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PREFACE

MANUAL OBJECTIVES

This manual describes the concepts and capabilities of the
RSX-11M/M-PLUS Task Builder.

Working examples are used throughout this manual to introduce and
describe features of the Task Builder. Because RSX-11M systems
support a large number of programming languages, it is not practical
to illustrate the Task Builder features 1in all of the languages
supported. Instead, most of the examples in the main text of this
manual are written in MACRO-11.

INTENDED AUDIENCE

Before reading this manual, you should be familiar with the
fundamental concepts of your operating system (RSX-11M or
RSX-11M-PLUS) and with the operating procedures described in the
RSX-11M/M-PLUS MCR Operations Manual. In addition, you should be
familiar with the programming concepts described in the RSX-11M/M-PLUS
Guide to Program Development.

STRUCTURE OF THIS DOCUMENT

This manual has 11 chapters. Their contents are summarized as
follows:

e Chapter 1 describes the Task Builder command sequences that
you use to interact with the Task Builder.

e Chapter 2 describes the basic Task Builder functions,
including the Task Builder's allocation of virtual address
space and the resolution of global symbols., It also contains
an introduction to supervisor-mode 1libraries, privileged
tasks, and multiuser tasks.

e Chapter 3 describes the Task Builder's overlay capability and
the language you use to define an overlay structure.

® Chapter 4 describes the two methods available to you to 1load
overlay segments.

e Chapter 5 describes some typical Task Builder features,
including tasks that access shared regions and device commons,
tasks that create dynamic regions, and virtual program
sections.

XV



PREFACE

e Chapter 6 defines privileged tasks, describes their mapping,
and shows how to build a privileged task to examine unit
control blocks.

e Chapter 10 lists and describes the Task Builder switches. The
switches are listed in alphabetical order.

e Chapter 11 lists and describes the Task Builder options. The
options are listed in alphabetical order.

This manual also contains eight appendices. Their contents are
summarized as follows:

e Appendix A contains a detailed description of the Task Builder
input data structures.

e Appendix B contains a detailed description of the task image
file structure.

e Appendix C describes the considerations for building a task on
one system to run on a system with a different hardware
configuration.

e Appendix D describes two memory dumps: postmortem and
snapshot.

e Appendix E contains a list of the symbols and program section
names reserved for Task Builder use.

e Appendix F contains information on 1improving Task Builder
performance,

e Appendix G describes the fast Task Builder.
e Appendix H contains the Task Builder error messages.

A Task Builder glossary follows the appendices.

ASSOCIATED DOCUMENTS

Other manuals closely allied with this document are described 1in the
Information Directory and Master 1Index for your operating system.
This directory defines the intended audience of each manual in the
documentation set and provides a brief synopsis of each manual's
contents.




PREFACE

CONVENTIONS USED IN THIS DOCUMENT

In this manual, horizontal ellipses (...) indicate that additional,
optional arguments in a statement format have been omitted. For
example:

input-spec,...

means that one or more input-spec items, separated by commas, can be
specified.

Vertical ellipses mean that lines in an example, command 1lines, or
lines in a Task Builder map file that are not pertinent to an example
have been omitted. For example:

TKB>»input-line

means that one or more of the indicated TKB items have been omitted.

The words "Task Builder" in this manual have been abbreviated to the
acronym TKB.

Unless otherwise stated, references to tasks, their mapping, and their
structure imply a nonprivileged task in an RSX-11M mapped system.

In the examples of Task Builder command sequences, the portion of the
command sequence that you type is printed in red. The Task Builder's
responses and prompts are printed in black.

Shading in the manual has the following meanings:
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SUMMARY OF TECHNICAL CHANGES

This manual contains the changes for RSX-11M Version 4.1 and
RSX-11M-PLUS Version 2.1. This manual has been extensively revised.
A study of the Table of Contents and this Summary of Technical Changes
is recommended before you look for information in the manual.

GENERAL CHANGES

Editorial changes were made throughout the manual to correct
typographical errors.

Small technical changes were made throughout the manual as a result of
ongoing development, SPR responses, and readers' comments.

The major technical changes to the manual are listed below.

TECHNICAL CHANGES
NEW OPTIONS

DSPPAT‘f— Allows object level patch;ng of a conventional task or

conventional task or
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SUMMARY OF TECHNICAL CHANGES

NEW ERROR MESSAGES

Module module-name contains incompatible autoload vectors
CHANGED ERROR MESSAGES

Lookup failure resident library file

changed to

Lookup failure resident library file - filename.ext
MISCELLANEOUS TECHNICAL CHANGES

Autoload vectors for conventional tasks have changed. The call

to SAUTO is now made indirectly through .NAUTO in the overlay
impure area.

Memory allocation diagrams may be used as an aid to create .ODL
files.

Overlay Run-time System routines have changed size from the
previous release.

'MACRO-11 and FORTRAN manual load calling sequences . fbt»»overlays_
in. I~ and D-space tasks may not use asynchronous loadlng A

For versions of TKB: that support I- and D-space tasks and that'
were used to.build libraries, TKB>allocates autoload vectors in
‘the root of the ‘task only for those"autoloadable entry 901nts in’
the library referenced by the task. ; -

I— and D-space tasks may link to commons, conventlonal 11brarles
and superv1sor—mode libraries.

,Loadlng 1- and D—space tasks . into. memory, requlres twOQﬁdisk
accesses. Overlaid. I- -.and D-spacé ‘tasks may requlrejk in
‘addition, two disk accesses for oadlng ~each segment: if the
segment contalns both I space a R ’ ' ‘

Internal Symbol Directory Records, along with their formats, are
described in Appendix A. They consist of:

® Type 1 records, generated by TKB and output to the .STB file

® Type 2 records, generated by language processors

XX



SUMMARY OF TECHNICAL CHANGES

e Type 3 records, created from type 2 records and output to the
.STB file

e Type 4 records, written to the .STB file without modification
A new bit called LDSTYP distingulshes between a 1library or common.
See offset R$LFLG in the resident library name block data in Appendix
B.

The first library in a cluster may be overlaid and contain a non-null
root.

New Task Builder reserved symbols have been added to Appendix E.

The Fast Task Builder supports the /EA switch and the TASK= option.

Other minor technical and editorial changes have been made also.
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CHAPTER 1

INTRODUCTION AND COMMAND SPECIFICATIONS

The basic steps in developing a program are as follows:

l. You write one or more routines in an RSX-11M/M-PLUS supported
source language and enter each routine as an ASCII text file,
through an editor.

2. You submit each text file to the appropriate language
translator (an assembler or compiler), which converts it to a
relocatable object module.

3. You specify the object modules as input to the Task Builder
(TKB) , which combines the object modules into a single task
image output file.

4. You install and run the task.

If you find errors in the task when you run it, you make corrections
to the text file using the editor, and then repeat steps 2 through 4.

The Task Builder's main function is to convert relocatable object
modules (.0OBJ files) into a single task image (.TSK file) that you can
install and run on a RSX-11M or RSX-11M-PLUS system. The task is the
fundamental executable unit in both systems.

If your program consists of a single object module, wusing the Task
Builder (TKB) is appropriately simple. You specify as input only the
name of the file containing the object module produced from the
translation of the program, and specify as output the task image file.

Typically, however, programs consist of more than a single object
module, In this case, you name each of the object module files as
input. TKB links the object modules, resolves references between
them, resolves references to the system library, and produces a single
task image ready to be installed and executed.

TKB makes a set of assumptions (defaults) about the task image based
on typical wusage and storage requirements. You can override these
assumptions by including switches and options in the task-building
terminal sequence. Thus, you can build a task that is tailored to its
own input/output and storage requirements.

TKB also produces (upon request) a memory allocation (map) file that
contains information describing the allocation of address space, the
modules that make up the task image, and the value of all global
symbols. In addition, you can request that a list of global symbols,
accompanied by the name of each referencing module, be appended to the
file (global cross reference).



INTRODUCTION AND COMMAND SPECIFICATIONS

Note that the examples in this manual use MCR as the operating system
language. Refer to the RSX-11M-PLUS Command Language Manual and, in
particular, to the command in that manual for DIGITAL Command Language
equivalence.

The following example shows a simple sequence for building a task:

>MAC PROG=PROG
>TKB PROG=PROG
>INS PROG
>RUN PROG

The first command (MAC) causes the MACRO-11 assembler to translate the
source code of the file PROG.MAC into a relocatable object module in
the file PROG.OBJ. The second command (TKB) causes TKB to process the
file PROG.OBJ and to produce the task image file PROG.TSK. The third
command (INS) causes the INSTALL processor to add the task to the
Executive's directory of executable tasks (System Task Directory).
The fourth command (RUN) causes the task to execute.

The example just given includes the command
>TKB PROG=PROG

This command illustrates the simplest use.of TKB. It gives the name
of a single file as output and the name of a single file as input.

The following sections describe basic Task Builder command forms and
sequences.

1.1 TASK COMMAND LINE

The task command 1line contains the output file specifications,
followed by the input file specifications; they are separated by an
equal sign (=). You can specify up to three output files and any
number of input files.

The task command line has the following form:
task-image-file ,map-file,symbol-definition-file=input-£file,...

You must give the output files in a specific order: the first file
you name 1is the image (.TSK) file; the second 1is the memory
allocation {(.MAP) file; and the third is the symbol definition (.STB)
file. The map file lists information about the size and location of
components within the task. The symbol definition file contains the
global symbol definitions in the task and their virtual or relocatable
addresses in a format suitable for reprocessing by TKB. You specify
this file when you are building a <resident Llibrary or common.
(Resident libraries and commons are described in Chapter 3.) TKB
combines the input files to create a single task image that can be
installed and executed.

1.1.1 Printing the Map File

If you create a map file by specifying one in the TKB command line,
there are a number of ways that you can print the file., The following
examples show you ways that you may print the map file.

1. With the following two command lines, you can <create a map

file and then print it later. The TKB command line tells TKB
to create a task file, a map file without printing it (by use

1-2
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of the switch /-SP), and a symbol definition file. The PRINT
command line tells the system to print the map file.

>TKB INV.TSK,INV.MAP/-SP,INV.STB=INV.OBJ
>PRINT INV.MAP

2. With the next command 1line, you can print the map file
directly as it 1is created. In this case, TKB tells the
system to print the file by use of the switch /SP. However,
the system task PRT... or ...PRT must be installed for this
method to work.

>TKB INV.TSK,INV.MAP/SP,INV.STB=INV.OBJ

3. With the next command line, you can print the map file on a
line printer that you specify. It is best to use this
command line on an RSX-11M-PLUS system because that system
uses transparent spooling. Using this command line on an
RSX-11M system may cause the printer to be unavailable to
other tasks. See your system manager for specific details
about using the following command line.

>TKB INV.TSK,LPn:,SY:INV.STB=INV.OBJ

1.1.2 Omitting Specific Output Files

You can omit any output file by replacing the file specification with
the delimiting comma that would normally follow it. The following
commands illustrate the ways in which TKB interprets the output file
names.,

Command Output Files

>TKB IMG1l,IMG1l,IMGl=IN1 The task image file 1is IMGl.TSK, the
memory allocation (map) file is
IMG1.MAP, and the symbol definition file
is IMGl.STB.

>TKB IMGl=INl The task image file is IMGl.TSK.
>TKB ,IMGl=IN1 The map file is IMGl.MAP.
>TKB ,,IMGl=IN1 The symbol definition file is IMG1l.STB.
>TKB IMGl,,IMGl=IN1l The task image file is IMGl1.TSK and the
symbol definition file is IMGl.STB.
>TKB =IN1 gpis is a diagnostic run with no output
iles.

1.2 MULTILINE INPUT

Although you can specify a maximum of three output £files, you can
specify any number of input files. When you specify several input
files, a more flexible format 1is sometimes necessary -- one that
consists of several 1lines. This multiline format is also necessary
when you want to include options in your command sequence (see Section
1.3).
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If you type TKB, the Monitor Console Routine (MCR) activates the Task
Builder. TKB then prompts for input wuntil it receives a line
consisting only of the terminating slash characters (//). For
example:

>TKB

TKB> IMG1, IMG1=IN1
TKB> IN2, IN3

TKB> //

This sequence produces the same result as the single line command
>TKB IMGl,IMGl=INL1,IN2,IN3

Both command sequences produce the task image file IMGl1.TSK and the
map file IMGl.MAP from the input files IN1.0BJ, IN2.0BJ, and IN3.0BJ.

You must specify the output file specifications and the equal sign (=)
on the first command line. You can begin or continue input file
specifications on subsequent lines.

When you type the terminating slash characters (//), TKB stops
accepting input, builds the task, and returns control to MCR.

1.3 OPTIONS

You use options to specify the characteristics of the task you are
building. To include options in a task, you must use the multiline
format. If you type a single slash (/) following the input file
specification, TKB requests option information by displaying ENTER
OPTIONS: and prompting for input. For example:

>TKB

TKB> IMGl, IMG1=IN1
TKB>IN2,IN3

TKB /

Enter Options:
TKB>PRI=100

TKB> COMMON=JRNAL: RO
TKB> //

In this sequence there are two options: PRI=100 and COMMON=JRNAL:RO.
The two slashes end option input, initiate the task build, and return
control to MCR upon completion.

NOTE

When you are building an overlaid task,
there are exceptions to the use of the
single slash (/). Overlaid tasks are
described in Chapter 4.

The RSX-11M/M-PLUS Task Builder provides numerous options, which are
described in Chapter 11. The general form of an option is a keyword
followed by an equal sign (=) and an argument list. The arguments in
the 1list are separated from one another by a colon (:). 1In the
example above, the first option consists of the keyword PRI and a
single argument indicating that the task is to be assigned the
priority 100. The second option consists of the keyword COMMON and an
argument list, JRNAL:RO, indicating that the task accesses a resident

=
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common region named JRNAL and that the access is read-only. You can
specify more than one option on a line by using an exclamation point
(1) to separate the options. For example, the command

TKB> PRI=100 ! COMMON=JRNAL : RO
is equivalent to the two lines:

TKB> PRI=100
TKB> COMMON=JRNAL : RO

Some options accept more than one set of argument lists. You use a
comma (,) to separate the argument lists. For example, in the command

TKB> COMMON=JRNAL:RO,RFIL:RW

the first argument 1list indicates that the task has requested
read-only access +to the resident common JRNAL. The second argument
list indicates that the task has requested read/write access to the
resident common RFIL.

The following three sequences are equivalent:
TKB> COMMON=JRNAL:RO,RFIL:RW
TKB> COMMON=JRNAL :RO!COMMON=RFIL:RW

TKB> COMMON=JRNAL: RO
TKB> COMMON=RFIL:RW

1.4 MOULTIPLE TASK SPECIFICATIONS

If you intend to build more than one task, you can use the single
slash (/) following option input. This directs TKB to stop accepting
input, build the task, and request information for the next task
build. For example:

> TKB

TKB> IMG1=IN1

TKB> IN2,IN3

TKB> /

Enter Options:
TKB>PRI=100

TKB> COMMON=JRNAL : RO
TKB> /

TKB> IMG2=SUB1

TKB> //

TKB accepts the output and input file specifications and the option
input; it then stops accepting input upon encountering the single
slash (/) during option input. TKB builds IMGL.TSK and then returns
to accept more input for building IMG2.TSK.

1.5 INDIRECT COMMAND FILES

You can enter commands to TKB directly from the keyboard, or
indirectly through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains the
TKB commands you want to be executed. Later, after you invoke TKB,
you type an at sign (@) followed by the name of the indirect command
file.
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For example, suppose you create a file called AFIL.CMD containing the
following: <

IMGLl, IMG1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
/7

Later, you can type:

>TKB
TKB>@AFIL
TKB>

or simply:
>TKB @AFIL

When TKB encounters the at sign (@), it directs 1its search for
commands to the file named AFIL.CMD. The example above is equivalent
to the keyboard sequence

>TKB

TKB>IMGl, IMG1l=1IN1
TKB>IN2,IN3

TKB>/

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKB>//

When TKB encounters two terminating slash characters (//) 1in the
indirect command file, it terminates indirect command file processing,
builds the task, and exits to MCR.

When TKB encounters a single slash (/) in an indirect command file and
the slash 1s the last character in the file, TKB directs its search
for commands to the terminal. For example, suppose the file AFIL.CMD
in the last example is changed to read:

IMG1, IMG1=1IN1
IN2,IN3
/

Later, you can type:

>TKB
TKB>@AFIL

In this case, TKB goes to the terminal and prompts:

Enter Options:
TKB>

From this point, you input options to TKB directly from the keyboard.
If you then conclude option input from the keyboard with double
slashes (//), TKB suspends command processing, as described above, and
exits to MCR following the task build. If you conclude option input
with a single slash (/), TKB prompts for new command input following
the task build of IMGl.TSK, as follows:

TKB>
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Using the single slash (/) following option input in indirect command
files 1is a convenient way to return control to your terminal between
successive task builds. For example, suppose you create two indirect
command files. The first, AFIL.CMD, contains:

IMG1l, IMG1=INl1
IN2,IN3

/
PRI=100

COMMON=JRNAL
/

The second, AFIL1.CMD, contains:

IMG2,IMG2=IN4

IN5, IN6
/
PRI=100
//
Then, the terminal sequence to build these two tasks is:
>TKB
TKB>@AFIL
TKB>@AFIL1
>
NOTE
For interaction with a TKB indirect
command file as described above, you
must use the multiline format when you
specify the indirect command file.
TKB permits two levels of indirection in file references. That 1is,

the 1indirect command file referenced in a terminal sequence can
contain a reference to another indirect command file. For example, if
the file BFIL.CMD contains all the standard options that are used by a
particular group of users at an installation, you can modify AFIL to
include an indirect command file reference to BFIL.CMD as a separate
line in the option sequence.

The contents of AFIL.CMD would then be:

IMG1, IMG1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
@BFIL

//

To build these files, you type:

>TKB
TKB> @AFIL

Suppose the contents of BFIL.CMD are:

SG=DT1:5

rINTT M

Qs
UNL1IO=D!

STACK=100
A
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Then the terminal equivalent of building these files is:

>TKB

TKB> IMGl, IMGl1=IN1
TKB>IN2,IN3

TKB> /

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL :RO
TKB>STACK=100
TKB>UNITS=5!1ASG=DT1:5
TKB>//

The indirect command file reference must appear on a separate line,
For example, if you modify AFIL.CMD by adding the @BFIL reference on
the same line as the COMMON=JRNAL:RO option, the substitution would
not take place and TKB would report an error.

1.6 COMMENTS IN LINES

You can include comments at any point in the command sequence, except
in lines that contain file specifications. You begin a comment with a
semicolon (;) and terminate it with a carriage return. All text
between these delimiters is a comment.

For example, in the 1indirect command file AFIL.CMD, described in
Section 1.5, you can add comments to provide more information about
the purpose and the status of the task,

TASK 33A

DATA FROM GROUP E-46 WEEKLY

i W e W we we

MGl, IMGl=

PROCESSING ROUTINES

=z
-

STATISTICAL TABLES

Z
N

ADDITIONAL CONTROLS

N3

RI=100

OMMON=JRNAL:RO ; RATE TABLES
TASK STILL IN DEVELOPMENT

/

AN IETE TINe R FON\. b= N0 we we e Se we Yo we v

1.7 FILE SPECIFICATIONS

TKB adheres to the standard RSX-11M/M-PLUS conventions for file
specifications. For any file, you can specify the device, the User
File Directory (UFD), the file name, the file type, the file version
number, and any number of switches.

1-8
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The file specification has the form
device:[group,member]filename.type;version/swl/sw2.../swn

When you specify files by name only, TKB applies the default switch
settings for device, group, member, type, and version.

For example:

>TKB

TKB>IMG1l, IMG1=IN1
TKB>IN2,IN3
TKB>//

If the current User Identification Code (UIC) of the terminal that TKB
is running on is [200,200], the task image file specification of the
example is assumed to be:

SY0:[200,200] IMG1.TSK;1

That is, TKB creates the task image file on the system device (SY0:)
under UFD [200,200]. The default type for a task image file is .TSK
and, if the name IMGl.TSK is new, the version number 1is 1. The
default settings for all the task image switches also apply. Switch
defaults are described in detail in Chapter 6.

For example:

> TKB

TKB> [ [20,23]] IMG1/CP/DA, IMG1/CR=IN1
TKB>IN2;3,IN3

TKB>//

This sequence of commands instructs TKB to create a task image file
IMGl.TSK;1 and a memory allocation (map) file IMG1.MAP;l1 (actually, it
produces IMGl.TSK and IMGl1.MAP with versions one higher than the
current versions) under UFD [20,23] on the device SY:. The task image
is checkpointable and contains the standard debugging aid (ODT). TKB
outputs the map to the 1line printer with a global cross-reference
listing appended to it. TKB builds the task from the latest versions
of 1IN1.0BJ and 1IN3.0BJ, and the specific version of IN2.0BJ. The
input files are all found on the system device.

The system device (SY:) 1is always the default device unless vyou
specify otherwise. If you specify another device on either side of
the equal sign, that device becomes the default device for the files
on that side of the equal sign. For example:

>TKB
TKB> [ [20,23] ] IMG1, IMG1, IMG1=DB1:IMG1,IN1,IN2

This command line produces a task image file, map file, and 1listing
file in UFD ([20,23] on device SY:. All the object files are in UFD
[20,23] on device DBl. In cases where files are scattered among
several devices, the devices must be specified in the command line.

For some files, a device specification is sufficient. 1In the example
above, the map file could be fully specified by the device LP:. The
map listing is produced on the line printer, but is not retained as a
file.

This example also used switches /CP, /CR, and /DA. The code, syntax,
and meaning for each switch are given in Chapter 6.
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1.8 SUMMARY OF SYNTAX RULES
The syntax rules for issuing commands to TKB are as follows:

® A task-build command can take any one of four forms.
first form is a single line:

>TKB task-command-line
The second form has additional lines for input file names:

>TKB
TKB>task-command-line
TKB>input-line

TKB>terminating-symbol
The third form allows you to specify options:

>TKB
TKB>task-command-line

TKB>/
Enter Options:
TKB>Option-line

TKB>terminating-symbol
The fourth form has both input lines and option lines:

>TKB
TKB>task-command-line
TKB>input-~line

TRB>/
Enter Options:
TKB>option-line

TKB>term£nating—symbol
The terminating symbol can be:

/ if you intend to build more than one task
// if you want TKB to return control to MCR

e A task command line has one of the three forms:
output-file-list=input-file,...
=input-file,...
@indirect-command-file

The third form is an indirect command file specification,
described in Section 1.5.

The

as
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An output file list has one of the three forms:
task-image-file,map-file,symbol-definition-file
task-image-file ,map-file
task-image-file

The task-image-file is the file specification for the task

image file; map-file is the file specification for the memory

allocation (map) file; and symbol-definition-file is the file
specification for the symbol definition file. Any of the
specfications can be omitted, so that, for example, the
following form is permitted:
task-image-file,,symbol-definition-file

An input line has one of two forms:

input-£file,...

@indirect-command-file

Both input-file and indirect-command-file are file
specifications.

An option line has one of two forms:
option!...
@indirect-command-£file
The indirect-command-file is a file specification.
An option has the form:
keyword=argument-list,...
The argument-list is:
arg:...
The syntax for each option is given in Chapter 6.

A file specification conforms to standard RSX-1M/M-PLUS
conventions. It has the form:

device:[group,member] filename.type;version/swl/sw2.../swn
device:

The name of the physical device on which the volume

containing the desired file is mounted. The name consists

of two ASCII characters followed by an optional 1- or

2-digit octal wunit number and a colon; for example, LP:
or DT1:.

group

The group number, in the range of 1 through 377(8).
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member

The member number, in the range 1 through 377 (8).

filename

The name of the desired file. The file name can contain up
to 9 alphanumeric characters.

type

The 3-character file type identification. Files having the
same name but a different function are distinguished from
one another by the file type; for example, CALC.TSK and
CALC.OBJ.

version

The version number, in octal, of the file. Various
versions of the same file are distinguished from one
another by this number; for example, CALC.OBJ;1 and
CALC.OBJ; 2.

