
RSX-11 M/M-PLUS
Task Builder Manuai
Order No. AA-L6808-TC

RSX-11 M Version 4.1
RSX-11 M-PLUS Version 2.1

digital equipment corporation . maynard, massachusetts

First Printing: June 1979
Revised, January 1982

Revised, April 1983

The information in this d-0cument is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporatione Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright@ 1979, 1982, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DEC US
DECwri ter

DIBOL
EduSystern
IAS
MAS SB US
PDP
PDT
RSTS

RSX
UNIBUS
VAX
VMS
VT

~nmnomo

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO}*

Digital Equipment Corporation
P.O. Box CS2008
Nashua. New Hampshire 03061

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL}

Digital Equipment Corporation
A&SG Business Manager
clo Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Ceriter (SLJCJ. D1g1tai Equiprneni
Corporation. Northboro. Massachusetts 01532

ZK2250

CONTENTS

Page

PREFACE xv

SUMMARY OF TECHNICAL CHANGES xix

CHAPTER 1

1.1
1.1.1
1.1.2
1.2
1.3
1.4
1.5
1.6
1. 7
1.8

CHAPTER 2

2.1
2 .1.1
2.1.1.1
2.1.1.2
2 .1. 2
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.5.1
2 .. 6''
'2 .. 6'.l
2.7
2.8
2.9

CHAPTER 3

3.1
3 .1.1
3 .1. 2

3.2
3.2.1
3.2.2

INTRODUCTION AND COMMAND SPECIFICATIONS

1-2
• 1-2

TASK COMMAND LINE • • • • • • • •
Printing the Map File ••••
Omitting Specific Output Files •

MULTILINE INPUT . • . • •
• • • • • • • • 1-3

OPTIONS • . • • • • • • • •
MULTIPLE TASK SPECIFICATIONS •
INDIRECT COMMAND FILES
COMMENTS IN LINES

• • 1-3
• • • • • • 1-4

• • 1-5
. • • 1-5

• • 1-8
FILE SPECIFICATIONS • • • • • • • • • 1-8
SUMMARY OF SYNTAX RULES • • • • • 1-10

TASK BUILDER FUNCTIONS

LINKING OBJECT MODULES • • • • • • •
Allocating Program Sections

Access-code and Allocation-code

• • 2-1
• • • • 2-2

• 2-5
Type-Code and Scope-Code • • • • • • • • 2- 7

Resolving Global Symbols
THE TASK STRUCTURE • •

• • • • • • • • 2- 7
• 2-8

OVERLAYS • • • • • • • • • • • • • • 2-10
ADDRESSING CONCEPTS • • • • 2-13

Physical, Virtual, and Logical Addresses •
Unmapped Systems • • .

2-13
2-14

Mapped Systems
Regions

TASK MAPPING AND WINDOWS • • • • •
Task Windows • • • • .

RSX-llM-PLUS SUPERVISOR MODE •
Supervisor-Mode Mapping

PRIVILEGED TASKS . _- . • • •
MULTIUSER TASKS (RSX-llM-PLUS ONLY)

2-14
2-18
2-20
2-20

• • • • ' ,2-,,24
• • • 2:..2,4

2-25

USER-MODE I- AND D-SPACE TASKS (RSX-llM-PLUS)
2-28
2-28

OVERLAY CAPABILITY

OVERLAY STRUCTURES • • . • • • • . • • • • . • 3-1
Disk-Resident Overlay Structures •••••••• 3-2
Memory-Resident Overlay Structures (Not
Supported on RSX-llS)

OVERLAY TREE • . • • • . . • •
Loading Mechanism ••..•

• • • 3-5
3-15
3-16

Resolution of Global Symbols in a Multisegment
Task . . . • • • • . . . • • • • • • • • . • • 3-16

iii

3.2.3

3.2.4

CONTENTS

Resolution of Global Symbols from the Default
Library • • • • • • • • • • •
Allocation of Program Sections in a
Multisegment Task ••••••••••••••

Page

3-18

3.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES
3-19
3-19
3-20 3.3.1 Overlaid Conventional Task Structures

'~··~·~·~·~{,:.>;' .··c;~.g~l~~·~'&~~:2if :~16~~2~·gij·~~~1i:~ ... :·~~·~µ;::t;~l?~~·";2' • • • ·····64~1' ·,·f.:2;3·
3.4.1 .ROOT and .END Directives •••••••••• 3-23

3-25
3-25
3-25
3-26

3.4.2 .FCTR Directive •••••••••••••••
3.4.3 Arguments for the .FCTR and .ROOT Directives •
3.4.3.l Named Input File ••••••••••••••
3.4.3.2 Specific Library Modules •••••••
3.4.3.3 A Library to Resolve References Not

3.4.3.4
3.4.3.5
3.4.4
3.4.5
3.4.5.1
3.4.6
3.4.7
3.5
3.5.1
3.5.1.1

3.5.2
3.6

3.6.1

3.6.2

3.6.3

3.7

3.8
3.9

CHAPTER 4

4.1
4 .1.1
4 .1. 2
4 .1.3
4 .1. 4
4.2
4.2.1
. 4.,4·. 2.·

Previously Resolved • • • • • • • • • • • •
A Section Name Used in a .PSECT Directive
A Segment Name Used in a .NAME Directive ••

Exclamation Point Operator ••••••••••
.NAME Directive ••••••••••

Example of The Use of The .NAME Directive
.PSECT Directive • • • • • • ••••
Indirect Command Files • • • • • • • •••

MULTIPLE-TREE STRUCTURES • • • • • • • • • • • •
Defining a Multiple-Tree Structure ••••••

Defining Co-trees With a Null Root by Using
• NAME • • • • • • • • • • • • • • • • • • •

Multiple-Tree Example ••••••••••••
CREATING AN ODL FILE FROM A VIRTUAL ADDRESS SPACE
ALLOCATION DIAGRAM • • • • • • • • • • • • • • •

Creating a .ROOT Statement by Using a Virtual
Address Space Allocation Diagram •••••••
Creating a .FCTR Statement by Using a Virtual
Address Space Allocation Diagram • • • • • • •
Creating an ODL Statement for a Co-Tree by
Using a Virtual Address Space Diagram • • • •

OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL
LANGUAGE • • • • • • • • • • • • • • • • • • •
EXAMPLE 3-1: BUILDING AN OVERLAY ••••••••
SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

OVERLAY LOADING METHODS

3-26
3-26
3-26
3-26
3-27
3-28
3-29
3-30
3-30
3-30

3-31
3-31

3-35

3-37

3-38

3-39

3-40
3-41
3-49

AUTOLOAD • • • • • • • • • • • 4-1
Autoload Indicator • • • • • • • 4-2
Path Loading • • • . • • • • •••• 4-3
Autoload Vectors • • 4-4
Autoloadable Data Segments ••••••••••• 4-7

MANUAL LOAD • • • • • • • • • • • • • • • 4-7
MACR0-11 Manual Load Calling Sequence ••••• 4-7

· MACR0-11 Manual Loaq C~ll;in9 ·,se:q:u:~n;c~. F9r· I~ ';:i.nd;',;/ ;
.o-Spaqe Tasks . • • ~: · ." .• :·· :- ··: ... · •: ·,,,g:;.,, • ,,. ,'.. :. ~a·
FORTRAN Manual Load Calling Sequence • • • : 4·_:9 4.2.3

4ii2·

4.3'
· ·: ·:EiORT;~~N,~M~hua;;t:' ;Lpa.~·: .;a~~~ iir\9'. "~e·gµ~n~~ :·.;Ao.i;

... :•:.~Af~R~~x''fi~q.}{·~·.:~:/~·:r,.'.<)~.· ··~g;:::;··~·".;,.G;_,?:·~1.:(~~;~;;/tAx.

4.4
4.5

CHAPTER 5

5.1
5 .1.1
5 .1. 2

ERROR HANDLING • • • • • • • • • • • • • • •
GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK •
USE AND SIZE OF OVERLAY RUNTIME ROUTINES ••••

SHARED REGION CONCEPTS AND EXAMPLES

SHARED REGIONS DEFINED . • • • •
The Symbol Definition File .•••
Position-Independent Shared Regions

iv

1
4-12
4-14

• 5-1
• 5-4
. 5-5

5.1.2.1
5.1.2.2
5.1.3
5.1.3.1
5.1.3.2
5.1.3.3
5.1.4
5.1.4.1

5.1.4.2

5.1.4.3
5.1.4.4

5.1.5
5.1.6
5.1.7
5.1.8

5.1.9
5.1.10

5.1.11

5.1.11.1

5.1.12

5.2
5.2.1
5.2.1.1
5.2.1.2

5.2.1.3

5.2.1.4

5.2.1.5

5.2.1.6

5.2.1.7

5.2.2
5.2.3
5.2.3.l

5.2.3.2

5.2.3.3

5.2.3.4
5.2.3.5

5.2.4
5.3
5.3.1

5.3.2

CHAPTER 6

CONTENTS
Page

Position-Independent Shared Region Mapping •• 5-5
Specifying a Position-Independent Region ••• 5-5

Absolute Shared Regions • • • • • • • 5-7
Absolute Shared Region Mapping • • • • • • 5-7
Specifying an Absolute Shared Region • • 5-7
Absolute Shared Region .STB File • • • • • 5-9

Shared Regions with Memory-Resident Overlays •• 5-9
Considerations About Building an Overlaid
Shared Region •••••••••••••
Example of Building a Memory-Resident

5-9

Overlaid Shared Region • • • • • • • • • 5-10
Options for Use in Overlaid Shared Regions • 5-10
Autoload Vectors and .STB Files for Overlaid
Shared Regions •••••••••••••••

Run-Time Support for Overlaid Shared Regions •
Linking to a Shared Region • • • • • • • • • •
Number and Size of Shared Regions ••••
Example 5-1: Building and Linking to a Common

5-11
5-13
5-13
5-17

in MACR0-11 • • • • • • • • • • • • • • • • • 5-17
Linking Shared Regions Together • • • • • 5-25
Example 5-2: Building and Linking to a Device
Common in MACR0-11 • • • • • • • • • • • • • • 5-26
Example 5-3: Building and Linking to a Resident
Library in MACR0-11 • • • • •

Resolving Program Section Names in a
5-31

Shared Region • • • • • • • • • • • • • • • 5-39
Example 5-4: Building a Task That Creates a
Dynamic Region • • • • • • • . • •••

CLUSTER LIBRARIES • • • • •••••
Building the Libraries •••••••••

Summary of Rules for Building the Libraries

5-40
5-43
5-44
5-44

Rule 1: All Libraries but the First Require
Resident Overlays • • • • • • • • • • • • • 5-45
Rule 2: User Task Vectors Indirectly Resolve
all Interlibrary References • • • • • • • • 5-46
Rule 3: Revectored Entry Point Symbols Must
Not Appear in the "Upstream" .STB File •
Rule 4: A Called Library Procedure Must Not
Require Parameters on the Stack
Rule 5: All the Libraries Must be PIC or
Built for the Same Address •••••••
Rule 6: Trap or Asynchronous Entry Into a

5-47

5-47

5-47

Library is not Permitted • • • • • • • • • • 5-47
Building Your Task • • • • • • • • • • • • 5-48
Examples • • • • • • • • • • • • • • • • • 5-48

F77CLS -- Build the Default Library for the
FORTRAN-77 OTS • • • • • • • • • • • • • • • 5-48
FDVRES -- Build an FMS-11/RSX Vl.O Shareable
Library • • • • • • • • • • • • • •
FDVRESBLD.ODL -- Overlay Description for
FMS-11/RSX Vl.O Cluster Library ••••
FCSRES Library Build ••••••••••
F77TST.CMD -- File to Build the FMS-11/RSX
Vl.O FORDEM Test Task •.•••••

Overlay Run-Time Support Requirements ••••
VIRTUAL PROGRAM SECTIONS • • • • • • • • • •

FORTRAN Run-Time Support for Virtual Program
Sections • • • • • • • •
Example 5-5: Building a Program that Uses a

5-49

5-51
5-51

5-51
5-51
5-53

5-56

Virtual Program Section • • • • • • • • • • • 5-58

PRIVILEGED TASKS

6.1 INTRODUCTION ••••••••••••••••••• 6-1

v

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

CHAPTER 7

7.1
7.2
7 •. 3

T.4
7.5
7.6
7.7
7.8
7.8.l
7.9

7.9.l
7.9.2

CHAPTER 8

8.1
8.2
8.3
8.4

8.5
8.5.1
8.5.2

8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.7
8.7.1
8.7.2
8.7.3
8.7.3.1
8.7.3 .. 2
8.7.3.3
8.7.4
8.8
8.9

8.10
8 .11

8 .12
8.13
8 .14

CONTENTS

PRIVILEGED AND NONPRIVILEGED TASK DISTINCTION
PRIVILEGED TASK HAZARDS . . • • •

• • 6-1

SPECIFYING A TASK AS PRIVILEGED
PRIVILEGED TASK MAPPING
/PR:O PRIVILEGED TASK • ~ ••
/PR:4 PRIVILEGED TASK ••••
/PR:5 PRIVILEGED TASK

• • 6-1
6-2

. 6-2
• 6-4

. . 6-5

EXAMPLE 6-1: BUILDING A PRIVILEGED TASK TO
EXAMINE UNIT CONTROL BLOCKS ••••••

OSER-MODE l- AND D-SPACE (RSX-UM-PLUS ONLY).

. 6-5

6-6

USER TASK DATA SPACE DEFINED • • • • • • • • •.•.•. ··r-1
1- AND D-SPACE TASK IDENTIFICATION •••• • •.•• 7~1
COMPARISON OF CONVENTIONAL TASKS AND I- AND
D-SPACE TASKS • • ~ • • • • •
CONVENTIONAL TASK MAPPING • • • • •
I- AND D-SPACE TASK MAPPING • • • • • • • •
TASK WINDOWS IN I- AND D-SPACE TASKS
SPECIFYING DATA SPACE IN YOUR TASK •
OVERLAID I- AND D-SPACE TASKS • • • •

Autoload Vectors and .STB Files

7-.2
. 7-2
.• 7-3

7-5
• 7-5.

• • 7 5.
• 7-9

I- AND D-SPACE TASK MEMORY ALLOCATION AND EXAMPLE
M,APS • 7-9

Virtual Memory Allocation for MAIN.TSK • • 7-10
Virtual Memory Allocation for MAINID.TSK • • • 7-10

SUPERVISOR-MODE LIBRARIES (RSX-llM-PLUS ONLY)

INTRODUCTION • • • • • •
MODE-SWITCHING VECTORS •

• • • • • • 8-1

COMPLETION ROUTINES • • • •
• • 8-1

.. 8-2
RESTRICTIONS ON THE CONTENTS OF SUPERVISOR-MODE
LIBRARIES • • • • • • • • • • •••••••
SUPERVISOR-MODE LIBRARY MAPPING • • • • • • • •

Supervisor Mode Library Data • • • • • • • • •
Supervisor Mode Libraries with I- and D-Space
Tasks •

BUILDING AND LINKING TO SUPERVISOR-MODE LIBRARIES
Relevant TKB Options • • • • • • • • •
Building the Library • • • • • • • • • •
Building the Referencing Task ••••
Mode Switching Instruction •

• 8-2
• 8-3
• 8-3

• 8-3
8-7

• 8-7
• 8-7
• 8-7
• 8-8

CSM LIBRARIES • • • • • • • • • • • • •
Building a CSM Library • • • • •
Linking to a CSM Library •• ~

• • 8-8

Example CSM Library and Linking Task ••
Building SUPER •••••••••••
Building TSUP •••••••••••
Running TSUP • • • • • • • • • • • • • • • •

The CSM Library Dispatching Process
CONVERTING SCAL LIBRARIES TO CSM LIBRARIES •
USING SUPERVISOR-MODE LIBRARIES AS RESIDENT
LIBRARIES ••••.••••••••••••
MULTIPLE SUPERVISOR-MODE LI BRAR I ES • .. • , • · •
LINKING A RESIDENT LIBRARY TO A SUPERVISOR-MODE
L I BR~ RY • • • • • • • • • • • • • • . • • , • • • _ •
LINKING SUPERVISOR-MODE LIBRARIES • ~ • • • • •
WRITING YOUR OWN VECTORS AND COMPLETION ROUTINES
OVERLAID SUPERVISOR-MODE LIBRARIES • • • • • • •

vi

• 8-8
• 8-9
8-10
8-18
8-18
8-19
8-19

.8-20

8-20
8-20

8-21
9;:..21
8-21
8-21

CHAPTER

CHAPTER

CONTENTS
Page

MULTIUSER TASKS

~r.1 ··.INTRODUCTION • • • • • • • • •••••• 9~1·
9 .1.1
9.1·.2·
9.1.3
~L2

10

10.l
10.1.l
10.1.2
10.1.3
10 .1. 4
10.1.5
10.1.6
10.1.7
10 .1. 8
10.1.9
10.1.10
10.1.11
10.1.12
10.1.13
10.1.14
lQ,.I.15
10.1.16
10.1.17
10.1.18
10.1.19
10.1.20
10.1.21
10.1.22
10.1.23
10.1.24
10.1.25
10.1.26
10.1.27
10.1.28
10.1.29
10.1.30
10.1.31
10.1.32
10.1.33
10.1.34
10.1.35
10.1.36
10.1.37
10.1.38

11

11.1
11.1.1
11.1. 2
1LL3
11.1. 4
11.1. 5

11. l. 6

11.1.7

Overlaid Multiuser Task.·.... • • • ·9-2
Disk Image 0£ ~ MUltius~t Task • • •••• ·~ ~-2.
I- and D-Space Multiuse.r Tasks .'• • • . • • .' • • ·• ... 9-3

EXAMPLE 9-1 :· BUILDING A MULTIUSE.R TASK • 9-5

SWITCHES

SWITCHES • • • • . • • • • • • . • . • .
/AC[:n] -- Ancillary Control Processor •
/AL Allocate Checkpoint Space • • • •

10-1
10-5

/CC Concatenated Object Modules • • • • • •
10-6
10-7
10-8
10-9

/CM Compatibility Mode Overlay Structure
/CO Build a Common Block Shared Region
/CP Checkpointable . • • •
/CR Cross-Reference .
/DA Debugging Aid ••
/DL Default Library .
/EA Extended Arithmetic Element •
/EL Extend Library
/FP Floating Point •••••
/FU Full Search . • • • • •
/HD Header • • • • • • • •

• • 10-10
10-11

• • 10-14
10-15

• • 10-16
•• 10-17
• • 10-18

• 10-19
• • 10-20

/ID I;.... and D-space Task (RSX..;1,lM PLUS
/IP Task Maps I/O Page •.••••

Only)·. 10 . ..;:.,21
' ' 10-22

/LB Library File •••••• • • 10-23
/LI Build a Library Shared Region • • • 10-25
/MA Map Contents of File
/MM[:n] -- Memory Management .
/MP Overlay Description ••
/MU Multiuser (RSX-llM-PLUS

• • 10-26
• • • • • 10-27

• • 10-28
Only) .• • • ., • 101""29

/NM No Diagnostic Messages
/PI Position Independent
/PM Postmortem Dump •

• • 10-30
• 10-31

• • • • • 10-32
/PR[:n] -- Privileged
/RO Resident Overlay

. • . • • . • • • 10-33
. • • • • • • • 10-34

/SE Send • • • • •
/SG Segregate Program Sections
/SH Short Map • • • • . • • • •
/SL Slave • • • • • • •
/SP Spool Map Output

• • 10-35
10-36

•••••• 10-37
• • 10-44
• • 10-45

/SQ Sequential • • • • • • • • • • • 10-46
/SS Selective Search
/TR Traceable • • • •
/WI Wide Listing Format
/XH External Header (RSX-llM~PLUS
/XT[:n] -- Exit on Diagnostic

OPTIONS

OPTIONS
ABORT -- Abort the Task-Build
ABSPAT -- Absolute Patch .
ACTFIL -- Number of Active Files
ASG -- Device Assignment • • • •

• • 10-4 7
• • • 10-50

• • 10-51
only) • .. 10-52
• • • • • 10-53

11-1
11-4
11-5
11-6
11-7

CLSTR -- System-Owned Cluster of Resident
Libraries or Commons • • . • • • . • • • •
CMPRT -- Completion Routine -- RSX-llM-PLGS

11-8

o.n l y • 11-10
COMMON or LIBR -- System-Owned Resident Common
or System-Owned Resident Library ••••••• 11-11

vii

<tl•l~.~:· .
11.1. 9
11.1.10
11.1.11
11.1.12
11.1.13
11.1.14
11.1.15
11.1.16
11.1.17
11.1.18
11.1.19
11.1.20
11.1.21
11.1.22

11.1.28
11.1. 29
11.1.30
11.1.31
11.1.32
11.1. 33

APPENDIX A

A.l
A.1.1
A. l. 2
A. l. 3
A. l. 4
A. l. 5
A. l. 6
A. l. 7
A.1.8
A. l. 9
A.2
A.3
A.4
A.4.1
A.4.2
Ae4e3
A.4.4
A.4.5
A.4.6
A.4.7
A.4.8
A.4.9
A.4.10
A.4.11
A.4.12
A.4.13

A.4.14
A.4.15
A.5
A.5.1

CONTENTS
Page

os·pPA'Jl Absolute .. ,p~tch .fQr .. D'-:space: • • J.l::.:13:
EXTSCT Program Section Extension .• 11-14
EXTTSK Extend Task Memory • • • • • • • 11-15
FMTBUF Format Buffer Size • • • • • . • 11-16
GBLDEF Global Symbol Definition • 11-17
GBLINC Include Global Symbols • 11-18
GBLPAT Global Relative Patch 11-19
GBLREF Global Symbol Reference • • • • • • 11-20
GBLXCL Exclude Global Symbols • • • • • • • 11-21
LIBR -- System-Owned Library • • • • 11-22
MAXBUF -- Maximum Record Buffer Size • • 11-23
ODTV -- ODT SST Vector • • • • 11-24
PAR -- Partition . • . • • • • • • . 11-25
PRI -- Priority • • • • • • • • • • • • 11-27
RESCOM or RESLIB -- Resident Common or
Resident Library • • • • • • • 11-28
~E~~.IB -:, Re, .. ~ .. id~n~ ... Lil:>:rc:i:rX ~ . '. . •.... ~ .•. · .• 11.-}9

···.R~SS···pp: :•-:- · R.es·ia.· •en.t: ·$:upe.i:::vi.s;or !\1aa.:e J~ipr~r;y -:,;; . , ·. ·· ; ::·
; .. Rs.~.-tl.1~:-;PL.US .··o,.n l y. . •• ····.· ••• • · ··,; · .• • ;:' .. ,... :.:; ·:.: .. L ... >: f .•. IJ;:~~l
:ROPA;R --~··:Rea~Oniy J?:arti'tiq·n. 7'";... .RSX-.111.:11;...Plt'Q'Sfl".
~Oril,y,,, •,, : •. :~ ;'.~ ',,·,·,.~,= O·~,~/- .; .. l"•·:.·, .,: .• ~ ~.,;,,,,, .. '=~· .;~,.:;,, .. · ,~·,/,, .. , .• :. ~.~--.:~-~<~ ·<~·~.,/ •. ' .·!}~'·' ·~~t'"';~:~ 'l,i"\~:3::3

STACK -- Stack Size • 11-~1.
·: ;sti.Pr.irn .· .sl,l~rvisor.-MOde ~:.±.hra.ry; .,_._ ; ;'..

·.Rsx-;11M-.PLUS)Only • • • •· ··• . • . . "114j5
TASK -- Task Name • • • • • . • • • • • • 11-36
TSKV -- Task SST Vector • • • • • • • • • 11-37
UIC -- User Identification Code 11-38
UNITS Logical Unit Usage • • • • • 11-39
VSECT Virtual Program Section • 11-40
WNDWS Number of Address Windows • 11-41

TASK BUILDER INPUT DATA FORMATS

DECLARE GLOBAL SYMBOL DIRECTORY RECORD • •
Module Name (Type 0) •••

• • A-2
• A-4

Control Section Name (Type 1) • • • • A-5
Internal Symbol Name (Type 2) • A-5
Transfer Address (Type 3) • A-6
Global Symbol Name (Type 4) • • • • • A-6
Program Section Name (Type 5) ••••
Program Version Identification (Type 6)
Mapped Array Declaration (Type 7) ••••
Completion Routine Definition (Type 10)

• • A-7
A-10

END OF GLOBAL SYMBOL DIRECTORY RECORD • • • • •
TEXT INFORMATION RECORD • • • • . •••
RELOCATION DIRECTORY RECORD •

Internal Relocation (Type 1)
Global Relocation (Type 2) •
Internal Displaced Relocation (Type 3) ••••
Global Displaced Relocation (Type 4)
Global Additive Relocation (Type 5)
Global Additive Displaced Relocation (Type 6)
Location Counter Definition (Type 7)
Location Counter Modification (Type 10)
Program Limits (Type .11) • • • • • •
Program Section Relocation (Type 12) ••
Program Section Displaced Relocation (Type 14)
Program Section Additive Relocation (Type 15)
Program Section Additive Displaced Relocation
(Type 16) ••••••••••••••••••
Complex Relocation (Type 17) ••••••
Resident Library Relocation (Type 20)

INTERNAL SYMBOL DIRECTORY RECORD
Overall Record Format • • • • • •

viii

A-10
A-11
A-11
A-11
A-12
A-14
A-15
A-15
A-16
A-16
A-17
A-17
A-18
A-18
A-19
A-19
A-20

A-21
A-22
A-23
A-24
A-24

A.5.2
A.5.2.l
A.5.2.2
A.5.2.3

A.5.3
A.5.3.l
A.5.3.2
A.5.3.3
A.5.3.4
A.5.3.5
A.5.4
A.6

APPENDIX B

B.l
B.2
B.3
B.3.1
B.3.2
B.4
B.4.1

. .)3::~ :4,: 2"',: '
'8 ~ 4.

0

3 '
B.4.4
B.4.5

APPENDIX C

C.l
C.2

APPENDIX D

D.l
D.2
D.2.1
D.2.2
D.2.3

APPENDIX E

APPENDIX F

F.l
F .1.1
F .1. 2
F .1.3
F.2
F.3

APPENDIX G

CONTENTS

TKB Generated Records (Type 1) • • . •
Start-of-Segment Item Type (1) •••
Task Identification Item Type (2)
Autoloadable Library Entry Point Item Type
(3) • • • • • • • • • • • • • • • •

Relocatable/Relocated Records (Type 2)
Module Name Item Type (1) ••••••
Global Symbol Item Type (2) •••.••••
PSECT Item Type (3) •••••••
Line-Number or PC Correlation Item Type {4)
Internal Symbol Name Item Type (5)

Literal Records (Type 4) ••••••••
END OF MODULE RECORD • • • • . • • . • •

DETAILED TASK IMAGE FILE STRUCTURE

Page

A-25
A-25
A-26

A-26
A-27
A-27
A-28
A-29
A-29
A-30
A-30
A-30

LABEL BLOCK GROUP
CHECKPOINT AREA
HEADER • • • • • •

• • B-1
• B-9
B-10

Low-Memory Context • • • •
Logical Unit Table Entry ••••

• • • • B-10
B-14

TASK IMAGE • • • • • . • • • • • B-14
B-17 Autoload Vectors for Conventional Tasks • • •

:1ru~.b;'JZoaiJ/ v~c\:'or~·./£0.i:::} ;::r.:"' .~nd.i:: ;o~.9pa~: ~t:~sJNJ}.::·.,'. .
se'gment bescdptor " :' .. '' ~ . '' ""' . " '"" "'

;Bi"':t::t'·. ·s-·ra·
Window Descriptor
Region Descriptor

HOST AND TARGET SYSTEMS

B-20
B-21

INTRODUCTION . • • • • • • • • • • • • . • . • • • C-1
EXAMPLE C-1: TRANSFERRING A TASK FROM A HOST TO A
TARGET SYSTEM • • • • • • • • • • • • • • • • • • C-2

MEMORY DUMPS

POSTMORTEM DUMPS
SNAPSHOT DUMP • • • •

Format of the SNPBK$ Macro
Format of the SNAP$ Macro
Example of a Snapshot Dump

RESERVED SYMBOLS

IMPROVING TASK BUILDER PERFORMANCE

• • D-1
• • D-5

• D-6
• • • • • • • D- 7

• • • • D-8

EVALUATING AND IMPROVING TASK BUILDER THROUGHPUT • F-1
Table Storage • • • • • • • • • • • • F-2
Input File Processing • • • • • • • • F-6
Summary • • • • • • • • • • • • • • • • • • F-6

MODIFYING COMMAND SWITCH DEFAULTS •• F-7
THE SLOW TASK BUILDER • • • • • • F-11

THE FAST TASK BUILDER

ix

APPENDIX H

GLOSSARY

INDEX

EXAMPLE 3-1
3-2
4-1
5-1
5-1
5-1
5-1
5-1
5-2
5-2
5-2
5-2
5-3

5-3
5-3
5-3
5-4
5-4
5-5
5-5
6-1
6-1
7-:li
7H2,
8-:J.;
s:-2 '
9~~

'I•

8~4!
S-IS

c·· .1

9:-rli
~d~'
l0-1
10-2
C-1
C-1

CONTENTS

ERROR MESSAGES

EXAMPLES

Map File for OVR.TSK ••••••••••••••
Map File for RESOVR.TSK ••••••••
Cross-Reference Listing of Overlaid Task •
Part 1 Common Area Source File in MACR0-11
Part 2 Task Builder Map for MACCOM.TSK ••••
Part 3 MACR0-11 Source Listing for MCOMl
Part 4 MACR0-11 Source Listing for MCOM2
Part 5 Task Builder Map for MCOMl.TSK •
Part 1 Assembly Listing for TTCOM •
Part 2 Task Builder Map for TTCOM ••
Part 3 Assembly Listing for TEST
Part 4 Memory Allocation Map for TEST •••••
Part 1 Source Listing for Resident Library

Page

3-44
3-47
4-13
5-18
5-19
5-21
5-22
5-24
5-27
5-28
5-29
5-31

LIB.MAC • • . • • • • • • • • • • • • • • • • • 5-32
Part 2 Task Builder Map for LIB.TSK • • 5-34
Part 3 Source Listing for MAIN.MAC • • • • 5-35
Part 4 Task Builder Map for MAIN.TSK • • • • • 5-37
Part 1 Source Listing for DYNAMIC.MAC • 5-41
Part 2 Task Builder Map for DYNAMIC.TSK • 5-43
Part 1 Source Listing for VSECT.FTN • • • 5-59
Part 2 Task Builder Map for VSECT.TSK • • • • • 5-61
Part 1 Source Code for PRIVEX • • • • • • • 6-7
Part 2 Task Builder Map for PRIVEX 6-10
Map o'f Overlaid Task MAIN•TSK • •. • • 7-·12
Map qf ov:er:J:a;id ·I- a!nd D-Spa:ce Tja~k MAI~ID.:!1!$~; ; :7-jM
Oode, !for SOPE,R. MAO .' • • • • • • • • •• •! • 8-!lQ
Metnbri~l 'Al'.ld,cati.on Malp for: SU:PER • • • .; • ':8-ili
Cdnlpll~tidn :.~o;uti:ne ,' i$CMPCS, from• SYSLIB~jOLO :gBJ

1
1;

od<fe ;f qr :T;S,0,~.'M~O ... ~ • •· : • • • • • • •· • .•: •. . . : -:t

M;~P~:Y.!Al'.l1~qa,t;i~O]y,i :~~p for :.~SUP .• ,•' ,. • "t:' • S;.,17
J?ia;r;t :1.· i ·~Oqr1Qe .iMJ.<St~,ng fa:>ri' '~RTAS,.K~M~C ~j: .; ·:: i 9j--6
P:c:lr'~: :~ •!Ifa~;~:·sµ,•:i.i;l'd'e1~r .·:~~B' "~9~I:":ir~qT;AS,K'.;'~sK:t• ··• •. ~ • ,;· ,g_,g
Cross-Reference Listing for OVR.TSK lO~li
Memory Allocation File (Map) Example • • • • 10-37
Part 1 Task Builder Map for LIB. TSK • • • • C-3
Part 2 Task Builder Map for MAIN.TSK •••••• C-4

D-1 Sample Postmortem Dump (Truncated) • • • • • D~2

FIGURE

D-2 Sample Program That Calls for Snapshot Dumps • • • D-9
D-3 Sample Snapshot Dump (in Word Octal and Radix-50) D-10
D-4 Sample Snapshot Dump (in Byte Octal and ASCII) • D-11

2-1
2-2
2-3
2-4
2-5

FIGURES

Relocatable Object Modules • • • • • •
Modules Linked for Mapped and Unmapped
Allocation of Task Memory
Disk Image of the Task •••••
Memory Image • • • • • • •

x

• • • • • • 2-2
Systems • • 2-3

• • 2-6
.., n

• • • • • ~- J

• • • • • 2-9

2-6

2-7

2-8

2-9
2-10
2-11

2-12
2-13
2-14

CONTENTS
Page

Simple 2-Segment, Disk-Resident Overlay Calling
Sequence • . • • • • . • • • • • • • • . • • • • 2-11
Simple 2-Segment, Memory-Resident Overlay Calling
Sequence • • • • • • • • • • • . • • • • • • • • 2-12
Virtual and Logical Address Space Coincidence
in an Unmapped System • • . • • • • .
Memory Layout for Unmapped System • • • • •
Task Relocation in a Mapped System • • • • •
Memory Management Unit's Division of Virtual

2-15
2-16
2-17

Address Space • • • . • • • • • • 2-18
Mapping for 4K-Word and 6K-Word Tasks 2-19
Window Block 0 • • • • • • • • • • • • 2-21
Virtual to Logical Address Space Translation • • 2-23

2...;J:i.6 · Mapp·.· T.,·.n.9. • .. fa.r::·· .. a·· :.co·n.ven ... ·.;tion~:.I: ·US;e.'.r.· .• ·.~a.·s'.k .. ·:····.·.:.an .. ~. :·a <~ .. :jts.:i:em' '
~t_:;,;4 ... '.:CQ1):t:~J,ni!;l'.:g: .. ·;a.'_,' .. s.up~_r,'7--i',~;~--i7<M~·(;,<~~.:i-.. 1»;--a;:r:¥ ,,'..,-±~~,-' .;~ri:,-::-:--~~,,,;,.:,, __ ·~,~-: _____ ,, > ~>t'.--<?/,:$

' ,, ,,;/ .:'·.n,s',;, ·.,l:M· .· : nr:u· :!'.<,··· C"' ·:·· "~ '' .' •. '' ,: '.: ; ,.><'/ ·"} ;, :" ;' " .. ,:' ''.: \; ; ':' :: ,,'/')' "" ,t n.;: .. :..,6· ,'.
'.:,~ > :··~ ~·~~-~'.~, . ·= ~~r:;~'. \;o· = ::~Y$:'.t;~: ... • .. :· .. _:•~- .:· ~ ... '· ~_;:· -'"'~i, •_:·.- ~-'*' : .. ·.:·,•-,= - ,~~; .:···•_,~ ----~--·. 7 .• ___ , -.. =· -~ y~~ .. ~~ .-."'

3-2
3-3
3-4
3-5
3-6A

3-6B

3-7A

3-7B

3-8
3-9

· ... :'(MaJPP,tn.~·: .3t,O,:r< ,a·. :.con:ve.~t:·~·<:!n.::rt/:P&~'.r;· :IJJa~ky ;Us}ng/.a:··.::.//. ' .. 't:·, ·,, / J

:. .supe.r:v.isprfMode, .. ti'h,ra·r~··':it:r.·~an, .. ,·.:Rs;x~11.M~Pf,,PS;f,.y$t· . :'2~~7
: ?}roJ?·i:r~f~9, ~g~· :J1a,plfifns, · (q~:· ··a!i" .:1t-:-'.·: .. fl:llo .. :· of:~'P~·i:i~/1~.s /?'~,.2·~··
TKl Built As a Single-Segment Task • • • • • • 3-4
TKl Built As a Multisegment Task • • • • • • • 3-5
TKl Built with Additional Overlay Defined .••• 3-7
TK2 Built As a Single-Segment Task • ~ • • • • 3-8
TK2 Built As a Memory-Resident Overlay • • • • 3-9
Relationship Between Virtual Address Space and
Physical Memory -- Time 1 • • • • •
Relationship Between Virtual Address Space and
Physical Memory -- Time 2 •••••
Relationship Between Virtual Address Space and
Physical Memory -- Time 3 • • • • •
Relationship Between Virtual Address Space and
Physical Memory -- Time 4 •••••
Overlay Tree for TKl • • • • • • • •
Resolution of Global Symbols in a Multisegment

3-11

3-12

3-13

3-14
3-16

Task • • • • • • • • • • • • • • • • • 3-1 7
3-10 Resolution of Program Sections for TKl • • • • • 3-19
3-11 Typical Overlay Root Segment Structure . • • • • 3-21

/3i"::i·2.• ;::··, ."T,yptca1.·p~~.r.,la ~d:· ··r=::· iiifld·:·.:I~;spa.o~>T,a&l$'/ .~.i' .. ~b ::·up;;:.."~!t~e' :J.f/l,· .> .t

··j,,~"l{;.· ,.:: · .. :~~:t!<?~~·~,.~:irt:·~ai:·;id·~··r~~;~·· ··~P·~;~~/;'ti1;:~·~'.~~;:·,~:/ .. :·:o:_···:: .. :·.:· ::.:·:::;·~·~!~·
3-14 Overlay Tree for Modified TKl • • • • • • • 3-31
3-15 Virtual Address Space and Physical Memory for

3-16
3-17

3-18
3-19

3-20
3-21
3-22

4-1
4-2
4-3
4_,4
4-5

4-6
5-1
5-2
5-3
5-4

Modified TKl • • • • • • • • • • • • • • • • • • 3-33
Overlay Co-Tree for Modified TKl • • • • • • • • 3-34
Virtual Address Space and Physical Memory for TKl
As a Co-Tree • • • • • • • • • • • • • • • • • • 3-35
Virtual Address Space Allocation Diagram • • • • 3-36
Virtual Address Space Allocation for a Main Tree
and Its Co-Tree • • • • • • • • • • • • • • • • 3-40
Overlay Tree of Virtual Address Space for OVR.TSK 3-43
Allocation of Virtual Address Space for OVR.TSK 3-46
Allocation of Virtual Address Space for
RESOVR.TSK • • • • • • • • • • • • • • 3-48
Details of Segment C of TKl • • • • • • • 4-2
Path-Loading Example • • • • • • • • 4-4
Autoload Vector Format for Conventional Tasks 4-4
Autoload Vector Format for .I;_ and D-space Tasks • 4-5
Example Autoload Code Sequence for a Conventional
Task • 4-5
Autoload Overlay Tree Example 4-12
Typical Resident Common • • • • • • • 5-2
Typical Resident Library • • • • • • 5-3
Interaction of the /LI, /CO, and /PI Switches 5-4
Specifying APRs for a Position-Independent Shared
Region •••••••••••••••••••••• 5-6

xi

5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
6-1
6-2
6-3
7:;..;1

7i-:z,,''

7;-4
T-5

7-6

7-7
7-8
7-9
8-1

8-:2

8-3

8-4

9-1
9-2
9-3

9.;..4
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24

CONTENTS
Page

Mapping for an Absolute Shared Region •••••• 5-8
Windows for Shared Region and Referencing Task • 5-15
Allocation Diagram for MACCOM.TSK • • • • • • • 5-20
Assigning Symbolic References within a Common 5-23
Allocation of Virtual Address Space for MAIN.TSK 5-38
Example Library and Task Structure • • • • • • • 5-44
Example of an Unbalanced Tree with Null Segment 5-45
Example of an Overlay Cluster Library Structure 5-45
Example of a Vectored Call Between Libraries 5-46
VSECT Option Usage • • • • • . • • • • • • • 5-55
Privileged Task Mapping •.•••••.••••• 6-3
Mapping for /PR:4 and /PR:5 . • • • • • 6-4
Allocation of Virtual Address Space for PRIVEX • 6-11

., tonvent'iofia1, ,Ta:$k' ,tiriked'tb'/c:f ,R~g,fo»n;,,Ji(1

:ari' ',anq,,"
, D-space, 'Sys t'em .' .~ , ., ' ., .• , • . • ' .• · •. ',. :• .,.~ ,' ·.," ~" • ,. , .~ , •.
I- and p.,..'spac~ Task Mapping.' in Jan an,d'.1 ':01:«~pacES! I

s·ys t~m· ,~ .- •.. • • .•. .• , .~ .• • • •. ~-' • •
Simplified pisk. Image of a Non-,Qverlald
D-Space .Tas:k • • ·• • , . ., ·., • • • • • • • ,·~ ,~,: . • ~ . i't-6'
Overlaid I- and D...;Space· Task Virtfoal Addr.es.s. Spac,~\'11:..,7

. E!xample Overlay 'Tree· for Overlaid I;_; and. b'.:..Spa:c'e, ··. ,:'.>,,
, Task ·rAND • . • • • • • • • •' • • • .; ·.,. • ,.,, • ·
Simplified Disk Image ·of Overlafd I-:' a.nd o-:space",
Task IAND' ••• ·'. • • • • • • •. •. •' • ·• "·' • ;7,;._g:
Memory Allocation· Diag!ram for MAIN.TSK, '· ,. • • •.' 7[.:..1Q
,Memory Allocat,ion Diagram for MAI,NID.TSK I-Space 7J-:.ll
Memory Allocation Diagram for MAI,NID.TSK D-Space, 7;-'11
Mapping of a 24K Conve'ntionaT •us'er' ,1TasJ< That Links 1

·

to a 16K Supervisor-Mode Library • '· • • • .' • • • i8-4'
Mapping of a 2.0K ·conventional us:er Task .that Links
to a 12K Superv isor-M0:de Libr~rY! ,ccmtaining 4K of . :
Data . ••••• ~ ••• ~ ••.•.• : .; .: , ••. r• '• ., ••• ·ist_:5
Mapping of a 40K I- a:nd D-Space' :Tas1k Tlfat :Links to 1an
8K Supervisor-Mode Li1brary •' •• : i•; •••• '•' ;• ••• ,. js...;;6
Overlay Configuration Allowed for Supetvisor..:Mode
Libraries • • • • •• • • •• • • ··: • • • • • •. ·• • ~-22
Allocation of :Program Sections i:n a Multiuse:i:;; fTask;~.191~2
Windows for a Multiuser Task • • • •. • • .•:9-3
Example Allocation of Program Sections in an
and 'D-Space• MUilti~ser1iTask ... ,. .• •·•· ••••. ,.:J •
Windows for an •I: ·and ::o-spaae Mul:ti•user r:·Tast
General Object Module Format • • • • •
Global Symbol Directory Record Format
Module Name Entry Format • • • • •
Control Section Name Entry Format
Internal Symbol Name Entry Format
Transfer Address Entry Format

;.o:t:9-4
ti '9'.'"'15
• A-3
• A-4
• A-4
• A-5
• A-5

A-6
Global Symbol Name Entry Format • • • • • •
Program Section Name Entry Format • • • •
Program Version Identification Entry Format

• • • A-6

Mapped Array Declaration Entry Format
Completion Routine Entry Format • • • • • •
End of Global Symbol Directory Record Format
Text Information Record Format • • • • • • •
Relocation Directory Record Format •
Internal Relocation Entry Format ••••••••
Global Relocation Entry Format • • • • • • •
Internal Displaced Relocaton Entry Format
Global Displaced Relocation Entry Format ••
Global Additive Relocation Entry Format
Global Additive Displaced Relocation Entry Format
Location Counter Definition Entry Format ••
Location Counter Modification Entry Format •
Program Limits Entry Format ••••••••
Program Section Relocation Entry Format

xii

A-8
A-10
A-10
A-11
A-11
A-12
A-14
A-15
A-15
A-16
A-16
A-17
A-17
A-18
A-18
A-19
A-19

TABLE

A-25
A-26
A-27

A-28
A-29
A-30
A-31
A-32
A-33

A-34

A-35
A-36
A-37
A-38

A-39
A-40
A-41
B-1
B-2

CONTENTS
Page

Program Section Displaced Relocation Entry Format A-20
Program Section Additive Relocation Entry Format A-21
Program Section Additive Displaced Relocation
Entry Format • • • • • • • • • • . • • • • • • •
Complex Relocation Entry Format • • • • •
Resident Library Relocation Entry Format •
General Format of All ISO Records . • • •
General Format of a TKB Generated Record
Format of TKB Generated Start-of-Segment Item (1)
Format of TKB Generated Task Identification Item

A-21
A-23
A-23
A-25
A-25
A-26

(2) • A-26
Format of an Autoloadable Library Entry Point

Format of a Module Name Item Type (1)
Format of a Global Symbol Item Type (2) ••••
Format of a PSECT Item Type (3) ••••••••
Format of a Line-Number or PC Correlation Item
Type (4) .•
Format of an Internal Symbol Name Item Type (5)
Format of a Literal Record Type
End-of-Module Record Format • • • • •
Image on Disk of Non-Overlaid Conventional Task
Image on Disk of Conventional Non-Overlaid Task

A-27
A-28
A-28
A-29

A-30
A-31
A-31
A-32

. B-2

Linked to Overlaid Library • • • • . • • • • • B-2
B-3 Image on Disk of Conventional Overlaid Task • B-3
~:EfA~Y;~ ; .. £ f:f iI~g~;o~· :n1;$;~' :;O~) Eoy:~r la:l'.o ':t;- .. ' and' t)~Sp.ace; _:'.Tasik .. ·B-4
B-5 Label Block 0 -- Task and Resident Library Data • B-7
B-6 Label Blocks 1 and 2 -- Table of LUN Assignments • B-9
B-7 Label Block-3 -- Segment Load List •••••••• B-9
B-8 Task Header, Fixed Part B-11
B-9 Task Header, Variable Part • • • • • B-12
B-10 Vector Extension Area Format • • • • • B-13
B-11 Logical Unit Table Entry . . B-14
B-12 Task-Resident Overlay Data Base for a

·9~1;3:

t: :, I,· '2
'8':14
B-15
B-16
B-17
B-18
D-1

2-1
2-2
2-3
2-4
4-1
5-1
7-1
10-1
10-2
11-1
A-1
A-2
A-3

B-1
B-2

Conventional Overlaid Task • • • • • • •
.. ;k'~~~f;-~'.d~~!tj}J~:~:~la:y :P~:~~.; J??l?~: f.9,r. an I~ .. "and:

... S,pq,~-~ i ~~~~l;qf<1't :"fa,Rl,<.' :' :~; ~; :~.')<,: • .• : ::• • • : • .; ·• ,:·.:_ ••.
Autoload Vector Entry for Conventional Tasks • •
Autoload Vector Entry for I- and D-Space Tasks .
Segment Descriptor . . •••
Window Descriptor • • • . •

B-15

:B~l6 ..
B-17
B-18
B-19
B-21
B-21 Region Descriptor •••••

Snapshot Dump Control Block Format • • D-6

TABLES

Program Section Attributes • • • • • • • • 2-4
and IN3 • • 2-6

• • 2-6
Program Sections for Modules INl, IN2,
Individual Program Section Allocations
Resolution of Global Symbols for INl, IN2, and
Comparison of Overlay Run-Time Module Sizes
Comparison of Overlay Run-Time Module Sizes
Mapping Comparison Summary
Task Builder Switches
Files for SEL.TSK ••••

IN3 2-7
4-16
5-52

• • • 7-2
10-2

10-47
Task Builder Options • • • . •••• 11-2
Symbol Declaration Flag Byte -- Bit Assignments
Program Section Name Flag Byte -- Bit Assignments
Relocation Directory Command Byte -- Bit

• A-7
A-8

Assignments • • • • • • • • . • • • . • • A-13
Task and Resident Library Data •••••••••• B-4
Resident Library/Common Name Block Data ••••• B-8

xiii

F-1
F-2
F-3
F-4

CONTENTS

Task File Switch Defaults ••••
Map File Switch Defaults ••••••
Symbol Table File Switch Defaults
Input Fi 1 e Sw i t ch Def au 1 ts • • • • •

xiv

Page

• • • F-8
F-10
F-10
F-11

PREFACE

MANUAL OBJECTIVES

This manual describes the concepts
RSX-llM/M-PLUS Task Builder.

and capabilities of the

Working examples are used throughout this manual to introduce and
describe features of the Task Builder. Because RSX-llM systems
support a large number of progranu~ing languages, it is not practical
to illustrate the Task Builder features in all of the languages
supported. Instead, most of the examples in the main text of this
manual are written in MACR0-11.

INTENDED AUDIENCE

Before reading this manual, you should be familiar with the
fundamental concepts of your operating system (RSX-llM or
RSX-llM-PLUS) and with the operating procedures described in the
RSX-llM/M-PLUS MCR Operations Manual. In addition, you should be
fam1l1ar with the programming concepts described in the RSX-llM/M-PLUS
Guide to Program Development.

STRUCTURE OF THIS DOCUMENT

This manual has 11 chapters.
follows:

Their contents are summarized as

• Chapter 1 describes the Task Builder command sequences that
you use to interact with the Task Builder.

• Chapter 2 describes the basic Task Builder functions,
including the Task Builder's allocation of virtual address
space and the resolution of global symbols. It also contains
an introduction to supervisor-mode libraries, privileged
tasks, and multiuser tasks.

• Chapter 3 describes the Task Builder's overlay capability and
the language you use to define an overlay structure.

• Chapter 4 describes the two methods available to you to load
overlay segments.

• Chapter 5 describes some typical Task Builder features,
including tasks that access shared regions and device commons,
tasks that create dynamic regions, and virtual program
sections.

xv

PREFACE

• Chapter 6 defines privileged tasks, describes their mapping,
and shows how to build a privileged task to examine unit
control blocks.

·•)cb;aipter, 7 .. descr;i:be,s 'use.r~m9f)e,· ·1~ :an(t•··tj~s~ace '· .the . jnappj.,ng .· ·(Jf;' ..
l , thj~$e . $,~aces , :and the a(jv~Qtage'.,$· ,l9f, :u'sing ·· I-· · and D7'·spa:qe f,n ,

"t·!'+,.,';u·~e;r~ :inqqe: · .:· ·:: .:: tlJ r .. ' 1 'i"i;.;s:L' · ·'

c/.·.~·· .·.~::~ :t.··.:,('../_,: .:.'.-., ·l ..• : :.= f ... ·. r,,.··' · , .. !, "·. ·.·.. •.. . .·.·· .· . · ... "' ';"J H' t",~ r l·ttl
••• • ,,,- , •• ," , v •• • , • ,·'~ ·rr,-~1.:.~.:.··.:·.•.·· .. ·.; .. ·!·:·····:'.·j·1;:·.·.··~-"'.·~· .. ·.'. '.:*,·.:~.·, ,,J~··\ · 1 .tj:·.is:· .. aescri,b'es/'.S~per'.v· '·"t~ij,,·:,,·'

, :;,~'.~1· ~~~'.:"~: · ~~o.ws».: ·;·buw· · ;. 1 .:· .;·t. ~~1-~~··H·r~

.·~·~,~~.·~~~w~~ , : .. ··~'.:09~,~~:~;fip~~:,<'~i~'~~I·,:~h~~;'.~~~:)~',·~tJ~l,,~,,
• Chapter 10 lists and describes the Task Builder switches. The

switches are listed in alphabetical order.

• Chapter 11 lists and describes the Task Builder options. The
options are listed in alphabetical order.·

This manual also contains eight appendices.
summarized as follows:

Their contents are

• Appendix A contains a detailed description of the Task Builder
input data structures.

• Appendix B contains a detailed description of the task image
file structure.

• Appendix C describes the considerations for building a task on
one system to run on a system with a different hardware
configuration.

• Appendix D describes two memory dumps:
snapshot.

postmortem and

• Appendix E contains a list of the symbols and program section
names reserved for Task Builder use.

• Appendix F contains information on improving Task Builder
performance.

• Appendix G describes the fast Task Builder.

• Appendix H contains the Task Builder error messages.

A Task Builder glossary follows the appendices.

ASSOCIATED DOCUMENTS

Other manuals closely allied with this document are described in the
Information Directory and Master Index for your operating system.
This directory defines the intended audience of each manual in the
documentation set and provides a brief synopsis of each manual's
contents.

X\7 i

PREFACE

CONVENTIONS USED IN THIS DOCUMENT

In this manual, horizontal ellipses (•••) indicate that additional,
optional arguments in a statement format have been omitted. For
example:

input-spec, •••

means that one or more input-spec items, separated by commas, can be
specified.

vertical ellipses mean that lines in an example, command lines, or
lines in a Task Builder map file that are not pertinent to an example
have been omitted. For example:

TKB>input-line

means that one or more of the indicated TKB items have been omitted.

The words "Task Builder" in this manual have been abbreviated to the
acronym TKB.

Unless otherwise stated, references to tasks, their mapping, and their
structure imply a nonprivileged task in an RSX-llM mapped system.

In the examples of Task Builder command sequences, the portion of the
command sequence that you type is printed in red. The Task Builder's
responses and prompts are printed in black.

Shading in the manual has the following meanings:

;/P~:n~... ",·.rnai,oa,:te,s,·.t.tliat ... tl:le · ... te;xt:baesq.r:iJ:>~~/·.:fe.a·tiI.:f.e.~ ··~PP~.a.r.ing/<Jql.,Y ·
·· ,,. pn 1 ·RSXi-J:lM · pperatin9 ··· .syst·ems·."; · · ·

<··~1~~ic;CT·¥~~;<fha~O::·t~·e .. ·~~~·t:· c}e~scrt··bt?~··,,:f~.a.~·u.r:~;s· .. ;~ppe~x;·iit~'<l'9.~~f.,i'.
.;:;.e.I?:.:~;R~.&·:-:HM~.P'LUS· :9p,er.at:'ln9· ·.s.ystems; /"/ .. · ,: · <·;,. . ·· .:.: .. · :./ ·/,/·'.:

xvii

SUMMARY OF TECHNICAL CHANGES

This manual contains the changes for RSX-llM Version 4.1 and
RSX-llM-PLUS Version 2.1. This manual has been extensively revised.
A study of the Table of Contents and this Summary of Technical Changes
is recommended before you look for information in the manual.

GENERAL CHANGES

Editorial changes were made throughout the manual
typographical errors.

to correct

Small technical changes were made throughout the manual as a result of
ongoing development, SPR responses, and readers' comments.

The major technical changes to the manual are listed below.

TECHNICAL CHANGES

NEW OPTIONS

DSPPAT -- Allows object-level patching of a conventional task or
J~b~;::Pt'~:,~:.~~~;ii·:W+fz~! •.ffB::l~~i.~~~~2£.~~ft~i

CHANGED OPT IONS

ABSPAT -- Allows object-level patching of a conventional task or
'lt;ififg~~~tf~l;f:;'!?~ti';~~f:!l'~~}01t·;i::~pµE·~t1'.?r;'§t~~~.;

COMMON -- The COMMON option causes the common to be mapped with
,·''#,~ff,;~LfJ!>~~',~.~ ~ij<J~·tiif:.~~t§~:}J,~Im~bij.

' ' iair:f i:id ~; itia;p~ with ,·bo.tb
. t;q,' :~iP .. i~:- · ;a[l~ .P:ispa<::e task. ·

'R\ESGQM·~- fne:·RESqdM::op;f:i~o~· .. ~aus·e~·:.tll~.··~b#(}h)t'~.::*'; ·lll~ppE!d·.: with
o...: .. Rpace ... ·APR.s~· .:~'her~f.or~ .: ; fO~ ·, ' .. and; :·p.:.:$'pi<;lc~: t\~sks 1: th~ <;pmmon
CElil ~::ntain tl'Gi't<i:· ph1ly .•. ' . r. ' I ' '

1
'

, ' • .;> ·~ ~' : <' "' " ' ' . , .. '

RESLIB -~·.The R]:svrn. ()Ptio .. n· CcFU.Ses 'the lib.~~ty: ',f6 ';be m.appe~: with·
both :IC:....space : artt:i o:...:spa.c.e. APRS" ·:when· 11.n:k'ed: :tor an ;l.-' and; ·o~sp9ce
task .• ,;

xix

SUMMARY OF TECHNICAL CHANGES

NEW ERROR MESSAGES

Module module-name contains incompatible autoload vectors

CHANGED ERROR MESSAGES

Lookup failure resident library file
changed to

Lookup failure resident library file - filename.ext

MISCELLANEOUS TECHNICAL CHANGES

Autoload vectors for conventional tasks have changed. The call
to $AUTO is now made indirectly through .NAUTO in the overlay
impure area.

I·· and o-space task's in:ay 'be overlaid by using, e~ thet' autol,.q;~a,
manual load. . l'

. Autoload vectors for I- and D-space tasks have a fq~rttat dt,C'f~t,ent
from those of conventional. tasks. The autoload .v~ctorS, 'for ·1-·

. and D-space tasks contain an !-space part locat;:ed in :the.> ,task~' s
I-space and a o-:space part ·located in: the task 1 ~ D'.""space: .. · ·

Memory allocation diagrams may be used as an aid to create .ODL
files.

Overlay Run-time System routines have changed size from the
previous release.

MACR0-11 and FORTRAN manual load calling sequences for overlays
in I- and D-space tasks may not use asynchronous loading.

For versions of TKB that support I- and D-space tasks and that
were used to build libraries, TKB allocates autoload vectors in
the root of the task only for those autoloadable entry points in
the library referenced by the task.

I- and D-space tasks may link to commons, conventional libraries,
and supervisor-mode libraries.

Loading I- and D-space tasks into memory requires two disk
accesse.s. Overlaid I- and D-space tasks may require,
addition, two disk accesses for loading each segment if
segment contains both I-space and D-space.

in
the

Segment descriptors for I- and D-space tasks contain an exteqsion
for the D-space part.

Only one level of ov·erlay is allowed
libraries.

in supervi.sor-mode

I- and :o-space multi user task:s ,are· allr;:>w~.:, 1!KB: uses f~11r win~o~
.blocks to map these tasks.

Internal Symbol Directory Records, along with their formats, are
described in Appendix A. They consist of:

• Type 1 records, generated by TKB and output to the .STB file

• Type 2 records, generated by language processors

xx

SUMMARY OF TECHNICAL CHANGES

• Type 3 records, created from type 2 records and output to the
.STB file

• Type 4 records, written to the .STB file without modification

A new bit called LD$TYP distinguishes between a library or common.
See offset R$LFLG in the resident library name block data in Appendix
B.

The first library in a cluster may be overlaid and contain a non-null
root.

New Task Builder reserved symbols have been added to Appendix E.

The Fast Task Builder supports the /EA switch and the TASK= option.

>'.ro'e':r,m'{lp,,"f~>,.rm.at'.~o:~,··.:~n/r~./anq,·.:1J:-f»pa,c,,~".'ta·sk~ .. ~b~iws·,."bo~·~: · . .:~~·:·'.>~~d'J:O~.~I~~~·
:'c(?tit,:·~:"i,:li~);·~ton.~:·· ·.~q", :.a··:·'..·s~g~e~lt,'/, ~Q·g ";·.£,q.e•' .. :' :'d.f.s:~ ·ti,l:eQ9'~~f.·thp:t' :'C:Qnta.:i,11 .'~~,,ta·,
,..s;e;e;ti.ons"'·

-~ ,. "'' ., ~,_/ ~ , .. ' ~,

Other minor technical and editorial changes have been made also.

xxi

CHAPTER 1

INTRODUCTION AND COMMAND SPECIFICATIONS

The basic steps in developing a program are as follows:

1. You write one or more routines in an RSX-llM/M-PLUS supported
source language and enter each routine as an ASCII text file,
through an editor.

2. You submit each text file to the appropriate language
translator (an assembler or compiler), which converts it to a
relocatable object module.

3. You specify the object modules as input to the Task Builder
(TKB), which combines the object modules into a single task
image output file.

4. You install and run the task.

If you find errors in the task when you run it, you make corrections
to the text file using the editor, and then repeat steps 2 through 4.

The Task Builder 1 s main function is to convert relocatable object
modules (.OBJ files) into a single task image (.TSK file) that you can
install and run on a RSX-llM or RSX-llM-PLUS system. The task is the
fundamental executable unit in both systems.

If your program consists of a single object module, using the Task
Builder (TKB) is appropriately simple. You specify as input only the
name of the file containing the object module produced from the
translation of the program, and specify as output the task image file.

Typically, however, programs consist of more than a single object
module. In this case, you name each of the object module files as
input. TKB links the object modules, resolves references between
them, resolves references to the system library, and produces a single
task image ready to be installed and executed.

TKB makes a set of assumptions (defaults) about the task image based
on typical usage and storage requirements. You can override these
assumptions by including switches and options in the task-building
terminal sequence. Thus, you can build a task that is tailored to its
own input/output and storage requirements.

TKB also produces {upon request) a memory allocation (map) file that
contains information describing the allocation of address space, the
modules that make up the task image, and the value of all alobal
symbols. In addition, you can request that a list of global symbols,
accompanied by the name of each referencing module, be appended to the
file (global cross reference) •

1-1

INTRODUCTION AND COMMAND SPECIFICATIONS

Note that the examples in this manual use MCR as the operating system
language. Refer to the RSX-llM-PLUS Command Language Manual and, in
particular, to the command in that manual for DIGITAL Command Language
equivalence.

The following example shows a simple sequence for building a task:

>MAC PROG=PROG
>TKB PROG=PROG
>INS PROG
>RUN PROG

The first command (MAC) causes the MACR0-11 assembler to translate the
source code of the file PROG.MAC into a relocatable object module in
the file PROG.OBJ. The second command (TKB) causes TKB to process the
file PROG.OBJ and to produce the task image file PROG.TSK. The third
command (INS) causes the INSTALL processor to add the task to the
Executive's directory of executable tasks (System Task Directory).
The fourth command (RUN) causes the task to execute.

The example just given includes the command

>TKB PROG=PROG

This command illustrates the simplest use.of TKB. It gives the name
of a single file as output and the name of a single file as input.

The following sections describe basic Task Builder command forms and
sequences.

1.1 TASK COMMAND LINE

The task command line contains the output file specifications,
followed by the input file specifications; they are separated by an
equal sign (=). You can specify up to three output files and any
number of input files.

The task command line has the following form:

task-image-file,map-file,symbol-definition-file=input-file, •••

You must give the output files in a specific order: the first file
you name is the image (.TSK) file; the second is the memory
allocation (.MAP) file; and the third is the symbol definition (.STB)
file. The map file lists information about the size and location of
components within the task. The symbol definition file contains the
global symbol definitions in the task and their virtual or relocatable
addresses in a format suitable for reprocessing by TKB. You specify
this file when you are building a resident library or coITuuon.
(Resident libraries and commons are described in Chapter 3.) TKB
combines the input files to create a single task image that can be
installed and executed.

1.1.1 Printing the Map File

If you create a map file by specifying one in the TKB
there are a number of ways that you can print the file.
examples show you ways that you may print the map file.

command line,
The following

1. With the following two command lines, you can create a map
file and then print it later. The TKB command line tells TKB
to create a task file, a map file without printing it (by use

1-2

INTRODUCTION AND COMMAND SPECIFICATIONS

of the switch /-SP), and a symbol definition file. The PRINT
command line tells the system to print the map file.

>TKB INV.TSK,INV.MAP/-SP,INV.STB=INV.OBJ
>PRINT INV. MAP

2. With the next command line, you can print the map file
directly as it is created. In this case, TKB tells the
system to print the file by use of the switch /SP. However,
the system task PRT ••• or ••• PRT must be installed for this
method to work.

>TKB INV.TSK,INV.MAP/SP,INV.STB=INV.OBJ

3. With the next command line, you can print the map file on a
line printer that you specify. It is best to use this
command line on an RSX-llM-PLUS system because that system
uses transparent spooling. Using this command line on an
RSX-llM system may cause the printer to be unavailable to
other tasks. See your system manager for specific details
about using the following command line.

>TKB INV.TSK,LPn:,SY:INV.STB=INV.OBJ

1.1.2 Omitting Specific Output Files

You can omit any output file by replacing the file specification with
the delimiting comma that would normally follow it. The following
commands illustrate the ways in which TKB interprets the output file
names.

Command Output Files

>TKB IMGl,IMGl,IMGl=INl The task image file is IMGl.TSK, the
memory allocation (map) file is
IMGl.MAP, and the symbol definition file
is IMGl. STB.

>TKB IMGl=INl The task image file is IMGl.TSK.

>TKB ,IMGl=INl The map file is IMGl.MAP.

>TKB ,,IMGl=INl The symbol definition file is IMGl.STB.

>TKB IMGl,,IMGl=INl The task image file is IMGl.TSK and the
symbol definition file is IMGl.STB.

>TKB =IN! This is a diagnostic run with no output
files.

1.2 MOLTILINE INPUT

Although
specify
files, a
consists
when you
1. 3) •

you can specify a maximum of three output files, you can
any number of input files. When you specify several input
more flexible format is sometimes necessary one that

of several lines. This multiline format is also necessary
want to include options in your command sequence (see Section

1-3

INTRODUCTION AND COMMAND SPECIFICATIONS

If you type TKB, the Monitor Console Routine (MCR) activates the Task
Builder. TKB then prompts for input until it receives a line
consisting only of the terminating slash characters (//). For
example:

>TKB
TKB>IMGl,IMGl=INl
TKB> IN2 I IN3
TKB> //

This sequence produces tpe same result as the single line command

>TKB IMGl,IMGl=INl,IN2,IN3

Both command sequences produce the task image file IMGl.TSK and the
map file IMGl.MAP from the input files INl.OBJ, IN2.0BJ, and IN3.0BJ.

You must specify the output file specifications and the equal sign (=)
on the first command line. You can begin or- continue input file
specifications on subsequent lines.

When you type the terminating slash characters (//), TKB stops
accepting input, builds the task, and returns control to MCR.

1. 3 OPTIONS

You use options to specify the characteristics of the task you are
building. To include options in a task, you must use the multiline
format. If you type a single slash (/) following the input file
specification, TKB requests option information by displaying ENTER
OPTIONS: and prompting for input. For example:

>TKB
TKB>IMGl,IMGl=INl
TKB> IN2 I IN3
TKB/
Enter Options:
TKB> PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>//

In this sequence there are two options: PRI=lOO and COMMON=JRNAL:RO.
The two slashes end option input, initiate the task build, and return
control to MCR upon completion.

NOTE

When you are building an overlaid task,
there are exceptions to the use of the
single slash (/). Overlaid tasks are
described in Chapter 4.

The RSX-llM/M-PLUS Task Builder provides numerous options, which are
described in Chapter 11. The general form of an option is a keyword
followed by an equal sign (=) and an argument list. The arguments in
the list are separated from one another by a colon (:). In the
example above, the first option consists of the keyword PRI and a
single argument indicating that the task is to be assigned the
priority 100. The second option consists of the keyword COMMON and an
argument list, JRNAL:RO, indicating that the task accesses a resident

1-4

INTRODUCTION AND COMMAND SPECIFICATIONS

common region named JRNAL and that the access is read-only. You can
specify more than one option on a line by using an exclamation point
(!) to separate the options. For example, the command

TKB>PRI=lOO!COMMON=JRNAL:RO

is equivalent to the two lines:

TKB> PRI=lOO
TKB>COMMON=JRNAL:RO

Some options accept more than one set of argument lists. You use a
comma (,) to separate the argument lists= For example 1 in the command

TKB>COMMON=JRNAL:RO,RFIL:RW

the first argument list indicates that the task has requested
read-only access to the resident coITu~on JRNAL. The second argument
list indicates that the task has requested read/write access to the
resident common RFIL.

The following three sequences are equivalent:

TKB>COMMON=JRNAL:RO,RFIL:RW

TKB>COMMON=JRNAL:RO!COMMON=RFIL:RW

TKB>COMMON=JRNAL:RO
TKB>COMMON=RFIL:RW

1.4 MULTIPLE TASK SPECIFICATIONS

If you intend to build more than one task, you can use the single
slash (/) following option input. This directs TKB to stop accepting
input, build the task, and request information for the next task
build. For example:

> TKB
TKB> IMGl=INl
TKB> IN2, IN3
TKB> I
Enter Options:
TKB> PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>/
TKB>IMG2=SUB1
TKB> //

TKB accepts the output and input file specifications and the option
input; it then stops accepting input upon encountering the single
slash (/) during option input. TKB builds IMGl.TSK and then returns
to accept more input for building IMG2.TSK.

1.5 INDIRECT COMMAND FILES

You can enter commands to TKB directly from the keyboard, or
indirectly through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains the
TKB commands you want to be executed. Later, after you invoke TKB,
you type an at sign (@) followed by the name of the indirect command
file.

1-5

INTRODOCTION AND COMMAND SPECIFICATIONS

For example, suppose you create a file called AFIL.CMD containing the
following:

IMGl, IMGl=INl
IN2,IN3
I
PRI=lOO
COMMON=JRNAL:RO
II

Later, you can type:

>TKB
TKB>@AFIL
TKB>

or simply:

>TKB @AFIL

When TKB encounters the at sign (@), it directs its search for
commands to the file named AFIL.CMD. The example above is equivalent
to the keyboard sequence

>TKB
TKB>IMGl,IMGl=INl
TKB> IN2, IN3
TKB>I
Enter Options:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>ll

When TKB encounters two terminating slash characters <II> in the
indirect command file, it terminates indirect command file processing,
builds the task, and exits to MCR.

When TKB encounters a single slash (I) in an indirect command file and
the slash is the last character in the file, TKB directs its search
for commands to the terminal. For example, suppose the file AFIL.CMD
in the last example is changed to read:

IMGl I IMGl= INl
IN2,IN3
I

Later, you can type:

>TKB
TKB>@AFIL

In this case, TKB goes to the terminal and prompts:

Enter Options:
TKB>

From this point, you input options to TKB directly from the keyboard.
If you then conclude option input from the keyboard with double
slashes <II>, TKB suspends command processing, as described above, and
exits to MCR following the task build. If you conclude option input
with a single slash (I), TKB prompts for new command input following
the task build of IMGl.TSK, as follows:

TKB>

1-6

INTRODUCTION AND COMMAND SPECIFICATIONS

Using the single slash (I) following option input in indirect command
files is a convenient way to return control to your terminal between
successive task builds. For example, suppose you create two indirect
command files. The first, AFIL.CMD, contains:

IMGl, IMGl=INl
IN2, IN3
I
PRI=lOO
COMMON=JRNAL
I

The second, AFILl.CMD, contains:

IMG2, IMG2= IN4
INS, IN6
I
PRI=lOO
II

Then, the terminal sequence to build these two tasks is:

)TKB
TKB>@AFIL
TKB>@AF!Ll
>

NOTE

For interaction with a TKB indirect
command file as described above, you
must use the multiline format when you
specify the indirect command file.

TKB permits two levels of indirection in file references. That is,
the indirect command file referenced in a terminal sequence can
contain a reference to another indirect command file. For example, if
the file BFIL.CMD contains all the standard options that are used by a
particular group of users at an installation, you can modify AFIL to
include an indirect command file reference to BFIL.CMD as a separate
line in the option sequence. ·

The contents of AFIL.CMD would then be:

IMGl, IMGl= INl
IN2, IN3
I
PRI=lOO
COMMON=JRNAL:RO
@BFIL
II

To build these files, you type:

>TKB
TKB> @AFIL

Suppose the contents of BFIL.CMD are:

STACK=lOO
UNITS=5!ASG=DT1:5

1-7

INTRODUCTION AND COMMAND SPECIFICATIONS

Then the terminal equivalent of building these files is:

>TKB
TKB>IMGl,IMGl=INl
TKB>IN2,IN3
TKB>I
Enter Options:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>STACK=lOO
TKB>UNITS=5!ASG=DT1:5
TKB>ll

The indirect command file reference must appear on a separate line.
For example, if you modify AFIL.CMD by adding the @BFIL reference on
the same line as the COMMON=JRNAL:RO option, the substitution would
not take place and TKB would report an error.

1.6 COMMENTS IN LINES

You can include comments at any point in the command sequence, except
in lines that contain file specifications. You begin a comment with a
semicolon (;) and terminate it with a carriage return. All text
between these delimiters is a comment.

For example, in the indirect command file AFIL.CMD, described in
Section 1.5, you can add comments to provide more information about
the purpose and the status of the task.

TASK 33A

DATA FROM GROUP E-46 WEEKLY
;
IMGl,IMGl=

; PROCESSING ROUTINES

INl
;
; STATISTICAL TABLES

IN2
;
; ADDITIONAL CONTROLS
;
IN3
I
PRI=lOO
;
COMMON=JRNAL:RO ; RATE TABLES
;
; TASK STILL IN DEVELOPMENT
;
II

1.7 FILE SPECIFICATIONS

TKB adheres to the standard RSX-llMIM-PLUS conventions for file
specifications. For any file, you can specify the device, the user
File Directory (UFO), the file name, the file type, the file version
number, and any number of switches.

1-8

INTRODUCTION AND COMMAND SPECIFICATIONS

The file specification has the form

device:[group,member]filename.type;version/swl/sw2 ••• /swn

When you specify files by name only, TKB applies the default switch
settings for device, group, member, type, and version.

For example:

>TKB
TKB>IMGl,IMGl=INl
TKB>IN2,IN3
TKB>//

If the current User Identification Code (UIC) of the terminal that TKB
is running on is [200,200], the task image file specification of the
example is assumed to be:

SYO: [200,200]IMG1.TSK;l

That is, TKB creates the task image
under UFO [200,200]. The default
and, if the name IMGl.TSK is new,
default settings for all the task
defaults are described in detail in

For example:

file on the system device (SYO:)
type for a task image file is .TSK
the version number is 1. The
image switches also apply. Switch
Chapter 6.

>TKB
TKB>[(20,23]]IMG1/CP/DA,IMG1/CR=IN1
TKB>IN2;3,IN3
TKB>//

This sequence of commands instructs TKB to create a task image file
IMGl.TSK;l and a memory allocation (map) file IMGl.MAP;l (actually, it
produces IMGl.TSK and IMGl.MAP with versions one higher than the
current versions) under UFO [20,23] on the device SY:. The task image
is checkpointable and contains the standard debugging aid (ODT) • TKB
outputs the map to the line printer with a global cross-reference
listing appended to it. TKB builds the task from the latest versions
of INl.OBJ and IN3.0BJ, and the specific version of IN2.0BJ. The
input files are all found on the system device.

The system device (SY:) is always the default device unless you
specify otherwise. If you specify another device on either side of
the equal sign, that device becomes the default device for the files
on that side of the equal sign. For example:

>TKB
TKB>[[20,23]]IMGl,IMGl,IMGl=DBl:IMGl,INl,IN2

This command line produces a task image file, map file, and listing
file in UFO [20,23] on device SY:. All the object files are in UFO
[20,23] on device DBl. In cases where files are scattered among
several devices, the devices must be specified in the command line.

For some files, a device specification is sufficient. In the example
above, the map file could be fully specified by the device LP:. The
map listing is produced on the line printer, but is not retained as a
file.

This example also used switches /CP, /CR, and /DA. The code, syntax,
and meaning for each switch are given in Chapter 6.

1-9

INTRODUCTION AND COMMAND SPECIFICATIONS

1.8 SUMMARY OF SYNTAX RULES

The syntax rules for issuing commands to TKB are as follows:

• A task-build command can take any one of four forms. The
first form is a single line:

>TKB task-command-line

The second form has additional lines for input file names:

>TKB
TKB>task-command-line
TKB>i npu t-li ne

TKB>terminating-symbol

The third form allows you to specify options:

>TKB
TKB>task-command-line
TKB>I
Enter Options:
TKB)option-11ne

TKB>terminating-symbol

The fourth form has both input lines and option lines:

>TKB
TKB>task-command-line
TKB>i npu t-li ne

TKB>I
Enter Options:
TKB>option-line

TKB>terminating-symbol

The terminating symbol can be:

I if you intend to build more than one task

II if you want TKB to return control to MCR

• A task command line has one of the three forms:

output-file-list=input-file, •••

=input-file, •••

@indirect-command-file

The third form is an indirect command file specification, as
described in Section 1.5.

1-10

INTRODUCTION AND COMMAND SPECIFICATIONS

• An output file list has one of the three forms:

task-image-file,map-file,symbol-definition-file

task-image-file,map-file

task-image-file

The task-image-file is the file specification for the task
image file; map-file is the file specification for the memory
allocation (map) file; and symbol-definition-file is the file
specification for the symbol definition file. Any of the
specfications can be omitted, so that, for example, the
following form is permitted:

task-image-file,,symbol-definition-file

• An input line has one of two forms:

input-file, •••

@indirect-command-file

Both input-file
specifications.

and indirect-command-file

• An option line has one of two forms:

option t •••

@indirect-command-file

The indirect-command-file is a file specification.

• An option has the form:

keyword=argument-list, •••

The argument-list is:

arg: •••

The syntax for each option is given in Chapter 6.

are file

• A file specification conforms to standard
conventions. It has the form:

RSX-lM/M-PLUS

device:[group,member]filename.type;version/swl/sw2 ••• /swn

device:

The name of the physical device on
containing the desired file is mounted.
of two ASCII characters followed by an
2-digit octal unit number and a colon;
or DTl:.

group

which the volume
The name consists
optional 1- or
for example, LP:

The group number, in the range of 1 through 377(8).

1-11

INTRODUCTION AND COMMAND SPECIFICATIONS

member

The member number, in the range 1 through 377(8).

filename

The name of the desired file. The file name can contain up
to 9 alphanumeric characters.

type

The 3-character file type identification. Files having the
same name but a different function are distinguished from
one another by the file type; for example, CALC.TSK and
CALC.OBJ.

version

The version
versions of
another by
CALC.OBJ;2.

number, in octal, of the file. Various
the same file are distinguished from one

this number; for example, CALC.OBJ;l and

All components of a file specification are optional. The
combination of the group number and the member number is
the User File Directory (UFD) that contains the file name.

1-12

CHAPTER 2

TASK BUILDER FUNCTIONS

The process of building a task involves three distinct Task Builder
(TKB) functions:

1. Linking object modules

2. Assigning addresses to the task image

3. Building data structures into the task

First, TKB is a linker. It collects and links the relocatable object
modules that you specify to it into a single task image, and resolves
references to global symbols across the module boundaries.

Second, TKB assigns addresses to the task image. On mapped systems,
TKB assigns addresses for a task beginning at O. The Executive then
relocates the addresses at run time. On unmapped systems, TKB assigns
addresses for a task beginning at the base address of the partition in
which the task is to run. The addresses of tasks that run on unmapped
systems are not relocated at run time.

NOTE

Unless otherwise indicated, references
to tasks that run on mapped systems
assume that the tasks are nonprivileged
and residing within system-controlled
partitions.

Third, TKB builds data structures
required by the INSTALL processor
Executive to run it.

into
to

the task image that are
install the task and by the

This chapter describes the three TKB functions in detail. It also
describes the concepts of mapped and unmapped systems. In addition,
this chapter introduces regions, supervisor-mode libraries, overlays,
privileged tasks, I- and D-space tasks, and many of the mapping
concepts necessary for an understanding of task mapping and Task
Builder functions.

2~1 LINKING OBJECT MODULES

TKB links object modules within the context of program sections and
resolves references to global symbols across module boundaries.

When the language translators convert symbolic source code within a
module to object code, they assign provisional 16-bit addresses to the
code. A single assembly or compilation produces a single object

2-1

TASK BUILDER FUNCTIONS

module. In its simplest form, each module begins at O and extends
upward to the highest address in the module. Three object modules
produced at separate times might have the address limits shown in
Figure 2-1.

1000-r-:------

750

500

MODULE #1 MODULE #3

MODULE #2

RELOCATABLEO....._._ ___ _. RELOCATABLEO ------~-RELOCATABLEO
ZK-377-81

Figure 2-1 Relocatable Object Modules

If these modules represent the separate modules of a single program,
TKB links them together and modifies the provisional addresses to one
of the following:

• For a mapped system, a single sequence of addresses beginning
at O and extending upward to the sum of the lengths of all the
modules (-1 byte)

• For an unmapped system, a single sequence of addresses
beginning at a base address assigned at task-build time and
extending upward to the sum of the lengths of all the modules
(-1 byte)

For example, Figure 2-2 shows the three modules linked for a mapped
system and the modules linked for an unmapped system.

2.1.1 Allocating Program Sections

The language translators process source code and TKB links object
modules within the context of program sections. A program section is
a block of code or data that consists of three elements:

• A name

• A set of attributes

• A length

A program
placement
maintain a
program.
length are

section is the basic unit used by TKB to determine the
of code and data in a task image. The language translators
separate location counter for each program section in a
The name of each program section, its attributes, and its
conveyed to TKB through the object module.

2-2

TASK BUILDER FUNCTIONS

2250 -.------

MODULE #3

I

11 MODULE #2

11

MODULE #1

I
0
ll __

MAPPED
SYSTEM

3250

•

I

I-'-BASE 1000

MODULE #3

MODULE #2

MODULE #1

UNMAPPED
SYSTEM

ZK-378-81

Figure 2-2 Modules Linked for Mapped and Unmapped Systems

You can create as many program sections within a module as you wish by
explicitly declaring them (with the COMMON statement in FORTRAN or the
.PSECT directive in MACR0-11, for example} or by allowing the language
translator to create them. If you do not explicitly create a program
section in your source code, the language translator you are working
with will create a "blank" program section within each module
translated. This program section will appear on your listings and
maps as • BLK •• For more information on explicitly declared program
sections, see your language reference manual.

A program section's name is the name by which the language translator
and TKB reference it. When processing files, both the language
translator and TKB create internal tables that contain program section
names, attributes, and lengths. A named program section can be
declared more than once. However, all occurrences of that named
program section must have identical attributes if the section occurs
more than once in the same module or if the section is a global
program section. Identically named program sections within the same
module and global program sections with differing attributes cause TKB
to declare the program section as having multiple attributes, which is
an error. However, identically named program sections with differing
attributes may appear in different trees of an overlaid task if the
program sections have the local (LCL} attribute.

2-3

TASK BUILDER FUNCTIONS

Program section attributes define a program section's contents, its
placement in a task image, and, in some cases, the allowed mode of
access (read/write or read-only).

A program section's length determines how much address space TKB must
reserve for it.

When a program consists of more than one module, it is not unusual for
program sections of the same name to exist in more than one of the
modules. Therefore, as TKB scans the object modules, it collects
scattered occurrences of program sections of the same name and
combines them into a single area of your task image file. The
attributes listed in Table 2-1 control the way TKB collects and places
each program section in the task image.

Attribute

access-code

Table 2-1
Program Section Attributes

Value

RW

RO

Meaning

Read/write: data can be read from, and
written into, the pr~gram section.

Read-only:
cannot be
section.

data can be read from, but
written into, the program

allocation-code CON Concatenate: all references to a given
program section name are concatenated;
the total allocation is the sum of the
individual allocations.

OVR Overlay: all references to a given
program section name overlay each other;
the total allocation is the length of the
longest individual allocation.

relocation-code REL Relocatable: the base address of the
program section is relocated relative to
the base address of the task.

save

scope-code

ABS

SAV

GBL

Absolute: the base address of
program section is not relocated;
always O.

the
it is

The program section has
attribute, and TKB forces
section into the root.

the SAVE
the program

Global: the program section name is
recognized across overlay segment
boundaries; TKB allocates storage for
the program section from references
outside the defining overlay segment.

LCL Local: the program section name is
recognized only within the defining
overlay segment; TKB allocates storage
for the program section from references
within the defining overlay segment only.

(continued on next page)

2-4

Attribute

type-code

TASK BUILDER FUNCTIONS

Table 2-1 (Cont.)
Program Section Attributes

Value Meaning

D

I

Data: the program section contains data.

Instruction: the program section
contains either instructions, or data and
instructions.

2.1.1.1 Access-code and Allocation-code - TKB uses a program
section's access-code and allocation-code to determine its placement
and size in a task image. If you specify /SG in the command sequence,
TKB divides address space into read/write and read-only areas, and
places the program sections in the appropriate area according to
access-code. However, the default is to order the program sections
alphabetically.

TKB uses a program section's allocation-code to determine its starting
address and length. If a program section's allocation-code indicates
that TKB is to overlay it (OVR), TKB places each allocation to the
program section from each module at the same address within the task
image. TKB determines the total size of the program section from the
length of the longest allocation to it.

If a program section's allocation-code indicates that TKB is to
concatenate it (CON), TKB places the allocation from the modules one
after the other in the task image, and determines the total allocation
from the sum of the lengths of each allocation.

TKB always allocates address space for a program section beginning on
a word boundary. If the program section has the D (data) and CON
(concatenate) attributes, TKB appends to the last byte of the previous
allocation all storage contributed by subsequent modules. It does
this regardless of whether that byte is on a word or nonword boundary.
For a program section with the I (instruction) and CON attributes,
however, TKB allocates address space contributed by subsequent modules
beginning with the nearest following word boundary.

For example, suppose three modules, IN!, IN2, and IN3, are to be task
built. Table 2-2 lists these modules with the program sections that
each contains and their access codes and allocation codes.

In this example, the program section named B, with the attribute CON
(concatenate), occurs twice. Thus, the total allocation for B is the
sum of the lengths of each occurrence; that is, 100 + 120 = 220. The
program section named A also occurs twice. However, it has the OVR
(overlay) attribute; so its total allocation is the largest of the
two sizes, or 300. Table 2-3 lists the individual program section
allocations.

2-5

TASK BUILDER FUNCTIONS

Table 2-2
Program Sections for Modules INl, IN2, and IN3

File Name

INl

IN2

IN3

Program
Section Access Allocation Size

Name Code Code (Octal)

B RW CON 100
A RW OVR 300
c RO CON 150

A RW OVR 250
B RW CON 120

c RO CON 50

Table 2-3
Individual Program

Program Section
Name

B
A
c

Section Allocations

Total
Allocation

220
300
220

TKB then groups the program sections according to their access codes
and alphabetizes each group, as shown in Figure 2-3.

t

NOTE

The example shown in Figure 2-3
represents the Task Builder's allocation
of program sections if the /SG or /MU
switches are used. For more
information, see the description of the
/MV, /SQ, and /SG switches in Chapter
10.

c (220) l READ-ONLY
ACCESS

B (220)

J READ/WRITE TASK MEMORY

A (300)
ACCESS

STACK

HEADER

ZK-379-81

Figure 2-3 Allocation of Task Memory

2-6

TASK BUILDER FUNCTIONS

The save attribute (SAV) is useful in cases where the information in a
program section must be kept available to all task segments. The SAV
attribute of a program section causes TKB to force the program section
into the root of an overlaid task. Therefore, the named common block
in the FORTRAN SAVE statement or the named program section in the
MACR0-11 .PSECT directive specified with the SAV attribute are in the
root of the task.

2.1.1.2 Type-Code and Scope-Code - The scope-code is meaningful only
when you define an overlay structure for a task. The scope-code is
described in Chapters 3 and 4 within the context of the descriptions
of overlays. {The type-code is meaningful in the context of program
sections within an I- and D-space task, as described in Chapter 7.}

2.1.2 Resolving Global Symbols

TKB resolves references to global symbols across module boundaries and
any references (explicit or implicit) to the system library. When the
language translators process a text file, they assume that references
to global symbols within the file are defined in other, separately
assembled or compiled modules. As TKB links the relocatable object
modules, it creates an internal table of the global symbols it
encounters within each module. If, after TKB examines and links all
the object modules, references remain to symbols that have not been
defined, TKB assumes that it will find the definition for the symbols
within the default system object module library (LB:[l,l]SYSLIB.OLB).
If undefined symbols still remain after SYSLIB is examined, TKB flags
the symbols as undefined. If you have not specified an output map in
your TKB command sequence, TKB reports the names of the undefined
symbols to you on your terminal. If you have specified an output map,
TKB outputs to your terminal only the fact that the task contains
undefined symbols. The names of the symbols appear on your map
listing.

When creating the task image file, TKB resolves global references, as
shown in the following example. Table 2-4 lists the three files INl,
IN2, and IN3, showing the program sections within each file, the
global symbol definitions within each program section, and the
references to global symbols in each program section.

Table 2-4
Resolution of Global Symbols for INl, IN2, and IN3

File
Name

INl

IN2

IN3

Program Section
Name

B

A

c

A
B

c

2-7

Global Global
Definition Reference

Bl A
B2 Ll

Cl
xxx

A
Bl B2

Bl

TASK BUILDER FUNCTIONS

In processing the first file, INl, TKB finds definitions for Bl and B2
and references to A, Ll, Cl, and XXX. Because no definition exists
for these references, TKB defers the resolution of these global
symbols. In processing the next file, IN2, TKB finds a definition for
A, which resolves the previous reference, and a reference to B2, which
can be immediately resolved.

When all the object files have been processed, TKB has three
unresolved global reference: Cl, Ll, and XXX. Assume that a search
of the system library LB:[l,l]SYSLIB.OLB resolves Ll and XXX, and TKB
includes the defining modules in the task's image. Assume also that
TKB cannot resolve the global symbol Cl. TKB lists it as an undefined
global symbol.

The relocatable global symbol Bl is defined twice. TKB lists it as a
multiply defined global symbol. TKB uses the first definition of that
multiply defined symbol.

Finally, an absolute global symbol (for example, symbol=lOO) can be
defined more than once without being listed as multiply defined, as
long as each occurrence of the symbol has the same value.

2.2 THE TASK STRUCTURE

TKB builds the data structures required by other system programs and
incorporates them into the task image. The Executive (which is
responsible for the allocation of system resources) must have access
to the data for all tasks on the system. It must know, for example, a
task's size and priority, and it must have information about the way
each task expects to use the system. It is the Task Builder's
responsibility to allocate space in the task image for the data
structures required by the Executive. For example, TKB allocates
space for the task header and initializes it.

The disk image file created by TKB contains the linked task and all of
the information required by the system programs to install and run it.
In its simplest form, the disk image file consists of three physically
contiguous parts:

• The label block group

• The task header

• The task memory image

Figure 2-4 illustrates the basic simplified structure of this file.

The label block group contains data produced by TKB and used by
INSTALL command processing. It contains information about the task,
such as the task's name, the partition in which it runs, its size and
priority, and the logical units assigned to it. When you install the
task, INSTALL command processing (hereinafter called INSTALL) uses
this information to create a Task Control Block (TCB) entry for the
task in the System Task Directory (STD) and to initialize the task's
header information.

The task's header contains information that the Executive uses when it
runs the task. The header also provides a storage area for saving the
task's essential data when the task is checkpointed. TKB creates and
partially initializes the header; INSTALL initializes the rest of the
header.

2-8

TASK BUILDER FUNCTIONS

0

0
: MEMORY :

I HEADER I
LABEL
BLOCK

ZK-380-81

Figure 2-4 Disk Image of the Task

The task memory contains the linked modules of the program and,
therefore, the code and data. It also contains the task's stack. The
stack is an area of task memory that a task can use for temporary
storage and subroutine linkage. It can be referenced through general
register 6, the stack pointer (SP). The label block g~oup, the task's
header, and the task memory are described in detail in Appendix B.

The task's memory image is the part of your task that the system reads
into physical memory at run time. The label block group is not
required in physical memory. Therefore, in its simplest form, the
task's memory image consists of only two parts: the task header and
task memory. Figure 2-5 shows the memory image.

TASK •
MEMORY :

HEADER

o-----..
ZK-381-81

Figure 2-5 Memory Image

2-9

TASK BUILDER FUNCTIONS

2.3 OVERLAYS

This section is an introduction to overlaid tasks.
overlaid tasks can be found in Chapters 3 and 4.

Details about

Using overlays can save memory space by reducing the size of the
executing portion of the task or the physical memory required by the
task. Parts of an overlaid task reside on disk, thereby saving memory
space.

An overlaid task is a task designed to have discrete parts. The parts
of a task designed this way can execute relatively independently of
other parts. Parts of an overlaid task reside on disk until they are
needed for their required function. The common part of the task,
which stays in memory, is the root. The root calls the other parts of
the task, which are referred to as segments, from disk into memory.

The RSX-llM/M-PLUS systems have two types of overlaid tasks. One type
of overlaid task reads in segments from disk over other segments
already in memory. A task of this type is called a disk-resident
overlaid task. In this task, segments reside on disk until they are
needed. The segments in disk-resident overlays that share the same
memory address space of the task with other segments must be logically
independent of those segments. The independence is necessary because
the other segments are on disk and cannot be referenced. For example,
Task A, an overlaid ta~k root, can call either of two
segments: segment B or segment C. The root of Task A initially calls
segment B. Segments B and C occupy the same memory space. Segment B
cannot call segment C and segment C cannot call segment B. However,
if segment B returns control of the task to the root of task A, the
root can then call segment c. Segment C would then be read into
memory over segment B. Figure 2-6 illustrates this sequence.

Because segments of a disk-resident overlaid task can occupy the same
memory space, a disk-overlaid task can occupy less memory than it
would if it were not overlaid. However, more disk I/O transfers (and,
therefore, more time) are needed for this type of task.

Another type of overlaid task is the memory-resident overlaid task.
In this task, the segments reside on disk until they are needed. At
that time, the needed segment is read into a sequentially adjacent
area of memory and resides there until the task ends. For example, a
memory-resident overlaid Task A has two segments: segment B and
segment C. If the root of task A calls segment B, segment B is read
into memory adjacent to the root. When the root regains control and
then calls segment C, segment C is read into memory adjacent to
segment B. Figure 2-7 illustrates this sequence.

Memory-resident overlaid tasks execute faster than disk-resident
overlaid tasks. The increase in speed occurs because fewer disk I/O
transfers are needed during task execution.

2-10

MEMORY

TASK A
ROOT

MEMORY

B

TASK A
ROOT

MEMORY

c

TASK A
ROOT

TASK BUILDER FUNCTIONS

LOAD TASK

ROOT CALLS
SEGMENT B

ROOT CALLS
SEGMENT C

ZK-382-81

Figure 2-6 Simple 2-Segment, Disk-Resident Overlay Calling Sequence

2-11

MEMORY

TASK A
ROOT

MEMORY

B

TASK A
ROOT

MEMORY

c

B

TASK A
ROOT

TASK BUILDER FUNCTIONS

B LOAD TASK

ROOT CALLS
SEGMENT B

ROOT CALLS
SEGMENT C

ZK-383-81

Figure 2-7 Simple 2-Segrnent, Memory-Resident Overlay Calling
Sequence

2-12

TASK BUILDER FUNCTIONS

2.4 ADDRESSING CONCEPTS

The primary addressing mechanism of the PDP-11 is the 16-bit computer
word. The maximum physical address space that the PDP-11 can
reference at any one time is a function of the length of this word.
Because of the 16-bit word size, a task can have an address no larger
than 177777(octal) (32K words) within the task image for nonprivileged
tasks on an unmapped system. In practice, the task size may be
limited to a few words less than 32K because of system design.

2~4~1 Physical, Virtual, and Logical Addresses

Physical, virtual, and logical addresses, and virtual and logical
address space, are concepts that provide a basis for understanding the
functions of task addressing and the use of task windows.

• Physical addresses - A single, physical location in memory is
called the physical address.

Memory is divided into parts called bytes. They are numbered
according to their position in memory. Therefore, the lowest
byte is O and the highest byte is whatever the upper limit of
memory may be for a particular system; for example, 32K, 64K,
and so forth. The assigned number is called the physical
address.

A task contains addresses (for example, O through 2200). TKB
relocates the task's addresses in an unmapped system by a
number represented by the base address of the partition in
which it is installed. After installation, the task's
addresses refer to physical addresses of memory, which always
correspond to the same physical memory in an unmapped system.

Therefore, the task addresses have an actual one-to-one
relationship to physical memory. The same relationship exists
any time the task is in memory. The memory (physical)
addresses will not be from O through 2200. For example, after
the task is installed in the partition, the task's address of
O may become physical address 17000 because the Task Builder
added in the offset, which is equal to the partition base
address.

In a mapped system, the task's addresses remain the same but
the physical memory addresses may change due to Executive
processes (checkpointing, swapping, and so forth.).
Therefore, the task addresses do not always correspond to the
same physical memory. If the task uses memory management
directives, the memory addressing can be changed by the task
to include any part of physical memory that it is allowed to
access.

• Virtual addresses - A task's virtual addresses
addresses within the task.

are the

The PDP-ll's 16-bit word length (a mapped system) imposes the
address range of 32K words on the virtual addresses.
Therefore, these task addresses could include addresses 0
through 177777(octal) depending on the length of the task.
These task addresses are not the same as the actual addresses
of the memory in which the task resides.

2-13

TASK BUILDER FUNCTIONS

• Virtual address space - A task's virtual address space is that
space encompassed by the range of virtual addresses that the
task uses.

memory management
address space into
By using address

With the Create Address Window (CRAW$)
directive, a task can divide its virtual
segments called virtual address windows.
windows, you can manipulate the mapping
to diDferent areas of physical memory.

of virtual addresses

• Logical addresses - A task's logical addresses are the actual
physical memory addresses that the task can access.

• Logical address space - The task's logical address space is
the total amount of physical memory to which the task has
access rights.

The physical memory represented by the logical addresses may
or may not be continuous. The items in physical memory that
logical address space includes are the task itself, and static
and dynamic regions.

2.4.2 Unmapped Systems

In an unmapped system, the task's virtual address space and its
logical address space coincide exactly, as shown in Figure 2-8.

In an unmapped system, the task's address space is limited to 32K
words. All of the machine's physical memory and all of its device
registers are accessible to all tasks running on the system. The top
4K words of address space are reserved for the UNIBUS addresses that
correspond to the peripheral device registers (the I/O page), and a
segment of low memory is occupied by the Executive. Therefore, in an
unmapped system, the largest task size is 32K words minus the I/O page
and the size of the Executive. Figure 2-9 shows the memory layout for
an unmapped system.

Unmapped systems contain only user-controlled partitions. When TKB
links the relocatable object modules of a task that is to run on an
unmapped system, it requires that you specify the partition in which
the task is to run, and the partition's base address and length. TKB
sets the base address of the task to the base address of the
partition. This means that the task's location in physical memory is
bound to the partition and does not change. Because all of physical
memory in an unmapped system is directly addressable, and the task's
location within memory does not change, the addresses that TKB assigns
coincide exactly with the physical addresses of the machine and,
therefore, do not need to be relocated at run time.

2.4.3 Mapped Systems

A mapped system is one in which the processor contains a KT-11 memory
management unit. The processor handbook for your machine contains a
complete description of the memory management unit.

Mapped processors have up to three modes of operation: kernel,
superv,isor, and user (the PDP-11/34 does not have supervisor mode).
The information in this section is relevant to user mode only.

2-14

TASK BUILDER FUNCTIONS

32K
32K TASK

VIRTUAL
ADDRESS

SPACE
BEFORE

ASSIGNING
ADDRESSES

N+32K

N = PARTITION
BASE ADDRESS

N
0 ------ --------~~

PHYSICAL
MEMORY

LOGICAL
ADDRESS

SPACE

ZK-384-81

Figure 2-8 Virtual and Logical Address Space Coincidence
in an Unmapped System

In a mapped system, the relationship between virtual address space and
physical address space is different from that of an unmapped system.
The primary addressing mechanism for a mapped system is still the
16-bit word, and virtual address space is still 32K words. However, a
mapped system has a much greater physical memory capacity and,
therefore, physical memory and virtual address space do not coincide.

To address all of physical memory in a mapped system, a machine must
have an effective word length of 18 or 22 bits, depending on the model
of the machine. When TKB links the relocatable object modules of a
task that is to run on a mapped system, it assigns 16-bit addresses to
the task image. The memory management unit's function (under control
of the Executive} is to convert the task's 16-bit addresses to
effective 18- or 22-bit physical addresses. The mechanical job of
task relocation is performed by the Executive and the memory
management unit at task run time. Figure 2-10 illustrates the
relationship between physical memory and virtual address space in a
mapped system.

2-15

TASK BUILDER FUNCTIONS

32 K WORDS

1/0 PAGE

• EXECUTIVE•

0

ZK-385-81

Figure 2-9 Memory Layout for Unmapped System

The memory management unit divides a machine's 32K
address space into eight 4K-word segments or pages.
registers associated with it:

words of virtual
Each page has two

• A 16-bit Page Description Register (PDR), which contains
control and access information about the page with which it is
associated

• A 16-bit Page Address Register (PAR), which is an address
relocation register

The PDRs and PARs are always used as a pair. Each pair is called an
Active Page Register (APR). Figure 2-11 shows how the memory
management unit divides the 32K words of virtual address space.

The Executive allocates only as many APRs as are necessary to map a
given task into physical memory. Therefore, a 4K-word task requires
one APR; a 6K-word task requires two. Figure 2-12 illustrates this
mapping.

2-16

32K------....-

TASK
MEMORY

HEADER Q_.__ ___ _

VIRTUAL ADDRESS
SPACE

FOR 32 K WORD
TASK

TASK BOILDER FUNCTIONS

t
HIGHEST

PHYSICAL
ADDRESS

MEMORY
MANAGEMENT

UNIT

•
•
•

TASK
MEMORY

HEADER

TASK
MEMORY

HEADER

TASK
MEMORY

HEADER

TASK
MEMORY

•
•
•

PARTITION _...__H_E_A_D_E_R_,..
BOUNDARY

0

• EXECUTIVE •
• ETC. •

•

I
PHYSICAL
MEMORY

•

I

SYSTEM-CONTROLLED
PARTITION

ZK-386-81

Figure 2-10 Task Relocation in a Mapped System

2-17

VIRTUAL 160000 -

VIRTUAL 140000 -

VIRTUAL 120000 -

VIRTUAL 100000 -

VIRTUAL 60000

VIRTUAL 40000

VIRTUAL 20000

VIRTUAL 0

TASK BUILDER FUNCTIONS

PAGE 7

APR7 -

PAGE 6

APR6 -

PAGE 5

APR 5 -

PAGE 4

APR4 -

PAGE 3

APR3-

PAGE 2

APR 2 -

PAGE 1

APR 1 I
APR 0

PAGE 0

32K WORDS OF
VIRTUAL ADDRESS

SPACE

ZK-387-81

Figure 2-11 Memory Management Unit's Division of Virtual
Address Space

Finally, the layout of the virtual address space for a task that is to
run in a mapped system is different in most cases from that of a task
that is run in an unmapped system. Unless a task is privileged, the
I/O page and the Executive are not normally part of a task's virtual
address space and, unlike in an unmapped system, a task is inhibited
by the system from accessing any portion of physical memory that it
does not specifically own. Because the I/O page and the Executive are
not part of a task's virtual address space, a task can be
approximately 32,767 words long (32K minus 32 words needed by the
loader) on a mapped system. TKB can build a task of 32K minus 1 word
in size. However, overlaid tasks, and tasks that become extended, may
use the entire 32K-word space.

2.4.4 Regions

This section briefly descr1oes regions and their relationship to and
use by tasks. Regions and their use are more thoroughly described in
Chapter 5.

A region is a defined area of memory that can contain code or data.
It can also be a blank area reserved for use by one or more tasks.
The region is named and built like a task except that the /HD header
switch is negated (/-HD) because the ~egion is not a task and does not
need a task header. Tasks can also create regions dynamically as they
execute. Dynamic regions are useful because they increase the task's
logical address space while saving its virtual address space. Regions
also allow tasks to share code and data with other tasks.

2-18

160000 APR 7 -

140000 APR 6 =

120000 APR 5-

100000 APR 4 -

60000 APR 3-

40000 APR 2-

20000 APR 1-

VIRTUAL 0 APR 0-

TASK BUILDER FUNCTIONS

TASK
MEMORY t

4 K WORDS

HEADER &STACK _j .________,

TASK A (4 K WORDS)

APR 7-

Anoc.­
Mrn u

APR 5-

APR4-

APR3-

APR2-

APR 1-

APRO-

TASK
MEMORY

1
6 K WORDS

-----------1 HEADER & STACK

TASK B (6 K WORDS)

ZK-388-81

Figure 2-12 Mapping for 4K-Word and 6K-Word Tasks

Regions are named according to their use or the way in which they were
built. These regions are:

• Task Region -- A continuous block of memory in which the task
runs.

