
RSX-11 M/M-PLUS 
Guide to Program 

Development 
Order No. AA-H264A-TC 

r-;:-order additional copies of this document, contact the Software Distribution 
L::.ter, Digital Equipment Corporation, Maynard, Massachusetts 01754 

digital eqllipment corporation . maynard, massachusetts 



First Printing, May 1979 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license 
and may only be used or copied in accordance with the terms of such 
license. 

No responsibility is assumed for the use or reliability of software on 
equipment that is not supplied by DIGITAL or its affiliated companies. 

Copyright @ 1979 by Digital Equipment Corporation 

The postage-prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in pre­
paring future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DEC 
PDP 
DEC US 
UNIBUS 
COMPUTER LABS 
COMTEX 
DDT 
DECCOMM 
ASSIST-11 
VAX 
DECnet 
DATATRIEVE 

DECsystem-lo 
DECtape 
DIBOL 
EDUSYSTEM 
FLIP CHIP 
FOCAL 
INDAC 
LAB-8 
DECSYSTEM-20 
RTS-8 
VMS 
IAS 
TRAX 

MASS BUS 
OMNIBUS 
OS/8 
PHA 
RSTS 
RSX 
TYPESET-8 
TYPESET-11 
TMS-11 
ITPS-10 
SBI 
PDT 



PREFACE 

cm,PTER l 

1.1 
1.1.1 
l.1.2 
1.1. 3 
l.1.4 
l.1.4.1 
l.1.4.2 
l.1.4.3 
1.1. 5 
1.1.5.1 
1.1.5.2 
1.1.5.3 
1.1.5.4 
1. 2 
1. 2 .1 
1. 2. 2 
1. 3 
1. 3 .1 
1. 3. 2 
1. 3. 3 
1. 4 
1. 5 

CHAPTER 2 

2.1 
2 .1.1 
2 .1. 2 
2 .1. 3 
2 .1. 4 
2 .1. 5 
2 .1. 6 
2.1.6.l 
2.1.6.2 
2.1.6.3 
2.1.6.4 
2.1.6.5 
2.1.6.6 
2 .. 1. 7 
2" 1. 8 
2 .• 1. 9 
2 .. 1.10 
2 .. 1.11 
2 .. 2 
2 "2 .1 
2.2.1.l 
2.2.1.2 
2.2.2 

CONTENTS 

THE PROGRAM DEVELOPMENT ENVIRONMENT 

SOFTWARE TOOLS 
Text Editor 
Assembly Language 
Task Creation 
Debugging Aids 
On-Line Debugging Tool 
Postmortem Dump 
Snapshot Dump 
General Utilities 
Cross-Reference Processor 
Peripheral Interchange Program 
Queuing and Spooling 
Librarian Operations 

DIGITAL-SUPPLIED SYSTEM SOFTWARE 
System Directives - Macro Libraries 
System Subroutines - Object Libraries 

HARDWARE FOR PROGRAM DEVELOPMENT 
Disks 
Terminals 
Printers 

THE PROGRAM DEVELOPMENT PROCESS -- OVERVIEW 
GUIDE TO FURTHER READING 

CREATING MACRO~ll SOURCE FILES 

.MACR0-11 SKELETON SOURCE FILE FORMAT 
.TITLE Directive 
.!DENT Directive 
Author Line 
Changes Section 
Module Function 
Some Useful Directives 
.PAGE Directive 
.SBTTL Directive 
.LIST TTM Directive 
.NLIST BEX Directive 
.MCALL Directive 
.END Directive 
Local Symbol Definitions 
Local Macro Definitions 
Local Data Blocks 
Module Function - Detailed 
.PSECT Directive 

CREATING A SOURCE FILE FROM A SKELETON FILE 
Performing the Initial Input 
Inserting Blank Lines in Text 
Terminating the Input and the EDI Program 
Creating a Source File from the Skeleton 

iii 

Page 

vii 

1-1 

1-1 
1-1 
1-2 
1-4 
1-5 
1-5 
1-5 
1-6 
1-6 
1-6 
1-6 
1-7 
1-7 
1-7 
1-7 
1-9 
1-10 
1-10 
1-10 
1-11 
1-11 
1-12 

.2-1 

2-1 
2-3 
2-5 
2-5 
2-5 
2-5 
2-6 
2-6 
2-6 
2-6 
2-6 
2-6 
2-7 
2-7 
2-8 
2-8 
2-8 
2-8 
2-9 
2-9 
2-9 
2-9 
2-11 



2.3 
2.3.l 
2.3.2 

2.3.3 
2.3.4 
2.4 

CHAPTER 3 

3.1 
3.2 
3.2.1 
3.2.2 
3.2.3 
3.2.4 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 

CHAPTER 4 

4.1 
4.1.1 
4 .1. 2 
4 .1. 3 
4.2 
4.3 

4.3.1 

4.3.2 
4.3.3 
4.4 
4.5 

CHAPTER 5 

5.1 
5.1.1 
5 .1. 2 
5.1. 3 
5 .1. 4 
5.1. 5 
5.1. 6 

5.2 
5.3 
5.4 

CHAPTER 6 

6.1 
6.1.1 
6.1. 2 

CONTENTS 

EDITING THE SOURCE FILE 
Displaying Text 
Locating Text and Positioning the Line 
Pointer 
Changing Text 
Inserting Code in the Source File 

GUIDE TO FURTHER READING 

ASSEMBLING AND CORRECTING A PROGRAM MODULE 

PERFORMING A DIAGNOSTIC RUN ON A SOURCE FILE 
TYPICAL ERRORS ENCOUNTERED DURING ASSEMBLY 

The MACR0-11 Error Code A 
The MACR0-11 Error Code U 
The MACR0-11 Error Code Q 
The MACR0-11 Error Code E 

GENERATING A PROGRAM MODULE AND A LISTING 
EXAMINING A LISTING AT THE TERMINAL 
GENERATING A CROSS-REFERENCE LISTING 
SPOOLING A COPY OF LISTINGS 
CLEANING UP THE DISK DIRECTORY 
GUIDE TO FURTHER READING 

BUILDING AND TESTING A TASK 

Page 

2-11 
2-11 

2-12 
2-15 
2-17 
2-20 

3-1 

3-1 
3-2 
3-2 
3-3 
3-3 
3-3 
3-4 
3-5 
3-6 
3-6 
3-7 
3-7 

4-1 

CREATING A TASK IMAGE 4-1 
Supplying a Single Object Module 4-1 
Supplying Multiple Object Modules 4-2 
Using the Fast Task Builder 4-3 

TASK BUILDER DEFAULTS 4-3 
GENERATING A MAP AND A GLOBAL CROSS-REFERENCE 
LISTING 4-4 

Requesting a Map and a Global Cross-
Ref erence Listing 4-4 
Examining the Map at the Terminal 4-5 
Requesting a Full Map 4-5 

RUNNING THE TASK AND CORRECTING TYPICAL ERRORS 4-5 
GUIDE TO FURTHER READING 4-7 

USING DEBUGGING AIDS 

THE ON-LINE DEBUGGING TOOL 
Including ODT in a Task 
Preparing to Use ODT 
Setting up the Task 
Setting Breakpoints within the Task 
Examining and Changing Locations with ODT 
Error Conditions and Terminating Task 
Execution 

POSTMORTEM DUMP 
THE SNAPSHOT DUMP 
GUIDE TO FURTHER READING 

CREATING AND USING PROGRAM LIBRARIES 

5-1 

5-1 
5-1 
5-1 
5-2 
5-5 
5-6 

5-8 
5-8 
5-9 
5-10 

6-1 

CREATING AND USING A MACRO SOURCE LIBRARY 6-1 
Creating the Macro Library 6-1 
Using the Macro Definitions from the Library 6-3 

iv 



CONTENTS 

Page 

6.2 CREATING AND USING AN OBJECT MODULE LIBRARY 6-4 
6.2.1 Creating the Object Module Library 6-4 
6.2.2 Using the Object Modules from the Library 6-5 
6.2.3 Using the Library to Resolve Undefined 

Global Symbols 6-6 
6.2.4 Dual Use of the Library 6-6 
6.3 MAINTAINING USER LIBRARIES 6-7 
6.3.1 Adding Modules to a Library 6-7 
6.3.2 Replacing a Module in a Library 6-7 
6.3.3 Obtaining Information about a Library 6-8 
~.4 GUIDE TO FURTHER READING 6-8 

CHAPTER 7 FORTRAN IV PROCEDURES 7-1 

7.1 OVERVIEW OF PDP-11 FORTRAN IV 7-1 
7.2 FORTRAN IV PROGRAM DEVELOPMENT PROCEDURES 7-2 
7.2.1 Creating the Source File 7-2 
7.2.2 Performing a Diagnostic Run 7-3 
7.2.3 Creating an Object Module 7-4 
7.2.4 Creating a Task Image 7-5 
7.2.5 Running and Debugging a Task 7-5 
7.3 GUIDE TO FURTHER READING 7-7 

INDE:X Index-1 

FIGURES 

FIGURE 1-1 The Program Development Process 1-11 
2-1 MACR0-11 Source File Format 2-2 
2·-2 MACR0-11 Source Statement Format 2-3 
2-3 Sample Source File Skeleton 2-4 
2·-4 Creating the Skeleton File SKEL.MAC 2-10 
2·-5 Source Code for FILE.MAC 2-18 
2·-6 Source Code for FILEA.MAC 2-21 
2·-7 Source Code for FILEB.MAC 2-23 
5·-1 Memory Allocation Synopsis from Task BUG Map 5-2 
5·-2 Portion of Assembly Listing for NUMA 5-4 
6·-1 MACR0-11 Library Source Definitions 6-2 
7·-1 FORTRAN IV Sample Source Code AVERAGE.FTN 7-3 

TABLES 

TABI,E 1--1 DIGITAL-Supplied Macro Libraries 1-8 
1--2 DIGITAL-Supplied Object Libraries 1-9 
3--1 Terminal Output Control Commands 3-5 

v 





PREFACE 

MANUAL OBJECTIVES 

The RSX-llM/M-PLUS Guide to Program Development introduces the program 
development environment on the RSX-llM and RSX-llM-PLUS systems. It 
provides a synopsis of the information that has immediate usefulness 
in getting started in the program development process. In addition, 
the book gives an overview of the software environment and some 
guidelines on program design. 

INTENDED AUDIENCE 

This book is intended for the person who is already familiar with the 
general, basic operations of an RSX-11 system: gaining access to the 
system, using the terminal and related devices, and requesting simple 
Executive services through the command int~rface. The greater part of 
the book addresses assembly language programming because that language 
is the one provided with all systems. Included is one chapter 
summarizing the program development procedures for a high-level 
language, PDP-11 FORTRAN IV. However, most of the topics covered for 
the assembly language programmer - using a text editor, c~eating an 
executable image, using library facilities - apply to programmers 
using any computer language. 

If you are not familiar with the general, basic operations of the 
system, you should first read the Introduction to RSX-llM-PLUS or the 
RSX-llM Beginner's Guide. Both these books describe how to access the 
system, use a terminal, and use the system command interface. 

STRUCTURE OF THIS DOCUMENT 

This guide is meant to be read as you use the system. For this 
reason, the examples are presented in an order in which you can 
emulate them at the terminal. Rather than demonstrate the complexity 
of the system, these examples are designed to demonstrate practical 
program development operations. 

This guide is also meant to be used with other manuals in your 
documentation set. Toward this end, a selection of further reading 
material is listed in the last section of each chapter. By using this 
guide, then, you can become increasingly familiar with other, more 
advanced manuals until you need not refer to this introductory text 
except as a refresher. 

The information in this book is organized into seven chapters as 
follows: 

• Chapter 1, The Program Development Environment, introduces the 
software and hardware on which you develop programs. 

vii 



• Chapter 2, Creating MACR0-11 Source Files, describes how to 
create an assembly language source program using a skeleton 
file and text editor. 

• Chapter 3, Assembling 
describes how to use 
object module. 

and Correcting a Program Module, 
the MACR0-11 assembler to generate an 

• Chapter 4, Building and Testing a Task, describes how to use 
the Task Builder to link object modules to create a loadable 
task image. 

• Chapter 5, Using Debugging Aids, introduces debugging aids and 
discusses how to use them. 

• Chapter 6, Creating and Using Program Libraries, describes how 
to create and maintain a library of macro source statements 
and a library of object module subroutines. 

• Chapter 7, FORTRAN IV Procedures, briefly introduces the 
FORTRAN IV program development process. 

ASSOCIATED DOCUMENTS 

As mentioned above, documents recommended for further reading are 
listed at the end of each chapter. In addition, the RSX-llM 
Documentation Directory and the RSX-llM-PLUS Documentation Directory 
list and describe all the documents in the documentation sets for each 
system. 

CONVENTIONS USED IN THIS DOCUMENT 

Throughout this book, symbols and other notation conventions are used 
to represent keyboard characters, to convey textual information, and 
to otherwise ease the presentation of material. The symbols and 
conventions used are explained below. 

Convention 

(CTRL/X) 

Meaning 

A one- to three-character symbol indicates 
that you press a key on the terminal; for 
example,~indicates the RETURN key ande£:) 
indicates the LINE FEED key. 

The symbol (CTRL/X) indicates that you must 
press the key labeled CTRL while you 
simultaneously press another key; for 
example, (CTRL/O) indicates the CTRL and O 
keys. In examples, this control key 
sequence is shown as 

..... 
x; for example, ""'O 

indicates the result of typing (CTRL/O) 

because that is how the system echoes 
control key combinations. 

viii 



Convention Meaning 

The circumflex character, appearing with 
another character, represents the system 
response to receiving a control character 
(CTRL/x). For example, when you type the 
CTRL/Z combination while running some system 
tasks, the system echoes ~Z~ (On some 
terminals, the circumflex is replaced by the 
up-arrow Ct) character.) 

"print" and "type" As these words are used in the text, the 
system prints and the user types. 

MCR> 

> 

red ink 

I 

The explicit prompt of Monitor Console 
Routine (MCR), the command interface used on 
RSX-llM and one interface available on 
RSX-llM-PLUS systems and the one used in 
this book. 

A greater-than sign is the system command 
interface prompting character. Whenever 
control is returned to the user task 
terminal and you can type input, the prompt 
appears. 

RSX-llM systems have only Monitor Console 
Routine (MCR) but RSX-llM-PLUS systems may 
have both MCR and DIGITAL Command Language 
(DCL). To determine which command interface 
your terminal has, simply type the CTRL/C 
combination and the explicit prompt (either 
MCR> or DCL>) will appear. 

Color-highlighted information in examples 
indicates information that you type. 
Information in examples not in the 
contrasting color constitutes computer 
output. 

Commas in commands separate parameters. 
They also indicate positional entries on a 
command line. 

A dot in a file specification separates the 
file name and the file type. 

A semicolon 
separates the 
number. 

in a 
file 

A slash character in 
precedes a switch. 
action. 

ix 

file specification 
type and file version 

a file specification 
Switches modify command 



CHAPTER 1 

THE PROGRAM DEVELOPMENT ENVIRONMENT 

This chapter introduces the software and hardware that you typically 
need to develop programs on an RSX-llM or RSX-llM-PLUS 
multiprogramming system. Its aim is to orient you to the environment 
in which you will be working. The remaining chapters in the guide 
further describe and illustrate how to use the tools and facilities 
introduced in the following sections. 

1.1 SOFTWARE TOOLS 

RSX-llM and RSX-llM-PLUS make software tools available to users as 
executable entities called system tasks. A system manager makes these 
tasks accessible by installing them on the system. To invoke an 
installed task, you need not know where the task resides. To request 
a task's services, you need only know the 3-character name of the 
task~ The tools described in this guide should be installed on most 
systems.I 

1.1.l Text Editor 

A text editor is the means by which you create source code. The 
examples in this book show the editor EDI. EDI is an interactive 
editing program that enables you to enter ASCII text at a terminal and 
store the text in a disk file. EDI also lets you access text in a 
disk file; examine, delete, and change text; and insert new text. 
The disk file is then used as input to other tasks in further steps of 
the program development process. 

EDI is a single-pass, line-oriented editor. In its typical mode of 
operation, called block mode, it reads, from a disk file, a block of 
text - as much text as will fit in its text buffer. You perform 
editing operations on text in the EDI buffer. After editing text in 
the buffer, you request the editor to renew the buffer with the next 
block of text. To change text in a previously edited buffer, you must 
close the current editing session and read, from the beginning of the 
file, to the block of text. 

1 On systems with fewer resources, you may be required to invoke some 
system tasks that are not permanently installed. On such systems, you 
may need to use the RUN command and need to know in which UFD a task 
resides. This manual assumes that all tasks are installed. 

1-1 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

Editing functions are on a line-by-line basis. New text is inserted 
into the buffer one line at a time. Current text in the buffer is 
changed by your locating the line or lines on which EDI must make the 
change. 

To preserve currently existing text, EDI performs all processing on a 
temporary copy of the file being edited. As you renew text in the 
buffer, EDI writes the edited text to a temporary file. This action 
has two advantages and one drawback. First, the current version of 
your text file is always left intact. Second, when you exit from the 
editing session, you have the option of storing the edited file in a 
new version of the old file or of creating an entirely new file (that 
is, one with a different name and version number). The drawback 9f 

emporary file is that in the event of a system cra~h ~its you 
s • After a eras , e ne ersion of the tiie iS­

~i:~~~~~~:..;.-fl!~~D~r'~did not have time to preserve the edits from the 

1.1.2 Assembly Language 

RSX-llM and RSX-llM-PLUS systems support many programming languages. 
However, the one language distributed on all systems is the PDP-11 
assembly language, MACR0-11. is the task at assembles MACR0-11 
~nguage files. It accepts dis source input i e n orma 
afUrr can dteate a relocatable object module and a listing file of the 
source language. The object module contains all the object records 
and relocation information needed to link with other object modules. 
All symbol definition done by the assembler has a base of zero. The 
allocation of virtual addresses and relocation is left for the task 
building process. 

Source input to MACR0-11 consists of free-format statements, each line 
of input containing a single statement. Input statements are either 
PDP-11 instructions, MACR0-11 assembler directives, macro calls, or 
direct assignments. Statements can contain labels to allow control to 
change locally (within the module) or to enable control to be passed 
between modules (globally). 

Source input usually contains user-defined symbols. A user-defined 
symbol is either local or global. A local symbol is defined in the 
current source file and is referenced only within the current file. A 
global symbol is defined in one source file but can be referenced in 
one or more other source files. 

The assembler allows you to use both local and global symbols as 
labels for statements. When a global symbol appears as a label, the 
related statement is referred to as an entry point (that is, a point 
at which other modules can transfer control to the current object 
module). You can use local symbols as statement labels to define 
points to which control transfers within an object module. 

The assembler evaluates all local symbol definitions in a source file. 
Any symbols remaining undefined are classed as global. Thus, after an 
assembly, all local symbols are assigned relative locations, but the 
module may contain references for which definitions must be supplied. 
The resolution of these references is left for the task building 
process. 

1-2 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

Assembler directives in a source file allow you to perform operations 
such as the following. 

• Program sectioning 

• Listing control 

• Conditional assembly 

• Data storage 

Program sectioning allows code or data within an object module to be 
overlaid by or concatenated with code or data in other object modules 
or in noncontiguous locations within the same module. Program 
sectioning is especially useful where convenient physical ordering 
differs from logical reference ordering (for example, in 
table-generating macro statements). Listing control directives enable 
documentation features such as listing-heading lines, listing-page 
formatting, and table of contents generation. Conditional assembly 
directives allow optional omission or inclusion of lines of code or 
user-detined symbols. Using data storage directives, you can control 
the size and contents of data areas. 

Special statements called macro directives allow you to reference a 
predefined symbol that causes the assembler to expand a single line 
source statement into multiple lines of code or data and insert the 
assembled r~sult in the object module. Such . macro . symbols are 
~q...aJ ly used for recurring coding segyenCf!S• 'l'f}e lnSerfion or the 
code sequence occurs at each point you refer to the macro symbol. 
Definitions for such macro symbols can occur in the source f.ile itself 
or can reside in a macro library. Generally, you place infrequently 
used macro definitions in the source file that invokes them and store 
~uentl used macro de initions in a rary. The Executive 

an<r: i process1 vices are ma e available to the program through 
.J!la.~.tP symQ_Q~s that areFdefined in a DIGITAL-supplied macro librar~. 

~q-11 is a 2-bass assembl~. During the first pass, the assembler 
groups all sym ols as either ~l or ~obal, performs statement 
generation, locates all macro s mbols, and, i necessary, reads the 
macro d · iti s from 11 r ries. At the end of pass 1, the assembler 
must nave processe a oc references, such as all undefjped ~Jghaj 
symbols, to be resolved by the Task Btilder. 

During the ~econd ~~ the assembler actually generates tl}a ghject 
m<fdu:~ana list in J.1,es, flaggii;g .with an error code in the listing 
file tnose source statements conta1n1ng errors. If you requested a 
cross-reference listing of symbols, the assembler also generates a 
request for the Cross-Reference Processor (CRF) to create the proper 
information. (CRF is introduced in Section 1.1.5 in this chapter.) 

The MACR0-11 listing file provides both documentation for the module 
and a tool for debugging the code. As a reference aid, the assembler 
generates and includes line numbers in the listing for each statement 
in the source file. It also maintains a current location cou 
each program section e ine in t e • 1 ion, 
listing includes a symbol table showing symbols, their attributes, 
their values if known at assembly time. 

1-3 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

1.1.3 Task Creation 

The Task Builder (TKB) on RSX-llM and RSX-llM-PLUS systems is a 
multiple purpose tool. It allows you to create a loadable entity 
J.£alled a task image), define and structure a shared area of memory 
(cal!ed a resident common), and arrange sharable routines to reside in 
memory (called resident libraries). TKB has many complex aspects but 
this guide introduces only its most frequent usage - building a task 
image. 

To build a task image, TKB accepts, as basic input, the output of a 
ls,nguage processor - an object module or multiple object modules. The 
Task Builder can optionally generate a file of executable code (~ 
task ima2e), a file of memory allocation infarm9tion (a magJ, and a 
special file of symbol definitions used in constructing the task (the 
symbol definition fil~). The task image, residing on disk, is in a 

"*format suitable to be loaded into memory and executed. If you 
generate a cross-reference listing, the listing itself contains only 
global symbols and is appended to the map file. 