All components of a file specification are optional. The
combination of the group number and the member number is
the User File Directory (UFD) that contains the file name.



CHAPTER 2

TASK BUILDER FUNCTIONS

The process of building a task involves three distinct Task Builder
(TKB) functions:

1. Linking object modules
2. Assigning addresses to the task image
3. Building data structures into the task

First, TKB is a linker. It collects and links the relocatable object
modules that you specify to it into a single task image, and resolves
references to global symbols across the module boundaries.

Second, TKB assigns addresses to the task image. On mapped systems,
TKB assigns addresses for a task beginning at 0. The Executive then
relocates the addresses at run time. On unmapped systems, TKB assigns
addresses for a task beginning at the base address of the partition in
which the task is to run. The addresses of tasks that run on unmapped
systems are not relocated at run time.

NOTE

Unless otherwise indicated, references
to tasks that run on mapped systems
assume that the tasks are nonprivileged
and residing within system-controlled
partitions.

Third, TKB builds data structures into the task image that are
required by the INSTALL processor to install the task and by the
Executive to run it.

This chapter describes the three TKB functions in detail. It also
describes the concepts of mapped a In addition,
this chapter introduces regions, 8uj s, overlays,
privileged tasks, I-iandu“D<space “tasks, and many of the mapping
concepts necessary for an understanding of task mapping and Task
Builder functions.

2.1 LINRING OBJECT MODULES

TKB links object modules within the context of program sections and
resolves references to global symbols across module boundaries.

When the language translators convert symbolic source code within a

module to object code, they assign provisional 16-bit addresses to the
code. A single assembly or compilation produces a single object

2-1
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module. In its simplest form, each module begins at 0 and extends
upward to the highest address in the module. Three object modules
produced at separate times might have the address limits shown in
Figure 2-1.

10001

750

500

MODULE #1 MODULE #3

MODULE #2

RELOCATABLE 0-

RELOCATABLE O RELOCATABLE 0-

ZK-377-81

Figure 2-1 Relocatable Object Modules

If these modules represent the separate modules of a single program,
TKB links them together and modifies the provisional addresses to one
of the following:

e For a mapped system, a single sequence of addresses beginning
at 0 and extending upward to the sum of the lengths of all the
modules (-1 byte)

e For an unmapped system, a single sequence of addresses
beginning at a base address assigned at task-build time and
extending upward to the sum of the lengths of all the modules
(-1 byte)

For example, Figure 2-2 shows the three modules linked for a mapped
system and the modules linked for an unmapped system.

2.1.1 Allocating Program Sections

The language translators process source code and TKB 1links object
modules within the context of program sections. A program section is
a block of code or data that consists of three elements:

e A name

e A set of attributes

e A length
A program section is the basic unit used by TKB to determine the
placement of code and data in a task image. The language translators
maintain a separate location counter for each program section in a

program. The name of each program section, its attributes, and its
length are conveyed to TRKB through the object module.
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MODULE #3 MODULE #3
MODULE #2 MODULE #2
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ZK-378-81

Figure 2-2 Modules Linked for Mapped and Unmapped Systems

You can create as many program sections within a module as you wish by
explicitly declaring them (with the COMMON statement in FORTRAN or the
.PSECT directive in MACRO-11, for example) or by allowing the language
translator to create them. If you do not explicitly create a program
section in your source code, the language translator you are working
with will create a "blank" program section within each module
translated. This program section will appear on your 1listings and
maps as . BLK.. For more information on explicitly declared program
sections, see your language reference manual.

A program section's name is the name by which the language translator
and TKB reference it. When processing files, both the language
translator and TKB create internal tables that contain program section
names, attributes, and lengths. A named program section can be
declared more than once. However, all occurrences of that named
program section must have identical attributes if the section occurs
more than once in the same module or if the section is a glokal
program section. Identically named program sections within the same
module and global program sections with differing attributes cause TKB
to declare the program section as having multiple attributes, which is
an error. However, identically named program sections with differing
attributes may appear in different trees of an overlaid task if the
program sections have the local (LCL) attribute.
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Program section attributes define a program section's contents, its
placement in a task image, and, in some cases, the allowed mode of
access (read/write or read-only).

A program section's length determines how much address space TKB must
reserve for it,

When a program consists of more than one module, it is not unusual for
program sections of the same name to exist in more than one of the
modules. Therefore, as TKB scans the object modules, it collects
scattered occurrences of program sections of the same name and
combines them into a single area of your task image file. The
attributes listed in Table 2-1 control the way TKB collects and places
each program section in the task image.

Table 2-1
Program Section Attributes

Attribute Value Meaning

access-code RW Read/write: data can be read from, and
written into, the program section.

RO Read-only: data can be read from, but
cannot be written 1into, the program
section.

allocation-code CON Concatenate: all references to a given

program section name are concatenated;
the total allocation is the sum of the
individual allocations.

OVR Overlay: all references to a given
program section name overlay each other;
the total allocation is the length of the
longest individual allocation.

relocation-code REL Relocatable: the base address of the
program section is relocated relative to
the base address of the task.

ABS Absolute: the base address of the
program section is not relocated; it is
always 0.
save SAV The program section has the SAVE

attribute, and TKB forces the program
section into the root.

scope-code GBL Global: the program section name is
recognized across overlay segment
boundaries; TKB allocates storage for
the program section from references
outside the defining overlay segment.

LCL Local: the program section name is
recognized only within the defining
overlay segment; TKB allocates storage
for the program section from references
within the defining overlay segment only.

(continued on next page)
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Table 2-1 (Cont.)
Program Section Attributes

Attribute Value Meaning
type-code D Data: the program section contains data.
I Instruction: the program section

contains either instructions, or data and
instructions.

2.1.1.1 Access-code and Allocation-code - TKB uses a program
section's access-code and allocation-code to determine its placement
and size in a task image. If you specify /SG in the command sequence,
TKB divides address space into read/write and read-only areas, and
places the program sections 1in the appropriate area according to
access-code. However, the default is to order the program sections
alphabetically.

TKB uses a program section's allocation-code to determine its starting
address and length. If a program section's allocation-code indicates
that TKB is to overlay it (OVR), TKB places each allocation to the
program section from each module at the same address within the task
image. TKB determines the total size of the program section from the
length of the longest allocation to it.

If a program section's allocation-code indicates that TKB is to
concatenate it (CON), TKB places the allocation from the modules one
after the other in the task image, and determines the total allocation
from the sum of the lengths of each allocation.

TKB always allocates address space for a program section beginning on
a word boundary. If the program section has the D (data) and CON
(concatenate) attributes, TKB appends to the last byte of the previous
allocation all storage contributed by subsequent modules. It does
this regardless of whether that byte is on a word or nonword boundary.
For a program section with the I (instruction) and CON attributes,
however, TKB allocates address space contributed by subsequent modules
beginning with the nearest following word boundary.

For example, suppose three modules, IN1l, IN2, and IN3, are to be task
built. Table 2-2 lists these modules with the program sections that
each contains and their access codes and allocation codes.

In this example, the program section named B, with the attribute CON
(concatenate), occurs twice. Thus, the total allocation for B is the
sum of the lengths of each occurrence; that is, 100 + 120 = 220. The
program section named A also occurs twice. However, it has the OVR
(overlay) attribute; so its total allocation is the 1largest of the
two sizes, or 300. Table 2-3 lists the individual program section
allocations.
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Table 2-2
Program Sections for Modules INl1l, IN2, and IN3

Program
Section Access Allocation Size
File Name Name Code Code (Octal)
IN1 B RW CON 100
A RW OVR . 300
C RO CON 150
IN2 A RW OVR 250
B RW CON 120
IN3 Cc RO CON 50
Table 2-3

Individual Program Section Allocations

Program Section Total
Name Allocation
B 220
A 300
c 220

TKB then groups the program sections according to their access
and alphabetizes each group, as shown in Figure 2-3.

NOTE

The example shown in Figure 2-3
represents the Task Builder's allocation
of program sections if the /SG or /MU
switches are used. For more
information, see the description of the

s /SQ, and /SG switches in Chapter

| C (220) ~] READ-ONLY

_1 Access
B (220) ]

READ/WRITE TASK MEMORY
A (300) ACCESS
STACK
HEADER

ZK-379-81

Figure 2-3 Allocation of Task Memory

codes
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The save attribute (SAV) is useful in cases where the information in a
program section must be kept available to all task segments. The SAV
attribute of a program section causes TKB to force the program section
into the root of an overlaid task. Therefore, the named common block
in the FORTRAN SAVE statement or the named program section in the
MACRO-11 .PSECT directive specified with the SAV attribute are in the
root of the task.

2.1.1.2 Type-Code and Scope-Code - The scope-code is meaningful only
when you define an overlay structure for a task. The scope-code is
described in Chapters 3 and 4 within the context of the descriptions
of overlays. {The type-code is meaningful in the context of program
sections within an I- and D-space task, as described in Chapter 7.}

2.1.2 Resolving Global Symbols

TKB resolves references to global symbols across module boundaries and
any references (explicit or implicit) to the system library. When the
language translators process a text file, they assume that references
to global symbols within the file are defined in other, separately
assembled or compiled modules. As TKB links the relocatable object
modules, it «creates an internal table of the global symbols it
encounters within each module. 1If, after TKB examines and 1links all
the object modules, references remain to symbols that have not been
defined, TKB assumes that it will find the definition for the symbols
within the default system object module library (LB:[1,1]SYSLIB.OLB).
If undefined symbols still remain after SYSLIB is examined, TKB flags
the symbols as undefined. 1If you have not specified an output map in
your TKB command sequence, TKB reports the names of the undefined
symbols to you on your terminal., If you have specified an output map,
TKB outputs to your terminal only the fact that the task contains
undefined symbols. The names of the symbols appear on your map
listing.

When creating the task image file, TKB resolves global references, as
shown 1in the following example. Table 2-4 lists the three files INI1,
IN2, and IN3, showing the program sections within each file, the
global symbol definitions within each program section, and the
references to global symbols in each program section.

Table 2-4
Resolution of Global Symbols for IN1, IN2, and IN3

File Program Section Global Global
Name Name Definition Reference
IN1 B Bl A
B2 Ll
A Cl
XXX
C
IN2 A A
B Bl B2
IN3 C Bl

2-7



TASK BUILDER FOUNCTIONS

In processing the first file, INl, TKB finds definitions for Bl and B2
and references to A, L1, Cl, and XXX. Because no definition exists
for these references, TKB defers the resolution of these global
symbols. In processing the next file, IN2, TKB finds a definition for
A, which resolves the previous reference, and a reference to B2, which
can be immediately resolved.

When all the object files have been processed, TKB has three
unresolved global reference: Cl, L1, and XXX. Assume that a search
of the system library LB:[1,1]SYSLIB.OLB resolves L1 and XXX, and TKB
includes the defining modules in the task's image. Assume also that
TKB cannot resolve the global symbol Cl. TKB lists it as an undefined
global symbol.

The relocatable global symbol Bl is defined twice. TKB lists it as a
multiply defined global symbol. TKB uses the first definition of that
multiply defined symbol.

Finally, an absolute global symbol (for example, symbol=100) can be
defined more than once without being listed as multiply defined, as
long as each occurrence of the symbol has the same value.

2.2 THE TASK STRUCTURE

TKB builds the data structures required by other system programs and
incorporates them into the task image. The Executive (which is
responsible for the allocation of system resources) must have access
to the data for all tasks on the system. It must know, for example, a
task's size and priority, and it must have information about the way

each task expects to use the system. It is the Task Builder's
responsibility to allocate space in the task image for the data
structures required by the Executive. For example, TKB allocates

space for the task header and initializes it.

The disk image file created by TKB contains the linked task and all of
the information required by the system programs to install and run it.
In its simplest form, the disk image file consists of three physically
contiguous parts:

e The label block group
e The task header
e The task memory image
Figure 2-4 illustrates the basic simplified structure of this file,

The label block group contains data produced by TKB and used by
INSTALL command processing. It contains information about the task,
such as the task's name, the partition in which it runs, its size and
priority, and the logical units assigned to it. When you install the
task, INSTALL command processing (hereinafter called INSTALL) wuses
this information to create a Task Control Block (TCB) entry for the
task in the System Task Directory (STD) and to initialize the task's
header information.

The task's header contains information that the Executive uses when it
runs the task. The header also provides a storage area for saving the
task's essential data when the task is checkpointed. TKB creates and
partially initializes the header; INSTALL initializes the rest of the
header.
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Figure 2-4 Disk Image of the Task

The task memory contains the 1linked modules of the program and,
therefore, the code and data. It also contains the task's stack. The
stack is an area of task memory that a task can use £for temporary
storage and subroutine linkage. It can be referenced through general
register 6, the stack pointer (SP). The label block group, the task's
header, and the task memory are described in detail in Appendix B.

The task's memory image is the part of your task that the system reads
into physical memory at run time. The label block group is not
required in physical memory. Therefore, in its simplest form, the
task's memory image consists of only two parts: the task header and
task memory. Figure 2-5 shows the memory image.

. TASK .
! MEMORY

HEADER

ZK-381-81

Figure 2-5 Memory Image



TASK BUILDER FUNCTIONS

2.3 OVERLAYS

This section is an introduction to overlaid tasks. Details about
overlaid tasks can be found in Chapters 3 and 4.

Using overlays can save memory space by reducing the size of the
executing portion of the task or the physical memory required by the
task. Parts of an overlaid task reside on disk, thereby saving memory
space,

An overlaid task is a task designed to have discrete parts. The parts
of a task designed this way can execute relatively independently of
other parts. Parts of an overlaid task reside on disk until they are
needed for their required function. The common part of the task,
which stays in memory, is the root. The root calls the other parts of
the task, which are referred to as segments, from disk into memory.

The RSX-11M/M-PLUS systems have two types of overlaid tasks. One type
of overlaid task reads in segments from disk over other segments
already in memory. A task of this type is called a disk-resident
overlaid task. In this task, segments reside on disk until they are
needed. The segments in disk-resident overlays that share the same
memory address space of the task with other segments must be logically
independent of those segments. The independence is necessary because
the other segments are on disk and cannot be referenced. For example,
Task A, an overlaid task root, can call either of two
segments: segment B or segment C. The root of Task A initially calls
segment B. Segments B and C occupy the same memory space. Segment B
cannot call segment C and segment C cannot call segment B. However,
if segment B returns control of the task to the root of task A, the
root can then call segment C. Segment C would then be read into
memory over segment B, Figure 2-6 illustrates this sequence.

Because segments of a disk-resident overlaid task can occupy the same
memory space, a disk-overlaid task can occupy less memory than it
would if it were not overlaid. However, more disk I/0 transfers (and,
therefore, more time) are needed for this type of task.

Another type of overlaid task is the memory-resident overlaid task.
In this task, the segments reside on disk until they are needed. At
that time, the needed segment is read into a sequentially adjacent
area of memory and resides there until the task ends. For example, a
memory-resident overlaid Task A has two segments: segment B and
segment C. If the root of task A calls segment B, segment B is read
into memory adjacent to the root. When the root regains control and
then calls segment C, segment C 1is read into memory adjacent to
segment B, Figure 2-7 illustrates this sequence.

Memory-resident overlaid tasks execute faster than disk-resident
overlaid tasks. The increase in speed occurs because fewer disk 1/0
transfers are needed during task execution.
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Figure 2-6 Simple 2-Segment, Disk-Resident Overlay Calling Sequence
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Figure 2-7 Simple 2-Segment, Memory-Resident Overlay Calling
Sequence
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2.4 ADDRESSING CONCEPTS

The primary addressing mechanism of the PDP-11 is the 16-bit computer
word, The maximum physical address space that the PDP-11 can
reference at any one time is a function of the length of this word.
Because of the 16-bit word size, a task can have an address no larger
than 177777 (octal) (32K words) within the task image for nonprivileged
tasks on an unmapped system. In practice, the task size may be
limited to a few words less than 32K because of system design.

2.4.1 pPhysical, Virtual, and Logical Addresses

Physical, virtual, and logical addresses, and virtual and logical
address space, are concepts that provide a basis for understanding the
functions of task addressing and the use of task windows.

e Physical addresses - A single, physical location in memory is
called the physical address.

Memory is divided into parts called bytes. They are numbered
according to their position in memory. Therefore, the lowest
byte is 0 and the highest byte is whatever the upper limit of
memory may be for a particular system; for example, 32K, 64K,
and so forth. The assigned number 1is called the physical
address.

A task contains addresses (for example, 0 through 2200). TKB
relocates the task's addresses in an unmapped system by a
number represented by the base address of the partition in
which it 1is installed. After installation, the task's
addresses refer to physical addresses of memory, which always
correspond to the same physical memory in an unmapped system.

Therefore, the task addresses have an actual one-to-one
relationship to physical memory. The same relationship exists
any time the task is in memory. The memory (physical)
addresses will not be from 0 through 2200. For example, after
the task is installed in the partition, the task's address of
0 may become physical address 17000 because the Task Builder
added in the offset, which is equal to the partition base
address.

In a mapped system, the task's addresses remain the same but
the physical memory addresses may change due to Executive
processes (checkpointing, swapping, and so forth.).
Therefore, the task addresses do not always correspond to the
same physical memory. If the task uses memory management
directives, the memory addressing can be changed by the task
to include any part of physical memory that it is allowed to
access.

e Virtual addresses - A task's virtual addresses are the
addresses within the task.

The PDP-11's 16-bit word length (a mapped system) imposes the
address range of 32K words on the virtual addresses.
Therefore, these task addresses could include addresses O
through 177777 (octal) depending on the length of the task.
These task addresses are not the same as the actual addresses
of the memory in which the task resides.
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® Virtual address space - A task's virtual address space is that
space encompassed by the range of virtual addresses that the
task uses.

With the Create Address Window (CRAWS) memory management
directive, a task can divide its virtual address space into
segments called virtual address windows. By using address
windows, you can manipulate the mapping of virtual addresses
to dififerent areas of physical memory.

® Logical addresses - A task's logical addresses are the actual
physical memory addresses that the task can access.

e [Logical address space - The task's logical address space is
the total amount of physical memory to which the task has
access rights.

The physical memory represented by the logical addresses may
or may not be continuous. The items in physical memory that
logical address space includes are the task itself, and static
and dynamic regions.

2.4.2 Unmapped Systems

In an unmapped system, the task's virtual address space and its
logical address space coincide exactly, as shown in Figure 2-8.

In an unmapped system, the task's address space is 1limited to 32K
words. All of the machine's physical memory and all of its device
registers are accessible to all tasks running on the system. The top
4K words of address space are reserved for the UNIBUS addresses that
correspond to the peripheral device registers (the I/0 page), and a
segment of low memory is occupied by the Executive. Therefore, in an
unmapped system, the largest task size is 32K words minus the I/0 page
and the size of the Executive. Figure 2-9 shows the memory layout for
an unmapped system.

Unmapped systems contain only user-controlled partitions. When TKB
links the relocatable object modules of a task that is to run on an
unmapped system, it requires that you specify the partition in which
the task is to run, and the partition's base address and length. TKB
sets the base address of the task to the base address of the
partition. This means that the task's location in physical memory is
bound to the partition and does not change. Because all of physical
memory in an unmapped system is directly addressable, and the task's
location within memory does not change, the addresses that TKB assigns
coincide exactly with the physical addresses of the machine and,
therefore, do not need to be relocated at run time.

2.4.3 Mapped Systems

A mapped system is one in which the processor contains a KT-1ll memory
management unit. The processor handbook for your machine contains a
complete description of the memory management unit.

Mapped processors have up to three modes of operation: kernel,
‘supervisor, and user (the PDP-11/34 does not have supervisor mode).
The information in this section is relevant to user mode only.
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Figure 2-8 Virtual and Logical Address Space Coincidence
in an Unmapped System

In a mapped system, the relationship between virtual address space and
physical address space is different from that of an unmapped system.
The primary addressing mechanism for a mapped system 1is still the
16-bit word, and virtual address space is still 32K words. However, a
mapped system has a much greater physical memory capacity and,
therefore, physical memory and virtual address space do not coincide.

To address all of physical memory in a mapped system, a machine must
have an effective word length of 18 or 22 bits, depending on the model
of the machine. When TKB links the relocatable object modules of a
task that is to run on a mapped system, it assigns 16-bit addresses to
the task image. The memory management unit's function (under control
of the Executive) 1is to <convert the task's 16-bit addresses to
effective 18- or 22-bit physical addresses. The mechanical 3job of
task relocation 1is performed by the Executive and the memory
management unit at task run time. Figure 2-10 illustrates the
relationship between physical memory and virtual address space in a
mapped system.
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Figure 2-9 Memory Layout for Unmapped System

The memory management unit divides a machine's 32K words of wvirtual
address space into eight 4K-word segments or pages. Each page has two
registers associated with it:

e A 16-bit Page Description Register (PDR), which contains
control and access information about the page with which it is
associated

®¢ A l6-bit Page Address Register (PAR), which is an address
relocation register

The PDRs and PARs are always used as a pair. FEach pair is called an
Active Page Register (APR). Figure 2-11 shows how the memory
management unit divides the 32K words of virtual address space.

The Executive allocates only as many APRs as are necessary to map a
given task into physical memory. Therefore, a 4K-word task requires
one APR; a 6K-word task requires two. Figure 2-12 1illustrates this
mapping.
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Figure 2-10 Task Relocation in a Mapped System
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Figure 2-11 Memory Management Unit's Division of Vvirtual
Address Space

Finally, the layout of the virtual address space for a task that is to
run in a mapped system is different in most cases from that of a task
that is run in an unmapped system. Unless a task is privileged, the
I1/0 page and the Executive are not normally part of a task's virtual
address space and, unlike in an unmapped system, a task 1is inhibited
by the system from accessing any portion of physical memory that it
does not specifically own. Because the I/0 page and the Executive are
not part of a task's virtual address space, a task can be
approximately 32,767 words long (32K minus 32 words needed by the
loader) on a mapped system. TKB can build a task of 32K minus 1 word
in size. However, overlaid tasks, and tasks that become extended, may
use the entire 32K-word space.

2.4.4 Regions

This section briefly describes regions and their relationship to and
use by tasks. Regions and their use are more thoroughly described in
Chapter 5.

A region is a defined area of memory that can contain code or data.
It can also be a blank area reserved for use by one or more tasks.
The region is named and built like a task except that the /HD header
switch is negated (/-HD) because the region is not a task and does not
need a task header. Tasks can also create regions dynamically as they
execute. Dynamic regions are useful because they increase the task's
logical address space while saving its virtual address space. Regions
also allow tasks to share code and data with other tasks.
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Figure 2-12 Mapping for 4K-Word and 6K-Word Tasks

are named according to their use or the way in which they were
These regions are:

Task Region -- A continucus block of memory in which the task
runs.,
Common Shared Region -- On unmapped systems, a shared region

defined by an operator at run time or built into the system
during system generation; for example, a global common area.
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Resident commons are usually called shared regions because
they are wused as an area in which tasks share common data.
Shared regions can be absolute or position independent.
Shared regions and their use are described in Chapter 5.

e Library Shared Region -- A shared region containing common
code or routines shared by tasks, and in this way saving
virtual address space in the tasks.

¢ Dynamic Region -- A region created dynamically at run time by
the Create Region (CRRGS$) memory management directive in the
task. This directive and associated directives are described
in the RSX-11M/M-PLUS Executive Reference Manual.

By convention, a shared region that contains code is a library and a
shared region that contains data is a common.

Tasks must map to a region by using task windows which must be defined
and numbered in the task when the task is built. Usually, a task uses
one window for each region to which mapping must occur. Task windows
are described in the next section, Task Mapping and Windows.

