RSX-11M/M-PLUS
Task Builder Manual
Order No. AA-H266A-TC

RSX-11M Version 3.2
RSX-11M-PLUS Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, June 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright () 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-~
paring future documentation,

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET~-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

7/80~14

CONTENTS

Page
PREFACE Xv
SUMMARY OF TECHNICAL CHANGES xi

CHAPTER 1 INTRODUCTION AND COMMAND SPECIFICATIONS

I
[

TASK COMMAND LINE
MULTIPLE LINE INPUT

OPTIONS

MULTIPLE TASK SPECIFICATIONS
INDIRECT COMMAND FILES
COMMENTS IN LINES

FILE SPECIFICATIONS

SUMMARY OF SYNTAX RULES

11

e
L] . L] . . . L] .
OOk WK
il g
wvodOudwWwwh

CHAPTER TASK BUILDER FUNCTIONS

N
|
[

LINKING OBJECT MODULES

1 Allocating Program Sections

2 Resolving Global Symbols
ASSIGNING ADDRESSES

1 Unmapped Systems

2 Mapped Systems
BUILDING SYSTEM DATA STRUCTURES
TASK RELOCATION ON MAPPED SYSTEMS

!
SO WwwH [od HHEFOONNDH

!

u O

CHAPTER TYPICAL TASK BUILDER FACILITIES

SHARED REGIONS

1 The Symbol Definition File

2 Position~Independent Shared Regions
3 Absolute Shared Regions

4 Linking to a Shared Region
5
6
7

WWwWwww w NN
I

Example 1l: Building and Linking to a Common
in MACRO-11
Example 2: Building and Linking to a Device
Common in MACRO-11 3-19
Example 3: Building and Linking to a
Resident Library in MACRO-11 3-23
.8 Example 4: Building and Linking to a
Supervisor-Mode Library in MACRO-11
(RSX~11M~PLUS Only) 3-32
3.2 EXAMPLE 5: BUILDING A MULTIUSER TASK)
(RSX-11M-PLUS ONLY) 3-44
EXAMPLE 6: BUILDING A TASK THAT CREATES A
DYNAMIC REGION 3-50
VIRTUAL PROGRAM SECTIONS 3-53
1 FORTRAN Run-Time Support for Virtual Program
2

w
I
=
[

Sections 3-56

Example 7: Building a Program that Uses a

Virtual Program Section 3-59
EXAMPLE 8: PRIVILEGED TASKS 3-62

iii

CONTENTS

Page
CHAPTER 4 OVERLAY CAPABILITY 4-1
4.1 OVERLAY STRUCTURES 4-1
4.1.1 Disk-Resident Overlay Structures 4-2
4.1.2 Memory-Resident Overlay Structures (Not
Supported on RSX-118) 4-5
4.2 OVERLAY TREE 4-15
4.2.1 Loading Mechanism 4-16
4.2,2 Resolution of Global Symbols in a
Multisegment Task 4-16
4.2.3 Resolution of Global Symbols from the
Default Library 4-18
4.2.4 Allocation of Program Sections in a
Multisegment Task 4-19
4.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES 4-20
4.4 OVERLAY DESCRIPTION LANGUAGE 4-22
4.4.1 .ROOT and .END Directives 4-22
4.4.2 .FCTR Directive 4-24
4.4.3 Exclamation Point Operator 4-24
4.4.4 .NAME Directive , 4-25
4.4.5 .PSECT Directive 4-27
4.4.6 Indirect Command Files 4-27
4.5 MULTIPLE-TREE STRUCTURES 4-28
4.5.1 Defining a Multiple-Tree Structure 4-28
4.5,2 Multiple~Tree Example 4-29
4.6 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL
LANGUAGE 4-34
4.7 EXAMPLE 9: BUILDING AN OVERLAY 4-34
4.8 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE 4-42
CHAPTER 5 OVERLAY LOADING METHODS 5-1
5.1 AUTOLOAD 5-1
5.1.1 Autoload Indicator 5-2
5.1.2 Path Loading 5-3
5.1.3 Autoload Vectors 5-4
5.1.4 Autoloadable Data Segments 5-5
5.2 MANUAL LOAD 5-6
5.2.1 MACRO-11 Manual Load Calling Sequence 5-6
5.2.2 FORTRAN Manual Load Calling Sequence 5-7
5.3 ERROR HANDLING 5-8
5.4 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK 5-9
CHAPTER 6 SWITCHES AND OPTIONS 6-1
6.1 SWITCHES : 6-1
6.1.1 /AC[:n] -- Ancillary Control Processor 6-5
6.1.2 /AL =-- Allocate Checkpoint Space 6-6
6.1.3 /CC =-- Concatenated Object Modules 6-7
6.1.4 /CM -- Compatibility Mode Overlay Structure 6-8
6.1.5 /CP -- Checkpointable 6-9
6.1.6 /CR -- Cross-Reference 6-10
6.1.7 /DA -- Debugging Aid 6-12
6.1.8 /DL —-- Default Library 6~-13
6.1.9 /EA -- Extended Arithmetic Element 6-14
6.1.10 " /FP -- Floating Point 6-15
6.1.11 /FU -- Full Search 6-16
6.1.12 /HD ~- Header 6-17

iv

CONTENTS

/LB -- Library File

6.1.13

6.1.14 /MA -- Map Contents of File o

6.1.15 /MM -- Memory Management

6.1.16 /MP —-- Overlay Description

6.1.17 /MU -- Multiuser

6.1.18 /PI —-- Position Independent

6.1.19 /PM -- Postmortem Dump

6.1.20 /PR[:n] —-- Privileged

6.1.21 /RO —-- Resident Overlay

6.1.22 /SE == Send

6.1.23 /SH -~ Short Map

6.1.24 /8L, —— Slave

6.1.25 /SP -- Spool Map Output

6.1.26 /SQ -~ Sequential

6.1.27 /SS —-- Selective Search

6.1.28 /TR =- Traceable

6.1.29 /WI -- Wide Listing Format

6.1.30 /XT{:n] -- Exit on Diagnostic

6.2 OPTIONS

6.2.1 ABORT =-- Abort the Task-Build

6.2.2 ABSPAT =-- Absolute Patch

6.2.3 ACTFIL =-- Number of Active Files

6.2.4 ASG -- Device Assignment

6.2.5 CMPRT -- Completion Routine

6.2.6 COMMON or LIBR =-- System—-Owned Resident
Common or System-Owned Resident Library

6.2.7 EXTSCT -- Program Section Extension

6.2.8 EXTTSK -- Extend Task Memory

6.2.9 FMTBUF -- Format Buffer Size

6.2.10 GBLDEF =-- Global Symbol Definition

6.2.11 GBLPAT -- Global Relative Patch

6.2,12 GBLREF -- Global Symbol Reference

6.2.13 GBLXCL == Exclude Global Symbols

6.2.14 LIBR -- System-Owned Library

6.2.15 MAXBUF -- Maximum Record Buffer Size

6.2.16 ODTV -- ODT SST Vector

6.2.17 PAR -~ Partition

6.2.18 PRI -- Priority

6.2.19 RESCOM or RESLIB =-- Resident Common or
Resident Library

6.2.20 RESLIB -- Resident Library

6.2.21 RESSUP -- Resident Supervisor-Mode Library

6.2.22 ROPAR -~ Read-Only Partition =-- RSX-11M-PLUS
Only

6.2.23 STACK ~-- Stack Size

6.2.24 SUPLIB =-- Supervisor-Mode Library =--
RSX-11M-PLUS Only

6.2.25 TASK —-- Task Name

6.2.26 TSKV -- Task SST Vector

6.2.27 UIC -- User Identification Code

6.2.28 UNITS -- Logical Unit Usage

6.2.29 VSECT =-- Virtual Program Section

6.2.30 WNDWS -- Number of Address Windows

CHAPTER 7 HOST AND TARGET SYSTEMS
7.1 INTRODUCTION
7.2 EXAMPLE: TRANSFERRING A TASK FROM A HOST TO

A TARGET SYSTEM

CONTENTS

Page
CHAPTER 8 MEMORY DUMPS 8-1
8.1 POSTMORTEM DUMPS 8-1
8.2 SNAPSHOT DUMP 8-5
8.2.1 Format of the SNPBK$ Macro 8-6
8.2.2 Format of the SNAP$ Macro 8-7
8.2.3 Example of a Snapshot Dump 8-8
APPENDIX A TASK BUILDER INPUT DATA FORMATS A-1
A.l DECLARE GLOBAL SYMBOL DIRECTORY RECORD A-2
A.l.1 Module Name (Type 0) A-4
A.l.2 Control Section Name (Type 1) A-5
A.l.3 Internal Symbol Name (Type 2) A-5
A.l1.4 Transfer Address (Type 3) A-6
A.1.5 Global Symbol Name (Type 4) A-6
A.l.6 Program Section Name (Type 5) A-7
A.1.7 Program Version Identification (Type 6) A-10
A.l1.8 Mapped Array Declaration (Type 7) A-10
A.l.9 Completion Routine Definition (Type 10) A-=11
A.2 END OF GLOBAL SYMBOL DIRECTORY RECORD A-11
A.3 TEXT INFORMATION RECORD A-11
A.4 RELOCATION DIRECTORY RECORD A-12
A.4.1 Internal Relocation (Type 1) A-14
A.4.2 Global Relocation (Type 2) A-15
A.4.3 Internal Displaced Relocation (Type 3) A-15
A.4.4 Global Displaced Relocation (Type 4) A-16
A.4.5 Global Additive Relocation (Type 5) A-16
A.4.6 Global Additive Displaced Relocation
(Type 6) A-17
A.4.7 Location Counter Definition (Type 7) A-18
A.4.8 Location Counter Modification (Type 10) A-18
A.4.9 Program Limits (Type 11) A-18
A.4.10 Program Section Relocation (Type 12) A-19
A.4.11 Program Section Displaced Relocation
(Type 14) A-19
A.4.12 Program Section Additive Relocation
(Type 15) A-20
A.4.13 Program Section Additive Displaced
Relocation (Type 16) A-21
A.4.14 Complex Relocation (Type 17) A-22
A.4.15 Resident Library Relocation (Type 20) A-23
A.5 INTERNAL SYMBOL DIRECTORY RECORD A-24
A.6 END OF MODULE RECORD A-24
APPENDIX B DETAILED TASK IMAGE FILE STRUCTURE B-1
B.1l LABEL BLOCK GROUP B-1
B.2 CHECKPOINT AREA B-7
B.3 HEADER B-7
B.3.1 Low-Memory Context B-8
B.3.2 Logical Unit Table Entry B-12
B.4 TASK IMAGE B-12
B.4.1 Autoload Vectors B-14
B.4.2 Segment Descriptor B-14
B.4.3 Window Descriptor B-16
B.4.4 Region Descriptor B-16
B.4.5 Supervisor-Mode Vectors (RSX-11M-PLUS
Only) B-17

vi

APPENDIX

APPENDIX

APPENDIX
APPENDIX

INDEX

FIGURE

wwWNNN!}t DN NNNNN

C

D

11 11
o

]
HEOONNAUL N WNHHEEPEY® Nogrk Wi

|

o

=
[REN

WWWLWwWwwwwww
I

!
[}
o>

3-15

ww

1
=
S o

3-18
3-19
3-20
3=-21

3-22

CONTENTS

RESERVED SYMBOLS
IMPROVING TASK BUILDER PERFORMANCE

EVALUATING AND IMPROVING TASK BUILDER
THROUGHPUT »
Overlay Latency
Table Storage
Input File Processing
Summary
MODIFYING COMMAND SWITCH DEFAULTS
THE SLOW TASK BUILDER

THE FAST TASK BUILDER

ERROR MESSAGES

FIGURES

Relocatable Object Modules

Modules Linked for Mapped and Unmapped Systems

Allocation of Task Memory

Unmapped Memory

Layout for Unmapped System

Task Relocation in a Mapped System

Memory Management Unit's Division of Virtual

Address Space

Mapping for 4K Word and 6K Word Tasks
Disk Image

Memory Image

Window Block 0

Typical Resident Common

Typical Resident Library

Specifying APRs for a Position-Independent

Shared Region
Mapping for an Absolute Shared Region

Windows for Shared Region and Referencing Task

Common Area Source File in MACRO-11l
Task Builder Map for MACCOM.TSK
Allocation Diagram for MACCOM.TSK
MACRO-11 Source Listing for MCOM1
MACRO-11 Source Listing for MCOM2

11
NN

UU?UUU

-7
D-11

E-1
F-1

Index-1

=

}
HEFROSO0 (SRRl ol ol ol HFWOWOUIWN
AU WN

Assigning Symbolic References Within a Common 3-17

Task Builder Map for MCOM1.TSK
Assembly Listing for TTCOM
Task Builder Map for TTCOM
Assembly Listing for TEST
Memory Allocation Map for TEST

Source Listing for Resident Library LIB.MAC

Task Builder Map for LIB.TSK
Source Listing for MAIN.MAC
Task Builder Map for MAIN.TSK

Allocation of Virtual Address Space for

MAIN.TSK

Typical Mapping for Supervisor-Mode Library

vii

FIGURE

3-40

L -b«hslbsh-b-b
1
= o © ~ an_WwWN

s
|

Y
|

4-18

=

I 1

=

= o X

LI I | 1
NENRFR&WN - NN

NNoouvuuiuia Eo
|

CONTENTS

FIGURES (Cont.)

Task Mapping while Running in Supervisor Mode
Source Listing for SUPLIB.MAC

Task Builder Map for SUPLIB.TSK

Source Listing for TSUP.MAC

Task Builder Map for TSUP.TSK

Allocation of Program Sections in a Multiuser
Task

Windows for a Multiuser Task

Source Listing for ROTASK.MAC

Task Builder Map for ROTASK.TSK

Source Listing for DYNAMIC.MAC

Task Builder Map for DYNAMIC.TSK

VSECT Option Usage

Source Listing for VSECT.FTN

Task Builder Map for VSECT.TSK

Mapping for /PR:4 and /PR:5

Source Code for PRIVEX

Task Builder Map for PRIVEX

Allocation of Vvirtual Address Space for PRIVEX
TK1 Built as a Single-Segment Task

TK1l Built as a Multisegment Task

TK1 Built with Additional Overlay Defined

TK2 Built as a Single-Segment Task

TK2 Built as a Memory-Resident Overlay
Relationship Between Virtual Address Space

and Physical Memory ~- Time 1 and Time 2
Relationship Between Virtual Address Space
and Physical Memory -- Time 3 and Time 4

Overlay Tree for TK1l

Resolution of Global Symbols in a Multiseg-
ment Task

Resolution of Program Sections for TK1
Typical Overlay Root Segment Structure
Tree and Virtual Address Space Diagram
Overlay Tree for Modified TK1

Virtual Address Space and Physical Memory
for Modified TK1

Overlay Co-Tree for Modified TK1

Virtual Address Space and Physical Memory
for TK1l as a Co-Tree

Overlay Tree of Virtual Address Space for
OVR.TSK

Map File for OVR.TSK

Allocation of Virtual Address Space for
OVR.TSK

Map File for RESOVR.TSK

Allocation of Virtual Address Space for
RESOVR.TSK

Details of Segment C of TKl

Path-Loading Example

Autoload Vector Format

Sample Overlaid Cross-Reference Listing
Cross-Reference Listing for OVR.TSK
Memory Allocation File (Map) Example
Task Builder Map for LIB.TSK

Task Builder Map for MAIN.TSK

viii

FIGURE

1 | 11
W

w&*w:vﬁiw © ©0m®

TEYA
VoOodaaUTIdWN - (5,]

B-3

wwwuluwmww
HFHYLVONO U
o

CONTENTS

FIGURES (Cont.)

Sample Postmortem Dump (Truncated)
Snapshot Dump Control Block Format

Sample Program that Calls for Snapshot Dumps
Sample Snapshot Dump (in Word Octal and
Radix-50)

Sample Snapshot Dump (in Byte Octal and
ASCII)

General Object Module Format

Global Symbol Directory Record Format
Module Name Entry Format

Control Section Name Entry Format

Internal Symbol Name Entry Format

Transfer Address Entry Format

Global Symbol Name Entry Format

Program Section Name Entry Format

Program Version Identification Entry Format
Mapped Array Declaration Entry Format
Completion Routine Entry Format

End of Global Symbol Directory Record Format
Text Information Record Format

Relocation Directory Record Format
Internal Relocation Entry Format

Global Relocation Entry Format

Internal Displaced Relocation Entry Format
Global Displaced Relocation Entry Format
Global Additive Relocation Entry Format
Global Additive Displaced Relocation Entry
Format

Location Counter Definition Entry Format
Location Counter Modification Entry Format
Program Limits Entry Format

Program Section Relocation Entry Format
Program Section Displaced Relocation Entry
Format

Program Section Additive Relocation Entry
Format

Program Section Additive Displaced Relocation
Entry Format

Complex Relocation Entry Format

Resident Library Relocation Entry Format
Internal Symbol Directory Record Format
End-of-Module Record Format

Task Image on Disk

Label Block 0 ~- Task and Resident Library
Data

Label Blocks 1 and 2 -- Table of LUN
Assignments

Label Block 3 =-- Segment Load List

Task Header, Fixed Part

Task Header, Variable Part
Vector Extension Area Format
Logical Unit Table Entry
Task-Resident Overlay Data Base
Autoload Vector Entry

Segment Descriptor

ix

Page

8-6
8-9

8-10

8-11
A-3
A-4
A-4
A-5
A-5
A-6
A-6
A-8
A-10
A-10
A-11
A-11
A-12
A-14
A-15
A-15
A-16
A-16
A-17

A-17
A-18
A-18
A-19
A-19

A-20
A-21

A-21
A-23
A-23
A-24
A-24

B-5

B-7
B-7
B~9
B-10
B-11
B-12
B-13
B-14
B-14

CONTENTS

FIGURES (Cont.)

Page
FIGURE B-12 Window Descriptor B-16
B-13 Region Descriptor B-17
B-14 Supervisor-Mode Vector B-17
TABLES
TABLE 2-1 Program Section Attributes 2-4
2=-2 Program Sections for Modules IN1l, IN2,
and IN3 2-6
2-3 Individual Program Section Allocations 2-6
2-4 Resolution of Global Symbols for IN1l, IN2,
and IN3 2-7
6-1 Task Builder Switches 6-2
6=-2 Input Files for SEL.TSK 6-39
6-3 Task Builder Options 6-46
A-1 Symbol Declaration Flag Byte -- Bit
Assignments A=7
A-2 Program Section Name Flag Byte =-- Bit
Assignments A-8
A-3 Relocation Directory Command Byte ~-- Bit
Assignments A-13
B-1 Task and Resident Library Data B-3
B-2 Resident Library/Common Name Block Data B-6
D-1 Task File Switch Defaults D=9
D=2 Map File Switch Defaults D-10
D=3 Symbol Table File Switch Defaults D-10
D-4 Input File Switch Defaults D-11

PREFACE

MANUAL OBJECTIVES

This manual describes the concepts and capabilities of the
RSX-11M/M-PLUS Task Builder.

Working examples are used throughout this manual to introduce and
describe features of the Task Builder. Because RSX-11M systems
support a large number of programming languages, it is not practical
to illustrate the Task Builder features in all of the languages
supported. 1Instead, most of the examples in the main text of this
manual are written in MACRO-11.

INTENDED AUDIENCE

Before reading this manual, you should be familiar with the
fundamental concepts of your operating system (RSX-11M or
RSX-11M-PLUS) and with the operating procedures described 1in the
RSX--11M/M-PLUS MCR Operations Manual. In addition, you should be
familiar with the programming concepts described in the RSX-11M/M-PLUS
Guide to Program Development.

STRUCTURE OF THIS DOCUMENT

This manual has eight chapters. Their contents are summarized as
follows:

® Chapter 1 describes the Task Builder command sequences that
you use to interact with the Task Builder.

e Chapter 2 describes the basic Task Builder functions,
including the Task Builder's allocation of virtual address
space, the resolution of global symbols, and privileged tasks.

e Chapter 3 describes some typical Task Builder features
including tasks that access shared regions and device commons,
multiuser tasks, tasks that create dynamic regions, wvirtual
program sections and privileged tasks.

e Chapter 4 describes the Task Builder's overlay capability and
the language you must use to define an overlay structure.

o Chapter 5 describes the two methods available to you to 1load
overlay segments.

e Chapter 6 lists the Task Builder switches and options in two
sections, Both switches and options are listed in
alphabetical order in their respective sections, and are
printed on colored stock to help you find them quickly.

® Chapter 7 describes the considerations for building a task on
one system to run on a system with a different hardware
configuration.

e Chapter 8 describes two memory dumps -- Postmortem and
Snapshot.
This manual also contains six appendixes. Their contents are

summarized as follows:

e Appendix A contains a detailed description of the Task Builder
input data structures.

e Appendix B contains a detailed description of the task image
file structure.

e Appendix C contains a list of the symbols and program section
names reserved for Task Builder use.

e Appendix D contains information on improving Task Builder’
performance.

e Appendix E describes the fast Task Builder.

e Appendix F contains the Task Builder error messages. These
are also printed on colored stock for quick reference.

A Task Builder glossary follows the appendixes.

ASSOCIATED DOCUMENTS

Other manuals closely allied with this document are described 1in the
documentation directory for your operating system. This directory
defines the intended audience of each manual in the documentation set
and provides a brief synopsis of each manual's contents.

CONVENTIONS USED IN THIS DOCUMENT

In this manual, horizontal ellipses (...) 1indicate that additional,
optional arguments in a statement format have been omitted. For
example:

input-spec, ...

This means that one or more input-spec items, separated by commas, can
be specified.

Vertical ellipses means that additional lines of code or 1lines in a
Task Builder map file are not pertinent to an example, have been
omitted. For example:

TKB>input-line

This means that one or more of the indicated TKB items have been
omitted.

xii

Finally, in the examples of Task Builder command sequences, the
portion of the command sequence that you type is printed in red. The
Task Builder's responses and prompts are printed in black.

xiii

SUMMARY OF TECHNICAL CHANGES

This manual documents RSX-11M-PLUS Task Builder enhancements. The
following RSX-11M-PLUS features have been added to the Task Builder.

The MU switch has been added to provide for the building of multiuser
tasks. Multiuser tasks allow more than one user to share the
read-only portions of a single task.

The following options have also been added:

e ROPAR (read-only partition) specifies the partition in which
the read-only portion of a multiuser task is to reside.

e GBLXCL (global exclusion) specifies the symbols that are to be
excluded from the symbol definition file of a resident
supervisor-mode library.

® RESSUP (user-owned resident supervisor-mode library) specifies
that the task expects to access a resident supervisor-mode
library.

e SUPLIB (system-owned resident supervisor-mode library)
specifies that the task expects to access a system-owned
resident supervisor-mode library.

e CMPRT (completion routine) identifies the completion routine
in a supervisor-mode library.

These new features are described in Chapter 6. Chapter 3 contains
examples that illustrate them.

While you can specify these features 1in the Task Builder command

sequence on both RSX-11M V3.2 and RSX-11M-PLUS systems, the resulting
tasks can be installed and run only on RSX-11M-PLUS systems.

XV

CHAPTER 1

INTRODUCTION AND COMMAND SPECIFICATIONS

The basic steps in the development of a program are as follows:

1. You write one or more routines in an RSX-11M/M-PLUS supported
source language and enter each routine as an ASCII text file,
through an editor.

2. You submit each text file to the appropriate language
translator (an assembler or compiler), which converts it to a
relocatable object module.

3. You specify the object modules as input to the Task Builder,
which combines the object modules into a single task image
output file.

4. You install and run the task.

If you find errors in the task when you run it, you make corrections
to the text file, using the editor, and then repeat steps 2 through 4.

The Task Builder's main function 1is to convert relocatable object
modules (.OBJ files) into a single task image (.TSK file) that you can
install and run on a RSX-11lM or RSX-11M-PLUS system. The task is the
fundamental executable unit in both systems.

If your program consists of a single object module, the use of the
Task Builder 1is appropriately simple. You specify as input only the
name of the file containing the object module produced £from the
translation of the program, and specify as output the task image file.

Typically, however, programs consist of more than a single object
module. In this case, you name each of the object module files as
input. The Task Builder links the object modules, resolves references
between them, resolves references to the system library, and produces
a single task image ready to e irstalled and executed.

The Task Builder makes a set of assumptions (defaults) about the task
image based on typical wusage and storage requirements. You can
override these assumptions by including switches and options in the
task-building terminal sequence. Thus, you can build a task that is
tailored to its own input/output and storage requirements.

The Task Builder also produces (upon request) a memory allocation
(map) file that contains information describing the allocation of
address space, the modules that make up the task image, and the value
of all global symbols. 1In addition, you can request that a list of
global symbols, accompanied by the name of each referencing module, be
appended to the file (global cross reference).

INTRODUCTION AND COMMAND SPECIFICATIONS

The following example shows a simple sequence for building a task:

>MAC PROG=PROG
>TKB PROG=PROG
>INS PROG
>RUN PROG

The first command (MAC) causes the MACRO-11 assembler to translate the
source code of the file PROG.MAC into a relocatable object module in
the file PROG.OBJ. The second command (TKB) causes the Task Builder
to process the file PROG.OBJ to produce the task image file PROG.TSK.
The third command (INS) causes the INSTALL processor to add the task
to the Executive's directory of executable tasks (System Task
Directory). The fourth command (RUN) causes the task to execute.

The example just given includes the command
>TKB PROG=PROG

This command illustrates the simplest use of the Task Builder. It

gives the name of a single file as output and the name of a single
file as input.

This chapter describes basic Task Builder command forms and sequences.

1.1 TASK COMMAND LINE

The task command 1line contains the output £file specifications,
followed by the input file specifications; they are separated by an
equal sign (=). You can specify up to three output files and any
number of input files.

You must give the output files in a specific order: the first file
you name is the image (.TSK) file, the second is the memory allocation
(.MAP) file, and the third is the symbol definition (.STB) file. The
map file 1lists information about the size and location of components
within the task. The symbol definition file contains the global
symbol definitions in the task and their wvirtual or relocatable
addresses in a format suitable for reprocessing by the Task Builder.
You specify this file when you are building a resident library or
common. (Resident libraries and commons are described in Chapter 3.)
The Task Builder combines the input files to create a single task
image that can be installed and executed.

The task command line has the form:
task-image-file,map-file,symbol-definition-file=input-file,...

You can omit any output file by replacing the file specification with

the delimiting comma that would normally follow it. The following

commands illustrate the ways the Task Builder interprets the output

file names.

Command Output Files

>TKB IMG1l,IMG1l,IMG1l=INl1 The task image file is IMGl.TSK, the memory
allocation (map) file 1is IMGl.MAP, and the
symbol definition file is IMG1.STB.

>TKB IMG1l=INl The task image file is IMGl.TSK.

>TKB ,IMG1l=IN1l The map file is IMGl.MAP.

INTRODUCTION AND COMMAND SPECIFICATIONS

Command ‘ Output Files
>TKB ,,IMGl=IN1 The symbol definition file is IMG1.STB.
>TKB IMGl,,IMG1l=INl The task image file 1is IMG1.TSK and the
symbol definition file is IMGl.STB.
>TKB =IN1 This is a diagnostic run with no output
files.

1.2 MULTIPLE LINE INPUT

Although you can specify a maximum of three output £files, you can
specify any number of input files. When you specify several input
files, a more flexible format is sometimes necessary -- one that
consists of several 1lines. This multiline format is also necessary
when you want to include options in your command sequence (see Section
103) »

If you type TKB, the Monitor Console Routine (MCR) activates the Task
Builder. The Task Builder then prompts for input until it receives a
line consisting only of the terminating slash characters (//) For
example:

>TKB
TKB>IMG1,IMG1=INl
TKB>INZ2,IN3
TKB>//

This sequence produces the same result as the single line command:
>TKB IMG1,IMG1=IN1,IN2,IN3

Both command sequences produce the task image file IMGl1.TSK and the
map file IMGl1.MAP from the input files IN1.0BJ., IN2.0BJ, and IN3.0BJ.

You must specify the output file specifications and the equal sign (=)
on the first command line. You can begin or continue input file
specifications on subsequent lines.

When you type the terminating slash characters (//), the Task Builder
stops accepting input, builds the task, and returns control to MCR.

1.3 OPTIONS

You use options to specify the characteristics of the task you are
building. To include options in a task, you must use the multiline
format. If you type a single slash (/) following the input file
specification, the Task Builder requests option information by
displaying ENTER OPTIONS: and prompting for input. For example:

>TKB
TKB>IMGl,IMG1l=IN1
TKB>IN2,IN3

TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKB>//

INTRODUCTION AND COMMAND SPECIFICATIONS

In this sequence there are two options: PRI=100 and COMMON=JRNAL:RO.
The two slashes end option input, initiate the task-build, and return
control to MCR upon completion.

NOTE

When you are building an overlaid task,
there are exceptions to the use of the
single slash (/). Overlaid tasks are
described in Chapter 4.

The RSX-11M/M-PLUS Task Builder provides numerous options. These are
described in Chapter 6. The general form of an option is a keyword
followed by an equal sign (=) and an argument list., The arguments in
the list are separated from one another by colons (:). 1In the example
above, the first option consists of the keyword PRI and a single
argument indicating that the task is to be assigned the priority 100.
The second option consists of the keyword COMMON and an argument list,
JRNAL:RO, 1indicating that the task accesses a resident common region
named JRNAL and that the access is read-only. You can specify more
than one option on a 1line, by wusing an exclamation point (!) to
separate the options. For example:

TKB>PRI=100!COMMON=JRNAL :RO
This command is equivalent to the two lines:

TKB>PRI=100
TKB>COMMON=JRNAL :RO

Some options accept more than one set of argument lists. You wuse a
comma (,) to separate the argument lists., For example:

TKB>COMMON=JRNAL :RO,RFIL:RW
In this command, the first argument list indicates that the task has
requested read-only access to the resident common JRNAL. The second
argument list indicates that the task has requested read/write access
to the resident common RFIL,
The following three sequences are equivalent:

TKB>COMMON=JRNAL :RO,RFIL:RW

TKB>COMMON=JRNAL : RO!COMMON=RFIL:RW

TKB>COMMON=JRNAL :RO
TKB>COMMON=RFIL:RW

1.4 MULTIPLE TASK SPECIFICATIONS

If you intend to build more than one task, you can use the single
slash (/) following option input. This directs the Task Builder to

stop accepting input, build the task, and request information for the
next task-build.

INTRODUCTION AND COMMAND SPECIFICATIONS

For example:

>TKB

TKB>IMG1=IN1
TKB>IN2,IN3

TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKB>/

TKB> IMG2=SUB1
TKB>//

The Task Builder accepts the output and input file specifications and
the option input; it then stops accepting input upon encountering the
single slash (/) during option input. The Task Builder builds
IMG1.TSK and then returns to accept more input for building IMG2.TSK.

1.5 INDIRECT COMMAND FILES

You can enter commands to the Task Builder directly from the keyboard,
or indirectly through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains ' the
Task Builder commands you want to be executed. Later, after you
invoke the Task Builder, you type an at sign (@) followed by the name
of the indirect command file.

For example, suppose you create a file called AFIL.CMD containing the
following:

IMG1,IMG1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
//

Later, you can type:

>TKB
TKB>@AFIL
TKB>

or simply
>TKB @AFIL

When the Task Builder encounters the at sign (@), it directs its
search for commands to the file named AFIL.CMD. The example above is
equivalent to the keyboard sequence:

>TKB
TKB>IMG1l,IMG1=IN1l
TKB>IN2,IN3

TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON=JRNAL :RO
TKB>//

When the Task Builder encounters two terminating slash characters (//)
in the indirect command file, it terminates indirect command file
processing, builds the task, and exits to MCR.

INTRODUCTION AND COMMAND SPECIFICATIONS

When the Task Builder encounters a single slash (/) in an indirect
command file and the slash is the last character in the file, the Task
Builder directs its search for commands to the terminal. For example,
suppose the file AFIL.CMD in the last example is changed to read:

IMG1l,IMG1l=INl1
IN2,IN3

/
Later, you can type:

>TKB
TKB>@AFIL

In this case, the Task Builder goes to the terminal and prompts:

ENTER OPTIONS:
TKB>

From this point, you input options to the Task Builder directly from
the keyboard. If you then conclude option input from the keyboard
with double slashes (//), the Task Builder suspends command
processing, as described above, and exits to MCR following the
task-build. 1If you conclude option input with a single slash (/), the
Task Builder prompts for new command input following the task-build of
IMGl.TSK, as follows:

TKB>

Using the single slash (/) following option input in indirect command
files 1is a convenient way to return control to your terminal between
successive task-builds. For example, suppose you create two indirect
command files. The first, AFIL.CMD, contains:

IMG1l,IMG1l=IN1
IN2,IN3
/

PRI=100
COMMON=JRNAL
/

Thé second, AFIL1.CMD, contains:

IMG2,IMG2=IN4
IN5,IN6
/

PRI=100
//

Then, the terminal sequence to build these two tasks is:

>TKB
TKB>@AFIL
TKB>@AFIL1
>

NOTE

For interaction with a Task Builder
indirect command file as described
above, you must use the multiline format
when you specify the indirect command
file.

INTRODUCTION AND COMMAND SPECIFICATIONS

The Task Builder permits two levels of indirection in file references.
That 1is, the indirect command file referenced in a terminal sequence
can contain a reference to another indirect command file, For
example, if the file BFIL.CMD contains all the standard options that
are used by a particular group of users at an installation, you can

modify AFIL to include an indirect command file reference to BFIL.CMD
as a separate line in the option sequence.

The contents of AFIL.CMD would then be:

IMG1,IMG1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
@BFIL

//

To build these files, you type:

>TKB
TKB> @AFIL

Suppose the contents of BFIL.CMD are:

STACK=100
UNITS=51ASG=DT1:5

The terminal equivalent of building these files is:

>TKB
TKB>IMG1l,IMG1l=INl
TKB>INZ2,IN3

TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON==JRNAL :RO
TKB>STACK=100
TKB>UNITS=51ASG=DT1:5
TKB>//

The indirect command file reference must appear on a separate line.
For example, 1if you modify AFIL.CMD by adding the @BFIL reference on
the same line as the COMMON=JRNAL:RO option, the substitution would
not take place and the Task Builder would report an error. ’

1.6 COMMENTS IN LINES

You can include comments at any point in the command sequence, except
in lines that contain file specifications. You begin a comment with a
semicolon (;) and terminate it with a carriage return. All text
between these delimiters is a comment.

For example, in the indirect command file, AFIL.CMD, described in

Section 1.5, vyou can add comments to provide more information about
the purpose and the status of the task.

INTRODUCTION AND COMMAND SPECIFICATIONS

TASK 33A

DATA FROM GROUP E-46 WEEKLY

N No we N e

MG1,IMG1l=

PROCESSING ROUTINES

[)

N1

STATISTICAL TABLES
N2

ADDITIONAL CONTROLS
N3

RI=100

Q)~e TN~ ~o we i~ e we

OMMON=JRNAL:RO ; RATE TABLES
TASK STILL IN DEVELOPMENT
/

\~. ~e “o

1.7 FILE SPECIFICATIONS

The Task Builder adheres to the standard RSX-11M/M-PLUS conventions
for file specifications, For any file, you can specify the device,
the User File Directory (UFD), the file name, the file type, the file
version number, and any number of switches,

The file specification has the form:

device: [group,member] filename.type;version/swl/sw2.../swn

When you specify files by name only the Task Builder applies the
default switch settings for device, group, member, type, version. For
example:

>TKB
TKB>IMG1l,IMG1=IN1
TKB>INZ2,IN3
TKB>//

If the current User Identification Code (UIC) of the terminal that the

Task Builder 1is running on 1is [200,200], the task 1image file
specification of the example is assumed to be:

SY0:[200,200] IMG1.TSK;1

That is, the Task Builder creates the task image file on the system
device (SY0:) under UFD [200,200]. The default type for a task image
file is .TSK and if the name IMGl.TSK is new, the version number is 1.
The default settings for all the task image switches also apply.
Switch defaults are described in detail in Chapter 6.

INTRODUCTION AND COMMAND SPECIFICATIONS

For example:

>TKB

TKB>[20,23] IMG1/CP/DA,IMG1/CR=IN1
TKB>IN2;3,IN3

TKB>//

This sequence of commands instructs the Task Builder to create a task
image file IMG1.TSK;l and a memory allocation (map) file MP1.MAP;1
(actually, it produces IMGl.TSK and IMGl.MAP with versions one higher
than the current versions) under UFD [20,23] on the device SY:. The
task image is checkpointable and contains the standard debugging aid
(ODT) . The Task Builder outputs the map to the line printer with a
global cross-reference listing appended to it. The Task Builder
builds the task from the latest versions of IN1.0BJ, IN3.0BJ, and the
specific version of IN2.0BJ. The input files are all found on the
system device. ‘

For some files, a device specification is sufficient. 1In the example
above, the map file 1is fully specified by the device LP:., The map

listing is produced on the line printer, but 1is not retained as a
file.

This example also used switches /CP, /CR, and /DA. The code, syntax,
and meaning for each switch are given in Chapter 6.

1.8 SUMMARY OF SYNTAX RULES

The syntax rules for issuing commands to the Task Builder are as
follows:

1. A task-build command can take any one of four forms. The
first form is a single line:

>TKB task-command-line

The second form has additional lines for input file names:

>TKB
TKB>task—-command-line
TKB>input-line

TKB>terminating-symbol
The third form allows you to specify options:

>TKB
TKB>task-command-line
TKB>/

ENTER OPTIONS:
TKB>option-1line

TKB>terminating-symbol

INTRODUCTION AND COMMAND SPECIFICATIONS

The fourth form has both input lines and option lines:

>TKB
TKB>task-command-line
TKB>input-line

TKB>/
ENTER OPTIONS:
TKB>option-line

TKB>terminating-symbol
The terminating symbol can be:
/ if you intend to build more than one task

// if you want the Task Builder to return control
MCR

2. A task command line has one of the three forms:
output-file-list=input-file,...
=input-file,...

@indirect-command-file

The third form is an indirect command file specification
described in Section 1.5.