In creating a task image, the~ aui lder 's primary 
linkj~g, address binding, an · i s stem 
Linking involves resolvifrg•glo al references in 
resolving program section references among all 
Address binding is assigning virtual address space within the task. 
Building system data structures involves the creation of elements that 
the system requires to load the task image into memory and to execute 
the task. To resolve global symbols that are not defined in any of 
the input object modules, TKB searches any object libraries you 
specify and, as a default condition, searches the system object 
library. 

Because the PDP-11 processor can address only 32K words, (the address 
limit of 16 bits) at any one time, a task cannot reference more than 
32K words at a time. However, if you use certain advanced programming 
techniques, the Task Builder allows a task to access more code or data 
than can fit within the address limits. Techniques to overcome the 
addressing limits include the following. 

• Overlaying segments of a task with either disk-resident or 
memory-resident code 

• Mapping to different regions of memory outside the physical 
limits of the current task space 

Because these are advanced techniques, they are not shown in the 
examples in this guide. For more information on them, refer to the 
RSX-llM/M-PLUS Task Builder Manual. 

The memory allocation information, or map, produced by TKB shows you 
how program sections are arranged in task memory (their starting 
virtual addresses and extents on mapped systems and physical addresses 
and extents on unmapped systems), what contributions are in a program 
section, any undefined symbols, and the optional cross-reference 
listing of global symbols. You can use the starting virtual 
addresses, combined with the current location counter values (provided 
by the assembler) as offsets, to access locations within the 
memory-resident task during debugging. 

1-4 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

1.1.4 Debugging Aids 

This section introduces the debugging aids described in this guide and 
provided with RSX-llM and RSX-llM-PLUS systems to assist in 
identifying faulty code. 

1.1.4.1 On-Line Debugging Tool - The On-Line Debugging Tool (ODT) 
allows interactive control of task execution. You specify to the Task 
Builder that you want a debugging aid included in a task. TKB inserts 
into the task the module LB:[l,l]ODT.OBJ. 

When you run a task that includes ODT, execution begins at the ODT 
transfer address rather than at the task starting address. Therefore, 
ODT gains control and allows you to type special commands that 
establish base addresses and that set breakpoint locations within the 
task. After you tell ODT to begin task execution, ODT saves the 
instructions at breakpoint locations you specified and replaces them 
with PDP-11 breakpoint (BPT) instructions. ODT enables the BPT 
~~~hronous system trap (SST) . entry point in the task. Upon 
encountering a BPI lastruction ""f'"'n the task, the Executive passes 
control to ODT at its breakpoint routine. ODT saves task registers in 
special locations, restores instructions to the breakpoint locations, 
and transfers control to the user task terminal. By typing ODT 
commands, you can examine and alter any instructions or data within 
task memory. 

If a task generates an SST error, ODT gains control at its SST entry 
point, prints a notice at the user terminal, and passes control to the 
terminal. You can use the ODT commands to discover the cause of the 
error, correct it, and perhaps continue executing the task. 

To successfully modify instructions, you must have a thorough 
understanding of the PDP-11 instruction set. If you are programming 
in a high-level language, you should avoid interactive debugging 
whenever possible. 

1.1.4.2 Postmortem Dump - Postmortem Dump (PMD) is an installed task 
that is directed by the Executive to extract run-time related data 
about a terminated task, format it, and request a printed listing.I 
Normally, when a task generates a synchronous system trap (SST), such 
as caused by an improper reference to an odd address or a reference to 
a nonexistent memory location, the Executive tries to transfer control 
to an S~T entry point defined by the task. If the task does not have 
an SST routine defined for the particular type of trap, the Executive 
begins bhnormal task termination. 

l PMD requires that the Executive option for abnormal task termination 
and device-not-ready messages be selected at system generation time. 

1-5 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

To terminate the task, the Executive performs an abort operation and 
notifies the Task Termination Notification (TKTN) task. TKTN 
displays, on the user terminal, the reason for the termination and the 
contents of the task registers.! Without PMD, you can acquire no 
further information about the task.2 

By enabling Postmortem Dumps for a task which itself does not handle 
synchronous system traps, you tell the Executive to supply more data 
at abnormal task termination. That is, the Executive follows the 
abort procedure and, in addition, creates a request for PMD to create 
the dump. PMD examines system and task structures to preserve status 
and run-time data, reads the task image from memory, and writes it to 
disk in a readable format. PMD then queues a request to print the 
file containing the dump data, after which the Executive completes the 
task abort procedure. 

1.1.4.3 Snapshot Dump - The snapshot dump ($SNAP), also using PMD, 
generates an edited dump of a running task. Because the snapshot dump 
requires you to insert special code (for example, the $SNAP macro 
call) in a task, it is more difficult to use than PMD. However, by 
inserting the snapshot dump code in the task, you can choose the 
location at which the dump is created and select the extent and format 
of the dump. In addition, you can generate the dump from more than 
one location and, therefore, as many times as needed during task 
execution. 

reassembling 

1.1.5 General Utilities 

This section introduces the general-purpose utility programs that are 
mentioned in this guide. 

Cross-Reference Processor - The Cross-Reference Processor 
is an installed task that receives requests from MACRO-ll~ 

ilder to e erate cross- ference listings of s mbols. CRF 
generates a spec1a ly e f i e ng e cross-reference 
data and appends that file to the assembler Listing or the task map 
file. Therefore, if you request a cross-reference listing of symbols, 
it always appears at the end of a listing or map file. 

1.1.5.2 Peripheral Interchange Program - The Peripheral Interchange 
Program (PIP) is the· standard DIGITAL program for performing .fJJe apg 
.,device-related functigps; tE._ansferring files fleRt one medj11m or User. 

1 The TKTN task must be installed on the system to display the 
messages. 

2 Commands exist that allow you to fix a task in memory and physically 
examine the contents of the task image. However, this is an involved 
procedure and beyond the scope of this book. 

1-6 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

FilE~ Directory (UFQ_L to another, obtaining directory listings, 
renaming .files, deleting files, and changing file protection codes. 
PIP handles all file-structured devices and is used for almost all 
file operations. The noteworthy exception to PIP ca ab" is for 
certain PDP-11 Recor anagemen file 
to"!- wlilch 1'!tHIAL supplies §pedal 

1.1.5.3 Queuing 
dif:fer in the 

"'Ia'C:L ii t i e S 

A'"'nrn.JS t a r 

and Spooling - RSX-llM 
manner in whic""""'--,_.,."""""""""~"'"''"""~~"""".,....~:"""'";~~~~:-rir-flr"l~ 

and RSX-llM-PLUS 

s e nctions. 
utomatica y generate reques s 

~~~~~~~~~~~~~~~~~~~~a~n~~A~S;C~I~I output file ® the 
s.Y.e_1tem default printer. If your installation i'tas the proper tasks 
in51Eaiied, fhe spooling task dequeues such requests and prints the 
requested output file on the proper device. You should consult the 
system manager at your installation for the exact details. 

1.1.5 .4 Librarian Operations - The Librarian program ~ ca.n create 
and maintain specially formatted library files on disk: one for macro 
call definitions and one for object module subroutines.l The MACR0-11 
assembler and the Task Builder can access these library files and 
extract the proper code from them. Libraries are convenient to use 
because they encourage sharing of code, provide faster access to 
multiple modules (only one file need be opened and closed), occupy 
less space than the equivalent number of separate modules, and impose 
a coding standard. The library files you create using the Librarian 
are in the same format as those that DIGITAL supplies with the 
operating system. 

1. 2 DIGITAL-SUPPI,IED SYSTEM SOFTWARE 

DIGITAL supplies system software in two standard library formats: 
mac:t:,o calJ..-,ad@l!ir it j ens and o,eaect module subroutinss. You use macro 
!Tb'.rades as input to the assem !er and obJect libraries as input to 
the Task Builder. The following two subsections describe these system 
libraries. ~6'cRo 1.18 ~ A9SlltlfMGI! 

~a.J•c.t f;f,,.r.,, _..., 1'ale &,:/J.c,. 
1.2.l System Directives - Macro Libraries 

DIGITAL makes available system directives and system-related features 
through calls; definitions for these calls reside in macro libraries. 
The libraries are stored in a predefined file area known as the Use[ 
File Directory or UFD. The UFD is [l.11 on the system library device 

'('reEerencea-'eXplicitly by the device-independent designation LB:). 
Table 1-1 summarizes the macro libraries DIGITAL supplies. 

To use thes~ libraries, you should follow the specific procedures 
described in the system documentation. Typically, you supply in the 
source code the appropriate names of the modules as parameters of a 
.MCALL MACR0-11 directive. This action tells the assembler to 
generate an entry for that call in its macro symbol table and to 
search the appropriate library for the definition of the macro symbol. 

1 The Librarian can also create a universal library file to contain 
any of one file type you prefer. 

1-7 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

Table 1-1 
DIGITAL-Supplied Macro Libraries 

File Name and Type Description of Contents 

RSXMAC.SML 

EXEMC.MLB 

RMSMAC.MLB 

System Macro Library. Contains the macro 
definitions for all RSX-llM and RSX-llM-PLUS 
system directives and File Control Service 
(FCS) file processing ~alls. default 
lTOrary for the assembler. 

Executive Macro Library. Contains the 
symbol and offset definitions for the 
Executive data structures. 

PDP-11 Record Management System (RMS-11). 
Contains the definitions for RMS-11 calls 
for sequential and relative file I/O. If 
your system has the optional RMS-llK 
software, this library will also contain 
calls for indexed file operations. 

In translating source code, the assembler first checks for macro 
symbols. When the assembler finds an operator on a source line, it 
searches its macro symbol table to see whether the operator is a macro 
symbol. If the operator is a macro symbol, the assembler applies the 
local definition for the macro symbol or extracts the definition from 
a library you specified or from the system library. By searching the 
user-supplied library first, the assembler allows you to tailor the 
definitions of system macro calls or PDP-11 instructions. MACR0-11 
assembles the macro definition with any accompanying parameters and 
includes the assembled code in the object module. As a result, the 
proper code is included from a library. 

Through the use of the system macro library, you are provided with the 
code enabling a task to issue system directives and to obtain file 
control services (FCS). These services enable a task to obtain 
run-time and sYSLem information, perform input/output functions, 
communicate with other tasks, manipulate logical and virtual address 
space, control execution, and properly exit. In general, most RSX-llM 
and RSX-llM-PLUS featur~s are made available to a tagk through wac.(S> 

the system librar • For the system macro library 
RSXMAC you nee no a e the 1 rary name to the assembler. As a 
default condition, the assembl~r automatically searches the system 
macro library. 

Through the use of the Executive macro library EXEMC.MLB, you are 
provided with code to allow software to refer to offsets within the 
Executive and system definitions of the Executive data structures. 
This library is provided tor building privileged tasks and for 
incorporating specially written device drivers in the system. (This 
topic is covered fully in the RSX-llM-PLUS Guide to Writing an I/O 
Dri~, the RSX-11M Guide to Writing an I/O Driver, and the 
RSX-llM/M-PLUS Task Builder Manual and is not mentioned further in 
this guide.) 

The Record Management System library RMSMAC.MLB is provided to support 
file and record access to RMS-11 data. RMS-11 is an 
upwards-compatible extension of FCS and offers more functions such as 
indexed sequential (keyed) access to data. You include the RMS-11 
macro symbols in the source code and supply to the assembler the name 

1-8 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

of the RMS-11 library to use. The assembler extracts the definitions 
from the library and includes the RMS-11 code in the object module. 

1.2.2 System Subroutines - Object Libraries 

On RSX-llM and RSX-llM-PLUS systems, system object 
general utility functions and special-purpose 
These libraries, like the macro libraries, reside 
system library device (LB:). Table 1-2 lists and 
libraries DIGITAL supplies. 

libraries provide 
Executive features. 

in UFD [1,1] on the 
describes the object 

Table 1-2 
DIGITAL-Supplied Object Libraries 

File Name and Type Description of Contents 

SYSLIB.OLB 

VMLIB .OLB 

EXELIB .OLB 

ANSLIB .OLB 

RMSLIB.OLB 

FOROTS.OLB 
F4POTS.OLB 

System Library. Contains register handling, 
arithmetic, data conversion, output 
formatting, file control services (FCS), and 
FCS command line processing subroutines. 
Optionally contains a set of real-time data 
acquisition routines. Default library for 
TKB. 

Virtual Memory Management Library. Contains 
dynamic memory, core allocation, virtual 
memory, and page management subroutines. 

Executive Library. Contains the definitions 
of the Executive symbols. 

ANSI Magnetic Tape Library. On RSX-llM 
systems only, an alternate version of 
SYSLIB. Contains ANSI magnetic tape label 
handling routines and FCS big buffering 
support. (On RSX-llM-PLUS systems and 
systems with limited disk space, these 
routines are in SYSLIB.) 

Record Management System. Contains the 
routines for sequential and relative (RMS-11) 
and, optionally, indexed (RMS-llK) I/O. 

FORTRAN IV and FORTRAN IV-PLUS Library 
(optional). The Object Time System (OTS) 
and other routines for the PDP-11 FORTRAN IV 
language processors. 

You typically include system object routines in a task by specifying 
the routine name as the operand of a CALL macro or Jump To Subroutine 
(JSR) instruction in the source code. The language processor, at the 
point of the reference, generates the instructions to transfer control 
to the external subroutine. The name of the subroutine is left as an 
externally-defined global symbol for the Task Builder to resolve. 

1-9 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

To ensure that subroutines are placed in the task image, the Task 
Builder, as a default operation, searches the library SYSLIB.OLB for 
routine names that remain undefined after the search of any 
user-specified libraries. TKB attempts to match the undefined global 
reference (th~ subroutine name in a module) with an entry point name 
in the SYSLIB library. When it finds a match, TKB extracts a copy of 
the module defining the symbol from SYSLIB and inserts the subroutine 
in the task image. Any further references to that symbol in the task 
are defined by the subroutine and TKB need not add any code to resolve 
further references. 

If a module references routines that are in an object library other 
than SYSLIB.OLB, you must specify that library when you build the 
task. TKB performs the same search operations on user-supplied 
libraries as it does on the default search of SYSLIB. The Task 
Builder also searches any user-specified libraries in the order in 
which you specify them before it searches the system library. 

1.3 HARDWARE FOR PROGRAM DEVELOPMENT 

Basically, you need three types of devices for program development: 
disks, terminals, and printers. This section briefly introduces these 
devices and tells where you can find further information. In general, 
each hardware unit on the system is delivered with relevant hardware 
documentation that provides programming information in addition to 
operational instructions. Your local installation should have a 
library of such hardware documentation. If you are not writing any 
specially tailored code for these devices, the system software handles 
them transparently through such mechanisms as the print spooler and 
the Peripheral Interchange Program (PIP). 

1.3.1 Disks 

Disks are the main storage media on RSX-llM and RSX-llM-PLUS systems. 
Disk drives are either public (that is, accessible to all users) or 
private (that is, accessible to a restricted set of users). Almost 
all utility programs work with disk storage as a default device. You 
can share public disk resources to create source program files and, as 
needed, allocate your own private drive to store reserved copies of 
source and documentation files. 

1.3.2 Terminals 

Terminals are the means by which you communicate with the system. 
DIGITAL terminals handle 7-bit ASCII characters and system software 
usually ignores any eighth, or parity, bit. You perform input to the 
system through a typewriter-like keyboard; the system returns output 
to you either on a screen at a video-display terminal or on paper at a 
hard-copy terminal. Video-display terminals are more convenient 
because they typically operate at faster rates than hard-copy devices. 
Hard-copy terminals, however, have the advantage of providing a record 
of what transpired during a session on the system. 

Terminals are connected to the computer through either a direct line 
or a modem unit over a dial-up telephone line. If you are not 
familiar with using a terminal, you should read either the 
Introduction to RSX-llM-PLUS o~ the RSX-llM Beginner's Guide. Both of 
these documents explain how to access the system and use basic system 
commands. 

1-10 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

1.3.3 Printers 

Printers provide volume hard-copy output of data. On larger systems, 
you communicate with the printer through intermediate software called 
spooling programs. On smaller systems, you may have to specify 
explicitly that output is to go to a printer device in the absence of 
spooling programs. 

1.4 THE PROGRAM DEVELOPMENT PROCESS -- OVERVIEW 

Figure 1-1 illustrates the steps in the program development process. 
The following paragraphs briefly describe these steps, which are 
treated in greater detail in Chapters 2 through 7. 

CORRECT 
SOURCE 

FILE YES 

A.PPL Y SOURCE 
CORRECTIONS 

AS NEEDED 

START 

TEXT 
EDITOR (EDI) 

RUN AND 
DEBUG 

SOURCE 
FILE (.MAC) 

DUMP 
Fl LE (.PMD) 

IN UFO [1,4] 

TASK IMAGE 
Fl LE (.TSK) 

MACRO 
LIBRARY Fl LE 

(DEFAULT=RSXMAC.SML) 

CREATING AND 
FORMATTING 

MACR0-11 
SOURCE 

FILES 

OBJECT 
LIBRARY Fl LE 

(DEFAULT=SYSLIB.OLB) 

SYMBOL DEFINITION 
Fl LE (.STB) 

} 

ASSEMBLING 
AND 

CORRECTING 
A PROGRAM 

MODULE 

BUILDING 
AND 

TESTING A 
TASK 

} 

RUNNING 
AND 

DEBUGGING 
A TASK 

Figure 1-1 The Program Development Process 

1-11 



THE PROGRAM DEVELOPMENT ENVIRONMENT 

The steps normally taken to prepare a program to run on the system are 
as follows. 

1. Create a source program in a file on disk 

2. Submit the source file to a language processor (assembler or 
compiler) to produce an object module 

3. Submit the file (or files) containing the object module to 
the Task Builder to create a file containing a loadable task 
image 

4. Request the Executive to execute the task 

You use a text editor to create the source file. For MACR0-11 
programmers, this guide suggests a skeleton format for source files 
and shows how to replicate and modify the skeleton file. The skeleton 
file becomes a common base from which you create each new source file. 

A language processor creates the file of relocatable object code. For 
assembly language processing, MACR0-11 also accesses the system macro 
library to incl~de code for system directives in the object file. For 
compilers, system directives are invoked by calls to subroutines in 
the system object library SYSLIB. 

The Task Builder creates the file of loadable code, assuming certain 
default conditions about the run-time environment and building these 
characteristics into the task. The Task Builder also accesses system 
and user-specified libraries to resolve references in the task. 

Once you have a task image, you request the Executive to ru·n the 
program. If any errors are encountered, you must edit the source 
file, reassemble or recompile, build a new task image file and try 
again. 

1.5 GUIDE TO FURTHER READING 

The sections or chapters in the following documents contain additional 
information on the subjects described in this chapter. 

Document Location 

RSX-llM-PLUS Operating System Manual 

Chapter 5, Program Development Facilities 
Section 6.2, Editing Facilities 
Section 6.3, File Utilities 
Section 6.5, Cross Reference Processor (CRF) 

Introduction to RSX-llM-PLUS 

RSX-llM Beginner's Guide 

Introduction to RSX-llM 

Chapter l, M-PLUS How-To 
Chapter 2, Learning the System 

Chapter 1, The Terminal 
Chapter 3, The Files 

Chapter 5, Program Development 

1-12 



CHAPTER 2 

CREATING MACR0-11 SOURCE FILES 

Your first step in program development is to create a file that 
contains MACR0-11 source statements. One way to do this is to create 
a skeleton source file which you can use as a framework for all your 
source programs. This chapter describes a source file format you can 
use as a guideline to create your own skeleton file, presents some 
MACR0-11 statements to include in the file, and explains some 
elementary editing commands you can use to create and modify source 
files. 

DIGITAL has established a coding standard to enhance the readability 
and maintainability of its MACR0-11 source programs. That standard is 
outlined in an appendix of the IAS/RSX-11 MACR0-11 Reference Manual, 
the reference for which is given in the list of further reading at the 
end of this chapter. 

2.1 MACR0-·11 SKELETON SOURCE FILE FORMAT 

This section presents the skeleton and source statement formats and 
discusses each of the elements in the skeleton. Figure 2-1 
illustrates the basic elements of the skeleton: a preface, 
definitions, functional descriptions, and the code itself. 

The source file preface, or preamble, should be on the first page. 
The preface essentially describes the code, states its ownership, 
identifies the author, defines the changes to the code, and gives a 
brief description of the module's function. 

After the preface of the module comes the detail of the code. 
Declarations, such as local symbol, macro, and data definitions, 
appearing toward the front of the code, make reading the code easier. 
Preceding the routines in the module you should place detailed 
descriptions of what the routines do and define what is required for 
input to the routines, what the routines produce, and what effects 
result from execution. 

Each statement line in a source file should follow a consistent 
format, as shown in Figure 2-2. 

2-1 



CREATING MACR0-11 SOURCE FILES 

Title 
Identification 

Statement of Ownership 

Authorship 

Change History 

Module Function 
(General) 

Local Symbol Definitions 

Local Macro Definitions 

Local Data Blocks 

Module Function 
(Detailed) 

Inputs, Outputs, 
and 

Side Effects 

Module Code 

Module Preface 
on first page 

Figure 2-1 MACR0-11 Source File Format 

2-2 



CREATING MACR0-11 SOURCE FILES 

Label: Operator Operand(s) ; Comments 

Tab Position 0 
Column 1 

Tab Position 1 
Column 9 

Tab Position 2 
Column 17 

Tab Position 4 
Column 33 

Figure 2-2 MACR0-11 Source Statement Format 

Although the assembler allows free formatting of statements, you 
should follow the recommended format because it is easy to follow and 
creates readable, consistent code. 

In the source statement format shown in Figure 2-2, the label is any 
user-defined symbol that identifies a reference location in the code. 
An operator is any PDP-11 operation code, MACR0-11 assembler 
directive, or macro symbol. An operand is any argument(s) or 
parameter(s) of an operator. Comments consist of information you 
provide to describe what effect you desire from the execution of the 
instruction. Comments do not affect program execution; the assembler 
merely transfers them to the listing file produced during the 
asse!mbly. 

Comments, accompanied by selected MACR0-11 assembler directives, 
constitute the source file skeleton. This skeleton provides the 
structure on which you build the source file. Directives in the 
source file skeleton identify the code and control the format of the 
listing. Figure 2-3 shows a sample skeleton. 

Sections 2~1.l through 2.1.12 describe the parts of the source file 
skeleton in detail. 