Figure 2-14 shows a sample collection of regions that could make up a
task's 1logical address space. A task's logical address space can
expand and contract dynamically as the task 1issues the appropriate
memory management directives. The header and root segment are always
part of the region. Therefore, the task header and root segment
always wuse window 0 (UAPR 0) and region 0. Because a region occupies
a continuous area of memory, each region is shown as a separate block.

2.5 TASK MAPPING AND WINDOWS

As mentioned earlier, tasks that run on mapped systems must be
relocated at run time. When vyou build a task that is to rum on a
mapped system, TKB creates and places in the header of the task one or
more 8-word data structures called window blocks. When you install a
task, INSTALL initializes the window block(s). Once initialized, a
window block describes a range of continuous virtual addresses called
a window.

2.5.1 Task Windows

A window can be as small as 32 words or as large as 32K words. When a
task consists of one continuous range of addresses (a single region
task) only one window block is required to describe the entire task
from the beginning of its header to the highest virtual address in the
task. When a task consists of two or more regions (such as a task
that references a shared region as described in Chapter 5), each
region must have at least one window block associated with it that
describes all or a portion of the region.

When the Executive maps a task into physical memory, it extracts the
information it requires to set up the APRs of the memory management
unit from the task's window block.
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Figure 2-13 Window Block 0

When you run your task, the Executive determines where in physical
memory the task 1is to reside. The Executive then loads the Page
Address Register portion of the APRs with a relocation constant that,
when combined with the addresses of the task, yields the 18- or 22-bit
physical address range of the task.

Referring to Figure 2-14, which illustrates a mapped system without I-
and D-space, you can observe that a large 32K user task contains three
distinct areas of continuous space called "windows." The term "“task
window" 1is a «construct that maps a continuous portion of the task's
yirtual address space to a continuous portion of a region in the
task's 1logical address space. Windows must have a specified size and
starting address. The window size can be from 32 words to 32K minus
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32 words, and windows must start on a 4K address boundary. Figure
2-14 shows three windows that are not continuous in the task's virtual
address space. However, the space within each window 1is continuous.
In this task, the size of window 0 is 11K; the size of window 1 is
11K; and the size of window 2 is 8K. The concept of windows exists
for the following specific reason.

By using the concept of windows and the memory management directives,
a nonprivileged task can access a larger logical memory space than
that implied by the 32K virtual addressing range and normally
accessible by the 16-bit address. A task can, in fact, only access
32K of memory at one time. However, a nonprivileged task can change
its access to 1logical addresses (real, physical memory). The area
that your program accesses can Dbe changed by the program during
program execution. The process of accessing different logical areas
of memory is called "mapping."

By referring to Figure 2-14, you can see that window 1 in the task is
mapped to region 1 in physical memory. The task can change the window
1 mapping to region 0 in physical memory. In effect, then, though a
task is limited to a range of 32K virtual addresses, a task can access
all the physical memory available to it (determined by the way that
you set up the mapping) by changing the mapping of its windows to
different logical addresses. Figure 2-14 provides a visual
description of the concept of mapping to different logical addresses.

The discussion now proceeds to setting up the task's windows. This is
done by defining task window blocks to TKB.

To manipulate virtual address mapping to various logical areas, you
must first divide a task's 32K of virtual address space into segments.
These segments are task (virtual address) windows. Each window
encompasses a continuous range of virtual addresses. The first
address of the window address range must be a multiple of 4K (the
first address must begin on a 4K boundary) because of the way that the
KT-11 memory management unit uses APRs.

On ‘an RSX-11M system, you can »spe01fy up to seven 'windows. = Task
mapp1ng for the task's code requlres the useﬁof w1ndqw 0. Therefore,
there is a total of eight i “is not available,
to nonpr1v1leged tasks. , ¢
minimum of 32.words to a. maxlmum af 32K mlnus 32 words&,

'RSX-11M-PLUS - tasks that
libraries _have -a total
windows 'n thi ’

A task that includes directives that dynamically manipulate address
windows must have task window blocks set up in the task header as well
as Window Definition Blocks in the code for use by the Create Address
Window directive. The Executive uses task window blocks to identify
and describe each currently existing window. When linking the task,
the programmer specifies the number of extra window blocks needed by
the task. The number of blocks should equal the maximum number of
windows that will exist concurrently while the task is running.
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In RSX-11M or RSX-11M-PLUS without I~ and D-space, a window's
identification 1is a number from 0 to 7, which is an index to the
window's corresponding window block. The address window identified by
0 is the window that always maps the task's header and root segment.
TKB creates window 0, which the Executive uses to map the task. No
directive may specify window 0; a directive that does so is rejected.

When a task uses memory management directives, the Executive views the
relationship between the task's virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, the address does not point anywhere. This is
a point to watch when setting up windows with the Create Address
Window directive (CRAWS). Similarly, a window can be mapped only to
an area that is all or part of an existing region within the task's
logical address space.

Once a task has defined the necessary windows and regions, the task
can issue memory management directives to perform operations such as
the following:

e Map a window to all or part of a region.

e Unmap a window from one region in order to map it to another
region.

® Unmap a window from one part of a region in order to map it to
another part of the same region.

2. 6 RSX—llM—PLUS SUPERVISOR MODE

‘Three modes of operatlon are _possible in the PDP-11:  user - mode
superv1sor mode, and kernel mode. Each mode has as5001ated w1th it
: PRs for mappin E e :
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2.7 PRIVILEGED TASKS

RSX-11M/M-PLUS systems have two classes of tasks: privileged and
nonprivileged. However, the term "privileged" has meaning in mapped
systems only, because in mapped systems certain areas of memory are
protected from nonprivileged tasks. In an unmapped system, any task
has the ability to access all of physical memory if so programmed.
Therefore, the distinction between these two classes of tasks is
primarily one of their mapping to memory in a mapped system.

Privileged tasks in a mapped system can access system data areas and
the Executive. Altering system data areas or the Executive can cause
obscure and difficult problems. Therefore, privileged tasks must be
programmed and used with all caution.

You can specify a task as privileged by using the /PR switch in the
TKB command 1line. The /PR:0 switch allows a task to perform certain
privileged operations; but, the /PR:0 task cannot access the
Executive or system data structures. The /PR:4 switch allows the task
to directly map the I/0 page, Executive routines, and system data
structures. The /PR:4 switch 1is wused for a privileged task in a
system that has an Executive of 16K or less, The /PR:5 switch allows
a task to directly map to the I/0 page, Executive routines, and system
data structures. The /PR:5 switch is used for a privileged task in a
system that has an Executive of 20K or less.

Chapter 6 describes privileged tasks and their mapping in detail.
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CHAPTER 3

OVERLAY CAPABILITY

TKB provides you with the means to reduce the memory and/or virtual
address space requirements of your task by using tree-like overlay
structures created with the Overlay Description Language (ODL). You
can divide your conventional task into pieces called segments, which
are loadable with one disk access. : : : Spac cask,

: 1mi ssegment.. The segments are
the discrete parts of the overlay structure that form the tree. You
can specify two kinds of overlay segments: those that reside on disk,
and those that reside permanently in memory after being loaded from
disk. ‘

:

3.1 OVERLAY STRUCTURES
To create an overlay structure, you divide a task into a series of
segments consisting of:

e A single root segment, which is always in memory

® Any number of overlay segments, you must consider which either
1) reside on disk and share virtual address space and physical
memory with one another (disk-resident overlays); or 2)
reside in memory and share only virtual address space with one
another (memory-resident overlays)l

Segments consist of one or more object modules, which in turn consist
of one or more program sections. Segments that overlay each other
must be logically independent; that is, the components of one segment
cannot reference the components of another segment with which it
shares virtual address space. In addition to the logical independence
of the overlay segments, you must consider the general flow of control
within the task when creating overlay segments.

You must also consider the kind of overlay segment to «create at a
given position in the structure, and how to construct it. Dividing a
task into disk-resident overlays saves physical space, but introduces
the overhead activity of 1loading these segments each time they are

needed -- but are not present -- in memory. Memory-resident
overlays, on the other hand, are loaded from disk only the first time
they are referenced. Thereafter, they remain in memory and are

referenced by remapping.

1. Note that memory-resident overlays can be used only if the hardware
has a memory management unit, and if support for the memory management
directives has been included in the system on which the task 1is to
run.
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Several large classes of tasks can be handled effectively when built
as overlay structures. For example, a task that moves sequentially
through a set of modules 1is well suited to wuse as an overlay
structure. A task that selects one of a set of modules according to
the value of an item of input data is also well suited to use as an
overlay structure.

3.1.1 Disk-Resident Overlay Structures

Disk-resident overlays conserve virtual address space and physical
memory by sharing them with other overlays. Segments that are
logically independent need not be present in memory at the same time.
They, therefore, can occupy a common physical area in memory (and,
therefore, common virtual address space) whenever either needs to be
used.

The use of disk-resident overlays is shown in this section by an
example, task TKl, which consists of four input files. Each input
file consists of a single module with the same name as the file. The
task is built by the command

>TKB TK1=OVRLAY.ODL/MP
and the file OVRLAY.ODL contains the modules CNTRL, A, B, C in an
overlay description for the task being built. The /MP switch
specifies that the input file is an Overlay Description Language (ODL)
file.

In this example, the modules A, B, and C are logically independent;
that is:

A does not call B or C and does not use the data of B or C.

B does not call A or C and does not use the data of A or C.

C does not call A or B and does not use the data of A or B.
A disk-resident overlay structure can be defined in which A, B, and C
are overlay segments that occupy the same storage area in physical
‘memory. The flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL.

CNTRL calls B and B returns to CNTRL.

CNTRL calls C and C returns to CNTRL.

CNTRL calls A and A returns to CNTRL.
In this example, the lcading of overlays occurs only four times during
the execution of the task. Therefore, the virtual address space and
physical memory requirements of the task can be reduced without unduly
increasing the overhead activity.
The effect of the use of an overlay structure on allocating virtual

address space and physical memory for task TKl is described in the
following paragraphs.
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The lengths of the modules are:

Module Length (in Octal)
CNTRL 20000 bytes
A 30000 bytes
B 20000 bytes
C 14000 bytes

Figure 3-1 shows the virtual address space and physical memory
required as a result of building TK1l as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirement to build TK1
as a single-segment task is 104000(octal) bytes.

In contrast, Figure 3-2 shows the virtu
memory required as a result of building
using the overlay capability.

al address space and physical
TKl as a multisegment task and

The multisegment task requires 50000 (octal} bytes.

NOTE

In addition to the storage required for
modules A, B, and C, storage is required
for overhead in handling the overlay
structures. This overhead is not
reflected in this example.

In using the overlay capability, the total amount of virtual address
space and physical memory required for the task is determined by the
sum of the length of the root segment and the length of the 1longest
overlay segment. Overlay segments A and B in this example are much
longer than overlay segment C. If A and B are divided into sets of
logically independent modules, task storage requirements can be
further reduced. Segment A can be divided into a control program (A0)
and two overlays (Al and A2). Segment A2 can then be divided into the
main part (A2) and two overlays (A21 and A22). Similarly, segment B
can be divided into a control module (B0O) and two overlays (Bl and
B2).

Figure 3-3 shows the virtual address space and physical memory
required for the task produced by the additional overlays defined for
A and B.

As a single-segment task, TKl requires 104000 (octal) bytes of virtual
address space and physical memory. The first overlay structure
reduces the requirement by 34000 (octal) bytes. The second overlay
structure further reduces the requirement by 14000 (octal) bytes.

The vertical and horizontal lines in the diagrams of Figures 3-2 and
3-3 represent the state of virtual address space and physical memory
at various times during the calling sequence of TKl. For example, in
Figure 3-3 the leftmost vertical line in both diagrams shows virtual
address space and physical memory, respectively, when CNTRL, A0, and
Al are lcaded. The next vertical line shows virtual address space and
physical memory when CNTRL, A0, A2, and A2]1 are loaded, and so on.
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Figure 3-2 TK1 Built As a Multisegment Task

3.1.2 Memory-Resident Overlay Structures (Not Supported on RSX-11S)

TKB provides for creating overlay segments that are loaded from disk
only the first time they are referenced. Thereafter, they reside in
memory. Memory-resident overlays share virtual address space just as
disk-resident overlays do but, wunlike disk-resident overlays,
memory-resident overlays do not share physical memory. Instead, they
reside in separate areas of physical memory, each segment aligned on a
32-word boundary. Memory-resident overlays save time for a running

3-5
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task because they do not need to be copied from a secondary storage
device each time they are to overlay other segments. "Loading" a
memory-resident overlay reduces to mapping a set of shared virtual
addresses to the unique physical area of memory containing the
overlaying segment.

The use of memory-resident overlays is shown in this section by an
example, task TK2, which consists of four input files. Each input
file consists of a single module with the same name as the file. The
task is built by the command

>TKB TK2=0VRLAY2.ODL/MP
and the file OVRLAY2.0ODL contains the modules CNTRL, D, E, and F in an
overlay description for the task being built. The /MP switch
specifies that the input file is an Overlay Description Language (ODL)
file.

In this example, the modules D, E, and F are 1logically independent;
that is:

D does not call E or F and does not use the data of E or F.

E does not call D or F and does not use the data of D or F.

F does not call D or E and does not use the data of D or E.
A memory-resident overlay structure can be defined in which D, E, and
F are overlay segments that occupy separate physical memory locations
but the same virtual address space. The flow of control for the task
is as follows:

CNTRL calls D and D returns to CNTRL.

CNTRL calls E and E returns to CNTRL.

CNTRL calls F and F returns to CNTRL.
The effect of the use of a memory-resident overlay structure on
allocating virtual address space and physical memory for task TK2 is

described in the following paragraphs.

The lengths of the modules are:

Module Length (in Octal)
CNTRL 20000
D 10000
E 14000
F 12000

Figure 3-4 shows the virtual address space and physical memory
requirements as a result of building TK2 as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirements when TK2 is
built as a single-segment task is 56000 (octal) bytes.

If TK2 is built wusing the Task Builder's memory-resident overlay
capability, the relationship of virtual address space to physical
memory changes, as shown in Figure 3-5.
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Figure 3-5 TK2 Built As a Memory-Resident Overlay

The physical memory requirements for TK2 do not change (56000 (octal)
bytes), but the virtual address space requirements have been reduced
to 34000 (octal) bytes. This represents a savings in virtual address
space of 22000 (octal) bytes.



OVERLAY CAPABILITY

NOTE

In addition to the storage required for
modules D, E, and F, storage is required
for overhead in handling the overlay
structures., This overhead is not
reflected in this example.

In Figure 3-5, the vertical and horizontal 1lines in the virtual
address space diagram represent the state of virtual address space at
various times during the calling sequence of TK2, The leftmost
vertical 1line shows virtual address space when CNTRL and D are loaded
and mapped. The next vertical line shows virtual address space when
CNTRL and E are loaded and mapped. The third vertical line shows
virtual address space when CNTRL and F are loaded and mapped.

The uppermost horizontal line of the task region shows that segments
D, E, and F share virtual address space.

When TK2 is activated, the Executive loads TK2's root segment into
physical memory. The Executive loads segments D, E, and F into memory
as they are called. Once all segments in the structure have been
called, "loading" of the overlay segments reduces to the remapping of
virtual address space to the physical locations in memory where the
overlay segments permanently reside. Figures 3-6 and 3-7 illustrate
the relationship between virtual address space and physical memory for
task TK2 during four time periods:

e TIME 1 (Figure 3-6A) - TK2 is run and the system 1loads the
root segment (CNTRL) into physical memory and maps to it.

e TIME 2 (Figure 3-6B) - CNTRL calls segment D. The system
loads segment D into physical memory and maps to it. Segment
D returns to CNTRL.

e TIME 3 (Figure 3-7A) - CNTRL calls segment E, The system
loads segment E into physical memory, unmaps from segment D,
and maps to segment E. Segment E returns to CNTRL.

e TIME 4 (Figure 3-7B) - CNTRL calls segment F. The system
loads segment F into physical memory, unmaps from segment E,
and remaps to segment F. Segment F returns to CNTRL.
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Figure 3-7B Time 4
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Figure 3-7B Relationship Between Virtual Address Space
and Physical Memory -- Time 4

It is important to be careful in choosing whether to have
memory-resident overlays 1in a structure. Carelessly using these
segments can result in inefficient allocation of virtual address
space, because TKB allocates virtual address space in blocks of 4K
words. Consequently, the 1length of each overlay segment should
approach that limit if you are to minimize waste. (A segment that is
one word longer than 4K words, for example, is allocated 8K words of
virtual address space. All Dbut one word of the second 4K words is
unusable.)
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You can also conserve physical memory by maintaining control over the
contents of each segment. Including a module in several
memory-resident segments that overlay one another causes physical
memory to be reserved for each extra copy of that module. Common
modules, including those from the system object module 1library
(SYSLIB), should be placed in a segment that can be accessed from all
referencing segments.

The primary criterion for choosing to have memory-resident overlays is
the need to save virtual address space when disk-resident overlays are
either wundesirable (because they would slow down the system
unacceptably), or impossible (because the segments are part of a
resident library or other shared region that must permanently reside
in memory).

Memory-resident overlays can help you use large systems to better
advantage because of the time savings realized when a large amount of
physical memory is available. Resident libraries, in particular, can
benefit from the virtual address space saved when they are divided
into memory-resident segments.

3.2 OVERLAY TREE

The arrangement of overlay segments within the virtual address space
of a task can be represented schematically as a tree-like structure.
Each branch of the tree represents a segment. Parallel branches
denote segments that overlay one another and therefore have the same
virtual address; these segments must be 1logically independent.
Branches connected end to end represent segments that do not share
virtual address space with each other; these segments need not be
logically independent.

TKB provides an Overlay Description Language (ODL) for representing an
overlay structure consisting of one or more trees (the ODL is
described in Section 3.4).

The single overlay tree shown in Figure 3-8 represents the allocation
of virtual address space for TKl (see Section 3.1.1).

The tree has a root (CNTRL) and three main branches (A0, BO, and ().
It also has six leaves (Al, A21, A22, Bl, B2, and C).

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root. For example:

A21-A2-A0-CNTRL

The path up is defined from the root to the leaf. For example:
CNTRL-BO-B1

Knowing the properties of the tree and 1its paths 1is important to

understanding the overlay 1loading mechanism and the resolution of
global symbols.
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Figure 3-8 Overlay Tree for TK1l

3.2.1 Loading Mechanism

Modules can call other modules that exist on the same path. The
module CNTRL (Figure 3-8) 1is common to every path of the tree and,
therefore, can call and be called by every module in the tree. The
module A2 can call the modules A21, A22, A0, and CNTRL; but A2 cannot
call aAl, Bl1l, B2, BO, or C.

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory and mapped, or must be
brought into memory. The methods for loading overlays are described
in Chapter 4.

3.2.2 Resolution of Global Symbols in a Multisegment Task

In resolving global symbols for a multisegment task, TKB performs the
same activities that it does for a single-segment task. The rules
defined in Chapter 2 for resolving global symbols in a single-segment
task apply also in this case, but the scope of the global symbols is
altered by the overlay structure.

In a single-segment task, any module can refer to any global
definition. In a multisegment task, however, a module can only refer
to a global symbol that is defined on a path that passes through the
called segment.

The following points, illustrated in the tree diagram in Figure 3-9,
describe the two distinct cases of multiply defined symbols and
ambiguously defined symbels,

In a single~segment task, if you define two global symbols with the
same name, the symbols are multiply defined and an error message is
produced.

In a multisegment task, you can define two global symbols with the
same name if they are on separate paths, and not referenced from a
segment that is common to both.

If you define a global symbol more than once on separate paths, but

they are referenced from a segment that is common to both, the symbol

is ambiguously defined I1f you define a global symbol more than once
5 PRt |

3 3 =3 Ter AL =
on a single path, it i tiply defined.

0.
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TKB's procedure for resolving global symbols is summarized as follows:
1. TKB selects an overlay segment for processing.,.

2. TKB scans each module in the segment for global definitions
and references.

3. If the symbol is a definition, TKB searches all segments on
paths that pass through the segment being processed, and
looks for references that must be resolved.

4. 1If the symbol is a reference, TKB performs the tree search as
described in step 3, looking for an existing definition.

5. If the symbol is new, TKB enters it in a 1list of global
symbols associated with the segment,

Overlay segments are selected for processing in an order corresponding
to their distance from the root. That is, TKB processes the segment
farthest from the root first, before processing an adjoining segment.

When TKB processes a segment, its search for global symbols proceeds
as follows:

1. The segment being processed

2. All segments toward the root

3. All segments away from the root
4., All co-trees (see Section 3.5)

Figure 3-9 illustrates the resolution of global symbols in a
multisegment task.

A21 A22
T (DEF) R (REF)
S (REF) Q (REF)
l S (REF)

Al B1 B2
(F“EEE; R/(%SEF) Q (REF) S (REF)
5 (ReD S (REF)

A0 BO c
Q (DEF) Q (DEF)
S (DEF) S (DEF)
T (DEF) |
CNTRL
S (REF)
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Figure 3-9 Resolution of Global Symbols in a Multisegment Task
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The following notes discuss the resolution of references 1in Figure
3-9:

1. The global symbol Q is defined in both segment A0 and segment
B0. The references to Q in segment A22 and in segment Al are
resolved by the definition in A0. The reference to Q in Bl
is resolved by the definition in BO. The two definitions of
Q are distinct in all respects and occupy different overlay
paths.

2. The global symbol R is defined in segment A2. The reference
to R in A22 is resolved by the definition in A2 because there
is a path to the reference from the definition
{CNTRL-AQ0-A2-A22). The reference to R in Al, however, is
undefined because there is no definition for R on a path
through Al.

3. The global symbol S is defined in both segment A0 and segment
BO. References to S from segments Al, A2l, or A22 are
resolved by the definition in A0, and references to S in Bl
and B2 are resolved by the definition in BO. However, the
reference to S in CNTRL cannot be resolved because there are
two definitions of S on separate paths through CNTRL. The
global symbol S is ambiguously defined.

4. The global symbol T is defined in both segment A21 and
segment A0. Since there 1is a single path through the two

definitions (CNTRL-AQ0-A2-A21), the global symbol T is
multiply defined.

3.2.3 Resolution of Global Symbols from the Default Library

The process of resolving global symbols may require two passes over

the tree structure. The global symbols discussed in the previous
section are included in user-specified input modules that TKB scans in
the first pass. If any undefined symbols remain, TKB initiates a

second pass over the structure in an attempt to resolve such symbols
by searching the default object module library (normally
LBO:(1,1]SYSLIB.OLB). TKB reports any undefined symbols remaining
after its second pass.

When multiple tree structures (co-trees) are defined, as described in
Section 3.5, any resolution of global symbols across tree structures
during a second pass can result in multiple or ambiguous definitions.
In addition, such references can cause overlay segments to be
inadvertently displaced from memory by the overlay loading routines,
thereby causing run-time failures. To eliminate these conditions, the
tree search on the second pass is restricted to:

® The segment in which the undefined reference has occurred

e All segments in the current tree that are on a path through
the segment

e The root segment

When the current segment is the main root, the tree search is extended
to all segments. You can unconditionally extend the tree search to
all segments by including the /FU (full) switch in the task image file
specification. (Refer to Chapter 10 for a description of the /FU
switch.)
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3.2.4 Allocation of Program Sections in a Multisegment Task

One of a program section's attributes indicates whether the program
section 1is 1local (LCL) to the segment in which it is defined or is
global (GBL).

Local program sections with the same name can appear in any number of
segments. TKB allocates virtual address space for each local program
section in the segment in which it 1is declared. Global program
sections that have the same name, however, must be resolved by TKB.

When a global program section is defined in several overlay segments
along a common path, TKB allocates all virtual address space for the
program section in the overlay segment closest to the root.

