IAS/RS X-11
MACRO-11 Reference Manual

Order No. DEC-11-OIMRA-B-D

digital equipment corporation - maynard. massachusetts

First Printing, December 1975
Revised: December 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem=-20 TYPESET-11

7/80~14

CONTENTS

Page
PREFACE ix
0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS ix
0.2 STRUCTURE OF THE DOCUMENT ix
0.3 ASSOCIATED DOCUMENTS X
0.4 DOCUMENT CONVENTIONS X
PART I INTRODUCTION TO MACRO-11
CHAPTER 1 MACRO-11 FEATURES 1-1
1.1 OVERVIEW OF MACRO-11 1-1
1.1.1 Assembly Pass 1 1-1
1.1.2 Assembly Pass 2 1-2
CHAPTER 2 SOURCE PROGRAM FORMAT 2-1
2.1 PROGRAMMING STANDARDS AND CONVENTIONS 2-1
2.2 STATEMENT FORMAT 2-1
2.2.1 Label Field 2-2
2.2.2 Operator Field 2-4
2.2.3 Operand Field 2-4
2.2.4 Comment Field 2-5
2,3 FORMAT CONTROL 2-6

PART IT PROGRAMMING IN MACRO-11 ASSEMBLY LANGUAGE

CHAPTER 3 SYMBOLS AND EXPRESSIONS 3-1
3.1 CHARACTER SET 3-1
3.1.1 Separating and Delimiting Characters 3-2
3.1.2 Illegal Characters 3-3
3.1.3 -Unary and Binary Operators 3-4
3.2 MACRO-11 SYMBOLS 3-5
3.2.1 Permanent Symbols 3-5
3.2.2 User-Defined and Macro Symbols 3-5
3.3 DIRECT ASSIGNMENT STATEMENTS 3-7
3.4 REGISTER SYMBOLS 3-9
3.5 LOCAL SYMBOLS 3-10
3.6 CURRENT LOCATION COUNTER 3-11
3.7 NUMBERS 3-13
3.8 TERMS 3-14
3.9 EXPRESSIONS 3-15

CHAPTER 4 RELOCATION AND LINKING 4-1

CHAPTER 5 ADDRESSING MODES 5-1
5.1 REGISTER MODE . 5-1
5.2 REGISTER DEFERRED MODE : 5-2

iii

CONTENTS (CONT.)

AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE
INDEX: DEFERRED MODE
, IMMEDIATE MODE

0 ABSOLUTE MODE

1 RELATIVE MODE

5.12 RELATIVE DEFERRED MODE

5.13 SUMMARY OF ADDRFSSING FORMS

5.14 BRANCH INSTRUCTION ADDRESSING

5.15 USING TRAP INSTRUCTIONS

HHEe@donU bW

e o s e &

(SRS, NS FO NS, N RE, NS, NG, |

PART III MACRO-11 DIRECTIVES
CHAPTER 6 GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
1 .LIST and .NLIST Directives
2 Page Headings
3 .TITLE Directive
4
5
6

* v e e

.SBTTL Directive
.IDENT Directive
.PAGE Directive/Page Ejection
FUNCTION DIRECTIVES: .ENABL and .DSABL
DATA STORAGE DIRECTIVES
.BYTE Directive
.WORD Directive
ASCII Conversion Characters
.ASCII Directive
.ASCIZ Directive
.RAD50 Directive
Temporary Radix-50 Control Operator: 4R
RADIX AND NUMERIC CONTROL FACILITIES
Radix Control and Unary Control Operators
.RADIX Directive
Temporary Radix Control Operators: +D,
40, and *B
6.4.2 Numeric Directives and Unary Control
Operators
6.4.2.1 .FLT2 and ,FLT4 - Floating Point Storage
Directives
6.4.2.2 Temporary Numeric Control Operators: +C
and +F
LOCATION COUNTER CONTROL DIRECTIVES
.EVEN Directive
.ODD Directive
.BLKB and .BLKW Directives
TERMINATING DIRECTIVES
.END Directive
.EOT Directive
PROGRAM BOUNDARIES DIRECTIVE: .LIMIT
PROGRAM SECTIONING DIRECTIVES
.PSECT Directive
Creating Program Sections
Code or Data Sharing

Y
« s e e
N oYUk W

[e) e e W) Mo We) We) WerWer Moy We) Wer We) Wer o) Weo)We) We) W We)Y
BEAR R DWW LWLWWWWNOHFEFERRFF

e
N

)
w N

WO -~JaOauultrn
N =

[W) We W) We We) e o) We) Jep e WepY

L] . . L] -
e

.
N

iv

g
']
Q
o

L2 J N O Y R N N I A

auouuuouutununnaatoun
O~JALIE LB LRWWWN

CONTENTS (CONT.)

Page

L)
.8.1.3 Memory Allocation Considerations 6-38
8.2 .ASECT and .CSECT Directives 6-38
9 SYMBOL CONTROL DIRECTIVE: .GLOBL 6-39
.10 CONDITIONAL ASSEMBLY DIRECTIVES 6-41
.10.1 Conditional Assembly Block Directives:
.IF, .ENDC 6-41
6.10.2 Subconditional Assembly Block Directives:
.IFF, .IFT, .IFTF
6.10.3 Immediate Conditional Assembly Directive:
.IIF
6.10.4 PAL-11R Conditional Assembly Directives

(o)}
!
f N
w

|
oy OV

~ (o) N2}
I

CHAPTER MACRO DIRECTIVES
DEFINING MACROS

1 .MACRO Directive

2 .ENDM Directive

3

4

1
WwwNh - [l o

.MEXIT Directive
MACRO Definition Formatting
CALLING MACROS
ARGUMENTS IN MACRO DEFINITIONS AND MACRO
CALLS
Macro Nesting
Special Characters in Macro Arguments
Passing Numeric Arguments as Symbols
Number of Arguments in Macro Calls
Creating Local Symbols Automatically
Keyword Arguments
Concatenation of Macro Arguments
MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR,
AND .NTYPE
.NARG Directive
.NCHR Directive 7-12
.NTYPE Directive 7-13
«-ERROR AND .PRINT DIRECTIVES 7-14
INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP
AND .IRPC 7-15
6.1 .IRP Directive 7-15
6.2 .IRPC Directive 7-16
7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR 7-17
8 MACRO LIBRARY DIRECTIVE: .MCALL 7-18

\Il\l\!\l\l\l
!

! I
O~ oo U

o

Noodswh e

. e

HdWWwWwwwww
* e« o
[i

NN
L I B] L
.
NN NN NN
I

D
-
e

« o @
W=

NN NN
.

PART IV OPERATING PROCEDURES

CHAPTER OPERATING PROCEDURES 8-
RSX-11D AND RSX-11M OPERATING PROCEDURES 8
Initiating MACRO-11 Under RSX-11M/RSX-11D 8
1 Method 1 - Direct MACRO-11l Call 8-
2 Method 2 - Using RUN Facility 8
3 Method 3 - Single Assembly 8
4 Method 4 -~ Install, Run Immediately, and
Remove On Exit 8-2
1.5 Method 5 - Using Indirect Filename
Facility . 8-2
2 RSX-11 Command String Format 8-3
3 RSX~1l File Specification Switches 8~5

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

[N

. e
WO N
P .

W N

00 00 00 CO OC OO 0O OO

w B
NN

W=

lw] a0 (@} 0w w
[

o
[

L] . . - . . . L]
VO UTUTLTUTUTUTUT D DD D DD DS DD D W
. . . L] - - . L] L]
« o o
wNH

oo WNDHEHRFERF

* e s e
o o

e ol e Il e I o I e o B o M e B sl s Bl e s Bl s s s A e e e T B e T o B s e O 3 B 5

b B W N

« & ® e o & o o o
¢ e e

Ul W N

CONTENTS (CONT.)

Cross—-Reference Processor (CREF)
IAS MACRO-11 OPERATING PROCEDURES

Initiating MACRO-11l Under IAS

IAS Command String Format

IAS Indirect Command Files

IAS Command String Examples
IAS/RSX~11 FILE SPECIFICATION FORMAT
MACRO-11 ERROR MESSAGES

MACRO-11 CHARACTER SETS

ASCII CHARACTER SET
RADIX-50 CHARACTER SET

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER

DIRECTIVES

SPECIAL CHARACTERS
SUMMARY OF ADDRESS MODE SYNTAX
ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE (PST)

OP CODES
MACRO-11 DIRECTIVES

DIAGNOSTIC ERROR MESSAGE SUMMARY
MACRO-11 ERROR CODES
SAMPLE CODING STANDARD

INTRODUCTION

LINE FORMAT

COMMENTS

NAMING STANDARDS
Register Standards
General Purpose Registers
Hardware Registers
Device Registers
Processor Priority
Other Symbols
Using the Standard Symbolics
Symbols
Global Symbols
Symbol Examples
Program-Local Symbols
Macro Names

PROGRAM MODULES
General Comments on Programs
The Module Preface
Formatting the Module Preface
Modularity
Calling Conventions (Inter-Module)
Exiting
Intra-Module Calling Conventions
Success/Failure Indication
Module Checking Routines

vi

Page

8-8

8-10
8-10
8-10
8-12
8-12
8-13
8-14

mmmmmmmmmmmmtﬁmmmmmmmmmmmmm
VWOWOWWOWEONUVIUNIVTUEBRWWWWWRNNNN NN

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

TABLE

........
. . -
= w N

- . L]
HHEFEFWOYWWO~NAOOON
OO O

. L]

N =

H HHoHdHdbdHEHEEE

kg g
wN e

s @

jasfiias]
N

AN W W
1
WNhHNDBK

| I T B |
NHEHEFHO U

miMmo~NJoaoo

CONTENTS (CONT.)

Page

FORMATTING STANDARDS E-9
Program Flow E-9
Common Exits E-11
Code with Interrupts Inhibited E-12
PROGRAM SOURCE FILES E-12
FORBIDDEN INSTRUCTION USAGE E-12
RECOMMENDED CODING PRACTICE E-13
Conditional Branches E-13
PDP-1]1 VERSION NUMBER STANDARD E-13
Displaying the Version Identifier E-14
Use of the Version Number in the Program E-15
ALLOCATING VIRTUAL MEMORY F-1

GENERAL HINTS AND SPACE-SAVING GUIDELINES F-1
MACRO DEFINITIONS AND EXPANSIONS F-2
OPERATIONAL TECHNIQUES F-4

FEATURES/FUNCTIONS NOT SUPPORTED BY THE

RSX-11M 8K ASSEMBLER G-1
WRITING POSITION INDEPENDENT CODE H-1
INTRODUCTION TO POSITION INDEPENDENT CODE H-1
EXAMPLES H-2

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING I-1

Index-1

FIGURES

Assembly Listing Showing Local Symbol Block
Sample Assembly Results

Example of Line Printer Assembly Listing
Example of Terminal Assembly Listing
Listing Produced With Listing Control
Directives

Assembly Listing Table of Contents
Example of .ENABL and .DSABL Directives
Example of .BLKB and .BLKW Directives
Example of .IRP and ,IRPC Directives
Sample CREF Listing

Position-Dependent Code
Position-Independent Code

N o AW W
1 | I I |
WWOHFWHRFW <o+ -

:E:I:QJTIO\O\C\O\

TABLES

Special Characters Used in MACRO-11 3-1
Legal Separating Characters 3-3
Legal Argument Delimiters 3-3
Legal Unary Operators 3-4
Legal Binary Operators 3-5

vii

N =

~Noown

CONTENTS (CONT.)

TABLES (CONT.)

*

TABLE 6-1 Symbolic Arguments of Listing Control

Directives

6-2 Symbolic Arguments of Function Control
Directives

6-3 Symbolic Arguments of .PSECT Directive

6-4 Non-IAS/RSX-11 Program Section Default
Values

6-5 Legal Condition Tests for Conditional

Assembly Directives
6-6 Subconditional Assembly Block Directives
8-1 File Specification Default Values
8-2 MACRO-11 File Specification Switches for
RSX~-11

viii

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The intent of this manual is to enable users to develop programs coded
in the MACRO-11 assembly language. No prior knowledge of the MACRO-11
Relocatable Assembler is assumed.

Although the description of the assembly language is wholly
self-contained within this manual, the reader is assumed to be
familiar with the PDP-11 processors and related terminology, as
presented in the PDP-11 Processor Handbooks. No attempt is made in
this document to describe the PDP-11 hardware or the functions of the
various PDP~11 instructions.

Since the development of programs necessarily involves the use of the
Task Builder to <create an executable task image, the reader is
encouraged to become familiar with this system program, as presented
in the applicable Task Builder reference manual (see Section 0.3).

In presenting MACRO-11l, a tutorial bias has been adopted to enlarge
upon the reference material. This posture 1is reflected 1in the
examples and the accompanying commentary describing MACRO-11 1language
elements in typical applications.

0.2 STRUCTURE OF THE DOCUMENT

This manual contains four parts. Part I, consisting of two chapters,
briefly introduces MACRO-11. Chapter 1 1lists the key features of
MACRO-11, and Chapter 2 1identifies the advantages of following
programming standards and conventions. Also described is the format
used in coding MACRO-11 source programs.

Part II, consisting of three chapters, presents general information
essential to programming with the MACRO-11 assembly language. Chapter
3 describes the symbols, terms, and expressions that form the elements
of MACRO-11 instructions. The character set is listed, and the types
of programming symbols that may be defined by the user are discussed.
Chapter 4 describes the output of MACRO-11 and presents concepts
essential to the proper relocation and linking of object modules by
the Task Builder. Chapter 5 briefly describes how data stored in
memory can be accessed and manipulated using the addressing modes
recognized by the PDP-11 hardware.

Part III, consisting of two chapters, describes the MACRO-11
directives that <control the processing of source statements during
assembly. Chapter 6 discusses directives which accomplish generalized
MACRO-11 functions, while Chapter 7 deals with directives used in the
definition and expansion of macros.

ix

Part IV, consisting only of Chapter 8, presents the operating
procedures essential to the assembly, 1linking, and initiating of
MACRO-11 programs.

Finally, several appendixes are provided, supplying additional
information of interest to the MACRO-11 programmer.

¥

Appendix A lists the ASCII and Radix-50 character sets that may be
used in MACRO-11 programs. Appendix B lists the special characters
recognized by MACRO-11, summarizes the syntax of the various
addressing modes used in PDP-11 processors, and briefly describes the
MACRO-11 directives in alphabetical order. The permanent symbols that
have been defined for use with MACRO-11 are listed alphabetically in
Appendix C.

The diagnostic error codes produced by MACRO-11 to identify wvarious
types of errors detected during the assembly process are listed
alphabetically in Appendix D. Appendix E contains a sample coding
standard that is recommended practice in preparing MACRO-11 programs.
Appendix F discusses several methods of conserving dynamic memory
space for users of small systems who may experience difficulty in
assembling MACRO-11 programs.

Appendix G lists the features and functions that are not supported in
the 8K RSX-11M version of MACRO-11. MACRO-11 is available in two
versions under RSX-11M. One is a 14K version which 1is functionally
identical to the RSX-11D assembler and which has all the features
described in this manual. The other assembler is an 8K version which,
because of size limitations, supports an extensive subset of MACRO-11
features. Appendix H is a discussion of position independent code
(PIC) .

0.3 ASSOCIATED DOCUMENTS

The reader should refer to the applicable documentation directory
listed below for descriptions of documents associated with this
manual.

IAS Documentation Directory

RSX-11D Documentation Directory

RSX-11M/RSX-11S Documentation Directory

0.4 DOCUMENT CONVENTIONS
The symbols defined below are used throughout this manual.
Symbol ’ Definition

(1 Brackets indicate that the enclosed argument is
' optional.

I Vertical bars indicate that a single choice must be
made from a list of arguments.

.o Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

UPPER-CASE
CHARACTERS

lower-case
characters

(n)

Upper-case characters indicate elements of the language
that must be used exactly as shown.

Lower~case characters indicate elements of the language
that are supplied by the programmer.

In some instances the symbol (n) is used following a
number to indicate the radix. For example, 100(8)
indicates that 100 is an octal wvalue, while 100(10)
indicates a decimal value.

xi

PART I

INTRODUCTION TO MACRO-11

CHAPTER 1

MACRO-11 FEATURES

The MACRO-11 Assembler provides the following features:
1. Program and command string control of assembly functions
2. Device and filename specifications for input and output files
3. Error listing on command output device

4. Alphabetized, formatted symbol table 1listing; optional
cross-reference listing of symbols

5. Relocatable object modules

6. Global symbols for linking independent object modules
7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries

10. Comprehensive system macro library

11. Extensive program and command string control of 1listing
functions

12. An indirect command file facility for controlling the
assembly process.

1.1 OVERVIEW OF MACRO-11

MACRO-11 is a 2-pass assembler. The functions and operations relevant
to each assembly pass are described in the following sections.

1.1.1 Assembly Pass 1

The main purpose of assembly pass 1 is to locate and read all required
macros from libraries; to build symbol tables and program section
tables for the program; while also performing a rudimentary assembly
of each source statement.

The first stage of assembly pass 1 is the initialization of all impure
data areas that MACRO-11 wuses internally for the assembly process.
These areas include all dynamic storage areas and buffer areas used as
file storage regions.

MACRO-11 FEATURES

After initializing.memory areas, MACRO-11 issues a call to a system
subroutine which transfers a command line into memory. This command
line contains the specifications of the files to be used during
assembly. After scanning the command line for proper syntax, MACRO-11
initializes the specified output files. These files are opened to
determine if valid output file specifications have been passed in the
command line. They are then c¢losed to minimize requirements for
active file space.

As the assembly process begins, MACRO-11 initiates a routine which
retrieves source lines from the input file. If no such file is
currently open, as is the case at the beginning of assembly, MACRO-11
opens the next input file specified in the command line previously
read and begins to assemble the source statements. MACRO-11
determines the length of each instruction and assembles it accordingly
as one word, two words, or three words.

At the end of assembly pass 1, MACRO-11 reopens the output files
described above and writes out information that is to be used later by
the Task Builder in linking the object modules. Such information as
the object module name, the program version number, and the global
symbol directory (GSD) entries for each program section are output to
the object file. After writing out the GSD entries for a given
program section, MACRO-11 scans through the symbol tables to find all
the global symbols that are bound to that particular program section.
MACRO-11 then writes out GSD records to the object file for these
symbols. This process continues for each program section, bringing to
a close assembly pass 1.

1.1.2 Assembly Pass 2

As an integral part of pass 2, MACRO-11 simultaneously writes the
object records to the output file and generates the assembly listing,
followed by the symbol table listing for the program. A
cross-reference listing may also be generated. See Section 8.1.4.

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACRO-11-detected errors are flagged with an error code as the
assembly 1listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records containing information necessary for
subsequent Task Builder linking of the object file.

The information thus passed to the Task Builder enables the global
symbols in the object modules to be associated with absolute or
virtual memory addresses, thereby forming an executable body of code.

The user may wish to become familiar with the macro object file format
and description. This information is presented in the applicable Task "
Builder Reference Manual (see Section 0.3 in the Preface).

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Assembly level programming deals directly with the host hardware.
Hence, great care must be exercised in establishing programming
standards and conventions to enable code written by one group to be
interchanged easily with another group. Standards provide a number of
advantages. When applied to the ©program development process,
standards make the programming effort easier to:

Plan
Comprehend
Test
Modify
Convert.

Even though standards must accommodate local requirements, many
aspects of the program development process have universal
applicability. The standards common to all of DIGITAL's PDP-11
software products are presented in Appendix E as a model for users.
Observance of these standards is beneficial to DIGITAL and its wusers,
by simplifying both communications and the continuing task of software
maintenance and enhancement.

2.2 STATEMENT FORMAT

A source program is composed of a sequence of source coding 1lines.
Each 1line contains a single assembly-language statement. MACRO-11
will accept a source line of 132 characters, but 80 characters is the
recommended length, because of constraints imposed by listing format
and terminal line size.

A MACRO-11 statement may consist of as many as four fields. These
fields are identified by their order of appearance within the
statement and/or by specified separating characters between fields.
The general format of a MACRO-11 statement is:

Label: Operator Operand ;Comment (s)

The label and comment fields are optional. The operator and operand
fields are interdependent, i.e., when both fields are present in a
source statement, each field is evaluated by MACRO-11 in the context
of the other.

A statement may contain an operator field and no operand field, but
the reverse 1is not true. A statement containing an operand with no
operator does not conform to established MACRO-11 coding conventions;
such a statement is currently interpreted by MACRO-11l during assembly
as an implicit .WORD directive (see Section 6.3.2).

2-1

SOURCE PROGRAM FORMAT

MACRO-11 interprets and processes source program statements one by
one, generating one or more binary instructions or data words, or
performing a specified assembly process. Blank lines, although legal,
have no significance in the source program.

An assembly-language statement must be completed on one source line;
no continuation lines are allowed in MACRO-11.

The tab character can be used in the source statement to format the
fields into aligned columns in accordance with DIGITAL's standard
source program format, as shown below:

Label - begins in column 1

Operator - begins in column 9
Operand(s) - begin(s) in column 17
Comment (s) - begin(s) in column 33.

For example, the following statement should be formatted in the source
program into specific columns, increasing its readability in the
assembly listing:

REGTST:BIT#MASK,VALUE ;COMPARES BITS IN OPERANDS.
1 9 17 33 (columns)
REGTST: BIT #MASK ,VALUE ~ ;COMPARES BITS IN OPERANDS.

The above formatting conventions are not mandatory in coding MACRO-11
programs (free-field coding is permissible). However, it is
recommended that source programs be prepared in accordance with these
conventions for consistency and clarity.

2.2.1 Label Field

A label is a means of symbolically referring to a location in a
program.

A label is a user-defined symbol which is assigned the value of the
current location <counter and entered into the user-defined symbol
table. The current location counter is the means by which MACRO-11
assigns memory addresses to the source program statements as they are
encountered during the assembly process. The address value of the
label 1is absolute or relocatable, depending on whether the current
program section being assembled is absolute or relocatable. (The
concept of program sections and the attributes that may be specified
for them are discussed in detail in Section 6.8.)

In the case of an absolute program section, the value of the current
location counter 1is likewise absolute, i.e., its value references an
absolute virtual memory address (such as location 100). Similarly,
the wvalue of the current location counter in a relocatable program
section is also relocatable; however, a relocation bias calculated by
the Task Builder will be added to the apparent value of the current
location counter to establish its effective absolute virtual address
at execution time.

SOURCE PROGRAM FORMAT

If present, a label always appears as the first field in a source
statement and must kg terminated by a colon. For example, if the
" current location counter value 1s absolute), the statement:

aBcof] mov A,B

assigns the value 100(8) to the label ABCD. Subsequent references to
this 1label would then yield a value of absolute 100(8). 1In this
example, if the location counter value were relocatable, the final
value of ABCD would be 100(8)+K, where K represents the relocation
bias of the program section, as calculated by the Task Builder at link
time.

More than one label may appear within a __single label field. Each
labe so specified is assigned the same address value. or example,

if the current location counter vyalue is 100(8), the nmultiple Jlabels

ABC: $DD: A7.7: MOV A,B
are each assigned the value 100(8).

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
SDD:
A7.7: MOV A,B

likewise cause the same current location counter value to be assigned
to all three labels.

Of the two methods of assigning multiple 1labels shown above, the
second is prefegrred, because consistency of field positioning within
\fn€~suu16b program improves readability.

A_double colon (3 i loba symbol . Such a
labe can e referenced by independently-assembled object modules.
References to this label in other modules will be resolved by the Task
Builder when the modules are linked as a composite executable task.
For example, the statement

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.9).

The legal characters for defining labels are:

A through 2

0 through 9

. (Period)

$ (Dollar Sign)

NOTE

By convention, the dollar sign ($) and period (.)
are reserved for wuse in defining DIGITAL system
software symbols. Therefore these characters
should not be used in defining labels in MACRO-11
source programs.

SOURCE PROGRAM FORMAT

A label may be any length; however, onl

significant and, theref
§3Urg“prvgrumf-—*TT’T3§¥£'

code (M) 1is ge 5 1lst1ng [first six
characters in two or more labels are the same (see Appendix D).

the first six characters are

A symbol used as a label must not be redefined within the source
program. If the symbol 1is redefined, a label with a multiple
definition results, causing MACRO~-1l to generate an error code (M) in
the assembly listing (see Appendix D). Furthermore, any statement in
the source program which references a multi-defined label results in
an additional diagnostic message; in this case, an error code (D) is
generated in the assembly listing (see Appendix D).

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call.

The operator field follows the label field in a source statement.
Chapters 6 and 7 describe these three types of operator field entries.

When the operator is an instruction mnemonic, the mnemonic op code

specifies the machine instruction to be generated. MACRO-11 then-

continues with the evaluation of the address(es) of the operand(s)
which follow(s). When the operator is a directive, the directive
causes MACRO-11l to perform certain control actions or processing
operations during the assembly of the source program. When the
operator is a macro call, MACRO-11 inserts the code generated by the
macro expansion.

The operator field need not be preceded by a label; but it may be
preceded by one or more labels and followed by one or more operands
and/or a comment. Furthermore, leading and trailing spaces or tabs in
the operator field have no significance; such characters serve only
to separate the operator field from the preceding and following
fields.

An operator is terminated by a space, tab, or any non-RAD50 character,
as in the following examples:

MOV A,B ;THE SPACE TERMINATES THE OPERATOR

1 MOV,
MOV A,B ;THE TAB TERMINATES THE OPERATOR MOV.
MOV@A,B ;THE @ CHARACTER TERMINATES THE

;OPERATOR MOV.

Although the statements above are .,all equivalent in function, the
second statement is the recommended form because it conforms to
MACRO-11 coding conventions.

2.2.3 Operand Field

When the operator field contains an instruction mnemonic (op code),
the operand field specifies those program variables that are to be

2-4

SOURCE PROGRAM FORMAT

evaluated/manipulated by the operator. The operand field may also be
used to supply arguments to MACRO-1ll directives and macro calls, as
described in Chapters 6 and 7, respectively.

Operands may be expressions or symbolic arguments (within the context
of the specified operation). Multiple expressions used in the operand
field of a MACRO-11 statement must be separated by a comma; multiple
symbolic arguments similarly used may be delimited by any legal
separator, i.e., a comma, tab, and/or space. An operand should be
preceded by an operator field; if it is not, the statement is treated
by MACRO-11 as an implicit .WORD directive (see Section 6.3.2).

When the operator field contains an op code, associated operands are
always expressions, as shown in the following statement:

MOV RO,A+2(R1)

On the other hand, when the operator field contains a MACRO-11
directive or a macro call, associated operands are normally symbolic
arguments, as shown in the following statement:

.MACRO ALPHA ARGl,ARG2

Refer to the description of each MACRO-11 directive to determine the
type and number of operands required in issuing the directive.

The operand field is terminated by a semicolon when the field is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ; COMMENT FIELD

the tab between MOV and A terminates the operator field and defines
the Dbeginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the 1line. This field is optional and may contain any ASCII

characters except nul RUBOUT, jage-return, %}ng;ﬁg%%*
vertical-tab or . er characters appearing in e
comment Treld, even special characters reserved for use in MACRO-11,

are checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

All comment fields musp_%ggigaﬂ%é2_;hg_ﬁgmigglgn__aha;ag;gs4ﬁ). When
lengthy comments extend beyon € end of the source line (column 80),
the comment may be resumed in a following line. Such a 1line must
contain a ngding_seminglﬁg, and it is suggested that the body of the
comment be continued in the same c¢olumnar position in which the
comment began. A comment 1line can also bé included as an entirely
separate line within the code body.

Comments do not affect assembly processing or program execution.
However, comments are useful in source listings for later analysis,
debugging, or documentation purposes.

SOURCE PROGRAM FORMAT

2.3 FORMAT CONTROL

Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source program, as reflected by the following statements:

LABEL:MOV(SP) +,TAG; POP VALUE OFF STACK.

No spaces or tabs have been used to separate the fields 1in this
statement. Note the difficulty in recognizing where one field ends
and the next begins.

LABEL: MOV (SP) +,TAG ;POP VALUE OFF STACK. .

This statement conforms to the standard horizontal formatting
conventions, i.e., the statement elements are separated into four
distinct fields and are therefore easily discernible.

Page formatting and assembly listing considerations are discussed 1in
Chapter 6 in the context of MACRO-1l directives that may be specified
to accomplish desired formatting operations. Appendix E describes the
coding conventions wused in all DIGITAL PDP-11 operating system
software.

PART II

PROGRAMMING
IN MACRO-11 ASSEMBLY
LANGUAGE

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO-11 instructions. The
character set, the conventions observed in constructing symbols, and
the use of numbers, operators, terms and expressions are discussed as
they relate to MACRO-11l programming.

3.1 CHARACTER SET
The following characters are legal in MACRO-11 source programs:

1. The letters A through Z. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2, .ENABL LC).

2. The digits 0 through 9.

3. The characters . (period) and $ (dollar sign). These
characters are reserved for wuse as Digital Equipment
Corporation system program symbols.

4., The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in MACRO-11

Character Designation ' Function
: Colon Label terminator.
13 Double colon Label terminator; defines the

label as a global label.

Equal sign Direct assignment operator;

and macro keyword indicator.
== Double egqual Direct assignment operator;
sign defines the symbol as a global
symbol.
% Percent sign Register term indicator.
Tab Item or field terminator.
Space Item or field terminator.

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)

Special Characters Used in MACRO-11

Character Designation Function

Number sign Immediate expression
indicator.

@ At sign Deferred addressing indicator.

(Left parenthesis Initial register indicator.

) Right parenthesis Terminal register indicator.

. Period Current location counter

’ Comma Operand field separator.

: Semicolon Comment field indicator.

< Left angle Initial argument or expression

bracket indicator.

> Right angle Terminal argument or expres-

bracket sion indicator.

+ Plus sign Arithmetic addition operator
or autoincrement indicator.

- Minus sign Arithmetic subtraction opera~
tor or autodecrement indica-
tor.

* Asterisk Arithmetic multiplication op-
erator.

/ Slash Arithmetic division operator.

& Ampersand Logical AND operator.

[Exclamation point Logical inclusive OR operator.

" Double quote Double ASCII character indica-
tor.

! Single quote Single ASCII character indica-
tor; or concatenation
indicator.

” Up arrow or Universal unary operator or

circumflex argument indicator.

\ Backslash Macro call numeric argument

indicator.

3.1.1 Separating and Delimiting Characters

Legal separating characters and legal argument delimiters are defined
below in Tables 3-2 and 3-3 respectively.

SYMBOLS AND EXPRESSIONS

Table 3-2
Legal Separating Characters

Character Definition Usage
Space One or more spaces A space is a legal separator
and/or tabs between instruction fields and

between symbolic arguments
within the operand field.

Spaces within i
£§EEZEE (See Section 3.9).

Comma A comma is a 1legal separator
between symbolic arguments
within the operand field.
Multiple expressions used in
the operand field must be
separated by a comma.

Table 3-3
Legal Argument Delimiters

Character Definition Usage

<owe> Paired angle brackets Paired angle brackets may be
used anywhere in a program to
enclose _an expression for

treatment as a single term.
Paired angle brackets are also
used to enclose a macro
argument, particularly when
that argument contains separ-
ating characters (see Section

7.3).

XoeoX Up-arrow (unary oper-— This construction 1is equiva-
ator) construction, lent in function to the paired
where the up-arrow is angle brackets described above
followed by an argu- and is generally wused only

ment that is bracketed where the argument itself con-
by any paired printing tains angle brackets.
characters (x).

3.1.2 1Illegal Characters '
A character is determined to be illegal for one of two reasons:

1. A character is not an element of the recognized MACRO-11
character set. A character of this kind is replaced in the
listi ion mark, an ode (I) is printed
in the assembly listing (see Appendix D). The exception to
this is an embedded null which, when detected, terminates the
scan of the current line.

SYMBOLS AND EXPRESSIONS

2. A legal MACRO-11 character is illegal in the context of its
usage within the source statement, 1i.e., 1its syntax is
illegal or questionable. Such a character causes an error
code (Q) to be printed in the assembly listing.

3.1.3 Unary and Binary Operators

Legal MACRO-11 unary operators are described in Table 3-4. Unary
operators are used in connection with single terms (arguments or
operands) to indicate an action to be performed on that term during
assembly. A term preceded by a unary operator is considered to
contain that operator. The term so specified thus becomes a value
which can be used alone or as an element of an expression.

Table 3-4
Legal Unary Operators
Unary
Operator| Explanation Example Effect
+ Plus sign +A Produces the positive
value of A.
- Minus sign -A Produces the negative
(2's complement) value of
A.
~ Up-arrow, univer- “C24 Produces the 1l's comple-
sal unary operator. ment value of 24(8).
(This usage is
described in detail "D127 Interprets 127 as a
in Section 6.4.) decimal number.
“F3.0 Interprets 3.0 as a
1-word, floating-point
number .
034 Interprets 34 as an octal
number.
“B11000111 Interprets 11000111 as a
binary number.
"RABC Evaluates ABC in Radix-50
form.

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"D50 (Equivalent to -<"D50>)
"C7012 (Equivalent to "C<"012>)

Legal MACRO-11 binary operators are described 1in Table 3-5. In
contrast to wunary operators, binary operators specify actions to be
performed on multiple items or terms within an expression. Table 3-5
shows the relationships that can be established between expression
terms through the use of binary operators.

SYMBOLS AND EXPRESSIONS

Table 3-5
Legal Binary Operators

Binary
Operator | Explanation Example

+ Addition A+B

- Subtraction A-B

* Multiplication A*B (16-bit product returned)
/ Division A/B (l6-bit quotient returned)
& Logical AND A&B

! Logical inclusive OR AlB

All binary operators have equal priority. Items or terms can be
grouped for evaluation within an expression by enclosing them within
angle brackets. Terms so enclosed are evaluated first, and remaining
operations are performed from left to right, as shown in the examples
below:

.WORD 1+2*3 ;EQUALS 11(8).
.WORD 1+<2*%3> ;EQUALS 7(8).

3.2 MACRO-11 SYMBOLS

Three types of symbols may be defined for use within MACRO-11 source
programs: permanent symbols, user-defined symbols, and macro symbols.
MACRO-11 maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST), and the Macro Symbol Table
(MST). The PST contains all the permanent symbols defined within (and
thus automatically recognized by) MACRO-11l and is part of the MACRO-11
task image. The UST and MST are constructed as the source program 1is
assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO-11] directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACRO-11 task image and need
not be defined before being used in the operator field of a MACRO-11
source statement (see Section 2.2.2).

3.2.2 User-Defined and Macro Symbols

User-defined symbols are those symbols treated by the programmer as
labels (see Section 2.2.1) or that are equated to a specific value
through a direct assignment statement (see Section 3.3) or appear as
macro names or dummy arguments. These symbols are added to the User
Symbol Table as they are encountered during assembly. Macro symbols
are those symbols used as macro names (see Section 7.1). Similarly,
these symbols are added to the Macro Symbol Table as they are
encountered during assembly.

3-5

SYMBOLS AND EXPRESSIONS

User-defined and macro symbols can be composed of alphanumeric
characters, dollar signs ($), and periods (.) only; any other
character is illegal.

NOTE

The dollar sign ($) and period (.) characters are
reserved for use in defining Digital Equipment
Corporation system software symbols. For example,
READS is a file-processing system macro. The user
is cautioned not to employ these characters 1in
constructing user-defined symbols or macro symbols
in order to avoid possible conflicts with existing
or future Digital Equipment Corporation system
software symbols.

The following rules govern the c¢reation of user-defined and macro
symbols:

1. The first character of a symbol must ;ﬁ?&iz;_g_numhg; (except
in the case of local symbols; see Section 3.5).
2. The first six characters of a symbol must be unique.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII 1legality and are not otherwise evaluated or
recognized by MACRO-11.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol. The legal MACRO-11 character set is defined
in Section 3.1.

The value of a symbol depends upon its use in the program. When a
symbol appears in the operator field, it may be any one of the three
symbol types described above i.e., permanent, user-defined, macro. To
determine the value of an operator-field symbol, MACRO-11 searches the
symbol tables in the following order:

1. Macro Symbol Table
2. Permanent Symbol Table
3. User-Defined Symbol Table

This search order allows redefinition of Permanent Symbol Table
entries as macro symbols. That is, permanent symbols may be used as
macro symbols. But the user must keep in mind the sequence in which
the search for symbols 1is ©performed in order to avoid incorrect
interpretation of the symbol's use.

When a symbol appears in the operand field, the User-Defined Symbol
Table is searched first, then the Permanent Symbol Table is searched.

Depending on their use in the source program, user-defined symbols
have either a 1local (internal) attribute or a global (external)
attribute.

Normally, MACRO-11 treats all user-defined symbols as local, that is,
their definition 1is 1limited to the module in which they appear.
However, symbols can be explicitly declared to be global symbols
through one of three methods:

3-6

SYMBOLS AND EXPRESSIONS

1. Use of the .GLOBL directive (see Section 6.9).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double equal (== sign in a direct assignment
statement (see Section 3.3).

All symbols within a module that remain undefined at the end of
assembly are treated as default global references.

NOTE

Undefined symbols at the end of assembly are
assigned a value of 0 and placed 1into the
user-defined symbol table as undefined default
global references. 1If the .DSABL GBL directive is
in effect, however, (see Section 6.2), the
automatic global reference default function of
MACRO-11 1is inhibited, <c¢ausing the statement
containing the undefined symbol to be flagged with
an error code (U) in the assembly 1listing (see
Appendix D).