2.1.1 .TITLE Directive 

The .TITLE directive allows you to name the module. The assembler 
take!S t.bJi- iiESt J:ffi ponblank characters, up to the first blank or 
horizontal tab char7ct r, as the module name. Following the name in 
the .TITLE directive, you can use •m to 24 characters to generally 
describe the function of the module. The name and tfr# description 
appear as the first entry in the header line of each page in the 
assembly listing. For example, consider the following .TITLE 
di re!ct i ve • 

• TITLE SKELTN SOURCE FILE SKELETON 

The assembler takes the characters SKELTN as the module name. The 
remaining characters up to the 30th character are taken as the 
description. Any remaining characters after the 30th character would 
be discarded. 

T~e ~~~~~~~~~~~~~~~~~~~~~~,;..;..;.l.~~~~~~~~E~ directive name 
~1nt2e ~~f~u~s~i~o~n~,~~o~~v~e~r~1~i~t~~i~s~h~ew,l~p~f~u~1!:'-~t~o~~~;:;.~.;.-~~~:.;.; 
in the .TITLE directive to the source file from which the 
created. (Note that the sample code and commands shown in 
use different names to help you distinguish their usages.) 

2-3 



CREATING MACR0-11 SOURCE FILES 

+TITLE SKELTN SOURCE FILE SKELETON 
• IDE NT /() l/ 

AUTHOR: Z 

CHANGE~:>: 

MODULE FUNCTION: 

+PAGE 
.SBTTI... 
+LIST 
.Nl..IST 
+MCALL 

; BREAK PAGE FOR PREFACE 
SYMBOL., MACROv DATA DEFINITIONS 
TTM 
BEX ; SUPPRESS BIN EXTENSION 
EXITSS ; EXEC'S EXIT MACRO 

LOCAL SYMBOi... DEFINITIONS: 

LOCAL. MAcr:ws: 

LOCAL DATA BLOCKS: 

.PSECT DATAvDvRW 

FUNCTION DETAILS: 

INPUTS: 

OUTPUTS: 

SIDE EFFECTS: 

ST-AF~T CODE HEi:~E 

BTAr~r: 

+PAGE 
.SBTTL 
+PSECT 

END: EX l T~I>~:; 

+END 
EXIT CLEANLY TO EXEC 
TELL ASSEMBLER END OF CODE 

Figure 2-3 Sample Source File Skeleton 

2-4 



CREATING MACR0-11 SOURCE FILES 

Moreover, the name the assembler extracts from the .TITLE directive is 
important in subsequent steps of program development. The Task 
Builder lists this name in its memory allocation synopsis to show 
which object modules made contributions to each program section in the 
task image. In addition, if the object module is inserted in an 
object library, the Librarian program keeps this name in the directory 
of the library to refer to the object module. 

2.1.2 .IDENT Directive 

The .IDENT directive records the version of the module. You can 
establish your own version identification conventions. The 
identification follows the module into the task image and is displayed 
in the map. Knowing whether the correct version of the module was 
linked into the task image helps in the debugging and maintenance 
process. 

2.1.3 Author Line 

The author line identifies the originator of the code. 

2.1.4 Changes Section 

This section of the source file describes any modifications that have 
been made to the module. You can develop a convention whereby the 
author's initials and a number can tag a change. The author of the 
change can identify the change in this section and flag each line of 
code with an additional comment such as the following. 

TOM JONES 2-APR-78 ;TJOOl 
ADD STATE TAX TO TOTAL 

Then, in the code a changed or added line can be flagged with the 
notation TJOOl. 

ADD A,B ;TOTAL WITH TAX ;TJOOl 

This procedure helps the author recall what changes were made to the 
module and assists others in determining the extent of changes.I 

2.1.5 Module Function 

In the module function part of the source file, you can describe the 
genelral processing operations the code performs. This description can 
include how the module relates to the system or specific application, 
that is, what type of processing precedes and follows the execution of 
this module. 

1 A utility called the Source Language Input Program (SLP) is supplied 
with the system and can be used for source file maintenance. SLP 
provides the means to update lines in an existing source file and to 
apply an audit trail to identify lines deleted, replaced, and added. 

2-5 



CREATING MACR0-11 SOURCE FILES 

2.1.6 Some Useful Directives 

Between the 
definitions 
directives. 

module function description and the local symbol 
is a convenient place to insert some general purpose 
The following subsections describe these directives. 

2.1.6.l .PAGE Directive - The .PAGE directive causes a page break in 
the assembly listing. It appears as shown in Figure 2-3 to keep the 
preamble alone on the first page of the listing (after the table of 
contents). You can use the .PAGE directive throughout the module to 
generate page breaks for different subroutines. 

2.1.6.2 .SBTTL Directive - The .SBTTL directive creates an entry for 
the assembly listing table of contents printed at the front of the 
listing. A table of contents is helpful in summarizing the 
subroutines in a large module. Therefore, the text you supply with 
the directive ought to describe what the related subroutine does. In 
addition to appearing in the table of contents, the text appears on 
the second line of the heading at the top of each listing page. If 
your modules typically contain only a small number of subroutines, you 
probably will not find the table of contents feature very useful. 

2.1.6.3 .LIST TTM Directive - The .LIST TTM directive creates a 
listing formatted more conveniently for ouput on a terminal. (Section 
3.4 of this guide shows how to display a listing at a terminal.) The 
directive can be included during the early stages of program 
development and removed from the stabilized code. 

2.1.6.4 .NLIST BEX Directive - The .NLIST BEX directive suppresses 
the binary extension of statements beyond what can fit on one source 
statement line. Use of this directive saves much excess printing in 
the assembly listing. For example, only the binary value of the first 
three characters of an ASCII string would appear in the listing. The 
directive simply makes the listing more readable and saves paper. 

2.1.6.5 .MCALL Directive - The .MCALL directive is the means by which 
you tell the assembler the names of the externally defined macro calls 
that appear in the source file. The directive causes the assembler to 
create entries in its macro symbol table for the macro names and to 
look up the definitions of the related calls in either a user or a 
system macro library. The assembler includes the definitions from the 
library in the module where the calls themselves appear.l 

The EXIT$S directive (shown in the .MCALL statement) should be in 
every user program that is designed to exit gracefully. It should be 
the last statement the program (task) executes before it returns 
control to the Executive. (The EXIT$S directive performs important 
system housekeeping operations for the task.) The related definition 

1 If you do not include the directive .LIST ME (list macro expansions) 
or .LIST MEB (list macro expansion lines that generate object code) in 
the source file, the assembler does not insert in the listing the 
expanded source code of the macros it assembles. 

2-6 



CREATING MACR0-11 SOURCE FILES 

for EXIT$S ~esides in the file RSXMAC.SML in UFO [1,1] on the library 
devi.ce (LB:). DIGITAL recommends that user tasks exit by using the 
EXIT$S directive. (An alternative form of exiting allows a task to 
trnt:=and p<>S'tS'tatus. ) 

If ct call for an externally defined macro statement appears in the 
source file but is not preceded by an .MCALL directive and the macro 
name, the assembler treats the unrecognized macro call as an implicit 

_.WQEW. data storage directive. (If the macro call has parameters, the 
assembler may generate an error because of illegal syntax for a .WORD 
directive.) The object code is not assembled in the object module. 
Lateir, when you build the task with the related object module and the 
macro name is not a valid symbol, the Task Builder flags the name as 
an Undefined Reference. wit t the .MCALL directive, the 
~:.m_bler does not know that it must searc 
macro symbol. -
2.1.6.6 .END Directive - The .END directive in a module signals the 
logical end of source input and optionally specifies the task transfer 
address. ansfer addr · ation at which 
execution begins. ough each source f 1 e s o 
directive, only one source file should define the transfer address. 
The assembler does not process lines beyond the one on which the .END 
directive appears. 

2.1.7 Local Symbol Definitions 

In this section of your source file, you collect symbols in direct 
assignment statements. Because symbols in MACR0-11 can be defined as 
expressions of other symbols, having the definitions in one place is 
an advantage. In addition, good programming practice encourages using 
symbols instead of simply supplying a numeric constant. 

For example, in defining a 10-byte buffer, the best method is to 
define a symbol and then use the symbol in the buffer definition. 

LOCAL SYMBOL DEFINITIONS 

SIZB == 10. 

LOCAL DATA BLOCKS 

BUFB: .BLKB SIZB 

This method has several advantages. First, if a single constant that 
is referred to in numerous places in the code must be altered, you 
need perform only one edit (to the symbol definition) to effect the 
change. Second, if all the symbols are gathered in one place in 
alphabetical order, reading the code is much simplified. Third, you 
can find all references to a symbol in a cross-reference listing. The 
cross-reference capability allows you to examine all the references to 
a symbol and confidently assess the effects of altering the symbol 
definition. These advantages are lost if you use constants. 

Thus, the symbol list would contain such local symbol definitions as 
SIZB = 10. The symbols themselves would appear in the module code. 

2-7 



CREATING MACR0-11 SOURCE FILES 

2.1.8 Local Macro Definitions 

The definition of a macro statement can appear anywhere in the source 
file as long as the definition appears before the first occurrence of 
the macro statement. It is better programming practice, then, to 
place all macro definitions in a standard place near the front of the 
source file. 

2.1.9 Local Data Blocks 

This section of the source file defines such data as buffers, status 
words, and status bytes. Generally, it describes the local storage 
that the module references. It is good programming practice to use a 
separate .PSECT directive for data. See Section 2.1.11. 

2.1.10 Module Function - Detailed 

This section of the source file can be as general or specific as 
needed to describe the functions of the module. A complex module 
should have a lengthy discussion; a simple module need not have as 
much. At a minimum, this section should state the register usage on 
input to ahd OU Lout tr ()!II the module. 

2.1.11 .PSECT Directive 

The .PSECT directive establishes a name and attributes for a program 
section. A program section is a unit allocation of memory reserved 
for either code or data. For example, you can establish a program 
section to contain data for your program as follows • 

• PSECT DATA,D,RW 

The .PSECT directive creates the program section named DATA with the 
attributes data (D) and read/write (RW). You may give a program 
section for data either the read-only (RO) or the read/write (RW) 
attribute.! (The assembler applies other, default attributes not 
relevant to this discussion.) 

The three most important aspects of the .PSECT directive are: (1) 
contributions defi ecific ram section can be 'n 
separate paces in a sgurce file gr eparate source iles; (2) the 

..pttributes of the program section are passed to the Task Builder; and 
•<3) contributions for a specific program section with the same 
attributes are collected in one continuous allocation of memory space 
by the Task Builder. In the skeleton file, it is useful to define one 
program section to contain the data elements referenced in the task 
and to define another program section to contain the code. 

1 RSX-llM systems do not support hardware protection of program 
sections that have the RO attribute. RSX-llM-PLUS systems support 
hardware protection of program sections that have the RO attribute if 
they are in the pure code of a multiuser task. Consult the 
RSX-llM/M-PLUS Task Builder Manual for a discussion of program section 
allocation in multiuser tasks. 

2-8 



CREATING MACR0-11 SOURCE FILES 

2.2 CREATING A SOURCE FILE FROM A SKELETON FILE 

This section describes how to use an editor, EDI, to create a skeleton 
file and then to create a source file from the skeleton. 

2.2.l Performing the Initial Input 

To create the skeleton file, run the editor by typing the command EDI 
and the specification of a new file (one that is not in your 
directory). 

>EDI SKEL.MAC 
[CREATING NEW FILE] 
INPUT 

The editor runs, determines that the file does not exist, creates the 
filev and tells you to begin typing the input. 

Type the input according to Figure 2-4. Leave any typographical 
errors until after you have become familiar with the editing commands 
described in Section 2.3. The notation conventions appearing in the 
figure are described in the Preface at the front of this guide. 

2.2.1.1 Inserting Blank Lines in Text - To insert a blank line in the 
source file as shown in Figure 2-4, type a space or tab on a new line 
followed by the RETURN key. If you type the RETURN key twice in 
succession (that is, type the RETURN key to enter a line of text and 
immediately type the RETURN key again on the new line), EDI terminates 
the input. Thus, to enter a blank line, you need typa only one 
nonprinting character, such as TAB, on a new line. 

2.2.l.2 Terminating the Input and the EDI Program - To terminate the 
input, type the RETURN key twice in succession. EDI prints the 
asterisk to request a command. Type the EXIT command to close the 
file and terminate EDI. For example: 

last line of text ~ 
~ 
*EXIT 
[EXIT] 

> 

When EDI exits, it prints the message [EXIT] and returns control to 
MCR. The MCR prompt (>) indicates that the command interpreter is 
ready to accept a new command. 

2-9 



CREATING MACR0-11 SOURCE FILES 

>EDI SKEL+MAC 
t:rnEATING NEW Fil ... E:J 
INPUT 
(@ • TITLE GD SKELTN ~ SOURCE FILE SKELETON 

CED 
; 

• HIENT GD /():LI 

~ AUTHOR: Z 
; 
c@G!D 
; 
; CHANGES: 
; 
c@G!) 
; 
; MODULE FUNCTION: 

; 
(@ • PAGE(@ (@ Bf~EAK PAGE FOR Pl~EFACE 
GD 
GD 
(@ 

• SBTTL ~ SYMBOL, MACRO, DATA DEFINITIONS 
.LIST CED TTM CED (@; TEFmINAL LISTING MODE 
+NLIST ~BEX~ ~ ; Sl.JPP1:u::ss BIN EXTENSION 

(@ 
(@ 

.MCALL~ EXIT$S (@ ~; EXEC'S EXIT MACFW 
G!!) 

; 
; LOCAL SYMBOL 
; 
~ G!!) 
; 
; LOCAL MACROS: 
; 
(§)GD 
; 

DEFINITIONS: 

; LOCAL DATA BLOCKS: 
; 
~ .PSECT<TAB>DATArDrRW 
GDGD 
; 
; FUNCTION DETAILS: 
@)@) 
; 

CED INPtrrn: 

(@ OUTPUTS! 

(§) SIDE EFFECTS: 
; 
GDGD 
~ .PAGE 
~ .SBTTI... 
~ .PBECT 
; START CODE HERE 
START: 
CEDG!D 
END:(@ EXJT~t>S ~ 
(@ .END~(§) 
GD 
*EXIT 
[EXIT:J 

> 

EXIT CLEANLY TO EXEC 
TEL.I... ASSEMBLER END OF CODE 

Figure 2-4 Creating the Skeleton File SKEL.MAC 

2-10 



CREATING MACR0-11 SOURCE FILES 

2.2o2 Creating a Source File from the Skeleton 

After you create the skeleton file, you can use it many times to 
create different source files by running the editor again as described 
in Section 2.2.1. For example: 

>EDI SKEL .MAC 
[00054 LINES READ IN] 
[PAGE 1] 

* 
This time EDI finds the file you just created, reads it into memory, 
and prints an asterisk to request a command. 

The EXIT command with a file specification creates a new file with 
that name and containing all of the text in your skeleton. 

*EXIT FILE.MAC 
[EXIT] 

> 

EDI creates either the new file FILE.MAC;l in your directory or, if 
the file already exists, a new version of the file. It retains the 
input file SKEL.MAC. You can repeat this process to create as many 
new source files as you need. 

At this point, the contents of SKEL.MAC and your new file are exactly 
the same typographical errors and all. Now you must use editing 
commands to change your new file to make it unique. Section 2.3 
describes some of these commands and gives examples of their usage to 
enable you to perform the most common editing functions. 

By using the same skeleton file each time you want to create a new 
source file, you save typing time and have a better chance of creating 
consistent, easily readable, and well-documented code. After you have 
gone through Section 2.3 and learned the editing commands, you may 
want to correct the errors in the skeleton file. 

2.3 EDITING THE SOURCE FILE 

This section describes how to use a subset of EDI commands to edit a 
source file. By following the examples in this section, you will 
create three source files that you can use in subsequent stages of the 
program development cycle. 

You can abbreviate most of the commands in EDI. For example, the EXIT 
command can be abbreviated EX. The descriptions of each command 
include (within parentheses) the accepted abbreviation if one exists. 

2.3.1 Displaying Text 

Use the EDI command to access a source file to edit. 

>EDI FILE.MAC 
[00054 LINES READ IN] 
[PAGE l] 
* 

2-11 



CREATING MACR0-11 SOURCE FILES 

Two keys, RETURN and ESCAPE, cause EDI to move forward and backward, 
respectively, one line and to display the new line. By using these 
two keys, you can step line by line through a file. For example: 

*~ 
.TITLE SKELTN SOURCE FILE SKELETON 

·~ • I DENT /01/ 
*~ 

.TITLE SKELTN SOURCE FILE SKELETON 

* 
Typing the RETURN key twice advances the pointer two times and 
displays each line. Typing the ESCAPE key moves the pointer back to 
the previous line and displays the line. 

TYPE n (TY n) 

The TYPE n command displays n lines at a time but does not alter the 
line position. For example: 

*TYPE 2 
.TITLE SKELTN SOURCE FILE SKELETON 
• !DENT /01/ 

* 
The 2 in the TYPE command causes EDI to display the current line and 
the next line. If you give the TYPE command without a number, EDI 
displays the current line (that is, one line). 

LIST (LI) 

The LIST command displays all lines in the buffer starting at the 
current line and stopping at the last line in the buffer (that is, end 
of buffer). 

*LIST 
(all lines are listed) 

*TYPE 

[*BOB*] 
*EXIT 
[EXIT] 

> 

The LIST command positions the line pointer at the beginning of the 
buffer. The TYPE command shows the position of the line pointer. EDI 
prints the blank line it maintains at the beginning of the buffer and 
the message [*BOB*] to remind you that the line pointer is at the 
beginning of the buffer. EDI always keeps a blank line at the 
beginning of the buffer to allow you to insert lines before the first 
line of text in the buffer. 

2~3.2 Locating Text and Positioning the Line Pointer 

Editing a file requires you to locate a line of text in the buffer and 
to position the pointer to that line. This section describes several 
of the commands most commonly used in editing files. 

2-12 



CREATING MACR0-11 SOURCE FILES 

BECUN (8), END (E) 

The BEGIN and END commands position the pointer to fixed lines in the 
buffer - the beginning and ending lines. The END command also prints 
the last line of the buffer. For example: 

>EDI PI LE .MAC 
[00054 LINES READ IN] 
[PAGE 1] 
*END 
~ .END~ ~ ~ TELL ASSEMBLER END OF CODE 
* 

The END command is useful for quickly assessing what is the last line 
in the buffer. The BEGIN command is helpful in quickly positioning 
the pointer at the beginning (or top) line of the buffer, thus 
enabling multiple passes over a buffer. 

*BEGIN 
*TYPE 

[*BOB*] 
* 

Becaiuse thE~ BEG IN command does not di splay any. text, you can use the 
TYPE command to display the first ·1ine in the b~ffer. The command in 
the example shows the blank line at the beginning of the buffer. EDI 
prints [*BOB*] to show you that it is positioned at the beginning of 
the buffer .. 

·~ ~ oTITLE ~ SKELTN ~ SOURCE FILE SKELETON 

* 
Typing the RETURN key advances the pointer and displays the line. 

LOCATE (L) 

If the text you want to examine is within the buffer, you can type the 
LOCATE command with a string to be located. 

*LOCATE MODULE 
; MODULE FUNCTION: 
* 

A space should separate the command and the search string to be 
located. EDI displays th~ line on which it found the first occurrence 
of the string. If EDI does not find the string, it prints a message 
indicating that the end of buffer has been reached. 

*LOCATE NODULE 
[*EOB*] 
* 

After an unsuccessful search, EDI leaves the line pointer at the last 
line of the buffer. 

2-13 



CREATING MACR0-11 SOURCE FILES 

PLOCATE {PL) 

If the string for which you are searching is not in the buffer, you 
can use the PLOCATE command to tell EDI to search successive buffers 
until it locates the string. 

*BEG IN 
* P LOCATE • END 

• END ~ ~ ~ ; TELL ASSEMBLER END OF CODE 

* 
EDI searches the buffer starting at the current line. If the string 
is not found in the buffer, EDI preserves the contents of the buffer 
and reads in more lines from the input file to fill the ~uffer again~ 
It prints a message telling the number of lines searched. When EDI 
finds the string, it displays the line on which the string occurs. If 
EDI does not find the string, it prints a message indicating that the 
end of file has been reached. 

*PLOCATE .ENDR 
[*EOF*] 

* 
At the end of file (signaled by [*EOF*]), EDI leaves an empty buffer 
in which you can either insert new text (which follows all the text 
currently in the file) or exit to preserve any changes made and to 
start at the beginning of the file again. Note that, once EDI has 
preserved a buffer, you can not go back to it except by starting at 
the beginning of the file again. 

*EXIT 
[EXIT] 

> 

You can also use the PLOCATE command with a string known not to exist 
in the file to position EDI after the last line of the file. 

RENEW {REN) 

The RENEW command lets you read new lines from the input file. 

*EDI FI LE .MAC 
[00054 LINES READ IN] 
[PAGE 1] 
*RENEW 
[*EOF*] 
[PAGE 2] 
*EXIT 
[EXIT] 

> 

THE RENEW command writes the lines in the buffer to the temporary 
output file before it reads in new lines from the input file. If 
there are no more lines left in the file, EDI signals the end of file. 
This command is useful for casually inspecting the contents of a file. 

2-14 



CREATING MACR0-11 SOURCE FILES 

2.3.3 Changing Text 

CHANGE (C) 

The CHANGE command alters text on the current line, .allowing you to: 

1. Replace an old string with a new string 

2. Add a string at the start of a line 

3. Delete a string from a line 

The command requires that you type, within character delimiters, the 
old string (the text to be altered) followed by t~e new string. The 
only requirement for the delimiting character is that it does not 
appe~r in either the old or the new string.I A convenient character to 
use as a delimiter is the slash character (/) as shown in the 
following example. 

>EDI FILE.MAC 
[00054 LINES READ IN] 
[PAGE l] 
*~ 

.TITLE SKELTN SOURCE FILE SKELETON 
*C /SKELTN/NUMA/~ 

.TITLE NUMA SOURCE FILE SKELETON 

After you enter the C command, EDI searches the line for the old 
string (SKELTN) and replaces it with the new string (NUMA). EDI then 
prints the changed line to allow you to verify the operation. If EDI 
cannot locate the old string, it prints the message [NO MATCH] and 
reprints the prompt. 

To save typing long strings, EDI allows you to include an ellipsis 
( ••• ) in the old string. For example: 

*C /SO ••• ON/COUNT NUMBER OF A'S/ 
• TITLE ~ NUMA ~ COUNT NUMBER OF A'S 

* 
EDI takes the characters SO, all intervening characters, and the 
characters ON as the old string. The ellipsis, used in this manner, 
reduces the amount of typing required to specify a string to be 
changed. Three other forms of the ellipsis allow variations of the 
abbreviation. 

