IAS/RSX-11

/0 Operations Reference Manual

Order No. AA-M176A-TC

RSX-11M Version 4.0
RSX-11M-PLUS Version 2.0
IAS Version 3.1

digital equipment corporation - maynard, massachusetts

First Printing, December 1975
Revised, December 1976
Revised, December 1977

Revised, June 1979
Revised, November 1981

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its

P O L I - T
aLlLilliaceu CUOlLLMAILLTO

Copyright (© 1975, 1976, 1977, 1979, 1981
by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem RSX
DECnet IAS UNIBUS
DECsystem-10 MASSBUS VAX
DECSYSTEM-20 PDP VMS
DECUS PDT

g?ggi iter RSTS Erﬂgnan

ZK2058

CONTENTS

Page
PREFACE xi
SUMMARY OF TECHNICAL CHANGES xiii
CHAPTER 1 FILE CONTROL SERVICES
1.1 FILE ACCESS METHODS & & & o o o o o s o o s o o o 1=2
1,2 FILE STORAGE REGION (FSR) e o o o o o o o o o o o 1=2
1.3 DATA FORMATS FOR FILE-STRUCTURED DEVICES 1-3
1.3.1 Data Formats for ANSI Magtape . .« +« « o« &+ « o« » 1-4
1.4 BLOCK I/O OPERATIONS . & « 4 o o o o o o o o« s o o« 1-5
1.5 RECORD I/0 OPERATIONS 4+ & &« 4 o o o s o s o o s o« 1=5
1.6 DATA-TRANSFER MODES . &« & o « o o « o o s o o o o 1=6
1.6.1 Move Mode . & & ¢ ¢ ¢ o o o o o o o o o s & o » 1-6
1.6.2 Locate Mode . . . e e e o e s s e s s e s s o 1-6
1.7 MULTIPLE BUFFERING FOR RECORD I/O0 . &« ¢« & o o« o« « 1-6
1.8 SHARED ACCESS TO FILES &+ ¢ &« « « o o o o« o « » « o 1-8
1.9 FILE DESCRIPTOR BLOCK (FDB) ., 1-10
1.10 DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK . 1-10
1.11 KEY TERMS USED THROUGHOUT THIS MANUAL 1-10
1.12 SYSTEM CHARACTERISTICS .+ ¢ « o o o o o o o o o o« 1=12
CHAPTER 2 PREPARING FOR I/O
2.1 .MCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO
DEFINITIONS . . . e s e s s s e s o s s o 2=2
2.2 FILE DESCRIPTOR BLOCK (FDB) e s o o o e o s e s & 2-3
2.2.1 Assembly-Time FDB Initialization Macros . . . 2-3
2.2.1.1 FDBDF$ - Allocate File Descriptor Block (FDB) 2-5
2.2.1.2 FDATSA - Initialize File Attribute Section
of FDB ¢ o ¢ o o s o o s o o o o s o o o o o« 2-5
2.2.1.3 FDRCSA - Initialize Record Access Section of
FDB & & v ¢ o 4 o 2 o o« o o o s o« o« s o « « « 2-8
2.2.1.4 FDBKSA - Initialize Block Access Section of
FDB & ¢ o o o o o s o o s o o o o o o o o » 2-10
2.2.1.5 FDOP$SA - Initialize File-Open Section of FDB 2-13
2.2.1.6 FDBFSA - Initialize Block Buffer Section of

FDB ¢ ¢« ¢« o o o o o o o o o o o o o o o o o 2-17

2.2.2 Run-Time FDB Initialization Macros 2=-21
2.2.2.1 Run-Time FDB Macro-Call Exceptions 2-21
2.2.2.2 Specifying the FDB Address in Run-Time

Macro Calls 2-24

2.3 GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB OFFSETS 2-25

2.3.1 Specifying Global Symbols in the Source Coding 2-25

2.3.2 Defining FDB Offsets and Bit Values Locally . 2-26
2.4 CREATING FILE SPECIFICATIONS WITHIN THE USER

PROGRAM . &+ 4 & o o o o o o o o a s « o« o o o« o« 2=26

2.4.1 Dataset DesScCriptor .« « +« o 2 o o o = « o« o« « o 2=-28

CHAPTER

.
N

(CECENENENENE SN SR SN S O
L[] . L] L[] L] L]
. . . .
NN

e e o e ¢

o Je oo Jle o« BEN BEN BEN o) o) e W0, |
* o L]
w N+

w

ww w
. . Ll
e
L] .

www
“« . « o o
=W N

N

w W w

Ao
.
—

w W
.
~ O
.
3]

.
—

NN -

* e o o o

= = = e e O O O O O 0
L] . L] .
DN N
. L]

WWWWwWwwwwwwwwwwuww
-
SWNDNDNNNDNODHOe. o o

3.15
3.15.1
3.15.2
3.16
3.16.1
3.16,2
3.17
3.17.1
3.18
3.18.1

[N

Default Filename Block - NMBLKS$ Macro Call . .
Dynamic Processing of File Specifications . .
OPTIMIZING FILE ACCESS « e e s e
Initializing the Filename Block As a Function
of OPENS$x e e e s e e e e e
Manually In1t1a1121ng the Fllename Block .
INITIALIZING THE FILE STORAGE REGION
FSRSZS$ ~ Initialize FSR at Assembly Time .
FINITS - Initialize FSR at Run Time . . .
INCREASING THE SIZE OF THE FILE STORAGE REGION
FSR-Extension Procedures for MACRO-11 Programs
FSR-Extension Procedures for FORTRAN Programs
COORDINATING I/O OPERATIONS
Event Flags . « + &« ¢ o ¢ o o o o«
I/0 Status BloCK « « ¢ ¢ ¢ o o o »
AST Service Routine

e o o o
. * o o
e o o o

FILE-PROCESSING MACRO CALLS

OPENSX - GENERALIZED OPEN MACRO CALL
Format of Generalized OPENS$x Macro Call . . .
FDB Requirements for Generalized OPENS$x Macro
Call & 4 & o 4 o o o s o o o o s o o o o o s

OPNSSX - OPEN FILE FOR SHARED ACCESS
OPNTSW - CREATE AND OPEN TEMPORARY FILE . . .
OPNT$D - CREATE AND OPEN TEMPORARY FILE AND MARK

FOR DELETION . . . e e o s e e e s o e o o o
OFIDS$X - OPEN FILE BY FILE ID o ¢ o o o o o o &
OFNBSX OPEN FILE BY FILENAME BLOCK . « « . « .+ .
Dataset Descriptor and/or Default Filename
Block e e e e s 2 s e e o o o o
Default f11ename Block Only o« .
OPENS - GENERALIZED OPEN FOR SPECIFYING FILE
ACCESS ¢ ©o ¢ o o o o o o o o o
CLOSES$ - CLOSE SPECIFIED FILE . . . +« + .+ &«

Format of CLOSES Macro Call e e e e e s
GETS - READ LOGICAL RECORD . . e s e s e e .
Format of GETS$ Macro Call « « « + &
FDB Mechanics Relevant to GETS Operations .
GET$ Operations in Move Mode
GETS$ Operations in Locate Mode
GETSR - READ LOGICAL RECORD IN RANDOM MODE . .
GETSS - READ LOGICAL RECORD IN SEQUENTIAL MODE
PUTS - WRITE LOGICAL RECORD . . +v ¢ o o « &
Format of PUT$ Macro Call . . .« . « & « &
FDB Mechanics Relevant to PUTS$ Operations
PUTS Operations in Move Mode
PUT$ Operations in Locate Mode
PUTSR - WRITE LOGICAL RECORD IN RANDOM MODE
PUTSS - WRITE LOGICAL RECORD IN SEQUENTIAL
READS - READ VIRTUAL BLOCK « « ¢« o o« «
Format of READ$ Macro Call
FDB Requirements for READS$ Macro Call
WRITES - WRITE VIRTUAL BLOCK o « o o « &
Format of WRITES$ Macre Call
FDB Requirements for WRITES Macro Call
WAITS - WAIT FOR BLOCK I/0 COMPLETICN
Format of WAITS$ Macro Call
DELET$ -~ DELETE SPECIFIED FILE
Format of DELETS$ Macro Call

e X
o
e o o o o o
=

e e & o o & e o
e e o e o s o a

e ® o o & & o o e o
e & & o o o o o o o

iv

Page

2-30
2-33
2-33

2-34
2-35
2-36
2-37
2-39
2-40
2-40
2-41
2-41
2-42
2-43
2-44

3-12

3-13
3-14
3-15

3-16
3-16

3-17
3-18
3-19
3-19
3-20
3-21
3-22
3-22
3-23
3-25
3-25
3-26
3-27
3-27
3-28
3-29
3-31
3-31
3-32
3-35
3-35
3-35
3-36
3-36
3-37
3-39
3-39

CHAPTER 4

[S = - Y
. .
N =

.

N NNNNO [o) e WO 0 NV, |
.
N

L]
}—

e o o o
¢ o o
.

[S g S)

SRy
.
W N -

>
.
~N)
.
N -
.
o

CONTENTS

FILE CONTROL ROUTINES

CALLING FILE CONTROL ROUTINES . & ¢ o ¢ o o o @
DEFAULT DIRECTORY-STRING ROUTINES . . « « « « o
.RDFDR - Read $SFSR2 Default Directory String
Descriptor e e o « o o o
.WDFDR - Write New $$FSR2 Default
Directory-String Descriptor . . . « «
DEFAULT UIC ROUTINES . o 2 o o ¢ o o o o o o o o
.RDFUI - Read Default UIC . . ¢ ¢ « o« « o o &
.WDFUI - Write Default UIC e o o o
DEFAULT FILE-PROTECTION WORD ROUTINE S . o .
.RDFFP - Read S$$FSR2 Default File Protectlon
Word . « « ¢« « ¢ o o & . . e o o o o o .
.WDFFP - Write New $$FSR2 Default
File-Protection Word . « « o« ¢ o o« o o o o o =
FILE OWNER WORD ROUTINES e o o o o o
.RFOWN - Read $$FSR2 File Owner wOrd e e o s
.WFOWN - Write New $$FSR2 File Owner Word . .
ASCII/BINARY UIC CONVERSION ROUTINES . . . « + &
.ASCPP - Convert ASCII Directory String to
Equivalent Binary UIC
.PPASC - Convert UIC to ASCII Dlrectory Strlng
FILENAME BLOCK ROUTINES ., . . . o o e o .
.PARSE - Fill in All Filename Informatlon o
Device and Unit Information &
Directory Identification Information
File Name, File Type or Extension, and File
Version Information . . « ¢« ¢ & ¢ ¢ & & o &
Other Filename Block Information
.PRSDV - Fill in Device and Unit Information
Only « « « - &« e o o s s 3 e s s s s s 3 s =
.PRSDI - Fill in Directory Identification
Information Only « o v ¢« &« ¢ o o o o o o o o @
.PRSFN - Fill in File name, File Type or
Extension, and File Version Only
.ASLUN - Assign Logical Unit Number
DIRECTORY ENTRY ROUTINES . ¢« ¢ ¢ ¢ o o o o o o &«
.FIND - Locate Directory Entry . . « « . « .« .
.ENTER - Insert Directory Entry
.REMOV - Delete Directory Entry
FILENAME BLOCK ROUTINES . . ¢ & o« o o o « o o =
.GTDIR - Insert Directory Information in
Filename BloCK « & «¢ v ¢ &« o o o o o o o o o o«
.GTDID - Insert Default Directory Information
in Filename BloCk .+ ¢ & ¢ o o« & o o o o o o
FILE POINTER ROUTINES« . . e o s .
.POINT - Position File to Spec1f1ed Byte e o s
.POSRC - Position File to Specified Record . .
.MARK - Save Positional Context of File . . .
.POSIT - Return Positional Information for
Specified Record « . . « e e e s e .
QUEUE I/0 FUNCTION ROUTINE (. XQIO) e o s e o o o
RENAME FILE ROUTINE (.RENAM) . .« .« « ¢ o & « « &«
FILE EXTENSION ROUTINE (.EXTND) e o s s o o o o
FILE TRUNCATION ROUTINE (.TRNCL) . ¢ ¢« ¢ o & o =«
FILE DELETION ROUTINES e o o e o o
+MRKDL - Mark Temporary File for Deletion . .
.DLFNB - Delete File by Filename Block
DEVICE CONTROL ROUTINE (.CTRL) & « o o o o o o

Page

I
11
~Noaaoyur

T O
|
O WO III

iy
|
—

S
11
(R
=

>
|

—

\N]

4-12

4-12
4-12
4-13
4-13
4-15

4-16

CHAPTER

CHAPTER

CHAPTER

5

* o o o o o 0
. * e e e
B W N =

Uttt
¢ 0
NNNNNAU s WN

e« o ° ¢ 0 o
DDNNNNDNNNNNNNNNNNNNHEH -
e & o 0 o o e

* o
W N

~J

“ o »

s v e ¢ e
« o e
w N =

. e
« .
*« o

w N+

NN NN NN
L] L]
WWWWNHH ==

P b b b e

7.1.3.4

DISK AND DECTAPE FILE STRUCTURE (FILES-11)

MAGNETIC TAPE FILE PROCESSING .

COoN

v3
o
2
v3
n

FILE STRUCTURES

User File Structure . . .
Directory Files
Index File . ¢« « « &« o « &
File Header Block . . .

Access to Magnetic Tape Volumes .
Rewinding Volume Sets« « .+ .
Positioning to the Next File Position
Single-File Operations . . . « « « . .
Multiple-File Operations
Using CTRL . &« & & o &« o o o o o & &
Examples of Magnetic Tape Processing .
Examples of OPENSW to Create a New Fi
Examples of OPENSR to Read a File . .
Examples of CLOSES . . . «
Combined Examples of OPENS and CLOSE$ for
Magnetic Tape .« + « ¢ o o o« o o o o o o o &

e« o o o+ o @
o

e o o o o o 0
® o e o s o e & o o o o

COMMAND LINE PROCESSING

GET COMMAND LINE (GCML) . ¢ ¢ ¢ o o o o o o o &

bLML.Bb - Allocate and J.n1t1a.lee GCML Controil
Block o o .
GCMLDS - Define GCML Control Block Offsets and
Bit ValuesS .« o« ¢ ¢ o o o o o o o o o s o o o =
GCML Run-Time Macro Calls . « &+ ¢ o o o o o«
GCMLS$ - Get Command Line
RCMLS - Reset Indirect Command F11e Scan .
CCMLS - Close Current Command File
GCML Usage Considerations « « . .

COMMAND STRING INTERPRETER (CSI)

CSIS$ - Define CSI Control Block Offsets and B1t
Vcl_l.uﬁb . . Y . . . 3 . . .
CSI Control Block Offset and Bit Value
Definitions . ¢ v ¢ ¢ v ¢ o« o o o
CSI Run-Time Macro Calls
CSI$1 - Command Syntax Analyzer
CSI$2 - Command Semantic Parser
CSI Switch Definition Macro Calls
CSI$SW - Create Switch Descriptor Table Entry
CSISSV - Create Switch Value Descriptor Table
Entry e o s e 6 e e e o o« . .
CSISND - Def1ne End of Descriptor Table .- .

s & o 0
e o o o
e o o o

THE TABLE-DRIVEN PARSER (TPARS)

CODING TPARS SOURCE PROGRAMS« . .

TPARS Macros: ISTATS, STATES, and TRAN$.« . .

e & o e o e o e o o 2 e * e @

Initializing the State Table: the ISTATS Macro

Defining a Syntax Element: the STATES Macro
Defining a Transition: the STRAN Macro . .
Types of Command Line Syntax Elements .
Action Routines and Built-in Variables .

TPARS Built-in Variables
Calling Action Routines
Using Action Routines to Reject a
Transition . .« & v ¢ ¢ ¢« ¢« ¢ ¢ ¢ e 4 e e . 0
Optional Debug Routine for RSX-11 Users ., .

vi

Page

U'|U1U|U'IU1U1(J1‘{|U'IU1U1U'IU1(J1MU'I
CWoONJoanUuuUndB_BWNDNKFH

wn
|
O

NN NN
I
AAVTUTdWWND N

~
|
[)¢

~N N
. o o * o e« o o
NN

NNNNNNNNNN
L]
AU WD NDDN

~J

.6

CHAPTER

e

o 00
“ e
w N+

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

L[] L]
N L

2R X2 K2 RN NANA]

U1 W W N

1=

N - =W N Ll

N =

w

.
—

.
—

CONTENTS

TPARS Subexpressions . . « ¢ o o o « o o o«
GENERAL CODING CONSIDERATIONS « .« &
Suggested Arrangement of Syntax Types in a
Table e e e e e e e e e e .
Ignoring Blanks and Tabs in a Command Line
Entering Special Characters
Recognition of Keywords . . « « « « « « &
PSECTS GENERATED BY TPARS MACROS
INVOKING TPARS . o & o o o o o o o o o o o o
Register Usage and Calling Conventions . .
Using the Options Word . . . « « ¢« ¢« « . .
HOW TO GENERATE A PARSER PROGRAM USING TPARS
PROGRAMMING EXAMPLES . . . ¢ ¢ ¢ ¢ o o o o &
Parsing a UFD Command Line
How to Use Subexpressions and Reject
Transitions . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o W

Using Subexpressions to Parse Complex Grammars

SPOOLING
PRINTS MACRO CALL « + & o o o o o o o o o &

«PRINT SUBROUTINE . . ¢« ¢ o« o ¢ ¢ o o « o« &
ERROR HANDLING . ¢ ¢ o« ¢ o o o o o o o o s «

FILE DESCRIPTOR BLOCK

FILENAME BLOCK

SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES
SAMPLE PROGRAMS

INDEX FILE FORMAT

BOOTSTRAP BLOCK . ¢ ¢ o o o o o ¢ o o o o
HOME BLOCK . ¢ ¢ o « ¢ o o o o o ¢ o o o« o o
INDEX FILE BIT MAP . ¢ ¢ ¢ o o ¢ o o o o o o
PREDEFINED FILE HEADER BLOCK c e o o o o o

FILE HEADER BLOCK FORMAT

HEADER AREA
IDENTIFICATION AREA . .
MAP AREA -

o e o

o e e
.
.
.
.
.
.

o e e
.

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

VOLUME AND FILE LABELS . +« ¢ ¢ o o o o o o o
Volume Label Format . ¢« « « o o o o « o &
Contents of Owner Identification Field .
User Volume Labels . ¢« ¢« ¢« ¢« ¢ ¢ o o o o &
File Header Labels « +. ¢« ¢« ¢« o o o o o o« o
File Identifier Processing by Files-11 .
End-of-Volume Labels . . ¢« ¢« ¢ ¢ ¢ o o « &
File Trailer Labels . . ¢ ¢« &« ¢« ¢ o o o =

vii

~
|
0 ~J

I NN
U
U & NN OWLW0 W

NN NN
|
I e

-
1

A

o

C)C)OG")C)OC)Q
NN WWN -

.
(=)

EBWNDNNDDNDND
o« o o o
o wN -

¢ o o o o o

« o @
e o o o
> W -

[aNa NN NARANA NN NN NARANANARA]
~Noaaaa!m

APPENDIX H

APPENDIX I

APPENDIX

i

APPENDIX K

INDEX

FIGURE

" e
N =

K
K

||

~NoasaaoaouvioE =+
|
HWMNHDHENDHWND -

T
N

User File Labels
FILE STRUCTURES . . .
Single File Single Volume
Single File Multivolume .
Multifile Single Volume .
Multifile Multivolume . .
END-OF-TAPE HANDLING
ANSI MAGNETIC TAPE FILE HEADER
COMPATIBLE) e o o o o o o o
THE MAGNETIC TAPE CONTROL TASK
UNLABELED TAPE . ¢« &« &« « « o &
Tape Positioning
Specifying File Attributes .
Translation . . « « « « &

® & o o o o o

e ¢ o o o o o

* o o o o O o o o o o o

e s o o o e e o s 0 2 o

e e & & 0 .~ o o o o o o

Example of EBCDIC Translat1on Tables

EXAMPLE USING AN INDIRECT COMMAND FILE

TAPE « ¢ o ¢ ¢ ¢ o o o o o o @

STATISTICS BLOCK

ERROR CODES

RSX-11M/M-PLUS FCS LIBRARY SYSGEN OPTIONS

FCS LIBRARY OPTIONS
JFCTYP & ¢ ¢ ¢ ¢« ¢ o o o o o &«

FIGURES

File-Access Operation
Record I/O Operations . .

.

e o s e o o o (Yo o o s o o o

.

e o o o o o o

Single Buffering Versus Mu1t1p1e Bufferlng .

Directory Structure for Single-User Volumes
Directory Structure for Multiuser Volumes

Data Flow During Command Line Processing .

Format of Switch Descriptor Table Entry
Format of Switch Value Descriptor Table Entry

.

Processing Steps Required to Generate a Parser

Program Using TPARS

Flow of Control When TPARS Is Called from an

Executing User Program . . .

File Descriptor Block Format

Filename Block Format . . .
ANSI Filename Block Format . .

ANSI Magnetic Tape File Header Block (FCS

Compatible) . « &« ¢ o« « o « &
Statistics Block Format . . .

viii

*

*

Page

(2] OOOC{)OC)C’)

|
o O Y O 00 00 0O 00 00 ™

e De o o o o o @
Q
1
[}
~1

Index-~1

« o o o
AU
U

[}
O NN WNJ W

[e2 W)
UL
NN

Www s W N
(I T T N A |
WA = = = =

[U L
N B W N R

RRQOOQEEQO

CONTENTS

Page
TABLES

Shared File ACCESS 4+ v o o o o o o o o o o s o o o« 1-9
Macro Calls Generating FDB Information 2-2
File Access Privileges Resulting from OPENS$x
Macro Call .« ¢« ¢« ¢ o o « o o o o o « o o o o o o » 3=-3
R2 Control Bits for .EXTND Routine . « ¢« « « . o 4-23
FDB Offset Definitions . . +« ¢« & ¢ ¢« ¢« « ¢« o o« « o A-3
Filename Block Offset Definition e e« o s s o« o o B=2
Filename Block Status Word (N.STAT) . « « « « « « B-3
Filename Block Offset Definitions for ANSI
Magnetic Tape « + o o o o o s o« s o o o o o« o« o+ » B-4
Summary of I/O-Related System Directives C-1
Home Block Format .« « o« o o o o o o o o« o s « o o« E=3
File Header BloCKk « & ¢ o o o o s o o o o o o« o« o F=1
Volume Label Format . « ¢ « ¢ o « o « o o o o o o G-1
File Header Label (HDRI) « « « ¢ ¢ ¢ « o = o« o o« o G-4
File Header Format (HDR2) .+ v &« & o o« o o o o o « G=5
File-Header Label (HDR3) « « ¢« « « o « s« o« o « o« o« G=-6
FCS Library Descriptions . « . ¢« ¢« ¢ ¢ ¢ ¢ « « « « K-1
SFCTYP VAalUES v o o o o o o o s o o o « o o« o o o K=2

ix

PREFACE

MANUAL OBJECTIVES

The purpose of this manual is to familiarize the users of an RSX-11M,
RSX-11M-PLUS, or IAS operating system with the File Control Services
(FCS) facility provided with the system.

INTENDED AUDIENCE

Since the file control services described herein pertain to both
MACRO-11 and FORTRAN programs, the reader is assumed to be familiar
with the manuals describing these program development tools. Also,
since the development of programs in an RSX-11l or IAS environment
necessarily involves the use of the Task Builder, the reader 1is also
assumed to be familiar with this system program.

STRUCTURE OF THE DOCUMENT

Chapter 1 briefly describes the FCS features available for IAS/RSX-11
users and defines some of the terminology that 1is pertinent to
discussions throughout the manual. This chapter |is vital to
understanding the balance of the manual.

Chapter 2, perhaps the most important in the manual, describes the
actions you must take at assembly time to prepare adequately for all
intended file I/0 processing through FCS. This chapter describes the
data structures and working storage areas that you must define within
a particular program in order to use any of the file control services
provided by the system. Unless you are thoroughly familiar with the
content of this chapter, you are advised to defer a reading of
subsequent chapters, since all that follows 1is dependent upon a
complete working understanding of the material in Chapter 2.

Chapter 3 describes the run-time macro calls that allow you to
manipulate files and to perform I/O operations.

Chapter 4 describes a set of run-time routines used to perform
functions related to controlling files, such as reading and writing
directory entries, renaming or extending files, and so forth.

Chapter 5 describes the structure of files supported by the IAS and
RSX-11 systems. In this context, the structure of files for disks,
DECtapes, and magnetic tapes are covered.

Chapter 6 describes two collections of object library routines <called
the Get Command Line (GCML) routine and the Command String Interpreter
(CSI). These routines may be linked with the user task to perform
operations associated with the dynamic input of command lines. Such
input consists of file specifications that identify and control the
files to be processed by the user program.

Chapter 7 describes the Table-Driven Parser (TPARS), which provides

xXi

PREFACE

you with the means to define and parse command lines in a unique
user-designed syntax.

Chapter 8 describes the queuing of files for printing. This facility
is available at both the MACRO and subroutine levels.

Finally, a number of appendixes are provided that supply detailed
information of further interest. Appendix A and Appendix B outline in
detail the File Descriptor Block (FDB) and the filename block,
respectively, two structures forming a significant part of the
descriptive material in Chapter 2. Appendix C summarizes a number of
I/0O-related system directives that form a part of the total resource
management capabilities of the RSX-11 or the IAS Executive, Through
simplified sample programs, Appendix D illustrates the use of the
macro calls that create and initialize the FDB. These sample programs
also include some of the macro calls that are used for processing
files.

Appendix E illustrates the structure of the index file of a Files-11
volume, while Appendix F describes in detail the format and content of
a file header block. The format and content of magnetic tape labels
are similarly described in Appendix G. The format and content of the
statistics block are described in Appendix H.

The error codes returned by the system are listed in Appendix I, and
field-size symbols are listed in Appendix J.

Appendix K lists RSX-11M/M-PLUS FCS library SYSGEN options, including
a brief description of each.

ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in either the RSX-11M or RSX-11M-PLUS Information

Directory and Index. The information directories define the intended
readership of each manual in the appropriate set and provide a brief
synopsis of each manual's contents.

CONVENTICONS USED IN THIS DOCUMENT

Unless otherwise noted, the term "RSX-11" refers to both RSX-11M and
RSX-11M-PLUS.

xii

SUMMARY OF TECHNICAL CHANGES

This revision of the IAS/RSX I/0 Operations Reference Manual contains
changes and additions relative to the following:

1.

New FCS functions:

CLOSES - Truncates the file by default
REWIND - .POINT and .CTRL clear EOF condition

PUT$ - Magtape enhancement

ANSI magtape level 3 compliance (See Appendix G):

The magnetic tape ACP now supports the ANSI header labels.

The magnetic tape ACP now supports l7-character file names
that include ANSI "a" characters.

An overlayed FCS resident library (FCSRES).

Support for unlabeled tape (See Appendix G).

The following changes to CSI1 and CSI2 (See Chapter 6):

The file name and extension may be replaced by a quoted
string.

The device name may be logical queue name (PRINT:, BATCH:,
etc.).

The file name may contain any combination of wildcards
(A*BRC*,.T*) .,

Quotes may not be used as switch values without quoting
them.

The version number is not completely validated.

The directory specification is validated by rules similar
to those used in VMS.

Longword number conversion is now supported, resulting in
two words of number stored when two words are requested.

Big buffer support (See Chapter 1).

Multibuffering (See Chapter 1).

xiii

CHAPTER 1

FILE CONTROL SERVICES

IAS and RSX-11 File Control Services (FCS) enable you to perform
record-oriented and block~-oriented I/0 operations, and to perform
additional functions required for file control, such as open, close,
wait, and delete operations. To invoke FCS functions, you issue macro
calls to specify desired file control operations. The FCS macros are
called at assembly time to generate code for specified functions and
operations. The macro calls provide the system-level, file control
primitives with the necessary parameters to perform the file access
operations that you request (see Figure 1-1).

FCS is basically a set of routines that are 1linked with the user
program at task-build time from a system global area (IAS) or resident
system library (RSX-11), or a system object module 1library. These
routines, consisting of pure, position-independent code, provide an
interface to the file system, enabling you to read and write files on
file-structured devices and to process files 1in terms of logical
records.

Logical records are regarded by your program as data units that are
structured in accordance with application requirements, rather than as
physical blocks of data on a particular storage medium.

FCS provides the capability to write a collection of data (consisting
of distinct logical records) to a file in a way that enables the data
to be retrieved at will., You can retrieve data from the file without
having to know the exact format in which it was written to the file.

FCS, therefore, is transparent to the user, so that records can be
read or written in logical units that are consistent with particular
application requirements.

| USER-ISSUED MACRO CALL |

!

[FILE CONTROL SERVICES |

r FILE CONTROL PRIMITIVES J

!

PERIPHERAL DEVICE HARDWARE
~ {e.g., disk, VTO5)

2K-290-81

Figure 1-1 File-Access Operation

1-1

FCS provides an extensive set of macros to simplify your interface to
the system's 1I/0 facilities. 1In addition to generating calls to FCS
subroutines, these macros create and maintain certain data structures
that are required when performing any file 1I/0 operations. The
required data structures include the following:

1. A File Descriptor Block (FDB) that contains information
necessary at execution time for processing the file,

2. A dataset descriptor that is accessed by FCS to obtain ASCII
file name information required when opening a specified file.

3. A default filename block that is accessed by FCS to obtain
default file name information required when opening a
specified file. This data structure is accessed when
complete file information 1is not specified in the dataset
descriptor.

4. A file storage region (FSR) that is used by FCS for working
storage.

The FDB is described in detail in Appendix A and Appendix B. The
dataset descriptor and the default filename block are described in
detail in Section 2.4. The FSR is described in Section 1.2.

1.1 FILE ACCESS METHODS

IAS and RSX-11 support both sequential and random access to data in
files on sequential access devices (such as magnetic tapes and card
readers) and random access devices (such as disks). The sequential
access method 1is device independent; that is, sequential access can
be used for both record-oriented and random access devices (for
example, card reader and disk, respectively). You can use the random
access method only for random access devices.

1.2 FILE STORAGE REGION (FSR)

The file storage region (FSR) is an area allocated in your program as
working storage for performing record I/0 operations (see Section
1.5). The FSR consists of two program sections that are always
contiguous to each other. These ©program sections exist for the
following purposes:

$SFSR1 - This area of the FSR contains the block buffers and the
block buffer headers for record I/O processing. You
determine the size of this area at assembly time by
issuing the FSRSZ$ macro call (see Section 2.6.1). The
number of block buffers and associated headers is based
on the number of files that you 1intend to open
simultaneously for record I/0 operations.

$8FSR2 - This area of the FSR contains impure data that 1is used
and maintained by FCS when performing both record and
block I/0 operations. Portions of this area are
initialized at task-build time, whereas other portions
are maintained by FCS.

FILE CONTROL SERVICES

The size of the FSR can be changed, if desired, at task-build time.
Section 2.7 presents the ©procedures that provide vyou with this
flexibility.

The data flow during record 1/0 operations is depicted in Figure 1-2.
Note that blocks of data are transferred directly between the FSR
block buffer and the device containing the desired file. The
deblocking of records during input is accomplished in the FSR block
buffer, and the blocking of records is similarly accomplished 1in the
FSR block buffer during output. ©Note also that FCS serves as your
interface to the FSR-block-buffer pool. All record I/O operations,
which are initiated through GET$ and PUT$ macro calls, are totally

atel

synchronized by FCS unless multibuffering is in use.

Record I/O operations are described in detail in Section 1.5.

BLOCK
BUFFER
POOL

—

W/”{é,/%
‘(/////BLOCK
BUFFER
7
/ ook
DEVICE / / - FCS et RgggzD
BUFFER

$$FSR2
IMPURE DATA

2ZK-291-81

Figure 1-2 Record I/0 Operations

1.3 DATA FORMATS FOR FILE-STRUCTURED DEVICES

Data is transferred between peripheral devices and memory in blocks.
A data file consists of virtual blocks, each of which may contain one
or more logical records created by your program. In FCS terms, a
virtual block in a file consists of 512(decimal) bytes for random
access devices. The size of the logical records in the virtual blocks
is wunder the control of the user program that originally wrote the
records.

When creating a new file, your program can specify that the records in
the file need not all be the same size., Such records are known as

1-3

variable-length records. Conversely, if your program indicates that
all records in the new file will be equal in size, the records are
known as fixed length.

There are two types of variable-length records: sequenced and
nonsequenced. Both must be word aligned. Sequenced variable-length
records are preceded by a 2-word record header. The first word
contains the 1length of the record, and the second word contains the
value of the sequence number:

16 16)
((

Byte Count Sequence Number n-2 bytes of data
)
€4

Nonsequenced variable-length records are preceded by a single-word
record header containing the length of the record:

16 3
((

Byte Count n bytes of data
))
[€¢
Both fixed- and variable-length records are aligned on a word

boundary. Any extra byte that results from an odd-length record is
simply ignored. (The extra byte is not necessarily a 0 byte.)

Virtual blocks and 1logical records within a file are numbered
sequentially, each starting at 1. A virtual block number is a file
relative value, whereas a logical block number is a volume relative
value. Ordinarily, records may cross block boundaries. This means
that the beginning of a record can £ill out the end of a block, while
the rest of the record occupies the beginning of the next block.

1.3.1 Data Formats for ANSI Magtape

You can use both fixed- and variable-length records on magtape; their
format conforms to the ANSI standard.

On magtape, a virtual block corresponds toi 'aiphysical record.#® The
default 1length of a block is 512 bytes. 1Its length can be changed to
any value greater than 8 bytes (14 bytes for a write function) and up
to 2048 bytes with the use of the FDBF$ macro (see Section 2.2.1.6).
Records are not allowed to cross block boundaries. S

Fixed-length records are packed 1into a block with no control
information and no padding for alignment. The block is itmusated®so
that it ends at the word boundary following the end of the last record
that will fit in the block buffer.

Variable-length . .recordls are preceded by a 4-byte count. . figldgs
expressed in decimal 1in ASCII characters. The count includes the
length of the record and the 4-byte count field. After the last
record in a block (if there is any space left in the block), a caret
character (""", ASCII code 136), which appears where the next byte
count should be, signals the end of data in that block.

1-4

FILE CONTROL SERVICES

1.4 BLOCK I/O OPERATIONS

The READS and WRITES macro calls (see Sections 3.15 and 3.16,
respectively) allow the user to read and write virtual blocks of data
from and to a file without regard to logical records within the £file.
Block I/0 operations provide an efficient means of processing file
data, since such operations do not involve the blocking and deblocking
of records within the file. Also, in block I/O operations, you can
read or write files in an asynchronous manner; that is, control may
be returned to vyour program before the requested I/O operation is
completed.

When block I/0 is used, the number of the wvirtual block to be
processed 1is specified as a parameter in the appropriate READS/WRITES
macro call; the virtual blocks so specified are processed directly in
a reserved buffer in user memory space. READ$ and WRITES$ can be used
only on block-structured devices.

As implied above, you are responsible for synchronizing all block 1I/O
operations. Such asynchronous operations can be coordinated through
an event flag (see Section 2.8.1) specified in the READS$/WRITES$ macro
call. The system uses the event flag to signal the completion of a
specified block I/0 transfer, enabling you to coordinate those block
I/0 operations that are dependent on each other.

1.5 RECORD I/O OPERATIONS

The GET$ and PUT$S macro calls (see Sections 3.9 and 3.12,
respectively) are provided for processing individual user records in
files. Using the FSR block buffers (see Section 1.2), the GETS$ and
PUT$ routines perform the necessary blocking and deblocking of records
within the virtual blocks of the file, allowing your program to access
logical records.

Sequential access mode I/0 operations can be performed for both fixed-
and variable-length records. Random access mode I/0O operations can be
performed only for fixed-length records. Your program accesses
records randomly by specifying a record number. This number
represents the position of the desired record within the
file -- viewing the file as an array of fixed-sized records, with the
number 1 representing the first record physically present in the file
and n the last. Successive GET$ or PUT$ operations in random access
mode can access records anywhere within the file. To do so, your
program need only modify the record number specified as part of the
random record operation. After each such random operation, FCS
increments the record number used in the operation. If your program
does not again modify this number prior to issuing another record
operation, the record actually accessed is the next sequential record
in the file.

In contrast to block I/0O operations, all record 1I/0 operations are
synchronous; that is, control is returned to your program only after
the requested I/0 operation is completed.

Because GET$/PUTS operations process logical records within a wvirtual
block, only a limited number of GETS$ or PUTS$ operations result in an

FILE CONTROL SERVICES

actual I/0 transfer (for example, when the end of a data block is
encountered). Therefore, all GETS$/PUTS I/0 requests do not
necessarily involve an actual physical transfer of data.

1.6 DATA-TRANSFER MODES

When record I/O is used, a program can gain access to a record in
either of two ways after the virtual block has been transferred into
the FSR from a file:

1. In move mode, by specifying that individual records are to be
moved from the FSR block buffer to a user-defined record
buffer (see Figure 1-2)

2. 1In locate mode, by referencing a location in the File
Descriptor Block (see Section 1.9) that contains a pointer to
the desired record within the FSR block buffer

1.6.1 Move Mode

Move mode requires that data be moved between the FSR block buffer and
a user-defined record buffer. For input, data is first read into the
FSR block buffer from a peripheral device and then moved to your
record buffer for processing. For output, your program first builds a
record in the user record buffer; FCS then moves the record to the
FSR block buffer, from which it is written to a peripheral device when
the entire block is filled.

Move mode simulates the reading of a record directly into your record
buffer, thereby making the blocking and deblocking of records
transparent to you.

1.6.2 Locate Mode

Locate mode enables your to access records directly in the FSR block
buffer. Consequently, there is normally no need to transfer data from
the FSR block buffer to your record buffer. To access records
directly in the FSR block buffer, you refer to locations in the File
Descriptor Block (see Section 1.9) that contain wvalues defining the
length and the address of the desired record within the FSR block
buffer. These values are present in the FDB as a result of FCS macro
calls that you issued.

Program overhead is reduced in 1locate mode, since records can be
processed directly within the FSR block buffer. Moving data to the
user record buffer in locate mode is required only when the 1last
record of a virtual block crosses block boundaries.