• Common Shared Region -- On unmapped systems, a shared region
defined by an operator at run time or built into the system
during system generation; for example, a global common area.

2-19

TASK BUILDER FUNCTIONS

Resident commons are usually called shared regions because
they are used as an area in which tasks share common data.
Shared regions can be absolute or position independent.
Shared regions and their use are described in Chapter 5.

• Library Shared Region -- A shared region containing common
code or routines shared by tasks, and in this way saving
virtual address space in the tasks.

• Dynamic Region -- A region created dynamically at run time by
the Create Region (CRRG$) memory management directive in the
task. This directive and associated directives are described
in the RSX-llM/M-PLUS Executive Reference Manual.

By convention, a shared region that contains code is a library and a
shared region that contains data is a common.

Tasks must map to a region by using task windows which must be defined
and numbered in the task when the task is built. Usually, a task uses
one window for each region to which mapping must occur. Task windows
are described in the next section, Task Mapping and Windows.

Figure 2-14 shows a sample collection of regions that could make up a
task's logical address space. A task's logical address space can
expand and contract dynamically as the task issues the appropriate
memory management directives. The header and root segment are always
part of the region. Therefore, the task header and root segment
always use window 0 (UAPR 0) and region O. Because a region occupies
a continuous area of memory, each region is shown as a separate block.

2.5 TASK MAPPING AND WINDOWS

As mentioned earlier, tasks that run on mapped systems must be
relocated at run time. When you build a task that is to run on a
mapped system, TKB creates and places in the header of the task one or
more 8-word data structures called window blocks. When you install a
task, INSTALL initializes the window block(s). Once initialized, a
window block describes a range of continuous virtual addresses called
a window.

2.5.1 Task Windows

A window can be as small as 32 words or as large as 32K words. When a
task consists of one continuous range of addresses (a single region
task) only one window block is required to describe the entire task
from the beginning of its header to the highest virtual address in the
task. When a task consists of two or more regions (such as a task
that references a shared region as described in Chapter 5), each
region must have at least one window block associated with it that
describes all or a portion of the region.

When the Executive maps a task into physical memory, it extracts the
information it requires to set up the APRs of the memory management
unit from the task's window block.

2-20

TASK BUILDER FUNCTIONS

In;' ,an·' RSX~ HM. :system, 'rega,tdJ:ess. o.£' .·the: numbEir' : o,f . . regJo,ns: • 'asspcta ted
with a, : t.as·~;' "the· ,'re,gio'n ,'that.'.confa,~·p's, t:he :t~.sk' f3.' 'header a~d .r?c)t i.$
al.~a,¥f3' :def3pr,U~ed by :\tl~pdo,w o ~.·, Wirhd<)Ml,s: /0 ::.and ·l ,despribe· .tlfe ·:r'oo:t of .. ::m·
.::.~.~.:,'a,~;' ,p':'·s,.1?.fi.· ·.· .: ,·~·~w .:Jn: ~.~1.:~~X-l;lt4:-·~LQS,/.sysf:e1n .• · .. ·.wi:n~ow.·c>.',.a.es.cr::ibes· ··t'tie'
:.Iff?P~~~.:' ,t.q~~tF ""~.d;' ,~ii10.()w' ::i:· :a:esq;7 ib'9s; ,t.he· ~D:--space,.: ·r:oot: aria.' task: . header·~
·E''\?i'r.~I!~otJe.~/',. itt-Ji·s ;'Jr~<Ji<:.>fl.: :~·~.'.·>'re:f'e:p:~d.: ,to .a.~ .::tqe .t«:~sk· .r.egi.on' and.is
i~~i:idifi~:;·,:<;lsr:C.~g.~aµ;'.:<.V~: Figure 2-13 ill us.trates window block o for a
'system wf thou FY..:· a'rid D-space. Wi.n9·ows: fbl{ ap.: :r~, .aricl .o~s.p·ae;e .task a·re·
,pffi,s.c.r0:i~~(:: ~·l;l x.t1!~#~:%:'

HIGHEST VIRTUAL
ADDRESS

WINDOW BLOCK
0

LOWEST VIRTUAL
ADDRESS

TASK
MEMORY

HEADER & STACK

Figure 2-13 Window Block 0

1

I

TASK REGION -

REGION 0

ZK-389-81

When you run your task, the Executive determines where in physical
memory the task 1s to reside. The Executive then loads the Page
Address Register portion of the APRs with a relocation constant that,
when combined with the addresses of the task, yields the 18- or 22-bit
physical address range of the task.

Referring to Figure 2-14, which illustrates a mapped system without r­
and D-space, you can observe that a large 32K user task contains three
distinct areas of continuous space called "windows." The term "task
window" is a construct that maps a continuous portion of the task's
virtual address space to a continuous portion of a region in the
task's logical address space. Windows must have a specified size and
starting address. The window size can be from 32 words to 32K minus

2-21

TASK BUILDER FUNCTIONS

32 words, and windows must start on a 4K address boundary. Figure
2-14 shows three windows that are not continuous in the task's virtual
address space. However, the space within each window is continuous.
In this task, the size of window 0 is llK; the size of window 1 is
llK; and the size of window 2 is SK. The concept of windows exists
for the following specific reason.

By using the concept of windows and the memory management directives,
a nonprivileged task can access a larger logical memory space than
that implied by the 32K virtual addressing range and normally
accessible by the 16-bit address. A task can, in fact, only access
32K of memory at one time. However, a nonprivileged 'task can change
its access to logical addresses (real, physical memory). The area
that your program accesses can be changed by the program during
program execution. The process of accessing different logical areas
of memory is called "mapping."

By referring to Figure 2-14, you can see that window 1 in the task is
mapped to region 1 in physical memory. The task can change the window
1 mapping to region O in physical memory. In effect, then, though a
task is limited to a range of 32K virtual addresses, a task can access
all the physical memory available to it (determined by the way that
you set up the mapping) by changing the mapping of its windows to
different logical addresses. Figure 2-14 provides a visual
description of the concept of mapping to different logical addresses.

The discussion now proceeds to setting up the task's windows. This is
done by defining task window blocks to TKB.

To manipulate virtual address mapping to various logical areas, you
must first divide a task's 32K of virtual address space into segments.
These segments are task (virtual address) windows. Each window
encompasses a continuous range of virtual addresses. The first
address of the window address range must be a multiple of 4K (the
first address must begin on a 4K boundary) because of the way that the
KT-11 memory management unit uses APRs.

On an RSX-llM system, you ,can specify up to S!even : windows., Task
mapping for the task's code requir:es the use of lwindqw, o. Therefore,:
there is a total of eight windows. However, window 0 j,5 not ,available
to nonprivileged tasks. ' The si'ze of each wi;ndow :can range from: a
minimum of 32 words to a maximum: of 32K minus 32 wor.d$.'

RSX-llM-PLUS tasks that use I- and D-space or supervisor-mode
libraries have a total of 16 windows. You can specify u~ tQ 14
windows in this ,type of task. Windows 0 and 1 ane not available, to
nonprivileged tasks in this kind of system.

A task that includes directives that dynamically manipulate address
windows must have task window blocks set up in the task header as well
as Window Definition Blocks in the code for use by the Create Address
Window directive. The Executive uses task window blocks to identify
and describe each currently existing window. When linking the task,
the programmer specifies the number of extra window blocks needed by
the task. The number of blocks should equal the maximum number of
windows that will exist concurrently while the task is running.

2-22

I\)

I
I\)

w

VIRTUAL ADDRESS SPACE
of 32K USER TASK

6 4K

5

4

3

2 4K

WINDOW 0 4K

0 4K ------
OK HEADER

CONTAINS
3 WINDOW BLOCKS

VA I APF

15 13 12

APF] BN

SELECT J
APR 1

USER
ACTIVE PAGE REGS

PAR PDR

7 PAF

6 PAF

5 PAF

4 PAF

3 PAF

2 PAF

1 PAF

~o PAF

1

KAPA OR UAPR
11 USER

00 KERNEL

KT11 MEMORY MANAGEMENT UNIT

7

6

5

4

3

2

1

0

OF

65

1 DIB
T

KERNEL
ACTIVE PAGE REGS

PAR PDR

PAF

PAF

PAF

PAF

PAF

PAF

PAF

PAF

T

0

y
(PBN l DETERMINED BY BITS 14-15 OF PSW

J 17 65

I 18-BIT PHYSICAL ADDRESS

PHYSICAL MEMORY

TASK
LOGICAL
ADDRESS

SPACE REGION 0

{ REGION 1
WINDOW 1

REGION 2
WINDOW 2

J TASK REGION

]
WINDOW 0

0

]

L._E-XEC-UTl-VE _ ____,J

ZK-390-81

Figure 2-14 Virtual to Logical Address Space Translation

8
>
t/l
::iq

°' Cl
H
t"'
0
tzJ
~

t'Zj
Cl z
()
8
H
0 z
t/l

TASK BUILDER FUNCTIONS

In RSX-llM or RSX-llM-PLUS without I- and D-space, a window's
identification is a number from 0 to 7, which is an index to the
window's corresponding window block. The address window identified by
0 is the window that always maps the task's header and root segment.
TKB creates window O, which the Executive uses to map the task. No
directive may specify window O; a directive that does so is rejected.

In' ~P' <RSX~lt~-:I?i:.us'/s,y~tem usLng an ;1~, 'and ;p~,space ,,' task·r· a window~,s
,'.ident,ifi:cat'i.o·~ .: .ls. '.<;t .. ,nµmp~r , from . Oc'to 1·?~ wb'fcl) ·is· ari· inde~: to the···
5•1indo,w' $<·99:1;>r.espo,ndiI1~·· :window 'b1ock·~·. r;rne aodr·es'.s .. windows' }denti f'ied
by. o ··a.rid .1:.a,re the' wfod;o:ws/.tn·~t a,lw(iys'.,map·'.t.he, tas~'·s.)1ead~r·.,and. root':•;
·T·KB. c·r~~,a~es.: ;\V~(~o~~:·,o· ·~11(i 1,,,·whtc11. ·tll~ ~~~(:.,49.v~ ·l1s~·~· to· :ma}?: tb~, ta~k.'

'>N.9, . '.d;ir'~ct:i.v:e/;IllitY/;~;peci$y, V1irigo.ws'.·,o'.<'o,r./ J ;:· · ?v :d!'re:ct'i~e .~n~t: ¢10,e~·' sq· ·is":
':·t-eje<ited,·/,<·";" ,·'.·i,/" ./'<> ,' · '',, · , · ·'' , ', · ,' · ,. ·· ·· .· · ., . : · ··' ··

When a task uses memory management directives, the Executive views the
relationship between the task's virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, the address does not point anywhere. This is
a point to watch when setting up windows with the Create Address
Window directive (CRAW$). Similarly, a window can be mapped only to
an area that is all or part of an existing region within the task's
logical address space.

Once a task has defined the necessary windows and regions, the task
can issue memory management directives to perform operations such as
the following:

• Map a window to all or part of a region.

• Unmap a window from one region in order to map it to another
region.

• Unmap a window from one part of a region in order to map it to
another part of the same region.

2.6 RSX-llM-PLUS SUPERVISOR MODE

Three modes of operation are possible in the PDP-11: user mode,
supervisor mode, and kernel mode. Each mode has associated with it 16
APRs for mapping memory: 8 I-space APRs and 8 D~space APRs. A task
in the RSX-llM:-PLUS system can use supervisor-mode 1.ibr.aries .and
thereby double the task's virtual address space to 64K words.
Supervisor-mode librari~s are described in Chapter 8. This section
bri'efly describes supervisor mode and the mapping that occurs when the
ta~k uses supeivisor mode. ·

Supervisor.,,mode libra'ries .are librades of routines that are. USE!d only
in s,upervisor to.ode~·. The task .switches to. supervisor mode when it
call~ a routine within the supeivisor-mode library. By u~irig a
supervisor mode lJbrai:y as described .. i.n., ... Chapter .. 8, you. mak,e. the
RSX-·llM-PLUS system, for large systems, use the. supervisor-Mode APRs.

·2. 6 • l $uperv i sor-Mode Mapping

~ormall'y, a ,task has .an address space of 32K-wo.rds by using eight user
APRs •.. When a conventioria.l task 'links to a .supervisoI:-mode library and.
cal.ls ,a routine in the . li}Jrary,: the .ExecuHve· copies the user-mode ..

·I-space AP~s into the supervisor-mode D-space APRs arid maps the
supervisor-mode. library·· with ·supervisor I-space APRs. Therefore,
while. in supervis.or, .mod.e and within 'the .library,_ 'the task can access
32K-words of its 'own space with D-space AP~s ,and 32K~words of library

2-24

TASK BUILDER FUNCTIONS

. t:~,!~~!{~~!t:~~i~~:~t~~~~y~t }'~'i. ~y~,t ?~ ':~Oei~fB~-r.1-',h:i.d.l. ~ti~ice~:s
,.·wneri:·:.':~'n: .:'.J- arid 'D~;~p~c~' task 'i,i.:hks.'io . .a',' ~up~i~i~or-mode." ,l.ibrary, 'the
/ E:xe¢.ut'fy.e>·. cop'i·es ·' m the.· user-mode' '.':[.)...:space .A.PRs '/into the· s'upervis'or
,:o:..:·:3pa,q~:.·1(pR~. . Th'ere,f,ore,;,, ,the, supervJs,or..:mo~e, :foutffiefo "ban· ·a6'~'esf$ u.s~'r·
','Q .. at.a.,:, :::,;·~·pace.·:.: , .. J:tnl'.i:::, ·'ac(:ess ,· 9uperw~'sor-mode· i'ns·tr~cti.on · space· ·wi,th
· s:uf>ervis~r .· i~sp~c,e z~tPRs··~··,.,:Fig~r~·. ·a . .:.,2,. i~i,ust~at:e~ ,;·.t:hi:s·,.fnap'.PJn9:.,,,, ,··. 'rh~·
'm,appirm .. :',i'j,i1s~./,.'¢1.es,c/r·~·Oe;d1:,<'.r~·,, .. tJJe'/,~e,~a,,ur1f.· map~i:n,9 I fo"r, 1 ,:'a'Q 1,i'l~ .. ·· ·~nd,:,D.:s'p~c~/
tas~k/~,.·,,, .. Ypu car("e:cp.l~.si.~li: 1.cr·ea't.e· .. :,'s·\:lpei:,v~~~r~mq?,e, 'P~.sp~c·e, tn;appJf?g;· : .t,:9,·
'bv:e'rr'.ioe ' 'the"' I .us·e'r'-mode',·· .'·D~:spac,~;.<>vermapp:i/nii 'that', odcurs' by. us'ing' the'

"MSIJS$.":mxecuti~e .. " tlirectdiv~~c" I ehai)ter -,,$" ci&scu"SS~S the ,"u'se :'o,f :Msos$::,: '""' t

.!#f J~~~i#;~~j~~~~~l~t~f~i~JrZJ;t~ti1~iI~z¥A~;~~tn~
,. :l;J,.b· ; ;·lfs.:,·shp:wn iat>e ,2,-1,6 1·,; ,..,,," .,

~l~ ,i::; y 'fa ,~.-' · __ ii~~ ·~, ~, ,,~ ~,/:' ~~~ ~/ ;'t '1;j,. .:· ~ (' ,;· ' :- ; / ,;_~,' 1 ~-; < ~ ,: ,: ~:. ~. ~~·, ; i?" -~,: ';;=f ~:~ 2

2.7 PRIVILEGED TASKS

RSX-llM/M-PLUS systems have two classes of tasks: privileged and
nonprivileged. However, the term "privileged" has meaning in mapped
systems only, because in mapped systems certain areas of memory are
protected from nonprivileged tasks. In an unmapped system, any task
has the ability to access all of physical memory if so programmed.
Therefore, the distinction between these two classes of tasks is
primarily one of their mapping to memory in a mapped system.

Privileged tasks in a mapped system can access system data areas and
the Executive. Altering system data areas or the Executive can cause
obscure and difficult problems. Therefore, privileged tasks must be
programmed and used with all caution.

You can specify a task as privileged by using the /PR switch in the
TKB command line. The /PR:O switch allows a task to perform certain
privileged operations; but, the /PR:O task cannot access the
Executive or system data structures. The /PR:4 switch allows the task
to directly map the I/0 page, Executive routines, and system data
structures. The /PR:4 switch is used for a privileged task in a
system that has an Executive of 16K or less. The /PR:5 switch allows
a task to directly map to the I/O page, Executive routines, and system
data structures. The /PR:5 switch is used for a privileged task in a
system that has an Executive of 20K or less.

Chapter 6 describes privileged tasks and their mapping in detail.

2-25

TASKS

NON-
PRIVILEGED

USER
TASK

32K

0

SUPERVISOR-
MODE

LIBRARY
32K

0

EXECUTIVE

DATA

INSTRUCTIONS

l+D

TASK BUILDER FUNCTIONS

APRS

USER D

USER I

SPVSR D
7

SPVSR I

KERNEL D

4

KERNELi

MEMORY

1/0 PAGE

N+32K

USER
TASK

N

N+32K

SPVSR
MODE

LIBRARY

N

--1---------1 36K

POOL,
COMMON,
TABLES,

ETC.

CODE

"l------~ 4K
LOW CORE ___ ______ ~~~~~___._ _____ _.. 0

ZK-391-81

,F:i~\)~e" '~~·~,l 5, I • ,Ma;pp i ~9; . :e·o :i;:''/a'.'• Conve~ fj:bnaJ./ bser . Ta,s k :a 9<1 a •. Sys:te,tl1
·:.5SP.n;i;.·~·~:ning . a .S9);~er;~i~.r.-::-·~od.e .. ·~i.Qp~r:Y .. : in .. ~n· ·RSX~ll}~~·PLPS sy~te"'.

2-26

32K

0

TASKS

NON-
PRIVILEGED

USER
TASK

SUPERVISOR­
MODE

LIBRARY

EXECUTIVE

DATA

INSTRUCTIONS

l+D

TASK BUILDER

APRS

USER D

USER I

COPIED SPVSR D

SPVSR I

KERNEL D

KERNELi

FUNCTIONS

MEMORY

1/0 PAGE

N+32K

USER
TASK

N

,,,__ ____ __,. N+32K

SPVSR
MODE

LIBRARY

POOL,
COMMON,
TABLES,

ETC.

CODE

LOW CORE
--~----........ ~-~~~-'-----~o

ZK-392-81

3· ;,';<p·,~i;<j;tti~:h~:tG:5q;~i;Jpd..~tj /:f(jt'. ~: .·aoli:ven.til,<>~~:('.:dsetrtTTasJt: •··. '.
O:S~fii,9. :µ:· ·~upe.rvfsor-.M,ode.· t .. ibl:'a.ry /i . .n an :RSX:.-:i]:M~.P;r.1is· "system':·

' c ' ,:: ~ ; ·' :, • • '. • ; • • ' ,; ; • • • ·l:, . . ~

2-27

TASK BUILDER FUNCTIONS

2 .• ·8. MULTIUSER TASKS·· (Rsx liM-PLUS ONLY)

The followi~g section. f~ an: :introductio'n. to. multi.usEfr ·tasks·., wh.ich·. are
ful.ly de~cribed in ·chap~ei .9 ..

'I

TKB'allo~s·you ·to build multiuser ··task·s.; .A: .multiuser.:. 't·ask ·1''s)·/,tha\t ..
1

whicfr·has one portio·n· .. of.f~s· ·code. 'and I dat'a :des'igI1,at~d . as .:~i:·e9-a~.onli"'arid
an~ther; .. portion: ·.9esigJl'at~d ·.~s read/~rtte~· ·.)~ou ',specHy, ~he .. r~a·~6<,>t1f~.
"por'.~i9ris 9f I ,your . t~sk ~~i,th'. prog,ram se(;:~io[)s t11'at nave ,the •:r;ea·a!"',otify,
acce,ss code •.. When yo·u~ .. then. '.b'uiJd, your tasJ,<· ·wi~h J:pe /MU .. " swtt~h;t,. I ,TKB'.

•pla'ces I ;tp.e ,·read-only,. 1J;?Or'ti.ons', ,·in '.a'.•regi,09 that,ha~ .. a' Q'i,gh -rir.ttra'.l",,
·aadress·and ttie· r.ead/writ.e po:rt'ion in .. a .. ·region. ,that .. ~31s a·lo.w· .. virtua·~:
.,aadr,ess ~ny .. other .i;:equests. to.·run the. !=as.kr if.:.the. task· i~ a.;lr',eady
· r.un·riinsn ·, ~;.e·su,lts ,in ·~· .co.P,y··· o~·. t~e. re)i~/wri t~.· po.rtto'rr of,,, the·, ,:t;a~k./, J,n
phy$ical memory. tor. the .. other Jis~·r .•.. Ther.e, is always .b.n.Iy o,.ne ,qbpy .. ',of
the. :tead..;.only code regardl·ess .of .the· nrimbe'r. of ·tasks, .·.that.· "may· b.e
running;. · ··

:<The /MU ·switch is des.cdbed in Chapter 10;

2.9 OSER-MODE I- AND D-:SPACE TASKS (RSX-llM-PLUS)

user tasks that use both 1-'and'o-space differ from conventional tasks
because I- and D-space tasks . have specifically defined locations
within the task for both instructions and data. Because of this
separation, the I- and D-space task image is structurally different.

Additionally, the separate instruction areas are mapped through
sepa.rate APRs in the memory management unit. Hence, up to 8 user-mode
instruction APRs map the task's instructions, and up to 8 user-mode
data APRs .map the task's data.

Also, overlaid I- and D-space tasks are more complex because each
overlaid part (segment) of such a: task may reside in both instruction
space and data space.

I- and D-space tasks differ from conventional tasks in the following
major ways:

• PSECTs with the "I" attribute contain only instructions and
PSECTs with .the "D" attribute contain o~ly data.

• Two sets of APRs map the I- and D-space task: the I-space
APRs and the o ... space APRs.

• I- and'D-space tasks can use up to 64K words of virtual space
instead .. of 32K wor=ds because gf .their ... use of" .the two sets of
APRs. With supervisor~mode libraries, an ~- and D-space task
can use up to 96K words of virtual SP?Ce.

The following have,· data. contiguously · adjacent in memory, and
instructions contiguously adjacent' i'n. mem9ry.:

• Non-overla,id I- and D-space ·.tasks

• Segments ·in an overlai.d I.- and f?:-sp~ce 'task that .,contal"n . both
·I- and o..,.spac.e

2-28

TASK BOILDER FUNCTIONS

. In:;''t!lese ,·t.:~.s.k:s· ;·o~: .. ·t3~'¥k:: ;s;egfueri't .. s, .: .·:t:-:.s{:>ace.<' .. PSECT$ · · :a~e.·: . segregated'. f:r.om,
.;D,~··s,c~.a~e.: :PS EQT!:? ·· in· ·rri~mo;i:t y ;·:·· :" · th;E!y. :cannot:.: be . intermixed • · · · ·

:;F'i.:g .. uret },.,.17 ·shows a. user-.:rriod~. t~. :a.nd .Q-:"sp9ce,. ,task, with . data · se.p,ar at ed.
f:rpm:":the· hist.r·u:it.i,.q.n~ .and 'rriilcpped · .;t!'.'o.· memory·· through: two sets of 'APRs ~

USER-MODE MEMORY
APRS ?n l 1

TASK T T I
VIRTUAL

~ ~ ADDRESS
SPACE

4K I 1
DATA

D-SPACE

0
4K

DATA

INSTRUCTIONS

INSTRUCTIONS
0

I-SPACE

ZK-1049-82

~ :, ~· ., :; i= ~ ., .

. :~fil? .. '.Jf>~S;l?~9~ ~· .!r?ifeS.k:

2-29

CHAPTER 3

OVERLAY CAPABILITY

TKB provides you with the means to reduce the memory and/or virtual
address space requirements of your task by using tree-like overlay
structures created with the Overlay Description Language (ODL). You
can divide your conventional task into pieces called segments, which
are loadable with one disk access. <rn.;'an~:'.u"r: .. r: ~~cf.tfJij. J\i'

~e segments a~
the discrete parts of the overlay structure that form the tree. You
can specify two kinds of overlay segments: those that reside on disk,
and those that reside permanently in memory after being loaded from
disk.

3.1 OVERLAY STRUCTURES

To create an overlay structure, you divide a task into a series of
segments consisting of:

• A single root segment, which is always in memory

• Any number of overlay segments, you must consider which either
1) reside on disk and share virtual address space and physical
memory with one another (disk-resident overlays); or 2)
reside in memory and share only virtual address space with one
another (memory-resident overlays)l

Segments consist of one or more object modules, which in turn consist
of one or more program sections. Segments that overlay each other
must be logically independent; that is, the components of one segment
cannot reference the components of another segment with which it
shares virtual address space. In addition to the logical independence
of the overlay segments, you must consider the general flow of control
within the task when creating overlay segments.

You must also consider the kind of overlay segment to create at a
given position in the structure, and how to construct it. Dividing a
task into disk-resident overlays saves physical space, but introduces
the overhead activity of loading these segments each time they are
needed -- but are not present -- in memory. Memory-resident
overlays, on the other hand, are loaded from disk only the first time
they are referenced. Thereafter, they remain in memory and are
referenced by remapping.

1. Note that memory-resident overlays can be used only if the hardware
has a memory management unit, and if support for the memory management
directives has been included in the system on which the task is to
run.

3-1

OVERLAY CAPABILITY

Several large classes of tasks can be handled effectively
as overlay structures. For example, a task that moves
through a set of modules is well suited to use as
structure. A task that selects one of a set of modules
the value of an item of input data is also well suited to
overlay structure •

when built
sequentially

an overlay
according to
use as an

. Tasks: that·;h1iyE{,,sepa~.at¢· ;!;~ and o~~i>.a.c~ may·;~iso :use over,fays·· .. ~her.e
.. the· .. ro<>;t .• '.has.·.1.n:st'r;u,c·ti'Ops' .and;; da'.ta :s.~para.t!elY d,ef,i.QEfd· by .f>s,:~qTs, .. ·.~nd
·~ach J;n?:ividua,1 s~gment·o,f. .,'the ··:tatSkL a·lso· . pas 1 instructions ·.and .' data ·

. s'.~par'fl;t~J.y: J :a~(f~ea ... }.'cti~Pf:e,~·.:1~.:A~~ta}~?: ii\9.,re ,i'flfl.f.()rmCitihn about· 1~·~ ~ujd
p;::-s,pac~ ·t.a~~~;c., · '· , . , . ,

3.1.1 Disk-Resident Overlay Structures

Disk-resident overlays conserve virtual address space and physical
memory by sharing them with other overlays. Segments that are
logically independent need not be present in memory at the same time.
They, therefore, can occupy a common physical area in memory (and,
therefore, common virtual address space) whenever either needs to be
used.

The use of disk-resident overlays is shown in this section by an
example, task TKl, which consists of four input files. Each input
file consists of a single module with the same name as the file. The
task is built by the command

>TKB TKl=OVRLAY.ODL/MP

and the file OVRLAY.ODL contains the modules CNTRL, A, B, C in an
overlay description for the task being built. The /MP switch
specifies that the input file is an Overlay Description Language (ODL)
file.

In this example, the modules A, B, and C are logically independent;
that is:

A does not call B or C and does not use the data of B or c.

B does not call A or C and does not use the data of A or C.

C does not call A or B and does not use the data of A or B.

A disk-resident overlay structure can be defined in which A, B, and c
are overlay segments that occupy the same storage area in physical
memory. The flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL.

CNTRL calls B and B returns to CNTRL.

CNTRL calls c and c returns to CNTRL.

CNTRL calls A and A returns to CNTRL.

In this example, the loading of overlays occurs only four times during
the execution of the task. Therefore, the virtual address space and
physical memory requirements of the task can be reduced without unduly
increasing the overhead activity.

The effect of the use of an overlay structure on allocating virtual
address space and physical memory for task TKl is described in the
following paragraphs.

3-2

OVERLAY CAPABILITY

The lengths of the modules are:

Module

CNTRL
A
B
c

Length (in Octal)

20000 bytes
30000 bytes
20000 bytes
14000 bytes

Figure 3-1 shows the virtual address space and physical memory
required as a result of building TKl as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirement to build TKl
as a single-segment task is 104000(octal) bytes.

In contrast, Figure 3-2 shows the virtual address space and
memory required as a result of building TKl as a multisegment
using the overlay capability.

The multisegment task requires 50000(octal) bytes.

NOTE

In addition to the storage required for
modules A, B, and C, storage is required
for overhead in handling the overlay
structures. This overhead is not
reflected in this example.

physical
task and

In using the overlay capability, the total amount of virtual address
space and physical memory required for the task is determined by the
sum of the length of the root segment and the length of the longest
overlay segment. Overlay segments A and B in this example are much
longer than overlay segment C. If A and B are divided into sets of
logically independent modules, task storage requirements can be
further reduced. Segment A can be divided into a control program (AO)
and two overlays (Al and A2). Segment A2 can then be divided into the
main part (A2) and two overlays (A21 and A22). Similarly, segment B
can be divided into a control module (BO) and two overlays (Bl and
B2) •

Figure 3-3 shows the virtual address space and physical memory
required for the task produced by the additional overlays defined for
A and B.

As a single-segment task, TKl requires 104000(octal) bytes of virtual
address space and physical memory. The first overlay structure
reduces the requirement by 34000(octal) bytes. The second overlay
structure further reduces the requirement by 14000(octal) bytes.

The vertical and horizontal lines in the diagrams of Figures 3-2 and
3-3 represent the state of virtual address space and physical memory
at various times during the calling sequence of TKl. For example, in
Figure 3-3 the leftmost vertical line in both diagrams shows virtual
address space and physical memory, respectively, when CNTRL, AO, and
Al are loaded. The next vertical line sho~s virtual address space and
physical memory when CNTRL, AO, A2, and A21 are loaded, and so on.

3-3

OVERLAY CAPABILITY

The horizontal lines in the diagrams of Figures 3-2 and 3-3 indicate
segments that share virtual address space and physical memory. For
example, in Figure 3-3, the uppermost horizontal line of the task
region in both diagrams shows Al, A21, A22, Bl, B2, and C, all of
which can use the same virtual address space and physical memory. The
next horizontal line shows Al, A2, Bl, B2, and C, and so on.

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

APR 0-

c

B

A

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

c

B

A

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-1 TKl Built As a Single-Segment Task

3-4

104000
BYTES

ZK-393-81

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

0 APR 0-

A

OVERLAY CAPABILITY

B

CNTRL
(ROOT SEGMENT)

c

HEADER AND STACK

VIRTUAL ADDRESS SPACE

I

l A

I
B

I
c

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-2 TKl Built As a Multisegment Task

I
)

50000
BYTE

ZK-394-81

3.1.2 Memory-Resident Overlay Structures (Not Supported on RSX-llS)

TKB provides for creating overlay segments that are loaded from disk
only the first time they are referenced. Thereafter, they reside in
memory. Memory-resident overlays share virtual address space just as
disk-resident overlays do but, unL1Ke disk-resident overlays,
memory-resident overlays do not share physical memory. Instead, they
reside in separate areas of physical memory, each segment aligned on a
32-word boundary. Memory-resident overlays save time for a running

3-5

OVERLAY CAPABILITY

task because they do not need to be copied from a secondary storage
device each time they are to overlay other segments. "Loading" a
memory-resident overlay reduces to mapping a set of shared virtual
addresses to the unique physical area of memory containing the
overlaying segment.

The use of memory-resident overlays is shown in this section by an
example, task TK2, which consists of four input files. Each input
file consists of a single module with the same name as the file. The
task is built by the command

>TKB TK2=0VRLAY2.0DL/MP

and the file OVRLAY2.0DL contains the modules CNTRL, D, E, and F in an
overlay description for the task being built. The /MP switch
specifies that the input file is an Overlay Description Language (ODL)
file.

In this example, the modules D, E, and F are logically independent;
that is:

D does not call E or F and does not use the data of E or F.

E does not call D or F and does not use the data of D or F.

F does not call D or E and does not use the data of D or E.

A memory-resident overlay structure can be defined in which o, E, and
F are overlay segments that occupy separate physical memory locations
but the same virtual address space. The flow of control for the task
is as follows:

CNTRL calls D and D returns to CNTRL.

CNTRL calls E and E returns to CNTRL.

CNTRL calls F and F returns to CNTRL.

The effect of the use of a memory-resident overlay structure on
allocating virtual address space and physical memory for task TK2 is
described in the following paragraphs.

The lengths of the modules are:

Module Length (in Octal)

CNTRL 20000
D 10000
E 14000
F 12000

Figure 3-4 shows the virtual address space and physical memory
requirements as a result of building TK2 as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirements when TK2 is
built as a single-segment task is 56000(octal) bytes.

If TK2 is built using the Task Builder's
capability, the relationship of virtual
memory changes, as shown in Figure 3-5.

3-6

memory-resident overlay
address space to physical

OVERLAY CAPABILITY

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

Bl~ C

BO
20000 APR 1- t------....._ ___---1

CNTRL
(ROOT SEGMENT)

...

O APR O-__H_E_A_D_E_R_A_N_D_ST_A_C_K__ _ _ _ __

VIRTUAL ADDRESS SPACE

l A21J A22 · Blk A1 f A2 B2

AO BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

c

Figure 3-3 TKl Built with Additional Overlay Defined

3-7

I

34000

ZK-395-81

160000 APR 7-

14000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

0 APR 0-

F

E

D

CNTRL
(ROOT SEGMENT)

OVERLAY CAPABILITY

HEADER AND STACK

VIRTUAL ADDRESS SPACE

F

E

D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-4 TK2 Built As a Single-Segment Task

3-8

i\

I

I

J
l

I

56000
BYTES

1

ZK-396-81

OVERLAY CAPABILITY

160000 APR 7-

140000 APR 6-

I

I
120000 APR 5- I

100000 APR 4-

60000 APR 3-

F

40000 APR 2-
E

D E F D

20000 APR 1- 34000(8)

CNTRL BYTES CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)

HEADER AND STACK
0 APR 0-

HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 3-5 TK2 Built As a Memory-Resident Overlay

56000
BYTES

ZK-397-81

The physical memory requirements for TK2 do not change (56000(octal)
bytes) , but the virtual address space requirements have been reduced
to 34000(octal) bytes. This represents a savings in virtual address
space of 22000{octal) bytes.

3-9

OVERLAY CAPABILITY

NOTE

In addition to the storage required for
modules D, E, and F, storage is required
for overhead in handling the overlay
structures. This overhead is not
reflected in this example.

In Figure 3-5, the vertical and horizontal lines in the virtual
address space diagram represent the state of virtual address space at
various times during the calling sequence of TK2. The leftmost
vertical line shows virtual address space when CNTRL and D are loaded
and mapped. The next vertical line shows virtual address space when
CNTRL and E are loaded and mapped. The third vertical line shows
virtual address space when CNTRL and F are loaded and mapped.

The uppermost horizontal line of the task region shows that segments
D, E, and F share virtual address space.

When TK2 is activated, the Executive loads TK2's root segment into
physical memory. The Executive loads segments D, E, and F into memory
as they are called. Once all segments in the structure have been
called, "loading" of the overlay segments reduces to the remapping of
virtual address space to the physical locations in memory where the
overlay segments permanently reside. Figures 3-6 and 3-7 illustrate
the relationship between virtual address space and physical memory for
task TK2 during four time periods:

• TIME 1 (Figure 3-GA) - TK2 is run and the system loads the
root segment (CNTRL) into physical memory and maps to it.

• TIME 2 (Figure 3-GB) - CNTRL calls segment D. The
loads segment D into physical memory and maps to it.
D returns to CNTRL.

system
Segment

• TIME 3 (Figure 3-7A) - CNTRL calls segment E. The system
loads segment E into physical memory, unmaps from segment D,
and maps to segment E. Segment E returns to CNTRL.

• TIME 4 (Figure 3-7B) - CNTRL calls segment Fe The system
loads segment F into physical memory, unmaps from segment E,
and remaps to segment F. Segment F returns to CNTRL.

3-10

OVERLAY CAPABILITY

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

CNTRL
(ROOT SEGMENT)

HEADER AND STACK 0 APR 0- ...__ _________ __.

VIRTUAL ADDRESS SPACE

Figure 3-6A Time 1

... CNTRL
(ROOT SEGMENT)

HEADER AND STACK - - - - - ------------

PHYSICAL MEMORY

Figure 3-6A Relationship Between Virtual Address Space
and Physical Memory -- Time 1

3-11

ZK-398-81

OVERLAY CAPABILITY

Figure 3-68 Time 2

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

D ...
20000 APR 1- 1-----------.....i - - - -

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

...
D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-6B Relationship Between Virtual Address Space
and Physical Memory -- Time 2

3-12

ZK-399-81

OVERLAY CAPABILITY

Figure 3-7A Time 3

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

-40000 APR 2-

E

--
~ ----20000 APR 1- ~----------i...-__ - - - -

CNTRL
(ROOT SEGMENT)

0 APR 0- ___ H_E_A_D_E_R_A_N_D_s_T_A_c_K __

VIRTUAL ADDRESS SPACE

....

....

E

D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-7A Relationship Between Virtual Address Space
and Physical Memory -- Time 3

3-13

ZK-400-81

OVERLAY CAPABILITY

Figure 3-78 Time 4

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

F

40000 APR 2-
E

F
D

20000 APR 1-

CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)

0 APR 0-
HEADER AND STACK HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 3-7B Relationship Between Virtual Address Space
and Physical Memory -- Time 4

I

ZK-401-81

It is important to be careful in choosing whether to have
memory-resident overlays in a structure. Carelessly using these
segments can result in inefficient allocation of virtual address
space, because TKB allocates virtual address space in blocks of 4K
words. Consequently, the length of each overlay segment should
approach that limit if you are to minimize waste. {A segment that is
one word longer than 4K words, for example, is allocated 8K words of
virtual address space. All but one word of the second 4K words is
unusable.)

3-14

OVERLAY CAPABILITY

You can also conserve physical memory by maintaining control over the
contents of each segment. Including a module in several
memory-resident segments that overlay one another causes physical
memory to be reserved for each extra copy of that module. Common
modules, including those from the system object module library
(SYSLIB), should be placed in a segment that can be accessed from all
referencing segments.

The primary criterion for choosing to have memory-resident overlays is
the need to save virtual address space when disk-resident overlays are
either undesirable (because they would slow down the system
unacceptably) , or impossible (because the segments are part of a
resident library or other shared region that must permanently reside
in memory).

Memory-resident overlays can help you use large systems to better
advantage because of the time savings realized when a large amount of
physical memory is available. Resident libraries, in particular, can
benefit from the virtual address space saved when they are divided
into memory-resident segments.

3.2 OVERLAY TREE

The arrangement of overlay segments within the virtual address space
of a task can be represented schematically as a tree-like structure.
Each branch of the tree represents a segment. Parallel branches
denote segments that overlay one another and therefore have the same
virtual address; these segments must be logically independent.
Branches connected end to end represent segments that do not share
virtual address space with each other; these segments need not be
logically independent.

TKB provides an Overlay Description Language (ODL) for representing an
overlay structure consisting of one or more trees (the ODL is
described in Section 3.4).

The single overlay tree shown in Figure 3-8 represents the allocation
of virtual address space for TKl (see Section 3.1.1).

The tree has a root (CNTRL) and three main branches (AO, BO, and C).
It also has six leaves (Al, A21, A22, Bl, B2, and C).

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root. For example:

A21-A2-AO-CNTRL

The path up is defined from the root to the leaf. For example:

CNTRL-BO-Bl

Knowing the properties of the tree and its paths is important to
understanding the overlay loading mechanism and the resolution of
global symbols.

3-15

OVERLAY CAPABILITY

t_~2
A1

I
I

BO
I

c
I

AO

I
CNTRL

ZK-402-81

Figure 3-8 Overlay Tree for TKl

3.2.1 Loading Mechanism

Modules can call other modules that exist on the same path. The
module CNTRL (Figure 3-8) is common to every path of the tree and,
therefore, can call and be called by every module in the tree. The
module A2 can call the modules A21, A22, AO, and CNTRL; but A2 cannot
call Al, Bl, B2, BO, or C.

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory and mapped, or must be
brought into memory. The methods for loading overlays are described
in Chapter 4.

3.2.2 Resolution of Global Symbols in a Multisegment Task

In resolving global symbols for a multisegment task, TKB performs the
same activities that it does for a single-segment task. The rules
defined in Chapter 2 for resolving global symbols in a single-segment
task apply also in this case, but the scope of the global symbols is
altered by the overlay structure.

In a single-segment task, any module can refer to any global
definition. In a multisegment task, however, a module can only refer
to a global symbol that is defined on a path that passes through the
called segment.

The following points, illustrated in the tree diagram in Figure 3-9,
describe the two distinct cases of multiply defined symbols and
ambiguously defined symbols.

In a single-segment task, if you define two global symbols with the
same name, the symbols are multiply defined and an error message is
produced.

In a multisegrnent task, you can define two global symbols with the
same name if they are on separate paths, and not referenced from a
segment that is common to both.

If you define a global symbol more than once on separate paths, but
they are referenced from a segment that is common to both, the symbol
is ambiguously defined. If you define a global symbol more than once
on a single path, it is multiply defined.

3-16

OVERLAY CAPABILITY

TKB's procedure for resolving global symbols is summarized as follows:

1. TKB selects an overlay segment for processing.

2. TKB scans each module in the segment for global definitions
and references.

3. If the symbol is a definition, TKB searches all segments on
paths that pass through the segment being processed, and
looks for references that must be resolved.

4. If the symbol is a reference, TKB performs the tree search as
described in step 3, looking for an existing definition.

5. If the symbol is new, TKB enters it in a list of global
symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding
to their distance from the root. That is, TKB processes the segment
farthest from the root first, before processing an adjoining segment.

When TKB processes a segment, its search for global symbols proceeds
as follows:

1. The segment being processed

2. All segments toward the root

3. All segments away from the root

4. All co-trees (see Section 3.5)

Figure 3-9 illustrates the resolution of global
multi segment task.

A1
0 (REF)
R (REF)
S (REF)

I

A21 A22
T (DEF) R (REF)
S (REF) 0 (REF)

~EF)

A2
R (DEF)

I
I

AO
Q (DEF)
S (DEF)
T (DEF)

81 82
0 (REF) S (REF) S(Ry

BO
0 (DEF)
S (DEF)

CNTRL
S (REF)

symbols in a

c

ZK-403-81

Figure 3-9 Resolution of Global Symbols in a Multisegment Task

3-17

OVERLAY CAPABILITY

The following notes discuss the resolution of references in Figure
3-9:

1. The global symbol Q is defined in both segment AO and segment
BO. The references to Q in segment A22 and in segment Al are
resolved by the definition in AO. The reference to Q in Bl
is resolved by the definition in BO. The two definitions of
Q are distinct in all respects and occupy different overlay
paths.

2. The global symbol R is defined in segment A2. The reference
to R in A22 is resolved by the definition in A2 because there
is a path to the reference from the definition
(CNTRL-AO-A2-A22). The reference to R in Al, however, is
undefined because there is no definition for R on a path
through Al.

3. The global symbol S is defined in both segment AO and segment
BO. References to S from segments Al, A21, or A22 are
resolved by the definition in AO, and references to S in Bl
and B2 are resolved by the definition in BO. However, the
reference to S in CNTRL cannot be resolved because there are
two definitions of S on separate paths through CNTRL. The
global symbol S is ambiguously defined.

4. The global symbol T is defined in both segment A21 and
segment AO. Since there is a single path through the two
definitions (CNTRL-AO-A2-A21), the global symbol T is
multiply defined.

3.2.3 Resolution of Global Symbols from the Default Library

The process of resolving global symbols may require two passes over
the tree structure. The global symbols discussed in the previous
section are included in user-specified input modules that TKB scans in
the first pass. If any undefined symbols remain, TKB initiates a
second pass over the structure in an attempt to resolve such symbols
by searching the default object module library (normally
LBO:[l,l]SYSLIB.OLB). TKB reports any undefined symbols remaining
after its second pass.

When multiple tree structures (co-trees) are defined, as described in
Section 3.5, any resolution of global symbols across tree structures
during a second pass can result in multiple or ambiguous definitions.
In addition, such references can cause overlay segments to be
inadvertently displaced from memory by the overlay loading routines,
thereby causing run-time failures. To eliminate these conditions, the
tree search on the second pass is restricted to:

• The segment in which the undefined reference has occurred

• All segments in the current tree that are on a path through
the segment

• The root segment

When the current segment is the main root, the tree search is extended
to all segments. You can unconditionally extend the tree search to
all segments by including the /FU (full) switch in the task image file
specification. (Refer to Chapter 10 for a description of the /FU
switch.)

3-18

OVERLAY CAPABILITY

3.2.4 Allocation of Program Sections in a Multisegment Task

One of a program section's attributes indicates whether the program
section is local (LCL) to the segment in which it is defined or is
global (GBL) •

Local program sections with the same name can appear in any number of
segments. TKB allocates virtual address space for each local program
section in the segment in which it is declared. Global program
sections that have the same name, however, must be resolved by TKB.

When a global program section is defined in several overlay segments
along a common path, TKB allocates all virtual address space for the
program section in the overlay segment closest to the root.

FORTRAN common blocks are translated into global program sections with
the overlay (OVR) attribute. In Figure 3-10, the common block COMA is
defined in modules A2 and A21. TKB allocates the virtual address
space for COMA in A2 because that segment is closer to the root than
the segment that contains A21.

If the segments AO and BO use the common block COMAB, however, TKB
allocates the virtual address space for COMAB in both the segment that
contains AO and the segment that contains BO. AO and BO cannot
communicate through COMAB. When the overlay segment containing BO is
loaded, any data stored in COMAB by AO is lost.

You can specify the allocation of program sections explicitly. If AO
and BO need to share the contents of COMAB, you can force the
allocation of this program section into the root segment by the use of
the .PSECT directive of the Task Builder's overlay description
language, described in Section 3.4.

A21 A22 y
A1 A2

~A
AO

COM AB

I

81 82

y
BO

COM AB

I

c

I
CNTRL

ZK-404-81

Figure 3-10 Resolution of Program Sections for TKl

3.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES

When TKB constructs
structures and adds
contain information

an overlaid
them to

about the

task, it builds additional data
the task image. The data structures
overlay segments and describe the

3-19

OVERLAY CAPABILITY

relationship of each segment in the tree to the other segments in the
tree. TKB also includes into the task image a number of system
library routines (called overlay run-time routines). The overlay
run-time routines use the data structures to facilitate the loading of
the segments and to provide the necessary linkages from one segment to
another at run time.

TKB links the majority of data structures and all of the overlay
run-time routines into the root segment of the task. The number and
type of data structures, and the functions the routines perform,
depend on two considerations:

• Whether the task is built to use the Task Builder's autoload
or manual load facilities

• Whether the overlay segment is memory resident or disk
resident

These considerations have a marked impact on the size and operation of
the task. Chapter 4 describes the Task Builder's autoload and manual
load facilities and describes the methods for loading overlays.
Appendix B describes the data structures and their contents in detail.

The contents of the root segment for a task with an overlay structure
are discussed briefly in the following sections.

3.3.1 Overlaid Conventional Task Structures

Depending on the considerations just discussed, some
following data structures are required by the
routines:

• Segment tables

• Autoload vectors

• Window descriptors

• Region descriptors

or all
overlay

Figure 3-11 shows a typical overlay root segment structure.

of the
run-time

There is a segment descriptor for every segment in the task. The
descriptor contains information about the load address, the length of
the segment, and the tree linkage.

In an autoloadable, overlaid task, autoload vectors appear in the root
segment and in every segment that calls modules in another segment
located farther away from the root of the tree. All references to
resident libraries are resolved through autoload vectors in the root.

Window descriptors are allocated whenever a memory-resident overlay
structure is defined for the task. The descriptor contains
information required by the Create Address Window system directive
(CRAW$). One descriptor is allocated for each memory-resident overlay
segment~

Region descriptors are allocated whenever a task is linked to a shared
region containing memory-resident overlays. The descriptor contains
information required by the Attach Region system directive (ATRG$).

3-20

OVERLAY CAPABILITY

TASK CODE & DATA

WINDOW DESCRIPTORS

REGION DESCRIPTORS

SEGMENT DESCRIPTORS

OVERLAY
RUN-TIME
ROUTINES

AUTO LOAD VECTORS

TASK CODE
AND
DATA

HEADER AND STACK

ZK-405-81

TYPICAL
MAIN TREE

ROOT SEGMENT

Figure 3-11 Typical Overlay Root Segment Structure

•i · Regiort ·descriptors

•" A:l;itoload \rectO'rs (th.e data part)

AuE.oioad vectors contain data and instruct.ions. .. Therefore 1 TKB
locates tpe ln$truction part of the autoload vector in I-space and the

.•. data. part in D-·space. Each segment: of an auto loadable overlaid I- and
D.-space tas~ .may have an instruction part and a data part~ Therefore;
each·r~ and D-$pace segment in such a task would have its vectors

:separated into an instruction part and a data part.

3-21

OVERLAY CAPABILITY

,';I'be st~u'Ctur'e,s :10,catea· in instrucfio.11 space are:

1.SK

1.SK

300

0

.Auto.load,·, vect,()rs' (instruct.ion p(lrt)

:::·segmeh1:" r~turn point

VIRTUAL I-SPACE

I-SPACE PART OF
AUTOLOAD VECTORS

CODE

OVERLAY RUN-TIME
ROUTINES

AUTOLOAD VECTORS-
I-SPACE PART

TASK
CODE

I

UNUSED HEADER COPY

3.6K

3K

3K

2740

2720

2640

2630

1270

300

0

segment only)

VIRTUAL D-SPACE

D-SPACE PART OF
AUTOLOAD VECTORS

DATA

WINDOW DESCRIPTORS

REGION DESCRIPTORS

SEGMENT DESCRIPTORS

AUTOLOAD VECTORS
D-SPACE PART

TASK
DATA

STACK SPACE

TASK HEADER
USABLE COPY

I

)

UP-TREE
SEGMENT

MAIN
TREE
ROOT

SEGMENT

ZK-1050-82

Figure 3-12 Typical Over,laid I- and ;D Space Task with Up-Tree Segment

3-22

OVERLAY CAPABILITY

3.4 OVERLAY DESCRIPTION LANGUAGE

TKB provides a language, called the Overlay Description Language
(ODL), that allows you to describe the overlay structure of a task.
An overlay description is a text file consisting of a series of ODL
directives, one directive per line. Each line may have as many as 132
characters. You enter the name of this file in a TKB command line,
and identify it as an ODL file by specifying the /MP switch (see
Chapter 10) to the file name. For example, the following TKB command
line specifies an ODL file:

>TKB TASKl=OVRLAY/MP

If you specify an ODL file to TKB, it must be the only input file you
specify.

A command line in an ODL file takes the form

label: directive argument-list ;comment

A label is required only for the .FCTR directive (see Section 3.4.2).
Labels cannot be used with the other directives.

The ODL directives are listed below and described in Sections 3.4.1
through 3.4.6:

e .ROOT and .END

e .FCTR

e .NAME

e .PSECT

• @ (at sign; indirect command file specifier)

The ODL directives can act upon the following items: named input
files, overlay segments, program sections, and lines in the ODL file
itself. These items follow each directive on the same line as the
directive, and form an argument-list. Operators, such as the hyphen,
exclamation point, and comma, group the argument-list items (named
task elements) or attach attributes to them.

If the named task element is a file, you can enter a complete file
specification. Defaults for omitted parts of the file specification
are as described in Chapters 1 and 10, except that the default device
is SYO:, and the default UFD is taken from the terminal UIC.

In addition, the following restrictions apply to argument-lists:

• You can only use the dot character (.) in a file name.

• Comments cannot appear on a line ending with a file name.

3.4.1 .ROOT and .END Directives

of the overlaid task.
first in the overlay

the .ROOT directive in
3.4.4. Each overlay

The .ROOT directive
and the .END directive

The .ROOT directive defines the structure
Because of this, .ROOT usually appears
description. The .NAME directive may precede
certain circumstances discussed in Section
description must end with one .END directive.
tells TKB where to start building the tree,
tells TKB where the input ends.

3-23

OVERLAY CAPABILITY

The arguments of the .ROOT directive use three operators to express
concatenation, memory residency, and overlaying. These operators can
be used also in the .FCTR directive.

• The hyphen (-) operator indicates the concatenation of virtual
address space. For example, X-Y means that sufficient virtual
address space will be allocated to contain module X and module
Y simultaneously. TKB allocates segment X and segment Y in
sequence to produce one segment.

• The exclamation point (!) operator indicates memory residency
of overlays. (This operator is discussed in Section 3.4.3.)

• The comma (,) operator, appearing within parentheses,
indicates the overlaying of virtual address space. For
example, (Y,Z) means that virtual address space can contain
either segment Y or segment z. If no exclamation point (!)
precedes the left parenthesis, segment Y and segment z also
share physical memory.

The comma (,) operator is also used to define multiple tree
structures (as described in Section 3.5.1).

You use parentheses to delimit a group of segments that start at the
same virtual address. The number of nested parenthetical groups
cannot exceed 16.

For example:

.ROOT X-(Y,Z-(Zl,Z2))

.END

These directives describe the tree and its corresponding virtual
address space shown in Figure 3-13:

Z1 Z2

y

z

x

ZK-406-81

Figure 3-13 Tree and Virtual Address Space Diagram

To create the overlay description for the task TKl in Figure 3-3
(Section 3.1.1), you could create a file called TFIL.ODL that contains
the directives:

.ROOT CNTRL-(A0-(Al,A2-(A21,A22)) ,BO-(Bl,B2) ,C)

.END

To build the task with that overlay structure, you would type:

>TKB TKl=TFIL/MP

The /MP switch in the command strinq above tells TKB that there is
only one input file (TFIL.ODL) ,- and that this file contains the
overlay description for the task.

3-24

OVERLAY CAPABILITY

3.4.2 .FCTR Directive

The .FCTR directive allows you to build large, complex trees and
represent them clearly.

The .FCTR directive has a label at the beginning of the ODL line that
is pointed to by a reference in a .ROOT or another .FCTR statement.
The label must be unique with respect to module names and other
labels. The .FCTR directive allows you to extend the tree description
beyond a single line, enabling you to provide a clearer description of
the overlay. (There can be only one .ROOT directive.)

For example, to simplify the tree given in the file TFIL (described in
Section 3.4.1), you could use the .FCTR directive in the overlay
description as· follows:

AFCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,BFCTR,C)

.FCTR AO-(Al,A2-(A21,A22))

.FCTR BO-(Bl,B2)

.END

The label BFCTR is used in the .ROOT directive to designate the
argument BO-(Bl,B2) of the .FCTR directive. The resulting overlay
description is easier to interpret than the original description. The
tree consists of a root, CNTRL, and three main branches. Two of the
main branches have sub-branches.

The .FCTR directive can be nested to a level of 16. For example, you
could further modify TFIL as follows:

AFCTR:
A2FCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,BFCTR,C)

.FCTR AO-(Al,A2FCTR)

.FCTR A2-(A21,A22)

.FCTR BO-(Bl,B2)

.END

3.4.3 Arguments for the .FCTR and .ROOT Directives

The arguments for the .FCTR and .ROOT directives may have different
forms or syntax. The examples in this chapter use forms such as Al,
Bl, x, and Y for clarity, but the actual arguments that you use may
have somewhat different names. This section lists the forms that the
arguments may take for these directives. If you use an argument that
does not fall into one of the following five categories, TKB takes the
argument as that of the name of an object module file; in other
words, the file name that you use must have an extension of .OBJ.

3.4.3.1 Named Input File - You may use a named input file that has
the object file format. For example,

CALC: .FCTR [7,54]MULT.OBJ

The default is .OBJ.

3-25

OVERLAY CAPABILITY

3.4.3.2 Specific Library Modules - You may
specific object modules from a library file.

BAKER: .FCTR [300,3]COOKIE/LB:CHIP:OAT

name and therefore
For example,

use

where COOKIE.OLB is the library file and CHIP and OAT are the modules
that you want to extract from the file. The default extension is .OLB
and it need not be specified as part of the argument.

3.4.3.3 A Library to Resolve References Not Previously Resolved - You
may specify a library as an argument in a .FCTR statement after
extracting specific modules in a previous .FCTR statement. TKB uses
the library to resolve symbols that may still be unresolved after
extracting the modules. For example,

BAKER:
LIB:

.FCTR [300,3]COOKIE/LB:CHIP:OAT

.FCTR LB:[l,4]RECIPE/LB

3.4.3.4 A Section Name Used in a .PSECT Directive - You may use the
name that you used as a program section name in the .PSECT directive
as the argument in a .FCTR statement. For example,

.PSECT
FSTCOM: .FCTR

COM,GBL,D,RW,OVR
COM

3.4.3.5 A Segment Name used in a .NAME Directive - You may use the
name that you specified as the name of a segment in the .NAME
directive. For example,

.NAME
OVLY: .FCTR

SEGl,GBL,DSK
SEG1-MOD1-MOD2

3.4.4 Exclamation Point Operator

The exclamation point operator allows you to specify memory-resident
overlay segments (see Section 3.1.2). You specify memory residency by
placing an exclamation point (!) immediately before the left
parenthesis enclosing the segments to be affected. The overlay
description for task TK2 in Figure 3-4 (Section 3.1.2) is as follows:

.ROOT CNTRL-! (D,E,F)

.END

In the example above, segments D, E, F are declared resident in
separate areas of physical memory. The Task Builder determines the
single starting virtual address for D, E, and F by rounding the octal
length of segment CNTRL up to the next 4K boundary. The physical
memory allocated to segments D, E, and F is determined by rounding the
actual length of each segment to the next 32-word boundary (256-word
boundary if the /CM switch is in effect) and adding this value to the
total memory required by the task.

3-26

OVERLAY CAPABILITY

The exclamation point operator applies to that segment immediately to
the right of the left parenthesis and those segments farther from the
root on the same level with that segment. In other words, all
parallel segments must be of the same residency type (disk resident or
memory resident) •

The exclamation point operator applies to segments at the same level
from the root inside a pair of parentheses; segments nested in
parenthesis within that level, but farther from the root, are not
affected.

It is therefore possible to define an overlay structure that combines
the space-saving attributes of disk-resident overlays with the speed
of memory-resident overlays. For example:

.ROOT A-! (Bl-(B2,B3) ,C)

.END

In this example, Bl and C are
exclamation point operator. B2
however, because no exclamation
parentheses enclosing them.

declared memory resident by the
and B3 are declared disk resident,
point operator precedes the

Note that while a memory-resident overlay can call a disk-resident
overlay, the converse is not legal; that is, you cannot use an
exclamation point for segments emanating from a disk-resident segment.
For example, you cannot build the following structure:

.ROOT A-(Bl-! (B2,B3) ,C)

.END
; this overlay description is illegal

In this example, Bl is declared disk resident; so it is illegal to
use the exclamation point to declare B2 and B3 memory resident.

3.4.5 .NAME Directive

The .NAME directive allows you to name a segment, and assign
attributes to the segment. The name must be unique with respect to
file names, program section names, .FCTR labels, and other segment
names used in the overlay description. You use the .NAME directive
prior to using the .ROOT or .FCTR directive. The Task Builder
attaches attributes to a segment when it encounters the name in a
.ROOT or .FCTR directive that defines the overlay segment. If you
apply multiple names to a segment, the attributes of the last name
given are in effect. This directive does the following:

• Names uniquely a segment that is loaded through the manual
load facility (see Chapter 4)

• Permits a named data-only segment to be loaded through the
autoload mechanism

The format of the .NAME directive is:

.NAME segname[,attr] [,attr]

segname

A 1- to 6-character name; this name can consist of the Radix-50
characters A-Z, 0-9, and$ (the period (.) cannot be used).

3-27

attr

OVERLAY CAPABILITY

One of the following:

GBL The name is entered in the segment's global symbol
table.

NODSK

NOGBL

The GBL attribute makes it possible to load
data-only overlay segments by means of the autoload
mechanism (see Chapter 4).

No disk space is allocated to the named segment.

If a data overlay segment has no initial values, but
will have its contents established by the running
task, no space for the named segment on disk need be
reserved. If the code attempts to establish initial
values for data in a segment for which no disk space
is allocated (a segment with the NODSK attribute),
TKB gives a fatal error.

The name is not entered in the segment's global
symbol table.

If the GBL attribute is not present, NOGBL is
assumed.

DSK Disk storage is allocated to the named segment.

If the NODSK attribute is not present, DSK is
assumed.

3.4.5.1 Example of The Ose of The .NAME Directive - In the following
modified ODL file for TKl (Figure 3-3 of Section 3.1.1), you provide
names for the three main branches, AO, BO, and C, by specifying the
names in the .NAME directive and using them in the .ROOT directive.
The default attributes NOGBL and DSK are in effect for BRNCHl and
BRNCH3, but BRNCH2 has the complementary attributes (GBL and NODSK)
that cause TKB to enter the name BRNCH2 into the segment's global
symbol table and suppress disk allocation for that segment. BRNCH2
contains uninitialized storage to be utilized at run time •

• NAME BRNCHl
.NAME BRNCH2,GBL,NODSK
.NAME BRNCH3

AFCTR:
.ROOT CNTRL-!(BRNCH1-AFCTR,*BRNCH2-BFCTR,BRNCH3-C)
.FCTR A0-(Al,A2-(A21,A22))

BFCTR: .FCTR BO-*!(Bl,B2)
.END

(The asterisk (*) is the autoload indicator;
Chapter 4.)

it is discussed in

You can load the data overlay segment BRNCH2 by including the
following statement in the program:

CALL BRNCH2

This action is immediately followed by an automatic return to the next
instruction in the program.

3-28

OVERLAY CAPABILITY

You can also use segment names in making patches with the ABSPAT and
GBLPAT options (see Chapter 11).

NOTE

In the absence of a unique .NAME
specification, TKB establishes a segment
name, using the first module name or
library module name occurring in the
segment.

3.4.6 .PSECT Directive

You can use the .PSECT directive to control the placement of a global
program section in an overlay structuree The name of the program
section (a 1- to 6-character name consisting of the Radix-50
characters A-Z, 0-9, and $) and its attributes are given in the .PSECT
directive. The attributes used in the .PSECT directive must match
those in the actual program section in the module. Thus, you can use
the name in a .ROOT or .FCTR statement to indicate to the Task Builder
the segment to which the program section will be allocated. An
example of the use of .PSECT is given in the modified version of task
TKl (the original version is shown in Figure 3-3 in Section 3.1.1)
shown below.

In this example, TKl has a disk-resident overlay structure. The
example assumes that the programmer was careful about the logical
independence of the modules in the overlay segment, but failed to take
into account the requirement for logical independence in multiple
executions of the same overlay segment.

The flow of task TKl can be summarized as follows. CNTRL calls each
of the overlay segments, and the overlay segment returns to CNTRL in
the order A, B, C, A. Module A is executed twice. The overlay
segment containing A must be reloaded for the second execution.

Module A uses a common block named DATA3. The Task Builder allocates
DATA3 to the overlay segment containing A. The first execution of A
stores some results in DATA3. The second execution of A requires
these values. In this disk-resident overlay structure, however, the
values calculated by the first execution of A are overlaid. When the
segment containing A is read in for the second execution, the common
block is in its initial state.

To permit the two executions of A to communicate, a .PSECT directive
is used to force the allocation of DATA3 into the root. The indirect
command file for TKl, TFIL.ODL, is modified as follows:

AFCTR:
BFCTR:

.PSECT DATA3,RW,GBL,REL,OVR

.ROOT CNTRL-DATA3-(AFCTR,BFCTR,C)

.FCTR AO-(Al,A2-(A21,A22))

.FCTR BO-(Bl,B2)

.END

The attributes RW, GBL, REL, and OVR are described in Chapter 2.

3-29

OVERLAY CAPABILITY

3.4.7 Indirect Command Files

The Overlay Description Language processor can accept ODL text
indirectly, that is, specified in an indirect command file. If an at
sign {@) appears as the first character in an ODL line, the processor
reads text from the file specified immediately after the at sign. The
processor accepts the ODL text from the file as input at the point in
the overlay description where the file is specified.

For example, suppose you create a file, called BIND.ODL, that contains
the text:

B: .FCTR Bl-{B2,B3)

A line beginning with @BIND can replace this text at the position
where the text would have appeared:

C:
@BIND

Indirect

.ROOT A-(B,C)

.FCTR Cl-{C2,C3)

.END

C:
B:

Direct

.ROOT A-{B,C)

.FCTR Cl-{C2,C3)

.FCTR Bl-{B2,B3)

.END

The Task Builder allows two levels of indirection.

3.5 MULTIPLE-TREE STRUCTURES

You can define more than one tree within an overlay structure. These
multiple tree structures consist of a main tree and one or more
co-trees. The root segment of the main tree is loaded by the
Executive when the task is made active, while segments within each
co-tree are loaded through calls to the overlay run-time routines.
Except for this' distinction, all overlay trees have identical
characteristics: a root segment that resides in memory, and two or
more overlay segments.

The main property of a structure containing more than one tree is that
storage is not shared among trees. Any segment in a tree can be
referred to from another tree without displacing segments from the
calling tree. Routines that are called from several main tree overlay
segments, for example, can overlay one another in a co-tree. The same
considerations in deciding whether to create memory-resident overlays
or disk-resident overlays in a single-tree structure apply in building
a structure containing co-trees.

3.5.l Defining a Multiple-Tree Structure

Multiple-tree structures are specified within the Overlay Description
Language by extending the function of the comma operator. As
described in Section 3.4, this operator, when included within
parentheses, defines a pair of segments that share storage. Including
the comma operator outside all parentheses delimits overlay trees.
The first overlay tree thus defined is the main tree. Subsequent
trees are co-trees. For example:

X:
Y:

.ROOT

.FCTR

.FCTR

.END

X,Y
XO-(Xl,X2,X3)
YO-{Yl,Y2)

3-30

OVERLAY CAPABILITY

In this example, two overlay trees are specified: 1) a main tree
containing the root segment XO and three overlay segments; and 2) a
co-tree consisting of root segment YO and two overlay segments. The
Executive loads segment XO into memory when the task is activated.
The task then loads the remaining segments through calls to the
overlay run-time routines.

3.5.1.1 Defining Co-trees With a Null Root by Using .NAME - A co-tree
must have a root segment to establish linkage with its own overlay
segments. However, co-tree root segments need not contain code or
data and, therefore, can be 0 length. You can create a segment of
this type, called a null segment 1 by means of the .NAME directive.
The previous example is modified, as shown below, to move file YO.OBJ
to the root and include a null segment •

x:

Y:

• ROOT
.FCTR
.NAME
.FCTR
.END

X,Y
XO-YO-(Xl,X2,X3)
YNUL
YNUL-(Yl,Y2)

The .null segment YNUL is created by using the .NAME directive, and
replaces the co-tree root that formerly contained YO.OBJ.

3.5.2 Multiple-Tree Example

The following example illustrates the use of multiple trees to reduce
the size of the task.

In this example, the root segment CNTRL of task TKl (described in
Section 3.1.1) has had two routines added to it: CNTRLX and CNTRLY.
The routines are logically independent of each other, and both are
approximately 4000(octal) bytes long. However, the routines have been
placed in the root segment of TKl instead of being overlaid because
both routines must be accessed from modules on all paths of the tree.
In a single-tree overlay structure, the root segment is the only
segment common to all paths of the tree. The schematic diagram for
the modified structure is shown in Figure 3-14.

A21 A22

I I
I

A1 A2 81 82

I I I
I

I
I

AO BO c
I

I
I I

CNTRLY
I J ROOT CNTRLX
I SEGMENT

CNTRL

ZK-407-81

Figure 3-14 Overlay Tree for Modified TKl

3-31

OVERLAY CAPABILITY

One possible overlay description for this structure is shown below:

AFCTR:
A2FCTR:
BFCTR:

.ROOT CNTRL-CNTRLX-CNTRLY-(AFCTR,BFCTR,C)

.FCTR A0-(Al,A2FCTR)

.FCTR A2-(A21,A22)

.FCTR BO-(Bl,B2)

.END

Because TKl consists of disk-resident overlays and the new routines
are concatenated within the overlay structure, the new routines add
lOOOO(octal) bytes to both the virtual address space and physical
memory requirements of the task. However, the added routines consume
more virtual address space than might be expected, as shown in Figure
3-15.

The expansion of TKl's virtual address space requirements caused the
task to extend 4000(octal) bytes beyond the next highest 4K-word
boundary {APR 2). Because the Executive must use an additional
mapping register (APR2) , the apparent cost in virtual address space
above APR 2 of 4000(octal) bytes is in fact 20000(octal) bytes.
(Compare the diagram in Figure 3-15 with the diagram in Figure 3-3.)
The shaded portion of the unused virtual address space in Figure 3-15
represents the portion of virtual address space that is allocated but
is unusable as allocated.

Small tasks, such as TKl, are seldom adversely affected by the
inefficient allocation of virtual address space, but larger tasks may
be. For example, a large task that contains code to create dynamic
regions {see Chapter 5) or that contains Executive directives to
extend its task region {see the RSX-llM/M-PLUS Executive Reference
Manual) requires at least 4K words of virtual address space to map
each region. In such a task, using co-trees can often save virtual
address space and can, therefore, be of paramount importance. TKl can
be modified to reflect this.

As noted earlier, the routines CNTRLX and CNTRLY are logically
independent. Logical independence is a primary requirement for all
segments that overlay each other. However, CNTRLX and CNTRLY cannot
be structured into either of the main branches of TKl's tree because
it is further required that the routines be accessible from modules on
all paths of the tree. Therefore, the only way CNTRLX and CNTRLY can
be overlaid and still meet all of these requirements is through a
co-tree structure. Figure 3-16 shows the schematic representation of
TKl as a co-tree structure.

The root segment CNTRL2 of the co-tree is a null segment. It contains
no code or data and has a length of O. As noted earlier, the Task
Builder requires the root segment in order to establish linkage with
the overlay segments. One possible overlay description for building
TKl as a 2-tree structure is shown below •

AFCTR:
A2FCTR:
BFCTR:

• NAME CNTRL2
.ROOT CNTRL-(AFCTR,BFCTR,C) ,CNTRL2-(CNTRLX,CNTRLY)
.FCTR AO-(Al,A2FCTR)
.FCTR A2-(A2l,A22)
.FCTR BO-(Bl,B2)
.END

You define the co-tree in the .ROOT directive by placing the comma
operator outside all parentheses (immediately before CNTRL2). The
.NAME directive creates the null root segment. Figure 3-16 shows the
new relationship between virtual address space and physical memory.

3-32

ROOT
SEGMENT

APR7-

APR6-

APR5-

APR4-

APR3-

APR2-

APR1-

APRO-

OVERLAY CAPABILITY

i A21 A22
l A1 B11--

L A2 B2

r AO I BO

CNTRLY
f.- - - - - -

CNTRLX
t- - - - -

CNTRL

HEADER AND STACK

VIRTUAL ADDRESS
SPACE

c

..
lA211A22j ~

A1 l l B1 A2 B2

AO l BO

CNTRLY
t- - - - - - - -

CNTRLX
t- - - - - - - -

CNTRL

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-15 Virtual Address Space and Physical Memory
for Modified TKl

3-33

c

-
-

ZK-408-81

OVERLAY CAPABILITY

A21 A22

I I
I

A1 A2 81 82

I I I I
I I

AO BO c
I

I
I I

CNTRL

MAIN TREE CO-TREE

ZK-409-81

Figure 3-16 Overlay Co-Tree for Modified TKl

The diagrams in Figure 3-17 illustrate the savings (4000(octal) bytes)
in both virtual address space and physical memory that is realized by
overlaying CNTRLX and CNTRLY. What may be more important in some
applications, however, is that the top of TKl's task region has
dropped below the 4K-word boundary of APR 2. TKl has gained 4K words
of potentially usable virtual address space.

NOTE

The numbers used in this example have
been simplified for illustrative
purposes. In addition, the storage
required for overhead in handling the
overlay structures is not reflected in
this example.

Because the null root CNTRL2 is O bytes long, it does not require any
virtual address space or physical memory and, therefore, does not
appear in the diagrams in Figure 3-17.

Finally, you can define any number of co-trees. Additional co-trees
can access all modules in the main tree and other co-trees.

3-34

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

OVERLAY CAPABILITY

CNTRLX CNTRLY __ NULL ROOT
i--~T-A-2-1J~A-2_2......._~~~~~---•-i-LENGTH=O

A11 A2 B1§ C

AO BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

I

CNTRLX CNTRLY

T A21TA22 81~ A1r A2 B2

AO BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-17 Virtual Address Space
and Physical Memory for TKl As a Co-Tree

c

ZK-410-81

3.6 CREATING AN ODL FILE FROM A VIRTUAL ADDRESS SPACE ALLOCATION
DIAGRAM

You can use a graphic method as an aid to converting a virtual address
space allocation diagram into the correct Task Builder ODL file.

3-35

OVERLAY CAPABILITY

First create a virtual address space allocation diagram of your
overlaid task, similar to that shown in Figure 3-18, without the
dotted-line path shown in the diagram.

A21 A22 .
A1 . .

: _!" ·..:..

~ ~ 1
81

:.i-:. A2 82 c

..l j_ ••••••••• ~···:

--r : ! ..
AO :.i-: BO =·····~···:

j_ _!_

. !
• ROOT (CNTRL) •

ZK-1052-82

Figure 3-18 Virtual Address Space Allocation Diagram

The dotted-line path will be the basis for writing the ODL statements
that you need. To determine the path through your virtual address
space allocation diagram, follow these steps:

1. Start in the lower left corner of the root segment.

2. Draw a dotted line upward as far as you can go without
passing through the top or into "empty" virtual space,
crossing into new segments as needed.

3. When you reach the top segment, proceed to the right until
you reach a vertical line.

4. If the end of your dotted line is now opposite the vertical
line of the lowest segment, cross the vertical line and
continue again from step 2; otherwise, proceed to step 5.

5. Because the end of your dotted line is not opposite the
vertical line of the lowest segment proceed downward until
you reach the lowest segment.

6. If you are not in the root, cross the vertical line to the
right and continue from step 2; otherwise, proceed to step
7.

7. If your dotted line is in the lower right corner of the root,
you have finished the dotted-line walk.

3-36

OVERLAY CAPABILITY

Once you have drawn the dotted line, you should go back over it to
verify that you followed all the steps, While doing this, draw
arrowheads at each point where a line was crossed to indicate the
direction of the line.

3.6.1 Creating a .ROOT Statement by Using a Virtual Address Space
Allocation Diagram

Now you are ready to write the .ROOT statement. Follow these steps:

1. Write .ROOT followed by the name of the root statement (in
this example 1 9ROOT CNTRL) 9

2. Follow the dotted-line path.

3. Add each successive ODL element to your root statement, using
the following syntax, based on the direction of your dotted
line.

A. At an upward crossing: -("name of new segment"

B. At a horizontal crossing: ,"name of new segment"

C. At a downward crossing:

4. When you have returned to the root, your root statement is
complete.

Using the dotted-line path in Figure 3-18 and the above associated
steps for writing the .ROOT statement, you can write as shown below:

1. Step 1 : Write .ROOT CNTRL

2. Step 3A: Write .ROOT CNTRL-(AO

3. Step 3A: Write .ROOT CNTRL-(AO-(Al

4. Step 3B: Write .ROOT CNTRL-(AO-(Al,A2

5. Step 3A: Write .ROOT CNTRL-(AO-(Al,A2-(A21

6. Step 3B: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22

7. Step 3C: Write .ROOT CNTRL-(A0-(Al,A2-(A21,A22)

8. Step 3C: Write .ROOT CNTRL-(A0-(Al,A2-(A21,A22))

9. Step 3B: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22)) ,BO

10. Step 3A: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-BO-(Bl

11. Step 3B: Write .ROOT CNTRL-(A0-(Al,A2-(A21,A22))-BO-(Bl,B2

12. Step 3C: Write .ROOT CNTRL-(A0-(Al,A2-(A21,A22))-BO-(Bl,B2)

13. Step 3B: Write .ROOT CNTRL-(A0-(Al,A2-(A21,A22))-BO-(Bl,B2) ,C

14. Step 3C: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-BO-(Bl,B2) ,C)

The steps for writing .FCTR statements and co-tree statements follow
next.

3-37

OVERLAY CAPABILITY

3.6.2 Creating a .FCTR Statement by Using a Virtual Address Space
Allocation Diagram

By using the steps for creating a .ROOT
address space allocation diagram, you
statement •

statement from a virtual
created the following .ROOT

• ROOT CNTRL-(AO-(Al,A2-(A21,A22))-BO-(Bl,B2) ,C)

It may be desirable to simplify your specific .ROOT statement into one
or more .FCTR statements. A technique similar to the one used to
create the .ROOT statement may be used to create the .FCTR statement.

In this example, segments AO, Al, A2, A21, and A22 are selected to be
in the .FCTR statement. Having selected these segments (normally
related as a "stack" of segments) you are now ready to write down the
.FCTR statement.

First, draw a virtual address space allocation diagram of the segments
that you have selected. (You may use Figure 3-18 for this
explanation.) Then follow these next steps to draw a dotted-line path
through the diagram:

1. Start in the lower left corner of the lowest or "base"
segment (AO) in your diagram.

2. Draw a dotted line upward as far as you can go without
passing through the top or into empty virtual space, crossing
into new segments as needed.

3. When you reach the top segment, proceed to the right until
you reach a vertical line.

4. If the end of your dotted line is now opposite the vertical
line of the lowest segment, cross the vertical line and
continue again from step 2; otherwise, proceed to step 5.

5. Because the end of your dotted line is not opposite the
vertical line of the lowest segment, proceed downward until
you reach the lowest segment.

6. If you are not in the base segment (AO), cross the vertical
line to the right and continue from step 2; otherwise,
proceed to step 7.

7. If your dotted line is in the lower right corner of the base
segment, you have finished the dotted-line walk.

Once you have drawn the dotted line, you should go back over it to
verify that you followed all the steps. While doing this, draw
arrowheads at each point where a line was crossed to indicate the
direction of the line.

Now you are ready to write the .FCTR statement.
steps:

Follow these next

1. Write a label followed by .FCTR, which is in turn followed by
the name of the first segment (AO) (in this example, AFCTR
.FCTR AO)

2. Follow the dotted-line path.

3-38

Using

OVERLAY CAPABILITY

3. Add each successive ODL element to your root statement, using
the following syntax, based on the direction of your dotted
line.

A. At an upward crossing: ("name of new segment"

B. At a horizontal crossing: ,"name of new segment"

C. At a downward crossing:

4. When you have returned to the base segment, your .FCTR
statement is complete.

the dotted line path and the above associated steps for writing
the .FCTR statement, you can write as shown below:

1. Step 1 : Write AFC TR .FCTR AO

2. Step 3A: Write AFC TR .FCTR AO-(Al

3. Step 3B: Write AFC TR .FCTR AO- (Al ,A2

4. Step 3A: Write AFC TR .FCTR AO- (Al ,A2- (A21

5. Step 3B: Write AFC TR .FCTR AO-(Al,A2-(A21,A22

6. Step 3C: Write AFC TR .FCTR A0-(Al,A2-(A21,A22)

7. Step 3C: Write AFC TR .FCTR A0-(Al,A2-(A21,A22))

You have now reached the base segment and have written the two ODL
statements:

.ROOT CNTRL-(AO-(Al,A2-(A21,A22))-BO-(Bl,B2) ,C)
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

The last step requires that you substitute the label, AFCTR, into the
.ROOT statement, which results in:

.ROOT CNTRL-AFCTR-BO-(Bl,B2) ,C)
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

Additional .FCTR statements would be determined and written in the
same way. For example, you could write a .FCTR statement labeled
BFCTR for the segments BO, Bl, and B2.

The following section shows how to write an ODL statement for a
co-tree by using the same methods.

3.6.3 Creating an ODL Statement for a Co-Tree by Using a Virtual
Address Space Diagram

Assuming that you want to write an ODL statement for a co-tree like
the one in Figure 3-19, you would have two virtual address space
allocation diagrams, one for the main tree and one for the co-tree.
These two diagrams are shown in Figure 3-19.

3-39

OVERLAY CAPABILITY

A1

A21 l A22

81 r--
A2 82 c

AO BO CNTRLX CNTRLY

ROOT (CNTRL) CNTRL2

MAIN TREE CO-TREE

ZK-1051-82

Figure 3-19 Virtual Address Space Allocation for a Main Tree
and Its Co-Tree

From Figure 3-19 you see that the co-tree is a stack of segments also.
Therefore, it is possible to write the statement for the co-tree in
the same fashion and with the same rules as that described in Section
3.6. However, certain facts must be kept in mind. These are that:

• The co-tree has a null root

• A .NAME statement must be used to name the null root

• A comma must be placed outside of the parentheses and at the
end of that part of the .ROOT statement that defines the main
tree

Therefore, the ODL statement that we obtain before writing the co-tree
part is:

.NAME CNTRL2

.ROOT CNTRL-AFCTR-BO-(Bl,B2) ,C),
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

By following the rules in Section 3.6 and by using the diagram in
Figure 3-19, you can then create the ODL statement:

.NAME CNTRL2

.ROOT CNTRL-AFCTR-BO-(Bl,B2) ,CNTRL2-(CNTRLX,CNTRLY)
AFCTR: .FCTR A0-(Al,A2-(A21,A22))

3.7 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL LANGUAGE

Programs written in a high-level language usually require the use of a
large number of library routines in order to execute. Unless care is
taken when overlaying such programs, the following problems can occur:

• TKB throughput may be drastically reduced because of the
number of library references in each overlay segment.

3-40

OVERLAY CAPABILITY

• Library references from the default object module library that
are resolved across tree boundaries can result in
unintentional displacement of segments from memory at run
time.

• Attempts to task-build such programs can result in multiple
and ambiguous symbol definitions when a co-tree structure is
defined.

The following procedures are effective in solving these problems:

• You can increase TKB throughput by linking commonly used
library routines into the main root segment.

• You can eliminate ambiguous definitions, multiple definitions,
and cross-tree references by using the NOFU switch (the TKB
default) to restrict the scope of the default library search.
However, restricting the scope of the default library search
may also cause problems.

If sufficient memory is available, you can effectively place the
object time system in the root segment by building a memory-resident
library. This also reduces total system memory requirements if other
tasks are also currently using the library.

If a memory-resident library cannot be built, you can force library
modules into the root by preparing a list of the appropriate global
references and linking the object module into the root segment.

For other ways to reduce task size, you should consult the user's
guide for the language you are using.

3.8 EXAMPLE 3-1: BUILDING AN OVERLAY

The text in this section and the figures associated with it illustrate
the building of an overlay structure. For this example, the routines
of the resident library LIB.TSK and the task that refers to it,
MAIN.TSK (from Example 5-3, Chapter 5}, are assembled as separate
modules and built as an overlaid task. This task is built first with
disk-resident overlays and then with memory-resident overlays. The
disk-resident version of the task is named OVR.TSK and the
memory-resident version is named RESOVR.TSK.

NOTE

This example is intended to provide you
with a working illustration of the
Overlay Description Language. It does
not reflect the most efficient use of
it.

Two alterations were made to each of the routines for this example:

• A .TITLE and .END assembler directive was added to each
routine to establish it as a unique module.

3-41

OVERLAY CAPABILITY

• The following assembler directive was added to each arithmetic
routine to increase its allocation:

.BLKW 1024.*3

This was done to make TKB allocation of address space more
obvious for documentation purposes.

The operation of the overlaid task is identical to that of Example 5-3
in Chapter 5. The routines and their titles as a result of the .TITLE
directives are as follows:

• The integer addition routine is named ADDOV •

• The integer subtraction routine is named SUBOV •

• The integer multiplication routine is named MULOV •

• The integer division routine is named DIVOV •

• The register save and restore routine is named SAVOV.

• The print routine is named PRNOV •

• The main calling routine is named ROOTM •

The lengths of the modules are:

Module Length (in Octal)

AD DOV 14024 bytes

SUBOV 14024 bytes

MULOV 14024 bytes

DIVOV 14026 bytes

SAVOV 4042 bytes

PRNOV 4260 bytes

ROOTM 4104 bytes

The flow of control for OVR.TSK is as follows:

1. ROOTM calls AD DOV and ADDOV returns to ROOTM.

2. ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.

3. ROOTM calls SUBOV and SUBOV returns to ROOTM.

4. ROOTM calls PR NOV to print the result and PRNOV returns to
ROOTM.

5. ROOTM calls DIVOV and DIVOV returns to ROOTM.

6. ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.

3-42

OVERLAY CAPABILITY

7. ROOTM calls MULOV and MULOV returns to ROOTM.

80 ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.

The print routine (contained in module PRNOV) is called between each
arithmetic operation by the control routine (contained in module
ROOTM). To avoid loading it into physical memory each time it is
called, you can place PRNOV in the root segment of the task. In
addition, each arithmetic routine calls SAVOV. Therefore, SAVOV must
be on a path common to all segments in the tree. It too is placed in
the root segment of the task. One possible overlay configuration for
this task is shown in Figure 3-20.

MULOV

I

SUBOV

I

I
SAVOV

I
PR NOV

I
ROOTM

DIVOV

I
I

AD DOV

I

ZK-490-81

Figure 3-20 Overlay Tree of Virtual Address Space for OVR.TSK

To build this overlay, first create an ODL file (OVERTREE.ODL) that
contains its description:

.ROOT

.END
ROOTM-PRNOV-SAVOV-*(MULOV,ADDOV-(SUBOV,DIVOV))

Then, after you have modified the modules and assembled them, you can
build the task with the following command line:

TKB> OVR,OVR/-SP=OVRTREE/MP

This command instructs TKB to build a task image, OVR.TSK, and to
create a map file, CVR.MAP, under the UFD that corresponds to the
terminal UIC. The negated spool switch (/-SP) inhibits TKB from
spooling the map file to the line printer.

The overlay switch (/MP) attached to the input file tells TKB that the
input file is an ODL file. Therefore, this file will be the only
input file specified. Refer to Chapter 10 for a description of the
switches used in this example.

A portion of the map that results from this task build is shown in
Example 3-1.

3-43

OVERLAY CAPABILITY

Example 3-1 Map File for OVR.TSK

OVR.TSK Memory allocation map TKB M40.10
Ol-JAN-82 10:06

Partition name : GEN
Identification : 01
Task UIC [7,62]
Stack limits: 000260 001257 001000 00512.
PRG xfr address: 001264
Total address windows: 1. ~
Task image size 7488. words
Task address limits: 000000 035107
R-W disk blk limits: 000002 000073 000072 00058.

OVR.TSK Overlay description:

Base Top Length
---- 0--- 0
000000 I 005033 I 005034
005034 021057 014024
005034 021057 014024
021060 035103 014024
021060 035107 014030

0 e
*** Root segment: ROOTM

02588.
06164.
06164.
06164.
06168.

ROOTM
MULOV
AD DOV

SUBOV
DIVOV

R/W mem limits: 000000 005033 005034 02588.
Disk blk limits: 000002 000007 000006 00006.

Memory allocation synopsis:

Section Title
-------. BLK.:(RW,I,LCL,REL,CON) 001260 002514 01356 •

001260 000102 00066. ROOTM
001362 000260 00176. PR NOV
001642 000042 00034. SAVOY

ANS :(RW,D,GBL,REL,OVR) 003774 000002 00002.
003774 000002 00002. ROOTM
003774 000002 00002. PR NOV

Global symbols:

Page 1

I dent File

01 ROOTM.OBJ;l
01 PRNOV.OBJ;l
01 SAVOV.OBJ;l

01 ROOTM.OBJ;l
01 PRNOV.OBJ;l

AADD
MULL

004032-R DIVV 004052-R PRINT 001550-R SUBB
004022-R SAVAL 001642-R

004042-R

.
*** Task builder statistics:

Total work file references: 6863.
Work file reads: o.
Work file writes: o.
Size of core pool: 7086. words (27. pages)
Size of work file: 3072. words (12. pages)

Elapsed time:OO:OO:l4

3-44

OVERLAY CAPABILITY

Figure 3-21 shows the allocation of virtual address space for OVR.TSK.
The circled numbers in Example 3-1 correspond to those in Figure 3-21.

Note that the root segment for OVR.TSK (ROOTM) has expanded with task
building while the segments containing the arithmetic routines have
not. Before task building, the sum of the modules (in octal bytes)
that comprise the root segment is:

4104 + 4260 + 4042 = 14,426 bytes

After task building, the root segment is 20,677(octal) bytes long.
TKB has added a header, a stack area, and the overlay run-time
routines to it~ The segments containing the arithmetic routines have
not changed. If there had been calls from segments nearer the root to
segments farther up the tree, the Task Builder would have added data
structures to the calling segments as well. (Refer to Chapter 4 for a
description of the overlay loading methods.)

You can build OVR as a memory-resident overlay by simply adding the
memory-resident operator (!) to the ODL file for OVR as shown below:

.ROOT

.END
ROOTM-PRNOV-SAVOV-*!(MULOV,ADDOV-! (SUBOV,DIVOV))

For this example, the name of the ODL file and the task image file
have been changed to RESOVR.ODL to distinguish it from the
disk-resident version. You can build RESOVR with the following
command line:

TKB> RESOVR,RESOVR/-SP=RESOVR/MP

This command directs TKB to build a task
create a map file named RESOVR.MAP.
(/-SP) inhibits spooling of the map filee

named RESOVR.TSK and to
The negated spooling switch

The /MP switch on the input file tells TKB that the file is an ODL
file and that it will be the only input file for this task build.
Refer to Chapter 10 for a description of the switches used in this
example.

A portion of the map that results from this task build is shown in
Example 3-2.

Figure 3-19
RESOVR.TSK.
Figure 3-22.

shows the allocation of virtual address space for
The circled numbers in Example 3-2 correspond to those in

3-45

OVERLAY CAPABILITY

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

- 035107

SUBOV D IVOV ~
40000 APR 2-

- 021057

MULOV AD DOV ~
- 005033

20000 APR 1- SYSLIB

~ SAVOV
PR NOV ROOT SEGMENT
ROOTM

- 001257
HEADER AND STACK -~ 0 APR 0-

~
ZK-411-81

Figure 3-21 Allocation of Virtual Address Space for OVR.TSK

3-46

OVERLAY CAPABILITY

Example 3-2 Map File for RESOVR.TSK

Partition name : GEN
Identification : 01
Task UIC [7,62]
Stack limits: 000320 001317 001000 00512.
PRG xfr address: 001324
Total address windows: 3. f)
Task image size 13920. words
Task address limits: 000000 057777
R-W disk blk limits: 000003 000074 000072 00058.

RESOVR.TSK Overlay description:

Base Top
---- 0--- 8

Length

000000 I 005677 I 005100
020000 034077 014100
020000 034077 014100
040000 054077 014100
040000) 054077)1014100

08 80

*** Root segment: ROOTM

03008.
06208.
06208.
06208.
06208.

ROOTM
MULOV
AD DOV

SUBOV
DIVOV

R/W mem limits: 000000 005677 005700 03008.
Disk blk limits: 000003 000010 000006 00006.

Memory allocation synopsis:

Section Title !dent File
-------. BLK.:(RW,I,LCL,REL,CON) 001320 002514 01356.

001320 000102 00066. ROOTM 01
001422 000260 00176. PRNOV 01
001702 000042 00034. SAVOV 01

ANS :(RW,D,GBL,REL,OVR) 004034 000002 00002.
004034 000002 00002. ROOTM 01
004034 000002 00002. PRNOV 01

Global symbols:

AADD
MULL

004072-R DIVV 004112-R PRINT 001610-R SUBB
004062-R SAVAL 001702-R

*** Task builder statistics:

Total work file references: 6938.
Work file reads O.
Work file writes : O.
Size of core pool: 4178. words (16. pages)
Size of work file: 3072. words (12. pages)

Elapsed tirne:00:00:21

3-47

ROOTM.OBJ;l
PRNOV.OBJ;l
SAVOV.OBJ;l

ROOTM.OBJ;l
PRNOV.OBJ;l

004102-R

OVERLAY CAPABILITY

Note that TKB allocates virtual address space for
overlay segment on a 4K-word boundary. When built as
overlay, this structure requires 12K words of virtual
when built as a memory-resident overlay structure,
words of virtual address space. As noted earlier, you
when using memory-resident overlays to ensure that
space is used efficiently.

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000

60000

40000

20000 APR 1-

each level of
a disk-resident
address space;
it requires 16K
must be careful
virtual address

SYSLIB
SAVOV
PR NOV
ROOTM

ROOT SEGMENT

!------------ - 001317

0
HEADER AND STACK ~ -. APR 0- ..__ ________ ____,, -~

ZK-412-81

Figure 3-22 Allocation of Virtual Address Space for RESOVR.TSK

3-48

OVERLAY CAPABILITY

Finally, note in Figure 3-22 that TKB has allocated three window
blocks to map RESOVR.TSK. Each level of the overlay in a
memory-resident overlay requires a separate window block to map it.
In a disk-resident overlay, a single window block maps the entire
structure regardless of how many segment levels there are within the
structure. This consideration can be important when you are building
an overlaid task that either creates dynamic regions or accesses a
resident library or common, because of the extra window blocks
required to use these features.

3.9 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

• An overlay structure consists of one or more trees. Each tree
contains at least one segment. A segment is one or more
modules containing one or more program sections that can be
loaded by a single disk access.

A tree can have only one root segment, but it can have any
number of overlay segments.

• An ODL file is a text file consisting of a series of overlay
description directives, one directive per line. You enter
this file in the TKB command line, and identify it as an ODL
file by attaching the MP switch to the file name. If you
enter an ODL file in the TKB command line, it must be the only
input file you specify.

• The Overlay Description Language provides five directives for
specifying the tree representation of the overlay structure:

.ROOT and .END -- There can be only one .ROOT and one .END
directive; the .END directive must be the last directive
because it terminates input •

• PSECT, .FCTR, and .NAME -- These can be used in any order
in the ODL file.

• You define the tree structure using the hyphen (-), comma (,),
and exclamation point (!) operators, and by using parentheses.

The hyphen operator (-) indicates that its arguments are to
be concatenated and thus are to coexist in memory.

The comma operator (,) within parentheses indicates that
its arguments are to overlay each other either physically,
if disk resident, or virtually, if memory resident.

The comma operator not within parentheses delimits overlay
trees.

The exclamation point operator (!) immediately before a
left parenthesis declares the enclosed segments to be
memory resident. Nested segments in parentheses are not
affected by an exclamation point operator at a level closer
to the root.

3-49

OVERLAY CAPABILITY

The parentheses group segments that begin at the same point
in memory. For example:

.ROOT A-B-(C,D-(E,F))

This ODL command line defines an overlay structure with a
root segment consisting of the modules A and B. In this
structure, there are four overlay segments: C, D, E, and
F. The outer pair of parentheses indicates that the
overlay segments C and D start at the same virtual address;
and similarly, the inner parentheses indicate that E and F
start at the same virtual address.

• The .ROOT directive defines the beginning overlay structure.
The arguments of the .ROOT directive are one or more of the
following:

File specifications as described in Chapter 1

Factor labels

Segment names

Program-section names

• The .END directive terminates input.

• The .FCTR directive provides a means for replacing text by a
symbolic reference (the factor label). This replacement is
useful for two reasons:

The .FCTR directive extends the text of the .ROOT directive
to more than one line and thus allows complex trees to be
represented.

The .FCTR directive allows you to write the overlay
description in a form that makes the structure of the tree
more apparent.

For example:

.ROOT A-(B-(C,D) ,E-(F,G) ,H)

.END

Using the .FCTR directive, you can write this
description as follows:

.ROOT A-(Fl,F2,H)
Fl: .FCTR B-(C,D)
F2: .FCTR E-{F,G)

.END

overlay

The second representation makes it clear that the tree has
three main branches.

• The .PSECT directive provides a means for directly specifying
the segment in which a program section is placed. It accepts
the name of the program section and its attributes~ For
example:

.PSECT ALPHA,CON,GBL,RW,I,REL

3-50

OVERLAY CAPABILITY

ALPHA is the program section name and the remaining arguments
are the program section's attributes (program section
attributes are described in Chapter 2).

The program section name (composed of the characters A-Z, 0-9,
$, or .) must appear first in the .PSECT directive, but the
attributes can appear in any order or can be omitted. If an
attribute is omitted, a default condition is assumed. The
defaults for program section attributes are RW, I, LCL, REL,
and CON.

In the example above, therefore, you need only specify the
attributes that do not correspond to the defaults: .PSECT
ALPHA,GBL

• The .NAME directive provides you with the means to designate a
segment name for use in the overlay description, and to
specify segment attributes. This directive is useful for
creating a null segment, naming a segment that is to be loaded
manually, or naming a nonexecutable segment that is to be
autoloadable. (Refer to Chapter 4 of this manual for a
description of manually loaded and automatically loaded
segments.) If you do not use the .NAME directive, the Task
Builder uses the name of the first file, program section, or
library module in the segment to identify the segment.

The .NAME directive creates a segment name as follows:

.NAME segname,attr,attr

segname

is the designated name (composed of the characters A-Z,
0-9, and$).

attr

is an optional attribute taken from the following: GBL,
NODSK, NOGBL, DSK.

The defaults are NOGBL and DSK. The
unique with respect to the names
segments, files, and factor labels.

defined name
of program

must be
sections,

• You can define a co-tree by specifying an additional tree
structure in the .ROOT directive. The first overlay tree
description in the .ROOT directive is the main tree.
Subsequent overlay descriptions are co-trees. For example:

.ROOT A-B-(C,D-(E,F)) ,X-(Y,Z) ,Q-(R,S,T)

The main tree in this example has the root segment consisting
of files A.OBJ and B.OBJ. Two co-trees are defined; the
first co-tree has the root segment X and the second co-tree
has the root segment Q.

3-51

CHAPTER 4

OVERLAY LOADING METHODS

The RSX-llM/M-PLUS systems provide two
disk-resident and memory-resident overlays:

methods for loading

• Autoload -- The overlay run-time routines are automatically
called to load segments you have specified.

• Manual Load -- You include in the task explicit calls to the
overlay run-time routines.

When you build an overlaid task, you must decide which one of these
methods to use, because both cannot be used in the same task.

The loading process depends on the kind of overlay:

• Disk resident -- A segment is loaded from disk into a shared
area of physical memory, writing over whatever was present.

• Memory resident -- A segment is loaded by mapping a set of
shared virtual addresses to a unique unshared area of physical
memory, where the segment has been made permanently resident
(after having been initially brought in from the disk).

With the autoload method, the overlay run-time routines handle loading
and error recovery. Overlays are automatically loaded by being
referenced through a transfer-of-control instruction (CALL, JMP, or
JSR). No explicit calls to the overlay run-time routines are needed.

In the manual load method, you handle loading and error recovery
explicitly. Manual loading saves space and gives you full control
over the loading process, including the ability to specify whether
loading is to be done synchronously or asynchronously.

In the manual load method, you must provide for loading the overlay
segments of the main tree, as well as the root segments and the
overlay segments of the co-trees. Once loaded, the root segment of a
co-tree remains in memory.

4.1 AUTOLOAD

To specify the autoload method, you use the autoload indicator, an
asterisk (*). You place this indicator in the ODL description of the
task at the points where loading must occurw The execution of a
transfer-of-control instruction to an autoloadable segment up-tree
(farther away from the root) initiates the autoload process.

4-1

OVERLAY LOADING METHODS

4.1.1 Autoload Indicator

The autoload indicator (*) marks as autoloadable the segment or other
task element (as defined below). If you apply the autoload indicator
to an ODL statement enclosed in parentheses, every task element within
the parentheses is marked as autoloadable. Placing the autoload
indicator at the outermost level of parentheses in the ODL description
marks every module in the overlay segments as autoloadable.

In the TKl example of Chapter 3, Section 3.1.1, if segment C consisted
of a set of modules Cl, C2, C3, C4, and CS, the tree diagram would be
as shown in Figure 4-1.

A21 A22 C5 I I
I C4

A1 A2 81 82 C3 I
I

I I
I

I C2
AO BO C1

I
I

I I

CNTRL
ZK-413-81

Figure 4-1 Details of Segment C of TKl

Placing the autoload indicator at the outermost level of parentheses
ensures that, regardless of the flow of control within the task, a
module will be properly loaded when it is called. The ODL description
for task TKl would be:

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-*(AFCTR,BFCTR,CFCTR}

.FCTR AO-(Al,A2-(A21,A22))

.FCTR BO-(Bl,B2)

.FCTR Cl-C2-C3-C4-C5

.END

When you use autoload, the root of a co-tree is loaded by path loading
if one of the branches of the co-tree is called before the root.
However, if the root of the co-tree is called before the branch is
called, the root must have an autoload indicator.

Also, when the root segment of a co-tree is not a null segment, you
must mark the co-tree's root segment (CNTRL2) as well as its outermost
level of parentheses to ensure that all modules of the co-tree are
properly loaded. For example, if the co-tree root (CNTRL2) of the
multiple tree example, Section 3.5.2, had contained code or data, it
would have been marked as follows:

.ROOT CNTRL-*(AFCTR,BFTCR,CFCTR) ,*CNTRL2-*(CNTRLX,CNTRLY)

You can apply the autoload indicator to the following elements:

• File names -- to make all the components of
autoloadable.

the file

• Portions of ODL tree descriptions enclosed in
parentheses -- to make all the elements within the parentheses
autoloadable, including elements within any nested
parentheses.

4-2

OVERLAY LOADING METHODS

• Program section names -- to make the program section
autoloadable. The program section must have the instruction
(I) attribute.

• Segment names defined by the .NAME directive -- to make all
components of the segment autoloadable.

• .FCTR label names -- to make the first component of the factor
autoloadable. All elements specified in the .FCTR statement
are autoloadable if they are enclosed in parentheses.

In the following example, two .PSECT directives and a .NAME directive
are introduced into the ODL description for TKl. Autoload indicators
are applied as follows:

.ROOT CNTRL-(*AFCTR,*BFCTR,*CFCTR) 0
AFCTR: .FCTR AO-*ASUB1-ASUB2-*(Al,A2-(A21,A22)) 88
BFCTR: .FCTR (BO-(Bl,B2))
CFCTR: .FCTR CNAM-Cl-C2-C3-C4-C5

.NAME CNAM,GBL 0

.PSECT ASUBl,I,GBL,OVR 8

.PSECT ASUB2,I,GBL,OVR

.END

The following notes are keyed to the example above.

O The autoload indicator is applied to each factor name;
therefore:

a. *AFCTR=*AO

b. *BFCTR=*(BO-(Bl,B2))

c. *CFCTR=*CNAM

CNAM, however, is an element defined by a .NAME directive.
Therefore, all components of the segment to which the name
applies are made autoloadable, that is, Cl, C2, C3, C4, and
cs.

8 The autoload indicator is applied to the name of a program
section with the instruction (I) attribute (*ASUBl), so that
program section ASUBl is made autoloadable.

The autoload indicator is applied to a portion of the ODL
description enclosed in parentheses:

*(Al,A2-(A21,A22))

Thus, every element within the parentheses is
autoloadable (that is, files Al, A2, A21, and A22).

made

The net effect of this ODL description is to make every element except
program section ASUB2 autoloadable.

4.1.2 Path Loading

The autoload method uses path loading; that is, a call from one
segment to another segment up-tree (farther away from the root)
ensures that all the segments on the path from the calling segment to
the called segment will reside in physical memory and be mapped. Path
loading is confined to the tree in which the called segment resides.