FORTRAN common blocks are translated into global program sections with
the overlay (OVR) attribute. In Figure 3-10, the common block COMA is
defined in modules A2 and A21l. TKB allocates the wvirtual address
space for COMA in A2 because that segment is closer to the root than
the segment that contains A21l.

If the segments A0 and B0 use the common block COMAB, however, TKB
allocates the virtual address space for COMAB in both the segment that
contains A0 and the segment that contains BO. A0 and BO cannot
communicate through COMAB. When the overlay segment containing B0 is
loaded, any data stored in COMAB by A0 is lost.

You can specify the allocation of program sections explicitly. If A0
and B0 need to share the contents of COMAB, you can force the
allocation of this program section into the root segment by the use of
the (PSECT directive of the Task Builder's overlay description
language, described in Section 3.4.

A21  A22
A1 A2
COMA B1 B2
AO BO C
COMAB COMAB |
CNTRL

ZK-404-81

Figure 3-10 Resolution of Program Sections for TK1

3.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES

When TKB constructs an overlaid task, it builds additional data
structures and adds them to the task image. The data structures

contain information about the overlay segments and describe the
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relationship of each segment in the tree to the other segments in the
tree. TKB also 1includes 1into the task image a number of system
library routines (called overlay run-time routines). The overlay
run-time routines use the data structures to facilitate the loading of
the segments and to provide the necessary linkages from one segment to
another at run time.

TKB links the majority of data structures and all of the overlay
run-time routines into the root segment of the task. The number and
type of data structures, and the functions the routines perform,
depend on two considerations:

e Whether the task is built to use the Task Builder's autoload
or manual load facilities

e Whether the overlay segment 1is memory resident or disk
resident

These considerations have a marked impact on the size and operation of
the task. Chapter 4 describes the Task Builder's autoload and manual
load facilities and describes the methods for 1loading overlays.
Appendix B describes the data structures and their contents in detail.

The contents of the root segment for a task with an overlay structure
are discussed briefly in the following sections.

3.3.1 Overlaid Conventional Task Structures

Depending on the considerations just discussed, some or all of the
following data structures are required by the overlay run-time
routines:

L) Segmént tables
e Autoload vectors
e Window descriptors
® Region descriptors
Figure 3-11 shows a typical overlay root segment structure.

There is a segment descriptor for every segment in the task. The
descriptor contains information about the load address, the length of
the segment, and the tree linkage.

In an autoloadable, overlaid task, autoload vectors appear in the root
segment and in every segment that calls modules in another segment
located farther away from the root of the tree. All references to
resident libraries are resolved through autoload vectors in the root.

Window descriptors are allocated whenever a memory-resident overlay
structure is defined for the task. The descriptor contains
information required by the Create Address Window system directive
(CRAWS). One descriptor is allocated for each memory-resident overlay
segment .

Region descriptors are allocated whenever a task is linked to a shared
region containing memory-resident overlays. The descriptor contains
information required by the Attach Region system directive (ATRGS).
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Figure 3-11 Typical Overlay Root Segment Struc
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3.4 OVERLAY DESCRIPTION LANGUAGE

TKB provides a language, called the Overlay Description Language
(oDL) , that allows vyou to describe the overlay structure of a task.
An overlay description is a text file consisting of a series of ODL
directives, one directive per line. Each line may have as many as 132
characters. You enter the name of this file in a TKB command line,
and identify it as an ODL file by specifying the /MP switch (see
Chapter 10) to the file name. For example, the following TKB command
line specifies an ODL file:

>TKB TASK1=OVRLAY/MP

If you specify an ODL file to TKB, it must be the only input file vyou
specify.

A command line in an ODL file takes the form
label: directive argument-list ;comment

A label is required only for the .FCTR directive (see Section 3.4.2).
Labels cannot be used with the other directives.

The ODL directives are listed below and described 1in Sections 3.4.1
through 3.4.6:

e .ROOT and .END

e FCTR
[ ] .NAME
) .PSECT

e @ (at sign; indirect command file specifier)

The ODL directives can act upon the following items: named input
files, overlay segments, program sections, and lines in the ODL file
itself. These items follow each directive on the same 1line as the
directive, and form an argument-list. Operators, such as the hyphen,
exclamation point, and comma, group the argument-list 1items (named
task elements) or attach attributes to them.

If the named task element is a file, you can enter a complete file
specification. Defaults for omitted parts of the file specification
are as described in Chapters 1 and 10, except that the default device
is SY0:, and the default UFD is taken from the terminal UIC.

In addition, the following restrictions apply to argument-lists:
® You can only use the dot character (.) in a file name.

e Comments cannot appear on a line ending with a file name.

3.4.1 L.ROOT and .END Directives

The .RCOT directive defines the structure of the overlaid task.
Because of this, .ROOT wusually appears £first in the overlay
description. The .NAME directive may precede the .ROOT directive in
certain circumstances discussed in Section 3.4.4. Each overlay
description must end with one .END directive. The .ROOT directive
tells TKB where to start building the tree, and the .END directive
tells TKB where the input ends.
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The arguments of the .ROOT directive use three operators to express
concatenation, memory residency, and overlaying. These operators can
be used also in the .FCTR directive.

e The hyphen (-) operator indicates the concatenation of virtual
address space. For example, X-Y means that sufficient virtual
address space will be allocated to contain module X and module
Y simultaneously. TKB allocates segment X and segment Y in
sequence to produce one segment.

e The exclamation point (!) operator indicates memory residency
of overlays. (This operator is discussed in Section 3.4.3.)
e¢ The comma (,) operator, appearing within parentheses,

indicates the overlaying of virtual address space. For
example, (Y,Z) means that virtual address space can contain
either segment Y or segment 2. If no exclamation point (!)
precedes the left parenthesis, segment Y and segment Z also
share physical memory.

The comma (,) operator is also used to define multiple tree
structures (as described in Section 3.5.1).

You use parentheses to delimit a group of segments that start at the
same virtual address. The number of nested parenthetical groups
cannot exceed 16.

For example:

.ROOT X-(Y,Z2-(21,22))
.END

These directives describe the tree and 1its corresponding virtual
address space shown in Figure 3-13:

21 Z2

Y

Y Z Z

ZK-406-81

Figure 3-13 Tree and Virtual Address Space Diagram

To create the overlay description for the task TK1 in Figure 3-3
(Section 3.1.1), you could create a file called TFIL.ODL that contains
the directives:

.ROOT CNTRL-(AO0-(Al,A2-(A21,A22)),B0-(B1l,B2),C)
.END

To build the task with that overlay structure, you would type:
>TKB TK1=TFIL/MP
The /MP switch in the command string above tells TKB that there is

only one input file (TFIL.ODL), and that this file contains the
overlay description for the task.
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3.4.2 LJFCTR Directive

The .FCTR directive allows you to build large, complex trees and
represent them clearly.

The .FCTR directive has a label at the beginning of the ODL line that
is pointed to by a reference in a .ROOT or another .FCTR statement.
The label must be unique with respect to module names and other
labels. The .FCTR directive allows you to extend the tree description
beyond a single line, enabling you to provide a clearer description of
the overlay. (There can be only one .ROOT directive.)

For example, to simplify the tree given in the file TFIL (described in
Section 3.4.1), you could use the .FCTR directive in the overlay
description as follows:

.ROOT CNTRL- (AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR B0-(B1l,B2)
. END

The label BFCTR is used in the .ROOT directive +to designate the
argument BO-(Bl1,B2) of the .FCTR directive. The resulting overlay
description is easier to interpret than the original description. The
tree consists of a root, CNTRL, and three main branches. Two of the
main branches have sub-branches.

The .FCTR directive can be nested to a level of 16. For example, you
could further modify TFIL as follows:

.ROOT CNTRL- (AFCTR,BFCTR,C)

AFCTR: .FCTR A0-(Al,A2FCTR)

A2FCTR: .FCTR A2~ (A21,A22)

BFCTR: .FCTR B0-(B1,B2)
.END

3.4.3 Arguments for the .FCTR and .ROOT Directives

The arguments for the ,FCTR and .ROOT directives may have different
forms or syntax. The examples in this chapter use forms such as Al,
Bl, X, and Y for clarity, but the actual arguments that you use may
have somewhat different names. This section lists the forms that the
arguments may take for these directives. If you use an argument that
does not fall into one of the following five categories, TKB takes the
argument as that of the name of an object module file; in other
words, the file name that you use must have an extension of .OBJ.

3.4.3.1 Named Input File - You may use a named input file that has
the object file format. For example,

CALC: .FCTR [7,54]MULT.OBJ

The default is .0OBJ.
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3.4.3.2 Specific Library Modules - You may name and therefore use
specific object modules from a library file. For example,

BAKER: .FCTR [300,3]COOKIE/LB:CHIP:O0AT

where COOKIE.OLB is the library file and CHIP and OAT are the modules
that you want to extract from the file. The default extension is .OLB
and it need not be specified as part of the argument.

3.4.3.3 A Library to Resolve References Not Previously Resolved - You
may specify a 1library as an argument in a .FCTR statement after
extracting specific modules in a previous .FCTR statement. TKB uses
the 1library to resolve symbols that may still be unresolved after
extracting the modules. For example,

BAKER: .FCTR [300,3]COOKIE/LB:CHIP:0AT
LIB: .FCTR LB:[1,4] RECIPE/LB

3.4.3.4 A Section Name Used in a .PSECT Directive - You may use the
name that you used as a program section name in the .PSECT directive
as the argument in a .FCTR statement. For example,

.PSECT COM,GBL,D,RW,0VR
FSTCOM: .FCTR COM

3.4.3.5 A Segment Name Used in a .NAME Directive - You may use the
name that you specified as the name of a segment in the .NAME
directive. For example,

. NAME SEG1,GBL,DSK
OVLY: .FCTR SEG1-MOD1-MOD2

3.4.4 Exclamation Point Operator

The exclamation point operator allows you to specify memory-resident
overlay segments (see Section 3.1.2). You specify memory residency by
placing an exclamation point (!) immediately before the left
parenthesis enclosing the segments to be affected. The overlay
description for task TK2 in Figure 3-4 (Section 3.1.2) is as follows:

.ROOT CNTRL-! (D,E,F) g
. END

In the example above, segments D, E, F are declared resident in
separate areas of physical memory. The Task Builder determines the
single starting virtual address for D, E, and F by rounding the octal
length of segment CNTRL up to the next 4K boundary. The physical
memory allocated to segments D, E, and F is determined by rounding the
actual length of each segment to the next 32-word boundary (256-word
boundary if the /CM switch is in effect), and adding this value to the
total memory required by the task.
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The exclamation point operator applies to that segment immediately to
the right of the left parenthesis and those segments farther from the
root on the same level with that segment. In other words, all
parallel segments must be of the same residency type (disk resident or
memory resident).

The exclamation point operator applies to segments at the same level
from the root inside a pair of parentheses; segments nested in
parenthesis within that level, but farther from the root, are not
affected.

It is therefore possible to define an overlay structure that combines
the space-saving attributes of disk-resident overlays with the speed
of memory-resident overlays. For example:

.ROOT A-!(B1l-(B2,B3),C)
. END

In this example, Bl and C are declared memory resident by the
exclamation point operator. B2 and B3 are declared disk resident,
however, because no exclamation point operator precedes the
parentheses enclosing them.

Note that while a memory-resident overlay can call a disk-resident
overlay, the converse 1is not legal; that 1is, you cannot use an
exclamation point for segments emanating from a disk-resident segment.
For example, you cannot build the following structure:

.ROOT A-(Bl-!(B2,B3),C) ; this overlay description is illegal
. END

In this example, Bl is declared disk resident; so it 1is 1illegal to
use the exclamation point to declare B2 and B3 memory resident.

3.4.5 .NAME Directive

The .NAME directive allows you to name a segment, and assign
attributes to the segment. The name must be unique with respect to
file names, program section names, .FCTR labels, and other segment
names used in the overlay description. You use the .NAME directive
prior to using the .ROOT or L.FCTR directive. The Task Builder
attaches attributes to a segment when it encounters the name in a
.ROOT or .FCTR directive that defines the overlay segment. If you
apply multiple names to a segment, the attributes of the last name
given are in effect. This directive does the following:

e Names uniquely a segment that is 1loaded through the manual
load facility (see Chapter 4)

® Permits a named data-only segment to be 1loaded through the
autoload mechanism

The format of the .NAME directive is:
.NAME segname[,attr][,attr]
segname

A 1- to 6-character name; this name can consist of the Radix-50
characters A-Z, 0-9, and $ (the period (.) cannot be used).
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attr
One of the following:

GBL The name is entered in the segment's global symbol
table.

The GBL attribute makes it possible to load
data-only overlay segments by means of the autoload
mechanism (see Chapter 4).

NODSK No disk space is allocated to the named segment.

If a data overlay segment has no initial values, but
will have 1its contents established by the running
task, no space for the named segment on disk need be
reserved. If the code attempts to establish initial
values for data in a segment for which no disk space
is allocated (a segment with the NODSK attribute),
TKB gives a fatal error.

NOGBL The name is not entered in the segment's global
symbol table.

If the GBL attribute is not present, NOGBL Iis
assumed.

DSK Disk storage is allocated to the named segment.

If the NODSK attribute is not present, DSK is
assumed.,

3.4.5.1 Example of The Use of The .NAME Directive - In the following
modified ODL file for TKl1 (Figure 3-3 of Section 3.1.1), you provide
names for the three main branches, A0, BO, and C, by specifying the
names 1in the (NAME directive and using them in the .ROOT directive.
The default attributes NOGBL and DSK are in effect for BRNCH1 and
BRNCH3, but BRNCH2 has the complementary attributes (GBL and NODSK)
that cause TKB to enter the name BRNCH2 into the segment's global
symbol table and suppress disk allocation for that segment. BRNCH2
contains uninitialized storage to be utilized at run time.

.NAME BRNCH1

.NAME BRNCHZ2,GBL,NODSK

.NAME BRNCH3

.ROOT CNTRL-! (BRNCH1-AFCTR,*BRNCH2-BFCTR,BRNCH3-C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-*! (B1,B2)
. END
(The asterisk (*) is the autoload indicator; it is discussed in

Chapter 4.)

You can load the data overlay segment BRNCH2 by including the
following statement in the program:

CALL BRNCH2

This action is immediately followed by an automatic return to the next
instruction in the program.
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You can also use segment names in making patches with the ABSPAT and
GBLPAT options {see Chapter 11).

NOTE

In the absence of a unique .NAME
specification, TKB establishes a segment
name, using the first module name or
library module name occurring in the
segment,

3.4.6 .PSECT Directive

You can use the .PSECT directive to control the placement of a global
program section in an overlay structure. The name of the program
section (a 1- to 6-character name consisting of the Radix-50
characters A-Z, 0-9, and $) and its attributes are given in the .PSECT
directive. The attributes used in the .PSECT directive must match
those 1in the actual program section in the module. Thus, you can use
the name in a .ROOT or .FCTR statement to indicate to the Task Builder
the segment to which the program section will be allocated. An
example of the use of .PSECT is given in the modified version of task
TK1 (the original version is shown in Figure 3-3 in Section 3.1.1)
shown below.

In this example, TKl1 has a  disk-resident overlay structure. The
example assumes that the programmer was careful about the logical
independence of the modules in the overlay segment, but failed to take
into account the requirement for 1logical independence in multiple
executions of the same overlay segment.

The flow of task TKl can be summarized as follows. CNTRL calls each
of the overlay segments, and the overlay segment returns to CNTRL in
the order A, B, C, A. Module A 1is executed twice. The overlay
segment containing A must be reloaded for the second execution.

Module A uses a common block named DATA3. The Task Builder allocates
DATA3 to the overlay segment containing A. The first execution of A
stores some results in DATA3. The second execution of A requires
these values. In this disk-resident overlay structure, however, the
values calculated by the first execution of A are overlaid. When the
segment containing A is read in for the second execution, the common
block is in its initial state.

To permit the two executions of A to communicate, a .PSECT directive
is wused to force the allocation of DATA3 into the root. The indirect
command file for TKl, TFIL.ODL, is modified as follows:

.PSECT DATA3,RW,GBL,REL,OVR
.ROOT CNTRL-DATA3~ (AFCTR,BFCTR,C)

AFCTR: +FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
.END

The attributes RW, GBL, REL, and OVR are described in Chapter 2.
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3.4.7 Indirect Command Files

The Overlay Description Language processor can accept ODL text
indirectly, that is, specified in an indirect command file. 1If an at
sign (@) appears as the first character in an ODL line, the processor
reads text from the file specified immediately after the at sign. The
processor accepts the ODL text from the file as input at the point in
the overlay description where the file is specified.

For example, suppose you create a file, called BIND.ODL, that contains
the text:

B: .FCTR Bl-(B2,B3)

A line beginning with @BIND can replace this text at the position
where the text would have appeared:

Indirect Direct
.ROOT A-(B,C) .ROOT a-(B,C)
C: .FCTR C1l-(C2,C3) C: .FCTR Cl-(C2,C3)
@BIND B: .FCTR Bl1l-(B2,B3)

.END . END

The Task Builder allows two levels of indirection.

3.5 MUOLTIPLE-TREE STRUCTURES

You can define more than one tree within an overlay structure. These
multiple tree structures consist of a main tree and one or more
co-trees. The root segment of the main tree 1is 1loaded by the
Executive when the task 1is made active, while segments within each
co-tree are loaded through calls to the overlay run-time routines.
Except for this distinction, all overlay trees have identical
characteristics: a root segment that resides in memory, and two or
more overlay segments.

The main property of a structure containing more than one tree is that
storage 1is not shared among trees. Any segment in a tree can be
referred to from another tree without displacing segments from the
calling tree. Routines that are called from several main tree overlay
segments, for example, can overlay one another in a co-tree. The same
considerations 1in deciding whether to create memory-resident overlays
or disk-resident overlays in a single-tree structure apply in building
a structure containing co-trees.

3.5.1 Defining a Multipie-Tree Structure

Multiple-tree structures are specified within the Overlay Description
Language by extending the function of the comma operator. As
described 1in Section 3.4, this operator, when included within
parentheses, defines a pair of segments that share storage. Including
the comma operator outside all parentheses delimits overlay trees.
The first overlay tree thus defined is the main tree, Subsequent
trees are co-trees. For example:

. ROOT X,Y
X: .FCTR X0-(X1,X2,X3)
Y: .FCTR Y0-(Y1l,Y2)

. END
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In this example, two overlay trees are specified: 1) a main tree
containing the root segment X0 and three overlay segments; and 2) a
co-tree consisting of root segment Y0 and two overlay segments. The

Executive 1loads segment X0 into memory when the task is activated.
The task then loads the remaining segments through calls to the
overlay run-time routines.

3.5.1.1 Defining Co-trees With a Null Root by Using .NAME - A co-tree
must have a root segment to establish linkage with its own overlay
segments, However, co-tree root segments need not contain code or
data and, therefore, can be 0 length. You can create a segment of
this type, called a null segment, by means of the _NAME directive.
The previous example is modified, as shown below, to move file Y0.OBJ
to the root and include a null segment.

.ROOT X, Y

Xz .FCTR X0-Y0-(X1,X2,X3)
.NAME YNUL

Y: .FCTR YNUL-(Y1,Y2)
. END

The .null segment YNUL is created by using the LNAME directive, and
replaces the co-tree root that formerly contained Y0.0OBJ.

3.5.2 Multiple-Tree Example

The following example illustrates the use of multiple trees to reduce
the size of the task.

In this example, the root segment CNTRL of task TKl1 (described in
Section 3.1.1) has had two routines added to it: CNTRLX and CNTRLY.
The routines are logically independent of each other, and both are
approximately 4000(octal) bytes long. However, the routines have been
placed in the root segment of TKl instead of being overlaid because
both routines must be accessed from modules on all paths of the tree.
In a single-tree overlay structure, the root segment 1is the only
segment common to all paths of the tree. The schematic diagram for
the modified structure is shown in Figure 3-14.

A21 A22
Al A2 B1 B2
Af ﬁo T
T
CNTRLY
ROOT
CNTRLX SEGMENT
CNTRL

ZK-407-81

Figure 3-14 Overlay Tree for Modified TK1
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One possible overlay description for this structure is shown below:

.ROOT CNTRL-CNTRLX-CNTRLY- (AFCTR,BFCTR,C)
AFCTR: .FCTR AO-(Al,A2FCTR)
A2FCTR: .FCTR A2-(A21,A22)
BFCTR: .FCTR BO- (Bl,B2)
.END

Because TK1l consists of disk-resident overlays and the new routines
are concatenated within the overlay structure, the new routines add
10000 (octal) bytes to both the virtual address space and physical
memory reguirements of the task. However, the added routines consume
more virtual address space than might be expected, as shown in Figure
3-15.

The expansion of TKl's virtual address space requirements caused the
task to extend 4000(octal) bytes beyond the next highest 4K-word
boundary (APR 2). Because the Executive must use an additional
mapping register (APR2), the apparent cost in virtual address space
above APR 2 of 4000(octal) bytes 1is 1in fact 20000(octal) bytes.
(Compare the diagram in Figure 3-15 with the diagram in Figure 3-3.)
The shaded portion of the unused virtual address space in Figure 3-15
represents the portion of virtual address space that is allocated but
is unusable as allocated.

Small tasks, such as TKl1, are seldom adversely affected by the
inefficient allocation of virtual address space, but larger tasks may
be. For example, a large task that contains code to create dynamic
regions (see Chapter 5) or that contains Executive directives to
extend its task region (see the RSX-11M/M-PLUS Executive Reference
Manual) requires at least 4K words of virtual address space to map
each region. 1In such a task, using co-trees can often save virtual
address space and can, therefore, be of paramount importance. TK1l can
be modified to reflect this.

As noted earlier, the routines CNTRLX and CNTRLY are 1logically
independent. Logical independence 1is a primary requirement for all
segments that overlay each other. However, CNTRLX and CNTRLY cannot
be structured into either of the main branches of TKl's tree because
it is further required that the routines be accessible from modules on
all paths of the tree. Therefore, the only way CNTRLX and CNTRLY can
be overlaid and still meet all of these requirements 1is through a
co-tree structure. Figure 3-16 shows the schematic representation of
TK1l as a co-tree structure.

The root segment CNTRL2 of the co-tree is a null segment. It contains
no code or data and has a length of 0. As noted earlier, the Task
Builder requires the root segment in order to establish 1linkage with
the overlay segments. One possible overlay description for building
TKl as a 2-tree structure is shown below.

.NAME CNTRL2
.ROOT CNTRL- (AFCTR,BFCTR,C) ,CNTRL2- (CNTRLX ,CNTRLY)
AFCTR: .FCTR AO- (Al,A2FCTR)
A2FCTR: .FCTR A2-(A21,A22)
'BFCTR: .FCTR BO-(B1,B2)
.END

You define the co-tree in the .ROOT directive by placing the comma
operator outside all parentheses (immediately before CNTRL2). The
.NAME directive creates the null root segment. Figure 3-16 shows the
new relationship between virtual address space and physical memory.
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Figure 3-16 Overlay Co-Tree for Modified TK1

The diagrams in Figure 3-17 illustrate the savings (4000(octal) bytes)
in both virtual address space and physical memory that is realized by
overlaying CNTRLX and CNTRLY. What may be more important in some
applications, however, is that the top of TKl's task region has
dropped below the 4K-word boundary of APR 2. TKl1 has gained 4K words
of potentially usable virtual address space.

NOTE
The numbers used in this example have
been simplified for illustrative
purposes. In addition, the storage

required for overhead in handling the
overlay structures is not reflected in
this example.

Because the null root CNTRL2 is 0 bytes long, it does not require any
virtual address space or physical memory and, therefore, does not
appear in the diagrams in Figure 3-17.