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the task image. Such symbols are referenced from other
source modules in order to transfer control throughout the task's
execution. These global symbols are resolved by the Task Builder at
link time, ensuring that the resulting task image 1is a 1logically
coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS
A direct assignment statement allows you to equate a symbol to a
specific wvalue. When a direct assignment statement is first used to
define a symbol, that symbol is entered into the User-Defined Symbol
Table. A symbol defined in this manner may be redefined in a
subsequent direct assignment statement by assigning a new value to the
previously-defined symbol. '
The general format for a direct assignment statement is:
symbol=expression

or

symbol==expression

where: expression - can have only one level of forward reference
(see 5. Dbelow).

- cannot contain an undefined global reference.

A direct assignment statement embodying the double equal (==) sign, as
shown above, defines the symbol as global (see Section 6.9).

3-7

SYMBOLS AND EXPRESSIONS

The following examples illustrate the <coding of direct assignment
statements:

A=1 ;THE SYMBOL A IS EQUATED TO THE
s VALUE 1.
B=A-1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE

;VALUE OF THE ENTIRE EXPRESSION
;WHICH FOLLOWS.

=, ;THE SYMBOL D IS EQUATED TO ., AND
E: MOV #1,ABLE ;THE LABELS C AND E ARE ASSIGNED A
;VALUE THAT IS EQUAL TO THE LOCATION
;OF THE MOV INSTRUCTION.

The last of the three examples above is provided only to illustrate
the performance of MACRO-11 in such situations. See Section 3.6 for a
description of the period (.) as the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=) or double equal sign (==) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4, A direct assignment statement may be followed only by a
comment field.

5. Only one level of forward referencing is allowed, as shown in
the following example:

X=Y (Illegal forward reference)
y=2z (Legal forward reference)
z=1

The above example would result in the generation of an error code (U)
in the assembly 1listing on the line containing the illegal forward
reference.

Although one 1level of forward referencing is allowed for 1local
symbols, a global symbol defined in a direct assignment statement must
not contain a forward reference, 1i.e., the global assignment
expression must not itself contain an undefined reference to another
symbol. Such a forward reference is illegal, causing an error code
{A) to be generated in the assembly listing.

SYMBOLS AND EXPRESSIONS

3.4 REGISTER SYMBOLS

The eight general.registers of the PDP-11 processor are numbered 0
through 7 and can be expressed in the source program in the following
manner:

%0
%1

.

%7

where % indicates a reference to a register rather than a location.
The digit specifying the register c¢an be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.
Use standard symbolic names for all register references.

The register definitions listed below are automatically assigned by
MACRO-11, 1i.e., these definitions are the normal default values and
remain valid for all register references within the source program.

R0=%0 sREGISTER 0 DEFINITION.
R1=%1 sREGISTER 1 DEFINITION.
R2=%2 ;REGISTER 2 DEFINITION.
R3=%3 ;REGISTER 3 DEFINITION.
R4=%4 ;REGISTER 4 DEFINITION.
R5=%5 ;REGISTER 5 DEFINITION.
SP=%6 s STACK POINTER DEFINITION.
PC=%7 ; PROGRAM COUNTER DEFINITION.

Note that registers 6 and 7 are given special names because of their
unique system functions.

A register symbol may be defined in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value. Although you can reassign the
standard register symbols through the use of the .DSABL REG directive
(see Section 6.2), this practice is not recommended. An attempt to
redefine a default register symbol without first specifying the .DSABL
REG directive to override the normal register definitions causes that
assignment statement to be flagged with an error code (R) in the
assembly listing. The symbolic default names assigned to . the
registers, as 1listed above, are the conventional names used in all
DIGITAL-supplied PDP-11 system programs. For this reason, you are
well advised to follow these conventions.

All non-standard register symbols must be defined before they are
referenced in the source program. A register expression less than 0
or greater than 7 is flagged with an error code (R) in the assembly
listing.

The % character may be used with any legal term or expression to
specify a register. For example, the statement

CLR 3$3+1
is equivalent in function to the statement
CLR %4

and clears the contents of register 4.

SYMBOLS AND EXPRESSIONS

In contrast, the statement
CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

1s
27$
598
104

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:

ALPHA=expression

is a direct assignment statement (see Section 3.3), but does
not create a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, or .ASECT directive in the
source program (see Figure 3-1).

3. The range of a local symbol block 1is delimited through
MACRO-11 directives, as follows:

Starting delimiter: L.ENABL LSB (see Section 6.2)
Ending delimiter: .ENABL LSB
or
.DSABL LSB (see Section 6.2)
followed by one of: Symbolic label

.PSECT (see Section 6.8.1)
.CSECT (see Section 6.8.2)
.ASECT (see Section 6.8.2)

Local symbols provide a convenient means of generating 1labels for
branch instructions and other such references within a local symbol
block. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. In addition,
the use of local symbols differentiates entry-point labels from local
labels, since 1local symbols cannot be referenced from outside their
respective local symbol block. Thus, local symbols of the same name
can appear in other 1local symbol blocks without conflict. Local
symbols do not appear in cross-reference listings.

SYMBOLS AND EXPRESSIONS

Local symbols require less symbol table space than other types of
symbols. Their use is recommended. When defining local symbols, use
the range fro irgt, then the range from 128% to 655358.
Local symbols within the range o#$thr 7 inc lus

generated automatically as a feature of MACRO-11. Such local symbols
are useful in the expansion of macros during assembly and are
described in detail in this context in Section 7.3.5.

Be sure to avoid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 10$ is defined
two or more times within the same local symbol block, each symbol
represents a different address value. Such a multi-defined symbol
causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

121)

122 J] PROGRAM INITIALIZATION CODE

123)

124 .

125 200000 JPSECT XCTPRG.GBL

126 Q20200 M12700 QeR0QQ! XCTPRGLIMOV HIMPURE,ROQ JIMPURE DATA INITIALIZATION
127 2mR0eRa 005020 181 CLR (RO)+

128 000006 022702 o0coaeR! cMP NIMPURT,RQ

129 o0@Q12 101374 LB 18

130

131 0000020 JPSECY XCTPAS,GBL

132 Qevere 012700 eeonoe! XCTPAS MOV ¥IMPPAS,RQ JPASS INITIALIZATION
133 000@R4 Q05020 181 CLR (RD)+

{34 NAOQO6 022740 eAPR00!' cMpP WIMPPAT,RQ

135 990012 1021374 BMT 1%

136

137 Qoeopn +PBECT XCTLIN,GBL

138 oa0vdn 012709 eeoeRR’ XCTLINS tMOV KIMPLIN,RQ JLINE INITIALIZATION
139 20PRR4 QA5020 181 CLR (RB)+

140 00Q206 022700 00ARAR! cMP #IMPLIT,RO

141 D20R12 141374 BHI 18

142

Figure 3-1 Assembly Listing Showing Local Symbol Block

3.6 CURRENT LOCATION COUNTER

The period (.) is the symbol for the current location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction, as shown in the first example
below. When used in the operand field of a MACRO-11 directive, it
represents the address of the current byte or word, as shown in the
second example below.

A: MOV #.,RO ;THE PERIOD (.) REFERS TO THE ADDRESS
;OF THE MOV INSTRUCTION.

(The function of the # symbol is explained in Section 5.9.)

SAL=0
.WORD 177535,.+4,SAL ;THE OPERAND .+4 IN THE .WORD
;DIRECTIVE REPRESENTS A VALUE
; THAT IS STORED AS THE SECOND
;OF THREE WORDS DURING
;ASSEMBLY.

Assume that the current value of the location counter is 500. During
assembly, MACRO-11 reserves storage in response to the .WORD directive
(see Section 6.3.2), beginning with location 500. The operands
accompanying the .WORD directive determine the values so stored. The

3-11

SYMBOLS AND EXPRESSIONS

value 177535 is thus stored in location 500. The value represented by
.+4 1is stored in location 502; this value is derived as the current
value of the location counter (which is now 502), plus the absolute
value 4, thereby depositing the value 506 in location 502. Finally,
the value of SAL, previously equated to 0, is deposited 1in -location
504.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS
500 177535
502 506
504 0

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO-11 resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the 1location
counter can be changed through a direct assignment statement of the
following form:

.=expression

Similar to other MACRO-11l symbols, the current location counter symbol
(.) has an attribute of relocatability associated with it: it is
either absolute or relocatable, depending on the specific such
attribute of the current program section. (A program section and its
attributes are defined through the wuse of the .PSECT directive
described 1in Section 6.8.1.) The existing attribute (or mode) of the
current location counter cannot be changed by specifying a defining
expression having a different attribute.

Furthermore, such a defining expression must not force the 1location
counter into another program section (.PSECT area), even though the
program sections so involved may both be absolute or relocatable. The
expression defining the 1location counter value must not contain a
forward reference, i.e., the expression must not contain a reference
to a symbol that 1is not previously defined. Such violations
constitute a general assembly error, resulting in an error code (A) in
the assembly listing.

Thus, the attribute (or mode) of the current location counter takes on
the attribute of the current program section. Therefore, its
attribute from program section to program section can be changed only
through the program sectioning directives (.PSECT, .ASECT, and
.CSECT), as described in Section 6.8.

The following coding illustrates the use of the current location
counter:

SYMBOLS AND EXPRESSIONS

.ASECT
.=500 ;SET LOCATION COUNTER TO
- ;ABSOLUTE 500 (OCTAL).
FIRST: MOV .+10,COUNT ;THE LABEL "FIRST" HAS THE VALUE

:500 (OCTAL) .
:.+10 EQUALS 510(OCTAL). THE
;CONTENTS OF THE LOCATION
1510 (OCTAL) WILL BE DEPOSITED
:IN THE LOCATION "COUNT."

.=520 ; THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
;ABSOLUTE 520 (OCTAL) .

SECOND: MOV ., INDEX ; THE LABEL SECOND HAS THE
;VALUE 520 (OCTAL) .
; THE CONTENTS OF LOCATION
;520 (OCTAL) , THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
; ITSELF, WILL BE DEPOSITED IN THE
; LOCATION "INDEX."

.PSECT

.=.+20 ;SET LOCATION COUNTER TO
;RELOCATABLE 20 OF THE
;UNNAMED PROGRAM SECTION.

THIRD: .WORD 0 ;THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the following statements:

.=.+40
or
+BLKB 40
or
.BLKW 20

reserves 40(8) bytes of storage space 1in the source program. The
.BLKB and .BLKW directives, however, are recommended as the preferred
ways to reserve storage space (see Section 6.5.3).

3.7 NUMBERS

MACRO-11 assumes that all numbers in the source program are to be
interpreted in octal radix, unless otherwise specified. An exception
to this is that operands associated with Floating Point Processor
instructions and Floating Point Data directives are treated as decimal
(see Section 6.4.2). This default radix can be altered with the
.RADIX directive (see Section 6.4.1.1). Also, individual numbers can
be designated as decimal, binary, or octal numbers through temporary
radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the <current radix, an error code (N) is generated in the
assembly listing. However, MACRO-11 continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

w
1

13

SYMBOLS AND EXPRESSIONS

Negative numbers must be preceded by a minus sign; MACRO-11
translates such numbers into two's complement form. Positive numbers
may (but need not) be preceded by a plus sign.

A number containing more than 16 significant bits, i.e., greater than
177777(8), 1is truncated from the left and flagged with an error code
(T) in the assembly listing.

Numbers are always considered to be absolute values, 1i.e., they are
not relocatable.

Single-word floating-point numbers may be generated with the °F
operator (see Section 6.4.2.2) and are stored in the following format:

15 14 7 6 0
Sign 8-bit 7-bit
Bit Exponent Mantissa

Refer to the appropriate PDP-11 Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component - of an expression and may be one of the
following:

1. A number, as defined in Section 3.7, whose 16-bit value 1is
used.

2. A symbol, as defined in Section 3.2. Symbols are evaluated
as follows:

a. A period (.) specified in an expression causes the value
of the current location counter to be used.

b. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

c. A permanent symbol's basic wvalue 1is used, with zero
substituted for the addressing modes. (Appendix C lists
all op codes and their values.)

d. An undefined symbol is assigned a value of zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the .DSABL GBL directive
(see Section 6.2) is in effect, the automatic global
reference default function of MACRO-11 is inhibited, in
which case, the statement containing the undefined symbol
is flagged with an error code (U) in the assembly
listing.

3. An ASCII conversion operation is performed, using either a
single quote followed by a single ASCII character, or a
double quote followed by two ASCII characters. This type of
expression construction 1is explained in detail in Section
6.3.3.

SYMBOLS AND EXPRESSIONS

4., A term may also be an expression enclosed in angle brackets
(<>»). Any expression so enclosed is evaluated and reduced to
a single term before the remainder of the expression in which
it appears is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to apply a unary operator to an
entire expression (as in -<A+B>).

3.9 EXPRESSIONS

Expressions are combinations of terms Jjoined together by binary
operators (see Table 3-5) and which reduce to a 16-bit expression
value. The evaluation of an expression includes the determination of
its attributes. A resultant expression value may be any one of four
types (as described later in this section): absolute, relocatable,
external, or complex relocatable.

Expressions are evaluated from left to right with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator is considered
to contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:

—+-A
is equivalent to:
—<+<=A>>

A missing term, expression, or external symbol is interpreted as a
zZero. A missing or illegal operator terminates the expression
analysis, causing an error code (A) or (Q), or both, to be generated
in the assembly 1listing, depending on the context of the expression
itself. For example, the expression:

TAG ! LA 177777
is evaluated as
TAG ! LA

because the first non-blank character following the symbol LA is not a
legal binary operator, an expression separator (i.e., a comma), or an
operand field terminator (i.e., a semicolon or the end of the source
line). It should be noted that spaces within expressions are ignored.

The value of an external expression is equal to the value of the
absolute part of that expression. For example, the expression
EXTERN+A, where "EXTERN" 1is an external symbol, has a value at
assembly-time that 1is equal to the value of the internal symbol A.
This expression, however, when evaluated by the Task Builder at 1link
time takes on the resolved value of the symbol EXTERN, plus the value
of symbol A.

Expressions, when evaluated by MACRO-11, are determined to be one of
four types: absolute, relocatable, external (or global), or complex
relocatable. The following distinctions are important:

1. An expression is absolute if its wvalue 1is fixed. An
expression whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable

3-15

SYMBOLS AND EXPRESSIONS

expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
are also absolute, since such an expression is reduced to a
single term by MACRO-11 upon completion of the expression
scan. For example, the expression TAG2-TAGl, where both TAGl
and TAG2 are defined in the same program section, is an
absolute expression.

2. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears, but it will have an offset value added at task-build
time. Expressions whose terms contain 1labels defined in
relocatable program sections will have a relocatable value;
similarly, a period (.) in a relocatable program section,
representing the value of the current location counter, will
also have a relocatable value.

3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression 1is only partially defined following
assembly and must be resolved by the Task Builder at 1link
time.

4. An expression is complex relocatable if any of the following
conditions applies:

- It contains a global reference and a relocatable symbol.
- It contains more than one global reference.

- It contains relocatable terms belonging to different
program sections.

- The value resulting from the expression has more than one
level of relocation. For example, 1if the relocatable
symbols TAGl and TAG2 associated with the same program
section are specified in an expression construction in the
form TAGl+TAG2, two levels of relocation would be
introduced, since each symbol is evaluated in terms of the
relocation bias in effect for the program section.

- An operation other than addition 1is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time.

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO-11 is an object module which must be processed by
the Task Builder before it can be loaded and executed. Essentially,
the Task Builder fixes (i.e., makes absolute) the values of external
or relocatable symbols in the object module, thus transforming the
object module, or several such object modules, into an executable task
image. This process is called linking.

To enable the Task Builder to fix the value of an expression, MACRO-11
issues <certain directives to the Task Builder, together with other
required parameters. In the case of relocatable expressions in the
object module, the Task Builder adds the base of the associated
relocatable program section to the value of the relocatable expression
provided by MACRO-11. 1In the case of external expression values, the
Task Builder determines the value of the external term 1in the
expression (since the external symbol must be defined in one of the
other object modules being linked teogether) and then adds it to the
absolute portion of the external expression, as provided by MACRO-11.

All instructions -that require modification by the Task Builder are
flagged 1in the assembly listing, as illustrated in the example below.
The apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis by the Task Builder is required in order to fix
the value of the expression.

EXAMPLE:
005065 CLR EXTERN (R5) ; THE VALUE OF THE "EXTERN" SYMBOL IS
000000G ;ASSEMBLED AS ZERO AND IS TO BE
;RESOLVED BY THE TASK BUILDER.
005065 CLR EXTERN+6 (R5) ; THE VALUE OF THE SYMBOL "EXTERN"
000006G ;IS TO BE RESOLVED BY
; THE TASK BUILDER AND ADDED TO
; THE ABSOLUTE PORTION (+6) OF
; THE EXPRESSION.
005065 CLR RELOC (R5) ;ASSUMING THAT THE VALUE OF THE
000040 ; SYMBOL "RELOC" IS RELOCATABLE
;40, THE TASK BUILDER WILL ADD A
; RELOCATION BIAS TO THIS VALUE.
005065 CLR -<EXTERN+RELOC> (R5) ;THIS EXPRESSION IS COMPLEX
000000C ; RELOCATABLE BECAUSE IT REQUIRES

; THE NEGATION OF AN EXPRESSION
; THAT CONTAINS A GLOBAL (EXTERN)
;REFERENCE AND A RELOCATABLE TERM.

4-1

RELOCATION AND LINKING

For a complete description of object records output by MACRO-11, refer
to the applicable Task Builder Reference Manual (see Section 0.3 in
the Preface).

CHAPTER 5

ADDRESSING MODES

The program counter (PC) always contains the address of the next word
to be fetched, i.e., the address of the next instruction to be
executed, or the second or third word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule to remember is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed."”

In the case of 2- or 3-word instructions, the processor uses the PC to
fetch the following words as well.

The following symbols are wused 1in describing addressing modes
throughout this chapter:

1. E is any expression, as defined in Chapter 3.
2. R is a register expression, i.e., any expression containing a

term preceded by a percent sign (%) or a symbol previously
equated to such a term, as shown in the examples below:

RO=%0 ;GENERAL REGISTER O.
R1=R0O+1 ;GENERAL REGISTER 1.
R2=1+%1 ; GENERAL REGISTER 2.

The symbol R may also represent any of the normal default
register definitions (see Section 3.4).

3. ER is a register expression or an absolute expression in the
range 0 to 7, inclusive.

4, A is a general addressing specification which produces a
6-bit mode address field, as described 1in the PDP-11
Processor Handbooks. The addressing specification, A, is
described 1in terms of E, R, and ER, as defined above. Each
addressing specification within this section is illustrated
using either the single operand instruction CLR or the double
operand instruction MOV.

5.1 REGISTER MODE

The register itself (R) contains the operand to be manipulated by the
instruction.

ADDRESSING MODES

Format for A: R
Example:

CLR R3 ;CLEARS REGISTER 3.

5.2 REGISTER DEFERRED MODE

The register (R) contains the address of the operand to be manipulated
by the instruction.

Format for A: @R or (ER)

Examples:
CLR @R1 sALL THESE INSTRUCTIONS CLEAR
CLR (R1) sTHE WORD AT THE ADDRESS
CLR (1) ;CONTAINED IN REGISTER 1.

5.3 AUTOINCREMENT MODE

The contents of the register (ER) are incremented immediately after
being used as the address of the operand (see Note below).

— 3

Format for A: (ER) +

Examples:
CLR (RO) + sEACH INSTRUCTION CLEARS
CLR (R4) + s THE WORD AT THE ADDRESS
CLR (R2) + ;CONTAINED IN THE SPECIFIED

;sREGISTER AND INCREMENTS
; THAT REGISTER'S CONTENTS
sBY TWO.

NOTE

Certain special instruction/address mode
combinations, which are rarely or never used, do
not operate exactly the same on all PDP-11
processors, as described below.

In the autoincrement mode, both the JMP and JSR
instructions autoincrement the register before its
use on the PDP-11/40, but not on the PDP-11/45 or
11/10.

In double operand instructions having the
addressing form Rn,(Rn)+ or Rn,-(Rn), where the
source and destination registers are the same, the
source operand is evaluated as the autoincremented
or autodecremented value, but the destination
register, at the time it is used, still contains
the originally-intended effective address. 1In the
following example, as executed on the PDP-11/40,
Register 0 originally contains 100(8):

ADDRESSING MODES
MOV RO, (RO) + ;THE QUANTITY 102 IS MOVED
;TO LOCATION 100.

MOV RO, - (RO) ;THE QUANTITY 76 IS MOVED
;TO LOCATION 100.

The use of these forms should be avoided, since
they are not compatible with the entire family of
PDP-11 processors.

An error code (Z) is printed in the assembly

listing with each instruction which 1is not
compatible among all members of the PDP-11 family.

5.4 AUTOINCREMEN?,DEFERRED MODE
The register (ER) contains a pointer to the address of the operand.
The contents o0f the register are incremented after being used as a
pointer.
Format for A: @ (ER) +
Example:

CLR @(R3) + ; THE CONTENTS OF REGISTER 3 POINT

;TO THE ADDRESS OF A WORD TO BE

; CLEARED BEFORE THE CONTENTS OF THE
;REGISTER ARE INCREMENTED BY TWO.

5.5 AUTODECREMENT MODE

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note above in Section 5.3).

Format for A: - (ER)

Examples:

CLR - (RO) ;DECREMENT THE CONTENTS OF THE SPECI-
;FIED REGISTER (0, 3, OR 2) BY TWO
CLR - (R3) ;BEFORE USING ITS CONTENTS
CLR -(R2) ;AS THE ADDRESS OF THE WORD TO BE
: CLEARED.

5.6 AUTODECREMENT DEFERRED MODE

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Format for A: @~ (ER)
Example:

CLR @-(R2) ;DECREMENT THE CONTENTS OF
+REGISTER 2 BY TWO BEFORE
;USING ITS CONTENTS AS A POINTER
;TO THE ADDRESS OF THE WORD TO BE
;CLEARED.

5-3

ADDRESSING MODES

5.7 INDEX MODE

The value of an expression (E) is stored as the second or third word
of the instruction. The effective address of the operand is
calculated as the value of E, plus the contents of register ER. The
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: E (ER)
Examples:

CLR X+2(R1) :THE EFFECTIVE ADDRESS OF THE WORD
sTO BE CLEARED IS X+2, PLUS THE
;CONTENTS OF REGISTER 1.

MOV RO,-2(R3) ;THE EFFECTIVE ADDRESS OF THE
;DESTINATION LOCATION IS -2, PLUS
;THE CONTENTS OF REGISTER 3.

5.8 INDEX DEFERRED MODE

An expression (E), plus the contents of a register (ER), vyields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: QE (ER)
Example:

CLR @114 (R4) ;IF REGISTER 4 CONTAINS 100, THIS

- ;VALUE, PLUS THE OFFSET 114, YIELDS
;THE POINTER 214. TIF LOCATION 214
;CONTAINS THE ADDRESS 2000, LOCATION
;2000 WOULD BE CLEARED.

L,

5.9 IMMEDIATE MODE

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. This mode is assembled as an
autoincrement of the PC.

Format for A: $+E

Examples:
MOV #100,R0 sMOVE THE VALUE 100 INTO REGISTER 0.
MOV #X,R0 sMOVE THE VALUE OF SYMBOL X INTO

;REGISTER 0.

The number sign (#) in the MACRO-11 character set has special
significance as an addressing mode indicator. When this character
appears in the operand field, as shown above, it specifies the
immediate addressing mode, indicating to MACRO-11l that the operand
itself immediately follows the instruction word.

ADDRESSING MODES

The operation of this mode can be shown through the first example,
MOV #100,R0, which assembles as two words:

Location 20: 01 2 7 00
Location 22: 0 0 01 00
Location 24: Next instruction

Note that the source operand (the value 100) is assembled immediately
following the instruction word, 1i.e., as the second word in the
instruction. Upon execution of the instruction, the processor fetches
the first word (MOV) and increments the PC by 2 so that it points to
location 22 (which contains the source operand).

After the next fetch and increment cycle, the source operand (100) is
moved into register 0, 1leaving the PC pointing to location 24 (the
next instruction).

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. In other words, the
value immediately following the instruction word 1is taken as the
absolute address of the operand. Absolute mode is assembled as an
autoincrement deferred of the PC.

Format for A: Q#E

Examples:

MOV @#100,R0O sMOVE THE CONTENTS OF LOCATION 100
; INTO REGISTER RO.
CLR Q#X ;CLEAR THE CONTENTS OF THE LOCATION

;WHOSE ADDRESS IS SPECIFIED BY
; THE SYMBOL X.

The operation of this mode can be shown through the first example,
MOV @#100,R0, which assembles as two words:

Location 20: 01 3 7 0 O
Location 22: 0 0 01 0O
Location 24: Next instruction

Note that the absolute address 100 is assembled immediately following
the instruction word, 1i.e., as the second word in the instruction.
Upon execution of the instruction, the processor fetches the first
word (MOV) and increments the PC by 2 so that it points to location 22
(which contains the absolute address of the source operand). After
the next fetch and increment cycle, the contents of absolute address
100 (the source operand) are moved into register 0, 1leaving the PC
pointing to location 24 (the next instruction).

5.11 RELATIVE MODE

Relative mode is the normal mode for memory references within vyour
program. It is assembled as index mode, using the PC as the index
register.

5-5

ADDRESSING MODES

Format for A: E

Examples:

CLR 100 ;CLEAR LOCATION 100, RELATIVE TO
;THE CONTENTS OF THE PC.
MOV RO,Y ;MOVE THE CONTENTS OF REGISTER O

:TO LOCATION Y, RELATIVE TO THE
;CONTENTS OF THE PC.

In relative mode, the offset for the address calculation is assembled
as the second or third word of the instruction. This value is added
to the contents of the PC (the base register) to yield the address of
the source operand.

The operation of relative mode can be shown with the statement
MOV 100,R3, which assembles as two words:

Location 20: 0 1 6 7 0 3
Location 22: 0 0 0 0 5 4
Location 24: ©Next instruction

Note that the constant 54 is assembled immediately following the
instruction word, 1i.e., as the second word in the instruction. Upon
execution of the instruction, the processor fetches the first word
(MOV) and increments the PC by 2 so that it points to location 22
(containing the value 54). After the next fetch and increment cycle,
the processor calculates the effective address of the source operand
by taking the contents of location 22 (the offset) and adding it to
the current value of the PC, which now points to location 24 (the next
instruction). Thus, the source operand address is the result of the
calculation OFFSET+PC = 54+24 = 100(8), causing the <contents of
location 100 to be moved into register 3.

Since MACRO-1l1l considers the contents of the current location counter
(.) as the address of the first word of the instruction, an equivalent
index mode statement is shown below:

MOV 100-.-4(PC) ,R3

This instruction has a relative addressing mode because the operand
address 1is <calculated relative to the current value of the location
counter. The offset is the distance (in bytes) between the operand
and the current value of the location counter.

5.12 RELATIVE DEFERRED MODE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. 1In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Format for A: QE
Example:
MOV @X,R0 sRELATIVE TO THE CURRENT VALUE OF
s THE PC, MOVE THE CONTENTS OF THE
;s LOCATION WHOSE ADDRESS IS POINTED
;TO BY LOCATION X INTO REGISTER O.

5-6

ADDRESSING MODES

5.13 SUMMARY OF ADDRESSING FORMS

Each PDP-11 instruction takes at least one word. Operands of the form
listed below do not increase the length of an instruction.

Form Meaning

R Register mode

@R or (ER) Register deferred mode (see Note below)
(ER) + Autoincrement mode

@ (ER) + Autoincrement deferred mode

- (ER) Autodecrement mode

@-(ER) Autodecrement deferred mode

Operands of the following forms add one word to the instruction length

for each occurrence of an operand of that form:

Form Meaning

E(ER) Index mode

@E (ER) Index deferred mode

#E Immediate mode

Q#E Abpsolute mode (see Note below)
E Relative mode

QE Relative deferred mode

The syntax of the addressing modes 1is summarized

Additional discussion of addressing modes 1is
applicable PDP-11 Processor Handbook.

NOTE

in Appendix

provided

An alternate form for @R is (ER). However, the
form @(ER) 1is only logically, but not physically

equivalent to the expression @0 (ER) .

The

addressing form @#E differs from form E in that
the second or third word of the instruction
contains the absolute address of the operand,
rather than the relative distance between the
operand and the PC. Thus, the instruction CLR

@#100 clears absolute location 100, even

if the

instruction is moved from the point at which it

was assembled. See the description of the

.ENABL

AMA function in Section 6.2, which causes all
relative mode addresses to be assembled as

absolute mode addresses.

in

B.
the

ADDRESSING MODES

5,14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO-11 performs the reverse operation to form the word offset from
the specified address. Remember that when the offset is added to the
current value of the PC, the PC is pointing to the word following the

branch instruction; hence, the factor -2 in the following
calculation:

Word offset = (E-PC)/2 truncated to eight bits.
Since the value of the PC = .+2, we have:

Word offset = (E-.-2)/2 truncated to eight bits.

In using branch instructions, you must exercise care to avoid the
following error conditions:

1. Branching from one program section to another;

2. Branching to a 1location that 1is defined as an external
(global) symbol; or

3. ©Specifying a branch address that is out of range, 1i.e., the
branch offset is a value that does not lie within the range
-128(10) to +127(10).

The above conditions cause an error code (A) to be generated in the
assembly listing for the statement in error.

5.15 USING TRAP INSTRUCTIONS

The EMT and TRAP instructions do not use the 1low-order byte of the
instruction word, allowing information to be transferred to the trap
handlers in the low-order byte. If the EMT or TRAP instruction is
followed by an expression, the value of the expression is stored in
the low-order byte of the word. However, if the expression is greater
than 377(8), it 1is truncated to eight bits and an error code (T) is
generated in the assembly listing.

PART III

MACRO-11 DIRECTIVES

Chapters 6 and 7 describe all the directives used with MACRO-11.
Directives are statements that cause MACRO-11 to perform certain
operations during assembly. Chapter 6 describes several types of
directives, including those which control symbol interpretation,
listing header material, program sections, data storage formats, and
assembly listings. Chapter 7 describes those directives concerning
macros, macro arguments, and repetitive coding sequences.

MACRO-11 directives can be preceded by a 1label (subject to any
restrictions associated with specific directives) and followed by a
comment. A MACRO-11 directive occupies the operator field of a source
statement. Only one directive can be included in any given source
line. The operand field may be occupied by one or more operands or
left blank; legal operands differ with each directive specified.

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

This category of directives includes:

1. Listing control

2. Function control

3. Data storage

4., Radix and numeric control

5. Location counter control

6. Terminators

7. Program boundaries

8. Program sectioning

9. Symbol control
10. Conditional assembly
11. PAL-11R conditional assembly.

Each is described in its own section of this chapter.

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination
of all 1line printer and teleprinter listing output generated during
assembly. Facilities also exist for creating object module names and
other identification information in the listing output.

6.1.1 .LIST and .NLIST Directives

Listing control options can be specified in the text of a MACRO-11
program through the .LIST and .NLIST directives. These directives are
of the form:

.LIST

.LIST arg
.NLIST
.NLIST arg

GENERAL ASSEMBLER DIRECTIVES

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-1.

As indicated above, the listing control directives may be used without
arguments, in which case the 1listing directives alter the listing
level count. The'listing level count is initialized to zero. At each
occurrence of a JLIST directive, the 1listing level count |is
incremented; at each occurrence of an .NLIST directive, the 1listing

level count is decremented. hen the listing 1 is negative,
;hs.Lis:ina__%%_.aunnnggé%g (unless the Iine contains an —&rror).
Conversely, when the sting 1level count is greater than zero, the
listing is always generated. Finally, when the count is =zero, the
line is either listed or suppressed, contingent upon the other listing
controls currently in effect for the program. For example, the
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

«MACRO LTEST s LIST TEST
; A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS 0.
.NLIST ;LISTING LEVEL COUNT IS -1.
; B-THIS LINE SHOULD NOT LIST
«NLIST ;LISTING LEVEL COUNT IS -2.
3 C-THIS LINE SHOULD NOT LIST
+LIST ;s LISTING LEVEL COUNT IS -1.
; D-THIS LINE SHOULD NOT LIST
.LIST ;LISTING LEVEL COUNT IS 0.
; E-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS BACK TO 0.
. ENDM
.LIST ME ;LIST MACRO EXPANSION.
LTEST ;CALL THE MACRO
; A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS O.
; E-THIS LINE SHOULD LIST ;s LISTING LEVEL COUNT IS BACK TO O.

An important purpose of the level count is to allow macro expansions
to be 1listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing 1level count; however, the .LIST and .NLIST directives can be
used to override current listing control, as shown in the example
below:

.MACRO XX
.LIST ;LIST NEXT LINE.
X=.
«NLIST ;DO NOT LIST REMAINDER OF MACRO
. ;EXPANSION.
. ENDM
.NLIST ME ;DO NOT LIST MACRO EXPANSIONS.
XX
X=.

The symbolic arguments allowed for use with the listing directives are

described in Table 6-1. These arguments can be used singly or in

combination with each other. If multiple arguments are specified in a

listing directive, each argument must be separated by a comma, tab, or
6=-2

space. For any

GENERAL ASSEMBLER DIRECTIVES

argument

not

specifically included in a 1listing

control statement, the associated default assumption (List or No list)
is applicable throughout the source program. The default assumptions
for the listing control directives also appear in Table 6-1.

Symbolic Arguments

Table 6-1
of Listing Control Directives

Argument

Default

Function

SEQ*

LOC*

BIN*

BEX

SRC*

List

List

List

List

List

Controls the 1listing of source line
sequence numbers. MACRO-11 assigns
sequence number 1 to the first source
line in a file, and increments the
sequence humber for each additional line
in the file. If this field is
suppressed through an .NLIST SEQ
directive, MACRO-11 generates a tab,
effectively allocating space for the
field, but fills the field with blanks.
Thus, the inter-positional relationships
of subsequent fields 1in the 1listing
remain undisturbed. During the assembly
process, MACRO-11 examines each source
line for possible error conditions. For
any line in error, an appropriate error
flag 1is printed preceding the line
sequence number field (see Appendix D).
MACRO=-11 does not assign sequence
numbers for files that have had sequence
numbers assigned by other programs, such
as an editor.

Controls the 1listing of the current
location counter field. ©Normally, this
field is not suppressed. However, if it
is suppressed through the .NLIST LOC
directive, MACRO-11 does not generate a
tab, nor does it allocate space for the
field, as is the case with the source
line sequence number field (SEQ)
described above. Thus, the suppression
of the current location counter (LOC)
field effectively 1left-justifies all
subsequent fields (while ©preserving
inter-positional relationships) to that
position otherwise normally occupied by
this field.

Controls the listing of generated binary
code. If this field 1is suppressed
through an JNLIST BIN directive,
left-justification of the source code
field occurs in the same manner
described above for the current location
counter (LOC) field.

Controls the listing of binary
extensions, i.e., the 1locations and
binary contents beyond those that will
fit on the source statement line. This
is a subset of the BIN argument.

Controls the listing of source lines.

6-3

Symbolic

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Arguments of Listing Control Directives

Argument

Default

Function

com

MD

MC

ME

MEB

CND

LD

TOC

SYM

TTM

List

List

List

No list

No list

List

No list

List

List

Controls the listing of comments. This
is a subset of the SRC argument. The
.NLIST COM directive reduces 1listing
time and space when comments are not
desired.

Controls the listing of macro
definitions and repeat range expansions.

Controls the listing of macro calls and
repeat range expansions.

Controls the listing of macro
expansions.

Controls the listing of macro expansion
binary code. A L,LIST MEB directive
causes only those macro expansion
statements that generate binary code to
be listed. This is a subset of the ME
argument.

Controls the 1listing of unsatisfied
conditional c¢oding and associated .IF
and .ENDC directives 1in the source
program. This argument permits
conditional assemblies to be listed
without including unsatisfied
conditional coding.

Controls the 1listing of all 1listing
directives having no arguments, i.e.,
those listing directives that alter the
listing level count.

Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.l1.4 describing the .SBTTL
directive). This argument does not
affect the printing of the full assembly
listing during assembly pass 2.

Controls the listing of the symbol table
resulting from the assembly of the
source program.

Controls the listing output format. The
default can be set by the system
manager. If the system manager does not
set a default, it is set to line printer
format. Figure 6-1 illustrates the line
printer output format. Figure 6-2
illustrates the teleprinter output
format.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the
same time, i.e., if all four significant fields in the listing are to
be suppressed, the printing of the resulting blank line is inhibited.

6-4

GENERAL ASSEMBLER DIRECTIVES

An example of an assembly 1listing, as sent to a 132-column 1line
printer, 1is shown in Figure 6-1. Note that binary extensions for
statements generating more than one word are formatted horizontally on
the source line.

An example of an assembly listing, as sent to a teleprinter (in the
same format as for an 80-column line printer), is shown in Figure 6-2.
Notice that binary extensions for statements generating more than one
word are printed on subsequent lines. There is no explicit truncation
of output to 80 characters by the assembler.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-1 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACRO-1ll (see
Chapter 8). The use of these switches overrides all corresponding
listing c¢ontrol (.LIST or .NLIST) directives specified in the source
program.