1.7 MULTIPLE BUFFERING FOR RECORD I/O

By supporting multiple buffers £for record I/0, FCS provides the
capability for users who select multibuffered FCS (see Appendix K) to
read data into buffers in anticipation of user program requirements,

FILE CONTROL SERVICES

and to write the contents of buffers while the wuser program is
building records for output. You can thus overlap the internal
processing of data with file I/O operations, as illustrated in Figure
1-3.

When read-ahead multiple buffering 1is wused, the file must be
sequentially accessed to derive full benefit from multiple buffering.
For write-behind multiple buffering, you can use any file access
method with full benefit.

When multiple buffering is used, you must allocate sufficient space in
the FSR for the total number of block buffers in use at any given
time. The FSRSZ$ macro call (see Section 2.6.1) is used to accomplish
the allocation of space for FSR block buffers.

Time -

Single process record write record process record write record oo

Buffer

Multiple process record write record process record write record

Buffer process record write record process record °ee
ZK-292-81

Figure 1-3 Single Buffering Versus Multiple Buffering

Multiple buffering can improve performance for I/O-bound tasks under
certain circumstances.

For example, consider an I/O bound task running as the dedicated or
highest priority application on a system. For such a task, multiple
buffering can decrease execution time by enabling overlap of I/0 and
task execution. If the task uses 1large records or operates on
clusters of records, big buffering is also advantageous. This assumes
that it 1is reasonable to wuse more task address space and physical
memory for increased buffer space, and more ©pool for the increased
number of outstanding I/O packets.

However, if other tasks run at the same priority as that of the
application task described above, then an overlap of I/0O and task
execution is already achieved among these tasks without multiple
buffering. In this case, multiple buffering would use up address
space and pool without improving execution speed. If wvirtual and
physical address space 1is available, big buffering would improve
performance.

Big buffering reduces the number of disk accesses by allowing
multiblock input and output. Normally, the disk accesses for GETS$ or
PUT$ operations are performed one sector at a time. Using FCS big
buffers allows you to read or write a specified number of sectors in a
single operation.

FILE CONTROL SERVICES

To use big buffers, you must select the buffer size and specify that
buffer size in the parameter lists for each occurrence of both the
FSRSZ$ macro and the FDBDF$ macro in your program.

You should choose a buffer size that is a multiple of 512(decimal)
bytes, the size of one disk block. Since the default amount allocated
by a file extend is five blocks and disks often contain many 5-block
files or parts of files, a buffer size of five blocks is generally a
good choice. Larger amounts may increase performance, but note that
you are trading large amounts of memory for speed.

You must reserve the buffer space in your program and you must make
the buffer size known to the FDB. The FSRSZ$ macro allows you to
specify the total buffer space needed. Specify 512(decimal) bytes for
each normal disk file, plus the buffer size that you have selected for
each big buffered file. For example, assume that a program has three
files: one normal file (512-byte buffer); one file with a big buffer
size of three blocks; and one file with a big buffer size of five
blocks. The following call to the FSRSZ$ macro reserves the space
properly:

FSRSZ$ 3,<<1+3+5>*512.>

In the FDB of each file that has a big buffer, you must override the
default buffer size, using either the FDBF$A macro or the FDBFS$R

macreo. For a file with five bleocks as 2 big buffer, the assembly-time

macro call is:
FDBFSA <5*512.>

On RSX-11M-PLUS systems, the SYSLIB provided as the default 1library
contains all the proper FCS modules for big buffer support. RSX-11M

P~ P IR L S ARTOAT TR L. Al o e 3T o
USers musSc 1ink o ANoLip Of ctnese modauires,

1.8 SHARED ACCESS TO FILES

Files-11 permits shared access to files according to established
conventions., You can issue two macro calls, among several available
in FCS for opening files, to invoke these conventions. The OPNSS$x
macro call (see Section 3.2) is used specifically to open a file for
shared access. The OPENS$x macro call (see Section 3.1), on the other
hand, 1invokes generalized open functions that have shared-access
implications only in relation to other I/0 requests then issued. Both
macro calls take an alphabetic suffix that specifies the type of
operation being requested for the file, as follows:

R - Read existing file.

W - Write (create) a new file.

M - Modify existing file without extending its length.

U - Update existing file and extend its length, if necessary.
A - Append data to end of existing file.

The suffix R applies to the reading of a file, whereas the suffixes W,
M, U, and A all apply to the writing of a file. These macro calls and
the shared access conditions that they invoke are summarized below.

1-8

FILE CONTROL SERVICES

You can use the OPNSS$x and OPENS$xX macro calls as follows for shared
access to files:

1. When the OPNSSR macro call is issued, read access to the file
is granted unconditionally, regardless of the presence of one
or more concurrent write access requests to the file. (The
OPNSSR macro call permits concurrent write accesses to the
file while it 1is being read.) Subsequent write access
requests for this same file are honored. Thus, several
active read access requests and one or more write access
requests may be present for the same file. However, multiple
tasks simultaneously accessing the file for write operations
are subject to certain restrictions, as detailed in point 2.

2. While FCS allows concurrent write access requests through the
use of the OPNSSW, OPNS$SM, OPNSSU, and OPNS$A macro,
synchronizing access to the file is the responsibility of the
user tasks themselves. To avoid the retrieval or storage of
inconsistent data, each such task must implement and use some
user-defined mechanism that ensures that the file is accessed
in a serial fashion.

3. When the OPENSR macro call is issued, read access to the file
is granted, provided that no write access requests for that
file are active. (The OPENSR macro call does not permit
concurrent write access to the file while it is being read.)

Note from the above that readers of a shared file should be aware that
the file may vield inconsistent data from request to request if that
file is also being written.

Shared access during reading does not necessarily mean that the access
requests are all from separate tasks. A file could also be shared by
a single task that has opened the file on several different 1logical
unit numbers.

Table 1-1 shows the circumstances under which Files-11 permits a
second file access when the file is opened for shared access.

Table 1-1
Shared File Access
First Access
Second Access
Read Shared read Write Shared write

Read Yes Yes No No
Shared

Read Yes Yes Yes Yes
Write No Yes No No
Shared

Write No Yes No Yes

1-9

FILE CONTROL SERVICES

1.9 FILE DESCRIPTOR BLOCK (FDB)

The File Descriptor Block (FDB) contains information used by FCS in
opening and processing files. One FDB is required for each file that
is to be opened simultaneously by your program. You initialize some
portions of the FDB with assembly-time or run-time macro calls, and
FCS maintains other portions. Each FDB has five sections that contain
user- or system-initialized information:

e File attribute section

e Record or block access section

e File open section

e Block Buffer Section

e Filename block portion of the FDB

The information stored in the FDB depends upon the characteristics of
the file to be processed. The FDB and the macro calls that cause
values to be stored in this structure are described 1in detail in
Section 2.2. Appendix A describes in detail the format and the
content of the FDB.

1.10 DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK

Normally, either a dataset descriptor or a default filename block is
specified for each file that you intend to open. These data
structures provide FCS with the file specifications required for
opening a file. Although either one or the other is usually defined,
both can be specified for the same file. The dataset descriptor and
the default filename block are summarized below and described in
detail in Sections 2.4.1 and 2.4.2, respectively.

When a file is being opened using information already present 1in the
filename block, neither the dataset descriptor nor the default
filename block is accessed by FCS for required file information. This
method of file access, which is termed "opening a file by file ID," is
an efficient means of opening files. Section 2.5 describes this
process in detail.

1.11 KEY TERMS USED THROUGHOUT THIS MANUAL

Listed below are terms used throughout this manual that have specific
meanings in the context of FCS operations.

FILE DESCRIPTOR BLOCK (FDB)

The tabular data structure that provides FCS with information
needed to perform I/O0 operations on a file. The space for this
data structure is allocated in your program by issuing the FDBDFS$
macro call (see Section 2.2.1.1). Each file to be opened
simultaneously by your program must have an associated FDB.
Portions of the FDB are user defined and others are maintained by
FCS. Assembly-time or run-time macro calls are provided for vyou
in order to 1initialize the FDB. The format and content of the
FDB are detailed in Appendix A.

FILE CONTROL SERVICES

FILENAME BLOCK

The portion of the FDB that contains the various elements of a
file specification (that 1is, directory, file name, file type,
file version number, device, and wunit) for use by the FCS
file-processing routines. Initially, as a file is opened, FCS
fills in the filename block with user-specified information taken
from the dataset descriptor and/or the default filename block
(see below). The methods of <creating £file specifications for
initializing the filename block are described in detail in
Section 2.4; the format and content of the filename block itself
are described in Appendix B.

LT FILENAME BLOCK

The default filename block, an area allocated within your program
by issuing the NMBLKS$ macro call (see Section 2.4.2), contains
the various elements of a file specification. The default
filename block is a user-created structure, whereas the filename
block within the FDB 1is maintained by FCS. You create the
default filename block to supply file specifications to FCS that
are not otherwise available through the dataset descriptor (see
below) . In other words, from information defined in the default
filename block, FCS creates a parallel structure in the FDB that
serves as the execution time repository for information that FCS
requires in opening and operating on files.

Thus, the terms "default filename block™ and "filename block"
refer to separate and distinct data structures. These
distinctions should be kept clearly in mind whenever these terms
appear in the manual. Though created and used differently, these
areas are structurally identical.

DATASET DESCRIPTOR

The dataset descriptor is a 6-word block in your program
containing the sizes and the addresses of ASCII data strings that
together constitute a file specification (see below). This data
structure, which you also create, 1is described in detail in
Section 2.4.1. Unless the filename block in the FDB has been
initialized, dataset-descriptor and/or default filename block
information must be provided to FCS before the specified file can
be opened.

DATASET-DESCRIPTOR POINTER

FILE

FILE

An address value that points to the 6-word dataset descriptor
within your program. This address value is stored in the FDB,
allowing FCS to access a user-created file specification 1in the
dataset descriptor.

SPECIFICATION

Any system or user program having a requirement to refer to files
does so through a file specification. Such information names a
file and allows it to be explicitly referenced by any task. A
file specification, whether for input or output, contains
specific information that must be made available to FCS before
that file can be opened. The term "file specifier"™ is sometimes
used as a synonym for "file specification."

STORAGE REGION (FSR)

The file storage region (see Section 1.2) is an area of memory
that you reserve for wuse in I/O operations. You can allocate
this area by issuing the FSRSZ$ macro call in your program (see
Section 2.6.1).

FILE CONTROL SERVICES

1.12 SYSTEM CHARACTERISTICS

Listed below are the important characteristics of FCS that are
important in using its I/O facilities:

()

READS$/WRITES operations are asynchronous; you are responsible
for coordinating all block I/0O activity. In contrast,
GET$/PUT$ operations are synchronized entirely by FCS;
control 1is not returned to your program until the requested
GETS/PUTS operation is completed.

FCS macro calls save and restore all registers, with the
following exceptions:

1. The file-processing macro calls (see Chapter 3) place the
FDB address in RO.

2. Many of the file control routines (see Chapter 4) return
requested information in the general registers,

The FDBDF$ macro call (see Section 2.2.1.1) 1is issued to
allocate space for an FDB. Once the FDB 1is allocated,
necessary information can be placed in this data construct
through any logical combination of assembly-time and/or
run-time macro calls (see Sections 2.2.1 and 2.2.2,
respectively). Certain information must be present in the FDB
before FCS can open and operate on a specified flie.

For each assembly-time FDB 1initalization macro call, a
corresponding run-time macro call is provided that supplies
identical information. Although both sets of macro calls (see
Table 2-1) place the same information in the FDB, each set
does so in a different way. The assembly-time calls generate
.BYTE or .WORD directives that create specific data, while the
run-time calls generate MOV or MOVB instructions that place
desired information in the FDB during program execution.

T+ T AN Ant+
If an errcr conditis t

ia o
- LI L LAVl Lo ae Liic

ing any of
file-processing operations described in Chapter 3, or during
the execution of several of the file control routines (see
Section 4.,1), the C-bit (carry condition code) 1in the
Processor Status Word 1is set, and an error indicator is
returned to FDB offset location F.ERR.

ac
(SRR =

NOTE

When I/0 is being done using the READS/WRITE macros,
the IOSB parameter must be specified for F.ERR and the
C-bit to be properly returned (see Section 3.15).

If the address of a user-coded, error-handling routine is specified as
a parameter in any of the file-processing macro calls, a JSR PC
instruction to the error-handling routine is generated. The routine
is then executed if the C-bit in the Processor Status Word is set.

1-12

CHAPTER 2

PREPARING FOR I/O

The MACRO-11 programmer must establish the proper data base and
working storage areas within the particular program in order to
perform input/output operations. The following actions must be
performed:

e Define a File Descriptor Block (FDB) for each file that is to
be opened simultaneously by your program (see Section 2.2).

e Define a dataset descriptor and/or a default filename block
(see Sections 2.4.1 or 2.4.2, respectively) if you intend to
access these structures to provide required file
specifications to FCS.

e Establish a file storage region (FSR) within the program (see
Section 2.6). (The initialization procedures for FORTRAN
tasks are described in detail in the FORTRAN-IV User's Guide
and the FORTRAN-IV-PLUS User's Guide.)

This chapter describes the macro calls that must be invoked to provide
the necessary file-processing information for the FDB. Such
information is placed in the FDB in one of three ways:

1. By the assembly-time FDB initialization macro calls (see
Section 2.2.1)

2. By the run-time FDB initialization macro calls (see Section
2.2.2)

3. By the file-processing macro calls (see Chapter 3)

Data supplied during the assembly of the source program establishes
the 1initial wvalues in the FDB. Data supplied at run time can either
initialize additional portions of the FDB or change values established
at assembly time. Similarly, the data supplied through the
file-processing macro calls can either initialize portions of the FDB
or change previously initialized values.

Table 2-1 lists the macro calls that generate FDB information.

2-1

Table 2-1
Macro Calls Generating FDB Information

Assembly Time FDB Run-Time FDB File-Processing
Macro Calls Macro Calls Macro Calls
FDBDF$ (Required) FDATSR OPENS$ (all variations)
FDATSA FDRCSR CLOSES
FDRCS$A FDBKSR GET$ (all variations)
FDBKSA FDOPSR PUT$ (all variations)
FDOPSA FDBFS$R READS
FDBFSA WRITES

DELETS

WAITS

2.1 .MCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO DEFINITIONS

All the assembly-time, run-time, and file-processing macro calls (see
Table 2-1 above) that you intend to issue in a program must first be
listed as arguments in an .MCALL directive. Doing so allows the
required macro definitions to be read in from the system macro library
during assembly.

The .MCALL directive and associated arguments must appear 1in the
program prior to the issuance of any macro call in the execution code
of the program. If the list of macro names is lengthy, several .MCALL
directives, each appearing on a separate source 1line, must be
specified to accommodate the entire list of macro names. The number
of such names that may appear in any given .MCALL statement is limited
only by the availability of space within that 80-byte source line.

The .MCALL directive takes the following general form:
.MCALL argl,arg2,...,argn
argl,arg2,...,argn

A list of symbolic names identifying the macro definitions
required in the assembly of your program. If more than one
source line is required to list the names of all desired macros,
each additional 1line so required must begin with an .MCALL
directive.

For clarity of functional use, the assembly-time, run-time, and
file-processing macro names may be 1listed 1in each of three
separate .MCALL statements. The macro names may also be 1listed
alphabetically for readability, or they may be intermixed,
regardless of functional use. All these options are matters of
preference and have no effect whatever on retrieving macro
definitions from the system macro library.

For those users planning to invoke the command 1line processing
capabilities of the Get Command Line (GCML) routine and the
Command String Interpreter (CSI), all the names of the associated
macros must also be listed as arguments in an .MCALL directive.
GCML and €SI, ordinarily employed in system or application
programs for convenience in dynamically processing file
specifications, are described in detail in Chapter 6.

PREPARING FOR I/O

The .MCALL directive is described in detail in the PDP-11 MACRO-11
Language Reference Manual. The sample programs in Appendix D also
illustrate the use of the .MCALL directive. Note that these
directives appear as the first statements in the preparatory coding of
these programs.

The object routines described in Chapter 4 should not be confused with
the macro definitions available from the system macro library. The
file control routines, constituting a body of object modules, are
linked into your program at task-build time from the system object
library ([1,1]SYSLIB.OLB). You should consult Section 4.1 for a
description of these routines.

The following statements are representative of the use of the .MCALL
directive:

.MCALL FDBDF$,FDATSA,FDRCSA,FDOPSA ,NMBLKS,FSRSZS$,FINITS
.MCALL OPENSR,OPENSW,GETS,PUTS$,CLOSES

NOTE

You can use the macro FCSMC$ to declare
in the (MCALL format the most commonly
used FCS macros, as follows:

.MCALL FCSMCS$
FCSMC$

FCS macros declared in this manner
include: OPENS$x, OPNSS$x, CLOSES$, READS,
WRITES, WAITS, GETS, PUTS, DELETS,
FINITS, FSRSZS$, FDBDF$, FDATSx, FDRCSx,
FCOPSx, FDBFS$x, FDBKSx, and NMBLKS. If
other macros are required, explicit
.MCALLs must be issued. A disadvantage
of wusing this method to declare .MCALL
macros is that unused macros may take up
possibly critical assembler symbol table
space, thus slowing down the assembly
process.

2.2 FILE DESCRIPTOR BLOCK (FDB)

The File Descriptor Block (FDB) is the data structure that provides
the information needed by FCS for all file I/O operations. Two sets
of macro calls are available for FDB initialization: one set is used
for assembly-time initialization (see next section), and the other set
is used for run-time initialization (see Section 2.2.2). Run-time
macreos are used to supplement and/or override information specified
during assembly. Appendixes A and B illustrate all the sections of
the FDB in detail.

2.2.1 Assembly-Time FDB Initialization Macros

Assembly-time initialization requires that the FDBDF$ macro call be
issued (see Section 2.2.1.1) to allocate space for and to define the
beginning address of the FDB. Additional macro calls can then be
issued to establish other required information in this structure.

2-3

PREPARING FCR I/C

The assembly-time macros that accomplish these functions are described
in the following sections. These macro calls take the general form
shown below:

mcnam$A pl,p2,...,pPn
mchamS$SA

The symbolic name of the macro.

pPl,P2,...,Pn

The string of initialization parameters associated with the
specified macro. A parameter may be omitted from the string by
leaving its field between delimiting commas null, Assume, for
example, that a macro call may take the following parameters:

FDOPSA 2,DSPT,DFNB

Assume further that the second parameter field is to be coded as
a null specification. In this case, the statement is coded as
follows:

FDOPS$A 2, ,DFNB

Also, a trailing comma need not be inserted to reflect the
omission of a parameter beyond the last explicit specification.
For example, the macro call

FDOP$SA 2,DSPT,DFNB
need not be specified as
FDOPSA 2,DSPT,

if the last parameter (DFNB) is omitted. Rather, such a macro
call is specified as follows:

FDOP$A 2,DSPT

If any parameter is not specified, that is, if any field in the macro
call contains a null specification, the corresponding cell in the FDB
is not initialized and thus remains 0.

Multiple values may be specified in a parameter field of certain macro
calls. Such values are indicated by placing an exclamation point (1)
between the values, indicating a logical OR operation to the MACRO-11
assembler. Using multiple wvalues in this manner is pointed out in
this manual where such specifications apply.

Throughout the descriptions of the assembly-time macros in the
following sections and elsewhere in this manual, symbols of the form
F.xxx or F.xxxx are referenced (for example, F.RTYP). These symbols
are defined as offsets from the beginning address of the FDB, allowing
specific locations within the FDB to be referenced. Thus, you can
reference or modify information within the FDB without having to
calculate word or byte offsets to specific locations.

Using such symbols in system/user software has the additional
advantage of permitting the relative position of cells within the FDB
to be changed (in a subsequent release, for example) without affecting

your current programs or the coding style employed in developing new
programs.

2-4

PREPARING FOR I/O

2.2.1.1 FDBDF$ - Allocate File Descriptor Block (FDB) - The FDBDFS$
macro call is specified in a MACRO-1l1l program to allocate space within
the program for an FDB. This macro call must be specified in the
source program once for each input or output £file to be opened
simultaneously by your program in the course of execution. Any
associated assembly-time macro calls (see Sections 2.2.1.2 through
2.2.1.6) must then be specified immediately following the FDBDF$ macro
if vyou desire to accomplish the initialization of certain portions of
this FDB during assembly.

The FDB allocation macro takes the following form:

1—

abel: FDBDFS
label

A user-specified symbol that names this particular FDB and
defines its beginning address. This 1label has particular
significance in all I/0 operations that require access to the
data structure allocated through this macro call. FCS accesses
the fields within the FDB relative to the address represented by
this symbol. .

The following examples are representative of FDBDF$ macro calls as
they might appear in a source program:

FDBOUT: FDBDFS$;ALLOCATES SPACE FOR AN FDB NAMED
;"FDBOUT" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

FDBIN: FDBDF$;ALLOCATES SPACE FOR AN FDB NAMED
;"FDBIN" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

As noted earlier, the source program must embody one FDBDF$ macro call
logically similar to ‘those above for each file to be accessed
simultaneously by your program. FDBs can be reused for many different
files, as 1long as the file currently using the FDB is closed before
the next file is opened. The only requirement is that an FDB must be
defined for every file to be opened simultaneously.

2.2.1.2 FDATS$A - Initialize File Attribute Section of FDB - The
FDATSA macro call is used to initialize the file attribute section of
the FDB when a new output file is to be created. If the file to be
processed already exists, the first four parameters of the FDATS$A
initialization macro are not required, since FCS obtains the necessary
information from the first 14 bytes of the user file attribute section
of the specified file's header block (see Appendix F). This macro
call has the following format:

FDATSA rtyp,ratt,rsiz,cntg,aloc

rtyp
A symbolic value that defines the type of records to be built as
the new file is created. One of three values must be specified,

as follows:

1. R.FIX - Indicates that fixed-length records are to be
written in creating the file

ratt

rsiz

cntg

PREPARING FOR I/C

2. R.VAR - Indicates that variable-length records are to be
written in creating the file

3. R.SEQ - Indicates variable-length sequenced records are to
be written in creating the file

This parameter initializes FDB offset location F.RTYP. Since the
symbols R.FIX, R.VAR, and R.SEQ initialize the same location in
the FDB, these values are mutually exclusive.

Symbolic values that may be specified to define the attributes of
the records as the new file is created. The following symbolic
values may be specified, as appropriate, to define the desired
record attributes:

e FD.FTN - Indicates that the first byte in each record will
contain a FORTRAN carriage-control character

e FD.CR - Indicates that the record is to be preceded by a
<LF> character and followed by a <CR> character when the
record is written to a carriage control device (for
example, a line printer or a terminal)

e FD.BLK - Indicates that records are not allowed to cross
block boundaries

e FD.PRN -~ Indicates that the record is preceded by a word
containing carriage control information

These parameters initialize the record attribute byte (offset
location F.RATT) in the FDB. The values FD.FTN and FD.CR are
mutually exclusive and must not be specified together. Apart
from this restriction, the combination (logical OR) of multiple
parameters specified in this field must be separated by an
exclamation point (for example, FD.CR!FD.BLK).

A numeric value that defines the size (in bytes) of fixed-length
records to be written to the file. This value, which initializes
FDB offset location F.RSIZ, need not be specified if R.VAR has
been specified as the record type parameter above (for
variable-length records). If R.VAR or R.SEQ is specified, FCS
maintains a value in FDB offset location F.RSIZ that defines the
size (in bytes) of the largest record currently written to the
file. Thus, whenever an existing file containing variable-length
records is opened, the value in F.RSIZ defines the size of the
largest record within that file. By examining the value in this
cell, a program can dynamically allocate record buffers for its
open files.

A signed numeric value that defines the number of blocks that are
allocated for the file as it is created. The signed values have
the following significance:

e Positive Value - Indicates that the specified number of

blocks is to be allocated contiguously at file-create time,
and further that the file is to be contiguous

2-6

aloc

PREPARING FOR I/O

e Negative Value - Indicates that the two's complement of the
specified number of blocks is to be allocated at
file-create time, not necessarily contiguously, and further
that the file is to be noncontiguous

This parameter, which has 15 bits of magnitude (plus a sign bit),
initializes FDB offset location F.CNTG.

(You can specify an allocation of up to 24 bits by using the
.EXTND routine.)

If you have a firm idea as to the desired length of the file, it
is more efficient to allocate the required number of blocks at
file-create time through this parameter, rather than requiring
FCS to extend the file, if necessary, during the writing of the
file (see aloc parameter below).

If this parameter is not specified, then the file is created as
an empty file; that is, no space is allocated within the file as
it is created.

Issuing the CLOSES macro call at the completion of
file-processing resets the value in F.CNTG to 0. Thus, the usual
procedure is to initialize this location at run time just before
opening the file. Reinitialization is necessary if the FDB is
reused.

A signed numeric value that defines the number of blocks by which
the file 1is extended, if FCS determines that file extension is
necessary during the writing of +the file. When the end of
allocated space in the file is reached during writing, the signed
value provided through this parameter causes file extension to
occur, as follows:

e Positive Value - Indicates that the specified number of
blocks 1is to be allocated contiguously as additional space
within the file, and further that the file 1is to be
contiguous.

NOTE

Once a file has had blocks allocated,
all future file extensions cause the
file to become noncontiguous, even when
aloc is a positive value.

e Negative Value - Indicates that the two's complement of the
specified number cof blocks is to be allocated
noncontiguously as additional space within the file, and
further that the file is to be noncontiguous.

This parameter, which also has 15 bits of magnitude (plus a sign
bit), initializes FDB offset location F.ALOC. If this optional
parameter is not specified, file extension occurs as follows:

e If the number of wvirtual blocks yet to be written 1is
greater than 1, the file is extended by the exact number of
blocks required to complete the writing of the file.

PREPARING FOR I/O

e If only one additional block is required to complete the
writing of the £file, the file is extended in accordance
with the volume's default extend value.

The volume default extend size is established through the INITIALIZE,
INITVOLUME, or MOUNT command, respectively. The volume default extend
size cannot be established at the FCS 1level; this wvalue must be
established when the volume is initially mounted.

The following statement is representative of an FDAT$A macro call.
This statement initializes the FDB in preparation for creating a new
file containing fixed-length, 80-byte records that will be allowed to
cross block boundaries.

FDAT$A R.FIX,,80.

In the above example, the record attribute (ratt) parameter has been
omitted, as indicated by the second comma (,) in the parameter string.
Also, the cntg and aloc parameters have been omitted. Their omission,
however, occurs following the last explicit specification, and their
absence need not be indicated by trailing commas in the parameter
string. Since the aloc parameter has been omitted, file extension (if
it becomes necessary) is accomplished in accordance with the current
default extend size in effect for the associated volume.

If morc than one record attribute is gpecified in the ratt parameter
field, such specifications must be separated by an exclamation point
('), as shown below:

FDAT$A R.VAR,FD.FTN!FD.BLK

The above macro call enables a file of variable-length records to be
created. The records will contain FORTRAN vertical-formatting
information for carriage control devices; the records will not be
allowed to cross block boundaries.

2.2.1.3 FDRCSA - Initialize Record Access Section of FDB - The FDRCS$A
macro call is used to initialize the record access section of the FDB,
and to indicate whether record or block I/O operations are to be used
in processing the associated file.

If record I/0 operations (GET$ and PUT$ macro calls) are to be used,
the FDRCSA or the FDRCSR macro call (see Section 2.2.2) establishes
the FDB information necessary for record-oriented I/0. If block 1I/0
operations (READS$ and WRITES macro calls) are to be used, however, the
FDBKSA macro call (see Section 2.2.1.4) or the FDBKSR macro call (see
Section 2.2.2) must also be specified in order to establish other
values in the FDB required for block I/0. In this case, portions of
the record access section of the FDB are physically overlaid with
parameters from the FDBKS$A/FDBKSR macro call.

You must appropriately initialize the FDB to indicate whether record
or block I/O operations are to be used in processing the associated
file, prior to 1issuing the OPEN$ macro call to 1initialize file
operations.

The FDRCS$SA macro call takes the following format:

FDRCSA racc,urba,urbs

racc

urba

PREPARING FOR I/O

Specifies which variation of block or record I/0 is to be used to
process the file. This parameter initializes the record access
byte (offset location F.RACC) in the FDB. The first value below
applies only for block 1I/0 (READS$/WRITES) operations; all
remaining wvalues are specific to record I/0 (GETS$/PUTS)
operations:

e FD.RWM - Indicates that READS/WRITES$ (block I/0) operations
are to be used in processing the file. 1If this value is
not specified, GET$/PUTS$ (record I/O) operations are used
by default.

Specifying FD.RWM necessitates 1issuing an FDBKSA or an
FDBK$SR macro call in the program to initialize other
offsets in the block access section of the FDB. Note also
that the READ$S or WRITES macro call allows the complete
specification of all the parameters required for block 1I/0
operaticns.

e FD.RAN - Indicates that random access mode is to be used in
processing the file. If this wvalue 1is not specified,
sequential access mode is wused by default. Refer to
Section 1.5 for a description of random access mode.

e FD.PLC - Indicates that 1locate mode is to be wused in
processing the file. TIf this value is not specified, move
mode is used by default.

e FD.INS - This value, which applies only for sequential
files (and therefore cannot be specified jointly with the
FD.RAN parameter above), indicates that a PUT$ operation
performed within the body of the file shall not truncate
the file.

Should you wish to perform a PUT$ operation within the body
of a file, the .POINT routine described in Section 4.10.1
may be called. This routine, which permits a 1limited
degree of random access to a file, positions the file to a
user-specified byte within a virtual block in preparation
for the PUT$ operation.

If FD.INS is not specified, a PUTS$ operation within the
file truncates the file at the point of insertion; that
is, the PUT$ operation moves the logical end-of-file (EOF)
to a point just beyond the inserted record. However, no
deallocation of blocks within the file occurs.

Regardless of the setting of the FD.,INS bit, a PUTS
operation that is in fact beyond the current logical end of
the file resets the logical end of the file to a point just
beyond the inserted record.

The symbolic address of a user record buffer to be used for GETS$
operations in move and locate modes, and for PUTS operations in
locate mode. This parameter 1initializes FDB offset 1location
F.URBD+2, and is specified only for record I/0 operations.

urbs

A numeric value that defines the size (in bytes) of the user
record buffer to be employed for GET$ operations in move and
locate modes, and for PUT$ operations in 1locate mode. This
parameter initializes FDB offset 1location F.URBD, and is
specified only for record I/0 operations.

You allocate and label a record buffer in a program by issuing a .BLKB
or .BLKW directive. The address and the size of this area is then
passed to FCS as the urba and the urbs parameters above. For example,
a user record buffer may be defined through a statement that is
logically equivalent to that shown below:

RECBUF: .BLKB 82.
RECBUF

Is the address of the buffer and 82(decimal) is 1its size (in
bytes).

Beginning user record buffers on a word boundary can improve
performance by allowing FCS to move the data with MOV instructions
rather than MOVB instructions.

Under certain conditions, you need not allocate a record buffer or
specify the buffer descriptors (urba and urbs) for GETS or PUTS
operations. These conditions are described in detail 1in Sections
3.9.2 and 3.12.2, respectively.

The following statement is representative of an FDRC$A macro call that
is issued for a file that may be accessed in random mode:

FDRCSA FD.RAN,BUF1,160.

The address of the user record buffer is specified through the symbol
BUFl, and the size of the user record buffer (in bytes) is defined by
the numeric value 160 (decimal}.

If more than one value is specified in the record access (racc) field,
an exclamation point (!) must separate the multiple values, as shown
below:

FDRC$A FD.RAN!FD.PLC,BUF1,160.

In addition to the functions described for the first example, this
example specifies that 1locate mode is to be used in processing the
associated file. Note that the multiple parameters specified 1in the
first field are separated by an exclamation point (!).

2.2.1.4 FDBK$A - Initialize Block Access Section of FDB - The FDBKS$A
macro call 1is used to initialize the block access section of the FDB
when block I/0 operations (READ$ and WRITES macro calls) are to be
used for file processing. Initializing the FDB with this macro call
allows you to read or write virtual blocks of data within a file.

Use of the FDBKSA macro call implies that the FDRCSA macro call has

alsoc been specified, since the FD.RWM parameter of the FDRC$A macro
call does initial declaration of block 1I/0 operations. Thus, for

2-10

PREPARING FOR I/0

block I/0 operations, the FDRCSA macro call must be specified, as well
as any one of the following macro calls, to appropriately initialize
the block access section of the FDB: FDBKSA, FDBKSR, READS, or
WRITES.

Issuing the FDBKS$SA macro call causes certain portions of the record
access section of the FDB to be overlaid with parameters necessary for
block I/0 operations. Thus, the terms "record access section" and
"block access section" refer to a shared physical area of the FDB that
is functional for either record or block I/O operations.

The block I/0 and record I/0 FDB-initialization macros use the same
area of the FDB for different data. Therefore, if record I/0
operations are to be employed, neither the FDBKS$A nor the FDBKSR macro
call must be issued.

The FDBKS$SA macro call is specified in the following format:
FDBKSA bkda,bkds,bkvb,bkef,bkst,bkdn
bkda

The symbolic address of an area in user memory space to be
employed as a buffer for block I/O operations. This parameter
initializes FDB offset location F.BKDS+2.

bkds

A numeric value that specifies the size (in bytes) of the block
to be read or written when a block I/0O request (READS or WRITES
macro call) is issued. This parameter 1initializes FDB offset
location F.BKDS. The size specified must be an even, positive
(sign bit must not be set) value; thus, the maximum number of
bytes that can be specified is 32766. If an integral number of
blocks are to be specified, the practical maximum number of bytes
that can be specified is equal to 63 wvirtual blocks, or
32256 (decimal) bytes.

bkvb

A dummy parameter for compatibility with the FDBKSR macro call.
The bkvb parameter is not specified in the FDBK$A macro call for
the reasons stated in item 4 of Section 2.2.2.1. In short,
assembly-time initialization of FDB offset locations F.BKVB+2 and
F.BKVB with the virtual block number is meaningless, since any
version of the generalized OPENS$x macro call resets the virtual
block number 1in these cells to 1 as the file 1is opened.
Therefore, these cells can be initialized only at run time
through either the FDBK$R macro call (see Section 2.2.2) or the
I/0-initiating READ$ and WRITES macro calls (see Sections 3.15
and 3.16, respectively).

This dummy parameter should be reflected as a null specification
(with a comma) in the parameter string only in the event that an
explicit parameter follows. This null specification is required
in order to maintain the proper position of any remaining
field(s) in the parameter string.

bkef

A numeric value that specifies an event flag to be wused during
READS/WRITES operations to indicate the completion of a block I/0
transfer. This parameter initializes FDB offset location F.BKEF;
if not specified, event flag 32(decimal) is used by default.

The function of an event flag is described in further ‘detail 1in
Section 2.8.1.

bkst

The symbolic address of a 2-word 1I/0 status block in vyour
program. If specified, this optional parameter initializes FDB
offset location F.BKST. :

The I/0 status block, if it is to be used, must be defined and
appropriately labeled at assembly time. Then, if the bkst
parameter is specified, information is returned by the system to
the I/0 status block at the completion of the block I/0 transfer.
This information reflects the status of the requested operation.
If this parameter is not specified, no information is returned to
the I/0 status block.

NOTE

If an error occurs during a READS or
WRITES operation that would normally be
reported as a negative wvalue in the
first byte of the I/0 status block, the
error is not reported unless an I/0
status block address 1is specified.
Thus, you are advised to specify this
parameter to allow the return of block
I/0 status information and to facilitate
normal error reporting.

The creation and function of the I/0 status block are described
in detail in Section 2.8.2.

bkdn

The symbolic address of an optional user-coded AST service
routine. If present, this parameter causes the AST service
routine to be initiated at the specified address upon completion
of block 1I/0; if not specified, no AST trap occurs. This
parameter initializes FDB offset location F.BKDN.

Considerations relevant to the use of an AST service routine are
presented in Section 2.8.3.

The following example shows an FDBK$A macro «call that wutilizes all
available parameter fields for initializing the block access section
of the FDB:

FDBKSA BKBUF,240.,,20.,ISTAT,ASTADR
In this macro call, the symbol BKBUF identifies a block I/0 buffer

reserved in the user program that will accommodate a 240 (decimal)-byte
block. The virtual block number is null (for the reasons stated above

2-12

PREPARING FOR I/O

in the description of this parameter), and the event flag to be set
upon block 1I/O completion is 20(decimal). Finally, the symbol ISTAT
specifies the address of the I/O status block, and the symbol ASTADR
specifies the entry point address of the AST service routine.

2.2.1.5 FDOP$A - Initialize File-Open Section of FDB - The FDOPSA
macro call is used to initialize the file-open section of the FDB. 1In
addition to a logical unit number, either a dataset descriptor pointer
and/or a default filename block address is normally specified for each
file that is to be opened. The latter two parameters provide FCS with
the 1linkage necessary to retrieve file specifications from these
user-created data structures in the program.

Although both a dataset descriptor pointer (dspt) and the address of a
default filename block (dfnb) may be specified for a given file, one
or the other must be present in the FDB before that file can be
opened. If, however, certain information is already present in the
filename block as the result of prior program action, neither the
dataset descriptor nor the default filename block is accessed by FCS,
and. the file is opened through a process called "opening a file by
file 1ID."™ This ©process, which 1is an efficient method of opening a
file, is described in detail in Section 2.5.

The dspt and dfnb parameters represent address values which point to
user-defined data structures in the program. These data structures,
which are described in detail in Section 2.4, provide file

The FDOPSA macro call takes the following form:
FDOP$A 1lun,dspt,dfnb,facc,actl
lun

A numeric value that specifies a 1logical wunit number. This
parameter initializes FDB offset 1location F.LUN. All 1I/0
operations performed 1in conjunction with this FDB are done
through the specified 1logical unit number (LUN). Every active
FDB must have a unique LUN.

The logical unit number specified through this parameter may be
any value from 1 through the largest value specified to the Task
Builder through the UNITS option. This option specifies the
number of logical units to be used by the task (see the Task
Builder Reference Manual of the host operating system).

dspt

The symbolic address of a 6-word block in the user program
containing the dataset descriptor. This user-defined data
structure consists of a 2-word device descriptor, a 2-word
directory descriptor, and a 2-word file name descriptor, as

outlined in Section 2.4.1.

