb word 2 1s set to one of the following
representing the state of the point:

Setting Meaning

.FALSE. (0)

.TRUE. (-1)

Point is open

Point is closed

NOTE

To increase throughput, the subroutines
RDCS, RODI, RDTI, and RDWD described in
the following four sections do not issue
the clear Event Flag directive until a
buffer-empty condition is detected. The
calling task, therefore, must avoid
issuing a Wait-For directive until a
buffer-empty is reported.

15.5.2.
values,

15.5.16 RDCS: Reading Contact Interrupt Change-of-State Data from a

Circular Buffer

The RDCS FORTRAN subroutine reads contact interrupt data from a
circular buffer that was specified in a CTDI call (see Section
15.5.8). It does no actual input or output, but rather performs a
point-by-point scan of an interrupt entry in the buffer, returning the
state of each point that has changed state as a logical value. The
trigger event flag that was specified in the CTDI call is cleared when
the "buffer empty" condition is detected.

On the initial call to RDCS, the module number, module data, and
change-of-state word of the next interrupt entry are read from the
circular buffer and stored for subsequent reference. The subroutine
then searches the entry change-of-state word until a nonzero point is
encountered. The point number is computed and returned to the caller
along with the state of the point. Scanning for points that have
changed state resumes on the next call; all other points are
bypassed. The next entry is automatically read when the caller has
received all change-of-state information from the current entry. If a
valid entry is not found, ipt is set negative and ict (if specified)
is either assigned a value of 0 or an overrun count maintained by the
UDCll driver. If ict is O, no further entries remain. A nonzero
value indicates that the driver received more data than could be
stored in the buffer, and ict represents the number of entries that
were discarded.

15-26

UNIVERSAL DIGITAL CONTROLLER DRIVER

The RDCS call is issued as follows:

ipt

ival

ict

CALL RDCS (ipt,ival,[ict])

A variable to which the digital input point number is returned;
it may be set as follows:

• ipt O if no valid entry is found (that is, no interrupt data
currently in buffer, or overrun detected). One of the
following values is returned to indicate the condition
detected:

-1 Buff er empty
-2 Overrun detected

• ipt => O if the value indicated is a point number that has
changed state; the state is returned to ival.

A variable to which the state of the point is returned;
be set as follows:

• .FALSE. (0) if the point is open

• .TRUE. (-1) if the point is closed

it may

An integer variable for receiving the overrun count. A nonzero
positive count indicates that the driver was unable to store the
number of interrupts indicated.

15.5.17 RDDI: Reading Contact Interrupt Data from a Circular Buffer

The RDDI FORTRAN subroutine reads contact interrupt data from a
circular buffer that was specified in a CTDI call (see Section
15.5.8). It does no actual input or output, but rather performs a
point-by-point scan of an interrupt entry in the buffer, returning the
state of each point as a logical value. The trigger event flag that
was specified in the CTDI call is also cleared.

On the initial call to RDDI, the module number and data of the next
interrupt entry are read from the circular buffer and stored for
subsequent reference. The subroutine then sets the current data bit
number n to O, examines the state of data bit n, and converts bit n to
a point number by the following formula:

ipt = module number * 16 + n

15-27

UNIVERSAL DIGITAL CONTROLLER DRIVER

On each subsequent call, n is incremented by one and then data bit n
is examined in the stored module data. When n reaches 16, it is reset
to 0 and an attempt is made to read the next interrupt entry from the
circular buffer. If a valid entry is not found, ipt is set negative
and ict (if specified) is either assigned a value of 0 or an overrun
count maintained by the UDCll driver. If ict is O, no further entries
remain. A nonzero value indicates that the driver received more data
than could be stored in the buffer, and ict represents the number of
entries that were discarded.

The RODI call is issued as follows:

ipt

ival

ict

CALL RODI {ipt,ival,[ict])

A variable to which the digital input point number is returned;
it may be set as follows:

• ipt 0 if no valid entry is found (that is, no interrupt data
currently in buffer, or buffer empty). One of the following
values is returned to indicate the condition detected:

-l=Buf fer empty
-2=0verrun detected

• ipt => 0 if the value indicated is a point number; the state
is returned to ival

A variable to which the state of the point is returned;
be set as follows:

• .FALSE. (0) if the point is open

• .TRUE. (-1) if the point is closed

it may

A variable to which the overrun count may be returned; a nonzero
positive count indicates that the driver was unable to store the
number of entries indicated.

15.5.18 RDTI: Reading Timer Interrupt Data from a Circular Buffer

The RDTI FORTRAN subroutine reads timer interrupt data from a circular
buffer that was specified in a CTTI call (see Section 15.5.9). It
does no actual input or output, but rather performs a scan of each
entry in the buffer, returning the timer value for each call. The
trigger event flag that was specified in the CTTI call is also
cleared.

When a timer module interrupt occurs, the UDCll driver resets the
count to an initial value, usually that specified in the iv array on
the CTTI call. The initial value can be modified for a specific
module by calling the subroutine SCTI (see Section 15.5.19).

15-28

UNIVERSAL DIGITAL CONTROLLER DRIVER

The RDTI call is issued as follows:

imod

itm

ivrn

CALL RDTI (imod,itm,[ivrn])

A variable to which the module number is returned; it may be set
as follows:

• imod 0 if no valid entry is found (that is, no interrupt data
currently in buffer, or buffer empty). One of the following
values is returned to indicate the condition detected:

-l=Buf fer empty
-2=0verrun detected

• imod > 0 if the entry is valid, indicating a module number;
the value of the timer module is returned in itm

A variable to which the timer value is returned.

A variable to which the overrun count may be returned; a nonzero
positive count indicates that the driver was unable to store the
number of values indicated.

15.5.19 RDWD: Reading a Full Word of Contact Interrupt Data from the
Circular Buffer

The RDWD FORTRAN subroutine reads a full word of contact interrupt and
change-of-state data from the circular buffer that was specified in a
CTDI call (see Section 15.5.8). It does no actual input or output,
but rather performs a scan of each entry, returning the state of a
module and, optionally, the change-of-state data for each call. The
trigger event flag specified in the call to CTDI is cleared.

The call to RDWD is issued as follows:

imod

CALL RDWD (imod,ist, [ivrn], [icos])

A variable to which the module number is returned; it may be set
as follows:

• imod 0 if no valid entry is found (that is, no interrupt data
currently in buffer .or overrun detected). One of the
following values is returned to indicate the condition
detected:

-1.,.Buf fer empty
-2=0verrun detected

15-29

ist

ivrn

icos

UNIVERSAL DIGITAL CONTROLLER DRIVER

A variable to which the module data is returned.

A variable to which the overrun count may be returned; a
nonzero, positive count indicates that the driver was unable to
store the number of entries indicated.

A variable to which the change-of-state data is returned. One
bit is set for each point that has changed state in the direction
indicated by the "point open" {POP) or "point closed" {PCL)
jumpers on the module.

15.5.20 RSTI: Reading a Timer Module

The RSTI FORTRAN subroutine reads a single timer module. It is issued
as follows:

imod

isb

lun

CALL RSTI {imod,isb,[lun])

The module number of the timer to be read.

A 2-word integer array to which the subroutine status is
returned.

The logical unit number (ignored if present).

The isb array has the standard meaning defined in Section 15.5.2.

15.5.21 SCTI: Initializing a Timer Module

The SCTI FORTRAN subroutine sets a timer module to an initial value.
It is issued as follows:

CALL SCTI {imod,ival,[isb] ,[lun])

imod

The module number of the timer to be set.

15-30

UNIVERSAL DIGITAL CONTROLLER DRIVER

ival

The initial timer value.

isb

A 2-word integer array to which the subroutine status is
returned.

lun

The logical unit number.

The isb array has the standard meaning defined in Section 15.5.2.

Calls to initialize a counter are valid only if the issuing task has
connected a buffer for receiving counter interrupts by a call to CTTI.

15.6 STATUS RETURNS

Table 15-6 lists the error and status conditions that are returned by
the UDCll driver described in this chapter:

Code

rs.sue

IS.PND

IE.ABO

IE.BAD

Table 15-6
UDCll Status Returns

Reason

Sucessful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number
of samples completed or converted.

I/O request pending

The operation specified in the QIO directive has not
yet been executed. The I/O status block is filled
with Os.

Operation aborted

The specified I/O operation was canceled with IO.KIL
while still in the I/O queue.

Bad parameter

An illegal specification was supplied for one or more
of the device-dependent QIO parameters (words 6-11).
For the UDCll, this code indicates an illegal channel
number or gain code for the ADUOl.

(continued on next page)

15-31

Code

IE.BYT

IE.CON

IE.DNR

IE.IEF

IE.IFC

IE.MOD

IE.OFL

UNIVERSAL DIGITAL CONTROLLER DRIVER

Table 15-6 (Cont.)
UDCll Status Returns

Reason

Byte-aligned buffer specified

Byte alignment was specified for a buffer but only
word alignment is legal for the UDC12. Alternately,
the length of a buffer was not an even number of
bytes.

Connect error

The task attempted to connect to contact or timer
interrupts, but the interrupt was already connected
to another task. Only one task can be connected to a
timer or contact interrupt. Alternately a task which
was not connected attempted to disconnect from
contact or timer interrupts.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. For the ADUOl, this code is returned if
an interrupt time out occurred or the power failed.

Invalid event flag number

An invalid trigger event flag number was specified in
a connect function.

Illegal function

A function code was included in an I/O request that
is illegal for the UDCll, or a request to initialize
a counter (IO.ITI) was issued by a task that was not
connected to receive counter interrupts. The
function may also refer to a UDCll feature which was
not specified at system generation.

Invalid UDCll module

On latching output, the user specified a starting
point number that was not legal (defined at system
generation) or was not evenly divisible by 16.

Device off line

The physical device unit associated with the
specified in the QIO directive was not on line.
the system was booted, a device check indicated
this physical device unit was not in
configuration.

LUN
When
that

the

(continued on next page)

15-32

Code

IE.PRI

IE. SPC

UNIVERSAL DIGITAL CONTROLLER DRIVER

Table 15-6 (Cont.)
UDCll Status Returns

Reason

Privilege violation

The task which issued the request was not privileged
to execute that request. For the UDCll, this code
indicates that a checkpointable task attempted to
connect to timer or contact interrupts.

Illegal address space

The specified control, data, or interrupt buffer was
partially or totally outside the address space of the
issuing task. Alternately, the interrupt buffer was
too small for a single data entry (six words for
timer interrupts and seven words for contact
interrupts), or a byte count of 0 was specified.

FORTRAN interface values for these status returns are presented in
Section 15.6.1.

15.6.1 FORTRAN Interface Values

The values listed in Table 15-7 are returned in FORTRAN subroutine
calls.

Status Return

rs.sue
IS. PND
IE.ABO
IE.ADP
IE.BAD
IE. BYT
IE. DAO
IE.DNR
IE. IEF
IE.IFC
IE. ILU
IE.MOD
IE.ONP
IE.PRI
IE. RSU
IE. SDP
IE. SPC
IE.ULN
IE.UPN

Table 15-7
FORTRAN Interface Values

15-33

FORTRAN Value

+01
+00

+315
+101
+301
+319
+313
+303
+100
+302

+99
+321
+305
+316
+317
+102
+30f)

+08
+04

UNIVERSAL DIGITAL CONTROLLER DRIVER

15.7 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the UDCll driver described in this
chapter.

15.7.1 Numbering Conventions

Numbering is relative. Module numbers start at O, beginning with the
first module of a given type.

Channel numbers also start at O, with channel 0 as the first channel
on the first module of a given type. For the ADUOl, channel 8 is the
first channel on the second analog output module.

Each IAD-IA module installed in an ICSll subsystem occupies 120
channels (regardless of the number of multiplexers installed). In
this case, channel 120 is the first channel on the second IAD-IA A/D
converter.

Point numbers start at O, with point 0 as the first point on the first
module of a given type. For instance, point 20(8) is the first point
of the second contact sense module (that is, relative module number
1) •

15.7.2 Processing Circular Buffer Entries

Circular buffer entries should be processed in the following sequence.

1. Execute a WAITFOR system directive using the
flag specified in the subroutine called
circular buffer (CTTI or CTDI).

trigger event
to connect the

2. Repeatedly call the appropriate subroutine to read the
circular buffer until all entries have been obtained and ipt
indicates that the buffer is empty (-1).

3. Perform any other processing and return to step 1.

15-34

CHAPTER 16

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16. 1 INTRODUCTION

The LPSll and ARll Laboratory Peripheral Systems are modular,
real-time subsystems used for the acquisition and/or output of
laboratory analog data. (Laboratory Peripheral Systems drivers are
not supported on RSX-llM-PLUS systems.) Table 16-1 compares the LPSll
with the ARll.

Table 16-1
Laboratory Peripheral Systems

Analog-to-Digital Conversion
(with Sample and Hold
Circuitry)

LPSll

12 bits of precision
16-channel multiplexer
with gain ranging

Maximum of 64 channels
without gain ranging

Programmable Real-Time Clock Yes

Digital-to-Analog Output 12 bits of prec1s1on
10 channels (includ­
ing display)

Display Control 4096 by 409n dot matrix

Digital I/O Option 16 digital points
and programmable
relays

ARll

10 bits of precision
16-channel multiplexer
without gain ranging

Yes

10 bits of precision
2 channels (including
display)

1024 by 1024 dot matrix

16 digital points
(available with
DRll-K option)

At system generation, the user can specify the following:

• The number of A/D channels

• The presence or absence of the gain-ranging option (LPSAM-SG)
(LPSll only) and the polarity of each channel (uni- or
bi polar)

• The presence or absence of the external D/A option (LPSVC and
LPSDA), and if present, the number of D/A channels

• The clock preset value

Hi-1

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.1.1 ARll Laboratory Peripheral System

The ARll is a 1-module, real-time analog subsystem that interfaces to
the PDP-11 family of computers by a "hex" small peripheral controller
slot. The system is a subset of the LPSll and, as such, enjoys the
same degree of flexibility. The ARll includes a 16-channel, 10-bit
A/D converter with sample-and-hold, a programmable real-time clock
with one external input, and a display control with two 10-bit D/A
converters.

16.1.2 LPSll Laboratory Peripheral System

The LPSll is a high-performance, modular, real-time subsystem with the
flexibility of serving a variety of applications, including biomedical
research, analytical instrumentation, data collection and reduction,
monitoring, data logging, industrial testing, engineering, and
technical education. The basic subsystem, built in a compact size and
designed for easy interface with external instrumentation, includes a
13-bit A/D converter, a programmable real-time clock, with two Schmitt
triggers, a display controller with two 12-bit D/A converters, and a
16-bit digital I/O option. Up to nine different option types may be
added to the basic package.

16.2 GET LUN INFORMATION MACRO

If a GET LUN INFORMATION system directive is issued for a LUN
associated with a Laboratory Peripheral System, word 2 (the first
characteristics word) contains all Os words 3 and 4 are undefined, and
word 5 contains a 16-bit buffer preset value that controls the rate of
the real-time clock interrupts, as explained in Section 16.6.1.

16.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the Laboratory Peripheral System drivers.

16.3.1 Standard QIO Function

Table 16-2 lists the standard function of the QIO macro that is valid
for the Laboratory Peripheral Systems.

Table 16-2
Standard QIO Function for

Laboratory Peripheral Systems

Format Function

IO.KIL, ••• Cancel I/O requests

IO.KIL cancels all queued and in-progress I/O requests.

16-2

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.3.2 Device-Specific QIO Functions (Immediate)

Except for IO.STP (see Section l~.3.4), all device-specific functions
of the QIO macro that are valid for the Laboratory Peripheral Systems
are either immediate or synchronous. Each immediate function performs
a complete operation, whereas each synchronous function simply
initiates an operation synchronized to the real-time clock. Table
16-3 lists the immediate functions.

Table 16-3
Device-Specific QIO Functions for the

Laboratory Peripheral Systems (Immediate)

Format Function

QIO$C IO.LED, ••• ,<int,num> DISPLAY number in LED lights
(LPSll only)

QIO$C IO.REL, ••• ,<rel,pol> LATCH output relay (LPSll only)

QIO$C IO.SDI, ••• ,<mask> READ digital input register

QIOSC IO.SDO, ••• ,<mask,data> WRITE digital output register

int

The 16-bit signed binary integer to display.

num

The LED digit number where the decimal point is to be placed.

rel

The relay number (0 or 1).

pol

The polarity (0 for open, nonzero for closed).

mask

The mask word.

data

The data word.

The following subsections describe the functions listed above.

16-3

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.3.2.1 IO.LED - This LPSll-only function displays a 16-bit signed
binary integer in the light-emitting diode (LED) lights. The number
is displayed with a leading blank {positive number) or minus sign
(negative number), followed by five non-zero-suppressed decimal digits
that represent the magnitude of the number. LED digits are numbered
from right to left, starting at 1.

The number may be displayed with or without a decimal point. If the
parameter num is a number from 1 to 5, then the corresponding LED
digit is displayed with a decimal point to the right of the digit. If
the LED digit number is not a number from 1 to 5, then no decimal
point is displayed.

16.3.2.2 IO.REL - This LPSll-only function opens or closes the
programmable relays in the digital I/O status register. Approximately
300 milliseconds are required to open or close a relay. The driver
imposes no delays when executing this function. Thus it is the
responsibility of the user to insure that adequate time has elapsed
between the opening and closing of a relay.

16.3.2.3 IO.SDI - This function reads data qualified by a mask word
from the digital input register. The mask word contains a 1 in each
bit position from which data is to be read. All other bits are zero
filled and the resulting value is returned in the second I/O status
word.

The operation performed is:

RETURN VALUE=MASK.AND.INPUT REGISTER

15.3.2.4 IO.SDO - This function writes data qualified by a mask word
into the digital output register. The mask word contains a 1 in each
bit position that is to be written. The data word specifies the data
to be written in corresponding bit positions.

The operation performed is:

NEW REGISTER=<MASK.AND.DATA>.OR.<<.NOT.MASK>.AND.OLD REGISTER>

16.3.3 Device-Specific QIO Functions (Synchronous)

Table 16-4 lists the synchronous, device-specific functions of the QIO
macro that are valid for the Laboratory Peripheral Systems.

16-4

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

stadd

size

pnt

ticks

buf s

LABORATORY PERIPHERAL SYSTEMS DRIVERS

Table 16-4
Device-Specific QIO Functions for the

Laboratory Peripheral Systems (Synchronous)

Format Function

IO.ADS, ••• ,<stadd,size,pnt, INITIATE A/D sampling
ticks,bufs,chna>

IO.HIS, ••• ,<stadd,size,pnt, INITIATE histogram sampling
ticks,bufs> (LPSll only)

IO.MDA, ••• ,<stadd,size,pnt, INITIATE D/A output
ticks,bufs,chnd>

IO.MDI, ••• ,<stadd,size,pnt, INITIATE digital input
ticks,bufs,mask> sampling

IO.MDO, ••• ,<stadd,size,pnt, INITIATE digital output
ticks,bufs,mask>

I

I
I

The starting address of the data buff er (must be on a word
boundary).

The data buffer size in bytes (must be greater than 0 and a
multiple of four bytes).

The digital point numbers (byte 0 - starting input/output point
number; byte 1 - input point number to stop the function).
Points are numbered from 0 to 15, allowing a maximum of 16 points
to be specified.

The number of real-time clock ticks between samples or data
transfers, as appropriate.

The number of data buffers to transfer.

16-5

chna

chnd

mask

LABORATORY PERIPHERAL SYSTEMS DRIVERS

The analog-to-digital conversion specification. Byte 0 contains
the starting channel number. For LPSll this must be in the range
of 0-63; for ARll the range is 0-15. If the LPSll gain-ranging
option is present, the channel number must be in the range of
0-15, and bits 4 and 5 specify the gain code.

Byte 1 contains the number of consecutive analog-to-digital
channels to sample. For LPSll this must be in the range of 1-64;
for ARll or the LPSll with gain-ranging, the range is 1-16.

The digital-to-analog output channel specification. Byte 0
contains the starting channel number. For LPSll this must be in
the range of 0-9; for the ARll the range is 0-1.

Byte 1 contains the number of consecutive channels to be output.
For LPSll this must be in the range of 1-10; for ARll the range
is 1-2.

The mask word.

The following subsections describe the functions listed above.

16.3.3.1 IO.ADS - This function reads one or more A/D channels at
precisely timed intervals, with or without auto gain-ranging. If two
or more channels are specified, all are sampled at approximately the
same time, once per interval.

Sampling may be started when the request is dequeued or when a
specified digital input point is set. A digital output point may
optionally be set when sampling is started. Sampling may be
terminated by a program request (IO.STP or IO.KIL), by the clearing of
a digital input point, or by the collection of a specified number of
buffers of data.

All input is double buffered with respect to the user task. Each time
a half buffer of data has been collected, the user task is notified
(by the setting of an event flag) that data is available to be
processed while the driver fills the other half of the buffer. If the
user task does not respond quickly enough, a data overrun may result.
This occurs if the driver attempts to put another data item in the
user buffer when no space is available.

The subfunction modifier bits are identical to those described in
Section 16.3.3.2. In addition, setting bit 3 to a 1 means LPSll auto
gain-ranging is requested. Bit 3 is ignored for the ARll. If bits 7
and 6 are both set to 1, the digital input point and digital output
point number are assumed to be the same.

16-6

LABORATORY PERIPHERAL SYSTEMS DRIVERS

If LPSll auto gain-ranging is used, the LPSAM-SG hardware option must
be present and specified at system generation. The auto gain-ranging
algorithm causes a channel to be sampled at the highest gain at which
saturation does not occur. If the gain-ranging option is present and
auto gain-ranging is not specified in bit 3 of the subfunction code,
then bits 4 and 5 of the starting channel number specify the gain at
which samples are to be converted. Gain codes are as follows:

Code

00
01
10
11

Gain

1
4

16
64

Data words written into the user buffer contain the converted value in
bits 0-11 and the gain code, as shown below, in bits 12-15:

Code

0000
0001
0010
0011

Gain

1
4

16
64

If the LPSAM-SG option is present, then each channel must have been
defined as uni- or bipolar at system generation. In addition, if
bandwidth filtering is enabled (and so indicated at system generation
time), a software delay is imposed by the driver when the multiplexer
channel is changed. This delay must have been specified at SYSGEN.
See the LPSll Laboratory Peripheral System User's Guide.

The ARll always returns data that is equivalent to an LPSll gain of 1.
Channel polarity must always be specified for the ARll at system
generation, since this operation is software selectable at the time
sampling is initiated.

16.3.3.2 IO.HIS - This LPSll-only function measures the elapsed time
between a series of events by means of Schmitt trigger 1. Each time a
sample is to be taken, a counter is incremented and Schmitt trigger 1
is tested. If it has fired, then the counter is written into the user
buffer and reset to 0. Thus, the data item returned to the user is
the number of sample intervals between Schmitt trigger firings.

If the counter overflows before Schmitt trigger 1 fires, then a 0
value is written into the user buffer. Sampling may be started and
stopped as described in Section 16.3.3.1. All input is double
buffered with respect to the user task.

The subfunction modifier bits appear below. A setting of 1 indicates
the action listed in the right-hand column.

16-7

Bit

0-3

4

5

6

7

LABORATORY PERIPHERAL SYSTEMS DRIVERS

Meaning

Unused

Stop on number of buffers

Stop on digital input point clear

Set digital output point at start of operation

Start on digital input point set (a 0
specification means start immediately). Points
are numbered from 0 to 15, allowing a maximum of
16 points to be specified.

16.3.3.3 IO.MDA - This function writes data into one or more external
D/A converters at precisely timed intervals. If two or more channels
are specified, all are written at approximately the same time, once
per interval. Output may be started or stopped as described in
Section 16.3.3.1. All output is double buffered with respect to the
user task.

D/A converters 0 and 1 correspond to the X and Y registers of the
display control. Note that there are no specific driver functions to
set the display status register. This is reserved for the user. D/A
converters 2 through 9 correspond to the LPSll, LPSDA external D/A
option.

The subfunction modifier bits are identical to those described in
Section 16.3.3.2.

16.3.3.4 IO.MDI - This function provides the capability to read data
qualified by a mask word from the digital input register at precisely
timed intervals. Sampling may be started and stopped as described in
Section 16.3.3.1. All input is double buffered with respect to the
user task.

The mask word contains a 1 in each bit position from which data is to
be read. All other bits are O.

The subfunction modifier bits are identical to those described in
Section 16.3.3.2.

16.3.3.5 IO.MOO - This function writes data qualified by a mask word
into the digital output register at precisely timed intervals. Output
may be started and stopped as described in Section 16.3.3.1. All
output is double buffered with respect to the user task.

The subfunction modifier bits are identical to those described in
Section 16.3.3.2.

16-8

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.3.4 Device-Specific QIO Function (IO.STP)

Table 16-5 lists the device-specific function of the QIO macro, which
is valid for the Laboratory Peripheral Systems.

stadd

QIO$C

Table 16-5
Device-Specific QIO Function for the

Laboratory Peripheral Systems (IO.STP)

Format Function

IO.STP, ••• ,<STADD> STOP in-progress request

The buffer address of the function to stop (must be the same as
the address specified in the initiating request).

16.3.4.1 IO.STP - IO.STP stops a single, in-progress synchronous
request. It is unlike IO.KIL in that it cancels only the specified
request, whereas IO.KIL cancels all requests.

16.4 FORTRAN INTERFACE

A collection of FORTRAN-callable subroutines provide FORTRAN programs
access to the Laboratory Peripheral Systems. These routines are
described in this section.

Some of these routines may be called from FORTRAN as either
subroutines or functions. All are reentrant and may be placed in a
resident library.

16.4.1 The isb Status Array

The isb (I/O status block) parameter is a 2-word integer array that
contains the status of the FORTRAN call, in accordance with ISA
convention. This array serves two purposes:

1. It is the 2-word I/O status block to which the driver returns
an I/O status code on completion of an I/O operation.

2. The first word of the isb receives a status code from the
FORTRAN interface in ISA-compatible format, with the
exception of the I/O pending condition, which is indicated by
a status of O. The ISA standard code for this condition is
+2.

The meaning of its contents varies, depending on the FORTRAN call that
has been executed, but Table 16-6 lists certain general principles
that apply. The sections describing individual subroutines provide
more details.

16-9

LABORATORY PERIPHERAL SYSTEMS DRIVERS

Table 16-6
Contents of First Word of isb

Contents Meaning

isb{l) = 0 Operation pending; I/O in progress

isb{l) = 1 Successful completion

isb{l) = 3 Interface subroutine unable to generate QIO
directive, or illegal time or buffer value

3 < = isb{l) < 300 QIO directive rejected and actual error
code = -(isb(l) - 3)

isb{l) > 300 Driver rejected request and actual error
code = -{isb(l) - 300)

FORTRAN interface routines depend on asynchronous system traps to set
their status. Thus, if the trap mechanism is disabled, proper status
cannot be set.

16.4.2 Synchronous Subroutines

RTS, DRS, HIST (LPSll only), SDO, and SDAC are FORTRAN subroutines
that initiate synchronous functions. When they are used, the
appropriate Laboratory Peripheral System driver and the FORTRAN
program communicate by means of a caller-specified data buffer of the
following format:

BUFFER HEADER CURRENT BUFFER POINTER

ADDRESS OF SECOND 110 ST A TUS WORD

ADDRESS OF END OF BUFFER + 1

ADDRESS OF ST ART OF DAT A

START OF DATA

HALF BUFFER

END OF BUFFER

ZK-008-81

The buffer header is initialized when the synchronous function
initiation routine is called. The length of the buffer must be even
and greater than or equal to 6. An even length is required so that
the buffer is exactly divisible into half buffers.

The drivers perform double buffering within the half buffers. Each
time a driver fills or empties a half buffer, it sets a user-specified
event flag to notify the user task that more data is available or
needed. The user task responds by putting more data into the buffer
or by removing the data now available.

If the user task does not respond quickly enough, a data overrun may
result. This occurs if the driver attempts to put another data item
in the user buffer when no space is available (that is, the buffer is
full of data), or if the driver attempts to obtain the next data item
from the user buffer when none is available (that is, the buffer is
empty) •

10-10

LABORATORY PERIPHERAL SYSTEMS DRIVERS

All synchronous functions can be
specified digital input point
pushed).

initiated immediately or when a
is set (that is, a start button is

They can be terminated by any combination of a program request, the
processing of the required number of full buffers of data, or the
clearing of a specified digital input point (that is, a stop button is
pushed). A digital output point may also optionally be set at the
start of a synchronous function. This could be used, for example, as
a signal to start a test instrument.

16.4.3 FORTRAN Subroutine Summary

Table 16-7 lists the FORTRAN interface subroutines supported for the
Laboratory Peripheral Systems under RSX-llM. S and F indicate whether
they can be called as subroutines or functions, respectively.

Table 16-7
FORTRAN Interface Subroutines for Laboratory Peripheral Systems

Subroutine

ADC

ADJLPS

ASARLN

ASLSLN

CVSWG

DRS

HIST

IDIR

!DOR

Function

Read a single A/D channel (F,S)

Adjust buffer pointers (S)

Assign a LUN to ARO: (S)

Assign a LUN to LSO: (S)

Convert a switch gain A/D value to floating point (F)

Initiate synchronous digital input sampling (S)

Initiate histogram sampling (S) (LPSll only)

Read digital input (F,S)

Write digital output (F,S)

IRDB Read data from a synchronous function input buff er
(F,S)

LED Display number in LED lights (S) (LPSll only)

LPSTP Stop an in-progress synchronous function (S)

PUTD Put data into a synchronous function output buffer (S)

RELAY Latch an output relay (S) (LPSll only)

RTS Initiate synchronous A/D sampling (S)

SDAC Initiate synchronous D/A output (S)

SDO Initiate synchronous digital output (S)

The following subsections briefly describe the function and format of
each FORTRAN subroutine call.

16-11

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.4.4 ADC: Reading a Single A/D Channel

The ADC FORTRAN subroutine or function reads a single converted value
from an A/D channel. If the gain-ranging option is present in the
LPSll hardware, the channel may be converted at a specific gain or the
driver can select the best gain (the gain providing the most
significance). The converted value is returned as a normalized
floating-point number. The call is issued as follows:

ichan

var

igain

isb

CALL ADC { ichan, [var], (igain], [isb])

The A/D channel to be converted.

A floating-point variable that receives the converted value in
floating-point format.

The gain at which the specified A/D channel is to be converted.
The default is 1. If specified, igain may have the following
values:

igain

0

1

2

3

4

Gain

Auto gain-ranging {driver
provides most significance)

1

4

16

64

selects

A gain of 1 is always used by the ARll driver.

gain that

A 2-word integer array to which the subroutine status is
returned.

The isb array has the standard meaning described in Section 16.4.1.

When the function form of the call is used, the value of the function
is the same as that returned in var. If this value is negative, an
error has occurred during the A/D conversion (see Section 16.5.3).
Otherwise, this value is a floating-point number calculated from the
following formula:

var = (64 * converted value) I conversion gain

16-12

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.4.5 ADJLPS: Adjusting Buffer Pointers

The ADJLPS FORTRAN subroutine adjusts buffer pointers for a buffer
that a laboratory peripheral system driver is either synchronously
filling or emptying. It is usually called when indexing is being used
for direct access to the data in a buffer.

When data in a buffer is to be processed only once, the IRDB and PUTD
routines may be used. In some cases, however, it is useful to leave
data in the buffer until processing is complete. The user program can
process the data directly, and then call ADJLPS to free half the
buffer. Using the routine for synchronous output functions is quite
similar. When a half buffer of data is ready for output, ADJLPS is
called to make the half buffer available.

When ADJLPS is used for either input or output, care must be taken to
insure that the program stays in sync with the driver. If the program
loses its position with respect to the driver, the function must be
stopped and restarted. An attempt to over-adjust will cause a 3 to be
returned in isb(l) and no adjustment to take place.

The call is issued as follows:

ibuf

iadj

isb

CALL ADJLPS (ibuf,iadj,[isb])

An integer array that was previously specified in a synchronous
input or output function.

The adjustment to be applied to the buffer pointers. For an
input function, this specifies the number of data values that
have been removed from the data buffer. For an output function,
this specifies the number of data values that have been put into
the data buffer.

A 2-word integer array to which the subroutine status is
returned.

The isb array has the standard meaning described in Section 16.4.1.

16.4.6 ASLSLN: Assigning a LUN to LSO:

The ASLSLN FORTRAN subroutine assigns a logical unit number (LUN) to
the LPSll. It must be called prior to executing any other Laboratory
Peripheral Systems FORTRAN function or subroutine. Subsequent calls
to other interface routines then implicitly reference the LPSll with
the LUN assigned.

16-13

LABORATORY PERIPHERAL SYSTEMS DRIVERS

The call is issued as follows:

lun

isb

iun

CALL ASLSLN (lun,[isb],[iun])

The number of the LUN to be assigned to LSO:

A 2-word integer array to which the subroutine status is
returned.

The unit number of the device to be assigned (defaults to 0 if
not specified).

The isb array has the standard meaning described in Section 16.4.1.

16.4.7 KSARLN: Assigning a LUN to ARO:

The ASARLN FORTRAN subroutine assigns a logical unit number (LUN) to
the ARll. It must be called prior to executing any other laboratory
peripheral system FORTRAN function or subroutine. Subsequent calls to
other interface routines then implicitly reference the ARll with the
LUN assigned.

The call is issued as follows:

lun

isb

iun

CALL ASARLN (lun,[isb],[iun])

The number of the LUN to be assigned to ARO:.

A 2-word integer array to which the subroutine status is
returned.

The unit number of the device to be assigned (defaults to 0 if
not specified).

The isb array has the standard meaning described in Section l~.4.1.

16-14

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.4.8 CVSWG: Converting a Switch Gain A/D Value to Floating-Point

The CVSWG FORTRAN subroutine converts an A/D value from a synchronous
A/D sampling function to a floating-point number. Each data item
returned by a laboratory peripheral system driver consists of a gain
code and converted value packed in a single word (see Section
16.3.3.1). This form is not readily usable by FORTRAN, but is much
more efficient than converting each value to floating point in the
driver. This routine unpacks the gain code and value, and then
converts the result to a floating-point number. It can be
conveniently used in conjunction with the IRDB routine (see Section
16.4.13).

The call is issued as follows:

ival

CVSWG (i va 1)

The value to be converted to floating point. Its format must be
that returned by a synchronous A/D sampling function. The
conversion is performed according to the following formula:

var = (64 * converted value)/conversion gain

For the various gain codes,

var = x * converted value

as shown below:

Gain x

1 64

4 16

16 4

64 1

16.4.9 DRS: Initiating Synchronous Digital Input Sampling

The DRS FORTRAN subroutine reads data qualified by a mask word from
the digital input register at precisely timed intervals. Sampling may
be started or stopped as for RTS (see Section 16.4.18) and all input
is double buffered with respect to the user task. Data may be
sequentially retrieved from the data buffer by the IRDB routine (see
Section 16.4.12), or the ADJLPS routine (see Section 15.4.5) may be
used in conjunction with direct access to the input data. The call is
issued as follows:

CALL DRS (ibuf ,ilen,imode,irate,iefn,imask,isb, [nbuf],
[istart], [is top])

16-15

ibuf

ilen

imode

irate

iefn

LABORATORY PERIPHERAL SYSTEMS DRIVERS

An integer array that is to receive the input data values.

The length of ibuf (must be even and greater than or equal to 6).

The start, stop, and sampling mode. Its value is encoded by
adding together the appropriate function selection values shown
below.

Function
Selection

Value

128

64

32

16

Meaning

Start on digital input point set

Set digital output point at start

Stop on digital input point clear

Stop on number of buffers

Thus, a value of 192 for imode specifies:

• The sampling is to be started when a specified digital input
point is set.

• A digital output point is to be set when sampling is started.

• Sampling will be stopped by a program request.

A 2-word integer array that specifies the time interval between
digital input samples. The first word specifies the interval
units as follows:

irate{l) Unit

1 Real-time clock ticks

2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit
unsigned integer.

The number of the event flag that is to be set each time a half
buffer of data has been collected.

16-16

imask

isb

nbuf

LABORATORY PERIPHERAL SYSTEMS DRIVERS

The digital input points to be read.

A 2-word integer array to which the subroutine status is
returned.

The number of buffers of data to be collected. It is needed only
if a function selection value of 16 has been added into imode.

is tart

is top

The digital input pointer number to be used to trigger sampling,
and/or the digital output point number to be set when sampling is
started. It is needed only if a function selection value of 128
or 64 has been added into imode.

The digital input point number to be used to stop sampling. It
is needed only if a function selection value of 32 has been added
into imode.

When sampling is in progress, the first word of the isb array is zero
and the second word contains the number of data values currently in
the buffer.

16.4.10 HIST: Initiating Histogram Sampling (LPSll only)

The HIST FORTRAN subroutine measures the elapsed time between a series
of events with Schmitt trigger 1.

Each time a sample is to be taken, a counter is incremented and
Schmitt trigger 1 is tested. If it has fired, then the counter is
written into the user buffer and the counter is reset to O. Thus the
data returned to the user is the number of sample intervals between
Schmitt trigger firings. If the counter overflows before Schmitt
trigger 1 fires, a 0 value is written into the user buffer. Sampling
may be started and stopped as for RTS (see Section 16.4.18) and all
input is double buffered with respect to the user task. The call is
issued as follows:

ibuf

CALL HIST (ibuf,ilen,imode,irate,iefn,isb,[nbuf],
[istart], [is top])

An integer array that is to receive the input data values.

16-17

ilen

imode

irate

iefn

isb

nbuf

LABORATORY PERIPHERAL SYSTEMS DRIVERS

The length of ibuf (must be even and greater than or equal to 6).

The start, stop, and sampling mode. Its value is encoded by
adding the appropriate function selection values shown below:

Function
Selection

Value

128

64

32

16

Meaning

Start of digital input point set

Set digital output point at start

Stop on digital input point clear

Stop on number of buffers

A 2-word integer array that specifies the time interval between
samples. The first word specifies the interval units as follows:

irate(l) Unit

1 Real-time clock ticks

2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit
signed integer.

The number of the event flag that is to be set each time a half
buffer of data has been collected.

A 2-word integer array to which the subroutine status is
returned.

The number of buffers of data to be collected. It is needed only
if a function selection value of 16 has been added into imode.

16-18

LABORATORY PERIPHERAL SYSTEMS DRIVERS

is tart

is top

The digital input point number to be used to trigger sampling
and/or the digital output point number to be set when sampling is
started. It is needed only if a function selection value of 128
or 64 has been added into imode.

The digital input point number to be used to stop sampling. It
is needed only if a function selection value of 32 has been added
into imode.

The isb array has the standard meaning described in Section 16.4.1.

When sampling is in progress, the first word of the isb array is 0 and
the second word contains the number of data values currently in the
buffer.

16.4.11 IDIR: Reading Digital Input

The IDIR FORTRAN subroutine or function reads the digital input
register as an unsigned binary integer, or as four binary-coded
decimal (BCD) digits. In the latter case, the BCD digits are
converted to a binary integer before the value is returned to the
caller. The call is issued as follows:

imode

ival

isb

CALL IDIR (imode,[ival],[isb])

The mode in which the digital input register is to be read. If
imode equals 0, then the digital input register is read as four
BCD digits and converted to a binary integer. Otherwise, it is
read as a 16-bit unsigned binary integer.

A variable that receives the value read.

A 2-word integer array to which the subroutine status is
returned.

The isb array has the standard meaning described in Section 16.4.1.

When the function form of the call is used, the value of the function
is the same as that returned in ival.

16-19

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.4.12 !DOR: Writing Digital Output

The IDOR FORTRAN subroutine or function clears or sets bits in the
digital output register. The caller provides a mask word and output
mode. Bits in the digital output registers corresponding to the bits
specified in the mask word are either set or cleared according to the
specified mode. The call is issued as follows:

imode

imask

CALL IDOR (imode,imask,[newval] ,[isb])

Whether the bits specified by imask are to be cleared or set in
the digital output register. If imode equals O, then the bits
are to be cleared. Otherwise, they are to be set.

The bits to be cleared or set in the digital output register. It
may be conveniently specified as an octal constant.

newval

isb

A variable that receives the updated (actual) value written into
the digital output register.

A 2-word integer array to which the subroutine status is
returned.

The isb array has the standard meaning described in Section 16.4.1.

When the function form of the call is used, the value of the function
is the same as that returned in newval.

16.4.13 IRDB: Reading Data from an Input Buffer

The IRDB FORTRAN subroutine or function retrieves data sequentially
from a buffer that a laboratory peripheral system driver is
synchronously filling. If no data is available when the call is
executed, the contents of the next location in the data buffer are
returned without updating the buffer pointers. The call is issued as
follows:

CALL IRDB (ibuf,[ival])

16-20

ibuf

ival

LABORATORY PERIPHERAL SYSTEMS DRIVERS

An integer array that was previously specified in a synchronous
input sampling request (that is, DRS, HIST, or RTS).

A variable that receives the next value in the data buffer.

When the function form of the call is used, the value of the function
is the same as that returned in ival.

16.4.14 LED: Displaying in LED Lights (LPSll only)

The LED FORTRAN subroutine displays a 16-bit signed binary integer in
the LED lights. The number is displayed with a leading blank
{positive number) or minus (negative number), followed by five
non-zero-suppressed decimal digits that represent the magnitude of the
number. LED digits are numbered right to left starting at 1 and
continuing to 5. The number may be displayed with or without a
decimal point. The call is issued as follows:

ival

idec

isb

CALL LED (ival,[idec],[isb])

The variable whose value is to be displayed.

The position of the decimal point. A value of 1 to 5 specifies
that a decimal point is to be displayed. All other values
specify that no decimal point is to be displayed.

A 2-word integer array to which the subroutine status is
returned.

The isb array has the standard meaning described in Section 16.4.1.

For example, the following call:

CALL LED (-55,2)

would cause -0005.5 to be displayed in the LED lights.

16-21

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.4.15 LPSTP: Stopping an In-Progress Synchronous Function

The LPSTP FORTRAN subroutine selectively stops a single synchronous
request. The call is issued as follows:

ibuf

CALL LPSTP (ibuf)

An integer array that specifies a buffer that was previously
specified in a synchronous initiation request.

16.4.lo PUTD: Putting a Data Item into an Output Buffer

The PUTD FORTRAN subroutine puts data sequentially into a buffer that
a laboratory peripheral system driver is synchronously emptying. If
no free space is available, no operation is performed. The call is
issued as follows:

ibuf

ival

CALL PUTD (ibuf ,ival)

An integer array which was previously specified in a synchronous
output request (SDO or SDAC).

A variable whose value is to be placed in the next free location
in the data buffer.

16.4.17 RELAY: Latching an Output Relay (LPSll only)

The RELAY FORTRAN subroutine opens or closes the LPSll relays. The
call is issued as follows:

irel

CALL RELAY (irel,istate,[isb])

Which relay is to be opened or closed (0 for relay one, 1 for
relay two).

istate

isb

Whether the relay is to be opened or closed. If istate equals O,
the relay is to be opened. Otherwise, it is to be closed.

A 2-word integer array to which the subroutine status is
returned.

The isb array has the standard meaning described in Section 16.4.1.

16-22

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.4.18 RTS: Initiating Synchronous A/D Sampling

The RTS FORTRAN subroutine reads one or more A/D channels at precisely
timed intervals, with or without auto gain-ranging. The auto
gain-ranging algorithm (LPSll only) causes the channels to be sampled
at the highest gain at which saturation does not occur.

Sampling can be started when the interface subroutine is called or
when a specified digital input point is set. A digital output point
can optionally be set when sampling is started. Sampling can be
terminated by a program request (stop-in-progress request or kill
I/O), the clearing of a digital input point, or the collection of a
specified number of buffers of data.

All input is double buffered with respect to the user task. Each time
a half buffer of data has been collected, the user task is notified
(by the setting of an event flag) that data is available to be
processed while the driver fills the other half of the buffer. Data
can be sequentially retrieved from the data buffer with the IRDB
routine (see Section 16.4.12), or the ADJLPS routine (see Section
16.4.5) can be used in conjunction with direct access to the input
data. The call is issued as follows:

ibuf

ilen

imode

CALL RTS (ibuf ,ilen,imode,irate,iefn,ichan,nchan,isb,
[nbuf], [istart], [istop])

An integer array that is to receive the converted data values.

The length of ibuf (must be even and greater than or equal to 6).

The start, stop, and sampling mode.
adding together the appropriate
shown below:

Its value is encoded by
function selection values as

Function
Selection

Value

128

64

32

16

8

Meaning

Start on digital input point set

Set digital output point at start

Stop on digital input point clear

Stop on number of buffers

Auto gain-ranging (LPSll only)

16-23

irate

iefn

ichan

nchan

isb

nbuf

LABORATORY PERIPHERAL SYSTEMS DRIVERS

A 2-word integer array that specifies the time interval between
A/D samples. The first word specifies the interval unit as
follows:

irate(l) Unit

1 Real-time clock ticks

2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit
unsigned integer.

The number of the event flag that is to be set each time a half
buffer of data has been collected.

The starting A/D channel of the block of channels to be sampled
synchronously (must be between 0 and 63 for LPSll and between 0
and 15 for ARll).

The number of A/D channels to be sampled (must be between 1 and
64 for LPSll and between 1 and 16 for ARll).

A 2-word integer array to which the subroutine status is
returned.

The number of buffers of data that are to be collected. It is
needed only if a function selection value of 16 has been added
into imode.

istart

is top

The digital input point number to be used to trigger sampling
and/or the digital output point number to be set when sampling is
started. It is needed only if a function selection value of 128
or 64 has been added into imode. Points are numbered from 0 to
15, allowing a maximum of 16 points to be specified.

The digital input point number to be used to stop sampling. It
is needed only if a function selection value of 32 has been added
into imode.

16-24

LABORATORY PERIPHERAL SYSTEMS DRIVERS

The values listed for ichan and nchan above are the maximum allowable
for each of the devices. In practice, they are constrained by the
number of channels available as specified during SYSGEN.

The isb parameter has the standard meaning described in Section
16.4.1.

When sampling is in progress, the first word of the isb array is 0 and
the second word contains the number of data values currently in the
buffer.

16.4.19 SDAC: Initiating Synchronous D/A Output

The SDAC FORTRAN subroutine writes data into one or more external D/A
converters at precisely timed intervals. Output may be started and
stopped as for RTS (see Section 16.4.18), and all input is double
buffered with respect to the user task. One full buffer of data must
be available when synchronous output is initiated.

After SDAC has initiated output and the specified event flag has been
set to notify the task that free buffer space is available, the PUTD
routine (see Section 16.4.16) may be used to put data values
sequentially into the output data buffer. The ADJLPS routine (see
Section 16.4.5) may be used in conjunction with direct access to the
output data buffer. The SDAC call is issued as follows:

ibuf

ilen

imode

CALL SDAC (ibuf ,ilen,imode,irate,iefn,ichan,nchan,isb,
[nbuf], [istart], [istop])

An integer array that contains the output data valueso

The length of ibuf (must be even and greater than or equal to 6).

The start, stop, and sampling mode. Its value is encoded by
adding together the appropriate function selection values as
shown below:

Function
Selection

Value

128

n4

32

16

Meaning

Start on digital input point set

Set digital output point at start

Stop on digital input point clear

Stop on number of buffers

16-25

irate

iefn

ichan

nchan

isb

nbuf

LABORATORY PERIPHERAL SYSTEMS DRIVERS

A 2-word integer array that specifies the time interval between
D/A outputs. The first word specifies the interval units as
follows:

irate(!) Unit

1 Real-time clock ticks

2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit
unsigned integer.

The number of the event flag that is to be set each time a half
buffer of data has been output.

The starting D/A channel of the block of channels to be written
into synchronously (must be between 0 and 9 for LPSll, and be 0
or 1 for AR ll) .

The number of D/A channels to be written into (must be between 1
and 10 for LPSll, and be 1 or 2 forARll).

A 2-word integer array to which the subroutine status is
returned.

The number of buffers of data to be output. It is needed only if
a function selection value of 16 has been added into imode.

istart

The digital input point number to be used to trigger sampling
and/or the digital output point number to be set when sampling is
started. It is needed only if a function selection value of 128
or 64 has been added into imode. Points are numbered from 0 to
15, allowing a maximum of l~ points to be specified.

16-26

istop

LABORATORY PERIPHERAL SYSTEMS DRIVERS

The digital input point number to be used to stop sampling. It
is needed only if a function selection value of 32 has been added
into imode.

The isb array has the standard meaning described in Section 16.4.1.

When sampling is in progress, the first word of the isb array is 0 and
the second word contains the number of free positions in the buffer.

lhe4e20 SDO: Initiating Synchronous Digital Output

The SDO FORTRAN subroutine writes data qualified by a mask word into
the digital output register at precisely timed intervals. Sampling
may be started and stopped as for RTS (see Section 16e4cl8) and all
input is double buffered with respect to the user task. One full
buffer of data must be available when output is initiated.

After SDO has initiated output, and the specified event flag has been
set to notify the task that free buffer space is available, the PUTD
routine (see Section 16.4.16) may be used to put data values
sequentially into the output data buffer. The ADJLPS routine (see
Section 16.4.5) may be used in conjunction with direct access to the
output data buffer. The SDO call is issued as follows:

ibuf

ilen

imode

CALL SDO (ibuf,ilen,imode,irate,iefn,imask,isb,[nbuf],
[istart], [is top])

An integer array that contains the digital output values.

The length of ibuf (must be even and greater than or equal to 6).

The start, stop, and sampling mode.
adding together the appropriate
shown below:

Its value is encoded by
function selection values as

Function
Selection

Value

128

64

32

16

Meaning

Start on digital input point set

Set digital output point at start

Stop on digital input point clear

Stop on number of buffers

16-27

irate

iefn

imask

isb

nbuf

LABORATORY PERIPHERAL SYSTEMS DRIVERS

A 2-word integer array that specifies the time interval between
digital outputs. The first word specifies the interval units as
follows:

irate(l) Unit

1 Real-time clock ticks

2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit
unsigned integer.

The number of the event flag that is to be set each time a half
buffer of data has been output.

The digital output points that are to be written.
conveniently specified as an octal constant.

It may be

A 2-word integer array to which the subroutine status is
returned.

The number of buffers of data to be output. It is needed only if
a function selection value of 16 has been added into imode.

istart

is top

The digital input point number to be used to trigger sampling
and/or the digital output point number to be set when sampling is
started. It is needed only if a function selection value of 128
or 64 has been added into imode. Points are numbered 0 through
15, allowing a maximum of 16 points to be specified.

The digital input point number to be used to stop sampling. It
is needed if a function selection value of 32 has been added into
imode.

The isb parameter has the standard meaning described in Section
16.4.1.

When sampling is in progress, the first word of the isb array is 0 and
the second word contains the number of free positions in the buffer.

16-28

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.5 STATUS RETURNS

The error and status conditions listed in Table 16-8 are returned by
the Laboratory Peripheral System drivers described in this chapter.

Code

rs.sue

IS.PND

IE.ABO

IE.BAD

IE.BYT

IE.DAO

IE.DNR

Table 16-8
Laboratory Peripheral Systems Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the
I/O status block can be examined to determine the
number of data values processed.

