
RSX-110

Task Builder
Reference Manual

Order No. DEC-11-0XD LA-D-D

RSX-110

Task Builder
Reference Manual

Order No. DEC-11-0XDLA-D-D

RSX-llD Version 6B (Version 6.1)

dig·ital equipment corporation • maynard. massachusetts

First Printing, June 1975
Revised, March 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (V 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

2/?8-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-11

PREFACE

CHAPTER

CHAPTER

CHAPTER

0.1
0.2
0.3

1

2

2.1
2.1.1
2.1. 2
2 .1. 3
2 .1. 4
2~L5
2.1. 6
2 .1. 7

2.2
2.2.l
2.2.2
2.2.3

2.3
2.3.l

3

3.1
3 .1.1
3.1.1.1
3.1.1.2
3.1.1.3
3.1.1.4
3.1.1.5
3.1.1.6
3.1.1.7
3.1.1.8
3.1.1.9
3 .1.1.10
3.1.1.11
3.1.1.12
3 .1.1.13
3 .1.1.14
3 .1.1.15
3 .1.1.16
3.1.1.17
3 .1.1.18
3.1.1.19
3.1.1.20
3.1.1.21
3 .1. 2
3 .1. 3

RSX-llD TASK BUILDER

MANUAL OBJECTIVES AND READER ASSUMPTIONS
STRUCTURE OF THE DOCUMENT
ASSOCIATED DOCUMENTS

INTRODUCTION

COMMANDS

GENERAL COMMAND DISCUSSION
Task Command Line
Multiple Line Input
Options
Multiple Task Specification
Indirect Command File Facility
Comments
File Specification

EXAMPLE: VERSION 1 OF CALC
Entering the Source Language
Compiling the FORTRAN Programs
Building the Task

SUMMARY OF SYNTAX RULES
Syntax Rules

SWITCHES AND OPTIONS

SWITCHES
Task Builder Switches
AB (Abortable)
CC (Concatenated Object Modules)
CP (Checkpointable)
CR (Cross Reference)
DA (Debugging Aid)
DS (Disableable)
FP (Floating Point)
FX (Fixable)
HD (Header)
LB (Library File)
MP (Overlay Description)
MU (Multi-user
PI (Position Independent)
PR (Privileged)
SH (Short Memory Allocation File)
SP (Spool the Memory Allocation File)
SQ (Seauen ti al)
SS (Seiective Search)
TA (Task Accounting)
TR (Traceable)
XT:n (Exit on Diagnostic)
Examples
Override Conditions

iii

ix
ix
x

1-1

2-1

2-1
2-2
2-3
2-3
2-4
2-5
2-7
2-7

2-8
2-9
2-10
2-10

2-10
2-11

3-1

3-1
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-9
3-9
3-10

CHAPTER

3.2
3.2.1
3.2.1.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.4
3.2.3.5
3.2.3.6
3.2.3.7
3.2.3.8
3.2.3.9
3.2.3.10
3.2.4
3.2.4.1
3.2.4.2
3.2.4.3
3.2.5
3.2.5.l
3.2.5.2
3.2.5.3
3.2.6
3.2.6.1
3.2.6.2
3.2.6.3
3.2.6.4
3.2.7
3.2.7.1
3.2.7.2

3.3
3.3.1
3.3.2

4

4.1
4 .1.1
4 .1. 2
4 .1. 3
4 .1. 4
4 .1. 5
4 .1. 6
4 .1. 7
4 .1. 8
4.1.8.1
4 .1. 9

4.2
4.2.1

CONTENTS (Cont.)

OPTIONS
Control Option
ABORT (Abort the Current Task Build)
Identification Options
TASK (Task Name)
UIC (User Identification Code)
PRI (Priority)
PAR (Partition)
Allocation Options
ACTFIL (Number of Active Files)
MAXBUF (Maximum Record Buffer Size)
FMTBUF (Format Buffer Size)
EXTSCT (Program Section Extension)
EXTTSK (Extend Task Space)
POOL (Pool Limit)
STACK (Stack Size)
BASE (Base Address)
TOP (Top Address)
Examples of Allocation Options
Storage Sharing Options
COMMON (Shareable Conunon Block)
LIBR (Shareable Library)
Example of Storage Sharing Options
Device Specifying Options
UNITS (Logical Unit Usage)
ASG (Device Assignment)
Example of Device Specifying Options
Storage Altering Options
GBLDEF (Global Symbol Definition)
ABSPAT (Absolute Patch)
GBLPAT (Global Relative Patch)
Example of Storage Altering Options
Synchronous Trap Options
ODTV (ODT SST Vector)
TSKV (Task SST Vector)

EXAMPLE: CALC;2
Correcting the Errors in Program Logic
Building the Task

MEMORY ALLOCATION

TASK MEMORY
Task Header
Directive Status Word
Impure Area Pointers
Stack
R/W Task Code (and Data)
R/O Task Code (and Data)
P-Sections
Allocation of P-sections
Sequential Allocation of P-sections
The Resolution of Global Symbols

SYSTEM MEMORY
Privileged Tasks

iv

3-10
3-13
3-13
3-14
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-17
3-17
3-17
3-18
3-18
3-18
3-19
3-19
3-19
3-20
3-20
3-20
3-21
3-21
3-21
3-21
3-22
3-22
3-23
3-23
3-23
3-24

3-24
3-24
3-25

4-1

4-1
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-5
4-6
4-7

4-8
4-8

CHAPTER

CHAPTER

CHAPTER

4.3

4.4
4.4.1
4.4.2

4.5
4.5.l
4.5.2
4.5.3

5

5.1
5 .1.1
5 .1. 2
5.1.2.1
5.1.2.2

5.1.2.3

5 .1. 3
5.1.3.1
5.1.3.2
5.1.3.3
5.1.3.4
5 .1. 4
5.1.4.1
5.1.4.2
5 .1. 5

5.2
5.2.1
5.2.2
5.2.3

5.3

5.4

6

6.1
6 .1.1
6 .1. 2
6 .1. 3

6.2
6.2.1
6.2.2

6.3

6.4

7

CONTENTS (Cont.)

TASK IMAGE FILE

MEMORY ALLOCATION FILE
Structure of the Memory Allocation File
Structure of the Cross Reference Listing

EXAMPLES - TWO VERSIONS OF CALC
Segment Description
Program Section Allocation Synopsis
File Contents Description

OVERLAY CAPABILITY

OVERLAY DESCRIPTION
Overlay Structure
Overlay Tree
Loading Mechanism
Resolution of Global Symbols
in a Multi-segment Task
Resolution of P-sections
in a Multi-segment Task
Overlay Description Language {ODL)
.ROOT and .END Directives
.FCTR Directive
.NAME Directive
.PSECT Directive
Multiple Tree Structures
Defining a Multiple Tree Structure
Multiple Tree Example
Overlay Core Image

EXAMPLE: CALC;3
Def ihing the ODL File
Building the Task
Memory Allocation File for CALC;3

EXAMPLE: CALC;4

SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

LOADING MECHANISMS

AUTO LOAD
Autoload Indicator
Path-loading
Autoload Vectors

MANUAL LOAD
Manual Load Calling Sequence
FORTRAN Subroutine for Manual Load Request

ERROR HANDLING

EXAMPLE: CALC;5

SHAREABLE GLOBAL AREAS

v

4-9

4-9
4-12
4-14

4-15
4-15
4-16
4-16

5-1

5-1
5-2
5-4
5-4

5-4

5-6
5-7
5-7
5-8
5-9
5-9
5-10
5-11
5-11
5-13

5-15
5-15
5-16
5-16

5-19

5-22

6-1

6-2
6-2
6-4
6-4

6-6
6-6
6-7

6-9

6-10

7-1

7.1

7.2

7.3

7.4

7.4.1
7.4.2

7.4.3

APPENDIX A

APPENDIX B

B.l
B.1.1
B. l. 2
B .1. 3
B. l. 4
B. l. 5
B. l. 6
B. l. 7

B.2

B.3

E.4
B.4.1
B.4.2
B.4.3
B.4.4
B.4.5
B.4.6
B.4.7
B.4.8
B.4.9
B.4.10
B.4.11
B.4.12
B.4.13
B.4.14

B.5

B.6

CONTENTS (Cont.)

USING AN EXISTING SHAREABLE GLOBAL AREA

CREATING A SHAREABLE GLOBAL AREA

POSITION INDEPENDENT AND ABSOLUTE
SHAREABLE GLOBAL AREAS

EXAMPLE: CALC;6 BUILDING AND USING A SHAREABLE
GLOBAL AREA
Building the Shareable Global Area
Modifying the Task to Use the Shareable Global
Area
The Memory Allocation Files

ERROR MESSAGES

TASK BUILDER DATA FORMATS

GLOBAL SYMBOL DIRECTORY (GSD)
Module Name
Control Section Name
Internal Symbol Name
Transfer Address
Global Symbol Name
Program Section Name
Program Version Identification

END-OF-GLOBAL-SYMBOL-DIRECTORY

TEXT INFORMATION

RELOCATION DIRECTORY
Internal Relocation
Global Relocation
Internal Displaced Relocation
Global Displaced Relocation
Global Additive Relocation
Global Additive Displaced Relocation
Location Counter Definition
Location Counter Modification
Program Limits
P-section Relocation
P-section Displaced Relocation
P-section Additive Relocation
P-section Additive Displaced Relocation
Complex Relocation

INTERNAL SYMBOL DIRECTORY

END OF MODULE

vi

7-3

7-3

7-4

7-5
7-5

7-6
7-7

A-1

B-1

B-2
B-4
B-4
B-5
B-5
B-6
B-6
B-8

B-9

B-9

B-10
B-13
B-13
B-14
B-14
B-15
B-15
B-16
B-16
B-17
B-17
B-18
B-18
B-19
B-20

B-22

B-22

APPENDIX C

C.l
c .1.1

C.2
C.2.1
C.2.2
C.2.3

C.3

C.4

c. 5

C.6
C.6.1
C.6.2
C.6.3
C.6.4
C.6.5
C.6.6
C.6.7

C.7

C.8

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

Table
Table
Table

H.l

H.2

H.3

H.4

3-1
3-2
4-1

CONTENTS (Cont.)

TASK IMAGE FILE STRUCTURE

LABEL BLOCK GROUP
Label Block Details

HEADER
Logical Unit Table Entry
Floating Point Save Area
Task Accounting Work Area

LOW MEMORY POINTERS

TASK R/W ROOT SEGMENT

TASK R-0 ROOT SEGMENT

SEGMENT TABLES
Status
Relative Disk Address
Load Address
Segment Length
Link- Up
Link- Down
Link- Next

AUTOLOAD VECTORS

OVERLAY SEGMENTS

RESERVED SYMBOLS

CROSS REFERENCE TASK

INCLUDING A DEBUGGING AID

RSX-llD TASK BUILDER GLOSSARY

VIRTUAL SYMBOL TABLE

ADJUSTMENT AND PLACEMENT OF VIRTUAL MEMORY

CONTENT OF VIRTUAL MEMORY

REDUCTION OF VIRTUAL MEMORY REQUIREMENTS

ERROR MESSAGES

TABLES

Task Builder Switches
Task Builder Options
P-Section Attributes

vii

C-1

C-2
C-4

C-6
C-9
C-9
C-9

C-10

C-10

C-10

C-11
C-11
C-11
C-12
C-12
C-12
C-12
C-12

C-13

C-13

D-1

E-1

F-1

G-1

H-1

H-1

H-1

H-3

H-4

3-2
3-12
4-4

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

4-1
4-2
4-3
5-1
5-2
6-1
7-1

7-2
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-11
B-12
B-13
B-14
B-15
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23
B-24
B-25
B-26
B-27
B-28
C-1
C-2
C-3
C-4
C-5
C-6

CONTENTS (Cont.)

FIGURES

Memory Allocation File for IMGl.TSK
Memory Allocation File for CALC;l
Memory Allocation File for CALC;2
Memory Allocation File for CALC;3
Memory Allocation File for CALC;4
Root Segment of Memory Allocation File for CALC;5
Memory Allocation File for the Shareable
Global Area DTA
Memory Allocation File for CALC;6
General Object Module Format
GSD Record and Entry Format
Module Name Entry Format
Control Section Name Entry Format
Internal Symbol Name Entry Format
Transfer Address Entry Format
Global Symbol Name Entry Format
P-Section Name Entry Format
Program Version Identification Entry Format
End of GSD Record Format
Text Information Record Format
Relocation Directory Record Format
Internal Relocation Command Format
Global Relocation
Internal Displaced Relocation
Global Displaced Relocation
Global Additive Relocation
Global Additive Displaced Relocation
Location Counter Definition
Location Counter Modification
Program Limits
P-Section Relocation
P-Section Displaced Relocation
P-Section Additive Relocation
P-Section Additive Displaced Relocation
Complex Relocation
Internal Symbol Directory Record Format
End-of-Module Record Format
Task Image On Disk
Label Block Group
Task Header Fixed Part
Logical Unit Table Entry
Segment Descriptor
Autoload Vector Entry

viii

4-10
4-17
4-18
5-17
5-20
6-10

7-7
7-8
B-2
B-3
B-4
B-4
B-5
B-5
B-6
B-8
B-9
B-9
B-10
B-12
B-13
B-13
B-14
B-14
B-15
B-15
B-16
B-16
B-17
B-17
B-18
B-19
B-20
B-22
B-22
B-22
C-1
C-2
C-7
C-9
C-10
C-13

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is a tutorial, intended to introduce the user to the basic
concepts and capabilities of the RSX-110 Task Builder.

Examples are used to introduce and describe features of the Task
Builder. These examples proceed from the simplest case to the most
complex. The reader may wish to try out some of the sequences to test
his understanding of the document.

The user should be familiar with the basic concepts of the RSX-110
system described in the RSX-110 Executive Reference Manual and with
basic operating procedures described in the RSX-110 User's Guide.

0.2 STRUCTURE OF THE DOCUMENT

The manual has seven chapters. ·The first four chapters describe the
basic capabilities of the Task Builder. The last three chapters
describe the advanced capabilities. The Appendices list error
messages and give detailed descriptions of the structures used by the
Task Builder.

Chapter 1 outlines the capabilities of the Task Builder.

Chapter 2 describes the command sequences used to interact with the
Task Builder.

Chapter 3 lists the switches and options.

Chapter 4 describes memory allocation for the task and for the system
and gives examples of the memory allocation file.

Chapter 5 describes the overlay capability and the language used to
define an overlay structure.

Chapter 6 gives the two methods that can be used for loading overlay
segments.

Chapter 7 introduces shareable global areas which can be used for
communication between tasks or to reduce the system's memory
requirements.

A Glossary of terms is given in Appendix G.

ix

0.3 ASSOCIATED DOCUMENTS

Associated RSX-llD documents are described and their readerships are
defined in the RSX-llD Documentation Directory, Order Number
DEC-11-0XUGA-C-D.

x

CHAPTER 1

INTRODUCTION

This manual introduces the user to the Task Builder and defines the
role of the Task Builder in the RSX-llD System.

The fundamental executable unit in the RSX-llD System is the task. A
routine becomes an executable task image, as follows:

1. The routine is written in a supported source language.

2. The routine is entered as a text file, through an editor.

3. The routine is translated to an object module, using the
appropriate language translator.

4. The object module is converted to a task image using the Task
Builder.

5. The task is then installed.

6. Finally, the task is run.

If errors are found in the routine as a result of executing the task,
the user edits the text file created in step 2 to correct the errors,
and then repeats steps 3 through 6.

If a single routine is to be executed, the user provides the object
module filename to be used as Task Builder input and a task image
filename to be assigned to the Task Builder output.

In typical applications, a collection of routines is run rather than a
single program. In this case the user names each of the object module
files. Then the Task Builder links the object modules, resolves any
references to any shareable global areas and produces a single task
image which is ready for installation and execution.

The Task Builder makes a set of assumptions (defaults) about the task
image based on typical usage and storage requirements. These
assumptions can be changed by including switches and options in the
task-building terminal sequence, thus directing the Task Builder to
build a task which more closely represents the input/output and
storage requirements of the task.

1-1

INTRODUCTION

The Task Builder also produces, upon request, a memory allocation file
which gives information about how the task is mapped into memory. The
user can examine the memory allocation file to determine what support
routines and storage reservations are included in the task image. A
cross reference file of global symbols used can be appended to the
memory allocation file.

Further, and also upon request, the Task Builder produces a symbol
table file suitable for input to the Task Builder during the build of
another task. For example, such a procedure is used in binding tasks
to shareable global areas.

If a reduction in the amount of memory required by the task is
necessary, the overlay capability can be used to divide the task into
overlay segments. Overlaying a task allows it to operate in a smaller
memory area and thus makes more space available to other tasks in the
system.

If the task is configured
multi-segment task), overlay
autoload or manual method.

as an overlay
segments are

structure (i.e., a
loaded using either the

The autoload method makes the loading of overlays transparent to the
user and special calls are not required to load the overlay segments
of the task. Loading of the overlay segments is accomplished
automatically by the Overlay Runtime System according to the structure
defined by the user at the time the task was built.

The manual load method requires that specific calls to the Overlay
Runtime System be included in the coding of the task, and gives the
user full control over the loading process.

If the task communicates with another task, or makes use of resident
subroutines to save memory, the Task Builder allows the user to link
to existing shareable global areas and to create new shareable global
areas for future reference.

The user can become familiar with the capabilities of the Task Builder
by degrees. Chapter 2 of this manual gives the basic information
about Task Builder commands. This information is sufficient to handle
many applications. The remaining chapters deal with special features
and capabilities for handling advanced appli~ations and tailoring the
task image to suit the application. The appendices give detailed
information about the structure of the input and output files
processed by the Task Builder.

This manual describes the handling of an example application, CALC.
In the first treatment of CALC, the user builds a task using all the
default assumptions. Successive treatments illustrate the main points
of each chapter in a realistic manner. Switches and options are added
as they are required, an overlay structure is defined when the task
increases in size, the loading of overlays is optimized, and finally a
shareable global area is added.

The memory allocation (map) files for the various stages of task
development are included. The effect of a change can be observed by
examining the map for the previous example and the map for the example
in which the change is made.

1-2

CHAPTER 2

COMMANDS

2.1 GENERAL COMMAND DISCUSSION

This chapter describes command sequences that can be used to build
tasks. Each command sequence is presented, by example, from the
simplest case to the most complex. All commands are then summarized
by a set of syntactic rules.

The first of a set of examples, designed to illustrate some of the
important features of the command language, concludes this chapter.
This example illustrates a simple task building sequence for a typical
application:

The convention of underlining system-generated text to distinguish it
from user type-in is used in this manual. For example:

TKB>IMGl=INl

The underline in the dialogue indicates that the system printed 'TKB>'
and the user typed 'IMGl=INl'.

Consider again the creation and execution of a task. Suppose a user
writes a FORTRAN program which is entered through a text editor as
file PROG. Then, the following commands are typed in response to the
Monitor Console Routine's request for input:

MCR>FOR CALC=PROG
MCR>TKB IMG=CALC
MCR'>INS IMG
MCR>RUN IMG

The first command (FOR} causes the FORTRAN compiler to translate the
source language of the file PROG.FTN into a relocatable object module
in the file CALC.OBJ. The second command (TKB) causes the Task
Builder to process the file CALC.OBJ to produce the task image file
IMG.TSK. The third command (INS} causes Install to add the task to
the directory of executable tasks. Finally, the fourth command (RUN)
causes the task to execute.

2-1

COMMANDS

The example just given includes the command

MCR>TKB IMG=CALC

This command illustrates the simplest use of
gives the name of a single file as output
file as input. This chapter describes, first
syntactic definition, the complete facility
input and output files to the Task Builder.

the Task Builder. It
and the name of a single
by example and then by
for the specification of

2.1.1 Task Command Line

The task-command-line contains the output file specifications followed
by an equal sign and the input file specifications. There can be up
to three output files and any number of input files.

The output files must be given in a specific order: the first file
named is the task image file, the second is the memory allocation
file, and the third is the symbol definition file. The memory
allocation file contains information about the size and location of
components within the task. The symbol definition file contains the
global symbol definitions in the task and their virtual or relocatable
addresses in a format suitable for re-processing by the Task Builder.
The Task Builder combines the input files to create a single
executable task image.

Any of the output file specifications can be omitted. When all three
output files are given, the task-command line has the form:

task-image, mem-allocation, symbol-definition=input,

Consider the following commands and the ways in which the output
filenames are interpreted.

Command

MCR>TKB IMGl,MPl,SFl=INl

MCR>TKB IMGl=INl

MCR>TKB ,MPl=INl

MCR>TKB ,,SFl=INl

MCR>TKB IMGl,,SFl=INl

MCR>TKB =INl

Output Files

The task image file is IMGl.TSK, the
memory allocation file is MPl.MAP, and
the symbol definition file is SFl.STB.

The task image file is IMGl.TSK.

The memory allocation file is MPl.MAP.

The symbol definition file is SFl.STB.

The task image file is IMGl.TSK and the
symbol definition file is SFl.STB.

This is a diagnostic run with no output
files. However, any errors encountered
will produce relevant error message.

2-2

COMMANDS

2.1.2 Multiple Line Input

Although there can be a maximum of three output files, there can be
any number of input files. When several input files are used, a more
flexible format is sometimes necessary, one that consists of several
lines. This multi-line format is also necessary for the inclusion of
options, as discussed in the next section.

If the user types 'TKB' alone, the Monitor Console Routine (MCR)
invokes the Task Builder. The Task Builder then prompts for input
until it receives a line consisting of only the terminating sequence
"/ /".

The sequence

MCR>TKB
TKB>IMGl,MPl=INl
TKB>IN2, IN3
TKB>//

produces the same result as the single line command:

MCR>TKB IMGl,MPl=INl,IN2,IN3

This sequence produces the task image file IMGl.TSK and the memory
allocation file MPl.MAP from the input files !NI.OBJ, IN2.0BJ, and
IN3.0BJ.

The output file specifications and the separator '=' must appear on
the first TKB command line. Input file specifications can begin or
continue on subsequent lines.

The terminating symbol '//' directs the Task Builder to stop accepting
input, build the task, and return to the Monitor Console Routine
level.

2 .1. 3 Options

Options are used to specify the characteristics of the task being
built. If the user types a single slash '/', the Task Builder
requests option information by displaying 'ENTER OPTIONS:' and
prompting for input.

MCR>TKB
TKB>IMGl,MPl=INl
TKB>IN2, IN3
TKB>/
ENTER OPTIONS:
TKB>PRI=l00
TKB>COMMON=JRNAL:RO
TKB>//
MCR>

In this sequence the user entered the options PRI=l00 and
COMMON=JRNAL:RO and then typed a double slash to end option input.

2-3

COMMANDS

The syntax and interpretation of each RSX-llD Task Builder option are
given in Chapter 3.

The general form of an option is a keyword followed by an equal sign
' ' and an argument list. The arguments in the list are separated
from one another by colons. In the example given, the first option
consists of the keyword 'FRI' and a single argument '100' indicating
that the task is to be assigned the priority 100. The second option
consists of the keyword 'COMMON' and an argument list 'JRNAL:RO',
indicating that the task accesses a common region named JRNAL and the
access is read-only.

More than one option can be given on a line. The symbol exclamation
point '!' is used to separate options on a single line. For example:

TKB>PRI=l00 ! COMMON=JRNAL:RO

is equivalent to the two lines

TKB>PRI=l00
TKB>COMMON=JRNAL:RO

Some options have argument lists that can be repeated. The symbol
comma ' ' is used to separate the argument lists. For example:

TKB>COMMON=JRNAL:RO,RFIL:RW

In this command, the first argument list indicates that the task has
requested read-only access to the shared region JRNAL. The second
argument list indicates that the task has requested read-write access
to the shared region RFIL.

The following three sequences are equivalent:

TKB>COMMON=JRNAL:RO,RFIL:RW

TKB>COMMON=JRNAL:RO

TKB>COMMON=JRNAL:RO
TKB>COMMON=RFIL:RW

COMMON=RFIL:RW

2.1.4 Multiple Task Specification

If more than one task is to be built, the terminating symbol, '/'
(slash), can be used to direct the Task Builder to stop accepting
input, build the task, and request information for the next task
build.

Consider the Sequence:

MCR>TKB
TKB>IMGl=INl
TKB>IN2,IN3
TKB>/
ENTER OPTIONS:

2-4

COMMANDS

TKB>PRI=l00
TKB>COMMON=JRNAL:R0
TKB>I
TKB>IMG2=SUB1
TKB>ll
MCR>

The Task Builder accepts the output and input file specifications and
the option input, then stops accepting input when it encounters the
'I' during option input. The Task Builder builds IMGl.TSK and returns
to accept more input.

2.1.5 Indirect Command File Facility

The sequence of commands to the Task Builder can be entered directly
or entered as a text file and later invoked through the indirect
command file facility.

To use the indirect command file facility, the user first prepares a
file that contains the user command input for the desired interaction
with the Task Builder. Then, the contents of the indirect command
file are invoked by typing '@' followed by the file specification.

Suppose the text file AFIL is prepared, as follows:

IMGl,MPl=INl
IN2, IN3
I
PRI=l00
COMMON=JRNAL:RO
II

Later, the user can type:

MCR>TKB @AFIL

When the Task Builder encounters the symbol '@', it directs its search
for commands to the file specified following the '@' symbol. When the
Task Builder is accepting input from an indirect file, it does not
display prompting messages on the terminal. The 1-line command which
enables Task Builder to accept commands from the indirect file AFIL is
equivalent to the keyboard sequence:

MCR>TKB
TKB>IMGl,MPl=INl
TKB>IN2, IN3
TKB>I
E'NTER OPTIONS:
TKB>PRI=l00
TKB>COMMON=JRNAL:PRO
TKB>ll

When the Task Builder encounters a double-slash in the indirect file,
it terminates indirect file processing, builds the task, and exits to
the monitor upon completion.

2-5

COMMANDS

However, if the Task Builder encounters an end-of-file in the indirect
file before a double slash, it returns its search for commands to the
terminal and prompts for input.

The Task Builder permits three levels of indirection in file
references. The indirect file referenced in a terminal sequence can
contain a reference to another indirect file, which in turn references
the third indirect file.

Suppose the file BFIL.CMD contains all the standard options that are
used by a particular group at an installation. That is, every
programmer in the group uses the options in BFIL.CMD. To include
these standard options in a task building file, the user modifies AFIL
to include an indirect file reference to BFIL.CMD as a separate line
in the option sequence.

Then the contents of AFIL.CMD are:

IMGl,MPl=INl
IN2,IN3
I
PRI=l00
COMMON=JRNAL:RO
@BFIL
II

Suppose the contents of BFIL.CMD are:

STACK=l00
UNITS=S ! ASG=DT1:5

The terminal equivalent of the command

then is:

MCR>TKB @AFIL

MCR>TKB
TKB>IMGl,MPl=INl
TKB>IN2, IN3
TKB>I
E°NTER OPTIONS:
TKB>PRI=l00
TKB>COMMON=JRNAL:RO
TKB>STACK=l00
TKB>UNITS=S ASG=DT1:5
TKB>ll
MCR>

The indirect file reference must appear as a separate line. For
example, if AFIL.CMD were modified by adding the '@BFIL' reference on
the same line as the 'COMMON=JRNAL:RO' option, the substitution would
not take place and an error would be reported.

2-6

COMMANDS

2.1.6 Comments

Comment lines can be included at any point in the sequence. A comment
line begins with a semicolon , and is terminated by a carriage
return. All text on such a line is a comment. Comments can be
included in option lines. In this case, the text between the
semicolon and the carriage return is a comment.

Consider the annotation of the file just described; the user adds
comments to provide more information about the purpose and the status
of the task. Specifically, some identifying lines are added along
with notes on the function of the input files and shareable global
area. Then, a comment on the current status of the task is added at
the end of the file. The content of the file is as follows:

TASK 33A

DATA FROM GROUP E-46 WEEKLY
;
IMGl,MPl=

I
PRI=l00

PROCESSING ROUTINES

INl

STATISTICAL TABLES

IN2

ADDITIONAL CONTROLS

IN3

COMMON=JRNAL:R0 ; RATE TABLES

; TASK STILL IN DEVELOPMENT
;
II

2.1.7 File Specification

Thus far the interaction with the Task Builder has been illustrated in
terms of filenames. The Task Builder adheres to the standard RSX-110
conventions for file specifier. For any file, the user can specify
the device, the user file directory (ufd), the filename, the type, the
version number, and any number of switches.

Thus, the file specifier has the form:

device: [ufd]filename.type;version/sw •..

2-7

COMMANDS

RETURN
END

~CL
EDI>RPRT.FTN
[Ei)I -- CREATING NEW FILE]
INPUT

SUBROUTINE RPRT
C INTERIM REPORT PROGRAM
C COMMUNICATION REGION

COMMON /DTA/ A(200) ,I

*EX

RETURN
END

[EDI -- EXIT]

2.2.2 Compiling the FORTRAN Programs

The FORTRAN programs are compiled by the following sequence:

MCR>FOR
FOR>RDIN,LRDIN=RDIN
FOR>PROCl,LPROCl=PROCl
FOR>RPRT,LRPRT=RPRT

The first command invokes the FORTRAN compiler. The second command
directs the compiler to take source input from RDIN.FTN, place the
relocatable object code in RDIN.OBJ and write the listing in
LRDIN.LST. The remaining commands perform similar actions for the
source files PROCl and RPRT.