The dspt parameter initializes FDB offset location F.DSPT. This
address value, called the dataset descriptor pointer, is the
linkage address through which FCS accesses the fields in the
dataset descriptor.

2-13

dfnb

facc

When the Command String Interpreter (CSI) is used to process
command string input, a file specification is returned to the
calling program in a format identical to that of the manually
created dataset descriptor. The use of CSI as a dynamic command
line processor is described in detail in Section 6.2.

The symbolic address of the default filename block. This
structure is allocated within the user program through the NMBLKS$
macro call (see Section 2.4.2). When specified, the dfnb
parameter initializes FDB offset location F.DFNB, allowing FCS to
access the fields of the default filename block in building the
filename block in the FDB,

Specifying the dfnb parameter in the FDOPS$SA (or the FDOPSR) macro
call assumes that the NMBLKS$ macro call has been issued in the
program. Furthermore, the symbol specified as the dfnb parameter
in the FDOP$SA (or the FDOPS$R) macro call must correspond exactly
to the symbol specified in the label field of the NMBLK$ macro
call.

Any one, or any appropriate combination, of the following
symbolic values 1indicating how the specified file 1is to be
accessed:

e FO.RD - Indicates that an existing file is to be opened for
reading only.

e FO.WRT - Indicates that a new file is to be <created and
opened for writing.

e FO.APD - Indicates that an existing file is to be opened
for append.

5 er
[1]
n
cr
o
cr
21}
ja}
m
"
-
n
cr
ory
@
rh
2
et
m
s
0
(9
[¢]
tr
m
(]
o]
[0
03
[¢)]
(e}

e FO.UPD - Indicates that an existing file is to be opened
for update and, if necessary, extended.

e PFA.NSP - Indicates, in combination with FO.WRT above, that
an old file having the same file specification is not to be
superseded by the new file. Rather, an error code is to be
returned if a file of the same file name, type, and version
exists.

e FA,TMP - Indicates, in combination with FO.WRT above, that
the created file is to be a temporary file.

e FA.SHR - Indicates that the file is to be opened for shared
access.

The facc parameter initializes FDB offset location F.FACC.
The symbolic values FO.xxx, described above, represent the
logical OR of bits in FDB location F.FACC.

The information specified by this parameter can be
overridden by an OPENS$ macro call, as described in Section
3.7. It is overridden by an OPENS$x macro call.

PREPARING FOR I/O

actl

A symbolic value that is used to specify the following control
information in FDB location F.ACTL:

1. Magnetic tape position

2. Whether a disk file that is opened for write 1is to be
locked if it 1is not properly closed; for example, the
task terminates abnormally

3. Number of retrieval pointers to allocate for a disk file
window

4. Enable block locking

Normallly, FCS supplies default values for F.ACTL. However, 1if
FA.ENB is specified in combination with any of the symbolic
values described below, FCS uses the information in F.ACTL.
FAENB must be specified with the desired values to override the
defaults. The following are the defaults for location F.ACTL:

e For file creation, magnetic tapes are positioned to the end
of the volume set.

e At file open and close, tapes are not rewound.

e A disk file that is opened for write is locked if it is not
properly closed.

e The volume default is used for the file window.
The values listed below can be used in conjunction with FA,.ENB:

e FA.POS - Is meaningful only for output files and is
specified to cause a magnetic tape to be positioned just
after the most recently closed file for creating a new
file. Any files that exist after that point are lost. If
rewind is specified, it takes precedence over FA.POS, thus
causing the tape to be positioned just after the VOL1l label
for file creation. See Section 5.2.3.

e FA.RWD - Is specified to cause a magnetic tape to be
rewound when the file is opened or closed.

Examples of using FA.ENB with FA.POS and FA.RWD are
provided in Section 5.2.8.

e FA.DLK - Is specified to cause a disk file not to be locked
if it is not properly closed.

The number of retrieval pointers for a file window can be
specified in the 1low-order byte of F.ACTL. The default
number of retrieval pointers is the file-window mapping
pointer count parameter (/WIN) included in the Initialize
Volume or Mount Volume MCR commands; the default value for
this parameter is 7. Retrieval pointers are used to point
to contiqguous blocks of the file on disk. Access to
fragmented files may be optimized by increasing the number
of retrieval pointers, that is, by increasing the size of
the window. Similarly, since retrieval pointers use up
pool space, additional memory can be freed by reducing the
number of pointers for files with 1little or no
fragmentation, for example, contiqguous files.

2-15

e FA,LKLIFA.EXL - Is specified to lock all blocks that are
accessed. See the RSX-11M/M-PLUS 1I/0 Drivers Reference
Manual for further information on block locking.

As noted, if neither the dspt nor the dfnb parameter 1is specified,
corresponding offset 1locations F.DSPT and F.DFNB contain 0. In this
case, no file is currently associated with this FDB. Any attempt to
open a file with this FDB results in an open failure. Either offset
location F.DSPT or F.DFNB must be initialized with an appropriate
address value before a file can be opened using this FDB. Normally,
these cells are initialized at assembly time through the FDOP$SA macro
call; but they may also be initialized at run time through the FDOPS$R
or the generalized OPEN$X macro call (see Section 3.1).

The following examples represent the FDOP$A macro call as it might
appear in a source program:

FDOP$A 1,,DFNB

FDOPSA 2,0FDSPT

FDOP$SA 2,0FDSPT,DFNB
FDOPSA 1,CSIBLK+C.DSDS
FDOPSA 1,,DFNB,,FA.ENB!16.

Note in the first example that the dataset descriptor pointer (dspt)
is null, requiring that FCS rely on the run-time specification of the
dataset descriptor pointer for the FDB or the use of the default
filename block for required file information.

In the second example, a dataset descriptor pointer (OFDSPT) has been
specified, allowing FCS to access the fields in the dataset descriptor
for required file information.

The third example specifies both a dataset descriptor pointer and a
default filename block address, causing FDB offset locations F.DSPT
and F.DFNB, respectively, to be initialized with the appropriate
values. In this case, FCS can access the dataset descriptor and/or
the default filename block for required file information. By
convention, FCS first seeks such information 1in the dataset
descriptor; if all the required information is not present 1in this
data structure, FCS attempts to obtain the missing information from
the default filename block.

The fourth example shows a macro call that takes as 1its second
parameter a symbolic value that causes FDB offset location F.DSPT to
be initialized with the address of the CSI dataset descriptor. This
structure 1is created in the CSI control block through invoking the
CSIS$ macro call. All considerations relevant to the use of CSI as a
dynamic command line processor are presented in Section 6.2.

The last example illustrates the use of the parameter actl to increase
the number of retrieval pointers in the file window to 16. FA.ENB is
specified to cause the contents of F.ACTL, rather than the defaults,
to be used.

In all the examples above, the value specified as the first parameter

supplies the 1logical unit number to be used for all I/0 operations
involving the associated file.

2-16

PREPARING FOR I/O

2.2.1.6 FDBFS$A — Initialize Block Buffer Section of FDB - The FDBFS$A

macro

when

call 1is used to initialize the block buffer section of the FDB
record I/0 operations (GET$ and PUTS$ macro calls) are to be used

for file processing. Initializing the FDB with this macro call allows
FCS to control the necessary blocking and deblocking of individual
records within a virtual block as an integral function of processing
the file.

The FDBFS$SA macro call takes the following format:

ovbs

FDBFSA efn,ovbs,mbct,mbfg

A numeric value that specifies the event flag to be used by FCS
in synchronizing record 1I/0 operations. This numeric value
initializes FDB offset location F.EFN. This event flag is wused
internally by FCS; it must not be set, cleared, or tested by the
user.

If this parameter is not specified, event £flag 32(decimal) is
used by default. A null specification in this field is indicated
by inserting a leading comma in the parameter string.

A numeric value that specifies an FSR block buffer size, in
bytes, which overrides the standard block size for the particular
device associated with the file. This parameter initializes FDB
offset location F.OVBS to the specified block buffer size.

When ovbs is used in RSX-11 systems to specify an FSR block
buffer size for disks, the desired number of bytes is specified
in integral multiples of 512(decimal), overriding the standard
512 (decimal) (one sector) block buffer size. Block buffer sizes
up to 63 sectors (32256(decimal) bytes) can be specified for
disks. Increasing the block buffer size in this manner greatly
reduces average disk access time, since several contiguous
sectors are generally read or written during a typical disk
access operation. An override block size of 2048(decimal) bytes
(4 sectors) or 2560(decimal) bytes (5 sectors) is recommended,
since 2048 (decimal) bytes also provides ANSI magtape buffer
capability, and 2560(decimal) bytes 1is the Files-11 default
extend size. Note that once the file has been opened, FCS uses
the ovbs field for other purposes. Thus, if the FDB is to be
used for additional disk I/O operations, the ovbs parameter must
be issued in an FDBF$R macro prior to accessing the disk.

NOTE

When block buffer sizes greater than 1
sector (512 (decimal) bytes) are
specified, $$FSR1 size must be increased
accordingly. This is done by specifying
an appropriate value for the bufsiz
parameter 1in the FSRSZ$ macro call (see
Section 2.6.1).

In IAS systems, an override block size 1is allowed only for
record-oriented devices (such as line printers) and sequential
devices (such as magnetic tape units); if specified for a
block-oriented device, the override block size is ignored. For

2-17

mbct

mbfg

3

,

PREPARING FCR I/0

"

spooled output to a record-oriented device, do not allocate a
bufifer less than a single sector (512(decimal) bytes).

Routines that will read ANSI-standard magnetic tape without prior
knowledge of the format of the files that will be read must
specify an override block size of 2048(decimal) bytes. This
value is sufficient for the largest ANSI-standard tape blocks.

Issuing the CLOSE$ macro call (see Section 3.8) resets offset
location F.OVBS in the associated FDB to 0. Therefore, this
location should typically be initialized at run time, just before
opening the file, particularly if an OPEN$x/CLOSES$ sequence for
the file is performed more than once.

On certain devices, such as line printers and terminals, the
block size should not exceed the device's line width. The task
can obtain the proper block size for these devices by issuing the
Get LUN Information system directive for each device. (See the
description for the Get LUN Information directive in the
Executive Reference Manual for the operating system in use.) The
standard block size for each device 1is established at SYSGEN
time, or by the MCR SET/BUF command.

A numeric value that specifies the multiple buffer count, that
is, the number of buffers to be used by FCS in processing the
associated file. This parameter initializes FDB offset location
F.MBCT. If this value is greater than 1, multiple buffering is
effectively declared for file processing. In this case, FCS
employs either read-ahead or write-behind operations, depending
on which of two symbolic values 1is specified as the mbfg
parameter (see below).

If the mbct parameter is specified as null or 0, FCS uses the
default buffer count contained in symbolic location .MBFCT in
$SFSR2 (the program section in the FSR containing impure data).
This cell normally contains a default buffer count of 1. If
desired, this value can be modified, as noted in the discussion
following the mbfg parameter below.

If, in specifying the FSRSZ$ macro call (see Section 2.6.1),
sufficient memory space has not been allocated to accommodate the
number of buffers established by the mbct parameter, FCS
allocates as many buffers as can fit in the available space.
Insufficient space for at least one buffer causes FCS to return
an error code to FDB offset location F.ERR.

The user can initialize the buffer count in F.MBCT through either
the FDBFSA or the FDBF$R macro call. The buffer count so
established is not altered by FCS and, once set, need not be of
further concern to the user.

When input is from record devices (for example, a card reader),
F.MBCT should not be greater than 2.

A symbolic value that specifies the type of multiple buffering to
be employed in processing the file. Either of two values may be
specified to initialize FDB offset location F.MBFG:

e FD.RAH - Indicates that read-ahead operations are to " be
used in processing the file

2-18

PREPARING FOR I/O

e FD.WBH - Indicates that write-behind operations are to be
used in processing the file

These parameters are mutually exclusive; that 1is, one or the
other, but not both, may be specified.

Specifying this parameter assumes that the buffer count
established in the mbct parameter above is greater than 1. 1If
multiple buffering has thus been declared, omitting the mbfg
parameter causes FCS to use read-ahead operations by default for
all files opened using the OPENSR macro call; similarly,
write-behind operations are used by default for all files opened
using other forms of the OPENS$x macro call,

If these default buffering conventions are not desired, you can
alter the value in the F.MBFG dynamically at run time. This is
done by issuing the FDBFS$R macro call, which takes as the mbfg
parameter the appropriate control flag (FD.RAH or FD.WBH). This
action must be taken, however, before opening the file.

Offset location F.MBFG in the FDB is reset to 0 each time the
associated file is closed.

NOTE

When using write-behind multi-
buffering, there is no gain in
efficiency if the size of the file
must be increased in order to make
room for the data to be written.
If a file is being written at the
end, using default extension, there
will be one extend operation for
each five write operations; thus,
only 80% of the write-behind
operations will actually be
overlapped with processing. This
percentage can be increased as
follows:

1. Space for the file can be completely
preallocated, either by using the "cntg"
parameter in the FDOP$X macro, or by
using the .EXTND subroutine.

2. The default extension amount can be
increased from five blocks by using the
"aloc" parameter of the FDATS$Xx macro
call. For example, if an "aloc"
parameter of 10(decimal) 1is specified,
the number of write-behind operations
that will be overlapped will increase to
90%.

3. The file can be accessed using random
I1/0. Since 1issuing PUTSR macros to
access random preexisting locations in
the file does not require extends, the
percentage of overlapped operations is
increased.

2-19

.-

PREPARING FOR 1/

You can change the default buffer count, if desired, by modifying a
location in $$FSR2, the second of two program sections comprising the
FSR. A location defined as .MBFCT in SFSR2 normally contains a
default buffer count of 1. This default value may be changed, as
follows:

1. Apply a global patch to .MBFCT at task-build time to specify
the desired number of buffers.

2. For MACRO-11 programs, use the EXTSCT Task Builder directive
(see Section 2.7.1) to allocate more space for the FSR block
buffers; for FORTRAN programs, use the ACTFIL Task Builder
directive (see Section 2.7.2) to allocate more space for the
FSR block buffers.

Because the above prpcedure alters the default buffer count for all
files to be processed by your program, it may be desirable to force
single buffering for any specific file(s) that would not benefit from
multiple buffering. In such a case, you can set the buffer count in
F.MBCT for a specific file to 1 by issuing the following macro call
for the applicable FDB:

FDBF$A ,,1

The value 1 specifies the buffer count (mbct) for the desired file and
is entered into offset location F.MBCT in the applicable FDB. Note in
the example above that the event flag (efn) and the override block
buffer size (ovbs) parameters are null; these null values are used
for illustrative purposes only and should not be interpreted as
conditional specifications for establishing single-buffered
operations.

The following examples are representative of the FDBFSA macro call as
it might appear in a program:

FDBF$A 25.,,1
FDBFSA 25.,,2,FD.RAH
FDBF$A ,,2,FD.WBH

The first example specifies that event flag 25(decimal) is to be used
in synchronizing record I/0 operations and that single buffering is to
be used in processing the file.

The second example also specifies event flag 25(decimal) for
synchronizing record I/0 operations, and in addition establishes 2 as
the multiple buffer count. The buffers so specified are to be used
for read-ahead operations, as indicated by the final parameter.

The last example allows event flag 32(decimal) to be used by default
for synchronizing record I/O operations, and the two buffers specified
in this case are to be used for write-behind operations.

Note in all three examples that the second parameter, that 1is, the
override block size parameter (ovbs), is null; thus, the standard
block size in effect for the device in question will be used for all
file I/0 operations.

PREPARING FOR I/0

2.2.2 Run-Time FDB Initialization Macros

Although the FDB is allocated and can be 1initialized during program
assembly, the contents of specific sections of the FDB can also be
initialized or changed at run time by issuing any of the following
macro calls:

e FDATSR - Initializes or alters the file attribute section
of the FDB.

e FDRCSR - Initializes or alters the record access section of
the FDB.
e FDBKSR - Initializes or alters the block access section of

the FDB (see item 4 below).

e FDOPSR - Initializes or alters the file-open section of the
FDB.

e FDBFSR ~ Initializes or alters the block buffer section of
the FDB.

‘There are no default values for run-time FDB macros (except for the
FDB address). At run time, the values currently in the FDB are used
unless they are explicitly overridden. For example, values stored in
the FDB at assembly time are used at run time unless they are
overridden.

2.2.2.1 Run-Time FDB Macro-Call Exceptions - The format and the
parameters of the run-time FDB initialization macros are identical to
the assembly-time macros described earlier, except as noted below:

e An R rather than an A must appear as the last character in the
run-time symbolic macro name.

e The first parameter in all run-time macro calls must be the
address of the FDB associated with the file to be processed.
All other parameters in the run-time macro calls are identical
to those described in Sections 2.2.1.2 through 2.2.1.6 for the
assembly-time macro calls, except as noted in items 3 and 4
below.

e The parameters in the run-time macro calls must be wvalid
MACRO-11 source operand expressions. These parameters may be
address values or literal values; they may also represent the
contents of registers or memory 1locations. In short, any
value that is a wvalid source operand in a MOV or MOVB
instruction may be specified in a run-time macro call. 1In
this regard, the following conventions apply:

- If the parameter is an address value or a literal value
that is to be placed in the FDB; that is, if the
parameter itself is to be taken as an argument, it must
be preceded by the number sign (#). This symbol is the
immediate expression indicator for MACRO-1l1 programs,
causing the associated arqgument to be taken literally in
initializing the appropriate cell in the FDB, Such
literal values may be specified as follows:

FDOPS$SR #FDBADR, #1, #DSPT, $DFNB

l.

~ 1If the parameter is the address of a location containing
an argument that 1is to be placed in the FDB, the
parameter must be preceded by the number sign (#). Such
a parameter may be specified as follows:

ONE: «WORD 1

FDOPS$R #FDBADR, ONE, #DSPT, #DFNB

where ONE represents the symbolic address of a 1location
containing the desired initializing value.

- But, if the parameter 1is a register specifier (for
example, R4), the parameter must not be preceded by the
number sign (#). Register specifiers are defined
MACRO~-11 symbols and are valid expressions in any
context.

NOTE

RO can only be specified in the first parameter
(FDB address). Any other use of RO will fail.
(See Section 2.2.2.2, items 1 and 2.)

Thus, in contrast, parameters specified in assembly-time macro
calls are used as arguments in generating data in .WORD or
.BYTE directives, while parameters specified in run-time macro
calls are used as arguments in MOV and MOVB machine
instructions.

As noted in the description of the FDBKSA macro call in
Section 2.2.1.4, assembly-time initialization of the FDB with
the virtual block number is meaningless, since 1issuing the
OPENS$x macro call to prepare a file for processing
automatically resets the virtual block number in the FDB to 1.
For this reason, the wvirtual block number can be specified
only at run time after the file has been opened. This may be
accomplished by 1issuing either the FDBKSR macro call or the
I/0-initiating READS$/WRITES macro call. 1In all three cases,
the relevant field for defining the virtual block number is
the bkvb parameter. The READS and WRITES macro calls are
described in detail in Sections 3.15 and 3.16, respectively.

At assembly time, you must reserve and label a 2-word block in
the program that 1is to be used for temporarily storing the
virtual-block number appropriate for intended block I/0
operations. Since you are free to manipulate the contents of
these two locations at will, any wvirtual block number
consistent with intended block I/O operations may be defined.
By specifying the symbolic address (that 1is, the 1label) of
this field as the bkvb parameter in the selected run-time
macro call, you can make the virtual block number available to
FCS.

In preparing for block I/O operations, you must perform the
following general procedures:

At assembly time, reserve a 2-word block in your program
through a statement that 1is 1logically -equivalent to the
following:

PREPARING FOR I/O

VBNADR: .BLKW 2

The label VBNADR names this 2-word block and defines its
address. This symbol 1is wused subsequently as the bkvb

parameter in the selected run-time macro call for
initializing the FDB.

At run time, load this field with the desired wvirtual block
number. This operation may be accomplished through
statements logically equivalent to those shown below:

CLR VBNADR
MOV #10400,VBNADR+2

Note that the first word of the block is <cleared. The MOV
instruction then 1loads the second (low-order) word of the
block with a numeric value. This value constitutes the 16
least significant bits of the virtual block number.

If the desired virtual block number cannot be completely
expressed within 16 bits, the remaining portion of the
virtual block number must be stored in the first (high-order)
word of the block. This may be accomplished through
statements logically equivalent to the following:

MOV #1,VBNADR
MOV #10400,VBNADR+2

As a result of these two instructions, 31 bits of wvalue are
defined in this 2-word block. The first word contains the 15
most significant bits of the virtual block number, and the
second word contains the 16 least significant bits. Thus,
the virtual block number is an unsigned value having 31 bits
of magnitude. You must ensure that the sign bit in the
high-order word is not set.

Open the desired file for processing by issuing the
appropriate version of the generalized OPENS$x macro call (see
Section 3.1).

Issue either the FDBKSR macro call or the READS/WRITES macro
call, as appropriate, to initialize the relevant FDB with the
desired virtual block number.

If the FDBKSR macro call 1is elected, the following 1is a
representative example:

FDBKSR #FDBIN,,, #VBNADR

Regardless of the particular macro call used to supply the
virtual block number, the two words at VBNADR are loaded into
F.BKVB and F.BKVB+2. The first of these words (F.BKVB) is 0
if 16 bits are sufficient to express the desired virtual
block number. The I/O-initiating READS$S/WRITE$ macro call may
then be issued.

Should you choose, however, to initialize the FDB directly
through either the READS or WRITES$ macro call, the virtual
block number may be made available to FCS through a statement
such as that shown below:

READS $FDBIN, #INBUF, #BUFSIZ, #VBNADR

PREPARING FOR T/O

The symbol VBNADR represents the address of the 2-word block
in your program containing the virtual block number.

2.2.2.2 Specifying the FDB Address in Run-Time Macro Calls - In
relation to item 2 of the exceptions noted above, the address of the
FDB associated with the file to be processed corresponds to the
address value of the user-defined symbol appearing in the label field
of the FDBDF$ macro call (see Section 2.2.1.1). For example, the
statement

FDBOUT: FDBDF$

in addition to allocating space for an FDB at assembly time, binds the
label FDBOUT to the beginning address of the FDB associated with this
file. The address value so established can then be specified as the
initial parameter in a run-time macro call in any one of three ways:

1. The address of the appropriate FDB may be specified as an
explicit parameter in a run-time macro call, as indicated in
the following statement:

FDATSR #FDBOUT, #R.VAR, #FD.CR

The argument FDBOUT is taken literally by FCS as the address

of an FDB; furthermore, this address value, by convention,
is stored in general register 2zero (RO). Whenever this
method of specifying the FDB address is employed, the
previous contents of RO are overwritten (and thus destroyed).
Therefore, you must exercise care 1in issuing subsequent
run-time macro calls to ensure that the present value of RO
is suitable to current purposes.

2. A general register specifier may be used as the initial
parameter in a run-time macro call. When a register other
than RO is used, the contents of the specified register are
moved to RO. The previous contents of RO are overwritten
(and thus destroved).

The following statement reflects the use of a general
register to specify the FDB address:

FDATSR RO, #R.VAR,#FD.CR

In this case, the current contents of RO are taken by FCS as
the address of the appropriate FDB. This method assumes that
the address of the FDB has been previously 1loaded into RO
through some overt action. Note, when using this method to
specify the FDB address, that the immediate expression
indicator (#) must not precede the register specifier (RO).

3. A null specification may be used as the initial parameter 1in
a run—-time macro call, as shown below:

FDATSR ,#R.VAR,#FD.CR

In this case, the current contents of RO are taken by default
as the address of the associated FDB. As in method 2 above,
RO is assumed to contain the address of the desired FDB.
Although the comma in this instance constitutes a valid
specification, you are advised to employ methods 1 and 2 for
consistency and clarity of purpose.

PREPARING FOR I/O

These three methods of specifying the FDB address also apply to all
the FCS file-processing macro calls described in Chapter 3.

2.3 GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB OFFSETS

Although the FDB offsets can be defined either 1locally or globally,
the design of FCS does not require that you be concerned with the
definition of FDB offsets 1locally. To some extent, this design
consideration is based on the manner in which MACRO-11 handles
symbols,

Whenever a symbol appears in the source program, MACRO-11
automatically assumes that it 1is a global symbol unless it is
presently defined within the current assembly. Such a symbol must be
defined further on in the program; otherwise, it will be treated by
MACRO-11 as.a default global reference, requiring that it be resolved
by the Task Builder.

Thus, the question of global versus local symbols may simply be a
matter of the programmer's not defining the FDB offsets and bit values
locally in coding the program. Such undefined symbols thus become
global references, which are reduced to absolute definitions at
task-build time.

It should be noted that global symbols may be used as operands and/or
macro-call parameters anywhere in the source program coding, as
described in the following section.

2.3.1 Specifying Global Symbols in the Source Coding

Throughout the descriptions of the assembly-time macros (see Sections
2.2.1.2 through 2.2.1.6), global symbols are specified as parameters
in the macro calls. As noted earlier, such symbols are treated by
MACRO-11 as default global references.

For example, the global symbol FD.RAN may be specified as the initial
parameter in the FDRC$SA macro call (see Section 2.2.1.3). At
task-build time, this parameter is reduced to an absolute symbol
definition, causing a prescribed bit to be set in the record access
byte (offset location F.RACC) of the FDB.

Global symbols may also be used as operands in user program
instructions to accomplish operations associated with FDB offset
locations. For example, global offsets such as F.RACC, F.RSIZ, and
F.RTYP may be specified as operands in the source coding. Assume, for
example, that an FDBDF$ macro call (see Section 2.2.1.1) has been
issued in the source program to allocate space for an FDB, as follows:

FDBIN: FDBDFS$

The coding sequence shown below may then appear in the source program,
illustrating the use of the global offset F.RACC:

MOV #FDBIN,RO
MOVB #FD.RAN,F.RACC(RO)

2-25

Note that the beginning address of the FDB is first moved into general
register 2zero (RO). However, if the desired value already exists in
RO as the result of previous action in the program, you need issue
only the second MOV instruction (which appropriately references RO).
As a consequence of this instruction, the value FD.RAN initializes FDB
offset location F.RACC.

An equivalent instruction is the following:
MOVB #FD.RAN,FDBIN+F.RACC

which similarly initializes offset location F.RACC in the FDB with the
value of FD.RAN. Global symbols may be used anywhere in the program
in this manner to effect the dynamic storage of values within the FDB.

2.3.2 Defining FDB Offsets and Bit Values Locally

If you wish to declare explicitly that all FDB offsets and bit values
are to be defined locally, you can do so by invoking two macro calls
in the source program. The first of these, FDOF$L, causes the offsets
for FDBs to be defined within your program. Similarly, bit values for
all FDB parameters may be defined locally by invoking the FCSBT$ macro
call. You can invoke these macro calls anywhere in your program.

When issued, the FDOFSL and FCSBTS
manner roughly equivalent to:

F.RTYP = xxxX
F.RACC = xxxX
F.RSIZ = xxxx

where xxxx represents the value assigned to the corresponding symbol.

In other words, the macros for defining FDB offsets and bit values
locally do not generate any code. Their function is simply to create
absclute symbel definitions within the program at assembly time. The
symbols so defined, however, appear in the MACRO-11 symbol table,
rather than in the source program listing. Such 1local symbol
definitions are thereby made available to MACRO-11l during assembly,

rather than forcing them to be resolved by the Task Builder.

Whether the FDOFS$SL and FCSBTS$ macro calls are invoked should not in
any way affect the coding style or the manner in which the FDB offsets
and bit values are used.

Note, however, if the FDOFSL macro call is issued, the NBOFSL macro
call for the local definition of the filename block need not be issued
(see Section 2.4.2). The FDOFSL macro call automatically defines all
FDB offsets locally, including those for the filename block.

If any of the above named macro calls is to be issued in your program,
it must first be 1listed as an argument in an .MCALL directive (see
Section 2.1).

2.4 CREATING FILE SPECIFICATIONS WITHIN THE USER PROGRAM

Certain information describing the file must be present in the FDB
before the file can be opened. The file is located using a file
specification that contains the following:

PREPARING FOR I/0

1. A device name and unit number.

2. A directory string consisting of a group number and a member
number that specify the User File Directory (UFD) to be used
for the file. The term "UFD" is synonymous with the term
"file directory string®™ appearing throughout this manual.

3. A file name.

~

4, A file type (RSX-11) or file extension (IAS).
5. A file version number.

The term "file specifier" is sometimes used as a synonym for "file
specification.”

A file specification describing the file to be processed is
communicated to FCS through two user-created data structures:

1. The dataset descriptor. This tabular structure may be
created and initialized manually through the use of .WORD
directives. Section 2.4.1 describes this data structure in
detail.

2. The default filename block. In contrast to the manually
created dataset descriptor, the default filename block is
created by issuing the NMBLKS macro call, This macro call
allocates a block of storage in your program at assembly time
and initializes this structure with parameters supplied in
the call. This structure is described in detail in Section
2.4.2,

As noted in Section 2.2.1.5, the FDOPSA or the FDOPSR macro call is
issued to initialize the FDB with the addresses of these data
structures. These address values are supplied to FCS through the dspt
and dfnb parameters of the selected macro call. FCS uses these
addresses to access the fields of the dataset descriptor and/or the
default filename block for the file specification required in opening
a specified file.

By convention, a required file specification is first sought by FCS in
the dataset descriptor. Any nonnull data contained therein is
translated from ASCII to Radix-50 form and stored in the appropriate
offsets of the filename block. This area of the FDB then serves as
the execution time repository for the information describing the file
to be opened and processed. If the dataset descriptor does not
contain the required information, FCS attempts to obtain the missing
information from the default filename block. If neither of these
structures contains the required information, an open failure occurs.

Note, however, that the device name and the unit number need not be
specified in either the dataset descriptor or the default filename
block, since these values are defaulted to the device and wunit
assigned to the LUN at task-build time if not explicitly specified.

The FCS file-processing macro calls used in opening files are
described in Chapter 3, beginning with the generalized OPENS$x macro
call in Section 3.1.

For a detailed description of the format and content of the filename
block, the reader should refer to Appendix B.

PREPARTNG FOR T/0

2.4.1 Dataset Descriptor

The dataset descriptor is often oriented toward the use of .a fixed
(built-in) file name in your program. A given application program,
for example, may require access only to a 1limited and nonvariable
number of files throughout its execution. By defining the names of
these files at assembly time through the dataset descriptor mechanism,
such a program, once initiated, executes to completion without
requiring additional file specifications.

This structure, a 6-word block of storage that you can create manually
within your program by using .WORD directives, contains information
describing a file that you intend to open during the course of program
execution. In creating this structure, you can define any one or all
of three possible string descriptors for a particular €£file, as
follows:

1. A 2-word descriptor for an ASCII device name string
2. A 2-word descriptor for an ASCII file directory string
3. A 2-word descriptor for an ASCII file name string

This data structure is allocated in your program in the following
format:

DEVICE-NAME STRING DESCRIPTCR
Word 1 - Contains the length (in bytes) of the ASCII device
name string.
This string consists of a 2-character alphabetic
device name, followed by an optional octal unit
number and an optional «colon. You can create
these strings by issuing statements such as those
below:
DEVNM: _ASCII /DKO:/
DEVNM: .ASCII /TT1l0:/
Word 2 - Contains the address of the ASCII device name

string.
DIRECTORY STRING DESCRIPTOR

Word 3 - Contains the length (in bytes) of the ASCII file
directory string.

This string consists of a group number and a
member number, separated by a comma (,). The
entire string is enclosed in brackets. For
example, [200,200] is a directory string. You can
create a directory string by issuing statements
such as those that follow:

DIRNM: .ASCII /[200,200]1/

DIRNM: ,ASCII /[40,100]1/
If you wish to specify an explicit file directory
different from the UIC under which you are

currently running, the dataset descriptor
mechanism permits that flexibility.

2-28

PREPARING FOR I/O

Word 4 - Contains the address of the ASCII file directory
string.

FILENAME STRING DESCRIPTOR

Word 5 - Contains the length (in bytes) of the ASCII file
name string.

This string consists of a file name up to 9
characters in length, an optional 3-character file
type designator, and an optional £file wversion
number. The file name and file type must be
separated by a dot (.), and the file version
number must be preceded by a semicolon., A file
name string may be created as shown below:

FILNM: .ASCII /PROGl.0BJ;7/

For Files-11, only the characters A through Z and
0 through 9 may be used in composing an ASCII file
name string.

An ANSI magnetic tape file name string may
contain, in addition to the above, the following
special characters:

SP! "g%&' ()*+,-. [/ ; <=>7?

A name that contains any of these characters must
be enclosed in quotation marks. If a quotation
mark is part of the name, the string must contain
two quotation marks. An ANSI file name string may
be created as shown below:

FILNM: L(ASCII /"PROG""2"";%&,";7/
The file name created in the above example is:

PROG"2"; %&; 37

NOTE

Semicolon is a legal character in the
name string. To delimit a version
number, the semicolon must be outside
the quoted string.

Word 6 - Contains the address of the ASCII file name
string.

A length specification of 0 in Word 1, 3, or 5 of the dataset
descriptor indicates that the corresponding device name, directory, or
file name string is not present in your program. For -example, the
coding below creates a dataset descriptor containing only a 2-word
ASCII file name string descriptor:

FDBOUT: FDBDFS$;CREATES FDB.
FDATSA R.VAR,FD.CR ;INITIALIZES FILE-ATTRIBUTE SECTION.
FDRCSA ,RECBUF, 80. ;INITIALIZES RECORD-ACCESS SECTION.
FDOPSA OUTLUN,OFDSPT ;INITIALIZES FILE-OPEN SECTION.

PREPARTING FOR T/0

OFDSPT: .WORD 0,0 ;NULL DEVICE-NAME DESCRIPTOR.
«WORD 0,0 ;NULL DIRECTORY DESCRIPTOR.
.WORD ONAMSZ , ONAM ; FILENAME DESCRIPTOR.

ONAM: .ASCII /OUTPUT.DAT/ ;DEFINES FILENAME STRING.
ONAMSZ=.-ONAM ;DEFINES LENGTH OF FILENAME STRING.

Note first that an FDB labeled FDBOUT is <created. Observe further
that the FDOP$SA macro call takes as its second parameter the symbol
OFDSPT. This symbol represents the address value stored in FDB offset
location F.DSPT. This value enables the .PARSE routine (see Section
4.7.1) to access the fields of the dataset descriptor in building the
filename block.

The symbol OFDSPT also appears in the label field of the £first .WORD
directive, defining the address of the dataset descriptor for the
.PARSE routine. The .WORD directives each allocate two words of
storage for the device name descriptor, the file directory descriptor,
and the [file name descriptor, respectively.

In the example above, however, note that the first two descriptor
fields are filled with =zeros, indicating null specifications. The
last .WORD directive allocates two words that contain the size and the
address of the file name string, respectively. The file name string
itself is explicitly defined in the .ASCII directive that follows.

Note that the statements defining the file name string need not be
physically contiguous with the dataset descriptor. For each such
ASCII string referenced in the dataset descriptor, however,

correspending statements must appear elsewhere in the source program

to define the appropriate ASCII data string(s).

A dataset descriptor for each of several files to be accessed by your
program may be defined in this manner.

2.4.2 Default Filename Block - NMBLK$ Macro Call

As noted earlier, you may also define a default filename block in the
program as a means of providing required file information to FCS. For
this purpose, you can issue the NMBLKS$ macro call in connection with
each FDB for which a default filename block is to be defined. When
this macro call is issued, space is allocated within your program for
the default filename block, and the appropriate locations within this
data structure are initialized according to the parameters supplied in
the call.

Note in the parameter descriptions below that symbols of the form
N.xxxx are used to represent the offset locations within the filename
block. These symbols are differentiated from those that apply to the
other sections of the FDB by the beginning character N. All versions
of the generalized OPENS$x macro call (see Section 3.1) use these
symbols to identify offsets in storing file information in the
filename block.

2-30

PREPARING FOR I/O

The NMBLK$ macro call is specified in the following format:
label: NMBLKS fnam,ftyp,fver,dvnm,unit
label

A user-defined symbol that names the default filename block and
defines 1its address. This label is the symbolic value normally
specified as the dfnb parameter when the FDOP$A or the FDOPSR
macro call is issued. This causes FDB offset location F.DFNB to
be initialized with the address of the default filename block.

The default file name. This parameter may consist of up to nine
ASCII characters. The character string is stored as six bytes in
Radix-50 format, starting at offset location N,FNAM of the
default filename block.

ftyp

The default file type. This parameter may consist of up to three
ASCII characters. The character string is stored as two bytes in
Radix-50 format in offset location N,FTYP of the default filename
block.

fver

The default file version number (binary). When specified, this
binary wvalue 1identifies a particular version of a file. This
value is stored in offset location N.FVER of the default filename
block.

dvnm

The default name of the device upon which the volume containing
the desired file 1is mounted. This parameter consists of two
ASCII characters that are stored in offset location N.DVNM of the
default filename block.

A binary value identifying which unit (among several like units)
is to be used in processing the file. 1If specified, this numeric
value is stored in offset location N,UNIT of the default filename
block.

Only the characters A through Z and 0 through 9 may be wused in
composing the file name and file type strings discussed above.
Although the file version number and the unit number discussed above
are binary values, these numbers are normally represented in octal
form when printed, when input by a command string, or when supplied
through a dataset descriptor string.

As evident from the foregoing, all the default information supplied in
the NMBLKS macro call 1is stored in the default filename block at
offset locations that correspond to identical fields in the filename
block within the FDB. This default information is moved into the
corresponding offsets of the filename block when any version of the
generalized OPENSx macro call 1is issued under any of the following
conditions:

e All the file information required by FCS to open the file |is
not present in the dataset descriptor. Missing information is

2-31

PREPARING FOR I/O

then sought in the default filename block by the .PARSE
routine (see Section 4.7.1), which is automatically invoked as
a result of issuing any version of the generalized OPENS$x
macro call.,

e A dataset descriptor has not been created in your program.

e A dataset descriptor is present in your program, but the
address of this structure has not been made available to FCS
through any of the assembly-time or run-time macro calls that
initialize FDB offset location F.DSPT.