I/O request pending

The operation specified in the QIO directive has
not yet been completed.

Operation aborted

The specified I/O operation was canceled {by
IO.KIL or IO.STP) while in progress.

Bad parameter

An illegal specification was supplied for one or
more of the device-dependent QIO parameters {words
6-11). The second I/O status word is filled with
Os.

Byte-aligned buffer specified

Byte alignment was specified for a data buffer but
only word alignment is legal for Laboratory
Peripheral Systems. Alternatively, the length of
a buffer is not an even number of bytes.

Data overrun

For Laboratory Peripheral Systems, the driver
attempted to get a value from the user buffer when
none was available or attempted to put a value in
the user buffer when no space was available.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. For Laboratory Peripheral Systems,
this code is returned if a device time-out occurs
while a function is in progress. The second I/O
status word contains the number of free positions
in the buffer, as appropriate.

{continued on next page)

16-29

Code

IE.IEF

IE.IFC

IE.NOD

IE.OFL

IE.ONP

IE.PRI

IE.RSU

IE.SPC

LABORATORY PERIPHERAL SYSTEMS DRIVERS

Table 16-8 (Cont.)
Laboratory Peripheral Systems Status Returns

Reason

Invalid event flag number

An invalid event flag number was specified in a
synchronous function.

Illegal function

A function code was included in an I/O request
that is illegal for the LPSll or ARll.

Insufficient buffer space

Dynamic storage space has been depleted, and there
is insufficient buffer space available to allocate
a secondary control block for a synchronous
function.

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not
in the configuration.

Option not present

An option dependent function or subfunction was
requested, and the required feature was not
specified at system generatione For example the
gain-ranging option or D/A option is not present.
The second I/O status word contains O.

Privilege violation

The task which issued the request was not
privileged to execute that request. For
Laboratory Peripheral Systems, a checkpointable
task attempted to execute a synchronous sampling
function.

Resource in use

A resource needed by the function requested in the
QIO directive was being used (see Section 16.5.1).

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately a byte count of
0 was specified. The second I/O status word
contains O.

FORTRAN interface values for these status returns are presented in
Section ln.5.4.

16-30

LABORATORY PERIPHERAL SYSTEMS DRIVERS

1 6 • 5 • 1 IE • RS U

IE.RSU is returned if a function requests a resource that is currently
being used. The requesting task may repeat the request at a later
time or take any alternative action required.

Because certain functions do not need such resources, they never cause
this code to be returned. Other functions return this code under the
following conditions:

Function

IO. SDO

IO.ADS

IO. HIS

IO.MDA

IO. MDI

IO.MDO

When IE.RSU Is Returned

One or more specified digital output bits are in
use.

Digital output point (if specified) is in use.

Digital output point (if specified) is in use.

Digital output point (if specified) is in use.

Digital output point: (if specified) or digital
input points to be sampled are in use.

Digital output point (if specified) or output bits
to be written are in use.

The following components of the Laboratory Peripheral Systems are each
considered a single resource:

Resource

The A/D Converter
and clock

Each bit in the
digital output
register

Each bit in the
digital input
register

When Shareable

Always shareable

Never shareable.

Always shareable when used by IO.SDI
or for start/stop conditions (specified
in subfunction modifier bits), even when
in use by another function; when
specified by a synchronous digital input
function, not shareable with another
such function

Each resource is allocated on a first-come-first-served basis. (That
is, when a conflict arises, the most recent request is rejected with a
status of IE.RSU).

16.5.2 Second I/O Status Word

On successful completion of a function specified in a QIO macro call,
the rs.sue code is returned to the first word of the I/O status block.

Table 16-9 lists the contents of the second word of the status block,
on successful completion for each function.

16-31

LABORATORY PERIPHERAL SYSTEMS DRIVERS

Table 16-9
Returns to Second Word of I/O Status Block

Successful
Function Contents of Second Word

IO.KIL Number of data values before I/O was canceled

IO.LED 0

IO.REL 0

IO.SDI Masked value read from digital input register

IO.SDO Updated value written into digital output register

IO.ADS Number of data values remaining in buffer

IO.HIS Number of data values remaining in buffer

IO.MDA Number of free positions in buffer

IO.MDI Number of data values remaining in buffer

IO.MDO Number of free positions in buffer

IO.STP 0

When IE.BAD is returned, the second I/O status word contains O/
Laboratory Peripheral Systems drivers return the IE.BAD code under the
following conditions:

Function

IO.REL

IO.ADS
IO.MDA

IO.HIS
IO.MDI
IO.MDO

When IE.BAD is Returned

Relay number not 0 or 1

No I/O status block, illegal digital I/O point
number, or illegal channel number

No I/O status block or illegal
digital I/O point number

16.5.3 IO.ADS and ADC Errors

While IO.ADS or the ADC FORTRAN subroutine is converting a sample, two
error conditions may arise. Both of these conditions are reported to
the user by placing illegal values in the data buffer. A -1
(177777(8) is placed in the buffer if an A/D conversion does not
complete within 30 microseconds. A -2 (177776(8) is placed in the
buffer if an error occurs during an A/D conversion (LPSll only).

16-32

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.5.4 FORTRAN Interface Values

The values listed in Table 16-10 are returned in FORTRAN subroutine
calls.

Table 16-10
FORTRAN Interface Values

Status Return FORTRAN Value

rs. sue +01
IS.PND

I

+00
IE.ABO +315
IE.ADP +101
IE.ALN

I
+334

IEeBAD +301
IE.BYT I +319
IE.DAO

I
+313

IE.DNR +303
IE.IEF +100
IE.IFC +302
IE. ILU +99
IE.NOD +323
IE.OFL +365
IE.GNP +305
IE.PR! +316
IE.RSU +317
IE.SDP +102
IE.SPC +306
IE.ULN +08
IE. UPN +04

16.6 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the Laboratory Peripheral Systems
drivers described in this chapter.

16.6.1 The LPSll/ARll Clock and Sampling Rates

The basic real-time clock frequency (count rate) for all synchronous
functions is always lOKHz. Device characteristics word 4 contains a
lo-bit buffer preset value -- set dynamically or at system generation,
that controls the rate of "ticks" (that is, the rate at which the
clock interrupts). The quotient that results when this value is
divided into lOKHz is the rate of "ticks." For example, if this value
is 2, the "tick" rate is 5KHz. The user can use a Get LUN Information
system directive to examine the value and a SET /BUF MCR function to
modify it while the system is running.

16-33

LABORATORY PERIPHERAL SYSTEMS DRIVERS

The ticks parameter in a synchronous function specifies the number of
"ticks" between samples or data transfers. The value of ticks is a
16-bit number. Thus 65,536 discrete sampling frequencies are possible
for each of ~5,536 different "tick" rates. This provides a maximum
single-channel sample rate of 1 sample every 100 microseconds
(possible in hardware but impractical in software) and a minimum of 1
sample every 429,495 seconds. A single-channel rate greater than 2KHz
is possible, but not recommended.

The figures below represent initial timing tests run under RSX-llM.
It should be noted that no computation was performed on the data other
than continuously removing it from or inserting it into the data
buffer.

The following data is for the LPSll on a PDP-11/40 with memory
management, with no gain-ranging option, and with digital I/O option.

Analog rates:

1 request for 1 channel at 2.5KHz

1 request for 2 channels at 2.0KHz (aggregate 4KHz)

2 requests for 1 channel at 2.0KHz (aggregate 4KHz)

Digital rates:

1 request for 2 channels at 2.5KHz (aggregate 5KHz)

The following data is for the ARll on a PDP-11/40 with no memory
management, no digital I/O option, and no unipolar sampling.

Analog rates:

1 request for 1 channel at 3.3KHz

1 request for 2 channels at 2.5KHz (aggregate 5.0KHz)

2 requests for 1 channel at 2.5KHz (aggregate 5.0KHz)

Digital rate:

2 requests for 2 channels at 3.3KHz (aggregate 6.6KHz)

16.6.2 Importance of the I/O Status Block

An I/O status block must be specified with every synchronous function.
If the first I/O status word is nonzero, the request has been
terminated and the value indicates the reason for termination~
Otherwise, the request is in progress, and the second I/O status word
contains the number of data values remaining in the buffer (or the
number of free positions in the buffer for IO.MDA and IO.MDO).

16-34

LABORATORY PERIPHERAL SYSTEMS DRIVERS

16.6.3 Buffer Management

The buffer unload protocol for synchronous input functions is
described below. The user constructs a 5-word block that contains the
following:

IOSB: .BLKW 2 I/O STATUS DOUBLE-WORD
CURPT: .WORD BUFFER ADDRESS OF BUFFER
LSTPT: .WORD BUFFER+n ADDRESS OF END OF BUFFER
FSTPT: .WORD BUFFER ADDRESS OF BUFFER

Two of these words are required by the driver (I/O status block) and
the remaining three by the user to unload data values from the buffer.

The user then issues the I/O request with the appropriate parameters
and the address of the above block as the I/O status block. The QIO
directive Os both I/O status words to initialize them.

If the driver accepts the request 1 it sets up a write pointer to
first word in the user buffer. Thus, the user has a buffer
pointer and the driver has a buffer write pointer. The user and
driver share the second I/O status word, which is the number of
words in the buffer that contain data.

the
read
the

data

Each time the driver attempts to put a sample value into the buffer,
it increments the second I/O status word and compares the result with
the size of the buffer. If the result is greater, buffer overrun has
occurred and the request is terminated. Otherwise, the value is
stored in the buffer at the address specified by the driver's write
pointer and the write pointer is updated.

If the value stored in the user buffer fills half of the buffer, the
event flag specified in the I/O request is set in order to notify the
user that a half buffer of data is available to be processed. Each
time the user task is awakened, it should execute the following code:

5$: CLEF$S #EFN ;CLEAR EFN
10$: TST IOSB+2 ;ANY DATA IN BUFFER?

BEQ 30$;IF EQ NO
MOV @CURPT,RO ;GET NEXT VALUE FROM BUFFER
DEC IOSB+2 ;REDUCE NUMBER OF ENTRIES
ADD #2,CURPT ;UPDATE BUFFER READ POINTER
CMP CURPT,LSTPT ;END OF BUFFER?
BLOS 20$;IF LOS NO
MOV FSTPT,CURPT ;RESET BUFFER READ POINTER

20$: Process data value
BR 10$;TRY AGAIN

30$: TSTB IOSB ;REQUEST TERMINATED?
BNE 40$;IF NE YES
WTSE$S #EFN ;WAIT FOR EFN
BR 5$;

40$: Determine reason for termination

ln-35

LABORATORY PERIPHERAL SYSTEMS DRIVERS

For IO.MDA and IO.MOO, this protocol differs slightly. The user task
maintains a write pointer and the driver a read pointer. The entire
buffer must be full when the request is executed.

16.6.4 Use of AQJLPS for Input and Output

The following FORTRAN example illustrates the proper protocol for
using ADJLPS for synchronous input and output.

Synchronous input:

DIMENSION IBF(l004) ,IERR(2) ,INTVL{2)
c
C INITIATE SYNCHRONOUS A/D SAMPLING,
c

c

INTVL{l)=2
INTVL(2)=5
CALL RTS(IBF,1004,160,INTVL,IEFN,6,6,IERR,50,l4,15)

C INITIALIZE HALF BUFFER INDEX
c

INDX=4
c
c WAIT FOR HALF BUFFER OF DATA
c

10 CALL WAITFR(IEFN)
c
C CLEAR EVENT FLAG
c

c
c
c

c

15 CALL CLREF (IEFN)

PROCESS HALF BUFFER OF DATA

SUM=O
DO 20 I=l,500
SUM=SUM+CVSWG(IBF(I+INDX))

20 CONTINUE
AVERG=SUM/500

C FREE HALF BUFFER FOR MORE DATA
c

CALL ADJLPS(IBF,500)
c
C ADJUST BUFFER INDEX
c

c

INDX=INDX+500
IF(INDX.GE.1004) INDX=4

C CHECK IF ANOTHER HALF BUFFER OF DATA IS AVAILABLE
c

IF(IERR(2) .GE.500 GO TO 15
IF(IERR(l) .NE.0) GO TO end of sampling
GO TO 10

16-36

LABORATORY PERIPHERAL SYSTEMS DRIVERS

Synchronous output:

DIMENSION IBF(l004) ,IERR(2) ,INTVL(2)
c
C FIRST BUFFER OF DATA MUST BE AVAILABLE AT START
c
C THIS EXAMPLE ASSUMES FIRST BUFFER IS FULL AT START
c
C START SYNCHRONOUS DIGITAL OUTPUT FUNCTION
c

c

INTVL(l)=2
INTVL(2)=5
CALL SDO(IBF,1004,160,INTVL,IEFN,MASK,IERR,50,14,15)

C INITIALIZE HALF BUFFER INDEX
c

INDX=4
c
C WAITFOR ROOM IN BUFFER
c

10 CALL WAITFR(IEFN)
c
C CLEAR EVENT FLAG
c

15 CALL CLREF(IEFN)
c
C CALCULATE VALUES TO PUT IN BUFFER
c

c

X=(Y+2)*Z
DO 20 I=l,500
IBF(I+INDX)=X**5/A

20 CONTINUE

C SIGNIFY ANOTHER HALF BUFFER IS FULL
c

CALL ADJLPS(IBF,500)
c
C ADJUST BUFFER INDEX
c

c

INDX=INDX+500
IF(INDX.GE.1004) INDX=4

C CHECK IF ANOTHER HALF BUFFER IS EMPTY
c

IF(IERR(2) .GE.500) GO TO 15
IF(IERR(l) .NE.O) GO TO end of sampling
GO TO 10

NOTE

In both of the examples above, care is taken to ensure
that the program stay "in sync" with the driver. If the
program "loses" its position with respect to the driver,
the function must be stopped and restarted, since this is
the only way to recover. Caution should be exercised to
ensure that the program sequence above be used to avoid a
possible loss of data.

ln-37

INDUSTRIAL CONTROL SUBSYSTEMS

QIO DPB format:

QIO$e IO.SAO, ••• ,<chn,vout>

chn

The output channel number.

vout

The output voltage representation.

Output voltage varies linearly with the binary input to the channel,
where O to plus 10 volts (+lOv.) is represented by integers from 0 to
1023.

Return Status:

rs.sue - Function submitted for output to controller.

IE.MOD - Nonexistent D/A channel was specified.

The second I/O status word is O.

18.3.4 Momentary Digital Output - Multi-Point

This function provides the capability of pulsing a field of up to 16
momentary (single-shot) digital output points. Fields must be aligned
on module boundaries.

QIO DPB format:

opn

dp

QIO$e IO.MSO, ••• ,<opn,dp>

The starting digital output point number. Point number must be
aligned on a module boundary (that is, must be a multiple of 16).

The 16-bit mask. One point is pulsed corresponding to each bit
set in the mask word.

Return Status:

rs.sue - Function submitted for output to the controller.

IE.MOD - Invalid starting point number specified. Point is
nonexistent or not aligned on a module boundary.

18-16

CHAPTER 17

PAPER TAPE READER/PUNCH DRIVERS

17.1 INTRODUCTION

The RSX-llM/M-PLUS paper tape reader/punch drivers support the PCll
paper tape reader/punch and the PRll paper tape reader. The PCll is a
high-speed reader/punch capable of reading 8-hole, unoiled, perforated
paper tape at 300 characters per second, and punching tape at 50
characters per second. The PRll has the same characteristics as those
of the paper tape reader portion of the PCll. All transfers are image
mode only, with no interpretation of data.

17.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION system
directive {the first characteristics word) contains the following
information for paper tape devices. A bit setting of 1 indicates that
the described characteristic is true for these devices.

Bit Setting Meaning

0 1 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 0 File-structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Mass storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

17-1

PAPER TAPE READER/PUNCH DRIVERS

Bit Setting Meaning

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 0 Device mountable as a FILES-11 volume

15 0 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, which is 64 bytes for paper tape devices.

17.3 QIO MACRO

Table 17-1 lists the standard functions of the QIO macro that are
valid for the paper tape reader/punch.

Table 17-1
Standard QIO Functions for the Paper Tape Reader/Punch

Format Function

QIO$C IO.ATT, ••• Attach device

QIO$C IO.DET, ••• Detach device

QIO$C IO.KIL, ••• Cancel I/O requests

QIO$C IO.RLB, ••• ,<stadd,size> READ logical block (reader only) .
QIO$C IO.RVB, ••• ,<stadd,size> READ virtual block (reader only)

QIO$C IO.WLB, ••• ,<stadd,size> WRITE logical block (punch only)

QIO$C IO.WVB, ••• ,<stadd,size> WRITE virtual block {punch only)

stadd

The starting address of the data buffer (may be on a byte
boundary)

size

The data buffer size in bytes (must be greater than 0)

IO.KIL never cancels an in-progress read request. In-progress write
requests are canceled only when the punch driver is waiting for the
punch to become ready at the start of a transfer.

The paper tape drivers support no device-specific functions.

17-2

PAPER TAPE READER/PUNCH DRIVERS

17.4 STATUS RETURNS

Table 17-2 lists error and status conditions that are returned by the
paper tape reader/punch drivers.

Code

rs.sue

IS.PND

IE.ABO

IE.DAA

IE.DNA

IE.DNR

IE.EOF

Table 17-2
Paper Tape Reader/Punch Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number
of bytes processed, if the operation involved reading
or writing.

I/O request pending

The operation specified in the QIO directive has not
yet been executed. The I/O status block is filled
with Os.

Operation aborted

The I/O request was cancelled while in progress or
while still in the I/O queue.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has already
attached the desired physical device unit, not that
the unit was attached by another task.

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task. This
code has no bearing on the attachment status of other
tasks.

Device not ready

The reader and punch drivers return this code when a
time-out occurs. The reader driver also returns this
code when an error condition (see Section 17.4.1) is
encountered before the initiation of the first
transfer after an ATTACH command has been issued.

End-of-file encountered

The reader driver encountered an error condition (see
Section 17.4.1) at a time other than the initiation
of the first read after a valid ATTACH command. The
second word of the I/O status buffer contains a count
of bytes successfully read before the error condition
was encountered.

(continued on next page)

17-3

Code

IE.IFC

IE.OFL

IE.SPC

IE.VER

PAPER TAPE READER/PUNCH DRIVERS

Table 17-2 (Cont.)
Paper Tape Reader/Punch Status Returns

Reason

Illegal function

An illegal function code was specified in an I/O
request that is not legal for the respective paper
tape drivers.

Device off line

The physical device unit associated with the
specified in the QIO directive was not on line.
the system was booted, a device check indicated
this physical device unit was not in
configuration.

Illegal address space

LUN
When
that
the

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task. Alternatively, a byte count of O was
specified.

Unrecoverable hardware error (punch only)

The punch driver encountered an error condition (see
Section 17.4.1) at a time other than the initiation
of a transfer. Section 17.4.2 describes the action
of the punch driver when an error condition is
encountered upon the initiation of a transfer.

17.4.1 Error Conditions

There are four error conditions that are indistinguishable to the
paper tape drivers. These conditions are:

• No tape

• Reader off line

• Power low

• Hardware malfunction

17.4.2 Ready Recovery

When the punch driver encounters an error condition upon the
initiation of a transfer, the following message is displayed:

*** PPn: -- NOT READY

n

The unit number of the paper tape punch that is not ready.

17-4

PAPER TAPE READER/PUNCH DRIVERS

This message is repeated every 15 seconds until the error condition is
corrected, or until the I/O request is canceled. When the error
condition has been corrected, the transfer will begin within 1 second.

17.5 PROGRAMMING HINTS

This section contains
considerations relevant
in this chapter.

information on important programming
to users of the paper tape drivers described

17.5.1 Special Action Resulting from Attach and Detach

When an Attach or Detach is issued to the punch, the punch driver
initiates a transfer of 170 (decimal) nulls. Upon the first read
after an attach to the reader, all nulls preceding the first non-null
character on the tape are read and discarded by the reader driver.

17.5.2 Reading Past End-of-Tape

When the reader driver reads past the physical end-of-tape, it
normally generates at least two incorrect data bytes. These bytes are
included in the byte count returned by the driver. User software that
does not prevent reads past the physical end-of-tape should discard at
least the last six characters in the buffer when IE.EOF is returned by
the driver.

17-5

INDUSTRIAL CONTROL SUBSYSTEMS

18.3.5 Bistable Digital Output - Multi-Point

This function provides the capability of setting or resetting a field
of up to 16 bistable digital output points. Fields must be aligned on
a module boundary.

QIO DPB format:

opn

pp

dp

QIO$C IO.MLO, ••• ,<opn,pp,dp>

The starting digital output point number. Point number must be
aligned on a module boundary {that is, must be a multiple of 16).

The 16-bit mask.

The data pattern.

A bit is set in the mask word for each point that may change state.
The state of points corresponding to reset mask bits is unaltered.
When the mask bit is set, the output is "closed" if the data bit is
set and "open" if the data bit is clear.

Return Status:

rs.sue - Function submitted for output to the controller.

IE.MOD - Invalid starting point number specified. Point does not
exist or is not aligned on a module boundary.

18.3.n Unsolicited Interrupt Processing

Unsolicited interrupts consist of the following:

1. Digital interrupts

2. Counter interrupts

3. Remote terminal input

4. Hardware errors

Based on the type of interrupt, the driver may dispose of the
interrupt data in one or more of the following ways:

1. The data may be furnished to a task that has issued a request
to monitor such information continually. This alternative is
not available in the DSS/DRS driver.

2. A task may be activated by a specific input. That is, a
dormant task can be requested to run, or an event flag may be
set if the task is currently active.

18-17

CHAPTER 18

INDUSTRIAL CONTROL SUBSYSTEMS

18.1 INTRODUCTION

This chapter describes RSX-llM drivers for two process I/O subsystems:
the ICS/ICRll and the DSS/DRSll= (Driver support for these I/O
subsystems is not provided in RSX-llM-PLUS systems.)

ICSll and rCRll are local and remote process r/o subsystems,
respectively. They operate under program control as devices capable
of interrogating digital and analog input, and driving digital and
analog output.

DSSll and DRSll are digital input and output subsystems, respectively.
Under program control they drive digital output and interrogate
digital input.

18.1.1 Hardware Configuration

A single res or rcR controller can handle up to 16 I/O modules in any
configuration; a module contains 16 bits of input or output data,
providing a total of 256 digital points. Up to 12 rcR or res units
are supported. The rcs/rCR driver is tailored to the user's needs,
interactively, through the SYSGEN (System Generation program)
dialogue. The driver is capable of handling any combination of rcR or
res controllers installed on a single system.

The DSSll provides 49 optically isolated inputs, including 48
nonbuffered, sense-data inputs and one interrupt input. The DRSll
provides 48 open-collector, buffered outputs plus one interrupt input.
The DSS/DRS driver is shaped to the user's system configuration in the
SYSGEN dialog. The driver supports up to 16 DSSll and/or DRSll
modules.

18.1.1.1 ICS/ICR Address Assignments - Each rCRllA Unibus interface
or rcs11 file box must be configured at SYSGEN time for individually
addressable interrupt vectors, Control and Status Registers (rCSR),
and module Address Registers (rCAR), as shown in Table 18-1.

18-1

ICS/ICR Unit No.

0

1

2

3

4

5

6

7

10

11

12

13

INDUSTRIAL CONTROL SUBSYSTEMS

Table 18-1
ICS/ICR Address Assignments

Module Addresses ICSR/ICAR Addresses

i 7i000-i 7i036 i 7i 770-i 7i 776

l 71040-171076 171760-171766

171100-171136 l 71750-171756

171140-171176 171740-171746

171200-171236 l 71730-171736

l 71240-1 71276 1 71720-171726

1 71300-171336 171710-171716

171340-171376 l 71 700-1 71 706

171400-171436 171670-171676

171440-171476 l 71660-1 71666

171500-171536 171650-171656

171540-171576 1 71640-1 71646

NOTES

nnnnn6
nnnnn4

Control and Status Register
Address Register

Additional controllers are assigned
addresses above 300.

Interrupt Vectors

234-236

xxx-xxx+2

xxx+4-xxx+6

xxx+10-xxx+12

xxx+l4-xxx+l6

xxx+20-xxx+22

xxx+24-xxx+26

xxx+30-xxx+32

xxx+34-xxx+36

xxx+40-xxx+42

xxx+44-xxx+46

xxx+50-xxx+52

vector

18.1.1.2 DSS/DRS Address Assignments - Unlike the ICS/ICR
DSS/DRS devices are not restricted to specified bus
However, the following constraints apply:

subsystem,
addresses.

1. All DSSll modules must occupy a contiguous set of bus
addresses.

2. All DRSll modules must occupy a contiguous set of bus
addresses.

3. The total number of DSSll and DRSll modules may not exceed
16.

4. If both module types are installed
must occupy the lower set of
addresses.

5. Bus request priority is BR4.

18-2

in
bus

a system, the DRSll
and _ interrupt-vector

INDUSTRIAL CONTROL SUBSYSTEMS

18.1.1.3 Supported ICS/ICR I/O Modules - The following modules, all
optional, are supported by the ICS/ICR driver:

D/A Converters

IDA-QA - 4-channel digital-to-analog converter

A/D Converters

IAD-IA - 8-channel wide-range differential analog-to-digital
converter

IMX-IA - 16-channel flying capacitor relay multiplexer

Counters

IDC-IC - 16-bit binary counter

Bistable Digital Outputs

IDC-OA -
IAC-OA -
IRL-OA -
IRL-OB -

D/C flip-flop driver
A/C flip-flop driver
Bistable relay output
Flip-flop relay output

Momentary Digital Output

IDC-OB - D/C momentary driver
IAC-OB - A/C momentary driver

Digital Inputs (Noninterrupting)l

IDC-IA -
IDC-ID -
IAC-IA -

D/C voltage sense input
D/C voltage input module
A/C voltage input module

Digital Inputs (Interrupting)

IDC-IB - D/C voltage interrupt input
IAC-IB - A/C voltage interrupt input

Terminal Input/Output

110 CPS Remote Terminal Interface to ICRll

18.1.2 Alternate ICSll Support

The ICSll Industrial Control Subsystem is supported
UDCll or ICS/ICRll device driver. If the system
ICRll controller, and if a driver of minimum size is
UDCll support should be considered. The hardware
such support are as follows:

either by the
does not have an

required, then
requirements for

1. Each file box must be assigned to the same interrupt vector
address (normally 234).

2. The control and status register within each file box must
appear at the same address within the I/O page (normally
17177~\
_,_I ..L I IV} •

1. Note that noninterrupting input modules are accessed directly by a
task. Hence, while FORTRAN interface routines are available, no
support for such modules is included in the driver.

18-3

INDUSTRIAL CONTROL SUBSYSTEMS

If support of the IAD-IA A/D converter is required, the following
module addressing and installation conventions are imposed:

1. Each IAD-IA converter and associated IMX-IA relay
multiplexers are assigned a fixed block of 120 logical
channel numbers. No more than 32 IAD-IA converters may be
installed in a single system. Based on this convention, A/D
converter 0 occupies channels 0-119, A/D converter 1 occupies
120-239, and so forth.

2. Regardless of the actual
installed, each converter
contiguous module slots.

number of
preempts

IMX-IA multiplexers
a block of eight

3. The slots reserved for all A/D converters and multiplexers
must occupy a block of contiguous module slots.

If necessary, Field Service personnel can make the vector and address
changes. Assuming the hardware configuration is correct, the user can
implement the desired UDCll software support by answering in the
affirmative all SYSGEN questions relating to the UDCll.

If the additional ICS/ICR-11 driver features are required (at a
commensurate increase in the memory requirements), then each ICSll
file box must be configured for individually addressable interrupt
vectors and control status registers. This change can be performed by
Field Service personnel. The necessary software support is
incorporated by answering in the affirmative all SYSGEN questions
relating to the ICS/ICRll.

The additional ICSll capabilities provided by the ICS/ICRll driver may
be summarized as follows:

1. Multicontroller, parallel operation

2. Increased A/D conversion throughput

3. Activation of tasks directly from digital interrupts or
counters

4. No requirement to install modules of the same type in
contiguous slots

Section 18.7 summarizes the software differences between the UDC and
ICS/ICR drivers in detail.

18.1.3 Software Support

Both ICS/ICR and DSS/DRS operations are divided into two categories:

1. Functions performed directly by any task

2. Functions requiring driver services

Direct functions are accomplished through memory references to the
ICS/ICR or DSS/DRS registers on the I/O page. In a protected system
any task may gain restricted access to the device registers by linking
to a global common block that resides within the appropriate physical
memory limits. Direct functions consist of:

1. Reading counter modules

2. Reading any digital input module (DSS)

18-4

INDUSTRIAL CONTROL SUBSYSTEMS

NOTE

All functions listed in this
apply to ICS/ICR modules.
also apply to the DSS
subsystems are so marked.

subsection
Those which

and/or DRS

Driver requests are divided into the following categories:

1. Noninterrupting output functions

a. Bistable (flip-flop) digital output (DRS)

b. Analog output

c. Momentary (single-shot) digital output

2. Requests for interrupting functions

a. Analog input

b. Remote terminal output

3. Requests for unsolicited interrupts

a. Digital interrupts (DSS/DRS)

b. Counter interrupts

c. Remote terminal input

d. Remote unit or serial line errors

With the exception of A/D input and remote terminal output, all
functions are complete upon return to the user's task.

Under RSX-llM, noninterrupting output functions are immediately
submitted to the controller through a circular buffer that is filled
at driver level and emptied at interrupt level. A QIO is considered
successfully completed when the request is inserted in the circular
buffer.

The following operations are in this category:

1. Bistable digital outputs

2. Analog outputs

3. Momentary digital outputs

Interrupting functions are those operations that generate an interrupt
within some fixed time after initiation. The driver allows a list of
multiple transactions to be specified in a single QIO. Each
transaction is initiated in sequence without waiting for the preceding
interrupt, until either the list is exhausted or all modules of the
specified type are active. The following operations are in this
category:

le A/D inputs

2. Remote terminal output

18-5

INDUSTRIAL CONTROL SUBSYSTEMS

Unsolicited interrupts may require no initiation by the processor and
occur at indeterminate intervals. The following functions are in this
category:

1. Interrupting digital inputs (DSS/DRS)

2. Counter modules

3. Remote terminal input

4. Error interrupts

All unsolicited interrupt data, except for errors, may be placed in a
task-provided circular buffer. On interrupt, an event flag specified
by the task is set. Such data for each module type is supplied to
only one task per controller. In addition, the driver will activate
selected tasks on the occurrence of digital or terminal input
interrupts.

Error interrupts are described later in this chapter.

Terminal support is restricted to passing terminal data between the
device and a task. The only special character is Control-C (003),
which may cause a user-specified task to be made active. There is no
other special processing for terminal I/O except that the parity bit
is removed. This is similar to the terminal driver function of
IO.RAL.

1. MCR is not invoked.

2. Characters are not echoed.

3. Carriage control is not performed.

4. TABs, RUBOUTs, and so forth are not recognized.

5. Line terminators are not recognized.

6. Fill characters are not generated.

18.1.4 UDCll Software Compatibility

Many of the MACRO and FORTRAN interfaces described in the following
paragraphs are fully compatible with existing UDCll applications
software; however, the user should consult Section 18.7 for a summary
of differences that do exist between UDC and ICS/ICR software.

18.1.5 Module Addressing Conventions

Table 18-2 illustrates the relationship between physical slot numbers,
bus addresses and relative addresses for a given ICS/ICR
configuration. It is referred to in the following discussion.

Each A/D converter is assigned a block of 120 channels. The number of
channels in use within the block depends on the number of multiplexers
installed. Specifically, each A/D converter has eight channels, and
each associated multiplexer has 16.

18-6

INDUSTRIAL CONTROL SUBSYSTEMS

Table 18-2
Sample ICS/ICR Configuration

Unit: 0

Module Slot
Number Number Type Bus Address Relative Addresses

o.
I

9. D/A converter

I
171000 0-3. I 1. 10. A/D converter 171002 0-119.

2. 11. A/D multiplexer ------ -----
3. 12. Counter 171006 0
4. 13. Flip-flop driver 171010 0-15.
5. 14. D/A converter 171012 4-7.
6. 15. I Flip-flop driver 171014 16.-31.
7. 16. Counter 171016 1.
8. 17. A/D converter 1 71020 120.-239.

As noted, a block of 120 relative addresses is reserved for each A/D
converter. The converter and multiplexer in slots 10 and 11 contain
channels 0 through 23. The converter in slot 17 contains channels 120
through 127. An attempt to access a nonexistent channel (for example,
channel 30 or channel 129) will be rejected by the driver.

The user should observe that the bistable drivers in slots 13 and 15
contain relative point numbers 0 through 15, and 16 through 29
although the modules are not physically adjacent. In general, the
relationship between slot number, module type, bus address, and
relative address is as follows:

1. A set of contiguous relative addresses is defined for each
module of a given type that is installed. Each relative
address, when qualified by type, uniquely identifies a
digital point or channel.

2. A set of slot numbers and bus addresses, possibly not
contiguous, is occupied by all modules of a given type. Such
addresses may be assigned solely on the basis of hardware and
installation considerations. Increasing relative addresses
correspond to increasing bus addresses.

Table 18-3 is an example of the
interrupt points, and point
configuration.

relationship
numbers for

Table 18-3

among bus
a sample

Sample DSS/DRS Configuration

Bus Addresses Module Type Po in ts Interrupt

160030-160036 DRSll 0-47. 0
160040-160046 DRSll 48.-95. 1

170010-170016 DSSll 0-47. 2
170 2 -17 211 . 0 0 ~ 00 , D , , SS .L.L

JI l"\I""' -

18-7

addresses,
DSSll/DRSll

Point

INDUSTRIAL CONTROL SUBSYSTEMS

All addressing is by point number. Except for the interrupts, all
points are numbered sequentially by type (DSS or DRS), starting with
the first point on the lowest address assigned to a given module type.
Interrupt points are defined by means of a 16-bit mask word. Each bit
in the mask defines an interrupting module; high-order bits
correspond to increasing bus addresses.

18.2 LUN INFORMATION

A request for logical unit information returns the
device-dependent data in words 2 through 5 of the buffer:

following

WD 02 0

WD 03 Undefined

WD 04 Undefined

WD 05 0

18.3 ASSEMBLY LANGUAGE INTERFACE

Table 18-4 summarizes standard and device-specific QIO functions
supported by the ICS/ICR driver. Only the five functions ind·icated by
a footnote are supported by the DSS/DRS driver.

Table 18-4
Summary of Industrial Control QIO Functions

QIO$C

QIO$C

Format

IO.CCI, .•• ,<stadd,sizb,tevf>

IO.CTI, ••• ,<stadd,sizb,tevf,
arv>

QIO$C IO.CTY, ••• ,<stadd,sizb,tevf>

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

IO. DC I I •••

IO. DTI I • ••

IO.DTY, ••.

IO.FLN, .••

IO.ITI, ••• ,<mn,ic>

IO.LDI, ••• ,<tname, [,tevf],
pn,csm>l

IO.LKE, .•. ,<tname,[,tevf]>

18-8

Function

CONNECT a buffer to
digital interrupts

CONNECT a buffer to
counter interrupts

CONNECT a buffer to
terminal interrupts

Disconnect a buffer from
di ital interrupts

Disconnect a buffer from
counter interrupts

Disconnect a buffer from
terminal interrupts

Set controller off line

INITIALIZE a counter

LINK task to digital
interrupts

LINK task to error
interrupts

(continued on next page)

INDUSTRIAL CONTROL SUBSYSTEMS

Table 18-4 {Cont.)
Summary of Industrial Control QIO Functions

Format I Function

QIO$C IO.LTI, ••• ,<tname,[,tevf] LINK task to counter
en [, a rv] > interrupts

QIO$C IO.LTY, .•• ,<tname,[,tevf]> LINK task to remote I
terminal interrupts

QIO$C IO.MLO, ••• ,<opn,pp,dp>l
I

OPEN or close bistable
digital output points

I QIO$C IO.MSO, .•• ,<opn,dp> PULSE momentary digital
output points

I
QIO$C IO.NLK, ••• ,<tname>l UNLINK a task from all

interrupts

QIO$C I 0. ONL, ••. Place ICS/ICR controller
online

QIO$C IO.RAD, ••• ,<stadd>l READ activating data

QIO$C IO.RBC, ••• ,<stadd,size, INITIATE multiple A/D
stcnta> conversions

QIO$C IO.SAO, ••• ,<chn,vout> PERFORM analog output

QIO$C IO.UDI, •.• ,<tname>l UNLINK a task from
digital interrupts

QIO$C IO.UER, ••• ,<tname> UNLINK a task from error
interrupts

QIO$C IO.UTI, ••• ,<tname> UNLINK a task from
counter interrupts

QIO$C IO.UTY, ••• ,<tname> UNLINK a task from
terminal interrupts.

QIO$C IO.WLB, ••• ,<stadd,sizb> TRANSMIT data to the ICR
remote terminal

1. These functions are supported by the DSS/DRS driver.

arv

The starting address of a buffer containing initial or reset
counter values. The buffer must be aligned on a word boundary.

chn

The D/A channel number.

en

The counter number.

18-9

csm

dp

ic

mn

opn

pn

pp

sizb

size

stadd

INDUSTRIAL CONTROL SUBSYSTEMS

The change-of-state mask.

The binary data pattern.

The initial count.

The module numbere

The first bistable (latching) digital output point number. This
value must be on a module boundary (evenly divisible by 16).

The point number (must be assigned on a module boundary).

A 16-bit mask.

The data buffer size in bytes. For a circular buffer connected
to unsolicited interrupts, this value must be even and large
enough to include one entry plus the 2-word header.

The data and control buffer size in bytes. This value must be an
even number that is greater than O.

The starting address of the data buffer (must be on a word
boundary) •

staddb

The starting address of the terminal output buffer (may be
aligned on a byte boundary).

18-10

INDUSTRIAL CONTROL SUBSYSTEMS

stcnta

tevf

tname

vout

The starting address of the control buffer {must be on a word
boundary); each control buffer word must be constructed as
described in Table 18-5 (Section 18.3.2).

An event flag number in the range 0 to 96, {if
event flag SYSGEN option was selected),
group-global event flags are not supported.

the group-global
or 0 to 64 if

A task name composed of 1 to 6 alphanumeric characters in a
2-word RADIX-50 format. Two arguments, each containing three
characters, are required for this parameter. For example, the
task name ICNAME is specified as:

If the task name is less than four characters, a null argument
must be specified as follows for task ABC:

A binary number between 0 and 1023. that is to be converted to
an analog output.

The following sections contain a detailed description of each
function. In the discussion of QIO request parameters, the following
conventions apply.

All numbering is relative.

Module numbers start at 0 beginning with the first module of a given
type. Increasing module numbers correspond to increasing physical bus
addresses.

Channel numbers start at O, with channel 0 as the first channel on the
first module of a given type.

Point numbers start at 0 with point 0 as the first point on the first
module of a given type. Points within a module are numbered "from
right to left" in increasing order.

It should be remembered that there is no requirement for ICS/ICR
modules of a given type to occupy contiguous slots; thus, for
examp~e, digital points 15(10) and 16(10) need not reside on
physically adjacent modules. This restriction does apply to DSS/DRS
modules, however.

18-11

INDUSTRIAL CONTROL SUBSYSTEMS

It is assumed that the number of points or channels per module is a
constant for each generic type. Specifically, the following weights
apply:

1. Each ICS/ICR Digital I/O Module contains 16 points.

2. Each DSS/DRS Digital I/O Module contains 48 points.

3. Each. Counter Module contains 1 channel.

4. Each D/A Module contains 4 channels.

5. Each A/D Converter contains 120 channels.

As stated above, an A/D converter is assigned a block of 120 channels.
The number of channels in use within the block depends on the number
of multiplexers installed. The driver will reject an attempt to
address a nonexistent channel.

18.3.1 General Error Status Returns

The system recognizes and handles two kinds of status conditions when
they occur in I/O requests:

• Directive conditions, which indicate the acceptance
rejection of the QIO directive itself

or

• I/O status conditions, which indicate the success or failure
of the I/O operation

Table 18-7 lists numerical values of returns for both assembly
language and FORTRAN interfaces.

The following directive and I/O status returns apply uniformly to all
requests.

18.3.1.1 Directive Conditions

rs.sue - Directive accepted. The first six parameters of the QIO
directive were valid, and sufficient dynamic memory was
available to allocate an I/O packet. The directive is
accepted.

IE.ADP - Invalid address. The I/O status block or
outside of the issuing task's address
aligned on a word boundary.

IE.IEF - Invalid event flag number.

the QIO DPB was
space or was not

IE.ILU - Invalid logical unit number. The lun specification in a QIO
directive was invalid for the issuing task. For example,
there were only five logical unit numbers associated with the
task, and the value specified for lun was greater than five.

18-12

INDUSTRIAL CONTROL SUBSYSTEMS

IE.NOD - Insufficient dynamic memory. There was not enough dynamic
memory to allocate an I/O packet for the I/O request. The
user can try again later by blocking the task with a WAITFOR
SIGNIFICANT EVENT directive. Note that WAITFOR SIGNIFICANT
EVENT is the only effective way for the issuing task to block
its execution, since other directives that could be used for
this purpose themselves require dynamic memory for their
execution (for example, MARK TIME).

IE.SDP - Invalid DIC number or DPB size. The directive identification
code (DIC) or the size of the directive parameter block (DPB)
was incorrect; the legal range for a DIC is from 1 through
127, and all DIC values must be odd. Each individual
directive requires a DPB of a certain size. If the size is
not correct for the particular directive, this code is
returned.

IE.ULN - Unassigned LUN. The logical unit number in the QIO directive
was not associated with a physical device unit. The user may
recover from this error by issuing a valid Assign LUN
directive and then reissuing the rejected directive.

18.3.1.2 I/O Conditions

IE.ABO - Operation aborted. The specified operation was canceled by
IO.KIL or the request timed out while the unit was off line.

IE.OFL - Controller off line. The physical device unit associated
with the LUN specified in the QIO directive was not on line.
An ICS/ICR controller may be off line because a device check
during bootstrap load has indicated that the controller is
not in the configuration.

IE.DNR - Controller not ready. A nonrecoverable controller error has
been detected.

IE.IFC - Illegal function. A function code was included in an I/O
request that is illegal for the ICS/ICR. The function may
also refer to an ICS/ICR module type or function that was not
specified during system generation.

18.3.2 A/D Input - Read Multiple A/D Channels

This function provides the capability of reading several A/D channels
at any permissible gain. The driver is capable of initiating parallel
transfers when more than one A/D converter is installed in a file box;
however, only one interrupt module request (remote terminal or A/D)
may be in progress at a given time.

QIO DPB format:

QIO$C IO.RBC, ••• ,<stadd,size,stcnta>

18-13

stadd

size

INDUSTRIAL CONTROL SUBSYSTEMS

The starting address of the data buffer (must be on a word
boundary).

The data buffer size in bytes (must be even and greater than O);
the control buffer is the same size.

stcnta

The starting address of the control buffer (must be on a word
boundary); each control buffer word must be constructed as shown
in Table 18-5.

Return Status:

rs.sue - Function successfully completed.

IE.BAD - Illegal channel or gain code specified.

IE.BYT - Data buffer is byte aligned. Alternatively, the length
of the buffer is not an even number of bytes.

IE.DNR - Device not ready.
occurred.

A/D converter interrupt time-out

Note that the second I/O status word contains a count of the
number of conversions successfully completed.

One control word is paired with each data word. That is, the data
appearing in a data array element is obtained using the gain and
channel number specified in the corresponding element of the control
array. Control words specify the gain and channel in the format shown
in Table 18-5.

Upon receiving and validating the parameters within the I/O packet,
the driver will initiate the following sampling procedure:

1. The control word is fetched and tested for validity (that is,
for legal gain and channel). If an error is encountered or
no further control words remain, processing is terminated as
described in Step 4.

2. Assuming the A/D converter board is idle, the driver starts
the conversion, sets this resource busy, and returns to step
1. If the converter is busy, the driver returns control to
the system after saving the data required to initiate the
conversion when the channel becomes idle.

3. On the occurrence of an A/D interrupt, the interrupt service
routine initiates the appropriate processing at the non
interrupt level that will either set the channel idle or
initiate a previous request stored during step 2. The
occurrence of the latter results in processing of additional
control words as described in step 1.

, n , A
.LO-.L<2

INDUSTRIAL CONTROL SUBSYSTEMS

Table 18-5
A/D Conversion Control Word

Bits Meaning

0-11 Channel Number range: 0-1919

I
12-15 Gain value for Gain

this sample. The
binary value is
as follows:

15 14 13 12 - - - -

0 0 0 0 1
0 0 0 1 2
0 0 1 0 illegal
0 0 1 1 illegal
0 1 0 0 10
0 1 0 1 20
0 1 1 0 illegal
0 1 1 1 illegal
1 0 0 0 50
1 0 0 1 100
1 0 1 0 illegal
1 0 1 1 illegal
1 1 0 0 200
1 1 0 1 1000
1 1 1 0 illegal
1 1 1 1 illegal

4. The converted value is returned as 12 bits, left-justified,
in a lo-bit word, with the low-order 4 bits set to 0.

5. A/D requests are terminated under any of the following
conditions:

a. All control words have been processed.

b. A hardware error has occurred.

c. An error in a control word has been detected.

Regardless of the cause, the driver cannot complete request processing
until all pending A/D transfers have gone to completion.

Because of overlapped processing, multiple errors can occur (for
example, a hardware error and an erroneous control word}. The driver
returns the status associated with the earliest transaction that
caused an error condition. Thus, at the user interface, the driver
appears to execute all conversions sequentially.

18.3.3 Analog Output

This function provides the capability of setting a single analog
output channel to a specified voltage.

18-15

INDUSTRIAL CONTROL SUBSYSTEMS

The driver will allow continual monitoring for digital, counter, and
terminal inputs with the provision that, for each controller, only one
task per module type may receive such inputs.

Task activation is permitted for digital, terminal, and error
interrupts. The processing related to hardware errors is discussed in
Section 18.5. Activation of tasks by digital, counter, and terminal
inputs is covered in Section 18.3.7.

The driver functions described in the following paragraphs allow a
task to continually receive interrupt data. To monitor such data, a
task must provide:

1. A buffer that is filled by the driver and emptied by the task
in circular fashion

2. An event flag that will be set upon the occurrence of each
interrupt

The driver will connect a single task per controller to receive
interrupts from a specific module type.

The buffer to be connected has the format shown below:

FORTRAN
Index Contents

1 driver index

2 user index

3 word 0 of entry

4 word 1 of entry

The buffer consists of a 2-word header containing the driver and user
index, aas shown, followed by a data area that is subdivided into
fixed-length entries. Each entry consists of a word containing the
entry existence indicator followed by one or more words of
device-dependent data. Such information usually consists of module
data, relative module number, and a code identifying a module type.
On the occurrence of an interrupt, the driver enters data in the
location currently indicated by the driver index. This index can be
considered as a FORTRAN index into the buffer. That is, the first
location in the buffer is associated with the index 1. The beginning
of the data area is associated with the first entry, index 3. Entries
are made in a circular fashion starting at the beginning of the data
area, filling in order of increasing memory address, and wrapping
around to the beginning of the data area when there is insufficient
space for an entry at the end. Note that the size of the data area
must be an integer multiple of the entry size.

It is expected that the connected task will maintain the user index,
ensuring that it indicate where, in the buffer, the task is to process
interrupt data next.

When the task is activated by the driver, it should process data in
the buffer starting at the location indicated by its pointer, and
continuing in circular fashion until an existence indicator is
encountered that is 0.

18-18

INDUSTRIAL CONTROL SUBSYSTEMS

The existence indicator is set to +l when a buffer entry is made.
Except to record a hardware error, the contents of an entry are not
altered by the driver if the indicator is nonzero. Hence, when a
requester has removed or processed the entry, he must clear the
existence indicator in order to free the buffer entry position. If
the driver detects a nonzero indicator, (that is, data input has
occurred in a burst sufficient to overrun the buffer), the data is
discarded and a count of data overruns is incremented. The count is
maintained in the entry existence indicator, which, as noted above, is
set to +l to indicate no overruns between entries, +2 to indicate a
hardware error entry, or a negative value recording the two's
complement of the number of times data has been discarded between
entries. The overrun count will never be allowed to wrap around to a
positive value.

In the event of a nonrecoverable controller error (remote unit
power-fail or hard data error) all connected tasks are activated with
the following entry in the circular buffer:

nn

WD 00

WD nn
WD nn+l
WD nn+2

Hardware error indicator (+2)

Contents of ICSR register
Physical unit number
Generic code indicator
set to 177770(8)

The offset to module data word.

This entry is always placed in the buffer regardless of overflow
status.

The error flags are obtained from the controller ICSR word at the time
the error was detected (see Table 18-7).

18.3.6.1 Connect to Digital Interrupts - This
single task to receive digital interrupt data.

function allows a

QIO DPB format:

stadd

sizb

tevf

QIO IO.CCI, ••• ,<stadd,sizb,tevf>

The starting address of buffer to be connected (must be word
aligned) •

The length of buffer in bytes (must be even).
length is 14 bytes.

The trigger event flag number.

18-19

Minimum buffer

INDUSTRIAL CONTROL SUBSYSTEMS

Return Status:

rs.sue - Function successfully completed. Second I/O status word
contains the number of words passed per interrupt in the
low byte, and the initial FORTRAN index in the high
byte.

IE.BYT - Buffer address is byte aligned or length is an odd
number of bytes.

IE.CON - Interrupt already connected to another task.

IE.IEF - Invalid event flag number.

IE.PRI - Task checkpointable and not fixed in memory.

IE.SPC - Interrupt circular buffer was
address space of the task.
was too small for a single
minimum) •

Entry Format:

WD 00 - Existence Indicator
WD 01 - Change of state indicator
WD 02 - Module data
WD 03 - Relative module number

not wholly within the
Alternatively, the buffer

data entry (seven words

WD 04 - Generic Code 1, 2, or 3, indicating a digital interrupt

The contents of the existence indicator
previously.

have been described

The change-of-state indicator records those bits for which a change of
state in the direction of interest has been detected. The direction
of the change may be from 0 to l (point closed (PCL)) or 1 to 0 (point
open (POP)) depending upon the PCL or POP jumper connections on the
digital interrupt module. The driver will assume that at least one of
these signals is always asserted.

The relative module number indicates the module on which the change of
state was recognized.

The module data word records data received at the time the interrupt
was serviced.

The generic code identifies the type of module that caused the
interrupt. A digital interrupting module may have the value 1, 2, or
3 as selected by user-installed jumpers on the module.

18.3.~.2 Disconnect from Digital Interrupts - This function allows a
task to terminate the processing of digital interrupt data.

QIO DPB format:

QIO$C IO.DCI, •••

18-20

INDUSTRIAL CONTROL SUBSYSTEMS

Return Status:

rs.sue - Function successfully completed. Second I/O status word
is 0.

IE.CON - Task was not connected. Second I/O status word is O.

18.3.5.3 Connect to Counter Module Interrupts - This function allows
a single task to receive counter interrupt data.

QIO DPB format:

stadd

sizb

tevf

arv

QIOSC IO.CTI, ••• ,<stadd,sizb,tevf,arv>

The starting address of circular buffer (must be word aligned).