3. An ouput file list has one of the three forms:
task-image-file,map-file,symbol-definition-file
task-image-file,map-file
task-image-file

The task-image-~file is the file specification for the
image file; map-file 1is the file specification for

memory allocation (map) file; and symbol-definition-file
the file specification for the symbol definition file.

to

as

task
the
is
Any

of the specfications can be omitted, so that, for example,

the following form is permitted:
task—-image-file,,symbol-definition-£file
4. An input line has one of two forms:
input-file,...
@indirect-command-file

Both input-file and indirect-command-file are
specifications.

file

INTRODUCTION AND COMMAND SPECIFICATIONS

An option line has one of two forms:
optionl...
@indirect-command-file
The indirect-command-file is a file specification.
An option has the form:
keyword=argument-list,...
The argument-list is:
arg:...
The syntax for each option is given in Chapter 6.

A file specification conforms to standard RSX-1M/M-PLUS
comventions. It has the form:

device: [group,member] filename.type;version/swl/sw2.../swn

device: The name of the physical device on which the volume
containing the desired file is mounted. The name
consists of two ASCII characters followed by an
optional 1- or 2-digit octal wunit number and a
colon; for example, LP: or DTl:.

group The group number, in the range of 1 through 377(8).
member The member number, in the range 1 through 377(8).

filename The name of the desired file. The file name can
contain up to 9 alphanumeric characters.

type The 3-character file type idectification. Files
having the same name but a different function are
distinguished from one another by the file type;
for example, CALC.TSK and CALC.OBJ.

version The version number, in octal, of the file. Various
versions of the same file are distinguished from one
another by this number; for example, CALC.0OBJ;1l and
CALC.OBJ; 2.

All components of a file specification are optional. The
combination of the group number and the member number is the
User File Directory (UFD) that contains the file name.

CHAPTER 2

TASK BUILDER FUNCTIONS

The process of building a task involves three distinct Task Builder
functions. First, the Task Builder 1is a linker. It collects and
links the relocatable object modules that you specify to it into a

single task image and resolves references to global symbols across the
module boundaries.

Second, the Task Builder assigns addresses to the task image. On
mapped systems, the Task Builder assigns addresses for a task
beginning at zero. The Executive then relocates the addresses at
runtime. On unmapped systems, the Task Builder assighs addresses for
a task beginning at the base address of the partition in which the
task is to run. The addresses of tasks that run on unmapped systems
are not relocated at runtime.

NOTE

Unless otherwise indicated, references
to tasks that run on mapped systems
assume that the tasks are nonprivileged
and residing within system—-controlled
partitions.

Third, the Task Builder builds data structures 1into the task image

that are required by the INSTALL processor to install the task and by
the Executive to run it.

This chapter describes the three Task Builder functions in detail.

2.1 LINKING OBJECT MODULES

When the language translators convert symbolic source code within a
module to object code, they assign provisional 16-bit addresses to the
code, A single assembly or compilation produces a single object
module, In their simplest form, each module begins at 0 and extends
upward to the highest address in the module. Three object modules

produced at separate times might have the address limits shown in
Figure 2-1.

TASK BUILDER FUNCTIONS

1000 —

750

500

MODULE #1 MODULE #3

MODULE #2

| i

RELOCATABLE 0--t RELOCATABLE O RELOCATABLE 0O-

Figure 2-1 Relocatable Object Modules

If these modules represent the separate modules of a single program,
the Task Builder 1links them together and modifies the provisional
addresses to one of the following:

e A single sequence of addresses beginning at 0 and extending
upward to the sum of all of the addresses of each module
(mapped system)

e A single sequence of addresses beginning at a base address
assigned at task build time and extending upward to the sum of
all the addresses of each module (unmapped system)

For example, Figure 2-2A shows the three modules linked for a mapped

system, and Figure 2-2B shows the modules linked for an unmapped
system,

2.1,1 Allocating Program Sections
The language translators process source code and the Task Builder
links object modules within the context of program sections. A
program section is a block of code or data that «consists of three
elements:

e a name

e a set of attributes

e a length

TASK BUILDER FUNCTIONS

2250 —

— 3250—

)
MODULE #3 MODULE #3
MODULE #2 MODULE #2
MODULE #1 MODULE #1

OJ- BASE1OOOJ—
MAPPED UNMAPPED

SYSTEM SYSTEM
2-2A 2-2B

Figure 2-2 Modules Linked for Mapped and Unmapped Systems

Program sections are important because they are the basic unit used by
the Task Builder to determine the placement of code and data in a task
image. The language translators maintain a separate location counter
for each program section 1in a program. The name of each program
section, its attributes, and its 1length are conveyed to the Task
Builder through the object module.

You can create as many program sections within a module as you wish by
explicitly declaring them (with the COMMON statement in FORTRAN or the
.PSECT directive in MACRO-11], for example) or you can leave the
creation of program sections to the language translator. If you do
not explicitly create a program section in your source code, the
language translator you are working with will create a "blank" program
section within each module translated. This program section will
appear on your listings and maps as . BLK.. For more information on

explicitly declared program sections, see your language reference
manual.

TASK BUILDER FUNCTIONS

A program section's name is the name by which the language translator
and Task Builder reference it. When processing files, both the
language translator and the Task Builder create internal tables that
contain program section names, attributes and lengths.

Program section attributes define a program section's contents, its

placement in a task image, and, in some cases, the allowed mode of
access (read/write or read-only).

A program section's length determines how much address space the Task
Builder must reserve for it.

When a program consists of more than one module, it is not unusual for
program sections of the same name to exist in more than one of the
modules. Therefore, as the Task Builder scans the object modules, it
collects scattered occurrences of program sections of the same name
and combines them into a single area of your task image file. The
attributes 1listed 1in Table 2-1 control the way the Task Builder
collects and places each program section in the task image.

Table 2-1
Program Section Attributes

Attribute Value Meaning
access-code RW Read/write: data can be read from, and
written into, the program section
RO Read-only: data can be read from, but
cannot be written 1into, the program
section
type-code 1 D Data: the program section contains data
I Instruction: the program section
contains either instructions, or data and
instructions
scope-code GBL Global: the program section name is
recognized across overlay segment

boundaries, the Task Builder allocates
storage for the program section from
references outside the defining overlay

segment.

LCL Local: the program section name is
recognized only within the defining
overlay segment; the Task Builder

allocates storage for the program section
from references within the defining
overlay segment only

1 Do not ccnfuse these codes with the I and D space hardware on
PDP-11 system:.

(continued on next page)

TASK BUILDER FUNCTIONS

Table 2-1 (Cont.)
Program Section Attributes

Attribute Value Meaning

allocation-code | CON Concatenate: all references to a given
program section name are concatenated;
the total allocation is the sum of the
individual allocations

OVR Overlay: all references to a given
program section name overlay each other;
the total allocation is the length of the
longest individual allocation

relocation-code | REL Relocatable: the base address of the
program section is relocated relative to
the base address of the task

ABS Absolute: the base address of the
program section is not relocated; it is
always 0
memory-code 2 HIGH High: the program section 1is to be

loaded into high-speed memory

LOW Low: the program section is to be loaded
into low-speed memory

2 Not used by the Task Builder.

The type-code and scope-code are meaningful only when you define an
overlay structure for a task. These codes are described in later
chapters within the context of the descriptions of overlays. The Task
Builder does not use the memory-code.

The Task Builder uses a program section's access-code and
allocation-code to determine its placement and size in a task image.
It divides address space into read/write and read-only areas, and
places. the program sections in the appropriate area according to
access-code,

The Task Builder uses a program section's allocation-code to determine
its starting address and length. If a program section's
allocation-code indicates that the Task Builder is to overlay it, the
Task Builder places each allocaticn to the program section from each
module at the same address within the task image. The Task Builder
determines the total size of the program section from the length of
the longest allocation to it.

If a program section's allocation-code indicates that the Task Builder
is to concatenate it, the Task Builder places the allocation from the
modules one after the other in the task image, and determines the
total allocation from the sum of the lengths of each allocation.

The Task Builder always allocates address space for a program section
beginning on a word boundary. If the program section has the D (data)
and CON (concatenate) attributes, the Task Builder appends to the last
byte of the previous allocation all storage contributed by subsequent
modules. It does this regardless of whether that byte is on a word or

TASK BUILDER FUNCTIONS

nonword boundary. For a program section with the I (instruction) and
CON attributes, however, the Task Builder allocates address space
contributed by subsequent modules beginning with the nearest following

word boundary.

For example, suppose three modules, INl, 1IN2, and 1IN3, are to be
task=-built. Table 2-2 lists these modules with the program sections
each contains and their access codes and allocation codes.

Table 2-2
Program Sections for Modules INl, IN2, and IN3

Program
Section | Access | Allocation | Size
File Name | Name Code Code (octal)
IN1 B RW CON 100
A RW OVR 300
C RO CON 150
IN2 A RW OVR 250
B RW CON 120
IN3 C RO CON 50

In this example, the program section named B, with the attribute CON
(concatenate), occurs twice. Thus, the total allocation for B is the
sum of the lengths of each occurence; that is, 100 + 120 = 220. The
program section named A also occurs twice. However, it has the OVR
(overlay) attribute so its total allocation is the largest of the two
sizes, or 300. Table 2-3 1lists the individual program section

allocations.

Table 2-3
Individual Program Section Allocations
Program Section Total
Name Allocation
B 220
A 300
C 220

The Task Builder then groups the program sections according to their
access codes, and alphabetizes each group as shown in Figure 2-3.

NOTE

The example shown in Figure 2-3
represents the Task Builder's default
allocation of program sections. For
information on altering this default,
see the description of the 8Q switch in
Chapter 6.

TASK BUILDER FUNCTIONS

‘ C (220) READ-ONLY

ACCESS

B (220)
READ/WRITE TASK MEMORY
ACCE

A (300) CCESS

STACK

HEADER

Figure 2-3 Allocation of Task Memory

2.1.2 Resolving Global Symbols

The Task Builder resolves references to global symbols across module
boundaries and any references (explicit or implicit) to the system
library. When the language translators process a text £file, they
assume that references to global symbols within the file are defined
in other, separately assembled or compiled modules. As the Task
Builder 1links the relocatable object modules, it creates an internal
table of the global symbols it encounters within each module. If,
after the Task Builder examines and links all the object modules,
references remain to symbols that have not been defined, the Task
Builder assumes that it will £ind the definition for the symbols
within the default system object module library (LB:([1,1]SYSLIB.OLB).
If wundefined symbols still remain after SYSLIB is examined, the Task
Builder flags the symbols as undefined. If you have not specified an
output map in your Task Builder command sequence, the Task Builder
reports the names of the undefined symbols to you on your terminal.
If vyou have specified an output map, the Task Builder outputs to your
terminal only the fact that the task contains undefined symbols. The
names of the symbols appear on your map listing.

When creating the task image file, the Task Builder resolves global
references as shown 1in the following example. Table 2-4 lists the
three files IN1, IN2, and IN3, showing the program sections within
each file, the global symbol definitions within each program section,
and the references to global symbols in each program section.

Table 2-4
Resolution of Global Symbols for INl, IN2, and IN3

File | Program Section Global Global
Name Name Definition | Reference
IN1 B Bl A
B2 L1
A C1
XXX
C
IN2 A A
B B1 B2
IN3 C Bl

TASK BUILDER FUNCTIONS

In processing the first file, INl, the Task Builder finds definitions
for Bl and B2 and references to A, L1, Cl, and XXX. Because ho
definition exists for these references, the Task Builder defers the
resolution of these global symbols. In processing the next file, IN2,
the Task Builder finds a definition for A, which resolves the previous
reference, and a reference to B2, which can be immediately resolved.

When all the object files have been processed, the Task Builder has
three unresolved global references -- Cl, L1, and XXX. Assume that a
search of the system library LB:[1,1]SYSLIB.OLB resolves L1 and XXX
and the Task Builder 1includes the defining modules in the task's
image. Assume also that the Task Builder cannot resolve the global
symbol Cl. The Task Builder lists it as an undefined global symbol.

The relocatable global symbol Bl is defined twice. The Task Builder
lists it as a multiply-defined global symbol. The Task Builder uses
the first definition of a multiply-defined symbol.

Finally, an absolute global symbol (for example, symbol=100) can be
defined more than once without being listed as multiply defined as
long as each occurrence of the symbol has the same value.

2.2 ASSIGNING ADDRESSES

The primary addressing mechanism of the PDP-11 is the 16-bit computer
word. The maximum physical address space that the PDP-11 <can
reference at any one time is a function of the length of this word.
The highest number that can be represented in 16 bits is 177777(8) or
65,535(10). Because the PDP-11 is a byte-addressable machine, the
16-bit word length allows it to address up to 65,535 bytes (32K words)
of physical address space at any one time. The amount of address
space that a machine can reference at any one time is called virtual
address space.

2.2.1 Unmapped Systems

In an unmapped system, the machine's virtual address space and its
physical address space coincide exactly, as shown in Figure 2-4.

In an unmapped system, the machine's address space is limited to 32K
words. All of the machine's physical memory and all of its device
registers are accessible to all tasks running on the system. The top
4K words of address space are reserved for the UNIBUS addresses that
correspond to the peripheral device registers (the I/0 page), and a
segment of low memory is occupied by the Executive. Therefore, in an
unmapped system, the largest task size is 32K words minus the I/O page
and the size of the Executive, Figure 2-5 shows the memory layout for
an unmapped system.

Unmapped systems contain only user-—controlled partitions. When the
Task Builder links the relocatable object modules of a task that is to
run on an unmapped system, it requires that you specify the partition
in which the task is to run, the partitions base address and length.
The Task Builder will set the base address of the task to the base
address of the partition. This means that the task's location in
physical memory is bound to the partition and does not change.
Because all of physical memory in an unmapped system is directly
addressable, and the task's location within memory does not change,
the addresses that the Task Builder assigns coincide exactly with the
physical addresses of the machine and, therefore, do not need to be
relocated at runtime.

TASK BUILDER FUNCTIONS

VIRTUAL PHYSICAL
32 K WORDS 32 K WORDS
VIRTUALO PHYSICAL O
VIRTUAL PHYSICAL
ADDRESS SPACE MEMORY

Figure 2-4 Unmapped Memory

32 K WORDS

1/0 PAGE

* EXECUTIVE®"

o L |

Figure 2-5 Layout for Unmapped System

TASK BUILDER FUNCTIONS

2.2.2 Mapped Systems

In a mapped system, the relationship between virtual address space and
physical address space is different from that of an unmapped system.
The primary addressing mechanism for a mapped system 1is still the
16-bit word, and virtual address space is still 32K words. However, a
mapped system has a much greater physical memory capacity and,
therefore, physical memory and virtual address space do not coincide.

To address all of physical memory in a mapped system, a machine must
have an effective word length of 18 or 22 bits, depending on the model
of the machine. When the Task Builder links the relocatable object
modules of a task that is to run on a mapped system, it assigns 16-bit
address to the task image. The memory management unit's function
(under control of the Executive) 1is to convert the task's 16-bit
addresses to effective 18- or 22-bit physical addresses. The
mechanical job of task relocation is performed by the Executive and
the memory management unit at task runtime. Figure 2-6 1illustrates
the relationship between physical memory and virtual address space in
a mapped system.

The memory management unit divides a machine's 32K words of virtual
address space into eight 4K word segments or pages. Each page has two
registers associated with it:

e A 16-bit Page Description Register (PDR) which contains
control and access information about the page with which it is
associated

e A 16-bit Page Address Register (PAR) which is an address
relocation register

The PDRs and PARs are always used as a pair. Each pair is called an
Active Page Register (APR). Figure 2-7 shows how the memory
management unit divides the 32K words of virtual address space.

NOTES

1, A detailed description of the Memory
Management unit 1is beyond the scope of
this manual. For a complete description
of your machine's memory management
unit, refer to the Processor Handbook
for your machine.

2. Mapped machines have up to three
modes of operation: Kernel, Supervisor,
and User (11/34 machines do not have
supervisor mode). The information in
this chapter is relevant to User mode
only.

The Executive allocates only as many APRs as are necessary to map a
given task into physical memory. Therefore, a 4K word task requires
one APR; a 6K word task requires two. Figure 2-8 1illustrates this
mapping.)

TASK BUILDER FUNCTIONS

+

HIGHEST
PHYSICAL
ADDRESS
PARTITION
BOUNDARY
32K — ////
MEMORY
MANAGEMENT
UNIT
TASK ////)'
MEMORY :
HEADER

VIRTUAL ADDRESS
SPACE
FOR 32 K WORD
TASK

Figure 2-6

PARTITION
BOUNDARY

TASK
MEMORY

HEADER

TASK
MEMORY

HEADER

TASK
MEMORY

HEADER

TASK
MEMORY

HEADER

® EXECUTIVE

ETC. ¢

S

PHYSICAL
MEMORY

SYSTEM-CONTROLLED
PARTITION

Task Relocation in a Mapped System

TASK BUILDER FUNCTIONS

PAGE 7 ‘
VIRTUAL 160000 — APR7 —
PAGE 6
VIRTUAL 140000 — APR6 —
PAGE 5
VIRTUAL 120000 — APR5 —
PAGE 4 32K WORDS OF
, VIRTUAL ADDRESS
VIRTUAL 100000 — APR4 — SPACE
PAGE 3
VIRTUAL 60000 — APR3 —
PAGE 2
VIRTUAL 40000 — APR2 —
PAGE 1
VIRTUAL 20000 — APR 1
I PAGE 0
VIRTUAL 0 APR 0

Figure 2-7 Memory Management Unit's Division of Virtual Address Space

TASK BUILDER FUNCTIONS

160000 APR 7 — APR 7—
140000 APR 6 — APR 6—
120000 APR 5 — APR 65—
100000 APR 4 — APR 4—
60000 APR 3 — APR 3—
40000 APR 2 — APR 2 —

20000 APR 1 — APR 1 — TASK

TASK MEMORY 6 K WORDS
MEMORY 4 K WORDS
HEADER & STACK HEADER & STACK
VIRTUALO APR0— APR 0 —
TASK A (4 K WORDS) TASK B (6 K WORDS)

Figure 2-8 Mapping for 4K Word and 6K Word Tasks

TASK BUILDER FUNCTIONS

Finally, the layout of the virtual address space for a task that is to
run in a mapped system is different in most cases from that of a task
that is run in an unmapped system. Unless a task is privileged, the
I/0 page and the Executive are not normally part of a task's virtual
address space and, unlike an unmapped system, a task is inhibited by
the system from accessing any portion of physical memory that it does
not specifically own. Because the I/0 page and the Executive are not
part of a task's virtual address space, a task can be a full 32K words
long on a mapped system.

2.3 ‘BUILDING SYSTEM DATA STRUCTURES

It is the Task Builder's responsibility to build the data structures
required by other system programs, and to incorporate them into the
task image. The Executive (which is the system task responsible for
the allocation of system resources) must have access to the data for
all tasks on the system. It must know, for example, a task's size and
priority, and it must have information about the way each task expects
to use the system. It 1is the Task Builder's responsibility to
allocate space 1in the task image for the data structures required by
the Executive. The Task Builder initializes some of these structures,
while the INSTALL processor initializes others when you install the
task.

The disk image file created by the Task Builder <contains the 1linked
task and all of the information required by the system programs to
install and run it. In its simplest form, the disk image file
consists of three physically contiguous parts:

e The label block group

e The task header

e The task memory image

Figure 2-9 illustrates the basic structure of this file.

. TAsK !
¢ MEMORY :

HEADER

LABEL
BLOCK

0

Figure 2-9 Disk Image

TASK BUILDER FUNCTIONS.

NOTE

Non-runnable images such as resident
shared regions do not have a header.
Resident shared regions are described in
Chapter 3.

The label block group contains data produced by the Task Builder and
used by the INSTALL processor. It contains information about the task
such as the task's name, the partition in which it runs, 1its size,
priority, and the logical units assigned to it. When you install the
task, the INSTALL processor uses this information to create a Task
Control Block entry for the task in the System Task Directory (STD
file) and to initialize the task's header information.

The task's header contains information that the Executive uses when it
runs the task. The header also provides a storage area for saving the
task's essential data when the task is checkpointed. The Task Builder
creates and partially initializes the header; the INSTALL processor
initializes the rest of the header.

The task memory contains the linked modules of the program and
therefore the code and data. It also contains the task's stack. The
stack is an area of task memory that a task can use for temporary
storage and subroutine linkage. It can be referenced through general
register 6, the stack pointer (SP). The label block group, the task's
header and the task memory are described in detail in Appendix C.

The task's memory image is the part of your task that the system reads
into physical memory at runtime. The 1label block group is not
required in physical memory. Therefore, in its simplest form, the
task's memory image consists of only two parts: the task header and
task memory. Figure 2-10 shows the memory image.

. TASK |
! MEMORY

HEADER

0
Figure 2-10 Memory Image
2.4 TASK RELOCATION ON MAPPED SYSTEMS

As mentioned earlier, tasks that run on mapped systems must be
relocated at runtime. When you build a task that is to run on a
mapped system, the Task Builder creates and places in the header of
the task one or more 9-word data structures called window blocks.
When you install a task the INSTALL processor initializes the window
block (s). Once initialized, a window block describes a range of
continuous virtual addresses called a window.

TASK BUILDER FUNCTIONS

A window can be as small as 32 words or as large as 32K words. When a
task consists of one continuous range of addresses (a single region
task) only one window block is required to describe the entire task
from the beginning of its header to the highest virtual address in the
task. When a task consists of two or more regions (such as a task
that references a shared region as described in Chapter 3), each
region must have at least one window block associated with it that
describes all or a portion of the region.

When the Executive maps a task into physical memory, it extracts the
information it requires to set up the APRs of the memory management
unit from the task's window block.

Regardless of the number of regions associated with a task, the region
that contains the task's header 1is always described by window 0.
Furthermore, this region is referred to as the task region and Iis
identified as region 0. Figure 2-11 illustrates window block 0.

When you run your task, the Executive determines where in physical
memory the task 1is to reside. The Executive then loads the Page
Address Register portion of the APRs with a relocation constant that,
when combined with the addresses of the task, yields the 18- or 22- b1t
physical address range of the task.

ADDRESS

HIGHEST VIRTUAL \w

TASK REGION —

'WINDOW
WINDOW BLOCK 0 TASK > REGION O

0 MEMORY

HEADER & STACK /

LOWEST VIRTUAL ————>
ADDRESS

Figure 2-11 Window Block 0

CHAPTER 3

TYPICAL TASK BUILDER FACILITIES

The Task Builder provides you with many facilities for tailoring your
tasks to meet your specific requirements. This chapter describes some
of these facilities and their applications.

This chapter contains eight working examples. The discussion of the
examples assume that you are familiar with the programming concepts
described in the RSX-11M/M-PLUS Guide to Program Development and with
the first two chapters of this manual.

3.1 SHARED REGIONS

A shared region is a block of data or code that resides in memory and
can be used by any number of tasks. Shared regions are useful because
they make more efficient use of physical memory:

e By providing a way in which two or more tasks can share their
data. This is called a resident common.

® By providing a way in which a single copy of commonly used
subroutines can be shared by several tasks. This is called a
resident library.

The term "resident" is used to denote a shared region that 1is built
and 1installed 1into the system separately from the task that links to
it.

Figure 3-1 shows a typical resident common. Task A stores some
results in resident common S, and Task B retrieves the data from the
common at a later time.

Figure 3-2 shows a typical resident library. In this case, common
reentrant subroutines are not included in each task image; 1instead, a
single copy is shared by all tasks.

TYPICAL TASK BUILDER FACILITIES

RESIDENT COMMON

S

RESIDENT COMMON
S

PARTITION BOUNDARY

TASK A

PARTITION BOUNDARY

TASK B

EXECUTIVE

EXECUTIVE

PHYSICAL MEMORY
TIME 1

PHYSICAL MEMORY
TIME 2

Figure 3-1 Typical Resident Common

RESIDENT LIBRARY
CONTAINING
PARTITION BOUNDARY ROUTINE R
ROUTINE R
TASK A
ROUTINE R TASK A
TASK B TASK B
PARTITION BOUNDARY
EXECUTIVE EXECUTIVE
NONSHARED SHARED

PHYSICAL MEMORY

PHYSICAL MEMORY

Figure 3-2 Typical Resident Library

TYPICAL TASK BUILDER FACILITIES

When you build a shared region, you must specify in the Task Builder
command sequence an output image file name for it. But, because a
shared region is not an executable unit, it is not a task. It does
not require a header or a stack area. Therefore, when you build a
shared region, you always attach the negated header switch (/-HD) to
the image file specification. This switch tells the Task Builder to
suppress the header within the image. To suppress the stack area, in
the Task Builder command sequence during option input, you specify
STACK=0. (Refer to Chapter 6 for a complete description of the HD
switch and the STACK option.)

In an RSX-11M system, a shared region must reside 1in 1its own
partition. Therefore, when you generate your system, you must
consider the physical memory requirements of any shared regions that
you expect to reside within your system. If you do not consider these
requirements at system generation time, later, when you build a shared
region, you will have to go back and create a common partition for the
region.

In an RSX-11M-PLUS system, shared regions do not have to reside within
partitions of their own; you can install a shared region in any
partition large enough to hold it. 1In fact, the partition for which
the shared region was built does not have to exist in the system at
the time the shared region is installed. If you attempt to install a
shared region in a partition that does not exist, the INSTALL
processor will install it in partition GEN and print the following
message on your terminal:

INS--PARTITION parname NOT IN SYSTEM DEFAULTING TO GEN

When you build a shared region, you must specify the partition in
which the region is to reside. You specify the partition name in the
Task Builder command sequence during option input. (Refer to Chapter
6 for a description of the PAR option.)

3.1.1 The Symbol Definition File

When you build a shared region, you must specify a symbol definition
(.8TB) file in the Task Builder command sequence. This file contains
linkage information about the region. Later, when you build a task
that 1links to the region, the Task Builder uses this .STB file to
resolve calls from within the referencing task to locations within the
region.

The contents of an .STB file for a shared region depend on whether the
shared region 1is position independent or absolute. The effects of
declaring a shared region position independent or absolute and the
resulting contents of the .STB file are described in the following
sections.

3.1.2 Position-Independent Shared Regions

A position-independent shared region can be placed anywhere in a
referencing task's virtual address space when the system on which the
task runs has memory management hardware.

For example, in Figure 3-3, two tasks refer to the shared region s --
task A and task B. The shared region S is 4K words long and therefore
requires that much space in the virtual address space of both tasks.
Task A is 6K words long and requires two APRs (APR 0 and APR 1) to map

TYPICAL TASK BUILDER FACILITIES

its task region. The first APR available to map the shared region is
APR 2. Therefore, APR 2 can be specified when task A is built.

Task B is 16.5K words long. It requires five APRs to map 1its task
region. The first APR available to map the shared region S in task B
is APR 5. Therefore, APR 5 can be specified when task B is built.,

If you do not specify which APR the Task Builder is to use to map a
position-independent shared region, the Task Builder will
automatically select the highest set of APRs available 1in the
referencing task's virtual address space. In Figure 3-3, for example,
if APR 2 in task A and APR 5 in task B had not been selected at
task-build time, the Task Builder would have automatically selected
APR 7 in both cases.

Declaring a region to be position independent causes the Task Builder
to include in the .STB file for the region an entry for each program
section in the region. Each entry declares the program section's
name, attributes, and length. In addition, the Task Builder includes
in the .STB file every symbol in the shared region and its wvalue
relative to the beginning of the region.

You specify that a shared region 1is position independent when you
build it by attaching the PI switch to the image file specification
for the region. (Refer to Chapter 6 for a description of the PI
switch.) You should declare a region position independent if:

e The region contains code that will execute correctly
regardless of 1its location in the address space of the
referencing task.

e The region contains data that is not address dependent.

e The region contains data that will be referenced by a FORTRAN
program (such data must reside in a named common).

Because the program section name is preserved in a
position-independent region, you should observe the following
precautions when building and referring to the region:

e No code or data in the region should be included in the blank
(. BLK.) program section.

e No code or data in a referencing task should appear in a
program section of the same name as a program section in the
shared region. v

e The order in which memory is allocated to program sections
(alphabetic or sequential) must be the same for the shared
region and 1its referencing tasks. (Chapter 2 describes
alphabetic ordering of program sections. Refer to the
description of the SQ switch in Chapter 6 for an explanation
of sequential ordering of program sections.,)

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0-—

Figure 3-3

TYPICAL TASK BUILDER FACILITIES

T

4 K WORDS
SHARED
REGION
S
TASK A 6 K WORDS

SHARED
REGION
S

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

SHARED
REGION

TASK B

16.6 K
WORDS

Specifying APRs for a Position-Independent Shared Region

TYPICAL TASK BUILDER FACILITIES

3.1.3 Absolute Shared Regions

When a shared region is absolute, the only program section name that
will appear in the .STB file for the region will be the absolute
program section name (. ABS.). The Task Builder includes in the .STB
file for the region each symbol in the region and its value, But,
because the Task Builder does not include the program section names of
an absolute shared region in its .STB file, all code or data in the
region must be referred to by global symbol name.

When a shared region is absolute, you select the virtual addresses for
it when you build it. Thus, an absolute shared region is fixed in the
virtual address space of all tasks that refer to it.

Figure 3-4 shows three tasks (task C, task D, and task E) and a single
absolute shared region, L. The absolute shared region L is 6K words
long and is built to occupy virtual addresses 120000(8) to 150000(8).
These addresses correspond to APR 5 and APR 6, respectively. Tasks C
and D can be linked to region L because at the time they are built APR
5 and APR 6 are unused in both tasks. However, task E is 23K words
long and even though it has 8K words of virtual address space
available to map the shared region, APR 5 (which corresponds to
virtual address 120000, the base address of the shared region) has
been allocated to the task region. If shared region L were position
independent, task E could be linked to it.

You specify that a shared region is absolute when you build it by
simply omitting the PI switch from the task image file. You establish
the virtual address for the region by specifying the base address of
the region as a parameter of the PAR option.

You should build a shared region absolute if:

e The region contains code that must appear in a specific
location in the address space of a referencing task.

o The region contains data that is address dependent.

e The region contains program sections of the same name as
program sections in referencing tasks.

Because the Task Builder does not place program section names in the
.STB file of an absolute shared region, the Task Builder places no
restrictions on the way the program sections are ordered in either the
absolute shared region or the tasks that reference it.

3.1.4 Linking to a Shared Region

When you build a task that links to a shared region, you must indicate
to the Task Builder the name of the shared region and the type of
access the task requires to it (read/write or read-only). In
addition, if the shared region 1is position independent, you can
specify which APR the Task Builder is to allocate for mapping the

region into the task's virtual address space. Four options are
available for this action:

e RESLIB (Resident Library)
e RESCOM (Resident Common)
e LIBR (System-Owned Resident Library)

) COMMONb(System—Owned Resident Common)

3-6

TYPICAL TASK BUILDER FACILITIES

ABSOLUTE
SHARED
6 K WORDS RGN
L
VIRTUAL
120000
APR 7— APR 7— APR 7—
APR6-— | ABSOLUTE APR6— | ABSOLUTE APR 6—
SHARED SHARED
REGION REGION
L L
APR 5— APR 5— APR 5—
APR 4~ APR 4— APR 4—
TASK E
APR 3— APR 3— APR 3—
APR 2— APR 2 TASKD APR 2—
APR 1— APR 1— APR 1—
TASK C
APR 0— APR 0— APR 0—

Figure 3-4 Mapping for an Absolute Shared Region

TYPICAL TASK BUILDER FACILITIES

RESLIB and RESCOM accept a complete file specification as one of their
arguments. Thus, you can specify a device and UFD indicating to the
Task Builder the 1location of the Tregion's image file and, by
implication, its symbol definition file. (Refer to Chapter 1 for more
information on file specifications and defaults.)

LIBR and COMMON accept a 1l- to 6-character name. When you specify
either of these options, the shared region's image file and symbol
definition file must reside under UFD [1,1] on device LBO:.

The RESLIB and RESCOM options require that all wusers of the shared
region Kknow the UFD under which the shared region's image file and
.STB file reside. The LIBR and COMMON options require only that the
users of* the shared region know the name of the shared region. When
you specify either LIBR or COMMON, by default, the Task Builder
expects to find the shared region's image and .STB files on device LB:
under UFD [1,1].

All four options accept two additional arguments:
e The type of access the task requires (RO or RW)

e The first APR that the Task Builder is to allocate for mapping
the region into the task's virtual address space. As stated
earlier, this argument is valid only when the shared region is
position independent.

When you specify any of these options, the Task Builder expects to
find a symbol definition file of the same name as the shared region,
but with an extension of .STB, on the same device and under the same
UFD as the shared region's image file.

The syntax of these options is given in Chapter 6.

When the Task Builder builds a task, it processes first any options
that appear in the Task Builder command sequence. When the Task
Builder processes one of the four options above, it locates the disk
image of the shared region named in the option. The disk image of a
shared region does not have a header, but it does have a label block
that contains the allocation information about the shared region (for
example, its base address, load size, the name of the partition for
which it was built). The Task Builder extracts this data from the
shared region's label block and places it in the LIBRARY REQUEST
section of the label block for the referencing task.

The .STB file associated with the shared region is an object module
file. The Task Builder processes it as an input file. If the shared
region is position independent, its .STB file contains program section
names, attributes and lengths. However, the program section names are
flagged within the file as "library" program sections and the Task
Builder does not add their allocations to the task image it is
building.

If the task links to only one shared region, and if neither the shared
region nor the task that links to it contain memory-resident overlays,
the Task Builder will allocate two window blocks in the header of the
task. (Overlays are described in Chapter 4.) When the task is
installed, the INSTALL processor will initialize these window blocks
as follows:

e Window block 0 will describe the range of virtual addresses
(the window) for the task region.

e Window block 1 will describe the window for the shared region.

TYPICAL TASK BUILDER FACILITIES

Figure 3-5 shows the window-to-region relationship of such a task.

HIGHEST VIRTUAL
ADDRESS

'

WINDOW BLOCK
1

WINDOW BLOCK
0

TASK
MEMORY

JHEADER AND STACK

LOWEST VIRTUAL —
ADDRESS

Figure 3-5 Windows for Shared Region and Referencing Task

TYPICAL TASK BUILDER FACILITIES

A shared region need not be installed before a task that links to it
is built. The .STB file that you specify when you build the shared
region contains all the information required by the Task Builder to
resolve references from within a task to locations within the shared
region. The only requirement is that you install a shared region
before you install a task that links to it.

The number of shared regions to which a task can link is a function of
the number of window blocks required to map the task and the regions.
In an RSX-11M operating system, if a task is 4K words or less, and
each shared region to which the task links is 4K words or less, then a
nonprivileged task can access as many as seven shared regions.

In an RSX-11M-PLUS operating system, if a task is 4K words or less,
and each shared region to which the task links is 4K words or less, a
nonprivileged task can refer to as many as 15 shared regions: seven
in user-mode and eight in supervisor-mode. (Supervisor-mode libraries
are described in later sections of this chapter.)

Finally, the way the Task Builder processes tasks that link to shared
regions 1leads to an important Task Builder restriction on tasks that
link to position-independent shared regions. The Task Builder places
all program section names into its internal control section table.
This includes program section names from the .STB file of the .shared
region as well as the program section names from the other input
modules. When the Task Builder builds a task that links to a shared
region, 1if the task contains program sections of the same name as
program sections in the shared region, the Task Builder will attempt
to add the program section allocation in the task to the already
existing allocation for the program section of the same name in the
shared region. This 1is not possible because the region's image has
already been built, is outside the address space of the task currently
being built and cannot be modified. Therefore, the program section
names within a task that links to a position-independent shared region
must normally be unique with respect to program section names within
the shared region.

.Should this conflict occur and the program section within the
referencing task contain data, when the Task Builder attempts to
initialize the program section, it will recognize that it is
attempting to store data in an image outside the address limits of the
task it is building. The Task Builder will then print the following
message on the terminal:

TKB--*DIAG*-LOAD ADDR OUT OF RANGE IN MODULE module-name

One exception to the above restriction develops when all of the
following conditions exist:

e Both program sections (in the shared region and in the

referencing task) have the (D) data and the OVR (overlay)
attributes

® The program section in the task is equal to or shorter than
the program section in the shared region

e The program section in the task does not contain data.

When all of these conditions exist, there is nothing to be initialized
within the shared region. The Task Builder binds the base address of
the program section in the task to the base address of the program
section 1in the shared region. If the program section in the task
contains global symbols, the Task Builder will assign addresses to
them that reflect their 1location relative to the beginning of the

TYPICAL TASK BUILDER FACILITIES

program section. You can use this technique to establish symbolic
offsets into resident commons. Examples 1 and 2 in the following
sections illustrate how to establish these offsets.

3.1.5 Example 1: Building and Linking to a Common in MACRO-11

The text in this section and the figures associated with it illustrate
the development of a MACRO-11 position-independent resident common and
the development of two MACRO-11 tasks that share the common. The

steps in building a position-independent common can be summarized as
follows:

l. You create a source file that allocates the amount of space
required for the common, In. MACRO-11l, either of the
assembler directives, .BLKB or .BLKW, provide the means of
allocating this space.

2. You assemble the source file,

3. You build the assembled module specifying both a task image
file and a symbol definition file.

You specify the -HD (no header) switch and declare the common
to be position independent with the PI switch.

Under options you specify:

STACK=0
PAR=parname

The parname in this PAR option is the name of the partition
in which the common is to reside. (The HD and PI switches
and the STACK and PAR options are described in Chapter 6.)

If your system is an RSX-11lM system, the common must reside
within a common partition of the same name as the common.

If your system is an RSX-11M-PLUS system, the common can
reside within any partition large enough to hold it.

4, You install the common.
Figure 3-6 below shows a MACRO-11 source file that, when assembled and
built, will <create a position-independent resident common area named

MACCOM. The common area consists of two program sections named COMl
and COM2, respectively. Each program section is 512(10) words long.

.TITLE MACCOM

COM1 - 512 WORDS
COM2 - 512 WORDS

~ “e we wo

.PSECT COM1,RW,D,GBL,REL,OVR
.BLKW 512.
.PSECT COM2,RW,D,GBL,REL,OVR
.BLKW 512.

. END

Figure 3-6 Common Area Source File in MACRO-11

TYPICAL TASK BUILDER FACILITIES

Once this common has been assembled, the Task Builder command sequence
shown below can be used to build it.