4-3

OVERLAY LOADING METHODS

A call from a segment in one tree to a segment in another tree results
in the loading of all segments on the path in the second tree from the
root to the called module.

In Figure 4-2, if CNTRL calls A22, all the modules between the CNTRL
and A2 are loaded. In this case, modules AO and A2 are loaded.

A21 A22
I I C5 I

C4 A1 A2 81 82
I I I I C3

I I C2
AO BO C1

CNTRL

ZK-414-81

Figure 4-2 Path-Loading Example

With the autoload method, the overlay run-time routines keep a record
of the segments that are loaded and mapped, and issue disk-load
requests only for segments that are not in memory. If CNTRL calls A2
after calling Al, AO is not loaded again because it is already in
memory and mapped.

A reference from one segment to another segment down-tree (closer to
the root) is resolved directly. For example, A2 can immediately
access AO because AO was path loaded in the call to A2.

4.1.3 Autoload Vectors

To resolve a reference up-tree to a global symbol in
segment, TKB generates an autoload vector for the
symbol. The reference in the code is changed to a
points to an autoload vector entry. The format
vector for conventional tasks is shown in Figure 4-3
for I- and D-space tasks is shown in Figure 4-4.

JSR PC,@.NAUTO

PC RELATIVE OFFSET TO .NAUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

ZK-415-81

an autoloadable
referenced global
definition that
for the autoload
and the format

Figure 4-3 Autoload vector Format for Conventional Tasks

For I- and D-space tasks, TKB generates the autoload vector in a
format that differs from the vector in a conventional task. The r~
~nd D-space autoload vector is six words long and consists of two
parts: one part residing in I-space and the other part residing in
D-space. The I-space part consists of two 2-word instructions, and
the D-space part consists of two words of data. The data in the
vector are the segment descriptor address and the target entry point
address. The 1- and D-spacie vector is shown in Figure 4-4.

4-4

OVERLAY LOADING METHODS

, ~~· ,

· .. ·'Th~":t·ask· :root:'ana the overlay. ·se9ments may contain autoloaa vectors;
· ~,t'he . r-·~pace · part '.o~ .the root ·or· segment c·ontains 'the I-space part of
.:the. vectors(and the 'D-space part of the root or s'egment contains the
.·p-space 'paJ:'t · <:>f the. v.ectors .•

::.The MOV in.'structi~n f n the ·I-space pp rt . of the vector ·places the·
·"addre'ss of the D-space part of the ·vector on. the stack. The second
:-·lnstruc.':t:i.qh .. An th.e vecto.r 'executes :an indirect JMP . to $AUTO thr.ough·
'the ''locatiori ~NAUTO ..
'• , ., . . . ,,. . . . ' ~. ;o ~ ~ . ,

MOV (PC)+,-(SP)

ADDRESS OF PACKET (D-SPACE)

JMP @.NAUTO

PC RELATIVE OFFSET TO NAUTO

I-SPACE PORTION

ADDRESS OF SEGMENT DESCRIPTOR

ENTRY POINT ADDRESS

D-SPACE PORTION

ZK-1089-82

In Figures 4-3 and 4,;.;.4,~. a transfer-of-control instruction to the
up-tree global symbol generates an autoload vector in the shown
format. An example of the code sequence used in a call to a global
symbol in an autoloadable segment is shown in Figure 4-5.

USER TASK ROOT

•

CALL GLOBAL -- . -
AUTOLOAD VECTOR

----~~ JSR PC,@.NAUTO
SEGMENT DESCRIPTOR ADDRESS
ENTRY POINT ADDRESS (GLOBAL)

+ $AUTO AUTOLOAD ROUTINE
$AUTO: ;LOAD

;SEGMENT
USER TASK SEGMENT
GLOBAL:: ____ JMP GLOBAL ;GO TO

----RETURN

;GLOBAL IN
;SEGMENT

ZK-416-81

Figure 4-5 Example Autoload Code Sequence for a Conventional Task

4-5

OVERLAY LOADING METHODS

An exception to the procedure for generating autoload vectors is made
in the case of a program section with the data (D) attribute.
References from a segment to a global symbol up-tree in a program
section with the data (D) attribute are resolved directly.

Because TKB can obtain no information about the flow of control within
the task, it often generates more autoload vectors than are necessary.
However, your knowledge of the flow of control within your task, and
of path loading, can help you determine where to place the autoload
indicators. By placing the autoload indicators only at the points
where loading is actually required, you can minimize the number of
autoload vectors generated for the task.

In the following example, all the calls to overlays originate in the
root segment. That is, no module in an overlay segment calls outside
its segment. The root segment CNTRL has the following contents:

PROGRAM CNTRL
CALL Al
CALL A21
CALL A2
CALL AO
CALL A22
CALL BO
CALL Bl
CALL B2
CALL Cl
CALL C2
CALL C3
CALL C4
CALL CS
END

If you place the autoload indicator at the outermost level of
parentheses, 13 autoload vectors are generated for this task;
however, because A2 and AO are loaded by path loading to A21, the
autoload vectors for A2 and AO are unnecessary. Moreover, because the
call to Cl loads the segment that contains C2, C3, C4, and CS,
autoload vectors for C2 through CS are unnecessary.

You can eliminate the unnecessary
autoload indicator only at the
required, as follows:

auto load
points

vectors by placing the
where explicit loading is

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-(AFCTR,*BFCTR,CFCTR)

.FCTR AO-(*Al,A2-*(A21,A22))

.FCTR (BO-{Bl,B2))

.FCTR *Cl-C2-C3-C4-C5

.END

With this ODL description, TKB generates seven autoload vectors -- for
Al, A21, A22, BO, Bl, B2, and Cl.

4-6

OVERLAY LOADING METHODS

4.1.4 Autoloadable Data Segments

You can make overlay segments that contain no executable code
autoloadable, as follows. First, you must include a .NAME directive
and specify the GBL attribute, as described in Section 3.4.4. For
example:

.ROOT A-*(B,C)

.NAME BNAME,GBL
B: .FCTR BNAME-BFIL

.END

The global symbol BNAME is created and entered into the symbol table
of segment BNAME. Because this segment is marked to be autoloaded;
root segment A calls segment BNAME as follows:

CALL BNAME

The segment is autoloaded and an immediate return to inline code
occurs.

The data of BFIL must be placed in a program section with the data (D)
attribute to suppress the creation of autoload vectors.

4.2 MANUAL LOAD

If you decide to use the manual-load method to load segments, you must
include in your program explicit calls to the $LOAD routine. These
load requests must supply the name of the segment to be loaded. In
addition, they can include information necessary to perform
asynchronous load requests, and to handle load request failures.

The $LOAD routine does not path load. A call to $LOAD loads only the
segment named in the request. The segment is read in from disk and
mapped. For memory-resident overlays; the segment is mapped, but
only read in if it was not previously read in.

A MACR0-11 programmer calls the $LOAD routine directly. A FORTRAN
programmer calls $LOAD using the FORTRAN subroutine MNLOAD.

4.2.1 MACR0-11 Manual Load Calling Sequence

A MACR0-11 programmer calls $LOAD as follows:

MOV
CALL

#PBLK,RO
$LOAD

PBLK is the address of a parameter block with the following format:

PBLK:

length

.BYTE length,event-flag

.RAD50 /seg-name/

.WORD [i/o-status] or 0

.WORD [ast-trp] or O

The length of the parameter block (3 to 5 words) •

4-7

OVERLAY LOADING METHODS

event-flag

The event flag number, used for asynchronous loading. If the
event-flag number is O, synchronous loading is performed.

seg-name

The name of the segment to be loaded:
Radix-50 name, occupying two words.

i/o-status

The address of the I/O status doubleword.
codes apply.

ast-trp

a 1- to 6-character

Standard QIO status

The address of an asynchronous trap service routine to which
control is transferred at the completion of the load request.

The condition code C-list is set or cleared on return, as
follows:

• If condition code C=O, the load request was accepted.

• If condition code C=l, the load request was unsuccessful.

For a synchronous load request, the return of the condition code C=O
means that the desired segment is loaded and is ready to be executed.
For an asynchronous load request, the return of the code C=O means
that the load request was successfully queued to the device driver,
but the segment is not necessarily in memory. Your program must
ensure that loading has been completed by waiting for the specified
event flag before calling any routines or accessing any data in the
segment.

4.2.2 MACR0-11 Manual Load Calling Sequence For I- and D-Space Tasks

A MACR0-11 programmer calls $LOAD as follows:

MOV
CALL

f PBLK,RO
$LOAD

PBLK is the. address of ~ parameter block with the following format in
an I- and D-space task:

PBLK: BYTE 3,0
.RADSO /seg-name/

length

The length of the parameter block (3 words) •

4-8

OVERLAY LOADING METHODS

,event-flag

Specify this as o.. Only synchronous load requests are. .possible
when loading I- and D-space segments.

se9-name

The name of the segment .to be loaded: a i.:.. to 6....;ch.aracter
.Radix-50 name, occupying two words.

The ·condition .code c;..list is set or cleared on retur'n., ·as· ·fo1iows:""

9 'If condition code C=O: the load request was accepted.

• lf . c.ondi..tion code C=l, the load request was unsuoceS$fU.l !.
!• --~' ''. , "=~'' !

J ~

,For, a' .synchron?us load re.quest, which· .is the only" one. p.o.ssible(~or >.I.-.. :
,"ana·.: o.-.space segments, the return of' th.e condition cod.e: .C=O· ·means .. · t}lat;..
·t,·he: .qesired .segment· is loaded· and is ready to be execu,ted.· · y'our
pr,,09.ram: mus.t ensure that loading·. has been successfu1 ·by c}leck'ing .·for
tpe conditi·on.cpde ·rather, them assuming that th~ segment:' ~.as bee,ri
I oa:ded~ · · · ' '· "

4.2.3 FORTRAN Manual Load Calling Sequence

To use the manual load mechanism in a FORTRAN program, your program
must refer to the $LOAD routine by means of the MNLOAD subroutine.
The subroutine call has the form:

CALL MNLOAD(seg-name,[event-flag] ,[i/o-status] ,[ast-trp] ,[ld-ind])

seg-name

A 2-word real variable containing the segment name in Radix-50
format.

event-flag

An optional integer event flag number used for an asynchronous
load request. If the event flag number is O, the load request is
synchronous.

i/o-status

An optional 2-word integer array containing the I/O status
doubleword, as described for the QIO directive in the
RSX-llM/M-PLUS Executive Reference Manual.

ast-trp

An optional asynchronous trap subroutine entered at the
completion of a request. MNLOAD requires that all pending traps
specify the same subroutine.

4-9

OVERLAY LOADING METHODS

ld-ind

An optional integer variable containing the results of the
subroutine call. One of the following values is returned:

+l Request was successfully executed.

-1 Request had bad parameters or was not
executed.

successfully

You can omit optional arguments. The following calls are legal:

Call Effect

CALL MNLOAD (SEGAl)

CALL MNLOAD (SEGAl,O,,,LDIND)

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)

Loads segment named in
SEGAl synchronously.

Loads segment named in
SEGAl synchronously and
returns success indica­
tor to LDIND.

Loads segment named in
SEGAl asynchronously,
transferring control to
ASTSUB upon completion
of the load request;
stores the I/0 status
doubleword in IOSTAT
and the success
indicator in LDIND.

The following example uses the program CNTRL, previously discussed in
Section 4.1. In this example, there is sufficient processing between
the calls to the overlay segments to make asynchronous loading
effective. The autoload indicators are removed from the ODL
description and the FORTRAN programs are recompiled with explicit
calls to the MNLOAD subroutine, as follows:

PROGRAM CNTRL
EXTERNAL ASTSUB
DATA SEGAl /6RA1 /
DATA SEGA21 /6RA21 /

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)

CALL Al

CALL MNLOAD (SEGA21,l,IOSTAT,ASTSUB,LDIND)

4-10

OVERLAY LOADING METHODS

CALL A21

END
SUBROUTINE ASTSUB
DIMENSIO~ IOSTAT(2)

END

When the AST trap routine is used, the I/O status doubleword is
automatically supplied to the dummy variable IOSTAT •

. ;,,

',mµsf',,i',re.,f'e:r'·>' ·t',a.· .. ,··.·t'he.·w./$.~&At>'wro.u·t·fl'le/·'ti.;{.$e'p'li1s:

)~~;*~;zz~~~;~;{~~~~]~;;~;~2*~~~1}.F>%~:, ..
~::·::~7~~·~~::~:~·,:·:.·>';;,~.?/:·::·.·:,/<,-'' ,·,~ ::/:·· /)~·.,: ';':

· · ::,'A···· :2~'~oi·'a
•! ' ",:· /3~:t~·~t.'':,:
" ~14...:,i;.Qd/ . '.' .,
~· ~·~ ,".: /<,;· :'' / {:"'* '!.,,,

, < ~ ·; "

. / CADL. MNLOAD

Only. synchr.onous load~ng is possible' ,when manually lo~dihg . 1-' and
D-space task segments.

4.3 ERROR HANDLING

If you use the autoload mechanism, a simple recovery procedure is
provided that checks the u1rective b~atus Word (DSW) for an error
indication. If the DSW indicates that no system dynamic storage is
available, the routine issues a Wait for Significant Event directive
and tries again; if the problem is not dynamic storage, the recovery

4-11

OVERLAY LOADING METHODS

procedure generates a synchronous breakpoint
services the trap and returns without altering
program, the request will be retried.

trap.
the

If the task
state of the

If you select the manual-load method, you must provide error handling
routines that diagnose load errors and provide appropriate recovery.
A more comprehensive user-written error recovery subroutine can be
substituted for the system-provided routine if the following
conventions are observed:

• The error recovery routine must have the entry point name
$ALERR.

• The contents of all registers must be saved and restored.

On entry to $ALERR, R2 contains the address of the segment descriptor
that could not be loaded. Before recovery action can be taken, the
routine must determine the cause of the error by examining the
following words in the sequence indicated:

1. $DSW

2. N .OVPT

The Directive Status word may contain an error
status code, indicating that the Executive
rejected the I/O request to load the overlay
segment.

The contents of this location, offset by N.IOST,
point to a 2-word I/O status block containing the
results of the load overlay request returned by
the device driver. The status code occupies the
low-order byte of word O. For example, for a
device-not-ready condition, the code will be
IE.DNR. (For more information on these codes,
refer to the IAS/RSX-11 I/0 Operations Reference
Manual.) ~-

4.4 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

This section illustrates a global cross-reference that has been
created for an overlaid task. The task consists of a root segment
containing the module ROOT.OBJ, and overlay segments composed of
modules OVRl, OVR2, OVR3, and OVR4. The overlay description of the
file is as follows:

.ROOT
OVR: .FCTR

ROOT-(OVR,*OVR2)
OVR1-*(0VR3,0VR4}

Only segments OVR2, OVR3, and OVR4 are autoloadable. Figure 4-6 shows
the resulting overlay tree.

*OVR3

I
I

OVR1
I

*OVR4

I

ROOT

*OVR2

I

ROOT: CALL OVR3
CALL OVR1
CALL OVR2

ZK-417-81

Figure 4-6 Autoload Overlay Tree Example

4-12

OVERLAY LOADING METHODS

As shown, the global symbol OVRl is defined in module OVRl, and a
single nonautoloadable, up-tree reference is made to this symbol by
the module ROOT, as indicated by the circumflex. Note that because
OVRl is not autoloadable, it depends on a call to OVR3 or OVR4 to get
loaded by path loading. The asterisk indicates that the module
contains an autoloadable definition. The modules shown with the
asterisk define the symbol.

The asterisks preceding the modules OVR2, OVR3, and OVR4 indicate that
the global symbols OVR2, OVR3, and OVR4 are autoload symbols and are
referenced from the module ROOT through an autoload vector, as shown
by the at-sign (@) character.

The asterisk and at-sign are shown in the cross-reference listing in
Example 4-1.

Example 4-1 Cross-Reference Listing of Overlaid Task

OVRTST CREATED BY TKB ON 27-JUL-82 AT 12:04 PAGE 1

GLOBAL CROSS REFERENCE CREF

SYMBOL VALUE REFERENCES •••

N.ALER 000010 AUTO # OVRES
N. IOST 000004 OVCTL # OVRES
N.MRKS 000016 # OVRES
N.OVLY 000000 OVCTL # OVRES
N.OVPT 000054 AUTO OVCTL # VCTDF
N.RDSG 000014 # OVRES
N.STBL 000002 # OVRES
N.SZSG 000012 # OVRES
OVRl 002014-R # OVRl ROOT
OVR2 002014-R * OVR2 @ ROOT
OVR3 002014-R * OVR3 @ ROOT
OVR4 002014-R * OVR4 @ ROOT
ROOT 001176-R # ROOT
$ALBP1 001320-R # AUTO
$ALBP2 001416-R # AUTO
$ALERR 001246-R # ALERR OVDAT
$AUTO 001302-R # AUTO
$DSW 000046 ALERR # VCTDF
$MARKS 001546-R # OVCTL
$0TSV 000052 # VCTDF
$SAVRG 001452-R AUTO # SAVRG
$VEXT 000056 # VCTDF
.FSRPT 000050 # VCTDF
.NALER 001442-R # OVDAT
• NIOST 001436-R # OVDAT
.NMRKS 001450-R # OVDAT
.NOVLY 001432-R # OVDAT
.NOVPT 000042 # OVDAT
.NRDSG 001446-R # OVDAT
.NSTBL 001434-R # OVDAT
.NSZSG 001444-R # OVDAT

4-13

VOl

OVERLAY LOADING METHODS

Example 4-1 (Cont.) Cross-Reference Listing of Overlaid Task

OVRTST CREATED BY TKB ON 27-JUL-82 AT 12:04 PAGE 2

SEGMENT CROSS REFERENCE CREF VOl

SEGMENT NAME RESIDENT MODULES

OVRl OVRl
OVR2 OVR2
OVR3 OVR3
OVR4 OVR4
ROOT ALERR AUTO OVCTL CVDAT OVRES ROOT SAVRG

VCTDF

Down-tree references to the global symbol ROOT are made from modules
OVRl, OVR2, OVR3, and OVR4. These references are resolved directly.

The segment cross-reference shows the segment name and modules in each
overlay.

4.5 USE AND SIZE OF OVERLAY RUNTIME ROUTINES

TKB, when constructing an overlaid task, incorporates certain modules
from the system library to perform the actual overlay operations. An
overlay run-time routine in the task·loads overlays from disk or maps
resident overlays by issuing QIO$ or CRAW$ directives.

The modules and routines described below implement the TKB autoload
mechanism as described in Section 4.1.

There are three major components to the autoload service, as follows:

AUTO This module controls the overlay process, and the
autoload vecors indirectly call AUTO through .NAUTO.
AUTO determines whether the referenced overlay segment
is already in memory or mappede It then jumps to the
required entry point if the entry point is available.

The AUTO module is supplied in
variations are separately
follows:

two variations. These
named and described as

AUTO

A UT OT

Selected by TKB by default for all overlaid
tasks. It manages disk-only, PLAS, and cluster
library overlay structures.

Manually selected by you by using an explicit
reference in the TKB .ODL file, as shown below.
This module disables the AST traps while
manipulating the overlay data structures. This
is required where user task AST traps might
cause modification of the overlay database. To
incorporate this module in your task image, you

4-14

MRKS

RDSG

OVERLAY LOADING METHODS

must include the following element in the .ROOT
factor of the task's ODL file:

-LB:[l,l]SYSLIB/LB:AUTOT-

In addition to including AUTOT in the .ROOT
factor, the following code must be included in
your task as initialization prior to the AST
handling routines in your task:

MOV @:fl:.NOVPT,RO
BISB i200,N.FAST(RO)

This routine traverses the overlay descriptor data
structure to mark any overlay segment that will be
displaced by a new overlay as "out of memory" and
consequently not available.

The AUTO module calls the RDSG routine repeatedly to
read or map each segment along the overlay tree path
into the task's virtual address space. This is referred
to as "path loading." When path loading is completed,
AUTO calls the required entry point.

Several versions of each component exist reflecting the various sizes
as appropriate for tasks having disk-only overlays, PLAS mapped
overlays, and/or cluster libraries. TKB incorporates the smallest
support routines appropriate for the overlay structure of your task.

Depending on whether
overlays, or cluster
modules into your task:

your task
libraries,

has
TKB

disk-only overlays, resident
forces one of the following

OVCTL
,;·;.~f:li~;r

OVCTR
I '1• 'n,;'.

;~; .:·~.

OVCTC
;o,.v:+;D(;

Contain the MRKS and RDSG routines optimized for disk
overlays only. No support is included for
memory-resident or cluster overlays. OVCTL is the
module incl.uded for convent.ional tasks, and fOV':C·J;)wr.·i.s·· the

~rm· ,,'.iric?·~ed,,';:'f·~itm:.+'·iancf::n;r.sna'c(:{r: .. ask'$·: <m ••••••••• , ••

? }!/- :~.!'f'/; .;;' W ~~~42 i~~ « ."'-#; .:;',; ·W ,j.;, ~> «;. <~~ M)";- ~«; j; ~/t'! ~·; '·~ ~; ~ ~·, / :' :;'>' ,•.,

Contain MRKS and RDSG routines assembled for disk and
memory resident overlays. TKB selects either of these
modules if the task overlay structure includes
memory-resident overlays or maps a resident library
containing resident overlays. OVCTR is the module
sei,ected ~or corwentional tasks·. ~n~ 3'.rj~~/d'f'etl,aj.d{·I.~' ·:')~1nq
·~~pa .r·tas·k'~~ · ,.· .oytDR<".: i~s ·; .·t:n~·: :m.ocfole·: .:»is~·te'ctted<" ?iqi
:·'i,''if;N' /¥/:::'~~~: .:D~i.~a.'9~./t~~Ks,:;·: , .· .·. ,

Contain the MRKS, RDSG, and cluster library support
routines. TKB includes OVCTC or OVIDC if cluster
libraries are included in your task. OVCTC is the
module selected for conventional tasks and no.n~'overlaid

· 1~ · iand: t>-<~pace task's.· ·ov!oc ls the module select·ed· for
ove·rla~d ;r:- 'and' D...:,s;pace·',tasks •.

4-15

OVERLAY LOADING METHODS

Two other modules are incorporated into your task's image. They are:

OVDAT

ALERR

A small, impure data area used by AUTO, MRKS, and RDSG
routines. TKB includes OVDAT in all overlaid tasks, and
its size is independent of the overlay structure of that
task.

An error service module that AUTO invokes under one of
the following circumstances:

• If an I/O error occurs while attempting to read a
disk overlay into memory

• If a directive
attach or map
overlays

error occurs while attempting to
a region containing memory resident

Table 4-1 compares the sizes of the overlay run-time support modules.
You can use it to determine when it is appropriate to force certain
variants into your task image.

Module

Table 4-1
Comparison of Overlay Run-Time Module Sizes

Program
Section

Number
of Bytes

Oct/Dec Specific Use

One of the following modules is included in any overlaid task
that uses autoload and in any task that links to a PLAS overlaid
resident library.

AUTO

AU TOT

$$AUTO

$$AUTO
$$RTQ
$$RTR

122/82.

132/90.
32/26.
30/24.

All tasks that use autoload

All tasks with ASTs
disabled during autoload

One of the following modules is included in any overlaid
conventional task. OVCTR or OVCTC is included in any
non-overlaid task (conventional or I- and D- space} that links
to a PLAS overlaid resident library.

OVCTL $$MRKS 76/62.
$$RDSG 160/112.
$$POLS 2/2.

OVCTR $$MRKS 234/156.
$$RDSG 332/218.
$$POLS 12/10.

OVCTC $$MRKS 254/172.
$$RDSG 352/234.
$$POLS 120/80.

Disk overlays only

Disk and PLAS overlays with no
cluster libraries

Disk and PLAS overlays
with cluster libraries

(continued on next page)

4-16

Module

OVERLAY LOADING METHODS

Table 4-1 (Cont.}
Comparison of Overlay Run-Time Module Sizes

Program
Section

Number
of Bytes

Oct/Dec Specific use

one' of. t::he.: toi,'iowing·:· :th~ee· ·m.o.a·u'Ies H> included fo.
··f~· .:and· D.S·sp;ac~· task,~ · · , , .:' '..', ·

, ' '.. .,
, . <· ,, ,. , ' }

$,$MRK$. ,,)76/6'2,., 'Disk. over;t.ays :9p];y"
$$RDSG · < 2~4/14:8 .•.

·.·$$POLS · ... ' ;2,{2'~ .·

:.: $~~~~s .:3;;;J.96:, · • .. i}I;k.. ,,,;"a i>LAS: Qve~ia~ '
."$.$Ros~:· . ·,, 502/32 :;L~. :" · .. .w.u:·h /rio. «::iu:sl:e.r···.:itbrar.'.t:e·~ ...

,.·:· $$PE>.LS. · • 12/i'o:.·'. .· /, ·.· ,' · ·./.:·.· .. ::·· :·::/;' ::;,
,.::~ 0 < .>:: ~ ,, .. '. ~" ,' *· ; ~' ; >

'.o~rDc.; .: .: r:;$:$:~R;~s·. · .:232Lt:2ii~ "iif~1$:.·::~ri~{ .:~l~$:.·'.c},ye .. t.:.J:a'¥$:.' ..
r :· ; '.$$'RDSG : .s·22:;/.3

1

3S·~· wLth:· o'l uster. Tibr:ar.·ies'
"·$,.$.:'~[)LS, 1:2:0/80 io:' / ·.: • · • • · «< .;· ·

The overlay data vector OVDAT is included in any overlaid task
and in any task that links to a PLAS overlaid resident library.

OVDAT $$0VDT
$$SGDO
$$SGD2
$$RTQ
$$RTR
$$RTS

24/20.
0/0.
2/2.
0/0.
0/0.
2/2.

Included in all tasks
that perform overlay
operations

The overlay error service routine ALERR is included whenever
OVDAT is included.

ALERR $$ALER 24/20. Overlay error

Manual overlay control (LOAD) is used in place of any AUTO
routine. (See Section 4.2, Manual Load.}

LOAD $$LOAD
$$AUTO

252/170.
14/12.

Manual overlay control

4-17

CHAPTER 5

SHARED REGION CONCEPTS AND EXAMPLES

The Task Builder provides you with many ways of using shared regions
for tailoring your tasks to meet your specific requirements. This
chapter describes some of these facilities and their applications.

This chapter contains five working examples. The discussion of the
examples assumes that you are familiar with the programming concepts
described in the RSX-llM/M-PLUS Guide to Program Development and with
the first four chapters of this manual-.-

5.1 SHARED REGIONS DEFINED

A shared region is a block of data or code that resides in memory and
can be used by any number of tasks. A shared region can contain data
for use by several tasks or it may be an area where one task writes
data for use by another task. Also, a shared region can contain
routines for use by several tasks.

Shared regions are useful because they make more efficient use of
physical memory. The two kinds of shared regions are:

• A resident common that provides a way that two or more tasks
can share their data

• A resident library that provides a way that two or more tasks
can share a single copy of commonly used subroutines

The term "resident" denotes a shared region that is built and
installed into the system separately from the task that links to it.
In other words, you use TKB to build a shared region much as you would
use it to build a task. However, the region does not have a header or
a stack. Also, you can use switches to designate the kind of shared
region (a library or a common) to be built.

Figure 5-1 shows a typical resident common. Task A stores some
results in resident common S, and Task B retrieves the data from the
common gt a later time.

Figure 5-2 shows a typical resident library. In this case, common
reentrant subroutines are not included in each task image; instead, a
single copy is shared by all tasks.

5-1

SHARED REGION CONCEPTS AND EXAMPLES

RESIDENT COMMON

s

TASK A

EXECUTIVE

PHYSICAL MEMORY
TIME 1

RESIDENT COMMON

s

TASK B

EXECUTIVE

PHYSICAL MEMORY
TIME 2

ZK-418-81

Figure 5-1 Typical Resident Common

When you build a shared region, you must specify an output image file
name for the region in the TKB command sequence. But, because a
shared region is not an executable unit, it is not a task, and does
not require a header or a stack area. Therefore, when you build a
shared region, you always attach the negated header switch (/-HD) to
the region's image file specification. This switch tells TKB to
suppress the header within the image. To suppress the stack area in
the Task Builder command sequence during option input, you specify
STACK=O. (Refer to Chapters 10 and 11 for a complete description of
the /HD switch, the STACK option, and other switches and options.)

In either an RSX-llM or RSX-llM-PLUS system, when you build a shared
region, you use the PAR option to name the partition in which the
region is to reside. You specify the partition name in the TKB
command sequence during option input. (Refer to Chapter 11 for a
description of the PAR option~) I1f an RSX'":'"llM system,. the partition
named· in the PAR option ·must previously exist when the.common is
installed. . It n~ed, not exist wh.en the: co;mmon •·is .being b.ui1;,;t '. by TKB.
In .an RSX-llMWP):.US .~yst.e:m, the .partitic.>n n~unea· in· the J?AR :option need

·,not .pr~viousl;{ exist·, .. but:. the :actual pa.rti:tion (le"faults . to, GEN.- · on
both systems, the name used in the PAR option must be the same name as
that of the region.

In. an RSX-llM system,·· a shared region ·must · teside in its·· own
partition.: '.fherefore, when ·you generate . y9ur system·, you must
consider the physical memory requirements, in' terms of parfitions, for
any shared regions that you expect to reside within your system. If
you do not consider these require~ents . at system generation ti~e,
later I When YOU build a Shared region, YOU Will be forced, to 90 back
and create a common partition for the region.

5-2

SHARED REGION CONCEPTS AND EXAMPLES

ROUTINE R

TASK A

ROUTINE R

TASK B

PART!T!ON BOUNDARY ----------

EXECUTIVE

NONSHARED
PHYSICAL MEMORY

RESIDENT LIBRARY
CONTAINING

ROUTINE R

TASK A

TASK B

EXECUTIVE

SHARED
PHYSICAL MEMORY

ZK-419-81

Figure 5-2 Typical Resident Library

.. '.~;r:~:·•.?P.::···¥~:x;'~i;.i.~·;·.~.t .. ~·~··,·~~·s·it·.~~.:':···.~s.~.~E~!1.· .:i;.~9,;i:~9~·~:·99,:.··~~J:, .. :n:~{V;~:A<? •. ~·/=:€7·~·•¥·~·~· .. ;;.~it·~·~.i:q
part1 t:.1.on,s , o.t: ·· t:hei'r, .pwn; · ·you, .·ca•o .:install ·a., pbared. reg1,0Il' 1n any .

;·ea·rt;itJot}1·/latge /·'enougfi: to· hold,· !i'~··~,:·' ·.;r,n; ·f.act,1 ·.the'· ·1Pa.:i:ti7bion. f.or ,··. wh:ich'.'
1

: ... ~ •• n~;: '.:in ~i.~.d:····': ': l;~gJ:oti1'.:.·'./'w~:s: .. :'titi,:i,l•t'~.··a.<?~s. ·'. n.~.~·,,;:'~ ~.'V~;.·~t.9,:··.·~.·x··i.~:t: .. ··J;n:':'.t:6.~::· .. ~il~·~.err\:'.. ·.~%,~:' .. :
:.tb~· time. 1.:th.e· .. sh~re,i-F.,~~9.ioh .. 1'is.· :ins:tal:l~d:• .. ' .·· .T<hen'i ·.i;t f.~llo.ws .. ·tp:pt.· a:.:· ·T·K~.· .·

.~:~2::;i~r:~~1~;~~~i~~~i;1~~~1Elffi;[~~4~1i~f · :
'l;ii;;tx6~:~.s'o+k2/h1.~t~}J,;"s :· ~·t ,.:"rnrtfiJ:?·'· ·G;EJN.Y,jp~'rti1d.~n '~ri~: a:'i:'sp,:19¥$: ·t;ae/,::ft:>'1'.h<J>w~ ng: .: ,;
.~:,a~.~::~j·~~1'..-J.7~7:~~~:·,Y·.,.·:~~'.·· lJ)I:././'-.Z:/X·f/fF .. !.HZ ·/t'
. ·" :"' '."' "'.'tNp;~''..;-/i>!;~dij;3r'1·pN/p.i:i'£tia~~' :NOT; :1·rr'.:·$ysfr:E'M, 7tiEFl\U;LT'r:N(f, ·\i:E.~{'

i;> ,; <N' < .~ ~' \;i -~ .. ;~ XI<,, >., ,t' }' ',· ; > } ;' I. ,:~> :~>.;> ,.f } ::.'''; -</~ l:i' ,.,:· } ·('·\ ,,.~-,., "ii ,.'~ ~ .;:·> , : ';>\: ,->!> ,,, > '.: ,'> > -> ~ , <> t; ,,: ~ $.i.; /).:~/' «'.· >;~~, _.,,''. ' •• :' • ; / <>, !_">; ;>

Also, you should consider three switches when you build the region.
The /PI switch determines whether the region is relocatable. You can
use the /CO switch in the -'f'K'B command sequence to declare a region as
a shared common. The /CO switch specifies the use of the region as a
shared common rather than as a shared library. Alternatively, you can
use the /LI switch when you build the region to declare the region as
a shared library. Using these three switches affects the contents of
the symbol definition file, which is described in Chapter 10 under the
/CO, /LI, and /PI switch headings. See also Figure 5-3, Interaction
of the /LI, /CO, and /PI Switches. The contents of the symbol
definition file is described in the following sections.

5-3

SHARED REGION CONCEPTS AND EXAMPLES

5.1.1 The Symbol Definition File

When you build a shared region, you must specify a symbol definition
(.STB) file in the TKB command sequence. This file contains linkage
information about the region. (The format at a .STB file as input to
TKB is the same as that of a .OBJ file. See Appendix A.) Later, when
you build a task that links to the region, TKB uses this .STB file to
resolve calls from within the referencing task to locations within the
region.

The /PI switch declares a shared region to be relocatable.
Conversely, the /-PI switch declares a shared region to be absolute.
If you specify the /PI switch without the /CO or /LI switches to
indicate a relocatable region, TKB defaults to building relocatable
(position-independent) shared regions with all program sections
declared in the .STB file. TKB also defaults to building absolute
(position-dependent) shared regions with only the • ABS. program
section declared in the .STB file. The contents of the .STB file when
these three switches are used are described in Chapter 10 under the
/CO, /LI, and /PI switch headings. See also Figure 5-3, Interaction
of the /LI, /CO, and /PI Switches.

SWITCH SHARED REGION REGION PSECT .STB FILE .STB FILE
SPECIFIED

NAME PSECT SYMBOLS
WITH /-HD ABSOLUTE RELOCATABLE

ALL SYMBOLS.
SAME AS LIBRARY ONE PSECT RELATIVE TO

/Pl/LI YES ROOT RELOCATABLE START OF THE
PSECT

ALL DECLARED ALL DECLARED
ALL PSECTS

/Pl/CO YES PSECT NAMES PSECTS
AND SYMBOLS

INCLUDED RELOCATABLE

/-Pl/LI* YES .ABS
ONE PSECT ALL SYMBOLS
ABSOLUTE ABSOLUTE

I I
ALL DECLARED ALL DECLARED

ALL SYMBOLS
/-Pl/CO* YES PSECT NAMES PSECTS

INCLUDED ABSOLUTE ABSOLUTE

/Pl YES SAME AS /Pl/CO

/-Pl* YES SAME AS /-Pl/LI

I

NONE YES SAME AS /-Pl/LI

*/-Pl is the default of not using /Pl
ZK-420-81

Figure 5-3 Interaction of the /LI, /CO, and /PI Switches

5-4

SHARED REGION CONCEPTS AND EXAMPLES

If you do not use either /CO or /LI, the contents of an .STB file for
a shared region depend on the use of the /PI switch, which determines
whether the region is absolute or relocatable. The effects of
declaring a shared region relocatable or absolute and the resulting
contents of the .STB file are described in the following sections.

Some .STB files include an entry in the .STB file for each program
section in the region. Each entry declares the program section's
name, attributes, and length. In addition, TKB includes in the .STB
file every symbol in the shared region and its value relative to the
beginning of the section in which it resides.

5.1.2 Position-Independent Shared Regions

A position-independent shared region can be placed anywhere in a
referencing task's virtual address space when the system on which the
task runs has memory management hardware.

5.1.2.1 Position-Independent Shared Region Mapping - In the example
of using the memory management APRs, shown in Figure 5-4, two tasks
refer to the shared region S: task A and task B. The shared region S
is 4K words long and therefore requires that much space in the virtual
address space of both tasks. Task A is 6K words long and requires two
APRs (APRO and APRl) to map its task region. The first APR available
to map the shared region is APR 2. Thus, you can specify APR 2 when
task A is built.

Task B is 16.5K words long. It requires five APRs to map its task
region. The first APR available to map the shared region S in task B
is APR 5. Therefore, you can specify APR 5 when task B is built.

If you do not specify which APR is to be used to map a
position-independent shared region, TKB selects the highest set of
APRs available in the referencing task's virtual address space. In
Figure 5-4, for example, if APR 2 in task A and APR 5 in task B had
not been selected at task-build time, TKB would have selected APR 7 in
both cases.

5.1.2.2 Specifying a Position-Independent Region - You specify that a
shared region is position independent when you build it by attaching
the /PI switch to the image file specification for the region. (Refer
to Chapter 10 for a description of the /PI switch.)

You should declare a region position independent if:

• The region contains code that
regardless of its location in
referencing task.

will
the

execute correctly
address space of the

• The region contains data that is not address dependent.

• The region contains data that will be referenced by a FORTRAN
program (such data must reside in a named common) •

5-5

APR 7-

APR 6-

APR 5-

APR 4-·

APR 3-

APR 2-

APR 1-

APR 0-

SHARED
REGION

s

TASK A

SHARED REGION CONCEPTS AND EXAMPLES

t
4 K WORDS

~

l
6 K WORDS

I

_j

SHARED
REGION

s

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

APR 0-

SHARED
REGION

s

TASK B 16.5 K
WORDS

1-1
ZK-421-81

Figure 5-4 Specifying APRs for a Position-Independent Shared Region

5-6

SHARED REGION CONCEPTS AND EXAMPLES

Program section names are preserved in some shared regions. All the
following switch combinations produce shared regions in which PSECT
names are preserved:

/PI/CO, /-PI/CO, and /PI

Therefore, you should observe the following precautions when building
and referring to these regions:

• No code or data in the region should be included in the blank
(. BLK.) program section.

• No code or data in a referencing task should appear in a
program section of the same name as a program section in the
shared region.

• The order in
(alphabetic
region and
alphabetic
description
explanation

which memory is allocated to program sections
or sequential) must be the same for the shared
its referencing tasks. (Chapter 2 describes
ordering of program sections. Refer to the

of the /SQ and /SG switches in Chapter 10 for an
of sequential ordering of program sections.)

5.1.3 Absolute Shared Regions

When a shared region is absolute, you select the virtual addresses for
it when you build it. Thus, an absolute shared region is fixed in the
virtual address space of all tasks that refer to it.

5.1.3.1 Absolute Shared Region Mapping - Figure 5-5 shows three tasks
(task C, task D, and task E) and a single absolute shared region, L.
The absolute shared region L is 6K words long and is built to occupy
virtual addresses 120000(octal) to 150000(octal). These addresses
correspond to APR 5 and APR 6, respectively. Tasks C and D can be
linked to region L because at the time they are built APR 5 and APR 6
are unused in both tasks. However, task E is 23K words long and even
though it has SK words of virtual address space available to map the
shared region, APR 5 (which corresponds to virtual address 120000, the
base address of the shared region) has been allocated to the task
region. If shared region L were position independent, task E could be
linked to it.

5.1.3.2 Specifying an Absolute Shared Region - You specify that a
shared region is absolute when you build it by using the /-PI switch
or omitting the /PI switch from the task image file. You establish
the virtual address for the region by specifying the base address of
the region as a parameter of the PAR option.

You should build an absolute shared region if:

• The region contains code that must appear in a specific
location in the address space of a referencing task.

• The region contains data that is address dependent.

The region contains program sections
program sections in referencing tasks.

5-7

same name as

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

SHARED REGION CONCEPTS AND EXAMPLES

r
6 K WORDS

ABSOLUTE
SHARED
REGION

L

VIRTUALL
120000 -------

ABSOLUTE
SHARED
REGION

L

I TASK c I

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

ABSOLUTE
SHARED
REGION

L

TASK D

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

TASK E

APRO- L___J APR 0- APR 0-LJ
ZK-422-81

Figure 5-5 Mapping for an Absolute Shared Region

5-8

SHARED REGION CONCEPTS AND EXAMPLES

5.1.3.3 Absolute Shared Region .STB File - When a shared region is
created with the /-PI/LI or /-PI switches, or just the /-HD switch,
the only program section name that appears in the .STB file for the
region is the absolute program section name (. ABS.). TKB includes in
the .STB file for the region each symbol in the region and its value.
But, because TKB does not include the program section names of an
absolute shared region in its .STB file, all code or data in the
region must be referred to by global symbol name. Also, because the
program section names are not in the .STB file, TKB places no
restrictions on the way the program sections are ordered in either the
absolute shared region or the tasks that reference it. You can order
program sections the way you want by using the /SQ and /SG switches
described in Chapter 10.

5.1.4 Shared Regions with Memory-Resident Overlays

Shared regions with memory-resident overlays are a primary resource
for conserving memory. If the shared region is larger than the
available virtual address space in a task that must reference the
region, you can build the region -- both position-independent and
absolute -- with memory-resident overlays. All segments of the
overlay structure are included in the shared region, but each task
referencing the shared region can include only part of the shared
region that is, an overlay segment or series of segments in an
overlay path -- in its virtual address space. Therefore, the task
need only have enough virtual address space for the largest shared
region overlay segment, or series of segments in an overlay path, it
is likely to access. Hence, the virtual address space of the task can
be considerably smaller than the size of the shared region.

5.1.4.1 Considerations About Building an Overlaid Shared Region - In
general, overlays can be disk-resident or memory-resident, but those
in shared regions must, by their very nature, be memory-resident. TKB
marks each overlay segment in the shared region with the NODSK
attribute to suppress overlay load requests. When you build a shared
region with memory-resident overlays, you must define the overlay
structure through a conventional ODL file. (See Chapters 3 and 4 of
this manual for information on overlays and the Overlay Description
Language.) TKB does not include the overlay data base (segment
descriptors, autoload vectors, and so forth) or the overlay run-time
routines within the region image. Instead, this data base becomes a
part of the .STB file that is linked to the referencing task. When
this task is built, its root segment automatically includes both the
data base and global references to overlay support routines residing
in the system object module library.

The procedure for creating a shared region with memory-resident
overlays can be summarized as follows:

• Define an overlay structure containing only memory-resident
overlays.

• Include the GLBREF option, or provide in the root segment a
module containing the appropriate global references for
defining entry points within those overlay segments~ TKB
generates autoload vectors and global definitions for the
overlay segments.

5-9

SHARED REGION CONCEPTS AND EXAMPLES

5.1.4.2 Example of Building a Memory-Resident Overlaid Shared Region
- The procedure for creating a shared region is illustrated in the

following example. The shared region to be contructed consists of
reentrant code that resides within the overlay structure defined
below:

.ROOT A-!(B,C-0)

.NAME A

.END

Root segment A contains no code or data and has a length of O. All
executable code exists within memory-resident overlay segments
composed of object modules B.OBJ, C.OBJ, and D.OBJ, containing global
entry points B, C, and D, respectively.

You generate the .TSK, .MAP, and .STB files by using the following TKB
commands:

TKB>A/-HD/MM,LP:,SY:A=A/MP
Enter Options:
TKB>GBLREF=B,C,D
TKB>PAR=A:l60000:20000
TKB>STACK=O
TKB>/

NOTE

When building a shared region, you must
use the same name for the partition and
the .TSK and .STB files.

See the PAR, RESLIB, LIBR, RESCOM, and
COMMON options in Chapter 11.

TKB inserts references to entry points B, C, and D in the root segment
of the library which subsequently appear in the .STB file as
definitions.

TKB resolves the definitions for symbol C directly to the actual entry
point. TKB resolves the definitions for symbols B and D to autoload
vectors that it includes in each referencing task.

5.1.4.3 Options for Use in Overlaid Shared Regions - Certain options
may prove useful to you when building and linking shared regions to a
task. They are described next.

GBLDEF -- You can declare tne definition of a symbol by means of the
GBLDEF option. The syntax of this option is:

GBLDEF= symbol-name:symbol-value

where symbol-name is a 1- to 6- character Radix-50 name of the defined
symbol and symbol-value is an octal number in the range of 0 through
177777 assigned to the symbol~ This option is frequently used in the
TKB build file for a task or shared region to allow you to alter the
value of a global symbol that resides in a module. This saves you the
trouble of reassembling the source code for a module if changes are
necessary.

5-10

SHARED REGION CONCEPTS AND EXAMPLES

GBLINC -- By means of this option, you force TKB to include the
specified symbols in the .STB file being created by the linking
process in which this option appears. The syntax of this option is:

GBLINC=syrnbol-name,syrnbol-name, ••• ,symbol-name

where symbol-name is the symbol or symbols to be included. Use this
option when you want to force particular modules to be linked to the
task that references this library. The global symbol references
specified by this option must be satisfied by some module or GBLDEF
specification when you build the task.

GLBREF -- You can force the inclusion of a global reference in the
root segment of the shared region by means of the GBLREF option. In
this way, the necessary autoload vectors and definitions can be
generated without explicitly including such references in an object
module. The syntax of the option is:

GBLREF=[,name[,name •••]]

where the name consists of from one to six Radix-50 characters. If
the definition resides within an autoloadable segment, TKB constructs
an autoload vector and includes it in the symbol definition file. If
the definition is not autoloadable, TKB obtains the real value and
defines it in the root segment. No global symbol appears in the .STB
file unless the symbol is either defined in the root segment or is
referenced in the root segment and defined elsewhere in the overlay
structure.

GBLXCL -- You can exclude a symbol or symbols from the symbol
definition file of a shared region by means of the GBLXCL option. The
syntax of this option is:

GBLXCL=symbol-name,symbol-name, ••• ,symbol-name

where symbol-name is the symbol or symbols to be excluded. You can
use this option when you do not want the task to be aware of specific
symbols within the library. This option is particularly useful when
you cluster overlaid libraries together (see the CLSTR option in
Chapter 11 and the Cluster Libraries section in this chapter).

5.1.4.4 Autoload Vectors and .STB Files for Overlaid Shared Regions -
When TKB builds a task image file containing memory-resident overlays,
TKB allocates autoload vectors in the task image. If the task links
to a shared region, autoload vectors for the shared region are also
allocated in the task image. TKB allocates the autoload vectors in
the task's root segment, but not in the shared region. Therefore, the
shared region cannot reference unloaded (unmapped) segments of its
overlay structure.

When the task executes, the shared region is effectively part of the
task. In fact, when the task loads overlay segments, it makes no
distinction between overlay segments of the task and those of the
shared region. They are loaded as needed in a procedure that is
transparent insofar as the execution of the task is concerned.

For the Fast Task Builder (FTB) and older versions of TKB that do not
support overlaid I- and D-space tasks, each autoload vector in the
shared region's .STB file is allocated in the root of the task being
linked to the region, whether or not the entry point is referenced by
the task.

5-11

SHARED REGION CONCEPTS AND EXAMPLES

Howeve,r 1 if you use a version of TKB that supports overlpid, I..;., and
D-space tasks .and the library was ,built with one of ,these versiohs,,.,
TKB allocCates autoload vectors in the root of the task' .only for those
a:utoloadable entry poin'ts in the lib'.[ary. that the task, referenc~s .•
The .STB file contains ISO records . that , ailow . TKB. to ,:c'reate,.
dynami:ca,lly . auto load vectors when 1 inking the. t:a.sk to' "the. 'U:br'a1ry .. :
'l';Kit t~·no;res .th1: autoload· yector.s in 'the [.STB file i.f the . <isp.' r.eco.'rd~g,·
·are pr,esent •.. · The:refore; tasks that link to o,verlaid. s;ha.r:ed ;r:e9i:on.s,
a'nd thatxare bu'il.t with newer versions· o:f·TKB tend ,to be : ~m.aH~r: 4Q,pd.
U:se . le.ss .. ·v.irtual · .add'ress space than ~hose .that are b,ui:'.l?t.: 'bN. FTIJ,:o'r;·
old~:r·· ~ve.r.ston~ of TKB. · · · · · · · , ·' ;· · ,,.

NOTE

Libraries created with older versions of
TKB do not have the ISD records in the
.STB file that newer versions of TKB use
to include autoload vectors in the task
from the .STB file. Therefore, TKB must
create autoload vectors for every entry
point in the library.

If .Y:ou a.re using one ·o,f . these older
:libr[aries: a.nd y;ou are liinking an I- and'
D-sp:ace task to it:, TKB ,will give yQ,u
the ,fatal err.or message:

"Mcxfole modu'.le-n'a!ne cont'ains'
incompatible aut,oldad vedtor~s .. "

I

Th.i;s, mess·age occurs because the .. STB
f ilel contains conven~ional autoload"
vectors that are qot usable by an ·I~ and
o-space task.

Only those global symbols defined or referenced in the root segment of
the shared region appear in the .STB file. The .STB file also
contains the data base required by the overlay run-time system in
relocatable object module format. This data base includes:

• All autoload vectors

• Segment tables (linked as described in Appendix B)

• Window descriptors

• A single region descriptor

The overlay structure, as reflected in the segment table linkage, is
preserved and conveyed to the referencing task by the .STB file.
Thus, path loading for the shared region can occur exactly as it does
within a task. Aside from address space restrictions, there are no
limitations on the overlay structures that can be defined for a shared
region.

5-12

SHARED REGION CONCEPTS AND EXAMPLES

5.1.5 Run-Time Support for Overlaid Shared Regions

Memory-resident overlays within a shared region require little
additional support from the overlay run-time system. The shared
region overlay data base that is linked within the image of the
referencing task has a structure that is identical to the equivalent
data created- for an overlaid task. Therefore, memory-resident
overlays within the shared region are indistinguishable from
memory-resident overlays that form a part of the task image. The only
additional processing is that required to attach the shared region and
obtain its identification for use by the mapping directives.

Once this initialization is complete, all further processing is
identical to memory-resident overlay processing performed on task
overlays.

Several restrictions apply
memory-resident overlays:

to shared regions existing as

• A shared region cannot use the autoload facility to reference
memory-resident overlays within itself or any other region.
If each segment is uniquely named, overlays can be mapped
through the manual load facility.

• Named program sections in a shared region overlay segment
cannot be referenced by the task. If reference to the storage
is required, such sections must be included in the root
segment of the region (with resultant loss of virtual address
space).

• For FTB, and libraries built with versions of TKB that do not
support I- and D-space overlaid tasks, the number of autoload
vectors is independent of the entry points actually
referenced. The maximum number of vectors will be allocated
within each referencing task. In some cases the size of the
allocation will be large.

• There is an overhead of six instructions
even _when the seg~-e~t is m~pped ~ ___ ,_
,~~,~~~~~<::~;i;~~~~/i~~~r~:~/.t?Y/1~;~~~· · -~'~'.-i~~/;eyi·/:t~il. ___ . :-----L.J:::u:>J"""'·:·

As implied by the previous items, great care must be exercised if an
efficient memory-resident overlay structure for library routines such
as the FORTRAN IV OTS is to be implemented.

5.1.6 Linking to a Shared Region

When you build a task that links to a shared region, you must indicate
to TKB the name of the shared region and the type of access the task
requires to it (read/write or read-only). In addition, if the shared
region is position independent, you can specify which APR TKB is to
allocate for mapping the region into the task's virtual address space.
Four options are available for this action:

• RESLIB (resident library)

• RESCOM (resident common)

• LIBR (system-owned resident library)

• COMMON (system-owned resident common)

5-13

SHARED REGION CONCEPTS AND EXAMPLES

RESLIB and RESCOM accept a complete file specification as one of their
arguments. Thus, you can specify a device and UFO indicating to TKB
the location of the region's image file and, by implication, its
symbol definition file. (Refer to Chapter 1 for more information on
file specifications and defaults.)

LIBR and COMMON accept a 1- to 6-character name. When you specify
either of these options, the shared region's image file and symbol
definition file must reside under UFO [l,l] on device LBO:.

The RESLIB and RESCOM options require that all users of the shared
region know the UFO under which the shared region's image file and
.STB file reside. The LIBR and COMMON options require only that the
users of the shared region know the name of the shared region. When
you specify either LIBR or COMMON, by default, TKB expects to find the
shared region's image and .STB files on device LB: under UFO [1,1].

All four options accept two additional arguments:

• The type of access that the task requires (RO or RW).

• The first APR that TKB is to allocate for mapping the region
into the task's virtual address space. As stated earlier,
this argument is valid only when the shared region is position
independent.

When you specify any of these options, TKB expects to find a symbol
definition file of the same name as that of the shared region, but
with an extension of .STB, on the same device and under the same UFO
as those of the shared region's image file.

The syntax of these options is given in Chapter 11.

When TKB builds a task, it processes first any options that appear in
the TKB command sequence. When TKB processes one of the four options
above, it locates the disk image of the shared region named in the
option. The disk image of a shared region does not have a header, but
it does have a label block that contains the allocation information
about the shared region (for example, its base address, load size, and
the name of the partition for which it was built). TKB extracts this
data from the shared region's label block and places it in the LIBRARY
REQUEST section of the label block for the referencing task.

The .STB file associated with the shared region is an object module
file. TKB processes it as an input file. If the shared region is
position independent, its .STB file contains program section names,
attributes, and lengths. However, the program section names are
flagged within the file as "library" program sections and TKB does not
add their allocations to the task image it is building.

If the task links to only one shared region, and if neither the shared
region nor the task that links to it contain memory-resident overlays,
the Task Builder allocates two window blocks in the header of the
task. (Overlays are described in Chapter 3.) When the task is
installed, the INSTALL processor will initialize these window blocks
as follows:

• Window block 0 will describe the range of virtual addresses
{the window) for the task region.

• Window block 1 will describe the window for the shared region.

Figure 5-6 shows the window-to-region relationship of such a task.

5-14

SHARED REGION CONCEPTS AND EXAMPLES

HIGHEST VIRTUAL------.­
ADDRESS

WINDOW BLOCK
1

WINDOW BLOCK
0

LOWEST VIRTUAL-----~
ADDRESS

SHARED
REGION

TASK
MEMORY

HEADER AND STACK

ZK-423-81

Figure 5-6 Windows for Shared Region and Referencing Task

5-15

SHARED REGION CONCEPTS AND EXAMPLES

A shared region need not be installed before a task that links to it
is built. The .STB file that you specify when you build the shared
region contains all the information required by TKB to resolve
references from within a task to locations within the shared region.
The only requirement is that you install a shared region before you
install a task that links to it.

Unless you use the /LI switch, there is a restriction on the way TKB
processes tasks that link to relocatable shared regions. TKB places
all program section names into its internal control section table.
The program section names include those from the .STB file of the
shared region as well as those from the other input modules. A
conflict can arise when building a task that contains program sections
of the same name as those in the shared region to which the task
links. The conflict arises because TKB tries to add the program
section allocation in the task to the already existing allocation for
the program section of the same name in the region. This is not
possible because the region's image has already been built, is outside
the address space of the task currently being built, and cannot be
modified. Therefore, to avoid this conflict, the program section
names within a task that links to a relocatable shared region must
normally be unique with respect to program section names within the
shared region.

TKB displays an error message under the following conditions:

• A program section in the task and a program section in the
shared region have the same name.

• The program section in the task contains data.

• TKB tries to initialize the program section in the task.

The error message occurs when TKB tries to store data in an image
outside the address limits of the task it is building. If this
conflict occurs, TKB prints the following message:

TKB--*DIAG*-load addr out of range in module module-name

One exception to the above restriction develops when all of the
following conditions exist:

• Both program
referencing
attributes.

sections (in the shared region and in the
task) have the (D) data and the OVR (overlay)

• The program section in the task is equal to or shorter than
the program section in the shared region.

• The program section in the task does not contain data.

When all of these conditions exist, there is nothing to be initialized
within the shared region. TKB binds the base address of the program
section in the task to the base address of the program section in the
shared region. If the program section in the task contains global
symbols, TKB assigns addresses to them that reflect their location
relative to the beginning of the program section. You can use this
technique to establish symbolic offsets into resident commons.
Examples 5-1 and 5-2 in the following sections illustrate how to
establish these offsets.

5-16

SHARED REGION CONCEPTS AND EXAMPLES

5.1.7 Number and Size of Shared Regions

The number of shared regions to which a task can link is a function of
the number of window blocks required to map the task and the regions.

, In .an RSX_:'llM" op,eratirig .system·, ,if a 'task is.· 4K w.otd's · .or . l~ss ~.. /al'}d ·
each: shared re.gion to .which the. task.· links .d.s,· 4I(\tlo.rds· or. less, · t.hen. a•

, non pr i V. i leged. t;aSk . can ac·ceSS., (jlS many. , as .. seven' ·Sha red' . r.egions .• ,· '
h , • ,; • , , , , , ; ,. i" , . . . ' ',

·In· an. RSX~liM;...puis operatinq system.:. if. a task· .is· 4K. words or. ''less,
·and· each shared .r.eg.ion:to·.whJch the. tas}< .Unks is '4K words o.r. ·less i a'
·I1onp:r;iyile<Jed J:as;.k cap. r.~f~·r ·t'<:>. .as ·m~.ny .as. I?· s;h?·r~~ :r;e9i.ons:!.. 7 · · fo:.
u,se.r , 'mode. ·.and. 8 'Jn .s'.upet)yi.sti~ mode;; . (S,Upe.r\d:s(;>r•m'ode i1hra'ri~s:.ar.e.

>desc.ri.bed .in Chapter 8 •.) , · ·· · ·
i ·~ I < , ~ ~: ,~ , ' <>' '< ;· .~· ',

5.1.8 Example 5-1: Building and Linking to a Common in MACR0-11

The text in this section and the figures associated with it illustrate
the development of a MACR0-11 position-independent resident common and
the development of two MACR0-11 tasks that share the common. The
steps in building a position-independent common can be summarized as
follows:

1. You create a source file that allocates the amount of space
required for the common. In MACR0-11, either of the
assembler directives, .BLKB or .BLKW, provide the means of
allocating this space.

2. You assemble the source file.

3. You build the assembled module, specifying both a task image
file and a symbol definition file.

You specify the /-HD (no header)
common with /CO. You specify
independent with the /PI switch.

Under options you specify:

STACK=O
PAR=parname

switch and declare the
the common to be position

The parname in this PAR option is the name of the partition
in which the common is to reside. (The /HD and /PI switches
and the STACK and PAR options are described in Chapter 10.)

If your system is an RSX-llM system, the common must reside
within a common partition of the same name as that of the
common.

If your system is an RSX-llM-PLUS system, the common can
reside within any partition large enough to hold it.

4. You install the common.

Example 5-1 below shows a MACR0-11 source file that, when assembled
and built, creates a position-independent resident common area named
MACCOM. The common area consists of two program sections named COMl
and COM2, respectively. Each program section is 512(decimal) words
long.

5-17

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 1 Common Area Source File in MACR0-11

.TITLE MACCOM

COMl - 512 WORDS
COM2 - 512 WORDS

.PSECT COMl,RW,D,GBL,REL,OVR

.BLKW 512 •
• PSECT COM2,RW,D,GBL,REL,OVR
.BLKW 512 •

. END

Once this common has been assembled, the Task Builder command sequence
shown below can be used to build it.

>TKB
TKB>MACCOM/PI/-HD/CO,MACCOM/-SP,MACCOM=MACCOM
TKB>/
Enter Options:
TKB>STACK=O
TKB>PAR=MACCOM:0:4000
TKB>//

This command sequence directs TKB to build a position-independent
(/PI), headerless (/-HD) common image file named MACCOM.TSK. It also
specifies that the Task Builder is to create a map file, MACCOM.MAP,
and a symbol definition file, MACCOM.STB. TKB creates all three
files -- MACCOM.TSK, MACCOM.MAP, and MACCOM.STB -- on device SY:
under the UFO that corresponds to the terminal UIC. Because /-SP is
attached to the map file, TKB will not spool a map listing to the line
printer.

Under options, STACK=O suppresses the stack area in the common's
image. The PAR option specifies that the common area will reside
within a common partition of the same name as that of the common,
MACCOM. In addition, the parameters in the PAR option specify a base
of 0 and a length of 4000 octal bytes for the common. (Refer to
Chapters 10 and 11 for descriptions of the switches and options used
in this example.)

Example 5-1, Part 2 shows the map resulting from this command
sequence.

The task attributes section of this map reflects the switches and
options of the command string. It indicates that the common resides
in a partition named MACCOM, that it was built under terminal UIC
[7,62], that it is headerless and position independent, and that it
requires one window block to map. The total length of the common is
1024(decimal) words and its address limits range from 0 to
3777(octal). The common image (that portion of the disk image file
that eventually will be read into memory) begins at file-relative disk
block 2 «t . The last block in the file is file-relative disk block
5 8 and the common image is four blocks long e .
The memory allocation synopsis details the Task Builder's allocation
for and the attributes of the program sections within the common. For
example, reading from left to right, the map indicates that the

5-18

SHARED REGION CONCEPTS AND EXAMPLES

program section COMl permits read/write access, that it contains data,
and that its scope is global. It also indicates that COMl is
relocatable and that all contributions to COMl are to be overlaid.
Because COMl has the overlay attribute, the total allocation for it
will be equal to the largest allocation request from the modules that
contribute to it. (For more information on program section
attributes, see Chapter 2.)

Continuing to the right, the first 6-digit number is COMl's base
address, which is O ~. The next two digits are its length (bytes) in
octal and decimal, respectively.

The next line down lists the first object module that contributes to
COMl. In this case there is only one: the module MACCOM from the
file MACCOM.OBJ;l. The numbers on this line indicate the relative
base address of the contrjbution and the length of the contribution in
octal and decimal €) • If there had been more than one module input to
TKB that contained a program section named COMl, TKB would have listed
each module and its contribution in this section.

Notice that there is a program section named • BLK. shown on the map
just above the field for COMl. This is the "blank" program section
that is created automatically by the language translators. The
attributes shown are the default attributes. The allocation for
• BLK. is O because the program sections in MACCOM were explicitly
declared. If the program sections had not been explicitiy declared,
all of the allocation for the common would have been within this
program section.

Example 5-1, Part 2 Task Builder Map for MACCOM.TSK

MACCOM.TSK;l Memory allocation map TKB M40.10
17-NOV-82 16:05

Partition name : MACCOM
Identification :
Task UIC (7,62]
Task attributes: -HD,PI
Total address windows: 1.
Task image size 1024. WORDS
Task address limits: 000000 003777
R-W disk blk limits: 000002 000005 000004 00004.

\
*** Root segment: MACCOM 0 @ 8

R/W mem limits: 000000 003777 004000 02048.
Disk blk limits: 000002 000005 000004 00004.

Memory allocation synopsis:

Section

. BLK.: (RW, I, LCL, REL ,CON) 000000 000000 00000.
COMl : (RW,D,GBL,REL,OVR) 000000 002000 01024.

Title

000000 002000 01024. .MAIN.
COM2 : (RW,D,GBL,REL,OVR) 002000 002000 01024. joo 2000

1
oo2000

1
010 24. .MAIN.

0 0 0

Page 1

!dent File

MACCOM.OBJ;l

MACCOM.OBJ;l

(continued on next page)

5-19

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 2 (Cont.) Task Builder Map for MACCOM.TSK

*** Task builder statistics:

Total work file references: 183.
Work file reads: 0.
Work file writes: 0.
Size of core pool: 7086. WORDS (27. PAGES)
Size of work file: 768. WORDS (3. PAGES)

Elapsed time:00:00:05

Figure 5-7 is a diagram that represents the disk image file for
MACCOM. The circled numbers in Figure 5-7 correspond to the circled
numbers in Example 5-1, Part 2.

•

RELATIVE
DISK BLOCK
NUMBERS

000005

• 000004

000003

000002

• 000001

000000

COM 2

COM 1

LABEL BLOCK

DISK IMAGE FILE

RELATIVE
LOAD
ADDRESSES

002000

•
000000

•
Figure 5-7 Allocation Diagram for MACCOM.TSK

002000 (BYTES)

'i

ZK-424-8'

Once you have built MACCOM, you can install it. If your system is an
Rsx::..11~ syst~mf' the coiiunon. is loaded into memory when yo.u install it.,

If your system is an RSX-llM-PLUS system, it remains there until you
explicitly remove it with the MCR command REMOVE. The common will not
be loaded until either_one of the following occurs.:

• A task that. is linked to it is run.

• You expiicitiy fix +:he common in memory with the MCR command
FIX.

5-20

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Parts 3 and 4 show two programs: MCOMl and MCOM2,
respectively. Both of these programs reference the common area MACCOM
created above. MCOMl in Example 5-1, Part 3 accesses the COMl portion
of MACCOM. It inserts into the first 10 words of COMl the numbers 1
through 10 in ascending order. It then issues an Executive directive
request for the task MCOM2 and suspends itself.

When MCOM2 runs, it adds together the integers left in COMl by MCOMl
and leaves the sum in the first word of COM2. It then issues a resume
directive for MCOMl and exits.

When MCOMl resumes, it retrieves the answer left in COM2 and calls the
system library routine $EDMSG (edit message) to format the answer for
output to device TI:.

All of the Executive directives for both programs (RQST$C, SPND$S,
QIOW$S, RSUM$C, and EXIT$S) are documented in the RSX-llM-PLUS
Executive Reference Manual. The system library routine $EDMSG is
documented in the IAS/RSX-11 System Library Routines Reference Manual.

Example 5-1, Part 3 MACR0-11 Source Listing for MCOMl

.TITLE MCOMl

.IDENT /01/

.MCALL EXIT$S,SPND$S,RQST$C,QIOW$S

OUT: .BLKW 100.
FORMAT: .ASCIZ /THE RESULT IS %D./
MES: .ASCII /ERROR FROM REQUEST/

LEN = • - MES
.EVEN

; SCRATCH AREA

PSECT COMl IS USED TO ACCESS THE FIRST 512. WORDS OF THE
COMMON •

• PSECT COMl,GBL,OVR,D
INT: .BLKW 10.

PSECT COM2 IS USED TO ACCESS THE SECOND 512. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

.PSECT COM2,GBL,OVR,D
ANS: .BLKW 1

START:
.PSECT

MOV
MOV
MOV

#10.,RO
#1,Rl
#INT,R3

NUMBER OF INTEGERS TO SUM
START WITH A 1
PLACE VALUES IN lST 10 WORDS
OF COMMON

(continued on next page)

5-21

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 3 (Cont.) MACR0-11 Source Listing for MCOMl

10$:

ERRl:

MOV
INC
DEC
BNE
RQST$C
BCS
SPND$S
MOV
MOV
MOV
CALL
QIOW$S
EXIT$S

Rl,(R3)+ INITIALIZE COMMON
Rl NEXT INTEGER
RO ONE LESS TIME
10$ TO INITIALIZE
MCOM2 REQUEST THE SECOND TASK
ERRl REQUEST FAILED

WAIT FOR MCOM2 TO SUM THE INTEGERS
#OUT,RO ADDRESS OF SCRATCH AREA
#FORMAT,Rl FORMAT SPECIFICATION
#ANS,R2 ARGUMENT TO CONVERT
$EDMSG ; DO CONVERSION
#IO.WVB,#5,#l,,,,<#OUT,Rl,#40>

QIOW$S #IO.WVB,#5,#1,,,,<#MES,#LEN,#40>
EXIT$S
.END START

Example 5-1, Part 4 MACR0-11 Source Listing for MCOM2

.TITLE MCOM2
• !DENT /01/

.MCALL EXIT$S,QIOW$S,RSUM$C

MES: .ASCII /ERROR FROM RESUME/
LEN = • - MES
.EVEN

PSECT COMl IS USED TO ACCESS THE FIRST 10. WORDS OF THE
COMMON •

• PSECT COMl,GBL,OVR,D
INT: .BLKW 10.

PSECT - COM2 IS USED TO ACCESS THE SECOND 10. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

.PSECT COM2,GBL,OVR,D
ANS: .BLKW 1

START:

10$:

ERR:

.PSECT

MOV
MOV

CLR
ADD
DEC
BNE

#10. ,RO
#INT,R3

ANS
(R3}+,ANS
RO
10$

RSUM$C MCOMl
BCS ERR
EXIT$S

NUMBER OF INTEGERS TO SUM
PLACE VALUES IN lST 10 WORDS
OF COMMMON
INITIALIZE ANSWER
ADD IN VALUES
ONE LESS VALUE
TO SUM

RESUME MCOMl
RESUME FAILED

QIOW$S #IO.WVB,#5,#1,,,,<#MES,#LEN,#40>
EXIT$S
.END START

5-22

SHARED REGION CONCEPTS AND EXAMPLES

Note that both tasks MCOMl and MCOM2 contain .PSECT declarations
establishing program section names that are the same as program
section names within the position-independent common to which the task
is linked (MACCOM). As stated earlier, in most circumstances this
would be illegal. In this application, however, the .PSECT directives
have been placed into the tasks to establish symbolic offsets in the
resident common. When either task is built, TKB assigns to the symbol
INT: the base address of program section COMl, and to the symbol ANS:
the base address of program section COM2. Figure 5-8 illustrates this
assignment.

ANS:

-
INT: -- - - - -- -

- COM 2

-~-- - - - - - - _-:::::::-~

- COM 1 -...._

~-- - - - - - - _-::_~ -­tN-2..:::=~----------------------------

ZK-425-81

Figure 5-8 Assigning Symbolic References within a Common

Once you have assembled MCOMl and MCOM2, you can build them with the
following TKB command sequences:

>TKB
TKB>MCOMl,MCOMl/-SP=MCOMl
TKB>/
Enter Options:
TKB>RESCOM=MACCOM/RW
TKB>//

>TKB
TKB>MCOM2,MCOM2/-SP=MCOM2
TK~/
Enter Options:
TKB>RESCOM=MACCOM/RW
TKB>//

Under options in both of these command sequences, the RESCOM option
tells TKB that these programs intend to reference a common data area
named MACCOM and that the tasks require read/write access to it.
Because the RESCOM option is used, TKB expects to find the image file
and the symbol definition file for the common on device SY: under the
UFD that corresponds to the terminal UIC. In addition! because the
optional APR specification was omitted from the RESCOM option, TKB
allocates virtual address space for the common starting with APR7 in
both tasks (the highest APR available in both tasks).

5-23

SHARED REGION CONCEPTS AND EXAMPLES

The TKB map for MCOMl is shown in Example 5-1, Part 5. The map for
MCOM2 is not essentially different from that of MCOMl and is therefore
not included here.

Example 5-1, Part 5 Task Builder Map for MCOMl.TSK

MCOMl.TSK;l Memory allocation map TKB M40.10
ll-DEC-82 16:12

Partition name : GEN
Identification : 01
Task UIC [7,62]
Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001650
Total address windows: 2.
Task image size 1184. WORDS
Task address limits: 000000 004407
R-W disk blk limits: 000002 000006 000005 00005.

*** Root segment: MCOMl

R/W mem limits: 000000 004407 004410 02312.
Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section
-------. BLK.: (RW,I,LCL,REL,CON) 001274 002664 01460.

001274 000574 00380.
CO Ml : (RW,D,GBL,REL,OVR) 160000 002000 01024.

160000 000024 00020.
COM2 : (RW,D,GBL,REL,OVR) 162000 002000 01024.

162000 000002 00002.
$DPB$$:(RW,I,LCL,REL,CON) 004160 000016 00014.

004160 000016 00014.
$$RESL:(RO,I,LCL,REL,CON) 004176 000212 00138.

*** Task builder statistics:

Total work file references: 1924.
Work file reads: o.
Work file writes: 0.
Size of core pool: 7086. WORDS (27. PAGES)
Size of work file: 1024. WORDS (4. PAGES)

Elapsed time:00:00:04

5-24

Title

MCOM

MCOM

MCOM

MCOM

Page 1

!dent File

01 MCOMl.OBJ;l

01 MCOMl.OBJ;l

01 MCOMl.OBJ;l

01 MCOMl.OBJ;l

SHARED REGION CONCEPTS AND EXAMPLES

Note that TKB has placed two window blocks in MCOMl's header. When
MCOMl is installed, the INSTALL processor will initialize these window
blocks as follows:

• Window block 0 will describe the range of virtual addresses
(the window} for MCOMl's task region.

• Window block 1 will describe the window for the shared region
MACCOM.

5.1.9 Linking Shared Regions Together

Shared regions can link to other shared regions. You may find it
convenient to have code in a shared library and have access to
routines in another shared library to which it links.

The following text describes, as an example for a mapped system, the
TKB command sequence for building a resident library named FILEB.
That text is followed by a TKB command sequence that shows an example
of building another resident library named FORCOM that links to FILEB.
Following after that, a TKB command sequence shows the building of a
task that links to FORCOM. In the TKB command sequences to follow, it
is assumed that you know the contents of the libraries an.d the task.
The examples show the linkage only.

The first shared region to be built is called FILEB. The library
FILEB is a position-dependent library. You use the /-PI switch to
signify that the library is absolute. You build.the library with the
/-HD switch to indicate that the library has no header. The /LI
switch indicates that FILEB is to be a shared library. The program
section name of the library is . ABS, which is the only one in the
library. FILEB is to be loaded into a user-controlled partition on a
mapped system. The name of the partition in which FILEB resides has
the same name, FILEB, that you specify in the PAR option. The PAR
option also specifies the base address and the length of the
partition. Because FILEB is absolute, a base address must be
specified; here, the base address is 160000. The length in this
example is 4K bytes. If neither the base nor the length is specified,
TKB tries to determine the length. The TKB command sequence follows:

>TKB
TKB>FILEB/-PI/-HD/LI,FILEB/-SP,FILEB=FILEB.OBJ
TKB>/
Enter Options:
TKB>STACK=O
TKB>PAR=FILEB:l60000:40000
TKB>//

The next TKB command sequence specifies a shared library called
FORCOM. FORCOM links to the read-only library called FILEB. You
build FORCOM with the /LI switch to specify a library to the Task
Builder. FORCOM is relocatable. You specify in the RESLIB option
that the resident library to which FORCOM links is called FILEB. The

5-25

SHARED REGION CONCEPTS AND EXAMPLES

access required is read-only, which /RO specifies in the RESLIB option
line. The TKB command sequence follows:

>TKB
TKB>FORCOM/-HD/LI/PI,FORCOM/-SP,FORCOM=FORCOM.OBJ
TKB>/
Enter Options:
TKB>STACK=O
TKB>PAR=FORCOM:0:4000
TKB>RESLIB=FILEB/RO
TKB>//

The next TKB command sequence builds the task and specifies that the
task links to the library called FORCOM. The RESLIB option line
specifies the link to the resident library called FORCOM.

>TKB
TKB>FOTASK,FOTASK/-SP,FOTASK=FOTASK.OBJ
TKB>/
Enter Options:
TKB>RESLIB=FORCOM/RW
TKB>//

Build the libraries before you build the task, and install the
libraries before you run or install the task. See Chapters 10 and 11
for a description of the /PI, /HD, /CO, and /LI switches and the PAR,
RESCOM, and RESLIB options •

•
5.1.10 Example 5-2: Building and Linking to a Device Common in

MACR0-11

A device common is a special type of common that occupies physical
addresses on the I/O page. When mapped into the virtual address space
of a task, a device common permits the task to manipulate peripheral
device registers directly.

NOTE

Because any access to the I/O
potentially hazardous to the
system, you must exercise
caution when working with
commons.

page is
running
extreme
device

The remaining text in this section and the figures associated with it
illustrate the development and use of a device common. Example 5-2,
Part l shows an assembiy iisting for a position-independent device
common named TTCOM. When installed, TTCOM will map the control and
data registers of the console terminal. Its physical base address
will be 777500.

5-26

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-2, Part 1 Assembly Listing for TTCOM

$RCSR: :
$RBUF::
$XCSR::
$XBUF::

.TITLE TTCOM

.PSECT TTCOM,GBL,D,RW,OVR

.=.+60

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.END

The PDP-11 Peripherals Handbook defines the control and data register
addresses for the console terminal. In Example 5-2, Part 1, the
register addresses and the symbol names that correspond to them are as
follows:

Register

Keyboard Status
Keyboard Data
Printer Status
Printer Data

Address

777560
777562
777564
777566

Symbol

$RCSR
$RBUF
$XCSR
$XBUF

The double colon (::) following each symbol in Example 5-2, Part 1
establishes the symbol as global. The first symbol, RCSR, is offset
from the beginning of TTCOM by 60{octal) bytes. Each symbol
thereafter is one word removed from the symbol that precedes it.
Thus, when TTCOM is installed at 777500, each symbol will be located
at its proper address.

Once you have assembled TTCOM, you can build it using the following
TKB command sequence:

>TKB
TKB>LB:[l,l]TTCOM/-HD/PI,LB: [l,l]TTCOM/-WI/SP,LB:[l,l]TTCOM=TTCOM
TKB>/
Enter Options:
TKB>STACK=O
TKB>PAR=TTCOM:O:lOO
TKB>//

This command sequence directs TKB to create a common image named
TTCOM.TSK and a symbol definition file named TTCOM.STB. TKB places
both files on device LB: under UFD [1,1]. The command sequence also
specifies that TKB is to spool a map listing to the line printer. The
/SP switch need not be present because it is the default. The /-WI
switch specifies an 80-column line printer listing format.

NOTE

For the command sequence above to work
in a multiuser protection system, it
must be input from a privileged
terminal.

The STACK=O option suppresses the stack area in the common's image
file. The PAR option specifies that the device common will reside
within a partition of the same name as that of the common. As with
the data common in Example 5-1 (Sectiol"l 5.~~7), ,tl1is i.s a reqtiirem.el'lt
of the RSX-llM system; . fo an ~RSX-llM'...:PLll~ Siyst,e;m 'it is not.: :The PA~ .
. option a1so spe.ctfies that the· base of the:. common Js; n a·nd that it· is;.
100 (octa lJ by~es long~-.

5-27

SHARED REGION CONCEPTS AND EXAMPLES

The TKB map for TTCOM that results from the command sequence above is
shown in Example 5-2, Part 2. The task attributes section of this map
indicates that the common is position independent and that no header
is associated with it. The common's image and symbol definition file
reside on device LB: under UFO [1,1].

The map in Example 5-2, Part 2 shows the global symbols defined in the
common with their relative offsets into the common region. You
establish the virtual base address for the common and the virtual
addresses for the symbols within it when you build the tasks that link
to the common.

You establish the physical addresses for the common with the MCR
command SET. The keyword that you use with the SET command depends on
which system you are running. If your system js .. an. RSX'-'ll;M. s:y:~:te,~,.
use the command

>SET /MAIN=TTCOM: 7775.: 1 :DEV

If your syste,m is one that uses 22-bit phy.sical addres.ses 1 us.e the
command

>SET /MAIN=TTCOM:l77775:l:DEV

:I'f lyour: sys!tem .:fs;. :an : RSX.;.;; llM'""l:PLiUS sy~t,~m, u:se the commµnd
; vw:4; ·• . ; : :· 1 .. ; . : r . /' ! .• : . :· :! .·)' .. :· 1 .. '. .; :; •

'. ; ~Si{E!J.1· ;:~~~~!-1'!·T77:rl15;: i::~:p~v : :i

These previous SET command sequences create a main partition named
TTCOM that begins at physical address 777500 in 18-bit systems and
physical address 1777750 in 22-bit systems. The partition is one
64-byte block long, (lOO(octal} bytes}. The argument DEV identifies
the par ti ti on type. With the common built and the partition for it
created, you must install TTCOM in an RSX-llM system before using it'.
For example, use

>INS LB:[l,lJTTCOM

You can establish the partition for a device common at any time in
both the RSX-llM and the RSX-llM-PLUS systems. Partitions created to
accommodate a device common are not a system generation consideration
because they represent areas of physical address space above memory
and therefore cannot conflict with memory partitions.

Example 5-2, Part 2 Task Builder Map for TTCOM

TTCOM.TSK;l Memory allocation map TKB M40.10
l-DEC-82 17:02

Partition name TTCOM
Identification
Task UIC [7,62]
Task attributes: -HD,PI
Total address windows: 1.
Task image size : 32. WORDS

Page 1

TASK
ATTRIBUTES
SEC'!' ION

(continued on next page)

5-28

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-2, Part 2 (Cont.) Task Builder Map for TTCOM

Task address limits: 000000 000067
R-W disk blk limits: 000002 000002 000001 00001.

*** Root segment: TTCOM

R/W mem limits: 000000 000067 000070 00056.
Disk blk limits: 000002 000002 000001 00001.

Memory allocation synopsis:

Section Title Ident File

• BLK.: (RW,I,LCL,REL,CON) 000000 000000 00000.
TTCOM :(RW,D,GBL,REL,OVR) 000000 000070 00056.

000000 000070 00056 •• MAIN.

Global symbols:

TTCOM.OBJ;l

$RBUF 000062-R $RCSR 000060-R $XBUF 000066-R $XCSR 000064-R

*** Task builder statistics:

Total
Work
Work
Size
Size

work file references: 214.
file reads: O.
file writes: 0.

of core pool: 6666. WORDS (26. PAGES)
of work file: 768. WORDS (3. PAGES)

Elapsed time:00:00:02

Example 5-2, Part 3 shows an assembly listing for a demonstration
program named TEST. When built and installed, TEST will print the
letters A through Z on the console terminal by directly accessing the
console terminal status and data registers. It will access the status
and data registers through the device common TTCOM.

Example 5-2, Part 3 Assembly Listing for TEST

.TITLE TEST
• !DENT /01/
.MCALL EXIT$S

START: MOV
CALL
MOV
CALL
MOV
MOV

#15 I RO
OUTBYT
#12, RO
OUTBYT
#101,RO
#26.,Rl

START WITH A CARRIAGE RETURN
PRINT IT
THEN A LINE FEED
PRINT IT
FIRST LETTER IS AN "A"
NUMBER OF LETTERS TO PRINT

(continued on next page)

5-29

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-2, Part 3 (Cont.) Assembly Listing for TEST

OUTPUT: CALL OUTBYT PRINT CURRENT LETTER
DEC Rl ONE LESS TIME
BNE OUTPUT AGAIN
MOV #15,RO ANOTHER CARRIAGE RETURN
CALL OUTBYT
MOV #12,RO ANOTHER LINE FEED
CALL OUTBYT
EXIT$S

OUTBYT: TSTB $XCSR OUTPUT BUFFER READY?
BPL OUTBYT IF NOT WAIT
MOV RO,$XBUF MOVE CHARACTER TO OUTPUT BUFFER
INC RO INITIALIZE NEXT LETTER
RETURN
.END START

Once you have assembled TEST, you can build it with the following TKB
command sequence:

>TKB
TKB>TEST,TEST/-WI/MA=TEST
TKB>/
Enter Options:
TKB>COMMON=TTCOM:RW:l
TKB>//

The COMMON option in this command sequence tells TKB that TEST intends
to access the device common TTCOM and that TEST will have read/write
access to it. It also directs TKB to reserve APR 1 for mapping the
common into TEST's virtual address space.

The TKB map that results from the command sequence above is shown in
Example 5-2, Part 4.

This map contains a global symbols section. TKB included it because
the /MA switch was applied to the memory allocation file at task-build
time. Note that the global symbols in this section, which were
defined in TTCOM, now have virtual addresses assigned to them. The
addresses assigned by TKB are the result of the APR 1 specification in
the COMMON= keyword during the task build.

It is important to remember that programs like TEST, which access the
I/O page, take complete control of the registers they reference.
Therefore, coding errors in such programs can disable the devices they
reference and can even make it impossible for the device drivers to
regain control of the device. If this happens, you must reboot the
system.

5-30

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-2, Part 4 Memory Allocation Map for TEST

TEST.TSK;l Memory allocation map TKB M40.10
l-DEC-82 17:03

Partition name
Identification
Task UIC
Stack limits:
PRG xfr address:

GEN
01
[7,62]
000274
001274

001273 001000 00512.

Total address windows: 2.
Task image size 384. WORDS
Task address limits: 000000 001377

Page 1

R-W disk blk limits: 000002 000003 000002 00002.

*** Root segment: TEST

R/W mem limits: 000000 001377 001400 00768.
Disk blk limits: 000002 000003 000002 00002.

Memory allocation synopsis:

Section

• BLK.:(RW,I,LCL,REL,CON) 001274 000100 00068.

Title !dent File

001274 000100 00068 •• MAIN. TEST.OBJ;!
TTCOM : (RW,D,GBL,REL,OVR) 200000 000070 00056.

200000 000070 00056. TTCOM

Global symbols:

$RBUF 020062-R $RCSR 020060-R

*** Task builder statistics:

work file references: 243.
file reads: 0.
f i 1 e wr i t es : 0 •

$XBUF

Total
Work
Work
Size
Size

of core pool: 6666. WORDS (26. pages)
of work file: 768. WORDS (3. pages)

Elapsed time:00:00:03

020066-R

TTCOM.STB;l

$XCSR 020064-R

5.1.11 Example 5-3: Building and Linking to a Resident Library in
MACR0-11

Resident libraries consist of subroutines that are shared by two or
more tasks. When such tasks reside in physical memory simultaneously,
resident libraries provide a considerable memory savings because the
subroutines within the library appear in memory only once.

5-31

SHARED REGION CONCEPTS AND EXAMPLES

The text in this section and the figures associated with it illustrate
the development and use of a resident library, called LIB.

Example S-3, Part 1 shows five FORTRAN-callable subroutines:

• An integer addition routine, AADD

• An integer subtraction routine, SUBB

• An integer multiplication routine, MULL

• An integer division routine, DIVV

• A register save and restore coroutine, SAVAL

These subroutines are contained in a single source file, LIB.MAC.
When assembled and built, they constitute an example of a resident
library. FORTRAN-callable routines were used in this example so that
the routines can be accessed by either FORTRAN or MACR0-11 programs.

Example S-3, Part 1 Source Listing for Resident Library LIB.MAC

• TITLE LIB
• !DENT /01/

.PSECT AADD,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS

AADD:: CALL
MOV
MOV
ADD
MOV
RETURN

$SAVAL
@2 (RS) ,RO
@4(RS),Rl
RO,Rl
Rl,@6(RS)

SAVE RO-RS
FIRST OPERAND
SECOND OPERAND
SUM THEM
STORE RESULT
RESTORE REGISTERS AND RETURN

.PSECT SUBB,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO SUBTRACT TWO INTEGERS

SUBB:: CALL
MOV
MOV
SUB
MOV
RETURN

$SAVAL
@2 (RS) ,RO
@4 (RS) ,Rl
Rl,RO
R0,@6(RS)

SAVE RO-RS
FIRST OPERAND
SECOND OPERAND
SUBTRACT SECOND FROM FIRST
STORE RESULT
RESTORE REGISTERS AND RETURN

.PSECT MULL,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO MULTIPLY TWO INTEGERS

(continued on next page)

5-32

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 1 (Cont.) Source Listing for Resident Library LIB.MAC

MULL:: CALL $SAVAL SAVE RO-R5
MOV @2 (R5) ,RO FIRST OPERAND
MOV @4(R5),Rl SECOND OPERAND
MUL RO ,Rl MULTIPLY
MOV Rl,@6(R5) STORE RESULT
RETURN RESTORE REGISTERS AND RETURN

.PSECT DIVV,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO DIVIDE TWO INTEGERS

DIVV:: CALL $SAVAL SAVE REGS RO-R5
MOV @2 (R5) ,R3 FIRST OPERAND
MOV @4 (R5) I Rl SECOND OPERAND
CLR R2 LOW ORDER 16 BITS
DIV Rl,R2 DIVIDE
MOV R2,@6(R5) STORE RESULT
RETURN RESTORE REGISTERS AND RETURN

.PSECT SAVAL,RO,I,GBL,REL,CON

;**ROUTINE TO SAVE REGISTERS

$SAVAL::
MOV R4,-(SP) ;SAVE R4
MOV R3,-(SP) ;SAVE R3
MOV R2,-(SP) ;SAVE R2
MOV Rl,-(SP) ;SAVE Rl
MOV RO,-(SP) ;SAVE RO
MOV 12 (SP) ,- (SP) ;COPY RETURN
MOV R5,14(SP) ;SAVE R5
CALL @(SP)+ ;CALL THE CALLER
MOV (SP)+,RO ;RESTORE RO
MOV {SP)+,Rl ;RESTORE Rl
MOV (SP)+,R2 ;RESTORE R2
MOV (SP)+,R3 ;RESTORE R3
MOV (SP)+,R4 ;RESTORE R4
MOV (SP)+,R5 ;RESTORE R5
RETURN
.END

Once you have assembled LIB, you can build it with the following TKB
command sequence:

TKB>LIB/PI/-HD/LI,LIB/-WI,LIB=LIB
TKB>/
Enter Options:
TKB>STACK=O
TKB>PAR=LIB:0:200
TKB>//

5-33

SHARED REGION CONCEPTS AND EXAMPLES

This command sequence instructs TKB to build a position-independent
(/PI), headerless (/-HD) library image named LIB.TSK. It instructs
TKB to create a map file LIB.MAP and to output an 80-column listing
(/-WI) to the line printer. It also specifies that TKB is to create a
symbol definition file, LIB.STB. TKB creates all three
files -- LIB.TSK, LIB.MAP, and LIB.STB -- on device SY: under the UFO
that corresponds to the terminal UIC. The /LI and /PI switches used
together cause TKB to name the program section LIB, which is the root
segment of the library. LIB becomes the only named program section in
the library.

If you used the command sequence above without the /LI switch, TKB
would create a common by default.

The STACK=O option suppresses the stack area within the resident
library's image. The PAR option tells TKB that the resident library
will reside.

1
\Yi'.thiq,a; parti.t::ipn. of .. th .. e. same:. name. as .t::hat of .. the

library. AS. r :W)}th .· 1a:1L s,Jl;~red .. •r:eg.tons;,.· 'thi$ is·'.~·· requfreinent .. in an
;;RSX:-11~ .. t's~;tiemi;'.' 'r··· .·...];.pJftrl9ft ~~i1ttr'.';~~1;'!i'ffitj~\ In add i ti 0 n I

the PAR opt{on' sp~tci ies'"bthaf tile" ~base 0 t
1

he*' Y"ib;;rary'
1

iS 0 and that it
is 200(octal) bytes long. (For more information on the switches and
options used in this example, refer to Chapters 10 and 11.)

Example 5-3, Part 2 shows the TKB map that results from the command
sequence above.

Note in the global symbols section of the map in Example 5-3, Part 2
that TKB has assigned offsets to the symbols for each library
function. When the task that links to this library is built, TKB will
assign virtual addresses to these symbols.

The program MAIN in Example 5-3, Part 3 exercises the routines in the
resident library LIB.TSK. When you assemble and build it, MAIN will
call upon the library routines to add, subtract, multiply, and divide
the integers contained in the labels OPl and OP2 within the program.
MAIN will print the results of each operation to device TI:.

Example 5-3, Part 2 Task Builder Map for LIB.TSK

LIB.TSK;l Memory allocation map TKB M40.10
ll-DEC-82 13:50

Partition name LIB
Identification 01
Task UIC [7,62]
Task Attributes: -HD,PI
Total address windows: 1.
Task image size 64. WORDS
Task address limits: 000000 000163
R-W disk blk limits: 000002 000002 000001 00001.

*** Root segment: LIB

R/W mem limits: 000000 000163 000164 00116.
Disk blk limits: 000002 000002 000001 00001.

Page 1

(continued on next page)

5-34

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 2 (Cont.) Task Builder Map for LIB.TSK

Memory allocation synopsis:

Section Title
-------. BLK.: (RW,I,LCL,REL,CON) 000000 000000 00000.
AADD :(RO,I,GBL,REL,CON) 000000 000024 00020.

000000 000024 00020. LIB
DIVV :(RO,I,GBL,REL,CON) 000024 000026 00022.

000024 000026 00022. LIB
MULL :(RO,I,GBL,REL,CON) 000052 000024 00020.

000052 000024 00020. LIB
SAVAL :(RO,I,GBL,REL,CON) 000076 000042 00034.

000076 000042 00034. LIB
SUBB :(RO,I,GBL,REL,CON) 000140 000024 00020.

000140 000024 00020. LIB

Global symbols:

AADD
DIVV

000000-R MULL
000024-R

000052-R SUBB 000140-R

*** Task builder statistics:

Total
Work
Work
Size
Size

work file references: 368.
file reads: Oo
file writes: O.

of core pool: 7086. WORDS (27. PAGES)
of work file: 768. WORDS (3. PAGES)

Elapsed time:00:00:03

Ident

01

01

01

01

01

Example 5-3, Part 3 Source Listing for MAIN.MAC

• TITLE MAIN
• IDENT /01/

;+
;**MAIN - CALLING ROUTINE TO EXERCISE THE ARITHMETIC ROUTINES

FOUND IN THE RESIDENT LIBRARY, LIB.TSK.
;-

.MCALL

OPl: .WORD
OP2: .WORD
ANS: .BLKW
OUT: .BLKW

QIOW$S, EXIT$S

1
1
1
100.

OPERAND 1
OPERAND 2
RESULT
FORMAT MESSAGE

File

LIB. OBJ; 2

LIB.OBJ;2

LIB.OBJ;2

LIB. OBJ; 2

LIB.OBJ;2

(continued on next page)

5-35

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 3 (Cont.) Source Listing for MAIN.MAC

FORMAT: .ASCIZ
.EVEN
.ENABL

START:
MOV
MOV
MOV
MOV
MOV
CALL
CALL
MOV
CALL
CALL
MOV
CALL
CALL
MOV
CALL
CALL
EXIT$S

;+

/THE ANSWER

LSB

#ANS,-(SP)
#OP2,-(SP)
#OPl ,- (SP)
#3,-(SP)
SP,R5
AADD
PRINT
SP,R5
SUBB
PRINT
SP,RS
MULL
PRINT
SP,R5
DIVV
PRINT

%D./

TO CONTAIN RESULT
OPERAND 2
OPERAND 1
PASSING 3 ARGUMENTS
ADDRESS OF ARGUMENT BLOCK
ADD TWO OPERANDS
PRINT RESULTS
ADDRESS OF ARGUMENT BLOCK
SUBTRACT SUBROUTINE
PRINT RESULTS
ADDRESS OF ARGUMENT BLOCK
MULTIPLY SUBROUTINE
PRINT RESULTS
ADDRESS OF ARGUMENT BLOCK
DIVIDE SUBROUTINE
PRINT RESULTS

•** PRINT - PRINT RESULT OF OPERATION. '

PRINT: MOV
MOV
MOV
CALL
QIOW$S
RETURN
.END

#OUT,RO ADDRESS OF SCRATCH AREA
#FORMAT,Rl FORMAT SPECIFICATION
#ANS,R2 ARGUMENT TO CONVERT
$EDMSG ; FORMAT MESSAGE
#IO.WVB,#5,#l,,,,<#OUT,Rl,#40>

; RETURN FROM SUBROUTINE
START

Once you have assembled MAIN, you can use the following TKB command
sequence to build it:

TKB>MAIN,MAIN/MA/-WI/-SP=MAIN
TKB>/
Enter Options:
TKB>RESLIB=LIB/R0:3
TKB>//

This command sequence instructs TKB to build a task file named
MAIN.TSK on device SY: under the UFO that corresponds to the terminal
UIC. It also specifies that TKB is to create a map file MAIN.MAP.
The /MA switch requests an extended map format. In this example, /MA
was applied to the device specification so that TKB would include in
the map for the task the symbols within the library LIB. The negated
form of the wide listing switch (/-WI) was appended to the map
specification to obtain an 80-column map format. In this example, TKB
will not output a map listing to the line printer

The RESLIB option specifies that the task MAIN is to access the
library LIB and that it requires read-only access to LIB. TKB uses
APR3 to map the library.

The TKB map that results from this command sequence is shown in
Example 5-3, Part 4.

5-36

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 4 Task Builder Map for MAIN.TSK

MAIN. TSK; 1 Memory allocation map TKB M40.10
ll-DEC-82 13:51

Partition name : GEN
Identification : 01
Task UIC [7,62]
Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001634
Total address w-i ndows: 2.
Task image size 1152. WORDS
Task address limits: 000000 004327
R-W disk blk limits: 000002 000006 000005 00005.

*** Root segment: MAIN

R/W mem limits: 000000 004327 004330 02264.
Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section

BLK.: (RW,I,LCL,REL,CON) 001274 002620 01424.
001274 000530 00344.
002024 001050 00552.
003074 000216 00142.
003312 000074 00060.
003406 000250 00168.
003656 000126 00086.
004004 000110 00072.

AADD : (RO,I,GBL,REL,CON) 060000 000024 00020.
060000 000024 00020.

DIVV : (RO,I,GBL,REL,CON) 060024 000026 00022.
060024 000026 00022.

MULL :(RO,I,GBL,REL,CON) 060052 000024 00020.
060052 000024 00020.

SA VAL : (RO,I,GBL,REL,CON) 060076 000042 00034.
060076 000042 00034.

SUBB :(RO,I,GBL,REL,CON) 060140 000024 00020.
060140 000024 00020.

$$RESL:(RO,I,LCL,REL,CON) 004114 000212 00138.
004114 000024 00020.
004140 000066 00054.

Title

MAIN
EDTMG
CBTA
CATB
EDD AT
CDDMG
C5TA

LIB

LIB

LIB

LIB

LIB

SAVRG
AR ITH

Page 1

Ident File

01 MAIN .OBJ; 1
15 SYSLIB.OLB;l034
04.3 SYSLIB. OLB; 1034
03 SYSLIB. OLB; 1034
03 SYSLIB.OLB;l034
00 SYSLIB.OLB;l034
02 SYSLIB.OLB;l034

01 LIB. STB; 17

01 LIB.STB;l7

01 LIB.STB;l7

01 LIB. STB; 17

01 LIB. STB; 17

04 SYSLIB.OLB;l034
03.04 SYSLIB.OLB;l034

004226 000100 00064. DARI TH 0007 SYS LIB. OLB; 1034

(continued on next page)

5-37

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 4 (Cont.) Task Builder Map for

Global symbols:

AADD 060000-R $CBDSG 003110-R $CDTB
DIVV 060024-R $CBOMG 003116-R $COTB
IO.WVB 011000 $CBOSG 003124-R $C5TA
MULL 060052-R $CBTA 003154-R $DAT
SUBB 060140-R $CBTMG 003132-R $DDIV
$CB DAT 003074-R $CBVER 003116-R $DIV
$CBDMG 003102-R $CDDMG 003656-R $DMUL

*** Task builder statistics:

Total work file references: 2218.
Work file reads: O.
Work file writes: O.

003312-R
003320-R
004004-R
003452-R
004264-R
004170-R
004226-R

Size of core pool: 2066. words (8. pages)
Size of work file: 1024. words (4. pages)

Elapsed time:OO:OO:l9

$EDMSG
$MUL
$SAVRG
$TIM

MAIN. TSK

002122-R
004140-R
004114-R
003532-R

This map contains a global symbols section. Note that the symbols
within the library now have virtual addresses assigned to them and
that these addresses begin at 60000(octal), the virtual base address
of APR 3. The Task Builder's allocation of virtual address space for
MAIN.TSK is represented diagrammatically in Figure 5-9.

APR 7-

APR6-

APR 5-

APR4-

VIRTUAL 60000 APR 3·-

APR 2-

APR 1-

VIRTUAL 0 APR O-

~---L-IB_._r_sK __ } WINDOW 1 REGION 1

1 i 1 i~iil:I r
__ M_A_l_N_. T_s_K __ }w1NDOW 0 REGION 0

ZK-426-81

Figure 5-9 Allocation of Virtual Address Space for MAIN.TSK

5-38

SHARED REGION CONCEPTS AND EXAMPLES

The library LIB is position independent and can therefore be mapped
anywhere in the referencing task's virtual address space. APR 3 was
used in this example to contrast this mapping arrangement with the
mapping of MACCOM in the virtual address space of task MCOMl in
Example 5-1 (Section 5.1.7) •. If the optional APR parameter in the
RESLIB option above had been ieft blank, TKB would have allocated the
highest available APR to map the library.

5.1.11.1 Resolving Program Section Names in a Shared Region - As
described in earlier sections of this chapter, program section names
within position-independent shared regions must normally be unique
with respect to program section names within tasks that reference
them. When a shared region is a position-independent resident common
and you explicitly declare the program section names within it,
avoiding program section name conflicts is an easy matter. However,
when a shared region is a position-independent resident library that
contains calls to routines within an object module library (SYSLIB,
for example), conflicts may develop that are not apparent to you. The
problem arises when the position-independent resident library and one
or more tasks that link to it contain calls to separate routines
residing within the same program section of an object module library.

When TKB resolves a call from within a module that it is processing to
a routine within an object module library, it places the routine from
the library into the image it is building. It also enters into its
internal table the name of the program section in the object module
library within which the routine resides. If a position-independent
resident library contains a call to a routine within a given program
section of SYSLIB, for example, and then subsequently a task that
links to the resident library contains a call to a different routine
within the same program section of SYSLIB, both the resident library
and the referencing task will contain the program section name. When
you build the referencing task, the library's .STB file will contain
the program section name and a program section conflict will develop.
(Refer to Section 5.1.6 for additional information on the sequence in
which TKB processes tasks and the potential program section name
conflicts that can result.)

This situation and one possible solution to it can be illustrated with
Example 5-3. When this example was first created, only the arithmetic
routines were included in the source file of the resident library
(LIB.MAC in Example 5-3, Part 1). The system library coroutine
($SAVAL) was resolved from SYSLIB. Because the first instruction of
each arithmetic routine called $SAVAL, TKB included a copy of it in
the resident library's image at task-build time. This turned out to
be unsatisfactory because of a call to the SYSLIB routine $EDMSG (edit
message) within the program MAIN that links to the resident library.
Both routines ($SAVAL and $EDMSG) reside within the unnamed or blank
program section (. BLK.) within SYSLIB. Therefore, a program section
name conflict developed when MAIN was built.

To circumvent this problem, the source code for $SAVAL was included in
the source file for the resident library under the explicitly declared
program section name SAVAL.

Another solution would have been to build the resident library
absolute. In this case, TKB would not have included program section
names from the resident library into the .STB file for the resident
library.

5-39

SHARED REGION CONCEPTS AND EXAMPLES

It is important to note that the above program section name conflict
develops only when two different routines residing within the same
program section of an object module library are involved. It presents
no problem when a resident library and a task that links to it contain
a call to the same routine in an object module library. In that case,
TKB copies the routine and the program section name in which it
resides into the resident library when the library is built. Then,
when the task that calls the same routine is built, TKB resolves the
reference to the routine in the resident library instead of in the
object module library.

5.1.12 Example 5-4: Building a Task That Creates a Dynamic Region

In all the examples of tasks shown thus far in this chapter, TKB has
automatically constructed and placed in the header of the task all of
the window blocks necessary to map all of the regions of the task's
image. The INSTALL processor has been responsible for initializing
the window blocks when the task was installed. In all the examples,
this has been possible because both TKB and the INSTALL processor have
had all the information concerning the regions available to them.

When a task creates regions while it is running (dynamic regions), the
information concerning the regions is not available to either the Task
Builder or INSTALL. Therefore, when TKB builds such a task, it does
not automatically create window blocks for the dynamic regions. It
creates only the window blocks necessary to map the task region (the
region containing the header and stack) and any shared regions that
the task references.