Finally, you can define any number of co-trees. Additional co-trees
can access all modules in the main tree and other co-trees.
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3.6 CREATING AN ODL FILE FROM A VIRTUAL ADDRESS SPACE ALLOCATICN
DIAGRAM

You can use a graphic method as an aid to converting a virtual address
space allocation diagram into the correct Task Builder ODL file.
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First create a virtual address space allocation diagram of vyour

overlaid
dotted-1

task, similar to that shown in Figure 3-18, without the
ine path shown in the diagram.
geeseeenes | A21 A22
: ) RCTITTTITS “Srreereen
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N HTCIRRE s
: Yl: !
E Ao :.»' Bo :oo-u ».c-:

00004 oo

ROOT (CNTRL)

ZK-1052-82

Figure 3-18 vVirtual Address Space Allocation Diagram

The dotted-line path will be the basis for writing the ODL statements
that you need. To determine the path through your virtual address
space allocation diagram, follow these steps:

1.

2.

Start in the lower left corner of the root segment.

Draw a dotted line upward as far as you can go without
passing through the top or into "empty" virtual space,
crossing into new segments as needed.

When you reach the top segment, proceed to the right until
you reach a vertical line.

If the end of your dotted line is now opposite the vertical
line of the 1lowest segment, cross the vertical line and
continue again from step 2; otherwise, proceed to step 5.

Because the end of your dotted 1line 1is not opposite the
vertical 1line of the lowest segment proceed downward until
you reach the lowest segment.

If you are not in the root, cross the vertical 1line to the
right and continue from step 2; otherwise, proceed to step
7.

If your dotted line is in the lower right corner of the root,
you have finished the dotted-line walk.



OVERLAY CAPABILITY

Once you have drawn the dotted line, you should go back over it to
verify that you followed all the steps, While doing this, draw
arrowheads at each point where a line was crossed to indicate the
direction of the line.

3.6.1 Creating a .ROOT Statement by Using a Virtual Address Space
Allocation Diagram

Now you are ready to write the .ROOT statement. Follow these steps:

1. Write .ROOT followed by the name of the root statement (in
this example,; .ROOT CNTRL) .

2. Follow the dotted-line path.

3. Add each successive ODL element to your root statement, using
the following syntax, based on the direction of your dotted
line.

A. At an upward crossing: -{("name of new segment”
B. At a horizontal crossing: ,"name of new segment"

C. At a downward crossing: )

4. When you have returned to the root, your root statement 1is
complete.

Using the dotted-line path in Figure 3-18 and the above associated
steps for writing the .ROOT statement, you can write as shown below:

1. Step 1 : Write .ROOT CNTRL

2. Step 3A: Write .ROOT CNTRL- (A0

3. Step 3A: Write .ROOT CNTRL-(A0-(Al

4. Step 3B: Write .ROOT CNTRL- (AO0-(Al,A2

5. Step 3A: Write .ROOT CNTRL-(AO-(Al,A2- (A2l

6. Step 3B: Write .ROOT CNTRL- (A0-(Al,A2-(A21,A22

7. Step 3C: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22)

8. Step 3C: Write .ROOT CNTRL-(A0-(Al,A2-(A21,A22))

9. Step 3B: Write ,ROOT CNTRL-(AO-(Al,A2-(A21,A22)),B0
10. Step 3A: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-B0-(Bl

11, Step 3B: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-B0-(Bl,B2
12. Step 3C: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-B0-(B1l,B2)
13. Step 3B: Write .ROOT CNTRL-(AO-(Al,A2-(A21,A22))-B0O-(B1,B2),C
14. ©Step 3C: Write ,ROOT CNTRL-(A0-(Al,A2-(A21,A22))-B0-(B1,B2),C)

The steps for writing .FCTR statements and co-tree statements follow
next.
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3.6.2 Creating a .FCTR Statement by Using a Virtual Address Space
Allocation Diagram

By using the steps for creating a .ROOT statement from a virtual
address space allocation diagram, you created the following .ROOT
statement,

.ROOT CNTRL- (AO-(Al,A2-(A21,A22))-B0O-(B1,B2),C)

It may be desirable to simplify your specific .ROOT statement into one
or more LFCTR statements. A technique similar to the one used to
create the .ROOT statement may be used to create the .FCTR statement.

In this example, segments A0, Al, A2, A21, and A22 are selected to be
in the .FCTR statement. Having selected these segments (normally
related as a "stack" of segments) you are now ready to write down the
.FCTR statement.

First, draw a virtual address space allocation diagram of the segments
that you have selected. (You may use Figure 3-18 for this
explanation.) Then follow these next steps to draw a dotted-line path
through the diagram:

1. Start in the lower 1left corner of the 1lowest or "base"
segment (A0) in your diagram.

2. Draw a dotted line upward as far as you can go without
passing through the top or into empty virtual space, crossing
into new segments as needed.

3. When you reach the top segment, proceed to the right until
you reach a vertical line.

4. If the end of your dotted line is now opposite the vertical
line of the 1lowest segment, c¢ross the vertical line and
continue again from step 2; otherwise, proceed to step 5.

5. Because the end of your dotted 1line 1is not opposite the
vertical 1line of the lowest segment, proceed downward until
you reach the lowest segment.

6. If you are not in the base segment (A0), cross the vertical
line to the right and continue £from step 2; otherwise,
proceed to step 7.

7. If your dotted line is in the lower right corner of the base
segment, you have finished the dotted-line walk.

Once you have drawn the dotted line, you should go back over it to
verify that you followed all the steps. While doing this, draw
arrowheads at each point where a iine was crossed to indicate the
direction of the line.

Now you are ready to write the .FCTR statement. Follow these next
steps:

1. Write a label followed by .FCTR, which is in turn followed by
the name of the first segment (A0) (in this example, AFCTR
.FCTR AQ)

2. Follow the dotted-line path.
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3. 2Add each successive ODL element to your root statement, using
the following syntax, based on the direction of your dotted
line.

A. At an upward crossing: ("name of new segment"
B. At a horizontal crossing: ,"name of new segment"

C. At a downward crossing: )

4. When you have returned to the base segment, your .FCTR
statement is complete.

Using the dotted line path and the above associated steps for writing
the .FCTR statement, you can write as shown below:

1. Step 1 : Write AFCTR .FCTR A0

2. Step 3A: Write AFCTR .FCTR AO- (Al

3. Step 3B: Write AFCTR .FCTR AO-(Al,A2

4. Step 3A: Write AFCTR .FCTR AO-(Al,A2- (A2l

5. Step 3B: Write AFCTR .FCTR AO- (Al,A2-(A21,A22
6. Step 3C: Write AFCTR .FCTR AO- (Al,A2-(A21,A22)
7. Step 3C: Write AFCTR .FCTR AO-(Al,A2-(A21,A22))

You have now reached the base segment and have written the two ODL
statements:

.ROOT CNTRL- (AO-(Al,A2-(A21,A22))-BO-(B1,B2),C)
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

The last step requires that you substitute the label, AFCTR, into the
.ROOT statement, which results in:

.ROOT CNTRL-AFCTR-BO-(B1l,B2),C)
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

Additional .FCTR statements would be determined and written 1in the
same way. For example, you could write a .FCTR statement labeled
BFCTR for the segments B0, Bl, and B2.

The following section shows how to write an ODL statement for a
co-tree by using the same methods.

3.6.3 Creating an ODL Statement for a Co-Tree by Using a Virtual
Address Space Diagram

Assuming that you want to write an ODL statement for a co-tree like
the one in Figure 3-19, you would have two virtual address space
allocation diagrams, one for the main tree and one for the co-tree.
These two diagrams are shown in Figure 3-19.
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Figure 3-19 vVvirtual Address Space Allocation for a Main Tree
and Its Co-Tree

From Figure 3-19 you see that the co-tree is a stack of segments also.
Therefore, it is possible to write the statement for the co-tree in
the same fashion and with the same rules as that described in Section
3.6. However, certain facts must be kept in mind. These are that:

® The co-tree has a null root
e A .NAME statement must be used to name the null root

® A comma must be placed outside of the parentheses and at the
end of that part of the .ROOT statement that defines the main
tree

Therefore, the ODL statement that we obtain before writing the co-tree
part is:

.NAME CNTRL2
.ROOT CNTRL-AFCTR-BO- (B1,B2),C),
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

By following the rules in Section 3.6 and by using the diagram in
Figure 3-19, you can then create the ODL statement:

.NAME CNTRL2
.ROOT CNTRL-AFCTR-BO-(Bl1,B2) ,CNTRL2- (CNTRLX,CNTRLY)
AFCTR: .FCTR AO-(Al,A2-(A21,A22))

3.7 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL LANGUAGE

Programs written in a high-level language usually require the use of a
large number of library routines in order to execute. Unless care is
taken when overlaying such programs, the following problems can occur:

e TKB throughput may be drastically reduced because of the
number of library references in each overlay segment.
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e Library references from the default object module library that
are resolved across tree boundaries can result in
unintentional displacement of segments from memory at run
time.

e Attempts to task-build such programs can result in multiple
and ambiguous symbol definitions when a co-tree structure is
defined.

The following procedures are effective in solving these problems:

® You can increase TKB throughput by 1linking commonly used
library routines into the main root segment.

e You can eliminate ambiguous definitions, multiple definitions,
and cross-tree references by using the NOFU switch (the TKB
default) to restrict the scope of the default library search.
However, restricting the scope of the default library search
may also cause problems.

If sufficient memory is available, you can effectively place the
object time system in the root segment by building a memory-resident
library. This also reduces total system memory requirements if other
tasks are also currently using the library.

I1f a memory-resident library cannot be built, you can force 1library
modules 1into the root by preparing a list of the appropriate global
references and linking the object module into the root segment.

For other ways to reduce task size, you should consult the user's
guide for the language you are using.

3.8 EXAMPLE 3-1: BUILDING AN OVERLAY

The text in this section and the figures associated with it illustrate
the building of an overlay structure. For this example, the routines
of the resident library LIB.TSK and the task that refers to it,
MAIN.TSK (from Example 5-3, Chapter 5), are assembled as separate
modules and built as an overlaid task. This task is built first with
disk-resident overlays and then with memory-resident overlays. The
disk-resident version of the task 1is named OVR.TSK and the
memory-resident version is named RESOVR.TSK.

NOTE

This example is intended to provide you
with a working 1illustration of the

Overlay Description Language. It does
not reflect the most efficient use of
it.

Two alterations were made to each of the routines for this example:

e A .TITLE and .END assembler directive was added to each
routine to establish it as a unigque module.
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The following assembler directive was added to each arithmetic
routine to increase its allocation:
.BLKW 1024.*3

This was done to make TKB allocation of address space more
obvious for documentation purposes.

The operation of the overlaid task is identical to that of Example 5-3
in Chapter 5. The routines and their titles as a result of the .TITLE
directives are as follows:

The integer addition routine is named ADDOV.

The integer subtraction routine is named SUBOV.

The integer multiplication routine is named MULOV.
The integer division routine is named DIVOV.

The register save and restore routine is named SAVOV.
The print routine is named PRNOV.

The main calling routine is named ROOTM.

The lengths of the modules are:

Module Length (in Octal)
ADDOV 14024 bytes
SUBOV 14024 bytes
MULOV 14024 bytes
DIVoVv 14026 bytes
SAVOV 4042 bytes
PRNOV 4260 bytes
ROOTM 4104 bytes

The flow of control for OVR.TSK is as follows:

ROOTM calls ADDOV and ADDOV returns to ROOTM.

ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.

ROOTM calls SUBOV and SUBOV returns to ROOTM.

ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.

ROOTM calls DIVOV and DIVOV returns to ROCTM.

ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.
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7. ROOTM calls MULOV and MULOV returns to ROOTM.

8. ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.

The print routine (contained in module PRNOV) is called between each
arithmetic operation by the control routine (contained in module
ROOTM). To avoid loading it into physical memory each time it is
called, you can place PRNOV in the root segment of the task. 1In
addition, each arithmetic routine calls SAVOV. Therefore, SAVOV must
be on a path common to all segments in the tree. It too is placed in
the root segment of the task. One possible overlay configuration for
this task is shown in Figure 3-20.

SUBOV DIVOV
MULOV ADDOV
T
SAVOV
ROOT
PR$0V SEGMENT
ROOTM

ZK-490-81

Figure 3-20 Overlay Tree of Virtual Address Space for OVR.TSK

To build this overlay, first create an ODL file (OVERTREE.ODL) that
contains its description:

«ROOT ROOTM~PRNOV~SAVOV-* (MULOV,ADDOV- (SUBOV,DIVOV))
.END

Then, after you have modified the modules and assembled them, you can
build the task with the following command line:

TKB> OVR,OVR/-SP=OVRTREE/MP

This command instructs TKB to build a task image, OVR.TSK, and to
create a map file, OVR.MAP, under the UFD that corresponds to the
terminal UIC. The negated spool switch (/-SP) inhibits TKB from
spooling the map file to the line printer.

The overlay switch (/MP) attached to the input file tells TKB that the
input file is an ODL file. Therefore, this file will be the only
input file specified. Refer to Chapter 10 for a description of the
switches used in this example.

A portion of the map that results from this task build 1is shown in
Example 3-1.
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Example 3-1 Map File for OVR.TSK

OVR.TSK Memory allocation map TKB M40.10 Page 1
01-JAN-82 10:06

Partition name : GEN
Identification : 01
Task UIC : [7,62]

Stack limits: 000260 001257 001000 00512.

PRG xfr address: 001264

Total address windows: 1. €)

Task 1image size : 7488. words

Task address limits: 000000 035107

R-W disk blk limits: 000002 000073 000072 00058.

OVR.TSK Overlay description:

Base Top Length

000000 | 005033] 005034 02588. ROOTM

005034 021057 014024 06164. MULOV
005034 014024 06164. ADDOV
021060 014024 06164. SUBOV
021060 014030 06168. DIVOV

**¥* Root segment: ROOTM

R/W mem limits: 000000 005033 005034 02588.
Disk blk limits: 000002 000007 000006 00006.

Memory allocation synopsis:

Section Title Ident
. BLK.:(RW,I,LCL,REL,CON) 001260 002514 01356.
001260 000102 00066. ROOTM Ol
001362 000260 00176. PRNOV 01
001642 000042 00034. SAVOV 01
ANS :(RW,D,GBL,REL,OVR) 003774 000002 00002.
003774 000002 00002. ROOTM 01
003774 000002 00002. PRNOV 01

Global symbols:

File

ROOTM.OBJ; 1
PRNOV.OBJ;1
SAVOV.OBJ;1

ROOTM.OBJ; 1
PRNOV.OBJ;1

AADD 004032-R DIVV 004052-R PRINT 001550-R SUBB 004042-R

MULL 004022-R SAVAL 001642-R

*** Tagk builder statistics:

Total work file references: 6863.

Work file reads: 0.

Work file writes: 0.

Size of core pool: 7€86. woxrds {(27. pages)
Size of work file: 3072. words (l2. pages)

Elapsed time:00:00:14
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Figure 3-21 shows the allocation of virtual address space for OVR.TSK.
The circled numbers in Example 3-1 correspond to those in Figure 3-21.

Note that the root segment for OVR.TSK (ROOTM) has expanded with task
building while the segments containing the arithmetic routines have
not. Before task building, the sum of the modules (in octal bytes)
that comprise the root segment is:

4104 + 4260 + 4042 = 14,426 bytes

After task building, the root segment is 20,677 (octal) bytes long.
TKB has added a header, a stack area, and the overlay run-time
routines to it. The segments containing the arithmetic routines have
not changed. If there had been calls from segments nearer the root to
segments farther up the tree, the Task Builder would have added data
structures to the calling segments as well. (Refer to Chapter 4 for a
description of the overlay loading methods.)

You can build OVR as a memory-resident overlay by simply adding the
memory-resident operator (!) to the ODL file for OVR as shown below:

. ROOT ROOTM-PRNOV-SAVOV-*! (MULOV,ADDOV-! (SUBOV,DIVOV))
. END

For this example, the name of the ODL file and the task image file
have been changed to RESOVR.ODL to distinguish it from the
disk-resident version. You can build RESOVR with the following
command line:

TKB> RESOVR,RESOVR/~SP=RESOVR/MP

This command directs TKB to build a task named RESOVR.TSK and to
create a map file named RESOVR.MAP. The negated spooling switch
(/-SP) inhibits spooling of the map file.

The /MP switch on the input file tells TKB that the file is an ODL
file and that it will be the only input file for this task build.
Refer to Chapter 10 for a description of the switches wused in this
example.

A portion of the map that results from this task build is shown in
Example 3-2,

Figure 3-19 shows the allocation of virtual address space for
RESOVR.TSK. The circled numbers in Example 3-2 correspond to those in
Figure 3-22.



160000 APR 7—
140000 APR 6—
120000 APR 5—
100000 APR 4—
60000 APR 3—
40000 APR 2—
20000 APR 1—

0 APR 0—

Figure 3-21

OVERLAY CAPABILITY

SUBOV| DIVOV

MULOV ADDOV

SYSLIB
SAVOV
PRNOV
ROOTM

HEADER AND STACK
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Allocation of virtual Address Space for OVR.TSK
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Example 3-2 Map File for RESOVR.TSK

Partition name : GEN
Identification : 01
Task UIC : [7,62]

Stack limits: 000320 001317 001000 00512.

PRG xfr address: 001324

Total address windows: 3.

Task image size : 13920. words

Task address limits: 000000 057777

R-W disk blk limits: 000003 000074 000072 00058.

RESOVR.TSK Overlay description:

Base Top Length

——9-- & ______

000000 | 005677 ] 005700 ©03008. ROOTM

020000 034077 014100 06208. MULOV

020000 ;034077 H 014100 06208. ADDOV

040000 |054077 |014100 06208. . SUBOV

040000) 054077J|014100 06208. DIVOV
00 006

*** Root segment: ROOTM

R/W mem limits: 000000 005677 005700 03008.
Disk blk limits: 000003 000010 000006 00006.

Memory allocation synopsis:

Section Title 1Ident

. BLK.:{RW,I,LCL,REL,CON} 001320 002514 01356.
001320 000102 00066. ROOTM 0l
001422 000260 00176. PRNOV Ol
001702 000042 00034. savov 0l
ANS :(RW,D,GBL,REL,OVR) 004034 000002 00002.
004034 000002 00002. ROOTM Ol
004034 000002 00002. PRNOV 0l

Global symbols:

File

ROOTM.OBJ;1
PRNOV.OBJ;1
SAVOV.OBJ;1

ROOTM.OBJ;1
PRNOV.OBJ ;1

AADD 004072-R DIVV 004112-R PRINT 001610-R SUBB 004102-R

MULL 004062-R SAVAL 001702-R

**x* Tasgk builder statistics:

Total work file references: 6938.

Work file reads : 0.

Work file writes : 0.

Size of core pool: 4178. words (l6. pages)
Size of work file: 3072. words (l2. pages)

Elapsed time:00:00:21
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Note that TKB allocates virtual address space for each 1level of
overlay segment on a 4K-word boundary.
overlay, this structure requires 12K words of virtual address space;

when built

as a
words of virtual address space.

when using memory-resident overlays
space is used efficiently.

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—-

SYSLIB
SAVOV
PRNOV
ROOTM

HEADER AND STACK

When built as a disk-resident

memory-resident overlay structure, it requires 16K
As noted earlier, you must be careful

to ensure that virtual address

— 054077

y

+4 — 040000

— 034077

“

— 020000

(

-~ 05677

/

ROOT SEGMENT

- 001317
— 000000

“

ZK-412-81

Figure 3-22 Allocation of virtual Address Space for RESOVR.TSK
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Finally, note in Figure 3-22 that TKB has allocated three window
blocks to map RESOVR.TSK. Each 1level of the overlay in a
memory-resident overlay requires a separate window block to map it.
In a disk-resident overlay, a single window block maps the entire
structure regardless of how many segment levels there are within the
structure. This consideration can be important when you are building
an overlaid task that either creates dynamic regions or accesses a
resident 1library or common, because of the extra window blocks
required to use these features.

3.9 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

® An overlay structure consists of one or more trees. Each tree
contains at least one segment. A segment is one or more
modules containing one or more program sections that can be
loaded by a single disk access.

A tree can have only one root segment, but it can have any
number of overlay segments.

e An ODL file is a text file consisting of a series of overlay
description directives, one directive per line. You enter
this file in the TKB command line, and identify it as an ODL
file by attaching the MP switch to the file name. 1If you
enter an ODL file in the TKB command line, it must be the only
input file you specify.

e The Overlay Description Language provides five directives for
specifying the tree representation of the overlay structure:

- .ROOT and .END -- There can be only one .ROOT and one .END
directive; the L.END directive must be the last directive
because it terminates input.

- J.PSECT, .FCTR, and .NAME -- These can be used in any order
in the ODL file.

e You define the tree structure using the hyphen (-), comma (,),
and exclamation point (!) operators, and by using parentheses.

- The hyphen operator (-) indicates that its arguments are to
be concatenated and thus are to coexist in memory.

- The comma operator (,) within parentheses indicates that
its arguments are to overlay each other either physically,
if disk resident, or virtually, if memory resident.

- The comma operator not within parentheses delimits overlay
trees.

- The exclamation point operator (!) immediately before a
left parenthesis declares the enclosed segments to be
memory resident. Nested segments in parentheses are not
affected by an exclamation point operator at a level closer
to the root.
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- The parentheses group segments that begin at the same point
in memory. For example:

.ROOT A-B-(C,D-(E,F))

This ODL command line defines an overlay structure with a
root segment consisting of the modules A and B. 1In this
structure, there are four overlay segments: C, D, E, and
F. The outer pair of parentheses indicates that the
overlay segments C and D start at the same virtual address;
and similarly, the inner parentheses indicate that E and F
start at the same virtual address.

The .ROOT directive defines the beginning overlay structure.
The arguments of the .ROOT directive are one or more of the
following:

- File specifications as described in Chapter 1

- Factor labels

- Segment names

- Program-section names

The .END directive terminates input.

The .FCTR directive provides a means for replacing text by a

symbolic reference (the factor label). This replacement is

useful for two reasons:

- The .FCTR directive extends the text of the ,ROOT directive
to more than one line and thus allows complex trees to be
represented.

- The LFCTR directive allows you to write the overlay
description in a form that makes the structure of the tree
more apparent.

For example:

.ROOT A-(B-(C,D),E-(F,G) ,H)
.END

Using the .FCTR directive, you can write this overlay
description as follows:

.ROOT A-(Fl,F2,H)

Fl: .FCTR B-(C,D)
F2: .FCTR E-(F,G)
.END

The second representation makes it clear that the tree has
three main branches.

The .PSECT directive provides a means for directly specifying
the segment in which a program section is placed. 1t accepts
the name of the program section and 1its attributes. For
example:

.PSECT ALPHA,CON,GBL,RW,I,REL
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ALPHA is the program section name and the remaining arguments
are the program section's attributes (program section
attributes are described in Chapter 2).

The program section name (composed of the characters A-Z, 0-9,
$, or .) must appear first in the .PSECT directive, but the
attributes can appear in any order or can be omitted. If an
attribute 1is omitted, a default condition is assumed. The
defaults for program section attributes are RW, I, LCL, REL,
and CON.

In the example above, therefore, you need only specify the
attributes that do not correspond to the defaults: .PSECT

ALPHA,GBL

The .NAME directive provides you with the means to designate a
segment name for wuse in the overlay description, and to
specify segment attributes. This directive 1is useful for
creating a null segment, naming a segment that is to be loaded
manually, or naming a nonexecutable segment that 1is to be
autoloadable. (Refer to Chapter 4 of this manual for a
description of manually loaded and automatically loaded
segments.) If you do not use the .NAME directive, the Task
Builder uses the name of the first file, program section, or
library module in the segment to identify the segment.