2.2.3 Building the Task

The task image for the three programs is built in the following way:

MCR>TKB CALC;l,LP:=RDIN,PROCl,RPRT

The task building command specifies the name of the task image file
(CALC.TSK;l), the device for the memory allocation file (LP) and the
names of the input files (RDIN.OBJ, PROCl.OBJ and RPRT.OBJ). The task
makes use of all the default assumptions for switches and options.

2.3 SUMMARY OF SYNTAX RULES

Syntactic rules for the interaction between the user and the Task
Builder are given here. These rules do not present any new
information; rather, they define, in a more formal and concise way,
the syntax of the commands already described in this chapter.

2-10

COMMANDS

In the syntax rules, the symbol
example,

input-spec, •.•

indicates repetition. For

means one or more input-spec items separated by commas; that is, one
of the following forms:

input-spec

input-spec, input-spec

input-spec, input-spec, input-spec

etc.

As another example,

arg:

means one or more arg items separated by colons.

As a final example,

TKB> input-line

means one or more of the indicated 'TKB input-line' items.

2.3.1 Syntax Rules

The syntax rules are as follows:

1. A task-building-command can have one of several forms. The
first form is a single line:

MCR>TKB task-command-line

The second form has additional lines for input file names:

MCR>TKB
TKB>task-command-line
TKB>input-line

TKB>terminating-symbol

The third form allows the specification of options:

MCR>TKB
TKB>task-command-line
TKB>/
ENTER OPTIONS:
TKB>option-line

TKB>terminating-symbol

2-11

COMMANDS

The fourth form has both input lines and option lines:

MCR>TKB
TKB>task-command-line
TKB>input-line

TKB>I
E'NTE:R OPTIONS:
TKB>option-line

TKB>terminating-symbol

The terminating symbol can be:

I if more than one task is to be built, or
II if control is to return to the Monitor

Console Routine or Batch Processor.

2. A task-command-line has one of the three forms:

output-file-list = input-file,

= input-file, •••

@indirect-file

where indirect-file is a file specifier as defined in Rule 7.

3. An output-file-list has one of the three forms:

task-file, mem-allocation-file, symbol-file

task-file, mem-allocation-file,

task-file

where task-file is the file specifier for the task image
file; mem-allocation-file, is the file specifier for the
memory allocation file; and symbol-file is the file
specifier for the symbol definition file. Any of the
specifiers can be omitted, so that, for example, the form:

task-file,,syrnbol-file

is permitted.

4. An input-line has either of the forms:

input-file, •••

@indirect-file

where input-file and indirect-file are file specifiers.

5. An option-line has either of the forms:

option ! ...

2-12

COMMANDS

@indirect-file

where indirect-file is a file specifier.

6. An option has the form:

keyword = argument-list,

where the argument-list is

arg: •••

The syntax for each of the options is given in Chapter 3.

7. A file specifier conforms to standard RSX-llD conventions.
It has the form

device: [ufd]filename.type;version/sw •••

where everything is optional. The components are defined as
follows:

device

uf d

is the name of the physical device on which the
volume containing the desired file is mounted.
The name consists of two ASCII characters
followed by an optional 1- or 2-digit octal unit
number; for example, 'LP' or 'oTl'.

is the user file directory number consisting of
two octal numbers each of which is in the range
of 1 through 377 (octal). These numbers must be
enclosed in brackets and separated by a comma,
and must be in the following format:

[group, member]

For example, member 220 of group 200 would use
the following entry:

[200,220]

filename is the name of the desired file. The file name
can be from 1 to 9 alphanumeric characters, for
example, CALC.

type is the 3-character type identification. Files
with the same name but a different function are
distinguished from one another by the file type;
for example, CALC.TSK and CALC.OBJ.

version is the octal version number of the file in the
range 1 through 77777 (octal). Various versions
of the same file are distinguished from each
other by this number; for example, CALC;l and
CALC;2.

sw is a switch specification. More than one switch
can be used, each separated from the previous

2-13

COMMANDS

one by a '/'. The switch is a 2-character
alphabetic name which identifies the switch
option. The permissible switch options and
their syntax are given in Chapter 3.

The device, the user file directory code, the type, the version, and
the switch specifications are all optional~

The following table of default assumptions applies to
components of a file specification:

missing

Item

device

group

member

type

version

switch

Default

SY0, the system device *

the group number currently in effect *

the member number currently in effect *

task image
memory allocation
symbol definition
object module
object module library
overlay description
indirect command

TSK
MAP
STB
OBJ
OLB
ODL
CMD

for an input file, the highest-numbered existing
version.

for an output file, one greater
highest-numbered existing version.

than the

(the default for each switch is given in Chapter
3.)

*If an explicit device or [ufd] is given, it becomes the default for
subsequent files separated by commas on the same side of the equal (=)
sign.

For example:

DTl:IMGl,MPl=INl,DF:IN2,IN3

File

IMGl.TSK
MPl.MAP
!NI.OBJ
IN2 .OBJ
IN3 .OBJ

Device

DTl
DTl
SY0
DF0
DF0

2-14

CHAPTER 3

SWITCHES AND OPTIONS

This chapter describes the ways in which additional directions can be
given to the Task Builder for the construction of a task image. Much
of the information in this chapter is quite specialized and refers to
topics that are described later in the manual. A quick reading of
this chapter illustrates to the user various methods of modifying the
task image file. Later, the chapter can be used as a reference for
practical applications with specific requirements.

3.1 SWITCHES

The syntax for a file specifier, as given in Chapter 2, is:

dev:[ufd]filename.type;version/sw-l/sw-2 .•. /sw-n

The file specifier concludes with zero or more switches, sw-1, sw-2,
••• , sw-n, and the switches are described in the following text.

When a switch is not given by the user, the Task Builder establishes a
setting for the switch, called a default assumption.

A switch is designated by a 2-character switch code. The allowable
code values are defined by the processor which interprets the code.
The code is an indication that the switch applies or does not apply.
For example, if the switch code is CP (checkpointable), then the
switch settings recognized are:

/CP
/-CP
/NOCP

The task is checkpointable.
The task is not checkpointable.
The task is not checkpointable.

The switch codes allowed by the Task Builder are given in alphabetical
order in Table 3-1. After the alphabetical listing, a more detailed
description is given for each switch.

Switches are primarily used to designate the task attributes which are
recorded in the task image file during task build and in the System
Task Directory (STD) entry on Install. They are also used to instruct

3-1

SWITCHES AND OPTIONS

Table 3-1
Task Builder Switches

Code Meaning Applies Default
to File* Assumption

AB Task can be aborted. T AB

cc Input file consists of concatenated I CC
object modules.

CP Task is checkpointable T CP

CR Cross reference to be appended to M -CR
memory allocation file

DA Task contains a debugging aid. T,I -DA

OS Task can be disabled. T DS

FP Task uses the PDP-11/45 floating T FP
point processor.

FX Task can be fixed in memory T -FX

HD Task image includes a header. T,S HD

LB Input file is a library file. I -LB

MP Input file contains an overlay I -MP
description.

MU Task is a multi-user task T -MU

PI Task code is position independent. T,S -PI

PR Task has privileged access rights. T -PR

SH Short memory allocation file is M -SH
required

SP Memory allocation file is spooled M SP

SQ Task p-sections are allocated T -SQ
sequentially.

SS Selective Symbol Search I -SS

TA Task is accountable T -TA

TR Task is to be traced. T -TR

XT:n Task Builder exits after n

*

diagnostics. T -XT

T task image file
S symbol definition file
M memory allocation file
I input file

3-2

SWITCHES AND OPTIONS

TKB to interpret the input file in a special way {e.g., /DA is used
when the task contains a debugging aid) and to control the listing of
the memory allocation file {e.g., /SH is used to request the short
memory allocation file).

3.1.1 Task Builder Switches

The switches recognized by the Task Builder are described in this
section. For each switch, the following information is given:

• the switch mnemonic,

• the file{s) to which the switch can be applied.

• a description of the effect of the switch on the Task
Builder, and

• the default assumption made if the switch is not present.

The switches are given in alphabetical order.

3.1.1.1 AB {Abortable)

file: task image

meaning: The task can be aborted when it is running

effect: The Task Builder clears the not-abortable flag in the task
label block flags word.

default: AB

3.1.1.2 CC (Concatenated Object Modules)

file: input

meaning: The file contains more than one object module.

effect: The Task Builder includes in the task image all the modules
in the file. If this switch is negated, the Task Builder
includes in the task image only the first module in the
file.

default: CC

3.1.1.3 CP {Checkpointable)

file: task image

meaning: The task is checkpointable.

effect: The ·Task Builder clears the not-checkpointable flag in the
task label block flags word.

default: CP

3-3

SWITCHES AND OPTIONS

3.1.1.4 CR (Cross Reference)

file: memory allocation

meaning: Produce a global cross reference.

default: -CR

3.1.1.5 DA (Debugging Aid)

file: task image or input.

meaning: The task includes a debugging aid.

effect: The Task Builder performs the special processing described
in Appendix F. If this switch is applied to the task image
file, the Task Builder automatically includes the system
debugging aid SY: [l,l]ODT.OBJ in the task image. When the
/DA switch is applied to an input file, the Task Builder
sets up the specified file as a user-written debugging aid.

default: -DA

3.1.1.6 DS (Disableable)

file: task image

meaning: The task can be disabled.

effect: The Task Builder clears the not - disableable flag in the
task label flags word.

default: DS

3.1.1.7 FP (Floating Point)

file: task image

meaning: The task uses the PDPll/45 Floating Point Processor.

effect: The Task Builder allocates 25 words in the task header for
the floating point save area.

default: FP

3.1.1.8 FX (Fixable)

file: task image

meaning: The task can be fixed in memory.

effect: The Task Builder clears the non-fixable flag in the task
label block flags word. Note that a fixed task will not be
checkpointed even when built as checkpointable.

default: -FX

3-4

SWITCHES AND OPTIONS

3.1.1.9 HD (Header)

file: task image or symbol definition

meaning: A header is to be included in the task image. A description
for using the negation form of this switch (-HD or NOHD) to
produce a shareable global area is contained in Chapter 7.

effect: The Task Builder constructs a header in the task image. The
contents of the header are described in Appendix C.2.

default: HD

3.1.1.10 LB (Library File)

This switch has two forms:

1. Without arguments: LB

2. With arguments: LB:mod-l:mod-2 .•• :mod-8

The interpretation of the switch depends upon the form.

file: input

meaning: 1. If the switch is applied without arguments, the input
file is assumed to be a library file of relocatable
object modules (created by the Librarian) which are to
be searched for the resolution of undefined global
references.

effect:

2. If the switch is applied with arguments, the input file
is assumed to be a library file of relocatable object
modules from which the modules named in the argument
list are to be taken for inclusion in the task image.
The module names are those defined at assembly time by
the .TITLE directive (or if no .TITLE directive, the
filename (first 6 characters) when inserted by the
Librarian).

1. If no arguments are specified, the Task Builder searches
the file to resolve undefined global references and
extracts from the library for inclusion in the task
image any modules that contain definitions for such
references.

2. If arguments are specified, the Task Builder includes
only the named modules in the task image.

NOTE

If the user wants the Task Builder to
search a library file both to resolve
global references and to select named

3-5

default: -LB

SWITCHES AND OPTIONS

modules for inclusion in the task image,
he must name the library file twice:
once, with the LB switch and no
arguments to direct the Task Builder to
search the file for undefined global
references, and a second time with the
desired modules to direct the Task
Builder to include those modules in the
task image being built.

3.1.1.11 MP (Overlay Description)

file: input

meaning: The input file describes an overlay structure for the task.

effect:

Overlay descriptions are discussed in Chapter 5.

The Task Builder receives all the input file specifications
from this file and allocates memory as directed by the
overlay description.

NOTE

When an overlay description file is
specified as the input file for a task,
it must be the only input file
specified. The Task Builder does not
accept any other input files (except
those defined in the .ODL file).

default: -MP

3.1.1.12 MU (Multi-user)

meaning: Multiple versions of the task can run simultaneously. Note
that only read-write parts of the task will be duplicated in
memory.

effect: The multi-user flag is set in the task label block flags word
and any read-only section of the root segment is aligned on
a disk block boundary.

default: -MU

3.1.1.13 PI (Position Independent)

file: task image or symbol definition

3-6

SWITCHES AND OPTIONS

meaning: The task contains only position independent code or data.

effect:

Position independent shareable global areas are described in
Chapter 7.

The Task Builder sets the Position Independent Code (PIC)
attribute flag in the task label block flag word.

default: -PI

3.1.1.14 PR (Privileged)

file: task image

meaning: The task is privileged with respect to memory access rights.

effect:

The task can access the I/O page, and the SCOM data area
(including node pool) in addition to its own task space.
Privileged tasks are described in Chapter 4.

The Task Builder sets the Privileged Attribute flag in the
task label block flag word.

default: -PR

3.1.1.15 SH (Short Memory Allocation File)

file: memory allocation

meaning: The short version of the memory allocation file is produced.

effect:

Chapter 4 describes the memory allocation file and gives a
short and a long version of a memory allocation file.

The Task Builder does not produce the 'File Contents'
section of the memory allocation file.

default: -SH

3.1.1.16 SP (Spool the Memory Allocation File)

file: memory allocation

meaning: If spooling is enabled on the system the memory allocation
file will be spooled to the output device and deleted.

effect: The memory allocation file is spooled and deleted.

default: SP

3-7

SWITCHES AND OPTIONS

3.1.1.17 SQ (Sequential)

file: task image

meaning: The task image is constructed from the specified program
sections in the order stated in the TKB command lines.
Chapter 4 describes the allocation of the task image and
gives an example which shows the allocation performed under
the default assumption and the allocation performed when the
SQ switch is specified.

effect: The Task Builder does not re-order the program sections
alphabetically. This switch must not be used for modules
that rely upon alphabetical p-section allocation. In
RSX-llD such modules include FORTRAN I/O handling and FCS
modules from SYSLIB.

default: -SQ

3.1.1.18 SS (Selective Search)

file: The input file is to be used only to define the required
symbols.

effect: The Task Builder includes only the required symbol
definitions from the specified file as distinct from all
global symbols of that file. This switch is useful when the
input file is an .STB type, because it reduces the size of
symbol table searches.

default: -SS

3.1.1.19 TA (Task Accounting)

file: task image

meaning: Accounting data for the task is accumulated if this switch
is specified and the accounting function of the operating
system is running.

effect: The Task Builder allocates an extra 160 (decimal) words in
the task header for accumulation of accounting data when the
task is running.

default: -TA

3.1.1.20 TR (Traceable)

file: task image

meaning: The task is traceable.

3-8

SWITCHES AND OPTIONS

effect: The Task Builder sets the T bit in the initial PS word of
the task. When the task is executed, a trace trap occurs on
the completion of each instruction.

default: -TR

3.1.1.21 XT:n (Exit on Diagnostic)

file: task image

meaning: More than n error diagnostics are not acceptable.

effect: The Task Builder exits after n error diagnostics have been
produced. The number of diagnostics can be specified as a
decimal or octal number, using the convention:

n. means a decimal number
#nor n means an octal number.

If n is not specified, it is assumed to be 1.

default: -XT

3.1.2 Examples

The following terminal sequences illustrate the use of switches in
file specifications and the resulting interpretation.

Terminal Sequence

MCR>TKB IMGl/CP/DA=INl/-CC

MCR>TKB
TKB>IMG2/PR,MP1/SH=
TKB>IN2,[l,l]EXEC.STB
TKB>//

MCR>TKB
TKB>IMG3=IN3
TKB>LBl/LB:SUBl:SUB2
TKB>LBl/LB,DBGl/DA
TKB>//

Interpretation

The task IMGl.TSK is checkpointable and
includes the debugging aid
SY: [l,l]ODT.OBJ. The input file IN!
contains only one object module.

The task IMG2.TSK is a privileged task.
The short memory allocation file MPl.MAP
is requested. The inputs for the task
are the file IN2.0BJ and the symbol
definition file SY:[l,l] EXEC.STB which
links the task to the subroutines and
data base of the Executive.

The task IMG3.TSK contains the input
file IN3.0BJ, the modules SUBl and SUB2
from the library file LBl, and the
debugging aid DBGl.OBJ. The library
file LBl.OLB is specified a second time
without arguments so that the Task
Builder will search the file for
undefined global references.

3-9

SWITCHES AND OPTIONS

MCR>TKB IMG4/XT:5=TREE/MP

3.1.3 Override Conditions

The Task IMG4.TSK
overlay description
file TREE.ODL. If
diagnostics occur,
aborts the run.

is built from the
contained in the
more than five
the Task Builder

In some cases, it is not reasonable to apply two particular switches
to a file. When such a conflict occurs, the Task Builder selects the
overriding switch according to the following table:

switch

Any task
image switch
except
PI and SQ

cc

CP

switch

-HD

LB

FX

For example, in the terminal sequence:

MCR>TKB IMG5=IN6,IN5/LB/CC

overriding switch

-HD

LB

-FX

The input file INS is assumed to be a library file that is to be
searched for undefined global references and not an input file with
several object modules.

3.2 OPTIONS

Options are available to the user of the RSX-110 Task Builder to
supply information about the characteristics of the task to the Task
Builder.

Some of these options are of interest to all users of the system, some
are of interest only to the FORTRAN programmer, and some are of
interest only to the MACR0-11 programmer. The interest range is given
with the description of the option.

Options can be divided into seven categories. The identifying
mnemonics and a brief description for each category are listed below:

1. contr - Control options affect Task Builder execution.
ABORT is the only member of this category. The
user can direct the Task Builder to abort the task
build by the use of the option ABORT.

3-10

2. ident

3. alloc

4. share

5. device

6. alter

7. synch

SWITCHES AND OPTIONS

- Identification options identify task
characteristics. The task name, priority, user
identification code, and partition can be
specified by the use of options in this category.

- Allocation options modify the task's memory
allocation. The size of stack, program-sections
in the task, ·and FORTRAN work areas and buffers
can be adjusted by the use of options in this
category.

- Storage sharing options indicate the task's
intention to access a shareable global area.

- Device specifying options specify the number of
units required by the task and the assignment of
physical devices to logical unit numbers.

- Content altering options define a global symbol
and value or to introduce patches in the task
image.

- Synchronous trap options define synchronous trap
vectors.

Table 3-2 lists all the options alphabetically. A brief description
of each option is given and the interest range of the option is
indicated by the following codes:

F option is of interest to FORTRAN programmers only.
M option is of interest to MACR0-11 programmers only.
FM option is of interest to both.

The mnemonic for the category to which the option belongs is also
indicated in the table.

The options are then described in more detail by category.

NOTE

Many of the TKB options can be
overridden at install time (See RSX-llD
User's Guide).

3-11

SWITCHES AND OPTIONS

Table 3-2
Task Builder Options

Option Meaning Interest Category

ABORT Direct TKB to terminate build. FM con tr

AB SPAT Declare absolute patch values. M alter

ACT FIL Declare number of files open F alloc
simultaneously.

ASG Declare device assignment to FM device
logical units.

BASE Define lowest virtual address. FM alloc

COMMON Declare task's intention to access FM share
a shareable global area.

EXTSCT Declare extension of a program section. FM alloc

EXTTSK Extend task memory allocation at FM alloc
install time.

FMTBUF Declare extension of buffer used F alloc
for processing format strings
at run-time.

GBLDEF Declare a global symbol definition. M alter

GBLPAT Declare a series of patch values M alter
relative to a global symbol.

LIBR Declare task's intention to access FM share
a shareable global area.

MAXBUF Declare an extension to the FORTRAN F alloc
record buffer.

ODTV Declare the address and size of M synch
the debugging aid SST vector.

PAR Declare partition name and dimensions. FM ident

POOL Declare pool usage limit FM alloc

PRI Declare priority. FM ident

STACK Declare the size of the stack. FM alloc

TASK Declare the name of the task. FM ident

TOP Define highest virtual address. FM alloc

3-12

Option

TSKV

UIC

UNITS

SWITCHES AND OPTIONS

Table 3-2 (Cont.)
Task Builder Options

Meaning

Declare the address of the task
SST vector.

Declare the user identification code
under which the task runs.

Declare the maximum number of units.

Interest Category

M synch

FM ident

FM device

3.2.1 Control Option

Only one control option is available. This option is of interest to
all users of the system.

3.2.1.1 ABORT (Abort the current Task Build) - The ABORT option
directs the Task Builder to abort the current task build.

This option is used when it is discovered that an earlier error in the
command sequence will cause the Task Builder to produce an unusable
task image.

The Task Builder, on recogn1z1ng the keyword ABORT, stops accepting
input, closes all opened files, deletes all output files and restarts
for another task build.

An example of the use of the ABORT option is given in section 3.3.

syntax: ABORT = n

where n is an integer value. The integer is required to
satisfy the general form of an option; however,
the value is ignored in this case.

default: none

NOTE

The use of CTRL Z causes the Task
Builder to stop accepting input, build
the task, and then terminate.

The ABORT option is the only proper way
to restart the Task Builder if an error
is discovered and the Task Builder
output is not desired.

3-13

SWITCHES AND OPTIONS

3.2.2 Identification Options

Four options
information.
system.

are
These

available
options

for
are of

specifying
interest

task identifying
to all users of the

The identification options specify the name of the task, the user
identification code, the priority, and the partition. The user
identification code can be specified when the task is installed and
also when it is run. If such a specification is not made, the user
identification code established when the task was built is used. The
task runs under the most recently specified UIC.

3.2.2.1 TASK (Task Name) - The TASK option specifies the task's name.

syntax: TASK = task-name

where: task-name is a 1- to 6-character radix-50 name identifying
the task.

default: The name of the task image file is used to identify the task
when the task is installed. This option is used when it is
desirable to store the task image file under one name, but
run the task under another name (e.g., MAX.TSK and
CORMAC.TSK both use the task name ... MAC).

3.2.2.2 UIC (User Identification Code) - The UIC option declares the
User Identification Code (UIC) for the task if no UIC is specified
when execution is requested.

syntax: UIC =[group,member]

where: group

member

default:

is an octal number in the range 1 - 377 which
specifies the group.

is an octal number in the range 1 - 377 which
specifies the member number.

The UIC specified by the MCR HEL[LO] command.

3.2.2.3 PRI (Priority) - The PRI option declares the priority at
which the task executes. If priority is not specified when the task
is installed, the priority declared in the PRI option is used.

syntax: PRI = priority-number

where: priority-number is a decimal integer in the range 1 - 250

default: 50(established by Install)

3.2.2.4 PAR (Partition) - The PAR option identifies the partition in
which the task is run unle~s overriden at install or run time.

syntax: PAR = pname

where pname is the name of the partition

default: none (established at install time)

3-14

SWITCHES AND OPTIONS

3.2.3 Allocation Options

These options direct the Task Builder to change the length of an
allocation. The first three options are of interest only to the
FORTRAN programmer. The remaining options are of interest to all
users.

3.2.3.l ACTFIL (Number of Active Files) - The ACTFIL option declares
the number of files that the task can have open simultaneously. For
each active file, an allocation of approximately 512 bytes is made.

If the number of active files used by a task is less than the default
assumption of four, tbe ACTFIL option can be used to save space. If
the number of active files is more than the default assumption, the
ACTFIL option must be used to direct the Task Builder to make the
additional allocation so that the task can run. If a double buffered
FCS is used, the ACTFIL specification must be doubled also.

The FORTRAN Object Time System (OTS) and File Control Services (FCS)
must be included in the task image for the extension to take place.
The p-section that is extended has the reserved name '$$FSR1'.

syntax: ACTFIL = file-max

where: file-max is a decimal integer indicating the maximum number
of files which can be open at the same time.

default: ACTFIL 4

3.2.3.2 MAXBUF (Maximum Record Buffer Size} - The MAXBOF option
declares the maximum record buffer size required for all files used by
the task.

This option must be used to extend the buffer size whenever a file is
to be processed in which the maximum record size exceeds the default
buffer length as specified for the device by the System Manager during
system generation.

The FORTRAN Object Time System must be included in the task image for
the extension to take place. The program section that is extended has
the reserved name '$$IOB1'.

syntax: MAXBUF = max-record

where: max-record

default: MAXBUF 132

is a decimal
default, which
size in bytes.

3-15

integer, larger than the
specifies the maximum record

SWITCHES AND OPTIONS

3.2.3.3 FMTBUF {Format Buffer Size) - The FMTBUF option declares the
length of internal working storage allocated for the parsing of format
specifications at run-time. The length of this area must equal or
exceed the number of bytes in the longest format string to be
processed.

Run-time processing occurs whenever an array is referenced as the
source of formatting information within a FORTRAN I/O Statement. The
program section to be extended has the reserved name '$$0BF1'.

syntax:

where:

FMTBUF = max-format

max-format is a decimal integer larger than the default,
which specifies the number of characters in
the longest format specification.

default: FMTBUF 132

3.2.3.4 EXTSCT {Program Section Extension) - The EXTSCT option
declares an extension in size for a p-section. P-sections and their
attributes are described in Chapter 4.

If the p-section has the attribute CON {concatenated), the section is
extended by the specified number of bytes. If the p-section has the
attribute OVR {overlay), the section is extended only if the length of
the extension is greater than the length of the p-section.

For example, suppose that p-section BUFF is 200 bytes long and the
option below is given:

EXTSCT = BUFF:250

The extension specified for the p-section depends on the CON/OVR
attribute; specifically:

for CON the extension is 250 bytes.

for OVR the extension is 50 bytes.

The extension occurs when the p-section name is encountered in an
input object file or in the overlay description file.

syntax: EXTSCT = p-sect-name:extension

where: p-sect-name

extension

default: none

is a 1- to 6-character radix-50 name that
specifies the p-section to be extended.

is an octal integer that specifies the number
of bytes by which to extend the p-section.

3-16

SWITCHES AND OPTIONS

3.2.3.5 EXTTSK (Extend Task Space) - The read/write space of the task
may be extended at Install time.

syntax:

where:

EXTTSK = task-extension

task-extension is the decimal number of words by which
Install extends the upper read/write area of the task. The
value is rounded up to the next 32-word block boundary.

default: 0

This parameter can be overridden by Install option /INC. If the
EXTTSK option has been overridden, the task must be removed and
reinstalled without the /INC option to revert back to the EXTTSK
option.

This option is used in conjunction with the .LIMIT directive to the
assembler and the Executive directive Get Task Parameters.

It is useful in saving disk space that would otherwise be allocated
for initially empty buffers, for example. Further, the Install /INC
option provides the ability to vary the size of such buffers.

3.2a3.6 POOL(Pool Limit) - The POOL option declares the maximum
number of eight word pool nodes that the task may use simultaneously.

syntax: POOL = pool - limit

where: pool-limit

default: 40

is the decimal number of eight-word nodes in
the range of 1 through 511. For MU tasks
this indicates the pool-limit per version.

Example: Set the pool-limit to 60
POOL=60

3.2.3.7 STACK (Stack Size) - The STACK option declares the maximum
size of the stack required by the task.

The stack is an area of memory used for temporary storage, subroutine
calls, and interrupt service linkages. The stack is referenced by
hardware register R6 (the stack pointer).

syntax: STACK = stack-size

where: stack-size

default: STACK 256

is a decimal integer that specifies the
number of words required for the stack.

3-17

SWITCHES AND OPTIONS

3.2.3.8 BASE {Base Address) - The BASE option specifies the base
address of the task to be at a particular 4K boundary.

syntax:

where:

BASE = bound

bound is a decimal number between 0 and 28 which specifies
the lowest 4K boundary of the image.

default: 0

Creation of shareable global area images which are not
position-independent provides one example of how to use this option.
In fact, the BASE {and TOP) options are primarily used to locate
shareable global areas, such as libraries and common block, and are
not recommended for use in building normal tasks.

Task image addresses are normally allocated upward from zero. This
type of library file must appear in the same virtual address range of
each task that shares it. To avoid conflicts with task addresses the
library may be allocated toward the top of the virtual address range
(i.e., 140000 to 177776) by using a base address declaration {also see
Section 3.2.3.9)

The BASE option will override any
previous TOP specification.

3.2.3.9 TOP (TOP ADDRESS) - The TOP option declares the ending
address of a task to be within a 4K boundary.

syntax:

where:

TOP=bound

bound is a decimal number between 0 and 28 which specifies
the highest 4K boundary of the image.

default: none

The purpose of this option is the same as the purpose of the BASE
option except it allows defintion of the last 4K boundary, rather than
the first 4K boundary.

NOTE

The TOP option will override any
previous BASE specification.