The length of buff er in bytes (must be even) •
length is 12 bytes.

The trigger event flag number.

Minimum buffer

The starting address of table of initial counter values (must be
word aligned).

Word 03 defines an array of initial counter values. One entry is
required for each counter installed in a physical unit. Entries are
paired with modules in logically ascending sequence. The counter is
set to the initial value upon receipt of the connect function and
whenever an overflow interrupt occurs (that is, when the count reaches
0) •

Return Status:

rs.sue - Function successfully completed. The second I/O status
word contains the number of words passed per interrupt
in the low byte, and the initial FORTRAN index in the
high byte.

IE.BYT - Buffer address is byte aligned or length is an odd
number of bytes.

IE.CON - Interrupt already connected to another task.

18-21

INDUSTRIAL CONTROL SUBSYSTEMS

IE.IEF - Invalid event flag number.

IE.PR! - Task checkpointable and not fixed in memory.

IE.SPC - Interrupt circular buffer or table of initial values was
not wholly within the address space of the task.
Alternatively, the buffer was too small for a single
data entry (six words minimum).

Entry Format:

WO 00 - Existence indicator

WO 01 - Module data

WO 02 - Relative module number

WO 03 - Generic code (4, 5, or 6)

18.3.6.4 Set Counter Initial Value - This function allows a counter
initial value to be established. A task need not be connected to
counter interrupts to perform this function.

QIO DPB format:

QIO$C IO.ITI, ••• ,<mn,ic>

mn

The relative module number.

ic

The new initial count.

Return Status:

rs.sue - New value submitted for output to the controller. The
second word of I/O status is set to O.

IE.MOD - Nonexistent module number specified.

Upon receipt of the request, the new initial value is immediately
queued for output to the controller. The counter is reinitialized
with this value on overflow if a task is connected to counter
interrupts.

18.3.6.5 Disconnect from Counter Interrupts - This function allows a
task to terminate counter interrupt processing.

QIO DPB format~

18-22

INDUSTRIAL CONTROL SUBSYSTEMS

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is set to O.

IE.CON - Task was not connected to timer interrupts.

After disconnect is complete, counters are not reset to the initial
value at the time of the interrupt.

18.3.6.6 Connect to Terminal Interrupts - This function allows a task
to receive terminal inputs from the selected ICRll controller.

QIO DPB format:

stadd

sizb

tevf

QIO$C IO.CTY, ••• ,<stadd,sizb,tevf>

The address of the circular buffer (must be word aligned).

The length of buffer (must be even) • The minimum buffer length
is 12 bytes.

The trigger event flag number.

Return Status:

rs.sue - Function successfully completed. The second I/O status
word contains the number of words passed per interrupt
in the low byte, and the initial FORTRAN index in the
high byte.

IE.BYT - Buffer is byte aligned or length is an odd number of
bytes

IE.CON - Interrupt already connected to another task.

IE.IEF - Invalid event flag number.

IE.MOD - Nonexistent device. Controller is ICSll.

IE.SPC - Interrupt circular buffer was not wholly within the
address space of the task. Alternatively, the buffer
was too small for a single entry (six words minimum).

Entry Format:

WD 00 Existence indicator

WD 01 - High byte = O, low byte = terminal input character

WD 02 Relative module number (normally 0)

WD 03 - Generic code indicator (normally 0)

18-23

INDUSTRIAL CONTROL SUBSYSTEMS

Note that words 2 and 3 are nonzero only when the entry was made as
the result of a nonrecoverable controller error.

All remote terminal data is conveyed to the requesting task as input,
but with the parity bit removed.

NOTE

Remote terminal input is not echoed by
the driver.

18.3.6.7 Disconnect from Terminal Input - This function allows a task
to discontinue the processing of terminal input.

QIO DPB format:

QIO$C IO.DTY, •••

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is set to O.

IE.CON - Task was not connected to remote terminal interrupts.

18.3.7 Activating a Task by Unsolicited Interrupts

The functions described in the following paragraphs provide the
capability of:

1. Activating a task in response to unsolicited interrupts

2. Interrogating the driver to determine the
activation

3. Removing a task from the activation list

reason for

The QIO DPB parameters specify the task name, an optional trigger
event flag to be set if the task is active, and device-dependent
parameters that identify the interrupt source. A task is linked to
interrupts (that is, made eligible for activation) provided that:

1. The resource exists.

2. The task is installed.

3. No other task is linked to the resource.

If another task is linked to the resource, the driver will reject the
request with a status of resource-in-use (IE.RSU). A resource is
defined as a single interrupt point, remote terminal (Control-C input
only), or counter module.

18-24

INDUSTRIAL CONTROL SUBSYSTEMS

On the occurrence of the appropriate interrupt, the task is made
active if dormant; otherwise, a trigger event flag, if specified, is
set. The task may interrogate the driver to determine the conditions
that caused activation, and to signify interrupt recognition. The
function of the event flag is to allow such a task to recognize an
event that has occurred while the task was active. Recognition is
ensured prior to the completion of task execution by issuing the Exit
If system directive followed by the Clear Event Flag directive.

The linkage between a task and a specific interrupt is removed by
issuing the appropriate unlink request with the QIO directive.

Only one task may be associated with each interrupt source (that is,
one task per digital interrupt point, terminal input, or counter
modulee

NOTE

The MCR command REMOVE automatically
unlinks a task from all interrupts.

18.3.7.1 Link a Task to Digital Interrupts - This function allows a
task to be activated on the occurrence of digital interrupts.

QIO DPB format:

tname

tevf

pn

csm

QIO$C IO.LDI, ••• ,<tname, (,tevf] ,pn,csm>

A 1- to 6-character alphanumeric task name in 2-word, Radix-50
format.

The trigger event flag (0 none) •

The point number (must be aligned on a module boundary).

The change-of-state mask.

The change-of-state mask indicates those bits for which a change of
state in the direction specified by the PCL and POP jumpers causes the
task to be activated. Only one task may be linked to a given
interrupt point. A 0 change-of-state mask is not permitted.

18-25

INDUSTRIAL CONTROL SUBSYSTEMS

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is set to O.

IE.BAD - Change-of-state mask set to O.

IE.IEF - Invalid event flag number.

IE.MOD - Nonexistent module or point not aligned on a module
boundary.

IE.NOD - Insufficient dynamic memory to
control block.

IE.NST - Task "tname" is not installed.

allocate secondary

IE.RSU - One or more of the specified points is in use by other
tasks.

18.3.7.2
task to
module.

Link a Task to Counter Interrupts - This function allows a
be activated by means of an interrupt from a single counter

QIO DPB format:

tname

tevf

en

ic

QIO$C IO.LTI, ••. ,<tname,[,tevf] ,cn[,ic]>

A 1- to 6-character alphanumeric task name in 2-word Radix-50
format.

The trigger event flag {0 none) •

The relative module number.

The counter value {optional).

The counter value if nonzero, is used to reinitialize the module in a
manner similar to that described for the Set Counter function in
Section 18.3.6.4. Initialization may be bypassed by setting this
parameter to 0.

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is set to O.

IE.IEF - Invalid event flag number.

18-26

INDUSTRIAL CONTROL SUBSYSTEMS

IE.MOD - Nonexistent module specified.

IE.NOD - Insufficient dynamic memory to allocate a secondary
control block.

IE.RSU - Counter is linked to another task.

18.3.7.3 Link a Task to Terminal Interrupts - This function allows a
task to be activated by means of an interrupt from a remote terminal.
The task will be activated only in response to the Control-C character
(octal 003).

QIO DPB format:

tname

tevf

QIO$C IO.LTY, ••• ,<tname,[,tevf]>

A 1- to 6-character alphanumeric task name in 2-word, Radix-50
format.

The trigger event flag (0 none).

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is O.

IE.IEF - Invalid event flag number.

IE.MOD - Nonexistent module (unit is ICSll controller).

IE.NOD - insufficient dynamic storage to allocate
control block.

IE.NST - Task "tname" is not installed.

IE.RSU - Remote terminal is linked to another task.

secondary

18.3.7.4 Link a Task to Error Interrupts - This function allows a
single task to be activated whenever a remote unit power-fail or
nonrecoverable serial line error is detected on any or all remote
units in a system. Only one task within a system may be linked to
error interrupts. Once linked, the selected task may receive error
reports from any ICR controller.

QIO DPB format:

tname

QIO$C IO.LKE, ••• ,<tname,[,tevf]>

A 1- to 6-character alphanumeric task name in 2-word Radix-50
format.

18-27

INDUSTRIAL CONTROL SUBSYSTEMS

tevf

The trigger event flag (0 none) •

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is 0.

IE.IEF - Invalid event flag number.

IE.IFC - No ICRll subsystems are installed.

IE.NOD - Insufficient dynamic storage to allocate
control block.

IE.NST - Task "tname" is not installed.

IE.RSU - Another task is linked to error interrupts.

18.3.7.5 Read Activating Data - This function allows a
determine the conditions that caused it to be activated.

QIO DPB format:

QIO$C IO.RAD, ••• ,<stadd>

stadd

secondary

task to

The address of 6-word buffer to receive activation data (must be
wo rd a 1 i g n e d) •

The buffer receives data in the following format:

WD 00 - Activation indicator

WD 01 - Physical unit number

WD 02 - Generic code

WD 03 - Relative module number

WD 04 - Hardware dependent data

WD 05 - Hardware dependent data

The activation indicator is similar in function to the existence
indicator used when reading circular buffer entries. The indicator is
set to +l on the occurrence of an interrupt to which the requesting
task is linked, and the appropriate data is stored. The indicator is
cleared when the data is solicited by the task. If an interrupt
linked to the task occurs and the parameter is nonzero then the
previously stored data is not modified and the driver sets this
element with the two's complement of the number of linked interrupts
not recorded.

The physical unit number specifies the controller that received the
interrupt.

i8-28

INDUSTRIAL CONTROL SUBSYSTEMS

The generic code is identical to that specified for circular buffer
entries, namely:

0 - Terminal {Control-C)

1,2,3 - Digital interrupt

4,5,6 - Counter interrupt

177770 - Fatal controller error

Hardware-dependent data is associated with generic code and will
consist of the following:

Terminal:

WD 04 - Terminal buffer contents (low byte)

WD 05 - Undefined

Digital Interrupts:

WD 04 - Module data

WD 05 - Change-of-state indicator

Counter:

WD 04 - Module data

WD 05 - Undefined

Fatal Controller Error:

WD04

WD05

Contents of ICSR register (see Table 18-7)

Contents of ICAR register (see Table 18-8)

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is O.

IE.BYT - Buffer address is aligned on an odd byte boundary.

IE.NLK - Task "tname" was not linked to interrupts.

IE.SPC - Buffer not totally within the task's address space.

18.3.8 Unlink a Task from Interrupts

The functions described in the following paragraphs provide the
capability of:

1. Unlinking a task from all interrupts on a controller

2. Selectively unlinking a task from interrupts by module type

18-29

INDUSTRIAL CONTROL SUBSYSTEMS

18.3.8.1 Unlink a Task from All Interrupts - This function unlinks a
task from all interrupts on a given controller and from error
interrupts.

QIO DPB format:

tname

QIO$C IO.NLK, ••• ,<tname>

A 1- to 6-character alphanumeric task name in 2-word Radix-50
format.

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is O.

IE.NLK - Task "tname" was not linked to interrupts.

18.3.8.2 Unlink a Task from all Digital Interrupts - This function
provides the capability of unlinking a task from all digital interrupt
points on a controller.

QIO DPB format:

tname

QIO$C IO.UDI, ••• ,<tname>

a 1- to 6-character alphanumeric task name in 2-word Radix-50
format.

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is O.

IE.NLK - Task "tname" was not linked to the specified class of
interrupt.

IE.NST - Task not installed.

IE.MOD - Nonexistent module type specified.

18.3.8.3 Unlink a Task from Counter Interrupts - This function
provides the capability of unlinking a task from all counter module
interrupts.

QIO DPB format:

tname

QIO$C IO.UTI, ••• ,<tname>

A 1- to 6-character alphanumeric task name in 2-word Radix-50
format.

18-30

INDUSTRIAL CONTROL SUBSYSTEMS

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is O.

IE.NLK - Task 0 tname" was not linked to the specified interrupts.

IE.NST - Task not installed.

IE.MOD - Nonexistent module type specified.

18.3.8.4 Unlink a Task from Terminal Interrupts - This function
provides the capability of unlinking a task from terminal interrupts.

QIO DPB format:

tname

QIO$e IO.UTY, ••• ,<tname>

A 1- to 6-character alphanumeric task name in 2-word Radix-50
format.

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is o.

IE.NLK - Task "tname" was not linked to the specified interrupts.

IE.NST - Task not installed.

IE.MOD - Nonexistent module specified (that is, device is an
res11 controller) •

18.3.8.5 Unlink a Task from Error Interrupts - This function provides
the capability of unlinking a task from all error interrupts.

QIO DPB format:

tname

QIO$e IO.UER, ••• ,<tname>

A 1- to 6-character alphanumeric task name in 2-word Radix-50
format.

Return Status:

rs.sue - Function successfully completed. The second word of I/O
status is O.

IE.IFe - No reRll controllers exist in the system.

IE.NLK - Task 0 tname 0 was not linked to error interrupts.

IE.NST - Task not installed.

18-31

INDUSTRIAL CONTROL SUBSYSTEMS

18.3.9 Terminal Output

This function allows a task to perform output to the terminal device.
Characters are output exactly as they appear in the buffer. The
carriage control parameter is not recognized. It should be noted that
only one interrupt module request per controller (terminal or A/D) may
be in progress at a given time. Thus, the driver will not initiate an
A/D operation on a given controller, until any terminal output in
progress for that controller has been completed.

QIO DPB format:

QIO$C IO.WLB, ••• ,<staddb,sizb>

staddb

The buffer address {may be odd).

sizb

The byte count (may be odd) •

Return Status:

rs.sue - Function successfully completed. Second word of I/O
status contains the number of bytes output.

IE.MOD - Nonexistent hardware function. Request was issued for
an ICSll controller.

18.3.10 Maintenance Functions

The functions described below allow a privileged task to enable and
disable error reporting while troubleshooting or maintenance on a
remote unit is in progress.

18.3.10.1 Disable Hardware Error Reporting - This function allows a
privileged task to disable error reporting and error interrupts, and
restrict access to the controller while remote unit troubleshooting or
module calibration is in progress (see Section 18.5.1). Upon receipt
and validation of the request, error interrupts are disabled and
subsequent controller time-outs are ignored. The occurrence of device
time-out while A/D conversion or remote terminal input is in progress
results in termination of the request with the error code IE.ABO.
When error reporting is disabled in this manner, access to the
controller for input or output to I/O modules is restricted to
privileged tasks. All other requests not requiring the transmission
of data to or from the device are permitted for all tasks. Such
requests are as follows:

1. Disconnect from digital, counter,
interrupts

2. Unlink from interrupts

3. Read activating data

18-32

or remote terminal

INDUSTRIAL CONTROL SUBSYSTEMS

4. Link to digital, remote terminal, or error interrupts

5. Connect a buffer to digital or remote terminal interrupts

All other requests not issued by a privileged task are rejected with
the error code IE.DNR.

QIO DPB format:

QIO$C IO.FLN, •••

Return Status:

rs.sue - Function successfully completed

IE.FLN - Unit already off line

IE.PR! - Task not privileged

18.3.10.2 Enable Hardware Error Reporting - This function allows a
privileged task to enable error reporting and device error interrupts.
Upon receipt and validation of the function, all device error
interrupts are enabled and the unit is marked on line. These actions
are performed regardless of the current state of the unit. QIO DPB
format:

QIO$C IO.ONL, •••

Return Status:

rs.sue - Function successfully completed

IE.PR! - Task not privileged

18.3.11 Special Functions

18.3.11.1 I/O Rundown - An I/O rundown request from the Executive
will automatically cause the task to be disconnected from all
interrupts. The rundown operation is not finished until any A/D input
in progress for the task has been completed.

18.3.11.2 Kill I/O - The kill I/O function allows a task to initiate
I/O rundown processing for itself on any device. Request processing
is identical to that described for I/O rundown.

QIO DPB format:

QIO$C IO.KIL, •••

Return Status:

rs.sue - Function successfully completed

18-33

INDUSTRIAL CONTROL SUBSYSTEMS

18.4 FORTRAN INTERFACE

Table 18-6 lists the FORTRAN interface subroutines supported for the
ICS/ICR subsystem. (D) indicates a direct access call. The six
subroutines supported by the DSS/DRS driver are indicated by a
footnote.

Unless specifically noted, all subroutines
necessarily position-independent) and may
resident library.

are reentrant (but not
be placed in an absolute

Subroutine

AIRD/AIRDW

AISQ/AISQW

AO/AOW

ASICLN/
ASUDLN

ASISLNl

CTDI

CTTI

CTTY

DFDI

DFTI

DFTY

DI/Diwl

DOL/DOLWl

DOM/DOMW

OF LIN

ON LIN

RC I PT

Table 18-6
FORTRAN Interface

Function

Input analog data from multiple channels in random
sequence

Read a series of sequential analog input channels
at random gain

Perform analog output on several channels

Assign a LUN to an ICS/ICR controller

Assign a LUN to a DSS/DRS controller

Connect a circular buff er to receive digital
interrupt data

Connect a circular buffer to receive counter
interrupt data

Connect a circular buffer to receive ICRll remote
terminal data

Disconnect a buffer from digital interrupts

Disconnect a buffer from counter interrupts

Disconnect a buffer from remote terminal interrupts

Read several 16-point digital sense fields (D)

Latch or unlatch several 16-point bistable output
fields

Pulse multiple 16-point momentary digital output
fields

Link a task to unsolicited interrupts

Suppress error reporting. Place unit in not ready
status

Enable error reporting. Return unit to ready
status

Read a single digital interrupt point (D)

(continued on next page)

18-34

Subroutine

RDDI

RDTI

RDCS

INDUSTRIAL CONTROL SUBSYSTEMS

Table 18-6 (Cont.)
FORTRAN Interface

Function

Read interrupt activation data

Read the digital interrupt circular buffer

Read the counter interrupt circular buffer

buffer; return Read digital interrupt circular
data on only those points for
state has been recognized

which a change of

RDWD Read digital interrupt circular buffer; return a
full data word

RSTI Read a single counter module (D)

RTO/RTOW Perform output to a remote ICRll terminal

UNLNKl Unlink a task from unsolicited interrupts

1. These subroutines are supported by the DSS/DRS driver.

18.4.1 Synchronous and Asynchronous Process Control I/O

The Instrument Society of America (ISA) standard provides for
synchronous and asynchronous I/O. Synchronous I/O is indicated by
appending a W to the name of the subroutine (for example, AO/AOW).
Except for analog input and terminal output, all QIOs issued by the
process control subroutines are serviced immediately by the driver and
are complete upon return to the issuing task. In such cases, there is
no functional difference between the synchronous and asynchronous
forms; however, both forms of the name are recognized. In the case
of A/D input and terminal output, the subroutines are functionally
distinct. If the asynchronous form is used, execution continues and
the calling program must periodically test the status word for
completion.

18.4.2 Return Status Reporting

The I/O status parameter is a 2-word integer array. The first element
of the array receives the status of the FORTRAN call in accordance
with ISA convention.

This array serves two purposes:

1. It is the 2-word I/O status block to which the driver returns
an I/O status code on completion of an I/O request.

2. The first word of the status block receives a status code
from the FORTRAN interface subroutine in ISA-compatible
format, with the exception of the I/O pending condition,
which is indicated by a status of O. The ISA standard code
for this condition is +2.

18-35

INDUSTRIAL CONTROL SUBSYSTEMS

For asynchronous analog input and terminal output, status is set by
means of an asynchronous trap; therefore, the trap mechanism must be
enabled while these functions are in progress.

For compatibility, the 2-word status block is also required for status
returned by the direct access calls. Errors of this type that may be
returned are:

Word 1 3 Number of points requested is O.

Word 1 +321 Invalid ICS/ICR module.

The status code must be interpreted in the context of the function
requested; however, the following general conditions will apply:

Contents of Status Word 1

0

+l

+3

3<Word 1<300.

Word 1 > 300

Meaning

Operation pending, I/O in progress

Successful completion

Error in a calling argument has been
netected by the interface subroutine

QIO directive rejected. Actual error
code = -(WORD 1 - 3)

Request rejected by driver.
error code = -(WORD 1 - 300)

Actual

Table 18-7 lists all possible status values: the FORTRAN value,
assembly language mnemonic, actual value, and related definition.

FORTRAN Assembly
Interface Language

Value Value

+0 +0

+l +l

+3 none

+4 -1

+8 -5

-6 -6

I + I - 6 99 9

+100 -97

Table 18-7
Return Status Summary

Assembly
Language Definition
Mnemonic

IS. PND Operation pending

rs.sue Successful completion

none Error detected in FORTRAN
calling sequence

IE. UPN Insufficient dynamic storage
to allocate I/O packet

IE. ULN Unassigned LUN

IE.LNL LUN usage interlocked

I IE IL u n i L I val d U N

IE. IEF Invalid event flag number

(continued on next page)

18-3fi

INDUSTRIAL CONTROL SUBSYSTEMS

Table 18-7 (Cont.)
Return Status Summary

FORTRAN
Interface

Value

+101

+102

+301

+302

+303

+306

+315

+316

+317

+319

+321

+322

+323

+379

+380

+381

+397

Assembly
Language
Value

-98

-99

-1

-2

-3

-6

-15

-16

-17

-19

-21

-22

-23

-79

-80

-81

-97

18.4.3 Optional Arguments

Assembly
Language
Mnemonic

IE.ADP

IE. SDP

IE.BAD

IE.IFC

IE.DNR

IE. SPC

IE.ABO

IE. PRI

IE.RSV

IE.BYT

IE.MOD

IE.CON

IE.NOD

IE.NLK

IE.FLN

IE.NST

IE. IEF

Definition

Part of DPB out of user's
addressing space

Invalid DIC or DPB size

Bad parameters

Invalid I/O function code

Device not ready

Illegal buffer

Request aborted

Privilege violation

Resource in use

Buffer address or length is
odd

Illegal module number

Another task already
connected to interrupts

Insufficient dynamic memory
to allocate secondary control
block

Task not linked to interrupts

ICRll already off line

Task is not installed

Invalid event flag number

The calling sequences discussed in subsequent sections frequently
contain optional arguments. These arguments are enclosed in square
brackets within the calling sequence description. A statement
containing such arguments may be written with these parameters deleted
by truncating the argument list if the optional parameters are at the
end of the calling sequence, or by replacing them with commas if they
are embedded elsewhere in the list. Consider the routine XYZ below
having two optional arguments:

CALL XYZ (ibuf [, ilen] [, i val])

If the argument ival is to be omitted, the calling sequence would be:

CALL XYZ(IBUF,ILEN)

18-37

INDUSTRIAL CONTROL SUBSYSTEMS

When an optional argument in the middle of the list is to be omitted,
it is replaced with a comma. Consider the routine XYZ, above. The
following statement is used to omit the parameter ilen:

CALL XYZ(IBUF,,IVAL)

NOTE

In some subroutines, lun -- the logical
unit number -- is indicated to be an
optional argument. It is optional only
if one of the Assign LUN subroutines has
been called (ASICLN, ASUDLN, ASISLN).
Otherwise, the lun argument is
mandatory.

18.4.4 Assigning Default Logical and Physical Units for Input and
Output - ASICLN/ASUDLN (ICS/ICR) and ASISLN (DSS/DRS)

The following subroutines must be called to assign and record a
default LUN and physical unit if either parameter is to be unspecified
in subsequent FORTRAN calls for which these parameters are optional.

Calling Sequence:

CALL ASICLN([lun] [,idsw] [,iunt])
CALL ASUDLN([lun] [,idsw] [,iunt])
CALL ASISLN(lun[,idsw] [,iunt])

Before a task can issue the call to ASUDLN, the ASN command must be
issued through MCR to assign logical device UDnn to the appropriate
physical ICS/ICR unit.

Argument Description:

lun An integer variable whose value is the number of the LUN
to be assigned to the physical unit specified by iunt or
unit O. If unspecified, no LUN is assigned. The lun
argument is mandatory for ASISLN (used for DRSll only) •

idsw An optional integer variable to receive the result of
the assign lun directive.

iunt An optional integer variable that specifies the unit
number to be assigned. Assumed to be 0 if omitted.

Return Status:

The following values are returned to idsw:

+l - Assignment or function successfully completed.

-5 - LUN usage is interlocked because LUN is assigned to a
device that is attached to another device, or a file is
currently open on the LUN.

-96 - Invalid LUN.

The call to ASUDLN assigns a LUN to logical device UD: and is
provided for compatibility with existing UDCll software. The call to
ASICLN assigns a LUN to device IC:. The call to ASISLN assigns a LUN
to device IS:.

18-38

INDUSTRIAL CONTROL SUBSYSTEMS

Upon successful issuance of the Assign LUN directive, the subroutine
executes a Get LUN Information directive to obtain the actual unit
numbers to be saved. It is therefore possible to alter the default
physical unit referenced in a direct access call, by means of the ASN
MCR function, provided that such logical assignments are done before
the task is made active.

Examples:

le Assign LUN 5 to ICR unit 3.

CALL ASICLN (5,IERR,3)
IF(IERR) 20,10,10

10 --------------

2. Assign LUN 1 to logical device UD:, unit 0

a. The following MCR command is issued to create logical
device UDO:, and assign all references to physical device
ICl:.

>ASN ICl: = UD:

b. The FORTRAN call

CALL ASUDLN (1)

assigns logical device UDO: to LUN 1. Because of the
previous ASN command, the Executive will assign this LUN
to physical device ICl: and return a value of 1 for the
unit number in response to the GET LUN Information
directive. This value will be stored and later
referenced whenever the physical unit number is
unspecified in any of the FORTRAN calls that reference
the I/O page directly.

3. Assign LUN 6 to logical device IS:, unit 2.

CALL ASISLN(6,,2)

18.4.5 Analog Input

The following routines provide the capability of performing A/D input:

AIRD/AIRDW - ISA Standard call to read multiple channels in
random order. This call requires one or more
control variables containing A/D channel and gain
in the format shown in Table 18-5 (Section 18.3.2).

AISQ/AISQW - ISA Standard call to read multiple channels in
sequential order.

18.4.5.1 AIRD/AIRDW: Analog Input - Specified Channel Sequence - The
ISA standard call provides the capability of reading multiple A/D
channels in a specified sequence.

18-39

INDUSTRIAL CONTROL SUBSYSTEMS

Calling Sequence:

CALL AIRD(inm,icont,idata[,isb] ,lun)

or

CALL AIRDW(inm,icont, ••• etc.)

Argument Descriptions:

inm Integer variable specifying the number of channels to
be read.

icont

id at

isb

lun

Example:

An integer array of size inm containing control data in
the format shown in Table 18-5 (Section 18.3.2).

An integer array of dimension inm to receive the
converted values. Each element in the array is paired
with a control element in icont that defines the
channel and gain.

An optional 2-word integer array to receive the results
of the call as follows:

+l

+3

+4

Conversion successfully completed. The
second word contains the number of channels
converted.

Number of channels requested was O.

Insufficient dynamic storage to allocate
I/O packet.

+8 LUN was not assigned.

+99 Invalid LUN.

+301

+303

+306

+319

At least one invalid
specified. The second
contains the number
successfully converted.

control word was
I/O status word

of channels

Device not ready. Interrupt response was
not received from an A/D channel within one
second after initiation. The second word
of I/O status contains the number of
channels successfully converted.

Control or data buffer not wholly within
the user's addressing space.

Control or data buffer is byte aligned.

An integer variable specifying the ICS/ICR logical unit
number. This parameter is required.

The following example illustrates how A/D throughput can be increased
when several IAD-IA A/D Converters are in a system. This is
accomplished by means of interleaved samples that initiate parallel
conversions on each module. Samples are to be obtained from 12
channels on 3 IAD-IA A/D converter modules at a gain of 1.

INDUSTRIAL CONTROL SUBSYSTEMS

c
C PROGRAM TO SAMPLE 12 A/D CHANNELS
C IN RANDOM SEQUENCE FOR MAXIMUM
C THRUPUT.
c
C CHANNELS TO BE SAMPLED:
c
c 0
C 1 -A/D MODULE 0
c 2
c 3
c 120
C 121 -A/D MODULE 1
c 122
c 123
c 240
C 241 -A/D MODULE 2
c 242
c 243
c
C INTERLEAVED SEQUENCE FOR MAXIMUM
C THRUPUT.
c
c 0
c 120
c 240
c 1
c 121
c 241
c 2
c 122
c 242
c 3
c 123
c 243
c
C THE FORTRAN CONVENTION FOR ARRAY
C STORAGE CAN BE USED TO REPRESENT
C THE ABOVE SEQUENCE IN AN N X I INTEGER
C CONTROL ARRAY. WHERE:
c
C N = NUMBER OF MODULES TO BE SAMPLED
C I = NUMBER OF SAMPLES PER/MODULE
c
C ALLOCATE STORAGE FOR CONTROL ARRAY
c

DIMENSION !CONT (3,4)
c
C INITIALIZE CONTROL ARRAY FOR IAD-IA MODULE 0
c

DATA ICONT(l,l) ,ICONT(l,2) ,ICONT(l,3) ,ICONT(l,4)/0,1,2,3/
c
C INITIALIZE CONTROL ARRAY FOR IAD-IA MODULE 1
c

DATA ICONT(2,l) ,ICONT(2,2) ,ICONT(2,3) ,ICONT(2,4)/120,121,122,123/
c
C INITIALIZE CONTROL ARRAY FOR IAD-IA MODULE 2
c

DATA ICONT(3,l) ,ICONT(3,2) ,ICONT(3,3) ,ICONT(3,4)/240,241,242,243/
c
C ALLOCATE STORAGE FOR DATA ARRAY
C IN SIMILAR FASHION TO FACILITATE
C CHANNEL REFERENCES

18-41

INDUSTRIAL CONTROL SUBSYSTEMS

c
DIMENSION !DATA {3,4)

c
C BEGIN EXECUTABLE STATEMENTS
c

c
C INITIATE A/D SYNCHRONOUS CONVERSION ON LUN 3
c

CALL AIRDW{l2,ICONT,IDATA,,3)

18.4.5.2 AISQ/AISQW: Analog Input - Sequential Channel Sequence - The
ISA standard call described below provides the capability of sampling
multiple A/D channels in sequential order. Channels are sampled in
increments of one, beginning with the channel specified in icont(l).

Calling Sequence:

CALL AISQ(inm,icont,idata [,isb] ,lun)

or

CALL AISQW(inm,icont ••• etc.)

Argument Descriptions:

inm Integer variable specifying the number of elements to
be read.

icont

idat

An integer array of size inm containing initial channel
in the first element only, and gain in the format shown
in Table 18-5 in the remaining elements.

An integer array of size inm to receive the converted
values. Each element is paired with the corresponding
control element in icont that defines the gain
parameter.

Channels are sampled sequentially starting with the
first channel specified in element 1 of icont.

isb An optional 2-word integer array to receive the results
of the call as follows:

+l Conversion successfully completed. The
second word contains the number of channels
converted.

+3 Number of channels requested was O.

+4 Insufficient dynamic storage to allocate
I/O packet.

+8 LUN was not assigned.

+99 Invalid LUN.

INDUSTRIAL CONTROL SUBSYSTEMS

+301 At least one invalid
specified. The second
contains the number
successfully converted.

control word was
I/O status word

of channels

+303 Device not ready. Interrupt response was
not received from an A/D channel within one
second after initiation. The second word
of I/O status contains the number of
channels successfully converted.

+306

+319

Control or data buffer is not wholly within
the user's addressing space.

Control or data buffer is byte aligned.

lun An integer variable containing the logical unit number.
This parameter is required.

Example:

The following example illustrates the procedure for sequential
sampling. Five channels are converted at gains of 1, 2, 20, 50, and
1000, starting at channel 3.

c
C ALLOCATE SPACE FOR STATUS ARRAY
c

DIMENSION ISB (2)
c
C ALLOCATE SPACE FOR CONTROL ARRAY
C AND ESTABLISH INITIAL VALUES
c

c

DIMENSION ICONT(5)
DATA ICONT(l),ICONT(2),ICONT(3)/0000003,0010000,0050000/
DATA ICONT(4) ,ICONT(5)/0100000,0150000/

C ALLOCATE SPACE FOR DATA ARRAY
c

DIMENSION IDAT (5)

c
C INITIATE SEQUENTIAL, ASYNCHRONOUS CONVERSION
C VIA LUN 1
c

CALL AISQ(5,ICONT,IDAT,ISB,l)
10 IF(ISB(l) .NE.O) GO TO 20

(continue processing)

c
C TEST CONVERSION STATUS
c

GO TO 10
20 (test for errors or process converted data)

END

18-43

INDUSTRIAL CONTROL SUBSYSTEMS

18.4.~ AO/AOW: Analog Output - Multichannel

This ISA standard routine is called to output voltage from multiple
D/A channels.

Calling Sequence:

CALL AO(inm,icnt,idat[,isb] [,lun])

or

CALL AOW{inm,icnt ••• and so forth)

Argument Descriptions:

inm

icnt

idat

isb

lun

Example:

Integer variable containing the number of channels to
be output.

Integer array containing the channel numbers to receive
output.

Integer array containing the output voltage setting as
a value between 0 and 1023 where:

0 = 0 volts de and

1023 = +9.99 volts (full scale).

Optional 2-word integer array to receive status.
of the following values is returned in isb(l).
second element is always 0.

+l Function successfully completed.

+3 No channels requested.

One
The

+4 Insufficient dynamic storage to allocate an
I/O packet.

+8 LUN was not assigned.

+99 Invalid LUN.

+303 Controller not ready.

+321 Nonexistent channel specified.

Integer variab~e containing the logical unit number.

Output the variable voltages .contained in IV(l) and IV(2) to D/A
channels 2 and 3, respectively.

1 Q_ .11 II
..LU-"':i:""i:

INDUSTRIAL CONTROL SUBSYSTEMS

c
C ALLOCATE DATA ARRAY
c

DIMENSION IV(2)
c
C ALLOCATE CONTROL ARRAY
c

DIMENSION ICNT(2)
c
C ALLOCATE STATUS ARRAY
c

DIMENSION ISB(2)
c
C INITIALIZE CONTROL ARRAY
c

DATA ICNT(l) ,ICNT(2)/2,3/

c
C PERFORM A/D OUTPUT VIA LUN 3
c

CALL AOW(2,ICNT,IV,ISB,3)
IF (ISB(l) .GE.3) go to error processor

18.4.7 DOL/DOLW: Digital Output - Bistable Multiple Fields

The following ISA standard call provides the capability of latching or
unlatching multiple 16-point bistable digital output fields.

Calling Sequence:

CALL DOL(inm,icnt,idat,imsk[,isb] [,lun])

or

CALL DOLW(inm,icnt •.• and so forth)

Argument Descriptions:

inm Integer variable specifying the number of fields to be
latched or unlatched.

icnt Integer array containing the initial point within each
field.

idat Integer array containing binary data that defines
points within the field to be latched. or unlatched.
The state of each bit is interpreted as follows:

1 Latch point

0 Unlatch point

18-45

INDUSTRIAL CONTROL SUBSYSTEMS

imsk Integer array containing binary data that defines
points within the field for which a change of state is
permitted.

A bit set to 1 defines a point that may assume the
state defined by the corresponding bit in idat. A 0
bit specifies a point for which no change of state is
permitted.

isb Optional 2-word integer array to receive the results of
the call. Status is returned in isb(l) as shown below.
isb(2) is always O.

+l

+3

+4

+8

+99

+303

Function successfully completed.

No points specified.

Insufficient dynamic storage to allocate an
I/O packet.

LUN was not assigned.

Invalid LUN.

Controller not ready.

+321 Nonexistent point number specified. One or
more points within the field do not exist.

lun Integer specifying the Logical Unit Number.

Example:

Reset points 0,1,20 and 21

DIMENSION ICNT(2) ,IDAT(2) ,IMSK(2)
c
C INITIALIZE THE CONTROL ARRAY
c

DATA ICNT(l) ,ICNT(2)/0,20/
c
C INITIALIZE MASK ARRAY TO EFFECT A
C CHANGE-OF-STATE ONLY ON THE SPECIFIED
C POINTS.
c

DATA IMSK{l) ,IMSK(2)/0000003,0000003/

c
C RESET THE SPECIFIED POINTS. ICR IS ASSIGNED
C TO LUN 3.
c

CALL DOLW(2,ICNT,IDAT,IMSK,,3)

18-46

INDUSTRIAL CONTROL SUBSYSTEMS

18.4.8 Digital Input

Both of the following subroutines perform their functions through
direct access to the ICS/ICR hardware registers. Therefore, the
physical unit number replaces LUN in the calling sequences described
below. Note that any need for conversion of BCD encoded digital input
into binary can be accomplished through the FORTRAN function

IBIN=KBCD2B (IBCD).

Binary data can be converted to BCD through the FORTRAN function.

IBCD=KB2BCD (IBIN).

The maximum input value for conversion is 9999.

NOTE

When the physical unit number is
explicitly included in the calling
sequence, it cannot be reassigned by the
MCR command ASN.

18.4.8.l DI/DIW: Digital Input - Digital Sense Multiple Fields - This
ISA standard subroutine provides the capability of reading multiple
16-point digital sense fields.

Calling Sequence:

CALL DI(inm,icnt,idat[,isb] [,iun])

or

CALL DIW(inm,icnt ••• and so forth)

Argument Descriptions:

inm Integer variable specifying the number of fields to be
read.

icnt Integer array containing the initial point number of
each field.

idat Integer array to receive the input data.

isb Optional, 2-word integer array to receive the results
of the call. The status is returned in isb (1) as
follows:

+l Function succesfully completed.

+3 No points requested.

+321 Nonexistent point requested.
points within the 16-bit
exist~

One or more
field does not

iun Optional integer variable specifying the physical unit
number.

18-47

INDUSTRIAL CONTROL SUBSYSTEMS

Example:

Read two contact sense fields starting at points 3 and 27 on physical
unit IC2:.

DIMENSION ICNT(2), IDAT(2) ,ISB(2)
DATA ICNT(l) ,ICNT(2)/3,27/

CALL DI (2,ICNT,IDAT,ISB,2)
IF (ISB(l) .GE.3) go to error procedure

18.4.8.2 RCIPT: Digital Input - Digital Interrupt Single-Point - The
following subroutine returns the state of a single digital interrupt
point as a logical value.

Calling Sequence:

CALL RCIPT (ipt,isb[,iun])

Argument Descriptions:

ipt Integer variable defining the point to be read.

isb a 2-word integer array to receive status and data as
follows. Status is returned to isb(l).

+l Function successfully completed. Data is
returned to isb(2) as a logical value,
where:

• 'T'RUE. (-1) Point closed •

• FALSE. (0) Point open •

+321 Nonexistent point specified.

iun Optional integer variable defining the physical unit
number.

Example:

Read the state of contact interrupt point 3 on unit O.

DIMENSION ISB (2)

CALL RCIPT (3,ISB,O)
IF (ISB(2) .EQ •• FALSE.) go to point open routine.

, Q_ 110
..LU---:tU

INDUSTRIAL CONTROL SUBSYSTEMS

18.4.9 DOM/DOMW: Digital Output Momentary - Multiple Fields

This ISA standard call allows multiple 16-bit fields to be pulsed.

Calling Sequence:

CALL DOM (inm,icnt,idat[,idx] [,isb] [,lun])

or

CALL DOMW (inm,icnt •.. and so forth)

Argument Descriptions:

inm Integer variable specifying the nu~ber of fields to be
pulsed.

icnt Integer array containing the initial point in each
field.

idat Integer array defining the points to be pulsed. A bit
is set corresponding to each point that is to be
triggered.

idx Optional dummy integer variable retained
compatibility with the standard form of the call.

for

isb Optional 2-word integer array to receive the results of
the call as follows in isb(l), isb(2) is set to 0.

+3

+4

+8

+99

+303

+321

Number of fields to be output is O.

Insufficient dynamic storage to allocate on
I/O packet.

LUN not assigned.

Invalid LUN.

Controller not ready

Nonexistent point specified. One or more
points within a field do not exist.

lun Integer variable defining the logical unit number.

Example:

Pulse momentary digital output fields defined by points 20, 37, and O
on LUN 1.

DIMENSION ICONT(3) ,IDAT(3)

DATA ICONT(l) ,ICONT(2) ,ICONT(3)/20,37,0/

CALL DOM(3,ICONT,IDAT,,l)

18-49

INDUSTRIAL CONTROL SUBSYSTEMS

18.4.10 RTO/RTOW: Remote Terminal Output

The following function provides the capability
character string to a remote ICRll terminal.
asynchronous forms are supported.

of transmitting a
Both synchronous and

Calling Sequence:

CALL RTO (ibc,idat[,isb] [,lun])

or

CALL RTOW (ibc,idat •••• etc.)

Argument Descriptions:

ibc

idat

Integer variable specifying the number of bytes to
output.

Bvte arrav (LOGICAL * 1) containing the character
string to be output.

isb Optional, 2-word integer array to receive the results
of the call in isb(l) as follows. isb(2) is set to the
number of bytes actually transferred to the device.

lun

Example:

0

+l

+3

+4

+8

+99

+303

+306

+321

Operation pending.

Function successfully completed.

No bytes to be transmitted.

Insufficient dynamic storage to allocate
I/O packet.

Unassigned LUN.

Invalid LUN.

Device not ready. Terminal failed to
respond within 1 second after character was
transmitted.

Part or all of buffer is out of the issuing
task's addressing space.

Nonexistent module. Device is ICSll.

Integer variable defining the logical unit number.

Output a character string to a remote terminal by the ICR unit
assigned to LUN 3.

CALL RTOW(32,'APPLY +5 VOLTS TO A/D CHANNEL 10' ,,3)

18=50

INDUSTRIAL CONTROL SUBSYSTEMS

18.4.11 Unsolicited Interrupt Data - Continual Monitoring

Subroutines are provided that permit a FORTRAN program to continually
monitor unsolicited interrupt data supplied to a user circular buffer,
as described in Section 18.3.6. Such routines allow the program to
connect a buffer for input, disconnect the buffer upon completion, and
read and return the buffer contents in a format suitable for FORTRAN
processing. The calls summarized below perform these functions for
interrupting digital input modules, counters, and remote terminal
inputs:

Interrupting Digital Inputs

CTDI

RDDI

RDCS

RDWD

DFDI

Counter Modules

CTTI

RDTI

DFTI

Connect a buffer to receive digital interrupts

Read the state of a single interrupting point

Read the state of a single interrupting point for which
a change of state has been detected

Read 16 bits of interrupt data from the circular buffer

D-i sconnect a buff er from digital interrupts

Connect a buffer to receive counter interrupts

Read the counter circular buffer

Disconnect a buffer from counter interrupts

Remote Terminal Input

CTTY Connect a buffer to receive remote terminal inputs

RDTY Read remote terminal data from the circular buffer

DFTY Disconnect a buffer from remote terminal interrupts

18.4.11.1 CTDI: Connect a Buffer for Receiving Digital Interrupt Data
- The following routine allows a task to provide a circular buffer

that will receive digital interrupt data, and to define an event flag
that will be set upon the occurrence of each interrupt.

Calling Sequence:

CALL CTDI (ibuf,isz,iev[,isb] [,lun])

Argument Descriptions:

ibuf

isz

An integer array making up the circular buffer that is
to receive interrupt data.

Integer variable specifying the length of the circular
buffer in words.

18-51

iev

isb

lun

INDUSTRIAL CONTROL SUBSYSTEMS

Integer variable specifying the event flag that is to
be set whenever the driver receives an interrupt from a
digital input module.

Optional, 2-word integer array to receive the results
of the call. The status values specified below are
returned to isb(l).

+l

+4

+8

+99

+30h

+316

+319

+322

+397

Function successfully completed. isb(2)
receives the number of words passed per
interrupt in the low byte.

Insufficient dynamic storage to allocate an
I/O packet.

Unassigned LUN.

Inv al id LUN.

Part of buffer is out of the user's address
space or buffer is too small to accommodate
a single entry.

Privilege violation - task is check-
pointable and not fixed in memory.

Buffer address or length is an odd number
of bytes.

Another task is already
interrupts.

Invalid event flag specified.

connected to

Integer variable specifying the logical unit number.

The space allocated for the circular buffer must be large enough to
accommodate at least one 5-word entry plus an additional 10 words of
storage that are required by the subroutines that read circular buffer
contents. Thus, the buffer allocation specified by the integer
variable isz may be computed as

isz = (10 + 5 * n)

n

The number of entries to be contained in the buffer.

isz

Expressed in words.

18.4.11.2 Reading Digital Interrupt Data - Each of the following
routines reads data that has been stored in the circular buffer and
performs the following common processing:

i. Detects, and optionally reports, the occurrence of an error
entry that has been placed in the buffer by the driver
because of a nonrecoverable device fault (for example, fatal
serial line error or remote power-fail).

18-52

INDUSTRIAL CONTROL SUBSYSTEMS

2. Clears the trigger event flag when no further entries remain
to be processed.

3. Clears and optionally reports any overrun conditions.

Only one of the following three routines can be invoked by a single
task:

1. RODI: Read Digital Interrupt Data from a Circular Buffer

The RDDI FORTRAN subroutine reads contact interrupt data from
a circular buffer that was specified in a CTDI call (see
18.4.11.1). It does no actual input or output, but rather
performs a point-by-point scan of an interrupt entry in the
buffer; returning the state of each point as a logical value.

On the initial call to RODI, the module number and data of
the next interrupt entry are read from the circular buffer
and stored for subsequent reference. The subroutine then
sets the current data bit number n to O, examines the state
of data bit n, and converts bit n to a point number by the
following formula:

ipt = module number * 16 + n

On each subsequent call, n is incremented by one and then
data-bit n is examined in the stored module data. When n
reaches lE, it is reset to 0 and an attempt is made to read
the next interrupt entry from the circular buffer. If a
valid entry is not found, ipt is set negative and ict (if
specified) is either assigned a value of 0 or an overrun
count that is maintained by the ICS/ICR driver. If ict is O,
no further entries remain. A nonzero value indicates that
the driver received more data than could be stored in the
buffer, and ict represents the number of entries that were
discarded.

The variable ict receives the control register contents that
are set by the driver -- as described in Section
18.3.6 -- whenever a nonrecoverable controller error occurs.

Calling Sequence:

CALL RDDI (ipt,ival[,ict])

Argument Descriptions:

ipt A variable to which the digital input point
number is returned. It may be set as follows:

1. ipt 0 if no valid entry is found

The specific value of ipt reflects the error
that was detected as follows:

-1 - no data (that is, no interrupt data
currently in buffer)

-2 - overrun

-3 - hardware error

2. ipt => 0 if the value indicated is a point
number; the state is returned to ival.

18-53

INDUSTRIAL CONTROL SUBSYSTEMS

ival A variable to which the state of the point is
returned; it may be set as follows:

ict

1. .FALSE. (0) if the point is open

2. .TRUE. (-1) if the point is closed

Optional integer variable to receive the overrun
count or the contents of the CSR register on the
occurrence of a fatal controller error.
Otherwise, set to O.

NOTE

reading the circular buffer A task
should
until a
reported.
example of
entries.

not issue a Wait-For directive
buffer-empty condition is
See Section 18.4.11.11 for an
how to read circular-buffer

2. RDCS: Read Digital Interrupt Points That Have Changed State

The RDCS FORTRAN subroutine returns data in the format of
subroutine RDDI as described above except that only
points that have changed state are processed, resulting in
significantly improved throughput and reduced processing
overhead for the calling task.

Processing specific to the routine is as follows:

On the initial call, the module number, module data, and
change of state information are read from the circular buffer
and stored for later reference. The subroutine then sets the
current data bit number n to 0 and begins scanning the
change-of-state word until a nonzero bit is found. The point
number and current state are then reported as previously
described. If no change of state is found or when no further
bits remain to be processed, the next entry is fetched as
described above.

The processing of error conditions is identical to subroutine
RDDI.

Calling Sequence:

CALL RDCS (ipt,ival[,ict])

Argument Descriptions:

ipt Integer variable to receive the digital input
point number. It may be set as follows:

1. ipt 0 if no valid entry is found (that is,
overrun, error, or no data in buffer). The
specific value of ipt reflects the error
that was detected as follows:

-1 - no data
-2 - overrun
-3 - hardware error

18-54

INDUSTRIAL CONTROL SUBSYSTEMS

2. ipt => 0 if the value indicated is a point
number, the state is returned to ival.

ival Integer variable to receive the state of the
point as a logical value where:

ict

1. .FALSE. (0) Point open

2. .TRUE. (-1) Point closed

Optional integer variable. A nonzero value
indicates that the variable has been set with an
overrun count returned by the driver, or with
the contents of the CSR register on the
occurrence of a fatal controller errore
Otherwise, set to O.

A task
should

NOTE

reading the circular buffer
not issue a Wait-For directive

buffer-empty condition is
See Section 18.4.11.11 for an
how to read circular-buffer

until a
reported.
example of
entries.

3. RDWD: Read a Full Word of Digital Interrupt Data

The following subroutine is called to return a full word of
digital interrupt data from the circular buffer, and
optionally change of state information. A new entry is read
for each call; hence, throughput is high when processing is
contingent upon several possible conditions within a module.

Calling Sequence:

CALL RDWD (imod, i val [, ict] [, icos])

Argument Descriptions:

imod

ival

Integer variable to receive the module number or
status as follows:

1. imod 0 if no data is present or an overrun
condition or error was detected

The specific value of ipt reflects the error
that was detected as follows:

-1 - no data
-2 - overrun
-3 - hardware error

2. imod => 0 Module number. Interrupt data is
in ival

Integer variable
interrupt data.

18-55

to receive the digital

ict

icos

INDUSTRIAL CONTROL SUBSYSTEMS

Optional integer variable. A nonzero value
indicates that the variable has been set with an
overrun count returned by the driver, or with
the contents of the CSR register on the
occurrence of a fatal error. Otherwise, set to
o.

Optional integer variable to receive
change-of-state information. Bits set to a 1
correspond to points for which a change of state
has been recorded.

NOTE

reading the circular buffer A task
should
until a
reported.
example of
entries.

not issue a Wait-For directive
buffer-empty condition is
See Section 18.4.11.11 for an
how to read circular-buffer

18.4.11.3 DFDI: Disconnect a Buffer from Digital Interrupts - The
following routine is called to disconnect a task's circular buffer
from digital interrupts.

Calling Sequence:

CALL DFDI ([isb] [,lun])

Argument Descriptions:

isb

lun

Optional 2-word integer array to receive the results of
the call as follows. isb(2) is always O.

+l

+4

+8

+99

+322

Function successfully completed

Insufficient dynamic storage to allocate
I/O packet.

Unassigned LUN.

Invalid LUN.

Task not connected to interrupts.

Integer variable containing logical unit number.

18.4.11.4 CTTI: Connect a Buffer for Receiving Counter Data - The
following subroutine may be called to connect a circular buffer that
is to receive counter data, and to define an event flag that is to be
set upon occurrence of each interrupt.