The .NAME directive creates a segment name as follows:
.NAME segname,attr,attr

segname
is the designated name (composed of the characters 2a-32,
0-9, and $).

attr

is an optional attribute taken from the following: GBL,
NODSK, NOGBL, DSK.

The defaults are NOGBL and DSK. The defined name must be
unique with respect to the names of program sections,
segments, files, and factor labels.

You can define a co-tree by specifying an additional tree
structure in the .ROOT directive. The first overlay tree
description in the .ROOT directive 1is the main tree.
Subsequent overlay descriptions are co-trees. For example:

.ROOT A-B-(C,D-(E,F)),X-(Y,2),0-(R,S,T)

The main tree in this example has the root segment consisting
of files A.OBJ and B.OBJ. Two co-trees are defined; the
first co-tree has the root segment X and the second co-tree
has the root segment Q.



CHAPTER 4

OVERLAY LOADING METHODS

The RSX-11M/M-PLUS systems provide two methods for loading
disk-resident and memory-resident overlays:

e Autoload -- The overlay run-time routines are automatically
called to load segments you have specified.

® Manual Load -- You inciude in the task explicit calls to the
overlay run-time routines,

When you build an overlaid task, you must decide which one of these
methods to use, because both cannot be used in the same task.

The loading process depends on the kind of overlay:

@ Disk resident -- A segment is loaded from disk into a shared
area of physical memory, writing over whatever was present.

® Memory resident -- A segment is loaded by mapping a set of
shared virtual addresses to a unique unshared area of physical
memory, where the segment has been made permanently resident
(after having been initially brought in from the disk).

With the autoload method, the overlay run-time routines handle loading
and error recovery. Overlays are automatically loaded by being
referenced through a transfer-of-control instruction (CALL, JMP, or
JSR). No explicit calls to the overlay run-time routines are needed.

In the manual load method, you handle 1loading and error recovery
explicitly. Manual loading saves space and gives you full control
over the loading process, including the ability to specify whether
loading is to be done synchronously or asynchronously.

In the manual load method, you must provide for 1loading the overlay
segments of the main tree, as well as the root segments and the
overlay segments of the co-trees. Once loaded, the root segment of a
co-tree remains in memory.

4.1 AUTOLOAD

To specify the autoload method, you use the autoload indicator, an
asterisk (*). You place this indicator in the ODL description of the
task at the points where loading must occur, The execution of a
transfer-of-control instruction to an autoloadable segment up-tree
(farther away from the root) initiates the autoload process.
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4.1.1 Autoload Indicator

The autoload indicator (*) marks as autoloadable the segment or other
task element (as defined below). If you apply the autoload indicator
to an ODL statement enclosed in parentheses, every task element within
the parentheses 1is marked as autolcadable. Placing the autoload
indicator at the outermost level of parentheses in the ODL description
marks every module in the overlay segments as autoloadable.

In the TK1 example of Chapter 3, Section 3.1.1, if segment C consisted
of a set of modules Cl, C2, C3, C4, and C5, the tree diagram would be
as shown in Figure 4-1.

A21  A22
A A2 Bl B2 P

AO BO C1
L ' ] ]

CNTRL

ZK-413-81

Figure 4-1 Details of Segment C of TK1

Placing the autoload indicator at the outermost level of parentheses
ensures that, regardless of the flow of control within the task, a
module will be properly loaded when it is called. The ODL description
for task TK1l would be:

.ROOT CNTRL-* (AFCTR,BFCTR,CFCTR)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
CFCTR: .FCTR C1-C2-C3-C4-C5

. END

When you use autoload, the root of a co-tree is loaded by path loading
if one of the branches of the co-tree is called before the root.
However, if the root of the co-tree is called before the branch is
called, the root must have an autoload indicator.

Also, when the root segment of a co-tree is not a null segment, you
must mark the co-tree's root segment (CNTRL2) as well as its outermost
level of parentheses to ensure that all modules of the co-tree are
properly loaded. For example, if the co-tree root (CNTRL2) of the
multiple tree example, Section 3.5.2, had contained code or data, it
would have been marked as follows:

.ROOT CNTRL-* (AFCTR,BFTCR,CFCTR) ,*CNTRL2-* (CNTRLX,CNTRLY)

You can apply the autoload indicator to the following elements:

e File names -- to make all the components of the file
autoloadable.

e Portions of ODL tree descriptions enclosed in
parentheses -- to make all the elements within the parentheses
autoloadable, including elements within any nested

parentheses.
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® Program section names -- to make the program section
autoloadable. The program section must have the instruction
(I) attribute.

e Segment names defined by the .NAME directive -- to make all
components of the segment autoloadable.

e .FCTR label names -- to make the first component of the factor
autoloadable. All elements specified in the .FCTR statement
are autoloadable if they are enclosed in parentheses.

In the following example, two .PSECT directives and a .NAME directive
are 1introduced into the ODL description for TK1. Autoload indicators
are applied as follows:

.ROOT CNTRL- (*AFCTR,*BFCTR,*CFCTR) "

AFCTR: .FCTR A0-*ASUB1-ASUB2-* (Al,A2-(A21,A22)) @ ©
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR CNAM-C1-C2-C3-C4-C5

.NAME CNAM,GBL

.PSECT ASUB1,I,GBL,OVR @
.PSECT ASUB2,I,GBL,OVR
.END

The following notes are keyed to the example above.

@ The autoload indicator 1is applied to each factor name;
therefore:

a. *AFCTR=*A0
b. *BFCTR=*(B0-(B1,B2))
c. *CFCTR=*CNAM

CNAM, however, is an element defined by a .NAME directive.
Therefore, all components of the segment to which the name
applies are made autoloadable, that is, Cl1, C2, C3, C4, and
C5.

@® The autoload indicator is applied to the name of a program
section with the instruction (I) attribute (*ASUBl), so that
program section ASUBl is made autoloadable.

© The autoload indicator is applied to a portion of the ODL
description enclosed in parentheses:

*(Al,A2-(A21,A22))

Thus, every element within the parentheses is made
autoloadable (that is, files Al, A2, A21, and A22).

The net effect of this ODL description is to make every element except
program section ASUB2 autoloadable.

4.1.2 Path Loading

The autoload method uses path loading; that 1is, a «call from one
segment to another segment up-tree (farther away from the root)
ensures that all the segments on the path from the calliang segment to
the called segment will reside in physical memory and be mapped. Path
loading is confined to the tree in which the called segment resides.
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A call from a segment in one tree to a segment in another tree results

in the loading of all segments on the path in the second tree from the
root to the called module.

In Figure 4-2, if CNTRL calls A22, all the modules between the CNTRL
and A2 are loaded. 1In this case, modules A0 and A2 are loaded.

A21 A22
L"j‘—J Cb
C4
A1l A2 B1 B2 c3
I ] Cc2
AP BO C1
| j
L
CNTRL

ZK-414-81

Figure 4-2 Path-Loading Example

With the autoload method, the overlay run-time routines keep a record
of the segments that are loaded and mapped, and issue disk-load
requests only for segments that are not in memory. If CNTRL calls A2

after calling Bal, A0 1is not loaded again because it is already in
memory and mapped.

A reference from one segment to another segment down-tree (closer to

the 1root) 1is resolved directly. For example, A2 can immediately
access A0 because A0 was path loaded in the call to A2.

4.,1.3 Autoload Vectors

To resolve a reference up-tree to a global symbol in an autoloadable
segment, TKB generates an autoload vector for the referenced global
symbol. The reference in the code is changed to a definition that
points to an autoload vector entry. The format for the autoload
vector for conventional tasks is shown in Figure 4-3 and the format
for 1I- and D-space tasks is shown in Figure 4-4.

JSR  PC,@.NAUTO

PC RELATIVE OFFSET TO .NAUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

ZK-415-81

Figure 4-3 Autoload Vector Format for Conventional Tasks

,Lspace tasks, TKB generates the« utoload 3vector7_
i at differs from. the 'vector'in. a: conventional task. '

‘autoload Vector is’ six words long and con51sts‘)
parts-, one” part re51dlng in I- space and the' other': part res ng
QD—space. ‘The I-space part consxsts of two “2-word instructions, ai
“the D—space ‘partx con31sts xof two 'words of data. The data-in .t
»Vector -are the acymcu» de ﬂv‘gtox,nﬁﬂvocc and "the, faraet entry
Maddress.‘ The I~«and D space vector 1s shown in, Flgure 4 4

and D—sp
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MOV (PC)+,-(SP)

ADDRESS OF PACKET (D-SPACE)
JMP @.NAUTO

PC RELATIVE OFFSET TO NAUTO

I-SPACE PORTION

ADDRESS OF SEGMENT DESCRIPTOR

ENTRY POINT ADDRESS

D-SPACE PORTION

ZK-1089-82

In Figures 4-3 and '4-4, a transfer-of-control instruction to the
up-tree global symbol generates an autoload vector in the shown
format. An example of the code sequence used in a call to a global
symbol in an autoloadable segment is shown in Figure 4-5.

USER TASK ROOT

. AUTOLOAD VECTOR
CALL GLOBAL —— JSR PC,@.NAUTO
— SEGMENT DESCRIPTOR ADDRESS
. ENTRY POINT ADDRESS (GLOBAL)

i

$AUTO AUTOLOAD ROUTINE

$AUTO: . ;LOAD
. ;SEGMENT

USER TASK SEGMENT .
GLOBAL:: e ~¢———— JMP GLOBAL ;GO TO

. ;GLOBAL IN

. ;SEGMENT

RETURN
ZK-416-81

Figure 4-5 Example Autoload Code Sequence for a Conventional Task
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An exception to the procedure for generating autoload vectors is made
in the case of a program section with the data (D) attribute.
References from a segment to a global symbol up-tree in a program
section with the data (D) attribute are resolved directly.

Because TKB can obtain no information about the flow of control within
the task, it often generates more autoload vectors than are necessary.
However, your knowledge of the flow of control within your task, and
of path loading, can help you determine where to place the autoload
indicators. By placing the autoload indicators only at the points
where 1loading 1is actually required, you can minimize the number of
autoload vectors generated for the task.

In the following example, all the calls to overlays originate in the
root segment. That is, no module in an overlay segment calls outside
its segment. The root segment CNTRL has the following contents:

PROGRAM CNTRL
CALL Al
CALL A21
CALL A2
CALL A0
CALL A22
CALL BO
CALL Bl
CALL B2
CALL Cl
CALL C2
CALL C3
CALL C4
CALL C5
END

If you place the autoload indicator at the outermost 1level of
parentheses, 13 autoload vectors are generated for this task;
however, because A2 and A0 are loaded by path 1loading to A2l1, the
autoload vectors for A2 and A0 are unnecessary. Moreover, because the
call to Cl loads the segment that contains €2, €3, C4, and C5,
autoload vectors for C2 through C5 are unnecessary.

You can eliminate the unnecessary autoload vectors by placing the
autoload indicator only at the points where explicit loading is
required, as follows:

.ROOT CNTRL- (AFCTR,*BFCTR,CFCTR)

AFCTR: .FCTR AO-(*Al,A2-*(A21,A22))
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR *C1-C2-C3-C4-C5
.END
With this ODL description, TKB generates seven autoload vectors -- for

Al, A21, A22, BO, Bl, B2, and Cl.
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4.1.4 Autoloadable Data Segments

You <can make overlay segments that contain no executable code
autoloadable, as follows. First, you must include a .NAME directive
and specify the GBL attribute, as described in Section 3.4.4. For
example:

.ROOT A-*(B,C)
.NAME BNAME,GBL

B: .FCTR BNAME-BFIL
. END

The global symbol BNAME is created and entered into the symbol table
of segment BNAME. Because this segment is marked to be autoloaded,
root segment A calls segment BNAME as follows:

CALL BNAME

The segment is autoloaded and an immediate return to inline code
occurs.

The data of BFIL must be placed in a program section with the data (D)
attribute to suppress the creation of autoload vectors.

4.2 MANUAL LOAD

If you decide to use the manual-load method to load segments, you must
include in your program explicit calls to the SLOAD routine. These
load requests must supply the name of the segment to be 1loaded. In
addition, they can include information necessary to perform
asynchronous load requests, and to handle load request failures.

The $LOAD routine does not path load. A call to SLOAD loads only the
segment named in the request. The segment is read in from disk and
mapped. For memory-resident overlays; the segment 1is mapped, but
only read in if it was not previously read in.

A MACRO-11 programmer calls the S$LOAD routine directly. A FORTRAN
programmer calls SLOAD using the FORTRAN subroutine MNLOAD.

4.2.1 MACRO-11 Manual Load Calling Segquence
A MACRO-11 programmer calls SLOAD as follows:

MOV #PBLK,RO
CALL SLOAD

PBLK is the address of a parameter block with the following format:
PBLK: .BYTE length,event-flag
.RAD50 /seg-name/
.WORD [i/o-status] or 0
.WORD [ast-trp] or 0

length

The length of the parameter block (3 to 5 words).
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event-flag
The event flag number, used for asynchronous loading. If the
event-flag number is 0, synchronous loading is performed.
seg-name
The name of the segment to be loaded: a 1l- to 6-character
Radix-50 name, occupying two words.
i/o-status
The address of the I1/0 status doubleword. Standard QIO status
codes apply.
ast-trp

The address of an asynchronous trap service routine to which
control is transferred at the completion of the load request.

The condition code C-list 1is set or <cleared on return, as
follows:

e If condition code C=0, the load request was accepted.
e If condition code C=1, the load request was unsuccessful.

For a synchronous load request, the return of the condition code C=0
means that the desired segment is loaded and is ready to be executed.
For an asynchronous load request, the return of the code C=0 means
that the 1load request was successfully queued to the device driver,
but the segment is not necessarily in memory. Your program must
ensure that 1loading has been completed by waiting for the specified
event flag before calling any routines or accessing any data in the
segment.

4,2.2 MACRO-ll Manual Load Calllng Sequence For I~ and D-Space Tasks

‘A MACRO-ll programmer calls $LOAD as follows~«,«

MOV ( #PBLK RO
CALL $LOAD

f BYTE 3,0
"RADSO /seg name/

THe length owc the paramet r block '3_wo;q‘u
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4.2.3 FORTRAN Manual Load Calling Sequence
To use the manual load mechanism in a FORTRAN program, your program
must refer to the SLOAD routine by means of the MNLOAD subroutine.
The subroutine call has the form:
CALL MNLOAD (seg-name,[event-flag],[i/o-status],[ast-trp],[1d-ind])
seg-name
A 2-word real variable containing the segment name in Radix-50
format.
event-flag
An optional integer event flag number used for an asynchronous
load request. If the event flag number is 0, the load request is
synchronous.
i/o-status
An optional 2-word integer array containing the 1I/0 status
doubleword, as described for the QIO directive 1in the
RSX-11M/M-PLUS Executive Reference Manual.
ast-trp
An optional asynchronous trap subroutine entered at the

completion of a request. MNLOAD requires that all pending traps
specify the same subroutine.
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1d-ind

An optional integer variable containing the results of the
subroutine call. One of the following values is returned:

+1 Request was successfully executed.

-1 Request had bad parameters or was not successfully
executed.

You can omit optional arguments. The following calls are legal:

Call Effect

CALL MNLOAD (SEGAl) Loads segment named in
SEGAl synchronously.

CALL MNLOAD (SEGAl,0,,,LDIND) Loads segment named in
SEGAl synchronously and
returns Success indica-
tor to LDIND.

CALL MNLOAD (SEGAl,l1,IOSTAT,ASTSUB,LDIND)

Loads segment named in
SEGAl asynchronously,
transferring control to
ASTSUB upon completion
of the 1load request;
stores the 1I/0 status
doubleword in IOSTAT
and the success
indicator in LDIND.

The following example uses the program CNTRL, previously discussed in
Section 4.1. 1In this example, there is sufficient processing between
the calls to the overlay segments to make asynchronous 1loading
effective. The autoload indicators are removed from the ODL
description and the FORTRAN programs are recompiled with explicit
calls to the MNLOAD subroutine, as follows:

PROGRAM CNTRL
EXTERNAL ASTSUB

DATA SEGAl /6RAl /
DATA SEGA21 /6RA21 /

CALL MNLOAD (SEGAl,l1,IOSTAT,ASTSUB,LDIND)

CALL Al

CALL MNLOAD (SEGA21,1,I0STAT,ASTSUB,LDIND)
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procedure dgenerates a synchronous breakpoint trap. If the task
services the trap and returns without altering the state of the
program, the request will be retried.

If you select the manual-load method, you must provide error handling
routines that diagnose load errors and provide appropriate recovery.
A more comprehensive user-written error recovery subroutine can be
substituted for the system-provided routine 1if the following
conventions are observed:

® The error recovery routine must have the entry point name
SALERR.

@ The contents of all registers must be saved and restored.

On entry to $ALERR, R2 contains the address of the segment descriptor
that could not be loaded. Before recovery action can be taken, the
routine must determine the cause of the error by examining the
following words in the sequence indicated:

1. SDSW The Directive Status Word may contain an error
status code, indicating that the Executive
rejected the 1I/0 request to 1load the overlay
segment.

2. N.OVPT The contents of this location, offset by N.IOST,

point to a 2-word I/0 status block containing the
results of the load overlay request returned by
the device driver. The status code occupies the
low-order byte of word 0. For example, for a
device-not-ready condition, the code will be
IE.DNR. (For more information on these codes,
refer to the IAS/RSX-11 I/0 Operations Reference
Manual.)

4.4 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

This section illustrates a global cross-reference that has been
created for an overlaid task. The task consists of a root segment
containing the module ROOT.OBJ, and overlay segments composed of
modules OVR1l, OVR2, OVR3, and OVR4. The overlay description of the
file is as follows:

.ROOT ROOT- (OVR,*O0VRZ)
OVR: .FCTR OVR1-* (OVR3,0VR4)

Only segments OVR2, OVR3, and OVR4 are autoloadable. Figure 4-6 shows
the resulting overlay tree.

*OVR3 *OVR4 ROOT: CALL OVR3
| | CALL OVR1
I CALL OVR2
OVR1 *OVR2
I ]
i
ROOT

ZK-417-81

Figure 4-6 Autolocad Overlay Tree Example
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As shown, the global symbol OVR1l is defined in module OVR1l, and a
single nonautoloadable, up-tree reference is made to this symbol by
the module ROOT, as indicated by the circumflex. Note that because
OVR1 is not autoloadable, it depends on a call to OVR3 or OVR4 to get
loaded by path loading. The asterisk indicates that the module
contains an autoloadable definition. The modules shown with the
asterisk define the symbol.

The asterisks preceding the modules OVR2, OVR3, and OVR4 indicate that
the global symbols OVR2, OVR3, and OVR4 are autoload symbols and are
referenced from the module ROOT through an autoload vector, as shown
by the at-sign (@) character.

The asterisk and at-sign are shown in the cross-reference 1listing in
Example 4-1.
Example 4-1 Cross-Reference Listing of Overlaid Task

OVRTST CREATED BY TKB ON 27-JUL-82 AT 12:04 PAGE 1

GLOBAL CROSS REFERENCE CREF

SYMBOL VALUE REFERENCES.,..

N.ALER 000010 AUTO # OVRES

N.IOST 000004 OVCTL # OVRES

N.MRKS 000016 ¥ OVRES

N.OVLY 000000 OVCTL # OVRES

N.OVPT 000054 AUTO OVCTL # VCTDF

N.RDSG 000014 # OVRES

N.STBL 000002 # OVRES

N.SZSG 000012 # OVRES

OVR1 002014-R # OVR1 ~ ROOT

OVR2 002014-R * OVR2 @ ROOT

OVR3 002014-R * OVR3 @ ROOT

OVR4 002014-R * OVR4 @ ROOT

ROOT 001176-R # ROOT

SALBP1 001320-R # AUTO .

SALBP2 001416-R # AUTO

SALERR 001246-R # ALERR OVDAT

$AUTO 001302-R # AUTO

SDSW 000046 ALERR # VCTDF

$MARKS 001546-R # OVCTL

SOTSV 000052 # VCTDF

$SAVRG 001452-R AUTO # SAVRG

SVEXT 000056 # VCTDF
.FSRPT 000050 # VCTDF
.NALER 001442-R # OVDAT
.NIOST 001436-R # OVDAT
.NMRKS 001450-R # OVDAT
.NOVLY 001432-R # OVDAT
.NOVPT 000042 # OVDAT
.NRDSG 001446~-R # OVDAT
.NSTBL 001434-R # OVDAT
.NSZS5G 001444-R # OVDAT

Vol
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Example 4-1 (Cont.) Cross-Reference Listing of Overlaid Task

OVRTST CREATED BY TKB ON 27-JUL-82 AT 12:04 PAGE 2

SEGMENT CROSS REFERENCE CREF Vol

SEGMENT NAME RESIDENT MODULES

OVR1 OVR1

OVR2 OVR2

OVR3 OVR3

OVR4 OVR4

ROOT ALERR AUTO OVCTL CVDAT OVRES ROOT SAVRG
VCTDF

Down-tree references to the global symbol ROOT are made from modules
OVR1l, OVR2, OVR3, and OVR4. These references are resolved directly.

The segment cross-reference shows the segment name and modules in each
overlay.

4.5 USE AND SIZE OF OVERLAY RUNTIME ROUTINES

TKB, when constructing an overlaid task, incorporates certain modules
from the system library to perform the actual overlay operations. An
overlay run-time routine in the task loads overlays from disk or maps
resident overlays by issuing QIO$ or CRAWS directives.

The modules and routines described below implement the TKB autoload
mechanism as described in Section 4.1.

There are three major components to the autoload service, as follows:

AUTO This module controls the overlay process, and the
autoload vecors indirectly call AUTO through .NAUTO.
AUTO determines whether the referenced overlay segment
is already in memory or mapped. It then jumps to the
required entry point if the entry point is available.

The AUTO module is supplied in two variations. These
variations are separately named and described as
follows:

AUTO Selected by TKB by default for all overlaid
tasks. It manages disk-only, PLAS, and cluster
library overlay structures.

AUTOT Manually selected by you by wusing an explicit
reference in the TKB .ODL file, as shown below.
This module disables the AST traps while
manipulating the overlay data structures. This
is required where user task AST traps might
cause modification of the overiay database. To
incorporate this module in your task image, you



OVERLAY LOADING METHODS

must include the following element in the .ROOT
factor of the task's ODL file:

-LB:[1,1]SYSLIB/LB:AUTOT-

In addition to including AUTOT in the .ROOT
factor, the following code must be included in
your task as initialization prior to the AST
handling routines in your task:

MOV @#.NOVPT,RO
BISB #200,N.FAST(RO)

MRKS This routine traverses the overlay descriptor data
structure to mark any overlay segment that will be
displaced by a new overlay as "out of memory" and
consequently not available.

RDSG The AUTO module calls the RDSG routine repeatedly to
read or map each segment along the overlay tree path
into the task's virtual address space. This is referred
to as "path loading." When path loading is completed,
AUTO calls the required entry point.

Several versions of each component exist reflecting the various sizes

as

appropriate for tasks having disk-only overlays, PLAS mapped

overlays, and/or cluster libraries. TKB incorporates the smallest
support routines appropriate for the overlay structure of your task.

Depending on whether your task has disk-only overlays, resident
overlays, or cluster 1libraries, TKB forces one of the following
modules into your task:

OVCTL Contain the MRKS and RDSG routines optimized for disk
: overlays only. No support is included for
memory-resident or cluster overlays. OVCTL 1is the

included for co tional t 5

e

Contain MRKS and RDSG routines assembled for disk and
memory resident overlays. TKB selects either of these
modules if the task overlay structure includes
memory-resident overlays or maps a resident library
containing resident overlays. OVCTR is the module
selected for conventional tasks and '

e

OVCTC Contain the MRKS, RDSG, and cluster library support
0 routines, TKB includes OVCTC or OVIDC if «cluster
libraries are 1included in your task. OVCTC is th

module selected for conventional tasks and
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Two other modules are incorporated into your task's image. They are:

OVDAT A small, impure data area used by AUTO, MRKS, and RDSG
routines. TKB includes OVDAT in all overlaid tasks, and
its size is independent of the overlay structure of that
task.