I ... I 

/old string .... / 

/ ••• old string/ 

By itself, the ellipsis means the entire line 

From old string to the end of the line 

From the beginning of the line to old string 

The slash characters shown as delimiters with the ellipsis can be any 
unique character. 

1 The ampersand character (&) should not be used as a delimiter 
because EDI treats it as a concatenation character. If you must use 
it as a delimiter, follow the special procedures presented in Chapter 
3 of the RSX-11 Utilities Manual for using the Concatenation Character 
(CC) command. 

2-15 



CREATING MACR0-11 SOURCE FILES 

To place a string at the beginning of a line, specify the null string 
as the old string. For example: 

*C //OLD STRING/~ 
OLD STRING ~ .TITLE~ NUMA ~ COUNT NUMBER OF A'S 
* 

EDI replaces the null string at the beginning of the line with OLD 
STRING and prints the changed line. 

To delete a string from the line, specify the null string as the new 
string as follows. 

*C /OLD STRING//G!!) 
~ .TITLE ~ NUMA~ COUNT NUMBER OF A'S 

* 
EDI replaces OLD STRING with the null string, that is, it deletes OLD 
STRING and prints the changed line. 

AP 
A special command, AP, adds a string at the end of a line. The 
command does not need delimiting characters since only one string can 
be specified. Simply specify a space to separate the command and the 
string as fol lows. 

*AP ~ 

* 

.IDENT /01/ 
IDENTIFY MODULE VERSLON 

• !DENT /01/ ~ IDENTIFY MODULE VERSION 

After adding the text at the end of the line, EDI displays the changed 
line. 

DP n 
To remove a line or lines from the text in the b~ffer, specify the 
DP n command, where n is the number of lines to be deleted. The TYPE 
n command can be used with the DP n command to display the lines to be 
deleted. 

*TYPE 3 

; 
;AUTHOR:Z 
*DP 2 
;AUTHOR:Z 
* 

The TYPE 3 command displays the current line and two succeeding lines 
(the pointer remains positioned at the current line). The DP 2 
command deletes the current line and one succeeding line. EDI moves 
the pointer to the line after the last one deleted and prints that 
line. 

2-16 



CREATING MACR0-11 SOURCE FILES 

EXIT (EX) 

After changing text in the file, close the editing session as follows. 

*EXIT 
[EXIT] 

> 

The EXIT command without a file name creates a new version of the 
current file and copies the remainder of the file to the new version. 
Because exiting preserves the edits you have made to that point, you 
should exit fairly often from a lengthy editing session. If a system 
crash occurs, EDI retains the old version of your file (that is, it 
retains the edits up until you last exited) but does not retain the 
changes you are making. Frequent exits minimize the amount of editing 
that can be lost if a system crash occurs. 

2.3.4 Inserting Code in the Source File 

INSE~RT (I) 

The INSERT, or I, command allows you to add multiple lines of text in 
the source file. To insert code in the source file FILE.MAC, use 
positioning commands to locate the line preceding where you want to 
place the new material. The I command places new lines in the buffer 
after the current line. For example: 

> ED I FI LE • MAC 
[00052 LINES READ IN] 
[PAGE 1] 
*L FUNCTION: 
; MODULE FUNCTION: 
*I~ 

THIS MODULE LOADS A BUFFER, 
COUNTS THE NUMBER OF A'S (UPPER 
CASE ONLY) IN THE BUFFER, CONVERTS 
THE NUMBER TO OCTAL, AND REPORTS 

; THE NUMBER OF A'S FOUND. ~ 
~ 
* 

The L command (for LOCATE) positions EDI to the line preceding where 
you want to place the new lines. Typing the ~I command followed by the 
RETURN key places EDI in insert mode. After you type the lines, press 
the HETURN key twice in succession to leave insert mode. 

Continue using positioning and editing commands to type in the 
remainder of the source program shown in Figure 2-5. 

2-17 



A: 

CREATING MACR0-11 SOURCE FILES 

COUNT NUMBER OF A'S • TITLE NUMA 
.IDENT /01/ 

AUTHOR: Z 
; IDENTIFY MODULE VERSION 

CHANGES: 

MODULE FUNCTION: 
THIS MODULE LOADS BUFFER' 
COUNTS THE NUMBER OF A'S <UPPER 
CASE ONLY> IN THE BUFFER, CONVERTS 
THE NUMBER TO OCTAL, AND REPORTS 
THE NUMBER OF A'S FOUND. 

.PAGE 

.SBTTL 

.LIST 

.NLIST 

.MCALL 

; BREAK PAGE FOR PREFACE 
SYMBOL, MACRO, DATA DEFINITIONS 
TTM TERMINAL LISTING MODE 
BEX ; SUPPRESS BIN EXTENSION 
EXIT$S ; EXEC'S EXIT MACRO 

LOCAL SYMBOL DEFINITIONS: 
MSGLEN - NUMEND-MSG 
SIZ = 80. 
SIZA - 6. 

LOCAL MACROS: NONE 

LOCAL DATA BLOCKS: 

.PSECT DATA,[1,RW 

• ASCII /A/ ; DEFINE AN A 
BUF1: .BLKB SIZ ~ DEFINE HUFFER 
MSG: • ASCII /THE NUMBER OF A'S IS I 
NUMA: .BLKB SIZA DEFINE OCTAL COUNT 
NUMEND - • END OF MESSAGE 
NUMC: .BLKW 1 ; NUMicER OF CHARS TYPED 

Figure 2-5 Source Code for FILE.MAC 

2-18 



CREATING MACR0-11 SOURCE FILES. 

FUNCTION DETAILS: 

; INPUTS: 
; BUFl IS LOADED WITH CHARACTERS 

OUTPUTS: 
NUMA HOLDS THE NUMBER OF A'S 

SIDE EFFECTS: NONE 

START CODE HERE 

START: 

END: 

.PAGE 

.SBTTL ROUTINE TO COUNT A'S 

.F'SECT 

MDV 
MDV 
CALL 
TST 
BEQ 
CLR 
MDV 

CMPB 
BNE 
INC 

DEC 
BNE 
.PAGE 
.SBTTL 
MDV 
MDV 

MDV 
BIC 
ADD 
MOVB 
ASR 
ASR 
ASR 
DEC 
BNE 
MOV 
MDV 
CALL 
EXIT$S 
.END 

tBUF1,RO 
tsiz,R1 
READ 
R2 
END 
R1 
R2,NUMC 

CRO>+,A 
20$ 
R1 

R2 
10$ 

LOAD BUFFER ADDR 
LOAD BUFFEf< SIZE 
READ FROM TTY 
ANY CHARS IN BUFFER? 
IF NONE, FINISH UP 
INIT t OF A'S COUNTER 
SAVE t OF CHARS TYPED 

IS CHAR := A1 
IF NO, BET NEXT CHAR 
COUNT AN A 

ONE LESS CHAR 
IF MORE, COMPARE NEXT 

TRANSLATE COUNT TO OCTAL 
tNUMA+6,RO SET PTR TO OCTAL t 
t5,R2 SET COUNT OF DIGITS 

R1, ·-<SP> 
1177770,@SP 
t60,(~SP 

<SP>+, - <RO> 
R1 
R1 
R1 
R2 
30$ 
f:MSG,RO 
tMSGLEN,R1 
WF<ITE 

STACK IS TEMP AREA 
SHUP LOW 3 BITS 
MAKE OCTAL DIGIT 
STORE OCTAL DIGIT 
SHIFT TO 

NEXT 
3 BITS 

ONE LESS DIG IT 
IF MORE' REPEAT 
LOAD ADDR OF BUFFER 
LOAD SIZ OF MESSAGE 
REPORT THE RESULTS 
EXIT CLEANLY TO EXEC 
TELL ASSEMBLER END OF CODE 

Figure 2-5 (Cont.} Source Code for FILE.MAC 

2-19 



CREATING MACR0-11 SOURCE FILES 

After you have typed in the code, use the techniques described 
previously to create two new source files, FILEA.MAC and FILES.MAC, 
from the skeleton file. The code for these two files is shown in 
Figures 2-6 and 2-7. These two files and the file FILE.MAC will be 
used in Chapter 4 to build and test a task. You may want to edit the 
skeleton file before you create the two new source files. 

2.4 GUIDE TO FURTHER READING 

The sections or chapters in the following documents contain additional 
information on the subjects described in this chapter. 

Document Location 

IAS/RSX-11 MACR0-11 Reference Manual 

Chapter 2, Source Program Format 
Appendix E, Sample Coding Standard 
Section 6.1, Listing Control Directives 
Section 6.6, Terminating Directives 
Section 6.8, Program Sectioning Directives 
Section 7.8, MACRO Library Directive 

RSX-llM/M-PLUS Task Builder Manual 

Section 2.1, Linking Object Modules 
Section 6.1.26, SQ (Sequential) 

RSX-11 Utilities Manual 

Chapter 3, Line Text Editor (EDI) 

RSX-llM/M-PLUS Executive Reference Manual 

Section 1.4.1, Macro Name Conventions 
Section 4.3.20, Task Exit (EXIT$S) 
Section 4.3.33, Queue I/O Request and Wait 

2-20 



' 

CREATING MACR0-11 SOURCE FILES 

.TITLE TTREAD TERMINAL READ SUBROUTINE 

.IDENT /01/ 

I AUTHOR: DEF 9-APR-79 

' 
CHANGES: NONE 

MODULE FUNCTION: 

THIS MODULE READS A LINE FROM A 
TERMINAL INTO A BUFFER 

.PAGE 

.SBTTL 

.LIST 

.NL I ST 

.MCALL 

; BREAK PAGE FOR PREFACE 
SYMBOL, MACRO, DATA DEFINITIONS 
TTM ; TERMINAL LISTING MODE 
BEX ; SUPPRESS BIN EXTENSION 
QIO$S,WTSE$S 

LOCAL SYMBOL DEFINITIONS: 
EFN1 = 1 
LUN5 = 5 

LOCAL MACROS: NONE 

LOCAL DATA BLOCKS: 

.PSECT DATA,D,RW 

IOST: .BLKW 2 DEF IO STATUS WDS 

Figure 2-6 Source Code for FILEA.MAC 

2-21 



CREATING MACR0-11 SOURCE FILES 

FUNCTION DETAILS: 

; INPUTS: 

RO = ADDR OF BUFFER TO WRITE 
R1 = LENGTH IN BYTES OF BUFFER 

OUTPUTS: 

SUCCESS IN IOST 
SIDE EFFECTS: IOT IF ERROR 

.PAGE 

.SBTTL START OF CODE 

.PSECT 
; START CODt HERE 
WRITE: f 

CHO$S 

BCS 
WTSE$S 
TSTB 
BLT 
RETUF~N 

MOV 
MOVB 
IDT 
.END 

; DEF ENTRY POINT 
tIO.WLBvtLUN5,tEFN1v,tIOST,,<ROvR1,t40> 

QIO$S PARAMETERS: 
IO.WLB FUNCTION CODE 
LUN5 <TKB DEFAULT> 
EFN1 IS EVENT FLAG 1 
STATUS AREA = IOST 
PARAMETER LIST <> 

RO = START OF BUFFER 
Ri = t OF CHARS TO WRITE 
40 = OUTPUT <CR>,<LF> 

10$ IF SET, DIR ACCEPT ERROR 
tEFN1 WAIT FOR IO COMPLETE 
IOST CHECK IO STATUS 
10$ IF LTr IO ERROR 

GO BACK TO CALLER 

$DSW,,RO 
IO$T,R1 

SAVE DIR STAT WD 
SAVE IO STAT VALUE 
SST DUMPS TASK REGS 
TELL ASSEMBLER END OF CODE 

Figure 2-6 (Cont.) Source Code for FILE/MAC 

~ 

.2-22 



·CREATING MACR0-11 SOURCE FILES 

.TITLE TTWRIT TERMINAL WRITE SUBROUTINE 
oIDENT /01/ 

AUTHOR: DEF 9-APR-79 

CHANGES: NONE 

MODULE FUNCTION: 

THIS MODULE WRITES A 
LINE FROM A BUFFER TO 
A TERMINAL 

+PAGE 
+SBTTL 
+LIST 
+NL I ST 
+MCALL 

; BREAK PAGE FOR PREFACE 
SYMBOLv MACRCT~ DATA DEFINITIONS 
TTM ; TERMINAL LISTING MODE 
BEX ; SUPPRESS BIN EXTENSION 
QIOSS~WTSESS 

LOCAL SYMBOL DEFINITIONS: 
EFN1 - 1 
LUN5 ~ 5 

LOCAL MACROS: NONE 

LOCAL DATA BLOCKS: 

IOST: +BLKW 2 DEF IO STATUS WDS 

Figure 2-7 Source Code for FILEB.MAC 

2-23 



CREATING MACR0-11 SOURCE FILES 

FUNCTION DETAILS: 

INPUTS: 

RO ADDR OF BUFFER TO WRITE 
Rl - LENGTH IN BYTES OF BUFFER 

OUTPUTS: 

SUCCESS IN IOST 
SIDE EFFECTS: IDT IF ERROR 

.PAGE 

.SBTTL START OF CODE 

.PSECT 
; START CODE HERE 
WRITE:: 

10$: 

QIO$S 

BCS 
WTSE$S 
TSTB 
BLT 
RETURN 

MOV 
MOVB 
IOT 
.END 

; DEF ENTRY POINT 
tIO.WLBYtLUN5riEFN1,,tIOST,,<RO,R1,t40> 

10$ 
tEFN1 
IOST 
10$ 

snsw,Ro 
IOST,R1 

QIOSS PARAMETERS: 
IO.WLB FUNCTION CODE 
LUN5 CTKB DEFAULT> 
EFN1 IS EVENT FLAG 1 
STATUS AREA = IOST 
PARAMETER LIST <> 

RO = START OF BUFFER 
R1 = t OF CHARS TO WRITE 
40 = OUTPUT <CR>,<LF> 

IF SET, DIR ACCEPT ERROR 
WAIT FOR IO COMPLETE 
CHECK IO STATUS 
IF LT' IO ERROR 
GO BACK TO CALLER 

SAVE DIR STAT WD 
SAVE IO STAT VALUE 
SST DUMPS TASK REGS 
TELL ASSEMBLER END OF CODE 

Figure 2-7 (Cont.) Source Code for FILES.MAC 

2-24 



CHAPTER 3 

ASSEMBLING AND CORRECTING A PROGRAM MODULE 

This chapter describes a few uses of the MACR0-11 assembler, some of 
the common types of coding errors, some ways to uncover and correct 
errors, and the way to generate a cross-reference listing. 

The material in this chapter assumes that you have created the three 
source files as described in Chapter 2. 

3.1 PERFORMING A DIAGNOSTIC RUN ON A SOURCE FILE 

Your first use of the MACR0-11 assembler on a source file should be to 
perform a diagnostic run. You run the assembler only to check for 
general errors, not to produce an object module or listing file. To 
perform a diagnostic run, type the following command. 

>MAC /DS:GBL=FILE 

(any error lines appear) 

> 

The right side of the equal sign gives the specification of the source 
file. The assembler searches for the file named FILE.MAC in your UFD. 
The assembler applies the type .MAC as a default. Because there are 
no file specifications on the left side of the equal sign, MACR0-11 
does not produce any object module or listing file. When you do not 
specify a listing file in the command, the assembler prints on the 
input terminal the lines that generated errors and reports the total 
number of errors found. 

The left part of the command (/DS:GBL) causes MACR0-11 to disable the 
setting of undefined symbols to global and external. Ordinarily, when 
MACR0-11 finds a symbol that is not defined in the source file, it 
assumes that the reference is to a symbol that is defined external to 
the module (in another module). (The notation GX in the listing 
symbol table denotes a global and externally defined symbol.) By 
disa1bling this feature in the diagnostic run, you tell the assembler 
to flag any potential global reference with an undefined symbol error. 
This disabling method is a convenient way to catch typographical 
errors in symbol names at assembly time rather than later when you 
link your object modules together. 

The appearance of MACR0-11 messages at the terminal during the 
diagnostic run indicates that your module contains errors. If the 
assembler does not find any errors, it simply returns control to the 
Executive and MCR prints its prompt. Errors in the assembly are 

3-1 



ASSEMBLING AND CORRECTING A PROGRAM MODULE 

denoted by single letter codes printed at the beginning of the faulty 
statement. These errors are summarized in Appendix D of the 
IAS/RSX-11 MACR0-11 Reference Manual. 

The only errors that should appear from the diagnostic run are the 
following: 

u 67 000010 004767 
u 95 000110 004767 

CALL 
CALL 

READ 
WRITE 

READ FROM TTY 
REPORT THE RESULTS 

ERRORS DETECTED: 2 
/DS:GBL=FILE 

The two undefined symbols, READ and WRITE, are the 
defined in the source files FILEA.MAC and FILES.MAC. 
are to be resolved by TKB. 

3.2 TYPICAL ERRORS ENCOUNTERED DURING ASSEMBLY 

entry points 
These symbols 

Four error codes cover the majority of errors made in an assembly 
language source file. The following sections describe some of the 
most common conditions under which these error codes are generated. 

3.2.1 The MACR0-11 Error Code A 

Error code A indicates a general assembly error. Most of these errors 
are caused by typing mistakes such as the following. 

• Omitting the semicolon (;) from a comment 

The semicolon separates your comment from the portion of the 
statement that the assembler evaluates. If you omit the 
semicolon, MACR0-11 attempts to evaluate your comment as part 
of the rest of the statement line. 

• Omitting the period from a MACR0-11 directive 

The leading period (.) in the operator field tells the 
assembler that the statement contains a MACR0-11 directive. 
If you forget to include the period on a directive, the 
assembler cannot evaluate the operator as a directive. As a 
result, error code A is generated, the directive and its 
arguments are given a value of O, and they are designated as 
global symbols. 

• Misspelling a PDP-11 instruction mnemonic 

If you misspelled a PDP-11 instruction mnemonic (for example, 
MOVE instead of MOV), the assembler can evaluate the operands 
but not the operator. The IAS/RSX-11 MACR0-11 Reference 
Manual lists all the mnemonics alphabetically. (These 
mnemonics make up the permanent symbol table (PST)). The 
PDP-11 Programming Card also contains all the instruction 
mnemonics. 

• Forming an illegal symbol 

The first character of a symbol must not be a numeral. 

3-2 



ASSEMBLING AND CORRECTING A PROGRAM MODULE 

• Not properly delimiting a directive argument 

Many MACR0-11 directives require a character or argument 
string to begin with and end with a certain delimiting 
character~ If you use the wrong character or omit one of the 
delimiters, the assembler cannot properly match the delimiters 
and therefore cannot evaluate the directive. For example, the 
.ASCII directive requires the character string to begin and 
end with the same delimiting character. 

Another type of general assembly error involves general addressing 
errors. The typical addressing error is to exceed the range of a 
branch instruction (that is, branching more than 128 words backwards 
or 127 words forwards). To correct this type of error, replace the 
branch instruction with code to test the proper condition and with the 
JMP instruction to transfer control. 

Also common as a general assembly error are illegal forward 
references. If you define a symbol based on another symbol defined by 
a forward reference, the assembler cannot evaluate the reference. For 
example: 

A B + 10. 
C A + 10. 

The assembler cannot evaluate the symbol A because B is not yet 
defined. 

3.2.2 The MACR0-11 Error Code U 

Error code U signals an undefined symbol error. This error usually 
occurs because: (1) a symbol name on the .MCALL directive was 
misspelled or (2) reference was made to a local label that does not 
exist in the current local symbol block. 

3.2.3 The MACR0-11 Error Code Q 

Error code Q inditates questionable syntax. This error usually 
results from either including too many (or too few) arguments in a 
directive or specifying an incorrect number of operands on an 
instruction. In addition, this error occurs when you omit the 
semicolon from a comment and the assembler attempts to evaluate the 
comment as part of the statement. 

3.2.4 The MACR0-11 Error Code E 

Error code E means that you have omitted the .END directive from the 
assembly language source file. If the assembler does not find the 
.END directive, it generates error code E with a line number of O 
after the last statement in the listing file. 

Error code E also may indicate an expression overflow. If the 
assembler encounters a nested expression that is too complex, it 
generates error code E and denotes the point of the overflow with a 
question mark (?). To clear the error condition, either simplify the 
expression or ask your system manager to build MACR0-11 with a larger 
stack. 

3-3 



ASSEMBLING AND CORRECTING A PROGRAM MODULE 

3.3 GENERATING A PROGRAM MODULE AND A LISTING 

After you correct the errors uncovered in the diagnostic run, you are 
ready to produce an object module and a listing file. The following 
command produces both files. 

~AC FrLE,FILE/-SP=FILE 
(error summary printed) 

> 

This command, like the command for the diagnostic run, depends on 
default file types that MACR0-11 automatically assigns. The leftmost 
file specification creates an object module called FILE.OBJ. The file 
type .OBJ denotes that the file is an object module. 

The comma following the object fi.le specification in the command is a 
separating character that is required to distinguish different file 
specifications in command lines. 

Following the comma in the command is the listing file specification 
that creates the file called FILE.LST. The file type .LST denotes 
that the file is a listing of source code produced by an assembler or 
compiler. 

It is good programming practice to use the assembler defaults for file 
types and to apply the name of the source file to both the object and 
listing files. Using the defaults helps you to differentiate types of 
files and keeping the same name helps relate different types of files 
to the proper source file. 

The designation /-SP following the listing file specification in the 
command inhibits automatic spooling of the listing to the line 
printer. During the program development cycle, you create many files 
for which you do not need a permanent copy. It is easier and less 
wasteful to examine a listing file at your terminal than to generate 
numerous copies of listing files that must be discarded because of 
minor errors. After you attain an error-free assembly, you can spool 
a copy of the latest version of the listing file retained on your 
disk. 

When you request a listing file in the assembly, MACR0-11 does not 
print error lines on the terminal. Instead, if the assembler detects 
any errors. it prints a message giving the total number found. If the 
assembler finds no errors, it simply exits. The absence of a summary 
of error messages from the assembler means an error-free assembly. If 
there are errors, you can examine the listing file at the terminal. 
However, an error-free assembly does n-0t guarantee that the program 
will run properly. 

You can issue the following commands to assemble the two other source 
files, FILEA.MAC and FILEB.MAC, which you created using the procedures 
described in Chapter 2. 