TKB>MACCOM/PI-HD,MACCOM/-SP,MACCOM=MACCOM
TKB>/

ENTER OPTIONS:

TKB> STACK=0

TKB> PAR=MACCOM:0:4000

TKB>//

This command sequence directs the Task Builder to build a
position-independent (/PI), headerless (/-HD), common image file named
MACCOM.TSK. It also specifies that the Task Builder is to create a
map file, MACCOM.MAP, and a symbol definition file, MACCOM.STB. The
Task Builder will create all three files, MACCOM.TSK, MACCOM.MAP, and
MACCOM.STB on device 8SY: under the UFD that corresponds to the
terminal UIC. Because /-SP is attached to the map file, the Task
Builder will not spool a map listing to the line printer.

Under options, STACK=0 suppresses the stack area in the common's
image.

The PAR option specifies that the common area will reside within a
common partition of the same name as the common, MACCOM. As stated
above, on an RSX-11lM system this is a requirement; on an RSX-11M-PLUS
system it 1is not. In addition, the parameters in the PAR option
specify a base of zero and a length of octal bytes for the common
(Refer to Chapter 6 for descriptions of the switches and options used
in this example.)

Figure 3-7 shows the map resulting from this command sequence.

The task attributes section of this map reflects the switches and
options of the command string. It indicates that the common resides
in a partition named MACCOM, that it was built wunder terminal UIC
[303,3], that it is headerless and position independent, and that it
requires one window block to map. The total length of the common is
1024 (10) words and 1its address limits range from 0 to 3777(8). The
common image (that portion of the disk image file that eventually will
be read into memory) begins at file-relative disk block 3 @ . The
last block in the file is file-relative disk block 6 @ and the common
image is four blocks long © .

The memory allocation synopsis details the Task Builder's allocation
for and the attributes of the program sections within the common. For
example, reading from left to right, the map indicates that the
program section COMl permits read/write access, that it contains data,
and that its scope 1is global. It also indicates that COMl is
relocatable and that all contributions to COMl are to be overlaid.
Because COM1l has the overlay attribute, the total allocation for it
will be equal to the largest allocation request from the modules that
contribute to it. (For more information on program section
attributes, see Chapter 2.)

Continuing to the right, the first 6-digit number is COMl's base
address which is 0@ . The next two digits are its length (bytes) in
octal and decimal, respectively @.

TYPICAL TASK BUILDER FACILITIES

The next line down lists the first object module that contributes to
COM1. In this case there is only one: the module MACCOM from the
file MACCOM.OBJ;2. The numbers on this 1line indicate the relative
base address of the contribution and the length of the contribution in
octal and decimal@®@ . If there had been more than one module input to
the Task Builder that contained a program section named COMl, the Task
Builder would have listed each module and 1its contribution in this
section.

Notice that there is a program section named . BLK. shown on the map
just above the field for COM1. This is the "blank" program section
that is automatically created by the language translators. The
attributes shown are the default attributes. The allocation for
. BLK. 1is zero because the program sections in MACCOM were explicitly
declared. If the program sections had not been explicitly declared,
all of the allocation for the common would have been within this
program section, .

MACCOM.TSK; 2 MEMORY ALLOCATION MAP TKB M36 PAGE 1
7-FEB-79 13:51

PARTITION NAME
IDENTIFICATION
TASK UIC [303,3]
TASK ATTRIBUTES: -HD,PI Task
TOTAL ADDRESS WINDOWS: 1. Attributes
TASK IMAGE SIZE : 1024. WORDS Section
TASK ADDRESS LIMITS: 000000 003777

R-W DISK BLK LIMITS: 000003 000006 000004 00004. |

MACCOM]

e oo oo

*** ROOT SEGMENT: MACCOM

R/W MEM LIMITS: 000000 003777 004000 02048.
DISK BLK LIMITS: 000002 000005 000004 00004.

MEMORY ALLOCATION SYNOPSIS:

SECTION ' TITLE IDENT FILE

. BLK.:(RW,I,LCL,REL,CON) 000000 000000 00000.
coMl :(RW,D,GBL,REL,OVR) 000000 002000 01024.
002000 Q1024. MACCOM 01 MACCOM.OBJ; 2
002000 024.
002000 01Q24.

COM2 :(RW,D,GBL,REL,OVR)
MACCOM 01 MACCOM.OBJ; 2

**%% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 178,

WORK FILE READS: 0.

WORK FILE WRITES: O. .

SIZE OF CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:06

Figure 3-7 Task Builder Map for MACCOM.TSK

TYPICAL TASK BUILDER FACILITIES

Figure 3-8 is a diagram that represents the disk image file for
MACCOM. The circled numbers in Figure 3-8 correspond to the circled
numbers in Figure 3-7.

RELATIVE RELATIVE

DISK BLOCK LOAD

NUMBERS ADDRESSES
000006 —_— COM 2
000005 —_ — 002000

e .
000004 —_ com 1 ~ 002000 (BYTES)
— _000003 - — 000000

000002 — LABEL BLOCK
000001 —

DISK IMAGE FILE

i

Figure 3-8 Allocation Diagram for MACCOM.TSK

Once you have built MACCOM, you can install it. If your system is an
RSX~-11M system, the common will be loaded into memory when you install
it., It will remain there until you explicitly remove it with the MCR
command, REMOVE.

If your system is an RSX-11M-PLUS system, the common will not be
loaded until either one of the following occurs:

e A task that is linked to it is run.

® You explicitly fix the common in memory with the MCR command,
FIX.

Figures 3-9 and 3-10 show two programs -- MCOM1 and MCOM2,
respectively. Both of these programs reference the common area MACCOM
created above. MCOM1l in Figure 3-9 accesses the COMl1 portion of
MACCOM. It inserts into the first ten words of COM1 the numbers 1
through 10 in ascending order. It then issues an Executive directive
request for the task MCOM2 and suspends itself.

TYPICAL TASK BUILDER FACILITIES

When MCOM2 runs, it sums the integers left in COM1 by MCOM1l and leaves
the result in the first word of COM2. It then issues a resume
directive for MCOM1l and exits. '

When MCOM1 resumes, it retrieves the answer left in COM2 and calls the

system 1library routine $EDMSG (edit message) to format the answer for
output to device TI:.

All of the Executive directives for both programs (RQST$C, SPNDSS,
QICWSS, RSUMS$SC, and EXIT$S) are documented in the RSX-11M-PLUS
Executive Reference Manual. The system library routine $EDMSG is
documented in the IAS/RSX-11 System Library Routines Reference Manual.

.TITLE MCOM1
+IDENT /01/

.MCALL EXITS$S,SPNDSS,RQSTSC,QIOWSS

OouT: +«BLKW 100. ; SCRATCH AREA
FORMAT: ,ASCIZ /THE RESULT IS %D./
MES: .ASCII /ERROR FROM REQUEST/

LEN = . - MES

« EVEN

PSECT - COM1 IS USED TO ACCESS THE FIRST 512, WORDS OF THE
COMMON.

~ we

.PSECT COM1,GBL,OVR,D
INT: «BLKW 10.

PSECT - COM2 IS USED TO ACCESS THE SECOND 512. WORDS OF THE
COMMON, IT WILL CONTAIN THE RESULT

~. we

.PSECT COMZ2,GBL,OVR,D

ANS: .BLKW 1
.PSECT
START: ;
MOV #10.,R0 ; NUMBER OF INTEGERS TO SUM
MOV $#1,R1 ; START WITH A 1
MOV #INT,R3 ; PLACE VALUES IN 1ST 10 WORDS
; OF COMMON
105: MOV R1, (R3)+ ; INITIALIZE COMMON
INC Rl ; NEXT INTEGER
DEC RO ; ONE LESS TIME
BNE 103 ; TO INITIALIZE
RQSTSC MCOM2 ; REQUEST THE SECOND TASK
BCS ERR1 ; REQUEST FAILED
SPND$S ; WAIT FOR MCOM2 TO SUM THE INTEGERS
MOV #0UT,RO ; ADDRESS OF SCRATCH AREA
MOV #FORMAT,R1 ; FORMAT SPECIFICATION
MOV $ANS,R2 ; ARGUMENT TO CONVERT
CALL $EDMSG ; DO CONVERSION
QIOWSS #IO.WVB,#5,%1,,,,<#0UT, Rl #40>
EXITSS
ERR1:
QIOWSS #IO.WVB,#5,#1,,,,<#MES,#LEN,#40>
EXITSS
.END START

Figure 3-9 MACRO-11 Source Listing for MCOM1

TYPICAL TASK BUILDER FACILITIES

L.TITLE MCOM2
.IDENT /01/

.MCALL EXITS$S,QIOW$S,RSUMSC

MES: .ASCII /ERROR FROM RESUME/
LEN = . - MES
.EVEN

PSECT - COM1 IS USED TO ACCESS THE FIRST 10. WORDS OF THE
COMMON.

~ .

.PSECT COM1,GBL,OVR,D
INT: «BLKW 10.

PSECT - COM2 IS USED TO ACCESS THE SECOND 10. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

~ ~o

.PSECT COM2,GBL,OVR,D

ANS: « BLKW 1
+PSECT
START:
MOV #10.,R0O ; NUMBER OF INTEGERS TO SUM
MOV #INT,R3 ; PLACE VALUES IN 1ST 10 WORDS
; OF COMMMON
CLR ANS ; INITIALIZE ANSWER
108: ADD (R3)+,ANS ; ADD IN VALUES
DEC RO ; ONE LESS VALUE
BNE 108 ; TO SUM

RSUMSC MCOM1 RESUME MCOM1

- ~e

BCS ERR RESUME FAILED
EXITSS
ERR:
QIOWSS #IO.WVB,#5,#1,,,,<#MES,#LEN,#40>
EXITSS
.END START

Figure 3-10 MACRO-11 Source Listing for MCOM2

Note that both tasks MCOM1l and MCOM2 contain .PSECT declarations that
establish program section names that are the same as program section
names within the position-independent common to which the task is
linked (MACCOM). As stated earlier, in most circumstances this would
be illegal. 1In this application, however, the .PSECT directives have
been placed 1into the tasks to establish symbolic offsets in the
resident common. When either task is built, the Task Builder will
assign to the symbol INT: the base address of program section COM1,
and to the symbol ANS: the base address of program section COM2.
Figure 3-11 illustrates this assignment.

TYPICAL TASK BUILDER FACILITIES

~ < _ ~~ _ com 2
\\\ \\\
-~ -~ -
\\ \\
~ - ~~
\\N r— —————————— e
ANS:
—
INT;_l‘ 1T COM 1
-~ =~ -
\\\\ =~ -
~ - =~
\\\\ \.\\\
™ - e o e e — e o — = ——
.
-
INT:

Figure 3-11 Assigning Symbolic References Within a Common

Once you have assembled MCOM1 and MCOM2, you can build them with the
following Task Builder command sequences:

>TKB
TKB>MCOM1 ,MCOM1 /~SP=MCOM1
TKB>/

ENTER OPTIONS:
TKB>RESCOM=MACCOM/RW
TKB>//

>TKB
TKB>MCOM2 ,MCOM2 /-SP=MCOM2
TKB>/

ENTER OPTIONS:
TKB>RESCOM=MACCOM/RW
TKB>//

Under options in both of these command sequences, the RESCOM option
tells the Task Builder that these programs intend to reference a
common data area named MACCOM and that the tasks requlire read/write
access to it,

Because the RESCOM option is used, the Task Builder expects to find
the image file and the symbol definition file for the common on device
8Y: under the UFD that corresponds to the terminal UIC. In addition,
because the optional APR specification was omitted from the RESCOM
option, the Task Builder allocates virtual address space for the
common starting with APR7 in both tasks (the highest APR available in
both tasks). '

The Task Builder map for MCOMl1l is shown in Figure 3-12., The map for
MCOM2 is not essentially different from that of MCOMl1l and is therefore
not included here.

TYPICAL TASK BUILDER FACILITIES

MCOM1.TSK;23 MEMORY ALLOCATION MAP TKB M36 PAGE 1
7-FEB-79 14:32

PARTITION NAME : GEN 7]
IDENTIFICATION : 01
TASK UIC . : [303,3]
STACK LIMITS: 000212 001211 001000 00512, Task
PRG XFR ADDRESS: 001566 Attributes
TOTAL ADDRESS WINDOWS: 2. Section
TASK IMAGE SIZE : 1120. WORDS
TASK ADDRESS LIMITS: 000000 004273
R-W DISK BLK LIMITS: 000002 000006 000005 00005. |
**%% ROOT SEGMENT: MCOM1
R/W MEM LIMITS: 000000 004273 004274 02236.
DISK BLK LIMITS: 000002 000006 000005 00005.
MEMORY ALLOCATION SYNOPSIS:
SECTION TITLE IDENT FILE
. BLK.:(RW,I,LCL,REL,CON) 001212 002630 01432,

001212 000574 00380. MCOML1 01 MCOM1.0BJ; 2
COM1l :(RW,D,GBL,REL,OVR) 160000 002000 01024.

160000 000024 00020. MCOM1 01 MCOM1.0BJ; 2
COM2 :(RW,D,GBL,REL,OVR) 162000 002000 01024.

162000 000002 00002, MCOM1 01 MCOM1.0BJ; 2
LNC$D : (RW,D,GBL,REL,CON) 004042 000002 00002,
DPBS$: (RW,I,LCL,REL,CON) 004044 000016 00014.

004044 000016 00014. MCOM1 01 MCOM1.0BJ; 2

$SRESL: (RW,I,LCL,REL,CON) 004062 000024 00020.
$$RESM: (RW,I,LCL,REL,CON) 004106 000166 00118.

% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2125,

WORK FILE READS: 0.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:06

Figure 3-12 Task Builder Map for MCOM1l,TSK

Note that the Task Builder has placed two window blocks in MCOMl's

header. When MCOM1 1is 1installed, the 1IN
initialize these window blocks as follows:

e Window block 0 will describe the range
(the window) for MCOMl's task region.

e Window block 1 will describe the window
MACCOM.

STALL processor will

of wvirtual addresses

for the shared region

[
TYPICAL TASK BUILDER FACILITIES

3.1.6 Example 2: Building and Linking to a Device Common in MACRO-11

A device common is a special type of common that occupies physical
addresses on the I/0 page. When mapped into the virtual address space
of a task, a device common permits the task to manipulate peripheral
device registers directly.

NOTE

Because any access to the I/0O page is

. potentially hazardous to the running
system, you must exercise extreme
caution when working with device
commons,

The remaining text in this section and the figures associated with it
illustrate the development and use of a device common. Figure 3-13
shows an assembly listing for a position-independent device common
named TTCOM. When installed, TTCOM will map the control and data
registers of the console terminal. 1Its physical base address will be
777500.

.TITLE TTCOM
.PSECT TTCOM
.=.+60
RCSR:: «BLKW
RBUF:: «BLKW
XCSR:: «BLKW
XBUF:: « BLKW
«END

e

Figure 3-13 Assembly Listing for TTCOM

The PDP-11 Peripherals Handbook defines the control and data register
addresses for the console terminal. In Figure 3-13, the register
addresses and the symbol names that correspond to them are as follows:

Register Address Symbol
Keyboard Status 777560 RCSR
Keyboard Data 777562 RBUF
Printer Status 777564 XCSR
Printer Data 777566 XBUF

The double colon (::) following each symbol in Figure 3-13 establishes
the symbol as global. The first symbol, RCSR, is offset from the
beginning of TTCOM by 60(8) bytes. Each symbol thereafter is one word
removed from the symbol that precedes it. Thus, when TTCOM is
installed at 777500, each symbol will be 1located at 1its proper
address.

Once you have assembled TTCOM, you can build it using the following
Task Builder command sequence:

> TKB

TKB> LB:[1,1]1TTCOM/-HD/PI,LB:{1,1]TTCOM/-WI,LB:[1,1]TTCOM=TTCOM
TKB> /

ENTER OPTIONS:

TKB> STACK=0

TKB> PAR=TTCOM:0:100

TKB> //

TYPICAL TASK BUILDER FACILITIES

This command sequence directs the Task Builder to create a common
image named TTCOM.TSK and a symbol definition file named TTCOM.STB.
The Task Builder will place both files on device LB: under UFD [1,1].
The command sequence also specifies that the Task Builder is to spool
a map listing to the line printer. The -WI switch specifies an 80
column line printer listing format.

NOTE

For the command sequence above to work
in a multiuser protection system, it
must be input from a privileged
terminal,

Under options, STACK=0 suppresses the stack area in the common's image
file.

The PAR option specifies that the device common will reside within a
partition of the same name as the common. As with the data common in
Example 1 (Section 3.1.5), this 1is a requirement of the RSX-11lM
system; in an RSX-11M-PLUS system it is not. The PAR option also
specifies that the base of the common is 0 and that it is 100(8) bytes
long. !

The Task Builder map for TTCOM that results from the command sequence
above is shown in Figure 3-14. The task attributes section of this
map indicates that the common is position independent and that no
header is associated with it. The common's 1image and symbol
definition file reside on device LB: under UFD [1,1].

The map in Figure 3-14 shows the global symbols defined in the common
with their relative offsets into the common region. You establish the
virtual base address for the common and the virtual addresses for the
symbols within it when you build the tasks that link to the common.

You establish the physical addresses for the common with the MCR
command, SET, The keyword that you use with the SET command depends
on which system you are running. If your system is an RSX-11lM systenm,
use the command:

>SET /MAIN=TTCOM:7775:1 .'%%'\{‘l‘

If your system is an RSX-11lM-PLUS system, use the command:

>SET /PAR=TTCOM:7775:1:DEV

Both sequences create a main partition named TTCOM that begins at
physical address 777500. The partition is one 64-byte block long,
(100(8) bytes). The arguments COM and DEV identify the partition
type. With the common built ‘and the partition for it created, you can
install TTCOM.,

You can establish the partition for a device common at any time in
both the RSX-11M and the RSX-11M-PLUS systems. Partitions created to
accommodate a device common are not a system generation consideration
because they represent areas of physical address space above memory
and therefore cannot conflict with memory partitions.

TYPICAL TASK BUILDER FACILITIES

TTCOM.TSK;1 MEMORY ALLOCATION MAP TKB PAGE 1
9-NOV-78 14:25

PARTITION NAME : TTCOM

IDENTIFICATION :

TASK UIC : [1,1] TASK

TASK ATTRIBUTES: -HD,PI ATTRIBUTES
TOTAL ADDRESS WINDOWS: 1. SECTION

TASK IMAGE SIZE : 32. WORDS
TASK ADDRESS LIMITS: 000000 000067
R-W DISK BLK LIMITS: 000003 000003 000001 00001.

*** ROOT SEGMENT: TTCOM

R/W MEM LIMITS: 000000 000067 000070 00056,
DISK BLK LIMITS: 000002 000002 000001 00OO1l.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.:(RW,I,LCL,REL,CON) 000000 000000 0O0OOO.
TTCOM : (RW,I,LCL,REL,CON) 000000 000070 00056.
000000 000070 00056. TTCOM 01 TTCOM.OBJ;1

GLOBAL SYMBOLS:

RBUF 000062-R RCSR 000060-R XBUF 000066-R XCSR 000064-R

**% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 220.

WORK FILE READS: 0.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 2062. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:02

Figure 3-14 Task Builder Map for TTCOM

Figure 3-15 shows an assembly 1listing for a demonstration program
named TEST. When built and installed, TEST will print the letters A
through Z on the console terminal by directly accessing the console
terminal status and data registers. It will access the status and
data registers through the device common TTCOM.

TYPICAL TASK BUILDER FACILITIES

.TITLE TEST
+IDENT /01/
.MCALL EXIT$S

START: MOV #15,R0 ; START WITH A CARRIAGE RETURN
CALL OUTBYT ; PRINT IT
MOV $#12,R0 ; THEN A LINE FEED
CALL OUTBYT ; PRINT IT
MOV $101,R0 ; FIRST LETTER IS AN "A"
MoV $26.,R1 ; NUMBER OF LETTERS TO PRINT
OUTPUT: CALL OUTBYT ; PRINT CURRENT LETTER
DEC R1 ; ONE LESS TIME
BNE OUTPUT ; AGAIN
MOV #15,R0 : ANOTHER CARRIAGE RETURN
CALL OUTBYT
MOV $12,R0 ; ANOTHER LINE FEED
CALL OUTBYT
EXITSS
OUTBYT: TSTB XCSR ; OUTPUT BUFFER READY?
BPL OUTBYT : IF NOT WAIT
MOV RO,XBUF ; MOVE CHARACTER TO OUTPUT BUFFER
INC RO ; INITIALIZE NEXT LETTER
RETURN
.END START

Figure 3-15 Assembly Listing for TEST

Once you have assembled TEST, you can build it with the following Task
Builder command sequence:

>TKB
TKB>TEST,TEST/-WI/MA=TEST
TKB>/

ENTER OPTIONS:
TKB>COMMON=TTCOM:RW: 1
TKB>//

Under options, the COMMON option in this command sequence tells the
Task Builder that TEST intends to access the device common TTCOM and,
that TEST will have read/write access to it. It also directs the Task
Builder to reserve APR 1 for mapping the common into TEST's virtual
address space,

The Task Builder map that results from the command sequence above is
shown in Figure 3-16.

This map contains a global symbols section. The Task Builder included
it because the MA switch was applied to the memory allocation file at
task-build time. Note that the global symbols in this section, which
were defined in TTCOM, now have virtual addresses assigned to them.
The addresses assigned by the Task Builder are the result of the APR 1
specification in the COMMON= keyword during the task build.

It is important to remember that programs like TEST, which access the
I1/0 page, take <complete control of the registers they reference.
Therefore, coding errors in such programs can disable the devices they
reference and can even make it impossible for the device drivers to
regain control of the device. If this happens, you must reboot the
system,

TYPICAL TASK BUILDER FACILITIES

TEST.TSK; 2 MEMORY ALLOCATION MAP TKB PAGE 1
9-NOV-78 14:35

PARTITION NAME GEN
IDENTIFICATION 01

TASK UIC s+ [301,356]
STACK LIMITS: 000212 001211 001000 00512, Task

PRG XFR ADDRESS: 001212 Attributes
TOTAL ADDRESS WINDOWS: 2. Section
TASK IMAGE SIZE : 384. WORDS

TASK ADDRESS LIMITS: 000000 001317

R-W DISK BLK LIMITS: 000002 000003 000002 00002.

**%* ROOT SEGMENT: TEST

R/W MEM LIMITS: 000000 001317 001320 00720.
DISK BLK LIMITS: 000002 000003 000002 00002,
MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.:(RW,I,LCL,REL,CON) 001212 000104 00068,

001212 000104 00068. .MAIN. 01 TEST.OBJ;1
TTCOM : (RW,I,LCL,REL,CON) 020000 000070 00056,
020000 000070 00056, TTCOM 01 TTCOM.STB; 1

GLOBAL SYMBOLS:

RBUF 020062-R RCSR 020060-R XBUF 020066-R XCSR 020064-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 220.

WORK FILE READS: O.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 2062. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:04

Figure 3-16 Memory Allocation Map for TEST

3.1.7 Example 3: Building and Linking to a Resident Library in MACRO-1ll

Resident libraries consist of subroutines that are shared by two or
more tasks. When such tasks reside in physical memory simultaneously,
resident libraries provide a considerable memory savings because the
subroutines within the library appear in memory only once.

The text in this section and the figures associated with it illustrate
the development and use of a resident library, called LIB.

TYPICAL TASK BUILDER FACILITIES

Figure 3-17 shows five FORTRAN callable subroutines:

e An integer addition routine, AADD

e An integer subtraction routine, SUBB

e An integer multiplication routine, MULL

e An integer division routine, DIVV

e A register save and restore coroutine, SAVAL
These subroutines are contained in a single source file, LIB.MAC.
When assembled and built, they will constitute an example of a
resident library. FORTRAN callable routines were used in this example

so that the 1library can be accessed by either FORTRAN or MACRO-11
programs.

.TITLE LIB
.IDENT /01/

.PSECT AADD,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS

AADD:: CALL $SAVAL ; SAVE RO-R5
MOV @2 (R5) ,RO ; FIRST OPERAND
MOV @4 (R5) ,R1 ;i SECOND OPERAND
ADD RO,R1 ; SUM THEM
MOV R1,@6 (R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT SuBB,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO SUBTRACT TWO INTEGERS

SUBB:: CALL $SAVAL ; SAVE RO-R5
MOV @2(R5) ,RO ; FIRST OPERAND
MOV @4 (R5) ,R1 ; SECOND OPERAND
SUB R1,RO ; SUBTRACT SECOND FROM FIRST
MOV R0,@6 (R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT MULL,RO,I,GBL,REL,CON

Figure 3-17 Source Listing for Resident Library LIB.MAC

TYPICAL TASK BUILDER FACILITIES

;** FORTRAN CALLABLE SUBROUTINE TO MULTIPLY TWO INTEGERS

MULL:: CALL $SAVAL ; SAVE RO-R5
MOV @2 (R5) ,RO ; FIRST OPERAND
MOV @4 (R5) ,R1 ; SECOND OPERAND
MUL RO,R1 ; MULTIPLY
MOV R1,@6 (R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT DIVV,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO DIVIDE TWO INTEGERS

DIVvV:: CALL $SSAVAL ; SAVE REGS RO-R5
MOV @2(R5) ,R3 : FIRST OPERAND
MoV @4 (R5) ,R1 ; SECOND OPERAND
CLR R2 ; LOW ORDER 16 BITS
DIV R1,R2 ; DIVIDE
MOV R2,@6 (R5) ; STORE RESULT .
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT SAVAL,RO,I,GBL,REL,CON

; **ROUTINE TO SAVE REGISTERS

$SAVAL::
MOV R4,-(SP) ; SAVE R4
MOV R3,-(SP) ;SAVE R3
MOV R2,~- (SP) : SAVE R2
MOV Rl,-(SP) : SAVE R1
MOV RO,-(SP) ;SAVE RO
MOV 12(SP),-(SP) ;COPY RETURN
MOV R5,14 (SP) :SAVE RS
CaALL @ (SpP)+ ;CALL THE CALLER
MOV (SP)+,R0O ;RESTORE RO
MOV (sP)+,R1 ;RESTORE R1
MOV (SP)+,R2 ;RESTORE R2
MOV (sP)+,R3 ;RESTORE R3
MOV (SP)+,R4 :RESTORE R4
MOV (SP)+,RS5 ;RESTORE R5
RETURN
.END

Figure 3-17 (Cont.) Source Listing for Resident Library LIB.MAC

TYPICAL TASK BUILDER FACILITIES

Once you have assembled LIB, you can build it with the‘following Task
Builder command sequence:

TKB>LIB/PI/-HD,LIB/-WI,LIB=LIB
TKB> /

ENTER OPTIONS:

TKB> STACK=0

TKB> PAR=LIB:0:200

TKB>//

This command sequence instructs the Task Builder to build a
position-independent (/PI), headerless (/-HD) 1library image named
LIB.TSK. It instructs the Task Builder to create a map file LIB.MAP
and to output an 80 column listing (/-WI) to the line printer. It
also specifies that the Task Builder is to create a symbol definition
file, LIB.STB. The Task Builder will create all three files, LIB.TSK,

LIB.MAP, LIB.STB on device SY: under the UFD that corresponds to . the
terminal UIC.

Under options, STACK=0 suppresses the stack area within the resident
library's image.

The PAR option tells the Task Builder that the resident 1library will
reside within a partition of the same name as the library. As with
all shared regions, this is a requirement in an RSX-11lM system; in an
RSX-11M-PLUS system it is not. 1In addition, the PAR option specifies
that the base of the library is 0 and that it is 200(8) bytes long.

(For more information on the switches and options wused in this
example, refer to Chapter 6.)

Figure 3-18 shows the Task Builder map that results from the command
sequence above.

Note in the global symbols section of the map in Figure 3-18 that the
Task Builder has assigned offsets to the symbols for each library
function, When the task that links to this library is built, the Task
Builder will assign virtual addresses to these symbols.

The program MAIN in Figure 3-19 exercises the routines in the resident
library LIB.TSK. When you assemble and build it, MAIN will call upon
the library routines to add, subtract, multiply, and divide the
integers contained in the labels OPl and OP2 within the program. MAIN
will print the results of each operation to device TI:.

TYPICAL TASK BUILDER FACILITIES

LIB.TSK;12 MEMORY ALLOCATION MAP TKB M36 PAGE 1
7-FEB-79 14:47

PARTITION NAME : LIB
IDENTIFICATION : 01
TASK UIC : [303,3] TASK
TASK ATTRIBUTES: -HD,PI ATTRIBUTES
TOTAL ADDRESS WINDOWS: 1. SECTION
TASK IMAGE SIZE : 64. WORDS
TASK ADDRESS LIMITS: 000000 000163
R-W DISK BLK LIMITS: 000003 000002 000000 00000. |
*** ROOT SEGMENT: LIB
R/W MEM LIMITS: 000000 000163 000164 00l1l6.
DISK BLK LIMITS: 000002 000002 000001 000O1l.
MEMORY ALLOCATION SYNOPSIS:
SECTION TITLE IDENT
. BLK.: (RW,I,LCL,REL,CON) 000000 000000 00000.
AADD :(RO,I,GBL,REL,CON) 000000 000024 00020,

000000 000024 00020, LIB 0l
bpivv :(RO,I,GBL,REL,CON) 000024 000026 00022,

000024 000026 00022, LIB 0l
MULL :(RO,I,GBL,REL,CON) 000052 000024 00020.

000052 000024 00020, LIB 01
SAvAL :(RO,I,GBL,REL,CON) 000076 000042 00034.

000076 000042 00034. LIB 0l
suBB :(RO,I,GBL,REL,CON) 000140 000024 00020.

000140 000024 00020. LIB 0l

GLOBAL SYMBOLS:

AADD 000000-R MULL 000052-R SUBB 000140-R

DIVV 000024-R $SAVAL 000076-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 376.

WORK FILE READS: O.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:04

Figure 3-18 Task Builder Map for LIB.TSK

FILE

LIB.OBJ;2
LIB.OBJ; 2
LIB.OBJ;?2
LIB.OBJ; 2

LIB.OBJ;2

TYPICAL TASK BUILDER FACILITIES

.TITLE MAIN
.IDENT /01/

* +

*MAIN - CALLING ROUTINE TO EXERCISE THE ARITHMETIC ROUTINES
FOUND IN THE RESIDENT LIBRARY, LIB.TSK.

e we W we

.MCALL QIOWSS,EXITSS

OP1l: «WORD 1 ; OPERAND 1
OP2: -WORD 1 ; OPERAND 2
ANS: +«BLKW 1 ; RESULT
OUT: «BLKW 100. ; FORMAT MESSAGE
FORMAT: .ASCIZ /THE ANSWER = %D./
.EVEN

.ENABL LSB)

START:
MOV #ANS , - (SP) ; TO CONTAIN RESULT
MOV #0P2,- (SP) ; OPERAND 2
MOV $0P1,-(SP) ; OPERAND 1
MOV #3,-(sP) ; PASSING 3 ARGUMENTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL AADD ; ADD TWO OPERANDS
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL SUBB ; SUBTRACT SUBROUTINE
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL MULL ; MULTIPLY SUBROUTINE
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL DIVV ; DIVIDE SUBROUTINE
CALL PRINT ; PRINT RESULTS
EXITS$S

+

** PRINT - PRINT RESULT OF OPERATION.

. wo w

PRINT: MOV #0OUT,RO ; ADDRESS OF SCRATCH AREA
MOV #FORMAT,R1 ; FORMAT SPECIFICATION
MOV #ANS ,R2 ; ARGUMENT TO CONVERT
CALL $EDMSG ; FORMAT MESSAGE
QIOWSS #IO.WVB,#5,#1,,,,<#0UT,R1,#40>
RETURN 7 RETURN FROM SUBROUTINE
.END START

Figure 3-19 Source Listing for MAIN.MAC

TYPICAL TASK BUILDER FACILITIES

Once you have assembled MAIN, you can use the following Task Builder
command sequence to build it:

TKB>MAIN,MAIN/MA/-WI/-SP=MAIN
TKB>/

ENTER OPTIONS:
TKB>RESLIB=LIB/RO:3

TKB>//

This command sequence instructs the Task Builder to build a task file
named MAIN.TSK on device SY: under the UFD that corresponds to the
terminal UIC. It also specifies that the Task Builder is to create a
map file MAIN.MAP. The MA switch requests an extended map format. 1In
this example, /MA was applied to the device specification so that the
Task Builder would include in the map for the task the symbols within
the library LIB. The negated form of the wide listing switch (/-WI)
was appended to the map specification to obtain an 80-column map
format. In this example, the Task Builder will not output a map
listing to the line printer

Under options, the RESLIB option specifies that the task MAIN 1is to
access the library LIB and that it requires read-only access to LIB.
The Task Builder will use APR3 to map the library.

The Task Builder map that results from this command sequence is shown
in Figure 3-20.

MAIN.TSK;15 MEMORY ALLOCATION MAP TKB M36 PAGE 1
30-APR-79 10:33

PARTITION NAME
IDENTIFICATION 0l
TASK UIC [303,3]
STACK LIMITS: 000212 001211 001000 00512. TASK

PRG XFR ADDRESS: 001552 ATTRIBUTES
TOTAL ADDRESS WINDOWS: 2. SECTION
TASK IMAGE ©SIZE : 1120. WORDS
TASK ADDRESS LIMITS: 000000 004213
R-W DISK BLK LIMITS: 000002 000006 000005 00005. _

GEN

**% ROOT SEGMENT: MAIN

R/W MEM LIMITS: 000000 004213 004214 02188.
DISK BLK LIMITS: 000002 000006 000005 00005.

Figure 3-20 Task Builder Map for MAIN,.TSK

TYPICAL TASK

MEMORY ALLOCATION SYNOPSIS:

SECTION
. BLK.: (RW,I,LCL,REL,CON) 001212
001212
001742
002760
003176
003324
003420
003530
AADD :(RO,I,GBL,REL,CON) 060000
060000
DIVV :(RO,I,GBL,REL,CON) 060024
060024
LNC$D : (RW,D,GBL,REL,CON) 003776
003776
MULL :(RO,I,GBL,REL,CON) 060052
060052
SAVAL :(RO,I,GBL,REL,CON) 060076
060076
SUBB :(RO,I,GBL,REL,CON) 060140
060140
$$RESL: (RW,I,LCL,REL,CON) 004000
004000
$$RESM: (RW,I,LCL,REL,CON) 004024
004024
004112
GLOBAL SYMBOLS:
AADD 060000-R SAVAL 060076-R
DIVV 060024-R SUBB 060140-R
I0.WVB 011000 $CBDAT 002760-R
MULL 060052-R SCBDMG 002766-R

MAIN.TSK;15

MEMORY ALLOCATION

BUILDER FACILITIES

002564
000530
001016
000216
000126
000074
000110
000246
000024
000024
000026
000026
000002
000002
000024
000024
000042
000042
000024
000024
000024
000024
000166
000066
000100

01396.
00344.
00526.
00142.
00086.
00060.
00072,
00166.
00020.
00020.
00022.
00022,
00002.
00002.
00020.
00020.
00034.
00034.
00020.
00020.
00020.
00020.
00118.
00054.
00064.

CDDMG
CATB
C5TAa
EDDAT
LIB
LIB
EDTMG
LIB
LIB
LIB
SAVRG

ARITH

01
12
0l
01
01
03

03.02

DARITH 0005

FILE

MAIN.OBJ;1
SYSLIB.OLB; 40
SYSLIB.OLB; 40
SYSLIB.OLB; 40
SYSLIB.OLB; 40
SYSLIB.OLB; 40
SYSLIB.OLB; 40
LIB.STB; 13
LIB.STB;1l3
SYSLIB.OLB; 40
LIB.STB;13
LIB.STB; 13
LIB.STB;13
SYSLIB.OLB; 40

SYSLIB.OLB; 40
SYSLIB.OLB; 40

$CBDSG 002774-R
$CBOMG 003002-R
$CBOSG 003010-R
SCBTA 003040-R

MAP TKB M36

MAIN 30-APR-79 10:33
$COTB 003332-R $DDIV 004150-R $EDMSG 002036-R
$C5TA 003420-R $DIV 004054-R SLNCNT 003776-R
$DAT 003574-R $DMUL 004112-R $MUL 004024-R
% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2518.

WORK FILE READS: O.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 8200. WORDS (32. PAGES)

SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:19

Figure 3-20 (Cont.)

Task Builder Map for

$CBTMG 003016-R
$CBVER 003002-R
$CDDMG 003176-R
$CDTB 003324-R

PAGE 2

$SAVRG 004000-R
$TIM 003652-R

MAIN.TSK

TYPICAL TASK BUILDER FACILITIES

This map contains a global symbols section. Note that the symbols
within the 1library now have virtual addresses assigned to them and
that these addresses begin at 60000(8) -- the virtual base address of
APR 3. The Task Builder's allocation of virtual address space for
MAIN.TSK is represented diagrammatically in Figure 3-21.

APR 7—

APR 6—

APR 5—

APR 4—

LIB. TSK } WINDOW 1 REGION 1

VIRTUAL 60000 APR 3—

APR 2—

APR 1—

MAIN. TSK }WINDOWO REGION O
VIRTUALO APRO—

Figure 3-21 Allocation of Virtual Address Space for MAIN,TSK

The library LIB is position independent and can therefore be mapped
anywhere in the referencing task's virtual address space. APR 3 was
used in this example to contrast this mapping arrangement with the
mapping of MACCOM in the wvirtual address space of task MCOMl in
Example 1 (Section 3.1.5). If the optional APR parameter in the
RESLIB option above had been left blank, the Task Builder would have
allocated the highest available APR to map the library.

As described in earlier sections of this chapter, program section
names within position-independent shared regions must normally be
unique with respect to program section names within tasks that
reference them. When a shared region 1is a position-independent
resident common and you explicitly declare the program section names
within 1it, avoiding program section name conflicts is an easy matter.
However, when a shared region 1is a position-independent resident
library that contains calls to routines within an object module
library (SYSLIB, for example), conflicts may develop that are not
apparent to you. The problem arises when the position-independent
resident library and one or more tasks that link to it contain calls
to separate routines residing within the same program section of an
object module library.

When the Task Builder resolves a call from within a module it Iis
processing to a routine within an object module library, it places the
routine from the library into the 1image it is building. It also
enters into its internal table the name of the program section in the

TYPICAL TASK BUILDER FACILITIES

object module 1library within which the routine resides. If a
position-independent resident 1library contains a call to a routine
within a given program section of SYSLIB, for example, and then
subsequently a task that links to the resident library contains a call
to a different routine within the same program section of SYSLIB, both
the resident library and the referencing task will contain the program
section name. When you build the referencing task, the library's .STB
file will contain the program section name and a program section
conflict will develop. (Refer to Section 3.1.4 for additional
information on the sequence in which the Task Builder processes tasks
and the potential program section name conflicts that can result.)