CSITST == TEST OF CSIY{ AND (SI2 MACRO M@7B7 89=JUL=74 15:47 PAGE 5
READ AND PARSE COMMAND LINES

289 «SBTTL READ AND PARSE COMMAND LINES

Y]

211 21230 GETLN® GCMLS #GCLBLK $GET LINE VIA GCHML

212 201244 123003 BCC 13 JSKIP IF NO ERROR

213 001246 EXITSS JELSE, EXIT

214 221254 181 TYPE G,CMLD+2(R@),G,CMLD(RA),*'d 3SEND OUT THE INPUT LINE
215 721300 CSISy #CSIBLK,GCLBLK#G,CMLD+2,GCLBLK+G,CMLD

216 001324 103064 BCC 2% JBRANCH IF NO ERROR DETECTED

217 201326 @16@46 0@PRN20 MOV C,FILD+2(RO),~(SP) JPUT STRING ERROR ADDR IN STK
218 0021332 166M1l6 020004 SuB C.CMLD+2(RO), (SP) JCALCULATE LENGTH OF FIRST PART
219 201336 TYPE C.CMLD+2(RA), (SP),%!S JSEND OUT FIRST PART OF STRING
220 201360 TYPE C,FILD+2(R®),C,FILD(RO),*!'S JSEND OUT SECOND PART
221 901494 Q6626P PPOBI6 200020 ADD C.,FILD(RO),C,FILD+2(RB) JCALC ADDR OF LAST PART OF STRING
222 201412 162660 D00@@B2 SuB (SP)+,C,CMLD(R®) JDEDUCT LENGTH OF FIRST PART
223 001416 166060 PEOD16 000002 SuB C,FILD(R@),C,CMLD(RB) JCALC LENGTH OF LAST PART

224 pot424 TYPE C,FILD+2(RA),C,CM_D(RD), x40 }SEND QUT LAST PART
225 021450 TYPEM STX,40 3SEND SYNTAX ERROR MESSAGE

228 Q1474 0PR655 BR GETLN JTRY FOR MQRE

227 -

228 @@1476 @B5762 0QPRPR2 281 TSTY C,CMLD(RB) JCHECK LENGTH OF LINE

229 801582 001652 BEQ GETLN 31F NULL, SKIP BACK FOR NEXT LINE

230 P@1504 112767 @PBR6E 176432 MOVB #10,EQUBIT JASSUME EQUAL SIGN NOT FOUND

231 221512 132760 Q@42 QQ0QR! BITB %CS,EQU,C,STAT(R®) JCHECK STATUS

232 021520 Ppe14@2 BEQ 108 }SKIP IF EQUAL SIGN NOT SEEN

233 021522 105267 176416 INCB EQUBIT FELSE, INDICATE EQUAL SIGN FOUND

234 901526 108¢ TYPEM EQU, 40 JSEND EQUAL SIGN STATUS MESSAGE

235 pR1552 TYPEM 0PT,40 JSEND OUTPUT SCAN MESSAGE

236 221576 OPARSE Call INIT2 JINIT LOCNS FOR CSI2 CALL/TEST

237 @162 CSI%2 JOUTPUT,#SWTBL 3PARSE OUTPUT SPEC

238 @o1621 123441 BCS CS2ERR 1SKIP ON ERROR

239 0n1622 CALL EVALU8 JEVALUATE RESULTS OF SEMANTIC PARSE
240 PB1626 132760 Q002022 022p0% BIT8 #CS,MOR,C,STAT(RB) JADDITIONAL OUTPUT SPECS?

241 Q291634 001360 BNE OPARSE JYES, CONTINUE WITH OUTPUT SCAN

242 001636 TYPEM 1PT,42 1SEND INPUT SCAN MESSAGE

243 001662 IPARSE: CALL INIT2 JINIT LOCNS FOR CSI2 CALL/TESY

244 001666 Csls2 +INPUT, #SWTBL JPARSE INPUT SPEC

245 201704 103497 8CS CS2ERR $SKIP ON ERROR

246 21706 catLt EvVaLU8 JEVALUATE RESULTS OF SEMANTIC PARSE
247 09091712 132763 002020 20000} B8IT8 #CS,MOR,C,STAT(RB) JADDITIONAL INPUT SPECS?

248 221720 @01362 BNE 1PARSE JYES, CONTINUE WITH INPUT SCAN

249 0221722 @0R412 B8R JMPGET JGET ANOTHER COMMAND LINE

Figure 6-1 Example of Line Printer Assembly Listing

SIATILOIYIA YIATAWISSY TVIINID

GENERAL ASSEMBLER DIRECTIVES

CSITST »= TESY OF €SIy AND CS8I2 MACRO M@707 B9~JUL=74 15159 PAGE 5
READ AND PARSE COMMAND LINES

209 «SBTTL READ AND PARSE COMMAND LINES
210
211 @a1230 GETLNI GCMLS #GCLBLK JGET LINE VIA GCML
212 201244 103003 BCC 18 JSKIP IF NO ERROR
213 001246 EXITSS JELSE, EXIT
214 201254 182 TYPE G,CMLD+2(RO),G,CMLD(RB),n'0 JSEND OUY THE INPUT LINE
215 (301300 CS1sy NCSIBLK,GCLBLK4G,CM D+2,GCLBLK#G,CMLD
216 041324 103064]9 4 23 JBRANCH IF NO ERROR DETECTED
217 00132&» 216046 MOV CFILD#2(RD),~(8P) JPUT STRING ERROR ADDR IN STK
‘T Q00eon29
218 #91332 . 166016 sus C.CMLD*2(RQ), (8P) JCALCULATE LENGTH OF FIRST PART
dapoo4d
219 021336 TYPE Co,CMLD+2(RD),(SP),#!S $JSEND OUT FIRSY PART OF STRING
220 003360 TYPE C.FILD$2(RD),C,FILD(R@),¥'S $SEND OQUT SECOND PART
221 ¢01404 066060 ADD C,FILO(RD),C,FILDe2(RA) JCALC ADDR OF LAST PART OF STRING
000016
g2
222 001412 162660 sue (SPY+,C,CMLD(RD) JDEDUCT LENGTH OF FIRST PART
000002
223 201416 166060 suB C,FILO(RQ),C,CMLD(RO) JCALC LENGTH OF LAST PART
o2Q016
000002
224 A01424 TYPE CoFILD#2(RO),C,CMLD(RD), w40 JSEND OUT LAST PARTY
225 001459 TYPEM STX,40 JSEND SYNTAX ERROR MESSAGE
226 @@1474 Q00655 BR GETLN JTRY FOR MORE
227
228 PA1476 0A5760 2% T8T C.CMLD(RQ) JCHECK LENGTH OF LINE
200002
229 p@1Sm2 Q01652 BEQ GETLN JIF NULL, SKIP BACK FOR NEXT LINE
230 201504 112767 Mave ®'Q,EQUBILT JASSUME EQUAL SIGN NOT FOUND
200060
176432
231 a@1512 132760 BITB #Cs,EQU,C,STAT(RA) JCHECK STATUS
200040
20000}
232 @ni5208 Q01402 BEQ 108 PSKIP IF EQUAL SIGN NOT SEEN
233 ve1%522 105267 INCB EQUBILT JELSE, INODICATE EQUAL SIGN FOUND
176416
234 9A1526 1081 TYPEM EQU, 40)SEND EGUAL SIGN STATUS MESSAGE
235 pA15852 TYPEM OPT,42 J8END OUTPUT SCAN MESSAGE
236 2@1576 OPARSE: CALL INIT2 JINIT LOCNS FOR CSI2 CALL/TEST
237 0da1602 csis2 +OUTPUT,#SWTBL JPARSE OQUTPUT SPEC
238 281622 19344}y BCS CS2ERR 1SKIP ON ERROR
239 Q@1622 CaLl EvaLUB JEVALUATE RESULTS OF SEMANTIC PARSE
240 001626 132760 BITB #CS,MOR,C,STAT(RA))ADDITIONAL OUTPUT SPECS?
00029
21113
241 P01634 Q01360 . BNE OPARSE JYES, CONTINUE WITH OQUTPUT SCAN
242 021636 TYPEM 1PT,4v JSEND INPUT SCAN MESSAGE
243 BA1662 IPARSE: CALL INTITR JINIT LOCNS FOR CSI2 CALL/TEST
244 201666 cslIs2 s INPUT , #SWTBL IPARSE INPUT SPEC
245 pai7p4 103407 BCS CS2ERR JSKIP ON ERROR
246 Q001706 CALL Evapus JEVALUATE RESULTS OF SEMANTIC PARSE
247 Q@ai712 132760 B178 #CS,MOR,C,STAT(RB))ADDITIONAL INPUT SPECS?
22eo29
200001
248 0@1720 001360 BNE IPARSE IYES, CONTINUE WITH INPUT SCAN

Figure 6-2 Example of Terminal Assembly Listing

GENERAL ASSEMBLER DIRECTIVES

Figure 6-3 shows a 1listing, produced in 1line printer format,
reflecting the wuse of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly 1listing
output.

6.1.2 Page Headings

MACRO-11 prints each assembly page in the format shown in either
Figure 6-1 or Figure 6-2, depending on the listing mode (see TTM,
Table 6-1). On the first line of each page, MACRO-11 prints the
following (from left to right):

1. Title of the object module, as established through the .TITLE
directive (see next section).

2. Assembler version identification.
3. Date.
4, Time-of-day.
5. Page number.
The second line of each assembly listing page contains the subtitle

text specified in the last-encountered .SBTTL directive (see Section
6.1.4).

27
28
29

39
34
32

JMAIN,

33
34
35
36
37
38

39
40
41

42
43
a4

200062

2000862
Qa0a7a

200074

200074

MACRO MQ727

oavi126

00106
e20110
000112
920114
2008116

200120
eoe120

pocenl
230004

espe0!

200001
200002
2000023
200004
200005

eaenay

poo001!

opoeae
200005

200002

P9=JUL w74 16329

LSTMAC
«NLIST

200083 +WORD
WLIST
LSTMAC
«NLIST

220203 s WORD
oLIST

PAGE =}

«LIST TT™

LSTMAC SEQ

+NLIST SEQ

«WORD 1/2,3,4,5

oLIST SEQ

LSTMAC BEX

+NLIST BEX

«WORD 1,2,3,4,5

oLIST BEX

+«END

coM SJCOMMENT LINES TEST

coM

1,2,3,4,5

coM

<COM,BEX> JCOMMENT LINES AND EXTENDED BINARY TEST
COM,BEX

1,2,3,4,5
COM,BEX

JNARROW LISTING MODE IS IN EFFECT
$SEQUENCE NUMBERS TEST

JTHIS 1S A COMMENT

JEXTENDED BINARY TEST

STHIS IS A COMMENT

Figure 6~3 Listing Produced With Listing Control Directives

SAAILOIYIA JYYTAWIASSY TVIINID

0T-9

MAIN,

O W™D WA -~

18
19
20

21
22
23

24
25
26

MACRO M@?7B7

220012

poeea)
200204

pape24

paee24

200236

200236

030059

pa0e5e
200056

220202
202005

2122113

eoenal
d0ena4

ae00@3

WJNLIST
«WORD

200002

Peaee2
pe0e05

@9=JUL=74 16129 PAGE 1

3 LISTING CONTROL TEST MACRD

)

«NLIST
«WORD
BIN
1,2,3,4,5
220203
goeenl

«NLIST

WLIST

JMACRD LSTMAC
NLIST 4&RG

LWORD 1,2,3,4,5
LIST ARG

JENDM

LSTMAC LOC

Loc

1+2,3,4,5

LLIST LOC
LSTMAC BIN

JTHIS IS 4 COMMENT
LIST BIN
LSTMAC BEX
WNLIST BEX

CWORD 1,2,3,4,5
LLIST BEX
LSTMAC SRC

LIST SRC

TIM™
ME

ARG

JWIDE LISTING MODE 1S IN EFFECT
JLIST MACRO EXPANSIONS

JTHIS 1S A COMMENT

JLOCATION COUNTER TEST

JTHIS 1S A& COMMENT

JGENERATED BINARY TEST

JEXTENDED BINARY TEST

JTHIS IS A COMMENT

JSOURCE LINES TEST

Figure 6-3 (cont.) Listing Produced With Listing Control Directives

SAAILOIYIA JITAWISSY TVHEANED

GENERAL ASSEMBLER DIRECTIVES

6.1.3 .TITLE Directive

The .TITLE directive is used to assign a name to the object module as
the first entry in the header of each page in the assembly listing.
The name so assigned is the first six non-blank characters following
the .TITLE directive. This name should be six Radix-50 characters or
less in length; any characters beyond the first six are checked for
ASCII legality, but they are not used as part of the object module
name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named. PROGRA. Note that this
6-character name bears no relationship to the filename of the object
module, as specified in the command string to MACRO-11. The name of
an object module (specified in the .TITLE directive) appears in the
Task Builder load map. This 1is also the module name which the
Librarian will recognize.

If the .TITLE directive is not specified, MACRO-11 assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified in the source program, the 1last .TITLE directive
encountered establishes the name for the entire object module.

All spaces and/or tabs up to the first non-space/non-tab character
following the .TITLE directive are ignored by MACRO-11 when evaluating
the text string.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not a Radix-50 character, the directive is flagged with an error code
(A) in the assembly listing.

Section A.2 of Appendix A contains a table of Radix-50 characters.

6.1.4 SBTTL Directive

The .SBTTL directive is used to produce a table of contents
immediately preceding the assembly 1listing and to further identify
each page in the listing. 1In the latter case, the text following the
.SBTTL directive is printed as the second line of the header of each
page in the listing, continuing until altered by a subsequent .SBTTL
directive in the program. For example, the directive:

.SBTTL CONDITIONAL ASSEMBLIES
causes the text
CONDITIONAL ASSEMBLIES

to be printed as the second 1line in the header of the assembly
listing.

During assembly pass 1, a table of contents 1is printed for the
assembly listing, containing the 1line sequence number, the page
number, and the text accompanying each .SBTTL directive. The 1listing
of the table of contents 1is suppressed whenever an .NLIST TOC
directive is encountered in the source program (see Table 6-1). An
example of a table of contents listing is shown in Figure 6-4.

GENERAL ASSEMBLER DIRECTIVES

CSITST w= TEST OF C814{ AND CS12 MACRO M@7@7 @9sJULw74 15147
TABLE OF CONTENTS

2= 55 MACRO DEFINITIONS

3= 74 MESSAGE STRINGS

4»183 MISCELLANEOUS DATA

5=229 READ AND PARSE COMMAND LINES
6255 EVALUATE THE SEMANTIC ANALYSIS
7=»345 SUBROUTINES

Figure 6-4 Assembly Listing Table of Contents

6.1.5 LJ.IDENT Directive

The .IDENT directive provides an additional means of labeling the
object module produced by MACRO-11. 1In addition to the name assigned
to the object module with the .TITLE directive (see Section 6.1.3), a
character string up to six Radix-50 characters can be specified
between paired printing delimiters to label the object module with the
program version number. This directive takes the following form:

+IDENT /string/

where: string represents six legal Radix-50 characters or 1less
which establish the program identification or
version number. This number is included in the
global symbol directory of the object module.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), as 1long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character |is
used, the .IDENT directive 1is flagged with an
error code (A) in the assembly listing.

An example of the .IDENT directive is shown below:
.IDENT /VO5A/

The character string VO5A is converted to Radix-50 representation and
included in the global symbol directory of the object module. This
character string also appears in the Task Builder 1load map and the
Librarian directory listings.

When more than one .IDENT directive is encountered in a given program,
the 1last such directive encountered establishes the character string
which forms part of the object module identification.

GENERAL ASSEMBLER DIRECTIVES

6.1.6 .PAGE Directive/Page Ejection
Page ejection is accomplished in one of four ways:

1. After reaching a count of 58 lines in the 1listing, MACRO-11
automatically performs a page eject to skip over page
perforations on 1line printer paper and to formulate
teleprinter output into pages.

2. In addition, the .PAGE directive is used within the source
program to perform a page eject at desired points in the
listing. The format of this directive is:

. PAGE

This directive takes no arguments and causes a skip to the
top of the next page when encountered. It also causes the
page number to be incremented. The .PAGE directive does not
appear in the listing.

When used within a macro definition, the .PAGE directive 1is
ignored during the assembly of the macro definition. Rather,
the page eject operation is performed as the macro itself is
expanded. In this case, the page number is also incremented.

3. A page eject is performed when a form-feed character is
encountered. _ If the form-feed <character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the wuse of the
form-feed character 1likewise causes the page number to be
incremented.

4. Encountering a new source file causes the page number to be
incremented and the line sequence count to be reset.

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL

Several function control options are provided by MACRO-11 through the
.ENABL and .DSABL directives. These directives are included in a
source program to invoke or inhibit certain MACRO-11 functions and
operations incidental to the assembly process itself. These
directives take the following form:

.ENABL arg
.DSABL arg
where: arg represents one or more of the optional symbolic

arguments defined in Table 6-2.

GENERAL ASSEMBLER DIRECTIVES

Table 6-2

Symbolic Arguments of Function Control Directives

Argument

Default

Function

ABS

AMA

CDR

CRF

FPT

LC

LSB

Disable

Disable

Disable

Enable

Disable

Disable

Disable

Enabling this function produces absolute
binary output in FILES-11 format. To
convert this output to Formatted Binary
format (as required by the Absolute
Loader), use the FLX utility.

Enabling this function causes all
relative addresses (address mode 67) to
be assembled as absolute addresses
(address mode 37). This function is
useful during the debugging phase of

program development.

Enabling this function causes source
columns 73 and greater, i.e., to the end
of the line, to be treated as a comment.
The most common use of this feature is
to permit sequence numbers in card
columns 73-80.

Disabling this <function inhibits the
generation of cross-reference output.
This function only has meaning if
cross-reference output generation 1is
specified in the command string.

Enabling this function causes floating-
point truncation; disabling this
function causes floating-point rounding.

Enabling this function causes MACRO-11
to accept lower-case ASCII input instead
of converting it to upper-case. If this
function is not enabled, all text is
converted to upper-case.

This argument permits the enabling or
disabling of a 1local symbol block.
Although a local symbol block is
normally established by encountering a
new symbolic label or a .PSECT directive
in the source program, an .ENABL LSB
directive establishes a new local symbol
block which is not terminated until (1)
another .ENABL LSB 1is encountered, or
(2) another symbolic 1label or .PSECT
directive 1is encountered following a
paired .DSABL LSB directive.

Although the .ENABL LSB directive
permits a 1local symbol block to cross
.PSECT boundaries, local symbols cannot
be defined 1in a program section other
than the one that was in effect when the
block was entered. The basic function
of this directive with regard to
.PSECT's 1is 1limited to those instances

6-14

Symbolic

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Arguments of Function Control Directives

Argument

Default

Function

LSB
(Cont.)

PNC

REG

GBL

Disable

Enable

Enable

Enable

where it is desirable to leave a program
section temporarily to store data,
followed by a return to the original
program section. Attempts to define
local symbols in an alternate program
section are flagged with an error code
(P) in the assembly listing.

An example of the .ENABL LSB and .DSABL
LSB directives, as typically used in a
source program, is shown in Figure 6-5.

Disabling this function inhibits binary
output wuntil an .ENABL PNC statement is
encountered within the same module.

When specified, the .DSABL REG directive
inhibits the normal MACRO-11 default
register definitions; if not disabled,
the default definitions 1listed below
remain in effect.

R0=%0
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be used as
the logical complement of the .DSABL REG
directive. The use of these directives,
however, is not recommended. For
logical <consistency, use the normal
default register definitions 1listed
above.

When the .ENABL GBL directive is
specified, MACRO-11 treats all symbol
references that are undefined at the end
of assembly pass 1 as default global
references; when the .DSABL GBL
directive 1is specified, MACRO-11 treats
all such references as undefined
symbols. In assembly pass 2, if the
.DSABL GBL function is still in effect,
these undefined symbols are flagged with
an error code (U) in the assembly
listing; otherwise, they continue to be
regarded by MACRO-11 as global
references.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed in Table 6-2 causes that directive to be flagged with an error
code (A) in the assembly listing.

9T-9

SQUEEZE

272
273
74
275
276
277
278
279
289
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
gl
o2

MACRO M@707 89-JUL~74 15:13 PAGE 4

23142 @12103
203144 0602083

#33146 020301

203150 Pei422
203152 124327
003156. 001373
283160 010302
23162 000412

203164 Q60182

223166 020201

2n3172 001412
P03172 124227
203176 01773
2a3200 121227
pB3204 921770
203206 025202
283218 16@102

923212 000244
283214 020401
203216 028261
pal220

genazl

200011

opeedn

FNDSMIy

181

SKPBLK1?
1083

2083

328
40%:

JENABL

MOV
ADD
CMP
BEG
CMPB
BNE
MOV
BR

ADD
414
BEQ
cMPB
BEQ
CMPB
BEOQ
INC
SuB
cLe

BR

SEC
RETURN
«DSABL

Lse

R1,R3

R2,R3

R3,R1

jos
=(R3),#SEMIC
18

R3,R2

208

Ri{,R2

R2,R1

Jos
=(R2),%TAB
10%

(R2), #BLANK
108

R2

R{,R2

403

LS8

JPUT ADDR OF LINE IN R3

JPOINT R3 PAST LAST CHAR IN LINE
JOOES R3 POINT TO START OF LINE?
JIF S0, LEAVE INDICATING FAILURE
318 THE LAST CHARACTER SEMICOLON?
INO, CONTINUE LOOKING

JYES, POINT R2 PAST NEW END=OF=LINE
JLEAVE VIA COMMON SUCCESS CODE

JPOINT R2 PAST END=OFe=LINE

JOOES R2 POINT TO START OF LINE?
JIF SO, LEAVE WITH FAILURE

31S THE LAST CHARACTER A TAB?
JIF SO, IGNORE IT

JIS IT A BLANK?

JIF SO, IGNORE IT

JNON=BLANK CHARACTER=<«POINT PAST IT
JRE=COMPUTE LINE LENGTH

3 INDICATE SUCCESS

JBRANCH TO LEAVE

JINDICATE FAILURE

H

Figure 6-5 Example of .ENABL and .DSABL Directives

SHAILOUNYIA YIATAWISSY TVIINED

GENERAL ASSEMBLER DIRECTIVES

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives, ASCII conversion characters, and radix-control
operators:

.BYTE
.WORD

.ASCII
.ASCIZ
.FLT2
.FLT4
-RAD50

These MACRO-11 facilities are described in the following sections.

6.3.1 .BYTE Directive

The .BYTE directive is used to generate successive bytes of binary
data in the object module. The directive is of the form:

.BYTE exp ; STORES THE BINARY VALUE OF THE
;EXPRESSION "EXP" IN THE NEXT BYTE.

.BYTE expl,exp2,expn ;STORES THE BINARY VALUES OF THE LIST
;OF EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must reduce to eight bits of data or less. The
operands of a .BYTE directive are evaluated as word expressions before
being truncated to the low-order eight bits. The 16-bit value of the
specified expression must have a high-order byte (which is truncated)
that is either all zeros (0) or all ones (l). Each expression valye
is stored in the next byte of the object module. Multiple
expressions, which must be separated by commas, are stored in
successive bytes, as described below:

SAM=5
.=410
.BYTE "D48,SAM ;THE VALUE 060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION 410.
; THE VALUE 005 IS STORED IN LOCATION
;411.

If the high-order byte of the expression reduces to a value other than
0 or =1, the wvalue 1is truncated to the low-order eight bits and
flagged with an error code (T) in the assembly listing.

The construction "D in the first operand of the .BYTE directive above
illustrates the wuse of a temporary radix-control operator. The
function of such special wunary operators 1is described in Section
6.4.1.2.

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the Task Builder

6-17

GENERAL ASSEMBLER DIRECTIVES

issues a truncation diagnostic for the objeét module in question. For
example, the following statements create such a possibility:

.BYTE 23 ;STORES OCTAL 23 IN NEXT BYTE.
A:
.BYTE A sRELOCATABLE VALUE A WILL PROBABLY
;CAUSE TASK BUILDER TRUNCATION
:DIAGNOSTIC.

If an expression following the .BYTE directive is null, it 1is
interpreted as a zero, as described below:

.=420
.BYTE ree ;ZEROS ARE STORED IN BYTES 420, 421,
7422, AND 423.

Note that in the above example, four bytes of storage result from the\
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(0), are reserved in the object module.

6.3.2 .WORD Directive

The .WORD directive is used to generate successive words of data in
the object module. The directive is of the form:

+.WORD exp ;STORES THE BINARY EQUIVALENT OF THE
;EXPRESSION EXP IN THE NEXT WORD.

«WORD expl,exp2,expn ;STORES THE BINARY EQUIVALENTS OF THE
;LIST OF EXPRESSIONS IN SUCCESSIVE
;WORDS.

A legal expression must result in 16 bits of data or less. Each
expression is stored in the next word of the object program. Multiple
expressions must be separated by commas and stored in successive
words, as shown in the following example:

SAL=0
.=500
.WORD 177535,.+4,SAL ;STORES THE VALUES 177535, 506, AND
s RESPECTIVELY.,

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
«.WORD 'S5y ;STORES THE VALUES 0, 5, AND 0 IN
; LOCATION 500, 502, AND 504,
sRESPECTIVELY.

A statement containing a blank operator field, i.e., a symbol that is
not recognized by MACRO-11 as a macro call, an instruction nmemonic, a
MACRO-11 directive, or a semicolon is interpreted during assembly as
an implicit .WORD directive, as shown in the example below:

.=440
LABEL: 100,LABEL ;STORES THE VALUE 100 IN LOCATION 440
;AND THE VALUE 440 IN LOCATION 442,

GENERAL ASSEMBLER DIRECTIVES

CAUTION

You should not wuse this technique to
generate .WORD directives because it may
not be included in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") <characters are unary
operators that can appear in any MACRO-11l expression. When so used,
these characters cause a 16-bit expression value to be generated.

When the single quote is used, MACRO-11 takes the next character 1in
the expression and converts it from its 7-bit ASCII value to a lé6-bit
expression value. The 16-bit value is then used as an absolute term
within the expression. For example, the statement:

MOV #'A,RO

results in the following 16-bit expression value being moved into
register 0:

00000000 01000001

1~-——Binary Value of ASCII A

Thus, in the example above, the expression 'A results in a value of
101(8). Note that the high-order byte 1is always zero (0) in the
resulting expression value when the single gquote unary operator is
used.

The ' character must not be followed by a carriage-return, null,
RUBOUT, 1line-feed, or form-feed character; if it is, an error code
(A) is generated in the assembly listing.

When the double quote is used, MACRO-11 takes the next two characters
in the expression and converts them to a 16-bit binary expression
value from their 7-bit ASCII values. This 1l6-bit value is then used
as an absolute term within the expression. For example, the
statement:

MOV #"AB, RO

results in the following 1l6-bit expression value being moved into
register 0:

01000010(01000001

l 1-—---Binary Value of ASCII A

Binary Value of ASCII B

Thus, in the example above, the expression "AB results in a value of
041101(8) .

6-19

GENERAL ASSEMBLER DIRECTIVES

The " character also must not be followed by a carriage-return, null,
RUBOUT, 1line-feed, or form-feed character; if it is, an error code
(A) is likewise generated in the assembly listing.

The ASCII character set is listed in Section A.1l, Appendix A.

6.3.4 .ASCII Directive

The .ASCII directive translates character strings into their 7-bit
SCII equivalents and stores them in the object module. The format of
the .ASCII directive is as follows:

+ASCII /string 1/.../string n/

where: string is a string of printable ASCII characters. All
printable ASCII characters are legal. The
vertical-tab, null, 1line-feed, RUBOUT, and all
other non-printable ASCII characters, except

carriage-return and form-feed, are illegal
characters. Such an illegal non-printing
character is flagged with an error code (I) in the
assembly listing. The carriage-return and

form-feed characters terminate the scan of the
source line. This premature termination of the
.ASCII statement results in the generation of an
error code (A) in the assembly listing, because
MACRO-11 is wunable to complete the scan of the
matching delimiter at the end of the character
string.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), as 1long as the delimiting
character is not contained within the text string
itself. If the delimiting <characters do not
match, or if an illegal delimiting character is
used, the .ASCII directive 1is flagged with an
error code (A) in the assembly listing.

A non-printing character can be expressed in an .ASCII statement only
by enclosing its equivalent octal value within angle brackets. Each
set of angle brackets so used represents a single character. For
example, in the following statement:

.ASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Furthermore, the expressions must reduce to
eight bits of absolute data or less, subject to the same rules for
generating data as with the .BYTE directive (see Section 6.3.1).

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<Kexpression>DEF/
contains a single ASCII character string, and performs no evaluation

of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

6-20

GENERAL ASSEMBLER DIRECTIVES

.ASCII /HELLO/ :STORES THE BINARY REPRESENTATION
;OF THE LETTERS HELLO IN FIVE
;CONSECUTIVE BYTES.

.ASCII /ABC/<15><12>/DEF/ ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A,B,C,CARRIAGE
;RETURN,LINE FEED,D,E,F IN EIGHT
;CONSECUTIVE BYTES.

.ASCII /AK15>B/ ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, <, 1, 5, >,
;AND B IN SIX CONSECUTIVE BYTES.

The semicolon (;) and equal sign (=) can be used as delimiting
characters in an ASCII string, but care must be exercised in so doing
because of their significance as a comment indicator and assignment
operator, respectively, as illustrated in the examples below:

.ASCII ;ABC;/DEF/ ;STORES THE BINARY REPRESENTATION OF
;THE CHARACTERS A, B, C, D, E, AND F
;IN SIX CONSECUTIVE BYTES; NOT
;RECOMMENDED PRACTICE.

.ASCII /ABC/;DEF; ;STORES THE BINARY REPRESENTATIONS OF
;s THE CHARACTERS A, B, AND C IN THREE
;CONSECUTIVE BYTES; THE CHARACTERS D,
;E, F, AND ; ARE TREATED AS A COMMENT.

.ASCII /ABC/=DEF= ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, B, C, D, E, AND
;F IN SIX CONSECUTIVE BYTES; NOT
; RECOMMENDED PRACTICE.

An equal sign is treated as an assignment operator when it appears as
the first character 1in the ASCII string, as 1illustrated by the
following example:

.ASCII =DEF= ; THE DIRECT ASSIGNMENT OPERATION
; .ASCII=DEF IS PERFORMED, AND A Q
; (SYNTAX) ERROR IS GENERATED UPON
;ENCOUNTERING THE SECOND = SIGN.

6.3.5 J.ASCIZ Directive

The .ASCIZ directive is equivalent to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=15
LF=12
HELLO: .ASCIZ <CR><XLF>/MACRO-11 VO01lA/<KCR><LF> ;INTRODUCTORY MESSAGE
. EVEN
MOV #HELLO,R1 ;GET ADDRESS OF MESSAGE.
MOV #LINBUF,R2 ;GET ADDRESS OF OUTPUT BUFFER.
108: MOVB (R1)+, (R2)+ ;MOVE A BYTE TO OUTPUT BUFFER.
BNE 108 ;IF NOT NULL, MOVE ANOTHER BYTE.

GENERAL ASSEMBLER DIRECTIVES

The .ASCIZ directive is subject to the same checks for character
legality and proper character .string construction as described above
for the .ASCII directive.

6.3.6 .RAD5S0 Directive

The .RAD50 directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. The form of the directive is:

.RAD50 /string 1/.../string n/

where: string represents a series of characters to be packed
(three characters per word). The string must
consist of the characters A through Z, 0 through
9, dollar sign ($), period (.) and space (). An
illegal printing character causes an error flag
(Q) to be printed in the assembly listing.

If fewer than three characters are to be packed,
the string 1is packed 1left-justified within the
word, and trailing spaces are assumed.

As with the .ASCII directive described in Section
6.3.4, the vertical-tab, null, line-feed, RUBOUT,
and all other non-printing characters, except
carriage-return and form-feed, are illegal
characters, resulting in an error code (I) in the
assembly 1listing. Similarly, the carriage-return
and form-feed characters result in an error code
(A) because these characters end the scan of the
line, preventing MACRO-11 from detecting the
terminating matching delimiter.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), provided that the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .RAD50 directive 1is flagged with an
error code (A) in the assembly listing.

Examples of .RAD50 directives are shown below:

.RAD50 /ABC/ ; PACKS ABC INTO ONE WORD.
.RAD50 /AB/ ;PACKS AB (SPACE) INTO ONE WORD.
.RAD50 /ABCD/ ; PACKS ABC INTO FIRST WORD AND

;D (SPACE) (SPACE) INTO SECOND WORD.
.RAD50 /ABCDEF/ ; PACKS ABC INTO FIRST WORD, DEF INTO

;s SECOND WORD.

GENERAL ASSEMBLER DIRECTIVES

Each character 1is translated

indicated in the following table:
Character Radix-50

(space)

A-7

$

Eundefined)
0-9

The Radix-50 equivalents for characters 1

combined as follows:

Radix-50 Value ((C1l*5

For example:

Radix-50 Value of ABC

Refer to Section A.2 in

equivalents.

Angle brackets
special codes
example below:

(<>) must be used

.RAD50 /AB/<35>

CHR1=1
CHR2=2
CHR3=3

~»RAD50

6.3.7 Temporary Radix-50 Control
The "R operator specifies that an
Radix-50 format.
one word.

“Rcce

where ccc represents a maximum of
a 16-bit Radix~-50 value. If more
any following the third character
specified, it is assumed that the

3-character file type specifier (MAC)

MOV #"RMAC,FILEXT

be assembled directly

Appendix

<CHR1><CHR2><CHR3>

This allows up to three
The "R operator is coded as follows:

its

into Radix-50 equivalent, as
Octal Equivalent
0
1-32
33
34
35
36-47
through 3 (C1,C2,C3) are
0)+C2)*50+C3
((1*50)+2)*50+3 = 3223
A for a table of Radix~-50
in the .RAD50 directive whenever

are to be inserted in the text string, as shown in the

:STORES 3255 IN ONE WORD.

sEQUIVALENT TO .RADS50 /ABC/.
Operator: “R

is to be converted to
characters to be stored in

argument

three characters to be converted to
than three characters are specified,

are ignored. If fewer than 3 are
trailing characters are blanks. The
following example shows how the "R operator might be used to pack a
into a single l6-bit word.
;STORE RAD50 MAC AS FILE EXTENSION
The number sign (#) is used to indicate immediate data, i.e., data to
into object code. "R specifies that the
This wvalue is then

characters MAC are to be converted to Radix-50.

stored in location FILEXT.

GENERAL ASSEMBLER DIRECTIVES

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

The normal default assumption for numeric values or expression values
appearing in a MACRO-1l1 source program is octal. However, numerous
instances may occur where an alternate radix is useful for portions of
a program or for variables within a given statement. It may be
useful, for example, to declare a given radix for applicability
throughout a program or to specify a numeric value or expression value
in a manner that causes it to be interpreted as a binary, octal, or
decimal wvalue during assembly. In other such instances, it may be
useful to complement numeric values or expression values. These
MACRO-11 facilities are described in the following sections.

NOTE

When two or more unary operators appear together,
modifying the same term, the operators are
applied, from right to left, to the term.

6.4.1.1 .RADIX Directive - Numbers used in a MACRO-11l source program
are initially considered to be octal values; however, you can declare
any one of the following radices for applicability throughout the
source program or within specific portions of the program:

2, 8, 10
This is accomplished via a .RADIX directive of the form:
.RADIX n

where: n represents one of the three acceptable radices
listed above. 1If the argument n is not specified,
the octal default radix is assumed.

The argument in the LRADIX directive 1is always interpreted as a
decimal value. Any alternate radix declared in the source program
through the .RADIX directive remains in effect until altered by the
occurrence of another such directive, i.e., a given radix declaration
is valid throughout a program until changed. For example, the
statement:

.RADIX 10 ;BEGINS A SECTION OF CODE HAVING A
;DECIMAL RADIX.

«RADIX sREVERTS TO OCTAL RADIX.

Any value other than null, 2, 8, or 10 specified as an argument in the
.RADIX directive <causes an error code (A) to be generated in the
assembly listing.

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be wused within a macro definition.
Where a possible radix conflict exists within a macro definition or in
possible future uses of that code, it is recommended that the user

6-24

GENERAL ASSEMBLER DIRECTIVES

specify numeric or expression values using the temporary radix control
operators described below.

6.4.1.2 Temporary Radix Control Operators: "D, "0, and "B - Once the
user has specified a given radix for a section of code or has decided
to use the default octal radix, he may discover a number of cases
where an alternate radix is more convenient or desirable (particularly
within macro definitions). The creation of a mask word, for example,
might best be accomplished through the use of a binary radix.

MACRO-11 has three unary operators that allow the user to establish an
alternate radix, as shown below:

“"D"number" ("number" is evaluated as a decimal number)
“O"number" ("number" is evaluated as an octal number)
“"B"number" ("number" is evaluated as a binary number)

Thus, an alternate radix can be declared temporarily to meet a
localized requirement 1in the source program. Such a declaration can
be made at any time, regardless of the existence of the default octal
radix or another specific radix declaration elsewhere in the program.
In other words, the effect of a temporary radix control operator is
limited to the term or expression immediately following the operator.
Any value specified in connection with a temporary radix control
operator 1is evaluated during assembly as a 16-bit entity. Temporary
radix control declarations can be included in the source program
anywhere a numeric value is legal.