3.2.3.10 Examples of Allocation Options - If the FORTRAN routines
contained in file GRPl use eight files simultaneously and the maximum
record length in one of these files is 160 characters, the following
terminal sequence can be used to build the task:

MCR>TKB

3-18

TKB>IMGl,MPl=GRPl
TKB>/
ENTER OPTIONS:
TKB>ACTFIL 8
TKB>MAXBUF = 160
~II

SWITCHES AND OPTIONS

3.2.4 Storage Sharing Options

Two options indicate the task's intention to access a shareable global
area. These options are of interest to all users of the system.

By convention, the COMMON option indicates the use of a shareable
global area that contains only data and the LIBR option indicates the
use of a shareable global area that contains only code. The two
options have the same effect, except that when all tasks accessing a
common area have exited, the area is written back to its file on disk.
For a library file, the memory allocated to it is simply released.

3.2.4.1 COMMON (Sharable Common Block) - The COMMON option declares a
common block for use by the task.

syntax:

where:

COMMON= common-name:access-code[:apr]

common-name

access-code

apr

is the 1- to 6-character radix-50 name of the
common block.

is either RW (read/write) or RO (read-only)
to indicate the type of access required for
the task.

is an integer in the range of 1 to 7 which
specifies the first Addressing Page Register
to be reserved for the common block. The apr
is optional.

default: none

3.2.4.2 LIBR (Sharable Library) - The LIBR option declares a sharable
library for use by the task.

syntax:

where:

LIBR = library-name:access-code[:apr]

library-name

access-code

apr

is the 1- to 6-character radix-50 name which
specifies the library.

is either RW (read/write) or RO (read-only)
to indicate the type of access required for
the task.

is an integer in the range of 1 to 7 which

3-19

default: none

SWITCHES AND OPTIONS

specifies the first Addressing Page Register
to be reserved for the library. The apr is
optional.

3.2.4.3 Example of Storage Sharing Options - If the task composed of
the MACR0-11 programs TSTl and TST2 accesses a shareable common area
DTST that contains data and a shareable library area STST that
contains code, the following terminal sequence can be used to build
the task:

MCR~TKB
TKB>CHK,LP:=TST1,TST2
TKB>/
ENTER OPTIONS:
TKB>COMMON = DTST:RW
TKB>LIBR = STST:RO
TKB>//

3.2.5 Device Specifying Options

The two options in this category are of interest to all system users.
The UNITS option declares the number of input/output units that the
task uses. The ASG option declares the devices that are assigned to
these units.

The number of logical units and the highest unit number assigned must
be compatible. An attempt to assign a physical device to a unit
number that is larger than the total number of units declared is an
error. Similarly, the number of units declared cannot be less than
the highest unit assigned.

Since the options are processed as they are encountered, to increase
the number of units and assign devices to these units, the user should
enter the UNITS option first and then the ASG option. Entering the
options in the reverse order can produce an error message.

3.2.5.1 UNITS (Logical Unit Usage) - The UNITS option declares the
number of logical units that are used by the task.

syntax: UNITS = max-units

where: max-units

default: UNITS 6

is a decimal integer in the range of 0 to 255
which specifies the maximum number of logical
units.

3-20

SWITCHES AND OPTIONS

3.2.5.2 ASG (Device Assignment) - The ASG option declares the
physical device that is assigned to one or more units.

syntax:

where:

ASG = device-name:unit-num-l:unit-num-2: ••• :unit-num-8

device-name - is a 2-character alphabetic device name
followed by a 1- or 2-digit decimal unit
number.

unit-num-1
unit-num-2

unit=num-8

are decimal integers indicating the
logical unit numbers.

default: ASG = SY0:1:2:3:4, TI0:5, CL0:6

3~2.5.3 Examole of Device Specifying Options - Suppose the FORTRAN
programs specified in the file GRPl require nine logical units. The
device assignments for units 1-6 agree with the default assumptions
and logical units 7,8 and 9 are assigned to DECtape 1 (DTl). The
command sequence of the example shown in Section 3.2.3.7 is changed to
include device assignment options, as follows:

MCR>TKB
TKB>IMGl,MPl=GRPl
TKB>/
ENTER OPTIONS:
TKB>ACTFIL = 8 MAXBUF = 160
TKB>UNITS=9 ASG = DT1:7:8:9
TKB>//

3.2.6 Storage Altering Options

These options alter the task image and are of interest only to the
MACR0-11 programmer. The GBLDEF option declares a global symbol and
value. The options ABSPAT and GBLPAT introduce patches into the task
image.

3.2.6.1 GBLDEF (Global Symbol Definition) - The
declares the definition of a global symbol.

The symbol definition is considered absolute.

syntax: GBLDEF = symbol-name:symbol-value

GBLDEF option

where: symbol-name is a 1 to 6-character radix-50 name of the
defined symbol.

symbol-value is an octal number in the range of 0 to 177777
which is assigned to the defined symbol.

default: none

3-21

SWITCHES AND OPTIONS

3.2.6.2 ABSPAT (Absolute Patch) - The ABSPAT option declares a series
of patches starting at the specified base address. Up to 8 patch
values can be given.

syntax:

where:

3.2.6.3
series
symbol.

syntax:

where:

ABSPAT = seg-name:address:val-l:val-2: ••• :val-8

seg-name

address

val-1

val-2

val-8

is the 1- to 6-character radix-50 name of the
segment.

is the octal address of the first patch. The
address may be on a byte boundary; however,
two bytes are always modified for each patch.

is an octal number in the range of 0 to 177777
to be assigned to address.

is an octal number in the range of 0 to 177777
to be assigned to address+2

is an octal number in the range of 0 to 177777
to be assigned to address+l6(octal) ••

NOTE

All patches must be within the segment
memory limits or a fatal error is
generated.

GBLPAT (Global Relative Patch) - The GBLPAT option declares a
of patch values starting at an offset relative to a global

Up to 8 patch values can be given.

GBLPAT=seg-name:sym-name[+/-offset] :val-l:val-2: ••• :val-8

sym-name

off set

seg-name
val-1
val-2

val-8

is a l to 6-character radix-50 name which
specifies the global symbol.

is an octal number used to specify the offset
from the global symbol.

are identical to that defined for ABSPAT

default: none

3-22

SWITCHES AND OPTIONS

NOTE

All patches must be within the segment
address limits or a fatal error is
generated.

3.2.6.4 Example of Storage Altering Options - Suppose that in the
example composed of the MACR0-11 programs TSTl and TST2, GAMMA is a
referenced symbol whose value is to be specified when the task is
built. The user defines the symbol GAMMA to have the value 25 and
introduces 10 patch values relative to the global symbol DELTA.

The terminal sequence of_ example shown in Section 3.2.4.3 is modified
to include the options GBLPAT and GBLDEF as follows:

MCR>TKB
TKB>CHK,LP:=TST1,TST2
TKB>/
ENTER OPTIONS:
TKB>COMMON=DTST:RW:5, STST:RO
TKB>GBLDEF=GAMMA:25
TKB>GBLPAT=TSTl:DELTA:l:5:10:15:20:25:30:35
TKB>GBLPAT=TSTl:DELTA+20:40:45
TKB>//

3.2.7 Synchronous Trap Options

Two options are available to declare that the specified vector address
is to be preloaded into the task header, thus enabling the task to
receive control on the occurrence of synchronous traps. These options
are of interest only to the MACR0-11 programmer.

3.2.7.1 ODTV (ODT SST Vector) - The ODTV option declares a global
symbol to be the address of the ODT Synchronous System Trap vector.
The defined global symbol must exist in the part of the task that is
always in memory.

syntax:

where:

ODTV = symbol-name:vector-length

symbol-name is a 1- to 6-character radix-50 name of a
global symbol.

vector-length is a decimal integer in the range of 1 to 32
which specifies the length of the SST vector
in words.

default: none

3-23

SWITCHES AND OPTIONS

3.2.7.2 TSKV (Task SST Vector) - The TSKV option declares a global
symbol to be the address of the task SST vector. The defined symbol
must exist in the part of the task that is always in memory.

syntax: TSKV = symbol-name:vector-length

where: symbol-name are as defined for ODTV

vector-length

default: none

3.3 EXAMPLE: CALC;2

Suppose that in the first execution of the task CALC several logical
errors are found. The user corrects the program and is now ready to
make the changes in the program and some adjustments in the task image
file based on the information he obtained about the size of the task
in the first task build.

In this example, he modifies the text file for the program, recompiles
the program, and rebuilds the task so that only one active file buffer
is reserve.

3.3.1 Correcting the Errors in Program Logic

The FORTRAN source language for the program 'RDIN' is corrected to be:

C READ AND ANALYZE INPUT DATA
C SELECT A PROCESSING ROUTINE
c
C ESTABLISH COMMON DATA BASE
c

COMMON /OTA/ A(200), I
C READ IN RAW DATA

READ (6,1) A
1 FORMAT (200 F6.2)

CALL PROCl

CALL RDl

CALL RPRT
END
SUBROUTINE RD!

RETURN
END

Next, the program 'RDIN' is recompiled:

MCR>FOR RDIN,LRDIN=RDIN

3-24

SWITCHES AND OPTIONS

Observe that the corrections to 'RDIN' included the addition of a
subroutine 'RD!'. The object file produced by the FORTRAN compiler as
a result of the above terminal sequence now contains two object
modules.

3.3.2 Building the Task

The user knows from the program logic that only one file is open at a
time, but the Task Builder assumes that four files are open
simultaneously. Therefore, the user can utilize the ACTFIL option to
reduce the space required for the task.

The task is built with the following terminal sequence:

MCR>TKB
TKB>CALC:2,=RDIN,RPRT,PROC1
TKB>/
ENTER OPTIONS:
TKB>PAR=PAR14K
TKB>ABORT=l
TKB -- *FATAL* - ABORTED VIA REQUEST
ABORT=l
TKB>CALC:2,LP:/SH=RDIN,PROC1,RPRT
TKB>/
ENTER OPTIONS:
TKB>PAR=PAR14K
TKB>ACTFIL=l
TKB>//

The user introduced the ABORT option to end the task build when he
realized that he had omitted the memory allocation file.

The effect of these options on the memory allocation is seen in the
next chapter. After the description of the task and memory allocation
files, the memory allocation files for the first two examples are
given.

3-25

CHAPTER 4

MEMORY ALLOCATION

This chapter describes the allocation of task and system memory. The
memory allocation file and the cross reference file are described in
detail and examples of memory allocation files are illustrated. The
memory allocation file for the example CALC;l of Chapter 2 and CALC;2
of Chapter 3 are included and discussed. The effect of the options
used in CALC;2 can be observed by comparing the two memory allocation
files.

4.1 TASK MEMORY

Task memory in RSX-llD consists of a header, stack, and a set of named
areas called program section (p-sections). Each p-section has
associated with it attributes from which the Task Builder can
determine its base and length.

Task memory for a single segment task can be represented by the
following diagram:

Task Virtual
4K Boundary

Task Virtual 0

p-section

p-section

stack

impure area

pointers

directive status
word

task header

Task Memory for a Single
Segment Task

4-1

Real Memory
32-Word Boundary

R/O
Task
Code and Data

R/W
Task
Code and Data

Real Memory
32-Word Boundary

Real Memory
32-Word Boundary

MEMORY ALLOCATION

4.1.1 Task Header

The task header contains task parameters and data required by the
executive for controlling execution of a task. It also provides an
area for saving the task's contents when a switch is made to another
task and for accumulating accounting information about the task. It
is resident at all times when the task is resident, but is not a part
of the task's virtual address space. A detailed description of the
header can be found in Appendix C.2.

4.1.2 Directive Status Word

Virtual location zero of every RSX-110 task is a reserved word for the
executive to report the status of all executive directives issued by
the task.

4.1.3 Impure Area Pointers

The words following the directive status word are used as pointers to
the following areas of the task.

Address Use

2 Address of FCS data storage area

4 Address of FORTRAN-OTS work area

6 Address of overlay run time system work area

Like the directive status word these parameters occupy the low address
end of the task stack.

4 .1. 4 Stack

A default stack of 256(decimal) words is allocated for each task. The
STACK=option may be used to override this allocation. A STACK=O
specification is useful in building shareable global areas which do
not require a stack. (libraries use the task stack space because they
are within the address space of the binding task).

4.1.5 R/W Task Code(and Data)

The R/W p-sections of a task are concatenated to the end of the stack.
The memory allocation is rounded up to a 32(decimal) word boundary by
the addition of dead space.

4-2

MEMORY ALLOCATION

4.1.6 R/O Task Code (and Data)

If there are p-sections in the task which have the read-only attribute
(read/write is the default), the Task Builder concatenates these and
allocates them so they occupy an integral number of 32(decimal) word
blocks. The task will be mapped so that the R-0 p-sections will begin
at the next 4K virtual address. Further, if the task is multi-user,
these R-0 areas will begin on the next available disk block to
facilitate separate loading of R/W and R-0 portions of the task at run
time. This enables multiple copies of such tasks to share one copy of
the read-only code (and/or data) • The executive treats these shared
read-only areas of a task much as it treats shareable global areas.

Note that ODT cannot be used to modify read-only parts of a task.
This also means that breakpoints cannot be set in such code. Any
attempt to use ODT in the read-only areas of a task will cause the
task to terminate with a segment fault.

4.1.7 P-Sections

A program section, or p-section, is the basic unit of memory for the
task. A source language program is translated into an object module
consisting of p-sections. For example, the object module produced by
compiling a typical FORTRAN program consists of a p-section containing
the code generated by the compiler, a p-section for each common block
defined in the FORTRAN program, and a set of p-sections required by
the FORTRAN Object Time System.

A name and a set of attributes are associated with each p-section.
The p-section attributes are given in Table 4-1.

The scope-code and type-code are only meaningful when an overlay
structure is defined for the task. The scope-code is described in
connection with the resolution of p-section in Chapter 5. The
type-code is described in connection with the generation of autoload
vectors in Chapter 6. The memory-code is not used by the Task
Builder.

The access-code and alloc-code are used by the Task Builder to
determine the placement and the size of the p-section in task memory.

The Task Builder divides storage into read/write and read-only memory
and places the p-sections in the appropriate area according to
access-code.

The alloc-code is used to determine the starting address and length of
p-sections with the same name. If the alloc-code indicates that
p-sections with the same name are to be overlaid, the Task Builder
places each reference at the same position in task memory and
determines the total allocation from the length of the longest
reference. If the alloc-code indicates that p-sections with the same
name are to be concatenated, the Task Builder places each reference
one after another in task memory and determines the total allocation
from the sum of the lengths of the each reference.

When a p-section has the concatenate attribute, all references to that
p-section are placed one after another in task memory. If any of
these references ends on a byte boundary, the next reference to that
p-section is not word-aligned.

4-3

Attribute

access-code

type-code**

scope-code

alloc-code

reloc-code

Value

RW*

RO

D

I*

GBL

LCL*

CON*

MEMORY ALLOCATION

Table 4-1
P-Section Attributes

Meaning

(read/write). Data can be read from and
written into the p-section.

(read-only). Data can be read from, but
cannot be written into the p-section.

(data). The p-section contains data.

(instruction).
instructions.

The p-section contains

(global). The p-section name is considered
across segment boundaries. The Task Builder
allocates storage for the p-section from
references outside the defining segment.

(local). The p-section name is considered
only within the defining segment. The Task
Builder allocates storage for the p-section
from references within the defining segment
only.

(concatenate). P-sections with the same name
are concatenated. The total allocation is
the sum of the individual allocations.

OVR (overlay). P-sections with the same name
overlay each other. The total allocation is
the length of the longest individual
allocation.

REL* (relocatable). Storage in the
allocated relative to the
address of the partition.

p-section is
virtual base

ABS (absolute). Storage in the p-section is
always allocated relative to zero.

memory-code*** HIGH (high) . The p-section is to be loaded into
high speed memory.

LOW* (low). The p-section is to be loaded into
core.

* Indicates the default attribute

** Not to be confused with the I and D space hardware on the PDP
11/45.

*** Not implemented

4-4

MEMORY ALLOCATION

4.1.8 Allocation of P-sections

Suppose the user enters the following command:

MCR>TKB IMGl,MPl=INl,IN2,IN3,LBRl/LB

The user is directing the Task Builder to build a task image file,
IMGl.TSK, and a memory allocation file, MPl.MAP, from the input files
INl.OBJ, IN2.0BJ, and IN3.0BJ, and to search the library file LBRl.OLB
for any undefined global references. Suppose the input files are
composed of p-sections with the following access-codes, alloc-codes,
and sizes:

File-name P-section Access Alloc Size
name Code Code (octal)

INl B RW CON 100
A RW OVR 300
c RO CON 150

IN2 A RW OVR 250
B RW CON 120

IN3 c RO CON 50

First, the Task Builder collects all p-sections with the same name to
determine the allocation for each uniquely named p-section.

In this example, there are two occurrences of the p-section named B
with attributes RW and CON. The total allocation for B is the sum of
the lengths of each reference; that is, 100 + 120 220. The
allocation for each uniquely named p-section then is:

P-section Total
Name Allocation

B 22¢
A 3¢¢
c 22¢

4-5

MEMORY ALLOCATION

The Task Builder then re-organizes the p-sections alphabetically and
places them in memory according to their access-code, as follows:

c (220) J read only

B (220)

A (300) J read/write
task memory

stack

header

4.1.8.1 Sequential Allocation of P-sections - The SQ (sequential)
switch affects only the placement of p-sections in task memory.
P-sections with the same name and attributes are collected as
described; then uniquely named p-sections are placed in memory in the
order of input sequence according to the access-code.

Suppose the user adds the SQ switch to the previous example:

MCR>TKB IMGl/SQ,MPl=INl,IN2,IN3,LBRl/LB

The Task Builder collects the p-sections and places them in memory in
the input sequence, as follows:

c (22(6) ~ read only

A (3{6¢)

B (22¢)
J read/write

task memory

stack

header

4-6

MEMORY ALLOCATION

4.1.9 The Resolution of Global Symbols

When creating the task image file, the Task Builder resolves global
references. Suppose the global symbols are defined and referenced in
the p-sections in the following way:

File P-section Global Global
Name Name Def n. Ref.

INl B Bl Al
B2 Ll

A Cl
xxx

c

IN2 A Al
B Bl

B2

IN3 c Bl

In processing the first file, INl, the Task Builder finds definitions
for Bl and B2 and references to Al,Ll,Cl, and XXX. Since no
definition exists for these references, the Task Builder defers the
resolution of these global symbols. In processing the next file, IN2,
the Task Builder finds a definition for Al, which resolves the
previous reference, and a reference to B2, which can be immediately
resolved.

When all the input object files have been processed, the Task Builder
has three unresolved global references, namely: Cl, Ll, and XXX. A
search of the library file LBRl resolves Ll and the Task Builder
includes the defining module in the task image. A search of the
System Library resolves XXX. The global symbol Cl remains unresolved
and is, therefore, listed as an undefined global symbol.

The relocatable global symbol Bl is defined twice and is listed as a
multiply-defined global symbol on the terminal. The first definition
of a multiply defined symbol is used by the Task Builder. An absolute
global symbol can be defined more than once without being listed as
multiply defined as long as each occurrence of the symbol has the same
value. The results of these resolutions can be obtained in Figure
4-1.

4-7

MEMORY ALLOCATION

4.2 SYSTEM MEMORY

In RSX-llD, system memory consists of the resident executive and a set
of named areas which are defined at system generation time. These
named areas are partitions, each of which has parameters of base and
length.

A typical system memory layout can be represented by the following
diagram:

All Boundaries
Are 32(10) Word
Aligned

Real 13-

external page

partition n

...

partition 1

system common
subroutines

system communications
region

system tables, lists

node pool

executive code

bootstrap

Kernel
Virtual /3

Typical System Memory Layout

4.2.1 Privileged Tasks

User Defined
Partitions

Permanently
Resident
RSX-110
System

A privileged task has special memory access rights. A non-privileged
task can access only its own partition and any referenced shareable
global areas, but a privileged task can, in addition, access SCOM and
the external page.

The following diagram illustrates typical privileged and
non-privileged tasks. Note that APR boundaries are aligned at 4K
virtual addresses and 32(decimal) word real addresses when in memory.

4-8

MEMORY ALLOCATION

sharearable 1

global 2

area 3

task
read-only

area

task
read/write

area and
stack

Non-privileged
Task Mapping

4.3 TASK IMAGE FILE

APR

7

6

5

4

3

2

1

~

external
page

system

conunon
{SCOM)

and pool

shareable
global

areas

task read-
only area

task read/write
area and stack

Privileged
Task Mapping

1

2

In addition to the task memory, or core image, the task image file
contains a label block group. The label block group contains data
that is used by the Install processor to create an entry in the system
task directory for the task. The label is described in detail in
Appendix C, as is the task image file structure.

4.4 MEMORY ALLOCATION FILE

The memory allocation file lists information about the allocation of
task memory and the resolution of global symbols. Figure 4-1 is a
listing of the memory allocation file produced by example IMGl of
Section 4.1.

4-9

MEMORY ALLOCATION

FILE IMGl.TSK;l MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 13-FEB-75
AT 15:40 BY TASK BUILDER VERSION R09

*** ROOT SEGMENT: INl

R/W MEM LIMITS: 000000 001577 001600
R-0 MEM LIMITS: 020000 020277 000300
STACK LIMITS: 000000 000777 001000
DISK BLK LIMITS: 000003 000005 000003
IDENTIFICATION
PRG XFR ADDRESS: 001300
TASK ATTRIBUTES: FP.NF

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 001000 001000 000000
<A >: 001000 001277 000300
: 001300 001517 000220
<C >: 020000 020217 000000
<. ABS.>: 000000 000000 000000

*** FILE: INl.OBJ;l TITLE: INl

<. ABS.>: 000000 000000 000000

>>>>>>>>>>>> UNDEFINED REFERENCE: Cl

<A >: 001000 001277 000300

: 001300 001377 000100

Bl 001300-R B2 001302-R

<C >: 020000 020147 000150

Figure 4-1

!DENT:

Memory Allocation File for IMGl.TSK

4-10

MEMORY ALLOCATION

*** FILE: IN2.0BJ; 1 TITLE: IN2 !DENT:

<A >: 001000 001247 000250

Al 001000-R

: 001400 001517 000120

Bl 001300-R

*** FILE: IN3.0BJ;2 TITLE: IN3 !DENT:

<C >: 020150 020217 000050

*** FILE: SYSLIB.OLB;l TITLE: MOON !DENT:

<. ABS.>: 000000 000000 000000

xxx 000005

*** FILE: LBRl.OLB;l TITLE: LI Bl !DENT:

<. ABS.>: 000000 000000 000000

Ll 000022

UNDEFINED REFERENCES:

Cl

Figure 4-1 (Cont.)
Memory Allocation File for IMGl.TSK

4-11

MEMORY ALLOCATION

4.4.1 Structure of the Memory Allocation File

The structure of the memory allocation file can be described as
follows:

1. The memory allocation file consists of the following sequence
of items:

heading
segment description
program section allocation synopsis
file contents description
undefined references summary

These items are defined in 2 through 6.

2. The heading gives the name of the task, date and time of the
task-build, and the version number of the Task Builder in the
following form:

FILE task-image-file-name MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON date
AT time BY TASK BUILDER VERSION version-no.

3. The segment description consists of the following sequence of
items:

***SEGMENT: segment-name

R/W MEM LIMITS:
R-0 MEM LIMITS:
STACK LIMITS:
DISK BLK LIMITS:
IDENTIFICATION:
ODT XFR ADDRESS:
PRG XFR ADDRESS:
TASK ATTRIBUTES:

start-addr
start-addr
start-addr
start-blk
name
address
address
attr-1 •..

end-addr
end-addr
end-addr
end-blk

attr-n

length
length
length
blk-length

Any line in the sequence is omitted if it does not apply to a
given task image.

The constructs in this sequence are defined in Rule 7.

4. The program section allocation synopsis has the form:

p-sect-name-1 start-addr end-addr length

If the SQ switch is applied, the p-sect-names are listed in
input order; otherwise p-sect-names are listed in
alphabetical order. Since p-sections are allocated according
to their access-code, the alphabetical listing is not
necessarily sequential.

5. The file contents description contains an entry for each
input file in the form:

4-12

MEMORY ALLOCATION

***FILE filename TITLE title-name !DENT ident-narne

<. ABS.>

»»>
<p-sect-name-1>

<. BLK.>

start-addr end-addr length
g-narne-1 value g-name-2 value •••
UNDEFINED REFERENCE g-name-n
start-addr end-addr length •••
g-name-1 value-R g-name-2 value-R .••
start-addr end-addr length
g-name-1 value g-name-2 value

The absolute global symbols are listed in the p-section named
ABS, which is collated first. The blank p-section • BLK.

is collated last in the listing.

6. The undefined references summary has the form:

UNDEFINED REFERENCES

g-name-1

7. The remaining constructs are defined as follows:

segment-name

start-addr

end-addr

Ieng th

start-bl k

end-blk

blk-length

address

name

attr

is the name of the segment.

is the first storage address in octal
byte format.

is the last storage address in octal
byte format.

is the number of (in octal) bytes
occupied.

is the relative block number (in octal)
for the starting disk location.

is the last relative block number for
the disk allocation.

is the number (in octal) of blocks
occupied.

is a byte address (in octal).

is the name attached to the first
non-blank .!DENT entry encountered.

is an attribute code that applies to the
task image. The list of codes printed
is:

NC

FP

4-13

Task is not checkpointable

Task uses PDP-11/45 floating
point processor

p-sect-name

file-name

title-name

ident-name

g-name

MEMORY ALLOCATION

DA

PI

PR

TR

NH

NF

NA

ND

MU

TA

is the name of

is the name of

Task includes the standard
debugging aid SYO: [l,l]ODT.OBJ

Task contains only position
independent code and data

Task is privileged

Task initial PS word has T-bit
enabled

Task does not contain a header

Task is not fixble

Task is not abortable

Task cannot be disabled

Task is multi-user

Task is accountable

a p-section.

the file from which the input
module was taken.

is the name of the first non-blank .TITLE
encountered.

is the name of the first non-blank .IDENT
encountered.

is the name of a global symbol.

4.4.2 Structure of the Cross Reference Listing

The cross reference output has two parts:
actual cross reference listing.

a page header and the

1. The cross reference page header consists of the following
i terns:

name of the map file
time the map file was created
cross reference page number

2. The actual cross reference contains an alphabetic listing of
each global symbol, its value, and the name of each module
referring to it. The name of each module is prefixed with a
character indicating the symbol resolution within the module.
The cross reference listing has the following format:

symbol name value (-R)

4-14

x module-I
x module-n

x module-2

MEMORY ALLOCATION

The suffix -R is appended to value if the symbol is
relocatable.

Module name prefix characters have the following meaning:

Prefix Character

blank

@

*

Reference Type

Module contains a reference that is
resolved in the same segment or in
a segment toward the root, or in a
segment away from the root or in a
co-tree.

Module contains a reference that is
resolved through an autoload
vector.

Module contains a definition that
is not autoloadable.

Module contains an
definition.

autoloadable

The reader should consult Chapter 5 and the glossary for a discussion
of unfamiliar terms.

4.5 EXAMPLES - TWO VERSIONS OF CALC

The first run of CALC discussed in Chapter 2 produced the memory
allocation file listed in Figure 4-2 and the short form of the memory
allocation file obtained for version 2 is shown in Figure 4-3.

4.5.1 Segment Description

The memory allocation file heading is self-explanatory. The segment
description indicates that the task consists entirely of R/W p-section
and that the task is 43240 (octal} bytes in length. The stack size is
defaulted to the lower lOOO(octal} bytes of the task.

The program transfer address indicates that task execution begins at
virtual address 1000. The default attributes assigned to the task are
floating point (FP} and not fixable (NF}.

4-15

MEMORY ALLOCATION

The discussion of the label block in Appendix C explains why the task
occupies virtual blocks 3 through 46 (octal).

4.5.2 Program Section Allocation Synopsis

The blank program section '. BLK.' contains the object code produced
from the translation of the modules for CALC;l. The code begins at
virtual address 1000, ends at virtual address 32507, and occupies
31510 bytes.

The program section 'oTA ' is the memory allocation reserved for the
common block OTA.

The remaining program sections are storage regions required by the
FORTRAN object time system (OTS) and File Control Services (FCS) ,
which were called in by the FORTRAN compiler to perform services for
the FORTRAN program.

4.5.3 File Contents Description

The file contents description lists for each file the program sections
that the file contributed to the segment. In CALC;l there are three
input files, RDIN.OBJ, PROCl.OBJ, and RPRT.OBJ. In addition to these
files, the library file SYSLIB.OLB contributed the FORTRAN run-time
routines and all FCS routines required.

The input file RDIN.OBJ contains two p-sections; namely, '.BLK. ', and
'OTA ' If the program had used a blank or unnamed common, the
p-section .$$$$. would have appeared in the p-section allocation
synopsis. The p-section '. BLK.' contains the code for RDIN.OBJ,
starts at virtual address 1000, and occupies 150 bytes. 'oTA ' is
the p-section containing the common block DTA. This section starts at
virtual address 32510, and occupies 1442 bytes.

