RSX-11M/M-PLUS
I/O Drivers Reference Manual

Order No. AA-L677A-TC
Update Notice No. 1 (AD-L677A-T1)

RSX-11M Version 4.1
RSX-11M-PLUS Version 2.1

digital equipment corporation - maynard, massachusetts

First Printing, May 1979
Revised, December 1981
Updated, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1979, 1981, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS Edusystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT Engﬂuan
DECUS RSTS

DECwriter

ZK2251

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6148 (al!l cther Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

internal oraers shoula be piaced through the Sottware Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

UPDATE NOTICE NO. 1

RSX-11M/M-PLUS 1/O Drivers
Reference Manual

AD-L677A-T1

April 1983

insert this page in the RSX-11M/M-PLUS 1/0O Drivers Reference Manual to
maintain an up-to-date record of changes to the manual.

NEW AND CHANGED INFORMATION

This update reflects software changes and additions made in RSX-11M Version 4.1 and RSX-11M-PLUS
Version 2.1.

Copyright © 1983 by Digital Equipment Corporation
All rights reserved

INSTRUCTIONS

Add the following pages to the RSX-11M/M-PLUS I/0 Drivers Reference Manual as replacements for or
additions to current pages. The changes made on the replacement pages are indicated in the outside
margin by change bars (}) for additions, and bullets () for deletions. A date at the bottom of the new
pages denotes revised or new information for this update.

OLD PAGE

/ Title page/Copyright page

~ ii/iv through xix/xx

. xxv/blank

v 1-1/1-2 through 1-3/1-4
1-19/1-20 through 1-25/1-26
I 2-1/2-2 through 2-3/2-4
J.2-9/2-10

2-13/2-14 through 2-17/2-18
+ 2-37/2-38 through 2-39/2-40

5-1/5-2 through 5-3/5-4
8-1/8-2 through 8-7/8-8
"+ 8-13/8-14 through 8-15/8-16
v 10-1/10-2
~10-3/10-4
- A-7/A-8
- B-9/B-10
¥ C-5/C-6 through C-7/C-8

e

z

L

AY

hF

<.

% C-9/C-10

v C-13/C-14
*Index-1/Index-2 through

~ Index-7/blank

< Readers’ Comments/Mailer

NEW PAGE
&
~ Title page/Copyright page
J Jliliv through xix/xx
xv/blank
-1/1-2 through 1-3/1-4
1-4.1/blank
-19/1-20 through 1-25/1-26

-1/2-2 through 2-3/2-4
/2-4.1 /blank
12-9/2-10

1//'2-13/2—14 through 2-17/2-18
/

.,

S s

2-37/2-38 through 2-39/2-40
:2-40.1/blank
\5-1/5-2 through 5-3/5-4
\Vi5-4.1/blank
\/8—1/8—2 through 8-7/8-8
\/8-13/8-14 through 8-15/8-16
v10-1/10-2
110-2.1/blank
\/[1 0-3/10-4
VA-7/A-8
VB-9/B-10
C-5/C-6 through C-7/C-8
C-8.1/blank
C-9/C-10
C-13/C-14
Index-1/Index-2 through
Index-7/blank
Readers’ Comments/Mailer

CONTENTS

PREFACE

SUMMARY OF TECHNICAL CHANGES

CHAPTER 1 RSX-11M/M-PLUS INPUT/OUTPUT
1.1 . OVERVIEW OF RSX=11M I/0 . & 4 ¢ o o o o o o =
1.2 PHYSICAL, LOGICAL, AND VIRTUAL I/0 . . « +« . &
1.3 RSX-1IM DEVICES .+ & ¢ o o o o o o o o o o o o
1.4 LOGICAL UNITS .« o o« o o o o o e o e o o o o
1.4.1 Logical Unit Number . . . ¢ ¢ ¢« ¢ o ¢ o o &
1.4.2 Logical Unit Table . . ¢ ¢« ¢« ¢« & ¢ ¢ o o o+ &
1.4.3 Changing LUN Assignments . . « « + o o « o &
1.5 ISSUING AN I/O REQUEST . v 4 + &« o o o s o o
1.5.1 QIO Macro FOormat . « o o o o o o o o o o o o
1.5.2 Significant Events . + « ¢ « o ¢ o o o o o
1.5.3 System Traps . o« « o o o o o o o o o o o o
1.6 DIRECTIVE PARAMETER BLOCKS . . ¢ ¢ o ¢ o o ¢« o
1.7 I/O-RELATED MACROS . +¢ + ¢ « o ¢ o o o o o o =
1.7.1 The QIO$ Macro: Issuing an I/0 Request . . .
1.7.2 The QIOWS Macro: Issuing an I/0 Request an
Waiting for an Event Flag . « ¢ ¢ ¢ o o o &
1.7.3 The DIR$ Macro: Executing a Directive . . .
1.7.4 The .MCALL Directive: Retrieving System Macro
1.7.5 The ALUNS Macro: Assigning a LUN
1.7.5.1 Physical Device Names . + « ¢« « o « o o o«
1.7.5.2 Pseudo-Device NamesS . . o o « o o o o o &
1.7.6 The GLUNS Macro: Retrieving LUN Information
1.7.7 The ASTXSS Macro: Terminating AST Service .
1.7.8 The WTSES Macro: Waiting for an Event Flag
1.8 STANDARD I/O FUNCTIONS . ¢ ¢ ¢ o o o o o o o o«
1.8.1 I0.ATT: Attaching to an I/0 Device
1.8.2 I0.DET: Detaching from an I/0 Device . . & .
1.8.3 I0.KIL: Canceling I/O Reguests . « « + « o+ &
1.8.4 I0O.RLB: Reading a Logical Block
1.8.5 I0O.RVB: Reading a Vvirtual Block
1.8.6 I0O.WLB: Writing a Logical Block
1.8.7 I0.WVB: Writing a virtual Block
1.8.8 User-Mode Diagnostic Functions
1.9 I/0 COMPLETION . &+ v o « o o o o o o o o o o o
1.10 RETURN CODES o « & o o o o o o o o e o e s
1.10.1 Directive Conditions . . ¢« + &« 4 & o« & o o &
1.10.2 I/0 Status Conditions . « ¢ o « o o o o o
1.11 POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND
DECTAPE . v & « o o s o o o o o o o s o o o o
CHAPTER 2 FULL-DUPLEX TERMINAL DRIVER
2.1 INTRODUCTION . « « o o o« o o o s s o o s s o o«
2.1.1 ASR-33/35 TeletypPeS .+ & o« o o o o o o o o &

iii

® o & 3 & e & s 0 & o o ¢ .

.
S

e o & 0 o e & o o e o o

Page

xxi

XXV

I b e

|l L) |
NV IIOAOULINN N -

CONTENTS

Page
2.1.2 KSR~33/35 Teletypes e o s * e » o e+ o » o . 2—3
2-1-3 LA].Z Portable Terminal 2"3
2.1.4 LAlOO DECprinter . . ¢ ¢ & ¢ ¢ o o o o o o o o o 2=3
201.5 LA30 DECWIiterS o [. . . [. L] . L] 2-4
2.1.6 LA36 DEeriter 3 . . * . . . L) 2-4
2.1.7 LA34/38 DECWIitersS . o o« ¢ o o+ o o o o o o o o o 2=4
2.1-8 LA120 DECWIiteI [» 2—4
2o109 LAISOS DECprinteI [. . 3 2-4
2.1.9A LQP02 Letter-Quality Printer « « + « « . 2-4
2.1.9B LA50 Personal Printer « « o ¢« ¢ « o« o 2-4.1
2.1.10 RT02 Alphanumeric Display Terminal and RT02-C
Badge Reader/Alphanumeric Display Terminal . . 2-4.1
2,1.11 VT05B Alphanumeric Display Terminal 2-5
2.1.12 VT50 Alphanumeric Display Terminal 2=5
2.1.13 VT50H Alphanumeric Display Terminal 2-5
2.1.14 VT52 Alphanumeric Display Terminal 2=5
2.1.15 VT55 Graphics Display Terminal « « « « « 2=5
2.1.16 VT61 Alphanumeric Display Terminal 2-5
2.1.17 VT100 DECSCOPE &« &« o o o » o o o 5 o o o o s o o 2=5
2.1.18 VT10L DECSCOPE &« « o o o o o o o s o o o o o o o 2=6
2o1019 VTlOZ DECSCOpe 2"6
2.1-20 VT105 DECSCOpe » L 2-6
2.1.21 VT131 DECSCOpe 3 3 2-6
2.2 GET LUN INFORMATION MACRO . 2 o o ¢ s o o o o o o« 2-6
2.3 QIO MACRO &+ 4 o o o o o o s o o s o o o o o o o o 2=7
2.3.1 Subfunction BitS . ¢ ¢ 4 ¢ o o o s o o o o o o » 2-9
2.3.2 Device-Specific QIO Functions . . . « . « « « 2-10
203.2.1 IOQATA . . e 3 . * 2—12
2.3.2.2 IOATTITF.ESQ ¢ ¢ ¢ o o o ¢ o o o o o o o« o« 2=-13
2.3.2.3 IO.CCO v &+ & o o s o o s o o o o o s s o o o« 2=-13
2-302.4 SF.GMC . . L3 3 [. . . 2—13
2.3.2.5 JOGTS ¢« o« o o o o o o o o o o o o s o o o » 2=-18
2.3.2.6 IOLRAL & & 2 o o o o o o o o s o o s o o o« « 2=19
2.3.2.7 TIOLRNE . & &+ 4 o o o o o o o o o o o o o « & 2=20
2.3.2.8 TORPR . 4 ¢ v ¢ o o o« o o o o s o o o o o o 2=20
2.3.2.9 JOLRPRITEBIN & & o o s o o o ¢ o o o o o » 2=-20
2.3.2.10 IO.RPRITE.XOF . ¢ & « o o o o s o o « o o« o 2=20
2.3.2.11 TOWRST & & & o o o o s o o s o s o o o o o o 2=21
2.3.2.12 SEF.SMC &+ & ¢ ¢ o o o o o s e o s e o o o o« » 2=21
2.3.2.13 IOoRTT L[]] . L] » [L] 2—22
2.3.2.14 IOWAL o o o o s o o o o o o ¢ s s o o o o o 2=22
2.3.2.15 IOWBT & v 2 o o o o o o o o o o o s s o o o 2=22
2.3.2.16 IO.HNG 3 . . 2—23
2.4 STATUS RETURNS 4+ ¢ ¢ ¢ o o ¢ ¢ o o o o o o o o o« 2=23
2.5 CONTROL CHARACTERS AND SPECIAL KEYS . . . « . » 2=27
2.5.1 Control Characters . . « o o« o o » o s o o o » 2=27
2-5-2 Special KeyS o e . e . e . e e o 2"29
2.6 ESCAPE SEQUENCES « ¢ « & o o o o o o o s o o o o 2-29
2-6.1 Definition * 3 . » . * 2"31
2.6.2 Prerequisites . . ¢ ¢« o ¢ ¢ o o o &+ o o o o o 2=32
2.6.3 Characteristics . ¢ ¢ & o & ¢ ¢« ¢« o o o o & o 2=32
2.6.4 Escape Sequence Syntax Violations 2-32
2.6.4.1 DEL or RUBOUT (177) e e o s e v o s s e e o 2-32
2.60402 Control Characters (0—037) 2-33
2.6-4.3 Full Buffer 2-33
2.6.5 Exceptions to Escape-Sequence Syntax 2=-33
2.7 VERTICAL FORMAT CONTROL . + & ¢ ¢ o ¢ o o o o o 2=33
2.8 AUTOMATIC CARRIAGE RETURN . . ¢ ¢ ¢ o o o o o o 2=34
2.9 FEATURES AVAILABLE BY RSX-11M SYSGEN OPTION . . 2-35
2.9.1 Private Buffer Pool Size . « ¢« &« ¢« ¢« ¢ ¢ « « « 2=35
2.9.2 Hard Receive Error Detection + « + « o+ 2=36
2.10 TASK BUFFERING OF RECEIVED CHARACTERS . . « . . 2=36
2.11 TYPE-AHEAD BUFFERING . . . &+ + + s o s s 5 o o« o 2=37
2.12 FULL-DUPLEX OPERATION . . « &« ¢ o o « o o « o o« 2-38
2.13 PRIVATE BUFFER POOL . . & ¢ « o ¢ o s o o« o« o« o 2-38

iv April 1983

CONTENTS

Page
2.14 INTERMEDIATE INPUT AND OUTPUT BUFFERING 2-38
2.15 TERMINAL-INDEPENDENT CURSOR CONTROL . ¢« ¢ + «» o« 2-39
2.16 TERMINAL INTERFACES . . 2 o 2 o o o o « o o o o« 2=-35
2.16.1 DH1l Asynchronous Serial Line Multiplexer . . 2-40
2.16.2 DHV11l Asynchronous Serial Line Multiplexer . . 2-40
2,16.3 DJ11 Asynchronous Serial Line Multiplexer . . 2-40
2.16.4 DL11 Asynchronous Serial Line Interface . . . 2-40
2.16.5 DZ1l Asynchronous Serial Line Multiplexer ., . 2-40
2.17 PROGRAMMING HINTS . &« 2 o « o o o o o o« o o « « 2-40
2.17.1 ESCape Code Conversion . .« .+ « o« « o o o » « 2-40.1
2.17.2 RT02-C Control Function . . « ¢« &« &« « « o« o 2-40.1
2.17.3 Using IO.WVB Instead of IO WLB . + & ¢« « « « - 2-41
2.17.4 Remote DL1l1-E, DH1ll, and DZll Lines ., 2-41
2.17.5 Side Effects of Setting Characteristics . . . 2-41
2.17.6 MOdem SUPPOTE &« & o o o o o o o o o o o o o o 2=42
CHAPTER 3 HALF-DUPLEX TERMINAL DRIVER
3.1 INTRODUCTION e e o o o o o o o o o o o o 3-1
301-1 ASR"33/35 Teletypes e o & o o e LI] e o o e e o 3-2
3.1.2 KSR"33/35 Teletypes - 3-2
3.103 LA30 DECWIiterS 3 3 L[] 3"'2
301-4 LA36 DECWIiter 3"2
3-1-5 LAlZO DECWIiter [. - . . L] 3"3
3.1.6 LA180S DECprinter . . . e o o o o o o o 3-3
3.1.7 RT02 Alphanumeric Dlsplay Termlnal and RT02-C
Badge Reader/Alphanumeric Display Terminal . . . 3-3
3.1.8 VTO5B Alphanumeric Display Terminal ., 3-3
3.1.9 VT50 Alphanumeric Display Terminal 3-3
3.1.10 VT50H Alphanumeric Display Terminal 3-3
3.1.11 VT52 Alphanumeric Display Terminal 3-4
3.1.12 VT55 Graphics Display Terminal . . . « . « . « . 3-4
3.1.13 VT61 Alphanumeric Display Terminal 3-4
3.1.14 VT100 DECSCOPE + « o o o o o o s s o o o o o o« o 3-4
3.2 GET LUN INFORMATION MACRO . : o ¢ o s o o« o o « o 3-4
3.3 QIO MACRO & 4 o o 2 o o o o o o o o o o o s o « o« 3-5
3.3.1 Subfunction BitS . o 4 « o ¢ o o o o o o o ¢ o o 3=7
3.3.2 Details on Device-Specific QIO Functions 3-8
3.30201 IO.ATA] . L) . . . 3-8
3.3.2.2 IO.ATT!TF.ESQ 3"10
3.3.2.3 IO.CCO v 4 4 o o o o o o o o o o o o & o o o 3-10
3.3.2.4 SF.GMC &+« v ¢ o o o o o o o o o o s o o o « o« 3-10
3.3.2.5 IOGTS o o o o o o o s o o o o o o o s o o o 3=12
3.3.2.6 TORAL & & o s o o o o s o o o o o o s o o o« 3-13
3.3.2.7 IOLRNE . & & 4 4 o ¢ o o o o o o o s o o o » 3-13
3.3.2.8 IORPR & « o o o o o s o o o o o o o o o o & 3-13
3030209 IO.RPR!TF.BIN » L 3—14
3.3.2.10 IO.RPRITF.XOF . & & & o o o o s s o o o o o« 3-14
3.3.2.11 IORST & & o o o o s o o o o o o o o o s o o 3-14
3.3.2.12 SEFeSMC & ¢ o o o o o o o o o o o o« o o o o o 3-14
30302.13 IO.WAL 3‘15
3.3.2.14 IOWBT o « o o o s o o o o o o o o o o o o « 3=15
3.4 STATUS RETURNS &+ &« & o « o o o » o o o o o o o o 3-16
3.5 CONTROL CHARACTERS AND SPECIAL KEYS . . « . . o 3-16
3.5.1 Control Characters . . +. « o o o o o o o« o o o 3=20
3.5.2 Special KeYS o « o o o o« o o o o s o o o o o o 3=22
3.6 ESCAPE SEQUENCES .+ + « o « o o o o o o o o o o o 3=22
3.6.1 Definition « o + o o o o o o o o o o o o« o o o 3=22
3.6.2 Prerequisites . ¢« o ¢ ¢ ¢ o o o o o « o o o o 3-24
3.6.3 Characteristics . « & « ¢ o o ¢ ¢ o o o o« o o 3-24
3.6.4 Escape Sequence Syntax Violations 3-24
3.6.4.1 DEL or RUBOUT (177(8)) o ¢ o o o o o o o o o« 3-24
3.6.4.2 Control Characters (0-37(8)) « « ¢« « « « o « 3=25
3.6.4.3 Full Buffer 3"'25

v April 1983

CHAPTER

CHAPTER

[V

= e b = W0 WO 0 0 WO 00 00 00 00 00~ O

WWWWWWWwWwwwWwwWwwwwwwuwwwwww
® 6 o 6 6 6 & & & & s 6 e 8 e o s 0 o o o s o
QO OO0 OOOOOOs o o o

WO ~JAU P WN

e 8 & 8o ¢ o o o o o

0

3.10.11
3.10.12
3.10.13

>

¢« o o o o
o o o o
=W N -

PBPWWWwwwwwiwwwwh+
. a o e o L] L) . .

AW

N S A T

[&)]
e e e o o 2 e e * e

. e
e ¢ o & o ® o & o e o

HiE RO 000D WN

oo
WM H-O

e el e o

CONTENTS

Page
Exceptions to Escape-Sequence Syntax 3-26
VERTICAL FORMAT CONTROL e o o o o o o 3-26
FEATURES AVAILABLE BY SYSGEN OPTION e o o s o o 3-27
Automatic Carriage Return . . . « &« o o o« o o 3=27
vVariable-Length Buffering « . 3-28
Task Buffering of Received Characters 3-29
LA30-P SUPPOrt ¢ o &+ o « o o o s o o o o o s o 3=29
TERMINAL INTERFACES &« ¢ & o « o o o o« o« o o o o 3-29
DH11l Asynchronous Serial Line Multiplexer . . 3-29
DJ11 Asynchronous Serial Line Multiplexer . . 3-30
DL11l Asynchronous Serial Line Interface . . . 3-30
DZ11 Asynchronous Serial Line Multiplexer . . 3-30
PROGRAMMING HINTS « « « « ¢ o o « o o « o o » o 3=30
Terminal Line Truncation ¢« «+ « « 3=30
ESCape Code Conversion . .« « « « o« o « o o« o« o« 3=30
RT02-C Control Function . . + ¢« « ¢« « « « « « 3=30
Checkpointing During Terminal Input 3-31
Time Required for IO.KIL .« . « « « & « « « « o 3-31
Use Oof IO.WVB . & ¢ ¢ & ¢« o o o o o o o « o « 3-31
Remote DH1ll and DZll Lines e « o e o o « o o 3=-31
High-Order Bit on Output . . + « ¢« ¢« &« « « « o 3=32
Side Effects of Setting Characteristics . . . 3-32
Unsolicited-Input-Character ASTs for Tasks
Attaching Several Terminals . . . ¢« ¢« ¢« « o« » 3=32
Direct Cursor Control +« ¢« ¢« ¢« « « o 3-33
DL11l Receiver Interrupt Enable 3-33
Loadable Driver Restrictions 3-33

VIRTUAL TERMINAL DRIVER

INTRODUCTION e e o s o o o o o o » o 4-1
GET LUN INFORMATION MACRO e s s o o e s o o o « o 4-1
QIO MACRO &+ & o o o o o o o o o o s o s o o o o o 4-2
Standard QIO Functions . . . ¢« ¢ ¢ ¢ ¢ ¢ o o« o . 4-4
TOWATT 4 o o o o o o o o s s o o o o o o o o o 4-4
TIOWDET & ¢ o o o o o o o s o o o o o s o o o o« 4-4
JOWKIL o o o & o s o o o o o s o o o o s o o« o« 4-4
I0O.RLB, IO.RVB, IO.WLB, IO.WVB « » 4-4
Device-Specific QIO Function (I0.STC) 4-5
SF.GMC & v v v 4 4 v 4 o o o o o o o o o o o o o 4-6
TIOWGTS & & v ¢ 4 o o o o o o o o o o o o o o o o+ 4-6
IOLRPR . . & « & « & e s s e e e o s o e o o o 4=7
SEF.SMC v v o o o o o o o o o o o o o o o o o o o« 4-7
STATUS RETURNS . & ¢ o ¢ o o o o o o o o o o o o « 4-7

DISK DRIVERS

INTRODUCTION e e

e & s s+ e s s e o s & 5-1
RF11/RS11 Fixed- Head Disk ¢« & ¢ ¢« ¢ o ¢ ¢ o « o« 5-1
RS03 Fixed-Head DisSK 4 ¢« & ¢ o o o « o o o o o o 5=1
RS04 Fixed-Head Disk . e o o+ e o s & e o o s 5=1
RP11/RP02 or RPO3 Pack Dlsks e s s o o o o o o & 5=-1
RMO2/RMO3/RMO5/RM80 Pack Disk . . &« &« « « « « « 5=3
RP04, RP0O5, RP0O6 Pack Disks . « + ¢« ¢« o« o « & o 5=3
RK11/RK05 or RKQOS5F Cartridge Disks 5-3
RL11/RL0O1 or RLO2 Cartridge Disk . . . « « . « o 5=3
RK611/RK06 or RKO7 Cartridge Disk . . .+ « + « « 5=3
RX11/RX01 Flexible Disk . ¢« v ¢ « o « o« o« o o« o+ 5-4
RX211/RX02 Flexible Disk + « « ¢ o« 2 o o« « o « « 5-4
ML-11 Disk Emulator . . .« o e o o o e o o o« 5-4
UDA50/RA60/RA80/RA81 DlSkS e s e e s s e s 2 s « 5-4
RC25 Disk Subsystem . . . e+« e o « o« o« 5-4.1
RD51 Fixed 5.25 Disk/RX50 Flex1ble 5.25 Disk . 5-4.1

vi April 1983

CHAPTER

CHAPTER

CHAPTER

CONTENTS

5.2 GET LUN INFORMATION MACRO . . .
5.3 QIO MACRO « v o « o o o o o« o =
5.3.1 Standard QIO Functions
5.3.2 Device-Specific QIO Functions
5.3.3 Device-Specific QIO Function fo
5.4 STATUS RETURNS &« ¢ ¢ o o« o o o o
5.5 PROGRAMMING HINTS . ¢ o o ¢ o &

* o M e o o o

[+)}

DECTAPE DRIVER

INTRODUCTION . « o o « & o
GET LUN INFORMATION MACRO
QIO MACRO . + ¢ o o « o &

1 Standard QIO Functions . .
2 i

e & e o

Device-Specific QIO Functions
STATUS RETURNS « ¢« « ¢ o o« o«
<1 DECtape Recovery Procedures
.2 Select RECOVELIY .+ & o o o o

PROGRAMMING HINTS . . « « «
1 DECtape Transfers
2 Reverse Reading and Writing . .
3
4

* e o o o
s s & o ¢ &

Speed Considerations When Reversi
Aborting a Task . + &« « o o« o &

ARG OO N O
GTUTOI U UL b D i W W W N

~J

DECTAPE II DRIVER

INTRODUCTION &« o o o o o o
TU58 Hardware« « .
TUS58 Driver . « ¢ ¢ o« o o«

GET LUN INFORMATION MACRO

QIO MACRO & ¢ ¢ o o o o
Standard QIO Functions ,
Device-Specific QIO Funct

1 I0.WLC
2 IO.RLC
3
4

ions

I0.BLS

I0O.DGN . . o .
STATUS RETURNS

e o s o o T s e s s e e
e o o o s 8 2 o e o e o

SNNNNNNNNNNNN
. e e & & 9 0 . . * e @

e o & & & 2 e e o o o

o o (t e o o o
=2

e o D e o o o

e e e o o

o o e o o o

e o o o o o

® e o s e o * s e o o o

8 MAGNETIC TAPE DRIVERS

8.1 INTRODUCTION . « o o o o o o o o o o o o
8.1.1 TE10/TU10/TS03 Magnetic Tape
8.1.2 TE16/TUl6/TU45/TU77/TU78 Magnetic Tape
8.1.3 TS11/TU80 Magnetic Tape . .« +« « « +
8.1.4 TSV05 Magnetic Tape .« ¢« ¢« ¢ o o« « o &
8.2 GET LUN INFORMATION MACRO . « « « o « o«
8.3 QIO MACRO &« & o o o o o o o o o o o o =
8.3.1 Standard QIO Functions . .« « « o « o+ &
8.3.2 Device-Specific QIO Functions
8.3.2.1 IORLY & v 6 ¢ ¢ o o o o o o o o o «
8.3.2.2 IOLRWD « o ¢ ¢ ¢ o o o o o o o o o o
8.3.2.3 IOLRWU & & v ¢ o o o o s o o o o o @
8.3.2.4 IOERS o v o o o o o o o o o o o o
8.3.2.5 TODSE & ¢ o ¢ o ¢ o o o o o o o o @
8.3.2.6 TIOWSEC & ¢ v o o o o o o o o o o o &
8.3.2.7 IOWSMO & v v ¢ o o o o o o o o o o
8.4 STATUS RETURNS . + ¢ o« o o o« o o o o o
8.4.1 Select ReCOVErY . « & & o o o o o o =
8.4.2 Retry Procedures for Reads and Writes
8.4.3 Power-Fail Recovery for Magnetic Tapes
8.5 PROGRAMMING HINTS « ¢ ¢ o ¢ s o o o o«

vii

e o e o o o
o

rec

e o ® o ® o & o e

e ® o 9 & o o o o o o

. T o o o o ¢ o o e o o o

e o ® o 8 & * e e

® o & o » o o

e © o & & & o & o s o o e o ¢ & & ¢ s 4 & o o o

P e e e @

.

e o o o ¢ o e o o o

e e ® o @ 4 & e o & o o

. o

e ® o o o o & & e o o

2 e & o @

¢ o 0 o o

e % & ® & ® o & o o o

« & o & o e o 0 o

mthO\m<hO\?<hO\m(h0\m
0~~~ OB WD

NN NN NN NN
e
W e W NN

00 00 00 00 G0 Q0 00 00 OO0 Q0 CO 00 OO0 00 QO O
|

0 00 0 00 ™
i
=)

|
R WWO VWA UTUILE R WWNHHEH

April 1983

CHAPTER

CHAPTER

CHAPTER

vnoronumuotn
e o & & o o
SN AU W -

10.4.1

10.6.1
10.6.2
10.6.3

11

11.1
11.2
11.3
11.3.1
11.3.2
11.4
11.4.1
11.4.2
11.4.3
11.5
11.5.1
11.6
11.6.1
11.6.2
11.7
11.7.1
11.7.2

CONTENTS

Block Size . . & ¢ ¢ ¢ o o o« &

Importance of Resetting Tape Characteristics

Aborting a Task . « « o« o o &«
Writing an Even-Parity Zero-NRZ
Density Selection

End-of-volume Status (Unlabeled Tape)

Resetting VCK Indicator . . .

CASSETTE DRIVER

INTRODUCTION
GET LUN INFORMATION MACRO
QIO MACRO . &« o o o« o« o
Standard QIO Functions . . .
Device-Specific QIO Functions
STATUS RETURNS ¢« . ¢« & ¢ ¢ ¢ o
Cassette Recovery Procedures .
STRUCTURE OF CASSETTE TAPE . . .

PROGRAMMING HINTS . « « o« o &
Importance of Rewinding . .
End-of-File and I0O.SPF . . .

The Space Functions, IO.SPB and I

verifying of Write Operations
Block Length . . . + « « ¢ « &
Logical End-of-Tape

LINE PRINTER DRIVER

INTRODUCTION « « o o o o
LP1ll Line Printer . .
LS11 Line Printer . .
LV1l Line Printer . .
LA180 DECprinter . . .
LNOl1 Laser Printer . .

GET LUN INFORMATION MACRO

e o o o o o

QIO MACRO . . ¢ & « o
STATUS RETURNS
Ready Recovery . . .
VERTICAL FORMAT CONTROL
PROGRAMMING HINTS .« o »
RUBOUT Character . . .
Print Line Truncation
Aborting a Task . . .

e o & ® & 8 e ° e & & & o o o
e ® & ¢ & o s & o o o ° o o o
e o & & e & 2 8 e ° e & ¢ o o

e o o ¢ &« o o @

CARD READER DRIVER

INTRODUCTION
GET LUN INFORMATION MACRO
QIO MACRO « « o ¢ ¢ o o &
Standard QIO Functions . . .
Device-Specific QIO Functions
STATUS RETURNS ., . ¢ ¢ ¢ o« o & &
Card Input Errors and Recovery
Ready and Card Reader Check Rec
1/0 Status Conditions
FUNCTIONAL CAPABILITIES
Control Characters .
CARD READER DATA FORMATS
Alphanumeric Format (02
Binary Format
PROGRAMMING HINTS . . .
Input Card Limitation
Aborting a Task . .

and 02

e o o ¢ Qe o o o
e o 9

e o o

« o e ®

viii

I

e & o o6 & * o ¢ s o @

e & ¢ ® o ® 8 & o & o & o s o

on.ol—‘o.ooOntoo.o.

e ¢ e Oe o o o o ¢ o o 0o o o
e o o [Ne o o ¢ o« o o o o o o

r

"D.V.QI'mQIOOQOI
e o s o o o o o o Kl e o 0o o o ¢

.

e o o Mo o ¢ ¢ o ¢ o o o o o

e ® 5 ® & e e & e ¢ & e s s o o

.

e & o 6 o o e ¢ o o ¢ o o o o e & 8 ® o ©® ¢ ° s ° o s e o @

e ® 5 © o & e ® & & o o o & e ¢ o

e ® o ® e © o e o o o 0o o ° o @ o e O o ® o * & ¢ s s e o o

@ e 3 & e 8 e ® e e s s o * s ¢

Page

8~14
8-15
8-15
8-15
8-15
8-15
8-16

e ® o o o 0 o % o 8 o s o o o
I

\D\D\O\D\D\D\D\P\D\D\O\D\D\D\D
WOVONNNATAOAANAWWNN-

10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-3
10-4
10-5
10-5
10-6
10-6
10-7
10-7

e ® & o e @ o & s & o o o o o
e ® o & ® & o ® o o & 8 o © @

11-1
11-1
11-2
11-2
11-3
11-3
11-3
11-4
11-7
1i-8
11-8
11-9
11-9
11-9
11-9
11-9
« 11-10

3 ® 8 ® e € o o e © s o s ¢ o
@ ® o 6 e 8 8 0 & 6 o o o o

April 1983

CONTENTS

Page
CHAPTER 12 MESSAGE-ORIENTED COMMUNICATION DRIVERS
12 - 1 INTRODUCTION 3] . . 12-1
12.1.1 DAll-B Parallel Interface e e s e o o s o o o 12-2
12.1.2 DL11-E Asynchronous Line Interface 12-2
12.1.3 DMCl1l Synchronous Line Interface 12-3
12.1.4 DP1l Synchronous Line Interface 12-3
12.1.5 DQ11 Synchronous Line Interface 12-3
12.1.6 DUll Synchronous Line Interface 12-3
12.1.7 DUP1ll Synchronous Line Interface 12-4
12.2 GET LUN INFORMATION MACRO .+ ¢« ¢ o o o o o o o » 12-4
12.3 QIO MACRO . 4 o o o o o o s s s o o o o o o o & 12-5
12,.3.1 Standard QIO Functions . . « ¢« & « ¢ « o o « o« 12-5
12.3.2 Device-Specific QIO Functions « « « 12-5
12.3-2.1 IO.FDX * L] . L] . . . [12"7
12.3.2.2 IO.HDX « 4 o o o o o s o o s s o o o o o o o 12=7
12.3.2.3 IO.INL and IO.TRM . ¢ & & & o o o o s s o o 12=7
12.3.2.4 TIORNS & o ¢ o o o o o o o o o o o o o o o s 1227
12.3.2.5 TOWSYN o ¢ o o o o o o o o o o o o o o o o o« 12-8
12.3.2.6 I0.WNS e e e o s s s s s s o s o s e s s . 1l2-8
12.4 STATUS RETURNS e o o o o o o o o o o s o s o e o 12-8
12.5 PROGRAMMING HINTS . & o ¢ o o o o o o o o o o o 12=-11
12.5.1 Transmission Validation . . . + ¢« ¢« ¢« & « « o 12-11
12.5.2 Redundancy Checking . . &+ « « o o« o o o « o« o 12-11
12.5.3 Half-Duplex and Full-Duplex Considerations . . 12-11
12.5.4 Low-Traffic Sync Character Considerations . . 12-12
12.5.5 Vertical Parity SUpPpoOrt .« « + o o o o o o o o 12=12
12.5.6 powerfail with DMC1ll o e o e e o o 12-12
12.5.7 Importance Oof IO.INL . . ¢ +o « o o o o o « o o 12-12
12.6 PROGRAMMING EXAMPLE . . ¢ «o + o o o o o o o o o 12-13
CHAPTER 13 PCL11 PARALLEL COMMUNICATIONS LINK DRIVERS
13.1 INTRODUCTION ¢ o o o o o o o o o o o o o o o o o 13-1
13.1.1 PCL11-B Hardware . . . « « s o o s o o o o o o 13-1
13.1.2 PCL11 Transmitter Driver « . . 13-1
13.1.3 PCL1l Receiver Driver . . « « o« o o o o o o o« 13=1
13.2 GET LUN INFORMATION MACRO . v 4 « o o o o o o » 13-2
13.3 QIO MACRO -- PCL1l1 TRANSMITTER DRIVER FUNCTIONS 13-3
13.3.1 Standard QIO FunctionsS . . « « o o « « o o « o 13-3
13.3.2 Device-Specific QIO Functions . . « « « « « o 13-3
13.3.2.1 TOJATX &+ o o o o o o o o o o o o o o o o o o« 13-5
13.3.2.2 TOLSEC o o o o o o o o o s o o o o s o s s o« 13=5
13.3.2.3 TOWSTC ©o o o o o o o o s o o o o o o s o » o« 13-5
13.4 PCL11l TRANSMITTER DRIVER STATUS RETURNS 13-6
13.5 QIO MACRO -- PCL1ll RECEIVER DRIVER FUNCTIONS . . 13-8
13.5.1 Standard QIO Functions . . +« +« ¢« « « o o « « « 13-8
13.5.2 Device-Specific QIO Functions . . « « ¢« « « « 13-9
13.5.2.1 IO-CRX - Ll * 13-10
13.5.2.2 IO.RTF v 4 & o « o o o o s s o o o o o o o o« 13-10
13.5.2.3 IOATE & & & o o o o o o s o o o o o o s o » 13-10
13.5.2.4 TIODRX + & o o o o o o o o o o« o o o o o o o« 13=11
13.6 PCL1ll RECEIVER DRIVER STATUS RETURNS 13-11
CHAPTER 14 ANALOG-TO-DIGITAL CONVERTER DRIVERS
14.1 INTRODUCTION . . + « o . o . e o o o o o o l4-1
14.1.1 AFCll Analog-to- D1g1ta1 Converter e o s o o » 1l4-1
14.1.2 AD01-D Analog-to-Digital Converter 1l4-1
14.2 GET LUN INFORMATION MACRO .+ &+ « ¢ o o o o o o o 1l4-=2
14.3 QIO MACRO & 4 o o o o o o o o o o o o s o o o o 1l4-2

ix

CHAPTER

14.3.1
14.3.2
14.4

14.4.1

14.4.2
14.4.3
14.4.4

14.4.5

14.4.6
14.4.7
14.5

14.5.1
14.6

l14.6.1
14.7

14.7.1
14.7.2
14.7.3
14.7.4

15

15.1
15.1.1
15.1.2
15.1.2.1
15.1.2.2
15.2
15.3
15.3.1
15.3.2
15.3.2.1

15.4
15.4.1
15.4.1.1
15.4.1.2
15.4.2

15.5.5

15.5.6
15.5.7

STATUS RETURNS
FUNCTIONAL CAPABILITIES .

PROGRAMMING HINTS

INTRODUCTION . « « « o & .

GET LUN INFORMATION MACRO
QIO MACRO« .

DIRECT ACCESS .+ « « o « o o o o o &

CONTENTS

Standard QIO Function . ¢ ¢ « & o « o o o =«
Device-Specific QIO Function

FORTRAN INTERFACE . . ¢ ¢ o« o o « o o ¢ s o &

Synchronous and Asynchronous Process Control
I/0 v v 4 o o o o 4 e 4 4 e o e e o s e s s
The isb Status Array . . « « o« o o o o o o o
FORTRAN Subroutine Summary . . . « « « « o &

AIRD/AIRDW: Performing Input of Analog Data in

Random SeqUeNCe . « « s « o s o o o o o o =
AISQ/AISQW: Reading Sequential Analog Input
Channels e e e v e e e s
ASADLN: Assigning a LUN to the ADO1-D
ASAFLN: Assigning a LUN to the AFCll

FORTRAN Interface Values

e o o o o o
e o o o o o

Control and Data Buffers .

Use of A/D Gain Ranges
Identical Channel Numbers on the AFC .
AFCll Sampling Rate « o e e s
Restricting the Number of ADOl D Conversio

S e o o o o o o

.
n

-

N e o ¢ o ¢ o o o o o o

=]

UNIVERSAL DIGITAL CONTROLLER DRIVER

Creating the UDCl1 Drlver

Accessing UDCll Modules
Driver Services . . .
Direct Access ., .

e« & e o

e & ¢ © o * o

* e o e 6 o & o
e o o @

e o ¢ o

Standard QIO Functlon « o e .
Device-Specific QIO Functions .
Contact Interrupt Digital I
Modules) . . . e e e e .
Timer (W734 I/O Counter Modules) . .

e« o o o o

3

o o (We e o o o ¢ s o @

(W7

Latching Digital Output (M685, M803, and

M805 Modules) e o e o e . e o o s o e
Analog-to-Digital Converter (ADUOl Module)

« o e s .

ICS1l1 Analog-to-Digital Converter (IAD-IA

Module) s s e e s s e e a e o »

Assembly Procedure for UDCOM.MAC
Symbols Defined by UDCOM.MAC . .
Including UDCl Symbolic befinitions i
System Object Module Library . . . e o s

Defining the UDCll Configuration . .

. .
. .
. .
n e

Referencing the UDCll through a Global Common

Block & ¢ ¢ ¢ v 4 e i e i e e e e e e e
Creating a Global Common Block
Making the Common Block Resident
Linking a Task to the UDCll Common Block

FORTRAN INTERFACE . ¢ ¢ ¢ ¢ ¢ o o ¢ o o ¢ o =
1

Synchronous and Asynchronous Process Contro
¢
The isb Status Array . . . « « o« « « o o« o &
FORTRAN Subroutine Summary . . « « « « « o« &

e & o s o

.