This situation and one possible solution to it can be illustrated with
Example 3. When this example was first created, only the arithmetic
routines were included in the source file of the resident 1library
(LIB.MAC in Figure 3-17). The system library coroutine ($SAVAL) was
resolved from SYSLIB. Because the first instruction of each
arithmetic routine called $SAVAL, the Task Builder included a copy of
it in the resident library's image at task-build time. This turned
out to be unsatisfactory because of a call to the SYSLIB routine
SEDMSG (edit message) within the program MAIN that 1links to the
resident library. Both routines ($SAVAL and $EDMSG) reside within the
unnamed or blank program section (. BLK.) within SYSLIB. Therefore,
a program section name conflict developed when MAIN was built.

To circumvent this problem, the source code for $SAVAL was 1included
into the source file for the resident library under the explicitly
declared program section name, SAVAL,

Another solution would have been to build the resident library
absolute. In this case, the Task Builder would not have included
program section names from the resident 1library into the symbol
definition file for the library when the library was built.

It is important to note that the above program section name conflict
develops only when two different routines residing within the same
program section of an object module library are involved. It presents
no problem when a resident library and a task that links to it contain
a call to the same routine in an object module library. 1In that case,
the Task Builder copies the routine and the program section name in
which it resides into the resident library when the library is built.
Then, when the task that calls the same routine is built, the Task
Builder will resolve the reference to the routine in the resident
library instead of in the object module library.

3.1.8 Example 4: Building and Linking to a Supervisor-Mode Library in
MACRO-11 (RSX-11M-PLUS Only)

Supervisor-mode libraries are a special type of resident library that
provide you with the means to effectively double the address space of
your task and thereby extend the physical memory to which your task
has access. Supervisor-mode libraries are particularly useful when
used to accommodate large run—-time systems.

Supervisor-mode libraries are mapped with the instruction space APRs
of the processor's supervisor mode (Supervisor APR 0 through
Supervisor APR 7). Once you have linked your task to a
supervisor-mode library, a call from within your task to a global
symbol within the library automatically causes a context switch from
user mode to supervisor mode. Control of the processor is then
assumed by the called 1library routine. When the 1library routine
executes a return, control of the processor 1is transferred to a

TYPICAL TASK BUILDER FACILITIES

completion routine within the library. It is the completion routine's
responsibility to perform the return context switch from supervisor
mode to user mode. (Completion routines are described later in this
section.) '

When you build a task that links to a supervisor-mode library, the
Task Builder replaces each call from the task to a routine within the
library with a 4-word vector. This vector <contains a transfer of
control instruction to a routine ($SUPL) that switches the processor
from user mode to supervisor mode. It also contains the address of
the completion routine and the address of the entry point of the
called library routine. (Refer to Figure B-14 in Appendix B.)

Figure 3-22 shows a typical mapping arrangement for a 14K word
supervisor-mode library and a 24K word task that refers to it.

SUPERVISOR MODE USER MODE
(INSTRUCTION SPACE) (INSTRUCTION SPACE)
!
APR7 — | APR 7 —
SUPERVISOR- |
APRB — MODE | APR 6 —
LIBRARY |
APRS5 — | APR 5 —
APR4 — | APR 4 — | REFERENCING
| TASK
APR3 — | APR3 —
APR2 — I APR 2 —
APR1 — | APR1 —
| HEADER & STACK
APRO — APR 0 —

Figure 3-22 Typical Mapping for Supervisor-Mode Library

When the processor context switches from user mode to supervisor mode,
the system copies the user-mode instruction APRs (which map the task
image) into the supervisor-mode data space APRs. Therefore, when the
processor is running in supervisor mode under control of a library
routine, any data within the task image is available to the routine.
For example, 1library routines that require parameters or pointers to
parameters in registers or through low core impure area pointers can
obtain the parameters transparently. Figure 3-23 shows a typical
mapping arrangement when a supervisor-mode routine is in control of
the processor.

TYPICAL TASK BUILDER FACILITIES

SUPERVISOR MODE USER MODE
(INSTRUCTION SPACE) (INSTRUCTION SPACE)
UNUSED |
APR 7 — I
__ | supervisor-
APR 6 VIODE I
LIBRARY I
APR 5 —
APR 4 — APR4— | REFERENCING
/ TASK
APR 3 — / APR 3 —
APR 2 — / APR 2 —
APR 1 — / APR 1 —
/ HEADER & STACK
APR 0 — / APR 0 —
SUPERVISOR MODE
(DATA SPACE) / /
APR7 — /
APR 6 — /

APR 5 — /

APR 4 —
COPY - /
OF

APR3— | REFERENCING /
TASK

APR 2 — /
APR 1 — /

HEADER & STACK / I

APRO —

Figure 3-23 Task Mapping while Running in Supervisor Mode

TYPICAL TASK BUILDER FACILITIES

Building a supervisor-mode library is essentially the same as building
a conventional resident library. When you build a supervisor-mode
library, you suppress the header by attaching /-HD to the task image
file, During option input, you suppress the stack area by specifying
STACK=0. You specify the partition in which the library is to reside

and, optionally, the base address and length of the library with the
PAR option,

You indicate to the Task Builder that you are building a
supervisor-mode library with the CMPRT option. The argument for this
option identifies the entry symbol of the completion routine. When
the Task Builder processes this option, it places the completion
routine entry point in the library's .STB file. (Refer to Chapter 6
for more information on the CMPRT option).

The following restrictions are placed on the contents of a
supervisor-mode library.

1, Only subroutines using JSR PC, X should be wused within the
library.

2, The library must not contain subroutines that use the stack

to pass parameters if tasks referring to the library call the
same routines.

3. The 1library must not contain data of any kind. This
includes: user data, buffers, I/0 status blocks, and
directive parameter blocks (the $S directive form can be used
because the directive parameter block for this form of
directive is pushed onto the stack at run time).

When you build a supervisor-mode library, you must include within it a
completion routine that performs the following:

1. Transfers any condition code bits that are relevant to your
user-mode task from the Processor Status Word (PSW) to the
Processor Status Word on the stack. All condition code bits
in the stacked PSW are set to 0 during the context switch
from user to supervisor-mode.

2. Writes an appropriéte value into the wuser stack pointer,
because the user stack will not be context switched.

3. Executes an RTI instruction.

Following is an example of a completion routine from the system
library, LB:[1,1]SYSLIB.OLB which returns the carry bit:

$COMPL:: ADC 2(sp) i TRANSFER CARRY BIT
MOV $#6,-(SP) ;CALCULATE USER SP VALUE
ADD SP, (SP) ;
MTPI SP ;CHANGE USER STACK POINTER VALUE
RTI ;RETURN TO CALLER

The system library contains two other completion routines:

e SCMPAL -- which returns status bits NZVC
e SCMPRV -- which sets up PS for privileged tasks

Figure 3-24 shows a module containing three routines: a sort routine
(SORT::), a search routine (SEARCH::), and a completion routine
($SCOMPL::). When assembled and built, these routines will constitute
an example of a supervisor-mode library.

TYPICAL TASK BUILDER FACILITIES

.TITLE SUPLIB
.IDENT /01/
SORT::
CALL $SAVAL ; SAVE ALL REGISTERS
TST (R5)+ ; SKIP OVER NUMBER OF ARGUMENTS
MOV (R5)+,R0 ; GET ADDRESS OF LIST
MOV (R5)+,R4 ; GET ADDRESS OF LENGTH OF LIST
MOV (R4) ,R4 ; GET LENGTH OF LIST
MOV RO,R5 ;
DEC R4 ;
108$:
MOV R5,R0 ; COPY
MOV R4,R3 ; COPY LENGTH OF LIST
20$:
TST (RO)+ ; MOVE POINTER TO NEXT ITEM
CMP (R5), (RO) ; COMPARE ITEMS
BLE 308 ; IF LE IN CORRECT ORDER
MOV (R5) ,R2 ; SWAP ITEMS
MOV (RO), (RS) ;
MOV R2, (RO) ;
308%:
DEC R3 ; DECREMENT LOOP COUNT
BNE 208 ; IF NE LOOP
DEC R4 ; DECREMENT
BEQ 408 ; IF EQ SORT COMPLETED
TST (R5)+ ; GET POINTER TO NEXT ITEM TO BE COMPARED
BR 108
408
RETURN
SEARCH: :
CALL $SAVAL ; SAVE ALL THE REGISTERS
CMP #4, (R5)+ ; FOUR ARGUMENTS?
BNE 208 ; IF NE NO
MOV (R5)+,R0 ; GET ADDRESS OF NUMBER TO LOCATE
MOV (R5)+,R1 ; ADDRESS OF LIST SEARCHING
MOV (R5)+,R2 ; GET ADDRESS OF LENGTH OF LIST
MOV (R2) ,R2 ; GET LENGTH OF LIST
MOV (R5) ,R5 ; ADDRESS OF RETURNED VALUE
MOV R2,R3 ; COPY LENGTH
108:
CMP (RO), (R1)+ ; IS THIS THE NUMBER?
BEQ 308 ; IF EQ YES
BMI 20$; IF MI NUMBER NOT THERE
DEC R2 ; DECREMENT LOOP COUNT
BNE 108 ; IF NE NOT AT END OF LIST
208:
MOV #-1, (R5) ; END OF LIST PASS BACK ERROR
RETURN
308$:
SUB R2,R3 ; NUMBER FOUND - GET INDEX INTO LIST
INC R3 ;
MOV R3, (R5) ; RETURN INDEX
RETURN

Figure 3-24 Source Listing for SUPLIB.MAC

TYPICAL TASK BUILDER FACILITIES

SCOMPL::
ADC 2(SP) ; COMPLETION ROUTINE
MOV #6,- (SP) :
ADD SP, (SP) ;
. MTPI SP :
RTI ; RETURN TO USER MODE
.END

Figure 3-24 (Cont.) Source Listing for SUPLIB.MAC

Once you have assembled SUPLIB, you can build it with the following
Task Builder command string:

TKB>SUPLIB/-HD,SUPLIB/MA/~SP,SUPLIB=SUPLIB
TKB>/ ‘
ENTER OPTIONS:

TKB>STACK=0

TKB>CMPRT=$COMPL
TKB>PAR=SUPLIB:160000:2000
TKB>GBLXCL=$SAVAL

TKB>//

This command sequence directs the Task Builder to create a headerless
image file (/-HD) named SUPLIB.TSK and to create an extended map file
(/MA) named SUPLIB.MAP. Because /-SP is appended to the map file, the
Task Builder will not output it to the 1line printer. It also
specifies that the Task Builder is to <create a .STB file named
SUPLIB.STB.

Under options, STACK=0 suppresses the stack area in SUPLIB's task
image. The CMPRT option identifies the global symbol of the
completion routine within SUPLIB. The Task Builder will place this
global symbol in a special entry in the library's .STB file. The PAR
option specifies to the Task Builder that SUPLIB will reside within a
partition of the same name as the library. This is not a requirement.
The PAR option also specifies to the Task Builder that SUPLIB will
have a base address of 160000, and that it will be 2000(8) bytes long.

The GBLXCL option directs the Task Builder to exclude from SUPLIB's
.STB file the global symbol $SAVAL. . $SAVAL 1is a system library
coroutine that saves the contents of all general registers. It uses
the stack to pass parameters. When SUPLIB is built, the Task Builder
will resolve the reference to $SAVAL by including the $SAVAL routine
into SUPLIB's image file. Since it 1is known that the task TSUP
(described below) will be linked to SUPLIB at a later time, and that
TSUP also contains a call to $SAVAL, the symbol $SAVAL must be
excluded from SUPLIB's .STB file ‘.0 prevent the Task Builder from
resolving the <call in TSUP to the $SAVAL routine in SUPLIB. The net
result of excluding the symbol from SUPLIB's .STB file 1is that the
Task Builder will include separate copies of $SAVAL in SUPLIB and in
the task that links to it TSUP. (For more information on the switches
and options used in this example, refer to Chapter 6.)

Suppose the symbol $SAVAL were not excluded from SUPLIB's .STB file.
When the Task Builder built TSUP, instead of resolving the reference
to SYSLIB, ‘it would resolve the reference to the routine existing
within SUPLIB. When TSUP ran, the call to $SAVAL within it would
cause a context switch from user mode to supervisor mode. $SAVAL
would execute but, because it 1s a coroutine, it would attempt a
direct call back to TSUP (which resides 1in wuser mode) instead of
returning to user mode through a completion routine.

TYPICAL TASK BUILDER FACILITIES

This illegal return call would fail and cause the system to trap.

Note also, that SUPLIB is built absolute. That 1is, the PI
(position-independent) switch 1is not attached to the library image
file. As written, SUPLIB must be absolute to prevent a program
section name conflict between SUPLIB and the task that links to it,
TSUP. Even though the symbol $SAVAL was excluded from SUPLIB's .STB
file, the program section in which $SAVAL resides in SYSLIB was not.
When the Task Builder resolves the reference to $SAVAL in TSUP, it
will place the routine into TSUP's image file and the program section
name in which it resides will be placed into the Task Builder's
internal section table. 1If, when TSUP is built, the program section
name were allowed to remain in the .STB file, a conflict would
develop. (Refer to Section 3.1.4 for additional information.)

The map that results from the above command sequence is shown in
Figure 3-25. Note that the virtual addresses for the symbols SEARCH,
SORT, $COMPL, and the entry point for the system 1library coroutine
$SAVAL have already been established. The Task Builder establishes
the virtual addresses for these symbols when it builds SUPLIB because
SUPLIB 1is absolute. If SUPLIB were built position independent, the
Task Builder would defer the assignment of virtual addresses for these
symbols until the tasks that link to the library are built.

The program TSUP in Figure 3-26 uses the sort and search routines in
the example in Figure 3-24. When you link TSUP to SUPLIB, install and
run it, TSUP will prompt for a number by printing ARRAY= on vyour
terminal. When you type a number, TSUP will place the number you have
typed into ah array and prompt you again in the same manner. It will
continue to prompt you until it has prompted you 10 times or until you
type a 0, whichever comes first. After you have input 10 numbers or
typed a 0, TSUP will use the sort routine in SUPLIB to sort the
numbers in ascending order. It will then print them on your console
terminal. Once it has printed the numbers, it will prompt for a
number with the following message:

NUMBER TO SEARCH FOR?

When you respond by typing a number, TSUP will use the search routine
in SUPLIB to search the array for the number. If the number is in the
array, TSUP will print it on your terminal. If the number is not in
the array, TSUP will report that fact.

TSUP uses three system library routines: $SAVAL (save all registers
coroutine), $EDMSG (edit message routine), and $CDTB (decimal to
binary conversion routine). These routines are described in the
IAS/RSX-11 System Library Routines Reference Manual. The Executive
directives used by TSUP (QIOWS, DIRS, and QIOWSS) are described in the
RSX-11M/M-PLUS Executive Reference Manual.

TYPICAL TASK BUILDER FACILITIES
SUPLIB.TSK;17 MEMORY ALLOCATION MAP TKB M35 PAGE 1

29-DEC-78 09:18

PARTITION NAME : SUPLIB
IDENTIFICATION : 01

TASK UIC : [301,356] TASK

TASK ATTRIBUTES: —-HD

TOTAL ADDRESS WINDOWS: 1. z;ggﬁgums
TASK IMAGE SIZE : 96. WORDS N

TASK ADDRESS LIMITS: 160000 160213
R-W DISK BLK LIMITS: 000003 000002 000000 00000. _

**% ROOT SEGMENT: SUPLIB

R/W MEM LIMITS: 160000 160213 000214 00140.
DISK BLK LIMITS: 000002 000002 000001 00001l.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.: (RW,I,LCL,REL,CON) 160000 000214 00140.
160000 000152 00106. SUPLIB Ol " SUPLIB.OBJ;1l
160152 000042 00034. SAVAL 00 SYSLIB.OLB;6

GLOBAL SYMBOLS:

SEARCH 160056-R SORT 160000-R S$COMPL 160134-R $SAVAL 160152-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 229.

WORK FILE READS: 0.

WORK FILE WRITES: 0.

SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:05

Figure 3-25 Task Builder Map for SUPLIB.TSK

TYPICAL TASK BUILDER FACILITIES

.TITLE TSUP
.IDENT /01/

+MCALL QIOWS$,DIRS,QIOWSS

WRITE: QIOWS I0.WvB,5,1,,,,<OUT,,40>
READIN: QIOW$ IO.RVB,5,1,,,,<OUT,5>

IARRAY: .BLKW 12.
LEN: +«BLKW 1
IART: «BLKW 1
INDEX: .BLKW 1
OUT: «BLKW 100.
ARGBLK:

EDBUF: .BLKW 10.

FMT1: +ASCIZ /%2SARRAY(%D)=/
FMT2: .ASCIZ /$N%2SNUMBER TO SEARCH FOR?/
FMT3: .ASCIZ /%$N%$2S%D WAS FOUND IN ARRAY (%D)/

FMT4: .ASCIZ /%N%2S%D WAS NOT IN ARRAY/
FMT5: .ASCIZ /%2SARRAY (%D)=%D/
.EVEN
START:
MOV # IARRAY,RO ; GET ADDRESS OF ARRAY
MOV #10,R1 ; SET LENGTH OF ARRAY
58%:
CLR (RO)+ ; INITIALIZE ARRAY
DEC R1 ; LOOP
BNE 58
MOV # IARRAY ,RO ;
MOV #INDEX,R2
108$:
MOV #FMT1,R1 ; FORMAT SPECIFICATION (ADDRESS
; OF INPUT STRING)
MOV (R2) ,EDBUF ; GET INDEX
INC EDBUF ;
CALL PRINT ; PRINT MESSAGE
CALL READ ; READ INPUT
MOV IART, (RO)+ ; PUT BINARY KEYBOARD INPUT INTO ARRAY
BEQ 208 ; ZERO MARKS END OF INPUT
INC (R2) ;
CMP (R2) ,#10.
BNE 108 ; IF NE YES
20$:
MOV (R2) ,LEN ; CALCULATE LENGTH OF ARRAY
MOV #ARGBLK,R5 ; GET ADDRESS OF ARGUMENT BLOCK
MOV $#2,(R5)+ ; NUMBER OF ARGUMENTS
MOV #IARRAY, (R5)+ ; PUT ADDRESS OF ARRAY '
MOV $#LEN, (R5) ;
MOV #ARGBLK ,R5 ;
CALL SORT ; SORT ARRAY
CLR R2 :
MOV # IARRAY ,RO ; GET ARRAY ADDRESS

Figure 3-26 Source Listing for TSUP.MAC

30$:

40S:

100$:

PRINT:

READ:

INC
MOV
MOV
MOV
CALL
CMP
BLT
MOV
CALL
CALL
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CALL
TST
BLT
MOV
MOV
MOV
CALL
BR

MOV
MOV
CALL

CALL

CALL
MOV
MOV
CALL
MOV

DIRS
RETURN

CALL
DIRS
MoV
CALL
MOV
RETURN

.END

Figure 3-26 (Cont.)

TYPICAL TASK BUILDER FACILITIES

R2

R2,EDBUF
(RO)+,EDBUF+2
#FMT5,R1
PRINT

R2,LEN

30$

#FMT2,R1
PRINT

READ
#ARGBLK,R5
#4, (R5)+
#IART, (R5) +
#IARRAY, (R5)+
#LEN, (R5)+

INDEX, (R5)
#ARGBLK ,R5
SEARCH

INDEX

40%
IART,EDBUF
INDEX ,EDBUF+2
#FMT3,R1
PRINT

1008

#FMT4 ,R1
IART,EDBUF
PRINT

SEXST

$SAVAL
#0UT,RO ;
#EDBUF,R2
SEDMSG

Ne NE Ne N WE Ne W e WE We W e Ne W We We We Ve We Wo Wo Ne No Ve~

-~ ~

Yy

’
ADDRESS

’

’

R1 ,WRITE+Q.IOPL+2

$WRITE

$SAVAL
#READIN
#0UT,RO
$CDTB
R1,IART

~ e

START

-~ ~

’

.
’

’

INCREMENT INDEX
GET INDEX FOR PRINT
GET CONTENTS OF ARRAY

GET ADDRESS OF FORMAT SPECIFICATION

MORE TO PRINT?
IF LE YES

GET ADDRESS OF FORMAT SPECIFICATION

OUTPUT MESSAGE
READ RESPONSE

SET NUMBER OF ARGUMENTS
SET ADDRESS OF NUMBER LOOKING FOR
SET ADDRESS OF ARRAY

SET ADDRESS OF LEN OF ARRAY
ADDRESS OF RESULT

SEARCH FOR NUMBER IN IART
WAS NUMBER FOUND?

IF LT NO

GET NUMBER LOOKING FOR
GET ARRAY NUMBER

GET FORMAT ADDRESS

DONE

GET FORMAT ADDRESS
GET NUMBER

EXIT WITH STATUS

SAVE ALL REGISTERS

OF OUTPUT BLOCK

START ADDRESS OF ARGUMENT BLOCK
FORMAT MESSAGE

; PUT LENGTH OF OUTPUT

BLOCK INTO PARAMETER BLOCK
WRITE OUTPUT BLOCK

SAVE ALL REGISTERS

READ REQUEST
GET KEYBOARD INPUT

CONVERT KEYBOARD INPUT TO BINARY
PUT INPUT INTO BUFFER

Source Listing for TSUP.MAC

TYPICAL TASK BUILDER FACILITIES

Once you have assembled TSUP, you can build it with the following Task
Builder command sequence:

TKB>TSUP,TSUP/MA/-WI/-SP=TSUP
TKB>/

ENTER OPTIONS:
TKB>RESSUP=SUPLIB/SV

TKB>//

This command sequence directs the Task Builder to build a task image
file TSUP.TSK and to create an extended (/MA) 80 column (/-WI) map
file named TSUP.MAP. Because /-SP is appended to the map file, the
Task Builder will not output the map file to the line printer,

Under options, the RESSUP option tells the Task Builder that the task
intends to access a supervisor-mode library and that context switching
vectors are required. The Task Builder expects to find a 1library
image file SUPLIB.TSK and a symbol definition file SUPLIB.STB, on
device LB: under the UFD that corresponds to the terminal UIC. In
addition, the Task Builder expects to find a special entry in the .STB
file that contains the symbol definition for the supervisor-mode
library's completion routine ($COMPL). This entry was created by the
Task Builder when SUPLIB was built as a result of the CMPRT option.
(Refer to Chapter 6 for more information on the switches and options
used in this example.) A portion of the map that results from the Task
Builder command sequence above is shown in Figure 3-27.

Note under global symbols in Figure 3-27 that the Task Builder has
changed the virtual addresses for symbols SEARCH, SORT, and $SAVAL
while leaving the virtual address of symbol $COMPL the same as it was
when SUPLIB was built. The new virtual addresses for the first three
symbols are addresses to the context switching vectors that the Task
Builder placed 1in TSUP's code. The Task Builder did not change the
virtual address of $COMPL because it is referenced only from within
the library. Therefore, calls to it do not constitute an initial
processor-mode context switch.

Finally, note that building a resident library as a supervisor-mode
library in no way precludes its use as a "standard" user-mode resident
library. A given resident library might be mapped by one task as a
supervisor-mode library while simultaneously being mapped by another
as a user-mode library.

TYPICAL TASK BUILDER FACILITIES

TSUP.TSK; 6 MEMORY ALLOCATION MAP TKB M35 PAGE 1
29-DEC-78 16:39

PARTITION NAME
IDENTIFICATION 01

TASK UIC [301,356]
STACK LIMITS: 000212 001211 001000 00512. TASK

PRG XFR ADDRESS: 002046 ATTRIBUTES
TOTAL ADDRESS WINDOWS: 2. SECTION
TASK IMAGE SIZE : 1312, WORDS

TASK ADDRESS LIMITS: 000000 005017

R-W DISK BLK LIMITS: 000002 000007 000006 00006. |

GEN

%%* ROOT SEGMENT: TSUP

R/W MEM LIMITS: 000000 005017 005020 02576.
DISK BLK LIMITS: 000002 000007 000006 00006.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE
. BLK.:(RW,I,LCL,REL,CON) 001212 003312 01738.
001212 001234 00668, MAIN 0l TSUP.OBJ;1

$$SUPL: (RW,I,LCL,REL,CON) 004760 000040 00032.
004760 000040 00032, S$SSUPL 01 SYSLIB.OLB;6

GLOBAL SYMBOLS:

IO.RVB 010400 $CBOSG 003632-R $CS5TA 004146-R S$MUL 004552-R
IO.WVB 011000 $CBTA 003662-R $DAT 004322-R gSAVAL 003540-R
SEARCH 004740-R S$CBTMG 003640-R $DDIV 004676-R SAVRG 004526-R
SORT 004750-R $CBVER 003624-R S$DIV 004602-R S$SUPL 004766-R
SCBDAT 003602-R S$SCDDMG 004020-R $DMUL 004640~R $TIM 004400-R
$CBDMG 003610-R $CDTB 002446-R SEDMSG 002632-R

$CBDSG 003616-R S$SCOMPL 160134 SEXST 003522-R
$CBOMG 003624-R S$SCOTB 002454-R SLNCNT 004524-R

**% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2544.

WORK FILE READS: 0.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:12

Figure 3-27 Task Builder Map for TSUP.TSK

TYPICAL TASK BUILDER FACILITIES

3.2 EXAMPLE 5: BUILDING A MULTIUSER TASK (RSX-11M-PLUS ONLY)

A multiuser task is a task that shares the pure (read-only) portion of
its code with two or more copies of the impure (read/write) portion of
its code. When the system receives an 1initial run request for a
multiuser task, a copy of both the read-only and read/write portions
of the task are read into physical memory. As long as the task is
running, all subsequent run requests for it result in the system
duplicating only the read/write portion of the task 1in physical
memory. Thus, multiuser tasks are memory efficient.

You designate a task as multiuser when you build it by applying the MU
switch to the task image file. This switch directs the Task Builder
to create two regions for the task. One region (region 0) will
contain the read-write portion of the task; the other region (region
1) will contain the read-only portion of the task.

As with all other tasks, the Task Builder wuses a program section's
access code to determine its placement within a multiuser task's
image. It divides address space into read/write and read-only
sections. Unlike a " single user task, however, in a multiuser task,
the read-only portion of the task is hardware protected. In addition,
the Task Builder separates the read/write portions of a multiuser task
from the read-only portions and places them in separate regions at
opposite ends of the task's address space. It allocates the low
address APRs to the read/write portion (which includes the task's
header and stack area) and the highest available APRs to the read-only
portion. Figure 3-28 illustrates this allocation.

APR 7 — READ-ONLY
PROGRAM
SECTIONS
APR 6 —
APR 5—
APR 4 —
APR 3—
READ/WRITE
APR 2— PROGRAM
SECTIONS
APR 1—
HEADER & STACK
APR 0—

Figure 3-28 Allocation of Program Sections in a Multiuser Task

TYPICAL TASK BUILDER FACILITIES

If neither the read-only nor the read/write portion of the task
contain memory-resident overlays the Task Builder will allocate two
window blocks in the header of the task. When the task is installed,
the INSTALL processor will initialize these window blocks as follows:

e Window block 0 will describe the range of virtual addresses
(the window) for the read/write portion of the task. This
region will always contain the task's header.

e Window block 1 will describe the range of virtual addresses
for the read-only portion.

Figure 3-29 below shows the window-to-region relationship of a
multiuser task.

HIGHEST VIRTUAL —
ADDRESS

WINDOW BLOCK
1

WINDOW BLOCK
0

READ/WRITE
REGION O

LOWEST VIRTUAL - -
ADDRESS

Figure 3-29 Windows for a Multiuser Task

If a multiuser task is an overlaid task, the read-only portion of the
task can be made up of the following:

e The read-only program sections of the root segment

TYPICAL TASK BUILDER FACILITIES

e Branches of an overlay structure if the complete branch is
memory resident and read-only

® A co-tree structure if the entire co-tree is memory resident
and read-only.

(Overlaid tasks are described in Chapter 4.)

Finally, the disk image of a multiuser task is somewhat different from
that of a single-user task. The read-only portion of the task is
placed at the end of the disk image. The relative block number of the
read-only portion and the number of blocks it occupies appears in the
label block. The read-only portion of the image is described in the
first 1library descriptor of the LIBRARY REQUEST section of the label
block. (Refer to Appendix B for more information on the task image
data structures.

The remainder of the text in this section and the figures associated
with it illustrate the development of a multiuser task. This example
was created by concatenating into a single file the resident 1library
file (LIB.MAC) and the task that links to it (MAIN.MAC) from Example
4. It is not intended to represent a typical multiuser task
application. However, it does illustrate the Task Builder's
allocation of program sections in a multiuser task and that 1is its
primary value. The concatenated source file, named ROTASK.MAC, for
this example is shown in Figure 3-30.

.TITLE ROTASK
.IDENT /01/

.MCALL QIOWS$S,EXITSS

OP1l: .WORD 1 ; OPERAND 1
OP2: .WORD 1 ; OPERAND 2
ANS: .BLKW 1 : RESULT
OUT: .BLKW 100. ; FORMAT MESSAGE
FORMAT: .ASCIZ /THE ANSWER = %D,/
.EVEN
START:
MOV #ANS, - (SP) ; TO CONTAIN RESULT
MOV $0P2,-(SP) ; OPERAND 2
MoV #0P1,-(SP) ; OPERAND 1
MOV $#3 ,-(Sp) ; PASSING 3 ARGUMENTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL AADD : ADD TWO OPERANDS
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL SUBB ; SUBTRACT SUBROUTINE
CALL PRINT : PRINT RESULTS
MOV " SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL MULL ; MULTIPLY SUBROUTINE
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL DIVV ; DIVIDE SUBROUTINE
CALL PRINT ; PRINT RESULTS
EXITS$S

Figure 3-30 Source Listing for ROTASK.MAC

* +

- we “o

PRINT: MOV
MOV
MOV
CALL
QIOWSS
RETURN

TYPICAL TASK BUILDER' FACILITIES

#0UT,RO
$FORMAT,R1
#ANS,R2
$EDMSG

* PRINT -~ PRINT RESULT OF OPERATION.

FORMAT SPECIFICATION
ARGUMENT TO CONVERT
; FORMAT MESSAGE

~ we ~o

#I0.WVB,#5,#1,,,,<#0UT,R1,#40>

; RETURN FROM SUBROUTINE

+** FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS

.PSECT AADD,RO,I,GBL,REL,CON

AADD:: CALL
MOV
MOV
ADD
MOV

RETURN

:** FORTRAN CALLABLE SUBROUTINE

.PSECT

sUBB:: CALL
MOV
MOV
SUB
MOV

RETURN

; ** FORTRAN CALLABLE SUBROUTINE

$SAVAL
@2 (R5),R0
@4 (R5),R1
RO,R1
R1,@6 (R5)

we Wo We we we wo

SAVE RO-R5

FIRST OPERAND

SECOND OPERAND

SUM THEM

STORE RESULT

RESTORE REGISTERS AND RETURN

TO SUBTRACT TWO INTEGERS

suBB,RO,I,GBL,REL,CON

$SAVAL
@2 (R5),R0O
@4 (RS) ,R1
R1,RO
R0O,@6 (R5)

e we w0 we we we

SAVE RO-R5

FIRST OPERAND

SECOND OPERAND

SUBTRACT SECOND FROM FIRST
STORE RESULT

RESTORE REGISTERS AND RETURN

TO DIVIDE TWO INTEGERS

.PSECT DIVV,RO,I,GBL,REL,CON

CALL
MOV
MOV
CLR
DIV
MOV
RETURN

DIVV::

;** FORTRAN CALLABLE SUBROUTINE

$SAVAL

@2 (R5),R3
@4 (R5) ,R1
R2

R1,R2
R2,@6 (R5)

e we N wmp we we we

SAVE REGS RO-R5

FIRST OPERAND

SECOND OPERAND

LOW ORDER 16 BITS

DIVIDE

STORE RESULT

RESTORE REGISTERS AND RETURN

TO MULTIPLY TWO INTEGERS

.PSECT MULL,RO,I,GBL,REL,CON

MULL:: CALL
MOV
MOV
MUL
MOV
RETURN
. END

Figure 3-30

$SAVAL
@2(R5),RO
@4 (R5) ,R1
RO,R1
R1,@6 (R5)

START

(Cont.)

w0 we we we N we

SAVE RO-R5

FIRST OPERAND

SECOND OPERAND

MULTIPLY

STORE RESULT

RESTORE REGISTERS AND RETURN

Source Listing for ROTASK.MAC

ADDRESS OF SCRATCH AREA

TYPICAL TASK BUILDER FACILITIES

Once you have assembled ROTASK, you can build it with the following
command sequence:

TKB>ROTASK/MU ,ROTASK /-WI /-SP=ROTASK
TKB>/

ENTER OPTIONS:

TKB>ROPAR=RDONLY

TKB>//

This command sequence directs the Task Builder to build a multiuser
(/MU) task image named ROTASK.TSK and to create an 80 column (/-WI)
map file named ROTASK.MAP. Because /-SP is attached to the map file,
the Task Builder will not output a map to the line printer.

Under options, the ROPAR option specifies that the system is to 1load
the read-only portion of the task 1into a partition named RDONLY.
Specifying a separate partition for the task's read-only region is not
a system requirement. The system will load the read/write portion
into partition GEN. The system will not load either region until it
receives a run request for the task.

The map that results from this command sequence 1is shown in Figure
3-31. Note that the Task Builder has added one field to the task
attributes section of this map describing the disk block limits of the
read-only portion of the task. It has also added a field to the root
segment portion of the map that describes the memory 1limits of the
read-only portion of the task.

Finally, note that the Task Builder has allocated space for all the
program sections with the read-only attribute beginning with the
highest available APR (in this case, APR 7).

TYPICAL TASK BUILDER FACILITIES

ROTASK.TSK; 6 MEMORY ALLOCATION MAP TKB M35 PAGE 1
6-JAN-79 13:58

PARTITION NAME : GEN

IDENTIFICATION : Ol

TASK UIC : [301,356] ,

STACK LIMITS: 000212 001211 001000 00512.

PRG XFR ADDRESS: 001552 TASK

TASK ATTRIBUTES: MU ATTRIBUTES
TOTAL ADDRESS WINDOWS: 2. SECTION

TASK IMAGE SIZE : 1120. WORDS

TASK ADDRESS LIMITS: 000000 004217

R-W DISK BLK LIMITS: 000002 000006 000005 00005.
R-0 DISK BLK LIMITS: 000007 000007 000001 00001, |

% ROOT SEGMENT: ROTASK

R/W MEM LIMITS: 000000 004217 004220 02192.
R-0 MEM LIMITS: 160000 160177 000200 00128.
DISK BLK LIMITS: 000002 000006 000005 00005,

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE 1IDENT FILE

. BLK.:(RW,I,LCL,REL,CON) 001212 002570 01400.
001212 000530 00344. ROTASK

01 ROTASK,.OBJ ;6
AADD :(RO,I,GBL,REL,CON) 160000 000024 00020.
160000 000024 00020. ROTASK
01 ROTASK.OBJ;6 '
DIVV :(RO,I,GBL,REL,CON) 160024 000026 00022,
160024 000026 00022. ROTASK
01 ROTASK.OBJ; 6
LNC$D : (RW,D,GBL,REL,CON) 004002 000002 00002,
MULL :(RO,I,GBL,REL,CON) 160052 000024 00020.
160052 000024 00020. ROTASK
01 ROTASK .0OBJ ;6
suBB :(RO,I,GBL,REL,CON) 160076 000024 00020.
160076 000024 00020. ROTASK
0l ROTASK .OBJ; 6
$$RESL: (RW,I,LCL,REL,CON) 004004 000024 00020.
$SRESM: (RW,I,LCL,REL,CON) 004030 000166 00118,

GLOBAL SYMBOLS:

AADD 160000-R DIVV 160024-R MULL 160b52—R SUBB 160076-R

**% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2365.

WORK FILE READS: 0.

WORK FILE WRITES: O.
~ SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:06

Figure 3-31 Task Builder Map for ROTASK.TSK

TYPICAL TASK BUILDER FACILITIES

3.3 EXAMPLE 6: BUILDING A TASK THAT CREATES A DYNAMIC REGION

In all the examples of tasks shown thus far in this chapter, the Task
Builder has automatically constructed and placed in the header of the
task all of the window blocks necessary to map all of the regions of
the task's image. The INSTALL processor has been responsible for
initializing the window blocks when the task was installed. In all
the examples, this has been possible because both the Task Builder and
the INSTALL processor have had all the information concerning the
regions available to them.

When a task creates regions while it is running (dynamic regions), the
information concerning the regions is not available to either the Task
Builder on the INSTALL processor. Therefore, when the Task Builder
builds such a task, it does not automatically create window blocks for
the dynamic regions. It creates only the window blocks necessary to
map the task region (the region containing the header and stack) and
any shared regions that the task references.

Dynamic regions are created and mapped with Executive directives that
are imbedded in the task's code. When you build a task that creates
dynamic regions, you must explicitly specify to the Task Builder how
many window blocks (in excess of those created by the Task Builder for
the task region and any shared regions) it is to place in the task's
header. The Executive will initialize these window blocks when it
processes the region and mapping directives. 1In all (including window
blocks for the task region and shared regions), you can inlcude as
many as eight window blocks to a task in an RSX-11M system and as many
as 16 in an RSX-11M-PLUS system.