>MAC FILEA,FILEA/-SP=FILEA 
>MAC FILEB,FILEB/-SP=FILEB 
> 

These two commands create the object modules FILEA.OBJ and FILEB.OBJ 
that you will need to link into your task in Chapter 4. 

3-4 



ASSEMBLING AND CORRECTING A PROGRAM MODULE 

3.4 EXAMINING A LISTING AT THE TERMINAL 

You can run the Peripheral Interchange Program 
copy of your listing· from disk· to the terminal. 
starts the transfer. 

(PIP) to transfer a 
The following command 

>PIP TI:=FILE.LST 

(file appears on screen) 

> 

In the command to the left of the 
specifies your terminal (that is, 
as the output device. 

equal sign, the designation TI: 
the terminal initiating the request) 

NOTE 

If you omit the colon from TI:, PIP 
creates a new file called TI in your UFO 
and copies the input file to it. 

To the right of the equal sign is the input file specification with 
both a name and type. For PIP, you must specify a file type because 
it does not apply a default file type for you. (Without a file type, 
PIP looks for a file with no type, that is, a file with a null type.) 

You can use control commands to temporarily stop and restart the 
display and to alternately suppress and resume the output request. 
The commands are summarized in Table 3-1. 

Table 3-1 
Terminal Output Control Commands 

Command Effect 

CTRL/S Temporarily stops the display 

CTRL/Q Restarts the display stopped by CTRL/S 

CTRL/O Alternately suppresses and resumes 
the output to the terminal 

i 

The CTRL/S and CTRL/Q commands are used together to freeze the display 
on the screen and to request more lines to be displayed. While the 
CTRL/S command is in effect, you can read what is on the screen. The 
CTRL/Q command tells the system to restart the display where it left 
off when it sensed the CTRL/S command. 

The CTRL/O command is for suppressing unwanted output. The command 
tells the system to stop sending characters to the terminal. The 
program, however, continues processing but simply omits displaying the 
output. (While CTRL/O is in effect, the system disables keyboard 
input and does not echo any characters typed at the terminal.) By 
typing CTRL/O again, you tell the system to resume output to the 
terminal. By typing successive CTRL/Os, you can skip unnecessary 
portions of the output until the program reaches the correct part. If 
the program finishes processing the output request while CTRL/O is in 
effect, the system automatically reenables keyboard input and a prompt 
appears on the terminal. 

3-5 



ASSEMBLING AND CORRECTING A PROGRAM MODULE 

3.5 GENERATING A CROSS-REFERENCE LISTING 

Worthwhile additions to the assembly listing are the symbol and macro 
cross-reference listings. These listings give, in alphabetical order, 
each symbol and macro name defined or referred to and the number of 
the page and line in the listing where the definition or reference 
occurs. You generate the cross-reference listing by typing the 
following. 

>MAC ,FILE/CR/-SP=FILE 

(any errors cause total number to be printed) 

> 

Because no file specification precedes the comma in the command, 
MACR0-11 omits creating the object module and produces only a listing 
file. The /CR designation tells the assembler to generate a request 
for the CRF task to produce a cross-reference listing. (Omitting the 
comma from the command causes an error because the command then 
requests an object module only. With an object module specification, 
the designations /CR and /-SP are illegal.) 

NOTE 

If, after you request a cross-reference 
listing, you discover that the 
information is missing from your 
listing, the CRF task either is not 
installed on your system or is still 
processing the request. Ask your system 
manager to install the CRF task. 

The CRF task appends the cross-reference listing to the end of the 
listing file, denoting the cross references by the titles SYMBOL CROSS 
REFERENCE and MACRO CROSS REFERENCE. 

3.6 SPOOLING A COPY OF LISTINGS 

Once you have developed an error-free assembly, you can obtain a hard 
copy ot the listing file by typing one of the following commands. 

or 

>PIP FILE.LST/SP 
> 

>PRINT FILE.LST 
> 

These commands create a request to the spooling task to print the file 
you specify~ (You can request more than one file at a time by 
including the file specifications in the command and separating each 
specification with a comma.) Your request is placed in a queue of 
requests that is processed by a separate task. 

If your system does not have spooling, you can list the file directly 
on the printer as follows: 

>PIP LP:=FILE.LST 
> 

3-6 



ASSEMBLING AND CORRECTING A PROGRAM MODULE 

If the printer is not busy or is not allocated by another user, PIP 
outputs the file to printer unit O. 

3.7 CLEANING UP THE DISK DIRECTORY 

After you edit and reassemble the source files several times, your 
directory becomes cluttered with multiple versions of the same files. 

You can list the name, types, version numbers, and sizes of the files 
stored in your UFO by typing the following command. 

>PIP /LI 

(the directory listing appears) 

> 

The designation /LI causes PIP to list the directory information at 
your terminal. By default, the command requests all names, types, and 
versions of files in your UFD. 

By examining the directory information, you notice that files with the 
same name and type have multiple versions. Use the following command 
to the PIP program to purge all but the most recent version of the 
files. 

>PIP *.MAC,*.LST,*.OBJ/PU 
> 

The designation /PU purges all but the latest version of the files 
specified. The asterisk character in the command denotes all files 
having any name and the type specified. 

3.8 GUIDE TO FURTHER READING 

The sections or chapters in the following documents contain additional 
information on the subjects described in this chapter. 

Document Location 

IAS/RSX-11 MACR0-11 Reference Manual 

Chapter 8, Operating Procedures 
Section 8.1.3, RSX-11 File Spec Switches 
Section 8.4, MACR0-11 Error Messages 
Appendix D, Diagnosti~ Error Message Summary 

RSX-11 Utilities Manual 

Section 4.2.2, Performing File Control Functions 
Chapter 6, Print and Queue Utility 
Appendix D, Cross Reference Processor (CRF) 

RSX-llM-PLUS Batch and Queue Operations Manual 

Chapter 3, Queuing Jobs 

3-7 



CHAPTER 4 

BUILDING AND TESTING A TASK 

This chapter describes ways to use the Task Builder (TKB) program to 
create a task image from program object modules. The procedures 
described in this chapter assume that you have created three 
error-free object modules as described in Chapter 3. 

4.1 CREATING A TASK IMAGE 

The TKB program creates a task image file that can be loaded into 
memory. You can supply as input to TKB either a single object module 
or multiple object modules. In most cases, however, your programs 
will consist of multiple object modules. The following sections 
describe the procedures and the way TKB reports error conditions. 

4.lol Supplying a Single Object Module 

To create a task image file from a single module, supply the file name 
of the object module as in the following command. 

>TKB FI LE=FI LE 

(any error messages appear) 

> 

The right side of the equal sign specifies the file containing the 
object module. TKB assumes that the type in the file specification is 
.OBJ. The left side of the equal sign gives the specification of the 
task image file to which TKB assigns the file type .TSK. Again, as 
with the assembler, it is convenient to apply the same name to both 
the output file and the input file and to let TKB apply the default 
type specifications. 

TKB tries to resolve all global references in the object module. If 
there are undefined references after the module has been processed, 
TKB searches the system object library SYSLIB.OLB in UFO [1,1] on the 
library device (LB:). If no errors are encountered in the process, 
TKB exits and the command prompt (>) appears. 

If TKB detects an error during processing, it prints a message at the 
terminal in one of the following forms. 

TKB *DIAG* - error message 

or 

TKB -- *FATAL* - error message 

4-1 



BUILDING AND TESTING A TASK 

TKB error messages are summarized in an appendix of the RSX-llM/M-PLUS 
Task Builder Manual. 

If an error message appears and the error condition described is not 
operational (for example, lack of space for the task image file) or is 
not a fatal error, TKB creates the task image file anyway. Depending 
on the error condition, you may have to remove the cause of the error 
from the source file, reassemble the source file and repeat the TKB 
procedure. In some instances, the diagnostic condition is merely a 
warning and has no ill effect when the task runs. (For guidelines on 
typical error conditions, see Section 4.4.) 

When you create the task image from the single object module FILE.OBJ, 
TKB prints the following error message. 

TKB -- *DIAG* -2 UNDEFINED SYMBOLS SEGMENT FILE 

READ 
WRITE 

The undefined symbols, READ and WRITE, are the entry points of the two 
routines defined by the object modules FILEA.OBJ and FILES.OBJ. TKB 
searches the system object library to resolve global references left 
undefined in your input. Because TKB failed to find modules that 
defined these symbols, it reported the error condition. You can 
eliminate the error condition by following the procedures described in 
Section 4.1.2. 

4.1.2 Supplying Multiple Object Modules 

TKB accepts multiple object modules as input. On the right side of 
the equal sign, type the names of the object files separated by 
commas, as in the following example. 

>TKB FILE=FILE,FILEA,FILEB 

(any error messages appear) 

> 

TKB performs the same actions as described in Section 4.1.l for one 
object module. Only one of the object modules speci~ied must have 
been assembled with a .END directive giving the starting address of 
the task. If one of the modules does not contain the starting 
address, TKB assigns the default transfer address of 1, which causes 
an error when you run the task. See Section 4.4. 

TKB also processes a concatenated object module, which is merely a 
file containing multiple modules. To create a concatenated file, use 
PIP as follows: 

>PIP FILCON.OBJ=FILE.OBJ,FILEA,FILEB/ME 
> 

The right side of the command specifies the files to be concatenated. 
You need specify the file type (.OBJ) only on the first file because 
PIP applies it as the default file type for subsequent names. The 
designation /ME tells PIP to merge (concatenate) all the files into 
the one file specified on the left side of the equal sign. (When you 
supply multiple file spBcifications on the right side of the command, 
PIP uses /ME as a default condition. The command string includes /ME 
merely to emphasize the concatenate, or merge, operation.) 

4-2 



BUILDING AND TESTING A TASK 

The single concatenated object file can then be the sole input to TKB 
as in the ,following command. 

>TKB FlLE=FILCON 

(any error messages appear) 

> 

This operation saves file processing overhead for the TKB program and 
is possibly 40 percent faster than supplying the object modules 
separately. 

4.1.3 Using the Fast Task Builder 

Often you are performing repetitive, straightforward task building 
functions where speed is preferable to versatility. In such 
circumstances, you should use the Fast Task Builder (FTB). Its 
interface is the same as that of TKB. For example: 

>FTB FILE,FILE/-SP=FILE,FILEA,FILEB 
> 

FTB runs three to four times faster than TKB but is less versatile 
than TKB. For example, FTB does not create a global cross-reference 
listing or a symbol definition file. In addition, the FTB map has 
less information than the TKB map has. 

4.2 TASK BUILDER DEFAULTS 

When you build a task image, TKB applies certain default conditions to 
your program including the partition in which your task runs, the host 
system memory management characteristics, the task's 
checkpointability, and the number of logical units your task can 
access. If your program does not use the default conditions, the 
process of building a task becomes more complex. You can consult the 
RSX-llM/M-PLUS Task Builder Manual for the procedures to override the 
default conditions. 

TKB assigns your program to be run in the default partition called 
GEN. If you are building a task to run in another partition, you can 
either supply the correct partition name at run time or rebuild the 
task and specify the correct· partition name. 

TKB applies memory management characteristics depending on the system 
on which you build the task. If your system has memory management 
hardware, TKB allocates memory starting at virtual address 0 and 
assumes that the task will be relocated by memory management hardware. 
Therefore, the task can be run in any partition large enough to 
contain the image. If your system does not have memory management 
hardware, TKB assumes that the task runs at a fixed physical address 
that the system must supply. 

The Task Builder assumes that the task is not checkpointable and does 
not use the floating-point processor. TKB establishes the maximum 
number of logical units (six) the task can access and supplies the 
assignments for these logical units. The default assignments are: 
logical units l through 4 are assigned to the system device (SY:), 
unit 5 is the task initiating terminal (TI:), and unit 6 is the 
console listing device ~L:). These defaults mean that the task can 

4-3 



BUILDING AND TESTING A TASK 

simultaneously refer to at most four files on the system device, one 
file on the task initiating terminal, and one file on the system 
console listing device. 

4.3 GENERATING A MAP AND A GLOBAL CROSS-REFERENCE LISTING 

Before you run the task and correct simple errors, you can produce a 
memory allocation file (called a map) and a cross-reference listing of 
global symbols. The map and global cross-reference file is useful in 
later stages of program development and for program documentation. 

4.3.l Requesting a Map and a Global Cross-Reference Listing 

In most situations, you need a standard map and global cross-reference 
listing for debugging a task. To create a map with a global 
cross-reference listing, type the following command. 

>TKB ,FILE/CR/-SP/-WI=FILE,FILEA,FILEB 
> 

The right side of the equal sign is the input object module (or 
concatenated object module or multiple object modules). The left side 
of the equal sign in the command specifies the map file name, to which 
TKB appends the file type .MAP. The comma preceding the map file name 
suppresses the creation of the task image file.l 

To create a new version of the task image file when you request the 
map and global cross-reference listing, type the command as follows. 

>TKB FILE,FILE/CR/-SP/-WI=FILE,FILEA,FILEB 
> 

TKB creates both files. 

The designation /CR tells TKB to generate a request for the CRF task 
to produce a global cross-reference listing. The designation /-WI 
reduces the width of the listing from 132 columns to 80 columns for 
display on a terminal. The CRF task executes the request from TKB and 
appends the global symbol cross-reference listing file to the end of 
the map file. The global cross-reference in the map listing is 
denoted by the title GLOBAL CROSS REFERENCE. 

NOTE 

If, after you request a global 
cross-reference listing, you discover 
that the map does not have one, the CRF 
task either is not installed on the 
system or is still processing the 
request. Consult the system manager to 
have the CRF task installed. 

1 The task image specification is null when a comma appears first in 
the command. If you omit the comma, TKB treats the file name for the 
map as a task image and generates a syntax error because the 
designation /CR/-SP is illegal with a task image file. 

4-4 



BUILDING AND TESTING A TASK 

4.3o2 Examining the Map at the Terminal 

The same commands described in Section 3.4 can be used to examine a 
map at the terminal. The following command shows the procedure. 

>PIP TI:=FILE.MAP 

(file appears on screen) 

> 

Use the control commands CTRL/S, CTRL/Q, and CTRL/O, summarized in 
Table 3-1, to control the terminal output. 

4.3o3 Requesting a Full Map 

The map file produced as described in Section 4.3.1 is a short form of 
the map that contains most information needed for debugging tasks. To 
generate a full form of the map, specify the command to TKB as 
follows. 

>TKB ,FULL/-SP/-SH/MA/CR=FILE,FILEA,FILEB 
> 

The designation /-SH indicates that you do not want the short form of 
the staridard map. TKB therefore includes the file contents 
information in the map. The designation /MA tells TKB to include 
system library contributions to the task in the file contents section 
of the map. (System symbols also are included in the global 
cross-reference listing.) 

4.4 RUNNING THE TASK AND CORRECTING TYPICAL ERRORS 

You execute your task by using the RUN command and the name of the 
task image file.I For example: 

>RUN FILE 

Because the task FILE is not installed on the system, the Run 
processor searches your UFD on device SY: for a file named FILE.TSK. 
Run installs it temporarily and runs it immediately. (The task will 
be automatically removed on exit.) 

To run task FILE, the Executive transfers control to the task 
starting, or transfer, address. If your task encounters an error 
condition, the Executive must decide whether to abort the task. 

Errors that can cause the Executive to abort a task are either 
hardware related or software related. If the error is hardware 
related, such as a memory parity error or a load failure, the 
Executive begins aborting the task. In contrast, a synchronous system 
trap (SST) error condition, such as an illegal instruction, causes the 
Executive to attempt to transfer control to an SST routine. An SST 
routine is a routine within a task that services a particular type of 
SST condition. If your task defines a routine to service the type of 
trap, the Executive transfers control to it. If your task does not 
have the routine defined, the Executive aborts the task. 

1 The RUN command has many formats for scheduling and rescheduling 
tasks. The format shown in the example is the most widely employed. 

4-5 



BUILDING AND TESTING A TASK 

Aborting a task forces an orderly termination of the task. Included 
in the termination is a request for the Task Termination and 
Notification task (TKTN) to display a message on your terminal. The 
display includes the cause of the abort and .a list of the task 
registers and Processor Status word (PS). For example: 

II TERMINATED TASK "TT30 
ODD ADDRESS 
RO=OOOOOO 
Rl=l00101 
R2=135600 
R3=000000 
R4=000000 
RS=OOOOOO 
SP=OOll 7 2 
PC=000003 
PS=l70017 

OR OTHER TRAP FOUR 

> 

The information can help you ascertain the cause of the abort.l If the 
cause of the error is hardware-related, report the occurrence to your 
system manager who can consult the error logging data to ascertain the 
origin of the problem. If the cause of the error was an SST 
condition, you can use the data displayed by TKTN to find the problem. 

The value of the PC (minus 2) shown in the display tells you the 
address of the instruction that was being executed when the error was 
encountered. In the example shown above, the PC is at an odd address 
(000003). By examining the task map, you can ascertain that the PC 
address is not within the task code. This condition demonstrates one 
of the more common error conditions. The main module NUMA source file 
FILE.MAC does not define a task transfer address. The .END directive 
in a source file, used to define the starting address of a task, does 
not have the address symbol of the first instruction. If you omit the 
starting address definition, TKB supplies a default transfer address 
of 1. When you run the task, it causes an odd address trap and 
terminates.. (Note that the PC has been incremented to 000003.) 
Therefore, you should ensure that the source file defines a starting 
address and that the address is even (on a word boundary). 

To correct an error in your task, you must edit the source file(s) 
concerned, reassemble the corrected file(s), and rebuild the task. 
For example: 

>EDI FILE.MAC 
[00103 LINES READ IN] 
[PAGE . l] 
*L ~.END 

.END 
*C /D ~ /D ~ START/ 

.END START 
*EX 
[EXIT] 

>MAC FILE,FILE/-SP=FILE 

TELL ASSEMBLER END OF CODE 

TELL ASSEMBLER END OF CODE 

>TKB FILE,FILE/-SP=FILE,FILEA,FILEB 

1\ The format of the information varies between RSX-llM and 
RSX-llM-PLUS (that is, one system may have the time of the abort and 
another system may report the processor on which the abort occurred). 
However, the basic data displayed is the same. 

4-6 



BUILDING AND TESTING A TASK 

)RUN r'ILE 
ABCABCABAB 
THE NUMBER OF A'S IS 0004 
> 

After you correct the error and rebuild the task, you can run the task 
again. The task reads the line of text that you type, counts the 
number of As, displays the result, and exits. 

The typical errors made in programming result in an SST condition. 
The common conditions are either an odd address or a memory protection 
trap. Most of these errors occur when you use relative mode 
addressing instead of immediate mode. For example: 

MOV #BUFl,RO 
MOV OFFSET(RO),Rl 

The immediate mode reference #BUFl moves the address of BUFl into 
register O. If you omit the number sign (#), however, you incorrectly 
specify relative mode addressin-g as follows. 

MOV BUFl,RO 
MOV OFFSET(RO),Rl 

This instruction moves the contents of BUFl and not the address of 
BUFl into RO. The subsequent indexed mode reference generates either 
an odd address or memory protection trap. (Your task is attempting 
either to illegally reference an odd address or to reference a 
location outside task memory). This type of error occurs often when 
you are using system directives that require parameters as immediate 
mode references and you omit the number sign from a parameter that 
makes the reference relative. 

4.5 GUIDE TO FURTHER READING 

The sections or chapters in the following documents contain additional 
information on the subjects described in this chapter. 

Document Location 

RSX-llM/M-PLUS Task Builder Manual 

Chapter 1, Commands 
Section 6.1, Switches 
Section 6.2, Options 
Appendix F, Error Messages 
Appendix E, The Fast Task Builder (FTB) 

RSX-11 Utilities Manual 

Section 4.2.2, Performing File Control Functions 
Appendix D, Cross Reference Processor (CRF) 

4-7 



CHAPTER 5 

USING DEBUGGING AIDS 

This chapter introduces a few debugging aids that are helpful in the 
program development process. 

5.1 THE ON-LINE DEBUGGING TOOL 

The On-Line Debugging Tool (ODT) is special code that you include in 
your task image to assist you during debugging. ODT gives you 
interactive control of task execution, and allows you to set 
breakpoints and examine and change data and instructions within the 
memory-resident task. The ODT module is linked into your task image, 
thereby increasing the size of the task image. Therefore, you remove 
ODT from your task when you finish debugging by rebuilding the task 
and e>mitting the ODT module. 

ODT commands differ from commands in other utility programs. Most 
programs have multiple-character commands that require a line 
terminator before they are executed. ODT commands, however, are 
single characters and require no line terminator. That is, ODT 
interprets input on a character per character basis rather than on a 
line by line basis. Therefore, as soon as you type a character that 
ODT recognizes as a command, ODT interprets it and performs the 
specified function. This difference in commands means that you must 
be especially alert when you are debugging your task with ODT. 

5.1.l Including ODT in a Task 

To include ODT in a task, type a command similar to the following one. 

>TKB BUG/DA,BUG/CR/-SP=FILE,FILEA,FILEB 
> 

The designation /DA accompanying the task image file specification 
tells TKB to include ODT. The task builder accesses the file ODT.OBJ 
in UFO [l,l] on the library device and links it into the task BUG. 
You should request a map of the task because an accurate map is 
necessary for use with ODT. 

5. l. 2 Preparing to Use ODT 

Before you run a task containing ODT, ensure that accurate listings of 
the assembled source files are available. These listings show the 
offsets into the modules in your task. The map of the task and the 
assembled source listings provide the data you need to set breakpoints 
and examine locations within the task. 

5-1 



USING DEBUGGING AIDS 

5.1.3 Setting up the Task 

When you run a task containing ODT, ODT gains control, identifies 
itself (and the task it controls), and prints its command prompt. The 
following command shows the sequence. 

>RUN BUG 
ODT:TT30 

The notation TT30 is the name that the system dispatcher assigned to 
the task. Such a name consists of the letters TT followed by the unit 
number of the terminal that requested the task. (The task shown here 
was run from terminal number 30 (octal).) 

The underline character ( ) indicates that ODT is ready to accept 
commands. -

To access locations within the task, you should establish one or more 
relocation registers. This set of eight registers, numbered 0 through 
7, allows, you to specify locations within the task in terms of offsets 
from the start of modules in the task image. 

To establish the proper addressing using offsets, you must first 
consult the location information in the task map. On the map 
printout, the portion titled MEMORY ALLOCATION SYNOPSIS contains the 
location information for each program section and for each 
contribution to the program sections from different modules. A sample 
of the relevant portion of the map for the program BUG is shown in 
Figure 5-1. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION TITLE IIIENT FILE 
·-------
• BLK.:<RWrlrLCLrRELrCON> 001202 000340 00224. 