AIRD/AIRDW: Performing Input of Analog Data in

Random Segquence

AISQ/AISQW: Reading Sequent1a1 Analog Input
Channels . . ¢ o ¢« ¢ v o o o o o o o o o o
AO/AOW: Performing Analog Qutput
ASUDLN: Assigning a LUN to the UDCll

Page

14-2
14-2
14-3

14-3
14-4
14-4

14-5

14-6
14-7
14-7
14-8
14-9
14-10
14-10
14-10
l4-10
14-10
14-11
14-11

15-12

15-12
15-12
15-13
15-14
15-14

15-15
15-15
15-16

15-17
15-18

15-19
15-20

CONTENTS

Page
15.5.8 CTDI: Connecting to Contact Interrupts 15-20
15.5.9 CTTI: Connecting to Timer Interrupts 15-21
15.5.10 DFDI: Disconnecting from Contact Interrupts . 15-22
15.5.11 DFTI: Disconnecting from Timer Interrupts . . 15-23
15.5.12 DI/DIW: Reading Several Contact Sense Fields . 15-23

15.5.13 DOL/DOLW: Latching or Unlatching Several

Fields e o o o e « . 15-24
15.5.14 DOM/DOMW : Pu151ng Several Flelds e o o o o o o 15225
15.5.15 RCIPT: Reading a Contact Interrupt Point . . . 15-25
15.5.16 RDCS: Reading Contact Interrupt

Change-of-State Data from a Circular Buffer . 15-26
15.5.17 RDDI: Reading Contact Interrupt Data from a

Circular Buffer « « ¢ &+ ¢ &+ « o« « o 15=27
15.5.18 RDTI: Reading Timer Interrupt Data from a

Circular Buffer . . . e « s « o 15-28
15.5.19 RDWD: Reading a Full Word of Contact

Interrupt Data from the Circular Buffer . . . 15-29

15.5.20 RSTI: Reading a Timer Module « . . 15-=30
15.5.21 SCTI: Initializing a Timer Module 15-30
15.6 STATUS RETURNS . « ¢« &« o o o o o o o o o o« o o » 15-31
15.6.1 FORTRAN Interface Values . . . « + « « « « o« « 15-33
15.7 PROGRAMMING HINTS . &+ o ¢ o « o o ¢ o o o« o « o« 15-34
15.7.1 Numbering Conventions « . « « « . 15-34
15.7.2 Processing Circular Buffer Entries 15-34
CHAPTER 16 LABORATORY PERIPHERAL SYSTEMS DRIVERS
16.1 INTRODUCTION 4 v o o o o o« s o o e s o o o o o 16-1
16.1.1 AR11l Laboratory Peripheral System e o s e s . 16=2
16.1.2 LPS11 Laboratory Peripheral System . . « . « « 16=2
16.2 GET LUN INFORMATION MACRO . & 4 ¢ & s o o o o« « 16=2
16.3 QIO MACRO« e e s o o s e e s s s o & 1l6-2
16.3.1 Standard QIO Functlon e o & s+ e s s s s s o o 16-2
16.3.2 Device-Specific QIO Functions (Immediate) . . 16-3
16.3.2.1 TOLED & & & o o o o o o s o o o o s o o o » 1l6-4
16.3.2.2 IOWREL ¢ & & o o o o o o o s o o s o s o o o 1lb6-4
1603o203 IO.SDI . 3 3 . 3 . . o . 3 . . . 3 16"4
16030204 IO SDO 3] 16-4
16.3.3 Device-Specific QIO Functions (Synchronous) . 16-4
16.3.3.1 IOADS & & ¢ o o o o o o 5 o o o o o o o o o 16-6
1603»3-2 IOQHIS . . .] 3 . L] . .] . 16—7
160303.3 IOOMDA 3 3 . . 16-8
16.3.3.4 IOMDI ¢« ¢ o o o o o o o o o s o s o o s o » 16-8
16.3.3.5 IO.MDO . . . & . e o o o o o e o o s o . 16-8
16.3.4 Device-Specific QIO Functlon (I0.STP) e o« o » 16-9
16.3.4.1 TIOWSTP @ & o o o o o o o o o o o o o o o o » 16-9
16.4 FORTRAN INTERFACE . . « « o o o s o o o o« o o o 16-9
16.4.1 The isb Status Array .« . « ¢« o« o« o« « o « o « o 16-9
16.4.2 Synchronous Subroutines . e e o o s e o o & 16-10
16.4.3 FORTRAN Subroutine Summary . e o e o o e« o o 16-11
16.4.4 ADC: Reading a Single A/D Channel e e o+ o & 16-12
16.4.5 ADJLPS: Adjusting Buffer Pointers 16-13
16.4.6 ASLSLN: Assigning a LUN to LSO: . . « « . . . 16-13
16.4.7 ASARLN: Assigning a LUN to ARO: 16-14
16.4.8 CVSWG: Converting a Switch Gain A/D Value to
Floating-Point . « « ¢« ¢« &« o o o o & « o+ o o 16-15
16.4.9 DRS: Initiating Synchronous Digital Input

Sampling .« o« « o ¢ o o s o s o 16-15
16.4.10 HIST: Initiating Histogram Sampllng (LPSll

ONly) o o ¢ ¢ o o e e e s . s e o e s » o 16=17

16.4.11 IDIR: Reading Digital Input . . s s s s+ s+ - 16-19
16.4.12 IDOR: Writing Digital Output . . « « ¢« « « « . 16-20
16.4.13 IRDB: Reading Data from an Input Buffer . . . 16-20
16.4.14 LED: Displaying in LED Lights (LPS1ll only) . . 16-21

xi

CONTENTS

Page
16.4.15 LPSTP: Stopping an In-Progress Synchronous
Function e o o s o 8 o s e e o s+ e e 16-22
16.4.16 PUTD: Putting a Data Item into an Output
Buffer o«o . . 16-22
16.4.17 RELAY: Latching an Output Relay (LPSll only) . 16-22
16.4.18 RTS: Initiating Synchronous A/D Sampling . . . 16-23
16.4.19 SDAC: Initiating Synchronous D/A Output . . . 16-25
16.4.20 SDO: Initiating Synchronous Digital Output . . 16-27
1605 STATUS RETURNS 16—'29
16.5'1 IE.RSU - ° 3 . . . ° * . * ® » * - L] 16"31
16.5.2 Second 1/0 Status WOord . .+ « « « o ¢ o o o o » 16=31
16.5.3 I0O.ADS and ADC EIXOXS + o o o o s o o s o o« o 16-32
16.5.4 FORTRAN Interface vVvalues . . o « + « o ¢ « o » 16-33
16 06 PROGRAMMING HINTS . 3 . 3 [. . . 3 16—33
16.6.1 The LPS11/AR11l Clock and Sampllng Rates . . . 16-33
16.6.2 Importance of the 1/0 sStatus Block 16-34
16.6.3 Buffer Management ., . o e s » e o o s o o 16-35
16.6.4 Use of ADJLPS for Input and Output e o s s o » 16-36
CHAPTER 17 PAPER TAPE READER/PUNCH DRIVERS
17 - 1 INTRODUCTION - L] . . . 17"1
17.2 GET LUN INFORMATION MACRO . . & o o o o o o o« « 17-1
1703 QIO MACRO . [. » . * . [. * . . . 17-2
17.4 STATUS RETURNS . ¢ ¢ o ¢ o ¢ o o o o o o o o o » 17-3
17.4.1 Error Conditions . . ¢ & ¢ ¢ ¢ ¢ ¢ ¢« ¢ o o « o 17-4
17.4.2 Ready RECOVEIXY o « o o o o o o o o o o o o o« o 17-4
17.5 PROGRAMMING HINTS . e e o o o s e s s s e o s 17-5
17.5.1 Special Action Resultlng from Attach and Detach 17-5
17.5.2 Reading Past End-of-Tape . . + « ¢« « « s o« o « 17=-5
CHAPTER 18 INDUSTRIAL CONTROL SUBSYSTEMS
18.1 INTRODUCTION . - . . . [. 18"1
18.1.1 Hardware Configuration . . . « . ¢« « ¢« &« « o+ o« 18-1
18.1.1.1 ICS/ICR Address Assignments . . . « « . . . 18-1
18.1.1.2 DSS/DRS Address Assignments « « o . 18-2
18.1.1.3 Supported ICS/ICR 1/0 Modules 18-3
18.1.2 Alternate ICS1ll Support . « « » o « o o o « o 18-3
18.1.3 Software Support e o o s e o o o o 18-4
18.1.4 UDC1l1l Software Compatlblllty s o o v o e+ » o » 18-6
18.1.5 Module Addressing Conventions « « . . 18-6
18.2 LUN INFORMATION . . &+ « « « o o o o o o« » o o« « 18-8
18.3 ASSEMBLY LANGUAGE INTERFACE . . ¢« « 2 « « « » o 18-8
18.3.1 General Errxor Status Returns « «» « « o« 18-12
18.3.1.1 Directive Conditions . . «. « ¢« ¢ ¢« ¢« ¢« & o+ o 18-12
18.3.1.2 1/0 Conditions« . e o o s o o 18-13
18.3.2 A/D Input - Read Multlple A/D Channels e o o+ o 18-13
1893-3 Analog Output - - - - - - » . 18'15
18.3.4 Momentary Digital Output - Multi-Point 18-16
18.3.5 Bistable Digital Output - Multi-Point 18-17
18.3.6 Unsolicited Interrupt Processing . .+ 18-17
18.3.6.1 Connect to Digital Interrupts « . . 18-19
18.3.6.2 Disconnect from Digital Interrupts 18-20
18.3.6.3 Connect to Counter Module Interrupts 18-21
18.3.6.4 Set Counter Initial value« . ¢« « « o 18-22
18.3.6.5 Disconnect from Counter Interrupts 18-22
18.3.6.6 Connect to Terminal Interrupts . . « « « o o 18-23
18.3.6.7 Disconnect from Terminal Input 18-24
18.3.7 Activating a Task by Unsolicited Interrupts . 18-24
18.3.7.1 Link a Task to Digital Interrupts 18-25
18.3.7.2 Link a Task to Counter Interrupts 18-26
18.3.7.3 Link a Task to Terminal Interrupts 18-=27

xii

CONTENTS

18.3.7.4 Link a Task to Error Interrupts . . . « « .
18.3.7.5 Read Activating Data . « + « ¢« o« o o o o o &
18.3.8 Unlink a Task from Interrupts . . « ¢ o« « «
18.3.8.1 Unlink a Task from All Interrupts
18.3.8.2 Unlink a Task from all Digital Interrupts .
18.3.8.3 Unlink a Task from Counter Interrupts . . .
18.3.8.4 Unlink a Task from Terminal Interrupts . . .
18.3.8.5 Unlink a Task from Error Interrupts
18.3.9 Terminal Output . . &« ¢ ¢ & ¢ ¢ o o o o o o
18.3.10 Maintenance Functions . . . ¢ ¢« ¢« ¢ ¢ ¢ o« o .
18.3.10.1 Disable Hardware Error Reporting
18.3.10.2 Enable Hardware Error Reporting
18.3.11 Special Functions . ¢ ¢« &« ¢ ¢« o o 2 o « o« o
i8.3.1i1l.1 I/0 RUNAOWH &+ & o « o o o 5 o o o o o o o« »
18.3.11.2 Kill I/0 4 & 4@ 4 ¢ o o o o o o o o o o o o
18.4 FORTRAN INTERFACE « & o o o s o s o s o o o o
18.4.1 Synchronous and Asynchronous Process Control
I/O . e o o o o o & o o e & o . e o o . o e .
18.4.2 Return Status Reporting . . . ¢« ¢« ¢ o o « o &
18.4.3 Optional Arguments . .« « & o o o o ¢ o o o o« @
18.4.4 Assigning Default Logical and Physical Units
for Input and Output - ASICLN/ASUDLN (ICS/ICR)
and ASISLN (DSS/DRS) &« o ¢ o ¢ o o o o o o o
18.4.5 Analog INPut ¢ &+ v o« ¢ o o o o o o o o o s 0
18.4.5.1 AIRD/AIRDW: Analog Input - Specified
Channel Sequence . . . « « s « o & o e e e
18.4.5.2 AISQ/AISQW: Analog Input - Sequent1a1
Channel Sequence . . e e e e s
18.4.6 AO/AOW: Analog Output - Multlchannel e s e o o
18.4.7 DOL/DOLW: Digital Output - Bistable Multiple
Fields . ¢ & v 4 ¢ 4 o ¢« o o o o o o o o o o =
18.4.8 Digital Input o o e e o
18.4.8.1 DI/DIW: Digital Input - Dlgltal Sense
Multiple Fields o . . .
18.4.8.2 RCIPT: Digital Input - Dlgltal Interrupt
Single-Point .« v & ¢ ¢ o 4 o 4 o 0 s o s .
18.4.9 DOM/DOMW: Digital Output Momentary - Multlple
Fields o v ¢ ¢ ¢« o 4 o o o o o a o o o o s o o
18.4.10 RTO/RTOW: Remote Terminal Output
18.4.11 Unsolicited Interrupt Data -~ Continual
MONitoring o« o & ¢ o o« o o ¢ o o o o e o o o o
18.4.11.1 CTDI: Connect a Buffer for Receiving Digital
Interrupt Data . « ¢ o« o ¢ o o o o o o o o =
18.4.11.2 Reading Digital Interrupt Data
18.4.11.3 DFDI: Disconnect a Buffer from Digital
Interrupts e e e o s s s e e
18.4.11.4 CTTI: Connect a Buffer for Receiving
Counter DAata@ . « o ¢ o o o o o o o o o o o o
18.4.11.5 RDTI: Read Counter Data from the Circular
Buffer ¢ ¢t 4 4 e e e e e e e e e e
18.4.11.6 Miscellaneous Counter Routines . ., . « . .+ .
18.4.11.7 DFTI: Disconnect a Buffer from Counter
INtEerrupts ¢ ¢« o o ¢ ¢« 4 o o o s s o o o o
18.4.11.8 CTTY: Connect a Circular Buffer to Terminal
Interrupts e o e . e s s e e
18.4.11.9 RDTY: Read a Character from the Term1na1
Buffer . . ¢ & ¢ ¢ ¢ ¢ o o o s s s o o s o o
18.4.11.10 DFTY: Disconnect a Circular Buffer from
Terminal Input + ¢ ¢ 2 2 « o o« o o «
18.4.11.11 Programming Example . « « ¢ o & & o o o« o &
18.4.12 Unsolicited Interrupt Processing - Task
Activation . . . v ¢ ¢ ¢ ¢ 4 4 e e 4 e e e 0 e
18.4.12.1 LNK: Link a Task to Interrupts . . . « «
18.4.12.2 RDACT: Read Activation Data
18.4.12.3 UNLNK: Remove Interrupt Linkage to a Task .

xiii

Page

18-27
18-28
18-29
18-30
18-30
18-30
18-31
18-31
18-32
18-32
18-32
18-33
18-33
18-33
18-33
18-34

18-35

18-35
18-37

18-38
18-40
18-40

18-43
18-45

18-46
18-48

18-48
18-49

18-50
18-51

18-52

18-52
18-53

18-57
18-57

18-59
18-59

18-60
18-61
18-62

18-63
18-63

18-65
18-85
18-67
18-69

CHAPTER

CHAPTER

CHAPTER

CONTENTS

® e ® o & o o s @

e & o o o & e o o

18.4.13 Maintenance Functions o .« o e
18.4.13.1 OFLIN: Place Selected Unit 1n 0ff11ne
SEAtUS & ¢ ¢ ¢ ¢ 6 6 s e e e e e s s e e
18.4.13.2 ONLIN: Return a Device to On-line Status
18.5 ERROR DETECTION AND RECOVERY . . & ¢ o ¢ o o«
18.5.1 Serial Line EXrOXS « . o« o s o o o s o o o« o
18.5.2 Power-Fail at a Remote Site ¢« « . .
18.5.3 Power Recovery at the Processor« « .
18.5.4 Unit in Off-line Status . . « + + & ¢« o« « &
18.5.5 Error Data - ICSR and ICAR Registers
18.6 DIRECT ACCESS . . . e e s s e o o e e s e
18.6.1 Linking a Task to the ICS/ICR Common Block .
18.6.2 Accessing the I/0 Page . . v « o o o o o« o =«
18.6.2.1 Mapping Table Format . . « « o o o o » o &
18.6.2.2 1/0 Page Global Definitions
18.6.2.3 Sample Subroutine . . . c e e s s e s
18.7 CONVERSION OF EXISTING SOFTWARE o ¢ o o o s o
18.7.1 FeatuUres . ¢ « o o o o o o o o o o o o o o o
18.7.2 Module SUPPOTE &« o« ¢ ¢« o o o o o o o o o o o
18.7.2.1 IAD-IA A/D Converter and IMX-IA Multiplexer
18.7.2.2 16-Bit Binary Counter . . . v ¢ o« « o o
18.7.2.3 Bistable Digital OQutput « . « . .
18.7.2.4 Momentary Digital OQutput . . « ¢« ¢« ¢« + « &
18.7.2.5 Noninterrupting Digital Input .,
18.7.2.6 Analog Output . . & ¢ ¢ ¢« ¢ o ¢ o o o e o
18.7.2.7 Interrupting Digital Input . . « . « « .+ .
19 NULL DEVICE DRIVER
20 GRAPHICS DISPLAY DRIVER
20.1 INTRODUCTION e o o s e o
20.1.1 VT1ll Graphics Dlsplay Subsystem e s e s s e
20.1.2 VS60 Graphics Display Subsystem
20.2 GET LUN INFORMATION MACRO . ¢ ¢ o o o ¢ s o o
20.3 QIO MACRO & 4 2 ¢ e o s o o ¢ o s o 2 o o o o
20.4 STATUS RETURNS . o 4 o o o o o o o o o o o o o
20.5 PROGRAMMING HINTS .« o« ¢ ¢ o o o o o o o o o @
21 LABORATORY PERIPHERAL ACCELERATOR DRIVER
21.1 INTRODUCTION e s e o s e e o
21.1.1 LPAll1-K Dedicated Mode or Operatlon o o s
21.1.2 LPAll-K Multirequest Mode of Operation . . .
21.2 GET LUN INFORMATION MACRO . &+ &« o« o ¢ o ¢ o o
21.3 THE PROGRAM INTERFACE . ¢ « s o o ¢ s o o o o
21.3.1 FORTRAN Interface . o« ¢ o« « o o o o o o o
21.3.1.1 ADSWP: Initiate Synchronous A/D Sweep . .
21.3.1.2 CLOCKA: Set Clock A Rate . . . « ¢« & « o« &
21.3.1.3 CLOCKB: Control Clock B . & 4« ¢ & s o o «
21.3.1.4 CVADF: Convert A/D Input to Floating
Point . Ll . . . L] L] . L . L] L]
21.3.1.5 DASWP: Initiate Synchronous D/A Sweep . .
21.3.1.6 DISWP: Initiate Synchronous Digital Input
SWEED . ¢ 2 2 ¢ s o 5 s 5 s e s e e 8 e
21.3.1.7 DOSWP: Initiate Synchronous Digital Output
SWEEP & v 4 o ¢ o s s o s o o s+ o o o o & =
21.3.1.8 FLT16: Convert Unsigned Integer to a Real
Constant . . . « . & e s e s+ e e s e @
21.3.1.9 IBFSTS: Get Buffer Status e s o s e s s
21.3.1.10 IGTBUF: Return Buffer Number
21.3.1.11 INXTBF: Set Next Buffer ¢« ¢« + &

xiv

Page

18-70

18-71
18-71
18-71
18-72
18-72
18-73
18-73
18-74
18-75
18-77
18-77
18-78
18-78
18-79
18-81
18-81
18-81
18-81
18-82
18-82
18-82
18-83
18-83
18-83

21-14

21-17
21-17
21-17
21-18

CONTENTS

Page
21.3.1.12 IWTBUF: Wait for Buffer « ¢« « « o« 21-19
21.3.1.13 LAMSKS: Set Masks Buffer . «. « ¢« ¢« ¢« « « o« « 21=-20
21.3.1.14 RLSBUF: Release Data Buffer 21=-21
21.3.1.15 RMVBUF: Remove Buffer from Device Queue . . 21-22
21.3.1.16 SETADC: Set Channel Information 21-22
21.3.1.17 SETIBF: Set Array for Buffered Sweep 21-23
21.3.1.18 STPSWP: SLtOD SWEEP v « & o o o o o o o o o o« 21-24
21.3.1.19 XRATE: Compute Clock Rate and Preset 21-25
21.3.2 MACRO-11 Interface . . + « o« o o o o o o « o« » 21-26
21.3.2.1 Accessing Callable LPAll-K Support Routines 21-26
21.3.2.2 Standard Subroutine Linkage and CALL Op
Code v v 4 o o ¢ s e s a4 s e s o e & o s o 21=-27
21.3.2.3 Special-pPurpose MacCros . . - = o s s « s « o 21=27
21.3.2.4 Device-Specific QIO Functions . . « « « o« » 21-28
21.3.2.5 TIOLCLK & v 4 o o o o o s o o o o o s o o o o« 21=-29
21.3.2.6 TOLINI & ¢ o o o o o o o o o o o o o o o o & 21-29
21.3.2.7 TO.LOD ¢ o o« o o o o o o o o o o o o o o o o« 21-29
21 39.‘e8 TO STA 21—30
21.3.2.9 I10.STP . . e e e e e e o s o o s o o s o 21=30
21.3.3 The 1/0 Status Block (IOSB) e o o s o o o o o 21=30
21.4 BUFFER MANAGEMENT . . ¢ o ¢ ¢ o o o s o o s o » 21=-32
21.5 LOADING THE LPA-11 MICROCODE . « & ¢ « ¢ o o« o« » 21-34
21.6 UNLOADING THE DRIVER 4 & &« &« ¢ « o s o o o o« » o 21=-35
21.7 TIME-OUT OF THE LPAll1-K .+ +. ¢ o o o o o o o « o 21-35
21.8 22-BIT ADDRESSING SUPPORT . ¢« « o« o o o o o o« o 21-36
21.9 SAMPLE PROGRAMS . &« 4 4 ¢ « ¢ o o o o o o o o o 21-37
CHAPTER 22 K-SERIES PERIPHERAL SUPPORT ROUTINES
22.1 INTRODUCTION e o s o s o e o 22=1
22.1.1 K-Series Laboratory Perlpherals e e e e s e . 22-1
22.1.1.1 AAl1-K D/A CONVErter . o« o o o o o o o o o o 22=2
22.1.1.2 AD11-K A/D Converter . . .« o ¢ o o s o o o« o« 22=2
22.1.1.3 AM11-K Multiple Gain Multiplexer 22=2
22.1.1.4 DR11-K Digital I/0 Interface . . « « « ¢« o« o 22=2
22.1.1.5 KW1ll-K Dual Programmable Real-Time Clock . . 22-3
22.1.2 Support Routine Features . . . « + « o « o o« o 22=3
22.1.3 Generation and Use of K-Series Routines . . . 22-4
22.1.3.1 Generation of K-series Support Routines ., . 22-5
22.1.3.2 Program Use of K-series Routines 22-5
22.2 THE PROGRAM INTERFACE e o o s+ s s« o o s e o o o 22-6
22.2.1 FORTRAN Interface . « ¢ ¢« « o o & e e e . 22-7
22.2.1.1 ADINP: Initiate Single Analog Input e o o o 22-8
22.2.1.2 ADSWP: Initiate Synchronous A/D Sweep . . . 22-8
22.2.1.3 CLOCKA: Set Clock A Rate . « + « o o o o o o 22-11
22.2.1.4 CLOCKB: Control Clock B . . « « « & e o o 22-12
22.2.1.5 CVADF: Convert A/D Input to Floating P01nt . 22-13
22.2.1.6 DASWP: Initiate Synchronous D/A Sweep . . . 22-14
22.2.1.7 DIGO: Digital Start Event 22-16
22.2.1.8 DINP: Digital Input e o o o e o s s e o o o 22-16
22.2.1.9 DISWP: Initiate Synchronous Digital Input
Sweep 22-17
22.2.1.10 DOSWP: 1Initiate Synchronous Digital
Output Sweep .« « o ¢ ¢ o o o o o o o o o o 22-19
22.2.1.11 DOUT: Digital Output . . « « & ¢ o o o o o o« 22=-20
22.2.1.12 FLT16: Convert Unsigned 1Integer to a Real
Constant . ¢ o ¢ ¢ ¢ o o o o o o s o o o o o 22=-21
22.2.1.13 GTHIST: Gather Interevent Time Data 22-21
22.2.1.14 IBFSTS: Get Buffer Status . . « + « &« & « o 22-23
22.2.1.15 ICLOKB: Read 16-bit Clock . .« « &« ¢ &« o « o 22=23
22.2.1.16 IGTBUF: Return BRuffer Number , ., 22-24
22.2.1.17 INXTBF: Set Next Buffer . e s e o o o o o 22-24
22.2.1.18 IWTBUF: Wait for Buffer « « . . 22-25
22.2.1.19 RCLOKB: Read 1l6-bit Clock e e e o e o o o 22=25

Xv

22.2.1.2
22.2.1.2
22.2.1.2
22.2.1.2
22.2.1.2
22.2.1.2
22.2.1.2
22.2.2

22.2.2.1

22.2.2.2
22.2.3
22.3
22.4
22.4.1
22.4.2

CHAPTER 23

23.1
23.1.1
23.1.2
23.2
23.3

APPENDIX A

e o » e o e e o o o &

WD PP PP PP P
Hi - H OO~ ULd W

CONTENTS

0 RLSBUF: Release Data Buffer
1 RMVBUF: Remove Buffer from Devic
2 SCOPE: Control Scope . . ¢ ¢« « o« o &
3 SETADC: Set Channel Information . .
4 SETIBF: Set Array for Buffered Sweep
5 STPSWP: Stop Sweep
6 XRATE: Compute Clock Rate and Preset
MACRO-11 Interface« . .
Standard Subroutine Linkage and
Code v v ¢ v 4 4 4 s e e e e e e e e
Special-Purpose MacCros . . « « « o
The I/0 Status Block (IOSB)
BUFFER MANAGEMENT . . ¢ ¢ o ¢ s o o
SAMPLE FORTRAN PROGRAMS+ « « &
Sample Program Using Event Flag . .
Sample Program Using Completion Routin

UNIBUS SWITCH DRIVER

INTRODUCTION v« « ¢ o o o o o o o o o o
DTO7 UNIBUS Switches . . « ¢« ¢ ¢ « « &
UNIBUS Switch Driver .« . ¢ o o o o o o

GET LUN INFORMATION MACRO . « o o o « &

QIO MACRO &+ v v o o o o o o o o o o o
Standard QIO Functions

JOWATT &« o ¢ o o o o o o o o o o o
IODET o &« ¢ o o o o o o o o o .
IO.KIL « « « & e o o o s o o .
Device-Specific QIO Functions
IOCON v &« + o o o o o o o o .
JODIS ¢ ¢ o o o o o s o o o s o o
IODPT ¢« ¢ ¢ o o o o o o &
JOLSWI & & & o« o o o o o &
JOCSR v o ¢ o o o o o o o

POWER-FAIL RECOVERY e s s e
System Power-Fail Recovery .
UNIBUS Power-Fail Recovery . . . « .« .

STATUS RETURNS . &« & ¢ « ¢ o o o o o o o

FORTRAN USAGE . ¢ ¢ ¢ o o o o o o o o o

e o o o
* e
.
.
.

SUMMARY OF I/0 FUNCTIONS

ANALOG-TO-DIGITAL CONVERTER DRIVERS o
CARD READER DRIVER . ¢ ¢ ¢ ¢ ¢ ¢ o o o o
CASSETTE DRIVER =+ ¢ ¢ ¢ o + ¢ o o o o o
COMMUNICATION DRIVERS (MESSAGE-ORIENTED)
DECTAPE DRIVER &+ « ¢ ¢ o o o o o o o o o
DECTAPE II DRIVER . &« &« ¢ o o o o .
DISK DRIVER . . ¢ ¢ o o o o o o .
GRAPHICS DISPLAY DRIVER . « « « & .
INDUSTRIAL CONTROL SUBSYSTEMS « . .
LABORATORY PERIPHERAL ACCELERATOR DRIVER
LABORATORY PERIPHERAL SYSTEMS DRIVERS
LINE PRINTER DRIVER =« ¢« o o ¢ o o s o
MAGNETIC TAPE DRIVER ¢ ¢ ¢ ¢ ¢ o o o o o«
PAPER TAPE READER/PUNCH DRIVERS e e s e
PARALLEL COMMUNICATION LINK DRIVERS . .

Transmitter Driver Functions

Receiver Driver Functions . .,
TERMINAL DRIVER . ¢ ¢ ¢ ¢ o ¢ o o o o o
UNIBUS SWITCH DRIVER . « « « « o e o e
UNIVERSAL DIGITAL CONTROLLER DRIVER o »
VIRTUAL TERMINAL DRIVER . ¢« &+ ¢ ¢ o o

. o

Xvi

e

CALL Op

e

¢ s e

* e e o o

Queue
. . .
. e .

o o .

* o o o o
e o o o

.
e o o o
.

* e o o o

Page

22-26
22-26
22-27
22-28
22-28
22-29
22-30
22-31

22-31
22-31
22-32
22-32
22-33
22-34
22-35

23-1
23-1
23-1
23-2
23-2
23-2
23-3
23-3
23-3
23-4
23-4
23-5
23-5
23-6
23-6
23-6
23-6
23-6
23-7
23-8

. A-1
. A-1
. A-1
. A-2
. A-2
. A-3
. A-3
. A-3
. A-4
. A-5
. A-5
. A-6
. A-6
. A-6
- A-7
. A-7

« A-7
. A-9
. A-9
. A-9

APPENDIX B

APPENDIX C

INDEX

[s<BRvs e R vo R ve R ve R ve BEw v ve Rl o v v e v

WWwwwwwwww

Wwwwww

OO0 0O0O0000000000

. * e L L]
WWWWWWwWwhNN -

« o o o

o »

. [. L] . . (]
NOAOOONONOVMBWNHHEHFFRRHERPHE

WWwwwwwww

wWwwwww

o o

Y
N =

o o @

.
U W N

. . L]
e O 00 1 O
WO

¢ o o = & o o
WM

NS

PP

00 ~J OV Ut s> o>

.
w N+

o o

o .

N

CONTENTS
Page

I1/0 FUNCTION AND STATUS CODES

I/0 STATUS CODES . « « o ¢ o «
I1/0 Status Error Codes . . .
I/0 Status Success Codes

DIRECTIVES CODES
Directive Error Codes .
Directive Success Codes o e e e

I/0 FUNCTION CODES . . . o e e e
Standard I/0 Function Codes . .
Specific A/D Converter 1/0 Functlon Codes . . e
Specific Card Reader 1/0 Function Codes
Specific Cassette I/0 Function Codes
Specific Communication (Message-Oriented) 1/0
Function Codes . « v « ¢« & « « & c e e e e s
Specific DECtape I/0 Function Codes e o o » o =« B-

.
« ¢ e o 0
.

.

.

¢ o o o o
.

o o o o
.
.

o o o s o
o o o o

wmwwwt}uwwwmw
VT UTUT D Db W

5
6
Specific DECtape II 1/0 Function Codes . . . 6
Specific Disk I/0 Function Codes . . «. . .« . 6
Specific Graphics Display 1/0 Function Codes . . B-7
Specific ICS/ICR, DSS/DR I/0 Function Codes . . B-7
Specific LPAll1-K I/O Function Codes B-8
Specific LPS I/0 Function Codes . . « « « « « . B=9
Specific Magtape I/0 Function Codes B-9
Specific Parallel Communications Link I/O
Function Codes . ¢ 4+ &+ « ¢« o ¢« o o o « o« « « « B=10
Transmitter Driver Functions B-10
Receiver Driver Functions B=10
Specific Terminal I/0 Function Codes . B-10
Specific UDC I/0 Function Codes . . e ¢« « B-=12
Specific UNIBUS Switch I/0 Function Codes . « B-12
Specific virtual Terminal I/0 Function Codes . B-12

QIO INTERFACE TO THE ACPS

QIO PARAMETER LIST FORMAT e o s e a4 e s e e o « & C-1
File Identification Block . « ¢ @« o o o o o . C-2
The Attribute List .« . ¢ ¢« ¢ ¢ ¢ ¢« o o« o« o o« « o C=2

The Attribute Type . ¢« ¢« ¢« ¢ ¢« &« &« ¢ « « « « o C-3
Attribute Size . . . e e o s e s e o o o o C-4
Attribute Buffer Address e o o s o o o s s o & C-5
Size and Extend Control . ¢ « ¢ o ¢« ¢ « o o« o« o C=5
Window Size and Access Control . . . + ¢« « +« « « C=5
File Name Block Pointer . « ¢« ¢ o ¢ « o ¢« o o« o C=6

PLACEMENT CONTROL e o e o s o s o e s o o o o« o o C=7

BLOCK LOCKING &« ¢ o o o o s o o o s o s o o o o » C-7

SUMMARY OF F11ACP FUNCTIONS . ¢ 4 o o o o« o o « o« C=-7

SUMMARY OF MTAACP FUNCTIONS . ¢« « ¢ o o « o « o« o« C=9

HOW TO USE THE ACP QIOS . ¢ « o ¢ o o« o o « « « C=11
Creating a File . . « ¢ & « o & . . . « C-12

Opening a File . . .
Closing a File . . .
Extending a File . . . « C-12
Deleting a File ., e o s e e o s s s s . C-12

. C-12
ERRORS RETURNED BY THE FILE PROCESSORS C-12

« o C-12

xvii

CONTENTS

Page
FIGURES
FIGURE 1-1 Logical Unit Table e e o 4 s s s s e s e 1l-6
1-2 QIO Directive Parameter Block e e o e . . 1-14
8-1 Determination of Tape Characteristics for the
TE10/TULO0 e e e . . . « + « 8-8
8-2 Determination of Tape Characterlst1cs for the
TEL6/TUL6/TU4L5/TU77 ¢« + « o o o s o o o s o o« o o 8=9
9-1 Structure of Cassette Tape . « « ¢« ¢ &+ « « « &« o« « 9-6
18-1 Mapping Table FOrmat . . o« o « ¢ o o o o o + « o« 18-78
18-2 Mapping Table Entry Format e o e o o o 18-79
19-1 Indirect TKB Command File TESTBLD. CMD. e o e+ s s 19-1
Cc-1 File Identification Block . ¢ & & ¢ & « o s o« o+ o C=2
TABLES
TABLE 1-1 Get LUN Information . . . ¢ & ¢ ¢ ¢« ¢« o « ¢ « « 1=22
1-2 Directive Conditions ¢« & ¢« ¢« ¢ ¢ o 2 « « 1=33
1-3 I/0 Status Conditions . . . ¢« ¢« ¢ & +« o « « « « 1=36
2-1 Supported Terminal Devices . « ¢« o« « o o« o o o« o« o« 2=2
2-2 Standard Terminal Interfaces . . « « o« « o s o « o 2=3
2-3 Standard and Device-Specific QIO Functions for
Terminals o & ¢ o o o o o o o o o o o o o o o o o 2=-7
2-4 Subfunction Bits - Summary 2-11
2-5 Full-Duplex Terminal Driver-Terminal
Characteristics for SF.GMC and SF.SMC Functions 2-14
2-6 Bit TC.TTP (Terminal Type) Values Set by SF.SMC
and Returned by SF.GMC &« ¢ « o o o o o « 2-17
2-7 Information Returned by Get Terminal Support
(IO.GTS) QIO o e e e o o o . . 2—19
2-8 Terminal Status Returns . . . ¢« ¢« « o « o« o« « o 2=23
2-9 Terminal Control Characters « « o o o« o« 2=27
2-9 Terminal Control Characters . . . o« « « « « « « 2-28
2-10 Special Terminal KeyS .« « &« &+ o« o « o o o o o « 2=30
2-11 Vertical Format Control Characters . . .« « « « « 2=-34
3-1 Supported Terminal Devices . . + v 4 o« o « & & & o 3=-1
3-2 Standard Terminal Interfaces . . « « « « o« o « o« o« 3=2
3-3 Standard and Device-Specific QIO Functions for
Terminals .« o o &« o o o o o s o s o o o o o @ . 3=5
3-4 Subfunction Bits« ¢ « 3-9
3-5 Terminal Characteristics for SF. GMC and SF SMC
Requests . . ¢« « « o « & . e e e e . . 3-11
3-6 Bit TC.TTP (Terminal Type) Values Set by SF SMC
and Returned by SF.GMC e+ e s e e 3=11
3-7 Information Returned by Get Termlnal Support
(IO GTS) QIO - - - - - - . e e ® L e 2 © . ° L . 3-12
3-8 Terminal Status Returns . . . « « o ¢ o« « &« « o 3-17
3-9 Terminal Control Characters . . . ¢« « o « « o« « 3=20
3-10 Special Terminal KeyS .+ « ¢« & o o o o o« o & o o« 3=23
3-11 Vertical Format Control Characters . « . « + « . 3-26
4-1 Standard and Device-Specific QIO Functions for
Virtual Terminals . o ¢ ¢ 4 ¢ ¢ ¢ o o o o o o o « 4=2
4-2 Virtual Terminal Characteristics « o . 4-7
4-3 Virtual Terminal Status Returns for Offsprlng Task
Requests . . . « « « o« & & e o s o o e o « o o 4-8
4-4 Virtual Terminal Status Returns for Parent Task

Requests « « o« ¢ o o o o &
5-1 Standard Disk Devices . .

5-2 Standard QIQ Functions for e e e & o s e & @
5-3

L] * L] L] L] * L] . L] . . L 4 9
e s e o s s o s e e & & 5=2
Disks 5-6
Device-Specific Functions for the RX01,RX02, RLO1,
and RLO2 Disk DriversS . « &+ « o o o o o ¢« o o o & 5=7

xviii

w
I
S

| S IO N T B |
Nk WNHEWNHFWNDEUOTOLWL

OOWWOo~I~IJaaoagauuum
|

11 [
wWN -

OO |
I
N =

0 WO
|

o
—=oo
1

N W

-
=
U

11-3
11-4
11-5
11-6
12-1
12-2

12-3

12-4
13-1
13-2

13-3
13-4
13-5
13-6
14-1
14-2
14-3

14-4
14-5
14-6

14-7
14-8
15-1
15-2
15-3
15-4
15-5
15-6
15-7
16-1
16-2

l6-3

CONTENTS

Device-Specific QIO Function for the RA80 Disk
Driver . « o ¢ o« o « & &
Disk Status Returns . .
Disk Status Returns . .
Disk Status Returns . .

* o o o

Standard QIO Functions for DECtape .
Device-Specific Functions for DECtape
DECtape Status Returns . . . « ¢« « ¢ o « &
Standard QIO Functions for the TUS8
Device-Specific QIO Functions for the TUSS . .
TU58 Driver Status RetUrnsS . « + « o o « o o+ «
Standard Magtape Devices . . +« ¢ &« ¢ ¢ ¢ « o« «
Standard QIO Functions for Magtape
Device-Specific QIO Functions for Magtape . .
Magtape Status Returns
Information Contained in the Second I/O status
WOXA & & 4 o o o o o o o o o o s o o o o o o o o
Standard QIO Functions for Cassette - o
Device-Specific QIO Functions for Cassette . . .
Cassette Status RetUrNS . « « ¢ o o ¢ o o o o o
Standard Line Printer Devices . ¢« ¢ ¢ « ¢ o o &
Standard QIO Functions for Line Printers
Line Printer Status Returns . . « « o« o o o o &«
Vertical Format Control Characters . . . « o o
Standard QIO Functions for the Card Reader . .
Device-Specific QIO Function for the Card Reader
Card Reader Switches and Indicators . . « .+ « &
Card Reader Status Returns . . . ¢ ¢ ¢ o ¢ o o &«
Card Reader Control Characters e
Translation from DEC026 or DEC029 to ASCII o o
Message-Oriented Communication Interfaces . . .
Standard QIO Functions for Communication
Interfaces ., . . e e s s e e o o o o s s
Device-Specific QIO Functions for Communication
Interfaces . . o v ¢ ¢ ¢ ¢« o 4 e o o e s e o s
Communication Status ReEtUrnNsS . . o« o « « o « o &
Standard QIO Functions for PCL1ll Transmitters .
Device-Specific QIO Functions for PCL1l1l
Transmitters . o o o o o o« ¢ ¢ o o o o o o o o
PCL1l Transmitter Driver Status Returns
Standard QIO Functions for PCL1ll Receivers . . .
Device-Specific QIO Functions for PCL11l Receivers
PCL1l1 Receiver Driver Status Returns
Standard Analog-to-Digital Converters
Standard QIO Function for the A/D Converters . .
Device-Specific QIO Function for the A/D
CoONvVerters . . o o o o o o s o o s o« o o o o o
A/D Conversion Control WOrd . « « « o o o o o &
Contents of First Word of isb
FORTRAN Interface Subroutines for the AFCll and
ADO1-D e o o o o s s o e s e o e s e
A/D Converter Status RELULNS ¢« o o o o o o o o
FORTRAN Interface Values . . . e e e o o o
Standard QIO Function for the UDCll e e e o o s
Device-Specific QIO Functions for the UDCll . .
A/D Conversion Control Word . . ¢ o o o o o o &
Contents of First Word of isb e
FORTRAN Interface Subroutines for the UDCll . .
UDC1]l Status RELULTS & ¢ o o o s o o o o o s o o
FORTRAN Interface Values . .« . « o o o o o o o &
Laboratory Peripheral Systems . . . « + « « « &
Standard QIO Function for Laboratory Peripheral
Systems o« « o e e
Dev1ce-Spe01f1c QIO Functlons for the Laboratory
Peripheral Systems (Immediate) « .« + « .

s e o o 2 o

e o o o o o

e o o o o o
* o o ° o o
e o o o o 0

LI

Page

. .
ur

v,
|
! I =
OWUVMEdNNUVTWWEWNEFOOW®

o]
] COOONN~NNARNO |
[L L |

12-6
12-8
13-3

13-3
13-7
13-9
13-9
13-11
14-1
14-2

14-2
14-3
14-4

14-5
14-8
14-9
15-3
15-4
15-5
15-15
15-16
15-31
15-33
16-1

16-2

16-3

16-4
16-5

16-6
16-7

16-8
16-9
16-10
17-1

17-2
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9
20-1

20-2
21-1
21-2
21-3
22-1

22-2
22-3
23-1
23-2
23-3
cC-1

C-2

CONTENTS

Device-~Specific QIO Functions for the Laboratory
Peripheral Systems (Synchronous) . . . « « « o &
Device-Specific QIO Function for the Laboratory
Peripheral SystemsS (IO.STP) =+ « o s s « o o o &
Contents of First Word of isb . . . « + + ¢« «
FORTRAN Interface Subroutines for Laboratory
Peripheral Systems e o e e e
Laboratory Peripheral Systems Status Returns
Returns to Second Word of I/0 Status Block .
FORTRAN Interface values . . . « « o« o o & &
Standard QIO Functions for the Paper Tape
Reader/Punch e e o o o o
Paper Tape Reader/Punch status Returns .
ICS/ICR Address Assignments
Sample ICS/ICR Configuration
Sample DSS/DRS Configuration
Summary of Industrial Control QIO Functlo

S .
A/D Conversion Control Word . . . « « « o+ & .
FORTRAN Interface . . . ¢« ¢ ¢ ¢ o ¢ o o o & .
Return Status Summary . « « « « & ¢ « o o . .
ICSR Contents . . & ¢ ¢ ¢ ¢ o o o o o o o o .
ICAR Contents« « .+ & o o e s e s
Standard and Device-Specific QIO Functions fo
Graphics Displays . . . e e e o s e e e s
Graphics Display Status Returns o e e e e e

e ¢ o M e o o o o o o o o o o

FORTRAN Subroutines for the LPAlIl-K

Device-Specific QIO Functions for the LPAl11-K
Contents of First Word of IOSB . ¢« « « ¢ « o«
FORTRAN Subroutines for K-series Laboratory

Peripherals . . . ¢ & & « o o o o o o = o« »
Scope Control Word vValues . . + « & o o o =
Contents of First Word of IOSB . . « .« +« .+
Standard QIO Functions for UNIBUS Switches .
Device-Specific QIO Functions for UNIBUS Swit
UNIBUS Switch Driver Status Returns ., . . .
Maximum Size for Each File Attribute
File Processor Error CodesS « « o o« o o o o o

tche

XX

Page

16-5

16-9
16-10

16-11
16-29
16-32
16-33

17-2
17-3
18-2
18-7
18-7
18-8
18-15
18-34
18-36
18-74
18-75

20-2
20-3
21-3
21-28
21-31

22-7
22-27
22-32

23-2

s 23-4

23-7
. C-4
C-13

PREFACE

MANUAL OBJECTIVES

The purpose of this manual is to provide all information necessary to
interface directly with the I/0 device drivers supplied as part of the
RSX-11M/M-PLUS system.

INTENDED AUDIENCE

This manual 1is intended for wuse by experienced RSX-11M/M-PLUS
programmers who want to take advantage of the time and/or space
savings which result from direct use of the I/0 drivers. Readers are
expected to be familiar with the information contained 1in the
RSX-11M/M-PLUS Executive Reference Manual, and to have some experience
using the Task Builder and either MACRO-11 or FORTRAN programs and to
be familiar with the manuals describing their use.

STRUCTURE OF THE DOCUMENT

Chapter 1 provides an overview of RSX-11M input/output operations. It
is somewhat tutorial in its approach in introducing the reader to the
use of logical unit numbers, directive parameter blocks, event flags,
macro calls, etc. The discussions include the standard I/0 functions
common to a variety of devices, and summarizes standard error and
status conditions relating to completion of I/O requests..

Chapters 2 through 23 describe the use of all device drivers supported
by RSX-11M and/or RSX-11M-PLUS; refer to the preceding Summary Of
Technical Changes to determine which drivers are supported 1in vyour
operating system. Descriptions by chapter are as follows:

Chapter Device Drivers

2 Full-duplex terminal communications line
interface

3 Half-duplex terminal communications line
interface

4 Virtual terminal driver

5 Disks

6 DECtape

7 DECtape II

8 Magnetic tape

xxi

PREFACE

Chapter Device Drivers
9 Cassette
10 Line printers
11 Card reader
12 Message-oriented communications line
interfaces
13 PCL11 parallel communications link

transmitter and receiver

14 Analog-to-digital converters

15 Universal digital controller

16 Laboratory peripheral systems

17 Paper tape reader/punch

18 Industrial control subsystems

19 The null device

20 Graphics display terminals

21 LPAll1-K laboratory peripheral accelerator
22 K-series laboratory peripherals

23 UNIBUS switch

Each of these chapters is structured in similar fashion and focuses on
the following basic elements:

Description of the device, including information on physical
characteristics such as speed, capacity, access, and usage

Summary of standard functions supported by the devices and
descriptions of device-specific functions

Discussion of special characters, carriage control codes, and
functional characteristics, if relevant

Summary of error and status conditions returned on acceptance
or rejection of I/0 requests

Description of programming hints for users of the device under
RSX-11M

xxii

PREFACE

Appendixes A through C provide quick reference material on I/0
functions and status codes. These include the following:

Appendix Contents
A Summary of I/0 functions by device
B I/0 function and status codes
C QIOS$ interface to Ancillary Control
Processors

ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in the RSX-11M/RSX-11S Information Directory and the
RSX-11M-PLUS 1Information Directory. Each Directory defines the
intended readership of each manual in the RSX-11M/RSX-11S or
RSX-11M-PLUS set and provides a brief synopsis of each manual's
contents.

CONVENTIONS USED IN THIS MANUAL
There are a number of conventions and assumptions used in this manual

to present syntax and program coding examples. These are described in
the following list.

1. Brackets ([]) in syntactic models enclose optional
parameters.

The following example illustrates this format:
ASTXS$S [err]

2. Braces ({}) in syntactic models indicate that one of the
items must be selected, as in the following:

DOM
CALL{ }(inm,icont,idata,[idx],[isb],[lun]>

DOMW
3. An ellipsis (...) in a syntactic model or coding example
indicates that parameters have been omitted. As used in this
manual, an ellipsis in a QIO macro call indicates omission of
standard QIO parameters described in Section 1.5.1. This is
illustrated below:
QIO0$8C IO0.RLV,...,<stadd,size>

4, Consecutive commas in a coding example indicate null
arguments. The following illustrates this usage:

QI0$C TI0.ATT,6,,,,ASTOl

5. Commas indicating null trailing optional arguments may be
omitted, as in the following:

QIO$C TIO0.KIL,9.

xxiii

PREFACE

Certain parameters are required but ignored by RSX-11M or
RSX-11M-PLUS; this 1is necessary to maintain compatibility
with RSX-11D. For example, in the following, the ©priority
specification (fourth parameter) is ignored:

QI0$C 10.WLB,8.,EV,,I0SB,ASTX,<IOBUF,NBUF>

With the exception of MACRO-11 coding examples, all numbers
in the text of this manual are assumed to be decimal; octal
radix is explicitly declared as in the following:

An illegal logical block number has been specified
for DECtape. The number exceeds 577 (1101 octal).

In MACRO-11 coding examples, all numbers are assumed to be
octal; decimal radix is explicitly designated by following
the number with a decimal point, as in the following example:

QI0S$SC 1IO.RDB,14.,,,I0SB,,<IOBUF,80.>

In FORTRAN subroutine models, parameters which begin with the
letters i through n indicate integer variables, as in the
following example:

CALL DRS (ibuf,ilen,imode,irate,iefn,imask,isb,
[nbuf],[istart],[istop])

In general, where hoth i and n prefixes are used in a call,
the i form 1indicates the name of an array and the n form
specifies the size of the array.

All integer arrays and variables are assumed to occupy one
storage word ©per variable (that is, INTEGER*2) and all real
arrays and variables are assumed to occupy two storage words
per variable (that is, REAL%*4).

Xxiv

SUMMARY OF TECHNICAL CHANGES

This update to the 1/0 Drivers Reference Manual contains changes and
additions to document two operating systems: RSX-11M V4.1 and
RSX-11M-PLUS V2.1. The following list contains a brief summary of
technical changes for both operating systems:
® Terminal driver support
terminals:

1

has been added for the following

LQP0O2
LASO
DHV11

e Disk driver support has been added for the following new disk
devices:

UDA50/RAS1
UDAS50/RA60
RC25
RDS1
RX50

® Magnetic tape driver support has been added for the TU80 and
TSVO0S5.

e Line printer driver support has been added for the following
printers:

LNO1
LPO7
LP26
LP27

XXV April 1983

CHAPTER 1

RSX-11M/M-PLUS INPUT/OUTPUT

1.1 OVERVIEW OF RSX-11M 1/0

The RSX-11M/M-PLUS Real-Time Executives support a wide variety of
PDP-11 input and output devices, including disks, DECtapes, magnetic
tapes, tape <cassettes, line printers, card readers, and such
laboratory and industrial devices as analog-to-digital converters,
universal digital controllers, and laboratory peripheral systems.
Drivers for these devices are supplied by Digital Equipment
Corporation as part of the system software. This manual describes all
of the device drivers supported by the system and the characteristics,
functions, error conditions, and programming hints associated with
each. Devices not described 1in this manual can be added to basic
system configurations, but users must develop and maintain their own
drivers for these devices. (See the RSX-11M Guide to Writing an I/0
Driver, including Update No. 1, or the RSX-11M-PLUS Guide to Writing
an EZQ Driver, depending upon the system you are using.) —

Input/output operations under RSX-11M are extremely flexible and are
as device- and function-independent as possible. Programs issue I/0
reguests to logical units that have been previously associated with
particular physical device wunits. Each program or task is able to
establish its own correspondence between physical device units and
logical unit numbers (LUNs). I/0 requests are queued as issued; they
are subsequently processed according to the relative priority of the
tasks that issued them. 1I/0 requests (for appropriate devices) can be
issued from tasks by means of either the File Control Services or
Record Management Services, or can be interfaced directly to an I/0
driver by means of the Queue I/0 (QIO) system directive.

All of the I/0 services described in this manual are requested by the
user in the form of QIO system directiwes. A function code included
in the QIO directive indicates the particular input or output
operation to be performed. 1/0 functions can be used to request such
operations as:

e Attaching or detaching a physical device unit for a task's
exclusive use

e Reading or writing a logical or virtual block of data
e Cancelling a task's I/0 requests
A wide variety of device-specific input/output operations (for

example, reading DECtape in reverse, rewinding cassette tape) can also
be specified with QIO directives.