The following coding illustrates the general method of specifying the
NMBLKS$ macro call:

FDBOUT: FDBDF$;ALLOCATES SPACE FOR AN FDB.
FDATSA R.VAR,FD.CR ;INITIALIZES FILE-ATTRIBUTE SECTION.
FDRCSA ,RECBUF,80. ;INITIALIZES RECORD-ACCESS SECTION.
FDOP$SA OUTLUN, ,OFNAM ;INITIALIZES FILE-OPEN SECTION.

FDBIN: FDBDF$;ALLOCATES SPACE FOR AN FDB.
FDRCSA ,RECBUF,80. ;INITIALIZES RECORD-ATTRIBUTE SECTION.
FDOP$SA INLUN,, IFNAM ;INITIALIZES FILE-OPEN SECTION.

OFNAM: NMBLKS OUTPUT,DAT ;ESTABLISHES FILENAME AND FILE TYPE.

IFNAM: NMBLKS INPUT,DAT,,DT,l1 ;ESTABLISHES FILENAME, FILE TYPE,
;DEVICE NAME, AND UNIT NUMBER,

The first NMBLKS macro call in the coding sequence above creates a
default filename block to establish default information for the FDB,
named FDBOUT. The label OFNAM in this macro defines the beginning
address of the default filename block allocated within your program.
Note that this symbol is specified as the dfnb parameter in the FDOPSA
macro call associated with this default filename block to initialize
the file open section of the corresponding FDB. The accompanying
parameters in the first NMBLKS$ macro call define the file name and the

file type, respectively, of the file to be opened; all remaining
parameter fields in this call are null.

The second NMBLK$S macro call accomplishes essentially the same
operations in connection with the FDB, named FDBIN., Note in this
macro call that the third parameter (the file version number) is null,
as reflected by the extra comma. This null specification indicates
that the latest version of the file is desired. All other parameter
fields contain explicit declarations defining default information for
the applicable FDB,

You can define the offsets for a filename block 1locally in your
program, if desired, by issuing the following macro call:

NBOFS$L

This macro call does not generate any code. Its function is merely to
define the filename block offsets 1locally, presumably to conserve
symbol table space at task-build time. The NBOFSL macro call need not
be issued if the FDOFSL macro call has been invoked, since the
filename block offsets are defined locally as an automatic result of
issuing the FDOFS$L macro call.

If desired, you may initialize fields in the default filename block
directly with appropriate wvalues. This may be accomplished with
in-line statements in the program. For example, a specific offset in
the default filename block may be initialized through coding that is
logically equivalent to the following:

2-32

PREPARING FOR I/O

DFNB: NMBLK$ RSXLIB,OBJ

NUTYP: .RAD50 /DAT/

MOV NUTYP,DFNB+N.FTYP

where the symbol NUTYP in the MOV instruction represents the address
of the newly defined Radix-50 file type DAT, which is to be moved into
destination offset N.FTYP of the default filename block labeled DFNB.
You can manually initialize any of the offsets within the default
filename block in this manner to establish desired values or to

override previously initialized values.

NOTE

The NMBLKS$ macro cannot be used to
create a file name containing
non-Radix-50 characters or a file name
that 1is not in the normal FILNAME,TYP
format. A program that wuses the file
name format permitted for ANSI magnetic
tape must set up the file name 1in a
dataset descriptor.

2.4.3 Dynamic Processing of File Specifications

If you wish to make use of routines available from the system object
library ([1,1]1SYSLIB.OLB) for processing command line input
dynamically, you should consult Chapter 6. Chapter 6 describes the
Get Command Line (GCML) routine and the Command String Interpreter
(CSI), both of which may be linked with your program to provide all
the logical capabilities required in processing dynamic terminal input
or indirect command file input.

2.5 OPTIMIZING FILE ACCESS

When certain information is present in the filename block of an FDB, a
file can be opened in a manner referred to throughout this manual as
"opening a file by file ID." This type of open requires a minimum of
system overhead, resulting in a significant increase in the speed of
preparing a file for access by your program., If files are frequently
opened and closed during program execution, opening files by file ID
accomplishes substantial savings in overall execution time.

To open a file by file 1D, the minimum information that must be
present in the filename block of the associated FDB consists of the
following:

1. File Identification Field. This 3-word field, beginning at
filename block offset location N.FID, contains a file number
in the first word and a file sequence number in the second
word; the third word is reserved. The file identification
field is maintained by the system and ordinarily need not be
of concern to you.

2-33

PREPARING FOR 1I/0

2. Device Name Field. This 1-word field at filename block
offset location N.DVNM contains the 2-character ASCII name of
the device on which the volume containing the desired file is
mounted.

3. Unit Number Field. This 1-word field at filename block
offset location N.UNIT contains a binary value identifying
the particular unit (among several like units) on which the
volume containing the desired file is mounted.

These three fields are written into the filename block in one of three
ways:

1. As a function of 1issuing any version of the generalized
OPENS$x macro call for a file associated with the FDB in
question.

2. As a result of initializing the filename block manually by
using the .PARSE routine (see Section 4.7.1) and the .FIND
routine (see Section 4.8.1).

3. You manually move the necessary values into the filename
block.

Opening an existing file by file ID is a special case (see Section
3.5).

2.5.1 1Initializing the Filename Block As a Function of OPENS$x

To understand how to effect the process of opening a file by file 1ID,
note that the initial issuance of the generalized OPENSx macro call
(see Section 3.1) for a given file first invokes the .PARSE routine
(see Section 4.7.1). The .PARSE routine is automatically linked into
your program, along with the code for OPENSx. This routine first
zeros the filename block and then fills it in with information taken
from the dataset descriptor and/or the default filename block.

Thus, issuing the generalized OPEN$x macro call results 1in the
invocation of the L.PARSE routine each time a file is opened. The
.PARSE function, however, can be bypassed altogether in subsequent
OPENS$x calls by saving and restoring the filename block before
attempting to reopen that same file.

This is made possible because of the logic of the OPEN$Xx macro call.
Specifically, after the initial OPENS$Sx for a file has been completed,
the necessary context for reopening that file exists within the
filename block. Therefore, before <closing that £file, the entire
filename block can be copied into user memory space and later restored
to the FDB at the desired point in program flow for use in reopening
that same file.

The option to reopen files in this manner stems from the fact that FCS
is sensitive to the presence of any nonzero value in the first word of
the file identification field of the filename block. When the OPENSx
function 1is invoked, FCS first examines offset location N.FID of the
filename block. If the first word of this field contains a value
other than 0, FCS 1logically assumes that the remaining context
necessary for opening that file is present in the filename block, and
therefore unconditionally opens that file by file 1ID.

PREPARING FOR I/O

To ensure that an undesired value does not remain in the first word of
the N.FID field from a previous OPEN$xX/CLOSES sequence, the first word
of this field is zeroed as the file is closed.

In opening files by file ID, you need only ensure that manual saving
and restoring of the filename block are accomplished with in-line MOV
instructions that are consistent with the desired sequence of
processing files. This process should, in general, proceed as
outlined below:

1. Open the file in the usual manner by issuing the OPENSx macro
call.

2. Save the filename block by copying it into user memory space
with appropriate MOV instructions. The filename block begins
at offset location F.FNB.

The value of the symbol S.FNB is the size of the filename
block in bytes, and the value of the symbol S.FNBW is the
size of the filename block in words. If desired, the NBOFSL
macro call (see Section 2.4.2) may be invoked in your program
to define these symbols locally. These symbolic wvalues may
be wused in appropriate MOV instructions to accomplish the
saving and restoring of the filename block. Moreover, you
must reserve sufficient space in the program for saving the
filename block.

3. At the end of current file operations, close the file in the
usual manner by issuing the CLOSE$ macro call.

4. When, in the normal flow of program logic, that same file is
about to be reopened, restore the filename block to the FDB
by doing the reverse of step 2.

5. Reopen the file by 1issuing any one of the macro calls
available in FCS for opening an existing file. Since the
first word of offset location N.FID of the filename block now
contains a nonzero value, FCS unconditionally opens the file
by file ID, regardless of the specific type of open macro
call issued.

Although it is necessary to save only the file identification, device
name, and unit number fields of the filename block in anticipation of
reopening a file by file ID, you are advised to save the entire
filename block. The file name, file type, file version, and
directory-ID fields, and so forth, may also be relevant. For example,
an OPENSx, save, CLOSES, restore, OPENS$x, and DELETS sequence would
require saving and restoring the entire filename block. Though you
may be logically finished with file processing and may want to delete
the file, the delete operation will not work properly unless the
entire filename block has been saved and restored.

2.5.2 Manually Initializing the Filename Block

In addition to saving and restoring the filename block in anticipation
of reopening a file by file 1ID, the filename block can also be
initialized manually. If you choose to do so, the .PARSE and .FIND
routines (see Sections 4.7.1 and 4.8.1, respectively) may be invoked
at appropriate points to build the required fields of the filename
block. After the .PARSE and .FIND 1logic 1is completed, all the
information required for opening the file exists within the filename
block. When any one of the available FCS macro calls that open

2-35

existing files is then issued, FCS unconditionally opens that file by
file ID.

Occasionally, instances arise that make such manual operations
desirable, especially if your program is operating in an overlaid
environment. In this case, it is highly desirable that the code for
opening a file be broken into small segments in the interest of
conserving memory space. Since the body of code for the OPENSx and
.PARSE functions 1is sizable, two other types of macro calls for
opening files are provided for use with overlaid programs. The OFIDS
and OFNBS$ macro calls (see Sections 3.5 and 3.6, respectively) are
specifically designed for this purpose.

The structure recommended for an overlaid environment is to have
either the OFIDS or the OFNBS code on one branch of the overlay and
the .PARSE and .FIND code on another branch. Then, if vyou wish to
open a file by file ID, the .PARSE and .FIND routines can be invoked
at will to insert required information in the filename block before
opening the file.

The OFIDS$ macro call can be issued only in connection with an existing
file. The OFNB$ macro call, on the other hand, may be used for
opening either an existing file or for creating and opening a new
file. In addition, the OFNB$ macro call requires only the manual
invocation of the .PARSE routine to build the filename block before
opening the file.

If conservation of memory is an objective, and if your program will be
opening both new and existing files, it is recommended that only the
OFNBS$ routine be included in one branch of the overlay; including the
OFIDS$ routine would needlessly consume memory space.

In all cases, however, it is important to note that all the macro
calls for opening existing files are sensitive to the presence of any
nonzero value in the first word (N.FID) of the filename block. If
this field contains any value other than 0, the file is
unconditionally opened by file ID. This does not imply, however, that
only the file identification field (N.FID) is reguired to open the
file in this manner. The device name field (N.DVNM) and the unit
number field (N.UNIT) must also be appropriately initialized. The
logic of the FCS macro calls for opening existing files assumes that
these other required fields are present in the filename block if the
file identification field contains a nonzero value.

Because many programs continually reuse FDBs, the CLOSES$ function (see
Section 3.8) =zeros the file 1identification field (N.FID) of the
filename block. This action prevents the field (which pertains to a
previous operation) from being used mistakenly to open a file for a
current operation. Thus, if a user later intends to open a file by
file 1ID using information presently in the filename block, the entire
filename block (not just N.FID) must be saved before closing the file.
Then, at the appropriate point in program flow, the filename block may
be restored to open the desired file by file ID.

2.6 INITIALIZING THE FILE STORAGE REGION

The file storage region (FSR) is an area allocated in your program as
a buffer pool to accommodate the program's block buffer requirements
in performing record 1/0 (GET$ and PUTS$) operations. Although the FSR
is not applicable to block I/0 (READ$ and WRITES$) operations, you must
issue the FSRSZ$ macro once in every program that uses FCS, regardless
of the type of I/0 to be performed.

2-36

PREPARING FOR I/O

The macro calls associated with the 1initialization of the FSR are
described below.

2.6.1 FSRSZ$ - Initialize FSR at Assembly Time

The MACRO-11 programmer establishes the size of the FSR at assembly
time by issuing an FSRSZ$ macro call. This macro call does not
generate any executable code. It merely allocates space for a
block-buffer pool 1in a program section named $$FSR1. The amount of
space allocated depends on information provided by you, or defaulted,
during the macro call.

NOTE

The FSRSZ$ macro allocates the FCS
impure area that 1is pointed to by a
fixed location in user virtual memory.
This pointer is not altered when

overlays are loaded; therefore, the
FSRSZS macro must be invoked in the root
segment of a task. Unpredictable

results may occur if the FSRSZ$ macro is
invoked in more than one parallel
overlay.

The format of the FSRSZ$ macro is:
FSRSZ$ fbufs,bufsiz,psect
fbufs
A numeric value that you establish as follows:

l. If no record I/O processing is to be done, fbufs equals 0.
A value of 0 indicates that an unspecified number of files
may be open simultaneously for block I/0 processing. For
example, if you intend to access three files for block I/0O
operations and no files for record I/0 operations, the
FSRSZ$ macro call takes 0 as an argument, as shown below:

FSRSZ$ O

No other parameters need be specified unless the function
of the psect parameter (described below) is required.

2. If record 1/0, using a single buffer for each file, is to
be done, fbufs represents the maximum number of files that
can be open simultaneously for record I/0O processing. For
example, an RSX-11M user might want to access
simultaneously three files for block I/O and two files for
record I/0. This user would specify the following FSRSZ$
macro call:

FSRSZ$ 2

Additional parameters, bufsiz and psect (described below),
could also be specified as required.

3. If record I/0 with multiple buffering is to be done, fbufs
represents the maximum number of buffers ever in use

2-37

simultaneously among all files open concurrently for
record 1I/0. Assume, for example, that your program will
simultaneously access four disk files for record 1I/0
operations. Assume further that you want double-buffering
for three of the disk files and have, therefore, specified
a multiple buffer count of 2 in the FDBFS$A macro calls
(refer to Section 2.2.1.6) for the associated files. You
would then issue the following FSRSZ$ macro call:

FSRSZ$ 7

This macro call indicates that a maximum of seven buffers
will be in use simultaneously. This total is calculated
as follows: one buffer for the single-buffered file and
two buffers for each of the three double-buffered files.
Additional parameters, bufsiz and psect (described below),
could also be specified as required.

bufsiz

A numeric value defining the total block buffer pool space (in
bytes) needed to support the maximum number of files that can be
open simultaneously for record 1I/O. If this parameter is
omitted, FCS obtains a total block buffer pool requirement by
multiplying the value specified in the fbufs parameter with a
default buffer size of 512 bytes. If, for example, a maximum of
two single-buffered disk files will be open simultaneously for
record I/0, either of the following FSRSZ$ macro calls could be
issued:

FSRSZ$ 2
FSRSZ$ 2,1024.

If you wish to explicitly specify block buffer pool requirements,
the following formula must be applied:

[3
CUrLsiz

bsizel,bsize2,...,bsizen

The sizes, in bytes, of the buffers to support each file. The
size of a buffer for a particular file depends on the device
supporting the file if the standard block buffer size is used.
Standard block sizes for devices are established at system
generation time. The override block buffer size (ovbs)
parameter can be wused in the FDBF$X macro call to increase
buffer size, as described in Section 2.2.1.6; these increases
must be considered when you explicitly specify block buffer
pool requirements.

mbcl,mbc2,...,mbcn

The multiple buffer counts (refer to Section 2.2.1.6)
specified for the respective files.

The total value expressed by the bufsiz parameters must always
represent the worst case buffer pool requirements among all
combinations of simultaneously open record I/0 files. The
number of files (or buffers) representing the worst case is
expressed as the first parameter of the macro call.

2-38

PREPARING FOR I/O

NOTE

An IAS or RSX-11D user must not allocate
an FSR block buffer less than
512(decimal) bytes in length for spooled
output to a record-oriented device (such
as a line printer).

psect

The name of the program section (PSECT) to which control returns
after FSRSZ$ completes processing. If no name is specified,
control returns to the blank PSECT.

2.6.2 FINITS - Initialize FSR at Run Time

In addition to the FSRSZ$ macro call described in the preceding
section, the FINITS macro call must also be issued in a MACRO-11
program to call initialization coding to set up the FSR. This macro
call takes the following format:

label: FINITS
label

An optional user-specified symbol that allows control to be
transferred to this 1location during program execution. Other
instructions in the program may reference this label, as in the
case of a program that has been written so that it can be
restarted. Considerations relative to the FINITS macro call in
such a restartable program are presented below.

The FINITS$ macro call should be issued in the program's initialization
code. The first FCS call issued for opening a file performs the FSR
initialization implicitly (if it has not already been accomplished
through an explicit invocation of the FINITS macro call). However, it
is necessary, in the case of a program that is written so that it can
be restarted, to 1issue the FINITS macro call in the program's
initialization code, as shown 1in the second example below. This
requirement derives from the fact that such a program performs all its
initialization at run time, rather than at assembly time.

For example, a program that is not written so that it can be restarted
might accomplish the initialization of the FSR implicitly through the
following macro call:

START: OPENSR #FDBIN ; IMPLICITLY INITIALIZES THE FSR
;AND OPENS THE FILE.

In this case, although transparent to you, the OPENSR macro call
automatically invokes the FINITS operation. The label START is the
transfer address of the program.

In contrast, a program that embodies the capability to be restarted
must issue the FINITS macro call explicitly at program initialization
in the manner shown below:

START: FINITS ;EXPLICITLY INITIALIZES THE FSR AND
OPENSR #FDBIN ;OPENS THE FILE.

2-39

” -

PREFARING FOR I/

In this case, the FINITS macro call cannot be invoked arbitrarily
elsewhere in the program; it must be 1issued at program
initialization. Doing so forces the appropriate reinitialization of
the FSR, whether or not it has been done in a previous execution of
the program through an OPEN$x macro call.

Also important in the above context is the fact that calling any of
the file control routines described in Chapter 4, such as .PARSE,
first requires the initialization of the FSR. However, the FINITS
operation must be performed only once each program execution. Note
also that FORTRAN programs issue a FINIT$ macro call at the beginning
of the program execution; therefore, MACRO-11 routines used with the
FORTRAN object time system must not issue a FINIT$ macro call.

2.7 INCREASING THE SIZE OF THE FILE STORAGE REGION

Procedures for increasing the size of the FSR for either MACRO-11 or
FORTRAN programs are presented in the following sections.

2.7.1 FSR-Extension Procedures for MACRO-11 Programs

To increase the size of the FSR for a MACRO-11 program, you have two
options:

1. Modify the parameters in the FSRSZ$ macro call to redefine
the buffer pool requirement of files open simultaneously for
record I/0 processing. Reassemble the program,

2. Use the EXTSCT (extend program section) command at task-build
time to define the new size of the FSR. To invoke this
option, the command is specified in the following form:

EXTSCT = $$FSR1l:length
$$FSR1
The symbolic name of the program section within the FSR that is
reserved for wuse as the block buffer pool length. A numeric
value defining the total required size of the buffer pool in
bytes.

The size of the FSR cannot be reduced at task-build time.

In calculating the total length of the FSR, you can use either of the
formulas below:

1. Length = (S.BFHD*fbufs)+bufsiz
2. Length = fbufs* (S.BFHD+512.)
S.BFHD

A symbol that defines the number of bytes required for each block
buffer header. 1If desired, you can define this symbol locally in
your program by issuing the following macro call:

BDOFF$ DEFSL

2-40

PREPARING FOR I/0

fbufs

A numeric value representing either the maximum number of files
open simultaneously for record I/0O (when single buffering only is
used) or the maximum number of buffers ever in use simultaneously
among all files open concurrently for record I/O (when multiple
buffering is used). Refer also to the description of this
parameter in the FSRSZ$ macro call in Section 2.6.1.

bufsiz
A numeric value defining the total block buffer pool space (in
bytes) needed to support the maximum number of files that can be
open simultaneously for record I/O. Refer to the description of
this parameter in the FSRSZ$ macro call in Section 2.6.1.

512.
The standard default buffer size.

The EXTSCT command is described in detail in the Task Builder
Reference Manual of the host operating system.

2.7.2 FSR~-Extension Procedures for FORTRAN Programs

For a FORTRAN program, if an explicit ACTFIL statement is not 1issued
in the optional keyword input to the Task Builder, an ACTFIL statement
with a default value of 4 1is generated automatically during <task
build. To extend the size of the FSR at task-build time, you can
issue the following command:

ACTFIL = files
files -

A decimal value defining the maximum number of files that may be
open simultaneously for record I/O processing.

This command, similar to the EXTSCT command above, causes program
section $SFSR1 to be extended by an amount sufficient to accommodate
the number of active files anticipated for simultaneous use by the
program.

The size of the FSR for a FORTRAN program can also be decreased at
task-build time. As noted above, for either IAS or RSX-11, the
default value for the ACTFIL command is 4. Thus, if 0, 1, 2, or 3 |is
specified as the "files" parameter, the size of $$FSR1 (the FSR block
buffer pool) is reduced accordingly.

The ACTFIL command is described in detail in the Task Builder
Reference Manual of the host operating system.,

2.8 COORDINATING I/O OPERATIONS

In the IAS/RSX-11 environment, user programs perform all I/0
operations by issuing GETS$/PUTS and READS/WRITES macro calls (see
Chapter 3). These calls do not access the physical devices 1in the
system directly. Rather, when any one of these calls is issued, an
I/0-related system directive called QUEUE 1I/0 1is invoked as the
interface between the FCS file-processing routines at the user level

2-41

PREPARING FOR 1/0

and the system I/O0 drivers at the device level, Device drivers are
included for all the standard I/0 devices supported by IAS and RSX-11
systems. Although transparent to the user, the QUEUE I/O directive is
used for all FCS file access operations.

When invoked, the QUEUE I/O directive instructs the system to place an
I/0 request for the associated physical device unit into a queue of
priority-ordered requests for that unit. This request 1is placed
according to the priority of the issuing task. As required system
resources become available, the requested I/0O transfer takes place.

As implied above, two separate and distinct processes are involved in
accomplishing a specified I/0 transfer:

1. The successful queuing of the GET$/PUTS$ or READ$S/WRITES 1I/0
request

2. The successful completion of the requested data transfer
operation.

These processes, both of which yield success/failure indications that
may be tested by your program, must be performed successfully in order
for the specified 1I/0 operation to have been completed. It is
important to note that FCS totally synchronizes record I/0 operations
for you, even in the case of multiple-buffered operations. In the
case of block 1I/0 operations, the flexibility of FCS allows you to
synchronize all block I/0 activities, thus enabling you to satisfy
logical processing dependencies within the program.

2.8.1 Event Flags

I/0 operations proceed concurrently with other system activity. After
an I/O0 request has been queued, the system does not force an implied
wait for the issuing task until the requested operation is completed.
Rather, the operation proceeds in parallel with the execution of the
issuing task, and it is the task's responsibility to synchronize the
execution of I/0 requests. Tasks use event flags in synchronizing
these activities. With respect to event flags, the system merely
executes primitive operations that manipulate, test, and/or wait for
these indicators of internal task activity.

The completion of an I/0 transfer, for example, is recognized by the
system as a significant event. If you have specified a particular
event flag to be used by the task 1in coordinating I/O-completion
processing, that event flag is set, causing the system to evaluate the
eligibility of other tasks to run. Any event £flag £from 1 through
32(decimal) may be defined for local use by the task. If you have not
specified an event flag, FCS uses event flag 32(decimal) by default to
signal the completion of I/O transfers.

Specific FDB-initialization and 1I/O-initiating macro calls in FCS
enable you to specify event flags, if desired, that are unique to a
particular task and that are set and reset only as a result of that
task's operation.

For record I/0 operations, such an event flag may be defined through
the efn parameter of the FDBF$A or the FDBFS$SR macro call (see Section
2.2.1.6 or 2.2.2, respectively).

For block I/0 operations, an event flag may be declared through the

bkef parameter of the FDBKSA or the FDBKSR macro call (see Section
2.2.1.4 or 2.2.2, respectively); alternatively, a block event flag

2-42

PREPARING FOR I/0

may be declared through the corresponding parameter of the
I/0-initiating READ$ or WRITES$ macro call (see Section 3.15 or 3.16,
respectively).

In both record and block I/O operations, the event flag 1is cleared
when the I/0O request 1is queued and set when the I/0 operation is
completed. 1In the case of record I/O operations, only FCS manipulates
the event flag. Additionally, the event flag's state is transparent
to the user, who must not issue a WAITFOR system directive predicated
on the event flag used for coordinating record I/0 operations. A
record I/0 operation, for example, may not even involve an 1I/0
transfer; rather, it may only involve the blocking or deblocking of a
record within the FSR block buffer. On the other hand, the event flag
defined for synchronizing block I/0 operations is totally under your
control.

Also, a code indicating the success or failure of the QUEUE 1I/0
request resulting from the READS/WRITES macro call is returned to the
Directive Status Word (SDSW). If desired, symbolic location $DSW may
be tested to determine the status of the I/0 regquest. The
success/failure codes for the QUEUE I/0 directive are 1listed 1in the
manuals referenced above.

Event flag directives are described in the RSX-11M/M-PLUS Executive
Reference Manual. The relationship of event flags to specific devices
is described in the RSX-11M/M-PLUS I/0 Drivers Reference Manual.

2.8.2 1I/0 Status Block

Because of the comparative complexity of block I/0 operations, an
optional parameter is provided in the FDBK$A and the FDBKSR macro
calls, as well as in the READS$ and WRITE$ macro calls, that enables
the system to return status information to your task for block I/O
operations. The I/O status block is not applicable to record 1I/0
(GETS$ or PUTS) operations.

This optional parameter, called the I/O status block address, is made
available to FCS through any of the macro calls identified above.
When this parameter is supplied, the system returns status information
to a 2-word block reserved in your program. Although the I/0 status
block is used principally as a QUEUE I/O housekeeping mechanism for
containing certain device-dependent information, this area also
contains information of particular interest to you.

Specifically, the second word of the I/O status block 1is filled in
with the number of bytes transferred during a READ$S or WRITES
operation. When you are performing READS$ operations, it 1is good
practice always to use the value returned to the second word of the
I/0 status block as the number of bytes actually read, rather than to
assume that the requested number of bytes was transferred. Employing
this technique allows the program to properly read virtual blocks of
varying 1length from a device such as a magnetic tape unit, provided
that the requested byte count is at least as 1large as the 1largest
virtual block. For WRITES operations, the specified number of bytes
are always transferred; otherwise, an error condition exists.

2-43

PREPARING FOR 1/0

Also, the low-order byte of the first word of the 1I/O status block
contains a code that reflects the final status of the READ$/WRITES
operation. The codes returned to this byte may be tested to determine
the status of any given block I/0 transfer. The binary values of
these status codes always have the following significance:

Code Value Meaning
+ I/0 transfer completed.
0 I/0 transfer still pending.

- I/0 error condition exists.

The format of the I/0 status block and the error codes returned to the
low-order byte of its first word are described in detail in the IAS
Device Handlers Reference Manual or the RSX-11M/M-PLUS 1I/0 Drivers
Reference Manual.

If the address of the I/O status block is not made available to FCS
(and hence to the QUEUE I/O directive) through any of the macro calls
noted above, no status information 1is returned to the I/0 status
block. In this case, the fact that an error condition may have
occurred during a READS or WRITES operation is simply 1lost. Thus,
supplying the address of the I/O status block to the associated FDB is
highly desirable in order to facilitate normal error reporting.

An I/0O status block may be defined in the user program at assembly
time through any storage directive 1logically -equivalent to the
following:

IOSTAT: .BLKW 2
IOSTAT

A user-defined symbol naming the I/O status block and defining
its address. This symbolic value 1is specified as the bkst
parameter in the FDBKSA or the FDBKSR macro call to initialize
FDB offset 1location F.BKST; it may also be specified as the
corresponding parameter in the READ$ or the WRITE$ macro call.
Initializing this cell in the FDB is an integral part of issuing
the desired I/O request.

2.8.3 AST Service Routine

An asynchronous system trap (AST) is a software-generated interrupt
that causes the sequence of instructions currently being executed to
be interrupted and control to be transferred to another instruction
sequence elsewhere 1in the program. If desired, you may specify the
address of an AST service routine that is to be entered upon
completion of a block I/O transfer. Since an AST is a trap action, it
constitutes an automatic indication of block I/0 completion.

The address of an AST service routine may be specified as an optional
parameter (bkdn) in the FDBKSA or the FDBKS$R macro call (see Section
2.2.1.4 or 2.2.2, respectively); this parameter may also be specified
in the READ$ or the WRITES$ macro call, initializing the FDB at the
time the I/0 request 1is 1issued (see Section 3.15 or 3.16,
respectively).

PREPARING FOR I/O

Usually, an AST address is specified to enable a running task to be
interrupted in order to execute special code upon completion of a
block I/0 request. If the address of an AST service routine 1is not
specified, the transfer of control does not occur, and normal task
execution continues.

The main purpose of an AST service routine 1is to inform the wuser
program that a block I/O operation has been completed, thus enabling
the program to continue immediately with some other desired (and
perhaps 1logically dependent) operation (for example, another I/0
transfer).

If an AST service routine is not provided by the user, some other
mechanism, such as event flags or the I/O status block, must be used
as a means of determining block I/O completion. In the absence of
such a routine, for example, the user may test the low-order byte of
the first word in the I/0 status block to determine if the block 1I/0
transfer has been completed. A WAITS macro call (see Section 3.17)
may also be issued in connection with a READS or WRITES operation to
suspend task execution until a specified event flag is set to indicate
the completion of block I/0.

Implementing an AST service routine in the user program is application
dependent and must be coded specifically to meet particular user
I/0-processing requirements. A detailed discussion of asynchronous
system traps 1is beyond the scope of this document. Refer to the
Executive Reference Manual of the host operating system for
discussions of trap-associated system directives.

WARNING

Do not execute any FCS routines while in
an AST service routine. FCS maintains
an impure data area that it uses as a
Directive Parameter Block and as a
scratch area for directives. An AST
could interrupt an FCS operation that is
altering this impure area. Executing an
FCS routine in AST state could alter the
impure area and cause unpredictable
results when task execution resumes.

CHAPTER 3

FILE-PROCESSING MACRO CALLS

You manipulate files through a set of file-processing macro calls.
These macro calls are invoked and expanded at assembly time. The
resulting code is then executed at run time to perform the operations
listed below:

OPENS$ - To open and prepare a file for processing

OPNS$ - To open and prepare a file for processing and to allow
shared access to that file (depending on the mode of
access)

OPNTS$ - To create and open a temporary file for processing

OFID§ - To open an existing file wusing file identification

information in the filename block

OFNBS$ ~ To open a file wusing file name 1information in the
filename block

CLOSE$ - To terminate file processing in an orderly manner

GETS - To read logical data records from a file

GETSR - To read fixed-length records from a file in random mode

GET$S - To read records from a file in sequential mode

PUTS - To write logical data records to a file

PUTSR - To write fixed-length records to a file in random mode

PUTSS - To write records to a file in sequential mode

READS - To read virtual data blocks from a file

WRITES - To write virtual data blocks to a file

DELETS - To remove a named file from the associated volume
directory and to deallocate the space occupied by the
file

WAITS - To suspend program execution until a requested block

I/0 operation is completed

Most of the parameters associated with the file-processing macro calls
supply information to the FDB. Such parameters cause MOV or MOVB
instructions to be generated in the object code, resulting in the
initialization of specific locations within the FDB.

The final parameter in all file-processing macro calls is the symbolic
address of a user-coded, error-handling routine. This routine is
entered upon detection of an error condition during the
file-processing operation. When this optional parameter is specified,
the following code is generated:

Code for macro

BCC nn$;TESTS C-BIT IN PROCESSOR STATUS WORD.
JSR PC,ERRLOC ;INITIATES ERROR-HANDLING ROUTINE
;AT "ERRLOC" ADDRESS.
nn$: ;CONTINUES NORMAL PROGRAM EXECUTION.

where nn$ represents an automatically generated local symbol. If the
operation 1is completed successfully, the C-bit (carry condition code)
in the Processor Status Word is not set, and FDB offset location F.ERR
contains a positive wvalue. The BCC instruction then results in a
branch to the local symbol nn$ and the continuation of normal program
execution.

However, if an error condition is detected during the execution of the
file-processing routine, the C-bit in the Processor Status Word is
set, FDB offset location F.ERR contains a negative wvalue (indicating
an error condition), and the branch to the local symbol nn$ does not
occur. Instead, the JSR instruction is executed, loading the PC with
the symbolic address (ERRLOC) of the error-handling routine and
initiating its execution.

If this optional parameter 1is not specified, the error-processing
routine is not called, and you must explicitly test the C-bit in the
Processor Status Word to ascertain the status of the requested
operation.

Note that executing the FCS file-processing routines causes all
user-program general registers to be saved except RO, which by
convention is used by FCS to contain the address of the FDB associated
with the file being processed.

3.1 OPENS$X - GENERALIZED OPEN MACRO CALL

Before any file can be processed by your (or system) program, it must
first be opened. The type of action that you intend to perform on a
file is indicated to FCS by an alphabetic suffix accompanying the
macro name., For example, in issuing the generalized macro call

OPENS$x

X represents any one of the following alphabetic suffixes, each of
which denotes a specific type of processing anticipated for the file:

R - Read an existing file

W - Write (create) a new file

M - Modify an existing file without changing its length

U - Update an existing file and extend its length, if necessary
A - Append (add) data to the end of an existing file

FILE-PROCESSING MACRO CALLS

NOTE

You can issue the generalized OPENSx
macro call without an alphabetic suffix.
In this case, the type of action to be
performed on the file is indicated to
FCS through an additional parameter in
the macro call. This value, called the
file access (facc) parameter, causes
offset location F.FACC in the associated
FDB to be initialized. Section 3.7
describes this macro call in detail.

Depending on the alphabetic suffix supplied in the OPEN$xX macro call,
certain other types of operations may or may not be allowed, as noted
below:

1. If R is specified (for reading an existing file), that file
cannot also be written; that is; a PUTS or WRITES$ operation
cannot be performed on that file.

2. If Mor U is specified (for modifying or updating an existing
file), that file can be both read and written; that is,
concurrent GETS$/PUTS or READS/WRITES operations can be
performed on that file.

3. If M is specified (for modifying an existing file), that file
cannot be extended.

4, If Wor A is specified (for creating a new file or appending
data to an existing file), that file can be read, written,
and/or extended.

The program that is 1issuing the OPENS$x macro call must have
appropriate access privileges for the specified action. Table 3-1
summarizes the access privileges for the various forms of the OPENSx
macro call. This table also shows where the next record or block will
be read or written in the file after it is opened.

Table 3-1
File Access Privileges Resulting from OPENS$x Macro Call

MACRO ACCESS PRIVILEGES POSITION OF FILE AFTER OPENSx
OPENSR Read First record of existing file
OPENSW Read, write, extend First record of new file
OPENS$M Read, write First record of existing file
OPENSU Read, write, extend First record of existing file
OPENSA Read, write, extend End of existing file (For

special PUTS$R considerations,

see Section 3,13.)

When any form of the OPENS$x macro call is issued, FCS first fills in
the filename block with file name information retrieved from the
dataset descriptor (see Section 2.4.1). FCS gains access to this data
structure through the address value stored in FDB offset location
F.DSPT.

FILE-PROCESSING MACRO CALLS

If any required data has been omitted from the dataset descriptor, FCS
attempts to obtain the missing information from the default filename
block. This data structure, which may also contain user-specified
file name information, is created in the program by issuing the NMBLKS$
macro call (see Section 2.4.2). PFCS gains access to this structure
through the address value stored in FDB offset location F.DFNB.

The address values in offset 1locations F.DSPT and F.DFNB can be
supplied to FCS through the FDOP$A macro call, the FDOP$R macro call,
or the OPENS$x macro call, FCS requires access to the dataset
descriptor and/or the default filename block in retrieving file name
information used in opening files.

If a new file is to be created, the OPENSW macro call is issued. FCS
then performs the following operations:

1. Creates a new file and obtains file identification
information for the file. FCS maintains the file
identification information in offset location N.FID of the
filename block. The filename block 1in the FDB begins at
offset location F.FNB.

2. Initializes the file attribute section of the file header
block. The file header block 1is a file system structure
maintained on the volume containing the file. Each file on a
volume has an associated file header block that describes the
attributes of that file. FCS obtains attribute information
for a new file from the FDB associated with the file. The
format and content of a file header block are presented in
detail in Appendix F.

3. Places an entry for the file in the User File Directory
(UFD). If, however, an entry for a file having the same
name, type, and version number already exists in the UFD, the
0ld file 1is deleted. If a particular type of macro call is
issued explicitly specifying that the file not be superseded,
the o0ld file 1is not deleted and an error code is returned.

This type of OPENS operation is described in Section 3.7.

4., Associates the assigned logical unit number (LUN) with the
file to be created.

5. Allocates a buffer for the file from the FSR block buffer
pool if record I/O (GET$/PUTS) operations are to be used in
processing the file.

If an existing file is to be opened, any one of the following macro
calls may be issued: OPENSR, OPENSM, OPENSU, or OPENSA. FCS then
performs the following operations:

1. If file identification information is not present in the file
name block, FCS constructs the filename block from
information taken from the dataset descriptor and/or the
default filename block. FCS then searches the UFD by file
name to obtain the required file identification information.
When found, this information is stored in the filename block,
beginning at offset location N.FID.

2. Associates the assigned logical unit number (LUN) with the
file.

3. Reads the file header block and 1initializes the file
attribute section of the FDB associated with the file being
opened.

3.1.1

FILE-PROCESSING MACRO CALLS

4, Allocates a buffer for the file from the FSR block buffer
pool 1if record I/0 (GETS/PUTS$) operations are to be used in
processing the file.

NOTE

As described in Section 2.6, you
allocate buffers through the FSRSZ$
macro call. The number of buffers
allocated 1is dependent upon the number
of files that you intend to open
simultaneously for record I/0
operations.

If block I/0 operations are to be used,
FDB offset 1location F.RACC must be
initialized with the FD.RWM parameter by
the FDRCS$A, the FDRCSR, or the
generalized OPEN$x macro call. This
parameter inhibits the allocation of a
buffer when the file is opened.