The expressions below are representative of the methods of specifying
temporary radix control operators:

o

“Dl1l23 Decimal radix A
"0 47 Octal Radix
"B 00001101 Binary Radix
“0<A+13> Octal Radix

Note that the up-arrow and the radix control operator may not be
separated, but the radix control operator and the following term or
expression can be physically separated by spaces or tabs for
legibility or formatting purposes. A multi-element term or expression
that is to be interpreted in an alternate radix should be enclosed
within angle brackets, as shown in the last of the four temporary
radix control expressions above.

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix:
1
.RADIX 10
A=10
.WORD "0<A+10>*10

When the temporary radix expression in the .WORD directive above is
evaluated, it effectively yields the following equivalent statement:

.WORD 180.

MACRO-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.), as shown below:

100. Equivalent to 144(8)
1376. Equivalent to 2540(8)
128. Equivalent to 200(8)

6-25

GENERAL ASSEMBLER DIRECTIVES

The above expression forms are equivalent in function to those listed
below:

"D100
"D1376
D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available
to simplify the use of the floating-point hardware on the PDP-11.
These facilities allow floating-point data to be «c¢reated 1in the
program, and numeric values to be complemented or treated as
floating-point numbers.

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may optionally
contain a decimal point, and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. Such a string will result in
one or more errors (A or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

3

3.

3.0
3.0E0
3EO
.3E1
300E-2

As can be inferred, the list could be extended indefinitely (e.g.,
3000E-3, .03E2, etc.). A leading plus sign is optional (e.g., 3.0 is
considered to be +3.0). A leading minus sign complements the sign
bit. ©No other operators are allowed (e.g., 3.0+N is illegal).

All floating-point numbers are evaluated as 64 bits in the following
format:

64 63 56 55 0

S EEEEEEEE MMM..... MMM
Mantissa (55 bits)
Exponent (8 bits)
Sign (1 bit)

MACRO-11 returns a value of the appropriate size and precision via one
of the floating=-point directives. The values returned may be
truncated or rounded (see Section 6.2).

Floating-point numbers are normally rounded. That 1is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order bit of the unretained word is added to
the 1low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express 1its exact value, the highest bit (32) of the

6-26

GENERAL ASSEMBLER DIRECTIVES

unretained field is added to the least significant bit (0) of the
retained field (see illustration below). The .ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT 1is wused to
return to floating-point rounding (see Table 6-2).

Bit Bit Bit Bit
32 0 32 31 0

Unretained
field

Retained
field

Note that all numeric opérands associated with Floating Point
Processor instructions are automatically evaluated as single-word,
decimal, floating-point values unless a temporary radix control
operator 1is specified. For example, to add (floating) the octal
constant 41040 to the <contents of floating accumulator zero, the
following instruction must be used:

ADDF $7041040,F0
where: FO0 is assumed to represent floating accumulator zero.

Floating-point numbers are described in greater detail 1in the
applicable PDP-11 Processor Handbook.

6.4.2.1 .FLT2 and .FLT4 - Floating-Point Storage Directives - MACRO-1l
supports two directives that evaluate successive floating-point
numbers and store the results in the object module. These
directives are similar to the .WORD directive and are of the
form:

LFLT2 argl,arg2,...
.FLT4 argl,arg2,...

where: argl,arg2,... represent one or more floating point numbers
as described in Section 6.4.2. Multiple
arguments must be separated by commas.

.FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage for each argument.

6.4.2.2 Temporary Numeric Control Operators: “"C and “F - The ~C
unary operator allows you to specify an argument that is to be
complemented as it 1is evaluated during assembly. The ~F unary
operator allows you to specify an argument consisting of a l-word
floating=-point number.

As with the radix control operators described above, the numeric
control operator (°C) can be used anywhere in the source program that
an expression value is legal. Such a construction is evaluated by
MACRO-11 as a 16-bit binary value before being complemented. For
example, the following statement:

TAG4: .WORD ~C151
causes the 1l's complement of the value 151 (octal) to be stored as a

16-bit wvalue in the program. The resulting value expressed in octal
form is 177626(8) .

GENERAL ASSEMBLER DIRECTIVES

Because the “C construction is a unary operator, the operator and its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following
construction:

“C"D25

causes the decimal value 25 to be complemented during assembly. The
resulting binary value, when expressed 1in octal form, reduces to
177746 (octal).

The term created through the use of the temporary numeric control
operator thus becomes an entity that can be wused alone or in
combination with other expression elements. For example, the
following construction: :

"C2+6
is equivalent in function to:
<"C2>+6

This expression is evaluated during assembly as the 1's complement of
2, plus the absolute value of 6. When these terms are combined, the
resulting expression value generates a carry beyond the most
significant bit, leaving 000003(8) as the reduced value.

As shown above, when the temporary numeric control operator and its
argument are coded as a term within an expression, angle brackets
should be used as delimiters to ensure precise evaluation and
readability.

MACRO-11 also supports a unary operator for numeric control which
allows you to specify an argument consisting of a 1l-word
floating-point number. For example, the following statement:

A: MoV #"F3.7,R0

creates a l-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 14 7 6 0

S EEEEEEEE MMMMMMM

Sign (bit 15) Exponent (bits 14-7) Mantissa (bits 6-0)

The importance of ordering with respect to unary operators is shown
below.

"F1.0 = 020400
"F-1.0 = 120400
-"F1.0 = 157400
-"F-1.0 = 057400

The value created by the "F unary operator and its argument is then a
term that can be used by itself or in an expression. For example:

"C"F6.2
is equivalent to:

"C<"F6.2>

GENERAL ASSEMBLER DIRECTIVES

For this reason, the use of angle brackets 1is advised. Expressions
used as terms or arguments of a unary operator must be explicitly
grouped.

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current 1location
counter and 1in reserving storage space in the object program are
described in the following sections.

In this connection, it should be noted that several MACRO-11
statements may cause an odd number of bytes to be allocated, as listed
below:

1. .BYTE directive
2. .BLKB directive
3. .ASCII or .ASCIZ directive
4. .0ODD directive

5. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the 1location counter to an even
value, but that instruction is flagged with an error code (B) in the
assembly listing.

6.5.1 .EVEN Directive

The .EVEN directive ensures that the current location counter contains
an even value by adding 1 if the current value is odd. If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code (Q) in the
assembly listing.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/

.EVEN ;ENSURES THAT THE NEXT STATEMENT WILL
;BEGIN ON A WORD BOUNDARY.

.WORD XY7

6.5.2 .0DD Directive

The .0ODD directive ensures that the current location counter contains
an odd value by adding 1 if the current value is even. If the current
location counter is already odd, no action is taken. Any operands
following an .ODD directive are also flagged with an error code (Q) in
the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

6.5.3 .BLKB and .BLKW Directives

Blocks of storage can be reserved in the object program by means of
the .BLKB and .BLKW directives. The .BLKB directive is used to
reserve byte blocks; similarly, the .BLKW directive reserves word
blocks. The two directives are of the form:

.BLKB exp
.BLKW exp

where: exp represents the specified number of bytes or words
to be reserved in the object program. If no
argument is present, a default value of 1 |is
assumed. These ~directives should not be used
without arguments. Any expression that is
completely defined at assembly-time and that
reduces to an absolute value 1is 1legal. If the
expression specified in either of these directives
is not an absolute value, the statement is flagged
with an error code (A) in the assembly listing.

Figure 6-6 illustrates the use of the .BLKB and .BLKW directives.

166 oooene +PSECT IMPURE,D

167 0oaoeen PASSI1 ,BLKW) JPASS FLAG

168 INEXT GROUP MUST STAY TOGETHER
169 000009 +PSECT IMPPAS,D,GBL

170 ee0000 SYMBOL ¢ BLKW 2 18YMBOL ACCUMULATOR

171 0c0004 MODE 1Y JMODE/FLAGS BYTE

172 00do04 FLAGSts ,BLKB {) .

173 0c000s SECTORt1,BLxB 1 }SYMBOL/EXPRESSION TYPE

174 000006 VALUESt ,BLKW 1 FEXPRESSION VALUE

175 ooo0i0 RELLVLES ,BLKW 1 JRELOCATION LEVEL

176 200203 «REPT MAXXMTwc<,mSYMBOL>/2>

177 BLKW 1

178 +ENDR

179

180 000020 CLCNAMyz BLKW 2 JCURRENT LOCATION COUNTER NAME
{81 200024 CLCFGS1t,BLKB 1)

182 0@0025 CLCSECt11,BLKB i)

183 000026 CLCLOC1,BLKW i ’

184 @00030 CLCMAX 3t BLKW 1 JEND OF GROUPED DATA

185 ao0032 CHRPNT St ,BLKW 1 JCHARACTER POINTER

186 000034 SYMBEG# 1t ,BLKMW i JPOINTER TO START OF SYMBOL
187 280036 ENDFLGE 1 ,BLKW {)

188 90Q000 oPSECT

Figure 6-6 Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.+expression

which causes the value of the expression to be added to the current
value of the location counter. The .BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore recommended.

GENERAL ASSEMBLER DIRECTIVES

6.6 TERMINATING DIRECTIVES

6.6.1 .END Directive

The .END directive indicates the logical end of the source input, and
takes the following form:

.END exp

where: exp represents an optional expression value which, if
present, indicates the program-entry point, i.e.,
the transfer address at which program execution is
to begin.

When MACRO-11 encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any additional text beyond this
point in the current source file, as well as 1in additional source
files identified in the command line, will be ignored.

When creating a task image consisting of several object modules, only
one object module may be terminated with an .(END exp statement
specifying the starting address. All other object modules must be
terminated with an .END statement without an address argument;
otherwise, the Task Builder will issue a diagnostic message. If no
starting address 1is specified in any of the object modules, task
execution will begin at location 1 of the task and immediately fault
because of an odd addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; if it is so used, it is flagged with an
error code (0) in the assembly listing. The .END statement may be
used, however, in an immediate conditional statement (see Section
6.10.2).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6.6.2 JEOT Directive

Under RSX-11 and IAS operating systems, the MACRO-11 .EOT directive is
ignored and simply treated as a directive without effect, i.e., as a
no-op.

6.7 PROGRAM BOUNDARIES DIRECTIVE: ,LIMIT

It is often desirable to know the upper and lower address boundaries
of the task image. When the .LIMIT directive is specified in the
source program, MACRO-11 effectively generates the following
instruction:

.BLKW 2

causing two storage words to be reserved in the object module. Later,
at link time, the address of the bottom of the task's stack is
inserted into the first reserved word, and the address of the first
free word following the task image 1is inserted into the second
reserved word.

GENERAL ASSEMBLER DIRECTIVES

During linking, the size of the task image is rounded upward to the
nearest 2-word boundary.

For a discussion of task memory allocation and mapping, refer to the
applicable Task Builder reference manual (see Section 0.3 in the
Preface).

6.8 PROGRAM SECTIONING DIRECTIVES

The MACRO-11 program sectioning directives are used to declare names
for program sections and to establish <certain program section
attributes essential to Task Builder processing.

6.8.1 .PSECT Directive

The .PSECT directive allows absolute control over the memory
allocation of a program at link time, because any program attributes
established through this directive are passed to the Task Builder.

For example, if you are writing programs for a multi-user environment,
a program section containing pure code (instructions only) or a
program section containing impure code (data only) may be explicitly
declared through the .PSECT directive. Furthermore, these program
sections may be explicitly declared as read-only code, qualifying them
for use as protected, reentrant programs.

In addition, program sections exhibiting the global (GBL) attribute
can be explicitly allocated 1in a task's overlay structure at link
time.

The advantages gained through sectioning programs in this manner
therefore relate primarily to control of memory allocation, program
modularity, and more effective partitioning of memory. Refer to the
applicable Task Builder reference manual for a discussion of memory
allocation (see Section 0.3 in the Preface).

The .PSECT directive is formatted as follows:

.PSECT name,argl,arg2,...argn

where: name represents the symbolic name of the program
section, as described in Table 6-3.
' represents any legal separator (comma, tab and/or
space) .
argl, represent one or more of the legal symbolic
arg2,... arguments defined for use with the +.PSECT
argn directive, as described in Table 6-3. The slash

separating each pair of symbolic arguments listed
in the table indicates that these optional
arguments are mutually exclusive, i.e., one or the
other, but not both, may be specified. Multiple
arguments must be separated by a legal separating
character. Any symbolic argument specified in the
.PSECT directive other than those listed in Table
6-3 will cause that statement to be flagged with
an error code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-3

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

NAME

RO/RW

I/D

GBL/LCL

Blank

RW

LCL

Establishes the program section name,
which is specified as one to six
Radix-50 characters. If this argument
is omitted, a comma must appear in place
of the name parameter. The Radix-50
character set 1is listed in Section A.2
of Appendix A.

Defines which type of access is
permitted to the program section:

RO=Read-Only Access
RW=Read/Write Access

NOTE

IAS and RSX-11D set hardware
protection for RO program
sections. RSX-11M does not
provide such protection.

Defines the program section as
containing either instructions (I) or
data (D). These attributes allow the
Task Builder to differentiate global
symbols that are program entry-point
instructions (I) from those that are
data values (D).

Defines the scope of the program
section, as subsequently interpreted by
the Task Builder.

In building single-segment programs, the
GBL/LCL arguments have no meaning,
because the total memory allocation for
the program will go into the root
segment of the task. The GBL/LCL
arguments apply only in the case of
overlays.

If an object module contains a 1local
program section, then the storage
allocation for that module will occur
within the segment in which the module
resides. Many modules can reference
this same program section, and the
memory allocation for each module is
either concatenated or overlaid within
the segment, depending on the argument
of the program section (.PSECT) defining

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

GBL/LCL
(cont'd)

ABS/REL

LCL

REL

its allocation requirements (see CON/OVR
below). If an object module contains a
global program section, the
contributions to this program section
are collected across segment boundaries,
and the allocation of memory for that
section will go into the segment nearest
the root in which the first contribution
to this program section appeared. (The
term contribution implies an allocation
of memory to the program section.)

Defines the relocatability attribute of
the program section:

ABS=Absolute (non-relocatable). When
the ABS argument is specified, the
program sSection is regarded by the
Task Builder as an absolute module,
thus requiring no relocation. The
program section 1is assembled and
loaded, starting at absolute virtual
address 0. :

The location of data in absolute
program sections must fall within
the virtual memory 1limits of the
segment containing the program
section; otherwise, an error
results at link time. For example,
the following code, although wvalid

during assembly, may generate a
Task Builder error message if
virtual location 100000 is outside
the segment's virtual address space:

.PSECT ALPHA,ABS
.=.+100000
.WORD X

The above coding assembles properly,
but the resulting load address may
be outside the respective segment's
boundaries. 1In such cases, the Task
Builder recognizes this as an
attempt to load data outside the
task image and responds with an
error message.

REL=Relocatable. When the REL
argument is specified, the Task
Builder calculates a relocation bias
and adds it to all references to

locations within the program
section, i.e., all references to the
program section must have a

relocation bias added to them to
make them absolute.

6-34

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

CON/OVR CON Defines the allocation requirements of
| the program section:

CON=Concatenated. All program section
contributions are to be concatenated
with other references to this same
program section in order to
determine the total memory
allocation requirement for this
program section.

OVR=Overlaid. All program section
contributions are to be overlaid.
Thus, the total allocation

requirement for the program section
is equal to the 1largest allocation
request made by any individual
contribution to this program
section.

The only argument in the .PSECT directive that 1is position-dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:
.PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GBL
argument. Default values (see Table 6-3) are assumed for all other
unspecified arguments.
Once the attributes of a program section are declared through a .PSECT
directive, MACRO-11 assumes that these attributes remain in effect for
all subsequent .PSECT directives of the same name that are encountered
within the module.
MACRO-~11 provides for 256(10) program sections, as listed below:

1. One default absolute program section (. ABS.)

2. One default unnamed relocatable program section

3. Two-hundred-fifty-four named program sections.
The .PSECT directive enables the user to:

1. Create program sections (see Section 6.8.1.1)

2. Share code and data among program sections (see Section
6.8.1.2).

6-35

N

|

GENERAL ASSEMBLER DIRECTIVES

For 2ach program section specified or implied, MACRO-11 maintains - the
following information:

1. Program section name
2. Contents of the current location counter
3. Maximum location counter value encountered

4. Program section attributes, 1i.e., the .PSECT arguments
described in Table 6-3 above.

6.8.1.1 Creating Program Sections - MACRO-11] automatically begins
assembling source statements at relocatable zero of the unnamed
program section, i.e., the first statement of a source program is
always an implied .PSECT directive.

The first occurrence of a .PSECT directive with a given name assumes
that the <current 1location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section 1is specified. Further occurrences of a
program section name in subsequent .PSECT statements cause the
resumption of assembly where that section previously ended. For
example:

.PSECT ;DECLARES UNNAMED RELOCATABLE PROGRAM
A .WORD 0 ;SECTION ASSEMBLED AT RELOCATABLE
B: .WORD 0 ;ADDRESSES 0, 2, AND 4.
C: .WORD 0

/.PSECT ALPHA ;DECLARES RELOCATABLE PROGRAM SECTION
Xz \ -WORD 0 t ;NAMED ALPHA ASSEMBLED AT RELOCATABLE
¥ ‘“LWORD 0 - ;ADDRESSES 0 AND 2.

.PSECT ;RETURNS TO UNNAMED RELOCATABLE

D: .WORD 0 ; PROGRAM SECTION AND CONTINUES ASSEM-

;BLY AT RELOCATABLE ADDRESS 6.

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR
and later referenced through the equivalent directive:
.PSECT ALPHA
which requires no arguments.
By maintaining separate location counters for each program section,
MACRO-11 allows the user to write statements that are not physically

contiguous within the program, but that can be 1loaded contiguously
following assembly, as shown in the following example.

j—.

GENERAL ASSEMBLER DIRECTIVES

3 .PSECT SEC1,REL,ERO ;START A RELOCATABLE PROGRAM SECTION
Y A .WORD 0 ;NAMED SEC1 ASSEMBLED AT RELOCATABLE
% Bz .WOED 0 ;ADDRESSES 0, 2, AND 4.
L C: .WORD 0
g ST: CLR A ;ASSEMBLE CODE AT RELOCATABLE
CLR B ;ADDRESSES 6 THROUGH 12.
o CLR C

.PSECT SECA,ABS ;START AN ABSOLUTE PROGRAM SECTION

;NAMED SECA. ASSEMBLE CODE AT
S .WORD .+2,A ;ABSOLUTE ADDRESSES 0 AND 2.

.PSECT SEC1 ;RESUME RELOCATABLE PROGRAM SECTION
y INC A ;SEC1. ASSEMBLE CODE AT RELOCATABLE
v BR ST ;ADDRESSES 14 AND 16.

All labels in an absolute program section are absolute; 1likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is also relocatable or absolute when referenced in
a relocatable or absolute program section, respectively.

Any labels appearing on a line c¢ontaining a .PSECT (or .ASECT or
.CSECT) directive are assigned the value of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: .PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed (or
blank) program section.

It is not known during assembly where relocatable program sections
will be loaded, therefore all references between relocatable sections
in a single assembly are translated by MACRO-11l to references relative
to the base of the referenced section. Thus, MACRO-11 provides the
Task Builder with the necessary information to resolve the 1linkages
between various program sections. Such information is not necessary,
however, when referencing an absolute program section, because all
instructions in an absolute program section are associated with an
absolute virtual address.

In the following example, references to the symbols X and Y are
translated 1into references relative to the base of the relocatable
program section named SEN.

.PSECT ENT,ABS

.=.+1000
A:) CLR X ;ASSEMBLED AS CLR BASE OF
;RELOCATABLE SECTION + 10.
. JMP Y ;ASSEMBLED AS JMP BASE OF
sRELOCATABLE SECTION + 6.
) .PSECT SEN,REL
“1 MOV RO,R1
< JMP A ;ASSEMBLED AS JMP 1000.
Y: . HALT
X: . . .WORD 0

NOTE

In the preceding example, using a constant in conjunction
with the c¢urrent 1location counter symbol (.) in the form
.=1000 would result in an error, because constants are
always absolute and are always associated with the program's
LASECT (. ABS.). If the form .=1000 were used, a program
section incompatibility would be detected. See Section 3.6
for a discussion of the current location counter.

6-37

GENERAL ASSEMBLER DIRECTIVES

6.8.1.2 Code or Data Sharing - Named relocatable program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN
COMMON, i.e., program sections of the same name with the arguments GBL
and OVR from different assemblies are all loaded at the same location
by the Task Builder. All other program sections, i.e., those with the
argument CON, are concatenated.

Note that no conflict exists between internal symbolic names and
program section names, i.e., it is legal to use the same symbolic name
for both purposes. Considering FORTRAN again, using the same symbolic
name is necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.8.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. This allows
you to place odd length data at the end of a module. However, when
several modules contain object code contributions to the same program
section having the concatenate attribute (see Table 6-3), odd length
modules (except the last) may cause the Task Builder to 1link
succeeding modules starting at odd locations, thereby making the

linked program unexecutable. To avoid this problem, code and data
should be separated from each other and be placed in separately named
program sections. This permits the Task Builder to automatically

begin each program section on an even address. Refer to the
applicable Task Builder reference manual for further information on
memory allocation of tasks (see Section 0.3 in the Preface).

6.8.2 JASECT and .CSECT Directives

IAS and RSX-11 assembly-language programs use the .PSECT and .ASECT
directives exclusively, since the .PSECT directive provides all the
capabilities of the .CSECT directive defined for other PDP-11
assemblers. MACRO-11 will accept both .ASECT and .CSECT directives,
but assembles them as though they were .PSECT directives with the
default attributes 1listed in Table 6-4. Also, compatibility exists
between other MACRO-11 programs and the IAS/RSX-11 Task Builders,
since the respective Task Builders recognize the ,ASECT and .CSECT
directives that appear 1in such programs and 1likewise assign the
default values listed in Table 6-4.

GENERAL ASSEMBLER DIRECTIVES

Table 6-4
Non-IAS/RSX-11 Program Section Default Values
Default Value
Attribute
.ASECT .CSECT (named) .CSECT (unnamed)
Name . ABS. name Blank
Access RW RW RW
Type I I I
Scope GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON

The allowable syntactical forms of the .ASECT and .CSECT directives
are:

»ASECT

+CSECT
»CSECT symbol

Note that the statement:
»CSECT JIM

is identical to the statement:
.PSECT JIM,GBL,OVR

because the .CSECT default values GBL and OVR are assumed for the
named program section.

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

MACRO-11 produces a relocatable object module and a 1listing file
containing the assembly listing and symbol table. The Task Builder
joins separately-assembled object modules into a single executable
task image. During 1linking, object modules are relocated as a
function of the specified base of the module. The object modules are
then 1linked wvia global symbols, such that a global symbol in one

module, defined either by a global assignment operator (==), a global
label operator (::), or the .GLOBL directive can be referenced from
another module. which will be referenced by ot
program modules IHM
MO TG

The .GLOBL directive is provided to define (and thus provide 1linkage
to) symbols not otherwise defined as global symbols within a module.
For example, if the .DSABL GBL directive is in effect (see Section
6.2), .GLOBL directives might be included 1in a source program to
effect linkage to library routines. For a global symbol definition,
the directive .GLOBL A,B,C is equivalent to:

A==expression (or A::)
B==expression (or B::)
C==expression (or C::)

6-39

GENERAL ASSEMBLER DIRECTIVES

Thus, the general form of the .GLOBL directive is:

.GLOBL syml,sym2,...symn

where: syml, represent legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a label field and/or a comment
field.

At the end of assembly pass 1, MACRO-11 determines whether a given
global symbol is defined within the current program module or whether
it is to be treated as an external symbol. All internal symbols
appearing within a given program must be defined at the end of
assembly pass 1 or they will be assumed to be default global
references. Refer to Section 6.2 for a description of
enabling/disabling of global references.

In the example below, A and B are entry-point symbols. The symbol A
has been explicitly defined as a global symbol by means of the .GLOBL
directive, and the symbol B has been explicitly defined as a global
label by means of the double colon (::). Since the symbol C is not
defined as a label within the current assembly, it is an external
(global) reference.

DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
EXTERNAL SUBROUTINE

e ~e ~e we

+PSECT ;DECLARE THE UNNAMED PROGRAM SECTION.
.GLOBL A ;DEFINE A AS A GLOBAL SYMBOL.
Az MOV @(R5)+,R0 ;DEFINE ENTRY POINT A.
MOV #X,R1
Xz JSR PC,C ;CALL EXTERNAL SUBROUTINE C.
RTS R5 ;EXIT.
B:: MOV (R5)+,R1 ;DEFINE ENTRY POINT B.
CLR R2
BR X

External symbols can appear in the operand field of an instruction or
MACRO-11 directive as a direct reference, as shown in the examples
below:

CLR EXT
.WORD EXT
CLR @EXT

External symbols may also appear as a term within an expression, as
shown below:

CLR EXT+A
.WORD EXT-2
CLR @EXT+A (R1)

It should be noted that an undefined external symbol cannot be used in
the evaluation of a direct assignment statement or as an argument in a
conditional assembly directive (see Sections 6.10.1 and 6.10.3).

GENERAL ASSEMBLER DIRECTIVES

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks
of source code during the assembly process, based on the evaluation of

stated

condition t

ests within the body of the program. This

capability allows several variations of a program to be generated from
the same source code.

6.10.1

Conditional Assembly Block Directives: .IF, .ENDC

The general form of a conditional assembly block is as follows:

where:

arg

.1IF cond

ument (s)

range

.ENDC

;argument (s) ;START CONDITIONAL ASSEMBLY BLOCK.

;RANGE OF CONDITIONAL ASSEMBLY BLOCK.

;END OF CONDITIONAL ASSEMBLY BLOCK.

represents a specified condition that must be met
if the block 1is to be included in the assembly.
The <conditions that may be tested by the
conditional assembly directives are defined in
Table 6-5.

represents any legal separator (comma, space,
and/or tab).

represent (s) the symbolic argument (s) or
expression(s) of the specified conditional test.
These arguments are thus a function of the
specified condition to be tested (see Table 6-5).

represents the body of code that is either
included in the assembly or excluded, depending
upon whether the specified condition is met.

terminates the conditional assembly block. This
directive must be present to end the conditional
assembly block.

A condition test other than those listed 1in Table 6-5, an illegal
argument, or a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing.

Table 6-5
Legal Condition Tests for Conditional Assembly Directives
Conditions
Arguments Assemble Block If:
Positive | Complement
EQ NE Expression Expression 1is equal to 0
(or not equal to 0).
GT LE Expression Expression is greater
than 0 (or less than or
equal to 0).

GENERAL ASSEMBLER DIRECTIVES

Table 6-5 (Cont.)
Legal Condition Tests for Conditional Assembly Directives

Conditions
Arguments Assemble Block If:
Positive | Complement
LT GE Expression Expression is less than 0
(or greater than or equal
to 0).
DF NDF Symbolic Symbol is defined (or not
argument defined).
B NB Macro-type Argument is blank (or
argument non-blank).
IDN DIF Two macro-type Arguments are identical
arguments (or different).
yA NZ Expression Same as EQ/NE.
G L Expression Same as GT/LT.
NOTE

A macro-type argument (which is a form of symbolic
argument), as shown below, 1is enclosed within
angle brackets or denoted with an up-arrow
construction (as described in Section 7.3.1).

<A,B,C>
~/124/
An example of a conditional assembly directive follows:

.IF EQ ALPHA+1 ;ASSEMBLE BLOCK IF ALPHA+1=0.

.ENDC

The two operators & and ! have special meaning within DF and NDF
conditions, in that they are allowed in grouping symbolic arguments.

& Logical AND operator
! Logical inclusive OR operator
For example, the conditional assembly statement:

.IF DF SYM1 & SYM2

.ENDC

results in the assembly of the conditional block if the symbols SYM1
and SYM2 are both defined.

GENERAL ASSEMBLER DIRECTIVES

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

.ENDC
. ENDC

For example, the following conditional directives:

+IF DF SyMl
.IF DF SYM2

.ENDC
.ENDC

can govern whether assembly is to occur. In the example above, if the
outermost condition is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an L.ENDC
directive. An .ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0O) in the assembly
listing.

MACRO-11 permits a nesting depth of 16(10) conditional assembly
levels. Any statement that attempts to exceed this nesting level
depth is flagged with an error code (0O) in the assembly listing.

6.10.2 Subconditional Assembly Block Directives: .IFF, .IFT, .IFTF

Subconditional directives may be placed within conditional assembly
blocks to indicate:

1. The assembly of an alternate body of code when the condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block.

3. The unconditional assembly of a body of code within a
conditional assembly block.

The subconditional directives are described in detail in Table 6-6.
If a subconditional directive appears outside a conditional assembly
block, an error code (O) is generated in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-6
Subconditional Assembly Block Directives

Subconditional
Directive Function

.IFF If the condition tested upon entering the
conditional assembly block 1is false, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

LIFT If the <condition tested upon entering the
conditional assembly block is true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

LIFTF The code following this directive, and continuing
up to the next occurrence of a subconditional
directive or to the end of the conditional
assembly block, is to be included in the program,
regardless of the result of the condition tested
upon entering the conditional assembly block.

The implied argument of a subconditional directive 1is the condition
test specified upon entering the conditional assembly block, as
reflected by the initial directive in the conditional coding examples
below. Conditional or subconditional directives in nested conditional
assembly blocks are not evaluated if the previous (or outer) condition
in the block 1is not satisfied. Examples 3 and 4 below illustrate
nested directives that are not evaluated because of previous
unsatisfied conditional coding.

EXAMPLE 1l: Assume that symbol SYM is defined.

+IF DF SYM ;TESTS TRUE, SYM IS DEFINED. ASSEMBLE
. ;THE FOLLOWING CODE.

.IFF ;TESTS FALSE. SYM IS DEFINED. DO NOT
. ;ASSEMBLE THE FOLLOWING CODE.

.IFT ;TESTS TRUE. SYM IS DEFINED. ASSEM-
. ;BLE THE FOLLOWING CODE.

LIFTF sASSEMBLE FOLLOWING CODE UNCONDITION-
. ;ALLY.

.IFT ;TESTS TRUE. SYM IS DEFINED. ASSEM-
. ;BLE REMAINDER OF CONDITIONAL ASSEM-
. ;BLY BLOCK.

. ENDC

EXAMPLE

EXAMPLE

EXAMPLE

GENERAL ASSEMBLER DIRECTIVES

2: Assume that symbol X is defined and that symbol Y is not

defined.
.IF DF X
LIF DF X
+IFF
JIFT
.ENDC
.ENDC

;TESTS TRUE, SYMBOL X IS DEFINED.
;TESTS FALSE, SYMBOL Y IS NOT DEFINED.
;TESTS TRUE, SYMBOL Y IS NOT DEFINED,
;ASSEMBLE THE FOLLOWING CODE.

;TESTS FALSE, SYMBOL Y IS NOT DEFINED.
;DO NOT ASSEMBLE THE FOLLOWING CODE.

3: Assume that symbol A is defined and that symbol B is not

defined.
LIF DF A
MOV A,R1
LIFF
MOV R1,R0O
.IF NDF B
.ENDC
.ENDC

;TESTS TRUE. A IS DEFINED.
;ASSEMBLE THE FOLLOWING CODE.

;TESTS FALSE. A IS DEFINED. DO NOT
;ASSEMBLE THE FOLLOWING CODE.

;NESTED CONDITIONAL DIRECTIVE IS NOT
; EVALUATED.

4: Assume that symbol X is not defined and that symbol Y is

defined.
.IF DF X
.IF DF Y
JIFF
IFT
.ENDC
«ENDC

;TESTS FALSE. SYMBOL X IS NOT DEFINED.
;DO NOT ASSEMBLE THE FOLLOWING CODE.
sNESTED CONDITIONAL DIRECTIVE IS NOT

s EVALUATED.

+NESTED SUBCONDITIONAL DIRECTIVE IS
sNOT EVALUATED.

;NESTED SUBCONDITIONAL DIRECTIVE IS
;NOT EVALUATED.

GENERAL ASSEMBLER DIRECTIVES

6.10.3 Immediate Conditional Assembly Directive: .IIF

An immediate conditional assembly directive provides a means for
writing a l-line conditional assembly block. In using this directive,
no terminating .ENDC statement is required, and the <c¢ondition to be
tested is completely expressed within the 1line containing the
directive. 1Immediate conditional assembly directives are of the form:

LIIF cond,arg,statement
where: cond represents one of the 1legal condition tests
defined for conditional assembly blocks in Table
6-5.
' represents any legal separator (comma, Sspace,

and/or tab).

arg represents the argument associated with the
immediate conditional directive, i.e., an
expression, symbolic argument, or macro-type
argument, as described in Table 6-5.

’ represents the separator between the conditional
argument and the statement field. If the
preceding argument is an expression, then a comma
must be used; otherwise, a comma, space, and/or
tab may be used.

statement represents the specified statement to be assembled
if the condition is satisfied.

For example, the immediate conditional statement:
.IIF DF FOO,BEQ ALPHA
generates the code
BEQ ALPHA
if the symbol FOO is defined within the source program.
As with the .IF directive, a condition test other than those listed in

Table 6-5, an 1illegal argument, or a null argument specified in an
.IIF directive results in an error code (A) in the assembly listing.

6.10.4 PAL-11R Conditional Assembly Directives

In order to maintain compatibility with programs developed under
PAL-11R, the following conditionals remain permissible under MACRO-11.
It is advisable, however, to develop future programs using the format
for MACRO-11 conditional assembly directives.

Directive Arguments Assemble Block if
.IFZ or .IFEQ expression - expression=0
.IFNZ or .IFNE expression expression not equal 0
.IFL or .IFLT expression expression<0
.IFG or .IFGT expression expression>0
.IFLE expression expression is < or =0
.IFDF symbolic argument symbol is defined
. IFNDF symbolic argument symbol is undefined

The rules governing these directives are the same as for the MACRO-11
conditional assembly directives previously described.
6-46

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

In assembly-language programming, it is often convenient and desirable
to generate a recurring coding sequence by invoking a single statement
within the program. In order to do this, the desired coding sequence
is first established with dummy arguments as a macro definition. Once
a macro has been defined, a single statement calling the macro by name
with a 1list of real arguments (replacing the corresponding dummy
arguments in the macro definition) generates the desired coding
sequence. This sequence is called the macro expansion.

7.1.1 .MACRO Directive

The first statement of a macro definition must be a .MACRO directive.
This directive takes the form:

label: .MACRO name, dummy argument list
where: label represents an optional statement label.
name represents the programmer-assigned symbolic name

of the macro. This name may be any legal symbol
and may be used as a label elsewhere in the
program.

' represents any legal separator (comma, space,
and/or tab).

dummy represents a number of 1legal symbols (see 3.2.2)
argument that may appear anywhere in the body of the macro
list definition, even as a label. These dumm symbols
can be used elsewhere 1in the program with no
conflict of definjition. MUItiple dummy arguments

specified in this directive may be separated by
any legal separator. The detection of a duplicate
or an 1illegal symbol in a dummy argument list
terminates the scan and causes an error code to be
generated.

A comment may follow the dummy argument list in a .MACRO directive, as
shown below:

.MACRO ABS A,B ;DEFINES MACRO ABS WITH TWO ARGUMENTS.

MACRO DIRECTIVES

NOTE

Although it is legal for a label to appear on a

.MACRO directive, this practice | "
1 in the case of
definitionsy; invall abels or 1labels

constructed with the concatenation character will
cause the macro directive to be ignored. This may
result in improper termination of the macro
definition. This NOTE also applied to .IRP,
.IRPC, and .REPT.

7.1.2 JENDM Directive

The final statement of every macro definition must be an .ENDM
directive of the form:

. ENDM name

where: name represents an optional argument specifying the
symbolic name of the macro being terminated by the
directive, as shown in the following example:

. ENDM ~ ;TERMINATES THE CURRENT
;MACRO DEFINITION.

. ENDM ABS ; TERMINATES THE CURRENT
;MACRO DEFINITION NAMED ABS.

If specified, the symbolic name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly 1listing

(see Appendix D). In either case, the current macro definition is
terminated. Specifying the macro name in the .ENDM statement thus
permits MACRO-11 to detect missing .ENDM statements or

improperly-nested macro definitions.

The .ENDM directive may be followed by a comment field, but must not
contain a label, as shown below:

.MACRO TYPMSG MESSGE ;TYPE A MESSAGE.

JSR R5,TYPMSG
«WORD MESSGE
. ENDM ;END OF TYPMSG MACRO.

An .ENDM statement encountered by MACRO-11 outside a macro definition
is flagged with an error c¢ode (0) in the assembly listing (see
Appendix D).

NOTES

1. Labels on .ENDM directives are ignored.

2. Illegal labels will cause the directive
to be bypassed.

MACRO DIRECTIVES

7.1.3 L.MEXIT Directive

The .MEXIT directive may be used to terminate a macro expansioen before
the end of the macro is encountered. This directive is also legal
within repeat blocks (see Sections 7.6 and 7.7). It is most useful in
the context of nested macros. The .MEXIT directive terminates the
current macro as though an .ENDM directive had been encountered.
Using the .MEXIT directive bypasses the complexities of nested
conditional directives and alternate assembly paths, as shown in the
following example:

.MACRO ALTR N,A,B

.IF EQ N i START CONDITIONAL ASSEMBLY BLOCK.
+MEXIT ; TERMINATE MACRO EXPANSION.

.ENDC ;END CONDITIONAL ASSEMBLY BLOCK.

. ENDM ;NORMAL END OF MACRO.

Considering the above macro, in an assembly where the real argument
for the dummy symbol N 1is equal to =zero (see Table 6-5), the
conditional block would be assembled, and the macro expansion would be
terminated by the .MEXIT directive. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

A MEXIT directive encountered outside a macro definition 1is flagged
with an error code (0O) in the assembly listing.