RSX-11M/M-PLUS INPOT/OUTPUT

1.2 PHYSICAL, LOGICAL, AND VIRTUAL I/O

There are three possible modes in which an 1I/0 transfer can take
place: physical, logical, and virtual.

Physical I/0 concerns reading and writing data in the actual physical
units accepted by the hardware (for example, sectors on a disk). For
most devices, physical I/0 is identical to logical I/0. For example,
the RKO05 disk has sectors of 256 words, the same size as RSX-11M
logical blocks for all disks. Thus, in this case, a logical block
maps directly into a physical block. For other devices, the mapping
is not one to one. The RFll disk, for example, is word addressable;
however, no physical 1I/0 may be done with the RFll. Data is always
written in 256-word logical blocks. Another example 1is the RX01l
flexible disk. Data for the RX0l is recorded in physical sectors of
64 words each. Therefore, logical blocks for the RX0l are made up of
four physical sectors.

Logical I/O concerns reading and writing data in blocks that are
convenient for the operating system. In most cases, logical blocks
map directly into physical blocks. For block-structured devices (for
example, disks), 1logical blocks are numbered beginning at 0. For

non-block-structured devices (for example, terminals), logical blocks
are not addressable.

Virtual I1I/0 concerns reading and writing data to open files. In this
case, the executive maps virtual blocks into logical blocks. For
file-structured devices (disks or DECtapes), virtual blocks are the
same size as logical blocks and are numbered starting from one (1) and

are relative to the file rather than to the device. For

non-file-structured devices, the mapping from virtual block to logical
block is direct.

1.3 RSX-11M DEVICES
The devices 1listed below are supported by both RSX-11M and
RSX-11M-PLUS, except as indicated. Drivers are supplied for each of
these devices, and I/0 operations for them are described in detail in
subsequent chapters of this manual.
1. A variety of terminals, including the following:

e ASR/KSR-33 and ASR/KSR-35 Teletypes!l

e LAl2 DECwriter

e LAl100 DECwriter

e LA30 DECwriters (serial and parallel)

e LA34/LA38 DECwriter IV

e [LA36 DECwriter II

e LAl20 DECwriter III

o LAl80S DECprinter

® LQP02 Letter-Quality Printer

1. Teletype is a registered trademark of the Teletype Corporation.

1-2 April 1983

RSX-11M/M-PLUS INPUT/OUTPUT

LA50 Personal Printer

VTO05B Alphanumeric Display Terminal
VT50 Alphanumeric Display Terminal

VT50H Alphanumeric Display Terminal
VT52 Alphanumeric Display Terminal

VT55 Graphics Display Terminal

VT61l Alphanumeric Display Terminal

VT100 Alphanumeric Display Terminal
VT101 Alphanumeric Display Terminal
VT102Z Alphanumeric Display Terminal
VT105 Alphanumeric Display Terminal
VT125 Alphanumeric Display Terminal
VT131 Alphanumeric Display Terminal
VT132 Alphanumeric Display Terminal
RT02 Data Entry Terminal

RT02-C Badge Reader and Data Entry Terminal

These terminals are supported on the following asynchronous
line interfaces:

DJ11 Asynchronous Communication Line Interface Multiplexer

DH11 and DH11-DM11-BB Asynchronous Communication Line
Interface Multiplexer

DHV11l Asynchronous Communications Line Interface
Multiplexer

DL1l-A, DL11-B, DL11-C, DL11l-D, DL1l1-E and DLll-W
Asynchronous Communication Line Interfaces

DLV11l-E, DLV11-F Asynchronous Communication Line
Interfaces

DZ11l Asynchronous Communication Line Interface Multiplexer
variety of disks, including the following:

ML-11 Fast Electronic Mass Storage Device

RF11/RS11 Fixed-Head Disk

RS03/RS04 Fixed-Head Disk

UDA50/RA80/RA81 Fixed-Media Disk

UDAS0/RA60 Pack Disk

RM80 Fixed-Media Disk

1-3 April 1983

RSX-11M/M-PLUS INPUT/OUTPOT

RP07 Fixed-Media Disk

RP11/RP02 or RP03 Pack Disks

RMO2, RMO3, RMO5 Pack Disk

RP04, RP0O5, RP0O6 Pack Disks
RK11/RK05 or RKOSF Cartridge Disks
RL11/RLO1 or RLO2 Cartridge Disk
RK611/RK06 or RK07 Cartridge Disk
RC25 Fixed-Media/Removable Cartridge Disk Subsystem
RD51 Fixed-Media Disk

RX50 Flexible Disk

RX11/RX01 Flexible Disk

RX211/RX02 Flexible Disk

TCl1l/TU56 DECtape

DL11/TU58 DECtape II

A variety of magnetic tapes including the following:

TU80 Magnetic Tape Subsystem
TSV05 Magnetic Tape Subsystem
TS11 Magnetic Tape Subsystem

TM1l Magnetic Tape Controller with TE10,TUl0, or TSO03
Drive

RH11/70 Controller with TM02/03 Formatter and TEl6, TUlé6,
or TU45 Drive

RH11/70 Controller with TMO3 Formatter and TU77 Drive

RH11/RH70 Controller with TM78 Formatter and TU78 Drive

TAll Tape Cassette

A variety of line printers:

LP11 Controller with LPl4, LPOl, LP02, LP0O4, LPOS, LPO6,
LP07, LP26, LP27 Line Printers

LS11 Controller and Line Printer
LV1l Controller with LVOl Line Printer
LAl180 Controller and Line Printer

LNO1 Laser Printer

CR11l Card Reader

1-4 April 1983

RSX-11M/M-PLUS INPUT/OUTPUT

Synchronous and asynchronous line interfaces:

DAll-B Asynchronous Communication Line Interface

support only)

DL11~-E Asynchronous Communication Line Interface

support only)

DLV11-E Asynchronous Communication Line Interface

DMC1ll Synchronous Communication

DP11 Synchronous Communication
support only)

DQl1l Synchronous Communication
support only)

DU1ll Synchronous Communication
support only)

DUP1ll Synchronous Communication

Line Interface

Line 1Interface

Line 1Interface

Line 1Interface

Line Interface

(RSX-11M

(RSX-11M

(RSX-11M

(RSX-11M

(RSX-11M

RSX-11M/M-PLUS INPUT/OUTPUT

10. Two analog-to-digital converters:

e AFC11 Analog-to-Digital Converter (RSX-11M support only)

e AD01-D Analog-to-Digital Converter (RSX-11M support only)

11. UDC11 Universal Digital Controller (RSX-11M support only)

12. Laboratory peripheral systems:

e ARl1l Laboratory Peripheral System (RSX-11M support only)

e LPS1] Laboratory Peripheral System (RSX—llM support only)

[
w

o

Paper tape devices:
e PCll Paper Tape Reader/Punch
e PR11 Paper Tape Reader

14, Industrial control subsystems:

e ICS/ICR Local and Remote Subsystems (RSX-11M support only)

e DSS/DRS Digital 1Input and Output Subsystems
support only)

(RSX-11M

15. The "Null Device," a software construct that facilitates

eliminating unwanted output

16. Two graphics subsystems:

® VT1l Graphics Display System (RSX-11M support only)

e VS60 Graphics Display System (RSX-11M support only)

17. Laboratory Peripheral Accelerator:
e LPAll-K
18. K-series laboratory peripherals:
e AAll-K Digital-to-Analog Converter and Display
e ADI1-K Analog-to-Digital Converter
® AM11-K Multiple-Gain Multiplexer
e DR11-K Digital I/0 Interface
e KW1l-K Programmable Real-Time Clock

19. PCL11 Parallel Communications Link (RSX-11M-PLUS
only)

20. DT07 (RSX-11M-PLUS support only) UNIBUS Switch

21. Virtual Terminals (RSX-11M-PLUS support only)

1.4 LOGICAL UNITS

support

This section describes the construction of the logical unit table and

the use of logical unit numbers.

RSX-11M/M-PLUS INPUT/OUTPUT

1.4.1 Logical Unit Number

A logical unit number, or LUN, is a number associated with a physical
device unit during RSX-11M/M-PLUS I/0 operations. For example, LUN 1
might be associated with one of the terminals in the system, LUNs 2,
3, 4, and 5 with DECtape drives, and LUNs 5, 7, and 8 with disk units.
The association is a dynamic one; each task running in the system can
establish its own correspondence between LUNs and physical device
units, and can change any LUN/physical-device-unit association at
almost any time. The flexibility of this association contributes
heavily to system device independence.

A logical unit number is simply a short name used to represent a
logical-unit/physical-device-unit association. Once the association
has been made, the LUN provides a direct and efficient mapping to the
physical device unit, and eliminates the necessity to search the
device tables whenever the system encounters a reference to a physical
device unit.

The user should remember that, although a LUN/physical-device-unit
association can be changed at any time, reassignment of a LUN at run
time causes pending I/0 requests for the previous LUN assignment to be
cancelled. It is the user's responsibility to verify that all
outstanding I/0 requests for a LUN have been serviced before that LUN
is associated with another physical device unit.

1.4.2 Logical Unit Table

There is one Logical Unit Table (LUT) for each task running in a
system. This table is a variable-length block contained in the task
header. Each LUT contains sufficient 2-word entries for the number of
logical units specified by the user at task-build time by the "UNITS="
option.

Each entry or slot contains a pointer to the physical device unit
currently associated with that LUN. Whenever a user issues an I/0
request, the system matches the appropriate physical device unit to
the LUN specified in the call by indexing into the LUT by the number
supplied as the LUN. Thus, if the call specifies 6 as the LUN, the
system accesses the sixth 2-word entry in the LUT and associates the
I/0 request with the physical device unit to which the entry points.
The number of LUN assignments valid for a task ranges from 0 to 255,
but cannot be greater than the number of LUNs specified at task-build
time.

Figure 1-1 illustrates a typical Logical Unit Table.

Al NUMBER OF LUNS
ucs
P—-——-——-————-——
LUN 1 0
ucs
LUN 2 0
uce
F— — — — — — — 4
LUN 3 0
ucs
- — — — — — — — 4]
LUN 4 0

ZK-004-81

Figure 1-1 Logical Unit Table

1-6

RSX-11M/M-PLUS INPUT/OUTPUT

Word 1 of each active (assigned) 2-word entry in the logical unit
table points to the Unit Control Block (UCB) of the physical device
unit with which the LUN is associated. This linkage may be indirect;
that is, the user may force redirection of references from one unit to
another unit with the MCR command REDIRECT. Word 2 of each entry 1is
reserved for mountable devices.,

1.4.3 Changing LUN Assignments

Logical unit numbers have no significance until they are associated
with a physical device unit by means of one of the methods described
below:

1. At task-build time, the wuser <can specify an ASG keyword
option, which associates a physical device unit with a
logical unit number referenced in the task being built.

2. The user or system operator can issue a REASSIGN command to
MCR; this command reassigns a LUN to another physical device
unit and thus changes the LUN-physical device unit
correspondence. Note that this reassignment has no effect on
the in-core image of a task.

3. At run time, a task can dynamically change a LUN assignment
by issuing the Assign LUN system directive, which changes the
association of a LUN with a physical device unit during task
execution.

1.5 1ISSUING AN I/0O REQUEST

User tasks perform I/0 in the RSX-11M/M-PLUS system by submitting
requests for I/0 service 1in the form of QIO or QIO And Wait system
directives. See the RSX-11M/M-PLUS Executive Reference Manual for a
complete description of system directives.

In RSX-11M/M-PLUS, as in most multiprogramming systems, tasks do not
normally access physical device units directly. 1Instead, they utilize
input/output services provided by the Executive, since it can
effectively multiplex the wuse of physical device units over many
users, The Executive routes I/0 requests to the appropriate device
driver and queues them according to the priority of the requesting
task. 1I/0 operations proceed concurrently with other activities in an
RSX-11M/M-PLUS system.

Before a request is queued, it must pass a battery of acceptance tests
administered by the Executive. 1If the request fails, it is rejected;
this rejection is signalled by the setting of the C-bit when the
statement following the QIO 1is executed. It is good programming
practice to <check for directive rejection by following the QIO
directive with a BCS instruction.

After an I/0 request has been queued, the system does not wait for the
operation to complete. If at any time the user task that issued the
QIO request cannot proceed until the I/0 operation has completed, it
should specify an event flag (see Sections 1.5.1 and 1.5.2) in the QIO
request and should issue a Waitfor system directive specifying the
same event flag at the point where synchronization must occur. The
task then waits for completion of I/0 by waiting for the specified
event flag to be set.

RSX-11M/M-PLUS INPUT/OUTPUT

The QIOW directive, QIO And Wait, is a more economical way to achieve
this synchronization. QIOW automatically waits until 1I/0 has
completed before returning control to the task. Thus, the additional
Waitfor directive is not necessary.

Each QIO or QIOW directive must supply sufficient information to
identify and queue the I/0 request. The user may also want to include
locations to receive error or status codes and to specify the address
of an asynchronous system trap service routine. Certain types of I/0
operations require the specification of device-dependent information
as well, Typical QIO parameters are the following:

e I/0 function to be performed

e Logical unit number associated with the physical device unit
to be accessed

e Optional event flag number for synchronizing I/0 completion
processing (required for QIOW)

e Optional address of the I/0 status block to which information
indicating successful or unsuccessful completion is returned

e Optional address of an asynchronous system trap service
routine to be entered on completion of the I/O request

e Optional device- and function-dependent parameters specifying
such 1items as the starting address of a data buffer, the size
of the buffer, and a block number

A set of system macros that facilitate the issuing of QIO directives
is supplied with the RSX-11M/M-PLUS system. These macros, which
reside in the System Macro Library (LB:[1,1]RSXMAC.SML), must be made
available to the source program by means of the MACRO-11 Assembler
directive .MCALL. The function of .MCALL 1is described 1in Section
1.7.3. Several of the first six parameters in the QIO directive are
optional, but space for these parameters must be reserved.

During expansion of a QIO macro, a value of 0 is defaulted for all

null (omitted) parameters. Inclusion of the device- and
function-dependent parameters depends on the physical device unit and
function specified. If the user wanted to specify only an I/0

function code, a LUN, and an address for an asynchronous system trap
service routine, the following might be issued:

QI0SC I0.ATT,6,,, ,ASTOX

IO.ATT

The I/0 function code for attach.

The LUN.

ASTOX

The AST address.

RSX-11M/M-PLUS INPUT/OUTPUT

rrrzs

Null arguments for the event flag number, the request priority,
and the address of the I/C status block.

No additional device- or function-dependent parameters are required
for an attach function. The C form of the QIO0S$ macro is used here and
in most of the examples included in Chapter 1. Section 1.7 describes
the three legal forms of the macro.

For convenience, any comma may be omitted if no parameters appear to
the right of it. The command above could therefore be issued as
follows, if the asynchronous system trap was not desired:

QI0$C IO.ATT,6

All extra commas have been dropped. If, however, a parameter appears
to the right of any place-holding comma, that comma must be retained.

1.5.1 QIO Macro Format

The arguments for a specific QIO macro call may be different for each
I/0 device accessed and for each I/0 function requested. The general
format of the call is, however, common to all devices and 1is as
follows:

QIosc fnc,lun,[efn],[pri],[isb],[ast][,<pPl,P2,...,P6>]
where brackets ([]) enclose optional or function-dependent parameters.
If function-dependent parameters <pl,...,p6> are required, these
parameters must be enclosed within angle brackets (<>). The following

paragraphs summarize the wuse of each QIO parameter. Section 1.7
discusses different forms of the QIOS$ macro itself.

The fnc parameter is a symbolic name representing the I/0O function to
be performed. This name is of the form

I0.xXXX

XXX

Identifies the particular I/0 operation.

For example, a QIO request to attach the physical device unit
associated with a LUN specifies the function code

I0.ATT

A QIO request to cancel (or kill) all I/O requests for a specified LUN
begins in the following way:

QIOSC IO.KIL,...

The fnc parameter specified in the QIO request is stored internally as
a function code in the high-order byte and modifier bits in the
low-order byte of a single word. The function code is in the range 0
through 31 and is a binary value supplied by the system to match the
symbolic name specified 1in the QIO request. The correspondence
between global symbolic names and function codes 1is defined 1in the

1-9

RSX-11M/M-PLUS INPUT/OUTPUT

system object module library, which is automatically searched by the
Task Builder. Local symbolic definitions may also be obtained by the
FILIOS$ and SPCIOS macros, which reside in the System Macro Library and
are summarized in Appendix A. Several similar functions may have
identical function codes, and may be distinguished only by their
modifier bits. For example, the DECtape read logical forward and read
logical reverse functions have the same function code. Only the
modifier bits for these two operations are stored differently.

The lun parameter represents the logical wunit number (LUN) of the
associated physical device unit to be accessed by the I/0 request.
The association between the physical device unit and the LUN is
specific to the task that 1issues the 1I/O request, and the LUN
reference is usually device independent. An attach request to the
physical device unit associated with LUN 14 begins in the following
way:

QIOS$C IO.ATT,l4.,...

Because each task has its own LUT in which the ©physical device
unit-LUN correspondences are established, the 1legality of a LUN
parameter is specific to the task that includes this parameter in a
QI0 request. In general, the LUN must be in the following range:

0 <LUN <length of task's LUT (if nonzero)

The number of LUNs specified in the LUT of a particular task cannot
exceed 255.

The efn parameter is a number representing the event flag to be
associated with the I/0 operation. It may optionally be included in a
QIO or QIO And Wait request. The specified event flag is cleared when
the 1I/0 request 1is queued and is set when the I/0O operation has
completed. If the task has 1issued the QIO And Wait directive,
execution 1iIs automatically suspended until the I/0 completes. If a
QIO directive has been issued (with no Waitfor directive), then task
execution proceeds in parallel with the I/0. When the task continues
to execute, it may test the event flag whenever it <chooses by using
the Read All Event Flags system directive (if group global event flags
are not being used) or the Read Extended Flags system directive (for
all event flags, including group-global event flags). If the user
specifies an event flag number, this number must be in the range 1
through 96. If an event flag specification is not desired, efn can be
omitted or can be supplied with a value of 0. Event flags 1 through
32 are local (specific to the issuing task); event flags 33 through
64 are global (shared by all tasks in the system). Event flags 65
through 96 are group-global event flags (shared by all tasks in the
same user group). Flags 25 through 32 and 57 through 64 are reserved
for use by system software. Within these bounds, the user can specify
event flags as desired to synchronize I/0 completion and task
execution. Section 1.5.2 provides a more detailed explanation of
event flags and significant events.

NOTE

If an event flag is not specified, the
Executive treats the directive as if it
were a simple QIO request.

RSX-11M/M-PLUS INPUT/OUTPUT

The optional pri parameter is supplied only to make RSX-11M/M-PLUS QIO
requests compatible with RSX~-11D. An RSX-11M I/0 request
automatically assumes the priority of the requesting task. Thus, it
is recommended that a wvalue of 0 (or a null) be used for this
parameter.

The optional isb parameter identifies the address of the 1I/0 status
block (I/O0 status double-word) associated with the I/0 request. This
block is a 2-word array in which a code representing the final status
of the 1I/0 request is returned on completion of the operation. This
code is a binary value that corresponds to a symbolic name of the form
IS.xxx (for successful returns) or IE.xxXxxX (for error returns). The
binary error code is returned to the low-order byte of the first word
of the status block. It can be tested symbolically, by name. For
example, the symbolic status IE.BAD is returned if a bad parameter is
encountered. The following illustrates the examination of the I/O
status block, IOST, to determine if a bad parameter has been detected:

QIOSC I0.ATT,14.,2,,I0ST

BCS DIRERR
WTSESC 2

CMPB #IS.SUC,IOST
BNE ERROR

The correspondence between global symbolic names and 1I/0 completion
codes 1is defined 1in the system object module 1library, which is
automatically searched by TKB. Local symbolic definitions, which are
summarized in Appendix B, may also be obtained by the IOERRS$ macro,
which resides in the System Macro Library.

Certain device-dependent information is returned to the high-order
byte of the first word of isb on completion of the I/O operation. If
a read or write operation is successful, the second word 1is also
significant. For example, in the case of a read function on a
terminal, the number of bytes typed before a carriage return Iis
returned 1in the second word of isb. If a magtape unit is the device
and a write function is specified, this number represents the number
of bytes actually transferred. The status block can be omitted from a
QIO request if the wuser does not intend to test for successful
completion of the request.

The optional ast parameter specifies the address of a service routine
to be entered when an gsynchronous system trap occurs. Section 1.5.3
discusses the use of asynchronous system traps, and Section 2.2.5 of
the RSX-11M/M-PLUS Executive Reference Manual describes traps in
detail. If the user wants to interrupt his task to execute special
code on completion of an 1I/0 request, an asynchronous system trap
routine can be specified in the QIO request. When the specified 1I/O
operation completes, control branches to this routine at the software
priority of the requesting task. The asynchronous code beginning at
address ast 1is then executed, much as an interrupt service routine
would Dbe. If the wuser does not want to perform asynchronous
processing, the ast parameter can be omitted or a value of 0 specified
in the QIO macro call.

The additional QIO parameters, <pl,p2,...,p6>, are dependent on the
particular function and device specified in the I/0 request. Typical
parameters may include I/O buffer address, I/0 buffer length, and so
forth. Between zero and six parameters can be included, depending on
the particular I/O function. Rules for including these parameters and
legal values are described in subsequent chapters of this manual.

RSX-11M/M-PLUS INPUT/OUTPUT

1.5.2 sSignificant Events

"Significant event" is a term used in real-time systems to indicate a
change in system status. In RSX-11M/M-PLUS, a significant event is
declared when an I/O operation completes. This signals the system
that a change in status has occurred and indicates that the Executive
should review the eligibility of all tasks in the system to determine
which task should run next. The use of significant events helps
cooperating tasks in a real-time system to communicate with each
other, and thus allows these tasks to control their own sequence of
execution dynamically.

Significant events are normally set by system directives, either
directly or indirectly, by completion of a specified function. Event
flags associated with tasks may be used to indicate which significant
event has occurred. of the 26 event flags available in
RSX-11M/M-PLUS, the flags numbered 1 through 32 are 1local to an
individual task and are set or reset only as a result of that task's
operation. The event flags numbered 33 through 64 are common to all
tasks. Flags 25 through 32 and 57 through 64 are reserved for system
software use. The event flags numbered 65 through 96 are group-global
event flags, which are common to all tasks running under the same user
group.

An example of the use of significant events follows. A task issues a
QIO directive with an efn parameter specified. A Waitfor directive
follows the QIO and specifies as an argument the same event flag
number. The event flag is cleared when the I/0 request " queued by
the Executive, and the task is blocked when it executes the Waitfor
directive wuntil the event flag 1is set and a significant event is
declared at the completion of the I/0O request. The task resumes when
the appropriate event flag 1is 'set, and execution resumes at the
instruction following the Waitfor directive. During the time that the
task is blocked, other tasks have a chance to run, thus increasing
throughput in the system.

1.5.3 System Traps

System traps are used to interrupt task execution and to cause a
transfer of control to another memory location for special processing.
Traps are handled by the Executive and are relevant only to the task
in which they occur. To use a system trap, a task must contain a trap
service routine, which is automatically entered when the trap occurs.

There are two types of system traps: synchronous and asynchronous.
Both are used to handle error or event conditions, but the two traps
differ in their relation to the task that is running when they are
detected. Synchronous traps signal error conditions within the
executing task. If the same instruction sequence were repeated, the
same synchronous trap would occur at the same place in the task.
Asynchronous traps signal the completion of an external event such as
an I/0 operation. An asynchronous system trap (AST) usually occurs as
the result of initiating or completing an external event rather than a
program condition.

The Executive queues ASTs in a first-in-first-out queue for each task
and monitors all asynchronous service routine operations. Because
asynchronous traps may be the end result of I/O-related activity, they
cannot be controlled directly by the task that receives them.
However, the task may, under certain circumstances, block recognition
of ASTs to prevent simultaneous access to a critical data region.

RSX-11M/M-PLUS INPUT/OUTPUT

When access to the critical data region has been completed, the queued
ASTs may again be honored. The DSARS$S (Disable AST Recognition) and
ENARSS (Enable AST Recognition) system directives provide the
mechanism for accomplishing this. An example of an asynchronous trap
condition is the completion of an I/O request. The timing of such an
operation clearly cannot be predicted by the requesting task. If an
AST service routine is not specified in an I/0 request, a trap does
not occur and normal task execution continues.

Asynchronous system traps associated with I/0O requests enable the
requesting task to be truly event driven. The AST service routine
contained in the initiating task is executed as soon as possible,
consistent with the task's priority. Using the AST routine to service
I/0-related events provides a response time that 1is considerably
better than a polling mechanism, and provides for better overlap
processing than the simple QIO and Waitfor sequence. Asynchronous
system traps also provide an 1ideal mechanism for use in multiple
buffering of I/0O operations.

All ASTs are inserted in a first-in-first-out queue on a per task
basis as they occur (that is, the event that they are to signal has
expired). They are effected one at a time whenever the task does not
have ASTs disabled and is not already in the process of executing an
AST service routine. The process of effecting an AST involves storing
certain information on the task's stack, including the task's Waitfor
mask word and address, the Directive Status Word (DSW), the PS, the PC
and any trap dependent parameters. The task's general-purpose
registers RO-R5 are not saved, and thus it is the responsibility of
the AST service routine to save and restore the registers it uses.
After an AST is processed, the trap-dependent parameters (if any) must
be removed from the task's stack and an AST Service Exit directive
executed. The ASTXSS macro described in Section 1.7.6 of this manual
is used to issue the AST Service Exit directive. On AST service exit,
control is returned to another queued AST, to the executing task, or
to another task that has been waiting to run. The RSX-11M/M-PLUS
Executive Reference Manual describes in detail the purpose of AST
service routines and all system directives used to handle them.

1.6 DIRECTIVE PARAMETER BLOCKS

A Directive Parameter Block (DPB) is a fixed-length area of contiguous
memory that contains the arguments specified in a system directive
macro call., The DPB for a QIO directive has a length of 12 words. It
is generated as the result of expanding a QIO macro call. The first
byte of the DPB contains the directive identification code (DIC)
~-- always 1 for QIO. The second byte contains the size of the DPB in
words —-- always 12 for RSX-11M/M-PLUS. During assembly of a user task
containing QIO requests, the MACRO-11 Assembler generates a DPB for
each I/0 request specified in a QIO macro <call. At run time, the
Executive wuses the arguments stored in each DPB to create, for each
request, an I/0 packet in system dynamic storage. The packet 1is
entered by priority into a queue of I/0 requests for the specified
physical device unit. This queue is created and maintained by the
Executive and is ordered by the priority of the tasks that issued the
requests. The I/0 drivers examine their respective queues for the I/O
request with the highest priority capable of being executed. This
request is dequeued (removed from the queue) and the I/O operation Iis
performed. The process is then repeated until the queue is emptied of
all requests.

1-13

RSX-11M/M-PLUS INPUT/CUTPUT

After the I/0O request has been completed, the Executive declares a
significant event and may set an event flag, cause a branch to an
asynchronous system trap service routine, and/or return the 1I/0
status, depending on the arguments specified in the original QIO macro
call. Figure 1-2 illustrates the layout of a sample DPB.

1 0 BYTE
DIC FOR QIO
WORD 0 SIZE OF DPB — 12 1 ~— " DIRECTIVE
1 FNC MODIFIERS -=— |/0 FUNCTION
LY 4,
2 RESERVED LUN ~+— [OGICAL UNIT NUMBER
LLLLLLL L LA
3 PRIORITY —_— PRI EFN -=— EVENT FLAG NUMBER
4 1SB ADDRESS OF 1/0
STATUS BLOCK
ADDRESS OF
5 AST
S ASYNCHRONOUS TRAP
SERVICE ROUTINE
6 DEVICE-
. DEPENDENT
. PARAMETERS
L[]
11

ZK-005-81

Figure 1-2 QIO Directive Parameter Block

1.7 I/O-RELATED MACROS

Several system macros are supplied with the RSX-11M/M-PLUS system to
issue and return information about I/0 requests. These macros reside
in the System Macro Library and must be made available during assembly
by the MACRO-11 assembler directive .MCALL.

Also supplied are FORTRAN-callable subroutines that perform the same
functions as the system macros. See the RSX-11M/M-PLUS Executive
Reference Manual for details.

There are three distinct forms of most of the system directive macros
discussed in this section. The following list summarizes the forms of
010S$, but the characteristics of each form also apply to QIOWS$, ALUNS,
GLUNS, and other system directive macros described below.

1. QIOS generates a directive parameter block for the 1I/0
request at assembly time, but does not provide the
instructions necessary to execute the request. This form of
the request is actually executed using the DIR$ macro. It is
useful if the DPB is to be used in several different places
in the task and/or modified or referenced by the task at run
time.

RSX-11M/M-PLUS INPUT/OUTPUT

2. QIOS$S generates a directive parameter block for the 1I/0
request on the stack, and also generates code to execute the
request. This is a useful form for reentrant, shareable code
since the DPB is generated dynamically at execution time.

3. QIOSC generates a directive parameter block for the I/0
request at assembly time, and also generates code to execute
the request. The DPB is generated in a separate program
section called $DPBSS. This approach incurs little system
overhead and is useful when an I/0O request is executed from
only one place in the program.

Parameters for both the QI0$ and QIOSC forms of the macro must be
valid expressions to be used in assembler data-generating directives
such as .WORD and .BYTE. Parameters for the QIO0S$S form must be valid
source operand address expressions to be wused in assembler
instructions such as MOV and MOVB. The following example references
the same parameters in the three distinct forms of the macro call.

QIOS I0.RLB,6,2,,,AST01,<RDBUF,80.>
QIOSC I0.RLB,6,2,,,ASTO01,<RDBUF,80.>
QIOSS #I0.RLB,#6,%#2,,,#AST01,<#RDBUF,#80.>

Only the QIO0$S form of the macro produces the DPB dynamically. The
other two forms generate the DPB at assembly time. The
characteristics and use of these different forms are described in
greater detail in the RSX-11M/M-PLUS Executive Reference Manual.

The following Executive directives and assembler macros are described
in this section:

1. 0QI0$, which is used to request an I/0 operation and supply
parameters for that request

2., QIOWS, which is equivalent to QIOS followed by WTSES

3. DIRS, which specifies the address of a directive parameter
block as its argument, and generates code to execute the
directive

4. .MCALL, which is used to make available from the System Macro
Library all macros referenced during task assembly

5. ALUNS, which is used to associate a logical unit number with
a physical device unit at run time

6. GLUNS, which requests that the information about a physical
device wunit associated with a specified LUN be returned to a
user-specified buffer

7. ASTXSS, which 1is used to terminate execution of an
asynchronous system trap (AST) service routine

8. WTSES, which instructs the system to block execution of the
issuing task until a specified event flag is set

RSX-11M/M-PLUS INPUT/OUTPUT

1.7.1 The QIOS$ Macro: Issuing an I/0O Request

As described in Section 1.7, there are three distinct forms of the
QIO0S$ macro. QTI0S$S generates a DPB for the I/0O request on the stack,
and also generates code to execute the request. QIOSC generates a DPB
and code, but the DPB 1is generated in a separate program section.
QI0S$ generates only the DPB for the I/0 request. This form of the
macro call 1is wused 1in conjunction with DIR$ (see Section 1.7.2) to
execute an I/0 request. In the following example, the DIR$ macro
actually generates the code to execute the QI0O$ directive. It
provides no QIO parameters of its own, but references the QIO
directive parameter block at address QIOREF by supplying this label as
an argument.

QIOREF: 0QIOS$ 10.RLB,5,2,,,AST01l,<BUFFER,80.>

. ; CREATE QIO DPB
READ1: DIRS #QIOREF ; ISSUE I/O REQUEST
READ2: DIRS #QIOREF ; ISSUE I/0O REQUEST

1.7.2 The QIOWS$ Macro: Issuing an I/O Request and Waiting for an
Event Flag

The QIOWS macro is equivalent to a QIOS$ followed by a WTSES. It is
more economical to 1issue a QIO And Wait request than to use the two
separate macros. An event flag (efn parameter) must be specified with
QIOWS.

1.7.3 The DIRS$ Macro: Executing a Directive

The DIRS$ (execute directive) macro has been implemented to allow a
task to reference a previously defined DPB. It is issued in the form:

DIRS [addr]{,err]

addr

The address of a directive parameter block to be used in the
directive. If addr 1is not 1included, the DPB itself or the
address of the DPB is assumed to already be on the stack. This
parameter must be a valid source operand for a MOV instruction
generated by the DIRS macro.

err

An optional argument which specifies the address of an error
routine to which control branches if the directive is rejected.
The branch occurs by means of a JSR PC, err if the C-bit is set,
indicating rejection of the QIO directive.

RSX-11M/M-PLUS INPUT/OUTPUT

1.7.4 The .MCALL Directive: Retrieving System Macros

.MCALL is a MACRO-11 Assembler directive that retrieves macros from
the System Macro Library (LB:[1,1]RSXMAC.SML) for use during assembly.
It must be included in every user task invoking system macros. .MCALL
is usually placed at the beginning of a user-task source module and
specifies, as arguments in the call, all system macros that must be
made available from the library.

The following example illustrates the use of this directive:

.MCALL 0QIOS$,QI0$S,DIRS,WTSESS ; MAKE MACROS AVAILABLE

ATTACH: QIOSS #I0.ATT,#6,,,I0SB,#AST02 ; ATTACH DEVICE

QIOREF: QIOS I0.RLB,6,,,108B,AST0l,... ; CREATE ONLY QIO DPB

READ1l: DIRS #QIOREF,DIRERR

ISSUE I/0 REQUEST

~

.

As many macro references as can fit on a line can be 1included 1in a
single .MCALL directive. There is no limit to the number of .MCALL
directives that can be specified. '

1.7.5 The ALUNS Macro: Assigning a LUN

The Assign LUN macro is used to associate a logical unit number with a
physical device wunit at run time. All three forms of the macro call
may be used. Assign LUN does not request I/0 for the physical device
unit, nor does it attach the unit for exclusive use by the issuing
task. It simply establishes a LUN-physical device unit relationship,
so that when the task requests I/0O for that particular LUN, the
associated physical device unit is referenced. The macro 1is 1issued
from a MACRO-11 program in the following way:

ALUNS lun,dev,unt

lun
The logical unit number to be associated with the specified
physical device unit.

dev
The device name of the physical device or a logical device name
assigned to a physical device (see MCR ASN command).

unt

The unit number of that device specified above.

RSX-11M/M-PLUS INPUT/OUTPUT

For example, to associate LUN 10 with terminal unit 2, the following
macro call could be issued by the task:

ALUNSC 10.,TT,2

A unit number of 0 represents unit 0 for multiunit devices such as
disk, DECtape, or terminals; it indicates the single available unit
for devices without multiple units, such as card readers and 1line
printers.

Logical devices are SYSGEN options that allow the wuser to assign
logical names to physical devices by means of the MCR command ASN.
See the RSX-11M/M-PLUS MCR Operations Manual for a full description.

The example included below illustrates the use of the three forms of
the ALUNS macro.

DATA DEFINITIONS

~e o we

ASSIGN: ALUNS 10.,TT,2

GENERATE DPB

~

EXECUTABLE SECTION

~e we we

DIRS #ASSIGN

EXECUTE DIRECTIVE

~

ALUNSC 10.,TT,2

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

~ we we

ALUNSS #10.,#"TI,#0 GENERATE DPB ON STACK, THEN

EXECUTE DIRECTIVE

~e we

1.7.5.1 Physical Device Names - The following list contains physical
device names, listed alphabetically, that may be included as dev
parameters:

Name Device

AD AD01-D Analog-to-Digital Converter (not supported in
RSX-11M-PLUS systems)

AF AFC1l Analog-to-Digital Converter (not supported in
RSX-11M-PLUS systems)

AR AR11 Laboratory Peripheral System (not supported in
RSX-11M-PLUS systems)

Name

BS

Cb

Cp

CR

CcT

DB

DD

DF

DK

DL

DM

DP

DR

DS

DT

DU

DX

DY

EM

GR

IiC

IS

LA

LP

LS

RSX-11M/M-PLUS INPUT/OUTPUT
Device
DT03/DT07 UNIBUS Switch (supported in RSX-11M-PLUS
systems only)

CD1ll Card Reader

Central Processor Unit (CPU) in a multiprocessor
system (supported in RSX-11M-PLUS systems only)

CR11/CM11 Card Reader

TA1ll/TU60 Tape Cassette

RP04, RP0O5, RP06 Pack Disk

TUS58 DECtape II

RF11/RS11 Fixed-Head Disk

RK11/RK05 Cartridge Disk

RL11/RLO1/RLO2 Cartridge Disk

RK611/RK06 and RK711/RK07 Cartridge Disk
RP11/RP02/RP03 Pack Disk

RMO2/RM0O3/RMO5 Pack Disk and RM80/RP07 Fixed-Media
Disk

RS03 and RS04 Fixed-Head Disks

TC11/TU56 DECtape

RA80/RA81 Fixed-Media Disk, RA60 Pack Disk, RC25 Disk
Subsystem, RD51 Fixed-Media Disk, and RX50 Flexible
Disk

RX11/RX01 Flexible Disk

RX211/RX02 Flexible Disk

ML-11 Fast Electronic Mass Storage Device

VT11l/VS60 Graphics Systems {(not supported in
RSX-11M-PLUS systems)

ICS/ICR Industrial Control Local and Remote Subsystems
{(not supported in RSX-11M-PLUS systems)

DSS/DRS Digital Input and Output Subsystems (not
supported in RSX-11M-PLUS systems)

LPAll1-K Laboratory Peripheral Accelerator

LA180/LP11/LS11/LV11l Line Printers and LNOl Laser
Printer

LPS11 Laboratory Peripheral System (not supported in
RSX-11M-PLUS systems)

1-19 April 1983

Name

MF
MM
MS
MT
NL
PP
PR

LR

TT

LT

UD

XB

XL

XM

XP

XQ

XU

XW

YH

YL

YZ

ZA-22Z

RSX-11M/M-PLUS INPUT/OUTPUT
Device

TU78 Magnetic Tape
TUl6/TE16/TU45/TU77/TM02/TM03 Magnetic Tape
TS11l, TU80, or TSVO5 Magnetic Tape
TM11/TUl0/TUll or TS03 Magnetic Tape

The Null Device

PCll Paper Tape Punch

PCl1l or PR1l1l Paper Tape Reader

PCL11-A/PCL11-B Receiver Port (supported in
RSX-11M-PLUS systems only)

Terminals (regardless of interface)

PCL11-A/PCL11-B Transmitter Port {supported in
RSX-11M-PLUS systems only)

UDC11l Universal Digital Controller (not supported in
RSX-11M-PLUS systems)

DAl1-B Parallel Unibus Link (not supported in
RSX-11M-PLUS systems)

DL11-E Asynchronous Communication Line Interface (not
supported in RSX-11M-PLUS systems)

DMC11l Synchronous Communication Line Interface

DP1l1l Synchronous Communication Line 1Interface (not
supported in RSX-11M-PLUS systems)

DQ1l1l Synchronous Communication Line Interface (not
supported in RSX-11M-PLUS systems)

DUll Synchronous Communication Line Interface (not
supported in RSX-11M-PLUS systems)

DUP1l Synchronous Communication Line Interface

DH11 or DHV11 Asynchronous Communications Line
Multiplexer

pL1l1-A/DL11-B/DL11-C/DL11-D/DL11-E Asynchronous
Communications Line 1iInterface (DL11-B, DL11-E, DP1l1i,
DQ11, and DUll are not supported in RSX-11M-PLUS
systems)

DZ11l Asynchronous Communications Line Multiplexer

Reserved for customer use (not used by DIGITAL)

1-20 April 1983

RSX-11M/M-PLUS INPUT/OUTPUT

1.7.5.2 Pseudo-Device Names - A pseudo-device 1is a logical device
that can normally be redirected by the operator to another physical
device unit at any time, without requiring changes in programs that
reference the pseudo-device. Dynamic redirection of a physical device
unit affects all tasks in the system; reassignment by means of the
MCR REASSIGN command affects only one task. The following
pseudo-devices are supported, as indicated:

Code Device

CL Console listing, normally the line printer.

Cco Console output, normally the main operator's console.
HT Network remote terminal

LB System library device, normally the device from which

the system was bootstrapped. For example, LB: is the
device that tasks such as TKB and MAC access for
default library files.

NL Null device.

NS Network pseudo-device for NSP.

NX Network pseudo-device for DLX.

RD On-line reconfiguration pseudo-device (RSX-11M-PLUS
only) .

Sp Spooling scratch disk device.

SY User default device. On nonmultiuser systems, SY: is
normally the disk from which the system was
bootstrapped. On multiuser systems, SY: is normally

the default login device.
VD Virtual Device.

TI Pseudo-input terminal; TIO: is the terminal from
which a task was requested.

The pseudo-device TI cannot be redirected, since such
redirection would have to be handled on a per-task
rather than a system-wide basis (that is, change the TI
device for one task without affecting the TI
assignments for other tasks).

VT Virtual terminal. Used by some RSX-11M-PLUS offspring
tasks as TI: for command and data I/0. (Supported in
RSX-11M-PLUS systems only).

1.7.6 The GLUNS$ Macro: Retrieving LUN Information

The Get LUN Information macro requests that information about a
LUN-physical device wunit association be returned in a 6-word buffer
specified by the issuing task. Upon successful completion of the
directive processing, the buffer contains the information listed in
Table 1-1, as appropriate for the specific device. All three forms of
the macro call may be used. It is issued from a MACRO-11 program in
the following way:

GLUNS lun,buf

lun

RSX-11M/M-PLUS INPUT/OUTPUT

The logical unit number associated with the physical device wunit
for which information is requested.

buf

The 6-word buffer to which information is returned.

For example, to request information on the disk unit associated with
LUN 8, the following call is issued:

GLUNSC

8.,I0BUF

Table 1-1

Get LUN Information

Numerical Offset

Symbolic Offset

wWord | Byte | Bit

Word

Byte

Bit

Contents

0

G.LUNA

G.rucwl

(U.CW1)

G.LUNU

G.LUFB

(DV.REC)

(DV.CCL)

(DV.TTY)

(DV.DIR)

(DV.SDI)

(DV.SQD)

(DV.MSD)

Name of device associated with
LUN (ASCII bytes)

Unit number of associated device

Driver flag value. Returned as
200 octal if the driver is
resident, or as 0 if a 1loadable
driver is not in the system

First device characteristics
word:

Unit record-oriented device (for
example, card reader, line
printer) (1 = yes)

Carriage-control device (for
example, 1line printer, terminal)
(1 = yes)

Terminal device (1 = yes)

Directory device (for example,
DECtape, disk) (1 = yes)

Single directory device (for
example, ANSI-standard magtape)
(1 = yes)

Sequential device ({(for example,
ANSI-standard magtape) (1 = yes)

Mass storage device (for example,
disks and tapes) (1 = yes)

1. The following word and bit symbols shown in parentheses are symbols used in
defining and referencing corresponding items in the device UCB.

(continued on next page)

1-22 April 1983

RSX-11M/M-PLUS INPUT/OUTPUT

Table

1-1 (Cont.)
Get LUN Information

Numerical Offset

Symbolic Offset

Word | Byte | Bit Word Byte Bit Contents
7 (DV.UMD) | User-mode diagnostics supported
(1 = yes)
8 (DV.EXT) | Device supports 22-bit direct
addressing
9 (DV.SWL) | Unit software write-locked
(1 = yes)
10 (DV.ISP) | Input spocled device (1 = yes)
11 (DV.OSP) { Output spooled device (1 = yes)
12 (DV.PSE) | Pseudo-device (1 = yes)
13 (DV.COM) | Device mountable as a
communications channel for
Digital network support (for
example, DPll, DUll) (1 = ves)
14 (DV.F1ll) | Device mountable as a FILES-11l
device (for example, disk or
DECtape) (1 = yes)
15 (DV.MNT) | Device mountable (logical OR of
bits 13 and 14) (1 = yes)
3 G.LUCW+02 Second device characteristics
word:
(U.CW2) (U2.xxx) Device-specific information
4 G.LUCW+04 Third device characteristics
word:
{U.CW3) (U3.xxx) | Device-specific information2
5 G.LUCW+06 Fourth device characteristics
word:
(U.Cw4) Default buffer size (for example,

for disks, and 1line length for
terminals).

2, For mass storage devices, such as disks, DECtape, and DECtape II, this is
the number of blocks (maximum logical block number plus one). For the proper

use of the RX211/RX02 flexible disk, it is

G.LUCW+4 to determine the media density.

important to be able to test

April 1983

RSX-11M/M-PLUS INPUT/OUTPUT

The example included below illustrates the use of the three forms of
the GLUNS macro.

DATA DEFINITIONS

we we we

GETLUN: GLUNS 6 ,DSKBUF ; GENERATE DPB

EXECUTABLE SECTION

N wo we

DIRS #GETLUN ; EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GLUNSC 6 ,DSKBUF

~o ws we

GLUNSS #6,#DSKBUF GENERATE DPB ON STACK, THEN

EXECUTE DIRECTIVE

~e ~e

1.7.7 The ASTXSS Macro: Terminating AST Service

The AST Service Exit macro is used to terminate execution of an AST
service routine. All forms of the macro are provided. However, the
S-form is preferred because it requires less space and executes at
least as fast as the ASTXS$ or ASTXSC form of the macro. The macro is
issued in the following way:

ASTXSS [err]

err

An optional argument which specifies the address of an error
routine to which control branches if the directive is rejected.

On completion of the operation specified in this macro call, if
another AST 1is queued and asynchronous system traps have not been
disabled, then the next AST is immediately entered. Otherwise, the
task's state Dbefore the AST was entered is restored (it is the AST
service routine's responsibility to save and restore the registers it
uses) .

1.7.8 The WTSES Macro: Waiting for an Event Flag

The Wait For Single Event Flag macro instructs the system to suspend
execution of the issuing task until the event flag specified in the
macro call is set. This macro is extremely useful in synchronizing
activity on completion of an I/0 operation. All three forms of the
macro call may be used. It is issued as follows:

WTSES efn

RSX-11M/M-PLUS INPUT/OUTPUT

efn

The event flag number.

WTSES$ causes the task to be blocked from execution until the specified
event flag is set. Frequently, an efn parameter is also included in a
QI0O$ macro call, and the event flag is set on completion of the I/0
operation specified in that call. The following example illustrates
task blocking until the setting of the specified event flag occurs.

This example also illustrates the use of the three forms of the macro
call.

DATA DEFINITIONS

~e we we

WAIT: WTSES 5
IOSB: .BLKW 2

GENERATE DPB
I1/0 STATUS BLOCK

we we

.

.

EXECUTABLE SECTION

= Ne e

ALUNSS #14.,%#"MM
QIO$C IO.ATT,1l4.,5
DIRS $WAIT

ASSIGN LUN 14 TO MAGTAPE UNIT ZERO
ATTACH DEVICE
EXECUTE WAITFOR DIRECTIVE

~e wo ~o

QIOSS #I0.RLB,#14.,#%2,,#I0SB, ,<#BUF,#80.>
. ; READ RECORD, USE EFN2

WTSESS #2 WAIT FOR READ TO COMPLETE

-

QIo$c I0.WLB,14.,3,,I0SB,,<BUF,80.>
. ; WRITE RECORD, USE EFN3

WTSESC 3 ; WAIT FOR WRITE TO COMPLETE

QIOSC I0.DET, 14, DETACH DEVICE

Y}

1.8 STANDARD I/O FUNCTIONS

The number of input/output operations that can be specified by means
of the QIO directive 1is large. A particular operation can be
requested by including the appropriate function code as the first
parameter of a QIO macro call. Certain functions are standard. These

RSX-11M/M-PLUS INPUT/OUTPUT

functions are almost totally device independent and can thus be
requested - for nearly every device described in this manual. Others
are device dependent and are specific to the operation of only one or
two 1/0 devices. This section summarizes the function codes and
characteristics of the following device-independent I/0O operations:

@ Attach to an I/0 device

e Detach from an I/0 device
e Cancel I/0 requests

e Read a logical block

e Read a virtual block

e Write a logical block

® Write a virtual block

For certain physical device units discussed in this manual, a standard
I/0 function may be described as being a NOP. This means that no
operation is performed as a result of specifying the function, and an
I/0 status code of 1IS8.SUC 1is returned 1in the 1I/0 status block
specified in the QIO macro call.

In the following descriptions and in formats shown in subsequent
chapters, the five QIO directive parameters lun, efn, pri, isb, and
ast are represented by the ellipsis (...) (see Section 1.5.1).

1.8.1 IO.ATT: Attaching to an I/0 Device

The function code IO.ATT is specified by a user task when that task
requires exclusive use of an 1I/0 device. This function code is’
included as the first parameter of a QIO macro call in the following
way:

QI0SC IO.ATT,...

Successful completion of an IO.ATT request causes the specified
physical device unit to be dedicated for exclusive use by the issuing
task. This enables the task to process input or output in an unbroken
stream and 1is especially useful on sequential, non-file-oriented
devices such as terminals, card readers, and line printers. An
attached physical device wunit remains under control of the issuing
task until it is explicitly detached by that task. To detach the
device, the task <can specify any LUN previously assigned to the
attached device.

While a physical device unit is attached, the I/0 driver for that unit
dequeues only I/0 requests issued by the task that issued the attach.
Thus, a request to attach a device unit already attached by another
task will not be processed until the attachment is broken and no
higher priority request exists for the unit. A LUN that is associated
with an attached physical device unit may not be reassigned by means
of an Assign LUN directive except when at least one LUN is still
assigned to the attached device.

1-26 April 1983

RSX-11M/M-PLUS INPUT/OUTPUT

If the task that issued an attach function exits or is aborted before
it issues a corresponding detach, the Executive automatically detaches
the physical device unit.

1.8.2 TIO.DET: Detaching from an I/0 Device

The function code IO.DET is used to detach a physical device unit that
has been previously attached by means of an IO.ATT request for
exclusive use of the issuing task. This function code is included as
the first parameter of a QIO macro call in the following way:

QIOoSC IO.DET,...

The LUN specifications of both IO.ATT and IO.DET must be the same, as
in the following example, which also illustrates the use of S- forms
of several macro calls.

.MCALL ALUNS$S,QI0$S
ALUNSS #14.,#"CR ; ASSOCIATE CARD READER WITH LUN 14

QIOSS #I0.ATT,#14. ; ATTACH CARD READER
LOOP: QIOSS #I0.RLB,#14.,... ; READ CARD
QIOSS #I0.DET, #14. ; DETACH CARD READER

1.8.3 1IO.KIL: Canceling I/O Requests

The function IO.KIL is issued by a task to cancel all of that task's
I/0 requests for a particular physical device unit.

For I/O requests waiting for service -- that is, in the I/O driver's
queue -- a status code of IE.ABO is returned in the I/0 status block.
An event flag is set, if specified. But any AST service routine that
may have been specified is not initiated.

For I/0 requests being processed by an I/0 driver -- other than the
disk or DECtape drivers -- the IE.ABO status code is returned. Other
status information (byte count, and so forth) is also returned in the
I/0 status block. An AST, if specified, is activated.

For disk, DECtape, or DECtape II I/0 requests being processed when an
I0O.KIL is issued, the IO.KIL acts as a NOP. The request is allowed to
complete, except in the case in which a DECtape transfer is blocked by
a select error. Because disk and DECtape operate quickly, IO.KIL
simply causes the return of IS.SUC in the I/0 status block.

This function code is included as the first parameter of a QIO macro
in the following way:

QIOosC I0.KIL,...

IO.KIL is useful in such special cases as canceling an I/0 request on
a physical device unit from which a response is overdue (for example,
a read on a paper tape reader).

RSX-11M/M-PLUS INPUT/OUTPUT

1.8.4 TI0.RLB: Reading a Logical Block

The function code IO.RLB is specified by a task to read a block of
data from the physical device unit specified in the macro call. This
function code is included as the first parameter of a QIO macro in the
following way:

QIOSC I0O.RLB,...,<stadd,size,pn>

stadd

The starting address of the data buffer.

size

The data buffer size in bytes.

pn

One to four optional parameters, used to specify such additional
information as block numbers for certain devices.

1.8.5 1IO.RVB: Reading a Virtual Block

The function code IO.RVB is used to read a virtual block of data from
the physical device unit specified in the macro call. A "virtual"
block indicates a relative block position within a file and |is
identical to a "logical"™ block for such sequential, record-oriented
devices as terminals and card readers. For these sequential,
record-oriented devices, IO.RVB 1is converted to IO.RLB before being
issued.

NOTE
Any subfunction bits specified in the
IO.RVB request (see Sections 2.3.1 and

3.3.1) are stripped off in this
conversion.

It is recommended that all tasks use wvirtual rather than logical
reads. However, If a wvirtual read is issued for a file-structured
device (disk, DECtape, or DECtape II), the user must ensure that a
file 1is open on the specified physical device unit., This function
code is included as the first parameter of a QIO macro call 1in the
following way:

QIO0SC I0.RVB,...,<{stadd,size,pn>

stadd

The starting address of the data buffer.

size

The data buffer size in bytes.

RSX-11M/M-PLUS INPUT/OUTPUT

pn

One to four optional parameters, used to specify such additional
information as block numbers for certain devices.

1.8.6 IO0.WLB: Writing a Logical Block

The function code IO.WLB is specified by a task to write a block of
data to the physical device unit specified in the macro call. This
function code is included as the first parameter of a QIO macro call
in the following way:

QI0SC IO.WLB,...,<stadd,size,pn>

stadd

The starting address of the data buffer.

size

The data buffer in bytes.

pPn

One to four optional parameters, used to specify such additional
information as block numbers or format control characters for
certain devices.

1.8.7 1I0.WVB: Writing a Vvirtual Block

The function code IO.WVB is used to write a virtual block of data to a
physical device unit. A "virtual" block indicates a block position
relative to the start of a file. For sequential, record-oriented
devices such as terminals and line printers, the function IO.WVB is
converted to IO.WLB.

NOTE

Any subfunction bits specified in the
I0O.WVB request (see Sections 2.3.1 and
3.3.1) are stripped off in this
conversion.

It is recommended that all tasks use wvirtual rather than 1logical
writes. However, 1f a virtual write is issued for a file-structured
device (disk, DECtape, or DECtape II), the user must ensure that a
file 1is open on the specified physical device unit. This function
code is included as the first parameter of a QIO macro call in the
following way:

QI0SC IC.WVB,...,<stadd,size,pn>
stadd

The starting address of the data buffer.

RSX-11M/M-PLUS INPUT/OUTPUT

size
The data buffer size in bytes.
pn

One to four optional parameters, used to specify such additional
information as block numbers or format control characters for
certain devices.

1.8.8 User-Mode Diagnostic Functions

The I/0 function code subfunction bit, IQ.UMD, provides support for
user-mode diagnostics. To perform a diagnostic function, you must
specify in the QIO directive parameter block the logical OR of 1IQ.UMD
and the function you want to perform. For example, to perform a
diagnostic Read Logical Block operation, specify IO.RLB!IQ.UMD as the
I/0 function code ©parameter to the QIO directive. You can perform
standard I/O0 functions such as Read Logical Block, Write Logical
Block, Attach to Device, and Detach from Device in diagnostic mode.

Support for user-mode diagnostics is always present for RSX-11M-PLUS,
but not all drivers support user-mode diagnostic functions,
Unpredictable device and driver behavior results when you set the
IQ.UMD subfunction bit in QIOs that are directed to the device if it
does not support user-mode diagnostics. Problems can be avoided if
you do a Get LUN directive and check the user-mode diagnostics bit
before emitting the user-mode diagnostic QIO.

To support user-mode diagnostics, the DV.UMD bit in the UCB must be
set. DV.UMD is at offset U.CWl in the UCB.

In addition to standard I/O0O functions, RSX-11M-PLUS provides the
following device-dependent, user-mode diagnostic functions:

1. Disk diagnostic functions

e TIO,HMS Home seek or recalibrate
e IO.BLS Block seek (explicit seek)
e IO.OFF Offset position

e TIO.RDH Read disk header

e IO.WDH Write disk header

e IO.WCK Writecheck

2. DECtape diagnostic functions
e TIO.RNF Read block number forward
e TIO.RNR Read block number reverse
3. Magtape diagnostic functions
e IO.LPC Read longitudinal parity character
e IO.ERS Erase tape

UMDIOS is the macro that defines these functions.

RSX-11M/M-PLUS INPUT/OUTPUT

To execute a user-mode diagnostic function, you must first attach for
diagnostics using I/0 function code IO.ATT!IQ.UMD. Execute the
diagnostic functions and then detach.

The parameter list in words 1 through 6 of the DPB should contain the
following information:

e I/0 buffer address

e I/0 buffer size

e Offset factor for disks with offset recovery (to determine the
offset factor, refer to the offset register in the hardware
reference manual); this parameter is not used if the device
does not have offset recovery.

e Double-precision logical block number

® User's register buffer address (the 1I/0 driver <copies its
hardware registers to this buffer in the user's program); see

a hardware reference manual for the length of the address

A typical DPB for a diagnostic function might look like the following:

SDSKPB: :
.BYTE 3,12. ; Size of the DPB, QIOWAIT directive code
.WORD IO.WDH!IQ.UMD ; I/0 function code
.WORD THELUN ; Logical Unit Number
.BYTE THEEFN, 0 ; Event flag number
.WORD SIOSTS ; I/0 status block address
.WORD 0 ; AST address
SIOBUF:: .WORD ; Buffer address
.WORD 0 ; Transfer size in bytes
.WORD 0 ; Device dependent
SLBH:: .WORD 0 ; High-order logical block number
SLBL:: .WORD 0 ; Low-order logical block number
+WORD SRGBUF ; Register buffer address

The user-mode diagnostic functions return either Success (IS.SUC) or
Device Not Ready (IE.DNR). ©No other error codes are returned. All
error recovery is completely up to the user. Any errors that occur
will not be logged in the error log.

A typical program fragment, using the user-mode diagnostic functions,
might look like the following:

.MCALL UMDIOS$,ALUNSS,QIO0SS
UMDIOS ; Define diagnostic functions
ALUNSS #14.,#"DM,#0 ; Associate DMQ with lun 14
QIO0SS #14.,4#"DM,#0 ; Associate DMO with lun 14

QIO0ss #I0.ATT!IQ.UMD,#14. ; Attach DM for diagnostic I/O

QIOSS $#IO.RDH!IQ.UMD,#14.,,,,,<#SIOBUF,#512.,,#LBH,#LBL,#$SRGBUF> ; Read disk header

QI0SS #I0.RLB!IQ.UMD,#14.,,,,,<#SIOBUF,#512.,,#LBH,#LBL,#5RGBUF> ; Read logical block

QIOSS #I0.DET!IQ.UMD, #14. ; Detach DM

RSX-11M/M-PLUS INPUT/OUTPUT

1.9 I/O COMPLETION

When an I/0 request has been completed, either successfully or
unsuccessfully, one or more actions may be taken by the Executive.
Selection of return conditions depends on the parameters included in
the QIO macro call. There are three major returns:

1. A significant event is declared on completion of an I/0
operation. If an efn parameter was 1included in the I/0
request, the corresponding event flag is set.

2. If an isb parameter was specified in the QIO macro call, a
code 1identifying the type of success or failure is returned
in the low-order byte of the first word of the 1I/0 status
block at the location represented by isb.

This status return code is of the form IS.xxx (success) or
IE.xXXxXx (error). For example, if the device accessed by the
I/0 request is not ready, a status code of IE.DNR is returned
in 1isb. The section below (Return Codes) summarizes general
codes returned by most of the drivers described 1in this
manual.

If the isb parameter was omitted, the requesting task cannot
determine whether the I/0 request was successfully completed.
A carry clear return from the directive itself simply means
that the directive was accepted and the I/0 request was
queued, not that the actual input/output operation was
successfully performed.

3. If an ast parameter was specified in the QIO macro call, a
branch to the AST service routine that begins at the location
identified by ast occurs on completion of the I/O operation.

See Section 1.5.3 for a detailed description of AST service
routines.

1.10 RETURN CODES

There are two kinds of status conditions recognized and handled by
RSX-11M/M-PLUS when they occur in I/0O requests:

e Directive <conditions, which indicate the acceptance or
rejection of the QIO directive itself

e I/0 status conditions, which indicate the success or failure
of the I/0 operation

Directive conditions relevant to I/0 operations may indicate any of
the following:

e Directive acceptance

e Invalid buffer specification

e Invalid efn parameter

e Invalid lun parameter

e Invalid DIC number or DPB size
e Unassigned LUN

e Insufficient memory

RSX-11M/M-PLUS INPUT/OUTPUT

A code indicating the acceptance or rejection of a directive Iis
returned to the Directive Status Word at symbolic location $DSW. This
location can be tested to determine the type of directive condition.

I/0 conditions indicate the success or failure of the I/0O operation
specified in the QIO directive. I/0 driver errors include such
conditions as device not ready, ©privilege violation, file already
open, or write-locked device. If an isb parameter is included in the
QIO directive, identifying the address of a 2-word I/0O status block,
an I/0 status code is returned in the low-order byte of the first word
of this block on completion of the I/O operation. This code 1is a
binary value corresponding to a symbolic name of the form IS.xxXx or
IE.xxx. The low-order byte of the word can be tested symbolically, by
name, to determine the type of status return. The correspondence
between global symbolic names and directive and I/O completion status
codes is defined in the system object module library. Local symbolic
definitions may also be obtained by the DRERRS and IOERR$ macros,
which reside in the System Macro VLibrary and are summarized in
Appendix B.

Binary values of status codes always have the following meanings:

Code Meaning
Positive (greater than 0) Successful completion
0 Operation still pending
Negative Unsuccessful completion

A pending operation means that the I/0 request is still in the queue
of requests for the respective driver, or the driver has not yet
completely serviced the request.

1.10.1 Directive Conditions

Table 1-2 summarizes the directive conditions that may be encountered
in QIO directives. The acceptance condition is first, followed by
error codes indicating various reasons for rejection, in alphabetical
order.

Table 1-2
Directive Conditions

Code Reason

IS.sucC Directive accepted

The first six parameters of the QIO directive were
valid, and sufficient dynamic memory was available
to allocate an I/0 packet. The directive I1is
accepted.

IE.ADP Invalid address
The I/0 status block or the QIO DPB was outside of

the issuing task's address space or was not aligned
on a word boundary.

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-2 (Cont.)
Directive Conditions

Code Reason

IE.IEF Invalid event flag number
The efn specification in a QIO directive was less
than 0 or greater than 96.

IE.ILU Invalid logical unit number
The 1lun specification in a QIO directive was
invalid for the issuing task. For example, there
were only 5 logical unit numbers associated with
the task, and the value specified for lun was
greater than 5.

IE.SDP Invalid DIC number or DPB size
The directive identification code (DIC) or the size
of the Directive Parameter Block (DPB) was
incorrect; the legal range for a DIC is from 1
through 127, and all DIC values must be odd. Each
individual directive requires a DPB of a certain
size. If the size 1is not correct for the
particular directive, this code is returned. The
size of the QIO DPB is always 12 words.

IE.ULN Unassigned LUN
The logical unit number in the QIO directive was
not associated with a physical device unit. The
user may recover from this error by issuing a valid
Assign LUN directive and then reissuing the
rejected directive.

IE.UPN Insufficient dynamic memory
There was not enough dynamic memory to allocate an
I/0 packet for the I/0 request. The user can try
again later by blocking the task with a Waitfor
Significant Event directive. Note that Waitfor
Significant Event is the only effective way for the
issuing task to block its execution, since other
directives that could be wused for this purpose
themselves require dynamic memory for their
execution (for example, Mark Time).

1.10.2 1I/0 Status

The following list
I/0 status block
I/0 request., The
following format:

Conditions

summarizes status codes that may be returned in the
specified in the QIO directive on completion of the
I/0 status block is a 2-word block with the

e The low-order byte of the first word receives a status code of
the form IS.xxx or IE.xxxXx on completion of the I/O operation.

e The high-order byte of the first word 1is usually device

dependent;

in cases where the user might find information in

this byte helpful, this manual identifies that information.

RSX-11M/M~-PLUS INPUT/OUTPUT

e The second word contains the number of bytes transferred or
processed if the operation is successful and involves reading
or writing.

If the isb parameter of the QIO directive is omitted, this information
is not returned.

The following 1illustrates a sample 2-word I/0O status block on
completion of a terminal read operation:

1 0 Byte
Word O 0 ~10
1 Number of bytes read

where -10 is the status code for IE.EOF (end of file). If this code
is returned, it indicates that input was terminated by typing CTRL/Z,
which is the end-of-file termination seguence on a terminal.

To test for a particular error condition, the user generally compares
the 1low-order byte of the first word of the I/0O status block with a
symbolic value, as in the following:

CMPB #IE.DNR,IOSB

However, to test for certain types of successful completion of the I/O
operation, the entire word value must be compared. For example, if a
carriage return terminated a 1line of input from the terminal, a
successful completion code of IS.CR 1is returned in the I/0 status _
block. 1If an Escape (or Altmode) character was the terminator, a code
of IS.ESC 1is returned. To check for these codes, the user should
first test the low-order byte of the first word of the block for
IS.SUC and then test the full word for 1S.CC, IS.CR, IS.ESC, or
IS.ESQ. (Other success codes that must be read in this manner are
listed in Appendix B, Section B.1l.2.)

Note that both of the following comparisons will test as equal since
the low-order byte in both cases is +1.

CMP #IS.CR,IOSB
CMPB $#IS.SUC,I0SB
In the case of a successful completion where the carriage return is

the terminal indicator (IS.CR), the following illustrates the status
block:

1 0 Byte
Word O 15 +1
1 Number of bytes read
(excluding the CR)

where 15 is the octal code for carriage return and +1 1is the status
code for successful completion.

The codes described in Table 1-3 are general status codes that apply
to the majority of devices presented in subsequent chapters. Error
codes specific to only one or two drivers are described only in
relation to the devices for which they are returned. The list below
describes successful and pending codes first, then error codes in
alphabetical order.

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3
I/0 Status Conditions

Code

Reason

IS.sUC

IS.PND

IE.ABO

IE.ALN

IE.BAD

IE.BBE

IE.BLK

IE.BYT

Successful completion

The I/0 operation specified in the QIO directive
was completed successfully. The second word of the
I/0 status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing.

I/0 request pending

The I/O0 operation specified in the QIO directive
has not yet been executed. The I/0 status block is
filled with Os.

Operation aborted

The specified 1I/0 operation was cancelled with
IO.KIL while in progress or while still in the I/O
queue.

File already open

The task attempted to open a file on the physical
device unit associated with the specified LUN, but
a file has already been opened by the issuing task
on that LUN.

Bad parameter

An illegal specification was supplied for one or
more of the device-dependent QIO parameters (words
6-11). For example, a bad channel number or gain
code was specified in an analog-to-digital
converter I/0 operation.

Bad block on device

One or more bad blocks were found by executing the
BAD utility. Data cannot be written on bad blocks.

Illegal block number

An illegal block number was specified for a
file-structured physical device unit. This code is
returned, for example, if block 4800 1is specified
for an RKO05 disk, on which legal block numbers
extend from 0 through 4799,

Byte-aligned buffer specified.

Byte alignment was specified for a buffer, but only
word (or double-word) alignment is legal for the
physical device unit. For example, a disk function
requiring word alignment was requested, but the
buffer was aligned on a byte boundary.
Alternately, the 1length of a buffer was not an
appropriate multiple of bytes. For example, all
RP03 disk transfers must be an even multiple of
four bytes.

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/0 Status Conditions

Code

Reason

IE.DAA

IE.DNA

IE.DNR

IE.EOF

IE.FHE

IE.IFC

IE.NLN

IE.NOD

Device already attached

The physical device unit specified in an IO.ATT
function was already attached to the issuing task.
This code indicates that the 1issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Device not attached

The physical device unit specified in an IO.DET
function was not attached to the issuing task.
This code has no bearing on the attachment status
with respect to other tasks.

Device not ready

The physical device wunit specified in the QIO
directive was not ready to perform the desired I/0
operation. This code 1is often returned as the
result of an interrupt time-out; that 1is, a
"reasonable" amount of time has passed, and the
physical device unit has not responded.

End-of-file encountered

An end-of-file mark, record, or <control character
was recognized on the input device.

Fatal hardware error

Controller 1is physically unable to reach the
location where input/output is to be performed on
the device. The operation cannot be completed.

Illegal function

A function code was specified in an 1I/0 request
that was illegal for the specified physical device
unit. This code is returned if the task attempts
to execute an illegal function or if, for example,
a read function 1is requested on an output-only
device, such as the line printer.

File not open

The task attempted to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate
a secondary control block. Por example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for such an operation.

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/0 Status Conditions

Code

Reason

IE.OFL

IE.OVR

IE.PRI

IE.SPC

IE.VER

IE.WCK

IE.WLK

Device off line

The physical device unit associated with the LUN
specified 1in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Illegal read overlay request

A read overlay was requested and the physical
device unit specified in the QIO directive was not
the physical device unit from which the task was
installed. The read overlay function can only be
executed on the physical device unit from which the
task image containing the overlays was installed.

Privilege violation

The task that issued a request was not privileged
to execute that request. For example, for the
UDC11 and LPS11l, a checkpointable task attempted to
connect to 1interrupts or to execute a synchronous
sampling function.

Illegal address space

The buffer requested for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
0 was specified.

Unrecoverable error

After the system's standard number of retries have
been attempted upon encountering an error, the
operation still could not be completed. This code
is returned in the case of parity, CRC, or similar
errors.

Write check error

An error was detected during the check (read)
following a write operation.

Write-locked device

The task attempted to write on a write-locked
physical device unit.

RSX-11M/M-PLUS INPUT/OUTPUT

1.11 POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND DECTAPE

Power-fail recovery recommendations for various devices are 1included
in the following chapters, as appropriate, to assist the user in
restoring device operation after a power failure. For disks and
DECtape, it is recommended that power recovery ASTs be used. The AST
service routine should provide a sufficient time delay, prior to
returning for normal I/0 operations, that will allow the disk to
attain normal operating speed before actually attempting read and
write operations.

If QIOs are being used for disk or DECtape I/0 operations during
power—-fail recovery, an IE.DNR error status may be returned if the
device is not up to operating speed when the request is issued. When
this error is returned, it is recommended that the user task wait a
sufficient time for the device to attain operating speed, and attempt
the 1I/O operation again prior to reporting an error. For example, an
RK05 disk may require approximately 1 minute to attain operating speed
after a power failure.

CHAPTER 2

FULL-DUPLEX TERMINAL DRIVER

2.1 INTRODUCTION

Two terminal drivers are available as SYSGEN options for wuse in
RSX~11M systems:

1.

A compact, half-duplex terminal driver for use with a wide
variety of terminals, containing all basic features required
for RSX-11M terminal support. (This terminal driver is not
available on RSX-11M-PLUS systems.) This terminal driver is
described in Chapter 3.

A full-duplex terminal driver, as described in this chapter,
containing all features of the half-duplex terminal driver,
plus the following:

® Full-duplex operation

e Type-ahead buffering

® Eight-bit characters

® Detection of hard receive errors

e Increased byte transfer length (8128 bytes)

e Additional terminal characteristics

e Additional terminal types

e Optional time-out on solicited and/or unsolicited input

® Device-independent cursor control

e Redisplay of prompt buffer upon CTRL/R or CTRL/U

® Automatic XOFF character generation upon completion of a
read (except when in the full-duplex mode), if requested

® Autobaud speed detection

¢ Added hardware support

Note that either terminal driver can be selected during RSX-11IM

SYSGEN.

only.

RSX-11M-PLUS systems use the full-duplex terminal driver

2-1 April 1983

FULL-DUGPLEX TERMINAL DRIVER

Throughout the remainder of this chapter, references made to MCR can
generally be applied to other command line interpreters (for example,
DCL). In addition, the prompt displayed on a terminal in response to
invoking a command 1line interpreter will be appropriate for the
specific command line interpreter in use. For example, when MCR is
invoked, the MCR prompt is displayed as follows:

MCR>

Terminal driver support is provided for a variety of terminal devices,
as listed in Table 2-1. Subsequent sections describe each device in
‘greater detail.

Table 2-1
Supported Terminal Devices

Model Columns Lines/, {Character Baud Upper- & Lowercase?
Screen Set Range Send Receive

ASR-33/35 72 64 110

KSR-33/35 72 64 110

LAl2 132 926 50-9600 yes yes

LA100 132 96 110-9600 yes yes

LA30-P 80 64 300

LA30-S 80 64 110-300

LA34 132 96 110-300 yes yes

LA36 132 64-96 110-300 yes yes?

LA38 132 96 110-300 yes yes

LA120 132 926 50-9600 yes yes

LA180S 132 96 300-9600 yes

LQP02 132/158 110-9600

LASO 80/96/132 110-4800

RTO2 64 1 64 110-1200

RT02-C 64 1 64 110-1200

VTO5B 72 20 64 110-2400 yes

VTS50 80 12 64 110-9600

VT50H 80 12 64 110-9600

VT52 80 24 96 110-9600 yes yes

VT55 80 24 96 110-9600 yes yes

VT61 80 24 96 110-9600 yes yes

VT100 80-132 24 96 50-9600 yes yes

VT101 80-132 24 96 50-19200 yes yes

VT102 80-132 24 96 50-9600 yes yes

VT105 80-132 24 96 50-19200 yes yes

VT125 80-132 24 926 50-9600 yes yes

VT131 80-132 24 96 50-19200 yes yes

VT132 80-132 24 96 50-19200 yes yes

1. Applies only to video terminals.

2. Only for 96-character terminal. The terminal driver supports the
terminal interfaces summarized in Table 2-2. These interfaces are
described in greater detail in Section 2.9. Programming is identical
for all interfaces.

2-2 April 1983

FULL-DUPLEX TERMINAL DRIVER

Table 2-2
Standard Terminal Interfaces

Model Type

DH11 16-1line multiplexer1
DHV11l 8-line multiplexer3

DH11-DM11-BB 16-line multiplexer with modem control?
DJ11 16-line multiplexer

pDL1l1-A/B/C/D/E/W Single-line interfaces

DLV11-E/F Single-line interfaces3

DZ11 8~line multiplexer with modem control3
l. Direct memory access (DMA) is supported in the

full-duplex terminal driver only.

2. Full-duplex control only. For example, in the USA, a
Bell 103A-type modem.

3. DLV1l and DHV11l support with modem control is provided
in the full-duplex terminal driver only.

Terminal input lines can have a maximum length of 8128 (8K minus 64)
bytes. Extra characters of an input line that exceed the maximum line
length generally become an unsolicited input line if the terminal is
not attached with typeahead enabled.

2.1.1 ASR-33/35 Teletypes*

The ASR-33 and ASR-35 Teletypes are asynchronous, hard-copy terminals.
No paper-tape reader or punch capability is supported.

2.1.2 KSR-33/35 Teletypes*

The KSR-33 and KSR-35 Teletypes are asynchronous, hard-copy terminals.

2.1.3 LAl2 pPortable Terminal

The LAl2 is a personal, portable, hard-copy terminal.

2.1.4 LAl00 DECprinter

The LAl00 is a desk-top, matrix, hard-copy terminal.

1. Teletype is a registered trademark of the Teletype Corporation.

2-3 April 1983

FOLL-DUPLEX TERMINAL DRIVER

2.1.5 LA30 DECwriters

The LA30 DECwriter is an asynchronous, hard-copy terminal that Iis
capable of producing an original and one copy. The LA30-P is a
parallel model and the LA30-S is a serial model.

2.1.6 LA36 DECwriter

The LA36 DECwriter is an asynchronous terminal that produces hard copy
and operates in serial mode. It has an impact printer capable of
generating multipart and special preprinted forms. The LA36 can
receive and transmit both uppercase and lowercase characters.

2.1.7 LA34/38 DECwriters

The LA34 DECwriter is an asynchronous terminal that produces hard copy
and uses a platen paper feed mechanism.

The LA38 DECwriter includes a detachable tractor feed mechanism for
use with continuous forms.

2.1.8 LAl20 DECwriter

The LA120 DECwriter is a hard-copy, upper- and lowercase terminal,
capable of printing multipart forms at speeds up to 180
characters-per-second. Serial communications speed is selected from
14 baud rates ranging from 50 to 9600 bps; split transmit and receive
baud rates are supported by the terminal driver. Hardware features
allow Dbidirectional printing for maximum printing speed, and also
allow user-selected features, including font size, line spacing, tabs,
margins, and forms control. These functions can also be set up by the
system by issuing appropriate ANSI-standard escape sequences.

2.1.9 LAl80S DECprinter

The LA180S DECprinter is a serial version of the LA1l80. It is a
print-only device (it has no keyboard) that can generate multipart
forms. The LA1l80S can print uppercase and lowercase letters.

2.1.9A LQP02 Letter-Quality Printer

The LQP02 Letter-Quality Printer 1is a formed character, desktop
printer incorporating daisywheel technology. This letter-quality
printer offers over 100 character sets and handles regular office
stationery wup to a maximum of 15 inches, but the print capacity is
13.5 inches. The lines per inch and characters per inch are software
selectable; characters at 10 and 12 and lines at 2, 3, 4, 6, and 8.
At 10 characters per inch you get 132 columns and at 12 characters you
get 158 columns. The buffer capacity is 256 characters.

2-4 April 1983

FULL-DUPLEX TERMINAL DRIVER

2.1.9B LA50 Personal Printer

The LAS50 Personal Printer is a desktop dot-matrix impact printer. It
has two print modes; text mode and enhanced print mode. In text
mode, it prints at 100 characters per second. The enhanced print
quality mode prints at 50 characters per second and creates a crisper,
more uniform character than an ordinary dot-matrix printer. You can
choose characters per inch at 10, 12, or 16 which gives columns at 80,
96, or 132 and lines per inch can be 6, 8, or 12. The buffer capacity
is 255 characters.

2,1.10 RT02 Alphanumeric Display Terminal and RT02-C Badge
Reader/aAlphanumeric Display Terminal

The RT02 is a compact, alphanumeric display terminal designed for
applications in which source data is primarily numeric. A shift key
permits the entry of 30 discrete characters, 1including uppercase
alphabetic characters. The RT02 can, however, receive and display 64
characters.

The RT02-C model also contains a badge reader. This option provides a
reliable method of identifying and controlling access to the PDP-11 or
to a secure facility. Furthermore, data in a format corresponding to
that of a badge (22-column fixed data) can be entered quickly.

2-4.1 April 1983

FULL-DUPLEX TERMINAL DRIVER

2.1.11 VTOS5B Alphanumeric Display Terminal

The VTO05B is an alphanumeric display terminal that consists of a CRT
display and a self-contained keyboard. From a programming point of
view, it is equivalent to other terminals, except that the VTO05B
offers direct cursor addressing.

2.1.12 VT50 Alphanumeric Display Terminal

The VT50 is an alphanumeric display terminal that consists of a CRT
display and a keyboard. It is similar to the VTO05B in operation, but
does not offer direct cursor addressing.

2.1.13 VT50H Alphanumeric Display Terminal

The VT50H is an alphanumeric display terminal with CRT display,
keyboard, and numeric pad. It offers direct cursor addressing. (The
VT50H's direct cursor addressing is not compatible with that of the
VTOS5B.)

2.1.14 VT52 Alphanumeric Display Terminal

The VT52 is an upper~ and lowercase alphanumeric terminal with numeric
pad and direct cursor addressing. (The VT52's direct cursor
addressing is compatible with that of the VT50H, not with that of the
VTO05B.) The VT52 can be configured with a built-in thermal printer.

2.1.15 VT55 Graphics Display Terminal

The VT55 is similar to the VT52 in its operation as an alphanumeric
terminal. The VT55 offers graphics display features that are not
supported by RSX-11M, although the system allows a knowledgeable task
to access the explicitly special features of the VTS5S5.

2.1.16 VT61 Alphanumeric Display Terminal

The VT61 1is an "intelligent™ upper- and lowercase alphanumeric
terminal with an integral microprocessor. It offers two 128-member
character sets and numerous built-in functions for editing and forms
preparation as well as a block-transfer mode. (None of these special
features is supported by RSX-11M.)

2.1.17 VT100 DECscope

The VT100 DECscope 1is an upper- and lowercase alphanumeric
keyboard/video display terminal. It is capable of displaying 24 lines
of 80 to 132 characters (each line). Serial communications speed is
selected from baud rates ranging from 50 to 9600 bps. Hardware
features allow user selection of display characteristics and functions
including smooth scroll, reverse video, and so forth. These functions
can also be set up by the system by issuing appropriate ANSI-standard
escape sequences,

FULL-DUPLEX TERMINAL DRIVER

2.1.18 VT101 DECscope

The VT101l DECscope is functionally identical to the VT100. However,
it does not support the advanced video features.

2.1.19 VT102 DECscope

The VT102 DECscope is functionally identical to the VT100. However,
it does not have any expansion capability and does not support the
advanced video features. It has enhanced modem control and it
includes a port for a printer.

2.1.20 VT105 DECscope

The VT105 DECscope is a video terminal. It has both alphanumeric and
graphic display. The VT105 can display two graphs, two shaded graphs,
or two strip charts. These graphs may have alphanumeric labels.

2.1.21 VT131 DECscope

The VT131 is the same as the VT102 with the addition of built-in
editing features.

2.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for terminals. A setting of 1 indicates that the
described characteristic is true for terminals.

Bit Setting Meaning
0 1 Record-oriented device
1 1 Carriage-control device
2 1 Terminal device
3 0 File structured device
4 0 Single-directory device
5 0 Sequential device
6 0 Mass storage device
7 0 User-mode diagnostics supported
8 0 Device supports 22-bit direct addressing
9 0 Unit software write-locked

FULL-DUPLEX TERMINAL DRIVER

Bit Setting Meaning
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications
channel
14 0 Device mountable as a FILES-11 volume
15 0 Device mountable

Words 3 and 4 of the buffer are undefined. Word 5 indicates the
default buffer size (the width of the terminal carriage or display
screen).

2.3 QIO MACRO

Table 2-3 lists the standard and device-specific functions of the QIO
macro that are wvalid for terminals. Some device-specific functions
are options that may be selected during SYSGEN.

Two device-specific functions, SF.SMC and S8SF.GMC, have nonstandard
function names. These names are retained for compatibility with
RSX-11D.

Table 2-3
Standard and Device-Specific QIO Functions for Terminals

Format Function

STANDARD FUNCTIONS:

QIOSC IO.ATT,... Attach device.

QIOS$C IO.DET,... Detach device.

QIOSC IO.LKIL,... Cancel I/0 redquests.

QIOSC IO.RLB,...,<stadd,size[,tmol> READ logical block
(read typed input into
buffer).

QIO$C IO.RVB,...,<stadd,size[,tmol> READ virtual block
(read typed input into
buffer).

QIOSC IO.WLB,...,<stadd,size,vfc> WRITE logical block

(print buffer
contents).

QI0O$C I0.WVB,...,<stadd,size,vfc> WRITE virtual block
(print buffer
contents).

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-3

Standard and Device-Specific QIO Functions for Terminals

Format

Function

DEVICE-SPECIFIC FUNCTIONS:

QI0SC IO.ATA,...,<ast,
[parameter2][,ast2]>1

QI08C 10.CCO,...,<stadd,size,vfc>

QIO$C SF.GMC,...,<stadd,size>l

QIOSC IO.GTS,...,<stadd,size>l
QIOSC IO.HNG,...

QIOSC IO.RAL,...,<stadd,size[,tmo]l>
QIOSC IO.RNE,...,<stadd,size[,tmo]l>
QIOSC IO.RPR,...,<stadd,size,

[tmo] ,pradd,prsize,vfc>l

QIOSC IO.RST,...,<stadd,size[,tmol>

QIOSC IO0.RTT,...,<stadd,size,
[tmo] ,table>

QI0$C SF.SMC,...,<stadd,size>l
QIOS$C I0.WAL,...,<stadd,size,vfc>

QI0$C IO.WBT,...,<stadd,size,vfc>l

ATTACH device, specify
unsolicited-input-
character AST.

CANCEL CTRL/O (if in
effect), then write
logical block.

GET multiple
characteristics.

GET terminal support.
HANGUP remote line.

READ logical block,
pass all bits.

READ logical block, do
not echo.

READ logical block
after prompt.

READ logical block
ended by special
terminators.

READ logical block
ended by specified
special terminator.

SET multiple
characteristics.

WRITE logical block,
pass all bits.

WRITE logical block,
break through any I/0
conditions at
terminal.

ast

The entry point for an unsolicited- input-character AST.

parameter 2

A number that can be used to identify this terminal as the

source upon entry to an unsolicited character AST routine.

-

1. SYSGEN options in RSX-11M.

input

FULL-DUPLEX TERMINAL DRIVER

ast2
The entry point for an unsolicited CTRL/C AST.

pradd
The starting address of the byte buffer where the prompt is
stored.

prsize
The size of the pradd prompt buffer in bytes. The specified size
must be greater than 0 and 1less than or equal to 8128, The
buffer must be within the task's address space.

size
The size of the stadd data buffer in bytes. The specified size
must be greater than 0 and less than or equal to 8128. The
buffer must be within the task's address space. For SF.GMC,
I0.GTS, and SF.SMC functions, size must be an even value.

stadd
The starting address of the data buffer. The address must be
word aligned for SF.GMC, IO.GTS, and SF.SMC; otherwise, stadd
may be on a byte boundary.

table
The address of the 16-word special terminator table.

tmo
An optional time-out count in 10-second intervals for the
full-duplex terminal driver. 1If 0 is specified, no time-out can
occur. Time-out is the maximum time allowed between two input
characters before the read is aborted. The maximum timeout value
is 255.

vic

A character for vertical format control from Table 2-11 (see
Section 2.7).

2.3,1 Subfunction Bits

Most device-specified functions supported by terminal drivers
described 1in this section are selected using "subfunction bits." One
or more functions can be selected by ORing their relative bits in a
QIG function. Table 2-4 contains a listing of QIO functions and
relative subfunction bits that can be issued.

2-9 April 1983

FULL-DUPLEX TERMINAL DRIVER

Each subfunction bit and subfunction selected when it is included in a
QIO function is listed as follows:

Symbolic
Name Subfunction

TF.AST Unsolicited-input-character AST

TF.BIN Binary prompt

TF.CCO Cancel CTRL/O

TF.ESQ Recognize escape sequences

TF.NOT Unsolicited input AST notification; unsolicited
characters are stored in the type-ahead buffer
until they are read by the task

TF.RAL Read all bits

TF.RCU Restore cursor position

TF .RNE Read with no echo

TF.RST Read with special terminators

TF.TMO Read with time-out

TF.WAL Write all bits

TF.WBT Break-through write

TF.XCC CTRL/C starts a command line interpreter command
line (Command 1line characters are not sent to
the task.)

TF .XOF Send XOFF

Table 2-4 lists subfunction bits that can be ORed with QIO functions.
Additional details for using subfunction bits are included in Section
2.3.2.

If a task invokes a subfunction bit that 1is not supported on the
system, the subfunction bit is ignored, but the QIO request is not
rejected. For example, if break-through write (TF.WBT) 1is not
selected, an IO.WBT or IO.WLB!TF.WBT function is interpreted as an
I0.WLB function.

The following example is a QIO request using more than one subfunction
bit: a nonechoed (TF.RNE) read, terminated by a special terminator
character (TF.RST) and preceded by a prompt.

QI0S$C IO.RPR!ITF.RNE!TF.RST,...,<{stadd,size,,pradd,prsize,vfc>

2.3.2 Device-Specific QIO Functions

Some device-specific functions described in this section are SYSGEN
options. BAll except SF.GMC, IO.RPR, SF.SMC, IO.RTT, and I0.GTS can be
issued by ORing a particular subfunction bit with another QIO
function. These subfunction bits are specified 1in the following
descriptions; subfunction bits are described in general in Section
2.3.1.

In addition to the device-specific QIO functions, this section also
describes the use of subfunction bits TF.ESQ, TF.BIN, and TF.XOF.

2-10 April 1983

Table 2-4
Subfunction Bits - Summary

T1-¢

Allowed Subfunction Bits

Equivalent
Function | Subfunctions TF.AST|TF.BIN|TF.CCO(TF.ESQ|TF.NOT |TF.RAL|TF.RCU |TF.RNE |TF.RST|TF.TMO |TF.WAL |TF.WBT |TF.XCC |TF.XOF
STANDARD FUNCTIONS
IO.ATT X X
IO.DET
IO.KIL
IO.RLB 1 X 1 X X
I0.RVB 2 2 2 2 3 2
I0O.WLB X X X
I0.WVB 2 2 2 2
DEVICE-SPECIFIC FUNCTIONS
IO.ATA | IO.ATT!TF.AST X X X
I0.CCO | IO.WLB!TF.CCO 3 X
SF.GMC
I0.GTS
IO.RAL |IO.RLB!TF.RAL X 1 X X
IO.RNE | IO.RLB!TF.RNE 1 1 X X
I0.RPR X 1 X 1 X X
IO.R5T [IO.RLB!TF.RST 1 X X X
IO.RTT 1 X X X
SF.SMC
IO.WAL | IO.WLB!TF.WAL 3 3 3
IO.WBT | IO.WLB!TF.WBT X X 3

1. Exercise great care when using Read All and Read with Special Terminators together. Obscure problems can result.

2. These subfunctions are allowed but are not effective. They are stripped off when the read or write virtual operation is
converted to a read or write logical operation.

3. During a write-pass-all operation (IO.WAL or IO.WLB!TF.WAL) the terminal driver outputs characters without
interpretation; it does not keep track of cursor position.

YIAIYA TUYNIWYIL XITdNd-11nd

FULL-DUPLEX TERMINAL DRIVER

2.3.2.1 IO.ATA - IO.ATA is a variation of the Attach function. The
use of this function 1is eased by the addition of TF.NOT and TF.XCC
subfunction bits, described later in this section. IO.ATA specifies
asynchronous system traps (ASTs) to process unsolicited input
characters. When called as follows:

QI0$C IO.ATA,...,<[AST], [PARAMETER2][,AST2]>

NOTE

A minimum of one AST parameter (ast or
ast2) is required.

This function attaches the terminal and identifies "ast" and "ast2" as
entry points for an unsolicited-input-character AST. Control passes
to ast whenever an unsolicited character (other than CTRL/Q, CTRL/S,
CTRL/X, or CTRL/0O) is input. 1If the ast2 parameter is specified, an
unsolicited CTRL/C character will result in entering the AST specified
in that parameter. If ast2 is not specified, an unsolicited CTRL/C
will result in entering the AST specified in the ast parameter.

Unless the TF.XCC subfunction is specified, CTRL/C is trapped by the
task and does not reach MCR. Thus, any task that uses IO0.ATA without
the TF.XCC subfunction should recognize some input sequence as a
request to terminate; otherwise, MCR cannot be invoked to abort the
task in case of difficulty.

Note that either ast2 or TF.XCC can be used, but not both in the same
QIO request. If both are specified in the request, an IE.SPC error is
returned.

Upon entry to the AST routines, the wunsolicited character and
parameter 2 are in the top word on the stack, as shown below. That
word must be removed from the stack before exiting the AST.

SP+10 Event flag mask word

SP+06 PS of task prior to AST

SpP+04 PC of task prior to AST

SP+02 Task's directive status word

SP+00 Unsolicited character in low byte; parameter 2, in the

high byte, 1is a user-specified value that can be used
to identify individual terminals in a multiterminal
environment

The processing of unsolicited input ASTs is eased through the wuse of
TF.NOT and TF.XCC subfunction bits. When TF.XCC is included in the
I0.ATA function, all characters (except CTRL/C) are handled 1in the
manner previously described. CTRL/C marks the beginning of a command
line interpreter (CLI) line that will be processed by a CLI task (for
example, MCR); none of the characters, including the CTRL/C, are sent
to the task issuing the function.

When unsolicited terminal input {except CTRL/C} 1is received by the
full-duplex terminal driver and the TF.NOT subfunction is used, the
resulting AST serves only as notification of unsolicited terminal
input; the terminal driver does not pass the character to the task.
Upon entry to the AST service routine, the high byte of the first word
on the stack identifies the terminal causing the AST (parameter 2).