The input file, PROCl.OBJ, also contains two p-sections; namely,
'. BLK. , and 'OTA • The p-section '.BLK.' contains the code for
PROCl and the definition for global symbol 'PROCl', the name of the
subroutine.

The memory allocation file reproduced below does not contain the
modules contributed by the library file SYSLIB.OLB.

4-16

MEMORY ALLOCATION

FILE CALC.TSK;l MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 13-FEB-75
AT 14:21 BY TASK BUILDER VERSION R09

*** ROOT SEGMENT: RDIN

R/W MEM LIMITS: 000000 043237 043240
STACK LIMITS: 000000 000777 001000
DISK BLK LIMITS: 000003 000046 000044
IDENTIFICATION : 02
PRG XFR ADDRESS: 001000
TASK ATTRIBUTES: FP,NF

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 001000 032507 031510
<DTA >: 032510 034151 001442
<$$DEVT>: 034152 036065 001 714
<$$FSR1>: 036066 042165 004100
<$$FSR2>: 042166 042267 000102
<$$IOB1>: 042270 042473 000204
<$$IOB2>: 042474 042474 000000
<$$0TST>: 042474 042507 000014
<$$RESL>: 042510 043235 000526
<. ABS.>: 000000 000000 000000

*** FILE: RDIN.OBJ:l TITLE: .MAIN.

<. BLK.>: 001000 001147 000150

MAIN. 001000-R

<DTA >: 032510 034151 001442

*** FILE: PROCl. OBJ; 2 TITLE: PROCl

<. BLK.>: 001150 001173 000024

PROCl 001150-R

<DTA >: 032510 034151 001442

!DENT:

!DENT:

*** FILE: RPRT.OBJ;2 TITLE: RPRT !DENT:

<. BLK.>: 001174 001217 000024

RPRT 001174-R

<DTA >: 032510 034151 001442

Figure 4-2
Memory Allocation File for CALC;l

4-17

MEMORY ALLOCATION

In the example CALC;2 in Chapter 3, the user added some code to RDIN,
and entered two options during option input:

e ACTFIL=l to eliminate the three active file buffers not
needed by CALC.

• PAR=PAR14K to direct the Task Builder to use a larger
partition for CALC since the user intends to
expand the task. However, this has no effect on
task building other than to set up. a partition
name for Install to use.

The memory allocation file shown in Figure 4-3 reflects these changes:

FILE CALC.TASK;2 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 13-FEB-75
AT 14:29 BY TASK BUILDER VERSION R09

*** ROOT SEGMENT: RDIN

R/W MEM LIMITS: 000000 040203 040204
STACK LIMITS: 000000 000777 001000
IDENTIFICATION : 02
PRG XFR ADDRESS: 001000
TASK ATTRIBUTES: FP,NF

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 001000 032533 031534
<DTA >: 032534 034175 001442
<$$DEVT>: 034176 036111 001714
<$$FSR1>: 036112 037131 001020
<$$FSR2>: 037132 037233 000102
<$$ IOBl>: 037234 037437 000204
<$$!082>: 037440 037440 000000
<$$0TST>: 037440 037453 000014
<$$RESL>: 037454 040201 000526
<. ABS.>: 000000 000000 000000

Figure 4-3
Memory Allocation File for CALC;2

Because of the additional logic in the program RDIN, the task code
allocation increased from 31510 in CALC;l to 31534 in CALC;2.

Because the ACTFIL keyword was used, the File Storage Region buffer
pool, $$FSR1, decreased from 4100 in CALC;l to 1020 in CALC;2.

CALC;l CALC;2 Difference

task code 31510 31534 + 24

$$FSR1 4100 1020 -3060

-3034

4-18

MEMORY ALLOCATION

The use of the ACTFIL keyword saved 3060 bytes. The net saving of
3024 bytes, when added to the memory requirements for CALC;2, gives
the memory requirement for CALC;l

CALC;2 40204

DIFF 3034

CALC;l 43240

4-19

CHAPTER 5

OVERLAY CAPABILITY

This chapter describes the use of the overlay capability to reduce the
memory requirements of a task. The concept of tree structured
overlays is introduced and a language for representing this structure
is defined. Examples are given that illustrate the use of the
l.anguage and the allocation of memory for an overlayed task.

5.1 OVERLAY DESCRIPTION

To create an overlay structure, the user divides his task into a
series of segments; specifically:

• a single root segment, which is always in memory, and

• any number of overlay segments, which share memory with one
another.

A segment consists of a set of modules and p-sections that can be
loaded by a single disk access. Segments that overlay each other must
be logically independent. Two segments are said to be logically
independent if the components of one segment do not reference and are
not referenced by any of the components of the other segment.

When the user defines an overlay structure, he must consider the
general flow of control within his task in addition to the logical
independence of the overlay segments. Dividing a task into overlays
saves space, but introduces the overhead activity of loading these
segments into memory as they are needed. The programmer must make
optimization decisions in constructing the overlay just as he does in
writing the programs.

There are several large classes of tasks that can
effectively by an overlay structure. A task that moves
through a set of modules is well suited to the use of
structure. A task which selects one of a set ot modules
the value of an item of input data is also well suited to
structure.

5-1

be handled
sequentially

an overlay
according to

an overlay

OVERLAY CAPABILITY

5.1.1 Overlay Structure

Consider a task, TKl, which consists of four input files. Each input
file consists of a single module of the same name as the file. The
task is built by the command:

MCR>TKB TKl=CNTRL,A,B,C

Suppose the user knows that the modules A, B, and C are logically
independent. In this example:

A does not call B or c and does not use the data of B or C,
B does not call A or c and does not use the data of A or C,
c does not call A or B and does not use the data of A or B.

The user can define an overlay structure in which A, B, and c are
overlay segments that occupy the same storage. Suppose further that
the flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL,
CNTRL calls B and B returns to CNTRL,
CNTRL calls c and c returns to CNTRL,
CNTRL calls A and A returns to CNTRL.

The loading of overlays occurs only four times during the execution of
the task. Therefore, the user can reduce the memory requirements of
the task without unduly increasing the overhead activity.

Consider the effect of introducing an overlay structure on the
allocation of memory for the task. Suppose the lengths of the modules
are as follows:

CNTRL
A
B
c

10000 bytes
6000 bytes
5000 bytes
1200 bytes

The memory allocation produced as a result of building the task as a
single segment on a system with memory mapping hardware is as follows:

24200

c
23000

B
16000

A
10000

CNTRL
0

The memory allocation for a single-segment task requires 24200 bytes.

5-2

OVERLAY CAPABILITY

The memory allocation produced as a result of using the overlay
capability and building a multi-segment task is as follows:

- 16000
A

B
c

- 10000

CTRL
- 0

The multi-segment task requires 16000 bytes. In addition to the
module storage, additional storage is required for overhead connected
with handling the overlay structure. This overhead is described later
and illustrated in the example CALC.

Observe that the amount of storage required for the task is determined
by the length of the root segment and the length of the longest
overlay segment. Overlay segments A and B in this representation are
much longer than overlay segment C. If the user can divide A and B
into sets of logically independent modules, further reduction can be
made in the storage requirements for the task. Segment A is divided
into a control program, A0, and two overlays, Al and A2. Then, A2 is
further divided into a main part ,A2, and two overlays ,A21 and A22.
Similarly, segment B is divided into a control module, B0, and two
overlays, Bl and B2.

The memory allocation for the task produced by the additional overlays
defined for A and B is given by the diagram:

13600
i------

A21 A22 i------

Al A2 Bl B2
c

AO BO

10000

CNTRL

- 0

As a single-segment task, TKl required 24200 bytes of storage. The
first overlay structure reduced the requirement by 6200 bytes. The
second overlay structure further reduced the storage requirement by
2200 bytes.

Observe that a vertical line can be drawn through the memory diagram
to indicate a state of memory. In the diagram given here, the
leftmost such line gives memory when CNTRL, A0, and Al are loaded:
the next such line gives memory when CNTRL, A0, A2, and A21 are
loaded: and so on.

Observe also that a horizontal line can be drawn through the memory
diagram to indicate segments that share the same storage. In the
given diagram, the uppermost such line gives Al, A21, A22, Bl, B2 and
C, all of which can use the same memory; the next such line gives Al,
A2, Bl, B2, and C; and so on.

5-3

OVERLAY CAPABILITY

5.1.2 Overlay Tree

The Task Builder provides a language for representing an overlay
structure consisting of one or more trees.

A single overlay tree is described first and then the procedure for
describing multiple overlay trees is given.

The memory allocation for the previous example can be represented by
the single overlay tree shown below:

A21 A22
I I

I
Al A2 Bl B2

I I I I

AO BO c

CNTRL

The tree has a root, CNTRL, and three main branches, A0, B0, and C.
The tree has six leaves, Al, A21, A22, Bl, B2, and C.

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root, for example:

A21-A2-A0-CNTRL

The path up is defined from the root to the leaf, for example:

CNTRL-B0-Bl.

Understanding the tree and its paths is important to the understanding
of the overlay loading mechanism and the resolution of global symbols.

5.1.2.1 Loading Mechanism - Modules can call other modules that exist
on the same path. The module CNTRL is common to every path of the
tree and, therefore, can call and be called by every module in the
tree. The module A2 can call the modules A21, A22, A0, and CNTRL;
but A2 can not call Al, Bl, B2, B0 or C.

When a module calls a module in another overlay segment,
segment must be in memory or must be brought into memory.
for loading overlays are described in the next chapter.

the overlay
The methods

5.1.2.2 Resolution of Global Symbols in a Multi-segment Task - The
Task Builder performs the same activities in resolving global symbols
for a multi-segment task as it does for a single segment task. The
rules defined in Chapter 4 for the resolution of global symbols in a
single segment task still apply, but the scope of the global symbols
is altered by the overlay structure.

5-4

OVERLAY CAPABILITY

In a single segment task, any global definition can be referenced by
any module. In a multi-segment task, a module can only reference a
global symbol that is defined on a path that passes through the
segment to which the module belongs.

In a single segment task, if two global symbols with the same name are
defined, the symbols are multiply defined and (if the values differ)
an error message is produced. In a multi-segment task two global
symbols can be defined with the same name as long as the definitions
are on separate paths. A reference is said to be ambiguous if there
are multiple definitions on common paths to which the reference could
be resolved.

Consider the task TKl and the global symbols Q, R, S, and T.

Al
Q {ref)
R{ref)

I

A21
T(def)

I
I

A2
R(def)

I

A22
R(ref)
Q C:r:;ef)

Bl B2

Q(r~

AO BO C

Q{def) Q(def) I
s {def) S (def)

T<a~rf_)~~~~~~~~~~~~~I~~~~~~~~---

CNTRL
S (ref)

The following remarks apply to the use of each of the symbols shown in
the diagram:

Q The global symbol Q is defined in the segment A0 and in the
segment 80. The reference to Q in segment A22 and the
reference to Q in segment Al are resolved to the definition
in A0. The reference to Q in Bl is resolved to refer to the
definition of B0. The two definitions of Q are distinct in
all respects and occupy different memory allocations.

R ·The global symbol R is defined in the segment A2. The
reference to R in A22 is resolved to the definition in A2
because there is a path to the reference from the definition
(CNTRL-A0-A2-A22). The reference to R in Al, however, is
undefined because there is no definition for R on a path
through Al.

S The global symbol S is defined in A0 and 80. References to S
from Al, A21 or A22 are resolved to the definition in A0 and
references to S in Bl and 82 are resolved to the definition
in 80. However, the reference to S in CNTRL cannot be

5-5

OVERLAY CAPABILITY

resolved because there are two definitions of S on separate
paths through CNTRL. S is ambiguously defined.

T The global symbol T is defined in A21 and A0. Since there is
a single path through the two definitions (CNTRL-A0-A2-A21),
the global symbol T is multiply defined.

5.1.2.3 Resolution of P-sections in a Multi-segment Task - Each
p-section has an attribute that indicates whether the p-section is
local (LCL) to the segment in which it is defined or of global (GBL)
extent.

Local p-sections with the same name can appear in any number of
segments. Storage is allocated for each local p-section in the
segment in which it is declared. Global p-sections of the same name,
however, must be resolved by the Task Builder.

When a global p-section is defined in several overlay segments along a
common path, the Task Builder allocates all storage for the p-section
in the overlay segment closest to the root.

FORTRAN common blocks are translated into global p-sections with the
overlay attribute. Suppose that in the task TKl. the common block
COMA is defined in modules A2 and A21. The Task Builder allocates the
storage for COMA in A2 because that segment is closer to the root than
the segment which contains A21.

However, if the programs A0 and B0 use a common block COMAB, the Task
Builder allocates the storage for COMAB in both the segment which
contains A0 and the segment which contains B0. A0 and B0 can not
communicate through COMAB. When the overlay segment containing B0 is
loaded, any data stored in COMAB by A0 is lost.

The tree for the task TKl including the allocation of the common
blocks COMA and COMAB is:

A21 A22
I I

Al A2 Bl B2

I COMA I I I

I
AO BO c

COMAB CO MAB I I I

CNTRL

The allocation of p-sections can be specified by the user. If A0 and
80 need to share the contents of COMAB, the user can force the

5-6

OVERLAY CAPABILITY

allocation of this p-section into the root segment by the use of the
.PSECT directive, described in Section 5.1.3.4.

5.1.3 Overlay Description Language (ODL)

The Task Builder provides a language that allows the user to describe
the overlay structure. The overlay description language (ODL)
contains five directives by which the user can describe the overlay
structure of his task.

An overlay description consists of a series of ODL directives. There
must be one .ROOT directive and one .END directive. The .ROOT
directive tells the Task Builder where to start building the tree and
the .END directive tells the Task Builder where the input ends.

5.1.3.1 .ROOT and .END Directives - The arguments of the ROOT
directive make use of two operators to express concatenation and
overlaying. A pair of parentheses delimits a group of segments that
start at the same location in memory. The maximum number of nested
parentheses cannot exceed 32.

• The operator dash '-' indicates the concatenation of storage.
For example, 'x-Y' means that the memory allocation must
contain X and Y simultaneously. So X and Y are allocated in
sequence.

• The operator comma appearing within parentheses indicates
the overlaying of storage. For example, 'y,z' means that
memory can contain either Y or z. Therefore Y and Z are
share storage.

This operator is also used to
structures, as described in 5.1.4.

define

Consider the overlay description language directives:

.ROOT X-(Y,Z-(Zl,Z2))

.END

multiple tree

These directives describe the following tree and its corresponding
memory diagram:

y
I

I
x

Zl
I

I
z

Z2
I

L
Zl l Z2

y z

x

5-7

OVERLAY CAPABILITY

To create the overlay description for the task TKl described earlier
in this chapter, the user creates a file TFIL that contains the
directives:

.ROOT CNTRL- (A0- (Al ,A2- (A21,A22)) ,B0- (Bl ,B2) ,C)

.END

To build the task with that overlay structure, the user types:

MCR>TKB TKl=TFIL/MP

The switch MP tells the Task Builder that there is only one input
file, TFIL.ODL, and that file contains an overlay description for the
task.

5.1.3.2 .FCTR Directive - The tree that represents the
structure can be complicated. The overlay description
includes another directive, .FCTR, which allows the user
large trees and represent them systematically.

overlay
language

to build

The .FCTR directive allows the user to extend the tree description
beyond a single line. Since there can be only one .ROOT directive,
the .FCTR directive must be used if the tree definition exceeds one
line. The .FCTR directive, however, can also be used to introduce
clarity in the representation of the tree.

The maximum number of nested .FCTR levels is 32.

To simplify the tree given in the file TFIL the .FCTR directive is
introduced into the overlay description language as follows:

AFCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,BFCTR,C)

.FCTR A0-(Al,A2-(A21,A22))

.FCTR B0-(Bl,B2)

.END

The label 'BFCTR', is used in the .ROOT directive to designate the
argument of the .FCTR directive, 'B0-(Bl,B2) '. The resulting overlay
description is easier to interpret than the original description. The

5-8

OVERLAY CAPABILITY

tree consists of a root, CNTRL, and three main branches. Two of the
main branches have sub-branches.

The .FCTR directive can be nested.
follow:

The user can modify TFIL as

AFCTR:
A2FCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,BFCTR,C)

.FCTR A0-(Al,A2FCTR)

.FCTR A2-(A21,A22)

.FCTR B0-(Bl,B2)

.END

The decision to use the .FCTR directive is based on considerations of
space, style and readability of a complex ODL file.

5.1.3.3 .NAME Directive - The .NAME directive allows a segment name
to be defined and included at any appropriate point in the tree. The
defined name must be unique with respect to filenames, p-section
names, .FCTR labels and other segment names that are used in the
overlay description.

The .NAME directive is used to uniquely identify a segment that is to
be loaded into memory by means of the Manual Load Method described in
Chapter 6.

Suppose that, in the definition of the tree for TKl, the user wants to
give a name to every main branch of the tree. He defines three names
and includes these new names in the overlay description for the tree.
TFIL is modified as follows:

AFCTR:
BFCTR:

.NAME BRNCHl

.NAME BRNCH2

.NAME BRNCH3

.ROOT CNTRL-(BRNCH1-AFCTR,BRNCH2-BFCTR,BRNCH3-C)

.FCTR A0-(Al,A2-(A21,A22))

.FCTR B0-(Bl,B2)

.END

Note that, in scanning down all .FCTR directives for a particular
segment, the most recent (i.e., at deepest level) .NAME directive
applied will be adopted if there is more than one .NAME directive for
the segment.

5.1.3.4 .• PSECT Directive - The .PSECT directive allows the placement
of a global p-section to be specified directly. The name of the
p-section and its attributes are given in the .PSECT directive. Then,
the name can be used explicitly in the definition of the tree to
indicate the segment in which the p-section is to be allocated.

SuppJse the user encountered a problem in communication resulting from
the overlay description for TKl. The user was careful about the
logi al independence of the modules in the overlay segment, but the
user failed to take into account the logical independence requirement
of multiple executions of the same overlay segment.

5-9

OVERLAY CAPABILITY

The flow of the task TKl, as described earlier in this chapter, is
summarized in the following way. CNTRL calls each of the overlay
segments and the overlay segment returns to CNTRL in the following
order: A,B,C,A. The module A is executed twice. The overlay segment
containing A must be reloaded for the second execution of A.

The module A uses the common block DATA3 and the Task Builder
allocates DATA3 in the overlay segment containing A. The first
execution of A stores some results in DATA3. The second execution of
A requires these values. In the present overlay description, however,
the values calculated by the first execution of A are overlaid. When
the segment containing A is read in for the second execution, the
common block is in its initial state.

The use of a .PSECT directive forces the allocation of DATA3 into
root segment to permit the two executions of A to communicate.
is modified as follows:

AFCTR:
BFCTR:

.PSECT DATA3,RW,GBL,REL,OVR

.ROOT CNTRL-DATA3-(AFCTR,BFCTR,C)

.FCTR A0-(Al,A2-(A21,A22))

.FCTR B0-(Bl,B2)

.END

The attributes RW,GBL,REL and OVR are described in Chapter 4.

5.1.4 Multiple Tree Structures

the
TFIL

The Task Builder allows the specification of more than one tree within
the overlay structure. A structure containing multiple trees has the
following properties:

1. Storage is not shared among trees. The total storage
required is the sum of the longest path on each tree.

2. Each path in a tree is common to all paths on every other
tree.

These properties allow modules, that would otherwise have to reside in
the root segment, to be contained in an overlay tree.

Such overlay trees within the structure consist of a main tree and one
or more co-trees. The root segment of the main tree is loaded by the
monitor when the task is made active while segments within each
co-tree are loaded through calls to the overlay runtime system.

Except for the above distinction, all overlay trees have identical
characteristics. That is, each tree must have a root segment and
possibly one or more overlay segments.

The following paragraphs describe the procedure for specifying
multiple trees 1n the overlay description language and illustrate the
use of co-trees to reduce the memory required by a task.

5-10

OVERLAY CAPABILITY

5.1.4.1 Defining a Multiple Tree Structure - Multiple tree structures
are specified within the overlay description language by extending the
function of the comma ','operator. As previously discussed, this
operator, when included within parentheses, defines a pair of segments
that share storage. The inclusion of the comma operator outside all
parentheses delimits overlay trees. The first overlay tree thus
defined is the main tree. Subsequent trees are co-trees.

Consider the following :

X:
Y:

.ROOT

.FCTR

.FCTR

.END

X,Y
X0-(Xl,X2,X3)
Y0-(Yl,Y2)

Two overlay trees are specified. A main tree containing the root
segment X0 and three overlay segments and a co-tree consisting of root
segment Y0 and two overlay segments. The Executive loads segment X0
into memory when the task is activated. The task then loads the
remaining segments through calls to the overlay runtime system.

A co-tree must have a root segment to establish linkages to the
overlay segments within the co-tree. Logically, these root segments
need not contain code or data. (Such modules can be resident in the
main root). A segment of this type termed a 'null segment', may be
created by means of the .NAME directive. The previous example is
modified as shown below to include a null segment •

X:

Y:

• ROOT
.FCTR
.NAME
.FCTR
.END

X,Y
X0-Y0-(Xl,X2,X3)
YNUL
YNUL-(Yl,Y2)

The null segment 'YNUL' is created, using the .NAME directive, and
replaces the co-tree root that formerly contained Y0.0BJ. Y0 now
resides in the main root.

5.1.4.2 Multiple Tree Example - The following example illustrates the
use of multiple trees to reduce the size of the task.

Suppose that in the task TKl, the root segment CNTRL consists of a
small dispatching routine and two long modules, CNTRLX and CNTRLY.
CNTRLX and CNTRLY are logically independent of each other, are
approximately equal in length, and must access modules on all the
paths of the main tree.

The user can define a co-tree for CNTRLX and
saving in the storage required by the task.
description in TFIL as follows:

.NAME CNTRL2

CNTRLY and effect a
He modifies the overlay

.ROOT CNTRL-(AFCTR,BFCTR,C) ,CNTRL2-(CNTRLX,CNTRLY)

.END

5-11

OVERLAY CAPABILITY

The co-tree is defined at the 'zeroth' parenthesis level in the .ROOT
directive. A co-tree must have a root segment, to establish linkages
to the overlay segments within the co-tree. When no code or data
logically belong in the root, the .NAME directive can be used to
create a null root segment.

The tree for the task TKl now is:

A21 A22
I I

Al A2 ¥ B2 CNTRLX CNTRLY
I

I
I

I
I y AO BO c

CNTRL CNTRL2

The corresponding memory diagram is:

6200

CNTRLX CNTRLY

CNTRL2 *- 2200
1-----

A21 A22

Al A2 Bl B2

AO BO c
1000

CNTRL
0

The specification of the co-tree decreases the storage allocation by
4000 bytes. CNTRLX and CNTRLY can still access modules on all the
paths of the main tree. The only requirement imposed by the
introduction of the co-tree is the logical independence of CNTRLX and
CNTRLY.

Any number of co-trees can be defined. Additional co-trees can access
all the modules in the main tree and in the other co-trees.

5-12

OVERLAY CAPABILITY

5.1.5 Overlay Core Image

The core image for a task with an overlay structure can be represented
by the following diagram:

co-tree
overlay
segment

co-tree
root segment

....

co-tree
overlay
segments

co-tree
root segment

main tree
root

segment

stack

The stack is described in Chapter 4.

5-13

OVERLAY CAPABILITY

The root segment of the main tree contains all the modules that are
resident in memory throughout the entire execution of the task, along
with the segment tables, and if the autoload loading method is used,
the autoload vectors.

auto load
vectors

segment
tables

code and
data

main tree
root segment

The segment table contains a segment descriptor for every segment in
the task. The descriptor contains information about the load address,
the length of the segment, and the tree linkages. The segment table
is described in detail in Appendix C.

Autoload vectors appear in every segment that calls modules in another
segment that is further from the root of the tree. Autoload vectors
are described in connection with loading mechanisms in Chapter 6 and
the detailed composition of the autoload vector is given in Appendix
c.
The main tree overlay region consists
overlay segments of the main tree.
area of memory as they are needed.

autoload vectors

code and data

. . .
autoload vectors

code and data

of memory allocated for the
The overlays are read into this

overlay
segment

~

overlay
segment

~

overlay

The co-tree overlay region consists of memory allocated for the
overlay segments of the co-trees.

5-14

OVERLAY CAPABILITY

The co-tree root segment contains the modules that, once loaded, must
remain resident in memory.

5.2 EXAMPLE: CALC;3

The version of CALC introduced earlier is now ready for the addition
of two more data processing routines, PROC2 and PROC3. These new
algorithms are logically independent of each other and of PROCl. The
third algorithm, PROC3, contains two independent routines SUB! and
SUB2.

The user defines an overlay structure for CALC as follows:

PROCl

5.2.1 Defining the ODL File

PROC2

RDIN
RPRT

SUBl
I

I
PROC3

SUB2
I

The user constructs a file, CALTR, of ODL directives to represent the
tree for CALC, as follows:

MCR>EDI
EDI>CALTR.ODL
TEDI -- CREATING NEW FILE]
INPUT

.ROOT RDIN-RPRT-*(PROC1,PROC2,P3FCTR)
P3FCTR: .FCTR PROC3-{SUB1,SUB2)

*EX
.END

NOTE

The '*' in the ODL description is the
autoload indicator and is described in
Chapter 6.

5-15

OVERLAY CAPABILITY

5.2.2 Building the Task

The user builds the task with the same options as in the example of
Chapter 3. The names of the input files are replaced by a single
filename that designates the file containing the overlay description:

MCR>TKB
TKB>CALC;3,LP:/SH=CALTR/MP
ENTER OPT IONS :
TKB>PAR=PAR14K
TKB>ACTFIL=l
TKB>//

5.2.3 Memory Allocation File for CALC;3

The short memory allocation file for this multi-segment task consists
of one page per segment. For convenience the pages are compressed in
this manual. See Figure 5-1.

The memory diagram for CALC;3 is:

J
SUBl J SUB2

PROCl PROC2
PROC3

Segment Tables and Autoload Vectors

FORTRAN Buffers

DTA

RPRI
RDIN

Stack

37724

3765ji'J

37ji'J~4
363~ji'J
36l~ji'J

34414

34232

23312

21650

If the user had not used an overlay structure for the task, the memory
requirement of the task would have been:

ROOT
PROCl
PROC2
PROC3
SU Bl
SUB2

34414
1464
1664
2370

644
720

44140

5-16

OVERLAY CAPABILITY

FILE CALC.TSK;3 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 31-MAR-75
AT 15:47 BY TASK BUILDER VERSION R09

*** ROOT SEGMENT: RDIN

R/W MEM LIMITS:
STACK LIMITS:
DISK BLK LIMITS:
IDENTIFICATION :
PRG XFR ADDRESS:
TASK ATTRIBUTES:

000000
000000
000003
$FORT
001000
FP,NF

034413
000777
000040

034414
001000
000036

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 001000 021647 020650
<DTA >: 021650 023311 001442
<$FIOF >: 023312 025271 001760
<$FIOI >: 025272 025675 000404
<$FIOL >: 025676 025676 000000
<$FI01 >: 025676 027425 001530
<$FI02 >: 027426 027463 000036
<$$ALER>: 027464 027507 000024
<$$AOTS>: 027510 030433 000724
<$$AUTO>: 030434 030567 000134
<$$DEVT>: 030570 031777 001210
<$$FSR1>: 032000 033017 001020
<$$FSR2>: 033020 033121 000102
<$$IOB1>: 033122 033325 000204
<$$IOB2>: 033326 033326 000000
<$$0BF1>: 033326 033435 000110
<$$0BF2>: 033436 033436 000000
<$$0VCT>: 033436 033711 000254
<$$0VDT>: 000000 000000 000000
<$$RESL>: 033712 034231 000320
<. ABS.>: 000000 000000 000000

*** SEGMENT: PROCl

R/W MEM LIMITS: 034414 036077 001464
DISK BLK LIMITS: 000041 000042 000002

Figure 5-1
Memory Allocation File for CALC;3

5-17

OVERLAY CAPABILITY

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 034414 034435 000022
<ADTA >: 034436 036077 001442

*** SEGMENT: PROC2

R/W MEM LIMITS: 034414 036277 001664
DISK BLK LIMITS: 000043 000044 000002

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 034414 034635 000222
<ADTA >: 034636 036277 001442

*** SEGMENT: PROC3

R/W MEM LIMITS: 034414 037003 002370
DISK BLK LIMITS: 000045 000047 000003

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 034414 035341 000726
<ADTA >: 035342 037003 001442

***SEGMENT: SUB!

R/W MEM LIMITS: 037004 037647 000644
DISK BLK LIMITS: 000050 000050 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 037004 037647 000614

*** SEGMENT: SUB2

R/W MEM LIMITS: 037004 037723 000720
DISK BLK LIMITS: 000051 000051 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 037004 037721 000716

Figure 5-1 (cont.)
Memory Allocation File for CALC;3

5-18

OVERLAY CAPABILITY

5.3 EXAMPLE CALC;4

After examining the memory allocation
observes that the Task Builder has
segments PROCl, PROC2, and PROC3, since
equidistant from the root.

file for CALC;3, the user
allocated ADTA in the overlay
all of these segments are

The user knows, however, that these segments need to communicate with
each other through ADTA. In the existing allocation, any values
placed in ADTA by PROCl are lost when PROC2 is loaded. Similarly, any
values stored in ADTA by PROC2 are lost when PROC3 is loaded.