7.1.4 MACRO Definition Formatting

A form~feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive 1is specified within a macro
definition, it is ilgnored during the assembly of the macro definition,
but a page eject is performed when that macro is expanded.

7.2 CALLING MACROS

A macro definition must be established by means of the .MACRO
directive (see Section 7.1.1) before the macro can be expanded within
the source program. Macro calls are of the general form:

label: name real arguments
where: label represents an optional statement label.
name represents the name of the macro, as specified in

the .MACRO directive (see Section 7.1.1).

MACRO DIRECTIVES

real represent symbolic arguments which replace
arguments the dummy arguments specified in the .MACRO
directive. When multiple arguments are specified,
they are separated by any legal separator.
Arguments to the macro call are treated as
character strings whose usage is determined by the
macro definition. Note that MACRO-11 accepts the
ASCII value of 1lower-case alphabetic characters
when .ENABL LC has been specified.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO) ,R1 ;ABS IS DEFINED AS A LABEL.
BR ABS ;ABS IS CONSIDERED TO BE A LABEL.
ABS #4 ,ENT,LAR ;ABS IS5 A MACRO CALL.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Arguments within a macro definition or macro call are separated from
other arguments by any of the legal separating characters described in
Section 3.1.1.

Macro definition arguments (dummy) and macro call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.6).

For example, the following macro definition and its associated macro
expansion contain multiple arguments:

.MACRO REN A,B,C

REN ALPHA ,BETA,<C1,C2>
Arguments which themselves contain separating characters must be
enclosed in paired angle brackets, as shown above. For example, the
macro call:

REN <MOV X,¥>,%44 ,WEV
causes the entire expression

MOV X, Y
to replace all occurrences of the symbol A in the macro definition.

Real arguments within a macro call are considered to be character
strings and are treated as a single entity during the macro expansion.

MACRO DIRECTIVES

The up-arrow (") construction is provided to allow angle brackets to
be passed as part of the argument. This construction, for example,
could have been used in the above macro call, as follows:

REN "/<MOV X,Y>/,#44,WEV

causing the entire character string <MOV X,¥> to be passed as an
argument.

The following macro call:
REN #44 ,WEV"/MOV X,Y/

however, contains only two arguments (#44 and WEV"/MOV X,Y/), because
the wup-arrow 1is_ a wunary operator (see Section 3.1.3) and it is not
preceded by an argument separator. -

As sHown in the examples above, spaces can be used within bracketed
argument constructions to increase the legibility of such.expressions.

7.3.1 Macro Nesting

The nesting of macros, where the expansion of one macro includes a
call to another, <causes one set of angle brackets in the macro
definition to be removed from an argument with each nested call. The
depth of nesting allowed 1s dependent upon the amount of dynamic
memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, the argumént in the macro definition should be enclosed within
one set of angle brackets for each level of nesting, as shown in the
coding sequence below. It should be noted that this extra set of
angle brackets for each level of nesting 1is required in the macro
definition, not in the macro call.

.MACRO LEVEL1 DUM1,DUM2
LEVEL2 <DUM1>
LEVEL2 <DUM2>

.ENDM
.MACRO LEVEL2 DUM3
DUM3

ADD #10,R0

MOV RO, (R1) +
.ENDM

A call to the LEVEL]l macro, as shown below, for example:
LEVEL1 <MOV X,R0>,<MOV R2,R0>:

causes the following macro expansion to occur:

MOV X, R0

ADD #10,R0
MOV RO, (R1) +
MOV R2,R0
ADD #10,R0
MOV RO, (R1) +

MACRO DIRECTIVES

When macro definitions are nested, i.e., when a macro definition 1is
contained entirely within the definition of another macro, the inner
definition is not a callable macro until the outer macro has been
called and expanded. For example, in the following coding:

.MACRO LVl A,B

.MACRO LV2 C

. ENDM
.ENDM

the LVZ2 macro cannot be called and expanded until the LV1 macro has
been so invoked. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
invoked.

7.3.2 Special Characters in Macro Arguments

An argument may include special characters without enclosing them in a
bracketed construction if that argument does not contain spaces, tabs,
semicolons, or commas. For example, the macro definition:

.MACRO PUSH ARG

MOV ARG,-(SP)
. ENDM
PUSH X+3(%2)

causes the following code to be generated:

MOV X+3(%2) ,~(SP)

7.3.3 Passing Numeric Arguments as Symbols

When macro arguments are passed, an absolute symbol value can be
passed which is treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a numeric
value in the current program radix. The ASCII characters representing
this value are inserted in the macro expansion, and their function is
defined in the <context of the resulting code, as shown in the
following example:

.MACRO 1INC A,B

CON A,\B ;B IS TREATED AS A NUMBER IN CURRENT
B=B+1 ; PROGRAM RADIX.
. ENDM
.MACRO CON A,B
A'B: .WORD 4 ;A'B IS DESCRIBED IN SECTION 7.3.6.
.ENDM
C=0 INC X,C

MACRO DIRECTIVES

The above macro call (INC) would thus expand to:

'

X0: .WORD 4

Note in this expanded code that the label X0: is the result of the
concatenation of two real arguments. The single quote (') character
in the 1label A'B: causes the real arguments X and 0 to be
concatenated as they are passed during the expansion of the macro.
This type of argument construction is described in further detail in
Section 7.3.6.

A subsequent call to the same macro would generate the following code:
X1: .WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B (i.e., C) cannot
be updated in the CON macro definition, because its numeric value has
already been substituted for its symbolic name, i.e., the character 0
has replaced C in the argument string. In the CON macro definition,
the number passed is treated as a string argument. (Where the value
of the real argument is_0, only a single 0 character is passed to the

-

macro expansion.) -

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assémblies of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6.

.MACRO IDT SYM ;ASSUME THAT THE SYMBOL ID TAKES
.IDENT /VO5A'SYM/ ;ON A UNIQUE 2-DIGIT VALUE.
. ENDM ;WHERE VO5A IS THE UPDATE
. ;VERSION OF THE PROGRAM.
IDT \ID

The above macro call would then expand to:
.IDENT /V05A6/

where 6 is the numeric value of the symbol ID.

7.3.4 Number of Arguments in Macro Calls

If more arguments appear in the macro call than in the macro
definition, an error code (Q) is generated in the assembly listing.
If fewer arguments appear in the macro call than in the macro
definition, missing arguments are assumed to be null values. The
conditional directives .IF B and .IF NB (see Table 6-5) can be used
within the macro to detect missing arguments. The number of arguments
can also be specified using the .NARG directive (Section 7.4.1). Note
that a macro can be defined with no arguments.

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In the conventional
macro facilities thus far described, such a label must be explicitly

=7

MACRO DIRECTIVES

specified as an argument with each macro call. Be careful in issuing
subsequent calls to the same macro, to avoid specifying a duplicate
label as a real argument. This concern can be eliminated through a
feature of MACRO-11 which creates a unique symbol where a label is
required in an expanded macro.

As noted in Section 3.5, MACRO-11 <can automatically create 1local
symbols of the form n$, where n is a decimal integer within the range
64 through 127, inclusive. Such local symbols are created by MACRO-11
in numerical order, as shown below:

648
659

1268
127%
This automatic facility is invoked on each <call of a macro whose

definition contains a dummy argument preceded by the question mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B ;CONTAINS DUMMY ARGUMENT B PRECEDED BY
s QUESTION MARK.
TST A
BEQ B
ADD #5,A
B:
. ENDM

A local symbol is generated automatically by MACRO-11 only when a real
argument of the macro call 1is either null or missing, as shown in
Example 1 below, which reflects the expansion of the ALPHA macro
defined above.

If the real argument is specified in the macro call, however, MACRO-11
inhibits the generation of a 1local symbol and normal argument
replacement occurs, as shown in Example 2 below.

EXAMPLE 1: Generate a Local Symbol for the Missing Argument:

ALPHA R1 ;SECOND ARGUMENT IS MISSING.
TST Rl

BEQ 648 ; LOCAL SYMBOL IS GENERATED.
ADD #5,R1

645 :

EXAMPLE 2: Do Not Generate a Local Symbol:

ALPHA R2,XYZ ; SECOND ARGUMENT XYZ IS SPECIFIED.
TST R2

BEQ XYZ ;NORMAL ARGUMENT REPLACEMENT OCCURS.
ADD #5,R2

XYZ:

Automatically-generated local symbols are restricted to the first
16(10) arguments of a macro definition.

Note that automatically-created local symbols resulting local symbols
from the expansion of a macro, as described above, do not in any way
influence 1local symbol block boundaries. In other words, such
automatically-created 1local symbols do not establish a local symbol
block in their own right.

MACRO DIRECTIVES

However, when a macro has several arguments earmarked for automatic
local symbol generation, substituting a specific label for one such
argument introduces a risk that assembly errors will result. This is
because MACRO-11 constructs its argument substitution list at the
point of macro invocation. Therefore, the appearance of any 1label,
the J(ENABL LSB directive, or the .PSECT directive, in the macro
expansion will create a new local symbol block. This could leave
local symbol references in the previous block and the symbol
definitions in the new one, resulting in error codes in the assembly
listing (see Appendix D). Furthermore, a subsequent macro expansion
that generates local symbols in the new block may duplicate one of the
symbols in question, resulting in an additional error code (P) in the
assembly listing.

7.3.6 Reyword Arguments

Macros may be defined with and/or invoked with keyword arguments. A
keyword argument has the following form:

name=string
where
name represents the dummy argument,
string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless properly delimited as described in section 7.3.

When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call.

When a keyword argument appears in the real argument list of a macro
call, the specified string becomes the real argument for the dummy
argument that exactly matches the specified name, whether or not the
dummy argument was defined with a keyword. If a match fails, the
entire argument specification is treated as the next positional real
argument. A keyword argument may be specified anywhere in the dummy
argument list of a macro definition and is part of the positional
ordering of argument. On the other hand, a keyword argument may be
specified anywhere in the real argument list of a macro call but does
not affect the positional correspondence of the remaining arguments.

1 L.LIST ME

2 ;

3 ; DEFINE A MACRO HAVING KEYWORDS IN DUMMY ARGUMENT LIST
4 H

5

6 .MACRO TEST CONTRL=1,BLOCK,ADDRES=TEMP
7 .WORD CONTRL

8 .WORD BLOCK

9 .WORD ADDRES
10 . ENDM :

11

12

13 H ’

14 ; NOW INVOKE SEVERAL TIMES

15 ;

16

MACRO DIRECTIVES

17 000000 TEST A,B,C
000000 000000G «WORD A
000002 000000G .WORD B
000004 000000G .WORD C
18
19 000006 TEST ADDRES=20,BLOCK=30,CONTRL=40
000006 000040 .WORD 40
000010 000030 -.WORD 30
000012 000020 .WORD 20
20
21 000014 TEST BLOCK=5
000014 000001 .WORD 1
000016 000005 .WORD 5
000020 000000G <WORD TEMP
22
23 000022 TEST CONTRL=5,ADDRES=VARIAB
000022 000005 «.WORD 5
000024 000000 .WORD
000026 000000G .WORD VARIAB
24 :
25 000030 TEST
000030 000001 .WORD 1
000032 000000 -.WORD
000034 000000G -WORD TEMP
26
27 000036 TEST ADDRES=JACK!JILL
000036 000001 .WORD 1
000040 000000 .WORD
000042 000000C .WORD JACK!JILL
28
29
30 000001 .END

7.3.7 Concatenation of Macrd Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character in macro definitions. A single quote that
precedes and/or follows a dummy argument in a macro definition is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

.MACRO DEF A,B,C

A'B: .ASCIZ /C/
.BYTE ''A,''B
.ENDM

when the macro DEF is called through the statement:
DEF X,Y,<MACRO-11>
it is expanded, as follows:

XY: .ASCIZ /MACRO-11l/
.BYTE ‘X, 'Y

In expanding the first 1line, the scan for the first argument
terminates upon finding the first ' character. Since A is a dummy
argument, the ' is removed. The scan then resumes with B; B is also
noted as another dummy argument. The two real arguments X and Y are
then concatenated to form the label XY:. The third dummy argument is
noted in the operand field of the .ASCIZ directive, causing the real
argument MACRO-11 to be substituted in this field.

7-10

MACRO DIRECTIVES

When evaluating the arguments to the .BYTE directive during expansion
of the second line, the scan begins with the first ' character. Since
it is neither preceded nor followed by a dummy argument, this '
character remains in the macro expansion. The scan then encounters
the second ' character, which is followed by a dummy argument and is
therefore discarded. The scan of argument A is terminated upon
encountering the comma (,). The third ' character is neither preceded
nor followed by a dummy argument and again remains in the macro
expansion. The fourth (and last) ' character is followed by another
dummy argument and is likewise discarded. (Note that four '
characters were necessary in the macro definition to generate two
characters in the macro expansion.)

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

Three directives are available in MACRO-11 which allow the wuser to
determine certain attributes of macro arguments. The use of these
directives permits selective modifications of a macro expansion,
depending on the nature of the arguments being passed. These
directives are described separately below.

7.4.1 .NARG Directive

The .NARG directive is used to determine the number of arguments in
the macro call currently being expanded. Hence, the .NARG directive
can appear only within a macro definition; if it does not, an error
code (0) 1is generated in the assembly listing. This directive takes
the form:

label: .NARG symbol
where: label represents an optional statement label.

symbol represents any 1legal symbol. This symbol is
equated to the number of arguments in the macro
call currently being expanded. If a symbol is not
specified, the .NARG directive is flagged with an
error code (A) in the assembly listing.

MACRO DIRECTIVES

An example of the .NARG directive follows:

+TITLE NARG

<MACRO NOPP,NUM
«NARG SYM

W IF EQ,SYM
oMEXIT

JIFF

+REPT NUM

NOP

12 «ENDM

11 +ENDC

12 JENDM

OB N WN -

1S %reocee NOPP
2na200 «NARG SYM

o IF EQ,8SYM
«MEXIT
« IFF
«REPT
NQP
«ENDM
+ENDC

18 9naaee NOPP 6
NARAAY «NARG SYM
«IF EQ,S8YM
oMEXTIT
<« IFF
noenee +REPT &
NOP
e ENDM
200@00 0Q0e2u?7 NOP
AANN2 nAR2UR NOP
2A0RR4 QPAR240 NoP
gaeone onn242 NOP
2002192 aqgo2un NOP
gaeni2 okgeun NOP
«ENDC
19
20
el p20001 «END

7.4.2 .NCHR Directive

The .NCHR directive, which can appear anywhere in a MACRO-11] program,
is used to determine the number of characters in a specified character
string. This directive, which is useful in calculating the length of
macro arguments, takes the following form:

label: .NCHR symbol ,<string>
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the number of characters in the
specified character string. If a symbol 1is not
specified, the .NCHR directive is flagged with an
error code (A) in the assembly 1listing (see
Appendix D).

7-12

MACRO DIRECTIVES

’ represents any legal separator (comma, space,
and/or tab).

<string> represents a string of printable characters. The
character string need be enclosed within angle
brackets (<>) or up-arrows (") only |if the
specified character string contains a legal
separator (comma, space, and/or tab). If the
delimiting characters do not match or if the
ending delimiter cannot be detected because of a
syntactical error in the character string (thus
prematurely terminating its evaluation), the .NCHR
directive is flagged with an error code (A) in the
assembly listing.

An example of the .NCHR directive follows:

i o TITLE NCHR
2
3 «MACRD (CHAR,MESS
u LNCHR SYM,MESS
5 JWORD SYM
6 «ASCII /MESS/
7 JEVEN
8 s ENDM
°
10
11 Apponp MSG1t CHAR <HELLO>
20NPQS ANCHR SYM,HELLO
P9QA0E B2RAR0S JWOARD SYM
pazeee 112 «ASCIY /HELLO/
eraans 105
eraagy 114
ageens 114
Pranae 117
JEVEN
{2
13
14 LRI JENR

7.4.3 NTYPE Directive

The .NTYPE directive is used to determine the addressing mode of a
specified macro argument. Hencé, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it 1is £flagged
with an error code (O) in the assembly listing. This directive takes
the form:

label: .NTYPE symbol,aexp
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the 6-bit addressing mode of the
following argument. If a symbol is not specified,
the .NTYPE direcdtive is flagged with an error code
(A) in the assembly listing.

’ represents any legal separator (comma, Space,
and/or tab).

MACRO DIRECTIVES

‘aexp represents any legal address expression, as used
with an opcode. 1If no argument is specified, the
result will be zero.

An example of the use of an .NTYPE directive in a macro definition 1is
shown below:

é «TITLE NTYPE
3 +MACRD SAVE, ARG
4 +NTYPE SYM, ARG
s « IF FA,8YMRTQ
6 MOV ARG, =(SP) tREGISTER MODE
7 o IFF
8 MNvV #ARG,=~(SP) INONeREGISTER MODE
9 «ENDC
1@ «ENOM
11
12
13 Q00000 @OQARQAM TEMPY JWORD f
14
15
16 0QQen2 SAVE RI
neEnNo LNTYPE §YM,R1
o 1F EQ,8YMRT7Q
argee2 @{e146 MAvV Ri{,=(S5P) tREGISTFR MODE
«IFF
MOV ¥R1,=(8P) tNONWREGISTER MODE
«ENNDC
17
18
19 opaMR4 SAVE TEMP
20267 «MNTYPE SYM,TEMP
o IF ER,SYMR T
MoV TFMP,=(8P) IREGISTER MNDF
o TFF
PAQQE4 Mi2TU6 MAY HTEMP,=(SP) INON=REGISTFR MDDE
PRAAAR®
+ENDC
2e
21
22 nag201 JFND

For additional information concerning addressing modes, refer to
Chapter 5 and Appendix B, Section B.2. :

7.5 JERROR AND .PRINT DIRECTIVES

The .ERROR directive is used to output messages to the 1listing £file
during assembly pass 2. A common use of this directive is to provide
a diagnostic announcement of a rejected or erroneous macro call or to
alert the user to the existence o0f an illegal set of conditions
specified in a conditional assembly. If the 1listing £file 1is not
specified, the .ERROR messages are output to the command output
device. The .ERROR directive takes the form:

label: .ERROR expr stext

MACRO DIRECTIVES

where: label represents an optional statement label.
expr represents an optional expression whose value ig
output when the L.ERROR directive is encounteregd
during assembly.
; denotes the beginning of the text string.

text represents the specified message associated with
the .ERROR directive.

Upon encountering an .ERROR directive anywhere in a source program,
MACRO-11 outputs a single line containing:

1. 2n error code (P)
2. The sequence number of the .ERROR directive statement
3. The value of the current location counter
4. The value of the expression, if one is specified
5. The source line containing the .ERROR directive.
For example, the following directive:
.ERROR A ; INVALID MACRO ARGUMENT

causes a line in the following form to be output to the listing file:

Seq., Loc. Exp. .
No. No. Value Text
P 512 005642 000076 .ERROR A ; INVALID MACRO ARGUMENT

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the P error code.

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is a structure that is similar to a macro
definition; essentially a macro definition that has only one dummy
argument. At each expansion of the indefinite repeat range, this
dummy argument 1is replaced with successive elements of a specified
real argument list. An indefinite repeat block directive and its
associated repeat range are coded in-line within the source program.
This type of macro definition and expansion does not require calling
the macro by name, as required in the expansion of conventional macros
previously described in this section.

An indefinite repeat block can appear either within or outside another
macro definition, indefinite repeat block, or repeat block (see
Section 7.7). The rules for specifying indefinite repeat block
arguments are the same as for specifying macro arguments (see Section
7.3).

7.6.1 J.IRP Directive

The .IRP directive is used to replace a dummy argument with successive
real arguments specified in an argument string. This replacement
process occurs during the expansion of an indefinite repeat block
range. This directive takes the following form:

7-15

MACRO DIRECTIVES

label: LIRP sym,<argument list>

(range of indefinite repeat block)

.

« ENDM
where: label represents an optional statement label.

sym represents a dummy argument that is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the .IRP directive Iis
flagged with an error code (A) in the assembly
listing.

’ represents any legal separator (comma, Space,
and/or tab).

<argument list> represents a list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any legal
separator - (comma, space, and/or tab). If no real
arguments are specified, no action is taken.

range represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro
definitions and repeat ranges. The .MEXIT
directive (see Section 7.1.3) is legal within the
range of an indefinite repeat block.

. ENDM indicates the end of the indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-1,.

7.6.2 .IRPC Directive

The .IRPC directive 1is available to permit single character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the dummy argument is replaced with each
successive character in the specified string. The .IRPC directive is
gspecified as follows:

label: LJIRPC sym,<string>

.

(range of indefinite repeat block)

.

. ENDM

where: label represents an optional statement label.

sym

<string>

range

. ENDM

MACRO DIRECTIVES

represents a dummy argument that 1is successively
replaced

argument
flagged with an error code
listing.

represents any legal

with

and/or tab).

represents
angle
indefinite

brackets
contains
recommended for legibility.

represents the block of code to be

for of a character in the list.

each

occurrence

the
enclosed within the angle brackets. If no
is specified,

a list

repeat
are required
separating

of c¢haracters

range.

the

separator

(A) in the

only when the
characters, their

(comma,

repeated

specified real arguments
dummy
.IRPC directive is
assembly

space,

enclosed within
brackets to be used in the expansion of the
Although the

angle
string

use

is

once

The range may contain macro definitions and repeat
ranges.

block.

indicates the

range.

An example of the use of the

NP AW -

10
11
12
13

14
15
16

aaonem 016720
202004 016720
Anen1a 016720
200014 016720
000020 016720
020024 016720
2nen3e 112744
200034 11274}
000240 112744
200044 112741
200250 112741
200054 112741
00001 "
Figure 7-1

nABARAG
oeePeRG
2000096
2PeR006
[l 231’1
XdeX 1A

(L L1 L1dd
A00A206
Q00006
PQ0RAA6
2000006
2000006

Exampl

7.7 REPEAT BLOCK DIRECTIVE:

It is sometimes useful to duplicate a block of code a number of

in-line

with

other

source

The .MEXIT directive
is legal within the range of an indefinite

end of the indefinite repeat

(see Section 7.1.3)

repeat

block

.IRPC directive is shown in Figure 7-1.

e of .IRP and

WTITLE
LIST

JIRP
MOV
JENDM
MoV
MOV
MOV
MOV
MoV
MOV

+IRPC
MOVB
+ENDM
MOVB
MOVB
MOVB
MOVB
MOV
_ MOVB

«END

.REPT, .ENDR

code.

IRPTST
ME

X,<AA,BB,CC,DD,EE,FF»

X, (RO)#

AA, (RO)+
BR, (RQ)+
CC,(RD)»
DD, (RA)
EE, (R2)e
FF,(RO)

X, <ABCDEF>
#rx,=-(R1)

#A,=(RL)
#B,=(R1)
HCam=(RY)
#D,=(R1)
HE,»(R1)
#F,=(R1)

.IRPC Directives

This duplication of

accomplished by creating a repeat block, using

form:

a directive

code
in

times

is
the

MACRO DIRECTIVES

label: .REPT exp

(range of repeat block)

. ENDM
where: label represents an optional statement label.

exp represents any legal expression whose value
controls the number of times the block of code is
to be assembled within the program. When the
expression value 1is 1less than or equal to zero
(0), the repeat block is not assembled. If this
expression 1is not an absolute value, the .REPT
statement is flagged with an error code (A) in the
assembly listing.

range represents the block of code to be repeated the
number of times determined by the specified
expression value. The repeat block may contain
macro definitions, 1indefinite repeat blocks, or
other repeat blocks. The .MEXIT directive is
legal within the range of a repeat block.

. ENDM indicates the end of the repeat block range. The
or terminating statement in a repeat block can be
.ENDR either an .ENDM directive or an .ENDR directive.

7.8 MACRO LIBRARY DIRECTIVE: .MCALL

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are required 1in the
assembly of the source program. The .MCALL directive allows you to
specify the names of all system or user macro definitions not defined
within the source program but which are required to assemble the
program. The .MCALL directive must appear before the first occurrence
of a call to any externally-defined macro. The .MCALL directive is of
the form:

.MCALL argl,arg2,...argn

where: argl, represent the symbolic names of the macro
arg2,... definitions required in the assembly of the source
argn program. The symbolic macro names may be

separated by any 1legal separator (comma, space,
and/or tab).

The .MCALL directive thus provides the means to access both
user-defined and system macro libraries during assembly.

The /ML switch under RSX-11] and the /LIBRARY gqualifier under IAS,
specified in connection with an input file specification, indicate to
MACRO-11 that the file is a macro 1library. When a macro call is
encountered 1in the source program, MACRO-11 first searches the user
macro library for the named macro definitions, and, if necessary,
continues the search with the system macro library.

MACRO DIRECTIVES

Any number of such user-supplied macro files may be designated. In
cases of multiple 1library files, the search for the named macros
begins with the last such file specified. The search continues in
reverse order until the required macro definitions are found,
terminating again, if necessary, with a search of the system macro
library.

If any named macro is not found upon completion of the search, i.e.,
if the macro is not defined, the .MCALL statement is flagged with an
error code (U) in the assembly 1listing. Furthermore, a statement
elsewhere in the source program which attempts to expand such an
undefined macro is flagged with an error code (0) in the assembly
listing.

The RSX-11 and IAS command strings to MACRO-11, through which a file
specification 1is supplied, are described in detail in Sections 8.1.2
and 8.2.2, respectively.

MACRO DIRECTIVES

PART IV

OPERATING PROCEDURES

CHAPTER 8

OPERATING PROCEDURES

MACRO-11 assembles one or more ASCII source files containing MACRO-11
statements into a single relocatable binary object file. The output
of MACRO-11 consists of a binary object file and a file containing the
table of contents listing, the assembly listing, and the symbol table
listing. An optional cross~reference listing of symbols and macros is
available. A sample assembly listing is provided in Appendix 1I.

8.1 RSX-11D AND RSX-11M OPERATING PROCEDURES

The following sections describe those MACRO-11 operating procedures
that apply exclusively to the RSX-11lD and RSX-11M system environments.

8.1.1 1Initiating MACRO-11l Under RSX-11M/RSX-11D

Following the entry of CTRL/C ("C) from an operator's console, the
Monitor Console Routine (MCR) indicates 1its readiness to accept a
command by prompting with the following seguence:

MCR>
MCR then waits for input.

One of five methods can be employed to initiate MACRO-11, as described
below.

8.1,1.1 Method 1 - Direct MACRO-11 Call - The terminal sequence for
method 1 is:

MCR>MAC
MAC>macll-cmd-string

The monitor console routine (MCR) accepts MAC as input, causing
MACRO-11 to be activated. Since an assembly command string is not
present with the MCR 1line, MACRO-11 then solicits input with the
prompting sequence MAC> and waits for command string input (see
Section 8.1.2 below). After the assembly of the indicated files has
been completed, MACRO-11 again solicits command string input with the
MAC> prompting sequence. This process will be repeated until a CTRL/Z
("Z) 1is entered.

OPERATING PROCEDURES

8.1.1.2 Method 2 - Using RUN Facility - The terminal sequence for
method 2 is:

MCR>RUN ...MAC/UIC=[g,m]
MAC>macll-cmd-string

Method 2 is identical to method 1, except that the MCR RUN command is
used, which requires the entire task name, including the 3-dot prefix.
In addition, the default UIC is changed for one execution. As in
method 1 above, MACRO-11 again solicits command string input (see
Section 8.1.2) after the assembly of the indicated files is completed.
The /UIC is optional.

8.1.1.3 Method 3 - Single Assembly - The terminal sequence for method
3 is:

MCR>MAC macll-cmd-string

In method 3, no prompting from MACRO-11 occurs, since the command
string input is included in the MCR command line. As in methods 1 and
2, the expression macll-cmd-strng is any legal, syntactically correct
MACRO-11 command string of the form described in Section 8.1.2.
MACRO-11 then assembles source files under control of the command
string and exits when finished.

8.1.1.4 Method 4 - Install, Run Immediately, and Remove On Exit - The
terminal sequence for method 4 is:

MCR>RUN $MAC/UIC=[g,m]
MAC>macll-cmd-string

This method is used when the MACRO-11 assembler is not permanently
installed in the system. MCR installs MAC from the system program
directory and requests it under the specified UIC. As in method 1,
MACRO-11 solicits command string input (see Section 8.1.2). When
MACRO-11 exits, it is automatically removed from the system.

NOTE
MACRO-11 can be terminated by entering a

CTRL/Z ("Z) at any time a request for
command string input is present.

8§.1.1.5 Method 5 - Using Indirect Filename Facility - Any one of the
following sequences may be used in initiating RSX-11l's indirect file
facility for command string input:

MCR>MAC
MAC>@filespec

or

MCR>RUN ...MAC/UIC=[g,m]
MAC>@filespec

or

OPERATING PROCEDURES

MCR>MAC Q@filespec
or

MAC>RUN $MAC/UIC=[g,m]
MAC>@filespec

These forms use the indirect file facility of RSX-11, which
effectively accomplishes the substitution of "@filespec" for the
"macll-cmd-string” input employed in methods 1 through 4. The file
specified as "@filespec" <contains MACRO-11 command strings. After
this file is opened, command lines are read from the file until the
end-of-file 1is detected. Only three nested levels of indirect files
are permitted in MACRO-11.

8.1.2 RSX-11l Command String Format

In response to the MAC> prompting sequence printed by MACRO-11, type
the output and input file specifications in the form shown below:

MAC>object,listing=srcl,src¢2,...,srcn
where: object represents the binary object (output) file.
listing represents the assembly 1listing (output) file
containing the table of contents, the assembly

listing, and the symbol table.

= separates output file specifications from input
file specifications.

srcl, represent the ASCII source (input) files
src2,... containing the MACRO~11 source program or the
srcn user-supplied macro library files to be assembled.

Only two output file specifications in the command string will be
recognized by MACRO-11l; any more than two such files will be ignored.
No limit is set on the number of source input files; however, the
entire command string must fit on an 80-byte command line.

A null specification in either of the output file specification fields
signifies that the associated output £file is not desired. A null
specification in the input file field, however, is an error condition,
resulting in the error message "MAC -- ILLEGAL FILENAME" on the
command output device (see Section 8.4). Note that the absence of
both the device name (dev:) and the name of the file (filename.type)
from a file specification is the equivalent of a null specification.

NOTE

When no listing file 1is specified, any errors
encountered in the source program are printed on
the terminal from which MACRO-11 was initiated.
When the /NL switch is used in the listing file
specification without an argument, the errors and
symbol table are output to the file specified.

OPERATING PROCEDURES

Each file sgpecification contains the following information (in
accordance with the standard RSX-11 conventions for file
specifications):

filespec /switch:value ...

where: filespec is the standard RSX-11] file specification as
described in Section 8.3 below.

/switch represents an ASCII name identifying a switch
option. This switch option may be specified in
three forms, as shown below, depending on the
function desired:

/SW Invokes the specified switch action.

/NOSW Negates the specified switch action.

/=SW Also negates the specified switch
action.

In addition, the switch identifier may be
accompanied by any number of the following values:
ASCII character strings, octal numbers, or decimal
numbers. The default assumption for a numeric
value is octal. Decimal values must be followed
by a decimal point (.).

Any numeric value preceded by a number sign (#) is
regarded as an explicit octal declaration; this
option is provided for documentation purposes and
ready identification of octal values.

Also, any numeric value can be preceded by a plus
sign (+) or a minus (-) sign. The positive
specification is the default assumption. If an
explicit octal declaration is specified (#), the
sign indicator, if included, must precede the
number sign.

All switch values must always be preceded by a
colon (:).

The number of permissible switch specifications,
accompanying switch wvalues, and interpretations
thereof are program-dependent, i.e., the switch
specifications are interpreted in the context of
the program to which they apply. The switch
options applicable to MACRO-11 are described in
Table 8-2 below.

A syntactical error detected in the command string causes MACRO-11 to
output the following error message to the command output device (see
Section 8.4):

MAC -- COMMAND SYNTAX ERROR

followed by a copy of the entire command string.

Table 8-1 lists the default values for each file specification.

OPERATING PROCEDURES

Table 8-1
File Specification Default Values
Default Value
File Device
Directory Filename | Type
Object System Current. None .OBJ
File device.
Listing Device used Directory None .LST
File for object used in
file. Object file.
Source 1| System Current. None .MAC
File device.
Source 2| Device used Directory None .MAC
to for source 1 or used for
Source n| last source file source 1 or
File specified. last source
file speci-
fied.
User System device, Current, if None .MLB
Macro if macro file macro file
Library is specified is specified
first; if not, first; if not,
device used directory of
by last source last source
file is used. file is used.
System System [1,1] RSXMAC . SML
Macro device.
Library
Indirect | System Current. None .CMD
Command device.
File
8.1.3 RSX-11 File Specification Switches

At assembly time, you may want to override certain MACRO-11 directives
appearing in the source program or to provide MACRO-11 with
information establishing how certain files are to be handled during
assembly. You can do so through one or more switches, which may be
selectively invoked as additional parameters in each file
specification (see Section 8.1.2). The available switches for use in
MACRO-11 file specifications under RSX-11l are listed in Table 8-2.

OPERATING PROCEDURES

Table 8-2

MACRO-11 File Specification Switches for RSX-11

Switch

Function

/LI:arg
/NL:arg

/EN:arg
/DS:arg

/ML (see Note)

Listing control switches; these options
accept ASCII switch values (arg) which
are equivalent in function and name to
and override the arguments of the .LIST
and .NLIST directives specified in the
source program (see Section 6.1.1).
This switch overrides the arguments and
remains in effect for the entire
assembly process.

Function control switches; these options
accept ASCII switch values (arg) which
are equivalent in function and name to
and override the arguments of the .ENABL
and .DSABL directives specified in the
source program (see Section 6.2). This
switch overrides the arguments and
remains in effect for the entire
assembly process.

The /ML switch, which takes no
accompanying switch values, indicates to
MACRO-11 that an input file is a macro
library file. As noted in Section 7.8,
any macro that 1is defined externally
must be identified in the .MCALL
directive before it <can be retrieved
from a macro library file and assembled
with the wuser program. In 1locating
macro definitions, MACRO-11 initiates a
fixed search algorithm, beginning with
the last wuser macro file specified,
continuing in reverse order with each
such file specified, and terminating, if
necessary, with a search of the system
macro library file. 1If a required macro
definition is not found upon completion
of the search, an error code (U) results
in the assembly 1listing (see Appendix
D). This means that a user macro
library file must be specified 1in the
command line prior to the source file(s)
that use macros defined in the 1library
file.

MACRO-11 does not pre-scan the command
line for macro libraries; when a new
source file is needed, it parses the
next input file specification. 1If that
file specification contains the /ML
switch, it 1is appended to the front of
the library file list. As a result, a
user macro library file must be
specified in the command line prior to
the source files which require it, in
order to resolve macro definitions.

OPERATING PROCEDURES

Table 8-2 (Cont.)
MACRO-11 File Specification Switches for RSX-11

Switch Function

/PA:1 (see Note) Assemble the associated file during
assembly pass 1 only.

/PA:2 (see Note) Assemble the associated file during
assembly pass 2 only.

/SP (see Note) Spool listing output (default value).

/NOSP (see Note) Do not spool output.

/CR: [arg] Produce a cross-reference listing. See

Section 8.1.4.

NOTE

The /ML, /PA and /SP switches do not
interact with or override MACRO-11
directives. Rather, they have meaning
only in the command line itself.

Switches for the object £file are 1limited to /EN and /DS; when
specified, they apply throughout the entire command string. Switch
options for the listing file are limited to /LI, /NL, /SP, /CR, and
/NOSP, Switches for input files are limited to /ML, /PA, /EN, and
/DS; the options /ML and /PA apply only to the file immediately
preceding the option so specified, whereas the /EN and /DS options, as
noted above, are also applicable to subsequent files in the command
string.

Multiple occurrences of the same switch following a file specification
must be avoided, because the accompanying values of a subsequent like
switch specification override any previously-specified values. For
example, in the following command string element:

/LI:SRC/LI:MEB

the switch specification /LI:MEB will override that specified
previously as /LI:SRC. If both switch values are desired, they can be
specified in the syntactically correct form shown below:

/LI:SRC:MEB
Examples:
1. MAC>OBJFIL,LSTFIL/NL:BEX:COM/LI:ME=SRCFIL

This command string suppresses the 1listing of binary
extensions and the source comments, and 1lists the macro
expansions. Furthermore, it causes all listing directives in
the source program having the arguments BEX, COM, and ME to
be overridden. 1In this example, the object output is sent to
the file named OBJFIL.OBJ, and the listing and symbol table
output is sent to the file named LSTFIL.LST.

OPERATING PROCEDURES

2. MAC>OBJFIL,LISTM/NL:TOC=SRCFIL

This command string causes the assembly 1listing's table of
contents to be suppressed along with all other listing output
(except the symbol table), when the general no=-list mode
prevails for 1listing files, e.g., when the /NL switch is
present in the file specification without an argument.

8.1.4 Cross-Reference Processor (CREF)

The CREF processor is wused to produce a listing that includes
cross-references to symbols that appear in the source program. The
cross-reference listing is appended to the assembly 1listing. Such

cross-references are helpful in debugging and in reading 1long
programs.