Calling Sequence:

CALL CTTI (ibuf,isz,iev,iv[,isb] [,lun])

, o_c: i:::
.J.. u - -' \..}

INDUSTRIAL CONTROL SUBSYSTEMS

Argument Descriptions:

ibuf

isz

An integer array making up the circular buffer that is
to receive interrupt data.

Integer variable specifying the length of the circular
buffer in words.

iev Integer variable defining an event flag that is to be
set whenever the driver receives an interrupt from a
counter module.

iv Integer array of initial counter values. One element
is required for each counter in the physical unit. The
value is used to initialize and reset the counter when

isb

lun

a value of O is reached. This parameter may be reset
for a specific module through a call to SCTI.

Optional 2-word integer array to receive the results of
the call. The status values specified below are
returned to isb(l).

+l

+4

+8

+99

+303

+306

+316

+319

+322

+397

Function successfully completed. isb(2)
receives the number of words passed per
interrupt in the low byte.

Insufficient dynamic storage to allocate an
I/O packet.

Unassigned LUN.

Invalid LUN.

Controller not ready.

Part of buffer is out of the user's address
space or buffer is too small to accommodate
a single entry.

Privilege violation -- task is
checkpointable and not fixed in memory.

Buffer address or length is an odd number
of bytes.

Another task is already
interrupts.

Invalid event flag specified.

connected to

Integer variable specifying the logical unit number.

The space allocated for the circular buffer must be large enough to
accommodate at least one 4-word entry plus an additional 8 words of
storage required by the subroutine that reads buffer contents (RDTI).
The buffer allocation specified by the variable isz may be computed as

isz = (8 + 4 * n)

n

The number of entries to be contained in the buffer.

18-57

INDUSTRIAL CONTROL SUBSYSTEMS

A task
should

NOTE

reading the circular buffer
not issue a Wait-For directive

buffer-empty condition is
See Section 18.4.11.11 for an
how to read circular-buffer

until a
reported.
example of
entries.

18.4.11.5 RDTI: Read Counter Data from the Circular Buffer - The
following call returns counter interrupt data from the circular
buffer. A new entry is read on each call.

Calling Sequence:

CALL RDTI (imod,ival(,ict])

Argument Descriptions:

imod

iv al

ict

Integer variable to receive module number and status as
follows:

1. imod O No data in buffer, data overrun or error
condition detected The specific value of ipt
reflects the error that was detected as follows:

-1 - no data
-2 - overrun
-3 - hardware error

2. imod => 0 Module number of counter. Interrupt data
is in ival.

Integer variable to receive the counter data
interrupt.

at

Optional integer variable to receive the overrun count,
or the !CSR contents returned by the driver on the
occurrence of a fatal hardware error. Otherwise, set
to 0.

NOTE

A task reading the circular buffer should not
issue a Wait-For directive until a buffer-empty
condition is reported. See Section 18.4.11.11
for an example of how to read circular-buffer
entries.

18.4.11.6 Miscellaneous Counter Routines

1. RSTI: Read a Counter Module

The following routine directly accesses a counter register to
return its current value.

18-58

INDUSTRIAL CONTROL SUBSYSTEMS

Calling Sequence:

CALL RSTI (imod, i sb [Ii un])

Argument Descriptions:

imod

isb

iun

An integer variable ~ontaining the number of the
counter to be read.

A 2-word integer array to receive status and
data as follows. Status is returned to isb(l).

+l

+321

Function successfully completed.
Data is returned to isb(2).

Nonexistent module specified.

Optional integer variable specifying the ICS/ICR
physical unit number.

2. SCTI: Reset a Counter Initial Value

The following routine may be called by any task to revise the
initial value that is used to activate a counter.

Calling Sequence:

CALL SCTI (imod,ival[,isb] [,lun])

Argument Descriptions:

imod Integer variable specifying the relative module
number of the counter to be reset.

ival Integer value specifying the new initial value.

isb

lun

Optional 2-word integer array to receive status
as follows. isb(2) is always 0.

+l Function successfully completed

+4 Insufficient dynamic storage to
allocate an I/O packet

+8 Unassigned LUN

+99 Invalid LUN

+303 Controller not ready

+321 Nonexistent module specified

Integer specifying the logical unit number.

18.4.11.7 DFTI: Disconnect a Buffer
following subroutine is called to
buffer from interrupts.

from Counter Interrupts - The
disconnect the task 1 s circular

Calling Sequence:

CALL DFTI ((isb] [, lun])

18-59

INDUSTRIAL CONTROL SUBSYSTEMS

Argument Descriptions:

isb

lun

Optional 2-word integer array to receive status as
follows. isb(2) is always O.

+l

+4

+8

+99

+322

Function successfully completed.

Insufficient dynamic storage to allocate an
I/O packet.

Unassigned LUN.

Invalid LUN.

Task was not connected to interrupts.

Integer variable specifying the logical unit number.

18.4.11.8 CTTY: Connect a Circular Buffer to Terminal Interrupts - The
following routine allows a task to provide a circular buffer to
receive remote terminal input data, and to define an event flag that
is set on the occurrence of each interrupt.

Calling Sequence:

CALL CTTY (ibuf ,isz,iev[,isb] [,lun])

Argument Descriptions:

The following arguments are identical in form and function to those
described for subroutine CTDI (see Section 18.4.11.1):

ibuf

isz

iev

An integer array making up the circular buffer that
receives interrupt data

Length of the circular buffer in words

Event flag to be set on each terminal interru?t

Buffer size is computed as

n

isz = (8 + 4 * n)

The number of entries that can be stored in the buffer.

isb Optional 2-word integer array to receive the results of
the call. The status values specified below are
returned to isb(l).

+l

+4

Function successfully completed. isb(2)
receives the number of words passed per
interrupt in the low byte.

Insufficient dynamic storage to allocate an
I/O packet.

+8 Unassigned LUN.

+99 Invalid LUN.

i8-60

lun

INDUSTRIAL CONTROL SUBSYSTEMS

+306

+316

+319

+321

+322

+397

Part of buffer is out of the user's address
space or buffer is too small to accommodate
a single entry.

Privilege violation -- task is
checkpointable and not fixed in memory.

Buffer address not on a word boundary or
length is an odd number of bytes.

Nonexistent module specified.
ICSll.

Unit

Another task is already
interrupt.

connected

Invalid event flag specified.

is

to

Logical unit number.

18.4.11.9 RDTY: Read
subroutine retrieves
buffer on each call.

a Character from the Terminal Buffer - This
a single character from the terminal circular

Calling Sequence:

CALL RDTY (ind,ichr[,ivr])

Argument Descriptions:

ind

ichr

ivr

An integer variable to receive status as follows:

1. =O character retrieved from buffer is in ichr

2. <O no data in buffer, overrun, or hardware error

The specific value of ind reflects the error that
was detected as follows:

-1 - no data
-2 - overrun
-3 - hardware error

Logical * 1 or integer variable to receive the terminal
data. If an integer is specified, only the low byte
will be set.

Optional integer variable to receive the overrun count,
or the ICSR contents on the occurrence of a fatal
hardware error. Otherwise, set to O.

NOTE

A task reading the circular buffer should not
issue a Wait-For directive until a buffer-empty
condition is reported. See Section 18.4.11.11
for an example of how to read circular-buffer
entries.

18-61

INDUSTRIAL CONTROL SUBSYSTEMS

18.4.11.10 DFTY: Disconnect a Circular Buffer from Terminal Input -
The following routine disconnects a task's circular buffer from
terminal inputs.

Calling Sequence:

CALL DFTY { [i sb] [I 1 un])

Argument Descriptions:

isb Optional, 2-word integer array to receive status in
isb{l) as follows. isb{2) is always set to O.

+l

+4

+8

+99

+322

Function successfully completed.

Insufficient dynamic storage to allocate an
I/O packet.

Unassigned LUN.

Invalid LUN.

Task was not connected to interrupts.

lun An integer specifying the logical unit number.

18.4.11.11 Programming Example - The following are excerpts from a
FORTRAN program that is to monitor a remote terminal for input and
echo the received characters when a carriage return is detected.

c
C SPECIFY BYTE FORMAT FOR TERMINAL DATA
c

LOGICAL*l TCHR
c
C ALLOCATE STORAGE FOR THE TERMINAL
C BUFFER
c

DIMENSION IBUF(32)
c
C ALLOCATE STORAGE FOR THE PACKED
C INPUT DATA SO THAT IT IS ALIGNED
C ON A WORD BOUNDARY
c

DIMENSION ICHR(40)
DIMENSION TCHR(80)
EQUIVALENCE {TCHR,ICHR)

c
C ALLOCATE STORAGE FOR A
C 2-WORD STATUS BLOCK
c

DIMENSION ISB{2)
c
C INITIALIZE ICRll LOGICAL UNIT{7) AND
C TRIGGER EVENT FLAG NUMBER{2)
c

DATA IEV, LUN/2, 7/

18-62

INDUSTRIAL CONTROL SUBSYSTEMS

c
C CONNECT THE TASK TO TERMINAL
C INPUTS. IF CONNECT FAILS--STOP 1
c

CALL CTTY (IBUF,32,IEV,ISB,LUN)
IF (ISB(l) .GE.3) STOP 1

c
C 10--POLL THE CIRCULAR BUFFER
C FOR DATA. ECHO THE LINE WHEN
C 80 CHARACTERS ARE RECEIVED
C OR A CARRIAGE RETURN IS
C DETECTED.
c

10 DO 70 I = 1,80
c
C 20--WAIT FOR TRIGGER EVENT FLAG
c
20 CALL WAITFR (IEV)
c
C 30--PACK THE CIRCULAR BUFFER DATA
C INTO THE BYTE ARRAY
c
30 CALL RDTY (ISB,TCHR(I), IVR)
c
C DISPATCH ON ERROR CONDITION
c

c

GO TO (20,50,40)-ISB
GO TO 60

C 40--REPORT HARDWARE FAULT
c
40 CALL ALARM (IVR)

GO TO 30
c
C 50--REPORT OVERRUN CONDITION
c
50 CALL LOST (IVR)

GO TO 30
c
C 60--CHECK FOR CARRIAGE RETURN,
C EXIT TO ECHO ROUTINE IF
C PRESENT
c
60 IF (TCHR(I) .EQ."15) GO TO 80

70 CONTINUE
c
C 80--FALL THROUGH TO ECHO A LINE
c

CALL RTOW (I,TCHR,,LUN)
c
C DISCONNECT TERMINAL BUFFER, EXIT
c

CALL DFTY (,LUN)
CALL EXIT
END

18-63

INDUSTRIAL CONTROL SUBSYSTEMS

The procedure for reading the buffer in the example above may be
summarized as follows:

1. Wait for the trigger event flag specified in the call to
connect the buffer.

2. Upon regaining control, call the appropriate routine to read
the buffer until one of the following terminal conditions is
detected:

a. All data has been read.

b. An overrun count is detected.

c. A fatal error is encountered.

3. On the occurrence of 2a or 2b, perform any appropriate
processing; then return to scan for additional data.

4. If a hardware error is detected, use the ICSR register
contents for further fault analysis and warning as
appropriate. In the event of such an error, the event flag
will not be set by the driver again unless normal service is
resumed.

5. A calling task should not execute the Wait-For directive
until a buffer-empty condition is detected. This is because
the user's buffer pointer is advanced after detecting and
clearing an overrun condition, and the trigger-event flag is
cleared only when a buffer-empty condition is detected.

18.4.12 Unsolicited Interrupt Processing - Task Activation

The following routines provide the capability of linking a task to an
interrupt, soliciting information from the driver concerning how the
task was activated, and unlinking a task from all interrupts.

18.4.12.1 LNK: Link a Task to Interrupts - This subroutine
any installed task to be activated on the occurrence
unsolicited interrupt.

Calling Sequence:

CALL LNK (tnam,iprm[,isb] [,lun])

18-64

allows
of any

INDUSTRIAL CONTROL SUBSYSTEMS

Argument Descriptions:

tnam

iprm

iprm(l)

iprm(2)

iprm(3)

iprm(4)
iprm(5)

isb

Real variable containing task name in RADIX-50
format.

A 5-word integer array containing the following
data:

Interrupt class. May be one of the following:

0 - Digital interrupts

l - Counters

2 - Remote terminal (CTRL/C only)

3 - Error interrupts

Reserved.

Optional event flag set if task to be activated is
not dormant when the interrupt occurs.

Hardware-dependent parameters as follows:

Interrupt Class Parameter Contents

Dioital iprm(4) Point number
iprm(5) Change-of-state mask

Counter iprm(4) Module number
iprm(5) Counter initial value

Remote Terminal iprm(4) not used
iprm(5) not used

Error iprm(4) not used
iprm(5) not used

Optional 2-word integer array to receive status in
isb(l) as follows. isb(2) is always set to O.

+l

+3

+4

Function successfully completed.

Unrecognized
specified.

interrupt

Insufficient dynamic
allocate I/O packet.

storage

+8 Unassigned LUN.

+99 Invalid LUN.

+301 Task tnam not installed.

18-65

class

to

INDUSTRIAL CONTROL SUBSYSTEMS

+303 Controller not ready.

+317 Resource in use. Other task already
linked to interrupt.

+323 Insufficient dynamic memory to
allocate secondary control block.

+380 Task tnam not installed.

+397 Invalid event flag number specified.

lun

Example:

Optional integer specifying the logical
number.

unit

Link task ALARM to report fatal hardware errors arising from a
malfunction on any ICRll physical unit.

DIMENSION
c

I PRM { 5)

c
c
c
c
c

INITIALIZE PARAMETER ARRAY WITH:
1. INTERRUPT CLASS
2. RESERVED ELEMENT CLEARED
3. GLOBAL EVENT FLAG

DATA IPRM(l), IPRM(2), IPRM{3)/3,0,64/

DATA ALARM/6RALARM /

CALL LNK (ALARM,IPRM,,7)

18.4.12.2 RDACT: Read Activation Data - The following call allows a
task to determine the interrupt conditions that caused it to become
active.

Calling Sequence:

CALL RDACT { i prm [, i sb] [, 1 un])

Argument Descriptions:

iprm

iprm(l)

iprm(2)

A 6-word integer array to receive activation data
in the following format.

Activation indicator (see Section 18.3.7.5).

Physical unit number of ICR.

18-n6

The

iprm(3)

iprm(4)

iprm(5)
iprm(6)

following data

INDUSTRIAL CONTROL SUBSYSTEMS

Generic code. Set to one of the following values:

0 - Remote terminal

1,2,3 - Digital interrupt

4,5,6 - Counter interrupt

177770 - Fatal hardware error

Relative module number.

Hardware-dependent data.

is returned based upon the type of interrupt
module:

Generic
Module Type Code Parameter Contents

Remote Terminal 0 iprm(5) terminal input character
iprm{6) undefined

Digital Interrupt 1,2,3 iprm(5) module data
iprm{F>) change-of-state data

Counter 4,5,i:i iprm{5) value of the counter at
interrupt

iprm(n) undefined

Error 177770 iprm(5) contents of ICSR
iprm(6) contents of ICAR.

isb Optional 2-word integer array to receive status in
isb(l) as follows. isb{2) is set to O.

+l Function successfully completed.

+4 Insufficient dynamic storage to allocate
I/O packet.

+8 Unassigned LUN.

+99 Invalid LUN.

+306

+319

+379

iprm array not fully within the task's
addressing space.

Address of iprm is odd.

Task not linked to ICS/ICR interrupts.

lun Integer variable specifying the logical unit number.

18-67

INDUSTRIAL CONTROL SUBSYSTEMS

Example:

The following is an excerpt from a program that reads activating data
into array IACT and conditionally exits if the event flag (IEFN)
specified in a previous link request, issued by another task, is not
set.

c
C ALLOCATE SPACE FOR DATA ARRAY
c

DIMENSION IACT(6)

10 CALL RDACT (IACT,,7)

c
C CLOSE ALL FILES
c

c

CALL CLOSE(l)
CALL CLOSE(2)

C EXIT IF TRIGGER EVENT FLAG IS NOT SET
C ELSE CLEAR EVENT FLAG AND RESTART.
c

CALL EXITIF (IEFN)
c
C FLAG WAS SET. CLEAR IT AND
C CONTINUE.
c

CALL CLREF (IEFN)
GO TO 10
STOP
END

The foregoing example illustrates the following considerations when a
task is made active by ICS/ICR interrupts:

1. To avoid race conditions, the Exit-If directive should be
used to test the state of the event flag and conditionally
exit. Issuing a Test Event Flag directive followed by an
Exit would cause a flag set condition occurring after the
test to go unrecognized.

2. Use of the Exit-If directive bypasses the closure of all
files that is normally done automatically by the FORTRAN
object time system when the program executes a STOP or CALL
EXIT statement. Thus, to exit cleanly, the program must
explicitly close all files before invoking the directive.

18.4.12.3 UNLNK: Remove Interrupt Linkage to a Task - The following
call removes all linkage between a task and ICS/ICR interrupts.

18-68

INDUSTRIAL CONTROL SUBSYSTEMS

Calling Sequence:

CALL UNLNK (tnam, i prm [, i sb J [, 1 un])

Argument Descriptions:

tnam Real variable containing task name in Radix-50 format.

iprm Integer variable containing the interrupt class.
be one of the following:

0 - Digital interrupts

l - Counters

2 - Remote terminal

3 - Error interrupts

4 - All interrupts

May

isb Optional, 2-word integer array to receive the results
of the call in isb(l) as follows. isb(2) is set to O.

lun

Example:

+l

+4

+8

+99

+379

+380

Function successfully completed.

Insufficient dynamic storage to allocate an
I/O packet.

Unassigned LUN.

Invalid LUN.

Task not linked to ICS/ICR interrupts.

Task not installed.

Integer variable specifying the logical unit number.

Remove the linkage between task ALARM and all ICS/ICR interrupts.

DATA ALARM/6RALARM /

CALL UNLNK (ALARM,,,7)

18.4.13 Maintenance Functions

The following functions cause the ICS/ICR driver to suppress or enable
hardware error reporting while on-line maintenance and troubleshooting
is in progress, as described in Section 18.3.9.

OF LIN Place selected unit off line.

ONLIN Return selected unit to on-line status.

These calls may be issued only by a privileged task.

18-69

INDUSTRIAL CONTROL SUBSYSTEMS

18.4.13.1 OFLIN: Place Selected Unit in Offline Status - The following
call is executed to set a controller off line:

CALL OFLIN ([isb] [,lun])

Argument Descriptions:

isb Optional 2-word integer array to receive the results of
the call in isb(l) as follows. isb(2) is always O.

+l Function successfully completed.

+4 Insufficient dynamic s~orage to allocate an
I/O packet.

+8 LUN not assigned.

+99 Invalid LUN.

+316 Issuing task not privileged.

+380 Device already off line.

lun Integer variable specifying the ICS/ICR logical unit
number.

18.4.13.2 ONLIN: Return a Device to On-line Status - The
call will return the selected unit to on-line status.

CALL ONLIN ([isb] [,lun])

Argument Descriptions:

isb Optional 2-word integer array to receive the

following

results of
the call in isb(l) as follows. isb(2) is always o.

+l Function successfully completed.

+4 Insufficient dynamic storage to allocate an
I/O packet.

+8 LUN not assigned.

+99 Invalid LUN.

+316 Issuing task not privileged.

lun Integer variable specifying the logical unit number.

18.5 ERROR DETECTION AND RECOVERY

Error Detection and recovery procedures encompass the following
contingencies.

i. Nonrecoverabie seriai iine errors

2. Power-fail at the remote station

18-70

INDUSTRIAL CONTROL SUBSYSTEMS

3. Power recovery at the processor

4. No response from an interrupting module

The first two conditions are dealt with in a manner similar to that of
other types of unsolicited interrupts. Specifically, such occurrences
may cause a task to be activated, and are reported to all tasks that
are connected to digital, counter, or terminal input. The following
paragraphs discuss specific driver activity relating to each error
condition.

18.5.1 Serial Line Errors

The driver detects nonrecoverable serial line errors. A
nonrecoverable error condition is defined as the occurrence of a
predetermined number of error interrupts in an interval of 1 second,
or no response from the controller upon initiation of an output data
transfer by means of the serial line. The occurrence of such a
condition causes the driver to perform as follows:

1. Place the controller in a "not ready" status.

2. Disable further error interrupts.

3. Report the condition to the task that is linked to errors,
and to any tasks connected to receive unsolicited interrupt
data from the faulty unit. Subsequent QIO requests that
transfer data to or from the unit are rejected with a status
of IE.DNR.

Requests for interrupting modules that are pending (A/D converters and
terminal output) are allowed to time out with the error code IE.DNR.
The serial line error rate required to consider the link inoperative
may be specified by the user at the time of system generation.

After reporting the error as described above, the driver will
automatically remove the "not ready" status when the error condition
is not detected at the end of any 1-second interval. If requested
during system generation, the state of the following remote modules
will be restored as described.

1. Bistable outputs - set to last recorded state

2. Counters - reinitialized to last initial value

3. Analog outputs - restored to last output value

18.5.2 Power-Fail at a Remote Site

The detection of AC-low from the remote site will immediately trigger
the processing described in Section 18.5.1. The absence of AC-low
will automatically return the unit to the "ready" status.

18-71

INDUSTRIAL CONTROL SUBSYSTEMS

If specified, the state of the following remote modules will then be
restored as described:

1. Bistable outputs - set to last recorded state

2. Counters - reinitialized to last initial value

3. Analog outputs - restored to last output value

18.5.3 Power Recovery at the Processor

Power recovery by the processor will initiate the activity described
in Section 18.5.2 for both local and remote file boxes. However,
power recovery processing at the processor will not be reported to a
task that is linked to error interrupts or connected to receive
unsolicited interrupt data.

18.5.4 Unit in Off-line Status

A unit that is off line (see Section 18.3.9.1) is considered to be
under manual control for purposes of diagnosis and maintenance. Under
these conditions, error reporting as described in Section 18.5.1 is
unnecessary and frequently undesirable, since fault indications are
generally a by-product of these activities (that is, a remote unit is
shut down to install an I/O module), not the result of a genuine
controller fault.

Furthermore, to permit the operation of diagnostic software, it is
advisable to attempt to service all QIO requests regardless of the
controller status. Consequently, under these circumstances, error
reporting and detection are modified as follows when the controller is
off line:

1. Access to the controller with the intention of transmitting
data to or from the device is restricted to privileged tasks.

2. The task linked to error interrupts and any tasks receiving
interrupt data are not notified of remote power-fail or fatal
serial line errors.

3. All device error interrupts become disabled.

4. An attempt is made to service all QIO requests if issued by a
privileged task. If such requests time out (that is, A/D
converter or remote terminal output), they are terminated
with the error code IE.ABO rather than with IE.DNR. No
hardware errors are reported for I/O requests that are
normally completed immediately (for example, bistable digital
output).

18-72

INDUSTRIAL CONTROL SUBSYSTEMS

18.5.5 Error Data - ICSR and ICAR Registers

Whenever a reportable error occurs, the driver returns the contents of
the appropriate control and status register (ICSR) and, in some cases,
the contents of the address register (ICAR), to assist in fault
diagnosis. Tables 18-8 and 18-9 describe the contents of these
registers.

I Bit I Name

l 1
r 15 !OUTPUT BUSY

14 MAINT

13 'NOT USED

12 ERROR

11 MAINT

10 I PWR FAIL
I

9 TBMT INT

8 . MAINT

7 MOD INT

6 RESET

EN

5 TTY ENABLE

4 PWR FAIL INT
ENABLE

3 BMT INT ENABLE

2 MOD INT ENABLE

1 ERROR INT ENABLE

I
0 IRIF

I

Table 18-8
ICSR Contents

Re<;id/ I
Write

R

R/W

R

R

Description

Indicates output
accept new data.

Maintenance.

Always set to 1.

buffer cannot

Indicates occurrence of
communication serial line error.
Reset when ICAR is read.

R/W Maintenance.

R Remote Power Supply AC LO indicator.

R/W Enables bit 15 of ICAR to interrupt.

R/W Maintenance.

R Indicates I/O Module requires
interrupt servicing.

W Resets all I/O modules. Always read
as 0.

R/W Activates TTY mode, disables I/O
mode.

R/W Enables bit 10 to interrupt.

R/W Enables complement of bit
interrupt.

R/W Enables Bit 7 to interrupt.

R/W Enables Bit 12 to interrupt.

15 to

R/W Resets the interrupting module's
flag when set and the module is
addressed. This clearing action
also resets the RIF bit.

18-73

INDUSTRIAL CONTROL SUBSYSTEMS

Table 18-9
ICAR Contents

Bit Name Description

15 TBMT Indicates TTY output buffer can
accept new data.

14 PCL Pulse closed. This bit is set by a
jumper on a digital interrupt
module. This jumper is removed if
contact closures are not of interest
to the user.

13 POP Pulse Opened. This bit is set by a

I I
jumper on a digital interrupt

I
module. This jumper is removed if
contacts opening are not of interest
to the user.

12 DA Indicates terminal character has
been received. Cleared by reading
terminal character.

11-08 Generic Code A 4-bit binary code that identifies
the type of module requesting the
interrupt.

07-00 Module Address 8-bit address of the module
requesting the interrupt.

18.n DIRECT ACCESS

Section 18.1.3 notes those ICS/ICRll functions that may be performed
by referencing a module through its physical address in the I/O
page. Under RSX-llM such access is accomplished by one of the
following methods:

1. A privileged task or any task running in an unmapped system
has unrestricted access to the I/O page and may therefore
access each module by absolute address.

2. Using the Task Builder, a task may link to a global common
area whose physical address limits span a set of locations
in the I/O page. This method applies to either a mapped or
unmapped system.

The latter method allows a task to be transported to any other
system simply by relinking. Moreover, in a mapped system the memory
management hardware aborts all references to device registers
outside the physical address limits of the common block.

Because the software allows arbitrary module placement, direct
reference, in either case, must be accomplished by translating a
relative module number to a physical or virtual register address
within the I/O page. This translation or mapping is performed by
means of a table (ICTAB.MAC) that is created during system
generation, and inserted in the system object module library~

18-74

INDUSTRIAL CONTROL SUBSYSTEMS

The operations required to implement each method may be summarized
as follows:

1. Unrestricted access to the I/O page

a. Based upon the user's response to the ICS/ICR SYSGEN
queries, the MACRO source file ICTAB.MAC is
automatically created under UIC [11,10] on the source
disk. This file contains tables that describe the
physical loca~ion of each counter, digital interrupt,
and digital sense module in the target system.

b. ICTAB.MAC is assembled for eventual inclusion in the
system object module library.

c. The MACRO source file ICOM.MAC, under UIC [11,10] on
the source disk, is assembled to generate global
definitions for the first ICS/ICR address on the I/O
page and the number of ICS/ICR controllers in the
target system. The resulting object file is
incorporated in the system library file.

d. A task is built containing the appropriate global
references. Such references are resolved when the Task
Builder automatically searches the system library.

Steps a, b, and c are executed once. Step d is performed
each time a task that references the ICS/ICRll is created.

NOTE

ICS/ICR inputs are not valid until 3ms after power
recovery at the processor. Tasks that are
referencing inputs directly may establish a power
recovery AST entry point that suspends task
execution for the necessary time interval.

2. Access to the I/O page through a Global Common Block:

a. Steps a and b are performed.

b. File !COM.MAC under UIC [11,10] is assembled to define
the first ICS/ICR module address as a relocatable
value, the number of I/O page locations required, and
the number of controllers present on the target system.

c. File ICOM.OBJ, created in step b, is linked using the
Task Builder to create an image of the device common
block on disk.

d. The SET and INSTALL MCR or VMR commands are used to
allocate space for the common block and declare the
block resident in the target system.

e. A task is created containing the appropriate global
references to the common block and mapping tablee
Common block references are resolved by directing the
Task Builder to link the task to the device common
block (ICOM). The mapping table reference is resolved
from the system library module ICTAB.

18-75

INDUSTRIAL CONTROL SUBSYSTEMS

The detailed procedure for creating the necessary object files and
device common block is performed automatically as part of the system
generation process, and is described fully in the RSX-llM System
Generation and Management Guide. Therefore, the discussion in the
following paragraphs is limited to procedures for linking to the
device common block, and using the file ICTAB.MAC to determine
module addresses within the I/O page.

18.6.1 Linking a Task to the ICS/ICR Common Block

Once the device common block has been created, a task may access
ICS/ICR modules by linking to the common block. This can be done by
using the Task Builder commands shown in the following example:

TKB>TASK,LP:=TASK.OBJ
TKB>/
ENTER OPTIONS:
TKB> COMMON=ICOM:RO·
TKB>/

The illustration is valid for either a mapped or unmapped system.
In both cases, the Task Builder links the task to the common block
by relocating the global symbol definitions contained in the common
block symbol table file ICOM.STB located under UIC [1,1]. If memory
management is present, the Executive will map the appropriate
physical locations into the task's virtual addressing space when the
task is made active.

18.6.2 Accessing the I/O Page

After the task has been linked to the I/O page, either directly or
through reference to the device common block, access to a specific
ICS/ICR counter, or digital input modules during task execution, is
a 3-step process:

1. The task generates a request for module data by specifying
module type, relative module number, and physical unit
number.

2. The data contained in module ICTAB is accessed to translate
the arguments of step 1 to a physical offset from the
ICS/ICR base address on the I/O page.

3. The ICS/ICR base address, defined in the common block or
system library module that was created from file !COM.MAC,
is added to the offset to compute a physical or virtual
address and the module data is read.

The next few paragraphs describe the format of the system library
module ICTAB, and common block module ICOM in detail. A sample
MACRO subroutine that references these modules is then presented.

18-76

INDUSTRIAL CONTROL SUBSYSTEMS

18.6.2.l Mapping Table Format - The mapping table created by SYSGEN
(file ICTAB.MAC) is used to translate module type, relative module
number, and physical unit number for counter, digital interrupt, and
digital sense modules, to the physical or virtual address of the
module on the I/O page. This module must be assembied and inserted
in the system object module library before the standard FORTRAN
callable routines can be used to read digital input and counter
modules. The table contains one set of entries for each physical
unit. The entry sets are arranged in order of ascending unit number
(Figure 18-1). Entries within each unit are arranged in sequence by
module type, as shown in this figure.

INCREASING
MEMORY
ADDRESSES

DIGITAL SENSE

Ull..:1111-\L 11'1 IC u I

COUNTER MODULES

. . .
DIGIT AL SENSE

DIGITAL INTERRUPT

COUNTER MODULES

UNIT 0
MAPPING TABLE

UNIT N
MAPPING TABLE

ZK-009-81

Figure 18-1 Mapping Table Format

The structure of each entry is depicted in Figure 18-2. Entries are
18 bytes long. Byte 0 contains the highest number of modules of a
given type that can be referenced for the controller. Bytes 2
through 17, when indexed by relative module numbers, yield a value
between 0 and 255 representing the physical location of the module
within the set of external page addresses allocated to the
ICS/ICRll.

The following global symbols are defined by this module:

.ICTAB Location of mapping tables

I.CTBL Length in bytes of one set of entries

18.6.2.2 I/O Page Global Definitions - As previously mentioned,
module ICOM contains symbolic definitions for I/O page references
that are resolved either through unrestricted access or by means of
a device common block that is resident on the I/O page. The
procedures for implementing either method are carried out during
system generation. Upon completion, the following global symbols
are defined and later referenced by the FORTRAN callable
subroutines:

.ICMD

I$$Cll

First ICS/ICR virtual or physical address within the
I/O page.

Number of ICS/ICR controllers

18-77

INDUSTRIAL CONTROL SUBSYSTEMS

If the global common block was built, the definitions above are
contained in the symbol table file that was created by the Task
Builder; otherwise, they are included in the system object module
library.I

INCREASING
MEMORY
ADDRESS

RESERVED

PHYSICAL MODULE NO.

II

II II

II II

II II

II II

II II

II II

MAX. MODULE NO.

PHYSICAL MODULE NO.

II

II

II II

II II

;i "

II II

II II

Figure 18-2 Mapping Table Entry Format

BYTE

0

2

4

6

8

10

12

14

16

ZK-010-81

18.6.2.3 Sample Subroutine - The following subroutine, residing in
the system library, utilizes the modules previously described, to
read ICS/ICR module data.

READ ICS/ICR-11 DIRECT ACCESS INPUTS

LOCAL DATA

ADDRESS OF ICS/ICR-11 MAPPING TABLES

N=O
ICMAP:

N=N+l

;+

.ENABL LSB

• REPT 12 •

.WORD .ICTAB+I.CTBL*N>

.ENDR

1. The definitions are included in module !COM in the system library
or in the STB file ICOM.STB under UIC[l,l] on the system disk. The
STB file is automatically referenced by the Task Builder in response
to the use of the LIBR keyword.

18-78

INDUSTRIAL CONTROL SUBSYSTEMS

**-.RDIC-READ ICS/ICR-11 DIRECT ACCESS INPUTS

THIS SUBROUTINE IS CALLED TO TRANSLATE RELATIVE MODULE NUMBER
TO PHYSICAL EXTERNAL PAGE ADDRESS AND READ THE MODULE DATA.

INPUTS:

RO RELATIVE MODULE NUMBER
Rl MODULE CODE

WHERE:
0 CONTACT SENSE
1 CONTACT INTERRUPTS
2 COUNTERS

STACK SETUP IS AS FOLLOWS:
(SP)+OO RETURN TO CALLER

; (SP)+02 I/O STATUS BLOCK ADDRESS (NOT
REFERENCED).

OUTPUTS:

C/CLEAR

C/SET:

SPECIFIED

;-

• RDIC: :
MOV
CMP
BLO
ASL

TO WORD

MOV

ASL
ADD

ASL
ASL
ASL
ADD
TSTB
SEC
BEQ
INCB
CMPB
BLO
INC
ADD
CLR

EXTEND
BISB
ASL
MOV

10$:
RETURN

.END

(SP)+04 PHYSICAL UNIT NUMBER

RO MODULE DATA

NONEXISTENT PHYSICAL UNIT NUMBER OR MODULE

4(SP),R2
#I$$Cll-l,R2
10$
R2

ICMAP(R2) ,R2

Rl
Rl,R2

Rl
Rl
Rl
Rl,R2
(R2)

10$
RO
(R2)+,RO
10$
R2
RO,R2
RO

(R2) ,RO
RO
.ICMD(RO),RO

18-79

GET PHYSICAL UNIT NUMBER
LEGAL UNIT NUMBER?
IF LO NO
CONVERT PHYSICAL UNIT NUMBER

OFFSET
GET ADDRESS OF MAPPING TABLE
ENTRIES FOR THIS UNIT
CONVERT CODE TO WORD OFFSET
MULTIPLY OFFSET BY 9 AND ADD
TO TABLE ADDRESS

COMPUTE OFFSET TO TABLE
MODULE EXIST?
ASSUME NO
IF EQ NO
CONVERT TO NUMBER OF MODULES
LEGAL MODULE NUMBER?
IF LO NO
POINT TO TABLE ENTRIES
OFFSET TO MODULE NUMBER
SET FOR MOVB WITHOUT SIGN

GET INDEX TO MODULE
CONVERT TO WORD OFFSET
GET MODULE DATA

INDUSTRIAL CONTROL SUBSYSTEMS

18.7 CONVERSION OF EXISTING SOFTWARE

The following paragraphs are intended as guidance in converting
existing UDC or res software to run under the ICS/ICR-11 driver and
associated FORTRAN support routines. The differences described here
are restricted to module support and features that would affect
existing software. New features, unsupported in previous systems,
are not discussed.

18.7.1 Features

Principal features affecting existing software are:

1. Support for the ICS/ICRll as a multiunit, multicontroller
device

2. Removal of software restrictions on the placement of
functionally similar modules

Multiunit support affects any software that addresses modules
outside the range of a single file box. In general, such software
must be modified at the source level.

Unrestricted module placement affects MACR0-11 programs that
directly access digital input and counter modules. Such programs
may utilize the library routine described in Section 18.3 to read
data from these modules.

18.7.2 Module Support

18.7.2.1 !AD-IA A/D Converter and IMX-IA Multiplexer

MACRO Interface:

Identical to UDCll driver

FORTRAN Interface:

Same as UDCll

Functional Differences:

The ICS/ICR driver can initiate parallel conversions on each
IAD-IA in a file box that is referenced by a single QIO
request. The UDCll driver performs all conversions serially.

The ICS/ICR driver supports any permissible configuration of
IAD-IA A/D converters and IMX-IA multiplexers. The UDCll
driver requires that eight module slots be reserved for each
IAD-IA in the system regardless of the actual number of
multiplexers installed.

18-80

INDUSTRIAL CONTROL SUBSYSTEMS

18.7.2.2 16-Bit Binary Counter

MACRO Interface:

Identical to UDCll driver

FORTRAN Interface:

Same as UDCll; however, if the counter is read through a call
to RDTI, then the task must be relinked to incorporate the
revised FORTRAN Interface routine.

Functional Differences:

The ICS/ICR driver permits any task to reset an initial counter
value (with FORTRAN call SCTI or through the IO.ITI QIO
function). The UDCll driver restricts this operation to a task
that has connected to counter interrupts.

18.7.2.3 Bistable Digital Output

MACRO Interface:

Identical to UDCll

FORTRAN Interface:

Identical to UDCll

Functional Differences:

None

18.7.2.4 Momentary Digital Output

MACRO Interface:

User interface is achieved with the QIO IO.MSO issued to the
ICS/ICR-11 driver. The UDCll driver does not support this
function since the module may be accessed directly through the
UDC device common block.

FORTRAN Interface:

Identical to UDCll; however, existing FORTRAN tasks must be
relinked to include ICS/ICRll FORTRAN interface routines.

Functional Differences:

Momentary output operations are now processed by tne ICS/ICR
driver, rather than through direct access to the I/O page.

18-81

INDUSTRIAL CONTROL SUBSYSTEMS

18.7.2.5 Noninterrupting Digital Input

MACRO Interface:

MACRO Interface is by means of the ICS/ICRll device common
block and mapping table described in Section 18.6.

FORTRAN Interface:

Identical to UDCll; however, existing tasks must be relinked
to include revised ICS/ICRll FORTRAN interface routines.

Functional Differences:

None

18~7~2~6 Analog Output

MACRO Interface:

User interface is achieved with the QIO IO.SAO issued to
ICS/ICR driver. The UDCll driver does not support
function since the module may be accessed directly through
UDC device common block.

FORTRAN Interface:

the
this
the

Identical to UDCll; however, existing FORTRAN tasks must be
relinked to include ICS/ICRll FORTRAN interface subroutines.

Functional Differences:

Analog output operations are now processed by the ICS/ICR
driver rather than through direct access to the I/O page.

18.7.2.7 Interrupting Digital Input

MACRO Interface:

Identical to UDCll driver

FORTRAN Interface:

Identical to UDCll driver; however, if digital inputs are read
through the call to RCIPT, then the task must be relinked to
incorporate the revised ICS/ICRll FORTRAN interface routines.

Functional Differences:

None

18-82

CHAPTER 19

NULL DEVICE DRIVER

RSX-llM provides a driver for a software construct
device." The mnemonic for the null device
characteristics are as follows:

called the "null
is NL:, and its

• A read from NL: returns an end-of-file error (IE.EOF).

• A write to NL: immediately returns success (IS.SUC).

The null device functions as a "black hole" to which you can direct
output, and from which it will never return. It is particularly
useful when used in conjunction with an indirect command file and MCR
ASN commands, as in the example below.

Figure 19-1 shows the contents of a Task Builder command file called
TESTBLD.CMD. Symbolic device names are used for the output file, map
file, and input file. These names may be reassigned at task-build
time. In particular, in the example below, the map file is assigned
to the null device and thus is thrown away.

>ASN SY:=OU:

>ASN NL:=MP:

>ASN DKl:=IN:

>TKB @TESTBLD

I '

OU:TEST,MP:TEST=IN:[200,220]TEST
I
ASG=TI:2
II

Figure 19-1 Indirect TKB Command File TESTBLD.CMD.

19-1

CHAPTER 20

GRAPHICS DISPLAY DRIVER

20.1 INTRODUCTION

RSX-llM provides support for two graphics display peripherals: the
VTll and the VS60. Graphics display drivers are not supported in
RSX-llM-PLUS systems. Each consists of a CRT display, light pen, and
display processing unit (DPU). Either may be purchased separately or
as part of a complete system. For example, the GT46 is a "starter
system" consisting of a VTll and a PDP-llT/34 with 32K words of memory
and disk storage.

20.1.1 VTll Graphics Display Subsystem

The VTll is a low-cost, line-drawing graphics display subsystem. It
steals cycles asynchronously from the CPU whose UNIBUS it shares. Its
DPU instruction set supports the following features:

• Relative and absolute vectors -- solid, long dash, short dash,
or dotted

• Point plotting

• Character generation

• Blinking display

• Eight levels of intensity

• Light-pen interaction

20.1.2 VS60 Graphics Display Subsystem

The VS60 supports all these features at a higher rate of performance
than the VTll. In addition, the VS60 supports hardware subroutining,
scaling, and windowing. A second CRT may be added to the VS60.

20.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION system
directive (the first characteristics word) contains Os in all bits for
graphics display devices. Words 3, 4, and 5 are undefined.

20-1

GRAPHICS DISPLAY DRIVER

20.3 QIO MACRO

Table 20-1 lists the standard and device-specific functions of the QIO
macro that are valid for graphics display devices.

The standard QIO functions IO.ATT and IO.DET have little use in the
graphics display driver, because the specific functions IO.CON and
IO.DIS are available.

Table 20-1
Standard and Device-Specific QIO Functions for Graphics Displays

Format

STANDARD FUNCTIONS

QIO$C IO. ATT, •••

QIO$C IO. DET, •••

QIO$C IO. KIL, •••

DEVICE-SPECIFIC FUNCTIONS

QIO$C IO.CON, ••• ,<stadd,size
[, lpef] [, lpast] >

QIO$C IO. CNT, •••

QIO$C IO. DIS, •••

QIO$C IO.STP, •••

stadd

1

Function

Attach <levice

Detach device

Cancel I/O requests

CONNECT to graphics
device (start DPU)

Continue (restart DPU)

Disconnect from graphics
device (halt DPU)

Stop (halt DPU)

The starting address of a display file (must be word aligned).
The display file must be within the lowest 28K of physical memory
for the VTll.

size

lpef

lpast

The size of the display buffer in bytes.

The optional number of an event flag to be set upon light-pen
hit; in the range 1-64 (10).

The optional address of an asynchronous system trap (AST) entry
point to be used upon light-pen hit.

20-2

GRAPHICS DISPLAY DRIVER

20.4 STATUS RETURNS

Table 20-2 lists error and status conditions that are returned by the
graphics display driver in the first word of the I/O status block.
The second I/O status word always contains O.

Code

rs.sue

IE.ABO

IE.CNR

IE.DNA

IE.IEF

IE.IFC

IE.SPC

Table 20-2
Graphics Display Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully.

Operation aborted

The I/O operation was cancelled by IO.KIL while in
progress or in the I/O queue.

Connection rejected

The graphics device specified in an IO.CON function was
already connected to another task.

Device not attached

The graphics device specified in an IO.DET function was
not attached to the issuing task.

Illegal event flag

An event flag number specified in an IO.CON function
(lpef argument) was not in the range 1-64 (decimal).

Illegal function code

A function code was specified in an I/O request that is
illegal for graphics display devices.

Illegal address space

The display buffer specified in
(stadd argument) was not word
only) was not completely within
memory.

an IO.CON function
aligned, or (for VTll

the lowest 28K of

20.5 PROGRAMMING HINTS

The graphics display driver does not determine what
screen of the VTll or VS60. The key to what
collection of DPU instructions in the display buffer.

20-3

appears on the
is drawn is the

GRAPHICS DISPLAY DRIVER

Under normal circumstances, the display buffer is generated by calls
to a set of FORTRAN graphics subroutines. These subroutines provide a
more convenient access to the graphics features of the hardware than
do the raw DPU instructions. The subroutines are described in the
DECgraphic-11 FORTRAN Reference Manual, order number DEC-11-GFRMA-A-D.

Aborting a VTll task may cause an RSX-llM system to hang up
indefinitely, requiring a bootstrap. The VTll DPU has no Halt
instruction, but the I/O driver must halt the DPU before it can return
a success status in response to an IO.KIL request. (IO.KIL is
automatically generated when a task is aborted.) This hang situation
cannot arise with a VS60.

20-4

CHAPTER 21

LABORATORY PERIPHERAL ACCELERATOR DRIVER

21.1 INTRODUCTION

The Laboratory Peripheral Accelerator (LPAll-K) is an intelligent,
direct memory access (DMA) controller for DIGITAL's laboratory data
acquisition I/O devices. It is a fast, flexible, and easy-to-use
microprocessor subsystem that allows analog data acquisition rates up
to 150,000 samples per second. The LPAll-K is designed for
applications requiring concurrent data acquisition and data reduction
at high rates.

The LPAll-K is supported through a device driver and a set of
program-callable routines. The device driver supports multiple
controllers and can be configured as resident or loadable. The
program-callable support routines are linked with the user's task at
task-build time. These routines are highly modular. Therefore, a
particular task contains only that code necessary for the facilities
actually used.

The LPAll-K operates in two distinct modes: dedicated and
multirequest. The subsections that follow summarize each mode.

21.1.l LPAll-K Dedicated Mode of Operation

In dedicated mode,
at a time and only
analog converters
initiated by an
supplied signal.

only one user (that is, one request) can be active
analog I/O data transfers are supported. Up to two
can be controlled simultaneously. Sampling is
overflow of the real-time clock or by an externally

21.l.2 LPAll-K Multirequest Mode of Operation

In multirequest mode, sampling from all device types is supported. Up
to eight users can be simultaneously active. The sampling rate for
each user is a multiple of the common real-time clock rate.
Independent rates can be maintained for each user. Both the sampling
rate and the device type are specified as part of each data transfer
request.

21-1

LABORATORY PERIPHERAL ACCELERATOR DRIVER

21.2 GET LUN INFORMATION MACRO

If a Get LUN Information system directive is issued for a LUN
associated with an LPAll-K, word 2 (the first characteristics word)
contains all zeros, words 3 and 4 are undefined, and word 5 contains a
16-bit buffer preset value that controls the rate of the real-time
clock interrupts.

21.3 THE PROGRAM INTERFACE

A collection of program-callable subroutines provides access to the
LPAll-K. The formats of these calls are fully documented here for
FORTRAN programs. MACR0-11 programmers access these same subroutines
either through the standard subroutine linkage or through the use of
two special-purpose macros. Optionally, MACR0-11 users can control an
LPAll-K directly through the use of device-specific QIO functions.
Both FORTRAN and MACRO programs must contain at least one I/O Status
Block (IOSB) for retrieval of status information. The following
subsections, therefore, describe:

e The FORTRAN interface

• The MACR0-11 interface

• The I/O status block

NOTE

The subroutines documented in this
chapter represent the high-level
interface to the LPAll-K. Using these
subroutines requires an understanding of
hardware capabilities, configuration
details, and hardware status codes as
described in the LPAll-K Laboratory
Peripheral Accelerator User's Guide.

21.3.1 FORTRAN Interface

Table 21-1 lists the FORTRAN interface subroutines for accessing the
LPAll-K.

The calling sequences of the routines listed in Table 21-1 are
compatible with the K-series support routines, described in Chapter
22, except as noted. The following subsections briefly describe the
function and format of each FORTRAN subroutine call.

21-2

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 21-1
FORTRAN Subroutines for the LPAll-K

Subroutine Function

ADSWP Initiate synchronous A/D sweep

CLOCKA Set Clock A rate

CLOCKB Control Clock B

CVADF Convert A/D input to floating point

DASWP Initiate synchronous D/A sweep

DISWP Initiate synchronous digital input sweep

DOSWP Initiate synchronous digital output sweep

FLT16 Convert unsigned integer to a real constant

IBFSTS Get buffer status

IGTBUF Return buffer number

INXTBF Set next buffer

IWTBUF Wait for buffer

LAMS KS Set masks buffer

RLSBUF Release data buffer

RMVBUF Remove buff er from device queue

SETADC Set channel information

SETIBF Set array for buffered sweep

STPSWP Stop sweep

XRATE Compute clock rate and preset

21.3.1.1 ADSWP: Initiate Synchronous A/D Sweep - The ADSWP routine
initiates a synchronous A/D input sweep through an LPS-11 or an ADll-K
(and, if present, the AMll-K).

If differential input is desired for the ADll-K/AMll-K,
increment must be set to 2 by calling the SETADC routine.
channel increment is 1 (single-ended input).

21-3

the channel
The default

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The ADSWP call is as follows:

ibuf

lbuf

nbu

mode

CALL ADSWP (ibuf ,lbuf, ~nbuf], (mode], (idwell], (iefn], (ldelay],
(ichn], (nchn], [ind])

A 40-word array initialized by the SETIBF routine. The first two
words of the array are the I/O status block (IOSB).

The size in words of each data buffer. All data buffers must be
equal in size and lbuf must be greater than 5. In dedicated
mode, lbuf must be at least 257 words.

The number of buffers to be filled.
equal to O, indefinite sampling
terminates indefinite sampling.

If nbuf is omitted or set
occurs. The STPSWP routine

The sampling options. The default is 0. The mode bit values
listed below that are preceded by a plus sign (+) are independent
and can be added or ORed together (assuming that the sampling
options are applicable to the mode of operation). Those values
not preceded by a plus sign are mutually exclusive and only one
such value can be used at a time. All bit values not listed
below are reserved.

The following values can be specified:

0 Absolute channel addressing (default). This mode
allows the user to directly access all 64 channels of
an A/D converter.

+32 Dual A/D conversion
applies to dedicated
multirequest mode.

serial/parallel.
mode only. It

This option
is ignored in

+64 Multirequest mode. If this value is not specified, the
request is for dedicated mode. If the request mode
does not match the mode of the hardware (that is,
different microcode in the master microprocessor), the
LPAll-K rejects the request with an appropriate error
code.

+512 External trigger (STl). This mode is used when a
user-supplied external sweep trigger is desired. The
external trigger is supplied by a jumper connecting the
ADll-K External Start input to the KWll-K Schmitt
Trigger 1 output. This external trigger connection can
only be used in Dedicated Mode. If mode 512 is
selected, the user task must specify a Clock A rate of
-1 for proper A/D sampling. This is non-clock-driven
sampling.

21-4

LABORATORY PERIPHERAL ACCELERATOR DRIVER

+1024 Time stamp with Clock B (Multirequest mode only).

+2048 Event marking (Multirequest mode only)~ LAMSKS must be
called to specify an event mark channel and event mark
mask.

+4096 Start method. If set, digital input start. If clear,
immediate start. LAMSKS must be called to specify a
digital start channel and digital start mask
(multirequest mode only).

+8192 Dual A/D converter (dedicated mode only).

+16384 Data overrun NON-FATAL/FATAL. If selected, data
overrun is considered nonfatal. The LPAll-K
automatically defaults to fill buffer O. (See Section
21.4 for a discussion of buffer management.)

idwell

iefn

The number of clock overflows (pulses) between data sample
sequences. As an example, if idwell is 20 and nchn is 3, the
following occurs: after 20 pulses, one channel is sampled on
each of the next three pulses. Then, no sampling takes place for
the next 20 pulses. In multirequest mode, this facility permits
different sample rates for the same hardware clock rate and
preset. In dedicated mode, the clock hardware rate controls
sampling and this idwell argument is ignored.