FULL-DUPLEX TERMINAL DRIVER

After the AST has been effected, the AST becomes "disarmed"™ until a
read request is issued by the task. If multiple characters are
received before the read request is issued, they are stored in the
type-ahead buffer., Once the read request is received, the contents of
the type-ahead buffer, including the character causing the AST, Iis
returned to the task; the AST is then "armed" again for new
unsolicited input characters. Thus, wusing the TF.NOT subfunction
allows a task to monitor more than one terminal for unsolicited input
without the need to continuously read each terminal for possible
unsolicited input. Note that the TF.NOT subfunction cannot be used
with the CTRL/C AST; an unsolicited CTRL/C character flushes the
type-ahead buffer.

See the RSX-11M/11M-PLUS Executive Reference Manual for further
details on ASTs.

I0.ATA is equivalent to IO.ATT ORed with the subfunction bit TF.AST.

2.3.2.2 IO.ATT!TF.ESQ - The task issuing this function attaches a
terminal and notifies the driver that it recognizes escape sequences
input from that terminal. Escape sequences are recognized only for
solicited input. (See Section 2.6 for a discussion of escape
sequences.)

If the terminal has not been declared capable of generating escape
sequences, IO.ATTITF.ESQ has no effect other than attaching the
terminal. No escape sequences are returned to the task because any
ESC sent by the terminal acts as a line terminator. The SF.SMC
function or the MCR SET /ESCSEQ command are used to declare the

terminal capable of generating escape seguences (see Table 2-5 and
Section 2.3.2.12).

2.3.,2.3 10.CCO - This write function directs the driver to write to
the terminal regardless of a CTRL/O condition that may be in effect.
If CTRL/O is in effect, it is cancelled before the write is done.

I0.CCO is equivalent to IO.WLB!TF.CCO.

2.3.2.4 SF.GMC - The Get Multiple Characteristics function returns
terminal characteristics information, as follows:

QIOSC SF.GMC,...,<stadd,size>

stadd

The starting address of a data buffer of 1length "size" bytes.
Each word in the buffer has the form

.BYTE characteristic-name
.BYTE O

characteristic-name
Cne of the bit names given in Table 2-5. The value returned in
the high byte of each byte-pair is 1 if the characteristic is

true for the terminal and 0 if it is not true.

For the TC.TTP characteristic (terminal type), one of the values shown
in Table 2-6 is returned in the high byte.

FULL-DUPLEX TERMINAL DRIVER

Table 2-5

Full-Duplex Terminal Driver-Terminal Characteristics
for SF.GMC and SF.SMC Functions

Bit Octal Corresponding
Name Value Meaning (if asserted) MCR Command
TC.ABD 77 Auto-baud detection SET /ABAUD=TTnn:
TC.ACR 24 Wrap-around mode SET /WRAP=TTnn:
TC.ANI 122 ANSI CRT terminal
TC.ASPl 76 Remote line answer speed SET /REMOTE=TTnn:speed
TC.AVO 123 VT100-family terminal display
// TC.BIN 65 Binary input mode (read-pass-all) SET /RPA=TTnn:
no characters are interpreted
as control characters.
TC.BLK 44 Terminal is capable of block
mode transfers
TC.CTS 72 Suspend output to terminal --
0 = resume
1 = suspend
TC.DEC 124 Digital CRT terminal
TC.DLU4 41 Dial-up line SET /REMOTE=TTnn:
TC.EDT 125 Terminal performs editing functions
TC.EPA 42 When TC.PAR is enabled: -—
0=0dd parity
l=even parity
V/;C.ESQ 35 Input escape sequence SET /ESCSEQ=TTnn:
recognition
L
7| rc.FDX 64 Full-duplex mode SET /FDX=TTnn:
~T"IC .HFF 17 Hardware form-feed capability SET /FORMFEED=TTnn:
(If 0, form-feeds are simulated
using TC.LPP.)
// TC.HFL 13 Number of fill characters to SET /HFILL=TTnn:x
insert after a carriage return (0-7=x)
/ (Use a value of 7 for the LA30-S.)
\/ TC.HHT 21 Horizontal tab capability (if o0, SET /HHT=TTnn:
horizontal tabs are simulated using
spaces.)
4
V/ 7C.HLD1 44 Hold screen mode SET /HOLD=TTnn:
TC.ISL 6 Subline on interface (=0-15) (Read only) --
TC.LPP 2 Page length (1-255.=%) SET /LINES=TTnn:x

(continued on next

page)

April 1983

FUOLL-DUPLEX TERMINAL DRIVER

Table 2-5 (Cont.)

Full-Duplex Terminal Driver-Terminal Characteristics
for SF.GMC and SF.SMC Functions

Bit Octal Corresponding
Name value Meaning (if asserted) MCR Command
TC.NBR 102 Broadcast disabled SET /NOBRO=TTnn:
¥
1TC.NEC 47 Echo suppressed SET /ECHO=TTnn:
TC.PAR 41 Generate and check parity --
TC.PRI 51 Terminal is privileged (Read only) SET /PRIV=TTnn:
TC.RAT 7 Type-ahead buffer: SET /TYPEAHEAD=TTnn:
0 = 1l-character type-ahead
1 = 36-character type-ahead
(RSX-11M only)
TC.RGS 126 Terminal supports REGIS -
instructions
TC.RSP2 3 Receiver speed (bits-per-second) SET /SPEED=TTnn:rcv:xmit
+TC.SCp 12 Terminal is a scope (CRT) SET /CRT=TTnn:
TC.SLV 50 Terminal is a slave SET /SLAVE=TTnn:
4TC.SMR 25 Upper-case conversion disabled SET /LOWER=TTnn:
TC.TBF 71 Type-ahead buffer count (read), -
or flush (write)
TC.TBS 100 Type-ahead buffer size (0-255=x) SET /TYPEAHEAD=TTnn:x
(RSX-11MPLUS only)
TC.TBM 101 Type-ahead buffer mode -
0=task typeahead
1=CLI typeahead
(RSX-11M-PLUS only)
‘| TC.TTP 10 Terminal type (=0-255.=x) SET /X=TTnn:
SET /TERM=TTnn:x
/?C.VFL 14 Send four fill characters after SET /VFILL=TTnn:
line feed
TC.WID3 1 Page width (=1-255.=x) SET /BUF=TTnn:x
TC.XSp2 4 Transmitter speed (bits-per-second) SET /SPEED=TTnn:rcv:xmit
“ TC.8BC 67 Pass eight bits on input, even SET /EBC=TTnn:
if not binary input mode
(TC.BIN)

April 1983

FULL-DUPLEX TERMINAL DRIVER

1. Effective for VT5x and VT61l only.

2. TC.RSP, TC.XSP, TC.ASP and corresponding MCR SET /SPEED and SET /REMOTE
command values for terminal receiver and transmitter speeds are listed below.
(The valid combinations for each interface are in the RSX-11M/M-PLUS MCR
Operations Manual.)

NOTE

The MCR SET /SPEED command requires parameters for both receiver (rcv)
and transmitter (xmit) baud rates, as follows:

SET /SPEED=TTnn:rcv:xmit

TC.ASP
TC.RSP or
TC.XSP Actual baud rate (in bps)
value and valid MCR SET /SPEED or SET /REMOTE
values
S.0 (disabled)
S.50 50 (Baudot codes are not
supported)
S.75 75
s.110 110
S.134 134
S.150 150
S.200 200
S.300 300
S.600 600
S.1200 1200
S.1800 1800
S$.2000 2000
S.2400 2400
S.3600 3600
S.4800 4800
S.7200 7200
S$.9600 9600
S.EXTA (DH1l external speed A)
S.EXTB (DH11l external speed B)
S.19.2 19200
NOTE

Speed can be set only on DH1ll and DZll controllers. DZ1ll transmitter and
receiver speeds must be equal (no split baud rates permitted). Only one
value may be specified for the remote answer speed. This value applies
to both the transmitter and receiver.

3. Unsolicited input that fills the buffer before a terminator 1is received is
likely invalid. Wwhen this happens, the driver discards the input by simulating
a CTRL/0U0 and echoing “U.

4. A program can enable the auto-call feature of the DF03 modem by setting
TC.DLU to a value of two. (This is in addition to receiving incoming calls.)
While in this mode, read and write requests are serviced even when a line is not
in use. Consequently, I/0 requests will not fail when the line is hung-up,
which is the case for remote lines (TC.DLU=1).

2-16 April 1983

FULL-DUPLEX TERMINAL DRIVER

The TC.TTP characteristic, when read by the terminal driver, sets
implicit values for terminal characteristics TC.LPP, TC.WID, TC.HFF,
TC.HHT, TC.VFL, and TC.SCP as shown in Table 2-6. These values can be
changed (overridden) by subsequent Set Multiple Characteristics
requests. In addition, TC.TTP is used by the terminal driver to
determine cursor positioning commands, as appropriate.

Table 2-6
Bit TC.TTP (Terminal Type) Values Set by SF.SMC
and Returned by SF.GMC

Implicit Characteristics?2

Octal Terminal

valuel|{symbelic Type TC.LPP | TC.WID | TC.HFF | TC.HHT | TC.HFL | TC.VFL | TC.SCP
0 T.UNKO Unknown
1 T.AS33 ASR33 66 72 1
2 T.KS33 KSR33 66 72 1
3 T.AS35 ASR35 66 72 1
4 T.L30S LA30S 66 80 7
5 T.L30P LA30P 66 80
6 T.LA36 LA36 66 132
7 T.VT05 vT05 20 72 1 1 1
10 T.VT50 VTS0 12 80 1 1
11 T.VT52 VT52 24 80 1 1
12 T.VT55 VT55 24 80 1 1
13 T.VT61 VT61 24 80 1 1
14 T.L180 LA180S 66 132 1
15 T.V100 VT100 24 80 1 1
16 T.L120 LA120 66 132 1
20 T.LAl2 LAl2 66 132 1 1
21 T.L100 LA100 66 132 1 1
22 T.LA34 LA34 66 132 1
23 T.LA38 LA38 66 132 1
24 T.V101 VT101 24 80 1 1
25 T.V102 VT102 24 80 1 1
26 T.V105 VT105 24 80 1 1
27 T.V125 VT125 24 80 1 1
30 T,V131 VT131 24 80 1 1
31 T.V132 VT132 24 80 1 1
32 T.LA50 LAS0 60 80 1 1
33 T.LQP1 LQPO1 66 132 1 1
34 T,LQP2 LQP02 66 132 1 1

l.0ctal values 0-177 are reserved by DIGITAL. Values 200-377 are available for
customer use to define non-DIGITAL terminals.

2.Implicit characteristics are shown as supported by the driver. Values not shown
are not automatically set by the driver. An "unknown" terminal type has no
implicit characteristics.

The TC.CTS characteristic returns the present suspend (CTRL/S), resume
(CTRL/Q), or suppress (CTRL/0) state set via the SF,SMC function.
Values returned are as follows:

Value
Returned State
0 Resume (CTRL/Q)
1 Suspend (CTRL/S)
2 Suppress (CTRL/0)
3 Both suppress and suspend

2-17 April 1983

FOLL-DUPLEX TERMINAL DRIVER

When a value of 0 is used with the SF.SMC function, the suspend state
is cleared; a value of 1 selects the suspend state.

The TC.TBF characteristic returns the number of unprocessed characters
in the type-ahead buffer for the specified terminal. This allows
tasks to determine if any characters were typed that did not require
AST processing. In addition, the value returned can be used to read
the exact number of characters typed, rather than a typical value of
80. or 132. characters for the terminal.

NOTES

1. It is necessary that the task attach
- the terminal to receive characters
from the type-ahead buffer.

2. The maximum capacity of the
type-ahead buffer is 36. characters
for RSX~-11M systems and 255.
characters for RSX-11M-PLUS systems.

3. Using TC.TBF in an SF.SMC function
will flush the type-ahead buffer.

2.3.2.5 I0.GTS - This function is a Get Terminal Support request that
returns information to a 4-word buffer specifying which SYSGEN-option
features are part of the terminal driver. Only two of these words are
currently defined. Table 2-7 gives details for these words. The
I0.GTS function is a SYSGEN option. If IO.GTS is issued on a system
without I0.GTS support, IE.IFC is returned in the I/0 status block.

The various symbols used by the IO.GTS, SF.GMC, and SF.SMC functions
are defined in a system module, TTSYM. These symbols include: Fl.xxx
and F2.xxx (Table 2-7); T.xxxx (Table 2-6); TC.xxx (Table 2-5); and
the SE.xxx error returns described in Table 2-8, Section 2.4. These
symbols may be defined locally within a code module by using:

«MCALL TTSYMS

TTSYMS

Symbeols that are not defined locally are automatically defined by the
Task Builder.

Octal values shown for the symbols are subject to change. Therefore,
it is recommended that only the symbolic names be used.

FULL-DUPLEX TERMINAL DRIVER

Table 2-7
Information Returned by Get Terminal Support (IO.GTS) QIO
Octal
Bit Value Mnemonic Meaning When Set to 1
Word 0 of Buffer:
0 1 F1.ACR Automatic CR/LF on long lines
1 2 F1.BTW! Break-through write
2 4 F1.BUF Checkpointing during terminal input
3 10 F1.UIAl Unsolicited-input-character AST
4 20 F1.CCO . Cancel CTRL/O before writing
5 40 F1.Esol Recognize escape sequences in solicited
input
6 100 F1.HLD Hold-screen mode
7 200 F1.Lwcl Lower— to uppercase conversion
8 400 F1.RNE Read with no echo
9 1000 F1.RPRI Read after prompting
10 2000 F1.RST Read with special terminators
11 4000 F1.RUBL | CRT rubout
12 10000 F1.SYN CTRL/R terminal synchronization
13 20000 F1.TRW Read all and write all
14 40000 F1.UTB Input characters buffered in task's
address space
15 100000 F1.VBF Variable-length terminal buffers
Word 1 of Buffer:
0 1 F2.SCHLl | Set characteristics QIO (SF.SMC)
1 2 F2.GCHL | Get characteristics QIO (SF.GMC)
5 40 F2.SFF Formfeed can be simulated
6 100 F2.cupl Cursor positioning
7 200 F2,FDX Full Duplex Terminal Driver

1. SYSGEN options on RSX-11M systems.

2.3.2.6 IO.RAL ~ The Read All function causes the driver to pass all
bits to the requesting task. The driver does not intercept control
characters or mask out the "parity" (high-order) bit. For example,
CTRL/C, CTRL/Q, CTRL/S, CTRL/0O, and CTRL/Z are passed to the program
and are not interpreted by the driver.

NOTE

IO.RAL echoes the characters that are
read. The terminal driver in Version 2
of RSX-11M did not echo a Read All. To
read all bits without echoing, wuse
IO.RAL!TF.RNE.

I0.RAL is equivalent to IO.RLB ORed with the subfunction bit TF.RAL.
The IO.RAL function can be terminated only by a full character count
(input buffer full).

FULL-DUPLEX TERMINAL DRIVER

2.3.2.7 TI0.RNE - The IO.RNE function reads terminal input characters
without echoing the characters back to the terminal for immediate
display. This feature can be used when typing sensitive information
(for example, a password or combination) or when reading a badge with
the RT02-C terminal.

(Note that the no-echo mode can also be selected with the SF.SMC
function; see Table 2-5, bit TC.NEC.)

CTRL/R is ignored while an IO.RNE is in progress.

The IO.RNE function is equivalent to IO.RLB ORed with the subfunction
bit TF.RNE.

2.3.2.8 I0.RPR - The I0.RPR Read After Prompt functions as an IO.WLB
(to write a prompt to the terminal) followed by IO.RLB. However,
IO.RPR differs from this combination of functions as follows:

e System overhead is lower with the IO0.RPR because only one QIO
is processed.

e When using the IO.RPR function, there is no "window" during
which a response to the prompt may be ignored. Such a window
occurs if I0.WAL/IO.RLB is used, because no read may be posted
at the time the response is received.

e If the issuing task is checkpointable, it can be checkpointed
during both the prompt and the read requested by the IO.RPR.

e A CTRL/O that may be in effect prior to issuing the IO.RPR is
canceled before the prompt is written.

Subfunction bits may be ORed with IO.RPR to write the prompt as a
Write All (TF.BIN) and to send XOFF after the read (TF.XOF). 1In
addition, read subfunction bits TF.RAL, TF.RNE, and TF.RST can be used
with IO.RPR.

NOTE

If an IO.,RPR function 1is 1in ©progress
when the driver receives a CTRL/R or
CTRL/U, the prompt is redisplayed.

2.3.2.9 TIO.RPRITE.BIN - This function results in a read after a
"binary" prompt; that is, a prompt is written by the driver with no
character interpretation (as if it were issued as an IO.WAL).

2.3.2.10 IO.RPRITE.XOF - This function causes the driver to send an
XOFF to the terminal after its prompt-and-read. The XOFF or CTRL/S
may have the effect of inhibiting input from the terminal, 1if the
terminal recognizes XOFF for this purpose. TF.XOF is ignored when
fuli-duplex I/C is in use.

FULL-DUPLEX TERMINAL DRIVER

2.3.2.11 IO.RST - This function 1is similar to an IO.RLB, except
certain special <characters terminate the read. These characters are
in the ranges 0-037 and 175-177. The driver does not interpret the
terminating character, with certain exceptions.l For example, a
horizontal TAB (011) is not expanded, a RUBOUT (or DEL, 177) does not
erase, and a CTRL/C does not produce an MCR prompt.

Upon successful completion of an IO.RST request that was not
terminated by filling the input buffer, the first word of the I/O
status block contains the terminating character in the high byte and
the 1IS.SUC status code in the low byte. The second word contains the
number of bytes contained in a buffer. The terminating character is
not put in the buffer.

IO.RST is equivalent to IO.RLBITF.RST.

2.3.2.12 SF.SMC - This function enables a task to set and reset the
characteristics of a terminal. Set Multiple Characteristics is the
inverse function of SF.GMC. Like SF.GMC, it 1is <called in the
following way:

QIOSC SF.SMC,...,<stadd,size>

stadd

The starting address of a buffer of length "size" bytes. Each
word in the buffer has the form

.BYTE characteristic-name
.BYTE value

characteristic-name
One of the symbolic bit names given in Table 2-5.

value
Either 0 (to clear a given characteristic) or 1 (to set a
characteristic).

Table 2-5 notes the restrictions that apply to these characteristics.

If the characteristic-name is TC.TTP (terminal type), value can have
any of the values listed in Table 2-6.

A nonprivileged task can only issue an SF.SMC request for its own
terminal (TI:). A privileged task can issue SF.SMC to any terminal.

Terminal output can be suspended or resumed (simulated CTRL/S and
CTRL/Q, respectively) by specifying an appropriate value for TC.CTS.
A value of 0 resumes output and a value of 1 suspends output.

1. If upper- to lowercase conversion is disabled, characters 175 and
176 do not act as terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021,
and 023, respectively) are not special terminators. The driver
interprets them as output control characters in a normal manner.

2-21

FULL-DUPLEX TERMINAL DRIVER

Specifying any value for TC.TBF flushes (clears) the type-ahead buffer
(forces the type-ahead buffer count to 0).

2.3.2.13 TIO.RTT - This QIO function reads characters in a manner like
the IO.RLB function, except a user-specified character terminates the
read operation. The specified character's code can range from 0-377.
It is user designated by setting the appropriate bit in a l6-word
table that corresponds to the desired character. Multiple characters
can be specified by setting their corresponding bits.

The 16-word table starts at the address specified by the table
parameter. The first word contains bits that represent the first 16
ASCII character codes (0-17); similarly, the second word contains
bits that represent the next 16 character codes (20-37), and so forth,
through the sixteenth word, bit 15, which represents character code
377. For example, to specify the % symbol (code 045) as a read
terminator character, set bit 05 in the third word, since the third
word of the table contains bits representing character codes 40-57.

If the CTRL/S (023), CTRL/Q (021), and/or any characters whose codes
are greater than 177 is/are desired as the terminator character(s),
the terminal must be set to read-pass-all operation (TC.BIN=1l), or
read-pass 8-bits (TC.8BC), as listed in Table 2-5.

The optional time-out count parameter can be included, as desired.

2.3.2.14 TI0.WAL - The Write All function causes the driver to pass
all output from the buffer without interpretation. It does not
intercept control characters. Long lines are not wrapped around if
input/output wrap-around has been selected.

I0.WAL is equivalent to the IO.WLB!TF.WAL function.

2.3.2.15 TIO.WBT - The IO.WBT function instructs the driver to write
the buffer regardless of the I/0 status of the receiving terminal. If
an IO.WBT function is issued on a system that does not support IO.WBT,
it is treated as an I0.WLB function.

e If another write function 1is currently 1in progress, it
finishes the current request and the IO.WBT is the next write
issued. The effect of this is that a CTRL/S can stop IO.WBT
functions. Therefore, it may be desirable for tasks to time
out on IO.WBT operations.

e If a read is currently posted, the TIO.WBT proceeds, and an
automatic CTRL/R is performed to redisplay any input that was
received before the break-through write was effected (if the
terminal is not in the full-duplex mode).

e CTRL/O, if in effect, is canceled.

e An escape sequence that was interrupted is rubbed out.

An TIO.WBT function cannot break through another IO.WBT that 1is in
progress.

Break-through write may only be issued by a privileged task. The
privileged MCR command BRO (broadcast) uses IO.WBT.

FULL-DUPLEX TERMINAL DRIVER

2.3.2.16 TI0.HNG - The IO.HNG function disconnects a terminal that is
on a remote line. This function has no arguments.

A nonprivileged task can only issue an IO,.HNG request for 1its own
terminal (TI:). A privileged task can issue IO.HNG to any terminal.

2.4 STATUS RETURNS

Table 2-8 lists error and status conditions that are returned by the
terminal driver to the I/O status block.

Most RSX-11M error and status codes returned are byte values. For
example, the value for IS.SUC is 1. However, IS.CC, IS.CR, IS.ESC,
and IS.ESQ are word values. When any of these codes are returned, the
low byte indicates successful completion, and the high byte shows what
type of completion occurred.

To test for one of these word-value return codes, first test the 1low
byte of the first word of the I/0O status block for the value IS.SUC.
Then, test the full word for IS.CC, IS.CR, IS.ESC, or IS.ESOQ. (If the
full word tests equal to IS.SUC, then its high byte is 0, indicating
byte-count termination of the read.)

The "error" return IE.EOF may be considered a successful read since
characters returned to the task's buffer can be terminated by a CTRL/Z
character.

The SE.xxx codes are returned by the SF.GMC and SF.SMC functions as
described 1in Sections 2.3.2.4 and 2.3.2.12. When any of these codes
are returned, the low byte in the first word in the I/0 status block
will contain IE.ABO. The second 1IOSB word contains an offset
(starting from 0) to the byte in error in the QIO's stadd buffer.

Table 2-8
Terminal Status Returns

Code Reason

IE.EOF Successful completion on a read with end-of-file

The 1line of input read £from the terminal was
terminated with the end-of-file character CTRL/Z.
The second word of the I/0 status block contains the
number of bytes read before CTRL/Z was seen. The
input buffer contains those bytes.

IS.sucC Successful completion

The operation specified in the QIO directive was
completed successfully. If the operation involved
reading or writing, you can examine the second word
of the 1I/0 status block to determine the number of
bytes processed. The input buffer contains those
bytes.

{continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Code Reason

Is.cCC Successful completion on a read
The 1line of input read from the terminal was
terminated by a CTRL/C. The input buffer contains
the bytes read.

IS.CR Successful completion on a read
The 1line of input read from the terminal was
terminated by a carriage return. The input buffer
contains the bytes read.

IS.ESC Successful completion on a read
The 1ine of 1input read from the terminal was
terminated by an Altmode character. The input buffer
contains the bytes read.

IS.ESQ Successful completion on a read
The 1line of 1input read from the terminal was
terminated by an escape sequence. The input buffer
contains the bytes read and the escape sequence.

IS.PND I/0 request pending
The operation specified in the QIO directive has not
yet been executed. The I/0 status block is filled
with Os.

IS.TMO Successful completion on a read
The line of input read from the terminal was
terminated by a time-out (TF.TMO was set and the
specified time interval was exceeded). The input
buffer contains the bytes read.

IE.ABO Operation aborted
The specified I/O operation was cancelled by IO.KIL
while in progress or while in the I/0 queue. The
second word of the I/0 status block indicates the
number of bytes that were put in the buffer before
the kill was effected.

IE.BAD Bad parameter
The size of the buffer exceeds 8128 bytes.

IE.BCC Framing error

A framing error was hardware-detected and returned by
the controller. All characters wup to (but not
including) the erroneous character are in the buffer.
This condition can result by pressing the BREAK key
on some terminals, or by hardware problems.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Code

Reason

IE.DAA

IE.DAO

IE.DNA

IE.DNR

IE.IES

IE.IFC

Device already attached

The physical device unit specified in an IO0.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has already
attached the desired physical device unit, not that
the unit was attached by another task. If the attach
specified TF.AST or TF.ESQ, these subfunction bits
have no effect.

Data overrun error

A data overrun error was hardware-detected and
returned by the controller. All characters up to
(but not including) the erroneous character are in
the buffer. This error occurs when a hardware
failure or incompatibility causes characters to be
received by the controller faster than they can be
processed (that is, an incorrect serial I/0 baud rate
or format exists).

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task. This
code has no bearing on the attachment status of other
tasks.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one of
the following conditions:

e A time-out occurred on the physical device unit
(that is, an interrupt was lost).

e An attempt was made to perform a function on a
remote DH11l or DZ1ll line without carrier present.

Invalid escape sequence

An escape sequence was started but escape-sequence
syntax was violated before the sequence was
completed. ({See Section 2.6.4.) The character
causing the violation 1is the last character in the
buffer.

TIllegal function

A function code specified in an I/0 request was

illegal for terminals; or, the function code
specified was a SYSGEN option not selected for this

system.

{(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Code

Reason

IE.NOD

IE.OFL

IE.PES

IE.PRI

IE.SPC

IE.VER

SE.NIH

SE.FIX

SE.VAL

Buffer allocation failure

System dynamic storage has been depleted resulting in
insufficient space available to allocate an
intermediate buffer for an input request or an AST
block for an attach request.

Device off line

The physical device wunit associated with the LUN
specified in the QIO directive was not on line. When
the system was booted, a device check indicated that
this physical device unit was not in the
configuration. In RSX-11M-PLUS systems, the physical
device unit could have been configured off line.

Partial escape sequence

An escape sequence was started, but read-buffer space
was exhausted before the sequence was completed. See
Section 2.6.4.3.

Privilege violation

In a multiuser system, a nonprivileged task issued an
I0O.WBT, directed an SF.SMC to a terminal other than
TI:, or it attempted to set its privilege bit.

Illegal address space

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task, a byte count of 0 was specified, or an
odd or 0 AST address was specified.

Character parity error

A parity error was hardware-detected and returned by
the controller. All characters up to (but not
including) the erroneous character are in the buffer.

A terminal characteristic other than those in Table
2-5 was named in an SF.GMC or SF.SMC request, or a
task attempted to assert TC.PRI.

An attempt was made to change a fixed characteristic
in a S8F.SMC subfunction request (for example, an
attempt was made to change the unit number).

The new value specified in an SF.SMC request for the
TC.TTP terminal characteristic was not one of those
listed in Table 2-6.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Code Reason

SE.NSC An attempt was made to change a nonsettable
characteristic. This error can occur when an attempt
is made to make a local-only line a remote line when
the controller does not support remote lines, or when
no remote line support was specified during SYSGEN.

SE.SPD The new speed specified in an SF.SMC subfunction
request was not valid for the controller associated
with the specified terminal.

2.5 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of special terminal control
characters and keys for RSX-11M. Note that the driver does not
recognize control characters and special Kkeys during a Read All
request (IO.RAL), and recognizes only some of them during a Read with
Special Terminators (IO.RST).

2.5.1 Control Characters

A control character is input from a terminal by holding the control
key (CTRL) down while typing one other key. Three of the control
characters described in Table 2-9, CTRL/R, CTRL/U, and CTRL/Z, are
echoed on the terminal as "R, "“U, and "Z, respectively.

Table 2-9
Terminal Control Characters

Character Meaning

CTRL/C Typing CTRL/C causes unsolicited input on that
terminal to be directed to a control line interpreter
task, such as MCR. (Command 1line interpreters are
invoked and display a prompt in a manner similar to
that of MCR; therefore, for the purposes of this
discussion, it 1is assumed that MCR is the command
line interpreter in use, although the terminal driver
will respond to other command line interpreters in a
similar manner.) The "MCR>" prompt is echoed when the
terminal driver is ready to accept an unsolicited MCR
command line for input. When the unsolicited input
is terminated, the command line is passed to MCR.

If the last character typed on the terminal was a
CTRL/S (suspend output), CTRL/C restarts suspended
output and directs subsequent input to MCR.

GEN option has been
s a VT5x or VT6l in
CTRL/C removes the

If the hold-screen mode SYS
selected and the terminal 1
hold-screen mode, typing a

terminal from hold-screen mode.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Control Characters

Character Meaning
CTRL/C characters can also be directed to a task if
the task has attached a terminal and has specified an
unsolicited-input-character AST (see Section
2.3.2.1). CTRL/C characters are also passed to a
task if an IO.RAL or IO.RST function is effected.

NOTE
If the terminal driver receives a CTRL/C
character during a read operation (except
during a Read-Pass-All operation or a Read
With Special Terminators operation), the read
operation is terminated, the type-ahead
buffer 1is cleared, and an IS.CC status code
is returned to the task.

CTRL/I CTRL/I or TAB characters initiate a horizontal tab,
and the terminal spaces to the next tab stop. Tabs
at every eighth character position are simulated by
the terminal driver.

CTRL/J CTRL/J is equivalent to a LINE FEED character.

CTRL/K CTRL/K initiates a vertical tab, and the terminal
tabs to the next vertical tab stop. For a CRT
terminal, four LINE FEEDs are output.

CTRL/L CTRL/L initiates a formfeed. If the terminal has
hardware formfeed support, the driver echos “L.

! Otherwise, the driver simulates the formfeed by

% outputting enough LINE FEED characters to advance the

i next character position to the top of the next page.
If a CRT terminal 1is 1in use, four LINE FEEDs are
output.

CTRL/M CTRL/M is equivalent to a carriage RETURN character
(see Section 2.5.2).

CTRL/O CTRL/0O suppresses terminal output. For attached
terminals, CTRL/O remains 1in effect (output |is
suppressed) until one of the following occurs:

e The terminal is detached.

e Another CTRL/O character is typed.

e An I0.CCO or IO.WBT function is issued.

e Input is entered.

For unattached terminals, CTRL/0O suppresses output
for only the current output buffer (typically one
line).

CTRL/Q CTRL/Q resumes terminal output previously suspended

by means of CTRL/S.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Control Characters

Character Meaning

CTRL/S CTRL/S suspends terminal output. (Output can be
resumed by typing CTRL/Q or CTRL/C.)

CTRL/R CTRL/R response is a terminal driver feature that can
be selected during RSX-11M V3.2 SYSGEN. Typing
CTRL/R results in a carriage return and 1line feed
being echoed, followed by the incomplete
(unprocessed) input line. Any tabs that were input
are expanded and the effect of any rubouts is shown.
On hardcopy terminals, CTRL/R allows verifying the
effect of tabs and/or rubouts in an input line.
CTRL/R is also useful for CRT terminals when the CRT
rubout SYSGEN option has been selected (see Section
2.8). For example, after rubbing out the 1left-most
character on the second displayed line of a wrapped
input 1line, the cursor does not move to the right of
the first displayed 1line. In this case, CTRL/R
brings the input line and the <cursor back together
again.

CTRL/U Typing CTRL/U before typing a line terminator deletes
previously typed characters back to the beginning of
the line. The system echoes this character as “U
followed by a carriage return and a line feed.

CTRL/X This character clears the type-ahead buffer.

CTRL/Z CTRL/Z indicates an end-of-file for the current
terminal input. It signals MAC, PIP, TKB, and other
system tasks that terminal 1input is complete,
allowing the task to exit. The system echoes this
character as "Z, followed by a carriage return and a
line feed.

2.5.2 Special Keys

The ESCape, carriage RETURN, and RUBOUT keys have special significance
for terminal input, as described 1in Table 2-10. A line can be
terminated by an ESCape (or Altmode), carriage RETURN, or CTRL/Z
characters, or by completely £filling the input buffer (that is, by
exhausting the byte count before a line terminator is typed). The
standard buffer size for a terminal can be determined for a task by
issuing a Get LUN Information system directive and examining Word 5 of
the buffer. An operator can obtain the same information with the MCR
SET /BUF=TI: command.

2.6 ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning with
an ESC (033) character. In RSX-11M systems, escape sequence support
described in this section is a SYSGEN option. Some terminals generate
an escape sequence when a special key is pressed (for example, the FCN
key on the VT61l). On any terminal, an escape sequence may be
generated manually by typing ESCape followed by the appropriate
characters.

Escape sequences provide a way to pass input to a task without
by the operating system. This could be done with a
number l-character Read All functions, but escape sequences allow them

interpretation

FULL-DUPLEX TERMINAL DRIVER

to be read with IO.RLB requests.

Table 2-10
Special Terminal Keys

Key

Meaning

ESCape

RETURN

RUBOUT

If escape sequences are not recognized, typing ESCape
or Altmode signals the terminal driver that there is
no further input on the current line. This 1line
terminator allows further input on the same line,
because the carriage or cursor is not returned to the
first column position.

If escape sequences are recognized, ESCape signals
the beginning of an escape sequence., (See Section
2.6.)

Typing RETURN terminates the current line and causes
the <carriage or cursor to return to the first column
on the 1line.

Typing RUBOUT deletes the last character typed on an
input 1line. Only characters typed since the last
line terminator may be deleted. Several characters
can be deleted 1in sequence by typing successive
RUBOUTSs.

For example, on a printing terminal, the first RUBOUT
echoes a backslash (\) followed by the character that
has been deleted, even if the terminal 1is 1in the
no-echo mode. Subsequent RUBOUTs cause only the
deleted character to be echoed. The next character
typed that 1is not a RUBOUT causes another backslash
to be printed, followed by the new character. The
non-RUBOUT character will not be echoed if the

terminal 1is in the no-echo mode; however, a
backslash is echoed 1in response to the first
non-RUBOUT character. The following example

illustrates rubbing out ABC and then typing CBA:
ABC\ CBA\CBA

The second backslash is not displayed if a 1line
terminator 1is typed after rubbing out the characters
on a line, as in the following example:

ABC\ CBA
At SYSGEN time, the "CRT rubout" feature <can be
selected. This feature applies to a terminal only

after a SET MCR directive has been issued:

SET /CRT=TI:

(continued on next page)

2-30

FULL-DUPLEX TERMINAL DRIVER

Table 2-10 (Cont.)
Special Terminal Keys

Key Meaning

If the CRT rubout feature was selected, RUBOUT causes
the 1last typed character (if any) to be removed from
the incomplete input line and a
backspace-space-backspace sequence of characters for
that terminal are echoed. If the last typed
character was a tab, enough backspaces are issued to
move the cursor to the character position before the
tab was typed. If a long input line was split, or
"wrapped,"” by the automatic-carriage-return option,
and a RUBOUT erases the last character of a previous
line, the cursor is not moved to the previous 1line.
CTRL/R must be wused to resynchronize the current,
display with the contents of the incomplete 1input
line.

2.6.1 Definition

The format of an escape sequence as defined in American National
Standard X 3.41-- 1974 and used in the VT100 is:

ESC ... F

ESC
The introducer control character (33(8)) that is named escape.
The intermediate bit combinations that may or may not be
present. I characters are bit combination 40(8) to 57(8)
inclusive in both 7- and 8-bit environments.

F

The final character. F characters are bit combinations 60(8)
to 176(8) 1inclusive 1in escape sequences in both 7- and 8-bit
environments.

The occurrence of characters in the inclusive ranges 0(8) to 37(8)
is technically an error condition whose recovery is to execute
immediately the function specified by the <character and then
continue with the escape sequence execution. The exceptions are:
if the character ESC occurs, the current escape sequence is aborted,
and a new one commences, beginning with the ESC just received; if
the character CAN (30(8)) or the character SUB (32(8)) occurs, the
current escape sedquence is aborted, as is the case with any control
character.

There are five exceptions to this general definition; these
exceptions are discussed in Section 2.6.5.

FULL-DUPLEX TERMINAL DRIVER

2.6.2 Prerequisites

Two prerequisites must be satisfied before escape sequences can be
received by a task.

First, the task must "ask"™ for them by issuing an IO.ATT function
and invoking the subfunction bit TF.ESQ.

Second, the terminal must be declared capable of generating escape
sequences. This may be done with an MCR SET command:

SET /ESCSEQ=TI:

An alternative way to tell the driver that the terminal can generate
escape sequences is by 1issuing the Set Multiple Characteristics
request. (See Section 2.3.2.12).

If either of these prerequisites is not satisfied, the ESC character
is treated as a line terminator.

If both prerequisites are satisfied, CTRL/SHIFT/O (037) may be used as
an Altmode character.l This character does not act as an Altmode from
a terminal that cannot generate escape sequences.

2.6.3 Characteristics

Escape sequences always act as line terminators. That 1is, an input
buffer may contain other characters that are not part of an escape
sequence, but an escape sequence always comprises the last characters
in the buffer.

Escape sequences are not echoed. However, if a non-CRT rubout
sequence 1is in progress, it is closed with a backslash when an escape
sequence is begun.

Escape sequences are not recognized in wunsolicited input streams.
Neither are they recognized in a Read with Special Terminators
(subfunction bit TF.RST) nor in a Read All (subfunction bit TF.RAL).

2.6.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 2.6.1 causes the driver
to abandon the escape sequence and to return an error (IE.IES).

2.6.4.1 DEL or RUBOUT (177) - The character DEL or RUBOUT 1is not
legal within an escape sequence. Typing it at any point within an
escape sequence causes the entire sequence to be abandoned and deleted
from the input buffer. Thus, use DEL or RUBOUT to abandon an escape
sequence, if desired, once you have begun it.

1. An Altmode is a line terminator that does not cause the cursor to
advance to a new line. On terminals that cannot generate escape
sequences, the ESCape key acts as an Altmode. Characters 175 and 176
also function as ltmodes if the terminal has not been declared
lowercase (MCR command SET /LOWER).

2-32

FULL-DUPLEX TERMINAL DRIVER

2.6.4.2 Control Characters (0-037) - The reception of any character
in the range 0 to 037 (with four exceptions -- see footnotel) is a
syntax violation that terminates the read with an error (IE.IES).

2.6.4.3 Full Buffer - A syntax error results when an escape sequence
is terminated by running out of read-buffer space, rather than by
receipt of a final character. The error IE.PES is returned. For
example, after a task issues an IO.RLB with a buffer length of 2, and

you type:
ESC !t A

the buffer contains "ESC !", and the I/0 status block contains:

I0SB IE.PES

2

The "A"™ is treated as unsolicited input.

2.6.5 Exceptions to Escape-Sequence Syntax

Five "final characters” that normally terminate an escape sequence are
treated as special cases by the terminal driver for use with certain
terminals:

ESC ?...
ESC O...
ESC P...
ESC Y...
ESC [...

Refer to documentation supplied with the specific terminal(s) in wuse
for correct use of escape sequences.

2.7 VERTICAL FORMAT CONTROL

Table 2-11 is a summary of all characters wused for vertical format
control on the terminal. Any one of these characters can be specified
as the value of the vfc parameter in IO.WLB, IO.WVB, IO.WBT, TI0.CCO,
or IO.RPR functions.

1. Four control characters are allowed: CTRL/Q, CTRL/S, CTRL/X, and

CTRL/0. These characters are handled normally by the operating system

even when an escape sequence is in progress. For example, entering:
ESC CTRL/S A

gives:

I0SB IS.ESQ

2

with the additional effect of turning off the output stream.

2-33

FULL-DUPLEX TERMINAL DRIVER

2.8 AUTOMATIC CARRIAGE RETURN

Individual terminals can be set for wrap-around, as desired, using the
MCR SET command

>SET /WRAP=TTxX:

Once wrap-around has been selected, the column at which wrap-around
occurs can be selected using the MCR SET command

>SET /BUF=TI:n
>

The SET /BUF command can also be used without an argument to display
the current buffer width for a terminal:

>SET /BUF=TI:
BUF=TI:00072.
>

Table 2-11
Vertical Format Control Characters

Octal
Value Character Meaning

040 blank SINGLE SPACE - Output one line feed, print the
contents of the buffer, and output a carriage
return. Normally, printing immediately follows
the previously printed line.

060 0 DOUBLE SPACE - Output two line feeds, print the
contents of the buffer, and output a carriage
return. Normally, the buffer contents are
printed two 1lines below the previously printed
line.

061 1 PAGE EJECT - If the terminal supports FORM
FEEDs, output a form feed, print the contents of
the buffer, and output a carriage return. If
the terminal does not support FORM FEEDs, the
driver simulates the FORM FEED character by
either outputting four 1line feeds to a crt
terminal, or by outputting enough line feeds to
advance the paper to the top of the next page on
a printing terminal.

053 + OVERPRINT - Print the contents of the buffer and
output a carriage return, normally overprinting
the previous line.

044 S PROMPTING OUTPUT - Output one line feed and
print the contents of the buffer. This mode of
output is intended for use with a terminal on
which a prompting message is output, and input
is then read on the same line.

000 null INTERNAL VERTICAL FORMAT - Print the buffer
contents without addition of vertical format
control characters. 1In this mode, more than one
line of guaranteed contiguous output can be
printed for each I/O request.

FULL-DUPLEX TERMINAL DRIVER

All other vertical format control characters are interpreted as blanks
(040).

A task can determine the buffer width by issuing a Get LUN Information
directive and examining word 5 returned in the buffer.

After the SET has been done, typing beyond the buffer width results in
a carriage return and line feed being output before the next character
is echoed. Although only one line only was input, it is displayed on
two terminal lines.

It is possible to lose track of where you are in the input buffer if
wrap-around is enabled for your terminal. For example, while deleting
text on a wrapped line, the cursor will not back up to the previous
line. In order toc resynchronize the cursor with the contents of the
incomplete input buffer, type CTRL/R (if this SYSGEN option has been
selected).

2.9 FEATURES AVAILABLE BY RSX-11M SYSGEN OPTION

A number of terminal-driver features are available as RSX-11M SYSGEN
options. (See the RSX-11M System Generation and Installation Guide).
Features previously discussed that are not repeated 1in this section
include:

e Some device-specific QIO functions (see Section 2.3.2)

e Special keys: CTRL/R -~ Write incomplete input buffer (see
Section 2.5.1)

CRT rubout (see Section 2.5.2)
e Escape sequences (see Section 2.6)

The only remaining features selected at SYSGEN time are
terminal-independent cursor control (described in Section 2.15),
private buffer pool size, and hard receive error detection, described
in the following sections.

2.9.1 Private Buffer Pool Size

The private buffer pool is contained within the full-duplex terminal
driver. The size of the whole driver is established during SYSGEN by
the VMR command to load the driver as follows:

LOA TT:/SIZE=nnn

The private buffer pool occupies all of the space from the top of the
actual driver code up to nnn. The argument nnn is expressed in octal
words, and the maximum value is 20000, corresponding to 8K words.
Depending on driver options selected, the code requires from 2.5 to
4.5k words. Thus, the maximum buffer pool size is from 3.5k to 5.5k
words.,

Alternatively, on an RSX-11M-PLUS system, it is possible to allocate
the private pool in a separate common block called TTCCM. This bleck
can range in size up to 4k words. The default size is 4k words, but
it is modifiable, using the SIZE keyword with the VMR LOA command. In
this case, the private pool 1is used almost exclusively for data
buffers. Other driver-specifc data is allocated from secondary pool.

FULL-DUPLEX TERMINAL DRIVER

2.9.2 Hard Receive Error Detection

All terminal interfaces supported by the full-duplex terminal driver
are capable of detecting and flagging hard receive errors. Hard
receive errors include framing errors, enable character parity error,
and data overrun error.

NOTE

The driver does not enable parity
generation and checking on DH1l and DZ11
interfaces.

If the hard receive error detection SYSGEN option (T$SRED) is
selected, the driver handles hard receive errors as follows:

1. If a read request is being processed and the character can be
processed immediately, the read request is terminated with
one of the following error codes returned in the status

block:
Error
Code Hard Receive Error
IE.BCC Framing error
IE.DAO Data overrun
IE.VER Character parity error

2. If a command 1line is being input for a command 1line
interpreter task and the character can be processed
immediately, a CTRL/U is simulated, "U 1is echoed, and the
input is terminated. No command line is sent to the task.

3. If the character would normally cause an AST if no error was
detected, the character 1s ignored and no AST occurs.

4. 1If the character cannot be processed immediately, it is
stored in the type-ahead buffer. A flag is set for the line,
indicating that the last character in the type-ahead buffer
has an error, disabling further storage in the type-ahead
buffer. When the character is retrieved from the buffer, the
appropriate action previously described is taken and the flag
is cleared. Any characters received in the meantime are
discarded, with a bell echoed for each character.

If the TS$SRED option is not selected, hard receive errors are ignored.

2.10 TASK BUFFERING OF RECEIVED CHARACTERS

When task-buffering received <characters, characters read from the
terminal are sent directly to the task's buffer. Thus, there is no
need to allocate a terminal driver buffer.

Task buffering of received characters does not necessarily reduce
system overhead. For example, in a mapped system each character must
be mapped to the task's buffer. However, if terminal driver buffering
was used, the mapping is only done once for all characters to be
transferred.

FULL-DUPLEX TERMINAL DRIVER

With the full duplex terminal driver, output buffering is always
performed.

Task buffering is overridden during checkpointing. If a task jis
checkpointable, a driver buffer 1is allocated and the task is made
eligible for checkpointing by any task, regardless of priority, while
the read operation is in progress. (Checkpointing only occurs in this
situation when there is another task that can be made active.) Since

checkpointability 1is controlled by the task, the user retains control
over this operation.