A cross-reference listing can include up to four sections:
1. User-defined symbols
2. Macro symbols
3. Register symbols
4. Permanent symbols
To generate a cross-reference listing, specify the /CR switch in the

MACRO-11 command string. Optional arguments can also be specified.
The form of the switch is:

SYM
/CR : MAC
REG
PST
where:
SYM specifies user-~defined symbols (default)
MAC specifies macro symbols (default)
REG specifies register symbols
PST specifies permanent symbols.

If you wish to generate listings for user-defined and macro symbols
only, simply use /CR. No argument is necessary.

However, 1f an argument is specified, only that type of
cross~reference listing is generated. For example:

/CR:SYM

produces a cross-reference listing of user-defined symbols only. No
listing of macro symbols 1is generated. Thus, to produce all four
types of cross-reference listings, you must specify all four arguments
(the order 1in which they are specified is not significant). Use a
colon to separate arguments. For example:

/CR:REG: SYM:MAC:PST

The CREF processor is more fully described in the Utilities Reference
Manual supplied with your system.

Figure 8-1 illustrates a complete cross-reference listing.
8-8

OPERATING PROCEDURES

PERMANENT SYMBOL TABLE CROSS REFERENCE

SyYmMBoOL

ADD
BCC
8CS
BEGQ
BISe
8IvY
B8Ive
8LO
BNE
BR
CLR
CLRB
cMP
INC
JMP
JSR

MOV

MOVB
RTS
SEC
TST
TSTB
«BLKB
o BLKW

«BYTE

+END
+ENDC
+ IDENT
o IF

oLISY
+MACRO

+« NARG

oNLIST
«PSECT
«RADSQ
+TITLE
+WORD

REFERENCES

2=227 2=2586 2=313
2241

2=271

2=203 2=236 2=275
2=237

2=235 2=305

2=25@ 2=274

em=232

2=225% . 2=251 2=273
2=282

2=2@87 2=264 2=267
2=3024

2=202 2=224 2=2314
2=252 2=~253

2-285 2=3314

2=20a% 2=208 2=210
e=281 2=311

2=204 2=206 2=209
2=245 2=247 2=248
2=268 2=276 2=277
2=310 2=312 2=31é
2=230 2=239 2=327
2=212 2=320

2=292

2w246 2=318

2=299

2=151

2'77 2=78 2~82
e=122 e=123 e=124
2=152 2=164 e=164
2=169 2=169 e=17@
2=333

1=179 2=165 2=166
{=3 2=2 ,
(=174 2= 164 e=164
2=169 2= 169 2=170
2=208 2=2n8 2=208
2=220 2=220 e=222
2e2uo 2=243 2=243
2=258 2=258 2=258
2=281 2=281 2=284
2=16l 2=164 2=165%
1=199

=46 1=75 {=83
2edp

2=205 2=208 2=210
2~311

{e}

2=75 2=88 2=118
2=79 2=149 =164
{2 =1

2=13% 2=138 2~139

Figure 8-1 Sample CREF Listing

2=295

2=302
2=280
2=272

2=219

e=221
2=249
2=278
2=329

2=81

2=125
2=165
2=170

2=167

2= 165
e=1702
2=210
e=222
2=243
2=258
2=281
2=166

1=98

2=220
2=129
2=165
2=140

CREF

2=3en

2=298
2=301

2=229

2=223
2= 255
2=279
2=3302

2=82
2=126
2=16%

2=167

2=16%
=205
2=210
=222
2=243
2=258
2=311
2=168

1=123
e=222

2=166
2=1414

vel

2=306

2=314

2=222

2=226
2=260
2=284

2=813
2=127
2=166

2=168

2= 166
2=208
2=210
2e=g22
2=243
e=270
2=314
2=172

1=145
2=240

2=167
2=142

OPERATING PROCEDURES

8.2 IAS MACRO-11 OPERATING PROCEDURES

The following sections describe those MACRO-11 operating procedures
that apply exclusively to the IAS system environment.

8.2.1 1Initiating MACRO-11l Under IAS

The MACRO command is wused under IAS to begin MACRO-11 assembler
operations. The command causes MACRO-11l to assemble one or more ASCII
source files containing MACRO-11 statements into a relocatable binary
object file. The assembler will also produce an assembly listing,
followed by a symbol table listing. A cross-reference 1listing can
also be produced, by means of the /CROSSREFERENCE qualifier (see
8.2.2, below).

The command can be issued whenever the IAS Program Development System
(PDS) is at command 1level in interactive mode. This condition is
signified by the appearance of the prompting sequence:

PDS>
at the user's terminal. The MACRO command can be input either
directly from the terminal (interactive mode) or from a batch file
(batch mode). When the specified assembly has completed, MACRO-11
terminates operations and returns control to PDS. (Refer to the IAS

User's Guide for further information about interactive and batch mode
operations.)

8.2.2 1IAS Command String Format
A MACRO-11 command string can be specified using any one of the three
formats shown below. The first two formats apply to interactive mode
operation, while the last format applies to batch mode operation.
Note that, in interactive mode, if the input file specification
(filespec) does not begin on the same line as the MACRO command and
its qualifiers, PDS prints following the prompting message:

FILES?
then waits for the user to specify the input file(s).

In batch mode, the command and its arguments must appear on the same
line unless the PDS line continuation symbol (-) is used.

The command formats for each operating mode are as follows:
Interactive Mode

input
PDS> MACRO|qualifiers filespec|/LIBRARY |+...

or
PDS> MACRO[qualifiers]

input
FILES? filespec /LIBRARY]+...

OPERATING PROCEDURES

Batch Mode

$MACRO [qualifier%]
where:

input
filespec

/LIBRARY

qualifiers

output
/OBJECT[:filespec]

/NOOBJECT

output
/LIST[:filespec]

/NOLIST

input
filespec[/LIBRARY]+...

is the specification of an input file
(see Section 8.3) that contains MACRO-11
source program code. When the program
consists of multiple files, a plus sign
(+) must be used to separate each file
specification from the next. The "wild
card" form of a file specification is
not allowed.

specifies that an input file is a macro
library file. As noted in Section 7.8,
any macro that 1is defined externally
must be identified in the .MCALL
directive before it <can be retrieved
from a macro library file and assembled
with the user program. In 1locating
macro definitions, MACRO-11 initiates a
fixed search algorithm, beginning with
the 1last wuser macro file specified,
continuing in reverse order with each
such file specified, and terminating, if
necessary, with a search of the system
macro library file. If a required macro
definition is not found upon completion
of the search, an error code (U) results
in the assembly 1listing (see Appendix
D). This means that a wuser macro
library file must be specified 1in the
command line prior to the source file(s)
that uses any macros defined 1in the
library file. If more than one library
file is specified, the libraries will be
searched in right-to-left order.

specifies one or more of the following:

Produce an object file as specified by
filespec (see Section 8.3). The default
is a file with the same filename as the
last named source file and an .OBJ
extension. /OBJECT is always the
default condition.

Do not produce an object file.

Produce an assembly listing file
according to filespec (see Section 8.3).
If filespec is not specified, the
listing is printed on the line printer.
The default is /NOLIST.

Do not produce a listing file. The
default in interactive mode is /NOLIST
and in batch mode is /LIST.

OPERATING PROCEDURES

NOTE

When no listing file is specified, any
errors encountered in the source program
are displayed at the terminal from which
MACRO-11 was initiated.

/CROSSREFERENCE[:argl...argd]

Produce a cross-reference listing. Argl
through arg4 are as described in Section
8.1.4. This qualifier may be
abbreviated to /C.

PDS accepts the MACRO or SMACRO command as input and initializes the
MACRO-11 assembler, which 1in turn processes the specified files
according to the options indicated in the command string. When the
operation is complete, MACRO-11 returns control to PDS to obtain the
next command line either from the terminal or from the batch stream.

8.2.3 IAS Indirect Command Files

The indirect command file facility of PDS can be used with MACRO-11
command strings. This is accomplished by creating an ASCII file that
contains the desired command strings (or portions thereof) in the
forms shown in Section 8.2.2. When an indirect command file reference
is used in a MACRO-11 command string, the contents of the specified
file are taken as all or part of the command string. An indirect
command file reference is specified in the form:

@filespec
where:

@ specifies that the name that follows 1s an indirect
file.

filespec 1is the file specification of a file (see Section 8.3)
that contains a command string. The default extension
for the file name is .CMD.

An indirect command file reference must always be the rightmost entry
in the command (see Section 8.2.4 for examples).

8.2.4 IAS Command String Examples
The following examples show typical PDS MACRO-11 command strings.

1. PDS> MACRO /NOLIST
FILES? A+BOOT.MAC;3 B

In this example, the source files A.MAC and BOOT.MAC;3 will
be assembled to produce an object file called BOOT.OBJ. No
listing will be produced.

2. Where the indirect command file TEST.CMD contains the command
string:

MACRO/OBJECT:MYFILE A+B

8-12

OPERATING PROCEDURES

The command:
PDS>Q@TEST

causes MACRO-11 to assemble the two files A.MAC and B.MAC
into an object file called MYFILE.OBJ.

3. Where the 1indirect command file IND02.CMD contains the
command string segment:

ATEST/LIBRARY+BTEST+SRT1.021
The command:
PDS>MACRO/LIST:DK1:FOO @INDO2

causes MACRO-11 to assemble the files BTEST.MAC and SRT1,.021
using the macro library file ATEST.MAC to produce an object
file named SRT1.0BJ. A listing file named FOO.LST is placed
on disk unit 1.

4. S$SMACRO/LIST:DKO:MICR/NOOBJECT -
LIB1/LIBRARY+MICR.MAC;002

In this example, the library file is assembled with the file
MICR.MAC;002. The program 1listing file named MICR.LST is
placed on disk unit 0.

8.3 1IAS/RS5X-11 FILE SPECIFICATION FORMAT

The general form for a file specification 1in IAS/RSX-11 systems is
shown below. Detailed information 1is provided in the applicable
system user's guide or operating procedures manual (see Section 0.3 in
the Preface).

dev:[g,m]name.ext;ver
where:

dev: is the name of the physical device where the desired
file resides. A device name consists of two characters
followed by a 1- or 2-digit device unit number (octal)
and a colon (e.g., DPl:, DKO:, DT3:). The default
device under RSX-11D and RSX-11lM is as specified in
Table 8-1. The default device under IAS is established
initially by the system manager for each user and can
be changed through the SET command.

[g,m] is the User File Directory (UFD) code. This code
consists of a group number (octal), a comma (,), and an
owner (member) number (octal) all enclosed in brackets
(f1). An example of a UFD code is: [200,30].

The default UFD is equivalent to the User
Identification Code (UIC) given at log-in time. Under
IAS, this can be changed through the SET DEFAULT
command.

name is the filename and consists of one through nine
alphanumeric characters. There 1is no default for a
filename.

OPERATING PROCEDURES

.ext is a 1- to 3-alphanumeric character filename extension
or type that is preceded by a period (.). An extension
is normally used to identify the nature of the file.
Default wvalues depend on the context of the file
specification and are as follows:

.CMD = Indirect command (input) file
.LST = A listing (print format) file
.MAC = MACRO-11 source module (input file)
.OBJ = MACRO-11 object module (output file)
.CRF = Intermediate CREF input file created
by MACRO-11.
jver is an octal number between 1 and 77777 that is used to

differentiate between versions of the same file. This
number must be prefixed by a semicolon (;).

For input files, the default wvalue 1is the highest
version number of the file that exists.

For output files, the default value 1is the highest
version number of the file that exists increased by 1.
If no version number exists, the value 1 is used.

8.4 MACRO-11 ERROR MESSAGES

MACRO-11 outputs an appropriate error message to the command output
device when one of the error conditions described below is detected.
These error messages reflect operational problems and should not be
confused with the diagnostic error messages (see Appendix D) produced
by MACRO-11 during assembly.

All the error messages listed below, with the exception of the "MAC --
COMMAND I/O ERROR" message, result in the termination of the current
assembly; MACRO-11 then attempts to restart by reading another
command 1line. In the case of a command I/0 error, however, MACRO-11
exits, since it is unable to obtain additional command line input.

Error Message Meaning

MAC -- COMMAND FILE OPEN FAILURE Either the file from which
MACRO-11 is reading a command
could not be opened initially
or between assemblies; or,
the 1indirect command file
specified as "@filename" in
the MACRO-11 command line
could not be opened. See
"OPEN FAILURE ON INPUT FILE"
for meaning.

MAC -- COMMAND I/0O ERROR An error was returned by the
file system during MACRO-11l's
attempt to read a command
line. This is an
unconditionally fatal error,
causing MACRO-1l1l to exit. No
MACRO-11 restart is attempted
when this message appears.

8-14

OPERATING PROCEDURES

Error Message

MAC -- COMMAND SYNTAX ERROR

MAC -- ILLEGAL FILENAME

MAC

MAC

MAC

MAC

MAC

MAC

ILLEGAL SWITCH

INDIRECT COMMAND SYNTAX ERROR

INDIRECT FILE DEPTH EXCEEDED

INSUFFICIENT DYNAMIC MEMORY

INVALID FORMAT IN MACRO LIBRARY

I/0 ERROR ON INPUT FILE

Meaning

An error was detected -in the
syntax of the MACRO-11
command line.

Neither the device name nor
the filename was present in
the input file specification
(i.e., the input file
specification is null), or a
"wild card" convention
(asterisk) was employed in an
input or output file
specification. "Wild card"
options (*) are not permitted
in MACRO-11 file
specifications.

An illegal switch was
specified for a file, an
illegal value was specified
with a switch, or an invalid
use of a switch was detected
by MACRO-11.

The name of the indirect
command file (@filename)
specified in the MACRO-11
command line is syntactically
incorrect.

An attempt to exceed the
maximum allowable number of
nested indirect command files
has occurred. (Only three
levels of indirect command
files are permitted in
MACRO-11.)

There is not enough physical
memory available for MACRO-11
to page 1its symbol table.
Reinstall MACRO-11 in a
larger partition; or see
Section F.3.

The 1library file has been
corrupted or it was not
produced by the Librarian
Utility Program (LBR).

In reading a record from a
source input file or macro
library file, an error was
detected by the file system,
e.g., a line containing more
than 132(10) characters is
encountered. This message
may also 1indicate that a
device problem exists or that
either a source file or a
macro library file has been
corrupted with incorrect
data.

MAC

MAC

MAC

MAC

MAC

OPERATING PROCEDURES

Error Message

-- I/0 ERROR ON MACRO LIBRARY FILE

-- I/0 ERROR ON OUTPUT FILE

-- I/O ERROR ON WORK FILE

-- OPEN FAILURE ON INPUT FILE

-- OPEN FAILURE ON OUTPUT FILE

Meaning

Same meaning as I/0 ERROR ON
INPUT FILE, except that the
file is a macro library file
and not a source input file.

In writing a record to the
object output file or the
listing output file, an error
was detected by the file
system. This message may
also indicate that a device
problem exists or that the
storage space on a device has
been exhausted (i.e., the
device is full).

A read or write error
occurred on the work file
used to store the symbol
table. This error 1is most
likely caused by a problem on
this device, or by attempting
to write to a device that is
full.

1. Specified device does not

exist.

2. The volume is not
mounted.

3. A problem exists with the
device.

4, Specified directory file
does not exist.

5. Specified file does not
exist.

6. User does not have access
to the file directory or
the file itself.

1. Specified device does not

exist.

2. The volume is not
mounted.

3. A problem exists with the
device.

4., Specified directory file
does not exist.

5. User does not have access
to the file directory

6. The volume is full or the
device is write
protected.

OPERATING PROCEDURES
Error Message Meaning

MAC -- 64K STORAGE LIMIT EXCEEDED) 64K words of work file memory
are available to MACRO-11l.
This message indicates that
the assembler has generated
so many symbols (on the order
of 13,000 to 14,000), it has
run out of space. This means
either the source program is
too large to start with, or
it contains a condition that
leads to excessive size, such
as a macro expansion that
recursively calls itself
without a terminating
condition.

The MACRO Assembler uses its stack for the following purposes:

1. Symbol Table. Four words for every symbol, including macro
names and local symbols. (Local symbol space, however, is
reused.)

2. Control Section Information. Five words for each PSECT,
.ASECT, or .CSECT.

3. Storage of macro-definition text. Each and every character,
including comments, between a .MACRO and the corresponding
.ENDM is stored on the stack.

4., Work space (for code conversion, etc.).

If, during 1its execution, the MACRO Assembler reports a stack
overflow, then either the demands of one or more of the
above-described categories must be reduced, or the program must be
broken up into smaller modules and linked together at Task-Build time.

The default stack size for MACRO is 4K. This allows approximately
1000 symbols with the trade-offs mentioned above.

A.l1 ASCII CHARACTER SET

APPENDIX A

EVEN 7-BIT

PARITY OCTAL

BIT CODE CHARACTER
0 000 NUL
1 001 SOH
1 002 STX
0 003 ETX
1 004 EOT
0 005 ENQ
0 006 ACK
1 007 BEL
1 010 BS
0 011 HT
0 012 LF
1 013 vT
0 014 FF
1 015 CR
1 0lé SO
0 017 SI
1 020 DLE
0 021 DC1
1 023 DC3
0 024 DC4

MACRO-11 CHARACTER SETS

REMARKS

Null, tape feed, CONTROL/SHIFT/P.
Start of heading; also SOM, start
of message, CONTROL/A.

Start of text; also EOA, end of
address, CONTROL/B.

End of text: also EOM, end of
message, CONTROL/C.

End of transmission (END); shuts
off TWX machines, CONTROL/D.
Enguiry (ENQRY) ; also WRU,
CONTROL/E.

Acknowledge; also RU, CONTROL/F.
Rings the bell. CONTROL/G.
Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.

Horizontal tab. CONTROL/I.

Line feed or Line space (new line);
advances paper to next line,
duplicated by CONTROL/J.

Vertical tab (VTAB). CONTROL/K.
Form Feed to top of next page
(PAGE). CONTROL/L.

Carriage return to beginning of
line; duplicated by CONTROL/M.
Shift out; changes ribbon color to
red. CONTROL/N.

shift in; changes ribbon color to
black. CONTROL/O.

Data link escape. CONTROL/P (DCO).
Device control 1; turns
transmitter (READER) on, CONTROL/Q
(X ON). 0 022 DC2 Device <control

2; turns punch or auxiliary on.
CONTROL/R (TAPE, AUX ON).
Device control 3; turns

transmitter (READER)

off, CONTROL/S (X OFF).

Device control 4; turns punch or
auxiliary off. CONTROL/T (AUX
OFF) .

EVEN
PARITY
BIT

7-BIT
OCTAL
CODE

CHARACTER

1

COOHKHFHFOMHOOHOHKFOHFOOHMHFHOOFOHMFOFOOHOFFOOHHFOKFOOHHFOOHFORFO

025

026

NAK

SYN

WONOUERWNEFHONSY |~ + ¥~ -2 PN

HIDIOQTDEBUOUOWP@ OV | A o

MACRO-11 CHARACTER SETS

REMARKS

Negative acknowledge; also ERR,
ERROR. CONTROL/U.

Synchronous file (SYNC) .
CONTROL/V.
End of transmission block; also

LEM, logical end of medium.
CONTROL/W.

Cancel (CANCL). CONTROL/X.

End of medium. CONTROL/Y.
Substitute. CONTROL/Z.

Escape. CONTROL/SHIFT/K.

File separator. CONTROL/SHIFT/L.
Group separator. CONTROL/SHIFT/M.
Record separator. CONTROL/SHIFT/N.
Unit separator. CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

MACRO-11 CHARACTER SETS

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

112
113
114

116
117
120
121
122

124
125
126
127
130
131
132
133
134
135
136
137 **

140 Accent grave.

shift/k.
shift/1.
shift/m.
*

OOHMHOFHFOOHEFHFOCOCOHOMFOHOOHOM
3 S N XS <CH YO WOZRERG

sl

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157

161
162
163
164
165
166
167
170
171
172
173
174
175 This code generated by ALTMODE.

176 This code generated by prefix key

(1f present).
177 Delete, Rubout.

NMXESCSCAuURQUWOSEHAWURSTQHM® QO T W

OCOHOHHOOHHOHOOHOHMOHOOHKFOO O H

=

* "~ Appears as # or * on some machines.

*% _Appears as « on some machines.
A-3

MACRO-11 CHARACTER SETS

A.2 RADIX-50 CHARACTER SET

Character ASCII Octal Equivalent Radix-50 Equivalent
space 40 0

A-Z 101-132 1-32

$ 44 33

. 56 . 34

unused 35

0-9 60-71 36-47

The maximum Radix-50 value is, thus,
47*50*%*24+47*50+47=174777

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic 1is
performed in octal):

X=113000
2=002400
B=000002
X2B=115402

Single Char.

or Second Third

First Char. Character Character

Space 000000 Space 000000 Space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
o] 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
v 104600 v 001560 v 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 Z 000032
S 124300 $ 002070 $ 000033

A-4

MACRO-11 CHARACTER SETS

SINGLE CHAR.

OR SECOND THIRD

FIRST CHAR. CHARACTER CHARACTER

. 127400 . 002140 . 000034
Unused 132500 Unused 002210 Unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

APPENDIX B

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.1 SPECIAL CHARACTERS

Character Function

Label terminator
Direct assignment operator
Register term indicator
tab Item terminator or field terminator
space Item terminator or field terminator
Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
(comma) Operand field separator
Comment field indicator
Arithmetic addition operator or auto
increment indicator
Arithmetic subtraction operator or auto
decrement indicator
Arithmetic multiplication operator
Arithmetic division operator
Logical AND operator
Logical OR operator
Double ASCII character indicator
(apostrophe) Single ASCII character indicator or
concatenation indicator
Assembly location counter
Initial argument indicator
Terminal argument indicator
Universal unary operator or argument
indicator
\ Macro call numeric argument indicator
vertical tab Source line terminator

0O i e

F NN =~ D HE

— N\ *

PNV A .

B.2 SUMMARY OF ADDRESS MODE SYNTAX

Address mode syntax is expressed in the summary below using the

following symbols: n 1is an integer between 0 and 7 representing a
register number; R is a register expression; E 1is an expression;
and ER is either a register expression or an expression in the range 0

to 7.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Address
Mode

Format Name

R Register

@R or Register

(ER) deferred

(ER) + Autoincrement

@ (ER) + Autoincrement
Deferred

- (ER) Autodecrement

@-(ER) Autodecrement
Deferred

E (ER) Index

@E (ER) Index Deferred

$E Immediate

Q4%E Absolute

E Relative

QE Relative
Deferred

B.3 ASSEMBLER DIRECTIVES

Address

‘Mode

Number Meaning

On Register R contains the
operand.

1n Register R contains the ad-
dress of the operand.

2n The contents of the register
specified as (ER) are
incremented after being used
as the address of the operand.

3n The register specified as (ER)
contains the pointer to the.
address of the operand; the
register (ER) 1is incremented
after use.

4n The contents of the register
specified as (ER) are
decremented before being used
as the address of the operand.

5n The contents of the register
specified as (ER) are
decremented before being used
as the pointer to the address

- of the operand.

6n The expression E, plus the
contents of the register
specified as (ER), form the
address of the operand.

n The expression E, plus the
contents of the register
specified as (ER), yield a
pointer to the address of the
operand.

27 The expression E is the
operand itself.

37 The expression E is, the
address of the operand.

67 The address of the operand E,
relative to the instruction,
follows the instruction.

77 The address of the operand is

pointed to by E whose address,
relative to the instruction,
follows the instruction.

The MACRO-11 assembler directives are summarized in the following
For a detailed description of each directive, the table

table.

B-2

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

contains references to the appropriate sections in the body of the

manual.

Form

~

Bn

“Cexpr

“Dn

~

Fn

“On

“Rcce

.ASCII /string/

Section

Reference

6.4.1.2

6.4.2.2

6.4.1.2

6.4.2.2

6.4.1.2

Operation

A single quote (apostrophe)
followed by one ASCII character
generates a word which contains the
7-bit ASCII representation of the
character in the low-order byte and
zero in the high-order byte. This
character is also used as a
concatenation indicator . in the
expansion of macro arguments (see
Section 7.3.6).

A double quote followed by two
ASCII characters generates a word
which contains the 7-bit ASCII
representation of the two
characters. The first character is
stored in the low-order byte; the
second character is stored in the
high-order byte.

Temporary radix control; causes
the wvalue n to be treated as a
binary number.

Temporary numeric control; causes
the expression's value to be ones-
complemented.

Temporary radix control; causes
the wvalue n to be treated as a
decimal number.

Temporary numeric control; causes
the wvalue n to be treated as a
sixteen-bit floating-point number.

Temporary radix control; causes
the value n to be treated as an
octal number.

Convert ccc to Radix-50 form.

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.ASCIZ /string/

.ASECT

.BLKB exp

+BLKW exp

.BYTE expl,exp2,..

.CSECT [name]

.DSABL arg

.ENABL arg

.END [exp]

+ENDC

.ENDM [name]

.ENDR

.EOT

Section

Reference

6.3.5

6.3.1

6.10.1

7.1.2

Operation

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte, with a zero
byte terminating the specified
string.

Begin or resume the absolute
program section.

Reserves a block of storage space
whose length in bytes is determined
by the specified expression.

Reserves a block of storage space
whose length in words is determined
by the specified expression.

Generates successive bytes of data;
each byte contains the value of the
corresponding specified expression.

Begin or resume named or unnamed
relocatable program section. This
directive is provided for
compatibility with other PDP-11
assemblers.

Disables the function specified by
the argument.

Enables (invokes) the function
specified by the argument.

Indicates the logical end of the
source program. The optional
argument specifies the transfer
address where program execution is
to begin.

Indicates the end of a conditional
assembly block.

Indicates the end of the current
repeat block, 1indefinite repeat
block, or macro definition. The
optional name, if used, must be
identical to the name specified 1in
the macro definition.

Indicates the end of the current
repeat block. This directive 1is
provided for <compatibility with
other PDP-11 assemblers.

Ignored; indicates end-of-tape
(which is detected automatically by
the hardware). It is included for
compatibility with earlier
assemblers.

B-4

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.ERROR exp;text

.EVEN

LFLT2 argl,arg2,...

.FLT4 argl,arg2,...

.GLOBL syml,sym2,..

.IDENT /string/

.IF cond,argl

+IFF

LIFT

.IFTF

.IIF cond,arg,
statement

Section
Reference

7.5

6.4.2.1

6.4.2.1

6.10.1

6.10.2

6.10.2

6.10.2

6.10.3

Operation

User-invoked error directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Ensures that the current location
counter contains an even address by
adding 1 if it is odd.

Generates successive 2-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Generates successive 4-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Defines the symbol(s) specified as
global symbol(s).

Provides a means of labeling the
object module with the program
version number. The version number
is the Radix-50 string appearing
between the paired delimiting
characters.

Begins a conditional assembly block
of source code which is included in
the assembly only if the stated
condition 1is met with respect to
the argument (s) specified.

Appears only within a conditional
assembly block, indicating the
beginning of a section of <code to
be assembled if the condition upon
entering the block tests false.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests true.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled unconditionally.

Acts as a 1l-line conditional
assembly block where the condition
is tested for the argument
specified. The statement is
assembled only if the condition
tests true.

B-5

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

<argl,arg2,...>

.IRPC sym,<string>

+LIMIT

.LIST [argl

.MACRO name,argl,
arg2,; ...

.MCALL argl,arg2,...

<MEXIT

-NARG symbol

.NCHR symbol,<string>

.NLIST [arg]

Section

Reference

7.6.2

7.8

7.4.2

Operation

.IRP sym, 7.6.1
Indicates the beginning of an
indefinite repeat block in which
the symbol specified 1is replaced
with successive elements of the
real argument list enclosed within
angle brackets.

Indicates the beginning of an
indefinite repeat block in which
the specified symbol takes on the
value of successive characters,
optionally enclosed within angle
brackets.

Reserves two words into which the
Task Builder inserts the low and
high addresses of the task image.

Without an argument, the .LIST
directive increments the 1listing
level count by 1. With an
argument, this directive does not
alter the listing level count, but

formats the assembly listing
according to the argument
specified.

Indicates the start of a macro
definition having the specified
name and the following dummy
arguments.

Specifies the symbolic names of the
user or system macro definitions
required in the assembly of the
current user program, but which are
not defined within the program.

Causes an exit from the current
macro expansion or indefinite
repeat block.

Can appear only within a macro
definition; equates the specified
symbol to the number of arguments
in the macro call currently being
expanded.

Can appear anywhere 1in a source
program; equates the symbol
specified to the number of
characters in the specified string.

Without an argument, the .NLIST
directive decrements the 1listing
level count by 1. With an
argument, this directive suppresses
that portion of the listing
specified by the argument.

B-6

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

.NTYPE symbol ,aexp

.ODD

.PAGE

.PRINT exp;text

.PSECT name,attl,...
attn

.RADIX n

.RAD50 /string/

.REPT exp

.SBTTL string

L.TITLE string

.WORD expl,exp2,..

Section

Reference

6.4.1.1

6.3.6

Operation

Can appear only within a macro
definition; equates the symbol to
the 6-bit addressing mode of the
specified address expression.

Ensures that the current 1location
counter contains an odd address by
adding 1 if it is even.

Causes the assembly listing to skip
to the top of the next page, and to
increment the page count.

User-invoked message directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Begin or resume a named or unnamed
program section having the
specified attributes.

Alters the current program radix to
n, where n is 2, 8, or 10.

Generates a block of data
containing the Radix-50 equivalent
of the character string enclosed
within delimiting characters.

Begins a repeat block; causes the
section of code up to the next
.ENDM or .ENDR directive to be
repeated the number of times
specified as exp.

Causes the specified string to be
printed as part of the assembly
listing page header. The string
component of each .SBTTL directive
is collected into a table of
contents at the beginning of the
assembly listing.

Assigns the first six Radix-50
characters in the string as an
object module name and causes the
string to appear on each page of
the assembly listing.

Generates successive words of data;
each word contains the value of the
corresponding specified expression.

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The permanent symbol table (PST) contains those symbols which are
automatically recognized by MACRO-11l. These symbols consist of both
op codes and assembler directives. The op codes (i.e., the
instruction set) are 1listed first, followed by the directives which
cause specific actions during assembly.

For a detailed description of the instruction set, see the appropriate
PDP-11 Processor Handbook.

C.1 OP CODES

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME
ADC 005500 Add Carry
ADCB 105500 Add Carry (Byte)
ADD 060000 Add Source To Destination
ASH 072000 Shift Arithmetically
ASHC 073000 Arithmetic Shift Combined
ASL 006300 Arithmetic Shift Left
ASLB 106300 Arithmetic Shift Left (Byte)
ASR 006200 Arithmetic Shift Right
ASRB 106200 Arithmetic Shift Right (Byte)
BCC 103000 Branch If Carry Is Clear
BCS 103400 Branch If Carry Is Set
BEQ 001400 Branch If Equal
BGE 002000 Branch If Greater Than Or Equal
BGT 003000 Branch If Greater Than
BHI 101000 Branch If Higher
~ BHIS 103000 Branch If Higher Or Same
BIC 040000 Bit Clear
BICB 140000 Bit Clear (Byte)
BIS 050000 Bit Set
BISB 150000 Bit Set (Byte)
BIT 030000 Bit Test
BITB 130000 Bit Test (Byte)
BLE 003400 Branch If Less Than Or Egqual
BLO 103400 Branch If Lower
BLOS 101400 Branch If Lower Or Same
BLT 002400 Branch If Less Than

MNEMONIC

BMI
BNE
BPL
BPT
BR
BVC
BVS
CALL
cccC
CLC
CLN
CLR
CLRB
CLV
CLZ
CMP

CMPB

COM
COMB

DEC
DECB

DIV
EMT
FADD
FDIV
FMUL
FSUB
HALT
INC
INCB

I0T
JMP
JSR
MARK
MFPI

MFPS

MOV
MOVB

MTPI
MTPS

MUL
NEG
NEGB
NOP
RESET
RETURN
ROL
ROLB
ROR

PERMANENT SYMBOL TABLE (PST)

OCTAL
VALUE

100400
001000
100000
000003
000400
102000
102400
004700
000257
000241
000250
005000
105000
000242
000244
020000

120000

005100
105100

005300
105300

071000
104000
075000
075030
075020
075010
000000
005200
105200

000004
000100
004000
006400
006500

106700

010000
110000

006600
106400

070000
005400
105400
000240
000005
000207
006100
106100
006000

FUNCTIONAL NAME

Branch If Minus

Branch If Not Equal

Branch If Plus

Breakpoint Trap

Branch Unconditional

Branch If Overflow Is Clear

Branch If Overflow Is Set

Jump To Subroutine (JSR PC,xxx)

Clear All Condition Codes

Clear C Condition Code Bit

Clear N Condition Code Bit

Clear Destination

Clear Destination (Byte)

Clear V Condition Code Bit

Clear Z Condition Code Bit

Compare Source To
Destination

Compare Source To
Destination (Byte)

Complement Destination

Complement Destination
(Byte)

Decrement Destination

Decrement Destination
(Byte)

Divide

Emulator Trap

Floating Add

Floating Divide

Floating Multiply

Floating Subtract

Halt

Increment Destination

Increment Destination
(Byte)

Input/Output Trap

Jump

Jump To Subroutine

Mark

Move From Previous
Instruction Space

Move from PS

(LSI-11)

Move Source To Destination

Move Source To Destination
(Byte)

Move To Previous
Instruction Space

Move to PS

(LSI-11)

Multiply

Negate Destination

Negate Destination (Byte)

No Operation

Reset External Bus

Return From Subroutine (RTS PC)

Rotate Left

Rotate Left (Byte)

Rotate Right

PERMANENT SYMBOL TABLE (PST)

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME
RORB 106000 Rotate Right (Byte)
RTI 000002 Return From Interrupt
(Permits a trace
trap) '
RTS 000200 Return From Subroutine
RTT 000006 Return From Interrupt
(inhibits trace trap)
SBC 005600 Subtract Carry
SBCB 105600 Subtract Carry (Byte)
SCC 000277 Set All Condition Code Bits
SEC 000261 Set C Condition Code Bit
SEN 000270 Set N Condition Code Bit
SEV 000262 Set V Condition Code Bit
SEZ 000264 Set Z Condition Code Bit
SOB 077000 Subtract One And Branch
SUB 160000 Subtract Source From
Destination
SWAB 000300 Swap Bytes
SXT 006700 " Sign Extend
TRAP 104400 Trap
TST 005700 Test Destination
TSTB 105700 Test Destination (Byte)
WAIT 000001 Wait For Interrupt
XOR 074000 Exclusive OR

OpP CODES FLOATING POINT PROCESSOR ONLY

) OCTAL

MNEMONIC VALUE FUNCTIONAL NAME

ABSD 170600 Make Absolute Double

ABSF 170600 Make Absolute Floating

ADDD 172000 Add Double

ADDF 172000 Add Floating

CFCC 170000 Copy Floating Condition
Codes

CLRD 170400 Clear Double

CLRF 170400 Clear Floating

CMPD 173400 Compare Double

CMPF 173400 Compare Floating

DIVD 174400 Divide Double

DIVF 174400 Divide Floating

LDCDF 177400 Load And Convert From
Double To Floating

LDCFD 177400 Load And Convert From
Floating To Double

LDCID 177000 Load And Convert Integer To
Double

LDCIF 177000 Load And Convert Integer To
Floating

LDCLD 177000 Load And Convert Long
integer To Double

LDCLF 177000 Load And Convert Long
Integer To Floating

LDD 172400 Load Double

LDEXP 176400 Load Exponent

MNEMONIC

LDF
LDFPS
MFPD

MODD
MODF

MTPD
MULD
MULF
NEGD
NEGF
SETD
SETF
SETI
SETL
SPL
STCDF

STCDI
STCDL
STCFD
STCFI
STCFL

STD
STEXP
STF
STFPS
STST
SUBD
SUBF
TSTD
TSTF

PERMANENT SYMBOL TABLE (PST)

OCTAL

VALUE FUNCTIONAL NAME

172400 Load Floating

170100 Load FPPs Program Status

106500 Move From Previous Data
Space

171400 Multiply And Integerize
Double

171400 Multiply And Integerize
Floating

106600 Move To Previous Data Space

171000 Multiply Double

171000 Multiply Floating

1706700 Negate Double

170700 Negate Floating

170011 Set Double Mode

170001 Set Floating Mode

170002 Set Integer Mode

170012 Set Long Integer Mode

000230 Set Priority Level

176000 Store And Convert From
Double To Floating

175400 Store And Convert From
Double To Integer

175400 Store And Convert From
Double To Long Integer

176000 Store And Convert From
Floating To Double

175400 Store And Convert From
Floating To Integer

175400 Store And Convert From
Floating To Long Integer

174000 Store Double

175000 Store Exponent

174000 Store Floating

170200 Store FPPs Program Status

170300 Store FPPs Status

173000 Subtract Double

173000 Subtract Floating

170500 Test Double

170500 Test Floating

MACRO-11 DIRECTIVES

DIRECTIVE
.ASCII
.ASCIZ
.ASECT
.BLKB
«.BLKW
.BYTE

.CSECT

FUNCTIONAL SIGNIFICANCE

Translates character string to ASCII equivalents.
Translates character string to ASCII equivalents;
inserts zero byte as last character.

Begins absolute program section (provided for
compatibility with other PDP-11 assembliers).
Reserves byte block in accordance with wvalue of
specified argument.

Reserves word block in accordance with value of
specified argument.

Generates successive byte data in accordance with
specified arguments.

Begins relocatable program section (provided for
compatibility with other PDP-11 assemblers).