If compatibility with K-series support routines is desired, the
user task must first establish the clock preset by calling the
CLOCKA routine. The default idwell value of 1 is used in the
sweep start command. For the K-series, this procedure sets the
rate as desired.

NOTE

This parameter is called iprset in the K-series support
routines described in Chapter 22. Its function is
different from the idwell parameter described here.

The event flag (1 to 28, 30 to 96), the name of a completion
routine, or O. If 0 or defaulted, event flag 30 will be used for
internal synchronization. If iefn is an event flag, the selected
event flag is set as each buffer is filled. Note that event flag
29 is reserved for use by the LPAll-K support routines for
internal synchronization. If iefn is greater than 96, it is
considered to be a completion routine that will be called with a
JSR PC. Such routines must return with an RTS PC (or a FORTRAN
RETURN statement).

21-5

LABORATORY PERIPHERAL ACCELERATOR DRIVER

FORTRAN completion routines must not contain any
following:

• Any I/O through the FORTRAN run-time system

• Any use of virtual arrays

• Any use of floating-point operations

of the

• Any errors, since error reporting is done through the FORTRAN
run-time system

• Anything else that may change the FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable
results.

If multiple sweeps are
different event flags.
enforced by the software.

initiated, the user should specify
Adherence to this limitation cannot be

ldelay

ichn

nchn

ind

The delay from the start event (DRll-K) until the first sample in
IRATE units. This feature is supported in multirequest mode
only. Default or 0 indicates no delay.

The number of the first channel to be sampled. The default of 0
applies only if ichn was not established in a prior call to the
SETADC routine.

The number of channels to sample. The default is l. nchn may be
set up with the SETADC routine. The number of channels specified
are sampled at a rate of 1 per clock interrupt. If nchn equals
1, the single channel bit is set in the mode word of the start
RDA.

Receives a success or failure code as follows:

1 indicates that the sweep was successfully initialized.

0 indicates an illegal argument list, or SETIBF was not
called prior to this call.

-1 indicates a QIO directive failure.
code is placed in IOSB(l) in IBUF.

NOTE

The di~ective error

The ind parameter is not supported by the K-series
support routines. If compatibility with K-series
support routines is desired, this parameter must be
ignored.

21-6

LABORATORY PERIPHERAL ACCELERATOR DRIVER

21.3.1.2 CLOCKA: Set Clock A Rate - The CLOCKA routine sets the rate
for Clock A. This routine is called as follows:

irate

CALL CLOCKA (irate,iprset, [ind], [lun])

The clock rate. One of the following must be specified:

-1 Direct-coupled Schmitt Trigger 1 {used only for A/D sweeps
in Dedicated Mode +512; not supported by K-series support
routines)

0 Clock B overflow or no rate
1 1 MHz
2 100 KHz
3 10 KHz
4 1 KHz
5 100 Hz
6 Schmitt Trigger l
7 Line frequency

iprset

ind

lun

The two's complement value for clock preset. The clock rate
divided by the negative clock preset value yields the clock
overflow rate. For example, to obtain a clock overflow rate of
10 Khz with a clock rate of lMhz, iprset = -100 (minus 100
decimal). The XRATE routine can be used to calculate a clock
preset value.

Receives a success or failure code as follows:

0 indicates an illegal argument list or I/O error. Possible
causes are: microcode not loaded; driver not loaded;
device off line or not in system.

1 indicates Clock A set to start when sweep requested.

The logical unit number. The default is 7.

21.3.1.3 CLOCKB: Control Clock B - The CLOCKB routine gives the user
control over the KWll-K Clock B.

The CLOCKB call is as follows:

CALL CLOCKB ([irate] ,iprset,mode, [ind], [lun])

21-7

irate

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The clock rate. When irate is nonzero, the clock is set running
at the selected rate after the preset value specified by iprset
is loaded. A 0 irate stops the clock. When irate is 0 or
default, the iprset and mode parameters are ignored.

The following values are acceptable for irate:

0 Stop clock B
1 lMHz
2 100 KHz
3 10 KHz
4 1 KHz
5 100 Hz
~ Schmitt Trigger 3
7 Line frequency

iprset

mode

ind

lun

The count by which to divide clock rate to yield overflow rate.
Overflow events can be used to drive clock A. The preset
parameter must be specified as 0 or as a negative number in the
range -1 to -255. The value in iprset can be established by use
of the XRATE routine.

The options. The mode bit values listed below that are preceded
by a plus sign (+) are independent and can be added or ORed
together. Those values not preceded by a plus sign are mutually
exclusive and only one such value can be used at a time. All bit
values not listed below are reserved.

1 indicates Clock B operates in noninterrupt mode. The
lh-bit clock is not incremented or altered. This allows a
greater than lOKHz pulse to be sent to Clock A.

+/. indicates the feed B to A bit will be set in the Clock B
status register.

Receives a success or failure code as follows:

O indicates an illegal argument list or I/O error. Possible
causes are: microcode not loaded; driver not loaded;
device off line or not in system.

1 indicates Clock B started.

The logical unit number (LUN). The default LUN is 7.

21-8

LABORATORY PERIPHERAL ACCELERATOR DRIVER

21.3.1.4 CVADF: Convert A/D Input to Floating Point - The
routine converts an A/D input value to a floating-point number.
routine can be invoked as a subroutine or a function as follows:

CVADF
The

or

ival

val

CALL CVADF (ival,val)

val CVADF(ival)

A value obtained from A/D input. Bits 12-15 are 0.
represent the value.

Bi ts 0-11

(REAL*4) receives the converted value. The converted value is
calculated with the following formula:

val = (n4*ival)/gain

21.3.1.5 DASWP: Initiate Synchronous D/A Sweep - The DASWP
initiates synchronous D/A output to an AAll-K.

routine

The DASWP call is as follows:

ibuf

lbuf

nbuf

mode

CALL DASWP (ibuf, lbuf, [nbuf] , (mode] , (idwel 1] , [iefn] , ldelay,
[ichn], [nchn], [ind])

A 40-word array initialized by the SETIBF routine. The first two
words of the array are the I/O status block (IOSB).

The size in words of each data buffer. All data buffers must be
equal in size and lbuf must be greater than 5. In dedicated
mode, lbuf must be at least 257 words.

The number of buffers to be emptied.
equal to O, indefinite sweeping
terminates indefinite sweeping.

If nbuf is omitted or set
occurs. The STPSWP routine

The start criteria. Except where noted, the plus sign (+)
preceding mode bit values listed below indicates that they are
independent and can be added or ORed together. All bit values
not listed below are reserved.

21-9

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The following values can be specified:

0 indicates immediate start. This is the default.

+64 Multirequest mode. If this value is not specified, the
request is for dedicated mode. If the request mode
does not match the mode of the hardware (that is,
different microcode in master microprocessor), the
LPAll-K rejects the request with an appropriate error
code.

+4096 Start method. If set, digital input start. If clear,
immediate start. LAMSKS must be called to specify a
digital start channel and a digital start mask
(multirequest mode only).

+16384 Data overrun NON-FATAL/FATAL. If selected, data
overrun is considered nonfatal. The LPAll-K
automatically empties buffer 0. (See Section 21.4 for
a discussion of buffer management.)

idwell

iefn

The number of clock overflows {pulses) between data sample
sequences. For example, if idwell is 20 and nchn is 3, the
following occurs: After 20 pulses, one channel is emptied on
each of the next three pulses. Then, no emptying takes place for
the next 20 pulses. In multirequest mode, this facility permits
different rates for the same hardware clock rate and preset. In
dedicated mode, the clock hardware rate controls sampling and
idwell in the sweep start command is ignored.

If compatibility with K-series support routines is desired, the
user task must first establish the clock preset by calling the
CLOCKA routine. The default value (1) for the idwell parameter
in the sweep start command must be used. For the K-series, this
procedure sets the rate as desired. For the LPAll-K, this
procedure results in idwell in the sweep call defaulting to 1,
thus yielding the same clock rate.

NOTE

This parameter is called iprset in the K-series support
routines described in Chapter 22. Its function is
different from the idwell parameter described here.

An event flag number (1 to 28, 30 to 96), or the name of a
completion routine, or O. If 0 or default, event flag 30 is used
for internal synchronization. If iefn is an event flag, the
selected event flag is set as each buffer is filled. Note that
event flag 29 is reserved for use by the LPAll-K support routines
for internal synchronization. If iefn is greater than 96, it is
considered to be a completion routine that will be called with a
JSR PC. Such routines must return with an RTS PC instruction (or
a FORTRAN RETURN statement) •

21-iO

LABORATORY PERIPHERAL ACCELERATOR DRIVER

FORTRAN completion routines must not contain any
following:

• Any I/O through the FORTRAN run-time system

• Any use of virtual arrays

• Any use of floating-point operations

of the

• Any errors, since error reporting is done through the FORTRAN
run-time system

• Anything else that may change the FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable
results.

If multiple sweeps are initiated, the user task should specify
different event flags. This limitation cannot be enforced by the
LPAll driver.

ldelay

ichn

nchn

ind

The delay from start event (DRll-K) until the first sample in
irate units. A minimum delay of 150 microseconds is required
(not verified by the LPAll driver). This feature is supported in
multirequest mode only.

The first channel number. Default is channel number O.

The number of channels. Default is one channel.

Receives a success or failure code as follows:

1 indicates that the sweep was successfully initialized.

0 indicates an illegal argument list, or SETIBF was not
called prior to this call.

-1 indicates a QIO directive failure.
code is placed in IOSB(l) in IBUF.

NOTE

The directive error

The ind parameter is not supported by the K-series
support routines. If compat1bility with K-series
routines is desired, this parameter must be
ignored.

21-11

LABORATORY PERIPHERAL ACCELERATOR DRIVER

21.3.1.6 DISWP: Initiate Synchronous Digital Input Sweep - The DISWP
routine initiates a synchronous digital input sweep through a DRll-K.
It can be called in multirequest mode only.

The DISWP call is as follows:

ibuf

lbuf

nbuf

mode

CALL DISWP (ibuf,lbuf,[nbuf] ,[mode] ,[idwell] ,[iefn] ,[ldelay],
[iuni t], [nchn], [ind])

A 40-word array initialized by the SETIBF routine. The first two
words of the array are the I/O status block (IOSB).

The size in words of each data buffer. All data buffers must be
equal in size and lbuf must be greater than 5.

The number of buffers to be filled.
indefinite sampling occurs. The
terminate indefinite sampling.

If nbuf is 0 or
STPSWP routine

defaulted,
is used to

The sampling options. The default is O. The plus signs (+)
preceding the mode bit values listed below indicate that they are
independent and can be added or ORed together. All bit values
not listed below are reserved.

The following values can be specified:

O Immediate start. This is the default mode.

+512 External trigger. The input sampling will be triggered
by interrupts generated by the DRll-K's external
control lines, or its input bits if they are interrupt
enabled.

+1024 Time stamped sampling with Clock B. The double word
consists of one data word followed by the value of the
16-bit clock at the time of the sample. IOSB(2)
contains the number of 2-word samples in the buffer.

+2048 Event marking. LAMSKS must be called to specify an
event mark word and an event mark mask.

+4096 Start method. If specified, digital input start. If
clear, immediate start. LAMSKS must be called to
specify a digital start channel and a digital start
mask. The digital start channel need not differ from
the input channel (iunit).

+16384 Data overrun NON-FATAL/FATAL. If selected, data
overrun is considered nonfatal. 1ne LPAll-K
automatically fills buffer O. (See Section 21.4 for a
discussion of buffer management.)

21-12

LABORATORY PERIPHERAL ACCELERATOR DRIVER

idwell

iefn

The number of clock overflows (pulses) between data sample
sequences. As an example, if idwell is 20 and nchn is 3, the
following occurs: After 20 pulses, one channel is sampled on
each of the next three pulses. Then, no sampling takes place for
the next 20 pulses. In multirequest mode, this facility permits
different sample rates for the same hardware clock rate and
preset.

If compatibility with K-series support routines is desired, the
user task must first establish the clock preset by calling the
CLOCKA routine. The default value (1) for the idwell parameter
in the sweep start command must be used. For the K-series, this
procedure sets the rate as desired; For the LPAll-K, this
procedure results in idwell in the sweep call defaulting to 1,
thus yielding the same clock rate.

NOTE

This parameter is called iprset in the K-series support
routines described in Chapter 22. Its function is
different from the idwell parameter described here.

An event flag number (1 to 28, 30 to 96), or the name of a
completion routine, or 0. If default or a value of 0 is
specified for iefn, event flag 30 is used for internal
synchronization. If iefn is a valid event flag, the selected
event flag is set as each buffer is filled. Note that event flag
29 is reserved for use by the LPAll-K support routines for
internal synchronization. -If iefn is greater than 96, it is
considered to be a completion routine that will be called with a
JSR PC. Such routines must return with an RTS PC instruction (or
a FORTRAN RETURN statement) •

FORTRAN completion routines must not contain any
following:

• Any I/O through the FORTRAN run-time system

• Any use of virtual arrays

• Any use of floating-point operations

of the

• Any errors, since error reporting is done through the FORTRAN
run-time system

• Anything else that may change the FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable
results.

If multiple sweeps are initiated, the user task should specify
different event flags. This limitation cannot be enforced by the
LPAll driver.

ldelay

The delay from start event (DRll-K) until the first sample in
irate units. Default or 0 indicates no delay.

21-13

iunit

nchn

ind

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The DRll-K unit number. Default is unit number O.
are valid.

Values 0-4

The number of channels. The LPAll-K treats each' DRll-K in its
configuration as one channel. Default is 1 channel.

Receives a success or failure code as follows:

1 indicates that the sweep was successfully initialized.

O indicates an illegal argument list, or SETIBF was not
called prior to this call.

-1 indicates a QIO directive failure.
code is placed in IOSB (1) in IBUF.

NOTE

The directive error

The nchn and ind parameters are not supported by
the K-series support routines. If compatibility
with K-series support routines is desired, these
last two parameters must be ignored.

21.3.1.7 DOSWP: Initiate Synchronous Digital Output Sweep - The DOSWP
routine initiates a synchronous digital output sweep through a DRll-K.
It can be called in multirequest mode only.

The DOSWP call is as follows:

ibuf

lbuf

nbuf

CALL DOSWP (ibuf ,lbuf, (nbuf], (mode], (idwell], (iefn] ,ldelay,
(iunit], (nchn], (ind])

A 40-word array initialized by the SETIBF routine. The first two
words of the array are the I/O status block (IOSB).

The size in words of each data buffer. All data buffers must be
equal in size and lbuf must be greater than 5.

The number of buffers to be emptied.
indefinite emptying occurs. The
terminate indefinite emptying.

21-14

if nbuf is 0 or default,
STPSWP routine is used to

mode

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The start criteria.

The following values can be specified in the high-order byte of
mode:

O Immediate start. This is the default mode.

+512 External trigger. The output sampling
triggered by interrupts generated by the
external control lines or its input bits if
interrupt enabled.

will be
DRll-K's

they are

+4096 Start method. If set, digital input start. If clear,
immediate start. LAMSKS must be called to specify a
digital start channel and a digital start mask. The
digital start channel need not differ from the output
channel (iunit) e

+16384 Data overrun NON-FATAL/FATAL. If selected, data
overrun is considered nonfatal. The LPAll-K
automatically fills buffer O. (See Section 21.4 for a
discussion of buffer management.)

idwell

iefn

The number of clock overflows {pulses) between data sample
sequences. For example, if idwell is 20 and nchn is 3, the
following occurs: After 20 pulses, one channel is activated on
each of the next three pulses. Then, no output takes place for
the next 20 pulses. In multirequest mode, this facility permits
different output rates for the same hardware clock rate and
preset.

If compatibility with K-series support routines is desired, the
user task must first establish the clock preset by calling the
CLOCKA routine. The default value (1) for the idwell parameter
in the sweep start command must be used. For the K-series, this
procedure sets the rate as desired. For the LPAll-K, this
procedure results in idwell in the sweep call defaulting to 1,
thus yielding the same clock rate.

NOTE

This parameter is called iprset in the K-series support
routines described in Chapter 22. Its function is
different from the idwell parameter described here.

An event flag number (1 to 28, 30 to 96), or the name of a
completion routine, or O. If default or a value of 0 is
specified for iefn, event flag 30 is used for internal
synchronization. If iefn is a valid event flag, the selected
event flag is set as each burrer is emptied. Note that event
flag 29 is reserved for use by the LPAll-K support routines for
internal synchronization. If iefn is greater than 96, it is
considered to be a completion routine that will be called with a
JSR PC. Such routines must return with an RTS PC instruction (or
a FORTRAN RETURN statement) •

21-15

LABORATORY PERIPHERAL ACCELERATOR DRIVER

FORTRAN completion routines must not contain any
following:

• Any I/O through the FORTRAN run-time system

• Any use of virtual arrays

• Any use of floating-point operations

of the

• Any errors, since error reporting is done through the FORTRAN
run-time system

• Anything else that may change the FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable
results.

If multiple sweeps are initiated, the user task should specify
different event flags. This limitation cannot be enforced by the
LPAll driver.

ldelay

iunit

nchn

ind

The delay from start event (DRll-K) until the first sample in
irate units. A minimum delay of 150 microseconds is required
(not verified by the LPAll driver).

The DRll-K unit number. Default is unit number O.
are valid.

Values 0-4

The number of channels. The LPAll-K treats each DRll-K in its
configuration as one channel. Default is one channel.

Receives a success or failure code as follows:

1 indicates that the sweep was successfully initiated.

O indicates an illegal argument list, or SETIBF was not
called prior to this call.

-1 indicates a QIO directive failure.
code is placed in IOSB(l) in IBUF.

NOTE

The directive error

The nchn and ind parameters are not supported by
the K-series support routines. If compatibility
with K-series support routines is desired, these
last two parameters must be ignored.

21-16

LABORATORY PERIPHERAL ACCELERATOR DRIVER

21.3.1.8 FLT16: Convert Unsigned Integer to a Real Constant - The
FLT16 routine converts an unsigned 16-bit integer to a real constant
(REAL*4). It can be invoked as a subroutine or a function as follows:

CALL FLT16 (ival,val)

or

val=FLT16(ival[,val])

ival

An unsigned 16-bit integer.

val

The converted (REAL*4) value.

21.3.1.9 IBFSTS: Get Buffer Status - The IBFSTS
information on buffers being used in a sweep.

routine returns

The IBFSTS call is as follows:

ibuf

is tat

CALL IBFSTS (ibuf ,istat)

The 40-word array specified in the call that initiated a sweep.

An array with as many elements as there are buffers involved in
the sweep. The maximum is 8. IBFSTS fills each element in the
array with the status of the corresponding buffer. The possible
status codes are as follows:

+2 indicates that the buffer is in the device queue.
is, RLSBUF has been called for this buffer.

That

+l indicates that the buffer is in the user task queue.
That is, it is full of data (for input sweeps) or is
available to be filled (for output sweeps).

0 indicates that the status of the buffer is unknown.
That is, it is not the current buffer nor is it in
either the device or the user queue.

-1 indicates that the buffer is currently in use.

21.3.1.10 IGTBUF: Return Buffer Number - The IGTBUF routine returns
the number of the next buffer to use. This routine should be called
by user-task completion routines to determine which is the next buffer
to access. It should not be used if an event flag was specified in
the sweep-initiating call; if an event flag was specified, use the
IWTBUF routine.

21-17

LABORATORY PERIPHERAL ACCELERATOR DRIVER

IGTBUF can be invoked as a subroutine or a function as follows:

CALL IGTBUF (ibuf ,ibufno)

or

ibufno=IGTBUF(ibuf[,ibufno])

ibuf

The 40-word array specified in the call that initiated a sweep.

ibufno

Receives the number of the next buffer to access. If there is no
buffer in the queue, ibufno contains -1.

On the return from a call to IGTBUF, the following are the possible
combinations of ibufno and IOSB contents:

ibufno IOSB(l) IOSB(2)

n 400(8) (Word count)

n l {Word count)

-1 0 0

-1 1 0

-1 RSX-llM LPAll-K
error code(lO) error code(8)

Explanation

Normal buffer complete.

Buffer complete. Sweep
terminated. There may be
additional buffers in the
queue filled and ready for
processing.

No buffers in queue.
Request still active.

No buffers in queue. Sweep
terminated.

No buffers in queue.
Sweep terminated due to
error condition. (Refer to
Section 21.3.3 for error
code summary.) Note that
the error is not returned
until there are no more
buffers in the user queue.

21.3.1.11 INXTBF: Set Next Buffer - The INXTBF routine alters the
normal buffer selection algorithm. It allows the user task to specify
the number of the next buffer to be filled or emptied.

INXTBF can be invoked as a subroutine or a function as follows:

CALL INXTBF (ibuf,ibufno(,ind])

or

ind=INXTBF(ibuf,ibufno(,ind]}

21-18

LABORATORY PERIPHERAL ACCELERATOR DRIVER

ibuf

The 40-word array specified in the call that initiated a sweep.

ibufno

ind

The number of the next buffer the user wants filled or emptied.
The buffer must already be in the device queue.

Receives an indication of the result of the operation:

0 indicates that the specified buffer was not in the device
queue.

1 indicates that the next buffer was successfully set.

21.3.1.12 IWTBUF: Wait for Buffer - The IWTBUF routine allows a user
task to wait for the next buffer to fill or empty. It should be used
in conjunction with the specification of an event flag in the
sweep-initiating call. This routine should not be used if a
completion routine was specified in the call to initiate a sweep;
when event flags are specified, use the IGTBUF routine.

IWTBUF can be invoked as a subroutine or a function as follows:

or

ibuf

iefn

CALL IWTBUF (ibuf,[iefn] ,ibufno)

ibufno=IWTBUF(ibuf,[iefn] ,[ibufno])

The 40-word array specified in the call that initiated a sweep.

The event flag on which the task will wait. This should be the
same event flag as that specified in the sweep-initiating call.
If iefn equals 0 or default, event flag 30 is used.

ibufno

Receives the number of the next buffer to be filled or emptied by
the user task.

21-19

LABORATORY PERIPHERAL ACCELERATOR DRIVER

On the return from a call to IWTBUF, the following are the possible
combinations of ibufno and IOSB contents:

ibufno

n

n

-1

-1

IOSB(l)

400(8)

1

1

IOSB(2)

(word count)

(word count)

0

RSX-llM LPAll-K
error code(lO) error code(8)

Explanation

Normal buffer complete.

Buffer complete. Sweep
terminated. There may be
additional buffers in the
queue filled and ready for
processing.

No buffers in
Sweep terminated.

queue.

No buffers in queue.
Sweep terminated due to
error condition. (Refer
to Section 21.3.3 for
error code summary.) Note
that the error is not
returned until there are
no more buffers in the
user queue.

21.3.1.13 LAMSKS: Set Masks Buffer - The LAMSKS routine initializes a
user buffer containing a LUN, a digital start mask and event mark
mask, and channel numbers for the two masks. The routine then assigns
the LUN. Each DRll-K is considered to be one channel. Each channel
has both input and output capabilities.

LAMSKS must be called if digital input starting or event marking is to
be utilized, or if a LUN other than the default LUN 7 will be assigned
to LAO. LAMSKS must also be called if multiple LPAll-Ks are being
used. If LAMSKS is to be called, it must be called prior to calling
SETIBF. Unlike SETIBF, LAMSKS does not have to be called before each
sweep initiation unless one or more parameters are to be changed.

The LAMSKS call is as follows:

CALL LAMSKS (lamskb, [lun], [iunit], [idsc], [iemc], [idsw],
[iemw], [ind])

lamskb

A 4-word array.

lun

A logical unit number. Default LUN is 7.

21-20

iunit

idsc

iemc

idsw

iemw

ind

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The physical unit number of the LPAll-K. Default physical unit
number is LAO.

The digital start word channel. Default is channel 0.

The event mark word channel. Default is channel O.

The digital start word mask. Default is O (disable digital input
starting).

The event mark word mask. Default is 0 (disable event marking).

Receives a success or failure code as follows:

1 indicates successful initialization.

0 indicates an illegal argument list.

-n indicates a LUN assignment failure.
error code.

NOTE

n is the directive

If compatibility with K-series support routines is
desired, ignore this parameter.

For a discussion of event marking and digital starting, see the
LPAll-K Laboratory Peripheral Accelerator User's Guide.

21.3.1.14 RLSBUF: Release Data Buffer - The RLSBUF routine declares
one or more buffers free for use by the interrupt service routine.

The RLSBUF routine must be called to release buffer(s) to the device
queue before the sweep is initiated. The device queue must always
contain at least one buffer to maintain continuous sampling.
Otherwise, buffer overrun occurs (see Section 21.4 for a discussion of
buffer management). Note that RLSBUF does not verify whether the
specified buffers are already in a queue.

21-21

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The RLSBUF call is as follows:

ibuf

ind

CALL RLSBUF (ibuf,[ind],n0[,nl. •. ,n7])

The 40-word array specified in the call that initiated a sweep.

Receives a success or failure code as follows:

0 indicates illegal buffer number specified, illegal number
of buffers specified, or a double buffer overrun has been
detected.

1 indicates buffer(s) successfully released.

nO,nl,etc.

The numbers (0-7) of the buffers to be released. A maximum of
eight can be specified.

21.3.1.15 RMVBUF: Remove Buffer from Device Queue ~The RMVBUF rou­
tine removes a buffer from the device queue.

The RMVBUF call is as follows:

ibuf

n

ind

CALL RMVBUF (ibuf,n[,ind])

The 40-word array specified in the call that initiated a sweep.

The number of the buffer to remove.

Receives a success or failure code as follows:

0 indicates that the specified buffer was not in the device
queue.

1 indicates that the specified buffer was removed from the
queue.

21.3.1.16 SETADC: Set Channel Information - The SETADC routine
establishes channel start and increment information for all sweeps.
The SET!BF routine must be called to initialize the 40-word array
(ibuf) before SETADC is called.

21-22

LABORATORY PERIPHERAL ACCELERATOR DRIVER

If, in the call to SETADC, nchn is 1 or inc is O, the single channel
bit will be set in the mode word of the start RDA when the sweep start
routine is called.

SETADC can be invoked as a subroutine or a function as follows:

or

ibuf

iflag

ichn

nchn

inc

ind

CALL SETADC (ibuf, [iflag], [ichn], [nchn], [inc], [ind])

ind ISTADC (ibuf, [i flag], [ichn] , [nchn], [inc] , [ind])

A 40-word array initialized by the SETIBF routine.

Ignored. It is included for compatibility with K-series support
routines.

The first channel number. Default is O. If inc equals 0 (or
default), ichn is the address of a random channel list. A random
channel list is an array of n elements, where each element is a
channel number. The final element must have bit 15 set to
indicate the end of the list.

The number of samples to be taken per sequence. Default is one
sample.

The channel increment. Default is 1. The user should specify an
increment of 2 for differential A/D input. If inc equals O, ichn
is an array of random channels to receive input.

Receives a success or failure code as follows:

0 indicates an illegal channel number or SETIBF was not
called prior to the SETADC call.

1 indicates successful recording of channel information for
the sweep call.

21.3.1.17 SETIBF: Set Array for Buffered Sweep - The SETIBF routine
initializes an array required by buffered sweep routines. The SETIBF
routine must be called before every call to a buffered sweep routine.

21-23

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The SETIBF call is as follows:

CALL SETIBF (ibuf,[ind] ,[lamskb] ,buf0[,bufl ••• buf7])

ibuf

A 40-word array.

ind

Receives a success or failure code as follows:

0 indicates a parameter or buffer error.

1 indicates the array was successfully initialized.

lams kb

The name of a 4-word array. This array allows the use of
multiple LPAll-Ks within the same program, since the LUN is
specified in the first word of the array. Refer to the
description of the LAMSKS routine.

If compatibility with K-series software is desired, the default
(LUN 7) lamskb parameter should be used, and LUN 7 will be
assigned to LAO: in the task-build command file for the user
task.

bufO, etc.

The name of
specified.
least two
sampling.

a buffer. A maximum of eight buffers can be
Any buffer names in excess of eight are ignored. At

buffers must be specified to maintain continuous

Each buffer specified in the call to SETIBF is assigned a number
ranging from 0 to 7.

The assignment of these numbers is based on the order in which buffer
names appear in the argument list. The first buffer whose name
appears in the list is assigned number 0, the second is assigned
number 1, and so forth. In all subsequent calls to other routines
involving the set of buffers specified in a call to SETIBF, these
numbers, rather than names, are used to refer to particular buffers.

21.3.1.18 STPSWP: Stop Sweep - The STPSWP routine stops a sweep that
is in progress.

The STPSWP call is as follows:

CALL STPSWP (ibuf [, iwhen], [ind])

21-24

ibuf

iwhen

ind

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The 40-word array specified in the call that initiated a sweep.

Specifies when to stop the sweep:

0 stops the sweep, immediately aborting the sweep. This is
the default stop method. The sweep will be stopped
asynchronously by the LPAll-K hardware. When IOSB(l)
equals 1, the sweep has been stopped. Call IWTBUF
continously after calling STPSWP until the sweep has
actually been stopped. When stopping (aborting) a sweep in
this manner, the data contents of the current data buffer
cannot be guaranteed.

+n {any positive value) stops the sweep at the end of the
current buffer. This is considered to be the normal means
for stopping a sweep.

-n (any negative value) is reserved. (Do not use.)

Receives a success or failure code as follows:

1 indicates that the sweep will be stopped (at the time
indicated by iwhen).

0 indicates an illegal argument list.

-n is a directive error code indicating that lhe stop sweep
QIO failed.

21.3.1.19 XRATE: Compute Clock Rate and Preset - The XRATE routine
allows the user task to compute a clock rate and preset. The clock
rate divided by the clock preset yields the desired dwell (intersample
interval).

NOTE

The XRATE routine can be used only on
systems that have a FORTRAN or
BASIC-PLUS-2 compiler. This module is
not included with the other LPAll-K
support routines in object module
format. Rather, it is included in
source code format with the K-series
source modules in [45,10] on the system
disk.

21-25

LABORATORY PERIPHERAL ACCELERATOR DRIVER

XRATE can be invoked as a subroutine or a function as follows:

or

dwell

irate

CALL XRATE (dwell,irate,iprset,iflag)

ad well XRATE(dwell,irate,iprset,iflag)

The intersample time desired by the user. The time is expressed
in decimal seconds (REAL*4).

Receives the computed clock rate as a value from 1 to 5.

iprset

iflag

Receives the clock preset.

Specifies whether the computation is intended for Clock A or
Clock B:

0 indicates the computation is for Clock A.

nonzero indicates the computation is for Clock B.

adwell

The actual dwell rate for the clock based on the irate and iprset
parameters.

21.3.2 MACR0-11 Interface

The MACR0-11 interface to the LPAll-K consists of either the callable
routines described in Section 21.3.1 or a set of device-specific QIO
functions.

21.3.2.1 Accessing Callable LPAll-K Support Routines - MACR0-11
programmers access the LPAll-K support routines through either of two
techniques:

1. The standard subroutine linkage mechanism and the CALL op
code

2. Special-purpose macros that generate an argument list and
invoke a subroutine

These techniques are described in the following subsections.

LABORATORY PERIPHERAL ACCELERATOR DRIVER

21.3.2.2 Standard Subroutine Linkage and CALL Op Code - LPAll-K
routines can be accessed through use of the standard subroutine
linkage mechanism and the CALL op code. The format of this procedure
is:

.PSECT code
MOV #arglist,R5 ;ARGUMENT ADDRESS TO RS
CALL lsubr ;CALL LPAll-K ROUTINE

• PSECT data
arglist: .BYTE narg,O ;NUMBER OF ARGUMENTS

.WORD addrl ;FIRST ARGUMENT ADDRESS

.WORD addrn ;LAST ARGUMENT ADDRESS

In this sample, the two PSECT directives are shown only to indicate
the noncontiguity of the code and data portions of the linkage
mechanism. Within the argument list, any argument that is to be
defaulted must be represented by a -1 address (that is, 177777(8)).

21.3.2.3 Special-Purpose Macros - To facilitate the calling of
LPAll-K support routines from a MACR0-11 program, two macros are
provided in file [45,lO]LABMAC.MAC. These macros are:

1. !NITS

2. CALLS

INITS is an initialization macro. It must be invoked at the beginning
of the MACR0-11 source module.

CALLS invokes an LPAll-K support routine. The format of this macro
call is as follows:

CALLS lsubr,<argl, ••• ,argn>

lsubr

The name of an LPAll-K support routine.

argl, and so forth

Arguments to be formatted into an argument list and passed to the
routine. Each argument can be either a symbolic name or a
constant (interpreted as a positive decimal number) or can be
defaulted.

21-27

LABORATORY PERIPHERAL ACCELERATOR DRIVER

An example showing the use of these macros is as follows:

IBUF:
ISTAT:

START:

.TITLE
• IDENT
• BLKW
.BLKW
IN ITS

EXAMPLE
/01.00/
40 •
5

INITIALIZATION

FIND STATUS OF 5 SWEEP BUFFERS
BEING USED IN CURRENT SWEEP

CALLS IBFSTS(IBUF,ISTAT)

.END START

/l.3.2.4 Device-Specific QIO Functions - Table 21-2 lists the
device-specific functions of the QIO system directive macro that are
available for the LPAll-K. Programmers using these functions are
entirely responsible for buffer management (refer to Section 21.4) as
well as all other interfaces (for example, the request descriptor
array). Little (if any) performance improvement over the use of
FORTRAN support routines can be expected by using QIOs. Therefore, it
is recommended that routines described in Section 21.3.1 be used.

Table 21-2
Device-Specific QIO Functions for the LPAll-K

QIO Function Purpose

IO.CLK Start clock

IO. INI Initialize LPAll-K

IO. LOD Load ·microcode

IO. STA Start data transfer

IO. STP Stop request

21-28

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The MACR0-11 programmer must set up the appropriate Request Descriptor
Array (RDA) before the corresponding QIO request is issued. In the
case of the IO.STA function (start data transfer), the RDA is set up
with buffer virtual addresses. The LPAll-K driver address checks and
relocates these buffers, changing them from single-word to double-word
addresses. The RDA is fully described in the source code of the
driver.

21.3.2.5
LPAll-K
command.

IO.CLK - The IO.CLK function writes an image into the
real-time clock control register and issues a clock star~

The format of the QIO request is:

mode

ckcsr

QIO$C IO.CLK, ••• ,<mode,ckcsr,preset>

The mode.

The image to be written into the clock control register. To
achieve the function of clock rate -1 (see Section 21.3.1.2) for
Clock A only, set a clock rate of O and set the Schmitt Trigger 1
Interrupt Enable bit in the Clock A Status Register.

preset

The clock preset.

21.3.2.6 IO.IN! - The IO.IN! function initializes the LPAll-K. The
task issuing the QIO request must be privileged. The format of the
request is as follows:

irbuf

QIO$C IO.INI, ••• ,<irbuf,278.>

A buffer containing an LPAll-K initialize RDA. The buffer size
must be at least 278 (10) bytes.

21.3.2.7 IO.LOO - The IO.LOO function loads a buffer of LPAll-K
microcode. The issuing task must be privileged. The function
verifies that there are no active users for the LPAll-K and resets the
hardware. It then loads and verifies the microcode, starts the
LPAll-K, and enables interrupts. The function returns to the issuing
task when the Ready Interrupt is posted.

21-29

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The format of the QIO request for the IO.LOO function is as follows:

mbuf

QIO$C IO.LOD, ••• ,<mbuf,2048.>

A buffer containing microcode to be loaded. The buffer size must
be 2048(10) bytes.

21.3.2.8 IO.STA - The IO.STA function issues an LPAll-K data transfer
start command. The format of the QIO request is:

QIO$C IO.STA, ••. ,<bufptr,40.>

bufptr

A pointer to a buffer containing an LPAll-K sample start RDA.
The buffer size must be at least 40(10) bytes.

The subfunction codes defined for the IO.STA function are:

Bit 0 = 0

Bit 0 1

indicates that an AST is to be generated for every
buffer (if an AST is specified).

indicates that an AST is to be generated only for
exception conditions.

21.3.2.9 IO.STP - The IO.STP function stops a data transfer request.
The issuing task must be the same task that initiated the data
transfer. The format of the QIO request is as follows:

QI0$C IO.STP, ••• ,<userid>

user id

The index number associated with the user whose request is to be
stopped.

21.3.3 The I/O Status Block (IOSB)

Each active sweep must have its own I/O status block. The I/O status
block (IOSB) is a 2-word array allocated in the user program. It is
used to receive the status of a call to an LPAll-K support routine.
When a data sweep routine is called, the IOSB is always the first two
words of the 40-word array specified as the first argument of the
call. The first word of the IOSB contains the status code, and the
second word contains the buffer size in words.

21-30

LABORATORY PERIPHERAL ACCELERATOR DRIVER

NOTE

The 2-word IOSB is not directly used by
the LPAll-K driver. Instead, the driver
uses a 4-word IOSB for internal
communications with support routines;
this 4-word IOSB is completely
transparent to FORTRAN support routine
users. However, when issuing QIOs, it
is the 4-word IOSB that must be
referenced.

The first two words of the 4-word IOSB
function as a 2-word overall IOSB for
returning QIO completion status. The
driver returns status such as sweep
done, system errors, and LPAll-K
hardware errors with this 2-word portion
of the IOSB ..

The remaining two words function as an
intermediate IOSB for passing status
information during the data sweeps.
MACR0-11 programs using QIO calls always
receive the correct 2-word portion of
the IOSB in the AST generated by the
LPAll-K driver.

The codes that can appear in the first word of an I/O status block are
in ISA-compatible format (with the exception of the I/O pending
condition). Table 21-3 lists all return codes (except 351; see
Section 21.5).

Table 21-3
Contents of First Word of IOSB

IOSB (1) Meaning

FORTRAN MACRO

0 IO.PND Operation pending; I/O in progress

1 rs.sue Successful completion

301 IE.BAD Invalid arguments

302 IE.IFC Invalid function code

303 IE.DNR Device not ready (See Section 21. 7)

304 IE.VER Unrecoverable hardware error caused by
power-fail

305 IE.ULN LUN not assigned to LPAll-K

(continued on next page)

21-31

I

I

LABORATORY PERIPHERAL ACCELERATOR DRIVER

IOSB (1)

FORTRAN MACRO

306 IE.SPC

309 IE.DUN

3131 IE.DAO

3151 IE.ABO

316 IIE. PRI

3171 IEeRSU

320 IE. BLK

323 IE. NOD

3591 IE. FHE

366 IE. BCC

397 IE. IEF

Table 21-3 (Cont.)
Contents of First Word of IOSB

Meaning

Illegal buffer specification

Insufficient UM Rs available for

Data overrun

Request terminated; LPAll-K
IOSB(2)

Privilege violation

request

status code

Resource in use (load microcode only)

Executive blocked driver waiting for UM Rs

System dynamic memory exhausted

Fatal hardware error on device

LPAll-K load microcode error

Invalid event flag specified

in

1. IOSB(2) contains an LPAll-K status code. Refer to the LPAll-K
User's Manual for explanation of status code.

21.4 BUFFER MANAGEMENT

I

The management of buffers for data transfers by LPAll-K support
routines involves the use of two FIFO (First-In, First-Out) queues:

1. The device queue (DVQ)

2. The user queue (USQ)

The device queue (DVQ) contains the numbers of all buffers that the
user task has released to the support routines in a call to RLSBUF.
The buffers represented by these numbers are ready to be filled with
data (input sweeps) or to be emptied of data (output sweeps). Any
buffer specified in a call to INXTBF must already be in DVQ.

The user queue (USQ) contains the numbers of buffers available to the
user task. For output sweeps, this queue contains the numbers of
buffers that have already been emptied by the driver. For input
sweeps, the buffers represented by USQ are those which are filled with
data. In both instances, the user task determines the next buffer to
use (that is, it extracts the first element of USQ) by calling IGTBUF
or IWTBUF.

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Both the DVQ and USQ are initialized to -1 -- indicating no
buffers -- when the user task calls the SETIBF routine. The user task
must call RLSBUF before initiating any sweep, since at least one
buffer must be present in DVQ for the first input or output to occur.

For input sweeps, it is recommended that the user task call RLSBUF,
specifying the numbers associated with all the buffers to be used in
the sweep.

For output sweeps, the user task can specify two buffers (for
continuous sweeps) in the call to RLSBUF. The first action then taken
either in a completion routine or after a call to IWTBUF is to release
the next buffer. However, note that this approach does not represent
true multiple buffering since data overrun occurs if the second buffer
is not released in time.

If a buffer overrun occurs, the LPAll-K normally aborts the affected
sweep and returns an appropriate error code. However, the option of
having buffer overruns treated as nonfatal error conditions can be
selected by specifying the appropriate mode argument in any of the
sweep calls. Then, when a buffer overrun occurs, the LPAll-K
automatically defaults to buffer 0 for its next data buffer. In this
case, the following special considerations regarding buffer management
must be observed.

Call RLSBur before calling any of the sweep control calls. However,
if buffer overruns are to be treated as nonfatal conditions, the task
should not specify buffer 0 in the initial call to RLSBUF. (It is
assumed at the outset that buffer 0 is available for use in this
manner and, therefore, should not be released.)

Once a buffer overrun has occurred,- buffer O is used by the LPAll-K
and placed on the user queue just like any other data buffer. At this
point, buffer 0 is no longer available for buffer overruns. The task
then removes buffer 0 from the user queue by IWTBUF or IGTBUF for
possible processing. It is the task's responsibility to release
buffer 0 for future buffer overruns by specifying buffer 0 in a call
to RLSBUF. Note that the task cannot determine that buffer overrun
occurred until it receives buffer 0 from IWTBUF or IGTBUF.

The LPAll-K always uses buffer 0 following a buffer overrun if that
condition was specified as nonfatal. Thus, when a second buffer
overrun occurs before buffer 0 has been processed and made available
for that purpose, a condition called "double buffer overrun" occurs.
In this case, buffer 0 is not put on the user queue since the actual
contents of buffer 0 cannot be determined at this time, and buffer 0
may actually still be on that queue. The double buffer overrun
condition is detected when the task attempts to make buffer 0
available for future buffer overruns with the call to RLSBUF. Note
that this is the first time that the task is notified of the
condition. If a double buffer overrun condition is detected during
the call to RLSBUF, the task must be notified of the condition
indicating that the previous processing of buffer 0 contents may have
been of no value (the LPAll-K probably changed the buffer's contents
while it was being processed).

21-33

LABORATORY PERIPHERAL ACCELERATOR DRIVER

21.5 LOADING THE LPA-11 MICROCODE

LAINIT is a privileged task that is used to load all versions of
LPAll-K microcode. When called, LAINIT issues an IO.LOO function in a
QIO request, followed -by IO.IN! and IO.CLK function requests. The
IO.CLK function starts the clock with a default clock rate of 1 MHz.

During SYSGEN Phase 1, a command file is generated with LPAll-K
support selected through operator response to SYSGEN questions.
During SYSGEN Phase 2, the command file builds LAINIT using additional
information obtained through operator response to SYSGEN questions.
This information further defines the LPAll-Ks system environment and
characteristics for the specific user application.

Separate tasks are built during SYSGEN that invoke LAINIT to load
appropriate LPAll-K microcode. These tasks are named LAINn, where n
corresponds to unit number (starting with unit number 0) for each
LPAll-K unit in the system. Thus, LAINIT is never directly invoked by
the user.

SYSGEN automatically generates command lines in SYSVMR.CMD that will
install LAINIT and LAINO; LAINl and subsequent LPAll-K unit-numbered
tasks are not automatically included in the command file. Thus, the
user must install these tasks (if they are required) with VMR or MCR.

Once LAINIT and LAINn tasks have been installed, a particular version
of LPAll-K microcode for a specific unit can be loaded by running the
corresponding LAINn task. For example:

>RUN LAIN2

executes LAIN2, loading microcode for LPAll-K unit 2.

When a power-fail recovery occurs, the LPAll-K driver terminates all
outstanding activity and requests execution of initiating task(s)
(LAINn) for each unit. This automatically provides power-fail
recovery for the LPAll-K microprocessor, provided the LAINIT and LAINn
tasks are installed. Note that when either the RSX-llM system is
bootstrapped or the LPAll-K driver is loaded, a simulated power-fail
(resulting in driver power-fail recovery) occurs, loading microcode
for each LPAll-K unit. In addition, when the LPAll-K is brought
online on an RSX-llM-PLUS system, a simulated power-fail occurs.

If the request for the initiating task (LAINn) fails or the loader
fails to load the driver, the LPAll-K unit does not become
initialized. Any further attempt to use the LPAll-K will fail, with
the device not ready (IE.DNR) code returned to the requesting task.

If there is no LPA-llK present at the default address, LAINx returns
error code 351 in IOSB(l). This failure occurs if there is more than
one LPA-llK and the one at the default address is removed. There must
always be an LPA-llK at the default address.

21-34

LABORATORY PERIPHERAL ACCELERATOR DRIVER

All versions of LAINn set the real-time clock frequency to lMHz by
default. The UCB device characteristics word 4 (U.CW4) contains a
16-bit buffer preset value that controls the rate of ticks (that is,
the rate at which the clock interrupts). This value can be set
dynamically or during SYSGEN. The quotient resulting when this value
is divided into 1 MHz is the rate of ticks. For example, if U.CW4
contains 2, the tick rate is 500kHZ. The user can issue a Get LUN
Information system directive to examine the preset value and the MCR
SET /BUF command can be used to modify it while the system is running.
This modification will take effect the next time the LPAll-K is
reloaded with micro-code by LAINx.

21.6 UNLOADING THE DRIVER

In order to attain maximum LPAll-K performance, the LPAll-K driver is
designed to appear not busy to the RSX-llM/M-PLUS Executive. As a
result, the potential problem exists that any privileged user can
unload the driver while the LPAll-K is servicing other users.
Therefore, the user must first determine that the LPAll-K is not being
used prior to unloading the driver.

21.7 TIME-OUT OF THE LPAll-K

The error code IO.DNR means that the LPAll-K timed out while
processing a user request~ In dedicated mode, this condition can have
special meaning.

The LPAll-K driver (LADRV) disables the time-out countdown following
LPAll-K acknowledgement of the user-task request. In all cases in
multirequest mode, and in most cases in dedicated mode, this
acknowledgement is received almost immediately after the user-task
request is passed to the LPAll-K. The only case when this is not true
is when the user task requests that a data sweep be started while in
dedicated mode. In this case, the LPAll-K waits to transfer the first
256 words of data before acknowledging the sweep request.

If a task is sampling at extremely slow data rates in dedicated mode,
the time to transfer that first 256 words may exceed the time-out
count for the device. This can be avoided by using the multirequest
mode.

If a task must use dedicated mode for high sampling rates,
start of the sweep will be delayed for an extended period of
time-out count for the LPAll-K must be disabled. (Refer to
in LADRV describing this time-out problem and showing
time-out can be safely disabled for sweep calls.)

NOTE

This procedure will disable the
detection of real time-outs for sweep
calls in dedicated mode.

21-35

and the
time, the
the note
where the

LABORATORY PERIPHERAL ACCELERATOR DRIVER

21.S 22-BIT ADDRESSING SUPPORT

The LPAll-K driver supports 22-bit addressing on systems having that
capability. When the system employs 22-bit addressing, certain
restrictions are imposed. As a result, tasks written for use with
earlier LPAll-K driver versions may not run without user task
modifications. These restrictions are discussed in the remainder of
this section.

When the LPAll-K driver is executed on 22-bit systems, a certain
contiguity of user-task data structures must be established. The task
data transfer buffers and the IBUF array must be contiguous. In
addition, the task random channel list (if present) and the last data
transfer buffer must be contiguous. Thus, the correct sequence for
user-task data is the IBUF array, followed by the task data transfer
buffers, followed by the task random channel list. Failure to
structure the user-task data in this manner can result in illegal
buffer specification errors (IE.SPC) being returned or possible
corruption of task address space by data sweeps.

Since the LPAll-K user task can potentially request more buffer space
than there is UMR mapping space, a limit on the total number of UMRs
that can be used by the LPAll-K driver at any time must be specified.
This limit is specified during SYSGEN part 1, along with the interrupt
vector and CSR address for the LPAll-K.

If a task's UMR requirements will cause the total number of UMRs
currently in use by the LPAll-K to exceed the SYSGEN-specified limit,
the task will receive an Insufficient UMRs Available For Request
(IE.DUN) error code in IOSB(l} of the IBUF array.

This condition can be avoided by setting the UMR limit to the expected
minimum number required for smooth LPAll-K operation for all expected
users. Since each UMR maps SK bytes, each user's requirements can be
calculated as follows:

• Each IBUF array requires 76(10) bytes of UMR mapping.

• Add this result to the byte length of all the contiguous
transfer buffers to be used in the sweep.

• Add this result to the byte length of the random channel list
(if it exists).

• The number of UMRs the user task needs is the total byte count
divided by Sl92 (SK) and rounded up to the next 8K (if not an
exact multiple of Sl92}.

Because there are only 31 UMRs available for the entire system, it is
not desirable to allow the LPAll-K driver (through the
SYSGEN-specified limit) to have_ access to all or nearly all UMRs at
any given time. Since other device drivers may also require UMR
mapping, the total allocation of UMRs by LADRV can slowly choke a
system, and for that reason allocation of UMRs must be carefully
considered.

21-3~

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The UMR allocation limit for the LPAll-K can be changed by directly
modifying the value in the LPAll-K's UCB word U.LAUB; it is not
necessary to do another SYSGEN. Use the OPEN command to access and
change the limit to the new value. Possible values can range from
0-31. Then, make the required change, UNLOAD, and then LOAD the
LPAll-K driver. If the LPAll-K driver is resident, the value in
U.LAUB+2 must also be changed to the new value.

NOTE

Be sure the LPAll-K is idle before
attempting to access the UCB.

It is possible for a condition to exist where there may not be enough
UMRs available for the Executive to allocate to the driver at the time
the request is made, even if the number of UMRs necessary to map the
user task's request are within the SYSGEN-defined limit. When this
happens, the Executive blocks the driver until its UMR request can be
granted. Since this condition can introduce sweep timing errors, the
current sweep is unconditionally aborted and an appropriate error code
(IE.BLK) is returned to the task in IOSB(l).