Format of Generalized OPEN$x Macro Call

The generalized macro call for opening files takes the following form:

fdb

lun

dspt

OPENSx £fdb,lun,dspt,racc,urba,urbs,err

The alphabetic suffix specified as part of the macro name;
indicating the desired type of operation to be performed on the
file. The possible values for this parameter are: R, W, M, U,
or A (see Section 3.1).

A symbolic value of the address of the associated FDB.

The logical unit number (LUN) associated with the desired file.
This parameter identifies the device on which the wvolume
containing the desired file is mounted. Normally, the logical
unit number associated with the file is specified through the
corresponding parameter of the FDOP$SA or the FDOPSR macro call.
If so specified, the 1lun parameter need not be present in the
OPEN$x macro call. Each FDB must have a unique LUN.

The symbolic address of the dataset descriptor. Normally, this
address value is specified through the corresponding parameter of
the FDOPS$SA or the FDOPSR macro call. If so specified, this
parameter need not be present in the OPENS$x macro call,

racc

urba

FILE-PROCESSING MACRO CALLS

This parameter specifies the address of the manually created
dataset descriptor (see Section 2.4.1). If the Command String
Interpreter (CSI) 1is being used to interpret command 1lines
dynamically, this parameter is used to specify the address of the
dataset descriptor within the CSI control block (see offset
location C.DSDS in Section 6.2.2).

The record access byte. One or more symbolic values may be
specified in this field to initialize the record access byte
(F.RACC) in the associated FDB. You can specify any combination
of the following parameters by separating them with exclamation
points:

e FD.RWM - Indicates that block I/O (READS/WRITES) operations
are to be used in processing the file., If this parameter
is not specified, FCS assumes by default that record 1I/0
(GET$/PUTS$) operations are to be used in processing the
file.

e FD.RAN - Indicates that random access to the file is to be
used for record 1I/0 (GET$/PUTS) operations. If this
parameter is not specified, FCS uses sequential access by
default. Refer to Section 1.5 for a description of random
access mode.

e FD.PLC - Indicates that locate mode (see Section 1.6.2) |is
to be used for record I/0 (GETS/PUTS) operations. 1If this
parameter is not specified, FCS uses move mode (see Section
1.6.1) by default.

»
7

D.INS - Indicates that a PUT$ operation in sequential mode
i the body of a file shall not truncate the file.
Effectively, this parameter prevents the logical end of the
file from being reset to a point just beyond the inserted
record. If this parameter 1is not specified, a PUTS
operation in sequential mode truncates the file to a point
just beyond the inserted record, but no deallocation of
file blocks occurs.

Specifying this parameter allows a data record in the body of the
file to be overwritten. Care must be exercised, however, to
ensure that the record being written is the same length as that
of the record being replaced.

If the FD.RAN parameter above is specified, the file is accessed
in random mode. In this case, a PUTS$ operation in the file,
without exception, does not truncate the file.

If the record access byte in the FDB has already been initialized
through the corresponding parameters of the FDRC$A or the FDRCS$R
macro call, the racc parameters need not be present in the OPENS$x
macro call.

The symbelic address of the user record buffer. This parameter
initializes FDB offset location F.URBD+2.

If the user record buffer address has already been supplied to
the FDB through the corresponding parameter of the FDRCS$A or the
FDRCSR macro call, this parameter need not be present in the
OPENS$X macro call.

3-6

FILE-PROCESSING MACRO CALLS

urbs

A numeric value defining the size of the user record buffer (in
bytes). This parameter initializes FDB offset location F.URBD.

If the size of your record buffer has already been supplied to
the FDB through the corresponding parameter of the FDRC$A or the
FDRCSR macro call, this parameter need not be present in the
OPENS$x macro call.

err

The symbolic address of an optional user-coded, error-handling
routine.

Specific FDB requirements for record I/0O operations (GET$ and PUTS
macro calls) are detailed in Sections 3.9.2 and 3.12.2.

The following examples depict representative uses of the OPEN$x macro
call.

A macro call to open and modify an existing file, for example, might
take the following form:

OPENSM RO, $#INLUN,,#FD.RAN!FD.PLC

Note in this macro call that the FDB address is assumed to be present
in RO. The third parameter, that is, the dataset descriptor pointer,
is not specified; this null specification (indicated by the extra
comma) assumes that FDB offset 1location F.DSPT (if required) has
already been initialized. The last parameter, consisting of two
values separated by an exclamation point, establishes random access
and locate modes for GETS$/PUTS operations.

The following macro call might be issued to update an existing file:
OPENSU RO, #INLUN,,,#RECBUF,#80.

This macro call also assumes that the FDB address is in RO. Note also
that the dspt and racc parameter fields are null, based on the premise
that the dataset descriptor pointer (F.DSPT) has been provided
previously to the FDB and that the record access byte (F.RACC) has
also been previously initialized. Finally, the last two parameters
establish the address and the size, respectively, of the user record
buffer.

This last example shows a macro call that might be 1issued to allow
data to be appended to the end of a file:

OPENSA #OUTFDB

This macro call specifies the address of an FDB as the only parameter.
In this case, it is assumed that all other parameters required by FCS
in opening and operating on the file have been previously supplied to
the FDB through the appropriate assembly-time or run-time macro calls.

Note in all three examples above that the error parameter is not
specified, requiring that you explicitly test the C-bit in the
Processor Status Word to ascertain the success of the specified
operation.

3-7

NOTE

You can use RO only to pass the FDB
address parameter. Any other use of RO
when you issue the OPEN$SA macro call
will fail.

3.1.2 FDB Requirements for Generalized OPEN$x Macro Call

The information required for opening a file may be supplied to the FDB
through the following macro calls:

e The assembly-time macro calls described in Section 2.2.1
e The NMBLKS$ macro call described in Section 2.4.2
e The run-time macro calls described in Section 2.2.2

e The various macro calls described in this chapter for opening
files

The particular combination of macro calls used to define and
initialize the FDB is a matter of choice, as indicated above. O0Of far
greater significance is the fact that certain information must be
present 1in the FDB before the associated file can be opened. In this
regard, the following rules apply for creating and opening new files,
for opening existing files, and for specifying desired file options:

1. To Create a New File. If a new file is to be created through
the OPENSW macro call, the following information must first
be supplied to the FDB. You can specify this information
through the FDAT$A macro call (see Section 2.2.1.2) or the
FDATS$R macro call (see Section 2.2.2):

a. The record type must be established for record 1I/0
operations. To accomplish this, you must initialize byte
offset 1location F.RTYP with the following symbolic
values:

e R.FIX - Indicates that fixed-length records are to
be written into the file

e R.VAR - Indicates that variable-length records are
to be written into the file

e R.SEQ - Indicates that sequenced records are to be
written into the file

b. The desired record attributes must be specified for
record I/0 operations. The record attributes are defined
by initializing byte offset location F.RATT with the
appropriate value(s), as follows:

e FD.FTN - Indicates that the first byte - of each

record 1is to contain a FORTRAN carriage control
character.

3-8

FILE-PROCESSING MACRO CALLS

e FD.CR - Indicates that a line-feed (<KLF>) character
is to precede each record and that a carriage
return (<KCR>) character is to follow the record
when that record 1is output to a device requiring
carriage control information (for example, to a
terminal). The <LF> and <CR> characters are not
actually embedded within the record. Their
presence is merely implied through the file
attribute FD.CR.

e FD.BLK - Indicates that records are not allowed to
cross block boundaries.

e FD.PRN - Indicates that the record is preceded by a
word containing carriage control information.

c. If fixed-length records are to be written to the file,
you must specify the record size (in bytes) for record
I/0 operations to appropriately 1initialize FDB offset
location F.RSIZ.

Items a. through c¢. above cannot be supplied to the FDB
through any of the various macros used to create and/or open
files (for example, OPENSW, OPENSR, and so forth).
Furthermore, none of the above information is required when
opening an existing file, since FCS obtains such information
from the first 14 bytes of the user file attribute section of
the file header block (see Appendix F).

To Open Either a New File or an Existing File. Regardless of
whether the file being opened is yet to be created or already
exists, the following information must be present in the FDB
before that file can be opened:

a. The record access byte must be initialized for
record/block I/O operations. The symbolic values below
may be specified in the FDRCS$A macro call (see Section
2.2.1.3), the FDRCSR macro call (see Section 2.2.2), or
the generalized OPEN$x macro call to 1initialize FDB
offset location F.RACC:

e FD.RWM - Indicates that READS/WRITES (block 1I/0)
operations are to be used in processing the file.
If this parameter is not specified, GET$/PUTS
(record I/0) operations result by default.

e FD.RAN - Indicates that random access mode
(GET$/PUTS record I/0) is to be used in processing
the file. If this parameter 1is not specified,
sequential access mode results by default. Refer
to Section 1.5 for a description of random access
mode.

e FD.PLC - Indicates that 1locate mode (GETS/PUTS
record I/0) 1is to be used in processing the file.
If this parameter is not specified, move mode
results by default.

3-9

e FD.INS - Indicates that a PUTS operation in
sequential mode 1in the body of a file shall not
truncate the file. If this parameter 1is not
specified, such an operation truncates the file.
In this case, the logical end of the file is reset
to a point just beyond the inserted record, but no
deallocation of file blocks occurs.

b. Your record buffer descriptors, (that is, the wurba and
urbs parameters), must be specified for record 1I/0
operations. To accomplish this, the FDRCSA, the FDRCS$R,
or the generalized OPENS$xXx macro call may be used. The
selected macro call defines the address and the size of
the area reserved in the program for use as a buffer
during record 1I/O operations. The urba and urbs
parameters initialize FDB offset locations F.URBD+2 and
F.URBD, respectively.

FDB requirements specific to GET$ and PUT$ operations in
move and locate mode are presented in detail in Sections
3.9.2 and 3.12.2, respectively.

c. You must specify the logical unit number to initialize
FDB offset location F.LUN. 1Initializing this cell can be
accomplished with the lun parameter of the FDOPS$A, the
FDOP$R, or the generalized OPEN$x macro call. Each FDB
must have a unique logical unit number.

d. If file identification information is not already present
in the FDB, either the dataset descriptor pointer
(F.DSPT) or the default filename block address (F.DFNB)
must be specified to enable FCS to obtain required file
name information for use in opening the file. These
address values may be specified in either the FDOPSA
macro call (see Section 2.1.1.5) or the FDOPSR macro call
(see Section 2.2.2). The generalized OPENSx macro call
(see Section 3.1) may also be used to specify the dataset
descriptor pointer.

e. If desired, an event flag number for synchronizing record
I/0 operations must be specified to initialize FDB offset
location F.EFN. This optional parameter may be specified
in either the FDBFS$A macro call (see Section 2.2.1.6) or
the FDBFSR macro call (see Section 2.2.2). If not
specified, FCS uses event flag number 32(decimal) by
default in synchronizing all record I/O activity.

Specifying Desired File Options. If certain options are
desired for a given file, they must be specified before that
file is opened. Since this information 1is needed only in
opening the file, it is zeroed when the file is closed, thus
ensuring that the FDB is properly reinitialized for
subsequent use. The options that may be specified for a
given file are described below:

a. The override block size (ovbs parameter) must be
specified in either the FDBFS$A or the FDBF$R macro call
to initialize FDB offset location F.OVBS. This parameter
need be specified only if the standard default block size

3-10

FILE-PROCESSING MACRO CALLS

in effect for the associated device is to be overridden
or if the big-buffering or multiple-buffering versions of
FCS are in use. The override block size is specified to
improve I/0 system throughput with record 1/0, and with
record-oriented devices (such as 1line printers) and
sequential devices (such as magnetic tape units). (See
Section 2.2.1.6.)

The multiple buffer count (mbct parameter) must be
specified in either the FDBF$A or the FDBFS$R macro call
to initialize FDB offset location F.MBCT. If
multiple-buffered record 1I/0 operations are to be used,
this parameter must be greater than 1, and it must agree
with the desired number of buffers to be used. This
parameter is not overlaid, nor is it zeroed when the file
is closed.

If the multiple buffer count 1is not established as
described above, multiple-buffered operations can still
be invoked by changing the default buffer count in the
FSR. A default buffer count of 1 is stored in symbolic
location .MBFCT of $$FSR2. This default wvalue can be
altered to reflect the number of buffers intended for use
during record I/0 operations. The procedure for
modifying this cell in SFSR2 is described at the end of
Section 2.2.1.6.

In addition, if multiple buffering is to be employed, the
appropriate control flag must be specified as the mbfg
parameter in either the FDBF$A or the FDBF$SR macro call
to appropriately initialize FDB offset location F.MBFG.
Either of two symbolic values may be specified for this
purpose, as follows:

e FD.RAH -~ Indicates that read-ahead operations are
to be used in processing the file.

e FD.WBH - Indicates that write-behind operations are
to be used in processing the file.

Offset location F.MBFG need be initialized only 1if the
standard default buffering assumptions are inappropriate.
When a file is opened for reading (OPENSR), read-ahead
operations are assumed by default; for all other forms
of OPENSx, write-behind operations are assumed. It may
be wuseful, for example, to override the write-behind
default assumption for a file opened through the OPENSM
or the OPEN$U macro call when that file is being used
basically for sequential read operations, but scattered
updating is also being performed.

To allocate required file space at the time a file is
created, the c¢ntg parameter must be specified in either
the FDATSA or the FDATSR macro call. This parameter
initializes FDB offset location F.CNTG. A positive value
so specified results in the allocation of a contiguous
file having the specified number of blocks; a negative
value, on the other hand, results in the allocation of a
noncontiguous file having the specified number of blocks.

d. The address of the 5-word statistics block 1in your
program must be moved manually into FDB offset location
F.STBK. This address value specifies an area in the user
program to which FCS returns certain statistical
information about a file when it 1is opened. If this
parameter is not specified, no return of such information
occurs,

The format and content of the statistics block are
presented 1in Appendix H. You can define such an area in
a program with coding logically equivalent to that shown
below:

STBLK: .BLKW 5

Offset location F.STBK may then be manually initialized,
as follows:

MOV #STBLK, FDBADR+F.STBK

where STBLK is the user-defined symbolic address of the
statistics block, and the destination operand of this
instruction defines the appropriate offset location
within the desired FDB.

3.2 OPNSSX - OPEN FILE FOR SHARED ACCESS

The OPNSS$x macro call is issued to open a file for shared access.
This macro <call has the same format, that 1is, takes the same
alphabetic suffixes and run-time parameters, as the generalized OPENSx
macro call. The shared access conditions that result from the use of
this macro call are summarized in Section 1.8.

3.3 OPNTSW - CREATE A
The OPNTS$W macro call is issued to create and open a temporary file
for some special purpose of limited duration. If a temporary file is

to be used only once, it is best created through the OPNT$D macro call
described in the following section.

The OPNTSW macro call creates a file but does not enter a file name
for that file into any associated user directory file.

In using the OPNTSW macro call, you bear the responsibility for
marking the temporary file for deletion, as described in the procedure
below. Then, after all operations associated with that file are
completed, closing the file results in its deallocation. All space
formerly occupied by the file is then returned for reallocation to the
pool of available storage on the volume.

Although the OPNTS$W macro call takes the same parameters as those of
the generalized OPENS$x macro call, the former executes faster because
no directory entries are made for a temporary file.

Creating a temporary file is usually done when a program requires a
file only for the duration of its execution (for example, for use as a
work file). The general sequence of operations in such instances
proceeds as follows:

3-12

FILE-PROCESSING MACRO CALLS

1. Open a temporary file by 1issuing the OPNT$W macro call.
Perform any desired operations on that file. 1If the file is
to be used only for a single OPNTS$SW/CLOSE$ sequence, go to
step 6; otherwise, continue with step 2.

2. Before closing the file for processing, save the filename
block in the associated FDB. The general procedure for
saving (and restoring) the filename block 1is discussed in
Section 2.5.1.

3. Close the file by issuing the CLOSES$ macro call (see Section
3.8). Continue other processing in the program, as desired.

4. 1In anticipation of reopening the temporary file, restore the
filename block to the FDB by accomplishing the reverse of
step 2 above.

5. Reopen the file by issuing any of the FCS macro calls that
open existing files. Resume operations on the file; repeat
the save, CLOSES, restore, open sequence any desired number
of times.

6. Before closing the file the 1last time, call the .MRKDL
routine, as shown below, to mark the file for deletion:

CALL .MRKDL
The .MRKDL routine is described in Section 4.13.1.
7. Close the file by issuing the CLOSE$ macro call.

If the filename block is not saved, the file identification field
therein 1is destroyed, since this field is reset to 0 when the file is
closed.

Thus, not saving the filename block before closing a temporary file
results in a "lost" file, since no directory entry is made for a
temporary file. The usual procedure of listing the volume's directory
is therefore inapplicable. The only way such a file can be recovered
is to use the File Structure Verification Utility program (VFY) to
search the volume's index file. The VFY program has the capability to
compare the files listed in all the directories on the wvolume with
those 1listed in the index file. 1If a file appears in the index file,
but not in a directory, VFY identifies that file for vyou. This
program is described in detail in the IAS System Management Guide and
RSX-11 Utilities Manual.

3.4 OPNT$D - CREATE AND OPEN TEMPORARY FILE AND MARK FOR DELETION

The OPNTSD macroc call is issued to create and open a temporary file.
This macro call 1is simply a convenient way to perform steps 1 and 6
above. A file marked for deletion cannot be opened by another
program. Furthermore, when the file is closed, it is automatically
deleted from the volume, returning its space to the pool of available
storage on the volume for reallocation.

The presumption in issuing the OPNTSD macro call is that the file thus
created is to be used only once. This is a particularly desirable way
to open a temporary file, since the file will be deleted even if the
program terminates abnormally without closing the file.

The OPNTSD macro call takes the same format and parameters as those of
the generalized OPENS$X macro call.

NOTE

If the OPNTS$D macro call is issued for
use with a temporary file containing
sensitive information, it is recommended
that you =zero the file before closing
it, or reformat the disk to destroy the
sensitive information. (Although a
temporary file is deleted after use, the
information physically remains on the
volume until written over with another
file and could be analyzed by
unauthorized users.)

3.5 OFID$X - OPEN FILE BY FILE ID

The OFIDS$x macro call is issued to open an existing file wusing
information stored in the file identification field (offset location
N.FID) of the filename block in the FDB (not in your default filename
block). Thus, 1issuing this macro call invokes an FCS routine that
opens a file only by file ID (see Section 2.5). The OFIDS$x call,
which has the same format and takes the same parameters as those of
the generalized OPEN$x macro call (see Section 3.1), is designed for
use with overlaid programs.

In describing the functions of the OFID$x macro call, either one of
two assumptions may apply, as follows:

1. That the necessary context for opening the file has been
saved from a previous OPEN$x operation and restored to the
filename block in anticipation of opening that file by file
ID. Saving and restoring the filename block are discussed in
detail in Section 2.5.1.

2. That the desired file is to be opened for the first time. 1In
that case, the necessary context for opening the file must
first be stored in the file name block before the OFID$ macro
call can be issued.

In most cases, the 1latter assumption applies, requiring that the
following procedures be performed:

1. Call the .PARSE routine (see Section 4.7.1). This routine
takes information from a specified dataset descriptor and/or
default filename block, and initializes and fills 1in the
specified filename block.

2. Call the .FIND routine (see Section 4.8.1). This routine
locates an appropriate directory entry for the file (by file
name) and stores the file identification information found
there in the 6-byte file identification field of the filename
block, starting at offset location N.FID. As a result of
steps 1 and 2, the necessary context then exists in the
associated filename block for opening the file by file ID.

3. 1Issue the OFID$x macro call.

3-14

FILE-PROCESSING MACRO CALLS

The advantage in using the .PARSE and .FIND routines 1in conjunction
with the OFID$x macro call 1is that you can overlay the program,
placing .PARSE and .FIND on one branch, and the code for OFIDS$x on
another branch. This overlay structure reduces the program's overall
memory requirements.

Unlike the other FCS macro calls for opening files, the OFID$x macro
call requires a nonzero value in the first word of the file
identification field (N.FID) in order to work properly. When this
field contains a nonzero value, FCS assumes that the remaining context
necessary for opening that file is present and, accordingly, opens the
file by file 1ID.

Opening an existing file by file ID for write access 1is a special
case. Because it is intended to rewrite the existing file, the
following occur:

e Any initial allocation (F.CNTG) is ignored.

e File access byte (F.FACC) value NA.NSP (do not supersede file)
is ignored.

e File access byte (F.FACC) value FA.CRE (create new file) |is
set even though the file 1is being rewritten rather than
created.

o This operation may not be performed on ANSI magnetic tape.
The data in the file header labels is not changed when the
file 1is written. See Section 5.2 for information on
positioning £file on tape to rewrite a file in a particular
position.

3.6 OFNB$SX OPEN FILE BY FILENAME BLOCK

The OFNB$x macro call is issued to open either an existing file or to
create and open a new file using file name information in the filename
block. Similar to the OFID$x macro call above, the OFNBS$x call is
designed for wuse with overlaid programs. However, the OFNBS$Xx macro
call differs in two important respects: it can be issued to create a
new file, and it can be issued to open a file by filename block.

The OFNBS$x call has the same format and takes the same parameters as
those of the generalized OPENS$x macro call (as described in Section
3.1.1, as follows,

OFNB$x fdb,lun,dspt,racc,urba,urbs,err

The OFNB$x macro also uses the same suffixes that are available to the
OPENS$x macro: OFNBSR, OFNBSW, OFNBS$SM, OFNBSU, OFNBSA. The suffixes
have the same meaning as they do for OPENSx (see Table 3-1).

In describing the functions of the OFNB$x macro call, the same
assumptions outlined above for OFID$x apply, namely, that the filename
block has been saved and restored in anticipation of issuing the
OFNB$x macro call, or that the file is being opened for the first
time. Since the procedures for saving and restoring the filename
block are detailed in Section 2.5.1, the following discussion assumes
that the desired file is being opened for the first time. In this
case, the filename block in the FDB must be initialized, as described
below.

3-15

FILE-PROCESSING MACRO CALLS

To open a file by filename block, the following information must be
present in the filename block of the associated FDB:

1. The file name (offset location N.FNAM)
2. The file type or extension (offset location N.FTYP)
3. The file version number (offset location N.FVER)
4. The directory ID (offset location N.DID)
5. The device name (offset location N.DVNM)
6. The unit number (offset location N.UNIT)
In providing the information above to the filename block, you can use

either of two general procedures, as described in the following
sections.

3.6.1 Dataset Descriptor and/or Default Filename Block

If the dataset descriptor contains all the required information listed
above, perform the following procedures:

] AT el o Swma a o =3 1Y 3
Le Call the .PARSE routine {see Section 4.7.1). This rou

takes information from a specified dataset descriptor an
default filename block and fills in the appropriate off
of a specified filename block.

tine
d/or
sets

2. 1Issue the OFNBS$x macro call.

3.6.2 Default filename Block Only

a qd

ef
forma

fault filename block is to be used in providing the required
ti

I u
i on to FCS, perform the following procedures:

£ a
n i

1. 1Issue the NMBLKS macro call (see Section 2.4.2) to create and
initialize a default filename block. With the exception of
the directory ID, this structure provides all the requisite
information to FCS.

2. To provide the directory ID, call either of the £following
routines:

a. Call the .GTDIR routine (see Section 4.9.1) to retrieve
the directory 1ID from the specified dataset descriptor
and to store the directory ID in the default £file name
block

b. Call the .GTDID routine (see Section 4.9.2) to retrieve
the default UIC from $$FSR2 and to store the directory ID
in the default file name block.

3. Move the entire default filename block manually into the
filename block associated with the file being opened.

4. Issue the OFNBSx macro call.

3-16

FILE-PROCESSING MACRO CALLS

Note that the coding for OFNBS$Sx operations normally resides 1in an
overlay apart from that containing the other FCS routines identified
above.

Issuing the OFNBS$x macro call is usually done under the premise that
the filename block contains the requisite information, as described
above. However, if the file identification field (offset location
N.FID) in the filename block contains a nonzero value when the call to
OFNBSx is issued, the file is unconditionally opened by file 1ID.

If you expect to open both new and existing files, and memory
conservation 1is an objective, the OFNBSx macro call is most suitable
for opening such files, The OFIDS$x coding should not be included in
the same overlay with OFNB$x, since OFIDS$x overlaps the function of
OFNBS$x and, therefore, needlessly consumes memory space.

3.7 OPEN$ - GENERALIZED OPEN FOR SPECIFYING FILE ACCESS

Usually, when you wish to create a file, the file name and the file
type are specified, and FCS is allowed to assign the next higher file
version number. However, if the OPENSW macro call is issued for a
file having an explicit file name, file type, and file version number,
and a file of that description already exists in the specified UFD,
the old file is superseded.

By issuing the OPENS$ macro call without an alphabetic suffix, and by
specifying two additional parameters, you can inhibit the automatic
superseding of a file when a duplicate file specification is
encountered in the UFD. Rather than deleting the old version of the
file, an error indication (IE.DUP) is returned to offset 1location
F.ERR of the applicable FDB.

All parameters of this macro call are identical to those specified for
the generalized OPEN$x macro call (see Section 3.1), with the
exception of the facc parameter and the dfnb parameter. These
additional parameters are described below. To open a file without
superseding an existing file having an identical file specification, a
macro call of the following form is used:

OPENS fdb,facc,lun,dspt,dfnb,racc,urba,urbs,err
facc

Any one or an appropriate combination of the following symbolic
values indicating how the specified file is to be accessed:

e FO.RD - Indicates that an existing file is to be opened for
reading only

e FO.WRT - Indicates that a new file is to be created and
opened for writing

e FO.APD - Indicates that an existing file is to be opened
and appended

e FO.MFY - Indicates that an existing file is to be opened
and modified

e FO.UPD - Indicates that an existing file is to be opened,
updated, and, if necessary, extended

FTLE-PROCESSTNG MACRO CALLS

e FA.NSP - Indicates, in combination with FO.WRT above, that
the o0ld file having the same file specification is not to
be superseded by the new file

e FA,TMP - Indicates, in combination with FO.WRT above, that
the file is to be a temporary file

e FA.SHR - Indicates that the file is to be opened for shared
access

dfnb
The symbolic address of the default filename block. This
parameter 1is the same as that described in connection with the
FDOPS$SA/FDOPSR macro call.

The above parameters initialize FDB offset locations F.FACC and F.DFNB
with appropriate values.

Any logically consistent combination of the above file access symbols

is permissible. The particular combination required to create and

write a new file without superseding an existing file is shown below:
OPENS #OUTFDB, #FO.WRT! FA.NSP

The following macro call creates a temporary file for shared access:

OPENS #OUTFDB, #FO.WRT! FA, TMP!FA.SHR

NOTE

You can use RO only to pass the FDB
address parameter. Any other use of RO
when you issue the OPENS$ macro call will
fail.

3.8 CLOSE$ - CLOSE SPECIFIED FILE

When the processing of a file is completed, you must close it by
issuing the CLOSE$ macro call. The CLOSE$ operation performs the
following housekeeping functions:

1. Waits for all I/O operations in progress for the file to be
completed (multiple-buffered record I/O only)

2. Ensures that the FSR block buffer, which contains data for an
output file, is completely written if it is partially filled
(record I1I/0 only)

3. Deaccesses the file

4. Releases the FSR block buffer(s) allocated for the file
(record I/0 only)

5. Prepares the FDB for subsequent use by clearing appropriate
FDB offset locations

6. Calls an optional user-coded, error-handling routine if an
error condition is detected during the CLOSES$ operation

3-18

FILE-PROCESSING MACRO CALLS

Note that I/O does occur in items 1 and 2 above. Therefore, your
program should include error processing for CLOSES calls as it would
for calls to PUTS.

Issuing a CLOSES$ when a file is already closed results in a success
status code. Closing a file that is already closed is not an error.

3.8.1 Format of CLOSE$ Macro Call

The CLOSE$ macro call takes the following format:
CLOSES fdb,err

fdb

A symbolic value of the address of the associated FDB.
err

The symbolic address of an optional wuser-coded, error-handling
routine.

The following examples illustrate the use of the CLOSES$ macro call:
CLOSES$ #FDBIN,CLSERR
CLOSE$,CLSERR
CLOSES RO

The first example shows an explicit declaration for the relevant FDB,
and the symbolic address of an error-handling routine to be entered if
the CLOSES$ operation is not completed successfully. The 1last two
examples assume that RO currently contains the address of the
appropriate FDB.

3.9 GET$ - READ LOGICAL RECORD

The GET$ macro call is used to read 1logical records from a file.
After a GETS operation, the next record buffer descriptors in the FDB
always identify the record just read; that 1is, offset 1location
F.NRBD+2 contains the address of the record just read, and offset
location F.NRBD contains the size of that record (in bytes). This is
true of GETS$ operations in both move and locate mode.

In move mode, a GET$ operation moves a record to vyour record buffer
(as defined by the current contents of F.URBD+2 and F.URBD), and the
address and size of that record are then returned to the next record
buffer descriptors in the FDB (F.NRBD+2 and F.NRBD).

In locate mode, if the entire record resides within the FSR block
buffer, then the address and the size of the record just read are
returned to the next record buffer descriptors (F.NRBD+2 and F.NRBD).
If, on the other hand, the entire record does not reside within the
FSR block buffer, then that record is moved piecemeal into your record
buffer, and the address of your record buffer and the size of the
record are returned to offset locations F.NRBD+2 and F.NRBD,
respectively.

3-19

FTTL.E-PROCESSTNG MACRO CALLS

After returning from a GETS$ operation in locate mode, regardless of
whether moving the record was necessary, F.NRBD+2 always contains the
address of the record just read, and F.NRBD always contains the size
of that record.

If the record read was a sequenced record, the sequence number is
stored in F.SEQN regardless of whether the GET$ was in move mode or
locate mode.

GETS$ operations are fully synchronous; that is, record I/O operations
are completed before control is returned to your program.

Specific FDB requirements for GETS$ operations are presented in Section
3.9.2 below.

3.9.1 Format of GET$ Macro Call

To read a logical record, the GET$ macro call 1is specified in the
following format:

GETS fdb,urba,urbs,err

fdb
A symbolic value of the address of the associated FDB.

urba
The symbolic address of your record buffer to be used for record
I/0 operations in move or 1locate mode. When specified, this
parameter initializes FDB offset location F.URBD+2.

urbs
A numeric value defining the size (in bytes) of your record
buffer. This parameter determines the largest record that can be
placed in your record buffer 1 move or locate mode. When
specified, this parameter initializes offset location F.URBD in
the associated FDB.

err

The symbolic address of an optional user-coded, error-handling
routine.

If neither the urba nor the urbs parameter is specified 1in the GET$
macro call, FCS assumes that these requisite values have been supplied
previously through the FDRC$A, the FDRCS$SR, or the generalized OPENSx
macro call. Any resulting nonzero values in offset locations F.URBD+2
and F.URBD are used as the address and the 1length, respectively, of
your record buffer.

If either of the following conditions occurs during record 1I/0
operations, FCS returns an error indication (IE.RBG) to offset
location F.ERR of the FDB, indicating an illegal record size:

1. In move mode, the record size exceeds the limit specified in
offset location F.URBD.

3-20

FILE-PROCESSING MACRO CALLS

2. In locate mode, the record size exceeds the 1limit specified
in offset location F.URBD, and the record must be moved
because it crosses block boundaries.

In both move and locate mode, only data up to the amount specified in
F.URBD 1is placed in your buffer. The next GETS begins reading at the
beginning of the next record.

The following statements represent the use of the GET$ macro call:

GETS RO, , ,ERROR
GETS$ s #RECBUF, #25. , ERRCR
GETS$ #INFDB

In the first example, the address of the desired FDB is assumed to be
present in RO. Note that the next two parameters, that is, your
record buffer address (urba) and your record buffer size (urbs), are
null. In this case, FCS assumes that the appropriate values for FDB
offset 1locations F.URBD+2 and F.URBD, respectively, have been
specified previously in the FDRCSA, the FDRCSR, or the generalized
OPENSx macro call. The final parameter in the string is the symbolic
address of a user-coded, error-handling routine.

The second example also assumes that RO contains the address of the
desired FDB. Explicit parameters then define the address and the
size, respectively, of your record buffer and a user-coded error
handler.

The last example shows a GETS$ macro call in which only the address of
the FDB is specified.

NOTE

You can use RO only to pass the FDB
address. Any other use of RO when you
issue the GETS$ macro will fail.

3.9.2 FDB Mechanics Relevant to GET$ Operations

The following sections summarize the essential aspects of GETS
operations in move and locate mode with respect to the associated FDB.

The discussions below focus mainly on whether your record buffer Iis
required under certain conditions. 1In this regard, you should recall
that your record buffer descriptors, that is, the urba and the urbs
parameters, may be specified in the FDRC$A, the FDRCSR, or the
generalized OPENS$x macro call, as well as the I/0-initiating GETS$
macro call. These parameters need be present in the GETS$ macro call
(to appropriately initialize the FDB) only if not previously supplied
through some other available means.

If operating in random access mode, the number of the record to be
read is maintained by FCS in offset locations F.RCNM and F.RCNM+2 of
the associated FDB. FCS increments this value after each GET$ or
GETSR operation to point to the next record in the FSR block buffer.

Thus, unless your program alters the values in 1locations F.RCNM and
F.RCNM+2 before each issuance of the GETS$ or GETS$R macro call, the
next record in sequence is read. Your specified record buffer size
(that 1is, the wurbs parameter) always determines the largest record
that can be read during a GETS$ operation.

3.9.2.1 GETS$ Operations in Move Mode - With respect to GETS
operations in move mode (refer to Section 2.2 for information on move
mode) , the following generalization applies. If records are always
moved to the same wuser record buffer, the urba and urbs parameters
need be specified only in the initial GETS$ macro call. Alternatively,
these wvalues may be specified beforehand through any available means
identified above for initializing the user record buffer descriptor
cells in the FDB. 1In any case, offset locations F.URBD+2 and F.URBD
remain appropriately initialized for all subsequent GET$ operations in
move mode that involve the same user record buffer.

3.9.2.2 GETS$ Operations in Locate Mode - In performing GETS$
Operations 1in 1locate (refer to Section 2.2 for information on locate
mode) mode, you should take into account the following:

NOTE

In the following discussion, reference
is made to the FSR block buffer. By
default, the blocksize that FCS uses is
equivalent to the buffer size of the
device on which the file is opened. If
big buffering 1is enabled (that is, an
ovbs parameter value is specified in the
FDBFS$x macro call as described in
Section 2.2.1.6), the FSR block buffer
will be more than one block long. As a
result, it may not be necessary to move
a record even though it crosses block
boundaries, since both blocks are
currently within the FSR block buffer
space. Thus, moves are only necessary
when the record crosses a buffer
boundary, which is not necessarily the
same as a block boundary in a
big-buffered file.

o If fixed-length records are to be processed, and if they fit
evenly within the FSR block buffer, your record buffer
descriptors need not be present in the associated FDB.

e If figxed-length records that do not fit evenly within the FSR
block buffer are to be processed, or if variable-length
records are to be processed, your record buffer descriptors
need not be present in the FDB, provided that the file being
processed exhibits the attribute of records not being allowed
to cross block boundaries (FD.BLK).

3-22

FILE-PROCESSING MACRO CALLS

The property of records not crossing block boundaries is
established as the file is created. Specifically, if offset
location F.RATT in the FDB is initialized with FD.BLK prior to
file-create time, then the records in the resulting file are
not allowed to cross buffer boundaries.

For an existing file, your file attribute section of the file
header block 1is read when the file is opened; thus, all
attributes of that file are made known to FCS, including
whether records within that file are allowed to cross block
boundaries.

The design of FCS requires you to utilize your record buffer
only in the event that records (either fixed or variable in
length) cross buffer boundaries.

e If a GETS$ operation is performed in locate mode, and the
record 1is contained entirely within the FSR block buffer, the
address of the record within the FSR block buffer and the size
of that record are returned to offset locations F.NRBD+2 and
F.NRBD, respectively, in the associated FDB. However, if that
record crosses buffer boundaries, it is moved to your record
buffer. 1In this case, the address of your record buffer and
the size of the record are returned to offset locations
F.NRBD+2 and F.NRBD, respectively.

In summary, if the potential exists for <crossing buffer boundaries
during GETS$ operations in locate mode, then the your record buffer
descriptors must be supplied through any available means to
appropriately initialize offset locations F.URBD+2 and F.URBD in the
associated FDB.

3.10 GETSR - READ LOGICAL RECORD IN RANDOM MODE

The GETSR macro call is used to read fixed-length records from a file
in random mode. Thus, by definition, issuing this macro call requires
that you be intimately familiar with the structure of the file to be
read and, furthermore, that you be able to specify precisely the
number of the record to be read.

The GET$ and GETSR macro calls are identical, except that the
parameter 1list of GET$R includes the specification of the desired
record number. If the desired record number is already present in the
FDB (at offset locations F.RCNM and F.RCNM+2), then GET$ may be used.
If, however, the record access byte in the FDB (offset location
F.RACC) has not been initialized for random access operations with
FD.RAN in the FDRCSA, the FDRCSR, or the generalized OPEN$x macro
call, then neither GET$ nor GETSR will read the desired record.

The GETSR macro call tak

e n additicen to those
specified in the GETS$ mac

-

s two more parameters i
ro call, as shown below

GETSR fdb,urba,urbs,lrcnm,hrcnm,err

lrcnm

A numeric value specifying the low-order 16 bits of the number of
the record to be read. This value, which must be specified, is
stored in offset location F.RCNM+2 in the FDB. The GETS$SR macro
call seldom requires more than 16 bits to express the record
number. A logical record number up to 65,536(decimal) may be
specified through this parameter. If this parameter is not
sufficient to completely express the magnitude of the record
number, the following parameter must also be specified.

hrcnm

A numeric value specifying the high-order 15 bits of the number
of the record to be read. This value is stored in FDB offset
location F.RCNM. If specified, the combination of this parameter
and the 1lrcnm parameter above determines the number of the
desired record. Thus, an unsigned value having a total of 31
bits of magnitude may be used in defining the record number.

If this parameter 1is not specified, offset 1location F.RCNM
retains its initialized value of 0.

If F.RCNM is used to express a desired record number for any
given GETS$R operation, this cell must be cleared before issuing a
subsequent GET$R macro call that requires 16 bits or 1less to
express the desired record number; otherwise, any residual value
in F.RCNM yields an incorrect record number.