Dynamic regions are created and mapped with Executive directives that
are imbedded in the task's code. When you build a task that creates
dynamic regions, you must explicitly specify to TKB how many window
blocks (in excess of those created by TKB for the task region and any
shared regions) it is to place in the task's header. The Executive
will initialize these window blocks when it processes the region and
mapping directives. In all (including window blocks for the task
region and. sh a.red reg io11s) , yo~~ f;?J!; ;i;!c:l~~~~ ,;a2., .. ~~n:Y,;__?~ .,.?~!!:~!l:EE~~ .. E~!~2~~~.
to, .a ta~k 1n an: ::RSX-IlK system ,a;Q(L as •. man,y• as ,16 in :al)• RSJ(,....llM-PLUS
·s:;zr;~:t:eiri~

The text in the remainder of this section and the figures associated
with it illustrate the development of a task that creates dynamic
regions. Example 5-4 shows a task (DYNAMIC.MAC) that creates a 128-
word dynamic region. This task simply creates an unnamed region, maps
to it, and fills it with an ascending sequence of numbers beginning at
the region's base and moving upwards. When the region is full,
DYNAMIC detaches from it and prints the following message on your
terminal:

DYNAMIC IS NOW EXITING

The region is automatically deleted on detach.

All of the Executive directives used by
DTRG$S, EXIT$S, CRRG$S, CRAW$S, QIOW$S,
manipulate the region are described in the
Reference Manual. These directives are
systems.

5-40

DYNAMIC (RDBBK$, WDBBK$,
and QIOW$C) to create and
RSX-llM/M-PLUS Executive
SYSGEN options on RSX-llM

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-4, Part 1 Source Listing for DYNAMIC.MAC

.TITLE
• IDENT
.MCALL
.MCALL

• NLIST

DYNAMIC
/VOl/
RDBBK$,WDBBK$,DTRG$S,EXIT$S,CRRG$S,CRAW$S
QIOW$C, QIOW$S

BEX

REGION DESCRIPTOR BLOCK
WORD 0 SIZE OF REGION IN 32 DECIMAL WORD BLOCKS
WORD 1 REGION NAME
WORD 2
WORD 3
WORD 4
WORD 5
WORD 6

1111

NAME OF SYSTEM CONTROLLED PARTITION IN
WHICH REGION WILL BE CREATED
STATUS WORD
PROTECTION WORD

RDB: RDBBK$ 128.,,GEN,<RS.MDL!RS.ATT!RS.DEL!RS.RED!RS.WRT>,170017

WDB:
MESl:

ERRl:

ERR2:

ERR3:

START:

20$:

WINDOW
WORD 0
WORD 1
WORD 2
WORD 3
WORD 4
WORD 5

WDBBK$
.ASCIZ
Sl = •
.ASCII
SIZl =
.ASCII
SIZ2 =
.ASCII
SIZ3 =
.EVEN
.PAGE
.ENABL

CRRG$S
BCS
MOV
CRAW$S
BCS
MOV
MOV
.REPT
ASL
• ENDR
MOV
MOV
INC
DEC
BGT
DTRG$S
BCS
QIOW$C
EXIT$S

DESCRIPTOR BLOCK
APR TO BE USED TO MAP REGION
SIZE OF WINDOW IN 32-WORD BLOCKS
REGION ID
OFFSET INTO REGION TO START MAPPING
LENGTH IN 32-WORD BLOCKS TO MAP
STATUS WORD

7,128.,0,0,,WS.MAP!WS.WRT>
/DYNAMIC IS NOW EXITING/

- MESl
/CREATE REGION FAILED/

. - ERRl
/CREATE ADDRESS WINDOW FAILED/

• - ERR2
/DETACH REGION FAILED/

• - ERR3

LSB

#RDB ; CREATE A 128 WORD UNNAMED REGION
1$; FAILED TO CREATE REGION
RDB+R.GID,WDB+W.NRID ; COPY REGION ID INTO WINDOW BLOCK
#WDB CREATE ADDR WINDOW AND MAP
2$ FAILED TO CREATE ADDR WINDOW
WDB+W.NBAS,RO BASE ADDR OF CREATED REGION
WDB+W.NSIZ,R2 NUMBER OF 32. WORDS IN REGION
5 MULTIPLY
R2 BY

32 •
#1,Rl INITIAL VALUE TO PLACE IN REGION
Rl,(RO)+ MOVE VALUE INTO REGION
Rl NEXT VALUE TO PLACE IN REGION
R2 ONE LESS WORD LEFT
20$ TO FILL IN
iRDB DETACH AND DELETE REGION
3$; DETACH FAILED
IO.WVB,5,1,,,,<MESl,Sl,40>

(continued on next page)

5-41

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-4, Part 1 (Cont.) Source Listing for DYNAMIC.MAC

ERROR ROUTINES

1$: MOV #ERRl,RO CREATE FAILED
MOV #SIZl,Rl SIZE OF MESSAGE
BR 6$ WRITE MESSAGE

2$: MOV #ERR2,RO CREATE ADDRESS WINDOW FAILED
MOV #SIZ2,Rl SIZE OF MESSAGE
BR 6$

3$: MOV #ERR3,RO DETACH FAILED
MOV #SIZl,Rl ; SIZE OF MESSAGE

6$: QIOW$S #IO.WVB,#5,#1,,,,<RO,Rl,#40>
EXIT$S
.END START

Once you have assembled DYNAMIC, you can build it with the following
TKB command sequence:

TKB>DYNAMIC,DYNAMIC/-WI/-SP=DYNAMIC
TKB>/
Enter Options:
TKB>WNDWS=l
TKB> //

This command sequence directs TKB to create a task image -named
DYNAMIC.TSK and an 80-column (/-WI) map file named DYNAMIC.MAP on
device SY: under the terminal UIC. Because /-SP is attached to the
map file, TKB does not output the file to the line printer.

Under options, the WNDWS option directs TKB to create one window block
over and above that required to map the task region. Note that one
window block must be created for each region the task expects to be
mapped to simultaneously.

The map that results from this command sequence is shown in Example
5-4, Part 2.

Note that creating dynamic regions always involves the assumption that
there will be enough room in the partition named in the task's region
descriptor block to create the region when the task is run. In this
example, if DYNAMIC were to be run in a system whose partition GEN was
not large enough to accommodate the region it creates, the CREATE
REGION directive would fail.

5-42

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-4, Part 2 Task Builder Map for DYNAMIC.TSK

DYNAMIC.TSK;l Memory allocation map TKB M40.10
ll-DEC-82 16:05

Partition name : GEN
Identification : VOl
Task UIC [7,62]
Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001470
Total address windows: 2.
Task image size 512. WORDS
Task address limits: 000000 001753
R-W disk blk limits: 000002 000003 000002 00002.

*** Root segment: DYNAMI

R/W mem limits: 000000 001753 001754 01004.
Disk blk limits: 000002 000003 000002 00002.

Memory allocation synopsis:

Page 1

Section Title Ident File

• BLK.:(RW,I,LCL,REL,CON) 001274 000430 00280.
001274 000430 00280. DYNAMI VOl

$DPB$$:(RW,I!LCL,REL,CON) 001724 000030 00024.
001724 000030 00024. DYNAMI VOl

*** Task builder statistics:

Total work file references: 549.
Work file reads: o.
Work file writes: o.
Size of core pool: 7086. words (27. pages)
Size of work file: 768. words (3. pages)

Elapsed time:00:00:06

5.2 CLUSTER LIBRARIES

DYNAMIC.OBJ;l

DYNAMIC.OBJ;l

The term "cluster libraries" refers to both a function and a structure
created by the Task Builder (TKB) that allow a task to dynamically map
memory-resident shared regions at run time. Cluster libraries permit
a task to use, for example, a F77CLS library, an FMS-11 library, and
an FCS-11 library, all mapped through the same task address window.
The run-time routines put into the task by the Task Builder remap the
library regions so that, instead of occupying 48K bytes of virtual
address space, they share 16K bytes of virtual address space.

One task address window (window 1) maps the libraries into the same
span of virtual address space (48Kb to 64Kb). TKB maps your task from
virtual 0 upward.

5-43

SHARED REGION CONCEPTS AND EXAMPLES

TKB implements the cluster library function in two parts. The first
part, revectoring of interlibrary calls, is independent of the actual
remap mechanism but is required for remapping to work. The second
part executes the required MAP$ directives to map the appropriate
library.

The following examples use the library and task structure shown in
Figure 5-10. Note that in the following examples, the FMS-11/RSX Vl.O
and FORTRAN-77 software products are sold under separate license and
are not included with the ~Q.i!tij' or :R~~ll~,.:;;pJ:...tJS,'· system. Cluster
library support may be used with RMS-11 V2.0 or later versions, and
operates in a fashion similar to the FCS-11 example. Also, the
particular FCSRES used below is generated by SYSGEN. It consists of
two PLAS overlays and a null root.

FORTRAN OTS LIBRARY FMS-11 LIBRARY FCS-11 LIBRARY
F77CLS FMSCLS FCSRES

1 l

USER
TASK

Figure 5-10 Example Library and Task Structure

5.2.1 Building the Libraries

VIRTUAL
ADDRESS

64KB

48KB

ZK-492-81

You must follow several rules when designing and building shareable
clustered libraries. The rules are summarized next and discussed in
detail following the summary.

5.2.1.1 Summary of Rules for Building the Libraries -

• All libraries but the first require resident overlays.

• User task vectors indirectly
references.

resolve all interlibrary

• Revectored entry point symbols must not appear in the
"upstream" .STB file.

• A called library procedure must not require parameters on the
stack.

• All the libraries must be PIC or built for the same address.

• Trap or asynchronous entry into a library is not permitted.

The rules are discussed in detail as follows.

5-44

SHARED REGION CONCEPTS AND EXAMPLES

5.2.1.2 Rule 1: All Libraries but the First Require Resident
Overlays - The first library is the first named library in

the CLSTR option line. To obtain the required run-time overlay data
structures in your task, you must define all the libraries except
possibly the first by using memory resident overlays. Although it can
be an overlaid library, the first library need not be and can be a
single-segment structure. All the libraries, except the first, must
have a null root if overlaid. You can achieve this in cases where a
library is not normally overlaid by creating an unbalanced overlay
structure with a null module. For example, the following ODL
specification for FMSCLS and a null module would suffice:

NULL:
FMSLIB:

.NAME FMSCLS

.ROOT FMSCLS-*(NULL,FMSLIB)

.FCTR LB:[l,l]SYSLIB/LB:NULL

.FCTR SY:FMSLIB-LB: [l,l]FDVLIB/LB

.END

;NULL MODULE
; FMS-11 ROUT INES

The above ODL specification creates an unbalanced tree in the form
shown in Figure 5-11:

FMS-11 ROUTINES

l NULL

ZK-427-81

Figure 5-11 Example of an Unbalanced Tree with Null Segment

The effect, after you build your task, is an overlay structure that is
represented in the Figure 5-12.

TKB provides the
overlay segment
library.

FORTRAN OTS

cross-library linkage that it creates from the
data contained in the individual .STB files of each

FMS-11 ROUTINES FCS-11 ROUTINES

NULL NULL

USER TASK

ZK-428-81

Figure 5-12 Example of an Overlay Cluster Library Structure

5-45

SHARED REGION CONCEPTS AND EXAMPLES

5.2.1.3 Rule 2: User Task Vectors Indirectly Resolve all
Interlibrary References - Figure ~-13 below illustrates rule

2 and is a part of the example in Figure 5-12. In Figure 5-13, if the
FORTRAN OTS library references an FCS-11 entry point .OPEN, the
transfer of control from the FORTRAN OTS library to the FCS-11 library
must be resolved by a jump vector in your task. Or, to state it in
another way, the CALL instruction in the FORTRAN OTS library must not
reference directly the target address (the address of .OPEN) in the
FCS-11 library. The system library contains the modules that perform
the indirect transfer for FCS-11 based libraries and user tasks. If
you want to duplicate the indirect referencing mechanism for your own
purposes, Figure 5-13 and the following text describe the control flow
for FCS-11.

FORTRAN OTS

FCSVEC

.OPEN::

Sample code from FCSVEC module:

.OPEN::

DISPAT:

MOV

BR

MOV
MOV
ADD
MOV
MOV
RETURN

#30,-(SP)

DISPAT

RO,-(SP)
@#.FSRPT,RO
A.JUMP(R0),2(SP)
(SP)+,RO
@(SP)+,-(SP)

FCS-11 LIBRARY

.OPEN::

; STACK OFFSET INTO USER TASK
; JUMP TABLE
; JOIN COMMON DISPATCH

; SAVE REGISTER
; GET FCS-11 POINTER
; ADD VECTOR BASE TO OFFSET
; RESTORE REGISTER
; PICK UP ADDRESS OF TARGET
; AND TRANSFER TO TARGET

ZK-429-81

Figure 5-13 Example of a Vectored Call Between Libraries

In this example, the module FCSVEC defines the .OPEN entry point. The
code at that location stacks an offset or "entry number" and joins
common dispatch code. The dispatch code, using the low core FCS-11
impure pointer called .FSRPT, obtains the address of the FCS-11 impure
data area. At offset A.JUMP in that area is the address of a vector
of FCS-11 entry points. A return is executed, which transfers control
to the routine whose address is now on top of the stack. If the
target routine is an overlaid library, the run-time support ($AUTO)
loads the appropriate overlay and relays the transfer of control.

You may use this vectoring mechanism to isolate the linkages between
two libraries whether or not you use them in the cluster library
scheme. You can replace either the FORTRAN OTS or the FCS-11 library
in your system without relinking the other library. However, you must
relink your task when you replace either of these libraries.

5-46

SHARED REGION CONCEPTS AND EXAMPLES

5.2.1.4 Rule 3: Revectored Entry Point Symbols Must Not Appear in
the "Upstream" .STB File - This rule means that the

GBLXCL=symbol option must appear for each revectored symbol, as in
FORTRAN OTS in this example. In the brief example above, the
following line must appear in the build file for the FORTRAN OTS
library:

GBLXCL=.OPEN

5.2.1.5 Rule 4: A Called Library Procedure Must Not Require
Parameters on the Stack - This rule applies to routines

contained in libraries other than the "default" library, as
represented by the FMSCLS and FCSRES libraries of the above example.
In addition, the called procedures must use the JSR PC and RTS PC call
and return convention. The flow of control for a call into a cluster
library member other than the default proceeds as follows.

Only your task can call and reference the FCSRES library routine
.OPEN. All references from other libraries are revectored as
described above. TKB resolves all such references to an appropriate
task resident autoload vector. As in the example, when the FORTRAN
OTS library calls .OPEN, the code revectors the call through your task
and hence to the autoload vector. At this point, the TKB run-time
routine $AUTO gets control and searches the overlay segment descriptor
tree, noting which segments are resident and which must be loaded or
mapped to access the target routine.

Next, $AUTO notes that a member of a library cluster must be unmapped
to comply with the map adjustments required to access the target
routine. The reference to the unmapped library and the segment within
the library is placed on the stack, the target library is mapped, and
the target routine is accessed through a JSR PC instruction. That
target routine must not attempt to access parameters by offsets from
the stack pointer (SP) because of the presence of $AUTO saved
information. Upon return from the target by an RTS PC instruction,
the target library is unmapped, and the previous library remapped
using the saved segment and library data on the stack. Finally, $AUTO
executes an RTS PC instruction to return to the caller.

Note that if your task contains a mix of cluster libraries and
noncluster libraries, the call format rule applies only to control
transfers to cluster library routines. Other noncluster libraries
that you create may use any appropriate call and parameter passing
convention.

5.2.1.6 Rule 5: All the Libraries Must be PIC or Built for the Same
Address - TKB must be able to place each library of the

cluster at the same virtual address. To do this, the libraries must
be built as position independent or be built to the exact address
specified in the CLSTR command described below.

5.2.1.7 Rule 6: Trap or Asynchronous Entry Into a Library is not
Permitted - A routine built as part of a library that is to

be used in a cluster may not be specified as the service routine for a
synchronous trap, or for asynchronous entry as a result of I/O
completion or Executive service. This restriction is required because
at the moment of the trap or fault, the appropriate library may not be
the one that is mapped. For example, if the default library contains
the service routine to display an error message upon odd address trap
(the odd address fault occurs within one of the other libraries of the

5-47

SHARED REGION CONCEPTS AND EXAMPLES

cluster), the routine will not be available to service the trap. It
will have been unmapped by the run-time routines to map the called
library.

I/O completion and fault service vectors and routines must be placed
in libraries or task segments that are resident at all times that the
fault, trap, or I/O completion may occur.

5.2.2 Building Your Task

After building the individual libraries and placing the .TSK and .STB
files for all the libraries into the LB:[l,l] directory, you may build
your task. The TKB option line that you must use for your task has
the following syntax:

CLSTR=library l,library_2, ••• library_n:switch:apr

library_n

The first specification denotes the first or the default library,
which is the library to which the task maps when the task starts
up and remaps after any call to another library.

In an RSX-llM or RSX-llM-PLUS system, the total number of
libraries to which a task may map is seven. The number of the
component libraries in clusters is limited to a maximum of six.
A cluster must contain a minimum of two libraries. It is
possible to have two clusters of three libraries each or three
clusters of two libraries each; any combination of clusters and
libraries must equal at least two or a maximum of six. If six
libraries are used in clusters, the task may map to only one
other, separate library.

:switch:apr

The switch :RW or :RO indicates whether the cluster is read-only
or read-write for this particular task. The APR specification is
optional and indicates which APR is to be used as the starting
APR when mapping to cluster libraries. If not specified, TKB
assigns the highest available APRs and as many as required to map
the library.

5.2.3 Examples

The sample build files for F77CLS, FDVRES, and FCSRES, and for the
FMS-11 demonstration task FMSDEM are appended as an example of the
cluster library-build process.

5.2.3.1 F77CLS -- Build the Default Library for the FORTRAN-77 OTS -

>TKB
TKB>F77CLS/-HD,F77CLS/CR/-SP/MA,F77CLS=F77RES
TKB>LB: [l,l]F770TS/LB
TKB>LB:[l,l]SYSLIB/LB:FCSVEC ; INCLUDE THE FCS JUMP VECTOR
TKB> I
Enter Options:
STACK=O
PAR=F77CLS:l40000:40000

5-48

SHARED REGION CONCEPTS AND EXAMPLES

FORCE THE JUMP TABLE TO BE LOADED FROM THE SYSTEM
LIBRARY WHEN THE USER TASK IS BUILT

GBLINC=.FCSJT

;

; REFERENCE SYMBOL DEFINED IN
; THE MODULE SYSLIBILB:FCSJMP

; PREVENT DEFINITIONS FOR FCS-11 ENTRY POINTS FROM APPEARING
; IN THE .STB FILE FOR THIS LIBRARY OR OTHER SYSTEM LIBRARY

GBLXCL=.CLOSE
GBLXCL=.CSil
GBLXCL=.CSI2
GBLXCL=.DLFNB
GBLXCL=.FINIT
GBLXCL=.GET
GBLXCL=.GETSQ
GBLXCL=.GTDID
GBLXCL=.MRKDL
GBLXCL=.OPFNB
GBLXCL=.PARSE
GBLXCL=.POINT
GBLXCL=.POSRC
GBLXCL=.PRINT
GBLXCL=.PUT
GBLXCL=.PUTSQ
GBLXCL=.SAVRl
GBLXCL=.READ
GBLXCL=.WAIT
II

The GBLINC option as shown above forces TKB to add a global reference
entry in the library .STB file. This ensures that TKB links certain
modules required by the library, such as impure data areas or
root-only routines, without further user action. These modules should
be in the system library (LB:[l,l]SYSLIB.OLB) or in a library always
referenced by your task, so that this forced loading mechanism is
entirely invisible to you.

5.2.3.2 FDVRES -- Build an FMS-lllRSX Vl.O Shareable Library -

TITLE OF THE EXAMPLE COMMAND FILE THAT BUILDS THE FORMS
MANAGEMENT PLAS-RESIDENT LIBRARY FOR USE WITH THE
TASK BUILDER CLSTR OPTION.

FDVRES.CMD

THE FOLLOWING CODE IS THE EXAMPLE COMMAND FILE:
;
LB:[l,l]FDVRESl-HDIMMISG,MP:[l,34]FVRESIMAl-SP,LB:[l,l]FDVRES=
SY:[l,24]FDVRESBLDIMP
STACK=O
PAR=FDVRES:l40000:40000
TASK=FDVRES
;
; THE FOLLOWING LINE FORCES THE FCS JUMP TABLE TO BE INCLUDED IN THE
; SYMBOL TABLE FILE FOR THE FORMS MANAGEMENT LIBRARY.
;
GBLINC=. FCSJT

5-49

SHARED REGION CONCEPTS AND EXAMPLES

THE FOLLOWING LINES FORCE LIBRARY ENTRY POINTS AND DEFINITIONS INTO
THE TASK ROOT:

;
GBLREF=CBCUR,CBREV,CBTST,CB132,DVBLD,DVBLK,DVDHW,DVDWD
GBLREF=DVGRA,DVREV,DVUND,DATT1,D$ATT2,D$CLRC,DFID,DFXLN
GBLREF=D$LNCL,D$PICT,D$PLEN,D$RLEN,D$VATT,D$2ATT,DlALN,DlALP
GBLREF=DlARY,DlCOM,DlMIX,DlNUM,DlSCR,DlSNM,D2$DEC,D2$DIS
GBLREF=D2$FUL,D2$NEC,D2$REQ,D2$RTJ,D2$SPO,D2$TAB,D2$VRT,D2$ZFL
GBLREF=FCALL,FCANY,FCCLS,FCCSH,FCDAT,FCGET,FCGSC,FCLST
GBLREF=FC$0PN,FC$PAL,FCPSC,FCPUT,FCRAL,RCRTN,FCSHO,FCSLN
GBLREF=FCSPF,FCSPN,FCTRM,FEARG,FEDLN,FEDNM,FEDSP,FEFCD
GBLREF=FEFCH,FEFLB,FEFLD,FEFNM,FEFRM,FEFSP,FEICH,FEIFN
GBLREF=FEIMP,FEINI,FEIOL,FEIOR,FELIN,FENOF,FENSC,FESTR
GBLREF=FEUTR,FEINC,FSSUC,FTATB,FTKPD,FTNTR,FTNXT,FTPRV
GBLREF=FTSBK,FTSFW,FTSNX,FTSPR,FTXBK,FTXFW,F$ASIZ,F$CHN
GBLREF=FFNC,FIMP,FLEN,FNAM,FNUM,FREQ,F$RSIZ,F$STS
GBLREF=FTRM,FVAL,ISALT,ISCLR,ISDEC,ISDSP,ISERR,ISHFM
GBLREF=ISHLP,ISINS,ISLST,ISMED,ISNMS,ISSCR,ISSGN,IADVO
GBLREF=I$ALLC,I$BADR,I$BEND,I$BPTR,I$BSIZ,I$CFRM,I$CURC,I$CURP
GBLREF=I$DISP,I$DLN1,I$DLN2,I$FADR,I$FBLK,I$FCHN,I$FDES,I$FDST
GBLREF=I$FDS1,I$FDS2,I$FIXD,I$FMST,I$FOFF,I$FORM,I$FSIZ,I$FXD1
GBLREF=I$FXD2,I$HLEN,I$HLPF,I$ILEN,I$IMPA,I$LCOL,I$LINE,I$LLIN
GBLREF=I$LNCL,I$LPTR,I$LVID,I$NBYT,I$NDAT,I$NFLD,I$PATN,I$PBLN
GBLREF=I$RESP,I$ROFF,I$STAT,I$STKP,I$SVST,I$VATT,L$CLSZ,L$FDES
GBLREF=L$LNCL,L$RESP,$$FDVT
GBLREF=$FDV
;
; THE FOLLOWING LINES PREVENT THE DEFINITIONS FOR FCS-11 ENTRY POINTS
; FROM APPEARING IN THE FORMS MANAGEMENT LIBRARY .STB FILE:
;
GBLXCL=.ASCPP
GBLXCL=.ASLUN
GBLXCL=.CLOSE
GBLXCL=.CTRL
GBLXCL=.DELET
GBLXCL=.DLFNB
GBLXCL=.ENTER
GBLXCL=.EXTND
GBLXCL=.FATAL
GBLXCL=.FCTYP
GBLXCL=.FIND
GBLXCL=. FINIT
GBLXCL=.FLUSH
GBLXCL=.GET
GBLXCL=.GETSQ
GBLXCL=.GTDID
GBLXCL=.GTDIR
GBLXCL=.MARK
GBLXCL=.MBFCT
GBLXCL=.MRKDL
GBLXCL=.OPEN
GBLXCL=.OPFID
GBLXCL=.OPFNB
GBLXCL=.PARSE
GBLXCL=. POINT
GBLXCL=.POSIT
GBLXCL=.POSRC
GBLXCL=.PPASC
GBLXCL=.PPR50
GBLXCL=. PRINT

5-50

GBLXCL=.PRSDI
GBLXCL=.PRSDV
GBLXCL=.PRSFN
GBLXCL=. PUT
GBLXCL=.PUTSQ
GBLXCL=.RDFDR
GBLXCL=.RDFFP
GBLXCL=.RDFUI
GBLXCL=.SAVRl
II

SHARED REGION CONCEPTS AND EXAMPLES

5.2.3.3 FDVRESBLD.ODL -- Overlay Description for FMS-lllRSX
Cluster Library -

THE FOLLOWING LINE IS THE FILENAME OF THE .ODL FILE FOR THE
PLAS-RESIDENT FORMS MANAGEMENT LIBRARY:

FDVRESBLD.ODL

...... , n.
v l.. v

THE FOLLOWING LINES OF CODE ARE CONTAINED IN THE .ODL FILE FOR THE
PLAS-RESIDENT FORMS MANAGEMENT LIBRARY:

NULO:
FCSV:
MAIN:

.NAME

.ROOT

.FCTR

.FCTR

.FCTR

.END

FDVROT
FDVROT-*!(MAIN,NULO)
LB: [l,l]SYSLIBILB:NULL
LB:[l,l]SYSLIBILB:FCSVEC
LB:[l,l]FDVLIBILB:FDV-LB:[l,l]FDVLIBILB-FCSV

5.2.3.4 FCSRES Library Build - FCSRSlBLD.BLD is distributed with the
RSX-llM and RSX-llM-PLUS distribution kits. Refer to the build
command and overlay description contained in the files FCSRSlBLD.CMD
and FCSRSlBLD.ODL, which can be generated by SYSGEN if you want.

5.2.3.5 F77TST.CMD -- File to Build the FMS-11/RSX Vl.O FORDEM Test
Task -

FORDEMIFP,FORDEMIMAl-SP=FORDEM,HLLFOR
LB; [l,l]FDVLIBILB
LB:[l,l]F770TSILB
I
EXTSCT=$$FSR1:2000
CLSTR=F77CLS,FDVRES,FCSRES:RO
STACK=200
II

5.2.4 Overlay Run-Time Support Requirements

The Task Builder uses the .STB files of the cluster libraries to
obtain ~ne information needed to create the overlay data base. For
each PLAS overlaid cluster library TKB places autoload vectors,
segment descriptors, window descriptors, and a region descriptor in

5-51

SHARED REGION CONCEPTS AND EXAMPLES

the root of the task. This information comprises the overlay run-time
support for the cluster libraries. In Appendix B, Figure B-9 and the
accompanying text describe this information. Table 5-1 describes the
space needed for the overlay run-time system support that includes
cluster libraries. For a complete description of overlay run-time
routine sizes, see Section 4.5.

Using cluster libraries conserves virtual space and may require only
one window.

Module

Table 5-1
Comparison of Overlay Run-Time Module Sizes

Program
Section

Number
of Bytes

Oct/Dec Specific Use

One of the following modules is included in any overlaid task
that uses autoload./and in any task that links to a PLAS overlaid
resident library.~

AUTO

AU TOT

$$AUTO

$$AUTO
$$RTQ
$$RTR

122/82.

132/90.
32/26.
30/24.

All tasks that use autoload

All tasks with AST's
disabled during autoload

One of the following modules is included in any overlaid
conventional task. OVCTR or OVCTC is included in any
non-overlaid task (conventional or I~ ~id~D- space) that links
to a PLAS overlaid resident library.

OVCTL $$MRKS
$$RDSG
$$POLS

OVCTR $$MRKS
$$RDSG
$$POLS

OVCTC $$MRKS
$$RDSG
$$POLS

76/62.
160/112.

2/2.

234/156.
332/218.
12/10.

254/172.
352/234.
120/80.

Disk overlays only

Disk and PLAS overlays with no
cluster libraries

Disk and PLAS overlays
with cluster libraries

One of the following three.modules is includ~d in· any overlaid
r- and o~space task.

OVIDL $$MRKS
$$RDSG
$$POLS

OVIDR $$MRKS
$$RDSG
$$POLS

OVIDC $$MRKS
$$RDSG
$$POLS

76/62.
224/148.

2/2.

304/196.
502/322.

12/10.

324/212.
522/338.
120/80.

Disk overlays only

Disk- and PLAS overlays
with no cluster libraries

Di~k and -PLAS overlays
with cluster libraries

(continued on next page)

5-52

SHARED REGION CONCEPTS AND EXAMPLES

Table 5-1 (Cont.)
Comparison of Overlay Run-Time Module Sizes

Module
Program
Section

Number
of Bytes

Oct/Dec Specific Use

The overlay data vector OVDAT is included in any overlaid task
and in any task that links to a PLAS overlaid resident library.

OVDAT $$0VDT 24/20. Included in all tasks
$$SGDO 0/0. that perform overlay
$$SGD2 2/2. operations
$$RTQ 0/0.
$$RTR 0/0.
$$RTS 2/2.

The overlay error service routine ALERR is included whenever
OVDAT is included.

ALERR $$ALER 24/20. Overlay error

Manual overlay control (LOAD) is used in place of any AUTO
routine. (See Section 4.2, Manual Load.)

LOAD $$LOAD
$$AUTO

252/170.
14/12.

5.3 VIRTUAL PROGRAM SECTIONS

Manual overlay control

A virtual program section is a special TKB storage allocation facility
that permits you to create and refer to large data structures by means
of the mapping directives. Virtual program sections are supported in
TKB through the VSECT option and in FORTRAN through a set of
FORTRAN-callable subroutines that issue the necessary mapping
directives at run time. With the TKB VSECT option, you can specify
the following parameters for a relocatable program section or FORTRAN
common block that you have defined in your object module:

• Base virtual address

• Virtual length (window size)

• Physical length

By specifying the base address, you can align the program section on a
4K address boundary as required by the mapping directives.
Thereafter, references within the program need only point to the base
of the program section or to the first element in the common block to
ensure proper boundary alignment.

By specifying the window size, you can fix the amount of virtual
address space that T~~ allocates to the program section. If the
allocation made by a module causes the total size to exceed this
limit, the allocation wraps around to the beginning of the window.

5-53

SHARED REGION CONCEPTS AND EXAMPLES

By specifying the physical size, you can allocate, before run time,
the physical memory that the program section will be mapped into at
run time. TKB allocates this physical memory within an area that
precedes the task image. This area is called the mapped array area.

The physical length parameter is optional. If you intend to allocate
physical memory at run time through the Create Region directive, you
can specify a value of O.

Note that when you specify a nonzero value for the physical memory
parameter, the resulting allocation affects only the task's memory
image, not its disk image.

Note also that TKB attaches the virtual attribute to a relocatable
program section you have specified in the VSECT option only if the
section is defined in the root segment of your task through either a
FORTRAN COMMON or a MACR0-11 .PSECT statement. The relocatable
program section with the virtual attribute in the root does not use
address space in your task; using this procedure merely assigns an
address, window size, and physical length to a region yet to be mapped
at run time by your task. For example:

TKB>VSECT=MARRAY:l60000:20000:2000

In this example, virtual program section MARRAY is allocated with a
window size of 4K words (20000 (octal) bytes) and a base virtual
address of 160000. In physical memory, 32K words are reserved for
mapping the section at run time.

Assume the program is written in FORTRAN, and includes the following
statement:

COMMON /MARRAY/ARRAY(4) ..•

This statement generates a program section to which TKB attaches the
virtual attribute. However, this program section is not a FORTRAN
virtual array. A reference to the first element of the section,
ARRAY(l), is translated by TKB to the virtual address 160000.

Figure 5-14 shows the effect of this use of the VSECT option.

As mentioned previously, TKB restricts the amount of virtual address
space allocated to the section to a value that is less than or equal
to the window size, wrapping around to the base if the window size is
exceeded.

This process is illustrated in the following example, in which three
modules, A, B, and C, each contain a program section named VIRT that
is 3000 words long. A window size of 4K words has been set through
the VSECT option. If the program section has the concatenate
attribute, the Task Builder allocates memory to each module as
follows:

Module

A
B
c

Low Limit

160000
174000
170000

Length

14000
14000
14000

High Limit

174000
170000
164000

The address limits for modules B and C illustrate the effect of
address wrap-around when a component of the total allocation exceeds
the window boundary. Note that the addresses generated will be
properly aligned with the contents of physical memory if the virtual
section is remapped in increments of the window size.

5-54

SHARED REGION CONCEPTS AND EXAMPLES

160000 APR 7-

WINDOW l ! ::o~~s~~ ______ l\llllllllllillllllllll
APR6-

APR 5-

APR4-

APR3-

APR2-

APR 1-

APRO-

TKB>/

TASK
IMAGE

0 (PROGRAM
SECTION
DEFINITION)

COMMON/MARRAY/ ...

HEADER & STACK

VIRTUAL ADDRESS
SPACE

'•(VIRTUAL BASE ADDRESS)

------------- 7

0
ENTER OPTIONS: PHYSICAL LENGTH~

64-BYTE BLOCKS
TKB>VSECT =MARRAY:160000:20000:2000

o o e o

Figure 5-14 VSECT Option Usage

5-55

TASK
IMAGE

COMMON/MARRAY / ...

HEADER & STACK

MAPPED
ARRAY
AREA

111iltl\\I
PHYSICAL MEMORY

ZK-430-81

SHARED REGION CONCEPTS AND EXAMPLES

5.3.1 FORTRAN Run-Time Support for Virtual Program Sections

FORTRAN supports subroutines to make use of the mapping directives.
FORTRAN also supports calls to the following subroutines, which are
related to virtual program sections:

Subroutine Function

ALSCT

RLSCT

Allocates a portion of physical memory for use as a
virtual section

Releases all physical memory allocated to a virtual
section

As mentioned earlier, the effect of one or more VSECT= declarations at
task-build time is to create a pool of physical memory below the task
image (the mapped array area) • Before a virtual section is referred
to, the task must allocate a portion of this memory through a call to
ALSCT. When space is no longer required, it is released through a
call to RLSCT.

Note that these subroutines issue no mapping directives. They
allocate and release space using region and window descriptor arrays
that you supply. The resulting physical offsets are used in the
task's subsequent calls that perform the actual mapping.

The subroutine ALSCT is called to allocate physical memory to a
virtual program section as follows:

ireg

CALL ALSCT (ireg,iwnd[,ists])

A one-dimensional integer array that is nine words long.
Elements 1 through 8 of the array contain a region descriptor for
the physical memory to be mapped. The descriptor has the
following format:

ireg(l)

ireg(2)

ireg(3)

ireg(4)

ireg(5)

ireg(6)

ireg(7)

ireg(8)

ireg(9)

Region ID.

Size of region in units of 64-byte blocks.

Name of region in Radix-50 format (first three
characters).

(Second three characters).

Name of main partition containing region.

The name is in Radix-50 format.

Region status word.

Region protection code.

Thread word: This element links window descriptors
that are used to map portions of the region. It is
maintained by the subroutine.

The elements of the array that you set up consist of ireg(l) and
ireg(3) through ireg(8). The thread word, ireg(9), must be 0 on
the initial call; thereafter, the subroutine maintains it.

5-56

iwnd

SHARED REGION CONCEPTS AND EXAMPLES

When your task makes an allocation, ireg(l) and ireg(2) must be 0
on the initial call. In this case, ALSCT obtains and stores the
region size in ireg(2). When the allocation is being made from a
separate region, the caller must supply both region ID and size.
The subroutine does not refer to elements 3 through 8 but rather
the caller must set them up as required by the applicable system
directives. For a detailed description of these parameters,
refer to the RSX-llM/M-PLUS Executive Reference Manual.

A one-dimensional array that is 11 words long. The first eight
words contain a window descriptor in the following format:

i wnd (1)

iwnd(2)

i wnd (3)

iwnd(4)

i wnd (5)

iwnd(6)

i wnd (7)

i wnd (8)

iwnd(9)

Base APR in bits 8 through 15;
bits 0 through 7 when the
directives are issued.

Virtual base address.

the Executive sets
appropriate mapping

Window size in units of 64-byte blocks.

Region ID.

Offset into the region, in units of 64-byte blocks.

Length to map, in units of 64-byte blocks.

Status word.

Address of send/receive buffer.

Base offset of physical block allocated to section
in units of 64-byte blocks.

iwnd(lO) Length of block in units of 64-byte blocks (supplied
by caller); set to maximum block offset by
subroutine.

iwnd(ll) Thread word: This element links window descriptors
that are used to map other portions of the region.
It is maintained by the subroutine.

You must set up IWND(lO) before calling ALSCT.

The following array elements are supplied as output from the
subroutine:

i wnd (4) , i wnd (5) , i wnd (9) , i wnd (10) , and i wnd (11)

The remaining elements must be set up as required by the
Executive directives. Consult the RSX-llM/M-PLUS Executive
Reference Manual for a detailed description of these parameters.

5-57

ists

SHARED REGION CONCEPTS AND EXAMPLES

An area that receives the result of the call.
following values is returned:

One of the

+l Block successfully allocated. In this case, the region
and window descriptor arrays are set up as described
above.

-200. Insufficient physical
allocating the block

memory was available for

The subroutine RLSCT is called to deallocate the physical memory
assigned to a virtual section as follows:

ireg

iwnd

CALL RLSCT (i reg , i wnd)

A one-dimensional integer array that is nine words long. The
contents of the array are the same as those described for
subroutine ALSCT.

A one-dimensional integer array that is 11 words long. The
contents of the array are the same as those described for
subroutine ALSCT.

Upon return, element iwnd(lO) is the length of the deallocated
region in units of 64-byte blocks.

The procedure for using these subroutines can be summarized as
follows:

1. You allocate storage in the program for one window descriptor
per VSECT, and for a single region descriptor.

2. Your task calls the subroutine ALSCT to reserve the physical
memory to which the program section will be mapped.

3. Your task issues the mapping directives to map the virtual
address space into a portion of the physical memory. It is
the task's responsibility to ensure that the physical memory
to be mapped is always within the limits defined by iwnd(9)
and i wnd (10) •

4. When the space is no longer required, the task unmaps it and
releases it with a call to RLSCT.

5.3.2 Example 5-5: Building a Program that uses a Virtual Program
Section

Example 5-5, Part 1 shows the FORTRAN source file for a task named
VSECT.FTN. It illustrates the use of the ALSCT FORTRAN subroutine.
When you build, install, and run VSECT, it will allocate the mapped
array area below its header, create a 4K-word window, and map to the
area through the window. ALSCT will then initialize the area and
prompt for an array subscript at your terminal by printing:

SUBSCRIPT?

5-58

SHARED REGION CONCEPTS AND EXAMPLES

When you input a subscript, it responds with ELEMENT= and the contents
of the array element for the subscript you typed. VSECT continues to
prompt until you type CTRL/Z. Upon receiving a CTRL/Z, VSECT exits.

Once you have compiled VSECT, you can build it with the following Task
Builder command sequence:

TKB>VSECT,VSECT/-SP=VSECT,LB: [l,l]FOROTS/LB
TKB>/
Enter Options:
TKB>WNDWS=l
TKB>VSECT=MARRAY:l60000:20000:200
TKB>//

This command sequence directs TKB to create a task image file named
VSECT.TSK and a short (by default) map file VSECT.MAP. Because /-SP
is appended to the map file, TKB does not output the map to the line
printer.

The library switch (/LB) specifies that TKB is to search the FORTRAN
run-time library FOROTS.OLB to resolve any undefined references in the
input module VSECT.OBJ. Because the library switch was applied to the
FORTRAN library file without arguments, TKB extracts from the library
and includes in the task image any modules in which references are
defined.

The WNDWS option directs TKB to add a window block to the header in
the task image. The Executive initializes this window block when it
processes the mapping directives within the task.

The VSECT option directs TKB to establish for the program section
named MARRAY a base address of 160000 (APR 7) and a length of
20000(octal) bytes (4K words). The program section VIRT is defined
within the task through the FORTRAN COMMON statement. The VSECT
option also specifies that TKB is to allocate 200 64-byte blocks of
physical memory in the task's mapped array area below the task's
header. (For more information on the switches and options used in
this example, refer to Chapters 10 and 11.)

The map that results from this command sequence is shown in Example
5-5, Part 2.

Example 5-5, Part 1 Source Listing for VSECT.FTN

c
C VSECT.FTN
c

INTEGER *2 SUB,IRDB(9) ,IWDB(ll) ,DSW
INTEGER *2 IARRAY(4096)
COMMON /MARRAY/IARRAY
IWDB (1) "3400 !USE APR 7 FOR WINDOW
IWDB (3) = 128 !WINDOW SIZE = 128*32 WORDS 4K
IWDB (5) = 0 !OFFSET
IWDB (7) = "402 !STATUS = WS.64B!WS.WRT
IWDB (10) = 128 !SIZE TO ALLOCATE

(continued on next page)

5-59

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-5, Part 1 (Cont.) Source Listing for VSECT.FTN

c
C ALLOCATE 4K MAPPED ARRAY TO IWDB,IRDB
c

c

CALL ALSCT {IRDB,IWDB,DSW)
IF {DSW .NE. 1) GOTO 100

C CREATE A 4K ADDRESS WINDOW
c

CALL CRAW {IWDB,DSW)
IF {DSW .NE. 1) GOTO 200

c
C MAP 4K' MAPPED ARRAY
c

CALL MAP {IWDB,DSW)
IF (DSW .NE. 1) GOTO 300
DO 1 I=l,4096

1 !ARRAY (I) = I
c
C MAPPED ARRAY IS INITIALIZED, PROMPT FOR A SUBSCRIPT
c
3 WRITE (5,5)
5 FORMAT ('$SUBSCRIPT?')

READ (5,4,END=lOOO)SUB
4 FORMAT (!7)

WRITE (5,6)IARRAY (SUB)
6 FORMAT (' ELEMENT= ',!7)

GOTO 3
c
c ERROR ROUTINES
c
100
101

WRITE {5,lOl)DSW
FORMAT (' ERROR FROM
GOTO 1000

ALSCT. ERROR= ',I7)

200
201

300
301
1000

WRITE (5,20l)DSW
FORMAT {' ERROR FROM
GOTO 1000
WRITE (5,30l)DSW
FORMAT (' ERROR FROM
CALL EXIT
END

CREATING ADDRESS WINDOW. ERROR

MAPPING. ERROR I , I 7)

5-60

I , I 7)

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-5, Part 2 Task Builder Map for VSECT.TSK

VSECT.TSK;l Memory allocation map TKB M40.10
ll-DEC-82 16:12

Partition Name GEN
Identification FORV02
Task UIC [303,1]
Stack limits: 000300 001277 001000 00512.
PRG xfr address: 016270
Total address windows: 2.
Mapped array area: 4096. words
Task image size 8736. words
Task address limits: 000000 042043
R-W disk blk limits: 000002 000044 000043 00035.

*** Root segment: VSECT

R/W mem limits: 000000 042043 042044 17444.
Disk blk limits: 000002 000044 000043 00035.

Memory allocation synopsis:

Section
-------. BLK.: (RW, I, LCL, REL ,CON) 001300 001160 00624.
MARRAY: (RW,D,GBL,REL,OVR) 160000 020000 08192.

160000 020000 08192.
OTS$F : (RW,I,GBL,REL,CON) 002460 002332 01242.

002460 000406 00262.
003066 001724 00980.

OTS$I : (RW,I,LCL,REL,CON) 005012 011220 04752.

Global symbols:

Title

.MAIN.

$CONVI
$FIO

Page 1

Ident File

FORV02 VSECT.OBJ;3

F40003 FOROTS.OLB;2
F40006 FOROTS.OLB;2

ADI$IA 005032-R CAL$ 005140-R ICI$ 022466-R MOI$PS 006050-R

*** Task builder statistics:

Total work file references: 27855.
Work file reads: o.
Work file writes: o.
Size of core pool: 7086. words (27. PAGES)
Size of work file: 4325. words (17. PAGES)

Elapsed time:00:00:29

5-61

CHAPTER 6

PRIVILEGED TASKS

6.1 INTRODUCTION

This chapter discusses privileged tasks: what they are, their
possible hazards, how they are mapped, and an example of their usage.

6.2 PRIVILEGED AND NONPRIVILEGED TASK DISTINCTION

RSX-llM/M-PLUS systems have two classes of tasks: privileged and
nonprivileged. The distinction between privileged and nonprivileged
tasks is primarily based upon system-access capabilities. Because all
tasks in an unmapped system have access to all of memory, this
distinction is not hardware enforceable. Therefore, if your system is
unmapped, your task must be responsible for observing the access rules
of your system.

In a mapped system, privileged tasks have special device and memory
access rights that nonprivileged tasks do not have. A privileged task
can, with certain exceptions, access the Executive routines and data
structures; a nonprivileged task cannot. Some privileged tasks have
automatic I/O page mapping available to them; nonprivileged tasks do
not. Finally, a privileged task can bypass system security features,
whereas a nonprivileged task cannot.

6.3 PRIVILEGED TASK HAZARDS

Because of their special access rights, privileged tasks are
potentially hazardous to a running system. A privileged task with
coding errors can corrupt the Executive or system data structures.
Moreover, problems caused by such a privileged task can be obscure and
difficult to isolate. For these reasons, you must exercise caution
when developing and running a privileged task.

Make certain that your privileged task has completed its operation
when you log off the system (type BYE). BYE does not abort privileged
tasks as it does nonprivileged tasks because the privileged task may
be in the process of changing the system data base. Therefore, it
must be allowed to complete its processing. Also, if the privileged
task is in system state, neither BYE nor any other task can execute
until the privileged task completes its processing while in system
state. However, when ~ne privileged task leaves system state, BYE
runs and logs you off the system, leaving the privileged task still in
operation.

6-1

PRIVILEGED TASKS

If a processor trap occurs in a privileged task while the task is in
user state, the Executive aborts the task. However, if the processor
trap occurs in the privileged task while the task is in system state,
the system crashes. However, even while in user state the privileged
task that is mapped to the Executive can cause a system crash by
incorrectly changing system data. Please note that a privileged task
in user state should not be modifying system data.

All tasks in an unmapped system can access all of memory. The
privileged or nonprivileged designation has no particular meaning in
an unmapped system. Therefore, be just as careful about modifying
Executive, device, or user data in an unmapped system.

6.4 SPECIFYING A TASK AS PRIVILEGED

You designate a task as privileged with the /PR (privileged) TKB
switch (this switch is described in Chapter 10). TKB allocates
address space for a privileged task based on the memory management APR
that you specify as an argument to this switch. The argument is
optional; the default is 5 but you can change it by modifying the
TKBBLD.CMD file and rebuilding TKB. TKB accepts three arguments: 0,
4, and 5. Choosing which of these arguments to specify is based on
the considerations described below.

6.5 PRIVILEGED TASK MAPPING

When you specify an argument of O, your task is marked as privileged
but not mapped to the Executive or I/O page. Virtual address space
begins at virtual address 0 and extends upward as far as 32K words.
Your task cannot access the Executive routines or data structures, and
TKB does not reserve an APR to map the I/O page.

When you specify /PR:4 or /PR:5, TKB reserves APR 7 for mapping the
I/O page. Moreover, TKB makes the Executive available to your task by
reserving the APRs necessary to map the Executive into your task's
virtual address space. Therefore, if your task requires access to the
Executive, you must specify an argument of either 4 or 5. However, 5
is the default.

The choice between APR 4 and 5 is dictated by the size of the
Executive area. If the Executive is 16K words or less, you may
specify an argument of 4 or 5. The value specified depends on the
task size. A /PR:4 task can be 12K in size and map the I/O page. TKB
applies a bias of 100000 (16K) to all addresses within your task.

If the Executive is 20K words, you must specify an argument of 5. TKB
applies a bias of 120000 (20K) to all addresses within your task.

The mapping for privileged tasks is shown in Figure 6-1.

The mapping for APR 4 and 5 is shown in Figure 6-2.

When you specify an argument of 4, there will be 12K words of address
space between the beginning of the task and the start of the mapping
for the I/O page. If your task expects to access the I/O page, it
must not exceed this 12K-word limit. If it does, TKB uses APR 7 to
map the task instead of the I/O page.

When you specify an argument of 5, there will be BK words of address
space between the beginning of the task and the start of the mapping
for the I/O page. In this case, the task must not be greater than BK
words if it expects to access the I/O page.

6-2

VIRTUAL
ADDRESSES

177777

157777

120000

PHYSICAL
ADDRESSES

117777

0

VIRTUAL
ADDRESSES

177777

157777

120000

PHYSICAL

1/0 PAGE

8K
PRIVILEGED

TASK

• SHADING REPRESENTS
MAPPING THAT OCCURS
IN USER STATE

NOT USED NOW

20K NOT USED I
EXECUTIVE

NOW

PRIVILEGED TASKS

KT-11 MEMORY

MANAGEMENT UNIT

APRs (UISAR 0-7)

Ht@§~~t:§f8!:§:f~ff!:::::::::::::::::
:::1:1:~:~::iY::g:~~::£§:~:::::::m1::::::
~::tt:fffi:Y.::fo~F§:~FI:::::mt::

4 :JJ:::;s§.fa;:§f :F~1i:fa::::t:::::::::
3 lt::p?.;~Y§f8i1F~itlff

I : lll~~~~~~~illl1
I APRs (KISAR 0-7)

KISAR7 (1/0 PAGE)

6

5

4 KISAR4 16-20K

3 KISAR3 12-16K

2 KISAR2 8-12K

KISAR1 4-8K

0 Kl SARO 0-4K

MAPPING FOR 8K PRIVILEGED TASK IN USER STATE AND 20K EXECUTIVE

110 PAGE

8K
PRIVILEGED

6

TASK 5

4

3

2

• SHADING REPRESENTS
MAPPING THAT OCCURS
IN SYSTEM STATE

COPIED FROM UISAR 5 + 6

KT-11 MEMORY
MANAGEMENT UNIT

APRs (UISAR 0-7)

NOT USED NOW

PRIV TASK 4-8K

PRIV TASK 0-4K

KISAR 0-4 AND

7 COPIES NOT

USED IN SYSTEM

STATE BUT VALUES

STILL EXIST

APRs (KISAR 0-7)

ADDRESSES ~
11777

: ___ E_X_E_~-~-~-l _V_E ___ •l.""""'""l""'l""l""l""l""l:,:,;l;,:,;1""1""1=411._

1

;

MAPPING FOR 8K PRIVILEGED TASK IN SYSTEM STATE AND 20K EXECUTIVE

Figure 6-1 Privileged Task Mapping

6-3

PHYSICAL MEMORY

1/0 PAGE

8K
PRIVILEGED TASK

MEMORY
OCCUPIED BY

TASKS AND

PARTITIONS

20K
EXECUTIVE

PHYSICAL MEMORY

1/0 PAGE

8K
PRIVILEGED TASK

MEMORY
OCCUPIED BY
TASKS AND
PARTITIONS

20K
EXECUTIVE

ZK-431-81

PRIVILEGED TASKS

1/0 PAGE 1/0 PAGE

APR 7-

t
- VIRTUAL 160000- APR 7-

l
APR6- APR6-

AVAILABLE
AVAILABLE TASK SPACE
TASK SPACE r

APR5- - VIRTUAL 120000 - APR 5-

.~ ·~
APR4- -VIRTUAL 100000 - APR 4-

~

APR3- APR3- RESERVED FOR
RESERVED FOR EXECUTIVE

APR2- EXECUTIVE APR 2- MAPPING
MAPPING

APR 1- APR1-

' I

APRO- -VIRTUALO- APR 0-

/PR:4 /PR:5

ZK-432-81

Figure 6-2 Mapping for /PR:4 and /PR:S

When a task overlaps the I/O page, TKB does not generate an error
message. Before TKB generates an error message, a task designated to
be mapped with APR 4 must be greater than 16K words; a task
designated to be mapped with APR 5 must be greater than 12K words.
Only when you install a task that overlaps the I/O page does INSTALL
generate the following message:

INS--WARNING--PRIVILEGED TASK NOT MAPPED TO THE I/0 PAGE

While this is not a fatal error message, you should consider the
condition to be fatal if you expect your task to access the I/0 page.

You can use the /-IP switch to inform TKB that the task is purposely
over 12K and does not need to be mapped to the 1/0 page.

A /PR:4 or /PR:S task can access all of the Executive, system control
blocks, and I/0 page. It can use Executive routines and do logical
block I/0 to a volume that is physically mounted on a device. Also,
the task can issue a $SWSTK macro to change from user to system state.
This ailows the task to access the Executive or system data structures
without interruptions or fear of the data being changed while it is
being accessed.

6.6 /PR:O PRIVILEGED TASK

Using the /PR:O switch causes TKB to build the task in the same way as
any other task. Virtual address space begins at virtual address 0 and
extends upwards as far as 32K minus 32 words. This task cannot access
the Executive routines and system data structures or directly access
the I/O page because the Task Builder has not reserved APRs for these
purposes.

6-4

PRIVILEGED TASKS

There are advantages to using a /PR:O task and having it mapped into
APR 0. A /PR:O task can:

• Bypass file protection.

• Use the alter priority (ALTP$) directive.

• Issue any directive that has a target task.

• Specify a device name in spawn directives.

• Write logical block I/O to a physically mounted volume,
regardless of who issued the Mount or Allocate command. For
example, the VMR task is a /PR:O task and writes to mounted
volumes during the SYSGEN process. However, this advantage
can be hazardous for obvious reasons.

A /PR:O task runs in user state and cannot switch to system state.
Also, a /PR:O task is not mapped to the Executive. If you want to
write a privileged task that does I/0 processing, it is advantageous
to use the /PR:O switch for your task because there is less chance of
corrupting the Executive or system code and data.

6.7 /PR:4 PRIVILEGED TASK

If you want your privileged task to map to the Executive and I/O page,
and your Executive is 16K or less, use the /PR:4 switch in TKB command
line. If you specify /PR:4 for your task, TKB reserves APR 7 to map
the I/O page and reserves APRs 0 through 3 to map the Executive as
part of your task's virtual address space. The /PR:4 switch can be
used only if your Executive size is 16K or less, because the 16K
Executive uses APRs 0 through 3 and your task is assigned mapping that
starts with APR 4. Therefore, TKB applies a bias of 100000 (16K
decimal) to all virtual addresses within the task. This specific
mapping of APRs 0 through 4 and 7 occurs whether the task is in user
or system state.

Up to 12K words of virtual address space are possible in a /PR:4 task.
The beginning of the task marks the end of the Executive code. If the
task is 12K words in size, the end of the task marks the start of the
I/O page. If the task is going to access the I/0 page through APR 7,
the task cannot exceed the 12K limit. If the task does exceed the
limit, TKB is forced to assign APR 7 to the task code. When building
the task, TKB does not give you an error message if your task exceeds
the 12K limit. However, when you install the task, INSTALL sends you
the following message:

"INS -- WARNING PRIVILEGED TASK NOT MAPPED TO THE I/O PAGE"

6.8 /PR:S PRIVILEGED TASK

If you want your privileged task to map to the Executive and I/0 page,
and your Executive is between 16K and 20K, use the /PR:5 switch in TKB
command line. If you specify /PR:5 for your task, TKB reserves APR 7
to map the I/O page and reserves APRs 0 through 4 to map the Executive
as part of your task's virtual address space. The /PR:5 switch can be
used only if your Executive size is between 16K and 20K, because the
20K Executive uses APRs 0 through 4 and your task is assigned APR 5.
(APR 5 may be used if the Executive is less than 16K, but this wastes
virtual address space.) Therefore, TKB applies a bias of 120000 (20K)

6-5

PRIVILEGED TASKS

to all virtual addresses within the task. This specific mapping of
APRs 0 through 5 and 7 occurs whether the task is in user or system
state.

Up to BK words of virtual address space (12K if the I/O page is
overmapped) are possible in a /PR:5 task. The beginning of the task
marks the end of the Executive code. If the task is BK words in size,
the end of the task marks the start of the I/0 page. If the task is
going to access the I/0 page through APR 7, the task cannot exceed the
BK limit. If the task does exceed the limit, TKB is forced to assign
APR 7 to the task code. When building the task, TKB does not give you
an error message if your task exceeds the BK limit. However, when you
install the task, INSTALL sends you the following message:

"INS -- WARNING -- PRIVILEGED TASK NOT MAPPED TO THE I/O PAGE"

NOTE

When you use a privileged task, the
Executive has dedicated almost all the
APRs to the necessary mapping for the
Executive, the I/0 page, and your task.
Your task can issue PLAS directives to
remap any number of these APRs to
regions. However, such remapping can
cause obscure and difficult-to-find
system bugs. Also, note that when a
directive unmaps a window that formerly
mapped the Executive or the I/O page,
the · Executive restores the former
mapping.

6.9 EXAMPLE 6-1: BUILDING A PRIVILEGED TASK TO EXAMINE UNIT CONTROL BLOCKS

The MACR0-11 source program PRIVEX.MAC in Example 6-1 illustrates one
possible use of a privileged task.

NOTE

The nature of a privileged task is such
that you must have a working knowledge
of system concepts to understand its
operation or to write one. If this
example deals with Executive functions
that are unfamiliar to you, you may
prefer to skip this section and return
to it at a later time.

If you assemble, build, and install PRIVEX into your system, it will
scan the system device tables and examine the UCBs of all nonpseudo
devices on your system. It will determine whether each device is
attached by a task and print on your terminal the names of all
attached devices on your system with the name of each attached
program.

6-6

PRIVILEGED TASKS

PRIVEX accesses two Executive routines: $SWSTK. (switch stack) and
$SCDVT (scan device tables). The routine $SWSTK switches the
processor to system state (kernel mode). This switch to system state
is necessary because it inhibits all other processes from modifying
the Executive data structures until PRIVEX is finished with them. The
double semicolons (;;) indicate the portion of the task that is
running in system state.

The routine $SCDVT performs the actual scanning of the device tables.
It returns to PRIVEX each time it accesses a new UCB.

PRIVEX also calls the system library routine $EDMSG (edit message) to
format the data it has retrieved from the device tables. This routine
is documented in the IAS/RSX-11 System Library Routines Reference
Manual.

Example 6-1, Part 1 Source Code for PRIVEX

MACRO LIBRARY CALLS
.TITLE PRIVEX
.MCALL ALUN$C,EXIT$S,QIOW$S

LOCAL DATA

.NLIST BEX

ATTMES: .ASCIZ
BUFMES: .ASCIZ

.LIST
QIOBUF: .BLKB

.EVEN

/%2A%P: IS ATTACHED BY %2R/
/BUFFER OVERFLOW/
BEX
132. ;MESSAGE OUTPUT BUFFER

BUFFER INTO WHICH INFORMATION IS STORED AT SYSTEM STATE FOR
PRINTING AT USER STATE. AN ENTRY IS FOUR WORDS LONG:

ADDRESS IN DCB OF THE TWO ASCII CHARACTER DEVICE NAME

BINARY UNIT NUMBER

FIRST RADSO WORD OF NAME OF ATTACHED TASK

SECOND RADSO WORD OF NAME OF ATTACHED TASK

THE BUFFER IS TERMINATED BY A

0 ALL UNITS IN THE SYSTEM HAVE BEE~ EXAMINED
-1 THE BUFFER WAS FILLED BEFORE ALL UNITS COULD BE EXAMINED

BUFFER: .BLKW 4*200.+l
BUFEND=.-2 ;ADDRESS OF LAST WORD OF BUFFER

(continued on next page)

6-7

PRIVILEGED TASKS

Example 6-1, Part l(Cont.) Source Code for PRIVEX

START: MOV
CLR
CLR

#BUFFER,R2
(R2)
Rl

;GET ADDRESS OF INFORMATION BUFFER
;ASSUME NO UNITS ARE ATTACHED
;INITIALIZE CURRENT DCB ADDRESS

"CALL $SWSTK,FORMAT" SWITCHES TO SYSTEM STATE. ALL REGISTERS
ARE PRESERVED ACROSS THE TRANSITION FROM USER MODE TO KERNEL
MODE. BEING IN SYSTEM STATE LOCKS OTHER PROCESSES OUT OF THE
EXECUTIVE (GUARANTEES THAT THE DATA BEING EXAMINED WILL NOT
CHANGE WHILE IT IS BEING EXAMINED). A "RETURN" WILL GIVE
CONTROL TO "FORMAT" AND WILL RESTORE THE CONTENTS OF THE
REGISTERS TO THEIR VALUES BEFORE THE "CALL $SWSTK".

CALL $SWSTK,FORMAT ;SWITCH TO SYSTEM STATE
MOV #$SCDVT ,- (SP) ;;GET ADDRESS OF SCAN DEVICE TABLES

; ;COROUTINE
20$: CALL @(SP)+ ;;GET NEXT NONPSEUDO DEVICE UCB

; ; ADDRESS
BCS 100$;;IF CS NO MORE UCBS

AT THIS POINT:
R3 ADDRESS OF THE DEVICE CONTROL BLOCK
R4 ADDRESS OF THE STATUS CONTROL BLOCK
RS ADDRESS OF THE UNIT CONTROL BLOCK

40$:

60$:

80$:

100$:

CMP
BEQ
MOV
CLR
BISB
MOV
BEQ

CMP
BLOS
ADD
MOV
MOV
MOV
MOV
CLR
INC
BR
CALL
BCC
COM
RETURN

.ENABL
FORMAT: TST

BEQ
CMP
BNE
MOV
CALL

EXIT: EXIT$S

Rl,R3
40$
R3,Rl
RO
D.UNIT(R3) ,RO
U.ATT(R5),R4
60$

;;IS THIS A NEW DCB?
;;IF EQ NO
;;REMEMBER THIS DCB
;;FORM LOWEST UNIT NUMBER ON
;; THIS DCB
;;IS A TASK ATTACHED?
; ; IF EQ NO
;;IF NE R4 IS TCB ADDRESS

#BUFEND,R2 ;;ANY MORE ROOM IN BUFFER?
80$;;IF LOS NO
#D.NAM,R3 ;;FORM ADDRESS OF DEVICE NAME
R3,(R2)+ ;;SAVE IT IN BUFFER
RO,(R2)+ ;;SAVE UNIT NUMBER
T.NAM(R4) ,(R2)+ ;;SAVE NAME OF ATTACHED TASK
T • NAM+ 2 (R 4) , (R 2) + ; ;
(R2) ;;ASSUME NO MORE ATTACHED UNITS
RO ;;INCREMENT UNIT NUMBER
20$; ;
@(SP)+ ;;GET $SCDVT TO CLEAN OFF STACK
80$; ;
(R2) ;;SHOW BUFFER OVERFLOW

LSB
(R2)
EXIT
#-1, (R2)
40$
#BUFMES,Rl
PRINT

;;RETURN TO USER STATE AT FORMAT

;ANY MORE INFORMATION IN BUFFER?
;IF EQ NO
;OVERFLOWED BUFFER?
;IF NE NO
;GET ADDRESS OF OVERFLOW MESSAGE
; PRINT IT

(continued on next page)

6-8

40$:

PRIVILEGED TASKS

Example 6-1, Part l(Cont.) Source Code for PRIVEX

MOV
CALL
BR

#ATTMES,Rl
PRINT
FORMAT

.DSABL LSB

;GET ADDRESS OF TEMPLATE
;FORMAT AND PRINT THE INFORMATION

PRINT - FORMAT AND PRINT A MESSAGE

INPUTS:
Rl ADDRESS OF AN $EDMSG INPUT STRING
R2 - ADDRESS OF AN $EDMSG PARAMETER BLOCK

OUTPUTS:
R2 - ADDRESS OF NEXT PARAMETER IN THE $EDMSG PARAMETER BLOCK
RO, Rl, R3, R4 ARE DESTROYED
R5 IS PRESERVED

PRINT: MOV
MOV
CALL

#QIOBUF I RO
RO,R3
$EDMSG

;GET ADDRESS OF OUTPUT BUFFER
; SAVE FOR QIOW$S
;FORMAT MESSAGE INTO OUTPUT BUFFER

REMOVE LEADING ZEROS FROM UNIT NUMBER

20$:

40$:

MOV
TST

MOV
DEC

CMPB
BEQ
INC
CMPB

BNE
MOVB
INC
MOVB
BNE

R3,RO
(RO)+

RO,R4
Rl

#'O,(RO)+
20$
Rl
#':,-(RO)

40$
I 0, (R4) +
Rl
(RO) +I (R4) +
40$

;POINT AT OUTPUT BUFFER
;INCREMENT BY TWO (POINT PAST
; DEVICE NAME)
;REMEMBER THIS SPOT
;ASSUME NEXT BYTE IS A LEADING ZERO
; (REDUCE LENGTH OF MESSAGE)
;IS IT?
;IF EQ YES -- IGNORE IT
;COUNTERACT TOO MUCH DECREMENTING
;WAS THE BYTE A COLON (WAS THE UNIT
; NUMBER ZERO)?
;IF NE NO
;ADD A ZERO UNIT NUMBER
;INCREASE LENGTH OF MESSAGE
;TACK ON REST OF MESSAGE
;IF NE NOT DONE

PRINT THE MESSAGE ON LON "OUTLUN" (DEFINED BY THE TASK BUILD FILE)
AND WAIT USING EVENT FLAG 1

QIOW$S #IO.WVB,#OUTLUN,#l,,,,R3,Rl,#' >>
RETURN
.END START

PRIVEX.MAC should be assembled with the following assembler command
string:

MAC>PRIVEX,PRIVEX/-SP=DRO:[l,l]EXEMC/ML, [ll,10]RSXMC/PA:l,DR2:[303,l]PRIVEX

The file EXEMC is the Executive macro library and the t11e RSXMC is
the Executive prefix file. The switches used in the command string
are described in the IAS/RSX-11 MACR0-11 Programmer's Reference
Manual.

6-9

PRIVILEGED TASKS

The Task Builder command sequence for PRIVEX is as follows:

>TKB
TKB> PRIVEX/PR:S,PRIVEX/-SP=PRIVEX
TKB> ORO: [3,54]RSX11M.STB,DRO: [l,l]EXELIB/LB
TKB> /
Enter Options:
TKB> UNITS=l ;DEFINE NUMBER OF LUNS
TKB> GBLDEF=OUTLUN:l
TKB> ASG=TIO:l

;DEFINE LUN ON WHICH TO PRINT MESSAGES
;ASSIGN LUN TO DEVICE

TKB> //
>

This command sequence directs TKB to build PRIVEX as a privileged task
and to add a bias of 120000 to all locations within it. APR 5 was
chosen in this example because the Executive in the system on which
this example was originally built is 20K words long. If the Executive
in your system is 16K words or less, you can use /PR:4 when you build
the task.

In the options section of the TKB command sequence, the UNITS=l option
specifies that PRIVEX will use only one logical unit. The
GBLDEF=OUTLUN:l option defines the symbol OUTLUN as being equal to 1,
and the ASG=TlO:l option associates device TIO: with logical unit 1.

The TKB map for PRIVEX is shown in Example 6-1, Part 2. The GLOBAL
SYMBOL SECTION has been shortened to save space. Note that the task's
address limits begin at virtual address 120000. Figure 6-3
illustrates how TKB allocates virtual address space for the program.

Example 6-1, Part 2 Task Builder Map for PRIVEX

PRIVEX.TSK;l Memory allocation map TKB M40.10
7-0CT-82 13:26

Partition name : GEN
Identification : 01
Task UIC [303,1]
Stack limits: 120230 121227 001000 00512.
PRG xfr address: 124610
Task attributes: PR
Total address windows: 1.
Task image size 1920. words
Task address limits: 120000 127323

Page 1

R-W disk blk limits: 000002 000011 000010 00008.

*** Root segment:PRIVEX

R/W mem limits: 120000 127323 007324 03796.
Disk blk limits: 000002 000011 000010 00008.

6-10

(continued on next page)

PRIVILEGED TASKS

Example 6-1, Part 2 (Cont.} Task Builder Map for PRIVEX

Memory allocation synopsis:

Section Title Ident File

• BLK.: (RW,I,LCL,REL,CON) 121230 005746 03046.
121230 003656 01966. PRIVEX 01

$$RESL:(RO,I,LCL,REL,CON) 127176 000124 00084.

Global symbols:

AS.DEL 000001
D.VOUT 000004
AS.EXT 000004
D.VPWF 000006

$PDVTA 020000
$YHCTB 022674

BT.UAB 000002
F.NWAC 000034
B.DIR 000026
F.SCHA 000015

$REMOV 054044
.TT14 023770

*** Task builder statistics:

Total work file references:
Work file reads: o.
Work file writes: o.
Size of core pool: 13486.
Size of work file: 12032.

Elapsed time:OO:OO:Sl

1/0 PAGE

DV.SDI 000020
IE.DAA 177770
DV.SQD 000040
IE.DNA 177771

$SGFFR 020652

250535.

words (52. PAGES}
words (4 7. PAGES)

APR 7- -, ___,.""""'!i-VIRTUAL 160000

APR 6- - ::~~~~~~

D.RS81 177657

D.RS83 177655

$TICLR 041032

PRIVEX.OBJ;2

PRIVEX. TSK
VIRTUAL 127147 }

TASK ADDRESS LIMITS
APR 5- - VIRTUAL 120000

APR4- -

APR3- -
EXECUTIVE

APR 2- -

APR 1- -

APR 0 -------VIRTUALO

ZK-433-81

Figure 6-3 Allocation of Virtual Address Space for PRIVEX

6-11

·.CHAPTER 7
< ~. ' i

osE"R.:1'oDE .I~ ANt> .:o.:sJ?ACE. t.RSx:..tiM:.PLQs· ON.LY}:: .:

This· ,9hG1pte.:r, ,disc.usses. th~>Tas.k .. · B:ui1d~r·•·s. abU{ty··· .. · ... i;;Q·.' ·c:u·yide ·a. ·user
"task' . into .·. instrQction ···and.· data ·space.·'. tr-· ariP,·, D~space.) ~' ·· A'··series' :o'{
'figures·· and· text. explain. '1:.a~k .mappin9·.and .. :the· use,· of .. task windows. ·in·
an ·, RSX-llM:!>LUS · .. ·'.system .With··. ~n '. I->. and D:spa.ce. task. In the.· te.xt.,
··compar.isoJ1.~· .. ~re' 1Jta5le l;>~twe.en···c?n.ve:nti:onal, ,tasks ... · .a·nd ·,1/ · :an.d .·· .. o~space·
·t'asks. . A·· €.onventi.onal task., .is". one . that .·d.o·e·s riot;· .~epa,r:a.tely ·map·
·ins.t,ruction :~.Pace and: ga7a 1 .space . .; · '/.:' ·, ·. , .. ,

·Toe·. i,:-: arid' :n..:space ~eat;ur~ .. ·i's. ·. a.n· ·.'.RSX~iIM:O·~t?s· • $ysteri\'. generation
option. , The· feature is ava,1lable .only. .on .. specif1c. processor· hatdwar·e •.
Convent.ioria1.·ta.sks ·can .be,. r~n in ,an' T-'.· and· D.-.space system, but an. 1-.
and P-space task cannot· r·un :i,n :a. system· that does· ·not ·have the. o,ption·.
spe.ci fied.· · · · ·

7.1 USER .TASK DA'1A SPACE.DEFINED
'· ', ,

User ta~k cfata , spa~~· 1 s ~hat . sp.ace .tha.t cont.ain's 'data' . and . wb'i ch . the
usei: .tas.k accesses .. through ... D~space ... A)?R,s. " , .The fµnqtion o:f J-: and
D-space allows .·a ·total· of 16 ·APRS. to ·map your ta.sk: 8, AJ;>Rs . fo:r data
space .a.nd 8 AP.Rs fo.r. instruction .space.. . If .. your task use~ ,both'.. I.-·· and
1)-.s~Cic~. t?· ·~·ts. max~mum. :apa:<?itt,, it cct.n .• :ont~in ·64.K: ·words . of 'Virtual
a~dre,ss space.~. ;tn ··adqi~·ion:.· .. to ·'bo·tn-'.·~·7. ~nd · D-:s~ace ;". i~:· .. y-.. oi.n;:.: ·.task ·);inks
to a 32K wo:rd 'supervisor-mode· library·, .. it :·C~P .contain· . ~6K w·ords . of'
virtual .address· space.· · " · .:: .. " '·· " · · · " ·

"To .. sepa'rate. ··the di:rt"a ·and ·instructions.;. ,your: "task ca~ · · 11s~· · 'PSECTs' .. to
··~:frn1t?in · .. th.e· · 9a.t~ .. 0£.:f.n'st:·~u9'tf<;:ms .. · Also.;, ·,~·our' t,<:,1-sk .. ¢~n ·use, th~ CRA~$
and:. CRRG$ di:rec:tives ·to. · dyn·amically· ·create :and. map. , to. · data.-spa.ce.
:region·s·. · ··See 'the RSX-'l1:M/M.:..PLus· Executive· Referen·ce M·anil'aI for the.
use of ~h~se ~i:rectives.

Conventional tasks. and tasks that sep·a'rate inst:ruction·. space arid data
space differ in only a few . areas. of interest. The next sections
discuss these areas.

7.2 I- AND D-SPACE TASK IDENTIFICATION

Two fields denote an I- and D-space task. In the task header, the
byte that has the offset H.DMAP identifies the task D-space mapping
mask. In the Task Control Block (TCB) , the T4. DSP bit in the fourth
task status word identifies the I- and D-space task to the system.

The system task ldader or the VMR FIX command initializes these two
fields at the time the task is loaded. Therefore, tasks built on a
system other than an I- and D-space system may be run without
rebuilding on an RSX-llM-PLUS system that supports I- and D-space.

7-1

USER-MODE I- ANO 0-SPACE (RSX-llM-PLUS ON·LY)

The ·I~ and o..:.spad~ task is one in. which TKB separates the .'data. . areas
an:d ins.fructions... In this task, data. area.s shou~d be defined .by the
.MAC-RO-ll · ~PSECT. directive. that has the data attribute. Simila'riy,. tp·e·
'.:~·:P'sECT (lirc;ctive with the "I"· attr1bute defines instr'uct:iori areas.·

;, ~- >;q ; ~ '' ', ' ;;' , I ~

··if'{3 . . ·:·C'c)MPAR:fad~ · OF .coNVEN.TION:AL TAsl~s .. ANQ I-; .AND ,.,o;.s.PACE · TASKS,
x . , j -< , ' ; ~.· ! ~ ,;· ~'

:A·:.c!o'nvent:ional task· 'operatin<,;i.'in user mode ca·n .contain . 32Kw.ords · .. of.:
'v·frtual · ,addres.s spa9,e: · ·and·. acc~ss ~approx.imately 32Kw.ord~· of 'physisi:l·f .
. :mempry •. · . However., .. a. task. us iq~ bot;h .r~ and o~"Space .. AP~s .. c.an. ·. c6ntai:.ri/
.?,·4.KWP.:rds .'pf• ·\drtual .'<)lddre~s spa9e an.d · acc,ess appt·OXi,I1l<;ite!y · 6,,4.K~ords .·of·
~·~~.o·· .. f .. · .. YA:· .: ... / ' , .

rf ,, .'_1;_'."',·' .' . ;' ,. ~ .'i ,. ,, ,

'Tlie':'co·n.~ention'a1 ·ta·s''k ·· in an I-· and D~space· ·syste~ u'ses " b'ot:h s:ets of
~PR~·. ' · ·Hoytever,. ·the relo,cati6n addresses. in hoth ·!'...:space ·and .,n""."space·
APRs ate· "identical... ·Also·, the, task' :windows refer t,o I--space'."APRs' in a
,:task' tha,f .does"not, use· D,-space.. . .

'•

'A'i.1 :I...; and o.:..spa,ce task, can use separately 'both I- and D.-s·pac'e · APRs;
.t:hat . is, APRs used in this way are not overmapped •. Because· of this,·
the· task can use eig'ht D-space APRs .· to access .. and use data, and eight
.!...;space" APRs to .access and execute instructions. Using i6 APRs allows
the: 1- and o~space task to access a· total of 64Kwords of phys,icai
·memory at one time.

Table 7~1 contains a brief mapping summary of the combinations of I-·
and D-space tasks, I- and D-space systems, and the APR mapping that
occurs.

I/D
Task

No

No

Yes

. Yes

I/D
System

Yes

No

Yes

No

Table 7-1
Mapping Comparison Summary

Mapping Summary

I-space APRs and D-space APRs contain the same
relocation addresses.

I-space APRs contain relocation.

I-space APRs map instruction space.
APRs map data space.

Not possible •

D-space

. 7.~·4. CONVENTIONAL TASK MAPPING

Conventi'onal ·tasks, map their virtual addresses to their . logical
'addresses through both !"."space and .D-space APRs.. 'rhat is, TKB does·
not separate instruction space or data space nor does. the' 'system.
c;H'fferent:late· the· spaces except b'y the logic inherent in the' task,,
The.r'efore, the task must map to its log ica 1 address spaq,e ·by both sets.·
of AJ?Rs '· .which. are Qvermapp~d .. ·

Fig.lire .. 7.:..1 shows an 8K conven,tional task linked to an 8.K regipn that·
·maps . to its ' logical address space through bo'th D-space and r.;;.space
.. APRs. i.n an I-· and D-space system.

7-2

8K

0

VIRTUAL
ADDRESS

SPACE

REGION

D REGION MAPPING

MtttN TASK MAPPING

7

D-SPACE
APRS

I-SPACE
APRS

T

',Conventi:onal Task Linked, to a Reghin 'fn· ,/~a
, ,, : :i,..: and ',.-'D:..,;Space $ystem .

PHYSICAL
MEMORY

TASK

REGION

ZK-434-81

,:7z:~"S;,;+:;r~:·,~NO.,.JJ~,S'PACE,·.TASK .. 'l"JAPPING

'~iif ~t~' 1::2, :s~o,wS ~n Jl ~ r- and D-space task. TKB sep<>ra ted the data
,atixf, 'instruc,ti:ons' in this· task. Because of the way TKB processes· ta'sk
·~pal'.;:ie, the t.ask. header must physically reside at the beginning of the
task in I-space·. TKB .puts the. header that the Executive uses for task
c<;>nt,ro1 in D-space. Also I the task Is stack is in D-space. If the'
ta·sk · is· to,- have an external header (under control of the /XH switch) ,
,th~ '.Executive copies the header in D-s·pace and puts it into the
contiguous space irr.mediately before the task's I-space in memory. For
more details, see Figure B....,.4, Image on Disk of Overlaid I- and D-Space
Task, in Append ix B.

The task shown uses two APRs because of its size {8K). D-space APR O
maps the'task's header and stack and part of D-space.

7-3

USER-MODE I- 'AND·D-SPACE (RSX-llM-P.LUS .:ONLY)

D-SPACE
APRS

T
PHYSICAL
MEMORY

TASK
D-SPACE

HEADER USED BY
EXECUTIVE

UNUSED HEADER
COPY

COPY OF HEADER
IF EXTERNAL HEADER

Figure 7-2 I- and D-space Task Mapping in an :t- and D-space System

7-4

.. :· .. ;os1s~~M9r>.E.· .l;....'.A'.No·Jri~SPAC,E.·· ,'<·~·~x~:l:'l~~·PLo.s·· .·oNI.:rj.,·, , ,.
~ •• • • ' •• ..., ,. • ~ ~ < • • < ;

-~)."- ':' -< l

TKB uses diff.erent w'in'..dow~ ·'to .map. vari<:>us ·portions· of ·an I- and·'
o~space :task •.. :Window . o· . in· an I~ and D-·space task cannot be used
because it' maps the, root iri !-space. s·1mi,larly; you ·.cannot' us~ Y1indo,w
1 because. it maps the,:· p....;space ·part of'.t:he root •... The root of the task·,
which TKB divides into· ;r:.. and. D~spa'ce, .. therefore· requires two windows~.
TKB reserves the use, of: t::.he,se t~o windows ..• · You. can $Ped fy up to 14'
·windows for a .. t::.ask that .. us·es 1:.. ,a'pa· .. o :;pace~·

-~· <

7 .7 SPECIFYING ~A~·A SP~CE' .~N y~rn~·· TA.St. ';

:·.·Yq.u··.ae~-'ign .~n<r~····ai:i<l".n.~.~Pa.Y·~· ... ~ta'iK:·.by,··~·p4bir.itn~-'·a~.t~·.·sp.~ce·· .. s·epai;:~·t¢iy·,
·from .. ~_.i1)s.t::.r'ucJ:ion··· ,$p'~·ce .. ·,:·: .. GoQa pfo.g·+affin\i .. n·g pracH'ce,.':·sugg'¢s't;s·~:·tbi3t·.:all·
··da.ta ·a.i;eas· ·and.·, b,uf,f'el'.'.s. · .·$bould··J;ae. <lo·ca,£ea ··:<lri, .. aaj.a~.ent locatfons~
·simit'arly, .. all· .in.str~1d:i'o,ns'.:-shoulp.:b~:: ·lo,q«q;t~a'·in'adJa6ent' L()Cations;
::H'()~~v~r.,,·, T;~· .. ¥JP-i/~e:p:~~~;~:~·: ~.n9/ag<Jl:<?fri~r:~·~'e/.:ttt~:Gr,:u~ .. £tt;>r(~f1:d: :·4~t.·fi. · .. ·· :sppce::
wheil it 'builds the .. ,t.ask.'~· ·•• F?·r .:TKB· ;~·C{ d:o: :.this:·, .:·.you. must· .,use;' a·. method o·f· 1

inform,ing· . it: "aho~t· ,.:·'wli:fo.h· . st~ieme.nts ' ~x'e: .. d'a.ta '''.and' .. ··whi.ch. ':. are·.
'inst.ruc·ti9n$. · .. , '" · ··

~ :; '

For the MACR0-11 pr6gramme·r", the. w~Y tO .. s'~'~a.ra"fe.'d.a
0

ta·•·a;ncf"1~fih'u,ctJoi1s"
is.' .. to. use·theMACR0-11, .BS:l~:CT.·d.i·r.e·ctive •. Y:o·u.cari use th1s,.directive.
,w.ith the· instr,u.ctio~ · (I')'"·.·c:.tt):.i,hu'te .·fo.r~all: 't'.n.e 'instruct.i9n .· IocertJ,ons
in . your :·.task's c.od:e·.· .··. Als.o;.· .>you ... can.·.:· use .. ·.PSECT and the· data ,cbY:
attr"ibu.te· .fo:F :~11.<t.he· .da't,a .. loc~ti, .. ons:.,;. · ... Yoµ· ~~st ·ae.fJne .·a. da:ta ..• J?SECT
in an .· 1- .~.nd. D,"'."space task .. even :t.hough. no, actual. data. is co.ntai ned iP,
the task... . In. this ca'se, the .•. PSECT car,i :be of 0 length.. . . .

Note .. that I'._; .. arid. o~.sp~~.e .librad\~~ ha'Je. not .be~n.· def.ined. and .~~~ not a
.r;>'o·s~ib1~:c.qf:t·flghra.ti().I\.• · , , . .,::· . . : .· .. , , .. , ,

} ~ 8 .. OVERLAl'D 1.;;..; AND. o.;..Sl'A:CE,TliS.KS
>, <;, , :.:. : • ~, ~ ': ii ., ~. '·! , 0 < > ., ,, .: ~l

.::Ex·ceJ?t'.···ea.r·.,.:tt1e'.ma.J?J?'i'ng.':a,f:,· ~'n:·~~.::.,a·n'd,· .b,~spa~~e't'a .. ~J(.~na:::·tri.e/: ~.o·oat:ion' ~·:f,
,ins·t.r,uct.ions .. and', .data,: the I.-. :a·na: .. D-s,pace·,.:ta,sk 'diff'ers little, from. a
. 66nventi"ortal .·t:ask ~· .. ·: .Howe·v.e·r; ·.·tnet.e" .·a·r·e·: str;ud:ifrai ,'<'.fl ff~~·e'nces .· .betwee'n,
'a.".·no·n,_overlaid .an.~. ~ri···ove~"Ia.io···tl... aqd·:o-space,: ·task: •... ·By· c·ompa:rJng· tl:l'e
·t\40· K:i'nds ·.of· tasks, the.··.fig·u~e·~f ·a:µa, t·ex:t ·:ih .. ·t:.he ·.:followin.9" ·. ~ectto.'1s·
.descr.ip¢ .. :the .·m'.m:·-oye:t:'iqfp :· •anq .. ";9v~r.1~~g· .. ·.r:~: :§nia,.: O'-iSPac~ :'tasks •... ~lso .. ,
:you' ma:y :wa.nt to: ref.er to .·the de.scri pfiCH1 .':'Of,·" ·QV,eria.fd conventional·
.tasks in Chapter ··3 •. · ··· ·, ·· · .. · ... ,, :·".:" · ·.·· ·.· " .. "·.•.· · ·

figure 7-3 shows· a s'impUfied disk, i'mage: of. 't::h'e : ·no,n--ove'rlaid .. I...; and
o'-space task. Thi.s' tasJ<=. c.ontains four I,-sp~ce P.SECTs and four' D-space
PSECTs. TKB col1ects all the I-space PSECTs together in. one .. part o·f,
the root and· ·an the o--space PSECTs in a,nother part of the ,root. ,

7-5

USER-MODE l- AND D-SPACE (RSX-llM-PLUS·

. 'RELATIVE DISK BLOCK 0 LABEL BLOCK AREA ..

• .. CHECKPOINT AREA

RELATIVE ·.DISK BLOCK n HEADER (UNUSE,D)

ROOT ~ .. 1.:SPAGE

INSTRUCTIONS

HEADER{USER'S)'

··STACK·

ROOT

DATA.

Flgure 7-3 Simplified Disk Image of a N6n-Overlaid 1~ ·~nd
D-Space Task

Figure 7-4 shows the virtual address space and physical memory:
occupied by an overlaid I- and D-space task called !AND. The task has
a total physical size of 160000(octal) bytes. (You may want to
compare Figure 7-4, which is shown next, with Figure 3-1 in Chapter 3,
which shows a conventional overlaid task.) The instructions and data
occupy the same virtual address space and are of equal physical size;
but because they are mapped through different APRs, they occupy
different locations in physical memory. The instructions in !AND
occupy four PSECTs that have the instruction (I) attribute, and the
data in IAND occupy four PSECTs that have the data (D) attribute~

In Figure 7-4, the virtual instruction space contains PSECTs A, B, and
C, which are those that contain instructions, and ROOT I, which is the
PSECT in the root that contains instructions. TKB places the unused
header in I-space part of the root.

Also, in Figure 7-4, the virtual data space contains PSECTs p,· E, and
F, which are those that contain data,·and ROOT D, which ts the PSECT
in the root that contains data. TKB places the task '·s user head .. er in
the D-space part of the root.

As an overlaid· task, a possible overlay tre:e may . look. like ·the one
.shown in Figure 7-5.

7-6

VIRTUAL I-SPACE MODULES VIRTUAL D-SPACE

160000 IAPR7 160000

140000 IAPR6 140000

120000 IAPR511 llDAPR5 120000

100000 IAPR4 --+------ --------+- DAPR4 100000

PSECT C OVR3 PSECT G
60000 IAPR3 DAPR3 60000

PSECT B OVR2 PSECT F

PSECT A OVR1 PSECT E
40000 IAPR2 DAPR2 40000

ROOT! ROOT D

20000 IAPR1 STACK DAPR1 20000

+--------

UNUSED USER
HEADER HEADER

0 IAPRO DA PRO 0

ZK-1099-82

OVR1 OVR2 OVR3

I
ROOTI

I I

ZK-1100-82

~igure 7-5 Example Oyerlay '.l'ree for Over la id I- and D-.Sf>ace Task IA;ND

The accompanying ODL statement for this task is:

~ROOT ROOT-(OVR1,0VR2,0VR3)

Notice that this ODL statement is not different .from any overlaid .task
with this tree structure. In this statement, the module OVRl contains
the instruction PSECT A and the data PSECT E, the module OVR2 contains
the instruction PSECT B and the data PSECT F, and the module 0VR3
contains the instruction PSECT C and the data PSECT G. A.lso, the ROOT
module contains the instruction PSECT I and the data PSECT D.

7-7

USER-MODE I- AND D-SPACE (RSX=llM=PL.U:S ONLY)

The disk image o·f this overlaid· task, shown in Figure 7-'6, ·contains
'the instruction and data PSECTs Ln separate areas. Figure 7...:6 also
illustrates the difference betw~en disk image·s- of overlaid and
non-over la id r- and D-space task disk images .. when you compare it with
the disk image shown in Figure 7-'3.. Notice that ':CKB separates the
segments of the overlaid l,AND task into instruction parts and data
parts. Ani autoload· ,vectors generated because of. calls, from these
segments are als.o included· .in. thg seg:Illent £irea. The .. autoload vect.ors
for 'I-:· ·and D-space. tasks contain two parts: and I-:space part and a
o;..space part ... TKB places each part' with its'dofrespondlng segment
part as shown in F1gu.re 7-6 ~ . A:uto:load vect~rs fo·r; · I;_" and D-space
tasks are discussed in detaU .in Cq~pter 4• - ·

RELATIVE BLOCK 0
LABEL BLOCK GROUP

• I--- -• SEGMENT LOAD LIST
•

RELATIVE BLOCK 3 CHECKPOINT AREA

•
• TASK HEADER (UNUSED)

•
ROOT I - INSTRUCTION SPACE

AUTOLOAD VECTORS FOR I-SPACE

TASK HEADER (USED)

TASK STACK AREA

ROOT D - DATA SPACE

AUTOLOAD VECTORS FOR D-SPACE

SEGMENT DESCRIPTORS

WINDOW DESCRIPTORS

OVERLAY SEGMENT OVR1
I-SPACE PART (PSECT A)

OVERLAY SEGMENT OVR1
D-SPACE PART (PSECT E)

OVERLAY SEGMENT OVR2
I-SPACE PART (PSECT B)

OVERLAY SEGMENT OVR2
D-SPACE PART (PSECT F)

OVERLAY SEGMENT OVR3
I-SPACE PART (PSECT C)

OVERLAY SEGMENT OVR3
D-SPACE PART (PSECT G)

ZK-1101-82

Figure 7-6 Simplified riisk I~age of Ov~rlaid I- and D-Space Task IAND

7-8

7. 9 .1 .· Autoload Vectors and .• STB Files

If your I- and. D-space task.links to an' overla.id shared region,. ·that
region must have been built with a version of TKB that supports
overlaid r- and D-space tasks~· ·The reason '.for this is that .·the.·· .STB
files for overlaid shared regions built. by old.er versions. of TKB do
not contain the. ISD records that are needed to create the type of
auto load vectors that I:- and D-:space. tasks use•

For newer versions of TKB that support ·overlaid I-· and D-space tasks·,
TKB allocate.s autoloadable vec'tors ·in. tne· root oJ· the task o.nly for
th9se eptry points· in· the libr.ary re;Jferel;l,qed·. by th.e· ti?S.k:.·· .' To. c.re~te.
the auto load vectors I TKB . uses. ISO records ;in the. ~STB file when
linking the ·task t.o the library, ·ff the. mo . reco:i;ds .. a·re ·present~
Therefore,. tas·ks. buii't with newer ·versions. of '.!'KB ·te"nd·· to be sirialJ~.r
:because fewer aut.ol.oad vectors. ~.re.p:r:esent.. . '.

• ' ,. '· '· ,= . : , , "' . ~ ~ ! . :·

For/ .the ·Fast .Ta~}< .Buflder ;fFTB}' ahd·.'Older.·v~psions qf::'TKB>that dO' n:qt
s·µpp,ort, . I-..• a~d . [>~space.· .. tasks·,/ ea.ch. ··atl:to.load \1eqtpr ··in the ··sha,r.ed:
·reg.£ on) s ·· .• STB .file· i·s ·ano·qaJ:ed: tr:i· .t·l)·e.: rpot · o·f·. the. t;ask.· b~'i ng< , l,ink~d.·
to the.· region·, whether or 'riot· the'.·entry po int: 'is ·ref~.r~ric.ea by.;- :the,
task·. .· · · · · "' · ··

> ,.., '

.·NOTE.

Librar~~s c:r.eated .'with ·older. 'versihn·s'·cif'
TKB do.·· not·· have :the· ISD r·ecords ·in the
• STB file.··. that' newer· versions· of TKB dse
to include autoload vectors in the task
from the· .. STB file.. ,Ther·efore, TKB .mus·t

. 'c~r~ate autoi<;>a~ 'vectQr$ f:9r. ever,y: entry'
P?i.nt in .. t.he .PJ:>ra.ry.

If,' yo9 are ... U$ing one· of these, older
.librades . arid you i;ire Unking., an. ·,t:... arid
o:...space. task to it, ·ir,KB will' ·/g.ive .· you
the .. fa·tal ~rror +oessage!.

:••·Module 'roodtll~·-nam~ . · · .cont,:a ins.:
· incompatible ·au:toioad .:·vecfors"n

, , < • "' ~ , ...

· .Thf·~· mes·sage · ·occurs · becat.ise· ···the:' · · •. STB
file contains ·: c6nv.entiona1, ... a'ut.olo.ad
.vectors that' 'are not us ab.le by· .ctn I- and.
o--s:p,ac~ · ~t~s k. ~ ~~ ,

., .
: .

For more information about linking shared regions to I- ·and · · o:...space
tasks, see the section in Chapters· entitled, Autoload Vectors and
.STB Files for Overlaid Shared Regions.

7.9 I- AND D~SPACE TASK MEMORY ALLOCATION AND EXAMPLE MAPS

The following section discusses and shows the differences between two
versions of a task that is built both as a conventional task and as an
!- and D-space. task.. The conv.entional task is called MAIN .. TSK and the
I- and D-space version of MAIN.TSK is called MAINID.TSK. Both of

7-9

OSER-MODE I- AND D-SPACE (RSX-llM..:PLtJS QNLYj

these tasks are similar to but not the 'Same as .·the .ta.sk· called
MAIN.TSK shown in Chapter 5. After MAIN.TSK was. coded, buiLt.," and.the
map printed, MAIN.TSK was rebuilt as an ·r- and o--space ta.sk ·to. create
MAINID.TSK. To do this; the /ID switch was us'ed irf:t:he ~KJ3 command
1 ine. Both versions .of this task are over.laid a.nd liri;k tp. a li})rary ... '.,'.

7.9.1 Virtual Memory Allocation for MAIN.TSK

MAIN. TSK has a root called MAIN .and . three .overlay· .. "~·~gm,ents: : ... ,q'a;l.1,~~;
INPUT, CALC, and OUTPUT. By comparing the IU.aP Of, t~~s·':ta:·~k in;Ex,am~le
7-1 and the memory. allocation diagram i,n· .Figu,te. 7~.7,,'.' ydu,· ~wiAl b,e: ?tb.~~
to determine the virtual memory .space all'ocation ?:lr:td. ·9,tructµr~ ·of/.this
task. Note that the ·overlay segments.··,oocu.py,·the: :s,:ame··.·v:L,,;rtu:a·l ' ..• ·.a_.d'<::lr~.·.~s·
space, and the root and. segmen~s .. ~i;e ma{>ped 'J~ .. l:>oth t..:s~a. .. c,e a,nd
D-space. w.

006307

005063

004607

004514
004513

000000

005063

INPUT

004513

006307

OUTPUT
004607

CALC

004514

MAIN

000000
ZK-1107-82

Figure 7-7 Memory Allocation Diagram for MAIN.TSK

7.9.2 Virtual Memory Allocation for MAINID.TSK

MAINID.TSK has a root called MAIN and three overlay segments. In this
way MAINID.TSK resembles MAIN.TSK. However, the I-PSECTs and D-PSECTs
in MAINID.TSK are separated and they are mapped through their
respective I-space or D-space APRs. Therefore, MAINID.~SK has t~o
virtual address spaces: an I-space and a 'D-space. Figures 7-8 and
7-9 show the memory allocation for the I-space and o~space in
MA I N ID • TS K •

The three segments INPUT, CALC, and OUTPUT occupy the same virtual
I-space, because these three segments contain instrucooons · and;
the ref ore, I-PSECTs. However, the overlay segment OUTPUT is the·· only
segment that occupies virtual D-space because the_ segments. lNPUT~and
CALC do not contain data or D-space · PSECTs. Note th.at the:. two .. overlay
segments INPUT and CALC have no D-space.. You can $ee this in both.
Figure 7-9 and the map in Example 7-2. The map in Example 7...,2 show~
the vi rtua1 address space allocation for both r....:space and D-'space ..

7-10

.{JS,ER"'.:'·M,ODE .I.- AND D-.SP:ACE (RSx..:11M P:LUS ON.L·Y}

J/t, i\nd ·D-s~~~e , i:a;k uses ritor<e ·Vi rfoal .memor17 space. t)lan a
.~¢>i'\::v.e'n~!wir:1'.L·>·· t~sk.; ·.The' map"in Example 7-2··shows that MAINID.TSK uses
·rgff,a,.,,· wo:.ras. of. space· as. opposed .to the 1'66.4 •. wo.rds used by MAIN.~SK.
'Th~· .. reas.ons. for the ·incr.ease in size. of MAINID~TSK. over MAIN.TSK are
ii·~> ·f6liows· £. ·· ·

,, >' ~ ~ . . . : i ,

'.Anj"'." a.nd· o..:..~pace .t·ask contaLns an unused· task header.

Atl'bo·l6ad':v~ctors· i.rLah 'I...: and o:..space task contain two· more
.. word~ tpan , .. comren.:tional. aut.oload vectors. PSECTs. $$'ALYD .and
·:$.$A):.y'r'.jo >E'x.amp~e 7,-:·4 .. · con'ta.i.n the. a:utoload ve~tors.. . You · can.

·. ·s.e'e.· · f·rom ... · thJ. s ma.p ',that .they. u,se more space. than the .•$$.ALVC
PSE,C.T ··in.c MAIN.~TSK,;. wh.:Lch con:tainS" converitio.nal. autoload

. w:e~,t;or.s:; ...
''""'

·.·~:•< '.>~n~,.:~Eig~.ent· .d~sci;ipt0rs. ·:in arr o·verlaid' . r~ · a.nd o.:..space ·· ta'sk

.. //..,,-1:~?~a!~J:•fi ~."t.et\s~~h: ··. . < " . .
... ·a:d'chti'Oo '.to '..·tb~.~~·"':r-eas.ops .. Jor· tbe> inctea«se 1n ... ·s.ize. of'. .. an ov.erl'aia

"::.'~fna·.'.'·, .. ·b~·sp·ace' ··· i:~·s~.{·:a: .. memo·:try·~re'si~feri·t·.«;.ver1a:±a ··•. l·~· .and,·.· o--spa'ce. · task
·¥ii;JJ~/.·1J~.:',~v~eri •e.larg~r·. ,qe.<;=·aus:¢ .. :~:€' ,th'e;'·n~.~d' ·fq~· 'two· ' wind6w: descr'ip'tors
·*f::~~r/ .. ~~P,i,·.·me.!ll~~rYf~r'~?ide,.tjt ,.t:>'egm~~t:• · / · · ·

004413

003263

003007

002714

003263

INPUT

004413

003007
OUTPUT

CALC
002714

'2

002713 I 00271..., I
MAIN

000000 --~~~~~~~~~~~~~~_o_o_o_oo __ q

002513

002414
002413

000000

002413

MAIN

ZK-1108-82

002513

OUTPUT

002414

000000
ZK-1109-82

Figure 7-9 Memory Allocation Diagram for MAINID.TSK D-Space

7-11

USER=-MODE I- ~ND D-$J?ACE Uf9},{-11M-:I::LU$ ONLY)

Example 7-·l Mpp of Overlaid Task M]\IN. T.SIC

MAIN.TSK;l Me~ory alloc~tion map TKB M40.10
20-0CT-82 10:08

T'ask name ••• CBP
Partition name GEN
!dent.if ication voo •. oo
Task UIC : [240,l]
Stack ~imits: .b00320 UOlil7 061000
PRG xfr address: 002350
'Total address windows: 3.
T'ask image size . • 1664. ·words
Task address limits: 000000 · 006307 · · ··
R-W disk blk limits: 000002 000012·

MAIN.TSK;l Overlay description:

Base Top Length

000000 004513 004514 02380. MAIN
004514 005063 000350 00232. INPUT
004514 004607 000074 00060. CALC
004514 006307 001574 00892. OUTPUT

MAIN. TSK; l
MAIN

Memory allocation map TKB M40.10
20-0CT-82 10:08

*** Root segment: MAIN

R/W mem limits: 000000 004513 004514 02380.
Disk blk limits: 000002 000006 000005 ~0005.

Memory allocation synopsis:

Section
-------. BLK.: (RW,I,LCL,REL,CON) 001320 000466

001320 000250
001570 000216

CO Ml :(RO,D,GBL,REL,CON) 002006 00:0024
002006 000024

COM2 :(RW,D,GBL,REL,CON) 002032 000032
002032 000032

COM3 :(RW,D,GBL,REL,CON) ·002064 000010
002064 000010

COM4 :(RW,D,GBL,REL,CON) 002074 00(>234
002074 000234

COM5 : (RW, o, GBL, REL,CON) 002330 oolob20

00310 •
00168.
00142.
00020.
00020.
00026.
00026.
00008.
00008.
OOTS.6 ..
0.0156.
00016.

·Page ml

Page 2

Title I dent

ED DAT 03
CBTA .. 04.3

MAIN voo.oo

MAIN· voo.oo

MAIN voo .• 00

·MAIN' VOO. O'O

File

SYSLIB. OLB; 5
SYSLIB. OLB; 5

.MAIN. OBJ; 36

MAIN.OBJ;36

MAIN.OBJ;36

MA IN. OBJ ; 3 6

(continued on next page)

7-12

...
H ,

· · Exaffip·r·e · 7~l ·'_{cont ~j
, ' ' , '

Map .of Overlaid Task MAIN.TSK

trnRoT: (RW, 1/bat,·R·E£~coN).
•MAIN : (RO~ I,LCL;REL,CON} .··

,. , :> .> , ; i ., . '

$$ALER,: (,Ro,1;.,LcL;;I~.EL:j'cgN); \.

.. ;Gi«:i.ba {.: sym\;)9.l;s '.:·' .. /I

002330 OOOQ.20 00016. MAIN VO.O. 00 MAIN. OBJ; 36
. ;· O()Q.00'0 000140 00096 •

. 000000 Ob0140 00096. LIBROT 03.0l LIBFSO.STB;l
00'235()'000142 00098.
·002350 000142 00098. MAIN V00.00 MAIN.OBJ;36

. .002512· 000'024 00020 .•
··oo25l2 000000 00000 ~. OVCTR 15. 03 SYSLIB. OLB; 5

".· 0'()2512 ·000024 00040. ALERR 02.00 '. SYSLIB.;OLB;5.
002536. 000070 .0.0056 ~

iAoo· .. ·· ~~~~·s·6·;~·.(.;·N..ta"JZQs·;:.rioo.o2«f: :.~:ifai)~T .. ·001s7o:..·R· ... ~Fs;a·PT ·«moo so . · ..
,:~~~at.~. :p~r2«M~--~/<;~"·:·~~~.1'.:·/~·q·~·~:~:/.:';; ·/~CJ\Df1{:; Q·Ol.57.6-R. ; : •. ;NALER"::0033~'4-l(.