The user adds a .PSECT directive to the overlay description to force
ADTA into the root segment so that PROCl, PROC2, and PROC3 can
communicate with each other. CALTR is modified as follows:

P3FCTR:
.ROOT RDIN-RPRT-ADTA-*(PROC1,PROC2,P3FCTR)
.FCTR PROC3-(SUB1,SUB2)
.PSECT ADTA,RW,GBL,REL,OVR
.END

The task is built as in CALC;3 and the resulting memory allocation
file is represented by the following diagram:

SUBl
SUB2

PROC2
PROC3

PROCl

Segment Table and Autoload Vectors

FORTRAN Buffers

DTA

ADTA

RPRI
RDIN

Stack

5-19

3773~

37654

37~1~
363~4

361~4

35674

24754

23312

21650

OVERLAY CAPABILITY

FILE CALC.TSK;4 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 31-MAR-75
AT 15:44 BY TASK BUILDER VERSION R09

***ROOT SEGMENT: RDIN

R/W MEM LIMITS: 000000 036057 036060
STACK LIMITS: 000000 000777 001000
DISK BLK LIMITS: 000003 000041 000037
IDENTIFICATION : $FORT
PRG XFR ADDRESS: 001000
TASK ATTRIBUTES: FP,NF

PROGRAM SECTION ALLOCATION SYNOPSIS

<. BLK.>: 001000 021647 020650
<ADTA >: 021650 023311 001442
<OTA >: 023312 024753 001442
<$FIOF >: 024754 026733 0017 60
<$FIOI >: 026734 027337 000404
<$FIOL >: 027340 027340 000000
<$FI01 >: 027340 031067 001530
<$Fl02 >: 031070 031125 000036
<$$ALER>: 031126 031151 000024
<$$AOTS>: 031152 032075 000724
<$$AUTO>: 032076 032231 000134
<$$DEVT>: 032232 033441 001210
<$$FSR1>: 033442 034461 001020
<$$FSR2>: 034462 034563 000102
<$$IOB1>: 034564 034767 000204
<$$IOB2>: 034770 034770 000000
<$$0BF1>: 034 770 035077 000110
<$$0BF2>: 035100 035100 000000
<$$0VCT>: 035100 035353 000254
<$$0VDT>: 000000 000000 000000
<$$RESL>: 035354 035673 000320
<. ABS.>: 000000 000000 000000

FIGURE 5-2
Memory Allocation File for CALC;4

5-20

OVERLAY CAPABILITY

*** SEGMENT: PROCl

R/W MEM LIMITS: 036060 036103 000024
DISK BLK LIMITS: 000042 000042 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 036060 036101 000022

*** SEGMENT: PROC2

R/W MEM LIMITS: 036060 036303 000224
DISK BLK LIMITS: 000043 000043 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 036060 036301 000222

*** SEGMENT: PROC3

R/W MEM LIMITS: 036060 037007 000730
DISK BLK LIMITS: 000044 000044 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 036060 037005 000726

*** SEGMENT: SUB!

R/W MEM LIMITS: 037010 037653 000644
DISK BLK LIMITS: 000045 000045 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 037010 037653 000644

*** SEGMENT: SUB2

R/W MEM LIMITS: 037010 037727 000720
DISK BLK LIMITS: 000046 000046 000001

PROGRAM SELECTION ALLOCATION SYNOPSIS:

<. BLK.>: 037010 037725 000716

Figure 5-2 (cont.)
Memory Allocation File for CALC;4

5-21

OVERLAY CAPABILITY

5.4 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

1. An overlay structure consists of one or more trees. Each
tree contains at least one segment. A segment is a set of
modules and p-sections that can be loaded by a single disk
access.

A tree can have only one root segment, but it can have any
number of overlay segments.

2. The overlay description language provides five directives for
specifying the tree representation of the overlay structure,
namely:

.ROOT

.END

.PSECT

.FCTR

.NAME

These directives can appear in any order in the overlay
description, subject to the following restrictions:

a. There can be only one .ROOT and one .END directive.

b. The .END directive must be the last directive, since it
terminates input.

3. The tree structure is defined by the operators ' ' (hyphen)
and ','comma (hyphen) and by the use of parentheses.

The operator ,_, indicates that its arguments are to be
concatenated and thus co-exist in memory. The operator
(comma) within parentheses indicates that its arguments are
to be overlaid and thus share memory. The operator ',·not
enclosed in parentheses delimits overlay trees. The
parentheses group segments that begin at the same point in
memory.

For example,

.ROOT A-B-(C,D-(E,F))

defines an overlay structure with a root segment consisting
of the modules A and B. In this structure, there are four
overlay segments, C, D, E, and F. The outer parenthesis pair
indicates that the overlay segments C and D start at the same
location in memory.

4. The simplest overlay description consists of two directives,
as follows:

.ROOT A-B-(C,D-(E,F))

.END

Any number of the optional directives (.FCTR, .PSECT, and
.NAME) can be included.

5-22

5. The .ROOT
arguments
following:

OVERLAY CAPABILITY

directive defines the overlay structure. The
of the .ROOT directive are one or more of the

• File specifications as described in 2.3.1

• Factor labels

• Segment names

• P-section names

6. The .END directive is required to terminate input.

7. The .FCTR directive provides a means for replacing text by a
symbolic reference (the factor label). This replacement is
useful for two reasons:

a. The .FCTR directive effectively extends the text of the
.ROOT directive to more than one line and thus allows
complex trees to be represented.

b. The .FCTR directive allows the overlay description to be
written in a form that makes the structure of the tree
more apparent.

For example:

• ROOT A- (B- (C , D) , E- (F , G) , H)
.END

can be expressed, using the .FCTR directive, as follows:

Fl:
F2:

.ROOT A-(Fl,F2,H)

.FCTR B-(C,D)

.FCTR E-(F,G)

.END

The second representation makes it clear that the tree has
three main branches.

8 The .PSECT directive provides a means for directly
specifying the segment in which a p-section is placed.

The .PSECT directive gives the name of the p-section and its
attributes. For example:

.PSECT ALPHA,CON,GBL,RW,I,REL

ALPHA is the p-section name and the remaining arguments are
attributes. P-section attributes are described in Chapter 4.
The p-section name must appear first on the .PSECT directive,
but the attributes can appear in any order or can be omitted.
If an attribute is omitted, a default assumption is made.
For p-section attributes the default assumptions are:

RW,I,LCL,REL,CON

5-23

OVERLAY CAPABILITY

In the above example, therefore, it is only necessary to
specify the attributes that do not correspond to the default
assumption:

.PSECT ALPHA,GBL

9. The .NAME directive provides a means for defining a segment
name for use in the overlay description. This directive is
useful for creating a null segment or naming a segment that
is to be loaded manually. If the .NAME directive is not
used, the name of the first file, or p-section in the segment
is used to identify the segment.

The .NAME directive defines a name, as follows:

.NAME NEWNM

The defined name must be unique with respect to the names of
p-sections, segments, files, and factor labels. If more than
one .NAME directive is applied to a segment (via multiple
.FCTR directives), the name encountered last in the scan down
the ODL will be applied.

10. A co-tree can be defined by specifying an additional tree
structure in the .ROOT directive. The first overlay tree
description in the .ROOT directive is the main tree.
Subsequent overlay descriptions are co-trees. For example:

.ROOT A-B- (C,D-(E,F)) ,X- (Y ,Z) ,Q- (R,S,T)

The main tree in this example has the root segment consisting
of files A.OBJ and B.OBJ; two co-trees are defined; the
first co-tree has the root segment X and the second co-tree
has the root segment Q.

5-24

CHAPTER 6

LOADING MECHANISMS

When the user divides a task into overlay segments, he becomes
responsible for loading these overlay segments into memory as they are
needed. The degree of involvement on the part of the user can range
from minimum, in which he specifies that the loading of all segments
be handled automatically, to maximum, in which he explicitly controls
the asynchronous loading of each segment and handles any errors that
occur as a result of the load request.

This chapter describes the loading mechanisms available to the user.

There are two methods for loading overlays:

Autoload

Manual Load

in which the Overlay Runtime System is
automatically invoked to load those segments that
are marked by the user.

in which the user includes explicit calls to the
Overlay Runtime System in his programs.

In the autoload method, loading and error recovery are handled by the
Overlay Runtime System. In the manual load method, the user handles
loading and error recovery explicitly. The user has more control and
can specify whether loading is to be done synchronously or
asynchronously.

The user must decide which method to use, because both methods can not
be used in a single task. Both methods offer advantages. The
autoloa~ method allows the user to divide a task into segments without
explicit calls to load overlays. The manual load method saves space
and gives the user full control over the loading process.

The user is responsible for loading the overlay segments of the main
tree, and if co-trees are used, the root segment as well as the
overlay segments of the co-tree. Once loaded, the root segment of the
co-tree remains in memory.

6-1

LOADING MECHANISMS

6.1 AUTOLOAD

If the user decides to use the autoload method, he places the autoload
indicator '*' in the ODL description of the task at the points where
loading must take place. The execution of a transfer of control
instruction to an autoloadable segment up-tree automatically initiates
the autoload process.

6.1.1 Autoload Indicator

The autoload indicator, '*', marks the construct to which it is
applied as autoloadable. If the autoload indicator is applied to a
parenthesized construct then every name within the parentheses is
marked autoloadable. Applying the autoload indicator at the outermost
parentheses level of the ODL tree description marks every module in
the overlay segments autoloadable.

Consider the example TKl of Chapter 5, and suppose further that
segment c consists of a set of modules Cl, C2, C3, C4 and CS. The
tree diagram for TKl then is:

A21 A22
I I

cs
Al A2 Bl B2 C4

I I I

I
I C3

C2
AO BO Cl

I

CNTRL

If the user introduces the autoload indicator at the outermost
parentheses level, he is assured that, regardless of the flow of
control within the task, a module is always properly loaded when it is
called. The ODL description for the task with this provision then is:

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-*(AFCTR,BCTR,CFCTR)

.FCTR A0-(Al,A2-(A21,A22))

.FCTR B0-(Bl,B2)

.FCTR Cl-C2-C3-C4-C5

.END

To be assured that all modules of a co-tree are properly loaded, the
user must mark the root segment as well as the outermost parentheses
level of the co-tree, as follows:

.ROOT CNTRL-*(AFCTR,BFTCR,CFCTR) ,*CNTRL2-*(CNTRLX,CNTRLY)

The above example assumes that one or more modules containing
executable code reside in CNTRL2.

6-2

LOADING MECHANISMS

The autoload indicator can be applied to the following constructs:

• Filenames - to make all the components
autoloadable.

of the file

• Parenthesized ODL tree descriptions - to make all the names
within the parentheses autoloadable.

• P-section names - to make the p-section autoloadable. The
p-section must have the I (instruction) attribute.

• Defined names introduced by the
all components of the segment
autoloadable.

.NAME directive - to make
to which the name applies

• Factor label names - to make the first irreducible component
of the factor autoloadable. If the entire factor is
enclosed in parentheses, then the entire factor is made
autoloadable.

Suppose the user introduces two .PSECT directives and a .NAME
directive into the ODL description for TKl and then applies autoload
indicators in the following way:

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-(*AFCTR,*BFCTR,*CFCTR)

.FCTR A0-*ASUB1-ASUB2-*(Al,A2-(A21,A22))

.FCTR (B0-(Bl,B2))

.FCTR CNAM-Cl-C2-C3-C4-C5

.NAME CNAM

.PSECT ASUBl,I,GBL,OVR

.PSECT ASUB2,I,GBL,OVR

.END

The interpretation for each autoload indicator in the
description is as follows:

overlay

*AFCTR

*BF CTR

*CF CTR

*ASUBl

The autoload indicator is applied
name, so the first irreducible
factor, A0, is made autoloadable.

to a factor
component of

The autoload indicator is applied to a factor
name, so the first irreducible component of
factor, (B0-(Bl,B2)), is made autoloadable.

label
that

label
that

Again, the autoload indicator is applied to a factor
label name, so the first irreducible comp0nent, CNAM,
of the factor is made autoloadable. CNAM, however, is
a defined name introduced by a .NAME directive, so all
the components of the segment to which the name applies
are made autoloadable; that is, Cl, C2, C3, C4, and
cs.

The autoload indicator is applied to a p-section name,
so the p-section ASUBl is made autoloadable.

*(Al,A2-(A21,A22)) The autoload indicator is applied to a
parenthesized ODL description so every name within the
parentheses is made autoloadable; that is, Al, A2,
A21, and A22.

6-3

LOADING MECHANISMS

The net effect 0f the above ODL description is to make every name
except ASUB2 autoloadable.

6.1.2 Path-loading

Autoload uses the technique of path-loading. That is, a call from a
segment to a segment up-tree (farther away from the root) requires
that all the segments on the path from the calling segment to the
called segment to be resident in memory. Path loading is confined to
the tree in which the called segment resides. A call from a segment
in another tree results in the loading of all segments on the path in
the second tree from the root to the called module.

Consider again the example TKl and the tree diagram:

A21 A22
I I

cs
Al A2 Bl B2 C4

I I I

I
I C3

C2
AO BO Cl

I

CNTRL

If CNTRL calls A2, then all the modules between the calling module
CNTRL and the called module A2 are loaded. In this case modules A0
and A2 are loaded.

The Overlay Runtime System keeps track of the segments in memory and
only issues load requests for those segments not in memory. If, in
the above example, CNTRL called Al and then called A2, A0 and Al are
loaded first and then A2 is loaded. A0 is not loaded when A2 is
loaded because it is already in memory.

A reference from a segment to a segment down-tree (closer to the root)
is resolved directly. For example, if A2 calls A0, then the reference
is resolved directly because A0 is known to be in memory as a result
of the path-loading that took place in the call to A2.

6.1.3 Autoload Vectors

When the Task Builder sees a reference from a segment to an
autoloadable segment up-tree, it generates an autoload vector for the
referenced global symbol. The definition of the symbol is changed to
an autoload vector table entry. The autoload vector has the following
format:

6-4

LOADING MECHANISMS

JSR PC

$AUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

Observe that a Transfer of Control
global symbol executes the call
contained in the autoload vector.

instruction to
to the autoload

the referenced
routine, $AUTO

An exception is made in the case of a p-section with the D (data)
attribute. References from a segment to a global symbol up-tree in a
p-section with the D attribute are resolved directly.

Since the Task Builder can obtain no information about the flow of
control within the task, it often generates more autoload vectors than
are necessary. The user, however, can apply his knowledge of the flow
of control of his task and his knowledge of path-loading to determine
the placement of autoload indicators. By placing the autoload
indicators only at the points where loading is actually required, the
user can minimize the number of autoload vectors generated for the
task.

Suppose that in TKl all the calls to overlays originate in the root
segment. That is, no module in an overlay segment calls outside its
overlay segment. Suppose further that the root segment CNTRL has the
following contents:

PROGRAM CNTRL
CALL Al
CALL A21
CALL A2
CALL A0
CALL A22
CALL B0
CALL Bl
CALL B2
CALL Cl
CALL C2
CALL C3
CALL C4
CALL CS
END

6-5

LOADING MECHANISMS

If the autoload indicator is placed at the outermost parentheses
level, thirteen autoload vectors are generated for this task.

The user observes that since A2 and A0 are loaded by path loading to
A21, the autoload vectors for A2 and A0 are unnecessary. He observes,
further, that the call to Cl loads the segment which contains C2, C3,
C4 and CS; therefore autoload vectors for C2 through CS are
unnecessary.

The user eliminates the unnecessary autoload vectors by placing the
autoload indicator only at the points where loading is required, as
follows:

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-(AFCTR,*BFCTR,CFCTR)

.FCTR A0-(*Al,A2-*(A21,A22))

.FCTR (B0-(Bl,B2))

.FCTR *Cl-C2-C3-C4-CS

.END

With this ODL description, the Task Builder generates only seven
autoload vectors, namely those for Al, A21, A22, B0, Bl, B2, and Cl.

6.2 MANUAL LOAD

If the user decides to use the manual load method of loading segments,
explicit calls to the $LOAD routine must be included in the programs.
These load requests give the name of the segment to be loaded and
optionally give information necessary to perform asynchronous load
requests and to handle unsuccessful load requests.

The $LOAD routine does not path-load. A call to $LOAD always results
in the segment named in the load request being loaded and only that
segment being loaded.

The MACR0-11 programmer calls the $LOAD routine directly. The FORTRAN
programmer is provided with the subroutine 'MNLOAD'.

6.2.1 Manual Load Calling Sequence

The MACR0-11 programmer calls $LOAD, as follows:

MOV
CALL

#PBLK,R0
$LOAD

where PBLK labels a parameter block with the following format:

PBLK: .BYTE
.RADS0
.WORD
.WORD

length,event-flag
/seg-name/
I/O-status
AST-trp

6-6

LOADING MECHANISMS

The user must specify the following parameters:

length

event-flag

seg-name

the length of the parameter block (3 - 5 words)

the event flag number, used for asynchronous
loading. If the event-flag number is zero,
synchronous loading is performed.

the name of the segment to be loaded, a 1- to
6-character radix-50 name, occupying two words.

The following parameters are optional:

I/0-status

AST-trp

the address of the I/O status
Standard QIO status codes apply.

doubleword.

the address of an asynchronous trap service
routine to which control is transferred at the
completion of the load request.

The condition code C is set or cleared on return, as follows:

If the condition code C = 0, the load request was successfully
executed.

If condition code C = 1, the load request was unsuccessful.

For a synchronous load request, the return of the condition code 0
means that the desired segment has been loaded and is ready to be
executed. For an asynchronous load request, the return of the code 0
means that the load request has been successfully queued to the device
driver, but the segment is not necessarily in memory. The user must
ensure that loading has been completed by waiting for the specified
event flag before calling any routines or accessing any data in the
segment.

6.2.2 FORTRAN Subroutine for Manual Load Request

To use manual load in a FORTRAN program, the program makes explicit
reference to the $LOAD routine by means of the 'MNLOAD' subroutine.
The subroutine call has the following form:

CALL MNLOAD (seg-name,event-flag,I/0-status,ast-trp,ld-ind)

where:

seg-name

event-flag

is a 2 word real variable containing the segment name
in radix-50 format.

is an optional integer event flag number, to be used
for an asynchronous load request. If the event flag
number is zero, the load request is considered
synchronous.

6-7

I/0-status

ast-trp

ld-ind

LOADING MECHANISMS

is an optional 2-word integer array to contain the I/O
status doubleword, as described for the QIO directive
in the RSX-llD Executive Reference Manual.

is an optional asynchronous
entered at the completion
requires that all pending
subroutine.

trap
of a

traps

subroutine to be
request. MNLOAD

specify the same

is an optional integer variable to contain the results
of the subroutine call. One of the following values is
returned:

+l request was successfully executed.

-1 request had bad parameters or was not executed
successfully.

Optional arguments can be omitted. The following calls are all legal:

Call Effect

CALL MNLOAD (SEGAl)

CALL MNLOAD (SEGAl,0,,,LDIND)

Load segment named in SEGAl
synchronously

Load segment named in SEGAl
synchronously and return
success indicator to LDIND.

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)

Load segment named in SEGAl
asynchronously, transferring
control to ASTSUB upon
completion of the load
request, storing the
I/O-status doubleword in
IOSTAT and the success
indicator in LDIND

Consider the program CNTRL discussed in connection with the autoload
method, and suppose that between the calls to the overlay segments
there is sufficient processing to make asynchronous loading effective.
The user removes the autoload indicators from his ODL description and
recompiles his FORTRAN programs with explicit calls to the MNLOAD
subroutine, as follows:

PROGRAM CNTRL
EXTERNAL ASTSUB
DATA SEGAl /6RA1 /
DATA SEGA21 /6RA21 /

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)

CALL Al

CALL MNLOAD (SEGA21,l,IOSTAT,ASTSUB,LDIND)

6-8

LOADING MECHANISMS

CALL A21

END
SUBROUTINE ASTSUB
DIMENSION IOSTAT(2)

END

When the AST trap routine is given as shown in the preceding example,
the IO status doubleword is automatically supplied to the dummy
variable IOSTAT.

6.3 ERROR HANDLING

If the manual load method is selected, the user must provide error
handling routines which diagnose load errors and provide appropriate
recovery.

If the autoload method is selected, a simple recovery procedure is
provided, which checks the Directive Status Word (DSW) for the
presence of an error indication. If the DSW indicates that no system
dynamic storage is available, the routine issues a 'wait for
significant event' directive and tries again; if the problem is not
dynamic storage, the recovery procedure generates a breakpoint
synchronous trap. If the using routine is set to service the trap and
returns without altering the state of the program, the request can be
retried.

A more comprehensive user-written error recovery
substituted for the system-provided routine
conventions are observed:

subroutine can be
if the following

1. The error recovery routine must have the entry point name
$ALERR.

2. The contents of all registers must be saved and restored.

On entry to $ALERR, R2 contains the address of the segment descriptor
that could not be loaded. Before recovery action can be taken, the
routine must determine the cause of the error by examining the
following words in the sequence indicated:

1. $DSW -

2. N.OVPT -

The Directive Status Word
status code, indicating
load the overlay segment
Executive.

may contain an error
that the I/O request to

was rejected by the

The contents of this location, offset by N.IOST,
point to a 2-word I/O Status block containing the
results of the load overlay request returned by
the device driver. The status code occupies the
low-order byte of word 0.

6-9

LOADING MECHANISMS

6.4 EXAMPLE: CALC;5

Suppose the task CALC is now complete and checked out and the user
wants to adjust the autoload vectors to minimize the amount of storage
required.

From his knowledge of the flow of control of the task he can determine
that PROC3 is always in memory as a result of path-loading when it is
called and therefore, the autoload vector for PROC3 can be eliminated.

The ODL description in CALTR, is modified as follows:

P3FCTR:
.ROOT RDIN-RPRT-ADTA-(*PROC1,*PROC2,P3FCTR)
.FCTR PROC3-*(SUB1,SUB2)
.END

The task is built and the resulting memory allocation file in Figure
6-1 shows that the repositioning of the autoload indicator saved 10
bytes.

FILE CALC.TSK;5 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 31-MAR-75
AT 15:50 BY TASK BUILDER VERSION R09

*** RDOT SEGMENT: RDIN

R/W MEM LIMITS: 000000 036047 036050
STACK LIMITS: 000000 000777 001000
DISK BLK LIMITS: 000003 000041 000037
IDENTIFICATION : $FORT
PRG XFR ADDRESS: 001000
TASK ATTRIBUTES: FP,NF

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 001000 021647 020650
<ADTA >: 021650 023311 001442
<DTA >: 023312 024753 001442
<$FIOF >: 024754 026733 001760
<$FIOI >: 026734 027337 000404
<$FIOL >: 027340 027340 000000
<$FI01 >: 027340 031067 001530
<$FI02 >: 031070 031125 000036
<$$ALER>: 031126 031151 000024
<$$AOTS>: 031152 032075 00°07 24
<$$AUTO>: 032076 032231 000134
<$$DEVT>: 032232 033441 001210
<$$FSR1>: 033442 034461 001020
<$$FSR2>: 034462 034563 000102
<$$IOB1>: 034564 034767 000204
<$$IOB2>: 034770 034770 000000
<$$0BF1>: 034770 035077 000110
<$$0BF2>: 035100 035100 000000
<$$0VCT>: 035100 035353 000254
<$$0VDT>: 000000 000000 000000
<$$RESL>: 035354 035673 000320
<. ABS.>: 000000 000000 000000

Figure 6-1
Root Segment of Memory Allocation

File for CALC; 5

6-10

CHAPTER 7

SHAREABLE GLOBAL AREAS

RSX-llD provides the facility for dynamic shareable global areas.
This chapter describes the use and creation of shareable global areas
in so far as they are related to task building.

Shareable global areas have the following characteristics.

1. They are created in a manner similar to tasks (i.e., with the
Task Builder).

2. There are two types of shareable global areas.

3.

Read-only known (by convention) as libraries.

Read/write known (by convention) as common blocks.

They occupy memory only when a referencing task is active.
When all referencing tasks become inactive, the space
occupied by shareable global areas is freed. Further, if the
area being released was read/write, the data in the area are
written back to the disk file from which the original loading
occurred.

4. When a task binds to a shareable global area, the area must
exist in the form of a task image and symbol table file (.TSK
and .STB extensions are required) under the system UFD [1,1],
on the system device.

5. At the time the binding task is to be installed, the
shareable global area must have been installed.

6. The /LI and /CM switches of Install are used to specify the
shareable global area as a library or common block.

Consider the first case, in which two tasks, Task A and Task B, need
to communicate a large amount of data. A convenient method of
transporting this data is the use of a shareable global area. Tasks
can communicate independent of their time of execution. This case is
illustrated by the following diagram:

7-1

SHAREABLE GLOBAL AREAS

Shareable
Global Area

s

Task A

Resident
Executive

System Memory
(Time t)

Shareable
Global Area

s

Task B

Resident
Executive

(System Memory)
Time t+n

Task A and Task B communicate through the shareable global area, to
which any number of tasks can be linked.

Consider the second case, in which tasks make use of common routines.
The common subroutines are not included in each task image; instead,
they are included in a shareable global area so that a single copy is
accessible to all tasks. This case is shown in the following diagram:

Routine R

Routine R

Task A

Routine R Task A

Tas.k: B Task B

Resident Resident
Executive Executive

System Memory System Memory

A task can link to as many as seven shareable global areas (SGA). If,
however, the task is multi-user and has read-only sections in the

7-2

SHAREABLE GLOBAL AREAS

root, this pure area of the root is considered as an SGA, and the
number of external SGA's which can be linked to the task is reduced to
six.

A shareable global area has associated with it a task image file and a
symbol definition file. When a task links to a shareable global area
the Task Builder uses the symbol definition file of the shareable
global area to establish the linkages between the task and the
shareable global area.

7.1 USING AN EXISTING SHAREABLE GLOBAL AREA

The user can link to any of the system shareable global areas by
specifying the COMMON or LIBR keyword option along with the name of
the shareable global area and the type of requested access.

If the user wants to link task IMGl to a system shareable global area
named JRNAL so relevent data can be examined, the following COMMON
keyword entry is used to specify the name JRNAL and read-only
attribute.

MCR>TKB
TKB>IMG1,LP:=IN1,IN2,IN3
TKB>/
ENTER OPTIONS:
TKB>COMMON=JRNAL:RO
TKB>//

A task can link to any shareable global area on the disk. However,
before the task can be activated, any shareable global area it uses
must be installed. These areas are loaded dynamically.

7.2 CREATING A SHAREABLE GLOBAL AREA

To create a shareable global area, the task image and symbol
definition files must be built under UFD [1,1] on the system device.

In Chapter 4, runnable tasks were described. A shareable global area
differs from a runnable task in that it does not have a header or a
stack. Therefore, the user must specify that the header and stack are
not to be produced for the task image file when a shareable global
area is created. These two parameters are necessary and sufficient to
identify the entity as a shareable global area to both the Task
Builder and Install.

In summary, to create a shareable global area the following steps are
taken:

• The task image file and symbol definition file are built
under UFD [1,1] on the system device.

• The task image file or symbol definition file has the switch
/-HD, indicating that no header is required.

7-3

SHAREABLE GLOBAL AREAS

• The option STACK=0 is entered during option input to
eliminate the stack.

• Although it is not mandatory, the user can save disk space
by setting UNITS = 0.

Suppose the user wants to create a resident library, ZETA, from the
files Zl, Z2, and Z3. He builds the shareable global area, as
follows:

MCR>TKB
TKB>[l,l]ZETA/-HD,LP:,SY:[l,l]ZETA=Zl,Z2,Z3
TKB>/
ENTER OPTIONS:
TKB>STACK=0
TKB>UNITS=0
TKB>//

A task can now link to the shareable global area. However, before the
task can be installed and activated, the shareable global area must be
made known to the Executive via Install, defining the owner, non-owner
access and the type of SGA. The following example illustrates a
typical installation procedure (see Install command in RSX-llD Useris
Guide) •

MCR>INS[l,l]ZETA/LI/UIC=[l,l]/ACC=RO

7.3 POSITION INDEPENDENT AND ABSOLUTE SHAREABLE GLOBAL AREAS

A shareable global area can be either position independent or
absolute. Position independent shareable global areas can be placed
anywhere in the task's virtual address space. Absolute areas must be
fixed in the virtual address space.

The user must ensure that the area is position independent, if he
applies the PI switch. The PI switch directs the Task Builder to
treat the area as position independent, but the Task Builder can not
determine whether or not the area is position independent. If the PI
switch is applied to an area which is not truly position independent,
the execution of a task linked to that area is unpredictable.