21.9 SAMPLE PROGRAMS

C LPAll-K SAMPLE PROGRAM
c
C SAMPLE SHOWS THE BASIC FLOW FOR PROGRAMMING THE LPAll-K IN A HIGHER
C LEVEL LANGUAGE. IT IS EXPECTED THE USER WILL TEST IOSB RETURNS AND
C ERROR INDICATORS (IND) AS NECESSARY. SYNCHRONOUS PROGRAM TERMINATION
C IS SUGGESTED. NOTE: THIS SAMPLE PROGRAM WILL NOT EXECUTE CORRECTLY IN
C 22-BIT MODE
c
C D/A DEDICATED MODE WITH CONTINUOUS SAMPLING
c
C PROGRAM RUNS 3 LOOPS (BASED ON NCNT). ON FIRST LOOP,
C STOPS SYNCHRONOUSLY AT END OF PRESENT BUFFER WHICH HAPPENS
C TO BE BUFFER #3 BEING FILLED FOR THE 2ND TIME.
C THE 2ND LOOP TERMINATES ASYNCHRONOUSLY (IWHEN=O).
C THE 3RD LOOP TERMINATES ASYNCHRONOUSLY ALSO.
c
c

2
5

c

DIMENSION IBUF(40) ,IOSB(2) ,NB(l024,8)
EQUIVALENCE (IBUF(l) ,IOSB(l))
EQUIVALENCE (NO,NB(l,l)) '(Nl,NB(l,2)) I (N2,NB(l,3)) '(N3,NB(l,4))
EQUIVALENCE (N4,NB(l,5)), (N5,NB(l,6)), (N6,NB(l,7)), (N7,NB(l,8))
CALL CLOCKA (4,-1)
IWHEN=l
NCNT=O
ICNT=l
CALL SETIBF(IBUF,IND,,NO,Nl,N2,N3)

C INITIALIZE BUFFERS TO ALL -2'S
c

20

, ('\
.LV

DO 10 J=l,8
DO 10 K=l,1024
NB(K,J)=-2
CALL RLSBUF(IBUF,IND,1,2,3)
CALL DASWP(IBUF,1024,,,,20)
CALL IWTBUF(IBUF,20,IBUFNO)
CALL RLSBUF (IBUF,IND,IBUFNO)
WRITE (1,300) IBUFNO,IOSB(l) ,IOSB(2) ,ICNT
IF (NCNT.EQ.3) GOTO 40

21-37

LABORATORY PERIPHERAL ACCELERATOR DRIVER

IF (ICNT.EQ.n) GOTO 2
ICNT=ICNT+l
IF (ICNT.NE.4) GOTO 20
CALL STPSWP (IBUF,IBUFNO)
IWHEN=O
NCNT=NCNT+l
GOTO 20

40 CALL IGTBUF(IBUF,IBUFNO)
WRITE (1 , 3 0 0) IB U F N 0 , IO SB (1) , IO SB (2) , IC NT

300 FORMAT (3X,Il0,208,Il0)
STOP
END

The following sample program will test the digital I/O interface of
the LPAll-K. It will execute correctly in 22-bit mode.

c
C PROGRAM TO TEST DIGITAL INPUT AND OUTPUT FOR LPAll-K
C DIGITAL EQUIPMENT CORPORATION
c
C THIS PROGRAM IS DESIGNED TO OUTPUT A DATA BUFFER TO THE LPAll-K
C DIGITAL I/O INTERFACE AND AT THE SAME INSTANT FOR EACH SAMPLE
C WORD READ THE RESULTS BACK. THE DATA BUFFERS ARE COMPARED TO
C MAKE SURE THE TRANSFER IS COMPLETED SUCCESSFULLY.
c
C ****** NOTE! ******
C THIS PROGRAM WILL WORK IF AND ONLY IF THE DIGITAL I/O
MODULE
C UNIT SPECIFIED HAS THE MAINTENANCE JUMPER "WRAP-AROUND"
CABLE
C INSTALLED!!!!
c
c
C RESERVE STORAGE FOR LPAll-K ROUTINES
c
C THIS PROGRAM WILL WORK IN 22-BIT MODE
c
C DATA BUFFERS
c

INTEGER*2 IBUFI(40) ,INBUF(300,4)
INTEGER*2 COMMI(l240)
EQUIVALENCE(IBUFI(l) ,COMMI(l))
EQUIVALENCE(INBUF(l,l) ,COMMI(41))

INTEGER*2 IBUF0(40) ,OUTBUF(300,4)
INTEGER*2 COMMO(l240)
EQUIVALENCE(IBUFO{l) ,COMMO(l))
EQUIVALENCE(OUTBUF(l,l) ,COMM0(41))

C RESERVE STORAGE AND EQUIVALENCE FOR RSX I/O STATUS BLOCKS
LOGICAL*l INIOS(4) ,OUTIOS(4)
EQUIVALENCE (IBUFO (1) , OUTIOS (1)) , (IBUFI (1) , INIOS (1))

c
C SET BUFFER SIZE TO USE FOR THIS REQUEST - MAXIMUM OF 300
WITHOUT
C CHANGING THE DIMENSION STATEMENTS. MUST BE EVEN!

ISIZE=300
c
C INITIALIZE THE PASS COUNTER FOR THE LOOP

IPASS=l
c
C SET LPAll-K LOGICAL UNIT NUMBER AND ASSIGN IT TO LAO:

c

ILUN=7
CALL ASSIGN(ILUN,'LA:' ,O,ISTAT)
IF(ISTAT .LT. O)GO TO 100

21-38

LABORATORY PERIPHERAL ACCELERATOR DRIVER

C INITIALIZE THE OUTPUT DATA BUFFER
DO 2 J=l,4
DO 2 I=l,ISIZE,2
OUTBUF(I,J)="l25252
OUTBUF(I+l,J)="052525

2 CONTINUE
c
C STOP LPAll-K REAL TIME CLOCK "A" THIS WILL MAKE SURE THAT
C NOTHING HAPPENS WHEN WE INITIALIZE THE TWO SWEEPS.
5 CALL CLOCKA(O,O,ISTAT,ILUN)

IF(ISTAT .NE. l)GO TO 110
c
C INITIALIZE THE INPUT DATA BUFFER. ASSUME THE LPAll-K DIGITAL
C I/O INTERFACE IS CONFIGURED IN THE DATA LATCH MODE (AS OPPOSED
C TO SENSE). THUS THE OUTPUT DATA BUFFER MUST CONTAIN A BIT
CHANGE
C FOR EVERY BIT POSITION IN SUCCEEDING DATA WORDS.

DO 10 J=l,4
DO 10 I=l,ISIZE
INBUF(I,J)=O

10 CONTINUE
c
C INITIALIZE DIGITAL OUTPUT SWEEP. THIS MUST BE DONE BEFORE INIT
C OF DIGITAL INPUT SWEEP! THE LPAll-K PROCESSES THE TRANSFER OF
C DATA IN THE ORDER OF THE SPECIFICATION OF THE SWEEPS. THUS WE
C WANT TO OUTPUT BEFORE WE INPUT.

CALL
SETIBF(IBUFO,ISTAT,,OUTBUF(l,l) ,OUTBUF(l,2) ,OUTBUF(l,3) I

1 OUTBUF(l,4))
IF(ISTAT .NE. l)GO TO 120

c
C RELEASE BUFFER FOR OUTPUT SWEEP
C ALL FOUR BUFFERS -- INDEXES 0,1,2,3 ARE RELEASED

CALL RLSBUF(IBUFO,ISTAT,0,1,2,3}
IF(ISTAT .NE. l)GO TO 130

c
C "START" DIGITAL OUTPUT SWEEP. REMEMBER NOTHING WILL HAPPEN
UNTIL
C WE START THE REAL TIME CLOCK. THE LPAll-K WILL PROCESS THE
REQUEST
C AND BE ALREADY TO TRANSFER DATA WHEN WE RESUME THE CLOCK.
C EVENT FLAG 14 IS SPECIFIED. A DIFFERENT EVENT FLAG MUST BE
C SPECIFIED FOR THE DIGITAL INPUT SWEEP SO THE FORTRAN PROGRAM
C CAN SYNCHRONIZE WITH TWO INDEPENDENT, ASYNCHRONOUS PROCESSES.

c
c

CALL DOSWP(IBUFO,ISIZE,4,0,1,14,30,0)

C NOW INITIALIZE FOR DIGITAL INPUT SWEEP. THE SAMPLING
PARAMETERS
C MUST BE THE SAME FOR BOTH THE INPUT AND OUTPUT SWEEP. WE WANT
C TO WRITE AND READ THE SAME DATA WORD AT THE SAME TIME.

CALL
SETIBF(IBUFI,ISTAT,,INBUF(l,l) ,INBUF(l,2) ,INBUF(l,3),

1 INBUF(l,4))
IF(ISTAT .NE. l)GO TO 140

c
C RELEASE THE INPUT BUFFERS

c

CALL RLSBUF(IBUFI,ISTAT,0,1,2,3)
IF(ISTAT .NE. l)GO TO 150

C "START DIGITAL OUTPUT SWEEP. AGAIN, NOTHING WILL HAPPEN UNTIL
C WE RESUME THE LPAll-K REAL TIME CLOCK.
C EVENT FLAG 15 IS SPECIFIED TO SEPARATE THE INPUT AND OUTPUT
SWEEPS.

CALL DISWP(IBUFI,ISIZE,4,0,1,15,30,0)
c

21-39

LABORATORY PERIPHERAL ACCELERATOR DRIVER

C NOW FOR THE BIG EVENT! WE START THE CLOCK AND SEE WHAT HAPPENS.

c
c

CALL CLOCKA(l,-150,ISTAT,ILUN)
IF(ISTAT .NE. l)GO TO 150

C THE LPAll-K SHOULD NOW BEGIN TO TRANSFER DATA
C FIRST WE WAIT FOR THE DIGITAL OUTPUT SWEEP TO FINISH. IT WAS
C STARTED FIRST AND SHOULD FINISH FIRST. WE VERIFY THAT IT
C FINISHES CORRECTLY OR CHECK FOR ERRORS.
15 CALL IWTBUF(IBUF0,14,IBUFNO)
c
C IF BUFFER NUMBER IS -1, THEN ERROR
C IF BUFFER NUMBER IS 0,1, OR 2, THEN CONTINUE
C IF BUFFER NUMBER IS 3, THEN FINISHED

IF(IBUFNO .LT. 0) GO TO 160
c
C NOW WAIT FOR THE DIGITAL INPUT SWEEP TO FINISH. THE SAME ERROR
C CONDITIONS APPLY.

c

CALL IWTBUF(IBUFI,15,IBUFNO)
IF(IBUFNO .LT. O)GO TO 170
IF(IBUFNO .LE. 2}GO TO 15

C THE FACT THAT WE HAVE GOTTEN HERE SAYS THE LPAll-K HAS DONE ITS
C THING.
C CHECK THE INPUT DATA BUFFERS AGAINST THE OUTPUT DATA BUFFERS

DO 20 J=l,4

20
c

DO 20 I=l, ISIZE
IF(INBUF(I,J) .NE. OUTBUF(I,J))GO TO 180
CONTINUE

C SUCCESSFUL COMPLETION, LET EVERYONE KNOW. THEN GO BACK AND DO
IT
C AGAIN.

1000

c

WRITE(5,1000)IPASS
FORMAT(' REQUEST COMPLETE!' ,2X,I6)
IPASS=IPASS+l
GO TO 5

C REPORT ANY ERRORS THAT HAVE BEEN UNCOVERED IN THE EXAMPLE.
c
100
1010

110
1020

120
1030

130
1040

140
1050

150
1060

WRITE(5,1010)ISTAT
FORMAT(//,' ERROR ASSIGNING LUN TO LPAll-K
CALL EXIT
WRITE(5,1020)ISTAT
FORMAT(//,' ERROR STOPPING LPAll-K CLOCKA
CALL EXIT
WRITE(5,1030)ISTAT
FORMAT(//,' ERROR FROM SETIBF - OUTPUT BUFFER
CALL EXIT
WRITE(5,1040)ISTAT
FORMAT(//,' ERROR FROM RLSBUF - OUTPUT BUFFER
CALL EXIT
WRITE(5,1050)ISTAT
FORMAT(//,' ERROR FROM SETIBF - INPUT BUFFER
CALL EXIT
WRITE(5,1060)ISTAT
FORMAT(//,' ERROR FROM RLSBUF - INPUT BUFFER
CALL EXIT

160 WRITE(5,1070)IBUFNO,(OUTIOS(I} ,I=l,4)
1070 FORMAT(//,' ERROR FROM DOSWP ',I2,4(3X,04))
c

I , I 6)

I 'I 6)

I , I 6)

I , I 6)

I , I 6)

I , I 6)

C *** WARNING *** DISWP MIGHT STILL BE ACTIVE WHEN YOU EXIT
c

CALL EXIT
1 7 0 WRITE (5 , 108 0) IB U F N 0 , (IN IO S (I) , I= 1 , 4)
1080 FORMAT(//,' ERROR FROM DISWP ',I2,4(3X,04))

21-40

LABORATORY PERIPHERAL ACCELERATOR DRIVER

c
C *** WARNING *** DOSWP MIGHT STILL BE ACTIVE WHEN YOU EXIT
c

CALL EXIT
180 WRITE(5,1090)I,J,OUTBUF(I,J) ,INBUF(I,J)
1090 FORMAT(//,' *DATA ERROR* - WORD# ',I4,2X,I4,4X,06,2X,06)

CALL EXIT
END

21-41

CHAPTER 22

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.l INTRODUCTION

K-series laboratory peripheral modules are supported through a set of
program-callable routines that are linked with the user's task at
task-build time. These routines are highly modular. Therefore, a
particular task contains only that code necessary for the facilities
actually used. Additionally, the support routines perform input and
output operations through the Connect to Interrupt Vector (CINT$)
Executive directive. This directive allows the user's task to bypass
normal QIO processing and perform I/O almost completely independent of
the Executive.

The following subsections briefly describe the K-series laboratory
peripherals, the features provided by the K-series support routines,
and the generation and use of these routines.

22.1.1 K-Series Laboratory Peripherals

The K-series peripheral support routines provide single-user,
task-level support for the following laboratory peripheral modules:

• AAll-K D/A converter

• ADll-K A/D converter

• AMll-K multiple gain multiplexer

• DRll-K digital I/O interface

• KWll-K dual programmable real-time clock

• AAVll-A D/A converter (LSI-11-bus-compatible)

• ADVll-A A/D converter (LSI-11-bus-compatible)

• DRVll parallel line unit (LSI-11-bus-compatible)

• KWVll-A programmable real-time clock (LSI-11-bus-compatible)

22-1

K-SERIES PERIPHERAL SUPPORT ROUTINES

The maximum supported hardware configuration consists of one KWll-K
and sixteen of each of the AAll-K, ADll-K (with optional AMll-K), and
DRll-K modules. The minimum configuration, if synchronous sweeps are
desired, would be one KWll-K and any one of the three other modules.
A single DRll-K supports nonclocked, interrupt-driven I/O sweeps or
single digital input or output. A single ADll-K supports single-word
A/D input and nonclocked, overflow-driven sampling (provided that the
A/D conversion is started with the EXT start input on the ADll-K). An
AAll-K supports burst mode output and scope control.

22.1.1.1 AAll-K D/A Converter - The AAll-K includes four 12-bit
digital-to-analog converters (DACs) and an associated display control.
The display control permits the user to display data in the form of a
4096 x 4096 dot array. Under program control, a dot may be produced
at any point in this array, and a series of these dots may be
programmed sequentially to produce graphical output. The display
control may output to chart or X/Y recorder or CRT display unit.

The AAVll-A is an LSI-ii-bus-compatible D/A
characteristics similar to those of the AAll-K.

converter with

22.1.1.2 ADll-K A/D Converter - The ADll-K is a 12-bit successive
approximation converter that enables the user to sample analog data at
specified rates and to store the equivalent digital value for
subsequent processing. The basic subsystem consists of an input
multiplexer (switch-selectable between 16-channel single-ended or
8-channel differential), sample-and-hold circuitry, and a 12-bit A/D
converter. By changing jumpers, the analog inputs can be made bipolar
or unipolar.

The ADVll-A is an LSI-11-bus-compatible D/A
characteristics similar to those of the ADll-K.

converter with

22.1.1.3 AMll-K Multiple Gain Multiplexer - The AMll-K is a
multiplexer expander that supplements the 16-channel single-ended (8
differential) analog input multiplexer in the ADll-K. The expansion
is done in three independent groups on the AMll-K. Each group can be
set to 16 single-ended or pseudo-differential or 8 differential input
channels; each group can have a gain of 1, 4, 16, or 64 assigned to
it by a switch in the amplifier.

22.1.1.4 DRll-K Digital I/O Interface - The DRll-K is a
general-purpose digital input/output interface capable of the parallel
transfer of up to 16 bits of data, under program control, between a
PDP-11 UNIBUS computer and an external device (or another DRll-K).

The DRVll is an LSI-11-bus-compatible, general-purpose input/output
interface with characteristics similar to those of the DRll-K~

22-2

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.1.1.5 KWll-K Dual Programmable Real-Time Clock - The KWll-K
dual programmable real-time clock option used in PDP-11
computers. Features include:

Clock A

• 16-bit counter

• 16-bit programmable preset/buffer register

• Four modes of operation

• Two external inputs (Schmitt triggers)

• Eight clock rates, program selectable

• Five clock frequencies, crystal controlled for accuracy

• Processor actions synchronized to external events

Clock B

• 8-bit counter

• 8-bit programmable preset register

• Repeated interval mode of operation

• One external input (Schmitt trigger)

• Seven clock rates, program selectable

• Five clock frequencies, crystal controlled for accuracy

The KWVll-A is an LSI-11-bus-compatible real-time
characteristics similar to those of the KWll-K.

22.1.2 Support Routine Features

clock

is a
UNIBUS

with

The RSX-llM program-callable K-series support routines provide the
following features:

• Clock overflow or trigger-driven A/D sweep

• Clock overflow or interrupt-driven digital input sweep

• Clock overflow or interrupt-driven digital output sweep

• Clock overflow or burst mode D/A sweep

• Single digital input

• Single digital output

• Single A/D input

22-3

K-SERIES PERIPHERAL SUPPORT ROUTINES

• Scope control

• Histogram sampling

• Schmitt Trigger simulation

• Clock control

• 16-bit software clock

• A/D input to real number conversion

• Buffer control

Immediate digital input or output
Multiple clock-driven sweeps can be
was selected during the K-series
22.1.3.1). Such sweeps, however,
restrictions:

can be performed at any time.
initiated if this optional feature
generation dialog (see Section
are subject to the following

1. Regardless of the number of controllers present, there can be
only one active A/D sweep at any point in time. The same
restriction holds true for D/A sweeps. It is possible,
however, to perform digital input and digital output sweeps
simultaneously, using the same DRll-K, so long as this
feature is selected during the generation dialog.

2. There can be no conflict in clock rates among the sweeps.

3. Only the first sweep can use the delay from start event.

4. The interevent time data-gathering routine cannot run in
parallel with any other clock-driven sweeps.

22.1.3 Generation and Use of K-Series Routines

To use K-series support routines, the user must do the following three
things during SYSGEN:

• Reserve necessary vector space.

• Specify that the CINT$ Executive directive is to be included
in the system.

• Specify that AST support is required.

At a point in time subsequent to SYSGEN, the user follows particular
procedures for the following:

1. Generation of K-series support routines

2. Program use of K-series routines

These two procedures are detailed in the following subsections.

22-4

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.1.3.1 Generation of K-series Support Routines - An indirect com­
mand file, similar to those used for SYSGEN itself, is used to
generate the K-series support routine library and other necessary
facilities. This command file is invoked by typing the following:

>@[200,200]SGNKLAB

The dialog initiated by this command determines .the device
configuration of the subsystem, the maximum number of buffers that
will be used on a per-sweep basis, and the inclusion or omission of
optional features such as multiple clock-driven sweeps and duplex
digital I/O sweeps.

After this information has been obtained, the command file creates the
following:

1. A prefix file, [45,lO]KPRE.MAC, for use during assembly of
K-series support routines.

2. A data base file, [45,lO]KIODT.MAC, containing control blocks
needed to support the devices.

3. A common block file, [45,lO]KCOM.MAC, that allows user tasks
to access the I/O page. This file is used only on mapped
systems.

4. On mapped systems only, two indirect command files:

a. [45,24]KCOMBLD.CMD, which is a TKB build file for the
common block

b. [l,54]INSKCOM.CMD that is used to install the common
block

At the user's option, the K-series routines themselves can then be
assembled and an object library created. The user can specify the
name of this library or accept the following default file
specification:

LB: [l,l]KLABLIB.OLB

22.1.3.2 Program Use of K-series Routines - The steps required for
routine program use of K-series support routines are as follows:

1. Compile or assemble the program. If the task will be
overlaid, it is required that both the buffers used by the
K-series support routines and the support routines themselves
reside in the root section of the overlay structure.

22-5

K-SERIES PERIPHERAL SUPPORT ROUTINES

2. Invoke TKB:

a. On mapped systems only, use the IPR:O switch to indicate
that the task is privileged.

b. Include the following indirect
responses to the TKB prompt:

TKB>@[l,5x]LNK2KLAB

command among the

where x is 0 for unmapped systems and 4 for mapped
systems.

c. On mapped systems only, enter the following indirect
command in response to the prompt for options:

ENTER OPTIONS
@[l,54]LNK2KCOM

II

3. On mapped systems only, enter the following indirect command
from a privileged terminal before executing the program:

>@[l,54]INSKCOM

The following is a complete example of the steps previously described:

>F4P KTEST,KTESTl-SP=KTEST
>TKB
TKB>KTESTIPR:O,KTESTl-SP=KTEST,[l,l]F4POTSILB
TKB>@[l,54]LNK2KLAB
TKB>I
ENTER OPTIONS
TKB>@[l,54]LNK2KCOM

TBK>//

22.2 THE PROGRAM INTERFACE

A collection of program-callable subroutines provides access to the
K-series laboratory peripherals. The formats of these calls are fully
documented here for FORTRAN programs. MACR0-11 programmers access
these same subroutines either through the standard subroutine linkage
or through the use of two special-purpose macros. Both techniques are
described in Section 22.2.2. Both FORTRAN and MACRO programs must
contain at least one IIO Status Block (IOSB), described in Section
22.2.3, for retrieval of status information.

22-6

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1 FORTRAN Interface

Table 22-1 lists the FORTRAN interface subroutines for accessing
K-series laboratory peripherals.

Table 22-1
FORTRAN Subroutines for K-series Laboratory Peripherals

Subroutine Function

ADINP Initiate single analog input

ADS WP Initiate synchronous A/D sweep

CLOCKA Set Clock A rate

CLOCKB Control Clock B

CVADF Convert A/D input to floating point

I
DASWP

DIGO

Initiate synchronous D/A sweep

Digital start event

DINP Digital input

DISWP Initiate synchronous digital input sweep

DOSWP Initiate synchronous digital output sweep

DOUT Digital output

FLT16 Convert unsigned integer to a real constant

GTHIST Gather interevent time data

IBFSTS Get buff er status

ICLOKB Read 16-bit clock

IGTBUF Return buff er number

INXTBF Set next buffer

IWTBUF Wait for buffer

RCLOKB Read 16-bit clock

RLSBUF Release data buff er

RMVBUF Remove buffer from device queue

SCOPE Control scope

SET ADC Set channel information

SETI BF Set array for buffered sweep

STPSWP Stop sweep

XRATE Compute clock rate and preset

22-7

K-SERIES PERIPHERAL SUPPORT ROUTINES

The calling sequences of the routines listed in Table 22-1 are
compatible with the routines for the LPA-11, described in Chapter 21.
The following subsections briefly describe the function and format of
each FORTRAN subroutine call. ·

22.2.1.1 ADINP: Initiate Single Analog Input - The ADINP
obtains a single word as input from the A/D converter.

routine

ADINP can be invoked as a subroutine or a function as follows:

or

iflag

ichan

ival

CALL ADINP ((i flag] , [ichan] , i val)

ival=IADINP ((iflag], [ichan], (ival])

The gain options:

0 Absolute channel addressing (default). This is the only
mode supported on the ADVll (Q-bus).

1 Sample at a gain of 1. In modes 1, 2, 3, 4, and 5 each
ADll-K/AMll-K is treated as 16 channels with channels
17-63 strapped to gains 4, ln, and 64. The 48
multiplexer channels are selected by the software
according to the gain specification. Mode values 1, 2,
3, 4, and 5 are not supported on the ADVll (Q-bus
version) •

2 Sample at a gain of 4.

3 Sample at a gain of 16.

4 Sample at a gain of 64.

5 Perform auto gain ranging.

Selects the channel to be sampled. The default is O.

Receives the sample. The gain bits will be inserted if iflag is
nonzero.

22.2.1.2 ADSWP: Initiate Synchronous A/D Sweep - The ADSWP routine
initiates a synchronous A/D input sweep through an ADll-K (and, if
present, the AMll-K). The analog input word placed in the user buffer
consists of the 12 bits read from the A/D converter and (except when
the mode parameter equals 0) the 2 gain bits read from the A/D status
register. A value of 177776(8) is returned for A/D time-out. A value
of 177777(8) is returned on an A/D conversion error. Such errors are
typically caused by conversions occurring too fast.

22-8

K-SERIES PERIPHERAL SUPPORT ROUTINES

If differential input is desired, the channel increment must be set to
2 by calling the SETADC routine. The default channel increment is 1
(single-ended input).

NOTE

This routine will expect to have the STl
OUT from the KWll-K or similar trigger
jumpered to EXT START on the ADll-K if
mode 512 is desired. This also requires
the A EVENT OUT from the KWll-K clock
trigger jumpered to the KW overflow on
the ADll-K if clock driven sweeps are
desired.

The format of the ADSWP call is as follows:

ibuf

lbuf

nbuf

mode

CALL ADSWP (ibuf ,lbuf, [nbuf], [mode], [iprset], [iefn], [ldelay],
[ichn] , [nchn])

A 40-word array initialized by the SETIBF routine. The first two
words of the array are the I/O status block (IOSB).

The size in words of each data buffer. All data buffers must be
equal in size and lbuf must be greater than O.

The number of buffers to be filled.
equal to O, indefinite sampling
terminates indefinite sampling.

If nbuf is omitted or set
occurs. The STPSWP routine

Sampling options. The default is O. The mode bit values listed
below that are preceded by a plus sign (+) are independent and
can be ADDed or ORed together. Those values not preceded by a
plus sign are mutually exclusive and only one such value can be
used at a time. All bit values not listed below are reserved.

The following values can be specified:

O Absolute channel addressing (default). This mode allows
the user to directly access all 63 channels of an
ADll-K/AMll-K combination. This is the only mode that
is LPA-11 compatible.

22-9

K-SERIES PERIPHERAL SUPPORT ROUTINES

1 Sample with a gain of 1. In modes 1, 2, 3, 4, and 5
each ADll-K/AMll-K is treated as 16 channels with
channels 17-63 strapped to gains 4, 16, and 64. The 48
multiplexer channels are selected by the software
according to the gain specification. Mode values 1, 2,
3, 4, and 5 are not supported on the ADVll (Q-bus
version).

2 Gain of 4. See also mode value 1.

3 Gain of 16. See also mode value 1.

4 Gain of 64. See also mode value 1.

5 Driver will perform auto-gain ranging to return the
result with the most significance. Note that use of
auto-gain ranging may require dual sampling and will
impact performance~ See also mode value 1.

7 Use user-supplied interrupt routine.
be named .ADINU and must follow the
routine coding conventions used in
Refer to the source module KADIN5.MAC
an A/D interrupt routine.

+256 External start (STl).

The routine must
interrupt service
this subsystem.

for an example of

+512 Nonclock overflow sampling triggered by STl.

iprset

iefn

The clock preset. The clock rate divided by the clock preset
value yields the clock overflow rate. The XRATE subroutine can
be used to calculate a clock preset value. If the iprset
argument is omitted from the ADSWP call, the user must specify a
mode value of +512. Otherwise, an error status code of 301
(invalid arguments) is returned into the IOSB.

The event flag (1-96), a completion routine, or 0. If 0 or
defaulted, event flag 30 will be utilized for internal
synchronization. If iefn is an event flag (1-96), the selected
event flag is set as each buffer is filled. If iefn is greater
than 96, it is considered to be a completion routine that will be
called with a JSR PC. Such routines must return with an RTS PC
(or a FORTRAN RETURN statement). Furthermore, FORTRAN completion
routines must not do any I/O through the FORTRAN runtime system,
since this may cause unpredictable results or fatal task errors.

If multiple sweeps are
different event flags.
enforced by the software.

initiated, the user should specify
Adherence to this limitation cannot be

ldelay

The delay from the start event (STl) until the first sample in
IRATE u~its. Default or 0 indicates no delay.

22-10

ichn

nchn

K-SERIES PERIPHERAL SUPPORT ROUTINES

The number of the first channel to be sampled. The default of 0
applies only if ichn was not established in a prior call to the
SETADC routine.

The number of channels to sample. The default is 1. nchn may be
set up with the SETADC routine. All nchn channels will be
sampled on one clock interrupt.

22.2.1.3 CLOCKA: Set Clock A Rate - The CLOCKA routine sets the rate
for Clock A. The format of the call to this routine is as follows:

CALL CLOCKA (irate,iprset,[ind] ,[lun])

irate

The clock rate. One of the following must be specified:

0 Clock B overflow {not on Q-bus version) or no rate

1 1 MHz

2 100 KHz

3 10 KHz

4 1 KHz

5 100 Hz

6 Schmitt Trigger 1

7 Line frequency

iprset

ind

lun

The clock preset. The clock rate divided by the clock preset
value yields the clock overflow rate. The XRATE routine can be
used to calculate a clock preset value.

Receives a success or failure code as follows:

O indicates illegal arguments.

1 indicates Clock A set to start when sweep requested.

The logical unit number. Present for LPA-11 compatibility.
Ignored by K-series software.

22-11

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.4 CLOCKB: Control Clock B - The CLOCKB routine gives the user
control over the KWll-K Clock B, which is used to maintain a 16-bit
software clock. This feature is not available on LSI-11-bus versions.
The 16-bit clock is incremented once per Clock B interrupt. The
maximum value of the clock is 65535.

The format of the call to CLOCKB is as follows:

irate

CALL CLOCKB ([irate], [iprset], [mode], [ind], [lun])

The clock rate. When irate is nonzero, the clock is set running
at the selected rate after the preset value specified by iprset
is loaded. The 16-bit software clock is not altered by starting
the clock. The initial value of the 16-bit clock is 0 when the
program is loaded.

When irate is O, clock B is stopped but the 16-bit software clock
is unaltered.

When irate is defaulted, the 16-bit software clock is zeroed but
clock B continues to run.

The following are the acceptable values for irate:

0 Stop Clock B

1 lMHz

2 100 KHz

3 10 KHz

4 1 KHz

5 100 Hz

6 Schmitt Trigger 3

7 Line frequency

iprset

The count by which to divide clock rate to yield overflow rate.
Overflow events can be used to maintain the 16-bit software clock
and/or drive clock A. The default value is 1. The maximum
practical overflow rate in interrupt mode is 10 KHz. The range
of iprset is 1-255. The value in iprset can be established by
use of the XRATE routine.

22-12

mode

ind

lun

K-SERIES PERIPHERAL SUPPORT ROUTINES

The options. Either of the following can be specified:

0 indicates normal operations. This is the default. The
16-bit software clock is updated on Clock B overflow.
The overflow rate should not exceed lOKHz. The software
does not check the overflow rate.

1 indicates Clock B operates in noninterrupt mode. The
16-bit clock is not incremented or altered. This allows
a greater than lOKHz pulse to be sent to clock A.

Receives a success or failure code as follows:

0 indicates a failure to start Clock B.

1 indicates Clock B started.

The logical unit
K-series routines.

number. This argument is ignored by
It is present for LPA-11 compatibility.

the

22.2.1.5 CVADF: Convert A/D Input to Floating Point - The CVADF
routine converts an A/D input value to a floating-point number. The
routine can be invoked as a subroutine or a function as follows:

or

ival

val

CALL CVADF (ival,val)

val CVADF(ival)

A value obtained from A/D input. Bits 12-15 are the gain.
0-11 represent the value.

(REAL*4) receives the converted value.

22-13

Bits

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.6 DASWP: Initiate Synchronous D/A Sweep - The DASWP
initiates synchronous D/A output to an AAll-K.

routine

The format of the DASWP call is as follows:

ibuf

lbuf

nbuf

mode

CALL DASWP (ibuf, lbuf, [nbuf], [mode] , [iprset], [iefn] , [ldelay] ,
[ichn], [nchn])

A 40-word array initialized by the SETIBF routine. The first two
words of the array are the I/O status block (IOSB).

The size in words of each data buffer. All data buffers must be
equal in size and lbuf must be greater than 0.

The number of buffers to be emptied.
equal to O, indefinite emptying
terminates indefinite emptying.

If nbuf is omitted or set
occurs. The STPSWP routine

The start criteria. Except where noted, the plus sign (+)
preceding mode bit values listed below indicates that they are
independent and can be added or ORed together. All bit values
not listed below are reserved.

The following values can be specified:

0 indicates immediate start. This is the default.

1 indicates that a group of data words, whose number is
specified by nchn, is preceded by a scope control word
(refer to Section 22.2.1.22 for a description of scope
control words). This bit setting is ignored if +512 is
also specified. This feature is not included in the
Q-bus (AAVll) version.

The buffer size specified by lbuf must be a multiple of
nchn+l words. The DASWP routine, however, does not
enforce this restriction.

2 sets the intensify bit after each pair of channels (nchn
must be 2) have been output. This feature is supported
on the Q-bus version only. It assumes that bit 0 of
DAC3 on the AAVll is connected to the intensify input on
the oscilloscope.

+256 indicates external start (STl).

22-14

K-SERIES PERIPHERAL SUPPORT ROUTINES

+512 indicates non-clock-overflow, non-interrupt-driven
output (burst mode). This value cannot be specified
with either external start (+256) or a nonzero ldelay
value. A completion routine must be specified if nbuf
is greater than the number of buffers supplied or if
continuous burst output is desired. If nbuf equals -1,
burst mode must be stopped by calling STPSWP from the
completion routine.

iprset

iefn

The clock preset. The clock rate divided by the clock preset
value yields the clock overflow rate. The XRATE subroutine can
be used to calculate a clock preset value.

If the iprset argument is omitted, the user must specify a mode
value of +512. Otherwise, an error status code of 301 (invalid
arguments) is returned into the IOSB.

An event flag number {from 1 to 96), or a completion routine, or
O. If 0 or defaulted, event flag 30 is used for internal
synchronization. If iefn is an event flag from 1 to 96, the
selected event flag is set as each buffer is emptied. If iefn is
greater than 96, it is considered a completion routine that will
be called with a JSR PC. Such routines must return with an RTS
PC instruction (or a FORTRAN RETURN statement). Furthermore,
FORTRAN completion routines must not perform I/O through the
FORTRAN run-time system since this may cause unpredictable
results or fatal task errors.

If multiple sweeps are initiated, the user should specify
different event flags. This limitation cannot be enforced by the
software.

ldelay

ichn

nchn

The delay from start event (STl) until the first sample in irate
units. Default or 0 indicates no delay.

The first channel number. The default is O.

The number of channels. The default is 1. When nchn equals 2
and mode does not contain +l, the size of data buffers specified
in lbuf must be an even number. The software does not check this
requirement.

22-15

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.7 DIGO: Digital Start Event - The DIGO routine allows the user
to specify the digital input bits that, when set, will cause the
simulation of an external start event and the start of a pending
sweep.

The format of the call to DIGO is:

iunit

mask

kount

CALL DIGO ([iunit] ,[mask] ,[kount])

The DRll-K unit number. The default is O.

A logical mask that specifies one or more start bits. If zero, a
pending digital start event request is immediately cancelled. If
defaulted, an STl event is immediately simulated and the current
value of the 16-bit software clock is returned in kount, if
specified.

Receives the current value of the 16-bit software clock when the
defaulting of mask causes the simulation of an STl event.

22.2.1.8 DINP: Digital Input - The DINP routine inputs a single
16-bit word from a DRll-K. Bits read as a 1, can be masked with a 1,
causing the clearing of the bit in the DRll-K input buffer.

During the K-series routine,s generation dialog, it is possible to
select one of two versions of the DINP routine:

1. A slow version containing all functions described below

2. A fast version that omits the functions provided by the mask,
iosb, and input arguments

The fast version of DINP can be invoked as a function (IDINP) only.
The slow version of DINP can be invoked as a subroutine or a function.
The formats of the invocations are as follows:

or

iunit

CALL DINP ([i unit] , [mask] , iosb, input)

ind=IDINP(iunit, [mask] ,iosb, [input])

The DRll-K unit number. This argument is required for the fast
version of DINP. For the slow version, the default is O.

mask

iosb

input

ind

K-SERIES PERIPHERAL SUPPORT ROUTINES

The bit mask used to specify which input bits will be cleared in
the digital input register. The default is 177777(8) indicating
all bits will be cleared.

A 2-word I/O status block array (see Section 22.2.3).

Receives the data input from the DRll-K.

Receives the data input from the DRll-K if DINP is invoked as a
function.

22.2.1.9 DISWP: Initiate Synchronous Digital Input Sweep - The DISWP
routine initiates a synchronous digital input sweep through a DRll-K.

The format of the call to DISWP is:

ibuf

lbuf

nbuf

CALL DISWP (ibuf ,lbuf, [nbuf], [mode], [iprset], [iefn], [ldelay],
[i unit])

A 40-word array initialized by the SETIBF routine. The first two
words of the array are the I/O status block (IOSB).

The size in words of each data buffer. All data buffers must be
equal in size and lbuf must be greater than O.

The number of buffers to be filled.
indefinite sampling occurs. The
terminate indefinite sampling.

If nbuf is 0 or
STPSWP routine

defaulted,
is used to

mode The sampling options. The default is O. The plus signs (+)
preceding the mode bit values listed below indicate that they are
independent and can be added or ORed together.

22-17

K-SERIES PERIPHERAL SUPPORT ROUTINES

The following values can be specified:

0 Single-word sample, immediate start.
default mode.

This is the

+256 External start (STl).

+512 Nonclock overflow interrupt-driven input.
start and delay are illegal.

External

+1024 Time-stamped sampling. The double word consists of one
data word followed by the value of the 16-bit software
clock at the time of the sample. This option is not
available if the KWll-K clock is not being used (for
example, on the Q-bus).

iprset

iefn

The clock preset. The clock rate divided by the clock preset
value yields the clock overflow rate. The XRATE subroutine can
be used to calculate a clock preset value.

If the iprset argument is omitted, the user must specify a mode
value of +512. Otherwise, an error status code of 301 (invalid
arguments) is returned into the IOSB.

An event flag number (from 1 to 9n), or a completion routine, or
O. If 0 or defaulted, event flag 30 is used for internal
synchronization. If iefn is an event flag from 1 to 96, the
selected event flag is set as each buffer is filled. If iefn is
greater than 96, it is considered a completion routine that will
be called with a JSR PC. Such routines must return with an RTS
PC instruction (or a FORTRAN RETURN statement). Furthermore,
FORTRAN completion routines must not perform I/O through the
FORTRAN run-time system since this may cause unpredictable
results or fatal task errors.

If multiple sweeps are initiated, the user shold specify
different event flags. This limitation cannot be enforced by the
software.

ldelay

iunit

The delay from start event (STl) until the first sample in irate
units. Default or 0 indicates no delay.

The DRll-K unit number. The default is 0.

22-18

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.10 DOSWP: Initiate Synchronous Digital Output Sweep - The
DOSWP routine initiates a synchronous digital output sweep through a
DRll-K.

The format of the call to DOSWP is as follows:

ibuf

lbuf

nbuf

mode

CALL DOSWP (ibuf,lbuf,[nbuf],[mode] ,[iprset] ,[iefn] ,[ldelay],
[i unit])

A 40-word array initialized by the SETIBF routine. The first two
words of the array are the I/O status block (IOSB).

The size in words of each data buffer. All data buffers must be
equal in size, and lbuf must be greater than O.

The number of buffers to be emptied.
indefinite emptying occurs. The
terminate indefinite emptying.

If nbuf is 0 or
STPSWP routine

The start criteria. The default is O.

defaulted,
is used to

The following values can be specified in the high-order byte of
mode:

0 Immediate start. This is the default.

+256 External event start {STl).

+512 Nonclock overflow, interrupt-driven output.
start and delay are illegal.

External

iprset

The clock preset. The clock rate divided by the clock preset
value yields the clock overflow rate. The XRATE subroutine can
be used to calculate a clock preset value.

If the iprset argument is omitted, the user must specify a mode
value of +512. Otherwise, an error status code of 301 (invalid
arguments) is returned into the IOSB.

22-19

iefn

K-SERIES PERIPHERAL SUPPORT ROUTINES

An event flag number (from 1 to 96), or a completion routine, or
O. If 0 or defaulted, event flag 30 is used for internal
synchronization. If iefn is an event flag from 1 to 96, the
selected event flag is set as each buffer is emptied. If iefn is
greater than 96, it is considered a completion routine that will
be called with a JSR PC. Such routines must return with an RTS
PC instruction (or a FORTRAN RETURN statement). Furthermore,
FORTRAN completion routines must not perform I/O through the
FORTRAN run-time system since this may cause unpredictable
results or fatal task errors.

If multiple sweeps are initiated, the user should specify
different event flags. This limitation cannot be enforced by the
software.

ldelay

iunit

The delay from start event (STl) until the first sample in irate
units. Default or 0 indicates no delay.

The DRll-K unit numbere The default is 0.

22.2.1.11 DOUT: Digital Output - The DOUT routine outputs a single
16-bit word to a DRll-K. Only those bits in the output word specified
by corresponding ones in a mask field are altered.

During the K-series routines generation dialog, it is possible to
select one of two versions of the DOUT routine:

1. A slow version containing all functions described below

2. A fast version that omits the functions provided by the mask
and iosb arguments

The slow version of DOUT can be invoked as a subroutine or a function.
The fast version of DOUT can be invoked as a subroutine only. The
formats of the invocations are as follows:

or

iunit

mask

CALL DOUT ([iunit], [mask] ,iosb,idata)

iout=IDOUT([iunit], [mask] ,iosb,idata)

The DRll-K unit number. The default is O.

Used to select which bits can be altered.
177777(8), indicating all bits.

22-20

The default is

iosb

idata

iout

K-SERIES PERIPHERAL SUPPORT ROUTINES

A 2-word I/O status block (see Section 22.2.3).

The 16-bit output value for the DRll-K. A 1 sets a corresponding
bit. A O clears the corresponding bit.

Receives a copy of the DRll-K output register after it has been
aitered.

22.2.1.12 FLT16: Convert Unsigned Integer to a Real Constant - The
FLT16 routine converts an unsigned 16-bit integer to a real constant
(REAL*4). It can be invoked as a subroutine or a function as follows:

CALL FLT16 (ival,val)

or

val=FLT16(ival[,val])

ival

An unsigned 16-bit integer.

val

The converted (REAL*4) value.

22.2.1.13 GTHIST: Gather Interevent Time Data - The GTHIST routine
initiates sampling to measure the elapsed time between events. The
value of the Clock A buffer/preset register at the time of ST2 firing
is stored in a user-provided buffer.

GTHIST is an optional facility that must be explicitly selected during
the K-series generation dialog prior to its use in any program. The
format of the call to GTHIST is as follows:

ibuf

lbuf

CALL GTHIST (ibuf ,lbuf, [nbuf], [mode], [iprset], [iefn], [kount])

A 40-word array initialized by the SETIBF routine. The first two
words of the array are the I/O status block (IOSB).

The size in words of each data buffer. All data buffers must be
equal in size and lbuf must be greater than 0.

22-21

nbuf

mode

K-SERIES PERIPHERAL SUPPORT ROUTINES

The number of buffers to be filled.
indefinite sampling occurs. The
terminate indefinite sampling.

The sampling options as follows:

If nbuf is 0 or
STPSWP routine

defaulted,
is used to

0 indicates external event timing without Zero Base. This
is the default.

1 indicates external event timing with Zero Base. This is
the only mode supported for the KWVll.

iprset

iefn

kount

A null argumente It is present only to maintain compatibility
with other sweep routine calling sequences.

An event flag number (from 1 to 96), or a completion routine, or
O. If 0 or defaulted, event flag 30 is used for internal
synchronization. If iefn is an event flag from 1 to 96, the
selected event flag is set as each buffer is filled. If iefn is
greater than 96, it is considered a completion routine that will
be called with a JSR PC. Such routines must return with an RTS
PC instruction (or a FORTRAN RETURN statement). Furthermore,
FORTRAN completion routines must not perform I/O through the
FORTRAN run-time system since this may cause unpredictable
results or fatal task errors.

If multiple sweeps are initiated, the user should specify
different event flags. This limitation cannot be enforced by the
software.

A counter used by GTHIST, as described below.

To take Post-Stimulus Time data, set mode to O. STl signals the
occurrence of a stimulus and starts the clock (that is, no data is
taken until the first STl occurs). Each response is signalled by ST2,
and the buffer/preset register contents are placed in the user buffer.
Each STl resets the counter register to O, and increments kount by 1.
Thus, kount keeps track of the number of stimuli (STl events). Clock
overflow stops the clock. The clock waits for the next STl event
before restarting. The maximum stimulus-response interval is a
function of the clock rate.

To obtain Inter-Stimulus-Interval data, set mode to 1. The time
between successive events, as signalled by ST2, is recorded. The
maximum interevent time is a function of the clock rate. When clock
overflow occurs, the value returned on the next ST2 firing is
177777(8) and KOUNT i~ incremented. Thus, kount represents the number
of times the maximum interevent time was exceeded. In general, the
user should ignore values of 177777(8).

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.14 IBFSTS: Get Buffer Status - The IBFSTS
information on buffers being used in a sweep.

routine returns

The format of the call to IBFSTS is as follows:

ibuf

is tat

CALL IBFSTS {ibuf ,istat)

The 40-word array specified in the call that initiated a sweep.

An array with as many elements as there are buffers involved in
the sweep. The maximum is 8. IBFSTS fills each element in the
array with the status of the corresponding buffer. The possible
status codes are as follows:

+2 indicates that the buffer is in the device queue.
is, it is waiting to be filled or emptied.

That

+l indicates that the buffer is in the user queue. That
is, it is full of data {for input sweeps} or is waiting
to be filled (for output sweeps).

0 indicates that the status of the buffer is unknown.
That is, it is not the current buffer nor is it in
either the device or the user queue.

-1 indicates that a service routine is currently using the
buffer.

22.2.1.15 ICLOKB: Read 16-bit Clock - The ICLOKB function returns the
contents of the 16-bit software clock as an integer value to the user.

The format of the ICLOKB function call is as follows:

itim

itim=ICLOKB(O)

Receives the curent value of the 16-bit software clock as an
unsigned integer.

NOTE

MACR0-11 programmers need not establish
an argument block for the ICLOKB
function. The current value of the
software clock is returned in RO.

22-23

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.16 IGTBUF: Return Buffer Number - The IGTBUF routine returns
the number of the next buffer to use. This routine should be called
by user completion routines to determine the next buffer to access.
It should not be used if an event flag was specified in the
sweep-initiating call. Rather, the IWTBUF routine should be used with
event flags.

IGTBUF can be invoked as a subroutine or a function. The formats of
the invocations are:

CALL IGTBUF (ibuf ,ibufno)

or

ibufno=IGTBUF(ibuf[,ibufno])

ibuf

The 40-word array specified in the call that initiated a sweep.

ibufno

Receives the number of the next buffer to access. If there is no
buffer in the queue, ibufno contains -1.

22.2.1.17 INXTBF: Set Next Buffer - The INXTBF routine alters the
normal buffer selection algorithm. It allows the user to specify the
number of the next buffer to be filled or emptied.

INXTBF can be invoked as a subroutine or a function. The formats of
the invocations are:

CALL INXTBF (ibuf,ibufno[,ind])

or

ind=INXTBF(ibuf,ibufno[,ind])

ibuf

The 40-word array specified in the call that initiated a sweep.

ibufno

ind

The number of the next buffer the user wants filled or emptied.
The buffer must already be in the device queue.

Receives an indication of the result of the operation:

0 indicates that the specified buffer was already active
or was not in the device queue.

1 indicates that the next buffer was successfully set.

22-24

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.18 IWTBUF: Wait for Buffer - The IWTBUF routine allows a user
task to wait for the next buffer to fill or empty. It should be used
in conjunction with the specification of an event flag in the
sweep-initiating call. This routine should not be used if a
completion routine was specified in the call to initiate a sweep.
Rather, the IGTBUF routine should be used with completion routines.

IWTBUF can be invoked as a subroutine or a function. The formats of
the invocatio'ns are as follows:

or

ibuf

iefn

CALL IWTBUF (ibuf,[iefn] ,ibufno)

ibufno=IWTBUF (ibuf, [iefn], [ibufno])

The 40-word array specified in the call that initiated a sweep.

The event flag on which the task will wait. This should be the
same event flag as that specified in the sweep-initiating call.
If iefn equals 0 or is defaulted, event flag 30 is used.

ibufno

Receives the number of the next buffer to be filled or emptied by
the user's task.

22.2.1.19
the user's
constant.

RCLOKB: Read 16-bit Clock - The RCLOKB routine returns to
task the contents of the 16-bit software clock as a real

RCLOKB can be invoked as a subroutine or a function as follows:

or

time

rlast

CALL RCLOKB (rlast,time)

time=RCLOKB(rlast,time)

Receives the current value of the 16-bit software clock as a real
constant (REAL*4).

A value {REAL*4) to be subtracted from the current 16-bit
software clock before it is returned into the time field.

22-25

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.20 RLSBUF: Release Data Buffer - The RLSBUF routine declares
one or more buffers free for use by the interrupt service routine.

The RLSBUF routine must be called to release buffer(s) to the device
queue before the sweep is initiated. The device queue must always
contain at least one buffer to maintain continuous sampling.
Otherwise, buffer overrun occurs (see Section 22.3 for a discussion of
buffer management). Note that RLSBUF does not verify whether the
specified buffers are already in a queue.

The format of the call to RLSBUF is as follows:

CALL RLSBUF (ibuf,ind,n0[,nl ••• ,n7])

ibuf

The 40-word array specified in the call that initiated a sweep.

ind

Receives a success or failure code as follows:

0 indicates illegal buffer number specified.

1 indicates buffer(s) successfully released.

nO,nl,and so forth

The numbers of buffers to be released. A maximum of eight can be
specified.

22.2.1.21 RMVBUF: Remove Buffer from Device Queue - The
routine removes a buffer from the device queue.

RMVBUF

The format of the call to RMVBUF is as follows:

ibuf

n

ind

CALL RMVBUF (ibuf,n[,ind])

The 40-word array specified in the call that initiated a sweep.

The number of the buffer to remove.

Receives a success or failure code as follows:

0 indicates that the specified buffer was not in the
device queue.

1 indicates that the specified buffer was removed from the
queue.

22-26

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.23 SETADC: Set Channel Information - The SETADC routine
establishes channel start and increment information for an A/D sweep.

SETADC can be invoked as a subroutine or a function as follows:

or

ibuf

iflag

ichn

nchn

inc

ind

CALL S ET A DC { i bu f , [i fl a g] , [i ch n] , [n ch n] , [i n c] , [i n d])

ind ISTADC (ibuf, [i flag] , [ichn], [nchn] , [inc] , [ind])

A 40-word array initialized by the SETIBF routine.

Equals zero if the user wants absolute addressing and nonzero for
programmable gain addressing. The default is 0.

The firs~ channel number. The default is O.

The number of samples to be taken per interrupt. The default is
1.

The channel increment. The default is 1. The user should
specify an increment of 2 for differential A/D input.

Receives a success or failure code as follows:

O indicates an illegal channel number.

1 indicates successful recording of channel information
for an A/D sweep.

22.2.1.24 SETIBF: Set Array for Buffered Sweep - The SETIBF routine
initializes an array required by buffered sweep routines.