The text in the remainder of this section and the figures associated
with it 1illustrate the development of a task that creates dynamic
regions. Figure 3-32 shows a task (DYNAMIC.MAC) that creates a 128
word dynamic region. This task simply creates an unnamed region, maps
to it, and fills it with an ascending sequence of numbers beginning at
the region's base and moving upwards. When the region is full,
DYNAMIC detaches from it and prints the following message on your
terminal: :

DYNAMIC IS NOW EXITING
The region is automatically deleted on detach.
All of the Executive directives wused by DYNAMIC (RDBBKS, WDBBKS,
DTRGS$S, EXITS$S, CRRGS$S, CRAWSS, QIOWSS, and QIOWSC) to create and

manipulate the region are described in the RSX-11M/M-PLUS Executive
Reference Manual.

w3 wa Ws wa wo we o we

RDB:

N We we We W we W

WDB:

MES1:
ERR1:
ERR2:

ERR3:

START:

20$:

TYPICAL TASK BUILDER FACILITIES

.TITLE DYNAMIC

LIDENT /VO0l/

.MCALL RDBBKS$,WDBBKS,DTRGS$S,EXIT$S,CRRGSS,CRAWSS
.MCALL QIOWSC,QIOWSS

.NLIST BEX

REGION DESCRIPTOR BLOCK

WORD 0 SIZE OF REGION IN 32 DECIMAL WORD BLOCKS

WORD 1 REGION NAME

WORD 2 "o

WORD 3 NAME OF SYSTEM CONTROLLED PARTITION IN

WORD 4 WHICH REGION WILL BE CREATED

WORD 5 STATUS WORD

WORD 6 PROTECTION WORD

RDBBKS 128.,,GEN,<RS.MDL!RS.ATTIRS.DEL!RS.RED!RS.WRT>,170017

WINDOW DESCRIPTOR BLOCK

WORD 0 APR TO BE USED TO MAP REGION

WORD 1 SIZE OF WINDOW IN 32-WORD BLOCKS

WORD 2 REGION ID

WORD 3 OFFSET INTO REGION TO START MAPPING

WORD 4 LENGTH IN 32-WORD BLOCKS TO MAP

WORD 5 STATUS WORD

WDBBKS 7,128.,0,0,,<WS.MAP!WS.WRT>

.ASCIZ /DYNAMIC IS NOW EXITING/

S1 = . - MES1

.ASCII /CREATE REGION FAILED/

SIzZl = . - ERRI1

.ASCII /CREATE ADDRESS WINDOW FAILED/

SIZ2 = . - ERR2

.ASCII /DETACH REGION FAILED/

SIZ3 = . - ERR3

.EVEN

.PAGE

.ENABL LSB

CRRGS$S #RDB ; CREATE A 128 WORD UNNAMED REGION
BCS 13 ; FAILED TO CREATE REGION

MOV RDB+R.GID,WDB+W.NRID ; COPY REGION ID INTO WINDOW BLOCK
CRAWSS #WDB ; CREATE ADDR WINDOW AND MAP
BCS 28 ; FAILED TO CREATE ADDR WINDOW
MOV WDB+W.NBAS,RO ; BASE ADDR OF CREATED REGION
MOV WDB+W.NSIZ,R2 ; NUMBER OF 32. WORDS IN REGION
.REPT 5 ; MULTIPLY

ASL R2 ; BY

.ENDR ; 32.

MOV #1,R1 ; INITIAL VALUE TO PLACE IN REGION
MOV R1, (RO)+ ; MOVE VALUE INTO REGION

INC R1 ; NEXT VALUE TO PLACE IN REGION
DEC R2 ; ONE LESS WORD LEFT

BGT 208 ; TO FILL IN

DTRG$S #RDB ; DETACH AND DELETE REGION

BCS 3$; DETACH FAILED

QIOW$C I0.WVB,5,1,,,,<MES1,S1,40>

EXITSS ;

Figure 3-32

Source Listing for DYNAMIC.MAC

TYPICAL TASK BUILDER FACILITIES

ERROR ROUTINES

= we we we

S MOV #ERR1 ,RO ; CREATE FAILED

MOV #SI121,R1 ; SIZ OF MESSAGE
BR 65 ; WRITE MESSAGE

28 MOV #ERR2,R0O ; CREATE ADDRESS WINDOW FAILED
MOV $#s1z22,R1 ; SIZE OF MESSAGE
BR 6$

3S: MOV #ERR3,R0O ; DETACH FAILED
MOV $#S121,R1 ; SIZE OF MESSAGE

65: QIOWSS #IO.WVB,#5,#1,,,,<RO,R1,#40>
EXITSS
.END START

Figure 3-32 (Cont.) Source Listing for DYNAMIC.MAC

Once you have assembled DYNAMIC, you can build it with the following
Task Builder command sequence:

TKB>DYNAMIC,DYNAMIC/-WI/-SP=DYNAMIC
TKB>/

ENTER OPTIONS:

TKB>WNDWS=1

TKB>//

This command sequence directs the Task Builder to create a task image
named DYNAMIC.TSK and an 80 column (/-WI) map file named DYNAMIC.MAP
on device SY: under the terminal UIC. Because /-SP is attached to
the map file, the Task Builder will not output the file to the line
printer.

Under options, the WNDWS option directs the Task Builder to create one
window block over and above that required to map the task region.
Note that one window block must be created for each region the task
expects to be mapped to simultaneously.

The map that results from this command sequence is shown in Figure
3-33.

Note that creating dynamic regions always involves the assumption that
there will be enough room in the partition named in the task's region
descriptor block to create the region when the task is run. In this
example, if DYNAMIC were to be run in a system whose partition GEN was
not large enough to accommodate the region it creates, the CREATE
REGION directive would fail.

TYPICAL TASK BUILDER FACILITIES

DYNAMIC.TSK;1 MEMORY ALLOCATION MAP TKB M35 PAGE 1
6-JAN-79 14:13

PARTITION NAME : GEN

IDENTIFICATION : VOl

TASK UIC : [301,356]

STACK LIMITS: 000212 001211 001000 0O512. TASK

PRG XFR ADDRESS: 001406 ATTRIBUTES
TOTAL ADDRESS WINDOWS: 2. SECTION
TASK IMAGE SIZE : 480. WORDS

TASK ADDRESS LIMITS: 000000 001673

R-W DISK BLK LIMITS: 000002 000003 000002 00002. |

***% ROOT SEGMENT: DYNAMI

R/W MEM LIMITS: 000000 001673 001674 00956.
DISK BLK LIMITS: 000002 000003 000002 00002.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.:(RW,I,LCL,REL,CON) 001212 000430 00280.

001212 000430 00280. DYNAMI VOl DYNAMIC.OBJ;1
$DPB$$: (RW,I,LCL,REL,CON) 001642 000030 00024.

001642 000030 00024, DYNAMI VOl DYNAMIC.OBJ;1

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 518.

WORK FILE READS: O.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:03

Figure 3-33 Task Builder Map for DYNAMIC.TSK

3.4 VIRTUAL PROGRAM SECTIONS

A virtual program section is a special Task Builder storage allocation
facility that permits you to create and refer to large data structures
by means of the mapping directives. Virtual program sections are
supported in the Task Builder through the VSECT option and in FORTRAN
through a set of FORTRAN-callable subroutines that issue the necessary
mapping directives at runtime. With the Task Builder VSECT option you
can specify the following parameters for a relocatable program section
or FORTRAN common block that you have defined in your object module:

e Base virtual address
e Virtual length (window size)

e Physical length

TYPICAL TASK BUILDER FACILITIES

By specifying the base address, you can align the program section on a
4K address boundary as required by the mapping directives.
Thereafter, references within the program need only point to the base
of the program section or to the first element in the common block, to
ensure proper boundary alignment.

By specifying the window size, you can £fix the amount of wvirtual
address space that the Task Builder allocates to the program section.
If the allocation made by a module causes the total size to exceed
this 1limit, the allocation wraps around to the beginning of the
window.

By specifying the physical size, you can allocate, before runtime, the
physical memory that the program section will be mapped into at
runtime, The Task Builder allocates this physical memory within an
area that precedes the task image. This area is called the mapped
array area.

The physical length parameter is optional. If you intend to allocate
physical memory at runtime through the Create Region directive, you
can specify a value of 0.

Note that when you specify a nonzero value for the physical memory
parameter, the resulting allocation affects only the task's memory
image, not its disk image.

Note also that the Task Builder will attach the virtual attribute to a
relocatable program section you have specified in the VSECT option
only if the section 1is defined 1in your task through the common
statement. For example:

TKB>VSECT=VIRT:160000:20000:2000

In this example, virtual program section VIRT 1is allocated with a
window size of 4K words and a base virtual address of 160000. 1In

physical memory, 32K words are reserved for mapping the section at
runtime.

Assume the program is written in FORTRAN, and includes the following
statement:

COMMON /VIRT/ARRAY (4)...
This statement generates a program section to which the Task Builder
attaches the wvirtual attribute. A reference to the first element of

the section, ARRAY (1), is translated by the Task Builder to the
virtual address 160000.

Figure 3-34 shows the effect of this use of the VSECT option.

TYPICAL TASK BUILDER FACILITIES

WINDOW }9 (WINDOW SIZE)
160000 APR 7 — ;—\— ———————————
VIRTUAL BASE ADDRE
APR 6— (2 X ADDRESS)
APR 5—
TASK TASK
APR 4 IMAGE IMAGE
APR 3-—
— | @ (PrROGRAM

APR 2 SECTION

DEFINITION)
APR1-— | COMMON/VIRT/...| COMMON/VIRT/. ...

HEADER & STACK HEADER & STACK
APRO— L 0 e — -
VIRTUAL ADDRESS T

SPACE
TKB >/ : PHYSICAL LENGTH MAPPED
ENTER OPTIONS: B BYTE BLOCKS ARRAY
TKB >VSECT = VIRT:160000:20000:2000 . AREA

. \-YAV—JW
A

PHYSICAL MEMORY

Figure 3-34 VSECT Option Usage

TYPICAL TASK BUILDER FACILITIES

As mentioned previously, the Task Builder restricts the amount of
virtual address space allocated to the section to a value that is less
than or equal to the window size, wrapping around to the base 1if the
window size is exceeded.

This process is illustrated in the following example, in which three
modules, A, B, and C, each contain a program section named VIRT that
is 3000 words long. A window size of 4K words has been set through
the VSECT option. If the program section has the concatenate
attribute, the Task Builder allocates memory to each module as
follows:

Module Low Limit Length High Limit
A 160000 14000 174000
B 174000 14000 170000
C 170000 14000 164000

The address limits for modules B and C illustrate the effect of
address wrap around when a component of the total allocation exceeds
the window boundary. Note that the addresses generated will be
properly aligned with the contents of physical memory if the virtual
section is remapped in increments of the window size.

3.4.1 FORTRAN Run-Time Support for Virtual Program Sections

FORTRAN supports subroutines to make use of the mapping directives.
FORTRAN also supports <calls to the following subroutines, which are
related to virtual program sections:

Subroutine Function
ALSCT Allocates a portion of physical memory for use as a
virtual section
RLSCT Releases all physical memory allocated to a virtual
section

As mentioned earlier, the effect of one or more VSECT= declarations at
task-build time is to create a pool of physical memory below the task
image (the mapped array area). Before a virtual section 1is referred
to, the task must allocate a portion of this memory through a call to
ALSCT. When space is no longer required, it is released through a
call to RLSCT.

Note that these subroutines issue no mapping directives. They
allocate and release space using region and window descriptor arrays
that you supply. The resulting physical offsets are wused in the
task's subsequent calls, that perform the actual mapping.

The subroutine ALSCT is called to allocate physical memory to a
virtual program section as follows:

CALL ALSCT (ireg,iwnd[,ists])

ireg

iwnd

TYPICAL TASK BUILDER FACILITIES

A one-dimensional integer array that is 9 words long. Elements 1
through 8 of the array contain a region descriptor for the
physical memory to be mapped. The descriptor has the following
format:

ireg(1l) Region ID

ireg(2) Size of region in units of 64-byte blocks

ireg(3) Name of region in Radix-50 format (first three
characters)

ireg(4) (Second three characters)

ireg(5) Name of main partition containing region

ireg(6) The name is in.Radix—SO format

ireg(7) Region status word

ireg(8) Region protection code

ireg(9) Thread word: this element 1links window descriptors

that are wused to map portions of the region. It is
maintained by the subroutine.

The elements of the array that you set up consist of ireg(l), and
ireg(3) through ireg(8). The thread word, ireg(9), must be zero
on the initial call; thereafter, the subroutine maintains it.

When your task makes an allocation, ireg(l) and ireg(2) must be O
on the initial call. 1In this case, ALSCT obtains and stores the
region size in ireg(2). When the allocation is being made from a
separate region, the caller must supply both region ID and size.
Elements 3 through 8 are not referred to by the subroutine but
must be set up by the caller as required by the applicable system
directives., For a detailed description of these parameters,
refer to the RSX-11M/M-PLUS Executive Reference Manual.

A one-dimensional array that is 11 words long. The first 8 words
contain a window descriptor in the following format:

iwnd (1) Base APR in bits 8 through 15; the Executive Sets bits
0 through 7 when the appropriate mapping directives are
issued :

iwnd (2) Virtual base address

iwnd (3) Window size in units of 64-byte blocks

iwnd (4) Region ID

iwnd (5) Offset into the region, in units of 64-byte blocks

iwnd (6) Length to map, in units of 64-byte blocks

iwnd (7) Status word

iwnd (8) Address of send/receive buffer

TYPICAL TASK BUILDER FACILITIES

iwnd (9) Base offset of physical block allocated to section in
- units of 64-byte blocks

iwnd(10) Length of block in units of 64-byte blocks (supplied by
caller); set to maximum block offset by subroutine

iwnd(1ll) Thread word: this element 1links window descriptors

that are used to map other portions of the region. 1It
is maintained by the subroutine

The following array elements are supplied as output from the
subroutine:

iwnd(4), iwnd(5), iwnd(9), iwnd(10), and iwnd(1l1)
The remaining elements must be set up as required by the
Executive directives. Consult the RSX-11M/M-PLUS Executive
Reference Manual for a detailed description of these parameters.
ists

receives the result of the call, One of the following values is
returned:

+1 Block successfully allocated. In this case, the region
and window descriptor arrays are set up as described
above.

-200. Insufficient physical memory was available for allocating
the block

The subroutine RLSCT is called to deallocate the physical memory
assigned to a virtual section as follows:

CALL RLSCT (ireg,iwnd)

ireg
A one-dimensional integer array that 1is 9 words 1long. The
contents of the array are the same as those described for
subroutine ALSCT,

iwnd

A one-dimensional integer array that is 11 words 1long. The
contents of the array are the same as those described for
subroutine ALSCT.

Upon return, element iwnd(10) is the length of the deallocated
region in units of 64-byte blocks.

The procedure for using these subroutines can be summarized as
follows:

e You allocate storage in the program for one window descriptor
per VSECT, and for a single region descriptor.

e Your task calls the subroutine ALSCT to reserve physical
memory to which the program section will be mapped.

TYPICAL TASK BUILDER FACILITIES

e Your task issues the mapping directives to map the virtual
address space 1into a portion of the physical memory. It is
the task's responsibility to ensure that the physical memory

to be mapped is always within the limits defined by iwnd(9)
and iwnd(10).

e When the space is no longer required, the task unmaps it and
releases it with a call to RLSCT.

3.4.2 Example 7: Building a Program that Uses a Virtual Program Section

Figure 3-35 shows the FORTRAN source file for a task named VSECT.FTN.
It illustrates the wuse of the ALSCT FORTRAN subroutine. When you
build, install, and run VSECT, it will allocate the mapped array area
below its header, create a 4K-word window, and map to the area through
the window. ALSCT will then initialize the area and prompt for an
array subscript at your terminal by printing:

SUBSCRIPT?

When you input a subscript, it will respond with ELEMENT= and the
contents of the array element for the subscript you typed. VSECT will
continue to prompt until you type CTRL/Z. Upon receiving a CTRL/Z
VSECT will exit.

Once you have compiled VSECT, you can build it with the following Task
Builder command sequence:

TKB>VSECT ,VSECT/-SP=VSECT,LB: [1,1] FOROTS/LB
TKB>/ '

ENTER OPTIONS:

TKB>WNDWS=1
TKB>VSECT=VIRT:160000:20000:200

TKB>//

This command sequence directs the Task Builder to create a task image
file named VSECT.TSK and a short (by default) map file VSECT.MAP.
Because /~-SP is appended to the map file, the Task Builder will not
output the map to the line printer.

The library switch (/LB) specifies that the Task Builder is to search
the FORTRAN run time library FOROTS.OLB to resolve any undefined
references in the input module VSECT.OBJ. Because the library switch
was applied to the FORTRAN library file without arguments, the Task
Builder extracts from the library and includes in the task image, any
modules in which references are defined.

Under options, the WNDWS option directs the Task Builder to add a
window block to the header in the task image. This window block will
be initialized by the Executive when it processes the mapping
directives within the task.

The VSECT option directs the Task Builder to establish for the program
section named VIRT a base address of 160000 (APR 7) and a length of
20000 (8) bytes (4K words). The program section VIRT is defined within
the task through the FORTRAN COMMON statement. The VSECT option also
specifies that the Task Builder is to allocate 200 64-byte blocks of
physical memory 1in the task's mapped array area below the task's
header. (For more information on the switches and options wused in
this example, refer to Chapter 6)

The map that results from this command sequence is shown in Figure
3-36.

TYPICAL TASK BUILDER FACILITIES

VSECT.FTN

anan

INTEGER *2 SUB,IRDB(9),IWDB(11l),DSW

INTEGER *2 TIARRAY (4096)

COMMON /VIRT/IARRAY

IWDB (1) "3400 1USE APR 7 FOR WINDOW

IWDB (3) 128 IWINDOW SIZE = 128*32 WORDS = 4K
IWDB (5) 0 1OFFSET

IWDB (7) "402 ISTATUS = WS.64B!WS.WRT

ALLOCATE 4K MAPPED ARRAY TO IWDB,IRDB

aonan

CALL ALSCT (IRDB,IWDB,DSW)
IF (DSW .NE. 1) GOTO 100

CREATE A 4K ADDRESS WINDOW

[eNeXe]

CALL CRAW (IWDB,DSW)
IF (DSW .NE. 1) GOTO 200

MAP 4K MAPPED ARRAY

[eXeKe!

CALL MAP (IWDB,DSW)

IF (DSW .NE. 1) GOTO 300
DO 1 I=1,4096

IARRAY (I) =1I

MAPPED ARRAY IS INITIALIZED, PROMPT FOR A SUBSCRIPT

WRITE (5,5)

FORMAT ('$SUBSCRIPT?')
READ (5,4,END=1000)SUB
FORMAT (17)

WRITE (5,6)IARRAY (SUB)

6 FORMAT (' ELEMENT = ',I7)
GOTO 3

owaOonQO

=Y

C ERROR ROUTINES

100 WRITE (5,101)DSW

101 FORMAT (' ERROR FROM ALSCT. ERROR = ',I7)
GOTO 1000

200 WRITE (5,201)DSW

201 FORMAT (' ERROR FROM CREATING ADDRESS WINDOW. ERRROR = ',I7)
GOTO 1000

300 WRITE (5,301)DSW

301 FORMAT (' ERROR FROM MAPPING,., ERROR = ',17)

1000 CALL EXIT
END

Figure 3-35 Source Listing for VSECT.FTN

TYPICAL TASK BUILDER FACILITIES

VSECT.TSK;1 MEMORY ALLOCATION MAP TKB M35 PAGE 1
8-JAN-79 11:41

PARTITION NAME : GEN

IDENTIFICATION : $FORT

TASK UIC : [301,356]

STACK LIMITS: 000216 001215 001000 00512. ‘

PRG XFR ADDRESS: 001216 TASK
TOTAL ADDRESS WINDOWS: 2. ATTRIBUTES
MAPPED ARRAY AREA: 4096. WORDS SECTION
TASK IMAGE SIZE : 9440. WORDS

TOTAL TASK SIZE : 13536. WORDS

TASK ADDRESS LIMITS: 000000 044653

R-W DISK BLK LIMITS: 000002 000046 000045 00037. _|

*** ROOT SEGMENT: VSECT

R/W MEM LIMITS: 000000 044653 044654 18860.
DISK BLK LIMITS: 000002 000046 000045 00037.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.: (RW,I,LCL,REL,CON) 001216 000000 00000.
001216 001020 00528. .MAIN. $FORT VSECT.OBJ;1

VIRT :(RW,D,GBL,REL,OVR) 001216 020000 08192,
001216 020000 08192, .MAIN, $FORT VSECT.OBJ;l

GLOBAL SYMBOLS:

BAHS 003506-R F0O0$ 003532-R MOLS$IS 002736-R TVQS 003144-R

**% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 16257,

WORK FILE READS: 0.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 4188, WORDS (16. PAGES)
SIZE OF WORK FILE: 3584, WORDS (14. PAGES)

ELAPSED TIME:00:00:32

Figure 3-36 Task Builder Map for VSECT.TSK

TYPICAL TASK BUILDER FACILITIES

3.5 EXAMPLE 8: PRIVILEGED TASKS

There are two classes of tasks in the RSX-11M/M-PLUS systems:
privileged and nonprivileged. The majority of tasks running on any
one system are nonprivileged.

The distinction between privileged and nonprivileged tasks is
primarily a distinction of system access capabilities. Because, in an
unmapped system, all tasks have access to all of memory, this
distinction is not hardware enforceable. Therefore, if your system is
unmapped your task must be responsible for observing the access rules
of your system.

In a mapped system, privileged tasks have special device and memory
access rights that nonprivileged tasks do not have. A privileged task
can, with certain exceptions, access the Executive routines and data
structures; a nonprivileged task cannot. Some privileged tasks have
automatic I/0 page mapping available to them; nonprivileged tasks do
not. Finally, a privileged task can bypass system security features
while a nonprivileged task cannot.

Because of their special access rights, privileged tasks are
potentially hazardous to a running system. A privileged task with
coding errors can corrupt the Executive or wunintentionally disable
peripheral devices. Moreover, problems caused by such a privileged
task can be obscure and difficult to isolate. For these reasons, you
must exercise caution when developing and running a privileged task.

You designate a task as privileged with the PR (privileged) Task
Builder switch (this switch 1is described in Chapter 6). The Task
Builder allocates address space for a privileged task based on the
memory management APR that you specify as an argument to this switch.
Three arguments are acceptable to the Task Builder: 0, 4, and 5. The
choice of which of these arguments to specify 1is based on the
considerations described below.

When you specify 4 or 5, the Task Builder automatically reserves APR 7
for mapping the I/0O page. Moreover, the Task Builder makes the
Executive available to your task by reserving the APRs necessary to
map the Executive into your task's virtual address space. Therefore,
if your task requires access to the Executive, you must specify an
argument of either 4 or 5,

The choice between APR 4 and 5 is dictated by the size of the
Executive area. If the Executive is 16K words or less, you should
specify an argument of 4. The Task Builder applies a bias of 100000
(16K) to all addresses within your task.

If the Executive is 20K words, you must specify an argument of 5. The
Task Builder applies a bias of 120000 (20K) to all addresses within
your task.

The mapping for APR 4 and 5 is shown in Figure 3-37.

When you specify an argument of 4, there will be 12K words of address
space between the beginning of the task and the start of the mapping
for the I/0 page. 1If your task expects to access the I/0 page, it
must not exceed this 12K word limit. If it does, the Task Builder
will be forced to reserve APR 7 to map the task instead of the 1I/0
page.

When you specify an argument of 5, there will be 8K words of address
space between the beginning of the task and the start of the mapping
for the I/0 page. In this case, the task must not be greater than 8K
words i1f it expects to access the I/O page.

3-62

TYPICAL TASK BUILDER FACILITIES

1/0 PAGE I/0 PAGE
APR 7 — — VIRTUAL 160000 — APR 7—
AVAILABLE
APRE— 1 AVAILABLE APR 6 TASK SPACE
TASK SPACE
APR 5— — VIRTUAL 120000 — APR5—
APR 4— — VIRTUAL 100000 — APR 4—
APR 3— APR 3— | RESERVED FOR
RESERVED FOR EXECUTIVE
APR2— | EXECUTIVE APR 2— MAPPING
MAPPING
APR 1— APR 1—
APR 0— — VIRTUAL 0— APR 0—
/PR:4 /PR:5

Figure 3-37 Mapping for /PR:4 and /PR:5

When a task overlaps the I/0 page, the Task Builder does not
necessarily generate an error message. Before the Task Builder
generates an error message, a task designated to be mapped with APR 4
must be greater than 16K words; a task designated to be mapped with
APR 5 must be greater than 12K words. Only when you install a task

that overlaps the I/0 page does the INSTALL processor generate the
following message:

INS—-WARNING--PRIVILEGED TASK OVERMAPS THE I/0 PAGE

While this is not a fatal error message, you should consider the
condition to be fatal if your task expects to access the I/O page.

When you specify an argument of 0, the Task Builder reserves APR 0 for
mapping your task. Virtual address space begins at virtual address 0
and extends upward as far as 32K words. Your task cannot access the
Executive routines or data structures, and the Task Builder does not
automatically reserve an APR to map the I/0O page.

A task mapped with APR 0 can access the I/0 page through a device
common (refer to Chapter 3 for a description of device commons).

The MACRO-1ll source program PRIVEX.MAC in Figure 3-38 illustrates one
possible use of a privileged task.

NOTE

The nature of privileged tasks is such
that you must have a working knowledge
of system concepts to understand the
operation of one or to write one. If
this example deals with Executive
functions that are unfamiliar to you,
you may prefer to skip this section and
return to it at a later time.

TYPICAL TASK BUILDER FACILITIES

If you assemble, build, and install PRIVEX into your system, it will
scan the system device tables and examine the UCBs of all non-pseudo
devices on your system. It will determine whether each device |is
attached by a task and print on your terminal the names of all
attached devices on your system with the name of each attached
program.

PRIVEX accesses two Executive routines, $SWSTK (switch stack) and
$SCDVT (scan device tables). The routine $SWSTK switches the
processor to system state (Kernel mode). This switch to system state
is necessary because it inhibits all other processes from modifying
the Executive data structures until PRIVEX is finished with them. The
double semicolons (;; indicate the ©portion of the task that is
running in system state.

The routine $SCDVT performs the actual scanning of the device tables.
It returns to PRIVEX each time it accesses a new UCB.

PRIVEX also calls the system library routine $EDMSG (edit message) to
format the data it has retrieved from the device tables. This routine
is documented in the IAS/RSX-11 System Library Routines Reference
Manual.

MACRO LIBRARY CALLS
.TITLE PRIVEX
. IDENT /01/

~

.MCALL ALUNSC,EXITS$S,QIOWSS

LOCAL DATA

e we wo

.NLIST BEX

ATTMES: .ASCIZ /%2A%P: IS ATTACHED BY %2R/
BUFMES: .ASCIZ /BUFFER OVERFLOW/

- we

LLIST BEX
QIOBUF: .BLKB 132. ;MESSAGE OUTPUT BUFFER

«.EVEN

BUFFER INTO WHICH INFORMATION IS STORED AT SYSTEM STATE FOR
PRINTING AT USER STATE. AN ENTRY IS FOUR WORDS LONG:
ADDRESS IN DCB OF THE TWO ASCII CHARACTER DEVICE NAME
BINARY UNIT NUMBER
FIRST RAD50 WORD OF NAME OF ATTACHED TASK

SECOND RAD50 WORD OF NAME OF ATTACHED TASK

Ne Ne Ne We NE Ne N We We Vo we Np wo

Figure 3-38 Source Code for PRIVEX

N N we we wg W

TYPICAL TASK BUILDER FACILITIES

THE BUFFER IS TERMINATED BY A

0
-1

ALL UNITS IN THE SYSTEM HAVE BEEN EXAMINED
THE BUFFER WAS FILLED BEFORE ALL UNITS COULD BE EXAMINED

BUFFER: .BLKW 4%*200.+1

i
BUFEND=,-2 ;ADDRESS OF LAST WORD OF BUFFER
START: MOV #BUFFER,R2 ;GET ADDRESS OF INFORMATION BUFFER
CLR (R2) ;ASSUME NO UNITS ARE ATTACHED
CLR Rl ; INITIALIZE CURRENT DCB ADDRESS

e we We Ne e e e N W

208

WS we N “we N W

"CALL $SWSTK,FORMAT" SWITCHES TO SYSTEM STATE. ALL REGISTERS
ARE PRESERVED ACROSS THE TRANSITION FROM USER MODE TO KERNEL
MODE. BEING IN SYSTEM STATE LOCKS OTHER PROCESSES OUT OF THE
EXECUTIVE (GUARANTEES THAT THE DATA BEING EXAMINED WILL NOT
CHANGE WHILE IT IS BEING EXAMINED). A "RETURN" WILL GIVE
CONTROL TO "FORMAT" AND WILL RESTORE THE CONTENTS OF THE
REGISTERS TO THEIR VALUES BEFORE THE "CALL S$SWSTK".

CALL $SWSTK ,FORMAT ;SWITCH TO SYSTEM STATE

MOV #$SCDVT,- (SP) ; ;GET ADDRESS OF SCAN DEVICE TABLES
+: COROUTINE

; ;GET NEXT NONPSEUDO DEVICE UCB

;: ADDRESS

;+IF CS NO MORE UCBS

: CALL @(SP)+

BCS 100$

AT THIS POINT:
R3 - ADDRESS OF THE DEVICE CONTROL BLOCK
R4 - ADDRESS OF THE STATUS CONTROL BLOCK
R5 - ADDRESS OF THE UNIT CONTROL BLOCK

CMP R1,R3 ;;IS THIS A NEW DCB?
BEQ 408 ;:IF EQ NO
MOV R3,R1 ; ;REMEMBER THIS DCB
CLR RO ; ; FORM LOWEST UNIT NUMBER ON
BISB D.UNIT(R3),R0O ;: THIS DCB
405 MOV U.ATT(R5) ,R4 ;:IS A TASK ATTACHED?
BEQ 608% ;:IF EQ NO
;;IF NE R4 IS TCB ADDRESS
CMP #BUFEND,R2 ; ;ANY MORE ROOM IN BUFFER?
BLOS 80S ;:IF LOS NO
ADD #D.NAM,R3 ; ; FORM ADDRESS OF DEVICE NAME
MOV R3, (R2)+ ;3SAVE IT IN BUFFER
MoV RO, (R2)+ ;;SAVE UNIT NUMBER
MOV T.NAM(R4), (R2)+ ;;SAVE NAME .OF ATTACHED TASK
MOV T.NAM+2 (R4), (R2)+ ;;
CLR (R2) ; ;ASSUME NO MORE ATTACHED UNITS
60S$: INC RO ;; INCREMENT UNIT NUMBER
BR 20$ it
80S: CALL @(SP)+ ; ;GET $SCDVT TO CLEAN OFF STACK
BCC 80s i
COM (R2) ; : SHOW BUFFER OVERFLOW
100$: RETURN ; ;RETURN TO USER STATE AT FORMAT

.ENABL LSB

Figure 3-38 (Cont.) Source Code for PRIVEX

FORMAT: TST

EXI
408

e We Ne W We e W Ne we Ne N Wy

BEQ
CMP
BNE
MOV
CALL

T: EXITSS

: MOV
CALL
BR

.DSABL

TYPICAL TASK BUILDER FACILITIES

(R2) ;ANY MORE INFORMATION IN BUFFER?
EXIT ;IF EQ NO
$#-1, (R2) ; OVERFLOWED BUFFER?
408 ; IF NE NO
#BUFMES ,R1 ;GET ADDRESS OF OVERFLOW MESSAGE
PRINT ; PRINT IT
’
$ATTMES ,R1 ;:GET ADDRESS OF TEMPLATE
PRINT ; FORMAT AND PRINT THE INFORMATION
FORMAT ;
LSB

PRINT - FORMAT AND PRINT A MESSAGE

INPUTS:

Rl - ADDRESS OF AN $EDMSG INPUT STRING
R2 - ADDRESS OF AN $EDMSG PARAMETER BLOCK

OUTPUTS:

R2 - ADDRESS OF NEXT PARAMETER IN THE $EDMSG PARAMETER BLOCK

RO, R1l,

R3’

R4 ARE DESTROYED

R5 IS PRESERVED

PRINT: MOV

we we o

208

408

No we wo “e

MOV
CALL

#QIOBUF,RO ;GET ADDRESS OF OUTPUT BUFFER
RO,R3 ; SAVE FOR QIOWSS
$EDMSG ; FORMAT MESSAGE INTO OUTPUT BUFFER

REMOVE LEADING ZEROS FROM UNIT NUMBER

MOV
TST

MOV
: DEC

CMPB
BEQ
INC
CMPB

BNE
MOVB
INC
s MOVB
BNE

R3,R0 ;POINT AT OUTPUT BUFFER

(RO)+ ; INCREMENT BY TWO (POINT PAST
; DEVICE NAME)

RO,R4 ; REMEMBER THIS SPOT

R1 ;ASSUME NEXT BYTE IS A LEADING ZERO
; (REDUCE LENGTH OF MESSAGE)

#'0, (RO)+ ;IS IT?

208 ;IF EQ YES —-- IGNORE IT

R1 ; COUNTERACT TOO MUCH DECREMENTING

#':,-(RO) ;WAS THE BYTE A COLON (WAS THE UNIT
; NUMBER ZERO)?

408 ;IF NE NO

4'0, (R4)+ ;ADD A ZERO UNIT NUMBER

R1 ; INCREASE LENGTH OF MESSAGE

(RO)+, (R4) + ;TACK ON REST OF MESSAGE

40% ;IF NE NOT DONE :

PRINT THE MESSAGE ON LUN "OUTLUN" (DEFINED BY THE TASK BUILD FILE)
AND WAIT USING EVENT FLAG 1

QIOWS$S #IO.WVB,#OUTLUN,#1,,,,<R3,R1,<#' >> ;

RETURN

«END

START

Figure 3-38 (Cont.) Source Code for PRIVEX

TYPICAL TASK BUILDER FACILITIES

PRIVEX.MAC should be assembled with the following assembler command
string:

MAC>PRIVEX,PRIVEX/-SP=[1,1]EXEMC/ML, [200,200] RSXMC/PA:1,[301,311]PRIVEX

The file EXEMC is the Executive macro library and the £file RSXMC |is
the Executive prefix file. The switches used in the command string
are described 1in the IAS/RSX-1l1 MACRO-11 Programmer's Reference
Manual.

The Task Builder command sequence for PRIVEX is as follows:

> TKB

TKB> PRIVEX/PR:5,PRIVEX/-SP=PRIVEX

TKB> [2,54]RSX11M.STB,{1,1]EXELIB/LB

TKB> /

ENTER OPTIONS:

TKB> UNITS=1 ;DEFINE NUMBER OF LUNS

TKB> GBLDEF=QUTLUN:1 :DEFINE LUN ON WHICH TO PRINT MESSAGES
TKB> ASG=TIO:1 ;ASSIGN LUN TO DEVICE

TKB> //

>

This command sequence directs the Task Builder to build PRIVEX as a
privileged task and to add a bias of 120000 to all locations within
it. APR 5 was chosen in this example because the Executive in the
system on which this example was originally built is 20K words long.
If the Executive in your system is 16K words or 1less, you can use
/PR:4 when you build the task.

In the options section of the Task Builder command sequence, the
UNITS=1 option specifies that PRIVEX is going to use only one logical
unit, The GBLDEF=0QUTLUN:1 option defines the symbol OUTLUN as being
equal to 1, and the ASG=TIO:1 option associates device TIO: with
logical unit 1.

The Task Builder map for PRIVEX is shown in Figure 3-39. The GLOBAL
SYMBOL SECTION has been shortened to save space. Note that the task's
address limits begin at virtual address 120000. The diagram in Figure
3-40 illustrates how the Task Builder allocates virtual address space
for the program.

TYPICAL TASK BUILDER FACILITIES

PRIVEX.TSK;2 MEMORY ALLOCATION MAP TKB M32 PAGE 1
7-0CT-78 16:10

PARTITION NAME : GEN

IDENTIFICATION : 01

TASK UIC : [301,311]

STACK LIMITS: 120146 121145 001000 00512. Task

PRG XFR ADDRESS: 124526 _

TASK ATTRIBUTES: PR §§§ii§§tes

TOTAL ADDRESS WINDOWS: 1.

TASK IMAGE SIZE : 1856. WORDS

TASK ADDRESS LIMITS: 120000 127147

R-W DISK BLK LIMITS: 000002 000011 000010 00008. |

*#%% ROOT SEGMENT:PRIVEX

R/W MEM LIMITS: 120000 127147 007150 03688.

DISK BLK LIMITS: 000002 00001l 000010 00008.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.: (RW,I,LCL,REL,CON) 121146 005654 02988.

121146 003656 01966. PRIVEX 01

LNC$D : (RW,D,GBL,REL,CON) 127022 000002 00002.
S$RESL: (RW,I,LCL,REL,CON) 127024 000024 00020.
$$RESM: (RW,I,LCL,REL,CON) 127050 000100 00064.
GLOBAL SYMBOLS:

AS.DEL 000010 CI.PWF 177776 D.RS80 177660

G.STAT 000003 IO.CLN 003400 KINDR7 172316
AS.EXT 000004 DV.ISP 002000 D.RS81 177657
HIS$SDIC 000115 IO.DET 002000 KISARO 172360
$TT56 033102 $VTDCB 033406 .DB3 020630
.TT22 025634 .TT43 027314

*%% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 185418.

WORK FILE READS: 0.

WORK FILE WRITES: 0.

SIZE OF CORE POOL: 9454. WORDS (36. PAGES)
SIZE OF WORK FILE: 8448. WORDS (33. PAGES)

ELAPSED TIME:00:00:30

D.VKRB 000010

D.VOUT 000004

.MMl 021620

Figure 3-39 Task Builder Map for PRIVEX

PRIVEX.OBJ; 2

TYPICAL TASK BUILDER FACILITIES

1/0 PAGE
APR7— — VIRTUAL 160000
APR 6— —
VIRTUAL 127147 ‘

PRIVEX. TSK TASK ADDRESS LIMITS
APR 65— — VIRTUAL 120000 j
APR 4— —
APR 3— —

EXECUTIVE
APR 2— —
APR 1— —
APRO — VIRTUALO

Figure 3-40 Allocation of Virtual Address Space for PRIVEX

CHAPTER 4

OVERLAY CAPABILITY

The Task Builder provides you with the means to reduce the memory
and/or virtual address space requirements of your task by using
tree-like overlay structures created with the Overlay Description
Language (ODL). You can specify two kinds of overlay segments: those
that reside on disk and those that reside permanently in memory.

4.1 OVERLAY STRUCTURES

To create an overlay structure, you divide a task 1into a series of
segments consisting of:

® A single root segment, which is always in memory and,

e Any number of overlay segments, which either 1) reside on disk
and share wvirtual address space and physical memory with one
another (disk-resident overlays); or 2) reside in memory and
share only virtual address space with one another
(memory-resident overlays)l

Segments consist of one or more object modules which in turn consist
of one or more program sections. Segments that overlay each other
must be logically independent; that is, the components of one segment
cannot reference the components of a segment with which it shares
virtual address space. In addition to the logical independence of the
overlay segments, the general flow of control within the task must be
considered when creating overlay segments.

You must also consider the kind of overlay segment to <create at a
given position in the structure, and how to construct it. Dividing a
task into disk-resident overlays saves physical space, but introduces
the overhead activity of 1loading these segments each time they are
needed, but not present in memory. Memory-resident overlays, on the
other hand, are loaded from disk only the first time they are
referenced. Thereafter, they remain in memory and are referenced by
remapping.

Several large classes of tasks can be handled effectively by an
overlay structure, For example, a task that moves sequentially
through a set of modules is well suited to the use of an overlay
structure. A task that selects one of a set of modules according to
the value of an item of input data is also well suited to the wuse of
an overlay structure.

1 Note that memory-resident overlays can be used only if the hardware
has a memory management unit, and if support for the memory management
directives has been included in the system on which the task 1is to
run.

OVERLAY CAPABILITY

4.1.1 Disk-Resident Overlay Structures

Disk-resident overlays conserve virtual . address space and physical
memory by sharing them with other overlays. Segments that are
logically independent need not be present in memory at the same time.
They, therefore, can occupy a common physical area in memory (and,
therefore, common virtual address space) whenever either needs to be
used.

The use of disk-resident overlays is shown in this section by an
example, task TK1l, which consists of four input files. Each input
file consists of a single module with the same name as the file. The
task is built by the command:

>TKB TK1=CNTRL,A,B,C

In this example, the modules A, B, and C are logically independent;
that is:

A does not call B or C and does not use the data of B or C.

B does not call A or C and does not use the data of A or C.

C does not call A or B and does not use the data of A or B.
A disk-resident overlay structure can be defined in which A, B, and C
are overlay segments that occupy the same storage area in physical
memory. The flow of control for the task will be as follows:

CNTRL calls A and A returns to CNTRL.

CNTRL calls B and B returns to CNTRL.

CNTRL calls C and C returns to CNTRL,

CNTRL calls A and A returns to CNTRL.
In this example, the loading of overlays occurs only four times during
the execution of the task. Therefore, the virtual address space and
physical memory requirements of the task can be reduced without unduly
increasing the overhead activity.
The effect of the use of an overlay structure on the allocation of
virtual address space and physical memory for task TKl is described in

the following paragraphs.

The lengths of the modules are:

Module Length (in octal)
CNTRL 20000 bytes
A 30000 bytes
B 20000 bytes
c 14000 bytes

Figure 4-1 shows the wvirtual address space and physical memory
requirements as a result of building TKl as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirement to build TK1
as a single-segment task is 104000(8) bytes.

In contrast, Figure 4-2 shows the virtual address space and physical

memory redquired to build TK1 as a result of using the overlay
capability and building it as a multisegment task.

4-2

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

OVERLAY CAPABILITY

HEADER AND STACK

C C
B B
—_—
A A
CNTRL CNTRL
{(ROOT SEGMENT) (ROOT SEGMENT)

VIRTUAL ADDRESS SPACE

- Figure 4-1

HEADER AND STACK

PHYSICAL MEMORY

TK1 Built as a Single-Segment Task

104000
BYTES

OVERLAY CAPABILITY

160000 APR 7—
140000 APR 6—
120000 APR 5—
100000 APR 4—
60000 APR 3—
40000 APR 2—

A _ A
B B

c c 50000

BYTE
20000 APR 1—

CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
HE
0 APRO- HEADERANDSTACK | ADER AND STACK
VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-2 TK1 Built as a Multisegment Task

OVERLAY CAPABILITY
The multisegment task requires 50000(8) bytes.

NOTE

In addition to module storage, storage
is required for overhead in handling the
overlay structures. This overhead 1is
not reflected in this example.

In the use of the overlay capability, the amount of wvirtual address
space and physical memory required for the task is determined by the
length of the root segment and the 1length of the 1longest overlay
segment., Overlay segments A and B in this example are much longer
than overlay segment C. If A and B are divided into sets of logically
independent modules, task storage requirements can be further reduced.
Segment A can be divided into a control program (A0) and two overlays
(Al and A2)., Segment A2 can then be divided into the main part (A2)
and two overlays (A2l and A22). Similarly, segment B can be divided
into a control module (B0) and two overlays (Bl and B2).

Figure 4-3 shows the virtual address space and physical memory
required for the task produced by the additional overlays defined for
A and B.

As a single-segment task, TK1l requires 104000 bytes of virtual address
space and physical memory. The first overlay structure reduces the
requirement by 34000 bytes. The second overlay structure further
reduces the requirement by 14000 bytes.

The vertical and horizontal lines in the diagrams of Figures 4-2 and
4-3 represent the state of virtual address space and physical memory
at various times during the calling sequence of TKl. For example, in
Figure 4-3 the leftmost vertical line in both diagrams shows virtual
address space and physical memory, respectively, when CNTRL, A0, and
Al are loaded. The next vertical line shows virtual address space and
physical memory when CNTRL, A0, A2, and A2l are loaded, and so on.

The horizontal lines in the diagrams of Figures 4-2 and 4-3 indicate
segments that share virtual address space and physical memory. For
example, in Figure 4-3, the uppermost horizontal 1line of the task
region in both diagrams shows Al, A2l, A22, Bl, B2, and C, all of
which can use the same virtual address space and physical memory. The
next horizontal line shows Al, A2, Bl, B2, and C, and so on.

4,1.2 Memory-Resident Overlay Structures (Not Supported on RSX-11lS)

The Task Builder provides for the creation of overlay segments that
are loaded from disk only the first time they are referenced.
Thereafter, they reside in memory. Memory-resident overlays share
virtual address space just as disk-resident overlays do but, unlike
disk-resident overlays, memory-resident overlays do not share physical
memory. Instead, they reside in separate areas of physical memory,
each segment aligned on a 32-word boundary. Memory-resident overlays
save time for a running task because they do not need to be copied
from a secondary storage device each time they are to overlay other
segments. "Loading" a memory-resident overlay, reduces to mapping a
set of shared virtual addresses to the unique physical area of memory
containing the overlaying segment.

160000

140000

120000

100000

60000

40000

20000

OVERLAY CAPABILITY

APR 7—
APR 6—
APR 5—
APR 4—
APR 3—
APR 2—
R
Al A211 A22 B1
A2 B2 | C
AD BO
APR 1—
CNTRL
(ROOT SEGMENT)
APR 0— HEADER AND STACK
VIRTUAL ADDRESS SPACE
Figure 4-3

A2[az2|
A2 B2| ¢

At

A0 BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

> 34000

PHYSICAL MEMORY

TK1l Built with Additional Overlay Defined

OVERLAY CAPABILITY

The use of memory-resident overlays is shown in this section by an
example, task TK2, which consists of four input files., Each input
file consists of a single module with the same name as the file. The
task is built by the command:

>TKB TK2=CNTRL,D,E,F

In this example, the modules D, E, and F are 1logically independent;
that is:

D does not call E or F and does not use the data of E or F.

E does not call D or F and does not use the data of D or F.

F does not call D or E and does not use the data of D or E.
A memory-resident overlay structure can be defined in which D, E, and
F are overlay segments that occupy separate physical memory locations
but which occupy the same virtual address space. The flow of control
for the task will be as follows:

CNTRL calls D and D returns to CNTRL,

‘CNTRL calls E and E returns to CNTRL;

CNTRL calls F and F returns to CNTRL.
The effect of the use of a memory-resident overlay structure on the
allocation of virtual address space and physical memory for task TK2

is described in the following paragraphs.

The lengths of the modules are:

Module Length (in octal)
CNTRL 20000

D 10000

E 14000

F 12000

Figure 4-4 shows the virtual address space and physical memory
requirements as a result of building TK2 as a single-segment task on a
system with memory management hardware.

The virtual address space and phy51ca1 memory requirements when TK2 is
built as a single-segment task is 56000(8) bytes,

If TK2 is built wusing the Task Builder's memory-resident overlay
capability, the relationship of virtual address space to physical
memory changes, as shown in Figure 4-5.

OVERLAY CAPABILITY

160000 APR 7—
14000 APR 6—
120000 APR 5—
100000 APR 4—
60000 APR 3—
F F \
40000 APR 2—
E £
56000
> BYTES
b D
20000 APR 1—
CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
E
o0 AP O HEADER AND STACK o HEADER AND STACK | J
VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-4 TK2 Built as a Single-Segment Task

OVERLAY CAPABILITY

160000 APR 7—

140000 APR 56—

120000 APR 5—

100000 APR 4—

60000 APR 3—
'\
F
40000 APR 2— c
) 56000
BYTES
D E F D
20000 APR 1—- > 34000(g)
CNTRL BYTES CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
HEADER AND STACK
o APRO- y HEADER AND STACK)

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-5 TK2 Built as a Memory-Resident Overlay

OVERLAY CAPABILITY

The physical memory requirements for TK2 do not change(56000(8)
bytes), but the virtual address space requirements have been reduced
to 34000(8) bytes. This represents a savings in virtual address space
of 22000(8) bytes.

NOTE

In addition to module storage, storage
is required for overhead in handling the
overlay structures. This overhead is
not reflected in this example.

In Figure 4-5, the vertical and horizontal 1lines in the virtual
address space diagram represent the state of virtual address space at
various times during the calling sequence of TK2. The leftmost
vertical 1line shows virtual address space when CNTRL and D are loaded
and mapped. The next vertical line shows virtual address space when
CNTRL and E are loaded and mapped, and the third vertical line shows
virtual address space when CNTRL and F are loaded and mapped.

The uppermost horizontal line of the task region shows that segments
D, E, and F share virtual address space.

When TK2 is activated, the Executive loads TK2's root segment into
physical memory. The Executive loads segments D, E, and F into memory

s they are called. Once all segments in the structure have been
called, "loading" of the overlay segments reduces to the remapping of
virtual address space to the physical locations in memory where the
overlay segments permanently reside. Figures 4-6 and 4-7 illustrate
the relationship between virtual address space and physical memory for
task TK2 during four time periods:

e TIME 1 (Figure 4-6A) - TK2 is run and the system loads the
root segment (CNTRL) into physical memory and maps to it.

e TIME 2 (Figure 4-6B) - CNTRL calls segment D. The system
loads segment D into physical memory and maps to it. Segment
D returns to CNTRL.

e TIME 3 (Figure 4-7A) - CNTRL calls segment E. The system
loads segment E into physical memory, unmaps from segment D,
and maps to segment E. Segment E returns to CNTRL.

e TIME 4 (Figure 4-7B) — CNTRL <calls segment F. The system
loads segment F into physical memory, unmaps from segment E,
and remaps to segment F. Segment F returns to CNTRL

OVERLAY CAPABILITY

Figure 4-6A Time 1

160000 APR 7—
140000 APR 6—
120000 APR 5—
100000 APR 4—
60000 APR 3—
40000 APR 2—
20000 APR 1— prlsianiinniiitni it ity e e - - —
CNTRL CNTRL
(ROOT SEGMENT) J—— (ROOT SEGMENT)
HEADER AND STACK i HEADER AND STACK
0 APRO- b —) e — — - —
VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-6 Relationship Between Virtual Address Space
and Physical Memory -- Time 1 and Time 2

OVERLAY CAPABILITY

Figure 4-6B Time.2

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4-—

60000 APR 3—

40000 APR 2—

D ——reeee D
20000 APRI-}b—morr-ruor e - — -
CNTRL CNTRL
(ROOT SEGMENT) —_—— (ROOT SEGMENT)
HEADER AND STACK HEADER D ST
0 Apro- L HEADERANDSTACK | ADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-6 (Cont.) Relationship Between Virtual Address Space
and Physical Memory -- Time 1 and Time 2

OVERLAY CAPABILITY

Figure 4-7A Time 3

160000 APR 7—

140000 APR 6—

120000 APR 5—
100000 APR 4—
60000 APR 3—
— -
40000 APR 2— _ -
/ -
—
E _ - R
— -
20000 APRI— o T~ -
CNTRL ' CNTRL
(ROOT SEGMENT) — (ROOT SEGMENT)
0 APRO- HEADER ANDSTACK | HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4~7 Relationship Between Virtual Address Space
and Physical Memory -- Time 3 and Time 4

OVERLAY CAPABILITY

Figure 4-7B Time 4

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4—

60000 APR 3-
F

40000 APR 2—
E
D

20000 APR1- b e —_— —_— - -

CNTRL ‘ CNTRL
(ROOT SEGMENT) —_— (ROOT SEGMENT)
0 APRO— HEADER AND STACK | HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-7 (Cont.) Relationship Between Virtual Address Space
and Physical Memory ~- Time 3 and Time 4

OVERLAY CAPABILITY

It is important to be <careful in choosing whether to have
memory-resident overlays 1in a structure. Careless use of these
segments can result in inefficient allocation of virtual address
space. This 1is because the Task Builder allocates virtual address
space in blocks of 4K words. Consequently, the length of each overlay
segment should approach that limit if you are to minimize waste. (A
segment that is one word longer than 4K words, for example, will be
allocated 8K words of virtual address space. All but one word of the
second 4K words will be unusable.)

You can also conserve physical memory by maintaining control over the
contents of each segment. The inclusion of a module in several
memory-resident segments that overlay one another causes physical
memory to be reserved for each extra copy of that module, Common
modules, 1including those from the system object module 1library
(SYSLIB), should be placed in a segment that can be accessed from all
referencing segments.,

The primary criterion for choosing to have memory-resident overlays is
the need to save virtual address space when disk-resident overlays are
either wundesirable (because they would slow the system down
unacceptably), or impossible (because the segments are part of a
resident library or other shared region that must permanently reside
in memory).

Memory-resident overlays can help you use large systems to better
advantage because of the time savings realized when a large amount of
physical memory is available. Resident libraries, in particular, can
benefit from the virtual address space saved when they are divided
into memory-resident segments.

4.2 OVERLAY TREE

The arrangement of overlay segments within the virtual address space
of a task can be represented schematically as a tree-like structure.

Each branch of the tree represents a segment. Parallel branches
denote segments that overlay one another and therefore have the same
virtual address; these segments must be logically independent.

Branches <connected end to end represent segments that do not share
virtual address space with each other; these segments need not be
logically independent.

The Task Builder provides an overlay description language (ODL) for
representing an overlay structure consisting of one or more trees (the
ODL is described in Section 4.4).

The allocation of virtual addrcss space for TK1l (see Section 4.1.1)
can be represented by the single :verlay tree shown in Figure 4-8.

OVERLAY CAPABILITY
A21 A22

A1l A2 B1 B2

L—f_'

A0 BO

—0Q0

CNTRL

Figure 4-8 Overlay Tree for TK1l

The tree has a root (CNTRL) and three main branches (A0, B0, and C).
It also has six leaves (Al, A21, A22, Bl, B2, and C).

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root. For example:

A21-A2-A0~-CNTRL
The path up is defined from the root to the leaf. For example:
CNTRL-B0-Bl

Knowing the properties of the tree and 1its paths 1is important to
understanding the overlay 1loading mechanism and the resolution of
global symbols.

4.2.1 Loading Mechanism

Modules can call other modules that exist on the same path. The
module CNTRL (Figure 4-8) 1is common to every path of the tree and,
therefore, can call and be called by every module in the tree. The
module A2 can call the modules A21, A22, A0, and CNTRL; but A2 cannot
call Al, B1l, B2, BO, or C.

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory and mapped, or must be
brought into memory. The methods for loading overlays are described
in Chapter 5.

4,2.,2 Resolution of Global Symbols in a Multisegment Task

In resolving global symbols for a multisegment task, the Task Builder
performs the same activities that it does for a single-segment task.
The rules defined in Chapter 2 for resolving global symbols in a
single-segment task apply also in this case, but the scope of the
global symbols is altered by the overlay structure.

In a single-segment task, any module can refer to any global
definition. In a multisegment task, however, a module can only refer
to a 'global symbol that is defined on a path that passes through the
called segment,

OVERLAY CAPABILITY

The following points, illustrated in the tree diagram in Figure 4-9,
describe the two distinct cases of multiply defined symbols and
ambiguously defined symbols.

In a single-segment task, if you define two global symbols with the
same name, the symbols are multiply defined, and an error message is
produced.

In a multisegment task, you can define two global symbols with the

same name 1f they are on separate paths, and not referenced from a
segment that is common to both.

If you define a global symbol more than once on separate paths, but
they are referenced from a segment that is common to both, the symbol
is ambiguously defined. If you define a global symbol more than once
on & single path, it is multiply defined.

The Task Builder's procedure for resolving global symbols is
summarized as follows:

1. The Task Builder selects an overlay segment for processing.

2. The Task Builder scans each module in the segment for global
definitions and references.

3. If the symbol is a definition, the Task Builder searches all
segments on paths that pass through the segment being
processed, and looks for references that must be resolved.

4., If the symbol is a reference, the Task Builder performs the

tree search as described in step 3, looking for an existing
definition.

5. If the symbol is new, the Task Builder enters it in a list of
global symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding
to their distance from the root. That is, the Task Builder processes
the segment farthest from the root first, before processing an
adjoining segment. -

When the Task Builder processes a segment, its search for global
symbols proceeds as follows:

e The segment being processed

e All segments toward the root

e All segments away from the root
® All co-trees (see Section 4.5)

Figure 4-9 illustrates the resolution of global symbols in a
multisegment task.

OVERLAY CAPABILITY

A21 A22
T (DEF) R (REF)
S (REF) Q (REF)

| S (REF)

A1 B1 B2
ggzg; R/?SEF) Q (REF) S (REF)
S (REF) > (REF)

AO BO C
Q (DEF) Q (DEF)
S (DEF) S (DEF)
T (DEF) l
CNTRL
S (REF)

Figure 4-9 Resolution of Global Symbols in a Multisegment Task

The following notes discuss the resolution of references 1in Figure
4-9:

1. The global symbol Q is defined in both segment A0 and segment
BO. The references to Q in segment A22 and in segment Al are
resolved by the definition in A0, The reference to Q in Bl
is resolved by the definition in B0O. The two definitions of
Q are distinct in all respects and occupy different overlay
paths.,

2. The global symbol R is defined in segment A2. The reference
to R in A22 is resolved by the definition in A2 because there
is a path to the reference from the definition
(CNTRL-AO0-A2-A22), The reference to R in Al, however, is
undefined because there is no definition for R on a path
through Al.

3. The global symbol S is defined in both segment A0 and segment
BO. References to S from segments Al, A2l, or A22 are
resolved by the definition in A0, and references to S in Bl
and B2 are resolved by the definition in BO., However, the
reference to S in CNTRL cannot be resolved because there ‘are
two definitions of S on separate paths through CNTRL. The
global symbol S is ambiguously defined.

4. The global symbol T is defined in both segment A21 and
segment AOQ. Since there 1is a single path through the two
definitions (CNTRL-A0-A2-A21), the global symbol T is
multiply defined.

4.2,3 Resolution of Global Symbols from the Default Library

The process of resolving global symbols may require two passes over
the tree structure. The global symbols discussed in the previous
section are included in user-specified input modules that the Task
Builder scans in the first pass. If any undefined symbols remain, the
Task Builder initiates a second pass over the structure in an attempt

OVERLAY CAPABILITY

to resolve such symbols by searching the default object module library
(normally LBO:([1,1]SYSLIB.OLB). The Task Builder reports any
undefined symbols remaining after its second pass.

When multiple tree structures (co-trees) are defined, as described in
Section 4.5, any resolution of global symbols across tree structures
during a second pass can result in multiple or ambiguous definitions.
In addition, such references can cause overlay segments to be
inadvertently displaced from memory by the overlay loading routines,
thereby causing run-time failures. To eliminate these conditions, the
tree search on the second pass is restricted to:

e The segment in which the undefined reference has occurred

e All segments in the current tree that are on a path through
the segment

e The root segment

When the current segment is the main root, the tree search is extended
to all segments. You can unconditionally extend the tree search to
all segments by including the FU (full) switch in the task image file
specification. (Refer to Chapter 6 for a description of the FU
switch.)

4.2.4 Allocation of Program Sections in a Multisegment Task

One of a program section's attributes indicates whether the program

section 1is 1local (LCL) to the segment in which it is defined or is
global (GBL).

Local program sections with the same name can appear in any number of
segments., The Task Builder allocates virtual address space for each
local program section in the segment in which it is declared. Global
program sections that have the same name, however, must be resolved by
the Task Builder.

When a global program section is defined in several overlay segments
along a common path, the Task Builder allocates all virtual address
space for the program section in the overlay segment closest to the
root.

FORTRAN common blocks are translated into global program sections with
the overlay (OVR) attribute. 1In Figure 4-10, the common block COMA is
defined in modules A2 and A2l1., The Task Builder allocates the virtual
address space for COMA 1in A2 because that segment is closer to the
root than the segment that contains A2l.

If the segments A0 and B0 use a common block COMAB, however, the Task
Builder allocates the wvirtual address space for COMAB in both the
segment that contains A0 and the segment that contains BO. A0 and BO
cannot communicate through COMAB. When the overlay segment containing
BO is loaded, any data stored in COMAB by A0 is lost.

You can specify the allocation of program sections explicitly. If A0
and BO need to share the contents of COMAB, vyou can force the
allocation of this program section into the root segment by the use of
the JPSECT directive of the Task Builder's overlay description
language, described in Section 4.4.

OVERLAY CAPABILITY

A21 A22
A1l A2
COMA B1 B2
A0 BO C
COMAB COMAB I
CNTRL

Figure 4-10 Resolution of Program Sections for TK1l

4.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES

When the Task Builder constructs an overlaid task, it builds
additional data structures and adds them to the task image. It also
includes into the task image a number of system 1library routines
(called overlay run-time routines). The data structures contain
information about the overlay segments and describe the relationship
of each segment in the tree to the other segments in the tree. The
overlay run-time routines use the data structures to facilitate the
loading of the segments and to provide the necessary linkages from one
segment to another at run time.

The Task Builder links the majority of data structures and all of the
overlay run-time routines into the root segment of the task. The
number and type of data structures, and the functions the routines
perform, depend on two considerations:

® Whether the task is built to use the Task Builder's autoload
or manual load facilities

e Whether the overlay segment 1is memory resident or disk
resident

These considerations have a marked impact on the size and operation of
the task. Chapter 5 describes the Task Builder's autoload and manual
load facilities and describes the methods for 1loading overlays.
Appendix B describes the data structures and their contents in detail.

The contents of the root segment for a task with an overlay structure
are discussed briefly in the following paragraphs.

Depending on the considerations above, some or all of the following
data structures are required by the overlay run-time routines:

e Segment tables
® Autoload vectors
® Window descriptors

e Region descriptors

OVERLAY CAPABILITY

Figure 4-11 shows a typical overlay root segment structure.

see
ese

TASK CODE & DATA

WINDOW DESCRIPTORS
REGION DESCRIPTORS
SEGMENT DESCRIPTORS

OVERLAY
RUN-TIME
ROUTINES
AUTOLOAD VECTORS TYPICAL
MAIN TREE
ROOT SEGMENT

TASK CODE
AND
DATA

HEADER AND STACK

Figure 4-11 Typical Overlay Root Segment Structure

There is a segment descriptor for every segment in the task. The
descriptor contains information about the load address, the length of
the segment, and the tree linkage.

When you build an overlaid task autoloadable, autoload vectors appear
in the root segment and in every segment that calls modules in another
segment located farther away from the root of the tree.

Window descriptors are allocated whenever a memory-resident overlay
structure is defined for the task. The descriptor contains
information required by the Create Address Window system directive
(CRAWS). One descriptor is allocated for each memory-resident overlay
segment., '

Region descriptors are allocated whenever a task is linked to a shared
region containing memory-resident overlays. The descriptor contains
information required by the Attach Region system directive (ATRGS).

OVERLAY CAPABILITY

4.4 OVERLAY DESCRIPTION LANGUAGE

The Task Builder provides a language, called the Overlay Description
Language (ODL), that allows you to describe the overlay structure of a
task. An overlay description is a text file consisting of a series of
ODL directives, one directive per line. You enter this file in a Task
Builder command line, and identify it as an ODL file by specifying the
MP switch (see Chapter 6) to the file name. If you specify an ODL
file to the Task Builder, it must be the only input file you specify.

An ODL line takes the form:
label: directive argument-list ;comment
A label is required only for the .FCTR directive (see Section 4.4.2).

The ODL directives are listed below and described 1in Sections 4.4.1
through 4.4.6:

e .ROOT and .END

e L.FCTR

o ! (exclamation point operator)
e NAME

e PSECT

e @ (at sign; indirect command file specifier)

Directives act upon argument-list which consists of named input files,
overlay segments, program sections, and lines in the ODL file itself.
Operators group these named task elements, or attach attributes to
them.

If the name belongs to a file, you can enter a complete file
specification. Defaults for omitted parts of the file specification
are as described in Chapters 1 and 6, except that the default device
is 8Y0:, and the default UFD is taken from the terminal UIC.

In addition, the following restrictions apply to argument-lists:
e You can only use the dot character (.) in a file name.

o Comments cannot appear on a line ending with a file name.

~4.4.1 .ROOT and .END Directives

Each overlay description must begin with one .ROOT directive and end
with one LEND directive. The .ROOT directive tells the Task Builder
where to start building the tree, and the .END directive tells the
Task Builder where the input ends.

The arguments of the .ROOT directive use three operators to express
concatenation, overlaying, and memory residency.

OVERLAY CAPABILITY

e The hyphen (-) operator indicates the concatenation of virtual
address space. For example, X-Y means that sufficient virtual
address space will be allocated to contain segment X and
segment Y simultaneously. The Task Builder allocates segment

X and segment Y in sequence.

o The exclamation point (!) operator indicates memory-residency
of overlays. (This operator is discussed in Section 4.4.3.)

e The comma (,) operator, appearing within parentheses,
indicates the overlaying of virtual address space. For

example, Y,Z means that virtual address space can

contain

either segment Y or segment Z. 1If no exclamation point (!)

precedes the left parenthesis, segment Y and segment
share physical memory.

Z also

The comma (,) operator is also used to define multiple tree

structures (as described in Section 4.5.1).

You use parentheses to delimit a group of segments that start

at the

same virtual address. The number of nested parenthetical groups

cannot exceed 16.
For example:

.ROOT X-(Y,Z-(21,22))
«END

These directives describe the tree and its corresponding
address space shownh in Figure 4-12:

Z1 z2
Y
Y z z
l X

Figure 4-12 Tree and Virtual Address Space Diagram

virtual

To create the overlay description for the task TK1 in Figure 4-3
(Section 4.1.1), you could create a file called TFIL.ODL that contains

the directives:

.ROOT CNTRL-(AO-(Al,A2-(A21,A22)),B0-(B1,B2),C)
.END

To build the task with that overlay structure, you would type:

>TKB TK1=TFIL/MP

The MP switch in the command string above tells the Task Builder that
there 1is only one input file (TFIL.ODL), and that this file contains

an overlay description for the task.

OVERLAY CAPABILITY

4,4.,2 .FCTR Directive

The .FCTR directive allows you to build 1large, complex trees and
represent them clearly.

The .FCTR directive has a label at the beginning of the ODL line that
is pointed to by a reference in a .ROOT or another .FCTR statement.
The label must be unique with respect to module names and other
labels. The .FCTR directive allows you to extend the tree description
beyond a single line, and thus allows you to provide a clearer
description of the overlay. (There can be only one .ROOT directive.)

For example, to simplify the tree given in the file TFIL (described in
Section 4.4.1), you could use the .FCTR directive in the overlay
description as follows:

.ROOT CNTRL-(AFCTR,BFCTR,C)

AFCTR: .FCTR AO0-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(B1l,B2)
.END

The label BFCTR is used in the L.ROOT directive to designate the
argument of the .FCTR directive, B0O-(Bl1,B2). The resulting overlay
description is easier to interpret than the original description. The
tree consists of a root, CNTRL, and three main branches. Two of the
main branches have sub-branches.

The .FCTR directive can be nested to a level of 16. For example, you
could further modify TFIL as follows:

.ROOT CNTRL- (AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(Al,A2FCTR)

A2FCTR: .FCTR A2-(A21,A22)

BFCTR: .FCTR B0O-(B1,B2)
.END

4.4.,3 Exclamation Point Operator

The exclamation point operator allows you to specify overlay segments
that will reside in memory rather than on disk (see Section 4.1.2).
You specify memory residency by placing an exclamation point (1!)
immediately before the left parenthesis enclosing the segments to be
affected. The overlay description for task TK2 in Figure 4-4 (Section
4.1.2) is as follows:

+ROOT CNTRL-1!(D,E,F)
.END

In the example above, segments D, E, and F are declared resident in
separate areas of physical memory. The single starting virtual
address for D, E, and F is determined by the Task Builder, by rounding
the octal 1length of segment CNTRL up to the next 4K boundary. The
physical memory allocated to segments D, E, and F 1is determined by
rounding the actual 1length of each segment to the next 32-word
boundary (256-word boundary if the CM switch is in effect), and adding
this value to the total memory required by the task.

OVERLAY CAPABILITY

The exclamation point operator applies only to segments at the first
level 1inside a pair of parentheses; segments in parentheses nested
within that level are not affected. It is therefore possible to
define an overlay structure that combines the space-saving attributes
of disk-resident overlays with the speed of memory-resident overlays.
For example:

.ROOT A-!(B1-(B2,B3),C)
«END

In this example, Bl and C are declared memory resident by the
exclamation point operator. B2 and B3 are declared disk resident,
however, because no exclamation point operator precedes the
parentheses enclosing them.

Note that while a memory-resident overlay can call a disk-resident
overlay, the converse 1is not 1legal; that 1is, you cannot use an
exclamation point for segments emanating from a disk-resident segment.
For example, you cannot build the following structure:

.ROOT A-(B1-!(B2,B3),C) ; this overlay description is illegal
. END

In this example, Bl is declared disk resident, so it is illegal to use
the exclamation point to declare B2 and B3 memory resident.

4.4.4 .NAME Directive

The .NAME directive allows you to specify a name for a segment, and
then to assign attributes to the segment. The name must be unique
with respect to file names, program section names, .FCTR labels, and
other segment names used in the overlay description. The chief uses
of this directive are:

l. To name a segment uniquely that is to be loaded through the
manual load facility (see Chapter 5)

2, To permit a segment that does not contain executable code to
be loaded through the autoload mechanism

The format of the .NAME directive is:
.NAME segname[,attr] [,attr]
segname

A 1- to 6-character name; this name can consist of the Radix-50
characters A-Z, 0-9, and $ (the period (.) cannot be used).

attr
One of the following:
GBL The name is entered in the segment's global symbol
table.

The GBL attribute makes it possible to load
nonexecutable overlay segments by means of the
autoload mechanism (see Chapter 5).

OVERLAY CAPABILITY

NODSK No disk space is allocated to the named segment.

If a data overlay segment has no initial values,
but will have 1its contents established by the
running task, no space for the named segment on
disk need be reserved. If the code attempts to
establish initial values for data in a segment for
which no disk space is allocated (a segment with
the NODSK attribute), the Task Builder gives a
fatal error.

NOGBL The name is not entered in the segment's global
symbol table.

If the GBL attribute 1is not ©present, NOGBL is
assumed.

DSK Disk storage is allocated to the named segment.

If the NODSK attribute is not present, DSK is
assumed.

The attributes described are not attached to a segment until the name
is used in a .ROOT or .FCTR statement that defines an overlay segment.
When multiple segment names are applied to a segment, the attributes
of the last name given are in effect,

In the following modified ODL file for TK1l (Figure 4-3 of Section
4.1.1), the three main branches, AO, B0, and C, are provided with
names by specifying them in the .NAME directive and using them in the
.ROOT directive. The default attributes NOGBL and DSK are in effect
for BRNCH1 and BRNCH3, but BRNCH2 has the complementary attributes
(GBL and NODSK) that will cause the Task Builder to enter the name
BRNCH2 into the segment's global symbol table and "to allocate disk
space for the segment to be suppressed. BRNCH2 contains uninitialized
storage to be utilized at runtime.

.NAME BRNCH1

.NAME BRNCH2,GBL ,NODSK

.NAME BRNCH3

.ROOT CNTRL-! (BRNCH1-AFCTR,*BRNCH2-BFCTR,BRNCH3-C)

AFCTR: .FCTR A0-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-*!(Bl,B2)
+END
(The asterisk (*) is the autoload indicator; it is discussed 1in

Chapter 5.)

The data overlay segment BRNCH2 is loaded by including the following
statement in the program.

CALL BRNCH2

This action is immediately followed by an automatic return to the next
instruction in the program.

You can also use segment names in making patches with the ABSPAT and
GBLPAT options (see Chapter 6).

OVERLAY CAPABILITY

NOTE

In the absence of a unique .NAME
specification, the Task Builder
establishes a segment name, using the
first program section file, or library
module name occurring in the segment.

4.4.5 LPSECT Directive

You can use the .PSECT directive to directly specify the placement of
a global program section in an overlay structure. The name of the
program section (a 1l- to 6-character name consisting of the Radix-50
characters A-Z, 0-9, and $) and its attributes are given in the ,PSECT
directive. Thus, you can use the name to indicate to the Task Builder
the segment to which the program section will be allocated. An
example of the use of .PSECT is given in the modified version of task
TK1 (the original version is shown in Figure 4-3 in Section 4.1.1)
shown below.

In this example, TK1l has a disk-resident overlay structure. The
example assumes that the programmer was careful about the logical
independence of the modules in the overlay segment, but failed to take
into account the requirement for 1logical independence in multiple
executions of the same overlay segment.

The flow of task TK1l can be summarized as follows. CNTRL calls each
of the overlay segments, and the overlay segment returns to CNTRL in
the order A, B, C, A. Module A 1is executed twice. The overlay
"segment containing A must be reloaded for the second execution.

Module A uses a common block named DATA3. The Task Builder allocates
DATA3 to the overlay segment containing A. The first execution of A
stores some results in DATA3. The second execution of A requires
these values. In this disk-resident overlay structure, however, the
values calculated by the first execution of A are overlaid. When the
segment containing A is read in for the second execution, the common
block is in its initial state.

To permit the two executions of A to communicate, a .PSECT directive
is wused to force the allocation of DATA3 into the root. The indirect
command file for TKl, TFIL.ODL, is modified as follows:

.PSECT DATA3,RW,GBL,REL,OVR
.ROOT CNTRL-DATA3- (AFCTR,BFCTR,C)

AFCTR: +FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR B0-(B1,B2)
«END

The attributes RW, GBL, REL, and OVR are described in Chapter 2.

4.4,.6 Indirect Command Files

The Overlay Description Language processor can accept ODL text
indirectly, that is, specified in an indirect command file. If an at
sign (@) appears as the first character in an ODL line, the processor
will read text from the file specified immediately after the at sign.
The processor accepts the ODL text from the file as input, at the
point in the overlay description where the file is specified.

OVERLAY CAPABILITY

For example, suppose you create a file, called BIND.ODL, that contains
the text:
B: .FCTR Bl-(B2,B3)

This text can be replaced by a 1line beginning with @BIND, at the
position where the text would have appeared:

Indirect Direct
.ROOT A-(B,C) .ROOT A-(B,C)
C: .FCTR Cl1-(C2,C3) C: .FCTR Cl1-(C2,C3)
@BIND B: .FCTR Bl1-(B2,B3)
.END «END

The Task Builder allows two levels of indirection.

4.5 MULTIPLE-TREE STRUCTURES

You can define more than one tree within an overlay structure. These
multiple tree structures consist of a main tree and one or more
co-trees. The root segment of the main tree 1is 1loaded by the
Executive when the task 1is made active, while segments within each
co-tree are loaded through calls to the overlay run-time routines.
Except for this distinction, all overlay trees have identical
characteristics: a root segment that resides in memory, and two or
more overlay segments.

The main property of a structure containing more than one tree is that
storage 1is not shared among trees. ~Any segment in a tree can be
referred to from another tree without displacing segments £from the
calling tree. Routines that are called from several main tree overlay
segments, for example, can overlay one another in a co-tree. The same
considerations in deciding whether to create memory-resident overlays
or disk-resident overlays in a single-tree structure apply in building
a structure containing co-trees,

4.5.1 Defining a Multiple-Tree Structure

Multiple-tree structures are specified within the Overlay Description
Language by extending the function of the comma operator. As
described in Section 4.4, this operator, when included within
parentheses, defines a pair of segments that share storage. The
inclusion of the comma operator outside all parentheses delimits
overlay trees. The first overlay tree thus defined is the main tree.
Subsequent trees are co-trees. For example:

+ROOT X,Y
X: .FCTR X0-(X1,X2,X3)
Y .FCTR YO0-(Y1l,Y2)
«END
In this example, two overlay trees are specified: 1) a main tree
containing the root segment X0 and three overlay segments, and 2) a
co-tree consisting of root segment Y0 and two overlay segments. The

Executive 1loads segment X0 into memory when the task is activated.
The task then loads the remaining segments through calls to the
overlay run-time routines,

OVERLAY CAPABILITY

A co-tree must have a root segment to establish linkage with its own
overlay segments. However, co-tree root segments need not contain
code or data and, therefore, can be 0 length. You can create a
segment of this type, called a null segment, by means of the .NAME
directive, The previous example is modified, as shown below, to move
file YO0.0BJ to the root and include a null segment.

«ROOT X,Y

X: .FCTR X0-Y0-(X1,X2,X3)
- NAME YNUL

Y: +FCTR YNUL-(Y1l,Y2)
.END

The null segment YNUL is created by use of the .NAME directive, and
replaces the co-tree root that formerly contained Y0.0BJ.

4.5,2 Multiple-Tree Example

The following example illustrates the use of multiple trees to reduce
the size of the task,

In this example, the root segment CNTRL of task TK1 (described in
Séction 4.l1.1) has had two routines added to it: CNTRLX and CNTRLY.
The routines are logically independent of each other, and both are
approximately 4000(8) bytes 1long. However, the routines have been
placed in the root segment of TKl instead of being overlaid because
both routines must be accessed from modules on all paths of the tree.
In a single-tree overlay structure, the root segment 1is the only
segment common to all paths of the tree. The schematic diagram for
the modified structure is shown in Figure 4-13.