~ ~·'; <; -~;. (;:' <. •

\., •• <

t-tA.iN:·.r·s.I<;'r' · Meni'C,~~:·· ~i1ad·aition:· .ni~~ ·· .. · TKB. ·'.M4 .. o.~1o.-
"rnJ?U7'. . · ·-.: 4o~ocT..:;.a·2 .. · .:10: oa.:

,,_.· ' ~:\ " ·''' ,'~ '.: '· :~ !; : , ' ;.-,. <.' < ,, « >

* ·',

R/Wmem .. limits: .. QQ.4514 005063. -000350· 00.232.
J:?i.s.k .. mlJ~ . .lim.i . .t:s : .. · .. 0.:00.~>0l .OJ>.:·~·001·:: ,0000·01 .. 900.01 !' • :· .. ;

Title Ident

::{.-.~~~ :7;.(.. Rjf l:.~.i~f·~~,~~.~.:~.·~p.~·~i .:::"
;·I~PUT' ;: :·(RD, ,''r:cir:;I<E:t·:cori}

' .;," ', ·;·, •" (." • ;. • ,'. • < •• ~: ,:. • .~· / ~ :;" • •' i-- w'> ,'. :

'$·$f\tVC":"(RO,, .I·, L~.4.:~~.~d,.·C.~fQ
'' . ,\ '•.' .. /' .~:" :/./ .;· .·· ... :· .. :·

'> ~:,:; .' ·~ ;-

-~---'
OOOGd
OQQ6tr ... C.A'l'B.· '.03 .;'.
00170 .•

INPUT· OI

. SYSLIB.OLB,; 5

· ... INPUT. OB.J i32

, ;··

·; ',,, ~·· ; ,

Glo.bal §ymbo:ls :' · .i

I INPUT. 0·04610-R . ~CDTB \\ 0.04?14;..,R. "$,COTB . 004522:-.R ..

(continued 011 next page)

7-13

USER-MODE I= AND D~SPACE (RSX:--1,lM-PLUS ONLY)

.. Example 7..-1 (Cont:.) ~ap of Overlaid Task MAIN.TSl~

M~IN.TSK~l

, r.,

, ·Memory allocation map ' TKB M40 .10
20-0CT~S2 10:08

Tas~ ·builde:i;- statistics:

.. Total work file references': 13626.
Work file reads: O;.

, . Work file writes: 0.
:.size pE.core 'pool: 51,98• .words'. (20.~ pages}

Size. of work.file:. 4.096 •. words .. (~6 Pages>'.

El~psed, time:OO:OO:l9

Page 5

. Example 7-2 Map of Overlaid .I- and D-Spac~ Task

MAIN ID. TSK; 1 Memory allocation map TKB M40.10
15-0CT-82 11: 51

Task name ••• CBP
Partition name GEN
Identification V00.00
Task UIC [240,l]
Stack limits: 000256 001255 001000 00512.
PRG xfr address: 000744
Task attributes: ID
Total address windows: 4.
Task image size 1184. words, I-Space

704. words, D-Space
Task Address limits: 000000 004413 I-Space

000000 002513 D-Space
R-W disk blk limits: 000002 000014 000013 00011.

MAINID.TSK;l Overlay description:

Base Top Length

000000 002713 002714 01484. I MAIN
000000 002413 002414 01292. D

002714 003263 000350 00232. I INPU.T
002414 002413 000000 00000. D

002714 003007 000074 00060. ·I CALC
002414 002413 000000 00000. D

002714 004413 001500 00832. I ·OUTPUT .
002414 002513 000100 00064. D

7-14

Page .. 1

(continu'ed. on next pa,ge}

l- ANDO..:.SPAC~ (RSX..:.llM-PLUS ONLY)

"
,. Map nf Overlaid .I- and D-Space Task MAINID. TSK

,' \ '.',
,. ,~: '·> •

; ' •• .; ••• > j.< '

Memory· .·allo.ca'tion map TKB M40 .10
. 15~0CT"".'B2 .. 11:51

1iinJt.s.:··.oirnooo.: ... od2iiJ /00;2·7H OH84 . .; 1,..space
· ,' · , P .. O·Qog-o ··oo}~'.1),·op2414 01292. n.,...space

Ob:ClO.o~r dOCl03 ,; 1.,...space
000,003 00003. D-Space

Page 2

fitle !dent File

¥4t;~ '., {R?\D','G~Il;?EJ. !<;o!J)

..i:af..12"' /~A~w,,:o·.:'c;stlRtr/ ·c0N) .•
~' :' ~/ .,<· : x •·; ~; • ./ ;''.~"-i i<o ~ X•f;,"···> 'J· .;;-. . ., I ~

·.~~P~k !·f~w .. ;•'E).; Q~:f"'i:·R~w.1 .ca:N:> .. :

60~·4· .. ~)~~ .. ~:oi~kL.,1z~t :coN)

:.:~'od::/ :·''{,R~/rf;'GBL;;R'E:i,·coN')• ''"

· .rA:~~o.P :: lRwJ:.i · :G~fr :·Rfili.· do~>··:
" ,' , , . \' t I I , I

;~~~·~~: '.•;~.t,~o',::i' /i:cr. /REL;CoN1 <

'.f ~i:~;~~:::j~:::~:::::·.···'
··'.~»#i~Vf;;?(.R;~ .~' t~ i.ci:;·R~t..:,/co·N): >'
~· .. J r:::./,../i' .. ·~.·· ,,:) ;"· · .

<,.

,/~~·9t;>~1 ~.Y~Qqls.:,

· :.909~56 ·o.o04'66' :·003l() ~· .
. 000256 '000250 '00168. · EDDAT

000526. 00'0216 00142. CBTA
ncn2·56 .·000024 00020·.
0012'56 00002'4 00020 • MAIN
0.0~3.02 0000_32 ·00026.
001l02 000032 00026L MAIN
.0·01·334· ·0000/10 00.008.
001334 ,00001.0 00008. MAIN
Obl!44 000234 00156.
Q;Ol.344, 000234 00156. MAIN
001600 000020 00016~
0.01600 000020. 00016. MAIN
00.0000 Ob0140 00096;.
000000 000140 00096~ LIBROT
h~074~ ·000142 00098.
0;0·0144 .'000142 00098 .. MAIN

·.001106:000024 00020 •
. '001106· ooo·o·oo oo·ooo. ovrnR
OO:·U:06'.·00QD.24 .00020 .. ALERR
001620 000034 00028.

- .0011~2 oorio10 ooos6.

03 SYSLIB.OLB;lO
04.3 SYSLIB. OLB; 10

voo.oo MAIN.OBJ;34

voo.oo MAIN.OBJ;34

voo.oo MAIN. OBJ; 34

voo.oo MAIN.OBJ;34

voo.oo MAIN.OBJ;34

03.01 LIBFSO.STB;l

V00.00 MAIN.OBJ;34

01 SYSLIB. OLB; 10
02.00 SYSLIB.OLB;lO

..AA.riri. ,• .6oiis2.-.R. N;.D'rDS 000020
'"ARGBLI(OOH16~B: · N. FAST OOOOT.3

$CBDAT 000526-R $TIM 000402-R

~') "; o, ~

>> ·,~ i

MA'INID.TSK; 1
INPUT

$CBDMG 000534-R $VEXT 000056

Memory allocation map TKB M40.10
15-0CT-82 11: 51

7-15

Page 4

{continued on next page)

Ex~mple 7-2 (Cont.) Map of Overl~id I- arid D~Spa~e Task MAINID.TgK

*•~.segment: INPUT

R/W mem. limits: 002:714 00326.3
002414 00241,3

Diskblk limits: 000010 000010
000011 000011

· Memo~y allocation synopsis:

Section'

• BLK~': ('RW,l,.LCL',REL,CON)

INPUT .: {RO·, I, LCL, REL., CON)

$$ALVO·: (RO, o, Let., REL ~CON)
$$ALVI: (RO, !,LCL,REL,CON)
$$RTS : (RO, I ,GBL r REL,OVR)
$$SLVC: (RO, I 1 LCL, REL ,C()N)

Global symbols:

000350 00232. !.;,.Space
·000000 00000. · D..;.Space

000001 00001. I-Space
000000 000.00. 0.-Space

INPUT 003010-R $CDTB 002714-R $COTB 002722-R

MAINID. TSK; l
CALC

Memory allocation map TKB M40.10
15-0CT-82 11:51

*** Task builder statistics:

Total work file references: 13920.
Work file reads: o.
Work file writes: o.
Size of core pool: 5010. words (19. pages)
Size of work file: 4096. words (16. pages)

Elapsed time:00:00:28

7-16

Page 5

. CHAPTER 8

·.s.UPERVISOR-MODE LIBRARIES (RSX7llM-PL:US ONLY}

·.~···s\.lp~rvl~ot~mode library is a. resideirt'library "!;hat'· d.qubles· ·.a· " ri.~ .. e:r;
ta$k~s virtual addr-ess ··space· .bY. mapping the ins.truction· space· ;of, t;he"'

· .. processor·'s supervisor mode. Supe.rvisor-mode libraries·. are. availa.ble
(,mly. on ~SX-.llM.,,;PLUS s:l"stems :r'unning on l'DP.:..11/44s ·and PDP-'"l1/70s .. ·

,'' ,,· , ,/ '>

8' .. 1· .INTRODUCTION·

·A call ·from within a user task to a .. subr.outine . within .. ~·
. supe·rv iso:r:--mode · 1i brar;y causes the processor ·to switch from us.er . to.
supervisor 'mode. The user task transfers control ··to 'a mode·:..swit:chin'{;J
vector that TKB includes wi,.thin the task. The ,.mo.de-switching ·vectqr
performs. the ·mode switch and. then . transfers control to . the· ·ca'lled
subroutine· within the supervisor-mode library. The library routine
exe.cutes .wi.th the processor in supervisor ·mode. .. When . the . libreirY
routine. finishes . exec'uting, it transfers control . to a completion
.routine withi(l .the. library •.. The· completion routine. mode. switches ... t.he
. processor back ... to us .. e·r mode.·· The us.er· task· ·continues executihg with .
. the processor in use.r m.ode at the return address on the stack~ Thi.s
process r.ecurs . 'whepever the .. u.se't 'task .. calls a subr9u,:t:.ine in \he
supervisor:..mod'e library •

.. ·In,·~ ·task 'that. links:,~~'?'. ~upervi"sor-:-mode' .. ,~f·brary, TKa· :. in.eludes .. ~,
:~ 7yii.o.rd, '.. ;mod~-switchi'ng . 'vector in .the usei;: t:'a,sk' s address · g,pa:ce fo'r·
~ach entry point ~efer~nced .of. a subroU:tiqe in, t,h.e 1ib~ary.· .

Th·e follo~ing shows the contents of a mode.:..swi tching vector:

MOV #COMPLETION-ROUTINE, - {SP)·
CSM #SUPERVISOR-MODE--ROU~INE ADDRESS

NOTE

When mode switching from user to
supervisor mode, all registers of the
referencing task are preserved. All
condition codes in the PS saved on the
.stack are cleared and must be restored
by the completion routine.

8-1

·LIBRARIES . (RSX...;.llM-PLUS ONLY.)
' ,, 1 " * ~ '

<~ ,; ,; ;- \

,1i;·b~·r: .. '/the·:: . subr6utJPec .. , fi.tlishes · .· exe9uting ," .its', ·. RE'TORN ','statement
/~H:.<:fos·fEe.r:s· ... ·con'tr;:ol, to a. co;mpl'.etfon ·r.ou.Hn.e· <tha't.·mo'de~switche.s.· .. ·from the
t~:upkir.~:~~or:'.::t,p :i1~e,·i;·,· ·mode .. ~:· .. /.·Tl:i~ · :··:·bQmJ?le.t:~9n· :'r911~ine,· · 'r·etu(,ns, ·pro9·ram
:co·n.trp.l :oacK.·•fo:'.the. ref,:ere·n'cin9· ·.ta:S.J(,a:t/~.he.· instr\1ct·iori, ·after'.the Ci:ill
;:·~'<>./the. ·,~u~.rJ);uti.'n'EF.~ ,· T't;i~i:e :~.~E{ two i compl,.e.~ion:,·.,rouq.ri~s: i'ri' sysLrB::

/..:hE~:.::/.· :e""·"···$·~~~b~:::r,es,f~~·~s . .'~~:1·~ ·the, ~a~iy ·.bit'.'.i.n .:eh~·.us~~;·mode·"Ps·.
~~~}'~lA~~ ~9 !' ¢~ i~i ~/,~~~. '¢0~ ;;~~ o~ ,b~. 11 t'~ • fn·:·: t~.e. .. Use~'"m6d i 

I .... '·:' •• :·,/: i i i . · .. ·· ' • : ' i .·· .'' . • • . '• '.· .. • ,: 

·~~~· .·~.~:Pifr~~iO~:~ .'T~ · co~TIDITS' or ·S?.~~~i~~LHoDPl' "L1~RAR1Es 
'.~· ',f01'.1o~i~·., ·~e~f.i;lcti.i>ii~·,·. . . . . . . . . c&n.ten:ts · 
·.:~\'.!per:<i;f$or· .... moa'e·· .:J.~.orar.y·; , ··.. , · ·· 
f: ,:· ;: ·: :'), ;' : ·\., ;; '.~' . , .' i .. '" ) .: ,' >,' ,· / :\ ·' ;::' '~ I~,, 

• ,:/,on1y · s&hrol:itines . ~~ing. t.he· "f·orro/ 
·' ,'w;i:th.i)i .... the~ :Ubra"~i ... "· · 

~· ; 

should 'be· used. 

' The Ubra·r·y must· not .contaih· s~h;routines ·that use the stack to 
• ipa$S ·"parameters. 

If·. bot:h the library and the referencing task link to a 
su•oroutine ·· from SYSLIBi then the . entry point name of the 

·subroutine must be excluded from the .STB file for the 
librar .. y. 

• Unless you include the MSDS$ directive within the library, the 
librar'y must not contain data of any kind (even R/O) because 
the user supervisor D-space APRs map the user task by default. 
This includes user data, buffers, I/O status blocks, and 
directive parameter blocks (only the $S directive form can be 
used, because the DPB for this form is pushed onto the user 
stack at run time). 

Using the Map Supervisor D-space Executive Directive (MSDS$), 
the library can map data within the instruction space of the 
supe~visor-mode library by using the supervisor D-space APRs. 
The directive . maps specific supervisor D-space. APRs to 
supervisor instruction space by copying the supervisor I-space 
AP.Rs that map the data portion of the library. Ta effectively 
cont~in data within a superv~sor-mode library, you must know 
~h'ich APRs map· the data por.tions of your task and library. 

NOTE 

· " · You 'canno:t: use. t1SDS$ t9 map:· . superv i soi; 
, D~sp~ce APR .o. ' Mapping 'libra .. ry· data and 
·the ·user .task,. s'imultaneously' should be· 
d.one with }3X tr.eme ca re ..• · . Se~ .. tJ'on 5 • 3 • 4 .~ 2 
of · the ·, · RSX-.ll,.MfM•PLUS · Executive · 
Re.f'erence .. · Maniial .• "9@.scusses the MSDS$ : 
directive~n ~eta~1~J · · 

8-2 



, suE:E'Rvisn'R...:!itoo&:,iErsMR1!E~~,,', 

·:~:e~=~::::~~;~~:~:i¥.t!,ixwi .. ~~··~~~~••·~uW~1rA&~· .. ·· f~~p~;~j.· ... ·A: 
Supervisor :D..:space' ,:]\J?,Rs,, ··. ,can'.,;':Il1ap /.,.:·the""'.'user,, ,J.a·s'k 1 : .• ;,d.a~~.:··wltbin",.tpe, 
libr.ary, .. or J),~.th ·th.~:: "US~F.·,ta.$k•:, .. ~,,qa, .. ti:tir~1fy:·:aa.t;:a:',·'s,i.~ul,·~·a·r~9.uf3:i'.~/z'/ ':: ::~·ile'y· ::: ::;~:!::~~;~~:c:r~::;~~n i>~/;' ·~ai~ii . . . . . ' . . ,, . .. . ,• 
~hether·,th,e ,1·1.,bl:".:;iiy···c·o'otai:n.f?: :aAt:~·.". , : · ·"'.· 

' .. > ~<' <: •i., '· .,, ~: ,.; ' ;:;, ' , .. ' ~'.., 1 ,:: (. ,/ ,: :h _,-· <'/ ;:.: -~; ~· 

,sµ:P7~,y1s~k IJ~.sw,ac~·/r{~~~:·r:~~~/"S·Qf>F¢.s,: 
entire: . us'e·r: :>task;;",.··· .. 1.1hl::;;·:9,1:ve&:··,,:t 

uSe~ .t;as~ ~ ~+1.ll!~/7}-': (1~.u!ff J!/ 
~ } 

APR~··.a·r~ •. "·qo·p·re's .'/.of',' ,",the:·,·.<":u·serr.·' .u.: · · · .. ·e ···/~·PRs:.; ," :;·1ac/]Ar~:i:.n~F .;'the:,:· 
E~ecutiv·e"./,,q:ir,:e<tti,:J.e'/('$·.e~· . · · tio,tr : < . J" "w.~.A:'b,1,:ii" .. · · ·}l),i:~~"r:YJ 'ri 
.t .. J:re· 'r±l:>;tq_,ryt' .t6tina·f> :::aa;ta·:~"!1'fft: . ~ .. ·/?ts~: /6·\4n}}:in~itt,~;qt:J:. . .·· .. ·· .· ".,i?,C:~· ~, 
'task . m,a,"y: · ,),·e,,::,,· ~Ef·~i1\~el?,~.4;~"x/ .. '.~~·~'·/ ~:~r:,i'.·!;ia'~·/ ... e,c:¢~,s.~::)~Q/~~.t.:l;t/~ . /:n,·::.l,,· )i" 
iristruct1·9·!f .. ~pace,.:·.ad·&;·t.o;rBa:t:'a./Jn: .. ,:.:u?e.if.J't::a'eJt.::'1\;tii;l.~?'/i~;.;'tic:ftFJf~;u;efrn\~1ipe,a:: 
by the MSUS.$.: ,«~d"·i;7,G£.i,,y~'i<,..: . . " . :' :·, , :· ,:'///' "' .. 

Figure aC:2.} (f~lli~~~.;;{. ~~i'S, ~~~~~~ .. ~,: 
"' 

8-3 



PHYSICAL 
VIRTUAL AP Rs MEMORY 

ADDRESS 

!a 
l 256K SPACE l 32K-USER 

OK UN~0 D-SPACE 

en 
c:. 

32K 24K "' 24K 
USER t:IJ 

USER l:O TASK < I-SPACE 
USEFl 1-1 

TASK en 
0 
l:O 

OK I 
3 
0 
0 
t:IJ 

C"1 
1-1 
o:i 

32K l:O 
~ 

00 24K l:O 
I SUPERVISOR 

1-1 
,i::-, USER tel 

D-SPACE TASK en 
(COPIED) 

16K :;o 
OK SUPERVISOR en 

LIBRARY :>< 
32K I ..... 

..... 
SUPERVISOR 3 

I-SPACE 16K I 

"' 
LIBRAIW 30K r1 

c: 
OK en 

T TOK 

0 z 
C"1 
to< 

APR MAPPING 

USER D-SPACE UNUSED 
USER I-SPACE 0-5 map entire user task 
SUPERVISOR D-SPACE 0-5 map entire user task 
SUPERVISOR I-SPACE 0-3 map library 

ZK-439-81 

Figure 8-1 Mapping of a 24K Conventional User Task That Links .to a 
16K Supervisor-Mode Library 



co 
I 

U1 

USER 
D-SPACE 

USER 
I-SPACE 

SUPERVISOR 
D-SPACE 

SUPERVISOR 
11-SPACE 

VIRTUAL 
ADDRESS 

SPACE 32K-
OK~ 

32K 

20K 

12K 

SK 

OK 

32K 

12K 

SK - - -
INSTRUCTIONS 

OK 

USER D-SPACE 
USER I-SPACE 
SUPERVISOR D-SPACE 

SUPERVISOR I-SPACE 

AP Rs 

!SJ 

APR MAPPING 

UNUSED 
0-4 map entire user task 
0-1 and 3-4 map user task 
2 remapped to supervisor data using MSDS$ 
0-2 map library 

PHYSICAL 
MEMORY 

~ ~256K 

SK 20K 
4K USER 

·r-------~""f SK TASK 

4K 12K 

SK 
SUPERVISOR 

LIBRARY 

30K 

1 _JOK 

ZK-440-81 



32K 

USER 16K 
D-SPACE 

OK 

32K 

USER 24K 

I-SPACE 

OK 

32K 

00 
I 

°' SUPERVISOR 
16K 

D-SPACE 

OK 

32K 

SUPERVISOR 
I-SPACE 

BK 

OK 

PHYSICAL 
AP Rs MEMORY 

I 1 
USER 
DATA 

----
USER 

INSTRUCTIONS 

USER 
INSTRUCTIONS 

APR MAPPING 

USER D-SPACE 
USER I-SPACE 
SUPERVISOR D-SPACE 
SUPERVISOR I-SPACE 

0-3 map user data 
0-5 map user instructions 
0-3 map user data 
0-1 map library 

Figure 8-3. Mapping of a 40K I- and D-Space ~ask ~fi~tjLlhks­
to an BK Supervisor-Mode Library 

256K 

16K 

40K 
I- and D-

USER 

24K 
TASK 

30K 

8K 
SUPERVISOR 

LIBRARY 

ZK-1105-82 



LI:BRAQl>E~ . ·'(ris~:-"1.'.iM~PLtls.: .. ~bt.Jr,;l'f ·. ,; . 
; >;; . ~· I i ~·' ' > _; ~ .j ,:" i ;, 

:a~.6·: .BOILDiNci:iND LINKING TO SUPERVISOR-MODE IJIBRARIES· 
h ~ ~ ' , • :' ,, 

.Btriltl.ing and 1 in.king to'· a supervis:or_;mode,· llbrary fs·· essentially the, 

.same . as . ·b~i lding .. and <1 i,n.ki, n.~~l. · ,;t() •. ' ~ .. ~11v.~nt,.i9nal resi&ent llbrar·y· 
(dfscus~ed in Chapter; . 5) •. When you ouild,' a ..... super.vi.sor~rriode Hbrar.;t, 
you suppress · the .. header · by . a;t:bac.hJng· /-..HI? to the ·tas.k ·imag·e file.!' 
'During option ·input, . you . suppre.ss the· ,·stack. area . by . specifying··. 
·: .. S.'l'ACJ<=O •.. ,,,jou speciJ:y tJ1e pai.tit.i()n in wb'tch.·th~ libr~l:'Y .Js tc) r~sid~'.· 
',arid,· qptiona}ly, tne .. base address··an&.1en9th of· tt1e· ·library with· the' 
~AR.option.~ .. : · · · · · · · · · · · 

. . . 
' ,, .l.,.,· ' ' 

.. · ~BL~qi;,·. · .Ex,cludes .. a:.globatl,,synl'pol tram the .• S'l'~ :.file 
'of the superV;isor,:...mode .library. . . • . . . . .. 

; ~' , ~ ,. > ~ ;,~ ,' ,;<< ~, <, '':>' ' »" , ; , <$ l ' ;· <~ > '· 'i ,' ~ ;.= ~· ,,· <:;:· ,, i; ,, ., 

Whe~e ··PP.tJ~ris ai.~ ~iscu~sea, btier1i· ... :b~·~'o~·i',:apa, .. ·~17e'. ·~.~l~·}r.·.~~s~~·~nt.ea'.: .in·· 
Chapter 11. 
:./ 0 ' 

; '<> h ~. ;< 

8 •. 6. 2 Buil~Hng. t.he ·L,ibrp.ry 
, ·' ,, • '. < ~ i ..,., ~ , ,., ~ ,~~-. ,< • ,/' o.' ~/ .'" ~,,, ' ~ ' ~ 

.You .. fndica.t·e ·~o· the ., .Task· . ~~i:r<l.e.r. :tha.t:: ·, Y~.u .. ·.a.~~.· .. · .. bdfra·ing. a: 
superyis,or~mode. ,;lib.rar,:y wit;h ·the. CMP;RT o'ption ..... ".·'l'he ,.a:i;:g.ume.nt: for. thi~ 
9pt ~·on .. • .~de.n:~±·ti~s· .. ~h~:·.,~r1tr.y:·.:·st!I\l.l9l /'.()~ ·~he.·.(·q()~r:>::le'fi·?p::· ./·J:<:>Ji~.i:rl:~·: / .. wfien 
i:tt.e''. ":Task'·:/s·~1:·1c1·er> .. ·.pi<lcel~se,s··.::'.".·~~·?.~i ... /,.op{?f(>.n.'/: ... :··~.t::·Ji~a'~~·$i:'.·tYi·~ ... ~ .. oJtiE.Ie:~4·~!l; 

·r:0J:ItJ.ne .entry"'point . .in )th.e .. Hbr.aryJJ; '.qTl3'.<f:i.J/e ..... /Tio· ·~}C~lua~. ,' .·a...-J.gl.·ob~f 
sym°'91.: fr()rrt'.:· ~ne: / ilbj:·~r.y:~s· ·····~.s·'l'~····.·f!~~·~:,,.·:·\·~,.o~u<,.S:P~:c}·~i· ~f)~'.··.I'l~?1~ .. ':a.i;··::4:·he. 
'gl.o.p~l"5:ymbo;I .. · ap o,t:h~· ~rgumefrt .9~·, .. tl1~.···9sµ)~.¢·~· :.oP~iPh,·•':· . ·~<iu'.mci~·~ ·'::~.xclua~ 
froIP· .the::· ... STB ·'q:l.$·" .<>~· ·a· .. sup·er..v'i;s,0~7m.oa·~.··.1·ibr.a.,i,'.Y :'.pny::s·ym.hoi·::defined" :ln 
t:fa·~ .. :·Hhra·ry .... tha:t.;'.r·ep.r¢'s·e11t:~ ... ~:'rie":fo·llqw1ng .. ~' .. /: ::'.,, .. · . .: ..... > .... ·,,/,.·"· · .. · · ·. · ...... ··· 
,:>' ·,,'~.::·.,·/ ... :'·' '·.,,"; """ ';~"'.·'"~"" "", ' '", \ ,,,~ /.$.,i ~-" :-, << < ~-,~" ,-.,.,;',· 

.•.. An· entry point/to .a s9bt'6 .. uti'ne· th~t'.<u~·~$··"'. ... fhe· ·~t~9k0: to .. : pa's·~' 
parame.ter.s · · 

~ -<-- .o("'' .,' ·---- . ,, , ' 

• An entry poi,nt to. a subroutine .rp.ai~ped·' t~· user mode that 'the 
~e~erencing u$er task .. calls 

8. 6. 3 Building the Referencing· Task 

When you build a task that references a supervisor-mode library, use 
the RESSUP option if you are referencing a user-owned, supervisor-mode 
library and SUPLIB if you are referencing a system-owned, 
supervisor-mode library. (Like the RESLIB and LIBR options for 
linking to conventional libraries, RESSUP and SOPLIB are . functionally 
the same.) The arguments for these options are: 

• The filespec {R.ESSUP option) or name (SUPLIB) of· the library 
to be referenced 

8-7 



SUPERViSOR-MOOE LIBRARIES {RSX-llM-PLUS ONLY) 

• A· switch that tells TKB .whether 'to use system-supplied vectors 
to perform mode switching from user to supervisor .mode. 

e .For position-independent libraries, the first available 
supervisor-mode I-:space APR that yo.u want. to map t.he 1ib;rary. 

8.6.4 Mode Switching Instruction 

Mode switching occurs with' a new instruction available' on, the .11/44. 
arid emulated by .the Ex.ecutive on the. 11/70. Througho.ut the rema.inder; 
of the chapter, supervisor-mode libraries are ·referred· t:o . as, CSM 
(change supervisor mode) libr~ries ~ 

8.7 CSM LIBRARIES 

This section discusses how ~o~ build and lirik to 'csM libraries. It 
also shows an extended example of buildi.ng and linking to a CSM 
library and explains the context-switching vectors ·and' completion 
routines for CSM libraries. 

8.7.1 Building a CSM Library 

You indicate to the Task Builder that you are building a CSM library 
by specifying the name of the completion routine as the argument for 
the CMPRT option. This option places the name of the completion 
routine into the library's .STB file. Link the completion routine, 
either $CMPAL or $CMPCS, located in LB: [l,2]SYSLIB.OLB, as the first 
input file. Although the completion routines are located in SYSLIB 
(which is ordinarily referenced by default), you must explicitly 
indicate it and link it as the first input file. You must also 
specify in the PAR option a 0 base for the partition in which the 
library will reside. These two steps locate the completion routine at 
virtual 0 of the library's virtual address space. 

You specify the name of any global symbols that you would like to 
exclude from the library's .STB file as the argument to the GBLXCL 
option. You must exclude from th.e .STB file of a supervisor-mode 
library any symbol defined in the library that represents the 
following: 

• An entry point to a subroutine that uses the stack to pass 
parameters 

• An entry point to a subroutine mapped in user mode that the 
referencing user task calls 

A sample TKB sequence for building a CSM library in UFD [30'1,551 on 
SY: follows: · · 

TKB>CSM/-HD/LI/PI,CSM/MA,CSM= . 
TKB>LB: [[1,2]] SYSLIB/LB:CMPAL,SY: [ [301,55] ]CSM 
TKB>/ 
Enter Options: 
TKB>STACK=O 
TKB>PAR=GEN:-0:2000 

·TKB>CMPRT=$CMPCS 
TKB>GBLXCL=$SAVAL 
TKB>// 

8-8 



,Th~ :library is buil't without, a 'header Oi , ~tack, .. like, ali 
regions. . It is position. independent' and, has only one ·pr,a<}ram' 

·n,amed ·.ABS·. , The '/LI switch · accomplishes th.Ls,, eliminating 
section name conflicts between, the library )md ,the referencing 
~ .. , ' . . , . ' ,. "' . , . . ,, , 

·The completion.· ·routine.module of. ·SYSLIB,'··CMPAL,. .. is specified .. first· in 
the input line. The library will run· in par'tition GEN at o and. is. not 
more 'than lK. These are · two aspects of building su'pervisor--mode 
:libraries' specific to CSM"libraries: . the completion routine must .. be 
linked. first, and must reside at virtual. O. Why' the CSM library must . 

. ·reside ,at virtual· 0 is discussed in Section $.8.5. · 
~ ,, '\; ' • • ~ ' " " • ', • ' • ' "'" " " < • " •• " • ' • ' • "I' . : '". > • ~ ' " ; ' • ·; 

. . . . ' 

The. C.MPRT option specifies the global. ·symbol $CMJ?CS; which is· ·:th€?' 
.entry point: .. of: the co@p1et..iori r·ou.tine •.. No'~e·Jiha~ the. SYSLIB m0du1.e:· 
n~me is ''CMPCS" and its• corresponding global. symbol is 0 $CMPCS 0

• 

The·:· GBLXCL op'ttcm excl~des' $.S.AVAL ·'from th~' 11;b,raryl,5' .:pT.B :ffle.' bec~u'~e' 
.~})~· user· task {'C\ust 'reference. a 'copy· of" '$$AYAL· "tha:t. }s "mapp~d. 'wi t;h :us.ej:", 
'~m~4.e; A_~RS • ,-< , <~ i,. \< 

,'If your 'task links' to· a use·r-owned CSM libr .. ary·, .you us.e . the RE$SiJP 
,'opt:ton: If your task links to a system-owned CSM library, .you, ~se.' t;he<: 
·SUPLIB option. These options tell TKB tha't the "task will' : lfnk" fo' .. :a, 
,·super.vis,or-mode 1Ibr·a·r~... ~Th~ ·apt:ton. t:ake~ .. :.·'1:P ·,fo:tpree· ~.rg.u~ent;s; 

• The fi lespe.c .(RESSUP.. op{io.n) or .name (StJPLIB opt,ioh) <. of. the 
. l.ibr.ary · 

··,.,:A:,swit.ch· .. that'.· te11s'.· ... the .·.Tas·k, ··.B11ild.er, .·whether 
system-supplied, mode:-swi.tching vecto'r"~ · · 

• ·Fo.r. 'position-independent lihrar.ies., ·an "AJ?R· that: must be. ~PR a· 
'so" tha:t th(=!' ,library's comp1i::tion., ro,utine: is ·mapped a,t 'v.ir:tual. 

',,,, Q,.~<· ,. .,~. 

,'th'i:s Jtifor@~tion.··:etj~9le§:"'the,'.J;a'~,~ ~~i~:{l~.r· ,t,<?,' ~~~~ .•. ~t~1~ ' .. ··.ST~ .. ·· ~ .. il.~' .. • fo':t' 
1
the · CSM . library, .. include a :A-wo·ra.~ niode.~sw.1t.ch1ng vectqr· within ':·the'' 

· ~s~r, ,ta~k. for; each.· Ceil.1 tp a.' ':subroufan'e·. 'Within.·· th~ "~·~b.rary,." "a,nt'.( 
: .. correctly map the library' at ·~irt\}al' ·o· in:·,the hbrar·y fnia·g.e.,<· 

. Th.e . ~allowing sample task:..;build. ,command,s;equen~e builds a... task , n'ame·d. 
REF, .. which references the library SUPER that: you built in' 'the "previous' 
,section .. : 

TKB>RE.F.1 REF= REF 
TKB>/ 
Enter Options: 
TKB>RESSUP=SUPER/SV:O 
TKB>// 

This sequence tells TKB to include in the logical address space of REF 
a user-owned, supervisor-mode library named SUPER. TKB will include a 
4-word mode switching vector within the user task for each call to a 
subroutine within the. library. T.he CSM library is position 
independent and will be mapped with APR O. 

8-9 



; o' "'I: < « 

, <,,d •. < 

,.g .• ,-f • .3 ... Ex;ainp~;e; (!'SM.·Li:brar;Y ;anq ;.~jpki.ng· ·T·ask . 

. ThJs· ··~~Cill'lt'J~ shows; y~u<the. q()('.]~ ,' maps,. and . TKJ;l QQmm.~nd .. sequences fo.r 
pui:.lding · an:d. U'.nking.·. ·to· .. a '. .:CSM J ib,:r:;ary.that ·contains: no .?.ata in ·a 

.• :S~s·tem' .not·:':l~avi'hg 1 JJ$f3«t:' .·.cla.t(i'·;spa9e.+· 'E.X.;am~1e: 8....:1.·sho~s··the :90de ·for. ;the 

.. i:fl)d~i;y: :·$0PER:,.'.· :: ; a·:nd: . . :. E.xaropJ;'e, '8-2 shows.· ·:1ts .accompanyJ ng map.• Example 
'87·3; sMows< th:e,:);oqe. for ··th,e. comple.tiort .ro·ut·i'.nia\ .$CMPq5 th!a·~. ~s 'linked·.· ~n · 
.:t;o'.IStJ:BERf :·f·~~m .. S¥SLIJ~.::· '.';E~ampl:Et a:...,4··s:h6ws ;~Jj~ · co·a~·~ ::for·.r·efetencfog. task 
:T~OP .; . ;°a;hq :·Jft~ amp~;e · 8..;. 5 , sbo;W.s: ~H::S, :·a99.u·mpa t1 Y<:i. ng :ma·p • · ... · . · 

:, ~ '.~~ ~,,,t :' j:~ <' ~ ~ ~ >;l o, o, t < • 4 ,;' -~ ;,:,}, +: 

·20$: 

30$ .. : 

40$: 

TST 
CMP 
BLE 

··Mov 
. MOV 

MOV 

DEC 
BGE 
DEC 
BLE 
TST 
BR 

RETURN 

SEARCH:: 
CALL 
CMP 
BNE. 
MOV. 
MOV 

:.1"!0Y' 
MOV 
BEQ 
·MOV• 
M:OV 

$·sA.viri' :' 
{R5f+Y · . 
. (RS) :+"RO' 
(RSJ+:;,.R4 .. 
(R4} ,R4. · 
4:0$ i. 
RO,RS . 
R4. 

(RO)+ 
(RS) , (RO) 
30$ 
(R5),R2 
{RO), (RS) 
R2., (RO) 

R3 
20$ 
R4 
40$ 
(RS)+ 
10$ 

$SA VAL 
#4,(RS)+ 
20$ 
(RS).i;:,RO 
(R5)+, Ri 

. (R5)+·,R2 
.· (R2) i,R2 
20$ 
(RS·).,·~·5 
R2,R3 . 

; 

' SAVE:.. J\LJ:.:. }RiG i'~:'.J:'E~~ . · .•. · .. . : . 
. ~~~.\g;;:~S~?.~~E~i~~, M~AUMENTS ·. 
GET· ·ADDRESS: :op LENGTH .OF tiI ST 
GE.;:£' 'LENGTH .:OF 'LIST 
I.F. No.: ARGgt:iENTS . 

; COPY 
COPY LENGTH OF LIST 

MOVE POINTER• TO NEXT ITEM 
;. COMPARE ITEMS 

IF LE IN CORRECT ORDER 
SWAP ITEMS 

DECREMENT LOOP COUNT 
IF NE .LOOP 
DECREMENT 
IF EQ SORT COMPLETED 
GET .POINTER TO NEXT ITEM TO BE COMPARED 

SAVE ALL THE REGISTERS 
FOUR ARGUMENTS? 
,IF NE 1NO 
GET ADDRESS OF. NUMBER TO LOCATE 

; ADDRESS OF LIST SEARCHING 
GET ADDRESS OF LENGTH OF 'LIST 
GET'GENGTH OF LIST 
.IF NP ~RGUMENTS 

' ; ·ADDRESS OF .RETURNED VALUE . 
. ; COPY' LENGTH 

;.· .J:s• . T:Hr.S:· .. THE NUMBER? .. 
I;F: EQ. l#~ . 

i IE' MI;. iNtJMBE.R NO.T .. THERE 
DECRiFMENT LOOP COUNT 
J:f; tfE'NC)T AT END, OF .J:..lST 

(continued .o.n 11~xt page) 

8-10 



; so:eERvr'SoR..:.Moo:E'. ::r;t~aARl::ss ,' < Rs:x:t1M~:PttiEf :' oit..,t.J',,, 

. ' ..... :: ;' ::· / ~i~:·.1·q~~t:i ,.~o~~-;~~·i)h~~~?f · .· • 

***, 'i'<ls'k b,uf1de,t ,is,ta,ti,sHc~: ,' 
To'ta1 work fi l'~' re~e'r:enc,es';, ::320 f , 

, Work , ~ile , rea9s :« ,,0., 
Wotk file writes: 0. 
Si,,ze of cor~ ,pool: 6988., words ,'(27. page$) 
Size of work file:, 1024,. words (4~ pages) , 

Elapsed time~00:00:04 

8-11 



; 

SOPER'V!SOR-MODE LIBRARIES (RSX-llM-PLUS ONLY) 

.Example ·a-3. Completion Routine, $CMPCS, from SYSLIB.OLD 

.TITLE CMPAL 
·.WENT · /OW4/ 

, COPYRIGHT· (c) · .1983 BY 
'D.IG:J:TAL EQUIPMENT CORPORA'l'IOW~ MAYNARD 
~.ASSACHUSETTS. ALL RIGHTS RESERVED• 

< 'i' 
·i. THIS SOFTWARE . IS FURNISHED 'UNDER· A' LICENSE AND MAY BE USED 

ANO COPIED .. ONLY IN ACCORDANCE WITH THE TERMS OF SUCH. LICENSE 
·. i AND· WITH . THE INCLUSION OF THE AB~)VE COFYRIGHT. NOTICE. THIS 
;'·SOFTWARE· OR .. ANYO'.I'H:SR. COPIES THEREOF,. MAY NOT BE. PROVIDED OR· 

. . i. OTHERW.ISE MADE 'AVAILABLE ·TO ANY. OTHER PE.RSON'. NO TITLE T9. AND 
·; 0WNERSHIJ?. o:E'. THE SOfTWARE rs' ,·~rn·RtBY. TRANSFER·ED.. .. . ' . 

i 

THE INFORMATION IN "rHIS DOCUME.NT :rs SUBJECT.· 'To CHANGE WITHOUT 
'NO'l'ICE AND SHOULD. NOT.BE CoNSTR,U'E'D,AS A 'COMMITMENT BY DIGITAL 
EQUIPMENT .. CORPORATION .. 

DIGJTAL ASSUMES NO R:ESPONSIBILITiY. lFOR THE .USE OR RELIABILITY OF 
; . ITS $OF1!WARE ON EQUIPMENT. THAT IS :NOT SUPPLIED. BY DIGITAL • 

• ENABL LC 

This module supports the "new" transfer vector format generated by 
the taskbuilder for entering super. mode libraries. This format 
optimized for speed and size and supports user data space tasks. 

The CSM dispatcher routine and the standard completion routines, 
$CMPAL and $CMPCS are included in this module due to the close 
interaction between them. 

**-CSM Dispatcher-Dispatch CSM ent~y 

This module must be linked at virtual zero in the supervisor mode 
library. It is entered via a four word transfer vector of the form: 

MOV #completion-routine, .... (SP) 
CSM ifroutine · · 

Note: Immediate mode emulation of the CSM instruction is required 
in the executive. 

The CSM instruction transfers control to the·address contained in 
superv;i.sor mode virtual 10. · At. this point the stack is the following: 

{SP) 
2 (SP) 
4{SP) 
6{SP) 

10 (SP) 

routine address . 
PC ·(past end of t'ran:sfer vector) 
PS with condition; codes cleared 
Completion-rout~file :atidress 
Return address · · · · 11 

8-12 

(continued on next page) 



'Example 8-3 {Corit •. ) <;:ompletiori Roµ~lne,, '$CMPCS, ;from SYSLtB.OLD' 

A routine address of O,is special cased to support return to 
;· supervisor mode from a user mode debugging aid (ODT}. In this case 
'i 'sta·ck is the foll.owing: 

'(SP) 
2 (SP) 
4 (SP) 
6(SP) 

10 (SP) 

zero 
PC from CSM to. be di.scarded 
PS from CSMto he .discarded 
Super mode·Pc ·supplied by debugger 
Super ~ode· PS 'supplied by debugger 

.,~,To· allow p()~'it:ior:Hng at V·irt'ua!' zero,' this·' code must be in .the blank. 
(, ·l?S'ECT whi~h i's :fii:st in the TKBs PSECT orde:ting. ' .... 

• ·PSECT 
.'ENAJ3L, .LSB 

' ' 

/.rkbug~~·r irett.lbn tQ' supe~· .mqd'e entry.•' Must S:tarb: ~~:·.·vir;tual zero 
>;". , • • < > » ; ~ ; .; ~-· .. ,, 

(S.P;) +,(SP).+ ()ff' .. pS.' .and PC ·from ,'CSM. 

'• ' ' ,, . . ' 

; :Tl'l.is en:try poJnt 'performs the. neqessary stack m<lnagement' to allow· 
· , :';:an RTf 'fr.om .:s:uper mode 'to elth:er supe:t; mode· or· us.er 'mode., 

'The, :is as req.l.lired . for an RTi: · 

·".(SP}, 
2'(SP). 

$SRT! : : . TST 
,BR 

' Super . mo.de. ·PC · 
Supe,r. mode Ps .. ·, 

2,(SP) 
.70$, 

Returning to:usei;- mode? 
; Join common code 

'• ·~.· ,CSM tra'.nsfer ~ddtess:, thi's' word must .·be' at virtual Yo in super m6de 

. ' c'sMSVR: MOV' 
:·.JMP: 

6. (SP) .. ; i(SP) 
@(SP)+,: . 

· ·CSM dfspat~her· entry 

,; , Set cq.rripletioh ro,qt'ioe addres.s for. RETURN,. 
' ; Trans.fer-' to<supe+ mo,d:e · l,il:?rary' r·out;ine 

;: ~ ,, « , , > < ;,, ,; ~·· ' •• '· : ./~ ·' , • ' , ) < 

~= .> .. :. ~· ·~." ~,r :· ·., ,; ' ,, '· ~- ,, .', ~ o;, .· ,:', .. , ~ .,·; '} . . ., ' .' ? ' ,, . , ,,, ,' . .' ., .· ,)" . ,: . ;~· , : .: 

:; ~)*:-:$CM~~L-7Corpp1e~i«>p.:. r9'uti?~· 541:f.ich' ;·s~ts; .-·up. NZ.'\l'C ·~n F~·e .. ps 
; ''.> ;'· I• ;· I V ' > • ' < o ' , , , 

,, ;/~o.Py".a;tl c'ondit.i·9ri .cfJd~~··t?·~ta¢,ked ~s'. · current stac~: ,_, r 
·• , ' ,(Sl?) 

2 (SP) 
. 4 (SP) 

'$CMPAL: :BPL 
BNE 
BVC 
BIS· 
BR 

10$: BIS 
BR 

PS .. with· co"n¢iti6tt ,.:codes· .cl .. eared . · 
CornpletLoi).. ·routine address (to be discarded), 

· Returh address" . 

40$ 
20$ ; 
10$ ' 
#16, (SP) ;· Set NZV 
$CMPCS 
H4, (SP) Set NZ 
$CM PCS 

(continuea on next page) 

8-13 



: SUPERVISOR-MODE LIBRARIES (RSX-UM-PLUS ONLY) 

. Example 8-3 ( c'ont.) . Completion Routine, $CMPC$,· from SYSLIB. OLD 

~0$: BVC 30$ 
BIS t12, (SP) Se.t NV 
BR $CMPCS· 

30$: B:IS. J,10, (SP) .i,,, Set N 
BR $,CM.PC$ 

:4Q$: BN.E 6.0$ ) 
· BVC'/ SO$ ; 

BlS #'6, (SP), ; Set zv 
BR $CMPC$ .. 

.«,. , 
50$.: BIS . t4·,:(S,PY . ; Set Z . 

·BR' $CM PCS 
60'$.:, 

»/:, 
'BVC · .$CMPcs'.·· ; ·,srs·; '~ 2, !'$]?): ·'J Se't V 

'**·..;$'CMPC$~CompJehon :roui;:ine.· which set;s .up only c in the PS 

, .. C<?PY only .carcry· to, .stacked 'PS.. Current. 'stac'k:. 

(SP): 
2.(SP) 
4 (SP') 

$CMPCS: :ADC 
MOV 
MOV 

70$: BPL 
MOV 
ADD 
MTPI 

80$: RTT 

P,S with coridti<ih ·codes cleared 
Completion routine address (to be discarded) 
Return address 

(SP) 
4(SP) ,2(SP) 
(SP)+,2(SP) 
80$' 
#6,-(SP) 
SP,(SP) 
SP 

Set up carry 
. ; Setup return address for RTT 

And PS. Returning to super mode? 
If PL yes 
Number of bytes for (SP) , PS, and PC 
Compute clean stack value 
Set up previous stack pointer 
Retµrn to previous mode and caller 

.DSABL LSB 

.END 

.TITLE 
• !DENT 

.MCALL 
WRITE: QIOW$ 
READIN: QIOW$ 

!ARRAY: 
LEN: 
!ART: 
INDEX: 
OUT: 
ARGBLK: 

'•EDBUF: 

.BLKW 

.BLKW 

.BLKW·. 

.WORD 
~BLKW 

.BLKW 

Example 8-4 Code for TSUP.MAC 

TSUP 
/01/ 

QIOW$,DIR$,QIOW$S 
10 .. WVB, 5.11 r,, ,<QUT t1r4;0> 
IO.RVB, 5, 1,,, 1 <OUT,;$>' 

12 ~ 
1 
1 
0 
100. 

8-14 

(continued on next page) 



, ,SQ'P~R~'.I·~Ofl~MODE/ ~li;IMRI);:s' ,,(RS~":",l,iM~'PLP$::',.QN:~.'fii<.'' 
//."'/''J ,/ ,/.,,·, /' },/; <<',:','}///;'; ' '. .: / ' .<. ~,"'' ,: :: '; : ;',' ,:"' 

:·' i,:~~~~{il')i-::~: fcqit':l·' co~e ~f <>~?TslJ~ ·#~( .·· 
!, ' ' '/·i·2·$~f{~~·(.iri) ~/. ' '' ; ' '' ,:, '• ' 
FMT2,:,·, / .. ASCIZ ·/;%;N%2SNUMB.ER ·TO"<SEARCH. .~OR?/ , .. 
FM1.3: :··,.:· .... AS(:~'~ ''/%N%2$%D'WAS, FOUND TN', ARRAYC%D)/, , 
"f~'r4':' :: ' .• 1,\SCTZ .. ·/%'N%2'S%D;'WAS· NOT,' IN,'' ARRAY/ : ' ' 
:'F~tu5~ .. :!.•K·scu· )':%.2S~RRA:Y(%.PJ9%b/ . 
' . ., . ., ~·. ·~.- ;. ,, ~ :" ,' )~ ,' i ' i.: . , ' . ,· , . ' 

f_,:'>.j ~~ ,< 

,' ;· ;, i ·~ < ~ <; ~~ v • • , ) ,;; 

/:· · .... ·(coritfn~.~a".·a,n:·,·ne.~t:.·,?ageJ. 

8-15 



' ~:: . ~ 'I 

" 'CALL,« PRINT 
CA'LL . ':READ 

OUTt?UT 'MESSAGE, 
, . READ RE'S•PONSE 
i :., HOV' ' ; IA:RGBLK I RS 

":1·MOV ··• • ,'f41.(RS)"t· .. 
'· .. Mdv' > ' .4t<tARit' ;JR5.),+.'/ " 

\''MOV . ···:1.:t.t,ARRAY;{RS,)f'.' 

; SET NUMBER· OF ARGUME.NTS .' 
,,;, SET:· ADl)RESS ·OF., NUMBER LOOKI'NG .FOR 
• SET· r\DDRESS 0'F ·'ARRAY . • · 

: ,MOV '' :#LEN', '(·RS'f+ , , . ., .SE'T ·At>'DRESS. OF :'r_;g~· ·OF.·)iRRAY · ' 
tiov· · .· ::t 1t4o~x1 (R!;')· 
!Mov· .. ;dARGBLK,RS/ 
C,ALL>: ,,\'SEARCH 

; ' AbDRESS,01? 'RESULT; , .. , 

i 
... , ... · ;' 'SEARCH :·FOR N.UMJ:3'ER · l,tF 

'. ·~qP;t.isi·:'.for,'SEARCH
1

:··~·~bro·~·ti,~e. 

NDEX'.' 

., o~ ..... ···, 
'A':··~IART·, EDBUF, .. 
. ""::·INDEX.1 EDBUF+2: · 

"·:.:.;'fFMT3, Rl· ' 
·i?.i:PRINT . 
'..~·:1~JOO$ 

t;t·wAs: .Nu~ER ·FQU.ND?
0

,, 

'; 
1
' tF. L,T NO 

, ; , G.ET/NUMBER :LOOK~NG 
GET .. ·ARRAY. NUMBER· 
.(?ET FORMAT ADDRESS' 

! 
DONE 

GET FORMAT APDRESS 
GET NUMBiER 

EXIT WIT~ STATUS' 
I 

'PJtlN.~1:( 
. CALL $SAVAL SAVE ALL; REG:ISTERS 
•; 

1···,i;·:lih1ov· ·:·.:;;1~00T, Ro: ' :· AbbRtEss. bF ouTPuT· BLOCK 
'""''t<''MOV , '');::'.';tEpBUF,R'.2 .1 ST;AR~ ADPJRES~ OF ARGpMENT 

, 1!j,~:·:::.{ ... ·~.·.M· ·
0
A. Lv• L '''{$EPMSG , FORMAT• MjE~sA'.GE 

. ... >'.':,1'.'RL,WRIT~+9:.10P~+l2 ;.· iPU'f1 :LE~GTH; OF OUTPUT 
, I, I• ,, " •. ,• , . ; ; BLOCK 1IWI'O 1PiARAMETERi BLOCK 
rWi~'.·+~. ;IR$.' .. '.,;\',WRI'-'E1 

, ; W~1lTE' butt!Ptw! BLOCK 
,, , ''. RETURN :: ' ! I I :· I •. ' i I I i i • 

{;;$SAVA(.; 1; i I • ·~ ,,;, S;A;V;E ALLi jREQ;ISTERS 
:;(\fREAP:1J.t:'; ~;E]At)!i REQUES'.T I I : ·; I 
, #OUT, RQ. . GE'r' KEYBOARD IN~~ 

BLOCK 

, $CPTB . ; CONVERT iKEYOOARD INPUT TO BINARY 
'.:Rl, IAR~ ~T';. ll'I~~: ;t~O' BUfFER 

,: ~@·'.: ~ ,tl 
·4 cl ~' $ 

.;g1:.~ START 

8-16 



~~ , i .,... ' 

Example'»a'-'5., Memory All:ocation Map 
i' ( l ; ~ ~ y < 

; ' , .,, .', 

}11emory allocation map, TKB M40.1() 
. 29'.""'DEC.,..8:2 ·15:·0:1 · 

'EarJ::'ttlon name; ·: ... GEN 
IdentiUcation ·; · 01 

::ra·sk. · fri;c . . ·· t3oi·, s·s:1 · . .·· ..... 
, :·sta'ck: ·:';'J:1mits: .<>0027,4 · 0·01z'73'.·ou+n<10 .·9os12~,i' · 
· · PR,G · xfr · ,ad9ress: · 002130 

·,· ., .: .. )'ptal '§\dct~es·s ~iJ:l4 .. o~s: 2~:, ........ ·· <.: 
·.·.·/·.:'7 • .ta;sl{ ... :'.'.ima<.ie.: ',si.z~ ... · : .. ,13/:t~/.word's.• ·•···· 
·;:*>:·>~·::2.:·:/Ta.slt: ~adie'ss' ii ml ts:' ·oooob·o oosi33· . . .... . . 
·"',,:·.·/ .. :·R~w,·&~sk .. bfk',11.mit:·s:.<oc>o.oo.~? 00·0·0·01':'.oonoo.6, 
:·::\, ... ::,><~:~tt···,:~~.e~,<~~~~~~,;·,,:T,?uP: :··. , . , . " "· . . , . 

' ;, ·. ' 

. ~·· J~'K••.:·'{.R,w,,':r,. r.C:i:. ·' RED>f~~N'> · 

'.CMPAt : ( Rw, CLCC,R~L·,c.oN} 
·. ,PU~.$0 ,: (~o.,i ,LCL,REL,:CON) 
·: PUR$.{· .! (RO,:'Ij LC.L, REL 1'CON) 
.. ,.$,$ R,ES):;,: WO; I'.r.~CJ:., RE.L:,fXlN} 
. $ $SLVC :'(RO~ I; LC'I.if"REL i CON) 

' " "0012·i:4 
~,, ' ,Q(Jl~-/.4' 

000000 
.' 0036'30 

003726 
. '00'47.00,' 00021~ ,.001,38, ... " 
'ff051·12. 0·0'0020.' QClOl6.~., .. · 

c.a110.s:atiori ·m~P:. , /I;KB .... M4·o·,.J,o 
.'29•Dr;C~8"2 .... l,5: Ql 

:irotal· WOrk
1 '~hEi r .. e.fe"r,e'nces ! 

·:::~~.~.,~:~·l~{::,:·w~,~~:.~.~·:, .. g·:·,,.:'.·:.: ... ·,, i .... ·.· 

.Size,,.M,· ,core ppol :· 698'8 .... "wbrds 
"·Si:ze 'q;f .:'.work: "fi'le: '1024. :·wo.rds'. 

TSUP prompts you to 'enter .. number's at ·your terminal.. It calls' a 
"subroutine in 'SUPER to sort the numbers. Then it displays the numbers 
you entered as array entries and prompts you to request a number to 
search for. TSUP calls a subroutine in SUPERLIB to search for the 
numbe'r. Finally, TSUP indicates at your terminal either that the 
number was not found or the array location in which the number is 
stored. · 

8-17 



,, ,. SUPERV,ISOR·,;MODE LIBRARIES (RSX-11M-PLOS ONLY) 

'~r.1,d.1· ''Building, 'SOPER~.· To buiid SUPER in UFO [301,55] on SY: I use 
'the. ro1·1owi ng 'task-b'ui ld command ·$eque,nce·: 

·,- x'. , , '>, , , < ,, • , ~; • , • •• ••• ' 

' ,.: TKB>StJPE·R/-HD/GI/PI ,SOPER/MA,SUPER= 
·· .: : ,TKB>~B :. [ [1, 2ll SYSLIB/LB:.CMPAL ,SY:' [J30l, 55']] SUPER 

T.KS),/ ... · .. ·. .. . , ' 
En~er ·options·:·· 
~.:KB)STAC.K:;;:O··· · · 

. T~S>.J>J\R=GEN::Cr:.:2000. 
TKB>CMPRT=$CMPCS 

.' 'TKB>GBl:tX~CL=$SAVAL 
.' ;' .T;~B>//' · ; · .. 

, . ; . ' . l ' . ~ .;. '"' 

.l~;UP~R:'.::i.:~'..'.buil.a';·~.i,'thqti.t a,· heaa·er or: stack.~ It is position independent 
::and,';«:· has$ .. . cn:~Ty . a·n~:. progr~m ~ecti9n, nam~d .• BLK. · The /LI switch 
·accomf>lishes .... this:, eliminating program sectidn name conflicts between 
.t..n~· 'library and· the referencing .ta$k. 

> •••• :; ,·. : • : ' 

);J:ie·:"~ompl~tfon.' ro}ltine ·module of;SYSLIB, .CMPAL~ is specified first in 
.;.the:'/i,'nput' .'lin.e. · ... Tbe library will run in partition G,EN at O and is not 
more t:han · lK • 

. The GBLXCL option excludes. $SAVAL. from the 1-ibrary' s .STB file. You 
e:xclude · $SAVAL fr·om' the .STB file because the 'referencing task, TSUP, 
:<;ilso calls $SAVAL. lf ·TSUP »finds $SAVAL in the .STB file of SUPER, it 
'Will ·not link a separate copy· of $SAVAL into its task image from 
SYSLIB. If TSUP cannot; link to a copy of $SAVAL that is mapped 
through user APRs, the TSUP would call $SAVAL as a subroutine residing 
within the supervisor-mode library, but without the necessary 
mode-switching vector and completion routine support. This option 
forces TKB to link $SAVAL from SYSLIB into the task image for TSUP. 

The memory allocation map in Example 8-2 shows the following: 

• SUPER begins at virtual O. 

• The completion routine, $CMPAL, is linked into the library 
from SYSLIB at virtual O. 

• The entry point $CMPAL is located at virtual 22, SEARCH is 
located at 35, and sort is located at 274. All of these entry 
points are relocatable. 

8. 7. 3·• 2 Building 'TSo·p - Use the following task-build command sequence 
to build a ta~k,· TSUP, that links to SUPER: 

TKB>T$(JP, TSlJP:: .. TSUP 
. T.KB>/ 

. Ent'er Opti.~ms·: 
· TKB>R.E$SUP~SUPER/SV: 0 
,TJ<·B>// . 

::This command sequence tells TKB to include in the logical address 
space "'of TSUP a. user-owned, supervisor-mode library named SUPER. TKB 
fncludes a 4-word ·, mode-switching yector within the task image for 

· e.ach ~all t6 a· subrqµtine within the library. The library is position 
independent and i.s ·mapped with sµperviso:r I-space APRO. This is a 

:requirement .. for .. CSM librar.ies . because .the CSM expects to find the 
:ent:rY.J:>c:>int:of' the completion· r·ou.t1ne .at location 10. 

8-18 



; =~ 

The ~emory allocatio.n map .for TSUP .. <Ex~iUt>le.«·B:'sj .::s~Q~.~: ,.," 
• $CMPAL is linked from the : .STB f fle of. the·. lih·ra·.~.y .~·~:ci:.: ·J;e~.i .. risj·; 

at location o. · 

e The mode-switchJ.ng vectors .begi..n···at· 005.f36 and. are" 1'6 •.. , .:byt~s.•,, 
That means that·· TSUP calls s.ubrouti11es 'Wi.t'hi:ri th·e.;'lip.~:ary· 2/ 
times (4 words p~r v~ctor}.. · : ·» · · · : · · · ' ' "" 

~ ·~ 

• The initiatfon· rou~.ine ... $StJPL ]s''.Idcated· <:(t •70,:q··-:;'\. 
,, ,~ ' / :, , , ' • } < ~ ·~ , ,, <· ; o· ;; ~ l <> 

• The sEARdH :·a:nd· 'so~Ii1t·S:uo~<iu·t:i·ne·s.:.th~t.·:w~.r.~:·.·i$l·d~i:ed:··.· .. :i·i://'·!li<r;·~uar· 
112 and 32, ; re?pectiv.e{y~ i.n: ',the .. .vfrtual: .. add:r.e·s.s.:jsp<:iqe ·0.if··, 
SUPER .. h9lve been · :·r~locatea ,··to':·." th'e ..... ·mo.ae·~s~viA;cl1.1n9 .. · .. "A1ect'Orsi 
residing. at 5I3'6·:: a:nd· '5i~·6· .respec;k:fvely· .. ::in·' 'TSUP'.; .:· .. :.: ./.: .:: .. ·'. .. :/.:· ::·;/ ;' :·:: . 

' : . ,: . ,· :;: .. ·· .. ,· ... ' .... ·. •· '/ . "· .. <·>· .. :· ... :t/:<.:·' .. ::, ·:.'·.: :',/.j'::/,t~,,'·";' ... , .. ''//.:·}./:;J~i·>·,.:·,,;/.:·> J ;./ 
• The· SA;VAL" .niod~·~e .from:·s.~t.SL·IB.·coqt"a·r·ri.in9 .9SAV:At;.·li,a;~'/i;:lE;!ert/~i,~ .. 

·into'. ·the··· t~.s.k ,· .Jir1~9.~'.:· .. inst£3fl·~.:' ,.-0,f/: .. i:ri¢l·\jdfn9·:·$;~»A,V~l/j~:r=Ari:t"F~.:!f~:i. 

library~s ;sTa we.:.. '··· " · · · ,, : .i'/i ~j'.%:·M;:M~) 

·a.7.3.3 Running TSUP - After ouiloi~~ .s0,P~1~·a0a ·'rs'uJ?,,;~s i~d.{b~'~:~d'
2

/:::a( 
the task-build ' command seque{ric~' .. d'fscussed.'; pt.evl'o.ils.lty;.:'.yo.fr"•;:rris.ta1it.: 
SUPER and run TSUP •. · TSUP i;:fr·~mpts:· yo~):fo·t·.·~.:·:~rlrnhei:~··,;·'.''\' ';:,::·'.J:·'.'.. '.:/>.:/ '"+ .f 

ARRAY (x) 

x 

The position ·in which t<i ?te>r:~; 'the.·.n:umber, fo:'.:'th~: .. .'~rra'y:~/,··· ... ·:&·C>1.f/ 
enter a ·.number. . TSUP :sj::o.res .. thEf numb.e·r. 'iJl J:_l)~ ;;ariay. aJ;t~·;· 
prompts you again ,.fp.r .: a.·: ,,n'umb~.r··~': '.':· t,I'.:Qis.: .. ··.<;9P.ti~~f~~,s:;· :· :~.I}'~H/.i)":/p}~:; 
either have entered a ·o, an .illegal:number, or.·lO . .n.umb,ers •. 
Then TSUP ca 11 s ,.the .·~ORT. rqudp~. i.r);. ~.UI;'!~·~ ~~: " > ....... ,,. . '; 

You enter a number. TS.UP ca Hi» t:'hl~ ·~EARCH .. ··ro:tltirt~· ·'·,...irL .·::ia~i·~/·' ·'.'Th~~·~: 
TSUP outputs ~ message· indi.cat.ing ~hethe .. r ·tp.~ .;np.mbe .. ~ :was.· ,.i.n; ·t~e· ·.a:I>~ · " 

, ... : ' . . ; . : ; , .. - , : ; . : .:: ·' ; .,: ' .. <·.:~~/··:.~ l/ .. ~·:.,, ... :: .. ;· :.·~ ... ,· /;c:'. '" 
' . ' .. : . .. . .. . . . . .. . .· •.' : '/ . . ('/;/// 

8. 7 •. 4 The CSM. Library: Dispatching· J.>.toce·s·s:. . .''/ . .. 1 • ,e, :/;,.;:;; / 

When you buil4 the refer~ncf~/~~~/ if ~~i~~~:f;y :~":sX--'~i~~~~/i~{ 
the . RESSUP or· . SUP~IB·.·; .·opti.on,: .. ·; . tlien·.;2,..,'/PJ<B,·:.,·:in.c.ltid~S· .:".a;: ... : .. :4.,.~o~d'£ 
context-switching vecto.r 'fo;r:: each.' call'"'~o.'' a· ·'sµliroubirie.:':Lfr·' the .:fi'.J?l:'a~·~:.r: 
This has been very generally .di.scus.sed in .Section· $'.;:2 •. : Tfri.s s~ctiori· 
di'scusses the CSM library· 'vect:ot· tn deta·i t · : · .::; ~ , ·/· ' :>',·:>: 

CSM mode switching occurs as ·follows: 
. ' 

1. The vector is entered, with the· return addre.ss. on ·top ·.of 'th.e 
stack (TOS) • · 

2. The vector pushes the completion routine ''addr'ess on the 
stack. 

3. A CSM instruction is executed with the supervisor-mode entry 
point as the inunediate addressing mode parameter. The CSM 
instruction: 

a. Evaluates the source parameter and stores the entry point 
address in a temporary register 

8-19 



. SOPERV!SOR-MODE LlBRARI.~S (RSX'°'.'llM=PLUS ONLY) 

b •. Copies the user st:ack pointe·r . ,to . the supervisor stack. 
pointer · 

c.. Pl·aces the current PS and PC on . t)1e su,pervts·ot stack 
. c.+earing the condition codes in .the PS 

< • ., <' ' 

I , . > 

,d. Pushe?. the ,en:try poin.t· ad.dr.es·s .on .the. ~upervisp,r stack/., · · 

e. ·Places· 't:tie .. co'Ut~nts of loc'ation 10 in ·supervfsor l-·space. 
· in:to the l'C · 

, "I ., > ' 

, The. stack ·looks Tike .. th,i s when, the processcn; ·~eg,i ns to· execute at the 
'c.o~tents. ·of virtual ·10 in s,\lpervisor mod~.: 

, u~·er Sp:_...,.;.'.'."") ·•return addreS·S, 
completion·. i::ou.tine address.' 

. 'PS. 
PC 

. s.uper sp '"".'.---> entry point address · 

The most important' as,pect 'of how ·the. CSM ,library· mode-'switching vector·· 
works in that the processor begins executing at the contents of 
vir.tual 10 in supervisor mode. This is why the completion ro.utine. 
rnust be located at virtual O, so that virtual location 10 is within 
the completion routine. 

8.8 CONVERTING SCAL LIBRARIES TO CSM LIBRARIES 

You can easily convert your SCAL libraries to CSM libraries. 
Rebuilding a task on an RSX-llM-PLUS V2.0 system or later that linked 
to a library on a Vl. O system requires that you rebuild the library 
also. Rebuild the library specifying the completion routine as the 
first input module. If the library was not built to run at a starting 
address of 0 in its partition, rebuild it so that it does begin at 0 
to enable TKB to find the completion routine. 

8.9 USING SUPERVISOR-MODE LIBRARIES AS RESIDENT LIBRARIES 

Supervisor-mode libraries can double as conventional resident 
libraries. For position-independent, supervisor-mode libraries, you 
rebuild the referencing task usin9 the RESJ:,IB option instead · of . the 
RESSUP option. Indicate the first available'user-mode APR that you 
want to map the library. For CSM libraries this will always chan9e, 
because you cannot map a shared. ,region ·with APR O. You do not have .to 
rebuild the library. · ' 

.For .absolute supervisor-mode ·librar.ies, rebuild the. referencing · task 
using the RESLlB option instead of the RESSUP option. Rebuild the 
library only if the beginning partition address in th.e PAR option i:s 
incompatib.le with the address H:mi ts of your referencing task. · 

8.10 MULTIPLE SUPERVISOR'.""MODE LIBRARIES 

A user task can reference mul tipl:e supervis'or-mode. CSM l~braries. 
However.,' · all the CSM libraries must use the completion routine tbat 

. begins at virtua.l zero in supervisot-;-mode instruction space. 

8-20 



" i ,, } ''';> 

f af 1~ :illRl'l'UG 'YO!)R ,awii ~oinms·· ~i>''eOM'eliE-r10N' ROU'lti!Eif ; 
, r , . , , · :, · . . .· .·· ; , . .· .. , ; , .. ' «: : , : :, ,· · '..· , · : : .•·· : • :: :: :: :: • . : .·: ,: · • .:·· ,· t · ,; , :: : ;: :· '.. : .:; · .~ ,· .~ : .: .: 1 ,; s .:: .: 
,, 'Yo:u. '.ban; wr 1 te. yq ur · .:cn4'n' :in~d.e~sWh:dbi .. ng .: \tee to~.~.: ano:· c . P;ltet i bn /fau,·ti nes·:~·, 
:7;i'~fs:,·:~~:y:: ,;}:).~: :n~c~.:s;s~~Y:;M:r.~.;~:t~?.~·e~::::·gpkf~,; ·f .l~f:;;~.o.G\i:µ~.~::l1<?~::ri::~:~+ .. ·' · ;~##~1:;~ ;f 
:' b:ui·la: t;n·enl ::tnto ·;·t·ne ·' tasl:f :~n~: use: .:ttne· :·<~sv: '"S\fli: t'.ch.' :'·on·:·: t:he ·: .: .· su·~· '..·or" 
:."fii:;·~.Lte.; .. opt.ion· ;\fijen.' you .:b,µj.fd.; :the,: ·fe.fer.en:c!r;ig:' task~·:. ·.Lt;. :'y9µ:: :cre,q~:e: ·· · ·, .. 
~Pitn ;c~~ eti.'ari.' t~ut-i:.nesi·,~ wri¥e •·. ~~i c~pt•e~ailli ~otit.l'rili~i> 7i~~emSte 

.. .~~'.I:D .$~:~·F;~vrSQR~MQij!,fL#ip~tt~ 
.'.:: .:;' : .. :: .;· h: .:'t'. :·. ; ·,:"', ... · ,, ~:., .:' , :: ::· :z: . ~.~: · .:·::; .:.< :; .:'. :" ;·,:/ :: i E '... ; . .. ,, 

:. ;iJ .'i:5- ;:,:possible· ::·t:o:: .i1s:e >. QVer:l'aid': · .stipe.:rv·i:sar7mo~.e::: UJ;;>.rarie,,s·~.:: 
;r;~J3,t.~}Qt;i:9ns:.m~s:t::};>e ;rioted, .. when: ,:bu:t:ld:ifQ9<'t@es~ .... libJ;fl: .. r:·ieis·:;, .'.;;:~ · 

.: : ;z ·;: '" The c<>;mpletlon',·rou~ine, ~?'r t~'~ ..... ~ib"~:a,r:(m~s .. ~"be :.:i·n t:h;e, roo~. 
:·dn.ly one :le~~l .' of· ... ·ov~r,i~y: ,'i,s. ~·r,i~~~a:~;:; Th{~: .is ili~~t:;a{~·~ .. : fo: .. 
Figure 8-:4 .. , ·' · · · .' ·· : 

•~. Al though· the· Fast Task : • Builae·r: '(FTBr can: 
supervisor:,;..mode . libraries, it ·"cannot link . to 

supervisor-mo.de libraries .• · 

8-21 

link... to· 
oveJ;faid 



ROOT· 

ALLOWED 

:ROOT 

·AL~OWEIJ. 

) . . . : { ~ -~ 

·F'igU.te ·· 8-4 ov·e~lay Conf ig.uratiori Ali'Q\Ved 
S,uperviso'r-fiod~ ·Librades. · :, .. , 

8-22 

ZK:-1J02~82 



CHAPTER 9 . 

. MO~TI u·S.ER .TA,S.KS. 

?' /': ~}" . ~~:..,. 
,,>'.,/{ -~·h.•: ~,,.·,·-.: . . .:· . u ••• • : • •• : :'.' ;, 

·;·~t.··1····.1·NTl~:ODocip1mi 
:;:~--':/J-~:;/~.~~<·':<-i..,,, ,;,: ,_'' u'., , . ,: ~,//:~=· , ;,. 

,,'/1\:···i,nu'I·~{µ·s·ei >tasi<:' .1s,..,.a·::t~sk.that·· share's tne· .pure. (re;:ld~only) portion of 
;·).~t'?::· .c9'd~/.~·~:t1L··two or· ~oi.e ,oco.pfes. ·of t.he impure Jread/wri te) ·portion of, 
·~.:i,£.s~·):9d:e·.·." Wl)'f.fri .. the .syE?tem,. ,receives.. an · iriit i·al run . :r::eqqest : fo:i; · a 
~1n.q:~·:t;.fµs,e'.i··.,, ·.·t'asK,·'· .,a: .q~py .·~)'f :.both. the rea,d.:...only and. read/write portions 
·::s<?~.··',,.;~he;·,;f:.a$,·J<·,··a.r,~.· re,ad· .i.n·t;:o physh;:al .. memory. As Tong .. as ·the task is 
·.;U,nq:i:,ng·,/ ,.all ·',subseque11t .. run, . request? for it result in 'the system 
.~ .. .g·qpl1.¢at~.·1)~9.P.rily"tbe read/write::'portion 'of ·.th'e· 'task in·. physic'al 
,;::me,mo,ry:·~. .T~us.;, :rhultiuser. ta.~ks are memory efficient. 

;::#~~~·;§~ii· bu·iid ·~r'"t:;3·sk,: you' desigrtat'e it' as' m~l ti us.er by .. applying the 
,;:fttQ·.:·.·.~w:i.1;cl,}, .t:Q .. the .task .. image:. f.i.1e. 'This· switch directs the Task 
,' .. B,µi·~·gE7i"".to . .,'create two regions for the. task. One region (region 0) 
.·:c,otJita~ns'the .read-write portion ·.of the task; the other region (region 
:"J)·:'P'o:(li;.q·i n,s · t;be ·read-:-only .P~n.tion. o,f .. :the,. task ... 

~ , ~' < • ~· • y ~ .' ., ·' , '• • • • ' • ' 

.'.,](s ,,:!fli:th' .. all·q~lrer,·t'~sks, .. T.~B uses .a ,program section's access code to 
:<d~~'te'rniine·. '1ts' placement ·within a ·multiuser task's image·. It divides 
,'.,a4d'rE,?s;:> .. ·SPa.c.e .·±nto.·read/write and. read-only sections. Unlike in a 
'.'..'~,fogJ.e :'t·us·er ... t'ask,, ho~~wer, the read-only portiqn of the task is. 
~.q,zi,rd~(llr~ .· ,p.x;ote~t:ed• .· 'In . addition, ·. TKB separates the read/write 

:· ,po,rt.i<>u's .. ·.°-.f" . ."·a .. ·mult,i·user·, tas·k. from .the ·read-only. port.ions. and places 
~; .. t.:n .. :e,mt·±µ:>,',S,e.P~t;:a:i::e ."re,gi,ons at:· .. ·opposi te· ~nds ·of the task's. address space. 
·,/~:t ... :' aH.oca.~:eS. ·. the .. " lo~-a4dress · AP.Rs to, the read/write portion (which 
'/i'~.d.tud'e.s ·.the: t:as'kl·g' heade.r '·and stack' arern) and the highest. available 
·:J~ .. ~~~v·,. to ., ,··the · · read ... only .. portion. Figure 9~1 illustrates this 
.'·:'~fl}1:~c~ 9P1: •. . .. . . . . . 

';f~:r),. .. "p,nd ·~~~.pac:e niultfuser 'tasks, ·in. 'addi Hon· to · having ·the 
A:n:\lt ti.us,et · ta·sk .at v.ided into regions of· rea'a...;only PSECTs and read/wd te 
'J;>'SEQ1's, .. ·these. reg~ons themselves are divided into I-space areas and 

.:.o...:·space areas. . All of ,.tfie .. following combinations must be present in 
an . I- and D-space mul t:iuser task: 

•· .PSECT psectnamew, RO, I, . •, . 
• .PSECT psectnamex, RW, I, 

• .PSECT psectnamey, RO, D, 

• .PSECT psectnamez, RW, D, 

If neither the read-only nor the read/write portion of the task 
contains memory-resident overlays, TKB allocates two window blocks in 
the header of the task. When the task is installed, the INSTALL 
processor will initialize these window blocks as follows: 

• Window block 0 describes the range of virtual addresses (the 
window) for the read/write portion of the task. This region 
always contains the task's header. 

9-1 



MULTIUSER TASKS 

• Window block 1 describes the range of virtual addresses for 
the read-only portion. 

Figure 9-2 be1ow showS, 
multiuser task. 

the window-to~reg ion .. .ielafior(shfp 'of 

APR 7-

APR6-

APR 5-

APR4-

APR3-

APR 2-

APR 1-

APRO-

. .. ><<:~U"N.usEo>: 

.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· ....... . 

READ-ONLY 
PROGRAM 
SECTIONS 

READ/WRITE 
PROGRAM 
SECTIONS 

HEADER & STACK 

ZK-441-81 

' . 

Figure 9-1 Allocation of Program Sections in a Multiuser Task 

9.1.1 Overlaid Multiuser Task 

,a 

If a multiuser task is an overlaid task (described in Chapter 3), the 
read-only portion of the task can, be made up of the following: 

• The read-only program sections of the root S,egment 

• Branches of an overlay structure if the comptete branch is 
memory resident and ·read-on 1 y 

• , A, co..;. tree structure if the entire co-tree· is memory resident 
and read-only. 

9 .L2 Disk Image of a Multiuser Task 

Th"e disk image of a :multiuser task is somewhat diffe:i;ent fr.om that· of 
a ,gingle-user task. Theread-only portion of the, task is,placed at 
the end of the disk image. The r,elative block number ·of the' read-.only 
portion and the number of blocks it occupies appears in. the label 
block. The ~ead-only poition of the image, is de~c~ibed in the first 
library desciiptor of ,the, LIB'RARY REQU,EST section of the label block. 
(Refer to, Append,ix B for more ·information - on the task image data 
structures.) 

9-2 



HIGHEST VIRTUAL 
ADDRESS 

WINDOW BLOCK 
1 

WINDOW BLOCK 
0 

LOWEST VIRTUAL 
ADDRESS 

READ/WRITE 

J REGION 1 

REGION 0 

J 
ZK-442-81 

' " ; ~ , 

,The APR and window Mock ass i~~~ent in" an I'-, , and, ,D"7space , mu1,ti»u~e:r 
,task di'~fers' fr,qm, that' in .a. conventional' mui ti,1.1se~ ·task •. '; ·" 

D-space Ai;>Rs map· the, read-writ·e.' and; 'read_:.only'. ,•PSECTs that have . the 
data attribute. Shnilarly, I-space APRs ·map the. read-write and 
read-only PSECTs that have the instruction attribute. Figure 9-3 
show.s the APR , mapping for both· kinds of PSECTs in an I- and D-space 
multiuser task. · 

TKB need~ f~ur window blocks to map an I- and D-space multluser task. 
Window blocks 0 and 1 map region O, which contains the read-write 
instruction and data PSECTs.. Window blocks 2 and 3 map region 1, 
which contains the read-only instruction and data PSECTs. Figure 9-4 
illustrates the mapping and assignment of these window blocks for an 
I- and D-space multiuser task. 

9-3 



MULTIUSER TASKS 

DATA APRS INSTRUCTION APRS 

UNUSED UNUSED 

DAPR7 

READ-ONLY DATA 
PROGRAM SECTIONS 

IAPR7 ~ READ-ONLY 
INSTRUCTION 

I 
PROGRAM SECTIONS 

DAPR6 - IAPR6 

DAPAS ---1 IAPRS -
UNUSED 

DAPR4 ~ IAPR4 --i 

UNUSED 

DAPR3 ---1 IAPR3 --I 

DAPR2 - IAPR2 -

READ-WRITE DATA 

DAPR1 
PROGRAM SECTIONS 

1 IAPR1 - READ-WRITE 
INSTRUCTION 

PROGRAM SECTIONS 

DA PRO 
HEADER + STACK 

IAPRO 
UNUSED HEADER 

ZK-1103-82 

Figure 9-3 Example Allocation of Program Sections in an I-, and 
and D-Space Multiuser Task 

9-4 



TASK 
WINDOW BLOCKS 

WINDOW BLOCK 3 

WINDOW BLOCK 2 

WINDOW BLOCK 1 

WINDOW BLOCK 0 

PHYSICAL 
MEMORY 

READ-ONLY D 

READ-ONLY I 

}EGION 1 

----R_E_A_D_-_W_R-IT_E_D_----1} REGION O 
r READ-WRITE I 

ZK-1104-82 

~~~D~~~ 
The;~e:x.:t· .·/l~ +tch:;i~,:· $ec·t,I:·O;~ •aill"d.+;ijhe .·:.f1~9·.ut'~S.· a~·OA];!~,t.~::~].'.:{;~ "~·t'..::,l(l:i:llJS':1:~~:~e;
:·t~::·' .. X11eve:lapm~n't t.,~:£: 1 • .. :a .. : ·~arl·t'i'u:s~:r~·::"·;t~is:kt~.> ·.qitji:S,i :~:x~~: :.:was~·µrea;1:~ by· ..
l~,o.n¢at~i;l'atJ'rig ,'i.~t;P;: a>«stnig1:.e,' 1~;~i1e•":t:h¢' /~~:s)d~%n:tf·'.1J;q+;a·FY :: ,•f:ille'·:; :;-({rj::r'a.~t-J~C.). I

: a ri<r .:· ·::tli~: ··t;a.$~' .~tJ1a~ , · lJ .ilks\. t.'c> .. :i~·/fiM,At~N: •. ;MA\Ci,«.;;f,,r.9iri . ~Xi3.It\p];~: ~s;-:3. ~: /I.~:!\:~~i 3noti
:it:ltend:ea· ·t:o.:r.e:pr'es¢'~'f/ a,.J:yptcal.:mu;1t:I.us;er .. " .. 1=;as:k; ;appLi:cfJ:tio;n .• :•.i .: .11-pjwev.er ~·:
it· does · i llus'traf.e· t,.he· Ta:sk:. ·sui:ld,er 's al;:to•qa:tiq.n ··pf prdgr~m: secti'ons
in. a m.ultiuser t~sk an;a that. is .'ft$ prima'ry ya1u¢. , . ·The· concatiehqt~d.
sour:ce, file., ... named . ROTASK.MAC/ 'for, :thi$ e•xample is shown in Exa1clple
~-L.

9-5

;+

'·l ;: ''::' , ,, /'" • ,, '~ ,; , ... - J , ' ., .~: ,' "< ~ <·">

>' , • • ' ~ '!->' ' ,< ·N ;:,· ,;; ,

,;P~r't ;i:::"'So\it~e,>L,i~ting ·for· RO.'I'ASK:MAC
,;:,;- i' '·' ' ,' ,.,, . " i /" ' .f ~ . -..;; .. ~ ,· ,.,; .. '

-~» l

.M<)U ·,.>ti~s·.{..;'.,:-(:SP:j'} .. '
··M'cht ;~:·jfoP2/~ .. {SP.j ,·.
:MOV' '.'./tORl):~{~~~i'
:M:OV' . . · .. · .; :i3 '·· i~"""·{SP)
.:M0\1'. ·.g'p 'RS 1 ~· ,'./

·.cAt~ .. · ·l\Abr{/' ·
· CALL , J;>RIN'.l'

I'

"' '' M0\1' '•SP,'RS
, CALL StJBB ,
CALL PRINT
MOU SP,RS
CALL· MULL
CALL PRINT

.MOU SP,RS
CALL DIW
CALL PRINT
EXIT$S

' .~> r- ,

.' ·;/, To".cdN,'J;'AIN 'RESULT '
,;/ ';,· ,'QRER'~.ND' ·~I ' ' ; ,·

' : . .;; '1 : ' ' ~ h ; ·"' • -~ '

I.;' OPE'RA!iD '1,, .· ,' ''' '•
. ·· ·; .. ·,PA:SS'I.'~G ·3 ARGOMEN11!$

"'' ADDRE'SS.0F ·ARGUMENT: BLOCK:
, I t.·. ·, . ,. . . . ' ,. ; . ' ... '~ . : . . : > • • ' ~ • °1' i

t . ; ADD · TWO OPERANDS .. :' >'
i.· PRI.NT' RESOL;f'S·, , . ,

',; ADDRESS· OF ARGUMENT .. BfaOCK
';. SUBTR·AC,T '8'Ul3ROQTTNE,· ',·'
; , PRINT 'RESULTS ·

ADDRESS OF ARGUMENT BLOCK
MULTIPLY SUBROUTINE·
PR1NT RESULTS .
ADDRESS OF ARGUMENT BLOCK
DIUIDE SUBROUTINE
PRINT RESULTS

;** PRINT - PRINT RESULT OF OPERA'l'ION.
;
PRINT: MOU

MOU
MOV
CALL
QIOW$S
RETURN

tOUT,RO ADDRESS OF SCRATCH AREA
#FORMAT, Rl . ; FORMAT SPECIFICATION
#ANS,R2 ARGUMENT TO CONVERT
$EDMSG ; FORMAT MESSAGE
#IO.WVB,#5,#l,,,,<tOUT,Rl,#40>

.i** FORTRAN 'CALLABLE SUBROUTINE TO ADD
• PSECT 'AADD, RQ, I , GBL, REl'.- 1.CON .

; RETURN FROM SUBROUTINE
TWO INTEGERS

AADO.: : CALL
MOU·"

. MOV
\.ADD

MOV ,
RETURN'

:$SAVAL
@2(R5) ,·RO.··
@~(RS) , Rl." .

/RO;F.l .
.R·l,@.6 (RS')

.~ SAVE RO-RS
.~~ 'FIRST·•OPERAND

1
; S¥CONP• OPERAND,

. ; .. SUM TH.EM
·:;'$TORE.· RESUL'T
l•· jESTOR~ ·Rf!Gl~TER~ A.ND ·RETURN

,~ ,::t:~~}:'.~ ,· ' . :-·, . '· > :! '.'; ,,

.· .. t:.'. ~.~.:. '.· .fc()n"t'il'}u~d. ·.on next; page)
_. :,~ ', . . , ·'x· i<,

~"-~ ' 0

9-6

.~**···/FOl~TRAN' .. C:ALLAB·tE SOBROUTIN.:E· ·TO SUBTRACT 'I'WO ·
~; ,./' .. ··' '.<; '·' <~ ·: -~ ,i ., '\ , . .),•~ ::._ ~ << .; ·'.'" .: , . . ; ... < •• <:. I

..,< .. ·. : '/.J>q .. ECT· .. su~B,.Rp,,1,GaL,REL,CQN ' '. ' '.
,,:.$.OB&': .. :. CALL ·· .. $SAVAL .. · · ... · ;·'· SAVE 'RO.iRS .

MpV:.. . ,· @·2 (RS) ;RO · · · ·) FIRST ·OPERAND:. • · ·
·.MOY·. :.@·f(:~S'),Rl ; .. SECOND ·a.PER.AND·
·,.~OB· · ·· , . ~·~ r RO . \ .. · . . · ; SUBTRACT SECOr~m·

· · .Mo.v :/. · Ro··~·@fr'(RSl ·; ·sToRE.·REsur.·T· :/· . ·· ... ·· .·
. REW.URN.'(, .' ... · <. . ·. ·. • . ,· i" :·:RESTORE · ~E'G;J:.STE~: AND/RET'p'R~/

~~.Q~~·~.~:~·.:.~A~;iA.~~(~·· ·~UBR~U~IN~·. ·,~o ··:.fu; vrbE··· ··~~b_' t·~~EG~R·s/··~ .
:..;,.t>SECT. ,DJV,\T 1:RO,I.1 GBL.,.REL,CON.. . . ·.· .. .
. >,c/i'.ti .. / . .;·'.$s·Av~t·' .:· · ·• . · .. · · \· · ;.:: .siv·E: ·. R.EG.S· ··.-t<o~;R:s
,, ·.M~V. :; :' .· ,' :@.2· 'R~·)

1

.)R~·. ' :' ,·i.·· ·$.I RST. b'J?.ERAND; .'• . ; ;, .' .. : '
/:~OV/./,;>,.· .. @4':'(:,R5.·) ··~·Rl/ .·. ·.;/.$E~ONU .. OP.ERAND/·/ .:· ;·:/

' ',; ,' cr;R, . .',,:" '':' R.2·;) /: .·. :'" . ; ' . .;. LO\Af·ORD'ER; lo: &lTS·''
··, ··j a!v··. ·, ~:'.ih~R2« :: :; ·~oi\'!oE.· .,' · ·.:·,·:/··. ·

.· ·,-"' ,'uo·· 7• • · .. ·R2·@'6iRs··), ;;·"strio····RE·.·R.·E···su·LT····:·· ... ·:,.: ... ·. / ··".:'> .. ,..: .. ;> .. :.:· ... ;·.: ...
' .:· ' .;... ' ~?.! ' ,y ' ," " • ' , ''\ ' •t ... : '• . '"""' . " . :·· .. · ., . •. . ; . . ., .·· ' •. ; " i• ' .' ' ; :' " ' . ;

, .. ~/.·.: L///RE:i1U;RN,+."-.·: '/J..:,;:i/'// :' ,, ':·/.;···~ES'f'C)RE•:.;EE.G'IS,!'N!-:RS,·'J\:Nf>',·;~E':ttt1~:$;'/:;·'·
: .. ',,··.::·:.·~c:..:·';··'.:;·,;>//,·:'.i'':.·:·,;;',:< .. /;:,,,.·:/ ,.· . . · •... : ,"./;• . · ... ·.... . .'· .. , · ':/:" ".::':/'/'.// .

. f,1r'f./'EbET<'RAN./.CA.ll<Ll\BLE.:'·suB'ROU''rIN-E', .'l10 .MUIJT.If>.tY' ···T.Wo··.:1N~EGERS··· . /::' ,·
,,,.,, _.,, ~ "~ <. 0·-'."fyo) .'~'.=<, ,. ~',»' .,. ,: ·, , ;: t '> ,. ,, ,, .: • '·, · '"» ~· .~ .'~ .. ~ ·' ~-, .=~ ,, , .'. o''; .. ,:· ,:· ~' ."·<~ /··~' .·: ,' ~:,.;, ·<> ,': ,:'·

:~~~~i/.r-fUt;i,:~q~~:G~t:~~E~iS6N· ·
·O"AtL·, .' _.'·.$~.AVl~.t,·· ··.. . ;./SAVE:· .f{.o.:.R:·s ·.·.:><:' ·

·.· .. ~·.· ·o9. vv: ·.:.:.<-'. ." ' .:@,2 (Rsf, RO '; ·P.i £{sir:·: OPER~ND ·
v . . /@4:([{ .. ~·J.:~.Rl: '; ;','SECO·NO·.·OPERAND:

... ttJu~. . .. Rp.,Rl . · · . ..·,, .:; . M.UL.T:tPf.iY' · : ·
: ··· MOV ... , .R~.~.@6J~5) ··. . ; ·STORE. RESULT '

. ._ .;;.,~'ETUifN .. :' ... " '·:. ;'.RES.TORE·'.REGI,STERS:'rA~D
. '!·E~o.·· .. · .: ·

·:,Qil~·~: .. ,,~·u· . ..,~·a.~e,;·.:a:s~e~·f>~·~a.· .. Ro:TisK:, ·.y.o·~ 6~.r): .. :bJ..r.ia ·
.:~<>mm.a.ri~ .. ·~s~'<:;tu.e,h·C'e·:· · ,... :.: .·: .·: " ,, . ·
~; / ~»,~~=, .; : ~ ~;,~ ,··~";: ·.·.,. ~ .,: ,·, ~' ... - , / =~-

: •. · . .,"' .:»,>·~.·K·· ''B.; '">,'.R.•· 'f)T'A···s" ... ~· ''f~'U>,: ... R." 'o.3r.:.· ··~·~··.K .. ·z.:~.:·T&l; .·1,.1;~. 'SP.; ·.·.:~.· R' <?)'r.: ;A· . ·S•K'. . /' .. <·; :·'.:\'
~ ~ ~ - f:'fl. I> . ~ r 111. :.t., . . .<\./*' •... /.· :.'~;·,'..'.,.,./~.· ,":.:·=.;. _J / .>,;.'.'T"KB')/; ;~..' .. •',/'/ :··:: /,>'".'":·" "•'/·.· ·.·. ,",· .. /,; ":' ·1:· ·.: ,· .. · .. : .. ,· .. · .. ·:

" .;:// • ' f .:·"' o,pt::~ i;>'?:~ < ·': '• ·: .. ". .' : :) ; / ' " ' "·:;.:::·/ .. :~/
·,, .:, ·OPAR!:f;·RDON!iY.:.·· ··.",; . ..· .. ·;; ... ,'• i'
' I ' ' .. < '< ' " ; . " " ;) '< ' ' '< ' ' . .,: ,;:/:'•:))J:i~;~:·:

;~i~~~p~~~~'.~~~4~'.~i~~~~ .. ~kl~~;\~~i{~ ; a···i,.m~i·~~µs(¥w .o~~}'./:c~~;~-;;
.:i.m.a~:e·.'.. ,"nffiln\edt;' :ROTAS:K ... :TS~ .. a"nd.· .',to·." ·ere.ate a·n .. • so·"."dt)l.umn, :·"(/,,;.~IJ ."map i"'fiJLe".c
" .. n~'rilea."/}ia~J\.si·.~.MAR::."',.: He·~ause.·.· ... ~/~si? .is : ~t:tached £0. the' ··ma·p · .. i:·t1'e<'~ , irtJ3'.,:··.:~q~,$·' ·
:j9.~· o:u~.J?.µ.t._ ~<~<7~.: ... ~9 ~he:.:H.ne ... P,.;in.ter. < · · · .. ·.. " .. "·· :., · '. .. ,:· .. · ~/:': ·

·',t'b'.~. ·R.OP'A:R.·optfon': .. spe9{f.i~s·. ~lta:,t· the syst.em .is t6 load., the :read.:.ori,l~.:.
··po,r .. t.ion:,·Pf·.'the'.· .. tas·k into a·· pa.r~·ition :na+ned RDONJJY.·. Specify.ing'a-:
\separate parH:t.i.:On' ·f0:t the· ta.sk' s ··rea(l_;only region is hot a sy·stem;
.. ·I;equ,i reme.n.t. The system wiq load the read/write portion into ..
partition GEN• The· system will not load either region undl · .. it
.rec.eives a· run· request for ·.the .. task.

The map that results from this command sequence is shown in Example
9 .. -1, Part ··2.,. 'Note that TKB has added one field to the task attributes.
section of this map describing the disk block limits of the read...;.6nly
portion of tne task. It has al so added a field to the root segment,

·portion of the map t.hat describes the memory limits of . the read-only·
portio'n of the task.

Finally, note that TKB has allocated space for all the program
sections with the read-only attribute, beginning with the highes~
available APR (in this case, APR 7).

9-7

MULTIUSER TASKS,

. Example · 9-.l, Part ·2 Task Builder Map. for ROTASK .. TSK

ROTASK.TSK;l Memory allocatJon map · TKB M40.10
10-DEC~82 1'4:42 ..

, > \'

Partftion name : GEN
Identi~ication : dl
Task . UIC [7, 62]
stack . Limits·: 000274 001273 OOlp.oo oos12.
PRG.xfr· address: 001634
Task· attribU.tes: MU" ,
Tol:al .address windows:· 2. . .
Task · image sfze 1088. ·word~{; !
Task·· a:aar'ess l·im;'ft,s: .. : .. 000000, 'o.o'4ls;7: · · , .

'R:.-w,dis;k bl:k l:imits:. oqoo•o2· dooo:o16L.oooecfs oaoo.s:· •.
R-0 disk blk' limits: .'OQoooq 00000'7\ o.Q'Q•OOl OO•OOL,'

*** Root . segment: ·ROTASK.

R/W mem limits: 000000 004157 0:04il60 02160 •. ·
R-0 mem limits: 160000 1603 77 oo0!400. 00256.

'Disk blk limits: 000002 00.0006 0·00%005 0000'5;.

Memory allocation synopsis:

Section
-------. BLK. : (RW I I I LCL, REL ,CON) 001274 ~02662 0.1458 •

001274 :qoo530 00.344.
AADD :(RO,I,LCL,REL,CON) 160000 ()!00024 00020.

160000 000024 00020.
DDIV :(RO,I,LCL,REL,CON) 160024 0!00026 00022.

160024 dooo26 00022.
MMUL :(RO,I,LCL,REL,CON) 160052 ®0024 0-0020.

1600,52, Q000,24 0,0020.
SSUB :(RO,I,LCL,REL,CON) 160076 '<l'.00024 00020.

160076 000024 00020.
$$RESL:(RO,I,LCL,REL,CON) 160122 000212 00138.

Global symbols:

Title

ROTASK

ROT ASK

ROTASK

ROTA,SK

ROT ASK

PAGE 1

,. ~ ;'

Id'ent File

01 ROT ASK.. OB,J ;: 1

01 ROTASK.OBJ;l

01 ROTASK. OBJ';'l

01 ,ROTAS,K.QBJ1l

01 ROTASK.OBJ;l

AADD 160000-R DIVV 160024-R MULL 160052-R SOBS 160076.;.R

*** Task builder statistics:

Total work file refer.ences: 2'1'45.
Work file reads: O.
Work file writes: O.
Size of core pool: 7086. words· (27.· PAGES)
Size of work file: 1024. woids (4. PAGES)

Elapsed time:00:00:07

9-8

CHAPTER 10

SWITCHES

You use switches and options to control the construction of your task
image. This chapter provides detailed reference information on all
the TKB switches. Chapter 11 describes the TKB options.

10.1 SWITCHES

The syntax for a file specification, as given in Chapter 1, is:

dev: [group,member]filename.type;version/swl/sw2 ••• /swn

Optionally, you can conclude a file specification with one or more
switches (swl,sw2, ••. swn). When you do not specify a switch, the Task
Builder establishes a default setting for it.

You designate a switch by a 2- to 4-character code preceded by a
slash (/). If you precede the 2- to 4-character code with a minus
sign (-) or the letters NO, TKB negates the function of the two
characters. For example, TKB recognizes the following settings for
the switch CP (checkpointable):

/CP
/-CP
/NOCP

The task is checkpointable.
The task is not checkpointable.
The task is not checkpointable.

In some cases, two particular switches cannot both be used in a
specification. When such a conflict occurs, TKB selects
overriding switch according to the following table:

Switch

/AC (Ancillary
Control Processor)

/EA (Extended
Arithmetic Element)

/CC (Concatenated
object file)

For example:

Switch Overriding Switch

/PR (Privileged) /AC

/FP (Floating /FP
Point Processor)

/LB (Library file) /LB

MCR>TKB IMGS=IN6,INS/LB/CC

file
the

TKB assumes that the input file INS is a library file. It searches
the file for undefined global references.
task image all of the modules in INS.

10-1

T.L:1--- --.L. ,: --1:1- .: - .L.1--
J. ~ uvco::> UV~ J.Ul,.;.l.UUC J.U ~UC

SWITCHES

The switches that TKB recognizes are given in alphabetical order in
Table 10-1. Sections 10.1.1 through 10.1.30 give detailed
descriptions of each switch, in alphabetical order, including:

• The switch format

• The file(s) to which the switch can be applied

• A description of the effect of the switch on the Task Builder

• The default assumption made if the switch is not present

Table 10-1
Task Builder Switches

Format Meaning

/AC[:n] Task is an ancillary control pro­
cessor.

/AL Task can be checkpointed to space
allocated in the task image file.

/CC Input file consists of concatenated
object modules.

/CM Memory-resident overlays are aligned
on 256-word physical boundaries.

/CO Causes TKB to build a
shared common.

/CP Task is checkpointable.

/CR A global cross-reference listing

/DA

/DL

/EA

/EL

/FP

is appended to the memory allocation
file.

Task contains a debugging aid.

Specified library file is a re­
placement for the system object
module library.

Task uses extended arithmetic
element.

Specifies library size according
to partition size.

Task uses the Floating Point
Processor.

10-2

Applies
to File Default

.TSK /-AC

.TSK /-AL

.OBJ /CC

.TSK /-CM

.TSK /CO

.STB

.TSK /-CP

.MAP /-CR

.TSK, /-DA

.OBJ

.OLB /-DL

.TSK /-EA

.TSK /-EL

.TSK)~FP on '1isxLiiM'
-/"~P;;,,o.n/1~~~;.;.,JJ/t~?l>:,_u~:,, -

(continued on next page)

SWITCHES

Table 10-1 (Cont.)
Task Builder Switches

Format

/FU

/HD

/IP

/LB

/LI

/MA

/MM

/MP

/NM

Meaning

All co-tree overlay segments are
searched for matching definition or
reference when modules from the de­
fault object module library are
being processed.

Task image includes a header.

Allows TKB to inform INS that the
task purposely overmaps the
I/O page.

Input file is a library file.

Informs TKB to build a
shared library.

Map file includes information
from the file.

System on which the task is to
run has memory management.

Input file contains an overlay
description.

; . .<'r.a~.~/',~~,<~:·,~.~~ltJ~~·~J;·: .. :~~.$~:'.~•·J.L·

Tells TKB to inhibit two
diagnostic messages.

/PI Task is position independent.

/PM Postmortem Dump is requested.

/PR[:n] Task has privileged access rights.

/RO Memory-resident overlay operator
(!) is enabled.

/SE Messages can be directed to the
task by means of the Executive
SEND directive.

Applies
to File

.TSK

.TSK,

.STB

.TSK

.OLB

.TSK

.STB

.MAP,

.OBJ

.TSK

.ODL

.. ··.!~I\:

.TSK

.TSK,

.STB

.TSK

.TSK

.TSK

.TSK

/MA

/MM

<. <' ~

Default

/-FU

/HD

. ·:>t~Ip.

/-IP

/-LB

/-LI

or /-MAl

or /-MM2

/-MP

j..;.;M.Q'
' .

/-NM

/-PI

/-PM

/-PR

/RO

/SE

1. The default is /MA for an input file, and /-MA for system library
and resident library .STB files.

2. The default for the memory management switch is /MM if the host
system has memory managment hardware, and /-MM if the host system does
not have memory management hardware.

(continued on next page)

10-3

SWITCHES

Table 10-1 (Cont.}
Task Builder Switches

Format Meaning
Applies
to File

/SG Allocates task program sections
alphabetically by access code (RW
followed by RO) •

/SH Short memory allocation file is
requested.

/SL Task is slaved to an initiating
task.

/SP Spool map output.

/SQ Allocates task program sections
in input order by access code.

/SS Selective search for global
symbols.

/TR Task is to be traced.

/WI Memory allocation file is printed
at a width of 132 characters.

/Xll RSX-HM-PLUS only switch. Task is
to have an external header.

/XT[:n] TKB exits after n diagnostic.

3. The default is ultimately determined by the
INSTALL command, which overrides the TKB setting

10=4

.TSK

.MAP

.TSK

.MAP

.TSK

.OBJ

.TSK

.MAP

.TSK

.TSK

/XHR
except

Default

/-SG

/SH

/-SL

/SP

/-SQ

/-SS

/-TR

/WI

3

/-XT

switch in the
for /-XH.

SWITCHES

AC

10.1.1 /AC[:n] -- Ancillary Control Processor

File

Task image

Syntax

file.TSK/AC:O=file.OBJ

or

file.TSK/AC:4=file.OBJ

or

file.TSK/AC:5=file.OBJ

Description

The /AC switch informs TKB that your task is an ancillary control
processor; that is, it is a privileged task that extends certain
Executive functions. For example, the system task FllACP is an
ancillary control processor that receives and processes FILES-11
related input and output requests on behalf of the Executive.

Effect

This switch also informs TKB that your task is privileged. TKB
sets the AC attribute flag and the privileged attribute flag in
your task's label block flag word.

The value of n is an octal number that specifies the first KT-11
Active Page Register (APR) that you want the Executive to use to
map your task's image when your task is running in user mode.
Legal values are O, 4, and 5. If you do not specify n, the Task
Builder assumes a value of 5.