2.11 TYPE-AHEAD BUFFERING

Characters received by the terminal driver are either processed
immediately or stored in the type-ahead buffer. The type-ahead buffer
allows characters to be temporarily stored and retrieved FIFO. The
type-ahead buffer is used as follows:

1. Store in buffer:

An input character is stored in the type-ahead buffer if one
or more of the following conditions are true:

e The driver is not ready to accept the character (fork
process pending or in progress).

e There 1is at least one character presently in the
type-ahead buffer,

e The character input requires echo and the output 1line to
the terminal is presently busy outputting a character.

® No read request is in progress, no unsolicited input AST
is specified, and the terminal is attached.

NOTE

Depending on the terminal mode and the presence of a
read function, read subfunctions and an unsolicited
input AST, the CTRL/C, CTRL/O, CTRL/Q, CTRL/S, and
CTRL/X characters may be processed immediately and
not stored in the type-ahead buffer.

A character is not echoed when it is stored in the buffer.
Echoing a character 1is deferred until it is retrieved from
the buffer, since the read mode (for example,
read-without-echo) is not known by the driver until then.

2. Retrieve from buffer:

When the driver becomes ready to process input, or when a task issues
a read request, an attempt is made to retrieve a character from the
buffer. If this attempt is successful, the character is processed and
echoed, if required. The driver then loops, retrieving and processing
characters until either the buffer is empty, the driver becomes unable

to process another character, or a read request is finished with the
terminal attached.

2-37 April 1983

FUOLL-DUPLEX TERMINAL DRIVER

3. PFlush the buffer:

The buffer is flushed (cleared) when:
1. CTRL/C is received.
2. CTRL/X is received.
3. The terminal becomes detached.

Exceptions: CTRL/C and CTRL/X do not flush the buffer if
read-pass-all or read-with-special-terminators is in effect.

If the buffer becomes full, each character that cannot be entered
causes a BELL character to be echoed to the terminal.

If a character is input and echo 1is required, but the transmitter
section is busy with an output request, the input character is held in
the type-ahead buffer until output (transmitter) completion occurs.

2.12 PFULL-DUPLEX OPERATION

When a terminal line is in the full-duplex mode, the full-duplex
driver attempts to simultaneously service one read request and one
write request. The Attach, Detach and Set Multiple Characteristics
functions are only performed with the 1line in an idle state (not
executing a read or a write request).

2.13 PRIVATE BUFFER POOL

The driver has a private buffer pool for intermediate input and output
buffers on both RSX-11M and RSX-11M-PLUS systems, and type-ahead
buffers and UCB extensions on RSX-11M systems only. Whenever the
driver needs dynamic memory, it first attempts to allocate a buffer in
the private pool. 1If this fails, a second attempt is made in the
system pool. If the allocation in the system pool fails during
command line input, a CTRL/U is simulated and echoed.

Command line interpreter task buffers are handled in a special way.
When unsolicited input begins, a buffer is allocated, as previously
described, for the command line (a string of characters, followed by
an appropriate terminator character). When the input is completed,
the contents of the buffer is sent directly to the command line
interpreter task if the buffer was allocated in the system pool.
However, if the buffer was allocated in the driver's private pool, it
must first be moved into a buffer in the system pool to provide access
for the task.

2.14 INTERMEDIATE INPUT AND OUTPUT BUFFERING

Input buffering for checkpointable tasks with checkpointing enabled is
provided 1in the private pool. As each buffer becomes full, a new
buffer is automatically allocated and linked to the previous buffer.
The Executive then transfers characters from these buffers to the task
buffer and the terminal driver deallocates the buffers once the
transfer has been completed.

FULL-DUPLEX TERMINAL DRIVER

If the driver fails to allocate the first input buffer, the characters
are transferred directly into the task buffer. If the first buffer is
successfully allocated, but a subsequent buffer allocation fails, the
input request terminates with the error code IE.NOD. In this case,
the I/0 status block contains the number of characters actually
transferred to the task buffer. The task may then update the buffer
pointer and byte count and reissue a read request to receive the rest
of the data. The type-ahead buffer ensures that no input data is
lost.

All terminal output is buffered. As many buffers as required are
allocated by the terminal driver and linked to a list. If not enough
buffers can be obtained for all output data, the transfer is done as a
number of partial transfers, using available buffers for each partial
transfer. This is transparent to the requesting task. If no buffers
can be allocated, the request terminates with the error code IE.NOD.

The unconditicnal ocutput buffering serves three purposes:
1. It reduces time spent at system state.
2. It enables long DMA transfers for DH1ll controllers.

3. It enables task checkpointing during the transfer to the
terminal (if all output fits in one buffer list).

2,15 TERMINAL-INDEPENDENT CUORSOR CONTROL

Terminal-independent cursor control capability is provided at SYSGEN
time. The terminal driver responds to task I/O requests for cursor
positioning without the task requiring information about the type of
terminal in use. 1I/0 functions associated with cursor positioning are
described as follows.

Cursor position is specified in the vfc parameter of the IO0.WLB or
IO.RPR function. The parameter is interpreted simply as a vfc
parameter if the high byte of the parameter is 0. However, 1if the
parameter is wused to define cursor position, the high byte must be
nonzero, the low byte is interpreted as column number (x-coordinate),
and the high byte is interpreted as line number (y-coordinate). Home
position, the upper left corner of the display, is defined as 1,1.
Depending upon terminal type, the driver outputs appropriate
cursor-positioning commands appropriate for the terminal in use that
will move the cursor to the specified position. If the most
significant bit of the line number 1is set, the driver clears the
display before positioning the cursor.

When defining cursor position in an IO.WLB function, the TF.RCU
subfunction can be wused to save the current cursor position. When
included in this manner, TF.RCU causes the driver to first save the
current cursor position, then position the cursor and output the
specified buffer, and, finally, restore the cursor to the original
(saved) position once the output transfer has been completed.

2.16 TERMINAL INTERFACES

This section summarizes the characteristics of the standard
communication-line interfaces supported by RSX-11M. Refer to the
Terminals and Communications Handbook for additional details.

2-39 April 1983

FOLL-DUPLEX TERMINAL DRIVER

2.16.1 DH11l Asynchronous Serial Line Multiplexer

The DH11l multiplexer interfaces up to 16 asynchronous serial
communications lines for terminal use. The DH1l supports programmable
baud rates. Input and output baud rates may differ; the input rate
may be set to 0 baud, thus effectively turning off the terminal., The
DM11-BB option may be included to provide modem control for dial-in
lines. These lines must be interfaced by means of a full duplex modem
(for example, in the United States, a Bell 103A or equivalent modem).

2.16.2 DHV11 Asynchronous Serial Line Multiplexer

The DHV11l multiplexer interfaces up to eight asynchronous serial
communications 1lines for terminal use. This multiplexer is the Q BUS
version of the DH1l1 UNIBUS multiplexer. The DHV11l supports
programmable baud rates with the option of selecting split speed
operation. (Split speed operation allows different transmit and
receive speeds.) Also provided 1is modem control for full-duplex
point-to-point operation.

2.16.3 DJ11 Asynchronous Serial Line Multiplexer

The DJ11 multiplexer interfaces as many as 16 asynchronous serial
lines to the PDP-11 for local terminal communications. The DJ11 does
not provide a dial-in capability. Baud rates are jumper selectable.

2.16.4 DL11 Asynchronous Serial Line Interface

The DL11 supports a single asynchronous serial 1line and handles
communication between the PDP-11 and a terminal. A number of standard
baud rates are available to DL1l1 users. However, since the DL11 does
not have an input silo, baud rates greater than 1200 baud are not
recommended. Higher baud rates may cause input characters to be lost.

For hardware reasons, a DL1ll 1is susceptible to 1losing receiver
interrupt enable 1in its Receiver Status Register. The disabling of
the receiver interrupt bit causes the terminal to print output
requests but not to respond to input (for example, the terminal does
not echo input characters). The terminal driver has no mechanism for
recognizing the disabling. Therefore, it cannot recover. The bit
must be reset with an MCR OPEN command, the console switch register,
or a periodically rescheduled task.

2.16.5 DZll Asynchroncus Serial Line Multiplexer

The DZ1ll multiplexer interfaces up to eight asynchronous serial
communication 1lines for use with terminals. It supports programmable
baud rates; however, transmit and receive baud rates must be the
same. The DZl1ll can control a full duplex modem in auto-answer mode.

2-40 April 1983

FULL-DUPLEX TERMINAL DRIVER

2.17 PROGRAMMING HINTS
2.17.1 ESCape Code Conversion

If escape sequences are recognized, the character code 037 will
terminate input and a status code IS.ESC is returned. 1In addition,
character codes will terminate input and return the IS.ESC status if
upper- to lowercase conversion is not enabled.

2.17.2 RT02-C Control Function

Because the screen of an RT02C Badge Reader and Data Entry Terminal
holds only one 1line of information, special care must be taken when
sending a control character (for example, vertical tab) to the RT02-C.
Use the IO.WAL (Write All) function for this purpose.

It is recommended that read without echoing be used when reading a

badge with the RT02-C. Use IO.RAL or IO.RNE functions, followed by
the IO.WAL function, to echo the information for display.

2-40.1

FULL-DUPLEX TERMINAL DRIVER

2.17.3 Using IO0O.WVB Instead of IO.WLB

Using IO.WVB instead of TIO.WLB is recommended when writing to a
terminal. If the write actually goes to a terminal, the Executive
converts the IO.WVB to an IO.WLB request. However, if the LUN has
been redirected to an inappropriate device (for example, a disk), the
use of an IO.WVB function will be rejected because a file is not open
on the LUN. This prevents privileged tasks from overwriting block
zero of the disk.

Note that any subfunction bits specified in the IO.WVB request (for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped when the IO.WVB is
converted to an I0O.WLB.

2.17.4 Remote DL11-E, DH1ll1l, and DZ1l1l Lines -E\\
Before a remote line is answered, the driver clears certain terminal \
characteristics (see Table 2-5) that may have been set by an MCR SET
command, or by an SF.SMC function. The characteristics cleared are:
TC.SCP, TC.ESQ, TC.HLD, TC,SMR, TC.NEC, TC.PBX, TC.BFF, TC.HHT,
TC.YPL, TC.HFL, TC.2TP, TC #BBC, and TC.BEN. (Clearing TC.TTP means
that a terminal type of T"unknown" will be returned in an SF.GMC /
request.) The TC.ACR characteristic (automatic wrap around) 1is set.
Buffer size is set to 72.

i
A DZ11 remote line must be declared to be remote before the terminal
driver will handle the modem.

2.17.5 Side Effects of Setting Characteristics

Certain terminal characteristics that a task may set or that an
operator may set using MCR commands may have undesirable side effects.
In particular, these characteristics include the hold-screen mode and
the 1lower- to uppercase conversion disable mode. Their effects are
described as follows.

TC.HLD -- Unexpected behavior <can result from a terminal in the
hold-screen mode 1if 1its reception rate 1is much greater than its
transmission rate. (The DH1l1l supports split baud rates.) When in the
hold-screen mode, the terminal automatically sends a CTRL/S during
reception of an output stream when the screen is nearly full. Output
is resumed -- another screen-full -- when you type SHIFT/SCROLL (the
terminal generates CTRL/Q). Thus, no output is lost as a result of
scrolling off the screen before vyou can read it. However, if the
terminal's transmission rate is far below 1its reception rate, some
unread output may scroll out of sight before the CTRL/S can be
transmitted.

Note that some terminals and interfaces are hardware buffered. This
can cause obscure timing problems for tasks that attempt to invoke the
hold-screen mode.

TC.SMR —-- If this characteristic 1is asserted (lower- to wuppercase
conversion 1is disabled), octal characters 175 and 176 are interpreted
as "right brace (})" and "tilde (~)," respectively. If TC.SMR is
not asserted, these characters are interpreted as an Altmode (that is,
they function as line terminators that do not advance the cursor to a
new line).

FULL-DUPLEX TERMINAL DRIVER

2.17.6 Modem Support

The terminal driver supports the following modem control operations:
e Local or remote operation
e Answer speed
e Auto-baud speed detection

The characteristics bit that controls local or remote operation is
TC.DLU. This bit can be set with the MCR command SET /REMOTE (or SET
/NOREMOTE for local operation). The DCL command SET TERMINAL REMOTE
(or SET TERMINAL LOCAL) can also be used.

When there 1is an 1incoming call on a remote 1line, the TC.ASP
characteristic determines the baud rate for the answering modem.

Split baud rates (different transmit and receive speeds) are not
supported for answer speed.

The default answer speed is set at SYSGEN time. However, the answer
speed can be set on line using the MCR command SET /REMOTE=TTnn:speed.
VMR can also be used to set the answer speed.

The terminal driver can determine the speed of the incoming call by
sampling the first input <character after dial-up for the following
speeds:

110
150
300
1200

This is called auto-baud speed detection. This option can be selected
for each 1line wusing the SET /ABAUD command. This command sets the
TC.ABD terminal characteristic. When TC.ABD is set for a given 1line,
the terminal driver makes three attempts to determine the incoming
speed. If the auto-baud speed detection fails, the terminal driver
will use the default answer speed discussed above.

For auto-baud speed detection to work correctly, the first input
character after dial-up must be either carriage return or CTRL/C.

CHAPTER 3

HALF-DUPLEX TERMINAL DRIVER

3.1 INTRODUCTION

The half-duplex terminal driver provides support for a variety of
terminal devices under RSX-11M. (This terminal driver 1is not
supported on RSX-11M-PLUS systems.) The half-duplex terminal driver is
generally used in RSX-11M systems where small driver size Iis
essential, and the additional functional capability provided by the
larger full-duplex terminal driver (described in Chapter 2) is not
required. Table 3-1 summarizes the terminals supported, and
subsequent sections describe these devices in greater detail.

Table 3-1
Supported Terminal Devices
Model Columns | Lines/ Character| Baud Upper- & Lowercase?
Screenl Set Range Send Recelve
ASR-33/35 72 64 110
KSR-33/35 72 64 110
LAl2 132 96 50-9600 yes yes
LA100 132 96 110-9600 yes yes
LA30-P 80 64 300
LA30-S 80 64 110-300
LA34 132 96 110-300 yes yes
LA36 80-132 64-96 |110-300 yes yes?2
LA38 132 96 110-300 yes yes
LA120 132 96 50-9600 yes yes
LA180S 132 96 300-9600 yes
RTO02 64 1 64 110-1200
RT02-C 64 1 64 110-1200
VTO05B 72 20 64 110-2400 yes
VTS50 80 12 64 110-9600
VT50H 80 12 64 110-9600
VT52 80 24 96 110-9600 yes yes
VT55 80 24 96 110-9600 yes yes
vVT61 80 24 96 110-9600 yes yes
VT100 80-132 24 96 50-9600 yes yes
VT101 80-132 24 96 50-19200 yes yes
VT102 80-132 24 96 50-9600 yes yes
VT105 80-132 24 96 50-9200 yes yes
VT125 80-132 24 96 50-9600 yes yes
VT131 80-132 24 96 50-19200 yes yes
VT132 80-132 24 96 50-19200 yes yes

1. Applies only to video terminals.

2. Only for 96-character terminal. The terminal driver supports
the terminal interfaces summarized in Table 3-2. These interfaces
are described in greater detail in Section 3.9. Programming is
identical for all.

HALF-DUPLEX TERMINAL DRIVER

Table 3-2
Standard Terminal Interfaces
Model Type

DH11 16-1ine multiplexert
DH11-DM11-BB 16-1line multiplexer with modem control?2
DJ11 16-1line multiplexer
DL11-A/B/C/D/W Single-line interfaces
DLV11-F Single-line interface
DZ11 8-line multiplexer with modem control?2

1. Direct memory access (DMA) not supported.
2. Full-duplex control only. For example, in the USA, a
Bell 103A-type modem.

Terminal input lines can have a maximum length of 255 bytes (the
maximum is set in the system generation, or SYSGEN, dialog). The
extra characters of an input line that exceeds the maximum length
generally become an unsolicited input line.

3.1.1 ASR-33/35 Teletypes!

The ASR-33 and ASR-35 Teletypes are asynchronous, hard-copy terminals.
No paper tape reader or punch capability is supported.

3.1.2 KSR-33/35 Teletypesl

The KSR-33 and KSR-35 Teletypes are asynchronous, hard-copy terminals.

3.1.3 LA30 DECwriters

The LA30 DECwriter is an asynchronous, hard-copy terminal that is
capable of producing an original and one copy. The LA30-P is a
parallel model and the LA30-S is a serial model.

3.1.4 LA36 DECwriter

The LA36 DECwriter is an asynchronous terminal that produces hard copy
and operates in serial mode. It has an impact printer capable of
generating multipart and special preprinted forms. The LA36 can
receive and transmit both uppercase and lowercase characters.

1. Teletype is a registered trademark of the Teletype Corporation.

3-2

HALF-DUPLEX TERMINAL DRIVER

3.1.5 LA120 DECwriter

The LA120 DECwriter is a hard-copy, upper- and lowercase terminal
capable of printing multipart forms at speeds up to 180
characters-per-second. Serial communications speed is selected from
14 baud rates ranging from 50 to 9600 bps. Hardware features allow
bidirectional printing for maximum printing speed, and also allow
user-selected features, including font size, 1line spacing, tabs,
margins, and forms control. These functions can also be set up by
user tasks that issue appropriate ANSI-standard escape sequences.

3.1.6 LA180S DECprinter

The LA180S DECprinter is a serial version of the LA180. It is a
print-only device (it has no keyboard) that can generate multipart
forms. The LA180S can print uppercase and lowercase letters.

3.1.7 RTO2 Alphanumeric Display Terminal and RT02-C Badge Reader/
Alphanumeric Display Terminal

The RT02 is a compact, alphanumeric display terminal designed for
applications in which source data is primarily numeric. A shift key
permits the entry of 30 discrete characters, 1including uppercase
alphabetic characters. The RT02 can, however, receive and display 64
characters.

The RT02-C model also contains a badge reader. This option provides a
reliable method of identifying and controlling access to the PDP-1l1 or
to a secure facility. Furthermore, data in a format corresponding to
that of a badge (22-column fixed data) can be entered quickly.

3.1.8 VTO05B Alphanumeric Display Terminal

The VTOS5B is an alphanumeric display terminal that consists of a CRT
display and a self-contained keyboard. From a programming point of
view, it is equivalent to other terminals, except that the VTO05B
offers direct cursor addressing.

3.1.9 VTS50 Alphanumeric Display Terminal

The VT50 is an alphanumeric display terminal that consists of a CRT
display and a keyboard. It is similar to the VTO05B in operation, but
does not offer direct cursor addressing.

3.1.10 VTSO0H Alphanumeric Display Terminal

The VTS50H is an alphanumeric display terminal with CRT display,
keyboard, and numeric pad. It offers direct cursor addressing. (The
VT50H's direct cursor addressing is not compatible with that of the
VT05B.)

HALF-DUPLEX TERMINAL DRIVER

3.1.11 VT52 Alphanumeric Display Terminal

The VT52 is an upper- and lowercase alphanumeric terminal with numeric
pad and direct cursor addressing. (The VT52's direct cursor
addressing is compatible with that of the VT50H, but not with that of
the VTO05B.) The VT52 can be configured with a built-in thermal
printer.

3.1.12 VT55 Graphics Display Terminal

The VT55 is similar to the VT52 in its operation as an alphanumeric
terminal. The VTS55 offers graphics display features that are not
supported by RSX-11M, although the system allows a knowledgeable task
to access the explicitly special features of the VT55.

3.1.13 VT61 Alphanumeric Display Terminal

The VT61l 1is an "intelligent"™ wupper- and lowercase alphanumeric
terminal with an integral microprocessor. It offers two 128-member
character sets and numerous built-in functions for editing and
preparing forms, as well as a block-transfer mode. (None of these
special features is supported by RSX-11M.)

3.1.14 VT100 DECscope

The VT100 DECscope 1is an upper- and lowercase alphanumeric
keyboard/video display terminal. It is capable of displaying 24 lines
of 80 characters (each line). Serial communications speed is selected
from baud rates ranging from 50 to 9600 bps. Hardware features allow
user selection of display characteristics and functions including
smooth scroll, reverse video, and so forth. These functions can also
be set up by user tasks that issue appropriate ANSI-standard escape
sequences.

3.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for terminals. A setting of 1 indicates that the
described characteristic is true for terminals.

Bit Setting Meaning
0 1 Record-oriented device
1 1 Carriage-control device
2 1 Terminal device
3 0 File structured device
4 0 Single-directory device
5 0 Sequential device
6 0 Mass storage device

HALF-DUPLEX TERMINAL DRIVER

Bit Setting Meaning
7 0 User-mode diagnostics supported
8 0 Device supports 22-bit direct addressing
9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications
channel
14 0 Device mountable as a FILES-11 volume
15 0 Device mountable

Words 3 and 4 are undefined. Word 5 indicates the default buffer
size for the device: for terminals the width of the terminal carriage
or display screen.

3.3 QIO MACRO

Table 3-3 lists the standard and device-specific functions of the QIO
macro that are valid for terminals. All device-specific functions are
options that may be selected at system generation.

Two device-specific functions, SF.SMC and SF.GMC, have nonstandard

function names. These names are designed for compatibility with IAS.

Table 3-3
Standard and Device-Specific QIO Functions for Terminals

Format Function

STANDARD FUNCTIONS:

QIOSC IO.ATT,... Attach device
QIosc I10.DET,... Detach device
QIOSC IO.KIL,... Cancel I/0 requests
QIOSC IO0.RLB,...,<stadd,size> READ logical block

(read typed input into buffer)

QIOSC IO0.RVB,...,<stadd,size> READ virtual block
(read typed input into buffer)

QIO$C I0.WLB,...,<stadd,size,vfc> | WRITE logical block

{print buffer contents)
QIOSC IO.WVB,...,<stadd,size,vfc> | WRITE virtual block
(print buffer contents).

(continued on next page)

HALF-DUPLEX TERMINAL DRIVER

Table 3-3

(Cont.)

Standard and Device-Specific QIO Functions for Terminals

QIO0SC

QI0sC
QIOoSsC

QIOSC

QIO0SC

QIO0SC

QIOSC

QIOoSC

QI0s%C

QIO0SC

I10.CCO,...,<stadd,size,vic>

SF.GMC,...,<stadd,size>
I0.GTS,...,<stadd,size>

I0.RAL,...,<stadd,size>

I0.RNE,...,<stadd,size>

I0O.RPR,...,<stadd,size,
[tmo] ,pradd,prsize,vfc>

I0O.RST,...,<stadd,size>

SF.SMC,...,<stadd,size>

IO.WAL,...,<stadd,size>

I0O.WBT,...,<stadd,size,vfc>

Format Function
DEVICE-SPECIFIC FUNCTIONS
(ALL SYSGEN OPTIONS):
QIOSC IO0.ATA,...,<ast> ATTACH device, specify
unsolicited- input-character
AST

CANCEL CTRL/O (if in effect),
then write logical block

GET multiple characteristics
GET terminal support

READ logical all

bits

block, pass

READ logical block, do not echo

READ logical block after prompt

READ logical block ended by
special terminators

SET multiple characteristics
WRITE logical block, pass all
bits

WRITE logical block, break
through most I/0 conditions at
terminal

ast
The entry point for an unsolicited-input-character AST.
pradd
The starting address of the byte buffer where the prompt
stored. The buffer must be within the task's address space.
prsize
The size of the pradd prompt buffer in bytes. If the system
supports variable 1length reads, the buffer size must be greater
than 0 and less than or equal to 255. If the system does not

support variable length reads, the specified size must be greater
0 and less than or equal to 80.

HALF-DUPLEX TERMINAL DRIVER

size

The size of the stadd data buffer in bytes (must be greater than

0). If the function 1is a read and the system supports
variable-length reads, the size must be less than or equal to
255, Otherwise, the size must be less than or equal to 80. The

buffer must be within the task's address space. For SF.GMC,
I0O.GTS, and SF.SMC, the size must be an even number less than
4065 (decimal). If the function is a write, size can be up to
32K bytes.

stadd
The starting address of the data buffer. The address must be
word aligned for SF.GMC, IO.GTS, and SF.SMC; otherwise, stadd
may be on a byte boundary.

tmo V
An optional time-out count, included for IAS compatibility. If
supplied, it is ignored.

vice

A character for vertical format control from Table 3-11 (see
Section 3.7).

3.3.1 Subfunction Bits

Most of the device-specific functions supported by the terminal driver
are implemented by way of "subfunction bits." That is, these functions
can be invoked by ORing a named bit with some other function. Table
3-4 shows the relationship of the 10 subfunction bits to the standard
and device-specific functions.

The 10 subfunction bits, and their octal values, are:

TF.AST Unsolicited-input-character AST 10
TF.BIN Binary prompt 2
TF.CCO Cancel CTRL/O 40
TF.ESQ Recognize escape sequences 20
TF.RAL Read all bits 10
TF.RNE Read with no echo 20
TF.RST Read with special terminators 1
TF.WAL Write all bits 10
TF.WBT Break-through write 100
TF.XOF Send XOFF 100

The subfunction bits are defined in the system module TTSYM (discussed
further 1in Section 3.3.2.5). The octal values of these entities are
subject to change; therefore, it is recommended that you always use
the symbolic names. As Table 3-4 shows, 7 of the 10 subfunction bits
can be ORed with standard QIO functions to invoke device-specific
functions. The remaining three subfunction bits (TF.BIN, TF.ESQ, and
TF.XOF) can be ORed with Attach and Read After Prompt QIOs to provide
added features, as described in Section 3.3.2.

HALF-DUPLEX TERMINAL DRIVER

Of the 10 subfunction bits, 3 can be used with Read QIO functions, 3
with Write functions, 2 with Attach functions, and 5 with Read After
Prompt. The breakdown is:

Read TF.RAL, TF.RNE, TF.RST

Write TF.CCO, TF.WAL, TF.WBT

Attach TF.AST, TF.ESQ

Read After Prompt TF.BIN, TF.XOF, TF.RAL, TF.RNE, TF.RST

If a task invokes a subfunction bit that 1s not supported on the
system, the subfunction bit is ignored, not rejected. For example, if
Read with Special Terminators is not selected, either IO.RST or
IO.RLB!TF.RST is interpreted as IO.RLB.

The following example shows a QIO request using more than one
subfunction bit: a nonechoed read, which may be concluded by a
special terminator, after a prompt.

QIOS$C IO.RPR!TF.RNE!TF.RST,...,<stadd,size,,pradd,prsize,vfc>

3.3.2 Details on Device-Specific QIO Functions

All the device-specific functions described in this section are SYSGEN
options. All except SF.GMC, IO.RPR, SF.SMC, and I0.GTS can be issued
by ORing a particular subfunction bit with another QIO function.
These subfunction bits are specified in the text; subfunction bits
are described in general in Section 3.3,1.

In addition to the 11 device-specific QIO functions, this section also
gives details on the features provided by the 3 subfunction bits
TF.ESQ, TF.BIN, and TF.XOF.

3.3.2.1 IO.ATA - IO.ATA is a variation of the Attach directive. It
specifies an asynchronous system trap (AST) to process an unsolicited
input character. When called as follows:

QIosC IO.ATA,...,<ast>

this function attaches the terminal and identifies "ast™ as the entry
point for an unsolicited-input-character AST. Control passes to this
address whenever any unsolicited character (other than CTRL/Q, CTRL/S,
or CTRL/0) 1is input. Note that 1little checking 1is done on the
specific AST address. A bad address is frequently detected only when
the Executive tries to transfer control to it and the task crashes.

In particular, CTRL/C is trapped by the task and does not reach MCR.
Thus, any task that uses IO.ATA should recognize some.input sequence
as a request to terminate, because MCR can not be invoked to abort the
task in case of difficulty.

Note that this mechanism is intended to get a single character into
the system -- not a series of characters. Since the driver must
become a fork process in order to declare an AST, a second character
can . arrive before the driver can queue an AST for the first character.
The buffer for unsolicited input <characters, however, is one byte
long. Therefore, the terminal driver ignores the second character.
This circumstance can occur because of fast input on a busy system or
because output 1is in progress when the characters are received. The
implications of this are that neither type-ahead nor full-duplex
cperations can be simulated perfectly using unsolicited character
ASTs.

3<8

Table 3-4
Subfunction Bits

Allowed Subfunction Bits

Function | Equivalent with
subfunction bits | TF.AST ({ TF.BIN| TF.CCO | TF.ESQ | TF.RAL { TF.RNE | TF.RST | TF.WAL | TF.WBT | TF.XOF
STANDARD FUNCTIONS
IO.ATT X X
IO.DET
IO.KIL
IO.RLB 1 X 1
I0.RVB 2 2 2
I0O.WLB X X X
I0.WVB 2 2 2
DEVICE~SPECIFIC FUNCTIONS
I0.ATA IO.ATT!TF.AST X
I0.CCO IO.WLB!TF.CCO X X
SF.GMC
I0.GTS
I0.RAL IO.RLB!TF.RAL X 1
I0.RNE IO.RLB!TF.RNE 1 1
I10.RPR X 1 X 1 X
IO.RST IO.RLB!TF.RST 1 X
SF.SMC
I0O.WAL IO.WLB!TF.WAL X X
I0O.WBT IO,WLB!TF.WBT X X

1. Exercise great care when using Read All and Read with Special Terminators together.

result.

2. These subfunction bits are allowed but are not effective.
virtual is converted to a read or write logical.

Obscure problems can

They are stripped off when the read or

write

YIATHA TYNIWYIL XdT1dNA-dTVH

HALF-DUPLEX TERMINAL DRIVER

At entry, the unsolicited character is the low-order byte of the top
word on the stack. Before exiting the AST, be sure to pop that word
off the stack; otherwise, the task will crash. 1In all other respects
the AST environment is standard:

SP+10 Event flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 Task's directive status word
SP+00 Unsolicited character in low byte

See the RSX-11M/M-PLUS Executive Reference Manual for further details
on ASTs. See Section 3.10.10 for hints on ASTs in a multiterminal
environment. '

I0.ATA is equivalent to IO.ATT ORed with the subfunction bit TF.AST.

3.3.2.2 IO.ATTITF.ESQ - The task issuing this directive attaches a
terminal and notifies the driver that it recognizes escape sequences
input from that terminal. Escape sequences are recognized only for
solicited input. See Section 3.6 for a discussion of escape
sequences.

If the terminal has not been declared capable of generating escape
sequences, IO.ATT!TF.ESQ has no effect beyond attaching the terminal.
No escape sequences are returned to the task, because any ESC sent by
the terminal acts as a line terminator. The SF.SMC QIO or the MCR SET

/ESCSEQ command is used to declare the terminal capable of generating
escape sequences (see Table 3-5 and Section 3.3.2.12).

3.3.2.3 I0.CCO - This write function directs the driver to write to
the terminal regardless of a CTRL/O condition that may be in effect.
If CTRL/O is in effect, it is canceled before the write is done.

I0.CCO is equivalent to IO.WLB!TF.CCO.

3.3.2.4 SF.GMC - The Get Multiple Characteristics function returns
information on terminal characteristics. Get Multiple Characteristics
is used in the following way:

QI0$C SF.GMC,...;<¢stadd,size>

stadd

The starting address of a data buffer of 1length "size" Dbytes.
Each word in the buffer has the form

.BYTE characteristic—-name
.BYTE 0

characteristic-name

One of the eight bit names given in Table 3-5.

3-10

HALF-DUPLEX TERMINAL DRIVER

The QIO function returns a
byte-pair:
true.

For the TC.TTP characteristic (terminal type), one of three values

value
1 if the characteristic is true for the terminal,

of each
0 if not

in the high-order byte

is

returned in the high-order byte, as shown in Table 3-6.

The half-duplex terminal

the terminal

characteristic for the type of

NOTE
driver treats
type as a required
terminal

specified. The terminal type (TC.TTP)
does not set any implicit terminal
characteristics other than those noted

in Table 3-6.

Table 3-5
Terminal Characteristics for SF.GMC and SF.SMC Requests

Bit Octal | Meaning Corresponding
Name Value | (If Asserted): Terminal ... MCR Command
TC.ASP3 | 76 Remote line answer speed SET /REMOTE=TI:speed
TC.ESQ 35 ...Can generate escape sequences | SET /ESCSEQ=TI:
Tc.HLD1 44 ...1s8 in hold-screen mode SET /HOLD=TI:

TC.NEC 47 .+.+18 in no-echo mode SET /NOECHO=TI:
TC.PRI2 51 ...15 privileged SET /PRIV=TTnn:
TC.SCP 12 ...1s a scope (CRT) SET /CRT=TI:

TC.SLV 50 ...1s slaved SET /SLAVE=TTnn:
TC.SMR 25 Uppercase conversion disabled SET /LOWER=TI:

on input
TC.TTP 10 Terminal type SET /LA30S=TI:
SET /VTO5B=TI:

TC.HFF 17 ...handle hardware form feeds SET /FORMFEED=TI:
TC.RSP3 3 Receiver speed SET /SPEED=TI:rcv:xmit
TC.XSP3 4 Transmitter speed (As above)

1. Effective for VT5x and VT61 only.

2. Cannot be changed by a task;

must use MCR command.

3. Recognized only by the SF.SMC function.

Table 3-6
Bit TC.TTP (Terminal Type): Values Set by SF.SMC
and Returned by SF.GMC

Octal Value Symbolic Meaning

0 T.UNKO Terminal type is unknown
(resets all other types)

1 T.AS33 Terminal is an ASR
(sets uppercase conversion on
output)

4 T.L30S Terminal is an LA30
(sets horizontal fill after
carriage return)

7 T.VTO05 Terminal is a VTO5B
(sets a vertical fill count of 4)

HALF-DUPLEX TERMINAL DRIVER

3.3.2.5 1I0.GTS - The Get Terminal Support QIO returns a 4-word buffer
of information specifying which SYSGEN-option features are part of the
terminal driver. Of these four words, two are currently defined.
Table 3-7 gives details on these two words. The IO.GTS QIO is itself
a SYSGEN option. If IO.GTS is issued on a minimum system (one with no
terminal-driver SYSGEN options), IE.IFC is returned in the I/0 status
block.

Table 3-7
Information Returned by Get Terminal Support (IO0.GTS) QIO

Bit Value Mnemonic Meaning When Set to 1

Word 0 of Buffer:

0 1 F1.ACR Automatic CR/LF on long lines

1 2 F1.BTW Break-through write

2 4 F1l.BUF Checkpointing during terminal input

3 10 Fl1.UIA Unsolicited-input-character AST

4 20 Fl.CCO Cancel CTRL/O before writing

5 40 F1.ESQ Recognize escape sequences in solicited input
6 100 F1l.HLD Hold-screen mode

7 200 Fl.LWC Lower- to uppercase conversion

8 400 F1.RNE Read with no echo

9 1000 F1.RPR Read after prompting
10 2000 F1.RST Read with special terminators

11 4000 F1.RUB CRT rubout

12 10000 F1l.SYN CTRL/R terminal synchronization

13 20000 F1.TRW Read all and write all
14 40000 F1.UTB Input characters buffered in task's address

space

15 100000 F1.VBF Variable-length terminal buffers

F2.SCH Set characteristics QIO (SF.SMC)
F2.GCH Get characteristics QIO (SF.GMC)

—
N =

The various symbols used by the I0.GTS, SF.GMC, and SF.SMC QIOs are
defined in a system module, TTSYM. These symbols include: Fl.xxx and
F2.xxx (Table 3-7); T.xxxx (Table 3-6); TC.xxx (Table 3-5); and the
SE.XXxX error returns described in Table 3-8, Section 3.4. These
symbols may be defined locally within a code module by using:

.MCALL TTSYMS

TTSYMS

If the symbols are not defined locally, they are automatically defined
by the Task Builder.

The octal values of these symbols are subject to change. Therefore,
it is recommended that you always use the symbolic names.

HALF-DUPLEX TERMINAL DRIVER

3.3.2.6 IO.RAL - The Read All function causes the driver to pass all
bits to the requesting task. The driver does not intercept control
characters or mask out the "parity" (high-order) bit. This means, for
example, that CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to
the program and are not interpreted by the driver.

NOTE

I0.RAL echoes the characters that are
read. To read all bits without echoing,
use IO.RAL!TF.RNE.

I0.RAL is equivalent to IO.RLB ORed with the subfunction bit TF.RAL.
The only way to terminate an IO.RAL function is by a character count
(that is, filling the input buffer).

3.3.2.7 TIO.RNE - IO.RNE causes the driver to read a 1line from the
terminal without echoing the characters that are input. This feature
is useful when typing sensitive information: for example, a password
or combination. IO.RNE is also used to read a badge with the RT02-C.

(Another way to suppress echoing of input is to set the terminal to
no-echo mode with the SF.SMC QIO or the MCR SET /NOECHO command. See
Table 3-5, bit TC.NEC.)

Note that the TC.NEC subfunction only suppresses echoing of solicited
input. Unsolicited input is still echoed.

CTRL/R, if selected as a SYSGEN option, is ignored while an IO.RNE is
in progress.,

IO.RNE is equivalent to IO.RLB ORed with the subfunction bit TF.RNE.

3.3.2.8 IO.RPR - The QIO function IO.RPR (Read After Prompt) has the
same effect as TO.WLB (to write a prompt to the terminal) followed by
IO.RLB. However, IO.RPR differs in four ways from this combination of
QI0Os. With IO.RPR:

® System overhead is lower because only one QIO is processed.

e There is no "window" during which a response to the prompt may
be ignored. Such a window occurs if IO.WAL/IO.RLB is used,
because no read may be posted at the time the response is
received.

e If the issuing task 1is checkpointable, it 1is checkpointed
during both the prompt and the read.

e A CTRL/O that may be in effect is canceled before the prompt
is written.

The third user-specified argument to IO.RPR, tmo, 1is required for
compatibility with IAS. If supplied, it is ignored.

Subfunction bits may be ORed with IO.RPR to write the prompt as a
Write All (TF.BIN) and to send XOFF after the read (TF.XOF). See the
next two sections. In addition, the three Read subfunction bits
(TF.RAL, TF.RNE, TF.RST) can be used with IO.RPR.

HALF-DUPLEX TERMINAL DRIVER

3.3.2.9 IO.RPR!TF.BIN - This QIO function results in a read after a
"binary" prompt, that is, a prompt that is written by the driver with
no character interpretation (as if it were issued as an IO.WAL).

3.3.2.10 TIO.RPR!TF.XOF - This QIO function causes the driver to send
an XOFF to the terminal after 1its prompt-and-read. The XOFF, or
CTRL/S, may have the effect of inhibiting input from the terminal, if
the terminal recognizes XOFF for this purpose.

3.3.2.11 IO.RST - This QIO function acts 1like TIO.RLB, except that
certain special characters terminate the read. These characters are
in the ranges 0-37(8) and 175-177(8). The driver does not interpret
the terminating character, with certain exceptions.l For example, a
horizontal TAB (11 octal) is not expanded, a RUBOUT (or DEL, 177
octal) does not erase, and a CTRL/C does not get MCR's attention.

Upon successful completion of '‘an IO.RST request that was not
terminated by £filling the input buffer, the I/O status block looks
like the following:

Terminating
character

IOSB + IS.SUC&377

of bytes in buffer

The terminating character is not in the buffer.

I0O.RST is equivalent to IO.RLB!TF.RST.

3.3.2.12 SF.SMC - This QIO function allows a task to set and reset
the characteristics of a terminal. Set Multiple Characteristics is
the inverse of SF.GMC. Like SF.GMC, it is called in the following
way:

QIO$C SF.SMC,...,<stadd,size>

stadd
The starting address of a buffer of length "size" bytes.
Each word in the buffer has the form

.BYTE characteristic-name
.BYTE value

1. If upper- and lowercase conversion is disabled (see remarks in
Section 3.10.9), the character 175(8) echoes as right-brace and 176(8)
as tilde, and these characters do not act as terminators. The three
characters CTRL/O, CTRL/Q, and CTRL/S (17, 21, and 23(8),
respectively) are not special terminators. The driver interprets them
as output effectors.

HALF-DUPLEX TERMINAL DRIVER

characteristic-name

One of the symbolic bit names given in Table 3-5.

value

Either 0 (to clear a given characteristic) or 1 (to set a
characteristic). Table 3-5 notes the restrictions that apply to
these characteristics.

If characteristic-name is TC.TTP {terminal type), then value can have
any of the values listed in Table 3-6.

A nonprivileged task can only issue an SF.SMC request to affect 1its
own terminal, TIO:. A privileged task can issue SF.SMC to any
terminal.

3.3.2.13 TI0.WAL - The Write All function causes the driver to pass
all output from the buffer without interpretation. It does not
intercept control characters. Lines are neither wrapped around (if
input/output wrap-around has been selected) nor truncated (if
wrap-around is not selected).

IO.WAL is equivalent to IO.WLB!TF.WAL.

3.3.2.14 IO.WBT - The Write Break Through function 1instructs the
driver to write the buffer regardless of +the 1I/0 status of the
receiving terminal. If an IO.WBT is issued on a system that does not
support IO.WBT, it is treated as an IO.WLB.

e If another write is in progress, it finishes and the IO.WBT is
the next write issued. The effect of this is that IO.WBTs can
be stopped by a CTRL/S. Therefore, tasks may still want to
time out on IO,.WBT.

e If a read is posted, the IO.WBT proceeds anyway, and an
automatic CTRL/R is performed to redisplay any input that was
received before the break-through write.

e CTRL/S and/or CTRL/O, if in effect, are canceled.
e Characters input during a break-through write are ignored.

An IO.WBT cannot break through another IO.WBT that is in progress or
if a prompt is being written by IO.RPR. 1In either case, the low-order
byte of the first word of the I/O status block contains IE.RSU&377.
The task receiving this error need only reissue the write.

Break-through write may only be issued by a privileged task. However,
the task does not have to be mapped to the Executive (Task Builder
options /PR:4 or /PR:5). A task can use IO.WBT if it 1is built with
the /PR:0 switch specified. The privileged MCR command BRO
(broadcast) uses IO.WBT.

Break-through write cannot break through a multiecho. Instead, it

returns error code IE.RSU. When this occurs, the task should reissue
the write request.

3-15

HALF-DUPLEX TERMINAL DRIVER

3.4 STATUS RETURNS

Table 3-8 lists error and status conditions that are returned by the
terminal driver.

Upon successful completion of a read, the I/0O status block contains
data of this sort:

1 0 Byte
Word O ret +1
1 Numbér of bytes read
ret = 0 means read terminated by buffer full

(byte count satisfied);

ret = 15 means IS.CR: read terminated by carriage return.
ret = 33 means IS.ESC: read terminated by an Altmode.

ret = 233 means IS.ESQ: read terminated by an escape sequence.
+1 is IS.8UC: the return code for successful

completion.

Most RSX-11M return codes are byte values: for example, IS.SUC =1 is
a byte value. By contrast, the three return codes IS.CR, IS.ESC, and
IS.ESQ are word values. The 1low-order byte indicates successful
completion, and the high-order byte is required to show what type of
completion occurred.

To test for one of these word-value "return codes, first test the
low-order byte of the first word of the I0SB for the value IS.SUC.
Then test the full word for IS.CR, IS.ESC, or IS.ESQ. (If the full
word tests equal to IS.SUC, then its high-order byte is 0, indicating
byte-count termination of the read.)

The "error" return IE.EOF may be considered to indicate a successful
read, because characters can be returned to the task's buffer.

The three errors in Table 3-8 with SE.xxx codes are returned by the
SF.GMC and SF.SMC QIOs. They are characterized by IE.ABO&377 in the
low-order byte of the first IOSB word. The high-order byte contains
the error code. The second IOSB word contains an offset (starting
from 0) to the byte in error in the QIOs stadd buffer.

3.5 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of special terminal control
characters and keys for RSX-11M. Note that the driver does not
recognize control characters and special keys during a Read All
request (IO.RAL), and recognizes only some of them during a Read with
Special Terminators (IO.RST).

3-16

HALF-DUPLEX TERMINAL DRIVER

Table 3-8
Terminal Status Returns

Code

Reason

IE.EOF

Is.sucC

IS.CR

IS.ESC

IS.ESQ

IS.PND

IE.ABO

IE.BAD

Successful completion on a read with end-of-file

The line of 1input read from the terminal was
terminated with the end-of-file character CTRL/Z.
The second word of the I/0 status block contains
the number of bytes read before CTRL/Z was seen.
The input buffer contains those bytes.

Successful completion

The operation specified in the QIO directive was
completed successfully. If the operation involved
reading or writing, you can examine the second word
of the I/0 status block to determine the number of
bytes processed. The input buffer contains those
bytes.

Successful completion on a read

The line of input read from the terminal was
terminated by a carriage return. The input buffer
contains the bytes read.

Successful completion on a read

The line of input read from the terminal was
terminated by an Altmode character. The input
buffer contains the bytes read.

Successful completion on a read

The line of 1input read from the terminal was
terminated by an escape sequence. The input buffer
contains the bytes read and the escape sequence.

I/0 request pending

The operation specified in the QIO directive has
not yet been executed. The I/0 status block is
filled with Os.

Operation aborted

The specified I/0 operation was canceled by TIO0.KIL
while 1in progress or while in the I/O queue. The
second word of the IOSB shows how many bytes were
processed before the kill took effect. Note that
the SE.xxx error codes are characterized by IE.ABO&
377 1in the low-order byte of the first word of the
I0SB.

Bad parameter

The size of the prompt in a read-after-prompt QIO
is too big (that 1is, greater than 255 bytes on
systems supporting wvariable-length buffers or
greater than 80 on systems that do not).

(continued on next page)

HALF-DUPLEX TERMINAL DRIVER

Table 3-8 (Cont.)
Terminal Status Returns

Code

Reason

IE.DAA

IE.DNA

IE.DNR

IE.IES

IE.IFC

IE.NOD

Device already attached

The physical device unit specified in an TIO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task. If
the attach specified TF.AST or TF.ESQ, these
subfunction bits have no effect.

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

Device not ready

The physical device wunit specified 1in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one
of the following conditions:

e A time-out occurred on the physical device unit
(that is, an interrupt was lost).

e An attempt was made to perform a function on a
remote DH11 or DZ11 1line without carrier
present. (The line is hung up.)