001202 000122 00002. NUMA 01 FILCON. OBJH 
001324 000110 00072. TT READ 01 FILCON.OBJ;1 
-001434 000106 00070. TTWRIT 01 FILCON.OBJ;1 

DATA :<RWrDrLCL,RELrCON> 001542 000166 00118. 
001542 000156 00110. NUMA 01 FILCON.OBJ;1 
001720 000004 00004. TTREAD 01 FILCON.OBJ;1 
001724 000004 00004. TTWRIT 01 FILCON.OBJ;1 

$$$0DT:<RWrirGBL,REL,OVR> 001730 005572 02938. 
001730 005572 02938. ODTRSX M05.02 ODT.OBJ;36 

Figure 5-1 Memory Allocation Synopsis from Task BUG Map 

The location information for a program section is the octal starting 
address of the program section and its extent in bytes (both octal and 
decimal values). For example, for the blank program section, the 
starting location is 1202 (octal) and the extent is 340 (octal), or 
224 (decimal), bytes. Under the program section location information 
are the octal starting addresses and extents in bytes for the 
contributions from each object module. For example, the contribution 
from TTREAD in the blank program section starts at location 1324 and 
extends for 110 (octal), or 72 (decimal), bytes. 

The following example shows how to place the starting addresses of the 
modules in relocation registers. 

5-2 



_1202; OR 
_1324; lR 
_1434; 2R 
_1542; 3R 
_17 20; 4R 
_17 24; SR 

USING DEBUGGING AIDS 

The H commands place the addresses in relocation registers 0 through 
5. (The addresses are octal; ODT accepts only octal numbers.) As 
soon as you type the R in the command line, ODT generates line feed 
and carriage return operations and prints another prompt. This action 
indicates that ODT has executed the command as soon as it was typed. 
Therefore, before typing the R (or any command), ensure that the 
command line is correct. 

If you notice a typographical error in the line before you type the 
command itself, simply type either the CTRL/U combination; the number 
8 or 9; or the DELETE key as shown in the following example. 

_127 2; 08 

ODT considers the decimal number 8 an illegal character. It discards 
the input line, displays a question mark (?) to signal an error, and 
prints the prompt on a new line. You must retype the entire line. If 
you do enter an incorrect address in the relocation register, simply 
retype the command. 

_127 2; OR 
_1202; OR 

ODT stores the most recently entered value in the register. 

To access a location within a task, you must create an address by 
combining the relocation register and a location counter value for the 
relevant program section shown in the assembly listing. 

Figure 5-2 shows a portion of the assembly listing for the blank 
program section in the module NUMA. 

The relocation register provides the base address of a module; the 
location counter value supplies an offset to the location within the 
program section for the module. In the example, you placed in 
relocation register 0 the starting address of the NUMA contribution to 
the blank program section. Location counter value 20 in the assembly 
listing for NUMA is 20 bytes from the start of the address in 
relocation register o. You combine the two values to form the address 
of the location. The combination is formed by typing the number of 
the relocation register, a comma (,), and the offset value (in octal). 
For 4~xample: 

0,20 

ODT adds the base value in relocation register 0 (1202 in this case) 
and the offset typed after the comma (20). This creates an effective 
address of 1222 (octal). You use this syntax with various ODT 
commands to access locations within the task address space. 

5-3 



USING DEBUGGING AIDS 

NUMA COUNT NUMBEF< OF A'S MACRO M:l.:1.:1.3 :1.0-APR-79 10:18 PAGE 3 
l~DUT J NE TCI COUNT A'S 

f.12 
63 000000 
<!14 000000 !HART: 
6!'.) 000000 012'700 
66 000004 O:l.270:L 
67 000010 004767 
68 0000 :I. 4 OO~'i702 
69 0000 :L 6 0(>14:'56 
70 000020 00::.'iOO :I. 
7:L 000022 010267 
'72 000026 :I.()!~: 

73 000026 :1.::~206'7 

74 000032 ()() 1.00 :I. 
75 0000~~4 OO!'.'i201. 
76 0000~5<!1 20$: 
7'? 0000:'56 oo~.'i302 

7B 000040 00:1.372 

.SBTTL ROUTINE TO COUNT A'S 

.PSECT 

MDV 
MDV 
CAL.I... 
TST 
BEi.~ 

Cl...F< 
MDV 

CMPB 
BNE 
INC 

DEC 
BNE 

:ft:BUF :I. , 1:~0 
:l:~lIZ vFU. 
F~EAD 

F~~.~ 

END 
1:~ :L 
R2,NUMC 

<FW>hA 
20$ 
1:~ 1. 

F~::~ 

:1.0$ 

LOAD BUFFER ADDR 
l .. Of:iD BUFFEJ< GI ZE 
F~FAD FFWM TTY 
ANY CHARS IN BUFFER? 
IF NONE, FINISH UP 
INIT I OF A'S COUNTER 
SAVE I OF CHARS TYPED 

I~;; CHAf:: :::: A"!' 
IF NOY BET NEXT CHAR 
COUNT M~ A 

ONE l ... E!:!!3 CHAF< 
IF MORE, COMPARE NEXT 

Figure 5-2 Portion of Assembly Listing for NUMA 

To examine words within a module, type the address followed by the 
slash (/) character as follows. 

- 0, 20/005001 

The slash character causes ODT to open the designated location as a 
word and display its contents. The contents ODT displays should agree 
with the value shown in the assembly listing. 

To close the currently open location, type either the RETURN key or 
the LINE FEED key. The RETURN key closes the location as shown in the 
following example. 

_o ,201005001 G!!) 

ODT closes the location and prints its prompt on a new line. 

Once you have opened a location, typing the LINE FEED key enables you 
to examine successive words in the task image. The following example 
shows the procedure. 

0 ,32/001001 G:) 
0,000034 /005201 ~ 

In response to the LINE FEED key, ODT closes the current location, 
opens the next sequential location in the task image, and displays the 
address of the location, a space, the slash character, and the 
contents of the location. The slash character signals that the 
location is open as a word. 

5-4 



USING DEBUGGING AIDS 

NOTE 

You can change the contents of the 
currently open "location to n by typing 
the octal number n before typing the 
RETURN or LINE FEED key. See Section 
5. LS. 

To examine bytes within a task, type the address followed by the 
backslash (\) character as follows. 

_o ,32\ 001 

The backslash character causes ODT to open the designated location as 
a byte and display its contents. You can examine successive bytes by 
typing the LINE FEED key, after which ODT closes the currently open 
byte location, opens the next sequential byte location, and displays 
its contents. 

32\001 GD 
0,000033 \002 ~ 

The backslash character preceding the contents signals that the 
location is open as a byte. 

Before you proceed in the debugging session, you should verify the 
relocation register values by examining a location in each module and 
comparing its contents with what shows in the assembly listing. The 
following sequence shows the procedure. 

1 ,66/ 002403 ~ 
-2, 72/ 000207 ~ 
-3 ,121\124 @) 
-4, 0/ 000000 (§) :s ,O/ 000000 ~ 

As you examine each location, compare the contents ODT displays with 
what appears in the assembly listing. If the values do not match, 
either you have an incorrect listing or the relocation register value 
is wrong. 

5.1.4 Setting Breakpoints within the Task 

To allow you to stop (or break) task execution, ODT provides eight 
registers called breakpoint registers. These registers, numbered 0 
through 7, let you specify locations of instructions at which 
execution should stop. The registers are denoted by a number and the 
B command. 

To establish breakpoints in the task, specify the location of the 
instruction and the B command as in the following example. 

O,lO;OB 
:1,74;1B 

5-5 



USING DEBUGGING AIDS 

The command places the designated addresses in breakpoint registers 0 
and 1. (Changing a breakpoint register is the same as changing a 
relocation register: simply retype the command and give the altered 
contents.) 

NOTE 

In specifying the address of an 
instruction, ensure that the location is 
the first word of the instruction. 

As soon as you type the B in the command, ODT generates the carriage 
return and line feed operations and prints a prompt. 

After setting up the breakpoint registers, you can issue the G (Go) 
command to begin task execution. For example: 

OB:0,000010 

When you type the G command, ODT swaps a BPT instruction into each 
breakpoint location.! ODT passes control to the starting address of 
the task. The task executes until it reaches a BPT instruction, at 
which point ODT regains control. When ODT regains control, the task 
has not yet executed the instruction at the location where the 
breakpoint is set. ODT swaps the instructions back into the locations 
at which breakpoints are set, and prints a message giving: 

• The breakpoint register designation 

• The relocation address at which execution stopped 

In the example above, the message shows breakpoint register 0 and its 
contents (offset 10 from the base address in relocation register 0). 

5.1.5 Examining and Changing Locations with ODT 

When execution stops at a breakpoint, you can examine and change data 
within the task image address space. (You can also do these 
operations before you start execution. Instructions, as well as data, 
can be altered.) When a task stops at a breakpoint location, its 
general registers are stored in ODT locations accessed by the dollar 
sign ($) character. The following sequence shows a way to display 
general registers O, 1, and 2. 

$0/ 001543 GD 

$1 1000120 CD 

$2 /135600 ~ 

The dollar sign followed by a number refers to a particular task 
general register. The slash (/) character opens the general register 
as a word location and prints its contents. Typing the LINE FEED key 
closes the current location and opens the next sequential location. 

1 Eight breakpoint instruction registers, referred to by the letter I, 
contain the actual instructions during task execution. 

5-6 



USING DEBUGGING AIDS 

To change data, simply type a new value while the current location is 
openo The following sequence shows a way you can change register 2. 

$2/ 135600 100 ~ 
$3 /140130 C!!!) 

While the location (register 2) is open, you can type the new value to 
replace the current contents. ODT writes the new value 100 (octal) 
into the currently open locatio~ before closing it and opening the 
next sequential location. 

Any locations within the task can be e~amined and changed. The 
following sequence shows a way ~o open a location as a byte and change 
its contents. 

3,0\101 102 ~ 
:3,0\102 101 ~ 

The backslash (\) character opens the specified address as a byte 
location. The new value 102 (octal) is written to the open location 
as a byte value. Typing the RETURN key closes the location. The next 
commands examine offset 0 to verify that it indeed contains 102 
(octal) and change the contents back to 101. 

After you examine and change locations, resume execu~ion with the P 
(proceed) command as follows: 

PABCABCABAB ~ 
TB:l,000074 

The P command causes ODT to swap in the BPT instructions, restore the 
task general registers, and continue with the instruction at which the 
break occurred. The task executes the READ routine which prompts for 
input at the terminal. 

NOTE 

ODT does not supply a carriage return 
and line feed after you type the P. 
Therefore, the data that you type in 
response to the READ routine will follow 
the P on the same line. 

You can type a line of input, after which execution stops at the 
location contained in breakpoint register 1. 

The G command is used to transfer control to another address and 
continue execution. For example: 

_l,76G 

ODT transfers control to offset 76 and continues execution there. 
This command purposely tranfers control to the error routine to show 
what occurs when an error is encountered. See Section 5.1.6. 

5-7 



USING DEBUGGING AIDS 

5.1.6 Error Conditions and Terminating Task Execution 

If the task generates an error condition, the Executive handles the 
processing as a synchronous system trap (SST). Control is passed to 
ODT which prints a message similar to the following one. 

I0:2,000000 

This message (similar in format to the breakpoint halt message) gives 
a code describing the reasons for the trap and tells the address 
following the location that generated the trap. In the message above, 
IO means the IOT instruction. If you can discover the cause of the 
trap, make the appropriate changes in the task and proceed. If you 
cannot isolate the cause of the trap, you should exit from ODT and 
start a new debugging session. 

To help ascertain the cause of the trap, you can examine the task 
registers and stack before you start a new debugging session. Use the 
dollar sign ($) followed by the register number to access the task 
registers as described in Section 5.1.5. To examine the stack, 
examine register 6 (the Stack Pointer) and use the at sign (@) to open 
the location pointed at by R6. For example: 

$6/001200 @ 
001200 I 001216 ~ 

The slash (/) character opens R6 as a word and displays the address of 
the top of the stack. The at sign character (@) takes the contents of 
the currently open location (that is, R6) as the address of the next 
location to be opened, opens it, and displays its contents, which is 
the top word on the stack. 

To examine the stack, type the LINE FEED key to open and display each 
successive word on the stack. You can ascertain the highest address 
the stack can have by consulting the line labeled STACK LIMITS in the 
task attributes section of the map. The line gives four numbers: the 
low address of the stack area, the high address of the stack area, and 
the octal and decimal extent of the stack area. The high address 
tells you the last available location (that is, the bottom) of the 
stack. After you have examined the highest address, you have looked 
at all the items on the stack and can type the RETURN key to close the 
last available location. 

To exit from the task by means of ODT, use the X command as follows. 

x 

ODT simply performs the exit task directive and returns control to the 
Executive. 

5o2 POSTMORTEM DUMP 

Another debugging aid is the Postmortem Dump (PMD). It requires no 
special code in your program. You simply request TKB to enable PMD 
for your task as follows. 

>TKB FILE/PM,FILE/-SP=FILE,FILEA,FILEB 
> 

5-8 



USING DEBUGGING AIDS 

The designation /PM in the command after the task image file name 
tells TKB to set a bit in the task flag word.l (You can tell whether a 
task includes PMD by inspecting the task attributes section of the 
map. A line item called TASK ATTRIBUTES will have the designation 
PM.) 

When PMD is in effect for a task, the occurrence of an error that 
generates a synchronous system trap (SST) causes the Executive to 
handle the termination of your task in a special manner.2 Instead of 
simply aborting the task, the Executive generates a request for PMD to 
create a formatted disk file showing the task image context. When a 
task generates a synchronous system trap, the Executive initiates the 
normal task termination procedure (the printing of an error message 
and general register contents at the terminal) and additionally 
generates the request for PMD. To inform you that a dump is in 
effect, the Executive causes the following message to appear at the 
terminal. 

POST MORTEM DUMP WILL BE GENERATED 

PMD receives the request, creates a file in UFO [1,4] on the library 
device, and generates a request to the spooler to print the file. The 
file has the name of the task and a type of .PMD. The print spooler 
automatically deletes a file with the type .PMD after it is printed. 

5 • 3 THE SNJ~PSHOT DUMP 

The snapshot dump capability is a subset of the Postmortem 
requires special code in the task. Whereas PMD generates a 
entire task, the snapshot dump can produce a dump of only a 
the task. Also, PMD generates a dump only when the task 
abnormally, but the snapshot code can produce a dump at any 
the task execution. 

Dump but 
dump of an 
portion of 
terminates 
place in 

You include the necessary snapshot code in the task by editing the 
source file and inserting the snapshot macro calls where you want to 
produce a dump.3 After you reassemble the modules containing the 
snapshot calls, rebuild the task and substitute the reassembled 
modules. When you use snapshot macro calls, you do not need any 
special switches oi options for TKB. 

When you run the task and that section containing the special code is 
executed, a snapshot dump is taken. The special code generates a 
request for the PMD task. (No special messages are printed at the 
terminal.) To hold the dump, PMD creates a file with the name of the 
task and a type of .PMD in the UFO the same as the UIC under which the 
task is running. PMD then generates a request for the spooling task 
to print and delete the file. 

1 The keyword and option PMD=YES on the RUN command and the keyword 
PMD on the ABORT command also allow you to enable Postmortem Dumps for 
your task. See the RSX-llM/M-PLUS MCR Operations Manual. 

2 This discussion assumes that the task does not handle synchronous 
system traps through the SVTK$ directive and specially coded routines. 

3 The snapshot macro calls the PMD task as described in Chapter 8 of 
the ~lSX-llM/M-PLUS Task Builder Manual. 

5-9 



USING DEBUGGING AIDS 

5 .• 4 GUIDE TO FURTHER READING 

The sections or chapters in the following documents contain additional 
information on the subjects described in this chapter. 

Document Location 

RSX-llM/M-PLUS Task Builder Manual 

Chapter 8, Memory Dumps 
Section 8.1, Postmortem Dumps 
Section 8.2, Snapshot Dumps 

IAS/RSX-11 ODT Reference Manual 

Section 4.3, Linking and Initiating ODT 
Section 3.11, Relocation Register Commands 
Section 3.12, Relocation Calculation Commands 
Section 3 •. 5, Task Breakpoint Commands 
Section 3.2, Commands for Opening, Changing and 

Closing Locations 
Section 3.14, Reprinting Open Locations 
Section 3.6, Program Execution Commands 
Section 4.5, Returning Control to the Host System 

5-10 



CHAPTER 6 

CREATING AND USING PROGRAM LIBRARIES 

This chapter describes the procedures to create and maintain a library 
of macro source statements and a library of object module subroutines. 
It also shows how to include in your task image the macro call 
definitions and the object subroutines from user-created libraries. 

The decision about whether to implement specific code as a macro call 
or as an object module subroutine is left to the designer. In 
general, the difference between implementations is a tradeoff of 
assembly time versus linking time and, secondarily, convenience versus 
size. Each time your source file invokes a specific macro call, the 
assembler must include the macro expansion in the object module. 
However, when your program calls an external subroutine, the 
resolution of the call is done during linking. Moreover, using the 
macro call to generate in-line code is convenient but each invocation 
of the call increases the size of the resulting task image. However, 
if your program calls a specific external subroutine more than once, 
the subsequent invocations do not include that code in the task. 

6.1 CREATING AND USING A MACRO SOURCE LIBRARY 

The Librarian program (LBR) creates a library file which can contain 
macro definitionse Such a file has a default type .MLB (macro 
library) and contains only macro definitions. 

6.1.l Creating the Macro Library 

To create a user library of macro definitions, you must have a file or 
files which have the macro source definitions. The Librarian program 
can accept as input either one file containing multiple definitions or 
multiple files, each of which has one or more definitions. Figure 6-1 
shows one file with two macro definitions. 

The following command creates a macro library file from one input file 
of source definitions. 

>LBR USRMAC/CR:25.: :128.:MAC=USRMAC 
> 

The designation /CR tells LBR to create a library file. LBR creates 
the library file USRMAC.MLB. For input to the library file, LBR uses 
the file or files specified to the right of the equal sign. In the 
example, the input file is USRMAC.MAC. 

6-1 



CREATING AND USING PROGRAM LIBRARIES 

SAVE - STORES REGISTER ON STACK 

.MACRO SAVE,REG 
MOV REG,-<SP> 
.ENDM 

RESTOR - POPS REGISTER VALUE OFF STACK 

.MACRO RESTQR,REG 
MOV <SP>+,REG 
.ENDM 
.END 

PUSH REG ONTO STACK 

POP REG OFF STACK 

Figure 6-1 MACR0-11 Library Source Definitions 

Following the designation /CR in the command are parameters, separated 
by colons, that LBR uses to create the library.l The first parameter, 
25 (decimal), gives the length in blocks for the library file. If you 
omit this parameter, LBR uses 100 (decimal) blocks as the default 
length. When creating the library file, you can allow for some future 
additions to the library by making the size larger than necessary. 
(LBR will expand a library file as needed if you add modules which 
will cause the file to exceed its original size. However, the library 
will no longer be contiguous.) The second pa~ameter is blank because 
it applies only to object libraries. The third paramete~, 128 
(decimal), is the number of module name table entries to allocate for 
this library. (An entry in the module name table is required for each 
macro definition.) Following the third parameter is the type of 
library to create (MAC for macro definition). You must specify this 
parameter because the default is object library. 

In creating the macro library, LBR allocates the requested amount of 
contiguous file space. If sufficient contiguous space is not 
available, LBR generates the OPEN FAILURE error and terminates. To 
have the library created, you must either free up some space on the 
volume or try a smaller library size. 

When the library file is created, LBR attempts to insert into the 
library the macro definitions from the input file. LBR searches the 
input file for .MACRO directives and .ENDM directives. If the macro 
definitions are nested, only the outermost directives are directly 
callable from the library. From each macro definition, LBR extracts 
the name and creates an entry in the module name table. The entry in 
the module name table is the means by which the assembler finds the 
associated macro definition in the library. Any code or comments 
outside the directives are discarded and all trailing blank and tab 
characters, blank lines, and comments are eliminated from the macro 
text itself. (This action, called squeezing, conserves memory for the 
assembler and reduces the space required to hold the macro 
definitions.) Errors occurring during the insertion of definitions 
usually indicate improper definitions, such as a missing .ENDM 
directive. 

1 The numeric parameters are followed by decimal points to force LBR 
to interpret them as decimal numbers. If you omit the decimal points, 
LBR treats the numbers as octal. 

6-2 



CREATING AND USING PROGRAM LIBRARIES 

6.1.2 Using the Macro Definitions from the Library 

Once the macro definitions are in the library, you need perform only 
three actions to have the assembler include the macro expansions in 
your code. 

1. Include the name of the macro in a .MCALL directive in your 
program source file 

2. Invoke the macro call within the source file 

3. Specify the name of the library file in the command to the 
assembler 

Thus, to invoke the two macro library definitions SAVE and RESTOR in 
your program, precede the macro calls themselves with a statement such 
as the following: 

.MCALL SAVE,RESTOR ; CALL DEFINITIONS FROM USRMAC 

This statement should preferably occur at the start of the source 
f ileo When you assemble a source file that refers to the macro 
definitions in the library file, use a command similar to the 
following. 

>MAC USRTST,USRTST/-SP=USRMAC/ML,USRTST 
> 

To the right of the equal sign in the command, specify the name of the 
macro library and the designation /ML. The comma separates the macro 
library file name and the source file name. The designation /ML 
indicates to the assembler that the file is a macro library. The name 
of the macro library must precede the source file that refers to the 
macro definitions. 

NOTE 

If the library specification follows the 
source file name in the command and the 
corresponding definitions are not in the 
system macro library RSXMAC, MACR0-11 
does not recognize the library file and 
generates assembly errors in the lines 
that contain calls to library 
definitions. 

To process the macro calls in the source file, the assembler uses the 
names given in the .MCALL directive to generate symbols for the macro 
symbol table.I To expand the macro calls not defined in the source 
file, the assembler searches the library you specified before it 
searches the system default macro library. MACR0-11 does not search 
the system macro library for definitions that are found in the user 
1 i br.a ry file. 

l If you omit the name of the macro call from the .MCALL directive, 
the assembler cannot recognize the call itself in the code. (A 
corresponding entry is not in its macro symbol table.) It treats an 
unrecognized macro call as an implicit .WORD directive. If the macro 
name is not a valid symbol, its usage is flagged as an Undefined 
Reference by TKB. 