C-4

DIRECTIVE

.DSABL
.ENABL
.END
.ENDC
. ENDM
.ENDR

+EOT
.ERROR

«EVEN
+FLT2

.FLT4

«GLOBL
. IDENT

.IF
.IFF

LIFT
.IFTF
LIIF

.IRP

. IRPC

.LIMIT

.LIST

.MCALL
+MEXIT
.NARG

.NCHR
«NLIST
.NTYPE
.0ODD

. PAGE

.PRINT
.PSECT

.RADIX
«.RAD50

«REPT

PERMANENT SYMBOL TABLE (PST)

FUNCTIONAL SIGNIFICANCE

Disables specified function.

Enables specified function.

Defines logical end of source program.

Defines end of conditional assembly block.

Defines end of macro definition, repeat block, or
indefinite repeat block.

Defines end of current repeat block (provided for
compatibility with other 'PDP-11 assemblers).
Define End of Tape condition (ignored).

Outputs diagnostic message to 1listing file or
command output device.

Word-aligns the current location counter.

Causes two words of storage to be generated for
each floating-point argument.

Causes four words of storage to be generated for
each floating-point argument.

Declares global attribute for specified symbol(s).
Labels object module with specified program
version number.

Begins conditional assembly block.

Begins subconditional assembly block (if
conditional assembly block test is false).
Begins subconditional assembly block (if
conditional assembly block test is true).
Begins subconditional assembly block (whether

conditional assembly block test is true or false).
Assembles immediate conditional assembly statement
(if specified condition is satisfied).

Begins indefinite repeat block; replaces
specified symbol with specified successive real
arguments.

Begins indefinite repeat block; replaces
specified symbol with value of successive
characters in specified string.

Reserves two words of storage for high and low
addresses of task image.

Controls 1listing 1level count and format of

assembly 1listing. .MACRO Denotes start of macro
definition.

Identifies required macro definition(s) for
assembly.

Exit from current macro definition or indefinite
repeat block.

Equates specified symbol to the number of
arguments in the macro expansion.

Equates specified symbol to the number of
characters in the specified character string.
Controls 1listing 1level count and suppresses
specified portions of the assembly listing.
Equates specified symbols to the addressing mode
of the specified argument.

Byte-aligns the current location counter.

Advances form to top of next page.

Prints specified message on command output device.
Begins specified program section having specified
attributes.

Changes current program radix to specified radix.
Generates data block having Radix-50 equivalents
of specified character string.

Begins repeat block and replicates it according to
the value of the specified expression.

C-5

PERMANENT SYMBOL TABLE (PST)

DIRECTIVE FUNCTIONAL SIGNIFICANCE

.SBTTL Prints specified subtitle text as the second line
of the assembly listing page header.

.TITLE Prints specified title text as object module name
in the first 1line of the assembly listing page
header.

.WORD Generates successive word data in accordance with

specified arguments.

The MACRO-11 directives listed above are summarized in greater detail
in Appendix B.

APPENDIX D

DIAGNOSTIC ERROR MESSAGE SUMMARY

D.1 MACRO-11 ERROR CODES

A diagnostic error code is printed as the first character in a source
line which <contains an error detected by MACRO-11l. This error code
identifies a syntactical problem or some other type of error condition
detected during the processing of a source line. An example of such a
source line is shown below:

Q 26 000236 010102 MOV R1,R2,A

The extraneous argument A in the MOV instruction above causes the line
to be flagged with a Q (syntax) error.

Error Code Meaning

A Assembly error. Because many different types of
error conditions produce this diagnostic message,
all the possible directives which may yield a
general assembly error have been categorized below
to reflect specific classes of error conditions:

CATEGORY 1: ILLEGAL ARGUMENT SPECIFIED.

.RADIX -- A value other than 2, 8, or 10 is
specified as a new radix.

.LIST/.NLIST -~ Other than a 1legally defined
argument (see Table 6-1) is specified with the
directive.

.ENABL/.DSABL -- Other than a legally defined
argument (see Table 6-2) is specified with the
directive.

.PSECT -- Other than a legally-defined argument
(see Table 6-3) is specified with the
directive.

.IF/.IIF -- Other than a legally defined
conditional test (see Table 6-5) or an illegal
argument expression value is specified with the
directive.

.MACRO -- An illegal or duplicate symbol found
in dummy argument list.

Error Code

A
(Cont'd)

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

CATEGORY 2: NULL ARGUMENT OR SYMBOL SPECIFIED.

.TITLE -- Program name is not specified in the
directive, or first non-blank character
following the directive 1is a non-Radix-50
character.

.IRP/.IRPC -- No dummy argument is specified in
the directive.

.NARG/ .NCHAR/.NTYPE -- No symbol is specified
in the directive.

.IF/.IIF -= No conditional argument is
specified in the directive.

CATEGORY 3: UNMATCHED DELIMITER/ILLEGAL ARGUMENT

CONSTRUCTION.

.ASCII/.ASCIZ/.RAD50/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive.

.NCHAR -- Character string delimiters do not
match, or an 1illegal character is used as a
delimiter in the directive.

CATEGORY 4: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a branch instruction,
i.e., from -128(10) to +127(10) words, has
been exceeded.

2. A statement makes invalid use of the
current location counter, e.qg., a
".=expression" statement attempts to force
the current location counter to cross
program section (.PSECT) boundaries.

3. A statement contains an invalid address
expression. In cases where an absolute
address expression is required, specifying
a global symbol, a relocatable value, or a
complex relocatable value (see Section 3.9)
results in an invalid address expression.
Similarly, in cases where a relocatable
address expression 1is required, either a
relocatable or absolute value is
permissible, but a global symbol or a
complex relocatable value in the statement
likewise results in an invalid address
expression. Specific cases of this type of
error are those which follow:

Error Code

DIAGNOSTIC ERROR MESSAGE SUMMARY

Meaning

.BLKB/.BLKW/.REPT -- Other than an absolute
value or an expression which reduces to an
absolute value has been specified with the
directive.

4. Multiple expressions are not separated by a
comma. This condition causes the next
symbol to be evaluated as part of the
current expression.

CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

1. A global assignment statement
(symbol==expression) contains a forward
reference to another symbol.

2. An expression defining the wvalue of the
current location counter contains a forward
reference,

Bounding error. Instructions or word data are
being assembled at an odd address. The location
counter is incremented by 1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. When the end-of-file is
reached during source input and the .END directive
has not yet been encountered, MACRO-11 generates
this error code, ends assembly pass 1, and
proceeds with assembly pass 2.

Illegal character detected. Illegal characters
which are also non-printable are replaced by a
question mark (?) on the listing. The character
is then ignored.

Input line is greater than 132(10) characters 1in
length. Currently, this error condition is caused
only through excessive substitution of real
arguments for dummy arguments during the expansion
of a macro.

Multiple definition of a 1label. A label was
encountered which was equivalent (in the .first six
characters) to a label previously encountered.

A number contains a digit that is not in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting 1level depth for conditional
assemblies has been exceeded. Attempt to expand a
macro which was unidentified after .MCALL search.

Error Code

DIAGNOSTIC ERROR MESSAGE SUMMARY
Meaning

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. A P error code
also appears if an .ERROR directive is assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register-type error. An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the wuse of the
.BYTE directive or trap (EMT or TRAP) instruction.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression) statement
which contains a forward reference to a symbol
whose definition also contains a forward
reference; also, a local symbol may have been
referenced that does not exist in the current
local symbol block.

Instruction error. The instruction so flagged is
not compatible among all members of the PDP-11
family. See Section 5.3 for details.

APPENDIX E

SAMPLE CODING STANDARD

E.1 INTRODUCTION

Standards eliminate variability and the requirement to make a
decision. Much of the difficulty in establishing standards stems from
the notion that they should be optimal. However, to be successfully
applied, standards must represent an agreement on certain aspects of
the programming process.

This Appendix contains DIGITAL's PDP-11 Program Coding Standard. It
is suggested that this be used as a model to assist users in preparing
standards for their own installations.

E.2 LINE FORMAT

All source lines shall consist of from one to a maximum of eighty
characters (not 1including the audit trail added by the SLIPR (SLP in

$X-11M) editor. This program is described in the applicable RSX-11M
or RSX~11D utilities manual or in the IAS Editing Utilities Reference
Manual (see Section 0.3 in the Preface).

Assembly language code lines shall have the following format:

1. Label Field - if present, the label shall start at tab stop 0
(column 1).

2. Operation field - the operation field shall start at tab stop
1 (column 9).

3. Operand field - the operand field shall start at tab stop 2
(column 17).

4. Comments field - the comments field shall start at tab stop 4
(column 33) and may continue to column 80.

Comment lines that are included in the code body shall be delimited by
a line containing only a leading semicolon. The comment itself
contains a leading semicolon and starts in column 3. Indents shall be
1 tab.

If the operand field extends beyond tab stop 4 (column 33) simply
leave a space and start the comment. Comments which apply to an
instruction but require continuation should always line up with the
character position which started the comment.

SAMPLE CODING STANDARD

E.3 COMMENTS

Comment all coding to convey the global role of an instruction, rather
than simply a literal translation of the instruction into English. 1In
general this will consist of a comment per 1line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraph of comments must immediately precede that section of
code.

Preface text, which describes formats, algorithms, program-local
variables, etc., will be delimited by the character sequence ;+ at the
start of the text and ;- at the end; these delimiters facilitate
automated extraction of narrative commentary. The comment itself will
start in column 3.

For example:

+

HE INVERT ROUTINE ACCEPTS

LIST OF RANDOM NUMBERS AND
PPLIES THE KOLMOGOROV ALGORITHM
O ALPHABETIZE THEM.

H >3

E.4 NAMING STANDARDS

E.4.1 Register Standards

E.4.1.1 General Purpose Registers - Only the following names are

permitted as register names; and may not be used for any other
purpose:

RO=%0 sREG 0O

R1=%1 tREG 1

R2=%2 1REG 2

R3=%3 +REG 3

R4=%4 ;REG 4

R5=%5 ;sREG 5

SP=%6 ;STACK POINTER (REG 6)

PC=%7 ; PROGRAM COUNTER (REG 7)
E.4.1.2 Hardware Registers - These registers must be named

identically to the hardware definition. For example, PS and SWR.

E.4.1.3 Device Registers - These are symbolically named identically
to the hardware notation. For example, the control status register
for the RK disk is RKCS. Only this symbolic name may be used to refer
to this register.

SAMPLE CODING STANDARD

E.4.2 Processor Priority
Testing or altering the processor priority is done using the symbols
PRO, PR1l, PR2,PR7

which are equated to their corresponding priority bit pattern.

E.4.3 Other Symbols

Frequently-used bit patterns such as CR and LF will be made
conventional symbolics on an as-needed basis.

E.4.4 Using the Standard Symbolics

The register standards will be defined within the assembler. All
other standard symbols will appear in a file and will be linked prior
to program execution.

E.4.5 Symbols*

E.4.5.1 Global Symbols - Global symbols should be easily recognized
by their format. The following standards apply and completely define
symbol standards for PDP-11 Medium/Large software products.

symbol pos=-1 pos-—2 pos-3 pos-4 pos~-5 pos-6 length

non-glbl--sym letter| a~num/| a-num/| a-num/| a-num/{ a-num/| >=l1
null null null null null

glbl-sym $/. a-num/| a=-num/| a-num/(a=-num/| a-num/| >=1
null null null null null

glbl-offset letter| $/. a=-num | a-num/| a-num/| a-num/| >=3
null null null

glbl-bit-ptrn letter| a-num s$/. a-num/| a-num/| a-num/| >=4
null null

o
Vv
U

N

local-sym number
*

* Symbols that are branch targets are also called labels, but we will
always use the term "symbol".

** Number is in the range 0<number<65535.

*%** The use of $ or . for global names is reserved for DEC-supplied
software.

SAMPLE CODING STANDARD

where:

a-num is an alphanumeric character.

non-glbl-sym are non-global symbols.

local-sym local symbols, as defined by
MACRO-11.

glbl-sym are global symbols (addresses).

glbl-offset are global offsets (absolute
quantities).

glbl-bit-ptrn are global bit patterns.

A program never contains a .GLOBL statement without showing cause.

,.4.5.2 Symbol Examples
Non-Global Symbols
AlB
ZXCJl
INSRT
Global Address Symbols
SJIM
.VECTR
$SEC
Global Absolute Offset Symbols
ASJIM
ASXT
A.ENT
Global Bit Pattern Symbols
Als$20
B3.6
JI.M
Local Symbols
378
2718
6S

E.4.5.3 Program-Local Symbols - Self-relative address arithmetic
(.+n) 1is absolutely forbidden in branch instructions; its use in
other contexts must be avoided if at all possible and practical.

SAMPLE CODING STANDARD

Target symbols for branches that exist solely for positional reference

Willeise local symbols of the form

<num>$:
L]

Use of non-local symbols is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-symbols are formatted such that the numbers proceed sequentially
down the page and from page to page.

E.4.5.4 Macro Names - The 1last two characters (with the last
character possibly being null) have special significance. The next to
last character is a $, the last, a character specifying the mode of
the macro.

For example, in the three macro forms in-line, stack, and p-section,
the in-line form has no suffix, the stack has an <S>, and the
p-section a <C>. Thus the Queue I/0 macro can be written as any of

QIOS
QIOS$S
QIOSC

depending on the form required. These are not reserved letters. Only
the form of the name is standard.

E.5 PROGRAM MODULES

E.5.1 General Comments on Programs

In our software, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than 1K a rarity./ Since any software may eventually
exploit the wvirtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference 1locus (don't
promiscuously branch over page boundaries or over a large absolute
address distance).

All code is read-only. Code and data areas are distinct and each
contains explanatory text. Read-only data should be segregated from
read-write data.

E.5.2 The Module Preface

Each program module in the system shall exist as a separate file. The
filename will reflect the name of the module and the file extension
shall be of the form 'NNN', The 'NNN' signifies the edit number or
the version number. The version number shall be changed only when a
new base level is created. Furthermore, if no corrections are made to
a file from one base level to the next, the version number will not be
changed. [The availability of Fjle Control Services -and File Control

Primitives will greatly simplify version number maintenance]. Program
modules adhere to a strict format. This format adds to the
readability and understandability of the module. The following

sections are included in each module:

E-5

SAMPLE CODING STANDARD

For the Code Section:

1.

10.

11.

A .TITLE statement that specifies the name of the module. If
‘E“muﬂﬁTE contains more than one routine, subtitles may be
used. ’

" An .IDENT statement specifying the version number. The

PDP-11 version number standard appears in section E.10.

A .PSECT statement that defines the program section in which
the module resides.

A copyright statement, and the disclaimer.

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE
ONLY ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED
ONLY WITH THE INCLUSION OF THE ABOVE COPYRIGHT
NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO
ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO
ONE WHO AGREES TO THESE LICENSE TERMS. TITLE TO AND
OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE
WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A
COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR
RELIABLILITY OF 1ITS SOFTWARE ON EQUIPMENT WHICH IS
NOT SUPPLIED BY DEC.

The version number of the file.

The PDP-11 version number standard is described in section
E.10.

The name of the principal author and the date on which the
module was first created.

The name of each modifying author and the date of
modification. Names and modification dates appear one per
line and in chronological order.

A brief statement of the function of the module.

Note: 1Items 1-8 should appear on the same page.

A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

All local macro definitions, preferably in alphabetical order
by name.

All local data. The data should indicate
a. Description of each element (type, size, etc.)

b. Organization (functional, alpha, adjacent, etc.)
¢. Adjacency requirements

SAMPLE CODING STANDARD

12. A more detailed definition of the function of the module.

13. A list of the inputs expected by the module. This includes

the calling sequence if non-standard, condition
settings, and global data settings.

14. A list of the outputs produced as a result of entering

code

this

module. These include delivered results, condition code

settings, but not side effects. (All these outputs

visible to the caller.)

are

15. A list of all effects (including side effects) produced as a
result of entering this module. Effects include alterations

in the state of the system not explicitly expected in

calling sequence, or those not visible to the caller.

16. The module code.

E.5.3 Formatting the Module Preface
Rules:

l. The first eight items appear on the same page and will

the

not

have explicit headings. 1Item 3 may be omitted if the blank

p-section is being used.

2. Headings start at the 1left margin¥*; descriptive text

indented 1 tab position.

is

3. Items 7-14 will have headings which start at the left margin,
preceded and followed by lines containing only a leading <;>.

Items which do not apply may be omitted.
A template for the module preface follows.
FILE-EXAMPL.S01

.TITLE EXAMPLE
.IDENT /01/
.PSECT KERNEL

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT COPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

WO NE NE NS NE N NE NE NE NE N Ne NE NE N6 we N

*The left margin consists of a <;> a <space> then the heading, so
text of the heading begins in column 3.

E-7

the

SAMPLE CODING STANDARD

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.
VERSION 01
JOE PASCUSNIK 1-JAN-72
MODIFIED BY:

RICHARD DOE 21-JAN-73

SPENCER THOMAS 12-JUN-73

Brief statement of the module's function

EQUATED SYMBOLS

WE N6 Ve NE Ne N N W WE Ne we we we We “e N we

List equated symbols

LOCAL MACROS

~e wa e

Local Macros

LOCAL DATA

~e me ws

Local data

<+

Module function-details

INPUTS:

=3 =3 =e wa meo

Description of inputs

=3

OUTPUTS:

= =i =

Description of outputs

=3

s

EFFECTS:

ws ws w3

Description of effects

-3

Begin Module Code

£.5.4 Modularity

No other characteristic has more impact on the ultimate engineering
success of a system than does modularity. Modularity for PDP-11
Software Engineering's products consists of the application of the
single-function philosophy described in section E.5.1, and adherence
to a set of calling and return conventions.

E.5.4.1 Calling Conventions (Inter-Module) - The following calling
conventions must be observed.

SAMPLE CODING STANDARD

Transfer of Control
Macros will exist for call and return. The actual transfer will
be wvia a JSR PC instruction. For register save routines, a
JSR Rn,SAVE will be permitted.
The CALL macro is:
CALL subr-name
The RETURN macro is:
RETURN
Register Conventions
On entry, a subroutine minimally saves all registers it intends
to alter except result registers. On exit it restores these
registers. (State preservation is assumed across calls.)
Argument Passing
Any registers may be used, but their use should follow a coherent
pattern. For example, if passing three arguments, pass them in

RO, Rl and R2 rather than RO, R2, R5. Saving and restoring
occurs in one place.

E.5.4.2 Exiting - All subroutine exits occur through a single RETURN
macro.
E.5.4.3 1Intra-Module Calling Conventions - Designer optional, but

consistency favors a calling sequence identical to that of the
inter-module sequence.

E.5.4.4 Success/Failure Indication - The C bit will be used to
return the success/failure indicator, where success equals 0, and
failure equals 1. The argument registers can be used to return values
or additional success/failure data.

E.5.4.5 Module Checking Routines = Modules are responsible for
verifying the wvalidity of arguments passed to them. The design of a
module's calling sequence should aim at minimizing the validity checks
by minimizing invalid combinations. Programmers may add test code to
perform additional checks during checkout. All code should aim at
discovering an error as close (in terms of instruction executions) to
its occurrence as possible.

E.6 FORMATTING STANDARDS

E.6.1 Program Flow

Programs will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

E-9

For example:

SAMPLE CODING STANDARD

PROCESS

BBB

AAA

COMMON

shall appear on the listing as:

AAA:

BBB:

CMN:

Rather

AAA:

BBB:

TST
BNE

BR

e o 0 ®
e oo o
oo oo
LRI)
o e 0o

than:

TST
BNE

e
s o e e
s e e
ce e
00
s e
s e
s e
s e
s s e
s o

BR

BBB

CRCI ANY
LI I
LECEr Y

CMN

o s e
s e
oo
s e
o s 0

BBB

LRI INY
s 0 0 e
LECI Y
CECRr AN
LAY
LRI Y
o5 a0
LRI Y
LR
s o0
LECI I Y

LRI

CMN

E.6.2 Common Exits

A common exit appears as the last code sequence on the listing.

the flow chart:

SAMPLE CODING STANDARD

- EXIT -

will appear on the listing as:

PR1: cens

LRCI)

BR

PR2: ceee

BR

PR3: co e

CRCRC)

BR
PR4: cees
EXIT:
And not as:

PR1: .

EXIT: ceee

PR2: cese

PR3: cene

CECI Y

PR4: cees

LIRS

BR

e s 0
e e o0

e v o0

EXIT

D Y
LRI Y

EXIT

EXIT

EXIT

e o o 0

EXIT

Thus

SAMPLE CODING STANDARD

E.6.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited, shall be flagged by a
three semicolon (;;;) comment delimiter. For example:

. .ERTZ: ;ENABLE BY RETURNING
;BY SYSTEM SUBROUTINES,

BIS $PR7,PS. :3; INHIBIT INTERRUPTS
BIT $PR7,+2(SP) i1: C
BEQ 10% iir O
RTT N M
PP M
10S: ceee sese] E
s e co e i N
PR ce e HH T
. ii

E.7 PROGRAM SOURCE FILES

Source creation and maintenance shall be done in base levels. A base
level 1is defined as a point at which the program source files have
been frozen. From the freeze point to the next base level,
corrections will not be made directly to the base level itself.
Rather a file of corrections shall be accumulated for each file in the
base level. Whenever an updated source file 1is desired, the
correction file will be applied to the base file.

The accumulation of corrections shall proceed until a logical breaking
point has occurred (i.e. a milestone or significant implementation
point has been reached). At this time all accumulated corrections
shall be applied to the previous base level to create a new base
level. Correction files will then be started for the new base level.

E.8 FORBIDDEN INSTRUCTION USAGE

1. The use of instructions or index words as 1literals of the
previous instruction. For example:

MOV @PC,Register
BIC Src,Dst

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
problem, it will not execute properly if I/D space is enabled
on the 11/45. 1In this case @PC is a D bank reference.

2. T MOV _j iob—dnatocadof g JMP e insirueion
to transfer gram control to another location. For
example:

MOV #ALPHA,PC

transfers control to location ALPHA. Besides taking 1longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control

E-12

SAMPLE CODING STANDARD

take place. What if one would like to get a 3jump trace of
the execution of a program (a move trace is unheard of)? As
a more general issue, perhaps even other operations such as
ADD and SUB from PC should be discouraged. Possibly one or
WO WOrds can be save Y but how many
such occurrences are there?

3. The seemingly "neat" use of all single word instructiorms
where one double-word instruction could be used and would
execute faster and would not consume additional memory.
Consider the following instruction seguence:

CMP -(R1l),(-R1)
CMP -{(R1l) ,-(R1)

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set condition codes). This can be
accomplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space. Another question, here is also, what if Rl
is odd? SUB always wins since it will always execute
properly and is always faster!

E.9 RECOMMENDED CODING PRACTICE

E.9.1 Conditional Branches

When wusing the PDP-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED UNSIGNED
BGE BHIS (BCC)
BLT BLO
BGT BHI
BLE BLOS (BCS)

A common pitfall is to use a signed branch (e.g. ‘ﬁGT)‘when comparing
wo memory addresses. 1 oes well until the two addresses nhave
Ebﬁcsrte—FTﬁﬁﬁf—_?ﬁz?-ﬁs, one of them goes across

ype of coding error usually shows itself as a result of

re- 11nk1ng at different addresses and/or a change 1in size of the
program.

E.10 PDP-11 VERSION NUMBER STANDARD

The PDP-11 Version Number Standard applies to all modules, parameter
files, complete programs, and libraries which are written or caused to
be written, as part of the PDP-11 Software Development effort. It is
used to provide unique identification of all released, pre-released,
and in-house software.

\

It is limited in that, as currently specified, only six characters of
_Ldgn;;éiggsign___hga___ggggﬁ, Future implemen ons © e acro

Assembler, Task Builder, and Librarian should provide for at 1least

E-13

SAMPLE CODING STANDARD

ni racters and 0ssibl twelve. It 1is expected that this
standard wi be enhanced as the need arises.

Version Identifier = <form> <version> <edit> <patch>

<form> Us i i rti orm of a u or
ro m, where applicable, as in the case of
LINK-11. One alphabetic character, if used, and

null (i.e.7™z binary 0) if not used.

C—

<version> Used to identify the release, or generation, of a

program. o its, starting at 00, and
incremented at the discretion o the project in

order to reflect what, in their opinion, is a
major change.

<edit> Used to identify the level to which a particular
release, or generation, of a program or module has
been edited. An edit 1is defined to be an
alteration to the source form. Juwe decimal
digits, beginning at 01, and incremented with each
ed1t; null if no e S.

<patch> Used to identify the level to which a particular
release, or generation, of a program or module has
been patched. A patch is defined as an alteration
to a binary form. One al i ’
starting—at.B, and running sequentially toward 2,
each time a set of patches is released; null if
no patches.

These fields are interrelated. When <version> 1is <changed, then
<patch> and <edit> must be reset to nulls. It is intended that when

<edit> 1s incremented, then <patch> will be re-set to null, because
the various bugs have been fixed.

E.10.1 Displaying the Version Identifier
The visible output of the version identifier should appear as:
Key <letter> <form> <version> - <edit> <(patch>,

where the following Key Letters have been identified:

v released or frozen version
X in-house experimental version
Y field test, pre-release, or in-house release version

Note that 'X' corresponds roughly to individual support, 'Y' to group
support, and 'V' to company support.

The dash which separates <version> from <edit> is used only if <edit>
and/or <patch> is not null. When a version identifier is displayed as
part of program identification, then the format is:

Program
<space><key-letter><form><version>-<edit><patch>
Name

SAMPLE CODING STANDARD

Examples:

PIP X03
LINK VB04-C
MACRO Y05-01

E.10.2 Use of the Version Number in the Program

All sources must contain the version number in an JIDENT directive.
For programs (or libraries) which consist of more than one module,
each individual module will follow this version number standard. The
‘version number of the program or library is not necessarily related to
the version numbers of the constituent modules; it 1is perfectly
reasonable, for example, that the first version of a new FORTRAN
library, V00, contain an existing SIN routine, say V05-01.

Parameter files are also required to contain the version number in an
.IDENT directive. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs, e€.d.,
the FORTRAN Library, will have an identification module in the first
position. An identification module exists solely to provide
identification, and normally consists of something like:

;OTS IDENTIFICATION
.TITLE FTNLIB
.IDENT /003010/
.END

APPENDIX F

ALLOCATING VIRTUAL MEMORY

This appendix is intended for the MACRO-11 user who wants to avoid the
problem of thrashing, by optimizing the allocation of virtual memory.
Users of smaller systems, particularly those with the 8K subset
version of MACRO-11, should become thoroughly familiar with the
conventions discussed herein. In this regard, Appendix F addresses
the following topics:

1. General hints and space-saving guidelines

2. Macro definitions and expansions

3. Operational techniques.
The user is assumed to have pursued a policy of modular programming,
as advised in Appendix E. In addition to the obvious advantages
accruing from small, distinct, highly-functional bodies of code, one
can usually avoid the problem of insufficient dynamic memory during
assembly by practicing such a policy. Other suggestions as “to how

available memory can be best utilized are discussed in the following
sections.

F.l1 GENERAL HINTS AND SPACE-SAVING GUIDELINES
Work-file memory is shared by a number of MACRO-11's tables, each of
which 1is allocated space on demand (64K words of dynamically pageable
storage are available to the assembler). The tables and their
corresponding entry sizes are as follows:

l. User-defined symbols - five words.

2. Local symbols - four words.

3. Program sections - six words.

4. Macro names - four words.

5. Macro text - nine words.

6. Source files - six words.

In addition, several scratch pad tables are used during the assembly
process, as follows:

1. Expression analysis - five words.

2. Object code generation - five words.

ALLOCATING VIRTUAL MEMORY

3. Macro argument processing - three words.
4. MCALL argument processing - five words.
The above information can serve as a guide for estimating dynamic

storage requirements and for determining ways to reduce such
requirements.

For example, t use of local bols i i hi
encouraged, since e1lr epresentation requires % sSs
mic storage an at required for reg ser—-derf? ols.

The usage of local symbols can often be maximized by extending the
scope of local symbol blocks through the .ENABL LSB/.DSABL LSB
MACRO-11 directives (see Sections 3,0 2Rderug

Since MACRO-11 does not support a purge function, once a symbol |is
defined, it permanently occupies its dynamic memory allocation.
Numerous instances occur during conditional assemblies and repeat
loops when a temporarily assigned symbol is used as a count or offset
indicator. 1If _possible, the symbols_so used should be re-used.

In keeping with the same principle, special treatment should be given
to the definition of commonly-used symbols. Instead of simply

i a prefix file whi efines all possibly-use symbols for
each assemPIyT—uSEYS are encouraged to group =ympols into Togical
cTasses. ch class so grouped can then become a shortened prefix
file or a macro in a library (see Section F.2 below). In either case,
selective definition of symbolic assignments is achieved, resulting in

fewer defined (but unreferenced) symbols.

An appropriate example of this idea is seen in the definition of
standard symbols. The system macro library, for example, supplies
several macros used to define distinct <c¢lasses of symbols. These
groupings and associated macro names are, as follows:

DRERRS - Directive return status codes
IOERRS - I/0 return status codes

FILIOS -~ File-related I/O function codes
SPCIOS$ - Special I/0 function codes

F.2 MACRO DEFINITIONS AND EXPANSIONS

By far, dynamic storage is used most heavily for the storage of macro
text. Upon macro definition or the issuance of an .MCALL directive,
the entire macro body is stored, including all comments appearing 1in
the macro definition. For this reason, comments should not be
included as part of the macro text. An RSX-1ll utility program (called
SQZ for RSX-11D only) and a Librarian function switch (/SZ) are
available to compress macro source text by removing all trailing
blanks and tabs, blank lines, and comments. The system macro library
(RSXMAC.SML) has already been compressed. User-supplied macro
libraries (.MLB) and macro definition prefix files should also be
compressed. For additional information regarding these two utility
tasks, consult the applicable RSX-11M or RSX-11D utilities manual (see
Section 0.3 in the Preface).

It often seems expedient to append a macro definition prefix file to

each assembly to provide commonly-used macros. This practice,
however, may produce the undesirable allocation of valuable dynamic

F-2

ALLOCATING VIRTUAL MEMORY

storage for unnecessary macros. This side effect can be avoided by
specifying that the prefix file containing the macros is a
user-supplied macro library file (see Table 8-1). This action imposes
the stipulation that the names of all desired macros must be listed as
arguments in the .MCALL directive (see Section 7.8).

Storage for macro text can be re-used effectively by redefining
certain types of macros to null after they have been invoked. This
practice releases their dynamic memory for the storage of later macro
text and also eliminates the overhead and the need for dynamic memory
which would otherwise be required during the subsequent invocation and
expansion of such non-redefined macros. The practice of redefining
macros to null applies mainly to those that only define symbolic
assignments, as shown in the example below. The redefinition process
may be accomplished as follows:

+MACRO DEFIN

SYM1 = VALl ;DEFINE SYMBOLIC ASSIGNMENTS.
SYM2 = VAL2

OFF1 = SYMBOL ;DEFINE SYMBOLIC OFFSETS.
OFF2 = OFF1+4SIZ1l

OFF3 =

OFF2+SIZ2

OFFN = OFFM+SIZM

+MACRO DEFIN +MACRO NULL REDEFINITION.
. ENDM

. ENDM DEFIN
Macros exhibiting this redefinition property should be defined (or
read via the .MCALL directive) and invoked before all other macro
definition and/or .MCALL processing. So doing ensures more efficient
use of dynamic memory.

The following system macros have the automatic null redefinition
property after once being invoked:

DRERRS - Directive return status codes

IOERRS I/0 return status codes

FILIO$ - File-related I/0 function codes

SPCIO$ - Special I/O0 function codes

CSIs - Command String Interpreter codes and offsets
GCMLDS$ - Get Command Line codes and offsets

BDOFF$ - FCS buffer descriptor offsets

FCSBT$ - FCS bit value codes

FDOFFS - FCS file descriptor block offsets

FSROF$ - FCS file storage region (FSR) offsets

NBOFFS$ - FCS filename block offsets
F-3

ALLOCATING VIRTUAL MEMORY

F.3 OPERATIONAL TECHNIQUES

When, despite adhering to the guidelines discussed above, performance
still falls below expectations, several additional measures may be
taken to improve performance.

The first measure involves shifting the burden of symbol definition
from MACRO-11 to the Task Builder. In most cases, the definition of
system I/0 and FCS symbols (and user-defined symbols of the same
nature) 1is not necessary during the assembly process, since such
symbols are defaulted to global references (see Section 3.9 and
Section D.1l, category 4 of error code A). The Task Builder attempts
to resolve all global references from user-specified default libraries
and/or the system object 1library (SYSLIB.OLB). Furthermore, by
applying the selective search option for object modules consisting
only of global symbol definitions, the actual additional burden to the
Task Builder is minimal.

A second way of making more dynamic memory available 1is to produce
only one output file (either object or listing), as opposed to two.
The additional file descriptor block (FDB) and £file storage region
(FSR) required to support the second output file are allocated from
available dynamic memory at the start of each assembly. Furthermore,
the size of the file storage region allocated is the minimum required
for the second (listing) output file. For disk files, this is 264(10)
words, and for direct line printer output, it is 74(10) words.

The final way of increasing available dynamic memory is related only
to the operating environment. Under RSX-11M, MACRO-11l allocates all
storage between its highest address and the end of its partition as
dynamic memory. Consequently, the amount of working storage can be
increased by installing and running MACRO-11 in a larger partition.

In IAS and RSX-11lD, the assembler's dynamic memory is fixed at 1link
time. If a larger assembler is not available, you may build one by
increasing the size of the task's stack. This 1is accomplished by
altering the STACK= option in the command file to build MACRO-11.

APPENDIX G

FEATURES/FUNCTIONS NOT SUPPORTED BY THE RSX-11M 8K ASSEMBLER

ITEM

Search of PST in operand expressions

"F unary operator

Z error code
.ENABL, .DSABL Symbolic Arguments:
ABS
CDR
FPT
LC
PNC
Floating-point Storage Directives:
LFLT2
.FLT4
PAL-11R Conditional Assembly Directives
.EOT directive
More than one level of indirect command files
No Floating Point Processor op-codes

No CREF support

REFERENCE

w»
.
w

[e) e [oaWe a2 e We)
. « e .
[ACI SN S I S N V)

(=]
=
[
B

w

APPENDIX H

WRITING POSITION INDEPENDENT CODE

H.1l INTRODUCTION TO POSITION INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable object module. The
Task Builder binds one or more modules together to <create an
executable task image. Once built, a task can generally be loaded and
executed only at the virtual address specified by the Task Builder at
link time. This is because the Task Builder has had to modify some
instructions to reflect the memory locations in which the program is
to run. Such a body of code is considered position-dependent (i.e.,
dependent on the virtual addresses to which it was bound).

All PDP-11 processors offer addressing modes that make it possible to
write instructions that are not dependent on the virtual addresses to
which they are bound. A body of such code is termed
position-independent and can be loaded and executed at any virtual
address. Position-independent code can improve system efficiency,
both in wuse of virtual address space and in conservation of physical
memory.

In multiprogramming systems like IAS, RSX-11D and RSX~-11lM, it is
important that many tasks be able to share a single physical copy of
common code; for example a library routine. To make the optimum use
of a task's virtual address space, shared code should be
position-independent. Code that is not position-independent can also
be shared, but it must appear in the same virtual locations in every
task using it. This restricts the placement of such code by the Task
Builder and can result in the loss of virtual addressing space.

The construction of position-independent code is closely linked to the
proper usage of PDP-11 addressing modes. The remainder of this
Appendix assumes you are familiar with the addressing modes described
in Chapter 5.

All addressing modes involving only register references are
position-independent. These modes are as follows:

R register mode
(R) deferred register mode
(R) + autoincrement mode
@(R)+ deferred autoincrement mode
-(R) autodecrement mode
@=(R) deferred autodecrement mode
When using these addressing modes, you are guaranteed

position-independence, providing the contents of the registers have
been supplied such that they are not dependent upon a particular
virtual memory location.

WRITING POSITION INDEPENDENT CODE

The relative addressing modes are position-independent when a
relocatable address 1is referenced from a relocatable instruction.
These modes are as follows:

A relative mode
@A relative deferred mode

Relative modes are not position-independent when an absolute address
(that is a non-relocatable address) is referenced from a relocatable
instruction. 1In this case, absolute addressing (i.e., @#A) may be
employed to make the reference position-independent.

Index modes can be either position-independent or position-dependent,
according to their use in the program. These modes are as follows:

X (R) index mode
@X(R) index deferred mode

If the base, X, is an absolute value (e.g., a control block offset),
the reference is position-independent. For example:

MOV 2(sP),RO ; POSITION-INDEPENDENT
N=4
MOV N(SP) ,RO ; POSITION-INDEPENDENT

If, however, X 1s a relocatable address, the reference is
position-dependent. For example:

CLR ADDR (R1) ; POSITION-DEPENDENT

Immediate mode can be either position-independent or not, according to
its usage. Immediate mode references are formatted as follows:

#N immediate mode

When an absolute expression defines the value of N, the code is
position-independent. When a relocatable expression defines N, the
code is position-dependent. That is, immediate mode references are
position-independent only when N is an absolute value.