If you do not explicitly specify that your task is to run on a
mapped system (through the /MM switch) and it is not otherwise
implied (TKB is not running in a system with KT-11 hardware), TKB
merely tests the value of n for validity, but otherwise ignores
it.

Default

/-AC

NOTE

You should not use /AC and /PR on the
same command line.

10-5

SWITCHES

AL

10.1.2 /AL -- Allocate Checkpoint Space

File

Task image

Syntax

file.TSK/AL=file.O~J

Description

The /AL switch informs TKB that your task is checkpointable. The
system will checkpoint it to a space in your task's image file.
However, the system uses the system checkpoint file first if you
specified dynamic checkpointing.

Effect

As well as making your task checkpointable, this switch directs
TKB to allocate additional space in your task image file to
contain the checkpointed task image.

Default

/-AL

NOTES

Do not use /CP in the same command line
in which you use /AL.

Also, the /AL switch should not be used
with the /-HD switch to build tasks.
Examples of tasks that use the /-HD
switch are: the Executive, device
drivers, and commons.

10-6

SWITCHES

cc

10.1.3 /CC -- Concatenated Object Modules

File

Input

Syntax

file.TSK=file.OBJ/-CC

Description

/CC controls the way TKB extracts modules from your input file.

Effect

By default, TKB includes in your task's image all the modules of
your input file. If you negate this switch (as in the Syntax
section above) , TKB includes only the first module of your input
file.

Default

/CC

10-7

SWITCHES

CM

10.1.4 /CM -- Compatibility Mode Overlay Structure

File

Task image

Syntax

file.TSK/CM=file.OBJ

Description

/CM causes the Task Builder to build your task in compatibility
mode.

Effect

TKB aligns memory-resident
boundaries for compatibility
mapping directives.

Default

/-CM

overlay segments on 256-word
with other implementations of the

10-8

SWITCHES

co

10.1.5 /CO -- Build a Common Block Shared Region

File

Task image
.STB file

Syntax

file.TSK/CO=file.OBJ

or

,,file.STB/CO=file.OBJ

Description

The /CO switch informs TKB that a shared common is being built.
If you build a shared common, you should use the /CO switch and
the /-HD switch.

If you use the /-PI switch for an absolute shared common, all the
program sections in the common are marked absolute. Using the
/-PI/-HD switches without the /CO switch causes TKB to build a
shared library.

If you use the /PI switch for a relocatable shared common, all
program sections in the common are marked relocatable.

In either case, the .STB file contains all the program section
names, attributes, length, and symbols. TKB links common blocks
by means of program sections. Therefore, the .STB file of a
shared region built with the /CO switch contains all defined
program sections.

Using the /PI/-HD switches without the /CO switch causes TKB to
build a shared common.

The /CO switch does not have a /-CO form.

Effect

This switch causes TKB to include
declarations in the .STB file.

Defaults

/CO

10-9

all program section

SWITCHES

CP

10.1.6 /CP -- Checkpointable

File

Task image

Syntax

file.TSK/CP=file.OBJ

Description

/CP causes TKB to mark your task as checkpointable. The system
will checkpoint it to space that you have allocated in the system
checkpoint file on the system disk. This switch assumes that you
have allocated the checkpoint space through the MCR command ACS.
(Refer to the RSX-llM/M-PLUS MCR Operations Manual.)

Effect

The system writes your task to the system checkpoint file on
secondary storage when its physical memory is required by a task
of higher priority.

Default

/-CP

Using /AL also
checkpointable.

NOTE

makes

10-10

your task

SWITCHES

CR

10.1.7 /CR -- Cross-Reference

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/CR=file.OBJ

Description

The /CR switch directs TKB to add a cross-reference listing to
the map file of your task.

Effect

TKB creates a special work file (file.CRF) that contains segment,
module, and global symbol information. The Task Builder then
calls the Cross-Reference Processor (CRF) to process the file.
CRF creates a cross-reference listing from the information
contained in the file, and then deletes file.CRF. (Refer to the
RSX-11 Utilities Manual for more information on CRF.)

The Example section below describes the cross-reference listing
and its contents.

Default

/-CR

Example

NOTE

For this switch to be effective, CRF
must be installed in your system.

Example 10-1 shows a cross-reference listing for task OVR. The
numbered items in the notes correspond to the numbers in Example
10-1.

10-11

SWITCHES

CR (Cont.)

Example 10-1 Cross-Reference Listing for OVR.TSK

CREF CREATED BY TKB ON 27-JUL-82 AT 09:46 PAGE

GLOBAL CROSS REFERENCE CREF

SYMBOL VALUE REFERENCES •••

AADD 020000-R * AADD @ CALC
ADDEXI 020060-R * AADD
ARGBLK 001340-R CALC # MAIN
BUFF 001366-R # MAIN OUTPUT
CALC 003270-R * CALC @ MAIN
DIFR 001360-R CALC # MAIN
DI VEX I 020062-R * DIVV
DIVR 001364-R CALC # MAIN
DIVV 020000-R @ CALC * DIVV
I 001350-R INPUT # MAIN
IE. EOF 177766 INPUT # QIOSYM
INITL 005664-R # INITL MAIN
INPUT 003364-R * INPUT @ MAIN
IOSB 001334-R INPUT # MAIN

CREF CREATED BY TKB ON 27-JUL-82 AT 09:46 PAGE 2

SEGMENT CROSS REFERENCE CREF VOl

SEGMENT NAME RESIDENT MODULES

AADD AADD
CALC CALC
DIVV DIVV
INPUT AR ITH CATB INPUT QIOSYM SAVRG
LIBROT INITL SAVAL
MAIN ALERR AUTO MAIN OVCTR OVDAT OVRES SAVRl

VCTDF
MULL MULL
OUTPUT AR ITH CATB CBTA CDDMG C5TA DARI TH EDDAT

EDTMG OUTPUT QIOSYM SAVRG
SUBB SUBB

NOTES

C) The cross-reference page header gives the name of the memory
allocation file, the originating task (TKB), the date and
time the memory allocation file was created, and the
cross-reference page number.

f) The cross-reference list contains an alphabetic listing of
each global symbol along with its value and the name of each
referencing module. When a symbol is defined in several
segments within an overlay structure, the last defined value
is printed. Similarly, if a module is loaded in several
segments within the structure, the module name is displayed
more than once within each entry.

10-12

e

SWITCHES

CR (Cont.)

The suffix -R appears next to the value if the symbol is
relocatable.

Pref ix symbols accompanying each module name define the type
of reference as follows:

Pref ix Symbol

blank

@

*

Reference Type

Module contains a reference that is
resolved in the same segment or in a
segment toward the root.

Module contains a reference that is
resolved directly in a segment away from
the root or in a co-tree.

Module contains a reference that
resolved through an autoload vector.

is

Module contains a nonautoloadable
definition.

Module contains an autoloadable definition.

@) The segment cross-reference lists the name of each overlay
segment and the modules that compose it. If the task is a
single-segment task, this section does not appear.

10-13

SWITCHES

DA

10.1.8 /DA -- Debugging Aid

File

Task image or input

Syntax

file.TSK/DA=file.OBJ

or

file.TSK=file.OBJ,file.OBJ/DA

Description

/DA causes TKB to include a debugging aid in your task. The
debugging aid controls the task's execution.

Effect

If you apply this switch to your task image file, TKB includes
the system debugging a id LBO: [1, 1] ODT. OBJ .in to . yo~r task ima.ge.
rf you use the /DA: ·swfteh wiith the' ' fro. swLt:;ch·, r TKB' · include:s·
LB::;f;J:'1 i) ffi!!E£;q:.··qBJ't ·ii~·~~~ ~a;Sl~'•:;

TKB passes control to the debugging program when you or the
system starts task execution.

If you apply this switch to one of your input files, TKB assumes
that the file is a debugging aid that you have written. Such
debugging programs can trace a task, printing out relevant
debugging information, or monitor· the task's performance for
analysis. The default file type for the debugging aid is .OBJ.

In either case, /DA has the following effects on your task image:

Default

• The transfer address of the debugging aid overrides the
task transfer address.

• TKB initializes the header of
initial task load, registers
following values:

RO - Transfer address of task.

your task so that, on
RO through R4 contain the

Rl - Task name in Radix-50 format (word #1).

R2 - Task name (word #2).

R3 - The first three of six RAD50 characters representing
the version of your task. TKB derives the version
from the first .IDENT directive it encounters in your
task. If no .IDENT directive is in your task, this
value is 01.

R4 - The second three RAD50 characters representing the
version of your task.

/-DA

10-14

SWITCHES

DL

10.1.9 /DL -- Default Library

File

Input

Syntax

file.TSK=file.OBJ,file.OLB/DL

Description

This switch causes the input file to be
system object module library. The
input file is .OBJ.

Effect

a replacement for the
default file type for the

The library file you have specified replaces the file
LBO:[l,l]SYSLIB.OLB as the library file that the Task Builder
searches to resolve undefined global references. The default
device for the replacement file is SYO:. TKB refers to it only
when undefined symbols remain after it has processed all the
files you have specified. You can apply the /DL switch to only
one input file.

Default

/-DL

10-15

SWITCHES

EA

10.1.10 /EA -- Extended Arithmetic Element

File

Task image

Syntax

file.TSK/EA=file.OBJ

Description

/EA informs TKB that your task uses the KEll-A
Arithmetic Element.

Effect

Extended

TKB allocates three words in your task's header for saving the
state of the extended arithmetic element.

Default

/-EA

NOTE

You should not use /EA and /FP on the
same command line.

10-16

SWITCHES

EL

10.1.11 /EL -- Extend Library

File

Task image

Syntax

file.TSK/LI/-HD/EL=file.OBJ

Description

/EL places the upper address limit as determined by the PAR
option in the library's label block, though the actual size of
the library may be smaller. This switch is useful when you build
vectored libraries such as RMS, which are subject to size
changes.

Effect

This switch specifies the maximum possible size for the library
according to the size specified in the PAR option. The switch
specifies a larger library virtual address range than is actually
present in the library to allow RMS to map its vectored library
segments.

Default

/-EL

10-17

SWITCHES

FP

10.1.12 /FP -- Floating Point

File

Task image

Syntax

file.TSK/FP=file.OBJ

Description

/FP informs TKB that your task uses the Floating Point Processor.

Effect

TKB allocates 25 words in your task's header for saving the state
of the Floating Point Processor.

Default

/-FP on R.sx;...1ut syst;em$
/F'P"'' '()fr''.:Rsx=IiM81l~lJ~''":~Y~t~ifS,*':

NOTES

1. You should not use /FP and /EA on
the same command line.

2. The /FP switch allocates space in
the task header to save the floating
point status if your task is context
switched. Therefore, in an RSX-llM
system, if a task that uses the
Floating Point Processor is built
without the /FP switch, the task
will run correctly until a second
task that uses the Floating Point
Processor is run. Then both tasks
will either crash or produce
incorrect results. For information
on changing the Task Builder's
defaults, refer to Appendix F.

10-18

SWITCHES

FU

10.1.13 /FU -- Full Search

File

Task image

Syntax

file~TSK/FU=fileeODL/MP

Description

This switch controls the Task Builder's search for undefined
symbols when it is processing modules from the default library.

Effect

When TKB processes modules from the default object module
library, and it encounters undefined symbols within those
modules, it normally limits its search for definitions to the
root of the main tree and to the current tree. Thus, unintended
global references between co-tree overlay segments are
eliminated. When the /FU switch is appended to the task image
file of an overlaid task, TKB searches all co-tree segments for a
matching definition or reference. See Sections 3.2.2 and 3.2.3
in Chapter 3 for more details.

Default

/-FU

10-19

SWITCHES

HD

10.1.14 /HD -- Header

File

Task image or symbol definition

Syntax

file.TSK/-HD,,file.STB=file.OBJ

or

file.TSK,,file.STB/-HD=file.OBJ

Description

The /-HD form of this switch directs TKB to exclude a header from
your task image.

Effect

TKB does not construct a header in your task image. You use the
negated form of this switch when you are building commons,
resident libraries, and loadable drivers.

Default

/HD

10-20

SWITCHES

10-21

SWITCHES

IP

10.1.16 /IP -- Task Maps 1/0 Page

File

Task image

Syntax

file.TSK/PR/-IP=file.OBJ

Description

You use the /-IP switch to inform TKB that the task is purposely
over 12K and does not need to be mapped to the I/O page.

Effect

TKB sets a bit in the task's label block that informs INSTALL
(INS) that the task intentionally does not map the I/O page.
When this bit is set, INS does not display an error message when
it detects that the privileged task extends into APR 7.

Default

/IP

10-22

SWITCHES

LB

10.1.17 /LB -- Library File

File

Input

Syntax

file.TSK=file.OBJ,file.OLB/LB

or

fileeTSK=file.OBJ,file.OLB/LB:mod-l:mod-2 ••• :mod-8

Description

The file to which this switch is attached is an object module
library file. The Task Builder's interpretation of this switch
depends upon which of the following forms you use:

• Without arguments (the first syntax given above)

• With arguments (the second syntax given above)

The default file type is .OLB.

Effect

If you apply this switch without arguments, TKB assumes that your
input· file is a library file of relocatable object modules. TKB
searches the file immediately to resolve undefined references in
any modules preceding the library specification. It also
extracts from the library, for inclusion in the task image, any
modules that contain definitions for such references.

If you apply the switch with arguments, TKB extracts from the
library the modules named as arguments of the switch regardless
of whether the modules contain definitions for unresolved
references.

If you want TKB to search an object module library file both to
resolve global references and to select named modules for
inclusion in your task image, you must name the library file
twice: once, with the modules you want included in your task
image listed as arguments of the /LB switch; and a second time,
with the /LB switch and no arguments. For example:

file.TSK=file.OLB/LB:mod-l:mod-2,file.OLB/LB

10-23

SWITCHES

LB (Cont.)

The position of the library file within TKB command sequence is
important. The following rules apply:

Default

• The library file must follow to the right
file(s) that contain references to be
library. For example:

TKB>file.TSK=infilel.OBJ,lib.OLB/LB

of the
defined

input
in the

The command above illustrates the correct usage of the /LB
switch; the following command illustrates incorrect usage:

TKB>file.TSK=lib.OLB/LB,filel.OBJ

• If you are using the Task Builder's multiline input, and
you specify a given library more than once during the
command sequence, you must attach the /LB switch to the
library file each time you specify the library. For
example:

>TKB
TKB>file.TSK=filel.OBJ,file2.0BJ,lib.OLB/LB
TKB>file3.0BJ,file4.0BJ,lib.OLB/LB
II

• When you are building an overlay structure, you must
specify object module libraries for an overlay structure
within the Overlay Description Language (ODL) file for the
structure. To do this, you must use the .FCTR directive to
specify the library. For example:

AFCTR:
.ROOT CNTRL-LIB-(AFCTR,BFCTR,C)
.FCTR AO-LIB-(Al,A2-(A21,A22))
.FCTR BO-LIB-(Bl,B2) BFCTR:

LIB: .FCTR LB: [303,3]LIBOBJ.OLB/LB
.END

The technique used in the ODL file above allows you to control
the placement of object module library routines into the
segments of your overlay structure. (For more information on
overlaid tasks, see Chapter 3.)

1.

NOTES

You should not use the
and the /CC switch
command sequence.

/LB switch
in the same

2. You can use the /SS switch in
conjunction with the /LB switch
{with or without arguments) to
perform a selective search for
global definitions.

/-LB

10-24

SWITCHES

LI

10.1.18 /LI -- Build a Library Shared Region

File

Task image
.STB file

Syntax

file.TSK/LI=file.OBJ

or

,,file.STB/LI=file.OBJ

Description

The /LI switch makes TKB build a shared library. However, you
must use the /-HD switch with the /LI switch to build the shared
library. The /LI switch does not have a /-LI form.

Effect

TKB includes only one program section declaration in the .STB
file.

If you use the /-PI switch for an absolute library, TKB names the
program section • ABS, makes the library position dependent, and
defines all symbols as absolute. Also, if you use the /-PI
switch without the /LI switch, TKB assumes /LI to be the default.

If you use the /PI switch for a relocatable library, TKB names
the program section the same as the root segment of the library.
TKB forces this name to be the first and only declared program
section in the library. TKB declares all global symbols in the
.STB file relative to that program section. Also, if you use the
/PI switch without the /LI switch, TKB assumes that a shared
common is to be built (/CO is the default).

Default

/-LI

10-25

SWITCHES

MA

10.1.19 /MA -- Map Contents of File

File

Input or memory allocation

Syntax

file.TSK,file.MAP=file.OBJ,file.OBJ/-MA

or

file.TSK,file.MAP/MA=file.OBJ

Description

TKB is to include information from your input file in the memory
allocation output file.

Effect

If you negate this switch and apply it to an input file, TKB
excludes from the map and cross-reference listings all global
symbols defined or referred to in the file. In addition, TKB
does not list the file in the "file contents" section of the map.

If you apply this switch to the map file, TKB includes in the map
file the names of routines it has added to your task from SYSLIB.
It also includes in the map file information contained in the
symbol definition file of any shared region to which the task
refers.

Default

/MA for input files

/-MA for system library and resident library STB files

10-26

SWITCHES

MM

10.1.20 /MM[:n] -- Memory Management

File

Task image

Syntax

file.TSK/MM[:n]=file.OBJ

or

file.TSK/-MM[:n]=file.OBJ

Description

The /MM switch informs TKB whether the system on which your task
is to run has memory management hardware. Specify n as the
decimal numbers 28 or 30.

Effect

If you use n with the /-MM switch {for an unmapped system), n
specifies the highest physical address in K-words of the task or
system being built. If you do not specify n with /-MM, the
default highest address of the task or system is 28K.

If you specify n with /MM, n is ignored.

Default

When you do not apply /MM or /-MM to your task image file, TKB
allocates memory according to the mapping status of the system on
which your task is being built. The maximum task size for a
mapped system is always 32K. The default highest address for a
task or system in an unmapped system is 28K.

NOTE

When you use /-MM, TKB does not recognize the
memory-resident overlay operator(!). TKB checks the
operator for correct syntax, but it does not create any
resident overlay segments.

10-27

SWITCHES

MP

l0ele21 /MP -- Overlay Description

File

Input

Syntax

file.TSK=file.ODL/MP

Description

The /MP switch specifies that the input file is an Overlay
Description Language (ODL) file.

Effect

TKB receives all the input file specifications from this file.
It allocates virtual address space as directed by the overlay
description. If you use the Task Builder's multiline command
format (see Section 1.3), TKB requests option information at the
console terminal by displaying:

ENTER OPTIONS:.

Default

/-MP

NOTES

1. If you use the multiline command
format when you specify an ODL file,
TKB automatically prompts for option
input. Therefore, you must not use
the single slash (/) to direct TKB
to switch to option input mode when
you have specified /MP on your input
file.

2. When you specify /MP on the input
file for your task, it must be the
only input file that you specify.
The default file type is .ODL.

10-28

SWITCHES

MU·

~~' ~ ' ,

pe f ~·~.l:t ..
/..;:Mtf

10-29

SWITCHES

NM

10.1.23 /NM -- No Diagnostic Messages

File

Task image

Syntax

file.TSK/NM=file.OBJ

Description

The /NM switch controls the printing of diagnostic messages.

Effect

This switch eliminates two messages:

n Undefined symbols segment seg-name

and

Module module-name multiply defines P-section p-sect-name

Default

/-NM

10-30

SWITCHES

Pl

10.1.24 /PI -- Position Independent

File

Task image or symbol definition

Syntax

file.TSK/PI=file.OBJ

or

file.TSK,,file.STB/PI=file.OBJ

Description

/PI informs TKB that the task's
position-independent code or data.
either /CO or /LI.

Effect

shared region contains only
Use this switch with /-HD and

TKB sets the position-independent code (PIC) attribute flag in
the label block flag word of the shared region.

Be aware that if you specify /PI without using the /CO or /LI
switches, TKB builds a shared common (/CO default). Also, if you
specify /-PI without using the /CO or /LI switch, TKB builds a
shared library (/LI default).

Default

/-PI

10-31

SWITCHES

PM

10.1.25 /PM -- Postmortem Dump

File

Task image

Syntax

file.TSK/PM=file.OBJ

Description

If you use /PM and your task terminates abnormally, the system
automatically lists the contents of the memory image.

Effect

TKB sets the Postmortem Dump flag in your task's label flag word.

Default

/-PM

NOTES

1. If your task issues an ABRT$ (abort
task) directive, the system will not
dump the task image even though TKB
has set the Postmortem Dump flag in
your task's label flag word. In
this case, the system assumes that a
Postmortem Dump is not necessary
since you know why your task was
aborted.

2. The PMD utility must be installed in
your system and be able to get into
physical memory for this switch to
be effective.

10-32

SWITCHES

PR

10.1.26 /PR[:n] -- Privileged

File

Task image

Syntax

file.TSK/PR:O=file.OBJ

or

file.TSK/PR:4=file.OBJ

or

file.TSK/PR:5=file.OBJ

Description

The /PR switch informs TKB that your task is privileged with
respect to memory and device access rights. If you specify PR:O,
your task does not have access to the I/O page or the Executive.
However, if you specify PR:4 or PR:5, your task does have access
to the I/O page and the Executive, in addition to its own
partition.

Effect

TKB sets the Privileged Attribute flag in your task's label block
flag word.

The value of n is an octal number that specifies the first Active
Page register that you want the Executive to use to map your task
image when your task is running in user mode. Legal values are
O, 4, and 5. If you do not specify one of these values, TKB
assumes a value of 5.

If you do not explicitly specify that your task is to run on a
mapped system, (through the /MM switch) and it is not implied (by
the presence of KT-11 hardware on the system upon which TKB is
running), TKB merely tests the value (:n) of the switch for
validity; otherwise, TKB ignores it. Privileged tasks are
described in Chapter 9.

Default

/-PR

NOTE

You should not use /PR and /AC on the
same command line.

10-33

SWITCHES

RO

10.1.27 /RO ~- Resident Overlay

File

Task image

Syntax

file.TSK/-RO=file.ODL/MP

Description

The Task Builder's recognition of the memory-resident overlay
operator (!) is enabled.

Effect

The memory-resident overlay operator (!), when present in the
overlay description file, indicates to TKB that it is to
construct a task image that contains one or more memory-resident
overlay segments. If you negate this switch (as in the Syntax
section above), TKB checks the operator for correct syntactical
usage, but otherwise ignores it. With the memory-resident
overlay operator thus disabled, TKB builds a disk-resident
overlay from the overlay description file.

Default

/RO

10-34

SWITCHES

SE

10.1.28 /SE -- Send

File

Task image

Syntax

file.TSK/-SE=file.OBJ

Description

This switch determines whether messages can be directed to your
task by means of the Executive Send directive. (Refer to the
RSX-llM/M-PLUS Executive Reference Manual for information on the
Send directive)

Effect

By default, messages can be directed to your task by means of the
Executive Send directive. If you negate this switch (as in the
Syntax section above), the system inhibits the queuing of
messages to your task.

Default

/SE

10-35

SWITCHES

SG

10.1.29 /SG -- Segregate Program Sections

File

Task image

Syntax

file.TSK/SG=file.OBJ

Description

The /SG switch allocates virtual address space to all (RW)
program sections and then to all read-only (RO) program sections.

Effect

The /SG switch gives you control over the ordering of program
sections. By using the /SG switch, you cause TKB to order
program sections alphabetically by name within access code (RW
followed by RO). If you specify the /SQ switch with the /SG
switch, TKB orders program sections in their input order by
access code. See the description of the /SQ switch.

You use the negated switch, /-SG, to make TKB interleave the RW
and RO program sections. Thus, the combination /-SG/SQ results
in a task with its program sections allocated in input order and
its RW and RO sections interleaved. Additionally, you can use
/-SQ/-SG to make TKB order program sections alphabetically with
RW and RO sections interleaved. However, /-SG is the default.

When taskbuilding multiuser tasks, the /MO switch causes TKB to
default to /SG. Therefore, to correctly build read-only tasks,
you can use the /MU switch only.

Default

/-SG

10-36

SWITCHES

SH

10.1.30 /SH -- Short Map

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/SH=file;OBJ

Description

If you specify /SH, TKB produces the short version of the memory
allocation file.

Effect

TKB does not produce the "file contents" section of the memory
allocation file.

Default

/SH

Example

The memory allocation file consists of the following items:

• Page header

• Task attributes section

• Overlay description (if applicable)

• Root segment allocation

• Tree segment description (if applicable)

• Undefined references (if applicable)

• Task Builder statistics

An example of the memory allocation file (map) is shown in
Example 10-2. The numbered and lettered items in the notes
correspond to the numbers and letters in Example 10-2.

Example 10-2 Memory Allocation File (Map) Example

OVR.TSK;l Memory Allocation Map TKB M40.10
15-DEC-82 11:28

Partition name : GEN @) ~
Identification : 01@)
Task UIC [303,3]@) (!:I
Stack limits: 000260 001257 001000 00512.:J;

Page 1 Jo

(continued on next page)

10-37

SWITCHES

SH (Cont.)

Example 10-2 (Cont.) Memory Allocation File (Map) Example

Prg xfr address: 001264 @ CE) CD
Total address windows: 1. CD ® Q)
Task image size : 7488. words @) @
Task address limits: 000000 035107@)
R-W disk blk limits: 000002 000073 000072 00058.@) @)

OVR.TSK Overlay description:

Base Top Length

000000 005033 005034 02588. ROOTM
005034 021057 014024 06164. MULOV
005034 021057 014024 06164. AD DOV
021060 035103 014024 06164. SUBOV
021060 035107 014030 06168. DIVOV

OVR.TSK
ROOTM

Memory allocation map TKB M40.02
28-DEC-81 09:10

*** Root segment: ROOTM @)

R/W mem limits: 000000 005033 005034 02588.~
Disk blk limits: 000002 000007 000006 00006.@)

Memory allocation synopsis:

Page 2

Section Title !dent File
------- @
. BLK.: (RW,I,LCL,REL,CON) 001260 002514 01356.

001260 000102 00066. ROOTM
001362 000260 00176. PRNOV
001642 000042 00034. SAVOV
003774 000002 00002.

ANS : (RW,D,GBL,REL,OVR) 003774 000002 000002.
003774 000002 00002. ROOTM
003774 000002 00002. PR NOV

Global Symbols:

AADD 004032-R DIVV
MULL

004052-R PRINT 001550-R SUBB
004022-R SAVAL 001642-R

01 ® ROOTM.OBJ;l
01 PRNOV.OBJ;l
01 SAVOV.OBJ;l

01 ROOTM.OBJ;l
01 PRNOV.OBJ;l

004042-R CD

@®CD CD®
OVR.TSK
MULOV

Memory allocation map TKB M40.02 Page 3
28-DEC-81 09:10

*** Segment: MULOV

R/W mem limits: 005034 021057 014024 06164.
Disk blk limits: 000010 000024 000015 00013.

e

(~ontinued on next page)

10-38

SWITCHES

SH (Cont.)

Example 10-2 (Cont.) Memory Allocation File (Map) Example

Memory allocation synopsis:

Section Title Ident File l
• BLK.: (RW, I,LCL,REL,CON) 005034 014024 06164.

005034 014024 06164. MULOV 01
$$ALVC: (RW,D,LCL,REL,CON) 021060 000000 00000.
$$RTS :(RW,I,BGL,REL,OVRj 004250 000002 00002.

Global symbols:

MULL 021034-R

*** Task builder statistics:

Total work file references: 7156. ~
Work file reads: O.} r0

Work file writes: 0. ® ®
Size of core pool: 7086. words (27. pages) Gt
Size of work file: 3072. words (12. pages)®

ELAPSED TIME:00:00:14

Notes:

MULOV.OBJ;l

J

., The page header shows the name of the task image file and the
overlay segment name (if applicable), along with the date,
time, and version of TKB that created the map.

8 The task attributes
information:

section contains the following

® Task name
you do not
field.

The name specified in the TASK option. If
use the TASK option, TKB suppresses this

(El Partition name -- The partition specified in the PAR
option. If you do not specify a partition, the default
is partition GEN.

@) Identification -- The task version as specified in the
.IDENT assembler directive. If you do not specify the
task identification, the default is 01.

Task UIC -- The task UIC as specified
If you do not specify the UIC,
terminal U!C.

10-39

in the UIC option.
the default is the

SWITCHES

SH (Cont.)

~ Task priority -- The priority of the task as specified in
the PR! option. If you do not specify PRI, the default
is 50, and is not shown on the map.

CD Stack limits -- The low and high octal addresses of the
stack, followed by its length in octal and decimal bytes.

~ ODT transfer address -- The starting address of the ODT
debugging aid. If you do not specify the ODT debugging
aid, this field is suppressed.

(@ Program transfer address -- The address of the symbol
specified in the .END directive of the source code of
your task. If you do not specify a transfer address for
your task, TKB automatically establishes a tranfer
address of 000001 for it. TKB also suppresses this field
in the map if you do not specify a transfer address.

Task attributes -- These attributes are
they differ from the defaults. One
following may be displayed:

AC Ancillary control processor.

listed only if
or more of the

AL Task is checkpointable, and task image file
contains checkpoint space allocation.

CP Task is checkpointable, and task image file
will be checkpointed to system checkpoint file.

DA Task contains debugging aid.

EA Task uses KEll-A extended arithmetic element.

FP Task uses Floating Point Processor.

-HD Task image does not contain header.

PI Task contains position-independent code and
data.

PM Postmortem Dump requested in the event of
abnormal task termination.

PR Task is privileged.

-SE Messages addressed to the task through the SEND
directive will be rejected by the Executive.

SL Task can be slaved.

TR Task initial PS word has T-bit enabled.

ro Task is I-: ,a,nfi 6-space :t:ask ..
CD Total address windows -- The number of window blocks

allocated to the task.

10-40

SWITCHES

SH (Cont.)

CE) Mapped array -- The amount of physical memory {decimal
words) allocated through the VSECT option or Mapped Array
Declaration (GSD type 7, described in Appendix B);
mapped array is not shown if it does not apply.

CD

®

®

®

®

Task extension -- The increment of
(decimal words) allocated through
option. Without these options, task
shown.

physical memory
the EXTTSK or PAR
extension is not

Task image size -- The amount of memory (decimal words)
required to contain your task's code. This number does
not include physical memory allocated through the EXTTSK
option.

Total task size -- The amount of physical memory (decimal
words) allocated, including mapped array area and task
extension area. Total task size is not shown in this
example.

Task address limits -- The lowest and highest virtual
addresses allocated to the task, exclusive of virtual
addresses allocated to VSECTs and shared regions.

Read/write disk block limits -- From left to right: the
first octal relative disk block number of the task's
header; the last octal relative disk block number of the
task image; and the total contiguous disk blocks
required to accommodate the read/write portion of the
task image in octal and decimal.

Read-only disk block limits -- From left to right: the
first octal relative disk block of the multiuser task's
read-only region; the last octal relative disk block
number of the read-only region; and the total contiguous
disk blocks required to accommodate the read-only region
in octal and decimal. This field appears only when you
are building a multiuser task.

6) The overlay description shows, for each overlay segment in
the tree structure of an overlaid task, the beginning virtual
address {the base), the highest virtual address (the top),
the length of the segment in octal and decimal bytes, and the
segment name. Indenting is used to illustrate the ascending
levels in the overlay structure. TKB prints the overlay
description only when an overlaid task is created.

~ The root segment allocation -- This section has the following
elements:

0 Root segment -- The name of the root segment.
task is a single-segment task, the entire
considered to be the root segment.

If your
task is

@ Read/write memory limits -- From left to right: the
beginning virtual address of the root segment (the base);
the virtual address of the last byte in the segment (the
top); and the length of the segment in octal and decimal
bytes.

10-41

SWITCHES

SH (Cont.)

~ Disk block limits -- From left to right: the first
relative block number of the beginning of the root
segment; the last relative block number of the root
segment; total number of disk blocks in octal; and the
total number of disk blocks in decimal.

@) Memory allocation synopsis -- From left to right: the
program section name; the program section attributes;
starting virtual address of the program section; and
total length of the program section in octal and decimal
bytes.

The program section shown as • BLK. in this field is the
unnamed relocatable program section. Notice in this
example that there are 636(octal) bytes allocated to it
(2034 bytes - 1176 bytes = 636 bytes). This allocation
is the result of calls to routines that reside within the
unnamed program section in SYSLIB. (For more
information, see the description of the /MA switch in
Section 10.1.14.)

@) Module contributor -- This field lists the modules that
have contributed to each program section. In this
example, the program section ANS was defined in module
ROOTM. The module version is 01 (as a result of the
.!DENT assembler directive) and the file name from which
the module was extracted is ROOTM.OBJ;l. If the program
section ANS had been defined in more than one module,
each contributing module and the file from which it was
extracted would have been listed here.

NOTE

The absolute section • ABS. is not shown because
it appears in every module and always has a
length of O.

CD The global symbols section lists the global symbols
defined in the segment. Each symbol is listed along with
its octal value. A -R is appended to the value if the
symbol is relocatable. The list is alphabetized in
columns.

The file contents section (which is composed of the four
fields listed below) is printed only if you specify /-SH in
the TKB command sequence. TKB creates this section for each
segment in an overlay structure. It lists the following
information:

~ Input file -- File name, module name as established by
the .TITLE assembler directive, and module version as
established by the .!DENT assembler directive.

(El Program section -- Program section name, starting virtual
address of the program section, ending virtual address of
the program section, and length in octal and decimal
bytes.

10-42

SWITCHES

SH (Cont.)

CD Global symbol -- Global symbol names within each program
section and their octal values. If the segment is
autoloadable (see Chapter 3), this value is the address
of an autoload vector. The autoload vector in turn
contains the actual address of the symbol.

A -R is appended to the value if the symbol is
relocatable.

CD Program section The contents of this field is
described in note g above.

~ Undefined References -- This field lists the undefined
global symbols in the segment.

CB The tree segment description is printed for every overlay
segment in an overlay structure. Its contents are the same
for each overlay segment as the root segment allocation is
for the root segment.

(i) Task builder statistics lists the following information,
which can be used to evaluate TKB performance:

® Work file references
accessed data stored in

The number of
its work file.

times that TKB

~ Work file reads -- The number of times that the work file
device was accessed to read work file data.

@) Work file writes -- The number of times that the work
file device was accessed to write work file data.

@) Size of pool -- The amount of memory that was available
for work file data and table storage.

@) Size of work file -- The amount of device storage that
was required to contain the work file.

CD Elapsed time The amount of wal 1-clock time required to
construct the task image and produce the memory
allocation (map) file. Elapsed time is measured from the
completion of option input to the completion of map
output. This value excludes the time required to process
the overlay description, parse the list of input file
names, and create the cross-reference listing (if
specified).

See Appendix F for a more detailed discussion of the work file.

10-43

SWITCHES

SL

10.1.31 /SL -- Slave

File

Task image

Syntax

file.TSK/SL=file.OBJ

Description

This switch directs TKB to mark your task as a slave to an
initiating task.

Effect

TKB attaches the slave attribute to your task. When your task
successfully executes a Receive Data directive, the system gives
the UIC and TI: device of the sending task to it. The slave
task then assumes the identity and privileges of the sending
task.

This switch only applies to your task if the system that you are
using has multiuser protection. (Refer to your system generation
manual for more information on multiuser protection and slave
tasks.)

Default

/-SL

10-44

SWITCHES

SP

10.1.32 /SP -- Spool Map Output

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/~SP=file.OBJ

Description

This switch determines whether TKB calls the print spooler to
spool your memory allocation (map) file after task build.

Effect

By default, when you specify a map file in
sequence, TKB creates a map file on device SYO:
file queued for listing on LPO:.

a TKB command
and then has the

If you negate this switch (as shown in the Syntax section above),
TKB creates the map file on device SYO: but does not call the
print spooler to output it to LPO:

Default

/SP

NOTE

The PRT task must be installed to
process the request to print the map.

10-45

SWITCHES

SQ

10.1.33 /SQ -- Sequential

File

Task image

Syntax

file.TSK/SQ=file.OBJ

Description

This switch causes TKB to construct your task image from the
program sections you specified, in the order that you input them.

Effect

If you use this switch, TKB collects all the references to a
given program section from your input object modules, groups them
according to their access code (RW followed by RO) and, within
these groups, allocates memory for them in the order that you
input them. However, the /SG switch affects program section
ordering and can be used with the /SQ switch. See the /SG switch
for further details.

Without the /SQ switch, TKB reorders the program sections
alphabetically.

You use this switch to satisfy any adjacency requirements that
existing code may have when you are converting it to run under
RSX-11. Using this feature is otherwise discouraged for the
following reasons:

• Standard library routines (such as FORTRAN I/O handling
routines and FCS modules from SYSLIB) do not work properly.

• Sequential allocation can result in errors if you alter the
order in which modules are linked.

Alternatively, you can achieve physical adjacency of program
sections by selecting names alphabetically to correspond to the
desired order.

Default

/-SQ

10-46

SWITCHES

SS

10.1.34 /SS -- Selective Search

File

Input

Syntax

file.TSK=file.OBJ,file.OBJ/SS

or

file.TSK=file.OBJ,file.STB/SS

or

file.TSK=tile.OBJ,file.OLB/LB/SS

Description

The /SS switch directs TKB to include in its internal symbol
table only those global symbols for which there is a previously
undefined reference.

Effect

When processing an input file, TKB normally includes in its
internal symbol table each global symbol it encounters within the
file whether or not there are references to it. With the /SS
switch attached to an input file, TKB checks each global symbol
it encounters within that file against its list of undefined
references. If TKB finds a match, it includes the symbol in its
symbol table.

Default

/-SS

Example

Assume that you are building a task named SEL.TSK. The task is
composed of input files containing global entry points and
references (calls) to them as shown in Table 10-2.

Input
File Name

INl

IN2

IN3
IN4

Table 10-2
Input Files for SEL.TSK

Global Definition

A
B
c

A
B
c

10-47

Global Reference

A

c

SWITCHES

SS (Cont.)

File IN2 and IN4 contain global symbols of the same name that
represent entry points to different routines within their
respective files. Assume that you want TKB to resolve the
reference to global symbol A in INl to the definition for A in
IN2. Assume further that you want TKB to resolve the reference
to global symbol C in IN3 to the definition for C in IN4. By
selecting the sequence of the input files properly and applying
the /SS switch to files IN2 and IN4, TKB resolves the references
correctly. The following command sequence illustrates the
correct sequence:

TKB>SEL.TSK=IN1.0BJ,IN2.0BJ/SS,IN3.0BJ,IN4.0BJ/SS

TKB processes input files from left to right; therefore, in
processing the above command sequence, TKB processes file INl
first and encounters the reference to symbol A. There is no
definition for A within INl; therefore, TKB marks A as undefined
and moves on to process file IN2. Because the /SS switch is
attached to IN2, TKB limits its search of IN2 to symbols it has
previously listed as undefined, in this case, symbol A. TKB
finds a definition for A and places A in its symbol table.
Because there are no undefined references to symbols B or C, TKB
does not place either of these symbols in its symbol table.

NOTE

It is important to realize that the /SS
switch affects only the way the Task
Builder constructs its internal symbol
table. The routines for which symbols B
and C are entry points is included in
the task image even though there are no
references to them.

TKB moves on to IN3. It encounters the references to symbol C.
Because TKB did not include symbol C from IN2 in its symbol
table, it cannot resolve the reference to C in IN3. TKB marks
symbol C as undefined and moves on to IN4.

When TKB processes IN4, it encounters the definition for C in
that file and includes it in the table. Again, since the /SS
switch is attached to IN4, TKB includes only C in its symbol
table.

When TKB has completed its processing of the above command
sequence, it has constructed a task image composed of all of the
code from all of the modules, INl through IN4. However, only
symbols A from IN2 and C from IN4 will appear in its internal
symbol table.

10-48

SWITCHES

NOTE

The example above does not represent
good programming practice. It is
included here to illustrate the effect
of the /SS switch on TKB during a search
sequence.

SS (Cont.)

The /SS switch is particularly valuable when used to limit the
size of the Task Builder's internal symbol table during the
building of a privileged task that references the Executive's
routines and data structures. By specifying the Executive's
Symbol Definition File {STB) as an input file and applying the SS
switch to it, TKB includes in its internal symbol table only
those symbols in the Executive that the task references. An
example of a TKB command sequence that illustrates this is shown
below:

TKB>OUTFILE.TSK/PR:S=INFILE.OBJ,RSXllM.STB/SS

The above command sequence directs TKB to
named OUTFILE.TSK from the input
specification of the Executive's STB file
the SS switch applied to it directs
RSXllM.STB only those symbols for which
within OUTFILE.TSK.

10-49

build
file
as an

TKB
there

a privileged task
INFILE.OBJ. The
input file with
to extract from

are references

SWITCHES

TR

10.1.35 /TR -- Traceable

File

Task image

Syntax

file.TSK/TR=file.OBJ

Description

This switch directs TKB to make your task traceable.

Effect

TKB sets the T-bit in the initial PS word of your task. When
your task is executed, a trace trap occurs when each instruction
is completed.

Default

/-TR

10-50

SWITCHES

WI

10.1.36 /WI -- Wide Listing Format

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/-WI=fileeOBJ

Description

This switch controls the width of your map file.

Effect

By default, TKB formats a map file 132 columns wide. When you
negate this switch (as in the Syntax section above), TKB formats
the map file 80 ~olumns wide.

Default

/WI

10-51

SWITCHES

_/,.. > ~

,· ::"(~ti-~·:)~"x8 .s~.i··i:c~· . 1 nto .. rm~
• ·<ex·ternaT ·header·.

« <; ·>Y;'<: : • ··,,' X' ; • <

;i.ffe·ct:···.···.

hL an RSX-UM-PLUS system, the effec.t. of the.. /XH switch . · is
·two-fold.:. the header space Jn the task image is n.ot · d:estroy¢d
.when the .task is checkpointed; and . Executive.· pool space is
conserved• . A ·task built with the /XH switch does·· not have· a
header in Ex-ecuti ve pool, but has a COJ?Y of its ~eader, which the.
Executive· rises, in space allocated physically contiguous.to and
below the task image. Wh_en the task is checkpointed, the system
writes the entire task image and the header copy below the task
into a checkpoint file. The header in the task image is left
unchanged.

Note that if the task is also built with the /FP switch, the
floating-point save area is not included in the task image but is
in the header copy found below the task image.

Interaction with the INSTALL command:

On RSX-llM-PLUS, the INSTALL switch /XHR interacts with the TKB
switch /XH. If you use /'"'.'XH, the task will have a pool-resident.
header always unless you rebuild the task to have an external
header. If you use /XH, the task wi 11 hav·e an external heade·r,
but the INSTALL switch /XHR can override this. The defau:l t use
of /XH by TKB is /XH (external header) unless this is changed by
the ;,INSTALL command •

Defaul~
. ' ~ ~ . . '

'/Xff for RSX-llM"'."'PL.iJS; .o"vet:ridden by /XHR. on INSTALL

10-52

SWITCHES

XT

10.1.38 /XT[:n] -- Exit on Diagnostic

File

Task image

Syntax

file.TSK/XT:4=filecOBJ

Description

This switch specifies the number of acceptable errors. More than
n errors are not acceptable.

Effect

TKB exits after encountering n errors. The number of errors can
be specified as a decimal or octal number, using the convention:

n.

in or n

indicates a decimal number (the decimal point must
be included) •

indicates an octal number.

If you do not specify n, TKB assumes that n is 1.

Default

/-XT

10-53

CHAPTER 11

OPTIONS

11.l OPTIONS

Task Builder options provide you with the means to give TKB
information about the characteristics of your task.

These options, which are listed in Table 11-1, can be
seven categories. The identifying abbreviation
description of each category are listed below:

divided
and a

into
brief

• contr

• ident

• alloc

• share

• device

• alter

• synch

You use control options to affect TKB execution.
ABORT is the only member of this category. You can
direct the Task Builder to abort the task build
with this option.

You use identification options to identify your
task's characteristics. You can specify the name
of your task, its priority, user identification
code, and partition with options in this category.

You use allocation options to modify your task's
memory allocation. With the options in this
category, you can change the size of your task's
stack and program sections. When you write
programs in a high-level language, you can change
the size of your work areas and buffers and declare
the virtual base address and size of program
sections. Finally, you can declare the number of
additional window blocks {if any) that your task
requires.

You use storage-sharing options to indicate to TKB
that your task intends to access a shared region.

You use device-specifying options to specify the
number of units required by your task, and the
assignment of logical unit numbers to physical
devices.

You use the content-altering options to define a
global symbol and value, or to introduce patches in
your task image.

You use synchronous trap
synchronous trap vectors.

options to define

Some TKB options are of interest to all users of the system; others
are of interest only to high-level language programmers; and still
others are of interest only to MACR0-11 programmers. Table 11-1 lists
all the options alphabetically, and gives a brief description of each.

11-1

Option

ABORT

ABS PAT

ACTFIL

ASG

CLSTR

COMMON
LIBR

DSPPAT

EXTSCT

EXTTSK

FMTBUF

GBLDEF

GBLINC

GBLPAT

GBLREF

OPTIONS

Table 11-1
Task Builder Options

Meaning

Directs TKB to terminate a task build

Declares absolute patch values
for conventional tasks or

Declares number of files open
simultaneously

Declares device assignment to
logical units

Declares a group of shared regions
accessed by the task and residing in
the same virtual address space in
the task

Declare task's intention to access
a memory-resident shared region

Declares absolute patch values for.
conventional tasks or
~~n;~~t~~

Declares extension of a program
section

Declares extension of the amount of
memory owned by a task

Declares extension of buffer used
for processing format strings
at run time

Declares a global symbol definition

Includes symbols in the .STB file

Declares a series of patch values
relative to a global symbol

Declares a global symbol reference

lnterestl Category

H,M con tr

M alter

H alloc

H,M device

H,M share

H,M share

M alter

H,M alloc

H,M alloc

H alloc

M alter

M alter

M alter

H,M alter

(continued on next page)

1. The user interest range is indicated as follows:

• H indicates options of interest to high-level language (such
as FORTRAN) programmers.

• M indicates options of interest to MACR0-11 programmers.

2. These options are applicable to RSX-iiM-PLUS systems only.

11-2

Option

GBLXCL2

LIBR

MAXBUF

ODTV

PAR

PRI

RE SC OM
RESLIB

STACK

~tt'I?t·1s2.:,
;. <,.." ,'

TASK

TSKV

UIC

UNITS

VSECT

WNDWS

OPTIONS

Table 11-1 (Cont.)
Task Builder Options

Meaning Interest 1

Declares global symbols to be
excluded from the .STB file

Declares task's intention to access
a memory-resident shared region

Declares an extension to the FORTRAN
record buff er

Declares the address and size of
the debugging aid SST vector

Declares partition name and
dimensions

Declares priority

Declare task's intention to access
a memory-resident shared region

, ~~~~::f~~{e~f~~!~~l~t~;e;~~W1?
·.J?eC'l'ares :Pa.tt'ft'i'¢n,::~n :~hlch-" ~e~;<;f.;orili,,:;:':.i .:· .·
"p<:>r.tio'ri'..oe'_in\.rtt~i,u$.er.·::t:as:1{·Js:·.·.fo, ... i::~i?'iQ:e"' .. ··./

Declares the size of the stack

~~~~~~~!~~k;~~~i~~~~~;tt~;~f 
Declares the name of the task 

Declares the address of the task 
SST vector 

Declares the user identification code 
under which the task runs 

Declares the maximum number of units 

Declares the virtual base address and 
size of a program section 

Declares the number of additional 
address windows required by the task. 

H,M 

H,M 

H 

M 

H,M 

H,M 

H,M 

H,M 

H,M 

M 

H,M 

H,M 

H,M 

H,M 

1. The user interest range is indicated as follows: 

Category 

alter 

share 

alloc 

synch 

ident 

ident 

share 

alloc 

ident 

synch 

ident 

device 

alloc 

alloc 

• H indicates options of interest to high-level language (such 
as FORTRAN) programmers~ 

• M indicates options of interest to MACR0-11 programmers. 

2. These options are appiicable to RSX-11M-PLOS syste!1ls only. 

11-3 



OPTIONS 

ABORT 

11.1.l ABORT -- Abort the Task-Build 

You use the ABORT option when you discover that an earlier error in 
the terminal sequence causes TKB to produce an unusable task image. 

The Task Builder, on recognizing the keyword ABORT, stops accepting 
input and restarts for another task build. 

Syntax 

ABORT=n 

n 

An integer value. 
form of an option; 

The integer is required to satisfy the general 
however, the value is ignored in this case. 

Default 

None 

NOTE 

If you type a CTRL/Z at any time, it 
causes TKB to stop accepting input and 
begin building the task. 

The ABORT option is the only correct way 
for you to restart TKB if you discover 
an error and decide you do not want the 
Task Builder output. 

11-4 



OPTIONS 

ABSPAT 

11.1.2 ABSPAT -- Absolute Patch 

You use the ABSPAT option to declare a series of object-level patches 
starting at a specified base address. You may use this option for 
?o r1 vent i.°, n a 1 . or :]:1;c;~'?'c1/,:,q'7~~~S~;·:+'§~$,~~'.h/.r~,~,,{~\S,+~~<'/!~tl/~~Pi<ti,r~~~~9'/.J:~~~F:~,f 

/~~~·~:~~:t:~:~1i'~f~t.lf9P:~:~~,;,,>'.~·1;~i}~/,~1:7'.13J2~~'~:: See the DSPPAT option. You can 
sp~cify up to eight patch values. 

Syntax 

ABSPAT=seg-name:address:vall:val2 ••• :val8 

seg-name 

The 1- to 6-character Radix-50 name of the segment. 

address 

vall 

val2 

val8 

The octal address of the first patch. The address can be on a 
byte boundary; however, two bytes are always modified for each 
patch: the addressed byte and the following byte. 

An octal number in the range of 0 through 177777 to be stored at 
address. 

An octal number in the range of 0 through 177777 to be stored at 
address+2 

An octal number in the range of O through 177777 to be stored at 
address+l6. 

NOTE 

All patches must be within the segment 
address limits or TKB generates the 
following error message: 

TKB--*DIAG*--Load address out of range in module name 

11-5 



OPTIONS 

ACTFIL 

11.1.3 ACTFIL -- Number of Active Files 

You use the ACTFIL option to declare the number of files that your 
task can have open simultaneously. For each active file that you 
specify, TKB allocates approximately 512 bytes. 

If you specify less than four active files (the default), the ACTFIL 
option saves space. If you want your task to have more than four 
active files, you must use the ACTFIL option to make the additional 
allocation. 

You must include a language Object Time System (OTS), such as FORTRAN, 
and record I/O service routines (FCS or RMS-11) in your task image for 
the extension to take place. The program section that is extended has 
the reserved name $$FSR1. 

Syntax 

ACTFIL=f ile-max 

file-max 

A decimal integer indicating the maximum number of files that can 
be open at the same time. 

Default 

ACTFIL=4 

11-6 



OPTIONS 

ASG 

11.1.4 ASG -- Device Assignment 

The ASG option declares the physical device that is assigned to one or 
more logical units. 

Syntax 

ASG=device-name:unit-numl:unit-num2 ••• :unit-num8 

device-name 

A 2-character alphabetic device name followed by a 1- or 2-digit 
octal unit number. If your task uses more than six logical 
units, you must use the UNITS option to specify the number of 
logical units that your task will use. 

unit-numl 
unit-num2 

unit-num8 

Octal integers indicating the logical unit numbers. 

Default 

ASG=SY0:1:2:3:4,TI0:5,CL0:6 

11-7 



OPTIONS 

CLSTR 

11.1.5 CLSTR -- System-Owned Cluster of Resident Libraries or Commons 

The CLSTR option allows you to link your program to one to six shared 
regions, such as FMS, RMS, FORTRAN or BASIC+2, with a minimum of lost 
virtual address space for your task. CLSTR allows two to six shared 
regions in an ,Rsx..:.i1M:; system or an RSX-UM-PLUS system to reside in 
the same virtual address space in your task. 

You use CLSTR to declare a cluster or group of system-owned, resident 
libraries or commons that your task intends to access and have reside 
at the same virtual address in the address space of your task. 

The term "system-owned" means that TKB expects to find the commons or 
libraries named in the option and the symbol table associated with 
them under UFO [1,1] on device LB:. 

Syntax 

CLSTR=library_l,library_2, .•• library_n:switch:apr 

library_n 

The library names must be 1- to 6- character Radix-50 names. TKB 
expects to find a symbol definition file of the same name for 
each specified shared region under UFO [1,1] on device LB:. The 
first specification denotes the first or the default library, 
which is the library to which the task is mapped when the task 
starts up and remaps after any call to another library. 

In an RS;X.:'.".'.1111, or ,ti~~;ll~m:i~,~~H~ system, the total number of 
libraries to which a task may map is seven. The number of the 
component libraries in clusters is limited to a maximum of six. 
A cluster must contain a minimum of two libraries. It is 
possible to have two clusters of three libraries each or three 
clusters of two libraries each; any combination of number of 
clusters and libraries must equal at least two or a maximum of 
six. If six libraries are used in clusters, the task may map to 
only one other, separate library. 

:switch 

:apr 

The switch :RW (read/write) or :RO (read-only) indicates the type 
of access the task requires. All shared regions in the cluster 
have the same type of access. 

The apr is an integer in the range of 1 through 7 that specifies 
the first Active Page Register (APR) that you want TKB to reserve 
for the cluster of shared regions. You can specify it for a 
cluster made up of only position-independent shared regions. If 
you omit the APR parameter and all shared regions are position 
independent, TKB selects the highest available APR to map the 
cluster. A cluster can be made up of both position-independent 
and absolute shared regions. If one absolute shared region is 
present with position-independent shared regions, the 
position-independent shared regions assume the same base address 
as that of the absolute shared region. However, if you specify 
more than one absolute shared region, all must be built with the 
same base address. 

11-8 



Default 

None 

OPTIONS 

CLSTR (Cont.) 

NOTE 

All but the first shared region in a 
cluster must be memory-resident overlaid 
libraries. The first shared region 
specified in the cluster option can be a 
single-segment structure (nonoverlaid) 
or an overlaid library. 

11-9 



OPTIONS 

CMPRT 

11.1.6 (;MPRT -- Completion Routine _ _: RSX-llM-PLUS'Only 

The CMPRT option is ava'ilable on RSX-llM-PLUS systems only. You ' use,, 
this opt,ion to identify a shared region as a supervisor-:mode library. 
The ,CMPRT option r.equi res an argument, that speCi fies, the entr,y ·point 
of the completion routine in the library. The completfon routine 
swi tch'es the processor from supervisor to, user mode 'and , returns 
program control to, the user· task after the supervis'or,-,mode libra:t:,Y 
·subroutine that' was called from the' us·er task has executed. ' 

Two completion ro..utines are a~aila~ie i~ SYSLIB: 

e $CMPCS restores only the caxry bit: in the user'.""'mode PS. 

• $CMPAL restores all the condition code ·,bi ts in the user-mode, 
PS. 

These routines perform all the necessary overhead to switch the 
processor from supervisor to user mode and return program control t'o 
the user task at the instruction following the call to ·a 
supervisor-mode library subroutine. 

Although you can write your own completion routines, it is best to use 
either $CMPCS or $CMPAL whenever possible. Chapter 8 discusses 
completion routines in detail. 

Syntax 

CMPRT=name 

name 

A 1- to 6-character Radix-50 name identifying the completion 
routine. 

Default 

None 

11-10 



OPTIONS 

COMMON or LIBR 

11.1.7 COMMON or LIBR -- System-Owned Resident Common or System-Owned 
Resident Library 

The COMMON and LIBR options are functionally identical; they both 
declare that your task intends to access a system-owned shared region. 
However, by convention, the COMMON option identifies a shared region 
that contains only data, and the LIBR option identifies a shared 
region that contains only code. 

(i,f ;: .... ~b~ ' IJSe:· th!S: :coM~,p:!i optfOJl '.' wJ',th :·an ,,:I~ · .. ,a'l)d ,: 8~sJ?ac~> :t~ sk', : ' :~p~ ····· :· Pefllm~n 
;i7~ .:Jlla,pp.e(J·,·;~i . .t·n,·-:o;..s.pacef::~~»as· .'.~)'r\J.iy: a;n:a,:.:t:n,,e,re~.o·re ··~u~t .·c:q·n~a~n· ,:a~,t.q: 'ot:l-~Yt; .. 

~ • , ~ • ~ ~ ; ' • , ,-;; ., .,.. • ,., " !h ' • '> , ,_. < _;~' ;· ~ , ' ;, ., .: ;~ i ;1 ~ > ;=':~ 

:fl//;6.~/~.us~.::'.~he,:;::i£·i~·~·/ppfi:~·rl :~l:t·ti'/~itJ::~'i·~ ...... ~na ··.iLsp:~c~ ... t~s.k ,·.,the .. ·1iprarY: ·~s 
":~~!:::r,~·~·f?p~O; i.i tP:',:·~~~h·, .:r ~s.i>ape .. ji}1a:"<ri~.~·l?A~,e,,·,Jp?R~.;~.· _;· ;: · ... · · · , : · .... · ... · ," / ,· 

The term "system-owned" means that TKB expects to find the common or 
library named in the keyword and the symbol definition file associated 
with it under UFD [1,1] on device LB:. 

Syntax 

name 

COMMON=name:access-code[:apr] 

or 

LIBR=name:access-code[:apr] 

The 1- to 6-character Radix-50 name specifying the common or 
library. TKB expects to find a symbol definition file having the 
same name as that of the common or library with an extension of 
.STB under [1,1] of device LB:. 

access-code 

The code RW (read/write) or the code RO (read-only) indicating 
the type of access the task requires. 

NOTE 

A privileged task can change data in or move data to a 
resident common even though the task has been linked to 
the common with read-only access. 

11-11 



OPTIONS 

COMMON or LIBR {Cont.) 

apr 
An integer in the range of 1 through 7 that specifies the first 
Active Page Register (APR) that you want TKB to reserve for the 
shared region. TKB recognizes the APR only for a mapped system; 
you can specify it only for position-independent shared regions. 
If you omit the APR parameter and the shared region is position 
independent, TKB selects the highest available APR to map the 
region. 

When a shared region is absolute, the base address of the 
region -- and therefore the APR that maps it -- is determined by 
the arguments in the PAR option when the region is built. Refer 
to PAR in Section 11.1.18. 

Default 

None 

11-12 



OPTIONS 

DSPPAT 

11.1.8 DSPPAT -- Absolute Patch for D-space 

You use the DSPPAT option to declare a series o~ obj~ct'"".leyel . patches 
~~artin,~ ····.at the·.··. spec, Hie~. ~~se. ad~~es.s. :·:I'n;l£~{oe~iFdti,:~'.fs:1yifqr;,'1lta;kf~M·· 
;~~~~f;!,~::f,~,.~·jE,t,;~lJQJ!.:i$.e~i(C~:~/1~;t'i.:~~:fL~~~:(~r:~~~q~l:~~~·~-~,·~F." 'Y:~u "''"·ffi~·Y·· · ·a1~·0 · · il'sMe 
this option to patch a conventional task at any location. You can 
specify up to eight patch values. 

Syntax 

DSPPAT=seq-name:address:vall:val2: ••• :val8 

segname 

The 1- to 6-character Radix-50 name of the segment. 

address 

vall 

val2 

val8 

The octal address of the first patch. The address can be on a 
byte boundary; however, two bytes are always modified for each 
patch: the addressed byte and the following byte. 

An octal number in the range of 0 through 177777 to be stored at 
address. 

An octal number in the range of 0 through 177777 to be stored at 
address+2. 

an octal number in the range Of 0 through 177777 to be stored at 
address+l6. 

NOTE 

All patches must be within the segment address limits or 
TKB generates the following error message: 

TKB--*DIAG*--Load address out of range in module-name 

11-13 



OPTIONS 

EXTSCT 

11.1.9 EXTSCT -- Program Section Extension 

You use the EXTSCT option to extend a program section. 

If the program section to be extended 
(concatenated), TKB extends the section 
specify in the EXTSCT option. If the 
attribute OVR (overlay), TKB extends the 
you specify in the EXTSCT option is greater 
program section. 

Syntax 

EXTSCT=p-sect-name:extension 

p-sect-name 

has the attribute CON 
by the number of bytes you 
program section has the 
section only if the length 
than the length of the 

A 1- to 6-character radix-50 name specifying the program section 
to be extended. 

extension 

An octal integer that specifies the number of bytes by which to 
extend the program section. 

Example 

In the following example, the program section BUFF is 200 bytes 
long. 

EXTSCT=BUFF:250 

The number of bytes by which TKB extends the program section BUFF 
depends on the CON/OVR attribute: 

• For CON, the extension is 250 bytes. 

• For OVR, the extension is 50 bytes. 

TKB extends the program section if it encounters 
section name in an input object file or in 
description file. 

Default 

None 

11-14 

the program 
the overlay 



OPTIONS 

'.ihe'.·EXTtfSK····~opti.on·' dir:ect~· ''th~· .:'S.ys'terii·· t(>>~ll~)~a,ti addltiontii•.Illemot.y:«:foi: 
.'yotrt .. ',-ba::sk,,.whenit::.i,~,".:in,s.taJi'eir.:i:h/a.· sy!?tem~«i.d.nc::t::'t9'ti~Jp~J;t·i·tio11~·".·:/. ·.· .... :· ·• 
~ .,'<~.,"~ ;',':.\'',.~,,:,= ';,,~' . ~. _,,,,, ,,' •'".: .,,·,,,., :, ,' ~= -~ . ,, -;,,..' ;_. <' =~: '., .<,. . y ~~~ .'" , ~- --l~ ~· ', ,·: : J ~~. ': ',:;' ,·'/ ;, 

i +~e·:;attt<;>~,;r~."Af': i,n~~~.r,:~ ··.~~<\ t. · .t,ne ··,·~·Y:.:st~!TI·A1·i«~~~~:~·~: ·t,:~·t·:···ioui/:: .. t,a,s.k,·:: <.is'·.· ·,t~~i·· 
.'"°S.\Jm' o.,f" .tlte. ·.;t·asli'.·.· s'iz~·::PI.us·,.,·the.· .,:*nc~em~nt ,.J~Qu,:"spe(ti·f:y: .. ·.i(:bou~~d .up.· .. tdt?~be;; 
J·~·ea~est·· :~2~w·<>~~··1'> .. ?:iindary)'··~·: .·· · .. tf:, }:.h~·:·ta:sk .. : .. t~ ·.bu'.!, l·~.· ·.f·o·r,.:. ~·• ... ~.~5;?r:..;cori.t,*·0·1~.ep'/ 
:oa.r:titi.on, './the ,·,,a.I1oca::J:ieon::·.::o,f· .. ·.task , .,,,!nemo:t.v: i,eve,i:'ts, to ,'.the ,part·i':td.t»r;i ... 
'"~~,,z~·~t/.</f; ·:,:/' /,:«>,/,; . ';"; ' ~;,·,',:.-:;;< '/;' . .' .'/,','·:"i"';':·,." ':;'i/"''.:;· ... ·< .. :/J ,;,,.::' ,'· .'.' .:',,:''/,<,' 

• , • v - ' ,. ,'<' ,; . i:' ,,_; ~ .. ; '°<i " 

i%~ 
·,;rn,-"a· 

'~:">'.>'~'.::~:/'' 
<~i» 

, When ·:~b:>u ,',use.:':tbe. · · :E;XTTSK, ·qpt ton '.::.t(f 

~~~4/:,~~~}}~~~~~~g:~~f~f·:~~; 
.rw.i tn ·'t:n·e : ... JAL' :.swtl:cn ; '.fhe·".:cHec:J<' '·t?«iirit:

". 't.Iie.:,:·\f .. itl'lJn:.:t:n~· .'t'a$·~ .. ·,image.,/.i·s', .the·.·
·'s fze : .. , ,<)t,' · ,·t:11e:.:: .t·a's·]{:'. 'icis,;: bhe .$'1·z~' i'Qf ·"

_;, /" _, f~~-» :;.;1,,..m,/ "' .. ,."< _, ,,,, t .'"' ,_ -? /:.- .. "' ,''' ~- "'_." :.; _ .. _, .. ,~P, / "';. '«< "_, ~ ! ,_ ,,.~ / _::;. :' =~ ,'.: ""; _? ~
. ..·.•the .·exbended,.,·task ,::area;·'·'