ALERR An error service module that AUTO invokes under one of
the following circumstances:

e If an I/0 error occurs while attempting to read a
disk overlay into memory

e If a directive error occurs while attempting to
attach or map a region containing memory resident
overlays

Table 4-1 compares the sizes of the overlay run-time support modules,
You can use it to determine when it is appropriate to force certain
variants into your task image.

Table 4-1
Comparison of Overlay Run-Time Module Sizes

Number
Program of Bytes
Module Section Oct/Dec Specific Use

One of the following modules is included in any overlaid task
that uses autoload and in any task that links to a PLAS overlaid
resident library.

AUTO SSAUTO 122/82. All tasks that use autoload
AUTOT S$SAUTO 132/90. All tasks with ASTs
SSRTQ 32/26. disabled during autoload
$SRTR 30/24.

One of the following modules 1is included in any overlaid
conventional task. OVCTR or OVCTC 1is included 1in any
non-overlaid task (conventional or ‘I-"and D- space) that links
to a PLAS overlaid resident library.

OVCTL $SMRKS 76/62. Disk overlays only
SSRDSG 160/112.
$SPDLS 2/2.
OVCTR SSMRKS 234/156. Disk and PLAS overlays with no
$SRDSG 332/218. cluster libraries
$SPDLS 12/10.
OVCTC SSMRKS 254/172. Disk and PLAS overlays
SSRDSG 352/234. with cluster libraries

$SPDLS 120/80.

(continued on next page)
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Table 4-1 (Cont.)
Comparison of Overlay Run-Time Module Sizes

Number
Program of Bytes
Module Section Oct/Dec Specific Use
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The overlay data vector OVDAT is included in any overlaid task
and in any task that links to a PLAS overlaid resident library.

OVDAT $SOVDT 24/20. Included in all tasks
$$SGDO 0/0. that perform overlay
$$SGD2 2/2. operations
$SRTQ 0/0.
$SSRTR 0/0.

SSRTS 2/2.

The overlay error service routine ALERR 1is 1included whenever
OVDAT is included.

ALERR $SALER 24/20. Overlay error

Manual overlay control (LOAD) is wused 1in place of any AUTO
routine. (See Section 4.2, Manual Load.)

LOAD $SLOAD 252/170. Manual overlay control
SSAUTO 14/12.




CHAPTER 5

SHARED REGION CONCEPTS AND EXAMPLES

The Task Builder provides you with many ways of using shared regions
for tailoring your tasks to meet your specific requirements. This
chapter describes some of these facilities and their applications.

This chapter contains five working examples. The discussion of the
examples assumes that you are familiar with the programming concepts
described in the RSX-11M/M-PLUS Guide to Program Development and with
the first four chapters of this manual.

5.1 SHARED REGIONS DEFINED

A shared region is a block of data or code that resides in memory and
can be used by any number of tasks. A shared region can contain data
for use by several tasks or it may be an area where one task writes
data for wuse by another task. Also, a shared region can contain
routines for use by several tasks.

Shared regions are useful because they make more efficient use of
physical memory. The two kinds of shared regions are:

® A resident common that provides a way that two or more tasks
can share their data

e A resident library that provides a way that two or more tasks
can share a single copy of commonly used subroutines

The term "resident"™ denotes a shared region that 1is built and
installed into the system separately from the task that links to it.
In other words, you use TKB to build a shared region much as you would
use it to build a task. However, the region does not have a header or
a stack. Also, you can use switches to designate the kind of shared
region (a library or a common) to be built.

Figure 5-1 shows a typical resident common. Task A stores some
results in resident common S, and Task B retrieves the data from the
common at a later time.

Figure 5-2 shows a typical resident library. In this case, common
reentrant subroutines are not included in each task image; instead, a
single copy is shared by all tasks.
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RESIDENT COMMON RESIDENT COMMON

S S
PARTITION BOUNDARY

TASK A

TASK B

PARTITION BOUNDARY

EXECUTIVE EXECUTIVE
PHYSICAL MEMORY PHYSICAL MEMORY
TIME 1 TIME 2
ZK-418-81

Figure 5-1 Typical Resident Common

When you build a shared region, you must specify an output image file
name for the region in the TKB command sequence. But, because a
shared region is not an executable unit, it is not a task, and does
not require a header or a stack area. Therefore, when you build a
shared region, you always attach the negated header switch (/-HD) to
the region's 1image file specification. This switch tells TKB to
suppress the header within the image. To suppress the stack area in
the Task Builder command sequence during option input, you specify
STACK=0. (Refer to Chapters 10 and 11 for a complete description of
the /HD switch, the STACK option, and other switches and options.)

In either an RSX-11M or RSX-11M-PLUS system, when you build a shared
region, you use the PAR option to name the partition in which the
region is to reside. You specify the partition name in the TKB
command sequence during option input
description of the PAR option.) iIr RS
S e T

name t opt

O

b systems, the
that of the region.
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RESIDENT LIBRARY
CONTAINING

PARTITION BOUNDARY ROUTINE R

ROUTINE R

TASK A

ROUTINE R TASK A

TASK B TASK B
PARTITION BOUNDARY

EXECUTIVE EXECUTIVE

NONSHARED SHARED
PHYSICAL MEMORY PHYSICAL MEMORY

ZK-419-81

Figure 5-2 Typical Resident Library
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Also, you should con51der three sw1tches when you build the region.
The /PI switch determines whether the region is relocatable. You can
use the /CO switch in the TKB command sequence to declare a region as
a shared common. The /CO switch specifies the use of the region as a
shared common rather than as a shared library. Alternatively, you can
use the /LI switch when you build the region to declare the region as
a shared library. Using these three switches affects the contents of
the symbol definition file, which is described in Chapter 10 under the
/C0, /LI, and /PI switch headings. See also Figure 5-3, Interaction
of the /LI, /CO, and /PI Switches. The contents of the symbol
definition file is described in the following sections.
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5.1.1 The Symbol Definition File

When you build a shared region, you must specify a symbol definition
(.STB) file in the TKB command sequence. This file contains linkage
information about the region. (The format at a .STB file as input to
TKB 1is the same as that of a .0OBJ file. See Appendix A.) Later, when
you build a task that links to the region, TKB uses this .STB file to
resolve calls from within the referencing task to locations within the
region.

The /PI switch declares a shared region to be relocatable.
Conversely, the /-PI switch declares a shared region to be absolute.
If you specify the /PI switch without the /CO or /LI switches to
indicate a relocatable region, TKB defaults to building relocatable
(position-independent) shared regions with all program sections
declared 1in the .STB file. TKB also defaults to building absolute
(position-dependent) shared regions with only the . ABS. program
section declared in the .STB file. The contents of the .STB file when
these three switches are used are described in Chapter 10 wunder the

/Co0, /LI, and /PI switch headings. See also Figure 5-3, Interaction
of the /LI, /CO, and /PI Switches.

SWITCH SHARED REGION REGION PSECT STB FILE .STB FILE
SPECIFIED NAME PSECT SYMBOLS
WITH /~HD | ABSOLUTE | RELOCATABLE

ALL SYMBOLS.

P YES SAME AS LIBRARY ONE PSECT RELATIVE TO

ROOT RELOCATABLE START OF THE
PSECT
ALL DECLARED ALL DECLARED
/PI/CO YES PSECT NAMES PSECTS :I’:‘LDPSSY%J;(S)LS
INCLUDED RELOCATABLE
. ONE PSECT ALL SYMBOLS
/-PULI YES ABS ABSOLUTE ABSOLUTE
ALL DECLARED ALL DECLARED
/_PI/CO* YES PSECT NAMES PSECTS QEESYMﬁ?LS
INCLUDED ABSOLUTE L
/Pl YES SAME AS /PI/CO
/-PI* YES SAME AS /-PI/LI
NONE YES SAME AS /-PI/LI

*/-Pl is the default of not using /Pl
ZK-420-81

Figure 5-23 1Interaction of the /LI, /CO, and /PI Switches

5-4
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If you do not use either /CO or /LI, the contents of an .STB file for
a shared region depend on the use of the /PI switch, which determines
whether the region 1is absolute or relocatable. The effects of
declaring a shared region relocatable or absolute and the resulting
contents of the .STB file are described in the following sections,

Some .STB files include an entry in the .STB file for each program
section in the region. Each entry declares the program section's
name, attributes, and length. 1In addition, TKB includes in the .STB
file every symbol in the shared region and its value relative to the
beginning of the section in which it resides,

5.1.2 Position-Independent Shared Regions

A position-independent shared region can be placed anywhere in a
referencing task's virtual address space when the system on which the
task runs has memory management hardware,

5.1.2.1 Position-Independent Shared Region Mapping - In the example
of wusing the memory management APRs, shown in Figure 5-4, two tasks
refer to the shared region S: task A and task B. The shared region S
is 4K words long and therefore requires that much space in the virtual
address space of both tasks. Task A is 6K words long and requires two
APRs (APRO and APR1l) to map its task region. The first APR available
to map the shared region is APR 2. Thus, you can specify APR 2 when
task A is built.

Task B is 16.5K words long. It requires five APRs to map 1its task
region. The first APR available to map the shared region S in task B
is APR 5. Therefore, you can specify APR 5 when task B is built.

If you do not specify which APR 1is to be used to map a
position-independent shared region, TKB selects the highest set of
APRs available in the referencing task's virtual! address space. In
Figure 5-4, for example, if APR 2 in task A and APR 5 in task B had
not been selected at task-build time, TKB would have selected APR 7 in
both cases.

5.1.2.2 Specifying a Position-Independent Region - You specify that a
shared region 1is position independent when you build it by attaching
the /PI switch to the image file specification for the region. (Refer
to Chapter 10 for a description of the /PI switch.)

You should declare a region position independent if:
e The region contains code that will execute correctly
regardless of 1its location in the address space of the
referencing task.

e The region contains data that is not address dependent.

e The region contains data that will be referenced by a FORTRAN
program (such data must reside in a named common).
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Specifying APRs for a Position-Independent Shared Region
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Program section names are preserved in some shared regions. All the
following switch combinations produce shared regions in which PSECT
names are preserved:

/P1/CO, /-P1/CO, and /PI

Therefore, you should observe the following precautions when building
and referring to these regions:

e No code or data in the region should be included in the Dblank
(. BLK.) program section.

® No code or data in a referencing task should appear in a
program section of the same name as a program section in the
shared region.

® The order in which memory is allocated to program sections
(alphabetic or sequential) must be the same for the shared
region and 1its referencing tasks. (Chapter 2 describes
alphabetic ordering of program sections. Refer to the
description of the /SQ and /SG switches in Chapter 10 for an
explanation of sequential ordering of program sections.)

5.1.3 Absolute Shared Regions

When a shared region is absolute, you select the virtual addresses for
it when you build it. Thus, an absolute shared region is fixed in the
virtual address space of all tasks that refer to it.

5.1.3.1 Absolute Shared Region Mapping - Figure 5-5 shows three tasks
(task C, task D, and task E) and a single absolute shared region, L.
The absolute shared region L is 6K words long and is built to occupy
virtual addresses 120000(octal) to 150000(octal). These addresses
correspond to APR 5 and APR 6, respectively. Tasks C and D can be
linked to region L because at the time they are built APR 5 and APR 6
are unused in both tasks. However, task E is 23K words long and even
though it has 8K words of virtual address space available to map the
shared region, APR 5 (which corresponds to virtual address 120000, the
base address of the shared region) has been allocated to the task
region. If shared region L were position independent, task E could be
linked to it.

5.1.3.2 Specifying an Absolute Shared Region - You specify that a
shared region 1is absolute when you build it by using the /-PI switch
or omitting the /PI switch from the task image file. You establish
the virtual address for the region by specifying the base address of
the region as a parameter of the PAR option.

You should build an absolute shared region if:

e The region contains code that must appear in a specific
location in the address space of a referencing task.

e The region contains data that is address dependent.
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5.1.3.3 Absolute Shared Region .STB File - When a shared region is
created with the /-PI/LI or /-PI switches, or just the /-HD switch,
the only program section name that appears in the .STB file for the
region is the absolute program section name (. ABS.). TKB includes in
the .STB file for the region each symbol in the region and its value.
But, because TKB does not include the program section names of an
absolute shared region in its .STB file, all code or data in the
region must be referred to by global symbol name. Also, because the
program section names are not in the .STB file, TKB places no
restrictions on the way the program sections are ordered in either the
absolute shared region or the tasks that reference it. You can order
program sections the way you want by using the /SQ and /SG switches
described in Chapter 10.

5.1.4 Shared Regions with Memory-Resident Overlays

Shared regions with memory-resident overlays are a primary resource
for conserving memory. If the shared region is larger than the
available virtual address space in a task that must reference the
region, you can build the region -- both position-independent and
absolute -- with memory-resident overlays. All segments of the
overlay structure are included 1in the shared region, but each task
referencing the shared region can include only part of the shared
region -- that 1is, an overlay segment or series of segments in an
overlay path -- in its virtual address space. Therefore, the task
need only have enough virtual address space for the largest shared
region overlay segment, or series of segments in an overlay path, it
is likely to access. Hence, the virtual address space of the task can
be considerably smaller than the size of the shared region.

5.1.4.1 Considerations About Building an Overlaid Shared Region - In
general, overlays can be disk-resident or memory-resident, but those
in shared regions must, by their very nature, be memory-resident. TKB
marks each overlay segment 1in the shared region with the NODSK
attribute to suppress overlay load requests. When you build a shared
region with memory-resident overlays, you must define the overlay
structure through a conventional ODL file. (See Chapters 3 and 4 of
this manual for information on overlays and the Overlay Description
Language.) TKB does not include the overlay data base (segment
descriptors, autoload vectors, and so forth) or the overlay run-time
routines within the region image. Instead, this data base becomes a
part of the .STB file that is linked to the referencing task. When
this task is built, its root segment automatically includes both the
data base and global references to overlay support routines residing
in the system object module library.

The procedure for creating a shared region with memory-resident
overlays can be summarized as follows:

e Define an overlay structure containing only memory-resident
overlays.

e Include the GLBREF option, or provide in the root segment a
module containing the appropriate global references for
defining entry points within those overlay segments. TKB
generates autoload vectors and global definitions for the
overlay segments.
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5.1.4.2 Example of Building a Memory-Resident Overlaid Shared Region

- The procedure for creating a shared region is illustrated in the
following example. The shared region to Dbe contructed consists of
reentrant code that resides within the overlay structure defined
below:

.ROOT A-!(B,C-D)
.NAME A
.END

Root segment A contains no code or data and has a length of 0. All
executable code exists within memory-resident overlay segments
composed of object modules B.OBJ, C.OBJ, and D.OBJ, containing global
entry points B, C, and D, respectively.

You generate the .TSK, .MAP, and .STB files by using the following TKB
commands:

TKB>A/-HD/MM,LP:,SY:A=A/MP
Enter Options:
TKB>GBLREF=B,C,D
TRKB>PAR=A:160000:20000
TKB>STACK=0

TKB>/

NOTE

When building a shared region, you must
use the same name for the partition and
the .TSK and .STB files.

See the PAR, RESLIB, LIBR, RESCOM, and
COMMON options in Chapter 11.

TKB inserts references to entry points B, C, and D in the root segment
of the 1library which subsequently appear in the .STB file as
definitions.

TKB resolves the definitions for symbol C directly to the actual entry
point. TKB resolves the definitions for symbols B and D to autoload
vectors that it includes in each referencing task.

5.1.4.3 Options for Use in Overlaid Shared Regions - Certain options
may prove useful to you when building and linking shared regions to a
task. They are described next.

GBLDEF -- You can declare the definition of a symbol by means of the
GBLDEF option. The syntax of this option is:

GBLDEF= symbol-name:symbol-value

where symbol-name is a 1l- to 6- character Radix-50 name of the defined
symbol and symbol-value is an octal number in the range of 0 through
177777 assigned to the symbol. This option is frequently used in the
TKB build file for a task or shared region to allow you to alter the
value of a global symbol that resides in a module. This saves you the
trouble of reassembling the source code for a module if changes are
necessary.
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GBLINC -- By means of this option, you force TKB to include the
specified symbols in the .STB file being created by the linking
process in which this option appears. The syntax of this option is:

GBLINC=symbol-name,symbol-name,...,symbol-name

where symbol-name is the symbol or symbols to be included. Use this
option when you want to force particular modules to be linked to the
task that references this 1library. The global symbol references

specified by this option must be satisfied by some module or GBLDEF
specification when you build the task.

GLBREF -- You can force the inclusion of a global reference in the
root segment of the shared region by means of the GBLREF option. In
this way, the necessary autoload vectors and definitions can be
generated without explicitly including such references in an object
module. The syntax of the option is:

GBLREF=[ ,name|[,name...]]

where the name consists of from one to six Radix-50 characters. If
the definition resides within an autoloadable segment, TKB constructs
an autoload vector and includes it in the symbol definition file. If
the definition 1is not autoloadable, TKB obtains the real value and
defines it in the root segment. No global symbol appears in the .STB
file wunless the symbol 1is either defined in the root segment or is
referenced in the root segment and defined elsewhere in the overlay
structure.

GBLXCL -- You can exclude a symbol or symbols from the symbol
definition file of a shared region by means of the GBLXCL option. The
syntax of this option is:

GBLXCL=symbol-name,symbol-name,...,symbol-name

where symbol-name is the symbol or symbols to be excluded. You can
use this option when you do not want the task to be aware of specific
symbols within the library. This option is particularly useful when
you cluster overlaid 1libraries together (see the CLSTR option in
Chapter 11 and the Cluster Libraries section in this chapter).

5.1.4.4 Autoload Vectors and .STB Files for Overlaid Shared Regions -
When TKB builds a task image file containing memory-resident overlays,
TKB allocates autoload vectors in the task image. If the task 1links
to a shared region, autoload vectors for the shared region are also
allocated in the task image. TKB allocates the autoload vectors 1in
the task's root segment, but not in the shared region. Therefore, the
shared region cannot reference unloaded (unmapped) segments of its
overlay structure.

When the task executes, the shared region is effectively part of the

task, In fact, when the task loads overlay segments, it makes no
distinction between overlay segments of the task and those of the
shared region. They are 1loaded as needed in a procedure that is

transparent insofar as the execution of the task is concerned.

For the Fast Task Builder (FTB) and older versions of TKB that do not
support overlaid 1I- and D-space tasks, each autoload vector in the
shared region's .STB file is allocated in the root of the task being
linked to the region, whether or not the entry point is referenced by
the task.
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NOTE

Libraries created with older versions of
TKB do not have the ISD records in the
.STB file that newer versions of TKB use
to include autoload vectors in the task
from the .STB file. Therefore, TKB must
create autoload vectors for every entry
point in the library.

occurs’' because the - ,
o ', contains . conventional autoload
.vectors that are not : ‘ i
D-space task.

Only those global symbols defined or referenced in the root segment of
the shared region appear in the .STB file. The .STB file also
contains the data base required by the overlay run-time system in
relocatable object module format. This data base includes:

e All autoload vectors

e Segment tables (linked as described in Appendix B)

e Window descriptors

® A single region descriptor
The overlay structure, as reflected in the segment table 1linkage, 1is
preserved and conveyed to the referencing task by the .STB file.
Thus, path loading for the shared region can occur exactly as it does
within a task. Aside from address space restrictions, there are no

limitations on the overlay structures that can be defined for a shared
region.
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5.1.5 Run-Time Support for Overlaid Shared Regions

Memory-resident overlays within a shared region require little
additional support from the overlay run-time system. The shared
region overlay data base that is 1linked within the image of the
referencing task has a structure that is identical to the equivalent
data created.- for an overlaid task. Therefore, memory-resident
overlays within the shared region are indistinguishable from
memory-resident overlays that form a part of the task image. The only
additional processing is that required to attach the shared region and
obtain its identification for use by the mapping directives.

Once this initialization 1is complete, all further processing is
identical to memory-resident overlay processing performed on task
overlays.

Several restrictions apply to shared regions existing as
memory-resident overlays:

® A shared region cannot use the autoload facility to reference
memory-resident overlays within itself or any other region.
If each segment is uniquely named, overlays can be mapped
through the manual load facility.

e Named program sections in a shared region overlay segment
cannot be referenced by the task. If reference to the storage
is required, such sections must be 1included in the root
segment of the region (with resultant loss of virtual address
space) .

e For FTB, and libraries built with versions of TKB that do not
support I- and D-space overlaid tasks, the number of autoload
vectors 1is independent of the entry points actually
referenced. The maximum number of vectors will be allocated
within each referencing task. In some cases the size of the
allocation will be large.

e There is an overhead of six instructions er autoload call

even when the segment i mapped ;

As implied by the previous items, great care must be exercised if an
efficient memory-resident overlay structure for library routines such
as the FORTRAN IV OTS is to be implemented.

5.1.6- Linking to a Shared Region

When you build a task that links to a shared region, you must indicate
to TKB the name of the shared region and the type of access the task
requires to it (read/write or read-only). In addition, if the shared
region 1is position independent, you can specify which APR TKB is to
allocate for mapping the region into the task's virtual address space.
Four options are available for this action:

e RESLIB (resident library)

ent common)

Cu

& RESCOM (resi
e LIBR (system-owned resident library)

e COMMON (system-owned resident common)
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RESLIB and RESCOM accept a complete file specification as one of their
arguments, Thus, vyou can specify a device and UFD indicating to TKB
the location of the region's image file and, by implication, its
symbol definition file. (Refer to Chapter 1 for more information on
file specifications and defaults.)

LIBR and COMMON accept a 1- to 6~character name. When you specify
either of these options, the shared region's image file and symbol
definition file must reside under UFD [1,1] on device LBO:.

The RESLIB and RESCOM options require that all wusers of the shared
region know the UFD under which the shared region's image file and
.STB file reside. The LIBR and COMMON options require only that the
users of the shared region know the name of the shared region. When
you specify either LIBR or COMMON, by default, TKB expects to find the
shared region's image and .STB files on device LB: under UFD [1,1].

All four options accept two additional arguments:
e The type of access that the task requires (RO or RW).

e The first APR that TKB is to allocate for mapping the region
into the task's virtual address space. As stated earlier,
this argument is valid only when the shared region is position
independent.

When you specify any of these options, TKB expects to find a symbol
definition file of the same name as that of the shared region, but
with an extension of .STB, on the same device and under the same UFD
as those of the shared region's image file,

The syntax of these options is given in Chapter 1l1.

When TKB builds a task, it processes first any options that appear 1in
the TKB command sequence. When TKB processes one of the four options
above, it locates the disk image of the shared region named 1in the
option. The disk image of a shared region does not have a header, but
it does have a label block that contains the allocation information
about the shared region (for example, its base address, load size, and
the name of the partition for which it was built). TKB extracts this
data from the shared region's label block and places it in the LIBRARY
REQUEST section of the label block for the referencing task.

The .STB file associated with the shared region is an object module
file. TKB processes it as an input file. If the shared region is
position independent, its .STB file contains program section names,
attributes, and 1lengths. However, the program section names are
flagged within the file as "library" program sections and TKB doées not
add their allocations to the task image it is building.

If the task links to only one shared region, and if neither the shared
region nor the task that links to it contain memory-resident overlays,
the Task Builder allocates two window blocks in the header of the
task. (Overlays are described in Chapter 3.) When the task is
installed, the INSTALL processor will initialize these window blocks
as follows:

e Window block 0 will describe the range of wvirtual addresses
(the window) for the task region.

e Window block 1 will describe the window for the shared region.