Data is always position independent: Code can be position
independent, but the code produced as a result of compiling a FORTRAN
program is not position independent. Furthermore, FORTRAN programs
can not be used as shareable global areas because these programs do
not satisfy the re-entrancy requirements necessary for shareable
global areas. Refer to the RSX-11 MACR0-11 Reference Manual for
further discussion of position independent coding.

FORTRAN common blocks can be included in shareable global areas.
However, the only way FORTRAN programs can communicate through the use
of common blocks is by the common block name; to retain this name,
the shareable global area must be declared position independent. If
the area is not declared position independent, the name is not
retained and no FORTRAN program can link to the common block.

7-4

SHAREABLE GLOBAL AREAS

Absolute shareable global areas are used for code which satisfies the
re-entrancy requirements for a shareable global area but is not
position independent. The BASE or TOP options are used to build such
images. Non-PIC shareable global areas can reference PIC shareable
global areas, but PIC shareable global areas cannot reference non-PIC
shareable global areas.

7.4 EXAMPLE: CALC;6 BUILDING AND USING A SHAREABLE GLOBAL AREA

Suppose the task CALC has been completely debugged and the user wants
to replace the dummy reporting routine RPRT by a generalized reporting
program that operates as a separate task. This generalized reporting
program GPRT was developed by another programmer in parallel with the
development of CALC. Now both routines are ready and the user wants
to create a shareable global area so that the two tasks can
communicate.

In addition to creating the shareable global area, the user must
modify his FORTRAN routine to replace the call to the dummy reporting
routine by a call to REQUEST for the task GPRT and he must remove the
dummy routine from the ODL description for the task.

7.4.1 Building the Shareable Global Area

The common block into which CALC places its results and from which
GPRT takes it input is named OTA. The user wants to make OTA into a
shareable global area so that the two tasks can communicate.

The user first creates a separate input file for OTA:

MCR>EDI
EDI>DTA. FTN
(EDI -- CREATING NEW FILE]
INPUT
c
C GLOBAL COMMON AREA FOR 'CALC' AND
C REPORTING TASK 'GPRT'

BLOCK DATA

*EX

COMMON /OTA/ A(200) ,I
END

He then compiles OTA:

MCR>FOR DTA,LP:=DTA

Then the user builds the task image and symbol definition file for the
shareable global area OTA:

MCR>TKB
TKB>[l,l]DTA/PI,LP:/SH,SY0:[1,l]DTA/-HD=DTA
TKB>/
E°NTER OPT IONS:

7-5

SHAREABLE GLOBAL AREAS

TKB>STACK=0
TKB>UNITS=0
TKB>//

The task image file for DTA is marked as position independent in order
to retain the name of the referenced common block, OTA.

As required, the task image and symbol definition files are created on
the system device under the User File Directory [1,1,], the switch -HD
is applied to the symbol definition file to specify that the task has
no header, the option STACK=0 is entered to eliminate the stack, and 0
logical units are specified. It was necessary to specify the system
device SY0 for the symbol definition file; if the user does not
specify a device, the last named device applies. In this case,
failure to specify the system device would have resulted in the
application of the device specification LP to the symbol definition
file.

The shareable global area OTA now exists on the disk as an eligible
candidate for inclusion in an active system. The user can now modify
the task to link to that shareable global area. However, before the
task can be executed, the shareable global area must be installed.

7.4.2 Modifying the Task to Use the Shareable Global Area

The user now modifies the task CALC. The file containing the program
RDIN is edited to include the name of the reporting task in radix-50
format:

DATA RPTSK/6RGPRT /

And the call to the dummy reporting routine RPRT is replaced by the
call:

CALL REQUES (RPTSK)

The relevant part of the program RDIN is shown below:

C READ AND ANALYZE INPUT DATA
C ESTABLISH COMMON DATA BASE

COMMON /OTA/ A(200), I
C SET UP NAME OF REPORTING TASK IN RADIX 50

DATA RPTSK /6RGPRT /
C READ IN RAW DATA

CALL REQUES (RPTSK)

END

The user now modifies the ODL description of the task CALC to remove
the file RPRT.OBJ. The .ROOT directive is changed from:

.ROOT RDIN-RPRT-ADTA-(*PR0Cl,*PROC2,P3FCTR)

7-6

SHAREABLE GLOBAL AREAS

to:

.ROOT RDIN-ADTA-(*PR0Cl,*PROC2,P3FCTR}

Then, an indirect command file is built to include the COMMON keyword:

MCR>EDI
Ei5I>CALCBLD.CMD
TEDI -- CREATING NEW FILE]
INPUT
CALC,LP:ISH=CALTRIMP
PAR=PAR14K
ACTFIL=l
COMMON=DTA:RW
II
~EX

And the task is built with the single command referencing the indirect
file:

MCR>TKB @CALCBLD

The communication between the two tasks, CALC and GPRT, is now
established. When the shareable global area OTA is made resident, the
two tasks can run.

7.4.3 The Memory Allocation Files

Figure 7-1 gives the memory allocation file for the shareable global
area DTA. The attribute list indicates that the task image was built
with no header (NH} and is position independent (PI}.

Figure 7-2 gives the memory allocation file for the task CALC after
the shareable global area DTA was created and the dummy reporting
routine removed from the task. The read-write memory limits for the
root segment code have increased due to the call to REQUES. The
read-write memory limits for the entire task have decreased because
the common block OTA is now a shareable global area allocated at
160000 and no longer part of the task.

FILE DTA.TSK;l MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 31-MAR-75
AT 15:54 BY TASK BUILDER VERSION R09

*** ROOT SEGMENT: OTA

RIW MEM LIMITS: 000000 001443 001444
DIS BLK LIMITS: 000002 000003 000002
IDENTIFICATION:
TASK ATTRIBUTES:FP,NF,PI,NH

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 000000 000000 000000
<OTA >: 000000 001441 001442
<. ABS.>: 000000 000000 000000

Figure 7-1
Memory Allocation File for the Shareable Global Area OTA

7-7

SHAREABLE GLOBAL AREAS

FILE CALC.TSK:6 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 31-MAR-75
AT 16:20 BY TASK BUILDER VERSION R09

*** ROOT SEGMENT: RDIN

R/W MEM LIMITS: 000000 034613 034614
STACK LIMITS: 000000 000777 001000
DISK BLK LIMITS: 000003 000040 000036
IDENTIFICATION : $FORT
PRG XFR ADDRESS: 001000
TASK ATTRIBUTES: FP,NF

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 001000 022057 021060
<ADTA >: 022060 023521 001442
<DTA >: 160000 161441 001442
<$FIOF >: 023522 025501 001760
<$FIOI >: 025502 026105 000404
<$FIOL >: 026106 026106 00000
<$FI01 >: 026106 027635 001530
<$FI02 >: 027636 027673 000036
<$$ALER>: 027674 027717 000024
<$$AOTS>: 027720 030643 000724
<$$AUTO>: 030644 030777 000134
<$$DEVT>: 031000 032207 001210
<$$FSR1>: 032210 033227 001020
<$$FSR2>: 033230 033331 000102
<$$IOB1>: 033332 033535 000204
<$$IOB2>: 033536 033536 000000
<$$0BF1>: 033536 033645 000110
<$$0BF2>: 033646 033646 000000
<$$0VCT>: 033646 034121 000254
<$$0VDT>: 000000 000000 000000
<$$RESL>: 034122 034441 000320
<. ABS.>: 000000 000000 000000

FIGURE 7-2
Memory Allocation File for CALC;6

7-8

APPENDIX A

ERROR MESSAGES

The Task Builder produces diagnostic and fatal error messages.
messages are printed in the following forms:

TKB -- *DIAG*-error-message

or

TKB -- *FATAL*-error-message

Error

Some errors are dependent upon correction from the terminal. If the
user is entering text at the terminal, a diagnostic error message can
be printed, the error corrected, and the task building sequence
continued. If the same error is detected by the Task Builder in an
indirect file, the Task Builder cannot request correction and thus the
error is termed fatal and the task build is aborted.

Some diagnostic error messages are simply informative and advise the
user of an unusual condition. If the user considers the condition
normal to his task, he can install and run the task image.

This appendix tabulates the error messages produced by the Task
Builder. Most of the error messages are self-explanatory. The Task
Builder prints the text shown in this manual in upper case letters.
In some cases, the Task Builder prints the line in which the error
occurred, so that the user can examine the line which caused the
problem and correct it.

0. ILLEGAL GET COMMAND LINE ERROR

System error. (no recovery.)

1. COMMAND SYNTAX ERROR
invalid-line

The invalid-line printed has incorrect syntax.

2. REQUIRED INPUT FILE MISSING

At least one file is required for a task build.

A-1

3. ILLEGAL SWITCH
invalid-line

ERROR MESSAGES

The invalid line printed contains an illegal switch or switch
value.

4. NO DYNAMIC STORAGE AVAILABLE

The Task Builder needs additional symbol table storage and
cannot obtain it. The input has exceeded the Task Builder's
capability.

5. ILLEGAL ERROR/SEVERITY CODE

System error. (No recovery.)

6. COMMAND I/O ERROR

I/O error on command input device. (Device may not be online
or possible hardware error.)

7. INDIRECT FILE OPEN FAILURE
invalid-line

The invalid-line contains a reference to a command input file
which could not be located.

8. INDIRECT COMMAND SYNTAX ERROR
invalid-line

The invalid-line printed contains a syntactically incorrect
indirect file specification.

9. MAXIMUM INDIRECT FILE DEPTH EXCEEDED
invalid-line

The invalid-line printed gives the file reference that
exceeded the permissible indirect file depth (2).

10. I/0 ERROR ON INPUT FILE file-name

11. OPEN FAILURE ON FILE file-name

12. SEARCH STACK OVERFLOW ON SEGMENT segment-name

The segment segment-name is more than 16 branch segments from
the root segment.

13. PASS CONTROL OVERFLOW AT SEGMENT segment-name

The segment segment-name is more than 16 branch segments from
the root segment.

A-2

ERROR MESSAGES

14. FILE file-name HAS ILLEGAL FORMAT

The file file-name contains an object module whose format is
not valid.

15. MODULE module-name AMBIGUOUSLY DEFINES P-SECTION p-sect-name

The p-section p-sect-name has been defined in two modules not
on a common path and referenced ambiguously.

16. MODULE module-name MULTIPLY DEFINES P-SECTION p-sect-name

1. The p-section p-sect-name has been defined in the same
segment with different attributes.

2. A global p-section has been defined in more than one
segment along a common path with different attributes.

17. MODULE module-name MULTIPLY DEFINES XFR
segment-name

ADDR IN SEG

This error occurs when more than one module comprising the
root has a start address.

18. MODULE module-name ILLEGALLY DEFINES XFR ADDRESS p-sect-name
addr

The module module-name is in an overlay segment and has a
start address. The start address must be in the root segment
of the main tree.

19. P-SECTION p-sect-name HAS OVERFLOWED

A section greater than 32K has been created.

20. MODULE module-name AMBIGUOUSLY DEFINES SYMBOL sym-narne

Module module-name references or defines a symbol sym-name
whose definition cannot be uniquely resolved.

21. MODULE module-name MULTIPLY DEFINES SYMBOL sym-name

Two definitions for the relocatable symbol sym-name have
occurred on a common path. Or two definitions for an
absolute symbol with the same name but different values have
occurred.

22. SEGMENT seg-name HAS R-0 SECTION

An attempt has been made to allocate a read-only p-section in
an overlay segment. The build continues with R-W attribute
forced.

A-3

ERROR MESSAGES

23. SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Within a segment, the program has attempted to allocate more
than 32K. A map file is produced, but no task image file is
produced.

24. ALLOCATION FAILURE ON FILE file-name

The Task Builder could not acquire sufficient contiguous disk
space to store the task image file. (If possible, delete
unnecessary files on disk to make more room available.)

25. I/O ERROR ON OUTPUT FILE file-name

This error may occur on any of the three output files.

26. LOAD ADDR OUT OF RANGE IN MODULE module-name

An attempt has been made to store data in the task image
outside the address limits of the segment.

27. TRUNCATION ERROR IN MODULE module-name

An attempt has been made to load a global value greater than
+127 or less than -128 into a byte. The low-order eight bits
are loaded.

28. number UNDEFINED SYMBOLS SEGMENT seg-name

The Memory Allocation File lists each undefined symbol by
segment.

29. INVALID KEYWORD INDENTIFIER
invalid-line

The invalid-line printed contains an unrecognizable keyword.

30. OPTION SYNTAX ERROR
invalid-line

The invalid-line printed con~ains unrecognizable syntax.

31. TOO MANY PARAMETERS
invalid-line

The invalid-line printed contains a keyword with
parameters than required.

32. ILLEGAL MULTIPLE PARAMETER SETS
invalid-line

more

The invalid-line printed contains multiple parameters for a
keyword which only allows a single parameter.

A-4

ERROR MESSAGES

33. INSUFFICIENT PARAMETERS
invalid-line

The invalid-line contains a keyword with an insufficient
number of parameters to complete the keyword meaning.

34. TASK HAS ILLEGAL MEMORY LIMITS

An attempt has been made to build a task whose size exceeds
the partition boundary.

35. OVERLAY DIRECTIVE HAS NO OPERANDS
invalid-line

All overlay directives except .END require operands.

36. ILLEGAL OVERLAY DIRECTIVE
invalid-line

The invalid-line printed contains an unrecognizable overlay
directive.

37. OVERLAY DIRECTIVE SYNTAX ERROR
invalid-line

The invalid-line printed contains a syntax error.

38. ROOT SEGMENT MULTIPLY DEFINED
invalid-line

The invalid-line printed contains the second .ROOT directive
encountered. Only one .ROOT directive is allowed.

39. LABEL OR NAME IS MULTIPLY DEFINED
invalid-line

The invalid-line printed contains a name that has already
appeared on a .FCTR, .NAME, or .PSECT directive.

40. NO ROOT SEGMENT SPECIFIED

The overlay description did not contain a .ROOT directive.

41. BLANK P-SECTION NAME IS ILLEGAL
invalid-line

The invalid-line printed contains a .PSECT directive that
does not have a p-section name.

42. ILLEGAL P-SECTION ATTRIBUTE
invalid-line

The invalid-line printed contains a p-section attribute that
is not recognized.

A-5

ERROR MESSAGES

43. ILLEGAL OVERLAY DESCRIPTION OPERATOR
invalid-line

The invalid-line printed contains an unrecognizable operator
in an overlay description.

44. TOO MANY NESTED .ROOT/.FCTR DIRECTIVES
invalid-line

The invalid-line printed contains a .FCTR directive that
exceeds the maximum nesting level (32).

45. TOO MANY PARENTHESES LEVELS
invalid-line

The invalid-line printed contains a parenthesis that exceeds
the maximum nesting level (32).

46. UNBALANCED PARENTHESES
invalid-line

The invalid-line printed contains unbalanced parentheses.

47. ILLEGAL BASE OR TOP ADDRESS OFFSET

The task is too large to fit into the space allowed by BASE=
or TOP= keywords.

48. ILLEGAL LOGICAL UNIT NUMBER
invalid-line

The invalid-line printed contains a device assignment to a
unit number larger than the number of logical units specified
by the UNITS keyword or assumed by default if the UNITS
keyword is not used.

49. ILLEGAL NUMBER OF LOGICAL UNITS
invalid-line

The invalid-line printed contains a number of logical unit
greater than 250.

50. ILLEGAL NUMBER OF ACTIVE FILES SPECIFIED

51. ILLEGAL BASE OR TOP BOUNDARY VALUE
invalid line

52. ILLEGAL POOL USAGE NUMBER SPECIFIED
invalid line

The pool request is greater than 255 or it is zero.

A-6

ERROR MESSAGES

53. ILLEGAL DEFAULT PRIORITY SPECIFIED
invalid-line

The invalid-line printed contains a priority greater than
250.

54. ILLEGAL ODT OR TASK VECTOR SIZE

SST vector size specified greater than 32 words.

55. ILLEGAL FILENAME
invalid-line

The invalid-line printed contains a wild card (*) in a file
specification. The use of wild cards is prohibited.

56. ILLEGAL DEVICE/VOLUME

invalid line

The device/volume string is too long.

57. LOOKUP FAILURE ON FILE filename
invalid-line

The invalid-line printed contains a filename which cannot be
located in the directory.

58. ILLEGAL DIRECTORY
invalid-line

The invalid-line printed contains an illegal UFO.

59. INCOMPATIBLE REFERENCE TO A LIBRARY P-SECTION p-sect-name

A task has attempted to reference more storage in a shareable
global area than exists in the shareable global area
definition.

60. ILLEGAL REFERENCE TO LIBRARY P-SECTION p-sect-name

A task has attempted to reference a p-sect-name existing in a
resident library (shareable global area) but has not named
the library in a COMMON or LIBR keyword.

61. RESIDENT LIBRARY MEMORY ALLOCATION CONFLICT
keyword-string

One of the following problems has occurred:

1. More than three shareable global areas
specified.

have been

2. The same shareable global area has been specified more
than once.

3. Shareable global areas whose memory allocations overlap

A-7

ERROR MESSAGES

have been specified.

4. BASE or TOP specifications conflict.

62. LOOKUP FAILURE RESIDENT LIBRARY FILE
invalid-line

No symbol table or task image file found for the shareable
global area on SY0 under UFO [l,l].

63. INVALID ACCESS TYPE
invalid-line

Requested access to shareable global area was not RW or RO.

64. ILLEGAL PARTITION/COMMON BLOCK SPECIFIED
invalid-line

User defined base or length not on 32 word bound or user
defined length = 0.

65. NO MEMORY AVAILABLE FOR LIBRARY library-name

Insufficient virtual memory available to cover total memory
needed by referenced shareable global areas.

66. PIC LIBRARIES MAY NOT REFERENCE OTHER LIBRARIES
invalid-line

67. ILLEGAL APR RESERVATION

APR specified on COMMON or LIBR keyword that is outside the
range 0-7.

68. I/0 ERROR LIBRARY IMAGE FILE

An I/O error has occurred during an attempt to open or read
the Task Image File of a shareable global area.

69. LIBRARY REFERENCES UNDEFINED LIBRARY

A shareable global area specified by LIBR
references another area which is undefined.

70. not used.

71. INVALID APR RESERVATION

or COMMON

APR specified on a LIBR or COMMON keyword for an absolute
shareable global area.

72. COMPLEX RELOCATION ERROR
module-name

DIVIDE BY ZERO: MODULE

A divisor having the value zero was detected in a complex
expression. The result of the divide was set to zero.
(Probable cause- division by an undefined global symbol.)

A-8

ERROR MESSAGES

73. WORK FILE I/O ERROR

I/O error during an attempt to reference data stored by the
Task Builder in a work file. Possibly an attempt to extend
the file when no more space is available on the volume.

74. LOOKUP FAILURE ON SYSTEM LIBRARY FILE

The Task Builder cannot find the system Library
(SY0:[1,l]SYSLIB.OLB) file to resolve undefined symbols.

75. UNABLE TO OPEN WORK FILE

Work file device is not mounted or has not been initialized
as Files-11, or there is no space on the volume.

76. NO VIRTUAL MEMORY STORAGE AVAILABLE

Maximum permissible size of the work file exceeded (no
recovery) •

77. MODULE module-name NOT IN LIBRARY

The Task Builder could not find the module ~1amed on the LB
switch in the library.

78. INCORRECT LIBRARY MODULE SPECIFICATION
invalid-line

The invalid-line contains a module name with a non-Radix-50
character.

79. LIBRARY FILE filename HAS INCORRECT FORMAT

A module has been requested from a library file that has an
empty module name table.

80. RESIDENT LIBRARY IMAGE HAS INCORRECT FORMAT
invalid-line

The invalid-line specifies a shareable global area that has
one of the following problems:

1. The library file image has a header.

2. The shareable global area references another shareable
global area with invalid address bounds (i.e., not on 4K
boundary) .

3. The shareable global area has invalid address bounds.

81. PARTITION partition-name HAS ILLEGAL MEMORY LIMITS

The user has attempted to build a privileged task whose
length exceeds 16K.

A-9

ERROR MESSAGES

82. not used

83. ABORTED VIA REQUEST
input-line

The input-line contains a request from the user to abort the
task build.

84. not used

85. END OF FILE REACHED BEFORE .END DIRECTIVE IN file-name

The overlay description file named in this message does not
contain a .END directive as required.

A-10

APPENDIX B

TASK BUILDER DATA FORMATS

An object module is the fundamental unit of input to the Task Builder.

Object modules are
(i.e., MACR0-11,
definition file}.
combine a number
file.

created by any of the standard language processors
FORTRAN, etc.} or the Task Builder itself (symbol
The RSX-llD librarian (LBR} provides the ability to
of object modules together into a single library

An object module consists of variable length records of information
that describe the contents of the module. Six record (or block} types
are included in the object language. These records guide the Task
Builder in the translation of the object language into a task image.

The six record types are:

Type 1 - Declare Global Symbol Directory (GSD}

Type 2 - End of Global Symbol Directory

Type 3 - Text Information (TXT)

Type 4 - Relocation Directory (RLD}

Type 5 - Internal Symbol Directory (ISD)

Type 6 - End of Module

Each object module must consist of at least five of the record types.
The one record type that is not mandatory is the internal symbol
directory. The appearance of the various record types in an object
module follows a defined format. See Figure B-1.

An object module must begin with a Declare GSD record and end with an
end-of-module record. Additional Declare GSD records may occur
anywhere in the file but before an end-of-GSD record. An end-of-GSD
record must appear before the end-of-module record. At least one
relocation directory record must appear before the first text
information record. Additional relocation directory and text
information records may appear anywhere in the file. The internal

B-1

TASK BUILDER DATA FORMATS

symbol directory records may appear anywhere in the file between the
initial declare GSD and end-of-module records.

Object module records are variable length and are identified by a
record type code in the first word of the record. The format of
additional information in the record is dependent upon the record
type.

GSD Initial GSD

RLD Initial Relocation Directory

GSD Additional GSD

TXT Text Information

TXT Text Information

RLD Relocation Directory

GSD Additional GSD

END GSD End of GSD

ISO Internal Symbol Directory

ISO Internal Symbol Directory

TXT Text Information

TXT Text Information

TXT Text Information

END MODULE END OF MODULE

Figure B-1
General Object Module Format

B.l GLOBAL SYMBOL DIRECTORY (GSD)

Global symbol directory records contain all the information necessary
to assign addresses to global symbols and to allocate the memory
required by a task.

GSD records are the only records processed in the first pass, thus
significant time can be saved if all GSD records are placed at the
beginning of a module (i.e., less of the file must be read in phase
3) •

B-2

TASK BUILDER DATA FORMATS

GSD records contain seven types of entries:

Type 0 - Module Name

Type 1 - Control Section Name

Type 2 - Internal Symbol Name

Type 3 - Transfer Address

Type 4 - Global Symbol Name

Type 5 - Program Section Name

Type 6 - Program Version Identification

Each entry type is represented by four words in the GSD record. The
first two words contain six Radix-S0 characters. The third word
contains a flag byte and the entry type identification. The fourth
word contains additional information about the entry. See Figure B-2.

~ l 1

RADS~
NAME

TYPE I FLAGS

VALUE

RADS~
NAME

TYPE l FLAGS

VALUE

RADS~
NAME

TYPE I FLAGS

VALUE

RADS/l
NAME

TYPE l FLAGS

VALUE

Figure B-2
GSD Record And Entry Format

B-3

TASK BUILDER DATA FORMATS

B.1.1 Module Name

The module name entry declares the name of the object module. The
name need not be unique with respect to other object modules {i.e.,
modules are identified by file not module name) but only one such
declaration may occur in any given object module. See Figure B-3.

MODULE
NAME

g l g

g

Figure B-3
Module Name Entry Format

B.1.2 Control Section Name

Control sections, which include ASECTs, blank-CSECTS, and named-CSECTs
are supplanted in RSX-110 by PSECTs. For compatibility, the Task
Builder processes ASECTs and both forms of CSECTs. Section B.1.6
details the entry generated for a PSECT statement. In terms of a
PSECT statement we can define ASECT and CSECT statements as follows:

For a blank CSECT, a PSECT is defined with the following attributes:

.PSECT ,LCL,REL,CON,RW,I,LOW

For a named CSECT, The PSECT definition is:

.PSECT name, GBL,REL,OVR,RW,I,LOW

For an ASECT, The PSECT definition is:

.PSECT .ABS.,GBL,ABS,I,OVR,RW,LOW

ASECTs and CSECTs are processed by the Task Builder as PSECTs with the
fixed attributes defined above. The entry generated for a control
section is shown in Figure B-4.

CONTROL SECTION

NAME

1 I IGNORED

MAXIMUM LENGTH

Figure B-4
Control Section Name Entry Format

B-4

TASK BUILDER DATA FORMATS

B.1.3 Internal Symbol Name

The internal symbol name entry declares the name of an nternal symbol
(with respect to the module). TKB does not support nternal symbol
tables and therefore the detailed format of this entry s not defined
(Figure B-5). If an internal symbol entry is encountered while'
reading the GSD, it is merely ignored.

SYMBOL
NAME

2 I g

UNDEFINED

Figure B-5
Internal Symbol Name Entry Format

B.1.4 Transfer Address

The.transfer address entry declares the transfer address of a module
relative to a P-section. The first two words of the entry define the
name of the P-section and the fourth word the relative offset from the
beginning of that P-section. If no transfer address is declared in a
module, a transfer address entry either must not be included in the
GSD or a transfer address of 000001 relative to the default absolute
P-section (. ABS.) must be specified. See Figure B-6.

SECTION
NAME

3 I g

OFFSET

Figure B-6
Transfer Address Entry Format

NOTE

If the P-section is absolute,
then OFFSET is the actual
transfer address if not
000001.

B-5

TASK BUILDER DATA FORMATS

B.1.5 Global Symbol Name

The global symbol name entry (Figure B-7) declares either a global
reference or a definition. All definition entries must appear after
the declaration of the P-section under which they are defined and
before the declaration of another P-section. Global references may
appear anywhere within the GSD.

The first two words of the entry define the name of the global symbol.
The flag byte declares the attributes of the symbol and the fourth
word the value of the symbol relative to the P-section under which it
is defined.

The flag byte of the symbol declaration entry has the following bit
assignments.

Bits 0 - 2 - Not used.

Bit 3 - Definition

0 Global symbol references.

1 Global symbol definition.

Bit 4 - Not used

Bit 5 - Relocation

0 Absolute symbol value.

1 Relative symbol value

Bit 6 - 7 - Not used.

SYMBOL
NAME

4 l FLAGS

VALUE

Figure B-7
Global Symbol Name Entry Format

B.1.6 Program Section Name

The P-section name entry (Figure B-8) declares the name of a P-section

B-6

TASK BUILDER DATA FORMATS

and its maximum length in the module. It also declares the attributes
of the P-section via the flag byte.

GSD records must be constructed such that once a P-section name has
been declared all global symbol definitions that pertain to that
P-section must appear before another P-section name is declared.
Global symbols are declared via symbol declaration entries. Thus the
normal format is a P-section name followed by zero or more symbol
declarations, the next P-section name followed by zero or more symbol
declarations, and so on.

The flag byte of the P-section entry has the following bit
assignments:

Bit 0 - Memory Speed

0 P-section is to occupy low speed (core) memory.

1 P-section is to occupy high speed (i.e., MOS/Bipolar) memory.

Bit 1 - Library P-section

0 Normal P-section.

1 Relocatable P-section that references a shareable global area.

Bit 2 - Allocation

0 P-section references are
references to the same
allocated to the section.

to be concatenated with other
P-section to form the total memory

1 P-section references are to be overlaid. The total memory
allocated to the P-section is the largest request made by
individual references to the same P-section.

Bit 3 - Not used but reserved.

Bit 4 - Access

0 P-section has read/write access.

1 - P-section has read-only access.

Bit 5 - Relocation

0 P-section is absolute and requires no relocation.

1 P-section is relocatable and references to the control section
must have a relocation bias added before they become
ab~olute.

B-7

TASK BUILDER DATA FORMATS

Bit 6 - Scope

0 The scope of the P-section is local. References to the same
P-section will be collected only within the segment in which
the P-section is defined.

1 The scope of the P-section is global. References to the
P-section are collected across segment boundaries. The
segment in which a global P-section is allocated storage is
determined either by the first module that defines the
P-section on a path or by direct placement of a P-section in
a segment via the Overlay Description Language .PSECT
directive.

Bit 7 - Type

0 The P-section contains instruction (I) references.

1 The P-section contains data (D) reference Identification

P-SECTION
NAME

5 J FLAGS

MAX LENGTH

Figure B-8
P-Section Name Entry Format

NOTE

The length of all absolute sections is
zero.

B.1.7 Program Version Identification

The program version identification entry (Figure B-9) declares the
version of the module. TKB saves the version identification of the
first module that defines a nonblank version. This identification is
then included on the memory allocation map and is written in the label
block of the task image file.

The first two words of the entry contains the version identification.
The flag byte and fourth words are not used and contain no meaningful
information.