l1};:~~(s~~Ni"l~~~·;~4~~ . -~- :~'1/i~.: .a11<(...:, _../
/ .. ~ . :: ' o.:·~e·q.c~, ,.' ;' J:;a $}<: /,: j:h,a.~ ::,)'' :: •. l) n k~d' i;o : .~; t ","
/ ! • ,'l,.f,;o~·a:ry ·:;wli;i'~h.,/ ,'~'c>'ri t~1i,h~1"' 1b'ot:'f)J ,:iJ«a.,f; .. a; , .. ' a.nd""; :;'' /

~~~,,'i~ijij~tf ~~Si~;f ii;1~~§/ 
.i nta ·the .area :·mapp~d,. fo.r ··thE? · Hpi:a'ry : 

, ,"or ·.•'th.e·/:1lbra':t.y·' " .. ·w111"·, be.·,mapped .fl{i: .· . 
.. "I-space ·only •.. · 

Syntax. 

EXTT$K=lerigth 

.length 

A decimal n:umber in the rang.e O<n<65, 535. 
increase in task memory allocation (in words). 

Default 

speci fyfog the·. 

The task is extended to the size specified in the PAR option (see 
Section 11.1.18). 

11-15 



OPTIONS 

FMTBUF 

11.1.11 FMTBUF -- Format Buffer Size 

The FMTBUF option declares the length of the internal working storage 
that you want TKB to allocate within your task for compiling format 
specifications at run time. The length of this area must equal or 
exceed the number of bytes in the longest format string to be 
processed. 

Run-time compilation occurs whenever an array is referred to as the 
source of formatting information within a FORTRAN I/O statement. The 
program section that TKB extends has the reserved name $$0BF1. 

Syntax 

FMTBUF=max-format 

max-format 

A decimal integer, larger than the default, that specifies the 
number of characters in the longest format specification. 

Default 

FMTBUF=l32 

11-16 



OPTIONS 

GBLDEF. 

11.1.12 GBLDEF -- Global Symbol Definition 

You use the GBLDEF option to declare the definition of a global 
symbol. 

TKB considers this symbol definition to be absolute. It overrides any 
definition in your input object modules. 

Syntax 

GBLDEF=symbol-name:symbol-value 

symbol=name 

A 1- to 6-character Radix-50 name of the defined symbol. 

symbol-value 

An octal number in the range of 0 through 177777 assigned to the 
defined symbol. 

Default 

None 

11-17 



OPTIONS 

GBLINC 

11.1.13 GBLINC -- Include Global Symbols 

The GBLINC option directs the Task Builder to include the symbol or 
symbols specified in this option in the .STB file being generated by 
the link operation in which this option appears. This option is 
intended for use when creating shared regions, in particular shared 
libraries, when you want to force particular modules to be linked to 
your task that references this library. The global symbol references 
specified by this option must be satisfied by some module or GBLDEF 
specification when you build the task. 

Syntax 

GBLINC=symbol-name,symbol-name, •••• ,symbol-name 

symbol-name 

The symbol to be included. 

Default 

None 

11-18 



OPTIONS 

GBLPAT 

11.1.14 GBLPAT -- Global Relative Patch 

The GBLPAT option declares a series of object-level patch values 
starting at an offset relative to a global symbol. You can specify up 
to eight patch values. 

Syntax 

GBLPAT=seg-name:sym-name[+/-offset] :vall:val2 ••• :val8 

seg-name 

The l= to 6~character Radix-50 name of the segment. 

sym-name 

A 1- to 6-character Radix-50 name specifying the global symbol. 

off set 

val! 

val2 

val8 

An octal number specifying the offset from the global symbol. 

An octal number in the range of 0 through 177777 to be stored at 
the octal address of the first patch. 

An octal number in the range of 0 through 177777 to be stored at 
the first address+2. 

An octal number in the range of 0 through 177777 to be stored at 
the first address+l4. 

Default 

None 

NOTE 

All patches must be within the segment 
address limits or TKB generates a fatal 
error. 

11-19 



OPTIONS 

GBLREF 

11.1.15 GBLREF -- Global Symbol Reference 

The GBLREF option declares a global symbol reference. The reference 
originates in the root segment of the task. This keyword is used for 
memory-resident overlays of shared regions. 

Syntax 

GBLREF=symbol-name,symbol-name ••• ,symbol-name 

symbol-name 

A 1- to 6-character name of a global symbol reference. 

Default 

None 

11-20 



OPTIONS 

GBLXCL 

11.1.16 GBLXCL -- Exclude Global Symbols 

The GBLXCL option keyword directs TKB to exclude from the symbol 
definition file of a shared region the syrnbol(s) specified in the 
option. 

Syntax 

GBLXCL=symbol-narne,symbol-name ••• ,syrnbol-name 

symbol-name 

The symbol(s) to be excludede 

Default 

None 

11-21 



OPTIONS 

LIBR 

11.1.17 LIBR -- System-Owned Library 

Refer to COMMON in Section 11.1.7. 

11-22 



OPTIONS 

MAXBUF 

11.1.18 MAXBUF -- Maximum Record Buffer Size 

The MAXBUF option declares the maximum record buffer size required for 
any file used by the task. 

If your task requires a maximum record size that exceeds the default 
buffer length, you must use this option to extend the buffer. 

You must also include a language Object Time System (OTS), such as 
FORTRAN, in your task image for the extension-to take place. The 
program section that is extended has the reserved name $$IOB1. 

Syntax 

MAXBUF=max-record 

max-record 

A decimal integer, larger than the default, that specifies the 
maximum record size in bytes. 

Default 

MAXBUF=l33 

11-23 



OPTIONS 

ODTV 

11.1.19 ODTV -- ODT SST Vector 

The ODTV option declares that a global symbol is the address of the 
CDT Synchronous System Trap vector. You must define the global symbol 
in the main root segment of your task. 

Syntax 

ODTV=symbol-name:vector-length 

symbol-name 

A 1- to 6-character Radix-50 name of a global symbol. 

vector-length 

A decimal integer in the range of 1 through 32 specifying the 
length of the SST vector in words. 

Default 

None 

11-24 



OPTIONS 

PAR 

11.1.20 PAR -- Partition 

The PAR option identifies the partition for which your task is built. 

In a mapped system, you can install your task in any system partition 
or user partition large enough to contain it. In an unmapped system, 
your task is bound to physical memory. Therefore, you must install 
your task in a partition starting at the same memory address as that 
of the partition for which it was built. 

Syntax 

pname 

base 

PAR=pname[:base:length] 

The name of the partition. 

The octal byte address defining the start of the partition. On 
an unmapped system, the physical address must be specified. On a 
mapped system, the base must be 0 for a task or a 4K boundary for 
a shared region. 

length 

The octal number of bytes contained in the partition. 

In a mapped system, a length of 0 implies a system-controlled 
partition. 

If the target system is mapped and you specify a partition length 
that is greater than the length of your task, the Task Builder 
automatically extends the length of your task to match the length 
of the partition. This procedure is equivalent to using the 
EXTTSK keyword to increase the task memory. If your task size is 
greater than the partition size that you specify, TKB generates 
the following error message: 

TKB--*DIAG*-Task has illegal memory limits 

Whether or not the target system is mapped, the Task Builder does 
not extend the length of a shared region, or any task built 
without a header, to match the specified partition length. 

If you do not specify the base and length, TKB tries to obtain 
information from the system on which you are building your task. 
you have specified a partition that resides in that system, TKB 
obtain the base and length. 

11-25 

that 
If 

can 



OPTIONS 

PAR {Cont.) 

TKB binds the task to the addresses defined by the partition base. If 
the partition is user controlled, TKB verifies that the task does not 
exceed the length specification. 

'mti~~:~fa7~~~1,~J~~{~$~i;1tH!t~~~~~~t!~t~t'.~,~ 
Default 

PAR= GEN 

11-26 



OPTIONS 

PRI 

11.1.21 PRI -- Priority 

The PRI option declares your task's execution priority. 

On systems with multiuser protection, you cannot run a task at a 
priority that is greater than the system priority (50) unless it is 
installed or run from a privileged terminal. If you are working from 
a privileged terminal, and you do not override this option by 
specifying a different priority when you install your task 1 the system 
uses this priority. 

Syntax 

PRI=priority-number 

priority-number 

A decimal integer in the range of 1 through 250 

Default 

Established by Install; refer to the 
Operations Reference Manual. 

11-27 

RSX-llM/M-PLUS MCR 



OPTIONS 

RESCOM or RESLIB 

11.1.22 RESCOM or RESLIB -- Resident Common or Resident Library 

The RESCOM and RESLIB options are functionally identical; they both 
declare that your task intends to access a user-owned, shared region. 
However, by convention the RESCOM option identifies a shared region 
that contains only data and the RESLIB option identifies a shared 
region that contains only code. 

The term "user-owned" means that the resident common or library and 
the symbol definition file associated with it can reside under any UFD 
that you choose. You can specify the UFD and remaining portions of 
the file specification for both options. You must not place comments 
on the same line with either option. 

Syntax 

RESCOM=file-specification/access-code[:apr] 

or 

RESLIB=file-specification/access-code[:apr] 

file-specification 

The memory image file of the resident common or resident library. 
The file specification format is discussed in Chapter 1. 

access-code 

apr 

The code RW {read/write) or the code RO (read-only), indicating 
the type of access required by the task. 

NOTE 

A privileged task can change data in or move data into a 
resident common even though the task has been linked to 
the common with read-only access. 

An integer in the range of 1 through 7 that specifies the first 
Active Page Register (APR) that you want TKB to reserve for the 
common or library. TKB recognizes the APR argument only for a 
mapped system. You can specify it only for position-independent 
shared regions. If the APR parameter is omitted and the shared 
region is position independent, TKB selects the highest available 
APR to map the region. 

When a shared region is absolute, the base address of the 
region -- and therefore the APR that maps it -- is determined by 
~ne arguments in the PAR option when the region is built. Refer 
to PAR in Section 11.1.18. 

11-28 



Default 

OPTIONS 

RESCOM or RESLIB {Cont.) 

NOTES 

1. The Task Builder expects to find a symbol definition 
file having the same name as that of the memory image 
file but with a file type of .STB, on the same device 
and under the same UFD as that of the memory image 
file. 

2. Regardless of the version number you give in the file 
specification, TKB uses the latest version of the 
.STB file. 

When you omit portions of the file-specification, the following 
defaults apply: 

• UFD - Taken from current terminal UIC 

• Device - SYO: 

e File type - .TSK 

• File version - Latest 

11-29 



OPTIONS 

RESLIB 

11.1.23 RESLIB Resident Library 

Refer to RESCOM in Section 11.1.21. 

11-30 



OPTIONS 

· .· < ~ess·ut> · · 
''· 

, • ~· ••• ' w 

~;; , .. ~' ?,;·~}ii/~:!:'. '.i, 
~ > • ., 

O; ., 

:'({4:;t::;;Ai~. JiEs·s.uP :--~ Re·s:id·e·ri.t' :sup7rviis.or--t-tpde: Libr.~iY. ~-. asx~ltr.t-P,Lus .. on.1y-:: 
1 ~·/ ~ . / ~ <: , ~' 

~·~n~·.·~&§:~·J;>::·:·.<?i>~~<?n:·:,·~ec1~·res .... ·th(l·(: :Y-<:>,ux •. task .. intends.·· ~o · a9cess; .. ·'.a,./ 
:·'u'.se~;,-o~ed'r ·,sJ1perviso.I:;µwae···i.tprar.J:·~.·.·, .The ter:m. "use:r.:.:9wned": mean~:·~t:hat,···. . 
Xn~;·.'.lJbr,a:ry;·,acyd,, th,~,· ~yiµbQl· ... de',fini:t.i,on .. ,•fJ le.," ,ass~piat~d. wi~;h .. i~ .. ,' ,q.a;-1 :~ .. I 

·.;~:$i5'~,9e( .. ~,un~eF.:.' ··.~t:i'.li' .. :. ·Vlf[) .:·. t,ha~ .. :: yop ·<:hoose•.· ... Y<?p .c,arv Sf>~c1fy ·t~~ pE.D· .. q~d,··.·. ,· 

;;~~~~~~~~!"iA,~;~;~1~~.~~~p~!~c·i·fl,ca~ i qµ. .· ... • ¥9~····• .Jnn?~ .. ·.r;·.·; P~~c~"'.{ 
'·Synt·a:x · . · · · ,, · . · . · · ·. · · · · .· · · · 
·:,.,,,,.,.~>, ', \ »·.·· ';'·.,.~.:,.,., i ',,,•,•,

1 

,'.':. "·· '\ \ \ ',,' \ 1; ,:,· • ., "· <:<.'." 
."/·····«·>Rs uP~f·ii~-iJ·pec·i.frc'at'ion/·[~j,,s'vt':~pi,l ·" · ,,': ·, · ·: , ,·/ , '.,." , ,,::.,, ,,,.~,: 
,,:'/:,{".'.:"/·.,,' ."'<:: ","~,'?."'>',',~· /('::,,' ::. '.,,.'/'" ':':,." ... ,: ... :.'/,' \ ':./,.: ;',/://";"'.(//::>,':,<?·~,~'/.::>,~:,:. 
,,,f,i:·l:&Ts~,c1f,1cat1,on : .. ,' , ", , , ·, , · ," / , · ,. ." ·: . , .' '." , " : , · :, . 

~;"( l:l: ~ .,,,., ;,. 'l i ., '« > :;::, <;: ,;- $::' ~ :' ~ ~ i i i ., « ~ < , ~ , ~ ~ ., i ., ; ~., ., , ; ~ / ~ i ~ i ~ ~ ~ ~, ;, "'~ .,~ ~ < ~ ..... «;}; < <~ ~ « ., ~ ;. 

:,',:~~,~:/~~~,~·;~:,,:f~,~:g~: .. :.:~'i.:3:.~".\i ·.,~~~· :~~~er:~.i ~"~.~~in~~'e":,",.i {b:f~i,~·~ :": :~,,.::.!rli~ :::~,,~'{i'.~':)'..: 
,s:,>;.>,'.~"\s.~e'.cJ/f.i:qa1t'i:'o.n'.: \":ha~", ",',the. ,:~"tza;i:t9i'ar.d, ,."Rs·~·-};lM~RS.~;-~'.l::~;-l?L.US· ,' ",'f3:~p:ffia,t,,>: ·, 
r/. :',/,"'. '"'.d.fici e<t i'ri ·,chapter L ' , ' ' · "· ' " · · · ',· ,' ', ", , / 

~~;~i!~,~ti~p{~~~i;~~i~~r#~i~~ffa~>;t~=~~:tfr~i~~:~i~~1:~~f i;~~;~~. 
:<<:'<'~< .......... i:~clp~,~·s·.".~· 4~~cfr·a/.'mo~·e-:~wi'ich.fng· yectbr ·.,~ftni·n'·u·'ftie .. ·. "ad'.ar~ss:·~.:*":: 
;,:·.",:..,>:: .sP·?lce:· ~.,£'.th~·. us~i "ta;.;·1{ .f.or' each cpl(· to. a .. sµpei:visor~m~~~ :'.1f~:r;,~j.:·y::~. 
· .... :.·>·:;<·:";·~·u~.~·~'u;.~tne/:·'.;'..U: .. ·:y:q,tj ·.·speq.iJy:· .:·/--;S'f,.; . ... : ;y,9u · .. ·µiH.~·t .·:; ,p·r',ov·~<I.e .. · .. ·::y,.o,.q,~· .. : ..... o~ri ,,./·. 

·'. ,,, '/"./.m'ode-..switching .. veGt<lr,,.. .·Pr.qvidi ng .. y6ur · own. moae.;.,switcliing'. 're«::t"o,:rf(· · :: 
,:??'.:;:::?:1}:f;,:::~s:e·£ti':t>:'..~::~;:.,yoti.lf:.·1·~r?~~i'y,::,:<;,r3·1'\:~.~·.~,.n~:l":~.:!'.::h:r~.aq~9-: ... <~:~<?~.:~.:J. ·r.~ . .,::·~;s.;:::Jf.~~.~ .. ;;, . .c·.:~:~··):.:,~ 
" ",J ;:· •· u.s.e .. :th.e. s.y:s·~em-suppl··1ed w·ectors .wben.e.ver. poss1 ble , .. : , . , , ,·, 

·~~({f{'~~;:>f~~:.~\?/?//. ;. · ..... ·.~. ·.' .. (?.:·..... . .... ··,:.':.·. '', ... ?f.~:(.~: 
·/ ?·~ ·t·:'.:·,":~a :.···. ,e:c:·.,,"JiO:./ tbe,/.:tr . .. ... Oi,·iJl· .. tJ:l.z;o,99·h, .. · ;7:':thc;}t: .. ·spe:c.1:f·1.e):~"/A:he/.:· .f..:i::x:st/.,./ 
"1:."i/ ,,' ,, '· .. ~,uP:e, . · , '",.:'7A'c):'.J·:V:e:<P· .· . : ... ~,e<J.ts·ti'et<"t'lia~.~.··t:(H.r":w·~·rit··:·:rtB\:frt:·i~ei;e):Y.e:2' . "~"./;"' 

) v , ~ ' ,,. :,.. , <; ., ; ,, < ~' •• ~ 

-'The· 'T~!sk ·B~ilder·: ·~~i;>ects 'to· fin:a: a· :symbol definition 
hle havfo<J ·the same .name as that ·Of .t~e memory<. image 
flle but with a file· type of .STB', on the same device 
and under the same. UFD a.s that of the memory, image 
file. 

2~ Regardless of the version numbez you give in the file 
specification; .TKB uses the latest version of the 
• STB file •. 

11-31 



OPTIONS 

11-32 



OPTIONS 

11-33 



OPTIONS 

STACK 

11.1.26 STACK -- Stack Size 

The STACK option declares the maximum size of the stack required by 
your task. 

The stack is an area of memory that the MACR0-11 programmer uses for 
temporary storage, subroutine calls, and synchronous trap service 
linkage. The stack is referred to by hardware register 6 (SP, the 
stack pointer) . 

Syntax 

STACK=stack-size 

stack-size 

A decimal integer specifying the number of words required for the 
stack. 

Default 

STACK=256 

11-34 



OPTIONS 

SUPLIB 

ll~i.27 .SUPLIB-- Supervisor-Mode Library -- RSX-llM-PLUSOnly 

·.T1:1fs:, op~io!l declares th.(it. your· task intend$ to access a. system-owned, 
slJ;pervisor-mode library •... Th.e . term 0 system7 owned" mearis that TKB 
expects to find the supervisor-mode library. and the symbol definition 
f.i.1¢. ,assoeiated w:lth it 'in UFO [ 1 ;'iJ on device LB:. 

'' 

.·:.'.~ut?t1s;name::1..::J $VC :apr:1· 
' ' 

;, '. ·~ ' l 

.·· The.··1.: to 6-char ac.te.r Rad i,x·:-50. ti~me 'spec,i ~ying the system-o'wned ., 
ve:·. ·.·.s~p'erv.~'so::.'"":rrto:ae libr~ry. .TKB' expec·ts.· to find a symbol de.f.inition 
/'.: /.f'.l:l'e.Jiaving.· ,the. sarri~ nain·e .a·s· t{lat, o·f the ·horar.y · witp. .a·· file 

.. :.,.:y·e·rs.i©n of •. S.TB· un¢ier. [l.,lJ of device LB:•. · · 

f[:...J.SV' ... 
' ; , . /' ~ ' 

.:The· · c·oae /SV.· or .. ;...;.sv· to. indi,c.ate .whether TKB includes 
':·ro.od·e:...swttchfng Vectors withi.n the user task. H you specify /SV, 
· · TKB .. iocl.udes. a 4.-word. mode-swi tchin.g vector within the address. 

' ~pace~bf.~h~·user ta~k fbi each call td a supervisor-mode libiary 
· .s.ubroutine. If you specify /-SV, you must provide your own mode ... 

· ;·. s.wi.tch,ing . vector.. Prqviding your own mode-switching vec.tors is 
. use fut if you'r 'library contains threaded code •. It 'is best to use 

, ,tJ~-~. sy$t~xp.-sllpplied vectors whenever possi~le ~ 

ppr, 
n> '"' ., 

~n.1nteger in ih~ range of d fhr~ugh 7 that specifies the fir~t 
·sl1I>er\1·isor . ~ct~v~ .... ~age .. Regis'ter that' .TKB Ts to reserve for the 
l,:il;kary". : ¥ou. can J3p.ecify· an APR .. on'ly for. position-ind'ependent, 
'supervisor-mode .librari~s. . Th.e de·fault is the .lowest availa·qle 

i Ai'-R~~ , ; < ; , , 

rphe: .lib:t;a,ry .·at virtual 0 must have the CSM dispatche.r present in 
,· .. :th~ system~sl.rgpljed c,otnple.tion routine described in Chapter 8. 

·De.fault 

None 

11-35 



OPTIONS 

TASK 

11.1.28 TASK -- Task Name 

The TASK option gives your task an installed name different from its 
task image name. 

Syntax 

TASK= task-name 

task-name 

A 1- to 6-character name identifying your task. 

Default 

The first six characters of the task image file name identify the 
task when the task is installed. 

11-36 



OPTIONS 

TSKV 

11.1.29 TSKV -- Task SST Vector 

The TSKV option declares that a global symbol is the address of the 
task Synchronous System Trap (SST} vector. You must define the global 
symbol in the main root segment of your task. 

Syntax 

TSKV=symbol-name:vector-length 

symbol-name 

A 1- to 6-character name of a global symbol. 

vector-length 

A decimal integer in the range of 1 through 32 specifying the 
length of the SST vector in words. 

Default 

None 

11-37 



UIC 

11.1.30 UIC -- User Identification Code 

The UIC option declares the User Identification Code (UIC) for your 
task when you run it with a time-based schedule request. 

Syntax 

group 

UIC=[group,member] 

An octal number in the range of 1 through 377, or a decimal 
number in the range of 1 through 255. Decimal numbers must be 
followed by a decimal point (.). 

member 

An octal number in the range of 1 through 377, or a decimal 
number in the range of 1 through 255. Decimal numbers must be 
followed by a decimal point (.). 

Default 

The UIC that the Task Builder is running under (normally the 
terminal UIC). 

11-38 



OPTIONS 

UNITS 

11.1.31 UNITS -- Logical Unit Usage 

The UNITS option declares the number of logical units that your task 
uses. 

Syntax 

UNITS=max-units 

max-units 

A decimal integer in the range of 0 through 250 specifying the 
maximum number of logical units. A 2-word block is allocated in 
the task's header for every logical unit. A task that uses many 
logical units can use a significant portion of dynamic memory 
because the header is in dynamic memory when the task is 
executing. The /XH switch affects pool usage by the task header. 

Default 

UNITS=6 

11-39 



OPTIONS 

VSECT 

11~1~32 VSECT -- Virtual Program Section 

The VSECT option specifies the virtual base address, virtual length, 
and, optionally, the physical memory allocated to the named program 
section. Refer to Chapter 5 for more information on virtual program 
sections. 

Syntax 

VSECT=p-sect-name:base:window[:physical-length] 

p-sect-name 

base 

A 1- to 6-character program section name. 

An octal value representing the virtual base address of the 
program section in the range of 0 through 177777. If you use the 
mapping directives, the value you specify must be a multiple of 
4K. 

window 

An octal value specifying the amount of virtual address space in 
bytes allocated to the program section. Base plus window must 
not exceed 177777 (octal). 

physical-length 

An octal value specifying the m1n1mum amount of physical memory 
to be allocated to the section in units of 64-byte blocks. TKB 
rounds this value up to the next 256-word limit. This value, 
when added to the task image size and any previous allocation, 
must not cause the total to exceed 2048K bytes. If you do not 
specify a length, TKB assumes a value of O. 

Default 

Physical-length defaults to O. 

11-40 



OPTIONS 

WNDWS 

11.1.33 WNDWS -- Number of Address Windows 

The WNDWS option declares the number of address windows required by 
the task in addition to those needed to map the task image, and any 
mapped array or shared region. The number specified is equal to the 
number of simultaneously mapped regions the task will use. 

Syntax 

WNDWS=n 

n 

Default 

WNDWS=O 

11-41 



APPENDIX A 

TASK BUILDER INPUT DATA FORMATS 

An object module is the fundamental unit of input to the Task Builder 
(TKB). You create an object module by using any of the standard 
language processors (for example, MACR0-11 or FORTRAN) or by using TKB 
itself {symbol definition file). The RSX-llM/M-PLUS librarian (LBR) 
gives you the capability to combine a number of object modules into a 
single library file. 

An object module consists of variable-length records of information 
that describe the contents of the module. These records guide TKB in 
translating the object language into a task image. Six record (block) 
types are included in the object language~ 

• Declare global symbol directory (GSD) record (type 1) 

• End of global symbol directory {GSD) record (type 2) 

• Text information (TXT) record (type 3) 

• Relocation directory (RLD) record (type 4) 

• Internal symbol directory {ISO) record (type 5) 

• End-of-module record (type 6) 

TKB requires at least five of these record types in each object 
module. The only record type that it does not require is the internal 
symbol directory. 

The various record types are defined according to a prescribed format, 
as illustrated in Figure A-1. An object module must begin with a 
declare-GSD record and end with an end-of-module record. Additional 
declare-GSD records can occur anywhere in the file, but must occur 
before an end-of-GSD record. An end-of-GSD record must appear before 
the end-of-module record, and at least one RLD record must appear 
before the first TXT record. Additional RLD and TXT records can 
appear anywhere in the file. The ISD records can appear anywhere in 
the file between the initial declare-GSD record and the end-of-module 
record. 

Object module records are variable length and are identified by a 
record type code in the first byte of the record. The format of 
additional information in the record depends on the record type. 

A-1 



TASK BUILDER INPUT DATA FORMATS 

The following sections describe each of the six record types in 
greater detail. The outline of these sections is as follows: 

A.l 
A.1.1 
A. l. 2 
A. l. 3 
A. l. 4 
A. l. 5 
A.1.6 
A.l. 7 
A. l. 8 
A. l. 9 
A.2 
A.3 
A.4 
A.4.1 
A.4.2 
A.4.3 
A.4.4 
A.4.5 
A.4.6 
A.4.7 
A.4.8 
A.4.9 
A.4.10 
A.4.11 
A.4.12 
A.4.13 

A.4.14 
A.4.15 
A.5 
A.6 

Declare Global Symbol Directory Record 
Module Name (Type 0) 
Control Section Name (Type 1) 
Internal Symbol Name (Type 2) 
Transfer Address (Type 3) 
Global Symbol Name (Type 4) 
Program Section Name (Type 5) 
Program Version Identification (Type 6) 
Mapped Array Declaration (Type 7) 
Completion Routine Name (Type 10) 
End of Global Symbol Directory Record 
Text Information Record 
Relocation Directory Record 
Internal Relocation (Type 1) 
Global Relocation (Type 2) 
Internal Displaced Relocation (Type 3) 
Global Displaced Relocation (Type 4) 
Global Additive Relocation (Type 5) 
Global Additive Displaced Relocation (Type 6) 
Location Counter Definition (Type 7) 
Location Counter Modification (Type 10) 
Program Limits (Type 11) 
Program Section Relocation (Type 12) 
Program Section Displaced Relocation (Type 14) 
Program Section Additive Relocation (Type 15) 
Program Section Additive Displaced Relocation 

Type 16) 
Complex Relocation (Type 17) 
Resident Library Relocation (Type 20) 
Internal Symbol Directory Record 
End of Module Record 

A.l DECLARE GLOBAL SYMBOL DIRECTORY RECORD 

The global symbol directory (GSD) record contains all the information 
required by TKB to assign addresses to global symbols and to allocate 
the virtual address space required by a task. 

GSD records are the only records processed by TKB in its first pass; 
therefore, you can save substantial time by placing all GSD records at 
the beginning of a module (because the Task Builder has to read less 
of the file) • 

GSD records contain nine types of entries: 

• Module name (type 0) 

• Control section name (type 1) 

• Internal symbol name (type 2) 

• Transfer address (type 3) 

• Global symbol name (type 4) 

A-2 



TASK BUILDER INPUT DATA FORMATS 

• Program section name (type 5) 

• Program version identification (type 6) 

• Mapped array declaration (type 7) 

• Completion routine name (type 10) 

TASK BUILDER DATA FORMATS 

GSD Initial Declare GSD 

RLD Initial Relocation Directory 

GSD Additional GSD 

TXT Text Information 

TXT Text Information 

RLD Relocation Directory 

• 
• 

GSD Additional GSD 

END GSD End of GSD 

ISD Internal Symbol Directory 

ISD Internal Symbol Directory 

TXT Text Information 

TXT Text Information 

TXT Text Information 

END MODULE End of Module 

ZK-444-81 

Figure A-1 General Object Module Format 

Each entry type is represented by four words in 
shown in Figure A-2, the first two words 
characters, the third word contains a flag byte 
identification, and the fourth word contains 
about the entry. 

A-3 

the GSD record. As 
contain six Radix-50 
and the entry type 

additional information 



TASK BUILDER INPUT DATA FORMATS 

A.1.1 Module Name (Type 0) 

The module name entry (two words) declares the name 
module. The name need not be unique with respect 
modules (that is, modules are identified by file, not 
but only one such declaration can occur in any given 
Figure A-3 illustrates the module entry name format. 

0 RECORD = 1 
TYPE 

RAD50 
NAME 

ENTRY TYPE FLAGS 

VALUE 

RAD50 
NAME 

TYPE FLAGS 

VALUE 

• 
• 
• 

RAD50 
NAME 

TYPE l FLAGS 

VALUE 

RAD50 
NAME 

TYPE l FLAGS 

VALUE 

ZK-445-81 

of the object 
to other object 
module name) , 
object module. 

Figure A-2 Global Symbol Directory Record Format 

MODULE 
NAME (2 WORDS) 

ENTRY = O 
TYPE l 

0 

0 

ZK-446-81 

Figure A-3 Module Name Entry Format 

A-4 



TASK BUILDER INPUT DATA FORMATS 

A.1.2 Control Section Name (Type 1) 

Control sections, which include absolute sections (ASECTs}, blank, and 
named control sections (CSECTs) , are replaced in RSX-llM by program 
sections (PSECTs). For compatibility with other systems, TKB 
processes ASECTs and both forms of CSECTs. Section A.1.6 details the 
entry generated for a .PSECT directive. 

ASECTs and CSECTs are defined in terms of .PSECT directives, as 
follows: 

For a blank CSECT, a program section is defined with the following 
attributes: 

.PSECT ,LCL,REL,CON,RW,I,LOW 

For a named CSECT, the program section is defined as: 

.PSECT name, GBL,REL,OVR,RW,I,LOW 

For an ASECT, the program section is defined as: 

.PSECT . ABS.,GBL,ABS,I,OVR,RW,LOW 

TKB processes ASECTs and CSECTs as program sections with the fixed 
attributes defined above. Figure A-4 illustrates the control section 
entry name format. 

CONTROL SECTION 
NAME (2 WORDS) 

ENTRY 
= 1 I IGNORED TYPE 

MAXIMUM LENGTH 

ZK-447-81 

Figure A-4 Control Section Name Entry Format 

A.1.3 Internal Symbol Name (Type 2) 

The internal symbol name entry (two words) declares the name of an 
internal symbol (with respect to the module). TKB does not support 
internal symbol tables; therefore, the detailed format of this entry 
is undefined. If TKB encounters an internal symbol entry while 
reading the GSD, it ignores that entry. Figure A-5 illustrates the 
internal symbol name entry format. 

SYMBOL 
NAME (2 WORDS) 

ENTRY 
= 2 I 0 TYPE 

UNDEFINED 

ZK-448-81 

Figure A-5 Internal Symbol Name Entry Format 

A-5 



TASK BUILDER INPUT DATA FORMATS 

A.1.4 Transfer Address (Type 3) 

The transfer address entry declares the transfer address of a module 
relative to a program section. The first two words of the entry 
define the name of the program section, and the fourth word defines 
the relative offset from the beginning of that program section. If a 
transfer address is not declared in a module, then a transfer address 
must not be included in the GSD, or a transfer address of 000001 
relative to the default absolute program section (. ABS.) must be 
specified. Figure A-6 illustrates the transfer address entry format. 

NOTE 

If the program section is absolute, the 
off set is the actual transfer address 
(if not 000001). 

SYMBOL 
NAME (2 WORDS) 

ENTRY 
== 3 l 0 TYPE 

OFFSET 

ZK-449-81 

Figure A-6 Transfer Address Entry Format 

A.1.5 Global Symbol Name (Type 4) 

The global symbol name entry declares either a global reference or a 
definition. Definition entries must appear after the declaration of 
the program section in which the global symbols are defined and before 
the declaration of another program section (see Section A.1.6). 
Global references can be used anywhere within the GSD. 

As shown in Figure A-7, the first two words of the entry define the 
name of the global symbol. The flag byte of the third word declares 
the attributes of the symbol, and the fourth word defines the value of 
the symbol relative to the program section in which the symbol is 
defined. 

ENTRY 
TYPE 

SYMBOL 
NAME (2 WORDS) 

4 l 
VALUE 

FLAGS 

ZK-450-81 

Figure A-7 Global Symbol Name Entry Format 

Table A-1 lists the bit assignments of the flag byte of the symbol 
declaration entry. 

A-6 



TASK BUILDER INPUT DATA FORMATS 

Table A-1 
Symbol Declaration Flag Byte -- Bit Assignments 

Bit Number and Name Setting Meaning 

0 Weak qualifier 0 

1 

1 

2 Definition or 0 
reference type 

1 

3 Definition 0 

1 

4 

5 Relocation 0 

1 

6 

7 

A.1.6 Program Section Name (Type 5) 

The symbol has a strong 
definition and is resolved in 
the normal manner. 

The symbol has a 
definition or reference. 

weak 
TKB 

ignores a weak reference (bit 
3 0). It also ignores a 
weak definition (bit 3 1) 
unless a previous reference 
has been made= 

Not used. 

Normal definition or 
reference. 

Library definition. If the 
symbol is defined in a 
resident library STB file, the 
base address of the library is 
added to the value and the 
symbol is converted to 
absolute (bit 5 is reset); 
otherwise, the bit is ignored. 

Global symbol reference. 

Global symbol definition. 

Not used. 

Absolute symbol value. 

Relative symbol value. 

Not used. 

Not used. 

The program section name entry declares the name of a program section 
and its maximum length in the module. It also uses the flag byte to 
declare the attributes of the program section. 

A-7 



TASK BUILDER INPUT DATA FORMATS 

You must construct GSD records such that once a program section name 
has been declared, all global symbol definitions pertaining to it must 
appear before another program section name is declared. Global 
symbols are declared with symbol declaration entries. Thus, the 
normal format is a series of program section names each followed by 
optional symbol declarations. Figure A-8 illustrates the program 
section name entry format. 

PROGRAM SECTION 
NAME 

ENTRY = 5 j FLAGS TYPE 

MAXIMUM LENGTH 

ZK-451-81 

Figure A-8 Program Section Name Entry Format 

Table A-2 lists the bit assignments of the flag byte of the program 
section name entry. 

Table A-2 
Program Section Name Flag Byte -- Bit Assignments 

Bit Number and Name 

0 

1 

2 

Save 

Library program 
section 

Allocation 

Setting 

0 

1 

0 

1 

0 

1 

A-8 

Meaning 

Normal program section. 

The program section is forced 
into the root of the task. 

Normal program section. 

The program 
relocatable and 
shared region. 

section 
refers to 

is 
a 

Program section references are 
to be concatenated with other 
references to the same program 
section to form the total memory 
allocated to the section. 

Program section references are 
to be overlaid. The total 
memory allocated to the program 
section is the largest request 
made by individual references to 
the same program section. 

(continued on next page) 



TASK BUILDER INPUT DATA FORMATS 

Table A-2 (Cont.) 
Program Section Name Flag Byte -- Bit Assignments 

Bit Number and Name Setting Meaning 

3 

4 

5 

6 

7 

Access 0 

1 

Not used; reserved for future 
DIGITAL use. 

The program section has 
read/write access. 

The program section has 
read-only access. 

Relocation 0 The program section is absolute 
and requires no relocation. 

Scope 

Type 

1 

0 

1 

0 

1 

The program section is 
relocatable and references to 
the control section must have a 
relocation bias added before 
they become absolute. 

The scope of the program section 
is local. References to the 
same program section are 
collected only within the 
segment in which the program 
section is defined. 

The scope of the program section 
is global. TKB collects 
references to the program 
section across segment 
boundaries. The Task Builder 
determines the segment in which 
storage is allocated for a 
global program section either by 
the first module that defines 
the program section on a path, 
or by direct placement of a 
program section in a segment 
using the ODL .PSECT directive. 

The program section contains 
instruction (I) references. 

The program section 
data (D) references. 

NOTE 

contains 

The length of all absolute sections is 
0. 

A-9 



TASK BUILDER INPUT DATA FORMATS 

A.1.7 Program Version Identification (Type 6) 

The program version identification entry declares the version of the 
module. TKB saves the version identification of the first module that 
defines a nonblank version. It then includes this identification on 
the memory allocation map and writes the identification in the label 
block of the task image file. 

The first two words of the entry contain the version identification. 
The flag byte and fourth words are not used and contain no meaningful 
information. Figure A-9 illustrates the program version 
identification entry format. 

SYMBOL 
NAME 

ENTRY 
6 I 0 TYPE = 

0 

ZK-452-81 

Figure A-9 Program Version Identification Entry Format 

A.1.8 Mapped Array Declaration (Type 7) 

The mapped array declaration entry allocates space within the mapped 
array area of task memory. The array name is added to the list of 
task program section names and may be referred to by subsequent RLD 
records. The length (in units of 64-byte blocks) is added to the 
task's mapped array allocation. The total memory allocated to each 
mapped array is rounded up to the nearest 512-byte boundary. The 
contents of the flag byte are reserved and assumed to be 0. 

One additional window block is allocated whenever a mapped array is 
declared. 

Figure A-10 illustrates the mapped array declaration entry format. 

ENTRY 
TYPE 

MAPPED ARRAY 

NAME 

7 l FLAGS 

LENGTH (NUMBER OF 64-BYTE BLOCKS) 

ZK-453-81 

Figure A-10 Mapped Array Declaration Entry Format 

A-10 



TASK BUILDER INPUT DATA FORMATS 

')~,~,J.,:,9',., ',,¢0,~p;1-~tto:n, ',Routine, Defin'i'tioh '(Ty,pe ',lQJ, ',,,,t:, , ,} "',(/ / j :, ' 

-~h~- ~~mplei:iot\ routin~ il~f i~i tl ~n dee ~a re~ t~e . entiY. Jp.;i;~~ :, fK{:S~~~ 
co~,p~e.tio,n," ,i;ou,1:,ine,,of', ',',?l, supervisor.,.n\pde, .. lil,>rary'!' .. ' •Thfs. .. ,'qat:.a:'e'st;i'.tjq,6u+:e~, 
J.$·'.'C!rE?~te~, py. <tll~ '.!'ask '8ui lde;r and ai;>pears Oniy in"~<$Ymh()l. ·''Q~fi"tj'$'t:J,~fi) 
f i'le's, <»f' supe.rvi.sor--mode Ubrar ie.s. , , ' <:, ,, , ·,~ .. ;;, "" , 

~~· ..,' -~ '' '; .,·, . ~ ,~ ,,,' .. , .. !;,;' :"' ,. t 

'}\"s',,~hq~~ '',,fti ~.i,gure, ~~11,,' the''' n:rf;t.' .. ,t\>la,··,~ords'· .. ,of.·,t:he','etjtr;~''"'.:.·~':f'~'~!~:,•-,,';'.~~~::. 
",name' ... · O'f ,the 'enti::y, poirit,: . The third 'wo,rd' corit<;tinS' .:f'.h.e' "enl=:r,,¥;'' ~;ype," l'jyt~'.,:' 
and. t;b'e.·fia«J, .hyte,., 'The,:fiag, byte contail)~',"no ,meanirigFiaJ:';'·;in~q:l;·Il)a~l?~~;{' 
,T'.i:(e'::'fo,u+'.,t;n:,>~~:rr¢1. CO?,t~,lns:, t:11~ .fi:~bqJ,, ,v,~fye • .. ' , .i ,,,_, ,<: ,./ .' /, '>."/:.:::'// "~,~<:>":««:.;·>:): 

rnTRY 
TYPE 

COMPLETION ROUTINE 
NAME 

10 I 
VALUE 

A.2 END OF GLOBAL SYMBOL DIRECTORY RECORD 

0 

ZK-454-81 

The end of global symbol directory (end-of-GSD) record declares that 
no other GSD records are contained further on in the module. There 
must be exactly one end-of-GSD record in every object module. As 
shown in Figure A-12, this record is one word long. 

0 
RECORD 

TYPE 
2 

ZK-455-81 

Figure A-12 End of Global Symbol Directory Record Format 

A.3 TEXT INFORMATION RECORD 

The text information (TXT) record contains a byte string of 
information that is to be written directly into the task image file. 
The record consists of a load address followed by the byte string. 

TXT records can contain words and/or bytes of information whose final 
contents have not yet been determined. This information will be bound 
by a relocation directory record that immediately follows the text 
record {see Section A.4). If the TXT record needs no modification, 
then no relocation directory record is needed. Thus, multiple TXT 
records can appear in sequence before a relocation directory record. 

The load address of the TXT record is specified as an offset from the 
current program section base. At least one relocation directory 
record must precede the first TXT record. This directory must declare 
the current program section. 

A-11 



TASK BUILDER INPUT DATA FORMATS 

TKB writes a text record directly into the task image file and 
computes the value of the load address minus 4. This value is stored 
in anticipation of a subsequent relocation directory that modifies 
words and/or bytes contained in the TXT record. When added to a 
relocation directory displacement byte, this value yields the address 
of the word and/or byte to be modified in the task image. 

Figure A-13 illustrates the TXT record format. 

0 
RECORD 

= 3 TYPE 

LOAD ADDRESS 

TEXT TEXT 

• 
• 
• 

' ' 
TEXT TEXT 

ZK-456-81 

Figure A-13 Text Information Record Format 

A.4 RELOCATION DIRECTORY RECORD 

The relocation directory (RLD) record contains the information 
necessary to relocate and link the preceding TXT record. Every module 
must have at least one RLD record that precedes the first TXT record. 
The first RLD record does not modify a preceding TXT record; rather, 
it defines the current program section and location. RLD records 
contain 15 types of entries, classified as relocation or location 
modification entries: 

• Internal relocation (type 1) 

• Global relocation (type 2) 

• Internal displaced relocation (type 3) 

• Global displaced relocation (type 4) 

A-12 



TASK BUILDER INPUT DATA FORMATS 

• Global additive relocation (type 5) 

• Global additive displaced relocation (type 6) 

• Location counter definition (type 7) 

• Location counter modification (type 10) 

• Program limits (type 11) 

• Program section relocation (type 12) 

• Program section displaced relocation (type 14) 

• Program section additive relocation (type 15) 

• Program section additive displaced relocation (type 16) 

• Complex relocation (type 17) 

• Resident library relocation (type 20) 

Each type of entry is represented by a command byte that specifies the 
type of entry and the word/byte modification, followed by a 
displacement byte, and then by the information required for the 
particular type of entry. The displacement byte, when added to the 
value calculated from the load address of the preceding TXT record 
(see Section A.3), yields the virtual address in the image that is to 
be modified. 

Table A-3 lists the bit assignments of the command byte of each RLD 
entry. 

Table A-3 
Relocation Directory Command Byte -­

Bit Assignments 

Bit Number and Name Setting Meaning 

0-6 Entry type 

7 Modification 0 

1 

Potentially, 128 command types 
can be specified; currently, 
15 are implemented. 

The command modifies an entire 
word. 

The command modifies only 
byte. TKB checks 
truncation errors in 
modification commands. 
truncation is detected 
is, if the modification 
is greater than 255), an 
occurs. 

one 
for 

byte 
If 

(that 
value 
error 

Figure A-14 illustrates the RLD record format. 

A-13 



TASK BUILDER INPUT DATA FORMATS 

0 RECORD 
= 4 

TYPE 

DISP CMD 

INFO INFO 

~ • 
INFO INFO 

DISP CMD 

INFO INFO 

I 

' l 

INFO INFO 

DISP CMD 

INFO INFO 

"'-r 
INFO INFO 

ZK-457-81 

Figure A-14 Relocation Directory Record Format 

A.4.1 Internal Relocation (Type 1) 

The internal relocation entry relocates a direct pointer to an address 
within a module. TKB adds the current program section base address to 
a specified constant, and writes the result into the task image file 
at the calculated address (that is, a displacement byte is added to 
the value calculated from the load address of the preceding text 
block). 

A-14 



TASK BUILDER INPUT DATA FORMATS 

For example: 

A: MOV #A,RO 

or 

.WORD A 

Figure A-15 illustrates the internal relocation entry format. 

DISP 8 ENTRY 
= 1 TYPE 

l CONSTANT 

ZK-458-81 

Figure A-15 Internal Relocation Entry Format 

A.4.2 Global Relocation (Type 2) 

The global relocation entry relocates a direct pointer to a global 
symbol. TKB obtains the definition of the global symbol and writes 
the result into the task image file at the calculated address. 

For example: 

MOV #GLOBAL,RO 

or 

.WORD GLOBAL 

Figure A-16 illustrates the global relocation entry format. 

DISP 

SYMBOL 
NAME 

ENTRY 
TYPE 2 

ZK-459-81 

Figure A-16 Global Relocation Entry Format 

A.4.3 Internal Displaced Relocation {Type 3) 

The internal displaced relocation entry relocates a relative reference 
to an absolute address from within a relocatable control section. TKB 
subtracts the address plus 2 that the relocated value is to be written 
into from the specified constant, and writes the result into the task 
image file at the calculated address. 

For example: 

CLR 177550 

or 

MOV 177550,RO 

A-15 



TASK BUILDER INPUT DATA FORMATS 

Figure A-17 illustrates the internal displaced relocation entry 
format. 

DISP 

CONSTANT 

ENTRY 
TYPE 3 

ZK-460-81 

Figure A-17 Internal Displaced Relocation Entry Format 

A.4.4 Global Displaced Relocation (Type 4) 

The global displaced relocation entry relocates a relative reference 
to a global symbol. TKB obtains the definition of the global symbol; 
subtracts the address plus 2 that the relocated value is to be written 
into from the definition value; and writes the result into the task 
image file at the calculated address. 

For example: 

CLR GLOBAL 

or 

MOV GLOBAL,RO 

Figure A-18 illustrates the global displaced relocation entry format. 

DISP 

SYMBOL 
NAME 

ENTRY 
TYPE 4 

ZK-461-81 

Figure A-18 Global Displaced Relocation Entry Format 

A.4.5 Global Additive Relocation (Type 5) 

The global additive relocation entry relocates a direct pointer to a 
global symbol with an additive constant. TKB obtains the definition 
of the global symbol; adds the specified constant to the definition 
value; and writes the result into the task image file at the 
calculated address. 

For example: 

MOV #GLOBAL+2,RO 

or 

.WORD GLOBAL-4 

Figure A-19 illustrates the global additive relocation entry format. 

A-16 



TASK BUILDER INPUT DATA FORMATS 

r DISP ENTRY 
TYPE 

SYMBOL 
NAME (2 WORDS) 

CONSTANT 

5 

ZK-462-81 

Figure A-19 Global Additive Relocation Entry Format 

A.4.6 Global Additive Displaced Relocation (Type 6) 

The global additive displaced relocation entry relocates a relative 
reference to a global symbol with an additive constant. TKB obtains 
the definition of the global symbol; adds the specified constant to 
the definition value; subtracts the address plus 2 that the relocated 
value is to be written into from the resultant additive value; and 
writes the result into the task image file at the calculated address. 

For example: 

CLR GLOBAL+2 

or 

MOV GLOBAL-5,RO 

Figure A-20 illustrates the global additive displaced relocation entry 
format. 

DISP B I ENTRY 
= 6 TYPE 

SYMBOL 
NAME (2 WORDS) 

CONSTANT 

ZK-463-81 

Figure A-20 Global Additive Displaced Relocation Entry Format 

A.4.7 Location Counter Definition (Type 7) 

The location counter definition entry declares a current program 
section and location counter value. TKB stores the control base as 
the current control section; adds the current control section base to 
the specified constant; and stores the result as the current location 
counter value. 

Figure A-21 illustrates the location counter definition entry format. 

A-17 



TASK BUILDER INPUT DATA FORMATS 

0 l B 
ENTRY = 7 
TYPE 

PROGRAM SECTION 
NAME (2 WORDS) 

CONSTANT 

ZK-464-81 

Figure A-21 Location Counter Definition Entry Format 

A.4.8 Location Counter Modification {Type 10) 

The location counter modification entry modifies the ~urrent location 
counter. TKB adds the current program section base to the specified 
constant and stores the result as the current location counter. 

For example: 

.=.+N 

or 

.BLKB N 

Figure A-22 illustrates the location counter modification entry 
format. 

0 

CONSTANT 

ENTRY 
TYPE 10 

ZK-465-81 

Figure A-22 Location Counter Modification Entry Format 

A.4.9 Program Limits (Type 11) 

The program limits entry is generated by the .LIMIT assembler 
directive. TKB obtains the first address above the header (normally 
the beginning of the stack) and the highest address allocated to the 
task. It then writes these two addresses into the task image file at 
the calculated address and at the calculated address plus 2, 
respectively. 

For example: 

.LIMIT 

Figure A-23 illustrates the program limits entry format. 

A-18 



TASK BUILDER INPUT DATA FORMATS 

DISP 
ENTRY 
TYPE 11 

ZK-466-81 

Figure A-23 Program Limits Entry Format 

A.4.10 Program Section Relocation (Type 12) 

The program section relocation entry relocates a direct pointer to the 
beginning address of another program section (other than the program 
section in which the reference is made) within a module. TKB obtains 
the current base address of the specified program section and writes 
it into the task image file at the calculated address. 

For example: 

B: 
.PSECT A 

.PSECT C 
MOV #B,RO 

or 

.WORD B 

Figure A-24 illustrates the program section relocation entry format. 

DISP 
ENTRY 
TYPE 

PROGRAM SECTION 
NAME (2 WORDS) 

12 

ZK-467-81 

Figure A-24 Program Section Relocation Entry Format 

A.4.11 Program Section Displaced Relocation (Type 14) 

The program section displaced relocation entry relocates a relative 
reference to the beginning address of another program section within a 
module. TKB obtains the current base address of the specified program 
section; subtracts the address plus 2 that the relocated value is to 
be written into from the base value; and writes the result into the 
task image file at the calculated address. 

A-19 



For example: 

B: 

TASK BUILDER INPUT DATA FORMATS 

.PSECT A 

.PSECT C 
MOV B,RO 

Figure A-25 illustrates the program section displaced relocation entry 
format. 

DISP B l ENTRY 
14 TYPE 

= 

PROGRAM SECTION 
NAME (2 WORDS) 

ZK-468-81 

Figure A-25 Program Section Displaced Relocation Entry Format 

A.4.12 Program Section Additive Relocation (Type 15) 

The program section additive relocation entry relocates a direct 
pointer to an address in another program section within a module. TKB 
obtains the current base address of the specified program section; 
adds this address to the specified constant; and writes the result 
into the task image file at the calculated address. 

For example: 

B: 

C: 

.PSECT A 

.PSECT D 
MOV #B+lO,RO 
MOV #C,RO 

or 

.WORD B+lO 

.WORD C 

Figure A-26 illustrates the program section additive relocation entry 
format. 

A-20 



TASK BUILDER INPUT DATA FORMATS 

DISP I B 
ENTRY 

= 15 
TYPE 

PROGRAM SECTION 
NAME (2 WORDS) 

CONSTANT 

ZK-469-81 

Figure A-26 Program Section Additive Relocation Entry Format 

A.4.13 Program Section Additive Displaced Relocation (Type 16) 

The program section additive displaced relocation entry relocates a 
relative reference to an address in another program section within a 
module. TKB obtains the current base address of the specified program 
section; adds this address to the specified constant; subtracts the 
address plus 2 that the relocated value is to be written into from the 
resultant additive value; and writes the result into the task image 
file at the calculated address. 

For example: 

B: 

C: 

.PSECT A 

.PSECT D 
MOV B+lO,RO 
MOV C,RO 

Figure A-27 illustrates the program section 
relocation entry format. 

DISP 1 Bl 
ENTRY 

= 
TYPE 

PROGRAM SECTION 
NAME (2 WORDS) 

CONSTANT 

additive di placed 

16 

ZK-470-81 

Figure A-27 Program Section Additive Displaced Relocation 
Entry Format 

A-21 



TASK BUILDER INPUT DATA FORMATS 

A.4.14 Complex Relocation (Type 17) 

The complex relocation entry resolves a complex relocation expression. 
Such an expression is one in which any of the MACR0-11 binary or unary 
operations are permitted with any type of argument, regardless of 
whether the argument is an unresolved global symbol; is relocatable 
to any program section base; is absolute; or is a complex 
relocatable subexpression. 

The RLD command word is followed by a string of numerically specified 
operation codes and arguments. The operation codes each occupy one 
byte. The entire RLD command must fit in a single record. The 
following 15 operation codes are defined: 

• No operation Byte 0 

• Addition (+) Byte 1 

• Subtraction (-) Byte 2 

• Multiplication (*) -- Byte 3 

• Division (/) Byte 4 

• Logical AND ( & ) -- Byte 5 

• Logical inclusive OR ( ! ) -- Byte 6 

• Negation (-) -- Byte 10 

• Complement ( "'C) -- Byte 11 

• Store result (command termination) 

• Store result 
termination) 

with 
Byte 13 

displaced 

Byte 12 

relocation (command 

• Fetch global symbol -- Byte 16 (It is followed by four bytes 
containing the symbol name in Radix-50 representation.) 

• Fetch relocatable value -- Byte 17 (It is followed by one byte 
containing the program section number, and two bytes 
containing the offset within the program section.) 

• Fetch constant -- Byte 20 (It is followed by two bytes 
containing the constant.) 

• Fetch resident library base address -- Byte 21 (If the file is 
a resident library STB file, the library base address is 
obtained; otherwise, the base address of the task image is 
fetched.) 

The STORE commands indicate that the value is to be written into the 
task image file at the calculated address. 

All operands are evaluated as 16-bit signed quantities using two's 
complement arithmetic. The results are equivalent to expressions that 
the assembler evaluates internally. The following rules should be 
noted: 

1. An attempt to divide by 0 yields a 0 result. The Task 
Builder issues a nonfatal diagnostic error message. 

A-22 



TASK BUILDER INPUT DATA FORMATS 

2. All results are truncated from the left to fit into 16 bits. 

3. 

No diagnostic error message is issued if the number is too 
large. If the result modifies a byte, TKB checks for 
truncation errors as described in Section A.4. 

All operations are performed 
absolute 16-bit quantities. 
the result only. 

on relocated (additive) or 
PC displacement is applied to 

For example: 

.PSECT ALPHA 
A: 

.PSECT BETA 
B: 

MOV #A+B-Gl/G2&AC177120!G3>>,Rl 

Figure A-28 illustrates the complex relocation entry format. 

DISP l Bl ENTRY = 17 
TYPE 

COMPLEX STRING 

12 

ZK-471-81 

Figure A-28 Complex Relocation Entry Format 

A.4.15 Resident Library Relocation (Type 20) 

The library relocation entry relocates a direct pointer to an address 
within a resident library. 

If the current file is a resident library symbol definition file 
(STB), TKB obtains the base address of the library; adds this address 
to the specified constant; and writes the result into the task image 
file at the calculated address. If the file is not associated with a 
resident library, TKB uses the task base address. 

Figure A-29 illustrates the library relocation entry format. 

DISP 

CONSTANT 

ENTRY 
TYPE 

20 

ZK-472-81 

Figure A-29 Resident Library Relocation Entry Format 

A-23 



TASK BUILDER INPOT DATA FORMATS 

A.5 INTERNAL SYMBOL DIRECTORY RECORD 

Internal symbol directory (ISO) records have two purposes: 

1. To pass information to symbolic debuggers via the .STB file 

2. To create autoload vectors dynamically for the entry points 
of the library 

TBK looks for global symbol definitions in the input object modules 
and looks for !SD records if /DA is specified; otherwise TKB ignores 
the !SD records. Some !SD records require no relocation and TKB can 
copy them directly into the .STB file. Others will require 
modification; after being modified, they can be written to the .STB 
file. In addition, TBK may need to generate some !SD records of its 
own in the .STB file. 

Except for autoloadable library entry points, TBK puts !SD records 
into the .STB file only if the /DA switch is used in the TKB command 
line. When TKB outputs the .STB file, it writes three major types of 
ISO records: 

• Type 1 records, TKB generated ISDs. The form of these records 
is language independent. 

• Type 3 records, written for any type 2 records in an input 
object module. TKB does this after adding data and then 
changing the type to 3. Type 2 relocatable/relocated records 
are those that contain both language dependent and independent 
sections. Language processors generate these records and TKB 
modifies them. They contain information that can be used to 
find the absolute task image address of source program 
entities (variables, program statements, etc.) 

• Type 4 records, written to the .STB file without modification. 
Type 4 records are literal records that contain language 
dependent information. Apart from the first few bytes, TKB 
ignores the rest of the record. 

These record formats are described in the following sections. 

A.5.1 Overall Record Format 

!SD records have the same basic structure as all object language 
records. Because of the variety of different types, the skeleton 
structure must include additional fields that are common to all ISO 
record types. The general format of all ISO records is shown in 
Figure A-30. 

A-24 



TASK BUILDER INPUT DATA FORMATS 

15 8 7 0 

MUST BE 0 RECORD TYPE = 5 

RESERVED (0) ISO RECORD TYPE 

RECORD TYPE DEPENDENT 

ZK-1058-82 

Figure A-30 General Format of All ISO Records 

ISO record types fall into general categories. The categories are: 

• 0 Illegal. 

• 1 TKB-generated. 

• 2 Compiler-generated relocatable. 

• 3 Relocated (type 2 after TKB processing) • 

• 4-127 -- not defined and reserved for future use. 

• 128-255 -- literal records; the type code identifies the 
generating language processor and the internal structure. 

A.5.2 TKB Generated Records (Type 1) 

The content of this record type is a string of individual items, each 
with its own format. The items are either start-of-segment items, 
task identification items, or autoloadable entry point items. The TKB 
generated record is similar to the structure of an RLO or GSO record. 
The general format is shown in Figure A-31. 

15 8 7 0 

LENGTH (BYTES) l ITEM TYPE 

CONTENT DEPENDS ON ITEM TYPE 

ZK-1059-82 

Figure A-31 General Format of a TKB Generated Record 

A.5.2.1 Start-of-Segment Item Type (1) - The format 
start-of-segment item type is shown in Figure A-32. 

A-25 

of the 



TASK BUILDER INPUT DATA FORMATS 

15 8 7 0 

LENGTH= 8 l ITEM TYPE= 1 

SEGMENT NAME 

SEGMENT DESCRIPTOR ADDRESS 

ZK-1060-82 

Figure A-32 Format of TKB Generated Start-of-Segment Item (1) 

A.5.2.2 Task Identification Item Type (2) - The task identification 
item type ensures that a .STB file and the task image being debugged 
were generated at the same time. Otherwise, symbols that are found 
may not correspond to the actual task. 

The task identification item type exists to make the correlation 
between the .STB file and its related task possible. The contents of 
this item type correspond exactly to the first ten words of an area in 
a task image file, which is in the TKB created PSECT called $$DBTS. 

The format of the task identification item type is shown in Figure 
A-33. 

15 8 7 0 

LENGTH= 22. I ITEM TYPE= 2 

EIGHT-WORD TIME STAMP 1 

TWO-WORD NUMBER 2 

1. Its form is that which is returned by RSX-11 M/M-PLUS directive 
GTIM$. 

2. TKB generates this number as an additional check on correspond­
ence. Currently always zero. 

ZK-1061-82 

Figure A-33 Format of TKB Generated Task Identification Item (2) 

A.5.2.3 Autoloadable Library Entry Point Item Type (3) - TKB outputs 
the autoloadable library entry point item into a .STB file when 
building overlaid resident libraries. The ISD record contains, the 
needed information for TKB to dynamically generate autoload vectors 
for entry points in the library. Autoload vectors appear only for 
those entry points that are referenced by the task. Unlike the other 
item types, the autoloadable library entry point item is not for use 
by debuggers. 

A-26 



TASK BUILDER INPUT DATA FORMATS 

The format of the autoloadable entry point item is shown in Figure 
A-34 .. 

15 8 7 0 

LENGTH= 12. l ITEM TYPE= 3 

SYMBOL 

NAME 

0 I FLAGS BYTE 

ENTRY POINT OFFSET FROM LIBRARY BASE 

SEGMENT DESCRIPTOR OFFSET IN $$SGD1 I 
ZK-1062-82 

Figure A-34 Format of an Autoloadable Library Entry Point Item (3) 

A.5.3 Relocatable/Relocated Records (Type 2) 

These records are the central part of TKB's involvement in debugger 
communication. Every item type in these records must be standardized, 
and only standard items can appear. The general format of 
relocatable/relocated records is the same as that shown in Figure 
A-30. 

A language processor outputs these record types as type 2. When TKB 
processes them, it changes the type to type 3. It also fills in or 
modifies some fields. In the descriptions of following item types, 
fields that are filled in by TKB are marked with an asterisk (*). 
They should be left as zero in language processor output. 

A.5.3.1 Module Name Item Type (1) - A module name item should be the 
first ISD entry of each object module. A debugger can assume that all 
following ISD information up to the next module name item relates to 
this module. 

The language code is included so that a debugger for a specific 
language can determine whether to ignore a module if it is written for 
another language. The language code has the same range of values as 
that of a language-dependent ISD record (128-255) and has the same 
meaning. 

The format of the module name item type is shown in Figure A-35. 

A-27 



TASK BUILDER INPUT DATA FORMATS 

15 8 7 0 

LENGTH ITEM TYPE= 1 

MUST BE 0 LANGUAGE CODE 

MODULE NAME 1 

1. A counted ASCII string of the required length. A counted ASCII 
string is a byte string in which the first byte indicates the number of 
bytes to follow. 

ZK-1063-82 

Figure A-35 Format of a Module Name Item Type (1) 

A.5.3.2 Global Symbol Item Type (2) - One type 2 item must appear for 
each global symbol definition that the language processor wants the 
debugger to understand. It need not, however, include definitions 
generated for the language processor run-time system. 

The format of the global symbol item type is shown in Figure A-36. 

15 8 7 0 

LENGTH l ITEM TYPE= 2 

SYMBOL NAME -~ 
(RADIX-50) 

VALUE* 

DESCRIPTOR ADDRESS FOR CONTAINING 
OVERLAY SEGMENT* 

MUST BE ZERO l FLAGS 

FULL SYMBOL NAME1 

1. Counted ASCII string of the required length. A counted ASCII 
string is a byte string in which the first byte indicates the number of 
bytes to follow. 

ZK-1053-82 

Figure A-36 Format of a Global Symbol Item Type (2) 

A-28 



TASK BUILDER INPUT DATA FORMATS 

A.5.3.3 PSECT Item Type (3) - A concatenated PSECT has two base 
addresses: one for the whole PSECT, and another for the part of it 
that belongs to this module. It is the base address for the part that 
belongs to this module that may be used by a debugger to convert local 
symbol values to absolute addresses. 

The segment descriptor address is necessary because PSECTs may move to 
segments other than the one in which it was placed. This address is 
relevant to languages that provide semi-automatic overlay generation, 
like COBOL-11. This word may be zero if the PSECT has not moved to 
another segment. 

The flag word is a copy of the flag word built by TKB. It allows for 
identification of VSECTs. 

The full PSECT name may be needed for some languages. 

The format of a PSECT item type is shown in Figure A-37e 

15 8 7 0 

LENGTH I ITEM TYPE= 3 

1--- PSECT NAME -

BASE ADDRESS OF PSECT IN THIS SEGMENT* 

BASE ADDRESS OF PSECT FOR THIS MODULE* 

LENGTH OF PSECT FOR THIS MODULE* 

DESCRIPTOR ADDRESS FOR CONTAINING 
SEGMENT* 

FLAG WORD* 

FULL PSECT NAME 1 

1. A counted ASCII string of the required length. A counted ASCII 
string is a byte string in which the first byte indicates the number of 
bytes to follow. 

ZK-1054-82 

Figure A-37 Format of a PSECT Item Type (3) 

A.5.3.4 Line-Number or PC Correlation Item Type (4) - This item 
provides the information needed to translate a source line number into 
a task image address, or a task image address into a source line 
number. 

The format of a line-number or PC correlation item type is shown in 
Figure A-38. 

A-29 



TASK BUILDER INPUT DATA FORMATS 

15 8 7 0 

LENGTH l ITEM TYPE= 4 

PSECT 
t-- -

NAME 

START PC 1 

DESCRIPTOR ADDRESS OF CONTAINING OVERLAY SEGMENT* 

START PAGE NUMBER 

START LINE NUMBER 

STRING OF ONE-BYTE ITEMS 

1. Offset into PSECT in type 2 records; absolute address in type 3 records. 

ZK-1055-82 

Figure A-38 Format of a Line-Number or PC Correlation Item Type (4) 

A.5.3.5 Internal Symbol Name Item Type (5) - The internal symbol name 
item allows for the fact that a name may have more than one associated 
address. For example, a COBOL variable may have three associated 
addresses: the address of the area that contains the data, the 
address of a CIS descriptor, and the address of a picture string. 

The internal symbol name item is shown in Figure A-39. 

A.5.4 Literal Records {Type 4) 

Literal records may take any form, but the two-byte header shown in 
Figure A-40 must be present. 

A.6 END OF MODULE RECORD 

The end-of-module record declares the end of an object module. There 
must be exactly one end-of-module record in every object module. As 
shown in Figure A-41, this record is one word long. 

A-30 



ADDRESS 1: 

ADDRESS 2: 

ADDRESS n: 

TASK BUILDER INPUT DATA FORMATS 

15 8 7 0 

LENGTH ITEM TYPE= 5 

OFFSET TO NAME OFFSET TO DATA 

MUST BE ZERO NUMBER OF ADDRESSES 

PSECT 
~ -

NAME 

TASK IMAGE ADDRESS/OFFSET 1 

SEGMENT DESCRIPTOR ADDRESS* 

PSECT 
~ -

NAME 

TASK IMAGE ADDRESS/OFFSET (1) 

SEGMENT DESCRIPTOR ADDRESS* 

• • 
• • 
• • 
• • 

LANGUAGE-DEPENDENT DATA 

SYMBOL NAME 2 

1. Modified by TKB 

2. A counted ASCII string of the required length. A counted ASCII 
string is a byte string in which the first byte indicates the number of 
bytes to follow. 

ZK-1056-82 

Figure A-39 Format of an Internal Symbol Name Item Type (5) 

15 8 7 0 

RESERVED (0) I ISD RECORD TYPE 41 

ZK-1057-82 

Figure A-40 Format of a Literal Record Type 

A-31 



TASK BUILDER INPUT DATA FORMATS 

0 RECORD 
TYPE 6 

ZK-473-81 

Figure A-41 End-of-Module Record Format 

A-32 



APPENDIX B 

DETAILED TASK IMAGE FILE STRUCTURE 

Figures B-1 through B-4 illustrate how the Task Builder (TKB) records 
a task image on disk. As noted in the following sections, parts of 
the task disk image shown in these figures are optional and may not be 
recorded for every task image. 

The following sections, which provide detailed information on the task 
image file structure, are organized as follows: 

B.l Label Block Group 
B.2 Checkpoint Area 
B.3 Header 
B.3.1 Low-memory Context 
B.3.2 Logical Unit Table Entry 
B.4 Task Image 
B.4.1 Autoload Vectors for Conventional Tasks 

~"~,f~:,~::2,?~_;'~lt~~lp'.;<:1:d:~Y~Rt~,,i;'.§;~j'¥9;. ,;r,J~,·~~~~',.~i·~~~i.~~tj~~:i;; 
B.4.3 Task-Resident Segment Descriptor 
B.4.4 Window Descriptor 
B.4.5 Region Descriptor 
B.4.6 Supervisor-Mode Vector 

B.l LABEL BLOCK GROUP 

The label block group precedes the task on the disk and contains data 
that is needed by the system to install and load a task but need not 
reside in memory during task execution. This group consists of three 
parts: 

• Task and resident library data (label block 0) 

• Table of LUN assignments (label blocks 1 and 2) 

• The segment load list (label block 3) 

Table B-1 describes the task and resident library data. Figure B-5 
illustrates how TKB organizes this data in label block O. The INSTALL 
processor verifies the task and resident library data when entering 
the tasks into the System Task Directory (STD) file. You can obtain 
the offsets shown in Figure B-5 by calling the LBLDF$ macro that 
resides in macro library LB:[l,l] EXEMC.MLB. 

B-1 



DETAILED TASK IMAGE FILE STRUCTURE 

RELATIVE DISK BLOCK 0 
LABEL BLOCK 0 - TASK AND 

RESIDENT LIBRARY DATA 

LABEL BLOCK 1 - TABLE OF 
LUN ASSIGNMENTS LABEL BLOCK GROUP 

RELATIVE DISK BLOCK 2 LABEL BLOCK 2 - TABLE OF 
LUN ASSIGNMENTS (OPTIONAL) 

CHECKPOINT AREA • (OPTIONAL) 
• 
• TASK HEADER-

FIXED PART 
HEADER 

TASK HEADER-
VARIABLE PART 

ROOT SEGMENT 
TASK CODE AND DATA TASK IMAGE 

ZK-1064-82 

Figure B-1 Image on Disk of Non-Overlaid Conventional Task 

RELATIVE DISK BLOCK 0 LABEL BLOCK 0 - TASK AND 
RESIDENT LIBRARY DATA 

RELATIVE DISK BLOCK 1 LABEL BLOCK 1 - TABLE OF 
LUN ASSIGNMENTS LABEL BLOCK GROUP 

RELATIVE DISK BLOCK 2 LABEL BLOCK 2 - TABLE OF 
LUN ASSIGNMENTS (OPTIONAL) 

• 
CHECKPOINT AREA 

• (OPTIONAL) 

• 
TASK HEADER-

FIXED PART 
HEADER 

TASK HEADER-
VARIABLE PART 

ROOT SEGMENT 

~------------------------
I OVERLAY RUN-TiME 

I SYSTEM ROUTINES IN 
ROOT FOR LIBRARY 

OVERLAY DATA BASE 

AUTOLOAD VECTORS 
~ ---REGION DESCRIPTORS r- -.... ..... 

[ 
lt 

SEGMEN I Dc::SCR1PTORS 

-JJ WINDOW DESCRIPTORS 

TASK IMAGE 

ZK-1065-82 

Figure B-2 Image on Disk of Conventional Non-Overlaid Task 
Linked to Overlaid Library 

B-2 



DETAILED TASK IMAGE FILE STRUCTURE 

RELATIVE DISK BLOCK 0 --

RELATIVE DISK BLOCK 1 --

RELATIVE DISK BLOCK 2 --

RELATIVE DISK BLOCK 3 --
• • • 

OVERLAY DAT A BASE 

LABEL BLOCK 0 - TASK AND 
RESIDENT LIBRARY DATA 

LABEL BLOCK 1 - TABLE OF 
LUN ASSIGNMENTS 

LABEL BLOCK GROUP 
LABEL BLOCK 2 - TABLE OF 

LUN ASSIGNMENTS (OPTIONAL) 

LABEL BLOCK 3 - SEGMENT 
LOAD LIST (OPTIONAL) 

CHECKPOINT AREA 
(OPTIONAL) 

TASK HEADER-
FIXED PART 

TASK HEADER-
VARIABLE PART 

1 HEADER 

J 
ROOT SEGMENT r----------------OVERLAY RUN-TIME 

SYSTEM ROUTINES IN ROOT 

AUTOLOAD VECTORS 
1--- ----1 

REGION DESCRIPTORS 
1--- --t 

SEGMENT DESCRIPTORS 
1--- ----t 

WINDOW DESCRIPTORS 

OVERLAY SEGMENT 1 TASK IMAGE 
1--- ---i 

AUTOLOAD VECTORS 

OVERLAY SEGMENT 2 ,___ 
---1 

AUTOLOAD VECTORS 

OVERLAY SEGMENT N 
-

AUTOLOAD VECTORS 

ZK-1066-82 

Figure B-3 Image on Disk of Conventional Overlaid Task 

B-3 



RELATIVE DISK BLOCK 0 

RELATIVE DISK BLOCK 1 

RELATIVE DISK BLOCK 2 

RELATIVE DISK BLOCK 3 

• 
• 

TASK IMAGE 

l 

Parameter 

DETAILED TASK IMAGE FILE STRUCTURE 

LABEL BLOCK 0 - TASK AND RESIDENT LIBRARY DATA 

LABEL BLOCK 1 - TABLE OF LUN ASSIGNMENTS 

LABEL BLOCK 2 -
TABLE OF LUN ASSIGNMENTS (OPTIONAL) 

LABEL BLOCK 3 - SEGMENT LOAD LIST (OPTIONAL) 

~~ CHECKPOINT AREA (OPTIONAL) ~ 

TASK HEADER (UNUSED COPY) FIXED PART ----------------TASK HEADER (UNUSED COPY) VARIABLE PART 

TASK ROOT - INSTRUCTION SPACE 

AUTOLOAD VECTORS - I-SPACE PART 

TASK HEADER (USER'S COPY) FIXED PART 

----------------TASK HEADER (USER'S COPY) VARIABLE PART 

TASK STACK AREA 

TASK ROOT - DATA SPACE 

AUTOLOAD VECTORS - D-SPACE PART -------------- --
REGION DESCRIPTORS ----------------SEGMENT DESCRIPTORS -------------- --
WINDOW DESCRIPTORS 

OVERLAY SEGMENT 1 - I-SPACE ..,__ -
AUTOLOAD VECTORS - I-SPACE PART ----------------

~ 

~ 

--
..,__ 

• • • 

OVERLAY SEGMENT 1 - D-SPACE 

AUTOLOAD VECTORS - D-SPACE PART 

OVERLAY SEGMENT 2 - I-SPACE 

AUTOLOAD VECTORS - I-SPACE PART ------------OVERLAY SEGMENT 2 - D-SPACE 

AUTOLOAD VECTORS - D-SPACE PART 

OVERLAY SEGMENT N - I-SPACE 

AUTOLOAD VECTORS - I-SPACE PART 

OVERLAY SEGMENT N - D-SPACE 

AUTOLOAD VECTORS - D-SPACE PART 

Table B-1 

-
-
--
-

• • • 

Task and Resident Library Data 

Definition 

LABEL BLOCK GROUP 

TASK ROOT 
I-SPACE PART 

TASK ROOT 
D-SPACE PART 

ZK- 1 067-82 

L$BTSK Task name consisting of two words in Radix-SO format. 
This parameter is set by the TASK keyword. 

L$BPAR Partition name consisting of two words in Radix-50 
format. This parameter is set by the PAR keyword. 

(continued on next page) 

B-4 



DETAILED TASK IMAGE FILE STRUCTURE 

Table B-1 (Cont.) 
Task and Resident Library Data 

Parameter Definition 

L$BSA Starting address of task. Marks the lowest task virtual 
address. This parameter is set by the PAR keyword. 

L$BHGV Highest virtual address mapped by address window O. 

L$BMXV 

L$BLDZ 

L$BMXZ 

L$BOFF 

L$BWND 

L$BSYS 

L$BWND 

L$BSEG 

L$BFLG 

Highest task virtual address. When the task 
have memory-resident overlays, the value 
L$BHGV. 

does not 
is set to 

Task load size in units of 64-byte blocks. 
represents the size of the root segment. 

This value 

Task maximum size in units of 64-byte blockse This 
value represents the size of the root segment plus any 
additional physical memory needed to contain task 
overlays. 

Task offset into partition in units of 64-byte blocks. 
This value represents the size of the mapped array area, 
which precedes the task's code and data in the 
partition. 

Number of task window blocks less library window blocks 
-- Low byte 

System ID High byte 

Number of task windows (excluding resident libraries) • 

Size of overlay segment descriptors (in bytes). 

Task flags word. The following flags are defined: 

Bit Flag 

15 TS$PIC 

14 TS$NHD 

13 TS$ACP 

12 TS$PMD 

11 TS$SLV 

10 TS$NSD 

9 

8 TS$PRV 

7 TS$CMP 

6 TS$CHK 

5 TS$RES 

Meaning When Bit = 1 

Task contains position-independent code 
(PIC) • 

Task has no header. 

Task is ancillary control processor. 

Task generates Postmortem Dump. 

Task can be slaved. 

No SEND can be directed to task. 

(Not used) 

Task is privileged. 

Task is built in compatibility mode. 

Task is not checkpointable. 

Task has memory-resident overlays. 

(continued on next page) 

B-5 



Parameter 

L$BFLG 
(Conte) 

L$BDAT 

L$BLIB 

L$BPRI 

L$BXFR 

L$BEXT 

L$BSGL 

L$BHRB 

L$BBLK 

L$BLUN 

L$BROB 

L$BROL 

L$BRDL 

L$BHDB 

L$BDHV 

L$BDMV 

L$BDLZ 

L$BDMZ 

Bit 

4 

1 

DETAILED TASK IMAGE FILE STRUCTURE 

Table B-1 (Cont.) 
Task and 

Flag 

TS$IOP 

TS$NXH 

Resident Library Data 

Definition 

Meaning When Bit = 1 

Privileged task does not map I/O 

Task was built with pool resident 
header (non external) 

page 

Three words containing the task creation date as 2-digit 
integer values as follows: 

• Year since 1900 

• Month of year 

• Day of month 

Resident library entries. 

Task priority set by the PRI keyword. 

Task transfer address. Used to initiate a bootable core 
image, for example, the resident executive. 

Task extension size in units of 32-word blocks. 
parameter is set by the EXTTSK keyword. 

This 

Relative block number of segment load list. Set to 0 if 
no list is allocated. 

Relative block number of header. 

Number of blocks in label block group. 

Number of logical units. 

Relative block number of R/0 image. 

R/O load size in 32-word blocks. 

Size of R/O data in 32-word blocks. 

Relative block number of data header. 

High vitrual address of data window 1. 

High virtual address of data. 

Load size of data 

Maximum size of data 

B-6 



Label 

L$BTSK 

L$BPAR 

L$BSA 

L$BHGV 

L$BMXV 

L$BLDZ 

L$BMXZ 

L$BOFF 

L$BWN D/L$BSYS 

L$BSEG 

L$BFLG 

L$BDAT 

L$BLIB 

L$BPRI 

L$BXFR 

L$BEXT 

L$BSGL 

L$BHRB 

L$BBLK 

L$BLUN 

L$BROB 

L$BROL 

L$BRDL 

L$BHDB 

L$BDHV 

L$BDMV 

L$BDLZ 

L$BDMZ 

Figure B-5 

DETAILED TASK IMAGE FILE STRUCTURE 

Offset 

0 

2 

4 

6 

10 

12 

14 

16 

20 

22 

24 

26 

30 

32 

34 

36 

40 

42 

44 [ 
46 ! 
50 [ 
52 I 
54 l 
56 I 

60 [ 
62 [ 
64 

66 I 
I 

70 [ 
72 I 

344 

346 

350 

352 

354 

356 

360 

362 

364 

366 

370 

372 

374 

376 

400 

402 

Task 

Name 

Task 

Partition 

Base address of task 

Highest window 0 virtual address 

Highest virtual address in task 

Load size in 64-byte blocks 

Maximum size in 64-byte blocks 

Task offset into partition 

System I .D. J_ Number of window blocks" 

Size of overlay segment descriptors 

Task flag word 

Task creation date - Year 

- Month 

-Day 

Library/common 

Name 

Base address of library 

Highest address in first library window 

Highest address in library 

Library load size (64-byte blocks) 

Library maximum size (64-byte blocks) 

Library offset into region 

Number of library window blocks 

Size of library segment descriptors 

Library flag word 

Library creation date - Year 

- Month 

- Day 

0 

Task priority 

Task transfer address 

Task extension (64-byte blocks) 

Block number of segment load list 

Block number of header 

Number of blocks in label 

Number of logical units 

Relative block of R-0 image 

R/O load size 

RIO data size in 32-word blocks 

Relative block number of data header 

High virtual address of data window 1 

High virtual address of data 

Load size of data 

Maximum size of data 

0 

R$LNAM 

R$LSA 

R$LHGV 

R$LMXV 

R$LLDZ 

R$LMXZ 

R$LOFF 

R$LWND 

R$LSEG 

R$LFLG 

R$LDAT 

Library 
Request 

'(maximum 
of 7 · 
.14-word 
~ntri~ .in. , 

' RSX.'1 lM SVstems 
and 
·maX:irnum" 
off5',· ·''t 

•. 14:worci'< 
entries in:· 
'R~~~,t'l~~·~~~p~),,' 

"Less library window blocks. 

ZK-475·81 

Label Block O -- Task and Resident Library Data 

Table B-2 describes the contents of the resident shared 
block. TKB constructs this block by referring to the 
the resident shared region. The format is identical 
through 16 of the label group block. 

region name 
disk image of 

to words 3 

B-7 



Parameter 

R$LNAM 

R$LSA 

R$LHGV 

R$LMXV 

R$LLDZ 

R$LMXZ 

R$LOFF 

R$LWND 

R$LSEG 

R$LFLG 

R$LDAT 

DETAILED TASK IMAGE FILE STRUCTURE 

Table B-2 
Resident Library/Common Name Block Data 

Definition 

Shared region name consisting of 2 words in Radix-50 
format. 

Base virtual address of library or common. 

Highest address mapped by first library window. 

Highest virtual address in library or common. 

Shared region load size in 64-byte blocks. 

Library maximum size in 64-byte blocks. This value 
represents the size of the root segment plus the sum of 
all memory-resident overlays. 

Size of mapped 
library. This 
of the task. 

array space allocated by resident 
value is added to the mapped array area 

Number of window blocks required by library. 

Size of library overlay segment descriptors in bytes. 

Library flags word. The following flags are defined: 

Bit Meaning 

15 LD$ACC -- Access intent (l=read/write, 
O=read-only) 

14 APR was reserved 

13 

LD$RSV 

LD$CLS Library is part of a cluster 

2 LD$REL -- Position-independent code (PIC) flag 
(l=PIC) 

1 LD$TYP -- Shared region type (1 
0 = library) 

common, 

Three words containing the shared region creation date 
in 2-digit integer values as follows: 

• Year since 1900 

• Month of year 

• Day of month 

The table of LUN assignments, illustrated in Figure B-6, contains the 
name and logical unit number of each device assigned. Label block 2 
(the second block of LUN assignments) is allocated only if the number 
of LUNs exceeds 128. 

B-8 



DETAILED TASK IMAGE FILE STRUCTURE 

TKB creates the segment load list if the image contains only 
memory-resident overlays. The segment load list is used only in 
RSX-llS systems for loading tasks that have resident overlays. Figure 
B-7 illustrates the segment load list. Each entry in the list gives 
the length, in bytes, of a memory-resident overlay segment. 

Label 
Block 
1 

Label 
Block 
2 

Device name 

Unit number 

• • • 
Device name 

Unit number 

Device name 

Unit number 

• • • 
Device name 

Unit number 

LUN 1 

LUN 128 

LUN 129 

LUN 255 

ZK-476-81 

Figure B-6 Label Blocks 1 and 2 -- Table of LUN Assignments 

Length of root segment 

Length of first overlay segment 

Length of second overlay segment 

• • • 
0 

ZK-477-81 

Figure B-7 Label Block 3 -- Segment Load List 

B.2 CHECKPOINT AREA 

The checkpoint area is created by the /AL switch (refer to Chapter 
10). The checkpoint area is as large as the task image plus any areas 
created by the EXTTSK, PAR, or VSECT options. The checkpoint area 
does not include space for the external header if the /XH switch was 
specified. 

B-9 



DETAILED TASK IMAGE FILE STRUCTURE 

B.3- HEADER 

As shown in Figures B-1 through B-4, the task header starts on a block 
boundary and is immediately followed by the task image. The header is 
read into memory with the task image. 

The header is divided into two parts: a fixed part as shown in Figure 
B-8; and a variable part as shown in Figure B-9. The offsets for the 
fixed part are defined by macro HDRDF$ residing in LB:[l,l]EXEMC.MLB. 

The variable part of the header contains window blocks that describe 
the following: 

• The task's virtual-to-physical mapping 

• Logical unit data 

• Task context 

Although the header is fully accessible to the task, you should 
consider only the information in the low-memory context (H.DSW through 
H.VEXT) in the fixed part of the header to be accurate. In a mapped 
system, the Executive copies the header of an active task to protected 
memory. Subsequent Executive updates to the header are made to this 
copy, not to the header copy within the running task. 

The following sections provide more detail on the low-memory context 
and on Logical Unit Table entries (the Logical Unit Table is part of 
the variable part of the header; see Figure B-9). 

NOTE 

To save the identification, you should 
move the initial value set by the Task 
Builder to local storage. When the 
program is fixed in memory and being 
restarted without being reloaded, you 
must test the reserved program words for 
their initial values to determine 
whether the contents of R3 and R4 should 
be saved. 

The contents of RO, Rl, and R2 are only 
set when a debugging aid is included in 
the task image. 

B.3.1 Low-Memory Context 

The low-memory context for a task consists of the Directive Status 
Word and the impure area vectors. TKB recognizes the following global 
names: 

Name Meaning 

.FSRPT File Control Services work area and buffer pool vector 

$0TSV FORTRAN OTS work area vector 

N.OVPT Overlay run-time system work area vector 

$VEXT Vector extension area pointer 

B-10 



Label Offset 

H.CSP 0 

H.HDLN 2 

H.EFLM 4 

6 

H.CUiC 10 

H.DUIC 12 

H.IPS 14 

H.IPC 16 

H.ISP 20 

H.ODVA 22 

H.ODVL 24 

H.TKVA 26 

H.TKVL 30 

H.PFVA 32 

H.FPVA 34 

H.RCVA 36 

H.EFSV 40 

H.FPSA 42 

H.WND 44 

H.DSW 46 

H.FCS 50 

H.FORT 52 

H.OVLY 54 

H.VEXT 56 

H.SPRl/H.NML 60 

H.RRVA 62 

64 

66 

70 

H.GARD 72 

H.NLUN 74 

DETAILED TASK IMAGE FILE STRUCTURE 

Current Stack Pointer ( R6) 

Header length 

Event flag mask 

Event flag address 

Current UiC 

Default UIC 

Initial PS 

Initial PC (R7) 

Initial Stack Pointer (R6) 

ODT SST vector address 

ODT SST vector length 

Task SST vector address 

Task SST vector length 

Power fail AST control block 

Floating-point AST control block 

Receive AST control block 

Address of event flag context 

Address of floating-point context 

Pointer to number of window blocks 

Directive Status Word 

Address of FCS impure storage 

Address of FORTRAN impure storage 

Address of overlay impure storage 

Address of impure vectors 

Mailbox LUN l Swapping priority 

Receive by reference AST control block 

Reserved I H.X25 

Reserved 

Reserved 

Header guard word pointer 

Number of LUNs 

··}};Ji~£Jrii£~}, 
: super~isor· roG>Cle,;floa·J~·i;iiliJ/ · i · . 
. /c:);·~p~ce·:.mai>'P>.:li{~asks;' : .. ·· 
. ;:·,w;./. :: -;·· ·:·: ;·,.\·:is .. ·-,.;;~/ ... ;,,*'" __ /;.._~:xt ... ,:~~~-'";;~ ... =; ____ ......,,. 

Low-Core 
Context 

ZK-478-81 

Figure B-8 Task Header, Fixed Part 

The only proper reference to these pointers is by symbolic name. The 
pointers are read-only. If you write into them, the result will be 
lost on the next context switch. 

The impure area pointers contain the addresses of the storage used by 
the reentrant library routines listed above. 

B-11 



DETAILED TASK IMAGE FILE STRUCTURE 

The address contained in the vector extension pointer locates an area 
of memory that can contain additional impure area pointers. 

H.LUN I LUN Table (2 words per LUN) 

• • • 
Number of window blocks 

Partition control block address 

Low virtual address limit 

High virtual address limit 

Address of attachment descriptor 

Window size (in 32-word blocks) 

Offset into partition (in 32-word blocks) 

Number of PD Rs to Map 

Contents of last PDR 

Current PS 

Current PC 

Current R5 

Current R4 

Current R3 

Current R2 

Current R 1 

Current RO 

Header guard word 

• • • 

1 First PDR Address 

Initial Values 

Relative block number of header 

ldent. word #2 

ldent. word #1 

Task name word #2 

Task name word #1 

Program transfer address 

Offsets 

W.BPCB 

W.BLVR 

W.BHVR 

W.BATT 

W.BSIZ 

W.BOFF 

W.BNPD/W.BFPD 

W.BLPD 

ZK-479-81 

Figure B-9 Task Header, Variable Part 

Figure B-10 illustrates the format of the vector extension area. Each 
location within this area contains the address of an impure storage 
area that can be referred to by subroutines within a resident library; 
these subroutines must be reentrant. The address of this area 
(location $VEXTA) is contained at absolute address $VEXT in the task 
header. Addresses below $VEXTA, referred to by negative offsets, are 
reserved for DIGITAL applications. Addresses above $VEXTA, referred 
to by positive offsets, are allocated for user applications. 

B-12 



DETAILED TASK IMAGE FILE STRUCTURE 

$VEXT 

• 
• 
• 

.PSECT $$VEXO l Reserved for 
DIGITAL use 

~ \ 

$VEXTA .PSECT $$VEX1 l Reserved for 
user applications 

t 
ZK-480-81 

Figure B-10 Vector Extension Area Format 

The program sections $$VEXO and $$VEX1 have the attributes D, GBL, RW, 
REL, and OVR. 

The program section attribute OVR facilitates defining the offset to 
the vector and initializing the vector location at link time. For 
example: 

.GLOBL $VEXTA MAKE SURE VECTOR AREA IS LINKED 

.PSECT $$VEX1,D,GBL,REL,OVR 

$$$=. POINT TO BASE OF POINTER TABLE 

.BLKW 

LABEL: .WORD 
OFFSET==LABEL-BEG 

.PSECT 

IMPURE: 

N 

IMPURE 

OFFSET TO CORRECT LOCATION 
IN VECTOR AREA 

SET IMPURE AREA ADDRESS 
DEFINE OFFSET 

You should centralize all offset definitions within a single module 
from which the actual vector space allocation is made. Also, you 
should write the source code with conditional statements to create two 
object modules: one that reserves the vector storage; and one that 
defines the global offsets that will be referred to by your resident 
library's subroutines. 

Note that the sequence of instructions above intentionally redefines 
the global symbol. The Task Builder reports an error if this value 
differs from the centralized definition. 

B-13 



DETAILED TASK IMAGE FILE STRUCTURE 

You can locate your vector through a sequence of instructions similar 
to the following: 

MOV @#VEXT,RO 
MOV OFFSET(RO) ,RO 
• END 

GET ADDRESS OF VECTOR EXTENSIONS 
POINT TO IMPURE AREA 

B.3.2 Logical Unit Table Entry 

Figure B-11 illustrates the format of each entry in the Logical Unit 
Table. 

UCB address 

Window block pointer 

ZK-481-81 

Figure B-11 Logical Unit Table Entry 

The first word contains the address of the device unit control block 
in the Executive system tables. That block contains device-dependent 
information. 

The second word is a pointer to the window block if the device is file 
structured. 

The UCB address is set during task installation if a corresponding ASG 
parameter is specified at task-build time. You can also set this word 
at run time with the Assign LUN Directive to the Executive. 

The window block pointer is set when a file is opened on the device 
whose UCB address is specified by word 1. The window block pointer is 
cleared when the file is closed. 

B.4 TASK IMAGE 

The system reads the task image into memory beginning with the task 
header (see Figures B-1 through B-4). The root segment of a 
conventional task image is a set of contiguous disk blocks; it is 
1:l'lE:!.ref ()re. loaded wi tl'l a. single disk access. .. . However I 'an. I- and 

· ;o-~.pace las){: 'r9ot conta·i ns. 2 seti;. oE coptiguoq.s plo~ks •. · . Therefore, an 
~'."." .. and . Q-space task .requ.i res two disk ac~esses, one.· .f.or .th,.~ D-spaq:~ 

,par·t. and one for th~. I-space part. .· .The p...,space part is loaded .. first .• 
~9.~.~t:i.on~'.}; l.Y:r. £:?~.elf.· seg!llE?I'lt 9f· an . 9.ver.l a i.d . I- .apd · D-..sp~c~ ;: t.a~·:tt 'reqt;lit'es 
~~o;,·~~$k .. ,qc<:esses .. 'if i~ contains both I..;. .and·· p~space. · · 

Each overlay segment of the task image begins on a block boundary (see 
Figure B-3). Note that a given overlay segment occupies as many 
contiguous disk blocks as it needs to supply its space request. The 
maximum size for any segment, including the root, is 32K minus 32 
words. 

B-14 



DETAILED TASK IMAGE FILE STRUCTURE 

NOTE 

One exception to the block boundary 
alignment of segments occurs when shared 
regions contain resident overlays. When 
this occurs, the image is compressed 
and, instead of being aligned on block 
boundaries, segments are aligned on 
32-word boundaries. This facilitates 
the loading of regions. 

Figures B-12 and B-13 illustrate the structure 
components of the task-resident overlay data base. 

AUTO LOAD 
VECTOR 

AUTOLOAD 
VECTOR 

SEGMENT 
DESCRIPTOR 

SEGMENT 
DESCRIPTOR 

-----, 

WINDOW 
DESCRIPTOR 

I 

® 

and principal 

r-------, 

AUTOLOAD SEGMENT ~ WINDOW 
VECTOR 

r--
DESCRIPTOR DESCRIPTOR I 

I 
_l _J_ 

T-

I I 

REGION 
DESCRIPTOR 

I 
I 
I 

L ______ _JL ______ .J 

@ Window descriptors are necessary for the 
windows that the Overlay Run-Time 
System uses to map memory resident 
overlays. The Overlay Run-Time System 
also needs window descriptors to map 
disk-resident overlays that are up-tree 
from memory-resident overlay segments. 

@ The Overlay Run-Time System uses 
region descriptors to map overlaid 
libraries. 

Figure B-12 Task-Resident Overlay Data Base 
for a Conventional Overlaid Task 

B-15 

ZK-1068-82 



AUTOLOAD 
VECTOR 

D-SPACE PART 

AUTOLOAD 
VECTOR 

D-SPACE PART 

AUTOLOAD 
VECTOR 

~-----
D-SPACE PART 

DETAILED TASK IMAGE FILE STRUCTURE 

l.--1 

SEGMENT 
DESCRIPTOR 

EXTENSION 

SEGMENT 
DESCRIPTOR 

EXTENSION 

SEGMENT 
DESCRIPTOR 

0 
r 

I 
_l ........._ 

I 

WINDOW 
DESCRIPTOR 
FOR I-SPACE 

WINDOW 
DESCRIPTOR 
FORD-SPACE 

WINDOW 
DESCRIPTOR 
FOR I-SPACE 

WINDOW 
DESCRIPTOR 
FORD-SPACE 

WINDOW 
DESCRIPTOR 

- -, 

@ 
r -
I 

j_ --'---
I 

I I 

- - - -

REGION 
DESCRIPTOR 

- -, 
I 
I 
I 

L ______ _JL ______ J 

0 Window descriptors are necessary for the 
windows that the Overlay Run-Time 
System uses to map memory resident 
overlays. The Overlay Run-Time System 
also needs window descriptors to map 
disk-resident overlays that are up-tree 
from memory-resident overlay segments. 

® The Overlay Run-Time System uses 
region descriptors to map overlaid 
libraries. 

ZK-1069-82 

Autoload vectors are generated whenever a reference is made to an 
autoloadable entry point in a segment located farther away from the 
root than the segment making the reference. 

One segment descriptor is generated for each overlay segment in the 
task or shared region. The segment descriptor contains information on 
the size, virtual address, and location of the segment within the task 
image file. In addition, it contains a set of link words that point 
to other segments. The overlay structure determines the link word 
contents. 

B-16 



DETAILED TASK IMAGE FILE STRUCTURE 

:'~,~l:i~e·tj,~:::&~~c.~'~·:PE1i~·:s:.· .. ,t¢t·· J: ... )~11~.:,'·'J)~spa'.cre:· .t?s,~s'.:·pilve: .·:a11· :ex~~:riston,:··,,f~t/:tp·~.:: 
<P7$P'<i'c~>:: .• pa·rt' .... ,tpat:·'/.~orrta.i;is .· "/the ..... ,'.·dist .. ··· bl'ock·. a.a.d.t.ess.·t · :vi<i:·tuar:: .. '.loaa. 

::. ~~~i:.~:~:H~.:.,;·~.s,~·~~en7: ·~e.9';Jt:J: in .J:>~t::$.s·.1.: .and }'!~~~()Yf ·poi.:~t;.e~~:· .. , · · · ·· ·· : 

The window descriptor contains information required to issue the 
mapping directives. TKB allocates one window descriptor for each 
memory-resident overlay in the structure. 

The region descriptor contains information required to attach a 
resident library or common block. There is one region descriptor for 
each shared region containing memory-resident overlays. 

The following sections describe each data base component in greater 
detail. 

B.4.1 Autoload Vectors for Conventional Tasks 

The autoload vector table consists of one entry (put into the task 
image for each autoload entry point) in the form shown in Figure B-14. 

JSR PC,@.NAUTO 

PC RELATIVE OFFSET TO .NAUTO 

SEGMENT DESCRIPTOR ADDRESS 

ENTRY POINT ADDRESS 

ZK-1070-82 

Figure B-14 Autoload Vector Entry for Conventional Tasks 

The autoload vector executes an indirect JSR instruction to $AUTO 
through .NAUTO. Following the JSR instruction is a pointer to the 
descriptor for the segment to be loaded. Following the descriptor is 
the real address of the required entry point. 

~'f ;~~, ;~:.~~~~~:~~w~·:£~t/t7~t.~· ~~~eJt:t~13~_:i, ,'. :, .. ,_.,, :· .·."·}::~. •. ,\·::c,) 
.:'.'.)!~:·,:~\l:tQ'.1:191¥>;ve~tor: t~b:I'e.:consJ.s,ts···of .. ;·t;w:o .. entries .... ·(put··into ·: :the ..... tas:J< .• 
~ilr\lil~cl:()'if ;each ,;a"'ool~ ~t-ey pq.i~tJ in .·tile .. ·to= '5}Jowri 'in . t~a~~- s.,..i s,," 
~The, .~~~ Part. ,ct; t~ .. a~to l<>.~<l · v~t~r < QO!l t.&iPi> ... i . !iQV •· 4 pl>ti;!le;t;i~~ · 
.J:b~t:. " ... pia·ces ',th.e .. ·addr,ess'· ,<>f .t;he. u~s;pace part of: the"•.vect,or on':.the' 
··st~dl(, •.. The. yector 'then executes an' indir~ct JM,P to ·$AUTO '.t~rough:,. 
~aAUTO. '!;he , D-apace part ·of the vector contains the segment.' 

·descriptor address a:nd the entry point address of the required 
r9Utine; · 

B-17 



DETAILED TASK IMAGE FILE STRUCTURE 

MOV (PC)+, -(SP) 

ADDRESS OF PACKET (D-SPACE) 

JMP @.NAUTO 

PC RELATIVE OFFSET TO .NAUTO 

I-SPACE PORTION 

ADDRESS OF SEGMENT DESCRIPTOR 

ENTRY POINT ADDRESS 

D-SPACE PORTION 

ZK-1071-82 

B.4.3 Segment Descriptor 

The segment descriptor for a conventional task consists of a fixed 
part and two optional parts. The fixed part is six words long. If 
the manual-load feature is used ($LOAD), two words are added 
containing the segment name. When a memory-resident overlay structure 
is included, a ninth word is appended that points to the window 
descriptor. 

The segment descriptor for an I- and D-space task consists of a fixed 
part that is 9 words long and an optional part that is 4 words long. 
This optional part is always present: for task segments and not present 
.f.or library segments. 

Figure B-16 illustrates the contents of the segment descriptor. 

B-18 



DETAILED TASK IMAGE FILE STRUCTURE 

TASK-RESIDENT SEGMENT DESCRIPTOR OFFSETS 

15 12 11 0 

FLAGS l RELATIVE DISK BLOCK ADDRESS 

VIRTUAL LOAD ADDRESS OF SEGMENT I F 

LENGTH OF SEGMENT IN BYTES 

LINK UP 

LINK DOWN 

LINK NEXT 

~ SEGMENT NAME (2-WORD RADIX 50) -

WINDOW DESCRIPTOR ADDRESS 

FLAGS: 15-TASK RESIDENT FLAG (ALWAYS 1) 
14-SEGMENT HAS DISK ALLOCATION (1=NO) 
13-SEGMENT IS LOADED FROM DISK (1=YES) 
12-SEGMENT IS LOADED AND MAPPED (O=YES) 

: "f '·,.,;P~;s.c:~rvr:~.~1:::,Fo.~;:1i.·~Nl).·9L.$;P~~J; .. ~ ~·~~:'(1,~VFSi,' ,1 

h. ,,,,' ..:- ~ : ; ',. ' , ,' ~~ 

'1·>\S:J\~~6SJD~N1:::§EGfVl'.EN~ . D~S,GRIPT6R.:E~TEN9!0f':( : 
:' .. :· QFFSETS'FORl-.ANo·o..,SPACEJ:AS}(S ONLY ... ·· · 

1·' ·' .": .: l / ' ';: I ,l • ;' • <..tr l 

. ·b.igp'Ac~:·61sk·afOCK ;AeDRESs·" 
:' ;· .,, i ~ ; . .<~' ' ~~, > • t. ,/ ,, ' ~ ' , ~ . ; 

~ .,... ; 0 < ~ ,; ,; :<~ ¢- ,, ,; -~ ., ,;; 

1 }~2';E86!F···ot.J~v.1·~s:.p,.A:diE,sEGMEt4r,·' 
~, --:;' '<', ~l ,,'~ .> "'i;v .;::.·' ·~ 0,' .~ ;:, ».i ,, ,; ,~ ,/ ·, .i ;: < .,:-> >> x·>' ~; ;· "' .~ 1'~ 

Figure B-16 Segment Descriptor 

BYTE 

0 

2 

4 

6 

10 

12 

14 

20 

Word O contains the relative disk address in bits 0 through 11 and the 
segment status in bits 12 through 15. Each segment in the task image 
file begins on a disk block boundary. The relative disk address is 
the block number of the segment relative to the start of the root 
segment. The segment status flags are defined as follows: 

Bit Setting 

15 Always set to 1 

14 0 Segment has disk allocation. 
l Segment does not have disk allocation. 

13 0 Segment is not loaded from disk. 
1 Segment is loaded from disk. 

12 0 Segment is loaded and mapped. 
1 Segment is either not loaded or not mapped. 

B-19 



DETAILED TASK IMAGE FILE STRUCTURE 

Word 1 contains the load address of the segment. This address is the 
first virtual address of the area where the segment will be loaded. 

Word 2 specifies the length of the segment in bytes. 

Words 3, 4, and 5 point to the following segment descriptors: 

• Link up -- The next segment away from the root (O=none) • 

• Link down The next segment toward the root {O=none) • 

• Link next The adjoining segment; the link-next pointers 
are linked in circular fashion. 

When the system loads a segment, the overlay run-time system follows 
the links to determine which segments are being overlaid and should 
therefore be marked out of memory. For example: 

A21 A22 

~ 
Al A2 

I I 
I 

AO 

The segment descriptors are linked as follows: 

A21 A22 A21 A22 A21 A22 

~ 
A~ A2 

~,-J 
Al A2 

~r 
Al~A2 

AO AO 

link up link down link next 

If there is a co-tree, the link next for the root segment descriptor 
points to the co-tree root segment descriptor. 

Words 6 and 7 contain the segment name in Radix-50 format. 

Word 8 points to the window descriptor used to map the segment 
(O=none). 

B.4.4 Window Descriptor 

TKB allocates window descriptors only 
containing memory-resident overlays. 
format of a window descriptor. 

if you 
Figure 

define a structure 
B-17 illustrates the 

Words 0 through 7 constitute a window descriptor in the format 
required by the mapping directives. If the memory-resident overlay is 
part of the task, the region ID is O. If the memory-resident overlay 
is part of a shared region, the overlay loading routine fills in the 
ID at run time. 

Words 8 and 9 contain additional data that is referred to by the 
overlay routines. Bit 15 of the flags word, if set, indicates that 
the window is currently mapped into the task's address space. 

B-20 



DETAILED TASK IMAGE FILE STRUCTURE 

Word 9 contains the address of the associated region descriptor. If 
the memory-resident overlay is part of the task, and no region 
descriptor is allocated, this value is 0. 

Word 15 8 7 0 

0 Base Active Page Register I Window ID 

Virtual base address 

2 Window size in 64-byte blocks 

3 
l 

Region ID 

4 Offset in partition 

5 I Length to map 

6 Status word 

7 Send/receive buffer address (always 0) 

8 Flags word 

9 Address of region descriptor 

ZK-485-81 

Figure B-17 Window Descriptor 

B.4.5 Region Descriptor 

The region descriptor is allocated 
overlay structure is part of a shared 
the format of a region descriptor. 

only when the memory-resident 
region. Figure B-18 illustrates 

Word 

0 Region ID 

Size of region 

2 Region 

3 name 

4 Region 

5 partition 

6 Region status 

7 Protection codes (always O) 

8 Flags 

ZK-486-81 

Figure B-18 Region Descriptor 

B-21 



DETAILED TASK iMAGE FILE STRUCTURE 

Words 0 through 7 constitute a region descriptor in the format 
required by the mapping directives. The flags word is referred to by 
the overlay load routine. Bit 15 of the flags word, if set, indicates 
that a valid region identification is in word O. If this bit is 
clear, the overlay load routine issues an Attach Region directive 
(with protection code set to 0) to obtain the identification. 

B-22 



APPENDIX C 

HOST AND TARGET SYSTEMS 

C.l INTRODUCTION 

You can build a task on one system (the host), and run it on another 
(the target). For example, your installation might consist of one 
large computer system with mapping hardware, and several smaller 
unmapped systems. On the large system you could create and debug 
tasks, and then transfer them to the smaller systems to run. 

For example, if you are developing a task named TK3, using the default 
partition of your host system, the TKB command could be: 

>TKB TK3,TK3=SQ1,SQ2 

When you are ready to move TK3 to a target system, you build it again, 
indicating the mapping status of the target system and naming the 
partition in which the task is to reside: 

>TKB 
TKB>TK3/-MM,TK3=SQ1,SQ2 
TKB>/ 
Enter Options: 
TKB>PAR=PART1:100000:40000 
TKB>// 

The resulting task image is ready to run on the unmapped target 
system. 

You can transfer a task from the host system to the target system by 
following these steps: 

1. Build the task image specifying the partition in which the 
task will run. If the target system is an unmapped system, 
specify the partition's base address and size. 

2. Ensure that any shared regions accessed by the task are 
present in both systems. 

3. If the target system and the host system do not have the same 
mapping status, set the Memory Management switch (/MM or 
/-MM) to reflect the mapping status of the target system. 

The task code must not use any hardware options (FPP, EIS, EAE, and so 
forth) that are not present on the target system. This is 
particularly important if you are a FORTRAN user because FORTRAN tasks 
often use mathematics routines that are hardware dependent. (Refer to 
the IAS/RSX-11 FORTRAN IV Installation Guide and the IAS/RSX-11 
FORTRAN IV User's Guide for more informatio~FORTRAN requirements). 

C-1 



HOST AND TARGET SYSTEMS 

C.2 EXAMPLE C-1: TRANSFERRING A TASK FROM A HOST TO A TARGET SYSTEM 

In this section, the resident library LIB and the task that refers to 
it, MAIN (from Example 4, Chapter 5), are rebuilt to run on an 
unmapped system. To save space, only the Task Builder command 
sequences are shown. 

Assuming that the target system has a partition within it named LIB, 
you need to make only two changes to the original command sequence 
that builds the library: 

1. You must attach the negated memory management switch (/-MM) 
to the image file specification. 

2. You must specify the partition base and length. 

The modified command sequence is as follows: 

TKB>LIB/-HD/PI/-MM,LIB/-WI,LIB=LIB 
TKB>/ 
Enter Options: 
TKB>STACK=O 
TKB>PAR=LIB:l36000:20000 
TKB>// 

If the target system does not contain a partition of the same name as 
that of the shared region, you must change the name of the shared 
region to match the name of an existing partition in the target 
system. This is a requirement of RSX-llM; on RSX-llM-PLUS systems it 
is not. 

Assuming that the target system has a partition named GEN and that the 
task MAIN is to run in that partition in the target system, you must 
make three changes to the command sequence that builds the task MAIN: 

1. You must attach the negated memory management switch (/-MM) 
to the task image file specification. 

2. You must eliminate the APR parameter of the RESLIB keyword. 

3. You must explicitly specify the base address and length of 
the partition in which the task is to reside. 

The modified command sequence is as follows: 

TKB>MAIN/-MM,MAIN/MA/-WI=MAIN 
TKB>/ 
Enter Options: 
TKB>RESLIB=LIB/RO 
TKB>PAR=GEN:30100:40000 
TKB>// 

Example C-1, Part 1 shows the map file of the resident library LIB for 
an unmapped system. LIB is bound to the partition base specified by 
the PAR keyword in the task-build command sequence. Note that the 
shared region is declared position independent even though it is bound 
to the partition base 136000. The position-independent declaration is 
not necessary in this example because the referencing task MAIN does 
not require the program section names within the library in order to 
refer to it. However, in applications involving tasks that require 
the program section names from the library, you must declare the 
library position independent so that TKB will place the program 
section names in the library's symbol definition file. 

C-2 



HOST AND TARGET SYSTEMS 

Example C-1, Part 1 Task Builder Map for LIB.TSK 

LIB.TSK;l Memory allocation map TKB M40.10 
10-DEC-82 11:50 

Partition name LIB 
Identification 01 
Task ore [303,3] 
Task attributes: -HD,PI 
Total address windows: 1. 
Task image size 64. words 
Task address limits: 000000 000163 
R-W disk blk limits: 000002 000002 000001 00001. 

*** Root segment: LIB 

R/W mem limits: 000000 000163 000164 00116. 
Disk blk limits: 000002 000002 000001 00001. 

Memory allocation synopsis: 

Page 1 

Section Title Ident File 

• BLK.: (RW,I,LCL,REL,CON) 000000 000000 00000. 
AADD :(RO,I,GBL,REL,CON) 000000 000024 00020. 

000000 000024 00020. LIB 
DIVV : (RO,I,GBL,REL,CON) 000024 000026 00022. 

000024 000026 00022. LIB 
MULL : (RO,I,GBL,REL,CON) 000052 000024 00020. 

000052 000024 00020. LIB 
SAVAL : (RO,I,GBL,REL,CON) 000076 000042 00034. 

000076 000042 00034. LIB 
SUBB :(RO,I,GBL,REL,CON) 000140 000024 00020. 

000140 000024 00020. LIB 

Global symbols: 

AADD 
DIVV 

000000-R MULL 000052-R SUBB 
000024-R SAVAL 000076-R 

000140-R 

*** Task builder statistics: 

Total 
Work 
Work 
Size 
SIZE 

work file references: 368. 
file reads: O. 
file writes: 0. 

of core pool: 7086. words (27. PAGES) 
OF WORD FILE: 768. words (3. PAGES) 

Elapsed time:00:00:03 

C-3 

01 LIB.OBJ; 1 

01 LIB.OBJ;l 

01 LIB.OBJ;l 

01 LIB.OBJ; 1 

01 LIB.OBJ;l 



HOST AND TARGET SYSTEMS 

Example C-1, Part 2 shows the map file of the task MAIN for an 
unmapped system. The task is bound to the partition base 30100 and 
linked to the shared region LIB, which begins at 136000. 

Example C-1, Part 2 Task Builder Map for MAIN.TSK 

MAIN. TSK; 1 Memory allocation map TKB M40.10 
ll-DEC-82 13:41 

Partition name : GEN 
Identification : 01 
Task UIC [303,3] 
Stack limits: 000274 001273 001000 00512. 
PRG xfr address: 001634 
Total address windows: 2. 
Task image size 1152. WORDS 
Task address limits: 00000 004327 
R-W disk blk limits: 000002 000006 000005 00005. 

*** Root segment: MAIN 

R/W mem limits: 000000 004327 004330 02264 
Disk blk limits: 000002 000006 000005 00005. 

Memory allocation synopsis: 

Page 1 

Section Title !dent File 

• BLK.: (RW,I,LCL,REL,CON) 001274 002620 01424. 
001274 000530 00344. MAIN 

Global symbols: 

AADD 160000-R SAVAL 060000-R $CBDSG 
DIVV 160000-R SUBB 060000-R $CBOMG 
IO.WVB 011000 $CBDAT 003074-R $CBOSG 
MULL 060000-R $CBDMG 003102-R $CBTA 

*** Task builder statistics: 

Total work file references: 1889. 
Work file reads: 0. 
Work file writes~ O. 

003110-R 
003116-R 
003124-R 
003154-R 

Size of core pool: 7086. WORDS (27. PAGES) 
Size of work file: 1024. WORDS (4. PAGES) 

Elapsed time:00:00:07 

C-4 

01 MAIN. OBJ; 1 

$CBTMG 003132-R 
$CBVER 003116-R 
$CDDMG 003656-R 
$CDTB 003312-R 



APPENDIX D 

MEMORY DUMPS 

The RSX-llM/M-PLUS Postmortem Dump task (PMD) generates postmortem 
memory dumps of tasks that are abnormally terminated. In addition, 
PMD can produce edited dumps, called snapshot dumps, for tasks that 
are running. Section D.l describes Postmortem Dumps in general; 
Section D.2 discusses the specific case of snapshot dumps. Both types 
of dumps are very useful debugging aids. 

D.l POSTMORTEM DUMPS 

You can make a task eligible for a Postmortem Dump in any of three 
ways: 

• At task-build time, by specifying the /PM switch for the task 
file. /-PM disables dumps; it is the default condition. 

• When you install a task by using the /PMD switch to 
the taskbuild option. /PMD=YES enables dumping; 
disables dumping. 

override 
/PMD=NO 

• When you use the MCR command ABORT (described in the 
RSX-llM/M-PLUS MCR Operations Manual) I by including the PMD 
switch in the command line to specify a dump. 

You should install PMD in a 4K partition in which all other tasks are 
checkpointable. This allows the dump to be generated in a timely 
manner, and prevents the system from being locked up while the dump is 
being generated. PMD can dump either from memory or from the 
checkpoint image of your task. The PMD is sensitive to the location 
of the aborted task; therefore, if the aborted task is checkpointed 
during the dump, PMD switches to reading the checkpoint image. Once 
the task is checkpointed, PMD locks it out of memory until it has 
completed formatting the dump. 

Dumps are always generated on the system disk under UFD [1,4]; 
therefore, to avoid errors from PMD, you must create a UFD for [1,4] 
before installing the task. When PMD finishes generating the dump, it 
attempts to queue the dump to the print spooler for subsequent 
printing. If no spooler is installed, the dump file is left on the 
disk and can be printed at a later time using the Peripheral 
Interchange Program (PIP, described in the RSX-11 Utilities Manual). 

Dump files tend to 
The dump of an 
about 340 blocks. 
is little space 
important to print 

NOTE 

be somewhat large. 
SK partition averages 
Therefore, if there 
on the disk, it is 
and delete the dump 

D-1 



MEMORY DUMPS 

file without delay. The print spooler 
automatically deletes all files with the 
type .PMD after printing them. 

Example D-1 shows the contents of a Postmortem Dump and snapshot dump; 
the notes that follow the figure are keyed to the figure and provide a 
description of the dumps contents. Snapshot Dumps are explained more 
fully in Section D.2. 

Example D-1 Sample Postmortem Dump (Truncated) 

POST-MORTEM DUMP ., 

TASK: TT6@ TIME: S-OCT-76 1S:06 

PC: 000720 €) IOT EXECUTION €) 

REGS: RO - 00034S Rl - 074400 R2 - 000120 R3 - 14013~} 
0

RS 
0 

R4 - 000000 - 000000 SP - 000304 PS - 17 0000 

TASK STATUS: MSG AST DST -CHK HLT STP REM MCR 0 
EVENT FLAG MASK FOR <1-16> 000001 (i) 

CURRENT UIC: (007 ,001] DSW: 1. f.) 

PRIORITY: DEFAULT - SO. RUNNING - SO. I/O COUNT: O. TI DEVICE - TT6: (i) 

LOAD DEVICE - DBO: LBN: 1, 160034 Ci) 

FLOATING POINT UNIT 

STATUS - 000000 

RO - 000000 
Rl - 000000 
R2 - 000000 
R3 - 000000 
R4 - 000000 
RS - 000000 

LOGICAL UNITS 

000000 
000000 
000000 
000000 
000000 
000000 

000000 
000000 
000000 
000000 
000000 
000000 

UNIT DEVICE FILE STATUS 

1 DBO: 
2 DBO: 
3 DBO: 
4 DBO: 

000000 
000000 
000000 
000000 
000000 
000000 

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED 

0014S4} ~ STARTING RELATIVE BLOCK: 000002 
STARTING RELATIVE BLOCK: 000004 

BASE: 000000 
BASE: 0014S4 

TASK STACK 

ADDRESS CONTENTS 
000304 00004S 

' 
ASCII RADSO ~ Q) 

% <J 
TASK IMAGE 

D-2 

LENGTH: 
LENGTH: 000264 

ZK-487/1-81 

(continued on next page) 



MEMORY DUMPS 

Example D-1 (Cont.) Sample Postmortem Dump (Truncated) 

PARTITION: GEN VIRTUAL LIMITS: 000000 - 001777 

000000 000304 000162 000001 067426 ! D6 84 A Q08 
304 000 162 000 001 000 026 157 D r 

o! 1 000010 003401 003401 170017 000352 !AD3 AD3 8PQ E4 
001 007 001 007 017 360 352 000 p ; I 

J 

000020 000304 000000 000000 000000 D6 
304 000 000 000 000 000 000 000 D 

000030 000000 000000 000000 000000 ! . 
000 000 000 000 000 000 000 000 

000040 000000 140162 074106 000001 OlZ SIO A. 
000 000 162 300 l 06 17 0 001 000 r@ Fx 

000050 000000 000000 001104 000000 NT 
000 000 000 000 104 002 000 000 D 

000060 000373 000000 000000 000000 Fk 
373 000 000 000 000 000 000 000 

000070 000000 074150 000004 051646 SJX D MON 
000 000 150 17 0 004 000 246 123 hx &S! 

000100 000000 051646 000000 051646 MON MON 
000 000 246 123 000 000 246 123 &S &S! 

000110 000000 051646 000000 000001 MON A 
000 000 246 123 000 000 001 000 &S 

000120 067020 000000 001777 061404 !QXP YW 03. 
020 156 000 000 377 003 004 143 n c! 

000130 000020 000000 000600 007406 p IX BPF 
020 000 000 000 200 001 006 017 

000140 170000 000720 000000 000000 !8P KX 
000 360 320 001 000 000 000 000 p p 

000150 140130 000120 074400 000345 !01 B SNP E/ ~ 
130 300 120 000 000 171 345 000 x@ P y e 

000160 000000 000000 000000 000000 
000 000 000 000 000 000 000 000 

*** DUPLICATE THROUGH 000236 *** 
000240 000000 000000 001110 000000 NX 

000 000 000 000 110 002 000 000 H 
00250 001454 000264 000000 000000 TL DT 

054 003 264 000 000 000 000 000 4 
000260 000001 001612 074360 003413 A vz SN AEC 

001 000 212 003 360 17 0 013 007 px 
00270 063014 131574 000000 000000 !PMD 

014 146 174 263 000 000 000 000 f 3 
000300 001051 000001 000045 050114 M3 A 7 L36. 

051 002 001 000 045 000 114 120 ! } % LP! 
000310 000000 000001 000100 000304 A AX D6! 

000 000 001 000 100 000 304 000 @ D ! 
000320 000524 000000 000000 000000 HT 

124 001 000 000 000 000 000 000 !T 
000330 000000 000000 000000 063014 PMD 1 

000 000 000 000 000 000 014 146 f ! 
000340 131574 047123 052120 052123 ! ••• LUK MSX MS$ 

17 4 263 123 116 120 124 123 124 3 SN PT ST! 
000350 000000 016746 177734 012746 DIN 7T CTF 

000 000 346 035 334 377 346 025 f \ f 
000360 001037 104377 103456 005046 MW U61 UYF AX8 

037 002 377 210 056 207 046 012 & ! 

ZK-48712-81 

D-3 



MEMORY DUMPS 

~ Type of dump: Postmortem or snapshot. If it is a snapshot 
dump, the dump identification is printed. 

f) The name of the task being dumped, and the date and time the 
dump was generated. 

@) The program counter at the time of the dump. If it is a 
Postmortem Dump, the reason the task was aborted is printed. 

(» The general registers, stack pointer, and processor status at 
the time of the dump. 

~ The task status flags at the time of the dump. See the 
description of ATL or TAL in the RSX-llM/M-PLUS MCR 
Operations Manual for the meaning of the flags. 

(S) The task event flag mask word at the time of the dump. If 
the dump is a snapshot dump, the efn specified in the SNAP$ 
macro will be ON (see Section D.2.2). 

~ The task UIC and the current value of the directive status 
word. 

The task's priority and 
outstanding I/0 requests, 
task was initiated (TI:). 

default priority, number of 
and the terminal from which the 

€) The task load device and the logical block number for the 
start of the task image on the device. 

~ The floating-point unit (FPU) registers or the extended 
arithmetic element (EAE) registers if the task is using one 
of these hardware features. If the task is not using the FPU 
or EAE, these registers are not printed. If the task uses 
the FPU and does not specify /FP on the task image file, or 
if it uses the EAE unit and has not specified the /EA switch, 
the registers are not printed. If the machine you are using 
has both an FPU and an EAE, PMD assumes you are using the FPU 
because it is the unit of choice for arithmetic computations. 

~ The logical unit assignments at the time of the dump. UNIT 
is the logical unit number, and DEVICE is the device to which 
the logical unit is assigned. For snapshot dumps, the file 
names of any open files are displayed under FILE STATUS. 
Postmortem Dumps do not display this information because all 
of the files have been closed as a result of the I/O rundown 
on the aborted task. 

~ The following are displayed: the overlay segments loaded and 
resident libraries mapped at the time of the dump; the 
relative block number of the segment; the base address; the 
length of the segment; and, for tasks using manual load, the 
segment names. For resident libraries, the library name is 
also displayed. The block number can be used to determine 
which segment is loaded, by reference to the memory 
allocation file generated by the Task Builder. The starting 
block number for each segment is the relative block number of 
the segment. By obtaining a match, you can determine the 
name of the segment in memory. Zero-length segments are 
usually co-tree roots. 

D-4 



MEMORY DUMPS 

G) The task stack at the time of the dump. The address is 
displayed, along with the contents, in octal, ASCII, and 
Radix-50. Each word on the stack is dumped. If the stack 
pointer is above the initial value of the stack (H.ISP), only 
one word is dumped. The rest is dumped as part of the task 
image. 

~ The task image itself. The partition being dumped and the 