If the lrcnm and hrcnm parameters are not specified in a subsequent
GET$SR macro call, the next sequential record is read since the record
number in offset locations F.RCNM+2 and F.RCNM 1is automatically
incremented with each GETS operation. In the case of the first GETSR
after opening the file, record number 1 is read, because the record
number has been initialized to 0 by the OPEN. If a record other than
the next sequential record is to be read, you must explicitly specify
the number of the desired record.

The following statements represent the use of the GETS$R macro call:
GETSR #INFDB, #RECBUF,#160.,%#1040.,,ERROR ’
GETS$R #FDBADR, #RECBUF,$#160.,R3

Note in the first example that the number of the desired record to be
read, that 1is, 1040(decimal), is expressed through the first of two
available fields for this purpose; the second field is not required
and is therefore reflected as a null specification.

The second example reflects the wuse of general register 3 in
specifying the 1logical record number. This register, or any other
location so used, must be preset with the desired record number before
issuing the GETS$R macro call.

NOTE

RO can only be used to pass the FDB
address parameter. Any other use of RO
when issuing the GET$R macro call will
fail.

3-24

FILE-PROCESSING MACRO CALLS

3.11 GET$S - READ LOGICAL RECORD IN SEQUENTIAL MODE

The GETS$S macro call is used to read logical records from a file in
sequential mode. Although the routine invoked by the GET$S macro call
requires less memory than that invoked by GET$ (see Section 3.9},
GET$S has the same format and takes the same parameters. The GETS$S
macro call is designed specifically for use in an overlaid environment
in which the amount of memory available to the program is limited and
files are to be read in strictly sequential mode.

If both GETS$S and PUTS$S are to be used by the program, note that the
savings in memory utilization over GETS$ and PUT$ can be realized only
if GET$S and PUTSS are placed on different branches of the overlay
structure.

3.12 PUT$ - WRITE LOGICAL RECORD

The PUTS$ macro call is used to write logical records to a file. If
operating in random access mode, the number of the record to be
written is maintained by FCS in offset locations F.RCNM and F.RCNM+2
of the associated FDB. FCS increments this value after each PUTS or
PUTSR operation to point to the next sequential record position.
Thus, unless your program alters this value before issuing another
PUTS or PUTSR operation, the next record in sequence is written.

For PUTS$ operations, offset locations F.NRBD+2 and F.NRBD in the
associated FDB must contain the address and the size, respectively, of
the record to be written. The distinction between move modé and
locate mode for PUT$ operations relates to the building or the
assembling of the data into a record. Specifically, in move mode the
record is built in a buffer of your choice. This buffer is not
necessarily your record buffer previously described in the context of
record I/0 operations. In other words, you can build records in an
area of a program apart from that normally defined by your record
buffer descriptors 1in the FDB (F.URBD+2 and F.URBD). In this case,
the address of the record buffer so used and the size of the record
are specified 1in the PUTS$ macro call, and the record thus built is
then moved into the FSR block buffer.

In locate mode, however, the record is built at the address specified
by the contents of offset location F.NRBD+2, and only the record size
need be specified in the PUT$ macro call. Then, 1if the record so
built is not already in the FSR block buffer, it is moved there as the
PUTS$ operation is performed.

If the records in the file are sequenced records, the field F.SEQN in
the FDB contains the sequence value, which you can modify.

PUTS operations are fully synchronous; that is, record I/O operations
are completed before control is returned to the user program.

A random PUT$ operation in locate mode requires the use of the .POSRC
routine. This operation 1is described 1in detail in Section 4.9.2.
Specific FDB requirements for PUTS operations are presented in Section
3.12.2 below.

3.12.1 Format of PUTS$ Macro Call

The PUTS$ macro call takes the following format:

PUTS fdb,nrba,nrbs,err

fdb
A symbolic value of the address of the associated FDB.

nrba
The symbolic address of the next record buffer, that 1is, the
address of the record to be PUTS. This parameter initializes FDB
offset location F.NRBD+2.

nrbs
A numeric value specifying the size of the next record buffer,
that 1is, the 1length of the record to be PUT$. This parameter
initializes FDB offset location F.NRBD.

err

The symbolic address of an optional user-coded, -error-handling
routine.

The following examples represent the uses of the PUT$ macro call:

PUTS #FDBADR, , , ERRRT
PUTS ; r#160.,ERRRT
PUTS RO

In the first example, note that the next record buffer address (nrba
parameter) and the next record buffer size (nrbs parameter) are null.
These null specifications imply that the current wvalues in offset
locations F.NRBD+2 and F.NRBD of the associated FDB are suitable to
the current operation. Note also that fixed-length records could also

be written in locate mode by issuing this macro call.

The second example contains null specifications in the first two
paramet~: fields, assuming that RO currently contains the address of
the assocated FDB and that variable-length records are to be written
to the file.

The last example specifies only the address of the FDB; all other
parameter fields are null.
NOTE
RO can only be used to pass the FDB
address parameter as shown in the above

example; it cannot be used to pass any
other parameter in the PUTS$ macro call.

3-26

FILE-PROCESSING MACRO CALLS

3.12.2 FDB Mechanics Relevant to PUT$ Operations

The discussions below highlight aspects of PUT$ operations in move and
locate mode that have a bearing on the associated FDB.

The conditions under which your record buffer is or is not used are
summarized. As is the case for GET$ operations, if your record buffer
is required for PUTS$ operations, the buffer descriptors (that is, the
urba and urbs parameters) may be supplied to the associated FDB
through the FDRC$A, the FDRCSR, or the generalized OPENS$x macro call.
In any case, offset locations F.URBD+2 and F.URBD must be
appropriately initialized if PUTS$ operations require the wutilization
of your record buffer. Note, however, that PUT$ operations in move
mode never require a record buffer.

If your record buffer is required, the specified size of that buffer
(that 1is, the urbs parameter) always determines the size of the
largest record that can be written to the specified file.

Whether in move or locate mode, a PUTS$ operation uses the information
in offset 1locations F.NRBD+2 and F.NRBD, that is, the next record
buffer descriptors, to determine whether the record must be moved into
the FSR block buffer. 1In the event that the record does have to be
moved, and the size of that record is such that it cannot fit 1in the
space remaining in the FSR block buffer, one of two possible
operations is performed:

1. If records are allowed to cross block boundaries, then the
first part of the record is moved into the FSR block buffer,
thereby completing a virtual block. That block buffer is
then written out to the volume, and the remaining portion of
the record is moved into the beginning of the next FSR block
buffer.

2. 1If records are not allowed to cross block boundaries (because
of the file attribute FD.BLK specified in the associated
FDB), then the FSR block buffer is written out to the volume
as 1is, and the entire record is moved into the beginning of
the next FSR block buffer.

3.12.2.1 PUT$ Operations in Move Mode - A PUTS$ operation in move mode
(see Section 2.2) is basically driven by specifying in each PUTS$ macro
call the address and the size of the record to be written. Then, as
the PUTS operation is performed, FCS moves the record into the
appropriate area of the FSR block buffer.

In summary, the following generalizations apply for PUTS$ operations in
move mode:

Your record buffer descriptors need not be present in the FDB
because the programmer is dynamically specifying the address
and the length of the record to be written at each issuance
of a PUT$ macro call, The values so specified dynamically
update offset locations F.NRBD+2 and F.NRBD in the associated
FDB.

1

Y

2. If the file consists of fixed-length records, then the
generalized OPENS$x macro call (see Section 3.1) initializes
offset location F.NRBD with the appropriate record size, as
defined by the contents of offset location F.RSIZ. Thus, the
size of the record need not be specified as the nrbs
parameter in any PUT$ macro call involving this file.

3-27

FILE-PROCESSING MACRO CALLS

3. 1If variable-length records are being PUTS, the size of each
record must be specified as the nrbs parameter in each PUT$
macro call involving this file, thus setting offset 1location
F.NRBD to the appropriate record size.

3.12.2.2 PUTS$ Operations in Locate Mode - Basically, your record
buffer 1is required for PUTS operations in locate mode (see Section
2.2) only when the potential exists for records to cross buffer
boundaries. 1In other words, if there is insufficient space in the FSR
block buffer to accommodate the building of the next record, you must
provide a buffer in your memory space in order to build that record.

When a file is initially opened for PUT$ operations 1in 1locate mode,
FCS sets wup offset location F.NRBD+2 to point to the area in the FSR
block buffer where the next record is to be built. Then, each PUTS
operation thereafter in locate mode updates the address value in this
cell to point to the area in the FSR block buffer where the next
record is to be built. Thus, after each PUTS$ operation in locate
mode, F.NRBD+2 points to the area where the next record 1is to be
built. This logic dictates whether your record buffer is required in
locate meode.

In this regard, the following generalizations apply:

NOTE

In the following discussion, reference
is made to the FSR block buffer. By
default, the block size that FCS uses is
equivalent to the buffer size of the
device on which the file is opened. If
big buffering 1is enabled (that is, an
ovbs parameter value is specified in the
FDBFS$Sx macro call, as described in
Section 2.2.1.6) the FSR block buffer
will be more than one block long. As a
result, it may not be necessary to move
a record even though it crosses block
boundaries, since both blocks are
currently within the FSR block buffer
space. Thus, moves are only necessary
when the record crosses a buffer
boundary, which is not necessarily the
same as a block boundary in a
big-buffered file.

1. If fixed-length records are being PUT$ and they fit evenly
within the FSR block buffer, your record buffer is not
required.

2. If a fixed-length record crosses block boundaries, your
record buffer descriptors must be present in offset locations
F.URBD+2 and F.URBD of the associated FDB. In this case,
after determining that the record cannot fit in the FSR block
buffer, FCS sets offset location F.NRBD+2 to point to your
record buffer. Then, when the record is PUTS$, it is moved
from your record buffer to the FSR block buffer.

3. If a variable-length record 1is being PUTS, the potential
exists for <crossing block boundaries. 1In this case, your

3-28

FILE-PROCESSING MACRO CALLS

record buffer descriptors must be present in ocffset locations
F.URBD+2 and F.URBD of the associated FDB. Moreover, the
size of each variable-length record must be specified as the
nrbs parameter in each PUTS$ macro call.

Determining if FCS points offset location F.NRBD+2 to the FSR
block buffer for the PUTS operation or to your record buffer
is based on whether there is potentially enough room 1in the
FSR block buffer to accommodate the record.

Because the records are variable in 1length, it must be
assumed that the largest possible record is PUTS$, as defined
by the size of your record buffer (F.URBD). Thus, 1if a
record of this defined size cannot fit in the space remaining
in the FSR block buffer, FCS sets offset location F.NRBD+2 to
point to your record buffer.

Each PUTS$ operation in locate mode sets up the FDB for the next PUTS.
In other words, the specified record size 1is used by FCS as the
worst-case condition in determining whether sufficient space exists in
the FSR to build the next record.

If variable-length records are being processed that are shorter than
the 1largest defined record size, FCS may move records unnecessarily
from your record buffer to the FSR block buffer. For example, assume
that you have allocated a 132-byte record buffer. Assume further that
the available remaining space in the FSR block buffer is less than 132
bytes. In this case, FCS continues to point to your record buffer for
PUTS operations, even if you continue to PUT$ short {(10- or 20-byte)
records. Thus, some unavoidable movement of records takes place in
locate mode.

If the largest record that you intend to PUTS is 80 bytes, for
example, then the largest defined record size should not be specified
as 132 bytes (or any length larger than that intended to be PUTS).
Aside from having to allocate a smaller user record buffer, PUTS
operations in locate mode are more efficient 1if this precaution is
observed. Exercising care in this regard reduces the tendency to move
records from your record buffer to the FSR block buffer when they
might otherwise be built directly in the FSR block buffer.

3.13 PUT$R - WRITE LOGICAL RECORD IN RANDOM MODE

The PUTSR macro call is used to write fixed-length records to a file
in random mode. As noted in Section 3.10 in connection with the GETS$R
macro call, operations 1in random access mode require you to be
intimately familiar with the contents of such files. The PUTS$R macro
call also relies entirely on you to specify the number of the record
before a specified PUTS$ operation can be performed. Since the usual
purpose of a PUTSR operation is to update known records in a file, it
is assumed that you also know the number of such records within the
file.

The PUTS$ and PUTSR macro calls are identical, except that PUTSR allows
the specification of the desired record number. If the desired record
number is already present in the FDB (at offset locations F.RCNM and
F.RCNM+2), then PUT$ and PUTS$R may be used interchangeably. However,
if the record access byte in the FDB (offset location F.RACC) has not
been initialized for random access operations with FD.RAN in the
FDRCSA, the FDRCSR, or the generalized OPENSx macro call, then neither
PUTS nor PUTSR will write the desired record.

FILE-PROCESSING MACRO CALLS

The PUTSR macro call takes two more parameters in addition to those
specified in the PUT$ macro call, as shown below:

PUTSR fdb,nrba,nrbs,lrcnm,hrcnm,err
lrcnm

A numeric value specifying the low-order 16 bits of the number of
the record to be processed. This parameter serves the same
purpose as the corresponding parameter in the GET$R macro call
(see Section 3.10), except that it identifies the record to be
written.

hrenm

A numeric value specifying the high-order 15 bits of the number
of the record to be processed. This parameter serves the same
purpose as the corresponding parameter in the GET$SR macro call,
except that it identifies the record to be written.

If this parameter is not specified, offset location F.RCNM
retains its initialized value of O.

If F.RCNM is used in expressing a desired record number for any
given PUTSR operation, you must clear this cell before issuing a
subsequent PUTSR macre call that requires 16 bits or 1less in
expressing the desired record number; otherwise, any residual
value in F.RCNM results in an incorrect record number.

The lrcnm and hrenm parameters initialize offset locations F.RCNM+2
and F.RCNM, respectively, in the associated FDB. If these values are
not specified in a subsequent PUTS$SR macro call, the next sequential
record is written, since FCS a&automatically increments the record
number in these cells after each PUT$ operation. In the case of the
first PUTSR after opening the file, record number 1 is written. Note
that this is true even if the file has been opened for an append
(OPENSA) . If a record other than the next sequential record is to be

written, you must explicitly specify the number of the desired record.

NOTE

A random mode PUTS$ operation executed in
locate mode must be preceded by a call
to .POSRC. Since locate mode allows you
to store data directly into the block
buffer, the file must be positioned so
that the desired record position is in
fact in the block buffer. See Section
4.10.2 for further details.

Examples of the use of the PUTSR macro call follow:

PUTSR #$0UTFDB, #RECBUF, ,#12040., ,ERRLOC

PUTSR #FDBADR, #RECBUF, ,R4

PUTSR #FDBADR, #RECBUF, ,LRN
In the first example, the presence of RECBUF as the next record buffer
address (nrba) parameter merely indicates that you are specifying the

address of the record. Although specifying this address repeatedly is
unnecessary, it 1is not invalid. Normally, a buffer address is

3-30

FILE-PROCESSING MACRO CALLS

specified dynamically, since other PUTS$ macro calls may be referencing
different areas in memory; thus, the address of the record must be
explicitly specified in each PUT$ macro call. Note also that the next
record buffer size (nrbs) parameter is null, since this parameter is
required only in the case of writing variable-length records. Also,
the second of the +two available parameters for defining the record
number is null.

Note in the second and third examples that R4 and a memory location
(LRN) are used to specify the 1logical record number. Such a
specification assumes that you have preset the desired record number
in the referenced location.

NOTE

You can use RO only to pass the FDB
address. Any other use of RO when you
issue the PUTSR macro call will fail,

3.14 PUTS$S - WRITE LOGICAL RECORD IN SEQUENTIAL MODE

The PUTS$S macro call is used to write logical records to a file in
sequential mode. Although the routine invoked by the PUT$S macro call
requires less memory than that invoked by PUT$ (see Section 3.12),
PUT$S has the same format and takes the same parameters. The PUTS$S
macro call is designed specifically for use in an overlaid environment
in which the amount of memory available to the program is limited and
files are to be written in strictly sequential mode.

If both GET$S and PUTS$S are to be used by the program, the savings in
memory utilization over GET$ and PUT$ are realized only if GETS$S and
PUTS$S are placed on different branches of the overlay structure.

3.15 READ$ - READ VIRTUAL BLOCK

The READS macro call is issued to read a virtual block of data from a
block-oriented device (for example, a magtape, a disk, or DECtape).
In addition, if certain optional parameters are specified in the READ$
macro call, status information 1is returned to the I/O status block
(see Section 2.8.2), and/or the program traps to a user-coded AST
service routine at the completion of block I/O operations (see Section
2.8.3).

In issuing the READ$ (or WRITES) macro call, you are responsible for
synchronizing all block I/0 operations. For this reason, the WAITS
macro call is provided (see Section 3.17), allowing you to suspend
program execution until a specified READS/WRITES operation has been
completed. It is important, however, that you test the contents of
F.ERR in the FDB for error codes immediately after issuing the
READS/WRITES call as well as on return from the WAITS call. When
errors occur during multiple-block transfers, the second word of the
I/0 status block will contain the number of bytes transferred before
the error occurred. The READ$/WRITE operations can return error codes
distinct from those that can be present on completing a WAITS
operation. For example, IE.EOF will be returned upon completing the
READS operation, but not upon completing WAITS.

3-31

FILE-PROCESSING MACRO CALLS

When the WAITS macro call is issued in conjunction with a READS (or
WRITES) macro call, you must ensure that the event flag number and the
I/0 status block address specified in both macro calls are the same.

When the WTSES$ macro call is issued to wait for 1I/0 completion, the
issuing task must check I/0 errors by examining the I/0 status block
(defined by the task). (The I/0 status block is described in Section
2.8.2.) When WTSES$ is used, FCS will not return a completion code to
offset F.ERR in the FDB.

3.15.1 Format of READ$ Macro Call

From the format below, note that the parameters of the READ$ macro
call are identical to those of the FDBK$A or the FDBKSR macro call,
with the exception of the fdb and err parameters. Certain FDB
parameters may be set at assembly time (FDBKS$A), initialized at run
time (FDBKSR), or set dynamically by the READ$ macro call. In any
case, certain information must be present 1in the FDB before the
specified READS (or WRITES) operation can be performed. These
requirements are noted in Section 3.15.2 below.

The READS$ macro call takes the following format:
READS fdb,bkda,bkds,bkvb,bkef,bkst,bkdn,err
fab

A symbolic value of the address of the associated FDB.

bkda

he symbolic address of the block I/0 buffer in your program.
This parameter need not be specified if offset location F.BKDS+2
has been previously initialized through either the FDBK$A or the
FDBKSR macro call.

bkds

A numeric value specifying the size (in bytes) of the virtual
block to be read. This parameter need not be specified if offset
location F.BKDS has been previously initialized through either
the FDBKSA or the FDBKSR macro call. In any case, the maximum
block size that may be specified for file-structured devices 1is
32256 bytes.

bkvb

The symbolic address of a 2-word block in your program containing
the number of the wvirtual block to be read. This parameter
causes offset locations F.BKVB and F.BKVB+2 to be initialized
with the wvirtual block number; F.BKVB+2 contains the low-order
16 bits of the virtual block number, and F.BKVB contains the
high-order 15 bits.

As noted in connection with the FDBKSA macro call described in
Section 2.2.1.4, assembly-time initialization of the virtual
block number in the FDB is ineffective, since the generalized
OPENSx macro call sets the virtual block number in the FDB to 1.

3-32

bkef

bkst

bkdn

FILE-PROCESSING MACRO CALLS

The virtual block number can be made available to FCS only
through the FDBKSR macro call or the I/O-initiating READS (or
WRITES) macro call after the file has been opened. The wvirtual
block number 1is <created as described in 1item 4 of Section
2.2.2.1,

The READS$ function checks the specified virtual block number to
ensure that it does not reference a nonexistent block, that is, a
block beyond the end of the file., If the wvirtual block number
references nonexistent data, an end-of-file (IE.EOF) error
indication is returned to offset location F.ERR of the associated
FDB; otherwise, the READS$ operation proceeds normally. If the
total number of bytes goes beyond the end of the file, then as
many blocks as exist are read and the byte count of the shortened
transfer is returned in I/0O STATUS+2. No error condition occurs,
so you must check the count on each READ. An end-of-file
indication is returned only if no blocks can be read.

If the virtual block number is not specified through any of the
available means identified above, automatic sequential operation
results by default, beginning with virtual block number 1. The
virtual block number is automatically incremented by the number
of blocks read after each READS operation is performed.

A numeric value specifying the event flag number to be used for
synchronizing block I/0O operations. This event flag number is
used by FCS to signal the completion of the specified block 1I/0
operation. The event flag number, which may also be specified
in either the FDBKS$A or the FDBKSR macro call, 1initializes FDB
offset location F.BKEF; 1if so specified, this parameter need not

be included in the READS$ (or WRITES) macro call.

If this optional parameter is not specified through any available
means, event flag 32(decimal) is used by default. The function
of an event flag is discussed in further detail in Section 2.8.1.

The symbolic address of the I/0 status block in the user program
(see Section 2.8.2). This parameter, which initializes offset
location F.BKST, is optional. The I/0 status block is filled in
by the system when the requested block I/0O transfer is completed,
indicating the success/failure of the requested operation.

The address of the I/0 status block may also be specified in
either the FDBKSA or the FDBKSR macro call. If the address of
this 2-word structure is not supplied to FCS through any of the
available means, status information cannot be returned to your
program. Regardless, the event flag specified through the bkef
parameter above 1is set to indicate block I/0 completion,; but,

without an I/O status block, your program must assume that the
operation (for example, READS$ or WRITES) was successful,.

The symbolic entry point address of an AST service routine (see
Section 2.8.3). If this parameter is specified, a trap occurs
upon completion of the specified READ$ (or WRITES) operation.

3-33

FILE-PROCESSING MACRO CALLS

This parameter, which is optional, 1initializes offset location
F.BKDN. This address value may also be made available to FCS
through either the FDBKS$SA or the FDBKSR macro call, and, if so
specified, need not be present in the READS (or WRITES) macro
call.

If the address of an AST service routine is not specified through
any available means, no AST trap occurs at the completion of
block I/O operations.

err

The symbolic address of an optional user-coded, error-handling
routine.

The following examples represent READS$ macro calls that may be issued
to accomplish a variety of operations:

READS RO

READS #INFDB,,,,,,ERRLOC

READS RO, #INBUF, #BUFSIZ,,#22.,#I0SADR, #ASTADR, ERRLOC
READS #INFDB, #INBUF , #BUFSIZ, #VBNADR

The first example assumes that RO contains the address of the
associated FDB. Also, all other required FDB initialization has been
accomplished through either the FDBKSA or the FDBKSR macro call.

The second example shows an explicit declaration of the associate FDB
and includes the symbolic address of a user-coded, error-handling
routine.

In the third example, RO again contains the address of the associated
FDB. The block buffer address and the size of the block are specified
next in symbolic form. The address of the 2-word block in vyour
program containing the virtual block number 1is not specified, as
indicated by the additional comma in the parameter string. The event
flag number, the address of the I/O status block, and the address of
the AST service routine then follow in order. Finally, the symbolic
address of an optional error routine is specified.

The fourth example reflects, as the last parameter in the string, the
symbolic address of the 2-word block in your program containing the
virtual block number.
NOTE
You can use RO only to pass the FDB

address. Any other use of RO when you
issue the READS$ macro call will fail.

3-34

FILE-PROCESSING MACRO CALLS

3.15.2 FDB Requirements for READS Macro Call

The READS macro call requires that the associated FDB be initialized
with certain values before it can be issued. You can specify these
values through either the FDBKS$A or the FDBKS$R macro call, or they may
be made available to the FDB through the various parameters of the
READS macro call. 1In any case, the following values must be present
in the FDB to enable READS operations to be performed:

1. The block buffer address (in offset location F.BKDS+2)
2. The block byte count (in offset location F.BKDS)

3. The virtual block number (in offset locations F.BKVB+2 and
F.BKVB)

NOTE

When either READS or WRITES operations
are performed, FCS maintains the
end-of-file block number field (F.EFBK)
and clears the first free byte in the
last block field F.FFBY 1in the FDB.
During a READS$ operation, end-of-file is
determined by the end-of-file block
number field in F.EFBK. If desired, you
can modify F.FFBY before <closing the
file by using the CLOSES macro call.

3.16 WRITE$ - WRITE VIRTUAL BLOCK

The WRITES macro call is issued to write a virtual block of data to a
block-oriented device (for example, magtape, disk, DECtape, or DECtape
II). Like the READS macro call, if certain optional parameters are
specified in the WRITES macro call, status information is returned to
the I/0 status block (see Section 2.8.2), and, at the completion of
the I/0 transfer, the program traps to an AST service routine that is
supplied to coordinate asynchronous block I/0O operations (see Section
2.8.3).

Whether or not the address of an AST service routine and/or an event
flag number 1is supplied, you are responsible for synchronizing all
block 1I/0 processing. The WAIT$ macro call can be issued 1in
conjunction with the WRITES macro call to suspend program execution
until a program-dependent I/O transfer has been completed. When the
WAITS macro call is used for this purpose, the event flag number and
the I/0 status block address in both macro calls must be the same.
Again, as with READS operations, you should check for an error code
immediately following the WRITES macro call as well as on return from
the WAITS$ macro call.

3.16.1 Format of WRITES$ Macro Call

The WRITES macro call takes the same parameters as the READS macro
call, as shown below. The bkvb parameter represents the symbolic
address of a 2-word block containing the number of the wvirtual block
to be written. The virtual block number is incremented automatically
after each WRITES operation is performed.

3-35

FILE-PROCESSING MACRO CALLS

The WRITES$ macro call has the following format:
WRITES fdb,bkda,bkds,bkvb,bkef,bkst,bkdn,err

When this macro call is issued, the virtual block number (that is, the
bkvb parameter) is checked to ensure that it references a block within
the file's allocated space; if it does, the block is written. If the
specified block is not within the file's allocated space, FCS attempts
to extend the file. If this attempt 1is successful, the block Iis
written; if not, an error code indicating the reason for the failure
of the extend operation is returned to the I/0 status block and to
offset location F.ERR of the associated FDB.

If PCS determines that the file must be extended, the actual extend
operation 1is performed synchronously. After the extend operation has
been successfully completed, the WRITES operation is queued, and only
then 1is control returned to the instruction immediately following the
WRITES macro call.

The following examples illustrate WRITES$ macro calls:
WRITES RO

WRITES #OUTFDB, #0UTBUF,#BUFSIZ,#VBNADR,$#22.

nINTMD e nn
VAN L L Ly v

29
v A i rA

Illl#l-
The first example specifies only the FDB address and assumes that all
other required wvalues are present in the FDB. The second example
reflects explicit declarations for the FDB, the block buffer address,
the block buffer size, the virtual block number address, and the event
flag number for signalling block I/O completion, The third example
shows null specifications for three parameter fields, then continues
with the event flag number, the address of the I/O status block, and
the address of the AST service routine. Finally, the address of a
user-coded, error-handling routine is specified.

NOTE
You can use RO only to pass the FDB

address. Any other use of RO when you
issue the WRITES$ macro call will fail.

3.16.2 FDB Requirements for WRITES Macro Call

WRITES operations require the presence of the same information in the
FDB as READS$ operations (see Section 3.15.2).

3.17 WAITS$ - WAIT FOR BLOCK I/O COMPLETION

The WAITS macro call, which is issued only in connection with READS
and WRITES$ operations, causes program execution to be suspended until
the requested block I/0O transfer is completed. This macro call may be
used to synchronize a block I/O operation that depends on the
successful completion of a previous block I/0 transfer.

3-36

FILE-PROCESSING MACRO CALLS

As noted in Section 3.15 in connection with the READS$ macro call, vyou
can specify an event flag number through the bkef parameter. This
event flag number is used during READS (or WRITES) operations to
indicate the «completion of the requested transfer. If desired, you
can issue a WAITS macro call (specifying the same event £flag number
and I/0O status block address) following the READS (or WRITES) macro
call.

In this case, the READS (or WRITES) operation is 1initiated in the
usual manner, but the Executive of the host operating system suspends
program execution until the specified event flag is set, indicating
that the 1I/0 transfer has been completed. The system then returns
information to the I/O status block, indicating the success/failure of
the operation. FCS then moves the I/0 status block success/failure
indicator into offset 1location F.ERR of the associated FDB, and
returns with the C-bit 1in the Processor Status Word cleared if the
operation is successful, or set if the operation is not successful.
Task execution then continues with the instruction immediately
following the WAITS$ macro call.

The system returns the final status of the I/0O operation to the 1I/0
status block (see Section 2.8.2) upon completion of the regquested
operation. A positive value {+) indicates successful completion, and

a negative value (-) indicates unsuccessful completion.

Event flags are discussed in further detail in Section 2.8.1.

3.17.1 Format of WAITS$ Macro Call

The WAITS macro call is specified in the following format:
WAITS fdb,bkef ,bkst,err

fdb
A symbolic value of the address of the associated FDB.

bkef

A numeric value specifying the event flag number to be wused for
synchronizing block I/0 operations. The WAITS macro causes task
execution to be suspended by invoking the WAITFOR system
directive. This parameter must agree with the corresponding
(bkef) parameter in the associated READS/WRITES macro call.

If this parameter is not specified, either in the WAITS$ macro
call or the associated READS$S/WRITE macrc call, FDB offset
location F.BKEF is assumed to contain the desired event flag
number, as previously initialized through the bkef parameter of
the FDBKSA or the FDBKS$SR macro call.

bkst

The symbolic address of the I/O status block in your program (see
Section 2.8.2). Although this parameter is optional, if it is
specified, it must agree with the corresponding (bkst) parameter
in the associated READS/WRITES macro call.

FILE-PROCESSING MACRO CALLS

If this parameter is not specified, either 1in the WAITS macro
call or the associated READS/WRITES macro call, FDB offset
location F.BKST is assumed to contain the address of the 1I/0
status block, as previously 1initialized through the bkst
parameter of the FDBKSA or the FDBKSR macro call. If F.BKST has
not been initialized, no return of information to the I/0 status
block occurs.

err

The symbolic address of an optional wuser-coded, error-handling
routine.

The following statements represent WAITS$ macro calls:
WAITS RO
WAITS $INFDB, #25.
WAITS RO, #25. ,#I0STAT
WAITS RO, ,#I0STAT, ERRLOC

The first example assumes that RO contains the address of the
associated FDB; furthermore, since the event flag number (bkef
parameter) is not specified, offset 1location F.BKEF 1is assumed to
contain the desired event flag number. If this cell in the FDB
contains 0, event flag number 32(decimal) is used by default.

The second example shows an explicit specification of the FDB address
and also specifies 25(decimal) as the event flag number. Again, in
this example, the FDB is assumed to contain the address of the 1I/0
status block. In contrast; the third example shows an explicit
specification for the address of the I/O status block.

The fourth example contains a null specification for the event flag
number, and, in addition, specifies the address of a user-coded,
error-handling routine.

It should be noted that the WAIT$ macro call associated with a given
READS or WRITES operation need not be issued immediately following the
macro call to which it applies. For example, the following sequence
is typical:

1. Issue the desired READS or WRITES macro call.

2. Perform other processing that 1is not dependent on the
completion of the requested block I/O transfer.

3. Issue the WAITS macro call.

4, Perform the processing that is dependent on the completion of
the requested block I/O transfer.

When performing several asynchronous transfers in the same general
sequence as above, a separate buffer, I/O status block, and event flag
must be maintained for each operation. If you intend to wait for the
completion of a given transfer, the appropriate event flag number and
I/0 status block address must be specified 1in the associated WAITS
macro call.

3-38

FILE-PROCESSING MACRO CALLS

NOTE

You can use RO only to pass the FDB
address. Any other use of RO when you
issue the WAITS macro call will faiil.

3.18 DELET$ - DELETE SPECIFIED FILE

The DELET$ macro call causes the directory information for the file
associated with the specified FDB to be deleted from the appropriate
UFD. The space occupied by the file is then deallocated and returned
for reallocation to the pool of available storage on the volume.

This macro call can be issued for a file that 1is either open or
closed. If issued for an open file, that file is then closed and
" deleted; 1if issued for a closed file, that file is deleted only if
the file name string specified in the associated dataset descriptor or
default filename block contains an explicit file version number
(including 0 and -1).
NOTE

If the DELETS macro call is issued for

use with a file containing sensitive

information, it is recommended that you

zero the file before closing it, or

reformat the disk to destroy the

sensitive information. (Although DELETS

logically removes a file, the

information physically remains on the

volume until written over with another

file, and could be analyzed by
unauthorized users.)

3.18.1 Format of DELET$ Macro Call

The DELETS$ macro call takes the following format:
DELETS$ £db,err

fdb

A symbolic value of the address of the associated
FDB.

err

The symbolic address of an optional user-coded,
error-handling routine.

The following statements illustrate DELETS macro calls:
DELET$ RO
DELETS #OUTFDB,ERRLOC

DELETS$ RO0,ERRLOC

3-39

CHAPTER 4

FILE CONTROL ROUTINES

You can invoke file control routines in MACRO-11 programs to perform
the following functions:

e Read or write default directory string descriptors in $$FSR2.
e Read or write the default UIC word in SSFSR2.

® Read or write the default file protection word in SFSR2.

® Read or write the file owner word in $$FSR2.

e Convert a directory string from ASCII to binary, or vice
versa.

e Fill in all or part of a filename block from a dataset
descriptor and/or default filename block.

e Find, insert, or delete a directory entry.

® Set a pointer to a byte within a virtual block or to a record
within a file.

e Mark a place in a file for a subsequent OPEN$xXx operation.
e Issue an I/0 command and wait for its completion.

e Rename a file.

e Extend a file.

e Truncate a file.

e Mark a temporary file for deletion.

e Delete a file by filename block.

e Perform device-specific control functions.

4.1 CALLING FILE CONTROL ROUTINES
The CALL opcode/macro is used to invoke file control routines (JSR PC,
dst). These routines are included from the system object library
([1,1]SYSLIB.OLB) at task-build time and incorporated into the |user
task. The file control routines are called as shown below:

CALL . RDFDR

CALL . EXTND

FILE CONTROL ROUTINES

Before the CALL is issued, certain file control routines require that
specific registers be preset with requisite information. These
requirements are identified in the descriptions of the respective
routines. Upon return, all registers are preserved, except those
explicitly specified as changed.

If an error is detected by a file control routine, the C-bit (carry
condition code) in the Processor Status Word is set, and an error
indication is returned to FDB offset location F.ERR. However, certain
file control routines do not return error indications. The following
file control routines are listed according to whether they return
error indications.

Normal Error Return

(C-bit and F.ERR) No Error Return
+ASCPP « RDFDR
. PARSE .WDFDR
.PRSDV +RDFUI
. PRSDI .WDFUI
. PRSDV . RDFFP
.ASLUN .WDFFP
.FIND - RFOWN
. ENTER . WFOWN
. REMOV . PPASC
+GTDIR +MARK
.GTDID
. POINT
.POSRC
.POSIT
.XQIO
. RENAM
. EXTND
. TRNCL
+.MRKDL
.DLFNB
.CTRL

Appendix I lists the error codes that the routines identified above
return in FDB offset location F.ERR.

4.2 DEFAULT DIRECTORY-STRING ROUTINES

The .RDFDR and .WDFDR routines are used to read and write directory
string descriptors.

4.2.1 .RDFDR - Read $$FSR2 Default Directory String Descriptor

You call the .RDFDR routine to read default directory string
descriptor words previously written by the .WDFDR routine into program
section $$FSR2 of the FSR. These descriptor words define the address
and the length of an ASCII string that contains the default directory
string. This directory string constitutes the default directory that
is to be used by FCS when one is not explicitly specified in a dataset
descriptor.

FILE CONTROL ROUTINES

If you have not established default directory string descriptor words
in $$FSR2 through the .WDFDR routine described below, the descriptor
words in $$FSR2 are null and FCS uses a default directory (when one is
not specified in a dataset descriptor) corresponding to the UIC under
which the task is running.

When called, the .RDFDR routine returns wvalues in the following
registers:

Rl Contains the size (in bytes) of the default directory string
in $$FSR2.

R2 Contains the address of the default directory string in
$$FSR2. If no default directory string descriptor words have
been written by .WDFDR, R2 equals 0.

4.2.2 .WDFDR - Write New $$FSR2 Default Directory-String Descriptor

The .WDFDR routine 1is <called to create default directory string
descriptor words in $$FSR2. For example, if vyour program is to
operate on files in the directory [220,220], regardless of the UIC
under which the program runs, then you can establish default directory
string descriptor cells in $$FSR2 to point to the alternate directory
string [220,220] <created elsewhere in the program. To do this, the
desired directeory string is first created through an .ASCII directive.
Then, by calling the .WDFDR routine, you can initialize the default
directory string descriptor cells in $$FSR2 to point to the new

directory string
o o

«LTLLULY SLLan 9

Assume that the task is currently running under default UIC [200,200].
By issuing a MACRO-11 directive similar to the following:

NEWDDS: .ASCII /[220,2201/
you define a new directory string. Then, by calling the .WDFDR
routine, you can initialize string descriptor cells in $$FSR2 to point
to the new directory string.
The following registers must be preset before calling the .WDFDR
routine:

Rl Must contain the size (in bytes) of the new directory string.

R2 Must contain the address of the new directory string.

NOTE

Establishing default directory string
descriptor words in $$FSR2 does not
change the default UIC in $$FSR2 or the
task's privileges.

FILE CONTROL ROUTINES

4.3 DEFAULT UIC ROUTINES

The .RDFUI and .WDFUI routines are used to read and write the default
UIC maintained 1in program section $$FSR2 of the file storage region
(FSR). Unlike the default directory string descriptor that describes
an ASCII string, the default UIC is maintained as a binary value with
the following format:

Bit 15 8 7 0

GROUP MEMBER

The default UIC in $SFSR2 provides directory identification
information for a file being accessed. FCS uses it only when all
other sources of such information have failed to specify a directory
(refer to Section 4.7.1.2). It is never used to establish file
ownership or file access privileges.

Unless you explicitly change the default UIC through the .WDFUI
routine described below, the default UIC in $$FSR2 always corresponds
to the UIC under which the task is running.