B-8

TASK BUILDER DATA FORMATS

SYMBOL
NAME

6 l g

g

Figure B-9
Program Version Identification Entry Format

B.2 END-OF-GLOBAL-SYMBOL-DIRECTORY

The end-of-global-symbol-directory record (Figure B-lg) declares that
no other GSD records are contained further on in the file. Exactly
one end-of-GSD-record must appear in every object module and is one
word in length.

2

Figure B-1,0
End Of GSD Record Format

B.3 TEXT INFORMATION

The text information record {Figure B-11) contains a byte string of
information that is to be written directly into the task image file.
The record consists of a load address followed by the byte string.

Text records may contain words and/or bytes of information whose final
contents are yet to be determined. This information will be bound by
a relocation directory record that immediately follows the text record
(see Section B.4). If the text record does not need modification,
then no relocation directory record is needed. Thus multiple text
records may appear in sequence before a relocation directory record.

The load address of the text record is specified as an offset from the
current P-section base. At least one relocation directory record must
precede the first text record. This directory must declare the
current P-section.

TKB writes a text record directly into the task image file and
computes the value of the load address minus four. This value is
stored in anticipation of a subsequent relocation directory that
modifies words and/or bytes that are contained in the text record.
When added to a relocation directory displacement byte, this value
yields the address of the word and/or byte to be modified in the task
image.

B-9

TASK BUILDER DATA FORMATS

~ 3

LOAD ADDRESS

TEXTQ TEXT

" TEXT

" "

" "

" "

" "

" TEXT

TEXT TEXT

Figure B-11
Text Information Record Format

B.4 RELOCATION DIRECTORY

Relocation directory records {Figure B-12) contain the information
necessary to relocate and link a preceding text information record.
Every module must have at least one relocation directory record that
precedes the first text information record. The first record does not
modify a preceding text record, but rather it defines the current
P-section and location. Relocation directory records contain 13 types
of entries. These entries are classified as relocation or location
modification entries. The following types of entries are defined:

Type 1 - Internal Relocation

Type 2 - Global Relocation

Type 3 - Internal Displaced Relocation

Type 4 - Global Displaced Relocation

Type 5 - Global Additive Relocation

Type 6 - Global Additive Displaced Relocation

B-10

TASK BUILDER DATA FORMATS

Type 7 - Location Counter Definition

Type 10 - Location Counter Modification

Type 11 - Program Limits

Type 12 - P-Section Relocation

Type 13 - Not used

Type 14 - P-Section Displaced Relocation

Type 15 - P-Section Additive Relocation

Type 16 - P-Section Additive Displaced Relocation

Type 17 - Complex Relocation

Each type of entry is represented by a command byte (specifies type of
entry and word/byte modification), a displacement byte, and the
information required for the particular type of entry, in that order.
The displacement byte, when added to the value calculated from the
load address of the previous text information record, (see Section
G.3) yields the virtual address in the image that is to be modified.
The command byte of each entry has the following bit assignments.

Bits 0 - 6 Specify the type of entry. Potentially 128 command types
may be specified although only 15(decimal) are implemented.

Bit - 7 Modification

0 The command modifies an entire word.

1 The command modifies only one byte. The Task Builder checks
for truncation errors in byte modification commands. If
truncation is detected (i.e., the modification value has a
magnitude greater than 255), an error is produced.

B-11

TASK BUILDER DATA FORMATS

g 4

DISP CMD

INFO INFO

II INFO

II II

II II

II II

II II

II II

II II

CMD II

INFO DISP

II INFO

II II

II II

II II

II II

DISP CMD

INFO INFO

INFO INFO

INFO INFO

Figure B-12
Relocation Directory Record Format

B-12

TASK BUILDER DATA FORMATS

B.4.1 Internal Relocation

This type of entry (Figure B-13) relocates a direct pointer to an
address within a module. The current P-section base address is added
to a specified constant and the result is written into the task image
file at the calculated address (i.e., displacement byte added to value
calculated from the load address of the previous text block) •

Example:

A: MOV #A,R0

or

.WORD A

DISP 1

CONSTANT

Figure B-13
Internal Relocation Command Format

B.4.2 Global Relocation

This type of entry (Figure B-14} relocates a direct pointer to a
global symbol. The definition of the global symbol is obtained and
the result is written into the task image file at the calculated
address.

Example:

MOV #GLOBAL,R0

or

.WORD GLOBAL

DISP

SYMBOL
NAME

2

Figure B-14
Global Relocation

B-13

TASK BUILDER DATA FORMATS

B.4.3 Internal Displaced Relocation

This type of entry (Figure B-15) relocates a relative reference to an
absolute address from within a relocatable control sectiion. The
address plus 2 that the relocated value is to be written into is
subtracted from the specified constant. The result is then written
into the task image file at the calculated address.

Example:

CLR 177550

or

MOV 177550,R0

DISP 3

CONSTANT

Figure B-15
Internal Displaced Relocation

B.4.4 Global Displaced Relocation

to a
and

into
written

This type of entry (Figure B-16) relates a relative reference
global symbol. The definition of the global symbol is obtained
the address plus 2 that the relocated value is to be written
is subtracted from the definition value. This value is then
into the task image file at the calculated address.

Example:

CLR GLOBAL

or

MOV GLOBAL,R0

DISP

SYMBOL
NAME

4

Figure B-16
Global Displaced Relocation

B-14

TASK BUILDER DATA FORMATS

B.4.5 Global Additive Relocation

This type of entry (Figure B-17) relocates a direct pointer to a
global symbol with an additive constant. The definition of the global
symbol is obtained, the specified constant is added, and the resultant
value is then written into the task image file at the calculated
address.

Example:

MOV #GLOBAL+2,R0

or

.WORD GLOBAL-4

DISP lBl 5

SYMBOL
NAME

CONSTANT

Figure B-17
Global Additive Relocation

B.4.6 Global Additive Displaced Relocation

This type of entry (Figure B-18) relocates a relative reference to a
global symbol with an additive constant. The definition of the global
symbol is obtained and the specified constant is added to the
definition value. The address plus 2 that the relocated value is to
be written into is subtracted from the resultant additive value. The
resultant value is then written into the task image file at the
calculated address.

Example:

CLR GLOBAL+2

or

MOV GLOBAL-5,R0

DISP Isl 6

SYMBOL
NAME

CONSTANT

Figure B-18
Global Additive Displaced Relocation

B-15

TASK BUILDER DATA FORMATS

B.4.7 Location Counter Definition

This type of entry (Figure B-19) declares a current P-section and
location counter value. The control base is stored as the current
control section and the current control section base is added to the
specified constant and stored as the current location counter value.

fJ lBl 7

SECTION
NAME

CONSTANT

Figure B-19
Location Counter Definition

B.4.8 Location Counter Modification

This type of entry (Figure B-2~) modifies the current location
counter. The current P-section base is added to the specified
constant and the result is stored as the current location counter.

Example:

.=.+N

or

.BLKB N

lfJ

CONSTANT

Figure B-2fJ
Location Counter Modification

B-16

TASK BUILDER DATA FORMATS

B.4.9 Program Limits

This type of entry (Figure B-21) is generated by the .LIMIT assembler
directive. The first address above the header (normally the beginning
of the stack) and highest address allocated to the tasks are obtained
and written into the task image file at the calculated address and a~
the calculated address plus 2 respectively.

Example:

.LIMIT

DISP 11

Figure B-21
Program Limits

B.4.1~ P-Section Relocation

This type of entry (Figure B-22) relocates a direct pointer to the
beginning address of another P-section (other than the P-section in
which the reference is made) within a module. The current base
address of the specified P-section is obtained and written into the
task image file at the calculated address.

Example:

B:
.PSECT A

PSECT
MOV

or

c
#B,R0

.WORD B

DISP 1 ij.1
SECTION

NAME

12

Figure B-22
P-Section Relocation

B-17

TASK BUILDER DATA FORMATS

B.4.11 P-Section Displaced Relocation

This type of entry (Figure B-23) relocates a relative reference to the
beginning address of another P-section within a module. The current
base address of the specified P-section is obtained and the address
plus 2 that the relocated value is to be written into is subtracted
from the base value. This value is then written into the task image
file at the calculated address.

Example:

.PSECT A
B:

.PSECT C
MOV B,R0

DISP

SECTION
NAME

14

Figure B-23
P-Section Displaced Relocation

B.4.12 P-Section Additive Relocation

The type of entry (Figure B-24) relocates a direct pointer to an
address in another P-section within a module. The current base
address of the specified P-section is obtained and added to the
specified constant. The result is written into the task image file at
the calculated address.

•

B-18

Example:

B:

C:

TASK BUILDER DATA FORMATS

.PSECT A

PSECT
MOV
MOV

or

.WORD

.WORD

DISP

D
#B+l0 ,R0
#C,R0

B+l0
c

l B1 15

SECTION
NAME

CONSTANT

Figure B-24
P-Section Additive Relocation

B.4.13 P-Section Additive Displaced Relocation

This type of entry (Figure B-25) relocates a relative reference to an
address in another P-section within a module. The current base
address of the specified P-section is obtained and added to the
specified constant. The address plus 2 that the relocated value is to
be written into is subtracted from the resultant additive value. This
value is then written into the task image file at the calculated
address.

B-19

TASK BUILDER DATA FORMATS

Example:

.PSECT A
B:

C:

.PSECT D

MOV B+l0 ,R0
MOV C,R0

DISP l Bl 16

SECTION
NAME

CONSTANT

Figure B-25
P-Section Additive Displaced Relocation

B.4.14 Complex Relocation

This tyee of entry (Figure B-26) resolves a complex relocation
expression. Such an expression is one in which any of the MACR0-11
binary or unary operations are permitted with any type of argument,
regardless of whether the argument is unresolved global, relocatable
to any P-section base, absolute, or a complex relocatable
subexpression.

The RLD command word is followed by a string of numerically-specified
operation codes and arguments. All of the operation codes occupy one
byte. The entire RLD command must fit in a single record. The
following operation codes are defined.

0 - No operation

1 - Addition (+)

2 - Subtraction (-)

3 - Multiplication (*)

4 - Division (/)

5 - Logical AND (&)

B-20

TASK BUILDER DATA FORMATS

6 - Logical inclusive OR (!)

10 - Negation (-)

11 - Complement (~C)

12 - Store result (command termination)

13 - Store result with displaced relocation (command termination)

16 - Fetch global symbol. It is followed by four bytes containing
the symbol name in RADIX-50 representation.

17 - Fetch relocatable value. It is followed by one byte
containing the sector number, and two bytes containing the
offset within the sector.

20 - Fetch constant. It is followed by two bytes containing the
constant.

The STORE commands indicate that the value is to be written into the
task image file at the calculated address.

All operands are evaluated as 16-bit signed quantities using two's
complement arithmetic. The results are equivalent to expressions that
are evaluated internally by the assembler. The following rules are to
be noted.

1. An attempt to divide by zero yields a zero result. The task
Builder issues a nonfatal diagnostic.

2. All results are truncated from the left in order to fit into
16 bits. No diagnostic is issued if the number was too
large. If the result modifies a byte, the Task Builder
checks for truncation errors.

3. All operations are performed
absolute 16-bit quantities.
the result only.

B-21

on relocated (additive) or
PC displacement is applied to

Example:

A:

B:

TASK BUILDER DATA FORMATS

.PSECT ALPHA

.PSECT BETA

MOV #A+B-Gl/G2&<AC<l77120!G3>>,Rl

DISP B

COMPLEX STRING

12

17

Figure B-26
Complex Relocation

B.5 INTERNAL SYMBOL DIRECTORY

Internal symbol directory records {Figure B-27) declare definitions of
symbols that are local to a module. This feature is not supported by
TKB and therefore a detailed record format is not specified. If TKB
encounters this type of record, it will ignore it.

I
NOT

SPECIFIED

5

Figure B-27
Internal Symbol Directory Record Format

B.6 END OF MODULE

The end-of-module record {Figure B-28) declares the end-of-an object
module. Exactly one end of module record must appear in each object
module and is one word in length.

9

Figure B-28
End-Of-Module Record Format

B-22

APPENDIX C

TASK IMAGE FILE STRUCTURE

The task image as it is recorded on the disk appears in Figure C-1.

BLOCK-bn7777Tm'77T,'7777777777i'77T'rrrTTT77TTTJ'77T.r777:TTT7777i'7TT;'777.TTT7'1777nf--4K VIRTUAL ADDRESS
BOUNDARY AND 32-WORD
REAL ADDRESS BOUNDARY

BLOCK BOUNDARY ---1m-rrrn7777"TTTl'7T1'.rrnTTn77n'77Trrrrrrn..,..,...,'777".rrn7777Tm'77T,m7TTT7nt--4K VIRTUAL ADDRESS
IF /MU TASK BOUNDARY AND 32-WORD

OVERLAY DATA BASE REAL ADDRESS BOUNDARY

TASK R-W ROOT SEGMENT

STACK

LOW MEMORY POINTERS
BLOCK -rnrTTTTTT7Tm777,r777777777Tl'77T,'777TTTJ7TT1'777;'777.TTT77777777i'77T.'77i.nfo" TASK VIRTUAL ADD RESS 9'

BLOCK
DEVICE ASSIGNMENT

BLOCKS

LABEL BLOCK

Figure C-1
Task Image on Disk

C-1

OMITTED IF /-HD
VARIABLE WITH /TA,
/FP AND N

VIRTUAL BLOCK 1

TASK IMAGE FILE STRUCTURE

C.l LABEL BLOCK GROUP

The label block group, shown in Figure C-2, precedes the task on the
disk, and contains data that need not be resident during task
execution, and up to two blocks containing device assignment data for
LUNs 1-255. The task label blocks {first block in group) are read and
verified by Install. The information in these blocks is used to fill
in the task header.

LABEL

L$BTSK 0

2

L$BPAR 4

6

L$BFLG 10

L$BPRI 12

L$BLDZ 14

L$BMXZ 16

L$BPOL 20

L$LFLG 22

L$BDAT 24

26

30

L$BLIB 32

34

36

40

42

44

46

50

L$BHRB 212

L$BAPR 214

L$BEXT 216

L$BPDR 220

L$BASR 240

L$BUIC 260

TASK
+---- -----

NAME

DEFAULT PARTITION
-I-- -- - -----

NAME

TASK FLAG WORD

DEFAULT PRIORITY

LOAD SIZE IN 32-WORD BLOCKS

MAX. SIZE IN 32-WORD BLOCKS

POOL USAGE LIMIT

LIBRARY FLAGS (IF A SGA)*

CREATION YEAR
-+----DATE OF ----

MONTH
-+--- - TASK -----

IMAGE DAY

_, ---- LIBRARY NAME -----

LENGTH IN 32-WORD BLOCKS

CREATION YEAR
+---- -----

DATE OF MONTH _, ____ -----
LIBRARY DAY

STARTING APR NUMBER

FLAG WORD

< SIX MORE LIBRARY REQUESTS <
VIRTUAL BLOCK NO. OF HEADER

LIBRARY STARTING APR NUMBER

TASK EXTENSION INCREMENT

PROTOTYPE PAGE
c> DESCRIPTOR REGISTERS (>

1'-7

PROTOTYPE PAGE

:> ADDRESS REGISTERS <
1'-7

TASK UIC

*Shareable Global Area

Figure C-2
Label Block Group

C-2

LIBRARY
REQUEST

LUN
BLOCK
1

LUN
BLOCK
2

746

750

752

754

756

760

762

764

766

770

772

774

776

TASK IMAGE FILE STRUCTURE

FILE

ID

FILENAME

TYPE

VERSION

DIRECTORY ID

DEVICE NAME

UNIT

DEVICE NAME

UNIT NUMBER

. . .
DEVICE NAME

UNIT NUMBER

.
DEVICE NAME

UNIT NUMBER

. . .
DEVICE NAME

UNIT NUMBER

Figure C-2 (Cont.)
Label Block Group

C-3

LUN 1

LUN 127

LUN 128

LUN 255

TASK IMAGE FILE STRUCTURE

C.1.1 Label Block Details

The information contained in the label block is verified by the
Install task in creating a system task directory (STD) entry for the
task, and in linking the task to shareable global areas.

L$BTSK

L$BPAR

L$BFLG

L$BPRI

L$BLDZ

L$BMXZ

L$BPOL

L$LFLG

L$BDAT

Task name, consisting of two words in Radix-50 format.
The value of this parameter is set by the TASK keyword.

Partition.name, consisting of two words in Radix-50
format. Its value is set by the PAR keyword.

Task flag word containing bit values that are set or
cleared depending on defined task attributes.
Attributes are established by appending the appropriate
switches to the task image file specification.

Bit Attribute if Set=l

SF.MU 6 Task is multi-user (/MU)
SF.PT 7 Task is privileged (/PR)
SF.XA 11 Task is not abortable (/-AB)
SF.XO 12 Task is not disableable (/-DS)
SF.XF 13 Task is not fixable (/-FX)
SF.XC 14 Task is not checkpointable (/-CP)

Default priority, set by the PRI keyword.

Load size of the task, expressed in multiples of
32-word blocks. The value of L$BLDZ is equal to the
size of the root segment, in multi~segment tasks.

Maximum size of the task, expressed in multiples of
32-word blocks. The header size is included.

L$BMXZ is used by Install to verify that the task fits
into the specified partition.

Pool usage limit indicating maximum number of pool
nodes that can be used simultaneously by the task. The
default is 40 (decimal) which is overridden by the POOL
keyword.

Flags word for the. image of a shareable global area.

LF$PIC

LF$NHD

Bit Interpretation if Set=l

0 Image is position independent (/PI)

1 Image has no header (/-HD)

Three words, containing the task creation date as
2-digit integer values, as follows:

YEAR (since 1900)
MONTH OF YEAR
DAY OF MONTH

C-4

TASK IMAGE FILE STRUCTURE

The following paragraphs describe components of the Shareable Global
Area Name Block. An 8-word block is generated for each shareable
global area referenced by the task. Because shareable global areas
need not be resident in the system, th~ Task Builder builds the block
from the area's disk image, using information in the label blocks of
that image.

Library Name

Creation Date

A 2-word Radix-50 name specified in the LIBR or
COMMON keyword.

Obtained from the creation date in the shareable
global area disk image label block.

Starting Address First address used to map the Shareable Global Area
into the task addressing space.

L$BHRB

L$BAPR

L$BEXT

L$BPDR

L$BASR

Flag Word Bits 2 and 15 are used as follows:

LD$REL

LD$ACC

Bit Value Meaning

2

15

1 Global area is PIC.set if value
of LF$PIC in the library image
flags word (L$FLG) is =l.

0 Global area is absolute.

1

Cleared if LF$PIC in L$LFLG of
global area image is 0.

Read/Write access request. Set
if RW specified in LIBR or
COMMON option.

O Read-only ACCESS request.
Cleared if RO specified in LIBR
or COMMON option.

Virtual block number of the task header. Between 2 and
4 depending on number of LUNS, as follows:

UNITS
UNITS
UNITS

0 virtual block 2
1-128 virtual block 3
129-255 virtual block 4

Starting APR number if this image is a shareable global
area. Calculated from BASE or TOP keywords.

The default number of words by which the memory
allocated to a task at install time will be increased.
This value is overridden by INSTALL/INC keyword. Value
is set with EXTTSK keyword of TKB.

The eight prototype page descriptor registers for the
task. INSTALL copies these into task header where
necessary modifications can be performed.

The eight prototype page address registers forthetask.
INSTALL copies these into the task header where
necessary modifications can be performed.

C-5

L$BUIC

TASK IMAGE FILE STRUCTURE

The UIC with which the task is built.
keyword.

Set by UIC

Since the R/W and R-0 parts of the root segment are each contiguous
blocks on the disk, each can be loaded with a single disk read. If
the task is not multi-user, only a single read is required.

C.2 HEADER

The task is read into main memory starting at the base of the Header.
Figure C-3 illustrates the format of the fixed part. As shown in
Figure C-1, the variable part consists of the Logical Unit Table,
Floating Point Save Area and the Task Accounting work Area. The
Logical Unit Table identifies to the Executive which device is
assigned to which LUN. The Floating Point Save Area is storage for
the PDP-11/45 floating point registers when this option is requested.
The task accounting work area is used by the Executive if accounting
is enabled.

The Header is always a multiple of 32-word blocks. This insures that
the root segment code starts on a 32-word boundary, a requirement for
the allocation of a APR pair of relocation registers. The Task Header
is not covered by a task relocation register, and is therefore, not
part of the virtual address space of the task.

NOTE

Privileged tasks may access the Header
via symbolic offsets, which are obtained
by linking the file EXEC.STE. Executive
defined symbolic offsets are indicated
in the figure, to the right of the
corresponding Header element and Task
Builder reference labels are those to
the left. The real load address of a
task header can be found from the tasks
Active Task List entry.

C-6

LABEL

H$DFLP ~

H$DPDR 2

H$DPAR

4.0

H$DPWA 42

6~

H$DPS 62

H$DPC 64

H$DR~ 66

H$DR1 7~

H$DR2 72

H$DR3 74

H$DR4 76

H$DR5 1.0.0

H$DSP 1.02

H$DIPS 1.04

H$DP~C 1.06

H$DISP 11.0

H$DDSV 112

H$DTSV 114

H$DTVT 116
H$DDVT
H$DPHN 12fl

TASK IMAGE FILE STRUCTURE

FLOATING POINT SAVE POINTER

INSTALL TIME
------ -------

PAGE DESCRIPTOR REGISTERS
1-------- -------
~------ -------

c> c>
------ -------
------ -------

INSTALL TIME
~------ PAGE --- ----
1------- ADDRESS -------
(> ______ REGISTERS c> -------

------ -------

1------- RUN TIME ------
PAGE

1------- ADDRESS -------
1---- --- REGISTERS -------> >
~------ -------

CURRENT PS WORD

CURRENT PC WORD

INITIAL R9J

INITIAL Rl

INITIAL R2

INITIAL R3

INITIAL R4

INITIAL RS

CURRENT SP

INITIAL PS WORD

INITIAL PC WORD

INITIAL SP

ODT SST VECTOR ADDRESS

TASK SST VECTOR ADDRESS

TASK VECTOR LENGTH l ODT VECTOR LENGTH

POWERFAIL AST.

Figure C-3
Task Header Fixed Part

C-7

OFFSETS

H.-CRl

H.PD,0

H.PD7

H.PA,0

H.PA7

H.PW,0

H.TPS

H.TPC

H.TSP H.CR2

H.ISP

H.IPC

H.ISP

H.DSV

H.TSV

H.DV7 (116) H.TVZ (117)

H.PUN

TASK IMAGE FILE STRUCTURE

LABEL

H$DFEN 122 FLOATING POINT EXCEPTION ADDRESS

H$DDUC 124 DEFAULT UIC

H$DUIC 126 CURRENT UIC

H$DSIZ 13.0 SIZE OF HEADER IN 32-WORD BLOCKS

H$DFZI 132 FILE SIZE INDICATION

134 RECEIVE AST NODE ADDRESS

136 SPARE

14.0 EXECUTIVE VALIDATION WORD

142 SPARE

144 SPARE

H$IOQ 146 I/O QUEUE

15.0 LISTHEAD*

H$TACC 152 ACCOUNTING WORK AREA POINTER

154 EXIT ACTION FLAGS

H$DLUT 156 NUMBER OF UNITS

*Used only by handler tasks but reserved in all.

Figure C-3 (Cont.)
Task Header Fixed Part

C-8

OFFSETS

H.FEN

H.DUI

H.UIC

H.HSZ

H.FZI

H.REC

H.CHK

H.IOQ

H.AC

H.EAF

H.LUT

TASK IMAGE FILE STRUCTURE

C.2.1 Logical Unit Table Entry

Each entry in the Logical Unit Table has the form shown in Figure C-4.

PUD POINTER

WINDOW BLOCK POINTER

Figure C-4
Logical Unit Table Entry

The first word contains the address of the device physical unit
directory (PUD) in the Executive system tables that contains device
dependent information.

The second word is a pointer to the window block if the device is
file-structured.

The PUD address is set at install-time if a corresponding ASG
parameter is specified at task-build-time. This word can also be set
at run-time with the Assign Lun Directive to the Executive and is
modified by the re-assign MCR function.

The window block pointer is set when a file is opened on the device
whose PUD address is specified by word 1. The window block pointer is
cleared when the file is closed.

C.2.2 Floating Point Save Area

If a task is built with the FP attribute, 25 (decimal) words are
allocated in the header immediately following the Logical Unit Table.
A pointer to this area is set in the fixed part of the header at
offset H.CRl. The Executive uses this area to save and restore the
registers of the PDP 11/45 floating point unit upon context switching.

C.2.3 Task Accounting Work Area

If a task is built accountable (with the TA switch), 160 (decimal)
words are allocated following the floating point save area. A pointer
(ASR 3 relative) is stored in the fixed part of the header at offset
H.AC. When the task is run in a system on which task accounting is
enable, the Executive accumulates the pertinent accounting information
in this area.

C-9

TASK IMAGE FILE STRUCTURE

C.3 LOW MEMORY POINTERS

Several locations at the beginning of a task's virtual address space
are reserved for system dependent information. These locations are as
follows:

0

2.

4.

6.

Address (Virtual) Usage

$DSW

.FSRPT

$0TSV

N.OVPT

Directive Status Word. The Executive returns
the completion code in this word for every
system directive issued by the task.

File Control Services work area and buffer
pointer.

FORTRAN OTS work area pointer (i.e., address
of $0TSVA) •

Overlay Run Time system work area pointer.

The last three of these locations contain addresses of work areas.
These addresses are needed to provide reentrancey capability to the
associated system routines when these areas are required by shareable
global areas or multi-user tasks.

Note that it is possible for a task to destroy these pointers if a
stack overflow occurs.

C.4. TASK R/W ROOT SEGMENT

The low memory pointers, stack space and all R/W p-sections of the
task root segment are concatenated by the Task Builder to form the R/W
part of the root segment.

Following the user specified p-sections, the Task Builder allocates
space for the overlay run time system data base, which is described
below. Finally the R/W area is rounded-up to a 32-word boundary for
APR allocation. However, if the task is defined multi-user, a further
rounding is performed. This time the R/W area is rounded to a block
boundary.

C.5 TASK R-0 ROOT SEGMENT

If the root segment of the task has R-0 p-sections, the R-0 p-sections
are allocated contiguous space for mapping on a separate APR.

Since the R-0 root segment is the shareable global area of a
multi-user task, it is loaded separately, and only once, by the
Executive no matter how many versions of the task are invoked.
Consequently, the R-0 root segment must be on a block boundary for a
multi-user task.

C-10

TASK IMAGE FILE STRUCTURE

C.6 SEGMENT TABLES

The Segment Table contains a segment descriptor for every segment in
the task. The segment descriptor is formatted as shown in Figure C-5.
If the autoload method is used, the segment descriptor is six words in
length. If the manual load method is used, the segment descriptor is.
expanded to be eight words in length to include the segme,nt name.

C.6.1 Status

The status bit
overlay is in

bit

bit

is

STATUS I REL. DISK ADDRESS

LOAD ADDRESS

LENGTH IN BYTES

LINK UP

LINK DOWN

LINK NEXT

used in

SEGMENT

NAME

Figure C-5
Segment Descriptor

the autoload method to determine if an
memory, that is:

12 0 segment is in memory.

12 1 segment is not in memory.

C.6.2 Relative Disk Address

Each segment begins on a block boundary and occupies a contiguous disk
area to allow an overlay to be loaded by a single device access. The
relative disk address is the relative block number of the overlay
segment from the start of the task image. The maximum relative block
number can not exceed 4096 since twelve bits are allocated for the
relative disk address.

C-11

TASK IMAGE FILE STRUCTURE

C.6.3 Load Address

The load address contains the address into which the loading of the
overlay segment starts.

C.6.4 Segment Length

The segment length contains the length of the overlay segment in bytes
and is used to construct the disk read.

C.6.5 Link-Up

The link-up is a pointer to a segment descriptor away from the root.

C.6.6 Link-Down

The link-down is a pointer to a segment descriptor nearer the root.

C.6.7 Link-Next

The link-next is a pointer to the adjoining segment descriptor. When
a segment is loaded, the loading routine follows the link-next to
determine if a segment in memory is being overlaid and should
therefore be marked out-of-memory.

The link-next pointers are linked in a circular fashion:

Consider the tree:

Al
I

I
AO

A21 A22
I I
I

A2
I

The segment descriptors are linked in the following way:

Al
+

I
AO

link up

A21 A22

~
A2

A21 A22

~.-J
Al A2
~--------''

AO

link down

C-12

-A21-A22

Al A2

link next

TASK IMAGE FILE STRUCTURE

If there is a co-tree, the link-next of the segment descriptor for the
root points to the segment descriptor for the root segment of the
co-tree.

C.7 AUTOLOAD VECTORS

Autoload vectors appear in every
entry points in segments that
referencing segment.

segment that references autoload
are farther from the root than the

The autoload vector tabl~ consists of one entry per autoload entry
point in the form shown in Figure C-6.

C.8 OVERLAY SEGMENTS

JSR PC

$AUTO

SEGMENT DISCRIPTOR ADDR.

ENTRY POINT ADDRESS

Figure C-6
Autoload Vector Entry

Each overlay segment begins on a block boundary. The relative block
number for the segment is placed in the segment table. Note that a
given overlay segment occupies as many contiguous disk blocks as it
needs. to supply its space request - the maximum size for any segment
including the root, is 32K-32 words. '

C-13

APPENDIX D

RESERVED SYMBOLS

Several global symbol and p-section* names are reserved for use by the
Task Builder. Special handling occurs when a definition of one of
these names is encountered in a task image.

The definition of a reserved global symbol in the root segment causes
a word in the Task Image to be modified with a value calculated by the
Task Builder. The relocated value of the symbol is taken as the
modification address.

The following global symbols are reserved by the Task Builder:

GLOBAL
SYMBOL

• MOLUN

.NLUNS

. NOVLY

.NSTBL

• TRLUN

• ODTLl

• ODTL2

$0TSV

MODIFICATION
VALUE

Error message output device •

The number of logical units used by the task, not
including the Message Output and Overlay units.

The overlay logical unit number .

The address of the segment description tables. Note
that this location is modified only when the number of
segments is greater than one.

The trace subroutine output logical unit number •

Logical unit number for the ODT input device •

Logical unit number for the ODT output device .

The address in low memory of the FORTRAN OTS work area
($0TSVA defined by the FORTRAN OTS).

The definition of a reserved p-section causes that p-section to be

* P-sections are created by .ASECT, .CSECT, or .PSECT directives. The
.PSECT directive obviates the need for either the .ASECT or .CSECT
directives, these being retained for compatibility only. In this
document all sections will be referred to as p-sections unless the
specific characteristics of .ASECTS or .CSECT apply. Refer to RSX-11
MACR0-11 Reference Manual for additonal discussion of .ASECTS and
.CSECT directives.

D-1

RESERVED SYMBOLS

extended if the appropriate option input is specified (see section
3.2.3.4).

The following p-section names are reserved by the Task Builder:

SECTION
NAME

$$DEVT

$$FSR1

$$IOB1

$$0BF1

EXTENSION
LENGTH

The extension length (in bytes) is calculated from
the formula

EXT <S.FDB+52>*UNITS

Where the definition of S.FDB is obtained from the
root segment symbol table and UNITS is the number
of logical units used by the task, excluding the
Message Output, Overlay , and ODT units.

The extension of this section is specified by the
ACTFIL option input.

The extension of this section is specified by the
MAXBUF option input.

FORTRAN OTS uses this area to parse array type
format specifications. May be extended by FMTBUF
keyword.

D-2

APPENDIX E

CROSS REFERENCE TASK

The RSX-llD Task Builder is capable of providing a global cross
reference file in addition to its other files. A global cross
reference is an alphabetical listing of all global symbols, their
values, and the names of all modules that refer to them. The global
cross reference is appended to the memory allocation map of the task
by the cross reference utility.

A global cross reference is requested by a Task Builder command string
that includes the /CR switch with the memory allocation (MAP) file
specification. The /CR switch causes the Task Builder to create two
files:

1. A .MAP file that is the traditional memory allocation file,

2. A .CRF file that contains records to be processed by the
cross reference task.

Upon completion of a task build operation, the Task Builder issues a
SEND AND REQUEST directive to the cross reference task to provide it
with the name of its input (.CRF) file.

The cross reference task processes the input file, appending its
output to the .MAP file of the same name under the same UFD. When the
cross reference task has completed its processing, the .CRF input file
is deleted.

The cross reference task is an independent task having (11,l]CRF.TSK
as a file name and CRF... as a task name. Therefore, the Task
Builder or MCR reprompts at the terminal before the cross reference
text has been completely appended to the memory allocation file.

If the memory allocation file specification to the Task Builder
includes both a /-SP switch to inhibit spooling and the /CR switch,
the user should wait until the .CRF file has been deleted (that is,
until the cross reference task has exited) before queuing the memory
allocation file for printing. CRF appends the cross reference
information to the memory allocation file.

E-1

APPENDIX F

INCLUDING A DEBUGGING AID

If the user wants to include a program which controls the execution of
the task he is building, he can do so by naming the appropriate object
module as an input file and applying the /DA switch.

When such a program is input, the Task Builder causes control to be
passed to the program when the task execution is initiated.

Such control programs might trace a task, printing out relevant
debugging information, or monitor the task's performance for analysis.

The switch has the following effect:

1. The transfer address in the debugging aid overrides the task
transfer address.

2. On initial task load, the following registers have the
indicated value:

R0 - Transfer address of task
Rl - Task name in Radix-50 format (word #1)
R2 - Task name (word #2)

The following points must be taken into consideration when using
debugging aids on a task {particularly ODT):

1. Breakpoints cannot be set in R-0 p-sections

2. Care must be used if settings breakpoints in
branches.

F-1

overlay

AUTOLOAD -

CO-TREE -

GLOBAL SYMBOL -

MAIN TREE -

MANUAL LOAD -

APPENDIX G

RSX-llD TASK BUILDER GLOSSARY

The method of loading overlay segments, in
which the Overlay Runtime System
automatically loads overlay segments when
they are needed and handles any unsuccessful
load requests.

An overlay tree whose segments, including the
root segment, are made resident in memory
through calls to the Overlay Runtime System.

A symbol whose definition is known outside
the defining module.

An overlay tree whose root segment is loaded
by the Monitor when the task is made active.

The method of loading overlay segments in
which the user includes explicit calls in his
routines to load overlays and handles
unsuccessful load requests.

MEMORY ALLOCATION FILE - The output file created by the Task Builder
that describes the allocation of task memory.

OVERLAY DESCRIPTION LANGUAGE - A language that describes the overlay
structure of a task.

OVERLAY RUNTIME SYSTEM - A set of subroutines linked
overlaid task that are
segments into memory.

as part of an
called to load

OVERLAY SEGMENT -

OVERLAY STRUCTURE -

OVERLAY TREE -

A segment that shares storage with other
segments and is loaded when it is needed.

A structure containing a main tree
optionally one or more co-trees.

and

A tree structure consisting of a root segment
and optionally one or more overlay segments.

G-1

PATH -

PATH-DOWN -

PATH-UP -

PATH-LOADING -

PRIVILEGED TASK -

P-SECTION -

ROOT SEGMENT -

RUNNABLE TASK -

RSX-llM TASK BUILDER GLOSSARY

A route that is traced from one segment in
the overlay tree to another segment in that
tree.

A path toward the root of the tree.

A path away from the root of the tree.

The technique used by the autoload method to
load all segments on the path between a
calling segment and a called segment.

A task that has privileged memory access
rights. A privileged task can access the
Executive and the I/O page in addition to its
own partition and referenced shareable global
areas.

A section of memory that is a unit of the
total allocation. A source program is
translated into object modules that consist
of p-sections with attributes describing
access, allocation, relocatability, etc.

The segment of an overlay tree
loaded, remains in memory
execution of the task.

A task that has a header and stack
can be installed and executed.

that,
during

and

once
the

that

SHAREABLE GLOBAL AREA - Code and/or data bound together by the Task
Builder, in such a way that tasks can be
bound to them to reference data and/or
routines by symbol. Many tasks can share one
copy of such areas and the area is resident
only when a referencing task is active.

SEGMENT - A group of modules and/or p-sections that
occupy memory simultaneously and that can be
loaded by a single disk access.

SYMBOL DEFINITION FILE - The output file created by the Task Builder
that contains the global symbol definitions
and values in a format suitable for
reprocessing by the Task Builder. Symbol
definition files are used to link tasks to
shared regions.

TASK IMAGE FILE - The output file created by the Task Builder
that contains the executable p,ertion of the
task.

G-2

APPENDIX H

VIRTUAL SYMBOL TABLE

H.l ADJUSTMENT AND PLACEMENT OF VIRTUAL MEMORY

The symbol table constructed by the Task Builder is only part of a
dynamic, virtual memory system. This virtual memory is partially
resident and partially a disk workfile. The maximum size of this
virtual memory is 65,534 words. The ratio of resident storage to
workfile storage is a parameter that can be adjusted by re-building
the Task Builder. This can be done in RSX-llD by altering the
directive EXTSCT FRSIZl: in the build command file of the
Task Builder. Note that the extension of this memory must not cause
the Task Builder to become larger than the maximum size for any
task - namely 32,736. (32K-32) words.

Increasing the proportion of dynamic memory that is resident reduces
the amount of I/O necessary for access to the Task Builder's internal
data structures. Once the resident memory has been filled, the data
structures overflow into a temporary work file on the device assigned
to the workfile logical unit number. This logical unit number (W$LUN)
is specified in the build command file; it may be advantageous to
assign this unit number to a device other than the system device(e.g.,
a fixed head disk).

Displacement of pages to the workf ile is done on a least recently used
basis. The workfile will be automatically extended as necessary to
hold all pages displaced. The parameter W$KEXT is provided in the
build command file of the Task Builder and defines the file extension
properties. A negative value indicates that the extension is
non-contiguous; a positive value indicates a contiguous extend. If
the workfile remains contiguous, a higher access rate can be obtained;
however, this is advisable only when it is known that contiguous space
is always available.

H.2 CONTENT OF VIRTUAL MEMORY

It is not possible to state exactly how many symbols the Task Builder
can process, because there are many data structures included in
virtual memory. Following is a list of the structures that are stored

H-1

VIRTUAL SYMBOL TABLE

in the virtual memory. All the sizes given are approximations; the
size varies with the characteristics of the task being built and may
vary from release to release of the operating system.

Structure
Name

Segment Descriptor

P-section descriptor

Symbol Descriptor

Element Descriptor

Description Approx.
Size
(WORDS)

Contains listheads 60.
sizes, the pointers
defining the overlay
tree, the segment name,
Part of this structure
becomes the segment
descriptor in the
resultant task image.

Contains the name, 10.
address, size and
attributes of a
p-section.

Contains symbol name, 8.
value, flags and
pointers to defining
segment and p-section
descriptors.

Contains module 8.-18.
name, ident, filename,
count of p-sections
and some flags.

The maximum usage of virtual memory occurs during phase three of the
Task Builder, when the symbol table is built. However, phase one
makes significant use of virtual memory when an overlayed task is
being built. It is at this point that all the segment descriptors are
allocated and that element descriptors are allocated for each filename
encountered during the parsing of the tree description. In addition,
a P-section descriptor is produced for every .PSECT directive
encountered in the overlay description.

The parsing of the overlay description also makes use of dynamic
memory during the processing of each directive. This memory is
released upon completion of the analysis, but during the analysis, the
whole tree description must fit into the resident portion of storage.
If sufficient storage cannot be obtained in the resident dynamic
memory, the error message 'NO DYNAMIC STORAGE AVAILABLE' is produced.
The method of increasing the ratio of dynamic storage to virtual
memory can be applied to allow a task with a large overlay description
to be built.

The amount of memory required during analysis depends on:

1. Number of directives

H-2

VIRTUAL SYMBOL TABLE

2. Length of .FCTR lines

3. Number of operators (i.e., commas, dashes, parentheses and
asterisks).

4. Number of filenames encountered.

The resident portion of the virtual memory specified on the released
version of the Task Builder is sufficient to handle the overlay
description file of the Task Builder itself, as well as Filex. These
overlay descriptions are suggested as guidelines for constructing
complex overlay trees.

H.3 REDUCTION OF VIRTUAL MEMORY REQUIREMENTS

There are a number of
required during the
structures in virtual
tables and reduces
following metods will

ways to reduce the amount of virtual memory
build of a specific task. Reduction of the data
memory increases the speed of searching the
the amount of paging to the workfile. The
reduce virtual memory:

1. Extraction of object modules by name (i.e.,
LIBRY/LB:MOD1,MOD2 type constructs) from relocatable object
libraries. This technique requires smaller element
descriptors and fewer filename descriptors; it is faster
because there are fewer files to open and close.

2. Use of concatenated object modules.

3. Use of shareable global areas (resident libraries and common
areas) for language and overlay run time systems and file
control services. This means that symbols and P-sections are
defined once rather than on multiple branches of the tree.

4. Use of common segments. Modules that occur on parallel
branches of the tree should be placed on a common (i.e.,
closer to root) segment for the same reasons as 3 above.

5. Use of the /SS switch on symbol table files (.STB) that
describe absolute symbol definition. This means that only
those symbols that are referenced will be extracted from the
module.

6. Minimizing the number of segments and keeping the tree
balanced. For example, if one segment is very long, there is
no value in puting a tree structure in parallel unless
creation of one segment in parallel would be longer.

H-3

VIRTUAL SYMBOL TABLE

H.4 ERROR MESSAGES

There are four error messages associated with the virtual memory
system:

1. NO DYNAMIC STORAGE AVAILABLE. This error is produced when
there is insufficient resident storage for creating a data
structure. As much as possible (all unlocked pages) of the
data already allocated has been paged to the workfile but
there is still not enough free space in the resident area.
Such a situation may arise during the analysis of the overlay
description, early in the task build run and particularly if
it is a complex tree. The recommended recovery procedures
are to reduce the ODL and extend the Task Builder memory
allocation.

2. UNABLE TO OPEN WORKFILE. The probable causes of this error
are:

1. Device assigned to the logical unit W$KLUN of the Task
Builder does not have a volume mounted.

2. The volume does not support FILES-11.

3. There is no space on the volume.

4. The device is offline, not ready, write locked or faulty.

5. There is no such device.

The MCR function LON ... TKB can be used to determine which
device the Task Builder is attempting to use.

3. WORKFILE I/O ERROR. The most probable causes of this error
are:

1. Hardware error - e.g., parity errors on the disk.

2. Device is not ready, is dismounted or write locked.

3. An extend failure has occurred (e.g., there is
insufficient contiguous space in this area of the disk
when W$KEXT is positive); the disk is full. In these
cases, try allocating a contiguous 256 block file and
deleting it just before running the task build.

4. NO VIRTUAL MEMORY STORAGE AVAILABLE. The addressable limit
of the virtual memory has been reached. There is no recovery
other than to reduce the virtual memory requirements of the
task being built.

H-4

A

ABORT I 3-13
Abortable switch (AB) , 3-3
ABORT option, 3-13
Absolute patch option (ABSPAT) ,

3-22
Absolute shareable global areas,

7-4
ABSPAT, 3-22
ACTFIL, 3-15, 4-18
Active files, 3-15
Address, transfer, B-5
Allocation file, memory, 1-2
Allocation of p-sections, 4-5
Allocation options, 3-15

ACTFIL, 3-15
BASE, 3-18
EXTSCT, 3-16
EXTTSK, 3-17
FMTBUF I 3-16
MAXBUF I 3-15
POOL, 3-17
STACK, 3-17
TOP I 3-18

Allowable switch codes, 3-1
Attribute codes of task image,

4-13
Attributes, p-section, 4-3
ASG, 3-21
Assignment, device, 3-21
Asynchronous loading, 6-8
Autoload, 1-2, 6-2
Autoload indicator, 6-2

INDEX

Autoload vectors, 5-14, 6-4, C-13

B

BASE, 3-18
Base address option (BASE) , 3-18
Building a shareable global area,

7-5
Building of task, 3-25
Building task, 2-10, 5-16
Buffer size, format, 3-16
Buffer size, maximum record, 3-15

Code and data,
R-0, 4-3
R/W, 4-2

c

Code, user identification, 2-8
Checkpointable switch (CP) , 3-3

Commands, 2-1
Command line, task, 2-2
Command, task building, 2-11
Comma operator, 5-11, 5-22
Comment lines, 2-7
COMMON, 3-19
Common block, resident, 3-19
Common blocks, 7-1
common routines, 7-2
Compiling FORTRAN programs, 2-10
Complex relocation, B-20
Concatenated object modules, 3-3
Concatenated object modules

switches (CC) , 3-3
Content altering options, 3-13
Control option, ABORT, 3-13
Control options, 3-13
Control section name, B-4
Core image, overlay, 5-13
Co-tree, 5-24
Co-tree overlay region, 5-14
Co-trees, use of, 5-10
Creating a shareable global area,

7-3
Cross Reference Switch, 3-4
Cross Reference Task, E-1

Data and code,
R-0, 4-3
R/W, 4-2

D

Dash (hyphen) operator, 5-7
Data formats, task builder, B-1
Debugging aid, including a, F-1
Debugging aid switch (DA), 3-4
Default assumption for switches,

3-2
Default assumptions in file

specification, 2-14
Default stack, 4-2
Defaults, 1-1
Defining multiple tree structure,

5-11
Description, segment, 4-15
Descriptor,

element, H-2
p-section, H-2
segment, H-2
symbol, H-2

Device, 2-13
Device assignment option (ASG) ,

3-21

Index-1

INDEX (Cont.}

Device specifying options, 3-20
ASG, 3-21
UNITS, 3-20

Diagnostic, exit on, 3-9
Directive,

EXTSCT =, H-1
.END, 5-7
.FCTR, 5-8
.NAME, 5-9
• PSECT , 5 ~-9
.ROOT, 5-7

Directive status word, 4-2
Directory,

end of global symbol, B-9
global symbol, B-2
internal symbol, B-22
relocation, B-10

Disable switch (DS), 3-4
Disk address, relative, C-11

E

EDI, text editor, 2-9
Element descriptor, H-2
.END directive, 5-7
End of global symbol directory,

B-9
End of module, B-22
Entering source language, 2-9
Error handling, 6-9
Error messages, A-1
Existing shareable global area,

using an, 7-3
Exit on diagnostic switch (XT) ,

3-9
Extend task space option (EXTTSK) ,

3-17
Extending memory, H-1
EXTSCT, 3-16, H-1
EXTTSK, 3-17

F

.FCTR directive, 5-8
File,

memory allocation, 4-9
structure of memory allocation,

4-12
task image, 4-9

File contents, 4-16
File, memory allocation, 1-2,

5-16
Filename, 2-13
File, output, 2-12
File specification, 2-7

File specification, default
assumptions in, 2-14

File storage region, 4-17
File structure, task image, C-1
Files, memory allocation, 7-7
Fixable switch (FX), 3-4
Floating point save area, C-9
Floating point switch (FP), 3-4
FMTBUF, 3-16
Format buffer size, (FMTBUF)

option, 3-16
FORTRAN common blocks, 7-4
FORTRAN programs, 7-4
FORTRAN programs, compiling, 2-10
FORTRAN subroutine for manual

load request, 6-7

GBLDEF, 3-21
GBLPAT, 3-22

G

Global additive displaced
relocation, B-15

Global additive relocation, B-15
Global displaced relocation, B-14
Global relative patch option

(GBLPAT) , 3-22
Global relocation, B-13
Global symbol definition option

(GBLDEF), 3-21
Global symbol directory, B-2
Global symbol name, B-6
Global symbols,

reserved, D-1
resolution of, 4-7

Glossary, task builder, G-1
Group, 2-14
GSD, B-2

H

Header, C-6
Header switch (HD), 3-5
Header, task, 4-2
Hyphen operator, 5-22

Identification options,
PAR, 3-14
PR!, 3-14
TASK, 3-14
UIC, 3-14

Index-2

INDEX (Cont.}

Identification, program version,
B-8

Image file, task, 4-9
Improving task builder

performance, E-1
Impure area pointers, 4-2
Including a debugging aid, F-1
Indirect command file facility,

2-5
Input line, 2-12
Input, multiple line, 2-3
Internal displaced relocation,

B-14
Internal relocation, B.-·13
Internal symbol directory, B-22
Internal symbol name, B-5
Interpretation of autoload

indicator, 6-3

L

Label block details, C-4
Label block group, C-2
Label block size, C-5
LIBR, 3-19
Libraries, 7-1
Library file switch (LB}, 3-5
Library, resident, 3-19
Limits, program, B-17
Line,

input, 2-12
option, 2-12
task command, 2-12

Lines, comments, 2-7
Link-down, C-12
Link-next, C-12
Link-up, C-12
Load address, C-12
Loading mechanism, 5-4
Loading mechanisms, 6-1
Load request, synchronous, 6-7
Location counter definition, B-16
Location counter modification,

B-16
Logical unit table entry, C-9
Logical unit usage option (UNITS),

3-20
Low core contents, C-10
Low memory pointers, c-10

M

Manual load, 1-2, 6-1, 6-6
Manual load calling sequence, 6-6
MAXBUF, 3-16

Index-3

Maximum record buffer size
(MAXBUF} , 3-15

Member, 2-14
Memory allocation, 4-1

file, 1-2, 4-9, 5-16
file, structure of, 4-12
files, 7-7
file, short, 3-7, 5-16

Memory contents, virtual, H-1
Memory, extending, H-1
Memory requirements, reduction

of virtual, H-3
Memory, system, 4-8
Memory, task, 4-1
Messages, error, A-1
Modification, location counter,

B-16
Modifying a task to use an SGA,

7-6
Module, end of, B-22
Module name, B-4
Multiple line input, 2-3
Multiple task specification, 2-4
Multiple tree, 5-11
Multiple tree structure, defining,

5-11
Multiple tree structures, 5-10
Multi-segment task, 5-4
Multi-user switch (MU), 3-6

N
Name,

control section, B-4
global symbol, B-6
internal symbol, B-5
module, B-4
program section, B-6

.NAME directive, 5-9
Names, reserved p-section, D-1
No dynamic storage available, H-4
No virtual memory storage avail-

able, H-4
Number of Active Files option

(ACTFIL) , 3-15

0
Object module, 1-1
Object modules, B-1
Object modules, concatenated, 3-3
ODL, 5-7
ODL file, defining, 5-15
ODT SST vector option {ODTV), 3-23
ODTV, 3-23

INDEX (Cont.)

Operators,
comma, 5-7, 5-22
hyphen, 5-7, 5~22

Operators, tree structure, 5-22
Option line, 2-12
Options, 2-3

ABORT, 3-13
ABSPAT, 3-22
ACTFIL, 3-15
allocation, 3-15
ASG, 3-21
BASE, 3-18
COMMON, 3-19
control, 3-13
device assignment, 3-21
device specifying, 3-20
EXTSCT, 3-16
EXTTSK, 3-17
FMTBUF, 3-16
GBLDEF, 3 21
GBLPAT, 3-22
identification, 3-14
LIBR, 3-19
MAXBUF, 3-15
ODTV, 3-23
POOL, 3-17
PAR, 3-14
PRI, 3-14
STACK, 3-17
storage altering, 3-21
storage sharing, 3-19
synchronous trap, 3-23
TASK I 3-14
TOP I 3-18
TSKV I 3-24
UIC, 3-14
UNITS, 3-20

Options and switches, 3-1
Output file, 2-12
Overlay core image, 5-13
Overlay description, 5-1
Overlay description language,

5-7, 5-22
Overlay description switch (MP) ,

3-6
Overlay segments, C-13
Overlay structure, 1-2, 5-2
Overlay tree, 5-4
Overriding switch conditions,

3-10

p

PAR, 3-14
·Parentheses, 5-22
Parentheses, use of, 5-7
Partition option (PAR) , 3-14

Index-4

Path-loading, 6-4
Pointers, impure area, 4-2
POOL, 3-17
Pool limit option (POOL), 3-17
Position independent shareable

global areas, 7-4
Position independent switch (PI) ,

3-6
PRI, 3-14
Priority option (PRI) , 3-14
Privileged switch (PR), 3-7
Privileged tasks, 4-8
Program limits, B-17
Program section, 4-3
Program section extension option

(EXTSCT) , 3-16
Program section name, B-6
Program version identification,

B-8
.PSECT directive, 5-9
P-section

additive displaced relocation,
B-19

additive relocation, B-18
allocation of, 4-5
descriptor, H-2
displaced relocation, B-18
relocation, B-17

P-sections, 4-3
P-sections, resolution of, 5-6
P-sections, sequential allocation

of, 4-6

R

Read-only SGA, 7-1
Read/write SGA, 7-1
Record types, B-1
Reduction of virtual memory

requirements, H-3
References to shareable global

areas, 1-1
Relative disk address, C-11
Relocation,

complex, B-20
directory, B-10
global, B-13
global additive, B-15
global additive displaced, B-15
global displaced, B-14
internal, B-13
internal displaced, B-14
p-section, B-17
p-section additive, B-18
p-section additive displaced,

B-19
p-section displaced, B-18

INDEX (Cont.)

Reserved global symbols, D-1
Reserved p-section names, D-2
Reserved symbols, D-1
Resident common block option

(COMMON) I 3-19
Resident library option (LIBR) ,

3-19
Resolution of global symbols,

4-7, 5-4
Resolution of p-section, 5-6
R-0 p-sections, 4-3
R-0 task code and data, 4-3
.ROOT directive, 5-7
Rules, syntax, 2-11
Running a collection of routines,

1-1
Running a single routine,l~l
R/W p-sections, 4-2
R/W task code and data, 4-2

s
Segment, 5-1
Segment description, 4-15
Segment descriptor, H-2
Segment length, C-11, C-12
Segment tables, C-11
Selective search switch (SS) ,

3-8
Sequential allocation of p-

sections, 4-6
Sequential switch (SQ) , 3-8
SGA, 7-1
Shareable global area (SGA), 7-1
Shareable global area, building

a, 7-5
Shareable global areas, position

independent and absolute, 7-4
Shareable global areas, references

to, 1-1
Short memory allocation file,

5-16
Short memory allocation file

switch (SH) , 3-7
Spool memory allocation file

switch (SP), 3-7
STACK, 3-17
Stack, default, 4-2
Stack size, 3-17
Stack size option (STACK), 3-17
Status, C-11
Status word, directive, 4-2
Storage altering options, 3-21

ABSPAT, 3-22
GBLDEF, 3-21
GBLPAT, 3-22

Storage sharing options,
COMMON, 3-19
LIBR, 3-19

Structure of memory allocation
file, 4-12

Switch (sw) , 2-13
Switch codes, allowable, 3-1
Switch, default, 2-14
Switch, overriding, 3-10
Switches and options, 3-1
Switches, task builder,

AB, 3-3
cc, 3-3
CP, 3-3
CR, 3-4
DA, 3-4
OS I 3-4
FP, 3-4
FX, 3-4
HD I 3-5
LB, 3-5
MP I 3-6
MU, 3-6
PI, 3-6
PR, 3-7
SH, 3-7
SP I 3-1
SQ I 3-8
SS I 3-8
TA, 3-8
TR, 3-8
XT, 3-9

Symbol definition, global, 3-21
Symbol descriptor, H-2
Symbol directory, global, B-2
Symbol directory, internal, B-22
Symbol name, global, B-6
Symbol table, virtual, H-1
Symbols, resolution of global,

4-7, 5-4
Synchronous load request, 6-7
Synchronous trap options, 3-23

ODTV, 3-23
TSKV, 3-24

Syntax rules, 2-11
System memory, 4-8

T
Tables, segment, C-11
Tailoring task builder, E-1
TASK, 3-14
Task accounting switch (TA) , 3-8
Task accounting work area, C-9
Task builder data format, B-1
Task builder glossary, G-1

Index-5

INDEX (Cont.}

Task builder options, 3-10
allocation, 3-11, 3-15
content altering, 3-11
control, 3-10, 3-13
device specifying, 3-11
identification, 3-11, 3-14
storage altering, 3-21
storage sharing, 3-11, 3-19
synchronous trap, 3-11, 3-23

Task builder switches, 3-2
Task builder, tailoring, E-1
Task building, 2-10, 5-16
Task, building of, 3-25
Task command line, 2-2, 2-12
Task image, 1-1
Task image, attribute codes of,

4-13
Task image file, 4-9
Task image file structure, C-1
Task header, 4-2
Task memory, 4-1
Task, multi-segment, 5-4, 5-6
Task name option (TASK) , 3-14
Task, privileged, 4-8
Task R-0 root segment, C-10
Task R/W root segment, C-10
Task specification, multiple, 2-4
Task SST vector option (TSKV) ,

3-24
Text editor EDI, 2-9
Text information, B-9
TOP, 3-18
Top address option (TOP) , 3-18
Traceable switch (TR) , 3-8
Transfer address, B-5
Tree, overlay, 5-4
Tree structures, multiple, 5-10
Tree structure operators, 5-22
TSKV, 3-24
Type, 2-13
Type, default, 2-14

Index-6

UFD, 2-13
UIC, 3-14

u

Unable to open workfile, H-4
UNITS, 3-20
Use of parentheses, 5-7
User file directory, 2-13
User identification code option

(UIC) , 3-14
Using an existing shareable

global area, 7-3
Using parentheses, 5-22

v
Version, 2-13
Version, default, 2-14
Virtual memory, H-1

contents, H-1
requirements, reduction of,

H-3
Virtual symbol table, H-1

w
W$KEXT, H-1
Workfile I/O error, H-4

READER'S COMMENTS

RSX-llD
Task Builder
Reference Manual
DEC-11-0XDLA-D-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Report (SPR) form,

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

0 Non-programmer interested in computer concepts and capabilities

Name Date ____________ _

Organization _______________________________ __

Street-----------------------------------~

CitY~---------------State ______ ~Zip Code _______ _
or

Country

If you require a written reply, please check here. 0

---Fold llere--

·--- Do Not Tear - Fold llere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. o. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed in U.S.A.