A21 A22
Al A2 B1 B2
T | T
J
CNTRLY
ROOT
CNTRLX SEGMENT
CNTRL

Figure 4-13 Overlay Tree for Modified TK1

OVERLAY CAPABILITY

One possible overlay description for this structure is shown below.

«ROOT CNTRL-CNTRLX-CNTRLY- (AFCTR,BFCTR,C)
AFCTR: J.FCTR A0-(Al,A2FCTR)
A2FCTR: .FCTR A2-(A21,A22)
BFCTR: .FCTR B0O-(Bl1l,B2)

«END

Because TK1l consists of disk-resident overlays and the new routines
are concatenated within the overlay structure, the new routines add
10000(8) bytes to both the virtual address space and physical memory
requirements of the task. However, the added routines consume more
virtual address space than might be expected, as shown in Figure 4-14.

The expansion of TKl's virtual address space requirements caused the
task to extend 4000(8) bytes beyond the next highest 4K word boundary
(APR 2). Because the Executive must wuse an additional mapping
register (APR2) the apparent cost in virtual address space above APR 2
of 4000(8) bytes is in fact 20000(8) bytes. (Compare the diagram in
Figure 4-14 with the diagram in Figure 4-3.) The shaded portion of the
unused virtual address space in Figure 4-14 represents the portion of
virtual address space that is allocated but is unusable as allocated.

Small tasks, such as TKl1l, are seldom adversely affected by the
inefficient allocation of virtual address space, but larger tasks may
be. For example, a large task that contains code to <create dynamic
regions (see <Chapter 3) or that contains Executive directives to
extend its task region (see the RSX-11M/M-PLUS Executive Reference
Manual) will require at least 4K words of virtual address space to map
each region. 1In such a task, the use of co-trees can often save
virtual address space and can, therefore, be of paramount importance.
TK1l can be modified to reflect this.

As noted earlier, the routines CNTRLX and CNTRLY are logically
independent. Logical independence 1is a primary requirement for all
segments that overlay each other. However, CNTRLX and CNTRLY cannot
be structured into either of the main branches of TKl's tree because
it is further required that the routines be accessible from modules on
all paths of the tree. Therefore, the only way CNTRLX and CNTRLY can
be overlaid and still meet all of these requirements 1is through a
co-tree structure. Figure 4-15 shows the schematic representation of
TK1l as a co—-tree structure.

OVERLAY CAPABILITY

APR7—
APR6—
APR5—
APR4—
APR3—
A21]A22
APR2— AT B1
A2 B2 | C
Ao | BO
| _ _ CONTRLY
R
APR1— | _ ONTRLX
ROOT .
SEGMENT CNTRL CNTRL
APRO— HEADER ANDSTAC.. | _ _ _ _ _ HEADER AND STACK
VIRTUAL ADDRESS
SPACE

PHYSICAL MEMORY

Figure 4-14 Virtual Address Space and Physical Memory for Modified TK1

OVERLAY CAPABILITY

A21 A22
Al A2 B1 B2
L_‘__l
AOD Bf ? ~ CNTRLX CNTRLY
CNTRL CNTRL2
MAIN TREE CO-TREE

Figure 4-15 Overlay Co-Tree for Modified TK1

The root segment CNTRL2 of the co-tree is a null segment. It contains
no code or data and has a length of 0. As noted earlier, the root
segment is required by the Task Builder in order to establish 1linkage
with the overlay segments. One possible overlay description for
building TK1l as a two-tree structure is shown below.

.NAME CNTRL2 ,
.ROOT CNTRL- (AFCTR,BFCTR,C),CNTRL2- (CNTRLX ,CNTRLY)
AFCTR: .FCTR AO-(Al,A2FCTR)
A2FCTR: .FCTR A2-(A21,A22)
BFCTR: .FCTR BO-(Bl,B2)
.END

The co-tree is defined in the .ROOT directive by placing the comma
operator outside all parenthesis (immediately before CNTRL2). The
.NAME directive creates the null root segment. Figure 4-16 shows the
new relationship between virtual address space and physical memory.

The diagrams in Figure 4-16 illustrate the savings (4000(8) bytes) in
both wvirtual address space and physical memory that is realized by
overlaying CNTRLX and CNTRLY. What may be more important in some
applications, however, 1is that the top of TKl's task region has
dropped below the 4K boundary of APR 2. TK1 has gained 4K words of
potentially usable virtual address space. ‘

NOTE

The numbers used in this example have
been simplified for illustrative
purposes. In addition, the storage
required for overhead in handling the
overlay structures is not reflected 1in
this example.

Because the null root CNTRL2 is O bytes long, it does not require any

virtual address space or physical memory and, therefore, does not
appear in the diagrams in Figure 4-16.

Finally, you can define any number of co-trees. Additional co-trees
can access all modules in the main tree and other co-trees.

OVERLAY CAPABILITY

APR 7—

APR 6-

APR 5—

APR 4—

APR 3—

APR 2— _—— - - -
» CNTRLX CNTRLY | _ NULL ROOT CNTRLX CNTRLY
A21|A22 LENGTH=0 A21[A22
A1 B1 Al B1
A2 B2| ¢ A2 B2 | ¢
AO BO —_— AO BO
APR 1—
CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
HEADER AND STACK HEADER AND STACK
APRO— b o — - —

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 4-16 Virtual Address Space
and Physical Memory for TKl as a Co-Tree

OVERLAY CAPABILITY

4.6 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL LANGUAGE

Programs written in a high-level language usually require the use of a
large number of library routines in order to execute. Unless care is
taken when overlaying such programs, the following problems can occur:

e Task Builder throughput may be drastically reduced because of
the number of library references in each overlay segment.

e Library references from the default object module 1library,
that are resolved across +tree boundaries can result in
unintentional displacement of segments from memory at runtime.

® Attempts to task build such programs can result in multiple
and ambiguous symbol definitions when a co-tree structure is
defined.

The following procedures are effective in solving these problems:

® Task Builder throughput can be increased if you link commonly
used library routines into the main root segment.

e Ambiguous and multiple definitions, and cross-tree references
can be eliminated by using the NOFU switch (the Task Builder
default) to restrict the scope of the default library search.

If sufficient memory is available, the object time system can be
effectively placed 1in the root segment by building a memory-resident
library. This also reduces total system memory requirements if other
tasks are also currently using the library.

If a memory-resident library cannot be built, you can force 1library
modules into the root by preparing a list of the appropriate global
references and linking the object module into the root segment.

For other ways to reduce task size, you should consult the user's
guide for the language you are using.

4.7 EXAMPLE 9: BUILDING AN OVERLAY

The text in this section and the figures associated with it illustrate
the building of an overlay structure. For this example, the routines
of the resident library LIB.TSK and the task that refer to it,
MAIN,TSK (from Example 4, Chapter 3), are assembled as separate
modules and built as an overlaid task. This task is built first with
disk-resident overlays and then with memory-resident overlays. The
"disk~-resident version of the task 1is named OVR.TSK and the
memory-resident version is named RESOVR.TSK.

NOTE

This example is intended to provide you
with a working illustration of the
Overlay Description Language. It does
not reflect the most efficient use of
it.

OVERLAY CAPABILITY

Two alterations were made to each of the routines for this example:

A ,TITLE and

.END assembler directive was added to each
routine to establish it as an unique module.

The following assembler directive was added to each arithmetic
routine to increase its allocation:

.BLKW 1024.%3

This was done to make the Task Builder allocation of address
space more obvious for documentation purposes.
The operation of the overlaid task is identical to that of Example 4
in Chapter 3. The routines and their titles as a result of the .TITLE
directives are as follows:
e The integer addition routine is named ADDOV
e The integer subtraction routine is named SUBOV
e The integer multiplication routine is named MULOV
e The integer division routine is named DIVOV
e The register save and restore routine is named SAVOV
e The print routine is named PRNOV
e The main calling routine is named ROOTM
The lengths of the modules are:
Module Length (in octal)
ADDOV 14024 bytes
SUBOV 14024 bytes
MULOV 14024 bytes
DIVOV 14026 bytes
SAVOV 4042 bytes
PRNOV 4260 bytes
ROOTM 4104 bytes
The flow of control for OVR.TSK is as follows:
ROOTM calls ADDOV and ADDOV returns to ROOTM
ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM
ROOTM calls SUBOV and SUBOV returns to ROOTM
. ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM
ROOTM calls DIVOV and DIVOV returns to ROOTM
ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM
ROOTM calls MULOV and MULOV returns to ROOTM
ROOTM calls PRNOV to print the result and PRNOV returns to ROOTM

4-35

OVERLAY CAPABILITY

The print routine (contained in module PRNOV) is called between each
arithmetic operation by the control routine (contained in module
ROOTM). To avoid loading it into physical memory each time it is
called, PRNOV can be placed 1in the root segment of the task. 1In
addition, each arithmetic routine calls SAVOV. Therefore, SAVOV must
be on a path common to all segments in the tree. It too is placed in
the root segment of the task. One possible overlay configuration for
this task is shown in Figure 4-17.

SUBOV DIvVOv

MULOV ADDOV
T
SAVOV
ROOT
PRTOV SEGMENT
ROOTM

Figure 4-17 Overlay Tree of Virtual Address Space for OVR.TSK

To build this overlay, first create an ODL file (OVERTREE.ODL) that
contains its description:

«ROOT ROOTM-PRNOV-SAVOV-* (MULOV ,ADDOV- (SUBOV,DIVOV))

+END

Then, after you have modified the modules and assembled them, you can
build the task with the following command line:

TKB> OVR,0VR/-SP=0OVRTREE/MP

This command instructs the Task Builder to build a task image OVR.TSK
and to create a map file, OVR.MAP, under the UFD that corresponds to
the terminal UIC., The negated spool switch (/-SP) inhibits the Task
Builder from spooling the map file to the line printer.

The overlay switch (/MP) attached to the input file tells the Task
Builder that the input file is an ODL file. Therefore, this file will
be the only input file specified. Refer to Chapter 6 for a
description of the switches used in this example.

A portion of the map that results from this task build is shown in
Figure 4-18.

OVERLAY CAPABILITY

PARTITION NAME : GEN

IDENTIFICATION : 01

TASK UIC ¢ [303,3)

STACK LIMITS: 000176 001175 001000 00512, Task
PRG XFR ADDRESS: 010010 Attributes
TOTAL ADDRESS WINDOWS: 1. Section
TASK IMAGE ©SIZE : 10496. WORDS

TASK ADDRESS LIMITS: 000000 050753

R-W DISK BLK LIMITS: 000002 000106 000105 00069. |
OVR.TSK;1l OVERLAY DESCRIPTION:

BASE TOP LENGTH

000000 020677 020700 08640. ROOTM

020%00 014024 06164. MULOV

0207R0 06164. ADDOV

03472 06164. SUBOV

034724 06168. DIVOV

*%% ROOT SEGMENT: ROOTM

R/W MEM LIMITS: 000000 020677 020700 08640.

DISK BLK LIMITS: 000002 000022 000021 00017.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.:(RW,I,LCL,REL,CON) 001176 002034 01052.
ANS : (RW,D,GBL,REL,OVR) 003232 004006 02054.

003232 004006 02054, ROOTM 01

.

GLOBAL SYMBOLS:

AADD 007276-R DIVV 007316-R PRINT 014274-R
ANS 007232-R MULL 007266-R SAVAL 020366-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 7768.
WORK FILE READS: 0. :

WORK FILE WRITES: 0.

SIZE OF CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 3328. WORDS (13. PAGES)

ELAPSED TIME:00:00:27

Figure 4-18 Map File for OVR.TSK

SUBB

ROOTM.0BJ; 10

007306-R

Figure 4-19 shows the allocation of virtual address space for OVR,.TSK.
The circled numbers in Figure 4-18 correspond to the circled numbers

in Figure 4-19.

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

Figure 4-19

OVERLAY CAPABILITY

SUBOV - DIVOV

MULOV ADDOV

SYSLIB
SAVOV
PRNOV
ROOTM

HEADER AND STACK

— 050753

¢

— 034723

¢

— 020677

¢

ROOT SEGMENT
— 001176
— 000000

“

Allocation of Virtual Address Spacebfor OVR.TSK

OVERLAY CAPABILITY

Note that the root segment for OVR.TSK (ROOTM) has expanded with task
building while the segments containing the arithmetic routines have
not, Before task building, the sum of the modules (in octal bytes)
that comprise the root segment is:

4104 + 4260 + 4042 = 14,426 bytes

After task building, the root segment is 20,677(8) bytes 1long. The
Task Builder has added a header, a stack area, and the overlay
run-time routines to it. The segments containing the arithmetic
routines have not changed. If there had been calls from segments
nearer the root to segments up tree, the Task Builder would have added
data structures to the calling segments as well. (Refer to Chapter 5
for a description of the overlay loading methods.)

You can build OVR as a memory-resident overlay by simply adding the
memory—-resident operator (!) to the ODL file for OVR as shown below:

«ROOT ROOTM-PRNOV-SAVOV-*! (MULOV ,ADDOV-! (SUBOV,DIVOV))
.END

For this example, the name of the ODL file and the task image file
have been changed to RESOVR.ODL to distinguish it from the disk
resident version. You can build RESOVR with the following command
line:

TKB>RESOVR ,RESOVR/-SP=RESOVR/MP

This command directs the Task Builder to build a task named RESOVR.TSK
and to «create a map file named RESOVR.MAP. The negated spooling
switch (/-SP) inhibits spooling of the map file.

The MP switch on the input file tells the Task Builder that the file
is an ODL file and that it will be the only input file for this task
build. Refer to Chapter 6 for a description of the switches wused in
this example.

A portion of the map that results from this task build 1is shown in
Figure 4-20.

Figure 4-21 shows the allocation of virtual address space for
RESOVR.TSK. The <circled numbers in Figure 4-20 correspond to the
.numbers in Figure 4-21,

OVERLAY CAPABILITY

PARTITION NAME : GEN
IDENTIFICATION : 01
TASK UIC : [30343]
STACK LIMITS: 000236 001235 001000 00512. Task
PRG XFR ADDRESS: 010226 Attributes
TOTAL ADDRESS WINDOWS: 3. Section
TASK IMAGE SIZE : 16896. WORDS
TASK ADDRESS LIMITS: 000000 077777
R-W DISK BLK LIMITS: 000002 000107 000106 00070. _
RESOVR.TSK; 2 OVERLAY DESCRIPTION:
BASE TOP 9 LENGTH
000000 Q21377//021400 08960. ROOTM
040000 054077 014100 06208. MULOV
040000k 0540771 014100 06208. ADDOV
060000 \ 074077 \014100 06208. SUBOV
060000K \074077h \014100 06208. DIVOV
*** ROOT SEGMENT: ROOTM
R/W MEM LIMITS: 000000 021377 021400 08960.
DISK BLK LIMITS: 000002 000023 000022 00018.
MEMORY ALLOCATION SYNOPSIS:
SECTION TITLE IDENT FILE
. BLK.: (RW,I,LCL,REL,CON) 001236 002034 01052.
ANS : (RW,D,GBL,REL,OVR) 003272 004006 02054.
003272 004006 02054. ROOTM 01 ROOTM.OBJ; 10

GLOBAL SYMBOLS:
AADD 007336-R DIVV 007356-R PRINT 014512-R SUBB 007346-R
ANS 007272-R MULL 007326-R SAVAL 020604-R
*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 7840.

WORK FILE READS : 0.

WORK FILE WRITES : O.

SIZE OF CORE POOL: 8198. WORDS (32. PAGES)

SIZE OF WORK FILE: 3328. WORDS (13. PAGES)

ELAPSED TIME:00:00:24

Figure 4-20 Map File for RESOVR.TSK

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2— |

APR 1—

APR 0—

Figure 4-21

OVERLAY CAPABILITY

MULOV ADDOV

SYSLIB
SAVOV
PRNOV
ROOTM

=23 — 074077

— 060000
— 054077

HEADER AND STACK

- — 040000

— 021377

— 001236
— 000000

ROOT SEGMENT

Allocation of Virtual Address Space for RESOVR.TSK

OVERLAY CAPABILITY

Note that the Task Builder allocates virtual address space for each
level of overlay segment on a 4K word boundary. When built as a
disk-resident overlay, this structure requires 12K words of virtual
address space; when built as a memory-resident overlay structure, it
requires 16K words of virtual address space. As noted earlier, you
must be careful when using memory-resident overlays to ensure that
virtual address space is used efficiently.

Finally, note in Figure 4-20 that the Task Builder has allocated three
window blocks to map RESOVR.TSK. Each 1level of the overlay in a
memory-resident overlay requires a separate window block to map it.
In a disk-resident overlay, a single window block maps the entire
structure regardless of how many segment levels there are within the
structure, This consideration can be important when you are building
an overlaid task that either creates dynamic regions or that accesses
a resident 1library or common because of the extra window blocks
required to use these features.

4.8 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

1. An overlay structure consists of one or more trees, Each
tree contains at least one segment. A segment is one or more
modules containing one or more program sections that can be
loaded by a single disk access.

A tree can have only one root segment, but it can have: any
number of overlay segments,

2. An ODL file is a text file consisting of a series of overlay
description directives, one directive per line. You enter
this file in the Task Builder command line, and identify it
as an ODL file by attaching the MP switch to the file name.
If you enter an ODL file in the Task Builder command line, it
must be the only input file you specify.

3. The overlay description language provides five directives for
specifying the tree representation of the overlay structure:

a. JROOT and .END -- There can be only one .ROOT and one
.END directive; the J.END directive must be the last
directive because it terminates input.

b. .PSECT

Cc. +FCTR

d. .NAME

.PSECT, .FCTR, and .NAME can be used in any order in the ODL
file.

4. You define the tree structure using the hyphen (-), comma
(), and exclamation point (!) operators, and by using
parentheses.

a. The hyphen'operator (=) indicates that its arguments are

to be concatenated and thus are to coexist in memory.

b. The comma operator (,) within parentheses indicates that
its arguments are to overlay each other either

physically, if disk resident, or wvirtually, if memory
resident.

c. The comma operator not within parentheses delimits
overlay trees.

OVERLAY CAPABILITY

d. The parentheses group segments that begin at the same
point in memory. For example:

.ROOT A-B-(C,D-(E,F))

This ODL command line defines an overlay structure with a
root segment consisting of the modules A and B. In this
structure, there are four overlay segments: C, D, E, and
F. The outer pair of parentheses indicates that the
overlay segments C and D start at the same virtual
address; and similarly, the inner parentheses indicate
that E and F start at the same virtual address.

e. The exclamation point operator (!) immediately before a
left parenthesis declares the enclosed segments to be
memory resident, Nested segments in parentheses are not
affected by an exclamation point operator at a level
closer to the root. '

The .ROOT directive defines the beginning overlay structure.
The arguments of the ,ROOT directive are one or more of the
following:

a. File specifications as described in Chapter 1

b. Factor labels

c. Segment names

d. Program-section names

The .END directive terminates input

The .FCTR directive provides a means for replacing text by a

symbolic reference (the factor label). This replacement is

useful for two reasons:

a. The .FCTR directive extends the text of the .ROOT
directive to more than one line and thus allows complex
trees to be represented.

b. The .FCTR directive allows the overlay description to be
written in a form that makes the structure of the tree
more apparent,

For example:

.ROOT a-(B-(C,D),E-(F,G),H)
.END

Using the .FCTR directive this overlay description can be
written as follows:

.ROOT A-(F1,F2,H)

Fl: .FCTR B-(C,D)
P22 .FCTR E-(F,G)
.END

The second representation makes it clear that the tree has
three main branches.

lo0.

OVERLAY CAPABILITY

The .PSECT directive provides a means for directly specifying
the segment in which a program section is placed. It accepts
the name of the program section and 1its attributes. For
example:

.PSECT ALPHA,CON,GBL,RW,I,REL

ALPHA is the program section name and the remaining arguments
are the program section's attributes (program section
attributes are described in Chapter 2).

The program section name (composed of the characters A-Z,
0-9, and $) must appear first in the .PSECT directive, but
the attributes can appear in any order, or can be omitted.
If an attribute is omitted, a default condition is assumed.
The defaults for program section attributes are RW, I, LCL,
REL, and CON.

In the example above, therefore, you need only specify the
attributes that do not correspond to the defaults: .PSECT
ALPHA,GBL

The .NAME directive provides you with the means to designate
a segment name for wuse in the overlay description, and to
specify segment attributes, This directive is wuseful for
creating a null segment, naming a segment that is to be
loaded manually, or naming a nonexecutable segment that is to
be autoloadable. (Refer to Chapter 5 of this manual for a
description of manually loaded and automatically loaded
segments.,) If you do not use the .NAME directive, the Task
Builder uses the name of the first file, program section, or
library module in the segment to identify the segment,

The .NAME directive creates a segment name as follows:
.NAME segname,attr,attr

where segname 1is the designated name (composed of the
characters A-Z, 0-9, and $), and attr is an optional
attribute taken from the following: GBL, NODSK, NOGBL, DSK.
The defaults are NOGBL and DSK. The defined name must be
unique with respect to the names of program sections,
segments,. files, and factor labels.

You can define a co-tree by specifying an additional tree
structure in the ROOT directive. The first overlay tree
description in the ,ROOT directive 1is the main tree.
Subsequent overlay descriptions are co-trees. For example:

.ROOT A-B-(C,D-(E,F)),X-(Y¥,2),Q0-(R,S,T)

The main tree in this example has the root segment consisting
of files A.OBJ and B.OBJ. Two co-trees are defined; the
first co-tree has the root segment X and the second co-tree
has the root segment Q.

CHAPTER 5

OVERLAY LOADING METHODS

The RSX-11M/M-PLUS systems provide two methods for loading
disk~resident and memory-resident overlays:

e Autoload -- the Overlay Run-time routines are automatically
called to load segments you have specified

e Manual Load -- you include in the task explicit calls to the
Overlay Run-Time routines.

When you build an overlaid task, you must decide which one of these
methods to use, because both cannot be used in the same task.

The loading process depends on the kind of overlay:

e Disk resident -- a segment is loaded from disk into a shared
area of physical memory, writing over whatever was present.

e Memory resident -- a segment is "loaded" by mapping a set of
shared virtual addresses to a unique unshared area of physical
memory, where the segment has been made permanently resident
(after having been initially brought in from the disk).

With the autoload method, the Overlay Run-Time routines handle loading
and error recovery. Overlays are automatically loaded by being
referenced through a transfer-of-control instruction (CALL, JMP, or
JSR). No explicit calls to the Overlay Run-Time routines are needed.

In the manual load method, you handle 1loading and error recovery
explicitly. Manual 1loading saves space and gives you full control
over the loading process, including the ability to specify whether
loading is to be done synchronously or asynchronously.

In the manual load method, you must provide for 1loading the overlay
segments of both the main tree and the root segments, as well as the
overlay segments, of the co-trees. Once loaded, the root segment of a
co-tree remains in memory.

5.1 AUTOLOAD

To specify the autoload method, you use the autoload indicator, an
asterisk (*). You place this indicator in the ODL description of the
task at the points where loading must occur. The execution of a
transfer-of-control instruction to an autoloadable segment up-tree

(farther away from the root) automatically initiates the autoload
process.

OVERLAY LOADING METHODS

5.1.1 Autoload Indicator

The autoload indicator (*) marks as autoloadable the segment or other
task element (as defined below). If you apply the autoload indicator
to an ODL statement enclosed in parentheses, every task element within
the parentheses 1is marked as autoloadable. Placing the autoload
indicator at the outermost level of parentheses in the ODL description
marks every module in the overlay segments as autoloadable.

If, in the TKl1 example of Chapter 4, Section 4.1.1, segment C

consisted of a set of modules Cl, C2, C3, C4, and C5, the tree diagram
would be as shown in Figure 5-1.

A21 A22

C5
c4
IN A2 Bl B2 &3
L ot
AD BO C1
|
—
CNTRL

Figure 5-1 Details of Segment C of TK1

Placing the autoload indicator at the outermost level of parentheses
ensures that, regardless of the flow of control within the task, a
module will be properly loaded when it is called. The ODL description
for task TK1l would be:

.ROOT CNTRL-* (AFCTR,BFCTR,CFCTR)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR B0-(B1l,B2)
CFCTR: .FCTR Cl1-C2-C3-C4-C5

.END

Also, when the root segment of a co-tree is not a null segment, you
must mark the co-tree's root segment (CNTRL2) as well as its outermost
level of parentheses to ensure that all modules of the co-tree are
properly loaded. For example, 1if the co-tree root (CNTRL2) of the
multiple tree example, Section 4.5.2, had contained code or data it
would have been marked as follows:

.ROOT CNTRL-* (AFCTR,BFTCR,CFCTR) , *CNTRL2-* (CNTRLX ,CNTRLY)

You can apply the autoload indicator to the following elements:

e File names - to make all the components of the file
autoloadable,

e Portions of ODL tree descriptions enclosed in parentheses - to
make all the elements within the parentheses autoloadable,
including elements within any nested parentheses.

e Program section names - to make the program section
autoloadable. The program section must have the instruction
(I) attribute.

OVERLAY LOADING METHODS

e Segment names defined by the .NAME directive - to make all
components of the segment autoloadable.

e .FCTR label names - to make the first component of the factor
autoloadable. All elements specified in the .FCTR statement
are autoloadable if they are enclosed in parentheses,

In the following example, two .PSECT directives and a .NAME directive
are introduced into the ODL description for TKl. Autoload indicators
are applied as follows:

«ROOT CNTRL-(*AFCTR,*BFCTR,*CFCTR)

AFCTR: .FCTR AO-*ASUBl1-ASUB2-* (Al ,A2-(A21,A22))
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: +FCTR CNAM-Cl1-C2-C3-C4~C5

.NAME CNAM,GBL

.PSECT ASUB1,I,GBL,OVR
.PSECT ASUB2,I,GBL,OVR
.END

The following notes are keyed to the example above.

1. The autoload indicator is applied to each factor name;
therefore:

e *AFCTR=*A0
e *BFCTR=* (BO-(B1-B2))
e *CFCTR=*CNAM

CNAM, however, is an element defined by a .NAME directive.
Therefore, all components of the segment to which the name

applies are made autoloadable, that is, Cl, C2, C3, C4, and
ChH.

2. The autoload indicator is applied to the name of a program
section with the instruction (I) attribute (*ASUBl), so
program section ASUBl is made autoloadable.

3. The autoload indicator is applied to a portion of the ODL
description enclosed in parentheses:

* (Al ,A2-(A21,A22))

Thus, every element within the parentheses is made
autoloadable (that is, files Al, A2, A2l1, and A22).

The net effect of this ODL description is to make every element except
program section ASUB2 autoloadable.

5.1.2 Path Loading

The autoload method uses path loading; that is, a <call £from one
segment to another segment up-tree (farther away from the root)
ensures that all the segments on the path from the calling segment to
the called segment will reside in physical memory and be mapped. Path
loading is confined to the tree in which the called segment resides.
A call from a segment in one tree to a segment in another tree results

in the loading of all segments on the path in the second tree from the
root to the called module.

OVERLAY LOADING METHODS

A21 A22
L__T_J Cb
c4
A1l A2 B1 B2 c3
E— L e
A0 BO C1
L . J

T
CNTRL

Figure 5-2 Path-Loading Example

In Figure 5-2, if CNTRL calls A22, all the modules between the CNTRL
and A2 are loaded. 1In this case, modules A0 and A2 are loaded.

With the autoload method, the Overlay Run-Time routines keep a record
of the segments that are loaded and mapped, and issue disk-load
requests only for segments that are not in memory. If CNTRL calls A2
after calling Al, A0 1is not loaded again because it is already in
memory and mapped.

A reference from one segment to another segment down-tree (closer to
the root) 1is resolved directly. For example, A2 can immediately
access A0 because A0 was path loaded in the call to A2.

5.1.3 Autoload Vectors

To resolve a reference up-tree to a global symbol in an autoloadable
segment, the Task Builder generates an autoload vector for the
referenced global symbol., The reference in the code is changed to a
definition that points to an autoload vector entry. The format for
the autoload vector is shown in Figure 5-3.

JSR PC,SUB

$AUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

Figure 5-3 Autoload Vector Format

In the figure, a transfer-of-control instruction to the global symbol
executes the call to the autoload routine, $AUTO.

An exception to the procedure for generating autoload vectors is made
in the case of a program section with the data (D) attribute.
References from a segment to a global symbol up-tree in a program
section with the data (D) attribute are resolved directly.

Because the Task Builder can obtain no information about the flow of
control within the task, it often generates more autoload vectors than
are necessary. However, your knowledge of the flow of control within
your task, and knowledge of path loading, can help you determine where
to place the autoload indicators. By placing the autoload indicators

OVERLAY LOADING METHODS

only at the points where 1loading 1is actually required, you can
minimize the number of autoload vectors generated for the task.

In the following example, all the calls to overlays originate in the
root segment. That is, no module in an overlay segment calls outside
its segment. The root segment CNTRL has the following contents:

PROGRAM CNTRL
CALL Al
CALL A2l
CALL A2
CALL AO
CALL A22
CALL BO
CALL Bl
CALL B2
CALL C1
CALL C2
CALL C3
CALL C4
CALL C5
END

If you place the autoload indicator at the outermost level of
parentheses, 13 autoload vectors are generated for this task;
however, because A2 and A0 are loaded by path 1loading to A2l, the
autoload vectors for A2 and A0 are unnecessary. Moreover, the call to
Cl loads the segment that contains C2, C3, C4, and C5; therefore,
autoload vectors for C2 through C5 are unnecessary.

You can eliminate the unnecessary autoload vectors by -placing the
autoload indicator only at the points where explicit loading is
required, as follows:

.ROOT CNTRL-(AFCTR,*BFCTR,CFCTR)

AFCTR: .FCTR AO-(*Al,A2-*(A21,A22))
BFCTR: .FCTR (BO-(B1l,B2))
CFCTR: .FCTR *C1-C2-C3-C4-C5

.END

With this ODL description, the Task Builder generates seven autoload
vectors -- for Al, A21, A22, BO, Bl, B2, and Cl.

5.1.4 Autoloadable Data Segments

You can make overlay segments that contain no executable code
autoloadable, as follows. First, you must include a .NAME directive
and specify the GBL attribute, as described 1in Section 4.4.4. For
example:

«ROOT A-*(B,C)
.NAME BNAME ,GBL

B: .FCTR BNAME-BFIL
«END

The global symbol BNAME is created and entered into the symbol table
of segment BNAME., Since this segment is marked to be autoloaded, root
segment A calls segment BNAME as follows:

CALL BNAME

OVERLAY LOADING METHODS

The segment is autoloaded and an immediate return to 1inline code
occurs.

The data of BFIL must be placed in a program section with the data (D)
attribute to suppress the creation of autoload vectors.

5.2 MANUAL LOAD

If you decide to use the manual load method to load segments, you must
include in your program explicit calls to the S$LOAD routine. These
load requests must supply the name of the segment to be loaded. In
addition, they can include information necessary to perform
asynchronous load requests, and to handle load request failures.

The $LOAD routine does not path load. A call to $LOAD loads only the
segment named in the request., The segment is read in from disk and
mapped regardless of its previous status.

A MACRO-11 programmer calls the $LOAD routine directly. A FORTRAN
programmer calls $SLOAD using the FORTRAN subroutine MNLOAD.,

5.2.1 MACRO-11 Manual Load Calling Sequence

A MACRO-11 programmer calls S$SLOAD as follows: ¢
MOV #PBLK,RO
CALL $LOAD

PBLK is the address of a parameter block with the following format:

PBLK: .BYTE length,event-£flag
) .RAD50 /seg-name/
.WORD [i/o-status]
.WORD [ast-trp]

length
The length of the parameter block (3 to 5 words).

event-flag
The event flag number, used for asynchronous 1loading.

If the event-flag number is 0, synchronous loading is
performed.

seg-name)
The name of the segment to be loaded: a 1l- to
6-character Radix-50 name, occupying two words.

i/o-status
The address of the I/0O status doubleword. Standard QIO
status codes apply.
ast-trp
The address of an asynchronous trap service routine to
which control is transferred at the completion of the
load request.
The condition code C-list is set or cleared on return, as follows:
e If condition code C=0, the load request was accepted.
e If condition code C=1, the load request was unsuccessful.

5-6

OVERLAY LOADING METHODS

For a synchronous load request, the return of the condition code C=0
means that the desired segment is loaded and is ready to be executed.
For an asynchronous load request, the return of the <code C=0 means
that the load request was successfully queued to the device driver,
but the segment is not necessarily in memory. Your program must
ensure that 1loading has been completed, by waiting for the specified

event flag before calling any routines or accessing any data in the
segment. '

5.2.,2 FORTRAN Manual Load Calling Sequence

To use the manual load mechanism in a FORTRAN program, Yyour program
must. refer to the $LOAD routine by means of the MNLOAD subroutine.
The subroutine call has the form:

CALL MNLOAD (seg-name [,event—-flagl[,i/o-status][,ast~trpl[,1d~ind])

seg-name

A 2-word real variable containing the segment name in
Radix-50 format.

event-flag
An optional integer event flag number used for an
asynchronous load request. If the event flag number is
0, the load request is synchronous.

i/o-status
An optional 2-word integer array containing the 1I/0
status doubleword, as described for the QIO directive
in the RSX-11M/M-PLUS Executive Reference Manual.

ast-trp
An optional asynchronous trap subroutine entered at the
completion of a request. MNLOAD requires that all
pending traps specify the same subroutine.

ld-ind
An optional integer variable containing the results of
the subroutine call. One of the following values is
returned:

+1 Request was successfully executed.

-1 Request had bad parameters or was not successfully
executed.

You can omit optional arguments. The following calls are legal:

Call Effect
CALL MNLOAD (SEGAl) Load segment named in SEGAl
synchronously.
CALL MNLOAD (SEGAl,0,,,LDIND) Load segment named in SEGAl
synchronously and return

success indicator to LDIND.

OVERLAY LOADING METHODS

Call Effect

CALL MNLOAD (SEGAl,1,I0STAT,ASTSUB,LDIND)
Load segment named in SEGAl

asynchronously, transferring
control to ASTSUB upon
completion of the load

request; store the I/0 Status
doubleword in IOSTAT, and. the
success indicator in LDIND.

The following example uses the program CNTRL, previously discussed in
Section 5.1. In this example, there is sufficient processing between
the calls to the overlay segments to make asynchronous loading
effective. The autoload indicators are removed from the ODL
description and the FORTRAN programs are recompiled with explicit
calls to the MNLOAD subroutine, as follows:

PROGRAM CNTRL
EXTERNAL ASTSUB

DATA SEGAl /6RAl /
DATA SEGA21 /6RA21 /

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)

CALL Al

CALL MNLOAD (SEGA21,1,I0STAT,ASTSUB,LDIND)

CALL A2l

END
SUBROUTINE ASTSUB
DIMENSION IOSTAT(2)

END

When the AST trap routine is wused, the 1I/0 status doubleword is
automatically supplied to the dummy variable IOSTAT.

5.3 ERROR HANDLING

If you select the manual load method, you must provide error handling
routines that diagnose load errors and provide appropriate recovery.

If you use the autoload mechanism, a simple recovery procedure is

provided that checks the Directive Status Word (DSW) for an error
indication., 1If the DSW indicates that no system dynamic storage |is

5-8

OVERLAY LOADING METHODS

available, the routine issues a Wait for Significant Event directive
and tries again; if the problem is not dynamic storage, the recovery
procedure generates a synchronous breakpoint trap. If the task
services the trap and returns without altering the state of the
program, the request will be retried.

A more comprehensive user-written error recovery subroutine can be
substituted for the system-provided routine if the following
conventions are observed:

l. The error recovery routine must have the entry point name
$ALERR.

2. The contents of all registers must bevsaved and restored.

On entry to SALERR, R2 contains the address of the segment descriptor
that could not be loaded. Before recovery action can be taken, the
routine must determine the «cause of the error by examining the
following words in the sequence indicated:

1. $DSW The Directive Status Word may contain "an error
status code, indicating that the Executive
rejected the I/0 request to 1load the overlay
segment.

2. N.OVPT The contents of this location, offset by N.IOST,

point to a 2-word I/0 status block containing the
results of the load overlay request returned by
the device driver. The status code occupies the
low-order byte of word 0. For example, for a
device not ready condition, the code will be
IE.DNR. (For more information on these codes
refer to the IAS/RSX-11 I/0 Operations Reference
Manual.)

5.4 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

This section 1illustrates a global <cross-reference that has been
created for an overlaid task. The task consists of a root segment
containing the module ROOT.OBJ, and two overlay segments composed of

modules OVRl1 and OVR2. The overlay description of the file is as
follows:

.ROOT ROOT-(OVR1l,*0VR2)

Only segment OVR2 is autoloadable., Figure 5-4 shows the resulting
cross-reference listing.

As shown, the global symbol OVRl is defined 1in module OVRl, and a
single nonautolaodable, up-tree reference is made to this symbol by
the module ROOT, as indicated b the circumflex. Note that segment
OVR1 cannot be evaded because of the restriction against mixing manual
load and autoload in the same task.

5-9

OVRTST
GLOBAL
SYMBOL

N.ALER
N.IOST
N .MRKS
N.OVLY
N.OVPT
N .RDSG
N.STBL
N.SZSG
OVR1
OVR2
ROOT
$ALBP1
SALBP2
$ALERR
SAUTO
$DSW
SMARKS
$0TSV
$SAVRG
SVEXT
.FSRPT
.NALER
.NIOST
.NMRKS
.NOVLY
.NOVPT
.NRDSG
.NSTBL
.NSZSsG

OVRTST

OVERLAY LOADING METHODS

ON 1-0CT-76 AT 12:04

CREATED BY TKB

CROSS REFERENCE

VALUE REFERENCES...
000010 AUTO OVRES
000004 OVCTL OVRES
000016 # OVRES

000000 OVCTL OVRES
000054 AUTO OVCTL -
000014 # OVRES

000002 # OVRES

000012 # OVRES

002014-R # OVR1 ROOT
002014-R * OVR2 ROOT
001176-R 0 ROOT

001320-R # AUTO

001416-R # AUTO

001246-R # ALERR OVDAT
001302-R # AUTO

000046 ALERR VCTDF
001546-R # OVCTL

000052 # VCTDF

001452-R AUTO SAVRG
000056 # VCTDF

000050 # VCTDF

001442-R # OVDAT

001436-R # OVDAT

001450-R # OVDAT

001432-R # OVDAT

000042 # OVDAT

001446-R # OVDAT

001434-R # OVDAT

001444-R # OVDAT

CREATED BY TKB

SEGMENT CROSS REFERENCE

SEGMENT NAME

OVR1
OVR2
ROOT

As shown,

single

OVR1
OVR2

ALERR

VCTDF

Figure 5-4

AUTO

VCTDF

ON 1-0CT-76 AT 12:04

RESIDENT MODULES

OVCTL

CVDAT

OVRES

PAGE

CREF

PAGE

CREF

ROOT

Sample Overlaid Cross-Reference Listing

up-tree

the global symbol OVR1l is defined
nonautoloadable,
the module ROOT, as indicated by the circumflex.

module
reference is made to this symbol by

Note

OVR1,

that

1

Vol

2
Vol

SAVRG

and

segment

OVR1l cannot be evaded because of the restriction against mixing manual
load and autoload in the same task.