Invalid escape sequence

An escape sequence was started but escape-sequence
syntax was violated before the sequence was
completed. See Section 3.6.4.

Illegal function

A function code specified in an I/0 request was
illegal for terminals; or, the function code
specified was a SYSGEN option not selected for this
system.

Buffer allocation failure
System dynamic storage has been depleted, and there

was insufficient space available to allocate an
intermediate buffer for an input request.

(continued on next page)

HALF-DUPLEX TERMINAL DRIVER

Table 3-8 (Cont.)
Terminal Status Returns

Code Reason

IE.OFL Device off line
The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

IE.PES Partial escape sequence
An escape sequence was started, but read-buffer
space was exhausted before the sequence was
completed. See Section 3.6.4.3.

IE.PRI Privilege violation
In a multiuser system, a nonprivileged task either
issued an IO.WBT or directed an SF.SMC to a
terminal other than its own TIO:.

IE.RSU Resource in use
The prompt of an IO.RPR, or a break-through write,
was in progress when an IO.WBT was issued. Reissue
the I0.WBT later.

IE.SPC Illegal address space
The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
0 was specified.

SE.BIN The new value specified for a terminal
characteristic in an SF.SMC request was not 0 or 1.
(Characteristics other than TC.TTP -- see Table
3-5.)

SE.NIH A terminal characteristic other than those in Table
3-5 was named in an SF.GMC or SF.SMC request; or,
a task attempted to assert TC.PRI.

SE.VAL The new value specified in an SF.SMC request for

the TC.TTP terminal characteristic was not one of
those listed in Table 3-6, or the baud rate (speed)
specified is not valid.

HALF-DUPLEX TERMINAL DRIVER

3.5.1 Control Characters

A control character is input from a terminal by holding the control
key (CTRL) down while typing one other key. Two of the control
characters described in Table 3-9, CTRL/U and CTRL/Z, are echoed on
the terminal as "U and "Z, respectively. Other control characters are
recognized by the terminal driver, but are not printing characters and
therefore are not echoed.

Table 3-9
Terminal Control Characters

Character Meaning

CTRL/C Typing CTRL/C repeatedly is the way to get a
terminal's attention. Normally, typing CTRL/C
causes unsolicited input on that terminal to be
directed to the Monitor Control Routine (MCR).
"MCR>" echoes when the terminal is ready to accept
unsolicited input. When the unsolicited input
completes, it is passed to MCR.

If the last item typed on the terminal was CTRL/S
(suspend output), then CTRL/C restarts suspended
output and directs subsequent input to MCR.

If the hold-screen mode option has been selected at
SYSGEN, and if the terminal is a VT5x or VT6l in
hold-screen mode, then typing a string of CTRL/Cs
eventually removes the terminal from hold-screen
mode.

Not all CTRL/Cs act to get MCR's attention.
CTRL/Cs are directed to a task if the task has
attached a terminal and has specified an
unsolicited-input-character AST. See the discussion
on unsolicited-input-character ASTs, Section
3.3.2.1. CTRL/Cs also go to a task if an IO.RAL
(Read All) or IO.RST (Read with Special
Terminators) is posted.

CTRL/I Typing CTRL/I or TAB initiates a horizontal tab,
and the terminal spaces to the next tab stop. Tabs
at every eighth character position are simulated by
the terminal driver.

CTRL/J Typing CTRL/J is equivalent to typing the LINE FEED
key on the terminal.

CTRL/K Typing CTRL/K initiates a vertical tab, and the
terminal performs four line feeds.

CTRL/L Typing CTRL/L 1initiates a form feed, and the
terminal ©performs eight line feeds. Paging is not
performed.

CTRL/M Typing CTRL/M is equivalent to typing the carriage
RETURN key on the terminal (see Section 3.5.2).

(continued on next page)

HALF-DUPLEX TERMINAL DRIVER

Table 3-9 (Cont.)
Terminal Control Characters

Character

Meaning

CTRL/O

CTRL/Q

CTRL/R

CTRL/S

CTRL/U

CTRL/Z

Typing CTRL/O suppresses output being sent to a
terminal by the current I/0 request. For attached
terminals, CTRL/O remains in effect, and output
continues to be suppressed until any of the
following occurs:

1. The terminal is detached.

2. Input is entered.

3. Another CTRL/O character is typed.

4. An I0.CCO, IO.WBT, or IO.RPR is proccessed.

For unattached terminals, CTRL/O suppresses output
for only the current output buffer (generally one
line).

(SYSGEN option.) Typing CTRL/Q resumes terminal
output previously suspended by means of CTRL/S.

(SYSGEN option.) Typing CTRL/R on a terminal
results in the echo of CR/LF followed by the
incomplete (unprocessed) input line. Any tabs that
were input are expanded and the effect of any
rubouts is shown. On hard-copy terminals, CTRL/R
allows you to verify the effect of tabs and/or
rubouts in an input line. CTRL/R 1is also useful
for CRT terminals when the automatic-cariage-return
and CRT rubout SYSGEN options have been selected
(see Section 3.8). For example, after rubbing out
the leftmost character on the second displayed line
of a wrapped input 1line, you will find that the
cursor does not move to the right of the first
displayed 1line. In this case, CTRL/R brings the
input line and the cursor back together again.

(SYSGEN option.) Typing CTRL/S causes terminal
output to be suspended. Output 1is resumed by
typing CTRL/Q or CTRL/C.

Typing CTRL/U before typing a 1line terminator
causes previously typed characters to be deleted
back to the beginning of the 1line. The system
echoes this character as “U followed by a carriage
return and a line feed. This allows you to retype
the 1line.

Typing CTRL/Z indicates an end-of-file for the
current terminal input. It signals MAC, PIP, TKB,
and other system tasks that terminal input Iis
complete and the task should exit. The system
echoes this character as "Z followed by a carriage
return and a line feed.

HALF-DUPLEX TERMINAL DRIVER

3.5.2 Special Keys

The ESCape, carriage RETURN, and RUBOUT keys have special significance
for terminal input, as described 1in Table 3-10. A line can be
terminated by an ESCape (or Altmode) character, by a carriage RETURN,
by CTRL/Z, or by completely filling the input buffer (that is, by
exhausting the byte count before a line terminator is typed). The
standard buffer size for a terminal can be determined by issuing a GET
LUN INFORMATION system directive and examining Word 5 of the
information buffer. Another way is to type the MCR command "SET
/BUF=TI:",

3.6 ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning with
33 octal. Some terminals generate an escape sequence when a special
key is pressed (for example, the PFl1 key on the VT100). On any
terminal, an escape sequence may be generated manually by typing
ESCape and the appropriate following characters,

Escape sequences provide a way to pass input to a task without
interpretation by the operating system. This could be done with a
number of l-character Read Alls, but escape sequences allow a neater
way to accomplish it (they can be read with ordinary IO.RLBs).

Most DIGITAL software currently does not employ escape sequences. The

specifics provided here are for the benefit of users who wish to take
advantage of escape sequences in their own tasks.

3.6.1 Definition
An escape sequence is defined as follows:

ESC [int] ... [int] fin

ESC

The result of pressing the ESCape key, a byte (character) of
33(8).

int

An "intermediate character™ in the range 40(8) to 57(8). This
range includes the character "space"™ and 15 punctuation marks.
An escape sequence may contain any number of intermediate
characters, or none.

fin
A "final character" in the range 60(8) to 176(8). This range

includes upper- and lowercase letters, numbers, and /13
punctuation marks.

There are four exceptions to this general definition discussed in
Section 3.6.5.

HALF-DUPLEX TERMINAL DRIVER

Table 3-10
Special Terminal Keys

Key

Meaning

ESCape

RETURN

RUBOUT

If escape sequences are not recognized, typing
ESCape or Altmode signals the terminal driver that
there is no further input on the current 1line.
This 1line terminator allows further input on the
same line, because the carriage or cursor 1is not
returned to the first column position.

If escape sequences are recognized, ESCape signals
the beginning of an escape sequence. See Section
3.6.

Typing RETURN terminates the current 1line and
causes the carriage or cursor to return to the
first column on the line.

Typing RUBOUT deletes the last character typed on
an input 1line. Only characters typed since the
last 1line terminator may be deleted. Several
characters can be deleted in sequence by typing
successive RUBOUTs.

The first RUBOUT echoes as a backslash \),
followed by the character that has been deleted.
Subsequent RUBOUTs cause only the deleted character
to be echoed. The next character typed that is not
a RUBOUT causes another backslash, followed by the
new character, to be echoed. The following example
illustrates rubbing out ABC and then typing CBA:

ABC\CBA\CBA

The second backslash is not displayed if a 1line
terminator is typed after rubbing out the
characters on a line, as in the following:

ABC\CBA

(SYSGEN option.) At SYSGEN time you may elect to
support a "CRT rubout" feature. This feature
applies to a terminal only after a SET MCR
directive has been issued:

SET /CRT=TI:

(Note: See Section 3.3.2.12 for another way this
SET can be accomplished, with the SF.SMC QIO
function.) When a RUBOUT is struck, the last typed
character (if any) is removed from the incomplete
input line and backspace-space-backspace is echoed.
If the 1last typed character was a tab, enough
backspaces are issued to move the <cursor to the
character position before the tab was typed. If a
long input line was split, or “"wrapped," by the
automatic-carriage-return option, and a RUBOUT
erases the last character of a previous 1line, the
cursor 1is not moved to the previous line. CTRL/R
must be used to resynchronize the display with the
contents of the incomplete input line.

HALF-DUPLEX TERMINAL DRIVER

3.6.2 Prerequisites

Two prerequisites must be satisfied before escape sequences can be
received by a task.

First, the task must "ask" for them by issuing an IO.ATT and invoking
the subfunction bit TF.ESQ.

Second, the terminal must be declared capable of generating escape
sequences. This may be done with an MCR SET command:

SET /ESCSEQ=TI:

An alternative way to tell the driver that the terminal can generate
escape sequences 1is by issuing the Set Multiple Characteristics QIO.
See Section 3.3.2.13.

If either of these prerequisites is not satisfied, the ESC character
is treated as a line terminator. 1If both prerequisites are satisfied,
then an additional feature results. CTRL/SHIFT/O (37(8)) may be used
as an Altmode.

This character does not act as an Altmode from a terminal that cannot
generate escape sequences.

3.6.3 Characteristics

Escape sequences always act as line terminators. That is, an input
buffer may contain other characters that are not part of an escape
sequence, but an escape sequence always comprises the last characters
in the buffer.

Escape sequences are not echoed. However, if a non-CRT rubout
sequence 1is in progress, it is closed with a backslash when an escape
sequence is begun.

Escape sequences are not recognized in unsolicited: input streams.
Neither are they recognized in a Read with Special Terminators
(subfunction bit TF.RST) nor in a Read All (subfunction bit TF.RAL).

3.6.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 3.6.1 causes the driver
to abandon the escape sequence and to return an error (IE.IES).

3.6.4.1 DEL or RUBOUT (177(8)) - The character DEL or RUBOUT 1is not
legal within an escape sequence. Typing it at any point within an
escape sequence causes the entire sequence to be abandoned and deleted

1. An Altmode is a line terminator that does not cause the cursor to
advance to a new line. On terminals that cannot generate escape
sequences, the ESCape key acts as an Altmode. So do the characters
175(8) and 176(8), if the terminal has not been declared lowercase
(MCR command SET /LOWER). If the terminal is 1lowercase, then these
characters represent right-brace and tilde, respectively.

3-24

HALF-DUPLEX TERMINAL DRIVER

from the input buffer. Thus, use DEL or RUBOUT to abandon an escape
sequence, 1f desired, once vyou have begun it. For example, if you

enter:

AB ESC " DEL CR

the buffer contains "AB" and the I/0 status block looks 1like the
following:

I0SB IS.CR

2

3.6.4.2 Control Characters (0-37(8)) - The reception of any character
in the range 0 to 37(8) (with four exceptions -- see footnotel) is a
syntax violation that terminates the read with an error (IE.IES). For
example, entering:

ESC ! CTRL/SHIFT/O

results in a buffer that contains these three characters and an 1I/0
status block that is similar to the following:

IOSB IE.IES

3

3.6.4.3 Full Buffer - A syntax error results when an escape Sequence
is terminated by running out of read-buffer space, rather than by
reception of a final character. The error IE.PES 1is returned. For
example, after a task issues an IO.RLB QIO with a buffer length of 2,
and you type:

ESC ! A

the buffer contains "ESC !", and the I/O status block contains:

I0SB IE.PES

2

The "A" is treated as unsolicited input.

1. Four control characters are allowed: CTRL/Q, CTRL/S, CTRL/C, and
CTRL/0O. These characters are handled normally by the operating system
even when an escape sequence is in progress. For example, entering:

ESC CTRL/S A

gives:

IOSB IS.ESQ

2

with the side effect of turning off the output stream.

HALF-DUPLEX TERMINAL DRIVER

3.6.5 Exceptions to Escape-Sequence Syntax

Four "final characters" that normally would terminate an escape
sequence are treated as special cases by the terminal driver. These
special cases exist for historical compatibility reasons. Three of
these characters are: H (73(8)), 2 (77(8)), and O (117(8)). The
syntax for escape sequences that contain these four characters as
intermediates is:

ESC ; [int] ... [int] fin
ESC ? [int] ... [int] fin
ESC O [int] ... [int] finl

int => 40-57 (8).
fin => 60-176 (8).
finl => 100-176 (8).

The fourth exception to the general syntax given 1in Section 3.6.1
involves the "final character"™ Y (131(8)). Historically (for example,
in the VT52), ESC Y has been used to signal the cursor position. It
is followed by two numbers signifying column and row positions:

ESC Y colpos rowpos

where colpos and rowpos are both characters in the range 40-176(8).
They represent bias-40 numbers: colpos = 40 corresponds to column 0,
and so forth.

3.7 VERTICAL FORMAT CONTROL

Table 3-11 summarizes the meanings of all characters used for vertical
format control on the terminal. Any one of these characters can be
specified as the value of the vfc parameter in the functions IO0.WLB,
I0.wWvB, IO.WBT, I0.CCO, or IO.RPR.

Table 3-11
Vertical Format Control Characters
Octal
Value Character Meaning

40 blank SINGLE SPACE - Output a line feed, print the
contents of the buffer, and output a carriage
return, Normally, printing immediately
follows the previously printed line.

60 0 DOUBLE SPACE - Output two 1line feeds, print
the contents of the buffer, and output a
carriage return. Normally, the buffer
contents are printed two 1lines below the
previously printed line.

61 1 PAGE EJECT - Output eight 1line feeds (or, 1if
the terminal is an LA180S, output a form
feed), print the contents of the buffer, and
output a carriage return.

(continued on next page)

HALF-DUPLEX TERMINAL DRIVER

Table 3-11 (Cont.)
Vertical Format Control Characters

Octal
Value Character Meaning

53 + OVERPRINT - Print the contents of the buffer
and output a carriage return, normally
overprinting the previous line.

44 $ PROMPTING OUTPUT - Output a line feed and
print the contents of the buffer. This mode
of output is intended for use with a terminal
on which a prompting message is output, and
input is then read on the same line.

00 null INTERNAL VERTICAL FORMAT - Print the buffer
contents without addition of vertical format
control characters. In this mode, more than
one line of guaranteed contiguous output can
be printed for each I/O request.

All other vertical format control characters are interpreted as blanks
(40(8)).

3.8 FEATURES AVAILABLE BY SYSGEN OPTION

A number of terminal-driver features are available as options at the
time the RSX-11M system 1is generated (see the RSX~-11M System
Generation and Management Guide or RSX-11S System Generation and
Installation Guide, as appropriate). Some that have been mentioned
previously in the text are:

e All the device-specific QIO functions

® Special keys

CTRL/S -- Suspend output

CTRL/Q -- Resume suspended output

CTRL/R —-- Write incomplete input buffer

CRT rubout

e Escape sequences

Other features that you may select at SYSGEN time are described in the
following sections.

3.8.1 Automatic Carriage Return

By SYSGEN option, all terminals in a system may be set to "wrap
around," on input and output, after a specified number of columns. If
this cption 1is selected, th number of characters per 1lin is
determined on a terminal-by-terminal basis. An MCR SET command is
used to specify the wrap-around column, n:

>SET /BUF=TI:n
>

HALF-DUPLEX TERMINAL DRIVER

(Note that n iIs an octal number by default. Type an explicit decimal
point to enter a decimal number.) After SYSGEN and before this SET has
been done for a given terminal, the default column width is 72
(decimal) .

The SET /BUF command used without an argument is an enquiry that
returns the current buffer width for a terminal:

>SET /BUF=TI:
BUF=TI0:00072.
>

A task can determine the buffer width by issuing a Get LUN Information
directive and examining word 5.

After the SET has been done, typing the n+lst character results in a
CR/LF being output before the n+lst character 1is echoed (at the
leftmost character position of the next line). There is still only
one input line, but it is displayed on two lines on the terminal.

Output also wraps around after column n. This is undesirable for some

applications. To disable wrap-around, set the buffer to some number
greater than the terminal's column width. Qutput -- and input
too —- beyond the column width will then overprint at the right

margin. Wrap-around 1is also disabled when executing the IO.WAL
function (see Section 3.10.11), because the driver does not keep track
of the cursor's position.

It is possible to lose track of where you are in the input buffer if
both the automatic carriage return and the CRT rubout features have
been selected at SYSGEN. 1If, while rubbing out text on a wrapped
line, vyou rub out the first character on that line, the cursor will
not back up to the previous 1line. In order to resynchronize the
cursor with the contents of the incomplete input buffer, type CTRL/R
(if this option has been selected).

It is also possible to cause wrap-around to malfunction, This can
occur when more than 255(10) characters are output without an
intervening carriage return. This condition is possible because the
driver maintains a byte 1location with the current cursor position;
thus, counts greater than 255(10) are truncated, and the cursor count
will be invalid until the next carriage return is received.

3.8.2 Variable-Length Buffering

If this user-transparent SYSGEN option 1is selected, up to 255(10)
characters may be read from a terminal. The terminal driver allocates
an Executive buffer the same size as the read request.

If the variable-length option is not chosen, any number of characters
may be read from a terminal, but a maximum of 80(10) are transferred
to the task issuing the read request. An Executive buffer of 80(10)
characters is always allocated.

Note that, whether variable-length buffering is selected or not, a
maximum of 80(10) <characters may be directed to MCR as unsolicited
input.

HALF-DUPLEX TERMINAL DRIVER

3.8.3 Task Buffering of Received Characters

This user-transparent SYSGEN option causes characters read from the
terminal to be sent directly to the reading task's buffer. With this
option, no Executive buffer need be allocated, and the completed input
line need not be transferred to the task's buffer. This option,
however, does not necessarily reduce system overhead. In a mapped
system, each character must be mapped to the task's buffer. If
Executive buffering was used, the mapping is done once and then all
the characters are transferred. For the half-duplex terminal driver,
the Executive buffers only input except for the prompt output on an
IO.RPR request.

Task buffering may be overridden by checkpointing. If a task is
checkpointable, an Executive buffer is allocated in the normal way and
the task is made eligible for checkpointing by any task, regardless of
priority, while the read proceeds. (Checkpointing only occurs when
there |is another task that can be made active.) Since
checkpointability is a dynamic quality controlled by the task, the
user retains control over the resource trade-off.

3.8.4 LA30-P Support

This option provides a l-byte software buffer for terminal input from
an LA30-P. Because LA30-Ps communicate with RSX-11M by a
single-buffered hardware interface, the echoing of an input character
may block the reception of the next input character. This is because
a character is normally discarded by the terminal driver if it |is
received before the echo of the previous character completes. The
SYSGEN option for LA30-P support (transparent to the user) will buffer
the second character in the software.

This option should not be chosen at SYSGEN if there are no LA30-Ps in
the system.

3.9 TERMINAL INTERFACES

This section summarizes the characteristics of the four types of
standard communication-line interfaces supported by RSX-11M. All four
interfaces support parity, but RSX-11M does not.

3.9.1 DH1l1l Asynchronous Serial Line Multiplexer

The DH11 multiplexer interfaces up to 16 asynchronous serial
communications lines for terminal use. The DHl1ll supports programmable
baud rates. Input and output baud rates may differ; the input rate
may be set to 0 baud, thus effectively turning off the terminal. The
DM11-BB option may be included to provide modem control for dial-in
lines. These lines must be interfaced by means of a full duplex modem
(for example, in the United States, a Bell 1037 or equivalent modem).

The direct memory access (DMA) capability of the DH1l is not supported
by the RSX-11M terminal driver.

HALF-DUPLEX TERMINAL DRIVER

3.9.2 DJ11 Asynchronous Serial Line Multiplexer

The DJ11 multiplexer interfaces as many as 16 asynchronous serial
lines to the PDP-11 for local terminal communications. The DJ11 does
not provide a dial-in capability, but supports jumper-selectable baud
rates,

3.9.3 DL11 Asynchronous Serial Line Interface

The DL11 supports a single asynchronous serial 1line and handles
communication between the PDP-11 and a terminal. A number of standard
baud rates are available to DL1l1l users. Four versions of the DL11
interface are supported by RSX-11M for terminal use: DL11-A, DL11-B,
DL11-C, and DL11-D. The DL11-E 1is supported by the full-duplex
terminal driver described 1in Chapter 2, and by the message-oriented
communication drivers described in Chapter 11.

3.9.4 DZ11l Asynchronous Serial Line Multiplexer

The DZ11 multiplexer interfaces up to eight asynchronous serial
communication 1lines for use with terminals. It supports programmable
baud rates; however, input and output speeds must be the same. The
DZ11l can control a full duplex modem in auto-answer mode.

3.10 PROGRAMMING HINTS

This section contains information relevant to users of the terminal
driver.

3.10.1 Terminal Line Truncation

If automatic carriage return has not been selected at SYSGEN, and if
the number of characters to be printed exceeds the line length of the
physical device unit, then the terminal driver discards the excess
characters until it receives one that instructs it to return to
horizontal position 1. You can determine when this will happen by
examining word 5 of the information buffer returned by the Get LUN
Information system directive, or by typing "SET /BUF=TI:".

3.10.2 ESCape Code Conversion

If escape sequences are not recognized, an ESCape or Altmode character
code of 33, 175, or 176 is converted internally to 33 before it is
returned to the user on input.

3.10.3 RT02-C Control Function

Because the screen of an RT02C Badge Reader and Data Entry Terminal
holds only one 1line of information, special care must be taken when
sending a control character (for example, vertical tab) to the RT02-C.
Use IO.WAL (Write All).

HALF-DUPLEX TERMINAL DRIVER

It is advisable to read without echoing when reading a badge with the
RT02-C. Use I0.RAL or IO.RNE, and then write the received
information.

3.10.4 Checkpointing During Terminal Input

If checkpointing during terminal input was selected as a SYSGEN
option, a checkpointable task is stopped (and therefore eligible to be
checkpointed) when trying to read. Therefore, a stratagem such as
issuing a read followed by a mark-time does not work. The intent
might be to time out the read if input is not received in a reasonable
length of time. But the mark-time 1is not issued until the read
completes.

You can circumvent this behavior by disabling checkpointing for the
read. This 1is not a desirable solution because it forces a task to
remain in memory during the entire read. This defeats the purpose of
selecting the checkpoint-during-terminal-input option.

3.10.5 Time Required for IO.KIL

An IO.KIL request may take up to 1 second to succeed, because an
internal mark-time mechanism is used to generate a software interrupt
to get into a clean state. The I/O may reach a state in which the
kill can complete within this time (for instance, if a hardware
interrupt is received). 1If not, the request is killed after 1 second.

3.10.6 Use of IO.WVB

We recommend that you routinely use IO.WVB, instead of 1IO0.WLB, when
writing to a terminal. If the write actually goes to a terminal, the
Executive converts your IO.WVB into IO.WLB. However, if the LUN has
been redirected to some inappropriate device -- a disk, for
example -- using an IO.WVB will be rejected because a file is not open
on the LUN. This prevents privileged tasks from overwriting block
zero of the disk (the boot block).

Note that any subfunction bits specified in the IO.WVB request (for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped off when the QIO is
converted to an IO.WLB.

3.10.7 Remote DH1l1l and DZ1l1l Lines

All remote DH1l1l lines in a system are answered at the same baud rate.
All remote DZ1ll 1lines are also answered at the same rate, which may
differ from the DH1l rate. These rates are specified at system
generation.

Before a remote DH1ll or DZ1ll 1line 1is answered, the driver clears
certain of the terminal characteristics (see Table 3-5) that may have
been set by an MCR SET command or by an SF.SMC QIo. The
characteristics cleared are: TC.SCP, TC.ESQ, TC.HLD, TC.SMR, and
TC.TTP. (Clearing TC.TTP means that a terminal type of "unknown" Iis
returned to an SF.GMC request.) Also, buffer size is set to 73.

HALF-DUPLEX TERMINAL DRIVER

A DZ1ll remote line must be declared to be remote before the terminal
driver will correctly handle the modem. This is done with the MCR
command SET /REMOTE=TI:.

NOTE

Because of the few modem signals that
the DZ11 handles and the 1lack of
interrupt support provided for those
signals, the DZ1ll1 may not adequately
handle telephone exchange requirements
in all countries.

3.10.8 High-Order Bit on Output

Setting the high-order bit of an output byte causes it to be
transmitted but not interpreted by the driver.

3.10.9 8Side Effects of Setting Characteristics

Some of the characteristics that a task may set, or that you may set
from a terminal, have side effects that should be noted.

e TC,.HLD -- Unexpected behavior can result from a terminal in
hold-screen mode 1if 1its reception rate is much greater than
its transmission rate. (The DH1ll1l supports split baud rates.)
In hold-screen mode the terminal sends a CTRL/S during
reception of an output stream, when the screen is nearly full.
Output is resumed -- another screen-full -- when you type
SHIFT/SCROLL (the terminal generates CTRL/Q). Thus, no output
is lost as a result of scrolling off the screen before you can
read it. However, if the terminal's transmission rate is far
below its reception rate, some unread output may scroll out of
sight before the CTRL/S can be transmitted.

A related point to note is that some terminals and interfaces
are hardware buffered. This fact can cause obscure timing
problems for tasks that try to implement hold-screen mode.

e TC.SMR -- If this characteristic is asserted (that 1is, 1if
lower-/uppercase conversion 1is disabled by, for example, SET
/LOWER=TI:), the two characters 175(8) and 176(8) are
interpreted as [(right-brace) and (tilde), respectively.
If TC.SMR 1is not asserted, these two characters act as
Altmodes. That 1is, they act as line terminators that do not
advance the cursor to a new line. Altmodes are npt echoed.

3.10.10 Unsolicited-Input-Character ASTs for Tasks Attaching Several
Terminals

For a task that attaches several terminals (for example, a reentrant
language processor), the handling of unsolicited input requires
special care. When the terminal driver passes an unsolicited input
character to a task, it does not pass any information about which of
several terminals generated the character. The task must ascertain
this for itself.

HALF-DUPLEX TERMINAL DRIVER

One solution is for the task to name uniquely the AST entry points for
each attached terminal. Each separate AST then identifies 1its
terminal before branching to a common routine that processes the
unsolicited character. For example:

ATT1: QIO$C IO.ATA,...,<UIC1l>
BR CONT

ATT2: QIOS$SC IO.ATA,...,<UIC2>
BR CONT

UICl: MOV #1,-(SP)
BR UIC

UIC2: MOV #2,-(SP)
BR UIC

UIC: MOV (SP)+,INDEX

3.10.11 Direct Cursor Control

The terminal driver generally examines the output stream in order to
keep track of the cursor's horizontal position (so that output can be
wrapped around or discarded). Therefore, tasks that want to use
direct cursor control should use IO.WALs. This prevents the terminal
driver from inserting CR/LFs (that the task considers spurious) into
the output stream. FORTRAN WRITE statements become I0O.WVBs, which are
interpreted by the driver. To prevent this, a FORTRAN task can use
the CALL QIO routine or <can issue carriage returns at frequent
intervals (to make the driver think the cursor is always well to the
left of the rightmost column, and therefore no CR/LFs need be emitted
to keep the cursor on the screen).

3.10.12 DL11 Receiver Interrupt Enable

For hardware reasons, a DL11 1is susceptible to 1losing receiver
interrupt enable 1in 1its Receiver Status Register. The disabling of
the receiver interrupt bit causes the terminal to print output
requests but not to respond to input (for example, the terminal does
not echo input characters). The terminal driver has no mechanism for
recognizing the disabling. Therefore, it cannot recover. The bit
must be reset with an MCR OPEN command, the console switch register,
or a periodically rescheduled task.

3.10.13 Loadable Driver Restrictions

Checkpointing during terminal input, variable-length terminal buffer
support, and escape sequence support require the presence of
conditicnally assembled Executive support. If a loadable terminal
driver supports one of these features and the Executive does not (or
vice versa), the best that can happen is an undefined global when the
terminal driver is built. At worst, the system is corrupted.

CHAPTER 4

VIRTUAL TERMINAL DRIVER

4.1 TINTRODUCTION

The virtual terminal driver supports offspring task use of wvirtual
terminals in RSX-11M-PLUS systems. Virtual terminals are not physical
hardware devices; they are actually implemented in software through
the use of data structures created by the RSX-11M-PLUS Executive.
Virtual terminals are created by the Executive when requested by
parent tasks with the Create Virtual Terminal directive. Virtual
terminals are wuseful in batch processing and other processing
environments in providing noninteractive terminal 1I/0 support for
offspring tasks, eliminating the need for operator intervention.

Offspring task(s) "spawned" by or "connected" to the parent task that
created the virtual terminal can perform terminal I/0 operations with
the virtual terminal in the same manner as with physical terminals.
Virtual terminals differ from physical terminals in that they receive
input from or output to a program (the parent task), rather than from
a keyboard or to a display (or printer), respectively.

4.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for virtual terminals. A setting of 1 indicates that the
described characteristic is true for virtual terminals.

Bit Setting Meaning
0 1 Record-oriented device
1 1 Carriage-control device
2 1 Terminal device
3 0 File-structured device
4 0 Single-directory device
5 0 Sequential device
6 0 Reserved
7 0 User-mode diagnostics supported

VIRTUAL TERMINAL DRIVER

Bit Setting Meaning

8 0 Massbus device

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications channel
14 0 Device mountable as a FILES-11 volume

15 0 Device mountable

Words 3 and 4 are undefined. Word 5 specifies the maximum byte count
(that 1is, maximum buffer size) to which offspring requests will be
truncated; this value is specified by the parent task in the Create
Virtual Terminal system directive, as described in the RSX-11M/M-PLUS
Executive Reference Manual.

4.3 QIO MACRO

Table 4-1 lists the standard and device-specific functions of the QIO
macro that are valid for virtual terminals.

Table 4-1
Standard and Device-Specific QIO Functions for Virtual Terminals

Format Function

STANDARD FUNCTIONS:

QI0$C IO.ATT,... Attach device
QI0S$C IO.DET,... Detach device
QIOSC I0.KIL,... Cancel I/0 request
QIOSC IO.RLB,...,<stadd,size> Read logical block
QIOSC I0.RVB,...,<stadd,sized> Read virtual block

(effects IO.RLB)
QIO$C IO0.WLB,...,<stadd,size,stat> Write logical block

QIOSC I0.WVB,...,<stadd,size,stat> Write virtual block
(effects IO.WLB)

(continued on next page)

VIRTUAL TERMINAL DRIVER

Table 4-1 (Cont.)
Standard and Device-Specific QIO Functions for Virtual Terminals

Format Function

DEVICE~-SPECIFIC FUNCTIONS:

QIOSC I0.STC,...,<cb,sw2,swl> Set terminal characteristics
(enable/disable intermediate
I/0 buffering, or return I/O
completion status to
offspring task)

QI0SC SF.GMC,...,<stadd,size> Get multiple characteristics
QI0sSC IO.GTS,...,<stadd,size> Get terminal support

QIOSC IO.RPR,...,<stadd,size,[tmo], Read logical block
pradd,prsize,vic> after prompt

QI0$C SF.SMC,...,<stadd,size> Set multiple characteristics

size

The size of the data buffer in bytes (must be greater than 0).
The buffer must be located within the addressing space of the
parent or offspring task issuing the I/0O request.

stadd

The starting address of the data buffer. The address must be
word aligned for SF.GMC, I0.GTS, and SF.SMC; otherwise, it may
be aligned on a byte boundary.

stat

The I/0 completion status code, specified by the parent task,
that is 1issued by the virtual terminal driver in response to an
offspring task's read request upon successful completion.

cb

Characteristic bits to become set, selecting the following
virtual terminal functions:

cb Value Bits Set Function
0 none Enable intermediate
buffering in the Executive
pool
1 0 Return the specified
virtual terminal I1/0

completion status to the
requesting offspring task

2 1 Disable intermediate
buffering

3 0 and 1 Return status for
offspring write request

VIRTUAL TERMINAL DRIVER

swl
The I/0 completion code for I/O completion status.
NOTE
The sw2 and swl parameters are valid in
the 1I0.STC function only when cb=1l or
cb=3.
tmo
An optional time-out count (see below).
vfc
A character for vertical format control. See Table 3-11,
pradd
The starting address of the prompt buffer.
prsize

The size of the prompt buffer 1in bytes. The buffer must be
located within the address space of the offspring task issuing
the I/0 request.

4.3.1 Standard QIO Functions

4,3.1.1 I0.ATT - This I/0 function can be issued by offspring task
tasks to attach the virtual terminal. (It is illegal for parent tasks
to issue IO0.ATT). Attaching a wvirtual terminal prevents other
offspring tasks from executing I/C operations with the wvirtual
terminal. However, parent task I/0 requests are always serviced when
issued.

4.3.1.2 IO0.DET - This I/O function can be issued by offspring tasks
to detach the virtual terminal, making it available for use by other
offspring tasks connected to the same parent task. (It is illegal for
parent tasks to issue IO.DET.)

4,3.,1.3 IO.KIL - Parent and offspring tasks can issue IO,KIL to
cancel 1I/0 requests. An offspring task issuing IO.KIL can result in
IE.ABO being returned to the parent task.

4,3.1.4 1I0O.RLB, IO.RVB, IO.WLB, IO.WVB - These read and write
functions execute requested I/0 operations with virtual terminals in
the same manner as with terminals described in Chapter 2, except as
follows:

1. The virtual terminal driver returns the tmo parameter of an
offspring task's IO.RLB or IO.RVB request, or the vfc
parameter of an offspring task's IO.WLB or I0.WVB request as
a stack parameter on entry to the appropriate AST for the
parent task.

VIRTUAL TERMINAL DRIVER

2. The virtual terminal driver returns I/O0 completion status to
the offspring task 1in response to successful completion of
the offspring task's IO.RLB or IO.RVB request; however, the
actual I/0 completion status values returned are specified
for data transfers in the third parameter word of the parent
task's IO.WLB or IO.WVB response, or in the second and third
parameters of the parent task's IO.STC function response when
no data transfer is desired.

4.3.2 Device-Specific QIO Function (I0.STC)

The I0.STC function can be issued by parent tasks to enable/disable
offspring task I/0 buffering in secondary pool, or to force an
appropriate I/0O completion status for an offspring task read 1I/0
request when no data transfer is desired. Both of these applications
for the I0.STC function are described as follows.

Parent tasks can use I0.STC to enable (or disable) intermediate
buffering in secondary pool. Intermediate buffering, when enabled, is
performed on offspring task virtual terminal read and write requests
when the offspring task is checkpointable.

Thus, offspring tasks can be stopped for wvirtual terminal 1I/O and
checkpointed in a manner similar to that when physical terminals are
used. Whenever the virtual terminal driver determines that
intermediate buffering should not be used, offspring tasks that issue
terminal requests become 1locked in memory until I/0O completion;
transfers occur directly between parent task and offspring task
buffers without intermediate buffering in secondary pool.

In addition to the conditions that permit intermediate buffering (when
specified), one condition can automatically disable intermediate
buffering of the parent task. If the buffer size specified 1in the
Create Virtual Terminal directive exceeds the maximum size specified
at system generation time (512(10) maximum), intermediate buffering is
disabled.

The second application for I0.STC is to allow the wvirtual terminal
driver to return an appropriate I/O completion status in response to
an offspring task read request. I/0 status returned in this manner
allows successful completion of the offspring task's request when the
parent task determines that no data transfer 1is desired; this
condition can occur, for example, when no data is available for input
to the offspring task by the virtual terminal driver. When wused in
this manner, the I0.STC function must include three parameters,
<cb,sw2,swl>, as follows:

cb

A value of 1 is specified to indicate that the 1I/0 completion
status return to the offspring task is desired.

NOTE

If the virtual terminal is operating in full duplex mode,
a cb wvalue of 1 returns status for an offspring read
request, and a cb wvalue of 3 returns status for an
offspring write request.

VIRTUAL TERMINAL DRIVER

sw2

This parameter is the second word returned in the I/0O completion
status indicating the number of bytes read upon successful
completion of an offspring task's read request. However, since
no data transfer actually occurs, the value specified is 0; the
byte count of 0 specified in this function 1is legal (and
desired), whereas a byte count of 0 in write operations is
illegal (and will result in an error being returned to the parent
task}).

sw2

This parameter specifies the status code to be returned to the
offspring task by the virtual terminal driver in the first word
of the I/0 completion status. This value is returned in the high
byte and a value of +1 is returned in the low byte of the status
word. Typical values and the status that each represent are
listed as follows:

Code Value Completion Status Indicated

IS.sUC + 1 Successful completion

IS.CR 15 Read terminated by carriage
return

IS.ESC 33 Read terminated by an Altmode

IS.ESQ 233 Read terminated by an escape
sequence

4.3.3 SF.GMC

The Get Multiple Characteristics function returns information on
terminal characteristics. This function can be issued by both the
parent and the offspring tasks. The virtual terminal driver returns
the characteristics that were set by the previous corresponding SF.SMC
request. However, only the full duplex mode (TC.FDX) characteristic
affects the operation of the wvirtual terminal driver. The SF.GMC
function is provided only to maintain transparency to the offspring
task.

Valid virtual terminal characteristics are listed in Table 4-2.

4.3.4 I0.GTS

The Get Terminal Support function returns a 4-word buffer of
information specifying which features are a part of the virtual
terminal driver. The virtual terminal driver provides the IO0.GTS
function only to maintain transparency to the offspring task. Table
2-7 lists the options returned by the full duplex terminal driver. Of
those listed, the virtual terminal driver returns the following:

Word 1 -- F1.BUF, Fl1.RPR, F1.UTB, and Fl.VBF

Word 2 -- F2.SCH and F2.GCH

VIRTUAL TERMINAL DRIVER

4.3.5 TIO.RPR

The Read After Prompt (IO.RPR) function can be 1issued only by the
offspring task. When the offspring task issues this function, the
function appears to the parent task as a separate write request
followed by a read request. This function is described in Chapter 3.

4.,3.6 SF.SMC

The SF.SMC function allows a task to set and reset the characteristics
of a terminal. Both the parent and the offspring tasks may issue this
function. The parent task may set virtual terminals to full duplex
operation by using the SF.SMC function with the characteristics bit
TC.FDX. When in full duplex mode, the wvirtual terminal driver
attempts to process the offspring task's read and write requests
simultaneously. In order to 1insure that these operations are
overlapped, the parent task should minimize the amount of time it
spends in AST state.

The virtual terminal driver defaults to half duplex mode.

Table 4-2 lists the characteristics that either the parent or the
offspring task may set.

Table 4-2
Virtual Terminal Characteristics
Bit Name Octal Meaning (If Asserted) Default Value
Value
TC.FDX 64 Full duplex mode 0
TC.SCP 12 Terminal is a scope 0
TC.SMR 25 Uppercase conversion 0
disabled
TC.TTP 10 Terminal type 0

4.4 STATUS RETURNS

The error and status conditions listed in Tables 4-3 and 4-4 are
returned by the wvirtual terminal driver described in this chapter.
The SE.NIH error is returned by the SF.GMC and SF.SMC functions. For
this error, the 1low byte of the first word in the I/0 status block
contains IE.ABO. The second word in the I/O status block contains an
offset (starting at 0) pointing to the erroneous byte in the stadd
buffer.

VIRTUAL TERMINAL DRIVER

Table 4-3

Virtual Terminal Status Returns for Offspring Task Requests

Code

Reason

IS.SUC

IE.IFC

IE.ABO

IE.SPC

IE.UPN

SE.NIH

Successful completion of an offspring task read
request results in an I/0 completion status specified
in a parent task QIO parameter being returned.
Typically, the status information returned simulates
a subset of I/0O returns normally produced by the
terminal drivers described in Chapter 2.

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block indicates the number of bytes
transferred on a write operation.

Invalid function code

The offspring task attempted a read or a write
function and the parent task did not specify an AST
address in 1its response to the requested I/0
function, or the offspring task issued an I0.STC or
other invalid function.

Request terminated

The offspring task issued IO0.KIL or the parent task
eliminated the virtual terminal unit.

Illegal address space

Part or all of the buffer specified for a read or
write request was outside of the task's address
space, or a byte count of 0 was specified.

Insufficient dynamic storage

The driver could not allocate an AST block to notify
the parent task of an offspring task request, or the
driver could not allocate an intermediate buffer in
the Executive pool.

A terminal characteristic other than those in Table
4-2 was specified, or an offspring task attempted to
assert TC.FDX.

Virtual

VIRTUAL TERMINAL DRIVER

Table 4-4
Terminal Status Returns for Parent Task Requests

Code

Reason

Is.sucC

IE.EOF

IE.BAD

IE.DUN

IE.IFC

SE.NIH

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block indicates the number of bytes
transferred on a read or write operation.

End of file encountered
The I0.STC function was completed successfully.
Bad parameters

The parent task specified a buffer size that exceeded
the system maximum specified at system generation
time.

Device not attachable

An IO.ATT or IO.DET function was issued by the parent
task.

Invalid function code

A read, write, or I0.STC function was issued without
a pending offspring task request. This status can
occur if the offspring task cancels a pending read or
write request. This function code is also returned
when IO.STC is issued to enable intermediate
buffering on a wvirtual terminal unit whose buffer
size, specified 1in the Create Virtual Terminal
directive, exceeds the system maximum specified at
system generation time.

A terminal characteristic other than those in Table
4-2 was specified in an SF.GMC or SF.SMC request.

CHAPTER 5

DISK DRIVERS

5.1 INTRODUCTION

The RSX-11M disk drivers support the disks summarized in Table 5-1.
Subsequent sections describe these devices in greater detail.

All of the disks described in this chapter are accessed in essentially
the same manner. Up to eight disks of each type (except RX01l, RX02,
RX50, RD51, RC25, RLOl, RL0O2, RA60, RA80, or RA8l) may be connected to
their respective controllers. Disks and other file-structured media
are divided logically into series of 256-word blocks.

5.1.1 RF1l1/RS11 Fixed-Head Disk

The RF1ll controller/RS11 fixed-head disk provides random access bulk
storage., It features fast track-switching time and a redundant set of
timing tracks.

5.1.2 RSO3 Fixed-Head Disk

The RS03 (RH11-RH70 controller/RS03 fixed-head disk) is a fixed-head
disk that offers speed and efficiency. With 64 tracks per platter and
recording on one surface, the RS03 has a capacity of 262,144 words.

5.1.3 RS04 Fixed-Head Disk

The RS04 (RH11-RH70 controller/RS04 fixed-head disk) is similar to the
RS03 disk and interfaces to the same controller, but provides twice
the number of words per track by recording on both surfaces of the
platter, and thus has twice the capacity.

5.1.4 RP11/RP02 or RP03 Pack Disks

The RPl1l controller/RP02 or RP03 pack disk consists of 20 data
surfaces and a moving read/write head. The RP03 has twice as many
cylinders, and thus double the capacity of the RP02. Only an even
number of words can be transferred in a read/write operation.

5-1 April 1983

DISK DRIVERS

Table 5-1
Standard Disk Devices

Controller/ Bytes/ Decimal
Drive RPM Secs Trks Cyls Drive Blocks

RF11/RS11 1800 - 1 128 524,288 1024
RHXX/RS03 3600 641 1 64 524,288 1024
RHXX/RS04 3600 64l 1 64 1,048,576 2048
RP11E/RPRO2 2400 10 20 200 20,480,000 40,000
RP11C/RPO3 2400 10 20 400 40,960,000 80,000
RHXX/RMO02 2400 32 5 823 67,420,160 131,680
RHXX/RMO03 3600 32 5 823 67,420,160 131,680
RH70/RM05 3600 32 19 823 256,196,608 500,384
RH11/RP04,RP0O5| 3600 22 19 411 87,960,576 171,798
RH70/RP06 3600 22 19 815 174,423,040 340,670
RH70/RPO7 3600 50 32 6302 516,096,000 (1,008,000
RH70/RM80 3600 31 14 5592 124,214,272 242,606
RK11/RKO05 1500 12 2 200 2,457,600 4800
RL11/RLO1 2400 403 2 256 5,242,880 10,240
RL11/RLO2 2400 403 2 512 10,485,760 20,480
RK611/RK06 2400 22 3 411 13,888,512 27,126
RK611/RK07 2400 22 3 815 27,810,800 53,790
RX11/RX01 360 264 1 77 256,256 494
RX211/RX02 360 264 1 77 512,512 988
UDAS50/RA80 3600 31 14 546 121,325,568 236,964
UDAS50/RA81 3600 51 14 1248 456,228,864 891,072
UDAS50/RA60 3600 42 4 2382 204,890,112 400,176
RC25 2850 31 2 796 26,061,824 50,202
RD51 3600 16 4 306 10,027,008 19,584
RX50 300 10 1 80 409,600 800
1. The RS03 has 64 words per sector; the RS04 has 128

words/sector.

2. The RP07 and the RM80 each have two additional CE cylinders.

3. The RLO1l and RL02 each have 128 words per sector.

4, The RX01 has 64 words per sector; the RX02 has 128 words per

sector.

April

1983

DISK DRIVERS

5.1.5 RM02/RMO3/RM05/RM80 Pack Disk

The RM02/RM03, RM0O5, and RM80 are MASSBUS disk drives and adapters
that wuse the -existing MASSBUS controller. With a single head per
surface, they provide a 1.2 megabyte-per-second data transfer rate.
The RM03, RMO5, and RM80 are used with the RH70 controller on

PDP-11/70 systems. All other systems use the RM02 with the RH11
controller.

5.1.6 RP04, RP05, RP0O6 Pack Disks

The RP04 or RP0O5 (RH11-RH70 controller/RP04 or RP05 pack disk) pack
disks consist of 19 data surfaces and a moving read/write head. Both
offer large storage capacity with rapid access time. The RP06 pack
disk has approximately twice the capacity of the RP04 or RP05. The
RP07 fixed-media disk has approximately 3 times the capacity of the
RPOG.

5.1.7 RK11/RK05 or RKOS5F Cartridge Disks

The RK1ll controller/RK05 DECpack cartridge disk 1is an economical
storage system for medium-volume, random access storage. The
removable disk cartridge offers the flexibility of 1large off-line
capacity with rapid transfers of files between on- and off-line units
without necessitating copying operations. The RKOS5F has twice the
storage capacity of the RK05 and has a fixed (nonremovable) disk
cartridge.

5.1.8 RL11/RLO1 or RL0O2 Cartridge Disk

The RLOl is a low-cost, single-head per surface disk with a burst data
transfer rate of 512 kilobytes per second. The storage capacity of
the RLO2 is twice that of the RLO1,

5.1.9 RK611/RK06 or RK07 Cartridge Disk

The RK611 controller/RK06 cartridge disk 1is a removable, random
access, bulk-storage system with three data surfaces. The storage
capacity is 6,944,256 words per pack. The system, expandable to eight
drives, is suitable for medium to large systems.

The RK611 controller/RK0O7 cartridge disk is generally similar to the
RK611/RK06, except storage capacity 1is increased to approximately
13,905,400 words per pack. Both RKO6 and RK07 disks can use the same
RK611 controller; mixing RK06 and RK07 disks on the same controller
is permitted.

5-3 April 1983

DISK DRIVERS

5.1.10 RX11/RX01 Flexible Disk

The RX1l controller/RX01 flexible disk is an economical storage system
for low-volume, random access storage. Data is stored in twenty-six
64-word sectors per track; there are 77 tracks per disk. Data may be
accessed by physical sector or logical block. 1If logical or virtual
block I/0 is selected, the driver reads four physical sectors. These
sectors are interleaved to optimize data transfer. The next logical
sector that falls on a new track is skewed by six sectors to allow for
track-to-track switch time. Physical block I/0 provides no
interleaving or skewing and provides access to all 2002 sectors on the
disk. Logical or virtual I/0 starts on track 1 and provides access to
494 logical blocks.

5.1.11 RX211/RX02 Flexible Disk

The RX211l controller/RX02 flexible disk 1is an economical storage
system for low-volume, random access storage. It 1is capable of
operating in either an industry-standard, single-density mode (as
stated for the RX11/RX01 flexible disk), or a double-density mode (not
industry standard). In the single-density mode, each drive can store
data exactly as stated in Section 5.1.10. In the double-density mode,
data is stored in twenty-six 128-word sectors per track; there are 77
tracks per disk. The RX211/RX02 operating in the single-density mode
can read disks written by an RX11/RX01 flexible disk system. In
addition, disks written by the RX211/RX02 operating in the
single-density mode can be read by the RX11/RX01 flexible disk system.

5.1.12 ML-11 Disk Emulator

The ML-11 is a fast, random access, block-mode MOS memory system. The
RSX~11M and RSX-11M-PLUS operating systems treat the ML-11 as a disk.
However, since it is not a disk, the statistics in Table 5-1 do not
apply. Unlike a disk, the number of bytes per drive varies. One
ML-11 provides from 512 blocks to 8192 blocks of storage.

5.1.13 UDA50/RA60/RA80/RA81 Disks

The UDA controller is an intelligent disk controller, which contains a
high-speed microprogrammed processor capable of performing all disk
functions, including data handling, error detection and correction,
and optimization of disk drive activity and data transfers. The types
of drives that can be connected to the UDA50 controllers are the RA60
disk drive, which has a removable pack, and the RA80 and RA81, both of
which are fixed media drives. (For data capacities and rates, see
Table 5-1.) Up to four of these drives can be connected to a UDA, in
any desired combination.

The UDA controller also has two addressable registers in the I/0 page
that are used for the initialization sequence and to initiate polling
of command packet buffers in memory. In addition, this controller is
also capable of carrying out an extensive self-test on power-up or
initialization.

5-4 April 1983

DISK DRIVERS

5.1.14 RC25 Disk Subsystem

The RC25 Subsystem combines, in one package, a controller and a single
disk drive that has a removable disk and a fixed disk. These disks
reside in the drive as two separate logical units on a single spindle.
Their size 1is the same. Both are single eight-inch disks with two
surfaces, and both disks have the same data capacity. But
mechanically they are different: One is a removable front-loading
cartridge disk, while the other cannot be removed from the drive. The
drive is designed with loadable Winchester type heads.

An additional disk drive can be added to the RC25 Disk Subsystem,
providing a dual spindle configuration with two fixed and two
removable disks. The added-on disk drive 1is a slave to the disk
subsystem that has the controller.

5.1.15 RD51 Fixed 5.25 Disk/RX50 Flexible 5.25 Disk

This subsystem is designed to serve a hard(RD)/flexible(RX) disk
combination that can be used as a mass storage medium for small
systems. The basic configuration for this mass storage scheme 1is an
RD51 fixed disk drive and an RX50 flexible dual disk drive. 1In this
configuration, the RD51 is the system device and the RX50 is used as a
data device and/or as a backup. The RX50 dual disk is addressed as
two separate units resulting in a basic configuration of three disk
units. Also, another RD51 can be added to increase storage capacity.
Some of the characteristics of the RD/RX drives are given in Table 5-1
and in the following paragraphs.

The RD51 disk drive is a 5.25 inch fixed disk with Winchester type
heads. It has two disks with four data surfaces. The RD51 is soft
sectored and field formattable. The headers for each sector contain
the sector's cylinder number, head number, and sector number. The
sector number is the logical sector number (0-15) that reflects the
sector interleave of the disk.

The RX50 dual diskette drive is a compact mass storage drive with two
access slots. Each slot can hold a single-sided 5.25 flexible disk.
These diskettes are firm sectored and are not field formattable.
Every track has sectors numbered from 1 to 10. The two diskettes
share the same head transport mechanism.

5.2 GET LON INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for disks. A bit setting of 1 indicates that the
described characteristic is true for disks.

5-4.1 April 1983

DISK DRIVERS

Bit Setting Meaning

0 0 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 1 File structured device

4 0 Single-directory device

5 0 Sequential device

6 1 Mass storage device

7 X User-mode diagnostics supported (device
dependent)

8 X Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo-device

13 0 Device mountable as a communications
channel

14 1 Device mountable as a FILES-11 volume

15 1 Device mountable

Words 3 and 4 of the buffer contain the maximum logical block number.
Note that the high byte of U.CW2 is undefined. The user should clear
the high byte in the buffer before using the block number. For the
RA80 disk, these two words are undefined until the device has been
accessed at least once. Word 5 indicates the default buffer size,
which is 512 bytes for all disks.

5.3 QIO MACRO

This section summarizes the standard, and device~specific QIO
functions for disk drivers.

5.3.1 Standard QIO Functions

Table 5-2 lists the standard functions of the QIO macro that are valid
for disks.

DISK DRIVERS

Table 5-2
Standard QIO Functions for Disks

Format Function
Q0IO$C IO.ATT,... Attach devicel
QIOSC IO.DET,... Detach device
QIO$C IO.KIL,... Kill 1/02

QI08C I0.RLB,...,<stadd,size,,blkh,blkl> READ logical block
QIOS$C IO.RVB,...,<stadd,size,,blkh,blkl> READ virtual block
QIOSC IO.WLB,...,<stadd,size,,blkh,blkl> WRITE logical block
QIO$C IO.WLC,...,<stadd,size,,blkh,blkl> WRITE logical block
followed by write

check3

QIOSC IO.WVB,...,<stadd,size,,blkh,blkl> WRITE virtual block

1. In RSX-11M systems, only unmounted volumes may be attached;
in RSX-11M-PLUS systems, only volumes mounted foreign may be
attached. Any other attempt to attach a mounted volume will
result in an IE.PRI status being returned in the I/O status
doubleword.

2. In-progress disk operations are allowed to complete when
IO.KIL 1is received, because they take such a short time. 1I/O
requests that are queued when IO.KIL is received are killed
immediately. An IE.ABO status is returned in the I/O status
doubleword.

3. Not supported on RX01l or RX02 flexible disks.

stadd

The starting address of the data buffer (must be on a word
boundary).

size
The data buffer size in bytes (must be even, greater than 0, and,
for the RP02 and RP03, also a multiple of four bytes).

blkh/blkl

Block high and block low, combining to form a double-precision
number that indicates the actual logical/virtual block address on
the disk where the transfer starts; blkh represents the high 8
bits of the address, and blkl the low 16 bits.

DISK DRIVERS

I0.RVB and IO.WVB are associated with file operations (see the
IAS/RSX-11 1I/0 Operations Reference Manual). For these functions to
be executed, a file must be open on the specified LUN if the wvolume
associated with the LUN 1is mounted. Otherwise, the virtual I/0
request is converted to a logical I/0 request using the specified
block numbers.

NOTE

When writing a new file using QIOs, the
task must explicitly issue .EXTND File
Control System library routine calls as
necessary to reserve enough blocks for
the file, or the file must be initially
created with enough blocks allocated for
the file. 1In addition, the task must
put an appropriate value in the FDB for
the end-of-file block number (F.EFBK)
before closing the file. (Refer to the
.EXTND routine description in the
IAS/RSX-11 I/0 Operations Reference
Manual.)

Each disk driver supports the subfunction bit IQ.X: inhibit retry
attempts for error recovery. The subfunction bit is used by ORing it
into the desired QIO; for example:

QIOSC IO.WLB!IQ.X,...,<stadd,size,,blkh,blkl>

The IQ.X subfunction permits user-specified retry algorithms for
applications in which data reliability must be high.

The overlapped seek drivers for RSX-11M-PLUS support subfunction bit
I0.0Q: queue the request immediately without doing a seek (that is,
use implied seeks).

5.3.2 Device-Specific QIO Functions

The device-specific functions of the QIO macro are valid for the RX01
only; they are shown in Table 5-3.

Table 5-3
Device-Specific Functions for the
RX01,RX02, RLO1, and RL0O2 Disk Drivers

Format Function

QIOSC IO.RPB,...,<stadd,size,,,pbn>|Read physical block

QIOSC IO.SEC,... Sense diskette characteristics
(RX02 only)

QIOSC I0.SMD,...,<density,,> SET media density (RX02 only)

QIOSC IO0.WDD,...,<stadd,size,,,pbn>|Write physical block (with deleted
data mark) (RX01] and RX02 only)

QIOS$C IO.WPB,...,<stadd,size,,,pbn>|Write physical block

DISK DRIVERS

stadd

The starting address of the data buffer (must be on a word
boundary).

size
The data buffer size in bytes must be even and greater than 0).
pbn
The physical block number where the transfer starts {no
validation will occur).
density

The media density as follows:

0
2

single (RX0l-compatible) density
double density

5.3.3 Device-Specific QIO Function for the RAS80
The RA80 driver supports the device-specific QIO function shown in
Table 5-4.

Table 5-4
Device-Specific QIO Function for the RA80 Disk Driver

Format Function

QIOS$C IO.RLC,...,<stadd,size,,blkh,blkl> | Read Logical with Read Check
modifier

5.4 STATUS RETURNS
The error and status conditions listed in Table 5-5 are returned by

the disk drivers described in this chapter.

Table 5-5
Disk Status Returns

Code Reason

IsS.SsuC Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/0
status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing.

(continued on next page)

DISK DRIVERS

Table 5-5 (Cont.)
Disk Status Returns

Code

Reason

IS.PND

IS.RDD

IE.ABO

IE.ALN

IE.BLK

IE.BBE

IE.BYT

IE.DNR

I/0 request pending

The operation specified in the QIO directive has
not yet been executed. The I/O status block is
filled with Os.

Deleted data mark read

A deleted record was encountered while executing an
I0.RPB function. The second word of the I/0O status
block can be examined to determine the number of
bytes processed (RX01 and RX02 only).

Request aborted

An I/0 request was queued (not yet acted upon by
the driver) when an IO.KIL was issued.

File already open

The task attempted to open a file on the physical
device unit associated with specified LUN, but a
file has already been opened by the issuing task on
that LUN.

Illegal block number

An illegal 1logical block number was specified.
This code would be returned, for example, if block
4800 were specified for an RK05 disk, on which
legal block numbers extend from 0 through 4799.
IE.BLK would also be returned if an attempt was
made to write on the last track of an RK06 disk.
(See Section 5.5.)

Bad block error

The disk sector (block) being read was marked as a
bad block in the header word.

Byte-aligned buffer specified

Byte alignment was specified for a buffer, but only
word alignment 1is legal for disk. Alternatively,
the length of a buffer is not an appropriate number
of Dbytes. For example, all RP03 and RP02 disk
transfers must be multiples of four bytes.

Device not ready
The physical device unit specified in the QIO

directive was not ready to perform the desired I/O
operation.

(continued on next page)

DISK DRIVERS

Table 5-5 (Cont.)
Disk Status Returns

Code

Reason

IE.FHE

IE.IFC

IE.NLN

IE.NOD

IE.OFL

IE.OVR

IE.PRI

Fatal hardware error

The controller is physically unable to reach the
location where input/output operation 1is to be
performed. The operation cannot be completed.

Illegal function

A function code was specified in an I/O request
that is illegal for disks.

File not open

The task attempted to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN,

Insufficient buffer space

Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate
a secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for this operation.

Device off line

The physical device unit associated with the LUN
specified in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Illegal read overlay request

A read overlay was requested, and the physical
device wunit specified in the QIO directive was not
the physical device unit from which the task was
installed. The read overlay function can only be
executed on the physical device unit from which the
task image containing the overlays was installed.

Privilege violation

The task that issued the request was not privileged
to execute that request. For disk, this code is
returned if a nonprivileged task attempts to read
or write a mounted volume directly (that is, using
IO.RLB or IO.WLB). Also, this code is returned if
any task attempts to attach a mounted volume.

(continued on next page)

5-10

DISK DRIVERS

Table 5-5 (Cont.)
Disk Status Returns

Code Reason

IE.SPC Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
0 was specified.

IE.VER Unrecoverable error

After the system's standard number of retries has
been attempted upon encountering an error, the
operation still could not be completed. For disk,
unrecoverable errors are usually parity errors.

IE.WCK Write check error

An error was detected during the write check
portion of an operation.

IE.WLK Write-locked device

The task attempted to write on a disk that was
write-locked.

When a disk I/0 error condition is detected, an error is usually not
returned immediately. 1Instead, RSX-11M attempts to recover from most
errors by retrying the function as many as eight times. Unrecoverable
errors are denerally parity, timing, or other errors caused by a
hardware malfunction.

5.5 PROGRAMMING HINTS

For the RK611 controller/RK06 or RK0O7 disk, the RL1l1 controller/RL0O1
or RL02 disk, RM02 disk, RM03 disk, RMO5 disk, RM80 disk, and RPO7
disk, the driver write-protects the last track of the cartridge. This
track contains the factory-recorded bad-sector file.

CHAPTER 6

DECTAPE DRIVER

6.1 INTRODUCTION

The RSX-11M DECtape driver supports the TCl11-G dual DECtape controller
with up to three additional dual DECtape transports. The TCl1l-G is a
dual-unit, bidirectional, magnetic-tape transport system for auxiliary
data storage. DECtape is formatted to store data at fixed positions
on the tape, rather than at unknown or variable positions as on
coventional magnetic tape. The system uses redundant recording of the
mark, timing, and data tracks to 1increase reliability. Each reel
contains 578 1logical blocks. As with disk, each of these blocks can
be accessed separately, and each contains 256 words.

6.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characterics word) contains the following
information for DECtapes. A bit setting of 1 indicates that the
described characteristic is true for DECtapes.

Bit Setting Meaning

0 0 Record-oriented device

1 0 Carriage-control device

2 0 Terminal device

3 1 File structured device

4 0 Single-directory device

5 0 Sequential device

6 1 Mass storage device

7 0 User-mode diagnostics supported
8 0 Device supports 22-bit addressing
9 0 Unit software write-locked

DECTAPE DRIVER

Bit Setting Meaning
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications
channel
14 1 Device mountable as a FILES-11 volume
15 1 Device mountable

Words 3 and 4 of the buffer contain the maximum LBN. Word 5 indicates

the default buffer size, 512 bytes, for DECtape.
6.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the DECtape driver.

6.3.1 Standard QIO Functions

Table 6-1 lists the standard functions of the QIO macro that are valid
for DECtape.

Table 6-1
Standard QIO Functions for DECtape
Format Function
QIO0$C IO0.ATT,... Attach devicel
QI0S$C IO.DET,... Detach device
QI0$C IO.KIL,... Kill 1/02
QI0$C IO.RLB,...,<stadd,size,,,lbn> READ logical block (forward)
QIOSC IO.RVB,...,<stadd,size,,,lbn> READ virtual block (forward)
QI0sSC IO0.WLB,...,<stadd,size,,,lbn> WRITE logical block (forward)
QIO0SC IO.WVB,...,<stadd,size,,,lbn> WRITE virtual block (forward)

1. Only unmounted volumes may be attached.

An attempt to attach a

mounted volume will result in an IE.PRI status being returned in the
I/0 status doubleword.

2. In-
I0.KIL
such a short time.

received are killed.

progress DECtape operations

are

allowed to complete when

is received, unless the unit is not ready, because they take

doubleword.

I/0 requests that
An IE.ABO status is returned in the I/0 status

are queued when IO.KIL is

DECTAPE DRIVER

stadd

The starting address of the data buffer (must be on a word
boundary) .

The data buffer size in bytes (must be even and greater than 0).

1bn

The logical block number on the DECtape where the transfer starts
{must be in the range 0-577).

I0O.RVB and IO.WVB are associated with file operations (see the
IAS/RSX-11 1I/0 Operations Reference Manual). For these functions to
be executed, a file must be open on the specified LUN if the volume
associated with the LUN is mounted. Otherwise, the virtual I/0
request is converted to a logical 1I/0 request using the specified
block numbers.

6.3.2 Device-Specific QIO Functions
The device-specific functions of the QIO macro that are wvalid for
DECtape are shown in Table 6-2.

Table 6-2
Device-Specific Functions for DECtape

Format Function
QI0$C IO0.RLV,...,<stadd,size,,,lbn> READ logical block (reverse)
QIOS$C IO.WLV,...,<stadd,size,,,lbn> WRITE logical block (reverse)

stadd

The starting address of the data buffer (must be on a word
boundary).

size

The data buffer size in bytes (must be even and greater than 0).

1bn

The transfer starts (must be in the range 0-577).

DECTAPE DRIVER

6.4 STATUS RETURNS

The error and status conditions listed in Table 6-3 are returned
the DECtape driver described in this chapter.

Table 6-3
DECtape Status Returns

by

Code Reason

IS.S8UC Successful completion
The operation specified in the QIO directive was
completed successfully. The second word of the I/0
status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing.

IS.PND I/0 request pending
The operation specified in the QIO directive has
not yet been executed. The I/0 status block is
filled with Os.

IE.ABO Request aborted
An I/0 request was queued (not yet acted upon by
the driver) when an IO.KIL was issued.

IE.ALN File already open
The task attempted to open a file on the physical
device wunit associated with the specified LUN, but
a file has already been opened by the issuing task
on that LUN.

IE.BLK Illegal block number
An illegal logical block number was specified for
DECtape. The number exceeds 577 (1101 (8)).

IE.BYT Byte-aligned buffer specified
Byte alignment was specified for a buffer, but only
word alignment is legal for DECtape. Alternately,
the length of the buffer is not an even number of
bytes.

IE.DNR Device not ready
The physical device unit specified in the QIO
directive was not ready to perform the desired I/0
operation.

IE.IFC Illegal function
A function code was specified in an 1I/0 request
that is illegal for DECtape.

(continued on next page)

DECTAPE DRIVER

Table 6-3 (Cont.)
DECtape Status Returns

Code

Reason

IE.NLN

IE.NOD

TE.OFL

IE.OVR

IE.PRI

IE.SPC

File not open

The task attempted to close a file on the physical

device unit associated with the specified LUN, but

no file was currently open on that LUN.
Insufficient buffer space

Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate
a secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for this operation.

Device off line

The physical device unit associated with the LUN
specified 1in the QIO directive was not on line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

Illegal read overlay request

A read overlay was redquested and the physical
device unit specified in the QIO directive was not
the physical device unit from which the task was
installed. The read overlay function can only be
executed on the physical device unit from which the
task image containing the overlays was installed.

Privilege violation

The task that issued the request was not privileged
to execute that request. For DECtape, this code is
returned when a nonprivileged task attempts to read
or write a mounted volume directly (that is,
IO.RLB, IO.RLV, IO.WLB, or TIO.WLV). Also, this
code is returned if any task attempts to attach a
mounted volume.

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately, a byte count of
0 was specified.

(continued on next page)

DECTAPE DRIVER

Table 6-3 (Cont.)
DECtape Status Returns

Code Reason

IE.VER Unrecoverable error

After the system's standard number of retries has
been attempted upon encountering an error, the
operation still could not be completed. For
DECtape, this code is returned to indicate any of
the following conditions.

e A parity error was encountered.

e The task attempted a forward multiblock transfer
past block 577 (1101 (8)).

e The task attempted a backward multiblock
transfer past block 0.

IE.WLK Write-locked device

The task attempted to write on a DECtape unit that
was physically write-locked.

6.4.1 DECtape Recovery Procedures

When a DECtape I/0 error condition is detected, RSX-11M attempts to
recover from the condition by retrying the function as many as five
times. Unrecoverable errors are generally parity, mark track, or
other errors caused by a faulty recording medium or a hardware
malfunction. An unrecoverable error condition also occurs when a read
or write operation is performed past the last block of the DECtape on
a forward operation, or the first block of the DECtape on a reverse
operation.

In addition to the standard error conditions, an unrecoverable error
is reported when the "rock count" exceeds 8. The rock count is the
number of times the DECtape driver reverses the direction of the tape
while 1looking for a block number. Assume that the block numbers on a
portion of DECtape are 99, 96, and 101, where one bit was dropped from
block number 100, making it 96. If an I/0 request is received for
block 100 and the tape is positioned at block 99, the driver starts
searching forward for block 100. The first block to be encountered is
96 and, because the driver is searching for block 100 in a forward
direction and 96 1is 1less than 100, the search continues forward.
Block 101 is the next block and, because number 101 1is greater than
100, the driver reverses the direction of the tape and starts to
search backward. The next block number in this direction is 96, and
the direction 1is reversed again because 100 is greater than 96. To
prevent the DECtape from being hung in this position, continually
rocking between block numbers 96 and 100, a maximum rock count of 8
has been established.

DECTAPE DRIVER

6.4.2 Select Recovery

If the DECtape unit is in an off-line condition when the I/0 function
is performed, the message shown below is output on the operator’®s
console.

**%* DTn: -- SELECT ERROR

where n is the unit number of the drive that is currently off 1line.
The wuser should respond by placing the unit to REMOTE. The driver
retries the function, from the beginning, once every second. It
displays the message once every 15 seconds until the appropriate
DECtape unit is selected. A select error may also occur when there
are two drives with the same unit number or when no drive has the
appropriate unit number.

6.5 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the DECtape driver described in
this chapter.

6.5.1 DECtape Transfers

If the transfer length on a write is less than 256 words, a partial
block 1is transferred with =zero £fill for the rest of the physical
block. If the transfer length on a read is less than 256 words, only
the number of words specified is transferred. 1If the transfer length
is greater than 256 words, more than one physical block is
transferred.

6.5.2 Reverse Reading and Writing

The DECtape driver supports reverse reading and writing, because these
functions speed up data transfers in some cases. A block should
normally be read in the same direction in which it was written. If a
block 1is read from a DECtape into memory in the opposite direction
from that in which it was written, it 1is reversed 1in memory (for
example, word 255 becomes word 0, and 254 becomes word 1l). If this
occurs, the user must then reverse the data within memory.

6.5.3 ©Speed Considerations When Reversing Direction

It is possible to reverse direction at any time while reading or
writing DECtape. However, the user should understand that reversing
direction substantially slows down the movement of the tape. Because
DECtape must be moving at a certain minimum speed before reading or
writing can be performed, a tape block cannot be accessed immediately
after reversing direction. Two blocks must be bypassed before a read
or write function can be executed, to give the tape unit time to build
up to normal access speed. Furthermore, when a request is issued to
read or write in a certain direction, the tape first begins to move in
that direction, then starts detecting block numbers. The following
examples illustrate these principles.

DECTAPE DRIVER

If a DECtape is positioned at block number 12 and the driver receives
a request to read block 10 forward, the tape starts to move forward,
in the direction requested. When block number 14 is encountered, the
driver reverses the direction of the tape, since 14 is greater than
10. The search continues backward, and block numbers 11 and 10 are
encountered. Because the direction must be reversed and the driver
requires two blocks to build up sufficient speed £for reading, block
number 9 and 8 are also bypassed in the backward direction. Then the
direction is reversed and the driver encounters blocks 8 and 9 forward
before reaching block number 10 and executing the read request.

6.5.4 Aborting a Task

If a task is aborted while waiting for a wunit to be selected, the
DECtape driver recognizes this fact within 1 second.

CHAPTER 7

DECTAPE II DRIVER

7.1 INTRODUCTION

The DECTAPE II (TU58) driver supports TU58 system hardware, providing
low-cost, block-replaceable mass storage.

7.1.1 TU58 Hardware

Each TU58 DECTAPE II system consists of one or two TU58 cartridge
drives, one tape drive controller, and one DLl1l-type serial line
interface. Each TU58 drive functions as a random access,
block-formatted mass storage device. Each tape cartridge is capable
of storing 512(10) blocks of 512(10) bytes each. Access time averages
10 seconds. All I/0 transfers (commands and data) occur by means of
the serial line interface at serial transmission rates of 9600 bps.
All read and write check operations are performed by the controller
hardware using a 16-bit checksum. The controller performs up to eight
attempts to read a block, as necessary, before aborting the read
operation and returning a hard error; however, whenever more than one
read attempt is required for a successful read, the driver is notified
in order to report a soft error message to the error logger.

7.1.2 TUS8 Driver

The TUS58 driver communicates with the TU58 hardware by means of a
serial 1line interface (DL11); no other interface is required. All
data and command transfers between the PDP-11 system and the TU58 are
done with programmed I/O and interrupt-driven routines; NPRs are not
supported.

7.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for the TU58. A bit setting of 1 indicates that the
described characteristic is true for this device.

DECTAPE II DRIVER

Bit Setting Meaning
0 0 Record-oriented device
1 0 Carriage-control device
2 0 Terminal device
3 1 File-structured device
4 0 Single-directory device
5 0 Sequential device
6 1 Mass storage device
7 1 User-mode diagnostics supported
8 0 Device supports 22-bit direct addressing
9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications channel
14 1 Device mountable as a FILES-11 volume
15 1 Device mountable

Words 3 and 4 of the buffer are a double-precision number specifying
the total number of blocks on the device; this value is 512(10)
blocks. Word 5 indicates the default buffer size, which 1is 512(10)
bytes.

7.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the TUSS8.

7.3.1 Standard QIO Functions

Table 7-1 lists the standard QIO system directive functions of the QIO
macro that are valid for the TUS5S.

DECTAPE II DRIVER

Table 7-1
Standard QIO Functions for the TU58

Format Function
QI0SC I0.ATT,... Attach device
QIO0SC IO.DET, ... Detach device
QIO$C IO.KIL,... Cancel I/0 requestsl
QIOSC I0.RLB,...,<stadd,size,,,1bn> READ logical block
QI0SC IO.WLB,...,<stadd,size,,,lbn> WRITE logical block

stadd

size

1bn

1. In-progress operations are allowed to complete when TO.KIL
is received. I/0 requests that are queued when IO.KIL is
received are killed.

The starting address of the data buffer (must be on a word
boundary) .

The data buffer size in bytes (must be even and greater than 0).

The logical block number on the cartridge tape where the data
transfer starts (must be in the range of 0-777).

7.3.2 Device-Specific QIO Functions

The device-specific QIO system directive functions that are valid for
the TU58 are shown in Table 7-2.

Table 7-2
Device-Specific QIO Functions for the TU5S8

Format Function

QI0$C IO.WLC,...,<stadd,size,,,,lbn> | WRITE logical block with check
QI1I0%C IO.RLC,...,<stadd,size,,,,lbn> | READ logical block with check
QIOS$C IO.BLS!IQ.UMD,...,<lbn> POSITION tape

QIONSC IQ.DGN!IQ.UMD, ... Run internal diagnostics

DECTAPE II DRIVER

stadd

The starting address of the data buffer (must be on a word
boundary).

size

The data buffer size in bytes (must be even and greater than 0).

1bn

The logical block number on the cartridge tape where the data
transfer starts (must be in the range of 0-777).

Additional details for device-specific QIO functions are provided in
the following paragraphs.

7.3.2.1 I0.WLC - The IO.WLC function writes the specified data onto
the tape cartridge. A checksum verification is then performed by
reading the data just written; data 1is not returned to the task
issuing the function. An appropriate status, based on the checksum
verification, is returned to the issuing task.

7.3.2.2 IO.RLC - The IO.RLC function reads the tape with an increased
threshold in the TU58's data recovery circuit. This is done as a
check to insure data read reliability.

7.3.2.3 IO0.BLS - The IO.BLS function is used for diagnostic purposes
to position the tape to the specified logical block number. If you
specify I0.BLS, you must use the IQ.UMD subfunction (see Chapter 1).

7.3.2.4 I0.DGN - The IO.DGN function is used for diagnostic purposes
to execute the TU58's internal (firmware) diagnostics. Appropriate
status information is returned to the issuing task by the I/0 status
block. If vyou specify 1I0.DGN, you must use the IQ,UMD subfunction
(see Chapter 1).

7.4 STATUS RETURNS

Table 7-3 lists the error and status conditions that are returned by
the TU58 driver.

DECTAPE II DRIVER

Table 7-3
TU58 Driver Status Returns

Code Reason

IS.SUC Successful completion
The operation specified in the QIO directive was
completed successfully. The second word of the I/0
status block can be examined to determine the number of
bytes ©processed, if the operation involved reading or
writing.

IE.DNR Device not ready
The physical device unit specified in the QIO directive
was not ready to perform the desired I/0 operation.

IE.IFC Illegal function
A function code was specified in an I/0O request that is
illegal for the TU58.

IE.FHE Fatal hardware error

IE.TMO Time-out error
The TU58 failed to respond to a function within the
normal time specified by the driver.

IE.VER Unrecoverable error
After the system's standard number of retries (8) has
been attempted upon encountering an error, the operation
still could not be successfully completed.

IE.WLK Cartridge write-locked

The task attempted to write on a tape cartridge that is
physically write-locked.

CHAPTER 8

MAGNETIC TAPE DRIVERS

8.1 INTRODUCTION

RSX-11M and RSX-11M-PLUS support a variety of magnetic tape devices.
Table 8-1 summarizes these devices and subsequent sections describe
them in greater detail.

Programming for magtape is quite similar to programming for the
magnetic tape cassette (see Chapter 9). Unlike cassette, however,
magtape can handle variable-length records and allows the user to
select a parity mode.

8.1.1 TEl10/TUl0/TS03 Magnetic Tape

The TE10/TUl0/TS03 consists of a TM1ll controller with a TE10, TUl0, or
TS03 transport. It is a low-cost, high-performance system for serial
storage of large volumes of data and programs in an
industry-compatible format. All recording 1is nonreturn-to-zero,
inverted (NRZI).

8.1.2 TEl16/TUl6/TU45/TU77/TU78 Magnetic Tape

The TEl6/TUl6/TU45/TU77/TU78 consists of an RH11/RH70 controller, a
TMO02, TMO03, or TM78 formatter, and a TEl6/TUl6/TU45/TU77/TU78
transport. They are quite similar to the TE10/TUl0 but are Massbus
devices, with a common controller, a specialized formatter, and
drives. Recording is either 800 bpi NRZI or 1600 bpi phase-encoded
(PE) for the TEl6/TUl6/TU45/TU77. The TU78 records in 1600 bpi
phase-encoded or 6250 bpi GCR modes.

8.1.3 TS11/TU80 Magnetic Tape

The TS1ll and TU80 are integrated subsystems. Each has a drive, a
controller, and a formatter. The hardware 1is microprocessor
controlled for all operations, including I/0 transfers, tape motion,
and so forth, and has comprehensive (internal) diagnostic test
execution., Recording is 1600 bpi phase-encoded (PE).

The TS1l operates in conventional start and stop mode while th TUSC

operates at either 1low speed (start and stop mode) or high speed
(streaming mode). Tape speed is microprocessor controlled.

8-1 April 1983

MAGNETIC TAPE DRIVERS

8.1.4 TSV05 Magnetic Tape

The TSV05 tape subsystem is a Q BUS device. It 1is an integrated
subsystem with a drive, a controller, and a formatter. The hardware
is microprocessor controlled for all operations, including 1/0
transfers, tape motion, and so forth and has comprehensive (internal)
diagnostic test execution. Recording is 1600 bpi phase-encoded (PE).
The TSV05 operates at 25 inches per second.

Table 8-1
Standard Magtape Devices
Maximum Data
Recording Density Tape Speed Transfer Rate Recording
Devices Channels (Frames/Inch) (Inches/Second) | (Bytes/Second) Method
TE10,TULl0 9 (TE10) For 7-channel: 45 36,000 NRZI
7 oxr 9 (TUl0) | 200, 556, or
800
For 9-channel:
800
TE16,TU16 9 800 or 1600 45 For 800 bpi: NRZI or
36,000 Phase
For 1600 bpi: Encoding
72,000
TU45 9 800 or 1600 75 For 800 bpi: NRZI or
60,000 Phase
For 1600 bpi: Encoding
120,000
TO77 9 800 or 1600 125 For 800 bpi: NRZI or
100,000 Phase
For 1600 bpi: Encoding
200,000
TS03 9 800 15 12,000 NRZI
TS11 9 1600 45 72,000 Phase Encoding
TU78 9 1600 or 6250 125 For 1600 bpi: Phase Encoding
200,000 or GCR (Group
For 6250 bpi: Cyclical
781,000 Recording)
TU80 9 1600 25l 40,0001 Phase Encoding
1002 160,0002
TSVOS 9 1600 25 40,000 Phase Encoding

1. Low Speed
2, High Speed

8-2 April 1983

MAGNETIC TAPE DRIVERS

8.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for magtapes. A bit setting of 1 indicates that the
described characteristic is true for magtapes.

Bit Setting Meaning

0 0 or 1l Record-oriented device (0 if the tape is
mounted, 1 if it is not)

1 0 Carriage-control device

2 0 Terminal device

3 0 File-structured device

4 0 orl Single-directory device (0 if the tape is not

mounted, 1 if it is)

5 1 Sequential device

6 1 Mass storage device

7 0 or 1 User-mode diagnostics supportedl

8 0 or 1l Massbus device (set only for TEl6, TUl6,

TU45, TU77, or TU78 drives interfaced by
means of an RH70 controller)l

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications
channel

14 0 orl Device mountable as a FILES-11 volumel

15 0 or1l Device mountablel

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, for magtapes 512 bytes.

8.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the magtape drivers.

1. SYSGEN and device-dependent characteristic.

8-3

MAGNETIC TAPE DRIVERS

8.3.1 Standard QIO Functions

Table 8-2 lists the standard functions of the QIO macro that are valid
for magtape.

Table 8-2
Standard QIO Functions for Magtape

Format Function
QIOSC IO.ATT,... Attach device
QIOSC I10.DET,... Detach device
QIOS$C I0.KIL,... Cancel I/0 requests
QIOSC I0.RLB,...,<stadd,size> READ logical block

(read tape into buffer)

QIOSC IO.RVB,...,<stadd,size> READ virtual block
(read tape into buffer)

QIOS$C IO0.WLB,...,<stadd,size> WRITE logical block
(write buffer contents to tape)

QIOSC IO0.WVB,...,<stadd,size> WRITE virtual block
(write buffer contents to tape)

stadd

The starting address of the data buffer (must be on a word
boundary) .

size
The data buffer size in bytes. Size must be even, greater than

0, and, for a write, must be at least 14 bytes.

I0.KIL does not cancel an in progress request unless a select error
has occurred.

8.3.2 Device-Specific QIO Functions

Table 8-3 lists the device-specific functions of the QIO macro that

are valid for magtape. Additional details on certain functions appear
below.

8.3.2.1 I0.RLV - The data appears in the specified buffer in a
fashion identical with IQ.RLB or IO.RVB, as long as the data block has
the same length as the buffer.

8-4 April 1983

MAGRETIC TAPE DRIVERS

8.3.2.2 IO.RWD - Completion of IO.RWD means that the rewind has been
initiated. Additional operations on that controller may then be
queued. However, a request for the same unit will be queued by the
driver until load point (BOT) is reached.

8.3.2.3 IO.RWU - IO.RWU is normally used when operator intervention
is required (for example, to load a new tape). The operator must turn
the unit back on 1line manually before subsequent operations can
proceed.

Table 8-3
Device-Specific QIO Functions for Magtape

Format Function
QIOSC IO0.DSE,... Data Security Erase (TU78 only)
QIOSC 10.EOF,... Write end-of-file mark (tape mark)
QIOSC I0.ERS,... Erase (TE1l0 and TUl0 not
supported)

QI0S$C I1I0.RLV,...,<stadd,size> READ logical block reverse (TELO
and TU10 not supported.)

QIOSC IO.RWD,... Rewind unit

QIOSC IO.RWU,... Rewind and turn unit off line
QIO0$C IO0.SEC,... Sense tape characteristics
QIOSC 10.8SMO,...,<cb> MOUNT tape and set tape

characteristics (Unit must be
READY, tape at LOAD POINT.)

QIO$C I10.SPB,...,<nbs> SPACE blocks

QIOS$C I0.SPF,...,<nes> SPACE files

QIOSC I10.STC,...,<cb> SET tape characteristics
cb

The characteristic bits to set.
nbs

The number of blocks to space past (positive 1if forward,
negative if reverse).

8-5 April 1983

MAGNETIC TAPE DRIVERS

nes
The number of EOF marks to space past (positive 1if forward,
negative if reverse).

size
The size of the stadd data buffer in bytes (must be an even
number of bytes greater than 0).

stadd

The starting address of the data buffer (may be on a byte
boundary) .

8.3.2.4 I0.ERS - Erases 3 inches of (write blank) tape, effectively

providing an extended interrecord gap. (Not supported on TU1l0 and
TE10.)

8.3.2.5 IO.DSE - The TU78 will erase from the current position to
end-of-tape and then rewind the tape to beginning-of-tape.

8.3.2.6 IO.SEC - This function returns the tape characteristics 1in
the second I/0 status word. The tape characteristic bits are defined
as follows:

Can Be Set by
Bit Meaning When Set 10.SMO and IO0.STC

0 For TU10, 556 bpi X
density (7-channel).
For TEl6, TUl6, TU45, TU77,
TU78, and TS1ll, reserved.

1 For TUl10, 200 bpi X
density (7-channel).
For TEl6, TUl6, TU45, TU77, and
TU78, reserved.

For TS1ll, TU80, and TSVO05,
swap byte mode (read/write).

2 For TUl0, core-dump X
mode (7-channel, see below).
For TEl6, TUl6, TS1ll, TU4S,
TU77, and TU78 reserved.

3 Even parity (default is odd). X
(Not selectable for the TS1l.)

4 Tape is past EOT.

5 Last tape command encountered

EOF (unless last command was
backspace) .

8-6 April 1983

MAGNETIC TAPE DRIVERS

Can Be Set by

Bit Meaning When Set I0.SMO and 10.STC
6 Writing is prohibited. X
7 Writing with extended inter- X

record gap is prohibited
(that is, no recovery is attempted
after write error).

8 Select error on unit.

9 Unit is rewinding.

10 Tape is physically write-locked.

11 For TE10, TUl0, and TS03, reserved. X
For all other tapes, 1600 bpi density.

12 For TU1l0, drive is 7-channel.
For all other tapes, reserved.

13 Tape is at load point (BOT).

14 Tape is at end-of-volume (EOV).

15 Tape is past EOV (reserved for dri-

ver; always 0 when read by user).

In core-dump mode (TUl0 only, 800 bpi density, and 7-channel), each
8-bit byte 1is written on 2 tape frames, 4 bits per frame. In other
modes on 7-channel tape, only 6 low-order bits per byte are written.

For the TS11l, 1600 bpi density is always selected (bit 11=1), Bit 11
cannot be modified by either the I0.SMO or IO.STC functions. For
drives that use the TMO3 controller, this bit can be either set or
cleared; however, once the tape is moved from the load (beginning of
tape) position (BOT), the device driver modifies this bit to reflect
the actual density of the tape currently mounted. You cannot change
bit 11 once the tape is moved beyond BOT. For the TU78, bit 11 set
indicates 1600 bpi and bit 11 clear indicates 6250 bpi. Bit 11 cannot
be set or cleared once the tape is moved beyond BOT.

The effect of these settings is illustrated in Figure 8-1 for the TE1l0
and TUl10, and in Figure 8-2 for the TEl6, TUl6, TU45, and TU77.

8-7 April 1983

MAGNETIC TAPE DRIVERS

SET EVEN YES
PARITY

NINE-

CHANNEL

TAPE
?

SET 800 BPI,
NINE-CHANNEL

SET 800 BPI,
SEVEN-CHANNEL, |_ype.
CORE-DUMP
MODE
| | SET 556 BPI, 556 BPI
SEVEN-CHANNEL ?
SET 200 BPI,

200 BPI
? SEVEN-CHANNEL

SET 800 BPI,
SEVEN-CHANNEL

ZK-002-81

Figure 8-1 Determination of Tape Characteristics for the TE10/TUl0

MAGNETIC TAPE DRIVERS

SET 1600 BPI

1600 BPI
?
NO

SET 800 BPI

VES SET
EVEN PARITY
NO
é:

ZK-003-81

Figure 8-2 Determination of Tape Characteristics
for the TEl6/TUl6/TU45/TU77

8.3.2.7 I10.SMO - This function can be used as a combination of the
sense (I0.SEC) and set (IO.STC) tape characteristics functions.
Unlike I0.STC, however, the I0.SMO function requires that the unit be
READY and the tape be at 1load point (BOT). If either of these
conditions is not met, the function returns an error status code of
IE.FHE (refer to Table 8-4).

The I0.SMO function should be used to set the characteristics of a
newly loaded tape. If the IE.FHE error code is returned, the tape
drive is not on line and is not at BOT.

MAGNETIC TAPE DRIVERS

8.4 STATUS RETURNS

The error and status conditions listed in Table 8-4 are returned
the magtape drivers described in this chapter.

Table 8-4
Magtape Status Returns

by

Code

Reason

IS.SucC

IS.PND

IE.ABO

IE.BBE

IE.BYT

IE.DAA

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing. This code 1is also
returned if nbs equals 0 in an I0.SPB function or
if nes equals 0 in an IO.SPF function.

I/0 request pending

The operation specified in the QIO directive has
not vyet been completed. The I/O status block is
filled with Os.

Operation aborted

The specified I/0 operation was canceled by IO.KIL
while in progress or while still in the I/O queue.

Bad block

A bad block was encountered while reading or
writing and the error persists after nine retries.
The number of bytes transferred is returned in the
second word of the 1I/0 status block. For TM1l1,
IE.BBE may also indicate that a bad tape error
(BTE) has been encountered while reading or
spacing.

Byte—-aligned buffer specified

Byte alignment was specified for a buffer, while
only word alignment is 1legal for the QIO.
Alternatively, the length of a buffer is not an
even number of bytes.

Device already attached

The physical device unit specified in an TIO0.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

(continued on next page)

MAGNETIC TAPE DRIVERS

Table 8-4 (Cont.)
Magtape Status Returns

Code Reason
IE.DAO Data overrun
On a read, a record exceeded the stated buffer
size. The final portion of the buffer is checked
for parity, but is not read into memory.
IE.DNA Device not attached
The physical device unit specified in an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.
IE.DNR Device not ready
The physical device wunit specified 1in the QIO
directive was not ready to perform the desired I/0
operation. This code is returned to indicate one
of the following conditions:
e A time-out occurred on the physical device unit
(that is, an interrupt was lost).
e A vacuum failure occurred on the magtape drive.
e While trying to read or space, the driver
detected blank tape.
e The LOAD switch on the physical drive was
switched to the off position.
e The unit failed internal diagnostic tests (TS04
only)
IE.EOF End-of-file encountered
An end-of-file (tapemark) was encountered.
IE.EOT End-of-tape encountered

The end-of-tape (physical end-of-volume) was
encountered while the tape was moving 1in the
forward direction. A 10-foot 1length of tape 1is
provided past EOT to be used for writing data and
markers, such as volume trailer labels. The IE.EOT
code will continue to be returned in the I/O status
block until the EOT marker is passed in the reverse
direction. IE.EOT 1is not returned on a read
operation.

(continued on next page)

MAGNETIC TAPE DRIVERS

Table 8-4 (Cont.)
Magtape Status Returns

Code

Reason

IE.EOV

IE.FHE

IE.IFC

IE.OFL

IE.SPC

IE.VER

IE.WLK

End-of-volume encountered (unlabeled tape)

On a forward space function, the logical
end-of-volume was encountered. An end-of-volume is
two consecutive end-of-file marks (EOF), or a
beginning-of-tape mark (BOT) followed by an EOF.
The tape is normally left positioned between the
two marks.

Fatal hardware error

Nonrecoverable hardware malfunction: e.g., magtape
unit not READY and/or tape not at LOAD POINT when
I0.8MO is issued.

Illegal function