limits of interest are displayed. For Postmortem Dumps, all 
address windows in use are dumped. For snapshot dumps, the 
virtual task limits that you request are displayed. The dump 
routine rounds the requested low limit down to the nearest 
multiple of eight bytes and rounds the requested high limit 
up to the nearest multiple of eight bytes~ The dump image 
displays the virtual starting address of a 4-word block of 
memory, the data in both octal and Radix-50 on the first 
line, and byte octal and ASCII on the second line. A 4-word 
block that is repeated in a contiguous region of memory is 
printed once, and then noted by the message 

*** DUPLICATE THROUGH xxxxxx *** 

where xxxxxx indicates the last word that is duplicated. If 
the task was aborted, all address windows in use are dumped. 
If the dump is a snapshot dump, up to four contiguous blocks 
of memory can be dumped, if requested. 

D.2 SNAPSHOT DUMP 

Snapshot dumps are edited dumps produced for running tasks. You can 
request a snapshot dump any number of times during the execution of a 
task. The information generated is under the control of the 
programmer. 

Snapshot dumps are generated by the following macros: 

• SNPDF$ -- Defines offsets in the snapshot dump control block 
and defines control bits, which control the format of the dump 

• SNPBK$ -- Allocates the snapshot dump control block (see Table 
D-1) 

e SNAP$ Causes a snapshot dump to be generated 

SNPBK$ and SNAP$ issue calls to SNPDF$; so, you need not explicitly 
issue the SNPDF$ macro call. Sections D.2.1 and D.2.2 describe the 
SNPBK$ macro and the SNAP$ macro, respectively. 

D-5 



MEMORY DUMPS 

Label Offset 

SB.CTL 0 CONTROL FLAGS 

SB.DEV 2 DEVICE MNEMONIC 

SB.UNT 4 UNIT NUMBER 

SB.EFN 6 EVENT FLAG 

SB.ID 10 SNAP IDENTIFICATION 

SB.LM1 (L 1) 12 MEMORY BLOCK 1 
(H1) 14 LIMITS 

(L2) 16 MEMORY BLOCK 2 

(H2) 20 LIMITS 

(L3) 22 
MEMORY BLOCK 3 

(H3) 24 LIMITS 

(L4) 26 MEMORY BLOCK 4 
(H4) 30 LIMITS 

SB.PMD 32 "PMD ... " 
34 IN RADIX-50 

ZK-488-81 

Figure D-1 Snapshot Dump Control Block Format 

D.2.1 Format of the SNPBK$ Macro 

The format of the SNPBK$ macro call is: 

dev 

unit 

ctl 

SNPBK$ dev,unit,ctl,efn,id,Ll,Hl,L2,H2,L3,H3,L4,H4 

The 2-character ASCII name of the device to which the dump is 
directed. If it is a directory device, the UFD [1,4] must be on 
the volume. The dump is written to the disk and then spooled to 
the line printer. If there is no print spooler, the file is left 
on the disk. If the device is not a directory device, the dump 
goes directly to the device. 

The unit number of the device to which the dump is directed. 

The set of flags that control the format of the dump and the data 
to be printed. The flags are: 

SC.HOR Print the dump header ( i terns 3 to 10 in Figure 
D-1). Items 1 and 2 are always printed. 

SC.LON Print information on all assigned LUNs ( i tern 11) • 

SC.OVL Print information about all loaded overlay segments 
{ i tern 12) • 

D-6 



ef n 

id 

SC.STK 

SC.WRD 

SC.BYT 

MEMORY DUMPS 

Print the user stack (item 13). 

Print the requested memory in octal words and 
Radix-50 (item 14). 

Print the requested memory in octal bytes and ASCII 
{ i tern 14) • 

The event flag to be used to synchronize your program and PMD. 

A number that identifies the snapshot dump. Because dumps can be 
requested at different times and under different conditions, this 
ID is used to identify the place or reason for the dump. 

Ll,L2,L3,L4 

The starting addresses of the memory blocks to be dumped. 

Hl,H2,H3,H4 

The ending addresses of the memory blocks to be dumped. 

NOTE 

If no memory is to be dumped, each limit 
(Ll,L2,L3,L4,Hl,H2,H3,H4) should be o. 

Only one snapshot dump control block is allowed. 
global label •• SPBK. 

It generates the 

NOTE 

Because SNPBK$ is used to allocate 
storage for the snapshot dump control 
block, all arguments except dev must be 
valid arguments for .WORD or .BYTE 
directives. 

D.2.2 Format of the SNAP$ Macro 

The format of the SNAP$ macro is: 

SNAP$ ctl,efn,id,Ll,Hl,L2,H2,L3,H3,L4,H4 

ctl 

The set of flags that control the format of the dump and the data 
to be printed. The flags are: 

SC.HOR 

SC.LUN 

SC.STK 

SC.OVL 

Print the dump header. 

Print information on all assigned LUNs. 

Print the user stack. 

Print information 
segments. 

D-7 

about all loaded overlay 



efn 

id 

MEMORY DUMPS 

SC.WRD Print the requested memory in octal words and 
Radix-SO. 

SC.BYT Print the requested memory in octal bytes and 
ASCII. 

The event flag to be used to synchronize your program and PMD. A 
Wait-For-Single-Event-Flag directive is always generated to 
perform synchronization. 

A number that identifies the snapshot dump. Because dumps can be 
requested at different times and under different conditions, this 
ID is used to identify the place or reason for the dump. 

Ll,L2,L3,L4 

The starting addresses of memory blocks to be dumped. 

Hl,H2,H3,H4 

The ending addresses of memory blocks to be dumped. 

NOTES 

1. If no memory is to be dumped, each limit 
(Ll,L2,L3,L4,Hl,H2,H3,H4) should be o. 

2. You can set the control flags in any 
combination; they are not mutually 
exclusive. Thus, any number of options can 
be obtained; for example, 
SC.HDR!SC.LUN!SC.WRD prints the header, 
LUNs, and the requested memory in word octal 
and Radix-50 mode. 

3. Arguments should be specified only to 
override the information already in the 
snapshot dump control block. 

4. Because SNAP$ generates instructions to move 
data into the snapshot dump control block, 
its arguments must be valid source operands 
for MOV instructions. 

D.2.3 Example of a Snapshot Dump 

The sample program shown in Example D-2 causes two snapshot dumps to 
be printed directly on LPO:. The first dump uses the parameters 
defined in the snapshot dump control block. The header is generated, 
and the data in relative locations BLK to BLK+220 is displayed, in 
word octal and Radix-50. The identification on the dump is 1. 

The second dump causes the data in the locations BLK to BLK+220 to be 
displayed in byte octal and ASCII. A header is also generated. The 
dump identification is 64 (100 octal). Figures D-3 and D-4 show the 
dumps generated by the sample program. 

D-8 



CJ 
I 

\.0 

SNPTST - TEST SNAP DUMP AND PMD MACRO Ml010 03-SEP-76 15:57 PAGE 1 

1 .TITLE 
2 .IDENT 
3 .MCALL 
4 000000 BLK: SNPBK$ 
1-
,) 000036 123 116 120 BUF: .ASCIZ 

000041 124 123 124 
000044 000 

6 .EVEN 
7 000046 START: SNAP$ 
8 000216 012700 000036' 
9 000222 

10 000226 
11 000412 000004 
12 000046' 

SNPTST - TEST SNAP DUMP AND PMD MACRO MlOlO 
SYMBOL TABLE 

BLK OOOOOOR SB.EFN= 000006 
BUF 000036R SB. ID = 000010 
IE.ACT:= ****** GX SB.LMl= 000012 
SB.CTL= 000000 SB.PMD= 000032 
SB.DEV= 000002 SB.ONT= 000004 

ABS. 000000 000 
000414 001 

ERRORS DETECTED: 0 

VIRTUAL MEMORY USED: 1335 WORDS ( 6 PAGES) 
DYNAMIC MEMORY AVAILABLE FOR 30 PAGES 
ASSEMBLY TIME (ELAPSED): 00:00:14 
SNPTST,SNPTST=SNPTST 

MOV 
CALL 
SNAP$ 
IOT 
.END 

03-SEP-76 

SC.BYT= 
SC.HOR= 
SC.LON= 
SC.OVL= 

SNPTST - TEST SNAP DUMP AND PMD 
/01/ 
SNPBK$,SNAP$,CALL 
LP,O,SC.HDR!SC.OVL!SC.WRD,l,l,BLK,BLK+220 
/SNPTST/ 

#BUF,RO 
$CAT5 
#SC.HDR!SC.OVL!SC.BYT,,#100 

START 

15:57 PAGE 1-1 

000040 SC.STK= 000010 
000001 SC.WRD= 000020 
000002 START 000046R 
000004 $CAT5 = ****** GX 

Example D-2 Sample Program That Calls for Snapshot Dumps 

3: 
t:lil 
3: 
0 
~ 

$DSW ****** GX ~ 

$$$T2 000027 0 
•• SPBK OOOOOORG c 

:i: 
.•• SNP= 000032 ~ 

m 



MEMORY DUMPS 

Example D-3 Sample Snapshot Dump (in Word Octal and Radix-50) 

SNAPSHOT DUMP ID: 1 

TASK: TT6 TIME: S-OCT-76 1S:06 

PC: OOOS22 

REGS: RO - 000000 Rl - 100104 R2 - 000000 R3 - 140130 

R4 - 000000 RS - 000000 SP - 000304 PS - 170000 

TASK STATUS: MSG -CHK STP WFR REM MCR 

EVENT FLAG MASK FOR 1-16> 000001 

CURRENT UIC: [007,001] DSW: 1. 

PRIORITY: DEFAULT - SO. RUNNING - SO. I/O COUNT: O. TI DEVICE - TT6: 

LOAD DEVICE - DBO: LBN: 1,160034 

FLOATING POINT UNIT 

STATUS - 000000 

RO - 000000 000000 000000 000000 
Rl - 000000 000000 000000 000000 
R2 - 000000 000000 000000 000000 
R3 - 000000 000000 000000 000000 
R4 - 000000 000000 000000 000000 
RS - 000000 000000 000000 000000 

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED 

STARTING RELATIVE BLOCK: 000002 BASE: 000000 LENGTH: 0014S4 

TASK IMAGE 

PARTITION: GEN VIRTUAL LIMITS: 000304 - 000524 

000300 001051 000001 00002S 050114 I M3 A u L36 
000310 000000 000001 000001 000304 A A D6 
000320 OOOS24 000000 000000 000000 HT 
000330 000000 000000 000000 063014 PMD 
000340 131574 04 7123 052120 052123 LUK MSX MS$ 
000350 000000 016746 177734 012746 DlN 7T CTF 
000360 001037 104377 103456 005046 MW U61 UYF AXB 
000370 012746 000304 012746 000336 CTF D6 CTF EV 
000400 017646 000000 062766 000002 EBV PLV B! 
000410 000002 017666 000002 000002 B EBB B B! 
000420 012746 0002S07 104377 01343S CTF 31 U61 UX/! 
000430 005046 005046 005046 005046 AXB AXB AXB AXB! 
000440 012746 000336 017646 000000 CTF EV EBV 
000450 062766 000002 000002 017666 PLV B B EBB! 
000460 000002 000002 012746 003413 B B CTF AEC! 
000470 104377 103006 022737 177771 U61 UQO FBO BI! 
000500 000046 001402 000261 000405 8 SJ DQ FU! 
000510 016746 177576 012746 001051 DlN SF CTF M3! 
000520 104377 012700 000342 004767 U61 CSH EZ AWl! 

D-10 



MEMORY DUMPS 

Example D-4 Sample Snapshot Dump (in Byte Octal and ASCII) 

SNAPSHOT DUMP ID: 64 

TASK: TT6 TIME: 5-0CT-76 15:06 

PC: 000716 

REGS: RO - 000345 Rl - 074400 R2 - 000120 R3 - 140130 

R4 - 000000 RS - 000000 SP - 000304 PS - 170000 

TASK STATUS: MSG -CHK STP WFR REM MCR 

EVENT FLAG MASK FOR 1-16> 000001 

CURRENT UIC: [007001] DSW: 1. 

PRIORITY: DEFAULT - 50. RUNNING - 50e I/0 COUNT: O. TI DEVICE - TT6: 

LOAD DEVICE - DBO: LBN: 1,160034 

FLOATING POINT UNIT 

STATUS - 000000 

RO - 000000 
Rl - 000000 
R2 - 000000 
R3 - 000000 
R4 - 000000 
RS - 000000 

000000 
000000 
000000 
000000 
000000 
000000 

000000 
000000 
000000 
000000 
000000 
000000 

000000 
000000 
000000 
000000 
000000 
000000 

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED 

STARTING RELATIVE BLOCK: 000002 
STARTING RELATIVE BLOCK: 000004 

BASE: 000000 
BASE: 001454 

D-11 

LENGTH: 001454 
LENGTH: 000264 

(continued on next page) 



MEMORY DUMPS 

Example D-4 (Cont.) Sample Snapshot Dump (in Byte Octal and ASCII) 

TASK IMAGE 

PARTITION: GEN VIRTUAL LIMITS: 000304 - 000524 

000300 051 002 001 000 045 000 114 120 ! ) % LP! 
000310 000 000 001 000 100 000 304 000 @ D ! 
000320 124 001 000 000 000 000 000 000 !T 
000330 000 000 000 000 000 000 014 146 f ! 
000340 174 263 123 116 120 124 123 124 ! 3 SN PT ST! 
000350 000 000 346 ·035 334 377 346 025 f \ f 
000360 037 002 377 210 056 207 046 012 & 
000370 346 025 304 000 346 025 336 000 !f D f A 

000400 246 037 000 000 366 145 002 000 !& ve 
000410 002 000 266 037 002 000 002 000 6 
000420 346 025 107 005 377 210 035 207 !f G 
000430 046 012 046 012 046 012 046 012 !& & & & ! 
000440 346 025 336 000 246 037 000 000 !f A & 
000450 366 145 002 000 002 000 266 037 !ve 6 
000460 002 000 002 000 346 025 013 007 f 
000470 377 210 006 206 337 045 371 377 % y 
000500 046 000 002 003 261 000 005 001 ! & r 
000510 346 035 176 377 346 025 051 002 !f f 
000520 377 210 300 025 342 000 367 011 @ b w ! 

D-12 



APPENDIX E 

RESERVED SYMBOLS 

Several global symbols and program section namesl are reserved for use 
by TKB.2 Special handling occurs when TKB encounters a definition of 
one of these names in a task image. 

The definition of a reserved global symbol in the root segment causes 
a word in the task image to be modified with a value calculated by 
TKB. The relocated value of the symbol is taken as the modification 
address. 

The following global symbols are reserved by TKB: 

Global 
Symbol 

. FSRPT 

• MBLUN 

• MOLON 

.NLUNS 

• NOVLY 

N.OVPT 

.NSTBL 

• ODTLl 

.ODTL2 

Modification 
Value 

Address of file storage region work area (.FSRCB) • 

Mailbox logical unit number • 

Error message output device • 

The number of logical units used by the task, not 
including the message output and overlay units. 

The overlay logical unit number • 

Address of overlay run-time system work area (.NOVLY). 

The address of the segment description tables. This 
location is modified only when the number of segments 
is greater than one. 

Logical unit number for the ODT terminal device TI: • 

Logical unit number for the ODT line printer device 
CL:. 

1. In RSX .... HM and ::~'.X...::1-,J.M.;Pl.USr absolute sections (ASECTs) and both 
blank and named control sections {CSECTs) are supplanted by program 
sections (PSECTs). The .PSECT assembler directive eliminates the need 
for .ASECT and .CSECT directives, except for compatibility with other 
systems. This manual refers to all sections as program sections, 
unless the specific characteristics of ASECTs or CSECTs apply. 

2. All symbols and program section names containing a period (.) or a 
dollar sign ($) are reserved for DIGITAL-supplied software. 

E-1 



Global 
Symbol 

• SUMLl 

• PTLUN 

$0TSV 

• TRLUN 

• USLUl 

• USLU2 

$VEXT 

RESERVED SYMBOLS 

Modification 
Value 

P/OS standard utility module LON • 

Logical unit number for plotter/graphics software • 

Address of Object Time System work area ($0TSVA). 

The trace subroutine output logical unit number • 

Logical unit number for special purpose user software • 

Logical unit number for special purpose user software • 

Address of vector extension area {$VEXTA) • 

TKB reserves the following program section names. In some cases, the 
definition of a reserved program section causes that program section 
to be extended if you specify the appropriate option. 

Source 
Location 

TKB 

TKB 

Input 
Module 

SYS LIB 

Section 
Name Description 

$$ALER Contains code to process or trap Overlay Run-time 
System segment load errors. Provides named areas 
in the task for the FORTRAN-IV Object Time System 
and the RSX-llM Overlay Run-time System. 

1· 

l . ' 
$$AI~VD 
i : ; 

$$AUTO 

$$DBTS 

$$DEVT 

·oontaI·ns,: thie /s~gment aut;oload; v;ec'.tors for tasks 
wi~thdut ·~-.' 1a:tliid1 ;D-'.space• : · ; 

: ·~ t' ~ :l ' ~· t 

<· ' ~ ;, ' • i :'. ~ ; . ~ ': ,1 i . : 1 . : , : ' ' ' . . . ; qont~ins .:· -q~ej . :D:-15;Pace: :: ·p~rtiions. : ·of , the se<1men:t 
auit;olioa'd';'.vedtlo!r:ls .1i'nl ad,.»Il- [a:nd iD-!Space: task; 

. Contains ~the: J...:s·pace· portions i of the segment 
autQloa(l. ~eotor.s .in an I- and. o .... s;pace task. 

Contains code to determine if a called subroutine 
in an overlay segment is already in memory or if 
that overlay segment should be read into memory 
before control is passed to the subroutine that is 
called. 

This symbol should appear in the debugger input 
module with the symbol $DBTS as follows: 

.PSECT $$DBTS 
$DBTS:: 

.PSECT 

The task builder extends $$DBTS and fills it with 
time stamp information followed by the filename 
information of the .STB file. 

The extension length (in bytes) is calculated from 
the formula: 

EXT = <S.FDB+52>*UNITS 

The definition of S.FDB is obtained from the root 
segment symbol table, and UNITS is the number of 
logical units used by the task, excluding the 
message output, overlay, and ODT units. 

E-2 



Source 
Location 

SYSLIB 

SYSLIB 

TKB 

TKB 

TKB 

SYSLIB 

TKB 

TKB 

TKB 

TKB 

TKB 

TKB 

TKB 

Section 
Name 

$$FSR1 

$$1081 

$$IOB2 

$$LOAD 

$$MRKS 

$$0BF1 

$$0BF2 

$$0VDT 

$$0VRS 

$$PDLS 

$$RDSG 

$$RGDS 

$$RTQ 

RESERVED SYMBOLS 

Description 

The extension of this section is specified by the 
ACTFIL option. 

The extension of this option is specified by the 
MAXBUF option. 

A zero length .PSECT containing a label, IOBFND, 
that is stored in the work area offset, W.BEND, 
representing the upper bound of the I/O buffer, 
$$IOB1. TKB uses $$IOB2 as a boundary value to 
determine whether the I/0 buffer has overflowed. 

Overlay manual load routine. 

Contains code to properly mark those segments that 
are not needed any longer or have been overlaid by 
another segment as being out of memory. This 
ensures that a fresh copy of the overlay segment 
will be read in the next time the overlay segment 
is needed. 

FORTRAN OTS uses this area to parse array type 
format specifications. This section can be 
extended by the FMTBUF keyword. 

A zero length .PSECT containing a label, OBFH, 
that is stored in the work area offset, W.OBFH, 
which represents the upper bound of the run-time 
format buffer, $$0BF1. TKB uses $$0BF2 to 
determine whether the run-time format buffer has 
overflowed. 

The Overlay Run-time System impure data area. The 
symbol .NOVPT in low memory points to this area. 
This area defines the operational parameters with 
which the Overlay Run-time System operates on 
disk-resident and memory-resident overlay 
structures. 

The .ABS. program section that redefines the 
Overlay Run-time System impure data area with 
different symbols, defined as offsets and relative 
to zero. These offsets are necessary for proper 
linkages between the subroutines in the Overlay 
Run-time System. This program section is never 
included in the memory allocation of the task 
because of its absolute program section attribute. 

Cluster library service routine. 

Contains the code that reads into memory the 
overlay segment selected by the code contained in 
the programs section $$AUTO. 

Contains the region descriptors for 
libraries referred to by the task. 

resident 

Defines the PSECT used for selective enabling of 
AST recognition in the Overlay Run-time System. 
$$RTQ is 0 in length if $AUTOT is not included. 

E-3 



Source 
Location 

TKB 

TKB 

TKB 

TKB 

TKB 

FORTRAN 

TKB 

RESERVED SYMBOLS 

Section 
Name Description 

$$RTR Defines the PSECT used for selective disabling of 
AST recognition in the Overlay Run-time System. 
$$RTR is 0 in length if $AUTOT is not included. 

$$RTS Contains the return instruction. 

$$SGDO 

$$SGD1 

$$SGD2 

$$TSKP 

$$WNDS 

Contains the program section adjoining the task 
segment descriptors. 

Contains the task segment descriptors. 

Contains a .WORD O following the task segment 
descriptors. 

TKB fills in the following words in the PSECT: 

• APR bit map in word $APRMP 

• Task offset into region in word $LBOFF 

• Maximum physical read/write memory needed for 
task in word $MXLGH 

• Maximum physical read-only memory needed for 
task in word $MXLGH+2 

• Task extension in 32-word blocks in word $LBEXT 

Contains task window descriptors 

E-4 



APPENDIX F 

IMPROVING TASK BUILDER PERFORMANCE 

This appendix contains procedures to assist you in maximizing Task 
Builder (TKB) performance. These procedures include: 

• Evaluating and improving TKB throughput 

• Modifying command switch defaults to provide a more efficient 
user interface 

• Using the Slow Task Builder when large work file space is 
required 

These procedures assume 
features not found in 
Appendix G. 

that the 
the Fast 

program to be linked requires 
Task Builder (FTB) described in 

Using the procedures described in this appendix may require relinking 
TKB. You can do this only in a system that has, as a minimum, a 14K 
user-controlled or system-controlled partition. In some cases, you 
can make the modifications without relinking by using the binary patch 
program ZAP (see the RSX-11 Utilities Manual). 

Modifications to the TKB build file imply one or more of the following 
files located under UFO [1,24] (mapped) or [1,20] (unmapped): 

,RSX"'."'llM sys terns : 

'.I'KBBLD.CMD 
ST'K:SL,U. CMD", 

These files reside on the disk containing the utility object files. 

F.l EVALUATING AND IMPROVING TASK BUILDER THROUGHPUT 

Task Builder throughput is determined by three factors: 

• The amount of disk latency incurred because of overlays 

• The amount of memory available for table storage 

• The amount of disk latency due to input file processing 

The following sections outline methods for improving throughput in 
each of these last two cases. 

F-1 



IMPROVING TASK BUILDER PERFORMANCE 

F.1.1 Table Storage 

The principal factor governing TKB performance is the amount of memory 
available for table storage. To reduce memory requirements, a work 
file is used to store symbol definitions and other tables. This work 
file cannot exceed 65,543 bytes. As long as the size of these tables 
is within the limits of available memory, the contents of this file 
are kept in memory and the disk is not accessed. If the tables exceed 
this limit, some information must be displaced and moved to the disk, 
degrading performance accordingly. 

You can gauge work file 
portion of the TKB map. 

performance by consulting the statistics 
The map displays the following parameters: 

• Number of work file references -- Total number of times that 
work file data was referred to. 

• Work file reads -- Number of work file references that 
resulted in disk accesses to read work file data. 

• Work file writes -- Number of work file references that 
resulted in disk accesses to write work file data. 

• Size of core pool -- Amount of in-core table storage in words. 
This value is also expressed in units of 256-word pages 
(information is read from and written to disk in blocks of 256 
words) • 

• Size of work file -- Amount of work file storage in words. If 
this value is less than the pool size, the number of work file 
reads and writes is O. That is, no work file pages are 
removed to the disk. This value is also expressed in pages 
(256-word blocks). 

• Elapsed time -- Amount of time required to build the task 
image and output the map. This value excludes ODL processing, 
option processing, and the time required to produce the global 
cross-reference. 

You can reduce the overhead for gaining access to the work file in one 
or more of the following ways: 

• By increasing the amount of memory available for table storage 

• By placing the work file on the fastest random access device 

• By decreasing system overhead required to gain access to the 
file 

• By reducing the number of work file references 

You can increase the amount of table storage by installing TKB in a 
larger partition or, if TKB is running in a system-controlled 
partition, by using the INSTALL/INC keyword to allocate more space. 

In a system that includes support for the Extend Task directive, TKB 
automatically increases its size if it is checkpointable and installed 
in a system-controlled partition. You set the maximum limit. You can 
increase this maximum by issuing the MCR command SET /MAXEXT. 

Increasing the proportion of resident dynamic memory reduces the 
amount of I/O necessary for access to TKB internal data structures. 
As stated above, once the resident memory has been filled, the data 
structures overflow into a temporary work file on the device assigned 

F-2 



IMPROVING TASK BUILDER PERFORMANCE 

to the work file logical unit number. This logical unit number 
(W$KLUN) is specified in the build command file. Preferably, this 
unit number should be assigned to a device other than the system 
device, for example a fixed-head disk. 

Displacement of pages to the work file is done on a least recently 
used basis. The work file extends automatically as necessary to hold 
all pages displaced. The parameter W$KEXT is provided in the build 
command file of TKB and defines the file extension properties. A 
negative value indicates that the extend is noncontiguous; a positive 
value indicates that the extend is contiguous. If a contiguous extend 
fails, a noncontiguous request is attempted; if a noncontiguous 
extend fails, a fatal work file I/O error is reported. As long as the 
work file remains contiguous, a higher access rate can be obtained. 

It is not possible to state exactly how many symbols TKB can process, 
because there are many data structures included in virtual memory. 
The following is a list of the structures that are stored in the 
virtual memory. All the sizes given are approximate only (sizes vary 
with characteristics of the task being built and may vary from release 
to release). 

Structure Name 

Segment Descriptor 

P-section Descriptor 

Symbol Descriptor 

Element Descriptor 

Control Section 
Mapping Table 

Description 

Contains listhead 
sizes, the pointers 
defining the overlay 
tree, the segment name. 
Part of this structure 
becomes the segment 
descriptor in the 
resultant task image. 

Contains the name, 
address size, and 
attributes of a 
p-section. 

Contains symbol name, 
value, flags, and 
pointers to defining 
segment and program 
section descriptors. 

Contains module 
name, ident, filename, 
count of program 
section and some 
flags. 

Table of program 
section size and 
program section 
descriptor addresses. 

Approximate Size 
(in words) 

80. 

10. 

8. (nonoverlaid task) 

15. (overlaid task) 

8.-18. 

Two words per 
program section in 
each module 

The maximum usage of virtual memory occurs during phase three of TKB, 
when the symbol table is built. However, phase one makes significant 
use of virtual memory when an overlaid task is being built. It is at 
this point that all the segment descriptors are allocated, as well as 
an element descriptor for every file name encountered during the 
parsing of the tree description. In addition, a p-section descriptor 
is produced for every .PSECT directive encountered in the overlay 
description. 

F-3 



IMPROVING TASK BUILDER PERFORMANCE 

The parsing of the overlay description also makes use of dynamic 
memory during the processing of each directive. This memory is 
released upon completion of the analysis; during the analysis, 
however, the whole tree description must fit into the resident portion 
of the storage. If sufficient storage cannot be obtained in the 
resident dynamic memory, the error message NO DYNAMIC STORAGE 
AVAILABLE is returned. The method for increasing the ratio of dynamic 
storage to virtual memory can be applied here, possibly to allow a 
task with a large overlay description to be built. 

The amount of memory required during analysis depends on: 

• The number of directives 

• The length of .FCTR lines 

• The number of operators, that is, commas, dashes, and 
parentheses) 

• The number of file names encountered 

TKB links all DEC-supplied tasks in a 14K partition. 

There are a number of ways to reduce the amount of virtual memory 
required during the build of a specific task. Reducing the data 
structures in virtual memory also increases the speed of searching the 
tables and reduces the amount of paging to the work file. 

1. Extract object modules 
libraries (for example., 
requires smaller element 
descriptors and is also 
to open and close. 

by name from relocatable object 
LIBRY/LB:MODl:MOD2). This technique 
descriptors and fewer file name 

faster because there are fewer files 

2. Use concatenated object modules for the same reasons as 
above. 

3. Use shared regions (resident libraries and common areas) for 
language and overlay run-time systems and file control 
services. Such use of shared regions allows symbols and 
p-sections to be defined only once, rather than on multiple 
branches of the tree. 

4. Place modules that occur on parallel branches of the tree in 
a common segment (for example, closer to root) for the same 
reasons as in 3 above. 

5. Use the /SS switch on symbol table files (.STB) that describe 
absolute symbol definitions so that only those symbols 
referenced are extracted from the module. 

6. Minimize the number of segments and keep the tree balanced. 
For example, if one segment is very long, there is no value 
in putting a tree structure in parallel unless creating one 
segment in parallel would be longer. 

In addition to the above, a version of TKB can be built which has less 
throughput but requires less virtual memory per element than TKB. 
This version is built using the command file STKBLD.CMD supplied on 
the RKOS utility disk, or the RK06 and RP system disks under UFD 
[1,20) (unmapped) or [1,24) (mapped). 

F-4 



IMPROVING TASK BUILDER PERFORMANCE 

There are four error messages associated with the virtual memory 
system: 

• NO DYNAMIC STORAGE AVAILABLE. This error occurs when there is 
insufficient resident storage for creating some data 
structures. As much as possible of the data already allocated 
(all unlocked pages) has been paged to the work file, but 
there is still not enough free memory. Such a situation might 
arise during the analysis of the overlay description, early in 
the task-build run, and particularly if it is a complex tree. 
Reducing the ODL and extending the Task Builder memory 
allocation (see above) are the recommended recovery 
procedures. 

• UNABLE TO OPEN WORKFILE. The probable causes of this error 
are: 

Device assigned to logical unit 8 of the Task Builder is 
not mounted. 

The device is not FILES-11. 

There is no space on the volume. 

The device is off line, not ready, write locked, or faulty. 

There is no such device. 

The MCR function LUN ••• TKB may be used to determine which 
device the Task Builder is attempting to use. 

• WORKFILE I/O ERROR. The probable causes of this error are: 

Hardware error (for example, parity error on the disk). 

Device is not ready, or is write-locked. 

An extend failure has occurred (for example, the disk is 
full) • 

• NO VIRTUAL MEMORY STORAGE AVAILABLE. The addressable limit of 
the virtual memory has been reached. There is no recovery 
other than to reduce the virtual memory requirements of the 
task being built along the lines suggested earlier. 

The work file normally resides on the device from which TKB was 
installed. You can change the device by reassigning logical unit 8 
through the Monitor Console Routine or by editing the build file and 
relinking TKB. 

System overhead for work file accesses is incurred in translating a 
relative block number in the file to a physical disk address. To 
minimize this overhead, TKB requests disk space in contiguous 
increments. The size of each increment is equal to the value of 
symbol W$KEXT defined in TKB build file. A larger positive value 
causes the file to be extended in larger contiguous increments and 
reduces the overhead required to gain access to the file. The 
increment should be set to a reasonable value because TKB resorts to 
noncontiguous allocation whenever contiguous allocation fails. ;.b 
You can reduce the size of the work file by: 

• Linking your task to 
commonly used routines 
System) whenever possible 

a core-resident 
(for example, 

F-5 

library 
FORTRAN 

containing 
Object Time 



IMPROVING TASK BUILDER PERFORMANCE 

• Including common modules, such as components of an object time 
system, in the root segment of an overlaid task 

• Using an object library or file of concatenated object modules 
if many modules are to be linked 

When you use either of the last two procedures, system overhead is 
also significantly reduced because fewer files must be opened to 
process the same number of modules. 

You can reduce the number of work file references by eliminating 
unneeded output files and cross-reference processing, or by obtaining 
the short map. In addition, you can usually exclude selected files, 
such as the default system object module library, from the map. In 
this case you can obtain, and retain, a full map at less frequent 
intervals. 

F.1.2 Input File Processing 

The procedures for minimizing the size of the work file and number of 
work file accesses also drastically reduce the amount of input file 
processing. 

A given module can be read up to four times when the task is built: 

• To build the symbol table 

• To produce the task image 

• To produce the long map 

• To produce the global cross-reference 

Files that are excluded from the long map are read only twice. The 
third and fourth passes are eliminated for all modules when you 
request a short map without a global cross reference. 

F.1.3 Summary 

In summary, you can use the following procedures to improve TKB 
throughput: 

• Use the INSTALL/INC or EXTTSK keyword to allocate more table 
space. 

• Increase maximum task size by raising the system limit for 
dynamic task extension. 

• Reduce disk latency by placing the work file on the fastest 
random access device. 

• Reduce system overhead by modifying the command file to 
allocate work file space in larger contiguous increments. 

• Decrease work file size by using resident 
concatenated object files, and object libraries. 

F-6 

libraries, 



IMPROVING TASK BUILDER PERFORMANCE 

• Decrease work file size by including common modules into the 
root segment of an overlaid task~ 

• Decrease the number of work file references by eliminating the 
map and global cross-reference, obtaining the short map, or 
excluding files from the map. 

F.2 MODIFYING COMMAND SWITCH DEFAULTS 

The default switch settings and values provided by the Task Builder as 
released may not suit the requirements of all installations. For 
example, the default /-EA (no KEll Extended Arithmetic Element) would 
be unsatisfactory at an installation that made frequent use of this 
hardware. 

You can thus tailor the switch defaults by altering the contents of 
the words that contain initial switch states. Modifying TKB in this 
way is a 3-step process: 

1. Consult Tables F-1 through F-4 to determine the switch word 
and bit to be altered. 

2. Edit the appropriate TKB command file to include the switch 
word modification through a GBLPAT keyword referring to the 
global switch word name. 

3. Relink TKB using the modified command file. 

The command files for system tasks, as provided with the released 
system, require the standard set of TKB defaults; therefore, you must 
retain and use an unmodified copy of TKB whenever such tasks are 
relinked. 

You use Tables F-1 through F-4 to alter the defaults as follows: 

1. You identify the switch and the file to which it applies. 

2. You consult the switch category entry in each table to locate 
the applicable switch words. 

3. You look at the switch settings to find the switch and 
associated bit. 

4. You specify the revised value and switch word as arguments in 
a GBLPAT keyword. 

5. You relink TKB to produce a 
appropriate defaults. 

version containing the 

For example, to change the TKB Extended Arithmetic Element default to 
/EA, perform the steps described below. 

By consulting Table F-1, you determine that two switch words, $DFSWT 
and $DFTSK, contain task file switches. Of these, $DFTSK contains the 
default setting for the /EA switch in bit 13. Setting this bit to 1 
changes the initial switch setting to /EA. This new value is combined 
with the initial contents to yield the revised setting 120002. The 
required keyword input is: 

TKB>GBLPAT=TASKB:$DFTSK:l20002 

F-7 



IMPROVING TASK BUILDER PERFORMANCE 

NOTE 

The setting of bit positions not listed 
in the tables must not be altered. 

The only switches that have associated values are /AC 
these cases, the value is the number of the initial 
the task. You can alter the default by changing the 
GBLDEF keyword for the symbol D$FAPR in TKB build file. 
or 5 can be used. 

Table F-1 
Task File Switch Defaults 

Switch Category: Task file 

Switch Word: $DFSWT 

Initial Contents: 0 

Switch Settings: 

Initial 
Bit State 

Initial 
Condition 

and /PR. In 
APR used to map 

value of the 
Only values 4 

15 0 /-XT Not abort after n diagnostics 

11 0 

4 0 
3 0 

/-SQ Not sequential PSECT allocation 

/-FU Not full overlay tree search 
/RO Recognize memory-resident overlay 

operator. 

Switch Category: Task file 

Switch Word: $DFTSK 

Initial Contents: 100002 

Switch Settings: 

Initial Initial 
Bit State Condition 

15 1 /-CP, /-AL Not checkpointablel 

14 0 /-FP Not Floating Point Processor 

13 0 /-EA Not Extended Arithmetic Element 

1. The combination of not checkpointable with checkpoint 
allocation (100000) is illogical and should not be used. 

(continued on next page) 

F-8 



IMPROVING TASK BUILDER PERFORMANCE 

Table F-1 (Cont.) 
Task File Switch Defaults 

Switch Settings: (Cont.) 

Initial Initial 
Bit State Condition 

12 0 /HD Header 

11 0 /-CM Not compatibi 1i ty mode 

10 0 /-DA No debugging aid 

9 0 /-PI Not position independent 

8 0 /-PR Not privileged 

7 0 /-TR No trace 

6 0 /-PM No Postmortem Dump 

5 0 /-SL Not slave task 

4 0 /SE Send to task allowed 

2 0 /-AC Not ancillary control processor 

1 1 /-AL No checkpoint allocation 

Switch Category: Task File 

Switch Word: $DFTSO 

Initial Contents: 000010 

Switch Settings: 

Bit 
Initial 
State 

j~~; 

Initial 
Condition 

/~~< .. ·:i.~·/~.:{i~.1~~'1:el.:;'./~lj/{l,;::.:,:z~·~fi,•11:~/~~~~:~.~'.~i,;;/<ii eairJeJer 
3 1 /-SG RO and RW PSECTs 

F-9 



IMPROVING TASK BUILDER PERFORMANCE 

Table F-2 
Map File Switch Defaults 

Switch Category: Map file 

Switch Word: $DFLBS 

Initial Contents: 120000 

Switch Settings: 

Bit 

15 

Initial 
State 

1 

Initial 
Condition 

/-MA Do not include system library and STB 
files in map 

Switch Category: Map file 

Switch Word: $DFMAP 

Initial Contents: 2040 

Switch Settings: 

Initial Initial 
Bit State Condition 

10 1 /SH Short map 

8 0 /SP Spool 

6 0 /-CR No CREF 

5 1 /WI Wide format 

Table F-3 
Symbol Table File Switch Defaults 

Switch Category: Symbol table file 

Switch Word: $DFSTB 

Initial Contents: 0 

Switch Settings: 

Bit 

12 

9 

Initial 
State 

0 

0 

Initial 
Condition 

/HD Build task with header 

/-PI Task is not position independent 

F-10 



IMPROVING TASK BUILDER PERFORMANCE 

Table F-4 
Input File Switch Defaults 

Switch Category: Input file 

Switch Word: $DFINP 

Initial Contents: 000100 

Switch Settings: 

Bit 
Initial 
State 

Initial 
Condition 

15 0 /MA Include file contents in map 

6 1 /CC File contains two or more concatenated 
object modules 

F.3 THE SLOW TASK BUILDER 

TKB.TSK uses a symbol table structure that can be 
but which requires more work file space than 
versions. You may thus receive the following 
instances: 

NO VIRTUAL MEMORY STORAGE AVAILABLE 

searched quickly, 
that of previous 
message in some 

If this occurs, you should try to reduce the work file size by using 
the procedures described in Section F.l. If these procedures do not 
sufficiently reduce the work file size, you can link another version 
of TKB, the Slow Task Builder. This version requires less storage, 
but runs considerably slower than the other versions. The build file 
is STKBLD.CMD, which resides on the same device and UFD as the other 
Task Builder command files. The default name of STK.TSK, the Slow 
Task Builder, is ••• TKB. It may be convenient to install the Slow 
Task Builder with a different name if you want to use both Task 
Builders in your system. 

F-11 



APPENDIX G 

THE FAST TASK BUILDER 

The Fast Task Builder (FTB) allows you to build simple tasks about 
four times faster than the Task Builder (TKB). However, FTB has 
limited functionality. It can only link single-segment, nonprivileged 
tasks, and supports a limited number of switches and options. 

The (FTB) is intended for use as a load-and-go type of linker. It 
contains very few options and does not support: 

• New map format 

• Overlaid programs 

• FORTRAN virtual arrays 

• Production of symbol table files 

• Creation of resident libraries 

• Privileged tasks 

• Cluster libraries 

The only supported switches are: 

• /SP on map file (default /SP) 

• /CP on task file (default /CP)l 

• /EA on task file (default /-EA) 

• /MM on task file (default /MM) 

• /FP on task file (default /FP) 

• /DA on input or task image (default /-DA) 

• /LB on an input file in the form: 

>TKB TASK=PROG.OBJ,LIBRARY/LB 

but not in the form: 

>TBK TASK=PROG.OBJ,LIBRARY/LB:MODULE 

1. No checkpoint space is allocated in the task image file. 

G-1 



THE FAST TASK BUILDER 

The supported option inputs are: 

• ASG (same defaults as TKB) 

• STACK (same default as TKB) 

• UNITS 

• TASK (same default as TKB) 

• EXTSCT 

• ACTFIL (same default as TKB) 

• MAXBUF (same default as TKB) 

• LIBR 

• COMMON 

• RESLIB (same defaults as TKB) 

• RE SC OM (same defaults as TKB) 

• SUPLIB 

• RES SUP 

FTB supports linking to shared regions but not 
region. FTB cannot link to clustered libraries. 
to . supel:~isor\.-.mod~. r,t '.l!1i~f(~~~~~i~·; . ;~i~~~~:~! 
su,perviso;r:...mode 'ljcb~aip;'.i,e~r~·: · '' "rn' .,. 

~ ~ i' _,' '·>'}'«'i;:,., ~··<'," :-,k'~i'o;.-:;\ 

a shared 

,;~~~~~ 
FTB allocates symbol table space from the end of its image to the end 
of the partition. It does not have a virtual symbol table. An Extend 
Task or equivalent of BK is recommended. FTB does not dynamically 
extend itself at run time. 

FTB runs approximately four times faster than TKB on an 11/70 with 
RP04s when TKB is running with a totally resident symbol table. In 
smaller systems with slower disks, the ratio should be much higher. 

FTB also supports shared regions. 

FTB uses asynchronous system traps (ASTs) and therefore requires AST 
support in the Executive. 

G-2 



APPENDIX H 

ERROR MESSAGES 

The Task Builder (TKB) produces diagnostic and fatal error messages. 
Error messages are printed in the following forms: 

TKB -- *DIAG*-error-message 

or 

TKB -- *FATAL*-error-message 

Some errors are correctable when command input is from a terminal. In 
such a case, a diagnostic error message can be printed, the error 
corrected, and the task-building sequence continued. However, if the 
same error is detected in an indirect command file, a correction 
cannot be made and the Task Builder aborts. 

Some diagnostic error messages merely advise you of an unusual 
condition. If you consider the condition normal for your task, you 
can install and run the task image. 

NOTE 

The Task Builder exits with two 
statuses: it returns an ERROR status 
when it encounters a diagnostic error, 
and a SEVERE ERROR when it encounters a 
fatal error. (For more information 
about the Exit-With-Status directive, 
see the RSX-llM/M-PLUS Executive 
Reference Manual.) 

This appendix tabulates the error messages produced by TKB. Most of 
the messages are self-explanatory. In some cases, the line in which 
the error occurred is printed. 

A Software Performance Report (SPR) should be submitted to DIGITAL in 
cases where the explanation accompanying a message refers to a system 
error. 

Allocation failure on file file-name 

TKB could not acquire sufficient disk ~pace 
image file, or did not have write-access 
that was to contain the file. 

H-1 

to store the task 
to the UFD or volume 



ERROR MESSAGES 

Blank P-section name is illegal 
overlay-description-line 

The overlay-description-line printed contains a .PSECT directive 
that does not have a p-section name. 

Cluster library element library-name does not have null root 

This is a fatal error. All libraries, except the first, must be 
PLAS-overlaid and have a null root. The first library in the 
group can be nonoverlaid or overlaid with a null or non-null 
root. 

Command I/O error 

An I/O error occurs on a command input device. (Device may not 
be on line, or possible hardware error.) 

Command syntax error 
command-line 

The command-line printed has incorrect syntax. 

Complex relocation error - divide by zero: module 
module-name 

A divisor having the value 0 was detected in a complex 
expression. The result of the divide was set to 0. (Probable 
cause: division by a global symbol whose value is undefined.) 

Conflicting base addresses in cluster library 

This conflict arises when you specify APRs, for both PIC and 
non-PIC libraries that are included in the cluster. See the APR 
parameter as described in the CLSTR option. This is a fatal 
error. 

Disk image core allocation too large 
invalid-line 

The minimum disk allocation specified in the invalid line is 
greater than 128. 

File file-name attempted to store data in virtual section 

The file contains a module that has attempted to initialize a 
virtual section with data. 

File file-name has illegal format 

The file file-name contains an object module whose format is not 
valid. 

Illegal APR reservation 

An APR specified in a COMMON, LIBR, RESCOM, or RESLIB keyword is 
outside the range 0-7. 

Illegal cluster configuration 

If the cluster contains a non-overlaid library, that library must 
be the first library in the cluster. Check the configuration of 
the libraries in the cluster. This is a fatal error. 

H-2 



ERROR MESSAGES 

Illegal default priority specified 
option-line 

The option-line printed contains a priority greater than 250. 

Illegal device/volume 
i nvalid-1 i ne 

The invalid line 
specification. 

printed contains an illegal device 

Illegal directory 
invalid-line 

The invalid line printed contains an illegal directory name. 

Illegal error-severity code octal-list 

System error (no recovery). An SPR should be submitted with a 
copy of the message containing the octal-list as printed. 

Illegal filename 
invalid-line 

The invalid-line printed contains 
specification. Using wildcards is 

Illegal get command line error code 

System error (no recovery) • 

Illegal logical .unit number 
invalid-line 

a wildcard 
prohibited. 

(*) in a file 

The invalid-line printed contains a device assignment to a unit 
number larger than the number of logical units specified by the 
UNITS keyword, or assumed by default if the UNITS keyword is not 
used. 

Illegal multiple parameter sets 
invalid-line 

The invalid-line printed contains multiple sets of parameters for 
a keyword that allows only a single parameter set. 

Illegal number of logical units 
invalid-line 

The invalid-line printed contains a logical unit number greater 
than 250. 

Illegal ODT or task vector size 

ODT or SST vector size specified is greater than 32 words. 

Illegal overlay description operator 
invalid-line 

The invalid-line printed contains an unrecognizable operator in 
an overlay description. This error occurs if the first character 
in a p-section or segment name is a dot (.). 

H-3 



Illegal overlay directive 
invalid-line 

ERROR MESSAGES 

The invalid-line printed contains an unrecognizable overlay 
directive. 

Illegal partition/common block specified 
invalid-line 

User-defined base or length is not on a 32-word boundary. 

Illegal P-section/segment attribute 
invalid-line 

The invalid-line printed contains a program section or segment 
attribute that is not recognized. 

Illegal reference to library P-section p-sect-name 

A task has attempted to reference a p-sect-name existing in a 
shared region but has not named the shared region in a keyword. 
This error occurs when you explicitly specify an STB file as an 
input file, but you have not specified the library to which the 
STB file belongs in an option. 

Illegal switch 
file-specification 

The file-specification printed contains an illegal switch or 
switch value. 

Incompatible reference to library P-section p-sect-name 

A task has attempted to reference more storage in a shared region 
than exists in the shared region definition. 

Incorrect library module specification 
invalid-line 

The invalid-line contains a module name with a non-Radix-50 
character. 

Indirect command syntax error 
invalid-line 

The invalid-line printed contains a syntactically incorrect 
indirect file specification. 

Indirect file depth exceeded 
invalid-line 

The invalid-line printed gives the file reference that exceeded 
the permissible indirect file depth (2). 

Indirect file open failure 
invalid-line 

The invalid-line contains a reference to a command input file 
that could not be located. 

, ,'t 

!rKB cuuld .n.ot. fi·nd. ~riough ,·,free· ·1\:ERs to ·map 'the· re.a~·..;.only .· po;~l~n. 
of a .. >.multius.e'r .·tas:k •· · 

H-4 



Insufficient parameters 
invalid-line 

ERROR MESSAGES 

The invalid-line contains a keyword with an insufficient number 
of parameters to complete its meaning. 

Invalid APR reservation 
invalid-line 

APR is specified on a keyword for an absolute library. 

Invalid keyword identifier 
invalid-line 

The invalid-line printed contains an unrecognizable keyword. 

Invalid partition/common block specified 
invalid-line 

A partition is invalid for one of the following reasons: 

• TKB cannot find the partition name in the host system in order 
to get the base and length. 

• The system is mapped, but the base address of the partition is 
not on a 4K boundary for a nonrunnable task or is not 0 for a 
runnable task. 

• The memory bounds for the partition overlap a shared region. 

• The partition name is identical to the name of a previously 
defined COMMON or LIBR shared region. 

• The top address of the partition for a runnable task exceeds 
32K minus 32 words for a mapped system, or exceeds 28K minus 1 
for an unmapped system. 

• A system-controlled partition was specified for an unmapped 
system. 

Invalid reference to mapped array by module module-name 

The module has attempted to initialize the mapped array with 
data. An SPR should be submitted if DIGITAL-supplied software 
caused this problem. 

Invalid window block specification 
invalid-line 

The number of extra address windows specified exceeds the number 
pemitted. . .~ an. ·~~.~~~~'~2· 

.. e~.~t:.Cl.","'?~.!l.ti?! }~~<?.C:.1<:5-L ;· ·?~n:}~q . R~~ -1} r-\~~~us;. s·~$.;~,em.:,.:/~~ .. u:.,.-~il;~ . :, .~P!~~. ~Y::. 
a's many as. lS. ex·t:ra· ··windo,w"·bloc.ks.· · · · 

If you build a task on an RSX-llM system and specify more ·window 
blocks, you get this error message, but the task will build. 
However, it cannot be install·ed and run on. an RSX-llM system. 

I/O error lib£ary image file 

An I/O error has occurred during an attempt to open or read the 
Task Image File of a shared region. 

H-5 



ERROR MESSAGES 

I/O error on input file file-name 

This error occurs when TKB cannot read an input file 
specification (for example, when the command line is greater than 
80 characters). 

I/O error on output file file-name 

Label or name is multiply defined 
invalid-line 

The invalid-line printed defines a name that has already appeared 
as a .FCTR, .NAME, or .PSECT directive. 

Library file filename has incorrect format 

A module has been requested from a library file that has an empty 
module name table. 

Library library-name not found in any cluster 

All task image and symbol table files to be included as cluster 
elements must reside in LB: (1,1]. 

Library references overlaid library 
invalid-line 

An attempt was made to link the resident library being built to a 
shared region that has memory-resident overlays. 

Load addr out of range in module module-name 

An attempt has been made to store data in the task image outside 
the address limits of the segment. This problem is usually 
caused by one of the following: 

• An attempt to initialize a p-section contained in a shared 
region 

• An attempt to initialize an absolute location outside the 
limits of the segment or in the task header 

• A patch outside the limits of the segment to which it applies 

• An attempt to initialize a segment having the NODSK attribute 

Lookup failure on file file name 
invalid-line 

The invalid-line printed contains a file name that cannot be 
located in the directory. 

Lookup failure on system library file 

TKB cannot find the system Library (SYO: [l,l]SYSLIB.OLB) file to 
resolve undefined symbols. 

H-6 



ERROR MESSAGES 

Lookup failure resident library file - filename.ext 

No symbol table or task image file can be found for the shared 
region "filename.ext." If the shared region was linked to another 
shared region, ensure that the task image of both regions and the 
symbol table files exist on the same device and in the same UIC 
as the UIC referenced by the option RESLIB, RESCOM, LIBR, COMMON, 
}tt~$pP~,··o,:r;.,SOP,IB;. 

Module module-name ambiguously defines P-section p-sect-name 

The p-section p-sect-name has been defined in two modules not on 
a common path, and referenced from a segment that is common to 
both paths. 

Module module-name ambiguously defines symbol sym-name 

Module module-name references or defines a symbol sym-name whose 
definition exists on two different paths, but is referenced from 
a segment that is common to both paths. 

·. ·looat:~n.:Sr~'~;~t0.t>~ii0b1~. 1.:~•uh1:>1·i:>a:Q+·,~~e:t,q·?':~·,,· /~/ :~.:··· ·,.,·;,: ,; 
1

,f ;j ;,!)j'f .·:·) ' .. :.)··.::c',,':.:-· .. ·'./.···:· t. ": ·~ :··~?. '.! / ····:<·; .. ·:< '.' ··:. ~: < ·•·.·· :·,· ·:;· •. ~<· :.··~. ' : . ;· '•' ·.·; }·: .·.~f'.'. ~·:?,.'.··,' 
ll09•·':t;Q· b;u· ..... ran:·.,,r·~ ·'ilndr. o~s·pa~:.·.ta;$:k;"and.'1:i'nk.·;:'it·<·t.~,,···'8;n" 

.//,,, -' .. ;,.··.·. . :"•: ,~~t=.fi:.~~/"'1;±,~:r:·/.·'if }s~ati'.: ... c~~:t.~(in·~ .. ~r(.'~.1.a;~Ji;~y,i¢· ··:v.~~i:~'..i·: ... ·~:o;rrtr~:f:~/ 
i\t ;'·l/ .. "•··R .. ·· "··,,1 ..• ·I,1,.f?'t·aJ:;1":~,1t~ .... :·tl,le;/ R~·~"7·,l·~t4~.~.1;su~:·N~r·S'~Q.n ·· · .. 2 .... ;~ .·.· ;<>,·r.· .'.:·~:q·~~t;\· .. 
··:-·;;·/,"·:"y'efr;S,~~ 'sk; 0 BU"i'rd'er'· t'o cr'.eat'e new-st:y:1e. vedtors :f<:>'r ,.th:e; ;l·l'l:>~.at:·J.l~,: 
/ '5\..,,~;/.s/!;rtie~n~'reDu'i:l:d~/~lillr;-;<-;/tasKx. ~ ,.., /",~,,,,,,./',_, ,, , "~/ v/ ~ ~ '~~;: ~ *:i ~;,> 

<Y« ,~'I,- =/'" Y, .>,~);.'< .. >,,'1,.:,,:,•~ ~' ; -i' ;-.>.> ->,,h . .-~,,_ .. -i. » ~%,h ~ ~ < y 0. < h ' w > 

Module module-name illegally defines xfr address p-sect-name addr 

This message occurs under any one of the following conditions: 

• The start address printed is odd. 

• The module module-name is in an overlay segment and has a 
start address. The start address must be in the root segment 
of the main tree. 

• The address is in a p-section that has not yet been defined. 
An SPR should be submitted DIGITAL-supplied software caused 
this problem. 

Module module-name multiply defines P-section p-sect-name 

• The p-section p-sect-name has been defined more than once in 
the same segment with different attributes. 

• A global p-section has been defined more than once with 
different attributes in more than one segment along a common 
path. 

Module module-name multiply defines symbol sym-name 

Two definitions for the relocatable symbol sym-name have occurred 
on a common path. Or two definitions for an absolute symbol with 
the same name but different values have occurred. 

Module module-name multiply defines xfr addr in seg 
segment-name 

This error occurs when more than one module making up the root 
has a start address. 

H-7 



ERROR MESSAGES 

Module module-name not in library 

TKB could not find the module named on the LB switch in the 
library. 

No dynamic storage available 

TKB needs additional symbol table storage and cannot obtain it. 
(If possible, install TKB in a larger partition.) 

No memory available for library library-name 

TKB could not find enough free virtual memory to map the 
specified shared region. 

No root segment specified 

The overlay description did not contain a .ROOT directive. 

No virtual memory storage available 

Maximum permissible size of the work file is exceeded. The user 
should consult Appendix F for suggestions on reducing the size of 
the work file. 

Open failure on file file-name 

Option syntax error 
invalid-line 

The invalid-line printed contains unrecognizable syntax. 

Overlay directive has no operands 
invalid-line 

All overlay directives except .END require operands. 

Overlay directive syntax error 
invalid-line 

The invalid-line printed contains a syntax error or references a 
line that contains an error. 

Partition partition-name has illegal memory limits 

• 

• 

The partition-name defined in 
address alignment that is 
system. 

the host system has a base 
not compatible with the target 

The user has attempted 
partition whose length 
space (SK or 12K). 

to build a privileged task in a 
exceeds the task's available address 

Pass control stack overflow at segment segment-name 

System error. An SPR should be submitted with a copy of the ODL 
file associated with the error. 

PIC libraries may not reference other libraries 
invalid-line 

The user has attempted to build a position-independent shared 
region that references another shared region. 

H-8 



ERROR MESSAGES 

P-section p-sect-name has overflowed 

A section greater than 32K has been created. 

Required input file missing 

At least one input file is required for a task build. 

Required partition not specified 

The PAR keyword was not used when running TKB on an RSX-110 host 
system. The keyword must contain explicit base address and 
length specifications. 

Resident library has incorrect address alignment 
invalid-line 

The invalid-line specifies a shared region that has one of the 
following problems: 

• The library references another library with invalid address 
bounds (that is, not on 4K boundary in a mapped system). 

• The library has invalid address bounds. 

Resident library mapped array allocation too large 
invalid-line 

The invalid-line printed contains a reference to a shared region 
that has allocated too much memory in the task's mapped array 
area. The total allocation exceeds 2.2 million bytes. 

Resident library memory allocation conflict 
keyword-string 

One of the following problems has occurred: 

• More than seven shared regions have been specified. 

• A shared region has been specified more than once. 

• Non-position-independent shared regions 
allocations overlap have been specified. 

Root segment is multiply defined 
invalid-line 

whose memory 

The invalid-line printed contains the second .ROOT directive 
encountered. Only one .ROOT directive is allowed. 

Segment seg-name has addr overflow: allocation deleted 

Within a segment, the program has attempted to allocate more than 
32,764 words (32K-l words). A map file is produced, but no task 
image file is produced. 

Segment seg-name not found for patch 

The Task Builder could not locate the named segment for a global 
patch. The option used was GBLPAT=X:Y:O. 

H-9 



ERROR MESSAGES 

'.;·,;r·~; ·co~J.d not locate ,t!l~ ,:sYmb~i , i.:X;1 i .l«f;Jk.1.:cu 

~ .CM:PR.'.,r,~x· op.t"i:o~i~ · · · ·· · 

Symbol sym-name not found for patch 

TKB could not locate symbol Y for a global patch. 
used was GBLPAT=X:Y:O. 

Task has illegal memory limits 

The option 

An attempt has been made to build a task whose size exceeds the 
partition boundary. If a task image file was produced, it should 
be deleted. 

Task has illegal physical memory limits 
mapped-array task-image task extension 

The sum of the parameters displayed -- mapped array size, task 
image size, and task extension -- exceeds 2.2 million bytes. The 
quantities are shown as octal numbers in units of 64-byte blocks. 
Any resulting task image file should be deleted. 

Task image file filename is noncontiguous 

Insufficient contiguous disk space was available to contain the 
task image. A noncontiguous file was created. After deleting 
unnecessary files, the /CO switch in PIP should be used to create 
a contiguous copy. 

Task requires too many window blocks 

The number of address windows required by the task and any shared 
regions exceeds 8 for RSX-llM tasks and 16 for RSX-llM-PLUS 
tasks. 

Task-build aborted via request 
option-line 

The option-line contains a request from the user to abort the 
task build. 

Too many nested .ROOT/.FCTR directives 
invalid-line 

The invalid-line printed contains a .FCTR directive that exceeds 
the maximum nesting level (16). 

Too many parameters 
invalid-line 

The invalid-line printed contains a keyword with more parameters 
than required. 

Too many parentheses levels 
invalid-line 

The invalid-line printed contains a parenthesis that exceeds the 
maximum nesting level (16). 

H-10 



ERROR MESSAGES 

Truncation error in module module-name 

An attempt has been made to load a global value greater than +127 
or less than -128 into a byte. The low-order eight bits are 
loaded. 

Unable to open work file 

The work file device is not mounted. (The work file is usually 
located on the same device as is the Task Builder.) 

Unbalanced parentheses 
invalid-line 

The invalid-line printed contains unbalanced parentheses. 

n Undefined symbols segment seg-name 

The segment named contains n undefined 
allocation file is requested, the 
terminal. 

Virtual section has illegal address limits 
option-line 

symbols. If no memory 
symbols are printed on the 

The option-line printed contains a VSECT keyword whose base 
address plus window size exceeds 177777. 

Work file I/O error 

An I/O error occurs during an attempt to reference data stored by 
TKB in its work file. 

H-11 



TASK BUILDER GLOSSARY OF TERMS 

ABSOLUTE SHARED REGION 

A shared region that has the same virtual addresses in all tasks 
that refer to it= 

AUTO LOAD 

The method of loading overlay segments, in which the Overlay 
Run-Time routines automatically load overlay segments when they 
are needed and handles any unsuccessful load requests. 

AUTOLOAD VECTOR 

A transfer of control instruction generated by the Task Builder 
to resolve an up-tree reference to a global symbol. 

CO-TREE 

One of one or more secondary tree structures within a multiple 
tree overlay structure. When a co-tree's root segment contains 
code or data, the root segment of the co-tree is made resident in 
physical memory through calls to the Overlay Run-Time routines. 

COMMON BLOCK 

Another name for resident common. 

DISK-RESIDENT 

That which resides on disk storage until needed. 

DISK-RESIDENT OVERLAY SEGMENT 

An overlay segment that shares the same physical memory and 
virtual address space with other segments. The segment is read 
in from disk each time it is loaded (compare Memory-Resident 
Overlay Segment) • 

GLOBAL CROSS-REFERENCE 

A list of global symbols, in alphabetical order, accompanied by 
the name of each referencing module. 

GLOBAL SYMBOL 

A symbol whose definition is known outside the defining module. 

HEADER 

That portion of a task image that contains the task's 
characteristics and status. Shared regions, although built like 
a task, do not have a header. 

Glossary-1 



TASK BUILDER GLOSSARY OF TERMS 

HOST SYSTEM 

The system on which a task is built. 

LOGICAL ADDRESSES 

The actual physical addresses that the task can access. 

LOGICAL ADDRESS SPACE 

The total amount of physical memory to which the task has access 
rights. 

MAIN TREE 

An overlay tree whose root segment is loaded by the Executive 
when the task is made active. 

MANUAL LOAD 

The method of loading overlay segments in which the user includes 
explicit calls in his routines to load overlays and handles 
unsuccessful load requests. 

MAPPED ARRAY AREA 

An area of the task's physical memory, preceding the task image, 
that is used for storage of large arrays. Space in the area 1s 
reserved by means of the VSECT keyword or through a Mapped Array 
Declaration contained in an object module. Access is through the 
mapping directives issued at run time. 

MEMORY ALLOCATION FILE 

The output 
information 
task. 

MEMORY-RESIDENT 

file created by the Task Builder that lists 
about the size and location of components within a 

In general, that which resides in memory all the time. The 
entity, as in the case of memory-resident overlays, may initially 
reside on disk. 

MEMORY-RESIDENT OVERLAY SEGMENT 

An overlay segment that shares virtual address space with other 
segments, but which resides in its own physical memory. The 
segment is loaded from disk only the first time it is referenced; 
thereafter, mapping directives are issued in place of disk load 
requests. 

OVERLAY DESCRIPTION LANGUAGE 

A language that allows you to describe the overlay structure of a 
task. 

Glossary-2 



TASK BUILDER GLOSSARY OF TERMS 

OVERLAY RUNTIME ROUTINES 

A set of system library subroutines linked as part of an overlaid 
task that are called to load segments into memory. 

OVERLAY SEGMENT 

A segment that shares virtual address space with other segments, 
and is loaded when needed. 

OVERLAY TREE 

PATH 

A tree structure consisting of a root segment and optionally one 
or more overlay segments. 

A route that is traced from one segment in the overlay tree to 
another segment in that tree. , 

PATH-DOWN 

A path toward the root of the tree. 

PATH-LOADING 

The technique used by the autoload method to load all segments on 
the path between a calling segment and a called segment. 

PATH-UP 

A path away from the root of the tree. 

PHYSICAL ADDRESS 

The assigned byte location in physical memory, which is usually 
located in the processing unit. 

POSITION-INDEPENDENT REGION 

A shared region that can be placed anywhere in a referencing 
task's virtual address space when the system on which the task 
runs has memory management hardware. 

PRIVILEGED TASK 

A task that has privileged memory access rights. A privileged 
task can access the Executive and the I/O page in addition to its 
own partition and referenced shared regions. 

PROGRAM SECTION 

A section of memory that is a unit of the total allocation. A 
source program is translated into object modules that consist of 
program sections with attributes describing access, allocation, 
relocatability, and so forth. 

REGION 

A contiguous block of physical addresses in which a driver, a 
task, a resident common, or library resides. 

Glossary-3 



TASK BUILDER GLOSSARY OF TERMS 

RES ID ENT COMMON 

A shared region in which data resides that can be shared by two 
or more tasks. 

RESIDENT LIBRARY 

A shared region in which single copies of commonly used 
subroutines reside that can be shared by two or more tasks. 

ROOT SEGMENT 

The segment of an overlay tree that, once loaded, remains in 
memory during the execution of the task. 

RUNNABLE TASK 

A task that has a header and stack and that can be installed and 
executed. 

SHARED REGION 

A shared region is a block of data or code that resides in 
physical memory and can be used by any number of tasks. A shared 
region is built and installed separately from the task. 

:lm~-,~~Ait.i123~tRJY;. : i' · 

! ! ul ! L! ; l)ir: l \ : LI ): ; •. ! j ! j ' J • .• .• . 1:i;' I . . ' .. ·· .. · . .. . . ! ..• ; . i ; . . • i. ! ! 

,1,i·.~ l~ · l:ft ··r•·:O,. 1 f!;A,u~N\e~~; , '*t:,hf,;t ~,0.~s,ei& ..• ,th~ , N11?rlri"~1i},spit:-:rtPP~, f?'Ji~·l'iY, 
. ::lffl:Fl, .~fl~·,~.~i .;~l :rtJ.o,:: ~fi\P• '.tP1 potri·\'11~~. :ta~~: ar~; :~r~i 1°\WPJ rnµ~;m~r.·1~[·.f~f' 

SYMBOL DEFINITION FILE 

The output object file created by the Task Builder that contains 
the global symbol definitions and values and sometimes program 
section names, attributes, and allocations in a format suitable 
for reprocessing by the Task Builder. Symbol definition files 
contain linkage information about shared regions. 

TARGET SYSTEM 

The system on which a task executes. 

TASK IMAGE FI LE 

The output file created by the Task Builder that contains the 
executable portion of the task. 

VIRTUAL ADDRESSES 

The addresses within the task. Task addresses can range from 
zero through 177777(8) depending on the length of the task. 

VIRTUAL ADDRESS SPACE 

That space encompassed by the range of virtual addresses that the 
task uses. 

VIRTUAL PROGRAM SECTION 

A program section that has virtual memory allocated to it, but 
not physical memory. Virtual address space is mapped into 
physical memory at run-time by means of the mapping directives. 

Glossary-4 



TASK BUILDER GLOSSARY OF TERMS 

WINDOW 

A continuous virtual address space that can be moved to allow the 
task to examine different parts of a region or different regions. 

WINDOW BLOCK 

A structure defined by the Task Builder that describes a range of 
continuous virtual addresses. 

Glossary-5 



Abort 
TKB 

during input, 11-4 
ABORT option, 11-4 
Absolute region 

See Reg ion 
ABSPAT option, 11-5 
I AC switch, 10-5 
Access-code, 2-4 to 2-5 

grouping program section by, 
10-36 

ACP 
specifying APR, 10-5 
specifying task as, 10-5 

ACTFIL option, 11-6 
Active Page Register 

See APR 
Address 

assigning, 2-1 
concepts, 2-13 
logical, 2-14 
mapped system, 2-18 
physical, 2-13 

mapped system, 2-17 
space, 2-14 

virtual, 2-14 
virtual and logical 

coincidence, 2-15 
space translation, 2-23 
transfer, A-5 
virtual, 2-13 

mapped system, 2-17 to 2-18 
virtual and logical 

relationship, 2-17, 2-21 
virtual space 

co-tree and main tree, 3-40 
disk-resident overlay, 3-1 

to 3-4 
division, 2-18 
division by memory 

management, 2-18 
in overlay tree, 3-24 
memory-resident overlay, 

3-6 
overlaid task, 3-10, 3-14 
overlay, 3-5, 3-33 to 3-35 
reducing usage of, 3-1 

virtual space allocation, 
diagram 

creating ODL file, 3-36 
virtual space and memory 

overlaid task, 3-11 to 3-14 
/AL switch, 10-6 
$$ALER 

reserved PSECT name, E-2 

INDEX 

ALERR module, 5-53 
Allocation-code, 2-4 to 2-5 
ALSCT FORTRAN subroutine, 5-56 

to 5-58 
$$ALVC 

PSECT, 7-11 
reserved PSECT name, E-2 

$$ALVO 
PSECT, 7-11 
reserved PSECT name, E-2 

$$ALVI 
PSECT, 7-11 
reserved PSECT name, E-2 

Ancillary control processor 
See ACP 

APR, 2-16 
I- and D-space 

allocation in multiuser 
task, 9-3 

relocatable region 
specifying for, 5-6 

resident common 
system-owned, 11-11 

resident library 
system-owned, 11-11 

specifying for ACP, 10-5 
supervisor-mode, 8-2 to 8-3 

Arithmetic element 
extended 

specifying, 10-16 
Array declaration 

mapped, A-10 
ASG option, 11-7 
Asterisk (*) 

See also Autoload indicator 
cross-reference 

of overlaid task, 4-13 
cross-reference listing, 

10-12 
At sign (@) 

cross-reference 
of overlaid task, 4-13 

cross-reference listing, 
10-12 to 10-13 

indirect file, 1-5 
Attribute 

in .NAME directive 
OSK, 3-28 
GBL, 3-28 
NODSK, 3-28 
NOGBL, 3-28 

program section 
restriction, 2-3 

save, 2-4 

Index-1 



$$AUTO 
PSECT, 5-52 to 5-53 
reserved PSECT name, E-2 

AUTO module, 5-52 
AUTOL module, 5-52 
Autoload, 4-1 

applying indicator 
co-tree root, 4-2 
.FCTR label name, 4-3 
file name, 4-2 
portions of ODL tree, 4-2 
program section name, 4-3 
segment name, 4-3 

code sequence 
conventional task, 4-5 

error handling, 4-11 to 4-12 
indicator, 4-2 

efficiently placed, 4-6 
overhead in region, 5-13 
path loading, 4-3 to 4-4 
specifying, 4-1 
vector, 4-4 

eliminating unnecessary, 
4-6 

I- and D-space, 7-9, 7-11 
overlay, 3-20 

vector format 
conventional task, 4-4 
I- and D-space, 4-4 to 4-5 

Autoloadable 
data segment, 4-7 
making file 

using file name, 4-2 
making program section, 4-3 

.BLK 
See Program section 

Block 
label, 2-8 

Buff er record 
maximum size, 11-23 

Build file 
modifying 

INDEX 

to improve performance, F-1, 
F-5 

/CC switch, 10-7 
Checkpoint 

area 
in task image, B-9 

space 
allocating, 10-6, 10-10 

Checkpointable task 
specifying a, 10-6, 10-10 

Circumflex () 
cross-reference listing, 

10-12 to 10-13 
global cross-reference 

of an overlaid task, 4-13 
CLSTR option, 11-8 to 11-9 
Cluster library, 5-44 

See also Library 
/CM switch, 10-8 -

$CMPAL 
completion routine, 8-8 to 

8-9 
CMPAL option, 8-9 
$CMPCS 

completion routine, 8-8 
CMPCS module, 8-9 
CMPRT option, 8-9, 11-10 

use in CSM library, 8-3, 8-8 
use in supervisor-mode 

library, 8-7 
/CO switch, 10-9 
Code 

access, 2-4 to 2-5 
allocation, 2-4 to 2-5 
relocation, 2-4 
scope, 2-4, 2-7 
type, 2-5, 2-7 

Comma (,) 
See ODL operator 

Command 
file 

indirect, 1-5 
interaction with indirect, 

1-5 to 1-6 
level of indirection, 1-7 
with ODL, 3-30 

line 
comments in, 1-8 
form, 1-2 
multi-line input, 1-3 
option input, 1-3 
output file interpretation, 

1-3 
terminating character, 1-3, 

1-5 to 1-6 
to build a task, 1-2 
UFD convention, 1-9 

sequence 
comments in, 1-8 
simple, 1-2 

Comment 
in command sequence, 1-8 
in line, 1-8 

Common, 5-1, 5-26 to 5-31 
See also Region 
allocation diagram, 5-20 
assigning references, 5-23 
building a linking task, 5-21 

to 5-22 
building and linking to, 5-14, 

5-17 to 5-18 
building and linking to a 

device, 5-26 to 5-31 
device, 5-26 to 5-31 

See also Device common 
establishing offset in, 5-28 
in MACR0-11 

building and linking to, 
5-17 to 5-18 

building and linking to a 
See Region 

Index-2 



Common {Cont.) 
installing in RSX-llM, 5-2 to 

5-3, 5-20 
installing in RSX-llM-PLUS, 

5-2 to 5-3, 5-20 
linking to region, 5-14 
map, 5-19 
PSECT 

building a linking task, 
5-23 

reg ion , 2-19 
resident, 5-1 to 5-2 

declaring, 11-11, 11-28 
name block data, B-8 

specifying a, 10-9 
typical, 5-2 

COMMON option, 11-11 to 11-12 
Completion routine 

$CMPAL, 8-2, 8-8 to 8-9, 8-18 
$CMPCS, 8~2, 8-8 
content of a, 8-12 to 8-14 
CSM library, 8-13 
definition, A-11 
identification, A-11 
name, A-11 
supervisor-mode library, 8-2, 

8-7 
user-written, 8-21 

Complex relocation, A-22 
entry, A-23 
operation codes, A-22 

Concatenated object module 
using to reduce overhead, F-4 

Control section 
name, A-5 
name entry, A-5 

Cotree, 3-31 
and main tree 

virtual address space, 3-40 
global symbol resolution, 

3-17 
null root, 3-31 
ODL statement 

from allocation diagram, 
3-39 to 3-40 

overlay, 3-34 to 3-35 
segment 

affecting symbol search on, 
10-19 

segment loading, 4-2 
Counter 

location 
definition, A-17 
modification, A-18 

/CP switch, 10-10 
/CR switch, 10-11 to 10-13 
Cross-reference 

global 
of overlaid task, 4-12 to 

4-14 
listing 

specifying a, 10-11 

INDEX 

CSM library 
completion routinef 8-12 to 

8-14 
dispatching, 8-19 
linking task 

example of, 8-9 
supervisor-mode, 8-7 

building, 8-7 to 8-8 
.STB file, 8-8 

CTRL/Z 
effect on Task Builder, 11-4 

/DA switcht 10-14 
Data 

adjacency in memory, 2-28 
segment 

autoloadable, 4-7 
structure 

building a, 2-1 
overlay of a, 3-19 

Data base 
overlay, B-15 

I- and D-space task, B-16 
Data format 

input 
Task Builder, A-1 

$$DBTS 
reserved PSECT name, E-2 

Debugging aid 
including a, 10-14 

Declaration flag byte 
symbol, A:.-7 

Default of switch 
modifying, F-7 to F-11 

Descriptor 
reg ion, B-21 
segment, B-18 
window, B-20 to B-21 

Development step 
program, 1-1 

Device 
assignment, 11-7 
common, 5-29 

building and linking to a, 
5-26 to 5-31 

$$DEVT 
reserved PSECT name, E-2 

Directive 
memory management 

in mapping, 2-24 
.NAME, 3-27 

attributes for, 3-28 
example of use, 3-28 

ODL, 3-23 to 3-24 
• END, 3-23 
• FCTR, 3-25 
introduction, 3-23 
.ROOT, 3-23 

.PSECT, 3-29 
use of parentheses, 3-24 

Directory record 
declare global symbol, A-2 
end of global symbol, A-11 

Index-3 



Directory record (Cont.) 
global symbol 

end of, A-11 
internal symbol, A-24 
relocation, A-12 

Disk image, 2-8 to 2-9 
conventional task, 7-6 

Disk-resident 
overlay, 3-1 to 3-2 

loading, 4-1 
overlay structure, 3-2 

Displaced relocation 
internal, A-15 

/DL switch, 10-15 
DSPPAT option, 11-13 
Dump 

See Postmortem dump 
See Snapshot dump 
memory, D-1 

Dynamic region, 2-20, 5-40 to 
5-43 

/EA switch, 10-16 
/EL switch, 10-17 
Element 

extended arithmetic 
specifying, 10-16 

.END directive, 3-23 
End of global symbol directory, 

A-11 
End of module record, A-24 
Error 

exit TKB commands on, 11-4 
handling 

$ALERR entry, 4-12 
for autoload, 4-11 to 4-12 
for manual load, 4-12 
overlay, 4-12 

message, H-1 
Exclamation point (!) 

See ODL operator 
operator 

See ODL operator 
Extend Task directive 

to improve performance, F-2 
EXTSCT option, 11-14 
EXTTSK option, 11-15 

Factor 
auto loadable 

making first component of, 
4-3 

Fast Task Builder, G-1 
speed of, G-2 
supported 

features, G-1 to G-2 
options, G-2 
switches, G-1 

unsupported features, G-1 to 
G-2 

.FCTR directive, 3-25 
argument 

library modules, 3-26 

INDEX 

.FCTR directive 
argument (Cont.) 

library to resolve 
references, 3-26 

named input file, 3-25 
PSECT name, 3-26 
segment name, 3-26 

arguments for, 3-25 
use of label in, 3-25 

.FCTR statement 
allocation diagram 

creating from, 3-38 to 3-39 
File 

command 
level of indirection, 1-7 

declaring number of active, 
11-6 

indirect command, 1-5 
input 

designating as debugging 
aid, 10-14 

designating as library file, 
10-23 

directing selective symbol 
search, 10-47 to 10-49 

including content of in map, 
10-26 

processing to reduce 
overhead, F-6 

specifying as default 
library, 10-15 

library 
declaring a, 10-23 

making file autoloadable 
using name, 4-2 

map 
pr inti ng , 1- 2 

omitting a specific output, 
1-3 

open at one·time, 11-6 
specification 

convention for, 1-8 
default for, 1-8 

Floating Point Processor 
specifying, 10-18 

FMTBUF option, 11-16 
FORTRAN 

common block 
in overlays, 3-19 

manual load calling sequence, 
4-9 to 4-10 

for I- and D-space task, 
4-11 

run-time support 
virtual program section, 

5-56 to 5-57 
/FP switch, 10-18 
$$FSR1 

reserved PSECT name, E-3 
.FSRPT 

low-memory context, B-10 
reserved global symbol, E-1 

Index-4 



INDEX 

FTB library 
overlaid region, 5-13 

/FU switch, 10-19 

GBLDEF option, 11-17 
GBLINC option, 11-18 
GBLPAT option, 11-19 
GBLREF option, 11-20 
GBLXCL option, 11-21 

use in CSM library, 8-3, 8-7 
tO 8-8 I 8-18 

Global 
additive relocation, A-16 
relocation, A-15 

additive displaced, A-17 
displaced, A-16 

symbol 
address of ODT SST routine, 

11-24 
ambiguously defined in 

overlay, 3-16 , 
declaration directory 

record, A-2 
directory record format, 

A-4 
end of directory record, 

A-11 
from the default library, 

3-18 
in autoloadable segment, 

4-4, 4-6 
in cross-reference listing, 

10-12 to 10-13 
multiplydefined, 3-16 
multisegment task, 3-16 
name, A-6 
name entry, A-6 
overlay search sequence, 

3-17 
resolution, 2-7 
search sequence in overlays, 

3-16 
undefined, 2-7 

symbol resolution 
co-tree, 3-17 
default library, 3-18 
in multisegment task, 3-16 

/HD switch, 10-20 
Header, 2-8 

excluding task, 10-20 
I- and D-space task, 7-11 
in task image, B-10 
task 

fixed part, B-11 
variable part, B-12 
vector extension area, B-13 

High- level language 
overlay program in, 3-40 to 

3-41 
Host system, C-1 

building a task for another 
system, C-1 

Host system (Cont.) 
transferring from task, C-1 

Hyphen (-) 
See ODL operator 

I- and D-space 
specifying, 10-21 

I- and D-space task 
See Task 

I/O page 
specifying, 10-22 

/ID switch, 10-21 
Image 

disk, 2-8 to 2-9 
memory, 2-8 to 2-9 

Indirect command file, 1-5, 
3-30 

with ODL, 3-30 
Information record 

text, A-11 
Input 

data format 
Task Builder, A-1 

multi-line 
to the Task Builder, 1-3 

Internal displaced relocation, 
A-15 

Internal symbol 
directory record, A-24 
name entry, A-5 

$$IOB1 
reserved PSECT name, E-3 

$$IOB2 
reserved PSECT name, E-3 

/IP switch, 10-22 

Label block, 2-8 
group, B-1 

Language 
high-level 

overlay program in, 3-40 
/LB switch, 10-23 to 10-24 
LBLDF$ macro, B-1 
/LI switch, 10-25 
LIBR 

linking to region, 5-14 
option, 11-11 to 11-12 

Library 
build i ng a , 5-1 4 
cluster, 5-44 

building, 5-44, 5-48 to 
5-51 

building example, 5-48 to 
5-51 

building rule 1: overlays, 
5-45 

building rule 2: references, 
5-46 

building rule 3: .STB file, 
5-47 

building rule 4: stack, 
5-47 

building rule 5: PIC, 5-47 

Index-5 



Library 
cluster (Cont.) 

building rule 6: traps, 
5-47 

building rule summary, 5-44 
examples, 5-47 
overlay run-time support, 

5-51 to 5-53 
resolving interlibrary 

references, 5-49 
declaring a, 10-23 
default 

controlling symbol search, 
10-15, 10-19 

global symbol resolution, 
3-18 

specifying a, 10-15 
extending a, 10-17 
file 

declaring a, 10-23 
FTB 

overlaid region, 5-13 
linking resident to 

supervisor-mode, 8-21 
modules 

.FCTR directive, 3-26 
object module 

placing in overlay 
structure, 10-24 

old 
overlaid region, 5-13 

reg ion, 2-20 
specifying, 10-25 

relocation 
resident, A-23 

resident, 5-1, 5-3 
building and linking to a, 

5-14, 5-31 to 5-38 
data in task image, B-4 to 

B-6 
declaring, 11-11, 11-28 
label block O, B-7 
label block 1, B-9 
label block 2, B-9 
label block 3, B-9 
name block data, B-8 
relocation, A-23 
search, 10-23 

resolving references 
.FCTR directive, 3-26 

restriction in I- and D-space 
task, 7-9 

supervisor-mode, 2-24, 8-1 
building, 8-7 
building linking task, 8-17 

to 8-18 
building the referencing 

task, 8-7 
building with relevant 

options, 8-3, 8-7, 8-17 
to 8-18 

completion routine, 8-2, 
n .., n ""',. o- Ir o-"'J. 

INDEX 

Library 
supervisor-mode (Cont.) 

converting SCAL to CSM, 
8-20 

data in, 8-3 
definition, 8-1 
example of, 8-10 to 8-17 
linking, 8-7 
linking a resident, 8-20 
linking to, 8-21 
linking to SYSLIB, 8-2, 8-7 

to 8-9, 8-18 
linking with relevant 

options, 8-3, 8-8, 8-18 
mapping of, 8-3 
method of mode switching, 

8-1, 8-19 
mode switching, 8-1, 8-7 
mode switching compared, 

8-1 
mode-switching vector, 8-1 
$MSDS directive, 8-2 
$MSDS directive restriction, 

8-2 
multiple, 8-20 
overlaid, 8-21 to 8-22 
overlay restriction, 8-21 

to 8-22 
parameter passing, 8-2 
restrictions on contents, 

8-2 
using as resident, 8-20 
using system supplied 

vector, 8-19 
with I- and D-space task, 

8-3 
your own completion 

routines in, 8-21 
your own vector in, 8-21 

supervisor-mode mapping 
with conventional task, 8-4 

to 8-5 
with I- and D-space task, 

8-6 
SYS LIB 

replacing as default, 10-23 
Linking 

module, 2-3 
Listing 

global cross-reference 
generating as, 10-11 

wide 
specifying a, 10-51 

$$LOAD 
PSECT, 5-53 
reserved PSECT name, E-3 

LOAD module, 5-53 
$LOAD routine 

in manual load, 4-7 
Loading 

asynchronous example of, 4-10 
mechanism 

overlay, 3-16 

Index-6 



Location counter 
definition, A-17 
modification, A-18 

Logical 
address, 2-14 
address space, 2-14 
unit number 

assigning physical device 
to a, 11-7 

unit table entry, B-9, B-14 
units 

number of, 11-39 
Low-memory context, B-10 
LUN 

See Logical unit number 

/MA switch, 10-26 
Macro 

SNAP$, D-6 
SNPBK$, D-6 
SNPDF$, D-6 

MACR0-11 calling sequence 
manual load, 4-7 

I- and D-space tasks, 4-8 
to 4-9 

Manual load 
calling sequence, 4-7 to 4-8 
error handling, 4-12 
FORTRAN calling sequence, 4-9 

to 4-10 
for I- and D-space task, 

4-11 
MACR0-11 calling sequence, 

4-7 

Map 

I- and D-space tasks, 4-8 
to 4-9 

common, 5-19 
file 

INDEX 

adding cross-reference to a, 
10-11 

content, 10-37 to 10-43 
description, 10-37 to 10-43 
example, 10-37 to 10-43 
general, 10-37 to 10-43 
inhibiting spooling of a, 

10-45 
printing, 1-2 
specifying, 10-26 

including SYSLIB contribution, 
10-26 

multiuser task, 9-7 
overlaid I- and D-space task, 

7-12 to 7-16 
privileged task, 6-10 to 6-11 
region, 5-19 
resident region 

including symbol definition, 
10-26 

short 
specifying a, 10-37 to 

10-43 
spooling to print, 10-45 

Map (Cont.) 
task 

I- and D-space, 7-9 
linked to a common, 5-24 

Mapped 
array 

area, 5-56, 5-58 
declaration, A-10 
declaration entry, A-10 

reg ion 
declaring address window, 

11-41 
system, 2-14, 2-18 

Mapping 
concept, 2-22 
conventional task 

supervisor-mode library, 
2-26 to 2-27 

conventional task linked to 
reg ion 

I- and D-space system, 7-3 
I- and D-space task, 7-3 to 

7-4 
in I- and D-space system, 

7-4 
in supervisor-mode, 2-24 
task, 2-15 

MAXBUF option, 11-23 
.MBLUN 

reserved global symbol, E-1 
Memory 

allocation 
I- and D-space task, 7-9 

allocation file 
See Map file 

dump, D-1 
image, 2-8 to 2-9 
layout 

unmapped system, 2-16 
management 

specifying for target 
system, 10-27 

physical 
disk-resident overlay, 3-3 

to 3-4 
memory-resident overlay, 

3-6 
overlay, 3-5, 3-33 to 3-35 

reducing to build a task, F-4 
reducing usage of, 3-1 
resident overlay structure, 

3-6 
saving 

overlaid task, 3-9 to 3-10 
virtual allocation 

I- and D-space task, 7-10 
Memory management 

use by task, 2-15 to 2-16 
Memory Management Unit, 2-14 
Memory-resident 

overlay 
loading, 4-1 

overlay, 3-1 

Index-7 



Message 
diagnostic 

eliminating, 10-30 
error, H-1 

virtual memory system, F-5 
inhibiting system queuing of, 

10-35 
/MM switch, 10-27 
Mode 

compatibility 
in a task, 10-8 

Mode-switching 
to supervisor-mode, 8-8, 8-12 

to 8-13 
vector 

supervisor library, 8-1, 
8-19 

Module 
extracting from library, 

10-23 
linking, 2-3 
name, A-4 
name entry format, A-4 
object 

extracting by name, F-4 
linking, 2-1 

placing in segment 
reducing overhead, F-4 

record 
end of, A-24 

.MOLUN 
reserved global symbol, E-1 

/MP switch, 10-28 
$$MRKS 

PSECT, 5-52 
reserved PSECT name, E-3 

/MU switch, 10-29 
Multi-line input, 1-3 
Multiple-tree 

example, 3-32 
structure, 3-31 to 3-32 

defining a, 3-31 to 3-32 
Multisegment task 

See Overlay 
Multiuser task, 2-28, 9-1 

as an overlaid task, 9-2 
building a, 9-5 
declaring read-only partition 

for I 11-33 
defined, 9-1 
disk image, 9-2 
example, 9-6 to 9-7 
example map, 9-7 
I- and D-space, 9-3 

APR allocation, 9-3 
PSECT allocation, 9-4 
PSECT in, 9-3 
windows, 9-5 

program section allocation, 
9-1 to 9-2 

specifying a, 10-29 
TKB command sequence, 9-7 

INDEX 

Multiuser task (Cont.) 
window block assignment, 9-1, 

9-3 

N.OVPT 
low-memory context, B-10 
reserved global symbol, E-1 

Name 
global symbol, A-6 

.NAME directive, 3-27 
attribute 

DSK, 3-28 
GBL, 3-28 
NODSK, 3-28 
NOGBL, 3-28 

example of use of, 3-28 
.NLUNS 

reserved global symbol, E-1 
/NM switch, 10-30 
.NOVLY 

reserved global symbol, E-1 
.NSTBL 

reserved global symbol, E-1 
Null 

root, 3-31 
in ODL, 3-31 

segment 
in ODL, 3-31 

Number sign (#) 
in cross-reference listing, 

10-12 to 10-13 

$$0BF1 
reserved PSECT name, E-3 

$$0BF2 
reserved PSECT name, E-3 

Object code 
patching, 11-5 

Object module 
concatenating, 10-7 
content of, A-1 
format, A-3 
linking, 2-1 
overriding definition in, 

11-17 
relocatable, 2-2 
selective global symbol 

using /SS to include, 10-47 
to 10-49 

Object Time System 
usage to extend record buffer, 

11-16 
ODL 

autoload indicator, 4-2 
directive, 3-23 to 3-24 

• END, 3-23 
example use of .NAME, 3-28 
• FCTR, 3-25 
introduction, 3-23 
.NAME, 3-27 
.NAME attributes, 3-28 
.PSECT, 3-29 

n"'l""\m -, ,,.,,..., 
el'\UU.Lt .:;,-L..:J 

Index-8 



ODL (Cont.) 
efficiently placing in 

autoload indicator, 4-6 
enabling operator 

memory-resident overlay, 
10-34 

file 
declaring a, 10-28 

multiple-tree 
defining structure, 3-30 
example, 3-31 to 3-32 
structure, 3-30 

operator 
, (comma) , 3-2 4 

INDEX 

! (exclamation point), 3-24, 
3-26 to 3-27 

- (hyphen) , 3-24 
introduction, 3-24 

summary, 3-49 to 3-52 
using indirect file with, 

3-30 
ODL file 

creating 
start of procedure, 3-36 
with allocation diagram, 

3-35 to 3-36 
.FCTR statement 

creating from allocation 
diagram, 3-38 to 3-39 

.ROOT statement 
creating from allocation 

diagram, 3-37 
virtual address space 

in allocation diagram, 3-36 
ODL statement 

co-tree 
from allocation diagram, 

3-39 to 3-40 
ODT vector, 11-24 
.ODTLl 

reserved global symbol, E-1 
.ODTL2 

reserved global symbol, E-1 
ODTV option, 11-24 
Opera tor 

ODL, 3-24 
, (comma) , 3-24 
! (exclamation point), 3-24, 

3-26 to 3-27 
- (hyphen) , 3-24 
introduction, 3-24 

Option 
category of, 11-1 
general form of, 1-4 
input 

in command line, 1-3 
linking to region, 5-14 
separation of argument list, 

1-4 to 1-5 
summary, 11-2 
Task Builder, 1-4, 11-1 

ABORT, 11-4 
ABSPAT, 11-5 

Option 
Task Builder (Cont.) 

ACTFIL, 11-6 
ASG, 11-7 
CLSTR, 11-8 to 11-9 
CMPRT, 11-10 
COMMON or LIBR, 11-11 to 

11-12 
DSPPAT, 11-13 
EXTSCT, 11-14 
EXTTSK, 11-15 
FMTBUF I 11-16 
GBLDEF, 11-1 7 
GBLINC, 11-18 
GBLPAT, 11-19 
GBLREF, 11-20 
GBLXCL, 11-21 
MAXBUF I 11-23 
ODTV, 11-24 
PAR, 11-25 to 11-26 
PRI, 11-27 
RESCOM or RESLIB, 11-28 to 

11-29 
RESSUP, 11-31 to 11-32 
ROPAR, 11-33 
STACK, 11-34 
SUPLIB, 11-35 
TASK, 11-36 
TSKV, 11-37 
UICI 11-38 
UNITS, 11-39 
VSECT, 11-40 
WNDWS, 11-41 

Option summary, 11-3 
OTS 

usage to extend record buffer, 
11-16 

$0TSV 
low-memory context, B-10 
reserved global symbol, E-2 

Output files 
omitting specific, 1-3 

OVCTC module, 5-52 
OVCTL module, 5-52 
OVCTR module, 5-52 
OVDAT module, 5-53 
$$0VDT 

PSECT, 5-53 
reserved PSECT name, E-3 

Overlay, 2-10 
allocation diagram 

creating ODL file with, 
3-35 to 3-40 

autoload vector in, 3-20 
building an, 3-41 to 3-48 
building memory-resident 

for region, 5-9 
capability of an, 3-1 
choosing a memory-resident, 

3-14 
co-tree, 3-34 to 3-35 
data base, B-15 

I- and D-space task, B-16 

Index-9 



Overlay (Cont.) 
data structure, 3-19 

linked into root, 3-20 
defining a multiple-tree, 

3-31 to 3-32 
description 

effect on performance, F-4 
disk-resident, 3-1 to 3-2 

defined, 4-1 
effect of 

on physical memory, 3-5 
on virtual address space, 

3-5 
effect of virtual address 

space 
on disk-resident, 3-1 to 

3-4 
effect on memory 

of a disk-resident, 3-2 
of disk-resident, 3-1, 3-3 

to 3-4 
effect on physical memory 

of memory-resident, 3-6 
effect on virtual address 

space 
of a memory-resident, 3-6 

error handling, 4-12 
example of building a, 3-41 

to 3-48 
I- and D-space task 

disk image, 7-8 
in I- and D-space task, 3-21, 

7-5 
PSECT, 7-6 

loading 
asynchronously, 4-10 
disk-resident, 4-1 
mechanism, 3-16 
memory-resident, 4-1 
methods, 4-1 
synchronously, 4-8 to 4-9 

memory-resident, 3-1, 3-6 
conserving physical memory, 

3-14 
defined, 4-1 
physical memory usage, 3-6 
reg ion, 5-9 
virtual address space, 3-14 

multiuser task, 9-2 
of program 

in high-level language, 
3-40 to 3-41 

operator 
enabling recognition of, 

10-34 
suppression of a 

memory-resident, 10-34 
path loading in an, 4-4 
physical memory, 3-33 to 3-35 
program section 

specifying, 3-19 
region 

autoload vector, 5-11 

INDEX 

Overlay 
region (Cont.) 

building, 5-9 
building option, 5-10 to 

5-11 
descriptor in, 3-20 
example of building, 5-10 
global symbols in .STB file, 

5-11 
resolving symbol, 5-10 to 

5-11 
.STB file, 5-11 
vectors in I- and D-space 

task, 5-11 
region restrictions, 5-12 
root segment structure, 3-21 
run-time, 3-19 

comparison of sizes in 
routine, 4-16 

module sizes, 5-52 to 5-53 
routine, 3-19, 4-16 
size of routine, 4-16 
support requirements, 5-12, 

5-51 to 5-53 
use of routine, 4-14 to 

4-15 
segment 

alignment, 10-8 
arrangement, 3-15 
descriptor in, 3-20 
processing order, 3-17 
symbol processing, 3-17 

structure 
considerations in creating, 

3-1 
most effective, 3-2 
multiple-tree, 3-18 
multiply defined global 

symbol, 3-16 
specifying library search 

in a, 10-23 
task, 3-7, 3-9 

global cross-reference of, 
4-12 to 4-14 

segment calls, 3-10 
virtual address space, 3-10 

tree, 3-15 
calling segments in an, 4-6 

virtual 
address space, 3-33 to 3-35 
address space and memory, 

3-11 to 3-14 
window 

block, 3-49 
descriptor in, 3-20 

written in high-level 
language, 3-40 to 3-41 

Overlay Description Language 
introduction, 3-15 

Overlay Description Operator 
See ODL 

Overlay structure 
global symbol 

Index-10 



overlay structure 
global symbol {Cont.) 

ambiguously defined, 3-16 
Overlay tree 

for I- and D-space task, 7-7 
Overlay tree diagram 

virtual address space, 3-24 
OVIDC module, 5-52 
OVIDL module, 5-52 
OVIDR module, 5-52 
$$0VRS 

reserved PSECT name, E-3 

Page Address Register 
See PAR 

Page Description Register 
See PDR 

PAR, 2-16 
option, 11-25 

PAR option, 11-26 
building region, 5-2 

Parentheses 
use of 

in ODL, 3-24 
Partition 

declaring, 11-25 
in region, 5-28 
naming for target system, C-1 
option, 11-25 
requirement 

shared region, 5-3 
requirements 

reg ion, 5-2 
size 

for TKB, F-2 
specifying for region, 5-28 

Patch 
D-space, 11-13 
declaring an object level, 

11-5 
global relative, 11-19 

Path loading, 4-3 to 4-4 
See also Overlays 
example of, 4-4 
in autoload, 4-3 to 4-4 

$$POLS 
PSECT, 5-52 
reserved PSECT name, E-3 

PDR, 2-16 
Performance 

improving TKB, F-1 
Physical 

address, 2-13 
mapped system, 2-17 

/PI switch, 10-31 
/PM switch, 10-32 
PMD task 

installation for timely 
operation, D-1 

Postmortem dump, D-1 
content, D-3 to D-5 
example, D-2 
sample, D-3 to D-5 

INDEX 

Postmortem dump (Cont.) 
specifying a, 10-32 

/PR switch, 6-2, 10-33 
/PR:O privileged task, 6-2, 6-4 

to 6-5 
/PR:O privileged task, uses of, 

6-5 
/PR:4 privileged task, 6-2, 6-4 

to 6-5 
/PR:4 privileged task, uses of, 

6-5 
/PR:S privileged task, 6-2, 6-4 

to 6-6 
/PR:5 privileged task, uses of, 

6-5 
PRI option, 11-27 
Priority 

task 
declaring, 11-27 

Privileged and nonprivileged 
task 

distinction between, 6-1 
Privileged task, 2-25, 6-1 

accessing 
Executive with a, 6-4 
I/O page with a, 6-4 

building a, 6-6 to 6-11 
comparison of nonprivileged 

and, 6-1 
hazards of a, 6-1 to 6-2 
in a mapped system, 6-1 
logging off from, 6-1 
MAC command sequence, 6-9 
map of, 6-10 to 6-11 
mapping of, 6-2 to 6-3 
/PR:O, 6-2, 6-4 to 6-5 
/PR:4, 6-2, 6-4 to 6-5 
/PR:5, 6-2, 6-4 to 6-6 
processor trap in a, 6-2 
specifying, 2-25 
specifying a, 6-2 
TKB command sequence, 6-10 
to examine unit control block, 

6-6 to 6-11 
Program 

development step, 1-1 
limit, A-18 
section, 5-53 

additive displaced 
relocation, A-21 

additive relocation, A-20 
adjacency requirement for, 

10-46 
allocation, 2-2 
attribute, 2-4 
attribute restriction, 2-3 
blank (.BLK), 2-3 
creation, 2-3 
displaced relocation, A-19 
element, 2-2 
extension of, 11-14 
in shared region, 5-7 
making autoloadable, 4-3 

Index-11 



Program 
section (Cont.) 

name, 2-3 
name conflict, 5-7, 5-39 to 

5-40 
naming restriction, 5-7 
ordering, 5-7, 10-36, 10-46 
overlay allocation, 3-19 
relocation, A-19 
resolution of, 3-19 
resolving names, 5-7, 5-39 

to 5-40 
resolving names in region 

and task, 5-16 
save attribute, 2-7 
segregating, 10-36, 10-46 
sequential ordering of, 

10-36, 10-46 
space allocation, 2-5 to 

2-6 
specifying explicitly in 

overlay, 3-29 
specifying in overlay, 3-19 
virtual, 5-53 

section name, A-7 

INDEX 

applying autoload indicator, 
4-3 

section name entry, A-8 
section name flag byte, A-8 

to A-9 
version 

identification, A-10 
Program section 

$$ALVC, 7-11 
$$ALVD, 7-11 
$$ALVI, 7-11 
I- and D-space task 

overlay, 7-6 
multiuser task 

I- and D-space, 9-3 
named 

i n reg ion , 5-13 
virtual 

allocating physical memory 
to a, 5-56 

attaching virtual attribute 
to a, 5-56 

building a task using, 5-58 
to 5-61 

creating a, 5-56, 5-58 to 
5-61 

FORTRAN run-time support 
for, 5-56 to 5-57 

option usage, 5-55 
specifying, 11-40 
specifying base address for 

a, 5-56 
specifying length, 5-54 
specifying physical size, 

5-54 
specifying window size, 

5-54 
support for a, 5-56 to 5-57 

PSECT 
See also Program section 
See Program section 

.PSECT directive, 3-29 
PSECT name 

.FCTR directive 
argument, 3-26 

• PTLUN 
reserved global symbol, E-2 

$$RDSG 
PSECT, 5-52 
reserved PSECT name, E-3 

Reg ion, 2-18 
absolute, 5-9 

building precautions, 5-7 
mapping for, 5-8 
mapping of, 5-7 
specifying an, 5-7 
symbol definition file, 5-9 

allocation 
diagram, 5-20 
of window block for, 5-25 

APR 
specifying, 5-6 

assigning references, 5-23 
building 

a linking task, 5-21 to 
5-22 

and linking to a, 5-14, 
5-1 7 to 5-18 

interaction of /CO/LI/PI 
switch, 5-3 

options 
in an overlaid, 5-10 

options in an overlaid, 
5-11 

use of /CO/LI/PI switch, 
5-3 

with PAR option, 5-2 
common, 2-19 to 2-20 
descriptor, B-21 
descriptor in overlay, 3-20 
dynamic, 2-20, 5-40 to 5-43 

building a task that 
creates a, 5-40 to 5-43 

installing in RSX-llM, 5-2 to 
5-3, 5-20 

installing in RSX-llM-PLUS, 
5-2 to 5-3, 5-20 

library, 2-20 
linked to a region, 5-26 
linked with a region, 5-25 
linking to a, 5-13 to 5-14, 

5-26 
map, 5-19 
mapping of an absolute, 5-7 
memory-resident overlaid, 5-9 

building, 5-9 
example of building, 5-10 

number of, 5-1 7 
options fur building, 5-17 to 

5-18 

Index-12 



Reg ion (Cont.) 
options for linking to, 5-14 
overlaid, 5-9 

autoload call overhead, 
5-13 

autoload in, 5-13 
autoload vector, 5-11 

INDEX 

FTB and old libraries, 5-13 
global symbols in .STB file, 

5-11 
I- and D-space task vectors, 

5-11 
named program section, 5-13 
run-time support for, 5-12 

to 5-13 
.STB file, 5-11 

partition, 5-28 
requirements, 5-2 

procedure for building a, 
5-17 to 5-18 

program section in, 5-7 
PSECT 

building a linking task, 
5-23 

relocatable, 5-5 
mapping, 5-5 
specifying, 5-5 
specifying APR for, 5-6 
.STB file for a, 5-9, 5-14, 

5-16 
resident relocatable, 5-5 
resolving PSECT names, 5-39 

to 5-40 
shared, 2-20, 5-1 

allocation of window block 
for I 5-14 

autoload vectors in, 5-12 
defined, 5-1 
initializing window block 

for, 5-14 
installing, 5-16 
partition requirement, 5-3 
resolving PSECT names, 5-16 
restrictions for overlaid, 

5-12 
symbol definition file, 

5-16 
use of /CO/LI/PI switches, 

5-9 
windows in, 5-14 

size of, 5-17 
specifying 

as position independent, 
10-9, 10-31 

partition for, 5-28 
.STB file, 5-4 to 5-5, 5-14, 

5-16 
for an absolute, 5-7, 5-9, 

5-12 
using /CO/LI/PI switches, 

5=4 
symbol definition file, 5-9 
task, 2-18 to 2-20 

Reg ion (Cont.) 
task building options, 5-13 

to 5-14 
type of access to, 5-14 
use of /CO/LI/PI switches, 

5-5 
window, 5-15, 5-25 
with linked task 

in I- and D-space system, 
7-3 

Relocatable region 
See Region 

Relocation 
code, 2-4 
complex, A-22 

entry, A-23 
operation codes, A-22 

directory command byte, A-13 
directory record, A-12 

entries, A-12 to A-13 
format, A-14 

displaced 
global, A-16 

global, A-15 
additive, A-16 

global additive displaced, 
A-17 

internal, A-14 
displaced, A-15 

library 
resident, A-23 

program section, A-19 
additive, A-20 
additive displaced, A-21 
displaced, A-19 

resident library,_A-23 
RE SC OM 

linking to region, 5-14 
option, 11-28 to 11-29 

Reserved symbol 
for the Task Builder, E-1 

Resident 
common 

name block data, B-8 
library 

name block data, B-8 
relocation, A-23 

memory 
for TKB performance, F-3 

overlay operator 
enabling recognition of, 

10-34 
reg ion 

using to reduce overhead, 
F-4 

Resident region 
map file 

including symbol definition 
in, 10-26 

RESLIB 
linking to region, 5-14 
option, 11-28 to 11-29 

Index-13 



RES LIB 
option (Cont.) 

in supervisor-mode library, 
8-20 to 8-21 

RESSUP 
option, 8-9, 11-31 to 11-32 

use in CSM library, 8-3, 
8-8, 8-19 to 8-21 

use in supervisor-mode 
library, 8-7 

Restarting TKB option, 11-4 
$$RGDS 

reserved PSECT name, E-3 
RLSCT FORTRAN subroutine, 5-56, 

5-58 
/RO switch, 10-34 
Root 

in a co-tree, 3-31 
null, 3-31 

in ODL, 3-31 
structure 

overlay, 3-21 
.ROOT directive, 3-23 
.ROOT statement 

allocation diagram 
creating from, 3-37 

ROPAR option, 11-33 
$$RTQ 

PSECT, 5-52 to 5-53 
reserved PSECT name, E-3 

$$RTR 
PSECT, 5-52 to 5-53 
reserved PSECT name, E-4 

$$RTS 
PSECT I 5-53 
reserved PSECT name, E-4 

Run-time support 
overlaid region, 5-12 to 5-13 

autoload, 5-13 
autoload call overhead, 

5-13 
FTB and old libraries, 5-13 
named program sections, 

5-13 

Save attribute, 2-4 
SCAL to CSM library 

converting, 8-20 
Scope-code, 2-4, 2-7 
/SE switch, 10-35 
Segment 

autoloadable 
data, 4-7 
global symbol in, 4-4 

call, 3-10 
to up-tree, 4-6 

definition of a, 3-1 
descriptor, B-19 

I- and D-space task, 7-11 
in overlay, 3-20 

limiting number 
reducinq overhead. F-4 

loading - · 

INDEX 

Segment 
loading (Cont.) 

as part of co-tree, 4-2 
when called, 4-4, 4-6 

making autoloadable, 4-3 
mapping, 2-10 

disk-resident, 2-11 
memory-resident, 2-12 

multiple, 3-5 
global symbol in, 3-16 
global symbol resolution, 

3-17 
symbol resolution, 3-16 

name 
applying autoload indicator 

to, 4-3 
.FCTR directive argument, 

3-26 
null 

in ODL, 3-31 
overlay 

arrangement, 3-15 
root structure, 3-21 
symbol processing, 3-17 

processing order, 3-17 
single, 3-4, 3-8 
up-tree 

I- and D-space, 3-22 
Semicolon (;), 1-8 
SEND directive 

enabling for your task, 10-35 
/SG switch, 10-36 
$$SGDO 

PSECT, 5-53 
reserved PSECT name, E-4 

$$SGD1 
reserved PSECT name, E-4 

$$SGD2 
PSECT, 5-53 
reserved PSECT name, E-4 

/SH switch, 10-37 
Shared region, 5-1 

See Region 
Single segment task, 3-8 
/SL switch, 10-44 
Slash 

double (//) , 1-6 
single (/), 1-5 to 1-6 

Slow TKB 
to improve overhead, F-11 

$$SLVC 
reserved PSECT name, E-4 

SNAP$ macro, D-6 
format of, D-8 

Snapshot dump, D-5 to D-6 
example of, D-10 to D-12 
format of macro for creating, 

D-7 
SNPBK$ macro, D-6 

format of, D-7 
SNPDF$ macro, D-6 
/SP switch, 10-45 
/SQ switch, 10-46 

Index-14 



/SS switch 
symbol definition file 

reducing overhead, F-4 
SST vector address 

declaring, 11-27 
Stack 

declaring size, 11-34 
supervisor-mode, 8-20 

STACK option, 11-34 
• STB file, 5-9 

absolute region, 5-7, 5-9 
content of a, 5-5 
excluding symbol from, 5-11 
for region, 5-4 to 5-5, 5-14, 

5=16 
I- and D-space task, 7-9 
including symbol in, 5-11 
interaction of /CO/LI/PI 

switches, 5-4 
overlaid region, 5-11 to 5-12 

global symbols in, 5-11 
program sections, 5-16 
program sections in, 5-5 
relocatable region, 5-9, 5-16 
use of /CO/LI/PI switches, 

5-5' 5-9 
Structure 

in TKB 
size of, F-3 

.SUMLl 
reserved global symbol, E-2 

Supervisor-mode, 2-24 
library, 2-24 

See Library 
mapping, 2-24, 2-26 to 2-27 
mode switching, 8-8, 8-12 to 

8-13 
stack, 8-20 

SUPLIB 
option, 8-9, 11-35 

use in CSM library, 8-3, 
8-19 

use in supervisor-mode 
library, 8-7 

Switch 
conflict in, 10-1 
default 

modifying, F-7 to F-11 
modifying default of, F-7 to 

F-11 
summary, 10-2 to 10-4 
syntax, 10-1 
Task Builder, 10-1 

/AC[:n], 10-5 
/AL, 10-6 
/CC, 10-7 
/CM, 10-8 
/CO, 10-9 
/CP, 10-10 
/CR, 10-11 to 10-13 

JT"\ ._. , n 1 A 
I LJ.M.1 .1. v-..L<:t 

/DL, 10-15 
/EA, 10-16 

INDEX 

Switch 
Task Builder {Cont.) 

/EL, 10-17 
/FP, 10-18 
/FU, 10-19 
/HD, 10-20 
/ID, 10-21 
/IP, 10-22 
/LB, 10-23 to 10-24 
/LI, 10-25 
/MA, 10-26 
/MM, 10-27 
/MP, 10-28 
/MU, 10-29 
/NM, 10-30 
/PI, 10-31 
/PM, 10-32 
/PR [: n] , 10-3 3 
/RO, 10-34 
/SE, 10-35 
/SG, 10-36 
/SH, 10-37 
/SL, 10-44 
/SP, 10-45 
/SQ, 10-46 
/SS, 10-47 to 10-49 
/TR, 10-50 
/WI, 10-51 
/XH, 10-52 
/X T [ : n] , 1 0 -5 3 

Symbol 
affecting search for, 2-7 
declaration flag byte, A-7 
definition file 

excluding symbol from a, 
11-21 

for system-owned region, 
11-11 

for user-owned region, 
11-29 

including symbols, 11-18 
reducing overhead, F-4 

directory record 
declare global, A-2 
end of global, A-11 
internal, A-24 

full search in overlays 
specifying, 10-19 

global 
address of ODT SST routine, 

11-24 
ambiguously defined in 

overlay, 3-16 
declaring definition in a 

task, 11-17 
default library resolution, 

3-18 
directory record, A-2 
directory record format, 

A-4 

A-11 
excluding in a task, 11-21 

Index-15 



Symbol 
global (Cont.) 

from the default library, 
3-18 

in autoloadable segment, 
4-4' 4-6 

in cross-reference listing, 
10-12 to 10-13 

including in a task, 11-18 
multiplydefined, 3-16 
multisegment task, 3-16 
name, A-6 
name entry, A-6 
overlaid region .STB file, 

5-11 
overlay search sequence, 

3-17 
resolution, 2-7, 3-17 
resolution in co-tree, 3-17 
resolution in multisegment 

task, 3-16 
undefined, 2-7 

in cross-reference listing, 
10-12 

internal 
autoloadable library, A-26 

to A-27 
end-of-module, A-30 
end-of-module format, A-32 
global, A-28 

INDEX 

internal symbol name, A-30 
internal symbol name format, 

A-31 
line-number, A-29 to A-30 
literal record, A-30 
literal record format, A-31 
module name, A-27 to A-28 
overall format, A-24 to 

A-25 
PC correlation, A-29 to 

A-30 
PSECT item, A-29 
relocatable/relocated, A-27 
start-of-segment, A-25 to 

A-26 
task identification, A-26 
TKB generated, A-25 

name entry 
internal, A-5 

number of processed for 
performance, F-3 

reserved for the Task Builder, 
E-1 

resolving 
overlay region, 5-11 

search 
selective, 10-47 to 10-49 

Symbol definition 
SYSLIB.OLB, 2-7 

Symbol definition file 
See also .STB fil 
supervisor-mode l brary 

system-owned, 1 -35 

Symbol definition file 
supervisor-mode library 

(Cont.) 
user-owned, 11-31 

Syntax rule 
summary of, 1-10 

SYS LIB 
including contribution in map, 

10-26 
linking to 

by supervisor-mode 
libraries, 8-2, 8-7 to 
8-9, 8-18 

replacing as default, 10-23 
SYSLIB.OLB 

for symbol definition, 2-7 
System 

host and target, C-1 
mapped, 2-14 

physical and virtual space, 
2-15 

object module library, 2-2 
See also Library 
See also SYSLIB.OLB 

target 
memory management, 10-27 

unmapped, 2-14 
System-controlled partition 

extending memory for task in, 
11-15 

T-bit trace trap, 10-50 
Table storage, F-2 

memory for 
to improve performance, F-2 

Target system, C-1 
transfering task to a, C-1 

Task 
access 

system-owned common or 
library, 11-11 

system-owned 
supervisor-mode library, 
11-35 

user-owned common, 11-28 
user-owned library, 11-28 
user-owned supervisor-mode 

library, 11-31 
active files 

declaring number of, 11-6 
additional memory for, 11-15 
address windows 

declaring an additional, 
11-41 

ancillary control processor 
specifying as, 10-5 

assigning physical device to 
LUN, 11-7 

attaching slave attribute to, 
10-44 

building for target system, 
C-1 

changing name of, 11-36 

Index-16 



Task {Cont.) 
checkpointable 

specifying, 10-10 
command line to build a, 1-2 
comparison 

conventional and I- and 
D-space, 7-2 

completion routine for a, 
11-10 

conventional 
autoload vector, B-17 
disk image, 7-6 
mapping compared to I- and 

D-space task, 7-2 
creating a dynamic region, 

5-40 
creating multiuser, 10-29 
D-space 

overlay structure, 3-21 
data 

INDEX 

in task image, B-4 to B-6 
needed by system to install, 

B-1 
declaring 

execution priority for, 
11-27 

maximum stack size of, 
11-34 

number of LUNs for, 11-39 
object-level patch for, 

11-5 
ODT SST vector in, 11-24 

disk image, 2-8 
enabling 

postmortem Dump for, 10-32 
T-bit trace trapping in, 

10-50 
extending 

a program section in a, 
11-14 

memory of, 11-15 
to partition length, 11-15 

external header 
specifying, 10-52 

floating point processor in 
specifying, 10-18 

format buffer 
declaring length of, 11-16 

global relative patch 
declaring, 11-19 

global symbol 
excluding a, 11-21 
including in, 11-18 

global symbol definition 
declaring a, 11-17 

global symbol reference 
declaring a, 11-20 

header, 2-8 
allocating additional 

(checkpoint) space in, 
10-6 

checkpoint area within, B-9 

Task 
header (Cont.) 

controlling creation of, 
10-20 

fixed part, B-11 to B-12 
I- and D-space, 7-11 
space for EAE context, 

10-16 
space for floating-point 

context, 10-18 
host to target system 

example of transferring, 
C-2 

I- and D-space, 2-28, 7-1 
autoload vector, 7-9, B-17 

to B-18 
differing from conventional 

task, 2-28 
manual load calling 

sequence, 4-8 to 4-9, 
4-11 

map, 7-9 
mapped in I- and D-space 

system, 7-4 
mapping, 7-3 
mapping summary of, 7-2 
memory allocation, 7-9 
overlaid, 7-5 
overlay region vector, 5-11 
overlay structure, 3-21 
patching, 11-13 
PSECT in overlay, 7-6 
simplified mapping, 2-29 
specifying, 10-21 
.STB file, 7-9 
with up-tree segment, 3-22 

I-and-D and conventional 
mapping compared, 7-2 

identification 
for I- and D-space, 7-1 

identifying partition for, 
11-25 

image, B-1, B-14 
file structure, B-1 

image on disk 
non-overlaid, B-2 
non-overlaid as lkinked to 

library, B-2 
overlaid, B-3 
overlaid I- and D-space, 

B-4 
including debugging aid (ODT) 

in, 10-14 
inhibiting queuing message to, 

10-35 
installed name 

de c 1 a r i ng , 11 - 3 6 
label block, 2-8 
label block O, B-7 
label block 1, B-9 
label block 2, B-9 
label block 3, B-9 
linking 

Index-17 



Task 
linking (Cont.) 

to a supervisor-mode 
library, 8-10 to 8-12 

to region, 5-13 
to region in I- and D-space 

system, 7-3 
to several libraries, 11-8 

to 11-9 
list of attributes, 10-37 
logical units 

number of, 11-39 
making checkpointable, 10-6 
map 

linked to a common, 5-24 
mapping, 2-15, 2-20 
maximum record buffer size 

declaring, 11-23 
memory, 2-10 
memory-resident overlay 

opera tor 
enabling, 10-34 

memory-resident overlay 
segment 

changing alignment of, 10-8 
multisegment, 3-5 

global symbol resolution, 
3-17 

multiuser, 2-28 
See Multiuser task 
declaring read-only 

partition, 11-33 
specifying a, 10-29 

ODT vector, 11-24 
overlaid, 3-7, 3-9 

global cross-reference of, 
4-12 to 4-14 

memory savings, 3-9 to 3-10 
segment calls, 3-10 
virtual address space, 3-10 

overlaid ~- and D-space 
disk image, 7-8 
map, 7-12 to 7-16 
tree, 7-7 
virtual address, 7-7 

overlay, 2-10 
partition 

declaring, 11-25 
patching of 

with object code, 11-5 
privileged, 2-25 

See Privileged task 
specifying, 2-25 
specifying a, 10-33 

privileged access right for 
establishing, 10-33 

program section order 
effect in creating, 10-36, 

10-46 
region, 2-18 to 2-20 
relocation of, 2-2 
resident common 

system-owned, 11-11 

INDEX 

Task (Cont.) 
resident library 

system-owned, 11-11 
single segment, 3-4, 3-8 
slave 

specifying a, 10-44 
specifications 

multiple, 1-5 
specifying 

data space in an I- and 
D-space, 7-5 

KEll-A in, 10-16 
SST vector address 

declaring, 11-37 
stack size 

declaring, 11-34 
structure, 2-8 

label block, 2-8 
supervisor-mode library for a, 

11-31, 11-35 
system mapping status of 

indicating, 10-26 
time-based schedule request 

declaring UIC for, 11-38 
traceable 

specifying a, 10-50 
UIC 

declaring, 11-38 
use of memory management, 

2-15 to 2-16 
user 

data space definition, 7-1 
vector address 

declaring system SST trap, 
11-37 

virtual program section 
specifying, 11-40 

window, 2-20 to 2-22 
in I- and D-space, 7-5 
linking to region, 5-15 

Task Builder 
command line, 1-2 
fast 

See Fast Task Builder 
function, 2-1 
option, 1-4 
switch, 10-1 

TASK option, 11-36 
Text information record, A-ii 

to A-12 
format, A-12 

Throughput 
improving TKB, F-1 

TKB 
slow 

to improve performance, 
F-11 

/TR switch, 10-50 
Transfer 

address, A-6 
address entry, A-6 

Index-18 



Tree 
applying autoload indicator, 

4-2 
calling segments in, 4-6 
calling up-tree segments, 4-6 
multiple 

defined, 3-30 
defining, 3-31 
structure, 3-18, 3-32 

• TRLUN 
reserved global symbol, E-2 

$$TSKP 
reserved PSECT name, E-4 

TSKV option, 11-37 
Type-code, 2-5, 2-7 

INDEX 

UFD conventions in command line, 
1-9 

UIC 
declaring in task, 11-38 
option, 11-38 

UNITS option, 11-39 
Unmapped 

system, 2-14 
memory layout, 2-16 

Unnamed program section 
See Program section 

.USLUl 
reserved global symbol, E-2 

.USLU2 
reserved global symbol, E-2 

Vector 
autoload, 3-20, 4-4 

conventional task, B-17 
eliminating unnecessary, 

4-6 
I- and D-space, 7-11 
I- and D-space format, 4-5 
I- and D-space task, 7-9, 

B-17 
in region, 5-12 

in task header 
extension area format, B-13 

Vector (Cont.) 
mode-switching 

supervisor library, 8-19 
supervisor-mode library, 

8-1 
ODT I 11-24 
overlaid region, 5-11 

I- and D-space task, 5-11 
SST address, 11-27 

$VEXT 
low-memory context, B-10 
reserved global symbol, E-2 

VSECT option, 11-40 

/WI switch, 10-51 
Window, 2-20 to 2-22 

block, 2-20 to 2-22 
creating a, 5-14 
for a region, 5-14 
in overlay, 3-49 

definition block, 2-22 
descriptor, B-20 to B-21 

in overlay, 3-20 
for region and linking task, 

5-15 
in I- and D-space task, 7-5 
option, 11-41 
reg ion, 5-2 5 
wrap around 

in virtual sections, 5-54 
$$WNDS 

reserved PSECT name, E-4 
WNDWS option, 11-41 
Work file 

accesses 
system overhead, F-2, F-5 

to F-7 
parameters for, F-2 
performance 

changing device to improve, 
F-5 

/XH switch, 10-52 
/XT switch, 10-53 

Index-19 



READER'S COMMENTS 

RSX-llM/M-PLUS 
Task Builder Manual 

AA-L680B-TC 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

[] Assembly language programmer 
D Higher-level language programmer 
~_] Occasional programmer (experienced) 
'.J User with little programming experience 
:] Student programmer 
:J Other (please specify) 

Organization 

Street 

State ______ Zip Code _____ _ 

or Country 



- - Do Not Tear- Fold Here and Tape - - - - - - - - - -

~nmnoma 111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

BSSG PUBLICATIONS ZK1-3/ J35 
DIGITAL EQUIPMENT CORPORATION 
110 SPIT BROOK ROAD 
NASHUA, NEW HAMPSHIRE 03061 

No Postage 
Necessary 

if Mai led in the 
United States 

- - - Do Not Tear - Fold Here - - - - - - - - - - - - - - - - - - - - - -


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0019
	0020
	0021
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	glossary-01
	glossary-02
	glossary-03
	glossary-04
	glossary-05
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	replyA
	replyB