OVERLAY LOADING METHODS

The asterisk preceding the module OVR2 indicates that the global
symbol OVR2 is an autoload symbol and is referenced from the module

ROOT through an autoload vector, as shown by the at sign (@)
character.

Down-tree references to the global symbol ROOT are made from modules
OVRL and OVR2. These references are resolved directly.

The segment cross-reference shows the segment name and modules in each
overlay.

CHAPTER 6

SWITCHES AND OPTIONS

You use switches and options to control the construction of your task
image. This chapter provides detailed reference information on all
the Task Builder switches and options.

6.1 SWITCHES
The syntax for a file specification, as given in Chapter 1, is:

dev: [group,member]filename.type;version/swl/sw2.../swn
Optionally, you can conclude a file specification with one or more
switches (swl,sw2,...swn). When you do not specify a switch, the Task

Builder establishes a default setting for it.

You designate a switch by a 2- to 4-character code preceded by a slash

(/). If you precede the 2- to 4-character code with a minus sign (-)
or the letters NO, the Task Builder negates the function of the two
characters. For example, the Task Builder recognizes the following

settings for the switch CP (checkpointable):

/CP The task is checkpointable
/—-CP The task is not checkpointable
/NOCP The task is not checkpointable

In some cases, two particular switches cannot both be used in a file
specification. When sach a conflict occurs, the Task Builder selects
the overriding switch according to the following table:

Switch Switch Overriding Switch
AC (Ancillary Control PR (Privileged) AC
Processor)
EA (Extended Arithmetic FP (Floating Point FP
Element) Processor)
CC (Concatenated object LB (Library file) LB
file)

For example:
MCR>TKB IMG5=IN6,IN5/LB/CC
The Task Builder assumes that the input file IN5 is a library file.

It searches the file for undefined global references. It does not
include in the task image all of the modules in INS.

SWITCHES AND OPTIONS

The switches that the Task Builder recognizes are given in
alphabetical order in Table 6-1. Sections 6.1.1 through 6.1.31 give
detailed descriptions of each switch, in alphabetical order,
including:

e¢ The switch format
e The file(s) to which the switch can be applied
e A description of the effect of the switch on the Task Builder

e The default assumption made if the switch is not present

Table 6-1
Task Builder Switches
Applies
Format Meaning to File Default
AC[:n] | Task is an ancillary control pro- .TSK -AC
cessor
AL Task can be checkpointed to space . TSK -AL
allocated in the task image file
ccC Input file consists of concatenated .OBJ ccC
object modules
CM Memory-resident overlays are aligned . TSK -CM
on 256-word physical boundaries
CP Task is checkpointable .TSK -CP
CR A global cross-reference listing . MAP -CR
is appended to the memory allocation
file
DA Task contains a debugging aid .TSK, -DA
.0OBJ
DL Specified library file is a re- .OLB -DL
placement for the system object
module library
EA Task uses extended arithmetic . TSK -EA
element
FP Task uses the floating-point .TSK -FP
processor
1

The default is /MA for an

input

resident library .STB files.

2

The default for the memory management
system has memory management hardware

switch
and /-MM if

file, and /-MA for

is /MM
the

if the
host

system and

host
system

does not have memory management hardware.
(continued on next page)

SWITCHES AND OPTIONS

Table 6-1 (Cont.)
Task Builder Switches

Applies
Format Meaning to File Default
FU All cotree overlay segments are . TSK -Fu
searched for matching definition or
reference when modules from the de-
fault object module library are
being processed
HD Task image includes a header .TSK, HD
.STB
LB Input file is a library file .OLB -LB
MA Map file includes information .MAP, MA or -Mal
from the file . TSK
MM System has memory management .TSK MM or —-MM?2
MP Input file contains an overlay .ODL -MP
description
MU Task is a multiuser task . TSK -MU
PI Task is position independent .TSK, -PI
.STB
PM Postmortem Dump is requested . TSK -PM
PR[:n] | Task has privileged access rights . TSK -PR
RO Memory-resident overlay operator . TSK RO
(!) is enabled
SE Messages can be directed to the . TSK SE
task by means of the Executive
SEND directive
SH Short memory allocation file is .MAP SH
requested
SL Task is slaved to an initiating .TSK -SL
task
SP Spool map output . MAP SP
SQ Task program sections are . TSK -850
allocated sequentially
SS Selective Search for global .0OBJ -8S
symbols
TR Task is to be traced . TSK -TR
WI Memory allocation file is printed . MAP WI
at a width of 132 characters
XT[:n] | Task Builder exits after n . TSK =-XT
diagnostics

SWITCHES AND OPTIONS

This page left blank intentionally

SWITCHES AND OPTIONS

6.1.1 /AC[:n] -- Ancillary Control Processor
File

Task image
Syntax

file.TSK/AC:0=£file.OBJ
or

file.TSK/AC:4=£file.OBJ
or

file.TSK/AC:5=file.OBJ

Description

Your task is an ancillary control processor; that is, it 1is a
privileged task that extends certain Executive functions. For
example, the system task F1lACP is an ancillary control processor
that receives and processes FILES-1l1l related input and output
requests on behalf of the Executive.

Effect

Your task is privileged. The Task Builder sets the AC attribute
flag and the privileged attribute flag in your task's label block
flag word.

The value of n is an octal number that specifies the first KT-11
Active Page Register that you want the Executive to use to map
your task's image when your task is running in user mode. Legal
values are 0, 4, and 5. If you do not specify n, the Task
Builder assumes a value of 5,

If you do not explicitly specify that your task is to run on a
mapped system (through the MM switch) and it is not otherwise
implied (the Task Builder is not running in a system with KT-11
hardware), the Task Builder merely tests the value of the switch
for validity, but otherwise ignores it.

Default

/—AC

NOTE

You should not use /AC and /PR on the
same command line.

SWITCHES AND OPTIONS

6.1.2 /AL -- Allocate Checkpoint Space

Task image
Syntax
file.TSK/AL=file.0BJ

Description

Your task is checkpointable. The system will checkpoint it to
space in your task's image file.

Effect

Your task is checkpointable. This switch directs the Task
Builder to allocate additional space in your task image file to
contain the checkpointed task image.

Default

/-AL

NOTE

It does not make sense to use /CP and
/AL in the same command line.

SWITCHES AND OPTIONS

CcC

6.1.3 /CC -- Concatenated Object Modules
File
Input
Syntax
file.TSK=file.OBJ/~CC
Description

This switch controls the way the Task Builder extracts modules
from your input file.

Effect
By default, the Task Builder includes in your task image all the
modules of your input file. If you negate this switch (as in the
"Syntax" section above), the Task Builder includes only the first
module of your input file.

Default

/ccC

SWITCHES AND OPTIONS

6.1.4 /CM -- Compatibility Mode Overlay Structure

File
Task image

Syntax
file.TSK/CM=file.OBJ

Description
Your task will be built in compatibility mode,

Effect
The Task Builder aligns memory-resident overlay segments on
256-word boundaries for compatibility with other implementations
of the mapping directives.

Default

/-CM

SWITCHES AND OPTIONS

/CP -- Checkpointable

Task image

Syntax

file.TSK/CP=file.OBJ

Description

Your task is checkpointable. The system will checkpoint it to’
space that you have allocated in the system checkpoint file on
the system disk. This switch assumes that you have allocated the
checkpoint space through the MCR command ACS. (Refer to the
RSX-11M/M-PLUS MCR Operations Manual.)

Effect

The system writes your task to the system checkpoint file on
secondary storage when its physical memory is required by a task
of higher priority.

Default

/-CP

NOTE

It does not make sense to use /CP and
/AL in the same command line.

SWITCHES AND OPTIONS

CR

6.1.6 /CR -- Cross-Reference
File
Memory allocation (map)
Syntax
file.,TSK,file.MAP/CR=file,OBJ

Description

This switch determines whether or not a cross reference 1listing
is added to your map file.

Effect

The Task Builder creates a special work file (file.CRF) which
contains segment, module, and global symbol information. The
Task Builder then calls the cross reference processor (CRF) to
process the file. CRF creates a cross reference listing from the
information contained in the file, and then deletes £file.CRF.

(Refer to Appendix D, RSX-11] Utilities Manual for more
information on CRF,

The cross-reference listing and its contents are described in the
"Example" section below.

NOTE

In order for this switch to be
effective, CRF must be installed in your
system.

Default
/-CR
Example

Figure 6-1 shows a cross reference listing for task OVR. The
numbers in the following text correspond to the circled numbers
in the listing.

a The cross-reference page header gives the name of the memory
allocation file, the originating task (TKB), the date and
time the memory allocation file was created, and the
cross-reference page number.

e The cross-reference list contains an alphabetic 1listing of
each global symbol along with its value and the name of each
referencing module. When a symbol is defined 1in several
segments within an overlay structure, the last defined value
is printed. Similarly, if a module is 1loaded 1in several
segments within the structure, the module name will be
displayed more than once within each entry.

O

OVR
GLOBAL
SYMBOL

AADD
ANS
DIVV
I0.WVB
MULL
PRINT
SAVAL
SUBB
SEDMSG

OVR

SEGMENT CROSS REFERENCE

SWITCHES AND OPTIONS

The suffix -R is appended to the value if the symbol |is
relocatable,

Prefix symbols accompanying each module name define the type
of reference as follows:

Prefix Symbol

blank

#

*

segment

and

Reference Type

Module contains a reference that 1is resolved
in the same segment or in a segment toward the
root.

Module contains a reference that 1is resolved
directly in a segment away from the root or in
a co-tree,

Module contains a reference that 1is resolved
through an autoload vector.

Module contains a non-autoloadable definition.

Module contains an autoloadable definition.

he segment cross-reference lists the name of each overlay

the modules that compose it. If the task is a

single segment task, this section does not appear.

CREATED BY TKB ON 11-APR-79 AT 09:27 PAGE 1 0
CROSS REFERENCE CREF VOl
VALUE REFERENCES. .. i
034700-R * ADDOV @ ROOTM
007232-R PRNOV # ROOTM
050724-R * DIVOV @ ROOTM :
011000 PRNOV e
034700-R * MULOV @ ROOTM
014274-R # PRNOV ROOTM
020366-R ADDOV DIVOV MULOV ~ # SAVOV SUBOV
050724-R @ ROOTM * SUBOV
001272 PRNOV _
CREATED BY TKB ON 11-APR-79 AT 09:27 PAGE 2

SEGMENT NAME

ADDOV
DIVOV
MULOV
ROOTM
SUBOV

RESIDENT MODULES

ADDOV
DIvVov
MULOV
PRNOV
SUBOV

Figure 6-1

CREF VO]

ROOTM SAVOV

Cross Reference Listing for OVR.TSK

SWITCHES AND OPTIONS

6.1.7 /DA -- Debugging Aid

File
Task image or input

Syntax
file.TSK/DA=file.OBJ

or

file.TSK=file.OBJ,file.,OBJ/DA

Description
Your task includes a debugging aid that will control its
execution.

Effect
If you apply this switch to your task image £file, the Task
Builder automatically includes the system debugging aid
LBO:[1,1]0ODT.OBJ into your task image.
The Task Builder causes control to be passed to the debugging
program when task execution is initiated.
If you apply this switch to one of your input files, the Task
Builder assumes that the file is a debugging aid that you have
written. Such debugging programs can trace a task, printing out
relevant debugging information, or monitor the task's performance
for analysis.
In either case, /DA has the following effects on your task image:

e The transfer address of the debugging aid overrides the
task transfer address.

e The Task Builder initializes the header of your task so
that, on initial task 1load, registers RO through R4
contain the following values:

RO - Transfer address of task

Rl - Task name in Radix-50 format (word #1)

R2 - Task name (word #2)

R3 - The first three of six RAD50 characters representing
the version number of your task., The Task Builder
derives this number from the first .IDENT directive
it encounters in your task. If no .IDENT directive
is in your task, this value will be 0.

R4 - The second three RAD50 characters representing the
version number of your task.

Default

/-DA

SWITCHES AND OPTIONS

DL

6.1.8 /DL —- Default Library

File
Input

Syntax
file.TSK=file.OBJ,file.OLB/DL

Description
Your input file is a replacement for the system object module
library.

Effect
The library file you have specified replaces the file
LBO:[1,1)SYSLIB.OLB as the 1library file that the Task Builder
searches to resolve undefined global references. The default
device for the replacement file is SY0O:. The Task Builder refers
to it only when undefined symbols remain after it has processed
all the files you have specified. You can apply the DL switch to
only one input file.

Default

/-DL

SWITCHES AND OPTIONS

EA

6.1.9 /EA -- Extended Arithmetic Element
File
Task image
Syntax
file,TSK/EA=file.OBJ
Description
Your task uses the KEll-A Extended Arithmetic Element,
Effect

The Task Builder allocates three words in your task's header
saving the state of the extended arithmetic element.

Default

/-EA

NOTE

You should not use /EA and /FP on the
same command line.

for

SWITCHES AND OPTIONS

6.1.10 /FP —-- Floating Point

File
Task image

Syntax

file.TSK/FP=file.OBJ

Description

Your task uses the floating-point processor.

Effect

The Task Builder allocates 25 words in your task's

saving the state of the floating-point processor.

Default

/-FP on RSX~-1llM systems
/FP on RSX-11M-PLUS systems

1.

Notes

You should not use /FP and /EA on
the same command line.

In an RSX-11M system, the FP switch
will be effective only 1if the
Executive supports the Floating
Point Processor.

In an RSX-11lM system it a task that
uses the Floating Point Processor is
built without the FP switch, the
task will run correctly until a
second task that uses the Floating
Point Processor is run. Then both
tasks will either crash or produce
incorrect results., For information
on changing the Task Builder's
defaults, refer to Appendix E.

FP

for

SWITCHES AND OPTIONS

FU

6.1.11 /FU -- Full Search
File
Task image
Syntax
file.TSK/FU=£file,ODL/MP
Description

This switch controls the Task Builder's search for undefined
symbols when it is processing modules from the default library.

Effect

When the Task Builder processes modules from the default object
module library, and it encounters undefined symbols within those
modules, it normally limits its search for definitions to the
root of the main tree and to the current tree. Thus, unintended
global references between co-tree overlay segments are
eliminated. When the FU switch is appended to the task image
file of an overlaid task, the Task Builder searches all co-tree
segments for a matching definition or reference.

Default

/-FU

SWITCHES AND OPTIONS

HD

6.1.12 /HD -- Header
File
Task image or symbol definition
Syntax
file.TSK/-HD,,file.STB=file.OBJ
file,géK,,file.STB/-HD=file.OBJ
Description

When negated this switch directs the Task Builder to exclude a
header from your task image.

Effect
The Task Builder does not construct a header in your task image.

You wuse the negated form of this switch when you are building
commons, resident libraries, and loadable drivers.

Default

/HD

SWITCHES AND OPTIONS

LB

6.1.13 /LB =-- Library File

File
Input
Syntax
file.TSK=file.OBJ,file.OLB/LB
file.;;K=file.OBJ,file.OLB/LB:mod—l:mod—2...:mod—8
file.ggJ=file.OLB/LB:mod-l:mod-2,file.0LB/LB
Description
The file to which this switch is attached 1is an object module
library file. The Task Builder's interpretation of this switch
depends upon the form you use. There are three forms:
1. Without arguments (the first syntax given above)
2. With arguments (the second syntax given above)
3. Both with and without arguments (the third syntax given
above)
Effect

If you apply this switch without arguments, the Task Builder
assumes that your 1input file is a library file of relocatable
object modules. The Task Builder searches the file immediately
to resolve undefined references in any modules preceding the
library specification and extracts from the library, for
inclusion in the task image, any modules that contain definitions
for such references.

If you apply the switch with arguments, the Task Builder extracts
from the 1library the modules named as arguments of the switch
regardless of whether or not the modules contain definitions for
unresolved references,

If you want the Task Builder to search an object module library
file both to resolve dglobal references and to select named
modules for inclusion in your task image, you must name the
library file twice: once, with the modules you want included in
your task image listed as arguments of the LB switch; and a
second time, with the LB switch and no arguments.

The position of the library file within the Task Builder command
sequence is important. The following rules apply:

1. The library file must follow to the right of the input
file(s) that <contain references to be defined in the
library. For example:

TKB>file.TSK=infilel.OBJ,1ib.OLB/LB

Default

/-LB

SWITCHES AND OPTIONS

The command above illustrates the correct usage of the
LB switch; the following command illustrates incorrect
usage:

TKB>file.,TSK=1ib.OLB/LB,filel.OBJ

If you are using the Task Builder's multiple line input,
and you specify a given library more than once during
the command sequence, you must attach the LB switch to
the library file each time you specify the library. For
example:

>TKB
TKB>file.TSK=filel.OBJ,file2,.0BJ,1ib.OLB/LB
TKB>file3.0BJ,filed4,0BJ,1lib.0OLB/LB

//

When you are building an overlay structure, the Task
Builder limits the number of input files you can specify
to 1. Therefore, you must specify object module
libraries for an overlay structure within the Overlay
Description Language (ODL) file for the structure. To
do this, you must use the .FCTR directive to specify the
library. For example:

.ROOT CNTRL-LIB (AFCTR,BFCTR,C)

AFCTR: .FCTR AO-LIB(Al,A2-(A21,A22))

BFCTR: .FCTR BO-LIB(B1l,B2)

LIB: .FCTR LB:[303,3]LIBOBJ,.OLB/LB
.END

The technique used in the ODL file above allows you to
control the placement of object module library routines
into the segments of your overlay structure. (For more
information on overlaid tasks, see Chapter 4.)

NOTES

l. You should not use the LB switch
and the CC switch in the same
command sequence.

2. You <can wuse the SS switch in
conjunction with the LB switch
(with or without arguments) to
perform a selective search for
global definitions.

SWITCHES AND OPTIONS

MA

6.1.14 /MA -- Map Contents of File

File
Input or memory allocation

Syntax
file.TSK,file.MAP=file.OBJ,file.OBJ/~MA

or

file.TSK,file.MAP/MA=file.OBJ

Description
The Task Builder is to include information from your input file
in the memory allocation output file.

Effect
If you negate this switch and apply it to an input file, the Task
Builder will exclude from the map and cross-reference listings
all global symbols defined or referred to in the file. In
addition, the Task Builder will not list the file in the "file
contents" section of the map.
If you apply this switch to the map file, the Task Builder will
include in the map file the names of routines it has added to
your task from SYSLIB, It will also include in the map file
information contained in the symbol definition file of any shared
region referred to by the task.

Default

/MA for input files.

/-MA for system library and resident library STB files.

SWITCHES AND OPTIONS

6.1.15 /MM -- Memory Management
File
Task image
Syntax
file,TSK/MM=file.OBJ
file.ggK/—MM=file.OBJ

Description

The system on which your task is to run has memory management
hardware,.

Effect

The Task Builder can build a task image for a mapped or unmapped
system independently of the mapping status of the system on which
your task is being built, If you specify /-MM, the Task Builder
assumes an unmapped system.

Default
/MM or /-MM. When you do not apply /MM to your task image file,

the Task Builder allocates memory according to the mapping status
of the system on which your task is being built.

NOTE
When you negate this switch (/-MM), it
suppresses the Task Builder's
recognition of the memory-resident

overlay operator (!). The Task Builder
checks the operator for correct syntax
but it does not create any resident
overlay segments.

SWITCHES AND OPTIONS

MP

6.1.16 /MP —-- Overlay Description
File

Input
Syntax

file.TSK=file.ODL/MP

Description

Your input file is an Overlay Description Language (ODL) file.

Effect

The Task Builder receives all the input file specifications £from
this file. It allocates virtual address space as directed by the
overlay description. If you use the Task Builder's multiline
command format (see section 1.3), the Task Builder automatically
requests option information at the console terminal by displaying

ENTER OPTIONS:.

NOTES

l. If you use the multiline command
format when you specify an ODL file,
the Task Builder automatically
prompts for option input.
Therefore, you must not wuse the
single slash (/) to direct the Task
Builder to switch to option input
mode when you have specified /MP on
your input file.

2. When you specify /MP on the input
file for your task, it must be the
only input file that you specify.
Furthermore, the input file must
have a file type of .ODL.

Default

/=-MP

SWITCHES AND OPTIONS

MU

6.1.17 /MU -- Multiuser

File
Input

Syntax
file.TSK/MU=£file.OBJ

Description
Your task is a multiuser task.

Effect
The Task Builder separates your task's read-only and read/write
program sections, It then places the read-only program sections
in your task's upper virtual address space and the read/write
program sections in your task's lower virtual address space.

Default

/-MU

SWITCHES AND OPTIONS

Pl

6.1.18

File

/PI -- Position Independent

Task image or symbol definition

Syntax

file.TSK/PI=file.OBJ
or

file,TSK,,file.STB/PI=file.OBJ

Description

Your shared region contains

data.
Effect

sets
the

The Task Builder
attribute flag in
region.

Default

/-P1

the
label

block

only position-independent

Position-Independent

flag

code or

Code (PIC)
word of your shared

SWITCHES AND OPTIONS

6.1.19 /PM -- Postmortem Dump

File

Task image

Syntax

file.TSK/PM=file.OBJ

Description

If your task

terminates abnormally, the system

lists the contents of the memory image.,

Effect

The Task Builder sets the Postmortem Dump flag in

label flag word.

Default

/—-PM

1.

Notes

If your task issues an ABRTS (abort
task) directive, the system will not
dump the task image even though the
Task Builder has set the Postmortem
Dump flag in your task's label flag
word. In this case, the system
assumes that a Postmortem Dump is
not necessary since you knhow why
your task was aborted.

The PMD utility must be installed in
your system and be able to get into
physical memory for this switch to
be effective.

PM

automatically

task's

PR

SWITCHES AND OPTIONS

6.1.20 /PR[:n] -- Privileged

File
Task image

Syntax
file.TSK/PR:0=file.OBJ

or
file.TSK/PR:4=file.OBJ
or

file.TSK/PR:5=file.OBJ

Description
Your task is privileged with respect to memory and device access
rights. If you specify PR:0, your task does not have access to
the I/0 page or the Executive. However, if you specify PR:4 or
PR:5, your task does have access to the 1I/0 page and the
Executive, in addition to its own partition.

Effect
The Task Builder sets the Privileged Attribute flag 1in your
task's label block flag word.
The value of n is an octal number that specifies the first Active
Page register that you want the Executive to use to map your task
image when your task is running in user mode. Legal values are
0, 4, and 5. If you do not specify one of these values, the Task
Builder assumes a value of 5.
If you do not explicitly specify that your task is to run on a
mapped system, (through the MM switch) and it is not otherwise
implied (by the presence of KT-1l1 hardware on the system upon
which the Task Builder is running), the Task Builder merely tests
the value of the switch for validity, but otherwise ignores it.
Privileged tasks are described in Chapter 2.

Default

/—-PR

NOTE

You should not use /PR and /AC on the
same command line.

SWITCHES AND OPTIONS

RO

6.1.21 /RO -- Resident Overlay
File

Task image
Syntax

file.TSK/-RO=£file.ODL/MP
Description

The Task Builder's recognition of the memory-resident overlay
operator (!) is enabled.

Effect

The memory-resident overlay operator (!), when present in the
overlay description file, indicates to the Task Builder that it
is to construct a task 1image that <contains one or more
memory-resident overlay segments. If you negate this switch (as
in the "Syntax" section above), the Task Builder checks the
operator for correct syntactical usage, but otherwise ignores it.
With the memory-resident overlay operator thus disabled, the Task
Builder builds a disk-resident overlay from the overlay
description file.

Default

/RO

SWITCHES AND OPTIONS

SE

6.1.22 /SE —-- Send

File
Task image

Syntax
file,TSK/~-SE=file.OBJ

Description
This switch determines whether or not messages can be directed to
your task by means of the Executive Send directive. (Refer to
the RSX-11M/M-PLUS Executive Reference Manual for information on
the Send directive)

Effect
By default, messages can be directed to your task by means of the
Executive Send directive. 1If you negate this switch (as in the
"Syntax" section above), the system inhibits the queuing of
messages to your task.

Default

/SE

SWITCHES AND OPTIONS

SH

6.1.23 /SH =-- Short Map

File
Memory allocation (map)
Syntax
file,TSK,file.MAP/-SH=file.OBJ
Description
The Task Builder produces the short version of the memory
allocation file.
Effect '
The Task Builder does not produce the "file contents" section of
the memory allocation file,
Default
/SH
Example

The memory allocation file consists of the following items:
1., Page Header
2. Task Attributes Section
3. Overlay Description (if applicable)
4. Root Segment Allocation
5. Tree Segment Description (if applicable)
6. Undefined References (if applicable)
7. Task Builder Statistics
An example of the memory allocation file (map) is shown in Figure 6-2.

The numbered and lettered items 1in the notes following the figure
correspond to the numbers and letters in Figure 6-2,

SWITCHES AND OPTIONS

OVR.TSK;25 MEMORY ALLOCATION MAP TKB M36 PAGE 1] @ racE HEADER
13-APR-79 09:10 :

task namE @ 7

PARTITION NAME : GEN

IDENTIFICATION : 01

TASK UIC : [303,310@

TASK PRIORITY :

STACK LIMITS: 000176 001175 001000 00512.(D

ODT XFR ADDRESS:(0)
PRG XFR ADDRESS: 010010(h)

TASK ATTRIBUTES: TASK AT RIBUTES
TOTAL ADDRESS WINDows: 1.(D

MAPPED ARRAY :®

TASK EXTENSION :— (D

TASK IMAGE SIZE : 10496. WORDS
TOTAL TASK SIZE :()

TASK ADDRESS LIMITS: 000000 050753(2)
R-W DISK BLK LIMITS: 000002 000106 000105 00069.()
R-0 DISK BLK LIMITS:(3)

-

OVR.TSK; 25 OVERLAY DESCRIPTION: 7]

BASE TOP LENGTH
000000 020677 020700 08640. ROOTM (3] OVERLAY
020700 034923 014024 06164, MULOV DESCRIPTION
020700 034723 014024 06164, ADDOV
034724 050747 014024 06164. SUBOV
034724 050753 014030 06168, DIVOV n
OVR.TSK; 25 MEMORY ALLOCATION MAP TKB M36 PAGE 2 7]
ROOTM 13~-APR-79 09:10
#% ROOT SEGMENT: ROOTM (@)
R/W MEM LIMITS: 000000 020677 020700 08640.®
DISK BLK LIMITS: 000002 000022 000021 00017.(c)
MEMORY ALLOCATION SYNOPSIS:
SECTION TITLE IDENT FILE
. BLK.:(RW,I,LCL,REL,CON) 001176 002034 01052.(d)
ANS :(RW,D,GBL,REL,OVR) 003232 004006 02054.
003232 004006 02054, ROOTM 01 ROOTM.0BJ; 1(e)

GLOBAL SYMBOLS:

AADD 007276-R DIVV 007316-R PRINT 014274-R SUBB 007306-R<)
ANS 007232-R MULL 007266-R SAVAL 020366-R

FILE: ROOTM.0BJ;1 TITLE: RooTM IDENT: 01(®
<ANS >: 003232 007237 004006 02054.(R)
ANS 007232—R(£
<MAIN >: 010010 010105 000076 00062.

hkhkhkkhkhkkhkhkkk

UNDEFINED REFERENCES: (k)

Figure 6-2 Memory Allocation File (Map) Example

ROOT SEGMENT
ALLOCATION

SWITCHES AND OPTIONS

OVR.TSK; 25 MEMORY ALLOCATION MAP TKB M36 PAGE 4 T
MULOV 13-APR-79 09:10

*** SEGMENT: MULOV

R/W MEM LIMITS: 020700 034723 014024 06164.
DISK BLK LIMITS: 000023 000037 000015 00013.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.:(RW,I,LCL,REL,CON) 020700 000000 00000.
MULL :(RO,I,GBL,REL,CON) 020700 014024 06164.

020700 014024 06164. MULOV Ol MULOV.OBJ;1 TREE SEGMENT
DESCRIPTION

GLOBAL SYMBOLS:
MULL 034700-R
FILE: MULOV.0OBJ;1 TITLE: MULOV IDENT: 01

<MULL >: 020700 034723 014024 06164.
MULL 034700-R

kKb hkhkkhhk

UNDEFINED REFERENCES: -
*** TASK BUILDER STATISTICS: 7

TOTAL WORK FILE REFERENCES: 8178.()

WORK FILE READS: 0.}()

WORK FILE WRITES: O.

SIZE OF CORE POOL: 8200. WORDS (32. PAGES)C)
SIZE OF WORK FILE: 3328. WORDS (13. PAGES)C)

TASK BUILDER
STATISTICS

ELAPSED TIME:00:00:28(8) i

Figure 6-2(Cont.) Memory Allocation File (Map) Example

SWITCHES AND OPTIONS

Notes to Figure 6-2:

‘, The Page Header shows the name of the task image file and the
overlay segment name (if applicable), along with the date, time,

12)

and

The

® ©

®@ 0 0 6 6

®

G

version of the Task Builder that created the map.
Task Attribute Section contains the following information:

Task Name —-- The name specified in the TASK option. If you do
not use the TASK option, the Task Builder suppresses this
field.

Partition Name ~-- The partition specified in the PAR option.
If you do not specify a partition, the default is partition
GEN.

Identification —-- The task version as specified in the .IDENT
assembler directive, If you do not specify the task
identification, the default is 01l.

Task UIC —-- The task UIC as specified in the UIC option. If
you do not specify the UIC, the default is the terminal UIC.

Task Priority -- The priority of the task as specified in the
PRI option. 1If you do not specify PRI, the default is 50.

Stack Limits -- The low and high octal addresses of the stack,
followed by its length in octal and decimal bytes.

ODT Transfer Address -- the starting address of the ODT
debugging aid. If you do not specify the ODT debugging aid,
this field is suppressed.

Program Transfer Address —-- The address of the symbol
specified in the LEND directive of the source code of your
task. If you do not specify a transfer address for your task,
the Task Builder automatically establishes a tranfer address
of 000001 for it. The Task Builder also suppresses this field
in the map if you do not specify a transfer address.

Task Attributes -- These attributes are listed only if they
differ from the defaults. One or more of the following may be
displayed:

AC - Ancillary control processor

AL Task is checkpointable, and task image file contains
checkpoint space allocation

CP Task is checkpointable, and task image file will be
checkpointed to system checkpoint file

DA Task contains debugging aid

EA Task uses KEll-A extended arithmetic element

FP Task uses floating-point processor

—-HD Task image does not contain header

PI Task contains position-independent code and data

PM Postmortem Dump requested in the event of abnormal

task termination

SWITCHES AND OPTIONS

PR Task is privileged

-SE Messages addressed to the task through the SEND
directive will be rejected by the Executive

SL Task can be slaved

TR Task initial PS word has T-bit enabled

Total Address Windows —-- the number of window blocks allocated

to the task.

® ©

Mapped Array =-- the amount of physical memory (decimal words)
allocated through the VSECT option or Mapped Array Declaration
(GSD type 7, described in Section B.1.8 of Appendix B).

Task Extension -- the increment of physical memory (decimal
words) allocated through the EXTTSK or PAR option.

® ©

m Task 1Image Size —-- the amount of memory (decimal words)
required to contain your task's code. This number does not
include physical memory allocated through the EXTTSK option.

Total Task Size -- the amount of physical memory (decimal
words) allocated including mapped array area and task
extension area.

® 6

Task Address Limits -- the lowest and highest virtual
addresses allocated to the task, exclusive of wvirtual
addresses allocated to VSECTs and shared regions.

@D Read/Write Disk Block Limits -- from left to right: the first
octal relative disk block number of the task's header; the
last octal relative disk block number of the task image; the

total contiguous disk blocks required to accommodate the
read/write portion of the task image in octal and decimal.

Read-Only Disk Block Limits -- from left to right: the first
octal relative disk block of the multiuser task's read-only
region; the last octal relative disk block number of the
read-only region; the total contiguous disk blocks required
to accommodate the read-only region in octal and decimal.

This field appears only when you are building a multiuser
task.

The Overlay Description shows, for each overlay segment in the
tree structure of an overlaid task, the beginning virtual address
(the base), the highest virtual address (the top), the 1length of
the segment in octal and decimal bytes, and the segment name.
Indenting is used to illustrate the ascending 1levels in the
overlay structure. The Task Builder prints the Overlay
Description only when an overlaid task is created.

The Root Segment Allocation -- This section has the following
elements:

(E) Root Segment -- The name of the root segment. If your task is
a single-segment task, the entire task is considered to be the
root segment.

Read/Write Memory Limits -- From left to right: the beginning
virtual address of the root segment (the base), the virtual
address of the last byte in the segment (the top), the 1length
of the segment in octal and decimal bytes.

®

SWITCHES AND OPTIONS

Disk Block Limits -- From left to right: the first relative
block number of the beginning of the root segment, the last
relative block number of the root segment, total number of

disk blocks 1in octal, and the total number of disk blocks in
decimal.

Memory Allocation Synopsis -- From left to right: the program
section name, the program section attributes, starting virtual
address of the program section, total length of the program
section in octal and decimal bytes.

The program section shown as . BLK. in this field 1is the
unnamed relocatable program section. Notice in this example
that there are 636(8) bytes allocated to it (2034 bytes - 1176
bytes = 636 bytes). This allocation is the result of calls to
routines that reside within the unnamed program section in
SYSLIB. (For more information, see the description of the MA
switch in Section 6.1.14.)

Module contributor -- This field lists the modules that have
contributed to each program section. 1In this example, the
program section ANS was defined in module ROOTM. The module
version 1is 01 (as a result of the .IDENT assembler directive)
and the file name from which the module was extracted 1is
ROOTM.OBJ ;1. If the program section ANS had been defined in
more than one module, each contributing module and the file
from which it was extracted would have been listed here.

NOTE

The absolute section, . ABS. is not
shown because it appears in every module
and always has a length of 0.

The global symbols section lists the global symbols defined in
the segment. Each symbol 1is 1listed along with its octal
value. A -R is appended to th wvalue 1if the symbol is
relocatable. The list is alphabetized in columns.

The file contents section (which is composed of the four fields listed

below)

is printed only if you specify /-SH in the Task Builder command

sequence., The Task Builder creates this section for each segment in
an overlay structure., It lists the following information:

®

Input file -- File name, module name as established by the
.TITLE assembler directive, module version as established by
the .IDENT assembler directive.

Program section -- Program section name, starting wvirtual
address of the program section, ending virtual address of the
program section, length in octal and decimal bytes.

Global symbol -- Global symbol names within each program
section and their octal wvalues. If the segment is
autoloadable (see Chapter 5), this value will be the address
of an autoload vector. The autoload vector in turn will
contain the actual address of the symbol,

An -R is appended to the value if the symbol is relocatable.

SWITCHES AND OPTIONS

(:) Program section -- This field 1is 1identical to the field
described in note g above.

(:) Undefined References -- This field lists the undefined global
symbols in the segment.

6 The Tree Segment Description is printed for every overlay segment

in an overlay structure. Its contents are the same for each
overlay segment as the Root Segment Allocation is for the root
segment.

(3 Task Builder Statistics lists the following information, which can

be used to evaluate Task Builder performance:

Work File References -- The number of times that the Task
Builder accessed data stored in its work file.

® ®

Work File Reads -- The number of times that the work file
device was accessed to read work file data.

Work File Writes —-- The number of times that the work file
device was accessed to write work file data.

Size of Pool -- The amount of memory that was available for
work file data and table storage.

® 6 O

Size of Work File —-- The amount of device storage that was
required to contain the work file.

©®

Elapsed Time -- The amount of wall-clock time required to
construct the task 1image and produce the memory allocation
(map) file. Elapsed time is measured from the completion of
option input to the completion of map output. This value
excludes the time require to process the overlay description,
parse the list of 1input file names, and create the
cross-reference listing (if specified).

See Appendix E for a more detailed discussion of the work file.

SWITCHES AND OPTIONS

SL

6.1.24 /SL -- Slave

File
Task image

Syntax
file.TSK/SL=file,OBJ

Description
Your task is slaved to an initiating task.

Effect
The Task Builder attaches the slave attribute to your task. When
your task successfully executes a Receive Data directive, the
system gives the UIC and TI: device of the sending task to it.
The slave task then assumes the indentity and privileges of the
sending task.
This switch only applies to you if your system has multiuser
protection, (Refer to your system generation manual for more
information on multiuser protection and slave tasks.)

Default

/-SL

SWITCHES AND OPTIONS

SP

6.1.25 /SP =-- Spool Map Output

File
Memory allocation (map)

Syntax
file.TSK,file.MAP/-SP=file.OBJ

Description
This switch determines whether or not the Task Builder calls the
print spooler to spool your memory allocation (map) file after
task build.

Effect
By default, when you specify a map file in a Task Builder command
sequence, the Task Builder creates a map file on device SY0: and
then has the file queued for listing on LPO:.
If you negate this switch (as shown 1in the "syntak" section
above), the Task Builder will create the map file on device S5YO0:
but will not call the print spooler to output it to LPO:

Default

/SP

SWITCHES AND OPTIONS

SQ

6.1.26 /SQ —-- Sequential
File
Task image
Syntax
file.TSK/SQ=file.OBJ

Description

The Task Builder constructs your task 1image from the program
sections you specified, in the order that you input them.

Effect

The Task Builder does not reorder the program sections
alphabetically. Instead, it <collects all the references to a
given program section from your input object modules, groups them
according to their access code and, within these groups,
allocates memory for them in the order that you input them.

You use this switch to satisfy any adjacency requirements that
existing code may have when you are converting it to run under
RSX-11. Use of this feature is otherwise discouraged for the
following re