Figure 5-6 shows the window-to-region relationship of such a task.
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Figure 5-6 Windows for Shared Region and Referencing Task
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A shared region need not be installed before a task that links to it
is built. The .STB file that you specify when you build the shared
region contains all the information required by TKB to resolve
references from within a task to locations within the shared region.
The only requirement is that you install a shared region before you
install a task that links to it.

Unless you use the /LI switch, there is a restriction on the way TKB
processes tasks that link to relocatable shared regions. TKB places
all program section names into its internal control section table.
The program section names include those from the .STB file of the
shared region as well as those from the other input modules. A
conflict can arise when building a task that contains program sections
of the same name as those in the shared region to which the task
links. The conflict arises because TKB tries to add the program
section allocation in the task to the already existing allocation for
the program section of the same name in the region. This is not
possible because the region's image has already been built, is outside
the address space of the task currently being built, and cannot be
modified. Therefore, to avoid this conflict, the program section
names within a task that links to a relocatable shared region must
normally be unique with respect to program section names within the
shared region.

TKB displays an error message under the following conditions:

e A program section in the task and a program section in the
shared region have the same name.

® The program section in the task contains data.

® TKB tries to initialize the program section in the task.
The error message occurs when TKB tries to store data in an image
outside the address 1limits of the task it is building. If this
conflict occurs, TKB prints the following message:

TKB--*DIAG*-1load addr out of range in module module-name

One exception to the above restriction develops when all of the
following conditions exist:

e Both program sections (in the shared region and in the
referencing task) have the (D) data and the OVR (overlay)
attributes.

e The program section in the task is equal to or shorter than
the program section in the shared region.

e The program section in the task does not contain data.

When all of these conditions exist, there is nothing to be initialized
within the shared region. TKB binds the base address of the program
section in the task to the base address of the program section in the
shared region. If the program section in the task contains global
symbols, TKB assigns addresses to them that reflect their location
relative to the beginning of the program section. You can use this
technigque to establish symboli offsets 1into resident commons,
Examples 5-1 and 5-2 in the following sections illustrate how to
establish these offsets.
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5.1.7 Number and Size of Shared Regions

The number of shared regions to which a task can link is a function of
the number of window blocks required to map the task and the regions.
5 :

5.1.8 Example 5-1: Building and Linking to a Common in MACRO-1l1l

The text in this section and the figures associated with it illustrate
the development of a MACRO-11 position-independent resident common and
the development of two MACRO-11 tasks that share the common. The
steps in building a position-independent common can be summarized as
follows:

l. You create a source file that allocates the amount of space
required for the common. In MACRO-11, either of the
assembler directives, .BLKB or .BLKW, provide the means of
allocating this space.

2. You assemble the source file.

3. You build the assembled module, specifying both a task image
file and a symbol definition file.

You specify the /-HD (no header) switch and declare the
common with /CO. You specify the common to be position
independent with the /PI switch.

Under options you specify:

STACK=0
PAR=parname

The parname in this PAR option is the name of the partition
in which the common is to reside. (The /HD and /PI switches
and the STACK and PAR options are described in Chapter 10.)

If your system is an RSX-11M system, the common must reside
within a common partition of the same name as that of the
common.

If your system is an RSX-11M-PLUS system, the common can
reside within any partition large enough to hold it.

4. You install the common.

Example 5-1 below shows a MACRO-11 source file that, when assembled
and built, creates a position-independent resident common area named
MACCOM. The common area consists of two program sections named COM1
and COM2, respectively. Each program section is 512(decimal) words
long.
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Example 5-~1, Part 1 Common Area Source File in MACRO-11

.TITLE MACCOM

COM1 - 512 WORDS
COM2 - 512 WORDS

~e N we N

.PSECT COM1,RW,D,GBL,REL,OVR
.BLKW 512.
.PSECT COM2,RW,D,GBL,REL,OVR
.BLEKW 512.

.END

Once this common has been assembled, the Task Builder command sequence
shown below can be used to build it.

>TKB
TKB>MACCOM/PI/-HD/CO,MACCOM/-SP,MACCOM=MACCOM
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=MACCOM:0:4000

TKB>//

This command sequence directs TKB to build a position-independent
(/P1), headerless (/-HD) common image file named MACCOM.TSK. It also
specifies that the Task Builder is to create a map file, MACCOM.MAP,
and a symbol definition file, MACCOM.STB. TKB creates all three
files -- MACCOM.TSK, MACCOM.MAP, and MACCOM.STB -- on device SY:
under the UFD that corresponds to the terminal UIC. Because /-SP is
attached to the map file, TKB will not spool a map listing to the line
printer.

Under options, STACK=0 suppresses the stack area 1in the common's
image. The PAR option specifies that the common area will reside
within a common partition of the same name as that of the common,
MACCOM. In addition, the parameters in the PAR option specify a base
of 0 and a length of 4000 octal bytes for the common. (Refer to
Chapters 10 and 11 for descriptions of the switches and options used
in this example.)

Example 5-1, Part 2 shows the map resulting from this command
sequence.

The task attributes section of this map reflects the switches and
options of the command string. It indicates that the common resides
in a partition named MACCOM, that it was built under terminal UIC
i7,62], that it 1is headerless and position independent, and that it
requires one window block to map. The total length of the common is
1024 (decimal) words and its address 1limits range from 0 to
3777 {(octal). The common image (that portion of the disk image file
that eventually will be read into memory) begins at file-relative disk
block 2@ . The last block in the file is file-relative disk block
5 @ and the common image is four blocks long o .

The memory allocation synopsis details the Task Builder's allocation
for and the attributes of the program sections within the common. For
example, reading from left to right, the map indicates that the
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program section COM1l permits read/write access, that it contains data,
and that 1its scope 1is global. It also indicates that COM1 is
relocatable and that all contributions to COM1 are to be overlaid.
Because COMl1 has the overlay attribute, the total allocation for it
will be equal to the largest allocation request from the modules that
contribute to it. (For more information on program section
attributes, see Chapter 2.)

Continuing to the right, the first 6-digit number is COMl's base
address, which is 0 @). The next two digits are its length (bytes) in
octal and decimal, respectively.

The next line down lists the first object module that contributes to
COM1. In this case there is only one: the module MACCOM from the
file MACCOM.OBJ;l. The numbers on this 1line 1indicate the relative
base address of the contribution and the length of the contribution in
octal and decimal @ . 1If there had been more than one module input to
TKB that contained a program section named COM1l, TKB would have listed
each module and its contribution in this section.

Notice that there is a program section named . BLK. shown on the map
just above the field for COMl. This is the "blank" program section
that is created automatically by the language translators. The
attributes shown are the default attributes. The allocation for
. BLK. 1is 0 because the program sections in MACCOM were explicitly
declared. If the program sections had not been explicitly declared,
all of the allocation for the common would have been within this
program section.

Example 5-1, Part 2 Task Builder Map for MACCOM.TSK

MACCOM. TSK; 1 Memory allocation map TKB M40.10 Page 1
17-NOV-82 16:05

Partition name : MACCOM
Identification :
Task UIC : {7,62]

Task attributes: -HD,PI

Total address windows: 1.

Task image size : 1024. WORDS

Task address limits: 000000 003777

R-W disk blk limits: 000002 000005 000004\00004.

\
*** Root segment: MACCOMo 2] 3

R/W mem limits: 000000 003777 004000 02048.
Disk blk limits: 000002 000005 000004 00004.

Memory allocation synopsis:

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 000000 000000 00000.
cCoMl :(RW,D,GBL,REL,OVR) 000000 002000 01024.

000000 {002000(01024. .MAIN. MACCOM.OBJ;1
COoM2 :(RW,D,GBL,REL,OVR) 002000 /002000/01024.
/0020001002000|01024. .MAIN. MACCOM.OBJ;1
6] 4]

(continued on next page)
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Example 5-1, Part 2 (Cont.) Task Builder Map for MACCOM.TSK

*** Tagsk builder statistics:

Total work file references: 183.

Work file reads: 0.

Work file writes: 0.

Size of core pool: 7086. WORDS (27. PAGES)
Size of work file: 768. WORDS (3. PAGES)

Elapsed time:00:00:05

Figure 5-7 is a diagram that represents the disk 1image file for
MACCOM. The circled numbers in Figure 5-7 correspond to the circled
numbers in Example 5-1, Part 2.

RELATIVE RELATIVE
DISK BLOCK LOAD
NUMBERS ADDRESSES
000005 — COM 2
000004  — — 002000 _
000003 — CcomM 1 - 002000 (BYTES)
- 000002 —_— — 000000 4
000001 — LABEL BLOCK
000000  —

DISK IMAGE FILE

ZK-424-81

Figure 5-7 Allocation Diagram for MACCOM.TSK
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Example 5-1, Parts 3 and 4 show two programs: MCOM1 and MCOM2,
respectively. Both of these programs reference the common area MACCOM
created above. MCOM1l in Example 5-1, Part 3 accesses the COM1 portion
of MACCOM. It inserts into the first 10 words of COM1l the numbers 1
through 10 in ascending order. It then issues an Executive directive
request for the task MCOM2 and suspends itself.

When MCOM2 runs, it adds together the integers left in COM1 by MCOM1
and leaves the sum in the first word of COM2. It then issues a resume
directive for MCOM1l and exits.

When MCOM1 resumes, it retrieves the answer left in COM2 and calls the
system library routine $EDMSG (edit message) to format the answer for
output to device TI:.

All of the Executive directives for Dboth programs (RQSTS$SC, SPNDSS,
QIOWSS, RSUMS$SC, and EXITS$S) are documented in the RSX-11M-PLUS
Executive Reference Manual. The system library routine $EDMSG 1is
documented in the IAS/RSX-11 System Library Routines Reference Manual.

Example 5-1, Part 3 MACRO-11 Source Listing for MCOM1

.TITLE MCOMl
.IDENT /01/

.MCALL EXITS$S,SPND$S,RQSTSC,QIOWSS

oUT: .BLKW  100. ; SCRATCH AREA
FORMAT: .ASCIZ /THE RESULT IS %D./
MES: .ASCII /ERROR FROM REQUEST/
LEN = . - MES
.EVEN
; PSECT - COM1 IS USED TO ACCESS THE FIRST 512. WORDS OF THE
; COMMON.
.PSECT COM1,GBL,OVR,D
INT: .BLKW  10.
; PSECT - COM2 IS USED TO ACCESS THE SECOND 512. WORDS OF THE

COMMON. IT WILL CONTAIN THE RESULT

~

.PSECT COM2,GBL,OVR,D

ANS: .BLKW 1
.PSECT
START:
MOV $#10.,R0 ; NUMBER OF INTEGERS TO SUM
MOV #1,R1 ; START WITH A 1
MoV #INT,R3 ; PLACE VALUES IN 1ST 10 WORDS
’

OF COMMON

(continued on next page)
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Example 5-1, Part 3 (Cont.) MACRO-11 Source Listing for MCOM1

108: MOV R1, (R3)+ ; INITIALIZE COMMON
INC R1 ; NEXT INTEGER
DEC RO ; ONE LESS TIME
BNE 108 ; TO INITIALIZE
RQSTSC MCOM2 ; REQUEST THE SECOND TASK
BCS ERR1 ; REQUEST FAILED
SPNDSS ; WAIT FOR MCOM2 TO SUM THE INTEGERS
MOV #0UT, RO ; ADDRESS OF SCRATCH AREA
MOV #FORMAT,R1 ; FORMAT SPECIFICATION
MOV #ANS,R2 ; ARGUMENT TO CONVERT
CALL SEDMSG ; DO CONVERSION
QIOWSS #I0.WVB,#5,#1,,,,<#O0UT,R1,#40>
EXITSS

ERR1:
QIOWSS #IO.WVB,#5,#1,,,,<#MES,#LEN,#40>
EXITSS
.END START

Example 5-1, Part 4 MACRO-11 Source Listing for MCOM2

.TITLE MCOM2
.IDENT /01/

.MCALL EXITS$S,QIOWSS,RSUMSC

MES: .ASCII /ERROR FROM RESUME/
LEN = . -~ MES
.EVEN

PSECT - COM1 IS USED TO ACCESS THE FIRST 10. WORDS OF THE
COMMON.

~e we

.PSECT COM1,GBL,OVR,D
INT: .BLKW 10.

PSECT - COM2 IS USED TO ACCESS THE SECOND 10. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

~e =

.PSECT COM2,GBL,OVR,D

ANS: .BLKW 1
. PSECT
START:
MOV $#10.,R0 ; NUMBER OF INTEGERS TO SUM
MOV $#INT,R3 ; PLACE VALUES IN 1ST 10 WORDS
; OF COMMMON
CLR ANS ; INITIALIZE ANSWER
108: ADD (R3)+,ANS ; ADD IN VALUES
DEC RO ; ONE LESS VALUE
BNE 108 ; TO SUM

RSUMSC MCOM1 RESUME MCOM1l

~e e

BCS ERR RESUME FAILED
EXITSS
ERR:
QIOWSS #IO.WVB,#5,%1,,,,<4MES,#LEN,#40>
EXITSS
.END START
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Note that both tasks MCOM1 and MCOM2 contain .PSECT declarations
establishing program section names that are the same as program
section names within the position-independent common to which the task
is 1linked (MACCOM). As stated earlier, in most circumstances this
would be illegal. 1In this application, however, the .PSECT directives
have been placed into the tasks to establish symbolic offsets in the
resident common. When either task is built, TKB assigns to the symbol
INT: the base address of program section COM1l, and to the symbol ANS:
the base address of program section COM2. Figure 5-8 illustrates this
assignment.

T -
ANS: Lo Ar ~ <
S~ ~< COM 2
\\\ \\\\
\\\ \\\\
~<_ b - ___ = T~
ANS:
lm:l [ T~
~ coM 1
~ — \\\
\\\ ~ -
—~— ~—
\\ \\\
~ —
\\ -~
-~ e e e e e o e o —— e —— =
\\
—
INT:

ZK-425-81

Figure 5-8 Assigning Symbolic References within a Common

Once you have assembled MCOM1 and MCOM2, you can build them with the
following TKB command sequences:

>TKB
TKB>MCOM1 ,MCOM1 /-SP=MCOM1
TKB>/

Enter Options:

TKB> RESCOM=MACCOM/RW
TKB>//

>TKB
TKB>MCOM2,MCOM2/-SP=MCOM2
TKB>/

Enter Options:
TKB>RESCOM=MACCOM/RW
TKB>//

Under options in both of these command sequences, the RESCOM option
tells TKB that these programs intend to reference a common data area
named MACCOM and that the tasks require read/write access to it.
Because the RESCOM option is used, TKB expects to find the image file
and the symbol definition file for the common on device SY: wunder the
UFD that corresponds to the terminal UIC. 1In addition, because the
optional APR specification was omitted from the RESCOM option, TKB
allocates virtual address space for the common starting with APR7 in
both tasks (the highest APR available in both tasks).
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The TKB map for MCOM1l is shown in Example 5-1, Part 5. The map for
MCOM2 is not essentially different from that of MCOM1l and is therefore
not included here.

Example 5-1, Part 5 Task Builder Map for MCOM1l.TSK

MCOM1.TSK;1 Memory allocation map TKB M40.10 Page 1
11-DEC-82 16:12

Partition name : GEN
Identification : 01
Task UIC : [7,62]

Stack limits: 000274 001273 001000 00512.

PRG xfr address: 001650

Total address windows: 2.

Task 1image size : 1184. WORDS

Task address limits: 000000 004407

R-W disk blk limits: 000002 000006 000005 00005.

*** Root segment: MCOM1l

R/W mem limits: 000000 004407 004410 02312.
Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section Title 1Ident File
. BLK.:(RW,I,LCL,REL,CON) 001274 002664 01460.

001274 000574 00380. MCOM 01 MCOM1.0BJ;1
COMl :(RW,D,GBL,REL,OVR) 160000 002000 01024.

160000 000024 00020. MCOM 0l MCOM1.0BJ;1
COM2 :(RW,D,GBL,REL,OVR) 162000 002000 01024.

162000 000002 00002. MCOM 0l MCOM1.0BJ;1
$DPBS$S: (RW,I,LCL,REL,CON) 004160 000016 00014.

004160 000016 00014. MCOM 01 MCOM1.0BJ;1

$$RESL: (RO, I,LCL,REL,CON) 004176 000212 00138.

*** Task builder statistics:

Total work file references: 1924. h
Work file reads: 0.

Work file writes: 0.

Size ¢of core pool: 7086. WORDS (27. PAGES)

Size of work file: 1024. WORDS (4. PAGES)

Elapsed time:00:00:04
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Note that TKB has placed two window blocks in MCOMl's header. When
MCOM1 is installed, the INSTALL processor will initialize these window
blocks as follows:

e Window block 0 will describe the range of virtual addresses
(the window) for MCOMl's task region.

e Window block 1 will describe the window for the shared region
MACCOM.

5.1.9 Linking Shared Regions Together

Shared regions can link to other shared regions. You may find it
convenient to have code in a shared 1library and have access to
routines in another shared library to which it links.

The following text describes, as an example for a mapped system, the
TKB command sequence for building a resident library named FILEB.
That text is followed by a TKB command sequence that shows an example
of building another resident library named FORCOM that links to FILEB.
Following after that, a TKB command sequence shows the building of a
task that links to FORCOM. In the TKB command sequences to follow, it
is assumed that you know the contents of the libraries and the task.
The examples show the linkage only.

The first shared region to be built 1is called FILEB. The 1library
FILEB is a position-dependent 1library. You use the /-PI switch to
signify that the library is absolute. You build the library with the
/-HD switch to indicate that the 1library has no header. The /LI
switch indicates that FILEB is to be a shared library. The program
section name of the library is . ABS, which is the only one in the
library. FILEB is to be loaded into a user-controlled partition on a
mapped system. The name of the partition in which FILEB resides has
the same name, FILEB, that you specify in the PAR option. The PAR
option also specifies the Dbase address and the 1length of the
partition. Because FILEB 1is absolute, a base address must be
specified; here, the base address 1is 160000. The length in this
example is 4K bytes. If neither the base nor the length is specified,
TKB tries to determine the length. The TKB command sequence follows:

>TKB
TKB>FILEB/-PI/-HD/LI,FILEB/-SP,FILEB=FILEB.OBJ
TKB>/ '

Enter Options:

TKB> STACK=0

TKB>PAR=FILEB:160000:40000

TKB>//

The next TKB command sequence specifies a shared library called
FORCOM. FORCOM 1links to the read-only library called FILEB. You
build FORCOM with the /LI switch to specify a library to the Task
Builder. FORCOM 1is relocatable. You specify in the RESLIB option
that the resident library to which FORCOM links is called FILEB. The
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access required is read-only, which /RO specifies in the RESLIB option
line. The TKB command sequence follows:

>TKB
TKB>FORCOM/-HD/LI1/PI,FORCOM/~-SP,FORCOM=FORCOM.O0BJ
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=FORCOM:0:4000

TKB>RESLIB=FILEB/RO

TKB>//

The next TKB command sequence builds the task and specifies that the
task 1links to the 1library called FORCOM. The RESLIB option line
specifies the link to the resident library called FORCOM.

>TKB
TKB>FOTASK,FOTASK/-SP,FOTASK=FOTASK.OBJ
TKB>/

Enter Options:

TKB>RESLIB=FORCOM/RW

TKB>//

Build the libraries before you build the task, and install the
libraries before you run or install the task. See Chapters 10 and 11
for a description of the /PI, /HD, /CO, and /LI switches and the PAR,
RESCOM, and RESLIB options.

5.1.10 Example 5-2: Building and Linking to a Device Common in
MACRO-11

A device common is a special type of common that occupies physical
addresses on the I/0 page. When mapped into the virtual address space
of a task, a device common permits the task to manipulate peripheral
device registers directly.

NOTE

Because any access to the I/0 page is
potentially hazardous to the running
system, you must exercise extreme
caution when working with device
commons .

The remaining text in this section and the figures associated with it
illustrate the development and use of a device common. Example 5-2,
Part 1 shows an assembly listing for a position-independent device
common named TTCOM. When installed, TTCOM will map the control and
data registers of the console terminal. Its physical base address
will be 777500.
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Example 5-2, Part 1 Assembly Listing for TTCOM

«TITLE TTCOM
.PSECT TTCOM,GBL,D,RW,OVR

.=.+60
$RCSR:: .BLKW 1
SRBUF:: .BLKW 1
$XCSR:: .BLKW 1
$SXBUF:: .BLKW 1
.END

The PDP-11 Peripherals Handbook defines the control and data register
addresses for the console terminal, In Example 5-2, Part 1, the
register addresses and the symbol names that correspond to them are as
follows:

Register Address Symbol
Keyboard Status 777560 $RCSR
Keyboard Data 777562 $SRBUF
Printer Status 777564 $XCSR
Printer Data 777566 $XBUF

The double colon (::) following each symbol in Example 5-2, Part 1
establishes the symbol as global. The first symbol, RCSR, is offset
from the beginning of TTCOM by 60(octal) bytes. Each symbol
thereafter 1is one word removed from the symbol that precedes it.
Thus, when TTCOM is installed at 777500, each symbol will be located
at its proper address.

Once you have assembled TTCOM, you can build it wusing the following
TKB command sequence:

>TKB
TKB>LB:[1,1]TTCOM/-HD/PI,LB:[1,1]TTCOM/~-WI/SP,LB:[1,1]TTCOM=TTCOM
TKB>/

Enter Options:

TKB>STACK=0

TKB>PAR=TTCOM:0:100

TKB>//

This command sequence directs TKB to <create a common image named
TTCOM.TSK and a symbol definition file named TTCOM.STB. TKB places
both files on device LB: wunder UFD [l1,1]. The command sequence also
specifies that TKB is to spool a map listing to the line printer. The
/SP switch need not be present because it is the default. The /-WI
switch specifies an 80-column line printer listing format.

NOTE

For the command sequence above to work
in a multiuser protection system, it
must be input from a privileged
terminal.

The STACK=0 option suppresses the stack area in the common's image
file. The PAR option specifies that the device common will reside
within a partition of the same hame as that of the <common. As with
the ' data common in. Example 5-1 (Section 5.1.7), this is a reguirement.
of the RSX-11M system;
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The TKB map for TTCOM that results from the command sequence above is
shown in Example 5-2, Part 2. The task attributes section of this map
indicates that the common is position independent and that no header
is associated with it. The common's image and symbol definition file
reside on device LB: under UFD [1,1].

The map in Example 5-2, Part 2 shows the global symbols defined in the
common with their relative offsets into the common region. You
establish the virtual base address for the common and the virtual

addresses for the symbols within it when you build the tasks that link
to the common.

You establish the physical addresses for the common with the MCR
command SET. The keyword that you use with the SET command depends on
"whxch system you are runnlng.

These previous SET command sequences create a main partition named
TTCOM that begins at physical address 777500 in 18-bit systems and
physical address 1777750 in 22-bit systems. The partition 1is one
64-byte block 1long, (100(octal) bytes). The argument DEV 1dent1f1es
the partition type. With the common built and the partition fc '
created, you must 1nsta11 TTCOM 1n an RSX 11M system ‘before

For example, ‘use ‘ , ey

C2INS LB:[1l,1]TTCOM

You can establish the partition for a device common at any time in
both the RSX-11M and the RSX-11M-PLUS systems. Partitions created to
accommodate a device common are not a system generation consideration
because they represent areas of physical address space above memory
and therefore cannot conflict with memory partitions.

Example 5-2, Part 2 Task Builder Map for TTCOM

TTCOM.TSK;1 Memory allocation map TKB M40.10 Page 1
1-DEC-82 17:02

Partition name : TTCOM
Identification

Task UIC : [7,62] TASK

Task attributes: -HD,PI ATTRIBUTES
Total address windows: 1. SECTION
Task 1image size : 32. WORDS

(continued on next page)
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Example 5-2, Part 2 (Cont.) Task Builder Map for TTCOM

Task address limits: 0