Absolute mode addressing is position-independent only in those <cases
where an absolute virtual location is being referenced. Absolute mode
addressing references are formatted as follows:

Q#A absolute mode

An example of a position-independent absolute reference is a reference
to the directive status word ($DSW) from a relocatable instruction.
For example:

MOV @#SDSW, RO sRETRIEVE DIRECTIVE STATUS

H.2 EXAMPLES

The RSX-11 library routine, PWRUP, is a FORTRAN callable subroutine to
establish or remove a user power failure AST entry point address.
Imbedded within the routine is the actual AST entry point which saves
all registers, effects a call to the user-specified entry point,
restores all registers on return, and executes an AST exit directive.
The following examples are excerpts from this routine. The first
example has been modified to illustrate position-dependent references,
(see Figure H-1). The second example, Figure H-2, 1is the
position-independent version.

H-2

WRITING POSITION INDEPENDENT CODE

PWRUP: :
CLR - (SP) ;ASSUME SUCCESS
CALL .X.PAA ;PUSH (SAVE) ARGUMENT ADDRESSES ONTO
;s STACK
.WORD 1.,$DSW ;CLEAR DSW, AND SET R1=R2=SP
MOV $OTSV,R4 sGET OTS IMPURE AREA POINTER
MOV (SP)+,R2 sGET AST ENTRY POINT ADDRESS
BNE 108 . ;IF NONE SPECIFIED, SPECIFY NO POWER
CLR -(SP) s RECOVERY AST SERVICE
BR 208 :
10$: ;
MOV R2,F.PF(R4) s SET AST ENTRY POINT
MOV #BA, - (SP) ;PUSH AST SERVICE ADDRESS
208 H
CALL . X.EXT s ISSUE DIRECTIVE, EXIT.
.BYTE 109.,2. ; :
BA: MOV RO,-(SP) ;s PUSH (SAVE) RO
MOV R1l,-(SP) ;PUSH (SAVE) Rl
MOV R2,-(SP) ; PUSH (SAVE) R2
Figure H-1 Position-Dependent Code
PWRUP: :
CLR -(SP) s ASSUME SUCCESS
CALL .X.PRA ; PUSH ARGUMENT ADDRESSES ONTO STACK
.WORD 1.,$DSW ;CLEAR DSW, AND SET R1=R2=SP.
MOV @#SOTSV,R4 :+GET "OTS IMPURE AREA POINTER
MOV (SP)+,R2 +GET AST ENTRY POINT ADDRESS
BNE 108 +IF NONE SPECIFIED, SPECIFY NO POWER
CLR - (SP) ;RECOVERY AST SERVICE
BR 208
10$: ;
MOV R2,F.PF (R4) ;SET AST ENTRY POINT
MOV PC,~(SP) ;s PUSH CURRENT LOCATION
ADD #BA-., (SP) ;COMPUTE ACTUAL LOCATION OF AST
20S$: ‘
CALL . X.EXT ; ISSUE DIRECTIVE, EXIT.
.BYTE 109.,2.
’
: ACTUAL AST SERVICE ROUTINE:
; 1) SAVE REGISTERS
H 2) EFFECT A CALL TO SPECIFIED SUBROUTINE
H 3) RESTORE REGISTERS
; 4) ISSUE AST EXIT DIRECTIVE
I
BA: MOV RO,-(SP) ;PUSH (SAVE) RO
MOV R1,-(SP) ;PUSH (SAVE) Rl
MOV R2,-(SP) ; PUSH (SAVE) R2

Figure H-2 Position-Independent Code

The position-dependent version of the subroutine contains a relative
reference to an absolute symbol ($OTSV) and a literal reference to a
relocatable symbol (BA). Both references are bound by the Task
Builder ' to fixed memory locations. Therefore, the routine will not
execute properly as part of a resident library 1if its 1location 1in
virtual memory is not the same as the location specified at link time.

WRITING POSITION INDEPENDENT CODE

In the position-independent version, the reference to $OTSV has been
changed to an absolute reference. In addition, the necessary code has
been added to compute the virtual location of BA based upon the value
of the program counter. In this case, the value is obtained by adding
the value of the program counter to the fixed displacement between the
current location and the specified symbol. Thus, execution of the
modified routine is not affected by its location in the task's virtual
address space.

The MACRO-11 Assembler provides a way of checking the
position-independence of code. In an assembly 1listing, MACRO-11
inserts a ' character following the contents of any word which
requires the Task Builder to perform a relocation operation. In some
cases this character indicates a position-dependent instruction; in
other cases, it merely draws the user's attention to the use of a
symbol which may or may not be position-independent. The cases which
cause a ' character to be inserted in the assembly listing are as
follows:

1. Absolute mode references are flagged with a ' character when

the reference 1is relocatable. References are not flagged
when they are position-independent (i.e., absolute). For
example:

MOV @#ADDR,R1 ;PIC ONLY IF ADDR IS ABSOLUTE.

2. Index and index deferred mode references are flagged with a '
character when the offset is relocatable. For example:

MOV ADDR(R1) ,R5 s+ NON-PIC IF ADDR IS RELOCATABLE.
MOV @ADDR(R1) ,R5 ;NON-PIC IF ADDR IS RELOCATABLE.

3. Relative and relative deferred mode references are flagged
with a ' character when the address specified is relocatable
with respect to another program section. For example:

MOV ADDR1,R1l ;NON-PIC WHEN ADDR1 IS BOUND
MOV @ADDRI1,R1 ;TO ANOTHER PROGRAM SECTION

4, Immediate mode references to relocatable addresses are always
flagged with a ' character.)

MOV #3,R0 ;ALWAYS POSITION-INDEPENDENT.
MOV #ADDR,R1 ;NON-PIC WHEN ADDR IS RELOCATABLE.

There is one case in which the MACRO-11 assembler does not flag a
potential position-dependent reference. This occurs where a relative
reference is made to an absolute virtual location from a relocatable
instruction (i.e., MOV $OTSV,R4 in Figure F-1).

Those references requiring more than simple Task Builder relocation
are also indicated in the assembly listing. Simple global references
are flagged with the letter G. Those which contain multiple global
references or complex relocation, are flagged with the letter C (see
Section 3.9 and Chapter 4). In such cases, it 1is difficult to
positively state which are or are not position-independent. However,
in general, it is safe to apply the guidelines discussed earlier in
this Appendix to the resulting address value produced by the Task
Builder.

-
VO®NCNEWN -

- - ea
i N\ -

APPENDIX I

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

T W Y T T W T W N T Y W N N T TG e Y Y Y e M M SO W W N W Ve W S e W e e

JTITLE P3PRE

+IDENT /0S/
COPYRIGHT 1976, DIGITAL EQUIPMENT CORP,, MAYNARD, MASS,
THI8 SOFTWARE I8 FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
OF DEC*S COPYRIGHT NOTICE) ONLY FOR USE IN SUCHM SYSTEM, EXCEPT
A8 MAY OTHERWISE BE PROVIDED IN WRITING BY DEC,
THE INFORMATION IN THIS DOCUMENT IS SUBJECY TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY
OF 178 SOFTWARE ON EQUIPMENT wHICH IS NOT SUPPLIED BY DEC,

VERSION 25
Ce MONIA OS«FEBw=76
PERFORM PRELIMINARY SYMBOL TABLE PROCESSING
LOCAL MACROS
DEFINE CANNED SECTION TABLE ENTRIES
SECTN NANE:FLAGS.SEG
WHEREt
NAMESSECTION NAME

OFFSET=QFFSET IN SEGMENT DESCRIPTOR To RECEIVE SECTION ADDRESS,

BLANK IF NONE,
FLAGS®SECTION FLAGS BYTE CONTENTS
SEG=*ROOT* IF SECTION IS DEFINED IN ROOT SEGMENT ONLY

/ - -
JMACRO (SECTN] NAME,FLAGS,OFFSET,SEG
sRyw2
$80s,
JHORD @
LJWORD @
$88=,
WBywd
JRADS@ /NAME/
Lusss
JBYTE FLAGS
JIF B SEG
BYTE B
IFF
.BVTE L3
“ENDC

JIF NB OFFSET
JWORD OFFSET
JIFF

58
1
60
61
62
63
64
6S
66
67
68
69
70
71
72
73
74
75
76
77
78
79

1]
81
82
a3
84
8s
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
122
103
104
105
186
127
188
109
110
111
112
113

pegeen

gogeen
@deee4d
eege2é
000030
@epas2
LLLET
@deesy
203056
n2@e6qA
edees2
000064

209090

125287
223340

« WORD 2
JENDC

SCTLGH=,»$$0

w e e e e v W

CRSCT:
CRVSC:
LOADNMy

MODN?¢
LCLSYM:
SRCPFy
SRVSG:
SYDEF:
SYENTy
SYFLG:

L N N LB e e WR Y e W N SE T e D MW W e W e W e e

«WORD 2
+ENDM

LOCAL DATA
COMMON STORAGE SHARED WITH MODULE °*PRCLM’

wxk NOTE smww

THE CONTENTS OF THE SECTION DEFINED BELOW MUST MATCH
THE SECTION CONTENTS SPECIFIED IN MODULE ‘PRCLM’,

«PSECT PRCLSD,D,0VR

«BLKW 10, § CURRENT SECTION DATA

«BLKW 1 3 VIRTUAL ADDRESS OF CURRENT SEGMENT
«RADSQ /$LOAD/ g NAME OF MANUAL LOAD ROUTINE

«BLKKW 1 3 FIRST HALF OF MODULE NAME

oBLKW 8, y LOCAL SYMBQOL STORAGE

+BLKW 1 y SEARCH PATH FLAG

+BLKW 1 3 VIRTUAL ADDRESS OF SEARCH SEGMENT
o«BLKW 1 s SYMBOL DEFINITION FLAG

«BLKW 1 s SYMBOL ENTRY ADDRESS

«BLKW 1 3 CURRENT SYMBOL FLAGS

+PSECT

GSD DISPATCM VECTOR TABLE

THIS TABLE CONTAINS THE ADDRESS OF SUBROUTINES WITHIN MODULE
*PRCLM? THAT PROCESS SPECIFIED GSD RECORD TYPES, PRIGR TO
ISSUING A SUBROUTINE CALL TO ANY OF THESE ENTRY POINTS, THE
FOLLOWING MUST BE SETUP3

INPUTS

RB=REAL ADDRESS OF SEGMENT DESCRIPTOR

R1=ADDRESS 0OF LOCAL SYMBOL DESCRIPTOR (LCLSYM)
R4sADDRESS OF OUMMY ELEMENT DECRIPTOR

RS=REAL 'ADDRESS OF SEGMENT DESCRIPTOR

CRSCT=CURRENT SECTION DATA (SETUP BY PSTNME OR SCTNME)
MODNsNAME OF SEGMENT BEING PROCESSED

SCRELM=ADDRESS OF DUMMY ELEMENT DESCRIPTOR

SCRSEGEREAL ADDRSS OF SEGMENT DESCRIPTOR

SCRVEL=@ (VIRTUAL ADDRESS OF CURRENY ELEMENT DESCRIPTOR)
SCRVSGeVIRTUAL ADDRESS OF SEGMENT DESCRIPTOR

#kk NOTE #ww

ONILSIT AONIYIFITY SSO0¥D ANV XTHWISSY H'TdWVS

114
115
116
117
118
i19
120
ici
122
123
124
128
126
i27
128
129
13e
131
132
133
134
138
136
137
138
139
149
141
142
143
144
14%
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
16%
166
167
168
169
17¢

900000
o6oore
edeves
200006
200010
a9pa12
@0e014
@0e0ié

@oqoae

000000

saaens
gegaio
paee2
esas1d
aseais
poag2e

aaea22

p8g027

200230

geee3e2
209842
aepes2
aeass2
20pa72
eee10e2
poe112

eeoa9d

p00p0Q2
260203
0009020
200000
902200
220000

125311

goeernd

9 THE CONTENTS OF THIS TABLE ARE ESTABLISHED BY MODULE °’PRCLM’,

) ANY CHANGE IN
1

+PSECT

MODNME® oBLKW
SCTNHER oBLKW
INTSYMy BLKW
XFRADRY ,BLKW
SYMDEL] BLKW
PSTNME; ,BLKMW
VIDENTY . BLKW
VSTNMEj ,BLKW

<«PSECT

!
1 DUMMY ELEMENT
'

DUMMY3 . WORD
oBLKM
oBLKW
«WORD
«WORD
«WORD
+ WORD
« WORD
«WORD

THAT MODULE MUST BE REFLECTED HEREIN,

6sDvsD,D,0VR

MODULE NAME

SECTION NAME

INTERNAL SYMBOL
TRANSFER ADDRESS
SYMBOL DECLARATION
PROGRAM SECTION NAME
VERSION IDENTIFICATION
VIRTUAL ARRAY NAME

P
- e v W e e e

DESCRIPTOR

LINK TO NEXT

ADDRESS OF CMT TABLE
HIGHEST SECTION NUMBER
ELEMENT SWITCH WORD
MODULE IDENTIFICATION

MODULE NAME

VIV VRD e e D
" we e ve e v e

VIRTUAL ADDRESS OF CMT TABLE

!
1 SYMBOL ENTRy FOR OVERLAY CONTROL ROUTINE

!
MARKS® oRaDSO
«BLKW

«BLKB
«BYTE

SECTION ENTRY

THE TASK,

SCTNM: L WORD

SECTN
SECTN
RTSPC: SECTN
SECTN
SECTN
SECTN
SECTN

/8MA/ 3 FIRST HALF OF NAME
1 y SECOND HALF OF NAME
1 s FLAGS

[3y UNUSED

LIST

THE SECTIONS DESIGNATED &S ‘ROOT® ARE INCLUDED IN THE MAIN
ROOT SEGMENT ONLY, ALL OTHERS ARE INCLUDED IN EACH SEGMENT OF

%] s DUMMY ZERQ AT START OF TABLE

$SALVC,<CSSRELICSSTYP>,S8GAUT+2 ; AUTOLOAD VECTOR SPACE

$SRGDS, «<CSSRELICSSTYP>,S8GREG+2,RD0T 3 REGION DESCRIPTOR
$SRTS,<CSSALO|CSSGBL|CSSREL> : GLOBAL SEGMENT RETURN POINT

$$860D, <CS$SALOICSSRELICSSTYP>,,RO0T 3 DELIMITING SECTION FOR SEGMENT TABLES
$88GD1,<CSSRELICSETYP>,S86G8EG+2,R00T 3 SEGMENT DESCRIPTORS
$$86GD2,<CSSALOICSSRELICSSTYP>, ,RO0T 5 DELIMITING SECTION FOR SEGMENT DESCRIPTORS
SSWNDS, ¢cCSSRELICSSTYP>,S8GWND+2,R00T 5 WINDOW DESCRIPTORS

ONILSIT FONIYHITT SSOYD ANV ATHWISSY HTIWVS

293

294
298
296
297
298
299
300
31

a2
303
104
325

3106
3e7

308
389
310

31t
312
113
314
318
316

317
318
319
320
321
322
323
324
328
326
327
328
329

330
331
332
333

00aS42

eeasSasé
aoasse
000552
2085S4
282556
208560
eansé2
200564

eeas72
000574
geas74
poasTe

[-I:[.LT-2]
00@606

o212
e9n612
ados14

200620
aep624
209626
200630
200632
p0P634

Qeoéde
2@g6u0
29aé642
p00642

Q0644
eens4d

gapsse
000652

#12700
200036*
812320
821434
#12320
812320
205010
185748
221404
0267687
2000006
220ePac
201022

105019
232767
a00eee6
177316
@e14@2
112710
2020086

210500
p12701
200834

910500
261300
220005
201492
016710
Beoa2y’

aesr23

8127014
eeealy’
a1e50e0

800001

MoV #LCLSYM+2,R2 9 POINT TO LOCAL DESCRIPTOR

MoV (R3)+, (RO)+ 1 COPY SECTION NAME

BEQ h 113 3y IF EQ AT END OF L1S8T

Moy (R3)+,(RD)+ 3 COPY SECOND HALF OF NAME

MOV (R3)+,(RR)+ 3 COPY FLAGS

CLR (R@) 3 CLEAR LENGTH

7878 «(RQ) 3 ROOT SEGMENT ONLY?

BEQ 108 s IF EQ NO

CcMP SCRVSG,SRTSEG y AT ROOT?

BNE 208 1t IF NE NO
1081 1

CLRB (R2) 3 CLEAR HIGH FLAGS BYTE

BIT #SWSNH, TSKSW 3 BUILDING RESIDENT LIBRARY?

BEQ 158 y IF EQ NO

MovB #CSSRES, (R2) y FLAG SECTION AS TASKeRESIDENT
1581 H

MOV RS,RO 3 COPY REAL ADDRESS OF SEGMENT

- MOV ¥LCLSYM,RY 3 GET ADDRESS OF LOCAL DESCRIPTOR

CALL OPSTNME t ENTER SECTION IN TABLES

MOV RS,RQ 3y GEY ADDRESS OF SEGMENT DESCRIPTOR

ADD (R3),R0 s OFFSET TO PROPER SLOT IN DESCRIPTOR

CMP R@,RS s NO OFFSET?

BEQ 2% s IF EQ NO OFFSET TO BE SETUP

MOV CRVSC, (R} ¢ STORE SECTION ADDRESS
2081t '

TST (R3)+ t CLEAR C» ADVANCE TO NEXT ENTRY
1081 H

RETURN H

INSERT A GLOBAL SyMBOL IN SEGMENT.
LOcAL SYMBOL DESCRIPTOR AND CURRENT SECTION MUST BRE SETUP

INgYML ?
- MOV #LCLSYM,RY t GEY ADDRESS OF LOCAL DESCRIPTOR
MOV RS,RQ 3 COPY ADDRESS OF SEGMENT DESCRIPTOR
CALLR esYMDCL g ENTER SYMBOL IN TABLE

+END

ONILSIT JFONFIIAJITT SSOYD ANV XTIWISSY JATAWVS

SYMBOL CROSS REFERENCE

SYHBOL

CR
CRSCT
CRvVSC
C8sALD
CssGBL
CSSREL

CSSRES
CSsTYP

Dummy

ESLCMY
ESLNUM
ESLSWT

RSS1IM
SCTLGH

SCTNM
SCTNME
$GSGBL
SPA
SRCPF
SRVSG
SWSNH
SYDEF
SYENTY
SYFLG
SYMDCL
SYSDEF
SYSGBL
SYSREL
SYSHK
SSGAUT
SSGNME
SSGREG
SS$GSEG
8363718
83GSTS

s

A

e

ve

2009015
goeeae
goee2d
ARAEAS
FRE AN
SRR Rk

drde e e de e
oe e e e e

aceoe0
AkhR kR
(221331
121121
egeotd
eeso1!
@opS40
LY
eceend
0deal4
pegos2
eees2é
900022
eego32
aegaeg
eoeal2
000174
008852
2000002
opeaie

200030
peees2
*RRAKR
apgede
n9es8s4
gepese
RhRANR
000860
0000262
geeesd
eeea10
kR AR
LIy
HRNENE
RANERR
RRRERR
RRRERK
RRRKA®

Tl

R hedok
(23 2 82

R
R
GX

GX
6X

GX
GX

GX
GX
GX

VDV DDD 000D

0

GX

GX

B0 0D 0

#2-120
#2=12S
2=209
#2166
#1=34
#2=164
#2169
#2162
#2e121
2=274
#1=197
#2282
#2=83
2%235
#2e84
#2-85
#286
#20124
22279
2=2308
2#279
20237
2wi6d
2e261
2e16S
2e168
2=227
2=274

2=316
2167

2=16%5
2=17@

2=16S
2=263

#2291
¥2e328

2=276
2228
2=260
e=311
H2=218
2=272
#2=16%S

#2-170
22268

2=305

2=331
2=279
2=250
2=262

2=256

2169

2=166

2=167
2=284

2-293

2=245

#2=166
2=272

2=277

CREF vey

2=167

2=168

2=312

W2e167

2=278

2=168

2=169

2=329

#2=168

ONILSIT FONTYIITE SSOYD ANV XTIWISSY ITJAWYS

REGISTER SYMBOL CROSS REFERENCE CREF veoi

SYmMBOL
PC

R@

Ry

R2
R3

R4
RS

REFERENCES

#2205 +2-208 22210 #2-212 *2-220
%20222 22240 *2-243 #2257 *2=258
#2270 #2=281 #2031 *2=320
2=206 #2209 £2=226 *2=227 2-244
*20246 #2247 *2e208 2-249 2-250

#2=255 #2256 #2260 #2261 2-262
#2276 #2277 #2278 *2-279 2-280

*2-284 *2-293 #2=294 #2296 *2=297
22298 222299 2=304 2-307 *2=309

*2=312 #2313 2=314 2-316 *2-330

*2%284 #2207 *2-221 2=-224 *2-228
2-229 2=233 2=-239 #2242 *2=310

*20329

#2230 ®2e237 2-239 #2245 *2e247

#2248 2+249

*2+268 2=272 *2-294 %2296 *2-297
2+313 #2318

#2263 2=264 2-265 2-266

*2=219 #2223 2226 2-252 2-261
2-262 2-274 2+277 2278 2309
20312 2-314 2-330

ONILSIT FONIYIITI SSOUD ANV ATHWISSY ITIWNS

MACRO CROSS REFERENCE

MACRO NAME

CALL

CALLR
DEF
ERRORS
JoL
RETURN
SAVRG
SAVVR
SECTN

s$08
+D8ECT

REFERENCES

#lelb
=222
20270

#1e78

#1=83

#1e123

#1=14S

#1=187

#1=156

#1e166

#2=40

#2e168

#1175

#1e=98

2=205
2=240
2=281
#2-285
#1=197

¥2=212
2=219

#2~164
#2=169

2=208
2=243
2=311
#2-331
¥#1=197

¥2=320

#2=165
#2178

ONILSIT JONIYIITY SSOYD ANV- ATHWISSY HA'TIAWVS

PERMANENT SYMBOL TABLE CROSS REFERENCE

SYMBOL

ADD
8cc
acs
BEQ

BIsB
BIT
8I1e
BLO
BNE
BR
CLR
CLRB
CcMP
INC
JMp
JSR

MoV

Move
RTS
SEC
87
T878
+BLKB
o BLKW

+BYTE
+END
+ENDC

« IDENT
o IF

REFERENCES

2=227
2=241
2+=271
2=203
2315
2=237
2+235
2252
2232
2+225
2+282
2=207
2=304
2=202
2=2%2
2=28S
2=205
2=240 .
2311
2=204
2=228
2=247
2262
2=277
2=296
2329
2=238
2242
2=292
2=246
2=299
2«151
2=77

2«84

2=123
2137
2=152
2=166
2169
2=333
1=179
2=169
13

1=174
2=166
2=169
2-205
2+208
2=220
2222
2=240
2=243

2=256

2=236

2305
2=274

2=251
2=264

2=224
2=253
2=331
2=208
2=243

2=206
2=229
2=248
2=263
2=278
2=297
2=33¢
2=239
2=320

2=318

2=78

285

2=124
2=152
2=164
2=167
2=170

2165
2%169
2=2

2=164
2=167
2=170
2=205
2=210
2=228
2=222
2=240
2=243

2=313

2=275

2=273
2=267
2=2314

=218
2+257

2=209
2=233
2=249
2265
2=279
2=309

2307

2-82

2=86

2e125
2=176
2=164
2=167
2e17@

2=166
2=170

2=164
2=167
2=17¢2
2+208
2=21¢
2=220
2=222
2=240
2257

2=295

2=302
2=282
2=272

2=219
2-258

e=221
2=242
2=25%
2=266
2=284
2=310

2=81
2e120
2=126

2=16S
2=168

2=167

2=165
2=168
2=205
2=208
2=210
202292
2=222
2=243
2-257

CREF

2=3029

20298
2=3014

2=22¢
2=270

2=223
2=244
2%260
2=268
2293
2=312

2=82
2«121
2=127

2e16S
2=168

2=167

2=165%
2=168
2295
2=208
2=210
2220
2=2409
2=243
2=257

Vo1

2=326

2=314

2=222
2=2814

2=226
2=245
2=261
2=276
2=294
2=316

2=83
2=122
2~136

2=168
2=169

2=168

2-166
2-169
2-205
2-208
2e210
2-222
2=240
2-243
2-257

ONILSIT JAONIYIITY SSOUYD ANV XTAWISSY HTAWVS

Absolute addresses, 6-14

Absolute binary output, 6-14

Absolute expression, 3-16

Absolute mode, 5-5, 5-7

Absolute module, 6-34

Absolute program section, 6-37

Address boundaries, 6-31

Address mode syntax, B-1

Address modes, 5-1

Addressing forms, summary, 5-7

Allocating byte data, 6-17

Allocating dynamic memory, F-1

Allocating word data, 6-18

Allocation requirements, 6-35

Alternate radix, 6-25

Ampersand, 3-1

Angle brackets, 3-3, 3-15,
6-4, 6-25, 6-28, 7-4 to
7-5, 7-16 to 7-17

Apostrophe, 7-10

Argument substitution, 7-16

Arithmetic addition operator
or autoincrement indicator
3-1

Arithmetic division operator
3-1

Arithmetic multiplication
operator, 3-1

Arithmetic subtraction
operator or autodecrement
indicator, 3-1

ASCII character set, A-1

ASCII conversion, 3-14

ASCII conversion characters
6-19

.ASCII directive, 6-20

.ASCIZ directive, 6-21

.ASECT directive, 6-38

Assembler directives, 6-1,
B-1, B-2

Assembler version, 6-8

Assembly language, B-1

Assembly listing, 2-6

Assembly pass 1, 1-1

Asterisk, 3-1

At sign, 3-1

Attribute of the current
location counter, 3-12

Autodecrement deferred
mode, 5-3, 5-7

Autodecrement mode, 5-7

Autoincrement deferred
mode, 5-3, 5-7

Autoincrement mode, 5-2, 5-7

INDEX

"B operator, 6-25

Backslash, 3-1

Binary operators, 3-15

Blank lines, 2-2

Blocks of storage, reserving,
6-30

.BLKB directive, 6-30

.BLKW directive, 6-30

Branch instruction addressing,
5-8

.BYTE directive, 6-17

“C operator, 6-27

Calling conventions, E-8

Calling macros, 7-3

Changing default radix, 3-13

Changing value of location
counter, 3-12

Character set, 3-1

Character substitution, 7-16

Code and data separation, 6-38

Code or data sharing, 6-38

Coding standard, E-1

Colon, 3-1

Comma, 3-1

Comment, 6-14, E-2

Comment field, 2-5

Comment field indicator, 3-1

Complementing an
argument, 6-27

Complex relocatable
expression, 3-16

Complex relocation, 4-1

Concatenated, 6-35

Concatenation of macro
arguments, 7-10

Conditional assembly block,
6-41

Conditional assembly
directive, 6-41, 6-42

Conditional branches, E-13

Continuation lines, 2-2

Creating local symbols
automatically, 7-7

Creating program sections,
6-36

Cross-reference listing
(CREF), 8-7, 8-8

Cross-reference processor, 8-8

.CSECT directive, 6-17

Current location counter, 2-2,
3-11, 3-14, 5-6, 6-29

Index-1

INDEX (CONT.)

D operator, 6-25
Data storage directives, 6-17
Date, 6-8
Default object module name,
6-11

Default register
definitions, 6-15

Deferred addressing
indicator, 3-1

Defining macros, 7-1

Device registers, E-2

Diagnostic, 7-14

Diagnostic error message
summary, D-1

Direct assignment operator,
3-1

Direct assignment statements,
3-7

Directives, 2-5, 5-9, 6-1

Double ASCII character
indicator, 3-1

Double colon, 3-1, 3-7

Double equal sign, 3-1, 3-7

Double quote, 3-1, 3-14, 6-19

.DSABL directive, 3-7, 3-9
6-13 to 6-15, 6-27

Duplication of code, 7-17

EMT, 5-8

.ENABL directive, 5-7, 6-13,
6-15, 6-27

.END directive, 6-31

.ENDC directive, 6-41

.ENDM directive, 7-2

End of the source input, 6-31

.ENDR directive, 7-17

Entry-point instructions, 6-33

.EOT directive, 6-31

Equal sign, 3-1

Error codes, D-1

.ERROR directive, 7-14

Error messages, 8-14°

Evaluation of expressions,
3-15

.EVEN, 6-29

Exclamation point, 3-1

Executable task image, 4-1

Exiting, E-9

Expressions, 3-14, 3-15

External expression, 3-15,
3-16

External symbols, 6-40

Externally-defined macro, 7-18

“F operator, 3-14, 6-27
File specification default
values, 8-5

File specification format,
8-13
Finding address mode of macro
arguments, 7-13
Finding number of characters
in strings, 7-12
Floating-point
data, 6-26
number, 6-28
number specification, 6-27
rounding, 6-15, 6-27
storage directives, 6-27
truncation, 6-14, 6-27
.FLT2 directive, 6-27
.FLT4 directive 6-27
Forbidden instruction
usage, E-12
Form-feed, 6-13, 7-3
Format control, 2-6
Formatting standards, E-9
Forward referencing, 3-8
Function control switches, 8-6
Function directives, 6-13

General purpose registers, E-2
General registers, 3-9
Global

label, 6-40

references, 6-15

symbol, 2-3, 6-40

symbol directory, 1-2
.GLOBL directive, 3-7, 6-39
GSD, 1-2

Hardware registers, E-2
Horizontal formatting, 2-6

IAS command string format,
8-10

.IF directive, 6-41

.IFF directive, 6-43, 6-44

.IFT directive, 6-43

.IFTF directive, 6-43

.IIF directive, 6-46

Illegal characters, 3-3

Immediate conditional
assembly, 6-46

Immediate expression
indicator, 3-1

Immediate mode, 5-4, 5-7

Immediate mode deferred, 5-5

Implicit .WORD directive, 2-5,
6-18

Indefinite repeat block
directives, 7-15

Index-2

INDEX (CONT.)

Index deferred mode, 5-4, 5-7

Index mode, 5-4, 5-7

Indirect command files, 8-12

Initial argument or expression
indicator, 3-1

Initial register indicator,
3-1

Initiating MACRO-11 under
IAS, 8-10 ’

Initiating MACRO-11 under
RSX-11M/RSX-11D, 8-1

Instruction set, C-1

.IRP directive, 7-15

.IRPC directive, 7-15, 7-16

Item or field terminator, 3-1

Keyword arguments, 7-4, 7-9

Label field, 2-2

Label terminator, 3-1

Left angle bracket, 3-1

Left parenthesis, 3-1

.LIMIT directive, 6-31

Line format, E-1

Linking, 4-1, 4-39

LLIST directive, 6-1

Listing conditional
assemblies, 6-4

Listing control
directives, 6-1

Listing control switches,
8-6

Listing level count, 6-2

Listing of binary extensions,
6-3

Listing of comments, 6-4

Listing of generated
binary code, 6-3

Listing of macro class, 6-4

Listing of macro definitions,
6-4

Listing of macro expansion
binary code, 6-4

Listing of repeat range
expansions, 6-4

Listing of source lines, 6-3

Listing of the current
location counter, 6-3

Listing of the symbol table,
6-4

Listing output spool, 8-7

Local symbol block, 6-14

Local symbol block delimiters,
3-10

Local symbols, 3-6, 3-10, 3-11

Location counter, 6-36

Location counter control
directives, 6-29

Logical AND operator, 3-1,
6=42

Logical inclusive OR
operator, 3-1, 6-42

Lower-case ASCII, 6-14

Macro arguments, 7-6

Macro attritube directives,
7-11

Macro call, 2-5, 7-3, 7-5

Macro call arguments, 7-4

Macro call numeric argument
indicator, 3-1

Macro definition, 7-1, 7-15

Macro definition arguments,
7-4

Macro definition formatting,
7-3

Macro definition termination,
7-2

Macro definitions and
expansions, F-2

Macro directives, 7-1

Macro expansion termination,
7-3

Macro library, 8-6

Macro library directive, 7-18

Macro name, 7-1, 7-4

Macro names, E-5

Macro nesting, 7-5

Macro qualifiers, 8-10

Macro symbol table, 3-5

MACRO-11 character sets, A-1

MACRO-11 directives, 5-9, C-4

MACRO-11 symbols, 3-5

.MCALL directive, 7-18

Memory allocation, 6-32, 6-33,
6-38

Memory allocation and mapping,
6-32

.MEXIT directive, 7-18

Minus sign, 3-1

Modularity, E-8

Module checking routines, E-9

Module preface, E-5

Multi-defined label, 2-4

Multiple definitions of local
symbols, 3-11

Multiple labels, 2-4

Naming standards, E-2
.NARG directive, 7-11
.NCHR directive, 7-11, 7-12

Index-3

INDEX (CONT.)

Negative numbers, 3-14
Nested conditional directives,
6-43
Nested macros, 7-3, 7-5
.NLIST directive, 6-1, 6-11
.NTYPE directive, 7-11, 7-13
Number of arguments in
macro calls, 7-7, 7-11
Number sign, 3-1, 5-4 -
Numbers, 3-13
Numeric control, 6-24
Numeric control operators,
6-26, 6-27
Numeric directives, 6-26

O operator, 6-25
Object module, 4-1
Object module name, 6-11
Octal radix, 3-13
.0ODD directive, 6-29
Op codes, 2-4, C-1
Operand field, 2-4
Operand field separator, 3-1
Operating procedures, 8-1
Operator field, 2-4
Order of symbol table
search, 3-6

Other symbols, E-3
Overlaid, 6-35
Overlays, 6-33

.PAGE directive, 6-13

Page eject, 7-3

Page ejection, 6-13

Page formatting, 2-6

Page headings, 6-8

Page number, 6-8

PAL-11R conditional assembly,
6-46

Passing numeric arguments
as symbols, 6-46

Percent sign, 3-1

Permanent symbol table, 3-5,
c-1

Plus sign, 3-1

Position independent code, H-1

.PRINT directive, 7-14

Processor priority, E-3

Program boundaries directive,
6-31

Program counter, 3-9, 5-1

Program modules, E-5

Program section access, 6-33

Program section name, 6-33

Program sections, 3-12, 6-32

Program source files, E-12

Program-local symbols, E-4

Programming standards and
conventions, 2-1

.PSECT directive, 3-12, 6-32,
6-35

"R operator, 6-23

.RAD50 directive, 3-13, 6-24

Radix control, 6-24

Radix control operators, 6-25

Radix-50 character set, A-4

Radix-50 control operator,
6-23

Radix-50 data, 6-22

.RADIX directive, 3-13, 6-24

Read-only access, 6-33

Read/write access, 6-33

Register deferred mode, 5-2

Register expression, 5-1

Register, mode, 5-1, 5-7

Register standards, E-2

Register symbols, 3-9

Register term indicator, 3-1

Relative addresses, 6-14

Relative addressing mode, 5-6

Relative deferred mode, 5-6,
5-7

Relative mode, 5-5, 5-7

Relocatability, 6-34

Relocatable expressions, 3-16,
4-1

Relocatable module, 6-34

Relocatable program sections,
6-37

Relocation, 4-1

Relocation bias, 2-2, 6-34

Repeat block directive, 7-17

.REPT directive, 7-17

Reserving storage, 6-30

Reserving storage space, 3-13,
6-29

Right parenthesis, 3-1

RSX-11 command string format,
8~3

RSX-11 file specification
switches, 8-5

RSX-11M 8K assembler, G-1

.SBTTL directive, 6-8, 6-11

Scope of the program section,
6-33

Semicolon, 3-1

Sending messages to listing
file, 7-14

Index-4

INDEX (CONT.)

Separating and delimiting
characters, 3-2

Single ASCII character
indicator, 3-1

Single quote, 3-1, 3-14, 6-19,

7-10

Slash, 3-1

Source line sequence numbpers,
6-3

Space, 3-1

Special characters, B-1

Special characters in macro
arguments, 7-6

Spool listing output, 8-7

Stack pointer, 3-9

Statement format, 2-1

Storing Radix~-50 data, 6-23

Subconditional assembly, 6-43

subtitle, 6-8

Success/failure indication,
E-9

Symbol control directive, 6-39

Symbol examples, E-4

Symbol table listing, 1-2

Symbolic arguments of listing
control directives, 6-3,
6-4

Symbols, E-3

Symbols and expressions, 3-1

System macro libraries, 7-18

Tab, 3-1

Tab character, 2-2

Table of contents, 6-4, 6-11

Task builder, 2-2, 4-1

Teleprinter mode, 6-4

Terminal argument or
expression indicator, 3-1

Terminal register indicator,
3-1

Terminating directives, 6-31

Terms, 3-14

Time-of-day, 6-8

.TITLE directive, 6-11

Title of the object module,
6-8

Translating to ASCII,
6-20, 6-21

Translating to Radix-50,
6-22

Trap instructions, 5-8

Unary and binary operators,
3-4
Unary control, 6-24
Unary operator ordering, 6-28
Unary operators, 3-15
Unconditional assembly, 6-43
Undefined symbols, 3-7, 3-14
Universal unary operator
or argument indicator, 3-1
Up arrow or circumflex, 3-1
Up-arrow, 3-3
Up-arrow (") construction, 7-5
User symbol table, 3-5
User~defined and macro
symbols, 3-5
User~defined macro libraries,
7-18
Using the standard symbolics,
E-3

Version number, 6-12
Version number standard, E-13

.WORD directive, 3-11, 6-18

Index~5

IAS/RSX-11 MACRO-11
Reference Manual
DEC-11-0OIMRA-B-D

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.,

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

— — Do Not Tear- Fold Hereand Tape — — — — — — — — — — —

dlilgliltiall

- — Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Pos.tage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-00
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	8-00
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	F-01
	F-02
	F-03
	F-04
	G-01
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	index-1
	index-2
	index-3
	index-4
	index-5
	replyA
	replyB