The format of the call to SETIBF is as follows:

CALL SETIBF (ibuf, (ind], (lamskb] ,bufO [,bufl. •• buf7])

ibuf

A 40-word array.

22-28

ind

K-SERIES PERIPHERAL SUPPORT ROUTINES

Receives a success or failure code as follows:

0 indicates an illegal number of buffers was specified.
SETIBF initializes the array according to the maximum
number of buffers allowed. This maximum number of
buffers is specified by the user during the K-series
generation dialog.

1 indicates the array was successfully initialized.

lams kb

Present for compatibility with LPA-11 routines. It is ignored by
K-series software.

bufO, etc.

The name of
specified.
least two
sampling.

a buffer. A maximum of eight buffers can be
Any buffer names in excess of eight are ignored. At

buffers must be specified to maintain continuous

Each buffer specified in the call to SETIBF is assigned a number from
0 to 7.

The assignment of these numbers is based on the order in which buffer
names appear in the argument list. The first buffer whose name
appears in the list is assigned number O, the second is assigned
number 1, and so forth. In all subsequent calls to other K-series
routines involving the set of buffers specified in a call to SETIBF,
these numbers, rather than names, are used to refer to particular
buffers.

22.2.1.25 STPSWP: Stop Sweep - The STPSWP routine allows the user to
stop a sweep that is in progress.

The format of the call to STPSWP is as follows:

ibuf

iwhen

CALL STPSWP (ibuf[,iwhen] ,[ind])

The 40-word array specified in the call that initiated a sweep.

Specifies when to stop the sweep:

0 indicates at the next sample. This is the default.

+n (any positive value) indicates at the end of the current
buffer~

-n (any negative value) is reserved.

22-29

K-SERIES PERIPHERAL SUPPORT ROUTINES

ind

Receives a success or failure code as follows:

0 indicates that the sweep was not active or no sweep
could be found that was associated with the specified
ibuf.

1 indicates that the sweep will be stopped (at the time
indicated by iwhen).

22.2.1.26 XRATE: Compute Clock Rate and Preset - The XRATE routine
computes an appropriate clock rate and preset that will achieve a
desired dwell (intersample interval).

NOTE

The XRATE routine can be used only on
systems that have a FORTRAN or
BASIC-PLUS-2 compiler.

XRATE can be invoked as a subroutine or a function as follows:

or

dwell

irate

CALL XRATE (dwell,irate,iprset,iflag)

adwell XRATE(dwell,irate,iprset,iflag)

The intersample time desired by the user. The time is expressed
in decimal seconds (REAL*4).

Receives the computed clock rate as a value from 1 to 5.

iprset

iflag

Receives the clock preset.

Specifies whether the computation is intended for Clock A or
Clock B:

0 indicates the computation is for Clock A.

nonzero indicates the computation is for Clock B.

- .,.::i._._.., ,
QUWO:::..L..L

The actual dwell rate for the clock based on the irate and iprset
parameters.

22-30

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.2 MACR0-11 Interface

MACR0-11 programmers access the K-series support routines described in
Section 22.2.l through either of two techniques:

1. The standard subroutine linkage mechanism and the CALL op
code

2. Special-purpose macros that generate an argument list and
invoke a subroutine

These techniques are described in the following subsections.

22.2.2.1 Standard Subroutine Linkage and CALL Op Code - K-series
routines can be accessed through use of the standard subroutine
linkage mechanism and the CALL op code. The format of this procedure
is:

arglist:

.PSECT
MOV
CALL
.PSECT
.BYTE
.WORD

.WORD

code
:/targlist,RS
ksubr
data
narg,O
addrl

addrn

;ARGUMENT ADDRESS TO RS
;CALL K-SERIES ROUTINE

;NUMBER OF ARGUMENTS
;FIRST ARGUMENT ADDRESS

;LAST ARGUMENT ADDRESS

In this sample, the two PSECT directives are shown only to indicate
the noncontiguity of the code and data portions of the linkage
mechanism. Within the argument list, any argument that is to be
defaulted must be represented by a -1 (that is, 177777(8)).

22.2.2.2 Special-Purpose Macros - To
K-series support routines from a
provided in file [45,lO]LABMAC.MAC.

facilitate the calling of
MACR0-11 program, two macros are

These macros are:

1. INITS

2. CALLS

INITS is an initialization macro. It should be invoked at the
beginning of the MACR0-11 source module.

CALLS invokes a K-series support routine. The format of this macro
call is as follows:

CALLS ksubr,ARGl, ••• ,ARGN>

ksubr

The name of a K-series support routine.

argl,etc.

Arguments to be formatted into an argument list and passed to the
routine. Each argument can be either a symbolic name or a
constant (interpreted as a positive decimal number) or can be
defaulted.

22-31

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.3 The I/O Status Block (IOSB)

Each active sweep must have its own I/O status block. The I/O status
block (IOSB) is a 2-word array allocated in the user's program. It is
used to receive the status of a call to a K-series support routine.
When a data sweep routine is called, the IOSB is always the first two
words of the 40-word array specified as the first argument of the
call. The first word of the IOSB contains the status code. The
second word contains the buffer size in words.

The codes that can appear in the first word of an I/O status block are
in ISA-compatible format (with the exception of the I/O pending
condition). Table 22-3 lists all return codes.

Table 22-3
Contents of First Word of IOSB

IOSB word 1 Meaning

0 Operation pending; I/O in progress

1 Successful completion

I 301 Invalid arguments

305 Hardware or software option not present

306 Illegal buffer specification

313 Data overrun

315 Request terminated

I
317 Resource in use

397 Invalid event flag

22.3 BUFFER MANAGEMENT

The management of buffers for data sweeps by K-series support routines
involves the use of two FIFO (First-In, First-Out) queues:

1. The device queue (DVQ)

2. The user queue (USQ)

The device queue (DVQ) contains the numbers of all buffers that the
user has released to the support routines in a call to RLSBUF. The
buffers represented by these numbers are ready to be filled with data
(input sweeps) or to be emptied of data (output sweeps). Any buffer
specified in a call to INXTBF must already be in DVQ.

22-32

K-SERIES PERIPHERAL SUPPORT ROUTINES

The user queue (USQ) contains the numbers of buffers available to the
user. For output sweeps, this queue contains the numbers of buffers
that have already been emptied by the driver. For input sweeps, the
buffers represented by USQ are those which are filled with data. In
both instances, the user's task determines the next buffer to use
(that is, extracts the first element of USQ) by calling IGTBUF or
IWTBUF.

Both the DVQ and USQ are initialized to -1, indicating no buffers,
when the user's task calls the SETIBF routine. The task must call
RLSBUF before initiating any sweep, since at least one buffer must be
present in DVQ for the first input or output to occur.

For input sweeps, the best strategy is to call RLSBUF, specifying the
numbers associated with all the buffers to be used in the sweep.

For output sweeps, one approach is to specify two buffers (for
continuous sweeps) in the call to RLSBUF. The first action then taken
either in a completion routine or after a call to IWTBUF would be to
release the next buffer. Note, however, that this approach does not
represent true multiple buffering, since data overrun occurs if the
second buffer is not released in time.

22.4 SAMPLE FORTRAN PROGRAMS

Two sample FORTRAN programs showing the use of K-series support
routines are presented in this section. The first program uses event
flags for internal synchronization. The second program demonstrates
the use of user-supplied completion routine for synchronization.

NOTE

FORTRAN completion routines must not
contain any of the following:

• Any I/O through the FORTRAN run-time
system

• Any use of virtual arrays

• Any use of floating-point operations

• Any errors, since error reporting is
done through the FORTRAN run-time
system

• Anything else that may change the
FORTRAN impure area

Any of the above may result in fatal task errors or unpredictable
results.

22-33

,

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.4.1 Sample Program Using Event Flag

c
c
c

c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c

IMPLICIT INTEGER (A-Z)

DIMENSION BUF(l024,8), IBUF (40), IOSB(2)
EQUIVALENCE (IBUF(l) ,IOSB(l))

INITIALIZE THE IBUF ARRAY FOR THE A/D SWEEP

CALL SETIBF (IBUF,IND, , BUF(l,l), BUF(l,2), BUF(l,3),
* BUF (1, 4) , BUF (1, 5) , BUF (1, 6) , BUF (1, 7) , BUF (1, 8))

WRITE (1 , 9 0 0)
READ (1, 910) IRATE, IPRSET

SET THE CLOCK RATE AND PRESET FOR THE SWEEP

CALL CLOCKA (IRATE, IPRSET,IND)

THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE
ROUTINE

CALL RLSBUF (IBUF,IND, 0,1,2,3,4,5,6,7)

START THE SWEEP. USE 1024 WORD BUFFERS, SAMPLE
FOREVER, EXTERNAL START, EVENT FLAG 30, 1 CHANNEL (0).

CALL ADSWP (IBUF, 1024, -1, 256, IPRSET,
* 30, O, O, 1)

HERE WE COULD CHECK THE I/O STATUS BLOCK TO ENSURE
THAT THE SWEEP IS ACTUALLY RUNNING.

IBFCNT=O

C THIS IS THE TOP OF THE DATA PROCESSING LOOP. WE
C WAIT FOR A BUFFER TO BE COMPLETED, AND THEN DUMP
C THE FIRST 100 WORDS OF THE BUFFER TO LUN 1.
c

10 IBUFNO = IWTBUF(IBUF, 30)+1
c
C IWTBUF WILL RETURN A POSITIVE BUFFER NUMBER
C AS LONG AS THERE IS A BUFFER OF DATA AVAILABLE.
C IF IND IS -1, WE PROBABLY HAD DATA OVERRUN, SO STOP.
c

c

IF (IBUFNO .EQ. 0) STOP
IBFCNT=IBFCNT+l
WRITE (1,920) IBFCNT
WRITE (1,930) (BUF(I,IBUFNO), I=l,100)

C RELEASE BUFFER FOR SERVICE ROUTINE TO REFILL
c

CALL RLSBUF(IBUF,IND,IBUFN0-1)
GOTO 10

900 FORMAT (' ENTER IRATE, IPRSET:', $)
910 FORMAT (I, 0)
920 FORMAT {' DUMP OF BUFFER NUMBER ',IS,/)
930 FORMAT (lX,1007)

END

22-34

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.4.2 Sample Program Using Completion Routine

c
c
c

c
c
c

c
c
c
c

c
c
c

IMPLICIT INTEGER (A-Z)
EXTERNAL AST

DIMENSION BUF(l024,8), IBUF (40), IOSB(2)
COMMON /KDATA/ BUF, IBUF, IBFCNT
EQUIVALENCE (IBUF(l) ,IOSB(l))

INITIALIZE THE IBUF ARRAY FOR THE A/D SWEEP

CALL SETIBF (IBUF,IND, , BUF(l,l), BUF(l,2), BUF(l,3),
* BUF(l,4), BUF(l,5), BUF(l,6), BUF(l,7), BUF(l,8))

WRITE (1 ' 9 0 0)
READ (1, 910) IRATE, IPRSET

SET THE CLOCK RATE AND PRESET FOR THE SWEEP

CALL CLOCKA (IRATE, IPRSET,IND)

THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE
ROUTINE

CALL RLSBUF (IBUF,IND, 0, 1, 2, 3, 4, 5, 6, 7)

START THE SWEEP. USE 1024 WORD BUFFERS, SAMPLE
FOREVER, EXTERNAL START, EVENT FLAG 30, 1 CHANNEL

< o) •
c

c

IBFCNT = 0
CALL ADSWP (IBUF, 1024, O, 256, IPRSET
* AST, O, O, 1)

C HERE WE COULD CHECK THE I/O STATUS BLOCK TO ENSURE
C THAT THE SWEEP IS ACTUALLY RUNNING.
c

10 CALL WAITFR (23)
c
C WHEN EVENT FLAG 23 IS SET THE SWEEP IS COMPLETED.
C WE MAY EXIT NOW.
c

c
c
c
c
c
c
c
c

STOP

900 FORMAT (' ENTER IRATE, IPRSET:', $)
910 FORMAT (I, 0)

END
SUBROUTINE AST

THIS SUBROUTINE IS CALLED AT AST LEVEL WHENEVER
A BUFFER IS COMPLETED. THIS ROUTINE PROCESSES
THE CONTENTS OF THE BUFFER AND THEN RELEASES
IT FOR THE SERVICE ROUTINE. IF THE SWEEP IS TO
TERMINATE (IOSB NON-ZERO) THEN EVENT FLAG 23. IS
SET TO INDICATE TO THE MAINLINE CODE THAT WE ARE
DONE.

IMPLICIT INTEGER (A-Z)
DIMENSION BUF(l024,8), IBUF(40), IOSB(2)
COMMON /KDATA/ BUF, IBUF, IBFCNT
EQUIVALENCE (IBUF (1) , IOSB (1))

IBUFNO = IGTBUF (IBUF) +l

IF (IBUFN0-1) .GE. 0 GOTO 20

22-35

20
c
c
c
c
c
c

K-SERIES PERIPHERAL SUPPORT ROUTINES

IF (IOSB(l) .EQ. 0) PAUSE 'INCONSISTENT STATE'
CALL SETEF (23)
RETURN

IBFCNT = IBFCNT + 1

HERE WE WOULD PROCESS THE DATA

RELEASE BUFFER FOR SERVICE ROUTINE

CALL RLSBUF (IBUF, IND, IBUFN0-1)
RETURN

END

22-36

K-SERIES PERIPHERAL SUPPORT ROUTINES

22.2.1.22 SCOPE: Control Scope - The SCOPE routine allows the user to
control the status register of an AAll-K.

The format of the call to SCOPE is as follows:

CALL SCOPE (iunit,icntrl,iosb)

iunit

The AAll-K unit number.

icntrl

iosb

A combination of bit values as shown in Table 22-2. Any bits not
listed in this table are cleared before output to the AAll-K
status register

A 2-word I/O status block (see Section 22.2.3).

Table 22-2
Scope Control Word Values

Decimal Value Octal Value Function

4096 10000 Erase storage CRT

2048 4000 Set write-through mode

1024 2000 Set store mode

512 1000 A digital signal available in
the AAll-K.

12 14 Intensify on x or Y

8 10 Intensify on y

4 4 Intensify on x

2 2 Fast intensify enable

1 1 Intensify pulse

The values in Table 22-2 are also used to create scope control words
for calls to the DASWP routine with a mode value of 1.

22-27

CHAPTER 23

UNIBUS SWITCH DRIVER

23.l INTRODUCTION

The UNIBUS switch driver supports DT07 UNIBUS switch hardware on
RSX-llM-PLUS systems~ UNIBUS switches are electronic devices that
allow peripherals to be switched from one CPU to another, enabling
CPUs to share peripheral devices. UNIBUS switches also facilitate
on-line system backup and allow dynamic reconfiguration of systems in
which high availability of certain peripherals is required.

23.1.1 DT07 UNIBUS Switches

DT07 UNIBUS switches can provide two, three, or four ports for
connecting an external UNIBUS run to one of two, three, or four CPUs.

Any CPU can request connection to a UNIBUS run and receive the
connection immediately if the requested UNIBUS run is in the neutral
state (it is not connected to another CPU's UNIBUS). If the request
is received when the UNIBUS run is connected to another CPU, an
interrupt is generated, informing the connected CPU of the pending
request, and a watchdog timer is started. The connected CPU normally
acknowledges the request, indicating the UNIBUS is still in use. In
this case, the UNIBUS remains connected to the CPU. However, if the
CPU does not respond to the interrupt within the time limit imposed by
the DT07's watchdog timer, the UNIBUS is switched to the requesting
CPU. Thus, a CPU that is not operating remains connected to the
UNIBUS only until another CPU requests the UNIBUS.

Each DT07 UNIBUS switch port functions as an isolation circuit.
its power is off, it does not affect any CPU operation.

23.1.2 UNIBUS Switch Driver

When

The UNIBUS switch driver permits the UNIBUS switch to be used in one
of two ways:

1. A CPU retains the UNIBUS until the task issuing the
directives that connected the UNIBUS to this CPU exits. This
is normally accomplished when the task attaches the UNIBUS
switch (IO.ATT function) and issues the connect function
(IO.CON). , When the task exits (for any reason), the system
ae~aches the UNIBUS switch (IO.DET) and performs an implicit
disconnect function (IO.DIS), releasing the UNIBUS switch for
use by any other task.

23-1

UNIBUS SWITCH DRIVER

The task that attaches the UNIBUS switch can be considered
the manager of the UNIBUS switch until the task exits. The
task can receive ASTs for certain conditions involving UNIBUS
switching (see Section 23.3.1.1).

2. A CPU retains the UNIBUS until a task is executed that
explicitly disconnects the UNIBUS. This is normally
accomplished when a task issues the IO.CON function and no
previous IO.ATT was issued. Once the UNIBUS is connected,
the task exits. The UNIBUS then remains connected until
either the CPU fails to respond to other CPU requests for the
UNIBUS, or a task is executed that explicitly disconnects the
UNIBUS. Note that when operating in this manner, no active
task is required in order to retain the UNIBUS.

23.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains all Os. Words 3,
4, and 5 are undefined.

23.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
UNIBUS switches.

23.3.1 Standard QIO Functions

Table 23-1 lists the standard functions of the QIO macro that are
valid for UNIBUS switches.

ast

Table 23-1
Standard QIO Functions for UNIBUS Switches

Format Function

QIO$C IO.ATT, ••• ,<[ast]> ATTACH device

QIO$C IO.DET, ••• Detach device

QIO$C IO.KIL, ••• Cancel I/O requests

The address of an optional AST routine which will be entered if
certain conditions are detected (see Section 23.3.1.1)

IO.ATT does not connect the UNIBUS switch (see device-specific
function IO.CON).

IO.DET detaches the UNIBUS switch from
was previously attached by the IO.CON function, an implied disconnect
(IO.DIS) function is performed.

23-2

UNIBUS SWITCH DRIVER

The only I/O requests that can be affected by the IO.KIL function are
IO.CON and IO.DPT. When IO.KIL is issued during an IO.CON function,
further retries are canceled. When IO.KIL is issued during an IO.DPT
function, the time-out count is changed, forcing time-out {IE.TMO) to
occur.

23.3.1.1 IO.ATT - The IO.ATT QIO function attaches the UNIBUS switch
to the task issuing the QIO directive. An optional AST address
parameter can be specified. However, if it is specified, it must
remain valid while the UNIBUS switch remains attached to the task.

The AST service routine for the UNIBUS switch is entered when one of
the following conditions occur:

• The UNIBUS switch has become connected to another CPU because:

1. The operator manually switched the UNIBUS to another CPU,
or

2. This CPU failed to respond to another CPU's request for
the UNIBUS within the specified time (the CPU must
acknowledge the request by servicing an interrupt, as
described in Section 23.1.1).

UNIBUS switch condition code 1 is passed to the AST routine by
the stack, indicating the cause of the AST.

• The UNIBUS switch has disconnected from the CPU because:

1. A power failure occurred
failure) and the UNIBUS
reconnect the bus, or

in this CPU
switch driver

(system power
was unable to

2. A power failure occurred on the connected UNIBUS, causing
the driver to automatically disconnect the UNIBUS

UNIBUS switch condition code 2 (for a system power failure) or
condition code 3 (for a UNIBUS power failure) is passed to the
AST routine by the stack indicating the cause of the AST.

23.3.1.2 IO.DET - The IO.DET function detaches the issuing task from
the UNIBUS switch, and in addition, performs an implied disconnect for
the issuing task if that task had connected the UNIBUS switch. A
detach function is generated by the Executive on behalf of an attached
task if that task exits (normally'or abnormally) without explicitly
detaching the device. For a switched UNIBUS, this causes it to be
disconnected if an attached, connected task faults in such a way as to
cause it to exit.

23.3.1.3 IO.KIL - The IO.KIL function will cancel any outstanding
IO.CON function that has a nonzero retry count and any outstanding
IO.DPT function that has not yet timed out. Other QIO functions in
progress are not affected by IO.KIL, and are automatically completed.

23-3

UNIBUS SWITCH DRIVER

23.3.2 Device-Specific QIO Functions

The device-specific functions of the QIO macro that are valid for
UNIBUS switches are shown in Table 23-2.

Table 23-2
Device-Specific QIO Functions for UNIBUS Switches

Format Function

QIO$C IO.CON, ••• ,< [rent], [cpu] > Connect UNIBUS switch

QIO$C I 0 • DIS , ••• , < [tout] , [po rt] > Disconnect UNIBUS switch

QIO$C IO.DPT, •.• ,< [tout], [port]>

I

Disconnect UNIBUS switch
from specified CPU port

QIO$C IO.SWI, ••• ,<cpu> Switch the UNIBUS from
current CPU to specified CPU

QIO$C IO.CSR, ••• Read UNIBUS switch CSR

rent

cpu

port

tout

The number of additional times the connect will be attempted if
the IO.CON fails to complete.

The ASCII letter designating the CPU to receive the UNIBUS
switch.

The port number, ranging from 0 through 3, of the target CPU that
must request the bus prior to the CPU that is currently connected
to the UNIBUS actually completing the disconnect. The port
number corresponds to the four MANUAL CONNECT switch positions
(PORT 0 through PORT 3) marked on the DT07 control panel.

The maximum time (in seconds) allowed (253. maximum) for the
function to be completed before an error condition is reported.

Parameter details are included in the following sections.

23.3.2.1 IO.CON - The IO.CON (connect) function requests connection
of a UNIBUS presently not connected to a specified CPU. It can be
issued either by a task previously attached with the IO.ATT function
or by a task that is not attached. The IO.CON function has four
optional parameters. The use of each parameter is described as
follows.

Retry Count -- The retry count specifies the number of additional
times the connect function will be attempted if the IO.CON fails to
complete within the time-out period of the UNIBUS switch. Retry count
parameters used in this manner are always nonzero positive values.

23-4

UNIBUS SWITCH DRIVER

The IO.CON function is not completed until either the retry count
expires or the UNIBUS switch is successfully connected. Thus, the
issuing task having a nonzero retry count wil not be checkpointed
until the IO.CON function is completed.

When a retry count of 0 is specified, the connect function attempts to
connect the UNIBUS switch once (no retries) and immediately reports
the directive status to the issuing task.

When a retry count of 177777 (-1) is specifieq, the connect function
continues to retry the connection until a successful connection is
made or an IO.KIL function is issued.

CPU -- The CPU parameter can only be used with loosely coupled 1

multiprocessor systems to specify the CPU to which the UNIBUS switch
should be connected. This function is used only when the UNIBUS
switch is presently not connected (the IO.SWI function should be used
to disconnect the UNIBUS switch from a connected closely coupled CPU
and connect it to a specified closely coupled CPU). The CPU is
specified by a single ASCII letter (A, B, c, or D).

23.3.2.2 IO.DIS - The IO.DIS function is used to disconnect the
switched UNIBUS from the currently connected CPU.

NOTE

It is the responsibility of the task
issuing the IO.DIS or IO.DPT function to
determine that all devices on the
switched UNIBUS are inactive when the
function is issued. The UNIBUS switch
driver does not check for active devices
on the UNIBUS before completing either­
the IO.DIS or IO.DPT function.

23.3.2.3 IO.DPT - The IO.DPT function is used in a loosely coupledl
multiprocessor system to allow the UNIBUS to be connected to another
CPU on a specified port if the CPU requests connection within a
specified time interval. (Refer to the note at the end of Section
23.3.2.2.)

Time-out -- The time-out parameter specifies the maximum time allowed
for the function to complete before an error is reported. Time-out
specifications are positive, nonzero values ranging from 1 to 254
seconds. The default time-out value is 2 secohds. If the CPU
parameter is included in the IO.DPT function, the driver waits for the
specified CPU to request the UNIBUS up to the specified time-out
value. If the CPU does not request the UNIBUS during this time, the
UNIBUS remains connected and the IE.TMO status is returned to the
issuing task.

1. A loosely coupled system is one in which memory resources are not
shared by more than one CPU.

23-5

UNIBUS SWITCH DRIVER

If a time-out value of O is specified, the IO.DIS function will not
complete until either the successful disconnect occurs, or an IO.KIL
function is issued.

Port -- The port parameter can only be used with loosely coupled
multiprocessor systems to specify the port through which the UNIBUS
switch should be connected to a CPU. The port is specified by a
number ranging from 0 through 3.

23.3.2.4 IO.SW! - The IO.SW! function disconnects the UNIBUS switch
from the currently connected CPU and connects it to the specified CPU
in a closely coupled system. The CPU parameter is required.

IO.SW! is executed without the possibility of a third CPU taking
control of the UNIBUS during the switching process.

The CPU parameter is used in closely coupled multiprocessor systems to
specify the CPU to which the UNIBUS switch should be connected. The
CPU is specified by a single ASCII letter (A, B, C, or D).

23.3.2.5 IO.CSR - The IO.CSR function reads maintenance information
contained in the device CSR and returns it in the second word of the
I/O status block. Information returned is valid only if the UNIBUS
switch is connected. The use of this function should be limited to
diagnostic applications.

23.4 POWER-FAIL RECOVERY

23.4.1 System Power-Fail Recovery

During power-fail recovery, the driver attempts to restore the state
of the system prior to the actual power failure. If the UNIBUS switch
is found to be disconnected during power-fail recovery, the driver
attempts to reconnect the switched UNIBUS. If the first attempt to
reconnect the UNIBUS is not successful, an entry is made in the error
log and the attached task is notified of the UNIBUS switch state by
the AST specified in the IO.ATT function {if previously issued).

If an IO.CON function was in progress when the power failure occurred
and a retry count was pending, the UNIBUS switch driver attempts to
successfully connect the UNIBUS switch until the retry count expires.

If an IO.DIS or IO.DPT function was in progress when the power failure
occurred, the UNIBUS switch driver attempts to complete the operation.

23.4.2 UNIBUS Power-Fail Recovery

If an interrupt is received from the UNIBUS switch indicating a power
failure has occurred on the switched UNIBUS, the driver issues an
immediate disconnect (IO.DIS}. The attached task (if any) is notified
by the AST. Note that the system may be corrupted if some of the I/O
devices on the switched UNIBUS were active when the power failure
occurred, since cne drivers for those I/O devices may attempt to
access the device registers after the switched UNIBUS (and I/O
devices} has become disconnected.

23-6

UNIBUS SWITCH DRIVER

23.5 STATUS RETURNS

Table 23-3 lists the error and status conditions that are returned by
the UNIBUS switch driver.

Code

rs.sue

IS.PND

IE.ABO

IE.BAD

IE.CNR

IE.DAA

IE.DNA

IE.IFC

Table 23-3
UNIBUS Switch Driver Status Returns

Reason

Successful completion

The operation specified in the QIO directive was I
completed successfully.

I/O request pending

The operation specified in the QIO directive has not
yet been executed. The I/O status block is filled
with Os.

Request aborted

An I/O request was queued (not yet acted upon by the
driver) when an IO.KIL was issued.

Bad parameters

The parameters specified in the QIO macro were in
error.

Connect rejected

The connect function did not successfully connect the
switched UNIBUS to the specified CPU, and the retry
count, if specified, has expired.

Device already attached

The device specified in an IO.ATT funcion was already
attached by the issuing task. This code indicates
that the issuing task has already attached the
desired physical device unit, not that the unit was
attached by another task.

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task. This
code has no bearing on the attachment status of other
tasks.

Illegal function

A function code was specified in an I/O request that
is illegal for the UNIBUS switch driver.

(continued on next page)

23-7

Code

IE.NOD

IE.OFL

I IE.SPC

I IE.TMO

UNIBUS SWITCH DRIVER

Table 23-3 (Cont.)
UNIBUS Switch Driver Status Returns

Reason

Insufficient buffer space

Dynamic storage space has been depleted, resulting in
insufficient buffer space available to allocate
either the I/O packet or the device list buffer.

Device off line

The physical device unit associated with the LUN
specified in the QIO directive (the UNIBUS switch)
was not on line, or the CPU specified in the IO.CON
or IO.SWI was not on line.

Illegal address space

The buffer specified in the IO.CON function was
partially or totally outside the address space of the
issuing task.

Time-out error

The time-out count expired during an IO.DPT operation
before the target CPU requested the UNIBUS. This
error code is also returned when the DT03/DT07
hardware fails to respond to a request due to a
hardware failure.

23.6 FORTRAN USAGE

All of the QIO functions described for the UNIBUS switch driver can be
used in FORTRAN tasks, except AST support is not provided (IO.ATT
function with an AST address specified). A macro subroutine can be
written for the FORTRAN task to call that specifies the AST address.

23-8

APPENDIX A

SUMMARY OF I/O FUNCTIONS

This appendix summarizes legal I/O functions for all device drivers
described in this manual. Both devices and functions are listed
alphabetically. The meanings of the five parameters represented by
the ellipsis (•••) are described in Section 1.5.1. The meanings of
the function-specific parameters shown below are discussed in the
appropriate driver chapters. The user may reference these functions
symbolically by invoking the system macros FILIO$ (standard I/O
functions) and SPCIO$ (special I/O functions), or by allowing them to
be defined at task-build time from the system object library.

A.l ANALOG-TO-DIGITAL CONVERTER DRIVERS

IO.KIL, ••• Cancel I/O requests

IO.RBC, ••• ,<stadd,size,stcnta> INITIATE an A/D conversion

A.2 CARD READER DRIVER

IO.ATT, ••• Attach device

IO.DET, ••• Detach device

IO.KIL, ••• Cancel I/O requests

IO.RDB, ••• ,<stadd,size> READ logical block (binary)

IO.RLB, ••• ,<stadd,size> READ logical block (alphanumeric)

IO.RVB, ••• ,<stadd,size> READ virtual block (alphanumeric)

A.3 CASSETTE DRIVER

IO.ATT, ••• Attach device

I 0. DET I ••• Detach device

IO.EOF, ••• Write end-of-file gap

IO.KIL, ••• Cancel I/O requests

IO.RLB, ••• ,<stadd,size> READ logical block

A-1

SUMMARY OF I/O FUNCTIONS

IO.RVB, .•• ,<stadd,size> READ virtual block

IO.RWD, ••• Rewind tape

IO.SPB, •.• ,<nbs> SPACE blocks

IO.SPF, •.• ,<nes> SPACE files

IO.WLB, ••. ,<stadd,size> WRITE logical block

IO.WVB, •.• ,<stadd,size> WRITE virtual block

A.4 COMMUNICATION DRIVERS (MESSAGE-ORIENTED)

IO.ATT, •••

IO.DET, •••

IO.FDX, •.•

IO. HDX, •••

IO. INL, •••

IO.KIL, •••

IO.RLB, ••• ,<stadd,size>

IO.RNS, ••• ,<stadd,size>

IO.SYN, ••• ,<syn>

IO.TRM, •••

IO.WLB, •.. ,<stadd,size>

IO.WNS, ••• ,<stadd,size>

A.5 DECTAPE DRIVER

IO.RLB, ••• ,<stadd,size,,,lbn>

IO.RLV, ••• ,<stadd,size,,,lbn>

IO.RVB, •.• ,<stadd,size,,,lbn>

IO.WLB, ••• ,<stadd,size,,,lbn>

IO.WLV, ••• ,<stadd,size,,,lbn>

IO.WVB, ••• ,<stadd,size,,,lbn>

Attach device

Detach device

Set device to full-duplex mode

Set device to half-duplex mode

Initialize device and set device
characteristics

Cancel I/O requests

READ logical block, stripping
sync characters

READ logical block, transparent mode

SPECIFY sync character

Terminate communication, disconnecting
from physical channel

WRITE logical block with sync leader

WRITE logical block, no sync leader

READ logical block {forward)

READ logical block {reverse)

READ virtual block {forward)

WRITE logical block (forward)

WRITE logical block (reverse)

WRITE virtual block (forward)

A-2

SUMMARY OF I/O FUNCTIONS

A.6 DECTAPE II DRIVER

IO.ATT ••• Attach device

IO.DET, ••• Detach device

IO.KIL, ••• Cancel I/O requests

IO.RLB, ••• ,<stadd,size,,,lbn> READ logical block

IO.WLB, ••• ,<stadd,size,,,lbn> WRITE logical block

IO.WLC, ••• ,<stadd,size,,,lbn> WRITE logical block with check

IO.RLC, ••• ,<stadd,size,,,lbn> READ logical block with check

IO.BLS, ••• ,<lbn> POSITION tape

IO. DGN, .. e .. Run internal diagnostics

A.7 DISK DRIVER

IO.RLB, ••• ,<stadd,size,,blkh,blkl> READ logical block

IO.RPB, ••• ,<stadd,size,,,pbn>

IO.RVB, ••• ,<stadd,size,,blkh,blkl>

IO.SEC, ••• ,<stadd,size,pbn>

IO.SMD, ••• ,<density,,>

IOeWDD, .•• ,<stadd,size,,,pbn>

IO.WLB, ••• ,<stadd,size,,blkh,blkl>

IO.WLC, ••• ,<stadd,size,,blkh,blkl>

IO.WPB, •.• ,<stadd,size,,,pbn>

IO.WVB, •.• ,<stadd,size,,blkh,blkl>

A.8 GRAPHICS DISPLAY DRIVER

IO.ATT, •••

IO.CON, ••• ,<stadd,size,lpef,lpast>

IO.CNT, •••

IO.DET, •••

IO.DIS, •••

IO.KIL, •••

IO.STP, •••

A-3

READ physical block

READ virtual block

SENSE characteristics (RX02) only

SET media density {RX02 only)

WRITE physical block (with
deleted data mark)

WRITE logical block

WRITE logical block followed
by write check

WRITE physical block

WRITE virtual block

Attach device

CONNECT to graphics device

Continue {restart display-
processing unit)

Detach device

Disconnect from graphics device

Cancel I/O requests

Stop
unit)

(halt display-processing

SUMMARY OF I/O FUNCTIONS

A.9 INDUSTRIAL CONTROL SUBSYSTEMS

All I/O functions listed below apply to the ICS/ICR subsystem. The
five functions supported by the DSS/DRSll subsystem driver are marked
by (D}.

IO.CCI, ••• ,<stadd,sizb,tevf>

IO.CTI, ••• ,<stadd,sizb,tevf,arv>

IO.CTY, ••• ,<stadd,sizb,tevf>

IO. DC I, •.•

IO. DTI, •••

IO.DTY, •••

IO. FLN, •••

IO.ITI, ••• ,<mn,ic>

IO.LDI, ••• ,<tname, [,tevf] ,pn,csm>

CONNECT a buff er to digital
interrupts

CONNECT a buff er to counter
interrupts

CONNECT a buffer to terminal
interrupts

Disconnect a buffer from digital
interrupts

Disconnect a buffer from counter
interrupts

Disconnect a buffer from terminal
interrupts

Set controller off line

INITIALIZE a counter

LINK task to digital interrupts
(D}

IO.LKE, ••• ,<tname,[,tevf]> LINK task to error inte~rupts

IO.LTI, ••• ,<tname,[,tevf] ,cn[,arv]> LINK task to counter interrupts

IO.LTY, ••• ,<tname,[,tevf]>

IO.MLO, ••• ,<opn,pp,dp>

IO.MSO, ••• ,<opn,dp>

IO.NLK, ••• ,<tname>

IO.NLN, •••

IO.RAD, ••• ,<stadd>

IO.RBC, ••• ,<stadd,size,stcnta>

IO.SAO, ••• ,<chn,vout>

IO.UDI, ••• ,<tname>

A-4

LINK task to remote
interrupts

terminal

OPEN or close bistable digital
output points (D}

PULSE single-shot digital output
points

UNLINK a task from all interrupts
(D}

Place !CR controller on line

READ activating data (D}

INITIATE multiple A/D conversions

PERFORM analog output

UNLINK a
interrupts

task
(D)

from digital

SUMMARY OF I/O FUNCTIONS

IO.UER, .•• ,<tname> UNLINK a task from
interrupts

IO.UTI, •.. ,<tname> UNLINK a task from
interrupts

IO.UTY, ••• ,<tname> UNLINK a task
interrupts

IO.WLB, ••• ,<staddb,sizb> TRANSMIT data
terminal

A.10 LABORATORY PERIPHERAL ACCELERATOR DRIVER

IO.CLK, ••. ,<mode,ckcsr,preset>

IO.INI, ••. ,<irbuf,278.>

IO.LOD, •.• ,<mbuf,2048.>

IO.STA, ••• ,<bufptr,40.>

IO.STP, ••• ,<userid>

A.11 LABORATORY PERIPHERAL SYSTEMS DRIVERS

IO.ADS, ••• ,<stadd,size,pnt, PERFORM A/D sampling
ticks,bufs,chna>

to

from

the

IO.HIS, ••• ,<stadd,size,pnt, PERFORM histogram sampling
ticks,bufs>

IO.KIL,... Cancel I/O requests

IO.LED, ••• ,<int,num> DISPLAY number in LED lights

IO.MDA, •.• ,<stadd,size,pnt, PERFORM D/A output
ticks,bufs,chnd>

ICR

IO.MDI, ••• ,<stadd,size,pnt, PERFORM digital input sampling
ticks,bufs,mask>

IO.MDO, ••• ,<stadd,size,pnt, PERFORM digital output
ticks,bufs,mask>

IO.REL, ••• ,<rel,pol> LATCH output relay

IO.SDI, ••• ,<mask> READ digital input register

IO.SDO, ••. ,<mask,data> WRITE digital output register

IO.STP, ••• ,<stadd> STOP in-progress request

A-5

error

counter

terminal

remote

SUMMARY OF I/O FUNCTIONS

A.12 LINE PRINTER DRIVER

IO.ATT, •••

IO.DET, •••

IO.KIL, •••

IO.WLB, .•• ,<stadd,size,vfc>

IO.WVB, .•• ,<stadd,size,vfc>

A.13 MAGNETIC TAPE DRIVER

IO.ATT, •••

IO.DET, •••

IO.EOF, •••

IO.KIL, •.•

IO.RLB, .•• ,<stadd,size>

IO.RLV, ••• ,<stadd,size>

IO.RVB, ••• ,<stadd,size>

IO.RWD, ••.

IO.RWU, ••.

IO.SEC, •••

IO.SMO, ••• ,<cb>

IO.SPB, ••. ,<nbs>

IO.SPF, ••. ,<nes>

I 0 • S TC , • • • , < c b >

IO.WLB, ••• ,<stadd,size>

IO.WVB, ••• ,<stadd,size>

Attach device

Detach device

Cancel I/O requests

WRITE logical block

WRITE virtual block

Attach device

Detach device

Write end-of-file (tape mark)

Cancel I/O requests

READ logical block

READ logical block reverse

READ virtual block

Rewind tape

Rewind and turn unit off line

Read tape characteristics

MOUNT tape and set tape characteristics

SPACE blocks

SPACE files

SET tape characteristics

WRITE logical block

WRITE virtual block

A.14 PAPER TAPE READER/PUNCH DRIVERS

IO.ATT, •••

IO.DET, •••

IO.KIL, •••

IO.RLB, ••• ,<stadd,size>

Attach device

Detach device

Cancel I/O Requests

READ logical block {reader only)

A-6

SUMMARY OF I/0 FUNCTIONS

IO.RVB, ••• ,<stadd,size> READ virtual block (reader only)

IO.WLB, ••• ,<stadd,size> WRITE logical block (punch only)

IO.WVB, ••• ,<stadd,size> WRITE virtual block (punch only)

A.15 PARALLEL COMMUNICATION LINK DRIVERS

A.15.1 Transmitter Driver Functions

IO.ATX, ••• ,<stadd,size,flagwd, ATTEMPT message transmission
id,retries,retadd>

IO.STC, ••• ,<stadd,size,[state] SET master section characteristics
[mode] ,,retadd>

IO.SEC, ••• , Sense master section status

A.15.2 Receiver Driver Functions

IO.CRX, ••• ,<tef> CORRECT for reception

IO.ATF, ••• ,<stadd,size,retadd> ACCEPT transfer

IO.RTF,... Reject transfer

IO.DRX,... Disconnect from reception

A.16 TERMINAL DRIVER

IO.ATA, ••• ,<ast[,parameter2]
[,ast2]>

ATTACH device, specify unsolicited­
character ASTl

I 0. ATT, ••• Attach device

IO.CCO, ••• ,<stadd,size,vfc> WRITE logical block, cancel CTRL/O

IO.DET, ••• Detach device

SF.GMC, ••• ,<stadd,size> GET multiple characteristics

IO.GTS, ••• ,<stadd,size> GET terminal support

IO.HNG, ••• HANGUP remote line

IO.KIL, ••. Cancel I/0 requests

IO.RAL, ••• ,<stadd,size[,tmo]> READ logical block and pass all bitsl

IO.RLB, ... ,<stadd,size[,tmo]> READ logical blockl

IO.RNE, •.. ,<stadd,size[,tmo]> READ logical block and do not echol

1. "ast2", "parameter2", and "tmo" parameters are available for
full-duplex driver functions only.

A-7 April 1983

I

SUMMARY OF 1/0 FUNCTIONS

IO.RPR, ••. ,<stadd,size,[tmo], READ after promptl
pradd,prsize,vfc>

10.RST, ••• ,<stadd,size[,tmo]> READ with special terminators

10.RTT, ••• ,<stadd,size,[tmo], READ logical block ended by specified
table> special terminator2

10.RVB, ••• ,<stadd,size[,tmo]> READ virtual blockl

SF.SMC, ••. ,<stadd,size> SET multiple characteristics

10.WAL, ••• ,<stadd,size,vfc> WRITE logical block and pass all bits

IO.WBT, ••• ,<stadd,size,vfc> WRITE logical block and break through
any ongoing I/O

IO.WLB, ••• ,<stadd,size,vfc> WRITE logical block

IO.WVB, ••. ,<stadd,size,vfc> WRITE virtual block

Subfunction bits for terminal-driver functions:

TF.AST Unsolicited-input-character AST

TF .BIN Binary prompt

TF.CCO Cancel CTRL/O

TF.ESQ Recognize escape sequences

TF.NOT Unsolicited input AST notification2

TF.RAL Read, pass all bits

TF.RCU Restore cursor position2

TF.RNE Read with no echo

TF.RST Read with special terminators

TF.TMO Read with time-out2

TF.WAL Write, pass all bits

TF.WBT Break-through write

TF.XCC CTRL/C starts a command line interpreter2

TF.XOF Send XOFF

1. "ast2", "paramete:r2", and "tmo"
full-duplex driver functions only.

2. Full-duplex driver only.

A-8

are riv.::ii 1 r:ible for

SUMMARY OF I/O FUNCTIONS

A.17 UNIBUS SWITCH DRIVER

IO.ATT, ••• ,<[ast]>

IO.DET, •••

IO. KIL, •••

IO.CON, ••• ,< [rent], [cpu] >

QIO$C IO.DIS, ••• ,

IO.DPT, ••• ,< [tout], [port]>

IO.SWI, ••• ,<cpu>

IO.CSR, •••

ATTACH device

Detach device

Cancel I/O requests

CONNECT UNIBUS switch

Disconnect UNIBUS switch

DISCONNECT UNIBUS switch and connect
to specified CPU port

SWITCH UNIBUS from current CPU to
specified CPU

Read UNIBUS switch CSR

A.18 UNIVERSAL DIGITAL CONTROLLER DRIVER

IO.CCI, ••• ,<stadd,sizb,tevf> CONNECT a buffer to contact
interrupts

IO.CTI, ••• ,<stadd,sizb,tevf,arv> CONNECT a buffer to timer
interrupts

IO. DC I, •••

I 0. DTI, •••

IO.ITI, ••• ,<mn,ic>

IO.KIL, •••

IO.MLO, ••• ,<opn,pp,dp>

IO.RBC, ••• ,<stadd,size,stcnta>

A.19 VIRTUAL TERMINAL DRIVER

IO.ATT, •••

IO.DET, •••

IO.KIL, •••

IO.RLB, ••• ,<stadd,size>

IO.RVB, ••• ,<stadd,size>

Disconnect a buffer from contact
interrupt

Disconnect a buffer from timer
interrupts

INITIALIZE a timer

Cancel I/O requests

OPEN or close latching digital
output points

INITIATE multiple A/D conversions

Attach device

Detach device

Cancel I/O request

READ logical block

READ virtual block

IO.WLB, ••• ,<stadd,size,stat> WRITE logical block

IO.WVB, ••• ,<stadd,size,stat> WRITE virtual block

IO.STC, ••• ,<cb,sw2,swl> SET terminal characteristics (enable/
disable intermediate buffering, or
return I/O completion status)

A-9

APPENDIX B

I/O FUNCTION AND STATUS CODES

This appendix lists the numeric codes for all I/O functions, directive
status returns, and I/O completion status returns. Lists are
organized in the following sequence:

• I/O completion status codes

• Directive status codes

• Device-independent I/O function codes

• Device-dependent I/O function codes

Device-dependent function codes are listed by device.
and codes are organized in alphabetical order.

Both devices

For each code, the symbolic name is listed in form IO.xxx, IE.xxx, or
IS.xxx. A brief description of the error or function is also
included. Both decimal and octal values are provided for all codes.

B.l I/O STATUS CODES

This section lists error and success codes which can be returned in
the I/O status block on completion of an I/O function. The codes
below may be referenced symbolically by invoking the system macro
IOERR$.

B.1.1 I/O Status Error Codes

Name Decimal Octal Meaning

IE.ABO -15 1 77761 Operation aborted

IE.ALN -34 177736 File already open

IE. BAD -01 177777 Bad parameter

IE.BBE -56 177710 Bad block

IE.BCC -66 177676 Block check error or framing error

B-1

I/O FUNCTION AND STATUS CODES

Name Decimal Octal Meaning

IE. BLK -20 177754 Illegal block number

IE.BYT -19 1 77755 Byte-ligned buffer specified

IE.CNR -73 177667 Connection rejected

IE.CON -22 177752 UDC connect error

IE.DAA -08 177770 Device already attached

IE.DAO -13 1 77763 Data overrun

IE.DNA -07 1 77771 Device not attached

IE.DNR -03 177775 Device not ready

IE.DUN -09 177767 Device not attachable

IE.EOF -10 177766 End-of-file encountered

IE. EQT -62 177702 End-of-tape encountered

IE. EOV -11 177765 End-of-volume encountered

IE. FHE -59 177705 Fatal hardware error

IE.FLG -89 177647 Event flag already specified

IE.FLN -81 177657 I CS/I CR controller already offline

IE. IEF -97 177637 Invalid event flag

IE. IES -82 177656 Invalid escape sequence

IE.IFC -2 177776 Illegal function

IE.MOD -21 177753 Invalid UDC or I CS/ I CR module

IE.NLK -79 177661 Task not linked to specified
ICS/ICR interrupts

IE.NLN -37 1 77733 File not open

IE.NOD -23 177751 No dynamic memory available to
allocate a secondary control
block

IE.NST -80 1 77660 Task specified in ICS/ICR Link or
Unlink request not installed

IE.NTR -87 177651 Task not triggered

IE. OFL -65 177677 Device off line

IE. ONP -05 1 77773 Illegal subfunction

B-2

I/O FUNCTION AND STATUS CODES

Name Decimal Octal Meaning

IE. OVR -18 177756 Illegal read overlay request

IE.PES -83 1 77655 Partial escape sequence

IE.PR! -16 1 77760 Privilege violation

IE.REJ -88 1 77650 Transfer rejected

IE.NOD -23 1 77751 No dynamic memory available

IE.RSU -17 1 77757 Nonsharable resource in use

IE.SPC -06 177772 Illegal address space

IE.TMO -74 1 77666 Time-out error

IE.VER -04 l 77774 Unrecoverable error

IE.WCK -86 1 77652 Write check error

IE.WLK -12 1 77764 Write-locked device

B. l. 2 I/O Status Success Codes

Decimal Octal
Name Bytes Word Meaning

IS.CR Byte 0: 1 006401 Successful completion with
Byte 1: 15 carriage return

IS.CC Byte 0: , 001401 Successful completion on ..L

Byte 1: 3 read terminated by CTRL/C

IS.ESC Byte 0: 1 015401 Successful completion
Byte 1: 33 with ESCape

IS.ESQ Byte 0: 1 115401 Successful completion with
Byte 1: 233 an escape sequence

IS. PND +00 000000 I/O request pending

IS. RDD +02 000002 Deleted data mark read

rs.sue +01 000001 Successful completion

IS. TMO +02 000002 Successful completion on
read terminated by time-out

IS.TNC +02 000002 Successful transfer but
message truncated (receiver
buff er too small)

B-3

I/O FUNCTION AND STATUS CODES

B.2 DIRECTIVES CODES

This section lists error and success codes that can be returned in the
directive status word at symbolic location $DSW when a QIO directive
is issued.

B.2.1 Directive Error Codes

Name Decimal Octal Meaning

IE .ADP -98 1 77636 Invalid address

IE. IEF -97 1 77637 Invalid event flag number

IE. ILU -96 177640 Invalid logical unit number

IE. SDP -99 1 77635 Invalid DIC number or DPB size

IE.ULN -05 1 77773 Unassigned LUN

IE. UPN -01 1 77777 Insufficient dynamic storage

B.2.2 Directive Success Codes

Name Decimal Octal Meaning

rs. sue +01 000001 Directive accepted

B.3 I/O FUNCTION CODES

This section lists octal codes for all standard and device-dependent
I/O functions.