6-3 



CREATING AND USING PROGRAM LIBRARIES 

6.2 CREATING AND USING AN OBJECT MODULE LIBRARY 

LBR may be used to create a library file containing object modules. 
Such a file has the file type .OLB (object library) as a default and 
can contain only object modules. 

6.2.l Creating the Object Module Library 

To create an object module library, you must have a file or files that 
contain the object modules to be inserted into the library. The 
following command creates the object library and inserts the modules 
FILEA.OBJ and FILES.OBJ. 

>LBR USROBJ/CR:25.:128.:64.=FILEA,FILEB 
> 

The designation /CR tells LBR to create a library file. LBR uses the 
name preceding /CR as the name of the library and applies the default 
file type .OLB. Following /CR in the command are parameters, 
separated by colons, used in creating the file.I 

The first parameter, 25 (decimal), gives the size in blocks at which 
to create the library file. If you omit the parameter, LBR supplies 
100 (decimal) blocks as the default size. When creating the library, 
you can allow for future additions by making the size larger than 
necessary. (LBR will expand a library file as needed if you add 
modules which will cause the file to exceed its original size. 
However, the library will no longer be contiguous.) 

The second parameter, 128 (decimal), in the command gives the number 
of entry point table slots to reserve.2 (An entry point is any global 
symbol in a module by which your program refers to the associated 
module.) A good estimate for the number of entry points is twice the 
number of modules the library will contain (that is, two entry points 
per module). If you omit this parameter, LBR supplies 512 (decimal) 
as the default number. If the value you supply is not an integral 
multiple of 64 (decimal), LBR raises the number to the next highest 
multiple of 64 (decimal). 

The third parameter, 64 (decimal), is the number of module name table 
entries to create for the library. (The module name is the means by 
which LBR refers to the module code in the library.) If you omit this 
parameter from the command, LBR supplies 256 (decimal) as the default 
number. If the value you specify is not an integral multiple of 64 
(decimal), LBR raises the number to the next highest multiple of 64 
(decimal). 

The last parameter (omitted from the command above) specifies the type 
of library to build. LBR supplies OBJ as the default type. 

1 The numeric parameters are followed by decimal points to force LBR 
to interpret them as decimal numbers. If you omit the decimal points, 
LBR treats the numbers as octal. 

2 LBR allows you to build an object library having zero entry points. 
This feature allows you to maintain modules with duplicate entry 
points in the same library. (The names of the modules must still be 
unique.) When using such a library, you must specify the correct 
module name(s) to TKB when you build your task. See Section 6.2.2. 

6-4 



CREATING AND USING PROGRAM LIBRARIES 

In creating the object library file, LBR allocates the requested 
amount of contiguous space. You can estimate the number of contiguous 
blocks that LBR requires by using PIP. Request a directory listing of 
all the files to be inserted in the library and use the total number 
of blocks PIP calculates. If sufficient contiguous space is not 
available, LBR generates the OPEN FAILURE error and terminates. To 
have the library created, you must either free up some space on the 
volume or try to build a smaller object library. 

When the object library is created, LBR attempts to insert into the 
library the object modules from the input file(s). It arranges the 
entries in the module name table in alphabetical order by module name. 
The module name that LBR uses is the one you specified in the .TITLE 
directive when you assembled the object module. The module names and 
entry points must be unique.l LBR finds the global symbols in each 
object module and enters them in the entry point table. If LBR finds 
a module name or an entry point that duplicates one already used, it 
prints an error message and stops processing. 

If LBR finds an error, it does not insert any modules in the library 
from the file containing the error. You must eliminate the error 
condition and insert the modules from the corrected file again. If 
LBR does not find any errors, it enters all the modules in the 
library. To ascertain what modules were inserted, obtain a listing of 
the library as described in Section 6.3.3. 

6.2.2 Using the Object Modules from the Library 

When the object modules are in the library, you need perform only two 
actions to have TKB include the routines in your task. 

1. Include the CALL x statement in the calling module (where x 
is an entry point to the called module). (It is assumed that 
the called module has a global statement to define the entry 
point.)2 

2. Specify the name of the library file and the names of the 
called modules in the command to TKB. 

Thus, to invoke subroutines from the library, ensure that the CALL 
statements are in your program. 

When you build the task, use a command similar to the following. 

>TKB SUBLIB,SUBLIB/-SP=FILE,USROBJ/LB:TTREAD:TTWRIT 
> 

The designation /LB after a name in the command indicates to TKB that 
the file is an object library. TKB accesses the file USROBJ.OLB in 
the UFD that is the same as the current UIC. The names appearing 

1 If you suppress including entry points in the library entry point 
table, LBR allows you to insert in the library object modules having 
duplicate entry points. This feature enables you to maintain slightly 
different modules of the same general type in the same library. You 
select the correct module by specifying the unique module name to TKB 
when you build your task. See Section 6.2.2. 

2 CALL is a macro statement which is a permanent symbol in the 
MACR0-11 assembler. It standardizes subroutine calling conventions. 
CALL X translates to JSR PC,x (where xis the subroutine entry point). 

6-5 



CREATING AND USING PROGRAM LIBRARIES 

after /LB in the command are the names of the modules to be extracted 
from the library and placed in the task. TKB searches the module name 
table of the library for these modules. (Remember that these module 
names are derived from the name given in the .TITLE directive and not 
from the file names from which the modules were created.) 

Note that the module names in the command are preceded by colons. The 
colons are necessary to distinguish the names as library module names. 
Placing a comma before a name tells TKB to treat the name as an object 
module and to search your UFD for a file with that name and a type of 
.OBJ. That is, the colon tells TKB to process what follows as an 
~rgument of /LB and the comma tells TKB to treat what follows as a 
file name. 

This method of specifying an object library search is more direct and 
faster than the method described in Section 6.2.3. If you are using a 
large library, TKB need search only the module name table for those 
object modules you specify. The disadvantage is that the 
responsibility is yours to specify the names of all the modules that 
your task requires. In one situation, this is the only method to use 
a library. If you are using a library with zero entry points, this is 
the sole method of telling TKB which modules to include from that 
library. 

6.2.3 Using the Library to Resolve Undefined Global Symbols 

Often the modules in a task refer to global symbols that are defined 
in other modules. If the modules that define the global symbols 
reside in a library, you can have TKB search the library. The 
following example shows the usage of /LB with no module names to 
request the search. 

>TKB LB,LB/-SP=FILE,USROBJ/LB 
> 

The designation /LB with no module names tells TKB to search the 
library entry point table for symbols that are referred to but not 
defined. When TKB finds a symbol in the table that is unresolved in 
the task, it extracts the defining module and places it in the task. 
If any symbols remain unresolved after the user library search, TKB 
searches the system library. 

This method of specifying an object library search requires less 
effort on your part than the method described in Section 6.2.2 because 
TKB searches the entry point table to resolve any global references 
undefined to that point in the processing. If you are using a large 
library, TKB may take longer in searching the entry point table than 
if you had specified the names of the modules to include in your task. 

6.2.4 Dual Use of the Library 

In certain circumstances, you may w~nt TKB to definitely include 
specific modules from the library and also to search the same library 
to resolve any undefined references that may occur. For example, you 
may have conditional code in the main part of a task and do not know 
what global symbols are referenced. TKB allows you to specify the two 
forms of the library search as in the following command. 

> TKB LBOPT ,LBOPT/-SP=FILE, USROBJ/LB:TTREAD, USROBJ/LB 
> 

6-6 



CREATING AND USING PROGRAM LIBRARIES 

The first appearance of the /LB designation tells TKB to extract the 
named module. The second occurrence tells TKB to search the library 
for any unresolved global symbols. TKB includes in the task any 
modules from the library that define the global symbols that are 
unresolved at that point in the building of the task. If any 
unresolved symbols remain after the user library search, TKB searches 
the system library. 

6.3 MAINTAINING USER LIBRARIES 

This section decribes three simple operations to maintain a user 
library adding modules to, replacing a module in, and obtaining 
information about the library. 

6.3.1 Adding Modules to a Library 

Modules can be added to a library with an LBR command such as the 
following. 

>LBR USRMAC.MLB/IN=MAC1,MAC2 
> 

To add modules to a library, specify the name and type of the library 
file and the /IN designation (insert} to the left of the equal sign in 
the LBR command. To the right of the equal sign, give the name of the 
modules, separated by a comma. You need not supply a file type 
because LBR applies the correct type as a default according to the 
type of the library you specify. 

The library must have a sufficient number of name table entries 
available (and, for object modules, entry point table slots}. Each 
global symbol in an object module requires an available entry point 
table slot. A module name table entry must be available for each 
object module and macro definition added. When inserting a module, 
LBR checks to ensure that a module of the same name does not currently 
reside in the library. If a duplicate name is found, the program 
reports the duplicate name and terminates. For object modules being 
inserted, LBR also checks for duplicate entry point names. To add 
modules with duplication, you must either eliminate the duplicate 
names or change the /IN designation to /RP (replace). See Section 
6.3.2. 

6.3.2 Replacing a Module in a Library 

After you create a library, a typical maintenance function you will 
perform is changing and updating modules in the library. Because a 
module of the same name (and, for object modules, the same entry 
points) already exists, you must perform a replace operation. For 
example: 

>LBR USROBJ/RP=FILEA 
MODULE "TTREAD" REPLACED 

> 

6-7 



CREATING AND USING PROGRAM LIBRARIES 

LBR accesses the library file USROBJ.OLB; logically deletes the 
module TTREAO and all of the entry points for that name; and inserts 
the new version of module TTREAO from the file FILEA.OBJ. LBR prints 
a message telling you the name of each module it replaced. If a 
module to be replaced does not exist in the library file, LBR assumes 
that the module is to be inserted, automatically inserts it, but does 
not print the message. 

LBR does not automatically reclaim the space occupied by a module that 
you replaced. Therefore, to reclaim this lost space, you should 
occasionally run LBR and compress the library file. 

6.3.3 Obtaining Information about a Library 

To obtain information about a library, type a command to LBR similar 
to the following. 

> LB R [ 1 , 1 ] US R 0 BJ • 0 LB , [ 3 0 3 , 1 0] LB L IS T /LE/FU 
> 

This command causes LBR to access the library file USROBJ.OLB in UFO 
[1,1]. The comma separates the library file name from the listing 
file specification. The designations /LE and /FU tell LBR to list 
entry points and full information (size, date of creation, and, for 
object modules, identification) in the file LBLIST.LST in UFO 
[303,10]. If you omit the UFO specification from the listing file, 
LBR creates the listing file in the UFO of the library. 

To list information at the terminal, simply omit the file name from 
the command as follows. 

>LBR [l,l]USRMAC.MLB/FU 
> 

Because a macro library does not have entry points, you can omit the 
/LE designation from the command. 

6 • ~I GUIDE TO FURTHER READING 

The sections or chapters in the following documents contain additional 
information on the subjects described in this chapter. 

Document Location 

RSX-llM/M-PLUS Task Builder Manual 

Section 6.1.13, LB (Library File) 

IAS/RSX-11 MACR0-11 Reference Manual 

Section 8.1.3, RSX-11 File Specification switches 
Section 7.8, Macro Library Directive: .MCALL 

RSX-11 Utilities Manual 

Chapter 14, Librarian Utility Program (LBR) 

6-8 



CHAPTER 7 

FORTRAN IV PROCEDURES 

PDP·-11 FORTRAN IV is one of several high-level 
available on RSX-llM and RSX-llM-PLUS systems. 
introduces the product and summarizes its 
procedures. 

7.1 OVERVIEW OF PDP-11 FORTRAN IV 

languages optionally 
This chapter briefly 

program development 

The FORTRAN IV language processor on RSX-llM and RSX-llM-PLUS consists 
of the following elements: 

• Compiler task FOR 

• Object Time System library 

• An optional shareable library 

The FORTRAN IV compiler accepts an ASCII disk file containing source 
statements. It can generate a disk file in object module format and a 
listing file suitable for printing. The user interface to the 
compiler is similar to that of the MACR0-11 assembler. The program 
development procedures are like those for assembly language modules: 
you supply the object file to TKB to obtain an executable program. 

The FORTRAN IV Object Time System (OTS) is a collection of object 
module subroutines required to create an executable program. On 
systems with more than one high-level language, the OTS routines for 
FORTRAN IV must be segregated from those of other languages. 
Sometimes, the OTS routines reside in the system object library 
SYSLIB. Regardless of their location, however, the OTS routines must 
be accessible to TKB. The difference to you is whether the library 
containing the OTS routines must be explicitly named. If the OTS 
routines are in SYSLIB, TKB can locate them without an explicit 
specification because, as a default condition, it automatically 
searches the system library. 

The FORTRAN IV compiler does not generate all of the machine code 
required by a task at run time. Common sequences of code reside in 
the OTS library. During compilation, FORTRAN IV flags these common 
sequences as undefined global symbols. TKB must then resolve the 
undefined references by selecting from the OTS those modules that 
resolve the symbols in the object module. 

In a narrow sense, the Object Time System contains the routines that 
the compiler designates to be linked into your task. In practice, 
however, the OTS can be an ordinary library file containing various 
routines in addition to the routines required by the compiler-assigned 
references. In a wider sense, the OTS can contain user-callable 

7-1 



FORTRAN IV PROCEDURES 

routines as well as routines for which the compiler generates 
references. 

As an option, a system installation can have a common area containing 
shareable FORTRAN IV OTS routines. This common area, called a 
resident library, contains the most frequently used routines, taken 
from the OTS, and made available for user tasks to link to and share 
at run time. Thus, with a shareable library, TKB generates references 
to the routines in the resident library that you specify when you 
build the task. TKB does not include those routines in your task 
image. The routines use virtual address space in the task but do not 
require additional physical memory in the task image. The resident 
library, tailored to the needs and requirements of a particular 
system, saves task-build time and memory by the amount of code that 
need not be repeated in each memory-resident FORTRAN IV task. 

7.2 FORTRAN IV PROGRAM DEVELOPMENT PROCEDURES 

The program development procedures for FORTRAN IV are quite similar to 
those for the assembler. Therefore, this chapter does not present the 
detail found in Chapters 2 through 6. For example, to edit a FORTRAN 
IV source file, you use the same commands as you used to edit an 
assembly language source file as described in Chapter 2. 

7.2.1 Creating the Source File 

To create a sample FORTRAN IV source file, invoke the editor task EDI 
and use the following commands to insert the lines of code shown in 
Figure 7-1. 

>EDI AVERAGE. FTN 
[CREATING NEW FILE] 
INPUT 

G!!) 
*EXIT 
[EXIT] 

> 

insert the lines here and 
type the RETURN key twice to exit from 
insert mode 

Because EDI cannot insert a blank line in the text (EDI requires at 
least one nonprinting character such as a space or tab character; see 
Section 2.2.1.1), use the C (comment line) in column 1 for readability 
in the source file in place of the blank line. If you insert a line 
with a space or tab character on it, the FORTRAN IV compiler generates 
an error because it expects a valid label on a nonblank line. 

To format the source statements and avoid counting spaces, you can use 
the TAB character. The FORTRAN IV compiler will position the 
character following an initial TAB character to the proper column. 
That is, a digit following an initial TAB will be considered a 
continuation character (column 6) and a nondigit will be considered 
the beginning of the statement (column 7). 

7-2 



FORTRAN IV PROCEDURES 

PROGRAM AVERAGE 
C PROGRAM TO COMPUTE AVERAGE OF NUMBERS ENTERED AT TERMINAL 
C THE NUMBER 'O'INDICATES END OF INPUT 
c 

TOTAL = 0 ! INITIALIZE ACCUMULATOR 
N = 0 ! INITIALIZE COUNTER 

5 N = N + 1 
WRITE C5r10) ! PROMPT TO ENTER NUMBER 

10 FORMAT (' ENTER NUMBER, END WITH 0') 
READ C5r20> K READ NUMBER FROM TERMINAL 

20 FORMAT I10 
IF CK .EQ. 0) GOTO 40 0 MEANS NO MORE INPUT 
TOTAL = TOTAL + K COMPUTE TOTAL WITH NUMBER 
GO TO 5 

c 
C NOWr COMPUTE TOTAL BY DIVIDING IT BY THE NUMBER OF TIMES 
C THROUGH THE LOOP 
c 
40 TOTAL = TOTAL/N 

WRITE C5r50> TOTAL ! DISPLAY THE RESULT 
50 FORMAT (' AVERAGE IS ',F10+2> 

STOP 
END 

Figure 7-1 FORTRAN IV Sample Source Code AVERAGE.FTN 

7.2~2 Performing a Diagnostic Run 

To see whether there are any syntax or grammar errors in a source 
file, you can perform a diagnostic run. For example: 

>FOR ,AVERAGE/-SP=AVERAGE 
AVE RAG 
FOR -·- [AVERAG] ERRORS: 1, WARNINGS: 0 
> 

This command requests FORTRAN IV to compile the file AVERAGE.FTN, 
which resides in your UFO. The compiler creates a listing file 
AVEHAGE.LS~r but no object module. (The leading comma in the command 
means a null file specification for the object file. If you omit the 
comma, FORTRAN IV creates the object file but not the listing file.) 
As a default condition, the listing file contains source program code 
and diagnostic messages only. 

When you request a listing file in a compilation, FORTRAN IV reports 
at the terminal the name of the program unit being compiled and a 
summary of errors found. To discover what caused the errors, you must 
examine the section of the listing entitled FORTRAN IV DIAGNOSTICS. 
Display the listing file by typing the following command. 

>:PIP TI :=AVERAGE.LST 

(PIP displays listing) 

> 

7-3 



FORTRAN IV PROCEDURES 

On a video display terminal, use the CTRL/S and CTRL/Q commands to 
stop and resume the output. 

The following line appears in the diagnostic section of the listing. 

IN LINE 0008, ERROR: SYNTAX ERROR 

Line 8 refers to the statement number 0008 assigned by the compiler. 
The error referred to is described in an appendix of the language 
user's guide. In the source code part of the listing, line 8 is shown 
as follows. 

0008 20 FORMAT IlO 

The compiler detected the missing parentheses on the field descriptor 
in the FORMAT statement. You must edit the source file, as in the 
following example. 

>ED I AVERAGE • FT N 
[00023 LINES READ IN] 
[PAGE 1] 
*L IlO 
20 FORMAT IlO 
*C /IlO/ (IlO) I 
20 FORMAT (IlO) 
*EXIT 
[EXIT] 

> 

The L command locates the line containing the string IlO and prints 
the entire line. The c command replaces the string IlO with (IlO) and 
prints the line so that you can verify the change. The EXIT command 
terminates the editing session and creates the new, edited version of 
the file. Next, you can use the edited version to create an object 
module. 

7.2.3 Creating an Object Module 

To create an object module, simply add the file name to the command 
string you used to perform the diagnostic run. 

>FOR AVERAGE,AVERAGE/-SP=AVERAGE 
AVE RAG 
> 

This command requests FORTRAN IV to compile the file AVERAGE.FTN and 
to create object and listing files AVERAGE.OBJ and AVERAGE.LST. If 
FORTRAN IV detects any errors, it prints a summary at the terminal as 
described in Section 7.2.1. If there are no errors, FORTRAN IV 
returns control to MCR which prints the > prompt. 

7-4 



FORTRAN IV PROCEDURES 

7.2.4 Creating a Task Image 

The object module created by the FORTRAN IV compiler does not contain 
all the code required at run time. Therefore, when you run TKB, you 
must specify as input both the name of the object module and the name 
of the library containing the FORTRAN IV Object Time System 
routines.l The following command shows the procedure. 

>TKB AVERAGE=AVERAGE,LB:[l,l]FOROTS/LB 
> 

T'his command requests TKB to link the module AVERAGE .OBJ and resolve 
any undefined references by searching the library FOROTS.OLB in UFD 
[1,1] on the system library device.I You can add, as input to TKB, 
file? names of any external object modules which the main module calls. 
As cl result of the command, TKB creates a task image file AVERAGE.TSK. 
(A memory allocation file is not needed.) If TKB detects any errors, 
it proceeds according to whether the error is fatal or diagnostic. 
Refe?r to an appendix in the RSX-.llM/M-PLUS Task Builder Manual for 
guidelines on error processing. 

The task image created by TKB has certain default conditions. The 
task AVERAGE can be built to run successfully without having to 
override these default conditions. When you build a task from a 
FOR~~RAN IV module, you may have to specify special switches in the 
command or supply options to TKB. Refer to the language user's guide 
for information regarding Task Builder default FORTRAN IV conditions 
and FORTRAN-specific options and· switches. 

7.2.5 Running and Debugging a Task 

To E~xecute the task AVERAGE, type the following command. 

>RUN AVERAGE 
ENTER NUMBER, END WITH 0 
66 
ENTER NUMBER, END WITH 0 
66 
ENTER NUMBER, END WITH 0 
0 
AVERAGE IS 44.00 
TT30 STOP 
> 

The program is not computing the average correctly. If you cannot 
locate the error by looking at the program listing, you can place 
debugging statements in the code and assemble the module with them. 

1 In the command, the name shown for the FORTRAN IV Object Time System 
(FOROTS) is only a convention recommended by DIGITAL. Consult the 
system manager at your installation because the FORTRAN IV OTS 
routines may reside in another library or in the system library 
SYSLIB. (If the OTS routines do reside in SYSLIB, you need not 
specify the name of the OTS in the command to TKB because TKB 
automatically searches the system library.) 

7-5 



FORTRAN IV PROCEDURES 

To add debugging statements to the program, simply edit 
file with lines of code beginning with D in column 1. 
you can include statements to print values of variables 
after the loop, as follows. 

>EDI AVERAG. FTN 
[00023 LINES READ IN] 
[ PAGE 1] 
*L 5~ 
5N=N+l 
*I~ 
D~ 
D6~ 

GD 
*L 50~ 
50 FORMAT 
*I~ 
D~ 
D51~ 

G!D 
*EXITG!!) 
[EXIT] 

> 

WRITE (5,6) N,TOTAL 
FORMAT (' ***DEBUG LINEN 

G!D 
('AVERAGE IS ',Fl0.2) 

WRITE (5,51) N 
FORMAT ('***DEBUG LINEN 

I ,IlO, ', TOTAL 

',IlO)~ 

the source 
For example, 

before and 

',FlO.O)G!!) 