4.3.1 .RDFUI - Read Default UIC
When called, the .RDFUI routine returns the default UIC as follows:

R1 Contains the binary encoded default UIC as maintained in
program section $SFSR2.

4,3.2 .WDFUI - Write Default UIC
The .WDFUI routine is called to create a new default UIC in SSFSR2.

The following register must be preset before calling the .WDFUI
routine:

R1 Must contain the binary representation (as shown above) of a
UIC.

NOTE

The .WDFUI routine overrides any default
UIC descriptor previously created by
.WDFDR in $$FSR2.

4.4 DEFAULT FILE-PROTECTION WORD ROUTINES

The .RDFFP and .WDFFP routines described below are used to read and
write the default file protection word in a location in program
section SFSR2 of the file storage region (FSR). This word 1is wused
only at file creation time (for example, by the OPENSW macro call) to
establish the default file protection values for the new file. Unless
altered, this wvalue constitutes the default file protection word for
that file. If the value is -1, it indicates that the volume default
file protection value is to be used for the new file.

FILE CONTROL ROUTINES

The default file protection word has the following format:

Bit 15 12 11 8 7 4 3 0

WORLD GROUP OWNER SYSTEM

Each of the four categcries above has four b
s

ts; each bit has the
following meaning with respect to file access:

.
i

1
S

Bit 3 2 1 0

DELETE | EXTEND | WRITE READ

A bit value of 0 indicates that the respective type of access to the
file is to be allowed; a bit value of 1 indicates that the respective
type of access to the file is to be denied.

4.4.1 LRDFFP - Read $SFSR2 Default File Protection Word

You call the .RDFFP routine to read the default file protection word
in program section $$SFSR2 of the FSR. No registers need be set before
calling this routine.

When called, the .RDFFP routine returns the following information:

Rl Contains the default file protection word from S$$FSR2.

4.4.2 JWDFFP - Write New $$FSR2 Default File-Protection Word

The .WDFFP routine is used to write a new default file protection word
into $$FSR2.

The following register must be preset before calling this routine:

R1 Must contain the new default file protection word to be
written into $$FSR2. If this register is set to -1, the
default file protection values established through the
appropriate operating system command will be used in creating
all subsequent new files.

4.5 FILE OWNER WORD ROUTINES

The file owner word, like the default file protection word above, is.a
location 1in program section $$FSR2 of the FSR. Its contents are
specified by the current program through the .WFOWN routine. If not
so specified, the file owner word contains 0.

For nonprivileged users, the owner of a new file corresponds to the
default UIC specification, as follows:

e If the volume on which the new file 1is <created 1is private
(allocated), the owning UIC is the same as the UIC of the task
creating the file.

e If the volume on which the new file is created is a system
volume, the owning UIC is the same as the task's login UIC.

FILE CONTROL ROUTINES
For privileged users, the owning UIC is always the same as the UIC of
the task creating the file.
Note that for files created by privileged or nonprivileged tasks that
are started by a time-scheduled request, the owning UIC is set to the
UIC specified at task-build time.
A specific UIC value can be stored in the file owner word by the
.WFOWN routine (see Section 4.5.2). All new files then created and
closed by your task will contain the specified UIC value.

The format of the file owner word is shown below:

Bit 15 8 7 0

GROUP MEMBER

The routines for reading and writing the file owner word are described
below.

NOTES

1. The UIC and the file protection word
for the file (see Section 4.4) must
not be set such that the UIC under
which the task is running does not
have access to the file. This
condition results in a privilege
violation.

2. When a file is created, 1its owning
UIC 1is always set to either the UIC
of the task creating the file or the
task's login UIC, as ©previously
described. However, when closing
the file, you can change the owning
UIC by using the .WFOWN routine. If
the file is not closed properly, the
owning UIC will not change.

4.5.1 LRFOWN - Read $$FSR2 File Owner Word

The .RFOWN routine is used to read the contents of the file owner word
in $$FSR2. No registers need be preset before calling this routine.

When called, the .RFOWN routine returns the following information:
R1 Contains the file owner word (UIC). If the current program

has not previously established the <contents of the file
owner word through the .WFOWN routine, Rl contains 0.

4.5.2 .WFOWN - Write New $SFSR2 File Owner Word

The .WFOWN routine is used to initialize the file owner word in
SSFSR2.

The following register must be preset before calling this routine:

R1 Must contain a file owner word to be written into $$FSR2.

FILE CONTROL ROUTINES

4.6 ASCII/BINARY UIC CONVERSION ROUTINES

The .ASCPP and .PPASC routines are called to convert a directory
string from ASCII to binary, or vice versa.

4.6.1 .ASCPP - Convert ASCII Directory String to Equivalent Binary UIC

The .ASCPP routine is called to convert an ASCII directory string to
its corresponding binary UIC.

The following registers must be preset before calling this routine:

R2 Must contain the address of the directory string descriptor
in your program (see Section 2.4.1) for the string to be
converted.

R3 Must contain the address of a word location in your program
to which the binary UIC 1is to be returned. The member
number is stored in the low-order byte of the word, and the
group number is stored in the high-order byte.

4.6.2 .PPASC - Convert UIC to ASCII Directory String

The .PPASC routine 1is called to convert a binary UIC to its
corresponding ASCII directory string.

The following registers must be preset before calling this routine:

R2 Must contain the address of a storage area within vyour
program into which the ASCII string is to be placed. The
resultant string can be up to nine bytes in length, for
example, [200,200].

R3 Must contain the binary UIC wvalue to be converted. The
low-order byte of the register contains the member number,
and the high-order byte of the register contains the group
number.

R4 Must contain a control code. Bits 0 and 1 of this register
indicate the following:

Bit 0 is set to 0 to suppress leading zeros (for example, 001
is returned as 1). Bit 0 is set to 1 to indicate that
leading zeros are not to be suppressed.

Bit 1 is set to 0 to place separators (square brackets and
commas) in the directory string (for example, [10,20]).
Bit 1 is set to 1 to suppress separators (for example,
1020).

The .PPASC routine increments the contents of R2 to point to the byte
immediately following the last byte in the converted directory string.

4.7 FILENAME BLOCK ROUTINES

The .PARSE, .PRSDV, .PRSDI, .PRSFN, and .ASLUN routines are available
for performing functions related to a specified filename block. These
routines are described in the following sections.

FILE CONTROL ROUTINES

4.7.1 JPARSE - Fill in All Filename Information

When called, the .PARSE routine first zeros the filename block pointed
to by Rl and then stores the following information in the filename
block:

1. The ASCII device name (N.DVNM)

2. The binary unit number (N.UNIT)

3. The directory ID (N.DID)

4. The Radix-50 file name (N.FNAM)

5. The Radix-50 file type or extension (N.FTYP)
6. The binary file version number (N.FVER).

For ANSI magnetic tape file names, the following information is stored
in the filename block:

1. The ASCII device name (N.DVNM)

2. The binary unit number (N.UNIT)

3. The file name as 17 ASCII bytes (N.ANM1 and N.ANM2)
4. The binary file version number (N.FVER)

In addition, .PARSE calls .ASLUN to assign the LUN associated with the
FDB to the device and unit currently specified in the filename block.

Both formats for filename blocks are shown in detail in Appendix B.

Before the .PARSE routine can be called, the FINIT$ macro call (see
Section 2.6) must be invoked explicitly in your program, or it must be
invoked implicitly through a prior OPENS$x macro call. Note, however,
that the FINITS call must be issued only once in the initialization
section of the program; that 1is, the FINITS operation must be
performed only once per task execution. Furthermore, FORTRAN programs
issue a FINITS call at the beginning of task execution; therefore,
MACRO-11 routines used with the FORTRAN object time system must not
issue a FINITS macro call.

The following registers must be preset before calling the .PARSE
routine:

RO Must contain the address of the desired FDB.

R1 Must contain the address of the filename block to be filled
in. This filename block is usually, but not necessarily, the
filename block within the FDB specified in RO (that is, RO +
F.FNB).

R2 Must contain the address of the desired dataset descriptor if
.PARSE is to access a dataset descriptor in building the
specified filename block. This structure is usually, but not
necessarily, the same as that associated with the FDB
specified in RO (that is, the dataset descriptor pointed to
by the address value in F.DSPT).

If R2 contains 0, this value implies that a dataset
descriptor has not been defined; therefore, the dataset
descriptor logic of .PARSE is bypassed.

FILE CONTROL ROUTINES

R3 Must contain the address of the desired default filename
block if L.PARSE 1is to access a default filename block in
building the specified filename block. This structure is
usually, but not necessarily, the same as that associated
with the FDB specified in RO (that is, the default filename
block pointed to by the address value in F.DFNB).

If R3 contains zero (0), this value implies that a default
filename block has not been defined; therefore, the default
filename block logic of .PARSE is bypassed.

Thus, RO and Rl each must contain the address of the appropriate data
structure, while either R2 or R3 must contain the address of the
desired filename information. Both R2 and R3, however, may contain
address values if the referenced structures both contain information
required in building the specified filename block.

The .PARSE routine fills in the specified filename block in the order
described in the following sections.

4.7.1.1 Device and Unit Information - The . PARSE routine first
attempts to £ill in the filename block with device (N.DVNM) and unit
(N.UNIT) information. The following operations are performed in
sequence until the required information is obtained from the specified
data structures:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a device string, the device and unit
information therein is moved 1into the specified filename
block.

2. If step 1 fails, and if the address of a default filename
block is specified in R3, and this structure contains a
nonzero value in the device name field, the device and unit
information therein is moved into the specified filename
block.

3. If step 2 fails, .PARSE uses the device and unit currently
assigned to the logical unit number in offset location F.LUN
of the specified FDB in building the filename block.

This feature allows a program to use preassigned logical
units that are assigned through either the device assignment
(ASG) option of the Task Builder or one of the following
commands: ASSIGN (under IAS) or REASSIGN (under RSX-11). 1In
this case, you simply avoid specifying the device string in
the dataset descriptor and the device name in the default
filename block.

4, 1If the logical unit number in F.LUN is currently unassigned,
.PARSE assigns this number to the system device (S¥0:).

Once the device and unit are determined and the logical unit number is
assigned, .PARSE invokes the GLUNS$ directive to obtain necessary
device information. Requisite information 1is returned to the
following offsets in the filename block pointed to by Rl:

N.DVNM - Device Name Field. Contains the redirected device
name.

N.UNIT - Unit Number Field. Contains the redirected unit
number.

FILE CONTROL ROUTINES

In addition, requisite information 1is returned to the following
offsets in the FDB pointed to by RO:

F.RCTL - Device Characteristics Byte. This cell contains

device-dependent information from the first byte of the
third word returned by the GLUNS directive. The bit
definitions pertaining to the device characteristics
byte are described in detail in Table A-1. If desired,
you can examine this cell in the FDB to determine the
characteristics of the device associated with the
assigned LUN.

F.VBSZ - Device Buffer Size Word. This 1location contains the

information from the sixth word returned by the GLUNS
directive. The value in this cell defines the device
buffer size (in bytes) pertaining to the device
associated with the assigned LUN,

The GLUNS directive is described in detail in the Executive Reference

Manual of the host operating system.

4,7.1.2 Directory Identification Information - Following the opera-

tions

described 1in the preceding section, .PARSE attempts to fill in

the filename block with directory identification information (N.DID).
The precedence rules for establishing this information are as follows:

1.

If the address of a dataset descriptor is specified in Rz and
this structure contains a directory string, that directory
string is used to find the associated UFD in the MFD. The
resulting file 1ID is then moved into the directory-ID field
of the specified filename block.

If step 1 fails, and if the address of a default filename
block 1is specified in R3, and this structure contains a
nonzero directory ID, it is moved into the specified filename
block.

o
Since none cf the parameters cf the NMBLKS m see

Section 2. 4 2) initialize the three words starting at offset
location N.DID in the default filename block, these cells
must be initialized manually, or by issuing a call to either
the .GTDIR routine (see Section 4.9.1) or the .GTDID routine
(see Section 4.9.2). Note that these routines can also be
used to initialize a specified filename block directly with
required directory information.

cre call Icoo
rti

If neither step 1 nor step 2 yields the required directory
string, .PARSE examines the default directory string words in
$$FSR2. If your program has previously initialized these
words through use of the .WDFDR routine, FCS uses the string
described as the default directory.

If steps 1 through 3 fail to produce directory information,
FCS wuses the binary value stored in the default UIC word in
$SFSR2 as the directory identifier. Unless changed by you
through the .WDFUI routine, this word contains the UIC under
which the task is running.

4-10

FILE CONTROL ROUTINES

NOTE

Wildcard UICs are not acceptable to
.PARSE. In addition, .PARSE will not
set either filename block status word
(N.STAT) bits NB.SDl1 or NB.SD2 (group
and owner wildcard specifications,
respectively).

4.7.1.3 File Name, File Type or Extension, and File Version Information
- Following the operations described in the preceding section, .PARSE
attempts to obtain file name information (N.FNAM, N.FTYP, and N.FVER),
as follows:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a filename string, the file name
information therein is moved into the specified filename
block.

2. If the address of a default filename block is specified in
R3, and one or more of the file name, file type or extension,
and file version number fields of the dataset descriptor
specified in R2 are null, then the corresponding fields of
the default filename block are used to fill in the specified
filename block.

3. If neither step 1 nor step 2 yields the requisite file name
information, any specific fields not available from either
source remain null.

NOTE

If a dot (.) appears in the file name
string without an accompanying file type
designation (for example, TEST. or
TEST.;3), the file type is interpreted
as being explicitly null. In this case,
the default file type 1is not used.
Similarly, if a semicolon (;) appears in
the file name string without an
accompanying file version number (for
example, TEST.DAT;), the file version
number is also interpreted as being
explicitly null; again, the default
file version number is not used in this
case. This note (except for the version
number) does not apply to the 17-byte
ASCITI file name strings supported for
ANSI magnetic tape.

4.7.1.4 Other Filename Block Information - Finally, after performing
all the operations above, the .PARSE routine also fills in the
filename block status word (offset location N.STAT) of the file name
block specified in Rl.

The bit definitions for this word are presented in Table B-2. Note in
this table that an "explicit" directory, device, file name, file type,
or file version number specification pertains to ASCII data supplied
through the dataset descriptor pointed to by R2.

FILE CONTROL ROUTINES

In addition, .PARSE explicitly zeros offset location N.NEXT in the
filename block pointed to by Rl. This action has implications for
wildcard operations, as described in Section 4.8.1 below.

4.7.2 JPRSDV - Fill in Device and Unit Information Only

The .PRSDV routine is identical to the .PARSE routine above, except
that it performs only those operations associated with requisite
device and unit information (see Section 4.7.1.1). This routine zeros
the filename block pointed to by Rl, performs a .PARSE operation on
the device and unit fields in the specified dataset descriptor and/or
default filename block, and assigns the logical unit number contained
in offset location F.LUN of the specified FDB.

4.7.3 JPRSDI - Fill in Directory Identification Information Only

The .PRSDI routine is identical to the .PARSE routine above, except
that it performs only those operations associated with requisite
directory identification information (see Section 4.7.1.2). This
routine performs a .PARSE operation on the directory identification
information (N.DID) field in the specified dataset descriptor and/or
default filename block.

4.7.4 JPRSFN - Fill in File name, File Type or Extension, and File Version Only

The .PRSFN routine is identical to the .PARSE routine above, except
that it performs only those operations associated with requisite file
name, file type or extension, and file version information (see
Section 4.7.1.3). This routine performs a .PARSE operation on the
file name, file type or extension, and file version information fields
(N.FNAM, N.FTYP, N.FVER) 1in the specified dataset descriptor and/or
default filename block.

4.7.5 JASLUN - Assign Logical Unit Number

The .ASLUN routine is called to assign a 1logical wunit number to a
specified device and unit and to return the device information to a
specified FDB and filename block.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

’

R1 Must contain the address of the filename block containing the
desired device and unit. This filename block is usually, but
not necessarily, the filename block within the FDB specified
in RO.

If the device name field (offset 1location N.DVNM) of the filename
block pointed to by Rl contains a nonzero value, the specified device
and unit are assigned to the logical unit number contained in offset
location F.LUN in the FDB pointed to by RO.

If N.DVNM in the filename block contains 0, then the device and unit

currently assigned to the specified logical unit number are returned
to the appropriate fields of the filename block.

4-12

FILE CONTROL ROUTINES

Finally, if the specified logical unit number is not assigned to a
device, the .ASLUN routine assigns it to the system device (SY0:) by
default,

The information returned to the specified filename block and to the
specified FDB 1is identical to that returned by the device and unit
logic of the .PARSE routine (see Section 4.7.1.1).

4.8 DIRECTORY ENTRY ROUTINES

The .FIND, .ENTER, and .REMOV routines are used to find, insert, and
delete directory entries. The term "directory entry" encompasses
entries in both the Master File Directory (MFD) and the User File
Directory (UFD).

4,8.1 LFIND - Locate Directory Entry

The .FIND routine is called to locate a directory entry by £file name
and to fill 1in the file identification field (N.FID) of a specified
filename block.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.

Rl Must contain the address of a filename block. This filename
block is wusually, but not necessarily, the filename block
within the FDB specified in RO.

When invoked, the .FIND routine searches the directory file specified
by the directory-ID £field of the filename block. This file is
searched for an entry that matches the specified file name, file type,
and file version number. In this regard, two special file versions
are defined:

e Version 0 is matched by the latest (largest) version number
encountered in the directory file.

e Version -1 is matched by the oldest (smallest) version number
encountered in the directory file.

If either of these special versions 1is specified in the filename
block, the matching version number is returned to the filename block.
In this way, the actual version number 1is made available to the
program.

Certain wildcard operations require the use of the L.FIND routine.
Three bits in the filename block status word (see N.STAT in Table B-2)
indicate whether a wildcard (*) was specified for a file name, a file
type, or a £file version number field. 1If the wildcard bit in N.STAT
is set for a given field, any directory entry matches in that
corresponding field. Thus, if the file name and file version number
fields contain wildcard specifications (*), and the file type field is
specified as .0OBJ (that 1is, *,0BJ;*), the first directory entry
encountered that contains .0BJ in the file type field matches,
regardless of the values present in the other two fields.

FILE CONTROL ROUTINES

When a wildcard match is found, the complete file name, file type, and
file wversion number fields of the matching entry are returned to the
filename block, along with the £file-ID field (N.DID). Thus, the
program can determine the actual name of the file just found. Offset
location N.NEXT in the filename block is also set to indicate where
that directory entry was found in the directory file. This
information is used in subsequent .FIND operations to locate the next
matching entry in the directory file.

For example, the .FIND routine is often used to open a series of files
when wildcard specifications are used. The following operations are
typical:

1. Call the .PARSE routine. This routine zeros offset 1location
N.NEXT in the filename block in preparation for the iterative
.FIND operations described in step 3 below.

2. Check for wildcard bits set by the (PARSE routine in the
filename block status word (see N.STAT in Table B-2). An
instruction sequence such as that shown below may be used to
test for the setting of wildcard bits in N.STAT:

BIT #NB.SVR!NB.STP!NB.SNM,N.STAT (R1)
BEQ NOWILD ;BRANCH IF NOT SET.

3. If wildcard specifications are present in the filename block
status word, repeat the following sequence until all the
desired wildcard files have been processed:

CALL .FIND

BCS DONE ;ERROR CODE IE.NSF INDICATES
;NORMAL TERMINATION.

OPENS RO

Wildcard .FIND operations update offset 1location N.NEXT in
the filename block. In essence, the contents of this cell
provide the necessary information for continuing the search

of the directory file for a matching entry.

4. Perform the desired operations on the file.

NOTE

The above procedure applies only for the
following types of wildcard file
specifications:

TEST.DAT; *
TEST.*; *
* DAT; *
TEST.*;5
* DAT;3

The procedure does not work for the
following types of wildcard file
specifications:

* .DAT
TEST.*

4-14

FILE CONTROL ROUTINES

In summary, if a wildcard file
specification 1is ©present in either the
file name field or the file type field,
the file version number field must also
contain either an explicit wildcard
specification (*) or a specific file
version number (for example, 2, 3, and
so forth). 1In the latter case, however,
the version number cannot be 0, for the
latest version of the file, or -1, for
the oldest version of the file.

When your task sets NB.ANS, the .FIND operation compares the file name
against the full l17-character ANSI file name string that is stored in
the filename block (see Appendix B). When NB.ANS is clear, the file
name is converted to Radix-50, as described in Appendix G.

ANSI magnetic tape £file names in the following formats can be
converted to Radix-50:

e Up to nine Radix-50 characters followed by spaces

e Up to nine Radix-50 characters followed by a dot, followed by
spaces or by a 3-character file type

Note that unless NB.ANS is set before the call to .FIND, some file
names may be incorrectly matched. For example, the names "ABC" and
"ABC." are considered the same when compared with the name ABC in
Radix-50.

When a wildcard operation is performed, the name returned in the
filename block is normally converted to Radix-50. However, if NB.ANS
is set, the ANSI file name string is returned as up to 17 ASCII bytes.
The first twelve bytes are returned at offset N.ANM1 in the ANSI
filename block. The remainder are returned at offset N.ANM2.

It is illegal to set NB.ANS before a wildcard .FIND operation unless
both file name and file type are wild, or both filename and file type
are not wild.

To delete a file whose file descriptor entry in the FDB contains
wildcards, you must save the values in the fields N.STAT and N.NEXT in
the FDB, then zero those fields in the FDB. A DELETE call then uses
the information returned from the last .FIND to delete the file. Once
the file is deleted, the saved values of N.STAT and N.NEXT must be
restored in the FDB.

4.8.2 LENTER - Insert Directory Entry

The .ENTER routine is used to insert an entry by file name into a
directory.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.
R1 Must contain the address of a filename block. This filename

block is wusually, but not necessarily, the filename block
within the FDB specified in RO.

FILE CONTROL ROUTINES

If the file version number field of the filename block <contains 0,
indicating a default version number, the .ENTER routine scans the
entire directory file to determine the current highest version number
for the file. 1If a version number for the file is found, this entry
is incremented to the next higher version number; otherwise, it is
set to 1, The resulting version number is returned to the filename
block, making this number known to the program.

NOTE

Wildcard specifications cannot be used
in connection with .ENTER operations.

4.8.3 .REMOV - Delete Directory Entry

The .REMOV routine is called to delete an entry from a directory by
file name. This routine only deletes a specified directory entry; it
does not delete the associated file.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.

R1 Must contain the address of a filename block. This filename
block is wusually, but not necessarily, the filename block
within the FDB specified in RO.

Wildcard specifications operate in the same manner as for the .FIND
routine described in Section 4.8.1 above. The file version number for
.REMOV operations must be explicit (including 0 and -1) or wildcard.
Each .REMOV operation deletes the next directory entry having the
specified file name,; file type; and file version number.

4.9 FILENAME BLOCK ROUTINES

The .GTDIR and .GTDID routines are wused to insert directory
information in a specified filename block.

4.9.1 L.GTDIR - Insert Directory Information in Filename Block

The .GTDIR routine is called to insert directory information taken
from a directory string descriptor into a specified filename block.

Before calling this routine, the following registers must be preset:
R0 Must contain the address of the desired FDB.

R1 Must contain the address of a filename block in which the
directory information 1is to be placed. This filename block
is usually, but not necessarily, the filename block within
the FDB specified in RO.

R2 Must contain the address of the 2-word directory string
descriptor in your program. This string descriptor defines
the size and the address of the desired directory string.

FILE CONTROL ROUTINES

This routine performs a .FIND operation for the specified UFD 1in the
MFD and returns the resulting directory ID to the three words of the
specified filename block, starting at offset 1location N.DID. The
.GTDIR routine preserves the information in offset locations N.FNAM,
N.FYTP, N.FVER, N.DVNM, and N.UNIT of the filename block, but =zeros
(clears) the rest of the filename block.

The .GTDIR routine can also be used in conjunction with the NMBLKS
macro call (see Section 2.4.2) to insert directory information into a
specified default filename block.

4.9.2 .GTDID - Insert Default Directory Information in Filename Block

The .GTDID routine provides an alternative means for inserting
directory information into a specified filename block. Instead of
allowing the specification of the directory string, as does the .GTDIR
routine above, this routine uses the binary value found in the default
UIC word maintained in $$FSR2 as the desired UFD.

Before calling this routine, the following registers must be preset:
RO Must contain the address of the desired FDB.

R1 Must contain the address of a filename block in which the
directory information 1is to be placed. This filename block
is usually, but not necessarily, the filename block within
the FDB specified in RO.

When called, the .GTDID routine takes the default UIC from its 1l-word
location in $SFSR2 and performs a .FIND operation for the associated
UFD in the MFD. The resulting directory ID is returned to the three
words of the specified filename block, starting at offset location
N,DID., As does the .GTDIR routine, .GTDID preserves offset locations
N.FNAM, N.FTYP, N.FVER, N.DVNM, and N.UNIT in the filename block, but
zeros the rest of the filename block.

The .GTDID routine embodies considerably less code than the .GTDIR

routine. Its input is the binary representation of a UIC rather than
an ASCII string descriptor. Therefore, it does not invoke the .PARSE
logic; furthermore, .GTDID 1is intended specifically for wuse in

programs that open files by the OFNBS$ macro call (see Section 3.6).
Such a program does not invoke the .PARSE logic because all required
file name information is provided to the program in filename block
format.

As is true of the .GTDIR routine described in Section 4.9.1 above,
.GTDID can be wused 1in conjunction with the NMBLKS macro call (see
Section 2.4.2) to insert directory information (N.DID) into a
specified default filename block. You also have the option to
initialize offset location N.DID manually with required directory
information.

4.10 FILE POINTER ROUTINES

The .POINT, .POSRC, .MARK, and .POSIT routines are used to point to a
byte or a record within a specified file.

FILE CONTROL ROUTINES

4,10.1 .POINT - Position File to Specified Byte

The .POINT routine is called to position a file to a specified byte in
a specified virtual block. If locate mode is in effect for record I/0
operations, the .POINT routine also wupdates the value in offset
location F.NRBD+2 1in the associated FDB in preparation for a PUTS
operation in locate mode.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.
R1 Must contain the high-order bits of the virtual block number.
R2 Must contain the low-order bits of the virtual block number.

R3 Must contain the desired byte number within the specified
virtual block.

For a description of virtual block numbers and how these 2-word values
are formed, refer to item 4 in Section 2.2.2.1.

NOTE

Using the .POINT routine 1is restricted
to files accessed with GETS or PUTS
macros. For files accessed with READS
or WRITES macros, use the FDBKSR macro
to initialize the block access section
of the FDB.

The .POINT routine is often used in conjunction with the .MARK routine
to achieve a 1limited degree of random access with variable-length
records. The .MARK routine saves the positional context of a file in
anticipation of temporarily closing that file and then reopening it
later at the ame position. For such purposes, the following

S
nnnnn Aure sl ies:
procequre appiLies:

1. Call the .MARK routine (see Section 4.10.3 below) to save the
current positional context of the file.

2. Close the file.

3. When desired, reopen the file.

4. Load the information returned by the .MARK routine into RI1,
R2, and R3, as required above, before calling the .POINT
routine.

5. Call the .POINT routine.

The .POINT routine may be called to rewind a file on disk or
ANSI magtape to its start. For this case, Rl and R3 must be
0, and R2 must be 1.

The .POINT routine may be called to rewind a file that Iis

open on a terminal. Doing so clears the terminal end-of-file
condition.

6. Resume processing of the file.

FILE CONTROL ROUTINES

4,10.2 JPOSRC - Position File to Specified Record

The .POSRC routine is called to position a file to a specified
fixed-length record within a file. If locate mode is in effect for
record I/0 operations, the .POSRC routine also updates the wvalue in
offset location F.NRBD+2 1in the associated FDB in preparation for a
PUTS$ operation in locate mode.

Before calling this routine, you must set offset locations F.RCNM+2
and F.RCNM in the FDB to the desired record number and ensure that the
correct record size is reflected in offset location F.RSIZ of the FDB.

Also, the register below must be preset before calling the .POSRC
routine:

RO Must contain the address of the associated FDB.

The .POSRC routine 1is used when performing random access PUTS
operations in 1locate mode. Normally, PUTS$ operations in locate mode
are sequential; however, when random access mode 1is used, the
following procedure must be performed to ensure that the record is
built at the desired location:

1. Set offset locations F.RCNM+2 and F.RCNM in the associated
FDB to the desired record number.

2. Call the .POSRC routine.

3. Build the new record at the address returned (by the .POSRC
call) in offset location F.NRBD+2 of the associated FDB.

4, Perform the PUTS operation.

4.10.3 .MARK - Save Positional Context of File

The .MARK routine allows you to record the current positional context
of a file for 1later use. For example, you can mark the current
position of the file, close that file, and later reopen the file and
return to the same position within it. The .MARK routine is also
useful in altering records within a file. After determining the
record to be altered, you can save your position in the file and
retrieve information elsewhere in the file for wuse 1in wupdating the
desired record. Then, by returning to the saved position of the file,
you can alter the desired record. This iterative sequence may be
repeated any number of times to update desired records in the file.

RO must contain the address of the associated FDB before calling this
routine.

When called, the .MARK routine returns information to the following
registers:

Rl Contains the high-order bits of the virtual block number.
R2 Contains the low-order bits of the virtual block number.

R3 Contains the number of the next byte within the wvirtual
block.

R3 points to the next byte in the block. For example, if four GETS
operations are performed, followed by a call to the .MARK routine, R3
points to the first byte in the fifth record in the file.

FILE CONTROL ROUTINES

4.10.4 .POSIT - Return Positional Information for Specified Record

The .POSIT routine calculates the virtual block number and the byte
number pertaining to the beginning of a specified record.

The following register must be preset before calling this routine:
R0 Must contain the address of the associated FDB.

In addition, offset locations F.RCNM and F.RCNM+2 in the associated
FDB must contain the desired record number.

Unlike the .POSRC routine above, which positions the file to the
specified record, .POSIT simply calculates the positional information
for a specified record so that a .POINT operation can be later
performed to position to the desired record.

The register values returned by the .POSIT routine are identical to
those described above for the .MARK routine.

4.11 QUEUE I/O FUNCTION ROUTINE (.XQIO)

The .XQIO routine is called to execute a specified Queue I/O function
and to wait for its completion.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

Rl Must contain the desired Queue I/0 function code. Refer to
the IAS Device Handlers Reference Manual or the
RSX-11M/M-PLUS I/0 Drivers Reference Manual for the desired
Queue T1/0 directive function codes.

R2 Must contain the number of optional parameters, if any, to be
included in the Queue I/O directive.

R3 Must contain the beginning address of the 1list of optional
Queue I/0 directive parameters, 1if R2 contains a nonzero
value. Refer to the RSX-11M/M-PLUS 1I/0 Drivers Reference
Manual for the parameter list.

4.12 RENAME FILE ROUTINE (.RENAM)

The .RENAM routine is called to change the name of a file 1in its
associated directory. To rename a file, you must specify the address
of an FDB containing file name information, a LUN, and an event flag
number to be used in connection with renaming the file.

If the file to be renamed is open when the call to .RENAM 1is issued,
that file is closed before the renaming operation is attempted.

The following registers must be preset before calling this routine:

RO Must contain the address of the FDB associated with the
originally named file.

Rl Must contain the address of the FDB containing the desired
file name information, LUN assignment, and event flag to be
associated with renaming the file.

FILE CONTROL ROUTINES

If the renaming operation is successful, a new directory entry Iis
created, and the original entry is deleted. If the operation is not
successful, the file is closed wunder 1its original name, and the
associated directory is not affected.

The .RENAM routine uses the absence of a value in location F.FNB+N.FID
to indicate that .PARSE must be called to parse a file specification
(an open file always has a nhonzero value in F.FNB + N.FID). If
neither a dataset descriptor nor a default filename block is present,
.PARSE returns a null file name. The rename operation then results in
a new file name of ".;1".

NOTE

The renaming process is merely a
directory operation that replaces an old
entry with a new entry. The file name
stored 1in the file header block is not
altered.

4.13 FILE EXTENSION ROUTINE (.EXTND)

The .EXTND routine 1is called to extend either contiguous or
noncontiguous files. The file to be extended can be either open or
closed. A call to the L.EXTND routine disables automatic file
truncation.

The following registers must be preset before calling this routine:
RO Must contain the address of the associated FDB.

R1 Must contain a numeric value specifying the number of blocks
to be added tc the file.

R2 Must contain the extension control bits, as appropriate. The
possible bit configurations for controlling file-extend
operations are detailed in Table 4-1. This table defines the
bits in the low-order byte of R2. The high-order 8 bits of
R2 (Bits 8 through 15) are used in conjunction with the 16
bits of Rl to define the number of blocks to be added to the
file (see NOTE 1 below).

NOTES

1. The contents of Rl and the high-order
byte of R2 (Bits 8 through 15) are used
by FCS in accomplishing the specified
.EXTND operation. Thus, 24 bits of
magnitude are available for specifying
the number of blocks by which the file
is to be extended.

2. If a file previously had space allocated
to it, a contiguous L.EXTND cannot be
done. You can create a contiguous file
by opening a new file with a =zero
allocation and then calling L.EXTND to
allocate the desired number of blocks.

FILE CONTROL ROUTINES

3. When writing a new file using Queue 1I/0
directives, the task must explicitly
issue L.EXTND <calls as necessary to
reserve enough blocks for the file, or
the file must be initially created with
enough blocks allocated for the file.
In addition, the task must put an
appropriate value 1in the FDB for the
end-of-file block number (F.EFBK) before
closing the file or rewinding and
reading it.

4. If R2 contains a zero, FCS defaults to
noncontiguous allocation.

To turn off automatic file truncation and close the file, call the
following routines:

e .EXTND with R1 and R2 both containing 0
e CLOSES

The above procedure is the opposite of a call to .TRNCL.

4,14 FILE TRUNCATION ROUTINE (.TRNCL)

The .TRNCL routine truncates a file to its logical end-of-file point,
deallocates any space beyond this point, and closes the file.

The following register must be preset before calling this routine:
RO Must contain the address of the associated FDB.

The file must have been opened with both write and extend access
privileges. Otherwise, the truncation will fail.

The close operation will be attempted even if the truncation operation
faiis. If errors occur in both operations, the error code from the
close operation will be returned.

A call to .TRNCL turns on automatic file truncation. If automatic
truncation is on, the file 1is truncated to end-of-file when it is
closed. If automatic truncation is off, the file is not truncated.

FCS turns on automatic truncation when it extends a file. A call to
the .EXTND routine turns off automatic truncation.

4,15 FILE DELETION ROUTINES

The .MRKDL and .DLFNB routines are provided for deleting files,

4.15.

1

FILE CONTROL ROUTINES

NOTE

If the .MRKDL or .DLFNB routine is

used

to delete a file containing sensitive

information, it is recommended that

you

zero the file before closing 1it, or

reformat the disk to destroy
sensitive information. (Although
file 1is marked for deletion,

the
the
the

information physically remains on the
volume until written over with another

file, and could be analyzed
unauthorized users.)

.MRKDL - Mark Temporary File for Deletion

by

The .MRKDL routine is used in conjunction with a temporary file, that
(see Section 3.3).

is,

a

file created through the OPNTSW macro call

Such a file has no associated directory entry.

A call to the .MRKDL routine is issued prior to

file.

closing a

temporary

The file so marked is then deleted automatically when the file
is closed.

Table 4-1

R2 Control Bits for .EXTND Routine

Value in Low-Order

Byte of R2 Meaning

0 Indicates that the extend is to be
noncontiguous.

200 Indicates that the extend is to be
noncontigquous. This clears the contiguous
file attribute.

201 Indicates that the contiguous area is to be
added to the file. This clears the
contiguous file attribute.

203 Indicates that the largest available
contiguous area 1is to be added to the file
if the desired extend space is not

attribute.

205 Indicates that this is the

207 Indicates that the largest

added to the file. The
contigquous.

available. This clears the contiguous file

initial

The file is to be contiguous.

contiguous area
up to the specified extend size is to be
file |is

extend.

to be

(continued on next page)

4-23

FILE CONTROL ROUTINES

Table 4-1 (cont.)
R2 Control Bits for .EXTND Routine

Value in Low-Order
Byte of R2 Meaning

210 Indicates that the file is to be extended by
the default extend size for the volume. The
extend is to be noncontiguous.

211 Indicates that the file is to be extended by
the default extend size for the volume. The
extend is to be contiguous, whereas the file
is to be noncontiguous.

Before calling the .MRKDL routine, you must preset the following
register:

RO Must contain the address of the associated FDB. This FDB is
assumed to contain the file identification, device name, and
unit information pertaining to the file to be deleted.

If the .MRKDL routine is invoked while the temporary file is open, as
is normally done, then the file is deleted unconditionally when it is
closed. This occurs even if the calling task terminates abnormally
without closing the file.

4.15.2 .DLFNB - Delete File by Filename Block

This routine is used to delete a file by filename block. The .DLFNB
routine assumes that the filename block is completely filled in; when
called, it closes the file, if necessary, and then deletes the file.

Before calling this routine, the following register must be preset:
RO Must contain the address of the associated FDB.

The .DLFNB routine operates in the same manner as that of the routine
invoked by the DELET$ macro call (see Section 3.18), but .DLFNB does
not require any of the .PARSE logic and is thus considerably smaller
(in terms of memory requirements) than the normal DELET$ function.

Like the DELETS$ operation, however, if the file to be deleted 1is not
currently open, and if an explicit file version number is not present
in offset location N.FVER of the associated filename block, then the
.DLFNB operation fails.

FILE CONTROL ROUTINES

4,16 DEVICE CONTROL ROUTINE (.CTRL)
The .CTRL routine 1is called to perform device-specific control
functions., The following are examples of .CTRL device-specific
functions:

1. Rewind a magnetic tape volume set.

2. Position to the logical end of a magnetic tape volume set.

3. Close the current magnetic tape volume and continue file
operations on the next volume.

4. Space forward or backward n blocks on a magnetic tape.

5. Rewind a file on a magnetic tape or a terminal
(record-oriented device).

6. Clear terminal end-of-file.

The following registers must be preset before calling this routine for
items 1 to 3 above:

RO Must contain the address of the associated FDB.
R1 Must contain one of the following function codes:
e FF.RWD to rewind a magnetic tape volume set

e FF.POE to position to the logical end of a magnetic
tape volume set

e FF.,NV to close the current volume and continue file
operations on the next volume of a magnetic tape
volume set.

R2 and R3 must each contain 0.

When using .CTRL to space forward or backward, you must ensure that
registers RO, R1l, R2, and R3 contain the following values:

RO Must contain the address of the associated FDB.

R1 Must contain the value FF.SPC.

R2 Must contain the number of blocks to space forward or
backward. A positive number means space forward; a negative
number means space backward.

R3 Must contain 0.

When using .CTRL to rewind a file, you must ensure that register Rl
contains the value FF.RWF and that registers R2 and R3 contain 0.

L QP

See Chapter 5 for an explanation of using .CTRL to accomplish magnetic
tape device-specific functions.

4-25

CHAPTER 5

FILE STRUCTURES

IAS and RSX-11 support an identical file structure on disk, DECtape,
and DECtape 1II. They also support ANSI file structure on magnetic
tape.

The disk, DECtape, and DECtape II file structure is called FILES-11;
the magnetic tape file structure is ANSI standard.

5.1 DISK AND DECTAPE FILE STRUCTURE (FILES-11)

Volumes contain both user files and system files. Disks and DECtapes
initialized through the INITIALIZE (IAS) or INITVOLUME (RSX) command
have the standard FILES-11 structure built for them automatically.
The standard system files created through these commands include the
following:

1. Index file

2. Storage allocation file

3. Bad block file

4, Master File Directory (MFD)
5. Checkpoint file

Each FILES-11 volume has a file of each type. A volume may have more
than one directory file; such files, created by the CREATE/DIRECTORY
command in IAS, and the UFD command in RSX-11 systems, are used by the
system to locate user files on the volume.

5.1.1 User File Structure

Your data files on disk and DECtape consist of ordered sets of virtual
blocks that constitute the wvirtual structure of the files as they
appear to you. Virtual blocks can be read and writte directly by
your issuing READ$ and WRITES macro calls (see Sections 3.15 and 3.16,
respectively). Virtual blocks are numbered 1in ascending sequence
relative to the first block in the file (which is virtual block 1).

FILE STRUCTURES

The virtual blocks of a file are stored on the volume as 1logical
blocks. The logical block size of all volumes is 256 words; thus,
each virtual block is also 256 words. When access to a virtual block
is requested, the virtual block number is mapped into a logical block
number., The logical block number 1is then mapped to the physical
address on the associated volume.

5.1.2 Directory Files

A directory file contains directory entries. Each entry consists of a
file name and 1its associated file number and file sequence number.
The number of required directory files depends on the number of users
of the volume. For single-user volumes, only a Master File Directory
(MFD) is needed; for multiuser volumes, an MFD is required, and one
User File Directory (UFD) is required for each user of the volume.

The MFD contains a list of all the UFDs on the volume, and each UFD
contains a list of all that user's files. UFDs are identified by User
Identification Codes (UICs). A User File Directory is created by the
UFD command in RSX-11 systems, and by the CREATE/DIRECTORY command in
IAS. These commands are described in detail in the RSX-11M/M-PLUS MCR
Operations Manual and the IAS System Management Guide.

Figures 5-1 and 5-2 illustrate the directory structure for single-user
and multiuser volumes, respectively.

5.1.3 1Index File

The index file contains volume information and wuser file header
blocks, which are used by the file control primitives (FCP). Because
the file header blocks (see below) are steored in the index file, they

can be located quickly. Furthermore, since a file header block is 256
words in length, it can be read into memory with a single access.

The index file is created when a volume is initialized for use by the
host operating system. During 1initialization, the information
required by the system is placed in the 1index file. Appendix E
contains a detailed description of the format and content of an index
file.

MFD

FILEA FILEB FILEC

ZK-293-81

Figure 5-1 Directory Structure for Single-User Volumes

FILE STRUCTURES

MFD

UFD UFD
100,100 200,200
| | [|
FILEA FILEB FILE A FILE B FILEC

ZK-294-81

Figure 5-2 Directory Structure for Multiuser Volumes

5.1.4 File Header Block

Associated with each file is a file header block that contains
information describing the file. File header blocks are stored in the
index file. Each file header block 1is 256 words in 1length and
contains three areas: the header area, the identification area, and
the map area.

The header area identifies the block as a £file header block. Each
file is uniquely identified by a file ID consisting of two words. The
first word of the file ID (that is, the file number) 1is used to
calculate the wvirtual block number (VBN) of that file's header block
in the index file. (This calculation is done as follows: VBN = the
file number + 2 + the number of index file bit map blocks.) The second
word (that is, the file sequence number) is used to verify that the
header block is in fact the header for the desired file.

When a request to access a file is issued, both the file number and
the file sequence number are specified. The access request is denied
if the file sequence number does not match the corresponding field in
the file header block associated with the specified file number.

When a file is deleted, its file header block is made available for
subsequently creating a new file, and when the new file is created, a
different file sequence number is stored in the file header block. If
you attempt to access a file that has been deleted (for example, by
referencing an obsolete directory entry), this updated £file sequence
number ensures the <failure of the access request, even if the same
file header block is reused for a different file.

The identification area specifies the creation name of the file and
identifies the file owner's UIC. This area also specifies the
creation date and time, the revision number, the date and time of the
last revision (that 1is, the time and date on which the 1last
modification to the file occurred), and the expiration date.

The map area provides the information needed by the system to map
virtual block numbers to logical block numbers.

FILE STRUCTURES

A checksum value is computed each time the file header block 1is read
from or written to the volume, thus ensuring that the file header
block is transferred correctly. Appendix F contains a detailed
description of the format and content of the file header block.

5.2 MAGNETIC TAPE FILE PROCESSING

IAS and RSX-11 support the standard ANSI magnetic tape structure as
described 1in "Magnetic Tape Labels and File Structure for Information

Interchange,™ ANSI X3.27-1978. Any of the following file/volume
combinations can be used:

e Single file on a single volume

e Single file on more than one volume

e Multiple files on a single volume

e Multiple files on more than one volume
Items 2 and 4 above constitute a volume set.

The record format on magtape is different from that on disk. When a
file that contains wvariable-length records or fixed-length records
that cross block boundaries is copied to magtape, it occupies more
blocks on the magtape than it did on the disk. This is so because on
magtape the record counts are larger than on disk, and there is unused
space at the end of the blocks. In addition, the cannot-cross-
block-boundaries bit is set in the file's FDB.

The sequence in which volume and file labels are used and the format
of each label type is defined in Appendix G.

NOTE

There is no place for the creation time
or the 1length of the file in an ANSI
file header 1label. Consequently, the
creation time of a file on ANSI magtape
is listed as 0. If a contiguous file is
copied to ANST magtape and then
transferred back to disk, the resulting
disk file is not marked contiguous even
if the /CO switch is used, because the
system cannot know how much space to
allocate for the output file when it
reads from magtape.

5.2.1 Access to Magnetic Tape Volumes

Magnetic tape is a sequential access, single-directory storage medium.
Only one user can have access to a given volume set at a time. No
more than one file in a volume set can be open at a time. Access
protection is performed on a volume set basis. On volumes produced by
DIGITAL systems, user access rights are determined by the contents of
the owner identification field as described in Section G.1.1.1.
Volumes produced by non-DIGITAL systems are restricted to read-only
access unless explicitly overridden at MOUNT time.

FILE STRUCTURES

5.2.2 Rewinding Volume Sets

You can rewind a magnetic tape volume set either by using the FDOPSR
macro call before an OPEN$S or CLOSES or by using the .CTRL file
control subroutine. Regardless of the method used to rewind the
volume set, the following procedures are performed by the file control
system:

1. All mounted volumes are rewound to BOT.

2. If the first volume in the set is not mounted, the unit to be
used is placed off line.

3. If the volume is not already mounted and if the rewind was
requested by an OPENS macro call or by a .CTRL call, a
request to mount the first volume 1is printed on the
operator's console.

4, 1If the rewind was requested on a CLOSES macro call, no mount
message is issued until the next volume is needed.

5.2.3 Positioning to the Next File Position

The normal procedure for writing a new file onto a magnetic tape is to
begin writing the file following the end of the last file currently in
the volume set. However, the FDOPSR macro call can be used to
indicate that the new file 1is to be written immediately after the
end-of-file labels of the most recently closed file. This next fil
position opticn causes the lcoss of any files physically fcllewing thi
most recently closed file in the volume set.

0w o

If, in addition to the next file position option, the rewind option
also 1is specified, the file is created after the VOL1l label on the
first volume of the set. All files previously contained in the entire
volume set are lost.

To create a file in the next file position, FA.POS must be set in FDB
location F.ACTL. The default value for this FDB position is 0 (not
FA.POS). The default indicates that the file system is to position at
the logical end of the volume set to create the file.

When the default is used, no check is made for the existence of a file
with the same name in the volume set. Therefore, a program written to
use magnetic tape normally should specify FA.POS.

The next file position option is ignored by directory device file
processors. However, programs written mainly for directory devices
can specify the next file position option in open commands for output

and, therefore, override the position-to-end process normally used
automatically when used with ANSI magtape.

5.2.4 Single-File Operations
Single-file operations are performed by specifying the rewind option
before the open and before the close. Using this approach, you can
perform scratch tape operations as follows:

1. Open the first file with rewind specified.

2. Write the data records and close the file with rewind.

3. Open the first file again for input (rewind is optional).

5-5

FILE STRUCTURES

4. Read and process the data.

5. Close the file with rewind.

6. Open the second file with rewind specified.
7. Write the data records.

8. Close the file with rewind and perform any additional
processing.

5.2.5 Multiple-File Operations

A multiple-file volume 1is <created by opening, writing, and then
closing a series of files without specifying a rewind. The sequential
processing of files on the volume can be accomplished by closing
without rewind and then opening the next file without rewind.

Opening a file for extend (OPENSA) is legal only for the last file on
the volume set.

The following tape operations are performed to create a multiple-file
tape volume:

1. Open a file for output with rewind.

2. Write data records and close the file.

3. Open the next file with no rewind.

4. Write the data records and close the file.
5. Repeat for as many files as desired.

Files on tape can be opened in a nonsequential order, but increased
processing and tape-positioning time is required. Nonsequential
access of files in a multivolume set is not recommended.

5.2.6 Using .CTRL

The .CTRL file control routine can be called to override normal FCS
defaults for magnetic tape. Examples of its uses are:

1. Continuing processing a file on the next volume of a volume
set before the end of the current volume is reached.

2. Positioning to the logical end-of-volume set.

3. Rewinding a volume at other than file open or close.

4. Spacing forward or backward n records.

5. Rewinding a file.
When .CTRL is used to continue processing a file on the next volume,
the first file section on the next volume is opened. File sections
occur when a file is written on more than one volume. The portion of
the file on each of the volumes constitutes a file section. For input
files, the following .CTRL processing occurs:

1. If the current volume is the last volume in the set (that is,

there is no next volume), end-of-file is reported to you.

5-6

FILE STRUCTURES

2. If another file section exists, the current volume is rewound
and the next volume is mounted. A request to the operator is
printed, if necessary.

3. The header label (HDR1l) of the next file section is read and
checked.

4, If all required fields check, the operation continues.

5. 1If any check fails, the operator is requested to mount the
correct volume.

For output files, the following processing occurs:

1. The current file section is closed with EOV1 and EOV2 labels
and the volume is rewound.

2. The next volume is mounted.

3. A file with the same name and the next higher section number
is opened for write. The file set identifier is identical
with the volume identifier of the first volume in the volume
set.

NOTE
I/0 buffers that are currently in memory are written

on the next file section.

When .CTRL is used to position to the logical end-of-~-volume set, the
file system positions between the two tape marks at the logical end of
the last volume in the set.

When .CTRL is used to space forward or backward across blocks on
magnetic tape, spacing crosses volumes for multivolume files.

5.2.7 Examples of Magnetic Tape Processing
The following pages contain examples of FCS statements used to process
maghetic tape. Macro parameters not related to magnetic tape handling

have been omitted from the statements so that you need consider only
those matters directly related to magnetic tape.

5.2.7.1 Examples of OPENSW to Create a New File - All routines expect
RO to contain the FDB address.

OPRWDO:

OPEN WITH REWIND

~e e W

FDOPSR RO,,,,,#FA.ENB!FA.RWD ;SET REWIND AND ENABLE USE
BR OPNOUT ;OF F.ACTL
OPNXTO:

OPEN FOR NEXT FILE POSITION

~e No we

FDOPSR RO,,,,,#FA.ENB!FA.POS ;SET POSITION TO NEXT
BR OPNOUT ;AND ENABLE USE OF F.ACTL
OPROYK:

-

7

FILE STRUCTURES

ACCESS CONTROL BITS

~e we we

BIC #FA.ENB,F.ACTL (RO)
BR OPNOUT
OPROVO:

OPEN FILE AT END OF VOLUME KEEPING CURRENT USER

;DISABLE USE OF F.ACTL

i
; OPEN FILE AT END OF VOLUME - SELECT SYSTEM DEFAULT FOR
i

USER ACCESS CONTROL BITS
FDOPSR RO,,,,,#0

;DISABLE USE OF AND RESET
;F.ACTL TO ZERO

;ENABLE USE OF F.ACTL
;OVERRIDE BLOCK SIZE FOR TAPE

BR OPNOUT
i
; OPEN FILE WITH CURRENT USER ACCESS CONTROL
i
OPOURO:
BIS #FA.ENB,F.ACTL(RO)
OPNOUT: FDBF$R RO,,#2048.
OPENSW RO
RETURN

5.2.7.2
contain the FDB address.

OPRWDI:

OPEN WITH REWIND

~ we =

FDOP$R RO, ,,,,#FA.ENB!FA.RWD
BR OPNIN .
OPCURI:

ACCESS CONTROL BITS

~s W we we

BIC #FA.ENB,F.ACTL(RO)
BR OPNIN

H
; OPEN IHHSTNG USER ACCESS CONTROT

’
OPDFLI: BIS $FA.ENB,F.ACTL (RO)

OPNIN: FDBF$SR RO,,#2048.
OPENSR RO
RETURN
5.2.7.3 Examples of CLOSE$ - All routines expect RO to

FDB address.

CLSCUR:

USER ACCESS CONTROL BITS

~e ™o we wo

BIC $FA.ENB,F.ACTL (RO)
BR CLOSE

CLSRWD:

CLOSE REWINDING THE VOLUME

~. wo we

FDOPSR RO,,,,,#FA.ENB!FA.RWD
BR CLOSE

~

5-8

Examples of OPENSR to Read a File -

All routines expect RO to

OPEN STARTING SEARCH AT CURRENT TAPE POSITION KEEPING USER

;DISABLE USE OF F.ACTL

; ENABLE USE OF F.ACTL
;OVERRIDE BLOCK SIZE FOR TAPE

contain the

CLOSE LEAVING TAPE AT CURRENT POSITION AND KEEPING

;DISABLE USE OF F.ACTL
;DEFAULT IS LEAVING AT CURRENT
;POSITION

;SET REWIND AND ENABLE USE OF
;F.ACTL

FILE STRUCTURES

CLOSE WITH USER ACCESS CONTROL BITS

* ~e

1
CLSDFL: BIS #FA.ENB,F.ACTL (RO) ;ENABLE USE OF F.ACTL
CLOSE: CLOSES$ RO

RETURN

5.2.7.4 Combined Examples of OPEN$ and CLOSES$ for Magnetic Tape - The
following examples call routines in previous examples. By combining
various magnetic tape operations, you can process tape volumes in the
following ways.

i

; SCRATCH TAPE OPERATIONS--SINGLE FILE VOLUME--

SCROUT: MOV #FDBOUT, RO ;SELECT FDB AND OPEN
CALL OPRWDO ;OUTPUT FILE WITH REWIND
RETURN

SCRIN: MOV #FDBIN,RO ; SELECT FDB AND OPEN FOR
CALL OPRWDI ;INPUT WITH REWIND
RETURN

CLSCRO: MOV #FDBOUT, RO ;CLOSE SCRATCH FILE
BR CLSVOL ;REWINDING VOLUME

CLSCRI: MOV FDBIN,RO

CLSVOL: CALL CLSRWD
RETURN

i

; MULTI-FILE VOLUME OPERATIONS

i

OPNXTI:

i

; OPEN FILE FOR READING WHEN FILE IS NEXT OR FURTHER UP THE VOLUME

i
MOV #FDBIN,RO ;SELECT FDB
CALL OPCURI :OPEN FILE
RETURN

OPENIN:

i

; OPEN FILE FOR READING WHEN POSITIONED PAST IT

i
MOV #FDBIN, RO ;SELECT FDB
CALL OPRWDI
RETURN

i

; MULTI-FILE OUTPUT OPERATIONS

OPNINT:

i

; START NEW VOLUME DESTROYING ALL PAST FILES ON IT

H
MoV #FDBOUT, RO ; SELECT OUTPUT FDB
CALL OPRWDO ;OPEN WITH REWIND
RETURN

OPNEXT:

H

; OPEN OUTPUT FILE AT NEXT FILE POSITION DESTROYING ANY FILE

; THAT MAY BE AT OR PAST THAT POSITION
Mov #FDBOUT, RO ;SELECT OUTPUT FDB
CALL OPNXTO
RETURN

OPENDT:

’

5-9

FILE STRUCTURES

OPEN OUTPUT FILE AT CURRENT END OF VOLUME SET
ACCESS CONTROL BITS

~e we wo

MOV #FDBOUT, RO ;SELECT
CALL OPROVK
RETURN

OPNEOV:

OPEN OUTPUT FILE AT CURRENT END OF VOLUME AND
ACCESS CONTROL

e “e we we

MOV #FDBOUT, RO ;SELECT
CALL OPROVO
RETURN

NOT LAST FILE IN FILE SET CLOSE ROUTINE

CLSFLO: MOV #FDBOUT, RO ; SELECT
BR CLSXX
CLSFLI: MOV #FDBIN,RO ; SELECT
CLSXX: CALL CLSCUR
RETURN

TO APPEND TO LAST FILE

~o W we

OPENSA #FDBOUT

5-10

KEEPING USER

OUTPUT FDB

MAKE THAT THE USER

OUTPUT FDB

OUTPUT FDB

INPUT FDB

CHAPTER 6

COMMAND LINE PROCESSING

As noted in Section 2.4.3, a collection of routines available from the
system object 1library ([1,1]1SYSLIB.OLB) may be 1linked with your
program to provide all the logical capabilites required to process
command lines dynamically. These system facilities 1include the
following routines:

1. Get Command Line (GCML). This routine accomplishes all the
logical functions associated with the entry of command lines
from a terminal, an indirect command file, or an on-line
storage medium. Using GCML relieves you of the burden of
manually coding command line input operations.

2. Command String Interpreter (CSI). Normally, this routine
takes command lines from the GCML command line input buffer
and parses them into the appropriate dataset descriptors
required by FCS for opening files.

This body of routines is linked with your program at task-build time.
GCML and CSI are often jointly incorporated in system or application
programs as a standardized interface for obtaining and interpreting
dynamic command 1line input. The flow of data during command line
processing is shown in Figure 6-1.

Although these routines are presented in the context of being used
together for processing command 1line input, each may be used
independently of the other. Doing so, however, means that you must
manually code the functions otherwise performed by the missing
component., The joint use of these routines is assumed throughout this
chapter to be the "normal" situation.

Invoking GCML and CSI functions requires that certain initialization
operations be accomplished at assembly time. This initialization sets
up the GCML command line input buffer, defines and initializes control
blocks for both GCML and CSI, and establishes the necessary working
storage and communication areas for these routines. Also, the
appropriate macro «calls that 1invoke GCML and CSI execution-time
functions must be included in the source <coding at desired 1logical
points to effect the dynamic processing of command lines.

GCML and CSI macro calls observe the same register conventions
applicable to FCS. All registers except RO are preserved exactly as
in all FCS macro calls. RO is used to contain the address of the GCML
control block or the CSI control block, as appropriate.

As with all FCS macro calls, the GCML and CSI macro calls must also be
listed as an argument in an .MCALL directive (see Section 2.1) before
being issued in your program.

COMMAND LINE PROCESSING

ASCII DATA
ON-LINE
PDS/MCR STORAGE
\
GCML
csl
Y
DEFAULT
DATASET FILENAME
DESCRIPTOR BLOCK
FCS
o (.PARSE)
\
FILENAME
BLOCK
ZK-295-81

Figure 6-1 Data Flow During Command Line Processing

6.1 GET COMMAND LINE (GCML)

The Get Command Line (GCML) routine embodies all the logical
capabilities required to enter command 1lines dynamically during
program execution. GCML accepts input from a terminal or an indirect
command file that contains predefined command lines. 1If your program
allocates sufficient buffer space in the file storage region (see
Section 2.6), GCML accepts commands that are longer than one line of
terminal input. The continuation of commands from one 1line to the
next is effected when a hyphen appears as the last printing character
of a command line.

COMMAND LINE PROCESSING

All GCML functions require you to create and initialize a GCML control
block. The macro call that accomplishes this function is described in

detail in the following section. The GCML run-time macro calls
may be issued dynamically are described in Section 6.1.3.

6.1.1 GCMLBS$ - Allocate and Initialize GCML Control Biock

Issuing the GCMLBS macro call accomplishes the following assembly-

functions:

that

time

e Reserves storage for, and initializes &a GCML control block

within, your program.

e Creates and initializes an FDB in the first part of the
control block. This FDB is used to open a command file.

GCML

Such

a file, which may employ a terminal or a file-structured
device such as a disk, is opened and read by your program in

the same manner as any other file, Initializing

and

maintaining this FDB, however, is under GCML and FCS control

and need not be of concern to you.

e Creates and initializes a default filename block within

o

the

GCML control block. This default filename block pertains to
an indirect command file. 1If you do not specify an explicit
file name string for an indirect command file, the values CMI
for the file name and .CMD for the file type are assumed by
default. There is no default designation for the device name.

e Defines the symbolic offsets for the GCML control block

and

initializes certain offsets to required values. These offsets

are described in detail in Section 6.1.2.
The GCMLBS$ macro call is specified in the following format:

label: GCMLBS maxd,prmpt,ubuf,lun,pdl,size

label

A symbol that names the GCML control block and defines

its

address. This 1label permits the GCML control block to be

referenced directly by all the GCML run-time routines
require access to this structure (see Section 6.1.3).

maxd

that

A numeric value that specifies the maximum nesting depth
permitted for indirect command files. This parameter determines

the number of nested indirect command files that GCML will
allowed to access in obtaining command line input.

be

An indirect command file, which often resides on disk, contains
well-defined, nonvarying command sequences, which may be read
directly by GCML to control operations that are highly repetitive
(such as Task Builder activities). Significant advantages in

terms of convenience and faster execution result from using
indirect command file.

an

prmpt

ubuf

lun

pdl

COMMAND LINE PROCESSING

If this parameter is not specified, a nesting level depth of 0 is
defined by default, effectively eliminating an indirect command
file as a source of command line input.

A user-specified, 3-character ASCII prompting sequence. This
parameter constitutes a default prompt string that is typed out
by GCML to your terminal to solicit command line input.

The ASCII prompting sequence is formulated into the following
6-byte string:

1. A carriage return (<KCR>) and a line-feed (<KLF>)
2. The three ASCII characters that you specify
3. A right angle bracket (>)

The above string initializes GCML control block offset location
G.DPRM (see Section 6.1.2).

If this parameter is not specified, the right angle bracket (>),
preceded by three blanks, is defined by default for use by GCML
as the default prompting sequence.

The address of a buffer to be used by GCML for temporary storage
of command 1line input. If this parameter is not specified, a
buffer, whose length is determined by the size parameter, is
reserved in the GCML control block for command line input. If
neither this parameter nor the size parameter is specified, a
41-word buffer is reserved by default in the GCML control block.

A logical unit number. The device assigned to this logical unit
number 1is used by GCML as the command input device. If this
parameter is not specified, a logical unit number of 1 is used by
default.

The address of an area reserved in your program for use as a
push-down list. This area is reserved as working storage for use
in connection with indirect command files.

Normally, the pdl parameter is not specified; in this case,
sufficient storage for the push-down list is added to the control
block by default 1in accordance with the algorithm described
below.

size

COMMAND LINE PROCESSING

The push-down 1list 1is created through statements 1logically
equivalent to the following:

. EVEN
label: .BLKB G.LPDL

The user-supplied label specifies the push-down list and defines
its address; G.LPDL, which is defined by the GCMLBS$ macro, is
the length (in bytes) of the push-down list.

The length of the push-down list is a function of the maximum
number of nested indirect command files that may be accessed by
GCML in obtaining command line input. The value of G.LPDL is
calculated according to the following algorithm:

1. Add 1 to the maximum nesting level depth declared with the
maxd parameter (see above).

2. Multiply the sum of step 1 by 16(decimal), the appropriate
number of bytes that must be reserved for the push-down list.

For example, if the maxd parameter is specified as 4, the 1length
of the push-down list is determined as follows:

(4+1)*16. = 80. bytes

From the above, note that 16(decimal) bytes of storage are
required for each 1indirect command file, plus a total of
16 (decimal) bytes for use as general overhead.

The size, in bytes, of the buffer reserved for command 1line
input. The specified size must always include two extra bytes
that are used internally by GCML. The default value for size 1is
82 (that 1is, 80 bytes for command line input and 2 bytes GCML
overhead) .

If you want GCML to accept continuation 1lines, the specified
value for the size parameter must be greater than 82. When the
size is greater than 82, the bit value GE.CON is set in the
status and mode control byte (offset G.MODE) of the GCML command
block. This value indicates that the continuation mechanism is
in effect.

The following examples represent a GCMLBS macro call as it might
appear in your program:

GCLBLK: GCMLBS 4.,GCM,BUFADR,1.
GCLBLK: GCMLBS ,,BUFADR
GCLBLK: GCMLBS DEPTH,GCM,BUFADR,CMILUN,PDLIST,BUFSIZ

COMMAND LINE PROCESSING

6.1.2 GCMLDS - Define GCML Control Block Offsets and Bit Values

The GCMLD$ macro, which is invoked automatically by the GCMLBS
macro call, locally defines the GCML control block offsets and
bit wvalues within the current module. These offsets and
associated bit values are listed and described below.

Offset
Name Functional Significance
G.ERR Error Return Code Byte. This field 1initially

contains 0. If any one of the error conditions
recognized by GCML occurs during the processing of
a command 1line, an appropriate error code is
returned to offset location G.ERR in the control
block. These error codes are described below:

GE.IOR!l - 1Indicates that an I/O error occurred
during the input of a command line.

GE.OPR1 - 1Indicates that GCML was unable to
open or reopen the specified command file.

GE.BIF - 1Indicates that a syntax error was
detected in the name of the indirect command
file.

GE.MDE - 1Indicates that an attempt was made to
exceed the maximum permissible nesting-level

depth for an indirect command file (see the
maxd parameter in the GCMLBS macro call above).

GE.RBG - 1Indicates that the command line input
buffer was too small for the total command.
This condition can occur when multiple 1lines
have been entered using the continuation
mechanism. The input buffer contains as much
of the command as possible.

GE.EOF - Indicates that the end-cf-file (EQF)
on the first (unnested) command file was
detected.

This code is set in connection with command file
input. When the first call is issued for input,
GCML attempts to retrieve an MCR/PDS command line.
The first line obtained, whether it is an MCR/PDS
command or a terminal command, is accomplished at
command level 0. If the name of an indirect
command file is then entered, the command input
level 1is incremented to 1. Each indirect file
name entry thereafter increments the command input
level. When the end-of-file (EOF) is encountered
on any given indirect file, the command input
level 1is decremented by 1, restoring the count to
the previous level and reopening the associated
command file. The next command line from that
file is then read.

1. For GE.IOR and GE.OPR, additional information concerning the error
is available by examining the FCS error code at offset F.ERR from the
start of the GCML block.

Offset
Name

G.MODE

COMMAND LINE PROCESSING

Functional Significance

If an MCR/PDS command has already been read at
level 0, entering another MCR/PDS command when
level 0 is again reached causes the error code
GE.EOF to be returned to offset location F.ERR of
the GCML control block. Hence, only one MCR/PDS
command 1line can be read at level 0. If input
thus fails at MCR/PDS level 0, then GCML continues
to prompt for input until you type CTRL/Z to
indicate terminal end-of-file (EOF).

In summary, the first line of input is always read
at level 0. This initial input may be an MCR/PDS
command; 1if the MCR/PDS command fails or is null,
the command input file (normally a terminal) is
then opened at level 0. Multiple inputs at level
0 are permissible only in the latter case, that
is, from the command input file.

Status and Mode Control Byte. This field 1is
initialized at assembly time with bit definitions
to specify certain default actions for GCML during
the retrieval of a command line. At run time, you
can reset default status and mode control bits, if
desired, by 1issuing a Bit Clear Byte (BICB)
instruction that takes as the source operand the
symbolic name of the bit to be cleared. In the
case of the GE.LC value (see below), the BIS

ide the Aafanl

vil «

T W

ingtfruction ~can he unsed to gverri
can oe usea ovVerria

11
ariocriul i

je v “

action.

The symbolic names of the bits defined in the
status and mode control byte are as follows:

GE.IND - (Default) Indicates that a command
line containing a leading at sign (@) is to be
treated as an explicit indirect command file
specifier. If, for any reason, you reset this
bit to 0, a command line containing a leading
at sign (@) is returned to the calling program.

GE.CLO - (Default) Indicates that the command
file currently being read is to be closed after
each issuance of the GCMLS macro call. If vyou
reset this bit to 0 for any reason, GCML keeps
the current command file open between calls for
input. In this case, the FSR (see Section
2.6.1) must include one additional
512 (decimal)-byte buffer for command 1line
input. This requirement adds to the total FSR
block buffer space normally reserved for the
maximum number of files that may be open
simultaneously for record I/0 processing.

Clearing the GE.CLO bit in the status and mode
control byte effectively renders 512(decimal)
bytes of FSR block buffer space unavailable for
other ©purposes, since the command file remains
open between calls for command line input.

6-7

Offset
Name

G.PSDS

G.CMLD

COMMAND LINE PROCESSING

Functional Significance

GE.COM - (Default) Indicates that a command 1line
having a leading semicolon (;) is to be treated as
a comment. Such lines are not returned to the
calling program. If, for any reason, you reset
this bit to 0, a command line containing a leading
semicolon (;) is returned to the calling program.

GE.CON - 1Indicates that the continuation
mechanism is in effect. This is the default if
the value of the size parameter of the GCMLBS$S
macro is greater than 82. You must not attempt to
set this value in the mode byte without providing
a buffer larger than 82 bytes.

GE.LC - 1Indicates that lowercase characters in
the command line are to be passed to your program
without mapping. Unless you explicitly set this
value in the GCML control block at run time, the
default action will be to map lower- and uppercase
characters to uppercase before transmission to
your program.

Prompt String Descriptor. This 2-word field Iis
initialized to 0 at assembly time through the
GCMLBS$ macro call (see Section 6.1.1).

When the GCMLS$ macro call is 1issued to request
command line input (see Section 6.1.3.1), the
address and the length of a prompting sequence is
usually not specified. 1In this case, the prompt
string descriptor words in the GCML control block

are cleared, causing GCML to type out the default

prompt string contained in offset location G.DPRM
(see below) to solicit command line input.

If you wish to define an alternate prompt string
elsewhere 1in the ©program, you may do so through
the .ASCII directive. The address and 1length of
this alternate prompt string may then be specified
as the adpr and 1npr parameters in subsequent
GCML$ macro calls. These parameters cause offset
locations G.PSDS+2 and G.PSDS to be initialized
with the address and the length, respectively, of
the alternate prompt string. The alternate prompt
string 1s then typed out by GCML to solicit
command line input, thereby overriding the default
prompt string previously established through the
GCMLBS$ macro call (see G.DPRM below).

If the adpr and lnpr parameters are not specified
in a subsequent GCMLS macro call, offset location
G.PSDS in the control block is automatically reset
to 0, causing GCML to revert to the use of the
default prompt string contained in offset location
G.DPRM.

Command Line Descriptor. This 2-word £field is
initialized by GCML after retrieving a command
line. The address of the line just obtained is
returned to offset location G.CMLD+2, and the
length (in bytes) of the command line is returned
to offset location G.CMLD.

COMMAND LINE PROCESSING

Offset

Name Functional Significance

The contents of these word locations in
control block may be passed to CSI as the "buff"
and "len" parameters in the CSIS$1 macro call (see
Section 6.2.3.1). The combination

parameters constitutes the
descriptors that enable CSI

the GCML

of these

command line

to retr

specifiers from the GCML command 1i

buffer.

G.ISIz Impure Area Size Indicator.

ieve file
ne input

This symbol is

defined at assembly time, indicating the size of
an impure area within the GCML control block to be

used as working storage for

counters, and so forth, in connection w

from an indirect command file.

The space between the FDB and the

pointers, flags,

ith input

In normal usage,
you need not be concerned with this symbol.

defau

1t prompt

string (see G.DPRM below) constitutes the impure

area of the GCML control block.

The siz

e of the

FDB 1is defined by the value of the symbol S.FDB.

Thus, the size of the impure
G.DPRM-S.FDB.

G.DPRM Default Prompt String. This
initialized at assembly time

area is

6-byte

with t

equal to

field is
he default

prompt string created through the prmpt parameter
of the GCMLBS macro call (see Section 6.1.1). In
the absence of the adpr and lnpr parameters in the

GCMLS macro <call (see Section

default prompt string is typed
sclicit terminal input.

6.1.3
out by

You can reference the GCML control block offsets and bit
another module by establishing the appropriate symbolic definitions
within that module through one of the following statements:

GCMLD$;DEFAULT LOCAL DEFINITION.
GCMLDS DEFSL ;LOCAL DEFINITION.
GCMLD$ DEFSG ;GLOBAL DEFINITION.

6.1.3 GCML Run-Time Macro Calls

Three run-time macro calls are provided in GCML to perform
functions, as described below:

GCMLS - To retrieve a command line

RCMLS - To reset the indirect command file scan to

(unnested) 1level

CCMLS - To close the current command file

.1), this
GCML to

values 1in

specific

the first

These routines are described separately in the following sections.

6-9

COMMAND LINE PROCESSING

6.1.3.1 GCMLS$ - Get Command Line - The GCMLS macro call serves as

your

program interface for retrieving command lines from a terminal or

an indirect command file. This macro call can be issued at any
logical point in the program to solicit command line input.

This macro call takes the following format:
GCMLS gclblk,adpr,inpr

gclblk
The address of the GCML control block. This symbol must be the
same as that specified at assembly time in the label field of the
GCMLBS$ macro call (see Section 6.1.1). 1If this parameter is not
specified, RO 1is assumed to contain the address of the GCML
control block.

adpr
The address of your program location containing an alternate
prompt string. When this optional parameter and the inpr
parameter below are present in the GCML$ macro call, the
alternate prompt string is typed out on your terminal to solicit
command line input. The normal default prompt string, as
contained in offset location G.DPRM of the GCML control block
(see Section 6.1.2), is thereby overridden.)

1npr

The length (in bytes) of the alternate prompt string. This
parameter is also optional; 1if not specified, offset location
G.PSDS in the GCML control block (see Section 6.1.2) is cleared.

If this parameter is specified but the adpr parameter above is
not, an .ERROR directive is generated during assembly that causes
the error message PROMPT STRING MISSING to be printed in the
assembly 1listing. This message is a diagnostic announcement of
an incomplete prompt string descriptor in the GCML$ macro call.
If this parameter 1is not given but the adpr parameter above is
given, the default prompt string is used.

If the adpr and 1lnpr parameters are not specified in a subsequent

GCMLS$

macro call, offset location G.PSDS in the GCML control block is

automatically reset to 0, causing GCML to revert to using the default
prompt string contained in offset location G.DPRM (see Section 6.1.2
above) .

When the GCML$ macro call is issued, the following actions occur:

1. RO is loaded with the address of the GCML control block. If
the gclblk parameter is not specified, as described above, RO
is assumed to contain the address of the GCML control block.
If it does not, RO must first be initialized manually with
the address of the control block before the GCML$ macro call
is issued.

2. The address and the length of the alternate prompt string, if
specified, are stored in control block offset locations
G.PSDS+2 and G.PSDS, respectively. These two words
constitute the alternate prompt string descriptor.

COMMAND LINE PROCESSING

3. Code is generated that calls GCML to transfer a command 1line
to the command line input buffer. If the last character of
an input line is a hyphen, and if the value GE.CON is present
in the status and mode control byte, GCML will automatically
transfer commands that run to more than one line. The
continuation 1lines obtained are concatenated in the input
buffer with the continuation hyphen(s) removed.

At the initial issuance of the GCML$ macro call, an attempt is made to
retrieve an MCR/PDS command line. If this attempt fails, or if the
MCR/PDS command line is null, the FDB within the GCML control block is
used to open a file for command line input. If the command input
device is a terminal, a prompt string is typed out to solicit input.
Any desired command input may then be entered. 1If the continuation
mechanism is being used, the prompt string 1is similarly typed to
solicit subsequent portions of a continued command line.

If appropriate, you may enter an at sign (@) as the first character in
the command 1line, followed by the name of an indirect command file.
This file name identifies an explicit indirect command file from which
input 1is to be read. GCML then opens this file and retrieves the
first command line therein. On successive GCML calls, this file is
read until one of the following occurs:

1. The end-of-file (EOF) is detected on the current indirect
file. In this case, the current indirect file is closed, the
command input level <count 1is decremented by 1, and the
previous command file 1is reopened. If the command input
level count is already 0 when EOF is detected, the error code
GE.EOF 1is returned to offset 1location G.ERR of the GCML
control block (see Section 6.1.2).

2. An indirect file specifier is encountered in a command 1line.
In this case, the current indirect command file is closed (if
not already closed), and the new indirect file 1is opened.
The first command line therein is then read.

3. An RCMLS macro call is issued in the program (see Section
6.1.3.2 below). In this case, the current indirect command
file is closed, and the command input count reverts to level
0; that 1is, the top level command file is again used for
input.

You may also enter a semicolon (;) as the first character in the
command line. If GE.COM is set, such a line is treated as a comment
and is not returned to the calling program. If GE.COM is <clear, the
line is returned to the calling program.

Whether a command line is entered manually or retrieved from an
indir