B.3.1 Standard I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte} (Low Byte} Meaning

IO.ATT 001400 3 0 Attach device

IO. DET 002000 4 0 Detach device

IO.KIL 000012 0 12 Cancel I/O requests

IO. RLB 001000 2 0 Read logical block

IO.RVB 010400 21 0 Read virtual block

IO.WLB 000400 1 0 Write logical block

IO.WVB 011000 22 0 Write virtual block

B-4

I/O FUNCTION AND STATUS CODES

B.3.2 Specific A/D Converter I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte} (Low Byte)

IO. RBC 003000 6 0

B.3.3 Specific Card Reader I/O Function Codes

Symbolic
Name

IO. RDB

Code Subcode
Word Equivalent (High Byte) (Low Byte}

001200 2 200

B.3.4 Specific Cassette I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

IO. EOF 003000 6 0

IO.RWD 002400 5 0

IO.SPB 002420 5 20

IO. SPF 002440 5 40

Meaning

Initiate an A/D
conversion

Meaning

Read logical block
(binary)

Meaning

Write end-of-file
gap

Rewind tape

Space blocks

Space files

B.3.5 Specific Communication (Message-Oriented) I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

IO.FOX 003020 6 20

IO.HDX 003010 6 10

IO. INL 002400 5 0

IO.RNS 001020 2 20

IO. SYN 003040 6 40

IO. TRM 002410 5 10

IO.WNS 000420 1 20

B-5

Meaning

Set device to
full-duplex mode

Set device to
half-duplex mode

Initialize device
and set device
characteristics

Read logical block,
transparent mode

Specify sync
character

Terminate
communication,
disconnecting from
physical channel

Write logical block
with no sync leader

I/O FUNCTION AND STATUS CODES

B.3.6 Specific DECtape I/O Function Codes

Code Subcode Symbolic
Name Word Equivalent (High Byte) (Low Byte)

IO.RLV 001100 2 100

IO.WLV 000500 1 100

B.3.7 Specific DECtape II I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

IO.WLC 420 1 20

IO.RLC 1020 2 20

IO.BLS 4010 10 10

IO.DGN 4150 10 150

B.3.8 Specific Disk I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte} (Low Byte)

IO.RPB 001040 2 40

IO.SEC 002520 5 120

IO. SMD 002500 5 100

IO.WDD 001140 1 140

IO.WLC 001020 1 20

IO.WPB 000440 1 40

B-n

Meaning

Read logical block
(reverse)

Write logical block
(reverse)

Meaning

Write logical block
with check

Read logical block
with check

Position tape

Run internal
diagnostics

Meaning

Read physical block
(RXOl, RLOl, RL02
only)

Sense
characteristics
(RX02 only)

Set media density
(RX02 only)

Write physical block
with deleted data
mark (RX02 only)

Write logical block
followed by write
check (all except
RXOl, RX02)

Write physical block
(RXOl, RX02, RLOl,
RL02 only)

I/O FUNCTION AND STATUS CODES

B.3.9 Specific Graphics Display I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.CON 015400 33 00 Connect to graphics
device

IO.CNT 017000 36 00 Continue DPU

IO. DIS 016000 34 00 Disconnect from
graphics device

IO. STP Olh400 35 00 Stop DPU

B.3.10 Specific ICS/ICR, DSS/DR I/O Function Codes

Symbolic
Name

IO.CCI

IO.CTI

IO.CTY

IO.DCI

IO. DTI

IO.DTY

IO. FLN

IO. ITI

IO. LDI

IO. LKE

IO.LTI

IO. LTY

Code Subcode
Word Equivalent (High Byte) (Low Byte)

014000 30 0

015400 33 0

003400 7 0

014400 31 0

016000 34 0

006400 15 0

012400 25 0

017000 3n 0

007000 0

012000 24 0

007400 17 0

010000 20 0

B-7

Meaning

Connect a buffer to
digital interrupt
input

Connect a counter

Connect a remote
terminal

Disconnect a buffer
from digital
interrupt input

Disconnect a buffer
from counter input

Disconnect a buffer
from terminal input

Place selected unit
off line

Initialize a counter

Link a task to
digital interrupts

Link a task to error
interrupts

Link a task to
counter interrupts

Link a task to
terminal interrupts

I/O FUNCTION AND STATUS CODES

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.MLO 006000 14 0 Open or close
bistable digital
output points

IO.MSG 005000 12 0 Pulse single-shot
digital output
points

IO. NLK 011400 23 0 Unlink a task from
all unsolicited
interrupts

IO. ONL 017400 37 0 Place selected unit
on line

IO. RAD 010400 21 0 Read task activation
data

IO. RBC 003000 6 0 Initiate multiple
A/D conversions

IO. SAO 004000 10 0 Perform analog
output to specified
channel

IO. UDI 011410 23 10 Unlink a task from
digital interrupts

IO. UER 011440 23 40 Unlink a task from
error interrupts

IO. UTI 011420 23 20 Unlink a task from
counter interrupts

IO. UTY 011430 23 30 Unlink a task from
terminal interrupts

IO.WLB 000400 1 0 Output to remote
terminal

B.3.11 Specific LPAll-K I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent {High Byte) {Low Byte) Meaning

IO.CLK 015000 32 0 Start clock

IO. INI 014400 31 0 Initialize LPAll-K

IO.LOO 014000 30 0 Load microcode

IO. STA 015400 33 1 Start transfer

IO. STP 016400 35 n Stop request u

B-8

I/O FUNCTION AND STATUS CODES

B.3.12 Specific LPS I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.ADS 014000 30 0 Initialize A/D
sampling

IO.HIS 015000 32 0 Initialize histogram
sampling

IO.LED 012000 24 0 Display number in
LED lights

IO.MDA 016000 34 0 Initialize D/A
output

IO.MDI 014400 31 0 Initialize digital
input sampling

IO.MOO 015400 33 0 Initialize digital
output

IO.REL 013400 27 0 Latch output relay

IO.SDI 013000 26 0 Read digital input
register

IO.SDO 012400 25 0 Write digital output
register

IO.STP 016400 35 0 Stop in-progress
request

B.3.13 Specific Magtape I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent {High Byte) {Low Byte) Meaning

IO. EOF 003000 6 0 Write end-of-file
gap

IO.RLV 001100 2 100 Read logical block
(reverse)

IO. RWD 002400 5 0 Rewind tape

IO.RWU 002540 5 140 Rewind and unload

IO.SEC 002520 5 120 Sense
characteristics

IO.SMC 002560 5 160 Mount and set
characteristics

IO.SPB 002420 5 20 Space blocks

IO.SPF 002440 5 40 Space files

IO.STC 002500 5 100 Set characteristics

B-9

I/O FUNCTION AND STATUS CODES

B.3.14 Specific Parallel Communications Link I/O Function Codes

B.3.14.1 Transmitter Driver Functions -

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.ATX 000400 1 0 Attempt message
transmission

IO.STC 002500 5 100 Set master section
characteristics

IO. SEC 002520 5 120 Sense master section
status

B.3.14.2 Receiver Driver Functions -

Symbolic Code Subcode
Name Word Equivalent (High Byte) {Low Byte) Meaning

IO.CRX 014400 31 0 Conneect for
reception

IO.ATP 001000 2 0 Accept transfer

IO.RTF 015400 33 0 Reject transfer

IO.DRX 001500 32 0 Disconnect from
reception

B.3.15 B.3.15 Specific Terminal I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) {Low Byte) Meaning

IO.ATA 001410 3 10 Attach device,
specify
unsolicited-input-
character AST

IO.CCC 000440 1 40 Write logical block
and cancel CTRL/0

SF.GMC 002560 5 160 Get multiple
characteristics

IO.GTS 002400 5 00 Get terminal support

I IO.HNG 003000 6 0 HANGUP remote line

IO.RAL 001010 2 10 Read logical block
and pass all bits

B-10 April 1983

I/O FUNCTION AND STATUS CODES

Symbolic
Name Word Equivalent

IO.RNE 001020

IO.RPR 004400

IO.RST 001001

IO.RTT 005001

SF.SMC 002440

IO.WAL 000410

IO. WBT 000500

Subfunction Bits:

With IO.RLB, IO.RPR:

TF.RST
TF. BIN
TF.RAL
TF. RNE
TF.XOF
TF.TMO

With IO.WLB:

TF.WAL
TF.CCO
TF.WBT

With IO.ATT:

TF.AST
TF.ESQ

Code
(High Byte)

2

11

2

12

5

1

l

l
2

10
20

100
200

10
40

100

10
20

B-11

Subcode
(Low Byte)

20

00

1

1

40

10

100

Meaning

Read with no echo

Read after prompt

Read with special
terminators

Read logical block
ended by specified
special terminator
(Full-duplex driver
only)

Set multiple
characteristics

Write logical block
.nd pass al 1 bits

Write logical block
and break through
on-going I/O

I/O FUNCTION AND STATUS CODES

B.3.16 Specific UDC I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO. CCI 014000 30 0 Connect a buff er to
contact interrupt
digital input

IO.CTI 015400 33 0 Connect a timer

IO. DCI 014400 31 0 Disconnect a buffer
from contact
interrupt digital
input

IO.DTI 016000 34 0 Disconnect a timer

IO. ITI 017000 36 0 Initialize a timer

IO.MLO 006000 14 0 Open or close
latching digital
output points

IO.RBC 003000 6 0 Initiate multiple
A/D conversions

B.3.17 Specific UNIBUS Switch I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO. CON 15400 33 0 Connect UNIBUS
switch

IO.DIS 16000 34 0 Disconnect UNIBUS
switch

IO.DPT 16010 34 10 Disconnect UNIBUS
switch and connect
to specified CPU
port

ro.swI 16400 35 0 Switch UNIBUS from
current CPU to
specified CPU

IO.CSR 15000 32 0 Read UNIBUS switch
CSR

B.3.18 Specific Virtual Terminal I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO. STC 002500 5 100 Set terminal
-\...----"---.: -.1..: --\...1!0 J. a\... l..t::J. .1. :::i l...L\... :::i

B-12

APPENDIX C

QIO INTERFACE TO THE ACPS

This appendix describes the QIO level interface to the file processors
(ACPs). These include FllACP for Files-11 disks and MTAACP for ANSI
magnetic tape.

FllACP supports the following functions:

IO. CRE
IO.DEL
IO.ACR
IO.ACW
IO.ACE
IO.DAC
IO.EXT
IO.RAT
IO. WAT
IO. FNA
IO.RNA
IO. ENA
IO. ULK

Create file
Delete file
Access file for read only
Access file for read/write
Access file for read/write/extend
Deaccess file
Extend file
Read file attributes
Write file attributes
Find file name in directory
Remove file name from directory
Enter file name in directory
Unlock block

MTAACP supports the following functions:

IO. FNA
IO. ENA
IO.ACR
IO.ACW
IO.ACE
IO.DAC
IO.RVB
IO.WVB
IO.EXT
IO.CRE
IO.RAT
IO.APC
IO.APV

Find file by name
Enter name in directory (a no-op)
Access for read only
Access for read/write
Access for read/write/extend
Deaccess file
Read virtual block
Write virtual block
Extend file
Create file
Read attributes
ACP control
Privileged ACP control

C.l QIO PARAMETER LIST FORMAT

The device-independent part of a file processing QIO parameter list is
identical to all other QIO parameter lists. The general QIO parameter
lists is described in detail in Section 1.6 of this manual. The file
processor QIOs require the following six additional words in the
parameter lists:

Parameter Word 1 Address of a 3-word block containing the
file identifier

C-1

QIO INTERFACE TO THE ACPS

Parameter Word 2 Address of the attribute list

Parameter Words 3 & 4 Size and extend control information

Parameter Word 5 Window size information
control

and

Parameter word 6 Address of the file name block

NOTE

The RSX-llM/M-PLUS Executive treats File
Identifier Blocks, filename blocks, and
attribute list entries as read/write
data. For this reason, they may not be
used in read-only code segments or
libraries.

C.1.1 File Identification Block

The File Identification Block is a 3-word block
number and the file sequence number. The
Identification Block is shown in Figure C-1.

File Number

File Sequence Number

Reserved

containing
format of

Figure C-1 File Identification Block

the
the

access

file
File

FllACP uses the file number as an index to the file header in the
index file. Each time a header block is used for a new file, the file
sequence number is incremented. This insures that the file header is
always unique. The third word is not currently used but is reserved
for the future.

C.1.2 The Attribute List

The file attribute list controls FllACP
attributes are fields in the file header.
in detail in Appendix F of the IAS/RSX
Manual.

reads or writes. File
These fields are described
I/O Operations Reference

The attribute 1-ist contains a variable number of entries terminated by
an all-0 byte. The maximum number of entries in the attribute list is
six.

An entry in the attribute list has the following format:

.BYTE <Attribute type>, Attribute size

.WORD Pointer to the attribute buffer

C-2

QIO INTERFACE TO THE ACPS

C.1.2.1 The Attribute Type - This field identifies the individual
attribute to be read or written. The sign of the attribute type code
determines whether the transfer is a read or write operation. If the
type code is negative, the ACP reads the attribute into the buffer.
If the type code is positive, the ACP writes the attribute to the file
header. Note that the sign of the type code must agree with the
direction implied by the operation. For example, if the type code is
positive, the operation must be an IO.WAT or IO.DAC.

The attribute type is one of the following:

• File owner {H.FOWN)
The file owner UIC is a binary word. The low byte is the
owner number and the high byte is the group number.

• File protection (H.FPRO)
The file protection word is a bit mask with the following
format:

Each of the fields contains four bits, as follows:

Bit 1
Bit 2
Bit 3
Bit 4

Read Access
Write Access
Extend Access
Delete Access

• File characteristics (H.UCHA)
The following user characteristics are currently contained in
the 1-byte H.UCHA field:

UC.CON
UC.DLK

200
100

Logically contiguous file
File improperly closed

• Record I/O Area (U.UFAT)
This field contains a copy of the first sevenl words of the
file descriptor block. See Appendix A of the IAS/RSX I/O
Operations Reference Manual for a description of the FDB.

• File name (I.FNAM)
The file name is stored as nine Radix-50 characters. the
fourth word of this block contains the file type and the fifth
word contains the version number.

• File type (I.FTYP)
The file type is stored as three Radix-50 characters.

• version number (I.FVER)

•
The version number is stored as a binary number.

Expiration date (I.EXDT)
Creation date (I.CRDT)
Revision date (I.RVDT)
The expiration date is currently unused. When
created, the ACP initializes the creation date
date and time. It initializes the expiration
dates to O. The ACP sets the revision date
date and time each time the file is deaccessed.

the file is
to the current

and revision
to the current

1. RMS uses 32 bytes. The first seven are compatible with FCS for
sequential files.

C-3

QIO INTERFACE TO THE ACPS

• Statistics block
This block is described in Appendix H of the !AS/RSX I/O
Operations Reference Manual.

• Read entire file header
This buffer is assumed to be 1000 blocks long.
write this attribute.

• Revision number (I.RVNO)

You cannot

The ACP sets the revision number to O, and increments it every
time the file is deaccessed.

• Placement Control

C.1.2.2 Attribute Size - This word specifies the number of bytes of
the attribute to be transferred. Legal values are from 1 to the
maximum size of the particular attribute. Table C-1 shows the maximum
size for each attribute type.

Table C-1
Maximum Size for Each File Attribute

I Maximum l Attribute Attribute Attribute Size
Type Code Type in Octal Bytes

1 File owner 6

2 Protection 4

I
')
.J File characteristics 2

4 Record I/O area 40

5 File name,type,version number 12

11 File type 4

7 Version number 2

10 Expiration date 7

11 Statistics block 12

12 Entire file header 0

13 Block Size (mag tape only) --

15 Revision number and
creation/revision/expiration dates 43

16 Placement control 16

QIO INTERFACE TO THE ACPS

C.1.2.3 Attribute Buffer Address - The attribute Buffer Address field
contains the address of the buffer in the user's task space to or from
which the attribute is to be transferred.

C.1.3 Size and Extend Control

These two parameters specify how many blocks the
allocated to a new file or adds to an existing file.
also control the type of block allocation.

The format is as follows:

.BYTE <High 8 bits of size>, <extend control>

.WORD <Low 16 bits of size>

file processor
These parameters

The size field specifies the number of blocks to be allocated to a
file on IOeCRE and IO.EXT operations, and the final file size on
IO.DEL operations.

The extend control field
operation is to be done.

controls the manner in which
The following bits are defined:

an extend

EX.ACl=l

EX.AC2=2

EX.FC0=4

EX.ADF=lO

EX.ALL=20

EX.ENA=200

The extend size is to be added as a contiguous
block.

Extend by the largest available contiguous piece up
to the specified size.

The file must end up contiguous.

Use the default rather than the specified size. The
default extend size is the size that was specified
when the volume was mounted.

Placement control (see Section C.2).

Enable extend.

C.1.4 Window Size and Access Control

This parameter specifies the window size
information in the following format:

.BYTE <window size>, <access control>

and access control

This word is only processed if the high bit of the access control byte
(AC.ENB) is set.

Window size is the number of mapping entries. Specifying a negative
window size minimizes window turns. If this byte is zero, the file
processor uses the volume default. The size of the window allocated
in the dynamic storage region is 6 times the number of mapping entries
(each mapping entry is 3 words), plus 10 bytes for the window control
block.

C-5 April 1983

QIO INTERFACE TO THE ACPS

On RSX-llM-PLUS systems with secondary pool support, the mapping
entries are allocated in secondary pool. The window control block and
a pointer to secondary pool are located in primary pool.

The following access control bits are defined:

AC.LCK=l
AC.DLK=2

AC.LKL=4
AC.EXL=lO
AC.ENB=200
AC.RWD=lO
AC.UPD=lOO
AC.POS=20

AC.WCK=40

Lock out further accesses for Write or Extend
Enable Deaccess lock
The deaccess lock sets the lock bit in the file header
if the file is deaccessed as the result of a task
exit without explicitly deaccessing the file. The
lock bit is set by the executive. The lock bit is not
set when the system crashes.
Enable block locking
Enable explicit block unlocking
Enable Access
Rewind the volume (labeled and unlabeled magtape only)
Update mode (labeled magtape only)
Do Not Position to end-of-volume (labeled magtape
only)
Initiate driver write-checking

NOTE

Both AC.LKL and AC.EXL must be set if
you want block locking. If you do not
want block locking, both bits must be
clear. Any other combination is an
error.

C.1.5 File Name Block Pointer

This word contains the address of a 15-word block in the issuing
task's space. This block is called the file name block. The file
name block is described in detail in Appendix B of the !AS/RSX I/O
Operations Reference Manual.

The fields of the file name block that are particularly important in
file-processing operations are:

• Directory identification (N.DID)
This field is required for all disk operations.
the directory to which the operation applies.
not used for tape operations.

• File identification (N.FID)

It specifies
This field is

This field is required as input for enter operations. This
field is returned as output by find and remove operations.

• File name (N.FNAM), type (N.FTYP), and version number (N.FVER)
These fields are required as input to enter, find, and remove
operations. For find and remove operations, the file
processor locates the appropriate entry by matching the
information in these fields with the directory entries.

• Status word (N.STAT)

• Wildcard context (N.NEXT)
This field is required as input for wildcard operations. It
specifies the point at which to resume processing. It is
updated for the next operation. It must initially be set to
o.

C-6 April

QIO INTERFACE TO THE ACPS

C.2 PLACEMENT CONTROL

The placement control attribute list entry controls the placement of a
file in a particular place on the disk. You can specify either exact
or approximate placement on IO.CRE and IO.EXT operations.

The placement control entry must be the first entry in the attribute
list.

The format of the placement control attribute list entry is as
follows:

placement control,O
high-order bits of VBN or LBN
low-order bits of VBN or LBN

.BYTE

.WORD

.WORK

.BLKW 4 Buffer to receive starting and ending LBN if
AL.LBN is set.

The following bits are defined for the placement control field:

AL.VBN=l

AL.APX=2

AL.LBN=4

C.3 BLOCK LOCKING

Set if block specified is a VBN; otherwise, the
block is the LBN
Set if you want approximate placement;
otherwise, placement is exact
Set if you want starting and ending LBN information

Block locking only occurs when the user accesses a file with AC.LKL
and AC.EXL set in the access control byte of the parameter list. Any
read or write operation causes a check to see if the block is locked.

A write access locks a block for exclusive access. A write operation
can only access a block that is not locked by any accessor. The only
exception to this is an exact match with a previous lock owned by the
same accessor.

A read access locks a block for shared access. A read operation can
access any block locked for shared access.

The user must unlock a block with an explicit unlock request, IO.OLK.
IO.OLK may be used to unlock one or all blocks.

If all accessors to a file have not requested block locking, the ACP
returns an error (see Table C-2).

When the file is deaccessed, all locks owned by the accessor are
released.

Each active lock requires eight bytes from the dynamic storage region.
This storage is deallocated when the file is deaccessed.

C.4 SUMMARY OF FllACP FUNCTIONS

The following is a summary of the functions implemented in FllACP. A
list of accepted parameters follows each function. All parameters are
required unless specified as optional. Parameters other than those
listed are illegal for that function and must be O.

C-7 April 1983

I

QIO INTERFACE TO THE ACPS

IO.CRE Create file

#1 The file identifier block is filled in with the file
identifier and sequence number of the created file.

#2 Write Attribute and/or
(optional)

#3 & #4 Extend Control (optional)

Placement Control list

The amount allocated to the file is returned in the
high byte of IOST(l) plus IOST(2).

#5 May be nonzero but must be disabled

IO.DEL Delete or truncate file

IO.ACR

IO.ACW

IO.ACE

IO.DAC

IO.EXT

IO.RAT

IO.FNA

IO.RNA

#1 Optional if the file is accessed

#3 & #4 Size to truncate the file to. If not enabled, the
file is deleted. If enabled, the remaining 31 bits
specify the size the file is to be after truncation.
The change in file allocation is returned in the high
byte of IOST(l) plus IOST(2). This amount will be
zero or negative.

Access file for read only

Access file for read/write

Access file for read/write/extend

#1 File identifier pointer

#2 Read attributes control (optional)

#5 Access control must be enabled

Deaccess file

#1 File identifier pointer (optional)

#2 Write attributes control list

#5 May be nonzero but must be disabled

Extend file

#1 Optional if file is accessed

#2 Placement control attribute list (optional)

#3 & #4 Extend control

#1

The amount allocated to the file is returned in the
high byte of IOST(l) plus IOST(2).

Read attributes

Optional if file is accessed

#2 Read attributes control list

Find name in directory

Remove name from directory

C-8 April 1983

QIO INTERFACE TO THE ACPS

IO.ENA Enter name in directory

#5 May be nonzero but must be disabled

#6 File name block pointer

C-8.1

QIO INTERFACE TO THE ACPS

IO. ULK Unlock block

#2 0 or count of blocks to unlock

#4 & #5 Starting VBN to unlock or 0 to unlock all blocks.

IO. RVB Read virtual block

IO.WVB Write virtual block

#1 User buffer

#2 Buffer length

#4 & #5 VBN

C.5 SUMMARY OF MTAACP FUNCTIONS

The following is a summary of the functions implemented in MTAACP. A
list of accepted parameters follows each function. All parameters are
required unless specified as optional. Parameters other than those
listed are illegal for that function and must be O.

IO.FNA Find file by name

#5 AC.RWD set in the access control byte indicates
that the volume is to be rewound prior to the
search.

#6 Pointer to file name block.
The following fields are used as input:

N .FNAM
N.FTYP
N.FVER
N.STAT

The following fields are returned by MTAACP:

N.FID
N.FNAM
N.FTYP
N.FVER
N.STAT

IO. ENA Enter name in directory -- a no-op for magnetic tape

IO.ACR Access for read only

u File identifier pointer. Used to position a
tape by file identifier.

#2 Read attribute list (optional)

#5 Ignored

IO.ACW Access for read/write

This function will be rejected with the error
code IE.PR!. (Extend access is required.)

C-9

QIO INTERFACE TO THE ACPS

IO.ACE Access for read/write/extend

#1 File identifier pointer. Used to position tape
by file identifier.

#2 Read attribute list (optional)

#5 AC.UPD (update mode). If AC.UPD is set, the
tape will be positioned to overwrite the file
and all files beyond the current file will be
lost. If AC.UPD is not set, the tape will be
positioned for append. If the file is not the
last file, MTAACP returns the error code
IE.ISQ.

IO.DAC Deaccess file

#1 File identifier pointer is ignored~

#5 AC.RWD set indicates that the volume is to be
rewound after the file is closed.

IO.RVB Read virtual block

#1 Buffer address

#2 Buffer size. The buffer size must be greater
than 18 bytes and less than the declared block
length for the entire file.

#4 High VBN

#5 Low VBN

The virtual block number must be either zero or exactly one
greater than the previous block number.

IO.CRE Create File

#1 File identifier pointer. The file sequence and
section number will be returned to the user's
file identifer block.

#2 Attribute list pointer. Used to write the
attributes for the newly created file.
Attribute type code must be positive.

#5 If AC.RWD is set, the volume will be positioned
at the beginning and will overwrite the first
file. This effectively reinitializes the
volume.

If AC.RWD is not set and AC.POS is set, the
volume set will be positioned to the next file
position beyond the current file and will
overwrite that file. All files beyond that on
the volume will be destroyed.

If neither AC.RWD nor AC.PCS is set, the volume
set will be positioned at its end and the new
file will be appended to the set.

For unlabeled tapes, MTAACP only checks AC.RWD.

#6 Filename block pointer.

C-10 April 1983

QIO INTERFACE TO THE ACPS

IO.RAT Read Attributes

#1 File identifier pointer. Used to position the
tape by the file-identifier.

#2 Attribute list pointer (see Section C.1.2)
The following attribute list entries are
meaningful for magnetic tape:

1,2
1,4
1,5
2,2
2.3
3,1
4,32
5,6
5,8
5,10
6,2
6,4
7,2
8,7
-9,10
-10,0
11, 2

IO.APC ACP Control

UIC
UIC and protection
UIC, protection, and characteristics
Protection
Protection and characteristics
Characteristics
User file attributes
File name
File name and type
File name and type
File type
File type and version number
Version number
Expiration date
Statistics block (read only)
Entire header (read only)
Block size

#3 One of the following user control function
codes:

1 Rewind volume set.
2 Position to end of volume set.
3 Close current volume and continue

processing the next section of the same
file on the next volume of the volume
set.

4 Space physical records in currently
accessed file.

5 Get ACP characteristics.
6 Rewind current file.

IO.APV Privileged ACP Control

This function is used only by the MOUNT and DISMOUNT
commands. This interface is subject to change and,
therefore, will not be documented until a future
release.

C.6 HOW TO USE THE ACP QIOS

Although the operations described in this appendix are normally
performed by the file-access methods (RMS and FCS), your application
may issue the ACP QIOs. The required parameters for each QIO are
described above. The necessary steps for common operations are
described below.

NOTE

The file identifier is the only way to
refer to a file.

C-11

QIO INTERFACE TO THE ACPS

C.n.l Creating a File

To create a file:

• Use IO.CRE to create it.

• Enter it in the Master File Directory (MFD) or a user
directory with IO.ENA.

C.n.2 Opening a File

To open a file:

• Use IO.FNA to find the File Identifier of the directory in the
MFD.

• Use IO.FNA to find the File Identifier of the file in the
directory.

• Access the file with IO.ACR, IO.ACW, or IO.ACE.

C.6.3 Closing a File

To close a file:

• Deaccess the file with IO.DAC.

C.n.4 Extending a File

To extend a file:

• Use IO.FNA to find the file identifier if the file is not
accessed.

• Use IO.EXT to extend the file.

C.6.5 Deleting a File

To delete a file:

• Use IO. FNA to find the file identifier.

• Use IO. RNA to remove the directory name.

• Use IO. DEL to delete the file.

C.7 ERRORS RETURNED BY THE FILE PROCESSORS

The error codes returned by FllACP and MTAACP are shown in Table C-2.

C-12

Error
Code

IE.ABO

IE.ALC

IE.ALN

IE.BAD

IE.BDR

IE.BHD

IE.BVR

QIO INTERFACE TO THE ACPS

Table C-2
File Processor Error Codes

Operations Explanation

IO. RVB/IO. WVB Indicates that all

I

I Extend or create operation

I
requested data was not
transferred by the
device.

Indicates that the
operation failed to
allocate the file based
on placement control or
because of other related
problems.

I

An attempt to access a file

Any function

Directory operations

Any operation

Directory operations

C-13

Indicates that a file is
already accessed on that
LON.

Indicates that a required
parameter is missing,
that a parameter that
must not be present is
present, that a parameter
that must be disabled is
enabled, or that a
parameter value is
invalid.

Indicates that you
attempted a directory
operation on a file that
is not a directory, or
that the specified
directory is corrupted.
This is usually caused by
a 0 version number field.

Indicates that a corrupt
file header was
encountered, or that the
operation required a
feature not supported by
the FCP (such as
multiheader support or
support for unimplemented
features).

Indicates that you
attempted to enter a name
in a directory with a
negative or 0 version
number.

(continued on next page)

QIO INTERFACE TO THE ACPS

Table C-2 (Cont.)
File Processor Error Codes

Error
Code Operations

IE.BYT Any function

IE.BTP I Unlabeled Magtape Create

IE.CKS Any operation

IE.CLO File access operations

IE.DFU An allocation request

IE.DUP An enter name operation

I
IE. EOF I IO. RVB/IO. WVB/IO. DEL

IE.HFU An extended operation

IE.IFC Returned by exec

C-14

Explanation

This error is returned if
the buffer specified is
on an odd byte boundary
or is not a multiple of
four bytes.

An attempt was made to
create an unlabeled tape
file with a record type

• other than fixed.

Indicates that the
checksum of a file header
is incorrect.

Indicates that the file
was locked against access
by the "deaccess lock
bit."

Indicates that there is
insufficient free disk
space for the requested
allocation.

Indicates that the name
and version already

1 exist.
I
I On read operations, this

indicates an attempt to
read beyond end of file.
On truncate operations,
it indicates an attempt
to truncate a file to a
length longer than that
allocated or that the
file was already at EOF.

Indicates that the file
header is full and cannot
contain any more
retrieval pointers and
that adding an extension
header is not allowed.
When this is returned on
a create operation, it
indicates that the index
file could not be

I extended to allow a file
neader ~o oe allocated.

Illegal function code.

(continued on next page)

April 1983

I

QIO INTERFACE TO THE ACPS

Table C-2 (Cont.)
File Processor Error Codes

Error
Code Operations

IE. IFU Create or extend operation

~.-. T ,..T,, - -- ! , - ~~ ~~

J.t'... LI....!'\ I r<.eturned on f LJ.e acce::i::i,
directory operations, and
on truncate

IE.LUN Any operation requiring
a file ID

IE.NOD All file operations
that require DSR

IE.NSF All file operations

IE.OFL Returned by exec

IE.PRI Any operation

C-15

I

Explanation

Indicates that there are
no file headers available
based on the parameters
specified when the volume
was initialized.

T ~ -.s...-- .L-1--J- i...~ ~ ~ 1 ~ l.nd.LCa1..o::::::i Ll!QL l-UC .L.l..LC

is already accessed by a
writer and that shared
write has not been
requested or is not
allowed.

Indicates that file ID
has not been supplied and
that the file is not
accessed on the LUN.

Indicates that an I/O
request failed due to
IE.UPN, that the FCP was
unable to allocate
required space from DSR
or from secondary pool
for data structures.

Indicates that the
specified directory entry
does not exist, that a
file corresponding to the
file ID does not exist,
or that the file is
marked for delete.

The device is off line.

Indicates that the user
does not have the
required privilege for
the requested operation,
or that the user has not
requested the proper
access to the file if the
file is already accessed
(for example, an attempt
to write to a file that
is accessed for read).
This also indicates an
attempt to do file I/O to
a device that is not
mounted.

(continued on next page)

I
I

QIO INTERFACE TO THE ACPS

Table C-2 (Cont.)
File Processor Error Codes

Error
Code

IE. RER

IE. SNC

Operations

Any operation

operation

IE.SPC Returned by exec

IE.SQC j Any operation

IE.WAC File access operations

IE.WAT Write attributes
and deaccess

IE.WER Any operation

IE.WLK Any operation
requiring write access

C-16

Explanation

Indicates that the FCP
encountered a fatal
device read error during
an operation; the
operation has been
aborted.

Indicates that the file
number and the value

, contained in the header
do not agree. This
generally means that the
header has gone bad due
to a crash or a hardware
error.

Indicates an illegal
buffer.

j Indicates that the file
sequence number does not
agree with the file
header; usually
indicates that the file
has been deleted and the
header has been reused.

Indicates that the file I
is already write accessed
and lock against writers j

is requested.

Indicates that the FCP
encounteied an invalid
attribute.

Indicates that the FCP
encountered a fatal
device write error during
an operation. The
operation has been
aborted but the disk
structure_may have been
corrupted.

Indicates that the volume
is software write-locked.

A/D converter, 14-1
ADOl-D, 14-1
AFCll, 14-1
device-specific QIO, 14-2 to

14-3
FORTRAN interface, 14-3 to

14-7
standard QIO, 14-2
status return, 14-8 to 14-9

A/D gain range, 14-10
AAll-K, 22-2
AAVll-K, 22-2
ACP

QIO interface, C-1
ADOl-D, 14-1
ADll-K, 22-2
ADVll-K, 22-2
AFCll, 14-1
AMll-K, 22-2
Analog-to-digital converter

See A/D converter
Ancillary Control Processor

See ACP
ARll, 16-1 to 16-2
ASR-33, 2-3, 3-2
ASR-35, 2-3, 3-2
Assign LUN
AST

service routine, 1-11, 1-13
terminating service, 1-24
unsolicited-input-character,

3-32 to 3-33
ASTX$S, 1-24
Asynchronous serial line

interface
DLll, 2-40, 3-30
DLll-E, 12-2

Asynchronous serial line
multiplexer

DHll, 2-40, 3-29
DHVll, 2-40
DJll, 2-40, 3-30
DZll, 2-40, 3-30

Asynchronous System Trap
See AST

INDEX

Auto-baud speed detection, 2-42
Automatic carriage return, 2-34,

3-27 to 3-28

Badge reader, 2-4A, 3-3
Block size

magnetic tape, 8-14
Break-through-write, 2-22
Buff er

type-ahead, 2-37

Buffering
variable-length, 3-28

Card input error
error recovery, 11-3

Card reader, 11-1
binary format, 11-9
control character, 11-8
data format, 11-9
data format translation, 11-9
device-specific QIO, 11-3
format translation, 11-10
indicator light

list of, 11-5 to 11-6
standard QIO, 11-2
switch

list of, 11-5 to 11-6
Card reader check

recovery, 11-4
Carriage return

automatic, 2-34, 3-27 to 3-28
Cassette, 9-1

block length, 9-8
device-specific QIO, 9-3
space functions, 9-7
standard QIO, 9-2
status return, 9-3 to 9-5
structure, 9-6

Character
control, 2-27, 2-33
task-buffering of received,

2-36
vertical format control, 2-34,

10-6
Checkpointing

during terminal input, 3-31
Control character

card reader, 11-8
list of, 11-9

terminal, 2-27, 2-33, 3-20,
3-25

Controller
DECtape, 6-1
disk

UDA50, 5-4
Counter

initial value, 18-23 to 18-24
interrupt

disconnect, 18-23 to 18-24
CRll, 11-1
CTRL/C, 3-20
CTRL/I: 3-20
CTRL/J, 3-20
CTRL/K, 3-20
CTRL/L, 3-20

Index-1

CTRL/M, 3-20
CTRL/O, 2-13, 3-21
CTRL/Q, 3-21
CTRL/R, 3-21
CTRL/S, 3-21
CTRL/U, 3-21
CTRL/Z, 3-21
Cursor control, 2-39, 3-33

Data format
card reader, 11-9

DECprinter, 2-4
LA180, 10-2

DECtape, 6-1
device-specific QIO, 6-3
recovery procedure, 6-6
reversing direction, 6-7
select recovery, 6-7
standard QIO, 6-2
status return, 6-4 to 6-6

DECTAPE II
See TU58

Density selection
magnetic tape, 8-15

Device
attaching to, 1-26
detaching, 1-27
logical, 1-18
null, 19-1

Device name
physical, 1-18 to 1-20

DHll, 2-40, 3-29
remote, 3-31

Diagnostic function
user-mode, 1-30

Dial-up line, 2-42
Digital output

bistable
multipoint, 18-18

multipoint, 18-17
DIR$ macro, 1-16
Directive Parameter Block

See DPB
Disk

cartridge
RK05, 5-3
RK06, 5-3
RK07, 5-3
RL02, 5-3

emulator
ML-11, 5-4

fixed
RASO, 5-4
RA81, 5-4
RD51, 5-4A

fixed-head
RFll/RSll, 5-1
RS03, 5-1
RS04: 5-1

fixed/removable
RC25, 5-4A

flexible
RXOl, 5-4

INDEX

Disk
flexible (Cont.)

RX02, 5-4
RX50, 5-4A

geometry, 5-2
last-track, 5-12
pack

RA60, 5-4
RM02, 5-3
RM03, 5-3
RM05, 5-3
RM80, 5-3
RP02, 5-1
RP03, 5-1
RP04, 5-3
RP05, 5-3
RP06, 5-3

power-fail recovery, 1-39
removable/fixed

RC25, 5-4A
status return, 5-8 to 5-11

Disk controller
UDA50, 5-4

DJll, 2-40, 3-30
DLll, 2-40, 3-30

receiver interrupt enable,
3-33

DMCll, 12-3
DPll, 12-3
DPB, 1-13

diagnostic, 1-31
previously defined, 1-16
QIO, 1-14

DQll, 12-3
DRll-K, 22-2
DRVll, 22-2
DSS/DRS

configuration, 18-7
DSSll, 18-1

address assignment, 18-2
DT07, 23-1

device-specifc QIO, 23-4 to
23-6

FORTRAN interface, 23-8
power-fail recovery, 23-6
standard QIO, 23-2 to 23-3
status return, 23-7

DUll, 12-3
DUPll, 12-4
DZll, 2-40, 3-30

remote, 3-31 to 3-32

End-of- tape
logical, 9-8
paper tape, 17-5

End-of-volume status
magnetic tape, 8-15 to 8-16

Escape code
conversion, 2-40A, 3-30

Escape sequence, 2-29, 3-22
receiving, 2-32
syntax exception, 2-33, 3-26
syntax violation, 2-32, 3-24

Index-2

Escape sequence (Cont.)
VTlOO, 2-31

Event
significant, 1-12

Event flag
wait for, 1-24

Fixed and removable, single
spindle disk, 5-4A

Format control
vertical

Gain

line printer, 10-5 to 10-6
terminal, 3-26 to 3-27

A/D, 14-10
Get Multiple Characteristics,

2-13
GLUN$, 1-21

A/D converter, 14-2
card reader, 11-1 to 11-2
cassette, 9-1 to 9-2
DECtape, 6-1 to 6-2
disk, 5-4A
DT07 UNIBUS switch, 23-2
full-duplex terminal driver,

2-6 to 2-7
graphic display driver, 20-1
half-duplex terminal driver,

3-4 to 3-5
ICS/ICR, 18-8
laboratory peripheral system,

16-2
line printer, 10-2 to 10-3
LPAll-K, 21-2
magnetic tape, 8-3
message-oriented

communication device,
12-4

paper tape, 17-1
PCL, 13-2
table of bits returned, 1-22

to 1-23
TU58, 7-1 to 7-2
UDCll, 15-3
virtual terminal, 4-1

Graphic display driver
device-specific QIO, 20-2
standard QIO, 20-2
status return, 20-3

Hard receive error
detection, 2-36

I/0
canceling request, 1-27
completion, 1-32
function code

summary, B-1
issuing request, 1-16
log i cal , 1-2
physical, 1-2

INDEX

I /0 (Cont.}
standard function, 1-25 to

1-26
status block, 1-11, 1-35
status code, 1-33

summary, B-1
status condition

table, 1-36 to 1-38
v i rt ua 1 , 1-2

I/O status block
K-series, 22-32
LPAll-K, 21-30 to 21-32

ICS/ICR, 18-1
address assignment, 18-2
configuration, 18-7
device-specific QIO, 18-8 to

18-12
direct access, 18-75 to 18-80
error recovery, 18-71
FORTRAN interface, 18-35 to

18-70
list of supported module,

18-3
standard QIO, 18-8 to 18-12

Industrial control subsystem,
18-1

Interface
terminal, 3-2

Interrupt
counter

disconnect, 18-23 to 18-24
link task to, 18-27

digital
connect, 18-20 to 18-21
disconnect, 18-21 to 18-23
link task to, 18-26

error
link task to, 18-28

terminal
connect, 18-24
link task to, 18-28

unsolicited
activating task, 18-25
ICS/ICR processing, 18-18

to 18-20

K-ser ies, 22-1
buffer management, 22-32
FORTRAN interface, 22-7 to

22-30
I/O status block, 22-32
MACR0-11 interface, 22-31
routine

generating, 22-4 to 22-5
Key

escape, 3-22
return, 3-22
rubout, 3-22, 3=24
special, 2-29

KSR-33, 2-3, 3-2
KSR-35, 2-3, 3-2
KWll-K, 22-3
KWVll-A, 22-3

Index-3

LAlOO, 2-3
LA12, 2-3
LA120, 2-4, 3-3
LA180, 10-2
LA180S, 2-4, 3-3
LA30, 2-4, 3-2
LA30-P, 3-29
LA34, 2-4
LA36, 2-4, 3-2
LA38, 2-4
LASO, 2-4A
Laboratory peripheral

K-series support routine,
22-1

Laboratory Peripheral
Accelerator

See LPAll-K
Laboratory peripheral system,

16-1
clock rate, 16-33 to 16-34
device-specific QIO, 16-3 to

16-9
FORTRAN interface, 16-9

subroutine summary, 16-11
to 16-28

synchronous subroutine,
16-10

sampling rate, 16-33 to 16-34
standard QIO, 16-2
status return, 16-29 to 16-33

Laser printer
LNOl, 10-2

Letter-Quality Printer, 2-4
Line

remote, 2-41 to 2-42, 3-31 to
3-32

Line printer
list of, 10-1
LPll, 10-2
LSll, 10-2
LVll, 10-2
ready recovery, 10-5
status return, 10-4 to 10-5

LNOl, 10-2
Logical block

reading, 1-28
writing, 1-29

Logical device, 1-18
Logical end-of-tape, 9-8
Logical I/O, 1-2
Logical unit number, 1-6, 1-17

changing assignment, 1-7
retrieving, 1-21

Logical unit table, 1-6
LPll, 10-2
LPAll-K, 21-1

22-bit addressing, 21-36
buffer management, 21-32 to

21-33
device-specific QIO, 21-27 to

21-29
FORTRAN interface, 21-2 to

21-27

INDEX

LPAll-K (Cont.)
I/O status block, 21-30 to

21-32
microcode, 21-34 to 21-35
time-out, 21-3 5
unloading driver, 21-35

LPSll, 16-1 to 16-2
LQP02, 2-4
LSll, 10-2
LVll, 10-2

Magnetic tape, 8-1
density selection, 8-15
device-specific QIO, 8-4 to

8-9
list of, 8-2
select recovery, 8-13
standard QIO, 8-4
status return, 8-10 to 8-12

.MCALL directive, 1-17
Message traffic

low, 12-12
Message-oriented communication

device-specific QIO, 12-5 to
12-7

full-duplex, 12-11
half-duplex, 12-11
redundancy checking, 12-11
standard QIO, 12-5
status return, 12-8 to 12-10
transmission validation,

12-11
Message-oriented communication

driver, 12-1
ML-11, 5-4
Modem, 2-42, 3-32
Multiplexer

asynchronous serial line,
2-40, 3-29 to 3-30

Q BUS, 2-40

Null device, 19-1

Overlapped seek, 5-7

Paper tape
error conditions, 17-4
punch, 17-1
reader, 17-1
ready recovery, 17-4
standard QIO, 17-2
status return, 17-3 to 17-4

Parallel Communications Link
See PCL

Parallel interface
DAll-B, 12-2

PCL
receiver

device=specifc QIO, 13-9 to
13-11

standard QIO, 13-8
status return, 13-11 to

13-12

Index-4

PCL (Cont.)
transmitter

device-specifc QIO, 13-3 to
13-5

standard QIO, 13-3
status return, 13-6 to 13-8

PCLll
See PCL

PCLll-B, 13-1
Personal Printer, 2-4A
Physical device name, 1-18 to

1-20
Physical I/O, 1-2
Power-fail recovery, 1-39

card reader, 11-4
DMCll, 12-12
DT07, 23-6
ICS/ICR, 18-72
line printer, 10-5
magnetic tape, 8-14

Print line truncation, 10-7
Printer

LA180, 10-2
LNOl, 10-2
LPll, 10-2
LSll, 10-2
LVll, 10-2

Process control
asynchronous, 14-3, 15-16
synchronous, 14-3, 15-16

Pseudo-device
name, 1-21

Punched card, 11-1

QIO, 1-16
$C form, 1-15
device-independent, C-1
device-specific

A/D converter, 14-2 to 14-3
card reader, 11-3
cassette, 9-3
DECtape, 6-3
disk, 5-7 to 5-8
DT07, 23-4 to 23-6
graphic display driver,

20-2
ICS/ICR, 18-8 to 18-12
laboratory peripheral

system, 16-3 to 16-9
LPAll-K, 21-27 to 21-29
magnetic tape, 8-4 to 8-9
message-oriented

communication, 12-5 to
12-7

PCL receiver, 13-9 to 13-11
PCL transmitter, 13-3 to

13-5
RASO, 5-8
terminal, 2-8 to 2-10, 3-5

to 3-6
TU58, 7-3 to 7-4
UDCll, 15-3 to 15-9
virtual terminal, 4-2, 4-5

INDEX

QIO (Cont.)
$ form, 1-14
function summary, A-1
macro format, 1-9
$S form, 1-15
standard

A/D converter, 14-2
card reader, 11-2
cassette, 9-2
DECtape, 6-2
disk, 5-5 to 5-7
DT07, 23-2 to 23-3
graphic display driver,

20-2
ICS/ICR, 18-8 to 18-12
laboratory peripheral

system, 16-2
line printer, 10-3
magnetic tape, 8-4
message-oriented

communication, 12-5
paper tape, 17-2
PCL receiver, 13-8
PCL transmitter, 13-3
terminal, 2-7
TU58, 7-2 to 7-3
UDCll, 15-3

summary of form, 1-14
virtual terminal, 4-2

QIOW$ I 1-16
Queue I/O and Wait

See QIOW$
Queue I/O Request

See QIO

RAGO, 5-4
RASO I 5-4
RA81, 5-4
RC25, 5-4A
RD51, 5-4A
Ready recovery

card reader, 11-4
paper tape, 17-4

Receive error
ha rd, 2-36

Remote line, 2-41 to 2-42
answer speed, 2-42
disconnecting, 2-23

Removable and fixed, single
spindle disk, 5-4A

RFll/RSll, 5-1
RK05, 5-3
RK06, 5-3
RK07, 5-3
RL02, 5-3
RM02, 5-3
RM03, 5-3
RMOS, 5-3
RM80, 5-3
RP03, 5-1
RP04, 5-1, 5-3
RP05, 5-3
RP06, 5-3

Index-5

RS03, 5-1
RS04, 5-1
RT02, 2-4A, 3-3
RT02-C, 3-3

control function, 2-40A, 3-30
RUBOUT, 3-24

line printer, 10-6
RXOl, 5-4
RX02, 5-4
RX50, 5-4A

Seek
overlapped, 5-7

Select recovery
magnetic tape, 8-13

Significant event, 1-12
Speed detection

auto-baud, 2-42
SST, 1-12
Status block

I/O, 1-35
Status code

I/O I l-33 I B-l
Status return

A/D converter, 14-8 to 14-9
card reader, 11-3, 11-7
cassette, 9-3 to 9-5
DECtape, 6-4 to 6-6
disk, 5-8 to 5-11
OTO?, 23-7
graphic display driver, 20-3
ICS/ICR, 18-13 to 18-14
laboratory peripheral system,

16-29 to 16-33
line printer, 10-4 to 10-5
magnetic tape, 8-10 to 8-12
message-oriented

communication, 12-8 to
12-10

paper tape, 17-3 to 17-4
PCL receiver, 13-11 to 13-12
PCL transmitter, 13-6 to 13-8
terminal, 2-23 to 2-27
TU58, 7-4 to 7-5
UDC, 15-32 to 15-34

Synchronous line interface
DMCll, 12-3
DPll, 12-3
DQl 1, 12-3
DUll, 12-3
DUPll, 12-4

Synchronous System Trap
See SST

TAll, 9-1
TCli-G, 6-1
Teletype, 2-3, 3-2
Terminal

attaching, 2-12 to 2-13
control character, 2-27 to

2-29
desk-top, 2-3

INDEX

Terminal (Cont.)
device-specific QIO, 2-8, 3-5

to 3-6, 3-8
escape sequence, 2-29
escape sequence recognition,

2-13
full-duplex, 2-14
full-duplex operation, 2-38
graphics, 2-5
half-duplex, 3-1
interface, 2-39
portable, 2-3
QIO subfunction bit, 2-9
special key, 2-30 to 2-31
standard interfaces, 3-2
standard QIO function, 2-7
status return, 2-23 to 2-27
subfunction, 3-7, 3-9
subfunction summary, 2-11
teletype, 2-3
type, 2-17
virtual, 4-1

Terminal characteristics, 2-13
to 2-15

setting, 2-21
side effects, 2-41, 3-32
virtual terminal, 4-6

Terminal driver
loadable, 3-33
virtual, 4-1

Terminal line truncation, 3-30
Trap

system, 1-12
Truncation

print line, 10-7
terminal line, 3-30

TU58, 7-1
Type-ahead, 2-37

UDA50, 5-4
UDC, 15-1

device-specific QIO, 15-3 to
15-9

direct access, 15-10
FORTRAN interface, 15-15
FORTRAN subroutine summary,

15-17 to 15-31
standard QIO, 15-3
status return, 15-32 to 15-34

UDCll, 15-1, 18-3
UMDIO$, 1-31
UNIBUS

powe~-fail recovery, 23-6
UNIBUS switch, 23-1
Universal digital controller

See UDC
Unlabeled tape, 8-15 to 8-16
User-mode diagnostic function,

1-30

Vertical format control
line printer, 10-5 to 10-6
terminal, 2-33, 3-26 to 3-27

Index-6

Virtual block
reading, 1-28
writing, 1-29

Virtual I/O, 1-2
Virtual terminal, 4-1

device-specific QIO, 4-2, 4-5
VS60, 20-1
VT05B I 2-5 I 3-3
VTl 00, 2-5 I 3-4

escape sequence format, 2-31
VTlOl, 2-6
VT102 I 2-6

INDEX

VT105, 2-6
VTll, 20-1
VT131, 2-6
VT50, 2-5 I 3-3
VT50H, 2-5, 3-3
VT52, 2-5, 3-4
VT55, 2-5, 3-4
VT61, 2-5, 3-4

Write
break-through, 2-22

WTSE$, 1-24

Index-7

READER'S COMMENTS

RSX-llM/M-PLUS
I/O Drivers Reference Manual

AA-L677A-TC, AD-L677A-Tl

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer
[] Higher-level language programmer
O Occasional programmer (experienced)
D User with little programming experience
[] Student programmer
[] Other (please specify)

Organization

Street

State ______ Zip Code _____ _

or Country

- - Do Not Tear- Fold Here and Tape - - - - - - - - - -

~nmnomn 111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mai led in the

United States

- - - Do Not Tear - Fold Here -

~ .s
..J
"O

~
0

Q
t)I)

= 0

<
::s
u

	0001
	0002.0
	0002.1
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	01-01
	01-02
	01-03
	01-04.0
	01-04.1
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	02-01
	02-02
	02-03
	02-04.0
	02-04.1
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40.0
	02-40.1
	02-41
	02-42
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-01
	05-02
	05-03
	05-04.0
	05-04.1
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02.0
	10-02.1
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16
	17-01
	17-02
	17-03
	17-04
	17-05
	17
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	18-28
	18-29
	18-30
	18-31
	18-32
	18-33
	18-34
	18-35
	18-36
	18-37
	18-38
	18-39
	18-40
	18-41
	18-42
	18-43
	18-44
	18-45
	18-46
	18-47
	18-48
	18-49
	18-50
	18-51
	18-52
	18-53
	18-54
	18-55
	18-56
	18-57
	18-58
	18-59
	18-60
	18-61
	18-62
	18-63
	18-64
	18-65
	18-66
	18-67
	18-68
	18-69
	18-70
	18-71
	18-72
	18-73
	18-74
	18-75
	18-76
	18-77
	18-78
	18-79
	18-80
	18-81
	18-82
	19-01
	20-01
	20-02
	20-03
	20-04
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	21-18
	21-19
	21-20
	21-21
	21-22
	21-23
	21-24
	21-25
	21-26
	21-27
	21-28
	21-29
	21-30
	21-31
	21-32
	21-33
	21-34
	21-35
	21-36
	21-37
	21-38
	21-39
	21-40
	21-41
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	22-21
	22-22
	22-23
	22-24
	22-25
	22-26
	22-28
	22-29
	22-30
	22-31
	22-32
	22-33
	22-34
	22-35
	22-36
	22-37
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08.0
	C-08.1
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	replyA
	replyB