The L commands locate and print the contents of the lines that precede 
where the debugging statements are to be placed. The I commands 
insert the debugging statements. The insert operation is terminated 
by typing two successive RETURN keys. After the inserts are made, the 
EXIT command closes the files and terminates EDI. 

Next, recompile the module and request FORTRAN IV to include the 
debugging statements as shown in the following command. 

>FOR DEBUG,DEBUG/-SP=AVERAGE/DE 
AVE RAG 
> 

The compiler generates the files DEBUG.OBJ and DEBUG.LST. Because of 
the designation /DE in the command, the compiler includes statements 
beginning with D in column 1. If you omit /DE, the debugging lines 
are treated as comment lines. 

Next, build and run the task with the debugging lines as follows. 

>TKB DEBUG=DEBUG,LB:[l,l]FOROTS/LB 
>RUN DEBUG 
***DEBUG LINE N = l, TOTAL = 
ENTER NUMBER, END WITH 0 
66 
***DEBUG LINE N = 2, TOTAL = 
ENTER NUMBER, END WITH 0 
66 
***DEBUG LINE N = 3. TOTAL 
ENTER NUMBER, END WITH 0 
0 
AVERAGE IS 44.00 
***DEBUG LINE N 3 
TT30 -- STOP 
> 

o. 

66. 

132. 

The debugging statements enable you to inspect the values of 
variables. As you can see, the loop counter N is incremented one 
extra time for the number O. The value N must be decremented by l. 

7-6 



FORTRAN IV PROCEDURES 

To correct the error, edit the source file again as follows. 

>EDI AVERAGE.FTN 
[00027 LINES READ IN] 
[PAGE l] 
*L TOTAL/~ 
4 0 TO~rAL = TOTAL/N 
*C ; N; (N-1) ; 
4 0 TO~rAL = TOTAL/ (N-1) 
*EXIT 
[EXIT] 
> 

Next, repeat the compilation, linking, and running as follows. 

>FOR AVERAGE,AVERAGE/-SP=AVERAGE 
AVE RAG 
>TKB AVERAGE=AVERAGE,LB:[l,l]FOROTS/LB 
>RUN AVERAGE 
ENTER NUMBER, END WITH 0 
66 
ENTER NUMBER, END WITH 0 
66 
ENTER NUMBER, END WITH 0 
0 
AVERAGE IS 66.00 
TT30 STOP 
> 

The program is compiled without the debug statements. 
shows that the correction eliminated the error. 

7.3 GUIDE TO FURTHER READING 

The output 

The section or chapters in the following documents contain additional 
information on the subjects described in this chapter. 

Document Location 

IAS/RSX-11 FORTRAN IV User's Guide 

Section 2.1, FORTRAN IV Object Time System 
Section 2.2, Object Code 
Section 2.6, OTS and Shareable Libraries 
Section 1.3, Using the Task Builder to Link 

FORTRAN IV Programs 
Section 1.5, Operating Procedures 
Section 1.6, Debugging a FORTRAN IV Program 
Appendix c, FORTRAN IV Error Diagnostics 

RSX-llM/M-PLUS Task Builder Manual 

Appendix F, Error Messages 

7-7 



A 
AP 1command (EDI), 2-16 
Ass1embly language, 1-2 

S1ee also MACR0-11 . 
Assiembly listing, 

examining at a terminal, 3-5 
formatting, 2-6 
generating a, 3-4 
page break, 2-6 
spooling a copy of, 3-6, 3-7 
table of contents, 2-6 
tierminal format, 2-6 

Asterisk character, 
in EDI, 2-9 
in PIP, 3-7 

B 
Backslash character, 

in ODT, 5-5 
BEGIN command (EDI), 2-13 
Blank line, 

INDEX 

in a FORTRAN IV source file, 7-2 
inserting with EDI, 2-9 

Block mode, 1-1 

c 
CHANGE command (EDI), 2-15 
Coding standard, 2-1 
Compiler task FOR, 7-1 
Concatenated object module, 

creating a, 4-2 
input to TKB, 4-3 

Creating, 
object modules, 

from FORTRAN IV, 7-4 
from MACR0-11, 3-4 

siource files, 
FORTRAN IV, 7-2 
MACR0-11, 2-11 
skeleton, 2-9 

t,ask images, 4-1 to 4-3, 7-5 
CRF (Cross-Reference Processor) 

mrerview of, 1-6 
generating an assembly cross­

ref erence, 3-6 
global cross-reference, 

generating, 4-4 
Cross-reference listing, 

generating a macro, 3-6 
generating an assembly, 3-6 
global, 

generating a, 4-4 
M~CR0-11, 1-3 

Cross-Reference Processor. 
S1ee CRF. 

Index-1 

CTRL/O command, 3-5 
CTRL/Q command, 3-5 
CTRL/S command, 3-5 

D 
Data storage, 

control in assembly language, 
1-3 

definition of (MACR0-11), 2-8 
disk, 1-10 
program section for, 2-8 

Debugging, 
errors in MACR0-11, 3-2, 3-3 
FORTRAN IV programs, 7-6, 7-7 
task, 4-5 to 4-7 

Debugging aids, 
FORTRAN IV, 7-6 
introduction to, 1-5 
use of, 5-1 to 5-9 

Debugging tool. See ODT. 
Default, 

conditions in TKB, 4-3, 4-4 
file type, 

in MACR0-11, 3-4 
in TKB, 4-1 

system library search, 
MACR0-11, 1-3, 1-8, 2-6, 2-7 
TKB, 1-10, 4-1, 4-2 

transfer address, 4-6 
Diagnostic run, 

on FORTRAN IV source file, 7-3, 
7-4 

on MACR0-11 source file, 3-1 
Directives, 

assembler, types of, 1-3 
recommended use of_, 2-3, 2-5 

to 2-8 
system, 1-7 to 1-9 

-Disks, public and private, 1-10 
Dollar sign, 

in ODT, 5-6, 5-8 
DP command (EDI), 2-16 
Dump. See PMD. 

E 
EDI, 

abbreviating strings in, 2-15 
asterisk character in, 2-9 
block mode, 1-1 
changing text, 2-15, 2-16 
correcting task error with, 4-6 
creating a file from, 2-11, 7-2 
deleting characters, 2-16 
deleting lines, 2-16 
displaying text, 2-11, 2-12 



INDEX 

EDI (Cont.) 
editing commands, 2-11 to 2-17 
ellipsis in, 2-15 
inserting blank lines, 2-9 
inserting characters, 2-16 
inserting new lines, 2-17 
locating text, 2-12, 2-14 
performing initial input, 2-9 
positioning pointer, 2-13 
terminating input to, 2-9 

Editor, text, 1-1 
See also EDI. 

Ellipsis in EDI, 2-15 
END command (EDI), 2-13 
.END directive, 2-7 
Entry point table, 6-4 

zero entry points in, 6-6 
Error messages, 

FORTRAN IV, 7-4 
MACR0-11, 3-1, 3-2 
ODT, 5-3 
task termination (TKTN), 4-6 
TKB, 4-1 

ESCAPE key, 
in EDI, 2-12 

Executive macro library, 1-8 
EXEMC.MLB (Executive macro 

library) , 1-8 
EXIT command (EDI), 2-17 
EXIT$S directive, 2-6 

F 
Fast Task Builder (FTB) , 4-3 
File, 

creation of library, 
macro, 6-1, 6-2 
object, 6-4, 6-5 

creation of source, 2-11, 7-2 
directory listing of a, 3-7 
editing a source, 2-11 to 2-17 
listing at a terminal, 3-5 
purging a, 3-7 
spooling a copy of, 3-6 

File contents section, 4-5 
File type, 

.FTN, 7-3 

.LST, 3-4, 6-8, 7-3 

.MAC, 3-1 

.MAP, 4-4 
• MLB, 6-1 
• OBJ , 3 -4 , 7 -4 
.OLB, 6-4 
.PMD, 5-9 
.TSK, 4-1 

FILEA.MAC source code, 2-21 
FILEB.MAC source code, 2-22, 2-23 
FILE.MAC source code, 2-18, 2-19 
Files, purging, 3-7 

Index-2 

FOR compiler task, 7-1 
creating object module with, 

7-4 
/DE in, 7-6 
diagnostic run, 7-3 
including debugging statements 

with, 7-6 
Format, 

FORTRAN IV statement, 7-2 
MACR0-11 source file, 

description of, 2-3 to 2-8 
sample skeleton, 2-2 

MACR0-11 statement, 2-.3 
FORTRAN IV 

compiler task, 7-1 
formatting source statements, 

7-2 
specifying OTS to TKB, 7-5 
See also FOR. 

FTB (Fast Task Builder) , 4-3 

G 
G command (in ODT), 5-7 
Global cross-reference listing, 

generating, 4-4 
Global default, disabling in 

MACR0-11, 3-1 
Global symbol, 

as entry point, 6-4 
using library to resolved 

undefined, 6-6 

H 
Hardware for program development, 

1-10 

.!DENT directive, 2-5 
INSERT command (in EDI), 2-17 
Inserting, 

characters in a line, 2-16 
modules in a library, 6-7 
new lines in a file, 2-17 

L 
Language, assembly, 1-2 

See also MACR0-11 • 
LBR (Librarian Program), 

adding a module to a library, 
6-7 

efficiency, 1-7 
/FU in, 6-8 
/IN in, 6-7 
/LE in, 6-8 
listing information about a 

library, 6-8 



LBR (Librarian Program) (Cont. ) 
macro library creation with, 

6-1, 6-2 
object module library creation 

with, 6-4, 6-5 

INDEX 

replacing a module in a library, 
6-7, 6-8 

/RP in, 6-7, 6-8 
LINE FEED key, 

l.n ODT, 5-4 
Librarian Program. See LBR. 
Libraries, DIGITAL-supplied, 

1-7 to 1-9 
See also macro, object and OTS. 

Library, 
creating a user macro, 6-1, 6-2 
creating a user object, 6-4, 6-5 
default search of system, 

by MACR0-11, 1-3, 1-8, 2-6, 
2-7 

by TKB, 1-10, 4-1, 4-2 
maintaining a user, 6-7, 6-8 
object, 

designating in TKB, 6-5, 6-6, 
7-5 

system, 1-9 
using to resolve undefined 

global symbols, 6-6, 6-7 
obtaining information about a 

user, 6-8 
shareable, 7-1, 7-2 
squeezing, 6-2 

LIST command. (EDI) , 2-12 
Listing, 

e?xamining at a terminal, 3-5 
generating a cross-reference, 

3-6 
g·enerating a FORTRAN IV, 7-3, 

7-4 
generating an assembly, 3-4 
global cross-reference, 

generating a, 4-4 
spooling a copy of, 3-6, 3-7 
use in debugging, 5-3, 5-4 

Listing control, 1-3, 2-6 
.LIST TTM directive, 2-6 
Local symbol definitions, 2-7 
LOCATE command (EDI), 2-13 
Location counter, 1-3 

use in debugging, 5-3, 5-4 
Logical units. See LUN. 
.LST file type, 3-4, 6-8 
LUN (Logical Unit), 

default by TKB, 4-3, 4-4 

Index-3 

M 
.MAC file type, 3-1 
MACR0-11., 

assembling a source file, 
3-1, 3-2 

/CR in, 3-6 
cross-reference listing, 1-3, 

3-6 
data storage definition, 2-8, 

2-9 
default search of system 

library, 1-3, 1-8, 2-6, 2-7 
defining local symbols, 2-7 
/DS:GBL in, 3-1 
error messages from, 3-1, 3-2 
errors, typical, 3-2, 3-3 
listing generation, 3-4 
location counter, 1-3 
macro cross-reference, 3-6 
macro library usage in, 6-3 
macro symbols, 1-3, 2-6, 2-7 
/ML in, 6-3 
object module generation, 3-4 
source input to, 1-2 
source file skeleton, 2-1 to 

2-8 
statement format, 2-3 
symbol evaluation in, 1-2 
table of contents generation, 

2-6 
types of directives, 1-3 

Macro call, 
cross-reference of symbols for, 

3-6 
default resolution of, 1-3, 

1-8, 2-6, 2-7 
treatment of unrecognized, 2-7 
user-library resolution of, 6-3 

Macro library, 
adding modules to a, 6-7 
creating a user, 6-1, 6-2 
default search of system, 1-3, 

1-8' 2-6' 2-7 
DIGITAL-supplied, 1-8 
listing information on a, 6-8 
replacing modules in a, 6-7, 

6-8 
using definitions from a, 6-3 

MAC task, 1-2 
See also MACR0-11. 

Map, 
examining at terminal, 4-5 
full, 4-5 
generating a, 4-4 
reducing width of, 4-4 
STACK LIMITS in, 5-8 
use in debugging, 5-2 



.MAP file type, 4-4 

.MCALL directive, 2-6 
usage with user macro library, 

6-3 
Memory allocation file. See Map. 
.MLB file type, 6-1 
Module name, 

definition of, 2-3 
object library usage, 6-5 

INDEX 

usage during debugging, 5-2, 5-3 
Module name table, 

in macro library, 6-2 
in object library, 6-4 

Module version, 2-5 

N 
. NLIST BEX directive, 2-6 

0 
Object library, 

adding modules to an, 6-7 
creating a user, 6-4, 6-5 
default search of system, 1-10, 

4-1, 4-2 
DIGITAL-supplied, 1-9, 1-10 
listing information on an, 6-8 
OTS, 7-1 
replacing modules in an, 6-7, 

6-8 
using to resolve undefined 

global symbols, 6-6 
Object module, 

creating a concatenated, 4-2, 
4-3 

input to TKB, 4-1, 4-2 
input to user object library, 

6-4 
generating in MACR0-11, 3-4 
output of FORTRAN IV, 7-4, 7-5 
output of MACR0-11, 1-2 

Object Time System (OTS) library, 
7-1 

.OBJ file type, 3-4 
ODT (On-line Debugging Tool) 

backslash character in, 5-5 
B command in, 5-6 
commands in, 5-1 to 5-8 
correcting input to, 5-3 
dollar sign in, 5-6 
error conditions in task, 5-8 
examining locations with, 5-4, 

5-5 
forming address in, 5-3 
G command in, 5-7 
including in a task, 5-1 
LINE FEED key in, 5-4 
map use in, 5-2 

Index-4 

ODT (On-line Debugging Tool) (Cont.) 
CDT.OBJ file, 5-1 
overview of, 1-5 
P command in, 5-7 
R command in, 5-3 
RETURN key in, 5-4 
setting up a task with, 5-2 

to 5-5 
slash character in, 5-4 
source listing use in, 5-3, 

5-4 
SST within, 5-8 
terminating task execution, 

5-8 
underline character in, 5-2 
X command in, 5-8 

.OLB file type, 6-4 
On-line Debugging Tool. See ODT • 
OTS (Object Time System) library, 

7-1 

p 
.PAGE directive, 2-6 
Peripheral Interchange Program. 

See PIP. 
PIP (Peripheral Interchange 

Program), 
asterisk in, 3-7 
cleaning up a UFO, 3-7 
creating a concatenated object 

module, 4-2, 4-3 
examining a listing at terminal, 

3-5 I 4-5 
/ME in, 4-2, 4-3 
overview of, 1-6 
/PU in, 3-7 
/SP in, 3-6, 3-7 
spooling a listing with, 3-6, 3-7 

PLOCATE command (EDI), 2-14 
.PMD file type, 5-9 
PMD (Postmortem Dump), 

enabling with TKB, 5-8, 5-9 
overview of, 1-5 

Postmortem Dump. See PMD. 
Preface, source file (MACRO~ll), 2-1 
PRINT command, 3-6, 3-7 
Printers, 1-11 
Program, user, 

development, overview of, 1-11 
exiting, 2-6, 2-7 
including object library 

routines in, 6-5, 6-6 
library, 6-1 
macro calls from a, 6-3 
macro symbol definition 

placement, 1-3 
module name definition, 2-3 
module version, 2-5 



Program, user (Cont.) 
sample E'ORTRAN IV, 7-3 
section definition, 2-8 

INDEX 

system routines in, 1-8 to 1-10 
Prog·ramming techniques, advanced, 

1-4 
Prog·ram sectioning, 1-3, 2-8 
.PSECT directive, 2-8 
Purging files, 3-7 

Q 
Queuing, 1--7 

R 
Record Management Services, PDP-11. 

See RMS·-11 
Relocation registers in ODT, 5-2 
Relocatable object module. 

See object module. 
RENE!W command (EDI), 2-14 
RETURN key, 

as EDI command, 2-12 
in ODT, 5-4 
terminating EDI input with, 2-9 

RMS--11 (PDP-11 Record Management 
Services) , 

macro library, 1-8 
RMSMAC.MLB (RMS-11 macro library), 

1-8 
RSXMAC.SML (system macro library), 

1-8 
RUN command, 4-5, 7-5 to 7-7 

s 
• SB~rTL directive, 2-6 
Sectioning, program, 1-3 
Skeleton, source file (MACR0-11), 

2-1 to 2-8 
Slash character, 

in ODT, 5-4 
$SNAP (Snapshot Dump) 

overview of, 1-6 
usage as debugging aid, 5-9 

Snapshot Dump. See $SNAP. 
Sou:rce file (FORTRAN IV) 

,adding debugging statements 
to a, 7-6 

creating a, 7-2 
Source file (MACR0-11) , 

assembling a, 3-1, 3-2 
creating from a skeleton, 2-11 
editing, 2-11 to 2-17 
format, 

description of, 2-3 to 2-8 
sample skeleton, 2-2 

inserting lines in, 2-17 

Index-5 

Source file (MACR0-11) (Cont.) 
macro library call in, 6-3 
object library call in, 6-5 
preface, 2-1 
requesting a listing of, 3-4 
typical errors in, 3-2, 3-3 

Spooling, 1-7 
a listing file, 3-6, 3-7 

SST. See synchronous system trap. 
Standard, coding, 2-1 
Statement, 

format, 
FORTRAN IV source, 7-2 
MACR0-11 source, 2-3 

general description of 
MACR0-11, 1-2, 1-3 

Symbol, 
cross-reference of, 3-6 
definition of local, 2-7 
definition of macro, 1-3 
MACR0-11 evaluation of, 1-2, 

3-1 
resolution of global, 1-4, 4-2 
resolution of macro, 2-6, 6-3 

Synchronous system trap, 
effect in ODT, 5-8 
relation to Postmortem Dump, 

1-5 
role in task termination, 4-5 

SYSLIB.OLB system library, 1-9, 
1-10 

System directives, 1-7 to 1-9 
System library, 

contributions (in map), 4-5 
macro (RSXMAC.SML), 1-8 

contents of, 1-8 
default search of, 1-3, 1-8, 

2-6, 2-7 
object (SYSLIB.OLB), 1-9, 1-10 

contents of, 1-9 
default search of, 1-10, 

4-1, 4-2 
System tasks, 1-1 

T 
Task, 

abort of a, 4-6 
building a, 4-1 to 4-3, 7-5 
changing data in a memory-

resident, 5-7 
correcting an error in a, 4-5, 

4-6, 7-5 to 7-7 
debugging a, 4-5, 4-6, 7-5 to 

7-7 
default conditions in a, 4-3, 

4-4 
examining registers and stack 

of a, 5-8 
including ODT in a, 5-1 



INDEX 

Task (Cont. ) 
macro calls in a, 6-3 
map, generating a, 4-4, 4-5 
name, 5-2 
object library routines in a, 

6-5, 6-6 
running a, 4-5, 7-5 
setting breakpoints within a, 

5-5, 5-6 
synchronous system trap in a, 

4-5, 4-6 
system library contributions to 

a, 4-5 
termination of a, 4-6 
transfer (starting) address in 

a, 
default, 4-2, 4-6 
defining the, 2-7 

Task Builder. See TKB. 
Task image, 

creating a, 4-1 
Tasks, system, 1-1 
Task Termination Notification. 

See TKTN. 
Terminal, 

control of output to, 3-5 
examining an assembly listing 

at, 3-5 
format of FORTRAN IV statements, 

7-2 
types of, 1-10 

Text buffer, 1-1 
Text editor, 1-1 

See also EDI. 
• TITLE directive, 2-3 
TKB (Task Builder) 

concatenated object module as 
input, 4-2, 4-3 

/CR in, 4-4 
creating a task image, 4-1 to 

4-3 
/DA in, 5-1 
default conditions, 4-3, 4-4 
default search of system library, 

1-10, 4-1, 4-2 

TKB (Task Builder) (Cont.) 
default transfer address, 4-2 
dual usage of object library 

in, 6-6, 6-7 
enabling Postmortem Dumps, 5-8, 

5-9 
errors during processing, 4-1, 

4-2 
fast version of, 4-3 
generating a, 

cross-reference listing, 4-4 
full map, 4-5 
standard map, 4-4 

including ODT in a task, 5-1 
input to, 1-4 
/LB in, 6-6, 7-5 
/LB:name in, 6-5 
object library designation in, 

6-5 
output from, 1-4 
/PM in, 5-8, 5-9 
/-SH in, 4-5 
typical errors in, 4-5, 4-6 
undefined symbols in, 4-2 
/-WI in, 4-4 

TKTN (Task Termination and 
Notification), 

used with PMD, 1-6 
abort message from, 4-6 

Transfer (starting) address, 
defining of a, 2-7 
system treatment of default, 

4-6 
Trap. See synchronous system trap • 
.TSK file type, 4-1 
TYPE command (EDI), 2-12 

u 
Underline character, 

in ODT, 5-2 
Utility programs, general, 1-6 

Index-6 



~ 

J 
,1 

. 
Cl) 
c 

'1) 

.:c .... 
O> c 
0 
c 
.... 
::> 
u 
Cl) 
'1) 

c 
Cl) 

0:: 

READER'S COMMENTS 

RSX-llM/M-PLUS Guide 
to Program Development 

AA-H264A-TC 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. If you require a written reply and are 
eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR 
form. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the 
pasre numbE~r . 

Ple:ase indicate the type of reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Other (please specify>~~~~~~~~~~~~~~~~~~~ 

Street 

Ci tY---------------State------- Zip Code ______ _ 
or 

Country 



- - Do Not Tear - Fold Here and Tape - - - - - - - - - -

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

RT/C SOFTWARE PUBLICATIONS TW/A1 

DIGITAL EQUIPMENT CORPORATION 

1925 ANDOVER STREET 

TEWKSBURY, MASSACHUSETTS 01876 

- - - -1 

I 
No Postage 
Necessary 

if Mailed in the 
United States 

-- - - - Do Not Tear - Fold Here - - - - - - - - - - - - - - - - - - - - - -

..... 
::s u 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB

